
tapecart/ProgRef.md at master · ikorb/tapecart · GitHub
github.com/ikorb/tapecart/blob/master/doc/ProgRef.md

Tapecart Programmer's Reference
This document describes the Tapecart from a programmer's perspective - i.e., how to
communicate with it to read and write data.

Intro
The tapecart is a small module connected to the C64's tape port which allows a
program running on the C64 to access its on-board flash memory. It supports three
different modes:

1. Streaming mode
2. Fastload mode
3. Command mode

Modes are described in detail below. The tapecart always starts in streaming mode to
allow the user to load an initial program using Shift+Run/Stop. To ensure this load
operation happens as fast as possible, the tapecart only supports a two-byte-long
program, overwriting a vector to cause an auto-start in the tape buffer. This auto-
started code can be programmed independently of the main flash, but a default
version is supplied that uses fastload mode to load a pre-defined block of flash into the
C64's memory and starts it.

Switching from streaming mode to either fastload mode or command mode is
accomplished by sending a bit sequence using the write and motor lines, which is
detailed in the "Streaming mode" section below.

To ensure that the user can always run the initial program again, the tapecart needs to
detect if the C64 is reset and return to streaming mode. It does this by monitoring the
motor line: If at any point in the Fastload or Command modes the motor line becomes
active, it immediately returns to streaming mode. To switch back to the previous mode,
the bit sequence needs to be sent again.

The fastload mode is intended to be mainly used by the default loader. It sends a small
header to the C64 followed by data read from the flash memory. It uses a fast 2-bit
protocol that can reach transmission speeds of around 9500 bytes/second. If only a
single one-filed program is intended to be loaded from the tapecart, this mode is all

1/16

https://github.com/ikorb/tapecart/blob/master/doc/ProgRef.md

that is needed and the flashtool can set up everything as needed while writing the
program to flash. The default loader uses a JMP to a programmable start address to
start the program it has loaded, but it is simple to add a small header that simulates a
RUN for programs started from BASIC. More defailts about the fastload mode are given
in the section titled "Fastload mode".

The third, and most flexible mode is command mode. In this mode, the tapecart listens
for commands that can be used to read, wrrite and erase the flash memory as well as
set parameters like the length of the data block used for fastload mode. With the
exception of the READ_FLASH_FAST command, all data is transmitted and received
using 1-bit protocols that are not timing critical - so they could for example be used to
load data while raster interrupts are still used for effects. Of course a variation of the
fast 2-bit protocol used by the fastload mode is also available, but it cannot tolerate
interrupts, badlines or sprites.

Since the tapecart is based on flash memory, it can be read freely from any starting
byte, but writing is more limited. Data is organized in pages of a fixed length and only
full pages should be written - writing a partial page results in undefined data in the
remaining bytes of the page. Furthermore, before a page can be written, it must be
erased which is only possible in blocks that are a multiple of the page size and aligned
to the same multiple. The exact values for these parameters may vary between
tapecarts depending on the availability of cheap flash chips, so a command is available
to read the details of the tapecart that is currently connected. It is expected though that
all carts will stay within these parameters:

memory size 2 MByte (2,097,152 byte) or more, although a 64KByte version for
onefilers might appear
page size 4096 bytes or less (currently 512 byte on early prototypes, 256 byte on
initial release)
erase block size 64 KByte or less (64KB on early prototypes, 4KB on initial release)

To simplify working with tapecarts that have different erase block sizes, a command is
available that will always erase a 64 KByte block (aligned at a 64 KByte boundary), no
matter what the actual erase block size is. If you use the tapecart as a read-only device,
you do not need to worry about page size or erase block sizes since the flashtool will
handle these details for you. However, if you plan to write to the tapecart yourself from
your application, you need to plan your memory layout to ensure that no vital data is
erased when you erase a block before writing to it.

Streaming mode
In streaming mode, the tapecart basically behaves like a datasette with an endless tape.
It sends a pulse stream to the C64 that contains an auto-starting initial loader program

2/16

in the tape buffer, which uses $0302 as its auto-start vector. The default initial loader
switches to fastload mode to load the main program and tries to start it using RUN. A
custom initial loader can be installed using the flash tool (or the WRITE_LOADER
command), but it is limited to 171 bytes and will always be started at $0351 using the
$0302 vector.

