
Reference Guide
1130 proc Hnu
1140 choices:=3
1170 choice$C1>:="Star~ "+title$
1180 choice$ <2>: =11 Instructions"
1190 choice$ (3): ="End prograin"
1200 headerCtitle$,1)
1210 for i:=l to choices do
1220 print spaceSC1:5);i;choiceSCi>;
1230 end for i
1240 print horizontal 'bars;" [C/Dm"
1250 centreC"Enter selediun 1 to 3")
1260 print
1270 while keyS<>chr$(0) do null
1285 while pick$<"1" or pick$>"3"

by Borge R. Christensen
With a foreword by Jim Butterfield

'=>. •:l~#::prOc. aenu
· · .1-.140.. · choi ce-s: =3
·' H70- ·choiceSU>:=•start "+titles

·.· .. tiBo . choiceS<2> :=•Inst~uctions•
: · .1-t!l.O · ·choice$<3>: ="End progr u."
·· .12'10. tytade.r Cti tle$, 1>

:· StlO· for i :=1 to choices do
·=.=·•220 print SPilCeSCl:S>;i;choiceS<i>i
. 1·230 •ndf or i
~' l~ print hoTizontal'barS;"CC:/DNJ•
~ .. ··j$ cent;tec•Enter selectiun l t~ 3")
; .. · 1260 print
(U70 while- keyS<>chrSCO> do null
: : ·1215 while pJd:$< 11 t • or pick$)"3"

by Borge R. Christensen
With a foreword by Jim Butterfield

Borge R. Christensen

Fore~ord by Jim Butterfield

A TPUG publication

Toronto 1984
TORONTO PET USERS GROUP

© 1984 Borge R Christensen

Published by.

Toronto PET Users Group
1912A Avenue Road, Su.1te 1

Toronto, Ontario, Canada
MSM 4A1

ISBN 0-920607 -00-4

First Printing November 1984

•
CONTENTS

foreword v

Preface vii

Introduction with definitions . ix

COMAL reference guide . 1

With seaions on:

Expressions . 14

Procedures and Parameters 37

Standard Functions 48

String Handling, Substrings 49

C·64 COMAL 80 Graphics 57

C·64 Sprite Commands . 62

Index 65

in

FOREWORD by Jim Butterfield

COMAL is an attractive language. It's as friendly
as BASIC for the beginner, and yet allows the pro
grammer to use advanced program stucture features
when needed. In fact, one of COMAL's greatest
benefits is in its helpfulness at different skill
levels: easy for the beginner, effective for the
advanced programmer.

COMAL is, in fact, a dialect of BASIC. But it's a
BASIC which has been expanded, standardized and
rationalized. COMAL does more, as compared to
"garden variety" BASIC. The various implementa
tions of COMAL are relatively compatible. COMAL
statements fit together to create programs that are
efficient and reliable. And COMAL programs use
relatively small amounts of memory, yet run
quickly.

COMAL is not yet a universal computer language. At
the present time, it's available on a limited
number of computers. Only a few books and magazine
articles dealing with COMAL are to be found.

But COMAL is gaining in popularity. More people
than ever before are learning about - and using -
COMAL.

This reference guide will help you put COMAL 0.14
to work, quickly and efficiently.

Jim Butterfield
Toronto, Ontario, November 1984

v

PREFACE
The programming language COMAL (COMmon Algorithmic
Language) was designed in 1973 by Benedict
Loefstedt and me in order to make life easier and
safer for people who wanted to use computers
without being computer people. We combined the
simplicity of BASIC with the power of Pascal.

If you take a close look at BASIC you will see that
its simplicity stems mainly from its operating
environment, and not from the language itself.
Using BASIC, a beginner can type in one or two
statements and have his small program executed
immediately by means of one simple command. Line
numbers are used to insert, delete and sequence
statements. You do not need a sophisticated Text
Editor or an ambitious Operating System Command
Language. Input and output take place in a
straightforward way at the terminal.

On the other hand there is no doubt that as a
programming language, BASIC is hopelessly obsolete.
It was never a very good language, and seen from a
modern point of view it is a disaster. People who
start to learn programming using BASIC may easily
be led astray and, after some time, may find
themselves fighting with problems that could be
solved with almost no effort using programming
languages more adequate to guide human thinking.

COMAL includes the gentle operating environment of
BASIC and its usual simple statements, such as
INPUT, PRINT, READ, etc., but it adds to all that a
set of statements modelled after Pascal that makes
it easy to write well structured programs. Instead
of leading people away from the modern effective
way of professional programming, COMAL offers a
perfect introduction to this new art.

With C64 COMAL 0.14 by UniCOMAL Aps it is now
possible for anyone to become familiar with modern
principles of programming. It includes simple but
effective and versatile instructions to control
hi-res graphics and sprites.

Borge R. Christensen
Tonder, Denmark, April 22, 1984

~

INTRODUCTION

The contents are arranged in paragraphs or
articles; one about each COMAL keyword and four
additional about assignments, expressions,
procedures and parameters, and standard functions.
These paragraphs and articles are arranged
alphabetically according to the keywords and the
four titles just mentioned. Some of the paragraphs
are very short and hold only a reference to an
article. An article normally consists of
definitions, comments, and examples.

Most <items> are defined on location but a few
fundamental ones are explained below and used
without futher notice in the articles. These are:

<identifier> is a string of up to 78 characters.
The leading character must be a letter, and the
following may be letters, digits, or any one of
the characters: apostrophe ('), [,] , backslash, or
left arrow (displayed as underscore on the
printer).

<variable name> can be an <identifier> to name a
real (floating) variable, <identifier># to name an
integer variable, or <identifier>$ to name a string
variable.

<file name> is a <string expression> that returns a
valid CBM disk operative system file name.

<expression> can be either a <numeric expression>
or a <string expression>. A <numeric expression>
returns a numeric value (integer or real), and a
<string expression> returns a string. Note that
only <numeric expressions> that return values in
the range from -32768 to 32767 can be assigned to
integer variables. Details about <expressions> may
be found in the survey (see EXPRESSIONS).

<numeric constant> is a usual decimal
representation of a number, and a <string constant>
is a string of characters enclosed in double
quotes.

IX

<file no.> is a <numeric expression> that returns a
value in the range 1-255. A <unit no.> is a
<numeric expression> that returns a value in the
range 0-15. The COMAL System uses file #1 and #255
for system use.

<line number> is an integer in the range 1-9999.

In the syntax definitions, items in square brackets
[] are optional. Items enclosed in braces { } are
also optional, but may have several occurences.

It should be stressed that this survey of CBM COMAL
is neither a full formal definition nor a textbook.
Though it is believed to be complete and correct it
presupposes a certain knowledge about programming
in general and about CBM computers in particular. A
handbook that explains more detailed about CBM
COMAL and also contains much useful additional
information about CBM computers is

Len Lindsay: COMAL HANDBOOK

If you want a textbook about COMAL you could use

Roy Atherton: Structured Programming With COMAL

Borge R. Christensen: Beginning COMAL

A newsletter about COMAL and structured programming
is

COMAL TODAY (Editor: Len Lindsay)

All available from COMAL Users Group, U.S.A.,
Limited, 5501 Groveland Ter, Madison, WI 53716.

Borge R. Christensen
Tonder, Denmark, April 1984

x

COMAL IWference Gulde
ABS

is a standard function. ABS(X) returns the absolute
value of X.

AND

is a Boolean operator that denotes
conjugation. See also EXPRESSIONS.

APPEND

logical

is a keyword used to specify that a sequential file
is opened in append mode. See also OPEN.

ASSIGNMENTS

The syntax of an assignment is

<variable>:=<expression>

If the <variable> is of type string, the
<expression> must be of the same type. Type
conflicts between numerics and strings are normally
found and reported as program lines are entered.

The system is, however, very tolerant when numeric
types (reals and integers) are concerned. Thus a
variable of type real will accept integer values
and you may use variables of type integer in real
expressions. An integer variable will accept any
number in the range from -32768 to 32767. If a real
number in that range is assigned to an integer the
number is first rounded.

With numeric types, assignments like the following:

<variable>:=<variable>+<expression> and
<variable>:=<variable>-<expression>

may respectively be written in a shorthand form as

<var1able>:T<expression> and
<variable>:-<expression>

C-64 COMAL Reference Guide

ASSIGNMENTS (continued)

If the keyword LET is typed in before an assignment
it is ignored by the system. If the sign of
equality is entered instead of the sign of
assignment, the system automatically converts "="
into ":=".

VOLUME:=LENGTH*WIDTH*HEIGHT/3
COUNTER:+INCREMENT
ADDRESS$:=STR$(NO)+NAME$+"@"+STREET$+"@"+CITY$+"*"
MAX#:=32128

ATN

is a standard function.
arctangent in radians of X.

AUTO

ATN(X) returns the

AUTO is a command that makes the COMAL system
generate line numbers automatically as a program is
entered. Its syntax is:

AUTO [<line number>] [,<increment>)

where <increment> is a positive integer.

COMMAND GENERATES LINE NUMBERS:
------- ----------------------------
AUTO 0010, 0020, 0030, 0040, etc.
AUTO llO 0110, 0120, 0130, 0140, etc.
AUTO ,2 0010, 0012, 0014, 0016, etc.
AUTO 110,2 0110, 0112, 0114, 0116, etc.

If a valid line number is added to the word AUTO,
the generated sequence of numbers will start w1 th
the number thus indicated.

If a positive integer preceded by a comma is added,
the system will use this integer as an increment in
line numbers.

AUTO mode is switched off by pressing the RETURN
key twice in succession.

- 2 -

C-64 COMAL Reference Guide

BASIC

BASIC is a command that makes the computer switch
back to the built-in BASIC interpreter. The syntax
of the command is

BASIC

To return
reloaded.

to COMAL the interpreter must be

Note: The C64 reset function sometimes fails when
the BASIC command is used. To be sure that the
system is truly reset to BASIC mode press
<STOP>+<RESTORE> once or twice.

CASE, WHEN, OTHERWISE, ENDCASE

The CASE statement is the head
structure that controls multi-way
syntax of the case structure and
statements is given in the following

CASE <case selector> [OF]
{WHEN <choice list>

<statement list>}
[OTHERWISE

<statement list>]
ENDCASE

of the CASE
branching. The
its individual
diagram:

The <case selector> is an <expression>. The <choice
list> is a list of <expressions>. The expressions
on the <choice list> following a WHEN statement
must be of the same type (real, integer, or string)
as the <case selector>.

If the value of the <case selector> is equal to the
value of one of the expressions on a <choice list>
the corresponding <statement list> is executed.

