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INTRODUCTION

One of the neatest features of the Commodore 128 (if you ask me) is also one of the most
underutilized: the 8563 Video Display Controller chip, which provides the 80-column RGBI
video output that, visually, sets the 128 apart from the 64. This is at least partly due to the
fact that it's a little slower, practically speaking, than the VIC-II, and also because it requires a
special monitor, but probably more thanks to the cryptic and overly-technical nature of
most of the scant availabe documentation for the chip. Even in Mapping The Commodore 128,
otherwise a paragon of clear explanation, the VDC section takes quite a few readings before
things begin to make sense. I would like to remedy this, and make things clear to even
novice 128 programmers. At least, I'll try. If I've omitted anything, left something unclear, or
made an error, kindly drop me a line and I'll correct or improve as necessary. Enjoy!

HOW THE VDC WORKS

The first and most obvious difference between the VDC and the other I/O devices in the
Commodore 128 (and, for that matter, just about every other Commodore computer) is that
it takes up all of two positions in the computer's memory map. Obviously, you can't run a
640x200 video chip off of just 16 bits of data, and in fact you don't. The first VDC register,
located at $D600, is a register-select register, and the second is a data register, located at
$D601. The VDC is controlled by writing a value to the register-select register to tell the chip
which of its internal registers you want to access, waiting for it to be ready (more on that
later,) and then writing the value for the selected register into the data register. That's right,
you have to use two registers in the memory map to access all the actual registers. If this seems
needlessly complicated to you, you're not alone; 128 designer Bil Herd has this disparity as
one of his complaints about the VDC's integration into the computer. The reason this is so
out of the normal Commodore operating scheme is because the 8563 originated as part of a
later-abandoned computer design based on the Z80 architecture, in which all I/O works like
this by means of dedicated port-I/O instructions. (Aren't you glad you don't normally have to
do this? Pity all those poor Spectrum users with their Z80-based systems ;D) But it's what
you're stuck with if you want to use the VDC, and on the bright side, it does allow the chip to
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have its own dedicated address space outside the memory map, which means a full 16KB of
video RAM (64KB if you're the lucky owner of a 128-D or hardcore enough to have upgraded
your flat 128) that doesn't take up any more space as far as the CPU is concerned.

ELEMENTARY VDC ACCESS

Anyway, as you may have gathered, reading from and writing to the VDC is a pain in the
you-know-what compared to any of the other chips in the system. Which is why
Commodore provided a few routines in the computer's ROM to make it easier. The full set
will be explained later, but the two routines of immediate interest are WRITEREG, located at
$CDCC, and READREG, located at $CDDA. As the names imply, they write to and read from
the VDC register set. Being machine-language routines, they are called with the X register
set to the register number, and (for WRITEREG) the accumulator/A register set to the value
to write. (READREG, obviously, returning the value read in the accumulator.) These are very
important routines for VDC use, since not only do they make things easier for machine-
language programmers, they are the only way to access the VDC registers from BASIC.
According to official Commodore documentation, the VDC does not look kindly on indirect
addressing, which is used by the PEEK and POKE statements normally used for low-level
hardware access on Commodore computers. So in order to write to a VDC register from
BASIC, you have to use the SYS statement to call these routines, like so:

10 REM WRITE A VALUE TO A VDC REGISTER 
20 RE = 31 : VA = 65 
30 SYS 52684,VA,RE

10 REM READ A VALUE FROM A VDC REGISTER 
20 RE = 31 
30 SYS 52698,,RE 
40 RREG VA : REM PUT THE VALUE READ INTO THE VARIABLE VA

Of course, VDC access from BASIC will be even slower, but for the sake of completion, there
you go. That's the basics of accessing a VDC register.

WRITING TO THE SCREEN

Of course, that doesn't help you much unless you know what the registers mean. We'll get to
all of them in due time, but the most obvious thing to cover first is accessing the screen
memory, in order to write to the screen. This is done by means of three registers, $12, $13,
and $1F (or 18, 19, and 31, if you're using BASIC or for some reason like to use decimal
values in your assembler code.) Registers $12 and $13 are two halves of a 16-bit address
register that specifies where in video RAM to write to, and $1F is the video RAM read/write
register. That's right, another layer of indirection involved in using the VDC. (Told you it was
complicated.) What's even worse is that, unlike any other 16-bit address in the 128, the VDC
has its most significant byte (the high eight bits) at the low address. Why this is, I couldn't tell
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you, since even the Z80 architecture the chip was originally intended to work with uses the
same little-endian format as Commodore hardware. But again, best just to shrug and move
on. The process for writing to video RAM is therefore to set the address to access via
registers $12 and $13 (if you're wondering, $0000 is the start of the character map,) and
then write the value you want in that address to register $1F. That's three calls to $CDCC;
now do you begin to see why VDC access is considered slow? Fortunately, the address
register automatically increments every time a read or write is performed on register $1F, so
you don't have to keep setting it if you want to write a block of values in consecutive
addresses.