After each transmission of the initial loader, the tapecart releases the sense line of the
tape port for about 200 milliseconds. This is necessary to resume loading in case an
initial load attempt was cancelled using RUN/STOP. After this delay has passed, but
before restarting the pulse stream, the tapecart checks if it has received a mode switch
sequence. The tapecart is switched to fastload or command mode by sending one of
two bit sequences on the write line. Each time the motor is turned on, the state of the
write line is sampled and a 16-bit shift register is shifted left by one bit, using the
current value on the write line as its lowest bit. A rough approximation as C code:

shift_reg = shift_reg << 1;
if (get_write())
 shift_reg = shift_reg | 1;

The tapecart checks the contents of the shift register occasionally, the maximum time
between two checks should be less than two milliseconds. If the shift register contains
the value $ca65, it enters fastload mode; if the value is $fce2, it enters command mode.
The shift register is reset every time the transmission of the initial loader's header
block, so it may be a good idea to start transmitting it only if the sense line is low.

Please note that turning off the motor is very slow on some C64 board revisions, it can
take about a millisecond (~1000 cycles) until the signal has decayed sufficiently. On the
other hand, turning on the motor is very fast and no delay should be needed - do make
sure that the level on the write line has already been set before turning the motor bit in
$01 on, otherwise the mode switch sequence may not be detected reliably. You should
turn off the motor after the sequence has been transmitted, otherwise the tapecart will
immediately return to streaming mode.

A sample implementation for the mode switch sequence with a value of $ca65 can be
found in the initial loader, a sample implementation for entering command mode can
be found in the C sources of the flash tool (tapecartif.c).

Fastload mode
Fastload mode transmits a selected part of the flash memory using a fast 2-bit fixed-
timing protocol which reaches ~9500 bytes/second. The protocol is similar (but not
identical) to the fast 2-bit read used in command mode - you shouldn't need to worry
about it unless you want to make extensive modifications to the default initial loader.

3/16

Fastload mode can transmit up to 65535 bytes to the C64 which should be sufficient for
most purposes. The length and offset of the data block in flash memory as well as the
start address that the initial loader should jump to after loading can be set using the
WRITE_LOADINFO command. The default initial loader can load data anywhere in the
C64's RAM, even in the RAM below I/O at $d000. It treats the first six bytes it receives as
an "info block" which specifies the start and end addresses of the data in the C64 as
well as the address to jump to after loading. You do not need to worry about this info
block though, the tapecart automatically calculates it for you.

In the flash memory, the program to be loaded is structured exactly the same as a PRG
file: Two bytes that specify the load address, followed by data. Since there is no way to
detect the length of a PRG file, the number of bytes (including the two bytes for the
load address) must be set using the WRITE_LOADINFO command. Please be aware that
it may be a bad idea to load over the tape buffer because the initial loader runs from
there, or over zeropage addresses $aa to $af where the default initial loader stores a
few bytes of data.

The default initial loader uses a JMP to start the program it has loaded. At this point, the
autostart vector has been reset to its default value, the screen is turned back on and
interrupts are enabled again. If you need to start a BASIC program with RUN instead,
you can add a short header just before $0801 that does a few calls into the BASIC ROM
to simulate RUN - the flashtool contains an implementation of this for its onefiler-
writing mode. The contents of the CPU registers are unspecified and may change
without notice, except as described in the section Data Block Offset option below.

Command mode
In command mode, the tapecart expects to receive commands using a 1-bit C64-timed
protocol (similar to an IRQ loader for the 1541) and sends its answer with a 1-bit C64-
timed protocol unless the command specifies something different.

When the tapecart has detected the command mode magic value at the end of the
200ms pause, it sets the sense line high and waits until the write line is high. Even
though the motor line is off at this time, it will resume sending pulses until the write
line is low again, after which it waits to receive a command. If at any time during this
process the motor line turns on again, the tapecart aborts and enters streaming mode
again. In tabular form, the process looks like this:

1. send the magic number for command mode ($fce2) - the motor should be off
after sending it

2. delay for one millisecond (~1000 cycles) to ensure that the motor signal is really
off (unless the delay is already at the end of your send loop in step 1)

3. set the write line high
4/16

4. wait until the sense line is high
5. wait until at least three pulses on the read line have been received (CIA 1 ICR

$dc0d, bit 4)
6. set write low

To send a command to the tapecart in this mode, send a single byte with the command
code to the tapecart using the byte transmit scheme described below, followed by any
parameter bytes that may be needed (zero for some commands). If the command
returns data, read it using the byte receive scheme described below or the fast 2-bit
read for the READ_EXTMEM_FAST command. Currently, sample implementations of the
transmit and receive schemes only exist in C form in the sources of the flashtool
(tapecartif.c).

