

1571

INTERNALS

By Rainer Ellinger

A Data Becker Book

Published by

AbacusillSoftware

Second Printing, June 1986

Printed in U.S.A.

Copyright © 1985 Data Becker GmbH
Merowingerstr.30

4000 Duesseldorf, West Germany

Copyright © 1986 Abacus Software, Inc.
P.O.Box 7219

Grand Rapids, MI 49510

This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of Abacus Software or Data Becker, GmbH.

Every effort has been made to insure complete and accurate information
concerning the material presented in this book. However Abacus Software
can neither guarantee nor be held legally responsible for any mistakes in
printing or faulty instructions contained in this book. The authors will
always appreciate receiving notice of subsequent mistakes.

1571,1570,1541, Commodore 128, Commodore 64 Commodore VIC-20,
Plus-4 amd C-16 are trademarks or registered trademarks of Commodore

Int., Ltd.

IBM is a registered trademark of International Business Machines.

ISBN 0-916439-33-X

Preface

Dear Reader,

With the 1570/1571 disk drive you have one of the most powerful
51/4" disk drives available for home computers. The 1570 is a single-sided
disk drive that contains the electronics of the 1571, but is currently available
only in Europe. The 1570/1571 processes two different Commodore disk
formats and a number of different CP/M disk formats. In addition, the
Commodore drives are probably the only drives which contain their own
computers—they have independent microprocessor controllers.

This book is intended to help you get acquainted with all of the
functions of the 1570 and the 1571. With this in mind, you will find a
reader's guide following the table of contents. My goal is to lead you to the
successful use of this disk drive— doesn't matter if you are a beginner or a
professional. The 1571 Internals book is not only a tutorial guide, but above
all it is also a reference work.

Expert programmers will find this book helpful. The ROM listing is in a
class by itself. Never before has a ROM listing been so thoroughly
documented. Two unique features of this listing are the entry points and
calling address cross-references. You'll see these in Chapter 7.

Finally, I'd like to wish you the best when working with your
1570/1571 disk drive. Hopefully this book will offer you a much deeper
understanding of the capabilities of the disk drive than can be obtained with
the 1570/1571 user's guide alone.

Rainer Ellinger October, 1985

TABLE OF CONTENTS

Chapter 1: Fundamentals for beginners 1

1.1 The first contact with the disk drive 3
1.1.1 After unpacking 3

1.1.2 What is a diskette? 6
1.1.3 Diskette formats 9

1.2 The disk drive and Commodore BASIC 11

1.2.1 From BASIC 2.0 to BASIC 7.0 11
1.2.2 HEADER-formatting a diskette 14
1.2.3 DLOAD/RUN-Loading/starting BASIC programs 16
1.2.4 DSAVE-Saving BASIC programs 18
1.2.5 DVERIFY-Verifying programs 20
1.2.6 BLOAD/BSAVE - Saving and loading machine language 21
1.2.7 DIRECTORY/CATALOG-Display the disk contents 23
1.2.8 SCRATCH-Deleting programs and files 25
1.2.9 DS/DS$/ST-When an error occurs 27

1.3 Disk drive system commands 31

1.3.1 The command channel 31

1.3.2 COLLECT-Organizing the diskette 33
1.3.3 RENAME - Renaming a file in the directory 34
1.3.4 CONCAT-Chaining files 35
1.3.5 COPY-Copying files 36
1.3.6 BACKUP - Duplicating disks 38
1.3.7 DCLEAR- Closing all channels 39

1.3.8 BOOT-CP/M and autostart programs 40
1.3.9 Wildcards 42

1.4 The sequential file 44

1.4.1 What is a sequential file? 44
1.4.2 Opening a file 45
1.4.3 Storing data 47

1.4.4 Closing the sequential file 48
1.4.5 Reading from a file 49

1.4.6 Appending data 53
1.4.7 Using sequential files 55

in

1.5 The relative file

1.5.1
1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

What is a relative file?

Opening a file

Storing data

Closing a relative file

Changing a record

Appending new records

Searching for a record

Using relative files

56

56

57

58

59

59

60

60

63

Chapter 2: Advanced programming 65

2.1 The direct-access commands 67

2.1.1 Direct access to individual sectors 67
2.1.2 Block-Read and Block-Write 69
2.1.3 Block-Allocate and Block-Free 72

2.2 The organization of the diskette 73

2.2.1 Thedirectory 73
2.2.2 The block allocation map - BAM 75

2.2.3 Single or double-sided disks 78
2.2.4 Manipulating the directory and the BAM 79

2.3 The organization of files 81

2.3.1 Programs, sequential and user files 81
2.3.2 The relative file, the side-sector blocks 82

Chapter 3: Programming the disk buffers 85

3.1 Programs in the DOS buffer 87

3.1.1 Memory-Read and Memory-Write 87
3.1.2 Memory-Execute and Block-Execute 88

3.1.3 The USER commands 90
3.1.4 The USER 0 commands 92
3.1.5 Autostart files 99

IV

Chapter 4: The 1571 and CP/M 103

4.1 How does CP/M control the disk drive? 105

4.1.1 BDOS and BIOS 105
4.1.2 DPB- The disk parameter block 106

4.2 CP/M diskette internals 108

4.2.1 MFM data recording under CP/M 108
4.2.2 The IBM System 34 format 111
4.2.3 Reading "foreign diskette" formats 113
4.2.4 Programming the WD 1770 controller 118

Chapter 5: Programming for Professionals 123

5.1 How the bytes appear on the diskette 125

5.1.1 The organization of a sector 125

5.1.2 The SYNC marks 126
5.1.3 What is GCR coding? 128

5.2 How bytes get on the diskette 130

5.2.1 1571 circuitry 130

5.2.2 The interface components 131
5.2.3 The WD 1770 controller 137
5.2.4 The Commodore controller 139
5.2.5 The 1541 and 1570/71 modes 140
5.2.6 The serial bus - technology and function 141
5.2.7 The stepper motor 151

Chapter 6: The Disk Operating System (DOS) 153

6.1 The DOS routines 155

6.1.1 The DOS - An explanation 155
6.1.2 The most important DOS routines 156
6.1.3 The zero page 158
6.1.4 The 1570/1571 DOS V3.0 in detail 159
6.1.5 Errors in the DOS 680

6.2 1570/71 ROM listing 161

6.2.1 Listing comments 161

6.3 1571 DOS Reader 163

Appendices 165

Appendix A The 1571 ROM listing ROM- 1
Appendix B The 1570 DOS (1571 Revisions) ROM- 307
Appendix C 1571 Zeropage listing ROM- 311
Appendix D Overview of Disk Errors ROM- 323

VI

Reader's Guide

1571 Internals is a very large book. A lot of information is packed in

these pages. How exactly should you use the book?

The book has a table of contents, but this alone cannot make it a

helpful handbook. For this reason, we've put together a Reader's Guide for

this book. WeVe divided the audience into several categories, based on the

reader's experience and previous knowledge. By reading the suggested

sections, each reader will be able to gain the maximum benefits that this

book has to offer. If you've:

1 Never worked with a computer before and are a complete

beginner, read:

Sections 1.1, 1.2, 1.3, 1.4 and 1.5

2 Worked with other computers, have used the C-64 or

C-128 without a disk drive and understand BASIC, read:

Sections 1.1, 1.3, 1.4, 1.5 and 5.1

3 Worked with other computers and disk drives, read:

Sections 1.2 and 1.3

4 Used the earlier 1541 disk drives, read:

Sections 2.1, 2.2, 2.3, 3.1, and 4

5 Worked with other computers and disk drives, and know

machine language, read:

Sections 2.2, 3.1, 4, 5.2, 6, 7, and Appendices

6 Worked with 1541 and know machine language, read:

Chapters 6 and Appendices

All other sections should be used according to your areas of interest.

Once you have the fundamentals, other information is available to the

advanced user. The first chapters may also prove helpful to the professional

for reference.

vii

CHAPTER 1

(fundamentals for beginners)

1.1 The first contact with the disk drive

1.2 The disk drive and Commodore BASIC

1.3 Disk drive system commands

1.4 The sequential file

1.5 The relative file

Abacus Software 1571 Internals

1.1 The first contact with the disk drive

1.1.1 After unpacking

Naturally you want to get started right away and begin using your disk

drive. In spite of this, please be patient for a few moments as we cover this

introductory section. First we will discuss setting up and connecting the

drive. All our discussion are applicable to the 1570, a single sided disk

drive with 1571 electronics (currently available in Europe) and the 1571

dual sided disk drive. In the following sections we will discuss connecting

the disk drive and the data medium itself—the diskette. If you are already

familiar with these things, you can move on to Section 1.1.3.

The following are included with the disk drive:

Power cord

Connector cable to the computer

Test/Demo disk

Instruction manual

First connect the 1570/1571 to the wall socket with the electrical cord.

Be sure that the device is turned off. Next connect the drive to the computer

using the black connector cable. One side of the connector cable plugs into

the back of the computer as shown below:

User port Cassette Port

1
Serial bus Monitor Ports

SI
Cartridge Port

Figure 1 The back of the C-128

The other end of the connector plugs into one of the two jacks on the
disk drive. Each device which you can connect to the computer (disk drive,
printer, etc.) has two connectors. Otherwise you could operate only one

Abacus Software 1571 Internals

peripheral from the computer because it had only one connector. One of the

two connectors serves as an input and the other as output. A second disk

drive or a printer would then be connected to this output connector on the

1570/1571. It does not matter which of the two connectors you connect to

the computer. The important thing is that the other connector can be used

only as an output. You cannot connect two computers to one disk drive.

Power Jack On/Off switch Serial bus DIP switches

Figure 2 The back of the disk drive

If you're using a 1571, take a look at the two little switches, called

DIP switches, on the back of the housing before you start using it. Their

function is described in Section 1.2.1. Both of them should be up. On the

1570 these switches are inside the device and are already set correctly.

Now, when everything is ready, you can turn on the disk drive. On the

1570 a green LED lights up and on the 1571 a red LED lights up to indicate

operation and the drive motor runs briefly. The green (1570) or red (1571)

Abacus Software 1571 Internals

light indicates that the drive is turned on. If you observe the power-up

process carefully, you will notice that the other LED lights up briefly. If all
of this happens, then your C-1570/71 is functioning normally. If the red
(1570) or green (1571) LED flashes, then the internal self-test routine has

found an error. ;

The red (1570) or green (1571) LED also normally serves as a

operating indicator. It indicates that the diskette inserted is currently being
accessed. As long as this LED is lit you should not remove the diskette from

the drive.

Power light Function light

Figure 3 The front of the disk drive

Abacus Software 1571 Internals

1.1.2 What is a diskette?

Magenitic

media

Read-write

openings

Alignment notches

Figure 4 Diskette

Vinyl case

Write-Protect

notch

Index

hole

Disk hub

Figure 4 shows a 5 1/4 inch diskette. The large opening in the lower

section is immediately obvious. This is where the actual data media, a
magnetic diskette, is visible. The read/write head in the drive, which

transfers the data to and from the diskette makes contact with the media
surface at this location.

A diskette is inserted into the drive with this opening going in first as in
Figure 5. On the 1571, rotate the closing lever to the vertical position. On
the 1570 press the closing latch downward. This seats the diskette properly
over the drive hub as the motor runs for a few seconds to align the diskette
better.

When the drive is in operation, the diskette rotates at about 300 RPM.
The media is sealed in a plastic sleeve which protects the sensitive magnetic
surface. The inside of the sleeve is lined with a cleaning cloth material that
removes dust particles and other dirt. Keep in mind that the information
stored on the diskette is only a few thousandths of an inch thick. Always

Abacus Software 1571 Internals

handle the diskettes with care and never touch the actual media surface, only
the protective sleeve. Your fingers contain oil and the cleaning cloth cannot
remove it Also remember to remove the diskette from the disk drive before
you turn it off or on. Small uncontrolled voltages may damage important

data.

The square notch in the right side is called the write-protect notch. As
the name implies, it prevents accidental writing or erasing of data. By

covering the notch with a write-protect tab (supplied with the diskette), the

write mechanism on the drive is disabled.

Figure 5 Correct position for disk insertion

Now we'll find out how the data is stored on the diskette. A diskette's
surface is organized into tracks, as is shown in Figure 6. Tracks on a

diskette are similar to the grooves on a phonograph record. The 1570/1571
drive can have a maximum of 40 tracks per side. Each track has a capacity

of about 5000 characters.

Each track is organized into sectors. The number of sectors varies
between 18 and 21 per track. Each sector has a capacity of 256 characters.

A special marker on the diskette is used to identify the sectors on a

track. If you examine a diskette, you'll notice a small hole next to the hub.

A photocell in the drive can sense when this hole is directly over the
photocell. Here is where the first sector of the track begins. The position of
the other sectors can be determined based on the rotation speed of the drive.

Abacus Software 1571 Internals

Does using the index hole have any advantages? Yes. It is flexible in
that the size of each sector may be varied. By setting the start of the first
sector, the position of other sectors may be determined regardless of their
length. For the 1570/1571 the length is 256 characters.

The index hole method is used by the CP/M operating system. Diskettes
which you use in C-64 or C-128 mode do not need the index hole. So that
the drive still knows where a sector starts, special synchonization marks are
written to the diskette magnetically. The drive recognizes these marks and
thereby recognizes the start of a sector. But where is the first sector on the
track? How are the sectors identified?

Each sector has a header. The header consists of information which
precedes the actual data. In particular, the track number and sector number
are found in the header. Using the header information, the drive electronics
can "navigate" the diskette. To read a particular sector, the drive analyzes
the next sector. It knows which track at which the head is currently
positioned and can move the head to the desired track. Once there, the
desired sector is found similarly.

Now, where do you write your data? Since there are more than 13300
sectors on a diskette, this could be an enormous task. But the 1570/1571
disk operating system (DOS) handles these details. The DOS keeps tabs on
the sector usage, the file names and disk locations. We'll talk more about
this later.

Sync Header Sync

Figure 6 The diskette structure

8

Abacus Software 1571 Internals

1.1.3 Diskette formats

There are many ways to organize the storage of data on a diskette: index
hole or sync mark; 128, 256, 512, or 1024 characters (bytes) per sector;

varying the number of sectors per track; and others. The 1570/1571 writes
40 tracks per disk side. But there are also drives which can write 80 tracks
per side (higher track density). Furthermore there are different recording
processes. These are primarily different data packing factors and are
therefore called single density and double density. There are also the tables
about sector and disk allocation. Their organization depends on the type of

computer used.

The result of these differences is that there are more diskette formats

than there are computer manufacturers.

What type of diskette should be used for the 1570/1571? Any diskette
that is rated for 40 tracks at double density and double sided can be used.
This is often described on the diskette carton as:

2D (2sided, Double density)

or

DS/DD (Double sided, Double density).

New diskettes are always blank. Before using them to store data or

programs, you must format the diskettes. More about this in Section 1.2.2.

Abacus Software 1571 Internals

Commodore format

Format

Sides of diskette

Bits per sector, max.

Total number of sectors

Number of free sectors

Characters per sector

Number of sectors per track

Tracks 1-17

Tracks 18 - 24

Tracks 25 - 30

Tracks 31 - 35

1541/1570

1

307692

683

664

256

21

19

18

17

1571

2

307692

1366

1328

256

21

19

18

17

CP/M format

Sides of diskette

Bytes per sector

Number of sectors per track

128 bytes per sector

256 bytes per sector

512 bytes per sector

1024 bytes per sector

Total number of sectors

128 bytes per sector

256 bytes per sector

512 bytes per sector

1024 bytes per sector

1

500000

26

16

9

5

1040

640

360

200

2

500000

26

16

9

5

2080

1280

720

400

10

Abacus Software 1571 Internals

1.2 The disk drive and Commodore BASIC

1.2.1 From BASIC 2.0 to BASIC 7.0

To put the 1570/1571 to work, you must give it commands. This is not

very complicated. Simply enter the command and press the <RETURN>

key. This key tells the computer to execute the command. As you know,

your C-128 accepts these commands in the BASIC language.

Just as there are various dialects of human languages, there are also
different dialects of BASIC. Many of the fundamental commands are

usually the same for all versions, but some commands differ in each
version. In fact, the different versions of Commodore BASIC do not use

the same commands for handling the disk drives. The table below lists the

various Commodore computers and the versions of BASIC each contains.

They are listed in order of appearance on the market

Computer

PET 2000

CBM 3000

CBM 8000

VIC-20 / C-64

C-16/PIUS4

C-128

Version

BASIC 1.0

BASIC 3.0

BASIC 4.0

BASIC 2.0

BASIC 3.5

BASIC 7.0

The version numbers is a measure of the power of the BASIC. BASIC
4.0 is somewhat more powerful that BASIC 2.0. But there are often
exceptions to the rule since BASIC 3.5 should probably be renamed BASIC
4.5, because it is more powerful than the Commodore 8000's BASIC 4.0.
As you can see, version 7.0 is ranked highest, exactly as far as the level of
the C-128 BASIC—the most powerful BASIC that Commodore has

produced.

For us, version 3.0 plays a deciding role. All versions of BASIC
greater than 3.0 have easy-to-use disk commands. For the other versions,
working with the disk drive is somewhat more complicated. The syntax of

11

Abacus Software 1571 Internals

the versions which are less then 3.0 (referred to as BASIC < 3.0 hereafter)

is also understood by the higher versions. The additional disk commands

for BASIC > 3.0 (greater than BASIC 3.0) do not function on computers

with lower BASIC versions. In the following sections, both forms of the

commands are shown, that of BASIC < 3.0 as well as that of BASIC > 3.0.

Finally, there is a third option for using disk commands~in the built-in

machine language monitor. The syntax of these commands is similar to

syntax of BASIC < 3.0 and is also included.

So by sending a command to the 1570/1571, you can make it go to

work. But what happens if two disk drives are connected to the computer?

How does it know to which device the command applies?

Every device connected to the C-128 has a device number associated

with it. Normally, the disk drive is assigned device number 8, a printer

device number 4 and the cassette recorder device number 1. If you have a

second disk drive connected, it cannot have the same device number 8.

Instead, you must use a different device number.

On the 1571, there are two DIP switches on the back of the unit which

determine the drive's device number. You can change the device number by

changing the setting of the switches with a pencil point. On the 1570, the

DIP switches are located inside of the drive housing. To change the device

number you must unscrew the housing.

The following table lists the switch settings for changing the device

numbers:

Switch 1

(left)

up

down

up

down

Switch 2

(right)

up

up

down

down

Device

Number

8

9

10

11

To change the settings, you must turn the drive off, select the DIP

switch settings and then turn the drive back on to effect a new device

number.

12

Abacus Software 1571 Internals

Let's now take a look at data transfer between the computer and the disk

drive. The 1570/1571 can not only store programs, it can also manage files.

Let us assume that you are working with two files at once and you want to
write new data in one of the files. When you send the data, how does the

disk drive know what file it belongs to?

In order to solve this problem the 1570/1571 uses data channels. Each

of these channels is used only for specific tasks. They are similar to radio

channels. On one frequency there is police radio, on another the fire station

and emergency, and so on.

On the 1570/1571 there are a total of 16 channels. Usually only three or

four of these can be used at one time, however. The channels, like the

individual devices, are assigned numbers. The following table shows the

use of the channels:

Channel Number

0

1

2-14

15

Function

Load

Save

for Files

Command Channel

In order to activate a certain channel, you use the OPEN command on

both the C-64 and C-128. The syntax of this command looks like this:

OPEN lfn,Y,Z,"data/name"

We haven't talked about parameter Ifn. This is an arbitrary number

between 0 and 255 and is call the logical file number. The logical file

number is used by subsequent disk commands to refer to the opened

channel. For example, to send data to the disk over the channel you would

use a PRINT*Ifn command where Ifn is the logical file number from the

OPEN command. The logical file number thereby shortens the specifications

for other commands, making it easier to work with the disk.

These channel commands are especially important for file management.

They will therefore be discussed in detail in Sections 1.4 and 1.5.

13

Abacus Software 1571 Internals

1.2.2 HEADER - Formatting a diskette

BASIC > 3.0:

Abbreviation:

BASIC < 3.0:

Monitor:

Parameters (optional)

Dx: x

lyy: yy

Uz: z

HEADER "diskette name",Dx,lyy,Uz

heA

OPEN 1 ,z,15,"Nx:disk name.yy"

@z,N:x:diskname

= drive number

= 2 ID characters

= device address

In Section 1.1.3 we talked aboutformatting. Every new, blank diskette

must be formatted before it can be used for data storage. Formatting places

sync markers, headers, and sectors on the diskette.

If new diskettes are formatted, an ID must be specified. These two

identification characters allow the disk operating system (DOS) to

distinguish between diskettes and to determine if a new diskette has been

inserted. This is why it is important to use a different character combination

for each diskette. The ID information is placed in each sector header during

formatting. In addition, the ID characters are also placed in the directory

(title line) of the diskette. To change the ID later, the disk monitor described

in Section 6.1 will be of help.

Not all character combinations are acceptable as an ID for BASIC 7.0.

This is because the computer interprets the characters as a BASIC command

and uses the corresponding abbreviation in place of the characters. But

don't worry, there are quite enough combinations which are allowed.

Together with the digits 0-9 there are 1296 possibilities. If there are 100 of

these which you cannot use, it won't limit you too greatly. In addition, you

can use the BASIC < 3.0 commands.

14

Abacus Software 1571 Internals

The following combinations of characters are not acceptable to BASIC

7.0: (Note upper and lower case)

on fn to aP aU bA bE bL bO bS bU cA cl cO dC dL dO dR dS dV eN fA fE fl

fR gR gS hE jO kE mO pA pE pL pO pU rC rD rE rR rS rU rW sC sL sO sP sS

sT sW tE tR vO wl xO aB aN aS aT cH cL cM cO dA dE dl eN eX fO fR gE gO

iN IE II 10 ml nE nO oP pE pO pR rE rl rN rU sA sG si sP sQ sT sY tA tH

uS vA vE wA

If you use the header command without an ID, the diskette is not

reformatted, but the data is erased. But just like complete formatting, all data

will be lost in this process- This is why the computer asks "are you

sure?" so that you must confirm the command before it is executed. If

you answer the question with "y" for yes, it will perform the command.

You can also use the header command in a program. In this case the user is

not asked to confirm the command to format the diskette. The command is

executed immediately, so you should program confirmation questions

yourself in your own programs.

As you already know from Section 1.1.3, the diskette formats in the

C-64 and C-128 modes are not identical. CP/M diskettes have a completely

different organization. The differences between the two modes result from

the fact that the disk drive behaves like a 1541 drive when in the 64 mode or

when connected to a C-64. If the computer is in the C-128 mode, the drive

switches to the 1571 mode. The greatest difference between the two modes

is the disk capacity. The 1571 uses both sides of the disk while the 1541

uses only one side, since it has only one read/write head. In spite of this,

1571 diskettes can also be used in the C-64 mode-provided a 1571 drive is

used. The 1570 does not recognize a second side and always behaves like a

1541.

15

Abacus Software 1571 Internals

1.2.3 DLOAD/RUN - Loading and executing BASIC programs

BASIC > 3.0: DLOAD "program name",Dx,Uy

RUN "program name",Dx,Uy

Abbreviation: dL / rU

BASIC <3.0: LOAD "x:program name",y

RUN "program name" is impossible

optional Parameter: x

Monitor: L "x:program name",yy,aaaa

auto-start is impossible

aaaa = Starting addr. of program

Parameters (optional):

Dx: x= Drive (0/1)

Uy: y= Device # (4-15)

Now we're getting serious. These are the first commands for working

with the diskette. Initially you will probably use your disk drive to store

mainly programs.

Therefore we want to first discuss the commands with which you can

read a program from the diskette into the computer. Its simplest form is:

DLOAD "program name"

The D in dload stands for "disk." DLOAD is just a special version of

the familiar LOAD command in which you do not need to specify the device

address.

If the desired program is on diskette, it is loaded into the memory of the

computer. If the program is not found, the computer responds:

FILE NOT FOUND

16

Abacus Software 1571 Internals

This also happens if the DLOAD command is used in a program. In
addition, the program is interrupted and the computer returns to the direct

mode.

You can try this command with the Test/demo diskette. Try to load the

various programs from the diskette. To execute the program immediately

after it is loaded, use RUN in place of DLOAD.

The keys <SHIFT + RUN/STOP> offer a still greater ease of use. If

you press them together, the commands DLOAD " : * " (in abbreviated

form) automatically appears on the screen and after it "RUN". This causes

the computer to read the first program on the diskette and run it.

Naturally there are differences between the load commands in the 64

and 128 modes. The most serious contrast is the transfer speed. In the C-64

mode the characters are transferred over the bus at a rate of 400 characters

per second, while they travel at a rate of 3500 bytes per second over the

C-128 bus. In practice this means that a graphic picture is no longer loaded

in 20 seconds, but in 3.

In addition, the load command behaves differently when overlaying

programs. While the C-64 normally "forgets" all of its variables, they all

retain their values on the C-128. So you can easily divide large programs

into several sections without problem.

17

Abacus Software 1571 Internals

1.2.4 DSAVE - Saving BASIC programs

BASIC > 3.0: DSAVE "program nameH,Dx,Uy

Abbreviation: dS

BASIC <3.0: SAVE "xprogram namefl,y

optional Parameter: x

Monitor: S"x:program namelf,yy,aaaa,bbbb+1

aaaa/bbbb = Start & End addr. of program

Parameters (optional):

Dx: x= Drive (0/1)

Uy: y= Device* (4-15)

If a program is to be transferred from the computer memory to the

diskette, we do it like DLOAD only here with the command DSAVE. If, for

example, we want to save a BASIC program, we must find a suitable name

for it. Let's assume it should be called minitest. The save command

reads:

DSAVE "minitest11

The name may not be more than 16 characters long and a program with

the same name may not exist on the diskette. In addition, there are some

characters which may not be used in program and file names. These

characters are control characters. If they are used, the program cannot be

loaded because the drive will interpret the name as a command. Here are the

prohibited characters:

, : ? * # & @

If you have changed your program and would like to save the new

version with the same name, you can precede the name with the @ character.

For example:

18

Abacus Software 1571 Internals

DSAVE "@minitest"

The special function saves the new version and then erases the old

version. Therefore there must always be enough free space on the diskette

to hold a copy of the new version. Unfortunately, there are problems with

this replace function. If the diskette is almost full, the function will not work

correctly and your program may be lost. You should therefore use the @

with care—or better yet, not at all. In BASIC < 3.0 as well as in the monitor,

a colon must follow the @ in order to separate it from the program name

(such as "@ rminitest")-

The save times on the 1570/1571 are not as fast as the loading time.

Saving a program is no faster than on the 1541. In addition, saving is

generally slower than loading because after each write the data must be

checked to see if it was stored correctly on the diskette.

Loading and Saving Times

C-64 10K Byte-program

C-64 1 OK Byte-file

C-128 10K Byte-program

C-128 1 OK Byte-file

Read

0:27

2:25

0:03

3:05

Write

0:30

2:45

0:25

2:50

19

Abacus Software 1571 Internals

1.2.5 DVERIFY - Verifying programs

BASIC > 3.0: DVERIFY "program nameff,Dx,Uy,z

Abbreviation: dV

BASIC <3.0: VERIFY V.program name",y,z

optional Parameter: x

Monitor: V"x:program name",yy,aaaa

aaaa = Starting addr. of program

Parameters (optional):

Dx: x= Drive (0/1)

Uy: y= Device # (4-15)

z : z= 0: relative load 1: absolute load

This command verifies that a program on the diskette is the same as the

one in the computer's memory. It compares it with the one found in the

memory of the computer. If they match, the computer responds Ok. If not,

the message Verify Error will be displayed.

Historically DVERIFY originates from cassette usage. Because of the

relative low reliability of cassette storage, it was advisable to verify the

stored program. In this age of affordable disk drives, this function is really

superfluous.

The disk drive checks the data it has written to a sector for accuracy.

Verify is automatically performed upon every write access by the 1570/71

disk drive. This is also why saving a program takes somewhat more time

than loading it

20

Abacus Software 1571 Internals

1.2.6 BLOAD/BSAVE • Saving/loading machine language

BASIC > 3.0: BLOAD "program nameH,Dx,Uy,ON

Bz,Pa

BSAVE "program name")Dx,Uy,ON

Bz,Pa TO Pb

Abbreviation: bL/bS

BASIC <3.0: LOAD "x:program name",y,1

SAVE not available

optional Parameter: x

Monitor: L"x:program name",yy,aaaa

S"x:program name",yy,aaaa,bbbb+1

aaaa/bbbb = Start & End address of program

Parameters (optional):

Dx: x = Drive (0/1)

Pa: a = Starting address (decimal)

Pb: b = Ending address (decimal)

Uy: y= Device # (4-15)

Bz: z= Bank number (0-15)

BLOAD, like the name says, is another load command. But we have

already encountered DLOAD. Why do we need another command?

The solution to this puzzle lies in the way in which data are loaded.

With DLOAD, the program is always loaded at the start of the BASIC
storage, regardless of the area from which it was saved. This isn't bad for

BASIC programs. But programs which are written in machine language

may not run if loaded with DLOAD. They can execute only in a certain

memory area. Graphic pictures too must be loaded to the original location.

21

Abacus Software 1571 Internals

For this reason the start address of the program is always saved along

with the program itself. BLOAD loads the program back at this address.

The counterpart of BLOAD is BSAVE. This command is used to save

arbitrary sections of memory. DSAVE saves only the BASIC program

located at the start of the BASIC storage.

The corresponding load and save commands of the monitor require you

to specify a memory range for DLOAD. The monitor commands cannot be

accessed from a BASIC program. This is the purpose of BLOAD and

BSAVE.

These disk drive functions should not be ignored. They can be used to

load sprites or graphic pictures into the proper memory locations. They are

also used by the machine language programmer, who can load machine

language programs more easily. In these applications, you should not

deviate from the start address saved along with the program. Whenever

possible, specify the parameter Pa. Then you can be certain that the data is

loaded in the proper memory location. Otherwise the program may be

loaded into an area with contains important parts of your current

program-causing the computer to crash.

One more thing is important. While the starting and ending addresses of

the memory range must be given in hexadecimal in the monitor, only

decimal values are allowed in BASIC. If you want to use hexadecimal

specifications, you must use the command DEC (" "). The expression

must be enclosed in parentheses.

Furthermore the BSAVE command or the monitor Save command has a

peculiarity. The contents of the last specified range address is not saved. So

you should always specify the ending address* 1.

22

Abacus Software 1571 internals

1.2.7 DIRECTORY/CATALOG - Display the disk contents

BASIC > 3.0:

Abbreviation:

BASIC <3.0:

Monitor:

DIRECTORY Dx ON Uy,"name"

CATALOG Dy ON Uy, "name"

diR/cA

LOAD "$x:name",y: LIST

@y,x:$name

Parameters (optional):

Dx: x= Drive (0/1)

Uy: y= Device # (4-15)

name : Search string for selection of files

We've now saved and loaded programs several times. But what
programs are now on the diskette? Under what name was the last program
stored? We need to see the contents of the diskette.

To save you from reaching for pencil and paper, the 1570/1571 disk
drive automatically keeps a directory of the programs and files stored on the
diskette. It may be displayed by using the CATALOG or DIRECTORY
commands. But why are there two commands to perform the same

function? This is also probably a sort of tradition (like DVERIFY) because
both commands were implemented in the BASIC 4.0 of the CBM-8000
series computers. Also, BASIC 7.0 is supposed to be compatible with all
previous Commodore dialects.

The parameters are standard except for name. If you specify this
parameter, you can select certain files to be displayed. This only makes

sense with wildcards, of which you learn more in Section 1.3.9. For

example, it is possible to list only the entries whose name begins with "a".
If the name specification is missing, the entire directory will be printed.

Now to the directory itself. Let's take a look at an example:

23

Abacus Software

0

5

1

11

9

.1.2

9

9

:!.

1

1

2

1

1

1

2

"CHARTPAK-128 B "

"BILLBOARD"

"CHPK.CONFIS"

"CHPK.PM.1526"

"CHPK.PM.C"

"CHPK.PM.E"

"CHPK.PM.OC"

"CHPK.PM.P"

"CHPK.PRD.C5"

"CHPK.PRD.C6"

"CHPK.PRD.EF"

"CHPK.PRD.EJ"

"CHPK.PRD.EM"

"CHPK.PRD.OC"

"CHPK.PRD.PB"

"CHPK.PRINTERS"

LE 2A

PRG

SEQ

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

SEQ

1571 Internals

The drive number, disk name, ID, and disk format are displayed in
reverse in the title line. The drive for the 1571 is naturally always 0 since it
is a single drive. The disk name and the two character ID follow. The

identifier "2A" serves only to recognize which diskette format is involved.

Next the contents are listed. First the number of blocks (sectors) is
displayed. This gives an indication ofhow large the program or file is. After
this comes the file name and finally the file type. This specification gives
information about the type of the entry, whether it is a file, a program, or

whatever. The standard file types are listed below:

DEL

PRG

SEQ

USR

REL

= deleted entry

= program

= sequential file

= user file

= relative file

At the end of the listing is the number of sectors (blocks) which are still

free on the disk.

24

Abacus Software 1571 Internals

1.2.8 SCRATCH - Deleting programs and files

BASIC > 3.0:

Abbreviation:

BASIC <3.0:

Monitor:

Parameter:

name :

SCRATCH "namel ,name2,..",Dx,Uy

sC

OPEN 1,y(15,"SX:name1,name2,..11

@y,Sx:name1 ,name2,..

Up to five filenames separated by

commas

Parameters (optional):

Dx: x =

Uy: y =

Drive (0/1)

Device #(4-15)

If youVe stored a few test programs and now want to erase them you

can use the SCRATCH command to do this. It deletes the entry from the

directory and releases the blocks occupied by the program or file*

Up to five entries can be deleted at a time. The names of the individual
entries are separated by commas.

It's a very short time between pressing the <RETURN> key and
erasing the wrong file because you specified the wrong name. BASIC 7.0
asks you to confirm scratches. If you're sure, press <Y>. Any other key
terminates the command.

When a program or file is SCRATCHed, it is not really erased or
overwritten. Instead it is just flagged as deleted. It's possible to change this
flag and thereby recover the file. A disk monitor which writes directly to the
tracks and sectors of the diskette can be used for this.

25

Abacus Software 1571 Internals

After deleting, the following message is displayed on the screen:

01, FILES SCRATCHED, XX, 00

The number XX indicates how many files were removed. This is

especially important when using wildcards in the name specification.

The SCRATCH command can naturally also be used in a BASIC

program. The question "Are your sure? " is asked only in the direct

mode, however. This question is omitted in the program. If you want to

check the message in the program, you must request it from the disk drive.

More about this in the next section.

One further note. Files which are listed with an asterisk (*) in the

directory may not be deleted with the SCRATCH command. The save

process was interrupted when these files were being saved. Always use the

VALIDATE command with "*" files to remove them from the diskette.

26

Abacus Software 1571 Internals

1.2.9 DS/DS$/ST - When an error occurs...

BASIC > 3.0: PRINT DS / PRINT DS$ / PRINT ST

Abbreviation: ? DS / ?DS$ / ? ST

BASIC <3.0: 10 OPEN 1 ,y,15

20 GET#1 ,A$:PRINT A$;:IFST<>64

THEN 20

30 CLOSE1

RUN

Monitor: @y y = Device #(4-15)

"Only he who does not try, makes no errors." Have you ever made an
error? Imagine that you want to load a program and forgot to insert a
diskette in the drive. What does the disk drive do? Try it out once!

Immediately the red (1570) or green (1571) LED starts to flash on and

off. If the disk drive is in the 1570/1571 mode, the LED flashes twice as
fast as in the 1541 mode. If the light flashes after power-up, the internal
self-test routine found an error in the operating electronics. In this case
consult Section 6.3.6 for help.

So that you can determine the cause of the error, the disk drive stores an

error message. This can be read via the variables DS and DS$. This is why

these variable names may not be used in your programs. The error message
can be read only once. After this the flashing LED on the drive goes out.

The next time the error message is read, you will get the OK message. In

BASIC 7.0 the last read is stored in DS/DS$. The complete message is

displayed on the screen with PRINT DS$.

Let's take a look at the construction of such an error message:

NN, MESSAGE, TT, SS

27

Abacus Software 1571 Internals

Every error has a number (NN). The exact cause of the error can be

determined through this. Then comes the name of the error, such as "Read

Error". The specifications TT and SS stand for track and sector number of
the location at which the error occurred. The exact meaning of the error, the

causes and possible solutions are listed in Appendix D.

If you use just the variable D S instead of D S $, you get only a
number-in this case the error number. This is often helpful when analyzing

a message. If a command was executed without error, then the drive returns

an "OK" message, which has the number 0. Naturally, the red/green

(1570/1571) light does not flash then. In your programs you should always

check to see if DS contains zero after disk commands or if an error

occurred. This can be done through the following program sequences, for

example:

C-64 mode:

10 open 1,8,15 : input#1,a,a$,b,c : close 1

20 if a<>0 then print a;a$;b;c : stop

for all messages (including scratch)

10 open 1,8,15 : input#l,a,a$,b,c : close 1

20 if a>19 then print a;a$;b;c : stop

for errors only (ignore scratch)

C-128 mode:

10 if ds<>0 then print ds$: stop

for all messages (including scratch)

10 if ds>19 then print ds$: stop

for errors only (ignore scratch)

Beside DS and DS$ there is another variable that gives information

about the current system condition, the variable ST. Naturally, you may not

use this name for other variables either. The term ST comes from "status,11

and this is exactly the function of ST. This variable gives information about

the status, the condition of the input/output system. The fact that this

involves mainly the cassette recorder will not be discussed further here. The

bits for the cassette are therefore omitted:

28

Abacus Software 1571 Internals

Bit

0

1

6

7

Dec.

1

2

64

128

Function

Time-out by write

Time-out by read

EOI end of data

EOT end of blocks

For disk operation, only bits 0 and 1 as well as bits 6 and 7 are of
interest. Bit 6 is called EOI, "End Of Information.11 This recognizes when
the last character of a transmission has been sent (see DS$ for BASIC <
3.0).

Bits 0 and 1 indicate a time-out. If a device which is connected to the
serial bus is addressed by the computer, it must answer within a certain
time. Otherwise the computer will assume that the device is not ready. If the
time span runs out (time-out), these bits are set. The reason for a time-out
can lie in the fact that the device is suited only for sending or only for
receiving data.

The other possibility would be that the device (such as a disk drive) is
not even connected. In this case the signal "EOT" will be set. EOT means

MEnd Of Tape"; it is a cassette status signal which was transported to disk
use.

The variable ST is correspondingly corrected after every disk operation.

If the drive is not connected or is turned off, bit 7 of ST will be set. In this

case the computer responds immediately with "Device not

present" . If the previous disk command was in a program, the program

will stop~an annoying feature. But it is possible to check in a program if the

drive is turned on, as the examples below show. In addition, you can

determine if a diskette is present in the drive.

29

Abacus Software 1571 Internals

C-64 mode:

10 poke 768,185

20 open l,8,15,"ilf

30 poke 768,139

40 if st and 128 then print chr$(19)"Please turn

on the disk drive"rcloselrgotolO

50 input#l, a-.close 1

60 if a<>0 then print chr$(19)"Please insert the

diskette": goto 10

C-128 mode:

10 trap30

20 open 1,8,15,"i":goto40

30 if er=5 then print chr$(19)"Please turn on

the disk drive":closelrgotolO

40 closel

50 if ds<>0 then print chr$(19)"Please insert

the diskette": gotolO

30

Abacus Software 1571 Internals

1.3 Disk drive system commands

1.3.1 The command channel

As you learned in Section 1.2.1, the computer communicates with the

disk drive via special channels. Naturally there is a separate data channel for

the error messages from the previous section—the command channel.

As the name says, this channel is responsible not only for errors, but

also for commands. All disk commands except LOAD/SAVE/

OPEN/CLOSE are sent over this channel. Since this is rather complicated

(see BASIC < 3.0), there are separate disk commands in BASIC 7.0. These

put together the pure BASIC < 3.0 disk commands and send them to the

disk drive.

These disk commands always consist of one character, which is an

abbreviation for a function, like "s" for scratch. Then follows the drive

specification, which is a remnant from the time of the dual drives on the

large Commodore computers. The 1570/1571 is a single drive, so the drive

number should always be 0 (device 8, drive 0). If you select drive 1 in spite

of this, an error message will result. This syntax is not entirely senseless

because Commodore is planning a double drive for the C-128 which will be

called the 1572. Sometimes, however, the drive specification is required to

select a specific function (see CONCAT command).

If additional parameters, like filenames, must be specified, then a colon

follows as a separator, followed in turn by the parameters. If the drive

specification is omitted the drive always assumes drive number 0. This

means that you can normally do away with a drive number specification

(0/1) on the 1570/1571. You may not forget the colon, however, if

additional data are to be transmitted.

In BASIC versions < 3.0 the disk commands must always be sent to

the drive via the command channel (except for LOAD /SAVE). In order to

inform the computer that it should set up a certain channel to the disk drive,

we use the OPEN command. This opens the channel for operation. The

syntax to OPEN the command channel is:

OPEN 1,8,15

31

Abacus Software 1571 Internals

The first digit (logical file number) is an arbitrary number between 1

and 255 with which the channel will be designated. Next follows the device

address of the drive, in this case this is the standard device number of eight.

The last number specifies the channel number, here number 15 for the

command channel. You can find more about the OPEN command in

Sections 1.2.1, 1.4.1, and 1.5.1.

Now you can send commands to the disk drive via this channel. If, for

example, the scratch command is to be executed, then you must send

11 s : filename". The PRINT# command is used for this:

PRINT#1,"s:filename"

In this command we find the 1 from the OPEN command again. Since

we assigned a number to the channel with the OPEN command, we don!t

have to give all of the specifications (device address, channel number, etc.)

again if we want to send a message to a special channel—the logical file

number suffices.

One last detail you should know. Commands to the disk drive may not

be longer than 41 characters. The internal buffer storage of the 1570/1571

does not allow more. With very long filenames this sometimes leads to

limitations, especially with the SCRATCH or COPY commands. You cannot

SCRATCH three files with 15 character names with one SCRATCH

command. This does not lead to real disadvantages—you will just have to

divide a task up into several partial steps.

32

Abacus Software 1571 Internals

1.3.2 COLLECT - Organizing a diskette

BASIC > 3.0:

Abbreviation:

COLLECT Dx ON Uy

collE

BASIC <3.0: OPEN 1 ,y,15,HVxH

optional Parameter: x

Monitor: @y,Vx

Parameters (optional):

Dx: x = Drive (0/1)

Uy: y= Device # (4-15)

The COLLECT commands puts the diskette directory back in order. In

detail, it involves the directory and the BAM, the table of free and allocated

blocks, called the Block Availability Map.

The COLLECT command first erases the BAM. Then the drive

determines the sectors used by each valid file entry. These are designated in

the BAM as allocated. Finally the new BAM is written to the diskette. In

addition, the COLLECT command removes all invalid entries from the

directory. Now just what are invalid entries?

Such files are designated by an asterisk (*). They are created when an

OPEN file is not CLOSEd or if a program is saved which is larger than the

free space on the diskette. The saving process is then interrupted, an error

message displayed and all previously free blocks are allocated—only the

COLLECT command will reclaim them.

33

Abacus Software 1571 Internals

1.3.3 RENAME - Renaming a file in the directory

BASIC > 3.0:

Abbreviation:

BASIC <3.0:

Monitor:

Parameters:

old:

new :

RENAME "old" TO "newII,Dx,Uy

reN

OPEN 1,y,15,"Rx:new=old"

@y,Rx:new=old

old filename

new filename

Parameters (optional):

Dx: x =

Uy:y =

Drive (0/1)

Device #(4-15)

With this command you can give an existing directory entry a new

name. As you see above in the syntax diagram, this is not very complicated

Naturally this function is not just suited for beautifying the directory. It

is particularly interesting when files are to be processed from programs. The

files can all receive the same name. When changes are made, you must save

the file under a temporary name and delete the old file. The temporary name

is then changed to the name of the old file. Using this method you end up

with one file in the end. You can use this technique not only for files but for

programs as well. This way you donft get 100 versions of the program on

the diskette, just the most current, and always with the same name.

34

Abacus Software 1571 Internals

1.3.4 CONCAT - Chaining files

BASIC > 3.0:

Abbreviation:

BASIC <3.0:

Monitor:

Parameters:

target:

source:

CONCAT Dx,"source" TO Dy."target"

ONUz

cO

OPEN

1 ,z,15,"Cy:target=y:target,x:source"

<§>z,Cy:target=y:target,x:source

file to be appended

file to which target will be attached

Parameters (optional):

Drive (0/1)

Drive (0/1)

Device #(4-15)

The CONCAT command allows you to chain a file to another one. The

data of the source file is appended to the destination file. The source file is

not deleted.

This chaining works only with sequential files (SEQ or USR). Programs

cannot be combined in this manner.

The CONCAT command is actually a copy function and is therefore a

type of copy command. More about this in the next section.

35

Abacus Software 1571 Internals

1.3.5 COPY - Copy files

BASIC > 3.0:

Abbreviation:

BASIC <3.0:

Monitor:

Parameters:

target:

source :

COPY Dx,fIsource" TO Dy."target" ON

Uz

COP

OPEN1,z,15

PRINT#1 ,"Cx:target=y:source"

CLOSE1

@z,Cx:target=y:source

name of new file

name of old file

Parameters (optional):

Dx: x =

Dy: y =

Uz: z =

Drive (0/1)

Drive (0/1)

Device #(4-15)

This command copies individual files. This seems intelligent for a

double drive, but what will it do on a single drive like the 1570/1571?

Naturally, the application possibilities of the COPY command are somewhat

limited. There are, however, useful applications of the command. You have

already become acquainted with one of these in the previous section in the

form of the CONCAT command.

With a single drive the COPY command can be used to chain files. A

new file is formed out of two, three, or even four already existing files. The

data of the source files are appended to the destination file in the order in

which the names of the source files where specified. Only sequential files

(SEQ or USR) can be combined in this manner.

36

Abacus Software 1571 Internals

Naturally program files can be copied as well. Only one source program

is allowed. Programs cannot be combined in this manner. This is a problem

which must be solved in the computer.

Copying individual files still makes sense. If manipulations are to be
performed on files, then this should often be tried out on duplicates first.

With the COPY command you can create a copy of the original file.

One aspect of this should not be overlooked: The destination file must

have a name which is not present on the disk. But here too there is a special
case. If for both the source and destination files you specify the drive
number and use a name which already exists on the diskette, these file will

be overwritten by the new destination file. The CONCAT command works

according to this method.

To copy a program from one diskette to another, you need a special
copy program. Such a program is contained on the Test/demo diskette under

the name " sd. copy. c 6 4 ". You must load and start this program in the

C-64 mode. It has the disadvantages of being very slow and difficult to use.

37

Abacus Software 1571 Internals

1.3.6 BACKUP - Duplicating diskettes

BASIC > 3.0:

Abbreviation:

BASIC <3.0:

Monitor:

Parameters:

Dx: x =

Dy: y =

Uz: z =

BACKUP Dx TO Dy.Uz

baC

OPEN1,y,15,tIDy=x11

@z,Dy=x

Drive # of source disk (0/1)

Drive # of target disk (0/1)

Device #(4-15)

This is the only command of the C-128 or 1570/1571 which cannot be

used at all. BACKUP is intended to duplicate entire diskettes. The destination

diskette is formatted at the same time. This works only with a dual drive.

On a single 1570/1571 drive, this is senseless.

What do you do if you need to copy an entire diskette. You can make

backup copies with a special backup programs. A copy program for

backups is included in the "DOS SHELL" on the Test/demo diskette.

38

Abacus Software 1571 Internals

1.3.7 DCLEAR - Closing all channels

BASIC > 3.0:

Abbreviation:

BASIC <3.0:

Monitor:

DCLEAR Dx ON Uy

dclE

not available

not available

Parameters (optional):

Dx: x= Drive # of source disk (0/1)

Uy: y= Device* (4-15)

This command closes all of the channels to the disk drive. This is an
internal function of the computer. The command does not send a "close

channel" command (CLOSE) to the disk drive. Open files cannot be

properly handled in this manner. To do this there is the DCLOSE command

(see Sections 1.4 and 1.5).

For file applications, DCLEAR has little use. You can, however,

terminate CMD channels to the disk drive with it. These are data channels to
which the normal screen output has been redirected to another device with

CMD. This allows the output to be written to a disk file instead of the screen.

If you use DCLEAR in your own programs, you must be sure that the

input and output will take place on the standard devices.

39

Abacus Software 1571 Internals

1.3.8 BOOT - Starting the CP/M operating system

BASIC 7.0:

Abbreviation:

BASIC <7.0:

Monitor:

BOOT tIname",Dx,Uy

bO

not available

G FF88C (Track 0, Sector 1)

Parameters (optional):

Dx: x = Drive # of source disk (0/1)

Uy: y= Device* (4-15)

BOOT is a command with a double meaning. If parameters

(name, . . .) are given, then it behaves differently than when these are

omitted. Let's first look at the BOOT command with parameters.

The most important parameter is the name. The computer searches for a
machine language program with this name in the directory and loads it in to
the memory area specified by the file in the current bank (normally 0).
Execution then begins at the starting address. You must ensure that the
machine code makes sense at this address or the computer will crash.

If you simply enter BOOT, the computer reads sector 0 on track 1. If the

first three characters of the sector are CBM, then it is an autoboot sector.
Otherwise the boot command is ended.

The autoboot sector must contain a set of data and a startup program.
This is then responsible for performing additional actions. For a detailed
study of the BOOT command, see the book 128 Internals from Abacus.
Section 7.7 of that book explains the command in detail. The book also
contains the relevant kernal listing.

40

Abacus Software 1571 Internals

Byte

0-2

3/4

5

6

7 on

-

-

Function

"CBM"- marker for identification

memory address of further boot sectors

bank number for following sectors

number of boot sectors still to follow

text to be outputted after the message

"BOOTING" followed by a zero

name of program to load after loading the blocks

followed by a zero

machine language routine that is executed after

loading

If the boot message is specified, it is printed on the screen after

"Booting". If no message is to be printed, the separator $00 must be
placed in byte 7. After this a test is made to see if other boot sectors are to

be loaded (byte 6 not equal to 0). If so, the data in bytes 3 to 5 apply.

The boot command loads the program from the diskette whose name is

given in the string following the boot message.

Finally, you can write your own boot routine. The program is loaded

into the cassette buffer in the computer and executed. The boot routine must

be present because the computer will try to execute whatever it finds in the

cassette buffer. A system crash will probably be the result. The CP/M

system diskette is started with BOOT. The boot routine in track 1, sector 0

switches the Z-80 on, which organizes the loading of CP/M Plus.

As you have no doubt noticed, the BOOT command is automatically

called after every reset or power-up of the computer. If an appropriate

diskette is inserted in the drive, the boot sector will be loaded an executed.

41

Abacus Software 1571 Internals

1.3.9 Wildcards

Up to now you have had to specify the whole name of the program or

file to which a disk command is to refer. Let's assume that you have created

various programs, say Test 1, Test2, and so on, and you want to delete
all of these. You would have to enter all of the filenames—a rather
time-consuming task.

For this reason the disk drive offers the ability to abbreviate names or to

address entire groups of names at once. The key characters are the asterisk

(*) and the question mark (?). This is why these two characters cannot be
used in filenames. They are called wildcards.

First well talk about the (?) wildcard character. The question mark is a

place holder for an arbitrary character. For example, if you enter TEST? in

a SCRATCH command as a file name, all files whose name begins with

TEST plus one additional character are deleted. Thus TEST1, TEST2 and

TESTy are deleted. There is no limit to the number of question marks that

may be used. A file name ? ? ? ? ? refers to all files whose name are five
character in length.

The second wildcard character is the asterisk (*). If it is entered alone,

the first directory entry on the diskette is selected. Entered following a

combination of characters, the asterisk represents "I don't care" characters.

For example, a* selects any file name that begins with the letter a and has

any characters (or none at all) following.

A third wildcard is the equals sign (=). This selects file types of a

particular kind. To do this, the equal sign is appended to a file name

specification followed by the first letter of the desired file type. For

example, a*=p selects the first file whose name begins with a and is also a
program file.

Here are some examples of the use of wildcards and the equal sign:

a* first entry which starts with "a".

a *cd as above. Everything after the asterisk is ignored.

a? all two-character names starting with "aM.

? ? ? * all entries with at least 3 characters.

a*=s all sequential files Which start with "a".

42

Abacus Software 1571 Internals

Wildcards may not be used with all disk functions. In addition, the use

of wildcards has different results with different commands. The table below

gives information about this.

Command

DLOAD/BLOAD

DVERIFY

DSAVE / BSAVE

DIRECTORY

SCRATCH

RENAME

CONCAT/COPY

is wildcard

allowed?

always

no

always

always

no

file chosen

first identified filename

new filename

all identified files

all identified files

given filenames only

43

Abacus Software 1571 Internals

1.4 The sequential file

1.4.1 What is a sequential file?

There are basically two types of data files that can be managed on the
1570/1571. These are sequential and relative files. The chapters on
sequential and relative files discuss each in detail.

Data storage on a diskette is comparable to the scrolls of biblical times.
Historically, the first form of written record was the papyrus scroll.
Information is written on the scroll in a strict start to finish order. To find a
given piece of information, you would begin to search through the whole
scroll. If you want to add information, you must add it at the end of the

scroll. Insertion in the middle of the scroll is not possible. This very simple
method of data storage is also found on computers. This concept is referred
to as sequential file storage.

For an example, let!s set up a file containing names and birth dates. In it

well store the first and last names of our acquaintances and their birth
dates. For example:

Harvey Miller 3/1/1966

Tom Schneider 7/24/1952

Jean Schmidt 9/2/1967

As the name indicates, the data is stored sequentially. In a sequential

file, data items are stored one after another. As a consequence these data

items must be later read in this same order. If we've written the above data

to a sequential file and want to find the birthday of Jean Schmidt we have to

skip over the data of Harvey Miller and Tom Schneider until we get to Jean.

How does the computer recognize the end of a name or a birth date?

Let's ask how we do that without a computer? Now it's easier, there's a

space between the data items. We could program the computer such that it

interprets spaces accordingly. But if someone's middle name is ever

entered, such as "Harvey James Miller," then our program doesn't work

anymore, since we have four items on a line instead ofjust three.

To overcome this problem we simply use a different character to

separate the data. For computer files this is usually the ASCII value 13. You

probably recognize this value already. It has the same code as the

44

Abacus Software 1571 Internals

<RETURN> key. But it is also the character that causes the cursor to jump

to the next line (carriage return). The RETURN character will be called

f!carriage return11 or simply "CR" from now on.

A sequence of characters which is ended with "CR" is called a data

field. Several data fields together make up a data record. In our case the

names and birthdates would be the individual data fields, which together

form a data record. The file would then have three data records. The data

records can be distinguished by using another separator. Normally this

separation is handled by the program logic, however. This means that the

program knows exactly how many data fields each data record has and can

therefore tell the start and end of a record.

1.4.2 Opening a file

Now we want to put the example from the previous section into practice

and build a sequential file. To do this, we must first tell the disk drive what

the file is to be called, what type it will be, and so on. You are already

familiar with the command required for this--the OPEN command. Let's take

a look at the syntax of this command:

OPEN x,y,z,"a:name,b,c"

The parameters x, y, and z are the logical file number, device address, and

secondary address, which we discussed in Section 1.2.1. "a:" is the drive

number, which can always be omitted on the 1570/1571. Next follows the

name. The only limitations are that a filename may not exceed 16 characters,

and that it may not exist already on the diskette.

Next follow the important parameters for the file management. The , b

is the file type and , c is the file mode. For a sequential file the file type

must be s. Then comes the operating mode. If the file is to be set up for

writing, that is, for the first time, a w (for write) is specified here.

As you have probably noticed, the BASIC < 3.0 syntax is used above.

Naturally, there is also a BASIC 7.0 command which is easier to use. You

should be familiar with both commands. BASIC 7.0 sends nothing more to

the disk drive than the BASIC 3.0 command string. Now the equivalent

BASIC 7.0 command:

45

Abacus Software 1571 Internals

DOPEN#x,"name",Da,Ux,b

As you can see, the z parameter is missing. The secondary address for

files must be between 2 and 14. The computer selects this automatically.

The device address Ux may also be omitted for drive 8. Dx is also

superfluous since the 1570/1571 is a single drive. Thus the command

usually reduces itself to:

DOPEN#x,"name",b

The logical channel number x must be retained, however. This

determines in the individual outputs to which file they will go. Use only

numbers between 1 and 127. Values between 128 and 255 have the result

that a linefeed (ASCII value 10) will be added to the carriage return after

each output.

Now back to our example~the birthday file. Open this file with:

DOPEN#1,"birthday",w

Now the disk drive goes into action. First it checks to see if the name is

already on the disk. This would result in a "File Exists Error".

This is why it is advisable to check the status variable DS after the DOPEN

command. If it is 0, you can be sure that the file was opened successfully.

The red (1570) or green (1571) LED stays lit as long as the file is open.

It tells that you may not remove the diskette from the drive in the meantime.

The disk drive is now waiting for data from the computer. The light will not

go out again until the last active file was been closed again.

46

Abacus Software 1571 Internals

1.4.3 Storing data

After the file has been opened successfully, we can now write the

individual data fields into the file. The same command which outputs

information on the screen is used for this-the PRINT* command.

It is modified a bit for the output via data channels, since you must also

know over what channel the data are to go. It is therefore called:

PRINT#x,"data"

The abbreviation for the PRINT* is therefore not the question mark and the

#, but pR. You must note this when entering programs if you make use of

the abbreviations. Our birthday file would contain the following command

sequence:

10 DOPEN#1, "birthday",w Openfile

20 INPUT "first name ";a$ Input data

30 INPUT "last name ";b$ into variables

40 INPUT "birthday ";c$

50 PRINT#l,a$;CHR$(13) ;b$/CHR$(13) ; c$ Write data in file

As you see, we must separate the individual data fields with a CR,

which is created with CHR$ (13). But why is it missing after the last data

field, the birthdate? Quite simple—the PRINT# command sends it itself

automatically. With logical channel numbers over 127, it will also send a

linefeed character. There are also cases in which this automatic linefeed is

not desired. Then you must simply terminate the PRINT* line with a

semicolon (;). The computer then knows not to output a CR.

47

Abacus Software 1571 Internals

1.4.4 Closing the sequential file

Once all the data is entered into the file, you may not simply remove the

diskette from the drive. The drive must end the sector chaining, count up the

blocks used, and note this in the directory. If all of this has been successful,

then the directory entry of the file will be designated to indicate that the file

has been closed successfully.

This function to do all this is called with the CLOSE command. Its syntax is:

DCLOSE#x ON Uy

The x is again the logical number of the data channel to the file. The

device can be selected with y. This can be omitted if the device address is 8.

But even the channel number is not always necessary. The command

DCLOSE alone closes all currently open files. A maximum of 10 can be

managed on the C-64/C-128 at once. You will hardly be able to use all of

these since no more than three sequential files can be processed at once.

In BASIC < 3.0 there is only one command to close a very definite file.

But there is a trick here too. If one closes the command channel, then the

disk drive will automatically close all other channels and files as well. So

simply open the command channel at the beginning of your BASIC < 3.0

programs. When you then close it again, it has the same effect as DCLOSE.

If you forget to close the file, then the data will still not be lost. You

will discover how to rescue it in the next section.

48

Abacus Software 1571 Internals

1.4.5 Reading from a file

Just storing data by itself isn't terribly interesting. You also want to be

able to do something with it. This is why there are more commands for
processing the data in files then there are for writing data in files.

To process the data you must open the file again, now for reading, of

course. There are two different modes for doing this, one for normal

reading and special mode with which you can recreate improperly closed
files.

In order to read normal sequential files, the operating mode must be r

(for read). The computer automatically assumes this if no w is given. The
birthday file is once again available after,

DOPEN#1,"birthday"

In order to now read the data into the computer, there are two options,

the GET# command and the INPUT* command. The simpler of the two is

the GET* command, so we will discuss it first.

The command, like its counterpart PRINT*, was modified somewhat
for file management. You must specify the channel number of the file to be
read from. The syntax of the command is:

GET#x,a$

Just as the normal GET command reads a character from the keyboard,
here a character is read from the corresponding file. The disk drive starts at

the beginning of the file and reads character by character to the end of the
file.

You cannot read any arbitrary character in the file in this manner. This
shows you one of the disadvantages of sequential files.

Turning back to our example, you could read the individual data fields
back in again in the following manner:

10 DOPEN#1,"birthday"

20 GET#1, z$:a$=a$+z$:IF z$OCHR$ (13) THEN20

30 GET#l,z$:b$=b$+z$:IF z$OCHR$ (13) THEN30
40 GET#1, z$:c$=c$+z$:IF z$OCHR$ (13) THEN4 0

49

Abacus Software 1571 Internals

50 PRINT "last name : ";a$

60 PRINT "first name : ";b$

70 PRINT "birthday : ";c$

In the program above, characters are read from the diskette until a

separator "CR" occurs. All of the character read up to that point (including

CR) are then assigned to a string variable, which can then be processed

further (a$, b$, c$). The individual data fields can be separated with this

method.

How do you find out when the last data field, the last data record has

been read? The status variable ST, discussed in Section 1.2.9, is used for

this. Bit 6 of this status variable has the value 1 if an EOI signal was

transmitted. EOI means End Of Information. The bit therefore tells us when

the last character has been sent. The test to see if this bit has the value 1

could look something like this:

IF ST AND 64 THEN ...

Make sure that you place a space between ST and the AND command or

the computer will interpret it as " s TAN d", and we don!t need the tangent

in our case. The IF command branches when the last character has been

sent. If you want to program a loop that will be exited when the last

character has been read, that is, branches when EOI is not set, the line must

read as follows:

IF NOT ST AND 64 THEN ...

You must note one thing yet. The GET# command reads everything,

including control characters, with one exception, the ASCII value 0. It is

not transmitted. If a character is equal to CHR$ (0), nothing will be sent. In

this case you will get an empty string. You must always keep this behavior

of the command in mind when programming. The following step is always

recommended:

GET#l,a$:IF a$=""THEN a$=CHR$(0)

or

GET#l,a$:a$=LEFT$(a$+CHR$(O),1)

Even with this small advantage, the GET# command is a model pupil in

contrast to its colleague, the INPUT* command. There are many special

cases and possibilities for error when using INPUT*.

50

Abacus Software 1571 Internals

The INPUT command has been adapted for data channels and is now

worded:

INPUT#l,a$

This INPUT# command behaves just like the INPUT command that

takes input from the screen. Naturally, the inputs cannot be arbitrarily long.

A string cannot accept more than 255 characters. But as you have already

determined with normal input, the termination actually comes much earlier.

This has to do with the fact that the computer stores all input in a buffer

before it processes it. And this is only 88 characters (on the C-64) or 160

characters (on the C-128) long. If more than 88 or 160 characters are read

with the INPUT# command, an error message will result. This is, logically,

worded "String too long. " We must be sure that this error does not

occur or the computer will terminate the program. This also leads to the

question of how long an INPUT* instruction will actually continue to read

characters from a file.

This works just like screen input. When the CR code is sent, which is

done when you press the <RETURN> key in normal input, the INPUT

command ends the input sequence. The problem lies in the fact that

individual data fields may not be longer then 87 or 159 characters and a CR

must be at the end. It is the job of the program to make sure of this. You as

the programmer must ensure that the data fields do not become longer than

this.

But this is not enough. The operating system places other stones in

your path. These are the characters " :M, ",", and ";". These are normally

used in BASIC to separate commands and parameters from each other. The

INPUT* command does the same thing when it encounters these characters.

If a colon, comma, or semicolon occurs in data field, the INPUT#

command behaves as if it had read a CR~it terminates the input and

assumes that the data field is done. And as an encore from the operating

system you get an "Extra ignored error. "

You must pay attention to more than just these three characters. If you

read numbers with INPUT*, such as with INPUT* 1, a it can lead to more

problems. This is always the case when characters other than digits occur in

the data field to be read. The computer announces this immediately with

"File Data Error." You can prevent this only by making sure that

you have stored a data field of the same variable type in which you want to

read it in again later.

51

Abacus Software 1571 Internals

You have probably asked yourself why there is an INPUT# command

at all, given all of these disadvantages. The answer is simple-it is faster

than the GET# command. The reason for this is that the disk drive must be

readdressed before each message. With the GET# command this happens

for every character, while the procedure is required only once per string for

the INPUT* command. In spite of this you cannot ignore the GET*

command. It is required whenever the INPUT* command would fail.

The second mode for opening a file is the modify mode. This mode is

used so that improperly closed files can still be read. These are all files

which are designated with an asterisk in the directory. In order to rescue

such files, one opens them with (for example):

OPEN 1,8,2,"file,s,m"

As you see, this is again the BASIC < 3.0 command. This is because

BASIC 7.0 does not recognize the modify mode.

In order to rescue data from an improperly close file, open a new file,

read the data in the modify mode from the unclosed file and write it to the

new one and then close this one properly (CLOSE).

The end of an improperly closed file can, like a normal file, be

recognized with the status variable ST. There is a problem with this,

however. Since the file was not closed, the end marker for sector chaining

was also not placed. For this reason you will almost certainly read more

data than were actually written. These data come from other sectors which

were randomly chained into the sector sequence. The only thing that can be

done about this is to process the data manually afterwards.

At the end you must delete this unclosed file. This can be done only

with the COLLECT command (Section 1.3.2). The SCRATCH command

would free the wrong sectors because of the erroneous sector chaining.

52

Abacus Software 1571 Internals

1.4.6 Appending data

Usually just storing data once in a file isn't enough. New data keep

arriving that must be added to the sequential file. To do this one must read
the entire file into the computer and then store it as a new file. The new data
are then placed at the end of the file.

This procedure is very time-consuming. For this reason there is a

special disk drive function to append data to a file. If a file is opened with

the operating mode "a" (append), data can be added to the file. There is a
separate command for this in BASIC 7.0:

APPEND#x, lfname",Dy,Uz

The specifications x, y, and z represent the logical file number, drive,

and device number, which you are familiar with from the other commands.

The "name" is the name of the file which you want to expand. It can also be
given with a wildcard. The disk drive then simply selects the first suitable
entry. For our example application, the command would be as follows:

APPEND#1,"birthday"

All data which will be written to the file, as explained in Section 1.4.3,
will be appended to the end of the existing file. The append function can

create a problem because when the append function is called the disk drive
will assign at least one more block to the file. This happens only for the
block specification in the directory. This means that the number of used
blocks in the directory does not match the blocks actually allocated to the
file. You can determine this by adding up all of the block specifications in
the directory; you will get a different value than the directory indicates when
you subtract the number of free blocks from the total capacity, 664 blocks.

So the append* mode is not completely error free. It must be ended

with CLOSE, just like the DOPEN command, so that the file is properly
closed. If you forget this, then not only are the added data lost, but the
entire file as well. This also occurs if there is not enough space on the disk

for the additional data, the disk drive returns a "Disk Full" message.

For this reason you should probably use the CONCAT command from
Section 1.3.4. This command appends a sequential file to an existing file.

53

Abacus Software 1571 Internals

The advantage of using this method lies in the fact that you don't have

to touch the old file at all. You store simply store the new data in a

temporary file. The method functions exactly as described in Sections 1.4.2

to L4.4.

Once the new data are placed in the temporary file, it can be appended to

the existing file. In practice this could look like this:

10 DOPEN#l,"temp",w

... Program section to write data in file ...

50 DCLOSE#1

60 CONCAT "temp" TO "birthday"

70 SCRATCH "temp"

This method is significantly safer than an APPEND procedure. The only

disadvantage is that there must be enough space on the disk so that the old

file "birthday11 and the temporary file "temp", as well as the new larger

file "birthday" can be stored on it. The reason for this is that first the

new file "birthday" is written and then the old file "birthday" is

erased. Finally, "temp" can be removed because the data from "temp" are

now in "birthday".

54

Abacus Software 1571 Internals

1.4.7 Using sequential files

As you have already learned in Section 1.4.1, the sequential file is the
simplest form of data storage. The data is stored one after the other, that is,
sequentially. The data is read back in the same way.

With the CMD command, the normal screen output can be redirected to a
data channel. And why shouldn't that be a channel to a sequential file? In
this manner you can output program listings to a file. These could then be
edited with your word processor, among other things.

The sequential file is always useful when you must store data
temporarily or it is not necessary to have free selection in data access. With
sequential storage, the entire file must be read until you have found the right
entry. This can take a long time for large files.

An alternative would be to first read the entire file into the computer.
Then you could access the data as desired, if you have placed them in
indexed arrays. In addition, access to variables in the computer runs much
faster than reading from the diskette. This area of data processing would
exceed the scope of this book. I refer you to the BASIC tutorial books listed
in the bibliography for more information.

Storing all the data in the computer's memory has one big disadvantage.
As large as the memory may be, it is not inexhaustible. The maximum size
of a file would be limited to the memory space in the computer.

55

Abacus Software 1571 Internals

1.5 The relative file

1.5.1 What is a relative file?

As you have seen in previous sections, the sequential file is a practical

way to store files but is far from optimal. A really capable data form must

offer the following characteristics:

ability to select every data record

ability to delete individual records

avoid having to read the entire file

ability to read and write to the file

The 1570/1571 allows you to use the relativefile.

Let's turn back to our example from Section 1.4.1. There we compared
a sequential file to a papyrus scroll. If we extend this example to relative
files, then we could compare it to an empty book. You can enter information
on any page of this book. The book can be opened to any arbitrary page. In

this manner you can access any desired data record. This is just how a

relative file behaves.

With a relative file you must define the exact length of each data field,
and therefore each data record, before the file is written. To access the
2031st data record, for instance, is not a problem. The disk drive can
calculate the position in the file from the fixed data record lengths and the
number of the data record. Actually, like the book, the data record is already
predefined. Each page can store a very specific set of characters. Normally
we don't use the entire page of the book, if you assign each data record its

own page.

Now you see the dilemma of data processing. Either we store data
sequentially and make optimum use of the disk capacity, since no space is
lost between data records, or we define a fixed data record length and some
of the space on the diskette is lost. But the advantage gained is that you can
select any data record since its possible to calculate its exact position.

Back to a concrete example, the birthday file. As we said, each data
record must have a fixed length. To do this you predefine the exact lengths
of the individual data fields in the record. The lengths should be chosen
such that the data will fit in the field. Naturally there can be cases in which

56

Abacus Software 1571 Internals

the name, for example, is too long and doesn't fit in the data field* On the
average, however the individual data records will never be completely used

up. You must select your record lengths between these two extremes. We

have done this as follows for our birthday file:

First name 15 characters

Last name 10 characters

Birth date 10 characters

unused 5 characters

total 40 characters

You may have encountered the specification "max. size11 in your instruction

manual. A relative file may be up to 167132 bytes large-even if the diskette

is double-sided. The is a limitation of the disk operating system, which

cannot manage larger relative files.

To use the entire capacity of the relative file, we can store a total of

4178 data records of 40 characters each.

1.5.2 Opening a file

We want to establish a relative file. This is no more difficult than for a

sequential file. The difference is that you must define the data record length.

Values between 2 and 254 characters are allowed. This is set with the

operating mode " 1" (length). This lets the computer know that it is
working with a relative file.

It is no longer important whether a file is opened for read or for writing.
This distinction does not apply to relative files. You can overwrite, append,

or read records to your heart's content. The D0PEN# command for our
birthday file is:

DOPEN#1,"birthday",L40

An entry is again placed in the directory. If the relative file already

exists on the diskette, the length specification "L4 0 " can be omitted. But it
can also be specified. It must match the data length that was defined when
the file was first opened.

57

Abacus Software 1571 Internals

In addition, when you open the relative file you should consider

approximately how many data records will be contained in it. Then select

the last expected data record and write CHR$ (2 5 5) to it. Through this

procedure the disk drive then allocates all previous data records. This

process can take up several minutes.

The advantage of doing this lies in that you can be certain that the

diskette space will not be used for other storage causing your relative file to

run out of room.

1.5.3 Storing data

First we need a command with which we select what data record the

write operation will refer. This command is:

RECORD#x,y,z

In order to be able to access a certain record, the data records have

numbers running from 1 to a maximum of 65535. You will hardly need this

enormous span. Any relative file whose data records are more than 2
characters long will never reach this maximum—the disk capacity will be

exhausted first

Now on to the parameters of the RECORD* command. The number x is

the logical file number, exactly the same number as for PRINT* or

INPUT* command. Then comes the record number. Finally, the current

position within the data record is specified. A read or write operation would
then start at this location. You can use this function to set the position

pointer to a data field within the record.

The PRINT* command is again available for storing the data. This is

used just like is was with sequential files (see Section 1.4.3). The only
thing which you have to pay attention to is not to output more data than will
fit in the data record. If you try to write beyond the end of the record
anyway, the data is ignored and the disk drive will return a "51

Overflow in Record11 message. Check the error variable DS to make

sure.

58

Abacus Software 1571 Internals

1.5.4 Closing the relative file

In contrast to sequential files, the DCLOSE command is not as crucial
with relative files. At least your data isnft immediately lost if you forget the
DCLOSE command once.

The sector chaining of the relative file is set up when the file is opened
or extended. This cannot be disturbed if the file is not closed.

The blocks used by the file are also always placed in the appropriate
table in directory. It is not possible for other files to accidentally overwrite
the relative file. For this reason, a relative file is never marked with an
asterisk in the directory. It is always fully functional.

In spite of this, you should not omit DCLOSE. It has another function.
When the file is closed the disk drive determines the number of blocks
allocated and updates the directory entry.

Therefore do not omit DCLOSE. We merely wanted to point out that the
relative file is more tolerant of errors.

Beyond this, the disk drive announces not only errors, but also makes
available messages when the file is expanded, the record does not exist, the
disk is full, and so on.

1.5.5 Changing a record

Data is usually short-lived. For this reason it is important that the data in
a file can be changed. This is rather involved for a sequential file.

The relative file does not have any of these limitations in this regard.
You may use read and write operations arbitrarily. To change data you need
only set the record and position of the change with the RECORD* command.
With print* you write over the data field or record.

With the PRINT* command you must under certain circumstances,
specify a semicolon after the data. This suppresses the output of CR, which
would otherwise be written in the data record.

59

Abacus Software 1571 Internals

1.5.6 Appending new records

A relative file can be expanded up to a maximum size of one disk side.

You need only access the required data record with RECORD* and write it

Especially important when expanding is the error message "50

Record not present. " When writing, the error message can be

ignored (it also arises when first writing to the data record). It signals only

that the data record accessed did not exist before and is being constructed.

You may not ignore this error message when reading, however. The

disk drive is indicating that an attempt was made to access a data record

which is not present.

1.5.7 Finding a record

Searching for data is a troublesome problem. You could easily fill an

entire book with this topic. One reason is that there is no optimum solution.

So the experts have come up with 1001 ways to order, search through, and

manage data. There are many more or less practical management methods.
No universal method has yet been found. For this reason we can only begin

to look into the problem. If you would like to work with this more
intensively, you will find corresponding references in the bibliography.

The main problem with relative files lies in the fact that each data record
can be accessed only by the record number. In our example, the birthday
file, this method is not terribly useful. You will look either for all persons
which have a birthday on a certain date or you would like to find the data of

a specific person.

Naturally, you can start assigning numbers to your relatives. This may
work for 007 because of the notoriety of the number. But does Aunt Clara
have number 102 or 93? Or, when you think of Aunt Clara in the future, do
you want to speak only of number 1652. You need then only make sure
than when planning the birthday party of 672 to ask 7362 about the
well-being of 373 and her daughter 6292...

The problem is clear. Numbering the records is very practical for the
computer, the master ofjuggling numbers. But humans can't do it.

60

Abacus Software 1571 Internals

Now to the solution of the problem. Our first thought wasn't so dumb.

Each name is assigned a number through the record number. We need a list

with the names or the birthdates in which the corresponding record number

is assigned. The relative file is basically the same, only it functions in
reverse.

In order for the searching to be somewhat efficient, the names should

be ordered. So we write a program which reads the names and the

corresponding record numbers from the relative file and sorts them

alphabetically. This data is then read into the computer each time the file is

to be used. Now it is possible to find the desired name quickly. The record

number is included so that you can read the remaining information from the
diskette file.

Let's look at this somewhat differently. Basically it depends on sorting

the records. Only then does the search run fast enough. There are also more

refined search methods. In the relative file the data is stored unordered. The

idea of sorted names and associated record numbers is really not bad. But
then we have an additional file, we need more storage space, storage in the

computer, and so on. Although the access time is quite fast, a great deal of

time is required for the additional work (sorting, reading the sorted list,
etc.).

If we look at it closely, we see that it involves only knowing in what

order the data records must be called from the diskette so that they are
ordered according to a certain criterion. This criterion can be the name, the

date, or any data field in the record. This is called the key. Seen this way, it
is not necessary to prepare an ordered list with names and record numbers.
It would suffice to sort the record numbers. The first number then

corresponds to the alphabetically sorted first name, the second corresponds
to the alphabetically sorted second name, and so on. This method always
involves creating another file-usually a sequential file. The memory
requirements, on disk as well as in the computer, would be smaller since
you save the space required for the names.

This has one disadvantage, however. Here it is necessary to read the
data in the key file before accessing the information in the relative file.

Since the key file is now sorted, you can select a position in the
alphabet (such as the fifth name) get the record number of the name. But
basically we only want to know which record is the first, which is the
second, and so on. The key file need specify only which record is the next
in the alphabet.

61

Abacus Software 1571 Internals

In this case we speak of something called a pointer or index. We simply

place a number in each data record. This is the record number of the next

record in alphabetical sequence. The individual records are then chained in

this manner. And what do you place at the end? You can either specify the

number of the first record again, or assign it a zero. There is no record 0, so

your program can always recognize the end.

Naturally, all of this functions in reverse. You can set up another chain

in which the names are sorted in reverse order. This gives you the capability

to call the previous record as well as the next record—it doesn!t get any

easier.

There is one thing we can!t do without: the record number at which this

chaining begins must be saved. You can, of course, set up a sequential file

for this. But it would be more practical to have a file begin at the second or

third record. Then you can use the first or second record for such

information. This method of organization is the business of your program.

If the relative file is to be chained, you must plan enough room for the

chaining pointers in each record. Naturally, one can also chain the file later.

To do this, place the pointers in parallel relative file organized in the same

manner. This requires little additional storage space. But on the 1570/1571

you can open only one relative file at a time. You must always close the

main file, then open the chain file, read the key data, then close the key file

again, and open the main file~this is not only a lot of programming work,

but is also very time-consuming.

We have now created some nice chains. But what happens if we want

to insert a new entry into the file? This is no problem. The new record is
simply placed at the end of the file, since the physical location in the file is

irrelevant. Now the record must be inserted into the chain correctly. To do

this you search for the location after which the record must be inserted in the

chain. Then you read the number of the next record. This is entered into the
new record. The record after which the insertion will be made receives the

pointer value of the new record.

The effort increases considerably with the number of chains, that is, the

number of keys. Therefore you must be careful how many and what keys

the files is to have.

62

Abacus Software 1571 Internals

1.5.8 Using relative files

After all of these theoretical considerations, we want to start putting

these things into practice. The topic was a birthday file. We established the
length of the key in Section 1.5.1 already.

But this brings up the next problem. We also need space for the

chaining pointer. How large is this? A number variable is always stored as a

string. That means that it can be between one and five characters long (for a

maximum of 65535 records). So there must be space for 4-5 characters,
although fewer will often be used.

Here we use a little binary math. Each number between 65535 can be

converted into a 2-byte binary number. So we need exactly two bytes per

data record for our chaining pointer. The conversion is not that difficult:

a = chaining pointer (0..65535)

PRINT#1, CHR$(a and 255) CHR$(a/256)

Converting the value back works like this:

GET#l,a$: GET#l,b$

a = ASC(a$+CHR$(0)) + ASC(b$+CHR(0)) * 256

Let's assume that the name and the date should be used as keys. You

have probably asked yourself how you now sort the file and effect the

chaining. If you want to install the chaining on an existing file, this is not

terribly simple. For this reason you should establish the keys at the outset.

Then you proceed exactly as for appending, which we described in the

previous section.

Let us now turn to the individual data records. The record length must

be defined-we won't be able to alter that. But this does not mean that you

must set the length of the data fields in this manner. This is naturally

simpler.

This consideration has much to do with the read commands used. Do

you want to use INPUT* or GET#? With INPUT* the data fields must be

terminated with CR, which takes up additional room. This has a pay off,

however because you can use variable data field lengths very easily with

INPUT*.

63

Abacus Software 1571 Internals

Every data field is then terminated with a CR. When saving the data you

must be sure that the field lengths do not exceed 88 or 160 characters. If the

field is empty, then you simply save a CR. The advantage is that the

problem of data not fitting into a field rarely occurs. There is only the

danger that the length of all of the data fields, including the CR characters,

which you must not forget, may become longer that the record length. You

should calculate the total length in your program and request the user to

shorten the input if necessary. The disadvantage of variable fields is that

you must read all of the fields from the start of the record in order to reach a

given field. With set field lengths you can set the pointer to the current

character position with the RECORD* command.

Examples of this topic are found in your disk drive instruction manual.

The purpose of this chapter was not to offer you the ultimate solution—there

simply isnft one. Instead, we wanted to give you some tips and suggestions

for your own programming.

64

CHAPTER 2

[advanced programming!

2.1 The direct access commands

2.2 The organization of the diskette

2.3 The organization of files

Abacus Software 1571 Internals

2.1 The direct access commands

2.1.1 Direct access to individual sectors

The 1570/1571 has a set of powerful commands that let you access the
data on a diskette by sector. If you use these types of commands, you will
have to perform any data management functions yourself. This is in
contrast to the sequential and relative files in which the DOS manages the

data for you.

By using the direct access commands you can build your own data
management system. Of course, you will have to do much more work than
is you are using sequential or relative files.

Section 2.1.2 discusses the commands. Sections 2.2 and 2.3 talks
about the organization of data on the diskette. By discussing these topics,
you may be able to borrow ideas for use in your own data management

system.

We advise you to use a new blank diskette before you experiment with
the direct access commands. Then you'll avoid the possibility of destroying

important data.

From Section 1.1.2, you know that a diskette is organized into tracks
and sectors. Since the circumference of the outer tracks is greater than that
of the inner tracks, more sectors will fit onto the outer tracks. The tracks are
numbered beginning with the outside tracks. Therefore track 1 is the
outermost track and contains the most sectors. The innermost track is 35.
Theoretically, the 1570/1571 can access up to 40 tracks. These last five

tracks are not used in the Commodore formats, however.

A disk formatted in this manner has a capacity of 170K. This is the case

with the 1570, for example. The 1571 has two read/write heads and can

therefore access both sides of the diskette. As a result, the capacity is also
twice as large. But on a double-sided disk there would suddenly be two

tracks with the number 1, one on each side. How does the disk drive know
what side a given sector is on? To solve this problem the first track on the

second side of the diskette is numbered 36 and increases to 70.

67

Abacus Software 1571 Internals

The following sector numbers result:

Track

1 -17

18-24

25-30

31 -35

36-52

53-59

60-65

66-70

Sector

Number

0-20

0-18

0-17

0-16

0-20

0-18

0-17

0-16

If you can instruct the disk drive to read a sector from the disk, the
question arises, what to do with it once it is read? Since the disk rotates at

300 RPM, the individual characters will be read at a speed of 60,000
bytes/second. A BASIC program cannot process such rates of data transfer.

TTie sector must be stored temporarily so that you can process it with normal
commands. It is no different for writing a sector.

The disk drive has 4 buffers, each exactly 256 bytes long, the length of
a sector. This memory is used when you load programs, work with files,

and so on. The following table indicates the number of buffers which each

type of file requires:

relative file

load/save program

sequential file

directory

direct access

3 buffers

1-2 buffers

1-2 buffers

1 buffer

1 buffer

Now you can see why two relative files cannot be open at the same

time-there are not enough buffers. In the age of cheap memory it is quite

rare that a disk drive would have only 1.25K of buffer storage. But this is

the case with the 1570/1571.

To be able to access arbitrary sectors, we must reserve a buffer for

ourselves. This is also called the direct access method. It involves first

68

Abacus Software 1571 Internals

setting up a data channel for the direct access- This is done with the
following command:

OPEN x,y,z,ff#a"

Theoretically you can also use the BASIC 7.0 command DOPEN. But

since you must specify the secondary address z later, it is more practical to
use the BASIC 3.0 command. The secondary address is automatically

selected by BASIC 7.0. The parameters x and y give the channel number

and the device address.

A "#" is specified as the filename. This tells the disk drive that a direct
access channel should be set up. The 1570/1571 then assigns a buffer to the
channel. Its number (0..3) can be specified in "a". Normally you should
omit this specification. The disk drive then automatically selects a free
buffer. Otherwise you might select a buffer which is already being used for

other purposes.

If all buffers or the buffer desired is allocated, the drive returns "70

No Channel". Always check the error variable DS after opening the

direct access channel.

2.1.2 Block-read and block-write

As we indicated, there are special commands for reading a certain sector
into the disk buffer or for writing the buffer to the diskette. The commands
are sent over the command channel, channel 15. Therefore for all direct
accesses you must first open the command channel (see also Section 1.3.1).
The sector commands all have the same format:

"aaa:c d t s"

The parameters have the following meanings:

aaa Command word

c Channel number (secondary address)

d Drive number (0/1)

t Track number (0..35/70)

s Sector number

69

Abacus Software 1571 Internals

The channel number c is the parameter z from opening the direct access
channel from the previous section. Now it is certainly clear to you why we
wanted to know this parameter. The drive number 1 has no function on the
1570/1571 because they are single drives. In spite of this, you may not omit
it. It is always 0. Next follow the data of the desired sector-the track and
sector numbers. The individual parameters are separated by spaces or
commas in the command string. The command word can be separated from
the parameters by a space or a colon.

Now on to the command word. The command word selects the exact
disk function (reading/writing). Curiously, there are several commands that
perform the the same thing:

read

b-r

u1

ua

write

b-w

u2

ub

The commands ul/ua oru2/ub are identical. They cause the
specified sector to be read into the buffer or to be written from the buffer to
the diskette. All bytes of the sector can be accessed in this manner. The

commands "b-r" and "b-w" do the same things, except it is no longer
possible to read all of the characters in the sector. This is related to an error
in the disk operating system. The instruction manual for the 1570/1571
describes this special feature as a great benefit. But the only time it can be
sensibly employed is when you are working with the last sector of a
program or a sequential file. In practice this means that you can easily forget

about "b-r" and "b-w". Nothing more will be said about these
commands here.

Now, how do you transfer specific bytes from the buffer to the

computer? You do this by using the GET# or INPUT* command. Usually
the GET* command is used, input* is also possible, of course, a CR
must follows a maximum of 87 characters (in 64 mode) or 154 characters
(in 128 mode).

The buffer pointer determines the location in the buffer at which the
bytes for a read/write command are fetched or written. This is set to the start

of the buffer after a U1/U2 operation. If you want to access a random
section of the buffer (sector), you can use the block-pointer command.

70

Abacus Software 1571 Internals

The syntax for this is:

"b-p c b"

The specification c is the channel number (secondary address) which

you have specified when opening the direct access channel. With b the

position of the buffer pointer can be set. The location b is then the position
to which reference will be made upon the next write or read command.

Since a sector and therefore a buffer is 256 bytes large, b may have values

between 0 and 255.

In programs you normally use variables for the parameters like track

and sector. This is no problem. If you output a variable with the PRINT*

command, the space necessary to separate the parameters is output
automatically. This is actually the sign of the variable value, which is
printed as a space for positive values.

Now an example of how you can use the Ul /U2 commands:

OPEN 1, 8,15 Open command channel

OPEN 2, 8, 2, " # " Open access channel

IF ds<>0 THEN PRINT DS$ Buffer free?

INPUT "track ";t Input track

INPUT "sector ";s Select sector

PRINT* 1, "u 1:2 0 "; t; s Read sector into buffer

IF ds<>0 THEN PRINT DS$ Sector read properly?

Now you may perform data manipulations:

PRINT* 1, "b-p" / 2; 10 Set buffer pointer

PRINT#2,"new data" Write in buffer

PRINT#1, "u2:2 0";t/s Write sector back

IF ds<>0 THEN PRINT DS$ Sector written?

CLOSE 1 Close channel 1 and 2

CLOSE 1 suffices because all other channels are closed when the command

channel is closed.

71

Abacus Software 1571 Internals

2.1.3 Block-allocate and block-free

The disk drive keeps record of which sectors on the disk are allocated
and which are still free. If a sector is designated as allocated, it cannot be
overwritten by normal file and program data. The sector commands, on the
other hand, do not necessarily follow these rules.

For this reason there are special commands to allocate or release a
sector. These are:

"b-f d t s" to release

"b-a d t s" to allocate

The specification d is the drive number (always 0); t and s are the track and
sector numbers of the desired block—simple enough in principle if errors

hadnft crept in the disk operating system again. If you specify a sector

number over 15 for the "b-a" command, not only the sector but the entire
track will be allocated. If you allocate a sector which is already allocated,
then the command should search for the next free sector. But if it doesn't
find one on the track, then it tries the next higher track. But this will be

allocated completely. The "b-f" command too works only with sector

numbers up to 15. In short: Either limit your applications to the sectors 0 to
15, or better yet skip it completely. If you use a separate disk for the data
which you manage in direct access, the block management doesn!t play a
role.

If "b-a" and "b-r " are to work at all, it is necessary to first initialize
the disk with " i " (initialize disk).

72

Abacus Software 1571 Internals

2.2 The organization of the diskette

2.2.1 The directory

You may have wondered how the directory works. It is kept
somewhere on the diskette. So that working with the directory entries is fast
enough, these are not scattered wildly but have their own track. On
Commodore diskettes this is track 18. Other data cannot be stored on this
track. You should not attempt to use direct access commands on track 18.
Now it is understandable why only 664/1328 sectors are available for data
storage out of a total of 683/1366.

The directory (the directory entries) occupy the sectors 1-18 of track 18
on the first side of the diskette. The sectors are not used in numerical order,
but at an interval of 3 sectors. This means data is stored first in sector 1,
then in sector 4, then in sector 7, and so on. When the end of the track is
reached, the other sectors (2,5,8, etc.) are used in the same manner.

Each sector can store a maximum of eight entries. Therefore you can

store up to 144 programs or files on a diskette.

In this and the following sections we will become acquainted with the
organization of a directory sector. The first two bytes are the chaining
pointer. This indicates the track and sector number of the next directory
sector. If no sector follows, then the first byte, which represents the track
number, has the value 0. The second indicates how many bytes are

contained in the last sector.

Next comes the first entry in the sector, then two unused bytes, then the

second entry, and so on.

73

Abacus Software 1571 internals

Byte Meaning

0 File type Bits 0-3: 0 DEL entry deleted

1 SEQ sequential file

2 PRG program

3 USR user file

4 rel relative file

Bit 6: 1= no write access allowed
Bit 7: 1= entry closed properly

1/2 Track and sector number of the first data block of the entry.

3-18 Filename of the entry (maximum of 16 characters). The remainder
are filled with "shifted spaces" (ASCII value 160).

19/20 Track and sector numbers of the first side-sector block.

Used only for relative files.

21 Length of a record.

Used only for relative files.

22-25 Unused bytes

26/27 Temporary storage for track and sector number of the first data

block of the new file when the current file is overwritten with the

n@" function.

28/29 Low and high byte of the number of blocks used by the file. The

number is stored in binary form.

74

Abacus Software 1571 Internals

One of the most important parts of the file entry is the data type

indicator. The abbreviations should be familiar to you from the directory.

But what is "DEL"? This indicates that the entry has been deleted. Such

entries are not normally listed in the directory. The DOS skips all entries

whose data type is 0 when displaying the directory. If you now set bit 7 to

1, an entry with the file type DEL would be listed in the directory, since the

file type is no longer 0.

Bit 7 indicates whether the file was closed properly or not If a new file
is placed on the diskette or a new program is stored, the directory entry is

first created-also to check to see if an entry with the same name is on the

diskette. The file type is also stored, but bit 7 is not yet set. Once the data

are saved, the file is closed. The number of sectors used is stored in bytes

28/29 and bit 7 of the file type is set. This makes the entry valid. If bit 7 is
not set, an asterisk is printed in front of the file type in the directory. Just

setting bit 7 does not correct the error. You should also execute a COLLECT

command to put the disk directory back in order. This also guarantees that

the file is fully usable again.

Bit 6 has a special function. If it is set, you cannot make any write

operations to the entry. This means that the SCRATCH and rename

command will have no effect. The file (or program) can only be read.

Unfortunately there is no BASIC command to set or clear this bit. It can

only be done manually using a disk monitor.

2.2.2 The Block availability map - BAM

In the previous sections, several references were made to a table in

which entries were made to determine which blocks on the diskette were

free and which were allocated. On Commodore diskettes this is called the

BAM, an abbreviation for Block Availability Map.

The BAM is stored in sector 0 of the directory track (18). In addition,
this sector contains the name you gave the diskette when you formatted it.

Before we concern ourselves with the structure of the BAM, let's take a

look at how the sector allocation of a track is stored.

75

Abacus Software 1571 Internals

Block

$12

Sectors 0-7

%11111111

Sectors 8 -15

%11111111

Sectors 16-23

%11000000

1 = Sector free 0 = Sector full

Four bytes are present in the BAM for each track. The first byte is a
binary value which specifies the number of free blocks. The three bytes
following this contain a bit pattern in which one sector correspond to each

bit (as long as the sector number exist). If the bit of a sector has the value 1,
this means that the sector is still free, available for use. If the bit of a sector
has the value 0, then the sector is no longer available for use.

The block specification in the first byte is simply a work saving device

for the 1570/1571 operating system. This way the set bits need not be

counted each time, since this requires processing time.

You can manipulate the BAM by using a disk monitor such that the

number of free blocks on the track does not represent the real state of the
allocated sectors. You can for example, enter that a block has 255 free

blocks, which is impossible, of course. Since these block specifications are
also used for calculating the total number of free blocks which you find

listed at the end of the directory, astronomical numbers of over 17,000 free
blocks are possible-which in reality, you don!t really have at all.

The disk operating system doesn't play along with such games for
long. Every time changes are made in the BAM, checks are made to see if

the block specifications of the track agree with their bit maps. If a deviation

is found, the 1570/1571 responds with "71 Dir Error. "

The entire BAM is found in sector 0 of the directory track. This sector
has the following construction:

76

Abacus Software 1571 Internals

Byte Meaning

0/1 Track and sector numbers of the first directory sector, normally

track 18, sector 1.

2 Format designation, always "A" for 4040/1541/1570/1571

(ASCII value 65). The disk is write protected if the format

designation is wrong.

3 Bit 7: 0= single-sided 1541/1570 diskette

1= double-sided 1571 diskette

4-143 BAM for disk side 1. Each track is represented by four bytes.

The map begins with track 1.

144-159 Disk name, given at formatting. Up to 16 characters. The

remainder is filled with "shift + space" (ASCII value 160).

160/161 Two "shift + space" (ASCII 160)

162/163 ID characters of the disk

164 This is supposed to be the version number of the operating

system. But this character is always "2", although the 1570/71

uses DOS 3.0.

165 Format designater from byte 3

167-170 Three "shift + space" (ASCII value 160)

171-220 49 zeros

221-255 Number of available sectors per track on the reverse side of the

disk. These are the block specifications from the BAM on the

other side of the disk. The value from track 36 is in byte 221.

The last specification, in byte 255, concerns track 70.

A marker is stored in byte 2 which specifies the format type. If this

character is not "A", then the disk drive assumes that another format of

directory and BAM management is present. To avoid disturbing this, no

write operations are allowed. Such an attempt would be answered with the

power-up message, indicating that the operating system can do nothing with

77

Abacus Software 1571 Internals

this format Only the direct access commands still function. The sector write

command (u2) doesn't bother with BAM or directory entries.

The disk name is placed at byte 145. All characters up to byte 170 are
present only for the directory output and give the title line. The contents are
completely uninteresting. This puts all of those ID change programs which

you see in magazines in a completely different light. If you change the ID
here, you only get a different display in the title line. This does not change
the actual ID in the header of each sector at all.

2.2.3 Single or double-sided diskettes

You may have asked yourself where the BAM of the second side is
"hidden" on a double-sided disk. Sector 0 contains only the data for the first
side.

On double-sided disks, the directory track continues on the second side
of the disk. The track on the reverse side has the number 53 instead of 18

since the reverse side starts at 36.

The BAM of the second side is found in sector 0 of track 53 from byte

0 to byte 104. This involves only the bit pattern of each track. The byte in

which the number of free blocks on the track is still stored in sector 0 on

track 18 (see table). Otherwise, the map does not differ from the BAM of

the first side.

The remaining sectors of track 53 (numbers 1 to 18) are unused. They

can be used for neither the directory nor for files. With the direct access

method you can place data in these sectors—perhaps your own disk

management map or copy protection.

If a double-sided 1571 diskette is used in a 1541 or a 1570, only the

first side can be read. This is causes problems in that the drive terminates

the access (loading program, reading data) with the error message "67

Illegal Track or Sector" if the data is partially or completely on

the other side of the diskette. If you use the 1571 in the C-64 mode or with

a C-64, it behaves just like a 1541. The same problem would then arise. For

this reason there are commands which switch to 1571 operation or to the

second side (see Section 3.1.4).

78

Abacus Software 1571 Internals

2,2.4 Manipulating the directory and BAM

You can, of course, change the format of either the directory of BAM.

These manipulations can be divide into two groups. One group, includes
such things as format tricks, serving to extend the capabilities of the disk

drive or perform other small tasks. The other reduces the directory to

chaos. This is used to make it difficult to load certain programs or so that

the contents of the diskette can not be listed, and so on.

Naturally, none of these methods will shock the experienced disk

programmers. In direct access you can read the BAM and directory sectors

and look at what has happened there. A disk monitor shows all such

manipulations.

We will avoid an endless list of these tricks here. But we do have some

useful ones which make it easier to work with the disk drive.

The first thing to mention would be bit 6 of the file type, by which you

can protect individual entries from deletion or overwriting (see Section

2.2.1). Another popular manipulation is changing the filename. This often

involves making use of the fact that even with names which are less than 16
character long, all 16 are saved. They are filled with spaces, however.

It is precisely this which we want to change. Perhaps you have also

tried to overwrite the block specification of an entry with load command
(RUN/DLOAD/LOAD) after listing the directory. This way you don't have

to type in the filename again. But this won't function quite correctly. The

computer always responds with "Syntax Error." This is not surprising,

since, after all, what is it to do with the file type abbreviation which is still

in the command line? If you overwrite this with spaces, the whole thing

works. But now the effort is almost as great as typing out the filename.

It is our goal that after the filename in the directory, several characters

are output that make the line into a completely valid BASIC command line.

Then you need only overwrite the block specification and the program will

be loaded. You could use the following as the end characters:

" : " if DLOAD or RUN is used

11, 8 : " if LOAD is used for BASIC programs

", 8,1" for LOAD with absolute-loading programs

79

Abacus Software 1571 Internals

As you have learned in Section 2.2.1, a shifted-space (ASCII value

160) terminates the filename. It is at this point that the second quotation

mark is printed in the directory. This means that your filename may be only

up to 14 characters long. In order to perform these manipulations, you don't

have to pull a highly complicated disk monitor out of the drawer. These

extensions can be easily built-in when saving.

For example:

DSAVE ("name"+CHR$(160)+",8:")

or

DSAVE ("name"+CHR$(160)+":")

Here is an example printout of one such directory:

0 "1571 PRSS " AB 2A

2 "USER FILE CREATE11 PRG

4 "FORMAT READ": PRG

4 "FORMAT ANALYZE"!! PRG

2 "1571 READER"s PRG

1 "DISK TEST 128"s PRG

651 BLOCKS FREE.

READY.

80

Abacus Software 1571 Internals

2.3 The organization of files

2.3.1 Programs, sequential and user files

Next well discuss how normal programs and files are placed on the

diskette. The first two topics are programs and sequential files. In the next

section we will say more about relative files, which are more complicated.

The simplest form is still the sequential file. Data items are written one

after the other in the file. The information first travels to the buffer inside the

disk drive. If the buffer is full, its contents are written to a free sector on the

diskette. This must then be designated in the BAM as allocated. When this

is done the additional data is handled in the same manner.

This scheme requires that you know which sectors make up the file and

in which order you must read them in again. There is a pointer in the

directory entry which contains the track and sector numbers of the first data

sector (byte 1/2). This tell us where the file begins. So that we can find the

next sector and the ones following it, they are chained. The first two bytes

of each sector specify the track and sector of the next sector. For this reason

a sector can store only 254 bytes of data. This chaining goes on like this

until the last sector. This has a 0 as the track number of the next sector. The

disk drive recognizes through this that the file ends with this sector.

But normally, not all of the bytes of the last sector are used to store

data. For this reason you must also know how many bytes belong to file.

This is stored in the second byte of the sector (previously the sector number

of the next block).

Sequential files and user files are managed with this chaining method.

But what is a "user file"? Actually it is nothing more that a sequential file.

They are accessed in precisely the same way as described in Section 1.4.

The file type must be "u" instead of "s", however. This gives you the

option of selecting between two designations for a sequential file. There is

also a disk command which works only with user files (see Section 2.3.3).

Programs are saved in virtually the same manner. The only difference is

that the first two bytes of a program file form the start address of the

program (low byte/high byte) and are not data. The disk drive does not use

this information; the computer uses the start address.

81

Abacus Software 1571 Internals

2.3.2 The relative file, the side-sector blocks

The data in relative files are stored no differently from those in a

sequential file. But as you know, a relative file is organized in records. You

can access any desired record.

The most important thing to do is to define the record length

beforehand. This makes it possible to calculate from the record number and

the record length the number of bytes which you must skip to reach the

desired data record. If you read over all of the previous information in the

file, nothing would be gained over a sequential file.

This process is speeded up considerably if you divide the offset

(number of bytes to slap) to the desired record by 254. This is exactly the

number of bytes which fits into each sector. This means that we can

calculate the sector in the chaining sequence in which the record is to be

found. The remainder from the division indicates the byte number in the

sector at which the desired data begins. Naturally you can now follow the

sector chaining in order to find the proper sector. But this would hardly be

faster than a sequential file.

The special feature of relative files is that the sector chaining is stored in

a special table. This table consists of a maximum of six sectors, which are

called side-sector blocks. They are organized as follows:

82

Abacus Software 1571 Internals

Byte Meaning

0/1 Track and sector number of the next side-sector block.

Number of this side-sector block (0..5)

Length of a record in the relative file

4/5 Track and sector numbers of the first side sector (0)

6/7 Track and sector numbers of the second side sector (1)

8/9 Track and sector numbers of the third side sector (2)

10/11 Track and sector numbers of the fourth side sector (3)

12/13 Track and sector numbers of the fourth side sector (3)

14/15 Track and sector numbers of the fifth side sector (4)

16-255 Track and sector numbers of the data blocks

The important part of the side-sector blocks are the bytes 16-255. Here

youll find a list of the data blocks used. Bytes 16/17 are the track and

sector numbers of the first data sector of the file, bytes 18/19 are numbers

of the second, and so on. There is room for the track and sector numbers of

120 data blocks in a side-sector block. To be able to form larger files, you

simply use additional side-sectors.

But now we'd also like to know where the sector is which contains the

desired record. To so this divide the previously calculated number of the

blocks to the sector which contains the record. In this manner you can

83

Abacus Software 1571 Internals

determine in which side sector the specifications for the desired data sector

are found. The remainder resulting from the division gives the position of

the track and sector specifications in the side sector.

In this way, you now know the sector in which the record is contained.

In addition, you can determine the position of the data record in the sector

from the remainder of the first division, which we used to calculate the data

blocks to the proper sector. Eventually, however part of the data record

extends into the next sector. The DOS calculates this from the current

position and the record length.

So with the side-sector method you need a maximum of 3 sector

accesses, though normally only 1 or 2 sector accesses, until you have found

the desired data record. First you read the first side-sector. If you're not

lucky, the specifications for the calculated data sector are not contained in

this side-sector. This is why each side-sector contains the numbers of the

other side sectors (bytes 4-15). Therefore the DOS always knows after the

first access, in which side-sector the proper track and sector specifications

are contained. Then you must read the side-sector. From this you obtain the

position of the data sector. By the third access, at most, the sector with the

desired record is found.

But three accesses represents the worst case. Normally one of the

side-sectors is always stored in a buffer. Then you know immediately in

which side-sector block the desired data sector specifications are found. So

two accesses to the disk are usually necessary. If you're lucky and the right

side-sector is already in the buffer, or the file is still so small that only one

side-sector is needed, you can even read the correct data sector directly.

This case is not so rare, since in order to get a file with more that one

side-sector, it must be larger than about 30K.

84

CHAPTER 3

f PROGRAMMING THE DISK BUFFERS J

3.1 Programs in the DOS buffer

Abacus Software 1571 internals

3.1 Programs in the DOS buffer

3.1.1 Memory-read and memory-write

As you read in the preface, the 1570/1571 is controlled by its own
microprocessor system. In another section of this book well go into these
internal matters of the drive more intensively. Well talk more about
programming the disk drive in 6502 assembly language, the language of the
built-in processor. But you'll be able to understand the following sections
even if you are not an expert assembly language programmer.

As you already know, the disk drive has internal buffer storage. This
involves a total of 2K of RAM located in the range from $0000 to $07FF.
Part of this RAM is required for system purposes, otherwise the
microprocessor could not function. The other part, a total of 5*256 bytes, is
used as buffer storage. But more than just data can be placed in these
buffers. It is also possible to place programs in 6502 machine language
there. These can then be built into the operating system of the disk drive.

Now we need a command to write the program into the disk buffer. The
direct access methods would work for this, for instance. In this case you
select a special buffer and transfer the program-like data-with the PRINT*
command. But the 1570/1571 can do even more. There are special
commands which serve only to send the contents of certain memory
locations of the disk drive RAM to the computer. This command is called
"memory-read." Its syntax looks like this:

"m-r"+chr$(1)+chr$(h)+chr$(n)

1 = low byte of the memory address

h = high byte of the memory address

n = number of bytes to be read

The parameters 1 and h give the addresses of the desired memory. The

parameter n is the number of bytes which you want to read. The

specification n may also be omitted. Then the disk drive assumes that only

one byte is desired. The "m-r " command will be sent to the disk drive via
the command channel. If, for example, you want to read the memory
location 151 (hex $97), the command sequence is as follows:

87

Abacus Software 1571 Internals

a = 151 Set address

OPEN 1, 8,15 Open command channel

PRINT#1,"m-r"CHR$(a and 255)CHR$(a/256)
Address to drive

GET#1, a$ Byte to drive

PRINT ASC (a$+CHR$ (0)) Output byte value

In this program the number of sectors per track of the last IBM-34

format is read.

Byte values, which will then be written to a specific memory location,
can be sent to the disk drive as well. The command necessary to this is as

follows:

"m-w"+CHR$(1)+CHR$(h)+CHR$(n)+CHR$(bl)+CHR$(b2)...

As you see, the address is again specified with 1 and h. Then follows the
number of bytes which will be written at this location in the disk drive

RAM. This time you cannot omit the specification n. Last come the actual

data bytes. A maximum of 34 bytes can be sent with one "m-w" command.
This is because the input buffer of the 1570/1571 is only 41 characters long.
If you want to write larger memory sections into RAM, such as a machine

language program, you must write it in several sections.

3.1.2 Memory-execute and block-execute

Just reading a program into the buffer doesn't do anything, of course.

You must also be able to start this program somehow. This is done with the

"m-e" command. The command has the following parameters:

"m-e"+chr$(1)+chr$(h)

Again a memory location must be divided into low and high bytes. The
operating system of the 1570/1571 then jumps to this address. An

intelligible program must start at this address or the disk system will crash.

When the drive microprocessor encounters the instruction RTS in the

program, the operating system resumes its work.

Abacus Software 1571 Internals

The specialists among you now know that one can also call specific
subroutines in the disk operating system as well. The following little

program, for instance, would destroy a given track completely thereby
locking-up your disk drive:

10 s = 18

20 OPEN 1,8,15

30 PRINT#1,"m-w"CHR$(0)CHR$(3)CHR$(6)CHR$(32)

CHR$(163)CHR$(253)CHR$(76)CHR$(160)CHR$(234) 40

PRINT*1,"m-w"CHR$(6)CHR$(0)CHR$(1)CHR$(s)

50 PRINT#1,"m-w"CHR$(0)CHR$(0)CHR$(1)CHR$(224)

60 CLOSE 1

The track must be specified in s. For this experiment be sure to use a

newly formatted diskette or a diskette that will not be used any more. This is

because the data will not only be completely destroyed, but the operating
system will always be rather mixed up by this diskette. The program creates

a so-called "killer track", your drive locks-up when the directory is

accessed. You must power down the drive to regain control.

You may have noticed that the "m-e" command is not used in this

example. The program is started through a more refined method via the

"m-w" command. This should not concern us further. Our intention is to

show what possibilities you have with the memory access—even from
within BASIC.

If you want to place larger programs in the buffer in order to execute
them there, it can take quite some time. The most sensible thing to do would
be to read the program from diskette into the buffer and then start it there.

You must now combine the "Ul" and the "m-e" commands. The contents
of a sector (the program) will be read into the buffer and then executed. The
developers of the disk drive decided that this should also be possible with
one command. This is called:

"b-e c d t s"

"b-e";c;d;t;s

The parameters k and 1 are the channel and drive numbers, which you have
already become acquainted with from the direct access commands. The
parameters t and s are again the track and sector numbers. The selected
sector is read into the buffer assigned to the channel. Then a jump is made
to the start of the buffer in order to execute its contents as a machine
language program.

89

Abacus Software 1571 Internals

The command has little advantage over a combination of the "ui" and

"m-e" commands. Furthermore, it is seldom used. If you want to read

programs from the diskette into the drive's RAM and there execute them,

there is another, better command which we will discuss in Section 3.1.5.

3.1.3 The user commands

User commands are those which tell the disk drive to execute programs

at certain locations in the memory. The start with a "U" followed by a digit

or a letter. This second character selects from among several predefined

addresses which can be branched to.

The following user commands exist:

User command Address Function

Ul

U2

U3

U4

U5

U6

U7

U8

U9

U:

U;

or

or

or

or

or

or

or

or

or

or

or

UA

UB

UC

UD

UE

UF

UG

UH

UI

UJ

UK

$CD5F

$CD97

$0500

$0503

$0506

$0509

$050C

$050F

$FF01

$EAA0

$FE67

Block-read command

Block-write command

Jump to buffer 2

Jump to buffer 2

Jump to buffer 2

Jump to buffer 2

Jump to buffer 2

Jump to buffer 2

Switch 1540/41 bus

Reset

Interrupt routine

Some of the user commands jump to buffer 2 (U3-U8). The addresses

have an interval of exactly 3 bytes. You can very easily set up a vector table
in this buffer. This is a list of jump commands which then branch to the
individual functions which are called with the user commands.

The remaining user commands jump to various locations in the
operating system. This adds some additional disk drive functions. You are

already familiar with Ul and U2 from Section 2.1.

90

Abacus Software 1571 Internals

The U9- or ui- command serves to switch between the 1540 and 1541
bus. The 1540 was the disk drive for the VIC-20. Since the VIC-20 had a
somewhat higher clock frequency than the C-64, you could make the bus a

bit faster with the "Ul-!l command. The command sequence "UI+"

switches the bus back to the 1541 timing. If the + or - is omitted or
another character is given, the disk drive will perform a partial reset. The
zero page and system pointers will be set up again. The RAM/ROM test is
not performed and the drive motor does not run.

The UJ command is the total reset. The 1570/1571 behaves as if you
had turned it off and then back on again.

The 1570/1571 contains (in contrast to the 1541) the UK command as

well. With this command a jump is made to a BRK instruction (see ROM

listing $AA2D). As a result, UK starts the interrupt routine. In normal
operation this has no special effect. But if you have inserted your own
program in this routine (more about this in DOS chapter), then it can be
started in this manner.

The user commands have a powerful advantage over the "m-e"
command. You can use them in almost all situations where a program has
only a function for entering disk drive commands—whether it is a word
processor, database manager, or whatever.

The "m-e " command on the other hand can be used only in BASIC

since it needs the CHR$ function in order to transfer the low and high bytes
of the start address.

91

Abacus Software 1571 Internals

3.1.4 The USERO commands

It is almost a tradition at Commodore to put many interesting commands

in the machines which are not mentioned at all in the instruction manual.

And so the 1570/1571 offers a whole set of commands which are

responsible for the handling of diskettes in the CP/M format "IBM System

34."

A command number follows all USERO commands. This number is

composed of various bit data. It is therefore usually inserted into the

command chain with the CHR$ function. Then follow the parameters of the

individual commands. All command numbers are composed of the

following data:

Bit 0 : drive number (0/1)

Bits 1-3 : Number of the USERO function

Bit 4 : Disk side involved

0= side 1 1= side 2

Bits 5-7 : Various control flags

The drive number is always 0 for the 1570/1571, of course. Here the

USERO commands are already set up for a future double disk drive. On the

1570 bit 4 must also naturally stay at 0 because the 1570 can use only one

side of the disk.

All USERO commands function only when the disk drive is being used

in the 1570/1571 mode. In the 1541 mode they will be ignored. The sole

exception to this is command number 31. Here the functions with which

one can select disk sides, among other things, are made available.

Let's take a look at these new commands. For all commands the syntax

must be:

"U0"+CHR$(31)+"aa"

or ffU0>aa"

The appropriate function must be used in place of the characters "aa".

The following commands have been added:

92

Abacus Software 1571 Internals

aa Function

Ml Switches the disk drive to the 1571 mode. The system will be

operated at a 2MHz clock frequency. This allows the C-1571

properties to be used in the C-64 mode.

MO Switches to the 1541 mode with 1MHz clock frequency.

HO Activates the head on side 1

H1 Activates the head on side 2

The H command (head) works only in the 1541 mode

Bit 7 controls the disk initialization for M and H:

0= diskette will be initialized after the command

1= diskette will not be initialized after the command

Command number 31 means "with initialization,11 number 159
"without initialization11

Rx Sets number of read attempts in zero-page address $6A. The ASCII

value x is placed directly in $6A (see zero-page listing for the exact
function of the address).

Sx Sets sector interval for Commodore diskettes ($69)

Tests the ROM checksum

The ASCII value x will be accepted as the new device address for the

disk drive, x must lie in the range 4-15.

Another function, especially important in the C-128 mode, is the file

fast-load. As you know, the loading speed is considerably faster on the
C-128 than on the C-64. This fast loading is no longer organized via

channel 0, but is simply called through a command via the command

channel. The data will then be transferred to the computer with the fast bus

mode. The command has the following syntax:

93

Abacus Software 1571 Internals

OPEN 1,8,15,"uO"+CHR$(32)+"filename"

Once again bit 7 in the bit pattern (32) controls a special function:

Bit 7: 0= file type will be tested for PRG

1= file type will not be tested

All sequential file types will be loaded

But we want to concern ourselves with the more important USERO

commands. These are the commands for operating the disk drive in the

CP/M mode. You must first become acquainted some zero-page addresses.

This will be required for programming in machine language, but they can

also be used from BASIC.

Address Function

$3C 60 Logical sector interval for diskettes in the IBM System 34

format.

Used for "sector read/write."

$24 36 Header of the last IBM 34 sector.

$5E 94 Bits 0-3 = number of the current error message. This is

precisely the value which is normally set in zero-page

addresses $00-$05 by the job loop.

Bit 7 : 1= diskette is in IBM format

0= diskette is in Commodore format

$60 96 Smallest sector number on the track

$61 97 Largest sector number on the track

$97 141 Number of sectors on the track

94

Abacus Software 1571 Internals

For all CP/M functions which support the disk drive, the date will be

transferred in the fast bus mode. This transfer mode can be programmed

only in machine language, however. BASIC programs are too slow to

accept the data. If a CP/M function is called with the appropriate USERO

command, the disk drive then sends the data, but the computer doesn!t

receive it.

This is not terribly tragic since the CP/M commands offer the following

additional options:

Bit 5: 1= don!t read/write sector in buffer

0= read/write sector from disk to buffer

Bit 6: 1= disregard read/write error

0= report read/write errors

Bit 7: 1= don't transfer buffer to computer

0= transfer buffer to computer

Bits 5-7 of the command number control various special functions. The

transfer which disrupts things under BASIC can be disabled with bit 7. In

this manner a IBM sector is read only into the internal disk buffer. The

transfer to the computer can be done with the direct access commands.

To do this you must know that the data of an IBM 34 sector is always

stored at address $0300 in the drive memory (buffer 0). The reason for this

is that IBM 34 sectors can be composed of up to 1024 bytes and therefore

occupy four buffers. This means that you will have to manage four different

direct access channels.

Now we come to the question of how the disk drive ascertains what

sector length the diskette has. Further, it is possible to write diskettes with

different numbers of sectors using CP/M. There must therefore be a way to

analyze the diskette in the drive to get the data about the disk format.

The disk drive offers two special functions for this. With one the header

of the next sector can be read. An attempt is first made to read an IBM 34

sector. If this fails, the disk drive tests to see if the sector is in the

Commodore format. The result of the read attempt is stored in zero-page

address $5E. Bit 7 indicates the disk type.

For IBM-34 diskettes, the zero-page addresses $24-$29 can be read,

which contain the ID field of the IBM sector. $27, for instance, gives

information about the length of the sector.

95

Abacus Software 1571 Internals

A second USERO function yields the additional data of the disk format.

This reads all ID fields of an IBM-34 diskette and calculates the following
specifications:

1. Command status byte ($5C).

2. Number of sectors on the track ($97)

3. Number of the track in which the header is found.

4. Smallest sector number on the track ($60)

5. Largest sector number on the track ($61)

6. Sector interval.

The specifications are transferred to the computer in the above order in

the fast bus mode. A BASIC program would not be capable of receiving the

data. In this case you must read them directly from the drive memory with

the direct access commands ("m-r").

Command numbers of the analysis commands:

Bit 76543210 Function

000x0100 read next sector header

x = side number

yOOxlOlO analyze track

x = side number

y = 1= go to track given as 4th character

0= go to track 0

The track analysis function cannot be started from BASIC because the

USERO command does not work properly. You should send the following

sequence over the command channel:

"m-w"chr$(0)chr$(5)chr$(3)chr$(76)chr$(30)chr$(133)

The function will be called with t!u3". Additional examples of the
analysis of foreign formats can be found in Section 4.2.3.

If you have set the disk drive for the IBM-34 diskette in this manner,

you can read or write individual sectors with the USERO direct access

commands.

96

Abacus Software 1571 Internals

Bit 76543210 Function

abcxOOOO read sector

abcxOOlO write sector

x= side number

a= transfer buffer to computer

b= regard errors

c= read/write buffer

As you see, the supplementary function can be specified in bits 5-7 of
the sector commands. The desired disk side can be determined with bit 4.
On the 1570 drive this bit must always be 0 since this drive can use only

one side of the disk.

The parameters of the sector to be processed are sent to the disk drive
over the command channel after the command number. The command is

then worded:

"uO"chr$(command)+chr$(track)+chr$(sector)+chr$(number)+chr$(new)

The track and sector numbers must be given as ASCII values. The
parameters following allow several sectors to be read one after the other and

transferred to the computer, whereby the number of the next sector arises

from the sum of the current sector number and sector interval ($3C). This
function is useful only if the fast bus mode is being used. Finally, a track

number can be specified to which the disk drive will move after the
command. In this manner the disk drive can be steered to the next track

while the computer is processing the last data.

Finally, the 1570/1571 offers a function which is not possible on many

other disk drives-the ability to format different IBM System 34 formats.

The syntax of the USERO command is:

Bit 76543210 Function

OiyxOllO format IBM 34 diskette

x= side at which to begin

y= number of sides to be formatted

(0= 1 side, 1= 2 sides)

i= 1= write track index label

0= don't write index label

97

Abacus Software 1571 Internals

Parameters:

4th character: Bit 7: 1= IBM System 34 format

0= Commodore format

Bit 6: 1= use specified sector table

0= create sector table from first

number and interval

Bits 0-5: smallest sector number on track

5th character: Sector interval - 1

For Commodore format: ID1

6th character: Marker for sector length [1]

For Commodore format: ID2

7th character: Last logical track number [39]

8th character: Largest sector number on track [16]

9th character: First logical track number [0]

10th character: First physical track number [0]

11th character: Empty byte, filled with the sectors [229]

starting at the 12th character:

Here the numbers of the sectors will be

listed if bit 6 of the 4th character is

set.

As you see, the format function is very complex, but it also offers very

comprehensive formatting possibilities. There is no format which cannot be

created with this USERO function. It is even possible to format a disk so that

it can no longer be analyzed or read. This is the case if each track contains

only one sector, for example, or if all sectors on the track have the same
number.

The many possibilities of this command can also be used in BASIC. To

do this you should study the BASIC programs in Section 4.2.3, which

demonstrate the use of the USERO commands in detail.

98

Abacus Software 1571 Internals

3.1.5 Autostart files

The autostart files are only mentioned briefly in the 1570/1571

instruction manual. Nothing is said about the function and use of this

program form.

An autostart file is a USR file whose contents are loaded into an

arbitrary RAM area of the disk drive memory. This means that you need this

file form only if you want to execute your programs in the drive memory.

Furthermore, autostart files are not as easily constructed as program files.

But don't be afraid to use this disk drive function.

Construction of an autostart file

Byte Function

0/1 Start address in RAM (low

byte/high byte)

Number of data bytes in this

sector (max 255).

3 - n Data bytes for the autostart

program.

n+1 Checksum calculated from byte 1

to byte n.

Autostart programs are organized on the disk like sequential files. The

file type must be "USR". The user files are treated just like sequential files

with the difference that "u" is given as the file type. You can open user files
only with the BASIC 3.0 command since BASIC 7.0 does not support this

form of file.

The construction of an autostart file is not very simple. It consists of an
arbitrary number of blocks whose structure is represented in the table

99

Abacus Software 1571 Internals

above. Each of these blocks, which follow one after the other in the user

file, is processed separately by the disk drive. Naturally, the user file may
also consist ofjust one autostart block.

The first thing in an autostart block is the start address at which the

program data of the block will be stored in drive RAM. Next is the number

of bytes which will be occupied starting at this address. The data bytes of

the program must be give starting at byte 3. Then follows a checksum,

which is calculated by adding the start address, the number of data bytes,

and the data bytes themselves together. If a carry results from the addition,

it is counted along with the checksum.

In order to operate larger programs in the disk drive memory, they must

be divided into sections comprising 255 bytes. A separate autostart block is

then created for each of these sections. Since this is rather laborious, we

have a program which will do this for you. It creates an autostart file from a

program file. The first two bytes of the program file, the start address, are

used as the start address of the autostart file.

The autostart file will be loaded by the disk drive and automatically
started one you enter:

OPEN l,8,15,"&filename"

The program in drive memory will be started at the address of the first
autostart block.

100

Abacus Software 1571 Internals

10 DIM A*(255)

20 INPUT "PROGRAM NAME";B*

30 INPUT "USER NAME";C*

40 OPEN 1,8,0,B$

50 0PEN2,8,2,C*+",U,W"

60 GOSUB 280

70 ON SGN(ST) GOTO 260s A=ASC(D$)

80 GOSUB 280

90 ON SGN(ST) GOTO 260:A=A+ASC(D*)*256

100 PRINT#2,CHR*(A AND 255)CHR*(A/256)s

110 P=0

120 FOR N=1TO 255

130 GOSUB 280

140 p=(257*(P+ASC(D$))/256)AND 255

150 IF ST AND 64 THEN 190

160 IF SGN(ST) THEN 260

170 A*(N)=D*

180 NEXT

190 PRINT#2,CHR*(N);

200 FOR M=l TO N

210 PRINT#2,A*(M);

220 NEXT

230 PRINT#2,CHR$(P);

240 A=A+N

250 ONN/256+1 GOTO 270,100

260 PRINT "ERROR!!"

270 CLOSE2sCLOSE1:END

280 GET#1,D*:D*=LEFT*(DS+CHR*(0),1)

290 RETURN

READY.

101

CHAPTER 4

f THE 1570/1571 and CP/mJ

4.1 How does CP/M control the disk drive?

4.2 CP/M diskette internals

Abacus Software 1571 Internals

4.1 How does CP/M control the disk drive?

4.1.1 BDOS and BIOS

If you want to learn more about the CP/M operating system , you'll
quickly encounter the terms BDOS and BIOS. The BDOS, an abbreviation
for "Basic Disk Operating System," is the part of the operating system

which controls working with the disk drive. It is responsible for the
management of files, for the organization of the directory and so on. The
second part, the BIOS (Basic Input/Output System) is responsible for the
physical operation of the disk drive, reading and writing data on the

diskette, and so on.

Naturally we cannot publish a complete description of CP/M~not

even a basic introduction. This theme is so comprehensive that a book the
size of this one could be filled with information. For this reason we will
look only at some of the most interesting aspects of disk drive programming

under CP/M.

The BDOS is identical on all CP/M systems and manages the data in
blocks which comprise 128 bytes. It is responsible only for the logical
management and handling of the data. Furthermore, the BDOS is the part of
the operating system which offers the programmer a number of functions

for operating the disk drive.

The BIOS has the job of reading and writing the data blocks of the
BDOS. This part controls the individual drives. For this reason the BIOS is
rewritten for each new CP/M system since each computer system is
constructed differently. So it depends on the computer system

manufacturer, how capable the BIOS is. It can, for example, process

several different disk formats, etc.

105

Abacus Software 1571 internals

4.1.2 DPB - Disk Parameter Block

To manage the data, the BDOS must know the exact format of the
diskette. It is also important what capacity the diskette has or how many
directory entries are possible. In addition, the BIOS must know which
tracks of the diskette are are used for data, which for the operating system,
and which for the directory. Furthermore, the specifications of the number
of sectors per track, sector interval, and so on, are important

This information is managed in a special table, the DPB (disk
parameter block). These specifications are shown in the table on the next
page.

The BIOS of the C-128 CP/M+ operating system can process a total of
12 different diskette formats. In addition to the three Commodore formats
(C-64, C-128 single-sided, C-128 double-sided), 8 different IBM-34
formats are recognized. The DPB tables are stored in the file CPM+.SYS at
address $1980. If you load this file with a debugger like SJD or DDT you
can see the DPB. When booting the system these tables are placed in the
first bank of the C-128 memory along with the BIOS. For this reason it is
very difficult to use the second 64K bank for program storage. If you
switch to the second bank ($3E or $3F in $FF00), the computer would
crash because the program would be overwritten.

The top 8K of the memory is not switched and always contains the
upper area of the first 64K bank. You can make only limited use of this area

because it is almost completely occupied by the CP/M operating system.

When a diskette is inserted into the drive, the format data for the DPB
table can be determined with the BDOS function $1F. To do this, the
number of the drive is specified in A (accumulator) and after the call to the
BDOS you get the address of the DPB in the HL register pair. The DPB
tables of the current drives always lie in the upper 8K block of the bank and
can therefore also be called up or manipulated from a program.

106

Abacus Software 1571 Internals

Byte Abr. Function
. ^_——_^.—^.~—»^~-^^—»—«———-

1/2 SPT Number of 128-byte blocks per track.

2 BSH Block shift factor

This number specifies the size of a management

block of the BDOS. The individual blocks of the

BDOS are combined into larger entities. The

following formula applies:

bytes per management block = 2 A (7+BSH)

The following values result:

BSH 0 12 3 4 5

Block size 128 256 512 1024 2048 4096 ...

3 BLM Block mask

This number specifies the number of 128-byte

BDOS blocks per management block. The value is

decremented by one, that is, 7 means that 8

blocks are contained.

4

5/6

7/8

EXM

DSM

DRM

Extend mask

Number of 128-byte blocks on

(without system tracks) - 1.

Number of directory entries

the diskette

- 1.

9 ALO 16-bit allocation map which indicates which

10 AL1 management blocks are used by the directory. The

first block of the directory track is represented

by bit 15, the second by bit 14, and so on.

11/12 CKS Number of directory entries to be checked to

recognize a diskette change.

13/14 OFF Number of reserved system tracks.

15 PSH Marker for the physical size of a sector.

PSH 0 12 3

Bytes per sector 128 256 512 1024

16 PSM Number of 128-byte blocks per physical sector-1,

107

Abacus Software 1571 internals

4.2 CP/M diskette internals

4.2.1 MFM data recording under CP/M

This section discusses the method in which data is written to the
diskette. What interests us is the technique with which the electronics record
the data onto the diskette.

This recording process is called MFM. This is an abbreviation for
"Modified Frequency Modulation." "Modified" indicates that there is also a
normal recording format, called "FM."

First let's talk about the FM process even though the 1570/1571 doesn't
use it. This will then make it easier to understand the MFM process.

Most of you know that the read/write head is actually a small coil. This
has the property that it functions like a magnet when current flows through
it. In addition the polarity, the arrangement of the north and south poles,
depends on the polarity of the current. This means that we have a small
magnet which we can electronically alternate again and again depending on
which voltage polarity is applied.

The diskette consists of a special material that can be magnetized. The
magnetic layer then takes on the same magnetic polarity as the coil in the
read/write head. By switching the little magnet of the read/write head
electronically you can write information on the diskette. Really quite simple!
You magnetize the diskette in one direction for all O-bits and in the other
direction for all 1-bits.

If you want to read the data again,the coil in the read/write head is also

used. It returns a voltage according to the polarity of the magnetic layer on

the diskette. But this happens only when the polarity on the diskette

changes. This means that if the entire track on a diskette has the same
polarity, nothing happens.

For this reason you can proceed as follows: the polarity of the coil is

changed for every 1-bit, but not for a 0-bit. Reading the diskette then gives

a short pulse at the read head when a "1" is on the diskette because the

polarity on the diskette changed. If this does not happen, then we know a

0-bit is on the diskette.

108

Abacus Software 1571 Internals

The drive motor creates a special problem. The recording of a single bit
on the diskette is just a few millionths of a millimeter large. If the motor

does not run extremely smooth and makes just a tiny start, data is skipped.

If we can send telephone speech to the moon and back, don't we have

the technology for somewhat more precise motors? But of course! But do

you want to pay several hundred thousand dollars for your diskette drive?

In order to even out the drive fluctuations, you can write clock bits on

the diskette. A clock bit always has the value " 1" and so creates a pulse at

the read head each time. If a pulse occurs, the drive electronics know that

they must now expect the data bit. If another pulse is read within a certain

time, the data bit is a "1". If this pulse is missing and the next clock bit

suddenly appears, then the last data bit must have been a "0".

But how are clock bits distinguished? A bit is a bit, right? Right-the

electronics must be told somehow that the next bit is a clock bit. Then some
complicated switching is possible to separate the clock and data bits. Section

4.2.2 handles how the electronics automatically recognize the clock bit.

Using the FM process, a byte would look like this:

CDCDCDCDCDCDCDCD

1010111010101110

Date byte:

00100010

C= clock bite

D= data bit

If you think back to Section 1.1.2, you may recall that it wasn't enough

to simply write bytes to the diskette, you must also be able to find the stored

data again. The problem involved marking the start of a data block, a sector.

This is done with a special marking called the sync character. What

does this marker look like? It must be distinguished from the usual

recordings. A trick was devised for this: a few of the clock bits are simply

omitted. But isnft this dangerous? What happens if the motor speed

fluctuates?

109

Abacus Software 1571 internals

Let's pick the value $FE as the data byte. In this value there are a
number of data bits with the value " 1", which means that there are quite a
few pulses on the diskette. In this manner the electronics can find their way
when reading and can recognize that the clock bit is missing. We could also
interpret the clock bit as a data bit and vice versa. For normal data the clock
byte always has the value $FF. For each bit the clock bit is " 1". If another
clock bit is used, then this data byte can be clearly distinguished from all the
other data bytes by means of the clock bits.

Special clock bytes for the FM process:

CDCDCDCDCDCDCDCD

11000111 Clock: $C7

11111000 Data: $F8

11010111 Clock: $D7

11111100 Data: $FC

11000111 Clock: $C7

11111110 Data: $FE

Normally the data in FM is recorded at a rate of 250,000 bits per
second. Naturally you would like to put as much data on the diskette as
possible. The first thought would be to increase the recording rate, maybe to
500,000 bits per second. This would double the capacity of the diskette.
But there are physical limitations. The magnetic layer is not capable of
recording data at this high speed. Since for 500,000 data bits per second,
500,000 clock bits are also recorded, we have a grand total of 1,000,000
pulses per second. It is not possible to write so many pulses since they
would overlap each other because they could not be recorded accurately
enough for there to be a gap between two "1" pulses.

For this reason we have to try to reduce the number of pulses on the
diskette without changing the data rate.

The clock bits are the disrupting factor, since they are not used for data
storage but still take up half of the diskette storage. The clock bits are
especially important if the data bit has the value "0". In this case we can
recognize, with the help of the clock bits, that a data bit is missing. If the
data bit has the value "1", the clock and data bits are represented by a pulse,

110

Abacus Software 1571 Internals

resulting in the high pulse rate. We should then omit the clock bits for all

data bits with the value " 1" and to write them for O-bits. With this method

there is a sufficiently large interval between individual pulses, which would

not be present for successive clock and data bits with the value "1", since

the electronics have a certain rise and fall time. The data rate has not

changed and is still 250,000 bits per second.

You can say that there is a bit cell present for each data bit on the

diskette. If the value of the data bit is "0", a pulse is recorded at the start of

the cell, while a " 1" bit is represented by a pulse in the middle of the bit cell.

For sync and index marks a bit cell of the data byte does not contain a pulse

and is thereby identified as a special marker.

4.2.2 The IBM System 34 format

"IBM System 34" refers to a diskette format that is in very widespread

use. Almost all disk controller components record the data according to this

method. The IBM System 34 format (abbreviated to "IBM-34" from now

on), is not the manner in which the data are managed on the diskette, but the

method according to which the tracks and sectors are constructed or the

sync marks are created, and so on.

In the IBM-34 format, sectors with 128, 256, 512, and 1024 bytes per

sector can be used, whereby most diskette formats use sectors comprised of

256 bytes. For this reason we will discuss only the organization of a track

with 256 bytes. For other sector sizes the same principle for sector
recording is used.

IBM-34 diskettes always use the index hole mentioned in Section

1.1.2. This hole controls the point at which the sector recording is to be

begin on the track. When the index pulse is encountered, 80 bytes with the

value $4E are recorded on the track. This value is used as the fill value for
the gaps when formatting. This gap after the index hole gives the controller

time to activate the read/write logic. Then comes the Hpre-indexft, a mark
consisting of 12 bytes with the value $00. With this value, pulses are

generated on the read/write head for clock bits only. This allows the

controller to set its read electronics so that clock and data bits will be

separated automatically for normal data bytes. The $00 bytes serve to

inform the controller which bits are the clock bits. The marking with $00
bytes is also called "sync", since it synchronizes the controller.

Ill

Abacus Software 1571 Internals

Following the index hole is the "index mark". This tells the controller
that previous gap belonged to the index hole, since gaps are also present
between the individual sectors. The "index mark" for MFM consists of three
bytes with the value $F6, followed by a $FC byte. The clock byte $C2 is
used for the value $F6 when formatting. This means that the clock bit is
missing between the third and fourth data bits which would normally be

required. The controller recognizes the index mark through this since this

clock bit is not missing for a data byte with the value $F6.

Farther on in the sector there is a gap with 50 $4E bytes. This gives the

controller time to prepare for processing the sectors. Following this gap are

12 bytes with the value $00, representing a sync mark. The next 3 bytes

have the data value $F5 and are recorded with the clock byte $AL Together
with the $FE byte they represent the "ID address mark." This mark indicates

that the sector header follows. The next six bytes are the sector header.

First the track number of the sector is named. Then comes a byte which

specifies the diskette side. The value "0" is used for the front side and the

value " 1" for the back side of the diskette.

The next byte is the sector number of the data section following the

header. The fourth specification is the sector marker, which specifies the

size of the data sector. The significance of the byte values follow:

00 128 bytes per sector

01 256 bytes per sector

02 512 bytes per sector

03 1024 bytes per sector

The sector header is terminated with two checksum bytes, also called

CRC bytes.

The sector header is followed by a 22-byte gap with the value $4E,

terminated by 12 bytes with the value $00, representing a sync mark.

The "data address mark" follows this, marking the start of the data area.

It consists of 3 bytes with the data value $F5 and the clock byte $A1, as
well as a byte with the value $FB. Following the data address mark are the

256 bytes of the sector.

Finally, two check sum bytes are stored. These are calculated using the

CRC procedure. CRC is an abbreviation for Cyclic Redundancy Check. In

this method a polynomial is formed from the individual bits of a data byte.

112

Abacus Software 1571 Internals

This polynomial is divided by the generator polynomial,
G(x)=X16+X12+X5+l. Normally this division does not come out even
and a remainder results. The CRC bytes are the values which you must add
to the polynomial of the data bytes so that the division by the generator
polynomial does not give a remainder. This sounds complicated, but it is
accomplished with simple digital switching.

At the end is another gap of $4E-bytes. The size of this gap depends on
the sector size. In addition, larger gaps are used on drives with speed
fluctuations which may be up to 3% than are used on more stable drives.
Following this gap is the sync mark before the ID address mark of the next
sector.

The exact organization of a track can also be gathered from the ROM
listing. The routine at $8A86 formats a track in IBM-34 format. From it can

be seen which marks are created, how larger the gaps are, and with what
parameters the formatting procedure is controlled.

4.2.3 Reading "foreign" diskette formats

One of the best capabilities of the disk drive is its ability to read
"foreign11 diskette formats. This is used only in the CP/M operating system.

The CP/M+ operating system on the C-128 recognizes various formats from
Epson, IBM, Kaypro, and Osborne.

If you intend to implement a new diskette format there are several

possibilities for doing this. You can add the format data to the BIOS and

have CP/M+ recognize the format automatically. Another possibility is to
process the diskette format through direct access commands (See Section
3.1.4).

For both applications you must know the exact format of the diskette.

These are things like sector length, number of sectors, and so on. These

specifications can be determined with the analysis functions described in

Section 3.1.4. Since the determination of a recording process is very
involved, we present a small BASIC program which does the work for you.

When entering the program be sure to input the spaces and CHR$ codes

properly. Default values are specified for the input parameters and you need

only press <RETURN> in order to accept a parameter.

113

Abacus Software 1571 Internals

The analysis programs first asks for the device address and the drive

number. Then the number of the track to be investigated can be specified.

Once these inputs have been entered, the analysis begins.

The program first determines if the diskette uses an IBM-34 or a

Commodore format. The IBM-34 format is flawlessly recognized by the

program. But if neither an IBM format nor a Commodore format is present,

(such as if the diskette is unformatted) the program still responds

"COMMODORE. " Therefore you may view the indication of a Commodore

format with some suspicion. Always check in this event if an entire sector

or the directory can be read.

Basically, the program serves only to analyze IBM-34 diskettes. Some

specifications from the sector header are listed first. These are the track

number entered in the sector header, the specification of the diskette side

and the sector marker. The last specification indicates how long the sectors

on the track are.

Following these are some data which the disk drive has calculated from

reading all of the sector ID fields. These are the number of sectors on the

track and the smallest and largest sector numbers. In conclusion, all of the

sector numbers are listed in the order in which they are located on the track.

With this list you can recognize the physical sector interval or spot

irregularities in the sector distribution.

Just as exciting as the analysis of foreign disks is the ability to format

disks in this format The following program is used for this:

114

Abacus Software 1571 Internals

1 dimn(32):bs*=chr*(157)sb3*=bs$+bs*+bs*

2 printchr*(14)chr*(147)"IBM System 34 Format

"chr*(17)

3 print"Unit 8"b3$;:input u

4 onl+(u>4)-(u>15)goto2

5 print"Side 2"b3*;:input s:sd=(s/2)andl:a=

sandi

6 printchr*<147)"Number of tracks 40"b3*bs

$;:input nt

7 print"log. Track start 0"b3*;:input tl

8 print"phy. Track start 0"b3:£; : input tp

9 print"Sector size 3"b3*;sinput si

10 print"Number of sectors 5"b3*;:input sn

11 print "De-fine sequence (y/n) "

12 geta$:onasc(a*)and3goto!3,17:gotol2

13 sq=l: -f ora=ltasn

14 printa;bs*". Sector "right*(str*(a),2);

15 printb3*;:input n:n(a)=nand31

16 nextsgotol9

17 sq=0:print "First Sector 1 Ifb3*; s input fs

:fs=fsand31

18 print"Sector skew 0"b3*;sinputsk:sk=((s

k>0)*-sk)and31

19 print"Fill byte 229"b3*bs*bs*;sinput b

y

20 b*="u0"+chr$(6+s*16+sd*32)+chr*(128+sq*64+

•fs)

21 b*=b*+chr*(sk)+chr$<si)+chr$(nt+tl-1)+chr$

(sn)

22 b*=b*+chr*(tl)+chr$(tp)+chr$(byand255)

23 -fora=ltosnsb*=b*+chr*(n(a)) snext

24 printchr*(147)"Formatting "

25 openl,uf15,b*:closel

26 i-fds=0then28

27 printchr*(17)chr*(17)chr*(18)"Format Error
ii

28 printchr*(17)chr*(17)"one more disk (y/n)"

29 geta*:onasc(a*)and3goto24,2:goto29

ready-

115

Abacus Software 1571 Internals

0 b*=chr*(157):b3*=b*+b*+b*

1 printchr*(147)"Format Analyzer"

2 printchr*(17)chr*(17)"Unit 8"b3*;:input

u

3 onl+(u>4)-(u>15)goto2

4 print"Drive 0"b3*;:input d:d=dandl

5 printchr*(147)"Track 0"b3*;:input tt

6 openl,u,15

7 printchr*(147)"Side 1 :";:s=0:gosubl3

8 printchr*(17)"Side 2 :";ss=l:gosubl3

9 print#l,"uj"

10 closel

11 printchr*(17)"1 next disk / 2 end"

12 geta*:onval(a*)+lgotol2,5:end

13 print#l,"u0"chr*(158)"ml"

14 print#l,llu0"chr*(138+s*16)

15 a=94sgosub34:i-fb<128then29

16 print#lT"m-w"chr*(0)chr*(5)chr*(3)chr*(76)

chr*(30)chr*(133)

17 print#l,"u3-"+chr*(tt)

18 print" IBM System 34 -format"

19 a=36:gosub34:print"track number:"b

20 a=37sgosub34sprint"Side bit :"b

21 a=39:gosub34:print"Sector size :"b;

22 printtab(17)"("2A(7+b)"Bytes/Sector)"

23 a=151:gosub34:n=b:print"No. of Sec. :"b

24 a=96sgosub34:print"min. Sector :"b

25 a=97sgosub34sprint"max. Sector :"b

26 print"Sequence : ";

27 fora=523to522+n:gosub34:printb;:next:print

28 goto33

29 print" COMMODORE Format"

30 a=24:gosub34:printchr*(17)"Track number:";

b

31 a=22sgosub34:print"ID1 (Dec.) :";b

32 a=23:gosub34:print"ID2 (Dec.) :";b

33 return

34 print#l,"m-r"chr*(aand255)chr*(a/256)chr*(

1)

35 get#l,a*:b=asc(a*+chr*(0))

36 return

116

Abacus Software 1571 Internals

The program allows you to create various IBM System 34 formats. To

do this you must specify the device address and drive. Then follow the

inputs which determine the format

The first question concerns the number of tracks to be formatted. The

number of the track to be entered in the sector header must be entered. The

next input determines at which physical track the formatting will start. This

can be used to format only certain tracks, whether for repairing damaged

sections or to confuse the controller.

Now the marker for the sector length is required. It may have values

between values between 0 and 3. The next question allows the creation of

the sequence of sector numbers "by hand.11 If you don't want to do this,

answer with "n".

If no sector sequence is entered, then the program wants to know the

number of the first sector and the sector interval. The sector interval is the

number of sectors to be constructed between two successive sectors. The

program does not check to see if the entered here make sense. The disk

drive is the first to determine this and indicates by flashing the error light.

In conclusion you can define a byte with which the sectors will be

filled. Normally the value is $E5 (229). Be sure not to enter any values

greater than $F0 (250) because these have control functions when
formatting.

Now the diskette is formatted. If you answer the question following the

formatting with "y", you can create another diskette in the same format

without having to re-enter the parameters.

The two BASIC programs are not particularly complex and do not use all of

the capabilities of the disk drive. They are intended to show you how

diskette programming with IBM-34 diskettes is performed. You may be

able to find some suggestions for your own programs in these BASIC

programs.

117

Abacus Software 1571 Internals

4,2.4 Programming the WD 1770 controller

The control of the IBM-34 recording is performed by a separate

controller component in the 1570/1571~the WD 1770 from Western Digital.

In this section we will discuss how this controller is accessed and

programmed. This can be done only in machine language and only in the

disk drive memory. Additional information about the technical construction
of the controller can be found in Section 5.2.4.

The following registers are present for programming the controller:

Address Read function Write function

$2000

$2001

$2002

$2003

Status

Track

Sector

Data

Command

Sector

Sector

Data

As you see, register $2000 has different functions when reading and

when writing. If a value is written into this memory location, is is

interpreted as a command. When reading this address, it doesn't return a

command but a value representing the status of the controller. The additional

registers serve to pass the command parameters and data to the controller or

communicate from the controller to the computer.

The controller recognizes the following commands:

118

Abacus Software 1571 Internals

Type Command Command value

Bit 76543210

OOOOhvxy

OOOlhvxy

OOluhvxy

OlOuhvxy

Olluhvxy

1

1

1

1

1

Restore

Seek

Step

Step in

Step out

2

2

3

3

3

4

Read

Write

Read

Read

Write

Force

sector

sector

address

track

track

interrupt

1

1

1

1

1

1

0

0

1

1

1

1

0

1

0

1

1

0

m

m

0

0

1

1

h

h

h

h

h

1-H1

e

e

e

e

e

j

0

P

0

0

p

k

0

a

0

0

0

1

Meaning of special bits:

h: 0= turn motor on, 1= turn motor off

v: 0= verify track, 1= donft verify track

x/y: Step rate 0 0= 6ms

0 1= 12ms

10= 20ms

11= 30ms

u: Set track register to track in sector header

0= no 1= yes

m: 0= read just one sector

1= read several sectors

a: 0= set data mark for "sector valid"

1= set data mark for "sector erased"

e: 0= no head settling time

1= 30ms head settling time

p: 0= precompensation on

1= precompensation off

i-1: Interrupt servicing

i: disregard

j: disregard

k: interrupt when index hole encountered

1: immediate unconditional interrupt

end command without interrupt for i-1 = 0

119

Abacus Software 1571 Internals

Status register:

Bit 0: Busy flag. Indicates that the command is being

executed.

Bit 1: Data request/index

For all other commands this bit signals that data

can be taken from register $2003 or can be written

in the register.

Bit 2: Lost data/trackOO

For commands of type 1 this bit indicates that the

head is on track 0.

For all other commands this bit indicates that the

data in register $2003 was not read or written by

the program in time.

Bit 3: CRC error. The checksum bytes of the header or the

data block decoded an error.

Bit 4: Record not found. The specified track or sector was

not found.

Bit 5: Spin-up/Record type

For commands of type 1 this bit specifies that 6

diskette rotations have taken place. For commands of

type 2 and 3 this bit was the value of the "data

mark."

Bit 6: Write protect. This bit indicates when writing that

the write protect tab is in place.

Bit 7: Motor on. This bit gives the status of the motor.

0= motor off 1= motor on

As you can see, the controller commands are divided into different

command types. The various command types use the status register in
different ways and specify which parameter registers are used in a certain
manner. Some commands or command bits control the stepper and drive
motors. This task is not performed by the IBM-34 controller on the

1570/1571 but by the operating system. Therefore commands of type 1 are

meaningless on the Commodore disk drive.

The commands of type 2 write and read individual sectors. Before one
of these commands can be passed to the command register, the number of
the desired sector must be written to register $2002. If the desired sector is
not present, the controller tries five times to find the sector. If this is not
successful, then bit 4 in the status register is set. The sector register $2002
indicates the number of the next available sector.

120

Abacus Software 1571 Internals

The commands in group 3 serve to process entire tracks and to analyze
the track. The first command, the "Read Address" command, reads the next
occurring sector header and outputs it via data register $2003. The two CRC
bytes are also passed. Status bit 3 indicates if these bytes are correct or if a
checksum error occurred.

The "Read Track" command serves to read an entire track, including the
address marks, the gap bytes, and so on. The gap bytes may have the
wrong values if they are intended to synchronize the controller. An entire
track can be read and analyzed with this function.

The opposite is the "Write Track" function, which writes an entire
track. This command is used for formattng the track. For this reason not all
of the byte values are written as data bytes on the diskette. The values from
$F5 to $F7 have special control functions:

$F5 ID address mark. Writes $F5 with clock byte $A1

(missing clock bit between bits 4 and 5)

$F6 Index mark. Writes $F6 with clock byte $C2

(missing clock bit between bits 3 and 4)

$F7 Writes two CRC to the diskette instead of the byte.

The checksum is calculated with the data since the

last address mark.

The track functions start reading or writing when the index hole is
encountered. The track is processed until the index hole is encountered

again and the diskette has made one complete revolution.

Unfortunately it is not possible to copy entire tracks of a diskette to
another track or to another diskette with these two commands. The reason is
that errors occur with the gap and synchronization bytes when reading.

Beyond this, and this is the most serious problem, the data bytes $F5-$F7
are not written as data bytes but are interpreted as control values for address
and identification marks.

The interrupt command serves to interrupt the current function. The
condition under which the command is interrupted can be set through bits
i-1. After this command, you must wait at least 32 microseconds before the
controller may receive the next command. Otherwise it will not interrupt the
current command.

121

CHAPTER 5

f PROGRAMMING FOR PROFESSIONALS J

5.1 How the bytes appear on the diskette

5.2 How the bytes get on the diskette

Abacus Software 1571 Internals

5.1 How the bytes appear on the diskette

5.1.1 The organization of a sector

The fundamentals of sector organization was discussed in Section
1.1.2. Well now discuss this topic in more depth.

As we already mentioned, the start of each sector is provided with a

special marker on Commodore diskettes. Through this the electronics can

recognize the start of a sector on the track. This marker is called a
synchronization mark, or "sync" for short.

- sync - header - gap - sync - data - gap -

The figure shows the basic structure of a sector. The sector starts with a
sync mark. Then follows the sector header, which contains the following:

- $08 - checksum - sector - track - ID2 - ID1 - $0F - $0F -

The first byte of the header serves to identify the header and has the
value $08. The disk drive determines if a sync mark, a header, or a data
field follows. The data section starts with the marker $07.

Next follows the checksum of the header. In order to calculate it the
track and sector numbers as well as both ID characters are added. The next
two bytes of the header contain track and sector numbers of the header. The
disk drives uses this data to find a given sector.

125

Abacus Software 1571 Internals

Finally, every sector header contains the two ID characters which were

specified when you formatted the diskette. These characters are read and

checked upon each access. If the ID characters have changed, then the disk

drive assumes that the diskette was changed.

The two byte values $0F have no control function. They produce the bit

sequence "01010101" on the disk, which synchronizes the read electronics.

The sector header is followed by a 9-byte gap before the actual data

section begins. This gap is to allow enough time to enable and activate the

write operation when writing.

Then comes the sector data. In order to recognize the start of the sector

exactly, the data section is preceded by a sync mark. The first byte after the

sync mark has the value $07. This is so the data section can be

distinguished from the sector header. After the data marker follow the 256

data bytes of the sector. At the end is another checksum composed of the

sum of the data bytes.

- sync - $07 - data bytes - checksum -

After each sector is another gap. Its length depends on the number of

sectors on the track and the track number.

5.1.2 The sync marks

As you know, the 1570/1571 does not use the index hole to recognize

the start of sectors for the Commodore formats but uses specially recorded

marks on the disk, called sync marks.

These marks consist of 5 bytes with the value $FF (40 bits with the

value 1). The read electronics recognize when more than 10 bits with the

value 1 have been read and then generate the sync signal. This signal is used
by the disk operating system when it is waiting for the next sector. This

mark also tells the read electronics when the data bits of a byte begin by

waiting until the 1 signals of the sync mark are past.

126

Abacus Software 1571 Internals

This sync mark causes some problems on the 1571. Certainly you have

noticed that when booting the CP/M+ operating system, included with the

computer, that the disk drive blinks for a long time. In addition, the process

runs a good 30 seconds faster if you copy the operating system to a diskette

whose second side is unformatted.

The reason for this behavior is that the drive light always flashes when

initializing the diskette and the process takes a long time if the sync marks

are on the second side. After a new disk is inserted, the 1571 tries to

determine if both sides are formatted. To do this it attempts to read from

both sides. When reading, the disk drive naturally orients itself according to

the sync marks. If you insert a diskette which is formatted on both sides in

which you formatted one side of the disk and then flipped it over, the

following takes place: The disk drive reads from the reverse side until a

sync mark is encountered. If this does not occur within a certain time, then

the disk drive assumes that the second side is unformatted. But on the type

of diskette described, there are sync marks on both sides of the diskette.

The fact that the diskette is running backwards on the second side from the

way it is usually, does not make a difference since a sequence of 1-values,

the sync marks, has the same effect read forwards or backwards. Only the

following data is not the sector header or the data block, but the bytes of a

gap-

The read logic therefore signals an error. The catch is that the disk drive

then initiates an error-handling procedure. The read is attempted several

more times, whereby the head is repositioned slightly. This procedure takes

a good deal of time, however.

It is therefore advisable to copy double-sided disks which where used

in a single-sided drive by turning them over to a single-sided format. C-64

or VIC-1541 users who want to make better use of their diskettes in this

manner must take into account that the initialization process on the 1571 will

take somewhat longer.

A solution to the problem would also be possible with the USER-0

command "U0>ra". This sets the number of read attempts which will be

executed for an error to the value 1. This supresses the error routine.

127

Abacus Software 1571 Internals

5.1.3 What is GCR coding?

You have probably asked yourself how the data bytes are recorded in
Commodore format since data bytes with the value $FF could be interpreted
as sync marks.

The recording format is rather exotic because different recording rates
are used on different tracks. The Commodore format belongs neither to the
single-density formats which transfer data at a rate of 250,000 bits per
second, nor to the double-density formats which work at 500,000 bits per

second. A recording rate is used which varies between 250,000 to 307,692

bits per second. Since the outer tracks have a greater circumference than the
inner tracks, you can also store more data on them. Therefore there are four
different track zones on Commodore diskettes:

Track number Recording rate Sectors per track

1-17

18 - 24

25 - 30

31 - 35

38461

35714

33333

31250

bytes/sec

bytes/sec

bytes/sec

bytes/sec

21

19

18

17

The GCR process is used to record the data. GCR stands for Group

Code Recording. In this method, 4 data bits are converted into 5 GCR bits.

A data byte, comprised of 8 bits, is represented by 10 GCR bits. To do this

one divides the data byte into two halves, the low-order half (0-3) and the

high-order half (bits 4-7). The bits of each of these halves are converted

according to the table on the next page.

Thse GCR values are chosen such that a zero is written after a

maximum of four 1-bits. As a result, after data bytes are converted to GCR

bytes, the longest possible sequence of lfs is a sequence of eight, so data

will never be interpreted as a sync mark. In addition, no more than two bits

with the value 0 ever follow each other with GCR values. This is important

because the read electronics equalizes drive fluctuations through the 1-bits.

Data bytes are always converted in groups of four by the disk operating

system. In this case the result is exactly 5 bytes with the corresponding

GCR values. Data is not converted automatically, however, but must be

performed by a program. The DOS contains routines which perform the

conversion by means of an algorithm or with the help of tables. The first

method has the disadvantage that the program is more complex and runs

128

Abacus Software 1571 Internals

slowly, while the table method requires more memory space, but is
somewhat simpler and faster.

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary byte

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

GCR code

01010

01011

10010

10011

OHIO

01111

10110

10111

01001

11001

11010

11011

01101

11101

11110

10101

This conversion of the binary data to GCR values and back again is one
of reasons the disk drive needs its own microprocessor system and buffer
storage. The data cannot be converted as fast as they must written to the
diskette (see recording rate). The data are stored temporarily, converted, and

then transferred to the disk.

Here are some examples of how 4 binary bytes would be converted to

GCR values:

Data bytes $01 $02 $03 $04

Binary value 0000 0001 0000 0010 0000 0011 0000 0100

GCR value 0101001011010101001001010100110101001110

GCR bytes $52 $C5 $25 $4C $4E

Data bytes $A1 $FC $65 $9D

Binary value 1010 0001 1111 1100 0110 0101 1001 1101

GCR value 1101001011101010110110110011111100111101

GCR bytes $D2 $EA $DB $3F $3D

129

Abacus Software 1571 interiiais

5.2 How the bytes get on the diskette

5.2.1 1570/1571 circuitry

The following sections describe the control system of the disk drive.
Predominantly this involves how certain electronic components are used in
the 1570/1571 and what tasks they perform. Naturally, this section cannot
offer a complete introduction into microprocessor techniques. Also, the
components used in the 1570/1571 can be discussed only in reference to
their functions in the drive.

We will not try to replace a complete schematic here--we can only
clarify some of the more important elements of the disk drive.

The heart of the microcomputer is a 6502B processor. This can be
driven at a clock rate of 2MHz. The clock can be switched between 1 and
2MHz on the 1570/1571. In the 1541 mode the disk drive uses the slower
processor frequency since the VIC-1541 also works with this frequency. If
the disk drive is in the 1571 mode, the processer will be clocked at 2MHz.
The bus routines are the reasons for the different clock frequencies. In this
program sections in depends on the timely course of the bus signals that the
disk drive reacts fast enough and that the data are outputted in the proper
intervals.

The higher clock frequency of 2MHz has some advantages. The data
which are read from the disk can be processed more quickly. This concerns
the GCR conversion, for example, since it is now possible to convert a byte
from GCR to binary as soon as it is read. Beyond this, the bus can be
operated at a maximum transfer rate of 500,000 baud. At this speed it is

possible to send an entire track to the computer immediately during reading.
The fact that these superb capabilities are not used is the fault of the 1570/71
operating system alone.

Connected to the processor are three input/output components, an

IBM-34-format controller, 2K of RAM, and 32K ofROM. These individual

components occupy the following address ranges:

130

Abacus Software 1571 Internals

Range

$0000 -

$1800 -

$1COO -

$2000 -

$4000 -

$8000 -

$07FF

$180F

$1COF

$2003

$400F

$FFFF

Component

2K RAM

6522 (VIA1)

Controls bus and 1571 electronics

6522 (VIA2)

Controls recording electronics,

motorf etc.

WD 1770

Controls IBM-34 recording

6526 (CIA1)

Controls fast bus mode

32K ROM

Operating system

5.2.2 The interface components

This section involves the interface components of the type 6522 and
6526. The data sheets for the 6522, available from many semiconductor
vendors, are recommended for better understanding of these circuits.
Unfortunately there is no public support for the 6526 since it is a
development of Commodore. Detailed information about the 6526 can be
found in the Anatomy ofthe C-64 and C-128 Internals from Abacus.

We will first talk about the 6522, also called a VIA (Versatile Interface

Adapter). The 1570/1571 has two such components. The VIA pins are

assigned as follows:

131

Abacus Software 1571 internals

Pin

2-9

10-17

18

19

26-33

39

40

Name

PA

PB

CB1

CB2

D7-0

CA1

CA2

Function

8 data lines

freely

8 data lines

freely

Control line

Control line

8 data lines

Control line

Control line

which

which

to the

can be programmed

can be programmed

processor

The individual control and data lines of the VIA are controlled by the
computer. The VIA has 16 registers which lie in the memory range of the
computer, via which the computer can control the input/output component
by writing values in the registers. In addition, the VIA has two built-in
counters. These count the processor clock pulses. Once the counters have
reached certain values, various actions can be generated. This can be used to
program a certain time span after which a signal is generated. This is why
these counters are usually called timers.

The VIA has two sets of 8 input/output lines. The data register
determines which lines are used as input and which as output, whereby each
bit of the register corresponds to a line. If the bit has the value 0, the

corresponding line is used as input, while the connection functions as input

for the value 1. When used as input, the arriving signal is placed in the
appropriate bit of the data register. If the data line is switched to output, the

level of the corresponding bit in the data register is outputted.

The two data ports are called PA and PB. Port PA has two different

data registers. If you work with data register $01, then writing a new value

to this register will always affect the control lines. For example, a pulse can
be sent over the control line through which the receiving logic recognizes

that a new signal is ready on the port. This function is not used by the

1570/1571 however. It is therefore irrelevant which of the two data registers

you use.

132

Abacus Software 1571 Internals

Register layout of the VIA 6522

Address Function

n Data register for PB

n + $01 Data register for PA with handshaking

n + $02 Data direction register for PB

n + $03 Data direction register for PA

n + $04 Low byte of timer 1

n + $05 High byte of timer 1

n + $06 Output value of timer 1 (low byte)

n + $07 Output value of timer 1 (high byte)

n + $08 Low byte of timer 2

n + $09 High byte of timer 2

n + $0A Serial input/output line

n + $0B Auxiliary control register

n + $0C Peripheral control register

n + $0D Interrupt flag register

n + $0E Interrupt mask

n + $0F Data register for PA (without handshaking)

n= $1800 for VIA1

$lC00 for VIA2

In addition to the input/output lines there are also the control lines CA
and CB. These have control functions when writing to the data registers, as
mentioned before. CA and CB can also be used as normal input/output
lines. This is there task in the 1570/1571. The mode in which the control
lines are operated or the level they have is determined in the peripheral
control register:

Peripheral control register:

Bit 0:0= CA1 input on falling edge

1 = CA1 input on rising edge

Bits 1-3: 110= CA2 output with low level

111= CA2 output with high level

Bit 4:0= CB1 input interrupt on falling edge

1 = CB1 input interrupt on rising edge

Bits 5-7: 110= CB2 output with low level

111= CB2 output with high level

133

Abacus Software 1571 Internals

The control lines of the two VIAs are used for the following purposes:

Line Function

VIA1 CA1 Input for ATN signal of the serial bus

Creates interrupt on rising edge of ATN

VIA1 CB1 Write protect signal. Flag in the

interrupt register is set on a falling

edge. This means that write protect light

barrier was interrupted and the disk was

changed.

VIA2 CA1 Input. Sets flag in interrupt register

on negative edge of the byte ready signal,

which indicates that a byte was read or

written.

VIA2 CA2 Output for the SOE signal (serial output

enable). 1= read/write electronics

activated and the byte-ready signal

requested.

VIA2 CB2 Head mode

0= write data

1= read data

The control lines are used especially in VIA2. They set the read/write
electronics or receive return messages. The most important signal of this
type is the byte-ready input This signal indicates when the read/write logic
has processed a byte and written it to the disk or when a byte has been read
from the disk and is now available for further processing. The byte-ready
signal is also sent to the PA7 input of VIA1 and the SO input (set overflow)
on the processor. These last two inputs are used and tested by the disk
operating system. In the 1571 mode, PA7 is used, while SO is used in the
1541 mode. A high level on SO has the result that the overflow flag of the
processor is set. In this manner the byte-ready signal can be very easily
processed with the 6502 instructions BVC and BVS.

The most important tasks of the two VIA components are not
accomplished with the control lines, but with the ports PA and PB. Here is
the layout of these input/output lines:

134

Abacus Software 1571 Internals

Line I/O Function

VIA1 PBO I

VIA1 PB1 0

VIA1 PB2 I

VIA1 PB3 0

VIA1 PB4 O

VIA1 PB5 I

VIA1 PB6 I

VIA1 PB7 I

Data input from the serial bus

Data output to the serial bus

Clock input from the serial bus

Clock output to the serial bus

0= ATN will be answered automatically

1= ATN will not be answered

DIP switch 1 (left)

DIP switch 2 (right)

ATN signal from the serial bus

VIA1 PAO I

VIA1 PA1 0

VIA1 PA2

VIA1 PAS

0

0

VIA1 PA7 I

State of the track 0 light barrier:

0= head on track 0

1= head not on track 0

1570/71 bus data direction

0= 1570/71 bus is input

1= 1570/71 bus is output

Active head (only for 1571)

Drive mode and processor clock

0= 1541 mode with 1MHz clock frequency

1= 1571 mode with 2MHz clock frequency

Byte-ready signal

STP1 Second bit of the stepper control

STP0 First bit of the stepper control

0= drive motor off, 1= drive motor on

0= drive indicator (LED) off

1= drive indicator (LED) on

Condition of the write protect

0= diskette is write protected

1= diskette is writable

DS0

DS1

The signals DS0 and DSl control the

recording rate on the diskette.

(see ROM listing $9409)

Sync signal

1= sync mark encountered

VIA2

VIA2

VIA2

VIA2

VIA2

VIA2

VIA2

PBO

PB1

PB2

PB3

PB4

PB5

PB6

0

O

O

0

I

0

0

VIA2 PB7 I

VIA2 PA 0 Data sent to the write electronics

VIA2 PA I Data sent from the read electronics

135

Abacus Software 1571 internals

Another interface component used in the disk drive is the CIA 6526.
This input/output device is also used in the C-64 and C-128. The CIA
component is very similar to the 6522. It contains a real-time clock with an
alarm.

In the 1570/1571 only the serial input/output (SP) and the coresponding
clock line (CNT) are used. Both of these inputs are responsible for the
transfer of data in the fast bus mode. You can find out more about this in
Section 5.2.6.

Naturally, the CIA 6526 also has two 8-bit parallel ports, which are not
used. You have the option of using these lines for your own applications.

136

Abacus Software 1571 Internals

5.2.3 The WD 1770 controller

The WD 1770 is manufactured by Western Digital and is software

compatible with the WD 179x series, which are also produced by other

manufacturers. This 28-pin component contains everything necessary for

controlling a disk drive. This includes logic for controlling the stepper

motor, for example, to move the read/write head. Beyond this, all

components required to read and write data are integrated into the WD 1770.

The stepper control of the WD 1770 is not used in the 1570/1571 disk
drive. The operating system takes care of this through VIA2. Only the

signals for write protect and track 0 are connected to the WD 1770. This
inhibits writing to write-protected disks even if the operating software does

not check the write protect.

Naturally, it is possible to control the stepper motor through the WD

1770 with some add-on circuitry. If you modify the operating system

accordingly, this would have the advantage that the DOS would no longer

be concerned with head positioning and could accomplish other tasks

instead.

Another possible modification would be to disconnect pin 26. This

signal is tied to ground, so the MFM recording procedure is always used. If
you use single-density diskettes, recorded with the FM procedure, you can

set the controller accordingly by tying pin 26 to 5V (this is possible with a
IK resistor). You can also build a switch with which you can select
between double and single density (depending on whether pin 26 is at 0 or

1). The operating software of the 1570/1571 doesn't notice any of this, and
the CP/M+ operating system works well with single-density diskettes.

137

Abacus Software 1571 Internals

Pin layout of the WD 1770:

Pin Name Function

Chip select. A low signal on this pin

addresses the chip.

0= write to registers

1= read from registers

Address lines which select the desired

register when CS=0

Data bus to the processor

A low level causes a reset

Ground connection

+5V

Output for step pulses for the head

motor

Direction

0= head moves to the outside

1= head moves to the inside

Input for operating clock of 8MHz

Read data. Pulses from the disk. This

information contains clock as well as

data bits.

Motor on. Switch on output to the motor.

Write gate. This output will high if the

disk is being written.

This is the data, together with the

clock bits, which will be written to the

disk.

Track 0 input: 0= head on track 0

1= head not on track 0

Index pulse: 0=

1

2

3/4

5-12

13

14

15

16

17

18

19

20

21

CS

R/W

A0/1

D0-7

MR

GND

Vcc

STEP

DIRC

CLK

RD

MO

WG

22

23

24

WD

TR00

IP index light barrier

interrupted

1= index light barrier not

interrupted

25 WPRT Write protect: 0= disk is write

protected

1= disk is writable

0= double density

1= single density

Data request. 1= data register is ready

Interrupt request. 1= end command

2 6 DDEN Double density.

27

28

DRQ

INTRQ

138

Abacus Software 1571 Internals

5.2.4 The Commodore controller

For the Commodore formats the recording is handled by another
controller. The word "controller" is going a bit far, since it actually involves
a digital logic network to which entire bytes are sent and which writes them

in serial to the diskette. This network is placed in a gate array chip produced
by Commodore. For this reason we have no description of the pin layout

here since Commodore does not offer any support for this device. Those of
you who are still interested in the construction of this device should take a
look at the older Commodore disk drive models, which did not use this gate

array.

The construction of the Commodore hardware has not changed much
over the course of the years. For this reason we can refer you to the
literature on the 4040 and 1541 since these devices contain the same basic
functions as the 1570/1571-just not in a gate array.

The gate array consists of two important parts: a

parallel-serial/serial-parallel converter and a BCD counter. The data byte to
be written is sent from PA of VIA2 to a shift register. From there it is sent
on to the write electronics with the clock CLK, which is created with a
programmable divider and the signals DSO and DS1 (see VIA2), which then

amplifies the pulses and controls the head coil.

The same thing happens when reading, only reverse order. In addition,

a counter is reset each time a 0-bit is encountered. The counter starts to

work when bits with the value 1 are encountered. This happens until a 0-bit
is encountered. Once the counter has reached the value 10, the SYNC signal
is generated, since no more than 8 ones can occur in a row with normal

GCR data.

139

Abacus Software 1571 Internals

5.2.5 The 1541 and 1570/1571 modes

The disk drive can be operated in two different modes. The first of
these is the 1541 mode and the second is the 1570/1571 mode. In the 1541
mode the 1570/1571 disk drive is intended to be compatible with the 1541.
This is why a clock frequency of 1MHz is used in this mode. Primarily the
DOS uses the ROM routines $C000 to $FFFF, which are identical to the
1541 ROM. The disk controller routine is not used because the new
hardware features, such as the track 0 recognition, are recognized only by
the 1571 ROM.

A more serious difference is that only one side of the disk can be used,
even double-sided 1571 diskettes. This mode has the advantage that the
problems with two-sided disks ("flippies") discussed in Section 5.1.2 do
not occur.

The additional functions available via USER-0 can no longer be
performed in the 1541 mode. The only exceptions are the head and mode
commands, which do not function in the 1570/1571 mode since they are not
allowed there.

The bus can service only the normal C-64 algorithm in the 1541 mode.

In the 1570/1571 mode, both the new, fast bus mode and the old bus mode

are possible. This depends on the device with which the disk drive is
communicating and is determined anew for each transfer.

After the disk drive is turned on it is always in the 1541 mode. The

1571 can be reached only with the "u0>ml" command. The C-128

performs this during its reset procedure.

140

Abacus Software 1571 Internals

5.2.6 The serial bus - technology and function

The serial bus is the connection between the computer and peripheral

devices connected to it. The disk drive is controlled and data are transferred

over this bus. It will be thoroughly discussed in this section so that not only

can beginners learn how the data communication between the disk drive and

computer works, but more advanced programmers can also get useful

information about working with the bus.

The bus consists of six lines whose significance is discussed in more

detail:

Pin Name Function

1 SRQ Serial request. This line serves as the

clock line for the fast bus mode.

2 GND Ground connection. Sets up a common

zero-potential between all connected

devices.

3 ATN Attention signal. Indentifies controller

commands•

4 CLK Clock line in the normal bus mode.

5 Data Data line in the normal bus mode.

6 Reset Computer reset signal. If the computer

is reset or turned on, all connected

peripheral devices will be reset via

this line.

The lines GND (pin 2) and Reset (pin 6) cannot be affected by the
computer system. GND is the ground potential of the computer. The
ground connections of the all the peripherals are tied together through this
lien, creating a unified OV potential because the differences will be
equalized. In this manner a logical 0 on all devices corresponds to the same

voltage.

141

Abacus Software 1571 Internals

The Reset line passes the pulse created on power-up or through the

reset button on to the peripheral devices. These then behave as if the result

pulse which arises when the peripheral is turned on had been created and

enter their initial states. If a device attached to the computer is turned on, no

pulse may be created on the line. There are some improperly constructed

devices here and there which do exhibit this behavior. This results in the

computer being reset if you turn on a device connected to the computer. A

tip: first turn on all peripherals you will need and then turn the computer on.

TTiis way you can be sure that all devices are in their proper initial states.

The remaining lines of the serial bus are controlled by the computer.

The computer is called the controller since it controls the action on the serial

bus. Since this communication usually takes place between the computer

and the peripheral, this is the normal case, but it is not necessarily so. Two

disk drives can exchange information with each other~the bus logic is not

confused as a result. Such transfers are not supported by the Commodore

operating system, however.

On the serial bus you must note that only one device may send data.

This device is called the talker. Several devices may listen at the same time,

and these are called listeners. The controller determines which device

functions as talker and which as listener.

Now you can understand why two computers cannot be attached to the

same peripheral device. In this case there would be two computers which

could both issue instructions at the same time regarding who may

communicate with whom-resulting in total chaos. In addition, there is a line
that may be controlled by only one computer.

The problem of connecting two computers does not lie with the bus
logic but with the software, i.e. the operating system. You could develop a
program which makes the computer appear like a peripheral device, and
could then be attached to another computer system.

A total of four lines are available for transferring data. Since the
procedures on the bus can be very complicated, we will use the process of
"stepwise refinement" in explaining them. This means that you will learn
first about the rough, fundamental relationships. Later we will investigate
the processes in more detail-down to the analysis of the schematic of the
bus electronics.

The central control of the bus procedures is assumed by the controller.
There is a special line, called ATN (attention), which is activated by the

142

Abacus Software 1571 Internals

controller when it wants to send a command to the peripheral devices. All

data sent while ATN is active (high state) are commands. These normally

consist of two bytes, whereby the first byte is constructed as follows:

Bits 0-4 : Device address of the device concerned

Bit 5 : 1= addressing as listener

Bit 6 : 1= addressing as talker

Bit 7 : 0= marker for primary address (1st command byte)

1= marker for secondary address

Bit 7 of the command byte indicates whether the byte is the first byte,

containing the primary address, or the second byte containing the secondary

address. When calling a device, the first command byte is sent first. Bits 5

and 6 specify if the device is to act as the talker or a listener. These two bits

therefore control whether the connected device will send or receive data.

Only one of the two bytes may ever be set since a device cannot send and
receive data at the same time.

Bits 0-4 of the primary byte specify the number of the device for which

the command is intended, which may lie between 0 and 30. For this reason

each device must follow the proceedings on the bus whenever the ATN line

is active to see if it is being addressed.

The device address 31 has a special function and serves to set up the

data transfer on the bus again. If this address is used, all peirpheral devices

reset their bus logic and end the current talker or listener functions. This

usually concerns only one device, the one the computer is communicating

with. It is also possible, however, for two peripherals to exchange data or

for several devices to be in the listener mode. In this case all devices are

reset by this device address. For this reset function bits 5 and 6 have the

same meanings as for normal device addresses. In this manner listeners and

talkers can be reset independently of each other, whereby these commands

then receive the designations unlisten and untalk.

In most cases, the addressing of the peripheral device does not suffice.

That's because you would usually like to control special functions of the

device, which is done through the secondary address. If a secondary

address is used, then a second control byte is sent in the ATN command

mode. This can be recognized since bit 7 is set. Bits 5 and 6 always have

the value 1 for the secondary byte. Bit 4 specifies if the secondary channel

is to be opened or closed. The number of the desired channel must be given

in bits 0-3.

143

Abacus Software 1571 Internals

Here is an overview of the various control bytes:

Control byte Function

OlOxxxxx Talker call

01011111 Untalk

OOlxxxxx Listener call

00111111 Unlisten

llllyyyy Open secondary address

lllOyyyy Close secondary address

OllOzzzz Send secondary address for listener

and talker operation

As you already know, every peripheral must analyze the command

bytes in the ATN mode to see if it is concerned by the command. What

happens if a device is busy? Imagine that the disk drive is formatting a disk

or that the printer is outputting a line at this moment. In this phase the

processor system of the peripheral device is busy with its work and has no

time to pay attention to the bus traffic.

For this reason a procedure called "handshaking" is used, with whose

help the data flow can be controlled. Just like you don't go storming into

your boss's office but knock on the door first and wait for "Come in," so

the bytes are not outputted on the until the computer makes sure that all the

devices are listening.

The control signals necessary for this are sent over the clock and data

line and have the following significance:

Data 0= all peripherals ready

1= peripheral(s) not ready

Clock 0= controller ready

1= controller is not sending data

The following happens if a device is to be addressed:

First the ATN line is activated, which signals that a command follows.

The controller then sets the clock line to the value 1 to indicate that the data

byte has not been sent yet. At the same time it places the value 0 on the data

line. Through electronic switching, the data line is automatically set to the

condition " 1" at every peripheral device.

144

Abacus Software 1571 Internals

Now the peripheral devices have time to prepare for the reception of the

control byte. If the peripheral is ready to process the control byte, then it

sets its data output back to the value 0. Once the last peripheral has reset its

data line, the level on the data line goes back to zero, which tells the

controller that all devices are ready.

The controller determines if anything is even connected at the start of

this addressing phase. It checks to see if the data line is set to the value 1

within one millisecond. This gives a peripheral device which doesn't have

automatic switching to set the data line enough time to react to the controller

call. If the data line is not set high, then the computer outputs the error

message "Device not present. "

When all peripheral devices are ready, the controller sets the clock like

to the 0 state. This is the signal for the connected devices that the transfer is

beginning. No more handshaking is done. The peripheral devices must all

be fast enough to process the data. A data bit is outputted on the data line

with each low pulse on the clock line. In the time span between the two data

bits the clock line assumes the condition 1, telling the connected devices that

they should indicate whether or not they received the data bit. To do this,

the talker, which in this case is the computer, sets the data line to the value

0. If the peripheral device received the data bit, it must tell the talker this by
outputting a high level on the data line. The talker notices only to the first

device which responds in this manner. If additional listeners are present, the

messages of these devices will be ignored. For the talker, it is interesting

only whether at least one listener is present or not. If the acknowledgement

of the data bit does not suceed, a "Time out" error message results in the
status byte of the computer.

The fundamental proceedings on the serial bus are not very
complicated, but you are still in no position to develop your own bus

control routines, expecially in 6502 machine language. You must first
become acquainted with the hardware of the serial bus.

If you use the operating system routines, the bus programming is not

difficult. There is a separate routine present for each bus function, like talk

or untalk, which need only be called in machine language. The parameters

for the bus call must be passed in some zero-page locations and the
processor registers.

145

Abacus Software 1571 Internals

Here is a list of the most important operating system routines, which are
identical on the VTC-20, C-64, and C-128:

Name Address Function/parameters

——————————————————————————————————————_———————————«.««.

Parameters in zero-page addresses which must always

be set:

$B8 Logical file number

$BA Device addrebs

$B9 Secondary address + control bits 4-7

$BB/$BC Address of the filename for OPEN

$B7 Length of the filename

OPEN $FFC0 Open data channel (as in BASIC)

CLOSE $FFC3 Close data channel (as in BASIC)

CKOUT $FFC9 Output character in A on the bus

CHKIN $FFC6 Get character from bus into A

TALK $FFB4 Call talker function

LISTEN $FFB1 Call listener function

SECTALK $FF96 Send secondary address after talk

SECLISTEN $FF93 Send secondary address after listen

UNTALK $FFAB Send untalk command

UNLISTEN $FFAE Send unlisten command

Assembly language programmers among you will not want to leave

anything to the operating system but will want to program everything

yourselves. You have probably already studied the layout of the

input/output components in the disk drive and the computer.

INPUT
i i i

. . BUS

OUTPUT

Notice that two different bits of the input/output port are used for the

same bus line. One bit serves for outputting the data and the other is set up

as an input. In order to understand what lies behind this peculiar set-up, we

must consult the schematic of the bus logic.

146

Abacus Software 1571 Internals

As you see, the two connections of the I/O component are connected to
the bus line via inverters. The inverter always outputs the precise opposite
of the signal fed into it. In this manner the levels on the serial bus always
have the opposite value as the bit in the input/output register.

The reason for this is technical in nature. It is not physically possible to
set a line to the 0 level and then output the value 1 on the line through
another output, such as the peripheral device. The line would never assume
the value 1 because the low level would function as a short-circuit.

The entire handling of the signals must therefore be inverted. If the line
is to have the value 0, the level 1 is outputted. This remains until some other
device set the level 0. This creates a short circuit and the voltage on the line
collapses. This then corresponds to the low level.

The devices which are connected to the serial bus always have one
output line and one input line. A specific level is placed on the bus through
the output line. If this is aft 1" level, so that the value 0 is outputted on the
bus (remember the inverter), it may occur that this is brought to the 0 state
by another device. For this reason each device has an input line with which
the actual bus level can be tested.

Basically this special hardware organization is not interesting for
programming, because the proper logical values will always be
electronically restored by the inverters. But unfortunately there is an
exception. This is the input at the computer, the C-64 or C-128. This input
has no inverter.

This must be taken into account when programming. If the values of the
bus inputs at the computer are to be read, they must always be inverted by
the program. If you are waiting for a certain level on a bus line, then you
must remember that you must actually wait for the opposite value.

The fact that the physical level is inverted in contrast to the logical value
always leads to confusion, especially in the ROM listings. Therefore always

look first for the routines which set the data or clock lines to a certain value.

You can then recognize if setting a line to the value 1 is commented with the

physical or logical level. In the DOS listing in this book the logical level is

always commented. Special care is urged with the ROM listings for the

C-64 or C-128. There it is usually overlooked that the inputs are not

inverted and so lie at the physical bus levels. This leads to comment

confusion which no longer has anything to do with the actual proceedings

on the serial bus.

147

Abacus Software 1571 Internals

As you know, the 1570/1571 can be operated in the fast bus mode. The

SRQ line is needed for this mode. This line carries the clock signals which

the CIA 6526 creates when outputting a data byte. The data register of the

receiving device is controlled by these clock signals.

The SRQ line is also used to determine if the peripheral device

concerned can be accessed in the fast bus mode. To do this the calling

device sends eight clock pulses on the SRQ line when the level on the data

line is reset, indicating that the receiver's readiness. These pulses set a flag

in the interrupt register of the computer. When the controller recognizes the

resetting of the data line, it checks at the same time to see if the flag in the

interrupt register is set. The bus controller then knows that the device can be

operated in the fast bus mode. In this case the controller sends eight clock

pulses over the SRQ line when setting the clock signal. This tells the

peripheral device that it is supposed to send or receive data in the fast bus

mode.

In the fast mode, the data bits and clock bits are not inverted, because

they are not processed by the CIA. Only the actual data transfer is

performed in the fast bus mode. A byte is transferred in exactly 64

microseconds, which would make a transfer rate of 15,625 bytes per

second possible.

But as you might have already noticed, just 3500 bytes are loaded in the

fast mode. This is the fault of the management routines in the disk drive and

computer, neither of which is very well-written and therefore slow down

the transfer.

This was also the case with the C-64. The transfer algorithm of the

C-64 bus is capable of sending or receiving at up to 1200 bytes per second.

The management routines of the operating system slow the bus speed down

to a meager 400 bytes per second.

This is why saving programs on the C-128 is no faster than on a C-64,

although the fast bus is used. It is irrelevant whether or not data can be

transferred in a millisecond or a few microseconds if the operating system
can accept only one byte every 2.5 milliseconds.

The fast-load systems are faster only because the management time
(open file, manage pointers,...) is drastically reduced.

Theoretically it is even possible to realize bus transfers at up to 60,000
bytes per second with the C-128's fast bus hardware.

148

Abacus Software 1571 Internals

+5V

DATA

PIN5 o

PA6/

VIA1

SP/CIA1 PBO/VIA1 PB1/VIA1

PB4/VIA1

CA1/VIA1

PB3/VIA1

PB2/VIA1

149

Abacus Software 1571 Internals

SQR

PINt-

UU U19

12.

FE1

.PA6/

VIA1

FE2

U19

CNT/CIA1

ATN

DATA

U16

PB4/VIA1

PA5A/IA1

U15

CA1A/IA1

PB7A/IA1

U15

PIN 3

150

Abacus Software 1571 internals

5.2.7 The stepper motor

The stepper motor is a special device. A normal motor starts to run as
soon as it is supplied with current. An example of a motor of this type is the
drive motor which rotates the diskette.

This drive motor has a tacho-generator on its axle, a small component
which determines the rotation count of the motor. The current supply of the
drive motor is controlled with this measurement so that the motor runs at a
constant speed.

The stepper, on the other hand, is a special motor which is controlled
not by a steady current but by pulses. The motor moves an exact amount
each time it receives a pulse. For the stepper motor in the C-1570/71 this is
exactly 1.8 degrees. This means that after exactly 200 pulses the motor has
completely exactly one revolution.

The rotation angle of a stepper motor is called a step, which makes the
nomenclature more understandable. Each pulse moves the motor one step.
The advantage of a stepper motor is that it can be rotated both forwards and
backwards. The rotation direction is controlled by the signals STPO and
STP1 on the 1570/1571. These two bits must be seen as a 2-bit value. If
one increases the value, the motor moves so that the head travels toward the
outside, while if this value is decreased, the head moves to the inside.

On the 1570/1571 the head is moved one track by two steps. These step
pulses may not follow each other too closely, of course, since the stepper
motor needs a certain time in which to make each step. As you have

certainly noticed, the head moves much faster in the 1571 than it does in the
1541 mode.

Since the clock frequency is twice as high in the 1571 mode, the step
pulses are also created twice as fast. When experimenting with the stepper

programming, you should proceed very carefully, and preferably use the
operating system routines.

151

CHAPTER 6

(THE DISK OPERATING SYSTEM (DOS))

6.1 The DOS routines

6.2 1570/1571 ROM listing

6.3 1571 DOS Reader

Abacus Software 1571 Internals

6.1 The DOS routines

6.1.1 The DOS - An introduction

First a little history. The grandfather of 1571 DOS was the operating
system of the CBM 4040 double disk drive. The CBM 4040 had a
microcomputer controller with two processors. One processor was
responsible for managing data and the other for controlling the drives. This
division of labor was intended to make the system faster.

When the VIC-20, Commodore's first home computer, appeared on the
market, it naturally had to have a compatible disk drive. It would have been
costly to develop a completely new system—and it didn't make sense to
reinvent the wheel when the capable CBM 4040 disk drive was available. A
control circuit using one processor for a single disk drive was developed.
The software of the 4040 drive was simply modified. The disk management
routines were the same as those on the 4040. But the new single drive
lacked the second processor for drive control. As a result, the processor of
the VIC-1540 disk drive also had to take over the tasks of the control
processor. This decreased the speed of the VIC-1540 drive.

The DOS in the VIC-1541 is almost identical to that in the VIC-1540.
Only the bus routines were changed, since the C-64 has a slightly lower
clock frequency than the VIC-20 which decreases the bus controller
somewhat.

The 1571 DOS consists of 16K of ROM of the VIC-1541 and an
additional 12K ofnew operating system components. Once again timeliness
won out and Commodore simply expanded and adapted the existing DOS
version again. The fact that the performance of the disk drive has not
improved much is obvious.

Beyond this, the 1571 DOS V3.0 perfects chaos itself. This DOS
contains a management section which was intended for two drives and a
multi-processor system. This includes drive management that was intended
for multi-processor operation but can control only one drive.

This section of the 1541 ROM was copied for use in the 1571 ROM in
its entirety. Only a few routines were modified. New program sections,
such as those to manage the second side of the diskette, were simply

155

Abacus Software 1571 Internals

inserted. This also includes a new drive controller routine, called a job loop.

In addition to the 1541 ROM, a whole set of new functions was

implemented, which in particular handle the control of the WD 1770

controller.

All told, the 1570/71 DOS consists of a hodge-podge of program

fragments simply grouped together. The sad part is that as a result the disk

drive is not very powerful or efficient, although it offers many technical

possibilities. The slow transfer and load rates are not the fault of any bus

procedures, but are the product of the slow DOS management alone.

6.1.2 The most important DOS routines

The DOS consists of a myriad of different routines. Many of these you

cannot use because they were intended as subroutines. Here is a short list of

some interesting ROM routines:

$8162 Switch 1571 bus electronics to input.

$81CE Switch 1571 bus electronics to output.

$85F9 Output byte on 1571 bus.

The byte must be stored in $46.

$864B Execute job.

$F9 must contain the number of the buffer for the job

is to be performed. The job table $00-$05 contains

the job code. After execution of the job, X and A

contain the return code of the job loop. If an error

occurs during execution, the routine tries to execute

the job again

$8764 Turn on drive motor.

$8770 Turn off drive motor.

$877C Turn drive LED on.

$878B Turn drive LED off.

156

Abacus Software 1571 Internals

$883C Get error message from WD 1770.

A and X contain the error code.

$884E Pass command in A to the WD 1770 command register.

$8861 Wait for the WD 1770 to execute the command.

$89EF Reset head to track 0.

$89FD Test write protect A= $10: no write protect

A= $00: write protect active

$9032 Switch to 1541 mode.

$904E Switch to 1571 mode.

$93F3 Activate head on current disk side.

C=0: side 1 C=l: side 2

$98D9 Convert 5 GCR bytes to 4 binary bytes.

$F6D0 Convert 4 binary bytes to 5 GCR bytes.

$FE00 Switch head to read.

$FE0E Erase track (write with $55).

157

Abacus Software 1571 Internals

6.1.3 The zero-page

The zero-page is the memory area $0000 to $00EF, which can be

accessed especially quickly by certain 6502 machine language instructions.

For this reason, important parameters and data which the DOS requires are

stored here.

The addresses $00 to $11 have a special significance. These memory

locations are used to pass commands and parameters to the job loop, which
controls the disk drive. A memory location which stores the command for

the action to be performed is reserved for each buffer. The job loop returns

a message in this memory location which tells whether the command was

performed without error or not.

A large section of the zero-page is used for the management of files.

Since the DOS is based on a two-drive system, a good deal of space is

reserved for the second drive, which isn't even present.

Some zero-page locations contain constants important for the operation

of the disk drive. These include:

57 $39 Marker for data block (8)

104 $68 Flag for the initialization method

10 6 $6A Number of read attempts

These memory locations are initially set when the disk drive is turned

on. After this the DOS always works with the values stored in these

addresses. If, for example, you change the marker for a data block and then

format a diskette in this manner, it cannot be read later with the normal

marker. Another possibility is to define the number of read attempts as well

as the behavior of the disk drive in the event of read errors in address $6A.

Appendix C contains the complete zero-page listing. So you donft have

to hunt through the whole book to find it, we have placed it near the end of

the book.

158

Abacus Software 1571 Internals

6.1.4 DOS V3.0 in detail

As we mentioned in Section 6.1.1, parts of the DOS are intended for
double drive or multi-processor operation. But since it runs on a system

with just one drive and one processor, the capabilities of the system are

vastly underused. Furthermore, the management required for two drives is
more extensive than that required for one, so the 1571 requires additional

processing time without needing it

The style of buffer management is an especially notable leftover from

the 4040 double drives. One, two, or even three buffers are required per file

depending on the type.

Since the disk drive can manage up to 5 files at a time, each file is
assigned an internal channel. This channel is, in turn, assigned the required
buffers. Beyond this there are tables which contain information about which

buffers are currently needed, which data have not been processed yet, and

so on.

As you see, an enormous amount of management work is necessary for

even the smallest disk access, greatly reducing the speed of the 1571.

When working with the DOS, you might want to keep its history in

mind. We emphasize that it was not developed in one pass, but arose from

versions of the preceding disk drives modified for the new drive.

This DOS version has been changed, expanded, and extended three or

four times. This increases the error rate, the amount of unnecessary

management work, and above all, reduces the performance of the disk

drive.

159

Abacus Software 1571 Internals

6.1.5 Errors in the DOS

Naturally, the development of an operating system is not without error.

Errors have struck the 1570/1571 as well. This concerns some functions
and commands which do not operate in the desired manner, such as the
block-allocate command, the replace function, and so on.

In addition, there are some locations at which the ROM contains

commands which make no sense. The largest group are the assembler
instructions which do not make any sense, or are superfluous. The
following addresses, among others, contain such constructions:

$85DA $9396 $9690 $A605 $E853 $E9DA $EAA7 $F258 $FF13

Some other DOS locations are erroneous. These errors are often so

slight that they do not immediately make themselves known in a disk-drive

system crash. Here is a short list of some mysterious DOS locations:

$8056:

$8124/$826F:

$BF57/BF75:

$E69B:

Here some flags are masked out of $37 which do not have

any control function. This indicates that the wrong flags

are being masked, whereby the instruction should read

"AND $BE".

Here the flag for the real-time clock is activated (which is

not even used in the DOS.) Since this action occurs in

connection with the bus actions, it raises the suspicion that

the nearby flag for the serial input/output register is

intended.

This is a jump to a location where no program exists.

In this routine the SED command is used without disabling

the interrupts. As a result, the job control loop will be

called while the BCD arithmetic is activated. The fact that

the proper control parameters will not be calculated should

be obvious.

160

Abacus Software 1571 Internals

6.2 1570/1571 ROM listing

6.2.1 Listing comments

The ROM listing in Appendix A of this book differs from many other
ROM listings in several respects. You may have noticed the curious

superscripted C1) numbers following some memory addresses, or you may
have wondered what the numbers in square brackets ([]) mean. These

involve a cross reference.

The specifications about each ROM routine, enclosed in square
brackets, name all locations in ROM which call this routine. If another
location in the routine jumped to, this entry address will be named, followed
by a colon. The address of the calling point is then given. Here are some

examples:

[1234/5678] This ROM routine called from 1234 and 5678.

[EEEA:1652] The address EEEA in the ROM routine is

called from 1652.

[5527:78ED,5652] The address 5527 is called from 78ED and

5652.

In addition to these cross references, comments are often given when

the location is called via a vector or a program routine. Also, the comment

"Routine not used" occurs from time to time. Furthermore,

comparison addresses are given for some routines, in the form

11 cmp 12 3 4!t for example. These indicate that the same routine or a routine
which performs the same function occurs at a different location in ROM.

You should follow these references with interest in any event. If two
identical routines are present, they are usually not commented identically.

This way you can work with both versions of comments and therefore have

a better, more comprehensive explanation of the ROM routine.

Another type of cross reference is the superscripted numbers which

appear after some addresses. These indicate that this address is called. This

usually involves a relative jump instruction. This means that the locations

from which these addresses are called appear 128 bytes before or after the

address, which corresponds roughly to a page backward or forward. The

number indicates how many such references exist. If you still cannot find an

entry point, it may be that the data for this address are given in the header in

the square brackets. Always check the header first.

161

Abacus Software 1571 internals

Why are these cross references necessary? Take a look at address
$93F3 in the ROM listing. A routine with a branch instruction is found at
this address. It's necessary to determine what value the carry flag had when
the routine was called. The specified addresses [895C, 9371 and 9B41]
indicate the locations from which the routine $93F3 is called. From here
you can determine what value the carry flag had.

In addition, these cross references indicate which routines are used
often. You can also tell that half of all DOS routines are called only once.
Basically this does not involve subroutines, but program sections. The
superscripted cross references usually have the value 1. But these cases are
not particularly interesting. You should direct your attention to locations
which are called from more than one point. In this manner you can
understand the flow of a routine more quickly.

In conclusion, a few words about the comments themselves. An attempt
was made to comment all of the lines in the ROM listing. For some
locations this was not very interesting, since it's hard to write exciting
comments when the program itself is not exciting. At other locations a
single line did not suffice to explain the routine. In these cases a small
section with detailed explanations is often included.

162

Abacus Software 1571 Internals

6.3 1571 DOS Reader

The following short program allows you to read sections of the
1570/1571 DOS into the C-128 memory. You may then examine or modify
the machine language routines using the C-128's built in machine language
monitor. Input is done in hexadecimal and the contents ofDOS memory are
transferred to the same locations in C-128 memory. Some areas of the DOS
will have to be transferred into different memory locations or banks in the
C-128 so that memory conflicts do not occur. This is accomplished by

changing the value of variable A in line 140 (POKE (A-VALUE)).

10 PRINT CHR$(147)"1571 ROM READER TO C-128

MEMORY":PRINT

20 OPEN 1,8,15

30 INPUT "STARTING ADDRESS";A$

40 A = DEC(A$)

50 INPUT "ENDING ADDRESS ";B$

60 B = DEC(B$)

70 HI = INT (A/256)

80 LO = A-256*HI

90 PRINT#1,"M-R"/CHR$(LO);CHR$(HI)

100 REM READ DOS MEMORY

110 GET#1,A$
120 PRINT CHR$(19)CHR$(17)CHR$(17)CHR$(17)CHR$(17)

"CURRENT ADDRESS ";HEX$(A)

130 IF A = B THEN 170

140 POKE A,ASC(A$)

:REM BANKlrPOKE A,ASC(A$):BANK 15: REM BANK 1

150 A = A+l

160 GOTO 80

170 MONITOR

163

Appendices j

Appendix A The 1571 ROM listing

Appendix B The 1570 DOS (1571 Revisions)

Appendix C 1571 Zeropage

Appendix E Overview of Disk Errors

Abacus Software
1571 Internals

AppendixA

1571 DOS Listing

(ROM Version 03)

8000 92 25
ROM checksum [used: 929D/92A4]

Author acknowledgement

8002 53 2F 57 20 2D 20 44 41

800A 56 49 44 20 47 20 53 49

8012 52 41 43 55 53 41 0D 48

801A 2F 57 20 2D 20 47 52 45

8022 47 20 42 45 52 4C 49 4E

802A 0D 31 39 38 35 0D

S/W - DAVID G

SIRACUSA

H/W - GREG

BERLIN

1985

[CB63/806D:Vectors 80BE,80C0,80C6,80C8]

Routine for User-0-command('U0')

8030

8033

8035

8037

803A

803C

803E

803F

8040

8041

8044

8046

8049

804B

804D

804F

8052

8054

80561
8058

805A

805C

805F

8062

80651

8067

8069

806B

AD 74 02

C9 03

90 2E

AD 02 02

85 3B

29 IF

AA

0A

A8

B9 8E 80

85 75

B9 8F 80

85 76

E0 IE

F0 07

AD OF 18

29 20

F0 OF

A5 37

29 EB

85 37

BD 6E 80

8D 02 02

6C 75 00

A9 EA

85 6B

A9 FF

85 6C

806D4 60

LDA $0274 Get length of command string and

CMP #$03 test against smallest cmnd length

BCC $8065 Is the command less than 3 chars?

LDA $0202 NO, then get and note

STA $3B command number

AND #$1F Limit number to range of 0-31 and

TAX mask control flag

ASL A Double value (2-byte pointer in

TAY table) and set as pointer

LDA $808E,Y Get and set low-byte of above

STA $75 routine

LDA $808F,Y Take up high-byte of address

STA $76 in pointers $75/$76

CPX #$1E check against 1541 status command

BEQ $8056 Should a new command be executed?

LDA $180F NO-Get flag for 1571/1541 range

AND #$20 and test it

BEQ $8065 Is drive in 1571 mode?

LDA $37 YES- [Error; see 7.1.5]

AND #$EB [useless bitflags will be]

STA $37 [masked out]

LDA $806E,X Set jobcode of equivalent

STA $0202 disk controller command

JMP ($0075) Call routine

LDA #$EA Set pointer for

STA $6B table of 1541

LDA #$FF user command

STA $6C to $FFEA

RTS Return from subroutine

ROM-l

Abacus Software
1571 Internals

[805C] Jobcodes to command routines

806E 80 81 90 91 BO Bl F0 Fl BitO = Drive number

8076 00 01 B0 01 00 01 00 01 Bitl-7 : $80 = Read / $90 = Write

807E 80 81 90 91 B0 Bl F0 Fl $B0 = Look for sector/$F0=Format

8086 00 01 B0 01 00 01 00 80 $00 = No job (Other function)

[8041] Addresses cf command routines w/

Command number:

BitO : Drive (0/1)

'UserO'

808E

8090

8092

8094

8096

8098

809A

809C

809E

80A0

80A2

80A4

80A6

80A8

80AA

80AC

80AE

80B0

80B2

80B4

80B6

80B8

80BA

80BC

80BE

80C0

80C2

80C4

80C6

80C8

80CA

80CC

71

7F

EC

F8

8B

7F

B7

B7

Fl

Fl

17

7F

6B

7F

A5

A5

71

7F

EC

F8

8B

7F

B7

B7

6D

6D

17

7F

6D

6D

E5

80

Bitl-3

Bit 4

83

83

83

83

84

83

84

84

84

84

85

83

85

83

85

85

83

83

83

83

84

83

84

84

80

80

85

83

80

80

8F

90

: function

: Diskette side

0 ,

1 ,

2 ,

3 ,

4 ,

5 >

6 t

1 t

8 /

9 y

10 /

11 /

12 /

13 /

14 /

15 /

16 /

17 /

18 /

19 /

20 /

21 /

22 /

23 /

24 /

25 /

26 /

27 /

28 /

29 /

30 /

31 /

/ 00

/ 01

/ 02

/ 03

1 04

f 05

1 06

f 07

f 08

' 09

' 0A

' 0B

' OC

' 0D

' OE

' OF

' 10

' 11

' 12

' 13

' 14

' 15

' 16

' 17

' 18

' 19

' 1A

' IB

' 1C

' ID

' IE

' IF

(0/1)

$8371

$837F

$83EC

$83F8

$848B

$837F

$84B7

$84B7

$84F1

$84F1

$8517

$837F

$856B

$837F

$85A5

$85A5

$8371

$837F

$83EC

$83F8

$848B

$837F

$84B7

$84B7

$806D

$806D

$8517

$837F

$806D

$806D

$8FE5

$9080

Read CP/M sector

Error:'Drive Not Ready1

Write CP/M sector

Error:'Drive Not Ready1

Read CP/M sectorheader

Error:'Drive Not Ready1

Format CP/M diskette

Format CP/M diskette

Get/set CP/M sector set-up

Get/set CP/M sector set-up

Determine CP/M sector seq.

Error:'Drive Not Ready'

Get/set cmmand-status byte

Error:'Drive Not Ready'

Display 'Syntax Error(31)'

Display 'Syntax Error(31)'

Read CP/M sector

Error:'Drive Not Ready'

Write CP/M sector

Error:'Drive Not Ready'

Read CP/M sector header

Error:'Drive Not Ready1

Format CP/M diskette

Format CP/M diskette

No function (rts)

No function (rts)

Determine sector sequence

Error:'Drive Not Ready'

No function (rts)

No function (rts)

Execute 1571 status comand

Load file over 1571 bus

ROM-2

Abacus Software 1571 Internals

[A7BA]

Take command

80CE

80CF

80D1

80D3

80D5

80D7

80D9

80DA

80DD

80DF

80E1

80E3

80E6

80E9

80EC

80EE

80F11
80F4

80F6

80F8

80FA1

80FD

80FF

8101

8103

8105

8107

8109

810B

810D1

810F

8111

8113

8115

8117

8119

811B1
811E1

8120

8122

8124

8126

8128

812A

78

A9

85

85

85

A2

9A

20

A9

85

85

20

20

AD

09

8D

AD

10

29

DO

20

C9

DO

A5

29

85

A9

85

FO

C9

DO

A5

29

85

A9

85

4C

C5

DO

A9

85

A9

85

FO

00

7C

79

7A

45

B2

80

F8

7D

B7

A5

00

10

00

00

64

04

F7

CA

3F

OC

37

BF

37

00

79

OE

5F

OD

37

BF

37

00

7A

92

78

OA

01

7A

00

79

29

from

81

E9

E9

18

18

18

82

81

serial bus

SEI

LDA

STA

STA

STA

LDX

TXS

JSR

LDA

STA

STA

JSR

JSR

LDA

ORA

STA

LDA

BPL

AND

BNE

JSR

CMP

BNE

LDA

AND

STA

LDA

STA

BEQ

CMP

BNE

LDA

AND

STA

LDA

STA

JMP

CMP

BNE

LDA

STA

LDA

STA

BEQ

#$00

$7C

$79

$7A

#$45

$81B2

#$80

$F8

$7D

$E9B7

$E9A5

$1800

#$10

$1800

$1800

$815A

#$04

$8OF1

$82CA

#$3F

$810D

$37

#$BF

$37

#$00

$79

$811B

#$5F

$811E

$37

#$BF

$37

#$00

$7A

$8192

$78

$812C

#$01

$7A

#$00

$79

$8155

(ATN encountered)

Disable bus/controller interrupt

Clear pointer and flags :

Receive flag for ATN from bus

Flag for Listen

Flag for Talk

Stack pointer

initialization

Switch 1571 bus for input

Set flag for last char (EOI = End

of Information)

Clear flag for 'ATN observed1

Clock output to low

Data output to high

Get bus control register and

set ATN output

to high

Check ATN input

Is ATN set?

YES— Get clock input

Is clock set?

NO-Get command byte from bus

Compare with value for 'Unlisten1

Should Listener complete work?

YES-Get bus control flag

and set flag for

■1541-bus mode1

Clear flag for

Listen

Jump to $811B

Compare with value for 'Untalk1

Should Talker finish its work?

YES—Get bus control flag

and set Flag for

11541-bus mode1

Clear Flag for

Talk

Wait until ATN-mode is available

Compare w/device address for Talk

Is Talk addressed?

YES-Set flag for

'Talk receive1

Clear Flag for

Listen

Jump to $8155

ROM-3

Abacus Software 1571 Internals

812C1

812E

8130

8132

8134

8136

8138

813A1

813B

813D

813F

8141

8142

8144

8146

8148

814A

814C

814E

8150

8151

8154

81552

[A9B3]

8158

815A3
815C

815E

8161

8163

8166

8168

816A

816C

816E

81711

8174

81771

8179

817B

817E

8181

8184

8187

818A1

818D1

C5

DO

A9

85

A9

85

FO

AA

29

C9

DO

8A

85

29

85

A5

29

C9

DO

58

20

78

2C

77

OA

01

79

00

7A

IB

60

60

4C

84

OF

83

84

FO

EO

42

CO

00

DA

18

Steer bus

30

A9

85

AD

29

8D

A5

FO

24

50

20

20

4C

A5

FO

20

20

20

20

20

4C

A9

AO

00

7D

00

EF

00

79

OD

37

03

99

42

6B

7A

OF

9C

AE

83

EA

83

66

10

18

18

81

83

83

E9

E9

A4

81

A4

83

CMP

BNE

LDA

STA

LDA

STA

BEQ

TAX

AND

CMP

BNE

TXA

STA

AND

STA

LDA

AND

CMP

BNE

CLI

JSR

SEI

BIT

to

BMI

LDA

STA

LDA

AND

STA

LDA

BEQ

BIT

BVC

JSR

JSR

JMP

LDA

BEQ

JSR

JSR

JSR

JSR

JSR

JMP

LDA

$77

$813A

#$01

$79

#$00

$7A

$8155

#$60

#$60

$818D

$84

#$0F

$83

$84

#$F0

#$E0

$8192

$DAC0

$1800

ATN command

$80FA

#$00

$7D

$1800

#$EF

$1800

$79

$8177

$37

$8171

$8199

$8342

$836B

$7A

$818A

$E99C

$E9AE

$A483

$81EA

$A483

$8366

#$10

Compare w/ device addr for Listen

Is Listen addressed?

YES-Set Flag for

'listen received1

Clear flag for

Talk

Jump to $8155

Mark ATN-command

Isolate cntrl bits/Talk & Listen

& test against value f/'both set1

Will channel # be transmitted?

YES—Repeat and set

original secondary address;

Establish and set number of

abovementioned disk channel;

Get orig/2ndary addr(ATN-command)

and isolate command bits

Is Bit7 (Open/Close) also set?

Should the channel be closed?

YES—Enable bus/controler interupt

Close channel&close current files

Disable bus/controller interrupt

Test ATN input

Is ATN still set?

NO-Clear flag for

'ATN active1

Get bus control register

and clear ATN output

again

Get flag for Listen

Is the bus in Listener mode?

NO-Test bus control flag

Is bus in 1571 mode?

YES-Send DRF code

Take data from bus to

command waitloop

Get flag for talk

Is the bus in Talker mode?

Set Data output to low

Set Clock output to high

approx. 80 cycle delay

Give data over bus after talk

approx. 80 cycle delay

to command waitloop

Set ATN output to high

ROM-4

Abacus Software 1571 Internals

818F 8D 00 18

81923 2C 00 18

8195 10 C3

8197 30 F9

STA $1800

BIT $1800

BPL $815A

BMI $8192

Set Data and Clock to low

Test ATN

Is ATN set?

YES-Wait til ATN is cleared again

[816E/81A1]

Send DRF (Device

8199 20 59 EA

819C 20 CO E9

819F 29 04

81A1 DO F6

81A3 20 CE 81

81A6 A9 00

81A8 8D 0C 40

81AB A9 08

81AD1 2C 0D 40

81B0 F0 FB

Request Fast) to computer (fast bus mode)

JSR $EA59 Check for ATN command mode

JSR $E9C0 Read bus reg. by constant values

AND #$04 and isolate Clock input

BNE $8199 Is Clock set?

JSR $8ICE NO-Switch 1571 to output

LDA #$00 DRF Signal

STA $400C in serial output register

LDA #$08 Bitflag for serial register empty

BIT $400D Get output status

BEQ $81AD Is data byte transferred?

[80DA/836B/846D/8591/8EAC/A61F/A7AD]

Switch 1571 bus

81B2 08

81B3 78

81B4 AD 0E 40

81B7 29 BF

81B9 8D 0E 40

81BC AD OF 18

81BF 29 FD

81C1 8D OF 18

81C4 A9 84

81C6 8D 0D 40

81C9 2C 0D 40

81CC 28

81CD 60

to input

PHP Retain processor status

SEI Disable bus/controller interrupt

LDA $400E YES—Get control register

AND #$BF Switch serial connection

STA $400E to input

LDA $180F Set control bit for

AND #$FD 1571 bus turn to

STA $180F input mode

LDA #$84 [Error; see 7.1.5]

STA $400D [Real-time clock not used]

BIT $400D Reset last interrupt flag

PLP Reset processor status

RTS Return from this subroutine

[81A3/8394/8461/84F6/8533/8582/8E93/8E9A/9080]

Switch 1571 bus

81CE 08

81CF 78

81D0 AD OF 18

81D3 09 02

81D5 8D OF 18

81D8 AD 0E 40

81DB 09 40

81DD 8D 0E 40

81E0 A9 08

81E2 8D 0D 40

81E5 2C 0D 40

to output

PHP Retain processor status

SEI Disable bus/controller interrupt

LDA $180F Set control bit for

ORA #$02 1571 bus direction to

STA $180F output mode

LDA $400E Switch serial register

ORA #$40 to

STA $400E output

LDA #$08 Limit interrupt from

STA $400D 'byte input/output1

BIT $400D Clear flag from last interrupt

ROM- 5

Abacus Software 1571 Internals

81E8 28

81E9 60

PLP

RTS

Set processor status again

Return from this subroutine

[8184] (

Output file

81EA

81EB

81EE

81F01

81F2

81F4

81F61

81F71

81FA

81FD

81FF

8200

8203

8204

82061

8209

820C

820E

8210

8212

8214

8216

82182

821B

821E

8220

82221

8225

8228

822A

822C2

822F

8232

8235

8237

8239

823B

78

20

B0

A6

B5

30

60

20

20

29

08

20

28

F0

20

20

29

DO

A6

B5

29

DO

20

20

29

DO

20

20

29

FO

20

20

20

29

DO

24

50

EB

06

82

F2

01

59

CO

01

B7

12

59

CO

01

F6

82

F2

08

14

59

CO

01

F6

59

CO

01

F6

AE

59

CO

01

F3

37

39

E909

data

DO

EA

E9

E9

EA

E9

EA

E9

EA

E9

E9

EA

E9

over bus (1571

SEI

JSR

BCS

LDX

LDA

BMI

RTS

JSR

JSR

AND

PHP

JSR

PLP

BEQ

JSR

JSR

AND

BNE

LDX

LDA

AND

BNE

JSR

JSR

AND

BNE

JSR

JSR

AND

BEQ

JSR

JSR

JSR

AND

BNE

BIT

BVC

$D0EB

$81F6

$82

$F2,X

$81F7

$EA59

$E9C0

#$01

$E9B7

$8218

$EA59

$E9C0

#$01

$8206

$82

$F2,X

#$08

$822C

$EA59

$E9C0

#$01

$8218

$EA59

$E9C0

#$01

$8222

$E9AE

$EA59

$E9C0

#$01

$822C

$37

$8276

mode)

Disable bus/controller interrupt

Determine internal channel number

Has channel been found?

YES-Get number of channel

Determine appropriate bus status

Channel active?

NO—Return from this subroutine

Test for ATN command mode

Get constant value/bus cntrl reg

and test for Data input

Mark result

Set Clock output for high

Repeat status of Data line

Is Data set?

YES-Test for ATN command mode

Get value—bus control registers

and get status of data input

Is data still set?

NO-Get number of current channel

and get corresponding bus status

Test EOI (End of Information)flag

Is last byte being transferred?

NO-Check with ATN command mode

Get value of bus control register

& determine status of Data input

Is Data set?

NO-Check against ATN command mode

Get val from bus control register

and test status of Data input

Is Data set now?

YES-Set Clock output to high

Test for ATN command mode

Get val from bus control register

and isolate Data input

Is Data set?

NO-Test flag for bus mode

Is Bus in 1571 mode?

ROM- 6

Abacus Software 1571 Internals

Output

823D

8240

8242

8245

8248

824A

824D

8250

8252

8255

82581

825B

825D

825F

82 62

8264

8267

82 6A

82 6C

82 6F

8271

8274

byte

AD OF

09 02

8D OF

AD OE

09 40

8D OE

2C OD

A6 82

BD 3E

8D OC

AD OD

29 08

FO F9

AD OE

29 BF

8D OE

AD OF

29 FD

8D OF

A9 84

8D OD

DO 3C

over

18

18

40

40

40

02

40

40

40

40

18

18

40

1571

LDA

ORA

STA

LDA

ORA

STA

BIT

LDX

LDA

STA

LDA

AND

BEQ

LDA

AND

STA

LDA

AND

STA

LDA

STA

BNE

bus

$180F

#$02

$180F

$400E

#$40

$400E

$400D

$82

$023E,X

$400C

$400D

#$08

$8258

$400E

#$BF

$400E

$180F

#$FD

$180F

#$84

$400D

$82B2

YES-1571 bus circuitry

switched to

output mode (Bit 1=1)

Turn serial

output register

to output

Reset interrupt register

Number of current channel

Get data byte/channel to transfer

and get status of output

register;

See if output register is empty

Is byte transferred?

YES-Switch serial register

to an

input register

Bus circuitry back

to input

mode (Bitl =0)

[Error—see 7.1.54]

[Real-time clock not used here]

Jump to $82B2

Output byte over

82761

8278

827A1

827D

827F

82811
8283

8286

8287

828A

828C

828F

82911
82941
8297

8299

82 9B

82 9E

82A1

82A4

82A6

82A8

A9 08

85 98

20 CO E9

29 01

DO 43

A6 82

BD 3E 02

6A

9D 3E 02

B0 05

20 A5 E9

DO 03

20 9C E9

20 7E A4

A5 23

DO E6

20 83 A4

20 B7 E9

20 7E A4

A5 23

DO 03

20 83 A4

1541 bus

LDA #$08 Set number of bits per byte

STA $98 in counter

JSR $E9C0 Get bus control register and

AND #$01 check Data input

BNE $82C4 Is Data set?

LDX $82 NO-Get current channel number and

LDA $023E,X determine appropriate data byte

ROR A Take a bit from there & mark the

STA $023E,X remainder of the byte

BCS $8291 Is Bit at 1?

JSR $E9A5 NO-Set Data output to high

BNE $8294 Jump to $8294

JSR $E99C Switch Data output to low

JSR $A4 7E approx. 45 cycle delay

LDA $23 Flag for 1541/1540 bus delay

BNE $8281 Is bus in 1541 mode?

JSR $A483 YES—approx. 80 cycles delay

JSR $E9B7 Set Clock output to low

JSR $A47E approx. 45 cycle delay

LDA $23 Flag for 1541/1540 bus delay

BNE $82AB Is bus in 1541 mode?

JSR $A483 YES—approx. 80 cycle delay

ROM- 7

Abacus Software 1571 Internals

82ABX

82AE

82B0

82B22

82B5

82B8

82BA

82BC

82BD

82C0

82C1

82C41

20

C6

DO

20

20

29

FO

58

20

78

4C

4C

FB

98

C8

59

CO

01

F6

AA

FO

62

FE

EA

E9

D3

81

83

JSR

DEC

BNE

JSR

JSR

AND

BEQ

CLI

JSR

SEI

JMP

JMP

$FEFB

$98

$827A

$EA59

$E9C0

#$01

$82B2

$D3AA

$81F0

$8362

Set Clock on high and Data on low

Counter for bits transferred

Is byte transferred?

YES-Test for ATN command mode

Get bus control register and

take up DATA input

Is Data set?

YES-Enable bus/controler interupt

Read next byte from file

Disable bus/controller interrupt

get ready for output again

Back to command wait loop

[8358]

Read command byte from 1571 bus

82C7

82CA

82CC

82CE1

82D1

82D4

82D6

82D8

82DB

82DD1

82E0

82E2

82E51

82E8

82EB

82ED

82EF

82F2

82F4

82F6

82F81

82FB

82FD1

82FE

8300

83031

8306

8309

830B

830D

830F

83113

2C

A9

85

20

20

29

DO

20

A9

2C

DO

8D

20

AD

29

DO

20

29

F0

DO

20

A2

CA

DO

20

20

20

29

F0

A9

85

AD

0D

08

98

59

CO

04

F6

9C

01

00

FB

05

59

0D

40

09

CO

04

EF

19

A5

18

FD

9C

59

CO

04

F6

00

F8

00

40

EA

E9

E9

18

18

EA

18

E9

E9

E9

EA

E9

18

BIT

LDA

STA

JSR

JSR

AND

BNE

JSR

LDA

BIT

BNE

STA

JSR

LDA

AND

BNE

JSR

AND

BEQ

BNE

JSR

LDX

DEX

BNE

JSR

JSR

JSR

AND

BEQ

LDA

STA

LDA

$400D

#$08

$98

$EA59

$E9C0

#$04

$82CE

$E99C

#$01

$1800

$82DD

$1805

$EA59

$180D

#$40

$82F8

$E9C0

#$04

$82E5

$8311

$E9A5

#$18

$82FD

$E99C

$EA59

$E9C0

#$04

$8303

#$00

$F8

$1800

Reset interrupt register

Determine # of bits to transfer

per byte

Test for ATN command mode and

read bus control register

Test Clock input

Is Clock set?

NO-Set Data output to high

Test Data input in

bus control register

Is Data still set?

Set Timer 1 (highbyte) (1)

Test for ATN command mode

Test interrupt flag for

'Timer 1 running1

Have 256 time-cycles passed?

NO-Get val f/bus control register

and test Clock input

Is Clock set?

YES-Jump to $8311

Set Data output to high

Wait loop:

Wait about

0.1 ms

Set Data output to low

Test for ATN command mode

Get value of bus control register

and isolate Clock input

Is Clock still set?

YES-Set flag:'last byte received1

<EOI)

Determine, invert and mark

ROM- 8

Abacus Software 1571 Internals

8314

8316

8317

831A

831C

831E

8321

8323

83261
8327

8328

832A

832C

832E1

8331

8334

8336

8338

833A

833C1

833F

8341

49

AA

AD

29

FO

AD

85

4C

8A

4A

29

DO

66

20

20

29

FO

C6

DO

20

A5

60

01

OD

08

08

OC

85

3C

02

E5

85

59

CO

04

F6

98

D5

A5

85

40

40

83

EA

E9

E9

EOR

TAX

LDA

AND

BEQ

LDA

STA

JMP

TXA

LSR

AND

BNE

ROR

JSR

JSR

AND

BEQ

DEC

BNE

JSR

LDA

RTS

#$01

$400D

#$08

$8326

$400C

$85

$833C

A

#$02

$8311

$85

$EA59

$E9C0

#$04

$832E

$98

$8311

$E9A5

$85

value of

data input

Get flag:'serial input register

full1

Has a byte been received?

YES—Read byte out of register

and save current data byte;

end

Get inverted data value again

and save in Carry

Test Clock input

Was Clock set simultaneously?

YES-Take data bit in data byte

Test on ATN-command mode

Get bus control register

Test Clock input

Is Clock still set?

NO-Counter for # of data bits

Is entire byte received?

YES—Set Data output to low

Get Data byte

Return from this subroutine

[8171/835F] cf EA2E

Take byte from bus

8342

8343

8346

8348

834A

834B

834D1

834F

8351

8353

8355

83582

835B

835C

835F

Dl

78

20 07

B0 05

B5 F2

6A

B0 0B

A5 84

29 F0

C9 F0

F0 03

4C 66 83

20 C7 82

58

20 B7 CF

4C 42 83

SEI

JSR

BCS

LDA

ROR

BCS

LDA

AND

CMP

BEQ

JMP

JSR

CLI

JSR

JMP

Disable bus/controller interrupt

$D107 Determine internal channel number

$834D Has channel been found?

$F2,X YES-Status of channel

A Test flag for write mode

$8358 Is channel opened for writing?

$84 NO-Get current secondary address

#$F0 and command bits; test against

#$F0 'close channel '

$8358 Should channel be ended?

$8366 NO—Return to command waitloop

$82C7 Get byte from 1571 bus

Enable bus/controller interrupt

$CFB7 Write byte in file

$8342 some more

[82C4]

Set bus back; return to command waitloop

8362 A9 00 LDA #$00 Clear bus

8364 85 37 STA $37 status byte

ROM-9

8371

8374

8376

8379

837A

837C

837E

8D

85

AD

4A

90

A2

2C

4D

5F

0D

18

OB

02

18

STA

STA

LDA

LSR

BCC

LDX

$024D

$5F

$180D

A

$8394

#$0B

.byte $2C

Abacus Software 1571 internals

[818A/8355] Set bus back; maintain mode

8366 A9 00 LDA #$00 Set Data- and Clock output

8368 8D 00 18 STA $1800 to low

""""""•"-•—--""——————————————————————————.—___ _...____ __ _. _ _.«. __ mm. _ __mmm «.«„_____________

[8174/E698/E8EA/EA53]

Wait for next command

836B 20 B2 81 JSR $81B2 Switch 1571 bus to input mode

836E 4C E7 EB JMP $EBE7 Wait for next computer command

[Origin over vector in 808E/80AE throuh routine $8030]

Read CP/M sector; previous error test

Save jobcode of routine

from table $806E

Test CA2 input(circuitry shows

'Write Protect1 has interrupted)

Has diskette been changed?

YES-Error #:'ID Mismatch Error1

Transfr next 2 bytes(bit command)

[Origin of vector; : 8090/8098/80A4/80A8/80B0/80B8/80C4 thru $8030]

Display error 'drive not ready1

837F A2 4F LDX #$4F Error # for 'drive not ready'

[83C7/844A/84B4/8E42/8384:8DBC]

Combine command status flag and output with error

8381 20 E9 85 JSR $85E9 Set up byte for output

8384 20 81 85 JSR $8581 Output message over 1571 bus

[84EE] eventual error output (else return)

8387 E0 02 CPX #$02 Compare # with value for 'OK'

8389 B0 01 BCS $838C Is an error set?

838B 60 RTS NO-Return from this subroutine

[8389/8484/8568/875C]

Output error message (number in X)

Get error number and

determine proper error number

Set buffer number 0

Prepare message text

Switch 1571 bus for output

Get command status byte

Is flag set for IBM-34 diskette?

YES-Execute routine at $8D67

(read IBM system-34 sector)

ROM-10

838C

838D

838F

8391

8A

29

A2

4C

[837A]

Read

8394

8397

8399

839B

83 9D

CP/M

20

24

10

A9

4C

OF

00

0A E6

sector

CE

5E

05

09

E6

81

86

TXA

AND

LDX

JMP

JSR

BIT

BPL

LDA

JMP

#$0F

#$00

$E60A

$81CE

$5E

$83A0

#$09

$86E6

Abacus Software 1571 Internals

83A01

83A31

83A4

83A6

83A8

83AA

83AD

83AF

83B2

83B4

83B6

83B8

83BA

83BD

83BE

83C1

83C3

83C5

83C7

83C91

83CC

83CE

83D01

83D21

83D5

83D7

83DA

83DB

83DD1

83E0

83E2

83E5

83E81

83E9

20

58

A5

29

DO

AD

85

AD

85

A2

A5

95

20

78

20

24

70

EO

BO

20

A5

30

AO

B9

85

20

C8

DO

CE

FO

20

4C

58

4C

3D

3B

20

26

03

06

04

07

00

5F

00

5E

E9

3B

04

02

B8

F9

3B

OD

00

00

46

F9

F5

05

06

IE

A3

AF

C6

02

02

86

85

85

03

85

02

86

83

85

JSR

CLI

LDA

AND

BNE

LDA

STA

LDA

STA

LDX

LDA

STA

JSR

SEI

JSR

BIT

BVS

CPX

BCS

JSR

LDA

BMI

LDY

LDA

STA

JSR

INY

BNE

DEC

BEQ

JSR

JMP

CLI

JMP

$C63D

$3B

#$20

$83D0

$0203

$06

$0204

$07

#$00

$5F

$00,X

$865E

$85E9

$3B

$83C9

#$02

$8381

$85F9

$3B

$83DD

#$00

$0300,Y

$46

$85F9

$83D2

$0205

$83E8

$861E

$83A3

$85AF

Initialize Commodore diskette

Enable bus/controller interrupt

Get command number and test

'sector not read1 flag

Only buffer to be transferred?

NO-Get fourth char, from command

string; take up as track number

Get fifth char, and set as sector

number of job

Choose buffer number 0

Get current jobcode and

give to job loop

Execute job

Disable bus/controller interrupt

Prepare return message for output

Test flag for 'error test1

Return message to be considered?

YES-Test return jobmessage w/'0Kf

Job run error-free?

YES-Send return message over bus

Test flag for 'output buffer1

Buffer transferred to computer

YES-Buffer pntr to start of buffr

Get byte from buffer and set as

character to be given

Output character over 1571 bus

Turn buffer pointer to next byte

Entire buffer been transferred?

YES—Number of sector to be read

All sectors already?

NO—Set number of next sector

Read next sector

Enable bus/controller interrupt

Get new track and set it

[Originates over vectors in

Write CP/M sector; previous

83EC

83EF

83F2

83F3

83F5

83F7

8D

AD

4A

90

A2

2C

4D

0D

0D

0B

02

18

STA

LDA

LSR

BCC

LDX

$024D

$180D

A

$8402

#$0B

.byte $2C

8092/80B2 through routine $8030]

error check

Save jobcode

Test CA2 input (Circuitry shows

'write protect1 has interrupted)

Has diskette been exchanged?

YES-error #:'ID Mismatch Error1

Jump to next 2 bytes(bit command)

ROM-11

Abacus Software 1571 Internals

[Origin from vector in 8094 through routine $8030]

83F8

83FA

83FC

83FE

8400

A2 4F

86 46

A5 3B

09 08

85 3B

LDX #$4F

STX $4 6

LDA $3B

ORA #$08

STA $3B

Error: 'drive not ready1

set as character to be given

Transfer 'error found1

flag into

command number

[83F3]

Write

8402

8404

8406

8408

840B1

840E

8410

84121

8413

84151

8418

841A

841D

84201

8423

8425

84281

842B

842D

842F

8432

8435

8436

8438

843B1

843C

843E

8440

8442

8444

8446

8448

844A

844D1

8450

8452

8455

8457

CP/M sector

24 5E

10 05

A9 0A

4C E6 86

20 3D C6

A5 3B

30 29

78

AO 00

AD 00 18

49 08

2C OD 40

8D 00 18

AD 00 18

10 03

20 59 EA

AD OD 40

29 08

FO Fl

AD OC 40

99 00 03

C8

DO DD

20 B7 E9

58

A5 3B

29 20

DO 37

A5 3B

29 08

FO 05

A6 46

4C 81 83

AD 03 02

85 06

AD 04 02

85 07

A2 00

BIT $5E Test command status byte

BPL $840B Flag for IBM-34 diskette set?

LDA #$0A YES-Execute routine at $8DF6

JMP $86E6 (Write IBM System 34 CP/M sector)

JSR $C63D Initialize Commodore diskette

LDA $3B Flag: 'Buffer read from computer'

BMI $843B Is flag in command byte set?

SEI YES-Disable bus/controler intrupt

LDY #$00 Set buffer pntr to start-of-buffr

LDA $1800 Get bus control register

EOR #$08 Switch status of Clock output

BIT $400D Set interrupt register back

STA $1800 Set new Clock output value

LDA $1800 Test ATN input

BPL $8428 Is ATN set?

JSR $EA59 YES-Test for ATN command mode

LDA $4 00D Test 'Byte in serial register

AND #$08 received' flag

BEQ $8420 Has a byte been read in?

LDA $400C YES-Get byte and write

STA $0300,Y in buffer 0

INY Turn buffer pointer to next byte

BNE $8415 Buffer already full

JSR $E9B7 YES-Set Clock output to low

CLI Enable bus/controller interrupt

LDA $3B Get command byte and test

AND #$20 'Sector not written' flag

BNE $8479 Set?

LDA $3B NO-Retest 'error found1

AND #$08 flag in command number

BEQ $844D Should error be displayed?

LDX $4 6 YES-Get number of error

JMP $8381 and send over 1571 bus

LDA $0203 Get 4h char, from command string

STA $06 and set as track for job loop

LDA $0204 Get 5th char, from command string

STA $07 and set as sector for job loop

LDX #$00 Choose buffer 0

ROM-12

Abacus Software 1571 Internals

8459

845B

845D

8460

8461

8464

8467

84 6A

84 6D

8470

8471

8473

8475

8477

84792

847C

847E

8481

84841

84881

8488

A9

95

20

78

20

20

20

20

20

58

24

70

E0

BO

CE

FO

20

4C

4C

58

4C

90

00

5E

CE

E9

F9

AO

B2

3B

04

02

OB

05

09

IE

12

8C

AF

86

81

85

85

86

81

02

86

84

83

85

LDA

STA

JSR

SEI

JSR

JSR

JSR

JSR

JSR

CLI

BIT

BVS

CPX

BCS

DEC

BEQ

JSR

JMP

JMP

CLI

JMP

#$90

$00,X

$865E

$81CE

$85E9

$85F9

$86A0

$81B2

$3B

$8479

#$02

$8484

$0205

$8487

$861E

$8412

$838C

$85AF

Give jobcode for 'write sector1

to job loop

and execute

Disable bus/controller interrupt

Switch 1571 bus to output

Prepare return message for output

Output byte over 1571 bus; wait

for shift from clock

Switch 1571 bus to input

Enable bus/controller interrupt

Test 'error test1 flag

Should error return message be

regarded? YES—Test error number

Is job running error-free?

YES—Counter for sectors

Still a sector?

YES—Calculate new sector number

Run routine again

Return to command waitloop

Enable bus/controller interrupt

Set new track and end

[Origin over vectors 8096/80B6 of routine $8030]

Read next CP/M sector header(first System-34,then Commodore format)

Get Jobcode

and determine drive # from it

Is drive 0 contacted?

YES—Clear 'Write protect has been

interrupted1 (disk exchange)

Execute routine at $8A09

(Read IBM System 34)

Get return message and compare

with value for 'Ok'

Run into an error?

YES—Clear command status byte

Save the

jobcode for 'Search sector'

and give to

job loop

Execute job

Jump to next 2 bytes(bit command)

Error # for 'drive not ready1

Display return message,next cmd

848B

848E

8490

8492

8494

8497

8499

84 9C

84 9F

84A1

84A3

84A5

84A7

84A9

84AC

84AE

84B1

84B21

84B41

AD

29

DO

A9

8D

A9

20

AE

E0

90

A2

86

A9

8D

95

20

2C

A2

4C

02

01

20

01

0D

05

E6

B0

02

11

00

5E

B0

4D

00

5E

4F

81

02

18

86

01

02

.86

83

LDA

AND

BNE

LDA

STA

LDA

JSR

LDX

CPX

BCC

LDX

STX

LDA

STA

STA

JSR

$0202

#$01

$84B2

#$01

$180D

#$05

$86E6

$01B0

#$02

$84B4

#$00

$5E

#$B0

$024D

$00,X

$865E

.byte $2C

LDX

JMP

#$4F

$8381

ROM-13

Abacus Software 1571 Internals

[Origin over vectors 809A/809C/80BA/80BC through routine $8030]

Format CP/M diskette

Get jobcode and

determine drive to be utilized

Should format be done in dr. 0?

YES-Get flag for diskette type

Is Commodore format desired?

NO-Format disk in IBM System34

format (routine $8C57)

Clear command status byte

(delete)

Set drive status to 'ready1

Get 5th char, from command string

and take on as first ID character

Get 6th char, from command string

and store as 2nd character of ID

Close all channels

Set track number 1 as

current track

Format disk in 1571/1541 format

Get return message

and prepare for output

Send message over 1571 bus, end

Jump to next 2 bytes(bit command)

Error # for 'drive not ready1

Prepare byte for output

Prepare error message

84B7

84BA

84BC

84BE

84C1

84C3

84C5

84C81

84CA

84CC

84CE

84D1

84D3

84D6

84D8

84DB

84DD

84DF

84E1

84E4

84E7

84E8

84E91

84EB

84EE

AD

29

DO

AD

10

A9

4C

A9

85

85

AD

85

AD

85

20

A9

85

A9

8D

20

AA

2C

A2

20

4C

02

01

2B

03

05

08

E6

00

5E

FF

04

12

05

13

07

01

80

FF

98

89

4F

E9

87

02

02

86

02

02

D3

02

A9

85

83

LDA

AND

BNE

LDA

BPL

LDA

JMP

LDA

STA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

STA

JSR

TAX

$0202

#$01

$84E9

$0203

$84C8

#$08

$86E6

#$00

$5E

$FF

$0204

$12

$0205

$13

$D307

#$01

$80

#$FF

$0298

$A989

.byte $2C

LDX

JSR

JMP

#$4F

$85E9

$8387

[Origin of vector 809C/80A0

Get /set CP/M sector format

84F1

84F2

84F4

84F6

84F9

84FB

84FD

85001

8503

8505

8507

8509

850C

850E

85111

8514

8516

78

24

10

20

A5

85

4C

AE

E0

B0

A2

20

A9

4C

AD

85

60

3B

0A

CE

3C

46

F9

74

04

0A

0E

E9

31

C8

03

3C

81

85

02

85

Cl

02

SEI

BIT

BPL

JSR

LDA

STA

JMP

LDX

CPX

BCS

LDX

JSR

LDA

JMP

LDA

STA

RTS

$3B

$8500

$81CE

$3C

$46

$85F9

$0274

#$04

$8511

#$0E

$85E9

#$31

$C1C8

$0203

$3C

through routine $8030]

Disable bus/controller interrupt

check command number

read sector format?

YES-switch 1571 bus for output

Get sector format and store

as byte to be output

Send byte over 1571 bus

Determine length of comand string

& test if exactly 3 char, long

Exactly 3 char, in buffer?

YES-Error code for 'Syntax Error'

Prepare error for output

Error message

Output '31 Syntax Error'

Get byte f/cmd string(4th char)

and use as new sector format

Return to caller

ROM-14

Abacus Software 1571 Internals

[Origin over vector in 80A2/80C2 by routine $8030]

Read CP/M sector header and determine sector sequence

Read next header

Test cmd status byte w/IBM flag

Is flag set for IBM-34 diskette?

YES-Execute routine at $8F5F

(Set up sector sequence table)

Get return message; compare with

value for 'Ok1

Is there an error?

NO-Get lowest and highest sectors

Compute sector format

Get sector format

and record it

Disable bus/controller interrupt

Switch 1571 bus for output

Get command status byte,set as

character to be output

Send byte over 1571 bus

Get error number and compare

with value for 'Ok1

Is there an error?

NO—Set number of sectors in

track as character to be output

Send byte over 1571 bus

Set # of track read as character

to be output

Send byte over 1571 bus

Set smallest sector # as char,

to be output

Send byte over 1571 bus

Set greatest sector number as

character to be output

Send byte over 1571 bus

Get sector format & set as char,

to be output

Send byte over 1571 bus

Return to caller

Fix stack

Display error message

[Origin over vector in 80A6 by routine $8030]

Get command status byte / set it; get error number

856B 24 3B BIT $3B Test command number

856D 10 27 BPL $8596 Get command status byte?

856F 24 3B BIT $3B Test flag in command number

8571 50 0E BVC $8581 Check for diskette exchange?

8517

851A

851C

851E

8520

8523

8526

8528

852A

852D

8530

8531

85321
8533

8536

8538

853A

853D

8540

8542

8544

8546

8548

854B

854D

854F

8552

8554

8556

8559

855B

855D

8560

8561

8563

85661
85671

8568

20

24

10

A9

20

AE

E0

B0

20

20

8A

48

78

20

A5

85

20

AE

E0

B0

A5

85

20

A5

85

20

A5

85

20

A5

85

20

68

85

20

60

68

4C

8B

5E

48

0D

E6

B0

02

08

61

86

CE

5E

46

F9

B0

02

23

97

46

F9

67

46

F9

60

46

F9

61

46

F9

46

F9

8C

84

86

01

89

89

81

85

01

85

85

85

85

85

83

JSR

BIT

BPL

LDA

JSR

LDX

CPX

BCS

JSR

JSR

TXA

PHA

SEI

JSR

LDA

STA

JSR

LDX

CPX

BCS

LDA

STA

JSR

LDA

STA

JSR

LDA

STA

JSR

LDA

STA

JSR

PLA

STA

JSR

RTS

PLA

JMP

$848B

$5E

$8566

#$0D

$86E6

$01B0

#$02

$8532

$8961

$8986

$81CE

$5E

$46

$85F9

$01B0

#$02

$8567

$97

$46

$85F9

$67

$46

$85F9

$60

$46

$85F9

$61

$46

$85F9

$46

$85F9

$838C

ROM-15

Abacus Software 1571 Internals

8573 AD OD 18 LDA $180D

8576

8577

8579

857B

857D

857F

4A

90

A5

29

09

85

08

5E

F0

OB

5E

[8384/8571/8577]

Display

8581

8582

8585

8587

8589

858C

858E

8591

8594

8595

78

20

A5

85

20

A9

8D

20

58

60

command

CE

5E

46

F9

00

6C

B2

81

85

02

81

LSR

BCC

LDA

AND

ORA

STA

1

A

$8581

$5E

#$F0

#$0B

$5E

status byte

SEI

JSR

LDA

STA

JSR

LDA

STA

JSR

CLI

RTS

$8 ICE

$5E

$46

$85F9

#$00

$02 6C

$81B2

YES-Test hardware signal for

•Write protect has interrupted1

Has diskette been exchanged?

Get command status byte

and set up flag

Set error # for 'ID Mismatch1'

and save as status byte

Disable bus & controllr interrupt

Switch 1571 bus for output

Set status byte as character to

be sent

Send byte over 1571 bus

Clear error flag (blink counter)

Switch 1571 bus to input

Enable bus/controller interrupt

Return to caller

Set command status byte

85961 AD 03 02 LDA $0203

8599 85 5E STA $5E

85 9B

859D

859F

85A1

85A41

24

50

A9

8D

60

3B

05

01

0D 18

BIT

BVC

LDA

STA

RTS

$3B

$85A4

#$01

$180D

Get 4th char from command string,

and save as command status

Test flag from command number

diskette exchange be observed?

YES—Initialize disk exchange flag

(write protect will interrupt)

Return to caller

[Origin over vector in 80AA/80AC by routine $8030]

Display 'Syntax Error1

85A5 A2 0E LDX #$0E Set error number

85A7 20 E9 85 JSR $85E9 Prepare byte for output

85AA A9 31 LDA #$31 Display

85AC 4C C8 Cl JMP $C1C8 '31 Syntax Error1 message

[83E9/8488]

Turn

85AF

85B2

85B4

85B6

85B8

85B9

85BB

85BC

new track

AD 74 02

C9 07

90 32

A5 06

A8

E9 01

0A

85 64

LDA

CMP

BCC

LDA

TAY

SBC

ASL

STA

$0274

#$07

$85E8

$06

#$01

A

$64

Get length from command string,

and compare to 7 characters

Does cmd string have min. 7chars?

YES—Get last track number and

save it

Get current head position, above,

then calculate in half-steps and

set it

ROM-16

Abacus Software 1571 Internals

85BE

85C0

85C1

85C4

85C6

85C7

85C9

85CB

85CC

85CD

85CF

85D1

85D3

85D4

85D6

85D8

85DA

85DC1

85DE

85DF

85E1

85E3

85E53

85E81

CO

08

AC

84

88

84

CO

6A

28

29

90

30

18

A5

69

85

30

10

38

A5

E9

85

4C

60

24

06 02

22

67

23

80

OB

12

67

23

67

09

07

67

23

67

BA 87

CPY

PHP

LDY

STY

DEY

STY

CPY

ROR

PLP

AND

BCC

BMI

CLC

LDA

ADC

STA

BMI

BPL

SEC

LDA

SBC

STA

JMP

RTS

#$24

$0206

$22

$67

#$23

A

#$80

$85DC

$85E5

$67

#$23

$67

$85E5

$85E5

$67

#$23

$67

$87BA

Last track on side 2?

Save result of the test

Get 7th char from command string,

and set as current track

From that, calculate and set

target track -1

Is new track on side 2 of disk?

Move result in Bit 7

Get previous result again, & get

the last result ready again

Last track on side 2 (Bit =1)?

YES-New track on side 2 (Bit =1)?

NO— Compute and

set new track

on side

2

Jump

to $85E5

Compute new track

number on side

1 and

save it

Turn track

Return from this subroutine

[8381/83BE/8464/84EB/8509/85A7/8D64/8DB1/8EA3]

Perpare error byte for output

Save error number

Get command status byte and

isolate flag

Take up error # and set value

as new status; also, character

to be given

Return from this subroutine

85E9

85EB

85ED

85EF

85F1

85F3

85F5

86

A5

29

05

85

85

60

46

5E

F0

46

5E

46

STX

LDA

AND

ORA

STA

STA

RTS

$46

$5E

#$F0

$46

$5E

$46

[8603] Send byte over 1571 bus

85F6 20 59 EA JSR $EA59 Test for ATN command mode

[83C9/83D7/8467/84FD/853A/8548/854F/8556/855D/8563/8589/85FF/8609]
[8DBF/8DD4/8EA6]

Send byte over 1571 bus

85F9 AD 00 18 LDA $1800

85FC

85FF

8601

8603

8605

CD

DO

29

30

45

00 18

F8

FF

Fl

37

CMP

BNE

AND

BMI

EOR

$1800

$85F9

#$FF

$85F6

$37

Get bus control register;wait til

line status remains constant

Constant value applied?

YES—Processor flag reset

Is ATN set?

NO-Get bus status and test

ROM-17

Abacus Software 1571 Internals

8607 29 04 AND #$04 flag for Clock

8609 F0 EE BEQ $85F9 Is Clock set?

860B A5 4 6 LDA $4 6 YES-Get char, tobe sent & transfr

860D 8D 0C 40 STA $400C to the serial output register

8610 A5 37 LDA $37 Flag for Clock; get and

8612 49 04 EOR #$04 invert

8614 85 37 STA $37 Store flag again

8616 A9 08 LDA #$08 Test bitflag for 'Register

86181 2C 0D 40 BIT $400D output1 and verify
861B F0 FB BEQ $8618 Is byte completely output?

861D 60 RTS YES-Return from this subroutine

[83E2/847E]

Calculate number

861E AD 03 02

8621 C9 24

8623 90 02

8625 E9 23

86271 AA

8628 BD 2B 94

862B AA

862C CA

862D 86 46

862F 18

8630 AD 04 02

8633 65 3C

8635 C5 46

8637 90 0A

8639 E5 46

863B F0 04

863D 38

863E E9 01

8640 2C

86411 A5 46

86431 8D 04 02

8646

8648

864A

A9 88

85 5F

60

of next IBM-34

LDA $0203

CMP #$24

BCC $8627

SBC #$23

TAX

LDA $942B,X

TAX

DEX

STX $4 6

CLC

LDA $0204

ADC $3C

CMP $4 6

BCC $8643

SBC $4 6

BEQ $8641

SEC

SBC #$01

.byte $2C

LDA $4 6

STA $0204

LDA #$88

STA $5F

RTS

sector

Get track # from command string &

compare with max. track +1

Is track on side 2?

YES—Compute and set

track from side 1

Determine and save # of sectors

per track; from this,

get maximum sector number and

save it

Set new sector number:

Sector number from command string

Compute sector format

Compare with maximum number

Has legal range been exceeded?

YES—Set number of legal range

Last sector chosen?

YES—Then calculate sector number

(since sector 0 also exists)

Jump to next 2 bytes(bit command)

Get first value computed and

save current sector number

'Read sector from current track1

given as current jobcode

Return from this subroutine

[910E]

Execute job

864B A6 F9

864D

864E

864F

8652

8654

08

58

20 B6 9F

C9 02

90 05

LDX $F9 Current buffer number

PHP Retain processor status

CLI Enable bus/controller interrupt

JSR $9FB6 Start job loop and execute job

CMP #$02 Compare return message with 'Ok1

BCC $865B Job run error-free?

ROM-18

Abacus Software 1571 Internals

8656 20 83 86 JSR $8683

8659 B5 00 LDA $00,X

865B1 AA TAX

865C 28 PLP

865D 60 RTS

NO-Continue trying

Get and save return

message

Re-establish processor status

Return from this subroutine

[83BA/845D/84AE]

Start job loop and execute

865E

8660

8661

8662

8665

8667

866A

866B

866E

8670

8672

86751
8676

8679

867B

867E

8680

8681

8682

A2 00

08

78

AD 00 1C

09 08

8D 00 1C

58

20 B6 9F

C9 02

90 03

20 83 86

78

AD 00 1C

29 F7

8D 00 1C

B5 00

AA

28

60

LDX #$00

PHP

SEI

LDA $lC00

ORA #$08

STA $lC00

CLI

JSR $9FB6

CMP #$02

BCC $8675

JSR $8683

SEI

LDA $lC00

AND #$F7

STA $lC00

LDA $00,X

TAX

PLP

RTS

job for buffer 0

Determine buffer number

Save processor status

Disable bus/controller interrupt

Get drive control register and

set bit for LED

LED on

Enable bus/controller interrupt

Start job loop and execute job

Test return message for 'OK1

Job run error-free?

NO— Execute new attempt

Disable bus/controller interrupt

Get control register and

clear LED bit

LED off

Get return message of last try,

and save it

Re-establish processor status

Return from this subroutine

[8656/8672]

Continue attempt

8683 A9 FF

8685 8D 98 02

8688 86 F9

868A AD 02 02

868D 85 5F

868F 8D 4D 02

8692 9D 5B 02

8695 85 00

8697 20 B6 9F

869A 4C 99 D5

at job execution

LDA #$FF

STA $0298

STX $F9

LDA $0202

STA $5F

STA $024D

STA $025B,X

STA $00

JSR $9FB6

JMP $D599

Set flag for

•Error in job execution1

Save buffer number of job

Get jobcode and save

as current

jobcode

Arrange jobcode of buffer &

to job loop as jobcode for

buffer 0

Control job execution

give

869D1 20 59 EA JSR $EA59 Test for ATN command mode

ROM-19

Abacus Software 1571 Internals

[84 6A/86A6/86B0/8EA9]

Wait for jump of Clock input

86A0

8 6A3

86A6

86A8

86AA

8 6AC

86AE

86B0

86B2

86B4

86B6

86B8

AD

CD

DO

29

30

45

29

F0

A5

49

85

60

00 18

00 18

F8

FF

Fl

37

04

EE

37

04

37

LDA

CMP

BNE

AND

BMI

EOR

AND

BEQ

LDA

EOR

STA

RTS

$1800

$1800

$8 6A0

#$FF

$869D

$37

#$04

$86A0

$37

#$04

$37

Get bus control register and

compare w/value from 2nd reading

Is status of register constant?

Set processor flag

Is ATN set?

NO-Compare Clock value w/value of

the last call of this routine

Has it been altered?

YES—Then get flag and

also re-save

reversed flag

Return from this subroutine

[Table will be used in 86E9]

Control bytes for functions before call of IBM-34 routines

Function of individual bits (Bit=l called'Function activated1):

bitO Error by job execution not given

bitl Read next header and set head to last-read track

bit2 Wait until motor runs & head is in position (track and side)

bit3 Position head to new track ($67)

bit4 Drive motor on

bit5 Check write protect

bit6 Take sector number from command string

bit7 Set value for new track ($67)

86B9 00

86BA 15

86BB 00

86BC 00

86BD 00

86BE 15

86BF 00

86C0 BC

86C1 34

86C2 DE

86C3 FE

86C4 DC

86C5 15

86C6 15

86C7 00

%00000000 No status functions

%00010101 Motor on/wait/no error message

%00000000 No status functions

%00000000 No status functions

%00000000 No status functions

%00010101 Motor on/wait/no error message

%00000000 No status functions

%10111100 Track/test WP/head/wait

%00110100 Test WP/motor on/wait

%11011110 Track/sector/motor on/head/header

%11111110 Track/sector/test WP/motor on/head/header

%11011100 Track/sector/Motor on/head/wait

%00010101 Motor on/wait/no error message

%00010101 Motor on/wait/no error message

%00000000 No status functions

ROM-20

Abacus Software 1571 Internals

[Table will be used in 873F]

Diskette routine addresses in

86C8

86CA

86CC

86CE

86D0

86D2

86D4

86D6

86D8

86D9

86DC

86DE

86E0

86E2

86E4

EC

EF

FD

03

08

09

BA

86

57

67

F6

C6

18

5F

B3

89

89

89

8A

8A

8A

87

8A

8C

8D

8D

8E

8F

8F

89

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 >

8 j

9 t

10 t

11 >

12 >

13 >

14 >

' 00

' 01

' 02

' 03

' 04

' 05

f 06

f 07

f 08

t 09

f 0A

f OB

f oc

f OD

/ OE

IBM System-34 format

$89EC Execute reset ($EAA0)

$89EF Reset head to track

$89FD Test 'Write Protect1

$8A03 Take up track parameters

$8A08 No function (rts)

$8A09 Read next IBM-34 header

$87BA No function (rts)

$8A86 Format 'IBM Syst34» track

$8C57 Format IBM-34 diskette

$8D67 Read IBM-34 sector

$8DF6 Write IBM-34 sector

$8EC6 IBM-34 sector verify

$8F18 Test IBM34 sectr: empty byte

$8F5F Send IBM-34 sector sequence

$89B3 Initialize IBM-34 track

[839D/8408/8499/84C5/8520/BF4E]

Routine to call IBM system 34 functions (number in accumulator)

86E6

86E7

86E8

86E9

86EC

86EE

86F0

86F2

86F4

86F6

86F8

86FB

86FD1

86FF

8701

8704

87061
8708

870A

870D

870F

8711

8713

8715

8717

8719

78

48

AA

BD B9 86

85 IB

A5 5E

09 80

85 5E

06 IB

90 05

AD 03 02

85 67

06 IB

90 05

AD 04 02

85 43

06 IB

90 11

AD 00 1C

29 10

DO OA

A5 3B

09 08

85 3B

A2 08

86 46

06 IB

SEI Disable bus/controller interrupt

PHA Save # of routine to be called

TAX and get corresponding

LDA $86B9,X control byte of routine

STA $1B and store it

LDA $5E Set flag for IBM-34 format

ORA #$80 in command status

STA $5E byte

ASL $1B Test Bit7 of control byte

BCC $86FD Set?

LDA $0203 YES-Get # of track to be ctrolled

STA $67 and set pointers

ASL $1B Test Bit6 of control byte

BCC $8706 Set?

LDA $0204 YES—Get number of desired sector

STA $43 and save it

ASL $1B Test Bit5 of control byte

BCC $87IB Set?

LDA $lC00 Get bus control register and test

AND #$10 Bit for 'Write Protect1

BNE $871B Is there a write-protect tab?

LDA $3B YES-Set

ORA #$08 'Write protect in place1

STA $3B flag

LDX #$08 Save error #: 'Write Protect On1

STX $4 6 as character to be given

ASL $1B Test Bit4 of control byte

ROM-21

Abacus Software 1571 Internals

871D

871F

87221

8724

8726

87291

872B

872D

87301

8733

8735

8737

873A1

873C

873D

873E

873F

8742

8744

8747

8749

874C

874F

8752

8754

8755

8757

8759

875A

875C

875F1

87601

87611

90

20

06

90

20

06

90

20

20

06

90

20

A9

68

0A

AA

BD

85

BD

85

20

20

AE

EO

08

06

BO

28

90

4C

28

60

6C

03

94

IB

03

BA

IB

03

BO

54

IB

03

2A

00

C8

6F

C9

70

61

8F

BO

02

IB

06

04

8C

6F

87

87

87

89

89

86

86

87

F9

01

83

00

BCC

JSR

ASL

BCC

JSR

ASL

BCC

JSR

JSR

ASL

BCC

JSR

LDA

PLA

ASL

TAX

LDA

STA

LDA

STA

JSR

JSR

LDX

CPX

PHP

ASL

BCS

PLP

BCC

JMP

PLP

RTS

JMP

[87A3/99E7/A642/BF51

Drive

8764

8765

8766

8769

87 6B

87 6E

87 6F

motor

08

78

AD

09

8D

28

60

00

04

00

on

1C

1C

PHP

SEI

LDA

ORA

STA

PLP

RTS

$8722

$8794

$1B

$8729

$87BA

$1B

$8730

$87B0

$8954

$1B

$873A

$892A

#$00

A

$86C8,X

$6F

$86C9,X

$70

$8761

$F98F

$01B0

#$02

$1B

$875F

$8760

$838C

($006F)

]

$1COO

#$04

$1COO

Set?

YES—Drive motor on

Test Bit 3 of control byte

Set?

YES—Turn target track from ($67)

Test bit 2 of control byte

Set?

Wait until head & motor are ready

Activate head on current side

Test Bitl of control byte

Set?

YES-Read IBM-34 header & set head

Clear processor status register

Get # of program to be called

and double it (address table

takes 2-byte pointers)

Get program addr(lo-byte) from

table and set in pointer

Get high-byte and

save it

Execute program

Motor off (set flag)

Get return message of last job &

compare with 'Ok1

Save result

Test bitO of control byte

Set?

NO-Get result of eror check

Is job running error-free?

NO—Display error and end

Prepare result of error check

Return from this subroutine

Execute IBM 34 routine

Retain processor status

Disable bus/controller interrupt

Get bus control register and

set bit for 'Motor on1

Store register again

Re-establish processor status

Return from this subroutine

ROM-22

Abacus Software 1571 Internals

[99FB/9A39/A654/BF54]

Drive motor off

8770

8771

8772

8775

8777

877A

877B

08

78

AD 00 1C

29 FB

8D 00 1C

28

60

PHP

SEI

LDA $1COO

AND #$FB

STA $1COO

PLP

RTS

Retain processor status

Disable bus/controller interrupt

Get bus control register and

clear bit for 'Motor on1

Reset control register

Re-establish processor status

Return from this subroutine

[884F] cf. C100/C118

Drive LED on

877C

877D

877E

8781

8783

8786

8787

08

78

AD 00 1C

09 08

8D 00 1C

28

60

PHP

SEI

LDA $lC00

ORA #$08

STA $lC00

PLP

RTS

Retain processor status

Disable bus/controller interrupt

Get bus control register

and set bit for 'LED on'

Store register again

Re-establish processor status

Return from this subroutine

[8861]

Drive LED off

8788 08

8789 78

878A AD 00 1C

878D 29 F7

878F 8D 00 1C

8792 28

8793 60

PHP

SEI

LDA $lC00

AND #$F7

STA $lC00

PLP

RTS

Retain processor status

Disable bus/controller interrupt

Get bus control register

and clear bit for 'LED on'

Set control register again

Re-establish processor status

Return from this subroutine

[871F]

Motor on

8794 08

8795 78

8796 A5

8798 C9

87 9A F0

87 9C AD

879F 29

87A1 85

87A3 20

87A6 A9

87A8 85

87AA1 A9
87AC 85

87AE 28

87AF 60

and initialize flag

PHP

SEI

20

20

0E

02 02

01

3E

64 87

A0

20

32

48

LDA $20

CMP #$20

BEQ $87AA

LDA $0202

AND #$01

STA $3E

JSR $8764

LDA #$A0

STA $20

LDA #$32

STA $48

PLP

RTS

Retain processor status

Disable bus/controller interrupt

Get drive status and

test for 'Motor running'

Is the motor already active?

NO-Get jobcode of routine and

determine drive desired

Set number as current drive

Motor on

Drive status at

'Motor at/ not at turn number1

Set counter for motor

runtime

Get status register again

Return from this subroutine

ROM-23

Abacus Software 1571 Internals

[872D]

Wait until motor is set to turn number, and head is set in position

Retain status

Enable bus/controller interrupt

Get drive status and test for

'no stepper / drive ready1

Drive ready?

YES-Re-establish status

Return from this subroutine

Retain status

Enable bus/controller interrupt

Get # of new track & compute the

number of absolute half-steps

Compare w/current head position

Identical?

NO-Get number of new track and

compute half-steps

Compare w/current counter status

Identical?

NO—currenut cntr>target position?

YES—Move a half-step out until

track is reached

Move one half-step out until

track is reached

Initialize counter

40/20 ms delay (1/2 mHz)

Re-establish status

Return from this subroutine

87B0

87B1

87B21

87B4

87B6

87B8

87B9

08

58

A5

C9

DO

28

60

20

20

FA

[85E5/8726/S

Turn to new

87BA

87BB

87BC

87BE

87BF

87C1

87C32

87C5

87C6

87C8

87CA

87CC

87CF

87D21

87D5

87D81

87DA

87DD1

87DE

08

58

A5

0A

C5

F0

A5

0A

C5

F0

B0

20

4C

20

4C

A0

20

28

60

67

64

1A

67

64

0E

06

E7

C3

DF

C3

10

29

5927/8

track

87

87

87

87

88

PHP

CLI

LDA

CMP

BNE

PLP

RTS

94C/

PHP

CLI

LDA

ASL

CMP

BEQ

LDA

ASL

CMP

BEQ

BCS

JSR

JMP

JSR

JMP

LDY

JSR

PLP

RTS

$20

#$20

$87B2

'89FA/

$67

A

$64

$87DD

$67

A

$64

$87D8

$87D2

$87E7

$87C3

$87DF

$87C3

#$10

$8829

[87D2]

One half-step in

87DF A5 64 LDA $64

87E1 18 CLC

87E2 69 01 ADC #$01

87E4 4C 14 88 JMP $8814

Determine current position

Prepare addition

Add a half-step

Control stepper motor

[87E7] cf. 9A66/FF45

One half-step out

87E7

87E91
87EC

87ED

87EE

87F1

A0

AD

6A

08

AD

6A

63

OF

OF

18

18

LDY

LDA

ROR

PHP

LDA

ROR

#$63

$180F

A

$180F

A

of scan attempts/track 0 (99)

Get control register A

Track 0 identifier(bit 0)in carry

and save carry

Read control register again

Shift track 0 identifier (bit 0)

ROM-24

Abacus Software 1571 Internals

87F2 6A ROR A to bit 7

87F3 28 PLP Get previous scan result

87F4 29 80 AND #$80 Isolate last scan result

87F6 90 04 BCC $87FC TrackO active in 1st test(bit=0)?

87F8 10 15 BPL $880F NO—Is track 0 now reached?

87FA 30 02 BMI $87FE YES-Jump to $877C

87FC1 30 11 BMI $880F Track 0 still active?

Status of track 0 write-protection has not changed

87FE1 88 DEY, YES-Take another look

87FF DO E8 BNE; $87E9 All attempts already performed?

8801 B0 0C BCS $880F YES-Is head at track 0 position?

8803 AD 00 1C LDA $lC00 YES-Control register f/step-motor

8806 29 03 AND #$03 Isolate step bits

8808 DO 05 BNE $880F Is stepper reel being controlled?

880A A9 00 LDA #$00 Clear current

880C 85 64 STA $64 head position

880E 60 RTS Return from this subroutine

Track

880F3
8811

8812

88141

8816

8818

881A

881B

881C

881F

8821

8823

8826

8827

88292

882C

882D

882F

0 write-protection status

A5 64

38

E9 01

85 64

29 03

85 6F

08

78

AD 00 1C

29 FC

05 6F

8D 00 1C

28

A0 06

20 30 88

88

DO FA

60

LDA $64

SEC

SBC #$01

STA $64

AND #$03

STA $6F

PHP

SEI

LDA $lC00

AND #$FC

ORA $6F

STA $lC00

PLP

LDY #$06

JSR $8830

DEY

BNE $8829

RTS

HAS changed

Get current head position and

limit to one

half-step

Save new position

Set up and save control bits for

stepper reel

Retain processor status

Disable bus/controller interrupt

Get control register

Mask out stepper control and set

new bit values

New value in control register

Re-establish processor status

Set counter for 13/7.5 ms delay

Approx. 2.6/1.3 ms

Adjust counter

Delay already run up?

YES—Return from this subroutine

ROM-25

Abacus Software 1571 Internals

[8829;)

Approx.

8830

8832

88342

8836

8838

8839

883B

A2

A9

69

DO

CA

DO

60

2.6/1

02

00

01

FC

F9

.3 ms delay (

LDX

LDA

ADC

BNE

DEX

BNE

RTS

#$02

#$00

#$01

$8834

$8834

Number of counter loops

Initialize pointer

and increase by one

Already counted to 256?

YES-Next count loop

All loops done?

YES-Return from this subroutine

[8A4D/8DAE/8E9D]

Get error from CP/M controller

883C

883D

8840

8841

8842

8843

8845

8846

8849

884C

884D

EA

AD 00 20

4A

4A

4A

29 03

AA

BD 82 8A

8D B0 01

AA

60

NOP

LDA $2000

LSR A

LSR A

LSR A

AND #$03

TAX

LDA $8A82,

STA $01B0

TAX

RTS

Delay until controller is ready

Read status register

Shft error bits:'Record not found

and »CRC Error1 (Bit 3 and 4) in

positions 0 and 1

Isolate error bits and

set up error pointer

Determine and set number of error

message

Save error number

Return from this subroutine

[89C0/8A30/8A88/8D85/8E63/8EDE/8F27]

Send command over CP/M controller

884E

884F

8852

8853

8856

8858

88591
885C

885E

48

20

68

8D

A9

EA

2C

F0

4C

7C

00

01

00

FB

7E

87

20

20

A4

PHA

JSR

PLA

STA

LDA

NOP

BIT

BEQ

JMP

$877C

$2000

#$01

$2000

$8859

$A47E

(WD 1770)

Save command

Switch on LED on drive

Repeat command

and send on CP/M controller

Bit for 'Busy - Flag'

Delay until controller is ready

Test controller status register

Is command taken (busy set)?

YES-Wait 45 cycles

[89C3/8A4A/8C48/8DAB/8F15/8F5C]

Wait until current command of CP/M controller is done

8861 20 88 87 JSR $8788 LED off

LDA #$01 Test bit for 'Busy - Flag*

BIT $2000 in status register

BNE $8866 Is command still active?

RTS NO-Return from this subroutine

8864 A9 01

88661 2C 00 20

8869 DO FB

886B 60

ROM-26

Abacus Software 1571 Internals

[8DED/886C]

Compute number

886C A5 60

886E 38

886F E9 01

8871 85 46

8873 AD 04 02

8876 18

8877 65 3C

8879 C5 61

887B F0 07

887D 90 05

887F E5 61

8881 18

8882 65 46

88842 8D 04 02

8887 60

of next sector

LDA $60

SEC

SBC #$01

STA $4 6

LDA $0204

CLC

ADC $3C

CMP $61

BEQ $8884

BCC $8884

SBC $61

CLC

ADC $4 6

STA $0204

RTS

Get smallest sector number and

format until

sector number reaches zero;

save it

Get # of current sector; from

that, add

sector format

Compare with maximum sector #

Is new number identical?

NO—Is new number smaller?

NO-Calculate sector number from

allowable range; note

common sector shifts

Set new sector number

Return from this subroutine

[8CF9]

Make table of sector

8888

888A

888C

888F

8891

8894

8896

8897

88 9A

889B

889E1

88A1

88A4

88A7

88A8

88A9

88AA

88AD

88AE

88B0

88B2

88B5

88B7

88B9

88BC

02

02

88C1

A0 00

A2 00

AD 03 02

29 3F

8D 03 02

85 60

48

AD 07

48

EE 04

AD 03 02

99 0B 02

EE 03 02

E8

98

18

6D 04

A8

CO 20

B0 0C

CC 07

90 1A

DO 12

EC 07 02

F0 0D

CE 04 02

68

02

02

LDY

LDX

LDA

AND

STA

STA

PHA

LDA

PHA

INC

LDA

STA

INC

INX

TYA

CLC

ADC

TAY

CPY

BCS

CPY

BCC

BNE

CPX

BEQ

DEC

PLA

numbers available for formatting

#$00 Clear pointer to current sector #

#$00 Clear sector counter

$0203 Limit number of first

#$3F sector to range of

$0203 0-63 and save

$60 as smallest sector

Save sector number

$0207 Retain number of last

sector

$0204 Set up sector format

$0203 Get number of current sector and

$020B,Y insert in table

$0203 Set number of next sector

Number of sectors set up

Get pointer to sector position

and compute sector

$0204 format

Save new pointer and compare with

#$20 max. sector number

$88BE Gone over 32?

$0207 NO—Test number of last sector

$88D1 Reached this number?

$88CB NO—Last number reached?

$0207 YES-Test # of sectors set out

$88CB All sectors made available?

$0204 NO—Adjust sector format

Re-establish maximum

ROM-27

Abacus Software 1571 Internals

88C2

88C5

88C6

88C9

88CA

88CB2

88CC

88CD

88D0

88D11

88D4

88D6

88D8

88D9

88DA

88DB

88DD

88DF

88E1

88E3

88E4

88E7

88E8

88EB

88EE

88EF

8D

68

8D

38

60

98

38

ED

A8

EC

DO

86

CA

8A

18

65

85

C5

90

68

8D

68

8D

CE

18

60

07

03

07

07

C8

97

60

61

60

DB

07

03

04

02

02

02

02

02

02

02

STA

PLA

STA

SEC

RTS

TYA

SEC

SBC

TAY

CPX

BNE

STX

DEX

TXA

CLC

ADC

STA

CMP

BCC

PLA

STA

PLA

STA

DEC

CLC

RTS

$0207

$0203

$0207

$0207

$889E

$97

$60

$61

$60

$88BE

$0207

$0203

$0204

sector number

Get number of first sector and

set it

Flag for 'error encountered1

Return from this subroutine

Compute pointer/current sector

position in allowable

sector range

and save it

Test number of sectors set out

All sector #'s already in table?

YES—save number of sectors

Set up number of

last sector

Compute # of smallest sector from

that, and save as number of

largest sector

Compare with smaller number

Has sector been set out?

NO-Re-establish

maximum sector number

Get number of first sector

and set it

Adjust sector format

Flag for 'no error found1

Return from this subroutine

[8D1F]

Test CP/M-sectors after formatting for empty bytes

Save current track for

formatting

Clear counter for current sector

number

Get number of current sector and

determine sector number of header

Send sector over CP/M controller

Test sector

Get return message

and compare w/ value for 'Ok1

Is there an error here?

NO-Choose next sector

Get current sector # and compare

with maximum amount

All sectors already checked?

YES-Set flag for 'Ok'

Jump to next byte (bit-command)

Set flag for error

88F0

88F3

88F4

88F6

88F81

88FA

88FD

8900

8903

8906

8908

890A

890C

890E

8911

8913

8914

89151

AD

48

A0

84

A4

B9

8D

20

AE

E0

B0

E6

A4

CC

DO

18

24

38

B0

00

24

24

0B

02

18

B0

02

0B

24

24

07

E5

01

02

20

8F

01

02

LDA

PHA

LDY

STY

LDY

LDA

STA

JSR

LDX

CPX

BCS

INC

LDY

CPY

BNE

CLC

$01B0

#$00

$24

$24

$020B,Y

$2002

$8F18

$01B0

#$02

$8915

$24

$24

$0207

$88F8

.byte $24

SEC

ROM-28

Abacus Software 1571 Internals

8916 68

8917 8D BO 01

891A1 60

PLA Reset current track number of

STA $01B0 format procedure

RTS Return from this subroutine

[8DF3/8EC2]

Set next track

891B AD 74 02

891E C9 07

8920 90 F8

8922 AD 06 02

8925 85 67

8927 4C BA 87

LDA $0274

CMP #$07

BCC $891A

LDA $0206

STA $67

JMP $87BA

Test length/command string in

input buffer against 7

Is command less than 7 chars.?

NO-Get 7th character and take up

as current target track

Control track

[8737]

Read next IBM system

892A AD B0 01 LDA

892D 48

892E 20 27 8A

8931 AE B0 01

8934 E0 02

8936 90 0D

8938 20 EF 89

893B 20 27 8A

893E AE B0 01

8941 E0 02

8943 B0 0A

89451 A5 67

8947 0A

8948 C5 64

894A F0 03

894C 20 BA 87

68

8950

8953

8D B0 01

60

PHA

JSR

LDX

CPX

BCC

JSR

JSR

LDX

CPX

BCS

LDA

ASL

CMP

BEQ

JSR

PLA

STA

RTS

34 sector and set head accordingly

$01B0 Keep current error return

message

$8A27 Read next IBM-34 header

$01B0 Get return message and check for

#$02 error message

$8945 Header been read error-free?

$89EF YES-Set head to track 0

$8A27 Read next header

$01B0 Get return message

#$02 and test for error message

$894F Header been read error-free?

$67 YES-Get # of current target track

A and determine number of steps

$64 Compare with current position

$894F Is track already reached?

$87BA NO-Set head to target track

Repeat previous error number

$01B0 and set

Return from this subroutine

[8730/8CD5]

Activate head at

8954 08

8955 78

8956 A5 3B

8958 29 10

895A C9 10

895C 20 F3 93

895F 28

8960 60

current diskette side

PHP

SEI

LDA $3B

AND #$10

CMP #$10

JSR $93F3

Retain processor status

Disable bus/controller interrupt

Get flag from

command number

Take flag (bit 4) in carry

Set head to chosen side

Re-establish processor status

Return from this subroutine

ROM-29

Abacus Software 1571 Internals

[852A]

Determine smallest and greatest

8961

8963

8964

89661

8969

896B

896E1
896F

8971

8973

8975

8976

89781

897B

897D

89801

8981

8983

8985

[852D;

A4

88

A9

D9

90

B9

88

10

85

A4

88

A9

D9

BO

B9

88

10

85

60

]

Compute

8986

8988

898A1
898D

898F

8991

8992

8994

89961
8998

899A

899B

899D

899F

89A12
89A4

89A6

89A8

89A9

A6

A0

B9

C5

F0

C8

C4

DO

84

A5

18

69

85

A2

B9

C5

FO

E8

C8

97

FF

OB

03

OB

F5

60

97

00

OB

03

OB

F5

61

02

02

02

02

sector

97

00

OB

60

05

97

F4

5F

60

01

46

FF

OB

46

OA

02

02

LDY

DEY

LDA

CMP

BCC

LDA

DEY

BPL

STA

LDY

DEY

LDA

CMP

BCS

LDA

DEY

BPL

STA

RTS

format

LDX

LDY

LDA

CMP

BEQ

INY

CPY

BNE

STY

LDA

CLC

ADC

STA

LDX

LDA

CMP

BEQ

INX

INY

$97

#$FF

$020B,

$896E

$020B,

$8966

$60

$97

#$00

$020B,

$8980

$020B,

$8978

$61

: from

$97

#$00

$020B,

$60

$8996

$97

$898A

$5F

$60

#$01

$46

#$FF

$020B,

$46

$89B2

Y

Y

Y

Y

sector

Y

Y

sector numbers

Number of sectors laid out

Counter to last sector position

Maximum possible number;

Compare with sector number

Is sector number less?

YES-Get new sector number and

set pointer to next sector naming

All sectors already checked out?

YES-Set smallest sector number

Number of sectors laid out

Counter to last sector position

Smallest value

Compare with sector number?

Is number greater?

YES-Take new sector number

Pointer to next sector naming

All sectors already checked?

YES—Save greatest sector number

Return from this subroutine

sequence

Number of sectors in table

Reset position pointer

Get sector # from table & compare

with smallest number

Identical?

NO-Pointer to next sector

Compare with # of sector numbers

Already tested?

YES-Save place of smallest sector

Get smallest sector number

and draw up number of next

sector

Save number

Initialize cntr for sector format

Get sector # from table and

compare with second sector

Identical?

NO—Increment sector format

Pointer to next sector number

ROM-30

Abacus Software 1571 Internals

8£AA

8 9AC

89AE

89B0

89B21

C4

DO

AO

FO

60

97

F3

00

EF

[8A0C/8CDE]

Initialize CP/M

89B3

89B5

89B6

89B7

89B8

89BB

89BE

89C0

89C3

89C6

89C8

89CA

89CD

89CF

89D12

89D4

89D6

89D8

89DA

89DB

89DE1

89DF

89E1

89E2

89E4

89E5

89E6

89E71

89E8

89E9

89EB

A5

48

08

78

AD

8D

A9

20

20

A2

AO

AD

29

85

AD

29

C5

FO

28

4C

CA

DO

88

DO

28

38

24

18

68

85

60

6F

01

03

18

4E

61

00

80

00

02

6F

00

02

6F

04

E7

FO

ED

18

6F

20

20

88

88

20

20

89

CPY

BNE

LDY

BEQ

RTS

$97

$89A1

#$00

$89A1

controller to

LDA

PHA

PHP

SEI

LDA

STA

LDA

JSR

JSR

LDX

LDY

LDA

AND

STA

LDA

AND

CMP

BEQ

PLP

JMP

DEX

BNE

DEY

BNE

PLP

SEC

$6F

$2001

$2003

#$18

$884E

$8861

#$00

#$80

$2000

#$02

$6F

$2000

#$02

$6F

$89DE

$89E7

$89D1

$89D1

.byte $24

CLC

PLA

STA

RTS

$6F

Test against number of sectors

All sectors handled?

YES-Reset pointers

Jump to $89A1

Return from this subroutine

track

Hold zeropage area to be used

for temporary storage

Save processor status

Disable bus/controller interrupt

Set current track # as track

to be newly initialized

%00011000 'Seek1 (set track)

command on CP/M controller

Wait until command is executed

Clear counter for number of

tries

Read CP/M status register

Get flag for status of index hole

and save it

Re-read status reg. & status of

index hole light box

Compare with the former

Index hole found?

YES-Re-establish processor status

Set index flag and end

Counter for tries (low-byte)

Is counter finished?

YES-Decrement high-byte

Is counter finished?

YES-Re-establish processor status

Flag for "Index hole not found1

Jump to next byte (bit command)

Flag for 'Index hole found1

Re-arrange

zero-page area

Return from this subroutine

[Vector: 86C8]

89EC 4C A0 EA JMP $EAA0 Execute 1571 reset

ROM-31

Abacus Software
1571 Internals

[8938/8A09/8CDB/8CE8/8F61/Vector:
Replace

89EF

89F1

89F3

89F5

89F8

89FA

A9

85

A9

8D

85

4C

head at

B4

64

00

01 20

67

BA 87

track

LDA

STA

LDA

STA

STA

JMP

0

#$B4

$64

#$00

$2001

$67

$87BA

86CA]

Set # of current halftrack

steps for track 37

Place CP/M controller at

track 0

Set new target track

Position head

[Vector: 86CC]

Test status of write-protect

89FD AD 00 1C LDA $lC00

8A00 29 10 AND #$10

8A02 60 RTS

notch

Get drive control reg hole, get

bit f/"Write Protect1(low active)

Return from this subroutine

[Vector: 86CF]

Set track parameters

8A03 84 67 STY $67

8A05 86 64 STX $64

8A07 60 RTS

Set track to be controlled

Curr.position in half-track steps

Return from this subroutine

[Vector: 864E]

8A08 60 RTS Return from this subroutine

[Vector: 86D2]

Read header of

8A09 20 EF 89

8A0C 20 B3 89

8A0F B0 OF

8A11 20 27 8A

8A14 BD 7E 8A

8A17 85 97

8A19 85 61

8A1B A9 01

8A1D 85 60

8A1F 60

8A20]

8A22

8A25

A9 0D

8D B0 01

DO 3E

next CP/M sector

JSR $89EF

JSR $89B3

BCS $8A20

JSR $8A27

LDA $8A7E/X

STA $97

STA $61

LDA #$01

STA $60

RTS

LDA #$0D

STA $01B0

BNE $8A65

and in buffer $0024

Set head to track 0

Initialize controller

Index hole on hand?

YES-Read header and set pointer

Get # of sectors to a track and

save them

Set as largest sector number

Determine smallest

sector number

Return from this subroutine

Set error message —

'Index not found1

Jump to $8A65

[892E/893B/8A11/8F74/8F82]

Read next IBM System 34 header and set sector pointer

8A27 A9 00 LDA #$00 Clear pointer for

bytes per sector portion and

number of portions

%11001000IRead address1(Readhead)

Command on CP/M controller

8A2 9

8A2C

8A2E

8A30

8D

85

A9

20

71

44

C8

4E

02

88

STA

STA

LDA

JSR

$0271

$44

#$C8

$884E

ROM-32

Abacus Software 1571 Internals

8A3 3

8A35

8A372

8A3A

8A3C

8A3D

8A3F

8A41

8A44

8A4 6

8A47

8A48

8A4A1

8A4D

8A50

8A52

8A53

8A55

A2 00

A0 06

AD 00 20

29 03

4A

90 OB

FO F6

AD 03 20

95 24

E8

88

DO ED

20 61 88

20 3C

A5 24

OA

85 64

A5 27

88

LDX #$00 Clear buffer pointer

LDY #$06 Number of header bytes

LDA $2000 Read status register and

AND #$03 isolate flag

LSR A Flag: 'Command in process1 (Busy)

BCC $8A4A Is command still active?

BEQ $8A37 YES-Any more header data?

LDA $2003 YES-Get data byte and write

STA $24,X in header buffer

INX Set buffer pointer to next byte

DEY Decrement number of header bytes

BNE $8A37 All bytes read?

JSR $8861 YES-Wait until command is ended

JSR $883C Get return message frm controller

LDA $24 Get track # from header read and

ASL A compute number of half-steps

STA $64 Save as current head position

LDA $27 Get identifier for sector size

[8C7B/8C9F]

Set pointer for

8A57 29 03

8A59 AA

8A5A BD 72 8A

8A5D 8D 71 02

8A60 BD 7 6 8A

8A63 85 4 4

8A651 A5 5E

8A67 29 80

8A69 0D B0 01

8A6C ID 7A 8A

8A6F 85 5E

8A71 60

sector type

AND #$03 Isolate significant bits

TAX and save value

LDA $8A72,X Get # of bytes per sector portion

STA $0271 and save it

LDA $8A76,X Determine # of portions /sector

STA $44 and take up

LDA $5E Get command status byte & isolate

AND #$80 flag for IBM-34 diskette

ORA $01B0 Combine current track # and set

ORA $8A7A,X identifier for sector length

STA $5E Re-set command status byte

RTS Return from this subroutine

[8A5A] Number

8A72 7F

8A73 FF

8A74 FF

8A75 FF

of bytes per sector portion

Value for 128 bytes / sector

Value for 256 bytes / sector

Value for 512 bytes / sector

Value for 1024 bytes / sector

ROM-33

Abacus Software 1571 Internals

[8A60]

Number of portions per CP/M sector

8A7 6 01

8A7 7 01

8A78 02

8A7 9 04

Value for 128 bytes / sector

Value for 256 bytes / sector

Value for 512 bytes / sector

Value for 1024 bytes / sector

[8A6C]

Identifier for sector length (in most significant byte-half)

Value for 128 bytes / sector

Value for 256 bytes / sector

Value for 512 bytes / sector

Value for 1024 bytes / sector

8A7A 00

8A7B 10

8A7C 20

8A7D 30

[8A14]

Number of sectors per track; number of highest sector

Value for 128 bytes / sector

Value for 256 bytes / sector

Value for 512 bytes / sector

Value for 1024 bytes / sector

Number for 'OK1

Number for 'False checksum1

for 'Sector header not found1

Number for 'Sync not found'

[8D14]

Format CP/M track in 'IBM System 34 format'

8A86 A9 F8 LDA #$F8 %111110000Write'Write track'track

8A88 20 DO 87 JSR $87D0 Give command over CP/M controller

8A8B 24 3B BIT $3B Test flag in command number

8A8D 50 62 BVC $8AF1 Should track index be written?

Write track-Index save (after index hole)

8A7E

8A7F

8A80

8A81

1A

10

09

05

[8846]

CP/M

8A82

8A83

8A84

8A85

error messages

01

09

02

03

8A8F A2 50

8A912 AD 00 20
8A94 29 03

8A96 4A

8A97 90 60

8A99 F0 F6

8A9B A9 4E

8A9D 8D 03 20

8AA0 CA

8AA1 DO EE

8AA3 A2 0C

LDX #$50 YES-# of bytes f/index Pulse(80)

LDA $2000 Get status register &

AND #$03 isolate command bits

LSR A Test bit for 'Busy1

BCC $8AF9 Should command be executed?

BEQ $8A91 YES-Data controller ready?

LDA #$4E Write byte value for Pre-Index 1

STA $2003 on diskette

DEX Write next byte

BNE $8A91 All bytes already?

LDX #$0C YES-Set counter for spaces(12)

ROM-34

Abacus Software 1571 Internals

8AA8

8AAA

8AAB

8AAD

8AAF

8AB1

8AB4

8AB5

8AB7

8AB92

8ABC

8ABE

8ABF

8AC1

8AC3

8AC5

8AC 8

8AC 9

8ACB1

8ACE

8ADO

8ADI

8AD3

8AD5

8AD7

8ADA

8ADC

8ADD2

8AE0

8AE2

8AE3

8AE5

8AE7

8AE9

8AEC

8AED

8AEF

AD 00 20

29 03

4A

90 4C

FO F6

A9 00

8D 03 20

CA

DO EE

A2 03

AD 00 20

29 03

4A

90 38

FO F6

A9 F6

8D 03 20

CA

DO EE

AD 00 20

29 03

4A

90 26

FO F6

A9 FC

8D 03 20

A2 32

EA

AD 00 20

29 03

4A

90 14

FO F6

A9 4E

8D 03 20

CA

DO EE

FO 14

LDA $2000 Get status register

AND #$03 and isolate command bits

LSR A Test bit for 'Busy1

BCC $8AF9 Should command still be executed?

BEQ $8AA5 YES-Data controller ready?

LDA #$00 Write byte value for Pre-Index 2

STA $2003 to diskette

DEX Write next byte

BNE $8AA5 All bytes ready?

LDX #$03 YES-Set counter

LDA $2000 Get status register &

AND #$03 isolate command bits

LSR A Test bit for 'Busy1

BCC $8AF9 Will command still be executed?

BEQ $8AB9 YES-Data controller ready?

LDA #$F6 Write value for time byte $C2

STA $2003 to diskette

DEX Write next byte

BNE $8AB9 All bytes?

LDA $2000 Get status register &

AND #$03 isolate command bits

LSR A Test bit for 'Busy1

BCC $8AF9 Will command still be executed?

BEQ $8ACB YES-Data controller ready?

LDA #$FC Wrte byte val:"Addres Index Save1

STA $2003 to diskette

LDX #$32 Set counter (50)

NOP Two cycles delay

LDA $2000 Get status register & isolate

AND #$03 command bits

LSR A Test bit for 'Busy1

BCC $8AF9 Will command still be executed?

BEQ $8ADD YES-Data controller ready?

LDA #$4E Write byte value for Post-Index

STA $2003 to diskette

DEX Write next byte

BNE $8ADD All bytes ready?

BEQ $8B05 YES-Jump to $8B05

[8A8D] Format

8AF1 A2 3C

8AF32 AD 00 20

8AF6 29 03

8AF8 4A

8AF95 90 28

8AFB F0 F6

8AFD A9 4E

sectors

LDX #$3C Set counter (60)

LDA $2000 Get status register AND isolate

AND #$03 command bits

LSR A Test bit for 'Busy1

BCC $8B23 Will command still be executed?

BEQ $8AF3 YES-Data controller ready?

LDA #$4E Write byte value for space 1

ROM-35

Abacus Software 1571 Internals

8AFF

8B02

8B03

8B051

8B071

8B092

8B0C

8B0E

8B0F

8B11

8B13

8B15

8B18

8B19

8B1B

8B1D2

8B20

8B22

8B232

8B25

8B27

8B29

8B2C

8B2D

8B2F2

8B32

8B34

8B35

8B37

8B39

8B3B

8B3E1

8B41

8B43

8B44

8B4 6

8B4 8

8B4B

8B4E1
8B51

8B53

8B54

8B56

8B58

8B5A

8B5C

8B5E

8D

CA

DO

AO

A2

AD

29

4A

90

FO

A9

8D

CA

DO

A2

AD

29

4A

90

FO

A9

8D

CA

DO

AD

29

4A

90

FO

A9

8D

AD

29

4A

90

FO

AD

8D

AD

29

4A

90

FO

A5

29

DO

A9

03

EE

01

OC

00

03

12

F6

00

03

EE

03

00

03

57

F6

F5

03

EE

00

03

45

F6

FE

03

00

03

36

F6

BO

03

00

03

26

F6

3B

10

03

00

20

20

20

20

20

20

20

20

01

20

20

STA

DEX

BNE

LDY

LDX

LDA

AND

LSR

BCC

BEQ

LDA

STA

DEX

BNE

LDX

LDA

AND

LSR

BCC

BEQ

LDA

STA

DEX

BNE

LDA

AND

LSR

BCC

BEQ

LDA

STA

LDA

AND

LSR

BCC

BEQ

LDA

STA

LDA

AND

LSR

BCC

BEQ

LDA

AND

BNE

LDA

$2003

$8AF3

#$01

#$0C

$2000

#$03

A

$8B23

$8B09

#$00

$2003

$8B09

#$03

$2000

#$03

A

$8B7C

$8B1D

#$F5

$2003

$8B1D

$2000

#$03

A

$8B7C

$8B2F

#$FE

$2003

$2000

#$03

A

$8B7C

$8B3E

$01B0

$2003

$2000

#$03

A

$8B7C

$8B4E

$3B

#$10

$8B61

#$00

to diskette

Write next byte

All bytes ready?

YES-Sector counter

Set counter

Get status register & isolate

command bits

Test bit for •Busy1

Will command still be executed?

YES—Data controller ready?

Write byte value for 2nd part of

space 1 to diskette

Write next byte

All bytes done?

Set counter

Get status register & isolate

command bits

Test bit for •Busy1

Will command still be executed?

YES-Data controller ready?

Write value time byte $A1

to diskette

Write next byte

All bytes done up?

Get status register & isolate

command bits

Test bit for 'Busy1

Will command still be executed?

YES-Data controller ready?

Write byte value:'ID Adress Save1

to diskette

Get status register & isolate

command bits

Test bit for 'Busy1

Will command still be executed?

YES-Data controller ready?

Write current track number

to diskette

Get status register & isolate

command bits

Test bit for 'Busy'

Will command still be executed?

YES—Data controller ready?

Get flag for current disk side &

test it

Is side 1 active?

YES-Then set side identifier

ROM-36

Abacus Software 1571 Internals

8B60 2C

8B611 A9 01

8B63 8D 03 20

8B661 AD 00 20

8B69 29 03

8B6B 4A

8B6C 90 0E

8B6E FO F6

8B70 B9 OA 02

8B73 8D 03 20

8B761 AD 00 20

8B79 29 03

8B7B 4A

8B7C5 90 33

8B7E FO F6

8B80 AD 05 02

8B83 8D 03 20

8B861 AD 00 20

8B89 29 03

8B8B 4A

8B8C 90 23

8B8E FO F6

8B90 A9 F7

8B92 8D 03 20

8B95 A2 16

8B972 AD 00 20

8B9A 29 03

8B9C 4A

8B9D 90 12

8B9F FO F6

8BA1 A9 4E

8BA3 8D 03 20

8BA6 CA

8BA7 DO EE

8BA9 A2 OC

8BAB2 AD 00 20

8BAE 29 03

8BB0 4A

8BB13 90 38
8BB3 FO F6

8BB5 A9 00

8BB7 8D 03 20

8BBA CA

8BBB DO EE

8BBD A2 03

8BBF2 AD 00 20

8BC2 29 03

.byte $2C Jump to next 2 bytes(bit command)

LDA #$01 Write side 2 identifier

STA $2003 to diskette

LDA $2000 Get status register & isolate

AND #$03 command bits

LSR A Test bit for 'Busy1

BCC $8B7C Will command still be executed?

BEQ $8B66 YES-Data controller ready?

LDA $020A,Y Write sector number

STA $2003 to diskette

LDA $2000 Get status register & isolate

AND #$03 command bits

LSR A Test bit for 'Busy1

BCC $8BB1 Will command still be executed?

BEQ $8B76 YES-Data controller ready?

LDA $0205 Write identifier for

STA $2003 sector length to diskette

LDA $2000 Get status register & isolate

AND #$03 command bits

LSR A Test bit for 'Busy1

BCC $8BB1 Will command still be executed?

BEQ $8B86 YES-Data controller ready?

LDA #$F7 Write byte value for 2 CRC bytes

STA $2003 to diskette

LDX #$16 Set counter (22)

LDA $2000 Get status register & isolate

AND #$03 command bits

LSR A Test bit for 'Busy'

BCC $8BB1 Will command still be executed?

BEQ $8B97 YES-Data controller ready?

LDA #$4E Write byte value for space 2

STA $2003 to diskette

DEX Write next byte

BNE $8B97 All bytes already?

LDX #$0C Set counter (12)

LDA $2000 Get status register & isolate

AND #$03 command bits

LSR A Test bit for 'Busy'

BCC $8BEB Will command still be executed?

BEQ $8BAB YES-Data controller ready?

LDA #$00 Write byte val,2nd part of space2

STA $2003 to diskette

DEX Write next byte

BNE $8BAB All bytes done?

LDX #$03 Set counter

LDA $2000 Get status register & isolate

AND #$03 command bits

ROM-37

Abacus Software
1571 Internals

8BC4

8BC5

8BC7

8BC9

8BCB

8BCE

8BCF

8BD11

8BD4

8BD6

8BD7

8BD9

8BDB

8BDD

8BE0

8BE2

8BE4

8BE53

8BE8

8BEA

8BEB3
8BED

8BEF

8BF2

8BF5

8BF8

8BFA

8BFB

8BFE1

8BFF

8C00

8C021

8C05

8C07

8C08

8C0A

8C0C

8C0E

8C11

8C14

8C17

8C19

8C1A2

8C1D

8C1F

8C20

8C22

20

4A

90 24

F0 F6

A9 F5

8D 03

CA

DO EE

AD 00 20

29 03

4A

90 12

FO F6

A9 FB

8D 03 20

84 6F

A4 44

EA

AD 00 20

29 03

4A

90 60

FO F6

AD OA 02

8D 03 20

EC 71

FO 04

E8

4C E5

E8

88

DO E3

AD 00 20

29 03

4A

90 43

FO F6

A9 F7

8D 03

AC 05

B9 4F 8C

A4 6F

AA

AD 00 20

29 03

4A

90 2B

FO F6

02

8B

20

02

BCC $8BEB

BEQ $8BBF

LDA #$F5

STA $2003

DEX

BNE $8BBF

LDA $2000

AND #$03

LSR A

BCC $8BEB

BEQ $8BD1

LDA #$FB

STA $2003

STY $6F

LDY $44

NOP

LDA $2000

AND #$03

LSR A

BCC $8C4D

BEQ $8BE5

LDA $020A

STA $2003

CPX $0271

BEQ $8BFE

INX

JMP $8BE5

INX

DEY

BNE $8BE5

LDA $2000

AND #$03

LSR A

BCC $8C4D

BEQ $8C02

LDA #$F7

STA $2003

LDY $0205

LDA $8C4F,Y

LDY $6F

TAX

LDA $2000

AND #$03

LSR A

BCC $8C4D

BEQ $8C1A

Test bit for 'Busy1

Will command still be executed?

YES-Data controller ready?

Write value for time byte $A1

to diskette

Write next byte

All bytes done?

Get status register & isolate

command bits

Test bit for 'Busy1

Will command still be executed?

YES-Data controller ready?

Write byte val:'Data Address

Save' to diskette

Save current sector pointer

Get number of sector portions

Two-cycle delay

Get status register & isolate

command bits

Test bit for 'Busy'

Will command still be executed?

YES-Data controller ready?

Write empty byte for sector

to diskette

Test for length of a sub-sector

Entire sub-sector written?

NO-Write further to

next byte

Initialize cntrisubsector length

Decrement number of sub-sectors

Write to other sub-sectors?

NO-Get status register & isolate

command bits

Test bit for 'Busy1

Will command still be executed?

YES-Data controller ready?

Write byte value for 2 CRC-bytes

to diskette

Identifier for sector length

Get size/spaces between sectors

Number of current sector

Set space counter

Get status register & isolate

command bits

Test bit for 'Busy'

Will command still be executed?

YES-Data controller ready?

ROM-38

Abacus Software 1571 Internals

8C24 A9 4E LDA #$4E Write byte value for space 3

8C26 8D 03 20 STA $2003 to diskette

8C2 9 CA DEX Write next byte

8C2A DO EE BNE $8C1A All bytes done?

8C2C CC 07 02 CPY $0207 Number of sectors to track

8C2F F0 04 BEQ $8C35 All sectors set up?

8C31 C8 INY NO-Increment sector counter

8C32 4C 07 8B JMP $8B07 write next sector

8C353 AD 00 20 LDA $2000 Get status register & isolate

8C38 29 03 AND #$03 command bits

8C3A 4A LSR A Test bit for 'Busy1

8C3B 90 0B BCC $8C48 Will command still be executed?

8C3D F0 F6 BEQ $8C35 YES-Data controller ready?

8C3F 18 CLC Write byte value

8C40 A9 4E LDA #$4E for space 4

8C42 8D 03 20 STA $2003 to diskette

8C45 4C 35 8C JMP $8C35 Fill rest of track

8C481 20 61 88 JSR $8861 Wait until command is finished

8C4B 18 CLC Set flag for 'formatting Ok1

8C4C 24 .byte $24 Jump to next byte (bit command)

8C4D3 38 SEC Set flag for format error

8C4E 60 RTS Return from this subroutine

[8C14] Number of bytes for spaces between CP/M sectors

8C4F 07 Value for 128 bytes per sector

8C50 0C Value for 256 bytes per sector

8C51 17 Value for 512 bytes per sector

8C52 2C Value for 1024 bytes per sector

[8CA7] Number of CP/M sectors per track by formatting

8C53 1A Value for 128 bytes per sector

8C54 10 Value for 256 bytes per sector

8C55 09 Value for 512 bytes per sector

8C56 05 Value for 1024 bytes per sector

[Vector:

Format

8C57

8C59

8C5B

8C5D

8C5F

8C62

8C63

8C641
8C67

8C6A

86D8]

; diskette

A5

29

F0

A6

8E

38

60

20

AD

38

3B

08

07

46

B0 01

07 D3

74 02

in 'IBM System

LDA

AND

BEQ

LDX

STX

SEC

RTS

JSR

LDA

SEC

#$3B

#$08

$8C64

$46

$01B0

$D307

$0274

34 •

Test for

write-protect flag

Is 'Write Protect1 set?

YES—Get error number

& set as return message

Flag for 'Error encountered1

Return from this subroutine

Clear all channels

Lengh of command string

Draw off number of bytes utilized

ROM-39

Abacus Software 1571 Internals

8C6B

8C6D

8C6E

8C70

8C71

8C73

8C75

8C78

8C7B

8C7E

8C7F

8C81

8C82

8C84

8C85

8C87

8C88

8C8A

8C8B

8C8D

8C901
8C92

8C951

8C97

8C9A

8C9C

8C9F

8CA21

8CA4

8CA71

8CAA

8CAD1

8CAF

8CB2

8CB51

8CB7

8CBA1

8CBC

8CBF1
8CC2

8CC5

8CC7

8CC9

8CCB

8CCD

8CCF

8CD1

E9

A8

FO

88

FO

A9

8D

AD

20

88

FO

88

FO

88

FO

88

FO

88

FO

4C

A9

8D

A9

8D

A9

8D

20

A9

8D

BD

8D

A9

8D

8D

A9

8D

A9

8D

20

AD

EO

BO

A5

29

FO

A5

09

04

20

22

00

BO

05

57

21

23

26

2B

2D

BF

00

04

00

BO

01

05

57

27

06

53

07

00

08

01

00

09

E5

OA

DE

BO

02

12

3B

20

OC

3B

10

01

02

8A

8C

02

01

02

8A

02

8C

02

02

20

02

02

8C

01

SBC

TAY

BEQ

DEY

BEQ

LDA

STA

LDA

JSR

DEY

BEQ

DEY

BEQ

DEY

BEQ

DEY

BEQ

DEY

BEQ

JMP

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

STA

LDA

STA

STA

LDA

STA

LDA

STA

JSR

LDA

CPX

BCS

LDA

AND

BEQ

LDA

ORA

#$04

$8C90

$8C95

#$00

$01B0

$0205

$8A57

$8CA2

$8CA7

$8CAD

$8CB5

$8CBA

$8CBF

#$00

$0204

#$00

$01B0

#$01

$0205

$8A57

#$27

$0206

$8C53,X

$0207

#$00

$0208

$2001

#$00

$0209

#$E5

$020A

$8CDE

$01B0

#$02

$8CDB

$3B

#$20

$8CDB

$3B

#$10

and

save value

Any more statements onhand?

Pointer to next command byte

More statements in cmd string?

YES-Set first track to be

formatted

Get identifier for 2nd length &

set appropriate pointer

Pointer to next command byte

More statements in cmd string?

YES-Pointer to next command byte

More statements in cmd string?

YES-Pointer to next command byte

More statements in cmd string?

YES—Pointer to next command byte

More statements in cmd string?

YES—Pointer to next command byte

More statements in cmd string?

Set no insert-value

Clear track statement

in command string

Set first track to be

formatted (0)

Set identifier for 256 bytes per

sector

Set sector pointer

Lay out size of

formatted track

Determine & set number

of sectors per track

Set first logical

track number

Give track over CP/M controller

Set first physical track to be

formatted

Save empty bytes to fill

sectors

Format disk side in IBM format

Get return message & compare

with value for 'Ok1

Is track formatting error-free?

YES-Get command number & test

flag for 'two sides1

Should both sides be formatted?

YES-Set flag for

side 2 in

ROM-40

Abacus Software 1571 Internals

8CD3 85 3B

8CD5 20 54 89

8CD8 20 DE 8C

8CDB2 4C EF 89

STA $3B

JSR $8954

JSR $8CDE

JMP $89EF

command number

Activate head on current side

Format disk side in IBM format

Set head to track 0 & end

[8CBF/8CD8]

Format disk side

8CDE 20 B3 89

8CE1 BO 7C

8CE3 A9 01

8CE5 8D 0D 18

8CE8 20 EF 89

8CEB AD 08 02

8CEE 8D B0 01

8CF1 8D 01 20

8CF4 2C 03 02

8CF7 70 05

8CF9 20 88 88

8CFC B0 61

8CFE1 AD 09 02

8D01 29 7F

8D03 F0 08

8D05 18

8D06 65 67

8D08 85 67

8D0A 20 BA 87

8D0D2 78
8D0E AD 0D 18

8D11 4A

8D12 B0 4B

8D14 20 86 8A

8D17 B0 46

8D19 AD OD 18

8D1C 4A

8D1D BO 40

8D1F 20 FO 88

8D22 BO 3B

8D24 AD OD 18

8D27 4A

8D28 BO 35

8D2A AD BO 01

8D2D CD 06 02

8D30 FO OE

8D32 E6 67

8D34 EE 01 20

8D37 EE BO 01

8D3A 20 BA 87

in 'IBM System

JSR $89B3

BCS $8D5F

LDA #$01

STA $180D

JSR $89EF

LDA $0208

STA $01B0

STA $2001

BIT $0203

BVS $8CFE

JSR $8888

BCS $8D5F

LDA $0209

AND #$7F

BEQ $8D0D

CLC

ADC $67

STA $67

JSR $87BA

SEI

LDA $180D

LSR A

BCS $8D5F

JSR $8A86

BCS $8D5F

LDA $180D

LSR A

BCS $8D5F

JSR $88F0

BCS $8D5F

LDA $180D

LSR A

BCS $8D5F

LDA $01B0

CMP $0206

BEQ $8D40

INC $67

INC $2001

INC $01B0

JSR $87BA

34'

Initialize track

Is there an index hole?

YES-Re-initialize flag for disk

exchange (write-protect changed)

Set head for track 0

Get 9th char from command string

& set as first track number

Send track # over CP/M controller

Get 4th char from command string

Flag for 'no sector table1 set?

NO-Create sector table

Table created withou errors?

YES-Get 10th char from cmndstring

Set as first physical track #

Head moved to a starting track?

YES-Physical track at start-of-

format should be

computed

Control track

Disable bus/controller interrupt

Test signal from circuitry for

'Write-protect has to be changed1

Has diskette been changed?

NO-Format track

Has an error been found?

NO-Test signal from circuitry for

'Write-protect has to be changed'

Diskette been changed?

NO—Test sectors

All sectors written error-free?

YES-Test signal frm circuitry for

'Write-protect has to be changed'

Has diskette been changed?

Compare current logical track #

with last number

Is desired range formatted?

NO-Set to next target track

Put CP/M controller to next track

Increment current track number

Set head to track

ROM-41

Abacus Software 1571 Internals

8D3D

8D401

8D42

8D44

8D45

8D48

8D4B

8D4D

8D4F

8D51

8D54

8D56

8D59

8D5C2

8D5E

8D5F6

8D61

8D64

4C

24

10

38

AD

ED

C9

BO

E6

20

A2

20

20

A2

2C

A2

8E

4C

OD

3B

18

06

08

27

OD

67

BA

1C

63

00

00

06

BO

E9

8D

02

02

87

9D

FE

01

85

JMP

BIT

BPL

SEC

LDA

SBC

CMP

BCS

INC

JSR

LDX

JSR

JSR

LDX

$8D0D

$3B

$8D5C

$0206

$0208

#$27

$8D5C

$67

$87BA

#$1C

$9D63

$FE00

#$00

.byte $2C

LDX

STX

JMP

#$06

$01B0

$85E9

Keep formatting

Test flag in command number

End track recognized / cleared?

Number of tracks to be formatted

from last logical track

& compute first track number

Compare with maximum # of tracks

Everything til side 2 formatted?

YES-Go to side 2 for

formatting

Write 7168 times $55 (%01010101)

to track

Switch head to read

Error number for 'Ok1

Jump to next 2 bytes(bit command)

Error number for "Format error1

Set return message &

get ready for output

[8DF0/Vektor: 86D9]

Read CP/M sector & send to

8D67

8D69

8D6B

8D6D

8D6F

8D71

8D73

8D75

8D77

8D7A

8D7D

8D80

8D83

8D85

8D88

8D893

8D8C

8D8E

8D8F

8D91

8D93

8D95

8D98

8D9A

8D9D

8D9F

A5

29

DO

A9

85

A0

84

A6

AD

8D

AD

8D

A9

20

EA

AD

29

4A

90

29

F0

AD

91

CC

F0

C8

3B

20

59

03

31

00

30

44

03

01

04

02

88

4E

00

03

1A

01

F4

03

30

71

03

02

20

02

20

88

20

20

02

LDA

AND

BNE

LDA

STA

LDY

STY

LDX

LDA

STA

LDA

STA

LDA

JSR

NOP

LDA

AND

LSR

BCC

AND

BEQ

LDA

STA

CPY

BEQ

INY

$3B

#$20

$8DC6

#$03

$31

#$00

$30

$44

$0203

$2001

$0204

$2002

#$88

$884E

$2000

#$03

A

$8DAB

#$01

$8D89

$2003

($30),

$0271

$8DA2

computer

Get command #, & test Flag for

'Buffer output only1

Set?

NO—Set current buffer pointer to

starting address

from buffer 0

($0300)

Get number of sub-sectors

Give track number to

CP/M controller

Give number of desired sector

over CP/M controller

%10001000 'Read sector1

command over CP/M controller

Two-cycle delay

Get status register & isolate

command bits

Test bit for 'Busy1

Will command still be executed?

YES-Flagbit:'Data register ready1

Wait until data are ready

Get Data byte from CP/M

Y controller & write in buffer

Number of bytes per sub-sector

All bytes read?

NO-Buffer pointer to next byte

ROM-42

Abacus Software 1571 Internals

8DA0

8DA21
8DA3

8DA4

8DA6

8DA8

8DAB2

8DAE

8DB1

8DB4

8DB6

8DB8

8DBA

8DBC

8DBF2

8DC2

8DC4

8DC61

8DC8

8DCA

8DCC

8DCE

8DD02

8DD2

8DD4

8DD7

8DDA

8DDC

8DDD

8DDF1

8DE0

8DE1

8DE3

8DE5

8DE82

8DEB

8DED

8DF0

8DF31

DO

C8

CA

FO

E6

4C

20

20

20

24

70

EO

90

4C

20

A5

30

A9

85

AO

84

A6

Bl

85

20

CC

FO

C8

DO

C8

CA

FO

E6

4C

CE

FO

20

4C

4C

E7

05

31

89

61

3C

E9

3B

07

02

03

84

F9

3B

22

03

31

00

30

44

30

46

F9

71

03

Fl

05

31

DO

05

06

6C

67

IB

8D

88

88

85

83

85

85

02

8D

02

88

8D

89

BNE

INY

DEX

BEQ

INC

JMP

JSR

JSR

JSR

BIT

BVS

CPX

BCC

JMP

JSR

LDA

BMI

LDA

STA

LDY

STY

LDX

LDA

STA

JSR

CPY

BEQ

INY

BNE

INY

DEX

BEQ

INC

JMP

DEC

BEQ

JSR

JMP

JMP

$8D89

$8DAB

$31

$8D89

$8861

$883C

$85E9

$3B

$8DBF

#$02

$8DBF

$8384

$85F9

$3B

$8DE8

#$03

$31

#$00

$30

$44

($30)

$46

$85F9

$0271

$8DDF

$8DD0

$8DE8

$31

$8DD0

$0205

$8DF3

$886C

$8D67

$891B

End of buffer reached?

YES-Clear buffer pointer

Next sub-sector

All sub-sectors read?

NO-Buffer pointer to next buffer

Keep reading sectors

Wait until command is done

Get status of CP/M controller

Prepare error number for output

Test flag for 'Error noted1

Should return message be tested?

YES—Test against value for 'OK1

Is number greater (error number)?

YES—Display error

Output byte over 1571 bus

Note flag for 'read sector only1

Should buffer be transferred?

YES—Set current buffer pointers

($30/$31) to starting address

in ($0300)

buffer 0 ($0300)

Number of sub-sectors per sector

Get byte from buffer & save

as character to be output

Output byte over 1571 bus

Number of bytes per sub-sector

Entire sub-sector already sent?

NO-Buffer pointer to next byte

Reached end-of-buffer?

YES-Set buffer pointer to start

Decrement number of sub-sectors

Whole sector already been sent?

NO—Buffer pointer to next buffer

Continue sending data

of sectors to be transferred

Read more sectors?

YES—Compute next sector number

Read next sector

Control next given track

ROM-43

Abacus Software 1571 Internals

[8EBF/Vector: 86DC]

Send CP/M sector from computer

8DF6 A9 03 LDA #$03

8DF8 85 31 STA $31

8DFA A0 00 LDY #$00

8DFC 84 30 STY $30

8DFE A6 44 LDX $4 4

8E00 A5 3B LDA $3B

8E02 30 30 BMI $8E34

8E042 AD 00 18 LDA $1800

8E07 49 08 EOR #$08

8E09 2C 0D 40 BIT $400D

8E0C 8D 00 18 STA $1800

8E0F1 AD 00 18 LDA $1800
8E12 10 03 BPL $8E17

8E14 20 59 EA JSR $EA59

8E171 AD 0D 40 LDA $400D

8E1A 29 08 AND #$08

8E1C F0 Fl BEQ $8E0F

8E1E AD 0C 40 LDA $400C

8E21 91 30 STA ($30), Y

8E23 CC 71 02 CPY $0271

8E2 6 FO 03 BEQ $8E2B

8E28 C8 INY

8E2 9 DO D9 BNE $8E04

8E2B1 C8 INY

8E2C CA DEX

8E2D FO 05 BEQ $8E34

8E2F E6 31 INC $31

8E31 4C 04 8E JMP $8E04

8E341 A5 3B LDA $3B
8E36 29 20 AND #$20

8E38 DO 7D BNE $8EB7

8E3A A5 3B LDA $3B

8E3C 29 08 AND #$08

8E3E FO 05 BEQ $8E45

8E40 A6 4 6 LDX $4 6

8E42 4C 81 83 JMP $8381

8E451 A9 03 LDA #$03
8E47 85 31 STA $31

8E4 9 AO 00 LDY #$00

8E4B 84 30 STY $30

8E4D A6 44 LDX $44

8E4F AD 03 02 LDA $0203

8E52 8D 01 20 STA $2001

8E55 AD 04 02 LDA $0204

8E58 8D 02 20 STA $2002

and write to diskette

Set curr. buffer pointer $30/$31

to starting address

from buffer

0 ($0300)

Number of sections per sector

Test flag for 'buffer read1

Data taken from computer?

YES-Get bus control register &

switch to Clock output

Re-set interrupt register

Set bus control register

Test ATN input

Set?

Test for ATN command mode

NO-Test flag for 'serial

input register full1

Is data transmitting?

YES-Get byte and write

to buffer

Number of bytes per sub-sector

Entire subdivision read in?

NO-Buffer pointer to next byte

End of buffer reached?

YES-Set buffer pointer to start

Next sub-sector

Read more subdivisions from bus?

YES-Buffer pointer to next buffer

Continue reading

Get command number and flag for

•Write buffer in sector1

Should sector be written?

YES-Test out flag for

•Write protect1

Is write-protect active?

YES—Get error number and

output it

Set curr. buffer pointer $30/$31

to starting address

from buffer

0 ($0300)

Number of subsectors per sector

Get track # from command string,

and give to CP/M controller

Get number of desired sector and

give to CP/M controller

ROM-44

Abacus Software 1571 Internals

8E5B'

8E5E

8E5F

8E61

8E63

8E663

8E69

8E6B

8E6C

8E6E

8E70

8E72

8E74

8E77

8E7A

8E7C

8E7D

8E7F1

8E80

8E81

8E83

8E85

8E88

8E8B

8E8C

8E8E

8E91

8E933

8E96

8E98

8E9A1

8E9D

8EA01

8EA3

8EA6

8EA9

8EAC

8EAF

8EB1

8EB3

8EB5

8EB72

8EBA

8EBC

8EBF

8EC21

8EC51

AD

4A

BO

A9

20

AD

29

4A

90

29

FO

Bl

8D

CC

FO

C8

DO

C8

CA

FO

E6

4C

AD

4A

BO

20

90

20

A2

DO

20

20

8E

20

20

20

20

24

70

EO

BO

CE

FO

20

4C

4C

60

OD

32

A8

4E

00

03

25

01

F4

30

03

71

03

E7

05

31

66

OD

05

C6

07

CE

07

06

CE

3C

BO

E9

F9

AO

B2

3B

04

02

OE

05

06

6C

F6

IB

18

88

20

20

02

8E

18

8E

81

81

88

01

85

85

86

81

02

88

8D

89

LDA

LSR

BCS

LDA

JSR

LDA

AND

LSR

BCC

AND

BEQ

LDA

STA

CPY

BEQ

INY

BNE

INY

DEX

BEQ

INC

JMP

LDA

LSR

BCS

JSR

BCC

JSR

LDX

BNE

JSR

JSR

STX

JSR

JSR

JSR

JSR

BIT

BVS

CPX

BCS

DEC

BEQ

JSR

JMP

JMP

RTS

$180D

A

$8E93

#$A8

$884E

$2000

#$03

A

$8E93

#$01

$8E66

($30)

$2003

$0271

$8E7F

$8E66

$8E88

$31

$8E66

$180D

A

$8E93

$8EC6

$8E9A

$81CE

#$07

$8EA0

$81CE

$883C

$01B0

$85E9

$85F9

$86A0

$81B2

$3B

$8EB7

#$02

$8EC5

$0205

$8EC2

$886C

$8DF6

$891B

Signal from circuitry for

•Write-Protect has been changed1

Has diskette been changed?

NO-%101010000 Convey'Write single

sector'command to CP/M controller

Get status register and

isolate command bits

Test bit for 'Busy1

Is command yet to be executed?

YES-Flag: 'data register empty'

Should new data be taken up?

YES-Get data byte from buffer and

write to diskette

Number of bytes per subdivision

End of sub-sectors?

NO-buffer pointer to next byte

End of buffer reached?

YES-Set buffer pointer to start

Number of subdivisions per sector

Still another sub-sector?

YES—Buffer address to next buffer

Keep writing to diskette

Check signal from circuitry for

'Write-protect has to be changed'

Has diskette been exchanged?

NO—Read sector to test

Read functions perfectly?

NO-Switch 1571 bus to output

Error number for 'verify error'

Jump to $8EA0

Switch 1571 bus to output

Get CP/M controller error status

and save it

Prepare error fo output

Send byte over 1571 bus

Wait for jumper from Clock

Switch 1571 bus to input

Test 'Note error' flag

Return message to be verified?

YES—Verify against error number

Is there an error?

NO-# of sectors to be written

Any more sectors?

YES—Get number of next sector

Read and write next sector

Get next track and set it

Return from this subroutine

ROM-45

Abacus Software
1571 Internals

[8E8E/Vector: 86DE]

Compare CP/M sector with buffer

8EC6

8EC8

8ECA

8ECC

8ECE

8ED0

8ED3

8ED6

8ED9

8EDC

8EDE

8EE13

8EE4

8EE6

8EE7

8EE9

8EEB

8EED

8EF0

8EF2

8EF4

8EF7

8EF9

8EFA

8EFC1

8EFD

8EFE

8F00

8F02

8F052

8F07

8F0A

8F0D

8F0F

8F101

8F12

8F15

A9

85

AO

84

A6

AD

8D

AD

8D

A9

20

AD

29

4A

90

29

F0

AD

Dl

DO

CC

F0

C8

DO

C8

CA

FO

E6

4C

A9

8D

20

A2

2C

A2

8E

4C

03

31

00

30

44

03

01

04

02

88

4E

00

03

1C

01

F4

03

30

11

71

03

E5

10

31

El

DO

00

83

07

00

BO

61

02

20

02

20

88

20

20

02

8E

20

A4

01

88

LDA

STA

LDY

STY

LDX

LDA

STA

LDA

STA

LDA

JSR

LDA

AND

LSR

BCC

AND

BEQ

LDA

CMP

BNE

CPY

BEQ

INY

BNE

INY

DEX

BEQ

INC

JMP

LDA

STA

JSR

LDX

#$03

$31

#$00

$30

$44

$0203

$2001

$0204

$2002

#$88

$884E

$2000

#$03

A

$8F05

#$01

$8EE1

$2003

($30)

$8F05

$0271

$8EFC

$8EE1

$8F10

$31

$8EE1

#$D0

$2000

$A483

#$07

.byte $2C

LDX

STX

JMP

#$00

$01B0

$8861

contents (verify)

Set curr. buffer pointer $30/$31

to starting

address from

buffer 0 ($0300)

Number of subsectors per sector

Get track # from command string &

send to CP/M controller

Get number of desired sector and

send to CP/M controller

%10001000 'Read Sector1

Send command to controller

Get status register and

isolate command bits

Test bit for 'Busy1

Command yet to be executed?

YES-Test 'Ready for data1 flag

Wait until data byte is ready?

Read byte from diskette

and compare with buffer contents

Identical?

YES—Number of bytes/sub-sector

Entire subdivision compared?

NO-buffer pointer to next byte

End of buffer reached?

YES-Set buffer pointer to start

Number of sub-sectors

Any sub-sectors left?

YES-Pointer addr to next buffer

Continue verify

%11010000 'Forced Interrupt'

on controller; verify ends

Approx. 80-cycle delay

Error number for 'verify error'

Jump to next 2 bytes(bit command)

Error number for 'Ok'

Save number

Wait for end of command

ROM-46

Abacus Software 1571 Internals

[8900/Vector: 86E0]

Test CP/M sector for empty

8F18

8F1A

8F1C

8F1E

8F20

8F22

8F25

8F27

8F2A3

8F2D

8F2F

8F30

8F32

8F34

8F36

8F39

8F3C

8F3E

8F3F

8F41

8F42

8F44

8F47

8F49

8F4C2
8F4E

8F51

8F54

8F56

8F571

8F59

8F5C

A9

85

AO

84

A6

AC

A9

20

AD

29

4A

90

29

F0

AD

CD

DO

88

10

CA

F0

AC

E6

4C

A9

8D

20

A2

2C

A2

8E

4C

[Vector:

Read

8F5F

8F60

8F61

8F64

8F66

8F68

8F6B

8F6D

8F701

8F72

all

08

78

20

24

10

AD

85

20

A9

85

03

31

00

30

44

71

88

4E

00

03

1A

01

F4

03

0A

0E

E9

13

71

31

2A

DO

00

83

07

00

BO

61

02

88

20

20

02

02

8F

20

A4

01

88

86E2]

CP/M

EF

3B

08

03

67

BA

00

97

89

02

87

LDA

STA

LDY

STY

LDX

LDY

LDA

JSR

LDA

AND

LSR

BCC

AND

BEQ

LDA

CMP

BNE

DEY

BPL

DEX

BEQ

LDY

INC

JMP

LDA

STA

JSR

LDX

#$03

$31

#$00

$30

$44

$0271

#$88

$884E

$2000

#$03

A

$8F4C

#$01

$8F2A

$2003

$020A

$8F4C

$8F2A

$8F57

$0271

$31

$8F2A

#$D0

$2000

$A483

#$07

.byte $2C

LDX

STX

JMP

#$02

$01B0

$8861

headers and

PHP

SEI

JSR

BIT

BPL

LDA

STA

JSR

LDA

STA

$89EF

$3B

$8F70

$0203

$67

$87BA

#$00

$97

contents

Set curr. buffer pointer $30/$31

to starting address

from

buffer 0 ($0300)

Number of sub-sectors per sector

Length of a sub-sector

%10001000 'Read Sector1

Give command to CP/M controller

Get status register and

isolate command bits

Test bit for 'Busy1

Command still need to be run?

YES-Test 'Ready for data1 flag

Waiting for a data byte?

Read byte from diskette & compare

with value for empty byte

Identical?

YES-Next byte

Entire sub-sector compared?

YES—Number of sub-sectors

Any more sub-sectors?

YES—Set counter again

Buffer pointer to next buffer

Continue testing

•11010000' 'Forced Interrupt' to

controller; command interrupt

Wait approx. 80 cycles

Error number for 'verify error'

Jump to next two bytes

Error # for 'Header not found1

Set number

Wait until command is finished

Retain processor status

Disable bus/controller interrupt

Set head to track 0

Test 'Track set' flag

Should a new track be turned to?

YES-Get track # from cmd string

and set as target track

Position head to track

Clear counter for number

of sectors

ROM-47

Abacus Software 1571 Internals

8F74

8F77

8F7A

8F7C

8F7E

8F80

8F821

8F85

8F87

8F89

8F8C

8F8E

8F90

8F92

8F94

8F96

8F98

8F9A

8F9C

8F9D2

8F9F

8FA2

8FA3

20

AE

E0

BO

A5

85

20

A5

A4

99

E6

CO

BO

C5

DO

A5

85

A2

2C

A2

8E

28

60

27

BO

02

IF

26

96

27

26

97

OB

97

IF

OB

96

EC

24

67

00

02

BO

8A

01

8A

02

01

JSR

LDX

CPX

BCS

LDA

STA

JSR

LDA

LDY

STA

INC

CPY

BCS

CMP

BNE

LDA

STA

LDX

$8A27

$01B0

#$02

$8F9D

$26

$96

$8A27

$26

$97

$020B,Y

$97

#$1F

$8F9D

$96

$8F82

$24

$67

#$00

.byte $2C

LDX

STX

PLP

RTS

#$02

$01B0

Read next header

Get return message and check

against error number

Read procedure done, error-free?

YES—Get sector number and save

as first sector number

Read next header

Get sector number

Pointer to curr. sector position

Enter sector number in table

Pointer to next sector entry

Compare with max. # of sectors

Number of sectors allowable?

YES-Test against first sector #.

Reached the first sector again?

YES-Get track # from header &

set as current target track

Value for fOk' message

Jump to next 2 bytes(bit command)

Error number: 'Header not found1

Set return message

Re-establish processor status

Return from this subroutine

[8FF1]

'S1-command (sector) : Set sector format for Commodore diskettes

8FA4 AD 04 02 LDA $0204 Get 5th char from command string

8FA7 85 69 STA $69 and set as new sector format

8FA9 60 RTS Return from this subroutine

[8FF5]

'R1-command (Read) : Set number of read attempts

8FAA AD 04 02 LDA $0204 Get 5th char from command string

8FAD 85 6A STA $6A and set as new # of read attempts

8FAF 60 RTS Return from this subroutine

[8FF9]

'T1-command (Test) : Test ROM checksum

8FB0 4C 4E 92 JMP $924E Compute checksum

[9001]

'H1-command (Head)

(in 1541 mode only)

8FB3 78 SEI

8FB4 AD OF 18 LDA $180F

8FB7 29 20 AND #$20

8FB9 DO 66 BNE $9021

Set head at given diskette side

Disable bus/controller interrupt

Get control register and get

flag for operating mode

Is drive in 1541 mode?

ROM-48

Abacus Software 1571 Internals

8FBB AD 04 02 LDA $0204 YES-Get 5th char from cmnd string

8FBE C9 31 CMP #$31 and compare with 'I1

8FC0 F0 12 BEQ $8FD4 Should head be set to side 2?

8FC2 C9 30 CMP #$30 NO-Compare with I0t

8FC4 DO 5B BNE $9021 Should head be set to side 1?

8FC6 AD OF 18 LDA $180F YES-Get control register and

8FC9 29 FB AND #$FB switch head circuitry to

8FCB 8D OF 18 STA $180F side 1

8FCE 58 CLI Enable bus/controller interrupt

8FCF 24 3B BIT $3B Test flag in command number

8FD1 10 0E BPL $8FE1 Should diskette be initialized?

8FD3 60 RTS NO-Return from this subroutine

[8FC0]

Change head to

8FD4 AD OF 18

8FD7 09 04

8FD9 8D OF 18

8FDC 58

8FDD 24 3B

8FDF 30 03

8FE11 4C 42 DO

8FE41 60

side 2

LDA $180F

ORA #$04

STA $180F

CLI

BIT $3B

BMI $8FE4

JMP $D042

RTS

Get control register and

place bit for head electronics to

side 2

Enable bus/controller interrupt

Test flag in command number

Should diskette be initialized?

YES-Read BAM from diskette

Return from this subroutine

[Origin of vector 80C2 through routine 8030]

Decode status/control functions

8FE5 AE 74 02 LDX $0274 Determine length/command string

8FE8 E0 04 CPX #$04 and test if 4 chars are given

8FEA 90 35 BCC $9021 Command a minimum 4 char long?

8FEC AD 03 02 LDA $0203 YES-Get 4th char from command

8FEF C9 53 CMP #$53 and compare with 'S1

8FF1 F0 Bl BEQ $8FA4 Should sector format be set?

8FF3 C9 52 CMP #$52 NO-Compare with 'R1

8FF5 F0 B3 BEQ $8FAA Set number of read attempts?

8FF7 C9 54 CMP #$54 NO-Compare with 'T1

8FF9 F0 B5 BEQ $8FB0 Test ROM-checksum?

8FFB C9 4D CMP #$4D NO-Compare with 'M'

8FFD F0 27 BEQ $9026 1541/1571 mode switched around?

8FFF C9 48 CMP #$4 8 NO-Compare with 'H1

9001 F0 B0 BEQ $8FB3 Should diskette side be changed?

ROM-49

Abacus Software 1571 Internals

Set device address (number in A)

9003

9004

9006

9008

900A

900C

900E

9010

9012

9014

9015

9016

9018

901A

901B

901C

901E

9020

A8

CO

90

CO

BO

A9

85

A9

85

98-

18

65

85

98

18

65

85

60

04

19

IF

15

40

78

20

77

78

78

77

77

TAY

CPY

BCC

CPY

BCS

LDA

STA

LDA

STA

TYA

CLC

ADC

STA

TYA

CLC

ADC

STA

RTS

#$04

$9021

#$1F

$9021

#$40

$78

#$20

$77

$78

$78

$77

$77

Save device address

Compare with minimal IEC address

Is new address smaller?

NO-Check maximum IEC address

New address in allowable range?

YES-Set identifier for

Talk

Set identifier for

Listen

Get new device address and use it

to set new address for

Talk call

Set address

Get new device address and use it

to establish new address for

Listen call

Set address

Return from this subroutine

[8FB9/8FC4/8FEA/9006/900A/9030]

9021 A9 31 LDA #$31

9023 4C C8 Cl JMP $C1C8

Display

•31 Syntax Error1 message

[8FFD]

•M1-command

9026

9027

902A

902C

902E

9030

78

AD

C9

F0

C9

DO

Switch to

9032

9035

9037

903A

903D

9040

9043

9045

9048

9049

904B

904D

AD

29

8D

20

20

AD

09

8D

58

24

10

60

04

31

20

30

EF

(Mode) :

02

SEI

LDA

CMP

BEQ

CMP

BNE

1541 mode

OF

DF

OF

83

82

AF

80

AF

3B

2F

18

18

A4

FF

02

02

LDA

AND

STA

JSR

JSR

LDA

ORA

STA

CLI

BIT

BPL

RTS

1541

$0204

#$31

$904E

#$30

$9021

$180F

#$DF

$180F

$A483

$FF82

$02AF

#$80

$02AF

$3B

$907C

/ 1571 operating mode switching

Disable bus/controller interrupt

Get 5th char from command string

and compare with '1'

Switched into 1571 mode?

NO-Compare with '0'

Switched into 1541 mode?

YES—Get control register

Switch control & bus electronics

to 1541 (1 MHz speed)

80-cycle delay

Initialize 1541 mode

Set flag for

'1541 IRQ Routine1

($9D88)

Enable bus/controller interrupt

Test flag in command number

Should diskette be initialized?

NO—Return from this subroutine

ROM-50

Abacus Software 1571 Internals

[902C]

Switch

904E

9051

9053

9056

9059

905B

905E

9060

9063

9065

9068

90 6B

906E

9070

9073

9075

9077

9078

907A

907C1

907F1

to

AD

09

8D

20

A9

8D

A9

8D

A9

8D

8D

AD

29

8D

A9

85

58

24

30

4C

60

1571

OF

20

OF

83

DE

A9

9D

AA

40

07

05

AF

7F

AF

00

62

3B

03

42

18

18

A4

02

02

1C

1C

02

02

DO

mode

LDA

ORA

STA

JSR

LDA

STA

LDA

STA

LDA

STA

STA

LDA

AND

STA

LDA

STA

CLI

BIT

BMI

JMP

RTS

$180F

#$20

$180F

$A483

#$DE

$02A9

#$9D

$02AA

#$40

$1CO7

$1CO5

$02AF

#$7F

$02AF

#$00

$62

$3B

$907F

$D042

Get control register and

switch bus, operating electronics

to 1571 (2 MHz speed)

80-cycle delay

IRQ vector in $02A9/$02AA to

job loop call

Turn to 1571 routine in

$9DDE

Timer 1 (High-Byte)

set to about

8 ms

Set flag for

'Toggle IRQ from 1541 to

15711

Clear flag for current

headmode

Enable bus/controller interrupt

Test command number

Should diskette be initialized?

YES-Read BAM from diskette

Return from this subroutine

[BF66/0rigin over vector in

Fast-load file over 1571 bus

9080

9083

9086

9088

908B

908D

908F

9091

9093

9095

9098

909B

909D

909F

90A1

90A3

90A4

90A7

90AA

90AB

90AE2

20

20

B0

20

A5

DO

A5

09

85

20

AD

C9

DO

A5

F0

48

AD

8D

68

4C

A9

CE

EA

5F

3D

FF

58

37

81

37

CA

00

2A

OF

7E

0B

6F

85

EC

00

81

91

C6

91

02

02

02

90

JSR

JSR

BCS

JSR

LDA

BNE

LDA

ORA

STA

JSR

LDA

CMP

BNE

LDA

BEQ

PHA

LDA

STA

PLA

JMP

LDA

$81CE

$91EA

$90E7

$C63D

$FF

$90E7

$37

#$81

$37

$91CA

$0200

#$2A

$90AE

$7E

$90AE

$026F

$0285

$90EC

#$00

80CC through routine 8030]

(PRG, SEQ or USR)

Switch 1571 bus to output

Prepare filename

Improper filename?

NO-Initialize diskette

Get flag for drive status

Is drive ready?

YES—Get bus status and set

flags for '1571 mode1 and

'last sector1

Set channel and buffer parameters

Get first character of filename &

compare with wildcard f *'

Load last-loaded file?

YES-Get number of last track

Is track number given?

YES—Save number

Get number of last sector & enter

in table

Get last track number

Load file

Clear pointer and register:

ROM-51

Abacus Software 1571 Internals

90B0

90B1

90B2

90B5

90B8

90BB

90BE

90BF

90C1

90C4

90C6

90C8

90CB

90CC

90CF

90D1

90D3

90D5

90D7

90D9

90DB

90DD

90DF1

90E2

90E41
90E6

90E72

90E9

90EC2

90EE

90EF

90F2

90F3

90F6

90F8

90FB

90FE

9100

9102

9105

91071

9108

910A

910C

910E

9111

9113

A8

AA

8D

8D

20

AD

48

A9

8D

A9

85

20

68

8D

A5

29

85

24

30

A5

C9

DO

AD

DO

A2

2C

A2

4C

85

48

20

68

AE

95

AD

8D

95

A9

8D

85

58

A6

A5

95

20

EO

90

8E

7A

12

78

01

78

FF

86

4F

78

37

7F

37

3B

06

E7

02

05

80

08

02

OF

AD

7E

DA

BO

06

85

6F

07

80

02

5F

F9

5F

00

4B

02

03

02

02

C3

02

02

C4

02

02

91

91

02

02

02

02

86

TAY

TAX

STA

STA

JSR

LDA

PHA

LDA

STA

LDA

STA

JSR

PLA

STA

LDA

AND

STA

BIT

BMI

LDA

CMP

BNE

LDA

BNE

LDX

$028E

$027A

$C312

$0278

#$01

$0278

#$FF

$86

$C44F

$0278

$37

#$7F

$37

$3B

$90DF

$E7

#$02

$90E4

$0280

$90EC

#$02

.byte $2C

LDX

JMP

STA

PHA

JSR

PLA

LDX

STA

LDA

STA

STA

LDA

STA

STA

CLI

LDX

LDA

STA

JSR

CPX

BCC

#$0F

$91AD

$7E

$91DA

$02B0

$06,X

$0285

$026F

$07,X

#$80

$0202

$5F

$F9

$5F

$00,X

$864B

#$02

$9118

[Error— see 7.1.5]

[Unnecessary initialization]

Number of last drive

Pointer to first filename

Get drive # from command string

Retain number of filenames

found and allow

for only one

filename

Clear pointer in

directory buffer

Search for entry in directory

Repeat pointer with number

of filenames

Get bus status and

clear flag for

'1571 mode1

Get command number and test flag

Should file be tested for 'PRG'?

Determine filetype of file entry

& compare with identifier for PRG

Is entry a PRG file?

YES-Track # of first file sector

Entry to be found in directory?

Error number for 'File Not Found1

Jump to next 2 bytes(bit command)

Error # for 'Drive Not Ready1

Send error over 1571 bus

Save last track and

retain number

Compute pointer to job table

Repeat last track number

Get pointer from job table and

set track of job

Get last sector number

and save down

Give sector number to jobloop

Read jobcode for

sector and save

as current jobcode

Enable bus/controller interrupt

Get number of current buffer and

give current jobcode

to job loop

Execute job

Check return message to 'OK1

Job run error-free?

ROM-52

Abacus Software 1571 Internals

9115 4C 99 91 JMP $9199 NO-Display return message

91181 78 SEI Disable bus/controller interrupt
9119 AO 00 LDY #$00 Buffer pnter to 1st byte/sector

911B Bl 94 LDA ($94),Y Get byte from buffer

911D F0 2F BEQ $914E Is this the last sector?

911F A5 37 LDA $37 NO-Get bus status and

9121 29 FE AND #$FE clear flag for 'last

9123 85 37 STA $37 sector1

9125 20 28 92 JSR $9228 Give last 'OK'message by 1571 bus

9128 A0 02 LDY #$02 Buffer pointer to first data byte

912A1 Bl 94 LDA ($94),Y Get byte from buffer and prepare
912C AA TAX for output

912D 20 28 92 JSR $9228 Output byte over 1571 bus

9130 C8 INY Turn buffer pointer to next byte

9131 DO F7 BNE $912A Entire buffer alredy transferred?

9133 AE B0 02 LDX $02B0 YES-Get pointer in job table

9136 Bl 94 LDA ($94),Y Track of next sector from buffer

9138 D5 06 CMP $06,X Compare with track of last job

913A F0 03 BEQ $913F Next sector to same track?

913C A0 80 LDY #$80 NO-Jobcode for 'Read sector1

913E 2C .byte $2C Jump to next 2 bytes(bit command)

913F1 A0 88 LDY #$88 Jobcode'Read sector of sametrack*
9141 84 5F STY $5F Set jobcode and give

9143 95 06 STA $06,X track number to job loop

9145 A0 01 LDY #$01 Pointer to number of next sector

9147 Bl 94 LDA ($94) ,Y Get byte from linked bytes and

914 9 95 07 STA $07,X give to job loop

914B 4C 07 91 JMP $9107 Transfer next sector

914E1 A2 IF LDX #$1F Give return message for 'last
9150 20 28 92 JSR $9228 sector1 over 1571 bus

9153 A9 01 LDA #$01 Test flag for 'only one sector'

9155 24 37 BIT $37 in bus status byte

9157 F0 IE BEQ $9177 Does program have only one block?

9159 A8 TAY YES-Set buffer pointer

915A Bl 94 LDA ($94),Y Get # of data bytes applicable to

915C 38 SEC sector and remove

915D E9 03 SBC #$03 bytes for starting address &

915F 85 4 6 STA $4 6 linking bytes

9161 AA TAX Give # of bytes still to be

9162 20 28 92 JSR $9228 sent over 1571 bus

9165 C8 INY Buffer pointer to prg start addr

9166 Bl 94 LDA ($94),Y Get lo-byte of start address &

9168 AA TAX set as character to be output

9169 20 28 92 JSR $9228 Send byte over 1571 bus

916C C8 INY Turn buffer pointer to hi-byte &

916D Bl 94 LDA ($94),Y get byte from buffer

916F AA TAX Give rest of starting address

ROM-53

Abacus Software 1571 Internals

9170

9173

9175

91771

9179

917B

917C

917D

917F

9182

91842

9186

9187

918A

918B

918D

918F

9191

9193

9196

20

A0

DO

AO

Bl

AA

CA

86

20

AO

Bl

AA

20

C8

C6

DO

A9

85

20

4C

28

04

OD

01

94

46

28

02

94

28

46

F5

00

83

CO

94

92

92

92

DA

Cl

JSR

LDY

BNE

LDY

LDA

TAX

DEX

STX

JSR

LDY

LDA

TAX

JSR

INY

DEC

BNE

LDA

STA

JSR

JMP

$9228

#$04

$9184

#$01

($94),Y

$46

$9228

#$02

($94),Y

$9228

$46

$9184

#$00

$83

$DAC0

$C194

over 1571 bus

Set buffer pntr to begin, of data

Jump to $9184

Pointer to data bytes yet allowed

Get # of data bytes from buffer

and save number

Send number of data bytes

still ahead over

1571 bus

Pointer to start of data range

Get byte from buffer and prepare

for output

Send byte over 1571 bus

Turn buffer pointer to next byte

of bytes yet to be transferred

All of them sent?

YES-Set secondary address

for Load

Close file

Prepare return message

[9115/A9CF]

Display error message

9199 78 SEI Disable bus/controller interrupt

919A 86 4 6 STX $4 6 Send error number over

919C 20 28 92 JSR $9228 1571 bus

919F A9 00 LDA #$00 set secondary address for

91A1 85 83 STA $83 Load

91A3 20 CO DA JSR $DAC0 Close file

91A6 A6 F9 LDX $F9 Number of current buffer

91A8 A5 4 6 LDA $4 6 Error number

91AA 4C 0A E6 JMP $E60A Prepare text version of message

[90E9]

Output Load error

91AD 78 SEI Disable bus/controller interrupt

91AE 86 4 6 STX $4 6 Save error number

91B0 A2 02 LDX #$02 Error number for 'File Not Found1

91B2 20 28 92 JSR $9228 over 1571 bus

91B5 A9 00 LDA #$00 Set secondary address

91B7 85 83 STA $83 for load

91B9 20 CO DA JSR $DAC0 Close file

ROM-54

Abacus Software 1571 Internals

91BC

91BE

91C0

91C2

91C4

A5 46

C9 02

F0 03

A9 74

2C A9 62

91C51 A9 62

LDA $4 6

CMP #$02

BEQ $91C5

LDA #$74

.byte $2C

LDA #$62

91C7 4C C8 Cl JMP $C1C8

Repeat error number and check

against 'File Not Found1

Identical?

NO-Number for 'Drive Not Ready1

Jump to next 2 bytes(bit command)

Number for 'File Not Found*

Prepare text of message

[9095]

Set up channel

91CA A9 00

91CC 85 83

91CE A9 01

91D0 20 E2 Dl

91D3 AA

91D4 BD E0 FE

91D7 85 95

91D9 60

and buffer for Fast Load

LDA #$00 Set secondary address for Load

STA $83 and set

LDA #$01 number of buffer to be opened

JSR $D1E2 Open buffer and channel

TAX Get # of appropriate buffer and

LDA $FEE0,X take high-byte of buffer address

STA $95 in buffer pointer

RTS Return from this subroutine

[90EF]

Find out track

91DA A5 95

91DC 38

91DD E9 03

91DF 85 F9

91E1 0A

91E2 8D B0 02

91E5 A9 00

91E7 85 94

91E9 60

& sector numbers from job table

LDA $95 Get high-byte of buffer pointer

SEC & compute logical buffer # from

SBC #$03 physical address; set

STA $F9 as current buffer number

ASL A Double number (for 2-byte table)

STA $02B0 and save it

LDA #$00 Reset low-byte of buffer pointer

STA $94 to buffer start

RTS Return from this subroutine

[9083]

Shift

91EA

91EC

91EF

91F0

91F2

91F5

91F8

91FA

91FC

91FF

9200

9202

9204

9206

filename

A0 03

AD 74 02

38

E9 03

8D 74 02

AD 04 02

C9 3A

DO 0E

AD 03 02

AA

29 30

C9 30

DO 04

E0 31

to beginning of

LDY #$03

LDA $0274

SEC

SBC #$03

STA $0274

LDA $0204

CMP #$3A

BNE $920A

LDA $0203

TAX

AND #$30

CMP #$30

BNE $920A

CPX #$31

input buffer

Pointer to beginning of filename

Get length of command string &

take up character

for 'U01 command

Save length of filename

Check for colon ":" as second

character of filename

Drive identifier onhand?

YES—Get and save drive

number

Check for number in ASCII-

numbers

Is there a number?

YES-Compare with '1'

ROM-55

Abacus Software 1571 Internals

9208

920A2
920D

920F

9211

9214

92151
92171

921A

921D

921E

92 IF

9222

9224

9225

92261

9227

F0 1C

AD 03 02

C9 3A

DO 04

CE 74 02

C8

A2 00

B9 00 02

9D 00 02

C8

E8

EC 74

DO F3

18

24

38

60

02

BEQ $9226 Drive 1 switched over?

LDA $0203 YES-Compare with '0*

CMP #$3A Compare with f:'

BNE $9215 Is there also a colon?

DEC $0274 YES-Abbreviate length of filename

INY Pointer to next buffer byte

LDX #$00 Pointer to begin, of input buffer

LDA $0200,Y Shift filename to

STA $0200,X beginning of buffer

INY Turn buffer pointer to

INX next character

CPX $0274 Compare with end of filename

BNE $9217 Entire name already shifted?

CLC YES-Flag for 'Name error-free1

.byte $24 Jump to next byte (bit command)

SEC Flag for bad drive declaration

RTS Return from this subroutine

[9125/912D/9150/9162/9169/9170/917F/9187/919C/91B2/A9EA]

Byte given over 1571 bus for Fast Load

Get bus control register

and wait for constant status

No changes?

YES—Set processor flag (N/Z)

Is ATN input set?

NO-Get bus status flag and check

with anticipated Clock status

Clock changed since last time?

YES-Write byte in output register

Get bus status and

set flag for 'Clock input status1

to next value

Test flag for 'Output register

empty'

Is byte transferred?

YES—Return from this subroutine

ATN command working

9228

922B

922E

9230

9232

9234

9236

9238

923A

923D

923F

9241

9243

92451

9248

924A

924B1

AD

CD

DO

29

30

45

29

F0

8E

A5

49

85

A9

2C

F0

60

4C

00

00

F8

FF

17

37

04

EE

OC

37

04

37

08

0D

FB

B3

18

18

40

40

A7

LDA

CMP

BNE

AND

BMI

EOR

AND

BEQ

STX

LDA

EOR

STA

LDA

BIT

BEQ

RTS

JMP

$1800

$1800

$9228

#$FF

$924B

$37

#$04

$9228

$400C

$37

#$04

$37

#$08

$400D

$9245

$A7B3

[8FB0/BF69]

Compute ROM checksum and test ROM

924E

924F

9250

9252

9254

9256

9258

08

78

A2

86

86

A9

85

00

00

01

03

75

PHP

SEI

LDX

STX

STX

LDA

STA

#$00

$00

$01

#$03

$75

Retain processor status

Disable bus/controller interrupt

Clear result register

for checksum to

be computed

Set starting address of

ROM (low-byte)

ROM-56

Abacus Software 1571 Internals

925A

925B

925D

925F2

9261

92 63

92651

9267

9269

92 6B

92 6D

92 6F

92711

9272

9274

92761

9277

9278

9279

927B

927D1

927F

9280

9281

9283

92851

9287

9289

928B

928D

92 8E

9290

92 92

9294

9296

9298

9299

92 9A

92 9B

92 9D

92A0

92A2

92A4

92A7

92A9

92AB

92AD

A8

A9

85

Bl

85

A2

A5

29

85

A5

10

E6

6A

90

E6

6A

6A

6A

90

E6

A5

2A

2A

90

E6

66

26

26

66

CA

DO

E6

DO

E6

DO

88

88

88

A5

CD

DO

A5

CD

DO

84

84

84

80

76

75

02

08

02

01

03

01

02

03

02

03

02

03

00

02

03

03

00

01

02

D5

75

CB

76

C7

00

00 80

11

01

01 80

OA

00

01

02

TAY

LDA

STA

LDA

STA

LDX

LDA

AND

STA

LDA

BPL

INC

ROR

BCC

INC

ROR

ROR

ROR

BCC

INC

LDA

ROL

ROL

BCC

INC

ROR

ROL

ROL

ROR

DEX

BNE

INC

BNE

INC

BNE

DEY

DEY

DEY

LDA

CMP

BNE

LDA

CMP

BNE

STY

STY

STY

#$80

$76

($75),

$02

#$08

$02

#$01

$03

$01

$9271

$03

A

$9276

$03

A

A

A

$927D

$03

$00

A

A

$9285

$03

$03

$00

$01

$02

$92 65

$75

$925F

$76

$925F

$00

$8000

$92B3

$01

$8001

$92B3

$00

$01

$02

Set pointer

Determine high-byte of

ROM address

Get byte from ROM

and save it

Number of bits per byte

Get ROM byte and isolate

a bit

Take bit into temporary storage

Add bit 15 of

checksum register

to it

Add bit 11

of checksum register

to it

Bit 8 of 16-bit

checksum register

in $00 and $01;

compute for

temporary storage

Get bit 6

of checksum register

and add

to temporary

storage

Move checksum registers one bit

to the left; transfer bit 0 into

free area

Go to next bit of ROM byte

Number of bits per byte

Entire byte handled?

YES-Turn pointer to current

byte in ROM

to next position

Reached end address $FFFF?

YES-Set pointer

back to

zero

Test first byte computed against

correct checksum

Error?

NO—Test 2nd byte computed against

correct checksum

Checksum error?

NO-Clear checksum register

and the

different temporary storage

ROM -57

Abacus Software 1571 Internals

92AF

92B1

92B2

92B32

92B5

92B7

84

28

60

A2

86

4C

03

03

6F

71 EA

[9E08/9E11/BF09]

1571

92BA

92BB

92BD

92C0

92C3

92C5

92C8

92CA1

92CD

92CF

92D0

92D2

92D51

92D7

92D9

92DC1

92DE

92E0

92E31

92E5

92E7

92E9

92EB

92EE1
92EF

92F1

92F3

92F5

92F8

92FB1
92FD

92FF

9300

93021

93051

9307

9309

930B

jobloop

BA

86

2C

AD

09

8D

A0

B9

30

88

10

4C

C9

DO

4C

C9

DO

4C

29

F0

84

A9

4C

AA

C5

FO

85

20

4C

A5

30

OA

10

4C

A9

85

AO

84

49

04

OC

OE

OC

05

00

06

F8

CA

88

03

OD

DO

03

A2

01

07

3F

OF

B5

3E

08

3E

7E

CA

20

03

03

CA

20

20

05

3F

1C

1C

1C

00

99

96

93

99

F9

99

99

STY

PLP

RTS

LDX

STX

JMP

TSX

STX

BIT

LDA

ORA

STA

LDY

LDA

BMI

DEY

BPL

JMP

CMP

BNE

JMP

CMP

BNE

JMP

AND

BEQ

STY

LDA

JMP

TAX

CMP

BEQ

STA

JSR

JMP

LDA

BMI

ASL

BPL

JMP

LDA

STA

LDY

STY

$03

#$03

$6F

$EA71

$49

$1CO4

$1COC

#$0E

$1COC

#$05

$0000,Y

$92D5

$92CA

$99CA

#$88

$92DC

$960D

#$D0

$92E3

$93A2

#$01

$92EE

$3F

#$0F

$99B5

$3E

$92FB

$3E

$F97E

$99CA

$20

$9302

A

$9305

$99CA

#$20

$20

#$05

$3F

areas

Re-establish processor status

Return from this subroutine

Initialize flag for

hardware error

Show hardware error (LED blinks)

Save current stack

pointer

Timer re-set

CA2 output 'SOE'

(Serial Output Enable)

set to high

Number of buffers

Get jobcode of buffer

Is jobcode onhand?

NO—Test next buffer

All buffers tested out?

YES—Execute stepper commands

Jobcode'Read sector on same trak1

Identical?

YES—Read sector in buffer

Jobcode for 'Execute program1

Identical?

YES—Start program in buffer

Get number of desired drive

Drive 0 chosen?

NO—Save buffer number

Display

•Drive not Ready1 error message

Save drive number and test

against active drive

Identical?

NO-Then reset current drive

Switch drive number on

Execute stepper command

Get drive status

Is drive ready?

YES-Test stepper motor flag

Is head still moving?

YES-Execute stepper function

Set drive status flag for

'Motor on/Drive ready'

Number of buffers

Choose current buffer

ROM-58

Abacus Software 1571 Internals

930D1

9310

93122
9314

9316

9318

931B

931D

931F

9321

9323

9325

9327

932 9

932C1
932E

9330

9332

9334

9336

9338

933A

933B

933D

933F

9340

9341

9343

9345

9347

9349

934B

934D

93501

9352

9354

9356

93583
9359

935B

935D

935F

9361

9363

9365

93682

93 6A

20

30

C6

10

A4

20

A5

85

06

A9

85

Bl

85

4C

29

C5

DO

A5

FO

A5

C9

08

Bl

C9

6A

28

29

90

30

A5

E9

85

4C

10

A5

69

85

38

Bl

E5

FO

85

A5

85

4C

A2

Bl

Dl

1A

3F

F7

41

D3

42

4A

4A

60

20

32

22

CA

01

3E

EO

22

32

22

24

32

24

80

OB

11

22

23

22

58

06

22

23

22

32

22

09

42

3F

41

12

04

32

93

93

99

93

93

JSR

BMI

DEC

BPL

LDY

JSR

LDA

STA

ASL

LDA

STA

LDA

STA

JMP

AND

CMP

BNE

LDA

BEQ

LDA

CMP

PHP

LDA

CMP

ROR

PLP

AND

BCC

BMI

LDA

SBC

STA

JMP

BPL

LDA

ADC

STA

SEC

LDA

SBC

BEQ

STA

LDA

STA

JMP

LDX

LDA

$93D1

$932C

$3F

$930D

$41

$93D3

$42

$4A

$4A

#$60

$20

($32),Y

$22

$99CA

#$01

$3E

$9312

$22

$9368

$22

#$24

($32),Y

#$24

A

#$80

$9350

$9358

$22

#$23

$22

$9358

$9358

$22

#$23

$22

($32),Y

$22

$9368

$42

$3F

$41

$9312

#$04

($32),Y

Set buffer pointer & get jobcode

Is a job onhand?

NO-Go to next buffer

All buffers already checked?

Get buffer number of last job

Set buffer pointer

Save # of track to be controlled

as target track

Compute # of half-track steps

Set drive status flag for

'Stepper on/Motor on1

Get and save track of

job

Steer track

Compare number of chosen drive

with current drive number

Identical?

Test number of current track

Is pointer set?

YES—Get current track and compare

with maximum tracks +1 (36)

Save result

Compare job track with maximum

tracks + 1

Result in bit 7

Previous bit in carry

Isolate last test result

Is current track on side 2?

YES—Is new track on side 1?

YES-Compute number of current

track on side 1 and

save it

Continue working with track #

Is new track on side 2?

YES—Calculate current track

number on side 2;

save it

Figure out difference

between new track

and current track

Head already set to desired trak?

Save # of steps to be moved

Get number of current buffer

and save it

Work on next job

No function [Error—see 7.1.5]

Get number of track

ROM-59

Abacus Software 1571 Internals

93 6C

93 6E

9370

9371

9374

9375

9377

93791

937A

937D

937F

9382

9384

9386

9389

938C

938E

9390

9392

9394

9396

9398

93 9A

93 9C

939F1

85

C9

A8

20

98

90

E9

AA

BD

85

AD

29

05

8D

BD

85

A5

C9

F0

C9

F0

C9

FO

4C

4C

40

24

F3

02

23

08

43

00

9F

43

00

2B

43

45

40

1C

60

OA

70

03

4F

29

[92E0/9396]

Put program

93A2

93A4

93A5

93A7

93A9

93AB

93AD

A5

18

69

85

A9

85

6C

3F

03

31

00

30

30

93

94

1C

1C

94

94

9B

cf

in

00

STA

CMP

TAY

JSR

TYA

BCC

SBC

TAX

LDA

STA

LDA

AND

ORA

STA

LDA

STA

LDA

CMP

BEQ

CMP

BEQ

CMP

BEQ

JMP

JMP

$40

#$24

$93F3

$9379

#$23

$9408,

$43

$1COO

#$9F

$43

$1COO

$942B,

$43

$45

#$40

$93B0

#$60

$93A2

#$70

$939F

$944F

$9B29

. F36E

buffer into

LDA

CLC

ADC

STA

LDA

STA

JMP

$3F

#$03

$31

#$00

$30

X

X

and save it

Compare with maximum track # +1

and save result

Go to corresponding side

Repeat track

Track on side 2?

YES—Compute absolute track of

that side and save it

Calculate bitrate of track range

and set it

Get drive control register

Re-set bits for record rate

and set into

control register

Determine # of sectors per track,

and store

Get command bits of jobcode and

test for 'Bump1

Should head be set to track 0?

NO-Check for 'Run program1

Should buffer program be started?

NO-Test for 'Format1

Should diskette be formatted?

NO—Read sector header

Format diskette

jobloop

($0030)

Get number of current buffer

and

calculate physical

buffer address

Set low-byte to

start-of-buffer

Run program

Set head back to

93B0J

93B2

93B4

93B7

93B9

93BC

93BE

93C0

93C3

93C5

A9 60

85 20

AD 00 1C

29 FC

8D 00 1C

A9 A4

85 4A

AD Bl 01

30 03

A9 01

track 0 ('Bump')

LDA #$60

STA $20

LDA $lC00

AND #$FC

STA $lC00

LDA #$A4

STA $4A

LDA $01Bl

BMI $93C8

LDA #$01

[cf. F37C]

Set drive status flag for

'Stepper on/Motor on'

Get control register

and clear stepper control

bits

Set number of tracks (-36)

the head is capable of moving

Get flag for current disk side

Is side 1 chosen?

YES-Set first track number (1)

ROM -60

Abacus Software 1571 Internals

93C7

93C8-1

2C

A9 24

93CA 85 22

93CC A9 01

93CE 4C B5 99

.byte $2C

LDA #$24

STA $22

LDA #$01

JMP $99B5

Jump to next 2 bytes(bit command)

Save first track of side 2 (36)

as track number

Give 'OK1

return message

[930D/94D3/9527/BF0F/93D3:9318] cf. F393

Set buffer pointer and get

93D1

93D3

93D6

93D7

93D9

93DB

93DD

93DE

93DF

93E1

93E3

93E5

93E7

93E8

93E9

93EB

93ED1

93EF

93F1

93F2

A4

B9

48

10

29

85

98

0A

69

85

A9

85

98

18

69

85

A0

84

68

60

3F

00 00

14

78

45

06

32

00

33

03

31

00

30

LDY

LDA

PHA

BPL

AND

STA

TYA

ASL

ADC

STA

LDA

STA

TYA

CLC

ADC

STA

LDY

STY

PLA

RTS

$3F

$0000,

$93ED

#$78

$45

A

#$06

$32

#$00

$33

#$03

$31

#$00

$30

jobcode of buffer

Current buffer number

Y Get matching jobcode and

save it

Is there a command onhand?

YES—Isolate bits 3-6 and save

as significant command bits

Get buffer number and

double it

Set pointer to table of

track and sector assignments

to the job

($0006-$0011)

Get buffer number;

compute physical

memory address

from that

Put address into

pointers $30/$31

Repeat jobcode

Return from this subroutine

[895C/9371/9B41]

Activate read/write head on

93F3

93F5

93F7

93F8

93FA

93FD

9400

9402

9405

9408

B0

A9

2C

A9

8D

AD

29

0D

8D

60

03

00

84

Bl

OF

FB

Bl

OF

01

18

01

18

BCS

LDA

$93F8

#$00

.byte $2C

LDA

STA

LDA

AND

ORA

STA

RTS

#$84

$01Bl

$180F

#$FB

$01Bl

$180F

current diskette side

Is side 2 chosen?

NO-Control buts for side 1

Jump to next 2 bytes

Control bits/side 2 (%10000100)

Save bits

Get control register A

and re-set

bits

Write value into control register

Return from this subroutine

ROM-61

Abacus Software 1571 Internals

Bit

0

0

1

1

6 Bit

0

1

0

1

5 Track

31

25

18

1

range

- 35

- 30

- 24

- 17

[937A] Control bits for recoding rate of every track

recording rate

31250 Bytes/sec

33333 Bytes/sec

35714 Bytes/sec

38461 Bytes/sec

9409 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

9419 60 40 40 40 40 40 40 40 20 20 20 20 20 20 00 00

9429 00 00 00

——————————___________ __ ________________._.____._____«_«___________

[A82C/A8C2] Number of sectors per track in Commodore format

942C 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

943C 15 13 13 13 13 13 13 13 12 12 12 12 12 12 11 11

944C 11 11 11

[939C/97F6]

Look for a sector header

944F

9451

94531

94561

9459

945B

945E

9460

94 62

94 65

94662

9469

94 6B

94 6E

9471

9472

9474

9476

9479

947B

947D1

9480

9481

9483

9485

9487

9489

94 8B

A9

85

20

2C

30

AD

C9

DO

99

C8

2C

30

AD

99

C8

CO

DO

20

A0

A9

59

88

10

C9

DO

A5

85

A5

5A

4B

54

OF

FB

01

52

3E

24

OF

FB

01

24

08

F0

2F

04

00

16

FA

00

30

18

22

45

97

18

1C

00

18

1C

00

95

00

LDA

STA

JSR

BIT

BMI

LDA

CMP

BNE

STA

INY

BIT

BMI

LDA

STA

INY

CPY

BNE

JSR

LDY

LDA

EOR

DEY

BPL

CMP

BNE

LDA

STA

LDA

#$5A

$4B

$9754

$180F

$9456

$1CO1

#$52

$94A0

$0024,Y

$180F

$9466

$1CO1

$0024,Y

#$08

$9466

$952F

#$04

#$00

$0016,Y

$947D

#$00

$94B7

$18

$22

$45

Determine number of

read attempts (90)

Wait for next sync-marking

Test 'Byte Ready1 signal

Is next byte ready?

YES-read GCR-byte from diskette

Compare with 'Header1 identifier

Is it a sector header?

YES-Byte in header buffer

Set buffer pointer to next byte

Test 'Byte Ready' signal

Is next byte ready?

YES-Read GCR-byte from diskette

Byte in header buffer

Set buffer pointer to next byte

Number of header bytes

entire header read?

YES-Blockheader / GCR to binary

Number of relevant header bytes

Compute checksum of bytes:

Compute header byte

Pointer to next byte

All bytes figured out?

Compare with 'Correct' value

Error-free checksum?

YES-Set track number from header

as current track number

Get jobcode command bits & check

ROM-62

Abacus Software 1571 Internals

948D C9 30 CMP #$30 code for 'Look for sector1

948F F0 18 BEQ $94A9 Should sectorheader be sought?

94 91 A5 12 LDA $12 NO-Compare ID from sectorheader

94 93 C5 16 CMP $16 with current ID

94 95 DO ID BNE $94B4 Identical?

94 97 A5 13 LDA $13 Test next ID

94 99 C5 17 CMP $17 character

949B DO 17 BNE $94B4 Run into a disk exchange?

949D 4C BC 94 JMP $94BC NO-Get next job

94A01 C6 4B DEC $4B Number of read attempts

94A2 DO AF BNE $9453 Still need to do search?

94A4 A9 02 LDA #$02 NO-1 Header Not Found1 error #

94A6 20 B5 99 JSR $99B5 Output error message

94A91 A5 16 LDA $16 Take current ID

94AB 85 12 STA $12 from header (1st character)

94AD A5 17 LDA $17 Take current ID

94AF 85 13 STA $13 from header (2nd character)

94B1 A9 01 LDA #$01 Number for 'Ok' message

94B3 2C .byte $2C Jump to next 2 bytes(bit command)

94B42 A9 0B LDA #$0B 'ID Mismatch1 error number

94B6 2C .byte $2C Jump to next 2 bytes(bit command)

94B71 A9 09 LDA #$09 'Read Error (27)' error number

94B9 4C B5 99 JMP $99B5 Give return message

[949D] cf. F423

Get next job (Sector optimizing)

Optimum is a state of > 6 (read)

94BC

94BE

94C0

94C2

94C3

94C5

94C7

94C9

94CB1

94CD

94CF

94D1

94D31

94D6

94D8

94DA

94DC

94DE

94E0

94E2

A9 7F

85 4C

A5 19

18

69 02

C5 43

90 02

E5 43

85 4D

A2 05

86 3F

A2 FF

20 Dl

10 43

29 01

C5 3E

DO 3D

A0 00

Bl 32

C5 40

93

or 9-12 sectors (write)

LDA #$7F Initialize pointer for difference

STA $4C to next job

LDA $19 Compare sector number

CLC from blockheader

ADC #$02 with maximum

CMP $43 sector number

BCC $94CB Is number in allowable range?

SBC $43 NO-Remove max. number and

STA $4D save new sector number

LDX #$05 Set buffer 5

STX $3F as current buffer

LDX #$FF Buffer pointer value

JSR $93D1 Set buffer pointer & get jobcode

BPL $951B Is a jobcode onhand?

AND #$01 YES-Determine corresponding drive

CMP $3E and compare with current drive

BNE $951B Identical?

LDY #$00 YES-Pntr to params from bufferO

LDA ($32),Y Get job track for buffer 0

CMP $40 Compare with last track

ROM-63

Abacus Software 1571 Internals

94E4

94E6

94E8

94EA

94EC

94EE

94EF

94F1

94F3

94F5

94F6

94F82

94FA

94FC

94FD

94FF

9501

9502

9504

9506

9508

950A1

950C

950E

950F

9510

9512

9514

95161

9517

9519

951B7

951D

951F

9520

9522

95251

9527

952A

952C

DO

A5

C9

FO

AO

38

Bl

E5

10

18

65

C5

BO

48

A5

FO

68

C9

90

C9

BO

85

A5

AA

18

69

85

DO

68

C9

90

C6

10

8A

10

4C

86

20

A5

4C

35

45

60

oc

01

32

4D

03

43

4C

IF

45

15

09

15

OC

11

4C

3F

03

31

05

06

EF

3F

B4

03

CA 99

3F

Dl 93

45

06 96

BNE

LDA

CMP

BEQ

LDY

SEC

LDA

SBC

BPL

CLC

ADC

CMP

BCS

PHA

LDA

BEQ

PLA

CMP

BCC

CMP

BCS

STA

LDA

TAX

CLC

ADC

STA

BNE

PLA

CMP

BCC

DEC

BPL

TXA

BPL

JMP

STX

JSR

LDA

JMP

$951B

$45

#$60

$94F8

#$01

($32)

$4D

$94F8

$43

$4C

$951B

$45

$9516

#$09

$951B

#$0C

$951B

$4C

$3F

#$03

$31

$951B

#$06

$950A

$3F

$94D3

$9525

$99CA

$3F

$93D1

$45

$9606

Identical?

YES-Get command bits of jobcode &

test for 'Execute program1 code

Identical?

NO—Pntr to params from bufferO

Get sector number of job for

for buffer 1

Test for optimal sectors computed

Is new sector number smaller?

NO—Calculate number of sectors up

to this sector and compare

with last difference

Is new value smaller or greater?

YES-Save sector difference

Check command bits of jobcode

Should sector be read?

NO-Get difference again and

compare with 9

Is value smaller?

NO-Compare with 13

Is difference less than 13?

YES—Save new sector difference

Get number of current

buffer and

from it compute

the appropriate physical

memory address

Jump to $95IB

Repeat sector difference &

compare with 6

Is difference less?

NO-Turn pointer to next buffer

All buffers tested?

YES—Buffer number of next job

Optimal job found?

execute stepper commands

Save number of current buffer

Set buffer pointer & get jobcode

Determine command bits of jobcode

Execute read/write jobs

ROM-64

Abacus Software 1571 Internals

Convert sector

952F

9531

9532

9534

9535

9537

9539

953B

953D

953F

9541

9544

9546

9548

954A

954C

954E

9550

9553

9555

9557

9559

955B

955C

955E

955F

9561

A5 30

48

A5 31

48

A9 24

85 30

A9 00

85 31

A9 00

85 34

20 D9 98

A5 55

85 18

A5 54

85 19

A5 53

85 1A

20 D9 98

A5 52

85 17

A5 53

85 16

68

85 31

68

85 30

60

header

LDA

PHA

LDA

PHA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

STA

PLA

STA

PLA

STA

RTS

from GCR to

$30

$31

#$24

$30

#$00

$31

#$00

$34

$98D9

$55

$18

$54

$19

$53

$1A

$98D9

$52

$17

$53

$16

$31

$30

binary

Retain low-byte of current buffer

pointer

Retain hi-byte of current buffer

pointer

Set buffer pointers $30/$31

to start of buffer

for the current

sector header s

Reset buffer

pointer

Convrt 5 GCRbytes >4 binary bytes

Get first converted byte and save

as track number of header

Get second converted byte & save

as sector number

Get third converted byte and set

as header checksum

Convrt 5 GCRbytes >4 binary bytes

Set first converted byte

as second ID character

Set second converted byte as

first ID character

Get original values of

buffer pointers $30/$31

and

set

Return from this subroutine

9562 FF ...

95FF ... FF

Unused

ROM area

ROM-65

Abacus Software 1571 Internals

[960D/98A6] cf. F50A

Look for data sector and set head to start-of-data

9600 20 OF 97 JSR $970F Look for sector header

9603 4C 54 97 JMP $9754 Wait for next Sync-marking

[952C] cf. F4CA

Read Commodore sectors when jobcode = $80 (command bits $00)

9606 C9 00 CMP #$00 Test for 'Read sector1 jobcode

9608 F0 03 BEQ $960D Identical?

960A 4C 6E 97 JMP $976E NO-Continue jobcode test

Look for data block

Wait for 'Byte ready1

signal

Read byte from diskette

and save it

Get binary equivalent and

save it

Repeat original byte and

expand first GCR part

Save byte

wait for 'Byte ready1

signal

Read byte from diskette

and save it

Get last 2 bits of 2nd GCR-byte

and add in first 3 bits

(1st part:bitsO-2;2ndprt:bits6-7)

Get binary equivalent, OR with

previous half-byte of 1st byte

Save byte as data blok identifier

Read data part

and put into buffer as binary bytes

Wait for 'Byte ready1

signal

Read byte from diskette and

save it

Determine binary equivalent and

store away temporarily

Repeat original data byte spread

out first GCR-byte

Save part of 2nd GCR-byte

[92D9/9608]

Read

960D

96101

9613

9615

9618

9619

961C

961E

961F

9621

96231

9626

9628

962B

962D

962F

9631

9632

9635

9637

9638

sector

20

2C

30

AD

AA

BD

85

8A

29

85

2C

30

AD

85

29

05

AA

BD

05

48

4C

00

OF

FB

01

0D

52

07

53

OF

FB

01

54

CO

53

OD

52

67

[963E/96D4]

Read i

963B

963E

9640

9643

9644

9647

9649

964A

964C

96

18

1C

AO

18

1C

9F

96

GCR-bytes

2C

30

AD

AA

BD

85

8A

29

85

OF

FB

01

OD

52

07

53

18

1C

AO

JSR

BIT

BMI

LDA

TAX

LDA

STA

TXA

AND

STA

BIT

BMI

LDA

STA

AND

ORA

TAX

LDA

ORA

PHA

JMP

$9600

$180F

$9610

$1CO1

$A00D,X

$52

#$07

$53

$180F

$9623

$1CO1

$54

#$C0

$53

$9F0D,X

$52

$9667

from diskette

BIT

BMI

LDA

TAX

LDA

STA

TXA

AND

STA

$180F

$963B

$1CO1

$A00D,X

$52

#$07

$53

ROM-66

Abacus Software 1571 Internals

964E1

9651

9653

9656

9658

965A

965C

965D

9660

9662

9664

9665

96671

9669

966A

966D

966F

9670

9672

96741

9677

9679

967C

967E

9680

9682

9683

9686

9688

968A

968B

968D

968F

96911

9694

9696

9699

969B

969D

969F

96A0

96A3

96A5

96A7

96A8

2C OF 18

30 FB

AD 01 1C

85 54

29 CO

05 53

AA

BD OD 9F

05 52

91 30

C8

FO 70

A5 54

AA

BD OD Al

85 52

8A

29 01

85 54

2C OF 18

30 FB

AD 01 1C

85 55

29 FO

05 54

AA

BD OF 9F

05 52

91 30

C8

A5 55

29 OF

85 55

2C OF 18

30 FB

AD 01 1C

85 3A

29 80

05 55

AA

BD ID 9F

85 52

A5 3A

AA

BD OD A2

BIT $180F

BMI $964E

LDA $1CO1

STA $54

AND #$C0

ORA $53

TAX

LDA $9F0DfX

ORA $52

STA ($30),Y

INY

BEQ $96D7

LDA $54

TAX

LDA $A10D,X

STA $52

TXA

AND #$01

STA $54

BIT $180F

BMI $9674

LDA $1CO1

STA $55

AND #$F0

ORA $54

TAX

LDA $9F0F,X

ORA $52

STA ($30),Y

INY

LDA $55

AND #$0F

STA $55

BIT $180F

BMI $9691

LDA $1CO1

STA $3A

AND #$80

ORA $55

TAX

LDA $9F1D,X

STA $52

LDA $3A

TAX

LDA $A20D,X

Wait for 'Byte ready1

signal

Read byte from diskette

and save it

Get last part of 2nd GCR byte

and combine with 1st part

(lstpart:bits 0-2;2ndprt:bits6-7)

Get corresponding half-byte &

combine previous half-byte

Write binary byte to buffer

turn buffer pointer to next byte

Reached end-of-buffer?

NO-Get next GCR-byte & determine

upper half-byte of

equivalent binary byte;

save it

Repeat original GCR-byte and form

first part of next GCR-bytes;

save it

Wait for 'Byte ready1

signal

Read byte from diskette

and save it

Determine 2nd part of GCR-byte

and connect with 1st part

(1st part:bit0; 2nd part:bits4-7)

Get corresponding half-byte and

form next binary byte

Write byte into buffer

Turn buffer pointer to next byte

Setup first part of

next GCR-byte and

save it

Wait for 'Byte ready1

signal

Read byte from diskette

and save it

Set second part of GCR-byte and

combine with first part

(1st part:bits 0-3;2nd part:bit7)

Determine & temporarily store 1st

half-byte of next binary value

Repeat original GCR-value and

get second half-byte

of equivalent binary byte

ROM-67

Abacus Software 1571 Internals

96AB

9 6AD

96AF

96B0

96B1

96B3

96B51

96B8

96BA

96BD

96BF

96C1

96C3

96C4

96C7

96C9

96CB

96CC

96CF

96D1

96D3

96D4

05 52

91 30

C8

8A

29 03

85 3A

2C OF 18

30 FB

AD 01 1C

85 53

29 EO

05 3A

AA

BD 2A 9F

85 52

A5 53

AA

BD OD A3

05 52

91 30

C8

4C 3B 96

ORA $52 Add in first part and write byte

STA ($30),Y to buffer

INY Turn buffer pointer to next byte

TXA Set up first part

AND #$03 of next GCR-byte

STA $3A and save it

BIT $180F Wait for 'Byte ready1

BMI $96B5 signal

LDA $1CO1 read byte from diskette and

STA $53 store away temporarily

AND #$E0 Isolat 2nd part of GCR-byte,

ORA $3A and combine with 1st part

TAX (lstpart:bits 0-l;2ndprt:bits5-7)

LDA $9F2A,X Determine and save first binary

STA $52 half-byte

LDA $53 Repeat originalGCR-value and

TAX get second part of

LDA $A30D,X binary byte

ORA $52 Include first half-byte

STA ($30),Y Write byte to buffer

INY Set buffer pointer >next position

JMP $963B Next 5 GCRbytes in 4 binary bytes

[9665]

End of buffer

96D7 A5 54

96D9 AA

96DA BD 0D Al

96DD 85 52

96DF 8A

96E0 29 01

96E2 85 54

96E41 2C OF 18
96E7 30 FB

96E9 AD 01 1C

96EC 29 F0

96EE 05 54

96F0 AA

96F1 BD OF 9F

96F4 05 52

96F6 85 53

96F8 68

96F9 C5 47

96FB DO 0A

96FD 20 E9 F5

9700 C5 53

reached

LDA $54

TAX

LDA $A10D,X

STA $52

TXA

AND #$01

STA $54

BIT $180F

BMI $96E4

LDA $1CO1

AND #$F0

ORA $54

TAX

LDA $9F0F,X

ORA $52

STA $53

PLA

CMP $47

BNE $9707

JSR $F5E9

CMP $53

Get last GCR-byte and determine

first half-byte of

next binary byte

save it

Repeat original GCR-value and

isolate first part of next GCR-

byte

Wait for 'Byte ready1

signal

Read byte from diskette

and get second part of GCR-byte

Combine with first part

(1st part:bit 0;2nd part:bits4-7)

Determine 2nd part of binary byte

and form final binary byte

Save value as checksum

Repeat data block identifier and

test it

Is identifier correct?

YES-Compute buffer checksum

Test against checksum to be given

ROM-68

Abacus Software 1571 Internals

9702

9704

9706

97071

9709

97 0A1

970C

F0

A9

2C

A9

2C

A9

4C

06

05

04

01

B5 99

[9600/9789/98CE!

Look for

970F

9711

9713

9715

9717

9719

971B

971D

971E

9720

9722

9724

9726

9728

972A

972C

972E

9731

9733

97351

97381

973B1
973E

9740

9743

9745

9746

9748

974A

974B1

974D

974F

9751

A5

85

A5

85

A0

Bl

85

C8

Bl

85

A9

45

45

45

45

85

20

A9

85

20

B9

2C

30

CD

DO

C8

CO

DO

60

C6

DO

A9

4C

sector

12

16

13

17

00

32

18

32

19

00

16

17

18

19

1A

34

5A

4B

54

24

OF

FB

01

06

08

EE

4B

E6

02

B5

F9

97

00

18

1C

99

BEQ

LDA

$970A

#$05

.byte $2C

LDA #$04

.byte $2C

LDA

JMP

1 cf.

#$01

$99B5

F510

header

LDA

STA

LDA

STA

LDY

LDA

STA

INY

LDA

STA

LDA

EOR

EOR

EOR

EOR

STA

JSR

LDA

STA

JSR

LDA

BIT

BMI

CMP

BNE

INY

CPY

BNE

RTS

DEC

BNE

LDA

JMP

$12

$16

$13

$17

#$00

($32),Y

$18

($32),Y

$19

#$00

$16

$17

$18

$19

$1A

$F934

#$5A

$4B

$9754

$0024,Y

$180F

$973B

$1CO1

$974B

#$08

$9738

$4B

$9735

#$02

$99B5

Is a read error taking place?

YES-Error # for 'Read Error (23)■

Jump to next 2 bytes(bit command)

Error # for 'Read Error (22)'

Jump to next 2 bytes (bit command)

Value for 'Ok' message

Give return message

Write current ID (1st character)

in buffer for Sector header

Write current ID (2nd character)

in buffer for sector header

Re-set buffer pointer

Get track of current job and take

in Header buffer

Buffer pointer to next byte

take number of current sector

in header

Compute checksum:

ID 1

ID 2

Track number

Sector number

Checksum in header buffer

Convert header into GCR-values

Set number of read

attempts (90)

Wait for next Sync-marking

Get byte from header buffer

Wait for 'Byte ready'

signal

Compare with byte on diskette

Identical?

YES-Compare next byte

Number of bytes to a header

Entire header compared?

YES-Return from this subroutine

Try again

Number of read attempts ended?

YES-Error # for 'Read Error (21)'

Give return message

ROM-69

Abacus Software 1571 Internals

[9453/9603/9735/9CDD/9D08/BF21]

Wait for next Sync-marking

9754

9756

9758

975B

975D

975E

9760

9761

9763

9765

9768

97 6B

97 6D

A2

A0

2C

10

88

DO

CA

DO

A9

4C

AD

A0

60

OF

00

00 1C

OB

F8

F5

03

B5 99

01 1C

00

LDX

LDY

BIT

BPL

DEY

BNE

DEX

BNE

LDA

JMP

LDA

LDY

RTS

#$0F

#$00

$1COO

$9768

$9758

$9758

#$03

$99B5

$1CO1

#$00

cf. F556

Set attempt counter

(ca. 47 / 23 ms)

Test 'Sync1 signal

Is Sync set?

NO—Decrement counter

Counter already running

Decrement counter

256 cycles passed?

Error number for 'sync not found'

Give return message

Initialize 'Byte ready' (CA1)

Clear register

Return from this subroutine

[960A] cf. F56E

Write sector, when jobcode

976E C9 10 CMP #$10

9770 F0 03 BEQ $9775

9772 4C 98 98 JMP $9898

=$90 (command bit $10)

Test for 'Write* jobcode

Should sector be written?

NO-Continue jobcode test

Write

97751

9778

977A

977D

977F

9781

9783

97861

9789

978C

978E2

9791

97 93

9796

9797

9799

97 9B

97 9E

97A1

97A3

97A5

97A8

97AA

sector

20

85

AD

29

DO

A9

4C

20

20

A0

2C

30

2C

88

DO

A9

8D

AD

29

09

8D

A9

A0

E9

3A

00

10

05

08

B5

8F

OF

09

OF

FB

00

F5

FF

03

OC

IF

CO

OC

FF

05

F5

1C

99

F7

97

18

1C

1C

1C

1C

JSR

STA

LDA

AND

BNE

LDA

JMP

JSR

JSR

LDY

BIT

BMI

BIT

DEY

BNE

LDA

STA

LDA

AND

ORA

STA

LDA

LDY

$F5E9

$3A

$1COO

#$10

$9786

#$08

$99B5

$F78F

$970F

#$09

$180F

$978E

$1COO

$978E

#$FF

$1CO3

$1COC

#$1F

#$C0

$1COC

#$FF

#$05

Compute buffer checksum and

save it

Get drive control register and

test 'Write Protect' bit

Is write-protect set?

YES-'Write protect on' error #

Set return message

Convert buffer contents to GCR

Look for blockheader

Gap bytes until data block

wait for 'Byte ready'

signal

Get head ready again

Another byte

Gap already jumped over?

YES-Set head register for

output

Get control register and

place head circuitry

in write mode

(CB2 to low)

Sync-marking value

Number of Sync-bytes

ROM-70

Abacus Software 1571 Internals

97AC

97AF2
97B2

97B4

97B7

97B8

97BA

97BC1

97BF1
97C2

97C4

97C7

97C8

97CA1

97CC1
97CF

97D1

97D4

97D5

97D71

97DA

97DC

97DF

97E1

97E4

97E6

97E9

97EC

97EE

97F1

97F3

97F6

8D 01 1C

2C OF 18

30 FB

2C 00 1C

88

DO F5

AO BB

B9 00 01

2C OF 18

30 FB

8D 01 1C

C8

DO F2

Bl 30

2C OF 18

30 FB

8D 01 1C

C8

DO F3

2C OF 18

30 FB

AD OC 1C

09 EO

8D OC 1C

A9 00

8D 03 1C

20 F9 97

A4 3F

B9 00 00

49 30

99 00

4C 4F

00

94

STA $1CO1 Write byte to diskette

BIT $180F Wait for 'Byte Ready1

BMI $97AF signal

BIT $1COO Re-set 'Byte Ready'

DEY Next Sync-byte

BNE $97AF Entire marking already written?

LDY #$BB YES-Buffer pointr to status bufer

LDA $0100,Y Get byte from buffer

BIT $180F wait for 'Byte ready'

BMI $97BF signal

STA $1CO1 Write GCR-byte to diskette

INY Turn pointer to next byte

BNE $97BC Entire status buffer on diskette?

LDA ($30),Y YES-Get byte from current buffer

BIT $180F wait for 'Byte ready'

BMI $97CC signal

STA $1CO1 Write GCR-byte to diskette

INY Set buffer pointer to next byte

BNE $97CA Entire buffer written?

BIT $180F Wait for 'Byte ready'

BMI $97D7 signal, until byte is written

LDA $1COC Switch head electronics

ORA #$E0 to read mode

STA $1COC (CB2 to high)

LDA #$00 Set head register

STA $1CO3 to input

JSR $97F9 Convert buffer from GCR to binary

LDY $3F Number of current buffer

LDA $0000,Y Get jobcode and convert

EOR #$30 into 'Test sector'

STA $0000,Y Set new jobcode

JMP $944F Look for sector header

[97E9/99BE] cf

Convert current

97F9 A9 00

97FB 85 2E

97FD 85 30

97FF 85 4F

9801 A5 31

9803 85 4E

9805 A9 01

9807 85 31

9809 85 2F

980B A9 BB

980D 85 34

. F5F2

buffer &status

LDA #$00

STA $2E

STA $30

STA $4F

LDA $31

STA $4E

LDA #$01

STA $31

STA $2F

LDA #$BB

STA $34

buffer($01BB-$lFF)from GCR to binary

Initialize lo-byte of pointer for

current data buffer and

status buffer

Hold momentary value of pointer

for current data buffer in

in $4E/$4F

Turn buffer pointer to

status buffer

(high-byte)

Turn buffer pointr/conver routine,

to start of status buffer ($1BB)

ROM -71

Abacus Software 1571 Internals

980F 85 36 STA $36 Set pointer to current byte pos

9811 20 D9 98 JSR $98D9 Convert 5 GCR to 4 binary bytes

9814 A5 52 LDA $52 Get identifier of data block

9816 85 38 STA $38 and save it

9818 A4 36 LDY $36 Get buffer pointer-next bin byte

981A A5 53 LDA $53 Get data byte and write

981C 91 2E STA ($2E),Y to buffer

981E C8 INY Set buffer pointer to next byte

981F A5 54 LDA $54 Get data byte and

9821 91 2E STA ($2E),Y write to buffer

9823 C8 INY Set buffer pointer to next byte

9824 A5 55 LDA $55 Get data byte and

982 6 91 2E STA ($2E),Y write to buffer

9828 C8 INY Set buffer pointer to next byte

9829 84 36 STY $36 Save buffer pointer

982B1 20 D9 98 JSR $98D9 Convert 5 GCR-bytes-4 bin bytes
982E A4 3 6 LDY $3 6 Repeat buffer pointer

9830 A5 52 LDA $52 Get data byte and write

9832 91 2E STA ($2E),Y to buffer

9834 C8 INY Set buffer pointer to next byte

9835 A5 53 LDA $53 Get databyte and

9837 91 2E STA ($2E),Y write to buffer

983A F0 0E BEQ $984A End of status buffer reached?

983C A5 54 LDA $54 NO-Get databyte and

983E 91 2E STA ($2E),Y write to buffer

9840 C8 INY set buffer pointer to next byte

9841 A5 55 LDA $55 Get databyte and

9843 91 2E STA <$2E),Y write to buffer

9845 C8 INY Set buffer pointer to next byte

984 6 84 36 STY $36 Save buffer pointer

9848 DO El BNE $982B Reached end of status buffer?

984A1 A5 54 LDA $54 YES-Get converted binary byte and
984C 91 30 STA ($30),Y write to data buffer

984E C8 INY Set buffer pointer to next byte

984F A5 55 LDA $55 Get converted binary byte and

9851 91 30 STA ($30),Y write to data buffer

9853 C8 INY Set buffer pointer to next byte

9854 84 36 STY $36 Save buffer pointer

98561 20 D9 98 JSR $98D9 Conver 5 GCR-Bytes-4 bin bytes
9859 A4 36 LDY $36 Get buffer pointer again

985B A5 52 LDA $52 Get converted binary byte and

985D 91 30 STA ($30),Y write to data buffer

985F C8 INY Set buffer pointer to next byte

9860 A5 53 LDA $53 Get converted binary byte and

9862 91 30 STA ($30),Y write to data buffer

98 64 C8 INY Set buffer pointer to next byte

ROM-72

Abacus Software 1571 Internals

9865

9867

9869

986A

986C

986E

986F

9871

9873

9875

9877

9879

987B

987D

987F1

9881

9883

9884

9886

9888

988A

988C1

988F

9891

9892

9893

9895

9897

A5

91

C8

A5

91

C8

84

CO

90

A9

85

A5

85

AO

Bl

91

88

DO

Bl

91

A2

BD

91

C8

E8

DO

86

60

54

30

55

30

36

BB

El

45

2E

31

2F

BA

30

2E

F9

30

2E

BB

00 01

30

F7

50

LDA

STA

INY

LDA

STA

INY

STY

CPY

BCC

LDA

STA

LDA

STA

LDY

LDA

STA

DEY

BNE

LDA

STA

LDX

LDA

STA

INY

INX

BNE

STX

RTS

$54

($30),

$55

($30),

$36

#$BB

$9856

#$45

$2E

$31

$2F

#$BA

($30),

($2E),

$987F

($30),

($2E),

#$BB

$0100,

($30),

$988C

$50

Y

Y

Y

Y

Y

Y

X

Y

Get converted binary byte and

write to data buffer

Set buffer pointer to next byte

Get converted binary byte and

write to data buffer

Set buffer pointer to next byte

Save buffer pointer and

Compare with end value

End of data buffer reached?

YES-Set pointer to

target address of

the following shift

action

Shift bytes in data buffer from

$01-$BB to position $46-$FF in

buffer above

buffer pointer to next byte

All characters already shifted?

YES-Copy byte $00 to

position $45

Pointer to start of status buffer

Get byte from status buffer

and copy into data buffer

turn buffer pointer for Data- and

status buffer to next byte

Entire buffer copied?

YES-Clr flag fr'buffer in GCR1(0)

Return from this subroutine

ROM-73

Abacus Software 1571 Internals

[9772] cf. F691

Sector verify, when jobcode

9898 C9 20 CMP #$20

989A F0 02 BEQ $989E

989C DO 30 BNE $98CE

$A0 (Command bit $20)

Test for jobcode:'Sector verify1

Should sector be verified?

N-Jump to $98CE

Sector verify

20 E9 F5

85 3A

20 8F F7

20 00 96

A0 BB

B9 00 01

2C OF 18

30 FB

4D 01 1C

DO 1C

C8

DO F0

Bl 30

2C OF 18

98C0 30 FB

98C2 4D 01 1C

98C5 DO 0D

98C7 C8

98C8 CO FD

98CA DO EF

98CC F0 03

989E1

98A1

98A3

98A6

98A9

98AB1

98AE1

98B1

98B3

98B6

98B8

98B9

98BB1

98BD1

98CE1 20 OF

98D11 A9 01

98D3 2C

A9 07

4C B598D6

JSR $F5E9 Compute buffer checksum

STA $3A and save it

JSR $F78F Convert buffer from binary to GCR

JSR $9600 Look for sector header

LDY #$BB Turn pointer to status buffer

LDA $0100,Y Get byte from buffer

BIT $180F Wait for 'byte ready'

BMI $98AE signal and compare

EOR $1CO1 with byte from diskette

BNE $98D4 Identical?

INY YES-Buffer pointer to next byte

BNE $98AB Entire status buffer compared?

LDA ($30),Y byte from data buffer

BIT $180F wait for 'byte ready'

BMI $98BD signal

EOR $1CO1 Compare with byte from diskette

BNE $98D4 Identical?

INY YES-Buffer pointer to next byte

CPY #$FD Compare pointer with end value

BNE $98BB Reached end of data buffer?

BEQ $98D1 YES-Jump to $98D1

97 JSR $97OF Look for next sector header

LDA #$01 Number for 'Ok' message

.byte $2C Jump to next 2 bytes

LDA #$07 Set 'Verify Error* error number

99 JMP $99B5 Send return message

[9541/9550/9811/982B/9856/997 9/9993/BF30] cf. F7E6

Convert 5 GCR-

98D9 A4 34

98DB Bl 30

98DD 85 56

98DF 29 07

98E1 85 57

98E3 C8

98E4 DO 06

98E6 A5 4E

98E8 85 31

98EA A4 4F

•bytes into 4 binary bytes

LDY $34 Get pointer to next GCR-byte

LDA ($30),Y Get GCR-byte from buffer and

STA $56 save as first GCR value

AND #$07 Save 1st part of 2nd

STA $57 GCR value

INY Pointer to next GCR-byte

BNE $98EC Reached end of status buffer?

LDA $4E YES-set pointer to beginning of

STA $31 current data buffer

LDY $4F Set pointer to position in buffer

ROM-74

Abacus Software 1571 Internals

98EC"1-

98EE

98F0

98F2

98F4

98F6

98F8

98FA

98FC

98FD

98FF

9900

9902

9904

9906

9907

9909

990B

990C

990E

9910

9912

9914

9916

9918

991A

991C

991D

991F

9921

9923

9925

99271
9929

992B

992D

992F

9931

9932

9934

9936

9939

993B

993E

9940

9942

Bl

85

29

05

85

A5

29

85

C8

Bl

AA

29

05

85

8A

29

85

C8

Bl

85

29

05

85

A5

29

85

C8

DO

A5

85

A4

84

Bl

85

29

05

85

C8

84

A6

BD

A6

ID

85

A6

BD

30

58

CO

57

57

58

01

59

30

FO

59

59

OF

5A

30

5B

80

5A

5A

5B

03

5C

08

4E

31

4F

30

30

5D

EO

5C

5C

34

56

OD AO

57

OD 9F

52

58

OD Al

LDA

STA

AND

ORA

STA

LDA

AND

STA

INY

LDA

TAX

AND

ORA

STA

TXA

AND

STA

INY

LDA

STA

AND

ORA

STA

LDA

AND

STA

INY

BNE

LDA

STA

LDY

STY

LDA

STA

AND

ORA

STA

INY

STY

LDX

LDA

LDX

ORA

STA

LDX

LDA

($30),

$58

#$co

$57

$57

$58

#$01

$59

($30),

#$F0

$59

$59

#$0F

$5A

($30),

$5B

#$80

$5A

$5A

$5B

#$03

$5C

$9927

$4E

$31

$4F

$30

($30),

$5D

#$E0

$5C

$5C

$34

$56

$A00D

$57

$9F0D

$52

$58

$A10D

Y

Y

Y

,Y

,x

,x

,x

Get GCR-byte from buffer

and save it

Get 2nd part of 2nd GCR value;

combine with first part

Save second GCR value

Get original GCR-byte again and

get 1st part of 3rd GCR value

Save value

Set buffer pointei: to next byte

Get byte from buffer

and save it

Find 2nd part of 3rd GCR value;

combine with first part

Save entire byte

Get original GCR-byte again, and

save 1st part of

4th GCR value

Turn buffer pointer to next byte

Get byte from buffer and

save it

get 2nd part of 4th GCR value and

combine with previous first part

Save entire value

Get original GCR-byte again and

isolate 1st part pf 5th GCR

value

Set pointer to next byte

Reached end of status buffer?

YES-Turn pointer to current

data buffer

Set pointer in position in

buffer

Get byte from buffer and

save it

Get 2nd part of 5th GCR value and

combine with first part

Save entire GCR value

Buffer pointer to next character

and save it

Get 1st GCR value-find equivalent

most significant binary half-byte

Get second GCR value and form

least signifcant binary half-byte

Save first converted binary byte

Get 3rd GCR value,find equivalent

most significant binary half-byte

ROM-75

Abacus Software 1571 Internals

9945

9947

994A

994C

994E

9951

9953

9956

9958

995A

995D

995F

9962

9964

A6

ID

85

A6

BD

A6

ID

85

A6

BD

A6

ID

85

60

59

OF

53

5A

ID

5B

OD

54

5C

2A

5D

OD

55

9F

9F

A2

9F

A3

LDX

ORA

STA

LDX

LDA

LDX

ORA

STA

LDX

LDA

LDX

ORA

STA

RTS

$59

$9F0F,X

$53

$5A

$9F1D,X

$5B

$A20D,X

$54

$5C

$9F2A,X

$5D

$A30D,X

$55

Get fourth GCR alue and form

least significant bin. half-byte

Save second converted binary byte

Get 5th GCR value,find equivalent

most significant binary half-byte

Get sixth GCR value and form

least significant half-byte

Save third converted binary byte

Get 7th GCR value,find equivalent

most significant binary half-byte

Get eighth GCR value and form

least significant bin. half-byte

Save last converted binary byte

Return from this subroutine

[BF27/Routine not used in DOS]

Convert status buffer from GR

9965

9967

9969

996B

996D

996F

9971

9973

9975

9977

9979

997C

997E

9980

9982

9984

9986

9987

9989

998B

998C

998E

9990

99911

9993

9996

9998

999A

999C

A9

85

85

85

A9

85

A9

85

A5

85

20

A5

85

A4

A5

91

C8

A5

91

C8

A5

91

C8

84

20

A4

A5

91

C8

00

34

2E

36

01

4E

BA

4F

31

2F

D9 98

52

38

36

53

2E

54

2E

55

2E

36

D9 98

36

52

2E

LDA

STA

STA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STY

JSR

LDY

LDA

STA

INY

#$00

$34

$2E

$36

#$01

$4E

#$BA

$4F

$31

$2F

$98D9

$52

$38

$36

$53

($2E)

$54

($2E)

$55

<$2E)

$36

$98D9

$36

$52

($2E)

cf. F8E0

to binary

Pointer to current GCR-byte

set back

Clear pointer to target buffer

Pointer to current data position

Turn temp, storage for address

of current data buffer

to beginning of

status buffer

Set buffer pointer to value of

current data buffer

Convert 5 GCRbytes to 4 bin.bytes

Get first binary byte & take as

identifier of data blocks

Pointer to current byte

Get second converted byte and

write in buffer

Buffer pointer to next byte

Get third converted byte and

write to buffer

Buffer pointer to next byte

Get last converted byte and

write to buffer

Buffer pointer to next byte

and save it

Convert 5 GCRbytes to 4 bin.bytes

Repeat buffer pointer

Get 1st converted byte and write

to buffer

Buffer pointer to next byte

ROM-76

Abacus Software 1571 Internals

999D

999F

99A1

99A3

99A4

99A6

99A8

99A9

99AB

99AD

99AE

99B01

99B2

99B4

FO

A5

91

C8

A5

91

C8

A5

91

C8

DO

A5

85

60

11

53

2E

54

2E

55

2E

El

2F

31

BEQ

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

BNE

LDA

STA

RTS

$99B0

$53

<$2E),

$54

($2E),

$55

($2E),

$9991

$2F

$31

Y

Y

Y

Reached end of buffer?

N-Get 2nd converted binary byte

and write to buffer

Set buffer pointer to next byte

Get third converted byte and

write to buffer

Buffer pointer to next byte

Get 3rd converted byte and write

to buffer

Buffer pointer to next byte

Reached end of buffer?

YES—Reestablish pointer to

current data buffer

Return from this subroutine

[92EB/93CE/94A6/94B9/970C/9751/97 65/9783/9806/904E/9D60/BF15] cf.

F969

Give

99B5

99B7

99BA

99BC

99BE

99C11

99C4

99C6

99C7

return

A4

99

A5

FO

20

20

A6

9A

4C

3F

00

50

03

F9

8F

49

C8

message <

00

97

F9

92

LDY

STA

LDA

BEQ

JSR

JSR

LDX

TXS

JMP

yver job loop

$3F

$0000,

$50

$99C1

$97F9

$F98F

$49

$92C8

,Y

Number of current buffer

Write return message to job reg.

Flag for 'buffer in GCR-Code1

Is the buffer still in GCR ?

YES-Convert buffer, GCR to binary

Drive motor off

Redirect

stack pointer

1571 job loop

[92D2/92F8/9302/9329/9522/9B55/9B64/9D41/9D56/BF72]

Part

99CA

99CD

99D0

99D3

99D5

99D7

99D9

99DB

99DE

99E0

99E21

99E4

99E7

99EA

99EC

99EE

of

AD

8D

AD

29

C5

85

DO

AD

DO

FO

A9

8D

20

A9

85

DO

jobloop

07

05

00

10

IE

IE

07

AB

10

1C

FF

AB

64

01

1C

0E

1C

1C

1C

02

02

87

for i

LDA

STA

LDA

AND

CMP

STA

BNE

LDA

BNE

BEQ

LDA

STA

JSR

LDA

STA

BNE

Tiotor-

$1CO7

$1CO5

$1COO

#$10

$1E

$1E

$99E2

$02AB

$99F0

$99FE

#$FF

$02AB

$8764

#$01

$1C

$99FE

and stepper control

Timer 1 (high-byte)

re-set

Get drive control register

and test for 'Write Protect1

Compare with last test

and save current status

Has 'Write Protect' been changed?

N—Motor runtime counter

Is motor on?

N-Jump to $99FE

Set counter for motor runtime in

disk exchange

Motor off

Set 'Newly initialize diskette*

flag

Jump to $99FE

ROM-77

Abacus Software 1571 Internals

99F01

99F3

99F5

99F7

99F9

99FB

99FE4

9A01

9A03

9A05

9A07

9A09

9A0C

9A0E1
9A10

9A12

9A15

9A182

9A1A

9A1C

9A1E

9A1F

9A21

9A232

9A2 61

9A28

9A2A

9A2B

9A2D

9A2F

9A311

9A33

9A35

9A37

9A39

9A3C

9A3E

9A40

9A42

9A44

9A4 63

9A47

9A4 9

9A4B

9A4E1

9A50

CE AB 02 DEC $02AB Decrement counter f/motor runtime

DO 09 BNE $99FE Motor now off?

A5 20 LDA $20 YES-Get drive status

C9 00 CMP #$00 . Compare with 'motor out1

DO 03 BNE $99FE Identical?

20 70 87 JSR $8770 YES-Drive motor off

AD FE 02 LDA $02FE Read error control byte for head

F0 15 BEQ $9A18 Should head be set to next track?

C9 02 CMP #$02 N-Test with 'control byte taken1

DO 07 BNE $9A0E Is head evenly set?

A9 00 LDA #$00 Clear control byte

8D FE 02 STA $02FE register

F0 0A BEQ $9A18 Jump to $9A18

85 4A STA $4A Set # of steps to be performed

A9 02 LDA #$02 Set 'Control byte taken'

8D FE 02 STA $02FE flag

4C 56 9A JMP $9A56 Re-position head

A6 3E LDX $3E Flag for 'drive aktiV

30 07 BMI $9A23 Is flag set?

A5 20 LDA $20 N-Get drive status

A8 TAY and save it

C9 20 CMP #$20 Compare with 'Motor on' flag

DO 03 BNE $9A26 Is drive ready?

4C C9 9A JMP $9AC9 YES-Return from this subroutine

C6 48 DEC $48 Motor delay counter

DO 1C BNE $9A46 Is motor out of turn mode?

98 TYA YES-Get drive status

10 04 BPL $9A31 Flag for 'Motor not ready' set?

29 7F AND #$7F YES-Clear

85 20 STA $20 flag

29 10 AND #$10 Flag for 'Motor in off phase'

F0 11 BEQ $9A46 Should motor be turned off?

C6 35 DEC $35 Jobloop calls yet to be performed

DO 0D BNE $9A46 Jobloop called again?

20 70 87 JSR $8770 N-Drive motor off

A9 FF LDA #$FF Clear 'drive active'

85 3E STA $3E flag

A9 00 LDA #$00 Re-set

85 20 STA $20 drive status

F0 DD BEQ $9A23 Jump to $9A23

98 TYA Repeat drive status

29 40 AND #$40 Test 'Stepper in operation' flag

DO 03 BNE $9A4E Is head moving?

4C C9 9A JMP $9AC9 N-Return from this subroutine

A5 62 LDA $62 Flag for current stepper phase

DO 50 BNE $9AA2 Is head in position?

ROM-78

Abacus Software 1571 Internals

9A52

9A54

[9A15]

A5 4A

FO 43

Head control

9A56

9A58

9A5A

9A5B

9A5C

9A5E1

9A61

9A62

9A63

9A66

9A67

9A68

9A69

9A6B

9A6D

9A6F

9A711

Track

9A731

9A74

9A7 6

9A78

9A7A

9A7C

9A7F

9A81

9A83

9A84

9A85

9A87

9A89

Track

9A8C5

9A8D

9A8E

9A90

9A93

9A94

9A96

A5 4A

10 59

98

48

A0 63

AD OF

6A

08

AD OF

6A

6A

28

29 80

90 04

10 ID

30 02

30 19

LDA

BEQ

routine

18

18

LDA

BPL

TYA

PHA

LDY

LDA

ROR

PHP

LDA

ROR

ROR

PLP

AND

BCC

BPL

BMI

BMI

0 write-protect

88

DO E8

BO 14

A5 7B

DO 10

AD 00

29 03

DO 09

68

A8

A9 00

85 4A

4C C9

1C

9A

DEY

BNE

BCS

LDA

BNE

LDA

AND

BNE

PLA

TAY

LDA

STA

JMP

$4A

$9A99

$4A

$9AB3

#$63

$180F

A

$180F

A

A

#$80

$9A71

$9A8C

$9A73

$9A8C

: notch

$9A5E

$9A8C

$7B

$9A8C

$1COO

#$03

$9A8C

#$00

$4A

$9AC9

0 write-protect notch

68

A8

E6 4A

AD 00

38

E9 01

4C BB

1C

9A

PLA

TAY

INC

LDA

SEC

SBC

JMP

$4A

$1COO

#$01

$9ABB

N—Number of steps to be moved

Counter set?

YES—Get number of half-steps

Should head be moved out?

YES-Get drive status and

retain it

Number of probe attempts (99)

Get Ctrl reg. A & set status of

track 0 write-protect in carry

Save carry

Read control reg. again and

re-test write-protect notch

Set result in bit 7

Get previous result

Establish last result

Is track 0 active in first test?

N-Is it at track 0 now?

YES-Jump to $9A73

Is track 0 still active?

status remains unchanged

YES-Try again

All attempts been performed?

YES-Was track 0 set?

YES—Current head control byte set

by an error?

N—Get drive control register and

get stepper bits

Is a stepper reel active?

N—repeat drive status

and save it

Clear counter

for steps to be travelled

End

status has been changed

repeat drive status and save

it

Counter one step out

Get control register and

set stepper bits for

one step

outward

ROM-79

Abacus Software 1571 Internals

9A991

9A9B

9A9D

9A9F

9AA21

9AA4

9AA6

9AA8

9AAA

9AAC

9AAE

9AB0

A9

85

85

4C

C6

DO

A5

29

85

A9

85

4C

02

48

62

C9 9A

48

23

20

BF

20

00

62

C9 9A

LDA

STA

STA

JMP

DEC

BNE

LDA

AND

STA

LDA

STA

JMP

#$02

$48

$62

$9AC 9

$48

$9AC9

$20

#$BF

$20

#$00

$62

$9AC 9

Set delay counter to two

more IRQs

Stepper flag to 'Rest phase1

Return from this subroutine

Delay for head resting time

Head ready?

YES-Get drive status and

clear •Stepper on'

flag

Set stepper flag

back

Return from this subroutine

[9A58] One half-track step in

9AB3 C6 4A DEC $4A

9AB5 AD 00 1C LDA $lC00

9AB8 18 CLC

9AB9 69 01 ADC #$01

Step counter 1 step in

Get control register

and set stepper bits

for one half-track step

[9A96]

9ABB

9ABD

9ABF

9AC2

9AC 4

9AC 6

9AC96

Set

29

85

AD

29

05

8D

60

03

4B

00

FC

4B

00

stepper control

1C

1C

AND

STA

LDA

AND

ORA

STA

RTS

#$03

$4B

$1COO

#$FC

$4B

$1COO

inward

Save value

Get control

and combine

value of

stepper bits

Return from

register

new

this subroutine

[9B6C]

9B89

9B8B

9B8D

9B901
9B93

9B94

9B96

9B98

9B9A

9B9C

9B9F

9BA11

9BA3

9BA5

9BA6

9BA8

9BAA

Format track

A5 3B

10 03

20 DC 9A

AD 2 6 06

18

A9 03

85 33

A9 00

85 32

8D 28 06

A0 00

A5 39

91 32

C8

A9 00

91 32

C8

LDA

BPL

JSR

LDA

CLC

LDA

STA

LDA

STA

STA

LDY

LDA

STA

INY

LDA

STA

INY

$3B Get command number and test flags

$9B90 Should track capacty be computed?

$9ADC YES-Determine track capacity

$0626 [Error — see 7.1.5]

[Unnecessary operation]

#$03 Set pointers $32/$33

$33 to beginning

#$00 of

$32 data buffer 0

$0628 Set first sector number (0)

#$00 Re-set buffer pointer

$39 Write sector header identifier

($32),Y in buffer

Set buffer pointer to next byte

#$00 Write empty byte for checksum

($32),Y in buffer

Set buffer pointer to next byte

ROM-80

Abacus Software 1571 Internals

9BAB

9BAE

9BB0

9BB1

9BB3

9BB5

9BB6

9BB8

9BBA

9BBB

9BBD

9BBF

9BC0

9BC2

9BC4

9BC5

9BC7

9BC8

9BC9

9BCA

9BCC

9BCE

9BD01

9BD1

9BD3

9BD5

9BD7

9BD8

9BDA

9BDC

9BDD

9BDE

9BE1

9BE4

9BE6

9BE8

9BEA

9BEC

9BEF

9BF11

9BF3

9BF5

9BF7

9BF9

9BFB

9BFD

AD

91

C8

A5

91

C8

A5

91

C8

A5

91

C8

A9

91

C8

91

C8

98

48

A2

A9

85

88

Bl

45

85

CA

DO

91

68

A8

EE

AD

C5

90

A9

85

20

AO

Bl

A2

86

91

A2

86

88

28

32

51

32

13

32

12

32

OF

32

32

07

00

3A

32

3A

3A

F6

32

28

28

43

B9

03

31

30

BA

32

45

32

32

00

32

06

06

06

FE

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STA

INY

TYA

PHA

LDX

LDA

STA

DEY

LDA

EOR

STA

DEX

BNE

STA

PLA

TAY

INC

LDA

CMP

BCC

LDA

STA

JSR

LDY

LDA

LDX

STX

STA

LDX

STX

DEY

$0628

($32),Y

$51

($32),Y

$13

($32),Y

$12

($32),Y

#$0F

($32),Y

($32),Y

#$07

#$00

$3A

($32),Y

$3A

$3A

$9BD0

($32),Y

$0628

$0628

$43

$9BA1

#$03

$31

$FE30

#$BA

($32),Y

#$45

$32

($32),Y

#$00

$32

Get sector number and

write in buffer

Set buffer pointer to next byte

Write current track number

in buffer

Set buffer pointer to next byte

Get second ID character and

write in buffer

Set buffer pointer to next byte

Get first ID character and

write in buffer

Set buffer pointer to next byte

Write empty byte value

in buffer

Set buffer pointer to next byte

Write to buffer

Set buffer pointer to next byte

Get buffer pointer

and recover it

Number of bytes to be included

Clear

checksum

Set buffer pointer to prev byte

Get byte from header buffer and

compute in checksum

Save value

One more byte

Entire header been included?

YES—write checksum in header

Reset current buffer

pointer

Go to next sector

Compare current sector number

with maximumr number

Is sector number allowed?

NO—Initialize buffer pointer for

buffer $0300

Convert block header to GCR-bytes

Turn buff pointer to status buff

Get byte from status buffer

Set pointer to second buffer

range

Write GCRbyte in higher buff.area

Re-set pointer to

beginning

Set buffer pointer to next byte

ROM-81

Abacus Software 1571 Internals

9BFE

9C00

9C02

9C041

9C07

9C09

9C0A

9C0C

9C0D

9C0F

9C11

9C13

9C15

9C161

9C18

9C19

9C1B

9C1E

9C20

9C23

9C25

9C27

9C2 9

9C2C1

9C2E2

9C31

9C33

9C35

9C38

9C3B

9C3C

9C3E

9C40

9C422

9C45

9C47

9C4 9

9C4C

9C4F

9C50

9C51

9C53

9C552

9C58

9C5A

9C5C

CO

DO

AO

B9

91

88

10

18

A9

69

85

A9

A8

91

C8

DO

20

85

20

A9

85

A2

20

AO

2C

30

A9

8D

2C

88

DO

A2

A4

2C

30

Bl

8D

2C

C8

CA

DO

AO

2C

30

A9

8D

FF

EF

44

BB

32

F8

03

02

31

00

30

FB

E9

3A

8F

00

IB

06

63

05

OF

FB

FF

01

00

FO

OA

IB

OF

FB

32

01

00

EF

09

OF

FB

55

01

01

F5

F7

9D

18

1C

1C

18

1C

1C

18

1C

CPY

BNE

LDY

LDA

STA

DEY

BPL

CLC

LDA

ADC

STA

LDA

TAY

STA

INY

BNE

JSR

STA

JSR

LDA

STA

LDX

JSR

LDY

BIT

BMI

LDA

STA

BIT

DEY

BNE

LDX

LDY

BIT

BMI

LDA

STA

BIT

INY

DEX

BNE

LDY

BIT

BMI

LDA

STA

#$FF

$9BF1

#$44

$01BB,Y

($32),Y

$9C04

#$03

#$02

$31

#$00

($30),Y

$9C16

$F5E9

$3A

$F78F

#$00

$1B

#$06

$9D63

#$05

$180F

$9C2E

#$FF

$1CO1

$1COO

$9C2E

#$0A

$1B

$180F

$9C42

($32)/

$1CO1

$1COO

$9C42

#$09

$180F

$9C55

#$55

$1CO1

Compare with end value

Copy $300-$344 into $345-$389?

Buffer pointer to status buffer

Get byte from status buffer and

write to data buffer

Set buffer pointer to next byte

Entire buffer been transferred?

YES—Set buffer pointer to

new buffer

for

data block contents

Fill byte value

Clear buffer pointer

Write empty byte in buffer

Set buffer pointer to next byte

Entire buffer cleared?

YES—Compute checksum and

save it

Convert buffer into GCR-bytes

Clear pointer to current position

in header buffer

1536 times $55 (%01010101)

to diskette

Number of Sync-bytes

Wait for fByte ready1

signal

Write byte for Sync-marking

to diskette

Re-set Sync flag

Next byte

Entire marking written?

YES-Number of header bytes

Get buffer pointer

Wait for 'Byte ready1

signal

Get byte from header buffer

and write to diskette

Re-set Sync flag

Set buffer pointer to next byte

Number of header bytes

Entire header written?

YES-Number of gap bytes

Wait for 'Byte ready1

signal

Write empty byte in gap between

header and data block

ROM-82

Abacus Software 1571 Internals

9C5F

9C62

9C63

9C65

9C67

9C692

9C6C

9C6E

9C71

9C74

9C75

9C77

9C7 92

9C7C

9C7E

9C81

9C84

9C87

9C88

9C8A2
9C8D

9C8F

9C91

9C94

9C97

9C98

9C9A

9C9C

9C9F2

9CA2

9CA4

9CA7

9CAA

9CAB

9CAD

9CAF

9CB0

9CB2

9CB4

9CB7

9CB9

9CBC2

9CBF

9CC1

9CC41
9CC7

2C

88

DO

A9

AO

2C

30

8D

2C

88

DO

AO

2C

30

B9

8D

2C

C8

DO

2C

30

Bl

8D

2C

C8

DO

A9

AC

2C

30

8D

2C

88

DO

A5

18

69

85

CE

FO

4C

2C

30

2C

2C

30

00

FO

FF

05

OF

FB

01

00

F2

BB

OF

FB

00

01

00

EF

OF

FB

30

01

00

FO

55

26

OF

FB

01

00

F2

IB

OA

IB

28

03

2C

OF

FB

00

OF

FB

1C

18

1C

1C

18

01

1C

1C

18

1C

1C

06

18

1C

1C

06-

9C

18

1C

18

BIT

DEY

BNE

LDA

LDY

BIT

BMI

STA

BIT

DEY

BNE

LDY

BIT

BMI

LDA

STA

BIT

INY

BNE

BIT

BMI

LDA

STA

BIT

INY

BNE

LDA

LDY

BIT

BMI

STA

BIT

DEY

BNE

LDA

CLC

ADC

STA

DEC

BEQ

JMP

BIT

BMI

BIT

BIT

BMI

$1COO

$9C55

#$FF

#$05

$180F

$9C69

$1CO1

$1COO

$9C69

#$BB

$180F

$9C79

$0100,Y

$1CO1

$1COO

$9C79

$180F

$9C8A

($30) ,Y

$1CO1

$1COO

$9C8A

#$55

$0626

$180F

$9C9F

$1CO1

$1COO

$9C9F

$1B

#$0A

$1B

$0628

$9CBC

$9C2C

$180F

$9CBC

$1COO

$180F

$9CC4

Control register reset

Number of gap bytes

Gap written?

write Sync-marking for

start of data block

Wait for 'Byte ready1

signal

Write Sync-byte to diskette

Initialize input for Sync signal

Next byte

Is Sync-marking written?

YES-Set buff pntr to status buffr

Wait for 'Byte ready1

signal

Get data byte and

write to diskette

Initialize Byte Ready input

Set buffer pointer to next byte

Entire status buffer written?

YES-Wait for 'Byte ready1

signal until last byte is written

Get byte from data buffer & write

to diskette

Initialize Sync signal input

Set buffer pointer to next byte

Data buffer written to diskette?

YES-Fillbyte f/gap betwen sectors

Number of bytes between sectors

Wait for 'Byte ready'

signal

Write byte to diskette

Initialize Byte Ready input

Next byte

Gap written?

YES-Get pointer in header buffer

and compute number of GCR-bytes

in header

Save new pointer

Decrement number of sectors

All sectors written?

NO—Write next sector

Wait for 'Byte ready1

Wait until last byte is written

Initialize Byte Ready input

Wait for 'Byte ready1

signal

ROM-83

Abacus Software 1571 Internals

9CC9 2C 00 1C BIT $1COO Initialize Byte Ready input

9CCC 20 00 FE JSR $FE00 Switch head for reading

9CCF A9 C8 LDA #$C8 Determine number of read attempts

9CD1 8D 23 06 STA $0623 (200)

9CD41 A9 00 LDA #$00 Clear buffer pointer to current

9CD6 85 IB STA $1B header

9CD8 A5 43 LDA $43 Get # of sectors per track and

9CDA 8D 28 06 STA $0628 set in counter

9CDD1 20 54 97 JSR $9754 Wait for next Sync-marker

9CE0 A2 0A LDX #$0A Number of header bytes

9CE2 A4 IB LDY $1B Get pointer to current header and

9CE41 Bl 32 LDA ($32),Y get first header byte

9CE61 2C OF 18 BIT $180F Wait for 'Byte ready1

9CE9 30 FB BMI $9CE6 signal

9CEB CD 01 1C CMP $1CO1 Compare byte from disk w/header

9CEE DO 0E BNE $9CFE Identical?

9CF0 C8 INY YES-Set pointer to next byte

9CF1 CA DEX Number of header bytes

9CF2 DO F0 BNE $9CE4 Entire header checked?

9CF4 18 CLC YES-Turn buffer pointer

9CF5 A5 IB LDA $1B to next

9CF7 69 0A ADC #$0A sector header

9CF9 85 IB STA $1B in buffer

9CFB 4C 08 9D JMP $9D08 Test data block

9CFE2 CE 23 06 DEC $0623 Decrement number of read attempts

9D01 DO Dl BNE $9CD4 Any tries left?

9D03 A9 06 LDA #$06 NO-Number for 'Format error1

9D05 4C 51 9D JMP $9D51 Give return message

9D081 20 54 97 JSR $9754 Wait for next Sync-marking

9D0B A0 BB LDY #$BB Turn buffer pntr to status buffer

9D0D1 B9 00 01 LDA $0100,Y get byte from buffer

9D101 2C OF 18 BIT $180F Wait for 'Byte ready1

9D13 30 FB BMI $9D10 signal

9D15 CD 01 1C CMP $1CO1 Compare buffer with diskette

9D18 DO E4 BNE $9CFE Identical?

9D1A C8 INY YES-Set buffer pnter to next byte

9D1B DO F0 BNE $9D0D Entire buffer examined?

9D1D1 Bl 30 LDA ($30),Y YES-Get byte from data buffer

9D1F1 2C OF 18 BIT $180F Wait for 'Byte ready1

9D22 30 FB BMI $9D1F signal

9D24 CD 01 1C CMP $1CO1 and compare byte with diskette

9D27 DO D5 BNE $9CFE Identical?

9D2 9 C8 INY YES-Set buffer pntr to next byte

9D2A DO Fl BNE $9D1D Entire buffer examined?

9D2C CE 28 06 DEC $0628 YES-Next sector

9D2F DO AC BNE $9CDD All sectors read?

ROM-84

Abacus Software 1571 Internals

9D31

9D33

9D35

9D38

9D3A

9D3C

9D3D1
9D3F

9D41

9D441

9D4 6

9D48

9D4A

9D4C

9D4E

E6 51

A5 51

2C Bl

30 03

C9 24

2C

C9 47

BO 03

4C CA

A9 FF

85 51

A9 00

85 50

A9 01

4C B5

[9B70/9D05]

9D51

9D54

9D56

9D592
9D5B

9D5D

9D5E

9D60

CE 20

FO 03

4C CA

AO FF

84 51

C8

84 50

4C B5

01

99

99

end

06

99

99

[8D56/9AE0/9C29]

write

9D63

9D66

9D68

9D6A

9D6D

9D6F

9D72

9D74

9D763

9D7 9

9D7B

9D7E

9D81

9D82

9D84

9D85

9D87

INC $51

LDA $51

BIT $O1B1

BMI $9D3D

CMP #$24

.byte $2C

CMP #$47

BCS $9D44

JMP $99CA

LDA #$FF

STA $51

LDA #$00

STA $50

LDA #$01

JMP $99B5

format

DEC $0620

BEQ $9D59

JMP $99CA

LDY #$FF

STY $51

INY

STY $50

JMP $99B5

X times 256 bytes $55

AD OC

29 IF

09 CO

8D OC

A9 FF

8D 03

A9 55

AO 00

2C OF

30 FB

2C 00

8D 01

88

DO F2

CA

DO EF

60

1C

1C

1C

18

1C

1C

LDA $1COC

AND #$1F

ORA #$C0

STA $1COC

LDA #$FF

STA $1CO3

LDA #$55

LDY #$00

BIT $180F

BMI $9D76

BIT $1COO

STA $1CO1

DEY

BNE $9D76

DEX

BNE $9D76

RTS

YES—Set pointer to next track

Get current format track

Test flag for diskette side

Is 2nd side set?

NO—Test track for maximum track

Jump next 2 bytes (bit command)

Compare track with max. track(71)

Is current track smaller?

YES—Move stepper to next track

Clear flag for current

format track

Clear flag: 'buffer data in GCR1

GCR1

Number for 'Ok1

Give return message

Job loop calls still to be called

Call stepper loop again?

YES—Execute stepper commands

Clear 'Formatting in process'

flag

Clear 'Buffer data in GCR-Code'

flag

Give return message

(%01010101) to diskette

Get control register

and set head

circuitry to

write mode

Set head register

to output

Empty byte $55

Initialize counter

Wait for 'Byte ready*

signal

Initialize input for 'Byte ready'

Write byte to diskette

Decrement counter

256 bytes already written

Decrement block counter

Write another 256 bytes?

NO—Return from this subroutine

ROM-85

Abacus Software 1571 Internals

[thru vector. 02A9 from FE67/BF00]

1541 interrupt routine for bus- and disk controller

9D88

9D89

9D8A

9D8B

9D8C

9D8D

9D90

9D92

9D94

9D97

9D99

9D9C

9D9E

9DA1

9DA3

9DA6

9DA8

9DAB

9DAD

9DB0

9DB3

9DB5

9DB7

9DBA2

9DBD

9DBF

9DC1

9DC41

9DC7

9DC8

9DCA

9DCD1

9DCE

9DD1

9DD3

9DD5

9DD81

9DD9

9DDA

9DDB

9DDC

9DDD

48

8A

48

98

48

AD

29

FO

2C

30

AD

09

8D

A9

8D

A9

8D

A9

8D

8D

A9

85

4C

AD

29

FO

20

AD

0A

10

20

BA

BD

29

F0

20

68

A8

68

AA

68

40

0D

08

26

AF

21

OF

20

OF

DE

A9

9D

AA

40

07

05

00

62

EA

0D

02

03

53

OD

03

BO

04

10

03

BO

40

02

18

18

02

02

1C

1C

9D

18

E8

1C

F2

01

F2

PHA

TXA

PHA

TYA

PHA

LDA

AND

BEQ

'BIT

BMI

LDA

ORA

STA

LDA

STA

LDA

STA

LDA

STA

STA

LDA

STA

JMP

LDA

AND

BEQ

JSR

LDA

ASL

BPL

JSR

TSX

LDA

AND

BEQ

JSR

PLA

TAY

PLA

TAX

PLA

RTI

$400D

#$08

$9DBA

$02AF

$9DBA

$180F

#$20

$180F

#$DE

$02A9

#$9D

$02AA

#$40

$1CO7

$1CO5

#$00

$62

$9DEA

$180D

#$02

$9DC4

$E853

$1COD

A

$9DCD

$F2B0

$0104,X

#$10

$9DD8

$F2B0

Retain accumulator

Recover

X-register

Recover

Y-register

Get flag for interrupt through

serial input/output registers

Is flag set?

YES-IRQ mode flag set

1571 IRQ routine switched in?

YES—Switch electronics

to 1571 mode

(2 mHz)

Turn interrupt vector

in $02A9/$02AA

to routine

$99DE

Timer 1 (high-byte)

set for about 8 ms

(2 mHz)

Set flag for

stepper phase

1571 job loop

Test interrupt flag

and isolate CA1 input

Run into ATN?

YES-Flags:intrrupt frm serial bus

Get interrupt flag register and

test flag for Timer 1

Timer run?

YES-Go to 1541 controller routine

Get stack pointer and

get status from stack

Check flag for jump through 'BRK1

Interrupt to be called by 'BRK1?

YES—execute 1541controler routine

Re-set Y-register for

output value

Re-set X-register for

output value

Get accumulator again

Return to break status

ROM-86

Abacus Software 1571 Internals

[Over vector 02A9 from FE67/BF03]

1541 interrupt routine for bus- and disk controller

9DDE

9DDF

9DE0

9DE1

9DE2

9DE3

9DE6

9DE8

9DEA1

9DEC

9DEE

9DF0

9DF21
9DF5

9DF7

9DF9

9DFC

9DFE

9E001
9E01

9E04

9E06

9E08

9E0B1
9E0E

9E0F

9E11

9E142

9E15

9E16

9E17

9E18

9E19

9E1A

9F0C

48

8A

48

98

48

AD

29

FO

A5

09

85

DO

AD

29

FO

2C

A9

85

BA

BD

29

FO

20

AD

0A

10

20

68

A8

68

AA

68

40

FF

••

0D

08

08

37

40

37

22

0D

02

07

01

01

7C

04

10

03

BA

OD

03

BA

...

40

18

18

01

92

1C

92

»

. FF

PHA

TXA

PHA

TYA

PHA

LDA

AND

BEQ

LDA

ORA

STA

BNE

LDA

AND

BEQ

BIT

LDA

STA

TSX

LDA

AND

BEQ

JSR

LDA

ASL

BPL

JSR

PLA

TAY

PLA

TAX

PLA

RTI

$400D

#$08

$9DF2

$37

#$40

$37

$9E14

$180D

#$02

$9E00

$1801

#$01

$7C

$0104,X

#$10

$9E0B

$92BA

$1COD

A

$9E14

$92BA

Save accumulator

Retain

X-register

Retain

Y-register

Get flag for interrupt through

serial i/o registers

Is flag set?

Get bus status byte and

set '1571 bus mode1

flag

Jump to $9E14

test interrupt flags and

isolate CA1 input

Is ATN found?

YES-Set flag back

Set 'ATN encountered1

flag

Get stack pointer and get

status from stack

Test 'Jump to BRK' flag

Will a 'BRK' interrupt be called?

YES-Execute 1571 jobloop

Get interrupt flag register and

test Timer 1 flag

Timer running?

YES-Execute 1571 jobloop

Re-set Y-register for

output value

Re-set Y-register for

output value

Get accumulator again

Return to break status

unused

ROM area

ROM-87

Abacus Software 1571 Internals

Tables for converting 5 GCR-bytes into 4 binary bytes

($FF means that this GCR value is non-existent)

[9632/9650/993B/9F0F:9683,96F1,9947/9F1D:96A0,994E/9F2A:96C4,995A]

Table for GCR values 2, 4, 5 and 7

9F0D OC 04 05 FF FF 02 03 FF OF 06 07 FF 09 0A 0B FF

9F1D 0D 0E 80 FF 00 00 10 40 FF 20 CO 60 40 A0 50 EO

9F2D FF FF FF 02 20 08 30 FF FF 00 FO FF 60 01 70 FF

9F3D FF FF 90 03 AO OC BO FF FF 04 DO FF EO 05 80 FF

9F4D 90 FF 08 OC FF OF 09 OD 80 02 FF FF FF 03 FF FF

9F5D 00 FF FF OF FF OF FF FF 10 06 FF FF FF 07 00 20

9F6D AO FF FF 06 FF 09 FF FF CO OA FF FF FF OB FF FF

9F7D 40 FF FF 07 FF OD FF FF 50 OE FF FF FF FF 10 30

9F8D BO FF 00 04 02 06 OA OE 80 FF FF FF FF FF FF FF

9F9D 20 FF 08 09 80 10 CO 50 30 30 FO 70 90 BO DO FF

9FAD FF FF 00 OA FF FF FF FF FO

[864F/866B/8697/A424/A439/A450/D651/D6D9]

Call job loop and execute job

Call job loop

Match jump address

Get job register

Is job executing?

YES—Return from this subroutine

Table for GCR values 2, 4, 5 and 7 (2nd part)

9FBD 60 FF 01 OB FF FF FF FF 70 FF FF FF FF FF CO FO

9FCD DO FF 01 05 03 07 OB FF 90 FF FF FF FF FF FF FF

9FDD AO FF OC OD FF FF FF FF BO FF FF FF FF FF 40 60

9FED EO FF 04 OE FF FF FF FF DO FF FF FF FF FF FF FF

9FFD EO FF 05 FF FF FF FF FF FF FF FF FF FF FF 50 70

[9619/9644/9936] Table for GCR value 1

A00D OC 04 05 FF FF 02 03 FF OF 06 07 FF 09 OA OB FF

A01D OD OE 80 FF 00 00 10 40 FF 20 CO 60 40 AO 50 EO

A02D FF FF FF 02 20 08 30 30 30 00 FO FF 60 01 70 FF

A03D FF FF 90 03 AO OC BO FF FF 04 DO FF EO 05 80 FF

A04D 90 FF 08 OC FF OF 09 OD 80 80 80 80 80 80 80 80

A05D 00 00 00 00 00 00 00 00 10 10 10 10 10 10 10 10

A06D AO FF FF 06 FF 09 FF FF CO CO CO CO CO CO CO CO

A07D 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50

A08D BO FF 00 04 02 06 OA OE 80 80 80 80 80 80 80 80

A09D 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30

A0AD FF FF 00 OA OA OA OA OA FO FO FO FO FO FO FO FO

AOBD 60 60 60 60 60 60 60 60 70 70 70 70 70 70 70 70

AOCD DO FF 01 05 03 07 OB FF 90 90 90 90 90 90 90 90

ROM-88

9FB6

9FB7

9FB8

9FBA

9FBC

00

EA

B5

30

60

00

FC

BRK

NOP

LDA

BMI

RTS

$00fX

$9FB8

Abacus Software 1571 Internals

AODD AO AO AO AO AO AO AO AO BO BO BO BO BO BO BO BO

AOED EO FF 04 OE FF FF FF FF DO DO DO DO DO DO DO DO

AOFD EO EO EO EO EO EO EO EO 05 05 05 05 05 05 50 70

[966A/96DA/9942] Table for GCR-value 3

A10D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A11D FF FF 80 80 00 00 10 10 FF FF CO CO 40 40 50 50

A12D FF FF FF FF 20 20 30 30 FF FF FO FO 60 60 70 70

A13D FF FF 90 90 AO AO BO BO FF FF DO DO EO EO FF FF

A14D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A15D FF FF 80 80 00 00 10 10 FF FF CO CO 40 40 50 50

A16D FF FF FF FF 20 20 30 30 FF FF FO FO 60 60 70 70

A17D FF FF 90 90 AO AO BO BO FF FF DO DO EO EO FF FF

A18D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A19D FF FF 80 80 00 00 10 10 FF FF CO CO 40 40 50 50

A1AD FF FF FF FF 20 20 30 30 FF FF FO FO 60 60 70 70

A1BD FF FF 90 90 AO AO BO BO FF FF DO DO EO EO FF FF

A1CD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A1DD FF FF 80 80 00 00 10 10 FF FF CO CO 40 40 50 50

A1ED FF FF FF FF 20 20 30 30 FF FF FO FO 60 60 70 70

A1FD FF FF 90 90 AO AO BO BO FF FF DO DO EO EO FF FF

[96A8/9953] Table for GCR value 6

A20D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A21D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A22D FF FF FF FF 08 08 08 08 00 00 00 00 01 01 01 01

A23D FF FF FF FF OC OC OC OC 04 04 04 04 05 05 05 05

A24D FF FF FF FF FF FF FF FF 02 02 02 02 03 03 03 03

A25D FF FF FF FF OF OF OF OF 06 06 06 06 07 07 07 07

A26D FF FF FF FF 09 09 09 09 OA OA OA OA OB OB OB OB

A27D FF FF FF FF OD OD OD OD OE OE OE OE FF FF FF FF

A28D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A2 9D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A2AD FF FF FF FF 08 08 08 08 00 00 00 00 01 01 01 01

A2BD FF FF FF FF OC OC OC OC 04 04 04 04 05 05 05 05

A2CD FF FF FF FF FF FF FF FF 02 02 02 02 03 03 03 03

A2DD FF FF FF FF OF OF OF OF 06 06 06 06 07 07 07 07

A2ED FF FF FF FF 09 09 09 09 OA OA OA OA OB OB OB OB

A2FD FF FF FF FF OD OD OD OD OE OE OE OE FF FF FF FF

[96CC/995F] Table for GCR value 8

A30D FF FF FF FF FF FF FF FF FF 08 00 01 FF OC 04 05

A31D FF FF 02 03 FF OF 06 07 FF 09 OA OB FF OD OE FF

A32D FF FF FF FF FF FF FF FF FF 08 00 01 FF OC 04 05

A33D FF FF 02 03 FF OF 06 07 FF 09 OA OB FF OD OE FF

A34D FF FF FF FF FF FF FF FF FF 08 00 01 FF OC 04 05

ROM-89

Abacus Software 1571 Internals

A35D

A36D

A37D

A38D

A39D

A3AD

A3BD

A3CD

A3DD

A3ED

A3FD

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

02

FF

02

FF

02

FF

02

FF

02

FF

02

03

FF

03

FF

03

FF

03

FF

03

FF

03

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

OF

FF

OF

FF

OF

FF

OF

FF

OF

FF

OF

06

FF

06

FF

06

FF

06

FF

06

FF

06

07

FF

07

FF

07

FF

07

FF

07

FF

07

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

09

08

09

08

09

08

09

08

09

08

09

OA

00

OA

00

OA

00

OA

00

OA

00

OA

OB

01

OB

01

OB

01

OB

01

OB

01

OB

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

OD

OC

OD

OC

OD

OC

OD

OC

OD

OC

OD

OE

04

OE

04

OE

04

OE

04

OE

04

OE

FF

05

FF

05

FF

05

FF

05

FF

05

FF

[A783/A989]

Format diskette

A40D A9 47

A40F 8D AC 02

A412 A9 03

A414 20 D3 D6

A417 A2 03

A419 A9 00

A41B 8D B2 01

A41E A9 FO

A420 85 3B

A422 95 00

A424 20 B6 9F

A427 C9 02

A429 BO 45

A42B AO 03

A42D1 A9 01

A42F 85 OC

A431 A9 00

A433 85 OD

A435 A9 80

A437 95 00

A439 20 B6 9F

A43C C9 02

A43E 90 05

A440 88

A441 10 EA

A443 BO 2B

A4451 A9 01

A447 8D B2 01

A44A A9 FO

A44C 85 3B

A44E 95 00

A450 20 B6 9F

in Commodore 1571

LDA #$47

STA $02AC

LDA #$03

JSR $D6D3

LDX #$03

LDA #$00

STA $01B2

LDA #$F0

STA $3B

STA $00,X

JSR $9FB6

CMP #$02

BCS $A470

LDY #$03

LDA #$01

STA $0C

LDA #$00

STA $0D

LDA #$80

STA $00,X

JSR $9FB6

CMP #$02

BCC $A445

DEY

BPL $A42D

BCS $A470

LDA #$01

STA $01B2

LDA #$F0

STA $3B

STA $OOrX

JSR $9FB6

format

Number of greatest

track to be formatted

Number of current buffer

Track/sector to job loop

Go to buffer 3

Set diskette side flag to

side 1

Save ■Format'

jobcode

Send to job loop

Execute job (Format)

Test for 'Ok1 message

Jobe run error-free?

Number of read attempts (4)

YES-Send track number (1)

to job loop

Set sector number (0) for

job loop

Jobcode for 'Read sector'

to job loop

Test-read sector 1,0

Check for 'OK' message

Job run without problems?

Next read attempt

Have 4 attempts been made?

YES-Jump to $A470

Set diskette side flag

to side 2

Set 'Format'

jobcode

Give to job loop

Execute job

ROM-90

Abacus Software 1571 Internals

A453

A455

A457

A4591

A45B

A45D

A45F

A4 61

A4 63

A4 65

A4 68

A4 6A

A4 6C

A4 6D1

A4 6E

A4703

A472

A475

A478

A47A

A47B1

C9

BO

AO

A9

85

A9

85

A9

95

20

C9

BO

60

88

10

A2

2C

8E

10

60

4C

02

19

03

24

OC

00

OD

80

00

B6

02

01

E9

00

98

98

01

OA

9F

02

02

E6

CMP

BCS

LDY

LDA

STA

LDA

STA

LDA

STA

JSR

CMP

BCS

RTS

DEY

BPL

LDX

BIT

STX

BPL

RTS

JMP

#$02

$A470

#$03

#$24

$0C

#$00

$0D

#$80

$00,X

$9FB6

#$02

$A4 6D

$A459

#$00

$0298

$0298

$A47B

$E60A

Compare with 'Ok1 message

Job run error-free?

YES—Set number of read attempts

Track number (36)

to job loop

Sector number (0)

to job loop

Set jobcode for 'Read

sectorf

test-read sector 36,0

Check for 'OK1

Is there an error?

NO—Return from this subroutine

Next try

Three attempts been made?

YES—Set flag value:'Error noted1

in error status flag;

set new value

Should error be acknowledged?

NO—Return from this subroutine

Output error message

[82 94/82A1/885E/BF39]

45-cycle delay

A47E 8A TXA

A47F A2 05 LDX #$05

A481 DO 03 BNE $A486

Recover X-register

Set delay value

Jump to $A486

[8181/8187/8298/82A8/8F0A/8F51/903A/9056/A78E/BF33]

80-cycle delay

Recover X-register

Set delay value

Decrement counter

End of delay?

YES-Re-establish X-register

Return from this subroutine

A483

A484

A4861
A487

A489

A48A

8A

A2

CA

DO

AA

60

0D

FD

TXA

LDX

DEX

BNE

TAX

RTS

#$0D

$A486

[A4C2/A508/A51E/A54F/A5A7/A678/A962]

Recover BAM buffer pointer

A48B A5 6D LDA $6D

A48D 8D AD 02 STA $02AD

A4 90 A5 6E LDA $6E

A4 92 8D AE 02 STA $02AE

A4 95 60 RTS

Get low-byte and

temporarily store

Get high-byte holen and

temporarily store

Return from this subroutine

ROM-91

Abacus Software 1571 Internals

[A4D1/A51B/A531/A58A/A5C2/A6C7/A6E2/A97B]

Re-establish BAM buffer pointer

A4 96

A4 99

A4 9B

A4 9E

A4A0

AD

85

AD

85

60

AD

6D

AE

6E

02

02

LDA

STA

LDA

STA

RTS

$02AD

$6D

$02AE

$6E

Get lo-byte from temp, storage &

re-set

Get hi-byte from temp, storage &

re-set

Return from this subroutine

[A851/A887/A8BC/A8F5/A918/A931]

Set pointer to BAM-pattern of sector (for side 2)

Number of current drive (0)

Get drive status

Is drive ready?

NO-Give

•74 drive not ready1 error messge

Determine channel number of BAM

Read BAM from diskette

Test 'legal/illegal BAM1 flag

Is BAM on disk legal?

YES-Set 'Write BAM1

flag

Jump to $A4C2

Write BAM to diskette

Recover BAM buffer pointer

Set new buffer pointer

Get number of current track

and compute track

from side 1,

then get correct # of free blocks

in track from buffer

Save value

Re-establish old buffer pointer

Repeat number of blocks

Return from this subroutine

A4A1

A4A3

A4A6

A4A8

A4AA

A4AD1

A4B0

A4B3

A4B6

A4B8

A4BA

A4BD

A4BF1

A4C21

A4C5

A4C8

A4CA

A4CB

A4CD

A4CE

A4D0

A4D1

A4D4

A4D5

A6

BD

F0

A9

20

20

20

AD

F0

09

8D

DO

20

20

20

A5

38

E9

A8

Bl

48

20

68

60

7F

FF

05

74

48

19

DF

F9

07

80

F9

03

8D

8B

34

80

24

6D

96

00

E6

Fl

F0

02

02

A5

A4

A5

A4

LDX

LDA

BEQ

LDA

JSR

JSR

JSR

LDA

BEQ

ORA

STA

BNE

JSR

JSR

JSR

LDA

SEC

SBC

TAY

LDA

PHA

JSR

PLA

RTS

$7F

$00FF,X

$A4AD

#$74

$E648

$F119

$F0DF

$02F9

$A4BF

#$80

$02F9

$A4C2

$A58D

$A48B

$A534

$80

#$24

<$6D),Y

$A4 96

A4D6 FF ...

A4E6 ... FF

unused

ROM area

ROM-92

Abacus Software 1571 Internals

[A854/A88A/A8CF]

Get BAM bit of a

A4E7 A5 80

A4E9 38

A4EA E9 24

A4EC A8

A4ED A5 81

A4EF 4A

A4F0 4A

A4F1 4A

A4F2 18

A4F3 79 DB A5

A4F6 A8

A4F7 A5 81

A4F9 29 07

A4FB AA

A4FC B9 4 6 01

A4FF 3D E9 EF

A502 08

A503 B9 46 01

A506 28

A507 60

sector (for side

LDA $80

SEC

SBC #$24

TAY

LDA $81

LSR A

LSR A

LSR A

CLC

ADC $A5DB,Y

TAY

LDA $81

AND #$07

TAX

LDA $0146,Y

AND $EFE9,X

PHP

LDA $0146,Y

PLP

RTS

2)

Number of desired track

Compute physical track

number and

save it

Get # of desired sector & divide

by 8 (8 bits per byte)

and choose corresponding byte of

three BAM-bytes

to position in BAM-pattern

Add track position and save

as pointer to BAM-pattern

Get number of desired sector and

state position of BAM-bits in

byte-pattern

Get byte-pattern from BAM-buffer

and isolate sector bit

Save value

Get entire byte-pattern again and

get previous value from it

Return from this subroutine

[A862]

Increment number

A508 20 8B A4

A50B 20 34 A5

A50E A5 80

A510 38

A511 E9 24

A513 A8

A514 18

A515 Bl 6D

A517 69 01

A519 91 6D

A51B 4C 96 A4

of blocks to a track in BAM

JSR $A48B Recover current BAM-pointer

JSR $A534 Set pointer to BAM-pattern

LDA $80 Get number of desired track and

SEC calculate physical track

SBC #$24 number (side-1 value) and

TAY save it;

CLC then

LDA ($6D),Y et byte for number of blocks per

ADC #$01 track and increment

STA ($6D),Y by one

JMP $A4 96 Repeat current BAM-pointer

[A898]

Decrement number of free blocks to a track in BAM

A51E 20 8B A4 JSR $A48B Recover current BAM-pointer

BAMpointer to track's Bytepattern

Get number of track desired and

compute physical track number

(Side-1 value) and

save it

Decrement number of

A521

A524

A52 6

A527

A52 9

A52A

20

A5

38

E9

A8

38

34 A5

80

24

JSR

LDA

SEC

SBC

TAY

SEC

$A534

$80

#$24

ROM-93

Abacus Software 1571 Internals

A52B Bl 6D

A52D E9 01

A52F 91 6D

A531 4C 96 A4

LDA <$6D),Y

SBC #$01

STA ($6D),Y

JMP $A496

free track blocks

in appropriate BAM

byte

Re-set old BAM-pointer

[A4C5/A50B/A521/A552/A965]

Set buffer pointer for 2nd buffer

A534

A536

A538

A53A

A53B

A53E

A540

A542

A544

A2 0D

B5 A7

29 OF

AA

BD E0 FE

85 6E

A9 DD

85 6D

60

LDX #$0D

LDA $A7,X

AND #$0F

TAX

LDA $FEE0,X

STA $6E

LDA #$DD

STA $6D

RTS

from internal channel 6

Channel number for 2nd buffer (6)

Get and save pre-arranged

buffer

number

Get hi-byte of buffer address and

take up in buffer pointer

Set low-byte for

BAM-pointer

Return from this subroutine

[A8BF/A94E]

Verify number of

A545 A5 6F

A547 48

A548 A5 80

A54A 38

A54B E9 24

A54D A8

A54E 48

A54F 20 8B A4

A552 20 34 A5

A555 Bl 6D

A557 48

A558 A9 00

A55A 85 6F

A55C A9 01

A55E 85 6E

A560 B9 DB A5

A563 18

A564 69 46

A566 85 6D

A568 A0 02

A56A1 A2 07

A56C1

A56E

A571

A573

A5751
A57 6

Bl 6D

3D E9 EF

F0 02

E6 6F

CA

10 F4

blocks free (side 2 BAM)

LDA $6F Recover temporary

PHA storage

LDA $80 Get current track number (side 2)

SEC and calculate

SBC #$24 physical number

TAY Save

PHA track number

JSR $A48B Recover current BAM-pointer

JSR $A534 Set pointer to BAM-pattern

LDA ($6D),Y Get / save given number of

PHA blocks free

LDA #$00 Clear temporary storage area for

STA $6F number of blocks free

LDA #$01 Set pointer to buffer for

STA $6E back-side

LDA $A5DB,Y Get pos. of BAM-pattern in buffer

CLC and calculate in buffer area

ADC #$46 $0146-$01BB

STA $6D Set BAM-pointer

LDY #$02 Number of BAM-pattern-bytes -1

LDX #$07 Number of bits per byte -1

LDA ($6D),Y Get bit-pattern of sectorlayout

AND $EFE9,X and isolate one bit of sector

BEQ $A575 Is sector free?

INC $6F YES-Increment # of blocks free

DEX Test next bit

BPL $A56C Entire byte viewed?

ROM-94

Abacus Software
1571 Internals

A578

A57 9

A57B

A57C

A57E

A580

A582

A5851

A586

A587

A588

A58A

88

10

68

C5

F0

A9

20

68

A8

68

85

4C

EF

6F

05

71

45 E6

6F

96 A4

DEY

BPL

PLA

CMP

BEQ

LDA

JSR

PLA

TAY

PLA

STA

JMP

$A56A

$6F

$A585

#$71

$E645

$6F

$A4 96

Include next BAM-byte of track

All blocks of track checked?

YES-Get # of BAM blocks given and

compare with new number

Block layout correct?

NO-Display

'71 Dir Error1 message

Repeat number track

being worked on

Re-establish

temporary storage

Re-establish BAM-pointer

[A4BF/EF37/F001/F09C]

Write 1571/1541 BAM to diskette

A58D

A590

A592

A5941
A5971

A59A

A59C

A59E

A5A0

A5A3

A5A4

A5A7

A5AA

A5AD

A5B0

A5B2

A5B3

A5B4

A5B6

A5B8

A5BA1

A5BD

A5BF

A5C0

A5C2

A5C5

A5C8

A5CA

A5CB

A5CC

A5CF

AD

29

DO

4C

AD

C9

90

A6

BD

48

20

20

20

20

A5

0A

AA

A9

95

A0

B9

91

88

10

20

20

A5

0A

AA

AD

95

OF

20

03

8A

AC

25

F6

F9

5B

8A

8B

3A

08

F9

35

06

68

46

6D

F8

96

8A

F9

85

06

18

D5

02

02

D5

A4

EF

F0

01

A4

D5

FE

LDA

AND

BNE

JMP

LDA

CMP

BCC

LDX

LDA

PHA

JSR

JSR

JSR

JSR

LDA

ASL

TAX

LDA

STA

LDY

LDA

STA

DEY

BPL

JSR

JSR

LDA

ASL

TAX

LDA

STA

$180F

#$20

$A597

$D58A

$02AC

#$25

$A594

$F9

$025B,X

$D58A

$A48B

$EF3A

$F008

$F9

A

#$35

$06,X

#$68

$0146,Y

<$6D),Y

$A5BA

$A4 96

$D58A

$F9

A

$FE85

$06fX

Get control register and

get operating mode flag

Is drive in 1541 mode?

YES-Write buffer to disk (1541)

Get highest track # from diskette

and compare with 35

Diskette two-sided?

YES-Get number of current buffer

Determine and recover

appropriate jobcode

Write sector to diskette

Recover current BAM-pointer

Read BAM into buffer

Clear buffer for BAM

Get number of current buffer and

double it (pointers use

2-byte table)

Give track 18, side 2(track 53)

to job loop

Buffer pointer to end of 1571 BAM

Get byte from BAM-buffer & write

in current data buffer

Turn pointer to next byte

Entire buffer copied?

YES—re-establish BAM-pointer

Write sector to diskette

Get number of current buffer and

double it (2-byte values for

pointer table)

Give # of directory track(side 1)

to job loop

ROM-95

Abacus Software 1571 Internals

A5D1 20 86 D5 JSR $D586

A5D4 68

A5D5 A6 F9

A5D7 9D 5B 02

A5DA 60

LDX $F9

STA $025B,X

RTS

Read sector from diskette

Repeat jobcode

Number of current buffer

Write jobcode again in table

Return from this subroutine

used in : A4F3/A560]

Position of BAM-pattern of track in BAM-buffer

A5DB 00 03 06 09 0C OF 12 15 18 IB IE 21 24 27 2A 2D

A5EB 30 33 36 39 3C 3F 42 45 48 4B 4E 51 54 57 5A 5D

A5FB 60 63 66

[E7A3]

Routine for

A5FE AD OF

29 20

F0 OF

A0 00

A2 00

A9 01

8D 7A

20 12

4C A8

A9 8D

20 68

4C A8

A601

A603

A605

A607

A609

A60B

A60E

A611

A614*

A616

A619

&-command

18 LDA $180F

AND #$20

BEQ $A614

LDY #$00

LDX #$00

LDA #$01

02 STA $027A

C3 JSR $C312

E7 JMP $E7A8

LDA #$8D

C2 JSR $C268

E7 JMP $E7A8

Get control register and

test operating mode

Is drive in 1571 mode?

YES-[Error — see 7.1.5]

[unnecessary initialization]

Turn pointer to beginning of

input buffer

Get drive number

Return to 1541 &-routine

Look for endsignal(Shift<Return>)

in command string

Return to 1541 ^-routine

[EBFC]

Execute command from

A61C

A61F

A622

A624

A626

A628

20 46 Cl

20 B2 81

A5 37

29 7F

85 37

4C FF EB

JSR

JSR

LDA

AND

STA

JMP

computer

$C146

$81B2

$37

#$7F

$37

$EBFF

Execute command string

Switch 1571 bus to input

Get bus status byte and clear

•1571 mode1

flag

Return to waitloop

[F997]

Initialize 'motor out1 counter

A62B A9 FF LDA #$FF

A62D

A62F

A631

A633

85

A9

85

60

48

06

35

STA

LDA

STA

RTS

$48

#$06

$35

Set counter for the motor

runtime

Number of stepper routine calls

yet to be done

Return from this subroutine

ROM-96

Abacus Software
1571 Internals

[F9AB]

Motor

A634

A636

A639

A63B

A63D1
A63F

A642

A645

A647

A649

A64B1

A64E

A650

A652

A654

A6574

on

DO

AD

DO

FO

A9

8D

20

A9

85

DO

CE

DO

A5

DO

20

4C

—

07

AB

10

1A

FF

AB

64

01

1C

OC

AB

07

20

03

70

Bl

wait

02

02

87

02

87

F9

until turn

BNE

LDA

BNE

BEQ

LDA

STA

JSR

LDA

STA

BNE

DEC

BNE

LDA

BNE

JSR

JMP

$A63D

$02AB

$A64B

$A657

#$FF

$02AB

$8764

#$01

$1C

$A657

$02AB

$A657

$20

$A657

$8770

$F9B1

numbers

Has 'Write Protect1 been changed?

Get high-speed phase counter

Is motor on turn number?

YES-Jump to $A657

Set runtime

counter

Motor on

Set 'Diskette initializing1

flag

Jump to $A657

Decrement number of Wait-IRQs

Is motor on turn number?

YES-Get drive status

Motor been on?

NO-Motor on

Return to head control routine

[FF15]

Initialize I/O registers

A65A

A65C

A65F

A661

A664

A9 02

8D 00 18

A9 20

8D 01 18

4C 18 FF

LDA #$02

STA $1800

LDA #$20

STA $1801

JMP $FF18

Set Data output

to high

Switch to 157lmode,turn bus:input

and head to side 1

Return to Reset routine

[D05D/F107]

Read 1571/1541

A667 AD OF 18

A66A 29 20

A66C DO 03

A66E1 4C 86 D5

A6711 AD AC 02

A674 C9 25

A676 90 F6

A678 20 8B A4

A67B A9 00

A67D 85 6D

A67F A6 F9

A681 BD E0 FE

A684 85 6E

A686 A9 FF

A688 8D 98 02

BAM from diskette

LDA $180F

AND #$20

BNE $A671

JMP $D586

LDA $02AC

CMP #$25

BCC $A66E

JSR $A48B

LDA #$00

STA $6D

LDX $F9

LDA $FEE0,X

STA $6E

LDA #$FF

STA $02 98

Get control register and test

operating mode

Is drive in 1541 mode?

YES-Read sector

Get highest track number and

compare with 35

2 sides used?

YES—recover current BAM-pointer

Turn BAM-pointer to

start-of-buffer

Get buffer number and

get hi-byte of buffer address;

set in buffer pointer

Set 'Error from job execution

not noticed1

ROM-97

Abacus Software
1571 Internals

A68B

A68D

A68E

A68F

A691

A693

A696

A698

A699

A69B

A69D

A6A0

A6A2

A6A41

A6A6

A6A9

A6AA

A6AC1

A6AE

A6B1

A6B3

A6B4

A6B5

A6B8

A6BA

A6BD

A6BF

A6C1

A6C2

A6C4

A6C7

A6CA

A6CB

A6CE

A6D11

A6D3

A6D5

A6D8

A6DA

A6DC

A6DD1

A6DF

A6E2

A5

OA

AA

A9

95

20

C9

6A

29

49

8D

10

AO

Bl

99

88

10

A9

8D

A5

OA

AA

AD

95

20

C9

90

AA

A9

8D

20

8A

20

4C

AO

Bl

2D

30

A9

2C

A9

8D

4C

F9

35

06

86

02

80

80

AF

OA

68

6D

46

F8

FF

98

F9

85

06

86

02

10

24

AC

96

OA

44

03

6D

AF

03

24

47

AC

96

D5

01

01

02

FE

D5

02

A4

E6

D6

01

02

A4

LDA

ASL

TAX

LDA

STA

JSR

CMP

ROR

AND

EOR

STA

BPL

LDY

LDA

STA

DEY

BPL

LDA

STA

LDA

ASL

TAX

LDA

STA

JSR

CMP

BCC

TAX

LDA

STA

JSR

TXA

JSR

JMP

LDY

LDA

AND

BMI

LDA

$F9

A

#$35

$06,X

$D586

#$02

A

#$80

#$80

$01AF

$A6AC

#$68

($6D),Y

$0146,Y

$A6A4

#$FF

$0298

$F9

A

$FE85

$06,X

$D586

#$02

$A6D1

#$24

$02AC

$A496

$E60A

$D644

#$03

($6D),Y

$01AF

$A6DD

#$24

.byte $2C

LDA

STA

JMP

#$47

$02AC

$A4 96

Repeat buffer number

and double it (table uses 2

parameters)

Give track 18,side 2 (dir. track)

to job loop

Read sector

Test return message or error

Save result in bit 7 (l=error)

and isolate bit

Prepare bit for tesing in $A6D5

and save it(0= error found)

Is there an error?

NO-Pointer to end of 1571-BAM

Read byte from data buffr & write

byte in 1571 BAM-buffer

turn pointer to next byte

All bytes transferred?

Set 'Error by job execution not

notcied1 flag

Get number of current data buffer

and double it (pointers in

2-byte-value table)

Get # of directory track (18) and

set as track number of job

Read sector

Compare return message w/ 'OK1

Was job run error-free?

YES—Save return message (0/1)

Set track 35 as largest track

(i.e., only one side used)

Re-establish current BAM-pointer

Repeat return message

Output error message

Job error handling

Set buffer pointer,get identifier

for 1571 diskette ($80)

Check identfier w/preceding error

Previous read & identifier OK?

NO—Use track numbering f/one side

Jump to next 2 bytes(bit command)

Set track number for 2 diskette

sides

Re-establish BAM-bufferpointer

ROM-98

Abacus Software 1571 Internals

Initialize 1571

A6E5 20 8C D5

A6E8 48

A6E9 C9 02

A6EB BO 4 9

A6ED AD OF 18

A6F0 29 20

A6F2 FO 42

A6F4 A9 47

A6F6 8D AC 02

A6F9 A9 FF

A6FB 8D 98 02

A6FE A5 16

A700 48

A701 A5 17

A703 48

A704 A5 F9

A706 OA

A707 AA

A708 A9 35

A70A 95 06

A70C A9 BO

A70E 20 8C D5

A711 C9 02

A713 68

A714 A8

A715 68

A716 AA

A717 BO OB

A719 E4 16

A71B DO 07

A71D C4 17

A71F DO 03

A721 A9 47

A723 2C

A7243 A9 24

A726 8D AC 02

A729 84 17

A72B 86 16

A72D A5 F9

A72F OA

A730 AA

A731 AD 85 FE

A734 95 06

A7362 68

A737 60

diskette

JSR $D58C Give and run jobcode

PHA Save return message

CMP #$02 Check against 'OK1

BCS $A736 Job run error-free?

LDA $180F YES-Get control register and

AND #$20 determine operating mode

BEQ $A736 Is drive in 1571 mode?

LDA #$47 YES-Set max. track number +1 (71)

STA $02AC

LDA #$FF Set 'Error from job execution

STA $0298 not noticed1 flag

LDA $16 Recover 1st ID character of

PHA sector header

LDA $17 Recover 2nd ID character of

PHA the last sector header

LDA $F9 Get # of current data buffer and

ASL A double it (table uses

TAX 2-byte-values)

LDA #$35 Track 18,side 2(backside direct.)

STA $06,X to job loop

LDA #$B0 Jobcode for "Look for sector1

JSR $D58C to job loop; execute

CMP #$02 Compare return message with fOKf

PLA Repeat last character of

TAY last-read ID

PLA Repeat 1st character of

TAX last-read ID

BCS $A724 Did job run error-free?

CPX $16 YES-Compare last ID with new ID

BNE $A724 Identical?

CPY $17 YES-Compare w/ last ID char, also

BNE $A724 Identical?

LDA #$47 YES-# of tracks+1 for 2 sides(71)

.byte $2C Jump to next 2 bytes(bit command)

LDA #$24 Set # of tracks +1 for 1 side(35)

STA $02AC as max. number of tracks

STY $17 Re-set first-read

STX $16 ID

LDA $F9 Get # of current data buffer

ASL A & double it (pointers are

TAX 2-byte-values)

LDA $FE85 Get # of directory track (18)

STA $06,X Set as track number of job

PLA Value for 'Ok1 return message

RTS Return from this subroutine

ROM-99

Abacus Software 1571 Internals

[F005]

Clear

A738

A73B

A73E

A740

A742

A744

A7461
A749

A74A

A74C1

1571 BAM-

20 3A EF

AD OF 18

29 20

FO OA

A9 00

AO 68

99 46 01

88

10 FA

4C 08 FO

•buffer

JSR $EF3A

LDA $180F

AND #$20

BEQ $A74C

LDA #$00

LDY #$68

STA $0146,Y

DEY

BPL $A746

JMP $F008

Set buffer pointer

Get control register

and test operating mode

Is drive in 1571 mode?

YES-Value for empty byte

Set buffer pointer

Clear byte in BAM-buffer

Set buffer pointer to next byte

Entire buffer cleared?

YES-Set pointer for 1541 BAM

[F24B]

Compute absolute

A74F 48

A750 AD OF 18

A753 29 20

A755 F0 08

A757 68

A758 C9 24

A75A 90 04

A75C E9 23

A75E 24 68

A75F1 68

A7 601 AE D6 FE

A763 60

track number

LDA $180F

AND #$20

BEQ $A75F

CMP #$24

BCC $A760

SBC #$23

.byte $24

PLA

LDX $FED6

RTS

Save track number

Get control register

and test operating mode

Is drive in 1571 mode?

YES-Get track # again and compare

with max. number +1 (for side 1)

Is track on side 2?

YES-Compute track number on sidel

Jump to next byte (bit-command)

Re-adjust stack

Get number of track zones

Return from this subroutine

[EE56]

Create new BAM

A764 20 05 F0

A767 AD OF 18

A76A 29 20

A7 6C DO 03

A76E A9 24

A770 2C

A7711 A9 47

8D AC 02

4C 43

A773

A776 EE

(1571/1541)

JSR $F005 Clear BAM-buffer

LDA $180F Get control register

AND #$20 and test operaing mode

BNE $A771 Is drive in 1571 mode?

LDA #$24 YES-max. track number +1 (36)

.byte $2C Jump to next 2 bytes(bit command)

LDA #$47 Determine max. tracks for 2 sides

STA $02AC (71)

JMP $EE43 Produce new BAM

ROM-100

Abacus Software 1571 Internals

[FF42]

Format Commodore diskette

A779

A77C

A77E

A780

A7831

[EBE4]

AD

29

DO

4C

4C

OF

20

03

C6

0D

18

C8

A4

LDA $180F

AND #$20

BNE $A783

JMP $C8C6

JMP $A40D

Initialize CIA 652 6 by reset

A786

A789

A78B

A78E

A791

A7 93

A7 96

A7 98

A7 9B

A79E

A7A0

A7A3

A7A5

A7A8

A7AA

A7AD

A7B0

AD

29

8D

20

A9

8D

A9

8D

8D

A9

8D

A9

8D

A9

8D

20

4C

01

DF

01

83

7F

0D

08

0E

OF

00

05

06

04

01

OE

B2

59

18

18

A4

40

40

40

40

40

40

81

EA

LDA $1801

AND #$DF

STA $1801

JSR $A483

LDA #$7F

STA $400D

LDA #$08

STA $400E

STA $400F

LDA #$00

STA $4005

LDA #$06

STA $4004

LDA #$01

STA $400E

JSR $81B2

JMP $EA59

[924B/EA68/EC04]

Take

A7B3

A7B6

A7B8

A7BA

A7BD1

ATN-command from bus

AD

29

F0

4C

4C

OF

20

03

CE

5B

18

80

E8

LDA $180F

AND #$20

BEQ $A7BD

JMP $80CE

JMP $E85B

Get control register

and test operating mode

Is drive in 1541 mode?

YES-Format 1541 diskette

Format 1571 diskette

Get control register

and switch to 1541

mode

approx. 80-cycle delay

Re-set interrupt

register

Set Timer A for 'one shot1

(just one run)

Set Timer B for the same mode

Clear Timer A

high-byte

Set Timer A low-byte for 6

cycles

Start

Timer A

set 1571 bus for input

test for ATN command mode

Get control register

and test operating mode

Is drive in 1571 mode?

YES-Get ATN-command from 1571 bus

Get ATN-command from 1541 bus

[EB22]

Patch for Reset-routine

A7C0 78 SEI

A7C1 A2 45 LDX #$45

A7C3 9A TXS

A7C4 4C 25 EB JMP $EB25

Disable bus/controller interrupt

Initialize stack pointer to

range $100-$145

Return to Reset routine

ROM-101

Abacus Software
1571 Internals

[ED8F/EE56]

Create new 1571/1541

A7C7 AD OF 18

A7CA 29 20

A7CC DO 09

A7CE1 AO 03

A7D0 A9 00

A7D2 91 6D

A7D4 4C B7 EE

A7D71 AD AC 02

A7DA C9 25

A7DC 90 FO

A7DE AO 01

A7E0 A2 00

A7E21 CO 12
A7E4 FO 34

A7E6 8A

A7E7 .48

A7E8 A9 00

A7EA 85 6F

A7EC 85 70

A7EE 85 71

A7F0 B9 2B 94

A7F3 AA

A7F41 38

A7F5 26 6F

A7F7

A7F9

A7FB

A7FC

A7FE

A7FF

A800

A802

A805

A807

A80A

A80C

A80F

A810

A811

A812

A814

A816

A817

A818

26 70

26 71

CA

DO F6

68

AA

A5 6F

9D 46 01

A5 70

9D 47 01

A5 71

9D 48 01

E8

E8

E8

EO 33

DO 04

E8

E8

E8

LDA

AND

BNE

LDY

LDA

STA

JMP

LDA

CMP

BCC

LDY

LDX

CPY

BEQ

TXA

PHA

LDA

STA

STA

STA

LDA

TAX

SEC

ROL

ROL

ROL

DEX

BNE

PLA

TAX

LDA

STA

LDA

STA

LDA

STA

INX

INX

INX

CPX

BNE

INX

INX

INX

BAM

$180F Get control register

#$20 and test operating mode

$A7D7 Is drive in 1541 mode?

#$03 Buffer pointr to disktype IDfier

#$00 Write 1541 diskette identifier

($6D),Y in BAM

$EEB7 Produce 1541 BAM

$02AC Get largest track number and

#$25 compare with 37

$A7CE Is side 2 used?

#$01 YES-Determine first track number

#$00 Set first sector

#$12 Compare with directory track #

$A81A Directory track already reached?

NO-Save current sector

number

#$00 Clear

$6F math register for

$70 bit-pattern of

$71 available sectors

$942B,Y Determine and save # of sectors

in track

Shift 'Sector free1

$6F flag value in math

$70 register for

$71 bit-patterns

Go to next sector

$A7F4 All sectors laid out?

Re-set first sector number and

re-set buffer pointer

$6F Get 1st byte from bit-pattern and

$0146,X write in BAM-buffer

$70 Get 2nd byte of bit-pattern and

$0147,X write in BAM-buffer

$71 Get third byte of bit-pattern and

$0148,X write in BAM-buffer

Jump 3 bytes of bit-pattern

with buffer

pointer

#$33 Test for directory track position

$A81A Track 18 already reached?

Jump BAM-entry

from track 18

with buffer pointer

ROM-102

Abacus Software 1571 Internals

A819

A81A2

A81B

A81D

A81F

A822

A824

A82 6

A828

A82A

A82C1

A82F

A831

A832

A833

A835

A837

A839

A83B

EE

C8

C8

CO 24

90 C3

20 B7

AO 03

A9 80

91 6D

AO FF

A2 22

BD 2C

91 6D

88

CA

10 F7

AO EE

A9 00

91 6D

4C 75 DO

94

INY

CPY #$24

BCC $A7E2

JSR $EEB7

LDY #$03

LDA #$80

STA ($6D),Y

LDY #$FF

LDX #$22

LDA $942C,X

STA ($6D),Y

DEY

DEX

BPL $A82C

LDY #$EE

LDA #$00

STA ($6D),Y

JMP $D075

Set pointer for current track to

track 19

Compare with end of first side

Is track less?

NO-1541 BAM used

Initialize buffer pointer

Write 1571 diskette identifier

in directory sector

Set buffer pointer

of tracks (w/o directory track)

Write # of free blocks on track

in BAM-buffer

Set buffer pointer to next byte

Pointer to next track entry

All tracks entered?

YES-Turn pointr to track 18,side2

Clear # of free blocks on track

(for directory track)

Compute free blocks on diskette

[EF5F]

Free up sector

A83E AD OF 18

A841 29 20

A843 DO 06

A8451 20 CF EF

A848 4C 62 EF

A84B1 A5 80

A84D C9 24

A84F 90 F4

A851 20 Al A4

A854 20 E7 A4

A857 DO 19

A859 ID E9 EF

A85C 99 4 6 01

A85F 20 88 EF

A862 20 08 A5

A865 A5 80

A867 C9 35

A869 F0 08

A86B A5 7F

A86D 0A

A86E AA

A86F 4C 7F EF

A8721 38
A8731 60

in BAM

LDA $180F

AND #$20

BNE $A84B

JSR $EFCF

JMP $EF62

LDA $80

CMP #$24

BCC $A845

JSR $A4A1

JSR $A4E7

BNE $A872

ORA $EFE9,X

STA $0146,Y

JSR $EF88

JSR $A508

LDA $80

CMP #$35

BEQ $A873

LDA $7F

ASL A

TAX

JMP $EF7F

SEC

RTS

YES-Get control register

and test operating mode

Is Floppy in 1541 mode?

YES-Set pointr to bit of a sector

Free up sector

Get current track number and

compare with max. value of a side

Is track number less?

NO-Pointer to BAM-bit of sector

Get BAM-bit of sector

Is sector free?

YES-Set BAM-bit

and write in buffer

Set 'illegal BAM1 flag

Increment number of blocks free

Test current track number against

track 18, side 2 (Directory)

Identical?

NO—Get current drive number

and double it

(table uses 2-byte values)

Increment # of blks free on disk

•Sector already freed up'errorfig

Return from this subroutine

ROM-103

Abacus Software 1571 Internals

[EF93]

Set sector in BAM

A874

A877

A879

A87B1

A87E

A8811

A883

A885

A887

A88A

A88D

A88F

A892

A895

A898

A89B

A89D

A89F

A8A1

A8A3

A8A4

A8A5

A8A82 60

AD OF 18

29 20

DO 06

20 CF EF

4C 96 EF

A5 80

C9 24

90 F4

20 Al A4

20 E7 A4

F0 19

5D E9 EF

99 46 01

20 88 EF

20 IE A5

A5 80

C9 35

FO 07

A5 7F

OA

AA

4C B2 EF

LDA $180F Get control register

AND #$20 and test operating mode

BNE $A881 Is drive in 1541 mode?

JSR $EFCF Set pointer to BAM-bit of sector

JMP $EF96 Free up sector in BAM

LDA $80 Get # of desired track & test

CMP #$24 with max. value +1 for 1st side

BCC $A87B Is track on side 2?

JSR $A4A1 YES-Set BAMpointer to track entry

JSR $A4E7 Get BAM-bit of sector

BEQ $A8A8 Is sector freed up?

EOR $EFE9,X YES-Lay out sector (Bit = 0) and

STA $0146,Y store BAM pattern again

JSR $EF88 Set 'Illegal BAM1 flag

JSR $A51E Get # of blocks free on track

LDA $80 Get # of chosen track and test

CMP #$35 against track 18, side 2

BEQ $A8A8 Identical?

LDA $7F NO-Get current drive number

ASL A and double it

TAX (block table needs 2 bytes)

JMP $EFB2 Decrement number of blocks free

RTS Return from this subroutine

[F1FA]

Look for

A8A9 AD

A8AC 29

A8AE DO

A8B01 20

A8B3 4C

A8B61 A5

A8B8 C9

A8BA 90

A8BC 20

A8BF 20

A8C2 B9

A8C5 8D

A8C81 A5

A8CA CD

A8CD B0

next free sector on track

OF 18 LDA $180F Get control register

20 AND #$20 and test operating mode

06 BNE $A8B6 Is drive in 1541 mode?

11 F0 JSR $F011 YES-Set BAM-pointer

FD Fl JMP $F1FD Look for next free sector

80 LDA $80 Check # of current track with

24 CMP #$24 max. track +1 of 1st side

F4 BCC $A8B0 Is track on side 2?

Al A4 JSR $A4A1 Set pointer for BAMentry to track

45 A5 JSR $A545 Check # of blocks free on track

2C 94 LDA $942C,Y Get # of sectors per track and

4E 02 STA $024E save it

81 LDA $81 Compare number of current sector

4E 02 CMP $024E with max. sector number

09 BCS $A8D8 Is sector # in allowable range?

ROM-104

Abacus Software 1571 Internals

A8CF 20 E7 A4 JSR $A4E7

A8D2 DO 06

A8D4 E6 81

A8D6 DO FO

A8D81 A9 00

A8DA1 60

BNE $A8DA

INC $81

BNE $A8C8

LDA #$00

RTS

YES-Get BAM-bit of sector

Is sector free?

NO-Go to next sector

Jump to $A8C8

Flag for 'No free sector1

Return from this subroutine

[F12D] Look for next free sector

A8DB AD OF 18 LDA $180F Get control register

A8DE 29 20 AND #$20 and determine operating mode

A8E0 DO 06 BNE $A8E8 Is disk in 1541 mode?

A8E21 A5 6F LDA $6F YES-Recover number of free blocks

A8E4 48 PHA per track

A8E5 4C 30 Fl JMP $F130 Look for next free sector

A8E81 A5 80 LDA $80 Test current track number against

A8EA C9 24 CMP #$24 max. track +1 of side 1

A8EC 90 F4 BCC $A8E2 Is track on side 2?

A8EE C9 35 CMP #$35 YES-test for track 18, side 2

A8F0 F0 0E BEQ $A900 Identical?

A8F2 A5 6F LDA $6F Recover

A8F4 48 PHA zeropage area

A8F5 20 Al A4 JSR $A4A1 Set BAM-pattern pointer

A8F8 A8 TAY Save number of free blocks

A8F9 68 PLA Re-establish

A8FA 85 6F STA $6F zeropage area

A8FC 98 TYA Get # of blocks free on track

A8FD 4C 38 Fl JMP $F138 Get free sector

A9001 A9 00 LDA #$00 Set # of free blocks on track

A902 4C 38 Fl JMP $F138 Look for next free sector

[F1C4]

Set BAM pointer

A905 AD OF 18

29 20

DO 06

20 11 F0

4C C7 Fl

A5 80

C9 24

90 F4

20 Al A4

4C C9 Fl

A908

A90A

A90C1

A90F

A9121
A914

A916

A918

A91B

to bit on a sector

LDA $180F Get control register

AND #$20 and determine operating mode

BNE $A912 Is disk in 1541 mode?

JSR $F011 YES-Set BAM-pointer and

JMP $F1C7 get optimal free sector

LDA $80 Test current track number against

CMP #$24 max. track +1 of side 1

BCC $A90C Is track on side 2?

JSR $A4A1 Set BAM-pointer

JMP $F1C9 Get optimal free sector

ROM-105

Abacus Software 1571 Internals

[F1D1]

Look for free sector

A91E AD OF 18 LDA $180F Get control register

A921 29 20 AND #$20 and determine operating mode

A923 DO 06 BNE $A92B Is disk in 1541 mode?

A9251 20 11 F0 JSR $F011 YES-Set BAM-pointer
A928 4C E2 Fl JMP $F1E2 Look for free sector

A92B1 A5 80 LDA $80 Test current track number against
A92D C9 24 CMP #$24 max. track +1 of side 1

A92F 90 F4 BCC $A925 Is track on side 2?

A931 20 Al A4 JSR $A4A1 Set pointer to BAM-bit

A934 4C E4 Fl JMP $F1E4 Look for free sector

[EF28]

Test number of free blocks in BAM

A937 AD OF 18

A93A 29 20

A93C DO 03

4C 20 F2

A9411 AD AC 02

A944 C9 25

A946 90 F6

A948 A5 80

A94A C9 24

A94C 90 F0

A94E 4C 45 A5

free blocks

LDA $180F

AND #$20

BNE $A941

JMP $F220

LDA $02AC

CMP #$25

BCC $A93E

LDA $80

CMP #$24

BCC $A93E

JMP $A545

Get control register

and determine operating mode

Is disk in 1541 mode?

YES—Test block assignment

Get number of largest track;

compare with 37

Only one diskette used?

NCMSet current track # and

compare with 36

Is track on side 2?

YES—Confirm block assignment

[D097]

Compute number

A951 9D FA 02

A954 AD OF 18

A957 29 20

A959 F0 23

A95B AD AC 02

A95E C9 25

A960 90 1C

A962 20 8B A4

A965 20 34 A5

A968 A0 22

A96A AD FA 02

A96D1 18

71A96E

A970

A973

6D

8D FA 02

90 03

of free blocks

STA $02FA,X

LDA $180F

AND #$20

BEQ $A97E

LDA $02AC

CMP #$25

BCC $A97E

JSR $A48B

JSR $A534

LDY #$22

LDA $02FA

CLC

ADC <$6D),Y

STA $02FA

BCC $A978

on diskette

Store low-byte of free blocks

Get control register

and determine operating mode

Is disk in 1571 mode?

YES—Determine maximum track #

& compare w/ maximum track+2 (37)

Is track on side 2?

Recover current BAM-pointer

Set BAM-pointer to track entry

Number of tracks on a side -1

Get low-byte of free block and

include byte of free blocks on

track

Save next block amount

Is a transfer pending?

ROM-106

Abacus Software 1571 Internals

A975 EE FC 02 INC $02FC

A9781 88 DEY

A979 10 F2 BPL $A96D

A97B 4C 96 A4 JMP $A4 96

A97E2 60 RTS

YES-Set hi-byte of 'Blocks free1

Go to next track

All tracks considered?

YES—Set BAM-pointer to old value

Return from this subroutine

[DCD6]

Patch for number of free blocks;

A97F

A981

A983

A985

A988

95

95

A9

9D

60

B5

BB

00

44 02

STA

STA

LDA

STA

RTS

$B5,X

$BB,X

#$00

$0244,X

Clear pointer

Clear # of reserved blocks / file

(low- and high-byte)

Clear number of data bytes yet to

be transferred

Return from this subroutine

[84E4]

Format diskette im 1571 format

A989 20 0D A4 JSR $A40D

A98C A0 00 LDY #$00

A98E 8C 98 02 STY $02 98

A991 60 RTS

Format diskette

'Error noted1

flag

Return from this subroutine

A992 FF ...

A99C ... FF

unused

ROM area

[C1B3] Patch for 1541 routine (Error remedied by FFfX)

A99D A9 00 LDA #$00 Set drive status for

A99F 9D FF 00 STA $00FF,X 'Drive ready'

A9A2 4C B7 Cl JMP $C1B7 Return to 1541 routine

[C661] Patch for 1541 routine (Error remedied by FF,X)

A9A5 98 TYA Get return message

A9A6 9D FF 00 STA $00FF,X and transfer into drive status

A9A9 4C 64 C6 JMP $C664 Return to 1541 routine

[EA6B]

Work

A9AC

A9AF

A9B1

A9B3

A9B61

with

AD

29

F0

4C

4C

OF

20

03

5A

D7

serial bus after

18

•81

E8

LDA

AND

BEQ

JMP

JMP

$180F

#$20

$A9B6

$815A

$E8D7

ATN-command

Get control register

test for operating mode

Is disk in 1571 mode?

YES-Wait on 1571 bus

Process 1541 bus

ROM-107

Abacus Software 1571 Internals

[E60A]

Display error message and prepare

A9B9

A9BA

A9BC

A9BF

A9C1

A9C3

A9C5

A9C7

A9C9

A9CB

A9CD

A9CE

A9CF

A9D22

48

86 F9

AD OF 18

29 20

F0 OF

24 37

10 OB

A5 37

29 7F

85 37

68

AA

4C 99 91

4C OD E6

PHA

STX $F9

LDA $180F

AND #$20

BEQ $A9D2

BIT $37

BPL $A9D2

LDA $37

AND #$7F

STA $37

PLA

TAX

JMP $9199

JMP $E60D

text version of message

Recover error number

Save buffer number

Get control register

and test for operating mode

Is disk in 1571 mode?

YES-Chk bus statusbyte f/1571mode

Flag set?

YES-Clear 1571 mode

flag in bus status

byte

Repeat error number and

prepare for output

Produce #, message over 1571 bus

Prepare text of message

[C1CE]

Produce error message in error

A9D5

A9D6

A9D9

A9DB

A9DD

A9DF

A9E1

A9E3

A9E5

A9E7

A9E8

A9EA

A9ED

A9EF

A9F1

48

AD OF 18

29 20

F0 17

24 37

10 13

A5 37

29 7F

85 37

78

A2 02

20 28 92

A9 00

85 83

20 CO DA

A9F42 68

A9F5 4C 45 E6

PHA

LDA

AND

BEQ

BIT

BPL

LDA

AND

STA

SEI

LDX

JSR

LDA

STA

JSR

PLA

JMP

$180F

#$20

$A9F4

$37

$A9F4

$37

#$7F

$37

#$02

$9228

#$00

$83

$DAC0

$E645

buffer

Recover error number

Get control register

and test for operating mode

Is disk in 1571 mode?

YES-Test bus statsbyte f/1571mode

Flag set?

YES-Clear 1571 mode flag

in bus status

byte

Disable bus/controller interrupt

Send 'File Not Found1 error #

over 1571 bus

Set secondary address

for Load

Close file

Repeat error number

Produce error message

[F263] Patch for 1541 routine (new: Clear status)

A9F8 A9 00

A9FA 85 20

A9FC AD 0C 1C

A9FF 4C 66 F2

LDA #$00 Clear status for drive

STA $20 0

LDA $1COC Get peripheral control register

JMP $F266 Return to 1541 routine

ROM-108

Abacus Software 1571 Internals

[C2BA/C2C2]

Observe new

AA02

AA05

AA07

AA09

AAOC

AAOE

AA101
AA13

AA141

AA16

AD

C9

DO

AD

C9

FO

B9

2C

A9

60

00

55

07

01

30

04

00

00

UserO

02

02

02

command

LDA

CMP

BNE

LDA

CMP

BEQ

LDA

$0200

#$55

$AA10

$0201

#$30

$AA14

$0200,*

.byte $2C

LDA

RTS

#$00

Get 1st char from command string

& compare with "D1 (User command)

Identical?

YES—Get 2nd char frm cmd string

and compare with '0•

Is command ■UO1?

NO-Get char from command string

Jump next 2 bytes (bit command)

Give back empty params by User 0

Return from this subroutine

[C66B] Patch for 1541 routine (Error remedied by FF,X)

AA17 A6 7F LDX $7F Current drive number

AA19 BD FF 00 LDA $00FF,X Get appropriate drive status

AA1C 60 RTS Return from this subroutine

[D071] Patch for 1541 routine (Error remedied by FF,X)

AA1D 95 1C STA $1C,X Set diskette initialization flag

AA1F 9D FF 00 STA $00FF,X Set drive status

AA22 4C 75 DO JMP $D075 Return to 1541 routine

[F017] Patch for 1541 routine (Error remedied by FF,X)

AA25 A6 7F LDX $7F Current drive number

AA27 BD FF 00 LDA $00FF,X Get appropriate drive status

Return to 1541 routine

Get low-byte of User-routine and

test with IRQ

Identical?

YES—Get high-byte and compare

with IRQ address

Identical?

YES-Call jobloop

Cancel out return address

Return from this subroutine

Execute User-command

AA2A-1- 4C

[CB81]

Execute

AA2D

AA2F

AA31

AA33

AA35

AA37

AA39

AA3A

AA3B

AA3C^

A5

C9

DO

A5

C9

DO

00

EA

60

6C

IB FO JMP

User-command

75

67

09

76

FE

03

75 00

LDA

CMP

BNE

LDA

CMP

BNE

BRK

NOP

RTS

JMP

$F01B

(UA to UK)

$75

#$67

$AA3C

$76

#$FE

$AA3C

($0075)

AA3F FF

BEFF ... FF

unused

ROM area

ROM-109

Abacus Software 1571 Internals

[Table not used by DOS]

Table of most important DOS

BFOO

BF03

BF06

BF09

BFOC

BFOF

BF12

BF15

BF18

BF1B

BF1E

BF21

BF24

BF27

BF2A

BF2D

BF30

BF33

BF36

BF39

BF3C

BF3F

BF42

BF45

BF4 8

BF4B

BF4E

BF51

BF54

BF57

BF5A

BF5D

BF60

BF63

BF66

BF69

BF6C

BF6F

BF72

BF75

4C 88 9D

4C DE 9D

4C BO F2

4C BA 92

4C 93 F3

4C Dl 93

4C 69 F9

4C B5 99

4C 00 FE

4C 34 F9

4C 56 F5

4C 54 97

4C E0 F8

4C 65 99

4C E9 F5

4C E6 F7

4C D9 98

4C 83 A4

4C F3 FE

4C 7E A4

4C 05 F0

4C Dl F0

4C 4 6 Cl

4C 68 C2

4C B3 C2

4C DC C2

4C E6 86

4C 64 87

4C 70 87

4C 8E 80

4C IE CF

4C B4 D7

4C CO DA

4C OA E6

4C 80 90

4C 4E 92

4C 59 F2

4C 9C F9

4C CA 99

4C 95 FE

JMP $9D88

JMP $9DDE

JMP $F2B0

JMP $92BA

JMP $F393

JMP $93D1

JMP $F969

JMP $99B5

JMP $FE00

JMP $F934

JMP $F556

JMP $9754

JMP $F8E0

JMP $9965

JMP $F5E9

JMP $F7E6

JMP $98D9

JMP $A4 83

JMP $FEF3

JMP $A4 7E

JMP $F005

JMP $FOD1

JMP $C146

JMP $C268

JMP $C2B3

JMP $C2DC

JMP $86E6

JMP $87 64

JMP $8770

JMP $808E

JMP $CF1E

JMP $D7B4

JMP $DAC0

JMP $E60A

JMP $9080

JMP $924E

JMP $F259

JMP $F99C

JMP $99CA

JMP $FE95

routines

1541 IRQ routine

1571 IRQ routine

1541 jobloop

1571 jobloop

Set buffer pointer for Jobloop

Set buffer pointer for Jobloop

Conclude Job; Give return message

Conclude Job; Give return message

Switch head to read mode

Convert block header to GCRvalues

Wait for Sync-marking (1541)

Wait for Sync-marking (1571)

Convrt statsbuff from GCR to bin.

Convrt statsbuff from GCR to bin.

Compute sector checksum

Convert 5 GCRbytes to 4 bin.bytes

Convert 5 GCRbytes to 4 bin.bytes

Wait approx. 80 cycles

Delay for 1541 serial bus

Wait approx. 45 cycles

Clear buffer for BAM

Get track number for BAM

Execute command string

Search cmd string f/paramaters

Set pnter for cmd string analyses

Clear all file pointers

Execute routine w/#in accumulator

Drive motor on

Drive motor off

[Error — see 7.1.5]

- Look for and set buffer

Execute Open command from bus

Close channel and close file

Send eror message from job loop

Read file (PRG/SEQ/USR)

Test ROM checksum

Initialize 1541 disk controller

1541 job loop off

Stepper control

[Error — see 7.1.5]

BF78 FF ...

C0FF ... FF

unused

ROM area

ROM-110

Abacus Software 1571 Internals

[C38C/C439/C46A/C4 9A/CE0B/CFA2/D39E/D7E1] cf. 877C/C118

drives)

Disable bus/controller interrupt

Place mask for LED-bit (Bit3)

so that LED-bit will be cleared

Save mask

Drive number (always 0)

Otherwise, jump to $C110

Unused if system has only one

drive

If drive 1 exists, jump to $C113

Repeat mask

LED-bit set (Bit3=l)

LED on

Enable bus/controller interrupt

Return from this subroutine

LED on current

(Routine

C100

C101

C103

C106

C107

C109

C10B

C10C

C10E

C1101

cm

C1131
C116

C117

78

A9

2D

48

A5

F0

68

09

DO

68

09

8D

58

60

taken

F7

00 1C

7F

05

00

03

08

00 1C

drive ON

from old double

SEI

LDA

AND

PHA

LDA

BEQ

PLA

ORA

BNE

PLA

ORA

STA

CLI

RTS

#$F7

$1COO

$7F

$C110

#$00

$C113

#$08

$1COO

[Routine not used in DOS] cf. 877C/C100

LED on 1571 dive ON

C118

C119

CUB

CUE

C121

C122

78

A9

0D

8D

58

60

08

00

00

1C

1C

SEI

LDA

ORA

STA

CLI

RTS

#$08

$1COO

$1COO

Disable bus/controller interrupt

LED-Bit (Bit3) set (Bit3=l)

Take up other bits of register

LED on

Enable bus/controller interrupt

Return from this subroutine

[C1AA/D425/E6BC]

Clear error flag

C123 A9 00 LDA #$00

C125 8D 6C 02 STA $026C

C128 8D 6D 02 STA $026D

C12B 60 RTS

Clear the error flag

Clear error number

Clear LED-Blinker flag

Return from this subroutine

[E650]

LED blinker

C12C

C12D

C12E

C12F

C131

C134

C136

C139

C13C

C13F

78

8A

48

A9 50

8D 6C

A2 00

BD CA

8D 6D

0D 00

8D 00

on

02

FE

02

1C

1C

due to

SEI

TXA

PHA

LDA

STA

LDX

LDA

STA

ORA

STA

error

#$50

$026C

#$00

$FECA,X

$026D

$1COO

$1COO

Disable bus/controller interrupt

Recover

X-register

Set LED blink counter

to 80

Go to drive 0

Save LED-mask for chosen

drive

Drive LED

on

ROM-111

Abacus Software 1571 Internals

C142 68

C143 AA

C144 58

C145 60

PLA

TAX

CLI

RTS

Reset

X-register

Enable bus/controller interrupt

Return from this subroutine

[A61C/BF42]

Execute command

C146 A9 00

C148 8D F9 02

C14B AD 8E 02

C14E 85 7F

C150 20 BC E6

C153 A5 84

C155 10 09

C157 29 OF

C159 C9 OF

C15B F0 03

C15D 4C B4 D7

C1602 20 B3 C2

C163 Bl A3

C165 8D 75 02

C168 A2 0B

C16A1 BD 89 FE

C16D CD 75 02

C170 F0 08

C172 CA

C173 10 F5

C175 A9 31

C177 4C C8 Cl

C17A1 8E 2A 02

C17D E0 09

C17F 90 03

C181 20 EE Cl

C1841 AE 2A 02

C187 BD 95 FE

C18A 85 6F

C18C BD Al FE

C18F 85 70

C191 6C 6F 00

string from computer

LDA #$00 Set "Write BAM to diskette1

STA $02F9 flag

LDA $028E Take on last-used drive as

STA $7F current dive

JSR $E6BC Produce 'OK1 message

LDA $84 Get last IEC secondary address

BPL $C160 Was it a Close command?

AND #$0F Get number of chosen channel and

CMP #$0F test for command channel

BEQ $C160 Is command channel being used?

JMP $D7B4 NO-

JSR $C2B3 Set params to command processing

LDA ($A3),Y Get/save 1st char from

STA $0275 input buffer

LDX #$0B Number of disk commands

LDA $FE89,X Get char from 1541command table &

CMP $0275 compare with command characters

BEQ $C17A Is that the desired command?

DEX NO-Go to next command character

BPL $C16A Compared with all commands?

LDA #$31 YES-Display

JMP $C1C8 '31 Syntax Error1 message

STX $022A Save command number

CPX #$09 Compare with number for 'Rename1

BCC $C184 Is command »R', 'S' or 'N* ?

JSR $C1EE YES-Check syntax

LDX $022A Get back command number

LDA $FE95,X Get lo-byte of command of table &

STA $6F set in pointer

LDA $FEA1,X Transfer hi-byte of start address

STA $70

JMP ($006F) Execute command

ROM-112

Abacus Software 1571 Internals

[9196/C99E/C9A4/CAC9/CB6F/CC18/CCFB/CD16/CD5C/CD70/CD94/CDA0/CDB7/CDCF]

[D00B/D7F0/D99D/DAE6/DAFC/E272/EDB0/EEB4]

End of computer command; produce an error message

C194 A9 00 LDA #$00 Clear Write BAM to diskette*

C196 8D F9 02 STA $02F9 flag

[DA06] End of command/but don't write BAM to diskette

C199 AD 6C 02 LDA $026C Get error flag

C19C DO 2A BNE $C1C8 Is an error extant?

C19E A0 00 LDY #$00 NO-Prepare OK-message

C1A0 98 TYA Clear error number

———————————————————————————________ _... __... ________________,_,____________

[C87A] end of command; ignore error

C1A1 84 80 STY $80 Set track and

C1A3 84 81 STY $81 sector to zero

C1A5 84 A3 STY $A3 Set back input buffer pointer

C1A7 20 C7 E6 JSR $E6C7 Produce 'OK1-message

C1AA 20 23 Cl JSR $C123 Clear error flags

[DAE9/DAFF] End of command; no return message prepared

C1AD A5 7F LDA $7F Save current drive (usually 0)

C1AF 8D 8E 02 STA $028E as last drive number

C1B2 AA TAX for current drive

C1B3 4C 9D A9 JMP $A99D Clear 'Drive active' flag

C1B6 EA NOP [through modification of 1541ROM]

C1B7 20 BD Cl JSR $C1BD Clear input buffer ($0200-$0228)

C1BA 4C DA D4 JMP $D4DA Close internal read/write chanels

[C1B7/E648]

Clear input buffer for command from computer

Overwrite 41 character positions

with zero

(range $0200-$0228)

Next character

All characters cleared yet?

YES-Return from this subroutine

C1BD

C1BF

C1C11

C1C4

C1C5

C1C7

A0

A9

99

88

10

60

28

00

00 02

FA

LDY

LDA

STA

DEY

BPL

RTS

#$28

#$00

$0200,Y

$C1C1

ROM-113

Abacus Software 1571 Internals

[850E/85AC/9023/91C7/C177/C19C/C1F5/C265/C2D9/C41D/C8C3/C925/C984/CAE3]

[CAF1/CB4D/CBA2/CC28/CC2D/CD33/CDE2/CF78/CFFA/D214/D38E/D839/D8ED/D8F2]

[D947/D959/D967/D9C0/E0D3/E16B/E216/E225/E299/E365/E44B/E7C2/EE16/F0EF]

[F15C]

Display error message and necessary number in accumulator

C1C8 AO 00 LDY #$00 Clear pointer

C1CA 84 80 STY $80 Clear track number and

C1CC 84 81 STY $81 sector number

C1CE 4C D5 A9 JMP $A9D5 Put message in buffer

[D005/D7FF/ED84]

Look for 1 : ■

(Y-Register

C1D1

C1D3

C1D6

C1D8

C1DB

C1DD

C1DE

C1DF

C1E2

A2

8E

A9

20

F0

88

88

8C

1 4C

00

7A

3A

68

05

7A

68

and

must

02

C2

02

C3

drive number in

point to current

LDX

STX

LDA

JSR

BEQ

DEY

DEY

STY

JMP

#$00

$027A

#$3A

$C2 68

$C1E2

$027A

$C368

position in buffer)

Clear pointer to drive* position

in input buffer

Look for a colon when looking for

characters in input buffer

Has colon been found?

YES-Y-Register shows position+1

of character;

Drive # position (before ':')

Set drive and turn LED on

[C1EE/C904/D82B/DA86]

Look for colon in command string

C1E5 A0 00 LDY #$00

C1E7 A2 00 LDX #$00

C1E9 A9 3A LDA #$3A

C1EB 4C 68 C2 JMP $C2 68

Starting position of search

Number of filenames found

Colon declared as sought char

Search through input buffer

[C181]

Test command with two

C1EE

C1F1

20 E5 Cl

DO 05

C1F31 A9 34

C1F5 4C C8 Cl

C1F82 88

C1F9 88

C1FA 8C 7A 02

C1FD 8A

C1FE DO F3

C200J

C202

C205

C206

C208

A9 3D

20 68 C2

8A

F0 02

A9 40

JSR

BNE

LDA

JMP

DEY

DEY

STY

TXA

BNE

LDA

JSR

TXA

BEQ

LDA

filenames for syntax

$C1E5 Look for colon in input buffer

$C1F8 Has colon been found?

#$34 NO-Display

$C1C8 '34 Syntax Error1 error

Y-Register points to position +1

Set pointer before •:■

$027A Save position of drive number

Number of filenames already found

$C1F3 Have several names been found?

#$3D NO-I=I - character

$C268 Look at line after f=f

Number of filenames found so far

$C20A Has only one file been found?

#$40 NO-Bit 6 as flag for more files

ROM-114

Abacus Software 1571 Internals

C20A1

C20C

C20F

C210

C213

C216

C219

C21B

C21D

C220

C223

C225

C2281

C229

C22B

C22E

C231

C234

C236

C239

C23A

C23D

C23E

C241

C243

C2451

C248

C24A

C24C1

C24E

C251

C2541

C257

C25A

C25D

C25F

C2601

C2 63

C2 65

09

8D

E8

8E

8E

AD

F0

A9

OD

8D

A9

8D

98

FO

9D

AD

8D

A9

20

E8

8E

CA

AD

FO

A9

EC

FO

09

09

4D

8D

AD

AE

3D

DO

60

8D

A9

4C

21

8B

77

78

8A

OD

80

8B

8B

00

8A

29

7A

77

79

8D

68

78

8A

02

08

77

02

04

03

8B

8B

8B

2A

A5

01

6C

30

C8

02

02

02

02

02

02

02

02

02

02

C2

02

02

02

02

02

02

02

FE

02

Cl

ORA

STA

INX

STX

STX

LDA

BEQ

LDA

ORA

STA

LDA

STA

TYA

BEQ

STA

LDA

STA

LDA

JSR

INX

STX

DEX

LDA

BEQ

LDA

CPX

BEQ

ORA

ORA

EOR

STA

LDA

LDX

AND

BNE

RTS

STA

LDA

JMP

#$21

$028B

$0277

$0278

$028A

$C228

#$80

$028B

$028B

#$00

$028A

$C254

$027A,X

$0277

$0279

#$8D

$C2 68

$0278

$028A

$C245

#$08

$0277

$C24C

#$04

#$03

$02 8B

$028B

$028B

$022A

$FEA5,X

$C260

$026C

#$30

$C1C8

Bit 0 & 5 for'1st filename found1

Save bitflags

Point to end of 1st filename

Number of files found by 1st

file description

Wildcard flag (■*')

Wildcard onhand in filename?

YES-Set flag in syntax byte

and

save flag again

Clr search routine wildcard flag

Position of '=■ - char in command

End of command line found?

NO—Save position of filename

The # of files for 1st filenaming

set as number for second naming

Look for command string endmarker

and continue search to end

Save # of commas found;from that

save the # of additionl filenames

Establish original value

Wildcard flag (•*•)

Wildcard onhand?

YES-Set Bit 3 as flag

Compare length with old value

Any more filenames found?

YES—Flag:filenames aftr '=• char.

Flag for '=' character onhand

Combine previous flags & save as

new syntax status

Syntax flag for command

Compare onhand command numbers

with allowable syntax;

all legal?

YES—Return from this subroutine

Save type of incorrect syntax

Display

'30 Syntax Error1

ROM-115

Abacus Software 1571 Internals

[C1D8/C1EB/C202/C236/CC21/CC75/D845]

Search input line for character from accumulator

(Y-Register must contain current position in input buffer;)

(X-Register contains number of parameters found)

Chars looked for by system

Test length of command string

End reached?

NO-Get char from input buffer

Set pointer to next character

Characters to be searched for

Identical w/chars. in input line?

NO-Compare with wildcard (' *•)

Identical?

NO-Compare with wildcard ("? ■)

Identical?

YES-Set wildcard flag

Compare current char with ■,'

Identical?

YES—Save comma position+1 as

start- position of next parameter

Get wildcard flag back

Clear wildcard flag

Find a joker?

YES-Set bit 7 as flag and

save filename as name with joker

Set bit 7 of wildcard flag

Increment # of parameters found,

separated by commas; reached a

maximum of five open files?

YES—Y-value=0 signalling end

Save length of command line as

start position of last parameter

Get wildcard fig of last filename

Remove bit 7

Wildcard in parameter onhand?

YES-Identify in file table as

name with a wildcard attached

Position in input line (end=0)

Return from this subroutine

C268

C2 6B2

C2 6E

C270

C272

C273

C276

C278

C27A

C27C

C27E

C2801

C2831

C285

C287

C288

C2 8B

C28E

C290

C2 92

C294

C296

C2991

C2 9A

C2 9C

C2 9E1

C2A01

C2A3

C2A6

C2A9

C2AB

C2AD

C2AF

2B11

C2B2

8D

CC

BO

Bl

C8

CD

FO

C9

FO

C9

DO

EE

C9

DO

98

9D

AD

29

FO

A9

95

8D

E8

EO

90

A0

AD

9D

AD

29

FO

A9

95

98

60

75

74

2E

A3

75

28

2A

04

3F

03

8A

2C

E4

7B

8A

7F

07

80

E7

8A

04

CD

00

74

7B

8A

7F

04

80

E7

02

02

02

02

02

02

02

02

02

02

STA

CPY

BCS

LDA

INY

CMP

BEQ

CMP

BEQ

CMP

BNE

INC

CMP

BNE

TYA

STA

LDA

AND

BEQ

LDA

STA

STA

INX

CPX

BCC

LDY

LDA

STA

LDA

AND

BEQ

LDA

STA

TYA

RTS

$0275

$0274

$C2 9E

($A3),Y

$0275

$C2A0

#$2A

$C280

#$3F

$C283

$028A

#$2C

$C2 6B

$027B,X

$028A

#$7F

$C299

#$80

$E7,X

$028A

#$04

$C2 6B

#$00

$0274

$027B,X

$028A

#$7F

$C2B1

#$80

$E7,X

ROM-116

Abacus Software 1571 Internals

[BF48/C160/D7B9/E207/C2DC:BF4B/DA86]

Set all flags and look at command string table

C2B3

C2B5

C2B7

C2B8

C2BA

C2BD

C2BF

C2C1

C2C2

C2C5

C2C7

C2C9

C2CA1
C2CB3

C2CE

C2D0

C2D2

C2D4

C2D7

C2D9

C2DC3

C2DE

C2DF

C2E1

C2E4

C2E7

C2EA

C2EC

C2EF

C2F2

C2F5

C2F8

C2FB-

C2FD1

C300

C302

C304

C306

C308

C30B

C30E

C30F

C311

A4

FO

88

FO

20

C9

FO

88

B9

C9

FO

C8

C8

8C

CO

AO

90

8C

A9

4C

AO

98

85

8D

8D

8D

85

8D

8D

8D

8D

8D

A2

9D

95

95

95

95

9D

9D

CA

DO

60

A3

14

10

02

OD

OA

00

OD

02

74

2A

FF

08

2A

32

C8

00

A3

58

4A

96

D3

79

77

78

8A

6C

05

79

D7

DC

El

E6

7F

84

EC

AA

02

02

02

Cl

02

02

02

02

02

02

02

02

02

02

02

LDY

BEQ

DEY

BEQ

JSR

CMP

BEQ

DEY

LDA

CMP

BEQ

INY

INY

STY

CPY

LDY

BCC

STY

LDA

JMP

LDY

TYA

STA

STA

STA

STA

STA

STA

STA

STA

STA

STA

LDX

STA

STA

STA

STA

STA

STA

STA

DEX

BNE

RTS

$A3

$C2CB

$C2CA

$AA02

#$0D

$C2CB

$0200,Y

#$0D

$C2CB

$0274

#$2A

#$FF

$C2DC

$022A

#$32

$C1C8

#$00

$A3

$0258

$024A

$0296

$D3

$0279

$0277

$0278

$028A

$026C

#$05

$0279,X

$D7,X

$DC,X

$E1,X

$E6,X

$027F,X

$0284,X

$C2FD

Low-byte of input buffer pointer

address $A3/$A4 =$0200?

NO—Adjust buffer pointer

Is $A3 =1?

NO—Test for User command

Check command chars for <RETURN>

End-of-line reached?

NO—Set pointer to character

Get char from buffer; compare

with <RETURN> (end-of-line)

Identical?

NO—Set buffer pointer back to

output value

Save pointer value to end of cmd

string; max. length reached?

Value of 'no command1 command #

Cmd string less than buffer(42)?

NO-Clear command number

Line too long?

Display '32 Syntax Error1 message

Clear & set back table, pointers

and flags

Input buffer pointer at $0200

Current record length

Current filetype

Filetype from command string

Pointer to first filename

Filename pointer

#of files for lstfile designation

#of files for 2ndfile designation

'Wildcard found in filename1 flag

'Syntax Error1 flag

Clear table to five filenames

End position of filename in buffr

Directory sector of file

Position/file in directory sector

Drive number of file

Filetype and wildcard flag

Current track number of file

Current sector number of file

Table for next filename

All 5 possible filenames ready?

Return from this subroutine

ROM-117

Abacus Software 1571 Internals

[90B8/A60E/D84C/EE0D/C320:C82 6,C90F,CA88,DA96]

Get drive number of file and set into file table

Recover number of files for

file specification

Set number to be given for

a file

indication

Lzast active drive

Save current number

of filename

Starting pos.of filename in buffr

Get drive number from buffer

Number of current file parameters

Save position in command string;

Get drive position from that

Set drive number for file

Go to next file

Compare with # of files to be

worked on; all of them ready?

YES—Return from this subroutine

string

Position of filename in buffer

Number of standard drive

Colon ":■

Colon behind current position?

YES-Then syntax correct/goto$C352

Compare with current position

Pointer aiming at a colon?

YES—No drive assignment

Drive number

(0 or 1 allowed only);

save drive in Y-register

Current position in input buffer

Return from this subroutine

Drive number from command string

Set input buffer pointer behind

drives indicator (f:f)

Drive null?

YES—Then set drive;

Test for drive 1

Identical?

C312

C315

C318

C31A

C31D

C3204

C323

C3255

C327

C32A

C32D

C32F

C332

C333

C335

C336

C339

C33B

[C32A;

AD

8D

A9

8D

8D

AC

A2

86

BD

20

A6

9D

98

95

E8

EC

90

60

1

78

77

01

78

79

8E

00

D3

7A

3C

D3

7A

E2

78

EA

02

02

02

02

02

02

C3

02

02

Get drive number

C33C

C33D

C33F

C341

C344

C346

C349

C34B

C34C1

C34D2
C34F1

C350

C351

C3521

C355

C356

C357

C35.9

C35B

C35D

AA

A0

A9

DD

F0

DD

DO

E8

98

29

A8

8A

60

BD

E8

E8

C9

F0

C9

F0

00

3A

01

OC

00

01

01

00

30

F2

31

EE

02

02

02

LDA

STA

LDA

STA

STA

LDY

LDX

STX

LDA

JSR

LDX

STA

TYA

STA

INX

CPX

BCC

RTS

$0278

$0277

#$01

$0278

$0279

$028E

#$00

$D3

$027A,

$C33C

$D3

$027A,

$E2,X

$0278

$C325

X

X

from command

TAX

LDY

LDA

CMP

BEQ

CMP

BNE

INX

TYA

AND

TAY

TXA

RTS

LDA

INX

INX

CMP

BEQ

CMP

BEQ

#$00

#$3A

$0201,

$C352

$0200,

$C361

#$01

$0200

#$30

$C34D

#$31

$C34D

,x

rX

,x

ROM-118

Abacus Software 1571 Internals

C35F

C361J

DO EB

1 98

C362 09 80

C364 29 81

C366 DO E7

BNE $C34C NO-Jump to $C34C

TYA Standard drive number (0)

ORA #$80 Set flag for improper

AND #$81 drive number and give to

BNE $C34F subroutine

[C1E2]

Initialize drive

C368 A9 00

C36A 8D 8B 02

C36D AC 7A 02

C3701 Bl A3

C372 20 BD C3

C375 10 11

C377 C8

C378 CC 74 02

C37B B0 06

C37D AC 74 02

C380 88

C381 DO ED

C3831 CE 8B 02
A9 00

29 01

85 7F

4C 00 Cl

C386

C3881

C38A

C38C

and switch drive LED on

LDA #$00 Clear command syntax

STA $028B flag

LDY $027A Current position in input buffer

LDA ($A3),Y Get character from command string

JSR $C3BD Test for legal drive number

BPL $C388 Number correct?

INY NO-Pointer to next character

CPY $0274 Length of command string

BCS $C383 Reached end?

LDY $0274 NO-Length of command string

DEY Set pointer to last character

BNE $C370 Is only 1 command char onhand?

DEC $028B YES-1not found1 in syntax flag

LDA #$00 Set number of standard drive

AND #$01 as current drive number

STA $7F

JMP $C100 LED on

[C40E/C420/C427/C4 67/C4 97/C704/C70B]

Switch to other drive

C38F A5 7F

C391 49 01

C393 29 01

C395 85 7F

C397 60

LDA $7F

EOR #$01

AND #$01

STA $7F

RTS

Current drive number

Turn to drive bit and remove

other bits

Store as current drive

Return from this subroutine

[C823/DA98]

Set and determine filetype

C398

C39A

C39D

C3A0

C3A2

C3A5

C3A8

C3AB

C3AC

C3AE

A0 00

AD 77

CD 78 02

F0 16

CE 78 02

AC 78 02

B9 7A 02

A8

Bl A3

A0 04

02

LDY #$00

LDA $0277

CMP $0278

BEQ $C3B8

DEC $0278

LDY $0278

LDA $027A,Y

TAY

LDA <$A3),Y

LDY #$04

Choose first filename for table

Check position of 1st filename

w/position of filetype identifier

Identical?

NO—Then set pointer to filetype

Take pointer to end of filename

and get matching characters

from the filename

Number of possible filetypes

ROM-119

Abacus Software 1571 Internals

C3B0x

C3B3

C3B5

C3B6

C3B82

C3B9

C3BC

D9

FO

88

DO

98

8D

60

BB

03

F8

96

FE

02

CMP

BEQ

DEY

BNE

TYA

STA

RTS

$FEBB,Y

$C3B8

$C3B0

$0296

Characters in filetype table

onhand?

Turn pointer to next filetype

Already testd with all filetypes?

YES—Save number of

filetypes (=0 when none exist)

Return from this subroutine

[C372/DA68]

Drive number tested for validity

C3BD

C3BF

C3C1

C3C3

C3C5

C3C72

C3C9

C9

F0

C9

F0

09

29

60

30

06

31

02

80

81

CMP

BEQ

CMP

BEQ

ORA

AND

RTS

#$30

$C3C7

#$31

$C3C7

#$80

#$81

Is drive number

equal to drive 0?

NO-Then is drive number

equal to drive 1?

NO-Set bit 7 as error flag Sclear

remaining bits(from ASCII values)

Return from this subroutine

[C44F/C82 9/D84F/DA9E]

Initialize drive given in filename

C3CA A9 00 LDA #$00 Clear temp, memory for creating

C3CC 85 6F STA $6F index of control bytes

C3CE 8D 8D 02 STA $028D Clear 'number of drives1 flag

C3D1 48 PHA Prepare stack for following prog.

C3D2 AE 78 02 LDX $0278 Number of names going with files

C3D52 68 PLA Pointer to control byte

C3D6 05 6F ORA $6F Enter and save last

C3D8 48 PHA entry

C3D9 A9 01 LDA #$01 Set flag for 'Drive indication

C3DB 85 6F STA $6F is onhand1

C3DD CA DEX Countr for filenames tobe checked

C3DE 30 OF BMI $C3EF Dirve number ready for all files?

C3E0 B5 E2 LDA $E2,X Get file drive number

C3E2 10 04 BPL $C3E8 Drives identifier set?

C3E4 06 6F ASL $6F NO-Adjust

C3E6 06 6F ASL $6F bit flags

C3E81 4A LSR A Test drive number

C3E9 90 EA BCC $C3D5 Is drive 1 chosen?

C3EB 06 6F ASL $6F YES-Pointer to bytes for drive 1

C3ED DO E6 BNE $C3D5 Jump to $C3D5

C3EF1 68 PLA Set control byte pointer

C3F0 AA TAX for drive initialization

C3F1 BD 3F C4 LDA $C43F,X Get and save access

C3F4 48 PHA control byte

C3F5 2 9 03 AND #$03 Determine # of allowable drives;

C3F7 8D 8C 02 STA $028C save it

ROM-120

Abacus Software 1571 Internals

C3FA

C3FB

C3FC

C3FE

C400

C402

C404

C407

C409

C40C

C40E

C411

C413

C416

C419

C41B1

C41D

C4201

C423

C426

C427

C42A

C42B

C42D

C42F

C432

C4341
C437

C4393

C43C1

C43D

68

OA

10

A5

29

85

AD

FO

20

FO

20

A9

8D

20

FO

A9

20

20

20

08

20

28

FO

A9

8D

FO

20

DO

4C

2A

4C

3E

E2

01

7F

8C

2B

3D

12

8F

00

8C

3D

IE

74

C8

8F

3D

8F

OC

00

8C

05

3D

E2

00

00

02

C6

C3

02

C6

Cl

C3

C6

C3

02

C6

Cl

C4

PLA

ASL

BPL

LDA

AND

STA

LDA

BEQ

JSR

BEQ

JSR

LDA

STA

JSR

BEQ

LDA

JSR

JSR

JSR

PHP

JSR

PLP

BEQ

LDA

STA

BEQ

JSR

BNE

JMP

ROL

JMP

A

$C43C

$E2

#$01

$7F

$028C

$C434

$C63D

$C420

$C38F

#$00

$028C

$C63D

$C439

#$74

$C1C8

$C38F

$C63D

$C38F

$C439

#$00

$028C

$C439

$C63D

$C41B

$C100

A

$C400

Repeat control byte

Flag for 'Only one drive1

Is only one indicator allowed?

YES-Take drive # of first file

as current

drive

Get number of allowable drives

Is it an allowable drive?

NO-Initialize current drive

Drive ready?

NO—Switch to other drive

Clear number of allowable

drives

Initialize other drive

Drive ready?

NO-Display

■74 Drive Not Ready1 message

Change to other drive

Initialize drive and

save result

Switch to other drive & get

previous result again

Is previous drive ready?

NO-CLear legal number of

drives

Jump to $C439

Initialize drive

Is drive ready?

YES-Switch LED of drive on

Adjust control byte and get

drive number from control byte

[C3F1] Control bytes for type of drive initialization

Functions of individual bits:

Bit 0/1 : Number of drives utilized (0/1/2)

Bit 6 : 1= Take drive number from control byte

Bit 7 : 0/1 drive number for Bit6

C440 00 80 41 01 01 01 01 81

C448 81 81 81 42 42 42 42

ROM-121

Abacus Software 1571 Internals

[90C8/C952/CA99/E7B8]

Look for file entry in directory

C44F

C4521

C454

C457

C45A

C45C1

C45F

C461

C4621

C464

C467

C4 6A

C4 6D

C4701

C473

C4752

C478

C47B

C47D

C47E1

C481

C483

C4851

C488

C4 8A

[C86D]

Search

C48B

C48E

C490

C4921

C494

C4 97

C4 9A

C49D3

C4 9F

C4A2

C4A5

C4A7

C4AA2
C4AD

C4AF

C4B2

20

A9

8D

20

DO

CE

10

60

A9

8D

20

20

4C

20

F0

20

AD

F0

60

AD

30

10

AD

F0

60

CA

00

92

AC

19

8C

01

01

8D

8F

00

52

17

10

D8

8F

01

53

ED

FO

8F

D2

l file

20

F0

DO

A9

8D

20

20

A9

8D

20

DO

8D

AD

DO

CE

10

04

1A

28

01

8D

8F

00

00

92

AC

13

8F

8F

28

8C

DE

C3

02

C5

02

02

C3

Cl

C4

C6

C4

02

02

02

JSR

LDA

STA

JSR

BNE

DEC

BPL

RTS

LDA

STA

JSR

JSR

JMP

JSR

BEQ

JSR

LDA

BEQ

RTS

LDA

BMI

BPL

LDA

BEQ

RTS

entry in

C6

02

C3

Cl

02

C5

02

02

02

JSR

BEQ

BNE

LDA

STA

JSR

JSR

LDA

STA

JSR

BNE

STA

LDA

BNE

DEC

BPL

$C3CA

#$00

$0292

$C5AC

$C475

$028C

$C4 62

#$01

$028D

$C38F

$C100

$C452

$C617

$C485

$C4D8

$028F

$C47E

$0253

$C470

$C475

$028F

$C45C

directory

$C604

$C4AA

$C4BA

#$01

$028D

$C38F

$C100

#$00

$0292

$C5AC

$C4BA

$028F

$028F

$C4D7

$028C

$C4 92

Set disk drive for file to search

Indicator on 1st directory entry

Erase

Set indicator, search entry

Valid entry found?

NO—number of disk drives

One more disk drive?

Back to calling routine

Flag for both disk drives

Search set

Change to other disk drive

Activate LED at disk drive

Search entry on other disk drive

Search next valid file

Found?

YES—check directory entry

Indicator for file entry found

Is entry corrrect?

YES—back to calling routine

Flag for entry is found

Is file found?

YES- jump to $C475

Is flag for file found

Last entry?

NO—return to the calling routine

Search directory for file

Is entry found?

YES-continue at $C4BA

Flag for access on both drives

Set

Change to other disk drive

Switch on LED

Indicator on first value

Delete entry

Initial indicator; search entry

Is file found?

Position

Store

Last entry

YES—number of allowed drives

Switch to other disk drive?

ROM-122

Abacus Software 1571 Internals

C4B4

C4B53

C4B8

C4BA2

C4BD

C4C0

C4C2

C4C5

C4C7

C4C91

C4CC

C4CE

C4D0

C4D2

C4D5

C4D73

60

20 17 C6

F0 F0

20 D8 C4

AE 53 02

10 07

AD 8F 02

FO EE

DO OE

AD 96 02

FO 09

B5 E7

29 07

CD 96 02

DO DE

60

[C475/C4BA]

Searct

C4D8

C4DA

C4DD

C4DE

C4E1

C4E4

C4E61

i directory

A2 FF

8E 53 02

E8

8E 8A 02

20 89 C5

FO 06

60

RTS

JSR

BEQ

JSR

LDX

BPL

LDA

BEQ

BNE

LDA

BEQ

LDA

AND

CMP

BNE

RTS

$C617

$C4AA

$C4D8

$0253

$C4C9

$028F

$C4B5

$C4D7

$0296

$C4D7

$E7,X

#$07

$0296

$C4B5

r entry

LDX

STX

INX

STX

JSR

BEQ

RTS

#$FF

$0253

$028A

$C589

$C4EC

[C4F5/C4FC/C513/C519/C533]

Search next entry

C4E7

C4EA

C4EC1

C4EE

C4F0

C4F1

C4F3

C4F5

C4F7

C4F9

C4FC

C4FE1

C501

C502

C505

C507

C50A1

20 94 C5

DO FA

A5 7F

55 E2

4A

90 OB

29 40

FO FO

A9 02

CD 8C 02

FO E9

BD 7A 02

AA

20 A6 C6

AO 03

4C ID C5

BD 00 02

JSR

BNE

LDA

EOR

LSR

BCC

AND

BEQ

LDA

CMP

BEQ

LDA

TAX

JSR

LDY

JMP

LDA

$C594

$C4E6

$7F

$E2,X

A

$C4FE

#$40

$C4E7

#$02

$028C

$C4E7

$027A,X

$C6A6

#$03

$C51D

$0200,X

NO—return to calling routine

Get next entry

Entry found?

YES—verify entry w/searched flag

Get flag

Is entry the same?

NO-get flag found for file

Was file found?

NO-jump to $C4D7

Get actual file type

Is entry valid?

YES-get indicator:search filetype

And insulate save for type

Verify with search file type

Identical?

YES—return to calling routine

Flag for entry found

Delete

(0)

Delete flag for wildcard

Set file flag

Was entry found?

YES—return to calling routine

Search next entry

Found ?

YES-get current disk drive and

Verify with disk drive number of

the file entry

Identical?

NO-get flag for disk drive type

Drive set with standard value?

YES-value f/access to both drives

Verify with access flag

Search for both disk?

NO-get and store position of file

Name in command string

Set parameter for name in command

Set buffer indicator on Dir. name

Verify names with command string

Get character from oommand string

ROM-123

Abacus Software 1571 Internals

C50D

C50F

C511

C513

C515

C517

C519

C51B1

C51C

C51D1

C520

C522

C525

C527

C529

C52B1

C52D

C52F

C531

C533

C5352

C538

C53B

C53D

C53F

C542

C545

C547

C549

C54B

C54D

C54F

C550

C551

C553

C555

C556

C558

C55A

C55C1

C55E

C560

C562

C564

C566

C568

Dl 94

FO OA

C9 3F

DO D2

Bl 94

C9 AO

FO CC

E8

C8

EC 76 02

BO 09

BD 00 02

C9 2A

FO OC

DO DF

CO 13

BO 06

Bl 94

C9 AO

DO B2

AE 7 9 02

8E 53 02

B5 E7

29 80

8D 8A 02

AD 94

95 DD

A5 81

95 D8

AO 00

Bl 94

C8

48

29 40

85 6F

68

29 DF

30 02

09 20

29 27

05 6F

85 6F

A9 80

35 E7

05 6F

95 E7

02

CMP ($94),Y Verify name with directory name

BEQ $C51B Identical?

CMP #$3F NO-verify wilcard with ■?•

BNE $C4E7 Identical?

LDA ($94),Y YES—get char from directory entry

CMP #$A0 Verify w/value for shift space

BEQ $C4E7 Entire filename already read?

INX NO—indicator of command string

INY Point idicator in directory buff

CPX $027 6 Indicator to end of name in comnd

BCS $C52B End of filename reached?

LDA $0200,X NO-get character from filename

CMP #$2A Verify with '*'char for wildcard

BEQ $C535 Identical?

BNE $C50A NO-jump to $C50A

CPY #$13 Verify with return

BCS $C535 Is ASCII value smaller ?

LDA ($94),Y YES-get char from directory and

CMP #$A0 Verify with value for shift space

BNE $C4E7 Complete filename already read?

LDX $0279 YES-get position for dir. entry

STX $0253 and set indicator

LDA $E7,X Determine entry of file

AND #$80 Set flag for joker

STA $028A and store

LDA $02 94 Indicator to pos. in dir. buffer

STA $DD,X Determine filename in table

LDA $81 Number of directory sector

STA $D8,X Store

LDY #$00 Buffer indicator to entry start

LDA ($94),Y Get file type from directory

INY Buffer indicator to next char

PHA Store original file type

AND #$40 Insulate flag for scratch-protect

STA $6F and store

PLA Recall file type

AND #$DF Fade out scratch file

BMI $C55C Is file closed properly?

ORA #$20 NO-flag for1*1 file

AND #$27 Take over flag and file type

ORA $6F and fade in scratch flag

STA $6F Store both

LDA #$80 Flag for 'File type is set1

AND $E7,X Take over from table

ORA $6F & fade in bits from new filetypes

STA $E7,X Determine type in table/filename

ROM-124

Abacus Software 1571 Internals

C56A

C56C

C56E

C570

C572

C574

C577

C578

C57A

C57D

C580

C582

C584

C586

B5

29

05

95

Bl

9D

C8

Bl

9D

AD

DO

AO

Bl

8D

E2

80

7F

E2

94

80

94

85

58

07

15

94

58

[C4E1/C580]

02

02

02

02

Re-initial flags

C589

C58B

C58E

C591

A9

8D

AD

8D

FF

8F

78

79

[C4E7/C5A4]

Quit

C594

C597

C599

C59A1

C59D

C59F

C5A1

C5A4

C5A6]
C5A8

C5AB

search

CE

10

60

• AE

B5

30

BD

DO

■ A9

8D

60

79

01

79

E7

05

80

EE

00

8F

02

02

02

for

02

02

02

02

LDA

AND

ORA

STA

LDA

STA

INY

LDA

STA

LDA

BNE

LDY

LDA

STA

LDA

STA

LDA

STA

$E2,X

#$80

$7F

$E2,X

($94),

$0280,

($94),

$0285,

$0258

$C589

#$15

($94),

$0258

#$FF

$028F

$0278

$0279

filename

DEC

BPL

RTS

LDX

LDA

BMI

LDA

BNE

LDA

STA

RTS

$0279

$C59A

$0279

$E7,X

$C5A6

$0280

$C594

#$00

$028F

Y

X

Y

X

Y

,x

Get number of entry's disk drive

and current disk drive number

Enter

Write value in disk drive table

Get track number of 1st sector

and enter in table

Point indicator to next byte

Get sector number from entry

and store

Get current record length

Is value set?

NO-buffr indicator to value/entry

Get record length of dir. entry

and store in indicator

Delete indicator

Flag for last entry

Indicator to position of filename

in the input buffer

Number of filenames

Process more entries?

NO-back to calling routine

Get number of filename

and determine current file type

Is value set?

NO-get track of first sector

Is value determined?

NO-flag:last dir entry reached

Set

Return to calling routine

[C457/C4A2/D70E/ED97]

Set indicator to search

C5AC

C5AE

C5B1

C5B2

C5B5

C5B8

C5BA

C5BC

00

91 02

A0

8C

88

8C 53 02

AD 85 FE

85 80

A9 01

85 81

in directory

LDY #$00 Indicator to current dir. sector

STY $0291 Delete

DEY Flag for 'ENTRY FOUND'

STY $0253 Reset

LDA $FE85 Number of directory track(18)

STA $80 Get, and store as current track

LDA #$01 Indicator to sector number

STA $81 Set

ROM-125

Abacus Software 1571 Internals

C5BE

C5C1

C5C41

C5C7

C5C9

C5CA1

C5CC

C5CF

C5D1

C5D4

C5D71

C5DA

C5DD

C5DF

C5E1

C5E3

C5E6

C5E8

C5EB1
C5ED

C5F0

C5F2

C5F5

C5F8

C5FA

C5FB*

C5FD

C600

C602

C6042

C607

C609

C60C

C60E

C611

C614

C6176

C619

C61C

C61F

C621

C623

C626

C6291

C62C

8D

20

AD

DO

60

A9

8D

A9

20

8D

20

CE

A0

Bl

DO

AD

DO

20

A5

8D

A5

AE

8D

FO

60

A2

EC

DO

FO

AD

85

AD

85

20

AD

20

A9

8D

AD

30

A9

20

4C

20

4C

93

75

93

01

07

95

00

F6

93

E8

95

00

94

18

91

2F

3B

81

91

94

92

92

ID

01

92

2D

13

85

80

90

81

75

94

C8

FF

53

95

08

20

C6

D7

4D

C4

02

D4

02

02

D4

02

D4

02

02

DE

02

02

02

02

FE

02

D4

02

D4

02

02

Dl

C5

D4

C5

STA

JSR

LDA

BNE

RTS

LDA

STA

LDA

JSR

STA

JSR

DEC

LDY

LDA

BNE

LDA

BNE

JSR

LDA

STA

LDA

LDX

sta:

BEQ

RTS

LDX

CPX

BNE

BEQ

LDA

STA

LDA

STA

JSR

LDA

JSR

LDA

STA

LDA

BMI

LDA

JSR

JMP

JSR

JMP

$0293

$D475

$0293

$C5CA

#$07

$0295

#$00

$D4F6

$0293

$D4E8

$0295

#$00

($94)

$C5FB

$0291

$C617

$DE3B

$81

$0291

$94

$0292

$0292

$C617

#$01

$0292

$C62F

$C617

$FE85

$80

$0290

$81

$D475

$0294

$D4C8

#$FF

$0253

$0295

$C629

#$20

$D1C6

$C5D7

$D44D

$C5C4

Delete flag for 'SECTOR READ1

Transfer sector in buffer

Indicator to next dir. sector

Is there another sector?

NO—return to calling routine

Store amount of file entries in

a directory block - 1

Position of byte to read

Get byte of current buffer

and store

Set indicator for current buffer

Counter for entries in dir.sector

Set indicator to start of entry

and get file type identification

Is entry deleted?

YES-number of current sector

Is value set?

NO-get track and sector number

of current directory sector

Store

Low-byte of indicator to entry

Get indicator to valid entry

Set new value

Was indicator deleted before?

NO-return to calling routine

Number of first entry

Verify with last value

Was first entry set?

NO-jump to $0617

Number of directory track

Get and store as current track

Number of directory sector

Store as current sector

Read sector from disc in buffer

Indictor on postion of entry

Set directory indicator

Flag for 'file entry found1

Delete

of directory entries per sector

Is counter set?

YES—amount of bytes of an entry

Buff indictor to next file entry

Set indicator

Read next block from directory

Set indicator

ROM-126

Abacus Software 1571 Internals

C62F1

C631

C634

C637

C639

C63C

A5

8D

20

A5

8D

60

94

94

3B

81

90

02

DE

02

[83A0/840B/9088/

Initial Diskette

C63D

C63F

C641

C643

C645

C647

C649

C64C

C64F

C651

C653

C655

C657

C659

C65B

C65D

C65F3
C661

C662

C664

C666

C6693
C66B

C66D

A5

DO

A6

56

90

A9

8D

20

AO

C9

FO

C9

FO

C9

FO

AO

A6

98

95

DO

20

A6

B5

60

68

28

7F

1C

22

FF

98

OE

FF

02

OA

03

06

OF

02

00

7F

FF

03

42

7F

FF

02

DO

DO

LDA

STA

JSR

LDA

STA

RTS

'C409/

LDA

BNE

LDX

LSR

BCC

LDA

STA

JSR

LDY

CMP

BEQ

CMP

BEQ

CMP

BEQ

LDY

LDX

TYA

STA

BNE

JSR

LDX

LDA

RTS

$94

$0294

$DE3B

$81

$0290

'C416/C

$68

$C669

$7F

$1C,X

$C669

#$FF

$0298

$DOOE

#$FF

#$02

$C65F

#$03

$C65F

#$0F

$C65F

#$00

$7F

$FF,X

$C669

$D042

$7F

$FF,X

Low-byte of current indictor

Store

Get track and sector of last job

Number of directory sector

Store

Back to calling routine

Flag for 'initial automatic1

Initial permitted only by hand?

NO-number of current disc drive

Get/check flag for initialization

Shall disc be initialized?

Yes,watch flag for 'error by job1

Delete

Check if disk is inserted

Flag value for 'error occured1

Verify result with code for sync

Was sync mark found?

YES-check for blockheader code

Was blockheader found?

YES-check code of disk drive

Is the disk drive approachable?

YES-flag value for "no error1

Get number of current disk drive

And the error flag

In respective disk drive status

Is disk drive ready?

YES-read BAM

Get number of current disc drive

And respective disc drive status

Back to calling routine

[CAC0/D768/EE68]

Copy file name from input buffer to directory buffer

(The Accumulator has to contain the length of the name in X, the

position in the string in Y and the number of the directory buffer)

C66E

C66F

C672

C675

C676

C677

C67A

C67B

C67D

48

20 A6 C6

20 88 C6

68

38

ED 4B 02

AA

F0 0A

90 08

PHA

JSR $C6A6

JSR $C688

PLA

SEC

SBC $024B

TAX

BEQ $C687

BCC $C687

Store length of file name

Postition of name in inputstring

Determine and copy name in buffer

Recall length of file name

Length of copied file name

Verify with maximum lengths

of file entry (16)

Is entry fulfilled?

No-file name smaller than place?

ROM-127

Abacus Software 1571 Internals

C67F A9 AO

C6811 91 94

C683 C8

C684 CA

C685 DO FA

C6872 60

LDA #$A0

STA ($94),Y

BNE $C681

Yes-fill rest of the characters

of filename with 'shift space1

Buffer indicator to nxt char pos.

Amount of characters to fill

File named filled?

YES-back to calling routine

[C672]

C688

C689

C68A

C68B

C68E

C690

C693

C695

C6971

C69A

C69C

C69D

C69F

C6A0

C6A3

C6A51

Copy

98

0A

A8

B9 99

85 94

B9 9A

85 95

AO 00

BD 00

91 94

C8

F0 06

E8

EC 76

90 F2

60

part of the input

TYA

ASL A

TAY

00

00

02

02

LDA $0099,Y

STA $94

LDA $009A,Y

STA $95

LDY #$00

LDA $0200,X

STA ($94),Y

INY

BEQ $C6A5

INX

CPX $0276

BCC $C697

RTS

buffer and the current data buffer

Double the number

of current buffer

(Table contains 2-byte indicator

Get address of buffer (Low-byte)

& set in indicator of dir. buffer

Get address of buffer (High-byte)

& set in indicator in dir. buffer

Delete indicatr on bufferposition

Get byte from input buffer

And copy in current buffer

Data buffr indicator to next page

Data buffer full?

NO-raise indicator input buffer

Verify w/lengths of comnd strings

Last character reached?

YES-back to calling routine

[C502/C66F]

Search length of

C6A6 A9 00

C6A8 8D 4B 02

C6AB 8A

C6AC 48

C6AD1 BD 00 02

C6B0 C9 2C

C6B2 F0 14

C6B4 C9 3D

C6B6 F0 10

C6B8 EE 4B 02

C6BB E8

C6BC A9 OF

C6BE CD 4B 02

C6C1 90 05

C6C3 EC 74 02

C6C6 90 E5

C6C8-

C6CB

C6CC

C6CD

8E 76 02

68

AA

60

file name in input buffer (Start position in X)

LDA #$00 Indicator on length of name

STA $024B Delete

TXA Get startposition in input buffer

PHA And store

LDA $0200,X Get character of name

CMP #$2C And verify with »,"

BEQ $C6C8 Indentical?

CMP #$3D NO-verify with '=■

BEQ $C6C8 Identical?

INC $024B NO-raise length of file name

INX Set buffer indicator to next char

LDA #$0F Verify lengths of current name

CMP $024B with maximum lengths of file name

BCC $C6C8 Current file name to big?

CPX $0274 NO-verify position w/endof string

BCC $C6AD Is end of input string reached?

STX $0276 YES-store length of file name

PLA & recall indicator to start pos.

TAX And set

RTS Back to calling routine

ROM-128

Abacus Software 1571 Internals

[ECF2]

Read file entry from directory

C6CE A5 83 LDA $83

C6D0 48 PHA

C6D1 A5 82 LDA $82

C6D3 48 PHA

C6D4 20 DE C6 JSR $C6DE

C6D7 68 PLA

C6D8 85 82 STA $82

C6DA 68 PLA

C6DB 85 83 STA $83

C6DD 60 RTS

Current active secondary address

Save

Number of current active channel

Save

Get file entry

Number of channel

Restore

End previous secondary address

Set again

Back to calling routine

[C6D4]

Establish directory for output

C6DE A9 11 LDA #$11

C6E0 85 83 STA $83

C6E2 20 EB DO JSR $D0EB

C6E5 20 E8 D4 JSR $D4E8

C6E8 AD 53 02 LDA $0253

C6EB 10 0A BPL $C6F7

C6ED AD 8D 02 LDA $028D

C6F0 DO 0A BNE $C6FC

C6F2 20 06 C8 JSR $C806

C6F5 18 CLC

C6F6 60 RTS

C6F71 AD 8D 02 LDA $028D

C6FA F0 IF BEQ $C71B

C6FC1 CE 8D 02 DEC $028D

C6FF DO 0D BNE $C70E

C701 CE 8D 02 DEC $028D

C704 20 8F C3 JSR $C38F

C707 20 06 C8 JSR $C806

C70A 38 SEC

C70B 4C 8F C3 JMP $C38F

C70E1 A9 00 LDA #$00

C710 8D 73 02 STA $0273

C713 8D 8D 02 STA $028D

C716 20 B7 C7 JSR $C7B7

C719 38 SEC

C71A 60 RTS

C71B1 A2 18 LDX #$18

C71D A0 ID LDY #$1D

C71F Bl 94 LDA ($94),Y

C721 8D 73 02 STA $0273

C724 F0 02 BEQ $C728

C726 A2 16 LDX #$16

to buffer

Secondary address 17

Determine

Open channel

Set indicator to current buffer

Get flag for file entry

Was entry found?

NO-flag for directory disc drives

Directory of both disc drives?

NO-get 'blocks free1 and write

In buffer

Back to calling routine

Check flag for directory drives

Directory of both disc drives

YES-set flag to 'no1

Was flag not set right?

NO—correct flag

Change to other disc drive

Get 'blocks free' write in buffer

And switch back to

Previous disk drive

Memory for block number

Delete

Delete flag: 'both disc drives'

Develope title of directory

Flag for 'more entries'

Back to calling routine

Length of directory line (24)

Set byte indicator for filelength

Get amount of blocks (high-byte)

and store

Is block number >256 & 3 digit?

YES-decrease length of characters

ROM-129

Abacus Software 1571 Internals

C7281

C729

C72B

C72E

C730

C732

C734

C736

C737

C739

C73B

C73C3

C73F

C741

C742

C743

C745

C747

C74A1

C74B

C74D

C74E

C751

C754

C755

C758

C75B

C75C

C75F

C762

C763

C764

C766

C768

C76B1

C7 6D

C770

C771

C7731
C775

C778

C779

C77A

C77C

C77E

C780

C7831

02

88

Bl 94

8D 72

E0 16

FO OA

C9 OA

90 06

CA

C9 64

90 01

CA

20 AC C7

Bl 94

48

OA

10 05

A9 3C

9D B2 02

68

29 OF

A8

B9 C5 FE

9D Bl 02

CA

B9 CO FE

9D Bl 02

CA

B9 BB FE

9D Bl 02

CA

CA

BO 05

A9 2A

9D B2 02

A9 AO

9D Bl 02

CA

AO 12

Bl 94

9D Bl 02

CA

88

CO 03

BO F5

A9 22

9D Bl

E8

02

DEY Buffer indicator for block #

LDA ($94),Y Get lo-byte for block number

STA $0272 And store

CPX #$16 Verify w/value for short length

BEQ $C73C Is 3 digit block number there?

CMP #$0A Verify amount of blocks with ten

BCC $C73C Block number smaller (one digit)?

DEX NO-shorten rest line

CMP #$64 Verify block number with 100

BCC $C73C Is block number smaller(2 digit)?

DEX NO-shorten rest line

JSR $C7AC Delete buffer for directory

LDA ($94),Y Get byte for file type

PHA And store

ASL A Get bit 6 as flag file lock

BPL $C74A Is file locked?

LDA #$3C YES-char for file locking »<"

STA $02B2,X Write behind file type

PLA Recall file type

AND #$0F Insulate file type

TAY And its short name in directory

LDA $FEC5,Y 3rd letter of file short name

STA $O2B1,X Get and write in buffer

DEX Shorten length of directory line

LDA $FEC0,Y 2nd letter of file short name

STA $O2B1,X Get and write in buffer

DEX Shorten name of directory line

LDA $FEBB,Y 1st letter of file short name

STA $O2B1,X Get and write in buffer

DEX Shorten length "of

DEX Directory

BCS $C76B Is the file closed properly?

LDA #$2A NO-1*1 as notification

STA $02B2,X Set before file short name

LDA #$A0 One empty character

STA $O2B1,X Insert

DEX & shorten length of dir. line

LDY #$12 Set buffer position of file name

LDA ($94),Y Get character of file name

STA $O2B1,X And write in directory buffer

DEX Shorten length of directory line

DEY Lower buffer indicator

CPY #$03 Verify with end value

BCS $C773 All chars of name taken over?

LDA #$22 YES-set "before name"

STA $O2B1,X Set

INX Raise indicator in directory line

ROM-130

Abacus Software 1571 Internals

C784

C786

C788

C78B

C78D

C78F

C791

C7932

C7 95

C798

C7991

C7 9B

C7 9D

C7 9F

C7A2

C7A5

C7A71

C7AA

C7AB

EO

BO

BD

C9

FO

C9

DO

A9

9D

E8

EO

BO

A9

3D

9D

10

20

38

60

20

OB

Bl

22

04

AO

FO

22

Bl

20

OA

7F

Bl

Bl

Fl

B5

02

02

02

02

C4

CPX

BCS

LDA

CMP

BEQ

CMP

BNE

LDA

STA

INX

CPX

BCS

LDA

AND

STA

BPL

JSR

SEC

RTS

#$20

$C793

$O2B1,X

#$22

$C7 93

#$A0

$C783

#$22

$O2B1,X

#$20

$C7A7

#$7F

$O2B1,X

$O2B1,X

$C798

$C4B5

Check to maximum value

End of buffer reached?

NO—get character from file name

And verify with "

Identical?

NO-verify with 'shift space1

Identical?

YES-then replace with "

(at end of data name)

Set filename indicator to next

byte and verify with end value

End of file name reached?

NO-value f/bit 7(reverse)deleted

Get character of directory line

And switch reverse off

Always jump to $C7 98

Get next entry

Flag for 'more entries1

Back to calling routine

[C73C/C7BD/C806]

Delete buffer for data name with

C7AC

C7AE

C7B01

C7B3

C7B4

C7B6

C7B7

C7BA

C7BD

C7C0

C7C2

C7C4

C7C6

C7C9

C7CB

C7CE

C7D0

C7D3

C7D5

C7D8

C7DA

C7DC

C7DE

C7E0

A0 IB

A9 20

99 B0 02

88

DO FA

60

20 19 Fl

20 DF F0

20 AC C7

A9 FF

85 6F

A6 7F

8E 72 02

A9 00

8D 73 02

A6 F9

BD E0 FE

85 95

AD 88 FE

85 94

A0 16

Bl 94

C9 A0

DO 0B

LDY #$1B

LDA #$20

STA $02B0,Y

DEY

BNE $C7B0

RTS

JSR $F119

JSR $F0DF

JSR $C7AC

LDA #$FF

STA $6F

LDX $7F

STX $0272

LDA #$00

STA $0273

LDX $F9

LDA $FEE0,X

STA $95

LDA $FE88

STA $94

LDY #$16

LDA ($94),Y

CMP #$A0

BNE $C7ED

empty character

Length of directory line (27)

Empty character as delete value

Delete buffer position

Set buffer indicator to next byte

Buffer deleted?

YES-return to calling routine

Set pointer to BAM

Read BAM from diskette

Clear buffer for directory line

Initialize

temporary storage

Write number of current drive

as two-byte value (as in block #)

in directory buffer

Directory buffer

Get current buffer number

Get buffer address (high-byte)

and save it

Take pos. of diskname as lo-byte

of buffer address

Length of diskette name

Get character of name

Compare with 'Shift Space1

Is diskette name at an end?

ROM-131

Abacus Software 1571 Internals

C7E2

C7E4

C7E51
C7E7

C7E9

C7EB

C7ED2

C7F0

C7F1

C7F3

C7F5

C7F8

C7FA

C7FD

C800

C802

C805

A9

2C

Bl

C9

DO

A9

99

88

10

A9

8D

A9

8D

8D

A9

8D

60

31

94

AO

02

20

B3

F2

12

Bl

22

B2

C3

20

C4

02

02

02

02

02

LDA #$31

.byte $2C

LDA

CMP

BNE

LDA

STA

DEY

BPL

LDA

STA

LDA

STA

STA

LDA

STA

RTS

($94),Y

#$A0

$C7ED

#$20

$02B3,Y

$C7E5

#$12

$O2B1

#$22

$02B2

$02C3

#$20

$02C4

YES-Dummy for test after ('I1)

Jump two bytes

Get char from directory entry

Compare with 'Shift Space1

Is entry to an end?

YES-Transfer blank character into

buffer and set buffer pointer

to next byte

End of buffer reached?

YES-Code for 'Reverse On1 on

Set line beginning in buffer

Put quotation marks before and x

after the diskette

name

Write space in

buffer

return from this subroutine

[C6F2/C707]

Set up closing line with 'Blocks free.'

C806 20 AC C7 JSR $C7AC Clear buffer for directory line

C809 A0 0B LDY #$0B Set linelength

C80B1 B9 17 C8 LDA $C817,Y Get char from 'Blocks Free'string
C80E 99 Bl 02 STA $O2B1,Y and write into buffer

C811 88 DEY Set buffer pointer to next byte

C812 10 F7 BPL $C80B Line ready?

C814 4C 4D EF JMP $EF4D YES-Get number of free blocks

C817 42 4C 4F 43 4B 53 20

C81E 46 52 45 45 2E

•BLOCKS

1 FREE.'

[Origin through routine C14 6]

Routine for Scratch command

C823 20 98 C3 JSR $C398

C826 20 20 C3 JSR $C320

C82 9 20 CA C3 JSR $C3CA

C82C A9 00 LDA #$00

C82E 85 86 STA $86

C830 20 9D C4 JSR $C4 9D

C833 30 3D BMI $C872

C8351 20 B7 DD JSR $DDB7
C838 90 33 BCC $C86D

C83A A0 00 LDY #$00

C83C Bl 94 LDA ($94),Y

C83E 29 40 AND #$40

C840 DO 2B BNE $C86D

Chk if cmd is limited/filetype

Get drive # from command string

Initialize drive

Set back counter for number of

deleted files

Get first file entry

Entry found?

YES-Test file for validity

Has file been closed properly?

YES-Pointer to filetype position

Get filetype from directory

Test bit6 as flag f/scratch prot.

Is the file ready for scratching?

ROM-132

Abacus Software 1571 Internals

C842

C845

C847

C849

C84B

C84D

C84E

C850

C852

C855

C858

C85A

C85C

C85E

C861

C863

C866

C868

C86B1

C86D2

C870

C8721

C874

C876

C878

C87A

20

A0

Bl

FO

85

C8

Bl

85

20

AD

A9

35

DO

BD

85

BD

85

20

E6

20

10

A5

85

A9

AO

4C

B6

13

94

OA

80

94

81

7D

78

20

E7

OD

80

80

85

81

7D

86

8B

C3

86

80

01

00

A3

C8

C8

02

02

02

C8

C4

Cl

JSR

LDY

LDA

BEQ

STA

INY

LDA

STA

JSR

LDA

LDA

AND

BNE

LDA

STA

LDA

STA

JSR

INC

JSR

BPL

LDA

STA

LDA

LDY

JMP

$C8B6

#$13

($94),

$C855

$80

($94),

$81

$C87D

$0278

#$20

$E7,X

$C86B

$0280,

$80

$0285,

$81

$C87D

$86

$C48B

$C835

$86

$80

#$01

#$00

$C1A3

Y

Y

X

X

NO—Delete entry

Set pointer to side-sector entry

Get track # of first side-sector

Side-sector onhand?

YES—Save track number and

get corresponding

sector number as entry

and Save it

Pursue and free up blocks

Entry number

Check Flag for 'File not closed1

in filetype identifier

Is entry a '*• file?

NO—Set track of first sector

as current track number

Take up sector number of

file data

Follow and free up file blocks

Increment # of scatched files

Get next file entry

Found it?

NCMSive # of deleted files to

return message

Number of return message

Value for sector number

Display '01 Files Scratched1

[C852/C868/DC1B]

Pursue sectors onhand and free

C87D

C880

C883

C886

C888

C88A

C88C

C88F

C891

C8942
C896

C899

C89C

C89E

C8A1

C8A3

C8A5

20

20

20

B5

C9

F0

AD

09

8D

A9

20

20

85

20

85

A5

DO

5F

75

19

A7

FF

08

F9

40

F9

00

C8

56

80

56

81

80

06

EF

D4

Fl

02

02

D4

Dl

Dl

JSR

JSR

JSR

LDA

CMP

BEQ

LDA

ORA

STA

LDA

JSR

JSR

STA

JSR

STA

LDA

BNE

$EF5F

$D475

$F119

$A7,X

#$FF

$C894

$02F9

#$40

$02F9

#$00

$D4C8

$D156

$80

$D156

$81

$80

$C8AD

up in BAM

Free up first and current blocks

Read next sector

Get number of BAM channel

Get number of 2nd buffer

Compare with 'Buffer free1

Is buffer allocated?

NO-Set flag in pointer for

•BAM illegal for writing

to diskette1

Set buffer pointer

to beginning of sector

Get byte from sector and save

track of next sector

Get byte from sector and set

number of next sector

Get track number of next sector

Is the current sector the last?

ROM-133

Abacus Software 1571 Internals

C8A7

C8AA

C8AD1

C8B0

C8B3

20

4C

20

20

4C

F4

27

5F

4D

94

EE

D2

EF

D4

C8

JSR

JMP

JSR

JSR

JMP

$EEF4

$D227

$EF5F

$D44D

$C894

YES-Write BAM to diskette again

Re-close channel and end

Free up sector in BAM

Read next sector and

continue

[C842/D8D3/EDDF]

File entry in filetype of directory marked as scratched

Set buffer pointer to filetype

Take value for 'DEL1 filetype

in entry and adjust

directory

Wait until writing is done

[C909/Origin through routine C146]

Backup command routine (not possible with single drive)

C8C1 A9 31 LDA #$31 Display

C8C3 4C C8 Cl JMP $C1C8 '31 Syntax Error1 message & rturn

C8B6

C8B8

C8B9

C8BB

C8BE

A0

98

91

20

4C

00

94

5E

99

DE

D5

LDY

TYA

STA

JSR

JMP

#$00

($94)

$DE5E

$D599

[A780:]

Routine

C8C6

C8C8

C8CB

C8CD

C8D0

C8D2

C8D5

C8D7

C8DA

C8DC

C8DE

C8E01
C8E2

C8E4

C8E6

C8E8

C8EA

C8EC

C8EF1

A9

8D

A9

8D

A9

8D

A9

20

A5

09

85

A5

30

C9

90

A9

A2

4C

60

for

4C

00

C7

01

FA

02

03

D3

7F

E0

03

03

FC

02

07

03

00

0A

1541

06

06

06

D6

E6

New

LDA

STA

LDA

STA

LDA

STA

LDA

JSR

LDA

ORA

STA

LDA

BMI

CMP

BCC

LDA

LDX

JMP

RTS

command

#$4C

$0600

#$C7

$0601

#$FA

$0602

#$03

$D6D3

$7F

#$E0

$03

$03

$C8E0

#$02

$C8EF

#$03

#$00

$E60A

(format diskette)

JMP-pointer for format routine

in buffer address $0600-$0602

set for disk controller,

($FAC7), re-calling its own sub

program for every

new track

Number of buffer used

Track / sector number to jobloop

Get current drive number

Tie in jobcode for buffer program

(jump to pointer)

and get return message

Wait until diskette is formatted

Compare return message with 'OK1

Format ended error-free?

NO-Error number for 'File1

Go to buffer 0 and

display message

Return from this subroutine

ROM-134

Abacus Software 1571 Internals

[Origin through C146]

COPY

C8F0

C8F2

C8F5

C8F8

C8FB

C8FD

C8FF

C901

C904

C907

C909

C90C:

C90F

C912

C915

C917

C919

C91C

C91F

C921

C923

C925

C928

C92B

C92D

C92F

command

A9

8D

20

20

A9

95

A9

8D

20

DO

4C

L 20

20

AD

29

DO

AE

BD

C9

DO

1 A9

4C

2 AD

29

DO

4C

EO

4F

Dl

19

FF

A7

OF

56

E5

03

Cl

F8

20

8B

55

OF

7A

00

2A

05

30

C8

8B

D9

F4

52

routine

02

FO

Fl

02

Cl

C8

Cl

C3

02

02

02

Cl

02

C9

LDA

STA

JSR

JSR

LDA

STA

LDA

STA

JSR

BNE

JMP

JSR

JSR

LDA

AND

BNE

LDX

LDA

CMP

BNE

LDA

JMP

LDA

AND

BNE

JMP

(file copier)

#$E0

$024F

$FOD1

$F119

#$FF

$A7,X

#$0F

$0256

$C1E5

$C90C

$C8C1

$C1F8

$C320

$028B

#$55

$C928

$027A

$0200,X

#$2A

$C928

#$30

$C1C8

$028B

#$D9

$C923

$C952

Set up all buffers

in bit library

Set track / sector number for BAM

Determine buffer number of BAM

BAM buffer marked with

'free1 identifier

Free up all channels for cor

responding bit library

Look for ':' in command string

Found it?

NO-error messge:'31 Syntax Error1

Work with input string

Get / set drive number

Get command syntax flag and get

flags for filenames

Are several filenames onhand?

YES—Pos. of command target name

Get character from filename

Check for '*' wildcard

Wildcard onhand?

YES-Display

'30 Syntax Error1 message

Get command syntax flag

Test flag for wildcard

Are wildcards onhand?

NO-Copy file

[Routine not used in DOS]

Initialize Backup- command

C932

C934

C937

C93A

C93D

C940

C942

C944

C946

C948

C94B

C94E

C951

A9

8D

8D

8D

8D

A5

29

85

09

8D

AD

8D

60

00

58

8C

80

81

E3

01

7F

01

91

7B

7A

02

02

02

02

02

02

02

LDA

STA

STA

STA

STA

LDA

AND

STA

ORA

STA

LDA

STA

RTS

#$00

$0258

$028C

$0280

$0281

$E3

#$01

$7F

#$01

$0291

$027B

$027A

pointer (Command not onhand)

Clear pointer:

Length of a record

Number of disk accesses

Track number of target file

Track number of source file

Value for standard drive

Limit declaration to bit 0 and

pointer for current drive

Set back number of current

directory sector

Copy position of 2nd parameter in

first place

Return from this subroutine

ROM-135

Abacus Software 1571 Internals

[C92F]

C952

C955

C958

C95A

C95C

C95E

C960

C962

C964

C966

C968

C96A

C96C

C96E

C971

C973

C976

C979

C97C

C97E

C980

C9821

C984

C9871

C989

C98B

C98E

C991

C993

C996

C999

C99B

C99E

C9A14

C9A4

Copy

20 4F

AD 78

C9 03

90 45

A5 E2

C5 E3

DO 3F

A5 DD

C5 DE

DO 39

A5 D8

C5 D9

DO 33

20 CC

A9 01

8D 79

20 FA

20 25

FO 04

C9 02

DO 05

A9 64

20 C8

A9 12

85 83

AD 3C

8D 3D

A9 FF

8D 3C

20 2A

A2 02

20 B9

4C 94

20 A7

4C 94

file(s)

C4 JSR

02 LDA

CMP

BCC

LDA

CMP

BNE

LDA

CMP

BNE

LDA

CMP

BNE

CA JSR

LDA

02

C9

Dl

Cl

02

02

02

DA

C9

Cl

C9

Cl

STA

JSR

JSR

BEQ

CMP

BNE

LDA

JSR

LDA

STA

LDA

STA

LDA

STA

JSR

LDX

JSR

JMP

JSR

JMP

$C4 4F Look for file entry in directory

$0278 Number of source files named

#$03 Individual files

$C9A1 Less than 3 files named?

$E2 YES-Compare drive # of targetfile

$E3 with sourcefile drive

$C9A1 Copy only one diskette?

$DD YES-Compare # of target files in

$DE directory with source files

$C9A1 Identical?

$D8 YES-Test # of appropriate dir

$D9 sectors with those on sourcefile

$C9A1 Should entry be overwritten?

$CACC YES-Look for file entry in dir.

#$01 Set pointer to first

$0279 filename

$C9FA Open file for reading and

$D125 get filetype

$C982 Is file entry a relative file?

#$02 NO-Check for 'PRG' identifier

$C987 Identical?

#$64 Display '64 File Type Mismatch1

$C1C8 message

#$12 Set

$83 internal write channel (18)

$023C Transfer # of allocated internal

$023D channel in read channel

#$FF Set 'Channel free1 flag

$023C in table

$DA2A Copy 1st sourcefile to targetfile

#$02 Pointer of second filename to

$C9B9 next file

$C194 End command; display 'OK1

$C9A7 Copy file

$C194 End command; display 'OK'

[C9A1] Copy individual files

C9A7 20 E7 CA JSR $CAE7

C9AA A5 E2 LDA $E2

C9AC 29 01 AND #$01

C9AE 85 7F STA $7F

C9B0 20 86 D4 JSR $D486

C9B3 20 E4 D6 JSR $D6E4

C9B6 AE 77 02 LDX $0277

See if entry already exists

Get drive indicator of targetfile

and take on as number of

current drive

Open internal channel for writing

Enter target file in directory

Take number of target names as

ROM-136

Abacus Software 1571 Internals

[C99B/C9F1]

Copy multiple files

C9B9

C9BC

C9BF

C9C1

C9C3

C9C6

C9C9

C9CB

C9CE1

C9D0

C9D2

C9D51

8E 79 02

20 FA C9

A9 11

85 83

20 EB DO

20 25 Dl

DO 03

20 53 CA

A9 08

85 F8

4C D8 C9

20 9B CF

C9D81 20 35 CA
C9DB A9 80

C9DD 20 A6 DD

C9E0 F0 F3

C9E2 20 25 Dl

C9E5 FO 03

C9E7 20 9B CF

C9EA1 AE 7 9 02

C9ED E8

C9EE EC 78 02

C9F1 90 C6

C9F3 A9 12

C9F5 85 83

C9F7 4C 02 DB

STX

JSR

LDA

STA

JSR

JSR

BNE

JSR

LDA

STA

JMP

JSR

JSR

LDA

JSR

BEQ

JSR

BEQ

JSR

LDX

INX

CPX

BCC

LDA

STA

JMP

$0279 number of source names

$C9FA Read directory

#$11 16 (# of internal read channel)

$83 set as current secondary address

$D0EB Open channel

$D125 Get filetype of entry

$C9CE Is file a REL file?

$CA53 YES-Copy relative file

#$08 Set flag for last character

$F8 (EOI) and conclude

$C9D8 copy procedure

$CF9B Write byte in target file

$CA35 Get byte from source file

#$80 Test EOI (last character)

$DDA6 flag

$C9D5 Is flag set?

$D125 YES-Get filetype

$C9EA Is file entry a relative file?

$CF9B NO-Write byte in file

$0279 Compare number of target files

with number of

$0278 source files

$C9B9 Any more files given?

#$12 Set write channel number (18)

$83 as current secodnary address

$DB02 Close file and channel

[C976/C9BC]

Open channel for

C9FA AE 7 9 02

C9FD B5 E2

C9FF 29 01

CA01 85 7F

CA03 AD 85 FE

CA06 85 80

C95C A5 E2

C95E C5 E3

C960 DO 3F

C962 A5 DD

C964 C5 DE

C966 DO 39

C968 A5 D8

C96A C5 D9

C96C DO 33

file reading

LDX $0279 Get number of filename

LDA $E2,X Establish corresponding drive #

AND #$01 and save as

STA $7F current drive

LDA $FE85 Set # of directory track (18)

STA $80 as current track

LDA $E2 YES-Compare drive # of targetfile

CMP $E3 with sourcefile drive

BNE $C9A1 Copy only one diskette?

LDA $DD YES-Compare # of targetfiles in

CMP $DE directory with source files

BNE $C9A1 Identical?

LDA $D8 YES-Test # of matching directory

CMP $D9 sector against sourcefile

BNE $C9A1 Should entry be overwritten?

ROM-137

Abacus Software 1571 Internals

C96E

C971

C973

C976

C979

C97C

C97E

C980

C9821

C984

C9871

C989

C98B

C98E

C991

C993

C996

C999

C99B

C99E

C9A14
C9A4

20 CC CA

A9 01

8D 79 02

20 FA C9

20 25 Dl

F0 04

C9 02

DO 05

A9 64

20 C8 Cl

A9 12

85 83

AD 3C 02

8D 3D 02

A9 FF

8D 3C 02

20 2A DA

A2 02

20 B9 C9

4C 94 Cl

20 A7 C9

4C 94 Cl

JSR $CACC YES-Look for file entry in dir.

LDA #$01 Set pointer to

STA $0279 first filename

JSR $C9FA Open file for reading

JSR $D125 and get filetype

BEQ $C982 Is file entry a relative file?

CMP #$02 NO-Test for 'PRG» identifier

BNE $C987 Identical?

LDA #$64 YES-Display

JSR $C1C8 '64 File Type Mismatch1 message

LDA #$12 Set internal read channel

STA $83 (18)

LDA $023C Transfer # assigned to internal

STA $023D channel in read channel

LDA #$FF Set 'Channel free1 value

STA $023C in table

JSR $DA2A Copy 1st sourcefile to targetfile

LDX #$02 Pointer to second filename

JSR $C9B9 Attach next file

JMP $C194 End command and display 'OK1

JSR $C9A7 Copy file

JMP $C194 End command and display 'OK'

[C9A1]

Copy single

C9A7 20 E7

C9AA

C9AC

C9AE

C9B0

C9B3

C9B6

A5 E2

29 01

85 7F

20 86

20 E4

AE 77

files

CA JSR $CAE7

LDA $E2

AND #$01

STA $7F

D4 JSR $D486

D6 JSR $D6E4

02 LDX $0277

Test whether entry already exists

Get drive indicator of targetfile

and take on as number of

current drive

Open internal channel for writing

Enter target file in directory

Number of target names (1)

[C99B/C9F1]

C9B9 8E 79

C9BC

C9BF

C9C1

C9C3

C9C6

C9C9

C9CB

C9CE1

C9D0

C9D2

Copy several files

C9D5J

20 FA

A9 11

85 83

20 EB

20 25

DO 03

20 53

A9 08

85 F8

4C D8

20 9B

02

C9

DO

Dl

CA

C9

CF

STX $0279

JSR $C9FA

LDA #$11

STA $83

JSR $D0EB

JSR $D125

BNE $C9CE

JSR $CA53

LDA #$08

STA $F8

JMP $C9D8

JSR $CF9B

Number of sourcefiles

Read directory

Set 16 (number of internal read

channels) as current 2ndary addr

Open channel

Get filetype from entry

Is it a relative file?

YES-Copy relative file

Set 'last character' (EOI)

flag

and conclude copy process

Write byte in target file

ROM-138

Abacus Software 1571 Internals

C9D81

C9DB

C9DD

C9E0

C9E2

C9E5

C9E7

C9EA1

C9ED

C9EE

C9F1

C9F3

C9F5

C9F7

20

A9

20

FO

20

FO

20

AE

E8

EC

90

A9

85

4C

35

80

A6

F3

25

03

9B

79

78

C6

12

83

02

[C976/C9BC]

Open c

C9FA

C9FD

C9FF

CA01

CA03

CA06

CA08

CAOA

CAOC

CAOF

CA12

CA14

CA17

CA1A

CA1C

CA1E

CA21

CA23

CA26

CA29

CA2B

CA2E

CA30

CA311

CA32

rhanneJ

AE

B5

29

85

AD

85

B5

85

20

AE

B5

20

AE

B5

29

8D

A9

8D

20

AO

20

FO

C8

98

4C

79

E2

01

7F

85

80

D8

81

75

79

DD

C8

79

E7

07

4A

00

58

AO

01

25

01

C8

CA

DD

Dl

CF

02

02

DB

L to

02

FE

D4

02

D4

02

02

02

D9

Dl

D4

JSR

LDA

JSR

BEQ

JSR

BEQ

JSR

LDX

INX

CPX

BCC

LDA

STA

JMP

read

LDX

LDA

AND

STA

LDA

STA

LDA

STA

JSR

LDX

LDA

JSR

LDX

LDA

AND

STA

LDA

STA

JSR

LDY

JSR

BEQ

INY

TYA

JMP

$CA35

#$80

$DDA6

$C9D5

$D125

$C9EA

$CF9B

$0279

$0278

$C9B9

#$12

$83

$DB02

file

$0279

$E2,X

#$01

$7F

$FE85

$80

$D8,X

$81

$D475

$0279

$DD,X

$D4C8

$0279

$E7,X

#$07

$024A

#$00

$0258

$D9A0

#$01

$D125

$CA31

$D4C8

Get byte from sourcefile

Test EOI (last character)

flag

Is flag set?

YES-Get filetype

Is file entry a REL file?

NO-write byte in file

Compare sourcefile number

with number

of sourcefiles

Any more files left?

Set write channel number (8)

as current secondary address

Close file and channel

Get filename number

Determine corresponding

drive number and save

as current drive number

Set up # of directory track (18)

as current track

Determine sector of entry; set as

current sector

Read sector in buffer

of file identifier in command

Get correct pointer frm directory

position and set buffer pointer

File indication number of command

Get corrspondng filetype identifr

and get filetype from that;

save it

Clear file record length

pointer

Open file for reading

Set puffer pointer

Get filetype

Is file a relative file?

NO-Buffer pointer to next byte

(track number)

Initialize buffer pointer

ROM-139

Abacus Software 1571 Internals

[C9D8/E81B/E839]

Read a

CA35

CA37

CA39

CA3C

CA3E

CA40

CA42

CA44

CA4 6

CA48

CA4B

CA4D

CA4F

CA522

[C9CB]

byte from

A9 11

85 83

20 9B D3

85 85

A6 82

B5 F2

29 08

85 F8

DO 0A

20 25 Dl

F0 05

A9 80

20 97 DD

60

file

LDA

STA

JSR

STA

LDX

LDA

AND

STA

BNE

JSR

BEQ

LDA

JSR

RTS

Copy relative file

CA53

CA56

CA59

CA5B

CA5C

CA5E

CA5F

CA61

CA63

CA66

CA69

CA6C

CA6F

CA71

CA73

CA75

CA77

CA7 9

CA7B

CA7D

CA7F

CA80

CA82

CA83

CA85

20 D3 Dl

20 CB El

A5 D6

48

A5 D5

48

A9 12

85 83

20 07 Dl

20 D3 Dl

20 CB El

20 9C E2

A5 D6

85 87

A5 D5

85 86

A9 00

85 88

85 D4

85 D7

68

85 D5

68

85 D6

4C 3B E3

JSR

JSR

LDA

PHA

LDA

PHA

LDA

STA

JSR

JSR

JSR

JSR

LDA

STA

LDA

STA

LDA

STA

STA

STA

PLA

STA

PLA

STA

JMP

#$11

$83

$D39B

$85

$82

$F2,X

#$08

$F8

$CA52

$D125

$CA52

#$80

$DD97

$D1D3

$E1CB

$D6

$D5

#$12

$83

$D107

$D1D3

$E1CB

$E2 9C

$D6

$87

$D5

$86

#$00

$88

$D4

$D7

$D5

$D6

$E33B

Set internal channel number

for reading

Read a byte

and save it

Get channel number and determine

channel status

Detrmin bitflg f/'last byte1(EOI)

and save it

End of file?

NO-Get filetype

Is it a relative file?

NO-

Set all corresponding flags

Return from this subroutine

Set current drive number

Get position of last record

Save position in

side-sector;

hold number of corresponding

side-sector

Set internal channel for

writing

Open channel

Set current drive number

Get position of last side-sector

and read sector in buffer

Save current pointer at position

in side-sector

Save number of

side-sector

Clear pointer:

temporary memory

Pointer to beginning of record

Pointer to position in record

Get number of last side-sector

and set it

Get # of last record entry in

side-sector; save it

Actualize side-sectors

ROM-140

Abacus Software 1571 Internals

[Origin at routine C14 6]

Routine for Rename command

CA88

CA8B

CA8D

CA8F

CA91

CA93

CA95

CA971

CA99

CA9C

CA9F

CAA1

CAA3

CAA5

CAA7

CAA9

CAAC

CAAF

CAB1

CAB2

CAB4

CAB7

CABA

CABB

CABE

CACO

CAC3

CAC6

CAC9

20

A5

29

85

C5

F0

09

85

20

20

A5

29

85

A5

85

20

20

A5

18

69

20

20

A8

AE

A9

20

20

20

4C

20

E3

01

E3

E2

02

80

E2

4F

E7

E3

01

7F

D9

81

57

99

DE

03

C8

93

7A

10

6E

5E

99

94

[C96E/CAE7]

CACC

CACE

CADO

CAD3

CAD61

CAD 7

CADA

CADC

CADF

CAE1

CAE3

CAE61

A5

29

8D

AE

CA

EC

90

BD

DO

A9

4C

60

E8

07

4A

78

77

0A

80

F5

62

C8

C3

C4

CA

DE

D5

D4

DF

02

C6

DE

D5

Cl

See

02

02

02

02

Cl

JSR

LDA

AND

STA

CMP

BEQ

ORA

STA

JSR

JSR

LDA

AND

STA

LDA

STA

JSR

JSR

LDA

CLC

ADC

JSR

JSR

TAY

LDX

LDA

JSR

JSR

JSR

JMP

$C320

$E3

#$01

$E3

$E2

$CA97

#$80

$E2

$C44F

$CAE7

$E3

#$01

$7F

$D9

$81

$DE57

$D599

$DE

#$03

$D4C8

$DF93

$027A

#$10

$C66E

$DE5E

$D599

$C194

if file entry is

LDA

AND

STA

LDX

DEX

CPX

BCC

LDA

BNE

LDA

JMP

RTS

$E8

#$07

$024A

$0278

$0277

$CAE6

$0280,X

$CAD6

#$62

$C1C8

Get drive number

Establish # of standard drive

and

reset

Compare with last drive number

Must drive be changed?

YES-Set bitflag for search of

both drives

Search for new name in directory

Name already there?

Establish # of standard drive and

take on as number of current

drive

Set number of directory

sector

and read sector into buffer;

Wait until command is executed

Set directory entry pointer to

starting position

of filenames in directory

Establish buffer pointer

Get and save number of

current buffer

Position of new name in command

Max. length of filename

Names in buffer frm commnd string

Rewrite directory sector

and wait until executed

Prepare return message and end

onhand

Get filetype of 2nd name &

isolate type identifier

Save as current filetype

Get starting position of filename

in command string

Compare w/start of command string

More characters in filenames?

YES—Get sector number of file

Was that the last sector?

YES-Display

'62 File Not Found1

Return from this subroutine

ROM-141

Abacus Software 1571 Internals

[C9A7/CA9C]

Compare

CAE7

CAEA1

CAED

CAEF

CAF1

CAF41

CAF5

CAF7

20

BD

FO

A9

4C

CA

10

60

[Origin

with two filenames

CC

80

05

63

C8

F3

at]

CA

02

Cl

JSR $CACC

LDA $0280,X

BEQ $CAF4

LDA #$63

JMP $C1C8

DEX

BPL $CAEA

RTS

routine C146]

Memory-command]

CAF8

CAFB

CAFD

CAFF

CB02

CB04

CB07

CB09

CBOB

CBOE

CB10

CB12

CB15

CB17

CB19

CB1B

CB1D

AD

C9

DO

AD

85

AD

85

AO

AD

C9

FO

20

C9

FO

C9

DO

6C

01

2D

4C

03

6F

04

70

00

02

52

OE

58

57

37

45

2E

6F

02

02

02

02

F2

00

routine

LDA $0201

CMP #$2D

BNE $CB4B

LDA $0203

STA $6F

LDA $0204

STA $70

LDY #$00

LDA $0202

CMP #$52

BEQ $CB20

JSR $F258

CMP #$57

BEQ $CB50

CMP #$45

BNE $CB4B

JMP ($006F)

File in directory onhand?

Get number of first file sector

Is sector onhand?

YES-Display

'63 File exist1

Go to next name

Was that the last filename?

YES-Return from this subroutine

Get second character of command

Compare with '-1

Identical?

YES-Then get fourth character and

set as memory address (low-byte)

Get fifth character and save as

memory address (high-byte)

Clear buffer pointer

Get third character of command

and compare with 'R1

Should Read command be performed?

NO-Call has no function (RTS)

Compare with 'W1

Should Write commnd be performed?

NO-Compare with 'E1

Should program be performed?

YES—Start program

[CB10]

Memory-Read

CB20 Bl 6F

CB22

CB24

CB27

CB2 9

CB2B

CB2E

CB2F

CB31

CB32

CB33

CB35

CB37

85 85

AD 74

C9 06

90 1A

AE 05

CA

F0 14

8A

18

65 6F

E6 6F

8D 49

command ('M-R1); Read byte from memory

LDA ($6F),Y Get byte from given address

STA $85 and save it

•02 LDA $0274 Get length of command string and

CMP #$06 compare with maximum length

BCC $CB45 Is the string smaller?

02 LDX $0205 NO-Get # of bytes to be read and

DEX adjust (one already read)

BEQ $CB45 Read any more bytes from memory?

TXA YES-Balance pointer

CLC with starting address and then

ADC $6F compute end address of this range

INC $6F Increment pointer to current byte

02 STA $0249 Save ending address (low-byte)

ROM-142

Abacus Software 1571 Internals

CB3A

CB3C

CB3E

CB40

CB42

CB452

CB48

CB4B2

CB4D

A5

85

A5

85

4C

20

4C

A9

4C

6F

A5

70

A6

43

EB

3A

31

C8

[CB17/CB59]

CB50

CB53

CB55

CB56

CB59

CB5B

B9

91

C8

CC

90

60

06

6F

05

F5

D4

DO

D4

Cl

LDA

STA

LDA

STA

JMP

JSR

JMP

LDA

JMP

$6F

$A5

$70

$A6

$D443

$D0EB

$D43A

#$31

$C1C8

Memory-Write com

02

02

LDA

STA

INY

CPY

BCC

RTS

$0206,Y

<$6F),Y

$0205

$CB50

Take pointer to current memory;

use as pointer to error message

buffer for routine that is

to follow ($D43A)

Set first byte and output flag

Seek out and open channel

Output more bytes

Display

'31 Syntax Error1

Get byte val from command string

and write into memory

Turn buffer pointer to next byte

Compare with value for 'End1

Take any more bytes?

NO—Return from this subroutine

[Origin at routine C146]

User-command ('UX1); Start program in DOS buffer

CB5C AC 01 02 LDY $0201 Get second char of command and

CB5F CO 30 CPY #$30 compare with '01

CB61 DO 09 BNE $CB6C Identical?

[EBBC]

CB63

CB66

CB67

CB68

CB69

CB6A

CB6B

CB6C1
CB6F

CB721

CB73

CB74

CB7 6

CB77

CB78

CB7A

CB7C

CB7D

CB7F

CB81

Execute

4C

EA

EA

EA

EA

EA

EA

20

4C

88

98

29

0A

A8

Bl

85

C8

Bl

85

4C

26

72

94

OF

6B

75

6B

76

2D

80

CB

Cl

AA

User-command

JMP

NOP

NOP

NOP

NOP

NOP

NOP

JSR

JMP

DEY

TYA

AND

ASL

TAY

LDA

STA

INY

LDA

STA

JMP

$8030

$CB72

$C194

#$0F

A

<$6B),

$75

($6B),

$76

$AA2D

YES-Read User-0 command

Unused space

left by modifying

ROM User-routine

in 1541 drive

to

1571 User-routine

Set address and execute program

End program by 'RTS1

Convert ASCII number of command

into binary

number; double it

(address is 2-byte pointer)

and save it

Get address belonging to command

(low-byte) and save it

Pointer to next byte of address

Get high-byte of starting address

and save it

Start program

ROM-143

Abacus Software 1571 Internals

[D819]

1#'-command;

CB84 AD 8E

CB87

CB89

CB8B

CB8C

CB8F

CB90

CB92

CB95

CB96

CB98

CB9A

CB9D

CBAO

CBA2 4C C8

CBA51 AO 01

CBA7

CBAA

CBAD

CBAF

CBB1

CBB3

CBB5

CBB7

85 7F

A5 83

48

20 3D

68

85 83

AE 74

CA

DO OD

A9 01

20 E2

4C Fl

A9 70

20 7C

AE 85

EO 05

BO EF

A9 00

85 6F

85 70

38

CBB8X 26 6F

CBBA

CBBC

CBBD

CBBF

CBC1

CBC4

CBC6

CBC8

CBCB

CBCD

CBCF

CBD2

CBD5

CBD7

CBDA

CBDD

CBDF

CBE2

CBE4

26 70

CA

10 F9

A5 6F

2D 4F

DO DA

A5 70

2D 50

DO D3

A5 6F

OD 4F

8D 4F

A5 70

OD 50

8D 50

A9 00

20 E2

A6 82

AD 85

Open direct access

02 LDA $028E

STA $7F

LDA $83

PHA

C6 JSR $C63D

PLA

STA $83

02 LDX $0274

DEX

BNE $CBA5

LDA #$01

Dl JSR $D1E2

CB JMP $CBF1

LDA #$70

Cl JMP $C1C8

LDY #$01

CC JSR $CC7C

02 LDX $0285

CPX #$05

BCS $CBA0

LDA #$00

STA $6F

STA $70

SEC

ROL $6F

ROL $70

DEX

BPL $CBB8

LDA $6F

02 AND $024F

BNE $CBA0

LDA $70

02 AND $0250

BNE $CBA0

LDA $6F

02 ORA $024F

02 STA $024F

LDA $70

02 ORA $0250

02 STA $0250

LDA #$00

Dl JSR $D1E2

LDX $82

02 LDA $0285

channel

Set drive number of last job

as current drive

Get channel number and

save it

Initialize drive

Re-set channel

number

Compare length of command

string with 1

Is a desired buffer given?

NO-Number of buffers needed

Set up buffer and channel

Pointer and table initialization

Display error message —

'70 No Channel1

Pointer to position in buffer

Get byte from command string

Get buffer number and compare

with maximum buffer

Is the given number allowed (<5)?

YES—Clear temporary

storage in

zeropage

Shift 'Buffer occupied1

in temporary

memory

Buffer number

Is flag in the correct position?

Compare computed buffer set-up

with bit table

Is buffer already occupied?

NO—Test buffer numbers 8-15

(only on CBM3030-CBM8250)

Is buffer free?

YES-Take buffer bit

in bit table and

set up buffer

The same goes for buffers 8-15

(there can only be 5 buffers at

a time)

Set number of buffers to 1

and set up buffer and channel

Current channel number

Current sector number

ROM-144

Abacus Software 1571 Internals

CBE7

CBE9

CBEA

CBEC

CBEE

CBF11

CBF3

CBF6

CBF8

CBFB

CBFD

CBFF

CC02

CC04

CCO 7

CCOA

CCOD

CCOE

CCOF

ecu

CC13

CC15

CC18

95

AA

A5

95

9D

A6

BD

09

9D

A4

A9

99

A9

99

B9

99

OA

AA

A9

95

A9

99

4C

A7

7F

00

5B

83

2B

40

2B

82

FF

44

89

F2

A7

3E

01

99

OE

EC

94

02

02

02

02

00

00

02

00

Cl

STA

TAX

LDA

STA

STA

LDX

LDA

ORA

STA

LDY

LDA

STA

LDA

STA

LDA

STA

ASL

TAX

LDA

STA

LDA

STA

JMP

$A7,X

$7F

$00,X

$025B,X

$83

$022B,X

#$40

$022B,X

$82

#$FF

$0244,Y

#$89

$00F2,Y

$00A7,Y

$023E,Y

A

#$01

$99,X

#$0E

$00EC,Y

$C194

Arrange in channel sector table

Adjust pointer

Give current drive number

as

jobcode

Determine secondary address and

get pre-arranged internal channel

Identify channel

as in an 'active1 state

Current channel number

Arrange number of data to be sent

over channel

Free up channel for

reading/writing

Get buffer number

Set as characters to be given

Double number

(table has 2-byte values)

Set buffer pointer to beginning

of buffer

note directory access identifier

in filetype table

Send acknowledgement and end it

[Origin at Routine C146]

Routine for Block command

CC1B

CC1D

CC1F

CC21

CC24

CC261

CC28

CC2B2

CC2D

CC301

CC31

CC33

CC35

CC381

CC3B

CC3D

CC3E

CC40

CC421

A0 00

A2 00

A9 2D

20 68 C2

DO 0A

A9 31

4C C8 Cl

A9 30

4C C8 Cl

8A

DO F8

A2 05

B9 00 02

DD 5D CC

F0 05

CA

10 F8

30 E4

8A

LDY #$00

LDX #$00

LDA #$2D

JSR $C2 68

BNE $CC30

LDA #$31

JMP $C1C8

LDA #$30

JMP $C1C8

TXA

BNE $CC2B

LDX #$05

LDA $0200,Y

CMP $CC5D,X

BEQ $CC42

DEX

BPL $CC38

BMI $CC26

TXA

Set start position in input buffr

Clear pointer to # of parameters

Set f-' as character to be sought

Process input string

Character found?

NO-Display

'31 Syntax Error1

Display

"30 Syntax Error1

Number of parameters found

Any other givens found?

YES-Set pointer in input buffer

Get third character from buffer

and compare with Block command

Is there a Block command?

NO—Set pointer to next command

Already compared w/other cmds?

YES-Jump to $CC2 6

Block command number

ROM-145

Abacus Software 1571 Internals

CC43

CC45

CC48

CC4B

CC4E

CC4F

CC50

CC53

CC55

CC58

CC5A

09

8D

20

AD

0A

AA

BD

85

BD

85

6C

80

2A

6F

2A

64

70

63

6F

6F

02

CC

02

CC

CC

00

ORA

STA

JSR

LDA

ASL

TAX

LDA

STA

LDA

STA

JMP

#$80

$022A

$CC6F

$022A

A

$CC64,X

$70

$CC63,X

$6F

($006F)

Save 'Extended command1

flag

Get command parameters & test

Repeat command number and

double it

(2-byte pointers in addr. table)

Get / save starting address of

command (low-byte)

Get high-byte and take

up in pointer

Start Block command

[CC38] Command codes of Block command

CC5D 41 46 52 57 45 50 'A1 ,

Starting addresses of Block command routines[CC50/CC55]

CC63

CC65

CC67

CC69

CC6B

CC6D

03

F5

56

73

A3

BD

CD

CC

CD

CD

CD

CD

$CD03

$CCF5

$CD56

$CD73

$CDA3

$CDBD

B-A

B-F

B-R

B-W

B-E

B-P

command

command

command

command

command

command

[CC48/CD5F/CD97]

Get/set Block command parameters

CC6F

CC71

CC73

CC75

CC78

CC7A

A0

A2

A9

20

DO

A0

00

00

3A

68 C2

02

03

LDY

LDX

LDA

JSR

BNE

LDY

#$00

#$00

#$3A

$C268

$CC7C

#$03

Start, pos.:commandstring search

Clear number of found parameters

Set ':• as character for search

and search in input buffer

Character found?

NO—Buffer pointer to 4th char

[CBA7/CC78/CC8F]

Test Block command parameters

CC7C

CC7F

CC81

CC83

CC85

CC87

CC89

CC8B:

CC8C

CC8F

CC91

B9 00 02

C9 20

F0 08

C9 ID

FO 04

C9 2C

DO 07

C8

CC 74

90 EB

60

02

CC921 20 Al CC

LDA $0200,Y

CMP #$20

BEQ $CC8B

CMP #$1D

BEQ $CC8B

CMP #$2C

BNE $CC92

INY

CPY $0274

BCC $CC7C

RTS

JSR $CCA1

and get character

Compare w/blank space ' f value

Identical?

NO-Test w/value for'Cursor right1

Identical?

NO-Compare with comma value

Identical?

YES—Buffer pointer to next char

Test against command string value

Pointer to end of input buffer?

YES-Return from this subroutine

Get, compute and set parameters

ROM-146

Abacus Software 1571 Internals

CC95 EE 77 02 INC $0277

CC98 AC 79 02 LDY $0279

CC9B E0 04 CPX #$04

CC9D 90 EC BCC $CC8B

CC9F BO 8A BCS $CC2B

Current number of parameters

Total number of parameters

Test with maximum # of parameters

Too many parameters?

YES-Jump to $CC2B

[CC92]

Convert / set Block command parameters from ASCII to binary

Clear range used

as temporary storage

for mathematical

operations

Pointer to current math register

Get next char from input buffer

Compare with ASCII value for '(§'

Is there a character?

NO-Test value for '01

Is there a number?

Compute numeric value and

save it

Shift value in temp, storage

$6F-$71 range; move

one place to $71 so

that $6F will be free

Repeat binary numbers and write

in temporary memory

Buffer pointer to next character

Check w/end position of params

Entire decimal number read in?

YES-Save current buffer pointer

Initialize add routine

'Dummy value1 for first run of

routine

Test against max. decimal numbers

Are too many numbers given?

NO-Get value of a # in counter

Decrement number

Is decimal number zero?

NO-Get binary of number

Add it; is binary number > 256 ?

YES-Turn high-byte and

increment by one

Jump to $CCD7

Save equiv. binary value(lo-byte)

Get parameter number

Enter binary value (high-byte)

CCA1

CCA3

CCA5

CCA7

CCA9

CCAB1

CCAE

CCB0

CCB2

CCB4

CCB6

CCB8

CCB9

CCBB

CCBD

CCBF

CCC1

CCC2

CCC4

CCC5

CCC8

CCCA2

CCCD

CCCE

CCD01

CCD1

CCD3

CCD5

CCD72

CCD8

CCDA

CCDD

CCDF

CCE0

CCE2

CCE41

CCE5

CCE8

A9

85

85

85

A2

B9

C9

B0

C9

90

29

48

A5

85

A5

85

68

85

C8

CC

90

8C

18

A9

E8

E0

B0

B4

88

30

7D

90

18

E6

DO

48

AE

A5

00

6F

70

72

FF

00

40

18

30

14

OF

70

71

6F

70

6F

74

El

79

00

03

OF

6F

F6

F2

F8

72

F3

77

72

02

02

02

CC

02

LDA

STA

STA

STA

LDX

LDA

CMP

BCS

CMP

BCC

AND

PHA

LDA

STA

LDA

STA

PLA

STA

INY

CPY

BCC

STY

CLC

LDA

INX

CPX

BCS

LDY

DEY

BMI

ADC

BCC

CLC

INC

BNE

PHA

LDX

LDA

#$00

$6F

$70

$72

#$FF

$0200

#$40

$CCCA

#$30

$CCCA

#$0F

$70

$71

$6F

$70

$6F

$0274

$CCAB

$0279

#$00

#$03

$CCE4

$6F,X

$CCD0

$CCF2

$CCD7

$72

$CCD7

$0277

$72

ROM-147

Abacus Software 1571 Internals

CCEA 9D 80 02 STA $0280,X

CCED 68 PLA

CCEE 9D 85 02 STA $0285,X

CCF1 60 RTS

in parameter table

Repeat lo-byte of binary value &

save it

Return from this subroutine

CCF2 01 0A 64 Binary values for 1, 10 und 100

[Origin at routine CC1B]

Block-Free command ('B-F1);

CCF5 20 F5 CD JSR $CDF5

CCF8 20 5F EF JSR $EF5F

CCFB 4C 94 Cl JMP $C194

Free block in BAM

Get track/sector number

Set block bit to 'free1

Prepare acknowledgement and end

CCFE A9 01

CD00 8D F9 02

LDA #$01

STA $02F9

Unused program set from

CBM 4040 ROM

[Origin at routine CC1B]

Block-Allocate command ('B-A')

20 F5 CD

A5 81

48

20 FA Fl

F0 0B

68

C5 81

DO 19

90 EF20

4C 94 Cl

CD03

CD06

CD08

CD09

CDOC

CDOE

CDOF

CD11

CD13

CD16

CD191 68

CD1A1 A9 00

85 81

E6 80

A5 80

CD AC 02

B0 0A

20 FA Fl

F0 EE

A9 65

20 45 E6

A9 65

20 C8 Cl

CD1C

CD1E

CD20

CD22

CD25

CD27

CD2A

CD2C1
CD2E

CD311

CD33

JSR $CDF5

LDA $81

PHA

JSR $F1FA

BEQ $CD19

PLA

CMP $81

BNE $CD2C

JSR $EF90

JMP $C194

PLA

LDA #$00

STA $81

INC $80

LDA $80

CMP $02AC

BCS $CD31

JSR $F1FA

BEQ $CD1A

LDA #$65

JSR $E645

LDA #$65

JSR $C1C8

Get track/sector number

Get sector number and

save it

Look for next free sector in BAM

Is block free?

YES-Get number of desired sector;

Compare with current sector #

Identical?

Identify BAM sector as allocated

Prepare acknowledgement and end

Adjust stack, clear sector number

Newly establish

sector number

Set track pointer to next track;

get pointer

Compare w/value of largst track+1

Is track number smaller?

YES-Look for next sector

Found it?

NO-Display

•65 No Block1 error

Display

»65 No Block1 error

ROM-148

Abacus Software 1571 Internals

[CD42/CDA6]

Test 'B-R1 parameters and read sector in buffer

CD36 20 F2 CD JSR $CDF2 Test & get track / sector number

CD39 4C 60 D4 JMP $D4 60 Read sector in buffer

[CD4A]

Get byte from buffer

CD3C 20 2F Dl JSR $D12F

CD3F Al 99 LDA ($99,X)

CD41 60 RTS

Set buffer pointer

Get byte

Return from this subroutine

[CD56/CD62]

Read

CD42

CD45

CD47

CD4A

CD4D

CD50

CD52

CD55

sector

20

A9

20

20

99

A9

99

60

36

00

C8

3C

44

89

F2

from

CD

D4

CD

02

00

diskette

JSR

LDA

JSR

JSR

STA

LDA

STA

RTS

$CD36

#$00

$D4C8

$CD3C

$0244

#$89

$00F2

to

,Y

,Y

buffer; initialize pointer

Get parameter and read sector

Determine position of buffr pntr

Set buffer pointer

Get a byte from buffer

Amount of data to be transferred

Free up channel for

reading and writing

Return fom this subroutine

[Origin at routine CC1B]

Routine for Block-Read command (IB-RI); Read sector from diskette

JSR $CD42 Read sector and set pointer

JSR $D3EC Output byte from buffer

JMP $C194 Prepare return message and end

CD56 20 42 CD

CD59 20 EC D3

CD5C 4C 94 Cl

[Vector: FFEA]

Routine for Ul-command (cf. B-R);

CD5F

CD62

CD65

CD68

CD6B

CD6D

CD70

20

20

B9

99

A9

99

4C

6F

42

44

3E

FF

44

94

CC

CD

02

02

02

Cl

JSR

JSR

LDA

STA

LDA

STA

JMP

$CC6F

$CD42

$0244,

$023E,

#$FF

$0244,

$C194

Y

Y

Y

read sector from diskette

Get parameters

Read sector in buffer

Set # of bytes to be transferred

as bytes to be given out

Re-initialize number of bytes

to be transferred

Prepare return message and end

[Origin at routine CC1B]

Routine for Block-Write command

CD73 20 F2 CD JSR $CDF2

CD7 6

CD7 9

CD7A

CD7B

CD7D

20

A8

88

C9

B0

E8 D4

02

02

JSR

TAY

DEY

CMP

BCS

$D4E8

#$02

$CD81

Allocate buffer and open channel

Initialize and get buffer

pointer

Pointer to previous character

Compare with start of data range

Is pointer correctly set?

ROM-149

Abacus Software 1571 Internals

CD7F

CD811

CD83

CD86

CD87

CD8A

CD8B

CD8C

CD8F

CD90

CD91

CD94

AO

A9

20

98

20

8A

48

20

68

AA

20

4C

01

00

C8

Fl

64

AE

94

D4

CF

D4

FF

Cl

LDY

LDA

JSR

TYA

JSR

TXA

PHA

JSR

PLA

TAX

JSR

JMP

#$01

#$00

$D4C8

$CFF1

$D464

$FFAE

$C194

YES—Byte valu f/current buff pos.

Position of buffer pointer

Get buffer pointer

Position in buffer

write byte in buffer

Double and save

buffer pointer

Write sector to diskette

Repeat buffer number and

set it

Re-set buffer pointer

Prepare return message and end

[Vector: FFEC]

Routine for U2-command (cf.B-W),

CD97 20 6F CC JSR $CC6F

CD9A 20 F2 CD JSR $CDF2

CD9D 20 64 D4 JSR $D4 64

CDA0 4C 94 Cl JMP $C194

Write sector from buffer to disk

Get parameter from command string

Test and set parameter

Write sector to disk

Prepare return message and end

[Origin at routine CC1B]

Routine for Block-Execute-command

CDA3

CDA6

CDA9

CDAB

CDAD

CDAF

CDB2

CDB4

CDB7

CDBA1

20

20

A9

85

A6

BD

85

20

4C

6C

58

36

00

6F

F9

E0

70

BA

94

6F

F2

CD

FE

CD

Cl

00

JSR

JSR

LDA

STA

LDX

LDA

STA

JSR

JMP

JMP

$F258

$CD36

#$00

$6F

$F9

$FEE0,X

$70

$CDBA

$C194

($006F)

(•B-E1); read sector and execute

No function (rts)

Read sector in buffer

Set buffer address (low-byte) to

start-of-buffer

Get buffer number

Get hi-byte of buffer address and

set in pointer at start-of-buffer

Start program in buffer

Return at 'RTS1

Jump to pointer in buffer

[Origin at routine CC1B]

Routine for Block-Pointer-command

CDBD

CDC0

CDC2

CDC3

CDC4

CDC 7

CDC 9

CDCC

CDCF

20

A5

0A

AA

AD

95

20

20

4C

D2

F9

86

99

2F

EE

94

CD

02

Dl

D3

Cl

JSR

LDA

ASL

TAX

LDA

STA

JSR

JSR

JMP

$CDD2

$F9

A

$0286

$99,X

$D12F

$D3EE

$C194

CB-P1)/ set buffer pointer

Allocate buffer and open channel

Get buffer number

double (buffer pointer as 2-Byte)

and save it

Get new pos. of buffer pointer &

set as low-byte in buffer pointer

Get buffer and channel number

Get byte frm current buffer pos.

Prepare return msg. and end

ROM-150

Abacus Software 1571 Internals

[CDBD/CDF2]

Allocate

CDD2

CDD4

CDD6

CDD9

CDDA

CDDB

CDDC

CDDE

CDEO1

CDE2

CDE51
CDE7

CDEA

CDEC

CDEF

CDF1

A6

E6

BD

A8

88

88

CO

90

A9

4C

85

20

BO

20

85

60

buffer

D3

D3

85

OD

05

70

C8

83

EB

F4

93

F9

02

Cl

DO

DF

and open channel

LDX

INC

LDA

TAY

DEY

DEY

CPY

BCC

LDA

JMP

STA

JSR

BCS

JSR

STA

RTS

$D3

$D3

$0285,X

#$0D

$CDE5

#$70

$C1C8

$83

$D0EB

$CDE0

$DF93

$F9

Get parameter number

Set to next assignment

Get channel number from table

and save it

Decrement channel number

by 2 and compare with

value for channel 14

Is the channel number < 15?

NO—Display

•70 No Channel1

Set channel # as 2ndary address

and open channel

Channel already open?

NO-Get buffer number and

set it

Return from this subroutine

[CD03/CD36/CD73/CD9A]

Test paramters for valid sector

CDF2

CDF5

CDF7

CDFA

CDFC

CDFE

CE01

CE03

CEO 6

CEO 8

CEOB

20 D2 CD

A6 D3

BD 85 02

29 01

85 7F

BD 87 02

85 81

BD 86 02

85 80

20 5F D5

4C 00 Cl

JSR $CDD2

LDX $D3

LDA $0285,X

AND #$01

STA $7F

LDA $0287,X

STA $81

LDA $0286,X

STA $80

JSR $D55F

JMP $C100

assignment

Allocate buffer

Parameter number

Get byte from temporary storage

and isolate drive number; take on

as current drive

Set number of desired

track

Take on number of

desired sector

Test for valid track and sector

Switch on LED to current drive

[E255/E338/E436]

Get record from

CE0E 20 2C CE

CE11 20 6E CE

CE14 A5 90

CE16 85 D7

CE18 20 71 CE

CE1B E6 D7

CE1D E6 D7

CE1F A5 8B

CE21 85 D5

CE23 A5 90

CE25 0A

relative file

JSR $CE2C

JSR $CE6E

LDA $90

STA $D7

JSR $CE71

INC $D7

INC $D7

LDA $8B

STA $D5

LDA $90

ASL A

Determine # of bytes computed til

record and sector # of the record

Get remainder of division &set as

buffer pointer to start of record

Get side-sector shown by record

Adjust buffer pointer in physical

sector to linked bytes

Get and save number of

side-sector

Get remainder of div. & calc.

position of sector pointer for

ROM-151

Abacus Software 1571 Internals

CE2 6

CE27

CE2 9

CE2B

[CEOE]

18

69

85

60

10

D6

Compute number

CE2C

CE2F

CE31

CE33

CE35

CE37

CE39

CE3B

CE3D

CE3F

CE411

CE43

CE44

CE4 6

CE48

CE4A

CE4C2

CE4E

CE501

CE52

CE54

CE571

CE5A

CE5C

CE5E

CE60

CE61

CE63

CE65

CE67

CE69

CE6B

CE6D2

20

85

A6

B5

85

B5

85

DO

A5

FO

A5

38

E9

85

BO

C6

B5

85

46

90

20

20

A5

DO

A5

18

65

85

90

E6

DO

E6

60

D9 CE

92

82

B5

90

BB

91

04

90

OB

90

01

90

02

91

C7

6F

6F

03

ED CE

E5 CE

6F

F2

D4

8B

8B

06

8C

02

8D

CLC

ADC

STA

RTS

#$10

$D6

of bytes up to

JSR

STA

LDX

LDA

STA

LDA

STA

BNE

LDA

BEQ

LDA

SEC

SBC

STA

BCS

DEC

LDA

STA

LSR

BCC

JSR

JSR

LDA

BNE

LDA

CLC

ADC

STA

BCC

INC

BNE

INC

RTS

$CED9

$92

$82

$B5,X

$90

$BB,X

$91

$CE41

$90

$CE4C

$90

#$01

$90

$CE4C

$91

$C7,X

$6F

$6F

$CE57

$CEED

$CEE5

$6F

$CE50

$D4

$8B

$8B

$CE6D

$8C

$CE6D

$8D

record in computed side-sector

and

save it

Return from this subroutine

record

Clear temporary memory

Value in math register 2

Get channel number (buffer) and

determine and take on

appropriate record # (low-byte)

Get high-byte of record number &

take it on

Record number greater than 255?

NO-Get low-byte of record number

Is record number = 0?

NO-Get record number(low-byte)and

diminish by

one; take up new

value

Is record number < 1?

YES—Then decrement hi-byte by one

Get record length and

save it

Test against equal value

Is the record length the same?

NO—Add reg. 2 to reg. 1

Math register times 2

Current record

Compute bits

Pointer in position in Record

Count up current

math register by 1

Re-set low-byte

Has a transfer occurred?

YES-Adjust next byte

Another transfer occurred frm it?

YES-Adjust highest byte

Return from this subroutine

[CE11]

Division of math register by 254 (sector length)

CE6E A9 FE LDA #$FE Set value of divisor (254)

CE70 2C .byte $2C Jump two bytes (bit command)

ROM-152

Abacus Software 1571 Internals

[CE18]

Division

CE71 A9

CE73 85

CE75 A2

CE771 B5

CE79 48

CE7A B5

CE7C 95

CE7E

CE7F

CE81

CE82

CE84

68

95

CA

DO

20

EO

90

A9

85

CE871 A2

CE891 B5

CE8B 95

CE8D E8

CE8E

CE90

CE92

CE94

CE96 24

CE98 30

CE9A 06

CE9C 08

CE9D 46

CE9F 28

CEAO 20

CEA31 20

CEA6 20

CEA9 24

CEAB

CEAD

CEBO1 A5

CEB2 18

CEB3

CEB5

CEB7

CEB9

CEBB

CEBD E6

CEBF2 A5

CEC1 05

CEC3 DO

CEC5 A5

30

20

65

85

90

E6

DO

of math register by 120

78 LDA #$78

6F STA $6F

03 LDX #$03

8F LDA $8F,X

PHA

8A LDA $8A,X

8F STA $8F,X

PLA

8A STA $8A,X

DEX

F3 BNE $CE77

D9 CE JSR $CED9

00 LDX #$00

90 LDA $90,X

8F STA $8F,X

INX

04 CPX #$04

F7 BCC $CE89

00 LDA #$00

92 STA $92

6F BIT $6F

09 BMI $CEA3

8F ASL $8F

PHP

8F LSR $8F

PLP

E6 CE JSR $CEE6

ED CE JSR $CEED

E5 CE JSR $CEE5

6F BIT $6F

03 BMI $CEB0

E2 CE JSR $CEE2

8F LDA $8F

CLC

90 ADC $90

90 STA $90

06 BCC $CEBF

91 INC $91

02 BNE $CEBF

92 INC $92

92 LDA $92

91 ORA $91

C2 BNE $CE87

90 LDA $90

(record entries in side-sector)

Set value of divisor (120)

and save it

Number of bytes per math register

Recover current

contents

Copy range $88-$8A to

register 2

Contents of previous reg. 2 in

range $88-$8A (exchange)

Pointer to next byte

Entire register exchanged?

YES-Clear register 1

Initialize counter

Get byte from reg. 2 & prepare

for shifting by one byte

Pointer to next byte

Compare with # of register bytes

Entire register shifted?

YES-Clear most significant

byte

Test divisor

Is it greater than 128?

NO—Put bitO frm least signif.part

of reg. 2 in carry and save it

Re-establish register

Repeat carry and

shift in reg. 2

Add register 1 to register 2

Double register 2

Test divisor

Is it greater than 128?

NO—Take register 24 times

Add to previous

value in

reg. 2 and

save result down

Has a transfer occurred?

YES-Adjust 2nd byte of register

Transfer also a result of this?

YES-Set highest byte of

register

Combine 2nd byte

Both bytes 0(register value<256)?

YES-Get least signif. reg. byte

ROM-153

Abacus Software 1571 Internals

CEC7

CEC8

CECA

CECC

CECE

CEDO

CED2

CED4

CED62

CED81

38

E5 6F

90 OC

E6 8B

DO 06

E6 8C

DO 02

E6 8D

85 90

60

[CE2C/CE84]

Clear

CED9

CEDB

CEDD

CEDF

CEE1

math

A9 00

85 8B

85 8C

85 8D

60

SEC

SBC $6F

BCC $CED8

INC $8B

BNE $CED6

INC $8C

BNE $CED6

INC $8D

STA $90

RTS

and pull a divisor

from that

Transfer occurred?

NO—Increment register 1

Transfer?

Adjust 2nd byte

Transfer?

Adjust last byte

Set new value

Return from this subroutine

register 1 ($8B/$8C/$8D)

LDA #$00

STA $8B

STA $8C

STA $8D

RTS

Value which should be

cleared in

math register

when transferred

Return from this subroutine

[CEAD]

Multiply math register 2 ($90/$91/$92) four times

CEE2 20 E5 CE JSR $CEE5 Double register contents

[CE57/CEA6/CEE2/CEE6:CEA0]

Double math register 2 ($90/$91/$92)

CEE5

CEE61

CEE8

CEEA

CEEC

18

26 90

26 91

26 92

60

[CE54/CEA3]

Add math register

CEED

CEEE

CEFO1

CEF2

CEF4

CEF6

CEF7

CEF9

18

A2 FD

B5 8E

75 93

95 8E

E8

DO F7

60

CLC

ROL

ROL

ROL

RTS

2

CLC

LDX

LDA

ADC

STA

INX

BNE

RTS

$90

$91

$92

($90/$91/$92)

#$FD

$8E,X

$93,X

$8E,X

$CEF0

Value to be shifted = 0

Shift value in register and

shift entire register by

one bitposition to the left

Return from this subroutine

to math register 1 ($8B/$8C/$8D)

Begin addition

of bytes in registr(neg. value)

Get byte from register 1

Get value from register 2, & add;

store result in register 1

Set pointer to next number

Entire register added?

YES—Return from this subroutine

ROM-154

Abacus Software 1571 Internals

[CF17/EBBF]

Initialize buffer channel table

CEFA

CEFC1

CEFD

CEFF

CFOO

CF02

CF04

CF06

CF08

A2

8A

95

E8

EO

DO

A9

95

60

00

FA

04

F8

06

FA

LDX

TXA

STA

INX

CPX

BNE

LDA

STA

RTS

#$00

$FA,X

#$04

$CEFC

#$06

$FA,X

Start of buffer 0

Channel assignment number (0)

Clear channel assignmnt of buffer

Choose next buffer

Test against highest-#ed buffer

All buffers already worked on?

YES-Use buffer 4 for

channel 6 (BAM)

Return from this subroutine

[CF1E/CF7B]

Test channel number in buffer

CF09 A0 04

CF0B A6 82

CF0D1 B9 FA 00

96 FA

C5 82

F0 07

88

30 El

AA

4C 0D CF

60

CF10

CF12

CF14

CF16

CF17

CF19

CF1A

CFID1

LDY #$04

LDX $82

LDA $00FA,Y

STX $FA,Y

CMP $82

BEQ $CF1D

DEY

BMI $CEFA

TAX

JMP $CF0D

RTS

channel table

Number of buffers

Number of channels sought

Pre-arranged channel # of buffer

Set new number

Compare old number with new

Both equal?

NO-Go to next buffer

Was that the last buffer?

NO-Take on old channel number

and test it

Return from this subroutine

[BF5A/D0B7/D0C0/D16A/D180/D18C/D1BB/DB2F/DB7D/DBA2/E04A/E05D/E072/E078]

[E18D/E19A/E19D/E2B9/E3B6/E3C8/E439/E451]

Manage and assign buffer

Actualize buffer table

Get status of chosen buffer

Is buffer free?

YES-Set buffer of appropriate drv

Look for buffer

Buffer been found?

YES-Activate buffer

Save current track

number

Save current sector

number

Pointer to position in buffer

Get a byte from buffer and save

as sector number

Pointer to position in buffer

Get byte from buffer and save

as track number

CF1E

CF21

CF24

CF26

CF2 9

CF2C

CF2E

CF31

CF33

CF34

CF36

CF37

CF39

CF3C

CF3E

CF40

CF43

20

20

DO

20

20

30

20

A5

48

A5

48

A9

20

85

A9

20

85

09

B7

46

D3

8E

48

C2

80

81

01

F6

81

00

F6

80

CF

DF

Dl

D2

DF

D4

D4

JSR

JSR

BNE

JSR

JSR

BMI

JSR

LDA

PHA

LDA

PHA

LDA

JSR

STA

LDA

JSR

STA

$CF09

$DFB7

$CF6C

$D1D3

$D28E

$CF76

$DFC2

$80

$81

#$01

$D4F6

$81

#$00

$D4F6

$80

ROM-155

Abacus Software 1571 Internals

CF45

CF47

CF4A

CF4C

CF4F

CF51

CF54

CF572

CF5A

CF5D1

CF5E

CF60

CF61

CF63

CF661

CF67

CF69

CF6A

CF6C1
CF6F1

CF72

CF73

CF7 62

CF78

[E325]

FO

20

FO

20

DO

20

4C

20

20

68

85

68

85

4C

68

85

68

85

20

20

AA

4C

A9

4C

Look for

CF7B

CF7E

CF81

CF83

CF86

CF88

CF8B1

20

20

DO

20

30

20

60

IF

25

OB

AB

06

8C

5D

8C

57

81

80

6F

81

80

8C

93

99

70

C8

Dl

DD

CF

CF

CF

DE

CF

CF

DF

D5

Cl

BEQ

JSR

BEQ

JSR

BNE

JSR

JMP

JSR

JSR

PLA

STA

PLA

STA

JMP

PLA

STA

PLA

STA

JSR

JSR

TAX

JMP

LDA

JMP

free buffer

09

B7

08

8E

EE

C2

CF

DF

D2

DF

JSR

JSR

BNE

JSR

BMI

JSR

RTS

$CF66

$D125

$CF57

$DDAB

$CF57

$CF8C

$CF5D

$CF8C

$DE57

$81

$80

$CF6F

$81

$80

$CF8C

$DF93

$D599

#$70

$C1C8

$CF09

$DFB7

$CF8B

$D28E

$CF76

$DFC2

Any more sectors in string?

YES-at current filetype

Sector belong to a REL file?

NO-Test last jobcode

Was it a write procedure?

YES-Change buffer status (in/out)

and continue

Change buff stat(active/passive)

Set 'Read sector1 jobcode

Re-establish current

sector number

Re-establish current

track number;

continue

Re-establish current

sector number

Re-establish current

track number

Change buff stat(active/passive)

Get buffer number and

save it;

wait until job is executed

Display

■70 No Channel1 error message

Actualize buffer table

Get number of a buffer

Is buffer free?

NO—Choose another buffer

Has another buffer been found?

YES-Activate buffer

Return from this subroutine

[CF51/CF57/CF6C]

Toggle buffer from active to

CF8C

CF8E

CF90

CF92

CF94

CF96

CF98

CF9A

A6

B5

49

95

B5

49

95

60

82

A7

80

A7

AE

80

AE

LDX

LDA

EOR

STA

LDA

EOR

STA

RTS

$82

$A7,X

#$80

$A7,X

$AE,X

#$80

$AE,X

passive and back

Current channel number

Get corresponding buffer status

Change flag for buffer in/out and

write it back in

Get number of 2nd buffer and

switch over

Write new value in table

Return from this subroutine

ROM-156

Abacus Software 1571 Internals

[C9D5/C9E7]

Write

CF9B

CF9D

CF9F

CFA2

CFA5

CFA8

CFAA

CFAC

CFAF1

CFB1

CFB3

CFB5

bytes

A2

86

20

20

20

90

A9

20

A5

C9

FO

DO

12

83

07

00

25

05

20

9D

83

OF

23

08

[835C/EA48]

Write

CFB7

CFB9

CFBB

CFBD

CFBF

CFC2

CFC4

CFC6

CFC91

CFCB

CFCE1

CFDO

CFD3

CFD5

CFD82

CFDA

CFDC

CFDF

CFE1

CFE3

CFE5

CFE81

CFEA

CFEC

CFED1

CFFO

over

Dl

Cl

Dl

DD

byte into

A5

29

C9

BO

20

BO

A5

4C

DO

4C

A5

20

A4

4C

A9

85

20

C9

FO

A5

20

A5

FO

60

EE

60

84

8F

OF

19

25

05

85

9D

03

AB

85

Fl

82

EE

04

82

E8

2A

05

85

Fl

F8

01

55

Dl

Dl

EO

CF

D3

D4

CF

02

internal channel

LDX

STX

JSR

JSR

JSR

BCC

LDA

JSR

LDA

CMP

BEQ

BNE

file

LDA

AND

CMP

BCS

JSR

BCS

LDA

JMP

BNE

JMP

LDA

JSR

LDY

JMP

LDA

STA

JSR

CMP

BEQ

LDA

JSR

LDA

BEQ

RTS

INC

RTS

#$12

$83

$D107

$C100

$D125

$CFAF

#$20

$DD9D

$83

#$0F

$CFD8

$CFBF

$84

#$8F

#$0F

$CFD8

$D125

$CFC9

$85

$D19D

$CFCE

$E0AB

$85

$CFF1

$82

$D3EE

#$04

$82

$D4E8

#$2A

$CFE8

$85

$CFF1

$F8

$CFED

$0255

in buffer

Set number of write channel (18)

as current secondary address

Look for channel and open

Current drive's LED on

Get corresponding filetype

Relative file?

YES-Clear 'File not closed1

flag

Get current secondary address

Compare with command channel #

Is command channel required?

NO-Jump to $CBBF

Last secondary address

Get channel number and test

against command channel

Has file channel been chosen?

Get current filetype

'REL1 or 'USR1?

NO-Get current file byte & write

in current buffer

Is type a relative file?

YES-Take byte in current record

Get current filebyte and write

in buffer

Get number of current channel

Get next byte for output

Get highest channel number (4)

as command channel number

Initialize buffer pointer;

test for end-of-buffer

Is buffer full?

NO-Get current data byte and put

in buffer

Test flag for last byte (EOI)

No more data?

YES-Return from this subroutine

Clear command mode flag

Return from this subroutine

ROM-157

Abacus Software 1571 Internals

[CD87/CFD0/CFE5/D19D/D1B0/D1B5/D4A8/D4AD/D4BB/D4C0/D4C5/D74D/D754/D75B]
[DB73/DB95/DB99/ECBE/ECC3/ECC8/ECCB/ECD1/ECD6/ECE7/ECEC/ECEF/ECFA/ED00]
[ED08/ED2 6/ED2C/ED3D/ED40/ED43/ED5E/CFFD:DD92]
Write byte in current buffer

Save byte

Get number of buffer

Is buffer properly set up?

NO-Correct stack

Display

'61 File Not Open1 message

Double buffer number and

save it

Repeat byte and write

in current buffer

Set buffer pointer to next char

Return from this subroutine

CFF1

CFF2

CFF5

CFF7

CFF8

CFFA

CFFD2

CFFE

CFFF

D000

D002

D004

48

20

10

68

A9

4C

0A

AA

68

81

F6

60

93 DF

06

61

C8 Cl

99

99

PHA

JSR

BPL

PLA

LDA

JMP

ASL

TAX

PLA

STA

INC

RTS

$DF93

$CFFD

#$61

$C1C8

A

($99,X)

$99,X

[Origin at C146]

Initialize command routine ('i1)

D005 20 Dl Cl JSR $C1D1

D008 20 42 DO JSR $D042

D00B 4C 94 Cl JM£ $C194

Get parameters

Read BAM from diskette

Prepare return message and end

[C64C/D048]

Initialize current drive

D00E

D011

D012

D014

D016

D018

D019

D01C

D01D

D01F

D021

D0241

D025

D026

D027

D029

D02C1

D02D

D02F

D031

D033

20 OF Fl

A8

B6 A7

E0 FF

DO 14

48

20 8E D2

AA

10 05

A9 70

20 48 E6

68

A8

8A

09 80

99 A7 00

8A

29 OF

85 F9

A2 00

86 81

JSR $F10F

TAY

LDX $A7,Y

CPX #$FF

BNE $D02C

PHA

JSR $D28E

TAX

BPL $D024

LDA #$70

JSR $E648

PLA

TAY

TXA

ORA #$80

STA $00A7,Y

TXA

AND #$0F

STA $F9

LDX #$00

STX $81

Get channel number and

save it

Get corresponding buffer status

Compare with 'occupied1 flag

Is buffer free?

YES—Save channel number

Look for buffer and set pointer

Get buffer number

Buffer found?

NO-display

'70 No Channel1 message

Repeat channel number and

save it

Get buffer number

Flag value for buffer active

Write to channel buffer table

Get buffer number and

set flags out

Save current buffer number

Set current sector

number

ROM-158

Abacus Software 1571 Internals

D035 AE 85 FE LDX $FE85

D038 86 80 STX $80

D03A 20 D3 D6 JSR $D6D3

D03D A9 BO LDA #$B0

D03F 4C E5 A6 JMP $A5C5

Set number of directory track as

current track number

Set track/sector for jobloop

Jobcode for 'Search sector1

Initialize diskette

[8FE1/907C/C666/D008/D828/E63E/ED87/EE4 6/EEB1]

Clear track number for BAM

Close other drive channel

Initialize drive

Get current drive number and set

appropriate flag for

•Valid BAM1

Double drive

(number for 2-drive pointer)

and save it

Get/save first blockheader ID

character

Get/save second blockheader

ID character; take it all up

Read BAM from diskette

Get number of current buffer

and double it

(address held in 2 bytes)

Arrange lo-byte of buffer address

in buffer table

Get byte from buffer

Get current drive number

Store byte as format identifier

Clear disk exchange flag &pre-set

•Drive ready1 flag

Unused byte

Read

D042

D045

D048

D04B

D04D

D04F

D052

D053

D054

D055

D057

D059

D05B

D05D

D060

D062

D063

D064

D066

D068

D06A

D06C

D06F

D071

D074

BAM

20

20

20

A6

A9

9D

8A

0A

AA

A5

95

A5

95

20

A5

0A

AA

A9

95

Al

A6

9D

A9

4C

EA

in

Dl

13

0E

7F

00

51

16

12

17

13

67

F9

02

99

99

7F

01

00

ID

buffer

F0

D3

DO

02

A6

01

AA

JSR

JSR

JSR

LDX

LDA

STA

TXA

ASL

TAX

LDA

STA

LDA

STA

JSR

LDA

ASL

TAX

LDA

STA

LDA

LDX

STA

LDA

JMP

NOP

$F0Dl

$D313

$D00E

$7F

#$00

$0251,X

A

$16

$12,X

$17

$13,X

$A667

$F9

A

#$02

$99,X

($99,X)

$7F

$0101,X

#$00

$AA1D

[A83B/AA22/EEF1]

Compute total number of blocks

D075

D078

D07A

D07C

D07D1

D07E

D080

D082

20 3A EF

A0 04

A9 00

71 6D

90 01

E8

JSR $EF3A

LDY #$04

LDA #$00

TAX

CLC

ADC ($6D),

BCC $D083

free

set buffer addr in pnters $6D/$6E

Set buffer pntr to begin.of BAM

Initialize

block counter

Get # of free track blocks from

BAM and add to counter

Has a transfer occurred?

YES-Increment hi-byte of pointer

ROM-159

Abacus Software 1571 Internals

D083*

D084

D085

D086

D087

D089

D08B

D08D

D08F

D090

D091

D093

D096

D097

D09A

C8

C8

C8

C8

CO

FO

CO

DO

48

8A

A6

9D

68

4C

60

48

F8

90

EE

7F

FC 02

51 A9

INY

INY

INY

INY

CPY

BEQ

CPY

BNE

PHA

TXA

LDX

STA

PLA

JMP

RTS

#$48

$D083

#$90

$D07D

$7F

$02FC,X

$A951

Set buffer pointer to # of blocks

free to the

next track;

jump to sector bitpattern

Test pntr against pos.of trackl8

Pointer points to valu f/trackl8?

NO-Test for last track

Add free blocks to all tracks?

YES-Save block counter (low-byte)

Get high-byte of block counter

Get drive # and save free blocks

on drive

Get low-byte of free blocks

Compute number of 1571 blocks

Return from this subroutine

[D0AF/DC57]

Read sector from diskette to buffer

D09B

D09E

D0A1

D0A4

D0A7

D0A9

DOAC

DOAE

20

20

20

20

85

20

85

60

DO

C3

99

37

80

37

81

D6

DO

D5

Dl

Dl

JSR

JSR

JSR

JSR

STA

JSR

STA

RTS

$D6D0

$D0C3

$D599

$D137

$80

$D137

$81

Track/sector number to jobloop

Give jobcode for 'Read sector1

Wait til sector read into buffer

Get 1st byte from buffer &save as

track of next sector

Get next byte from buffer,set as

sector number of next sector

Return from this subroutine

[E2CD]

Read in given sector and sector after that

D0AF

D0B2

D0B4

D0B6

D0B71

D0BA

D0BD

D0C0

20

A5

DO

60

20

20

20

4C

9B

80

01

IE

DO

C3

IE

DO

CF

D6

DO

CF

JSR

LDA

BNE

RTS

JSR

JSR

JSR

JMP

$D09B

$80

$D0B7

$CF1E

$D6D0

$D0C3

$CF1E

Read sector from diskette

Get track

Any more sectors onhand?

NO—Return from this subroutine

Lay out another buffer and

parameters of next sector

Also read into next buffer

Re-activate first buffer

[D09E/D0BD/D189]

Read sector from diskette

D0C3 A9 80 LDA #$80

D0C5 DO 02 BNE $D0C9

Set up jobcode for

Jump to $D0C9

'Read sector1

ROM-160

Abacus Software 1571 Internals

[D1B8/D4B0/DB9C]

Write

D0C7

D0C91

DOCC

DOCF

DODO

D0D3

DOD4

D0D5

D0D6

D0D7

D0D9

DODB

DODE

DOEO

D0E2

DOE4

D0E6

D0E82

D0E9

DOEA

[81EB,

Open <

DOEB

DOED

DOEF

DOF1

D0F31

D0F5

D0F7

D0F91
DOFA

DOFB

DOFE

D1OO

D102

D1O4

D105

D1061

sector

A9

8D

20

AA

20

8A

48

OA

AA

A9

95

20

C9

BO

F6

DO

F6

68

AA

60

90

4D

93

06

00

99

25

04

06

B5

02

BB

to diskette

02

DF

D5

Dl

/C6E2/C9C3/I

channel for

A5

C9

90

29

C9

DO

A9

AA

38

BD

30

29

85

AA

18

60

83

13

02

OF

OF

02

10

2B

06

OF

82

02

LDA

STA

JSR

TAX

JSR

TXA

PHA

ASL

TAX

LDA

STA

JSR

CMP

BCS

INC

BNE

INC

PLA

TAX

RTS

#$90

$024D

$DF93

$D506

A

#$00

$99,X

$D125

#$04

$D0E8

$B5,X

$D0E8

$BB,X

CB45/CDE7/D3

reading

LDA

CMP

BCC

AND

CMP

BNE

LDA

TAX

SEC

LDA

BMI

AND

STA

TAX

CLC

RTS

$83

#$13

$D0F3

#$0F

#$0F

$D0F9

#$10

$022BrX

$D106

#$0F

$82

Set 'Write sector1

Save jobcode

Get and save current buffer

number

Test track/sector numbers

Repeat buffer number and

hold onto it

Double number

(2-byte values)

Set back buffer address

(low-byte)

Get current filetype

Test for SEQ file identifier

Sector belong to a SEQ file?

Number of laid-out file blocks +1

Has a transfer occurred?

YES-High-byte of block pointer +1

Repeat buffer number and

set it

Return from this subroutine

Get curent secondary address and

compare w/maximum 2ndary address

Is address in allowable range?

Limit 2ndary addresses to 0-15 &

test for channel 15

Is command channel communicated?

YES-Set secondary address to 16

(error channel)

Flag:'Channel not for reading1

Test channel status

Is channel in read mode?

YES—Establish internal channel #

Set and save as current

channel number

Set 'channel open1 flag

Return from this subroutine

ROM-161

Abacus Software 1571 Internals

[8343/CA63/CF9F/DB1B/DC43/E688/EA2F]

Search for and open channel

D107

D109

D10B

D10D

D10F1

DUO

D113

D114

D115

D117

D1191

D11A

D11C

DUE

D11F

D120

D1211

D1231

D124

A5

C9

90

29

AA

BD

A8

OA

90

30

98

29

85

AA

18

60

30

38

60

83

13

02

OF

2B 02

OA

OA

OF

82

F6

LDA

CMP

BCC

AND

TAX

LDA

TAY

ASL

BCC

BMI

TYA

AND

STA

TAX

CLC

RTS

BMI

SEC

RTS

$83

#$13

$D10F

#$0F

$022B,X

A

$D121

$D123

#$0F

$82

$D119

Get current secondary address and

compare with maximum value (19)

Is address in allowable range?

NO-then convert and save

range

Get corresponding channel status

and save

Turn status to test bit 6/7

Is flag set for writing?

YES-is flag set for reading?

NO-get channel status again

Establish pure channel number

Set as current channel

and save it

Set 'channel open1 flag

Return from this subroutine

Is flag for read set?

YES-set flag:'channel read only1

Return from this subroutine

[C97 9/C9C6/C9E2/CA2B/CA4 8/CF4 7/CFA5/CFBF/D0DB/D3AC/D3C0/DB10/DBDE]
[E21E/E68E]

Get current file type

D125 A6 82 LDX $82 Get current channel number and

D127 B5 EC LDA $EC,X and get appropriate filetype

D12 9 4A LSR A Ignore drive number

D12A 29 07 AND #$07 Establish identifier for filetype

D12C C9 04 CMP #$04 and compare w/ REL file code

D12E 60 RTS Return from this subroutine

[CD3C/CDC9/D137/D3DE/E01D/E127/E138/E156]

Get channel and matching buffer number

D12F 20 93 DF JSR $DF93 Get current buffer number and

D132 0A ASL A double it

D133 AA TAX Save as 2-byte value in pointer

D134 A4 82 LDY $82 Store as current channel number

D136 60 RTS Return from this subroutine

[D0A4/D0A9/D156/D172/D17B/D192/D433/DAAA/DE9A/DE9F/ED67/EDF3/EDF8]

Get byte from current buffer

D137 20 2F Dl

D13A B9 44 02

D13D F0 12

D13F Al 99

JSR $D12F Set channel and buffer number

LDA $0244,Y pointer to end of buffer

BEQ $D151 Is last byte of buffer read?

LDA ($99,X) NO-get byte from buffer

ROM-162

Abacus Software 1571 Internals

D141

D142

D144

D147

D149

D14B

D14D1

D14E

D150

D1511

D153

D155

48

B5

D9

DO

A9

95

68

F6

60

Al

F6

60

99

44 02

04

FF

99

99

99

99

PHA

LDA

CMP

BNE

LDA

STA

PLA

INC

RTS

LDA

INC

RTS

$99,X

$0244,Y

$D14D

#$FF

$99,X

$99,X

($99,X)

$99,X

and save

Get buffer pointer (low-byte)

& check against logical buff, end

End of the buffer reached?

YES-set buffer pointer to the

physical end-of-buffer

and get another data byte

Set buff pnter to start-of-buffer

Return from this subroutine

Get last byte of buffer and reset

buffer pointer to beginning

Return from this subroutine

[C899/C89E/D400/D45C/DCA9]

Get byte from file

D156

D159

D15B

D15D

D160

D162

D164

D167

D169

D16A1

Dl

02

00

20 37

DO 36

85 85

B9 44

F0 08

A9 80

99 F2

A5 85

60

20 IE CF

A9 00

20 C8 D4

20 37 Dl

C9 00

F0 19

85 80

20 37 Dl

85 81

20 IE CF

20 D3 Dl

20 DO D6

20 C3 DO

20 IE CF

A5 85

D16D

D16F

D172

D175

D177

D179

D17B

D17E

D180

D183

D186

D189

D18C

D18F

D1911 60

D1921 20 37 Dl

D195 A4 82

D197 99 44 02

D19A A5 85

D19C 60

JSR $D137

BNE $D191

STA $85

LDA $0244,Y

BEQ $D16A

LDA #$80

STA $00F2,Y

LDA $85

RTS

JSR $CF1E

LDA #$00

JSR $D4C8

JSR $D137

CMP #$00

BEQ $D192

STA $80

JSR $D137

STA $81

JSR $CF1E

JSR $D1D3

JSR $D6D0

JSR $D0C3

JSR $CF1E

LDA $85

RTS

JSR $D137

LDY $82

STA $0244,Y

LDA $85

RTS

Get byte from buffer

Was that the last byte in buffer?

YES-Save data byte

Get pointer f/correct buffr range

Reached the physical end?

NO-set flag in channel

status table for 'read1

Get another data byte

Return from this subroutine

Read next logical sector

Reset

Buffer pointer

Get 1st byte from sector and test

against 'last sector' identifier

No more sectors on hand?

NO—Track number of next sector

Get second byte from sector

and store as sector number

Still a buffer laid out

Set buffer and drive number

Track & sector number on jobloop

Read sector to buffer

Switch back to previous buffer

Get another data byte

Return from this subroutine

Get byte from buffer

Get current channel number

Set # of bytes to be transferred

Get data byte again

Return from this subroutine

ROM-163

Abacus Software 1571 Internals

[CFC6/D1A3:DA3D]

Write byte in file

D19D 20 Fl CF

D1A0 FO 01

D1A2 60

D1A32 20 D3 Dl

D1A6 20 IE Fl

D1A9 A9 00

D1AB 20 C8 D4

D1AE A5 80

D1B0 20 Fl CF

D1B3 A5 81

D1B5 20 Fl CF

D1B8 20 C7 DO

D1BB 20 IE CF

D1BE 20 DO D6

D1C1 A9 02

D1C3 4C C8 D4

JSR $CFF1 Write data byte in buffer

BEQ $D1A3 Is buffer full yet?

RTS NO-return from this subroutine

JSR $D1D3 Set buffer and drive number

JSR $F11E Get next free sector from BAM

LDA #$00 Set buffer pointer on

JSR $D4C8 string bytes of sector

LDA $80 Write track # of next sector in

JSR $CFF1 string bytes of sector

LDA $81 Write next sector number into

JSR $CFF1 sector string bytes

JSR $D0C7 Write sector to diskette

JSR $CF1E Change to next buffer

JSR $D6D0 Set track and sector # for job

LDA #$02 Set buffer pointer to start of

JMP $D4C8 data range

[C623]

Set current buffer pointer to next character

D1C6

D1C8

D1CB

D1CC

DICE

D1D0

D1D2

85

20

18

65

95

85

60

6F

E8 D4

6F

99

94

STA

JSR

CLC

ADC

STA

STA

RTS

$6F

$D4E8

$6F

$99,X

$94

Save new pointer position

Set pointer to current buffer and

add to the new

pointer value

Put new value in pointer lo-byte

and directory buffer pointer

Return from this subroutine

[CA53/CA66/CF2 6/D183/D1A3/E03C/E31C]

Get number of drive-assigned buffer

D1D3

D1D6

D1D7

D1DA

D1DC

D1DE

20

AA

BD

29

85

60

93

5B

01

7F

DF

02

JSR

TAX

LDA

AND

STA

RTS

$DF93

$025B,X

#$01

$7F

Determine and save buffer

number

Get coresponding jobcode frm tbl

and from it compute drive number;

store as current drive

Return from this subroutine

[DCDF]

Look for write channel and buffer

D1DF

D1E0

38

B0 01

SEC

BCS $D1E3

Set write flag

Jump to $D1E3

ROM -164

Abacus Software 1571 Internals

[91D0/CB9A/CBDF/DC48/ECA4/D20F:DC7E,DD13]

Look for read channel and buffer

D1E2

D1E31

D1E4

D1E6

D1E9

D1EC

D1EE

D1F0

D1F1

D1F3

D1F51

D1F8

D1FA

D1FB

D1FD

D200

D203

D206

D208

D20A

D20D

D20F3

D212

D214

D2171
D21A

D21C

D21E

D221

D223

D2262

18

08

85 6F

20 27 D2

20 7F D3

85 82

A6 83

28

90 02

09 80

9D 2B 02

29 3F

A8

A9 FF

99 A7 00

99 AE 00

99 CD 00

C6 6F

30 1C

20 8E D2

10 08

20 5A D2

A9 70

4C C8 Cl

99 A7 00

C6 6F

30 08

20 8E D2

30 EC

99 AE 00

60

CLC Set read flag

PHP Save flag

STA $6F Number of buffer being sought

JSR $D227 Clear all channels

JSR $D37F Seek & lay out next free channel

STA $82 Save channel number

LDX $83 Get secondary address

PLP Get read/write flag again

BCC $D1F5 Should a read channel be opened?

ORA #$80 NO-set •write1 flag and write

STA $022B,X to status table

AND #$3F Establish and save number of

TAY internal channels

LDA #$FF Appropriate buffers

STA $00A7,Y one and two

STA $00AE,Y freed up

STA $00CD,Y Third buffer freed up

DEC $6F Decrement # of buffer sought

BMI $D226 Found enough buffers?

JSR $D28E NO-look for a free buffer

BPL $D217 Find a buffer?

JSR $D25A NO-free up a buffer

LDA #$70 Error message

JMP $C1C8 '70 No Channel1 displayed

STA $00A7,Y Buffer number in map table

DEC $6F Decrement # of buffers sought

BMI $D226 Found enough buffers?

JSR $D28E NO-look for next buffer

BMI $D20F Found a free buffer?

STA $00AE,Y YES-Save buffer number

RTS Return from this subroutine

[C8AA/D1E6/D30B/D331/D4DE/D4E5/DACE/DB29/DB5F/E695/EE01]

Free up channel

D227 A5 83

D229 C9 OF

D22B DO 01

D22D 60

D22E1 A6 83

D230 BD 2B 02

D233 C9 FF

D235 F0 22

D237 29 3F

D239 85 82

LDA $83 Get current 2ndary address and

CMP #$0F compare w/value f/command channel

BNE $D22E Is channel 15 active?

RTS YES-return from this subroutine

LDX $83 Get current secondary adddress

LDA $022B,X Determine proper channel status &

CMP #$FF test against'channel unused1value

BEQ $D259 Is channel free?

AND #$3F NO-calculate channel number

STA $82 and save it

ROM-165

Abacus Software 1571 Internals

D23B A9 FF LDA #$FF Store flag value:'channel &

D23D 9D 2B 02 STA $022B,X buffer free1 in channel table

D24 0 A6 82 LDX $82 Get current channel number again

D242 A9 00 LDA #$00 Clear channel status

D24 4 95 F2 STA $F2,X flags in channel table

D246 20 5A D2 JSR $D25A Free up appropriate buffer

D24 9 A6 82 LDX $82 Current channel number

D24B A9 01 LDA #$01 Bitflag for 'channel free'

D24D1 CA DEX Decrement channel number
D24E 30 03 BMI $D253 Is flag in correct position?

D250 0A ASL A NO-Give bitflag in bit pattern

D251 DO FA BNE $D24D Jump to $D24D

D2531 0D 56 02 ORA $0256 Write flag in bit list of
D256 8D 56 02 STA $0256 the laid-out channel

D2591 60 RTS Return from this subroutine

[D20F/D246]

Free up buffer

D25A A6 82

D25C B5 A7

D25E C9 FF

D260 F0 09

D262 48

D2 63 A9 FF

D2 65 95 A7

D267 68

D268 20 F3 D2

D2 6B1 A6 82

D2 6D B5 AE

D2 6F C9 FF

D271 F0 09

D273 48

D274 A9 FF

D276 95 AE

D278 68

D279 20 F3 D2

D27C1 A6 82

D27E B5 CD

D280 C9 FF

D282 F0 09

D284 48

D285 A9 FF

D287 95 CD

D289 68

D28A 20 F3 D2

D28D1 60

and corresponding

LDX $82

LDA $A7,X

CMP #$FF

BEQ $D2 6B

PHA

LDA #$FF

STA $A7,X

PLA

JSR $D2F3

LDX $82

LDA $AE,X

CMP #$FF

BEQ $D27C

PHA

LDA #$FF

STA $AE,X

PLA

JSR $D2F3

LDX $82

LDA $CD,X

CMP #$FF

BEQ $D28D

PHA

LDA #$FF

STA $CD,X

PLA

JSR $D2F3

RTS

channel

Get current channel and

determine buffer number for same

Compare with 'buffer free1

Is buffer assigned that channel?

YES—save buffer number and

free up buffer

buffer table

Get buffer number again

Free up bufer layout

Number of current channel

Get corresponding buffer # and

test against 'not occupied' value

Is the buffer free?

NO—Save buffer number

Free up buffer of

channel and get

and current buffer number again

Buffer in availability map freed

Get number of current channel

and corresponding buffer number

Compare w/'buffer inactive' value

Is the buffer used?

YES—Save buffer number and

buffer assignment to current

channel cleared

Get buffer number again and

free buffer in availability table

Return from this subroutine

ROM-166

Abacus Software 1571 Internals

[CF2 9/CF83/DO19/D20A/D21E/DC7 9/DD0E/F0E7]

Look :

D28E

D28F

D2 90

D292

D2 95

D2 97

D298

D2 9B

D29D

D2A0

D2A1

D2A33

D2A5

D2A7

D2A9

D2AB

D2AE

D2AF

D2B0

D2B1

D2B3

D2B61

D2B7

D2B8

D2B9

for

98

48

AO

20

10

88

20

10

20

AA

30

B5

30

A5

95

9D

8A

0A

A8

A9

99

68

A8

8A

60

buffer

01

BA

OC

BA

06

39

13

00

FC

7F

00

5B

02

99

D2

D2

D3

02

00

TYA

PHA

LDY

JSR

BPL

DEY

JSR

BPL

JSR

TAX

BMI

LDA

BMI

LDA

STA

STA

TXA

ASL

TAY

LDA

STA

PLA

TAY

TXA

RTS

#$01

$D2BA

$D2A3

$D2BA

$D2A3

$D339

$D2B6

$00,X

$D2A3

$7F

$00,X

$025B,X

A

#$02

$0099,Y

Get buffer number

and save it

Look for a

free buffer

Found a buffer?

NO-set buffer # to next buffer

look for another buffer

Found a buffer?

NO-get free buffer

Save buffer number

Has a buffer been found?

YES-get last buffer jobcode

Is job already running?

YES—get current drive number

Send return message of job loop

and clear memory for last jobcode

Get buffer number and double it

(the following addresses are

passed in two-byte values)

Buffr ptr fr start-of-data range

Set buffer pointer anew

Re-establish buffer number and

save it

Set numer of buffers found

Return from this subroutine

[D292/D298]

Look for free buffer

D2BA A2 07

D2BC

D2BF

D2C2

D2C4

D2C5

D2C7

D2C8

D2CB

D2CE

D2D1

B9 4F 02

3D E9 EF

F0 04

CA

10 F5

60

1 B9 4F 02

5D E9 EF

99 4F 02

8A

LDX

LDA

AND

BEQ

DEX

BPL

RTS

LDA

EOR

STA

TXA

#$07 Number of bits per byte -M'BPL1)

$024F,Y Get bit pattern of map table

$EFE9,X Get corresponding buffer bit

$D2C8 Is the buffer covered?

YES-set buffer countr to next bit

$D2BC Are all bits already tested?

YES-Return from this subroutine

$024F,Y Get original byte of map table &

$EFE9,X corresponding buffer bit; set bit

$024F,Y and rewrite byte

Get number of buffers found

ROM-167

Abacus Software 1571 Internals

D2D2

D2D3

D2D5

D2D6

D2D81

D2D92

88

30 03

18

69 08

AA

60

[E2BC/E2BF]

Free \

D2DA

D2DC

D2DE

D2E0

D2E1

D2E2

D2E4

D2E5

D2E7

D2E91

D2EB

D2ED

D2EE

D2F0

D2F2

jp all

A6 82

B5 A7

30 09

8A

18

69 07

AA

B5 A7

10 F0

C9 FF

FO EC

48

A9 FF

95 A7

68

DEY

BMI

CLC

ADC

TAX

RTS

inactive

LDX

LDA

BMI

TXA

CLC

ADC

TAX

LDA

BPL

CMP

BEQ

PHA

LDA

STA

PLA

$D2D8

#$08

buffers

$82

$A7,X

$D2E9

#$07

$A7,X

$D2D9

#$FF

$D2D9

#$FF

$A7,X

Pointer to next catalog byte

Both of them used?

NO—calculate

new buffer number

Save buffer # as channel number

Return from this subroutine

Get number of current channel and

determine matching buffer

Is buffer occupied?

YES-get another channel number &

compute for a second

buffer;

save it

Get matching buffer number

Is buffer occupied?

NO—test against'buffer free'value

Is the buffer identified free?

NO—Save buffer number

Set'buffer free'value for current

channel

call another buffer number

[D268/D279/D28A]

Free up buffer index

D2F3

D2F5

D2F6

D2F7

D2F91

D2FC

D2FF

D300

D302

D3031

D304

D306

29 OF

A8

C8

A2 10

6E 50

6E 4F

88

DO 01

18

CA

10 F3

60

02

02

AND

TAY

INY

LDX

ROR

ROR

DEY

BNE

CLC

DEX

BPL

RTS

#$0F Reserve and

save

buffer numbers

#$10 Total number of buffers

$0250 Displace buffer index

$024F by one bit

Set pointer to next buffer

$D303 Any buffers left

NO-set 'buffer free' flag

Re-establish bit index again

$D2F9 Are bits back in output position?

YES-Return from this subroutine

ROM-168

Abacus Software 1571 Internals

[84D8/8C64/EE36]

Close channels 0-14

D307 A9 0E

85 83

20 27 D2

C6 83

DO F9

60

D309

D30B1

D30E

D310

D312

LDA #$0E Set channel number counter

STA $83 to currrent secondary address

JSR $D227 and close channel

DEC $83 Set counter to next channel #

BNE $D30B All channels already closed?

RTS YES—return from this subroutine

[D045/EC55/EC66]

Free up all channels

D313

D315

D3171

D319

D31C

D31E

D320

D322

D324

D327

D328

D32B

D32D

D32F

D3342
D336

D338

A9 0E

85 83

A6 83

BD 2B 02

C9 FF

F0 14

29 3F

85 82

20 93 DF

AA

BD 5B 02

29 01

C5 7F

DO 03

20 27

C6 83

10 DF

60

D2

LDA

STA

LDX

LDA

CMP

BEQ

AND

STA

JSR

TAX

LDA

AND

CMP

BNE

JSR

DEC

BPL

RTS

on current drive

#$0E Channel number counter

$83 Save and set channel number of

$83 current secondary address

$022B,X Get corresponding status

#$FF & test against'channel free'value

$D334 Is channel occupied?

#$3F YES-get this channel number and

$82 store it

$DF93 Get buffer number and

save it

$025B,X Get jobcode for buffer & isolate

#$01 the instructions from it

$7F Test against current drive value

$D334 Channel belong to another drive?

$D227 NO—Free channel

$83 Counter for channel on nxt chnl

$D317 All channels used?

YES—Return from this subroutine

[D29D]

Get a free buffer

D339 A5 6F LDA $6F Get channel number

D33B 48 PHA and save it

D33C A0 00 LDY #$00 Set chnl # cntr to start value

D33E1 B6 FA LDX $FA,Y Get number of channel

D340 B5 A7 LDA $A7,X Get number of buffer assigned

D342 10 04 BPL $D348 Is buffer being used?

D344 C9 FF CMP #$FF NO-test against'buffer free'value

D346 DO 16 BNE $D35E Is buffer free?

D3482 8A TXA YES-Get another channel number

D34 9 18 CLC and convert for access to

D34A 69 07 ADC #$07 a second buffer;

D34C AA TAX save it

D34D B5 A7 LDA $A7,X Get corresponding buffer

D34F 10 04 BPL $D355 Is buffer occupied?

ROM-169

Abacus Software 1571 Internals

D351

D353

D3552

D356

D358

D35A

D35C

D35E2

D360

D362

D3631

D365

D367

D369

D36B

D36D

D36F

D371

D3731

D375

D377

D37A1

D37B

D37D

D37E

[D1E9]

C9

DO

C8

CO

90

A2

DO

86

29

AA

B5

30

C9

90

A6

EO

90

BO

A4

A9

99

68

85

8A

60

Seek and

D37F

D38i

D3831

D386

D388

D389

D38A

D38C

D38E

D3911

D393

D396

D399

D39A

AO

A9

2C

DO

C8

OA

DO

A9

4C

49

2D

8D

98

60

FF

09

05

E4

FF

1C

6F

3F

00

FC

02

08

6F

07

D7

E2

6F

FF

A7

6F

laj

00

01

56

09

F7

70

C8

FF

56

56

00

* out

02

Cl

02

02

CMP

BNE

INY

CPY

BCC

LDX

BNE

STX

AND

TAX

LDA

BMI

CMP

BCC

LDX

CPX

BCC

BCS

LDY

LDA

STA

PLA

STA

TXA

RTS

#$FF

$D35E

#$05

$D33E

#$FF

$D37A

$6F

#$3F

$00,X

$D363

#$02

$D373

$6F

#$07

$D348

$D355

$6F

#$FF

$00A7,Y

$6F

free channel

LDY

LDA

BIT

BNE

INY

ASL

BNE

LDA

JMP

EOR

AND

STA

TYA

RTS

#$00

#$01

$0256

$D391

A

$D383

#$70

$C1C8

#$FF

$0256

$0256

NO—test against val:'buffer free1

Is buffer free?

YES—choose next channel

Compare with max. # of channels

Are all channels worked with?

Error flag value

Jump to $D37A

Set channel number;

use to determine buffer number

and save it

Get jobcode of buffer

Is job still in process?

NO—test return msg against 'OK1

Job run error-free?

NO—get channel number and test

for maximum number

Channel number in allowed range?

NO-Jump to $D355

Get channel number and label

buffer in buffer assignment table

as free

Get originl channel number again

and reset it

Give buffer number

Return from this subroutine

Initialize pointers

Bit of channel to be tested

Test bit in channel catalog

Is channel free?

NO—pick next channel

Bit positioned for next channel

Have all channels been checked?

YES—error message

'70 No Channel1 displayed

Invert 'channel free' bitflag and

focus down into flag byte

Lay out channel

Get channel number

Return from this subroutine

ROM-170

Abacus Software 1571 Internals

[CA39]

Get byte from channel

D39B

D39E

D3A1

D3A4

D3A6

D3A9

20

20

20

A6

BD

60

EB

00

AA

82

3E

DO

Cl

D3

02

JSR

JSR

JSR

LDX

LDA

RTS

$D0EB

$C100

$D3AA

$82

$023E,X

Open read channel

Switch on LED of current drive

Read out byte over channel

Determine channel number

and get corresponding data byte

Return from this subroutine

[82BD/D3A1/E992]

Read byte from file

D3AA

D3AC

D3AF

D3B1

D3B41

D3B6

D3B8

D3BA

D3BC

D3BE

D3C0

D3C3

D3C5

D3C7

D3C9

D3CB

D3CE3

D3D0

D3D2

D3D3]

D3D5

D3D7

D3DA

D3DC

A6 82

20 25 Dl

DO 03

4C 20 El

A5 83

C9 OF

F0 5A

B5 F2

29 08

DO 13

20 25 Dl

C9 07

DO 07

A9 89

95 F2

4C DE D3

A9 00

95 F2

60

A5 83

F0 32

20 25 Dl

C9 04

90 22

LDX

JSR

BNE

JMP

LDA

CMP

BEQ

LDA

AND

BNE

JSR

CMP

BNE

LDA

STA

JMP

LDA

STA

RTS

LDA

BEQ

JSR

CMP

BCC

$82 Get channel number

$D125 Determine filetype

$D3B4 Is it a relative file?

$E120 YES-REL file routine

$83 Get secondary address and

#$0F compare with command channel (15)

$D414 Command channel produced?

$F2,X NO-Get channel status and

#$08 test for EOI flag

$D3D3 Was last byte transferred?

$D125 YES—Determine filetype & compare

#$07 with value for direct access

$D3CE Direct access chanel been opened?

#$89 YES-Send direct access flag value

$F2,X as channel status

$D3DE Get byte from buffer

#$00 Flag value for EOI encountered;

$F2,X close channel and clear map

Return from this subroutine

$83 Get current secondary address

$D409 Should it be loaded as a program?

$D125 .. NO-Determine filetype and

#$04 compare w/value for relative file

$D400 Identical?

[D3CB/FFB0]

Get byte from relative file

D3DE 20 2F Dl JSR $D12F

D3E1 B5 99 LDA $99,X

D3E3 D9 44 02 CMP $0244,Y

D3E6 DO 04 BNE $D3EC

D3E8 A9 00 LDA #$00

D3EA 95 99 STA $99,X

YES—Set buffer & channel numbers

Get current buffr pointer,compare

with the end-of-buffer

End of effective range reached

Buffer pointer (low-byte)

reset

ROM-171

Abacus Software 1571 Internals

[CD59/D3E6]

Get next byte from file

D3EC F6 99 INC $99,X Set buffer pointer to next byte

[CDCA/CFD5]

Get currrent

D3EE

D3F0

D3F3

D3F5

D3F8

D3FA

D3FC

D3FF1

D4002

D4031

D405

D408

D4091

D4 0C

D40E

D411

[D3B8

Read <

D414

D417

D419

D41B

D41D

D41F

D421

D423

D425

D428

D42A

D42D

D42F

D431

D4332

D436

D438

Al

99

B5

D9

DO

A9

99

60

20

A6

9D

60

AD

F0

20

4C

]

99

3E

99

44

05

81

F2

56

82

3E

54

F2

67

03

srror c

20

C9

DO

A5

C9

DO

A9

85

20

A9

20

C6

A9

DO

20

85

DO

E8

D4

18

95

02

12

OD

85

23

00

Cl

A5

80

12

37

85

09

: byte

02

02

00

Dl

02

02

ED

D4

from file

LDA

STA

LDA

CMP

BNE

LDA

STA

RTS

JSR

LDX

STA

RTS

LDA

BEQ

JSR

JMP

channel

D4

Cl

E6

Dl

JSR

CMP

BNE

LDA

CMP

BNE

LDA

STA

JSR

LDA

JSR

DEC

LDA

BNE

JSR

STA

BNE

($99,X)

$023E,

$99,X

$0244,

$D3FF

#$81

$00F2,

$D156

$82

$023E,

$0254

$D400

$ED67

$D403

$D4E8

#$D4

$D433

$95

#$02

$D433

#$0D

$85

$C123

#$00

$E6C1

$A5

#$80

$D445

$D137

$85

$D443

Y

Y

Y

X

Read byte from buffer and save

as byte to be given

Get buffer pointer and

test against end value

Reached end of the file range?

YES-Take flag value for 'last

char into channel status table

Return from this subroutine

Get character from buffer

Get number of current channel and

allocate databyte for output

Return from this subroutine

Get flag for directory

Is directory in buffer?

YES—Get byte from directory

and take it over

Get current buffer pointer

Compare w/ error buffer value

Is the pointer properly set?

YES-Get pointer hi-byte and test

against correct value

Is pointr directd at error buffr?

YES-'Return'

Output to next byte

Reset error flag

Number of 'OK' message

Write message to error buffer

Pointer to errormessge buffr (lo)

'Read' flag

Jump to $D4 45

Get byte from error buffer and

take as byte to be output

Reached the end?

ROM-172

Abacus Software 1571 Internals

[CB48]

Set pointer for error message pointer($02D4)

D43A A9 D4 LDA #$D4 YES-Set buffer pointer for

D43C 20 C8 D4 JSR $D4C8 error buffer

D43F A9 02 LDA #$02 Set pointer

D441 95 9A STA $9A,X high-byte

[CB42/D438]

Initialize error

D443

D4451

D447

D449

D44C

A9 88

85 F7

A5 85

8D 43 02

60

[C629/C8B0/EE07]

Read

D44D

D450

D451

D452

D454

D456

D458

D45A

D45C

D45F1

next sector

20 93 DF

0A

AA

A9 00

95 99

Al 99

F0 05

D6 99

4C 56 Dl

60

[CD39/D720/DBC9]

Take

D460

D4 62

jobcode for

A9 80

DO 02

message channel

LDA #$88

STA $F7

LDA $85

STA $0243

RTS

of a file

JSR $DF93

ASL A

TAX

LDA #$00

STA $99,X

LDA ($99,X)

BEQ $D45F

DEC $99,X

JMP $D156

RTS

'read sector1

LDA #$80

BNE $D4 66

Set 'read1 and 'EOI'

flags for channel 5

Get byte and take up

output

Return from this subroutine

Determine buffer number

and double it

(pointr table works w/2-byte #'s)

Starting position in buffer

taken up in buffr pointr (lobyte)

Get track number of next sector

No more sectors on hand

Set buffer pointer to end

Read next sector

Return from this subroutine

Set jobcode for 'read sector1

Jump to $D4 66

[CD8C/CD9D/D790/D93A/D98A/EEAC]

Take up jobcode for 'write sector1

D464 A9 90 LDA #$90 Set jobcode for 'write sector1

[D462]

Execute

D466

D468

D4 6B

D4 6D

D470

D472

05

8D

A5

20

A6

4C

jobcode

7F

4D

F9

D3

F9

93

02

D6

D5

(in A)

ORA

STA

LDA

JSR

LDX

JMP

$7F

$024D

$F9

$D6D3

$F9

$D593

Set current drive # in jobcode

and save jobcode

Get number of current buffer

Take track and sector numbers

Get number of current buffer

Set jobcode and execute job

ROM-173

Abacus Software 1571 Internals

[C5C1/C60E/C880/CA0C/EDEB]

Open sequential file for reading

D475 A9 01 LDA #$01 Filetype identifier for SEQ file

[E7D5]

Open file for reading

D477

D47A

D47C

D47E

D481

D483

8D 4A 02

A9 11

85 83

20 46 DC

A9 02

4C C8 D4

STA $024A

LDA #$11

STA $83

JSR $DC46

LDA #$02

JMP $D4C8

determined

of internal read channels (17)

taken as current 2ndary address

Buffer laid out & sector read in

Buffer pointer set to start of

file range

[C9B0]

Open file for writing

D486 A9 12 LDA #$12

D488 85 83 STA $83

D48A 4C DA DC JMP $DCDA

Set # of internal write channel

(18) set as secondary address

Open channel & laydown new sector

[D730]

Write

D48D

D4 90

D4 92

D494

D496

D497

D499

D4 9B

D4 9E

D4 9F

D4A1

D4A3

D4A6

D4A8

D4AB

D4AD

D4B0

D4B3

D4B6

D4B8

D4BB1

D4BE

D4C0

D4C3

D4C5

next directory

20

A9

85

A5

48

A9

85

20

68

85

A9

20

A5

20

A5

20

20

20

A9

20

20

DO

20

A9

4C

3B

01

6F

69

03

69

2D

69

00

C8

80

Fl

81

Fl

C7

99

00

C8

Fl

FB

Fl

FF

Fl

DE

Fl

D4

CF

CF

DO

D5

D4

CF

CF

CF

JSR

LDA

STA

LDA

PHA

LDA

STA

JSR

PLA

STA

LDA

JSR

LDA

JSR

LDA

JSR

JSR

JSR

LDA

JSR

JSR

BNE

JSR

LDA

JMP

sector

$DE3B

#$01

$6F

$69

#$03

$69

$F12D

$69

#$00

$D4C8

$80

$CFF1

$81

$CFF1

$D0C7

$D599

#$00

$D4C8

$CFF1

$D4BB

$CFF1

#$FF

$CFF1

Get current track/sector numbers

Number of sectors to

be laid down

Get normal sector set and

retain

Declare sector set for directory

at 3

Transmit next free sector

Re-direct normal

sector set

Set buffer pointer to

start-of-buffer

Write track # of new sector in

current directory sector

Take # of next sector in current

sector as string

Write current sector to diskette

Wait until job loop is ready

Reset buffer pointer

to beginning

Write fillbytes into buffer

Entire buffer cleared?

YES-Identifier for last sector

Write number of good sector bytes

in sector

ROM-174

D4C8

D4CA

D4CD

D4CE

D4CF

D4D1

D4D3

D4D5

D4D7

D4D9

85

20

0A

AA

B5

85

A5

95

85

60

6F

93 DF

9A

95

6F

99

94

STA

JSR

ASL

TAX

LDA

STA

LDA

STA

STA

RTS

$6F

$DF93

A

$9A,X

$95

$6F

$99,X

$94

Abacus Software 1571 Internals

[C614/C896/CA14/CA32/CAB4/CD47/CD83/D16F/D1AB/D1C3/D43C/D483/D4A3/D4B8]

[D740/D914/DA42/DB92/DCA0/DD6F/DE97/DFFA/E04F/E27A/E4 7 6/E4A3/E4C0/E4DB]

[ECA9/EDF0]

Set buffer pointer to given position

Save new position

Get current buffer number and

double it (pointer table takes

2-byte pointers)

Get and set

buffer pointer (high-byte)

Get low-byte of buffer pointer

Save and set as current

buffer pointer

Return from this subroutine

[C1BA/DAD1/E653]

Close internal channels

D4DA A9 11 LDA #$11 Set # of internal read channel

D4DC 85 83 STA $83 (17) as current secondary address

D4DE 20 27 D2 JSR $D227 Close channel

D4E1 A9 12 LDA #$12 Store number of internal write

D4E3 85 83 STA $83 channel(18)as current 2ndry adrs;

D4E5 4C 27 D2 JMP $D227 Close channel

[C5D7/C6E5/CD7 6/CFDC/D1C8/D414/DB6A/DB7 6/DFEA/E182/E1A9]

Determine current buffer pointer

D4E8 20 93 DF JSR $DF93 Get number of current buffer

[DF49]

Set buffer pointer (buffer number in A)

Double it (pointer table deals

with 2-byte numbers)

Get pointer at position in buffer

and take on as

current

buffer pointer

Return from this subroutine

[C5D1/CF39/CF40/E00E/E39F]

Read any byte from buffer

(A must contain position of the character)

D4F6 85 71 STA $71 Save buffer position

JSR $DF93 Determine current buffer number

TAX and save it

LDA $FEE0,X Get hi-byte of appropriate buffer

STA $72 address and set it

LDY #$00 Initialize buffer pointer and

ROM-175

D4EB

D4EC

D4ED

D4EF

D4F1

D4F3

D4F5

0A

AA

B5

85

B5

85

60

9A

95

99

94

ASL

TAX

LDA

STA

LDA

STA

RTS

A

$9A,

$95

$99,

$94

X

X

D4F8

D4FB

D4FC

D4FF

D501

20

AA

BD

85

A0

93

E0

72

00

DF

FE

Abacus Software 1571 Internals

D503

D505

Bl

60

71

[D0D0/DE32]

Test track and

D506

D509

D50B

D50E1
D50F

D511

D512

D513

D514

D516

D519

D51B

D51D

D520

D522

D523

D524

D525

D527

D52 9

D52B

D52C

D52D

D52E

D530

D533

D5351

D5381

D53A

D53D

D53F1

D540

D543

D54 6

D548

D54A3

D54D4

D54F

BD

29

0D

48

86

8A

0A

AA

B5

8D

B5

FO

CD

BO

AA

68

48

29

C9

DO

68

48

4A

BO

AD

90

AD

FO

CD

DO

8A

20

CD

FO

BO

20

A9

4C

5B

01

4D

F9

07

4D

06

2D

AC

28

FO

90

4F

05

01

03

02

05

D5

33

4B

4D

02

30

52

66

45

02

02

02

02

01

01

FE

F2

02

D5

E6

LDA

RTS

sector

LDA

AND

ORA

PHA

STX

TXA

ASL

TAX

LDA

STA

LDA

BEQ

CMP

BCS

TAX

PLA

PHA

AND

CMP

BNE

PLA

PHA

LSR

BCS

LDA

BCC

LDA

BEQ

CMP

BNE

TXA

JSR

CMP

BEQ

BCS

JSR

LDA

JMP

($71),Y

numbers

$025B,X

#$01

$024D

$F9

A

$07,X

$024D

$06,X

$D54A

$02AC

$D54A

#$F0

#$90

$D57A

A

$D535

$0101

$D538

$0102

$D53F

$FED5

$D572

$F24B

$024D

$D54A

$D57A

$D552

#$66

$E645

get byte from buffer position

Return from this subroutine

for validity, then set jobcode

Get jobcode declared by buffr and

determine drive number from it

Concentrate on markiing

current jobcode

Hold on to buffer number

and double

the number (the next table uses

2-byte values)

Get sector number of this job

and save it

determine track # of this job

No track chosen (0)?

NO—and test for largest track +1

Is this track # in allowed range?

YES—Save track number

and call jobcode back;

save it again

Isolate jobcode

and compare with code for 'write1

Identical?

YES—get entire jobcode again and

save it immediately

Bitflag for drive number in Carry

Drive 1 chosen?

NO-Format identifier for drive 0

Jump to $D538

Get format identifier for drive 1

Jump to $D53F

Compare with identifier 'A1

Right format?

YES—get track number again

Get largest appropriate sector #

Compare with sector number of job

Reached the maximum number?

NO—is sector number legal?

NO—get track and sector of job

again, and display error message

■66 Illegal Track or Sector1

ROM-176

D552

D554

D555

D556

D558

D55A

D55C

D55E

A5

OA

AA

B5

85

B5

85

60

F9

06

80

07

81

LDA

ASL

TAX

LDA

STA

LDA

STA

RTS

$F9

A

$06,X

$80

$07,X

$81

Abacus Software 1571 Internals

[D54A/D572]

Get track/sector of current job from job memory

Get # of current job (buffer)

and double

(table works w/ 2-byte values)

Get job track # from table and

save as current track

Get job sector number & store as

current sector number

Return from this subroutine

[CE08/EDE5]

Check current track/sector for allowable range

D55F A5 80 LDA $80 Get current track number

D561 F0 EA BEQ $D54D No track set?

D563 CD AC 02 CMP $02AC NO-Test for max. allowable tracks

D566 B0 E5 BCS $D54D Allowable track number (< max.)?

D568 20 4B F2 JSR $F24B YES-Get # of sectors in track, &

D56B C5 81 CMP $81 compare with current sector #

D56D F0 DE BEQ $D54D Is the sector number 1 too high?

D56F 90 DC BCC $D54D NO-Is the number still larger?

D571 60 RTS NO-Return from this subroutine

[D53D/EE53]

Display error message for false format

D572 20 52 D5 JSR $D552 Get track/sector of job and

D575 A9 73 LDA #$73 display error message --

D577 4C 45 E6 JMP $E645 '73 CBM DOS V3.0 15711

[D529/D548]

Send job for current buffer to job loop

(NB:Routine cannot jump with 'JSR1, since the stack must contain

the jobcode and not the jump address)

Get the # of the current buffer

get jobcode to be set and

store as current jobcode

Give to job loop

Assign to current buffer

Return from this subroutine

[A5D1/A66E/A693/A6BA]

Send jobcode for read to job loop and wait until execution

D586 A9 80 LDA #$80 Jobcode for 'read sector1

D588 DO 02 BNE $D58C Jump to $D58C

D57A

D57C

D57D

D580

D582

D585

A6

68

8D

95

9D

60

F9

4D

00

5B

02

02

LDX

PLA

STA

STA

STA

RTS

$F9

$024D

$00,X

$025B,X

ROM-177

Abacus Software 1571 Internals

[A594/A5A4/A5C5]

Send jobcode for write to job loop, and wait until execution

D58A A9 90 LDA #$90 Jobcode for 'write sector1

[A6E5/A70E/D588]

Execute job for current drive (jobcode in A)

D58C 05 7F ORA $7F Take current drive in jobcode

D58E A6 F9 LDX $F9 Get number of proper buffers

[DC3D]

Execute jobcode (jobcode in A, buffer number in X)

D590 8D 4D 02 STA $024D and save current jobcode

[D472/DF42] Execute job

D593 AD 4D 02 LDA $024D

D596 20 0E D5 JSR $D50E

Get jobcode; test track/sector

parameters; and wait in job loop,

[869A/C8BE/CAAC/CAC6/D0A1/D4B3/DB9F/DC95/DD6A/DD84/DDF9/E068/E430/E4A9]

[E4F0/CF73/E05A]

Wait until job is executed and error message is prepared

20 A6 D5 JSR $D5A6 Control job run

B0 FB BCS $D599 Is job finished yet?

PHA YES—Save return message of job

D599

D59C

D59E

D59F

D5A1

D5A4

D5A5

48

A9 00

8D 98 02

68

60

LDA #$00

STA $0298

PLA

RTS

Clear 'Error from job1

flag and

get return message again

Return from this subroutine

[D599]

Supervise current job run

D5A6 B5 00

D5A8 30 1A

D5AA C9 02

D5AC 90 14

D5AE C9 08

D5B0 F0 08

D5B2 C9 0B

D5B4 F0 04

D5B6 C9 OF

D5B8 DO 0C

D5BA2 2C 98 02

D5BD 30 03

D5BF 4C 3F D6

D5C22 18
D5C3 60

D5C41 38

D5C5 60

LDA $00,X

BMI $D5C4

CMP #$02

BCC $D5C2

CMP #$08

BEQ $D5BA

CMP #$0B

BEQ $D5BA

CMP #$0F

BNE $D5C6

BIT $0298

BMI $D5C2

JMP $D63F

CLC

RTS

SEC

RTS

Get jobcode from job memory

Is job still in process?

NO—Test for 'OK1 message

Job properly run?

NO-Compare w/ 'Write Protect On1

Is write-protect notch covered?

NO-Compare w/ 'Disk ID Mismatch1

Find a false ID?

NO-Compare w/ 'Drive Not Ready'

Unformatted diskette in drive?

YES—Test error flag

Has an error been displayed?

NO-Display error message

Set flag for 'Job finished'

Return from this subroutine

Set fig f/'Job not finished yet'

Return from this subroutine

ROM-178

Abacus Software 1571 Internals

[D5B8/D644:A6CE]

Set head to next

D5C6 98

48

A5 7F

48

BD 5B .02

29 01

85 7F

A8

B9 CA FE

8D 6D 02

20 A6 D6

C9 02

BO 03

4C 6D D6

BD 5B 02

29 F0

48

C9 90

DO 07

A5 7F

09 B8

9D 5B 02

24 6A

70 39

A9 00

8D 99 02

8D 9A 02

AC 99 02

AD 9A 02

38

F9 DB FE

8D 9A 02

B9 DB FE

20 Al FF

EE 99 02

20 A6 D6

C9 02

90 08

AC 99 02

B9 DB FE

DO DB

■ AD 9A 02

D628 20 A6 FF

D62B B5 00

D62D C9 02

D5C7

D5C8

D5CA

D5CB

D5CE

D5D0

D5D2

D5D3

D5D6

D5D9

D5DC

D5DE

D5E0

D5E31

D5E6

D5E8

D5E9

D5EB

D5ED

D5EF

D5F1

D5F41

D5F6

D5F8

D5FA

D5FD

D6001

D603

D606

D607

D60A

D60D

D610

D613

D616

D619

D61B

D61D

D620

D623

D6251

track after a

TYA

PHA

LDA $7F

PHA

LDA $025B,X

AND #$01

STA $7F

TAY

LDA $FECA,Y

STA $026D

JSR $D6A6

CMP #$02

BCS $D5E3

JMP $D66D

LDA $025B,X

AND #$F0

PHA

CMP #$90

BNE $D5F4

LDA $7F

ORA #$B8

STA $025B,X

BIT $6A

BVS $D631

LDA #$00

STA $0299

STA $029A

LDY $0299

LDA $029A

SEC

SBC $FEDB,Y

STA $029A

LDA $FEDB,Y

JSR $FFA1

INC $0299

JSR $D6A6

CMP #$02

BCC $D625

LDY $02 99

LDA $FEDB,Y

BNE $D600

LDA $029A

JSR $FFA6

LDA $00,X

CMP #$02

read error; search some more

Reserve Y-Register

(routine will change it)

Get current drive number and

save it

Get buffer-declared jobcode and

determine drive used

Store # of current drive and get

bitmask stated by drive,

to switch drive LED on

Save LED-blink mask

($6A) Execute read-search

Compare return message w/ 'OK1

Last job run without errors?

YES—End of routine

Get current jobcode

Isolate and save

command bits

Compare with value for 'write1

Has a sector been written?

YES—Get drive number and set

jobcode for 'look for sector'

Assign jobcode to current buffer

Fig fr'don't look for next track'

Is flag set?

NO-Initialize pointers:

Position pointer to next track

Pointer to searchphase—next track

Determine positioning phase

Get currnt cntrl byt f/head move

ment and sent value for return to

outside position, then

positioning next to the track

Get cntrl byt for l/2step to next

track; execute head movement

Set counter to next control byte

($6A) Execute read search

Test retrn messge aganst'OK'value

Any errors?

Get counter for positioning phase

Get next positioning command

End of search string?

YES—Get cntrl value for return to

track & look for a reading again

Get return value of job loop and

compare with 'Ok'

ROM-179

Abacus Software 1571 Internals

D62F

D6311

D633

D6351

D636

D638

D63A

D63C

D63F3
D641

D6442

D645

D648

D64A

D64B

D64D

D64F

D651

D654

D655

D658

D65A

D65C1

D65D

D65F

D661

D663

D666

D669

D66B

D66D3

D66E

D670

D671

D672

D674

D675

90

24

10

68

C9

DO

05

9D

B5

20

68

2C

30

48

A9

05

95

20

EA

20

C9

BO

68

C9

DO

05

9D

20

C9

BO

68

85

68

A8

B5

18

60

2B

6A

OF

90

05

7F

5B

00

OA

98

23

CO

7F

00

B6

A6

02

D9

90

OC

7F

5B

A6

02

D2

7F

00

02

E6

02

9F

D6

02

D6

BCC

BIT

BPL

PLA

CMP

BNE

ORA

STA

LDA

JSR

PLA

BIT

BMI

PHA

LDA

ORA

STA

JSR

NOP

JSR

CMP

BCS

PLA

CMP

BNE

ORA

STA

JSR

CMP

BCS

PLA

STA

PLA

TAY

LDA

CLC

RTS

$D65C

$6A

$D644

#$90

$D63F

$7F

$025B,X

$00,X

$E60A

$0298

$D66D

#$C0

$7F

$00,X

$9FB6

$D6A6

#$02

$D635

#$90

$D66D

$7F

$025B,)

$D6A6

#$02

$D63F

$7F

$00,X

Read-search go well?

NO-Check flag:'head at track 01

Re-adjust head (Bump) ?

NO-Get command code,test against

'write sector1 job

Identical?

YES-Set drive #, assign current

buffer a jobcode

Get return message of job

and prep error message

Get proper command code

Test error flag

Found an error already?

NO—Save jobcode and

set jobcode for 'head re

adjusted' (Bump) for current

drive

Start job loop and execute job

[via modification of 1541 ROM]

Job executed ($6A) times

Compare return message w/ 'OK'

Was this last run correctly?

YES—Get jobcode again and compare

with value for 'write'

Should sector have been written?

YES—Set drive number and assign

jobcode to current buffer

($6A) times—look for sector write

Compare return mess, w/ 'OK'

Successful write?

YES—Prep current drive number

again

Reset

Y-register

Get return message for job loop

Set flag for 'Job finished'

Return from this subroutine

[FF99/FF9C]

Accumulator instructs head to move in half-steps

(Bit7 =1 step in; Bit7 =0 step out)

Test contents of accumulator

Step value given?

YES-Should head move out?

Value for half-step in

Reset head

and decrement counter

D676

D678

D67A

D67C1

D67E

D681

C9

F0

30

A0

20

38

00

18

OC

01

93 D6

CMP

BEQ

BMI

LDY

JSR

SEC

#$00

$D692

$D688

#$01

$D693

ROM-180

Abacus Software 1571 Internals

D682 E9 01 SBC #$01 for number of half-steps

D684 DO F6 BNE $D67C All steps taken?

D686 F0 0A BEQ $D692 YES-Jump to $D692

D6882 A0 FF LDY #$FF Value for half-step out
D68A 20 93 D6 JSR $D693 Set head again and

D68D 18 CLC increment counter for

D68E 69 01 ADC #$01 number of half-steps

D690 DO F6 BNE $D688 All steps covered?

D6922 60 RTS YES-Return from this subroutine

[D67E/D68A]

Head movement

D693 48

D694 98

D695 A4 7F

D697 99 FE 02

D69A1 D9 FE 02
D69D F0 FB

D69F A9 00

D6A1 99 FE 02

D6A4 68

D6A5 60

values given to job loop

PHA Reserve accumulator

TYA Get 'value for head positioning

LDY $7F Get current drive number and

STA $02FE,Y send control byte to job loop

CMP $02FE,Y Get value again

BEQ $D69A Was value taken and head set?

LDA #$00 YES-clear

STA $02FE,Y job register

PLA Re-establish accumulator

RTS Return from this subroutine

0[D5D9/D616/D655/D666]

Jobcode executes until successful,

D6A6

D6A8

D6AA

D6AB1

D6AE

D6B1

D6B4

D6B7

D6B9

D6BC

D6BD

D6BF

D6C1

D6C2

D6C41

D6C5

D6C8

D6CB

D6CE

D6CF

A5 6A

29 3F

A8

AD 6D 02

4D 00 1C

8D 00 1C

BD 5B 02

95 00

20 B6 9E

EA

C9 02

90 03

88

DO E7

48

AD 6D 02

0D 00 1C

8D 00 1C

68

60

LDA $6A

AND #$3F

TAY

LDA $026D

EOR $lC00

STA $lC00

LDA $025B,X

STA $00,X

JSR $9EB6

NOP

CMP #$02

BCC $D6C4

DEY

BNE $D6AB

PHA

LDA $026D

ORA $lC00

STA $lC00

PLA

RTS

or when counter in $6A=0

Get search number and limit

to a range of 0 to 63

Set counter

Switch on LED mask

LED bit in drive control register

switches (LED flickers)

Get jobcode of current buffer and

send to job loop

Start job loop and execute job

[1541 ROM modification]

Compare return message w/ 'OK1

Is job completed?

NO-decrement trial number

Any more trials to be done?

NO—Save job number

Get 'LED onf mask and

concentrate remaining bits of

contrl registers; set registers

Get return message from job loop

Return from this subroutine

ROM-181

Abacus Software 1571 Internals

[D09B/D0BA/D186/DCE2/DE7F/E3B9/E3CB]

Send current track & sector number to job loop

D6D0 20 93 DF JSR $DF93 Get current buffer number

[A414/C8D7/D03A/D4 6D/DC8F/DD2E/DF3D]

Send track & sector to job loop (buffer in A)

D6D3

D6D4

D6D5

D6D7

D6DA

D6DC

D6DF

D6E1

D6E2

D6E3

0A

A8

A5 80

99 06

A5 81

99 07

A5 7F

0A

AA

60

00

00

ASL A

TAY

LDA $80

STA $0006,

LDA $81

STA $0007,

LDA $7F

ASL A

TAX

RTS

and double (job table works

with 2-byte values)

Send number of current track

to job loop

Store current sector number

for job loop

Get current drive number

double and

save

Return from this subroutine

[C9B3/D9EC]

D6E4 A5 83

D6E6

D6E7

D6E9

D6EA

D6EC

D6ED

D6EF

D6F0

D6F2

D6F4

D6F7

D6FA

D6FB

D6FD

D6FF

D701

D703

D706

D707

D709

D70B

D70E

D711

D713

D715

D718

D71A

48

A5 82

48

A5 81

48

A5 80

48

A9 11

85 83

20 3B

AD 4A

48

A5 E2

29 01

85 7F

A6 F9

5D 5B

4A

90 0C

A2 01

8E 92

20 AC

F0 ID

DO 28

AD 91

F0 0C

C5 81

D71C F0 IF

Close file entry in

LDA $83

PHA

LDA $82

PHA

LDA $81

PHA

LDA $80

PHA

LDA #$11

STA $83

DE JSR $DE3B

02 LDA $024A

PHA

LDA $E2

AND #$01

STA $7F

LDX $F9

02 EOR $025B,X

LSR A

BCC $D715

LDX #$01

02 STX $0292

C5 JSR $C5AC

BEQ $D730

BNE $D73D

02 LDA $02 91

BEQ $D726

CMP $81

BEQ $D73D

directory

Get and retain current secondary

address

Get and retain current channel

number

Get and retain current sector

number

Get and retain current track

number

Set # of internal read channel

(17) as current channel number

Determine track & sector number

Get and hold on to

current filetype

Produce drive number of new file

and establish

as current drive number

Current buffer number

Get drive # belonging to jobcode

and compare with actual drive no.

Are the two drives identical?

Set pointer to

applicable entry

Look for next free entry

All of them covered?

NO-Write entry to directory

Get number of directory sector

Sector number set?

YES—compare with current sector $

Identical?

ROM-182

Abacus Software 1571 Internals

D71E

D720

D723

D7261

D728

D72B

D72E

D7301

D733

D735

D738

D73A

D73D4
D740

D743

D744

D747

D749

D74B

D74D1

D750

D751

D754

D757

D758

D75B

D75E

D761

D7 62

D7 65

D766

D768

D76B

D7 6D

D7 6F1

D771

D772

D774

D776

D779

D77B

D77D

D77F

D782

D784

D785

D788

85 81

20 60 D4

4C 3D D7

A9 01

8D 92 02

20 17 C6

DO OD

20 8D D4

A5 81

8D 91 02

A9 02

8D 92 02

AD 92 02

20 C8 D4

68

8D 4A 02

C9 04

DO 02

09 80

20 Fl CF

68

8D 80 02

20 Fl CF

68

8D 85 02

20 Fl CF

20 93 DF

A8

AD 7A 02

AA

A9 10

20 6E C6

AO 10

A9 00

91 94

C8

CO IB

90 F9

AD 4A 02

C9 04

DO 13

AO 10

AD 59 02

91 94

C8

AD 5A 02

91 94

STA $81 NO-Get number of current sector

JSR $D4 60 Read sector into buffer

JMP $D73D Put out new entry

LDA #$01 Set pointer to appropriate

STA $0292 file entry

JSR $C617 Get last sector of directory

BNE $D73D Any entries still free?

JSR $D48D NO—Lay out new directory sector

LDA $81 Get sector number and set

STA $02 91 in pointer for directory sectors

LDA #$02 Initialize buffer pointer to

STA $02 92 start of file range

LDA $0292 Current pointer position

JSR $D4C8 Set buffer pointer

PLA Get back current filetype

STA $024A and set again

CMP #$04 Compare w/ relative file value

BNE $D74D Is it a relative file?

ORA #$80 YES-File recognized as closed

JSR $CFF1 Enter filetype into directory

PLA Get track # of the first file

STA $0280 sector again; store it

JSR $CFF1 Write track number into directory

PLA Get # of first sector of the file

STA $0285 and save it

JSR $CFF1 Write sector number to directory

JSR $DF93 Get # of directory buffer and

TAY note it

LDA $027A Fetch and save filename position

TAX in input buffer

LDA #$10 Length of filename

JSR $C66E Write filename to directory

LDY #$10 Buffer pointer to end-of-filename

LDA #$00 Write empty bytes to buffer—fill

STA ($94),Y out filename

INY Buffer pointer to next byte

CPY #$1B Compare pointer with end value

BCC $D7 6F Entire buffer filled?

LDA $024A YES-Get current filetype

CMP #$04 Compare w/value for relative file

BNE $D7 90 Is a relative file being opened?

LDY #$10 YES—Buffer pointer to end of name

LDA $0259 Get track # of first side-sector

STA ($94),Y and write into entry

INY Buffer pointer to next position

LDA $025A Get sector #, write in directory

STA ($94),Y buffer

ROM-183

Abacus Software 1571 Internals

D7 8A

D78B

D78E

D7901

D793

D794

D796

D797

D798

D7 9A

D7 9D

D7 9F

D7A2

D7A5

D7A7

D7AA

D7AD

D7AF

D7B1

D7B3

C8

AD

91

20

68

85

AA

68

85

AD

85

9D

AD

85

9D

AD

85

A5

85

60

58

94

64

82

83

91

D8

60

92

DD

66

4A

E7

7F

E2

02

D4

02

02

02

02

02

INY

LDA

STA

JSR

PLA

STA

TAX

PLA

STA

LDA

STA

STA

LDA

STA

STA

LDA

STA

LDA

STA

RTS

$0258

($94),Y

$D464

$82

$83

$0291

$D8

$0260,X

$0292

$DD

$0266,X

$024A

$E7

$7F

$E2

Buffer pointer to next byte

Get record lengtth and write

in directory

Write directory sector to disk

Get current channel # and set

again

Save channel number

Get current 2ndary address back

and set it

Get track # of file entry and

save; put

in buffer

Get sector number of file entry

and save it

Put number into directory buffer

Get filetype and

save it

Get current drive number and

include in file entry

Return from this subroutine

[BF5D/C15D]

Take on OPEN command

D7B4

D7B6

D7B9

D7BC

D7BF

D7C2

D7C5

D7C7

D7C9

D7CB

D7CD

D7CF

D7D1

D7D4

D7D6

D7D8

D7DA

D7DC

D7DF

D7E1

D7E4

D7E7

D7E9

A5 83

8D 4C 02

20 B3 C2

8E 2A 02

AE 00 02

AD 4C 02

DO 2C

E0 2A

DO 28

A5 7E

F0 4D

85 80

AD 6E 02

85 7F

85 E2

A9 02

85 E7

AD 6F 02

85 81

20 00 Cl

20 4 6 DC

A9 04

05 7F

D7EB1 A6 82

LDA

STA

JSR

STX

LDX

LDA

BNE

CPX

BNE

LDA

BEQ

STA

LDA

STA

STA

LDA

STA

LDA

STA

JSR

JSR

LDA

ORA

LDX

with secondary addresses 0-14

$83 Get current secondary address

$024C and save it

$C2B3 Set pointer for command string

$022A Clear command channel number (0)

$0200 Get first char in input buffer

$024C Get secondary address

$D7F3 Is there a LOAD command?

#$2A YES-Check for I*1 as 1st char

$D7F3 First file entry loaded?

$7E YES—Get last track number

$D81C Is number set?

$80 YES-Take this as current spur

$026E Get number of last active drive

$7F and set as current drive

$E2 Organize drive for file

#$02 Flag for wildcard

$E7 set

$026F Get last sector worked with and

$81 convey as curreent sector number

$C100 LED on current drive goes 'on1

$DC46 Open up buffer to read sector

#$04 Bitflag for program file

$7F Get current drive with

$82 number of current channel and

ROM-184

Abacus Software 1571 Internals

D7ED 99 EC 00 STA $00EC,Y put filetype flag iinto channel

D7F0 4C 94 Cl JMP $C194 Prepare 'OK1 message

D7F32 E0 24 CPX #$24 Compare character with '$'
D7F5 DO IE BNE $D815 Should directory be loaded?

D7F7 AD 4C 02 LDA $024C YES-Get secondary address again

D7FA DO 03 BNE $D7FF Load directory as a program?

D7FC 4C 55 DA JMP $DA55 YES-Convrt directry to BASIC prg.

D7FF1 20 Dl Cl JSR $C1D1 Set counter f/parameters in comnd

D802 AD 85 FE LDA $FE85 Save number of directory track

D805 85 80 STA $80 as current track

D807 A9 00 LDA #$00 Set start sector of directory as

D809 85 81 STA $81 current track number

D80B 20 4 6 DC JSR $DC46 Open buffer — read in sector

D80E A5 7F LDA $7F Get current drive number

D810 09 02 ORA #$02 Set SEQ file flag & save directry

D812 4C EB D7 JMP $D7EB as a file; end

D8151 E0 23 CPX #$23 Compare char, with ■#"

D817 DO 12 BNE $D82B Direct access channel open?

D819 4C 84 CB JMP $CB84 YES-Open direct access file

D81C1 A9 02 LDA #$02 Set identifier for

D81E 8D 96 02 STA $0296 PRG file

D821 A9 00 LDA #$00 Establish drive 0 as

D823 85 7F STA $7F current drive

D825 8D 8E 02 STA $028E Set pointer to last drive

D828 20 42 DO JSR $D042 Read BAM into buffer

D82B1 20 E5 Cl JSR $C1E5 Look for command string after f:'

D82E DO 04 BNE $D834 Found it?

D830 A2 00 LDX #$00 YES—Startposition of parameters

D832 F0 0C BEQ $D840 Jump to $D840

D8341 8A TXA Get number of parameters

D835 F0 05 BEQ $D83C Parameters separated by comma?

D837 A9 30 LDA #$30 YES-Display

D839 4C C8 Cl JMP $C1C8 '30 Syntax Error1 error message

D83C1 88 DEY Set pointer to ':'

D83D F0 01 BEQ $D840 Reached start-of-parameters?

D83F 88 DEY Set pointer to drive assignment &

D8402 8C 7A 02 STY $027A save position

D843 A9 8D LDA #$8D Look for end-of-command string

D845 20 68 C2 JSR $C2 68 identifier in input buffer

D848 E8 INX Number of parameters found; save

D84 9 8E 78 02 STX $0278 those separated by commas

D84C 20 12 C3 JSR $C312 Get drive number; note it

D84F 20 CA C3 JSR $C3CA Check drive number

D852 20 9D C4 JSR $C4 9D Look for file entry in directory

D855 A2 00 LDX #$00 Clear pointer:

D857 8E 58 02 STX $0258 Length of a record

D85A 8E 97 02 STX $02 97 File operating mode

ROM-185

Abacus Software 1571 Internals

D85D

D860

D861

D864

D866

D869

D86A

D86D

D86F

D871

D873

D8764

D879

D87B

D87D

D87F

D882

D884

D887

D88A

D88C

D88E

D8911

D894

D896

D898

D89A

D89D

D8A0

D8A2

D8A4

D8A73

D8AA

D8AC

D8AE

D8B11

D8B4

D8B7

D8BA

D8BD

D8BF

D8C1

D8C4

D8C61

D8C8

D8CA

D8CB

8E 4A 02 STX $024A Filetype

E8 INX Check next filename

EC 77 02 CPX $0277 against number of names on hand

BO 10 BCS $D876 Any other tasks on hand?

20 09 DA JSR $DA09 YES-Get filetype & operating mode

E8 INX Check pointer to next filename

EC 77 02 CPX $0277 against number of names onhand

B0 07 BCS $D876 Are all names worked out?

CO 04 CPY #$04 NO-Test filetype againse REL

F0 3E BEQ $D8B1 Is there a relative file here?

20 09 DA JSR $DA09 Get filetype and operating mode

AE 4C 02 LDX $024C Repeat 2ndary address and set it

86 83 STX $83 up; compare with start-of-

E0 02 CPX #$02 file channel

B0 12 BCS $D891 Is channel number >2?

8E 97 02 STX $02 97 NO-Set read/write flag

A9 40 LDA #$40 Flag for 'illegal BAM1

8D F9 02 STA $02F9 set

AD 4A 02 LDA $024A Get current filetype

DO IB BNE $D8A7 Is there a DEL file?

A9 02 LDA #$02 YES-Set PRG file identifier

8D 4A 02 STA $024A as current filetype

AD 4A 02 LDA $024A Get filetype

DO 11 BNE $D8A7 Is 'DEL1 type given?

A5 E7 LDA $E7 YES-Get filetype frm chanel table

29 07 AND #$07 Divide up and

8D 4A 02 STA $024A save

AD 80 02 LDA $0280 Track # of sector frm buffertable

DO 05 BNE $D8A7 Ts track set?

A9 01 LDA #$01 NO-Set »SEQ' identifier

8D 4A 02 STA $024A in current filetype

AD 97 02 LDA $02 97 Repeat file operation mode and

C9 01 CMP #$01 compare with value for 'write1

F0 18 BEQ $D8C6 Should file be written?

4C 40 D9 JMP $D940 NO-Open read channel

BC 7A 02 LDY $027A,X Get pointer to next parameter and

B9 00 02 LDA $0200,Y get & store parameter characters

8D 58 02 STA $0258 from input buffer

AD 80 02 LDA $0280 Test fileblock track

DO B7 BNE $D876 Is task set?

A9 01 LDA #$01 YES-Set read/write

8D 97 02 STA $0297 flag

DO B0 BNE $D876 Jump to $D876

A5 E7 LDA $E7 Get filetype

29 80 AND #$80 Get 'wildcard onhand' flag and

AA TAX save

DO 14 BNE $D8E1 Is there a wildcard in filename?

ROM-186

Abacus Software 1571 Internals

D8CD A9 20 LDA #$20 NO-Test 'File not closed1 flag

D8CF 24 E7 BIT $E7 for first name

D8D1 F0 06 BEQ $D8D9 Has file been closed?

D8D3 20 B6 C8 JSR $C8B6 NO-Clear fileentry from directory

D8D6 4C E3 D9 JMP $D9E3 Set up for new file

D8D91 AD 80 02 LDA $0280 Track number of first file block

D8DC DO 03 BNE $D8E1 Is file covered?

D8DE 4C E3 D9 JMP $D9E3 NO-Set up for new file

D8E12 AD 00 02 LDA $0200 Get 1st char from input buffer &

D8E4 C9 40 CMP #$40 compare w/Replace command ('QM

D8E6 F0 0D BEQ $D8F5 Overwrite pre-existing file?

D8E8 8A TXA Get wildcard flag again

D8E9 DO 05 BNE $D8F0 Is file on hand?

D8EB A9 63 LDA #$63 YES-display

D8ED 4C C8 Cl JMP $C1C8 f 63 File Exists1 error message

D8F01 A9 33 LDA #$33 Display

D8F2 4C C8 Cl JMP $C1C8 '33 Syntax Error1 error message

[D8E6]

D8F5

D8F7

D8F9

D8FC

D8FE

D900

D902

D905

D907

D90A

D90C

D90E

D911

D914

D917

D919

D91B

D91D

D91F

D921

D923

D925

D926

D928

D92A

D92D

D92F

D932

Overwrite corresponding

A5 E7

29 07

CD 4A 02

DO 67

C9 04

F0 63

20 DA DC

A5 82

8D 70 02

A9 11

85 83

20 EB DO

AD 94 02

20 C8 D4

A0 00

Bl 94

09 20

91 94

A0 1A

A5 80

91 94

C8

A5 81

91 94

AE 70 02

A5 D8

9D 60 02

A5 DD

LDA $E7

AND #$07

CMP $024A

BNE $D965

CMP #$04

BEQ $D965

JSR $DCDA

LDA $82

STA $0270

LDA #$11

STA $83

JSR $D0EB

LDA $02 94

JSR $D4C8

LDY #$00

LDA ($94),Y

ORA #$20

STA ($94),Y

LDY #$1A

LDA $80

STA ($94),Y

INY

LDA $81

STA ($94),Y

LDX $0270

LDA $D8

STA $0260,X

LDA $DD

file entry

Get filetype of 1st filename and

separate flagbits

Compare w/corresponding filetype

Identical?

YES—Test for relative file value

Is it relative?

NO-Open file for writing

Get # of open channel and save

as currently-open write channel

Set # for internal read channel

(17) as secondary address

Open read channel

Get position of current buffer

and set buffer address

Initialize buffer pointer

Get filetype from dir. buffer

Set 'file open1 flagbit and

write back into file entry

Set buffer pointer to position of

new track #; Get track number and

write in file entry

Buffer pointer to next position

Get number of current sector and

save as value to be entered

Get current write channel number

Get file entry sector and assign

number of file entry

Get pointer to sector # in entry

ROM-187

Abacus Software 1571 Internals

D934

D937

D93A

D93D

D9401

D943

D945

D947

D94A1
D94D

D94F

D951

D953

D955

D957

D959

D95C2

D95E

D960

D963

D9653
D967

D96A1

D96C

D96F

D972

D974

D976

D978

D97A

D97C

D97E

D980

D982

D983

D985

D987

D98A

D98D

D98E

D9901

D993

D996

D998

D99A

D99D

9D

20

20

4C

AD

DO

A9

4C

AD

C9

FO

A9

24

FO

A9

4C

A5

29

CD

FO

A9

4C

AO

8C

AE

EO

DO

C9

FO

Bl

29

91

A5

48

A9

85

20

20

68

85

20

AD

C9

DO

20

4C

66

3B

64

EF

80

05

62

C8

97

03

OB

20

E7

05

60

C8

E7

07

4A

05

64

C8

00

79

97

02

1A

04

EB

94

4F

94

83

11

83

3B

64

83

AO

97

02

55

2A

94

02

DE

D4

D9

02

Cl

02

Cl

02

Cl

02

02

DE

D4

D9

02

DA

Cl

STA

JSR

JSR

JMP

LDA

BNE

LDA

JMP

LDA

CMP

BEQ

LDA

BIT

BEQ

LDA

JMP

LDA

AND

CMP

BEQ

LDA

JMP

LDY

STY

LDX

CPX

BNE

CMP

BEQ

LDA

AND

STA

LDA

PHA

LDA

STA

JSR

JSR

PLA

STA

JSR

LDA

CMP

BNE

JSR

JMP

$0266,X

$DE3B

$D4 64

$D9EF

$0280

$D94A

#$62

$C1C8

$0297

#$03

$D95C

#$20

$E7

$D95C

#$60

$C1C8

$E7

#$07

$024A

$D96A

#$64

$C1C8

#$00

$0279

$0297

#$02

$D990

#$04

$D965

($94),Y

#$4F

($94),Y

$83

#$11

$83

$DE3B

$D464

$83

$D9A0

$0297

#$02

$D9EF

$DA2A

$C194

and assign file entry

Current track/sector # of job

Write file sector

Write data to file

Get track number of first entry

Found the right entry?

NO—Display

•62 File Not Found1 error message

Determine file operating mode

and compare with value for 'M1

Read an unclosed file?

NO-Set flag for

•File is not properly closed yet1

Is flag set?

YES-Display

•60 Write File Open1 error messge

Get filetype;

isolate file identifier

Compare with current filetype

Identical?

NO-Display

'64 Filetype Mismatch1 error msge

Reset

buffer pointer

Determine file operating mode and

compare with identifier for 'A1

Should data be appended?

YES-Chk filetype against REL file

Is it a relative file?

NO-Get filetype frm direc buffer

and save file open

Put filetype back into entry

Get current secondary address;

hang onto it

Set internal read channel #(17)

as current secondary address

Determine current track/sector

Write sector to diskette

Repeat secondary address and

reset

Open file for reading

Determine file operation,compare

with identifier for 'A1 (Append)

Connect data to preexisting file?

YES—Proceed with append and

get 'Ok1 message ready

ROM-188

Abacus Software 1571 Internals

[CA26/D990]

Open j

D9A0

D9A2

D9A4

D9A7

D9A8

D9AA

D9AD

D9AE

D9B0

D9B3

D9B6

D9B7

D9B9

D9BC

D9BE

D9C0

D9C32

D9C6

D9C9

D9CB

D9CE

D9D0

D9D3

D905

D9D8

D9DA

D9DD

D9DF

D9E2

file

AO

Bl

8D

C8

Bl

8D

C8

Bl

AE

8D

8A

FO

CD

FO

A9

20

AE

BD

85

BD

85

20

A4

AE

B5

99

B5

99

60

for reading

13

94

59

94

5A

94

58

58

OA

58

05

50

C8

79

80

80

85

81

46

82

79

D8

60

DD

66

02

02

02

02

02

Cl

02

02

02

DC

02

02

02

LDY

LDA

STA

INY

LDA

STA

INY

LDA

LDX

STA

TXA

BEQ

CMP

BEQ

LDA

JSR

LDX

LDA

STA

LDA

STA

JSR

LDY

LDX

LDA

STA

LDA

STA

RTS

#$13

($94),

$0259

($94),

$025A

($94),

$0258

$0258

$D9C3

$0258

$D9C3

#$50

$C1C8

$0279

$0280,

$80

$0285,

$81

$DC4 6

$82

$0279

$D8,X

$0260

$DD,X

$0266

Y

Y

Y

rX

rX

,Y

,Y

Turn pointer to side-sector entry

Get track # of 1st side-sector &

save itken

Buffer pointer to next byte

Get sector # of first side-sector

and save it

Buffer pointer to next position

Determine length of a record

Get last record length

Set new record length

Last record length

not set?

NO-Compare with current length

Reached the last record?

YES-Display

•50Record Not Present1 err.messge

Number of filenames (0)

Get current track number and

set

Get current sector number and

set it

Open read channel

Get channel number

Number of files worked on

Get sector number and

transfer

Get position in file entry and

transfer

Return from this subroutine

ROM-189

Abacus Software 1571 Internals

[D8D6/D8DE]

Open file for writing

D9E3

D9E5

D9E7

D9E9

D9EC

D9EF2

D9F1

D9F3

D9F5

D9F8

D9FA

D9FC

D9FE

DA01

DA03

A5 E2

29 01

85 7F

20 DA DC

20 E4 D6

A5 83

C9 02

BO 11

20 3E DE

A5 80

85 7E

A5 7F

8D 6E 02

A5 81

8D 6F .02

DA061 4C 99 Cl

LDA $E2

AND #$01

STA $7F

JSR $DCDA

JSR $D6E4

LDA $83

CMP #$02

BCS $DA06

JSR $DE3E

LDA $80

STA $7E

LDA $7F

STA $026E

LDA $81

STA $026F

JMP $C199

Establish number of disk drive

to be utilized

and save as current drive

Open channel for reading

Enter file in directory

Get current 2ndary address & test

for start-of-data channel

Should a LOAD or SAVE be done?

YES-Get track/sector from job

Save track # of last track of

last access

Get current drive number and

save as last active drive

Save current sector as the last

accessed

Prepare 'OK1 message

[D866/D873]

Set up filetype

DA09 BC 7A 02

DA0C B9 00 02

DA0F A0 04

DA111 88

DA12 30 08

DAI4 D9 B2 FE

DA17 DO F8

DAI9 8C 97 02

DA1C1 A0 05

DA1E1 88

DA1F 30 08

DA21

DA24

DA2 6

DA2 91

D9 B6 FE

DO F8

8C 4A 02

60

and file operation as command string

LDY $027A,X Get position of first parameter

LDA $0200,Y Get character from input buffer

LDY #$04 Set counter to # operating modes

DEY Turn counter to next identifier

BMI $DA1C All operating modes checked?

CMP $FEB2,Y NO-Compare w/file operations mode

BNE $DA11 Identical?

STY $02 97 YES-Save position in input string

LDY #$05 and set counter for filetype

DEY Turn counter to next filetype

BMI $DA29 All filetypes already checked?

CMP $FEB6,Y NO-Compare with filetype

BNE $DA1E Identical?

STY $024A YES-Save position

RTS Return from this subroutine

[C996/D99A/DA32]

Prepare file for

DA2A 20 39 CA

DA2D A9 80

DA2F 20 A6 DD

DA32 F0 F6

DA34 20 95 DE

DA37 A6 81

DA3 9 E8

Append

JSR $CA39 Read data byte

LDA #$80 Test flag for

JSR $DDA6 »EOI reached1

BEQ $DA2A Has last byte been read?

JSR $DE95 YES-Find current track & sector

LDX $81 Get pointer to correct data reg.

INX and increment by 1

ROM-190

Abacus Software 1571 Internals

DA3A

DA3B

DA3D

DA40

DA421

DA45

DA47

DA4 9

DA4B

DA4D

DA4F

DA51

DA54

[D7FC]

8A

DO

20 ,

A9

20

A6

A9

95

A9

05

A6

9D

60

I

Transmit

DA55

DA57

DA5A

DA5C

DA5F

DA60

DA62

DA63

DA65

DA68

DA6B

DA6D1

DA6F

DA72

DA75

DA78

DA7A

DA7C

DA7E

DA81

DA84

DA862

DA89

DA8B

DA8E

DA901

DA91

DA92

DA95

DA98

A9

8D

A9

AE

CA

F0

CA

DO

AD

20

30

85

EE

EE

EE

A9

85

A9

8D

8D

DO

20

DO

20

AO

■ 88

88

8C

20

20

05

A3 I

02

C8 I

82

01

F2

80

82

83

2B

Dl

D4

02

TXA

BNE

JSR

LDA

JSR

LDX

LDA

STA

LDA

ORA

LDX

STA

RTS

directory tc

OC

2A

00

74

OB

21

01

BD

19

E2

77

78

7A

80

E7

2A

00

01

18

E5

05

DC

03

7A

00

• 98

02

02

02

C3

02

02

02

02

02

Cl

C2

02

C2

C3

LDA

STA

LDA

LDX

DEX

BEQ

DEX

BNE

LDA

JSR

BMI

STA

INC

INC

INC

LDA

STA

LDA

STA

STA

BNE

JSR

BNE

JSR

LDY

DEY

DEY

STY

JSR

JSF

$DA42

$D1A3

#$02

$D4C8

$82

#$01

$F2,X

#$80

$82

$83

$022B,X

> comput

#$0C

$022A

#$00

$0274

$DA6D

$DA86

$0201

$C3BD

$DA86

$E2

$0277

$0278

$027A

#$80

$E7

#$2A

$0200

$0201

$DA9E

$C1E5

$DA90

$C2DC

#$03

$027A

> $C200

[$C398

(if $FF, then make it 0 again)

Is the sector completely filled?

YES-Write sector to diskette

Set buffer pointer to beginning

of data register

Get current channel number

Set write flag in

channel status table

Combine write flag

with channel number

Get current secondary address and

assign status byte of 2ndary adr.

Return from this subroutine

Set command

number 12

Drive number

Get length of command string and

compare with 1

Does command only have one char.?

NO-Compare to 2

Does command have only 2 chars?

YES-Get 2nd character and check

for drive number

Is drive assignment error-free?

YES—Save drive

Pointer to first

and second parameter in command

string—move to next position

Set flag for 'file properly

closed1

Set '*' wildcard as filename in

command

string

Jump to $DA9E

Seek ':' in command string

Found a colon?

YES—Clear pointr f/command string

Position of first filename (1)

Set pointer to position

of name

Set pointer to first filename

Set pointer f/parameter analysis

Pointer to filename and filetype

ROM-191

Abacus Software 1571 Internals

DA9B 20 20 C3 JSR $C320 Get drive # from command string

DA9E1 20 CA C3 JSR $C3CA Prep drive for access
DAA1 20 B7 C7 JSR $C7B7 Produce directory title

DAA4 20 9D C4 JSR $C4 9D Get filename from directory

DAA7 20 9E EC JSR $EC9E Ascertain directory line

DAAA 20 37 Dl JSR $D137 1st byte of directory from buffer

DAAD A6 82 LDX $82 Current channel number

DAAF 9D 3E 02 STA $023E,X Prep byte for output

DAB2 A5 7F LDA $7F Save current drive as drive used

DAB4 8D 8E 02 STA $028E for last access

DAB7 09 04 ORA #$04 Set flag for PRG file

DAB9 95 EC STA $EC,X and put in channel table

DABB A9 00 LDA #$00 Get back pointer in input

DABD 85 A3 STA $A3 buffer

DABF 60 RTS Return from this subroutine
""-""""""—•"•"■*""""""--————————————•————_—________mm_„._„.__«».__«.«,«.«.___ _

[8151/9193/91A3/91B9/A9F1/BF60/E8CE]
Close

DAC0

DAC2

DAC5

DAC7

DAC9

DACB

DACE

DADI1

DAD41
DAD6

DAD8

DADB

DADD

DADF

DAE1

DAE 4

DAE 6

DAE91

file

A9 00

8D F9 02

A5 83

DO 0B

A9 00

8D 54 02

20 27 D2

4C DA D4

C9 OF

F0 14

20 02 DB

A5 83

C9 02

90 F0

AD 6C 02

DO 03

4C 94 Cl

4C AD Cl

LDA #$00 Set 'illegal BAM1

STA $02F9 flag

LDA $83 Get current secondary address

BNE $DAD4 LOAD command?

LDA #$00 YES-Clear 'Directory will be

STA $0254 displayed* flag

JSR $D227 Close channel

JMP $D4DA Close internal read/write chanels

CMP #$0F Compare secondary address w/ 15

BEQ $DAEC Command channel addresssed?

JSR $DB02 NO-Close file

LDA $83 Get current secondary address

CMP #$02 Compare with begin.of filechannel

BCC $DAD1 Channel have LOAD/SAVE (0/1)?

LDA $026C NO-Get error flag and test it

BNE $DAE9 Run into an error?

JMP $C194 NO-'Ok' message displayed

JMP $C1AD Display error message

ROM-192

Abacus Software 1571 Internals

[DAD6]

Close

DAEC

DAEE

DAFO1

DAF3

DAF5

DAF7

DAFA

DAFC

DAFF1

all

A9

85

20

C6

10

AD

DO

4C

4C

files

OE

83

02

83

F9

6C

03

94

AD

DB

02

Cl

Cl

LDA

STA

JSR

DEC

BPL

LDA

BNE

JMP

JMP

#$0E

$83

$DB02

$83

$DAF0

$026C

$DAFF

$C194

$C1AD

Highest 2ndary address for files

set as current secondary address

Close file

Go to next secondary address

All channels closed?

YES-Get error flag and test

Closures done without errors?

YES-Display 'OK1 message

Display error message

[C9F7/DADB/DAF0]

Files declared through secondary

DB02

DB04

DB07

DB09

DB0B

DB0C1

DB0E

DB10

DB13

DB15

DB17

DB19

DB1B

DB1E

DB20

DB23

DB2 6:

DB2 9

DB2C:

DB2F

DB32

DB35

DB37

DB39

DB3B

DB3D

DB3F

DB41

DB43

DB44

DB4 6

DB48

A6 83

BD 2B 02

C9 FF

DO 01

60

29 OF

85 82

20 25 Dl

C9 07

F0 OF

C9 04

F0 11

20 07 Dl

B0 09

20 62 DB

20 A5 DB

20 F4 EE

1 4C 27 D2

20 Fl DD

20 IE CF

20 CB El

A6 D5

86 73

E6 73

A9 00

85 70

85 71

A5 D6

38

E9 0E

85 72

20 51 DF

LDX $83

LDA $022B,X

CMP #$FF

BNE $DB0C

RTS

AND #$0F

STA $82

JSR $D125

CMP #$07

BEQ $DB26

CMP #$04

BEQ $DB2C

JSR $D107

BCS $DB29

JSR $DB62

JSR $DBA5

JSR $EEF4

JMP $D227

JSR $DDF1

JSR $CF1E

JSR $E1CB

LDX $D5

STX $73

INC $73

LDA #$00

STA $70

STA $71

LDA $D6

SEC

SBC #$0E

STA $72

JSR $DF51

address, closed

Get current secondary address and

determine corresponding status

Compare with 'Free channel1 value

Is channel out?

NO-Return from this subroutine

Determine clear channel number

and save it

Get filetype & compare w/directry

access identifier

Identical?

NO-Check with value for REL file

Identical?

NO-Check channel f/write channel

Is the write channel open?

YES-Write to end

Close directory entry

Write BAM back to diskette

Close channel

Write current buffer to diskette

Apple new buffer

Get position of last record

Get number of last side-sector

and save

Choose next side-sector

Direct zeropage addresses as

temporary

storage

Get position of side-sector

consider number of bytes

for chaining of

other side-sectors

Calculate number of file blocks

ROM-193

Abacus Software 1571 Internals

DB4B

DB4D

DB4F

DB51

DB53

DB55

DB57

DB5A

DB5C

DB5F1

[DB20]

Write

DB62

DB64

DB66

DB68

DB6A

DB6D

DB6F

DB71

DB73

DB7 62

DB7 9

DB7B

DB7D

DB80

DB82

DB84

DB86

DB881

DB8A

DB8C1
DB8D

DB8F

DB90

DB92

DB95

DB98

DB99

DB9C

DB9F

DBA2

A6 82

A5 70

95 B5

A5 71

95 BB

A9 40

20 A6

F0 03

20 A5

4C 27

last

A6 82

B5 B5

15 BB

DO OC

20 E8

C9 02

DO 05

A9 OD

20 Fl

20 E8

C9 02

DO OF

20 IE

A6 82

B5 B5

DO 02

D6 BB

D6 B5

A9 00

38

E9 01

48

A9 00

20 C8

20 Fl

68

20 Fl

20 C7

20 99

4C IE

DD

DB

D2

LDX

LDA

STA

LDA

STA

LDA

JSR

BEQ

JSR

JMP

sector of

D4

CF

D4

CF

D4

CF

CF

DO

D5

CF

LDX

LDA

ORA

BNE

JSR

CMP

BNE

LDA

JSR

JSR

CMP

BNE

JSR

LDX

LDA

BNE

DEC

DEC

LDA

SEC

SBC

PHA

LDA

JSR

JSR

PLA

JSR

JSR

JSR

JMP

$82

$70

$B5,X

$71

$BB,X

#$40

$DDA6

$DB5F

$DBA5

$D227

a file

$82

$B5,X

$BB,X

$DB76

$D4E8

#$02

$DB76

#$0D

$CFF1

$D4E8

#$02

$DB8C

$CF1E

$82

$B5,X

$DB88

$BB,X

$B5,X

#$00

#$01

#$00

$D4C8

$CFF1

$CFF1

$D0C7

$D599

$CF1E

Current channel number

Put # of relative file blocks

(low-byte) in Table

Copy

high-byte

Check filetype channel flag

for 'entry correct1

Is flag in filetype set?

YES-Realize directoy entry

Close channel

to diskette

Get current channel number

Get channel-arranged

record number and test it

Is record number set?

NO-Get current buffer pointer and

compare with start of filerange

Is the sector still empty?

YES-Write empty record (<RETURN>)

to buffer

Get buffer pointer; compare with

start-of-filerange

Is the sector still empty?

YES—Open new buffer

Determine current channel number

Predetermined record # (lo-byte)

Is low-byte = zero?

YES-Decrement hi-byt/record no.-l

Decrement low-byte by 1

Value for 'buffer full1

Calculate number of applicable

filebytes per sector

and note it

Set buffer pointer for

connected bytes

Write identifier for last sector

Get # of applicable filebytes

and write to sector

Write sector back to diskette and

wait until job is completed

Open new buffer

ROM-194

Abacus Software 1571 Internals

[DB23/DB5C]

Close directory

DBA5 A6 82

DBA7 8E 70 02

DBAA A5 83

DBAC 48

DBAD BD 60 02

DBBO 85 81

DBB2 BD 66 02

DBB5 8D 94 02

DBB8 B5 EC

DBBA 29 01

DBBC 85 7F

DBBE AD 85 FE

DBC1 85 80

DBC3 20 93 DF

DBC6 48

DBC7 85 F9

DBC9 20 60 D4

DBCC A0 00

DBCE BD E0 FE

DBD1 85 87

DBD3 AD 94 02

DBD6 85 86

DBD8 Bl 86

DBDA 29 20

DBDC FO 43

DBDE 20 25 Dl

DBE1 C9 04

DBE3 FO 44

DBE5 Bl 86

DBE7 29 8F

DBE9 91 86

DBEB C8

DBEC Bl 86

DBEE 85 80

DBFO 84 71

DBF2 AO IB

DBF4 Bl 86

DBF6 48

DBF7 88

DBF8 Bl 86

DBFA DO OA

DBFC 85 80

DBFE 68

DBFF 85 81

entry after write

LDX $82

STX $0270

LDA $83

PHA

LDA $0260,X

STA $81

LDA $0266,X

STA $02 94

LDA $EC,X

AND #$01

STA $7F

LDA $FE85

STA $80

JSR $DF93

PHA

STA $F9

JSR $D4 60

LDY #$00

LDA $FEE0,X

STA $87

LDA $02 94

STA $86

LDA ($86),Y

AND #$20

BEQ $DC21

JSR $D125

CMP #$04

BEQ $DC29

LDA ($86),Y

AND #$8F

STA ($86),Y

INY

LDA ($86),Y

STA $80

STY $71

LDY #$1B

LDA ($86),Y

PHA

DEY

LDA ($86),Y

BNE $DC06

STA $80

PLA

STA $81

operation

Get current channel number and

retain it

Get # of current 2ndary address

and retain it

Get # of directry sector f/entry

and set as current sector

Get entry positiion in directory

and set as current buffer pointer

Get filetype of channel

Determine drive number and

take up as current drive

Get number of directory track

and set up as current track

Get and save

buffer number

Set current buffer number

Read directory sector into buffer

Reset position pointer

Get buffr address(hi-byte), take

as high-byte of buffer pointer

Get current position in buffer &

set as low-byte

Get filetype frm directry entry &

check for 'file open1 flag

File already closed?

NO-Test filetype further and test

against value for relative file

Identical?

NO-Get entire filetype pointer

Clear flags

and filetype again back to entry

Buffer pointer to next position

Get track # of first sector/file

and save as current track

Save current buffer pointer

Set buffer pointer of sector from

overwrite and get number

Save sector number

Set buffer pointer to appropriate

track and get track number

No overwrite entry set?

YES—Get track & sector number

again, and put into

current pointer

ROM-195

Abacus Software 1571 Internals

DC01

DC03

DC061

DC07

DC09

DCOB

DCOC

DCOE

DCOF

DC11

DC13

DC14

DC16

DC18

DC19

DC1B

DC1E

DC211

DC23

DC25

DC27

DC2 92

DC2C

DC2E

DC30

DC32

DC33

DC35

DC37

DC38

DC39

DC3B

DC3D

DC40

DC41

DC43

A9

20

48

A9

91

C8

91

68

A4

91

C8

Bl

85

68

91

20

4C

Bl

29

09

91

AE

AO

B5

91

C8

B5

91

68

AA

A9

05

20

68

85

4C

67

45

00

86

86

71

86

86

81

86

7D

29

86

OF

80

86

70

1C

B5

86

BB

86

90

7F

90

83

07

E6

C8

DC

02

D5

Dl

LDA

JSR

PHA

LDA

STA

INY

STA

PLA

LDY

STA

INY

LDA

STA

PLA

STA

JSR

JMP

LDA

AND

ORA

STA

LDX

LDY

LDA

STA

INY

LDA

STA

PLA

TAX

LDA

ORA

JSR

PLA

STA

JMP

#$67

$E645

#$00

($86)

($86)

$71

($86)

($86)

$81

($86)

$C87D

$DC29

($86)

#$0F

#$80

($86)

$0270

#$1C

$B5,X

($86)

$BB,X

($86)

#$90

$7F

$D590

$83

$D107

Display '67 Illegal Track

Or Sector1 error message

Save track number

Clear track and

sector number

of the file entry to be

overwritten

Get track number again

Reset buffer pointer

Set track to first sector of file

Buffer pointer to next byte

Get number of old sector and

save it

Get # of first sector of file

and store in entry

Clear old file sectors

Close file

Get filetype from entry

Isolate file identifiers

Set 'file closed1 flag and set up

as new filetype

Repeat number of current channel

Set buff pntr to block assign(28)

Get # of blocks to a file(lobyte)

and write to entry

Set buffer pointer to next byte

Get hi-byte of block # and write

to entry

Recall current buffer number —

note it

Jobcode for 'write sector1

Enter current drive in jobcode

Execute job

Repeat and reset current

secondary address

Get channel number

[D47E/D7E4/D80B/D9D0/DC98:DD8A]

Open channel to read a file

DC4 6

DC4 8

DC4B

DC4E

DC51

DC52

DC53

A9

20

20

AD

48

0A

05

01

E2

B6

4A

7F

Dl

DC

02

LDA

JSR

JSR

LDA

PHA

ASL

ORA

#$01

$D1E2

$DCB6

$024A

A

$7F

Buffer number

Open channel for reading

Set channel pointer

Get current filetype and

note it

Establish filetype entry for

chanel table;concentrate on drive

ROM-196

Abacus Software 1571 Internals

DC55

DC57

DC5A

DC5C

DC5E

DC 60

DC 62

DC651

DC66

DC68

DC 6A

DC6C

DC6F

DC71

DC74

DC77

DC7 9

DC7C

DC7E

DC811

DC83

DC85

DC88

DC8A

DC8D

DC8F

DC92

DC 95

DC981

DC 9A

DC9C

DC9E

DCAO

DCA3

DCA6

DCA91

DCAC

DCAE

DCB1

DCB3

DCB5

95

20

A6

A5

DO

A5

9D

68

C9

DO

A4

B9

09

99

AD

95

20

10

4C

A6

95

AC

84

AC

84

20

20

20

A6

A9

95

A9

20

20

4C

20

A6

9D

A9

95

60

EC

9B

82

80

05

81

44

04

3F

83

2B

40

2B

58

C7

8E

03

OF

82

CD

59

80

5A

81

D3

73

99

82

02

Cl

00

C8

53

3E

56

82

3E

88

F2

DO

02

02

02

02

D2

D2

02

02

D6

DE

D5

D4

El

DE

Dl

02

STA

JSR

LDX

LDA

BNE

LDA

STA

PLA

CMP

BNE

LDY

LDA

ORA

STA

LDA

STA

JSR

BPL

JMP

LDX

STA

LDY

STY

LDY

STY

JSR

JSR

JSR

LDX

LDA

STA

LDA

JSR

JSR

JMP

JSR

LDX

STA

LDA

STA

RTS

$EC,X

$D09B

$82

$80

$DC65

$81

$0244,

#$04

$DCA9

$83

$022B,

#$40

$022B,

$0258

$C7,X

$D28E

$DC81

$D20F

$82

$CD,X

$0259

$80

$025A

$81

$D6D3

$DE73

$D599

$82

#$02

$C1,X

#$00

$D4C8

$E153

$DE3E

$D156

$82

$023E

#$88

$F2,X

X

Y

Y

,x

and assign to channel table

Read sector in buffer

Get current channel number

Determine current track number

Are there other sectors onhand?

NO-Get number of applicable

filebytes and save them

Call back filetype & compare with

value for relative files

Is it a relative file?

YES-Get present secondary address

Get preset channel number

Read flag

Assign secondary address

Get record length and

assign to channel

Open new buffer for side-sector

Still a free buffer?

NO-Display'70 No Channel1 error

Number of current channel

Save buffer number

Get track # of 1st side-sector &

set as current track number

Get sector number and store as

current sector

Track and sector in job loop

Read sidesector frm disk to buffr

Wait until job is run

Get current channel number and

initialize record pointer

in table

Pointer to start-of-sector

Set buffer pointer

Read first record and prepare it

Set byte for output and pointer

Get byte from buffer

Get current channel number

Send byte for output

Set output flag in table

with channel status

Return from this subroutine

ROM-197

Abacus Software 1571 Internals

[DC4B/DCE5]

Initialize

DCB6 A6 82

DCB8

DCBA

DCBB

DCBD

DCBE

DCCO

DCC31

DCC5

DCC7

DCC9

DCCA

DCCC

DCCD

DCCF

DCD21

DCD4

DCD6

DCD9

B5 A7

OA

30 06

A8

A9 02

99 99

B5 AE

09 80

95 AE

OA

30 06

A8

A9 02

99 99

A9 00

95 B5

4C 7F

EA

'channel open1 pointer

LDX $82

LDA $A7,X

ASL A

BMI $DCC3

TAY

LDA #$02

00 STA $0099,Y

LDA $AE,X

ORA #$80

STA $AE,X

ASL A

BMI $DCD2

TAY

LDA #$02

00 STA $0099,Y

LDA #$00

STA $B5,X

A9 JMP $A97F

NOP

Get channel number and determine

preset buffer

Test 'buffer open1 flag

Buffer covered?

NO—

Set buffer pointer to start of

file range (byte $02)

Get buffer status and

set 'buffer in

active ' flag

Test bit 6

Should buffer be written back?

NO—Save buffer number

Set buffer pointer (low-byte) to

start-of-filerange

Clear number of blocks free

(low-byte)

Clear number of blocks free

unused

[D48A/D902/D9E9]

Open channel to

DCDA 20 A9 Fl

DCDD A9 01

DCDF 20 DF Dl

DCE2 20 DO D6

DCE5 20 B6 DC

DCE8 A6 82

DCEA AD 4A 02

DCED 48

DCEE 0A

DCEF 05 7F

DCF1 95 EC

DCF3 68

DCF4 C9 04

DCF6 F0 05

DCF8 A9 01

DCFA 95 F2

DCFC 60

DCFD1 A4 83

DCFF B9 2B 02

DD02 29 3F

DD04 09 40

DD06 99 2B 02

write to file

JSR $F1A9

LDA #$01

JSR $D1DF

JSR $D6D0

JSR $DCB6

LDX $82

LDA $024A

PHA

ASL A

ORA $7F

STA $EC,X

PLA

CMP #$04

BEQ $DCFD

LDA #$01

STA $F2,X

RTS

LDY $83

LDA $022B,Y

AND #$3F

ORA #$40

STA $022B,Y

Look for free sector in BAM

Number of buffers needed

Cover buffer

Trek and sector to job loop

Initialize channel pointer

Number of present channel

Get current filetype

and save

Take drive number into

filetype and assign

to table of that channel

Get original filetype and check

for value for relative file

Is there a relative file?

NO-Set write

flag

Return from this subroutine

Get current secondary address

and assign channel

Reset flag bits in channel status

Set read

flag

ROM-198

Abacus Software 1571 Internals

DD09

DDOC

DDOE

DD11

DD13

DD161

DD18

DD1A

DD1D

DD20

DD22

DD25

DD27

DD2A

DD2C

DD2E

DD31

DD33

DD36

DD38

DD3B

DD3D

DD40

DD42

DD45

DD48

DD4B

DD4D

DD50

DD52

DD55

DD57

DD5A

DD5D

DD5F

DD62

DD64

DD67

DD6A

DD6D

DD6F

DD72

DD74

DD75

DD77

DD7 9

AD

95

20

10

4C

A6

95

20

20

A5

8D

A5

8D

A6

B5

20

A9

20

A9

20

A9

20

A9

20

AD

20

A5

20

A5

20

A9

20

20

A5

20

A5

20

20

20

A9

20

A6

38

A9

F5

95

58 "

C7

8E !

03

OF

82

CD

Cl

IE

80

59

81

5A

82

CD

D3

00

E9

00

8D

11

8D

00

8D

58

8D

80

8D

81

8D

10

E9

3E

80

8D

81

8D

6C

99

02

C8

82

• 00

i C7

» Cl

02

D2

D2

DE

Fl

02

02

D6

DE

DD

DD

DD

02

DD

DD

DD

DE

DE

DD

DD

DE

D5

D4

LDA

STA

JSR

BPL

JMP

LDX

STA

JSR

JSR

LDA

STA

LDA

STA

LDX

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

JSR

LDA

JSR

LDA

JSR

JSR

JSR

LDA

JSR

LDX

SEC

LDA

SBC

sw

$0258

$C7,X

$D28E

$DD16

$D20F

$82

$CD,X

$DEC1

$F11E

$80

$0259

$81

$025A

$82

$CD,X

$D6D3

#$00

$DEE9

#$00

$DD8D

#$11

$DD8D

#$00

$DD8D

$0258

$DD8D

$80

$DD8D

$81

$DD8D

#$10

$DEE9

$DE3E

$80

$DD8D

$81

$DD8D

$DE6C

$D599

#$02

, $D4C8

: $82

k #$00

: $C7,X

i $C1,X

Get length of a record and

save it

Look for a buffer

Found a free buffer?

NO-Display '70 No Channel1 error

Get current channel number and

connect buffer for side-sector

Clear buffer contents

Look for free BAM sector

Store track # of the sector as

the track for first side-sector

Number of sector marked as sector

number for first side-sector

Get current channel number

Get # of corresponding buffer

Track & sector f's to job loop

Set buffer pointer to start-

of-buffer

Write identifier f/last sector to

buffer

Put # of applicable side-sector

bytes in buffer (17)

Transfer number of side-sector

to buffer

Enter record length

in side-sector

Store current track number

in side-sector

Store current sector number

in side-sector

Set buffer pointer to record

data in side-sector

Get track & sector of last job

Write track # of 1st file sector

in side-sector

Take number of first file sector

into side-sector

Write side-sector to diskette

Wait until job is run

Set current buffer pointer to

start of filerange

Get number of current

channel

Initialize accumulator and

calc. & set pos. of next record

from record length

ROM-199

Abacus Software 1571 Internals

DD7B

DD7E

DD81

DD84

DD87

DD8A

20

20

20

20

20

4C

E2

19

5E

99

F4

98

E2

DE

DE

D5

EE

DC

JSR

JSR

JSR

JSR

JSR

JMP

$E2E2

$DE19

$DE5E

$D599

$EEF4

$DC98

Apply record to sector

Set chaining

Write sector to diskette; wait

intil job is run

Write new BAM to diskette

Display return message

[DD38/DD3D/DD42/DD48/DD4D/DD52/DD5F/DD64/E3FA/E3FE]

Write a byte to current side-sector

DD8D 48

DD8E A6 82

DD90 B5 CD

DD92 4C FD CF

PHA Save byte

LDX $82 Get current channel #, fidetermine

LDA $CD,X corresponding buffer

JMP $CFFD Transfer byte in buffer

[Original jump is not used in DOS]

Channel number in filetype flag set (Carry=l) or cleared (Carry=0)

DD95 90 06 BCC $DD9D Flags cleared?

[CA4F/DD97/E01A/E0A0/E107/E25F]

Value combined in filetype (Bit

DD97 A6 82 LDX $82

DD99 15 EC ORA $EC,X

DD9B DO 06 BNE $DDA3

1: set)

NO-Get number of current channels

put into filetype flag

Jump to $DDA3

[CFAC/DD95/DFD2/E003/E0ED/E21B]

Remove value from filetype flag (Bit =1: taken out)

DD9D A6 82 LDX $82

DD9F 4 9 FF EOR #$FF

DDA1 35 EC AND $EC,X

DDA3 95 EC STA $EC,X

DDA5 60 RTS

Get current channel number

and invert it

Mask filetype flag number

Set new filetype

Return from this subroutine

[C9DD/DA2F/DB57/DFD7/E0AD/E0BE/E0F5/E122/E26A]

Check for set filetype flag (flag-value in accumulator)

DDA6 A6 82 LDX $82 Get current channel number and

DDA8 35 EC AND $EC,X test corresponding flag

DDAA 60 RTS Return from this subroutine

[CF4C/E052/E060] Test whether jobcode is set up for writing

Get number of present buffer and

save it

Get last jobcode from buffer and

and prepare command bits

Compare with write value

Return from this subroutine

DDAB

DDAE

DDAF

DDB2

DDB4

DDB6

20

AA

BD

29

C9

60

93

5B

F0

90

DF

02

JSR

TAX

LDA

AND

CMP

RTS

$DF93

$025B,X

#$F0

#$90

ROM-200

Abacus Software 1571 Internals

[C835]

Test i

DDB7

DDB91

DDBB

DDBE

DDCO

DDC23

DDC4

DDC5

DDC7

DDC9

DDCA1

DDCC

DDCE

DDCF

DDD2

DDD4

DDD6

DDD9

DDDB

DDDD

DDDF

DDE1

DDE4

DDE 6

DDE8

DDEB

DDED

DDEF

DDFO

rile

A2

86

BD

C9

DO

A6

E8

EO

90

60

86

29

A8

B9

29

85

AE

B5

29

C5

DO

B9

D5

DO

B9

D5

DO

18

60

pointer

00

71

2B

FF

08

71

10

FO

71

3F

EC

01

70

53

E2

01

70

El

60

D8

DA

66

DD

D3

02

00

02

02

02

LDX

STX

LDA

CMP

BNE

LDX

INX

CPX

BCC

RTS

STX

AND

TAY

LDA

AND

STA

LDX

LDA

AND

CMP

BNE

LDA

CMP

BNE

LDA

CMP

BNE

CLC

RTS

#$00

$71

$022B,X

#$FF

$DDCA

$71

#$10

$DDB9

$71

#$3F

$00EC,Y

#$01

$70

$0253

$E2,X

#$01

$70

$DDC2

$0260,Y

$D8,X

$DDC2

$0266,:*

$DD,X

$DDC2

Set secondary address

and note it

Get matching channel number

Compare with "channel free" value

Is channel covered?

YES-Repeat 2ndary address numbers

choose next address

Compare with maximum address +1

Is 2ndary addrs in allowed range?

NO-Return from this subroutine

Save free secondary address

Determine channel number

and note it

Get filetype flag and chosen

disk drive number

Save drive number

Entry number

Get standard drive's

channel and compare with

drive chosen

Identical?

YES—Get directory sector number

and compare with sector of entry

Identical?

YES-Get position of entry and

test for position in directory

Identical?

YES-Flag for all pointers OK

Return from this subroutine

ROM-201

Abacus Software 1571 Internals

[DB2C/E2AA/E454]

Write buffer to diskette

DDF1 20 9E DF JSR $DF9E

DDF4 50 06

DDF6 20 5E DE

DDF9 20 99 D5

DDFC1 60

BVC $DDFC

JSR $DE5E

JSR $D599

RTS

Test buffer status

Has data in buffer been changed?

YES-write sector to diskette

Wait until job is executed

Return from this subroutine

[E3AC/E3BF]

Set chained bytes which point

DDFD

DE00

DE02

DE04

DE05

DE07

DEO 9

20 2B DE

A5 80

91 94

C8

A5 81

91 94

4C 05 El

JSR $DE2B

LDA $80

STA ($94),Y

INY

LDA $81

STA ($94),Y

JMP $E105

to next sector

Set current buffer pointer

Transfer track # of next sector

to buffer

Buffer pointer to next position

Write number of next sector to

current buffer

Buffer marked as 'changed1

[E2AD/E3D7]

Get linked bytes,

DE0C

DE0F

DE11

DE13

DE14

DEI 6

DE18

20 2B DE

Bl 94

85 80

C8

Bl 94

85 81

60

which point to the next sector

JSR $DE2B Set current buffer pointer

LDA ($94),Y Get track # of next sector from

STA $80 buffer and save it down

INY Set buffer pointer to next byte

LDA ($94),Y Get # of next sector from buffer;

STA $81 save as current sector

RTS Return from this subroutine

[DD7E/E3D1]

Set indicator for last sector

DE19

DE1C

DE1E

DE20

DE21

DE23

DE25

DE2 6

DE27

DE28

DE2A

20

A9

91

C8

A6

B5

AA

CA

8A

91

60

2B DE

00

94

82

Cl

94

JSR

LDA

STA

INY

LDX

LDA

TAX

DEX

TXA

STA

RTS

$DE2B

#$00

($94),Y

$82

$C1,X

($94),Y

in linked bytes

Set current buffer pointer

Write identifier for last sector

to the buffer

Buffer pointer to next byte

Get current channel number

Get # of applicable file bytes

from table and

correct it

(including 0)

Write number to buffer

Return from this subroutine

ROM-202

DE2E

DE2F

DE30

DE32

DE34

DE36

DE38

DE3A

OA

AA

B5

85

A9

85

AO

60

9A

95

00

94

00

ASL

TAX

LDA

STA

LDA

STA

LDY

RTS

A

$9A,X

$95

#$00

$94

#$00

Abacus Software 1571 Internals

[DDFD/DE0C/DE19/E1B2/E2E2] Set current buffer's pointer to zero

DE2B 20 93 DF JSR $DF93 Get buffer number and

double it (pointer table works

with 2-byte values)

Get hi-byte of buffer address and

send to buffer pointer

Set low-byte to start-of-

buffer

Reset index pointer to beginning

Return from this subroutine

[C5E8/C634/D48D/D6F4/D937/D987]

Get current track and sector of current job

DE3B 20 EB DO JSR $D0EB Get channel # of 2ndary address

[D9F5/DCA6/DD5A/E2D0/E3E0/E82 4/E840/F11E]

Get track and sector of current job

Determine corresponding buffer #

and save as current buffer

Double buffer # (track/sector

table works with 2-byte values)

Get track number of current job &

save as current track number

Get concurrent sector number &

take on as current sector

Return from this subroutine

[E4A6/DE57:CAA9,CF5A,E057,E065,E075/DE5E:C0BB,CAC3,DD81,DDF6,E047,E3B3]

[E3D4,E4ED/DE6C:DD67,E42D/DE73:DC92]

Give jobcodes to jobloop

Setjobcode for

'write sector1

Jump to $DE7F

Set 'read sector'

jobcode

Jump to $DE7F

Set 'write sector1

jobcode

Jump to $DE7F

Set jobcode to read

sector

Jump to $DE7F

Set 'write sector1

jobcode

Jump to $DE7F

Set 'read sector1

ROM-203

DE3E

DE41

DE43

DE44

DE45

DE48

DE4A

DE4D

DE4F

20

85

0A

A8

B9

85

B9

85

60

93

F9

06

80

07

81

DF

00

00

JSR

STA

ASL

TAY

LDA

STA

LDA

STA

RTS

$DF93

$F9

A

$0006,Y

$80

$0007,Y

$81

DE50

DE52

DE55

DE575

DE59

DE5C

DE5E8

DE60

DE63

DE65

DE67

DE6A

DE6C2

DE6E

DE71

DE731

A9

8D

DO

A9

8D

DO

A9

8D

DO

A9

8D

DO

A9

8D

DO

A9

90

4D

28

80

4D

21

90

4D

26

80

4D

IF

90

4D

02

80

02

02

02

02

02

LDA

STA

BNE

LDA

STA

BNE

LDA

STA

BNE

LDA

STA

BNE

LDA

STA

BNE

LDA

#$90

$024D

$DE7F

#$80

$024D

$DE7F

#$90

$024D

$DE8B

#$80

$024D

$DE8B

#$90

$024D

$DE75

#$80

Abacus Software 1571 Internals

DE75

DE78

DE7A

DE7C

DE7D

DE7F2

DE82

DE85

DE86

DE88

DE8B2

DE8E

DE91

DE921

8D

A6

B5

AA

10

20

20

AA

A5

9D

20

20

AA

4C

4D

82

CD

13

DO

93

7F

5B

15

93

06

02

D6

DF

02

El

DF

D5

STA

LDX

LDA

TAX

BPL

JSR

JSR

TAX

LDA

STA

JSR

JSR

TAX

JMP

$024D

$82

$CD,X

$DE92

$D6D0

$DF93

$7F

$025B,X

$E115

$DF93

$D506

jobcode

Get current channel number

Find out number of third buffer

and save it down

Is buffer used?

NO-Track & sector to job loop

Get number of current buffer and

save it down

Get number of current disk drive

and assign buffer

Clear 'buffer changed1 flag

Get current buffer number & save

it down

Test parameters; execute job

[DA34/E03F/E.06B]

Parameters of next sector set

DE95

DE97

DE9A

DE9D

DE9F

DEA2

DEA4

A9

20

20

85

20

85

60

00

C8

37

80

37

81

D4

Dl

Dl

LDA

JSR

JSR

STA

JSR

STA

RTS

#$00

$D4C8

$D137

$80

$D137

$81

by onhand linked bytes

Reset current buffer pointer to

start-of-buffer

Get byte from buffer and

take on as current track number

Get byte from buffer and set as

current sector number

Return from this subroutine

[E467]

Copy file from buffer to another buffer

(Accumulator must contain # of bytes; Y the source buffers number;

X the destination buffer number)

Save number of bytes to be copied

Clear low-bytes of

both buffer

pointers

Set hi-byte of buffer address of

source buffer

Set hi-byte of buffer address of

destination buffer

Get # of bytes to be transferred

again and save

Initialize pointer

Read byte from source buffer and

transfer to destination buffer

Set buffer pointer to next byte

All data transferred?

YES—Return from this subroutine

DEA5

DEA6

DEA8

DEAA

DEAC

DEAF

DEB1

DEB4

DEB6

DEB7

DEB8

DEB91

DEBB

DEBD

DEBE

DEC0

48

A9

85

85

B9

85

BD

85

68

A8

88

Bl

91

88

10

60

00

6F

71

E0 FE

70

E0 FE

72

6F

71

F9

PHA

LDA

STA

STA

LDA

STA

LDA

STA

PLA

TAY

DEY

LDA

STA

DEY

BPL

RTS

#$00

$6F

$71

$FEE0,Y

$70

$FEE0,X

$72

($6F),Y

($71),Y

$DEB9

ROM-204

Abacus Software 1571 Internals

[DD1A/E45B]

Clear buffer with $00 (Number

DEC1

DEC2

DEC5

DEC7

DEC 9

DECB

DECC1

DECE

DECF

DED1

A8

B9

85

A9

85

A8

91

C8

DO

60

EO FE

70

00

6F

6F

FB

TAY

LDA

STA

LDA

STA

TAY

STA

INY

BNE

RTS

$FEE0,Y

$70

#$00

$6F

($6F),Y

$DECC

in A)

Save buffer number

Get hi-byte of buffer address and

define in pointer

Set low-byte of pointer to the

start-of-buffer

Clear buffer with value of buffer

number

Buffer pointer to next position

Entire buffer cleared?

YES—Return from this subroutine

[DF66/E1CB]

Get number of current side-sector

DED2

DED4

DED7

DED9

DEDB

A9

20

A0

Bl

60

00

DC DE

02

94

LDA

JSR

LDY

LDA

RTS

#$00

$DEDC

#$02

($94),Y

Get buffer address and set in

pointers $94/$95

Choose position in buffer

Get # of side-sector from sector

Return from this subroutine

[DED4/DEEA/E41E/E4 6C]

Set buffer pointers $94/$95 to

DEDC

DEDE

DEE0

DEE2

DEE3

DEE 6

DEE8

85

A6

B5

AA

BD

85

60

94

82

CD

E0 FE

95

STA

LDX

LDA

TAX

LDA

STA

RTS

$94

$82

$CD,X

$FEE0

$95

any position in buffer

Save desired position in buffer

Get current channel number and

establish preassigned 3rd buffer;

save buffer number

Get high-byte of buffer address

and set in pointer

Return from this subroutine

[DD33/DD57/DF14/E1FF/E35A/E3F4]

Set buffer pointer

DEE 9

DEEA

DEED

DEEE

DEEF

DEF0

DEF1

DEF2

DEF4

DEF5

DEF7

48

20

48

8A

0A

AA

68

95

68

95

60

DC DE

9A

99

PHA

JSR

PHA

TXA

ASL

TAX

PLA

STA

PLA

STA

RTS

$DEDC

A

$9A,X

$99,X

Save desired position in buffer

Set buffer pointer

Save high-byte of buffer address

Get current buffr number & double

it (table contains

2-byte values)

Get hi-byte of buffer address and

set in buffer address table

Get position in buffer & enter in

table

Return from this subroutine

ROM-205

Abacus Software 1571 Internals

[E258/E43C]

Read i

DEF8

DEFB

DEFD

DEFF

DF01

DF03

DF06

DF09

DFOB1

DFOE

DF11

DF122

DF14

DF17

DF1A

side-sector in

20

30

50

A6

B5

20

20

10

20

2C

60

A5

20

2C

60

66

OE

13

82

CD

IB

66

07

CB

CE

D6

E9

CD

DF

DF

DF

El

FE

DE

FE

JSR

BMI

BVC

LDX

LDA

JSR

JSR

BPL

JSR

BIT

RTS

LDA

JSR

BIT

RTS

buffer

$DF66

$DF0B

$DF12

$82

$CD,X

$DF1B

$DF66

$DF12

$E1CB

$FECE

$D6

$DEE9

$FECD

and set pointers

Test status of side-sectors

Does a side-sector exist?

YES-Is side-sector in buffer?

NO-Get current channel number

Determine pre-arranged buffer #

Read side-sector into buffer

Test status again

Everything runnng with no errors?

NO—Search for end of rel. file

Set N and V Processor flags

Return from this subroutine

Get position in side-sector and

set buffer pointer

Clear all flags

Return from this subroutine

[DF03/E1EC/E4D6]

Read sector (buffer pointer to current buffr must turn according to

track & sector parameters of linked bytes)

Save buffer number

Set 'read sector1 jobode

Jump to $DF25

Save current buffer number

Set 'write sector1 jobcode and

note jobcode

Get filetype of channel,determine

disk drive chosen

Take on as current drive number

Get jobcode again and

combine with drive number

Save jobcode

Read & store number of

next sector from buffer

Set buffer pointer to next byte

Get sector number from buffer and

take it over

Current buffer number

Track/sector params to jobloop

Get current buffer number

Execute job

DF1B

DF1D

DF1F

DF21

DF23

DF251

DF26

DF28

DF2A

DF2C

DF2D

DF2F

DF32

DF34

DF36

DF37

DF39

DF3B

DF3D

DF40

DF42

85

A9

DO

85

A9

48

B5

29

85

68

05

8D

Bl

85

C8

Bl

85

A5

20

A6

4C

F9

80

04

F9

90

EC

01

7F

7F

4D 02

94

80

94

81

F9

D3 D6

F9

93 D5

STA

LDA

BNE

STA

LDA

PHA

LDA

AND

STA

PLA

ORA

STA

LDA

STA

INY

LDA

STA

LDA

JSR

LDX

JMP

$F9

#$80

$DF25

$F9

#$90

$EC,X

#$01

$7F

$7F

$024D

($94)

$80

($94)

$81

$F9

$D6D3

$F9

$D593

ROM-206

Abacus Software 1571 Internals

[E3E9/E40F/E418]

Set side-sector pointer

DF45 A6 82 LDX $82

DF47 B5 CD LDA $CD,X

DF4 9 4C EB D4 JMP $D4EB

Current channel number

Get number of preassigned buffer

Set buffer pointer

[DF52/Jump to DF51/DF5C in DB48/DF4E/DF57/E381/DF51:DB48]

Calculate number of sectors in a relative file

Add number of sector pointers per

side- sector to pointer

Set next side-sector number

All side-sectors considered?

YES—Divide number of linked

bytes by 2

Add

number of side-sectors

Initialize addition

Add value

to counter

Found a transfer?

YES-Correct high-byte

Return from this subroutine

Get # of side-sectors from buffer

Compare w/sector being searched

Is correct side-sector in buffer?

YES—Get pointer in buffer

Get track number of record

ist record applied?

YES—Clear error flags

Return from this subroutine

Set 'no record1 flag

Return from this subroutine

Get # of side-sector searched

Compare with largest side-sector

Is number in allowable range?

YES-Double side-sector number and

save it

Set buffer number and

store it

Get track number of side-sector

DF4C

DF4E

DF511

DF52

DF54

DF56

DF57

DF5A

DF5C2

DF5D

DF5F

DF61

DF63

DF651

A9

20

CA

10

A5

4A

20

A5

18

65

85

90

E6

60

78

5C

F8

72

5C

73

70

70

02

71

[DEF8/DF06]

Test

DF66

DF69

DF6B

DF6D

DF6F

DF71

DF73

DF7 6

DF771

DF7A

DF7B1

DF7D

DF7F

DF81

DF82

DF83

DF85

DF87

status

20

C5

DO

A4

Bl

F0

2C

60

2C

60

A5

C9

B0

0A

A8

A9

85

Bl

D2

D5

0E

D6

94

04

CD

CF

D5

06

0A

04

94

94

DF

DF

of

DE

FE

FE

LDA

JSR

DEX

BPL

LDA

LSR

JSR

LDA

CLC

ADC

STA

BCC

INC

RTS

#$78

$DF5C

$DF4C

$72

A

$DF5C

$73

$70

$70

$DF65

$71

a side-sector

JSR

CMP

BNE

LDY

LDA

BEQ

BIT

RTS

BIT

RTS

LDA

CMP

BCS

ASL

TAY

LDA

STA

LDA

$DED2

$D5

$DF7B

$D6

($94),Y

$DF77

$FECD

$FECF

$D5

#$06

$DF8B

A

#$04

$94

($94),Y

ROM-207

Abacus Software 1571 Internals

DF89 DO 04

DF8B1 2C DO FE

DF8E 60

DF8F1 2C CE FE

DF92 60

BNE $DF8F

BIT $FED0

RTS

BIT $FECE

RTS

Is track set?

NO—Set error flag

Return from this subroutine

Set 'Sector not in buffer1 flag

Return from this subroutine

[CAB7/CDEC/CF6F/CFF2/D0CC/D12F/D1D3/D324/D44D/D4CA/D4E8/D4F8/D6D0/D75E]

[DBC3/DDAB/DE2B/DE3E/DE82/DE8E/E07F/E457/E4D1/ECB3/ECDC/ED0D/ED32/ED4 6]

[EEF4]

ine number of current buffer

Get number of current channel

Test buffer layout

1st buffer reserved?

Get number of second

buffer

Return from this subroutine

Determine

DF93

DF95

DF97

DF99

DF9B

DF9D

A6

B5

10

B5

29

60

number

82

A7

02

AE

BF

of

LDX

LDA

BPL

LDA

AND

RTS

curre

$82

$A7,X

$DF9B

$AE,X

#$BF

[DDF1/E042/E10A/E115/E4B1]

Get current buffer status

DF9E

DFA0

DFA3

DFA5

DFA7

DFA8

DFA9

DFAB

DFAE

DFB01

DFB2

DFB4

DFB6

A6

8E

B5

10

8A

18

69

8D

B5

85

29

24

60

82

57 02

A7

09

07

57 02

AE

70

IF

70

LDX

STX

LDA

BPL

TXA

CLC

ADC

STA

LDA

STA

AND

BIT

RTS

$82

$0257

$A7,X

$DFB0

#$07

$0257

$AE,X

$70

#$1F

$70

Get number of present channel and

save it

Get buffer number

Is buffer reserved?

YES—Get channel number again

and convert and save as

number for access to

2nd buffer

Get buffer status and test

Save status

Mask out flags

Is buffer active?

Return from this subroutine

[CF21/CF7E]

Test whether buffer is free

DFB7

DFB9

DFBB

DFBD

DFBF1

DFC1

A6 82

B5 A7

30 02

B5 AE

C9 FF

60

LDX $82

LDA $A7,X

BMI $DFBF

LDA $AE,X

CMP #$FF

RTS

Current channel number

Get appropriate buffer number

Is buffer reserved?

YES-Test buffer status

Compare w/1buffer active1 value

Return from this subroutine

ROM-208

Abacus Software 1571 Internals

[CF2E/CF88]

Activate current

DFC2 A6 82

09 80

B4 A7

10 03

95 A7

60

95 AE

60

DFC4

DFC6

DFC8

DFCA

DFCC

DFCD1

DFCF

buffer (2-buffer operation)

LDX $82 Get current channel number

ORA #$80 Set 'buffer inactive1 flag

LDY $A7,X Get number of suitable buffer

BPL $DFCD Is 1st buffer reserved?

STA $A7,X NO-Activate 1st buffer

RTS Return from this subroutine

STA $AE,X Assign # for 2nd buffr of channel

RTS Return from this subroutine

[E153/E009:E291]

Write record of

DFD0 A9 20

DFD2 20 9D DD

DFD5 A9 80

DFD7 20 A6 DD

DFDA DO 41

DFDC A6 82

DFDE F6 B5

DFE0 DO 02

DFE2 F6 BB

DFE41 A6 82

DFE6 B5 Cl

DFE8 F0 2E

DFEA 20 E8 D4

DFED A6 82

DFEF D5 Cl

DFF1 90 03

DFF3 20 3C E0

DFF61 A6 82

DFF8 B5 Cl

DFFA 20 C8 D4

DFFD Al 99

DFFF 85 85

E001 A9 20

E003 20 9D DD

E006 20 04 E3

E0091 48
E00A 90 28

E00C A9 00

EOOE 20 F6 D4

E011 DO 21

E013 68

E014 C9 02

E016 F0 12

a relative file

LDA #$20

JSR $DD9D

LDA #$80

JSR $DDA6

BNE $701D

LDX $82

INC $B5,X

BNE $DFE4

INC $BB,X

LDX $82

LDA $C1,X

BEQ $7018

JSR $D4E8

LDX $82

CMP $C1,X

BCC $DFF6

JSR $E03C

LDX $82

LDA $C1,X

JSR $D4C8

LDA ($99,X)

STA $85

LDA #$20

JSR $DD9D

JSR $E304

PHA

BCC $E034

LDA #$00

JSR $D4F6

BNE $E034

PLA

CMP #$02

BEQ $E02A

Clear 'record full1

flag

Flag for last byte (EOI)

Test flag

Last byte been received?

NO-Get current channel number and

increment recordd number

Is a transfer imminent?

YES-Correct high-byte

Get current channel number

Get pointer to position on buffer

Pointer set?

YES—Get buffer pointer again

Get current channel number and

compare buffr ptr w/record pointr

Is buffer pointer<record pointer?

NO—Write record to buffer

Current channel number

Get corresp. pointer to record &

set corresponding buffer pointer

Get filebyte from buffer

and save it

Clear 'record full1

flag

Add record length to buffr pointr

Save new pointer value

Record still pass in curnt sectr?

NO—Set position pointer and get

byte (track number) from buffer

Is there another fileblock ahead?

NO-Get new buffer pointer,compare

with value for file start

Is the new buffer empty?

ROM-209

Abacus Software 1571 Internals

E018-1-

E01A

E01D1
E020

E022

E025

E027

E029

E02A1

E02D

E02F

E031

E033

A9

20

20

B5

99

A9

85

60

20

A6

A9

95

60

80

97

2F

99

44

OD

85

35

82

00

Cl

DD

Dl

02

EO

LDA

JSR

JSR

LDA

STA

LDA

STA

RTS

JSR

LDX

LDA

STA

RTS

#$80

$DD97

$D12F

$99,X

$0244,Y

#$0D

$85

$E035

$82

#$00

$C1,X

NO-Set flag to last byte

(EOI)

Determine buffer & channel number

Get lo-byte of buffer pointer &

save as last character

Send <RETURN>

as output

Return from this subroutine

Set pointer to last character

Number of current channel

Clear pointer to

next record

Return from this subroutine

[E00A/E011] Set pointer to last character

E034 68 PLA Pointer to start of next record

E0351 A6 82 LDX $82 Get current channel number & save

E037 95 Cl STA $C1,X pointer

Set pointer to last character

of record

Determine drive chosen

Track/sector of next block

Test buffer status

Buffer contents been changed?

YES-Write buffer to diskette

Adjust new buffer

Set buffer pointer to beginning

OF file range

Test last job for writing

Sector already been written on?

YES—Put sector back into buffer

& wait til job has been executed

Adjust new buffer

Test last job for writing

Sector previously used f/writing?

YES-Read sector from disk & wait

until job has been executed

Track and sector of next block

Get number of next track

Another sector available?

YES—Re-apply buffer

Read sector from diskette

and apply new buffer

Return from this subroutine

E039 4C 6E El

[DFF3/E0A7/E135]

E03C

E03F

E042

E045

E047

E04A

E04D

E04F

E052

E055

E057

E05A

E05D1

E060

E063

E065

E068

E06B1

E06E

E070

E072

E075

E078

E07B2

20

20

20

50

20

20

A9

20

20

DO

20

4C

20

20

DO

20

20

20

A5

F0

20

20

20

60

D3

95

9E

16

5E

IE

02

C8

AB

24

57

99

IE

AB

06

57

99

95

80

09

IE

57

IE

Dl

DE

DF

DE

CF

D4

DD

DE

D5

CF

DD

DE

D5

DE

CF

DE

CF

JMP $E16E

Prepare sector

JSR

JSR

JSR

BVC

JSR

JSR

LDA

JSR

JSR

BNE

JSR

JMP

JSR

JSR

BNE

JSR

JSR

JSR

LDA

BEQ

JSR

JSR

JSR

RTS

$D1D3

$DE95

$DF9E

$E05D

$DE5E

$CF1E

#$02

$D4C8

$DDAB

$E07B

$DE57

$D599

$CF1E

$DDAB

$E06B

$DE57

$D599

$DE95

$80

$E07B

$CF1E

$DE57

$CF1E

ROM-210

Abacus Software 1571 Internals

[E0B4/E0FE]

Write a char, of

E07C 20 05 El

E07F 20 93 DF

E082 0A

E083 AA

E084 A5 85

E086 81 99

E088 B4 99

E08A C8

E08B DO 09

E08D A4 82

E08F B9 Cl 00

E092 F0 0A

E094 AO 02

98E096]

E097

E099

E09C

A4 82

D9 Cl 00

DO 05

E09E1 A9 20

EOAO 4C 97 DD

E0A31 F6 99

E0A5 DO 03

E0A7 20 3C EO

E0AA1 60

a record into

JSR $E105

JSR $DF93

ASL A

TAX

LDA $85

STA ($99,X)

LDY $99,X

INY

BNE $E096

LDY $82

LDA $OOC1,Y

BEQ $E09E

LDY #$02

TYA

LDY $82

CMP $OOC1,Y

BNE $E0A3

LDA #$20

JMP $DD97

INC $99,X

BNE $E0AA

JSR $E03C

RTS

buffer

Set 'buffer altered1 flag

Get number of current buffer

and double it (buffr pointr table

works with 2-byte values)

Get byte to be transferred

and write in buffer

Get buffer pointer (lo-byte)& set

to next position

Reached end of buffer?

YES—Get present channel number &

pointer to next record

Pointer set?

YES—Set buffer pointer to start

of filerange

Get current channel number

Compare buffer- & record pointers

Record pointr at start-of-buffer?

YES-Set 'record full1

flag

Turn buffer pointer to next byte

Reached end of buffer?

YES-Write sector to diskette

Return from this subroutine

[CFCB]

Write

E0AB

E0AD

E0B0

E0B21

E0B4

E0B7

E0B9

E0BB

E0BC1

E0BE

E0C1

E0C3

E0C5

E0C82

E0CB

E0CE

E0D1

E0D3

record to data buffer

A9 A0 LDA #$A0 Test flags for 'last byte'(EOI) &

20 A6 DD JSR $DDA6 'record full'

DO 27 BNE $E0D9 Is there a flag set?

A5 85 LDA $85 NO-Get byte from input register &

20 7C E0 JSR $E07C write to record

A5 F8 LDA $F8 Test for 'last byte' (EOI) flag

F0 0D BEQ $E0C8 Was that the last byte?

60 RTS YES-Return from this subroutine

A9 20 LDA #$20 Test for 'record full1

20 A6 DD JSR $DDA6 flag

F0 05 BEQ $E0C8 Is record already written full?

A9 51 LDA #$51 YES-Set error flag

8D 6C 02 STA $026C for '51 overflow in record'

20 F3 E0 JSR $E0F3 Fill rest of record with nulls

20 53 El JSR $E153 Get next record

AD 6C 02 LDA $026C Check for error flag

F0 03 BEQ $E0D6 Encountered an error?

4C C8 Cl JMP $C1C8 YES-Display error message

ROM-211

Abacus Software 1571 Internals

E0D6x

E0D91

EODB

EODD

EODF

E0E1

E0E21

E0E4

E0E5

E0E8

E0E9

EOEB

EOED

EOFO

4C

29

DO

A5

FO

60

A5

48

20

68

85

A9

20

4C

BC

80

05

F8

DB

85

1C

85

80

9D

B2

E6

E3

DD

EO

JMP

AND

BNE

LDA

BEQ

RTS

LDA

PHA

JSR

PLA

STA

LDA

JSR

JMP

$E6BC

#$80

$E0E2

$F8

$E0BC

$85

$E31C

$85

#$80

$DD9D

$E0B2

Prepare 'Ok1 message

Test flag for 'last byte1 (EOI)

Is flag set?

NO—Test EOI from serial bus

Is flag set?

YES—Return from this subroutine

Get byte from input register;

save it

Develop relative file

Set back byte and

save it

Clear 'last byte in file1 (EOI)

flag

Write record further in buffer

[E0C8/E101]

Fill rest of record with empty bytes

E0F3

E0F5

E0F8

E0FA

EOFC

EOFE

E101

E1041

A9

20

DO

A9

85

20

4C

60

20

A6

OA

00

85

7C

F3

DD

EO

EO

LDA

JSR

BNE

LDA

STA

JSR

JMP

RTS

#$20

$DDA6

$E104

#$00

$85

$E07C

$E0F3

Test for 'record full1

flag

Is entire record filled?

Set value for

null bytes

Write byte in record

Fill in next byte

Return from this subroutine

[DE09/E07C]

Set flag for 'buffer data altered'

E105

E107

E10A

E10D

E10F

E112

E114

A9

20

20

09

AE

95

60

40

97

9E

40

57

A7

DD

DF

02

LDA

JSR

JSR

ORA

LDX

STA

RTS

#$40

$DD97

$DF9E

#$40

$0257

$A7,X

Set flag for 'sector

altered'

Get buffer status

Flag for 'buffer altered'

of channel+7 (points to $AE)

Set buffer status anew

Return from this subroutine

[DE8B]

Clear 'buffer data altered1 flag

E115

E118

E11A

E11D

E11F

20 9E DF

29 BF

AE 57 02

95 A7

60

JSR $DF9E

AND #$BF

LDX $0257

STA $A7,X

RTS

Get buffer status

and combine with flag

Channel number for 2nd buffer

Set buffer status again in table

Return from this subroutine

ROM-212

Abacus Software 1571 Internals

[D3B1/E138:E294]

Get byte from record

E120

E122

E125

E127

E12A

E12C

E12F

E131

E133

E135

A9 80

20 A6 DD

DO 37

20 2F Dl

B5 99

D9 44 02

F0 22

F6 99

DO 06

20 3C EO

E1381 20 2F Dl

E13B1 Al 99
E13D1

E140

E142

E145

E147

E14A

E14C

E14D1

E14F

E152

99 3E 02

A9 89

99 F2

B5 99

D9 44

FO 01

60

A9 81

99 F2

60

00

02

00

LDA

JSR

BNE

JSR

LDA

CMP

BEQ

INC

BNE

JSR

JSR

LDA

STA

LDA

STA

LDA

CMP

BEQ

RTS

LDA

STA

RTS

#$80 Check flag for

$DDA6 'last byte1 (EOI)

$E15E Is it last byte of the record?

$D12F NO-Initialize buffer pointer

$99,X Get buffer pointer and check with

$0244,Y end position of record

$E153 reached the end of record?

$99,X NO-Buffer pointer to next byte

$E13B Is the data buffer full?

$E03C YES-Write sector; get next one

$D12F Initialize buffer pointer

($99,X) Get byte from data buffer

$023E,Y and save it

#$89 Flag for read/write/EOI

$00F2,Y set in channel status

$99,X Get lo-byte of buffer pointer and

$0244,Y compare w/value for end of record

$E14D Has entire record been read?

NO—Return from this subroutine

#$81 Set read/write flag in

$00F2,Y channel status

Return from this subroutineE14A F0 01

[DCA3/E0CB/E12F]

Get record and output it

E153 20 DO DF JSR $DFD0

E156 20 2F Dl JSR $D12F

E159 A5 85 LDA $85

E15B 4C 3D El JMP $E13D

Get next record

Determine buffer- and channel #

Get byte and prepare

for output

[E125/E262/E26F]

Error

E15E

E160

E162

E165

E167

E169

E16B

happens

A6 82

A9 0D

9D 3E 02

A9 81

95 F2

A9 50

20 C8 Cl

LDX

LDA

STA

LDA

STA

LDA

JSR

$82

#$0D

$023E,X

#$81

$F2,X

#$50

$C1C8

Get current channel # and

conclude output

with <RETURN>

Set channel status

back again

Display f50 Record

Not Present1 error message

ROM-213

Abacus Software 1571 Internals

[E039]

Set pointer

E16E

E170

E172

E174

E176

E178

E17A

E17C

E17E1

E180

E182

E185

E187

E189

E18B

E18D

E190

E193

E195

E197

E19A

E19D1

E1A0

E1A2

E1A42
E1A7

E1A9

E1AC1

E1AE

E1B1

A6

B5

85

C6

C9

DO

A9

85

B5

85

20

A6

C5

90

FO

20

20

90

A6

9D

4C

20

A9

85

20

BO

20

A6

9D

60

82

Cl

87

87

02

04

FF

87

C7

88

E8

82

87

19

17

IE

B2

08

82

44

IE

IE

FF

87

B2

03

E8

82

44

[E190/E1A4]

Search for (

E1B2

E1B5

E1B71

E1B9

E1BB

E1BC

E1BE

E1C0

E1C2

20

A4

Bl

DO

88

CO

90

C6

DO

2B

87

94

OD

02

04

88

F3

to

D4

CF

El

02

CF

CF

El

D4

02

snd

DE

last character

LDX

LDA

STA

DEC

CMP

BNE

LDA

STA

LDA

STA

JSR

LDX

CMP

BCC

BEQ

JSR

JSR

BCC

LDX

STA

JMP

JSR

LDA

STA

JSR

BCS

JSR

LDX

STA

RTS

$82

$C1,X

$87

$87

#$02

$E17E

#$FF

$87

$C7,X

$88

$D4E8

$82

$87

$E1A4

$E1A4

$CF1E

$E1B2

$E19D

$82

$0244,X

$CF1E

$CF1E

#$FF

$87

$E1B2

$E1AC

$D4E8

$82

$0244,X

of record

JSR

LDY

LDA

BNE

DEY

CPY

BCC

DEC

BNE

$DE2B

$87

($94),Y

$E1C8

#$02

$E1C4

$88

$E1B7

of record

Number of present channel

Pointer to start of next record

—get and save

Correct pointer(incl.0)& compare

with value for start-of-file

Pointer at start of buffer?

YES—Set pointr to end of buffr &

save it

Get record length and

save it

Set current buffer pointer

Get number of present channel

Compare buffer- w/record pointer

Is the buffer pointer larger?

YES—Are both pointers equal?

NO—Apply new buffer

Look for end of record

Find it?

NO-Get current channel number and

save pointer

Apply new buffer and end

Apply new buffer

Set record pointer to end

of buffer

Search for end of record

EEnd found?

YES—Set current buffer pointer

Get number of matching channel &

save end position of records

Return from this subroutine

Set pointer to buffer start

Get current record pointer

Read byte from record

Byte = empty byte?

YES-Move buffr pntr to next byte,

compare with buffer begin, value

Reached start of buffer?

NO—Decrement record length

Entire record range searched?

ROM-214

Abacus Software 1571 Internals

£104^

E1C6

E1C7

E1C81

E1C9

E1CA

C6

18

60

98

38

60

88 DEC

CLC

RTS

TYA

SEC

RTS

$88

[CA56/CA69/DB32/DF0B/E31F]

Search for end

E1CB

E1CE

E1D0

E1D2

E1D4

E1D6

E1D81

E1D9

E1DA

E1DC1

E1DE

E1E0

E1E1

E1E2

E1E4

E1E6

E1E8

E1EA

E1EC

E1EF1

E1F1

E1F3

E1F5

E1F7

E1F8

E1FA

E1FB

E1FC

E1FE

E1FF

E2021

E204

20

85

A9

85

AO

DO

88

88

30

Bl

FO

98

4A

C5

FO

85

A6

B5

20

AO

84

Bl

DO

C8

Bl

A8

88

84

98

4C

A9

20

D2

D5

04

94

OA

04

26

94

F8

D5

09

D5

82

CD

IB

00

94

94

OB

94

D6

E9

67

45

DE

DF

DE

E6

of relative file

JSR

STA

LDA

STA

LDY

BNE

DEY

DEY

BMI

LDA

BEQ

TYA

LSR

CMP

BEQ

STA

LDX

LDA

JSR

LDY

STY

LDA

BNE

INY

LDA

TAY

DEY

STY

TYA

JMP

LDA

JSR

$DED2

$D5

#$04

$94

#$0A

$E1DC

$E202

($94),Y

$E1D8

A

$D5

$E1EF

$D5

$82

$CD,X

$DF1B

#$00

$94

($94),Y

$E202

($94),Y

$D6

$DEE9

#$67

$E645

YES—Correct record pointer

Set 'end found1 flag

Return from this subroutine

Get current buffer position &

set 'end not found' flag

Return from this subroutine

Get number of current side-sector

and save it

Reset buffer pointer to

beginning of sector

Pointr to trak of last sidesector

Jump to $E1DC

Set buffer pointr to track # of

preceding side-sector

No more side-sectors on hand?

NO—Get track # of side-sector

Is sector laid out?

YES—Transmit side-sector

number

and compare with current number

Identical?

NO—Save new side-sector number

Get number of present channel

Determine sector buffer and

read sector

Reset buffer pointer to begin, of

sector

Get track of next sector

No more side-sectors?

YES—Set pointer to next position

Get # of applicable filebytes

and save them

Set pointer to linked bytes of

last record's sector

and save it

Set buffr pointr to this position

Error message—

'67 Illegal Track Or Sector'

ROM-215

Abacus Software 1571 Internals

[Jump to routine at G14 6]

Record command routine (•P1)

E207 20 B3 C2 JSR $C2B3

E20A AD 01 02 LDA $0201

E20D 85 83 STA $83

E20F 20 EB DO JSR $D0EB

E212 90 05 BCC $E219

E214 A9 70 LDA #$70

E216 20 C8 Cl JSR $C1C8

E2191 A9 A0 LDA #$A0

E21B 20 9D DD JSR $DD9D

E21E 20 25 Dl JSR $D125

E221 F0 05 BEQ $E228

E223 A9 64 LDA #$64

E225 20 C8 Cl JSR $C1C8

E2281 B5 EC LDA $EC,X

E22A 29 01 AND #$01

E22C 85 7F STA $7F

E22E AD 02 02 LDA $0202

E231 95 B5 STA $B5,X

E233 AD 03 02 LDA $0203

E236 95 BB STA $BB,X

E238 A6 82 LDX $82

E23A A9 89 LDA #$89

E23C 95 F2 STA $F2,X

E23E AD 04 02 LDA $0204

E241 F0 10 BEQ $E253

E243 38 SEC

E244 E9 01 SBC #$01

E24 6 F0 0B BEQ $E253

E248 D5 C7 CMP $C7,X

E24A 90 07 BCC $E253

E24C A9 51 LDA #$51

E24E 8D 6C 02 STA $026C

E251 A9 00 LDA #$00

E2533 85 D4 STA $D4

E255 20 OE CE JSR $CE0E

E258 20 F8 DE JSR $DEF8

E25B 50 08 BVC $E2 65

E25D A9 80 LDA #$80

E25F 20 97 DD JSR $DD97

E2 62 4C 5E El JMP $E15E

Set command string pointer

Get 2nd command char from buffer

and set up as secondary address

Open read channel

Has a free channel been found?

NO—Error message—

•70 No Channel1

Clear EOI

flags

Get filetype and test it out

Is there a relative file?

NO—Error message—

•64 File Type Mismatch1

Get channel flag and

take on chosen disk drive

as current drive

Get 3rd char from input buffer &

set as low-byte of record number

Get high-byte of record number &

take it up

Get number of present channel

Set read/write/EOI flag

in channel status

Get 5th char from input buffer

No instructions?

NO—Take up position in record

and test for pointer=l

Pointer set to start of record?

NO-Compare with record length

Is position legal?

NO—Store *51 Overflow In Record1

in error flag

Set position pointer to beginning

of record

Calculate position of record

Read in corresponding side-sector

Side-sector read without errors?

NO-Set 'last byte1 (EOI)

flag

Error—'50 Record Not Present1

ROM-216

Abacus Software 1571 Internals

E2 65X

E268

E2 6A

E2 6D

E2 6F

E2721

20

A9

20

F0

4C

4C

75

80

A6

03

5E

94

[E265/E441]

Read :

E275

E278

E27A

E27D

E27F

E281

E282

E284

E286

E2891

E28A

E28C

E28E

E2 90

E2911

E2 94

E297

E299

record

20

A5

20

A6

B5

38

E5

BO

4C

18

65

90

69

38

20

4C

A9

20

9C

D7

C8

82

C7

D4

03

02

D7

03

01

09

38

51

C8

E2

DD

El

Cl

into

E2

D4

E2

E0

El

Cl

JSR

LDA

JSR

BEQ

JMP

JMP

$E275

#$80

$DDA6

$E272

$E15E

$C194

buffer

JSR

LDA

JSR

LDX

LDA

SEC

SBC

BCS

JMP

CLC

ADC

BCC

ADC

SEC

JSR

JMP

LDA

JSR

$E2 9C

$D7

$D4C8

$82

$C7,X

$D4

$E289

$E202

$D7

$E291

#$01

$E009

$E138

#$51

$C1C8

Read record searched for

Test for 'last byte1

flag

Record not onhand?

YES-Error-f50 Record Not Present1

'Ok1 message prepared

Read sector containing record

Transfer position in record to

current buffer pointer

Present channel number

Determne record length & subtract

current position in data field

from record length

Pointer still in field?

YES-167 Illegal Track or Sector1

Figure position of desired bytes

in record

Byte in next file sector?

YES-Set to start position and set

flag for next sector

Set pointer for next record

Get byte from record

Error message—

'51 Overflow In Record1

[CA6C/E322/E275]

Read record sector contained

E2 9C

E2 9E

E2A0

E2A2

E2A4

E2A7

E2A9

E2AA1

E2AD

E2B0

E2B2

E2B4

E2B7

E2B9

E2BC

E2BF1

A5

85

A5

85

20

DO

60

20

20

A5

F0

20

DO

20

4C

20

94

89

95

8A

DO

01

Fl

OC

80

0E

D3

06

IE

DA

DA

E2

DD

DE

E2

CF

D2

D2

LDA

STA

LDA

STA

JSR

BNE

RTS

JSR

JSR

LDA

BEQ

JSR

BNE

JSR

JMP

JSR

$94

$89

$95

$8A

$E2D0

$E2AA

$DDF1

$DE0C

$80

$E2C2

$E2D3

$E2BF

$CF1E

$D2DA

$D2DA

in buffer

Retain current buffer pointer in

temporary storage

in addresses

$89/$8A

Check buffer for sector

Is the sector in buffer?

YES—Return from this subroutine

Write buffer contents to diskette

Track /sector of next block

Get track number of next sector

More sectors onhand?

YES—Test buffer for sector

Is sector already in buffer?

YES—Provide new buffer

Free up all inactive buffers

Free up all inactive buffers

ROM-217

Abacus Software 1571 Internals

E2C21

E2C4

E2C6

E2C8

E2C9

E2CB

AO 00

Bl 89

85 80

C8

Bl 89

85 81

LDY #$00

LDA ($89),Y

STA $80

INY

LDA ($89),Y

STA $81

E2CD 4C AF DO JMP $D0AF

Initialize buffer pointer

Get track number from side-sector

and take as current track no.

Buffer pointer to next byte

Get number of file sector and

store it

Read sector in buffer

[E2A4]

Test to see

E2D0 20 3E

E2D3~

E2D5

E2D7

E2D9

E2DB

whether sector is

DE

E2DC

E2DD

E2DF

E2E1

1 A0 00

Bl 89

C5 80

F0 01

60

C8

Bl 89

C5 81

60

JSR $DE3E

LDY #$00

LDA ($89),

CMP $80

BEQ $E2DC

RTS

INY

LDA ($89),

CMP $81

RTS

already in buffer

Get track/sector of last job

Initialize buffer pointer

Look for track from side-sector &

compare with last read value

Identical?

NO-Return from this subroutine

Set buffer pointer & sector #

Get # of sector being searched &

compare with current sector

Return from this subroutine

[DD7B/E3C2/E3CE]

Employ new record in

E2E2

E2E5

E2E7

E2E91

E2EB

E2EC

E2EE

E2F13
E2F3

E2F4

E2F6

E2F8

E2FB

E2FD

E2FF

E301

E303]

E3

20 2B DE

A0 02

A9 00

91 94

C8

DO FB

20 04

95 Cl

A8

A9 FF

91 94

20 04

90 F4

DO 04

A9 00

95 Cl

60

E3

JSR

LDY

LDA

STA

INY

BNE

JSR

STA

TAY

LDA

STA

JSR

BCC

BNE

LDA

STA

RTS

sector

$DE2B Set current buffer address

#$02 Pointer to begin, of file range

#$00 Sector clear value

($94),Y Write empty byte to buffer

Set buffer pointer to next byte

$E2E9 Entire buffer filled?

$E304 YES-Get position of next record &

$C1,X save it

Take value as buffer pointer

#$FF Value for opening record —

($94),Y write to buffer

$E304 Calculate position of next record

$E2F1 Record still have room ?

$E303 NO—Record passed in sector?

#$00 YES-Setposition of next record to

$C1,X start of next sector

Return from this subroutine

ROM-218

Abacus Software 1571 Internals

[E006/E2EE/E2F8]

Calculate

E304

E306

E308

E309

E30B

E30C

E30E

E310

E312

E314

E317

E3182

E31A

E31B1

A6

B5

38

FO

18

75

90

DO

A9

2C

60

69

38

60

> position of

82

Cl

0D

C7

OB

06

02

CC FE

01

LDX

LDA

SEC

BEQ

CLC

ADC

BCC

BNE

LDA

BIT

RTS

ADC

SEC

RTS

new record

$82

$C1,X

$E318

$C7,X

$E31B

$E318

#$02

$FECC

#$01

in sector

Get current channel number

and corresponding record pointer

Set 'no more records' flag

Fill in an old record?

NO-Add record length to

current position

Record run to next sector?

YES—Record fill entire sector?

YES-Pointr to start of new sector

Set 'still another sector' flag

Return from this subroutine

Pointr to begin, of next record

Set 'no more sectors' flag

Return from this subroutine

[E0E5/E33B:CA85]

Insert new records in relative

E31C

E31F

E322

E325

E328

E32A

E32C

E32E

E330

E332

E334

E336

E338

E33B1
E33E

E340

E342

E343

E344

E345

E347

E349

E34B

E34D

E34F

E351

E353

20

20

20

20

A5

85

A5

85

A9

85

A9

85

20

20

A4

B6

CA

8A

18

65

90

E6

E6

DO

E6

A9

85

D3

CB

9C

7B

D6

87

D5

86

00

88

00

D4

0E

4D

82

C7

D7

OC

D6

D6

06

D5

10

D6

Dl

El

E2

CF

CE

EF

JSR

JSR

JSR

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

JSR

LDY

LDX

DEX

TXA

CLC

ADC

BCC

INC

INC

BNE

INC

LDA

STA

$D1D3

$E1CB

$E2 9C

$CF7B

$D6

$87

$D5

$86

#$00

$88

#$00

$D4

$CE0E

$EF4D

$82

$C7,Y

$D7

$E355

$D6

$D6

$E355

$D5

#$10

$D6

file

Get number of drive chosen

Get position of last record

Read side-sector and records

Open new buffer

Retain pointer to file block

in side-sector

Temporarily store pointer of

current side-sector

Clear 'only one block1

flag

Clear pointer of position

of record

Calc. side-sector of fileblock

Get number of blocks free

Determine # off current channels

Get corresponding record length &

correct it

(includes 0) and

add to current

buffer pointer

Any new buffer pointer in sector?

NO—Pointr in sidesector to track/

sector number of next fileblock

Pointr still in curr.sides-ector?

NO-Go to next side-sector

Buffer pointr to begin, of track/

sector pointer of fileblock

ROM-219

Abacus Software 1571 Internals

E355*

E357

E358

E35A

E35D

E35F

E361

E3632

E365

E3681

E36A

E36B

E36D

E36F

E371

E3721

E374

E376

E378

E37A

E37C

E37E

E380

E381

E384

E386

E388

E38A

E38B

E38D

E38F2

E392

E394

E396

E399

E39B

E39D1

E39F

E3A2

E3A3

E3A5

E3A7

E3A9

E3AC

E3AF

E3B1

A5

18

69

20

A5

C9

90

A9

20

A5

38

E5

BO

E9

18

85

A5

E5

85

A2

86

86

AA

20

A5

DO

A6

CA

DO

E6

CD

90

DO

AD

C5

90

A9

20

18

69

A6

95

20

20

A5

DO

87

02

E9

D5

06

05

52

C8

D6

87

03

OF

72

D5

86

73

00

70

71

51

71

07

70

02

88

73

09

CD

72

70

C6

01

F6

01

82

Cl

IE

FD

88

15

DE

Cl

DF

02

02

D4

Fl

DD

LDA

CLC

ADC

JSR

LDA

CMP

BCC

LDA

JSR

LDA

SEC

SBC

BCS

SBC

CLC

STA

LDA

SBC

STA

LDX

STX

STX

TAX

JSR

LDA

BNE

LDX

DEX

BNE

INC

CMP

BCC

BNE

LDA

CMP

BCC

LDA

JSR

CLC

ADC

LDX

STA

JSR

JSR

LDA

BNE

$87

#$02

$DEE9

$D5

#$06

$E368

#$52

$C1C8

$D6

$87

$E372

#$0F

$72

$D5

$86

$73

#$00

$70

$71

$DF51

$71

$E38F

$70

$E38F

$88

$0273

$E39D

$E363

$0272

$70

$E363

#$01

$D4F6

#$01

$82

$C1,X

$F11E

$DDFD

$88

$E3C8

Old buffer pointer set to next

sector file

(track/sector)

Set buffer pointer

Get # of current side-sectors and

compare with maximum value

Legal number?

NO-Error —

'52 File Too Large1

Get current position in

side-sector

Subtract last side-sector pointer

New value in preceding sector?

YES-Observe linking bytes at

start of side-sector and

save new value

Get current side-sector number &

and remove last number

Save new value

Clear temporary memory

of number of blocks

free

Side-sector number 0

Calculate # of blocks needed by

and hold it (high-byte)

Number of blocks < 256?

YES-Test low-byte

of amount of blocks

Just 1 block(side-sector)laidout?

Set "just one block1 flag

Compare w/ number of blocks free

Any room left on the diskette?

NO-Any files past on disk?

YES—Compare lo-bytes of necess.

blocks with number of free blocks

File > capacity?

NO-Buffer pointer to sector #

Get byte from buffer

Increment pointer to current

filebyte in current sector

Get channel number

Save pointer to filebyte

Get next free sector from BAM

Linking bytes for next sector

Flag for 'only one block1

set?

ROM-220

Abacus Software 1571 Internals

E3B3 20 5E DE JSR $DE5E NO-Write sector to diskette

E3B62 20 IE CF JSR $CF1E Changee buffer

E3B9 20 DO D6 JSR $D6D0 Track/sector to job loop

E3BC 20 IE Fl JSR $F11E Look for next free block in BAM

E3BF 20 FD DD JSR $DDFD Params of next block in buffer

E3C2 20 E2 E2 JSR $E2E2 Employ new record

E3C5 4C D4 E3 JMP $E3D4 Write sector to diskette

E3C82 20 IE CF JSR $CF1E Change buffer

E3CB 20 DO D6 JSR $D6D0 Track/sector to job loop

E3CE 20 E2 E2 JSR $E2E2 Use new record

E3D1 20 19 DE JSR $DE19 Identify last sector

E3D41 20 5E DE JSR $DE5E Write sector to diskette

E3D7 20 0C DE JSR $DE0C Track/sector from linking bytes

E3DA A5 80 LDA $80 Get next track number and

E3DC 48 PHA save it

E3DD A5 81 LDA $81 Retain next

E3DF 48 PHA sector number

E3E0 20 3E DE JSR $DE3E Get track/sector of last job

E3E3 A5 81 LDA $81 Save last sector

E3E5 48 PHA number

E3E6 A5 80 LDA $80 Retain number of last

E3E8 48 PHA sector

E3E9 20 45 DF JSR $DF45 Set buffr pointr f/side-sector &

E3EC AA TAX save low-byte

E3ED DO 0A BNE $E3F9 Pointer at buffer start?

E3EF 20 4E E4 JSR $E44E YES-Open new side-sector

E3F2 A9 10 LDA #$10 Buffr pointr to begin, of pointer

E3F4 20 E9 DE JSR $DEE9 of file sectors

E3F7 E6 86 INC $86 Increment side-sector number

E3F91 68 PLA Get track of last sector and

E3FA 20 8D DD JSR $DD8D enter in side-sector

E3FD 68 PLA Get sector number and take

E3FE 20 8D DD JSR $DD8D byte in side-sector

E401 68 PLA Get current sector number

E402 85 81 STA $81 and store it

E404 68 PLA Get current track number and

E405 85 80 STA $80 store it

E407 F0 OF BEQ $E418 Last block?

E409 A5 86 LDA $86 NO-Compare current side-sector #

E40B C5 D5 CMP $D5 with the last one

E40D DO A7 BNE $E3B6 Changed?

E40F 20 45 DF JSR $DF45 YES-Position buffer pointer and

E412 C5 D6 CMP $D6 compare with side-sector pointer

E414 90 A0 BCC $E3B6 Is buffer pointer less?

E416 F0 B0 BEQ $E3C8 NO-Is it equal?

ROM-221

Abacus Software 1571 Internals

E418-1-

E41B

E41C

E41E

E421

E423

E424

E426

E427

E428

E429

E42B

E42D

E430

E433

E436

E439

E43C

E43F

E441

E4441

E446

E449

E44B

[E3EF;

20

48

A9

20

A9

A8

91

C8

68

38

E9

91

20

20

20

20

20

20

70

4C

A9

20

A9

20

]

45

00

DC

00

94

01

94

6C

99

F4

0E

IE

F8

03

75

80

97

50

C8

Prepare new

E44E

E451

E454

E457

E45A

E45B

E45E

E460

E4 62

E4 63

E464

E4 65

E467

E4 6A

E4 6C

E4 6F

E471

E473

E474

E476

20

20

20

20

48

20

A6

B5

A8

68

AA

A9

20

A9

20

A0

Bl

48

A9

20

IE

IE

Fl

93

Cl

82

CD

10

A5

00

DC

02

94

00

C8

DF

DE

DE

D5

EE

CE

CF

DE

E2

DD

Cl

JSR

PHA

LDA

JSR

LDA

TAY

STA

INY

PLA

SEC

SBC

STA

JSR

JSR

JSR

JSR

JSR

JSR

BVS

JMP

LDA

JSR

LDA

JSR

$DF45

#$00

$DEDC

#$00

($94)

#$01

($94)

$DE6C

$D599

$EEF4

$CE0E

$CF1E

$DEF8

$E444

$E275

#$80

$DD97

#$50

$C1C8

side-sector

Fl

CF

DD

DF

DE

DE

DE

D4

JSR

JSR

JSR

JSR

PHA

JSR

LDX

LDA

TAY

PLA

TAX

LDA

JSR

LDA

JSR

LDY

LDA

PHA

LDA

JSR

$F11E

$CF1E

$DDF1

$DF93

$DEC1

$82

$CD,X

#$10

$DEA5

#$00

$DEDC

#$02

($94)

#$00

$D4C8

NO—Position buffer pointer and

save as ending

Reset buffer pointer

to zero

Set buffer pointer to

beginning of sector

Set flag to last block in buffer

Set buffer pointer to next byte

Set pointer to end and

decrement

by one

Pointer—number of good bytes

Write sector to diskette

and test for write error

Put sector in BAM

Re-initialize REL file pointer

Get another buffer

Check side-sector

Is correct side-sector in buffer?

YES—Record pointer reset; end

Reset filetype

pointer and flags

Display error message —

•50 Record Not Present1

Determine next free block

Choose buffer

Write previous side-sector

Get buffer number

and save it

Clear file buffer

Channel number

Take channel number for

side-sector

from stack and save in

X/Y-registers

Take 16 byts of previos sidesectr

into current buffer

Buffer pointer value

Reset buffer pointer

Take buffr of previos side-sector

and get side-sector number

Save number of last side-sector

Turn buffr pointer to buffr for

new side-sector and set back

ROM-222

Abacus Software 1571 Internals

E479

E47A

E47B

E47D

E47F

E480

E482

E484

E485

E486

E488

E48A

E48C

E48E

E490

E491

E4 93

E4 95

E497

E499

E4 9A

E4 9C

E4 9D

E4 9F

E4A1

E4A3

E4A6

E4A9

E4AC

E4AE

E4B0

E4B1

E4B4

E4B6

E4B8

E4B9

E4BC

E4BE

E4C0

E4C3

E4C5

E4C7

E4C9

E4CA

E4CC

E4CE

E4D1

68

18

69

91

OA

69

85

A8

38

E9

85

A5

85

91

C8

A5

85

91

AO

98

91

C8

A9

91

A9

20

20

20

A6

B5

48

20

A6

95

68

AE

95

A9

20

AO

A5

91

C8

A5

91

4C

1 20

01

94

04

89

02

8A

80

87

94

81

88

94

00

94

11

94

10

C8

50

99

82

CD

9E

82

CD

57

A7

00

C8

00

80

94

81

94

DE

93

D4

DE

D5

DF

02

D4

E4

DF

PLA

CLC

ADC

STA

ASL .

ADC

STA

TAY

SEC

SBC

STA

LDA

STA

STA

INY

LDA

STA

STA

LDY

TYA

STA

INY

LDA

STA

LDA

JSR

JSR

JSR

LDX

LDA

PHA

JSR

LDX

STA

PLA

LDX

STA

LDA

JSR

LDY

LDA

STA

INY

LDA

STA

JMP

JSR

#$01

($94)/

A

#$04

$89

#$02

$8A

$80

$87

($94),

$81

$88

($94),

#$00

($94),

#$11

($94),

#$10

$D4C8

$DE50

$D599

$82

$CD,X

$DF9E

$82

$CD,X

$0257

$A7,X

#$00

$D4C8

#$00

$80

($94)

$81

($94)

$E4DE

, $DF93

Get number of last side-sector

Increase by one

and store

as new number

Double value

and add 4

Set track/sector pointer

and save it;

from that, compute

the pointer to

the previous side-sector

Save

track number

Write to current buffer

Set buffer pointer to next byte

Store sector number

and take into

current buffer

Set buffer pointer to

beginning of sector

Flag for last side-sector

Set buffer pointer to next byte

Set number of good bytes to

sector (17)

Put buffer pointer

to position 16

Write sector to diskette

Wait f/messge frm diskcontroller

Set current channel number

Get # of buffer to side-sector

and save it down

Get buffer number

Current channel number;

save as third buffer

Buffer number for side-sector

Pntr to last active file buffer

Lay out buffer

Reset buffer pointer

to zero

Buffer pointer to start-of-sector

Take track number into

file buffer

Set pointer to next character

Take buffer number

into the buffer

Write side-sector to diskette

Determine current buffer number

ROM-223

Abacus Software 1571 Internals

E4D4

E4D6

E4D9

E4DB

E4DE1

E4E0

E4E2

E4E4

E4E6

E4E8

E4E9

E4EB

E4ED

E4F0

E4F3

E4F5

E4F7

E4F9

A6

20

A9

20

C6

C6

A4

A5

91

C8

A5

91

20

20

A4

CO

BO

4C

82

IB

00

C8

8A

8A

89

87

94

88

94

5E

99

8A

03

D8

IE

DF

D4

DE

D5

CF

LDX

JSR

LDA

JSR

DEC

DEC

LDY

LDA

STA

INY

LDA

STA

JSR

JSR

LDY

CPY

BCS

JMP

$82

$DF1B

#$00

$D4C8

$8A

$8A

$89

$87

($94),Y

$88

($94),Y

$DE5E

$D599

$8A

#$03

$E4D1

$CF1E

Current channel number

Read next side-sector from disk

Reset buffer pointer

to zero

Correct side-

sector number

Buffr pntr for track/sector pos.

Write track number

to the file buffer

Set buffer pointer to next byte

Get sector number and take

into the buffer

Write side-sector to diskette

Wait f/messge frm diskcontroller

Get side-sector number and

test it

Greater than 3?

NO-Choose another buffer

The first byte is the error number in BCD-Code. Next follows the

text of the error msg. The start and ending of these text strings

are indicated by bit7 in the first & last byte set to 1. Some

values are set up as short codes. The most significant byte-half of

these values is 0. They are handled like error messages.

E4FC

E4FD

E500

E506

E50B

E50C

E517

E518

E522

E523

E52F

E531

E533

E534

20

D2

52

83

50

8B

51

CF

26

8A

4F

21

45

20

06

56

28

89

20

22

41

54

20

45

50

23

44

4F

50

52

52

24

89

4F

52

46

4F

27

20

45

4C

54

4C

53

4F

45

41

45

57

43

52

4E

20

54

47

D4

49

20

•ok1

'read error1

•file too large1

C5

'record not present1

'overflow in record'

4E 8B

•write error'

'write protect on1

4F CE

ROM-224

Abacus Software 1571 Internals

E540

E541

E546

E54B

E552

E553

E556

E557

E55F

E560

E567

E568

E570

E572

E589

E58A

E58D

E58F

E592

E593

E59F

E5A0

E5AA

E5AB

E5AF

E5B0

E5B6

E5B7

E5C8

E5C9

29

88

30

D3

63

83

64

83

65

CE

66

C9

61

83

39

83

01

83

70

CE

71

C4

72

88

73

C3

74

C4

20

31

59

03

20

20

4F

67

4C

06

62

06

53

4F

49

20

42

52

49

32

4E

84

45

54

20

4C

84

87

20

20

52

46

4D

49

44

33

54

58

59

42

45

53

43

89

55

20

56

85

34

41

49

50

4C

47

43

48

4C

44

45

58

53

45

4F

41

52

41

CC

4F

89

54

85

43

4C

41

4E

53

20

D3

CB

20

54

4E

20

52

54

43

45

56

45

•

1

1

i

i

52

i

48

CC

33

41

disk id mismatch1

syntax error1

write file open1

file exists1

file type mismatch1

no block'

'illegal track or sector'

41 43 4B 20 4F 52 20 53 45 43 54 4F I

'file not open'

•file not found1

'files scratched'

45 C4

'no channel'

'dir error'

•disk full1

•cbm dos v3.0 1571•

2E 30 20 31 35 37 Bl

•drive not ready'

44 D9

ROM-225

Abacus Software 1571 internals

Often-used

E5D5

E5D6

E5DB

E5DC

E5E1

E5E2

E5E6

E5E7

E5EB

E5EC

E5F4

E5F5

E5F8

E5F9

E5FE

E5FF

E603

E604

09

C5

OA

D7

03

C6

04

CF

05

CD

06

CE

07

C6

08

C4

OB

D2

52

52

49

50

49

4F

4F

49

45

words

52

49

4C

45

53

D4

55

53

43

4F

54

C5

CE

4D

4E

CB

4F

and their short

D2

C5

41 54 43 C8

C4

52 C4

codes :

'error1

'write1

•file'

'open'

'mismatch'

•not1

'found'

•disk'

'record'

[8391/91AA/A47B/A6CB/BF63/C8EC/D641/E60D:A9D2]

Error message output

(A must contain error no.; X the buffer number)

E60A 4C B9 A9 JMP $A9B9 1571 mode observed

Double buffer

number and set

as pointer on disk controller

Get track # from disk controller

and store it

Get sector number and

store it

Get error number ready again

Is the error number

15 or greater?

YES-Is it equal to

error number 15?

YES—Internal # of error message

Jump to $E62D

ROM-226

E60D

E60E

E60F

E610

E612

E614

E616

E618

E619

E61B

E61D

E61F

E621

E623

8A

0A

AA

B5

85

B5

85

68

29

F0

C9

DO

A9

DO

06

80

07

81

OF

08

OF

06

74

08

TXA

ASL

TAX

LDA

STA

LDA

STA

PLA

AND

BEQ

CMP

BNE

LDA

BNE

A

$06,X

$80

$07,X

$81

#$0F

$E625

#$0F

$E627

#$74

$E62D

Abacus Software 1571 Internals

E6251
E6271

E629

E62A

E62B

E62C

E62D1
E62E

E631

E633

E635

E637

E63A

E63B

E63E

E641

E6441

A9

09

AA

CA

CA

8A

48

AD

C9

DO

A9

8D

68

20

20

4C

68

06

20

2A

00

OF

FF

2A

C7

42

48

02

02

E6

DO

E6

LDA

ORA

TAX

DEX

DEX

TXA

PHA

LDA

CMP

BNE

LDA

STA

PLA

JSR

JSR

JMP

PLA

#$06

#$20

$022A

#$00

$E644

#$FF

$022A

$E6C7

$D042

$E648

Convert error number

for read error and correct

for error

table

(BCD codes)

Repeat number

Retain error number

Number of command begin executed

Compare with •validate1 command

Identical?

YES—Then clear

command number and

return an error number

Put error message in

Initialize - command execute

Activate error messages

Get back error number

[A582/A9F5/CD2E/D54F/D577/DC03/E204/E829/F1DC/F1F7/F24 8]

Prepare error message

E645 20 C7 E6 JSR $E6C7 Produce error message in buffer

[A4AA/D021/E641/F01F]

Activate error message

E648

E64B

E64D

E650

E653

E656

E658

E65A

E65C

E65D

E65F

E661

E663

E665

E667

E668

E66A

E66C

E66E

E670

E672

E675

E677

20 BD Cl

A9 00

8D F9 02

20 2C Cl

20 DA D4

A9 00

85 A3

A2 45

9A

A5 84

29 OF

85 83

C9 OF

F0 31

78

A5 79

DO 1C

A5 7A

DO 10

A6 83

BD 2B

C9 FF

F0 IF

02

JSR $C1BD

LDA #$00

STA $02F9

JSR $C12C

JSR $D4DA

LDA #$00

STA $A3

LDX #$45

TXS

LDA $84

AND #$0F

STA $83

CMP #$0F

BEQ $E698

SEI

LDA $79

BNE $E688

LDA $7A

BNE $E680

LDX $83

LDA $022B,X

CMP #$FF

BEQ $E698

Clr input buffer f/command string

Write back to BAM by hindering

flag setting

LED blinks

Close channel

Reset pointer to position

in command string

Reset

stack pointer

Find out standard

secondary address and

save it down

Compare with channel 15

Is it the command channel?

NO-Disable disk controller

'Listen found1

flag active?

NO-What above the 'Talk found1

flag?

NO-Get secondary address and

test appropriate

channel status

Is the channel active?

ROM-227

Abacus Software 1571 Internals

E679

E67B

E67D

E6801

E683

E684

E685

E686

E6881

E68B

E68C

E68D

E68E2

E691

E693

E695

E6985

29 OF

85 82

4C 8E E6

20 EB DO

EA

EA

EA

DO 06

20 07 Dl

EA

EA

EA

20 25 Dl

C9 04

B0 03

20 27 D2

4C 6B 83

[E6EA/E6F4]

Convert a binary

E69B

E69C

E69E

E69F1

E6A1

E6A3

E6A4

E6A6

E6A7

E6AA1

[E6D1]

AA

A9 00

F8

E0 00

F0 07

18

69 01

CA

4C 9F E6

D8

AND #$0F

STA $82

JMP $E68E

JSR $D0EB

NOP

NOP

NOP

BNE $E68E

JSR $D107

NOP

NOP

NOP

JSR $D125

CMP #$04

BCS $E698

JSR $D227

JMP $836B

r number to

TAX

LDA #$00

SED

CPX #$00

BEQ $E6AA

CLC

ADC #$01

DEX

JMP $E69F

CLD

Convert BCD number into two

E6AB

E6AC

E6AD

E6AE

E6AF

E6B0

E6B3

E6B41

E6B6

E6B8

E6BA

E6BB

AA

4A

4A

4A

4A

20 B4 E6

8A

29 OF

09 30

91 A5

C8

60

TAX

LSR A

LSR A

LSR A

LSR A

JSR $E6B4

TXA

AND #$0F

ORA #$30

STA ($A5),

INY

RTS

YES-Prep channel number and

store it

for a wait loop

Get channel number

Empty space

[Resulting from modification]

[of 1541 ROM]

Jump to $E68E

Get write channel

Empty space

[Due to modification]

[of 1541 ROM]

Determine current filetype

Test for relative file

Is it s relative file?

NO-Free up all channels for

command wait loop

a BCD number

Save binary number

Set accumulator back

[Error — see Chapter 7.1.5]

Compare binary value and 0

Identical?

Get addition ready

Add X times 1 in

BCD mode

Count up until X=0

Turn off decimal mode

ASCII-characters

Save BCD value

Isolate most significant

nibble; first digit

prepares

BCD number

—convert to ASCII value

Get original value again and

isolate 2nd BCD number

Convert to ASCII and write

Y in current buffer

Pointer to next byte in buffer

Return from this subroutine

ROM-228

Abacus Software 1571 Internals

[C150/E0D6]

Prepare '00 OK1

E6BC 20 23 Cl

E6BF A9 00

error message

JSR $C123

LDA #$00

Reset error flags

Error number for'OK1

[D24A/EBD7]

Output error message with track & sector =0

E6C1 A0 00 LDY #$00 Track number and

E6C3 84 80 STY $80 Sector number

E6C5 84 81 STY $81 cleared

[C1A7/E63B/E645/EFCB]

Produce error message in buffer (number in accumulator)

Set pointer to position in buffer

Save buffer address of

error message buffer ($02D5) in

pointers

$A5/$A6

Write error number in buffer

Take up comma (,) after

error number in buffer

Set buffer pointer to next byte

Copy first digit of error number

into output register

Repeat error number

Write error in text form

to buffer, and set in

trailing comma

Set buffer pointer to next byte

Convert track number where error

occurd into ASCII/put into buffer

Set comma(f) into buffer

as separating character

Buffer pointer to next byte

Convert sector number where error

occurd into ASCII;put into buffer

Calculate length

of error message

in buffer and

save

it down

Buffer ptr. ($A5/$A6) to 2nd char

Set 'ready for output1

flag and

return from this subroutine

E6C7

E6C9

E6CB

E6CD

E6CF

E6D1

E6D4

E6D6

E6D8

E6D9

E6DC

E6DF

E6E0

E6E3

E6E5

E6E7

E6E8

E6EA

E6ED

E6EF

E6F1

E6F2

E6F4

E6F7

E6F8

E6F9

E6FA

E6FC

E6FF

E701

E703

E705

A0

A2

86

A2

86

20

A9

91

C8

AD

8D

8A

20

A9

91

C8

A5

20

A9

91

C8

A5

20

88

98

18

69

8D

E6

A9

85

60

00

D5

A5

02

A6

AB

2C

A5

D5

43

06

2C

A5

80

9B

2C

A5

81

9B

D5

49

A5

88

F7

E6

02

02

E7

E6

E6

02

LDY

LDX

STX

LDX

STX

JSR

LDA

STA

INY

LDA

STA

TXA

JSR

LDA

STA

INY

LDA

JSR

LDA

STA

INY

LDA

JSR

DEY

TYA

CLC

ADC

STA

INC

LDA

STA

RTS

#$00

#$D5

$A5

#$02

$A6

$E6AB

#$2C

($A5),Y

$02D5

$0243

$E706

#$2C

($A5),Y

$80

$E69B

#$2C

<$A5),Y

$81

$E69B

#$D5

$0249

$A5

#$88

$F7

ROM-229

Abacus Software 1571 Internals

[E6E0/E75F]

Write

E706

E707

E709

E70A

E70C

E70D

E70F

E711

E713

E715

E716

E7181

E71A

E71C

E71D

E720

E7221

E725

E7271

E729

E72B

E72D

E72F

E731

E733

E7351

E736

E7392

E73A

E73D2

E740

E7421

E745

E748

E74A

E74D1
E74E

E750

E751

E753

error

AA

A5

48

A5

48

A9

85

A9

85

8A

A2

Cl

FO

48

20

90

20

90

A5

C9

90

DO

A9

C5

90

68

4C

68

4C

20

90

20

20

90

20

68

85

68

85

60

86

87

FC

86

E4

87

00

86

21

75

05

75

FB

87

E6

08

OA

OA

86

04

18

4D

67

FB

54

67

F8

54

87

86

message

E7

E7

E7

E7

E7

E7

E7

E7

TAX

LDA

PHA

LDA

PHA

LDA

STA

LDA

STA

TXA

LDX

CMP

BEQ

PHA

JSR

BCC

JSR

BCC

LDA

CMP

BCC

BNE

LDA

CMP

BCC

PLA

JMP

PLA

JMP

JSR

BCC

JSR

JSR

BCC

JSR

PLA

STA

PLA

STA

RTS

in text form

$86

$87

#$FC

$86

#$E4

$87

#$00

($86,X)

$E73D

$E775

$E727

$E775

$E722

$87

#$E6

$E735

$E739

#$0A

$86

$E739

$E718

$E74D

$E7 67

$E73D

$E754

$E767

$E742

$E754

$87

$86

to error buffer

Save error number

The value which will be used in

temporary storage will be

retained, since this

address is needed for the routine

Sett address for

beginning of text

table ($E4FC) into

pointers $86/$87

Get error number again

Initialize buffer pointer

Compare number with text table

Identical?

NO—Save error number

Increment buffer pointer

Jump to $E727

Increment buffer pointer

Jump to $E727

Get high-byte of text pointer;

test for end value

Reached the end of the table?

YES—Same memory page reached?

YES-Compare lo-byte of textpointr

with end value

Reached end of error table?

YES—Repeat error number

Search for error number

Get error numbe again

End

Get byte from error text

Start-flag set?

YES-Write char, to buffer

Get byte from error text

Is end flag set?

YES-Write character into buffer

Get zeropage value again and

get original

value

ready again

Return from this subroutine

ROM-230

Abacus Software 1571 Internals

[E742/E74A]

Write ASCII character into buffer

Non-ASCII characters will be interpreted as error numbers

Compare with space

Is character > space?

NO-Save char, as error number and

write space into

current buffer position

Set buffer pointer to next char &

get error number again

Error message text to buffer

Return from this subroutine

Write ASCII char to buffer and

set buffr pointr to next position

Return from this subroutine

from the text table

Text pointer to next character

Has a transfer occurred ?

YES-Correct high-byte

Get character from text table

Bit7 in carry

Get original char one more time

Bit7 masked

Return from this subroutine

E754

E756

E758

E759

E75B

E75D

E75E

E75F

E7 62

E7 631

E765

E766

C9

BO

AA

A9

91

C8

8A

20

60

91

C8

60

20

0B

20

A5

06 E7

A5

[E73D/E745]

Get a

E7 67

E769

E7 6B

E7 6D2

E7 6F

E770

E772

E774

character

E6

DO

E6

Al

0A

Al

29

60

86

02

87

86

86

7F

CMP

BCS

TAX

LDA

STA

INY

TXA

JSR

RTS

STA

INY

RTS

#$20

$E7 63

#$20

<$A5),Y

$E706

($A5),Y

of error text

INC

BNE

INC

LDA

ASL

LDA

AND

RTS

$86

$E7 6D

$87

($86,X)

A

($86,X)

#$7F

[E71D/E722]

Get current byte from table

E775 20 6D E7 JSR $E76D

E778 E6 86 INC $86

E77A DO 02 BNE $E77E

E77C E6 87 INC $87

E77E1 60 RTS

Get character from table

Text pointer turns to next byte

Has there been a transfer?

YES-Correct high-byte

Return from this subroutine

ROM-231

Abacus Software 1571 Internals

[Not i

E77F

E780

E781

E7A1

E7A2

[Jump

jsed in 1571 DOS]

60

60

EA . . .

... EA

60

RTS

RTS

NOP

NOP

RTS

through routine

Routine for &-Command

E7A3

E7A6

E7A7

E7A8

E7AB

E7AE

E7AF

E7B1

E7B4

E7B6

E7B8

E7BB

E7BE

E7C0

E7C2

E7C51

E7C6

E7C9

E7CC

E7CE

E7D1

E7D3

E7D5

E7D81

E7DA

E7DC

E7DF

E7E1

E7E4

E7E7

E7E9

E7EC

E7EE

E7F0

E7F2

E7F3

E7F5

E7F6

20 FE A5

EA

EA

20 58 F2

AD 78 02

48

A9 01

8D 78 02

A9 FF

85 86

20 4F C4

AD 80 02

DO 05

A9 39

20 C8 Cl

68

8D 78 02

AD 80 02

85 80

AD 85 02

85 81

A9 03

20 77 D4

A9 00

85 87

20 39 E8

85 88

20 4B E8

20 39 E8

85 89

20 4B E8

A5 86

F0 0A

A5 88

48

A5 89

48

A9 00

JSR

NOP

NOP

JSR

LDA

PHA

LDA

STA

LDA

STA

JSR

LDA

BNE

LDA

JSR

PLA

STA

LDA

STA

LDA

STA

LDA

JSR

LDA

STA

JSR

STA

JSR

JSR

STA

JSR

LDA

BEQ

LDA

PHA

LDA

PHA

LDA

C146]

[AUTOSTART

$A5FE

$F258

$0278

#$01

$0278

#$FF

$86

$C44F

$0280

$E7C5

#$39

$C1C8

$0278

$0280

$80

$0285

$81

#$03

$D477

#$00

$87

$E839

$88

$E84B

$E839

$89

$E84B

$86

$E7FA

$88

$89

#$00

Earlier 1541 ROM vrsions had

an Autoboot routine here

Eventual jump in ths routine

is caught and ended here by

the 1571 drive

program]

Patch (CORRECTION) for 1571 DOS

[No operation, modified for

1541 ROM]

No function (RTS)

No. of filenames marked for

Data entry

Limit work to

First file

Entry flag

Cleared

Look in directory/file entry

Flag/search result (track #)

File entry found?

Error message

"39 file not found" displayd

Number of filenames repeated

and reset

Track of first file sector

transferred

First sector number

transferred

Identifier for USR data

opened; first sector read in

Check sum

Clear

Get starting memory address

from buffer

and put into point $88/89;

Compare this

value with

Checksum

Flag/"Starting address read"

set ?

No, note starting address

Low byte and

Note starting address

Low byte

Set flag for "Starting

ROM-232

Abacus Software 1571 Internals

E7F8

E7FA1

E7FD

E7FF

E8021

E805

E807

E809

E80C

E80E

E80F

E811

E813

E815

E8171

E819

E81B

E81E

E820

E822

E824

E827

E829

E82C1

E82E

E830

E831

E833

E834

E836

85

20

85

20

20

A0

91

20

A5

18

69

85

90

E6

C6

DO

20

A5

C5

FO

20

A9

20

A5

DO

68

85

68

85

6C

86

39

8A

4B

39

00

88

4B

88

01

88

02

89

8A

E7

35

85

87

08

3E

50

45

F8

A8

89

88

88

E8

E8

E8

E8

CA

DE

E6

00

STA

JSR

STA

JSR

JSR

LDY

$86

$E839

$8A

$E84B

$E839

#$00

STA($88),Y

JSR

LDA

CLC

ADC

STA

BCC

INC

DEC

BNE

JSR

LDA

CMP

BEQ

JSR

LDA

JSR

LDA

BNE

PLA

STA

PLA

STA

JMP

$E84B

$88

#$01

$88

$E817

$89

$8A

$E802

$CA35

$85

$87

$E82C

$DE3E

#$50

$E645

$F8

$E7D8

$89

$88

($0088)

address read"

No. of data bytes following

Gotten from buffer and noted

Initialize checksum

Get data byte from Buffer

Initialze memory pointer

and store byte

Byte taken in checksum

Memory address (low byte)

The address at which data is

stored should be incremented

by one

Anything being transferred?

Yes, correct high byte

Counter/total # data bytes

All bytes in memory?

Yes, get checksum f/ Buffer

Compare checksum

with value reached

Identical ?

Get track and sector

Error message

"50 record not present"displayed

Flag for get EOI (last char)

Has last char, been used?

Yes, repeat starting address

of program,,

and put into

pointers $88/$89

Jump to prg via this pointer

[E7DC/E7E4/E7FA/E802]

Get byte from buffer

E839

E83C

E83E

E840

E843

E845

E8481

E84A

20

A5

DO

20

A9

20

A5

60

35

F8

08

3E

51

45

85

CA

DE

E6

JSR

LDA

BNE

JSR

LDA

JSR

LDA

RTS

$CA35

$F8

$E848

$DE3E

#$51

$E645

$85

Get byte from sector

Test EOI flag

Was that the last character?

Yes, set track and sector

Error message

"51 Overflow in record"displayed

Get last character

Back to original routine

ROM-233

Abacus Software 1571 Internals

[E7E1/E7E9/E7FF/E809]

Implement checksum

E84B 18 CLC

E84C 65 87 ADC $87

E84E 69 00 ADC #$00

E850 85 87 STA $87

E852 60 RTS

Add new byte

to pre-existng vals ADDIEREN

Calculate overflow

And note new checksum value

Return from subroutine

[9DC1]

Capture flag (ATN) from serial bus set

E853 AD 01 18 LDA $1801 [ERROR; Descr. in 7.1.3]

E856 A9 01 LDA #$01 Flag set for

E858 85 7C STA $7C "ATN Receive"

E85A 60 RTS Return from subroutine

[A7BD/EA56/EA68]

Routine/controlling serial bus

E85B

E85C

E85E

E860

E862

E864

E866

E867

E869

E86B

E86D

E870

E873

E876

E878

E87B1

E87E

E880

E882

E8841
E887

E889

E88B

E88D

E88F

E8911

E893

E895

E897

E899

78

A9

85

85

85

A2

9A

A9

85

85

20

20

AD

09

8D

AD

10

29

DO

20

C9

DO

A9

85

F0

C9

DO

A9

85

F0

00

7C

79

7A

45

80

F8

7D

B7

A5

00

10

00

00

57

04

F7

C9

3F

06

00

79

71

5F

06

00

7A

67

E9

E9

18

18

18

E9

SEI

LDA #$00

STA $7C

STA $7 9

STA $7A

LDX #$45

TXS

LDA #$80

STA $F8

STA $7D

JSR $E9B7

JSR $E9A5

LDA $1800

ORA #$10

STA $1800

LDA $1800

BPL $E8D7

AND #$04

BNE $E87B

JSR $E9C9

CMP #$3F

BNE $E891

LDA #$00

STA $7 9

BEQ $E902

CMP #$5F

BNE $E89B

LDA #$00

STA $7A

BEQ $E902

Disable bus/disk controller

Clear flags with zero:

Set flags for "ATN RECEIVE"

Flag for listen

Flag for talk

Set new

stack pointer

Clear flags w/$80 (BIT7 active)

Flag / EOI (End of Transfer)

Flag for ATN mode

Clock set to high

Data lines set to low

Get bus control register

ATN request cleared

and given on bus

Bus status repeated

Is ATN SET?

No, mask clock line

Is clock set ?

Yes, readin commnd word from

bus and compare with UNLIST

Identical ?

Yes, clear flag for

LISTEN

Jump back to $E902

Compare with UNTALK

Identical ?

Yes, clear flag for

TALK

Jump back to $E902

ROM-234

Abacus Software 1571 Internals

E89B1

E89D

E89F

E8A1

E8A3

E8A5

E8A7

E8A91

E8AB

E8AD

E8AF

E8B1

E8B3

E8B5

E8B7

E8B8

E8BA

E8BC

E8BE

E8BF

E8C1

E8C3

E8C5

E8C7

E8C9

E8CB

E8CD

E8CE

E8D1

E8D22

E8D5

E8D73

E8D9

E8DB

E8DE

E8E0

E8E3

E8E5

E8E7

E8EA

E8ED1

E8EF

E8F1

E8F4

C5

DO

A9

85

A9

85

FO

C5

DO

A9

85

A9

85

FO

AA

29

C9

DO

8A

85

29

85

A5

29

C9

DO

58

20

78

2C

30

A9

85

AD

29

8D

A5

FO

20

4C

A5

FO

20

20

78

OA

01

7A

00

79

29

77

OA

01

79

00

7A

IB

60

60

3F

84

OF

83

84

FO

EO

35

CO

00

AD

00

7D

00

EF

00

79

06

2E

6B

7A

09

9C

AE

DA

18

18

18

EA

83

E9

E9

CMP

BNE

LDA

STA

LDA

STA

BEQ

CMP

BNE

LDA

STA

LDA

STA

BEQ

TAX

AND

CMP

BNE

TXA

STA

AND

STA

LDA

AND

CMP

BNE

CLI

JSR

SEI

BIT

BMI

LDA

STA

LDA

AND

STA

LDA

BEQ

JSR

JMP

LDA

BEQ

JSR

JSR

$78

$E8A9

#$01

$7A

#$00

$79

$E8D2

$77

$E8B7

#$01

$79

#$00

$7A

$E8D2

#$60

#$60

$E8FD

$84

#$0F

$83

$84

#$F0

#$E0

$E902

$DAC0

$1800

$E884

#$00

$7D

$1800

#$EF

$1800

$79

$E8ED

$EA2E

$836B

$7A

$E8FA

$E99C

$E9AE

Talk address label

Should talk addr be recevng?

Yes, set flag for

TALK

Flag for LISTEN

cleared

Jump back to $E8D2

LISTEN address label

Listen addr be receiving?

Yes, set flag for

LISTEN

Flag for TALK

cleared

Jump back to $E8D2

Note command

Isolate command bits

for testing

Identical ?

Yes, repeat and note

command word

Set up proper channel number

and save it

Repeat command word

Combine address bits

Compare with CLOSE command

Identical ?

Yes, enable disk controller

Close call

Disable disk/bus controller

Check ATN bit

ATN active?; if so, wait

No,

Clear flag for command mode

Bus control register

Clear ATN

and send over bus

Flag for LISTEN

Flag set?

Data from bus put to buffer

Wait for next command word

Flag for TALK

active?

Data set high

Clock set low

ROM-235

Abacus Software 1571 Internals

E8F7

E8FA1

E8FD1

E8FF

E9024

E905

E907

[E8F7]

20

4C

A9

8D

2C

10

30

Data sent

E909

E90A

E90D

E90F1
E911

E913

E9151

E9161

E919

E91C

E91E

E91F

E922

E923

E9251

E928

E92B

E92D

E92F

E931

E933

E935

E9372

E93A

E93D

E93F

E9411

E944

E947

E949

E94B2

E94E

E951

E954

E956

E958

E95A

78

20

BO

A6

B5

30

60

20

20

29

08

20

28

F0

20

20

29

DO

A6

B5

29

DO

20

20

29

DO

20

20

29

FO

20

20

20

29

DO

A9

85

09

4E

10

00

00

DO

F9

E9

EA

18

18

after

EB

06

82

F2

01

59

CO

01

B7

12

59

CO

01

F6

82

F2

08

14

59

CO

01

F6

59

CO

01

F6

AE

59

CO

01

F3

08

98

DO

EA

E9

E9

EA

E9

EA

E9

EA

E9

E9

EA

E9

JSR

JMP

LDA

STA

BIT

BPL

BMI

$E909

$EA4E

#$10

$1800

$1800

$E8D7

$E902

talk call

SEI

JSR

BCS

LDX

LDA

BMI

RTS

JSR

JSR

AND

PHP

JSR

PLP

BEQ

JSR

JSR

AND

BNE

LDX

LDA

AND

BNE

JSR

JSR

AND

BNE

JSR

JSR

AND

BEQ

JSR

JSR

JSR

AND

BNE

LDA

STA

$D0EB

$E915

$82

$F2rX

$E916

$EA59

$E9C0

#$01

$E9B7

$E937

$EA59

$E9C0

#$01

$E925

$82

$F2,X

#$08

$E94B

$EA59

$E9C0

#$01

$E937

$EA59

$E9C0

#$01

$E941

$E9AE

$EA59

$E9C0

#$01

$E94B

#$08

$98

Buffer data sent over bus

Wait for next command word

No TALK or LIST commands

Data lines reset

Check ATN

Is ATN reset?

No, wait until command end

Disable disk controller

Look for free channel and open

Is there a free channel?

Yes, get current channel number

and corresponding status

Is channel set to read?

No, return from subroutine

ATN-Line test

Read value from bus register

and get data entry

Note state of data line

Clock output set to low

Get data line status again

Was data set ?

Yes, test for ATN command mode

Get value from bus register

Isolate data line

Wait until data is set to low

Number of internal channels

Get appropriate status

and test flag for EOI

Last character been sent?

Yes, test for ATN mode

Get value from bus register

and test data line

Wait until data is low

Test, for ATN command mode

Get value from bus register

and isolate data line

Wait until data input is high

Clock output set high

Test for ATN mode

Get value from bus register

and analyze data

Wait until data is set low

Set number of bits per byte

in counter

ROM-236

Abacus Software 1571 Internals

E95CX

E95F

E961

E963

E965

E968

E969

E96C

E96E

E971

E9731

E9761

E979

E97B

E97D

E9801

E983

E985

E9871

E98A

E98D

E98F

E991

E992

E995

E996

E9991

20

29

DO

A6

BD

6A

9D

BO

20

DO

20

20

A5

DO

20

20

C6

DO

20

20

29

FO

58

20

78

4C

4C

CO

01

36

82

3E

3E

05

A5

03

9C

B7

23

03

F3

FB

98

D5

59

CO

01

F6

AA

OF

4E

E9

02

02

E9

E9

E9

FE

FE

EA

E9

D3

E9

EA

JSR

AND

BNE

LDX

LDA

ROR

STA

BCS

JSR

BNE

SR

JSR

LDA

BNE

JSR

JSR

DEC

BNE

JSR

JSR

AND

BEQ

CLI

JSR

SEI

JMP

JMP

$E9C0

#$01

$E999

$82

$023E,X

A

$023E,X

$E973

$E9A5

$E976

$E99C

$E9B7

$23

$E980

$FEF3

$FEFB

$98

$E95C

$EA59

$E9C0

#$01

$E987

$D3AA

$E90F

$EA4E

Get value from bus register

and test data line

Is data low?

Yes, current channel number

Get corresponding data byte

and save first bit in carry

Note remainder

Is bit =1 ?

No, data line is set high

Jump back to $E97 6

Data line set to low

Clock line set to low

Test flag for bus mode

Is bus in 1540 mode ?

No, 42-Cycle time delay

Data set low, Clock set high

Number of bits to be sent

Is byte already sent?

Yes, test for ATN mode

Get value from bus register

and check data line

Is data set?

Yes—Enable disk controller

Get next data byte from Buffer

Disable disk controller again

and sent over bus

Wait for next command

[817B/82 91/82D8/8300/E8F1/E973/E9D7/E9FA/FEFE]

Data line on low set

E99C AD 00 18 LDA $1800 Read bus control register

E99F 29 FD AND #$FD Clear bit for

E9A1 8D 00 18 STA $1800 data line

E9A4 60 RTS Return from subroutine

[80E6/828C/82F8/833C/E870/E96E/E9F2/EA28]

Data line on high set

E9A5 AD 00 18 LDA $1800

E9A8 09 02 ORA #$02

E9AA 8D 00 18 STA $1800

E9AD 60 RTS

Get bus control register

and set bit for

data line

Return from subroutine

ROM-237

Abacus Software 1571 Internals

Clock line set high

[817E/822C/E8F4/E94B/FEFB]

E9AE AD 00 18 LDA $1800

E9B1 09 08 ORA #$08

E9B3 8D 00 18 STA $1800

E9B6 60 RTS

Get bus control register

and set bit for clock

Line

Return from subroutine

Clock line set low

[80E3/8200/829E/8438/E86D/E91F/E97 6]

E9B7 AD 00 18

E9BA 29 F7

E9BC 8D 00 18

E9BF 60

LDA $1800

AND #$F7

STA $1800

RTS

Get bus control register

and clear bit for

clock line

Return from subroutine

Values read from bus

[819C/81FA/8209/821B/8225/8232/827A/82B5/82D1/82EF/8306/8331/E919/E928]

[E93A/E944/E951/E95C/E98A/E9C6/E9D0/E9E9/EA00/EA1D]

E9C0 AD 00 18 LDA $1800 Get control register

E9C3 CD 00 18 CMP $1800 Get it again and compare with

E9C6 DO F8 BNE $E9C0 last value; values constant?

E9C8 60 RTS Yes, return from subroutine

Data received after

[E884/EA44]

E9C9

E9CB

E9CD1
E9D0

E9D3

E9D5

E9D7

E9DA

E9DC

E9DF1

E9E2

E9E5

E9E7

E9E9

E9EC

E9EE

E9F0

E9F21

E9F5

E9F71

E9F8

E9FA

E9FD1

A9

85

20

20

29

DO

20

A9

4C

20

AD

29

DO

20

29

F0

DO

20

A2

CA

DO

20

20

08

98

59

CO

04

F6

9C

01

20

59

0D

40

09

CO

04

EF

19

A5

0A

FD

9C

59

EA

E9

E9

FF

EA

18

E9

E9

E9

EA

LDA

STA

JSR

JSR

AND

BNE

JSR

LDA

JMP

JSR

LDA

AND

BNE

JSR

AND

BEQ

BNE

JSR

LDX

DEX

BNE

JSR

JSR

listen call

#$08

$98

$EA59

$E9C0

#$04

$E9CD

$E99C

#$01

$FF20

$EA59

$180D

#$40

$E9F2

$E9C0

#$04

$E9DF

$EA0B

$E9A5

#$0A

$E9F7

$E99C

$EA59

Number of bits per data byte

Initialize counter

ATN test

Get bus control register

and test clock line

Clock active?

Yes, activate data line

[ERROR-see 7.1.4]

Wait til data is low; timer set

ATN test

Get interrupt flags

and test flag for timerl

Is timer running?

No, get value from bus register

Isolate clock input

Is clock set?

Yes, jump back to $EA0B

Data line set high

Delay counter set

Delay of 51 Cycles

Is delay running?

Yes, data set low

Test bus for ATN command

ROM-238

Abacus Software 1571 Internals

EAOO

EA03

EA05

EA07

EA09

EAOB3

EAOE

EA10

EA11

EA13

EA15

EA16

EA17

EA18

EA1A1
EA1D

EA20

EA22

EA24

EA2 6

EA28

EA2B

EA2D

20 CO E9

29 04

FO F6

A9 00

85 F8

AD 00 18

49 01

4A

29 02

DO F6

EA

EA

EA

66 85

20 59 EA

20 CO E9

29 04

FO F6

C6 98

DO E3

20 A5

A5 85

60

E9

JSR $E9C0

AND #$04

BEQ $E9FD

LDA #$00

STA $F8

LDA $1800

EOR #$01

LSR A

AND #$02

BNE $EA0B

NOP

NOP

NOP

ROR $85

JSR $EA59

JSR $E9C0

AND #$04

BEQ $EA1A

DEC $98

BNE $EA0B

JSR $E9A5

LDA $85

RTS

Get bus control register

Test clock line

Clock set?

Yes, end of file

EOI flag set

Get control register again

Correct data bits of original

value, and put in carry

Test clock line (set by LSR)

Clock set, file in order?

Yes, empty register

(Can't be used for your

own data)

Move data bits into temp, buffer

Test ATN

Read bus control register

Test clock line

Is clock set?

Yes,counter set from # data bits

8 bits read yet?

Yes, set data line to low

Data byte taken

Return from subroutine

[EA4B/E8E7]

Data taken from

EA2E 78

EA2F 20 07 Dl

EA32 B0 05

EA34 B5 F2

EA36 6A

EA37 B0 0B

EA391 A5 84
EA3B 29 F0

EA3D C9 F0

EA3F F0 03

EA41 4C 4E EA

EA442 20 C9 E9
EA47 58

EA48 20 B7 CF

EA4B 4C 2E EA

EA4E3 A9 00

EA50 8D 00 18

EA53 4C 6B 83

bus and put into current buffer

SEI Disable disk controller

JSR $D107 Write channel laid out

BCS $EA39 Found a free channel?

LDA $F2,X Yes, read proper channel status

ROR A Is the channel

BCS $EA44 active?

LDA $84 Yes, get secondary address

AND #$F0 and isolate command bits

CMP #$F0 Compare with OPEN command

BEQ $EA44 Identical?

JMP $EA4E No, wait for next command

JSR $E9C9 Get byte from bus

CLI Enable disk controller again

JSR $CFB7 Data byte transferred frm buffer

JMP $EA2E Get next byte

LDA #$00 Bus control register

STA $1800 Reset

JMP $836B Wait for next command

Unused prg. area from 1541 DOS

ROM-239

Abacus Software 1571 Internals

Test if command has been transferred

[8199/81F7/8206/8218/8222/822F/82B2/82CE/82E5/8303/832E/8425/85F6]

[869D/8E14/E916/E925/E937/E941/E94E/E987/E9CD/E9DF/E9FD/EA1A]

EA59

EA5B

EA5D

EA60

EA621

EA631

EA66

EA68

EA6B1

A5

FO

AD

10

60

AD

10

4C

4C

7D

06

00

09

00

FA

B3

AC

18

18

A7

A9

LDA

BEQ

LDA

BPL

RTS

LDA

BPL

JMP

JMP

$7D

$EA63

$1800

$EA6B

$1800

$EA62

$A7B3

$A9AC

Flag

ATN

Yes,

for "ATN active"

set ?

current status of ATN line

Is ATN also set?

Yes,

Get

return from subroutine

current ATN status

Is ATN still set?

Yes,

ATN

get command from bus

reset

[EAB5/EABE/EAC4]

Hardware error message (Infinite loop) —LED blinking

EA6E A2 00 LDX #$00

EA70 2C A6 6F .BYTE $2C Jmp to next 2 bytes (bit command)

[92B7/EB1F]

RAM or ROM error

EA71

EA73

EA7 41

EA751

EA7 7

EA7A

EA7D

EA7E1

EA7F1

EA81

EA83

EA84

EA86

EA89

EA8B

EA8E1

EA8F1
EA901

EA92

EA94

EA95

EA97

EA98

EA9A

EA9C

EA9E

(TEST and CHECKSUM)

A6 6F LDX $6F

9A TXS

BA TSX

A9 08 LDA #$08

0D 00 1C ORA $lC00

4C EA FE JMP $FEEA

98 TYA

18 CLC

69 01 ADC #$01

DO FC BNE $EA7F

88 DEY

DO F8 BNE $EA7E

AD 00 1C LDA $lC00

29 F7 AND #$F7

8D 00 1C STA $lC00

98 TYA

18 CLC

69 01 ADC #$01

DO FC BNE $EA90

88 DEY

DO F8 BNE $EA8F

CA DEX

10 DB BPL $EA75

E0 FC CPX #$FC

DO F0 BNE $EA8E

F0 D4 BEQ $EA74

Get blink counter

and note it

Get blink value again

LED bit (bit 3) set

in disk controller register and

LED activated; more at $EA7D

(0) counter routine

initialized

Delay counter

for approximately 0.3 / 0.1 sec

after 1 or 2 Mhz time

Is time running?

Yes, get control register

and combine bit for

"LED on"

(0) counter routine

intialized

Delay counter

For approximately 0.3 / 0.1 sec

after 1 OR 2 Mhz time

Is timer on?

Blink counter

still blinking?

No, wait approximately 1/0.5 sec

Time running?

Yes, blink again before starting

ROM-240

Abacus Software 1571 Internals

[89EC/Jump over system vector/ FFFC]

1571 Reset jump

RAM and ROM

EAAO

EAA1

EAA2

EAA4

EAA7

EAA8

EAAA

EAAC1

EAAD

EAAF

EABO

EAB21

EAB3

EAB5

EAB71

EAB9

EABA

EABC

EABE

EACO

EAC2

EAC4

EAC6

EAC7

EAC9

EACB

EACD

EACF

EAD1

EAD3

EAD5

EAD61

EAD81

EADA

EADB

EADD

EADE

EAEO

EAE2

EAE4

EAE6

EAE7

EAE8

78

D8

A2

4C

E8

AO

A2

8A

95

E8

DO

8A

D5

DO

F6

C8

DO

D5

DO

94

B5

DO

E8

DO

E6

A2

86

A9

85

AO

18

E6

71

C8

DO

CA

DO

69

85

DO

EA

EA

EA

66

10

00

00

00

FA

00

B7

00

FB

00

AE

00

00

A8

E9

6F

80

76

00

75

02

76

75

FB

F6

FF

76

39

test

SEI

CLD

LDX

FF JMP

INX

LDY

LDX

TXA

STA

INX

BNE

TXA

CMP

BNE

INC

INY

BNE

CMP

BNE

STY

LDA

BNE

INX

BNE

INC

LDX

STX

LDA

STA

LDY

CLC

INC

ADC

INY

BNE

DEX

BNE

ADC

STA

BNE

NOP

NOP

NOP

#$66

$FF10

#$00

#$00

$00,X

$EAAC

$00,X

$EA6E

$00,X

$EAB7

$00,X

$EA6E

$00,X

$00,X

$EA6E

$EAB2

$6F

#$80

$76

#$00

$75

#$02

$76

($75)

$EAD8

$EAD6

#$FF

$76

$EB1F

Disable bus/disk controller

Arithmetic mode set for binary

Value for DDRA

VIA'S initialized; jump to $EAA7

[ERROR-see 7.1.4]

Initialize offset counter

Set pointer to zeropage area

Write number of memory cells

Into memory cells

Pick next memory cell

$100 address reached?

Yes, compare value of memory

location with this value

Both identical?

Yes, increase memory location

Offset mem address contents—set

All values tested set?

Yes, comp with memory

Identical?

Yes, clear memory locatn with 0

Get contents again

Was clear in order?

Yes, pick next memory location

Reached $100 yet?

Yes, incremt error blink counter

Starting address of

Operating system ROM

Set to $8000 in pointers $75/76

Set

Ignore checksum bytes

ROM pointer set

To next memory page

ROM value for CHECKSUM

Pointer turned to next byte

Whole memory page considered?

Yes, # of ROM memory pages

Entire ROM checked?

Yes, calculate checksum value

and note result

Is error on hand?

No, empty space

resulting from modification

of 1541

ROM-241

Abacus Software 1571 Internals

EAE9

EAEA

EAEC

EAEE

EAFO

EAF22

EAF3

EAF4

EAF6

EAF8

EAF9

EAFB

EAFD

EAFE

EBOO

EB021

EB041

EB05

EB06

EB07

EB09

EBOB

EBOD

EBOF

EB11

EB13

EB15

EB17

EB18

EB1A

EB1B

EB1D

EB1F3

EA

A9

85

E6

A2

98

18

65

91

C8

DO

E6

CA

DO

A2

C6

88

98

18

65

Dl

DO

49

91

51

91

DO

98

DO

CA

DO

FO

4C

01

76

6F

07

76

75

F7

76

F2

07

76

76

75

12

FF

75

75

75

08

EA

E5

03

71

NOP

LDA

STA

INC

LDX

TYA

CLC

ADC

STA

INY

BNE

INC

DEX

BNE

LDX

DEC

DEY

TYA

CLC

ADC

CMP

BNE

EOR

STA

EOR

STA

BNE

TYA

BNE

DEX

BNE

BEQ

EA JMP

#$01

$76

$6F

#$07

$76

($75),

$EAF2

$76

$EAF2

#$07

$76

$76

($75),

$EB1F

#$FF

($75),

($75),

($75),

$EB1F

$EB04

$EB02

$EB22

$EA71

Y

Y

Y

Y

Y

ROM

Pick

memory page 1

Page # set in blink counter

Number of RAM pages

Clear value(Memory #)

Compute # of

memory pages and

write to memory

Set pointer to next byte

Entire memory page cleared?

Yes, set pointer to next page

Number of RAM pages

Whole RAM cleared already?

Yes, # of RAM pages

RAM pointer to preceding page

Number of pages yet to be tested

Get position #

and

calculate page #—

compare with clear value

Is memory location right?

Yes, change values of all bits

And test for other valences

Test result

and clear memory cell (0)

Was test successful?

Yes, set processr figs fr Y-value

End of memory page?

Yes, pick next page

Entire RAM tested yet?

Yes, jump to $EB22

Hardware error display

[EB1D/EB25:A7C4]

Initialize zeropage

EB22 4C CO A7 JMP $A7C0

EB25 AD 00 1C LDA $lC00

EB28 29 F7 AND #$F7

EB2A 8D 00 1C STA $lC00

EB2D A9 01 LDA #$03

EB2F 8D 0C 18 STA $180C

EB32 A9 82 LDA #$82

EB34 8D 0D 18 STA $180D

EB37 8D 0E 18 STA $180E

EB3A AD 00 18 LDA $1800

EB3D 29 60 AND #$60

Stack set to $0100-$0145

Get disk drive control register

and switch off disk

Drive LED

CA1 (ATN) triggered positive &

CA2 (WP) to negative

"Interupt from CA1 active"

Flag cleared

and activated

Hardwr-dependent determination

of device address

ROM-242

Abacus Software 1571 Internals

EB3F

EB40

EB41

EB42

EB43

EB45

EB47

EB4 9

EB4B

EB4D

EB4F1

EB51

EB53

EB54

EB57

EB59

EB5A

EB5B

EB5D

EB5F

EB61

EB63

EB64

EB66

EB68

EB69

EB6B

EB6D

EB6E

EB70

EB72

EB74

EB7 61
EB7 9

EB7A

EB7C

EB7E1

EB80

EB82

EB84

EB85

EB87

EB89

EB8B

EB8D

EB8F

EB91

OA

2A

2A

2A

09

85

49

85

A2

A0

A9

95

E8

B9

95

E8

C8

CO

DO

A9

95

E8

A9

95

E8

A9

95

E8

A9

95

A9

A2

9D

CA

10

A2

95

95

95

CA

10

A9

85

A9

85

A9

85

48

78

60

77

00

00

00

99

EO

99

05

FO

00

99

02

99

D5

99

02

99

FF

12

2B

FA

05

A7

AE

CD

F7

05

AB

06

AC

FF

AD

ASL

ROL

ROL

ROL

ORA

STA

EOR

STA

LDX

LDY

LDA

STA

INX

FE LDA

STA

INX

INY

CPY

BNE

LDA

STA

INX

LDA

STA

INX

LDA

STA

INX

LDA

STA

LDA

LDX

02 STA

DEX

BPL

LDX

STA

STA

STA

DEX

BPL

LDA

STA

LDA

STA

LDA

STA

A

A

A

A

#$48

$78

#$60

$77

#$00

#$00

#$00

$99,X

$FEE0,Y

$99,X

#$05

$EB4F

#$00

$99,X

#$02

$99,X

#$D5

$99,X

#$02

$99,X

#$FF

#$12

$022B,X

$EB7 6

#$05

$A7,X

$AE,X

$CD,X

$EB7E

#$05

$AB

#$06

$AC

#$FF

$AD

gotten, and the two signifi

cant bits 5 and 6

shifted to positions

0 and 1

Device # for talker operation

generated and stored

Device # for listener operation

created and set

pointer to buffer pointer

High byte table pointer

Low byte value

Clear buffer pointer low byte

Set high byte pointer

Get buffer address (high byte)

and put in pointer

Pointer to next buffer pointer

Pointer to next high byte

Buffer #

All buffer addresses laid out?

Yes, low byte of input buffer

pointer

High byte pointer

Turn buffer pointer to

address $200

Pointer to next byte

Low byte of error buffer

set

Turn pointer to next byte

Error message buffer turned to

address $02D5

"Channel free" value

No. of secondary addresses (19)

Free channel

Next secondary address

Entire table used up?

Yes, # of internal channels (6)

1. Buffer freed

2. Buffer freed

3. Buffer freed

Set next channel

All channels considered?

Yes, assign input buffer

to channel 4

Assign ERROR buffer

to channel 5

Value/"No buffer allotted"

in channel 6 (1st buffer

ROM-243

Abacus Software 1571 Internals

EB93

EB95

EB97

EB9A

EB9C

EB9F

EBA1

EBA4

EBA6

EBA8

EBAA

EBAC

EBAE

EBB1

EBB3

EBB 6

EBB8

EBBA

EBBC

EBBF

EBC2

EBC5

EBC7

EBC9

EBCB

EBCD

EBCF

EBD1

EBD3

EBD5

EBD7

EBDA

EBDC

EBDF

EBE1

EBE4

85

A9

8D

A9

8D

A9

8D

A9

85

A9

85

A9

8D

A9

8D

A9

85

85

20

20

20

A9

85

A9

85

A9

85

A9

85

A9

20

A9

8D

A9

8D

20

B4

05

3B

84

3A

OF

56

01

F6

88

F7

E0

4F

FF

50

01

1C

ID

63

FA

82

22

65

EB

66

06

69

05

6A

73

Cl

00

00

1A

02

86

02

02

02

02

02

CB

CE

FF

E6

18

18

A7

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

STA

JSR

JSR

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

JSR

LDA

STA

LDA

STA

JSR

$B4

#$05

$023B

#$84

$023A

#$0F

$0256

#$01

$F6

#$88

$F7

#$E0

$024F

#$FF

$0250

#$01

$1C

$1D

$CB63

$CEFA

$FF82

#$22

$65

#$EB

$66

#$06

$69

#$05

$6A

#$73

$E6C1

#$00

$1800

#$1A

$1802

$A786

and 2nd buffer)

Secondary address 16 leads

to channel 5

Secondary address 15 to channel 4

(Status:WRITE channel only)

Flags for channel layout arranged

Channels 0-3 freed up

Flag for "Write channel"

Set for channel 4

Flag/"Read channel/no EOI"

Set for channel 5

Flags set to buffer layout

(Set bit=Set buffer)

Buffers 0-4

freed up

Write-protect notch

status flag

cleared

Jmp table pointer/Switch commands

Initialize buffer channel table

Activate disk controller routine

Pointer to NMI or SWITCH

command between 1541 and 1540

in $65/$66 set

in $EB22

Sector pawning (6)

determined

Number of reader searches by

error set to 5

DOS power-up message

"73 CBM DOS V3.0 1571"displayed

Bus lines

reset

Input/output layout %00011010

determined

CIA 6526 initialized

[836E/E8EA/EA53]

Wait loop for command recognition

EBE7 58 CLI

EBE8 AD 00 18 LDA $1800

EBEB 29 E5 AND #$E5

EBED 8D 00 18 STA $1800

EBF0 AD 55 02 LDA $0255

EBF3 F0 0A BEQ $EBFF

EBF5 A9 00 LDA #$00

EBF7 8D 55 02 STA $0255

Enable bus/disk controller

Get bus control register

and clear all outputs

and set bus to output status

Flag/"Command received"

set?

Yes, command flag

cleared

ROM-244

Abacus Software 1571 Internals

EBFA EA NOP

EBFB EA NOP

EBFC 4C 1C A6 JMP $A61C

NOP from modification

of 1541 ROM

Command from COMP. executed

[A628/EBF3/EC9B]

Wait for command

EBFF

ECOO

EC02

EC04

EC071

EC08

ECOA

ECOC

ECOE

EC10

EC121

EC14

EC17

EC19

EC1B

EC1D

EC1F

EC22

EC23

EC2 6

EC28

EC2 9

EC2B1

EC2D

EC2F

EC311
EC34

EC36

EC38

EC39

EC3B1

EC3C

EC3E

EC3F

EC42

EC44

EC45

EC47

EC4 9

EC4B

EC4D

58

A5

FO

4C

58

A9

85

A9

85

85

A6

BD

C9

FO

29

85

20

AA

BD

29

AA

F6

C6

10

A0

B9

10

29

AA

F6

88

10

78

AD

29

48

A5

85

A9

85

A5

7C

03

94

0E

72

00

6F

70

72

2B

FF

10

3F

82

93

5B

01

6F

72

E3

04

00

05

01

6F

F3

00

F7

7F

86

00

7F

6F

A6

02

DF

02

00

1C

CLI

LDA

BEQ

JMP

CLI

LDA

STA

LDA

STA

STA

LDX

LDA

CMP

BEQ

AND

STA

JSR

TAX

LDA

AND

TAX

INC

DEC

BPL

LDY

LDA

BPL

AND

TAX

INC

DEY

BPL

SEI

LDA

AND

PHA

LDA

STA

LDA

STA

LDA

$7C

$EC07

$A694

#$0E

$72

#$00

$6F

$70

$72

$022B,X

#$FF

$EC2B

#$3F

$82

$DF93

$025B,X

#$01

$6F,X

$72

$EC12

#$04

$0000,Y

$EC3B

#$01

$6F,X

$EC31

$1COO

#$F7

$7F

$86

#$00

$7F

$6F

Enable bus/disk controller

flag for ATN receive

set?

Yes-

Enable disk/bus controller again

Largest secondary address for

files available

Outstanding job counter

cleared for disk drive 0 and

disk drive 1

Get secondary address

and check corresponding channel

status "free" value

Is channel free?

No, get and note # of in

ternal channels allotted

Get and note

buffer #

Job code of buffer determined

and last-used disk drive

noted

Increment # of jobs

Next secondary address

All channels checked?

Yes, buffer #

Get buffer job code

Is job in process?

Yes, get and note disk drive

number

Increment # of jobs

Choose next buffer

All jobs tested?

YES-Disable bus/disk controller

Get disk control register

LED reset and mask generated

For "LED OUT" noted

Current drive

Note current disk

drive 0

chosen

Number of jobs for drive 0

ROM-245

Abacus Software 1571 Internals

EC4F

EC51

EC53

EC55

EC581

EC59

EC5B

EC5C1

EC5E

EC60

EC 62

EC64

EC66

EC691

EC6A

EC6C

EC6D1

EC6F

EC71

FO OB

A5 1C

FO 03

20 13

68

09 08

48

E6 7F

A5 70

FO OB

A5 ID

FO 03

20 13

68

09 00

48

A5 86

85 7F

68

BEQ

LDA

BEQ

D3 JSR

PLA

ORA

PHA

INC

LDA

BEQ

LDA

BEQ

D3 JSR

PLA

ORA

PHA

LDA

STA

PLA

LED error blinking

EC72

EC75

EC77

EC7A

EC7C

EC7E

EC811

EC84

EC86

EC88

EC8B1

EC8E

EC90

EC 93

EC 95

EC983
EC9B

AE 6C

FO 21

AD 00

EO 80

DO 03

4C 8B

AE 05

30 12

A2 AO

8E 05

CE 6C

DO 08

4D 6D

A2 10

8E 6C

8D 00

4C FF

02 LDX

BEQ

1C LDA

CPX

BNE

EC JMP

18 LDX

BMI

LDX

18 STX

02 DEC

BNE

02 EOR

LDX

02 STX

1C STA

EB JMP

$EC5C

$1C

$EC58

$D313

#$08

$7F

$70

$EC6D

$1D

$EC69

$D313

#$00

$86

$7F

control

$026C

$EC98

$1COO

#$80

$EC81

$EC8B

$1805

$EC98

#$A0

$1805

$026C

$EC98

$026D

#$10

$026C

$1COO

$EBFF

Are any jobs accomplished?

Yes, flag for write-protect light

Should diskette be initialized?

Diskette initialization

Get mask for drive control again,

Switch LED and save

again

Choose drive 1

Drive 1 job counter

Are drive 1 jobs done?

Yes,write-protect flag for drivel

Diskette change found?

Close all drive channels

Bring back drive control mask

and set LED for drive 1

—note again

Call back and take up

Current disk drive

Get disk control mask

Test error flag

Set?

Yes, get control register

Test blink phase counter

timer reset?

No, go on

High byte of timer 1

Is counter running?

Yes, high byte

reset

Blink counter decremented

Is counter running?

LED switched

Blink counter 0.4/ 0.2 sec.

Delay set

LED controlled

Blink some more

ROM-246

Abacus Software 1571 Internals

[DAA7]

Directory

EC9E

ECAO

ECA2

ECA4

ECA7

ECA9

ECAC

ECAE

ECBO

ECB3

ECB6

ECB7

ECB9

ECBC

ECBE

ECC1

ECC3

ECC6

ECC8

ECCB

ECCE

ECD1

ECD4

ECD6

ECD9

ECDC

ECDF

ECEO

ECE1

ECE3

ECE5

ECE7

ECEA

ECEC

ECEF

ECF2

ECF5

ECF7

ECFA

ECFD

EDOO

ED03

EDO 6

ED08

EDOB

A9

85

A9

20

A9

20

A6

A9

9D

20

AA

A5

9D

A9

20

A9

20

A9

20

20

AD

20

A9

20

20

20

OA

AA

D6

D6

A9

20

A9

20

20

20

90

AD

20

AD

20

20

A9

20

DO

for

00

83

01

E2

00

C8

82

00

44

93

7F

5B

01

Fl

04

Fl

01

Fl

Fl

72

Fl

00

Fl

59

93

99

99

00

Fl

01

Fl

Fl

CE

2C

72

Fl

73

Fl

59

00

Fl

DD

Dl

D4

02

DF

02

CF

CF

CF

CF

02

CF

CF

ED

DF

CF

CF

CF

C6

02

CF

02

CF

ED

CF

•Load "$"'se

LDA

STA

LDA

JSR

LDA

JSR

LDX

LDA

STA

JSR

TAX

LDA

STA

LDA

JSR

LDA

JSR

LDA

JSR

JSR

LDA

JSR

LDA

JSR

JSR

JSR

ASL

TAX

DEC

DEC

LDA

JSR

LDA

JSR

JSR

JSR

BCC

LDA

JSR

LDA

JSR

JSR

LDA

JSR

BNE

#$00

$83

#$01

$D1E2

#$00

$D4C8

$82

#$00

$0244,X

$DF93

$7F

$025B,X

#$01

$CFF1

#$04

$CFF1

#$01

$CFF1

$CFF1

$0272

$CFF1

#$00

$CFF1

$ED59

$DF93

A

$99,X

$99,X

#$00

$CFF1

#$01

$CFF1

$CFF1

$C6CE

$ED23

$0272

$CFF1

$0273

$CFF1

$ED59

#$00

$CFF1

$ECEA

up directory to load as BASIC program

Set zero as current

2ndary address(load channel)

Look for read channel and

set pointer position in appro

priate buffer

Reset buffer to null

Number of channels found

Clear pointer to end of buffer

entrance

Get and note number of

buffers chosen

Get current drive # and

arrange drive table buffer

starting address of "Imagi

ary" BASIC program ($0401)

written to

current buffer

Two fillbytes as placeholder

for the bASIC line pointer to

write to the buffer

Get drive number, and put in

buffer as low byte of the line

number; the high byte

is set to null

Transfer disk name to buffer

Get the number of the current

buffer, double, and

decremt pointer from current

buffer position by two

characters

Store end-of-BASIC line

in buffer

Set up two bytes as placeholders

for chaining of

BASIC lines

Read entry from directory

All entries handled?

No, # of blocks laid out (low)

as low byte of BASIC line # &

high byte of # blocks as hi byte

of BASIC line # in buffer

Copy dir. entry in buffer

Set"End-Of-BASIC line"1

in buffer

Buffer full?

ROM-247

Abacus Software 1571 Internals

EDOD1

ED10

ED11

ED12

ED14

ED16

ED18

ED1A

ED1D

ED20

ED22

20

OA

AA

A9

95

A9

A4

8D

99

A5

60

93

00

99

88

82

54

F2

85

DF

02

00

JSR

ASL

TAX

LDA

STA

LDA

LDY

STA

STA

LDA

RTS

$DF93

A

#$00

$99,X

#$88

$82

$0254

$00F2,Y

$85

No, get # of current buffers

Double number

and reset pointer to current

position of corresponding

buffer

Flag/"Directory not in buffer"

Get channel number

Set flag

Switch channel status to read

Get current data byte

Return from subroutine

[ECF5]

Directory output ended

ED23 AD 72 02 LDA $0272

ED2 6 20 Fl CF JSR $CFF1

ED29 AD 73 02 LDA $0273

ED2C 20 Fl CF JSR $CFF1

ED2F 20 59 ED JSR $ED59

ED32 20 93 DF JSR $DF93

ED35 0A ASL A

ED3 6 AA TAX

ED37 D6 99 DEC $99,X

ED39 D6 99 DEC $99,X

ED3B A9 00 LDA #$00

ED3D 20 Fl CF JSR $CFF1

ED4 0 20 Fl CF JSR $CFF1

ED43 20 Fl CF JSR $CFF1

ED4 6 20 93 DF JSR $DF93

ED4 9 0A ASL A

ED4A A8 TAY

ED4B B9 99 00 LDA $0099,Y

ED4E A6 82 LDX $82

ED50 9D 44 02 STA $0244,X

ED53 DE 44 02 DEC $0244,X

ED56 4C 0D ED JMP $ED0D

Take # of free blocks in

$0272/0273 as BASIC line #

and write to

buffer

Write"BLOCKS FREE"/ buffer

Get # of current buffer

Double number

Pointer for current character

position in buffer set in two

bytes

End-of-line marker and two

blank string bytes(End-of-

program markers), put into

current buffer

Get current buffer number

Double number

Get number of bytes still

in buffer and set as pointer

for the end bytes transferred

from

buffer

End

[ECD9/ED03/ED2F]

Copy directory entry into current

ED59 A0 00 LDY #$00

ED5B B9 Bl 02 LDA $O2B1,Y

ED5E 20 Fl CF JSR $CFF1

ED61 C8 INY

ED62 CO IB CPY #$1B

ED64 DO F5 BNE $ED5B

ED66 60 RTS

buffer

Initialize buffer pointer

Get char, from directory buffer

and transfer to current buffer

Set pointer to next character

Number of char, per entry

All characters copied?

Yes, return from subroutine

ROM-248

Abacus Software 1571 Internals

[D40E]

Get byte

ED67

ED 6A

ED6C

ED6D1

ED6F

ED71

ED74

ED7 6

ED78

ED7B

ED7D

ED7E1

ED7F

ED82

ED83

20

F0

60

85

A4

B9

F0

A9

99

A5

60

48

20

68

60

from directory

37

01

85

82

44

08

80

F2

85

EA

Dl

02

00

EC

JSR

BEQ

RTS

STA

LDY

LDA

BEQ

LDA

STA

LDA

RTS

PHA

JSR

PLA

RTS

$D137

$ED6D

$85

$82

$0244,Y

$ED7E

#$80

$00F2,Y

$85

$ECEA

Get byte from file

End of file reached?

No, return from subroutine

Save last data byte

Get # of channels

No. of bytes to be transferred

No more data?

No, set channel status to

"READ/EOI" and

get last data byte again

Return from subroutine

Get # of data bytes

Produce directory line

Get last data byte again

Return from subroutine

[Jump to routine C146]

Routine for validate command

ED84

ED87

ED8A

ED8C

ED8F

ED92

ED94

ED97

ED 9A

ED9C1

ED9E

EDA0

EDA3

EDA5

EDA8

EDAA

EDAD

EDB0

[EDDD:

20

20

A9

8D

20

A9

8D

20

DO

A9

85

AD

85

20

A9

8D

20

4C

]

Dl

42

40

F9

C7

00

92

AC

3D

00

81

85

80

E5

00

F9

FF

94

All blocks

EDB3

EDB4

EDB6

EDB7

EDB8

EDBA

C8

Bl

48

C8

Bl

48

94

94

Cl

DO

02

A7

02

C5

FE

ED

02

EE

Cl

of

JSR

JSR

LDA

STA

JSR

LDA

STA

JSR

BNE

LDA

STA

LDA

STA

JSR

LDA

STA

JSR

JMP

$C1D1

$D042

#$40

$02F9

$A7C7

#$00

$0292

$C5AC

$EDD9

#$00

$81

$FE85

$80

$EDE5

#$00

$02F9

$EEFF

$C194

a file put into BAM

INY

LDA

PHA

INY

LDA

PHA

($94),Y

($94),Y

Get drive # from command string

Initialize diskette

Flag for"ILLEGAL BAM"1

set

Produce new BAM

Clear pointer for directory

entry; set search flag

Look for files in directory

Found an entry?

No, set sector numbers

to null

Get and set up

directory track number (18)

Put directory track in BAM

Clear flag for "ILLEGAL

BAM"

Write BAM to diskette

"OK"displayed,end of command

Set dir. buffer pointer to track

of first data block—and

get (and note) track number

Set buffer pointer to next char.

Get and save sector number

of first data block

ROM-249

Abacus Software 1571 Internals

EDBB

EDBD

EDBF

EDC1

EDC3

EDC4

EDC6

EDC8

EDCB1

EDCC

EDCE

EDCF

EDD1

EDD41

EDD7

EDD91

EDDB

EDDD

EDDF

EDE2

AO

Bl

FO

85

C8

Bl

85

20

68

85

68

85

20

20

FO

AO

Bl

30

20

4C

13

94

OA

80

94

81

E5

81

80

E5

04

C3

00

94

D4

B6

D4

ED

ED

C6

C8

ED

LDY

LDA

BEQ

ST

INY

LDA

STA

JSR

PLA

STA

PLA

STA

JSR

JSR

BEQ

LDY

LDA

BMI

JSR

JMP

#$13

($94)

$EDCB

$80

($94)

$81

$EDE5

$81

$80

$EDE5

$C604

$ED9C

#$00

($94)

$EDB3

$C8B6

$EDD4

Set buffer pointr to position of

side sector pointer & get track

Side sector block avail.?'

Yes, Save track number of first

sector,get the sector # from

the directory

buffer

Read,lay out side sector blocks

Get sector number again and

save it

Set up and save track

number again

Read data block, put into BAM

Get next legal file entry

All files checked?

Set buffer pointer to 1st char.

Get identifier for filetype

Are files closed properly?

No, clear file

Go on to next filename

[EDA5/EDC8/EDD1]

All blocks following a file

EDE5 20 5F D5 JSR $D55F

EDE8 20 90 EF JSR $EF90

EDEB 20 75 D4 JSR $D475

EDEE1 A9 00 LDA #$00
EDF0 20 C8 D4 JSR $D4C8

EDF3 20 37 Dl JSR $D137

EDF6 85 80 STA $80

EDF8 20 37 Dl JSR $D137

EDFB 85 81 STA $81

EDFD A5 80 LDA $80

EDFF DO 03 BNE $EE04

EE01 4C 27 D2 JMP $D227

EE041 20 90 E JSR $EF90

EE07 20 4D D4 JSR $D44D

EE0A 4C EE ED JMP $EDEE

Check track and sector number

Put current block in BAM

Read block in buffer

Set buffer pointer to beginning

of file block

Get 1st byte from file block and

save track of next block

Get 2nd byte of file block and

store corresponding sector

Test track identifier for EOF;

last block of file?

Yes, close channel and end

Block in BAM as stored identifir

Read next file block and

continue testing

[Jump to routine C14 6]

Routine for

EE0D 20 12

EE10

EE12

EE14

EE16

A5 E2

10 05

A9 33

4C C8

EE191 29 01

new command

C3 JSR $C312

LDA $E2

BPL $EE19

LDA #$33

Cl JMP $C1C8

AND #$01

Get drive # from command

Get number

Number in order?

No, ERROR message

"33 SYNTAX ERROR" output

Set up drive number and save

ROM-250

Abacus Software 1571 Internals

EE1B

EE1D

EE20

EE22

EE23

EE24

EE27

EE2A

EE2C

EE2F

EE31

EE34

EE36

EE39

EE3B

EE3D

EE40

EE43

EE4 61

EE4 9

EE4B

EE4E

EE51

EE53

EE562

EE59

EE5B

EE5C

EE5D

EE5E

EE61

EE63

EE66

EE68

EE6B

EE6D

EE6F

EE72

EE75

EE7 6

EE77

EE78

EE7A

EE7C

EE7D

EE7F

85

20

A5

0A

AA

AC

CC

FO

B9

95

B9

95

20

A9

85

20

4C

4C

20

A6

BD

CD

FO

4C

20

A5

A8

OA

AA

AD

95

AE

A9

20

AO

A6

AD

9D

8A

OA

AA

B5

91

C8

B5

91

7F

9C

7F

7B

74

1A

00

12

01

13

07

01

80

2F

64

56

42

7F

01

D5

03

72

C7

F9

88

99

7A

IB

6E

12

7F

D5

01

12

94

13

94

FF

02

02

02

02

D3

FF

A7

EE

DO

01

FE

D5

A7

FE

02

C6

FE

01

STA

JSR

LDA

ASL

TAX

LDY

CPY

BEQ

LDA

STA

LDA

STA

JSR

LDA

STA

JSR

JMP

JMP

JSR

LDX

LDA

CMP

BEQ

JMP

JSR

LDA

TAY

ASL

TAX

LDA

STA

LDX

LDA

JSR

LDY

LDX

LDA

STA

TXA

ASL

TAX

LDA

STA

INY

LDA

STA

$7F

$FF9C

$7F

A

$027B

$0274

$EE4 6

$0200,

$12,X

$0201,

$13,X

$D307

#$01

$80

$FF2F

$A764

$EE56

$D042

$7F

$0101,

$FED5

$EE56

$D572

$A7C7

$F9

A

$FE88

$99,X

$027A

#$1B

$C66E

#$12

$7F

$FED5

$0101

A

$12,X

($94)

$13,X

($94)

Y

Y

X

,x

,Y

,Y

as current drive

Set drive status and operate LED

Number of current drive

and Double

(2-byte-table)

Compare position of ID pointer

with length of command string

Is a new ID given?

Yes,get and convey 1st ID char.

from input buffer

Get the second ID

character

Close all channels

Set first track

to be formatted

format diskette

Clear buffer for BAM

Make sector 18, 0

initialize diskette

Get current drive, and

determine format identifiers to

be read

Right format?

No, output "POWER-ON"message

Create new BAM

Current buffer number

Double number

(Buffer pointer presented

as a 2-byte number)

Get name position in sector 18,0

and put in buffer pointer

Get buffer number

Length of diskette name

Copy disk name to BAM-buffer

Diskette name pointer

Get current drive

Get and store identifier for

1541/1571 format

Get and double

drive

number

Get drive ID and put

into buffer

Buffer pointer set to next byte

Get 2 ID chars and

send to buffer

ROM-251

Abacus Software 1571 Internals

EE81

EE82

EE83

EE85

EE87

EE88

EE8B

EE8D

EE8F

EE91

EE94

EE96

EE99

EE9B

EE9D

EEAO

EEA3

EEA6

EEA8

EEAA

EEAC

EEAF

EEB1

EEB4

C8

C8

A9

91

C8

AD

91

AO

91

AD

85

20

A9

85

20

20

20

AO

A9

91

20

C6

20

4C

32

94

D5

94

02

6D

85

80

93

01

81

93

FF

05

01

FF

6D

64

81

42

94

[A6C4/A708]

New

EEB7

EEBA

EEBC

EEBE

EECO

EEC1

EEC2

EEC4

EEC5

EEC 6

EEC 7

EEC 9

EECB

EECD

EECF

EEDO

EED1

EED2

EED5

EED7

1541

20

AO

A9

91

C8

98

91

C8

C8

C8

1 A9

85

85

85

98

4A

4A

20

91

C8

FE

FE

EF

EF

EE

FO

D4

DO

Cl

BAM

Dl

00

12

6D

6D

00

6F

70

71

4B

6D

FO

F2

INY

INY

LDA

STA

INY

LDA

STA

LDY

STA

LDA

STA

JSR

LDA

STA

JSR

JSR

JSR

LDY

LDA

STA

JSR

DEC

JSR

JMP

JSR

LDY

LDA

STA

INY

TYA

STA

INY

INY

INY

LDA

STA

STA

STA

TYA

LSR

LSR

JSR

STA

INY

#$32

($94)

$FED5

($94)

#$02

($6D)

$FE85

$80

$EF93

#$01

$81

$EF93

$EEFF

$F005

#$01

#$FF

($6D)

$D464

$81

$D042

$C194

$FOD1

#$00

#$12

($6D)

($6D)

#$00

$6F

$70

$71

A

A

$F24B

($6D)

Buffer pointer set up for two

characters

"2A" written

as identifier for format

in directory line with

Diskette name

and ID

Write track number

in BAM

Set number of directory

track

Set BAM block in BAM as proof

Determine number of first

directory block

Put directory block in BAM

Write new BAM to disk

Clear BAM buffer

Set buff pointer to2nd char.

Write # of valid buffer bytes

to directory block

Write directory block 18,1

Current sector # to null

and read sector

"OK" message

Clear BAM buffer

Initialize buffer pointer

Move pointer to track # of next

block of track 18

Set buffer pointer to sector #

(1)

Sector number 1 taken

Current buffer pointer

moved further back by three

characters

Temporary storage for

list

of blocks used

Clear

Track number determined,

for working with the block

Availability map (BAM)

Max. # of sectors determined

and put into BAM

Buffer pointer to next byte

ROM-252

Abacus Software 1571 Internals

EED8

EED91

EEDA

EEDC

EEDE

EEEO

EEE1

EEE31

EEE5

EEE7

EEE8

EEE9

EEEB

EEED

EEEF

EEF1

AA

38

26

26

26

CA

DO

B5

91

C8

E8

EO

90

CO

90

4C

6F

70

71

F6

6F

6D

03

F6

90

D6

75 DO

TAX

SEC

ROL

ROL

ROL

DEX

BNE

LDA

STA

INY

INX

CPX

BCC

CPY

BCC

JMP

$6F

$70

$71

$EED9

$6F,X

($6D),

#$03

$EEE3

#$90

$EEC7

$D075

[C8A7/DB2 6/DD87/E433]

Correct BAM

EEF4

EEF7

EEF8

EEFB

EEFD

EEFF2

EF01

EF04

EF06

EF071

EF09

EFOC

EFOF

EF11

EF12

EF13

EF16

EF17

EF18

EF1A

EF1D

EF1F

EF20

EF22

EF241

EF25

EF2 6

EF28

20

AA

BD

29

85

A4

B9

DO

60

A9

99

20

A5

OA

48

20

68

18

69

20

A5

48

A9

85

OA

OA

85

20

93

5B

01

7F

1 71

51

01

00

51

3A

7F

A5

01

A5

80

01

80

6D

37

and

DF

02

02

02

EF

FO

FO

A9

Y

write to diskette

JSR

TAX

LDA

AND

STA

LD1

LDA

BNE

RTS

LDA

STA

JSR

LDA

ASL

PHA

JSR

PLA

CLC

ADC

JSR

LDA

PHA

LDA

STA

ASL

ASL

STA

JSR

$DF93

$025B,

#$01

$7F

: $7F

$0251,

$EF07

#$00

$0251,

$EF3A

$7F

A

$F0A5

#$01

$F0A5

$80

#$01

$80

A

A

$6D

$A937

X

Y

Y

Set counter for # of sectors

bitflag for "sector used"set

Bit in 24-bit temp, storage

Reserved blocks of track

laid out

Set next sector in BAM

All sectors of track?

Yes, write contents of temp.

memory into BAM buffer

Buffer pointer to next byte

Counter for # of temp.memory

compared to three

All temp. mem. bytes copied?

Yes, comp buff pointer w/ $90

BAM bits of all tracks dtrmnd?

Yes, calculat "Blocks free"

Get current buffer #

Get # of corresponding

job codes

Determine drive # and save

as current disk drive

Get drive-adapted flag

for "BAM no good"

Must a new BAM be created?

No, return to main routine

Flag for "Invalid BAM"

cleared

Get BAM in buffer set pointer

Get current drive and

double that number

Note value

Copy temp, storage in BAM

Get drive pointer

again

Go to next temp, storage area

Transfer temp, storage into BAM

Retrieve current track

number

Set number to

Track 1

Save position of

track bytes 4 times(4 BAM

bytes per track)

Check number of blocks free

ROM-253

Abacus Software 1571 Internals

EF2B

EF2D

EF2F

EF32

EF34

EF35

EF37

E6

A5

CD

90

68

85

4C

80

80

AC

F0

80

8D

02

A5

INC

LDA

CMP

BCC

PLA

STA

JMP

$80

$80

$02AC

$EF24

$80

$A58D

[A5AA/A738/D07 5/EF0C]

Read

EF3A

EF3D

EF3E

EF41

EF43

EF4 6

EF4 8

EF4A

EF4C

BAM

20

AA

20

A6

BD

85

A9

85

60

and set buffer pointer

OF

DF

F9

E0

6E

00

6D

[C814/D33B]

Get]

EF4D

EF4F

EF52

EF55

EF58

EF5B

EF5C

number <

A6

BD

8D

BD

8D

60

20

7F

FA

72

FC

73

Fl

Fl

F0

FE

Df

02

02

02

02

EF

Unused program

JSR

TAX

JSR

LDX

LDA

STA

LDA

STA

RTS

$F10F

$F0DF

$F9

$FEE0,X

$6E

#$00

$6D

"BLOCKS FREE"

LDX

LDA

STA

LDA

STA

RTS

$7F

$02FA,X

$0272

$02FC,X

$0273

JSR $EFF1

spacei from 1541

Set counter to next track and

get the

number of the last track + 1

Last track reached?

Rearrange old

track number

Write BAM to diskette

Get and note channel number

for "READ BAM"

Set out appropriate buffer

Get buffer number

and determine memory address

of buffer

Memory address put into

pointer $6D/$6E

Return from this routine

Current drive number

No. of free blocks (low-byte)

received

No. of free blocks (high-byte)

received

Return from this subroutine

DOS

[C87D/C8AD/CCF8]

Sector released

EF5F 4C 27 A7 JMP $A727 Sector in 1571 BAM released

EF62 38 SEC Flag/" SECTOR already free"

EF63 DO 22 BNE $EF87 Is the block already released?

EF65 Bl 6D LDA ($6D),Y No, get track bit pattern

EF67 ID E9 EF ORA $EFE9,X Release sector (bit=l)

EF6A 91 6D STA ($6D),Y and go back into BAM

EF6C 20 88 EF JSR $EF88 Set flag for "BAM WRITE"

EF6F A4 6F LDY $6F Current BAM byte pointer

EF71 18 CLC Flag/"SECTOR tobe released"

EF72 Bl 6D LDA ($6D),Y Increment # of free

EF74 69 01 ADC #$01 blocks in track and

EF76 91 6D STA <$6D),Y reset

EF78 A5 80 LDA $80 Get # of spur worked on and

ROM-254

Abacus Software 1571 Internals

EF7A CD 85 FE CMP $FE85 compare with directory track

EF7D FO 3B BEQ $EFBA Identical?

EF7F FE FA 02 INC $02FA,X No, # of blocks on disk+1

EF82 DO 03 BNE $EF87 Verified overflow?

EF84 FE FC 02 INC $02FC,X Overflow considered

EF87 60 RTS Return to main routine

[A85F/A8 95/EF6C/EF9F]

Set flag for "BAM on diskette illegal3"

EF88 A6 7F LDX $7F Determine current drive and

EF8A A9 01 LDA #$01 set appropriate flag for

EF8C 9D 51 02 STA $0251, X "BAM illegal"

EF8F 60 RTS Return from this subroutine

[CD13/EDE8/EE0 4/F19A/F1F2]

Lay out sector in BAM

Write last BAM chage to disk

Lay out sector in 1571 BAM

Is sector already there?

No,get byte/bit pattrn fr laid-

out blocks,layout sector (bit=0

Re-mark BAM byte

Set flag for "BAM WRITE"

Pointer to current BAM byte

No. of free sectors

Decrement the track

and rewrite

into BAM

Compar # of track being worked

with # of directory track

Identical?

No. of free blocks on disk

Borrowing occurred?

Yes,decrement hibyte of counter

No. of free blocks -1

No. of free blocks (high byte)

Less than 255?

Yes, # of free blocks (lo byte)

Compare to three

Less than three blocks free

Yes, error message of

"72 DISK FULL" given

Return from this subroutine

EF90

EF93

EF96

EF98

EF9A

EF9D

EF9F

EFA2

EFA4

EFA6

EFA7

EFA9

EFAB

EFAD

EFB0

EFB21
EFB5

EFB7

EFBA2

EFBD1

EFC0

EFC2

EFC5

EFC7

EFC9

EFCB

EFCE3

20

4C

F0

Bl

5D

91

20

A4

Bl

38

E9

91

A5

CD

F0

BD

DO

DE

DE

BD

DO

BD

C9

B0

A9

20

60

Fl

74

36

6D

E9

6D

88

6F

6D

01

6D

80

85

0B

FA

03

FC

FA

FC

OC

FA

03

05

72

C7

EF

A8

EF

EF

FE

02

02

02

02

02

E6

JSR

JMP

BEQ

LDA

EOR

STA

JSR

LDY

LDA

SEC

SBC

STA

LDA

CMP

BEQ

LDA

BNE

DEC

DEC

LDA

BNE

LDA

CMP

BCS

DA

JSR

RTS

$EFF1

$A874

$EFCE

($6D),

$EFE9,

($6D),

$EF88

$6F

($6D),

#$01

($6D),

$80

$FE85

$EFBD

$02FA,

$EFBA

$02FC,

$02FA,

$02FC,

$EFCE

$02FA,

#$03

$EFCE

#$72

$E6C7

Y

X

Y

Y

Y

X

X

X

X

X

ROM-255

Abacus Software 1571 Internals

[A845/A87B]

BAM buffer pointer set to bit

EFCF

EFD2

EFD3

EFD5

EFD7

EFD8

EFD9

EFDA

EFDB

EFDD

EFDE

EFEO

EFE2

EFE3

EFE5

EFE8

20

98

85

A5

4A

4A

4A

38

65

A8

A5

29

AA

Bl

3D

60

11 FO

6F

81

6F

81

07

6D

E9 EF

JSR

TYA

STA

LDA

LSR

LSR

LSR

SEC

ADC

TAY

LDA

AND

TAX

LDA

AND

RTS

$F011

$6F

$81

A

A

A

$6F

$81

#$07

($6D),Y

$EFE9,X

for current sector and bit fetched

Compute and save pointer to

start of bit pattern

for track

Get # of sectors to be

worked with, and divide

by 8 (eight bits per byte)

to get # of BAM bytes

Add one to the

pointer positon returned and

note the result

Get current sector number

Calculate and save # of bits

per BAM byte

Get byte from BAM, isolate

sector bit

Return from this subroutine

[A4FF/A5 6E/A85 9/A8 8F/D2BF/D2CB/EF67/EF9A/EFE5/F22F]

EFE9 01 02 04 08 10 20 40 80 Mask to isolate BAM bits

[EF5C/EF90]

Write BAM to diskette

Set value/"Illegal BAM"flag

Check flag status

Equal to null?

No, bit 7 cleared

No, bit 6 cleared

Reset flag for"Illegal BAM,

write new BAM"

Rewrite BAM to diskette

Return from this subroutine

EFF1

EFF3

EFF6

EFF8

EFFA

EFFC

EFFE

F001

F0043

A9

2C

F0

10

70

A9

8D

4C

60

FF

F9

OC

0A

08

00

F9

0D

02

02

A5

LDA

BIT

BEQ

BPL

BVS

LDA

STA

JMP

RTS

#$FF

$02F9

$F004

$F004

$F004

#$00

$02F9

$A50D

[A764/BF3C/EEA3]

Clear BAM buffer

F005 20 25 A6 JSR $A625 Set pointer to BAM buffer

[A5AD/A74C]

F008 A0 00 LDY #$00 Clear pointer to buffer positon

F00A 98 TYA Buffer to be filled with 0

F00B2 91 6D STA ($6D),Y Write to buffer
FOOD C8 INY Set pointer to next byte

FOOE DO FB BNE $F00B Was that last byte in buffer?

F01° 60 RTS YES-return from this subroutine

ROM-256

Abacus Software 1571 Internals

[A8B0/A90C/A92 5/EFCF/F130]

F011

F013

F014

F016

F017

F019

F01B1

F01D

F01F

F0221

F025

F027

F028

F029

F02B

F02C

F02E

F031

F033

F034

F036

F039

F03B

F03E2

FO4O

F042

F045

F046

FO47

F048

F04A

F04C

FO4E

F050

F052

F054

F055

F057

F058

F05A

A5

48

A5

48

A6

B5

FO

A9

20

20

85

8A

OA

85

AA

A5

DD

FO

E8

86

DD

FO

20

A5

A6

9D

OA

OA

18

69

85

A9

69

85

AO

68

85

68

85

60

6F

70

7F

FF

05

74

48

OF

6F

70

80

9D

OB

70

9D

03

5B

70

7F

9B

Al

6D

02

00

6E

00

70

6F

E6

Fl

02

02

FO

02

LDA

PHA

LDA

PHA

LDX

LDA

BEQ

LDA

JSR

JSR

STA

TXA

ASL

STA

TAX

LDA

CMP

BEQ

INX

STX

CMP

BEQ

JSR

LDA

LDX

STA

ASL

ASL

CLC

ADC

STA

LDA

ADC

STA

LDY

PLA

STA

PLA

STA

RTS

$6F

$70

$7F

$FF,X

$F022

#$74

$E648

$F10F

$6F

A

$70

$80

$029D,X

$F03E

$70

$029D,X

$F03E

$F05B

$70

$7F

$029B,X

A

A

#$A1

$6D

#$02

#$00

$6E

#$00

$70

$6F

Zeropage addresses $6F/$70

will be used for temp, storage

for this routine, and thus

will receive

current drive number

and current drive status

Drive ready?

No, display:

"74 drive not ready"

Determine buffer and channel #

Send channel number,

double, and

send buffer

number

Save value

Test # of current track

against temp.storage track data

Identical?

No, chnge to next temp.

memory area

Compare track to ZS

Are data received here?

No, get track data in memory

Pointer to temp, memory

Current drive

Save buffer pointer

Multiply value by 4

(4 bytes per entry)

Turn BAM pointer

to position

of temporary

memory

Set high byte

or pointer

Reset the current byte

Reset zeropage addresses

$6F and $70 to

the old

values

Return from this subroutine

ROM-257

Abacus Software 1571 Internals

[F03B.

Copy I

F05B

F05D

F060

F062

F063

F064

F067

F069

F06B

F06D

F070

F072

F073

F074

F076

F077

F078

F07A

F07C

F07D

F07E

F07F1

F081

F084

F086

F088

F08A

F08B

F08C

F08E

F090

F092

F094

F097

F09A

F09C

F09F1

F0A1

F0A4

1

3AM

A6

20

A5

AA

0A

ID

49

29

85

20

A5

OA

AA

A5

OA

OA

95

A5

OA

OA

A8

Al

99

A9

81

F6

C8

98

29

DO

A6

A5

9D

AD

DO

4C

09

8D

60

bytes

6F

DF

7F

9B

01

03

70

A5

F9

80

99

70

99

Al

00

99

99

03

EF

70

80

9D

F9

03

80

80

F9

FO

02

FO

02

02

02

A4

02

from

LDX

JSR

LDA

TAX

ASL

ORA

EOR

AND

STA

JSR

LDA

ASL

TAX

LDA

ASL

ASL

STA

LDA

ASL

ASL

TAY

LDA

STA

LDA

STA

INC

INY

TYA

AND

BNE

LDX

LDA

STA

LDA

BNE

JMP

ORA

STA

RTS

BAM to

$6F

$F0DF

$7F

A

$029B,X

#$01

#$03

$70

$F0A5

$F9

A

$80

A

A

$99,X

$70

A

A

($99,X)

$O2A1,Y

#$00

<$99,X)

$99,X

#$03

$F07F

$70

$80

$029D,X

$02F9

$F09F

$A480

#$80

$02F9

Get channel number

Read BAM from diskette

Get and note current

drive number

Double number (2 drives)

Calculate old TS number,

Switch to another temp, area,

and save

New pointer

Put actual TS contents into BAM

Current buffer number

Double (pointer values—2 byte

numbers) and note

Multiply current track

by four

(4 BAM bytes per track)

Write value to buffer

Current TS pointer multi

plied by 4

(4 different TS)

and set

Get byte from BAM

and write to temp storage

Clear value

in BAM

Pointer to next byte

Pointer to next TS char.

Pointer checked against

value of 4

All bytes copied into TS?

Yes, get # of currentTS

Note # of corresponding

track

Flag for "Illegal BAM11

BAM alteration taken place?

Yes, write BAM to diskette

Set flag for

"IllegalBAM"

Return from this subroutine

ROM-258

Abacus Software 1571 Internals

[EF13/EF1A/F06D]

Copy BAM bytes from

F0A5

F0A6

F0A9

FOAB

FOAC

FOAE

F0B1

F0B3

F0B4

F0B5

F0B6

F0B7

F0B8

FOBA

FOBB

FOBC

FOBD

F0BE]

FOCI

F0C3

F0C5

F0C8

FOCA

FOCB

FOCC

FOCE

FODO;

A8

B9 9D 02

FO 25

48

A9 00

99 9D 02

A5 F9

OA

AA

68

OA

OA

95 99

98

OA

OA

A8

B9 Al 02

81 99

A9 00

99 Al 02

F6 99

C8

98

29 03

DO EE

■ 60

temporary storage to BAM

TAY Current TS number

LDA $02 9D,Y Get track # of TS

BEQ $F0D0 Is TS laid out?

PHA Yes, save track number

LDA #$00 Temporary storage

STA $02 9D,Y freed up

LDA $F9 Double current buffer

ASL A Number(pointers are 2-byte

TAX values)

PLA Get track number again

ASL A and multiply by 4

ASL A (4 BAM bytes per track)

STA $99,X Set pointer to track

TYA Get TS number^and multiply

ASL A by four

ASL A (4 temp, storage areas)

TAY and note

LDA $O2A1,Y Get TS byte from BAM

STA ($99,X) and write to buffer

LDA #$00 Clear value in

STA $O2A1,Y temporary storage

INC $99,X Set pointer to next byte

INY Choose next TS character

TYA Check if all 4 bytes

AND #$03 have been transferred already

BNE $F0BE Still bytes to be copied

RTS No, return from this subroutine

[C8F5/D042/EEB7/BF33]

Clear

F0D1

F0D3

F0D4

F0D5

F0D7

F0DA

FODB

FODE

pointer to

A5

0A

AA

A9

9D

E8

9D

60

7F

00

9D 02

9D 02

position

LDA

ASL

TAX

LDA

STA

INX

STA

RTS

$7F

A

#$00

$029D,

$029D,

of

X

X

current track in BAM

Get current drive

Double (2 possible drives)

and save

Set track value=0 as flag for

"BAM Pointer inactive"

and then clear

pointer

Return from this subroutine

[A4B0/C7BA/EF3E/F05D] Read BAM from diskette

FODF

F0E1

F0E3

F0E5

F0E6

B5 A7

C9 FF

DO 25

8A

48

LDA $A7,X

CMP #$FF

BNE $F10A

TXA

PHA

Get buffer #, compare with

flag value for "Buffer free11

Identical?

Yes, save channel

number

ROM-259

Abacus Software 1571 Internals

F0E7

FOEA

FOEB

FOED

FOEF

F0F21

FOF4

F0F5

F0F6

FOF7

F0F9

FOFC

FOFD

FOFE

F1O1

F103

F105

F107

F10A1
F1OC

F1OE

20

AA

10

A9

20

86

68

A8

8A

09

99

OA

AA

AD

95

A9

95

4C

29

85

60

8E D2

05

70

C8 Cl

F9

80

A7 00

85 FE

06

00

07

42 A5

OF

F9

JSR

TAX

BPL

LDA

JSR

STX

PLA

TAY

TXA

ORA

STA

ASL

TAX

LDA

STA

LDA

STA

JMP

AND

STA

RTS

$D28E

$F0F2

#$70

$C1C8

$F9

#$80

$00A7,Y

A

$FE85

$06,X

#$00

$07,X

$A542

#$0F

$F9

[D00E/EF3A/F022/F119]

Determine

F1OF

Fill

F113

F115

F116

F1181

A9

A6

DO

18

69

60

number of

06

7F

03

07

LDA

LDX

BNE

CLC

ADC

RTS

channels

#$06

$7F

$F118

#$07

Get buffer number

and save it

Is there a free buffer?

No, display

"70 No channel" error message

Set # of current buffer

Get channel # again

and save it

get buffer # and enter flag

for "Buffer stil not active"

in table

Double buffer number(pointers

are 2-byte values)

Directory track

set as track for job

sector #0

Set in for job

Block read

Create and set

buffer number

Return from this subroutine

for BAM (in accumulator)

Get channel # for BAM channel

by drive 1 as current drive#

Drive 0?

Yes, set flag for drive #

and channel # for BAM

Return from this subroutine

[A4AD/C7B7/C883/C8F8]

Determine number of channels for

F119 20 OF Fl JSR $F10F

F11C AA TAX

F11D 60 RTS

BAM (in X-register)

Determine # of channels

and save in X-register

Return from this subroutinmme

[D1A6/DD1D/E3A9/E3BC/E44E]

Look

F11E

F121

F123

F125

F127

F12A

F12D4

for

20

A9

85

A9

0D

8D

4C

next

3E

03

6F

01

F9

F9

DB

DE

02

02

A8

free block in BAM

JSR

LDA

STA

LDA

ORA

STA

JMP

$DE3E

#$03

$6F

#$01

$02F9

$02F9

$A8DB

Get current track & sector #

Set BAM

pointer

Set flag for"Illegal BAM,

Write new BAM to

diskette"

Look for next free sector

ROM-260

Abacus Software 1571 Internals

[A8E5/F138:A8FD,A902]

Look for next free sector

F130 20 11 FO JSR $F011

F133 68 PLA

F134 85 6F STA $6F

F136 Bl 6D LDA ($6D),Y

Get pointer again and

set it

of sectors free on a track

[A8FD/A902]

F1382
F13A

F13C

F13F

F141

F143

F145

F147

F14A

F14C

F14F

F150

F152

F154

F156

F158

F15A2

F15C

F15F1
F161

F163

F166

F167

F169

F16B

F16D

F16F

F171

DO 39

A5 80

CD 85

FO 19

90 1C

E6 80

A5 80

CD AC

DO El

AE 85

CA

86 80

A9 00

85 81

C6 6F

DO D3

A9 72

20 C8

C6 80

DO CA

AE 85

E8

86 80

A9 00

85 81

C6 6F

DO BC

F0 E7

FE

02

FE

Cl

FE

BNE

LDA

CMP

BEQ

BCC

INC

LDA

CMP

BNE

LDX

DEX

STX

LDA

STA

DEC

BNE

LDA

JSR

DEC

BNE

LDX

INX

STX

LDA

STA

DEC

BNE

BEQ

$F173

$80

$FE85

$F15A

$F15F

$80

$80

$02AC

$F12D

$FE85

$80

#$00

$81

$6F

$F12D

#$72

$C1C8

$80

$F12D

$FE85

$80

#$00

$81

$6F

$F12D

$F15A

Still a free sector?

NO—get current track # & com

pare with directory track #(18)

Identical?

No, current track # < 18?

No, increment track # (diskette

built in and around 18)

& compare with max.# of tracks

Highest track # reached?

Yes, go back, label directory

track -1 as

current track #

Clear sector

counter

Number of blocks free

Still a free sector?

No, display"72 DISK

FULL" error message

Track-by-track to outmost track

Outermost track reached(O)?

Yes, get directory track # and

give one track more as

current track #

Clear sector

pointer (0)

Number of free sectors

Still a free sector

No, display "Disk full"

[F138]

Look for next free sector on this

F173

F175

F176

F178

F17A

F17C

F17F

F182

A5

18

65

85

A5

20

8D

8D

81

69

81

80

4B

4E

4D

F2

02

02

LDA

CLC

ADC

STA

LDA

JSR

STA

STA

$81

$69

$81

$80

$F24B

$024E

$024D

track

Number of current sectors

Adopt optimal sector set-up for

two sectors and

save as current sector number

Number of current track

Number of sectors comprising

a track determined

and noted

ROM-261

Abacus Software 1571 Internals

F185

F187

F189

F18A

F18C

F18F

F191

F193

F1952

F198

F19A1

F19D1

F19F

F1A1

F1A4

F1A6

C5

BO

38

A5

ED

85

FO

C6

20

FO

4C

A9

85

20

DO

4C

81

OC

81

4E

81

02

81

FA

03

90

00

81

FA

F4

F5

02

Fl

EF

Fl

Fl

CMP

BCS

SEC

LDA

SBC

STA

BEQ

DEC

JSR

BEQ

JMP

LDA

STA

JSR

BNE

JMP

$81

$F195

$81

$024E

$81

$F195

$81

$F1FA

$F19D

$EF90

#$00

$81

$F1FA

$F19A

$F1F5

Compare with new sector #

Number too high?

Yes, get the #

of the current sector

& max. sector # transfer

Note result as new sector #

Has sector 0 been chosen?

No,—correct sector variations

Look for next free sector

Got it?

Yes, put sector in BAM

Sector # 0

set

Look for next free sector

Found it?

No, display"71 Directory error"

[DCDA]

Lay out next optimum sector

F1A9

F1AB

F1AE

F1B1

F1B3

F1B4

F1B6

F1B81

F1BB

F1BC

F1BE

F1C0

F1C2

F1C4

A9 01

0D F9 02

8D F9 02

A5 86

48

A9 01

85 86

AD 85 FE

38

E5 86

85 80

90 09

F0 07

4C 05 A9

LDA #$01

ORA $02F9

STA $02F9

LDA $86

PHA

LDA #$01

STA $86

LDA $FE85

SEC

SBC $86

STA $80

BCC $F1CB

BEQ $F1CB

JMP $A905

Set flag for

"Illegal BAM" (written on

diskette)

Zeropage addresses tobe used by

routine & consequently reserved

Initialize track

number pointer

Get directory track #

Draw counter / current track to

get track # above or below

track 18

Is track # les than 18 ?

No, equal to 18 ?

No, BAM pointer to sector bit

[A90F]

F1C7 Bl 6D LDA ($6D),Y Get # of free blocks on track

[A91B]

F1C9-1"

F1CB2

F1CE

F1CF

F1D1

F1D3

DO

AD

18

65

85

E6

IB

85 FE

86

80

86

BNE

LDA

CLC

ADC

STA

INC

$F1E6

$FE85

$86

$80

$86

F1D5 CD AC 02 CMP $02AC

Still some free sectors?

No, get #of directory track

& incrment track counter, so to

receive a current track #

above the directory track

Counter for track #(next track)

compared with highest track #

ROM-262

Abacus Software 1571 Internals

F1D8 90 05 BCC $F1DF

F1DA A9 67 LDA #$67

F1DC 20 45 E6 JSR $E645

F1DF1 4C IE A9 JMP $A91E

Max track # reached?

Yes, display "67 Illegal track

or sector" error message

Look for next free 1571 sector

[A928]

F1E2

[A934]

F1E41

F1E61

F1E7

F1E9

F1EB

F1ED

FIFO

F1F2

F1F5*

F1F7

Bl

F0

68

85

A9

85

20

F0

4C

A9

20

6D

D2

86

00

81

FA

03

90

71

45

Fl

EF

E6

LDA

BEQ

PLA

STA

LDA

STA

JSR

BEQ

JMP

LDA

JSR

($6D),Y

$F1B8

$86

#$00

$81

$F1FA

$F1F5

$EF90

#$71

$E645

[CD0 9/CD2 7/F195/F1A1/F1ED]

F1FA

[A8B3]

F1FD1

FIFE

F1FF

F202

F204

F207

F20A

F20B

F20D1

F20F

F212

F214

F217

F219

F21B

F21D1

F21F1

4C

98

48

20

A5

20

8D

68

85

A5

CD

B0

20

DO

E6

DO

A9

60

A9

20

80

4B

4E

6F

81

4E

09

D5

06

81

F0

00

A8

F2

F2

02

02

EF

JMP

TYA

PHA

JSR

LDA

JSR

STA

PLA

STA

LDA

CMP

BCS

JSR

BNE

INC

BNE

LDA

RTS

$A8A9

$F220

$80

$F220

$024E

$6F

$81

$024E

$F21D

$EFD5

$F21F

$81

$F20D

#$00

Get # of free blocks in track

Still a sector free?

Yes, zeropage address $86

rearranged

Clear sector

counter

and look for next free sector

Found?

Yes, place sector in BAM & jump

diplay "71 DIR

error" message

Look for next free track sector

Note pntr position bit patterns

of blocks used

Test # of blocks free

Number of current track

Get # of sectors in

this track

Get bit pattern pointer in

BAM again

Compare # of current sector

with total # of sectors

Sector # smaller?

Yes,getbit for sector f/BAM

Is the sector free?

No,set pnter to next SECTOR

Jump back to $F20D

Flag"No track sectors free"

Return to main routine

ROM-263

Abacus Software 1571 Internals

[A93E/F1FF]

Check

F220

F222

F223

F225

F227

F22A

F22B1

F22D2

F22F

F232

F234

F2361

F237

F239

F23A

F23C

F23E

F240

F242

F243

F245

F2461

F248

number

A5

48

A9

85

AC

88

A2

Bl

3D

FO

E6

CA

10

88

DO

Bl

C5

DO

68

85

60

A9

20

6F

00

6F

86

07

6D

E9

02

6F

F4

EF

6D

6F

04

6F

71

45

of

FE

EF

E6

free

LDA

PHA

LDA

STA

LDY

DEY

LDX

LDA

AND

BEQ

INC

DEX

BPL

DEY

BNE

LDA

CMP

BNE

PLA

STA

RTS

LDA

JSR

blocks

$6F

#$00

$6F

$FE86

#$07

<$6D),Y

$EFE9,X

$F236

$6F

$F22D

$F22B

($6D),Y

$6F

$F246

$6F

#$71

$E645

in BAM for every track

Zeropage address $6F USED

as temp, storage

Clear free-blocks

Counter

Get #of BAM bytes per track

& design #bytes per bit pattern

Counter/* of bits per byte

Get byte from BAM & isolate

Bit to which bit countr pts

Is the block laid out?

No,increment Free-block counter

& go to the next bit

All chosen bits tested?

Yes,set ptr tonext BAMbyte

All BAM bytes on trak tested?

Yes, compare #of blocks stated

in BAM with resulting #

Identical?

Yes, rearrange zeropage

Address $6F

Return to main routine

Display

"71 DIR error" message

[D54 0/D5 6 8/EED2/F17C/F2 04]

Get number of sectors per track

(Track number must be put into accumulator)

F24B

F24E1

F251

F252

F254

F257

20

DD

CA

B0

BD

60

4F

D6

FA

Dl

A7

FE

FE

JSR

CMP

DEX

BCS

LDA

RTS

$A74F

$FED6,

$F24E

$FED1,

X

X

Get # of track zones

Compare max # tracks/zone with

actual #of tracks/change zone

Is track larger than max zone?

Yes,#of sectors in trackzone

Return to main routine

[CB12/CDA3/E7A8]

F258 60 RTS No function

[BF6C]

Execute disk controller reset

F259 A9 6F LDA #$6F

F25B 8D 02 1C STA $1CO2

F25E 29 F0 AND #$F0

F260 4C F8 A9 JMP $A9F8

"Sync" &"Write-protect" switched

as input lines, and their

values placed in

patch

ROM-264

Abacus Software 1571 Internals

F263X

F266

F268

F2 6A

F2 6C

F2 6F

F271

F274

F276

F279

F27B

F27E

F281

F283

F286

F288

F28B

F28E

F290

F2 92

F294

F296

F298

F2 9A

F2 9C

F2 9E

F2A0

F2A2

F2A4

F2A6

F2A8

F2AA

F2AC

F2AE

AD

29

09

09

8D

A9

8D

A9

8D

A9

8D

8D

A9

8D

A9

8D

8D

A9

85

85

A9

85

A9

85

A9

85

A9

85

A9

85

A9

85

A9

85

OC

FE

OE

EO

OC

41

OB

00

06

20

07

05

7F

OE

CO

OD

OE

FF

3E

51

08

39

07

47

05

62

FA

63

C8

64

04

5E

04

5F

1C

1C

1C

1C

1C

1C

1C

1C

1C

LDA

AND

ORA

ORA

STA

LDA

STA

LDA

STA

LDA

STA

STA

LDA

STA

LDA

STA

STA

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

$1COC

#$FE

#$0E

#$E0

$1COC

#$41

$1COB

#$00

$1CO6

#$20

$1CO7

$1CO5

#$7F

$1COE

#$co

$1COD

$1COE

#$FF

$3E

$51

#$08

$39

#$07

$47

#$05

$62

#$FA

$63

#$C8

$64

#$04

$5E

#$04

$5F

Set peripheral control register

CA1 "Byte ready" to neg. flank

CA2 "SOE" to high input

CB2 (Head) set to read

Register activated

PB7(Sync)set to outputs active

Input tempstorage forHEAD data

Set enter for interrupt timerl

so the disk controller

routine wilbe called for 8 MS,

& timer 1

will start

Clear

Interrupt flag

Interrrupt that allows

Enable "Timer 1 has

run to zero"

Clear flags:

flag for active drive

Flag for"Format procedure" on

Set identifier

Block header

Set identifier for

data block header

Call in $FA02

Turn to

routine

in $FA05

Determine # of steps for

fast head movement

Determine # of steps

to move & stop

disk head

movement

[9DCA/9DD5/BF06]

Jump to disk controller routine

F2B0

F2B1

F2B3

F2B6

F2B9

F2BB

F2BE

F2C0]

F2C3

F2C5

BA

86 49

AD 04 1C

AD 0C 1C

09 0E

8D 0C 1C

A0 05

B9 00 00

10 2E

C9 DO

TSX

STX $49

LDA $1CO4

LDA $1COC

ORA #$0E

STA $1COC

LDY #$05

LDA $0000,Y

BPL $F2F3

CMP #$D0

Reserve

stack pointer

Reset timer

CA2 (SOE=Serial Output Enable)

set to high

output

Number of buffer

Get flag for jobcode

Is there a command for buffer?

Yes,compare with"PROGRAMSTART"

ROM-265

Abacus Software 1571 Internals

F2C7 DO 04 BNE $F2CD Program executed in buffer?

F2C9 98 TYA Yes, get buffer # &

F2CA 4C 70 F3 JMP $F370 jump to program

F2CD1 29 01 AND #$01 Get drive # from jobcode

F2CF F0 07 BEQ $F2D8 Is the job for driveO ?

F2D1 84 3F STY $3F No, note appropriate buffer

F2D3 A9 OF LDA #$0F Display "74 Drive not ready"

F2D5 4C 69 F9 JMP $F969 error message

F2D81 AA TAX Note drive

F2D9 85 3D STA $3D number (0) & get

F2DB C5 3E CMP $3E "Drive active" flag

F2DD F0 0A BEQ $F2E9 Drive already running?

F2DF 20 7E F9 JSR $F97E No, motor on

F2E2 A5 3D LDA $3D & set "Drive active"

F2E4 85 3E STA $3E flag

F2E6 4C 9C F9 JMP $F99C Wait until motor runs

F2E91 A5 20 LDA $20 Get drive status

F2EB 30 03 BMI $F2F0 Is motor at rotation speed?

F2ED 0A ASL A Yes,steppermotor flagbit/carry

F2EE 10 09 BPL $F2F9 Is the head moving?

F2F01 4C 9C F9 JMP $F99C Yes, move head into position
88 DEY Mark buffer #

10 CA BPL $F2C0 All buffer checked out?

4C 9C F9 JMP $F99C Yes, goto main control routine

A9 20 LDA #$20 Flag for "Motor on"

85 20 STA $20 set as drive status

A0 05 LDY #$05 Determine max # of buffers

84 3F STY $3F as actual buffer #

20 93 F3 JSR $F393 Set pointer to buffer address

F304 30 1A BMI $F320 Job assignment laid out?

F3062 C6 3F DEC $3F No,buffer enter to next buffer
F308 10 F7 BPL $F301 Last buffer reached?

F30A A4 41 LDY $41 YES-set last job #

F30C 20 95 F3 JSR $F395 at buffer pointer

F30F A5 42 LDA $42 Get track diff. to last job

F311 85 4A STA $4A & set # to stepper half-steps

F313 06 4A ASL $4A to be executed

F315 A9 60 LDA #$60 Flag for head movement step

F317 85 20 STA $20 in drive status

F319 Bl 32 LDA ($32),Y Get & mark track # for job

F31B 85 22 STA $22 from buffer

F31D 4C 9C F9 JMP $F99C Position Head on track

F3201 29 01 AND #$01 Design drive number
F322 C5 3D CMP $3D & compare to last job drive

F324 DO E0 BNE $F306 Is the job for the same drive?

F326 A5 22 LDA $22 Get track # of last job

F328 F0 12 BEQ $F33C Track # on hand?

F2F31

F2F4

F2F6

F2F91

F2FB

F2FD

F2FF

F3011

ROM-266

Abacus Software 1571 Internals

F32A

F32B

F32D

F32F

F331

F333

F335

F337

F339

F33C2

F33E

F340

F3421
F345

F346

F348

F34B

F34D

F34E

F34F

F350

F351

F352

F353

F355

F358

F35A

F35C

F35F

F361

F363

F365

F367

F369

F36B

38

Fl

FO

49

85

E6

A5

85

4C

A2

Bl

85

DD

CA

BO

BD

85

8A

OA

OA

OA

OA

OA

85

AD

29

05

8D

A6

A5

C9

FO

C9

FO

4C

32

OD

FF

42

42

3F

41

06

04

32

40

D6

FA

Dl

43

44

00

9F

44

00

3D

45

40

15

60

03

Bl

F3

FE

FE

1C

1C

F3

SEC

SBC

BEQ

EOR

STA

INC

LDA

STA

JMP

LDX

LDA

STA

CMP

DEX

BCS

LDA

STA

TXA

ASL

ASL

ASL

ASL

ASL

STA

LDA

AND

ORA

STA

LDX

LDA

CMP

BEQ

CMP

BEQ

JMP

($32),

$F33C

#$FF

$42

$42

$3F

$41

$F306

#$04

($32),

$40

$FED6,

$F342

$FED1,

$43

A

A

A

A

A

$44

$1COO

#$9F

$44

$1COO

$3D

$45

#$40

$F37C

#$60

$F36E

$F3B1

Y

Y

X

X

Yes,figure difference between

current & last track

Is the job for same track?

Produce # / stepper increments

& store

number

Transfer drive # of current

job

Work with next buffer

Number of different trackzones

Get track # of job

& mark it

Compare with highest zone track

Set zone counter to next zone

Track lie within zone?

Yes,get # of sectors per zone

& set

Zone numbers (0-3)

will be in

bits 5 & 6

The bit exchange rate,

which (with help of head

electronics)writes to disk

dictates value in temp memory

Get drive control register

Clear bits for bitrate & set

zone chosen with the value

used

Drive #

Get jobcode

Compare with "Head to track 1"

Should the head be reset?

No, code for external job prg.

Program taken into buffer?

No, return to main routine

[F369] VGL. 93A2

Start program in buffer

F36E A5 3F LDA $3F Get current buffer #

ROM-267

Abacus Software 1571 Internals

[F2CA]

Start

F370

F371

F373

F375

F377

F379

program

18

69

85

A9

85

6C

03

31

00

30

30 00

(Buffer address in A)

CLC & compute the high

ADC #$03 byte of the absolute

STA $31 buffer address

LDA #$00 Set low byte

STA $30 to null

JMP ($0030) Jump to buffer program

[F365] VGL. 93B0

Move head back to track

F37C

F37E

F380

F383

F385

F388

F38A

F38C

F38E

F390

A9

85

AD

29

8D

A9

85

A9

85

4C

60

20

00

FC

00

A4

4A

01

22

69

1C

1C

F9

LDA

STA

LDA

AND

STA

LDA

STA

LDA

STA

JMP

#$60

$20

$1COO

#$FC

$1COO

#$A4

$4A

#$01

$22

$F969

Set head flag for movement

in drive status

Get drive dontrol register

& clear stepper

impulse

Number of steps (92)

Set to outside(= 4 6 tracks)

Set track 1

as job track #

Close job loop

[BF0C/F301/F43A/F48F] VGL. 93D1

Initialize buffer pointer for job

F393 A4 3F LDY $3F Number of current buffer

[F30C]

Set buffer pointer (Buffer number

F395 B9 00 00 LDA $0000,Y

F398

F399

F39B

F39D

F39F

F3A0

F3A1

F3A3

F3A5

F3A6

F3A7

F3A9

F3AB1

F3AD

F3AF

F3B0

48

10

29

85

98

0A

69

85

98

18

69

85

A0

84

68

60

10

78

45

06

32

03

31

00

30

PHA

BPL

AND

STA

TYA

ASL

ADC

STA

TYA

CLC

ADC

STA

LDY

STY

PLA

RTS

$F3AB

#$78

$45

A

#$06

$32

#$03

$31

#$00

$30

in Y)

Get appropriate jocode

& note

Job on hand?

Yes, isolate and mark command

Bits for disk controller

Get buffer #

& double (2-byte value)

Compute track & sector table

& set pointers

Get buffer # again, &

calculate the physical

memory address of the

buffer (high-byte) & set

low byte of the pointer

to null

Get jobcode

Return to main routine

ROM-268

Abacus Software 1571 Internals

[F36B/F5E6]

Look for track.

(Routine will place

F3B1

F3B3

F3B5

F3B7

F3B9

F3BB1
F3BE1

F3C0

F3C1

F3C4

F3C6

F3C8-

F3CA

F3CB

F3CE

F3D0

F3D1

F3D3

F3D5

F3D8

F3DA

F3DC:

F3DF

F3E0

F3E2

F3E4

F3E6

F3E8

F3EA

F3EC

F3EE

F3F0

F3F2

F3F4

F3F5

F3F6

F3F9

F3FB

F3FD

F400

F402

F404

F407

F409

A2 5A

86 4B

A2 00

A9 52

85 24

20 56 F5

50 FE

B8

AD 01 1C

C5 24

DO 3F

50 FE

B8

AD 01 1C

95 25

E8

E0 07

DO F3

20 97 F4

A0 04

A9 00

59 16 00

88

10 FA

C9 00

DO 38

A6 3E

A5 18

95 22

A5 45

C9 30

F0 IE

A5 3E

OA

A8

B9 12 00

C5 16

DO IE

B9 13 00

C5 17

DO 17

4C 23 F4

1 C6 4B

DO BO

LDX

STX

LDX

LDA

STA

JSR

BVC

CLV

LDA

CMP

BNE

BVC

CLV

LDA

STA

INX

CPX

BNE

JSR

LDY

LDA

EOR

DEY

BPL

CMP

BNE

LDX

LDA

STA

LDA

CMP

BEQ

LDA

ASL

TAY

LDA

CMP

BNE

LDA

CMP

BNE

JMP

DEC

BNE

information on every block header on diskette).

#$5A No. of read searches(90)

$4B determined

#$00 Clear # of header bytes

#$52 Save GCR identifier for

$24 block header

$F556 Wait for synch-marker

$F3BE Read electronics ready?

Yes, set flag back

$1CO1 Read header from disk—compare

$24 with block identifier

$F407 Is ther a blockheader?

$F3C8 Yes, wait for next byte

Reactivate reading electronics

$1CO1 Read byte from diskette

$25,X & store in header buffer

Increment counter

#$07 Compare with # of headerbytes

$F3C8 Entire header read?

$F4 97 Yes-convert header fr GCR to %

#$04 Set pnter to checksum position

#-$00 Compute header

$0016,Y checksum

Pointer to next header byte

$F3DC All bytes computed?

#$00 YES-value for erroe-free header

$F41E Checksum error occurred?

$3E NO-get current drive number

$18 TRack number of header to be read

$22,X saved as current track

$45 get jobcode

#$30 Conmpare with"Read Sector"

$F410 Identical?

$3E NO—get drive number of job

A Turn pointer to drive with

corresponding ID

$0012,Y Get 1st char of ID and compare

$16 with blockheader ID

$F41B ID been changed?

$0013,Y NO—get next ID char and compare

$17 with header ID

$F41B Identical?

$F423 YES—determine next job

$4B Decrement read-search counter

$F3BB 90 read searches executed

ROM-269

Abacus Software 1571 Internals

F40B

F40D

F4101
F412

F414

F416

F4182

F41A

F41B2
F41D

F41E1

F420

A9

20

A5

85

A5

85

A9

2C

A9

2C

A9

4C

02

69 F9

16

12

17

13

01

OB

09

69 F9

LDA

JSR

LDA

STA

LDA

STA

LDA

#$02

$F969

$16

$12

$17

$13

#$01

.BYTE $2C

LDA #$0B

.BYTE $2C

LDA

JMP

#$09

$F969

Display error message

"20 Read error"

Take on blockheader ID

as new ID for

current

disk drive

Number for "OK"

Two-byte jump (bit command)

for"29 Disk ID mismatch"

Two-byte jump (bit command)

Number for "27 Write error"

message returned

[F404] VGL. 94BC

Get next optimum job

F423

F425

F427

F429

F42A

F42C

F42E

F430

F4321 85 4D

F434

F436

A9 7F

85 4C

A5 19

18

69 02

C5 43

90 02

E5 43

A2 05

86 3F

F438 A2 FF

F43A1 20 93 F3

F43D 10 44

F43F 85 44

F441 29 01

F443 C5 3E

F445 DO 3C

F447 A0 00

F449 Bl 32

F44B C5 40

F44D DO 34

F44F A5 45

F451 C9 60

F453 F0 0C

F455 A0 01

F457 38

F458 Bl 32

F45A E5 4D

F45C 10 03

F45E 18

F45F 65 43

LDA #$7F

STA $4C

LDA $19

CLC

ADC #$02

CMP $43

BCC $F432

SBC $43

STA $4D

LDX #$05

STX $3F

LDX #$FF

JSR $F393

BPL $F483

STA $44

AND #$01

CMP $3E

BNE $F4 83

LDY #$00

LDA ($32),Y

CMP $40

BNE $F483

LDA $45

CMP #$60

BEQ $F4 61

LDY #$01

SEC

LDA ($32),Y

SBC $4D

BPL $F4 61

CLC

ADC $43

Intitialize pntr for difference

to next job

Get sector # from last blkheader

and compare with

maximum

sector number

Is number in allowed range?

NO—subtract max. sector number &

save new sector number

Set buffer

number

buffer pointer

Set buffer address & get jobcode

Job available?

YES—Save jobcode and determine

Drive number of the job

Comparable with actual drive?

Is the job for current drive?

YES—clear buffer pointer

Compare track number of the job

with last track

Identical?

YES—get jobcode command bits

Code for "Program in buffer"

SHould buffer program be run?

NO—pointer to params for buffer 0

Get sector number of job

for buffer 0 and compare

wirth optimum sectors computed

Is new sector number less?

NO—calculate # of sectors up to

this sector and compare

ROM-270

Abacus Software 1571 Internals

F4612

F4 63

F4 65

F466

F4 68

F4 6A

F4 6B

F4 6D

F4 6F

F471

F4731

F475

F477

F478

F47A

F47C

F47E1

F47F

F481

F4837

F485

F487

F488

F4 8A

F48D1

F48F

F4 92

F494

C5

BO

48

A5

FO

68

C9

90

C9

BO

85

A5

AA

69

85

DO

68

C9

90

C6

10

8A

10

4C

86

20

A5

4C

4C

IE

45

14

09

14

OC

10

4C

3F

03

31

05

06

FO

3F

B3

03

9C F9

3F

93 F3

45

CA F4

CMP

BCS

PHA

LDA

BEQ

PLA

CMP

BCC

CMP

BCS

STA

LDA

TAX

ADC

STA

BNE

PLA

CMP

BCC

DEC

BPL

TXA

BPL

JMP

STX

JSR

LDA

JMP

$4C

$F483

$45

$F47E

#$09

$F483

#$0C

$F483

$4C

$3F

#$03

$31

$F483

#$06

$F473

$3F

$F43A

$F48D

$F99C

$3F

$F393

$45

$F4CA

with last difference

Is new value less than last?

YES—Save sector difference

Check command bits of jobcode

Should sector be read?

NO—get difference again and

Compare to 9

Is value less?

NO—compare to 13

Is difference <13 ?

YES—Save new sector difference

Get buffer number of the job and

compute

the physical memory

address (high-byte)

Jump to $F483

Get sector difference and

compare to 6

Is difference larger?

YES—turn pointer to next pointer

All buffers tested yet?

YES-get buffer # of next job

Optimum job found?

NO—execute stepper command

Save buffer number

Compute buffer address

Get clear jobcode

Execute read/write jobs

[F3D5]

Convert header from GCR-code

F4 97 A5 30 LDA $30

F499 48 PHA

F4 9A A5 31 LDA $31

F4 9C 48 PHA

F4 9D A9 24 LDA #$24

F4 9F 85 30 STA $30

F4A1 A9 00 LDA #$00

F4A3 85 31 STA $31

F4A5 A9 00 LDA #$00

F4A7 85 34 STA $34

F4A9 20 E6 F7 JSR $F7E6

F4A7 A5 55 LDA $55

F4AE 85 18 STA $18

F4B0 A5 54 LDA $54

F4B2 85 19 STA $19

into binary values

Retrieve

pointer to

current

buffer address

Adjust pointer at

$0024 (start of data for

last-read

blockheaders)

Reset buffer pointer for

conversion routine

Convert 5 GCR bytes to 4binary#S

4th byte converted to

track number in header buffer

Third byte is

sector number in header buffer

ROM-271

Abacus Software 1571 Internals

F4B4

F4B6

F4B8

F4BB

F4BD

F4BF

F4C1

F4C3

F4C4

F4C6

F4C7

F4C9

A5

85

20

A5

85

A5

85

68

85

68

85

60

53

1A

E6 F7

52

17

53

16

31

30

LDA

STA

JSR

LDA

STA

LDA

STA

PLA

STA

PLA

STA

RTS

$53

$1A

$F7E6

$52

$17

$53

$16

$31

$30

Second byte is

checksum in header buffer

Convrt 5 GCRbytes to 4 binary t's

First byte

is 2nd ID char in header buffer

Second byte is

first ID char in header buffer

Re-create pointer

to address of

current

buffer

Return from this subroutine

[F494] VGL. 9606

Read sector from diskette to buffer

F4CA C9 00

F4CC F0 03

F4CE 4C 6E F5

CMP #$00

BEQ $F4D1

JMP $F56E

Compare jobcode with readcode

Identical?

NO—test jobcode further

Read sector

F4D1

F4D6

F4D7

F4DA

F4DC

20 0A F5

50 FE

B8

AD 01 1C

91 30

C8

DO F5F4DD

F4DF A0 BA

F4E11 50 FE

F4E3

F4E4

F4E7

F4EA

F4EB

F4ED

F4F0

F4F2

F4F4

F4F6

F4F8

F4FB1

F4FE

F500

F502

F504

F505

F507

B8

AD 01 1C

99 00 01

C8

DO F4

20 E0 F8

A5 38

C5 47

F0 05

A9 04

4C 69 F9

20 E9 F5

C5 3A

F0 03

A9 05

2C

A9 01

4C 69 F9

JSR $F50A

BVC $F4D4

CLV

LDA $1CO1

STA ($30),Y

INY

BNE $F4D4

LDY #$BA

BVC $F4E1

CLV

LDA $1CO1

STA $0100,Y

INY

BNE $F4E1

JSR $F8E0

LDA $38

CMP $4 7

BEQ $F4FB

LDA #$04

JMP $F969

JSR $F5E9

CMP $3A

BEQ $F505

LDA #$05

.BYTE $2C

LDA $01

JMP $F969

Ssearch for sector blockheader

Wait for byte from disk

Read electronics ready to

read byte with dish head

and write to current buffer

Set buffer pointer to next byte

Buffer already full?

YES-set buff pntr to cond1! buff

Wait for next byte from disk

Get flag to signal byte

from read head

& write to conditional buffer

Set buffer pointer to next byte

Conditional buffer full?

YES—convert sector frm GCR»binary

Get 1st byte of data block &

identifier for data blockheader

Data block ?

NO—display error message:

"22 Read error"

Compare checksum computed for

data with value read in

Identical?

Error # for"23 read error"

Jump to next 2 bytes(Bir Command)

Error number for "OK"

message given

ROM-272

Abacus Software
1571 Internals

[F4D1/F6A0] CF. 9600

Set read-head into position after data block sync-marking a sector

JSR $F510 Search for a sector blockheaderF50A 20 10 F5

F50D 4C 56 F5 JMP $F556 Wait f/sync-mark of a data block

[F50A/F589/F6CA] VGL. 970F

Look for sector header

F510

F512

F513

F514

F516

F518

F51A

F51C

F51E

F520

F522

F523

F525

F527

F52 9

F52B

F52D

F52F

F531

F533

F536

F5381

F53B

F53D2

F53F

F540

F543

F546

F548

F549

F54B

F54D

F54E1

F54F

F551

F5531

A5

0A

AA

B5

85

B5

85

A0

Bl

85

C8

Bl

85

A9

45

45

45

45

85

20

A2

20

A0

50

B8

AD

D9

DO

C8

CO

DO

60

CA

DO

A9

4C

3D

12

16

13

17

00

32

18

32

19

00

16

17

18

19

1A

34

5A

56

00

FE

01

24

06

08

F0

E7

02

69

F9

F5

1C

00

F9

LDA

ASL

TAX

LDA

STA

LDA

STA

LDY

LDA

STA

INY

LDA

STA

LDA

EOR

EOR

EOR

EOR

STA

JSR

LDX

JSR

LDY

BVC

CLV

LDA

CMP

BNE

INY

CPY

BNE

RTS

DEX

BNE

LDA

JMP

$3D

A

$12,X

$16

$13,X

$17

#$00

($32)O

$18

($32),H

$19

#$00

$16

$17

$18

$19

$1A

$F934

#$5A

$F556

#$00

$F53D

$1CO1

$0024,Y

$F54E

#$08

$F53D

$F538

#$02

$F969

Get drive number of job

and corresponding

ID

First ID character

transferred to jheader buffer

Second ID character

transferred to header buffer

Clear buffer pointer

Get track # frm current buffr &

transfer to jheader buffer

Set buffer pointer to next char

Get sector # from curr. buffr

& transfer to header buffer

Calculate checksum of

sector header made

available

and write

to

header buffer

Convrt sector header to GCRbytes

Number of read searches(90)

Wait for next sync-marking

Clear buffer pointer

Wait for next byte from disk

Get flag again for

byte from read head

& compare with available header

Values identical?

YES—set buffer pntr to next char

Compare with # of header bytes

Entire header tested?

Return from this subroutine

Decrement read search counter

Any more read searches?

Display error message:

"20 Read error"

ROM-273

Abacus Software 1571 Internals

[BF1E/F3BB/F50D/F538/FB1D/FD39/FD62]

Wait for next sync-mark

CF. 9754

F556

F558

F55B

F55D1

F560

F562

F565

F567

F56A

F56B

F56D

A9

8D

A9

2C

10

2C

30

AD

B8

A0

60

DO

05

03

05

Fl

00

F6

01

00

18

18

1C

1C

LDA

STA

LDA

BIT

BPL

BIT

BMI

LDA

CLV

LDY

RTS

#$D0

$1805

#$03

$1805

$F553

$1COO

$F55D

$1CO1

#$00

Set timer to about 53 MS and

start

Number for "21 Read error"

Get condition of timer

Is timer running?

Get condition of sync-flag

Has sync-mark been found?

YES-intialize head

Read electronic readied again

Set processor flags

Return from this subroutine

[F4CE] cf. 976E

Write sector when jobcode $90 (Command bit $10)

F5 6E C9 10 CMP #$10 Compare with 'write1 jobcode

F570 F0 03 BEQ $F575 Identical?

F572 4C 91 F6 JMP $F691 NO-Jobcode search continues

Write

F5751

F578

F57A

F57D

F57F

F581

F583

F5861

F589

F58C

F58E2
F590

F591

F592

F594

F596

F599

F59C

F59E

F5A0

F5A3

F5A5

F5A7

F5AA

F5AB2

F5AD

sector

20

85

AD

29

DO

A9

4C

20

20

A2

50

B8

CA

DO

A9

8D

AD

29

09

8D

A9

A2

8D

B8

50

B8

E9

3A

00

10

05

08

69

8F

10

09

FE

FA

FF

03

OC

IF

CO

OC

FF

05

01

FE

F5

1C

F9

F7

F5

1C

1C

1C

1C

JSR

STA

LDA

AND

BNE

LDA

JMP

JSR

JSR

LDX

BVC

CLV

DEX

BNE

LDA

STA

LDA

AND

ORA

STA

LDA

LDX

STA

CLV

BVC

CLV

$F5E9

$3A

$1COO

#$10

$F586

#$08

$F969

$F78F

$F510

#$09

$F58E

$F58E

#$FF

$1CO3

$1COC

#$1F

#$co

$1COC

#$FF

#$05

$1CO1

$F5AB

Compute buffer checksum

and save it

drive control register

Get 'Write Protect' bit flag

Is there a write protect?

YES-Display error message:

'26 Write Protect On'

Convert buffer to GCR-Code

Search block header of sector

Number of bytes on header

Byte read from diskette?

YES—Byte Ready set up

Read over next byte

Entire block header jumped over?

YES-Switch register for head

to output

Get drive control register

Place controller circuitry

on write mode and

set in register

Sync-marking value

Number of sync-bytes for marking

Transfer byte to head

Prepare Byte Ready flag

Wait until byte is written

Prepare Byte Ready flag

ROM-274

Abacus Software 1571 Internals

F5AE

F5AF

F5B1

F5B31

F5B61

F5B8

F5B9

F5BC

F5BD

F5BF1

F5C11

F5C3

F5C4

F5C7

F5C8

F5CA1

F5CC

F5CF

F5D1

F5D4

F5D6

F5D9

F5DC

F5DE

F5E1

F5E3

F5E6

CA

DO

AO

B9

50

B8

8D

C8

DO

Bl

50

B8

8D

C8

DO

50

AD

09

8D

A9

8D

20

A4

B9

49

99

4C

FA

BB

00

FE

01

F4

30

FE

01

F5

FE

OC

EO

OC

00

03

F2

3F

00

30

00

Bl

01

1C

1C

1C

1C

1C

F5

00

00

F3

DEX

BNE

LDY

LDA

BVC

CLV

STA

INY

BNE

LDA

BVC

CLV

STA

INY

BNE

BVC

LDA

ORA

STA

LDA

STA

JSR

LDY

LDA

EOR

STA

JMP

$F5AB

#$BB

$0100,1

$F5B6

$1CO1

$F5B3

($30),1

$F5C1

$1CO1

$F5BF

$F5CA

$1COC

#$E0

$1COC

#$00

$1CO3

$F5F2

$3F

$0000,Y

#$30

$0000,Y

$F3B1

Counter for number of sync-bytes

All sync-bytes on diskette?

YES-Buffr pointr to status buffer

Get byte from buffer

Wait til write circuitry is ready

Flag reset

Write byte to diskette

Pointer to next char in buffer

Entire buffer written?

YES-Get byte from file buffer

Wait until diskette is ready

Flag reset and

write byte to diskette

Pointer to next byte in buffer

Entire buffer written up?

YES-Wait til last byte is

completely written and then

switch controller circuitry

to read

Switch read head register

to input

Convert buffer from GCR to binary

Current buffer number

Get jobcode for it and

establish jobcode

for 'Verify'

Check execution

[96FD/9775/989E/9C1B/BF2A/F4FB/F575/F698/FCA2]
Calculate buffer checksum

F5E9 A9 00 LDA #$00 Clear checksum value and

F5EB A8 TAY pointer to buffer position

F5EC1 51 30 EOR ($30),Y Compute byte from buffer checksum
F5EE C8 INY Set pointer to next byte

F5EF DO FB BNE $F5EC Entire buffer calculated?

F5F1 60 RTS YES-Return from subroutine

[F5D9/F972] vgl. 97F9

Data buffer and status buffer converted from GCR to binary

F5F2 A9 00 LDA #$00 Initialize low-byte of pointer

F5F4 85 2E STA $2E forthe current data buffer and

F5F6 85 30 STA $30 status buffer

F5F8 85 4F STA $4F Retain momentary value of pointer

F5FA A5 31 LDA $31 to current data buffer

F5FC 85 4E STA $4E in $4E/$4F

F5FE A9 01 LDA #$01 Set buffer pointer

F600 85 31 STA $31 of $1BB

ROM-275

Abacus Software
1571 Internals

F602

F604

F606

F608

F60A

F60D

F60F

F611

F613

F615

F617

F618

F61A

F61C

F61D

F61F

F621

F622

F624

F627

F629

F62B

F62D

F62E

F630

F632

F633

F635

F637

F639

F63A

F63C

F63E

F63F

F641

85 2F

A9 BB

85 34

85 36

20 E6 F7

A5 52

85 38

A4 36

A5 53

91 2E

C8

A5 54

91 2E

C8

A5 55

91 2E

C8

84 36

1 20 E6 F7

A4 36

A5 52

91 2E

C8

A5 53

91 2E

C8

F0 OE

A5 54

91 2E

C8

A5 55

91 2E

C8

84 36

DO El

F6431 A5 54

F645 91 30

F647 C8

F648 A5 55

F64A

F64C

91 30

C8

F64D 84 36

F64F1 20 E6 F7

F652

F654

F656

F658

A4 36

A5 52

91 30

C8

STA $2F

LDA #$BB

STA $34

STA $36

JSR $F7E6

LDA $52

STA $38

LDY $36

LDA $53

STA ($2E),Y

INY

LDA $54

STA ($2E),Y

INY

LDA $55

STA <$2E),Y

INY

STY $36

JSR $F7E6

LDY $36

LDA $52

STA <$2E),Y

INY

LDA $53

STA <$2E),Y

INY

BEQ $F643

LDA $54

STA ($2E),Y

INY

LDA $55

STA <$2E),Y

INY

STY $36

BNE $F624

LDA $54

STA ($30),Y

INY

LDA $55

STA ($30),Y

INY

STY $36

JSR $F7E6

LDY $36

LDA $52

STA ($30),Y

INY

High-byte of status buffer

Turn buffr pointer for conversion

to start of status buffer

Set pntr to curr binary byte pos.

Convert 5 GCRbytes to 4binary #'s

Get 1st converted byte & save as

identifier for data blockheader

Get buffer pointer

Get 2nd byte to be converted and

write to temporary buffer

Set buffer pointer to next byte

Get 3rd converted byte

and write to temporary buffer

Pointer to next byte

Get last converted byte and

store in temporary buffer

Pointr to next position in buffer

—mark it

Convert next 5 GCR-bytes

Get buffer pointer

Get 1st converted byte and

write to temporary buffer

Set pointer to next byte

Get 2nd converted byte

and write to temporary buffer

Set pointer to next byte

All temp, buffer bytes gotten?

NO-Get 3rd converted byte and

write to temp, buffer

Buffer pointer on next byte pos.

Get 4th converted byte and

write to temp, buffer

Pointer to next byte in buffer

and save it

Last byte from temporary buffer?

YES-Get 3rd converted byte

and write to data buffer

Set buffer pointer to next byte

Get last converted byte and

write to data buffer

Set buffer pointer to next char

and save it

Next 5 GCR-bytes into binary

Get buffer pointer

Get 1st converted byte and

write to data buffer

Set buffer pointer to next byte

ROM-276

Abacus Software 1571 Internals

F659

F65B

F65D

F65E

F660

F662

F663

F665

F667

F668

F66A

F66C

F66E

F670

F672

F674

F676

F6781

F67A

F67C

F67D

F67F

F681

F6831

F6851

F688

F68A

F68B

F68C

F68E

F690

A5

91

C8

A5

91

C8

A5

91

C8

84

CO

90

A9

85

A5

85

AO

Bl

91

88

DO

Bl

91

A2

BD

91

C8

E8

DO

86

60

53

30

54

30

55

30

36

BB

El

45

2E

31

2F

BA

30

2E

F9

30

2E

BB

00 01

30

F7

50

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STY

CPY

BCC

LDA

STA

LDA

STA

LDY

LDA

STA

DEY

BNE

LDA

STA

LDX

LDA

STA

INY

INX

BNE

STX

RTS

$53

($30),

$54

($30),

$55

($30),

$36

#$BB

$F64F

#$45

$2E

$31

$2F

#$BA

($30),

($2E),

$F678

($30),

($2E),

#$BB

$0100,

($30),

$F685

$50

Y

Y

Y

Y

Y

Y

Y

X

Y

Get 2nd converted byte

Write to data buffer

Correct buffer pointer

Get 3rd converted byte

Write in data buffer

Pointer to next byte in buffer

Get last converted byte

Write in data buffer

Set buffer pointer to next byte

and save it

Compar buffr pointer w/end value

All bytes converted into binary?

YES-Pointer set to

destination address

of shift operations

to follow

Buffr pointr to begin/data buffer

Get byte frm lowst part of buffer

shift to uppermost part

Pointer to next character

Entire lower section copied?

Copy lowest byte

into highest part

Set buffr pointer to status buffr

Get byte frm status buffer and

put in lowest free data buffer

Increment status buffer pointer &

increment data buffer pointeer

Entire stats buffr in data buffr?

YES-Clr1Buffer in GCR-Code• flag

Return from subroutine

[F572] cf. 9898

Compare sector from diskette w/ buffer contents, when jobcode $A0

F691 C9 20 CMP #$20 Compare jobcode w/ 'Verify1 code

F693 F0 03 BEQ $F698 Identical?

F695 4C CA F6 JMP $F6CA NO-Decode jobcode further

Sector verify

Compute data buffer checksum

and save it

Convert buffer to GCR-code

Set head to sector start on disk

Buffr pointr to start/stats buffr

Get byte from status buffer

Wait til byte from disk is ready

Get flag ready again

F698X

F69B

F69D

F6A0

F6A3

F6A51

F6A81

F6AA

20

85

20

20

A0

B9

50

B8

E9

3A

8F

0A

BB

00

FE

F5

F7

F5

01

JSR

STA

JSR

JSR

LDY

LDA

BVC

CLV

$F5E9

$3A

$F78F

$F50A

#$BB

$0100

$F6A8

ROM-277

Abacus Software 1571 Internals

F6AB

F6AE

F6B0

F6B1

F6B31

F6B51

F6B7

F6B8

F6BB

F6BD

F6BE

F6C0

F6C2

F6C51

F6C7

4D

DO

C8

DO

Bl

50

B8

4D

DO

C8

CO

DO

4C

A9

4C

01

15

F2

30

FE

01

08

FD

Fl

18

07

69

1C

1C

F4

F9

EOR

BNE

INY

BNE

LDA

BVC

CLV

EOR

BNE

INY

CPY

BNE

JMP

LDA

JMP

51C01

$F6C5

$F6A5

($30)

$F6B5

$1CO1

$F6C5

#$FD

$F6B3

$F418

#$07

$F969

Get byte from head and compare

Byte from buffer & disk equal?

YES—Pointer to next buffer byte

Entire status buffer compared?

YES-Get byte from data buffer

Wait until byte is read from disk

and get head ready again

Get byte from head abd compare

Byte from disk and buffer equal?

YES-Buffer pointer to next char

Compare with end value of buffer

All bytes compared?

Verify if successful

Display error message —

•25 Write Error1

[F695] cf. 98CE

Look for sector header (jobcode $B0)

F6CA

F6CD

20 10 F5

4C 18 F4

JSR $F510

JMP $F418

Look for sector header

Prepare return message

[F7E3/FE64/F7BC/F950/F961/FE5E]

Convert 4 Binary bytes into 5 GCR-bytes. $52-$55 will be used

as buffer for the binary values

F6D0 A9 00 LDA #$00 Clear temporary

F6D2 85 57 STA $57 memory storage for

F6D4 85 5A STA $5A GCR-bytes

F6D6 A4 34 LDY $34 Pointer to current GCR-byte

F6D8 A5 52 LDA $52 Get first character

F6DA 29 F0 AND #$F0 to be converted from

F6DC 4A LSR A binary buffer;

F6DD 4A LSR A isolate most significant part of

F6DE 4A LSR A byte (bits 4-7) and copy to least

F6DF 4A LSR A significant part

F6E0 AA TAX then get the halfbytes of the

F6E1 BD 7F F7 LDA $F77F,X corresponding 5-bit-GCR-code

F6E4 0A ASL A Copy the 5 bits into the

F6E5 0A ASL A higher part

F6E6 0A ASL A and save parts of

F6E7 85 56 STA $56 bytes (bits 3-7)

F6E9 A5 52 LDA $52 Get first byte to be converted &

F6EB 29 OF AND #$0F isolate lowest part;

F6ED AA TAX Then pass it to half-byte

F6EE BD 7F F7 LDA $F77F,X Get 5-bit-GCR code

ROM-278

Abacus Software 1571 Internals

F6F1 6A ROR A Two lowest bits,when there is no

F6F2 66 57 ROR $57 more room if 1st byte(8 bits turn

F6F4 6A ROR A to 10 bits)-bring them into the

F6F5 66 57 ROR $57 second GCR-byte

F6F7 29 07 AND #$07 Combine the 3 remaining bits into

F6F9 05 56 ORA $56 the first GCR-byte

F6FB 91 30, STA ($30),Y and write GCR-byte to buffer

F6FD C8 INY Buffer pointer to next character

F6FE A5 53 LDA $53 Get second byte for conversion

F700 29 F0 AND #$F0 Get 1st part to be converted

F702 4A LSR A & move to least significant

F703 4A LSR A half-byte

F704 4A LSR A Equivalent binary byte to

F705 4A LSR A be used for pointer

F706 AA TAX Get corresponding

F707 BD 7F F7 LDA $F77F,X 5-bit-GCR-code and

F70A 0A ASL A Set in 2nd GCR-byte

F70B 05 57 ORA $57 in bit positions 1-5

F70D 85 57 STA $57

F70F A5 53 LDA $53 Get 3rd byte to be converted and

F711 29 OF AND #$0F isolate least significant part,

F713 AA TAX then get corresponding

F714 BD 7F F7 LDA $F77F,X 5-bit GCR-byte

F717 2A ROL A Set GCR-byte

F718 2A ROL A in bit positions 4-7

F719 2A ROL A of the 3rd GCR-byte

F71A 2A ROL A and

F71B 85 58 STA $58 save

F71D 2A ROL A Transfer last GCR-bit

F71E 29 01 AND #$01 to next

F720 05 57 ORA $57 GCR-byte

F722 91 30 STA ($30),Y Write GCR-byte to buffer

F724 C8 INY Set buffer pointer to next byte

F725 A5 54 LDA $54 Get 3rd bin. byte to be converted

F727 29 F0 AND #$F0 and isolate most significant

F729 4A LSR A parts (bits 4-7)

F72A 4A LSR A Shift half-byte(least sig.) and

F72B 4A LSR A Set up pointer for equivalent

F72C 4A LSR A binary bytes, and

F72D AA TAX half-byte as corresponding

F72E BD 7F F7 LDA $F77F,X 5-bit GCR code

F731 18 CLC byte shifted 1 place to the right,

F732 6A ROR A and a null bit inserted

F733 05 58 ORA $58 GCR-value w/previous combinations

F735 91 30 STA ($30),Y Write GCR-byte to buffer and

F737 C8 INY increment buffer pointer

F738 6A ROR A Get previously-moved bit 0 and

ROM-278

Abacus Software 1571 Internals

F739

F73B

F73D

F73F

F741

F742

F745

F746

F747

F749

F74B

F74D

F74F

F751

F752

F753

F754

F755

F756

F759

F75A

F75C

F75D

F75F

F760

F7 62

F764

F766

F768

F769

F7 6B

F7 6D

F76F1
F771

F773

F774

F777

F779

F77B

F77C

F77E

29

85

A5

29

AA

BD

OA

OA

29

05

85

A5

29

4A

4A

4A

4A

AA

BD

6A

66

6A

66

6A

66

29

05

91

C8

DO

A5

85

A5

29

AA

BD

05

91

C8

84

60

80

59

54

OF

7F F7

7C

59

59

55

FO

7F F7

5A

5A

5A

03

59

30

04

2F

31

55

OF

7F F7

5A

30

34

AND

STA

LDA

AND

TAX

LDA

ASL

ASL

AND

ORA

STA

LDA

AND

LSR

LSR

LSR

LSR

TAX

LDA

ROR

ROR

ROR

ROR

ROR

ROR

AND

ORA

STA

INY

BNE

LDA

STA

LDA

AND

TAX

LDA

ORA

STA

INY

STY

RTS

#$80

$59

$54

#$0F

$F77F,

A

A

#$7C

$59

$59

$55

#$F0

A

A

A

A

$F77F,

A

$5A

A

$5A

A

$5A

#$03

$59

($30),

$F76F

$2F

$31

$55

#$0F

$F77F

$5A

($30)

$34

X

X

,Y

,x

,Y

take up next

GCR-byte

Set least sig. part (bit 0-3)

of 3rd byte to be converted

and determine the 5-bit GCR

code to be adapted

Set GCR-value in positions

2-6 and Save as 2nd part

of the 4th

GCR-byte

Save GCR-byte

Get 4th bin. byte to be converted

and isolate most significant part

(4-7)

Half-byte in least sig. bytehalves

shifted so that bytes can serve as

pointers for the GCR-values

then get the binary byte's

corresponding 5-bit-GCR-code

First 3 bits of

GCR-value (position 0-2)

transferred to positions

5-7 of the last

GCR-value

Carry the

remaining 2 bits

Combine with preceding GCR-value

and write to buffer

Set buffer pointer to next byte

End of buffer reached?

YES—Set pointer to data buffer

again

Get last half-byte from last

binary byte, and

save it

Establish GCR-value, and

combine with last GCR byte

Write byte to buffer

Set buffer pointer to next byte &

save it

Return from this subroutine

[F6E1/F6EE/F707/F714/F72E/F7 42/F756/F77 4]

F77F 0A 0B 12 13 0E OF 16 17 This table of 16 half-bytes

F787 09 19 1A IB 0D ID IE 15 correspond to 5-bit-GCR-bytes

ROM-279

Abacus Software 1571 Internals

[9706/9BA3/9C20/F586/F69D/FCA7]

Buffer

F78F

F791

F793

F795

F797

F799

F7 9B

F7 9D

F7 9F

F7A1

F7A3

F7A5

F7A7

F7A9

F7AB

F7AD

F7AF

F7B0

F7B2

F7B4

F7B5

F7B7

F7B9

F7BA1

F7BC

F7BF

F7C1

F7C3

F7C5

F7C6

F7C8

F7CA

F7CC

F7CD

F7CF

F7D1

F7D2

F7D4

F7D6

contents

A9

85

85

85

A9

85

85

A5

85

A9

85

A5

85

A4

Bl

85

C8

Bl

85

C8

Bl

85

C8

84

20

A4

Bl

85

C8

F0

Bl

85

C8

Bl

85

C8

Bl

85

C8

00

30

2E

36

BB

34

50

31

2F

01

31

47

52

36

2E

53

2E

54

2E

55

36

DO F6

36

2E

52

11

2E

53

2E

54

2E

55

converted from

LDA

STA

STA

STA

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STY

JSR

LDY

LDA

STA

INY

BEQ

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

#$00

$30

$2E

$36

#$BB

$34

$50

$31

$2F

#$01

$31

$47

$52

$36

<$2E),Y

$53

($2E),Y

$54

($2E),Y

$55

$36

$F6D0

$36

<$2E),Y

$52

$F7D9

($2E),Y

$53

($2E),Y

$54

($2E),Y

$55

binary to GCR-bytes

Lo-bytes of pmtrs set to null:

pointer to current GCR-buffer

pointer to current binary buffer

pointer to current buffer position

Lo-byte for pointer set on

conditional buffer

Flag for "buffer in GCR-code"

Set pointer for current data

buffer

Turn pointer to conditional buffer

(high byte)

Identifier for data block

set as first char to be converted

Get buffer pointer

Get data byte from buffer and save

as 1st char to be converted

Increment buffer pointer

Get next data byte and save as 2nd

byte to be converted

Set buffer pointer to next char,

Get byte frm databuffer & save as

third byte to be converted

Set buffer pntr to next byte, and

save

4 bin.bytes convrted to 5 GCRbytes

Get buffer pointer again

Get next byte to be converted and

save in temporary storage

Set buffer pointer to next char

End of interim buffers reached?

Get 2nd data byte for conversion,

and save it

Increment buffer pointer

Get third byte for conversion and

store in GCR buffer

Set buffer pointer to next byte

Get 4th byte for conversion and

save it

Set buffer pointer to next char

ROM-280

Abacus Software 1571 Internals

F7D7

F7D91

F7DB

F7DD

F7DF

F7E1

DO

A5

85

A9

85

85

El

3A

53

00

54

55

BNE

LDA

STA

LDA

STA

STA

$F7BA

$3A

$53

#$00

$54

$55

F7E3 4C DO F6 JMP $F6D0

Entire buffer converted?

Save data block

checksum

and put fill characters in

the remainder of the

GCR work buffer

4 binary bytes to 5 GCR-values

[BF2D/F4A9/F4B8/F60A/F624/F64F/F8F4/F90E]

5 GCR-bytes converted into 4 binary bytes

VGL. 98D9

F7E6

F7E8

F7EA

F7EC

F7ED

F7EE

F7EF

F7F1

F7F3

F7F5

F7F6

F7F7

F7F9

F7FA

F7FC

F7FE

F800

F8021

F804

F806

F807

F808

F809

F80B

F80D

F80F

F811

F812

F814

F816

F818

F819

F81A

F81B

F81C

F81E

F81F

A4 34

Bl 30

29 F8

4A

4A

4A

85 56

Bl 30

29 07

0A

0A

85 57

C8

DO 06

A5 4E

85 31

A4 4F

Bl 30

29 CO

2A

2A

2A

05 57

85 57

Bl 30

29 3E

4A

85 58

Bl 30

29 01

0A

0A

0A

OA

85 59

C8

Bl 30

LDY $34

LDA ($30),Y

AND #$F8

LSR A

LSR A

LSR A

STA $56

LDA ($30),Y

AND #$07

ASL A

ASL A

STA $57

INY

BNE $F802

LDA $4E

STA $31

LDY $4F

LDA ($30),Y

AND #$C0

ROL A

ROL A

ROL A

ORA $57

STA $57

LDA ($30),Y

AND #$3E

LSR A

STA $58

LDA ($30),Y

AND #$01

ASL A

ASL A

ASL A

ASL A

STA $59

INY

LDA ($30),Y

Get buffer pointer again

Get first byte from buffer and

isolate the

5-bit GCR value

Then set up 8-bit value whereby

the 5 GCR-bits take up

positions 0-4 , and save value

Get 2nd byte from buffer and

isolate 3 bits of next GCR-byte,

and move to bit positions

0-4

Save resulting GCR-byte

Set buffer pointer to next char

End of buffer reached?

Set up pointer to current

data buffer

Pointer to buffer position

Get 2nd GCR-byte

& remaining 2 bits of GCR-value

and move to proper

position

(Bits 0-1)

Combine 1st section

Save GCR-value

Get GCR-byte from buffer

Set up next GCR-value

and set in output position

Save value

Get next GCR-byte

& get 1ST part of next GCR-value

Get

bit in

position 4

of the byte

and save value

Set pointer to next byte

and get GCR-byte from buffer

ROM-281

Abacus Software 1571 Internals

F821

F823

F824

F825

F826

F827

F829

F82B

F82D

F82F

F830

F832

F833

F835

F837

F838

F839

F83A

F83C

F83E

F840

F842

F844

F845

F846

F848

F84A

F84C

F84D

F84E

F84F

F851

F852

F854

F856

F858

F85A

F85C

F85E

F85F

F860

F861

F862

F864

F866

F868

F86A

29

4A

4A

4A

4A

05

85

Bl

29

0A

85

C8

Bl

29

18

2A

2A

29

05

85

Bl

29

4A

4A

85

Bl

29

OA

OA

OA

85

C8

DO

A5

85

A4

Bl

29

2A

2A

2A

2A

05

85

Bl

29

85

FO

59

59

30

OF

5A

30

80

01

5A

5A

30

7C

5B

30

03

5C

06

4E

31

4F

30

EO

5C

5C

30

IF

5D

AND

LSR

LSR

LSR

LSR

ORA

STA

LDA

AND

ASL

STA

INY

LDA

AND

CLC

ROL

ROL

AND

ORA

STA

LDA

AND

LSR

LSR

STA

LDA

AND

ASL

ASL

ASL

STA

INY

BNE

LDA

STA

LDY

LDA

AND

ROL

ROL

ROL

ROL

ORA

STA

LDA

AND

STA

#$F0

A

A

A

A

$59

$59

($30),

#$0F

A

$5A

($30),

#$80

A

A

#$01

$5A

$5A

($30)

#$7C

A

A

$5B

($30)

#$03

A

A

A

$5C

$F85A

$4E

$31

$4F

($30)

#$E0

A

A

A

A

$5C

$5C

($30)

#$1F

$5D

Get 2nd part of GCR-value

and

shift the lower

half of the byte

(positions 0-3)

Combine with previous bits

and save GCR vlaue

Get GCR-byte from buffer again

and then get the 1st four bits

of the next GCR-value

and save them

Buffer pointer to next byte

Get GCR-byte from buffer

and get last bit of

preceding

GCR-value

Move bit to position 0

of byte and combine with

4 previous bits

Save GCR-value

Get GCR-byte from buffer again

Isolate GCR-value

and shift postions 0-4

of byte

Save value

Get GCR-byte again

and get 2 bits of the

next GCR-value

Shift bits in postions

3 and 4

Save value

Buffer pointer to next byte

End of buffer reached?

Turn buffer pointer to

current data buffer

Get position pointer again

Read GCR-byte from buffer

and isolate remaining 3 bits from

previous GCR-values

Shift bits in positions

0-2

(using a carry)

Combine previous 2 bits

Save pure GCR-value

Get byte from GCR-buffer

Isolate last GCR-value

and save it

ROM-282

Abacus Software 1571 Internals

F86C

F86D

F86F

F871

F874

F876

F879

F87B

F87D

F880

F882

F885

F887

F889

F88C

F88E

F891

F893

F895

F898

F89A

F89D

F89F

C8

84

A6

BD

A6

ID

85

A6

BD

A6

ID

85

A6

BD

A6

ID

85

A6

BD

A6

ID

85

60

34

56

A0

57

CO

52

58

AO

59

CO

53

5A

AO

5B

CO

54

5C

AO

5D

CO

55

F8

F8

F8

F8

F8

F8

F8

F8

INY

STY

LDX

LDA

LDX

ORA

STA

LDX

LDA

LDX

ORA

STA

LDX

LDA

LDX

ORA

STA

LDX

LDA

LDX

ORA

STA

RTS

$34

$56

$F8A0,X

$57

$F8C0,X

$52

$58

$F8A0,X

$59

$F8C0,X

$53

$5A

$F8A0,X

$5B

$F8C0,X

$54

$5C

$F8A0,X

$5D

$F8C0,X

$55

Buffer pointer to next byte,

and save it

Load 1st 5-bit-GCR-byte

and equivalent most sig. part

with least sig. part, by which

the 2nd GCR-byte declares,

combines & saves as binary bytes

Load 3rd 5-bit GCRbyte and equiv.

most sig. part with the least

sig. part, through which the 4th

GCR-byte will declare, combine &

save as binary bytes

Load 5th 5-bit-GCRbyte and equiv.

most sig. part with the least

sig. part, by which

the 6th GCR-byte will declare,

combine and save as binary bytes

Load 7th 5-bit-GCRbyte and equiv.

most sig. part with the

least sig. part, by which

the 8th GCR-byte will declare,

combine and save as binary bytes

Return from this subroutine

Table of the most significant parts of GCR equivalents of binary

bytes; $FF means that this GCR value is undefined

F8A0 FF FF FF FF FF FF FF FF

F8A8 FF 80 00 10 FF CO 40 50

F8B0 FF FF 20 30 FF F0 60 70

F8B8 FF 90 A0 B0 FF DO E0 FF

Table of the least significant parts of GCR equivalents of binary

bytes; $FF means that this GCR value is undefined

F8C0 FF FF FF FF FF FF FF FF

F8C8 FF 08 00 01 FF 0C 04 05

F8D0 FF FF 02 03 FF OF 06 07

F8D8 FF 09 0A 0B FF 0D 0E FF

ROM-283

Abacus Software 1571 Internals

Convert status

F8E0

F8E2

F8E4

F8E6

F8E8

F8EA

F8EC

F8EE

F8F0

F8F2

F8F4

F8F7

F8F9

F8FB

F8FD

F8FF

F901

F902

F904

F906

F907

F909

F90B

F90C1

F90E

F911

F913

F915

F917

F918

F91A

F91C

F91E

F91F

F921

F923

F924

F926

F928

F929

F92B1

F92D

F92F

F931

F933

A9

85

85

85

A9

85

A9

85

A5

85

20

A5

85

A4

A5

91

C8

A5

91

C8

A5

91

C8

84

20

A4

A5

91

C8

F0

A5

91

C8

A5

91

C8

A5

91

C8

DO

A5

85

A5

85

60

00

34

2E

36

01

4E

BA

4F

31

2F

E6 F7

52

38

36

53

2E

54

2E

55

2E

36

E6 F7

36

52

2E

11

53

2E

54

2E

55

2E

El

53

3A

2F

31

buffer

LDA

STA

STA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STY

JSR

LDY

LDA

STA

INY

BEQ

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

BNE

LDA

STA

LDA

STA

RTS

from

#$00

$34

$2E

$36

#$01

$4E

#$BA

$4F

$31

$2F

$F7E6

$52

$38

$36

$53

<$2E),

$54

<$2E),

$55

($2E)

$36

$F7E6

$36

$52

($2E)

$F92B

$53

($2E)

$54

($2E)

$55

($2E)

$F90C

$53

$3A

$2F

$31

GCR to

,Y

,Y

,Y

,Y

,Y

,Y

,Y

binary

Reset pointer to

current GCR-byte

Clear pointer to target buffer

Pointer to current data position

Set pointers $4E/$4F to

the beginning of the

status buffer

from $01BB-$01FF

Set buffer pointer to value of

current data buffer

Convrt 5 GCRbytes to 4binarybytes

Set first converted byte as

header block identifier

Set pointer in buffer

Write second converted byte into

current data buffer

Write third

converted byte

into current data buffer

Write fourth

converted byte into

current data buffer

Set buffer pointer to next byte;

save it down

Convrt 5 GCRbytes to 4binarybytes

Get buffer pointer again

Write first conveted byte

into current data buffer

Set buffer pointer to next byte

Data buffer full?

NO-Write second converted byte

into current data buffer

Write third converted

byte into the

current data buffer

Write fourth converted

byte into the

current data buffer

Set buffer pointer to next byte

Data buffer already full?

YES—Then save second converted

byte as checksum (parity)

Prepare pointer to

current data buffer

Return from this subroutine

ROM-284

Abacus Software 1571 Internals

[972E/BF1B/F533]

Convert sector

F934

F936

F938

F93A

F93C

F93E

F940

F942

F944

F946

F948

F94A

F94C

F94E

F950

F953

F955

F957

F959

F95B

F95D

F95F

F961

F964

F966

F968

A5

85

A9

85

A9

85

A5

85

A5

85

A5

85

A5

85

20

A5

85

A5

85

A9

85

85

20

A5

85

60

31

2F

00

31

24

34

39

52

1A

53

19

54

18

55

DO F6

17

52

16

53

00

54

55

DO F6

2F

31

header

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

STA

LDA

STA

STA

JSR

LDA

STA

RTS

into GCR

$31

$2F

#$00

$31

#$24

$34

$39

$52

$1A

$53

$19

$54

$18

$55

$F6D0

$17

$52

$16

$53

#$00

$54

$55

$F6D0

$2F

$31

-bytes

Take up pointer

to current data buffer

Turn data pointer to

header buffer

which begins

at $24

Identifier for blockheader (8)

in temp storage for GCR-routine

Blockheader checksum in

temporary storage for GCR-routine

Data block sector number in

temporary storage for GCR-routine

Track number of data block

in temp storage for GCR-Routine

Convrt 4binarybytes to 5 GCRbytes

2nd character of ID

in temp storage for GCR-Routine

First character of ID

in temp storage for GCR-Routine

Temporary storage for GCR-Routine

filled with

two empty spaces

Convrt 4binarybytes to 5 GCRbytes

Prep current

data buffer pointer

Return from this subroutine

[BF12/F2D5/F390/F40D/F420/F4F8/F507/F553/F583/F6C7/FDA0/FDE2]cf99B5

End current job; prepare error return message

F969

F96B

F96E

F970

F972

F975

F978

F97A

F97B

A4 3F

99 00

A5 50

F0 03

20 F2

20

A6

9A

4C BE F2

00

F5

8F F9

49

LDY $3F Buffer number of job

STA $0000,Y Error message in command register

LDA $50 Flag for GCR-format

BEQ $F975 Data still in GCR-code?

JSR $F5F2 YES-Convert GCR-data

JSR $F98F Drive motor off

LDX $4 9 Temporary storage for Stack

TXS Reset stack to read whether

JMP $F2BE a new job is there

[92F5/F2DF]

Drive motor on;

F97E A9 A0

F980 85 20

F982 AD 00 1C

F985 09 04

wait until motor is constantly on

LDA #$A0 Set 'Motor runs on1 flag

STA $20 as drive status

LDA $lC00 Get control register

ORA #$04 and set motor bit (Bit2)

ROM-285

Abacus Software 1571 Internals

F987

F98A

F98C

F98E

8D

A9

85

60

00 1C

32

48

[86CF/98C1/F975]

Drive

F98F

F991

F993

F995

F997

motor off

A6

A5

09

85

4C

3E

20

10

20

2B A6

STA

LDA

STA

RTS

LDX

LDA

ORA

STA

JMP

$1COO

#$32

$48

$3E

$20

#$10

$20

$A62B

to 'motor on1 (=1)

Set counter for 0.8 / 0.4 sees,

delay time

Return from this subroutine

Current drive

Get drive status and switch off

flag for

'motor off1

Set runtime counter

F99A EA

F99B EA

NOP

NOP

unused [1541 ROM

modification]

[BF6F/F2E6/F2F0/F2F6/F31D/F48A/FAF2/FAFD/FD93/FDD8]

Main disk control routine

F99C

F99F

F9A2

F9A5

F9A7

F9A9

AD 07 1C

8D 05 1C

AD 00 1C

29 10

C5 IE

85 IE

LDA $1CO7

STA $1CO5

LDA $1COO

AND #$10

CMP $1E

STA $1E

F9AB 4C 34 A6 JMP $A634

Timer w/# of time

set until next IRQ

Check status of light box for

write-protect on disk

or disk change

Save write-protect status

Switch motor

F9AE EA

F9AF EA

F9B0 EA

NOP

NOP

NOP

Unused

section, due to modification

of 1541-ROM

[A657]

Control head

F9B1 AD FE 02

F0 15

C9 02

DO 07

A9 00

8D FE 02

F0 0A

85 4A

A9 02

8D FE 02

4C 2E FA

=>2 A6 3E

30 07

A5 20

A8

F9B4

F9B6

F9B8

F9BA

F9BC

F9BF

F9C11

F9C3

F9C5

F9C8

F9CB2
F9CD

F9CF

F9D1

LDA $02FE Status flag for step-motor

BEQ $F9CB Is the head on the chosen track?

CMP #$02 NO-Is the head even positioned

BNE $F9C1 on the chosen track area?

LDA #$00 YES-Set 'head on

STA $02FE track' flag

BEQ $F9CB Jump to $F9CB

STA $4A Counter for number of half-steps

LDA #$02 Set head status flag to

STA $02FE 'Head on track' and move a

JMP $FA2E 1/2 step along on chosen track

LDX $3E Drive motor status

BMI $F9D6 Motor running?

LDA $20 YES-Test drive status flag

TAY Save it down

ROM-286

Abacus Software 1571 Internals

F9D2

F9D4

F9D62
F9D91

F9DB

F9DD

F9DE

F9E0

F9E2

F9E41

F9E6

F9E8

F9EA

F9EC

F9ED

F9F0

F9F2

F9F4

F9F6

F9F8

F9FA3

F9FB

F9FD

F9FF

FA021

C9

DO

4C

C6

DO

98

10

29

85

29

FO

C6

DO

EA

20

A9

85

A9

85

FO

98

29

DO

4C

6C

20

03

BE

48

ID

04

7F

20

10

12

35

OE

70

FF

3E

00

20

DC

40

03

BE

62

FA

87

FA

00

CMP

BNE

JMP

DEC

BNE

TYA

BPL

AND

STA

AND

BEQ

DEC

BNE

NOP

JSR

LDA

STA

LDA

STA

BEQ

TYA

AND

BNE

JMP

JMP

#$20

$F9D9

$FABE

$48

$F9FA

$F9E4

#$7F

$20

#$10

$F9FA

$35

$F9FA

$8770

#$FF

$3E

#$00

$20

$F9D6

#$40

$FA02

$FABE

($0062)

Possible routine calls:

Initialize head control

Slow head movement

End head movement

Initialize fast head movement

Fast head movement

Slow down fast head movement

Motor on and off

Constant turning number?

Circuitry initialization

Delay counter for motor run;

motors at turn number?

YES-Get drive status again

Drive ready?

NO-Clear flag for motor

pause; note this

Test bit for 'motor runs1

Active?

YES-Number of jobloop call

Need the step motor again?

NO—Drive motor

off

Clear 'drive active'

flag

Clear drive status

flag

Jump to $F9D6

Drive status flag

Isolate flag for stepper status

Should head be moved?

NO-Jump to $FABE

YES—Goto current stepper routine

$FA05

$FA3B

$FA4E

$FA7B

$FA97

$FAA5

[Jump over FA02]

Initialization routine for

FA05

FA07

FA09

FA0B

FA0C

FA0E1

FA10

FA12

FA14

A5

10

49

18

69

C5

B0

A9

85

4A

05

FF

01

64

0A

3B

62

LDA

BPL

EOR

CLC

ADC

CMP

BCS

LDA

STA

$4A

$FA0E

#$FF

#$01

$64

$FA1C

#$3B

$62

head movement

Number of half-steps up to track

Should the head move in?

YES—The supply the

step size with

positive leading character

Test for 'Head at track 0*

Fast head movement?

NO-Call $FA02

Set slow head movement routine,

ROM-287

Abacus Software 1571 Internals

FA16

FA18

FA1A

FA1C1

FA1E

FA20

FA22

FA24

FA2 6

FA28

FA2A

FA2C

FA2E4

FA30

FA32

A9

85

DO

E5

E5

85

A5

85

A9

85

A9

85

A5

10

4C

FA

63

12

5E

5E

61

5E

60

7B

62

FA

63

4A

31

36 FF

LDA

STA

BNE

SBC

SBC

STA

LDA

STA

LDA

STA

LDA

STA

LDA

BPL

JMP

#$FA

$63

$FA2E

$5E

$5E

$61

$5E

$60

#$7B

$62

#$FA

$63

$4A

$FA63

$FF36

where pointers $62/63 are turned

to $FA3B

Jump to $FA2E

Go to # of steps for motor and

slow motor(by 4)by total steps;

save it

Set pointer for number of

running steps

Call for routine in $FA02

for fast head movement;

set pointers in

$62/$63 to $FA7B

Step pointer

Inward movement?

YES-Control stepper motor

FA35 EA ... NOP

FA37 ... EA NOP

unused

ROM area

[FF7F]

FA38 4C 69 FA JMP $FA69 Control stepper

[Jump by FA02]

Execute slow head movement for

FA3B

FA3D

FA3F

FA41

FA43

FA45

FA47

FA4 9

FA4B

A5 4A

DO EF

A9 4E

85 62

A9 FA

85 63

A9 05

85 60

4C BE FA

LDA $4A

BNE $FA2E

LDA #$4E

STA $62

LDA #$FA

STA $63

LDA #$05

STA $60

JMP $FABE

a short distance

Step counter for # of half-steps

Target spur reached?

Call in $FA02 for routine

to end head movement

set, in which the pointers

$62/$63 are turned to $FA7B

Fifth half-step set to stop

head

Prep byte ready flag

[Originates

End of head

FA4E C6 60

FA50

FA52

FA54

FA56

FA58

FA5A

FA5C

FA5E

FA60

DO 6C

A5 20

29 BF

85 20

A9 05

85 62

A9 FA

85 63

4C BE

at FA02]

movement

DEC $60

BNE $FABE

LDA $20

AND #$BF

STA $20

LDA #$05

STA $62

LDA #$FA

STA $63

FA JMP $FABE

Number of steps to brake head

Braking procedure executed?

Drive status flag

Reset bitflag for

head in motion

Call in $FA02 for routine to

initialize head movement

Set, in which the pointers in

$62/$63 are set at $FA05

Prep Byte Ready Flag

ROM-288

Abacus Software 1571 Internals

[FA30]

Control stepmotor

FA63 C6 4A DEC $4A Number of half-track steps

FA65 AE 00 1C LDX $1COO Control port for stepper motor

FA68 E8 INX Move head outward in which the

FA691 8A TXA stepper bits 0 & 1 will be
FA6A 29 03 AND #$03 counted outwards: isolate and

FA6C 85 4B STA $4B save control bits

FA6E AD 00 1C LDA $lC00 Get drive control reg. and clear

FA71 29 FC AND #$FC stepper motor bits

FA73 05 4B ORA $4B Conbine previously computed bits

FA75 8D 00 1C STA $lC00 and control stepper motor

FA78 4C BE FA JMP $FABE Prepare byte ready flag

[Originates

Set up fast

FA7B 38

FA7C

FA7F

FA81

FA84

FA86

FA88

FA8A

FA8C

FA8E

FA90

FA92

FA944

AD 07

E5 5F

8D 05

C6 60

DO 0C

A5 5E

85 60

A9 97

85 62

A9 FA

85 63

4C 2E

at FA02]

head movement and

SEC

1C LDA $1CO7

SBC $5F

1C STA $1CO5

DEC $60

BNE $FA94

LDA $5E

STA $60

LDA #$97

STA $62

LDA #$FA

STA $63

FA JMP $FA2E

move head

Time constant until

next call

to decrement driving constant(4);

this conveys stepper impulse

to traveler

Four driving impulses given?

YES—Set counter for later

braking

Call $FA02 to routine

to set fast head move

ment, in which the pointers of

$62/$63 are set to $FA97

Move head

[Originates at FA02]

Execute fast head movement

FA97

FA99

FA9B

FA9D

FA9F

FAA1

FAA3

C6

DO

A9

85

A9

85

DO

61

F9

A5

62

FA

63

EF

DEC

BNE

LDA

STA

LDA

STA

BNE

$61

$FA94

#$A5

$62

#$FA

$63

$FA94

Half-step counter

Reached target?

YES-Set call in $FA02 to routine

for head braking, in

which pointers

$62/$63 are set to $FAA5

Jump to $FA94

[Originates at FA02]

Braking head after fast movement

FAA5 AD 07 1C LDA $1CO7

FAA8 18 CLC

FAA9 65 5F ADC $5F

FAAB 8D 05 1C STA $1CO5

FAAE OS 60 DEC $60

Increase time constant until

next call, which will slow down

stepper impulses, to prevent a

•track overflow1

Counter for braking impulse

ROM-289

Abacus Software 1571 Internals

FABO

FAB2

FAB4

FAB6

FAB8

FABA

FABC

DO

A9

85

A9

85

A9

85

E2

4E

62

FA

63

05

60

BNE

LDA

STA

LDA

STA

LDA

STA

$FA94

#$4E

$62

#$FA

$63

#$05

$60

Already stopped?

YES-Set call in $FA02 to

end head transport routine,

in which pointers

$62/$63 are turned to $FA4E

Reset number of

braking impulses

[F9D6/F9FF/FA4B/FA50/FA60/FA78/FF74]

FABE AD 0C 1C LDA $1COC Initialize read/write circuitry

FAC1 29 FD AND #$FD in which bit 1 (Byte Ready Flag)

FAC3 8D 0C 1C STA $1COC will be reset

FAC6 60 RTS Return from this subroutine

Format diskette in 1541 format

Original

FAC7 A5

FAC9 10

FACB A6

FACD A9

FACF 95

FAD1 A9

FAD3 95

FAD5 85

FAD7 A9

FAD9 85

FADB AD

FADE 29

FAE0 8D

FAE3 A9

FAE5 8D

FAE8 A9

FAEA 8D

FAED A9

FAEF 8D

FAF2 4C

FAF51 A0
FAF7 Dl

FAF9 F0

FAFB 91

FAFD 4C

FB001 AD

FB03 29

FB05 DO

FB07 A9

FB09 4C

FBOC2 20

follows at ($0600), where you can put your own programs

51 LDA $51 Current track number

2A BPL $FAF5 Format procedure already started?

3D LDX $3D NO-Get current drive number, and

60 LDA #$60 set head movement flag for drive

20 STA $20,X status flag (Bit 6/5)

01 LDA #$01 Track 11 as disk's start track

22 STA $22,X controller —

51 STA $51 save it

A4 LDA #$A4 Move head 46 tracks(til strking)

4A STA $4A outward

00 1C LDA $lC00 Clear controlbits f/stepper motor

FC AND #$FC and give to

00 1C STA $lC00 stepper

0A LDA #$0A Set maximum number of format

20 06 STA $0620 tries

A0 LDA #$A0 Set starting value f/named track

21 06 STA $0621 capacity in $0621/$0622 to $0FA0

OF LDA #$0F (which is equal to

22 06 STA $0622 4000 bytes capacity)

9C F9 JMP $F99C Move head on track

00 LDY #$00 Compare current track number with

32 CMP ($32),Y number in temporary storage

05 BEQ $FB00 Still same track being worked on?

32 STA ($32),Y NO-Get current track number

9C F9 JMP $F99C Move head to new track

00 1C LDA $lC00 Get control register, and

10 AND #$10 test for write protect (Bit4)

05 BNE $FB0C Write protect on hand?

08 LDA #$08 YES-Display

D3 FD JMP $FDD3 f26 Write Protect On1 error msg.

A3 FD JSR $FDA3 Write $FF to entire track

ROM-290

Abacus Software 1571 Internals

FBOF

FB12

FB14

FB17

FB1A

FB1D

FB20

FB22

FB25

FB28

FB2A

FB2D

FB2F

FB32

FB35

FB37

FB391

FB3C

FB3E1

FB41

FB432
FB4 61

FB4 9

FB4B

FB4E

FB4F

FB51

FB52

FB54

FB55

FB57

FB59

FB5C1
FB5E

FB60

FB62

FB642

FB671

FB6A

FB6C

FB6F

FB70

FB72

FB73

FB75

FB7 6

FB78

20

A9

8D

20

20

20

A9

OD

8D

A9

8D

A9

8D

8D

AO

A2

2C

30

2C

10

AD

2C

10

AD

OA

10

E8

DO

C8

DO

A9

4C

86

84

A2

AO

AD

2C

30

AD

OA

10

E8

DO

C8

DO

A9

C3

55

01

C3

00

56

40

OB

OB

62

06

00

07

05

00

00

00

FB

00

FB

04

00

11

OD

F5

EF

EC

02

D3

71

72

00

00

04

00

11

OD

F5

EF

EC

02

FD

1C

FD

FE

F5

18

18

18

18

18

1C

1C

18

1C

18

FD

18

1C

18

JSR

LDA

STA

JSR

JSR

JSR

LDA

ORA

STA

LDA

STA

LDA

STA

STA

LDY

LDX

BIT

BMI

BIT

BPL

LDA

BIT

BPL

LDA

ASL

BPL

INX

BNE

INY

BNE

LDA

JMP

STX

STY

LDX

LDY

LDA

BIT

BMI

LDA

ASL

BPL

INX

BNE

INY

BNE

LDA

$FDC3

#$55

$1CO1

$FDC3

$FEOO

$F556

#$40

$180B

$180B

#$62

$1806

#$00

$1807

$1805

#$00

#$00

$1COO

$FB39

$1COO

$FB3E

$1804

$1COO

$FB5C

$180D

A

$FB46

$FB43

$FB43

#$02

$FDD3

$71

$72

#$00

#$00

$1804

$1COO

$FB7D

$180D

A

$FB67

$FB64

$FB64

#$02

Fill track capacity w/ $FF and

write in the same number of

$55 bytes

Capacity marked in $0621/$622

Switch head to Read mode

Wait for first $FF byte (Sync)

Run of timer 1 will

produce an impulse

on PB7 (ATN-input)

Timer 1 is programmed

for a runtime of

62

impulses

Start timer 1

Clear

counter

Test sync-flag

Wait until sync-signal is gone

Check sync-flag

Wait until sync-range comes again

Get curr countr state from timerl

Test sync-flag

Is sync range now past?

NO—Get interrupt flags

and test 'Timer 1 running1 flag

Time up?

YES—Increment timer

Run into a transfer?

YES—Correct high-byte of counter

Timer overrun?

YES-Display

'20 Read Error1 message

Save number of

$55 bytes

Clear register for next

count

Get counter state of timer 1

Check sync-flag

Is head over sync range?

NO-Get interrupt flag and

test 'Timer 1 running1 flag

Time up?

YES—Increment counter

Reached a transfer?

YES—Correct high-byte of counter

Counter overflow?

YES-Display

ROM-291

Abacus Software 1571 Internals

FB7A

FB7D1
FB7E

FB7F

FB81

FB82

FB84

FB85

FB87

FB88

FB8A

FB8C

FB8E

FB8F

FB90

FB92

FB93

FB94

FB96

FB972

FB98

FB9A

FB9C

FB9E1

FBAO

FBA2

FBA3

FBA5

FBA8

FBAB

FBAD

FBBO

FBB3

FBB61

FBB8

FBBA

FBBB3

FBBE

FBCO

FBC2

FBC3

FBC4

FBC6

FBC7

FBC9

FBCB

FBCE1

4C

38

8A

E5

AA

85

98

E5

A8

85

10

49

A8

8A

49

AA

E8

DO

C8

98

DO

EO

90

06

26

18

A5

6D

8D

A5

6D

8D

4C

A2

AO

B8

AD

10

50

B8

E8

DO

C8

DO

A9

4C

8A

D3

71

70

72

71

OB

FF

FF

01

04

04

18

70

71

70

21

21

71

22

22

OC

00

00

00

OE

F9

F5

F2

03

D3

FD

06

06

06

06

FB

1C

FD

JMP

SEC

TXA

SBC

TAX

STA

TYA

SBC

TAY

STA

BPL

EOR

TAY

TXA

EOR

TAX

INX

BNE

INY

TYA

BNE

CPX

BCC

ASL

ROL

CLC

LDA

ADC

STA

LDA

ADC

STA

JMP

LDX

LDY

CLV

LDA

BPL

BVC

CLV

INX

BNE

INY

BNE

LDA

JMP

TXA

$FDD3

$71

$70

$72

$71

$FB97

#$FF

#$FF

$FB97

$FB9E

#$04

$FBB6

$70

$71

$70

$0621

$0621

$71

$0622

$0622

$FB0C

#$00

#$00

$1COO

$FBCE

$FBBB

$FBBB

$FBBB

#$03

$FDD3

'20 Read Error1 message

Calculate difference

between $55 range and

the $FF range;

save in

pointers $70/$71 for

determining

real track

capacity

(Take $71/72 frm X/Y & in $70/71)

Is value negative?

YES—Draw up 2nd complement of

values

(give absolute value)

Complement low-byte

and save it

Design 2nd complement

is one a transfer?

YES—Correct and get

high-byte

Is value in X/Y less than 256?

YES-Compare low-byte (X) with 4

Track capacity same as 4 bytes?

NO-Double track capacity

value

and calculate for track capacity

Get low-byte and add to

awaited value

Save newly-awaited value

Get high-byte and add

to

awaited value

Determine track capacity again

Clear

counter

Prepare 'byte ready1 flag

Test flag for sync-signal

Is head over sync range?

YES-Wait for next byte

Prep 'Byte Ready1

Increment counter

Is there a transfer occurring?

YES—Correct high-byte of counter

Is counter overflowing?

YES-Set error #:'Sync not found1

and eventually re-test

Double counter,put in $0625/$0624

ROM-292

Abacus Software 1571 Internals

FBCF

FBDO

FBD3

FBD4

FBD5

FBD8

FBDA

FBDD

FBEO

FBE2

FBE5

FBE7

FBE9

FBEA1

FBEB

FBEE

FBFO

FBF11

FBF2

FBF3

FBF5

FBF7

FBF8

FBFA

FBFB

FBFE

FCOO

FC031

FC04

FC05

FC07

FC08

FCOA

FCOB

FCOE

FC1O

FC12

FC151

FC16

FC17

FC191

FC1A

FC1C

FC1E

FC1F

FC211

FC22

OA

8D

98

2A

8D

A9

2D

8D

A9

8D

A6

AO

98

18

6D

90

C8

C8

CA

DO

49

38

69

18

6D

BO

CE

AA

98

49

38

69

18

6D

10

A9

4C

A8

8A

A2

38

E5

BO

88

30

E8

DO

25

24

BF

OB

OB

66

26

43

00

26

01

F5

FF

00

25

03

24

FF

00

24

05

04

D3

00

43

03

03

F5

06

06

18

18

06

06

06

06

06

FD

ASL

STA

TYA

ROL

STA

LDA

AND

STA

LDA

STA

LDX

LDY

TYA

CLC

ADC

BCC

INY

INY

DEX

BNE

EOR

SEC

ADC

CLC

ADC

BCS

DEC

TAX

TYA

EOR

SEC

ADC

CLC

ADC

BPL

LDA

JMP

TAY

TXA

LDX

SEC

SBC

BCS

DEY

BMI

INX

BNE

A

$0625

A

$0624

#$BF

$180B

$180B

#$66

$0626

$43

#$00

$0626

$FBF1

$FBEA

#$FF

#$00

$0625

$FC03

$0624

#$FF

#$00

$0624

$FC15

#$04

$FDD3

#$00

$43

$FC21

$FC24

$FC19

Double and save

low-byte

Get high-byte and

save as two

values

Flag for "Run from Timer I1

Get interrupt flag and

reset flag

of bytes f/every sector needed

in addition to the 256 data

Number of sectors

Index value f/# of 256byte blocks

Start value for surplus calc.s(O)

and with it, calculate sector

excess

Are 256 more bytes needed?

Index raised by 256 bytes

Index raised by 256 bytes

Compute next sector

All sectors considered?

YES-Compute 2nd complement

(negative value) of remaining

necessary bytes

and subtract from total

capacity (add negative value)

Need to borrow?

YES-Correct high-byte

Save low-byte of capacity

Get # of necessary 256byte blocks

and draw up 2nd complement

(negative value)

from that

Subtract # of neces 25 6byteblocks

from total capacity

Sufficient track capacity?

NO-Display 'Block Not Found1

error message

Get number of remaining

bytes

Counter for number of blank bytes

Number of bytes remaining

divided by number of sectors,

in which sector # will be divided

by the empty bytes

X counts as often as is possible

Increment number of blank bytes

Jump to $FC19

ROM-293

Abacus Software 1571 Internals

FC241

FC27

FC2 9

FC2B

FC2D

FC301

FC31

FC33

FC36

FC38

FC3B

FC3D

FC3F1

FC41

FC44

FC45

FC4 6

FC4 9

FC4C

FC4D

FC4F

FC52

FC53

FC55

FC58

FC59

FC5B

FC5E

FC5F

FC61

FC64

FC65

FC68

FC69

FC6B

FC6E

FC71

FC74

FC77

FC7A

FC7D

FC80

FC82

FC84

FC85

FC86

FC87

06

06

03

06

8E 26 06

E0 04

BO 05

A9 05

4C D3 FD

18

65 43

8D 27

A9 00

8D 28

AO 00

A6 3D

A5 39

99 00

C8

C8

AD 28

99 00 03

C8

A5 51

99 00 03

C8

B5 13

99 00 03

C8

B5 12

99 00 03

C8

A9 OF

99 00 03

C8

99 00 03

C8

A9 00

59 FA 02

59 FB 02

59 FC 02

59 FD 02

99 F9 02

EE 28 06

AD 28 06

C5 43

90 BB

98

48

E8

8A

STX $0626 save number of blank bytes

CPX #$04 and compare with 4 bytes

BCS $FC30 Is skip smaller?

LDA #$05 YES-Display

JMP $FDD3 '23 Read Error1 message

CLC Add number of sectors

ADC $43 to track and

STA $0627 save result

LDA #$00 Reset counter for

STA $0628 sectors written up

LDY #$00 Clear pointrs for blockheader set

LDX $3D up in buffer 1

LDA $39 Write blockheader identifier (8)

STA $0300,Y into blockheader

INY Set pointer to next position

INY Jump over to checksum byte

LDA $0628 Write number of current sector

STA $0300,Y in blockheader

INY Set pointer to next position

LDA $51 Take up number of current track

STA $0300,Y in blockheader

INY Set pointer to next position

LDA $13,X Write second ID character

STA $0300,Y in blockheader

INY Set pointer to next position

LDA $12,X Transfer first ID character

STA $0300,Y to blockheader

INY Set pointer to next position

LDA #$0F Write $0F (15)

STA $0300,Y twice to fill

INY in the

STA $0300,Y blockheader in

INY the buffer

LDA #$00 Checksum for:

EOR $02FA,Y Track number

EOR $02FB,Y Sector number

EOR $02FC,Y Second ID-char.

EOR $02FD,Y First ID-char.

STA $02F9,Y Compute and set into blockheader

INC $0628 Set countr for current sector #

LDA $0628 to next sector; compare with

CMP $43 value for max. sector number

BCC $FC3F All sectors covered?

TYA YES—Keep pointer at

PHA current buffer position

INX (1)

TXA Set up data block;

ROM-294

Abacus Software 1571 Internals

FC881 9D 00 05 STA $0500,X Write to buffer 1

FC8B E8 INX Set pointer to next byte

FC8C DO FA BNE $FC88 Buffer full?

FC8E A9 03 LDA #$03 YES-Set address $0300 as current

FC90 85 31 STA $31 buffer address

FC92 20 30 FE JSR $FE30 Convrt buffer contents to GCRcode

FC95 68 PLA Re-rig previous buffer position

FC96 A8 TAY and set pointer to

FC97 88 DEY start of blockheader

FC98 20 E5 FD JSR $FDE5 Move status buffer contents to

FC9B 20 F5 FD JSR $FDF5 buffer at $0300

FC9E A9 05 LDA #$05 Set $0500 as curent

FCA0 85 31 STA $31 buffer address

FCA2 20 E9 F5 JSR $F5E9 Compute data block checksum and

FCA5 85 3A STA $3A save it

FCA7 20 8F F7 JSR $F78F Change data block into GCR code

FCAA A9 00 LDA #$00 Initialize pointer to current

FCAC 85 32 STA $32 blockheader

FCAE 20 0E FE JSR $FE0E Clear track with $55

FCB11 A9 FF LDA #$FF Give identifier for sync-marking
FCB3 8D 01 1C STA $1CO1 to write head

FCB6 A2 05 LDX #$05 Number of sync-bytes

FCB82 50 FE BVC $FCB8 Wait for 'Byte Ready1
FCBA B8 CLV Prep 'Byte Ready' flag

FCBB CA DEX Decrement counter

FCBC DO FA BNE $FCB8 All sync-bytes already on Disk?

FCBE A2 0A LDX #$0A Blockheader length

FCC0 A4 32 LDY $32 Pointer in position in buffer

FCC22 50 FE BVC $FCC2 Write circuitry ready?
FCC4 B8 CLV YES-Set up flag again

FCC5 B9 00 03 LDA $0300,Y Get GCR-bytes from buffer —

FCC8 8D 01 1C STA $1CO1 transfer to write head

FCCB C8 INY Buffer pointer to next character

FCCC CA DEX # of chars, yet to be written

FCCD DO F3 BNE $FCC2 Header already written?

FCCF A2 09 LDX #$09 YES-Write in spaces between

FCD12 50 FE BVC $FCD1 block-header and datablock
FCD3 B8 CLV with fill values

FCD4 A9 55 LDA #$55 ($55)

FCD6 8D 01 1C STA $1CO1 Send byte over write head

FCD9 CA DEX Counter for number of fillbytes

FCDA DO F5 BNE $FCD1 Blanks aleady written?

FCDC A9 FF LDA #$FF Write sync-mark for

FCDE A2 05 LDX #$05 data blockheader to diskette

FCEO2 50 FE BVC $FCE0 Write circuitry ready?
FCE2 B8 CLV YES-Flag set again

FCE3 8D 01 1C STA $1CO1 Sync-byte to write circuitry

ROM-295

Abacus Software 1571 Internals

FCE6

FCE7

FCE9

FCEB2

FCED

FCEE

FCF1

FCF4

FCF5

FCF7

FCF92

FCFB

FCFC

FCFE

FD01

FD02

FD04

FD06

FD092

FDOB

FDOC

FDOF

FD10

FD12

FD14

FD15

FD17

FD19

FD1C

FD1E1

FD20

FD211
FD23

FD24

FD27

FD2 9

FD2C

FD2E

FD30

FD32

FD34

FD36

FD391

FD3C

FD3E

FD402

FD42

01

1C

1C

06

CA

DO F7

A2 BB

50 FE

B8

BD 00

8D 01

E8

DO F4

AO 00

50 FE

B8

Bl 30

8D 01

C8

DO F5

A9 55

AE 2 6

50 FE

B8

8D 01 1C

CA

DO F7

A5 32

18

69 OA

85 32

CE 28 06

DO 93

50 FE

B8

50 FE

B8

20 00 FE

A9 C8

8D 23 06

A9 00

85 30

A9 03

85 31

A5 43

8D 28 06

20 56 F5

A2 OA

AO 00

50 FE

B8

DEX Counter for number of sync-bytes

BNE $FCE0 Sync-marking already written?

LDX #$BB Pointer to start of temp, buffer

BVC $FCEB Write circuitry ready?

CLV YES-Prep 'Byte Ready1 flag

LDA $0100,X Get byte from buffer and

STA $1CO1 write to diskette

INX Buffer pointer to next byte

BNE $FCEB Buffer written up?

LDY #$00 YES-Buffer pointer to data buffer

BVC $FCF9 Write circuitry ready?

CLV YES-Prepare »Byte Ready1 flag

LDA ($30),Y Write byte to diskette

STA $1CO1 from buffer

INY Pointer to next char in buffer

BNE $FCF9 Is entire buffer written already?

LDA #$55 Fill space between 2 data blocks

LDX $0 626 Number of bytes per space

BVC $FD09 Write circuitry ready?

CLV YES-Reset flag

STA $1CO1 $55 to read head

DEX Counter foor. number of fillbytes

BNE $FD09 Blanks already written in?

LDA $32 Buffer pointer (to header

CLC position of next blockheader) —

ADC #$0A set and save

STA $32 this pointer

DEC $0628 Draw up number of next sector

BNE $FCB1 All sectors already written?

BVC $FD1E YES-Wait for next byte

CLV Prep 'Byte Ready1 flag

BVC $FD21 Wait for next byte

CLV Reset 'Byte Ready1

JSR $FE00 —switch to read mode

LDA #$C8 Set number of read attempts

STA $0623 (200)

LDA #$00 Set buffer pointer $30/$31

STA $30 buffer 1

LDA #$03 ($0300-$03FF)

STA $31 ($0300-$03FF)

LDA $43 Save number of sectors

STA $0628 per track

JSR $F556 Wait for sync-marking

LDX #$0A Number of bytes in blockheader

LDY #$00 Clear buffer pointer

BVC $FD40 Read circuitry ready?

CLV YES-Get flag ready

ROM-296

Abacus Software 1571 Internals

FD43

FD4 6

FD4 8

FD4A

FD4B

FD4C

FD4E

FD4F

FD51

FD53

FD55

FD583

FD5B

FD5D

FD5F

FD621

FD65

FD672

FD69

FD6A

FD6D

FD70

FD72

FD73

FD75

FD772

FD7 9

FD7A

FD7D

FD80

FD82

FD83

FD84

FD86

FD89

FD8B

FD8D

FD8F

FD91

FD93

FD961

FD98

FD9A

FD9C

FD9E

FDAO

AD

Dl

DO

C8

CA

DO

18

A5

69

85

4C

CE

DO

A9

4C

20

AO

50

B8

AD

D9

DO

C8

DO

A2

50

B8

AD

D9

DO

C8

CA

DO

CE

DO

E6

A5

C9

BO

4C

A9

85

A9

85

A9

4C

01

30

OE

F2

30

OA

30

62

23

CF

06

D3

56

BB

FE

01

00

E6

F2

FC

FE

01

00

D6

Fl

28

AE

51

51

24

03

9C

FF

51

00

50

01

69

1C

FD

06

FD

F5

1C

01

1C

05

06

F9

F9

LDA

CMP

BNE

INY

DEX

BNE

CLC

LDA

ADC

STA

JMP

DEC

BNE

LDA

JMP

JSR

LDY

BVC

CLV

LDA

CMP

BNE

INY

BNE

LDX

BVC

CLV

LDA

CMP

BNE

INY

DEX

BNE

DEC

BNE

INC

LDA

CMP

BCS

JMP

LDA

STA

LDA

STA

LDA

JMP

$1CO1

($30),Y

$FD58

$FD40

$30

#$0A

$30

$FD62

$0623

$FD2C

#$06

$FDD3

$F556

#$BB

$FD67

$1CO1

$0100,Y

$FD58

$FD67

#$FC

$FD77

$1CO1

$0500,Y

$FD58

$FD77

$0628

$FD39

$51

$51

#$24

$FD96

$F99C

#$FF

$51

#$00

$50

#$01

$F969

Read byte from diskette and

compare with buffer

Blockheader being sought?

Set pointer to nextbyte of

header

Last byte of header compared?

Set buffer address to

next blockheader

in

buffer memory

again

Number of read searches

Last search?

YES-Display

•24 Read Error1 message

Wait f/syncmarking of data blocks

Set buffer pointer to temp.buffer

Read circuitry ready?

YES—Reset Byte Ready Flag

Compare byte from diskette

with buffer contents

Positive comparison?

YES—Buffer pointer to next byte

Entire buffer already compared?

YES—Counter f/ data buffer bytes

Read circuitry ready?

YES-Set Byte Ready flag back

Read byte from diskette and

compare with data buffer

Positive comparison?

YES—Set pointer to next

byte

Last character of buffer

Number of sectors-1 of track

All sectors tested?

YES—Increment track # counter

Set and save track; compare

with max. number of tracks

Reached track 35?

NO-Continue formatting

Set flag to

end formatting

Clear 'Buffer in GCR-Code1

flag

Display 'ok1 message;

End of formatting

ROM-297

Abacus Software 1571 Internals

[FBOC]

Write

FDA3

FDA6

FDA8

FDAA

FDAD

FDAF

FDB2

FDB5

FDB7

FDB93

FDBB

FDBC

FDBD

FDBF

FDCO

FDC2

1

track with

AD OC 1C

29 IF

09 CO

8D OC 1C

A9 FF

8D 03 1C

8D 01 1C

A2 28

AO 00

50 FE

B8

88

DO FA

CA

DO F7

60

[FB0F/FB17]

$FF

LDA $1COC

AND #$1F

ORA #$C0

STA $1COC

LDA #$FF

STA $1CO3

STA $1CO1

LDX #$28

LDY #$00

BVC $FDB9

CLV

DEY

BNE $FDB9

DEX

BNE $FDB9

RTS

($0621/$0622) times-wait on

FDC3

FDC6

FDC93

FDCB

FDCC

FDCD

FDCF

FDDO

FDD2

AE 21 06

AC 22 06

50 FE

B8

CA

DO FA

88

10 F7

60

LDX $0621

LDY $0622

BVC $FDC9

CLV

DEX

BNE $FDC9

DEY

BPL $FDC9

RTS

Switch head circuitry

in PCR-Register to

write

mode (CB2 = 0)

Switch read/write head port

for output

Write $FF

Set counter in CPU-Register

to 10240

Wait for Byte Ready

Byte Ready Flag prepared

Low-byte of counter

Executed once until null?

YES—Then decremnt hi-byte/counter

Already written 10240 times?

YES—Return from this subroutine

'Byte Ready1 signal

Set loop

counter

Wait for Byte Ready

Reset Byte Ready Flag

Low-byte of counter

at null?

YES—Then decrement Y

Y times awaited 256 Byte Readys?

YES—Return from this subroutine

[FB09/FB59/FB7A/FBCB/FC12/FC2D/FD5F]

Stop <

FDD3

FDD 6

FDD8

FDDB1

FDDD

FDDF

FDEO

FDE2

control by

CE 20 06

FO 03

4C 9C F9

AO FF

84 51

C8

84 50

4C 69 F9

format errors

DEC $0620

BEQ $FDDB

JMP $F99C

LDY #$FF

STY $51

INY

STY $50

JMP $F969

Number of format attempts -1

Run across a format error?

NO—Then continue formatting

Set 'Format to end1

flag

Clear 'Buffer In GCR-Code1

flag

End formatting

ROM-298

Abacus Software 1571 Internals

[FC98/FDEC]

Copy bytes in buffer 0 at 70 bytes over

(Y-register must contain the number of bytes to be copied)

FDE5

FDE8

FDEB

FDEC

FDEE

FDF1

FDF4

[FC9B]

B9

99

88

DO

AD

8D

60

Copy the

FDF5

FDF71

FDFA

FDFC

FDFD

FDFF

A0

B9

91

88

10

60

00

45

F7

00

45

03

03

03

03

LDA

STA

DEY

BNE

LDA

STA

RTS

$0300,

$0345,

$FDE5

$0300

$0345

range $01BB-$01FF

44

BB

30

F8

01

LDY

LDA

STA

DEY

BPL

RTS

#$44

$01BB,

($30),

$FDF7

Y

Y

in the

Y

-Y

[8D59/9AE6/9CCC/FB1A/FD24/BF0C]

Switct

FE00

FE03

FE05

FE08

FEOA

FEOD

[FCAE]

FEOE

FEU

FE13

FE15

FE18

FE1A

FE1D

FE1F

FE22

FE24

FE2 61

FE28

FE2 9

FE2A

FE2C

FE2D

FE2F

i head

AD

09

8D

A9

8D

60

OC

E0

OC

00

03

circuitry from

1C

1C

1C

LDA

ORA

STA

LDA

STA

RTS

$1COC

#$E0

$1COC

#$00

$1CO3

I Write $55 to entire

AD

29

09

8D

A9

8D

A9

8D

A2

A0

50

B8

88

DO

CA

DO

60

OC

IF

CO

OC

FF

03

55

01

28

00

FE

FA

F7

1C

1C

1C

1C

LDA

AND

ORA

STA

LDA

STA

LDA

STA

LDX

LDY

BVC

CLV

DEY

BNE

DEX

BNE

RTS

$1COC

#$1F

#$C0

$1COC

#$FF

$1CO3

#$55

$1CO1

#$28

#$00

$FE26

$FE26

$FE26

write

track

Get byte from start of buffer and

transfer up

Choose next byte

All bytes?

YES—Then copy last

byte and

return from this subroutine

buffer to which $30/$31 points

Startposition $01FF

Get byte from interim buffer and

transfer to data buffer

Choose next byte

All bytes already transferred?

YES—Return from this subroutine

to read

Get control register and

switch head to read

(CB2 output =1)

Switch data port to head

for input

Return from this subroutine

Get control register

and invert head for writing

Bit 5-7 spread and set bit 6/7

(CB2 output =0)

Switch head data port

to output

Send $55 over

the write head

Set register counter to

write 10240 times

Electronics ready for next byte?

YES—Reset flag again

Write 256 bytes

256 Bytes already?

YES-Write 256 bytes 40 times

40 writings completed?

YES—Return from this subroutine

ROM-299

Abacus Software 1571 Internals

[9BEC/FC92]

Convert blockheader from binary

FE30

FE32

FE34

FE36

FE38

FE3A

FE3C

FE3E

FE40

FE42

FE4 41

FE4 6

FE48

FE4A

FE4B

FE4D

FE4F

FE50

FE52

FE54

FE55

FE57

FE59

FE5A

FE5C

FE5E

FE61

FE641

A9

85

85

85

A9

85

A5

85

A9

85

A4

Bl

85

C8

Bl

85

C8

Bl

85

C8

Bl

85

C8

FO

84

20

4C

4C

00

30

2E

36

BB

34

31

2F

01

31

36

2E

52

2E

53

2E

54

2E

55

08

36

DO F6

44 FE

DO F6

LDA

STA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

BEQ

STY

JSR

JMP

JMP

#$00

$30

$2E

$36

#$BB

$34

$31

$2F

#$01

$31

$36

($2E)

$52

($2E)

$53

<$2E)

$54

($2E)

$55

$FE64

$36

$F6D0

$FE44

$F6D0

into GCR

Reset buffer pointer

to start

Pointer low-byte to binary data

Position in current buffer

Turn position pointer to

status buffer

Get pointer to current

data buffer

Set pointer to

status buffer

Determine current position

Get byte from buffer and save

as first byte to be converted

Turn pointer to next byte

Get byte from buffer and save

as second byte to be converted

Turn pointer to next byte

Get byte from buffer and save

as third byte to be converted

Turn pointer to next byte

Get byte from buffer and save

as third byte to be converted

Turn pointer to next byte

Reached end of buffer?

NO—Save position

Cmpute 4binary bytes to 5GCRbytes

Continue conversion

Cmpute 4binary bytes to 5GCRbytes

[Originates at system vector FFFE]

FE67 6C A9 02 JMP ($02A9) Jump to IRQ-Routine $9D88/$9DDE

FE6A FF ...

FE84 ... FF

unused

ROM-area

Directory and BAM design

FE85 12

FE86 04

FE87 04

FE88 90

Number of directory track(18)

of bytes for every track in BAM

BAM start position in sector 18,0

Beginning of disk name (Pos. 144)

ROM-300

Abacus Software 1571 Internals

Table

FE89

FE8A

FE8B

FE8C

FE8D

FE8E

FE8F

FE90

FE91

FE92

FE93

FE94

of disk commands

56

49

44

4D

42

55

50

26

43

52

53

4E

•V :

'I1 !

.D. .

»M»

•B1

'0'

.p.

'&»

1C'

'R1

•S1

•N1

Validate / Collect

Initialize

Duplicate (dual drives only)

Memory command

Block command

User command

Position / Record

& - command

Copy

: Rename

: Scratch

: New / Header

Addresses of disk commands

FE95 84 05 Cl F8 IB 5C 07 A3

FE9D F0 88 23 0D

FEA1 ED DO C8 CA CC CB E2 E7

FEA9 C8 CA C8 EE

Low-bytes of origin addresses

for the commands

High-bytes of origin addresses

for the commands

Bit pattern for testing command syntax

Meaning of bits :

(l=been tested; corresponding bit in test value must be 0)

BitO ■=• character on hand in command string

Bitl Other parameters on hand after l=l character

Bit2 Several filenames for 2nd file designation

Bit3 Joker on hand in 2nd file designation

Bit6 Several filenames for 1st file designation

Bit7 Joker on hand in 1st file declaration

FEAD 51

FEAE DD

FEAF 1C

FEBO 9E

FEB1 1C

%01010001 Copy file(s)

%11011101 Rename file

%00011100 Scratch file(s)

%10011110 Format diskette

%00011100 Read file

Identifier in command string for operating mode

FEB2 52 57 41 4D R, W, A, M

File type identifier in command string

FEB6 44 53 50 55 4C D, S, P, U, L

ROM-301

Abacus Software 1571 Internals

Names of different file types

FEBB 44 53 50 55 52

FECO 45 45 52 53 45

FEC5 4C 51 47 52 4C

1st

2nd

3rd

char.:

char.:

char.:

D,

E,

L,

s,

E,

Q,

P,

R,

G,

u,

s,

R,

R

E

L

Mask for LED-bit in control register

FECA 08 00 Drive 0, drive 1 (not on hand)

Set processor status flag

FECC 00

FECD 3F

FECE 7F

FECF BF

FED0 FF

N=0

N=0

N=0

N=l

N=l

V=0 Z=l

V=0 Z=0

V=l Z=0

V=0 Z=0

V=l Z=0

Number of sectors in declared track range

FED1 11 Track 31-35 : 17 sectors

FED2 12 Track 25-30 : 18 sectors

FED3 13 Track 18-24 : 19 sectors

FED4 15 Track 01-17 : 21 sectors

FED5 41

FED6 04

Identifier for 1541-Format ('A1)

Number of track changes

Tracks that will be changed by the sector number and bitrate

FED7 24 IF 19 12 track nummbr 36, 31, 25 and 18

FEDB 01 FF FF 01 00 Readerror Ctrl bytes f/head-move

High-bytes of buffer addresses

Buffer position in memory

FEE0 03 04 05 06 07 07

FEE6 FF Empty byte (1541 DOS checksum)

[FF0B] Reset w/o hardware test; Pointer set through $EBC5

FEE7 6C 65 00 JMP ($0065) Jump to $EB22

[EA7A]

Initialize and switch LED

FEEA 8D 00 1C STA $lC00

FEED 8D 02 1C STA $1CO2

FEF0 4C 7D EA JMP $EA7D

Set 'LED on1 bit (8)

and switch pin for output

Return to hardware error routine

ROM-302

Abacus Software 1571 Internals

[BF36/E97D]

Bus delay for 1541 bus as opposed to 1540 bus

FEF3

FEF4

FEF6*

FEF7

FEF9

FEFA

8A

A2

CA

DO

AA

60

05

FD

TXA

LDX

DEX

BNE

TAX

RTS

#$05

$FEF6

Retain X-register

Set counter

42 cycles delay

Time up?

YES—Re-determine X-register

Return from this subroutine

[82AB/E980]

Output null bit

FEFB 20 AE E9 JSR $E9AE

FEFE 4C 9C E9 JMP $E99C

Set clock output to high

Set data output to low

[Original at 'UI1 command]

1541/1540 Bus mode switching

FF01

FF04

FF06

FF08

FF09

FF0B

FFOD1

FFOF

AD

C9

F0

38

E9

DO

85

60

02 02

2D

05

2B

DA

23

LDA

CMP

BEQ

SEC

SBC

BNE

STA

RTS

$0202

#$2D

$FF0D

#$2B

$FEE7

$23

Get 3rd char, frm command strings

test with '-•

Identical?

NO—Compare character

with " + ■

Identical?

YES—Set flag for bus mode

Return from this subroutine

[EAA4]

Input/Output initialization

FF10 8E 03 18 STX $1803

FF13 A9 02 LDA #$02

FF15 4C 5A A6 JMP $A65A

Set data direction for PA

[For error,see 7.1.5]

Continue

[A664]

Set data direction for PB

FF18 A9 1A LDA #$1A

FF1A 8D 02 18 STA $1802

FF1D 4C A7 EA JMP $EAA7

%00011010

in data direction register

Back to reset

[E9DC/FF25]

Data

FF20

FF23

FF25

FF27

FF2 9

FF2C

waits to equal

AD

29

DO

A9

8D

4C

00

01

F9

01

05

DF

18

18

E9

LDA

AND

BNE

LDA

STA

JMP

low (phys.

$1800

#$01

$FF20

#$01

$1805

$E9DF

hih); set timer

Get bus control register and

test data line

Is data set?

NO—Start counter

for 256 cycles

Keep going

ROM-303

Abacus Software 1571 Internals

[EE3D]

Format

FF2F

FF31

FF33

FF36

FF38

FF3A

FF3C

FF3D1

FF3F

FF42

dislette

A9

85

AD

29

DO

A9

2C

A9

8D

4C

FF

5%

OF 18

20

03

24

47

AC 02

79 A7

LDA

STA

LDA

AND

BNE

LDA

#$FF

$51

$180F

#$20

$FF3D

#$24

.byte $2C

LDA

STA

JMP

#$47

$02AC

$A779

Clear flag for current

track

Get control register

and test operating mode

Is drive in 1541 mode (1 MHz)?

YES—Determine max. no. of tracks

Jump to next 2 bytes(Bit command)

Number of tracks in 2-sided mode

Set track number

Format diskette

[FA32) cf. 87E7/9A66

One half-step outward

FF45

FF4 6

FF47

FF491

FF4C

FF4D

FF4E

FF51

FF52

FF53

FF54

FF56

FF58

FF5A

FF5C1

FF5E1

FF5F

FF61

FF63

FF66

FF68

FF6A

FF6C

FF6E

FF6F

FF70

FF72

98

48

A0

AD

6A

08

AD

6A

6A

28

29

90

10

30

30

88

DO

B0

AD

29

DO

A5

DO

68

A8

A9

85

64

OF 18

OF 18

80

04

ID

02

19

E8

14

00 1C

03

0D

7B

09

00

4A

TYA

PHA

LDY

LDA

ROR

PHP

LDA

ROR

ROR

PLP

AND

BCC

BPL

BMI

BMI

DEY

BNE

BCS

LDA

AND

BNE

LDA

BNE

PLA

TAY

LDA

STA

#$64

$180F

A

$180F

A

A

#$80

$FF5C

$FF77

$FF5E

$FF77

$FF49

$FF77

$1COO

#$03

$FF77

$7B

$FF77

#$00

$4A

Retain

Y-register

of pick-up attempts /tr.O (100)

Get control register A

Put trackO-ident. (bitO) in carry

and save carry

Read control register again

Shift trackO-ident. (bitO)

to bit7

Get previous pick-up result

Isolate last pick-up result

Is trackO active in first test?

NO—Has trackO now been reached?

YES-Jump to $FE5E

Is track 0 still active?

YES-Try again

All tries executed?

YES-Is head at trackO-position?

YES-Cntrl register for step-motor

Isolate stepper bits

Is a stepper coil under control?

NO-Set head cntrl byte/read error

Head in position?

NO-Re-establish

Y-register

Clear number of steps done by

stepper

ROM-304

Abacus Software 1571 Internals

FF7 4 4C BE FA JMP $FABE

FF774 68 PLA

FF78 A8 TAY

FF7 9 E6 4A INC $4A

FF7B AE 00 1C LDX $1COO

FF7E CA DEX

FF7F 4C 38 FA JMP $FA38

[D610]

Set head control byte

FFA1 85 7B STA $7B

FFA3 4C 7 6 D6 JMP $D67 6

Initialize head

Re-establish

Y-register

Move another step out

Get control register and set

head to move one

step outward

[903D/EBC2]

Initialize 1541

FF82

FF85

FF87

FF89

FF8B

FF8E

FF90

FF93

FF95

FF98

FF99

20 59 F2

A9 05

85 3C

A9 88

8D A9 02

A9 9D

8D AA 02

A9 24

8D AC 02

18

4C F3 93

[EE1D]

Activate drive

FF9C

FF9E

85 FF

4C 00 Cl

mode

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

CLC

JMP

STA

JMP

$F259

#$05

$3C

#$88

$02A9

#$9D

$02AA

#$24

$02AC

$93F3

$FF

$C100

Disk controller reset

Determine IBM-34

sector layout

Turn IRQ vectors

to routine

$9D88 (1541

interrupt)

Set maximum number

of tracks 35)

Flag for 'side I1

Choose head

Set drive status

LED on

Set byte in pointer

Go back

[D628]

Rest positioning mode to next track

FFA6 20 7 6 D6

FFA9 A9 00

FFAB 85 7B

FFAD 60

JSR $D676

LDA #$00

STA $7B

RTS

Control head

Clear 'head mode1

flag

Return from this subroutine

[CD91]

Set buffer pointer to 'B-W1

FFAE A4 82 LDY $82

FFB0 4C DE D3 JMP $D3DE

Get channel number

Set pointer

FFB3

FFE5

FF

FF

Unused

ROM-area

ROM-305

Abacus Software 1571 Internals

[Not used in 1571

DOS system vectors

FFE6

$C8C6

FFE8

$F98F

User

FFEA

FFEC

FFFE

FFFO

FFF2

FFF4

FFF6

FFF8

FFFA

C6 C8

8F F9

vectors; jump

5F CD

CD 97

03 05

06 05

09 05

0C 05

05 OF

OF 05

01 FF

System vectors

FFFC

FFFE

A0 EA

67 FE

DOS]

addresses of

Ul

U2

U3

U4

U5

U6

U7

U8

U9

U:

IRQ

Format diskette

Switch off drive motor

User commands

or UA

or UB

or UC

or UD

or UE

or UF

or UG

or UH

or UI

or UJ

vector

: Read sector

: Write sector

: Jump to buffer 2

: Jump to buffer 2

: Jump to buffer 2

: Jump to buffer 2

Jump to buffer 2

• Jump to buffer 2

. Toggle 1540/41

Execute reset

(Bus/Disk controller)

$CD5F

$CD97

$0500

$0503

$0506

$0509

$050C

$050F

$FF01

$EAA0

$FE67

©1985 Rainer Ellinger

©1986 Abacus Software, Inc.

ROM-306

Abacus Software 1571 Internals

Appendix B

The 1570 DOS (1571 Revisions)

The Commodore 1570 disk drive is a single-sided drive that utilizes 1571

electronics, and is currently available only in Europe, Because this book is
marketed internationally, and as Commodore may release the the 1570 in the
United States, we have included this section detailing the differences

between the two drives.

The 1570 disk drive has almost the same operating system as the 1571

drive, and so is treated as a modified 1571 ROM. In fact, the hardware of

the two drives is almost identical.

The biggest difference is that the 1570 drive is a single-sided drive (i.e., no
two-sided read/write heads). All ROMs have been modified accordingly,

making this drive operate with the same BAM as a 1541 drive.

There are changes in the 1570fs two motors. The stepper motor is not as
efficient as that of the 1571 drive, and the 1570 motors are simply not as
fast as those of the 1571. Thus, time constants for motor control have been

changed.

A few small errors have been cleared up in the 1570 which existed in the

1571 series.

1570 DOS

8000

84E4

8827

8FD4

90D9

A4 0F

A445

A446

75

20

A0

4C

20

8D

60

EA

98

4D

08

21

5B

D7

AA

90

AA

FE

JSR

LDY

JMP

JSR

STA

RTS

NOP

$AA4D

#$08

$9021

$AA5B

$FED7

1570 ROM checksum

Format diskette

1541 stepper motor delay

Display '31 Syntax Error1

Test filetype for fPRGf

Set highest track number

Separate from

2nd side of diskette

ROM-307

Abacus Software 1571 internals

A4DD

A4E5

A597

A671

A6C4

A6DF

A726

A773

A7B3

A7C7

A7D7

A941

53

4D

AD

AD

8D

8D

8D

8D

20

4C

AD

AD

54

OD

D7

D7

D7

D7

D7

D7

62

CE

D7

D7

45

FE

FE

FE

FE

FE

FE

AA

A7

FE

FE

56 45

LDA

LDA

STA

STA

STA

STA

JSR

JMP

LDA

LDA

20 4C 41

$FED7

$FED7

$FED7

$FED7

$FED7

$FED7

$AA62

$A7CE

$FED7

$FED7

Copyright for 1570 modification

by Steve Lam

Get

Get

Set

Set

Set

Set

Get

highest

highest

highest

highest

highest

highest

control

Donft test j

Get

Get

highest

highest

track

track

track

track

track

track

number

number

number

number

number

number

register

L541 mode

track

track

number

number

[D867] Test for error acknowledgements

AA3F C9 02 CMP #$02 Compare with first error number

AA41 90 07 BCC $AA4A Is there an error?

AA43 C9 OF CMP #$0F NO-Test for "Drive not ready1

AA45 F0 03 BEQ $AA4A Is drive ready?

AA47 4C 6B D3 JMP $D36B YES-Return to main routine

AA4A1 4C 73 D3 JMP $D373 Observe error

[84E4] Format diskette

AA4D 85 51 STA $51 Set current track to be formatted

AA4F 20 7C 87 JSR $877C Drive LED on

AA52 20 89 A9 JSR $A989 Format diskette

AA55 48 PHA Retain acknowledgement

AA56 20 88 87 JSR $8788 Drive LED off

AA59 68 PLA Repeat acknowledgement

AA5A 60 RTS Return from this subroutine

[90D9] Test filetype for program file

AA5B A5 E7 LDA $E7 Get filetype byte

AA5D 29 07 AND #$07 and isolate filetype flags

AA5F C9 02 CMP #$02 Compare with 'PRG1

AA61 60 RTS Return from this subroutine

ROM-308

Abacus Software 1571 Internals

[AA62] Read control register

AA62 AD OF 18 LDA #$180F

AA65 2C 01 18 BIT #$1801

register

AA68 60 RTS

Get value of control register

Read in new value in control

Return from this subroutine

CD22

D03F

D05D

D097

D367

D51D

D563

E5C7

ED8F

EE40

EEB1

EF28

EF2F

EF37

EF5F

EF93

F001

F005

F09C

F107

CD

4C

20

9D

4C

CD

CD

80

20

20

20

20

CD

4C

20

20

4C

20

4C

4C

D7

8C

86

FA

3F

D7

D7

B7

05

60

20

D7

8A

CF

CF

8A

3A

8A

86

FE

D5

D5

02

AA

FE

FE

EE

F0

D4

F2

EE

D5

EF

EF

D5

EF

D5

D5

CMP

JMP

JSR

STA

JMP

CMP

CMP

JSR

JSR

JSR

JSR

CMP

JMP

JSR

JSR

JMP

JSR

JMP

JMP

$FED7

$D58C

$D586

$02FA,X

$AA3F

$FED7

$FED7

$EEB7

$F005

$D460

$F220

$FED7

$D58A

$EFCF

$EFCF

$D58A

$EF3A

$D58A

$D586

Compare with maximum track

Execute job

Read BAM from diskette

High-byte of number of free blocks

Test acknowledgement

Compare with maximum track

Compare with maximum track

Last character of on-message

Create new BAM

Set buffer for BAM

Read sector

Test number of blocks free

Compare with maximum track

Write BAM to diskette

Set buffer pointer

Set buffer pointer

Write BAM to diskette

Set buffer pointer

Write BAM to diskette

Read BAM from diskette

ROM-309

Abacus Software 1571 Internals

F12D

F12F

A5 6F

48

LDA $6F

PHA

Reserve current

BAM pointer

F147

F1C4

F1D5

F1DF

F24B

F98A

FF3F

FF95

CD

20

CD

20

AE

A9

8D

8D

D7

11

D7

11

D6

7D

D7

D7

EE

F0

EE

F0

FE

FE

FE

CMP

JSR

CMP

JSR

LDX

LDA

STA

STA

$FED7

$F011

$FED7

$F011

$FED6

#$7D

$FED7

$FED7

Compare

Set BAM

Compare

Set BAM

Number

1Motor

with maximum track

pointer

with maximum track

pointer

of track zones on diskette

on1 delay about 1/0.5 sec.

Mark maximum track number

Mark maximum track number

ROM-310

Abacus Software 1571 Internals

Appendix C

0-5 Jobcode of corresponding buffer assignment (0-5)

$0 - $5 Buffer 5 is not allocated in RAM.

Meanings of jobcodes:

$80 Read a sector

$88 Read sector from same track

$90 Write a sector

$A0 Verify a sector

$B0 Look for a sector header

$C0 Set head to track 0

$D0 Execute program in buffer

$E0 Combine program in jobloop

$F0 Format diskette

Meanings of acknowledgements:

$00/01 No errors

$02 Blockheader not found

$03 Sync-mark not found

$04 Data block not found

$05 Data block checksum wrong

$06 Format error

$07 Verify error

$08 Write-protect on hand

$09 Wrong header checksum

$0A Data block too long

$0B False ID / diskette changed

$0D Index hole not found

$0E CP/M syntax error

$0F No disk found

6 - 17 Respective track/sector number for buffers 0-5

$6 - $11 e.g., 6 contains the track and 7 the sector for

buffer 0

18 - 19 First and second characters of disk ID

$12 - $13 in drive 0

20 - 21 Unused

$14 - $15 memory

ROM-311

Abacus Software 1571 Internals

22 - 23 First and second ID characters of last-read

$16 - $17 sector header

24

$18

26

$1A

27

$1B

28

$1C

29

$1D

30

$1E

31

25 Track and sector number of

- $19 last-read sector header

Checksum of last-read

sector header

Control byte of routine at $86E6

Buffer pointer on format routine $9B89

'Diskette initialized1 flag

0=no <>=yes

Like 28/$lC, but for drive 1

Value always 1 [EBBA]

Current status of write-protect notch

0=write protect active; l=no write protect

$1F Unused

32 Operating status of drive 0

$20 Bit 4: l=motor runs until turned off

Bit 5: l=motor switched on

Bit 6: l=stepper motor active, head set

Bit 7: l=drive not ready

33

34

35

$21

$22

$23

Like

Track

Flag

32/$20,

number

for bus

only for drive 1

of current job

mode: 0=1541 bus <>0= 1540 bus

36 - 43 Sector header buffer

$24 - $2B Commodore sectors : Data in GCR-code

CP/M sectors : ID array contents

44 - 45 Unused

$2C - $2D memory

46 - 47 Pointer to current buffer position

$2E - $2F converted to GCR

ROM-312

Abacus Software 1571 Internals

48 - 49 Pointer to position in

$30 - $31 current data buffer

50

$32

52

53

54

- 51

- $33

$34

$35

$36

Pointer to track/sector of jobloop (6-17)

by formatting: pointer to current sector

Pointer converted to current GCR byte

Jobloops yet to be run

Pointer to position of

by 'motor out1

binary byte by GCR

header

conversion

55 $37 Bus status byte:

Bit 0 l=Flag for 'file only has one sector1

Bit 3 Reverse status of Clock line

next, waiting for Clock signal

Bit 6 1=1571 bus mode 0=1541 bus mode

Bit 7 1=1571 operating mode (2mHz)

0=1541 operating mode (lmHz)

56

57

58

59

60

61

62

63

64

65

66

67

68

$38

$39

$3A

$3B

$3C

$3D

$3E

$3F

$40

$41

$42

$43

$44

Identifer for last-read header (normal 7)

Data block identifier (8)

Checksum of buffer/data block

'UO1 command number [see $8030]

IBM system 34 sector format (after reset 5)

Drive number of current job

Number of active drives ($ff=no drives)

Buffer number of current job

Track of last job

Number of last job [used only in F340/F44B]

Difference between new and old track

Number of sectors per track

Number of CP/M sub-sectors per sector

ROM-313

Abacus Software 1571 Internals

69 $45 Jobcode command bits (bits 3-6 of original jobcode)

_______________———__________________——————_ _____— ——_________—_____———

70 $4 6 Next character to be sent over 1571 bus

71 $47 Data block identifier (80

72 $4 8 Runtime counter for motor

73 $4 9 Temporary storage for stack pointer

74 $4A Bits 0-6 : Number of half-track-step travel

Bit 7 : 0=step out

: l=step in

75

76

77

78

$4E

80

81

82

$52

$4B

$4C

$4D

- 79

- $4F

$50

$51

- 85

- $55

Assorted temporary storage

Sector difference to next optimal job

Sector number of next optimal job

Temporary storage of current buffer pointer

from GCR conversion

Buffer data format flag

0=binary <>=GCR

Current track of format

$FF=Format not in process

Temporary storage for 4 binary bytes, which will

be converted to 5 GCR bytes

86 - 93 Temporary storage for 8 GCR values, to produce 8

binary half-bytes,

$56 - $5D and from that 4 binary bytes

94 $5E Command status byte

Bit 0-4: Last CP/M error message in jobloop

Bit 7: l=Disk in IBM System 34 format

95

96

97

$5F

$60

$61

Current

IBM-34

IBM-34

jobcode

format:

format:

Smallest

Largest

sector

sector

number

number

per

per

track

track

ROM-314

Abacus Software 1571 Internals

98

$62

100

101

$65

103

- 99

- $63

$64

- 102

- $66

$67

1541 mode:

1571 mode:

Pointer to

Pointer to

Current head position

Pointer to

will jump

current head control

positioning phase

in half-track

reset (no hardware test)

from $FEE7 when 'UI1 has

Target track

: steps

$EB22

not » +'

routine

or ■-•

104 $68 Flag for initializer method (always 0) [set by C63D]

0=Automatic initialization

<>0=Initialized by 'hand1 (i-comrnand)

105 $69 Sector format for Commodore diskettes (6)

106 $6A Bits 0-5: Number of 'bad1 read attempts

Bit 6 : Head not set next to track

Bit 7 : Track 0 not run

107 -

$6B -

111 -

$6F -

115

116

117 -

$75 -

119

120

121

122

123

124

110

$6C

114

$72

$73

$74

118

$76

$77

$78

$79

$7A

$7B

$7C

Pointer to table of 1541 User-command

($FFEa)

Temporary storage for sundries

(BAM calculations, etc.)

Number of side-sectors to relative file

Unused memory

Address pointer for different

system operations

Device address for Listen + 20(flag in command byte)

Device address for Talk + 20 (flag in command byte)

Listen flag (l=listener mode)

Talk flag (l=talk mode)

Current head positioning control byte from readerror

fATN encountered1 flag

ROM-315

Abacus Software 1571 Internals

125

126

127

128

129

130

131

132

133

134

$86

139

$8B

142

$8F

148

$94

150

151

152

153

$99

155

$9B

157

$9D

$7D

$7E

$7F

$80

$81

$82

$83

$84

$85

-138

-$8A

-142

-$8E

-147

-$93

-149

-$95

$96

$97

$98

-154

-$9A

-156

-$9C

-158

-$9E

'ATN observed1 flag 0=yes; <>0= ATN ignored

Track number of last access

Current drive number

Current track number

Current sector number

Current internal channel number (0-6)

Current secondary address

Last command word sent over serial bus

Current 1541 bus data byte

Temporary storage for

assorted purposes

Math register 1

Math register 2

Pointer in directory buffer

Number of first System 34 sector read

Number of System 34 sectors per track

Bit counter for bits per byte (for data transfer)

Pointer to start of

buffer 0 ($0300)

Pointer to start of

buffer 1 ($0400)

Pointer to start of

buffer 2 ($0500)

ROM-316

Abacus Software 1571 Internals

159 -

$9F -

161 -

$A1 -

163 -

$A3 -

165 -

$A5 -

160

$A0

162

$A2

164

$A4

166

$A6

Pointer

buffer

Pointer

buffer

to start of

3 ($0600)

to start of

4 ($0700)

Pointer to start of

input buffer ($0200)

Pointer to start of

error message buffer ($02D5)

167 - 173 Channel buffer table 1:

$A7 - $AD Arranged one of the first buffers to internal

channels

167-173 correspond to channels 0-6

Meaning of bytes:

Bits 0-5: Buffer number arranged in channel

Bit 6 : l=Rewrite buffer contents

Bit 7 : 0=Buffer used active

$FF : No buffer separated

174 - 180 Channel buffer table 2:

$AE - $B4 arrange 2nd buffer (functions like 167-173 above)

181 - 186 Number of blocks allocated to file by internal

channel

$B5 - $BA (low-byte) Index: Channel number $82

187 - 192 Number of blocks allocated to file by internal

channel

$BB - $C0 (high-byte) Index: Channel number $82

193 - 198 Pointer to current databyte of file by internal

channel

$C1 - $C6 Index: Channel number $82

199 - 204 Record length of relative file opened via

$C7 - $CC internal channel

Index: Channel number $82

205 - 210 Channel buffer table 3:

$CD - $D2 Organize 3rd buffer (see 167-173)

ROM-317

Abacus Software !571 Internals

211

212

213

214

215

216

$D8

221

$DD

226

$E2

231

$E7

$D3

$D4

$D5

$D6

$D7

- 220

- $DC

- 225

- $E1

- 230

- $E6

- 235

- $EB

Pointer to first filename

Position in current record

Side-sector number

Pointer to record in side-sector

Pointer to data set of relative file

Directory filename table

Directory sector where filename is found

Filename position table

marks diectory entry area

Filename-specified drive table

Filename/filetype table

236 - 241 Channel number/filetype table

$EC - $F1 Bit 0 : Drive number (0/1)

Bits 1-3:Filetype

242 - 247 Channel number status table

$F2 - $F7 Bit 1 :l=channel is write channel

Bit 3 :0=EOF flag set

Bit 7 :l=channel is write channel

248

249

250

$FA

255

256

$F8

$F9

- 254

-$FE

$FF

$100

257 - 325

$101-$145

EOI flag (last char.);

Current buffer number

0=YES l=N0

Table for buffer-contained channel number

Drive status (drive 0):

Drive status (drive 1):

Hardware stack of

processor

0=drive ready

0=drive ready

ROM-318

Abacus Software 1571 Internals

326 - 431 BAM buffer 2 for 1571 diskettes

$146-$1AF

432 $1BO CP/M error message

433 $1B1 Flag for current diskette side: 0=side 1

4 43 - 511 Status buffer to take GCR data

$1BB-$1FF

512 - 553 Input buffer for command strings

$200-$229 from computer

554 $22A Current command number; $FF=no command

555 - 573 Secondary address table-internal channel

$22B-$23D Bits 0-3 : internal channel number

Bit 6 : l=channel for reading

Bit 7 : l=write channel

$FF : no secondary address

574 - 579 Channel number table - current data byte

$23E-$243

580 - 585 Channel number table - # of bytes to be transferred

$244-$249

586 $24A Current filetype

587 $24B Length of current filename in command string

———————___

588 $24C Temporary storage for OPEN secondary address

589 $24D Combine with call from D506 in jobcode

590 $2 4E Max. number of sectors in current track

591 - 592 Buffer assignment table

$24F-$250 Every bit of 16-bit value represents a buffer

l=buffer assigned; 0=buffer free

593

594

595

$251

$252

$253

1 Newly written

As above, for

Flag for 'File

BAM,

drive

found

illegal1;

1

■; $FF=no

1=yes 0=no

ROM-319

Abacus Software 1571 Internals

596

597

598

599

600

601

602

$254

$255

$256

$257

$258

$259

$25A

603 - 607

$25B-$25F

608 - 613

$260-$265

614 - 619

$266-$26B

620

621

622

623

624

625

$2 6C

$2 6D

$2 6E

$2 6F

$270

$271

626 - 627

$272-$273

628

629

630

$274

$275

$276

'Directory in buffer1 flag; 0=yes <>0=no

Command mode

Bitmap for channel assignment

l=channel free; 0=channel used

Pointer to current active buffers from 2-buffer

operation

Record length

Current side-sector (track)

Current side-sector

Table for buffer-jobcode

last jobcode of buffer

Table for channel - data sector (track number)

Table for channel - data sector (sector number)

Error number/blink counter

LED mask from error blinking

Last active drive [D7D1/D9FE]

Last sector number [D7DC/DA03]

Current channel number

Number of bytes per IBM sub-sector

Temporary storage of directory entry

(e.g., for block amount, etc.)

Length of command string in input buffer

Characters to be sought in input buffer

[C165/C16D/C2 68/C273]

Length of current filename in input buffer

ROM-320

Abacus Software 1571 internals

631 $277 Number of filenames for 1st file declaration

632 - 639 Filename position table in input buffer points

$27A-$27F to beginning of command string

640 - 644 Filename track table to current sector

$280-$284

—■""*————————_— __ ———————————————————————__________

645 - 649 Filename number table of current sector

$285-$289

650 $28A Joker flag; 0=no joker

651 $28B Command syntax byte

652 $28C Number of drives to be accessed (0/1/2)

653 $2 8D Flag for directory from both drives; 0=no

654 $28E Number of last drive

655 $28F Position of current directory entry

—————————————————————___—_____ ________,____ _.__ _,__._ _, __. __ __._,____.____.

656 $2 90 Sector of current file entry

657 $2 91 Sector of current file entry

658 $2 92 Pointer to valid entry

659 $2 93 Pointer to next directory sector

————————————_______________.__.__————_«»_____ ^mmm ^^_^__^__»»_»_»_«^__^^___^^

660 $294 Position in directory sector

-——__«._______

661 $2 95 Counter for directory entries per sector (8)

662 $2 96 Filetype from command string; 0=no assignment

663 $2 97 File operation mode 0/l=read/write 2==append 3=modify

664 $2 98 'Error from job observed1 flag; >128=no <128=yes

665 $2 99 Pointer to position phase from read error

666 $2 9A Control byte for head positioning by read error

667 - 668 Pointer to current BAM-track storage

$29B-$29C for drive 0 and 1

————————_______________________________._____—.————_______________

ROM-321

Abacus Software 1571 Internals

669 - 670 Track number assigned by the

$29D-$29E BAm temporary storage

673 - 680 BAM temporary storage

$2A1-$2A8

681 - 682 IRQ vector from FE67

$2A9-$2AA

683 $2AB Assign motor runtime counter from diskette

——

684 $2AC Number of greates track+1 of diskette

685 - 686 Pointer in BAM buffer

$2AD-$2AE (temporary storage reserved at pointer)

687 $2AF '1541/1571 IRQ toggle1 flag; l=no

_—___——

688 - 715 Produce buffer at

$2B0-$2CB directory line

716 - 724 Unused

$2CC-$2D4 memory

725 - 7 60 Generate buffer for error text

$2D5-$2F8 message

7 61 $2F9 'Invalid BAM1 flag; 0=no l=yes

7 62 - 7 63 Number of blocks free in drives

$2FA-$2FB 0 and 1 (low-bytes)

7 64 - 7 65 Number of blocks free in drives

$2FC-$2FD 0 and 1 (high-bytes)

766 - 767 Control byte for positioning next track for

$2FE-$2FF drives 0 and 1

ROM-322

Abacus Software 1571 internals

Appendix D

Overview ofDisk Errors

NUMBER DEFINITION

"~"~"~" — ~"" — ~~"—~~""*~—— — — — — — — — — — — — — — — — ———— — — — — — — — — — — _ _ _ _ __ _ _ _ _ _ _ _ ___ __ — — _ — «„ _

00 OK

01 FILES SCRATCHED,XX

Acknowledgement of scratch

XX gives number of files deleted

TT=track; SS=sector at which error occurred

20 READ ERROR, TT,SS

Sector header of a block was not found. The disk is treated

as unformatted or bad.

21 READ ERROR, TT,SS

Sync marker not found. Either disk is unformatted or there

is a drive error, such as a misaligned read head, etc.

22 READ ERROR, TT,SS

Data block of a sector has not been found.

23 READ ERROR, TT,SS

Checksum error. When this happens, you will have to look

into the sector several times with direct access commands,

until the error is found. Then, you will have to read the

sector into the disk buffer, and rewrite the sector. This

re-computes the checksum, although the contents of the

sector can be incorrect.

24 READ ERROR, TT, SS

Error caused by hardware trouble-invalid bit pattern.

25 WRITE ERROR,TT,SS

Writing a sector has caused a discrepancy determined by a

verify error. Use a new diskette.

26 WRITE PROTECT ON,TT,SS

The diskette is guarded by a write-protect tab.

27 READ ERROR, TT,SS

Checksum error detected in sector header.

ROM-323

Abacus Software 1571 Internals

29 DISK ID MISMATCH, TT,SS

Sector header ID doesn't match with last-read ID. Cause:

Initialized or newly-formatted disk.

30 SYNTAX ERROR

The 1571/1570 does not recognize the command sent over the

command channel.

31 SYNTAX ERROR

Command cannot be executed.

32 SYNTAX ERROR

Command sent over channel is longer than 41 characters, and

input buffer is full.

33 SYNTAX ERROR

Joker has been used by writing as filename.

34 SYNTAX ERROR

Filename was not found. Eventually, the characters after

the command colon were forgotten.

39 FILE NOT FOUND

Autoboot file given not found.

50 RECORD NOT PRESENT

Data set of a relative file does not exist. This message

can be ignored when first writing a data set, only to have

it show itself when trying to read that file.

51 OVERFLOW IN RECORD

Data being transferred to the disk is larger than the data

set, so any more characters are ignored.

52 FILE TOO LARGE

Number of last data set is too large; no more files can be

fit onto the diskette.

60 WRITE FILE OPEN

An attempt is made to access a file not closed by the

normal methods. This file can only be re-opened using

'modify1.

61 FILE NOT OPEN

An un-opened file is sought.

ROM-324

Abacus Software 1571 Internals

62 FILE NOT FOUND

Given program or file is not found.

63 FILE EXISTS

The new file already exists on diskette.

64 FILE TYPE MISMATCH

The given filetype doesn't match any filetype given on

disk.

65 NO BLOCK,TT,SS

The block given by Block-Allocate is already occupied. TT

and SS give the track and sector of the next free block of

the track. If TT and SS=0, there are no more free sectors.

See Chapter 2.1.3 for Block-Allocate and error handling for

that command.

66 ILLEGAL TRACK OR SECTOR,TT,SS

The sector parameters given by direct access commands are

wrong.

67 ILLEGAL TRACK OR SECTOR,TT,SS

The sector linking points to a sector which is not onhand.

70 NO CHANNEL

No more channels are available. You will have to close an

already-open file somewhere to get a channel back.

71 DIR ERROR, TT,SS

The BAM contents in disk memory do not match with the BAM

on diskette. You will have to initialize the diskette when

this happens.

72 DISK FULL

You have reached the maximum capacity of the disk, and have

less, than three blocks free.

73 Power-on message

An attempt has been made to write to a disk formatted under

another DOS.

74 DRIVE NOT READY

There is no formatted disk in the drive.

ROM-325

Abacus Software 1571 Internals

Index

APPEND, 53, ROM-188, ROM-190

ATN, ROM-3,R0M-4

autostart files, 100

& command, ROM-96, ROM-232

BACKUP, 38
BAM, 33,75-80, ROM-95, ROM-97, ROM-159, ROM-300

BASIC versions, 11

BDOS and BIOS, 105

BLOAD/BSAVE, 21

block commands, ROM-145

B-A,ROM-148

B-E,ROM-150

B-P, ROM-150

B-R,ROM-149

B-W,ROM-149

blocks, 69

allocate/free, 72, ROM-159, ROM-254

reading/writing, 69

execute, 88

BOOT, 40

bus 1541

input

output, ROM-7

bus 1571

input,ROM-5

output,ROM-5, ROM-6,

read, ROM-8

buffers, 68

C-128 ports, 3

carriage return (CR), 45

checksum, ROM-1, ROM-48, ROM-56

CIA 6526,136

circuitry (1570/1571), 130

clock buts, 109

channels

close, ROM-169

open, ROM-196

COLLECT,33

Abacus Software 1571 Internals

command channel, 31

command string, ROM-112, ROM-114, ROM-118

search, ROM-116

table, ROM-117

Commodore controller, 139

CONCAT, 35

COPY,36,ROM-135

CP/M boot, 41

error, ROM-26

formats, 93-96,111-117, ROM-28

initialize, ROM-31

programming under, 105

read sector, ROM-10, ROM-13, ROM-15, ROM-42, ROM-47

write sector, ROM-11, ROM-44

sector format, ROM-14

verify, ROM-46

Cyclic Redundancy Check (CRC), 112

data channels, 13

data field, 45

data storage, 7,13,44,58

DCLEAR, 39

DCLOSE, 48

device address, ROM-50

device request fast, ROM-5

DIP switches, 4,12

direct access commands, 67

DIRECTORY/CATALOG, 23

directory, 73, ROM-174, ROM-182, ROM-300

close, ROM-195

LOAD "$", ROM-247

search, ROM-122

transmit, ROM-191

disk command table, ROM-301

Disk Operating System (DOS), 8,14

buffer, 87

controller reset, ROM-264

errors, 160, ROM-225

history, 155

important routines, 156, ROM-110

SHELL, 38

zero-page, 178

Abacus Software 1571 Internals

Disk Parameter Block (DPB), 106

diskettes (5 1/4"), 6

formatting, 14

formats, 9,93

free blocks, ROM-106, ROM-132
operation, 108

DLOAD/RUN, 16

DOPEN#, 57

drive LED, ROM-23
drive motor

off, ROM-23, ROM-285

on,ROM-22,ROM-286
step, ROM-24

DS/DS$/ST, 27

DSAVE, 18

DVERIFY, 20

EOI, 29

EOT, 29

erasing files, 25

error byte

output, ROM-17

error channel, ROM-172, ROM-175

error messages, 27, ROM-10, ROM-54, ROM-114, ROM-177, ROM-225

listing, ROM-323

output, ROM-226

RAM or ROM, ROM-240

fast-load, ROM-51

file construction, 81

file

close, ROM-192, ROM-193

open, ROM-189, ROM-190

pointer, ROM-201

filename rules, 18

file type names, ROM-302

formatting diskettes, 14,ROM-80, ROM-90, ROM-304

GCR coding, 128-129, ROM-65, ROM-71, ROM-74, ROM-271,

ROM-278, ROM-300

tables,ROM-88, ROM-279, ROM-283

GET#, 49,63

Abacus Software 1571 Internals

handshaking, 144

head

control routine, ROM-79, ROM-286

initialize, ROM-287

movement, ROM-288

set, ROM-48, ROM-49, ROM-60

switch circuitry, ROM-299

headers, 8,14

IBM System 34 format, 93,96-99,111-117, ROM-34, ROM-39, ROM-41

read, ROM-29,-32-42

routine, ROM-21

sector, ROM-18, ROM-20

initialize, ROM-99, ROM-119, ROM-158

INPUT*, 49,51,63

interface components (6522/6526), 131

IRQ vector,-306

"killer track", 89

LED lights, 4, ROM-111, ROM-240, ROM-246

loading/saving programs, 16-19,21-22

speed, 19

fast-load, 94

machine language, 12

built-in monitor, 10

programming WD-1770,118-121

memory read/write, 87

memory execute, 88

MFM data recording, 108

mode, ROM-50

M-R command, ROM-142

M-W command, ROM-143

NEW,ROM-250

OPEN,31,45,ROM-184

peripheral control register, 133

print*, 32,47,58

pointer, 62

Abacus Software 1571 Internals

RAM andROM test, ROM-241

read attempts, ROM-48

read error, ROM-179

read-write head, 6,108

relative files, 44,56-64, ROM-140, ROM-151

end, ROM-215

errors, ROM-224

insert records, ROM-219

number of sectors, ROM-207

side sectors, ROM-206, ROM-207, ROM-210, ROM-222

write record, ROM-209

RECORD*, 58

RENAME, 34, ROM-141

reset, ROM-306

SCRATCH, 25

routine, ROM-132

sectors (diskette), 7

format set, ROM-48

get,ROM-203

headers,8, ROM-62, ROM-65, ROM-69, ROM-273

read, ROM-66, ROM-272

size, 7

write, ROM-70, ROM-274

verify, ROM-74, ROM-277

serial bus, 141-150

operating system routines, 146

sequential files, 44-55

side-sector blocks, 82-84

SRQ line, 148

status byte

display, ROM-16

get, ROM-15

set, ROM-16

stepper motor, 151

sync marks, 9,109,126-127

tracks (diskette), 7

density, 9

get, ROM-203

Abacus Software 1571 Internals

USER commands, 91, ROM-109, ROM-143

jump addresses U1-U9, ROM-306

USER-0, ROM-1, ROM-2, ROM-109

Ul, ROM-149

U2, ROM-150

user files, 81

VALIDATE, ROM-249

verify ROM--94

Versatile Interface Adapter (VIA), 131-135

WD-1770 controller, 118,137

wildcards, 42

write-protect tab (diskette), 7

status, ROM-25, ROM-32

zeropage, 158

initialize, ROM-242

listing, ROM-311

1541

create BAM, ROM-102

new, ROM-252

format, ROM-101,-134, ROM-290

initialize 1541 mode, ROM-305

interrupt routine^ROM-86

mode, 140, ROM-50

switching 1540.1541, ROM-303

1571

create BAM, ROM-102

format, ROM-90, ROM-101

initialize, ROM-99

reset, ROM-31,ROM-51

command, ROM-144

Optional Diskette

1571 Internals

Includes Disk Monitor!

For your convenience, the program listings contained in this book are

available on a Commodore formatted floppy disk. You should order the

diskette if you want to use the programs, but donft want to type them in

from the listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a

check, money order or credit card information. Mail your order to:

Abacus Software

P.O. Box 7219

Grand Rapids, MI 49510

Or forfast service, call (616) 241-5510.

C-128 REQUIRED
cSr READING

AOATA-BECKI

Abacusf
A DATA BECKEWOOCK PUQL1SHED BY

Abacus fcffittttl Software

Detailed guide presents the 128's

operating system, explains graphic

chips, Memory Management Unit, 80

column graphics and commented

ROM listings. SOOpp $19.95

Get all the inside information on

BASIC 7.0. This exhaustive hand
book is complete with commented

BASIC 7.0 ROM listings. Coming
Summer '86. $19.95

A DATA'

Abacusj Software

A DATA. BECKERBOOK PUBLISH ED BV

AbacusUUMSoftware

Filled with info for everyone. Covers

80 column hi-res graphics, win
dowing, memory layout, Kernal

routines, sprites, software pro

tection, autostarting. 300pp $19.95

Insiders' guide for novice & ad

vanced users. Covers sequential &

relative files, & direct access com
mands. Oescribes DOS routines.

Commented listings. $19.95

Learn fundamentals of CAD while

developing your own system. Design
objects on your screen to dump to a

printer. Includes listings for '64 wjth

Simon's Basic. 300pp $19.95

Introduction to programing: problem Presents dozens of programming
analysis; thorough description of all quick-hitters. Easy and useful
BASIC commands with hundreds of techniques on the operating system,

examples: monitor commands; util- stacks, zero-page, pointers, the
hies; much more. $16.95 BASIC interpreter and more. $16.95

Essential guide for everyone inter
ested in CP/M on the 128. Simple

explanation of the operating system,

memory usage, CP/M utility pro

grams, submit files & more. $19.95

ANATOMY OF C-64 Insider's guide to the

'64 internals. Graphics, sound, I/O, kernal,

memory maps, more. Complete commented

ROM listings. SOOpp $19.95

ANATOMY OF

handbook on I

examples and 1
1541 ROMIi

MACHINE LANGUAGE C-64 Learn

6510 code write fast programs. Many sam

ples and listings for complete assembler,

monitor, & simulator. 200pp $14.95

GRAPHICS BOOK C-64 - best reference

covers basic and advanced graphics.

Sprites, animation, Hires, Multicolor,

lightpen, 3D-graphics, IRQ, CAD. pro

jections, curves, more. 350pp $19.95

TRICKS & TIPS FOR C-64 Collection of

easy-to-use techniques: advanced graphics,

improved data input, enhanced BASIC,

CP/M, more. 275pp'$19.95

1541 REPAIR & MAINTENANCE

Handbook describes the disk drive hard

ware. Includes schematics and techniques

to keep 1541 running. 200pp $19.95

ADVANCED MACHINE LANGUAGE

Not covered elsewhere: - video controller,

interrupts, timers, clocks, I/O, real time;
extended BASIC, more. 210pp $14.95

PRINTER BOOK C-64/VIC-20 Under

stand Commodore, Epson-compattole print

ers and 1520 plotter. Packed: utilities; gra

phics dump; 3D-plot; commented MPS801

ROM listings, more. 330pp $19.95

SCIENCE/ENGINEERING ON C-64 In

depth intro to computers in science. Topics:

chemistry, physics, biology, astronomy,

electronics, others. 350pp $19.95

CASSETTE BOOK C-64/VIC-20

Comprehensive guide; many sample

programs. High speed operating system

fast file loading and saving. 225 pp $14.95

IDEAS FOR USE ON C-64 Themes:

auto expenses, calculator, recipe file, stock

lists, diet planner, window advertising,

others. Includes listings. 200pp $12.95

COMPILER BOOK C-64/C-128 All you

need to know about compilers: how they

work; designing and writing your own;

generating machine code. With working

example compiler. 300pp $19.95

C-128 and C-64

Adventure Gamewrlter's Handbook

Step-by-step guide to designing and writing

your own adventure games. With automated

adventure game generator. 200pp $14.95

PEEKS & POKES FOR THE C-64

Includes in-depth explanations of PEEK,

POKE, USR, and other BASIC commands.

Learn the "inside" tricks to get the most out

of your '64. 200pp $14.95

Optional Diskettes for books

For your convenience, the programs

contained in each of our books are avail

able on diskette to save you time entering

them from your keyboard. Specify name of

book when ordering. $14.95 each

are trademarks of Commodore Business Machines Inc.

Abacus Software
P.O. Box7219 Grand Rapids, Ml 49510 -Telex709-101 - Phone (616) 241-5510
Call now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)

241-5510. Other software and books are available-Call and ask for your free catalog. Add $4.00 for shipping

per order. Foreign orders add $10.00 per book. Dealer inquires welcome-1400+ nationwide.

REQUIRED READING

INTERNALS

Essential guide to learning the

inside information of the ST.

Detailed descriptions of sound

& graphics chips, internal

hardware, various ports, GEM.

Commented BIOS listing. An

indispensible reference for

your library. 450pp. $19.95

GEM Programmer's Ref.

For serious programmers in

need of detailed information

on GEM. Written with an

easy-to-understand format. All

GEM examples are written in

C and assembly. Required

reading for the serious pro-

450pp. $19.95

TRICKS & TIPS

Fantastic collection of pro

grams and info for the ST.

Complete programs include:

super-fast RAM disk; time-

saving printer spooler; color

print hardcopy; plotter output

hardcopy. Money saving tricks

and tips. 200 pp. $19.95

GRAPHICS A SOUND

Detailed guide to understand

ing graphics & sound on the

ST. 2D & 3D function plotters.

Moire patterns, various reso

lutions and graphic memory,

fractals, waveform generation.

Examples written in C, LOGO,

BASIC and Modula2. $19.95

BASIC Training Guide

Indispensible handbook for

beginning BASIC program

mers. Learn fundamentals of

programming. Flowcharting,

numbering system, logical

operators, program structures,

bits & bytes, disk use. chapter

quizzes. 200pp. $16.95

PRESENTING THE ST

Gives you an in-depth

look at this sensational

new computer. Discusses

the architecture of the

ST, working with GEM.
the mouse, operating

system, all the various

interfaces, the 68000

chip and its instructions,
LOGO. $16.95

MACHINE LANGUAGE

Program in the fastest

language for your Atari

ST. Learn the 68000
assembly language, its

numbering system, use

of registers, the structure

& important details of the

instruction set, and use of

the internal system

routines. 280pp $19.95

LOGO

Take control of your

ATARI ST by learning

LOGO-the easy-to-use,
yet powerful language.

Topics covered include

structured programming,

graphic movement, file

handling and more. An

excellent book for kids as
well as adults. $19.95

PEEKS & POKES
Enhance your programs
with the examples found

within this book. Explores
using the different lang

uages BASIC, C, LOGO

and machine language,

using various interfaces,

memory usage, reading

and saving from and to
disk, more. $16.96

BEGINNER'S GUIDE

Finally a book for those

new to the ST wanting to

understanding ST basics.

Thoroughly understand

your ST and its many

devices. Learn the funda

mentals of BASIC, LOGO

and more. Complete with

index, glossary and illus

trations. +200pp $14.95

BASIC TO C
If you are already familiar

with BASIC, learning C

will be all that much

easier. Shows the trans

ition from a BASIC

program, translated step

by step, to the final C

program. For all users

interested in taking the

next step. $19.95

The ATARI logo aid ATARI ST ere fredemcrks of Atari Corp.

MPclCUS IBililillfil ^OTtWZirC
P.O. Box 7219 Grand Rapids, Ml 49510 - Telex 709-101 - Phone (616) 241-5510
Optional diskettes are available for all book titles at $14.95

Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or Amex card. Add

$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming soon. Call or
write for your free catalog. Dealer inquiries welcome-over 1400 dealers nationwide.

TM

^ - SPKBGUWB
SOFmARE

Th© complete compiler

and development pack
age. Speed up your pro-

j:j: grams 5x to 35x. Many
options: flexible memory

management; choice of

compiling to machine f
code, compact p-code or h

both. '128 version: 40 or

80 column monitor output

and FAST-mode opera

tion. '128 Compiler's ex

tensive 80-page pro

grammer's guide covers

compiler directives and
options, two levels of

optimization, memory usage, I/O handling, 80 column hi-res graphics, faster,

higher precision math functions, speed and space saving tips, more. A great
package that no software library should be without. 128 Compiler $59.95

64 Compiler $39.95

For school or software

development. Learn C on

your Commodore with our in-

depth tutorial. Compile C pro

grams into fast machine

language. C-128 version has

added features: Unix™-like

operating system; 60K RAM

disk for fast editing and

compiling Linker combines

up to 10 modules; Combine

M/L and C using CALL; 51K

available for object code;

Fast loading (8 sec. 1571, 18 sec. 1541); Two standard I/O librarys plus

two additional libraries—math functions (sin, cos, sqrt, etc.) & 20+ graphic

commands (line, fill, dot, etc.). C-128 $79.95

C-64 $79.95

Easily create professional

high quality charts and

graph's without programming.
You can immediately change

the scaling, labeling, axis,

bar- filling, etc. to suit your

needs. Accepts data from

CalcResult and MultiPlan.

C-128 version has 3X the

resolution o1 the '64 version.

Outputs to most printers.

C-128 $39.95

C-64 $39.95

PowerPlan

One of the most powerful spreadsheets with Integraded

graphics. Includes menu or keyword selections, online help
screens, field protection, windowing,trig functions and more.

PowerGraph, the graphics package, is Included to create

integrated graphs & charts. C-64 $39.95

$39.95

$39.95

$39.95

W
m)

gatfwrO.

COBOL Compiler for the C-64

Ada Compiler for the C-64

VideoBasic Language for the C-64

Remarkably easy-to-use

interactive drawing pack

age for accurate graphic

designs. New dimension

ing features to create

exact scaled output to all
major dot-matrix printers.

Enhanced version allows

you to input via keyboard

or high quality lightpen.
Two graphic screens for

COPYing from one to the

other. DRAW, LINE, BOX,

CIRCLE, ARC, ELLIPSE

available. FILL objects

with preselected PAT-

TL-HNS; add TEXT; SAVE and RECALL designs to/from disk. Define your own

library of symbols/objects with the easy-to-use OBJECT MANAGEMENT
SYSTEM-store up to 104 separate objects. C-128 $59.95

C-64 $39.95

Compiler and Software

Development System

Not just a compiler, but a

complete system for develop

ing applications in Pascal

with graphics and sound

features. Extensive editor

with search, replace, auto,

renumber, etc. Standard J &

W compiler that generates

fast machine code. If you

want to learn Pascal or to

develop software using the

best tools available-SUPER

Pascal is your first choice.

C-128 $59.95

C-64 $59.95

OTHER TITLES AVAILABLE:
Technical Analysis System

Sophisticated charting and technical analysis system for

serious investors. Charting and analyzing past history of a

stock, TAS can help pinpoint trends & patterns and predict a

stock's future. Enter data from the keyboard or from online

financial services. C-64 $59.95

Personal Portfolio Manager

Complete protfolio management system for the individual or

professional investor. Easily manage your portfolios, obtain

up-to-the-minute quotes and news, and perform selected

analysis. Enter quotes manually or automatically through
Warner Computer Systems. C-64 $39.95

Xper

XPER is the first "expert systent' for the C-128 and C-64. While
ordinary data base systems are good for reproducing facts,
XPER can derive knowledge from a mountain of facts and help
you make expert decisions. Large capacity. Complete with

editing and reporting. C-64 $59.95

C-128 and C-€4 ere trademarks of Commodore business Machines Inc.

Unix is a tademark of Bel Laboratories

Aba mm
PO Box7219GrandRapids,Ml49510-Telex709-101 -Phone(616)241-5510
Call now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)
241-5510 Other software and books are available-Call and ask for your free catalog. Add $4.00 for shipping
per order Foreign orders add $12.00 per item. Dealer inquires welcome-1400+ nationwide.