Now, you BASIC users out there may recall the obligatory blurb in Commodore-related texts
on POKE-ing 16-bit values like addresses, and it applies to the SYS calls to WRITEREG as well.
But here it is again, in case you don't remember it: SYS, like POKE, can only handle eight-bit
values (numbers from 0 to 255.) (And you'd have to do this anyway, with the registers-
within-registers thing the VDC has going on.) So a little finagling is needed to set the write
address from BASIC. The trick is that you're going to have to split the 16-bit value to write
into two separate 8-bit values and write them individually. Here's an example of how to do
it:

10 REM THE ADDRESS TO SET IS IN THE VARIABLE A 
20 LO = A AND 255 : REM GET THE LOW BYTE 
30 HI = (A / 256) AND 255 : REM GET THE HIGH BYTE 
40 SYS 52684,HI,18 : REM SET THE HIGH BYTE 
50 SYS 52684,LO,19 : REM SET THE LOW BYTE 
60 REM NOW THE ADDRESS IN SCREEN RAM IS SET AND VALUES CAN BE WRITTEN

VDC MEMORY ORGANIZATION

Now, that's how to write to video RAM. Now how about the question of what to write? As
previously mentioned, the default location for the character map is at $0000, and the
attribute map (analogous to the color RAM for VIC-II video, but more in a bit) is located at
$0800 (2048 for you BASIC junkies.) Both of these are relocatable to any address in VDC
RAM; the starting positions are defined by 16-bit register pairs like the memory-address
registers discussed earlier. The registers for the character map are $0C and $0D (12 and 13,)
and the registers for the attribute map are $14 and $15 (20 and 21.) But what are these
"maps" of which I speak? Hang on, we're getting to that.

Character Map

The nice thing about the VDC is that, other than being 80 columns wide instead of 40, it's
pretty much arranged like the VIC-II, memory-wise. The character map mentioned a
paragraph ago controls which character appears at which position, and like on the VIC-II, it's
arranged horizontally, with the position address increasing as you go across the screen, and
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each line down the screen starting at the position after the rightmost column of the line
above it. This means that the start of each line is located at the character map address plus
80 times the line number (assuming the topmost line is number 0.)

Attribute Map

The attribute map, as mentioned previously, is pretty much the same as the color RAM of
the VIC-II, with the low nybble (the low four bits) controlling the color of the character at the
corresponding position in the character map. However, the colors of the VDC are different
than the colors of the VIC-II:

$0 Black 
$1 Dark gray (light black) 
$2 Dark blue 
$3 Light blue 
$4 Dark green 
$5 Light green 
$6 Dark cyan 
$7 Light cyan 
$8 Dark red 
$9 Light red 
$A Dark purple 
$B Light purple 
$C Dark yellow (brown on most monitors, a sort of tarnished-brass color on others) 
$D Yellow 
$E Light grey (dark white) 
$F White

People who've done text-mode programming on PCs might find this familiar; that's because
it's basically the DOS text-mode palette with the high and low bits swapped. The reason for
this is that both the old IBM CGA card and the VDC use RGBI video, which is limited to
precisely these colors. Why the designers of the VDC didn't arrange the palette to match the
PC palette, I don't know, but it does, at least, make a bit more organizational sense.

Anyway, that's the low nybble of the attribute map explained. But unlike the VIC-II color
RAM, the high nybble does mean something; it controls four special attributes of the
character, Flash, Underline, Reverse, and Alt (in order of increasing bit significance:)

      Alt   Rev   U/L  Flash          Color 
    +-----+-----+-----+-----+-----+-----+-----+-----+ 
Bit |  7  |  6  |  5  |  4  |  3     2     1     0  | 
    +-----+-----+-----+-----+-----+-----+-----+-----+
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The first three should be self-explanatory; Flash makes the character flash on and off at a
predefined rate, Underline fills in the bottom of the character to a selected number of lines,
and Reverse inverts the on and off pixels of the character pattern. Alt is not as intuitive, but
not complicated at all; it serves as a ninth bit for the corresponding position in the character
map, meaning a grand total of 512 character patterns can be displayed (as compared to 256
on the VIC-II.)