While not sending a command, the write line should be low and the sense line should
be configured as input. The tapecart sets sense low while it is busy and high to signal
that it is ready to receive a byte

this was chosen so that the kernal IRQ handler can be told to not turn on the
motor (which would exit command mode) by writing a non-zero value in $c0.

Command mode stays active after a command is processed. It will be exited only if an
unknown command byte is received, the EXIT command is received or the motor line
becomes active (used to detect a C64 reset). With the current code base, the device's
LED is on while it is in command mode and turns off as soon as it is exited, but there
are also two commands to explicitly turn the LED on or off.

Byte transmit (C64->Tapecart)

If you use the kernal interrupt handler, it is recommended to disable interrupts while
sending bytes to the tapecart because the kernal's interrupt handler would turn on the
motor, kicking the tapecart out of command mode. It can also be useful to set $c0 to a
non-zero value after transmitting a byte but before re-enabling interrupts because the
tapecart may signal a busy state with the sense line low for some time. A non-zero value
in $c0 ensures that the kernal's interrupt handler will not turn on the tape motor in this
case.

The byte transmission is a C64-clocked protocol, using the write line as a clock signal
and the sense line to transmit data. Please note that in this case the direction of the
sense line is opposite to the normal usage in the C64, so bit 4 of $00 must be set to 1
temporarily while a byte is sent. In tabular form, the protocol looks like this:

1. If you use the kernal interrupt handler, turn off interrupts
2. wait until sense is high (tapecart is ready to receive)

5/16

3. switch the sense line to output (set bit 4 of $00)
4. for all 8 bits of the byte, repeat the following, starting with the most-significant bit:

1. set the sense line to the value of the bit
2. set the write line high
3. set the write line low

5. set the sense line high
6. set the sense line low
7. set the sense line to input again (clear bit 4 of $00)
8. If you use the kernal interrupt handler, set $c0 to a non-zero value and re-enable

interrupts

Please note that steps 5-7 are needed so the tapecart can set its own sense pin to
output without risking that the C64's sense pin is also still set to be an output. The
tapecart will switch its sense pin to output 10 microseconds (~10 cycles) after it sees the
high->low transition and since the state of the C64's pin is known at this point, this is
safe even if step 7 on the C64 is delayed, e.g. due to a badline.

After receiving a byte, the tapecart will set the sense line low until it has finished
processing the received byte.

Byte receive (Tapecart->C64)

If you use the kernal interrupt handler, it is recommended to disable interrupts while
receiving bytes from the tapecart because the kernal's interrupt handler would turn on
the motor, kicking the tapecart out of command mode. It can also be useful to set $c0
to a non-zero value after receiving a byte but before re-enabling interrupts because the
tapecart may signal a busy state with the sense line low for some time. A non-zero value
in $c0 ensures that the kernal's interrupt handler will not turn on the tape motor in this
case.

The byte reception is a C64-clocked protocol, using the write line as a clock signal and
the sense line to transmit data. Unlike the transmit protocol, all lines are used in their
standard direction, so no accesses to $00 are needed. In tabular form, the protocol
looks like this:

1. If you use the kernal interrupt handler, turn off interrupts
2. wait until sense is high (tapecart is ready to receive)
3. set the write line high
4. repeat 8 times for the bits of a byte, the most-significant bit is received first:

1. set the write line low
2. set the write line high
3. if the sense line is high, a 1 bit has been received; if it is low, a 0 bit has been

received
6/16

5. set the write line low
6. If you use the kernal interrupt handler, set $c0 to a non-zero value and re-enable

interrupts

After sending a byte, the tapecart will set the sense line low until it is ready to transmit
(or receive) another byte.

Commands

A number of commands are defined for the tapecart. Some of them are mostly useful
for the flashing tool, but have been documented here anyway for completeness. If the
tapecart receives a command byte that it does not know, it switches to streaming
mode.

Some commands expect to receive additional bytes with command arguments. Some
commands send a reply, some do not. Numerical values that exceed 8 bit are sent in
little endian (low byte first). Both parameters and replies are given in the order they are
expected/sent.

Command $00: EXIT

This command exits to streaming mode.

No parameters, no reply.

Command $01: READ_DEVICEINFO

This commands reads a string containing a device identification.

No parameters.

Reply:

PETSCII string, 0-terminated

Command $02: READ_DEVICESIZES

This command reads the total size of the tapecart's memory, its page size and its erase
block size.

No parameters.

