
A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

« How many Commodore 64 computers were really sold?
Leave security to security code. Or: Stop fixing bugs to make your

software secure! »

pagetable.com
Some Assembly Required

A 256 Byte Autostart Fast Loader for the
Commodore 64
Platforms like the Commodore 64 are still a lot of fun to work
with, not only because the limitations make certain tasks a real
challenge, but also because it is possible to use many interesting
tricks on a bit- and cycle-level – after all, the system is well-
understood and practically all setups were identical.

This article presents a C64 “fast bootloader”: A small program that
auto-starts when loaded into memory and chain-loads e.g. a
game, but replacing the slow disk transfer routines in ROM with
much faster ones – and all this fits into a single 256 bytes sector.

The C64 and the Drive 1541
The C64 is an 8-bit computer released in 1982 that is powered by
a 1 MHz 6502-based CPU and has 64 KB of RAM. A typical C64
setup also consists of a Commodore 1541 disk drive (5.25″ SS/DD
media, 170 KB per side) which is a 1 MHz 6502 computer with 2
KB of RAM itself.

The IEC Bus
The computer and the drive are connected through a serial cable
that carries three lines from the computer to the drive (ATN, CLK,
DATA) and two from the drive to the computer (CLK, DATA). This
IEC bus supports several daisy-chained disk drives (and printers),
and the computer uses the ATN line to arbitrate the bus.

IEC was introduced in the C64′s predecessor VIC-20 and its floppy
drive 1540, as a cheaper version for the parallel IEE-488 bus.
Each device had a 6522 “VIA” I/O controller that could do a simple
serial protocol in hardware – in theory. The serial port in the VIAs
never worked, so Commodore decided to work around the issue by
just implementing the protocol in software, after all, both devices
had programmable CPUs. The C64, running basically the same
system software as the VIC-20, and the 1541, a slightly updated
disk drive for the C64, inherited this design.

As a result of every single bit having to go through a software

http://www.pagetable.com/?p=547
http://www.pagetable.com/?p=577
http://www.pagetable.com/?p=577
http://www.pagetable.com/

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

handshake, the ROM code in the C64 and the drive could only
transfer about 400 bytes per second. A game that fills all of RAM
would take more than two minutes to load. Another issue of the
IEC code in the C64 ROM is that it turns off interrupts every once
in a while, making it impossible to properly play music in the
background while loading data from disk.

Fast Loaders
Practically every game and every demo therefore only had a small
boot program that was loaded by the original ROM code, typically
less than a kilobyte in size, which contained more efficient serial
code for the computer side, as well as corresponding code for the
drive, which was uploaded into the drive’s RAM using the original
serial protocol.

The Protocol
The original IEC protocol uses one clock and one data line in each
direction. The sender alternates the clock line on every bit of data,
and the receiver has to acknowledge the receipt by alternating its
clock line. The idea of a faster protocol is to send a whole byte, bit
by bit without a clock signal: Whenever both devices are
undisturbed by interrupts and device DMA, we can assume the
clocks of both devices to be enough in sync for the duration of
transmitting a byte. (In fact, the 1541 is clocked a little bit faster
than a PAL C64, so there is one extra 1541 cycle for every 67 C64
cycles.) Since the clock line is now not necessary for the
handshake, it can be used for data, so we can transmit two bits at
a time, and transfer a byte in four steps.

Receiving a Byte
The IEC bus is controlled through port A of the C64′s second 6526
“CIA” I/O chip, which is accessible through the MMIO address
$DD00:

7 IEC DATA IN

6 IEC CLK IN

5 IEC DATA OUT

4 IEC CLK OUT

3 IEC ATN Signal OUT

2 RS-232

1-0 VIC Select

We can signal the drive when we are ready to receive a byte
through bits 4 and 5, and the drive can send data through bits 7
and 6. We need to be careful not to change bits 0 and 1, since
these select the 16 KB memory bank that the video chip fetches
its data from – typically, these bits are both 1.

The fastest way to receive a byte from the serial bus (given the
sender is fast enough) is to repeatedly read two bits from $DD00,
shift them down, then read the next two bits, and repeat all this
four times:

 lda $DD00 ; get 2 bits into bits 6-7

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

 lsr

 lsr ; move down into bits 4-5

 eor $DD00 ; get 2 more bits

 lsr

 lsr ; move everything down to bits 2-5

 eor $DD00 ; get 2 more bits

 lsr

 lsr ; move everything down to bits 0-5

 eor $DD00 ; get last 2 bits

The trick here is to XOR the new bits onto the already received
and shifted bits, this way we avoid shifting, ANDing and ORing. An
absolute load taking four cycles and a shift instruction two,
receiving a byte takes 28 cycles total. We need to make sure the
sending side has the same timing.