Character Set

The 512-character set you're given by default is the same as the two 256-character sets
used on the VIC-II (uppercase + graphics and uppercase + lowercase,) but that's not
particularily practical for use with the VDC. For one thing, this includes reversed character
patterns, which the Reverse attribute makes completely unnecessary; that's a full 256
characters that aren't of any use! And there's also a number of repeated characters
between the two sets (the reversed and unreversed digits and punctuation, for example.)
Fortunately, as with the VIC-II, you're not stuck with the default character set; in fact, it's not
even mapped into ROM like the VIC-II character set. Instead, the 128 ROM copies the
character set into VDC RAM on bootup. And since there's nothing else in VDC memory but
graphics data, you don't even have to worry about where to put a custom character set like
you do with the VIC-II. (Now, lest you think I'm unfairly putting down the VIC-II, let it be said
that things like sprites, multicolor mode, and directly-accessible screen memory thrash the
VDC six ways from Sunday when it comes to stuff like games.) All you have to do is write
your new character set over the old one; it's located at $2000 (8192) in VDC RAM by default.

However, there are two things you should know when writing custom character sets. The
first is that character patterns in the VDC take up sixteen bytes by default, as opposed to the
VIC-II's eight. This is because the the height of the characters is adjustable. However, a 25-
line screen basically requires characters that are eight pixels tall. So your custom characters
will be eight bytes of character pattern, followed by eight ignored bytes, and so on for each
character. A waste of space, sadly, but there's nothing you can do about it. The second is
that VDC pixels are exactly half as wide as VIC-II pixels, but just as tall, so whatever character
patterns you use are going to be stretched to twice their height. (Unless you're using
interlace mode, but we'll talk about that later.)

Unallocated Space

Now, if you're a math geek like me, you've already figured this out: the 512 16-byte
character patterns take up 8KB of space, and the character map and attribute map take up
2000 bytes apiece (80 columns by 25 lines is 2,000 screen positions.) That's another 4KB,
given that each map is positioned on a 2KB boundary, for a grand total of 12KB out of our
16KB video RAM. What can you put in that last 4KB? It's all up to you. All the space from
$1000 (4096) to $1FFF (8191) in VDC RAM is unused, so you can do what you like with it. It's
technically possible to use it for extra character patterns, if you like, but using them will be
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complicated, since the maximum 512 patterns are already allocated. It is possible to move
the character-set base address down to $0000 (more on this later,) which would make this
area the second 256 character patterns, but that means that A. you'd be unable to use the
other 512 characters at the same time, and, more importantly, B. the first 256 patterns
would actually be the character and attribute maps. This isn't going to cause your computer
to go up in smoke or anything, but it does mean that using the first 256 characters will
generate a lot of funky gibberish. So if you do decide to try this, you'll want to have the Alt
bit set in every attribute-map position. (Were you attempting to make a game using the VDC,
you might use the 512 main patterns for in-game graphics and the 256 alternate patterns as
the character set in some kind of submenu that is never displayed at the same time as the
game screen.)

Of course, a much simpler use is for alternate character and/or attribute maps. 4KB is
enough for another two 80x25 maps; you could have a whole alternate screen by setting up
a second character map and attribute map in this space, or if you wanted you could use the
same attribute map and have two extra character maps (this would, of course, stick you
with the same colors and Alt bit settings on each of the screens, but there are ways to plan
around this, depending on what you're doing.) If you wanted, you could even keep the same
character map and have extra attribute maps, maybe as a quick way to change colors or
something. However, the Kernal text-printing routines will not work on these extra maps.

Another possibility is to use the extra 4KB as extra RAM for your program, as some 128
software already does. Accessing it is going to be much slower than using normal CPU RAM,
but if you're tight on space and don't want to require an REU, it could ease the pressure a
bit. Before you resort to this, though, remember that using the VDC means that all that RAM
that would normally be used by the VIC-II is up for grabs (although this is only 1KB of normal
RAM in text mode, plus the color RAM, which is another 1KB but only stores the lower
nybble.)

Now, if you wanted to get really wild, you could mess around with the entire layout of VDC
RAM, period, but this will completely break compatibility with the Kernal text-printing
routines, so you'd better have your own ready to go. If you're willing to deal with this, one
thing you could do is content yourself with 256 characters, set the character-set base
address to $0000, and treat the second 256 patterns as free space, giving you an effective
4KB character set and 12KB of space to stick character and attribute maps into as you
please; that's six whole 80x25 maps. (If you can make do with 128 characters, you'd get
another 2KB to work with, for a total of seven maps, but anything below that won't get you
enough space for an extra map.) But, as noted, this means you'll have to do everything
yourself.
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