ML Primes

突" rickmk.com/rmk/Com/primes.html

ML PRIMES
By Rick Kephart

This program shows how to have the computer print out all the prime numbers from 1 to 10,000 . It was written using only the $C-128$'s built-in ML monitor.

First, we prepare an area of memory with some non-zero value(s). This routine will fill the area from $\$ 1400$ to $\$ 3 A F F(5120$ to 15103), which is 9983 bytes (that's enough because the highest prime will be 9973), with non-zero values:

1300	A9 00	LDA \#\$00	
1302	85 FD	STA \$ED;	Use zero-page addressing at \$FD-\$FE
1304	A8	TAY	
1305	A9 14	LDA \#\$14	
1307	85 FE	STA \$FE;	Start at \$1400
1309	91 FD	STA (\$FD), Y	
130B	C8	INY	
130 C	D0 FB	BNE \$1309	
130E	E6 FE	INC \$FE	
1310	A5 FE	LDA \$FE	
1312	C9 3B	CMP \#\$3B;	Stop when \$3B00 is reached
1314	D0 F3	BNE \$1309	

Now here is where the sieve is applied. Multiples of all numbers from 2 to 255 are eliminated. Since the square root of 10,000 is 100 , it really isn't necessary to go any higher than that, but to simplify programming (at the cost of about one second of running time) this program goes all the way to there, and checks all numbers and not just primes.

1316	A9 02	LDA \#\$02;	Start eliminations with "2"
1318	85 FC	STA \$FC;	\$FC holds the current number being eliminated
131A	A5 FC	LDA \$FC;	We're not going to eliminate that number, but
131C	18	CLC;	rather every multiple of it, so we start by
131D	65 FC	ADC \$FC;	doubling it
131F	85 FD	STA \$FD;	And then store it in the zero-page pointer
1321	A9 14	LDA \#\$14;	The high byte will be \$14
1323	6900	ADC \# \$00;	Unless the doubling of \$FC caused a carry
1325	85 FE	STA \$FE	
1327	A9 00	LDA \#\$00	
1329	91 FD	STA (\$FD), Y;	Put a "0" in that space

132B	18	CLC;	Add the value in \$FC to the pointer
132C	A5 FD	LDA \$FD	
132E	65 FC	ADC \$FC	
1330	85 FD	STA \$FD	
1332	A5 FE	LDA \$FE	
1334	6900	ADC \# \$00	
1336	85 FE	STA \$FE	
1338	C9 3B	CMP \# \$3B;	Go as high as \$3AFF
133A	D0 EB	BNE \$1327	
133C	E6 FC	INC \$FC;	All multiples from 2 to 255
133E	DO DA	BNE \$131A	

Now, all non-prime numbers have been eliminated, and they are ready to be printed out.

You can write to me at .
rmk19355@gmail.com
Predicting Prime Numbers: Finding Prime Numbers