Sending a Byte
The 1541 disk drive has the IEC bus exposed through port A of its
first “VIA” I/O chip, which is mapped at $1800:

7 IEC ATN IN

6-5 Device number jumper

4 IEC ATN ACK OUT

3 IEC CLOCK OUT

2 IEC CLOCK IN

1 IEC DATA OUT

0 IEC DATA IN

The bits to write the data into are number 1 and number 3, which
are not next to each other, so sending is a little more complicated
than receiving. The following code assumes that the low 4 bits of
the data byte are in register A, and the high 4 bits are in register
Y:

 sta $1800 ; send bits 1 and 3 of A

 asl ; bits 0 and 2 become bits 1 and 3

 and #$0F ; mask off bit #4

 sta $1800 ; send bits 0 and 1 in A

 tya

 nop

 sta $1800 ; send bits 1 and 3 in Y

 asl ; bits 0 and 2 become bits 1 and 3

 and #$0F ; mask off bit #4

 sta $1800 ; send bits 0 and 1 in Y

The idea is to first just write the low 4 bits into the output port,
therefore sending bits 1 and 3. Shifting the value left by one will
put bits 0 and 2 into positions 1 and 3 and we can send them by
writing them into the output port. Then we repeat this with the
upper four bits.

The absolute stores are taking 4 cycles each, and “asl”, “and”,
“tya” and “nop” all take 2 cycles each, so this code has exactly
the same timing as the receiver side.

But unfortunately, this code sends the bits in the wrong order, so
we need to correct it, either on the sending or on the receiving
side. A simple lookup in a 256 byte table (on either side) would do

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

the job, but storing the table in the fast loader would increase its
size significantly – and therefore the time to load the fast loader
with the original Commodore serial code. It would be possible to
generate this table at runtime, but a good tradeoff between size
and performance is this code (34 bytes; with a few bytes more, it
could be converted into a generator for the table):

 eor #3 ; fix up bits 0-1 (VIC bank)

 pha ; save original

 lsr

 lsr

 lsr

 lsr ; get high nybble

 tax ; to X

 ldy enc_tab,x ; super-encoded high nybble in Y

 pla

 and #$0F ; lower nybble

 tax

 lda enc_tab,x ; super-encoded low nybble in A

enc_tab:

 .byte %1111, %0111, %1101, %0101, %1011, %0011, %1001, %0001

 .byte %1110, %0110, %1100, %0100, %1010, %0010, %1000, %0000

First, we invert the lowest two bits of the value to send, because
the receiving side always reads back “11″ in the lowest bits of
$DD00. Then we encode both the high and the low 4 bits using a
16 byte table, putting the results in the A (low) and Y (high)
registers. This table interleaves the four bits so that 0123
becomes 3120 and inverts every bit: An interesting property of
the lines from the drive to the computer is that all lines arrive
inverted at the computer side. This is not the case for the lines
from the computer to the drive. So after this conversion, the send
code above can blindly send the bits, which will show up as the
original value on the receiver side.

Handshake
But it is not enough to just bang the bits on the bus – after every
byte, we need to do a handshake. In a perfect world, we could
just send a complete sector (256 bytes on a 1541) in a go, maybe
even in an unrolled loop for extra speed, but there are several
reasons against it. One reason is that the floppy is clocked about
2% faster, so we’re off by one cycle every 67 cycles. The fastest
possible send loop is about 50 cycles per byte (including the byte
encoding), and the time between two pieces of data on the bus
(i.e. $1800 writes/$DD00 reads) is 8 cycles, so after 8*67 = 536
cycles = 10 transfered bytes we have missed two bits. Getting the
timing correct across such a long time becomes very tricky then.

Another problem is the fact that the video chip in the C64 (“VIC-
II”) requires 40 cycles for DMA on every 8th line of the visible
screen that it sends to the display, completely stopping the CPU,
which would mess up all timing. One raster line on the C64 is
exactly 63 cycles long, so these CPU stalls (“badlines”) happen
every 504 cycles. If we start a transfer of several bytes just after
one of these badlines, we have time for a maximum of about 9
bytes ((504-40)/50). Or we could only transfer data while the VIC
is outside the visible area, but this is only in 112 of the 312 lines,
so we would be wasting about 64% of the processing power. Most

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

fast loaders just turn off the screen, so the VIC doesn’t do these
fetches any more, but we don’t want to take this shortcut!

Badlines happen every time the vertical raster location (readable
in register $D012 of the VIC) is between 50 and 249 and the the
lowest 3 bits reach the value of 3. (Actually, this value is variable
and corresponds to the lowest 3 bits in register $D011.) So the
first thing to check is whether we are below 50 or above 249 (i.e.
between 250 and 311). $D012 only holds the lowest 8 bits of the
raster register (the MSB is stored in the MSB of $D011), but just
checking for $D012 being below 50 already means that the raster
register is between 0-49 or 256-305 – this easier check with some
false positives is preferrable to a more compicated but slower
check. So if we are in the visible area, we must watch out
whenever we are are in a line that ends in “2″, because a badline
will happen some time within the next 63 cycles. In every other
case, a badline won’t happen within at least 63 cycles, so we are
safe to spend our 28 cycles in the receiver code. The following
code does this:

wait_raster:

 lda $D012 ; vertical raster position (bits 0-7)

 cmp #50 ; between 0-49 or 256-305?

 bcc wait_raster_end ; yes, so it's safe

 and #$07 ; lowest 3 bits

 cmp #$02 ; are we in the line before a badline?

 beq wait_raster ; yes, then wait until we are not

wait_raster_end:

If sprites are visible on the screen, this also requires extra DMAs
from the VIC, but we assume that there no sprites active. If in
doubt, writing 0 into VIC register $D015 makes sure they are all
turned off.