Reply:

1. 3 byte total size (in byte)
2. 2 byte page size (in byte)

7/16

3. 2 byte erase block size (in pages!)

If the erase block size is 0, direct byte write is supported and no erase commands are
needed.

Command $03: READ_CAPABILITIES

This command reads a bit field that specifies which extended capabilities are available
on this tapecart. If an additional capability is available, its bit is set to 1. Currently, no
extended capabilities are defined, so the value returned by this command consists of 4
$00 bytes.

No parameters.

Reply:

1. 4 byte flags

Command $10: READ_FLASH

This commands reads from the tapecart's flash memory.

Parameters:

1. 3 byte start address
2. 2 byte length (in bytes)

Reply:

1. n byte data

Attempting to read using a length of 0 bytes results in undefined behaviour. Reading
from an address beyond the flash's size (either by specifying an invalid start address or
a length that results in an access beyond the flash size) results in undefined behaviour.

Command $11: READ_FLASH_FAST

This command reads from the tapecart's flash memory and sends the data with a fast
2-bit protocol.

Parameters:

1. 3 byte start address
2. 2 byte length (in bytes)

Reply:

8/16

This command does not use the usual 1-bit protocol to reply!

1. n byte data

Attempting to read using a length of 0 bytes results in undefined behaviour. Reading
from an address beyond the flash's size (either by specifying an invalid start address or
a length that results in an access beyond the flash size) results in undefined behaviour.

Since the alternative protocol used by this command is timing sensitive, below is a
sample code snippet that implements a compatible byte reception subroutine. If you
modify it, please ensure that all read/write accesses and direction changes on the
write/sense lines happen at the same clock cycle as the original, relative to the point
where the write line is set high. The timing was chosen to be safe on both PAL and
NTSC machines, even if the internal clock of the tapecart's controller has worst-case
deviation.

The code assumes that the CPU will not be interrupted by any VIC memory access. The
easiest way to ensure this is to blank the screen and wait for 20ms, but any method
that ensures that the cycle-counted part of the code is not delayed should work.

;; getbyte_fast.s: Fast byte read
;;
;; Note: This uses the opposite level on sense to determine ready-ness
;; compared to the loader mode!
;;

 .export _tapecart_getbyte_fast
_tapecart_getbyte_fast:
 ;; wait until tapecart is ready (sense high)
 lda #$10
rdyloop:
 bit $01
 beq rdyloop

 ;; (this would be a nice place to check if a badline is coming up)

 ;; send our own ready signal
 ldx #$38
 lda #$27
 stx $01 ; set write high (start signal)
 sta $00 ; 3 - switch write to input
 nop ; 2 - delay

 ;; receive byte
 lda $01 ; 3 - read bits 5+4
 and #$18 ; 2 - mask
 lsr ; 2 - shift down
 lsr ; 2

9/16

 eor $01 ; 3 - read bits 7+6
 lsr ; 2
 and #$0f ; 2 - mask
 tax ; 2 - remember value

 lda $01 ; 3 - read bits 1+0
 and #$18 ; 2 - mask
 lsr ; 2 - shift down
 lsr ; 2
 eor $01 ; 3 - read bits 3+2
 lsr ; 2
 and #$0f ; 2 - mask
 ora nibbletab,x ; 4 - add upper nibble

 ldx #$2f ; 2 - switch write to output
 stx $00 ; 3
 ldx #$36 ; set write low again
 stx $01

 rts

nibbletab:
 .byt $00, $10, $20, $30, $40, $50, $60, $70
 .byt $80, $90, $a0, $b0, $c0, $d0, $e0, $f0

Please note that the protocol used by this command is similar, but not identical to the
one used in fastload mode.

Command $12: WRITE_FLASH

This command writes to the tapecart's flash memory.

Parameters:

1. 3 byte start address
2. 2 byte length (in bytes)
3. n byte data

No reply

Attempting to write using a length of 0 bytes results in undefined behaviour. Writing to
an address beyond the flash's size (either by specifying an invalid start address or a
length that results in an access beyond the flash size) results in undefined behaviour.

The tapecart's firmware will ensure that page-crossings are handled correctly if you
want to write more than one page, but it does not auto-erase the memory that is
written to. If the data does not end at the end of a page, the new content of the
remaining bytes of the page is undefined.

10/16

Command $13: WRITE_FLASH_FAST

This command is currently not implemented.

Command $14: ERASE_FLASH_64K

This command erases a 64KB block in the flash memory.

Parameters:

1. 3 byte address

The address can specify any byte within the intended 64KB block.