As soon as a <statement list> has been executed,
the COMAL interpreter transfers control to the
statement following the ENDCASE statement, or stops
if no more statements follow. If the value of the
<case selector> does not match any of the
expressions on the choice lists the <statement
list> following OTHERWISE is executed, but if no
OTHERWISE statement is present, an error message is
emitted and execution of the program is stopped.

- 3 -

C-64 COMAL Reference Guide

CASE, WHEN, OTHERWISE, ENDCASE (continued)

On the listing of a program statements in a
<statement list> are indented automatically
relative to the control statements:

CASE GUESS OF
WHEN 1,2,3,4,5

COLOUR$:="RED"
FACTOR:=l.5

WHEN 6,7,8
COLOUR$:="YELLOW"
FACTOR:=3

WHEN 9
COLOUR$:="BLUE"
FACTOR:=lO

ENDCASE

If the <case selector> GUESS is equal
4, or 5, the first case is executed.
equal to 6, 7, or 8, the second case
and if GUESS is equal to 9 the last of
executed.

CASE MONTH$ OF

to 1, 2, 3,
If GUESS is

is executed,
the cases is

WHEN "JAN","MAR","MAY","JUL","AUG","OCT","DEC"
PRINT "THE MONTH HAS 31 DAYS."

WHEN "APR","JUN","SEP","NOV"
PRINT "THE MONTH HAS 30 DAYS."

WHEN "FEB''
IF YEAR MOD 4=0 THEN

PRINT "THE MONTH HAS 29 DAYS"
ELSE

PRINT "THE MONTH HAS 28 DAYS"
END IF

OTHERWISE
PRINT "OLD MAN GREGOR TURNS OVER IN HIS GRAVE."

ENDCASE

CAT

is a command used to di splay the contents of a
diskette. Its syntax is

CAT [<drive no.>]

The command

CAT

- 4 -

C-64 COMAL Reference Guide

CAT (continued)

causes the
diskettes
command

CAT 0

system
mounted

to
in

display catalogs of
system disk drives.

all
The

shows the catalog of the diskette in drive O, unit
8.

CHAIN

The CHAIN statement or command is used to load a
program stored on disk and run it. Its syntax is

CHAIN <file name> [,<unit no.>]

If no <unit no.> is specified, disk unit number 8
is used. Programs already in main storage will be
deleted when the CHAIN statement is invoked. Only
programs stored by means of the SAVE command can be
retrieved via CHAIN.

CHAIN "UPDATE"

loads the program named "UPDATE" from drive 0, unit
8, and runs it. See also SAVE and LOAD.

CHR$

is a standard function. CHR$ (X)
character whose ASCII value is X.

CLOSE

returns the

CLOSE is a statement or command used to sign-off
data files. Its syntax is

CLOSE [FILE] [<file number>]

- 5 -

C-64 COMAL Reference Guide

CLOSE (continued)

The statement (or command)

CLOSE

closes all files that have been opened. The
statement (or command)

CLOSE 3

closes file number 3 only.

The keyword FILE is added automatically by the
interpreter 1 f not entered by the user. See also
OPEN, READ, PRINT, INPUT.

CLOSED

If the ~eyword CLOSED terminates the procedure
heading, all variables in the procedure will be
local. Normally this is only the case with the
parameters.

PROC WINDOW(X,Y) CLOSED
SCREEN(X,l)
FOR I:=l TO Y-X+l DO ERASE'LINE(I)
SCREEN(X,l)

ENDPROC WINDOW
II
PROC SCREEN(L,C) CLOSED

X:=984+L*40
POKE 209,X MOD 256 //LINE LOW BYTE
POKE 210,X DIV 256 //LINE HIGH BYTE
POKE 211,C-l //CO~UMN

ENDPROC SCREEN
//.
PROC ERASE'LINE(L) CLOSED

SCREEN(L,l)
FOR I:=l TO 40 DO PRINT " "

ENDPROC ERASE'LINE

The variables X, Y, L, C, and I are all local, X,
Y, L, AND C because they are parameters and I
because the procedures are closed. Thus the X used
in SCREEN and the X used in WINDOW are different
ob]ects. The same goes for I in WINDOW and
ERASE'LINE. See also PROCEDURES AND PARAMETERS and
PUNC.

- 6 -

C-64 COMAL Reference Guide

CON

CON is a command that restarts a program which has
been stopped.

CON

Due to the internal linking of structures in a
COMAL program, the CON command cannot be used after
deletion or insertion of statements or introduction
of new variables. See also STOP.

cos

is a standard function. COS (X) returns the cosine
of X (X in radians).

DATA

A DATA statement is used to hold numeric or string
constants that may be retrieved in a READ
statement. Its syntax is:

DATA <value> {,<value>}

where <value> is a <numeric constant> or a <string
constant>.

REPEAT
READ NAME$,TEL
FQUND:=(THISNAME$=NAME$)

UNTIL FOUND OR EOD
DATA "COLLINS",23,"JACOBS",34,"HUDSON",45
DATA "KILROY",14,"ATHERTON",10,"BRAMER",15

See also EOD, READ, and RESTORE.

DEL

The DEL command is used to remove one or more lines
from a program in main storage:

DEL [<line number> [-[<line number>]]] or
DEL -<line number>

- 7 -

C-64 COMAL Reterence Guide

DEL (continued)

COMMAND RESULTS
------- -------
DEL 100 Removes line 100 from program
DEL 100-200 Removes lines between 100 and 200

inclusive
DEL -300 Removes all lines up to and

including 300
DEL 300- Removes all lines numbered 300 or

greater

Important note. A 1 i ne cannot be removed by Just
giving its line number. This is because empty
statements are allowed in versions 2.00 and later,
so entering a line number and nothing else would
simply introduce an empty statement with that line
number. The DEL command should not be confused with
the DELETE command which is used to remove files
from a disk.

DELETE

The DELETE statement or command is used to remove
files from a disk. Its syntax is

DELETE <file name> [,<unit no.>)

The <file name> must include the drive number. Thus
the cowmand

DELETE "O:MYPROG"

deletes the file "MYPROG" stored on the diskette in
drive number O, unit no. 8, whereas

DELETE "O:YOURPROG",9

erases the file "YOURPROG" stored on the diskette
in drive number 0, unit number 9.

- 8 -

C-64 COMAL Reference Guide

DIM

The DIM statement is used to declare strings and
arrays of numerics and strings. Its syntax is

DIM <declaration> {,<declaration>}

A <declaration> could be a <numeric declaration> as
in

DIM TABLE(-1:100)

or a <string declaration> as in

DIM NAME$(0:20) OF 30

Since the DIM statement is very versatile and
powerful, it is not all that simple to give a
detailed description of its syntax. Instead we
shall look at some examples. The statement

DIM TABLE (-1 : 10 0) , MAR KS (10 0 0 : 15 0 0 , 8 : 10)

declares an array of real numbers, named TABLE,
with indices ranging from -1 to 100, and a two
dimensional numeric array, named MARKS, with
indices ranging from 1000 to 1500 and 8 to 10. You
may use any <numeric expression> for lower bound
and upper bound, as long as the value returned for
the lower one is smaller than or equal to the value
returned for the upper one. Non-integer values are
truncated. If no lower bound is given the
interpreter uses 1 in its place. Thus the statement

DIM JOBCODE(lOO)

declares an array of numerics with indices ranging
from 1 to 100 and is totally equivalent to

DIM JOBCODE(l:lOO)

The statement

DIM NAME$ OF 30, ANSW$ OF 3

- 9 -

C-64 COMAL Reference Guide

DIM (continued)

declares two single string variables such that the
first one may hold up to 30 characters and the
second one up to 3 characters. Single string
variables must be declared. The following statement

DIM PUPIL$(30:100,8:10) OF 30

declares an array of strings with indices ranging
from 30 to 100 and 8 to 10 where each component may
hold up to 30 characters.

An array may have any number of dimensions.

DIV

is an operator that denotes integer division. See
also EXPRESSIONS.

DO

DO is used with FOR and WHILE statements. See FOR
and WHILE.

EDIT

The EDIT command is used to display a 1 ist of the
program presently in workspace, but without the
structured indentation invoked by the LIST command.
The syntax of the EDIT command is

EDIT [<line number> [-[<line number>]]] or
EDIT -<line number>

The EDIT command is used when editing to avoid
including "false spaces" caused· be the automatic
indentation of lines that are wrapped around. See
also LIST.

ELIF

The ELIF ("ELSEIF") statement can only be used with
the IF statement. See IF.

ELSE

The ELSE statement can only be used w1 th the IF
statement. See IF.

- 10 -

C-64 COMAL Reference Guide

END

The END statement makes the system terminate
execution of a program. See also STOP.

ENDCASE

The ENDCASE statement is used to terminate the last
block in a CASE multi-way branching structure. See
CASE.

END FOR

The ENDFOR statement is used to terminate the block
controlled by a FOR statement. See FOR.

ENDFUNC

The ENDFUNC statement is used to terminate the
definition of a user defined function. See FUNC.

END IF

The ENDIF statement is used to terminate the last
block of statements in an IF branching. See IF.

ENDPROC

The ENDPROC statement is used to
definition of a procedure. See
PARAMETERS.

ENDWHILE

The ENDWHILE statement
block of statements
statement. See WHILE.

ENTER

is used to
controlled

terminate
PROCEDURES

the
AND

terminate the
by a WHILE

The ENTER command is used to enter a program stored
on disk or tape into workspace:

ENTER <file name> [,<unit no.>]

Default value of <unit no.> is 8. The command

ENTER "O:MYPROG",9

- 11 -

C-64 COMAL Reference Guide

ENTER (continued)

is used to enter the program "MYPROG" found on
drive number O, unit number 9, whereas the command

ENTER "YOURPROG",l

retrieves the program "YOURPROG" found on the
cassette in unit number l (datasette).

Only programs stored by means of the LIST command
may be retrieved with the ENTER command.

Important note: Program lines that are taken in by
the ENTER command are merged into an existing
program in the same way as 1 i nes typed from the
keyboard. See also LOAD, LIST and SAVE.

EOD

is a standard Boolean function. EOD returns a value
of TRUE (numeric 1) if the last element in a data
queue has been read, otherwise a value of FALSE
(numeric 0) is returned. See also READ.

EOF

is a standard Boolean function. EOF (X) returns a
value of TRUE (numeric 1) if the end-of-file in a
sequential file has been reached, otherwise a value
of FALSE (numeric 0) is returned. See also READ and
INPUT.

OPEN 2,"PERSONS",READ
WHILE NOT EOF(2) DO

READ FILE 2: NAME$,ADR$,CITY$
PRINT NAME$
PRINT ADR$
PRINT CITY$

ENDWHILE
CLOSE

- 12 -

C-64 COMAL Reference Guide

ESC

The function ESC returns a value of TRUE (numeric
1) if the STOP key is depressed, otherwise it
returns a value of FALSE (numeric 0). The ESC
function is not active unless a TRAP ESC- statement
has been encountered. See also TRAP.

EXEC

The keyword EXEC, short for EXECute, may be used to
indicate a procedure call. The syntax of a
procedure call is

[EXEC] <identifier>(<list of actual parameters>)

The normal way of calling a procedure is by simply
stating the name of the procedure followed by the
parameter list, if any. But for sake of
compatibility with earlier versions of COMAL the
dummy keyword EXEC may still be used. Normally the
EXEC is suppressed on the listing of the program,
but by using the SETEXEC command (see SETEXEC) you
can force the interpreter to display it.

The following statements

PRINTOUT(NAME$,ADDRESS$)
EXEC PRINTOUT(NAME$,ADDRESS$)

are equivalent. They are both calling the procedure
PRINTOUT passing the parameters NAME$ and ADDRESS$.
See PROCEDURES AND PARAMETERS.

EXP

is a standard function. EXP(X) returns the value of
e (nat. loy. base) to the po1,1er of X (thus being
the inverse of nat. log.)

- 13 -

C-64 COMAL Reference Guide

EXPRESS IONS

A <numeric expression> can contain constants,
variables, and numeric functions, used with
parentheses and the following operators according
to the usual rules of mathematics:

+ monadic + +A
monadic - -A

T power AIB
* multiplication A B
I division A/B

DIV integer division (see below) A DIV B
MOD remainder from division (see below) A MOD B

+ addition A+B
subtraction A-B

If A and B are integers then A MOD B
so-called principal remainder from division
B, i.e. the smallest non-negative integer
that

is the
of A by
R such

A B*Q + R

and A DIV B is the quotient Q.

Numeric values may be compared by means of the
following relational operators:

< <= >= > <>

i.e. "less than", "less than
to", "greater than or equal
and "is not equal to".

or equal to",
to", "greater

"equal
than",

Numeric expressions may be used as Boolean
expressions. A numeric value equal to zero is
interpreted as FALSE, whereas any value other than
zero is interpreted as TRUE. A logical operation
returns a numeric 1 for TRUE and 0 for FALSE.

The following Boolean operators are available:

NOT logical negation. NOT A returns a value of
FALSE, i.e.numeric O, if A has a value of
TRUE, i.e. a numeric value different from
zero, but a value of TRUE (numeric
1) if A has a value of FALSE (is equal to
zero) •

- 14 -

C-64 COMAL Reference Guide

EXPRESSIONS (continued)

AND logical conJunction. A AND B returns a
value of TRUE if A and B are both TRUE,
otherwise a value of FALSE is returned.

OR logical disJunction. A OR B returns a value
of FALSE if A and B are both FALSE,
otherwise a value of TRUE is returned.

A <string expression> may consist of string
constants, string variables, string array elements,
or string functions concatenated by means of the +
sign. String expressions may be compared by means
of the operators:

< <= >= > <>

meaning this time "comes before", "comes before or
is equal to", "is equal to", "comes after or is
equal to", "comes after", "is not equal to", using
lexicographical ordering. Note that strings with
relational operators make up expressions that
return numerical values; 1 for TRUE and O for
FALSE.

IN is used for string pattern matching. The
expression A$ IN B$ returns a value of zero
(i.e. FALSE) if A$ is not found as a
substring of B$, but if A$ is found
as a substring of B$ the expression returns
the position of the first matching
character.

If NAME$ has a value of "LOTTIE CHRISTENSEN" then
the expression

SURNAME~ IN NAME$

returns a value of 8 (TRUE) if SURNAME$ is equal to
"CHRISTENSEN", but the value 0 (FALSE) if SURNAME$
is equal to "CRISTENSEN".

- 15 -

C-64 COMAL Reference Guide

EXPRESSIONS (continued)

The priority of the above mentioned operators is:

I (power)
/ DIV MOD

+
< <=
NOT
AND
OR

FALSE

>= > <> IN

To improve the readability of programs, two
constants TRUE or FALSE are predefined. TRUE is
equal to 1, and FALSE is equal to O.

FILE

See OPEN, CLOSE, READ, and WRITE.

- 16 -

C-64 COMAL Reference Guide

FOR

A FOR statement is used to control the execution of
a FOR loop. The syntax of the FOR statement and FOR
loop is

FOR <for range> [<step>] DO
<statement list>

ENDFOR [<control variable>]

where <for range> is

<control variable>:=<initial value>
TO <final value>

and <step> is

STEP <step value>

The <control variable> is a <numeric variable>, and
<initial value>, <final value>, and <step value>
are <numeric expressions>.

The <control variable> following the keyword ENDFOR
hds been bracketed to indicate that it is supplied
automatically by the interpreter if not entered by
the programmer. To ensure compatibility with
earlier versions of COMAL the keyword NEXT is
accepted on entry instead of ENDFOR. In a listing
the keyword ENDFOR is displayed.

FOR X:=l TO 5 DO
SUM:=SUM+X
PRINT SUM;

ENDFOR X

First the control variable X is set to 1 and the
two statements in the range of the loop are
executed. Then Xis set to 2, and the statements
are executed again. This goes on as long as X is
not greater than the final value 5. When X assumes
a value of 6 execution of tne loop is stopped and
the interpreter starts on the statement following
the ENDFOR statement. Note that X has a value of 6,
i.e. <final value>+l, when the loop terminates.
Also note that this value is not actually used in
the loop.

- 17 -

C-64 COMAL Reference Guide

FOR (continued)

FOR N:=l TO 10 STEP 2 DO
SUM:=SUM+N
PRINT SUM

ENDE'OR N

In this example N assumes the values 1, 3, 5, 7, 9,
and 11, since a step value of 2 is prescribed. Note
that the control variable N has an unused value of
11 when execution of the loop terminates.

FOR P:=lO TO 1 STEP -1 DO
PRINT TEXT$ (l: P)

ENDFOR P

The statement in the loop is executed for P equal
to 10, 9, 8, ••• , 1. The termination value of P is
O and not used in the loop.

A short FOR loop is available. Its syntax is

FOR <for range> [<step>] DO <statement>

No ENDFOR statement is allowed in
one-line FOR statement may also
command.

this
be

case. The
used as a

FOR P:=lO TO 1 STEP -1 DO PRINT TEXT$(l:P)

This loop is functionally equivalent to the
previous one only this time the short form is used.

FOR T:=l TO 750 DO NULL

This loop waits till COMAL has counted from 1 to
750.

- 18 -

C-64 COMAL Reference Guide

FUNC, ENDFUNC, RETURN

The FUNC statement is used as the first statement -
or head - of any user-defined function. The syntax
of a user defined function is

FUNC <function identifier> <head appendix>
<function body>

ENDFUNC [<function identifier>]

The <function identifier> is a <variable
identifier> and the <head appendix> is specified as

[(<formal parameter list>)] [CLOSED]

The <function body> is made up of COMAL statements.

A function value must be returned in a RETURN
statement (see RETURN), and at least one such
statement must be present in the <function body>.

The <function identifier> following ENDFUNC is
supplied automatically by the system during the
prepass if not entered by the programmer.

Note. If you are not very familiar with multi-line
functions and parameters, it might be advisable
that you read the section about PROCEDURES AND
PARAMETERS before continuing the present one.

FUNC DISTANCE(X,Y)
IF X<=Y THEN

RETURN Y-X
ELSE

RETURN X-Y
END IF

ENDFUNC DISTANCE

This function is called in a statement like

PRINT DISTANCE(l0,-4)

The values of the actual parameters 10 and -4 are
assigned ("passed") to the formal parameters X and
Y, respectively, and the value 14 is returned. The
PRINT st3tement displays 14.

- 19 -

C-64 COMAL Reference Guide

FUNC, ENDFUNC, RETURN (continued)

FUNC POS(A$,B$)
RETURN A$ IN B$

ENDFUNC POS

This function represents nothing but a renaming of
the IN operator. In some cases such a renaming
could contribute to better documentation.

FUNC GCD#(X#,Ylt)
IF (X# MOD Y#)=O THEN

RETURN Y#
ELSE

RETURN GCD#(Y#,X# MODY#)
ENDIF

ENDFUNC GCD#

This function returns the GCD (Greatest Common
Divisor) of two integers. Note that the function
itself is of type integer, and that it calls itself
recursively.

FUNC VALUE(A$) CLOSED
LN:=LEN(A$)
ONES:=ORD(A$(LN))-ORD("0")
IF LN=l THEN

RETURN ONES
ELSE

RETURN ONES+VALUE(A$(l:LN-ll)*l0
ENDIF

ENDFUNC VALUE

This function also calls itself recursively from
the expression in the last RETURN statement.

FUNC HASH(A$,HASHER) CLOSED
LN:=LEN(A$); T:=O
FOR I:=l TO LN DO T:+ORD(A$(I))
RETURN T MOD HASHER

ENDFUNC HASH

FUNC MEAN(N,REF A()) CLOSED
SUM:=O
FOR I:=l TO N DO SUM:+A(I)
RETURN SUM/N

END FU NC

- 20 -

C-64 COMAL Reference Guide

FUNC, ENDFUNC, RETURN (continued)

This function
by reference.
and CLOSED.

uses an array A passed as a parameter
See also PROCEDURES AND PARAMETERS

GOTO

The syntax of a GOTO is:

GOTO <label>

where <label> is an <identifier>. The GOTO
statement transfers control to a <label statement>
thus defined:

<label>:

IF FATALERROR THEN
PRINT "FATAL ERROR. CANNOT CONTINUE."
GOTO HALT

END IF

HALT:
s·roP

Using a GOTO statement you can jump
structure, but not out of a procedure.
to jump into a structure the
unpredictable. Jumping into a procedure
system breakdown.

IDENTIFIERS

out of any
If you try

result is
may cause a

Identifiers are used to name variables, labels,
functions, and procedures. An identifier may
contain as many as 78 characters, all significant.
The first character must be a letter, the rest may
be letters, digits, or any one of the following
characters: apostrophe ('), [,] , backslash, or
left arrow (<-).