Now the actual handshake is rather easy. The protocol is this: At
the beginning, both the computer and the drive set their
handshake flags to “not ready”. When the drive has data in its
buffer and is ready to send a byte, it sends its flag to “ready”.
Then the C64 makes sure it is not in danger of a badline and sets
its “ready” flag. Just after the transfer of the byte, both devices
set their flags to “not ready” again. The drive signals readyness
with CLK=0, and the computer does so with both CLK=0 and
DATA=0, so the code looks like this:

;-----

; C64 at initialization time

 lda #VIC_OUT | DATA_OUT ; CLK=0 DATA=1

 sta $DD00 ; we're not ready to receive

;-----

; drive at initialization time

 lda #F_CLK_OUT ; CLK=1 DATA=0

 sta $1800 ; drive code running, we're not ready to send

;-----

; C64 waiting for drive code running

wait_fast:

 bit $DD00

 bvs wait_fast ; wait for CLK=1, i.e. drive code running

;-----

; drive when it is ready to send (i.e. byte in buffer and converted)

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

 lda #0 ; CLK=0 DATA=0

 sta $1800 ; we're ready to send

;-----

; C64 waiting for drive ready to send

wait_byte:

 bit $DD00

 bvc wait_byte ; wait for CLK=0, i.e. drive ready to send

;-----

; C64 when it is ready to receive (i.e. not in danger of badline)

 lda #VIC_OUT ; CLK=0 DATA=0

 sta $DD00 ; we're ready, start sending!

;-----

; drive waiting for C64 ready to receive

wait_c64:

 ldx $1800

 bne wait_c64 ; needs all 0

;-----

; C64 after receiving a byte

 lda #VIC_OUT | DATA_OUT ; CLK=0 DATA=1

 sta $DD00 ; not ready any more, don't start sending

;-----

; drive after sending a byte

 jsr $E9AE ; CLK=1 (use ROM code to opimize for size)

Please note that logic on all $DD00 reads on the computer side
looks backwards, because the bits get inverted.

Timing after the Handshake
The send and the receive code have exactly the same timing, but
we need to make sure that they also start at the same time. The
C64 code cannot start reading data from the bus directly after
telling the drive that it is ready to receive, because the drive is
testing for the C64′s readiness in this loop:

;-----

; drive waiting for C64 ready to receive

wait_c64:

 ldx $1800

 bne wait_c64 ; needs all 0

The load takes 4 cycles, and the branch 2 or 3, depending on
whether it is taken. The actual bus access for the read from
$1800 takes place in the third cycle, so in the worst case, the
computer signals that its ready exactly the fourth cycle: In this
case, the LDX has read the old value and the branch is taken, the
LDX reads the value again, gets the right value now, and doesn’t
take the branch. So the maximum time until the 1541 reacts is 10
cycles: 1 for the last cycle in the LDX, 3 for the taken branch, 4
for another LDX, and 2 for the final non-taken branch. This is the
code that delays for 10 cycles between the ready signalling and
the reading of the first 2 bits:

 lda #VIC_OUT ; CLK=0 DATA=0

 sta $DD00 ; we're ready, start sending!

 pha ; 3 cycles

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

 pla ; 4 cycles

 bit $00 ; 3 cycles

 lda $DD00 ; get 2 bits into bits 6&7

Reading Sectors
Now that we have the transfer code for one byte in place, we can
easily construct a loop on both sides that repeats the transfer 256
times for a full sector. But we also need code running inside the
drive that reads sectors from disk in the first place. The easiest
way to do this is use the ROM code. It will happily position the
read head for us, wait for the sector to come by, read it, decode
the on-disk bit encoding (6-to-4 Group-Code-Recording, GCR) and
put it into a buffer:

 lda #TRACK

 sta $06

 lda #SECTOR

 sta $07

 lda #0

 sta $f9 ; buffer at $0300

 cli

 jsr $D586 ; read sector

 sei

The 1541 has 5 buffers, numbered 0 through 4, from $0300-
$03FF to $0600-$06FF. The track and sector for buffer 0 are
stored in zero page addresses 6 and 7, the ones for buffer one in
addresses 8 and 9 and so on. Note that during the whole process
of loading data into the C64, we have interrupts disabled (“SEI”),
so we need to reenable them while reading from disk for the
timers to work properly.

More advanced fastloaders don’t use the ROM code for reading,
but implement a more optimized version, achieving another minor
speedup. Bigger speedups can be achieved by changing the
algorithm of reading completely: Tracks on a 1541 disk are up to
21 sectors, 256 bytes each, but the 1541 RAM is only 2 KB, so it
cannot read a whole track into memory. Therefore it reads one
sector, transfers it, reads another one and so on. After reading a
sector, it needs to be decoded and sent, during which time the
disk continues spinning, causing the drive to miss a few sectors.
So it would be a bad idea to store files on consecutive sectors,
since this would mean it has to wait for a whole turn of the disk
(one fifth of a second) for that sector to arrive under the head
again.