Command $15: ERASE_FLASH_BLOCK

This command erases a single erase block in the flash memory.

Parameters:

1. 3 byte address

The address can specify any bytes within the intended erase block. The size of the erase
block can be determined by using the READ_DEVICESIZES command.

Command $16: CRC32_FLASH

This command calculates the CRC32 of an area of the flash memory contents.

Parameters:

1. 3 byte start address
2. 3 byte length (in bytes)

Reply:

1. 4 bytes CRC32

This command uses the standard CRC32 algorithm (polynomial 0x04c11db7), the same
as e.g. Ethernet, ZIP or PNG.

Command $20: READ_LOADER

This command reads the current initial loader.

No parameters

11/16

Reply:

1. 171 byte loader

Command $21: READ_LOADINFO

This command reads the current initial loader auxillary data.

No parameters

Reply:

1. 2 byte data address
2. 2 byte data length
3. 2 byte call address
4. 16 byte file name

The data address and length in the reply refer to the tapecart's external memory - the
fastload mode starts to read at this address and transmits as many bytes as specified
here. After loading, it jumps to the call address returned by this command. The file
name is the name shown by the C64 in the "FOUND ..." message when the user loads
the initial loader.

Command $22: WRITE_LOADER

This command writes a new initial loader to the tapecart.

Parameters:

1. 171 byte loader

No reply

Command $23: WRITE_LOADINFO

This command updates the initial loader auxilary data.

Parameters:

1. 2 byte data address
2. 2 byte data length
3. 2 byte call address
4. 16 byte file name

No reply

12/16

The data address and length refer to the tapecart's external memory - the fastload
mode starts to read at this address and transmits as many bytes as specified here. After
loading, the default initial loader jumps to the call address set by this command. The
file name is the name shown by the C64 in the "FOUND ..." message when the user
loads the initial loader.

Command $30: LED_OFF

This command turns the LED on the tapecart off (if available). Please note that the LED
is turned on when command mode is entered.

No parameters, no reply.

Command $31: LED_ON

This command turns the LED on the tapecart on (if available). Please note that the LED
is already turned on when command mode is entered.

No parameters, no reply.

Command $32: READ_DEBUGFLAGS

This command reads the current debug flags. See WRITE_DEBUGFLAGS below for
details about the flags.

No parameters

Reply:

1. 2 byte debug flags

Command $33: WRITE_DEBUGFLAGS

This command sets the debug flags. These flags are intended to enable features that
may be useful when writing or debugging programs that access the tapecart. The flags
are non-persistent, a power cycle will set all of them to 0 again. To enable a debug flag,
set its bit in the parameter of this command to 1; to disable it, set it to 0. To avoid any
chicken-and-egg problems when sending this command, the flash tool has an option to
set the debug flags.

Parameters:

1. 2 byte debug flags

No reply

13/16

Currently, there are two defined debug flags:

1. SEND_CMDOK ($0001) - sends the characters 'O' and 'K' before a command byte
is read. Probably not that useful when accessing a tapecart via the tape port, but
helpful in the undocumented UART mode. You cannot set this flag with the menu
option in the flash tool.

2. BLINK_MAGIC ($0002) - show the current content of the magic value shift register
by blinking the LED after each kernal loader cycle. The value is shown MSB-first, a
long pulse of the LED stands for a 1-bit and a short pulse for a 0-bit. Please note
that not all tapecarts are equipped with a LED and even on those they are the LED
may not work.

3. BLINK_COMMAND ($0004) - similar to BLINK_MAGIC, but shows the received
command byte by blinking

Command $40: DIR_SETPARAMS

This commands sets the parameters for the directory lookup command (see below). To
simplify porting file-based programs to the tapecart, the cart can look up a given "file
name" in a directory stored in the flash memory and return fixed-length data (e.g. a
flash address and length) associated with that file name.

Parameters:

1. 3 bytes flash address of the start of the directory
2. 2 bytes number of entries in the directory
3. 1 byte length of a file name in the directory (values over 16 will be limited to 16),

called "n" below
4. 1 byte length of the data associated with a file name, called "m" below

No reply

Please see below for a description of the directory format.

Command $41: DIR_LOOKUP

This command looks up a file name in the directory that was set using DIR_SETPARAMS
and returns the associated data bytes if the name was found.

Parameters:

1. n bytes file name (n set by the third parameter of DIR_SETPARAMS)

Reply:

1. 1 byte "found" marker: 0 if the name was found, nonzero if not
14/16

2. (only if byte 1 was 0) m byte data (m set by the fourth parameter of
DIR_SETPARAMS)

A directory consists of a number of entries, each of which is a fixed-length record with a
length of n+m bytes. Each record contains a file name (n bytes) followed by the data
associated (m bytes) with that file name. You get to decide yourself how that data is
structured, for example you could use the flash-address and length of the actual file
contents. The length of the data part of each entry in the directory must be the same!
File name comparison uses binary matching with no wildcards, every single byte of the
name to be looked up must match the name in the flash exactly.

Commands from $f0 on are reserved for system functionality like firmware updates
and will not be documented here.

Data Block Offset option
In order to allow multiple tapecart-utilizing programs to coexist on the same tapecart,
programs may support data block offsets. Such a program is able to run even if its data
is not stored starting from flash address 0 by adding an offset to all addresses it sends
to the tapecart.

The selection of the program to start would be made by another application which is
started by the tapecart's initial loader, for example a menu system allowing the user to
choose from a list of programs available on the tapecart. Implementation details for
such a menu system are beyond the scope of this reference, except for the method
used to pass the correct data block offset to the program to be started.

A program that wants to declare support for data block offsets must be supplied in
TCRT format and it must set bit 1 of the misc. flags field (see the [TCRT format
specification](TCRT Format.md) for details). Since a user may write such a program
directly to a tapecart without the use of an additional menu program, it must be able to
run even if no data block offset has been passed to it. This can easily be implemented
by using a default data block offset of 0 and replacing that with the actual offset if
present.

Data block offsets are always integer multiples of the erase block size, i.e. a multiple of
4096 byte for non-prototype tapecarts. In the unlikely event that a future tapecart
supports erase block sizes that are not divisible by 256, the data block offset will be
chosen so that it is a multiple of 256.

Checking for a data block offset

15/16

To indicate that a data block offset should be used, the loader (e.g. the initial loader or
a menu application) sets the Y register to $4f (lower-case "o" in PETSCII). The data block
offset itself is stored in the zero-page at addresses $00fb and $00fc. If the Y register
contains any other value, no data block offset has been passed and it should be
assumed that the offset is 0.

An application that does not support data block offsets or that does not need to read or
write data from the tapecart at all may ignore any data block offset passed to it.

Address $00fb in the zero-page holds the middle 8 bits of the data block offset and
address $00fc holds the top 8 bits of the data block offset. The lowest 8 bits are not
explicitly given anywhere, but can be assumed to be 0, because the offset will always be
a multiple of 256 or more.

Precautions when working with data block offsets

You must make sure that you add the data block offset to all flash addresses passed to
the tapecart, both for read and write accesses. How you do this is up to you - for
example you could use self-modifying code to change all addresses in your code or you
could add it before every access.

Do make sure that you correctly handle the offset for write accesses - reading from an
incorrect address will just give wrong data to your program, but writing to an incorrect
address will corrupt other programs on the tapecart.

For additional safety, you may want to use the CRC32_FLASH command to verify that
the flash content starting at the current data block offset is actually the data you expect
to be there. This could also be used to detect corruption caused by other programs
writing to the wrong flash address. If you do verify your data this way, remember to
exclude all flash pages that your program writes into.

16/16

	tapecart/ProgRef.md at master · ikorb/tapecart · GitHub
	Tapecart Programmer's Reference
	Intro
	Streaming mode
	Fastload mode
	Command mode
	Byte transmit (C64->Tapecart)
	Byte receive (Tapecart->C64)
	Commands
	Command $00: EXIT
	Command $01: READ_DEVICEINFO
	Command $02: READ_DEVICESIZES
	Command $03: READ_CAPABILITIES
	Command $10: READ_FLASH
	Command $11: READ_FLASH_FAST
	Command $12: WRITE_FLASH
	Command $13: WRITE_FLASH_FAST
	Command $14: ERASE_FLASH_64K
	Command $15: ERASE_FLASH_BLOCK
	Command $16: CRC32_FLASH
	Command $20: READ_LOADER
	Command $21: READ_LOADINFO
	Command $22: WRITE_LOADER
	Command $23: WRITE_LOADINFO
	Command $30: LED_OFF
	Command $31: LED_ON
	Command $32: READ_DEBUGFLAGS
	Command $33: WRITE_DEBUGFLAGS
	Command $40: DIR_SETPARAMS
	Command $41: DIR_LOOKUP

	Data Block Offset option
	Checking for a data block offset
	Precautions when working with data block offsets