Here are some legal ident1f1ers:

MAXNUMBER, HOUSENO, NUMBER'Of'VOWELS, NAME$,
NAME'OF'MY'UNCL£$

Nl, N2, NJ, CREATE'RECORU, GET'DIGIT,
GE'r •CHARACTERS

- 21 -

C-64 COMAL Reference Guide

IF, ELSE, ELIF, ENDIF

The IF statement is the head of t11e IF structure
that controls conditional branching. The syntax of
the IF structure and the statements that go with it
is shown in the following diagram:

IF <logical expression> [THEN]
<statement list>

{ELIF <logical expression> [THEN]
<statement list>}

[ELSE
<statement list>]

END IF

where <logical expression> is the same as
<numerical expression>. The keyword THEN is
supplied automatically by the system if not entered
by the user. The 11 nes in a <statement 1 ist> are
automatically indented by the interpreter on the
program listing.

In COMAL you also have a short form of the IF
statement. Its syntax is:

IF <logical expression> THEN <statement>

Note that no ENDIF is allowed in this case. On the
other hand the keyword THEN must be entered.

IF I<=J THEN
W:=A(I); A(I):=A(J); A(J):=W
I:= I+ 1; J: =J -1

END IF

If the expression I<=J evaluates to TRUE (numeric
1) the statement list between IF and ENDIF is
executed. If, however, it returns FALSE (numeric 0)
the statement list is skipped and control is
transferred to the statement foll~wing ENDIF.

IF TRY<3 THEN
PRINT "NO, TRY AGAIN"

ELSE
PRINT "NO, THE ANSWER IS ~,RESULT
PRINT "TYPE THAT!"

END IF
- 22 -

C-64 COMAL Reference Guide

IF, ELSE, ELIF, ENDIF (continued)

If the expression TRY<3 evaluates to TRUE, the
statement between IF and ELS.C is executed, but if
it returns the value FALSE, the statements between
ELSE and END IF are executed. In both cases control
is then transferred to the statement following
ENDIF.

D:=B*B-4*A*C
IF D>O THEN

PRINT "TWO REAL ROOTS:"
PRINT "Xl = ", (-B+SQR(D))/2/A
PRINT "X2 = ", (-B-SQR(D))/2/A

ELIF D=O THEN
PRINT "ONE REAL ROOT:"
PRINT "X = ",-B/2/A

ELSE
PRINT "DISCRIMINANT NEGATIVE"
PRINT "NO REAL ROOTS."

END IF

If the expression D>O returns the value TRUE the
first three-statement list is executed, and the
rest is skipped. If, however, it is evaluated to
FALSE, the interpreter evaluat~s the expression D=O
following ELIF. If that appears to be TRUE, the
second statement list is executed. If the second
expression also has a value of FALSE, execution
finally falls through to the last statement list,
i.e. the one following the ELSE statement. Note
that never more than one statement list is
executed. This means that if two expressions may
become TRUE, only the statement list following the
first of them is executed.

IF OBS<lO THEN
FREQUENCY(l) :+l

ELIF OBS<20 THEN
FREQUENCY(2) :+l

ELIF OBS<30 THEN
FREQUENCY(3) :+l

ELIF OBS<40 THEN
FREQUENCY(4) :+l

ELSE
FREQUENCY (5) : ·t-1

END IF

- 23 -

C-64 COMAL Reference Guide

IF, ELSE, ELIF, ENDIF (continued)

In this example it is utilizeu that one <state~ent

list> at most 1s executed. If 1t is TRUE that
OBS<lO all the rest of the Boolean expressions are
also TRUE, but only FREQUENCY(l) lS increased by 1.
If on the other hand 1 t 1 s TRUE that 10 <=OBS and
OBS<20 only the second ass19nment is executed. It
is easy to see how this could be used in
statistics.

IF CHAR$ IN SET'OF'LETTERS$ THEN
IF CHAR$ IN SET'OF'VOWELS$ THEN

VOWELS:+l //ANOTHER VOWEL
ELSE

CONSONANTS:+l //ANOTHER CONSONANT
END IF

ELIF CHAR$=" II THEN
WORDS:+l //ANOTHER WORD

ELIF CHAR$ IN SET'OF'DIGITS$ THEN
DIGITS:+l //ANOTHER DIGIT

ELSE
SPECIALS:+l //ANOTHER SPECIAL

END IF

IP JOB=3 THEN PRINTOUT

is functionally equivalent to

IF JOB=3 THEN
PRINTOUT

END IF

In both cases the procedure PRINTOUT is called if
JOB has a value of 3.

IN

is a Boolean operator used for string matching. For
further explanation see EXPRESSIONS.

INPUT

The INPUT statement is u&ed to fetch data from
keyboard. Its syntax is

INPUT [<prompt>:] <input list> [<print end>]
- 24 -

C-64 COMAL Reference Guide

INPUT (continued)

where <prompt> is a <string expression>, <input
list> is a list of variable identifiers, and <print
end> is a semicolon (;).

INPUT MAXNUMBC:R

When this statement is executed, the system
displays the sign "?" and waits for the user to
enter a number and press the RETURN key. The number
typed in is assigned as a value to MAXNUMBER.

INPUT "ENTER NAME: "· NAME$

When this statement is executed the system displays
the user defined prompt

ENTER NAME:

and pauses to let the user type in a string to be
assigned as a value to the variable NAME$.

INPUT NAME$,AGE

When this statement is executed the system displays
its standard prompt"?" and pauses. The user is
expected to type in a string and press the RETURN
key. The string is then assigned to NAME$ and the
system submits another "?" on the same line and
pauses to let the user type in a number.

INPUT A,B,C

This statement will ask the user to enter three
numbers. The following options may be chosen: You
can enter three numbers like

5 80 34

and then press RETURll. The variable A is then set
to 5, B to 80, and C to 34. You can also enter the
three numbers in the following manner:

5,80,34

- 25 -

C-64 COMAL Reference Guide

INPUT (continued)

and then press RETURN. Finally you may obtain the
same result by entering 5 and press RETURN, then 80
and press RETURN, and finally 34 and press RETURN.
In the first two cases only one "?" is displayed,
in the last case three "?" are submitted.

INPUT "FROM: ":FIRST$;
INPUT II TO: ":LAST$

The semicolon terminating the first statement
prevents the line from being shifted after the
first string has been typed in. The result of a
program-user dialog might look like this:

FROM: 12.DEC.80 TO: 23.DEC.80

The RETURN key was pressed after each entry.

Note that a string variable in an <input list> will
pick up all characters entered from the keyboard.
Therefore you can not have more than one string
variable in the list, and it must always be the
last one,

INPUT FILE

is used to retrieve data from a file that was
created using PRINT FILE. It will also allow
characters to be read directly off the screen. The
syntax of an INPUT FILE statement is:

INPUT FILE <file no.>[,<rec. no.>]: <input list>
[<print end>]

where <input list> is a list of variable
identifiers, <rec. no.> is a <numeric expression>
and <print end> is comma (,) or semicolon (;).

OPEN FILE 3,"MYDATA",READ
REPEAT

INPUT FILE 3: LINE$
PRINT LINE$

UNTIL EOF(3)
CLOSE

This program reads and displays the contents of the
sequential file "MYDATA".

- 26 -

C-64 CO~AL Reference Guide

INPUT FILE (continued)

VIDE0:=3
OPEN FILE VIDEO,"",UtHT 3,READ
SELECT "LP:"
FOR ROW:=l TO 25 DO

INPUT FILE VIDEO: TEXT$
PRINT TEX'!'$

ENDFOR ROW
CLOSE VIDEO
SELECT "DS:"

This program reads the screen line by line and
prints a hard copy of its contents.

INT

is a standard function. INT (X) returns the integer
part of X, i.e. the greatest integer less than or
equal to X.

KEY$

is a standard function. It returns the first ASCII
character in the input buffer. If no key has been
depressed, an ASCII null is returned.

PROC GET'CHAR(REF T$)
T$:=CHR$(0)
WHILE T$=CHR$(0) DO T$:=KEY$

ENDPROC GET'CHAR

LABELS

A label is used as a JUmp address for a GOTO
statement. The syntax of a label statement is

<identifier>:

Neta that GOTO <line number> is not allowed.

IF BREAK THEN GOTO HALT

HALT:
STOP "EXECU'.i'ION BRt.AKED BY USER"

- 27 -

C-64 COMAL Reference Guide

LABELS (continued)

If BREAK assumes a value of TRUE
to OJ control is transferred
statement. See also GOTO.

LEN

(value not equa 1
~o the label

is a standard function. LEN(X$) returns the current
length (number of characters) of the string value
of X$.

LINEFEED

The command

LINEFEED+

makes the system emit a linefeed after each
carriage return, when output is to the printer. The
command

LINEFEED-

disables this
out after a
LINEFEED-.

LIST

facility,
carriage

i.e. no
return.

linefeed
Default

is sent
mode is

is a command used to display or store a whole
program or a part of a program residing in
workspace. The syntax of the command is:

LIST [<line number>[-[<line number>]]] or
LIST -<line number>

where <name> is the name of a function or a
procedure.

- 28 -

C-64 COMAL Reference Guide

LIST (continued)

COMMAND

LIST
LIST 100
LIST 100-200

LIST -300

LIST 300-

RESULT

List the whole program
List line numbered 100
List all lines between 100 and 200

inclusive
List all lines up to and including

300
List all lines numbered 300 or

greater

The LIST command may also be used to store programs
on disks or tapes. The command

LIST "MYPROG"

stores a program now in main storage on disk as a
program file with the name of "MYPROG". The program
is stored as source code, and may therefore later
be merged with another program in main storage (see
ENTER). Since the LIST command handles source code
directly, this version is also permitted:

LIST 100-200 "YOURPROG"

In this case line 100-200 are stored in a file
named "YOURPROG".

If another device than disk unit no. 8 is used,
<unit no.> must be added to the command.

A program that has been stored by the LIST command
has type SEQ and may be opened as any other
sequential file and read by an INPUT FILE
statement. See also PRINT FILE, ENTER, and EDIT.

LOAD

is a command used to retrieve programs from disk or
tape. Its syntax is

LOAD <file name> [,<unit no.>]

The co.n.nand

LOAD "MAINPROG"
- 29 -

C-64 COMAL Reference Guide

LOAD (continued)

will load the program "MAINPROG" into workspace. If
you want to retrieve the program from a device
other than d1 sk unit no. 8, a unit no. must be
specified:

LOAD "YOURPROG",l

will load the program "YOURPROG" from cassette into
workspace. See also CHAIN, SAVE, LIST, and ENTER.

LOG

is a standard function. LOG (X) returns the natural
logarithm of X.

HOD

is an operator that returns the remainder from
integer division. See also EXPRESSIONS.

NEW

is a command that clears the whole workspace of
program and data. Its syntax is

NEW

NEXT

The NEXT statement way be used to terminate a block
of statements controlled by a FOR statement. The
keyword NEXT is automatically altered into ENDFOR
by the interpreter. See also FOR.

NOT

is a Boolean operator that denotes negation. For
further explanation see EXPRESSIONS.

- 30 -

C-64 COMAL Reference Guide

NULL

The NULL statement does nothing. Its syntax is

NULL

It ~ight seem a bit strange or even extravagant to
have a "no-op" statement like that to perform the
"empty action", but it can be inserted in some
special cases to satisfy the syntax of COMAL. The
example below will show how.

FOR I:=l TO 750 DO NULL //WAIT

OF

is a keyword used to terminate the CASE statement
and as part of the declaration of string variables
or string arrays. See also CASE and DIM.

OPEN

is a command or statement used to assign numbers to
files for reference. Its syntax is

OPEN [FILE] <file number>,<file name>[,<dev.
info>] [,<type>]

<file number> is a <numeric expression> that must
return a value from 2-254, <dev. info> is

UNIT <unit no.> [,<secondary addr>]

where <secondary addr> is a <numeric expression>
that must return a value from 0-15. Finally <type>
is READ for sequential reading, WRITE for
sequential writing, APPEND for continued sequential
writing, or RANDOM <record length> for reading to
or writing from a direct access file (random file),
where <record length> is a <numeric expression>
that must return a positive value.

OPEN FILE 3,"MARKS",READ

assigns the
keyword READ
referred to,
it, starting

file "MARKS" as file number 3. The
indicates that a sequential file is
and that data may be retrieved from

from the beginning of the file.
- 31 -

C-64 COMAL Reference Guide

OPEN (continued)

OPEN FILE 4,"@0:MARKS",WRITE

The file "MARKS~ is signed on as file number 4. The
l<eyword WRITE indicates that a sequential file is
referred to, and that data may be stored in it,
starting from the beginning of the file. The "@0:"
token indicates that if the file exists already
then it may be overwritten. The same effect may be
obtained by using these statements:

DELETE "O:MARKS"
OPEN FILE 4,"MARKS",WRITE

The keyword APPEND indicates that a sequential file
is referred to, and that data may be stored in it,
starting from the end of the existing file, thus
appending more data to it.

OPEN FILE 6,"MARKS",APPEND

The file "MARKS" is signed on as file number 6.

OPEN FILE 3,"CLIENTS",RANDOM 250

With this statement the dlrect access file
"CLIENTS" is signed on for both reading and
writing. The constant 250 following the keyword
RANDOM indicates that each record can be up to 250
bytes long. See also CLOSE, READ, WRITE, PRINT, and
INPUT.

OR

is a Boolean operator that denotes disjunction. See
EXPRESSIONS.

ORD

is a standard function. ORD (X$) returns the ASCII
value of the first character held by X$.

OTHERWISE

The O'I'HERWISE statement is used in the CASE
structure to indicate a default case. See CASE.

- 32 -

C-64 COMAL Reference Guide

PASS

is a command to pass strings to the CBM
strings are interpreted as commands by
operating system (see your disk manual
commands). Its syntax is

PASS <string expression>

disl<. The
the disk
for disk

PASS "NO:CONNIE'S DISK,01"
command to the disk

passes a format

PEEK

is a standard function. PEEK (X)
contents of a memory lo ca ti on X (X
0-65535) in decimal representation.

POKE

returns the
in the range

is a statement or command to assign values to
specified locations in memory. Its syntax is:

POKE <location>,<contents>

where <location> is a <numeric expression> that
must return a value from 0-65535, and <contents> is
a <numeric expression> that must return a value
from 0-255 (one byte).

POKE 650,128 makes C64 keys repeat

PRINT

The PRINT (may be entered
command outputs data to the
printer. Its syntax is

as ;)
data

PRINT [<output list>] [<print end>]

where <output list> is

<print element> {<print separator>
<print element>}

- 33 -

statement
screen or

or
the

C-64 COMAL Reference Guide

PRINT (continued)

The <print element> is an <expression> or the TAB
function, and <print separator> is either a comma
(,) or a semicolon (;). If a semicolon is used an
extra space is output between one <print element>
and the next; if a comma is used no extra spaces
are output unless otherwise stated in a ZONE
statement (see ZONE). The <print end> is the same
as <print separator>.

PRINT "THIS IS THE ",3,". TIME"

outputs

THIS IS THE 3. TIME

The same output results from

PRINT "THIS IS THE"; 3,". TIME"

The next statement:

PRINT "THE
",NAME$(NO)

NAME OF

may output the following

THE ",NO,".

THE NAME OF THE 5. PUPIL IS ROY MANNING

The same output may be produced by

PRL~T "THE NAME OF THE";
PRINT NO,". PUPIL IS";
PRINT NA"'IE$ (NO)

PUPIL IS

Note the use of semicolon as <print end> in this
case. If comma is used you get

PRINT "THE NAME Of THl: ",
PRINT NO,". PUPIL IS "
PRINT NAME$ (NO)

- 34 -

C-64 COMAL Reference Guide

PRINT FILE

is used to store data on disk or tape. Its syntax
is

PRINT FILE <file no.>[,<rec. no.>]: <print list>
[<print end>]

<print list> and <print end> are as specified for
PRINT, <rec. no.> is a <numeric expression>. A file
that has been created using PRINT FILE is of type
SEQ and data from it may be retrieved by means of
INPUT FILE.

OPEN FILE 4,"PERSONS",UNIT 1, WRITE
FOR NO:=l TO MAXNO DO

PRINT FILE 4: NAME$(N0l
PRINT FILE 4: ADDR$(NO)
PRINT FILE 4: PAYCD(NO)

ENDFOR NO
CLOSE ..

The program stores data sequentially on a cassette
in the file signed on as number 4. The data thus
sto~ed may be retrieved by means of the following:

OPEN FILE 6,"PERSONS",UNIT 1, READ
FOR J:=l TO MAX DO

INPUT FILE 6: NAME$(J)
INPUT FILE 6: ADDR$(J)
INPUT FILE 6: PAYCD(J)

ENDFOR J
CLOSE

Normally PRINT FILE and INPUT FILE are only used
for sequential data files on cassette. See also
READ FILE, WRITE FILE, and OPEN FILE.

PRINT USING

The PRINT USING statement is used when formatted
output of numbers is required. The syntax is

PRINT USING <format info>: <using list>
[<print end>]

- 35 -

C-64 COMAL Reference Guide

PRINT USING (continued)

where <format info> is a <string expression> and
<print end> is as specified for PRINT. The <using
list> is

<numeric expression> {,<numeric expression>}

The <format info> can contain texts and format
fields. A format field is a string that serves as a
model for the printout of numeric values. The hash
mark (#) reserves a digit place, the dot (,)
specifies the location of the decimal point, if
any, and a minus sign can be introduced to be
displayed if the value of the number is negative.

PRINT USING " ### ####.##": A,B

If A equals 23.6 and B equals 234.567 the following
output is produced:

24 234.57

If A is equal to 1234 and B has a value of 546 the
following output is produced:

*** 546.00

with the three *'s indicating that there is an
overflow in the format.

PRINT USitJG "THE ROOT IS: -##.##": -B/2/A
,.

If B is equal to 15.748 and A is equal to 7.2 the
statement produces the following output:

THE ROOT IS: -1.09

If B equals 234.67 and A is equal -23.3 the
statement produces this output:

THE ROOT IS: 5.04

- 36 -

C-64 COMAL Reference Guide

PROCEDURES AND PARAMETERS

Tne PROC statement is used as the first statement -
or head - of any user-defined procedure. The syntax
of a procedure is

PROC <procedure identifier> <head appendix>
<procedure body>

ENDPROC [<procedure identifier>]

The <head appendix> is specified as

[(<formal parameter list>l J [CLOSED]

The <procedure identifier> is an <identifier>, the
<procedure body> is made up of COMAL statements.
The <procedure identifier> following ENDPROC is
supplied automatically by the system during prepass
if not entered by the programmer.

The <formal parameter list> is specified as

<formal parameter> {,<formal parameter>}

where a <formal parameter> could be either

[REF] <variable identifier> or
REF <variable identifier>({,})

If the keyword REF is
passed by reference,
value. Arrays of any
reference.

used before a parameter it is
otherwise it is passed by
type can only be passed by

Example: A
statement

procedure

PROC TRY(I,J)

called with:

TRY (FIRST, LAST)

that starts with this

- 37 -

C-64 COMAL Reference Guide

PROCEDURES AND PARAMETERS (continued)

In this case the identifiers I and J in the
procedure head are formal parameters, and a value
is assigned to each of them when the procedure is
called. The identifiers FIRST and LAST referred to
in the calling statement are actual parameters and
must be defined whenever the statement comes to be
executed. During the procedure call, I is assigned
the value of FIRST (the value of FIRST is "passed"
to I), and J is assigned the value of LAST. Since
actual values are passed, I and J are also called
value parameters.

But there is more to it. I and J will be treated as
local variables to the procedure TRY, and that
means that they will not be known to the "world"
outside the procedure, and therefore they will not
be confused with variables I and J, if any, in
other parts of the program. Also when the procedure
is finished any trace of local variables is
removed.

Actual parameters to be passed by value may be
constants, variables, or expressions, as long as
they a re ready to "deliver a value" on request,
i.e. whenever a call is invoked. The procedure TRY
might be called by statements like

TRY(l,9) or TRY(P-l,P+L-1)

PROC BACKWARDS(W$)
LN:=LEN(W$); B$:=fi"
FOR I:=LN TO 1 STEP -1 DO B$:+W$(I)

ENDPROC BACKWARDS

The above procedure is called from these mainlines:

DIM B$ OF 30
INPUT "ENTER WORD (MAX. 30 CHAR.): "· B$
BACKWARDS (B$)
PRINT B$

- 38 -

C-64 COMAL Reference Guide

PROCEDURES AND PARAMETERS (continued)

The value of B$ is passed to W$ during the call.
Note that W$ is not declared explicitly. When a
string variable is used as a formal parameter it is
automatically given the length necessary to hold
the actual string value passed to it. When the
procedure is finished the part of memory occupied
by W$ is set free.
A procedure is headed

PROC WRITERECORD(R,N$,REF M())

and is called by

WRITERECORD(STUDENTNO,NAME$,MARKS)

In this example R and N$ are
parameters, and during the call they
the values of STUDENTNO and NAME$,
The

REF M()

formal value
are assigned

respectively.

denotes a formal parameter M that is called by
reference. The string "()" following M indicates
that M must refer to a one dimensional array. If
the call is to be legal, MARKS must be the name of
a one dimensional array. With a reference parameter
no assignment takes place during the call, but the
formal parameter in question is simply used by the
p,..rocedure as a "nickname" for the actual parameter.
So in this case MARKS will actually "suffer" from
anything WRITERECORD does to M. The following
metaphor might help you to remember what a
reference parameter is: A boy named JEREMY is
called JIM at home i.e. locally. If JIM is
overfed by his mother the world will see JEREMY
grow fat. The procedure WRITERECORD might also be
headed

PROC WRITERECORD(R,REF N$,REF M())

The only difference from the former heading is that
N$ is now a parameter to be called by reference. N$
w111 only refer to NAME$ and no ass ignrnent tak;es
place. This of course speeds up the process and
saves storage.

- 39 -

C-64 COMAL Reference Guide

PROCEDURES AND PARAMETERS (continued)

A procedure with this heading is given

PROC PRINTOUT(REF TABLE(,))

The string"(,)" following the name TABLE indicate
that TABLE must refer to a two dimensional
numerical array. By analogy the string"(,,)" would
indicate reference to a three dimensional array,
and so forth.

PROC BACKWAHDS(REF W$) CLOSED
LN:=LEN(W$)
DIM B$ OF LN
FOR I:=LN TO 1 STEP -1 DO B$:+W$(I)
W$:=B$

ENDPROC BACKWARDS
II
DIM B$ OF 30
INPUT "WORD (MAX. 30 CHAR.): "· 8$
BACKWARDS(B$)
PRINT B$

The string 8$ declared in the procedure has nothing
to do with the string 8$ declared in the mainline
program, since th12 procedure is closed. In fact W$
is taking over the part of "outer B$". See also
FUNC and CLOSED.

RANDOM

is a keyword used to indicate that a file is opened
for random access. See OPEN FILE.

READ

The READ statement is used to retrieve data from a
data queue set up in DATA statements. Its syntax is

READ <variable identifier>
{,<variable identifier>}

As data elements are read a data pointer is moved
to point to the next element. When the last element
in the queue has been read a built-in Boolean
function EOD (End-Of-Data) returns a value of TRUE.
See STANDARD FUNCTIONS.

- 40 -

C-64 COMAL Reference Guide

READ (continued)

The data pointer may be reset to the beginning of a
queue by means of the RESTORE statement. See
RESTORE.

READ NAME$,TEL

DATA "JOHN NELSON",34

After the READ statement has been executed, NAME$
is assigned the value "JOHN NELSON" and TEL is set
to 34. Note that a string constant must be read by
a string variable, and a numeric constant must be
read by a numeric variable. The types of the
variables in the READ statement must be in
accordance with the types of the constants in the
queue.

NO:=l
REPEAT

READ NAME$(NO) ,TEL(NO)
NO:+l
PRINT NAME$ (NO);
PRINT "HAS TEL.NO.";TEL(NO)

UNTIL EOD

DATA "MAX ANDERSSON",34,"PETER CRAWFORD",45
DATA "ANNI BERSTEIN",12,"LIZA MATZON",56

See also DATA.

READ FILE

The READ FILE statement is used to retrieve data
from sequential and random access files stored by
using the WRITE FILE statement (see WRITE FILE).
Its syntax is

READ FILE <file no.> [,<record no.>]:
<variable list>

where <file no.> and <record no.> are both <numeric
expression>.

- 41 -

C-64 COMAL Reference Guide

READ FILE (continued)

Note that a variable on the <variable list> may
refer to an array, and in that case a whole array
of data can be retrieved in a single execution of a
READ FILE statement

DIM NAME$(100) OF 30
READ FILE 2: NAME$

Values for the whole .array NAME$ is retrieved from
the sequential file signed on as file number 2.

READ FILE 4,RECNO: NAME$,OWNER$,DEST$,CARGO'NO

The statement reads from record no. RECNO in the
file opened as no. 4. See also OPEN, PRINT, INPUT,
and CLOSE.

REF

A keyword used to mark formal parameters to be
called by reference. See PROCEDURES AND PARAMETERS
and FUNC.

REM

The keyword REM is used to initiate comments. The
interpreter converts it into the symbol"//". A
comment may be placed on a line of its own (like a
REM statement in BASIC) or at the end of any other
statement, and is initiated with the symbol "//".

IF CH$ IN VOWELS$ THEN //IS IT A VOWEL?
COUNT'VOWELS:+l

ELSE //MUST BE A CONSONANT
COUNT'CONSONANTS:+l

ENDIF //LETTER

REN UM

is a command used to change or adJust line numbers.
Its syntax is

RENUM [<line number>] [,<increment>]

- 42 -

C-64 COMAL Reference Guide

RENUM (continued)

RENUM

causes the line numbers to become: 10, 20, 30, etc.

RENUM 100

causes the 1 ine numbers to become: 100, 110, 120,
etc.

RENUM 150,5

causes the 1 ine numbers to become: 150, 155, 160,
165, etc.

RENUM ,2

causes the line numbers to become: 10, 12, 14, 16,
etc.

REPEAT

A REPEAT statement initiates a REPEAT loop. The
syntax of the REPEAT loop and the REPEAT and UNTIL
statements is given in this diagram

REPEAT
<statement list>

UNTIL <numeric expression>

The program section given by <statement
executed repetitively until the
expression> returns a value of TRUE (1. e.
non-zero) •

REPEAT
READ NAME$,TEL
FOUND:=(THISNAME$=NAME$)

UNTIL FOUND OR EOD

RESTORE

list> is
<numeric

numeric

is a statement that resets the data pointer to the
first element in a data queue. Its syntax is

RESTORE

See also DATA and READ.

- 43 -

C-64 COMAL Reference Guide

RETURN

The RETURN statement is used to return a value from
a function, or to return from a procedure before
the ENDPROC statement is reached. Its syntax is

RETURN [<numeric expression>]

FUNC MAX(X,Y)
IF X<=Y THEN

RETURN Y
ELSE

RETURN X
ENDIF

ENDFUNC MAX

FUNC GCD(A,B)
IF (A MOD B)=O THEN

RETURN B
ELSE

RETURN GCD(B,A MOD B)
ENDIF

ENDFUNC GCD

Note that
recursively.
PARAMETERS.

RND

the
See

function
also FUNC

is
and

calling itself
PROCEDURES AND

is a standard functiorr. RND(X,Y), X and Y integers
and X less than Y, returns a random integer in the
range from X to Y. RND (YJ returns a random real
number in the range from 0 to 1. If Y is negative
the same sequence of random numbers is always
displayed, but if Y is non-negative a new random
start is implied.

RUN

The RUN command invokes a prepass of the program in
workspace (unless the program has already been
prepassed and no changes have been made in it) and
then starts execution of it. See also CHAIN. Its
syntax is

RUN
- 44 -

C-64 COMAL Reference Guide

SAVE

is a command to store programs on diskette or tape.
Its syntax is

SAVE <file name> [<unit no.>]

Programs stored by using SAVE may be retrieved by
LOAD or CHAIN.

SAVE "AUNTIE"

stores the program presently in workspace on a
diskette in unit no. 8.

SAVE "UNCLE",l

stores the program presently in workspace on a tape
in unit no. 1. See also LOAD, CHAIN, LIST, and
ENTER.

SELECT [OUTPUT]

is a command or a statement used to direct printout
to the screen or the printer. Its syntax is

SELECT [OUTPUT] <device>

where
(Data

<device>
Screen) •

screen.

is
The

"LP:" (Line Printer) or "OS:"
default output device is the

PRINT "I AM HERE."
PRINT "WHERE ARE YOU?"
SELECT "LP:"
PRINT "I AM HERE BESIDE YOU."
SELECT "OS:"
PRINT "THANKS, PRINTER."

The two first texts are displayed on the screen,
the third one is sent out on the printer, and the
fourth one appears on the screen.

- 45 -

C-64 COMAL Reference Guide

SETEXEC

is a command to make the interpreter list the
keyword EXEC when listing a program (see EXEC). Its
syntax is

SETEXEC <sign>

where <sign> is + or -.

SE TEX EC+
SET EXEC-

makes COMAL list the keyword EXEC
causes EXEC to be supressed

The default mode is SETEXEC-. If you are in
SETEXEC+ mode the keyword EXEC is inserted
automatically by the system. This means that you
never need to type in EXEC. On the other hand if
you are in SETEXEC- mode you are allowed to type in
the EXEC. The interpreter will then simply ignore
it.

Note. The reason for having this command in C64
COMAL is one of compatibility. In earlier version
of COMAL the EXEC was compulsory, and some people
might still like to have it. See also EXEC.

SETMSG

is a command used to suppress the error messages.
Its syntax is

SETMSG <sign>

where <sign> is + or -. Default mode is SETMSG+.

Error messages are held in a file on the diskette
to save main storage. This means that you will have
to wait about 3 seconds to get a message on the
screen. To a trained programmer this could be
annoying. Therefore the option to switch the
messages off is given with SETMSG. If in SETMSG
mode a prompt like

ERROR 12

is displayed with the cursor
estimated location of the error.

- 46 -

placed on the

C-64 COMAL Reference Guide

SGN

is a standard function. SGN (X) returns the sign of
X: -1 if X is positive, O if X is equal to zero,
and 1 if X is positive.

SIN

is a standard function. SIN (X) returns the sine of
X (X 1n radians).

SIZE

The SIZE command print the size of free memory in
bytes. Its syntax is

SIZE

SQR

is a standard function. SQR (X) returns the square
root of X (X non-negative).

- 47 -

C-64 COMAL Reference Guide

STANDARD FUNCTIONS

ABS(X)
ATN(X)
CHR$(X)

COS(X)
EOD

EOF(X)

ESC

EXP(X)

KEY$

INT (X)

LEN(X$)

LOG (X)

ORD (X$)

PEEK X

RND(X,Y)

RND(X)

SGtl(X)

returns the absolute value of x.
returns the arctangent in radians of X.
returns the character whose ASCII value

is x.
returns the cosine of X (X in radians).
returns a value of TRUE (numeric 1) if
the last element in the data queue has

been read, otherwise a value of FALSE
(numeric 0) is returned.

returns a value of TRUE (numeric 1) if
the end-of-file mark in a sequential
file opened as file number X has been
encountered, otherwise a value of
FALSE (numeric 0) is returned.

returns a value of TRUE (numeric 1) if
the STOP key is depressed, otherwise
it returns a value of FALSE
(numeric 0).

returns the value of e (nat. log. base)
to the power of X (thus being the
inverse of nat. log.)

returns the first ASCII character in the
keyboard buffer. If no key has been
depressed, a CHR$ (0) is returned.

returns the integer part of X, i.e. the
greatest integer less than or equal to
x.

returns the current length, i.e. number
of characters, of the string value of
X$.

returns the natural logarithm of X, X
positive.

returns the ASCII value of the first
character held by X$.

returns the contents of memory location
X (X in the range 0-65535) in decimal
representation.

returns a random integer in the range
from X to Y, X and Y integers and X
less than Y.

returns a random real in the ran9e from
0 to 1. If X is negative the same
sequence is always generated, other
wise a random start is implied.

returns the sign of X: -1 if X is
positive, 0 if X is equal to zero, and
1 if X is positive.

- 48 -

C-64 COMAL Reference Guide

STANDARD FUNCTIONS (continued)

SIN (X)
SQR (X)

returns the sine of X (X in radians).
returns the square root of X

(X non-negative).
TAN(X) returns the tangent of X (X in radians).

STATUS

is a command that makes the system display the disk
operative system status and switches off the error
indicator.

STEP

is a keyword that may be used
indicate an optional counter
See FOR.

STOP

in FOR statements to
variable increment.

is a statement to stop program execution. Its
syntax is

STOP

STRING HANDLING, SUBSTRINGS

A string variable must always be declared. For
example

DIM NAME$ OF 30

declares a string variable NAME$ that may hold up
to 30 characters. If 3 string array is declared,
the maximum length of the components must Also be
specified. For example

DIM ADDRESS$(100,3) OF 20

declares a two dimensional string array, where each
component may hold up to 20 characters.

- 49 -

C-64 COMAL Reference Guide

STRING HANDLING, SUBSTRINGS (continued)

Formal parameters of type
predeclared length. Thus in

PROC PACK(N$)

string have no

the parameter N$ is automatically given the length
necessary to hold the string value passed to it.

A substring is specified by giving the position of
the first and last character in it, If for example
NAME$ has the value: "RICHARD PAWSON", then

NAMES(9:14)

returns the string "PAWSON".

If the string SPACES$ is declared (DIM) to a length
of 60 characters, the assignment

SPACE$ (1:60) :=""

fills SPACE$ with blanks.

In the string NAME$, the expression NAMES(5) is
equal to NAMES(5:5), i.e. if the substring is only
one character long, you only have to give the
pos1t1on of that character.

Also note that substring assignment is allowed in
CBM COMAL. If the following statements are executed

DIM ADDRESS$ OF 80
ADDRESS$(1:80) :=""
ADDRESS$(21:40) :=HOUSE$

the current value of HOUSE$ is stored in ADDRESS$
on positions 21-40. If the value of HOUSE$ has a
length of more than 20 characters surplus
characters are lost.

- 50 -

C-64 COMAL Reference Guide

STRING HANDLING, SUBSTRINGS (continued)

If a substring of an array component is to be
pointed out, the component is first indicated and
after that the substring. If TEL$(23) has a value
of

"HARRY HENDERSON 3456"

then the string expression

TEL$(23) (21:24)

returns the value "3456".

SYS

is a statement that invokes a subroutine call
(JSR). Its syntax is

SYS <memory location>

where <memory location> is a <numeric expression>
that must return a value in the range 0-65535.

TAB

In a PRINT statement the TAB function may be used
to set the next print position. The argument of the
TAB function must be positive and not greater than
32767. If a value greater than 80 (line length)
results it is first divided by 80, and the
remainder is used. Non-integer values are truncated
before use. If the TAB function evaluates to a
position prior to the current one, the line is
shifted before the tabulation is effected.

PRINT" MATHEMATICS:",TAB(20),2

produces this printout

MATHEMATICS: 2

with "2" printed in column 20.

- 51 -

C-64 COMAL Reference Guide

TAB (continued)

PRINT" MATHEMATICS:",TAB(5),2

produces this printout

MATHEMATICS:
2

The example demonstrates that if the TAB function
returns a position prior to the current one, the
line is shifted first. See also PRINT.

TAN

is a standard function. TAN (X) returns the tangent
of x (X in radians).

THEN

is a keyword used to terminate an IF statement. See
IF.

TO

is a keyword used in the FOR statement to separate
<initial value> from <final value>. See FOR.

TRAP

is a statement or a command used to enable or
disable the functioning~of the STOP key. Its syntax
is

TRAP ESC <sign>

where <sign> is one of the characters + or -.
Default mode is TRAP ESC+.

- 52 -

C-64 COMAL Reference Guide

TRAP (continued)

After the statement or command

TRAP ESC-

has been encountered by the interpreter, depressing
the STOP key will have no effect on program
execution, but the function ESC (see ESC) returns
the value TRUE (numeric 1) • The command or
statement

TRAP ESC+

brings the STOP key back to normal mode of
operation.

TRUE

is a predefined constant with the numeric value 1.
See also FALSE.

UNIT

is a keyword used in OPEN FILE statements when a
certain external device must be indicated. Default
unit is always disk unit no. 8. See OPEN FILE.

UNTIL

is a statement used to terminate the block of
statements in a REPEAT-UNTIL loop. See REPEAT.

USING

is a keyword used with PRINT to give a formatted
output of numerical values. See PRINT USING.

WHEN

is a statement used to initiate a block of
statements in the CASE structure. See CASE.

- 53 -

C-64 COMAL Reference Guide

WHILE

is the leading statement
structure. The syntax of the
statements that control it is

in the
WHILE

WHILE <numeric expression> [DO]
<statement list>

ENDWHILE

WHILE
loop and

loop
the

The block of statements in the <statement list> is
executed repetitively as long as - i.e. while - the
expression following the WHILE keyword is evaluated
to TRUE. When the expression evaluates to FALSE,
control is transferred to the statement following
the ENDWHILE statement.

If the <statement list> contains only one statement
a short form of the WHILE loop may be used. Its
syntax is

WHILE <numerical expression> DO <statement>

In this case no ENDWHILE statement is needed - nor
allowed - to terminate the loop.

TAKEIN("NAME")
WHILE NOT OK DO

ERROR("NAME")
TAKEIN("NAME")

ENDWHILE
~

WHILE X<A(I) DO I:+l

is functionally equivalent to

WHILE X<A(I) DO
I:+l

ENDWHILE

- 54 -

C-64 COMAL Reference Guide

WRITE FILE

is a statement used to store data in a sequential
or random access file. Its syntax is

WRITE FILE <file no.> [,<record no.>]:
<variable list>

where <file no.> is a <numeric expression> that
must return an integer in the range 2-254 (the
COMAL System uses numbers 1 and 255), and <record
no.> is a <numeric expression> that must return a
positive integer.

Data stored using the WRITE FILE statement may be
retrieved with the READ FILE statement but not with
the INPUT FILE statement.

WRITE FILE 2: NAME$,ADDRESS$,PAYCODE

writes sequentially the values of the vatiables on
the list to file number 2.

WRITE FILE 4,NO: NAME$,ADDR$,DEPTNO

writes the values of the variables on the list to
file number 4, in the record given by the value of
NO.

Note. WRITE FILE and READ FILE cannot be used with
:fjles stored on cassette.

- 55 -

C-64 COMAL Reference Guide

ZONE

is a system state variable that defines the width
of the print zones. The value of ZONE may be set
with this statement

ZONE <zone width>

where <zone width> is a non-negative <numerical
expression>. Default value of ZONE is zero.

ZONE 10
PRINT 1,2,3
PRINT "----5----0----5----0----5"

produces the following output:

1 2 3
----5----0----5----0----5

ZONE 20
PRINT "PRICE PER POUND:",PRICE

If PRICE has the value 1.5 this printout is
submitted

PRICE PER POUND: 1.5

PRINT ZONE

displays the present value of ZONE.

- 56 -

C-64 COMAL 80 GRAPHICS
BACK

Syntax: BACK <distance>

This statement/command moves the turtle <distance>
screen units backwards. If the pen is down (see
PENDOWN), a line is drawn using the present
PENCOLOR. See PENCOLOR.

BACKGROUND

Syntax: BACKGROUND <color>

where <color> returns an integer value from 0 to 15
(see COMMODORE 64 USER'S GUIDE, page 61). The
statement/command sets the background to the color
given by the value of <color>. When in hi-res
graphics the instruction is not executed, until
COMAL has met a CLEAR statement/command. See CLEAR.

BORDER

Syntax: BORDER <color>

Sets the border to the color given by the value of
<color>. See also BACKGROUND.

CLEAR

Syntax: CLEAR

Clears the graphics screen.

DRAWTO

Syntax: DRAWTO <x>,<y>

Draws a line from the present position of the pen
to the position (<x>,<y>). The present color of the
pen is used.

- 57 -

C-64 COMAL Reference Guide

FILL

Syntax: FILL <x>,<y>

Fills the closed area containg the position
(<x>,<y>) with the present color of the pen. See
PENCOLOR. The bound of a closed area is thus
defined: A boundary point is one that has a color
different from that of the background or a point on
the edge of the present frame. See FRAME.

FRAME

Syntax: FRAME <xmin>,<xmax>,<ymin>,<ymax>

Defines the frame within which the pen is active.
No drawing takes place in points whose coordinates
are outside the frame the lower left corner of
which is given by (<xmin>,<ymin>), and whose upper
right corner is (<xmax>,<ymax>). However the turtle
is still displayed outside the frame. Default frame
covers the whole graphics screen, i.e. you have

<xmin>::=O <xmax>::=319 <ymin>::=O <ymax>::=l99

FULLSCREEN

Syntax: FULLSCREEN

Shows the whole of the graphics screen, i.e. no
text window is displayed on the upper two lines of
the physical screen (unli~e SPLITSCREEN).

HIDETURTLE

Syntax: HIDETURTLE

The turtle is no longer shown on the graphics
screen. This makes some graphics faster.

HOME

Syntax: HOME

Places the turtle in the position (160,99) head
vertically upward (zero direction).

- 58 -

C-64 COMAL Reference Guide

LEFT

Syntax: LEFT <angle>

The turtle turns its head <angle> degrees to the
left (counter clockwise).

MOVE TO

Syntax: MOVETO <x>,<y>

Moves the turtle with out drawing from its present
position to the position (<x>,<y>).

PENCOLOR

Syntax: PENCOLOR <color>

Sets the color used for drawing, i.e. the color of
the pen. This is also the color of the cursor and
turtle, and the color in which text is displayed on
the text screen. Normally <color> is an integer
from 0 to 15. See BACKGROUND.

PEN DOWN

Syntax: PENDOWN

The turtle's pen is now active, i.e. the turtle
leaves a trace as long as its movements are inside
the present frame and the pen's color is different
from that of the background. See PENCOLOR.

PENUP

Syntax: PENUP

The turtle's pen is lifted, i.e. it no longer
leaves a trace on the screen. However note that
DRAWTO and PLOT work even if PENUP is set.

PLOT

Syntax: PLOT <x>,<y>

Displays the position (<x>,<y>)
color of the pen.

- 59 -

in the present

C-64 COMAL Reference Guide

PLOTT EXT

Syntax: PLOTTEXT <x>,<y>,<text>

The text given by the string expression <text> is
displayed on the graphics screen such that the
lower left corner of the first character of <text>
is placed at the position (<x>,<y>). However note
that the applied coordinates are set to the
greatest multiple of 8 less than or equal to the
given values. Texts can only be displayed in hi-res
graphics mode.

RIGHT

Syntax: RIGHT <angle>

makes the turtle turn its head <angle> degrees to
the right (clockwise).

SETGRAPHIC

Syntax: SETGRAPHIC <type>

Initializes the graphics
graphics screen visible.
two graphic modes:

systems and makes the
On COMMODORE 64 you have

High resolution graphics: <type>=O
Multicolor graphics: <type>=l

In high resolution graphics you have 320*200 pixels
at your disposal. The whole of the graphics screen
is split up in 40"25 blocks, each of which holds
8*8 pixels. Each in~ividual block only allows two
colors to be applied at a time. One of these colors
is the background. The other color is defined as
soon as a pixel in the block is set. If on a later
occasion a pixel inside a block is set with a
different color the whole block changes to the
latter one.

In multicolor graphics the resolution in the
horizontal direction is only half the one in
hi-res, i.e. you now have 160*200 pixels at your
disposal. Again the screen is divided in 40*25
blocks, but each of them only holds 8*4 pixels.
However each block can hold up to four different
colors one of which is the background.

- 60 -

C-64 COMAL Reference Guide

SETHEADING

Syntax: SETHEADING <direction>

The turtle turns its head to point at <direction>
degrees clockwise from zero (which is vertically
upward).

SETT EXT

Syntax: SETTEXT

Hides the graphics screen and shows the text
screen. However the graphics instructions still
work on the hidden graphics screen. The result of
graphics activities can easily be revealed by using
the SETGRAPHIC command.

SHOWTURTLE

Syntax: SHOWTURTLE

Makes the turtle visible on the graphics screen.
When COMAL is started a default SHOWTURTLE is
executed, i.e. from start the turtle is shown on
the graphics screen. See HIDETURTLE.

SPLIT SCREEN

Syntax: SPLITSCREEN

A window into the text screen is displayed on the
top two lines of the physical screen. See
FULLSCREEN.

TURTLESIZE

Syntax: TURTLESIZE <size>

Defines the size of the turtle. The value of <size>
is an integer from 0 to 10. Default value of <size>
is 10.

- 61 -

SMITES

DATACOLLISION

Syntax: DATACOLLISION(<sprite>,<read>)

This function returns a value of TRUE, if sprite
no. <sprite> collides with graphics information,
i.e. a non-background sprite pixel is also a
non-background graphics pixel. The collision
detection is automatically done by the video chip
each time a sprite is drawn. If <read> has a value
of TRUE (1), a collision is registered as soon as
it takes place, i.e. the function returns a value
of TRUE at that moment. If <read> is set to FALSE
(0), it is registered when a collision has happened
already. In this case the function returns the
value TRUE, if sprite no. <sprite> has collided
with some other graphics information earlier.

DEFINE

Syntax: DEFINE <image no.>,<definition>

where <image no.> is an integer from 0-47, and
<definition> is a string expression that returns
the 64 characters which defines the image. You can
have a pool of 48 images (47 if a turtle is used)
and each of these can be used as a model for any
one of the 8 (7 if a turtle is used) sprites that
way perform on the screen at the same time. Not all
of the 48 images need to be defined, and later on
more than one sprite can be modelled after the same
image.

HIDESPRITE

Syntax: HIDESPRITE <sprite>

Sprite no. <sprite> is no longer displayed on the
screen.

- 62 -

C-64 COMAL Reference Guide

IDENTIFY

Syntax: IDENTIFY <sprite>,<image no.>

Sprite no. <sprite> is wodelled after <iwage no.>
Imagine you have a cupboard filled with drawings of
differet shapes numbered 0-47. Each time the
IDENTIFY statement is used, a drawing is taken out
of the cupboard and we have a shape after that
drawing act on the screen as sprite no. <sprite>.
The <sprite> must be an integer from 0 to 7. If
used the turtle acts as number 7.

PRIORITY

Syntax: PRIORITY <sprite>,<p>

If <p> is TRUE, the pixels in sprite no. <sprite>
will have lower priority than the graphics pixels,
i.e. the sprite will appear underneath the
graphics. If <p> is FALSE, the sprite will have
higher priority than the graphics. The priority
among the sprites is fixed: A sprite with a lower
number has a higher priority. Thus sprite no. 0 has
a higher priority than sprite no. 1 etc.

SPRITEBACK

Syntax: SPRITEBACK <color-l>,<color-2>

where <color-1> and <color-2> are integers from O
to 15. The statement defines the two cowwon colors
to be used with multicolor sprites.

SPRITECOLLISION

Syntax: SPRITECOLLISION(<sprite>,<read>)

A function tnat returns the value TRUE, if and only
if sprite no. <sprite> has collided with another
sprite. About <read> see DATACOLLISION.

- 63 -

C-64 COMAL Reference Guide

SPRITECOLOR

Syntax: SPRITECOLOR <sprite>,<color>

Defines the color of sprite no. <sprite> to b~come
<color> (0-15).

SPRITEPOS

Syntax: SPRITEPOS <sprite>,<x>,<y>

Positions sprite no. <sprite> such that the upper
left corner appears at the position (<x>,<y>), <x>
in 0-319, <y> in 0-199.

SPRITESIZE

Syntax: SPRITESIZE <sprite>,<x>,<y>

If <x> is TRUE (1), sprite no. <sprite> is expanded
to double width, if <y> is TRUE, the sprite is
expanded to double height. The resolution is not
affected by the expansions.

- 64 -

INDEX

ABS
AND
APPEND
ATN
AUTO

BASIC

COMAL Keywords

CASE, WHEN, OTHERWISE, ENDCASE
CAT
CHAIN
CHR$
CLOSE
CLOSED
CON
cos

DATA
DEL
DELETE
DIM
DIV
DO
EDIT
ELIF
ELSE
END
ENDCASE ••••••
END FOR
ENDFUNC
END IF
ENDPROC
ENDWHILE
ENTER
EOD
EOF •••••••
ESC
EXEC
EXP

65

1
1
1
2
2

3

3
4
5
5
5
6
7
7

7
7
8
9

10
10

10
10
10
11
11
11
11
11
11
11
11
12
12
13
13
13

C-64 COMAL Reference Guide

FALSE
FILE ••••••••••••••
FOR •••••••••••••••
FUNC, ENDFUNC, RETURN

GOTO ..
IDENTIFIERS
IF, ELSE, ELIF, ENDIF
IN •••••••••
INPUT ••••••
INPUT FILE
I NT ••••••••

KEY$..
LABELS
LEN
LINEFEED
LIST
LOAD
LOG

MOD ...
NEW
NEXT
NOT
NULL

OF
OPEN
OR
ORD

....

OTHERWISE

PASS
PEEK
POKE
PRINT
PRINT FILE
PRINT USING

66

16
16
17
19

21

21
22
24
24
26
27

27

27
28
28
28
29
30

30

30
30
30
31

31
31
32
32
32

33
33
33
33
35
35

C-64 COMAL Reference Guide

RANDOM
READ
READ FILE
REF
REM
REN UM
REPEAT
RESTORE
RETURN
RND
RUN

SAVE •••••••••
SELECT[OUTPUT)
SETEXEC
SET MSG
SGN
SIN
SIZE
SQR
STATUS
STEP
STOP
STRING HANDLING,
SYS

TAB
TAN
THEN
TO
TRAP
TRUE

UNIT
UNTIL
USING

WHEN
WHILE
WRITE FILE

SUBSTRINGS

ZONE ..

67

40
40
41
42
42
42
43
43
44
44
44

45
45
46
46
47
47
47
47
49
49
49
49
51

51
52
52
52
52
53

53
53
53

53
54
55

55

C-64 COMAL Reference Guide

BACK
BACKGROUND
BORDER
CLEAR
DRAWTO
FILL
FRAME
FULLSCREEN

HIDETURTLE
HOME

LEFT

MOVE TO

PENCOLOR
PEN DOWN
PEN UP
PLOT
PLOTT EXT

RIGHT

SETGRAPHIC
SETHEADING
SETT EXT
SHOWTURTLE
SPLITSCREEN

TURTLESIZE

DATACOLLIS ION
DEFINE
HIDESPRITE
IDElJT IFY
PRIORITY
SPRITEBACK
SPRITECOLLISION
SPRITECOLOR
SPRITEPOS
SPRITESlZE

Sprites

68

57
57
57
57
57
58
58
58

58
58

59

59

59
59
59
59
60

60

60
61
61
61
61

61

62
62
62
63
63
63
63
64
64
64

Easier than BASIC, more powerful than basic, COMAL (COMmon
Algorithmic Language) was developed for learning programming.

COMAL gives many error messages as lines are entered - no more
waiting until a program is run before finding a type mismatch or syntax
error.

COMAL has structures that make writing legible programs easy
(multiple line IF statements; IF, THEN, ELSEIF, ELSE; PROCEDURES
and FUNCTIONS that can be invoked just by their names; REPEAT,
UNTIL; WHILE, ENDWHILE, etc.) while retaining most of the
commands of BASIC

Variables in COMAL can have up to 78 characters so you can easily
see what the program 1s doing: VOLUME'REGISTER:=542961s easier
to understand than V = 54296.

COMAL 0.14 for the Commodore 64 has the graphics commands that
Commodore forgot; defining and using sprites is easy; and it even has
the TURTLE graphics that LOGO is famous for.

Is COMAL the language that will replace BASIC? Try it and find out!

Published by:

Toronto PET Users Group
1912A Avenue Road, Suite 1

Toronto, Ontario, Canada
MSM 4A1

ISBN 0-920607-00-4