Instead files are stored in an interleaved fashion, typically with an
interleave factor of 4, meaning a file is for example stored on
sectors 0, 4, 8, 12 etc. When a fast loader is used, it would
typically require a different interleave factor for optimal
performance, but unfortunately the interleave factor is a property
of the already written disk. A very advanced method of fast
loading is therefore to always read the sector that comes by next
and transfer it, unless it has been transfered before, until the
complete track is in the C64. The C64 then sorts the sectors in the
correct order. For smaller files, this does not work too well, since
this method always reads and transfers complete tracks.

Even different fast loaders (like Heureka Sprint, used by Turrican
and some other Rainbow Arts titles) require the data on disk to be

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

encoded differently, making decoding more efficient. Some copy
programs, like “Master Copy” don’t decode the sector data at all –
but they can only do this because they write the same encoding,
and the actual payload data is never required.

But in order to keep the implementation really small (custom read
code is in the order of 600 bytes) let’s stay with the code in ROM.

Uploading the Code into the Drive
Let’s consider both pieces of code on the C64 and the 1541 side
finished now, but what’s still missing is code to upload the drive
code into the RAM of the 1541 and run it. There are several ways
of doing this: The 1541 operating system over the original IEC
protocol has a “memory-write” (“M-W”) command, allowing us to
upload up to 36 bytes at a time, and a “memory-execute” (“M-E”)
command that makes the CPU jump to the address we specify.
Our 1541 code is about 100 bytes, which would take about a
quarter of a second to upload with the original protocol.

But there is a way to avoid this cost: All code and data in the C64
came originally from disk, so why would we download it to the
C64 and upload it to the 1541 again? We can just instruct the
1541 to read a sector and execute it. This can be done with block-
read (“B-R”) and “memory-execute”, or with the specialized
instruction “block-execute” (“B-E”). Unfortunately, “block-execute”
does not work on the concept of buffers, but on the concept of
channels which abstract buffers, making this more complex than it
would have to be.

A common trick is to upload minimal 6502 code to the drive that
reads a sector and jumps to it and execute that. And it’s even
possible to avoid the “memory-write” command: When sending
the “memory-execute”, we can send trailing bytes, for a command
that is up to 42 bytes long. The code would just travel with the
“memory-execute” command, and the execution address would
point to this very code in the temporary command buffer:

 lda #$0f

 sta $b9 ; secondary address

 sta $b8 ; logical file number

 ldx #cmd

 lda #cmd_end - cmd

 jsr $fdf9 ; filnam

 jsr $f34a ; open

 brk

cmd:

 .byte "M-E"

 .word $0200 + cmd_code - cmd

cmd_code:

 lda #18 ; track 18, sector 18

 sta $08

 sta $09

 lda #1 ; buffer at $0400

 sta $f9

 jsr $d586 ; read sector

 jmp $0400 ; jump to the code we loaded

cmd_end:

The command buffer in the 1541 is located at $0200, so the

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

“memory-execute” jumps to the first byte just after the command
itself, at $0205. We choose to store the floppy code on track 18,
sector 18: Track 18 is decidated to directory entries, so unless the
disk has 144 files on it, it is unlikely all sectors of track 18 are in
use. Reading the code from track 18 also means the head does
not have to move if we store the C64 loader there, too.

Fitting C64 and Drive Code Into a Single Sector
But there is an even simpler and faster solution: If we manage to
fit both the C64 code and the floppy code into a single sector, we
don’t have to read another sector, but we can just send a
“memory-execute” into the buffer that the block was loaded into:

cmd:

 .byte "M-E"

 .word $0482

cmd_end:

The default buffer is #1 at $0400 in the drive’s memory, so after
the start program got loaded into the C64, the sector can still be
found at $0400.

The default 1541 file system does not support random file access,
therefore there is no central data structure that allows a lookup of
the sector number following the current one. Instead, the link to
the next track and sector is stored in the first two bytes of every
sector, reducing the usable space in a sector to 254 bytes (and
making seeks in a file very expensive). So the first byte in a sector
is the track (1-35) and the second byte is the sector (0-20) of the
following block. If it is the last block of a file, the track number is
zero and the sector field contains the number of valid bytes in the
block; all bytes afterwards will be ignored and not transfered. This
allows files that are not a multiple of 254 bytes in size.

So the trick is to create a file that is about half a sector in size
and contains the C64 code, and we store the drive code in the
unused half of the sector. So the reason why we always optimized
for code size when choosing algorithms before was because we
really need to fit everything in 256 bytes!

Header
Now what is the executable file format, you may ask? What are
the headers, how are they structured? How much data is used for
headers? It is complicated.

The shell of the C64 was Commodore BASIC, a derivative of
Microsoft BASIC for 6502. So you would load BASIC programs
from disk with the “LOAD” command, you could have them printed
on the screen with “LIST” and edit them; and if you wanted to run
them, you would type “RUN”. This concept wasn’t really meant for
programs not written in BASIC, but it was enough to have a small
BASIC header in front of your assembly program, like this:

10 SYS2061

BASIC programs get loaded to $0801, so the machine code is
stored directly after this small BASIC header which tells the
interpreter to run machine code at 2061 = $080D. But this wastes
12 bytes and requires the user to type “RUN” after the program is

http://www.pagetable.com/?p=43
http://www.pagetable.com/?p=46
http://www.pagetable.com/?p=45

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

loaded.

Autostart
It is much nicer to have the program autostart directly after the
“LOAD” command. The trick here is to have the program load not
into BASIC RAM, but into a region where it overwrites vectors –
it’s basically a buffer exploit! Here is a rough memory map of the
C64:

$0000-$00FF BASIC and KERNAL variables

$0100-$01FF Stack

$0200-$0258 BASIC input buffer

$0259-$02FF BASIC and KERNAL variables

$0300-$033B System vectors

$033C-$03FF I/O buffer

$0400-$07FF Screen RAM

$0800-$9FFF BASIC RAM

$A000-$BFFF BASIC ROM

$C000-$CFFF RAM

$D000-$DFFF Device MMIO

$E000-$FFFF KERNAL ROM

Commonly, autostart programs would overwrite the system
vectors at $0300:

$0314-$0315 IRQ vector

$0316-$0317 BRK vector

$0318-$0319 NMI vector

$031A-$031B OPEN vector

$031C-$031D CLOSE vector

$031E-$031F CHKIN vector

$0320-$0321 CHKOUT vector

$0322-$0323 CLRCHN vector

$0324-$0325 CHRIN vector

$0326-$0327 CHROUT vector

$0328-$0329 STOP vector

$032A-$032B GETIN vector

$032C-$032D CLALL vector

$032E-$032F unused

$0330-$0331 LOAD vector

$0332-$0333 SAVE vector

0334-033B unused

033C-03FB Tape buffer

Your program would load to $0326, for example, overwriting the
CHROUT vector as well as the 5 following vectors, and your code
would be loaded into the tape buffer starting at $033C. When
loading is finished, the BASIC interpreter wants to print “READY.”,

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

jumping over the CHROUT vector at $0326 and therefore into your
code.

The problem with this solution is that we have to preserve the
values of some of the vectors between $0328 and $033B, because
the original LOAD code in ROM calls the STOP vector to test
whether the user pressed the STOP key. So our file would have to
contain the original values, not only wasting 12 bytes, but also
introducing potential incompatibilities if the user has a cartridge
like the Final Cartridge III or the Action Replay VI attached –
these devices were practically ROM extensions and hooked some
of these vectors to provide improved functionality.

(Actually, overwriting the STOP vector is useful in a different
scenario: This way, we can catch execution during the load
operation as opposed to after it and continue loading the same file
with a replacement bus protocol.)

A different way to gain control after loading is to load into the
stack and overwriting the address returned to after the LOAD is
finished. The stack on the 6502 is always located between $0100
and $01FF, so if we overwrite this complete area with a value of
2, we would put all “$0202″ vectors on the stack, catching
execution as soon as the inner ROM LOAD code returns to its
caller. Since the 6502 increments the return address after it
fetches it from the stack, our payload would live at $0203, which
is still pretty much directly after the stack area. But of course
overwriting the complete stack is a waste: Experimentation shows
that the one vector on the stack that actually counts is located at
$01F8/$01F9.

Laying Out the Code
The problem with the payload starting at $0203 is that we can
only use the memory up to $0258 (55 bytes) – this is the buffer
for a BASIC input line. Unfortunately, this is not enough, since our
code is more like 110 bytes. We can put the payload before the
vector we overwrite, i.e. onto the stack. But we must be careful,
because the LOAD code in ROM uses some stack, overwriting the
area between $01ED to $01F7. So let’s have our code start
somewhere in the stack area, going up to $01EC, and put a JMP
to the code at $0203 to catch the stack return.

The 11 bytes at $01ED-$01F7 (stack that gets overwritten while
loading) and the 9 bytes at $01FA-$0202 (area between the
vector on the stack we overwrite and our first instruction at
$0203) seems wasted – but not quite. We can use $01FE-$0202
to store our 5 byte “M-E” string, and we just fill all bytes from
$01ED to $01FD with “2″. This gives us extra safety that our code
will work machines with replacement ROMs or extended ROM
routines that use a slightly different stack layout – as long as they
don’t use more stack and overwrite our code.

Final Words
Fast loaders and autostart bootloaders have been around for
almost as long as the C64. Fast loaders have used the stack trick
before, and 26 cycle drive transfer code with the screen turned on
has been in use before as well. So what’s really novel about the
bootloader described in this article is the combination of the most

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

optimized tricks into a single-block (256 byte) program. That’s the
beauty of programming for the C64: Practically everything is
implicitly open source, since the best algorithms fit in a few
hundred bytes of code, and an experienced C64 hacker can
reverse-engineer existing code and incorporate it into his own.
That’s how it has always been done.

The Code
Here is the complete code, which can be assembled with the ca65
assembler of the cc65 compiler suite.

TARGET := $0400

TRACK := 18

DATA_OUT := $20 ; bit 5

CLK_OUT := $10 ; bit 4

VIC_OUT := $03 ; bits need to be on to keep VIC happy

seccnt = 2

;---

; Hack to generate .PRG file with load address as first word

;---

.segment "LOADADDR"

.addr *

;---

; Send an "M-E" to the 1541 that jumps to floppy code.

; Then receive one block and run it.

; This code lives around $0190.

;---

.segment "PART2"

main:

 lda #$0f

 sta $b9

 sta $b8

 ldx #<memory_execute

 ldy #>memory_execute

 lda #memory_execute_end - memory_execute

 jsr $fdf9 ; filnam

 jsr $f34a ; open

 sei

 lda #VIC_OUT | DATA_OUT ; CLK=0 DATA=1

 sta $DD00 ; we're not ready to receive

; wait until floppy code is active

wait_fast:

 bit $DD00

 bvs wait_fast ; wait for CLK=1 (inverted read!)

 lda #sector_table_end - sector_table ; number of sectors

 sta seccnt

 ldy #0

get_rest_loop:

http://www.cc65.org/

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

 bit $DD00

 bvc get_rest_loop ; wait for CLK=0 (inverted read!)

; wait for raster

wait_raster:

 lda $D012

 cmp #50

 bcc wait_raster_end

 and #$07

 cmp #$02

 beq wait_raster

wait_raster_end:

 lda #VIC_OUT ; CLK=0 DATA=0

 sta $DD00 ; we're ready, start sending!

 pha ; 3 cycles

 pla ; 4 cycles

 bit $00 ; 3 cycles

 lda $DD00 ; get 2 bits into bits 6&7

 lsr

 lsr ; move down by 2 (bits 4&5)

 eor $DD00 ; get 2 more bits

 lsr

 lsr ; move everything down (bits 2-5)

 eor $DD00; get 2 more bits

 lsr

 lsr ; move everything down (bits 0-5)

 eor $DD00 ; get last 2 bits, now 0-7 are populated

 ldx #VIC_OUT | DATA_OUT ; CLK=0 DATA=1

 stx $DD00 ; not ready any more, don't start sending

selfmod1:

 sta TARGET,y

 iny

 bne get_rest_loop

 inc selfmod1+2

 dec seccnt

 bne get_rest_loop

inf:

 jmp inf

.segment "VECTOR"

; these bytes will be overwritten by the KERNAL stack while loading

; let's set them all to "2" so we have a chance that this will work

; on a modified KERNAL

 .byte 2,2,2,2,2,2,2,2,2,2,2

; This is the vector to the start of the code; RTS will jump to $0203

 .byte 2,2

; These bytes are on top of the return value on the stack. We could use

; them for data; or, fill them with "2" so different versions of KERNAL

; might work

 .byte 2,2,2,2

.segment "CMD"

memory_execute:

 .byte "M-E"

 .word $0480 + 2

memory_execute_end:

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

;---

; Jump to code that receives data.

;---

.segment "START"

 jmp main

;---

;---

; C64 -> Floppy: direct

; Floppy -> C64: inverted

;---

;---

.segment "FCODE"

F_DATA_OUT := $02

F_CLK_OUT := $08

sec_index := $05

start1541:

 lda #F_CLK_OUT

 sta $1800 ; fast code is running!

 lda #0 ; sector

 sta sec_index

 sta $f9 ; buffer $0300 for the read

 lda #TRACK

 sta $06

read_loop:

 ldx sec_index

 lda sector_table,x

 inc sec_index

 bmi end

 sta $07

 cli

 jsr $D586 ; read sector

 sei

send_loop:

; we can use $f9 as the byte counter, since we'll return it to 0

; so it holds the correct buffer number "0" when we read the next sector

 ldx $f9

 lda $0300,x

; first encode

 eor #3 ; fix up for receiver side (VIC bank!)

 pha ; save original

 lsr

 lsr

 lsr

 lsr ; get high nybble

 tax ; to X

 ldy enc tab,x ; super-encoded high nybble in Y

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

 ldx #0

 stx $1800 ; DATA=0, CLK=0 -> we're ready to send!

 pla

 and #$0F ; lower nybble

 tax

 lda enc_tab,x ; super-encoded low nybble in A

; then wait for C64 to be ready

wait_c64:

 ldx $1800

 bne wait_c64; needs all 0

; then send

 sta $1800

 asl

 and #$0F

 sta $1800

 tya

 nop

 sta $1800

 asl

 and #$0F

 sta $1800

 jsr $E9AE ; CLK=1 10 cycles later

 inc $f9

 bne send_loop

 beq read_loop

end:

 jmp *

enc_tab:

 .byte %1111, %0111, %1101, %0101, %1011, %0011, %1001, %0001

 .byte %1110, %0110, %1100, %0100, %1010, %0010, %1000, %0000

sector_table:

 .byte 0,1,2,3,$FF

sector_table_end:

This is the linker script:

MEMORY {

 # hack to get the load address as the first 2 bytes into the .PRG

 LOADADDR: start = $0188, size = 2;

 # the receive code, filled with $02s that overwrite the top few

bytes of

 # the stack and make the KERNAL loader return to $0203

 PART2: start = $0188, size = $0065, fill = yes, fillval = $FF,

file = %O;

 VECTOR: start = $01ED, size = $0011, fill = yes, fillval = $FF,

file = %O;

 CMD: start = $01FE, size = $0005, fill = yes, fillval = $FF,

file = %O;

 # entry point $0203 due to stack overwritten with $02s

 # code that transfers M-E

 START: start = $0203, size = $0003, fill = yes, fillval = $ff,

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

file = %O;

 FCODE: start = $482, size = $007E, fill = yes, fillval = $ff,

file = %O;

}

SEGMENTS {

 LOADADDR: load = LOADADDR, type = ro;

 START: load = START, type = ro;

 PART2: load = PART2, type = ro;

 CMD: load = CMD, type = ro;

 VECTOR: load = VECTOR, type = ro;

 FCODE: load = FCODE, type = ro;

}

This script for the c1541 tool, which puts the code into a disk
image:

format autostart,01

write "start.prg"

And this is the shell script that builds the whole thing:

ca65 start.s &&

ld65 -C start.cfg start.o -o start.prg &&

dd if=/dev/zero of=autostart.d64 bs=256 count=683 &&

c1541 autostart.d64 < c1541script.txt

Note that the c1541 tool creates a file with the whole block on
disk, so in practice, the 1541 code will be loaded into the C64 as
well, but never used. So the two link bytes of the block would
have to be manually changed to decrease its size to achieve
maximum speed.

This entry was posted on Monday, February 7th, 2011 at 23:58 and is filed under
default. You can follow any responses to this entry through the RSS 2.0 feed. You can
leave a response, or trackback from your own site.

16 Responses to “A 256 Byte Autostart Fast Loader for the
Commodore 64”

DeeKay says:
8. February 2011 at 2:52

…but.. but… Is it 256 or 254 bytes now? Cause if it’s 256, it won’t fit
into a single sector! ;-)

j.t.d. says:
8. February 2011 at 3:25

I think, 1 sector = 256 bytes, numbered 0-255.

Michael Steil says:

http://www.pagetable.com/?cat=1
http://www.pagetable.com/?feed=rss2&p=568
http://www.pagetable.com/wp-trackback.php?p=568
http://www.pagetable.com/?p=568&cpage=1#comment-104484
http://www.pagetable.com/?p=568&cpage=1#comment-104485

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

8. February 2011 at 4:08

@DeeKay: 256. :-) I have 254 bytes of code, but the two link bytes
are part of my trick to avoid uploading the drive code, so they count
towards the total size.

John L says:
8. February 2011 at 6:37

You mentioned earlier that common boot loaders could handle around
300 bytes per second – this is a little more efficient/faster, right ?

Peter Ferrie says:
8. February 2011 at 9:06

Perhaps you can save one byte this way?
Replace
pha ; 3 cycles
pla ; 4 cycles
bit $00 ; 3 cycles
…
ldx #VIC_OUT | DATA_OUT ; CLK=0 DATA=1

with
ldx #VIC_OUT | DATA_OUT ; CLK=0 DATA=1, 2 cycles
lsr $ef, x ;(or somewhere else known to be safe), 6 cycles
txa ;(because A will be destroyed on next instruction anyway), 2 cycles

Nate says:
8. February 2011 at 9:56

John L,

Michael says his routine is about 50 clocks per byte, which would be 50
microseconds/byte or 20,000 bytes/sec on the 1 Mhz 6502.

That is fast, but not as fast as the media rate (40 KB/s). Given interleave
and use of the DOS encoding of sectors, the media transfer rate will be the
dominating factor now.

V-MAX, for example, used an alternative sector encoding scheme with
minimal syncs (10 bits) and cycle-exact processing of data from the media.
This saved on GCR conversion time.

Michael’s routine is tiny and a great combo of drive/host code. It is not
claimed to be the fastest loader ever.

Ingo says:
8. February 2011 at 10:33

Hey, that bit pair timing looks familiar! The 1581 fastloader of the Action
Replay uses a shorter time for the first pair, but after that the differences
are the same:

static const generic_2bit_t ar6_1581_send_def = {
.pairtimes = {50, 130, 210, 290}, // microseconds*10
.clockbits = {0, 2, 4, 6},
.databits = {1, 3, 5, 7},

http://www.pagetable.com/?p=568&cpage=1#comment-104486
http://www.pagetable.com/?p=568&cpage=1#comment-104491
http://pferrie.tripod.com/
http://www.pagetable.com/?p=568&cpage=1#comment-104492
http://www.pagetable.com/?p=568&cpage=1#comment-104493
http://www.sd2iec.de/
http://www.pagetable.com/?p=568&cpage=1#comment-104494

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

.eorvalue = 0
};

Yours would be (untested!):
generic_2bit_t pagetable_send_def = {
.pairtimes = {70, 150, 230, 310},
.clockbits = {0, 2, 4, 6},
.databits = {1, 3, 5, 7},
.eorvalue = 3
};

but says:
9. February 2011 at 0:28

Thank you for this very interesting article!

I tried to assemble start.s but it throws an error at line 26.
Can you fix that?

Michael Steil says:
9. February 2011 at 3:44

@but: Thanks for the feedback. HTML stole a less-than and a greater
sign. Fixed, please try again!

Krusty Vader says:
9. February 2011 at 15:31

This kind of articles are killing me… i feel so dumb.

One of this day I’m gonna dust off my 64, my 2 1541 and that old
assembler manual.

Damiano says:
11. February 2011 at 15:39

Hi Michael,

may you explain better why you invert the lower 2 bits “First, we invert the
lowest two bits of the value to send, because the receiving side always
reads back ?11? in the lowest bits of $DD00.” Thank you! Damiano

Per Olofsson says:
13. February 2011 at 10:56

@Damiano:

IEC register on the 1541 side:

http://unusedino.de/ec64/technical/aay/c1541/via10.htm

IEC register on the C64 side:

http://unusedino.de/ec64/technical/aay/c64/cia20.htm

1541 IEC schematic:

http://www.zimmers.net/anonftp/pub/cbm/schematics/drives/new/1541/service/Page_09.html

The signals in the 1541 go through a 7406 inverter, which means that if

http://www.pagetable.com/?p=568&cpage=1#comment-104497
http://www.pagetable.com/?p=568&cpage=1#comment-104499
http://www.pagetable.com/?p=568&cpage=1#comment-104504
http://www.pagetable.com/?p=568&cpage=1#comment-104509
http://www.paradroid.net/
http://www.pagetable.com/?p=568&cpage=1#comment-104512
http://unusedino.de/ec64/technical/aay/c1541/via10.htm
http://unusedino.de/ec64/technical/aay/c64/cia20.htm
http://www.zimmers.net/anonftp/pub/cbm/schematics/drives/new/1541/service/Page_09.html

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

you store a 1 in the 1541, the C64 will read a 0.

MiaM says:
12. March 2011 at 5:08

Interesting, thanks for this!

If the data that gets fastloaded is only going to be read by the fastloader,
it could just as well be stored bitswapped directly on disk. This would
possibly be a slight speedup itself, and perhaps the freed up code space
could be used for even more efficient transmission code (for example
sending more than one byte per handshake)?

Joe Cincotta says:
9. April 2011 at 14:01

One of the best commodore articles I have ever read. Thankyou so much –
awesome you keep the ’64 alive.

Thomas Tempelmann says:
19. June 2011 at 8:27

Impressive.

Back when I reverse engineered the 1541′s ROM, none of the details about
timing constraints etc. were available. I had to do a lot of guessing and
went by trial-and-error. I remember having spent a lot of time trying to
speed up the IEC comms, but my code was still quite poor compared to
what others made out of it soon after.

Yet, those early times were very exciting, being able to make quite a
difference with just a home computer.

BTW, I also documented my Fcopy story here, in case someone is curious:
http://stackoverflow.com/questions/193016/reverse-engineering-war-
stories

The story of 15 Second Copy for the C-64 « pagetable.com
says:
18. July 2011 at 6:18

[...] are floating around on the net. For better understanding on the
C64/1541 handshake issues, refer to this article. If you’re wondering about
the weird bvc * loops: the 6502 CPU of the 1541 has an SO pin, [...]

Leave a Reply

 Name (required)

 Mail (will not be published) (required)

 Website

Anti-spam word: (Required)*

http://www.pagetable.com/?p=568&cpage=1#comment-104583
http://blog.pixolut.com/
http://www.pagetable.com/?p=568&cpage=1#comment-104625
http://www.tempel.org/
http://www.pagetable.com/?p=568&cpage=1#comment-104878
http://stackoverflow.com/questions/193016/reverse-engineering-war-stories
http://stackoverflow.com/questions/193016/reverse-engineering-war-stories
http://www.pagetable.com/?p=656
http://www.pagetable.com/?p=568&cpage=1#comment-104995

A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

http://www.pagetable.com/?p=568[2/14/2012 10:17:47 AM]

To prove you're a person (not a spam script), type the security word shown in the picture.

Click on the picture to hear an audio file of the word.

pagetable.com is proudly powered by WordPress
Entries (RSS) and Comments (RSS).

http://www.pagetable.com/wp-content/plugins/custom-anti-spam/custom_anti_spam.php?audioselect=909045
http://wordpress.org/
http://www.pagetable.com/?feed=rss2
http://www.pagetable.com/?feed=comments-rss2

	pagetable.com
	A 256 Byte Autostart Fast Loader for the Commodore 64 « pagetable.com

	5wYWdldGFibGUuY29tLz9wPTU2OAA=:
	form5:
	author:
	email:
	url:
	submit:
	securitycode:
	comment:

