

Commodore 64 Disk Systems
and Printers

Other Granada books for Commodore 64 users

Business Systems on the Commodore 64
Susan Curran and Margaret Norman
o 246 12422 9

Commodore 64 Computing
Ian Sinclair
0246 120304

The Commodore 64 Games Book
Owen Bishop
o 246 12258 7

Commodore 64 Graphics and Sound
Steven Money
0246 12342 7

Software 64: Practical Programs for the Commodore 64
Owen Bishop
o 246 12266 8

Introducing Commodore 64 Machine Code
Ian Sinclair
o 246 123389

40 Educational Games for the Commodore 64
Vince Apps
o 246 12318 4

Adventure Gamesfor the Commodore 64
A. J. Brad bury
o 246 124121

Commodore 64
Disk Systems
and Printers

Ian Sinclair

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W I X 3LA

First published in Great Britain by
Granada Pu blishing 1984

Copyright © 1984 by Ian Sinclair

Bri/ish Librar.\' CGla/oguing in Publica/ion Da/a
Sinclair, Ian R.
Commodore 64 disk systems and printers.
I. Commodore 64 (Computer) 2. Data disk
drives 3. Printers (Data processing systems)
I. Title
001.64'4 QA76.8.C64

ISBN 0- 246- 12409- 1

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted, in any form,
or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior permission
of t he publishers.

Contents

Preface

About Disks and Disk Systems

2 The Disk Filing System

3 Digging Deeper

4 Disk Utilities and How To Use Them

5 BASIC Filing Techniques

6 A Database Example - FILING CABINET

7 Printers

Appendix A: Random Access Files

Appendix B: List of Commands

VB

I

13

25

35

43

63

77

97

100

Appendix C: Disk Head Care 104

Appendix D: Word Processing with a Disk System 106

Appendix E: Saving Machine Code as a Serial File 108

Appendix F: Suppliers 110

Index 113

Preface

At some time or another, a serious programmer will find that the use
of cassettes is intolerable, and will turn to disk drives. Since the
memory size of the Commodore 64 machine makes it attractive to
serious programmers, it is inevitable that a very large proportion of
C'64 users have acquired, are acquiring, or intend to acquire disk
systems. The Commodore disk system, however, is unique, and its
operation is not obvious to a beginner. Even an experienced
programmer who has worked with other disk systems may find that
the Commodore 1541 is by no means easy to understand.

This book is intended as a beginner's introduction to the
Commodore 1541 disk system that is currently available for the C'64
machine. By 'beginner' I don't necessarily mean a beginner to the use
of the computer, but a beginner to the use of disk systems. At the
same time, I hope that this book will be intelligible and useful to the
beginner who has launched into computing with a disk-equipped
Commodore 64. The main feature of this book, then, will be greatly
extended explanations of what disk operation is about, and how to
make the most effective use of disks. This is not always apparent to
the newcomer to disk systems, even after considerable experience of
the use of the cassette-based machine. I shall not assume , as so many
books on disk operation seem to assume, that the reader is at ease
with machine code or hexadecimal notation, so these points will be
explained as they are introduced .

The book also covers the use of some 'disk utilities' - programs
(usually supplied on disk) which can provide editing actions for
disks. Listings of some of these utilities are provided in the [541
manual. The beginner generally finds the action of these utilities
very confusing, and so I have included some examples of how such
utilities can be of very great help · for example, in reading data from
a disk and in retitling a disk without removing its contents.

Since the serious programmer is quite certain to wish to use a

viii Preface

printer, a long chapter on printers has been included. Only one of the
Commodore printers, the VIC 1515, has been included, because the
Commodore owner who uses a Commodore printer is generally
well-served for advice. The important topic that is not so well
covered in other texts is the use of non-Commodore printers, such as
the Epson series. The use of a Centronics interface for the C'64 is
described, and also the action of printers such as the Epson, theJuki
daisywheel printer and the Tandy CGP-115 graphics printer. At a
time when combined typewriter/ printers can now be obtained at
very attractive prices the buyer should have as wide a choice as
possible, and this book describes what is available and how itcan be
used.

The listings in this book have, as usual, been prepared by a printer
linked directly to the computer. This has made it impossible to
reproduce Commodore graphics symbols, so that all of the
functions (like clear screen) which are usually shown on listings as
symbols are in this book typed in CHR$(n) form. This makes the
listings very much easier to follow.

As always, this book owes its creation to a number of people. I
would particularly like to thank my long-suffering and patient
friends at Granada Publishing. Richard Miles commissioned the
manuscript, and Tony Palmer detected a need for the book. As
always, Sue Moore did miracles on my typescript, and the
typesetters and printers worked at breakneck speed to bring the
book quickly into existence . I am deeply grateful to all of them.

Note: The spelling 'disk' has been used throughout the text of this
book . This is the U.S. spelling, which has become universal. A few
texts, however, use the alternative 'disc'.

Ian Sinclair

Chapter One

About Disks and Disk
Systems

Why use disks?

One of the questions that a beginner to computing inevitably asks is:
Why use disks? The obvious reasons are not necessarily the most
important ones. The novice owner will see more clearly the
advantages of using disks only after some time spent using cassettes.
We'll start, then, by showing why the use of disks is so important for
the more advanced programmer and user. To start with, a disk offers
much faster operation. If you use a machine to load one program,
and then use that program (a game perhaps) for several hours, this
speed advantage may be of little use. It certainly would not justify
the cost of a disk system. On the other hand, if you are developing
programs for yourself, you may want to load a program, make
changes, and save it again before you try the new version out. This
can be very tedious if you have to wait for cassettes to load and save.
It's made even more tedious because cassette operation is not
automatic. You either have to store each version of the program on a
new cassette, or use a long cassette (C60 or C90) with each program
version noted as a starting point on the tape counter. If you use
separate cassettes, you may find yourself holding a dozen of them by
the time the program is complete. If you use C90s you will need
paper to note the tape count positions of each version of the
program. Either way, it's tedious. Another class of user who will
benefit greatly from the use of disks is the text writer. If you use the
Commodore 64, as many users do, to create and edit text, with the
EASY SCRIPT or VIZA WRITE text editor programs, then the
time that is needed for cassettes to load or save the data is a definite
handicap. If you want to load a piece of text, change a few words,
and then store the new version back, the loading and saving time is a
very large part of the total.

The overwhelming advantage of using a disk system is automatic

2 Commodore 64 Disk Systems and Printers

operation. The C'64 cassette system does, at least, permit the motor
of the cassette recorder to be controlled, and it allows programs or
data files to be referred to by name. If you try to load a program
called "TEXTINDEX", however, without winding the cassette back
to the beginning, you may find that the program cannot be loaded.
This is because recording on tape is seria/- you start recording at the
beginning of the tape, and wind it on to the end. If you then want to
load something which is at the start of the tape, you have to rewind it
for yourself. The computer does not control the actions of fast
forward and reverse, because the cassette recorder was never
intended as a way of storing computer programs and data. The disk
system, by contrast, is completely computer-controlled. The only
manual action is that of putting in the correct disk, and making sure
that it is the right way round. On loading, the computer will then use
its disk operating system to find the program or other material that
you want, from its title. Having located the start, it will then load the
data into the computer in a time of a few seconds. Saving isjust as
automatic. The SAVE command is followed by a filename (and
other information in some cases), and pressing RETURN carries
out the actions of finding unused space on the disk and saving the
data. The automatic nature of this action also means that a
'catalogue' can be kept on the disk itself. You can insert a disk and
obtain information on what is stored on it without the need to play
back the whole disk. Though you can also find the names of
programs on a cassette, you have to replay a whole cassette to see its
catalogue.

In addition to these compelling reasons for using disks, we must
add the extra commands that the disk operating system permits.
Some computers go much further in this respect, so that their disk
system adds a BASIC of its own. In the C'64 disk system, the new
commands are all closely tied to the use of the disk system itself, and
we shall examine them in detail. Several of the extra commands,
however, allow you to obtain a lot more information about how the
data is stored on the disk. This will not be of immediate use to you if
you haven't used disks before, but its usefulness will be apparent
before long.

Finally, the use of disks can bring order and reliability to what can
otherwise be a very haphazard business. When you use cassettes for
filing programs and data you inevitably end up with a very large
number of cassettes, all of which have to be catalogued. I had over
two hundred cassettes at one stage! It can take a considerable time to
locate a program, on a cassette. Although a disk cannot hold quite as

About Disks and Disk Systems 3

much information as a C90 cassette, the information is much easier
to get at. This encourages you to use the whole of a disk, whereas you
might use only the first ten minutes of a C90 cassette. It's quite
possible to find, for example, that you can keep all of the programs
that you want to use on one single disk! This in itself is such a
liberation that it almost justifies the use of disks by itself. Disks are
sli m and compact to store, so that a box of ten disks, holding a huge
number of programs, will take up little more space than a couple of
cassettes . The reliability of disk recording means that you can make
a backup copy of a valuable program and be fairly certain that you
will never need it. Unless you spill coffee all over adisk, demagnetise
it or tear it apart, it's unlikely that you will lose a program. Cassettes
are never so reliable.

What is a disk system?

'Disk system' is the name that is given to a complicated combination
of hardware and software . Hardware means the equipment in boxes,
software is programming which can be on disk or in the form of
chips that plug into the machine. A disk system comprises the disk
drive (or d ri ves), the disk controlli ng circuits, and the disk opera ting
system. The unique feature of the Commodore disk system is that all
of these parts of the disk system are contained in the one box, thedisk
drive hux. The disk drive is, in fact, a miniature computer in its own
right, complete with its own memory. The drive is linked to the
Commodore 64 by means of the data cable which is provided. This
terminates in six-pin plugs at each end. There are two sockets on the
disk drive, and the data connection is made by plugging one end of
the cable into the socket on the computer (the socket next to the
place where the cassette unit plugs in). The other end of the cable can
go into either of the sockets on the disk drive. If you then want to
connect a VIC 1515 or similar Commodore printer, it can plug into
the other socket on the disk drive.

The disk drive should come with a mains cable to which a plug has
already been connected. If this has not been done, Fig. 1.1 shows
how this plug should be connected. It's preferable to plug this into
the same source of power as the computer, so a four-way socket
strip, as illustrated in Fig. 1.2, will be very useful to you. This allows
sockets for the C'64, the disk drive, a monitor and a printer.

The controlling circuits for the disk system are in the form of
circuits which are all contained within the disk drive unit, along with

4 Commodore 64 Disk Systems and Printers

Earth

Catle Clamp

Cable

Fig. 1.1. Connecting the mains plug. Use a 3A fuse, not the 13A fuse that is
supplied with the plug.

Fig. 1.2. A four-way socket strip that allows you to operate a complete system
from one wall-socket.

the disk filing system (DFS). A 'file' in this sense means any
collection of data which can be stored on the disk. The DFS consists
of a program, and most computers use a 'DOS-disk' to hold this
program. DOS is short for disk operating system. When this is done,
a lot of the RAM memory (the memory that is free for you to use) is
needed for holding the DFS. The Commodore 64, however, uses
another chip, the DFS chip, to hold this information, and this leaves
all of the memory of the C'64 free. Some memory has to be used, and
this is fitted to the disk drive unit so that none of the 39K of the C'64
that is normally available to you for BASIC programs need to be
taken up when the disk system is used.

About Disks and Disk Systems 5

Tracks, sectors and density

The language of disk recording is very different from that of cassette
recording. If your sole concern is to save and load programs in
BASIC, you may possibly never need to know much about these
terms. A working knowledge of how disk storage operates, however,
is useful. To start with, it can clear up the problem of which disks are
suitable for your drives. At a more advanced level, it can allow you
to extract information from damaged disks, and to make changes to
the information that is stored on disks.

Unlike tape, which is pulled past a recording/ replay head, a disk
spins around its centre . When you insert a disk into a drive it is
located in place, and when the drive operates a hub engages the
central hole of the disk, clamps it, and starts to spin it at a speed of
about 300 revolutions per minute. The disk is a circular, flat piece of
plastic which has been coated with magnetic material. It is enclosed
in a cardboard (or plastic) jacket to red uce the chances of damage to
its surface. The hub part of the disk should also be reinforced to
avoid damage when it is gripped by the drive. The surface of each
disk is smooth and flat, and any physical damage, such as a
fingerprint or a scratch, can cause loss of recorded data. The jacket
has slots and holes cut into it so that the disk drive can touch the disk
at the correct places.

Through a slot that is cut in the jacket (Fig. 1.3), the head of the
disk drive can touch the surface of the disk. This head is a tiny
electromagnet, and it is used both for writing data and for reading.
When the head writes data, electrical signals through the coils of
wire in the head cause changes of magnetism. These in turn
magnetise the disk surface. When the head is used for reading, the
changing magnetism of the disk as it turns causes electrical signals to
be generated in the coils of wire. This recording and replaying action
is very similar to that of the cassette recorder, with one important
difference. The cassette recorder was never designed to record
digital signals from computers, but the disk head is. The reliability of
recording on a disk is therefore very much better than you can ever
hope for from a cassette.

Unlike the head of a cassette recorder, which does not move once
it is in contact with the tape, the head of a disk drive moves quite a
lot. If the head is held steady, the spinning disk will allow a circular
strip of the magnetic material to be affected by the head. By moving
the head in and out, to and from the centre of the disk, the drive can
make contact with different circular strips of the disk. These strips

6 Commodore 64 Disk Systems and Printers

Write-protect
notch

Disk put into drive this way

+
fiJ H"d <I" ~ (Do not touch surface)

Fig. 1.3. The slit in the disk jacket that allows the disk drive head to touch the
disk surface.

are called 'tracks'. Unlike the groove of a conventional record, these
are circular, not spiral, and they are not grooves cut into the disk.
The track is invisible, just as the recording on a tape is invisible.
What creates the tracks is the movement of the recording/ replay
head of the disk drive. A rather similar situation is the choice of
twin-track or four-track on cassette tapes. The same tape can be
recorded with two or four tracks, depending on the heads that are
used by the cassette recorder. There is nothing on the tape which
guides the heads, or which indicates to you how many tracks exist.

The number of tracks therefore depends on your disk drives. The
vast majority of drives for other machines use either 40 or 80 tracks .
Forty-track disks use 48 tracks per inch, and 80-track disks use 96
tracks per inch. The Commodore 1541 disk system, however, uses 35
tracks. This does not force you to find any special variety of disks,
because the tracks are put in place by the recording head, not by
anything on the disk itself.

Once you have accepted the idea of invisible tracks, it's not quite
so difficult to accept that each track can also be invisibly divided up.

About Disks and Disk Systems 7

The reason for this is organisation -- the data is divided into blocks,
or sectors, each of 256 bytes. A byte is the unit of computer data; it's
the amount of memory that is needed for storing one character.
Each track of the disk is divided into a number of sectors, and each
of these sectors can store 256 bytes. Conventional 40 or 80 track
disks use only ten sectors per track, but the Commodore 1541 uses
considerably more. On the outer tracks, which are longer, the disk
can use 21 sectors, and on the shorter inner tracks it uses 17 sectors .
This allows the 1541 disk system to store a lot more bytes per disk
than many other disk systems for other computers. The Commodore
manual usually refers to 'blocks'; in this book, I prefer to use the
name 'sectors' which is used by most other manufacturers.

The next thing that we have to consider is how the sectors are
marked out. Once again, this is not a visible marking but a magnetic
one. The system is called soft-sectoring. Each disk has a small hole
punched into it at a distance of about 25 mm (I inch) from the centre .
There is also a hole cut through the disk jacket, so that when the disk
is turned it is possible to see right through the hole as it comes round.

Fig. 1.4. How the disk sectors are arranged. These are not visible, because
they consist only of magnetic signals.

8 Commodore 64 Disk Systems and Printers

When the disk is held in the disk drive and spun, this position can be
detected using a beam of light. This is the 'marker' and the head can
use it as a starting point, putting a signal on to the disk at this
position and at seventeen to twenty-one others, equally spaced, so as
to form sectors (Fig. 1.4). This sector marking has to be carried out
on each track of the disk, which is part of the operation tha t is called
format ling.

Formatting disks

Formatting disks, as we have seen, consists partly of the action of
'marking out' the sectors on a disk. The formatting action should
also, however, test the disk. This is done by writing a pattern to each
sector, and checking that an identical pattern is read back later.
Failure to do so indicates a faulty sector, and a disk with such a fault
should be thrown away, once you are sure that the fault is genuine.
That last remark needs some explanation. When disks are
manufactured, they are tested. The best of the bunch can be used for
the most demanding recording systems, using double density, both
sides of the disk and 80 tracks. If only one side of the disk is good
enough, the disk can be sold as single sided . If the disk will not
reliably record tightly packed data, it may be good enough to work
with single density and with 40 tracks. Never be tempted to try to
operate a disk beyond its stated limits, because it has already been
tested beyond these limits and has failed! You may sometimes read
descriptions (mostly copied from an article in a U.S. magazine in
1978) of how to cut extra holes in a diskjacket and use the other side
of the disk. This can work, but it is fraught with problems. One is, as
we've seen, that the disk has already been judged as not being up to
it. The other is that when you turn the disk round and use its other
side, you are revolving the disk the other way, and this inevitably
releases some dust that was quite comfortably trapped when the disk
was revolving in its original direction. My advice is - don't do it! For
your Commodore 1541 disk drive, you can use single-sided, single
density disks. At the time of writing, these can be bought for as little
as £14.50 for a box of ten if you shop around a bit.

Formatting, then, consists of marking out sectors and testing
them. This takes about a minute, but the computer can be used for
other things while this is going on, as long as the other things do not
call for disks to be used. The reason is that the computer only has to
send the formatting command to the disk drive, and the disk drive

About Disks and Disk Systems 9

will then get on with the job of formatting by itself. This leaves the
computer free for other jobs. If there is anything wrong with the
disk, then the red light on the disk drive will flash to bring the fault to
your attention. If you find a disk fault at the formatting stage, then
return the disk to the supplier.

DRIVE

Locating notches

L ~ ..., -

Write-protect
°0

notch ~

~ JD J
I I

J I
Your own label Makers label

Fig. 1.5. The correct way round for inserting disks.

The formatting action is carried out when two instructions are
typed and entered. First of all, insert a new disk in the drive, making
sure that it is the correct way round. This is ilJustrated in Fig. 1.5.
The flap on the front of the drive unit is opened by pushing the bar.
This allows the flap to lift, and if a disk is already in the drive it will
be ejected. Hold your new disk with the label facing up and the notch
cutout on your left-hand side. Slide the disk into the slot. Don't use
any force to d a this, beca use you can ja m the disk if you do so. Press
the disk in firmly until it stays put. Now press the bar down until it
clicks into place. The disk is now ready for formatting.

You next have to type a command which will allow the computer
to take control of the disk drive. This command is:

OPEN 15,8,15

10 Commodore 64 Disk Systems and Printers

Then press RETURN. We'll look later at the effect of this and
similar commands. Follow this with:

PRINT# l5 ,"NEWO:Name,ID"

and press RETURN. In this last command, there must be no space
between the T of PRINT and the hashmark, #. The word NEW can
be abbreviated to N, and the 0 (a zero, not the letter 0) can be
omitted if you have only one disk drive. This zero is the drive
number, and when you have only one drive the number is normally
O. You can use a word of up to eighteen letters as the name of the
disk, and two characters as the identity code, 10. You will find that
the numerals 64 are very often used as an 10 by C'64 programmers.
If you use more than 18 characters for the name of the disk, the
machine will ignore all the characters that follow the sixteenth. The
ID characters are placed on each directory entry to identify data that
belongs on that disk .

Finally, the formatting action writes on to some sectors on the
eighteenth track. This portion is reserved as a way of storing
information about the contents of the disk. To put it crudely, the
disk system reads the first few sectors of this track to find if a
program is stored on the disk, and then to find at which sector the
program starts. With this information, the head can then be moved
to the start of the program, and loading can start. This part of the
track is divided into two regions, known respectively as the BA M
and directory. The BAM is the block availability map, which keeps a
record of what tracks and sectors have been used, and which of them
are free for further use . The rest of track 18 is used for directory
entries. These are numbers which indicate which track and sector is
used for the start of each program or other file that is stored on the
disk. Along with this information is the filename of the program (up
to sixteen characters) and information that is needed when the file is
not a program but some other form of data. When you wipe a
program or some data from the disk, all you do is remove its
directory entry .- the data remains stored on the disk until it is
replaced by new data. This can sometimes allow you to recover a
program that you thought you had erased.

Storage space

How much can you store on a disk? The Commodore 1541 system
uses 21 sectors on each of tracks I to 17, 19 sectors on tracks 18 to 24,

About Disks and Disk Systems 1 1

18 sectors on tracks 25 to 30, and 17 sectors on tracks 31 to 35. This
makes a total of 683 sectors. Of these, one set of 19 sectors, the whole
of track 18, is used for the BAM and directory entries, and this leaves
664 sectors free for you to use.

Each of these sectors will store 256 bytes, which is a quarter of a
kilobyte. Multiply 664 by a quarter, and you end up with a figure of
166K on a single-sided 40 track drive. Not all of this will normally be
usable, however, because data is not stored at every point on the
disk. Suppose you have a program ~hat is 1027 bytes long. The disk
operating system will split this into groups of 256 bytes, because it
can record 256 bytes on one sector. When you divide 1027 by 256,
you get 4 and a fraction· but the DFS does not deal with fractions af
a sector. Five sectors will be used, even though the last sector has
only three of its 256 bytes recorded. When the next program is saved
it will start at the next sector, so the unused bytes are surrounded
and there is no simple way of making use of them. If you save a lot of
short programs on the disk, you will find that a lot of space may be
wasted in this way. Another way in which space can be wasted if you
keep a very large number of very short programs on a disk is that
each program will have a separate direstory entry, and when the
directory track is full no more entries can be accepted. The 1541,
however, allows up to !44 directory entries on a disk, so you would
have to be very fond of short programs to run out of directory space!

The large amount of storage space, 166K, on a disk contrasts with
the 39K or so which you have available for BASIC programs on the
C'64. Even this figure can be greatly red uced if you are using a more
advanced form of programming language, such as Simons BASIC.
For long programs, then, a disk system can be used as a form of
extra memory. 1f a long program is split into sections, the sections
can be recorded on a disk and a master program entered into the
computer. This master program can then call up different sections
from the disk as needed, giving the impression that a very large
program is, in fact, operating. The use of a disk system therefore
does not only allow you to load programs more quickly ana store a
lot of data, it also allows you to use the computer as if it had a very
much larger amount of memory.

Finally, Fig. i.6 lists some precautions on the care of disks. -:-hese
may look rather restrictive, but remember that a disk is precious. It
can contain a lot of data, perhaps all of your p rograms. An accident
to one disk, then, can wipe out all your work at t he keyboard!
Always make a backup copy, and a lways take good care d your
disks. If you leave a fingerprint on a piece of tape you may cause

12 Commodore 64 Disk Systems and Printers

Care of disks

I. Don't bend the disks. They may be called 'floppy disks', but the
magnetic coating is liable to be damaged if you bend them.

2. Always buy disks with hub reinforcing rings. The mechanism
that clamps the disks in place will soon tear the centres of
unreinforced disks. jf you have any such disks with programs on
them, make back-up copies on to disks with reinforcements.

3. Avoid touching the magnetic surface where the head slot is
placed. Never try to take a disk out of its casing.

4. Store your disks, in their envelo pes , in a box. You can keep them
in the boxes (for ten disks) in which they arrive, orin boxes made
for the purpose. Keep them away from dust, smoke, liquids, heat
and sunlight.

5. Avoid, at all costs , magnets, or objects that contain magnets.
These include electric motors, shavers (not many people shave
while they are computing, but you never know), TV receivers,
and monitors, telephones , tape erasers, electric typewriters, and
a host of other things you might be tempted to place disks on.

6. Don't use a ball point pen to write on to labels on the disk.
BEROL make a 'floppy-disk pen' which has a point that will
break off if you exert too much force . A felt-tip is suitable, but
you must not press hard while writing.

7. Use disks that are suitable for the drive you have. Do not use
double-sided disks on a single-sided drive .

Fig. 1.6. Taking care of your disks. They are not as fragile as this might
suggest, but each disk can hold a lot of valuable programs.

some loading difficulties on that piece of tape, but it's unlikely that
you will Jose a whole program. A fingerprint on the surface of a disk
could make the directory impossible to read, so that the whole disk
would be useless. Similarly, a disk can be demagnetised by strong
magnetic fields. You can get these fields around loudspeakers, TV
receivers or monitors, headphones, and electric motors. All of these
should be regarded as potential disk-killers .

ChapterTwQ

The Disk Filing System

What does the DFS do?

The disk filing system or DFS is, as we have seen, a program. This
program is not written in BASIC, but in the form of direct
commands in number code to the microprocessor (the 6502) which
operates the Commodore 64. Code of this kind is called machine
code. (If you want, or need, to know more about machine code, then
I suggest that you turn to my book Introducing Commodore 64
Machine Code, published by Granada.) The purpose ofthe DFS is to
interpret the disk commands that you type, and convert these into sig
nals that can be used to control the disk system and shift data to and
from it.

Note that the name is diskfiling system, not simply disk system.
Filing implies the storage of data (such as string or number arrays)
as well as BASIC or machine code programs. The DFS is therefore
equipped to carry out the organisation of data which is needed to
store it on disk and recover it later. That's something that we'll come
back to later in Chapter 5. Meantime, we'll keep to the more
straightforward uses of the DFS. Rather than looking at the
commands of the DFS in alphabetical order, we'll look at them in
the order that is likely to be most helpful to you, starting with the use
of disks for storing programs. First, however, we need to look at
how the use of a DFS modifies the Commodore 64 machine, and
what problems this can create for you.

The first thing that you have to get used to is the order of switching
on and off. When the disk system is switched on it needs a short time
to prepare for being used, and during this time it's important that it
should get no signals from the computer. As you switch on the
components of your system, then, you must always ensure that the
disk drive is switched on before the computer. If you find that you
have managed to reverse the order, then switch both off and start
again.

14 Commodore 64 Disk Systems and Printers

You will see on thefront of the i 541 disk drive a pair of lights. The
one on the left-hand side is green, and it simply indicates that the
power is switched on to the drive unit. The red light is a 'busy'
warning, and it will be on while the disk unit is operating. You must
never take a disk out of the drive or put another disk in while this
light is on. An error in a disk operation is signalled by this red light
flashing, and later in this book we'll deal with how to find what the
error is . A few programs as they load will cause the red light to blink
irregularly, but you will hear the drive whirring round as well,
indicating that this is not an error. When you switch the drive on,
you will see the red light come on momentarily. Only when it has
gone out can you safely switch on the computer. When you do this,
the red light will come on briefly again, then go off. You do not have
to have any disk in the drive while you switch it on .

Using your memory

Memory is one of the vital statistics of a computer, and it is
organised in units that are called bytes. Each byte can store one
character, but numbers are coded so as to make more efficient use of
memory than having one byte allocated for each digit. The total
amount of memory that the microprocessor of the machine can cope
with in one lump is 65536 bytes. So as to distinguish one byte from
another, we number them, starting with 0 and going up to 65535 in
our ordinary counting scale. Since 1024 bytes is, in computing
language, I K of memory, the Commodore 64 is described as having
64K of memory (64 X 1024=65536). Most modern computers use
this amount of memory, but the important quantity is how much of
the memory is available for you to use. The C'64 allows you to use
almost 38K of the total of 64K. This is about the same as some
computers that describe themselves as 48K machines .

An important difference which has been mentioned earlier,
however, is that adding a disk system takes no memory from the
Commodore 64 . One manufacturer sells a 16K computer which has
only 7K left when the disk system is added. Adding a disk system to
your C'64 leaves you with exactly as much memory as you had
before. This is a very great advantage, because it allows you to
transfer programs from cassette form to disk form with no risk of
running out of memory . The price that you pay for this convenience
is that you can only use a Commodore disk drive -- the disk drives

The Disk Filing System 15

that you see at such tempting prices in the shops are for any other
machines, but not the Commodore!

Loading and saving

We dealt with the formatting of a disk in the previous chapter. Once
a disk has been formatted, you can use it for storage. The method
that you follow for BASIC programs is very similar to the method
that you use for cassette storage . If, for example, you have some
BASIC programs on a cassette that you want to save on to a disk,
then the procedure is as follows. Connect up the cassette recorder if
you have not already done so, and place the cassette that you want to
use into the recorder. Place a formatted disk into the disk drive.
Load in the program that you want to save. If this program is on
cassette, you will have to start by typing LOAD "NAME" (or just
LOAD"" if you want the next program on the tape), and pressing
RETURN. You will get the familiar message PRESS PLAY ON
TAPE, and when you do so the program will start to load. This
action of loading from tape should present no problem other than
the time it takes. Once the program has loaded, you may want to
check it briefly by listing it or running it just to make sure that it is
the program which you want. Now type SAVE "MYPROG",8 using
whatever filename you have decided to give the program.
Remember that the disk system permits up to sixteen-character
filenames. You must use a filename when you load or save using
disks. When you press RETURN the disk drive will click, and
almost immediately (unless it is a very long program) you will see the
READY prompt reappear to indicate that the transfer is complete.
Shortly after this the red disk drive light will go out, and you will
hear the disk motor stop . That's it! The essential difference between
this action and the corresponding SAVE action to the cassette
recorder is the use of the number 8. This refers to the single disk
drive, and if you have one 1541 typE of drive, you will always use the
number 8 following a di~k SAVE command like this. If you have
more than one drive, however, you will use 8 for one drive and 9 for
the other. Your disk manual advises you on two methods of ensuring
that the second drive responds to the number 9.

To load a program that is on disk, you can type LOAD
"MYPROG",8 (or whatever filename you have chosen) and press
the RETU R N key. If the disk is correctly inserted in the drive, it will
spin, and the READY prompt will reappear shortly to indicate that

16 Commodore 64 Disk Systems and Printers

the program is loaded and ready. If you used the wrong filename,
you will either get the wrong program or an error message,
depending on whether a file of the name you used exists. If there is
no program called MYPROG on the disk, for example, you will get
the error message:

?FILE NOT FOUND ERROR

If, together with your 1541 disk drive, you gota disk which contains
six games programs, you will find that they do not load correctly with
this command. That's because, like most games programs for the
C'64, they are written in machine code rather than in BASIC. A
machine code program has to be loaded into the same places in the
memory of your computer as it was in the C'64 in which the game
was tested. This can be done by adding a comma and then a • I' to the
end of the LOAD instruction. For example:

LOAO"DEPTHCHARGE",8, I

will load this game program, and also start it running.
Loading is generally much faster than storing, because the OFS

carries out a check on data when it records, but not to the same
extent when it replays. If you get any sort of error message when you
are saving a program, then it's wise to assume that the program has
not been saved and to save it again. You can verify that a program
has been saved correctly by typing:

VERIFY"name",8

using the same filename as you used to save the program. When you
press RETU R N, the disk will play back the program and compare it
with the version that is still in the memory. This does not erase the
program in the memory (LOAD would), and allows you a second
chance if anything went wrong the first time. As you make more use
of your disk system you will find yourself using VERIFY less often.
It's useful, however, if you are saving a very valuable program on a
disk that is almost full.

When you have saved a program on a disk, it's time to take a look
at the way the disk keeps track of your program. This is done by
reading the directory of the disk. The disk operating system treats
the directory as a special file whose filename is $. This filename
cannot be used as the filename for a program to be saved on the disk,
but you can load the directory into the computer as if it were a
BASIC program with line numbers. This is done by typing:

LOAO"$",8

The Disk Filing System 17

(then RETURN). When the READY message appears again you
can inspect this list by typing LIST (then RETURN). You can treat
this listing just as if it were a BASIC listing. You can, for example,
print it out, and you can even record it under another filename. It's
very convenient to keep printouts of your directories. If you have a
large number of disks it's also handy to keep a disk which consists of
nothing but recordings of directories. You can do this by loading in
the directory of a disk, then adding a BASIC line which contains a
REM to tell you which disk this is. This can then be saved on to the
disk which you use for directories.

4j "CBM 1541 VARIETY" 64 2A
28 "1541 BACKUP" PRG
1 "SOOPER FROOT" PRG
'J "SOOPER FROOT1" PRG .<..

57 SOOPER FROOT2" PRG
1 STELLAR WARS" PRG
'":' STELLAR WARS1 " PRG .L.

C'"l
-...J-L STELLAR WARS2" PRG
1 DEPTHCHARGE" PRG
'":' DEPTHCHARGE1" PRG .&...

57 DEPTHCHARGE2" PRG
1 LABYRINTH" PRG
..... LABYRINTH1" PRG L.

63 LABYRINTH2" PRG
1 "THE QUEST" PRG
2 "THE QUESTl" PRG
79 "THE QUEST2" PRG
1 "PATIENCE" PRG
~. "PATIENCE1" PRG L.

27 "PATIENCE2" PRG
281 BLOCKS FREE.

Fig. 2.1. A typical directory for a disk.

If you have only one drive that's all you need, but with two or
more drives you will have to select the drive number in the command
by using LOAD"$",8, or LOAD"$",9, etc. When you press
RETURN, the disk will spin briefly and display the information that
is illustrated in Fig. 2.1. This shows on the top line the drive number,
the title of the disk (if any), the ID characters, and the characters 2A.
The 2A is a version number which appears in current type 1541
drives. Following the heading, you have a line of entry for each
program or other file. Each line shows the number of sectors

18 Commodore 64 Disk Systems and Printers

(blocks) that the file uses, the name of the file, and the type of file.
When you first start to make use of disks you don't need much of
this, but you will probably find it more useful later. At first, the most
useful feature of the catalogue is the fact that the program filenames
are shown. The disk system shows these files in order of storage on
the disk. Since the disk is used by filling the inside tracks first, the
order of files in the catalogue is the order of files on the disk starting
at the centre track, track 17.

Sometimes, when you try to save a program, you will find that the
disk system will not accept the save. This is almost always because a
program with the same filename has already been saved on that disk.
The 1541 disk drive will not replace one program with another of the
same name unless you specially want it to. This is a very useful
protection for your programs, because it is not always convenient to
keep a note of the directory. Remember that when you load the
directory it will replace any BASIC program in the memory. If you
have just completed a program and you want to save it, then don't
load the directory to find if you have used a filename already! This
will mean losing your program, which wasn't exactly what you
intended.

If you really want to replace a program, however, this can be done
by a small addition to the SA VE command. Suppose, for example,
that you have a program on the disk which is called "INDEX". You
ha ve just developed version 2 of this program, but you want only one
version on the disk. You can type:

SA VE"@:INDEX"

and press RETURN. The @ has the effect of deleting the existing
program on the disk and substituting your new version. Make sure
that you have a backup, just in case. I have seen an absent-minded
C'64 user replace a good program by a copy of the directory in this
way! It's always a good idea to list your program first before you use
this command. If you have more than one disk drive, incidentally,
the drive number can be placed between the @ and the :.

Disk commands

Because the disk system for the C'64 contains its own computing
circuits, complete with memory, a lot of the actions that we use to
control the disk system have to be carried out by sending command
words to the disk system itself. The words SAVE and LOAD are

The Disk Filing System 19

C'64 command words, which operate on the cassette system if you
forget to add the 8 after the filename. There is another set of
commands, however, which applies to the disk system only, and
which has to be sent to the disk drive. This is done by using a special
'hotline', a channel for commands only, which is identified by a
number, IS. This channel is opened by the command:

OPEN J 5,8, IS

and after this has been done you can send commands by using a
PRINT# IS, .. followed by the command that you want to use. (We
noticed this action in use in Chapter I, in connection with
formatting a disk.) The commands which can be sent in this way can
all be abbreviated, and it's more convenient to do this as it avoids
some typing. As we meet each command word we'll look at the full
version, and then at the abbreviation.

Retitling and erasing

As your use of disks increases you may find that you want to group
files that are related in some way on to one disk. It is then very
helpful if you can give this disk a title which will remind you of what
it contains. You might, for example, have a disk full of utility
programs of various types, and a logical title would be UTILITIES.
You can use a title name of up to eighteen characters. Normally you
would title a disk at the time when you formatted it, but quite
frequently you may want to erase and retitle without reformatting.
Reformatting is a lengthy process, whereas retitling is fast. Retitling,
however, wipes out the directory, so it's not something that you
would do to a disk that already held a number of stored programs.
The retitling command is:

OPEN 15,8,15
PRINT# 15,"NEWO:newname"

Notice that the only difference between this command and the
reformatting command is that this version does not use an ID
number following the disk name. This is why the command is faster.
When a disk is reformatted the 10 code is placed on each sector.
When the disk is erased and renamed only the directory track is
changed. Appendix A deals with a method for retitling a disk
without losing the stored programs. We'll look at the way of
renaming a program in the next chapter.

20 Commodore 64 Disk Systems and Printers

One very important command that you should get used to at this
stage is "Initialise". Sometimes, when you are developing a program
that uses disks, things will go haywire and the program will stop with
an error message and the red light glowing on the disk drive. Even
worse, you may find that the disk keeps spinning and the keyboard
does not have any effect until you press STOP and RESTORE at the
same time. After any 'crash' of this kind, you should send a
command which restores the disk to normal if any commands have
been left half-done . This is achieved by using:

PRINT# 15,"1"

or, if channel 15 has not been opened, just with:

OPEN 15,8, 15,"1"

This will spin the disk, sort it out, and then stop the disk with the red
light extinguished . You should always do this before you get to work
on the program to find out why it has stopped.

The error system

When you have a BASIC program, or a direct command, which has
a fault in it, the machine will stop and bring the fault to your
attention. This is done by means of an error message on the screen,
and you can then change the program or the command and try
again. There are, as you might expect, disk system errors which can
also be reported, but the method is not quite so straightforward and
obvious. If you mistype a computer command (like LOAD or
SA VE), perhaps by omitting the first quotemark or by incorrect
spelling of the command word, then the command will never get to
the disk system. It will be caught by the operating system of the
computer and you will get the usual SYNT AX ERROR message. If,
however, you get an impossible command to the disk system, you
don't always get an error message directly.

When you ask the disk system to find a program name which
doesn't exist, then the action is just as it would be when you have an
error in a BASIC program. In this example, the disk system looks
for the filename in its directory, doesn't find it, and the screen shows
the message:

?FILE NOT FOUND ERROR

The Disk Filing System 21

When you use only straightforward LOAD and SAVE commands,
then you will get the necessary messages like this.

You often need to issue other commands to the disk system,
however, as we have seen. These make use of the special command
channel, a sort of hotline to the disk system which is used for issuing
other types of commands. The NEW command is just one of these,
all of which make use of the PRINT#15 command to get the message
to the disk system. Now when an error occurs because of one of these
commands, you get no screen message. All that there is to warn you
that something has gone wrong is that the red light on the front of
the disk drive will be blinking after the drive has stopped spinning.
This light is a warning that an error has ocurred in the disk drive but
has not been delivered to the computer. It does not cause the disk
system to stop operating, and you can send another command if you
like. What it can mean, however, is that some action that you wanted
to carry out has not been carried out. You may, for example, think
that you have saved some data on to the disk - but you have not!

Sometimes the light may blink even when an error message
appears on the screen. For example, if you place an unformatted
disk or a disk that has been recorded by a different type of computer
in the drive, you may get both types of error reports. Trying to read
the directory of a disk that has been recorded on another type of
computer will really puzzle the system. On the screen you will see the
?FILE NOT FOUND ERROR message, but the drive light will
be blinking too. The reason is that there is more to tell. The screen
shows FILE NOT FOUND because, as far as the computer is
concerned, that's what has happened. The disk drive has not
delivered the goods and this is the appropriate message. The disk
d rive, however, has its own error message system, and the message
that it has to deliver is:

74 DRIVE NOT READY 00

Now if we forget about the numbers for the moment, the message
DRIVE NOT READY is a much more revealing one than FILE
NOT FOUND. It draws your attention to something really wrong
with the drive or the disk, and since this is the usual message for an
unformatted disk, it should lead you to check the disk.

The snag, however, is that these disk system messages do not get
delivered automatically to you, just as the directory of the disk is not
read automatically. To read the disk error messages you have to get
them delivered over the 'hotline' to the computer and printed on the
screen. Unfortunately, it's not possible to do this with direct

22 Commodore 64 Disk Systems and Printers

1('1 OPEN15, 8~ 15
20 INPUT#15,A$~B$~C$,D$
30 PRINT A$~B$,C$,D$

Fig. 2.2. A short program to read error messages. Use this as a subroutine in
your disk programs.

commands, and you need a short program . This program is noted in
your 1541 disk manual, and also in Fig. 2.2. The program opens the
hotline to the disk drive, inputs four string values from this channel,
and then prints them. Once this has run, the error light stops blinking
because when the error report has been read the drive no longer
stores the error. The first string holds the error number, the second
holds the error message, and the third and fourth hold the track and
sector number if the error is caused by a fault in the disk itself. (The
last two numbers are zero unless something is wrong with the disk.)

This is not exactly an ideal way of finding out disk errors, and it is
much less convenient than the systems that other computers use. We
have to make the best of it, however. The snag about it is that a short
BASIC program is needed. It is possible to write the instructions in
machine code so that they can be held in a protected piece of
memory and run by a SYS command. A much easier method,
however, is to incorporate the three lines of the BASIC error
reading program into any program that uses disks, so that the
reading of errors is automatic while you are using that program.
This is not so useful when you are not working with a program.
Every now and again you may be retitling files or carrying out other
actions on your disks, with no program loaded. When you get an
error message you may know why the light is blinking, but it would
be good to know exactly.

This is simple enough if you have typed the error program or
loaded it from a disk. Typing RUN (then RETURN) will run the
error program, and show you what has gone wrong. The snag is that
you will quite often want to load in the directory. Each time you load
in the directory, the operating system will wipe out your error
program. What you need is some way of being able to use the error
program, but also to load in anything else that is of interest without
zapping the error program. This can be done with a bit of 'poking'.

The C'64 stores a BASIC program in the form of a set of number
codes in the memory of the computer. Each memory location has an
identity number, its 'address'. Now the first address that is used by
BASIC is stored in the form of two numbers so that the machine can
find this address quickly. These numbers are stored in addresses 43

The Disk Filing System 23

and 44, and for our purposes address 44 is the important one. The
number that you will find here (by the command PRINT PEEK(44»
is 8. Now when we type or load in the error-reading program it will
be stored at a set of addresses in the memory, for which this number
8 is a key. If you change this num ber to a higher value, then the C'64
can't find the error program · to all intents and purposes the error
program does not exist.

Try this now. Type or load in your error program, and LIST it.
Now type:

POKE44,9 (press RETU RN)

and LIST again. This time, there is no listing. The program seems to
have disappeared. Now type:

POKE 44,8 (press RETURN)

this time, and LIST. Behold, the program is listed! What we have
done is to shift the addressat which the computer looks for a BASIC
program.

You can therefore make use of your error program in this way .
Type it or load it in when you start work. Then use POKE44,9. Now
as you work on your disks, carrying out the actions that we shall be
looking at in the following chapters, you may get error messages.
When this happens, type POKE 44,8 (RETURN) and then RUN.
The error program will print up the error message, the red light will
stop blinking, and you can then use POKE 44,9 to get back to your
work. When you want to load in the disk directory, always make
sure that you have used POKE 44,9 first. The directory loads as if it
were a BASIC program, and it will replace any other program at the
same addresses. If you have used POKE 44,9, you can load and list
the directory and then, by using POKE 44,8, you can still make use
of the error program even after loading the directory. This minor
piece of organisation can make working with disks less of a hassle
than it would otherwise be.

This simple way of protecting your error program is only intended
for use along with the directory. If you want to load in another
BASIC program and run it, then typing POKE 44,9 is not enough,
because the program will not RUN. (For details of this point you can
consult my book Introducing Commodore 64 Machine Code.) If,
incidentally, you have a much longer program in the computer and
you want to protect it when you look at the directory, then type:

PRINT PEEK(46)

24 Commodore 64 Disk Systems and Printers

Note whatever number this gives, and then POKE 44, with a number
which is one larger. If the PEEK gives 14, for example, then
PO K E 44,15 to protect your program. You can then load the
directory, look at it, and POKE 44,8 to return to your program. You
have to LIST each time to see what is stored at the different
addresses.

Chapter Three

Digging Deeper

Hexadecimal codes

Unless you program in machine code, you probably haven't
encountered the hexadecimal scale. If you only use your disk system
as a convenient way of storing programs and data, and you have no
intention of trying to read data from damaged disks or to write
machine code disk routines or copy disks which are copy-protected,
then you can skip what follows and reserve it for later. At some
stage, however, you will probably want to make use of this
information, and this is as good a place for it as any other.

'Hexadecimal' means scale of six.teen, and it's a way of writing
number~ that is much better suited to the way that the computer uses
number codes. Our ordinary number scale is denary, scale of ten.
This means that we count numbers up to nine, and the next higher
number is shown as two digits, 10, meaning one ten and no units.
Similarly, 123 means one hundred, two tens and three units. This
counting scale, invented by the Arabs, replaced the Roman
numbering system many centuries ago (except, oddly enough, for
writing the copyright dates of films and TV programs!). A denary
number for a byte may be one figure (like 4) or two (like 17) or three
(like 143). Hexadecimal (usually shortened to 'hex') is a much more
convenient code for these numbers, and for address numbers. All
one-byte numbers can be represented by just two hex digits, and any
address by four hex digits.

One hex digit, then, can represent a number which, written in
ordinary denary, would be between 0 and 15. Since we don't have
symbols for digits higher than 9, we use the letters A,B,C,D,E and F
to supplement the digits 0 to 9 in the hex scale, as Fig. 3.1 illustrates.
The advantage of using hex is that we can see much better how
address numbers are related. For example, consider the address for
the start of BASIC in the ROM of the (::'64. This is the address which

26 Commodore 64 Disk Systems and Printers

Denary Hex Denary Hex

1 ¢ 1 9 ¢9
2 ¢2 l¢ ¢A
3 ¢3 i 1 ¢B
4 ¢4 12 ¢C
5 ¢s 13 ¢D
6 ¢6 J4 ¢E
7 ¢7 15 ¢F
8 ¢8 16 l¢

Fig. 3.1. How the numbers 0 to 15 are written in hex.

is used when you type RUN and press RETU RN . In hex this is
AOOO, whereas in ordinary denary numbers it is 40960. The C'64
makes a lot of use of what are called 'page 0 addresses'. These are
addresses which in hex start with the digits 00. They cover the range
0000 to OOFF in hex . In denary these numbers are 0 to 255, and it's
not exactly easy to understand, unless you know the hex equivalent,
why they should be called 'Page O"! Let's take a formal look, then, at
what this scale is about.

The hex scale

The hexadecimal scale consists of sixteen digits, starting with 0 and
going up in the usual way to 9. The next figure is not 10, however,
because this would mean one sixteen and no units; and since we
aren't provided with symbols for digits beyond 9 we use the letters A
to F. The number that we write as 10 (ten) in denary is written as OA
in hex, eleven as OB, twelve as OC, and so on up to fifteen, which is
OF. The zero doesn't have to be written, but programmers get into
the habit of writing a data byte with two digits and an address with
four even if fewer digits are needed. The number that follows OF is
10, sixteen in denary, and the scale then repeats to I F, thirty-one,
which is followed by 20. The maximum size of byte, 255 in denary, is
FF in hex. The maximum size of address in the memory of the
computer, 65535, is hex FFFF. This is the num ber that we refer to as
64K. The 'K' means 1025 in denary, $400 in hex.

When we write hex numbers, it's usual to mark them in some way
so that they aren't confused with denary numbers. There's not

Digging Deeper 27

much chance of confusing a number like 3E with a denary number,
but a number like 26 might be hex or denary. The convention that is
followed by users of the Commodore 64 is to mark a hex number
with the dollar sign ($) placed before the number. For example, the
number $47 means hex 47, but plain 47 would mean denary forty
seven. The machine itself will not recognise the use of $ to mark a
hex number and cannot convert it to denary, so that you cannot
enter numbers like $2B or $028A. If you are using some types of
utility programs that recover data from damaged disks, or which
alter the machine operating system, you may have to enter numbers
in hex . These utility programs usually contain routines for the
conversion of numbers between hex and denary scales, so that you
never need to carry out hex arithmetic for yourself. The program
called DISPLAY T & S which is at the back of your 1541 manual
contains these routines, and it displays its information in hex.

Backing up

One feature of a disk storage system which is less pleasant is that an
accident to a disk can result in the loss of a lot of information. If you
break a cassette tape, it's possible to splice the tape and, with some
juggling, lose only a part of one program. If you damage a disk, it's
likely that all of the information on the disk will be lost as far as
conventional LOAD commands are concerned. This does not mean
that the information cannot be recovered from the disk; but this is a
desperate measure, not to be undertaken lightly. It makes sense,
then, if you have a disk full of valuable programs or data, to make a
backup copy as soon as possible.

One sensible measure is to make a second copy of each program as
you put it on disk. If you have bought programs on disk, however,
you will need to make a backup copy or two copies if the disk is a
valuable one. Unfortunately, the disk system of the C764 does not
have a backup command. You can copy individual files, but not the
whole of a disk. For many purposes, however, copying a file is
enough because you may only have one valuable program or data
file on the disk. Unfortunately, the operating system of the 1541 disk
drive does not allow you to copy a file from one disk to another. To
do so, you will have to load the file into memory from one disk and
save it to another. This is straightforward enough when the files are
BASIC programs, but the task is a lot more difficult when the files
are machine code programs or data files. Fortunately, utility

28 Commodore 64 Disk Systems and Printers

programs are available for carrying out this essential task. We'll
look at a very useful backup utility later.

Backing up is easy when you have twin drives. With two drives,
you can use a utility program to cause everything on the disk in drive
o to be copied to the disk in drive I. The process is accompanied by a
lot of clicking and whirring, as one disk is read and the other written,
but at least you don't have to attend to the process. You can make
yourself a cup of coffee while it is all happening. An alternative, if
you still have your cassette recorder, is to keep backup copies on
cassettes. It's much safer, however, to backup on to another disk,
and to keep this backup disk in a cool, safe place well away from all
the hazards to disks, such as loudspeakers, TV receivers, electric
motors and anything else that uses magnets of any kind. Later in this
book we'll take a look at the sort of utility programs that are
available for the C'64.

Copying a named file

Very often, you don't need to backup a complete disk, just make a
copy of one file that is on a disk. For some curious reason, the
operating system of the 1541 does not contain any command which
can be used to copy a file from one disk to another one. It does,
however, allow you to make another copy of a file on the same disk
but using another name. This is not quite so silly as it sounds,
because if you update a file regularly you will probably want to keep
the older version around just in case you need it. Since you can't
have two files bearing the same filename, it's convenient to change
the name of one file before you record the next one. You might, for
example, use the name "NEWONE" for the up-to-date version, and
"OLDONE" for the old one. The command which makes this copy
and-name-change operation possible is COPY, which can be
abbreviated to C. This has to be used in a syntax which is not quite so
simple and straightforward as the previous examples.

You must start by typing:

OPEN 15,8,15 (press RETURN)

which prepares the disk drive for a command. You then type:

PR INT# 15 ,"COPY: NEWONE=:OLDONE" (press
RETURN)

and you will hear the drive spin into action . The result of the action

Digging Deeper 29

will be to create a file called NEWONE which contains all the
information that is also in the file OLDONE. These 'files',
remember, can be anything that is recorded on the disk, whether
BASIC programs, machine code programs or data. If your drive is
not drive 0, then you will have to place the drive number just before
the colon. No drive number is needed if you are usingjust one drive,
drive 0.

It's possible, however, that a file with the same filename of
NEWONE may already exist on the disk. lfthis is so, the copy action
will not proceed and you will see the red light blinking on the front of
the disk drive. If you then read the error report from the disk, you
will get the FILE EXISTS message on the screen. This is a reminder
that you are in danger of wiping out a file which you may have
forgotten about. If you actually want to do this- as for example,
w hen you are updating a file, and want to keep using the same name
- you will have to delete or rename the old file before you use COPY.
We'll deal with both of these processes later in this chapter.

Deleting files

As well as copying and creating files on to disks, you may want to
delete files. You may, for example, have developed a BASIC
program through several versions, and wish now to delete all the old
versions. You may, to take another example, have an accounts
program which creates a file of inputs and outputs of money, and
which needs to read a data file in and write one out to update the
data. This also may require you to delete an old file - we'll discuss
data filing in more detail in Chapter 5. Whatever your need, deleting
a single file is carried out using the SCRATCH command. This is yet
another command that has to be sent over the 'hotline' to the disk
drive, and the syntax is:

OPEN 15,8,15

followed by:

(press RETURN)

PRINT#15, "SCRATCH:PROGNAME"

A drive number can be included ahead of the colon, and the name of
the program will be whatever name appears in the directory forthat
program. Even if you pick a name that does not exist the drive will
go through the motions of deleting the name and there will be no
error message . There will always, however, be a message in the error

30 Commodore 64 Disk Systems and Printers

S1'S/em .]f you scratch a file (real or imaginary!) and then run the
error-reporting program of Chapter 2, you will find a report such as:

01 FILES SCRATCHED 00

waiting for you. This is not an error, so the error light does not blink.
The first number in the report is the number of files that have been
deleted by the command. This is necessary because it's possible to
delete more than one file by this action ·· we'll look at that point
later.

This SCRATCH action, which can be abbreviated to S, does not
remove the data of the file from the disk. What it does is to remove
the catalogue entry, so that the space on the disk can be made use of
by a later entry. This will happen only if the new file is shorter than
the deleted file, or of the same length. If this is not the case the new
file will use another part of the disk, and the space that was used by
the deleted file will remain unused until we do something about it. It
is possible to recover the contents of a deleted file by writing a new
catalogue entry, but this comes into the realms of advanced
programming and is definitely not the sort of thing you want to
attempt while you are getting to know your way round the DFS! The
SCRATCH action will not work on a disk that is 'write-protected'
see later in this chapter.

Wildcards and wiping

So far, we have always worked with a single named file on each
command. You can, however, amend the commands slighly so that
more than one file can be affected, or so that you have to specify less
information. The amendment involves the use of 'wildcards' in the
filename. A wildcard means a character that can take the place of a
letter or a group of letters in a filename. The two wildcard characters
are * and ? Of these, the? sign can be used as a substitute for any
single letter, and the * can replace any group of letters.

Suppose, for example, that you typed:

LOAD"*",8 (press RETURN)

just as you might type LOAD"" when you were using the cassette
system. What you actually load depends on what you have
previously done. If you have just switched on and put a disk in, the
action will be to load the first program that is on the disk. If you have
been using other programs, then the LOAD"*",8 action will reload

Digging Deeper 3 'j

the last disk program that you used. If you have changed disks, you
may get a FILE NOT FOUND error message, however. This is
usually caused by an ID mismatch. The previous program that you
used may have had an ID of64, and all of the programs on this other
disk have an ID of IS, for example. The red drive light blinks after
this effort, and if you use your error message program you will see
the full report, such as:

29
05

DISK ID MISMATCH 17

You will see other numbers following the MISMATCH word. These
numbers are, respectively, the track and sector numbers of where the
fault was found. It's information that you don't need at the moment,
but this is a good time to be introduced to what it is about.

The use of LOAD"*",8 is not particularly useful feature, and it
can quite often load in a program that you did not expect, unless you
keep a very close track of what you are doing! Where the * sign
becomes useful is to replace several letters in a filename. Suppose,
for example, that you have a program which is called 1541
BACK U P. You may very well have such a program, because at the
time of writing it was being supplied with the 1541 drives. I nstead of
tediously typing out the name of this program each time that you
want to load it, you can type simply:

LOAD "1 *",8 (press RETU RN)

This will load any program whose filename starts with a '1'. If, as is
likely, only one program answers that description, this will be the
one that is loaded. If you have two programs which start with a' I',
then the rules are as for using LOAD"*",8 - you will get the one you
used last, or you will get whichever comes first in the directory. What
it amounts to is that you will get the first program which starts with a
'I' that the head of the disk drive comes across when the disk spins.
You might call this CBM Rculette.

Another useful feature of this 'wildcard' character is that you can
load selected parts ofa directory. If you have a disk which contains a
large number of programs, perhaps the maximum number of 144, it
can be very tedious looking through them all. You can obtain utility
programs (see Commodore Computing International, August 1983,
page 56) which will sort your directory into alphabetical order. A
simpler option is to ask for a limited directory. Suppose, for
example, that you want only the program names that start with N.
By typing:

32 Commodore 64 Disk Systems and Printers

LOAD"$:N*",8 (press R ETU RN)

you can load in just the directory entries which start with the letter
'N'. You will still get the directory header which shows the name of
the disk and its ID characters, but the list of programs will be
shorter. (Note that the manual uses the drive number 0 in this
command. I found that this was not necessary on my drive.)

We have earlier looked at the use of SCRATCH as a way of
deleting one single named file on a disk. You can make use of
wildcard characters to remove more than one file. Suppose, for
example, that you wanted to remove all the files that started with the
letter T. This would be done by:

OPENIS,8 , lS
PRINT# IS,"SCRATCHO:T*"

because of the presence of the wildcard character * in the title. A less
drastic deletion might be of every file that starts with A, has three
letters, and which ends in D. For this, you would use the single
character wildcard , the? mark. By typing:

OPENIS,8,IS
PRINT# IS,"SCRA TCHO:A ?D"

you will remove all files of this specification, including AND, ASD,
ARD, but leaving ANY, ADF, BED and any others that do not
match the specification exactly.

A more drastic way of wiping a disk, if you want to remove all of
the files, is simply to format it again. Remember, however, that
reformatting takes a lot of time, and it's much better simply to use
NEW to clear the directory and rename the disk, as we dealt with in
the previous chapter. If you use the SCRATCH command to
remove files selectively, you will be left with a disk which bears a
strong resemblance to a piece of Emmental cheese: full of holes ,
unwanted bytes of data that are not used by any file that is in the
current catalogue. We can make more efficient use of the disk by
reallocating this space, so that all the files we actually have in the
directory are put into the first parts of the disk, rather than scattered
all over it. This requires the use of VALIDATE.

Every now and again, you will get a DISK FULL message on a
disk which you know should have plenty of space on it. This is
because files have been deleted from the disk but subsequently
entered files have been too large to fiJi the gaps. The gaps therefore
remain, preventing the addition of data. The disk is full, but not of

Digging Deeper 33

wanted data! VALl 0 A TE reallocates space on a disk by the sim pie
method of reading files from the disk and writing them on again ,
using all the disk space in the lower-numbered sectors. The syntax
follows a pattern which should be fairly familiar to you by now. You
type:

OPEN 15,8,15 (press RETURN)
PRINT#15,"VALlDATE"

You can abbreviate V ALlDATE to V, if you like. Using this
command will cause a fair amount of activity from the disk as it
checks and rechecks the block availability map and shuffles the data
around. Wait until the disk has stopped spinning before you load the
directory to see the result.

Protecting disks and programs

Just as we have a number of methods of deleting files from disk::;, we
also have a number of methods of preventing this from happening.
One method is universal to all disk systems on all machines. It makes
use of the 'write-protect' tab on the disk . If you hold a disk as you
would if you were inserting it into the 1541 drive, you will see a small
rectangular slot cut from the left-hand side of the jacket. This is the
'write-protect notch'. When the disk is in the drive the presence of
this notch is detected, either mechanically or by a light beam. If the
notch is unobstructed, the disk can be read and written . lfthe notch
is covered, then the disk can only be read, not written again. In each
pack of disks you will find a set of small sticky tabs that can be used
to cover this notch to make a complete disk 'write-protected'. If you
want to re-use such a disk, you only have to remove the tab.
Remember that another protection also exists for programs and for
serial files (see later for an explanation of serial files). The protection
is simply that you can't replace a program by one of the same name
unless you use the '@:' ahead of the filename.

Renaming files

Occasionally we want to give a new name to a file. We could, of
course, load the file, save it under another name, and then delete the
old filena me. This is not necessary beca use all t hat has to be changed
is the catalogue entry on the disk. This can be done using the

34 Commodore 64 Disk Systems and Printers

RENAME command. Renaming is particularly important for data
files. Suppose, for example, you have a program which creates an
index of names and numbers, and which saves its index to disk under
the filename INDX. If this program has been used before there will
be a file called INDX on the disk and the disk system will refuse to
create another file of the same name.

There are three ways out. One is to delete the existing INDX file
and, if necessary, make space by using V ALIDATE on the disk.
Another way is to add the '@:' ahead of the filename so as to force
the disk system to replace the old file by the new one. The third way
is to rename the offending file . This last approach is rather better,
because it preserves the old file and the new one now finds another
place on the disk. RENAME has to be followed by the drive
number, the new filename, an equals sign, and then the old filename,
in that order. Renaming will not occur if the disk is write-protected.
Taking an example, suppose that you have a program which is called
TEST and you want to rename it TR U E. The procedure is to type:

OPEN 15,8,15 (press RETURN)
PRINT# 15,"R:TRUE=TEST"(press RETURN)

and the renaming operation will be carried out. As usual, you can
put a drive number ahead of the colon if you are using more than one
drive or if your single drive is not drive O.

Chapter Four

Disk Utilities and How
To Use Them

Disk utilities are programs which are des igned to allow you to use
your disk drive to better purpose. In this chapter I shall deal with the
disk utility programs which are listed in the 1541 manual, and with
the '1541 BACKUP' program (by Michael Schaff) which is currently
being given away (with si x machine code games on the same disk)
with the 1541 disk drives. We can also take a very brief look at what
we might expect from a utility disk .

A utility disk, as the name suggests, is a disk on which are stored
several routines, mostly in machine code, which should be of use to
disk users. A disk of this type may be advertised under various
names. Whatever the title, the aims are always to supplement the
facilities that are available in the DFS. These are features which
allow us to recover information from a damaged disk, and also to
read ASCII codes from disks that were made on other machines .
The most valuable feature, then, for a utility disk is a disk sector
reader and editor. At the time of writing, no utility disk was
available for the C'64, but at least two were being written. If such a
disk might be of interest to you, then I suggest you contact Mick
Bignall at M icroport, 7 Clydesdale Close, Borehamwood, Herts
WD6 2SD, or alternatively Simple Software Ltd., 15 Havelock
Road, Brighton, Sussex BN I 6GL. By the time that this book
appear.s, both of these sources should have utility disks available. In
the meantime, we can look at what can be done, with what we have
at present.

The disk sector editor

The purpose of a disk sector editor is to allow you to see what bytes
are stored in any sector of a disk , and to modify these bytes if
necessary. Simply viewing the bytes is not harmful, but careless

36 Commodore 64 Disk Systems and Printers

changing of bytes can make a disk almost unreadable, so some
caution has to be exercised. If you are likely to want to make use of a
disk sector editor, it pays to experiment first with a spare copy of a
disk. Never work with a sector editor on any disk for which you have
no backup of any kind, unless you are absolutely certain that you
will only be reading sectors, not changing them. Some disk editors
intentionally make it difficult for you to alter bytes. Others make it
all too easy!

To avoid being too general and therefore too vague, I shall
describe the facilities that are available at the moment, using just the
routines that are printed in the 1541 disk manual or which are being
given away with the drives at present. From that, I shall tell you what
to expect from a utility disk when one is available. Since the
principles of utility disks are broadly similar, a detailed description
of one will serve as an outline for all.

I'll start with the program that was enclosed with my disk drive,
but which was not documented in any way. This is a pity, because it
provides the essential purpose of allowing the backup of any 1541
disk, a provision that is lacking in the operating system. The
program is by Michael Schaff, and can probably be bought
separately if you did not get it with your disk drive. The program
title is 'SINGLE DISK BACKUP V 1.0', and it is written in BASIC,
not in machine code. When the program runs, the screen clears and
you are presented with a set of boxes which will be used to present
information and messages. These boxes are headed, in order from
top to bottom, BACKUP COMMAND, BUFFER, DISK, DISK
STATUS, EXECUTING, and OPERATOR INTERVENTION.
The OPERATOR INTERVENTION box is used to contain
messages to you, to tell you when you have to insert disks.

The purpose of the program is to make a complete backup of a
disk, so that it will always start by formatting a new disk. You must
be careful that you do not accidentally wipe out the contents of a
valuable disk when you use this program, because formatting will
always remove anything that was previously recorded on a disk.
Formatting will not be possible, however, if the disk has a write
protect tab fitted. When the program starts, a cursor flashes in the
top box that is headed BACKUP COMMAND. Your answer is
expected to be B or D. If you use B, then you get what is called 'BAM
backup'. This means that only each program that is entered in the
directory will be transferred to the new (desination) disk. If you
select 0, then the whole contents of the disk will be transferred,
irrespective of what is in the directory. This takes much longer, but

Disk Utilities and How To Use Them 37

probably allows a lot of'copy-protected' disks to be backed up. Even
if you have only one program on the disk, then, using D will cause
the whole contents to be copied. This is clearly a waste of time, so
you should always use the B option unless you know that there is
information on the disk that you need but which is not noted in the
directory. When you select B or D, and press RETURN, the cursor
then moves to the DISK box and the word DESTINA nON is
printed. This is a prompt for you to enter the name and the ID letters
of the new disk. If you simply press RETU RN, the name that will be
used is CBM 1541 BACKUP, and the ID will be 64.

When this has been done, the OPERATOR INTERVENTION
box is used to signal to you to place the destination disk in the drive.
This is where you must be careful. !fyou place the disk that you want
to backup into the drive at this point, you may wipe it clean and be
left with nothing to backup. It pays, then, to label your disks very
clearly before you start this backup operation. If you want to be
quite certain, then put a tab around the write-protect notch on your
source disk. When you insert the destination disk into the drive and
press RETURN, the disk is formatted and the name and 10
characters are written to the disk.

Assuming that all is well, and the DISK STATUS box shows the
message:

OO,OK,OO,OO

then you are prompted to place the source disk, the one that you
want to copy into the drive. When you do this and press RETURN,
you will get a message in the EXECUTING box to the effect that the
program is reading the BAM (block availability map) from the
source disk. You will see the title and 10 of this disk printed, and you
are then asked to VERIFY SOURCE DISK FOR BACKUP. If you
press any key that is not N, the backup will proceed. Pressing N
allows you to insert another source disk and repeat the read of the
BAM. If you use as a source disk one which carries the same 10 as
your destination disk, you will get an error message to the effect that
the 10 numbers are not unique. This is because disks may have to be
swopped several times in the course of a backup, and using different
IDs prevents you from getting the disks mixed up from this point on.

If you opt to carryon with the backup, then you press a key that is
not N and you will get a message in the EXECUTING box. This will
be READING DATA INTO BUFFER, and as the disk spins you
will see a bar growing in size in the box which is marked BUFFER.
This indicates that the memory of the C'64 is being filled with data

38 Commodore 64 Disk Systems and Printers

from the source disk. If you are using the D option, this buffer will
have to be filled and emptied several times . If you are using the B
option, and are copying a disk with only a few programs on it, the
buffer may need only one fill operation. When the buffer is full, or
the disk completely read, you are prompted to put the destination
disk into the drive. When you have done so, and pressed RETURN,
the buffer starts to empty. The machine is copying the contents of its
memory that were filled from the source disk into the destination
disk. As this proceeds, you will see the visual indication in the
BUFFER box./If the first load of data did not complete the backup,
you will be prompted to place the source disk into the drive again,
and so on. This will continue until all of the programs that were
recorded on the source disk have been transferred to the destination
disk.

Because the program is in BASIC it is rather slow, but it carriet;
out its job satisfactorily. One advantage of being in BASIC is that
you can interrupt the program between reading the source and
writing to the destination. if you know what you are doing, you can
then alter some of the bytes of data in the buffer. This is a way of
making programs 'invisible', so that their names do not appear in the
directory. I must stress, though, that unless you have had a lot of
experience with machine code this is not something that you shou:d
tryon any disk that you value! Always experiment with spare copies.

The manual utilities

The 1541 manual contains some utility programs, of which the
listings at the back of the book (Appendix C) work and are useful.
Since no guide is given on how to use them, however, they are not
quite so useful to you until you know more about them. This looks
as good a p,ace as any to deal with these programs, which are called
DIR, VIEW BAM, DISPLAY T & S, CHECK DISK and
PERFORMANCE TEST. Of these, DIR and DISPLA Y T & S are
the most immediately useful.

The DIR program allows you a menu of four options. By typing D
(no need to use RETURN) you will get the directory of the disk,
avoiding the need to perform the LOAD"$",8 routine when you
want to look at several directories . There is no option to print the
directory on the CBM (or other) printer, which is a pity. You could,
however, add such a routine. The DISPLA Y T & S program contains
printer routines which you can adapt for the D IR program. The S

Disk Utilities and How ro Use Them 39

option displays the disk status by reading the command hotline for
errors. The most useful command letter is '>', which allows any
command to be passed to the disk system. If, for example, you want
to validate a disk, you select the '>' option, type V and press
RETURN. There is no need to OPEN or PRINT, since these
operations are carried out by the program. You don't need to use
quotes around the command either. Any command that is normally
sent by using a PRINT#15 can be sent to the disk in this way. DIR is
therefore a very useful little routine for operating on your disks.

The DIS PLA Y T & S program allows you to read what is stored at
any part 01 the disk. The bytes are shown in hex, so that you will
have to brush up (or learn) your hex codes in order to make effective
use of this. When the programs runs, you are asked whether you
want to use screen or printer to display the results. Normally, you
will want to use the screen option at first until you are quite certain
which part of the disk is of most interest to you. Having answered
this, you press R ETU R N and the disk spins briefly. You are then
asked which track and sector you want to view. If you type 0,0 (press
RETU RN) in reply, the program will end. If you type sensible
numbers, then the display (assuming that you have picked the :;creen
option) will start. This scrolls onwards unless you stop it with the
RUN / STOP key. If you use the RUN / STOP key to halt the list,
then you can continue by typing CONT (press RETURN). You
should not abandon the program after pressing RUN/ STOP,
because this can cause problems with the disk system. Instead you
should wait until you have a chance to answer the TRACK,SECT OR
question with a 0,0.

The program will print out 128 bytes ($7F in hex) before you get
the message CONTINUE(Y / N) . At this point you can stop the
listing or allow it to continue . If you opt for continuing, the nytes will
be listed until all the 256 bytes of a sector have been shown on the
screen. At this point you get a message which informs you of the next
track and sector numbers, and you can opt to continue or stop. If
you stop at this point, you get the original TRACK,SECTOR
message, and you can leave the program in an orderly way by
entering 0,0 as the track, sector numbers. While the program is
running, any bytes which correspond to ASCII code values are
displayed as characters. This means that you can recognise features
such as disk names, I D codes and filenames, and also text that is part
of a program . This makes it reasonably easy to identify directory
entries and files on the disk, and to note their positions by track,
sector and byte numbers. Remember, however, that the numbers
that this program displays are all in hex.

40 Commodore 64 Disk Systems and Printers

Editing a disk

The other utilities are n:ore straightforward, because there are no
options to be taken. None of them, however, allows you to make
repairs on a disk which might have a damaged directory entry. This
is the action which a fully-fledged disk editor program allows, and
which can be so useful.

Different utility programs have different ideas of what is meant by
editing a disk. Some programs take this to mean that each byte can
be read and a decision made whether to leave it or change it. Another
interpretation is that the editor simply prints on the screen the bytes
in each sector of the disk, with no provision for change.

In general, though, you will be looking through a sector for some
specific purpose. This will usually be to check a catalogue entry or to
check that data is correct. The most important feature of the
catalogue sectors is the information on where data is stored. Take,
for example, the data that is shown in Fig. 4.1 for a program file. This
is the first file on the disk, and its catalogue is on track 18, sector I
remember that the sectors are numbered from 0, not from I. In this
example, the first two bytes of the sector are 00 and FF, which are
used to indicate the end of this directory. The third byte is 82, which
is a 'type of file' indicator. The digit that follows the 8 is used to
ind icate the type offile, and will be 0 if the file has been deleted. For a
program, the digit is L. The next two numbers, I j and 00, are for the
track and sector of t;le first part of the program. Remem ber that
these are hex numbers, so this means track J 7, sectorO. This, then, is
where you can expect to find your program stored. The program
name in ASCII codes then follows, and then a set of AO characters.
In the second line, the only important portion for a BASIC program
is the last couple of numbers. These, in this example, are I C and 00.
If you arrange them in reverse order, as 00 I C, this is the number of
sectors that the program uses, in hex. In this case, the number OOIC
corresponds to 28 sectors. This is the number that is also shown in
the directory printout at the left-hand side of the program name
when you use LOAD"$",8 and LIST.

When you create othe:- types of files more of the directory entry
will be used, but for a program file these are the only parts of the
directory entry that are relevant. A disk editor program would allow
you to change these entries. One very important possibility is to
merge BASIC programs. Many programmers like to keep a set of
standard subroutines which are used in all of their programs. Ifeach
subroutine is held on a disk, then a disk utility can be used to add a

00 ~12 04 82 11 00 42 41 43 4B 55 50 A0 A0 A0 A0 A0 FGH BACKUP
10 :A0 A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 lC 00
20 :00 00 82 11 01 50 4C 49 4E 47 45 A0 A0 A0 A0 A0 FGH PLINGE
30 :A0 A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 01 00
4(1 : '~0 '::H..1 82 11 03 44 49 52 A0 A0 A0 A0 A0 A0 A0 A0 : FGH DIR
50 :A0 A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 04 00 tJ
60 :00 00 82 11 05 52 45 41 44 45 52 52 4F 52 A0 A0 FGH READERROR c;:;.

"" 70 :A0 A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 01 00 S 80 :00 00 82 11 06 4E 45 57 46 49 4C 45 A0 A0 A0 A0 FGH NEWFILE :::.:
90 :A0 A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 04 00

;:;: -. Cb

A(l : ('H~ 430 82 1 1 02 54 52 41 43 4B 53 45 43 54 4F 52 FGH TRACI<SECTOR C/)

cu
B(l :A0 A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 08 00 ::J

Q.

C4~ :00 00 82 13 00 48 45 41 44 45 52 A0 A0 A0 A0 A0 FGH HEADER ::t:
DO :AO A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 01 00 c::.

~
E0 :00 00 82 14 02 50 53 41 56 45 4C 4F 41 44 A(1 A0 FGH PSAVELOAD '-i

FO :A0 A0 A0 A0 A0 00 00 00 00 00 00 00 00 00 01 00 c::.
c::
C/)
Cb

Fig. 4.7. The catalogue data which is contained on track 18, sector ·1. '-i
::J-
Cb

:3

~

42 Commodore 64 Disk Systems and Printers

subroutine to a program which is in the memory. You cannot do this
by using the LOAD command, because LOAD automatically
wipes out the program which was previously in the memory. Many
games programmers, in fact, write their programs on other
machines, and then transfer the codes into the C'64 to get over these
difficulties. Another action that can be contemplated is changing the
identity number of a file. If, for example, you had a BASIC
program saved, its number would be $82 (130 in denary). Changing
this to $81 (129) makes the disk system treat this as a serial file, not as
a BASIC program, so that it cannot be loaded by the LOAD
command! When a good disk editor is available, life will be made
much easier for dedicated disk-users!

Machine code and other bytes

The ordinary operating system of the C'64 does not provide for the
saving of machine code. Machine code programmers, however, will
generally use assembler programs, such as the excellent MIKRO
cartridge, to write code, and these assem biers contain routines for
saving code. If you write machine code by poking numbers into
memory, then the code can be saved like a BASIC program by
shifting the addresses for the start and end of BASIC. This method is
detailed in my book Introducing Commodore 64 Machine Code. An
attractive alternative is to save machine code as a serial file, by
peeking each byte in a loop program and saving it on disk. The
following chapter contains details of serial files.

Text files

A text file means a set of ASCII codes stored on the disk or in the
memory of the computer. A BASIC program is not an ASCII file,
beca use the reserved words of BAS I C are each coded as anum ber
between 128 and 255. These codes are called 'tokens', and a file that
consists of text only, such as a file that has been created by a word
processor, will not contain such tokens. Text files have to be
recorded so that they can be replayed into the memory of the
computer with no gaps, and word processor programs contain their
own routines for controlling the disk drive. Unless you are writing
your own word processor program, then, this is not something that
you have to worry about.

Chapter Five

BASIC Filing Techniques

What is a file?

I have used the word ' fi le' ma ny times in the course of th is boo k to
mea!1 a collect ion of information which we can reco rd on a d isk .
P rograms in BASIC a re one ty pe of file, and the only type,
inciden ta lly, which permits the use of LOAD a nd SAVE in a
straightforward way. In this chapter I shall use the word ' file' in a
narrower sense, to mea n a collection of data t hat is separate from a
program. For example, if you have a progra m that dea ls with your
household accounts, you would need a fil e of items and money
amounts . T his file is th~ result of the action of the program, and it
preserves these amounts fo r t he next ti me that you use t he program.
Taking another example, suppose t hat you devised a program which
was intended to kee p a note of your collect ion of vintage 78 r.p.m.
recordings. T he progra m wo uld requi re you to enter lots o f
information abou t these recordings. This info rmatio n is a fi le, and at
some stage in the program you would have to record this fi le. W hy?
Because when you load a BASIC progra m and RUN it, it starts from
scratch. All the information that you fed into it t he last time you
used it has gone - u nless you recorded that in format ion separately .
T his is the topic that we're dealing with in this cha pter, record ing the
information that a progra m uses. T he sho rter word is filing the
informatioT'.

Knowing the names

You cz..n't discuss fi ling without co ming across some words which
are always used in connection wi th fi ling. T he most important of
t!1ese words are record and field. A record is a set of facts about one
item in t he file. Fo r example, if you have a file about vintage steam

44 Commodore 64 Disk Systems and Printers

locomotives, one of your records might be used for each locomotive
type. Within that record you might have wheel formation, designer's
name, firebox area, working steam pressure, tractive force and
anything else that's relevant. Each of these items i~ a field, an item of
the group that makes up a record. Your record might, for example,
be the SCOTT class 4 40 locomotives. Every different bit of
information about the SCOTT class is a field, the whole set offields
is a record, and the SCOTT class is just one record in a file that will
include the Gresley Pacifics,-the 4· 6-0 general purposes locos, and
so on . Take another example, the file BRITISH MOTOR-BIKES.
In this file, B.S.A. is one record, A.J.S. is another, Norton is
another. I n each record, you will have fields. These might be
capacity, number of cylinders, bore and stroke, suspension, top
speed, acceleration ... and whatever else you want to take note of.
Filing is fun .- if you like arranging things in the right order.

Disk filing

In this book, because we are dealing with the C'64 disk system, we'll
ignore filing methods that are based on OAT A lines in a BASIC
program, or on the use of cassettes. Though you may be experienced
in the use of filing with cassette systems, I'll explain filing from
scratch in this chapter. This is because many buyers of the C'64
machine nowadays start from scratch with a disk system, and have
never used cassettes. If it's all familiar to you, please bear with me
until I come to something that you haven't met before.

To start with, there are three types of files that we can use with a
disk system: serial files, relative files and random access files. The
differences are simple, but important ones. A serial (or sequential)
file places all the information on a disk in the order in which the
information is received, just as it would be placed on a cassette. If
you want to get at one item, you have to read all ofthe items from the
beginning of the file into the computer, and then select. There is no
way in which you can command the system to read just one record or
one field. More important, you can't change any part of a record, or
add more records to such a file. A relativejile is a kind that applies
only to the Commodore disk system. A relative file is stored like a
serial file, but each entry into the file causes a kind of directory entry
(though not in the directory track of the disk). This allows any part
of the file to be found much more quickly than would be possible if
the file were just an ordinary serial type. In addition, it allows

BASIC Filing Techniques 45

records to be replaced and more records to be added. A random
access file does what its name suggests - it allows you to get from the
disk one selected record or field without reading every other one
from the start of the file.

You might imagine that, faced with this choice, no one would
want to use anything but random access files. It's not so simple as
that, though, because the convenience of random access filing has to
be paid for by a lot more complication, as we'll see in Appendix A.
F or one thing, because random access filing allows you to write data
at any part of the disk, it would be very easy to wipe out valuable
data, or even the directory, with a program that was badly designed.
We'll start, then, by looking at serial files, which are also easy to
record on cassette. All of the DFS commands for serial filing are
very similar to the commands of the cassette filing system. This
makes the change very easy if you have been using filing on cassette
and you then upgrade to disk. If you have never used cassette files, of
course, it's all new.

Serial filing on disk

We'll start by supposing that we have a file to record, called
CA MERAS. On this file we have records (such as Nikon, Pentax,
Canon, Yashica and so on). For each record we have fields like film
size, shutter speed range, aperature range(standard lens), manual or
automatic, and so on. How do we write these records? First of all, we
need to arrange the program that has created the records so that it
can output them in some order. The usual order will be to take the
records in a chosen order, and output the fields of the record in an
order as well. Figure 5.1, for example, shows how we might arrange
this part of a BASIC program so as to output a number of records,
with five fields to each record. The number of fields is five, so the
fields are put out using a FOR N= I TO 5 loop. The number of
records isn't fixed, so we use a GOTO loop which keeps putting out
records until it finds one called "X", which is the terminator. Note
that we haven't used an array for holding these items, because an
array has to be dimensioned and we don't know in advance how
many items we will have. The appearance of "X" is tested twice.
Strictly speaking, this isn't necessary, but it can avoid the problems
that you meet when you have to GOTO to form a loop.

That deals with the organisation of the data for putting on to disk,
but how do we actually put it on the disk? There are several stages ,

46 Commodore 64 Disk Systems and Printers

100 DIM FD(5) :X'l.=0
110 PRINTCHRS(147):PRINT "TYPE X TO END
ENTRY"
120 I NPUT"RECORD NAME "; RCS~ X'l.=X%+l:IF

RCS= " X " THEN 1 9'~

130 REM NEED TO RECORD THI S '
14'3 FOR N=1 TO 5
15(" PRINT"FIELD I TEM u;N;" ";: I NPUT FD$
(N)

160 REM NEED TO RECORD TH I S ALSO!
17'3 NEXT
18(" IF RC$< >" X "THEN 120
190 X%=X%-l:REM LAST RECORD IS BLANK
200 PRINT"THERE ARE "; X~I. ;" RECORDS ON T
HE FILE"

Fig. 5.1. How to organise data for disk writing. The example uses five fields in
a record.

and the first one is to allocate a channel number. This is a type of
code that the machine will use to distinguish files . The C'64 machine
can deal with several sets of serial files at one time, five to be precise.
It's most unlikely that you will ever want to use more than two serial
files at a time (probably one for reading and one for writing, for
example), but it's better to be generous than to be stingy. Each time
you want to make use of a file, then, you must have a channel
number (or 'handle') allocated. You have to do this for yourself by
allocating a channel number, using numbers between 2 and 14
inclusive. The C'64 reserves channel numbers 0 and I for its own
purposes, and channel 15 is reserved as a hot line to the disk operating
system. You can take your pick of what's left. In the course of the rest
of this book, I'll use various different numbers simply for the sake of
variety. I tend to avoid the numbers 3 and 4 simply because they are
used so much in the printer commands. Avoiding their use for disk
numbers helps avoid confusion.

The purpose of this channel number is to organise data. The disk
stores all data in units of 256 bytes (actually a few bytes less, but
that's a detail at present). It wouldn't make sense to spin the disk and
find a place on the disk just to record one byte at a time, so when you
record or read ad isk it's always one complete sector at a time. Some
of the memory of the C'64 has to be used to hold data which is being
gathered up for recording or which is being replayed. The channel
number is an identifying number for the piece of memory that is
being used, so that the machine finds the correct data in the correct

BASIC Filing Techniques 47

part of the memory. Using channel numbers like this avoids the need
for you to allocate parts of the memory for buffers.

Opening the file

After that short diversion, back to our filing program. Before we
start to gather the data together for filing, we need to 'open a
channel' for the data. This is done using the OPEN command.
OPEN has to be followed by three numbers when it is used for files in
this way. The first number is a file number. This can be any number
between I and 255, but it makes life a lot easier if you make this
number the same as your channel number. I have never come across
a need to use a file number that was not equal to the channel number,
and you probably won't either. In addition, if you make the numbers
identical you won't have trouble when you start using commands
that require the channel number in place of the file number.
Remember the old motto: Simplicate and add lightness!

The next number is the number for the disk operating system, the
familiar 8. The last number is the channel number. If, for example,
we use:

OPEN 2,8,2

then we will have opened file 2, channel 2 to the disk system. We can
then either send information to the disk or take it from the disk.
That's not all we need for serial filing, however. We also need to
specify the name of the file, its type, and the direction of data flow.
The name can, like any other filename, be up to 16 characters. The
type, if you are using a serial file will be S. The direction will be R if
you are reading, or W if you are writing. The complete OPEN
statement, then, might look as follows:

OPEN 2,8,2":AIRCRAFT,S,W"

to write a file called AIRCRAFT. As always, you can place the drive
number ahead of the colon. When you read the directory of the disk
the file name will be shown along with the typename of SEQ
(sequential), so that you know that you can't read the file using
LOAD. If we open another file for reading it will be allocated
another channel number, so that we can keep the files separate. To
avoid confusing yourself, though, try to keep as few files on the go as
possible!

The use of the OPEN command opens a file - which means that

48 Commodore 64 Disk Systems and Printers

we can make use of that file. It also means that the disk is prepared
for the file. Any file that exists on the disk already and has the same
name of AIRCRAFT will prevent you from opening this file,
however. To get round that problem you can modify the name of the
file so that it will automatically delete any file of the same name. This
is done in the usual way by adding the @ mark just ahead of the
colon in the title. You can also place a drive number ahead of the
colon, but if you have only one drive there's not much point. In
addition to recording the filename, sectors will be reserved for the
file.

Printing to the file

It's at this stage that we need to make use of the loops in the writing
program. Within these loops we need to have a line something like:

3000 PRINT#2,FD$(N)

PRINT#2 means put the information out on channel 2. This,
because of our previous OPEN statement, leads to the disk system,
so that PRINT#2 will eventually put out to the disk system the data
that follows. In this example, it's FD$(N). N is the number in the
FOR ... NEXT loop, so that as the loop goes round we will put on to
t he disk field(I), then field(2), then field(3) ... a nd so on. We also need

to write the record name, and this is done within the loop by using
a line such as:

130 PRINT#2,RC$

without using an array (because of the unknown amount of
dimensioning).

Figure 5.2 shows an example of a very short and simple program
of this type which has been adapted from the first example. You can
enter anything you like into this, but it makes more sense to enter
something that you can easily check. Since the file is called aircraft,
you could make each record name the name of an aircraft type, and
each field some feature of the aircraft, like wingspan, engine details,
number of crew, and so on. You can, of course, easily change this
program so that it has another title that suits the information that
you might want to use.

Before we move on, consider what this has done. It has created a
file called Aircraft, and aJlocated a channel number of2 to this file. It
has then stored the data as it came along, in the sequence of

BASIC Filing Techniques 49

100PEN2,8,2,";AIRCRAFT.S,W"
100 DIM FD(5);X%=0
110 PRINTCHR$(147):PRINT"TYPE X TO END
ENTRY"
12(-t INPUT"RECORD NAME ";RC$;X'l.=X~I.+1:IF

RC$= .. X " THEN 19'3
130 PRINT#2,RC$
14'3 FOR N=l TO 5
150 PRINT"FIELD ITEM ";N;" ";:INPUT FD$
(N)

160 PRINT#2,FD$(N)
170 NEXT
180 IF RC$<>"X"THEN 120
190 X'l.=X'l.-l:REM LAST RECORD IS BLANK
200 PR I NT" THERE ARE "; X~~;" RECORDS ON T
HE FILE"
210 CLOSE2

Fig. 5.2. A program which writes to a serial file.

RECORD, then FIELDS. Finally, the file has been recorded and
closed by using CLOSE2. This last step is very important. For one
thing, you don't actually record on the disk any of the information in
this short program until the CLOSE2 statement is executed. That's
because it would be a very time-consuming business to record each
item of a file one at a time. What the DFS does, remember, is to
gather the data together in memory. This is a 'buffer' piece of
memory, and it will be written to the disk only in one of two
possible circumstances. One is that the buffer is full, so that there is
one sector full of data (256 bytes) to write. The other is that there is a
CLOSE2 type of statement in the program. For a large amount of
data, the disk will spin and write data each time the buffer is full. The
CLOSE# command then writes the last piece of data, the one which
doesn't fill the buffer. It also writes a special code number, called the
end-of-file code (EOF). This can be used when the file is read, as
we'll see later. If you forget the CLOS E statement you'll leave the
buffer unwritten, with no EOF . and cause a lot of problems in your
programs. Forgetting the CLOSE is called 'leaving your files open',
and you wouldn't like to be caught like that, would you? The biggest
danger is when you are testing a program. If there is an error, such as
a syntax error, which stops the program from running, there will be
no CLOSE2 carried out and the files will be open. If you had typed a
lot of data, you would lose it if you then went on to correct the
program and run it again. The correct procedure is to close all of the

50 Commodore 64 Disk Systems and Printers

open channels. I n this example it's easy - you only have to type
CLOSE2 and press RETU RN. This ensures that your data will be
recorded. When you use an INPUT statement to gather up the data,
you can find that with a lot of data you will hear the disk start and
stop at intervals. That's an indication of the buffer transferring data
to the disk. You can't use the keyboard while the transfer is ta king
place, but the time that's needed to write a sector is fairly short.

Getting your own back

Having created a file on disk, we need to prove that it has actually
happened by reading the file back. A program which reads a file
must contain, early on, a command which opens the file for reading.
This is another OPEN, and it makes sense to use another channel
and file number, just in case you want to carry out both reading and
writing in quick succession. The file number and channel number
can be the same, or you can use different numbers, but the name of
the file must be the same. If we recorded a file using the name
AIRCRAFT, then we must not expect to be able to read it if we use
CAMERAS- or any other name. Misspelling can bedevil you here!
Once the channel number has been allocated we can read data with
INPUT, which will be followed by the file number. This reads an
item from the disk , and will allocate it to a variable name or print the
item, according to what we have programmed. The number of reads
can be controlled by a FOR . .. NEXT loop if the number is known,
or it can make use of the EOF marker if the number is unknown. The
operating system of the C'64 uses a variable ST which changes from
o when an end of file is found. By testing for ST changing value,
then, we can make the program stop reading the file at the correct
place.

The example of Fig. 5.3 shows both methods in use. The number
of fields has been five, so that a FOR ... NEXT loop can be used to
control the input of the fields. The number of records, however, has
not been settled by a FOR .. . NEXT loop, so we have to keep
reading the file until the EOF byte is found. This is done in line 120
by testing ST. If ST is not zero, then the file is closed and the
program ends. Note that the disk does not spin each time you press a
key to get another record. This is because a complete sector is read
each time, and if the information that you want is all on the same
sector the disk need not be used. Sorry if I seem to be labouring this
point, but a newcomer to disks sometimes finds it difficult to
remember.

BASIC Filing Techniques 51

1 (H) DIM FX (5)
110 OPEN 3;;8~3,":AIRCRAFT,S~R"
120 PRINTCHR$(147):INPUT#3~NM$:IF ST(>0
THEN 24'3
13'3 PR I NT .. TYPE IS"; NM$
140 FOR N=1 TO 5
150 INPUT#3,FX$CN):NEXT
160 PRINT"WINGSPAN ";FX$(I)
170 PRINT"LENGTH ";FX$(2)
180 PRINT"CREW NO. ";FX$(3)
lqe PRINT"ENGINES ";FX$(4)
200 PRINT"RANGE ";FX$(5)
210 PRINT"PRESS SPACEBAR TO CONTINUE"
22(1 GET A$: IF A$= II "THEN 220
23'3 GOT0120
2413 CLOSE3: PRINT"END": END

Fig. 5.3. A program which reads the serial file.

Now this simple example shows a lot about serial filing that you
need to know. When you use disks, then the name that is used with
OPEN is the file name for the file on the disk. Any other file that is
later recorded with the same name will not overwrite this file , so the
system provides for good file security. This is an important point to
emphasise if you have been using cassettes, because you have more
control over a cassette. You can write a file called INDEX at the
start of the tape, for example, then wind the tape on slightly and
record another, different, file with the same name. You certainly
can't record two files with identical names on one disk. In addition, a
file is closed by writing the EOF character. How, then, can you
update a file, particularly if you want to add more items to the end of
the file?

Updating the file

There are two answers, if we stick to serial filing. One possibility,
which is the simplest one for short files, is to load the whole file into
the memory of the computer, make the alterations (your BASIC
program will have to be written so as to provide for this), and then
write the file again, wiping out the earlier version. The other
possibility is to open two files, one for reading and the other for
writing. You dun't need to have dual disk drives for this, though it
makes life much simpler if you do. This means that the computer will

52 Commodore 64 Disk Systems and Printers

maintain two buffers. You read one record from the reading file
and you can, if you want, display it. If it's all right, it's then written
(to the buffer initially). If the record has to be modified, you can do
this. If extra records have to be added, that is equally simple. Each
time a buffer empties the disk will spin and a read or write will take
place. This 'simultaneous' operation is possible because of the use of
different channel numbers which control different buffers. In
practice, it's a matter of writing your program to suit. Figure 5.4

100 DIM FX(5):X'l.=0
1 H3 OPEN 4, 8~1 4, ": AIRCRAFT, S, R": OPEN 5,8
,5,":MORE,SJW"
120 PRINTCHR$(147):INPUT#4 J NM$:IF ST<>0
THEN 16'3
125 PRINT#5,NM$
140 FOR N=1 TO 5
150 INPUT#4,FX$(N)
155 PRINT#5,FX$(N):NEXT:GOT0120
160 INPUT"AIRCRAFT NAME ";NM$:X'l.=X'l.+1:1
F NM$="X"THEN 230
170 PRINT#5,NM$
180 FOR N=l TO 5
190 PRINT"FIELD ITEM ";N;" IS ";:INPUT
FD$(N)
200 PRINT#5,FD$(N)
210 NEXT
220 GOT0160
230 XI.=XI.-l
24(1 PRINT"YOU HAVE ADDED "; XI.;" ITEMS"
250 CLOSE4:CLOSE5:0PEN15,B,15
26(1 PRINT#15, "50: AIRCRAFT"
270 PRINT#15,"C0:AIRCRAFT=0:MORE"
280 PRINT#15,"S0:MORE"
29('1CLOSE15
3'~"3 PR I NT If END" : END

Fig. 5.4. Extending a serial file by reading, rewriting and renaming.

shows a simple program which allows you to extend the file that was
created by the program of Fig. 5.3 . Note, however, that the files use
different names because I have assumed that both files will be on the
same disk. We must therefore end the program by deleting the old
file and changing the name of the newly-created file (the extended or
changed file) so that it has the same name as the old file. This can be
done from BASIC by using the S(SCRATCH) and C(COPY)

BASIC Filing Techniques 53

commands just as we would use them direct from the keyboard. One
point we have to be very careful about, however, is closing files. The
Sand C commands have to use channel 15, and this has to be
opened. These commands, however, will not work iJthe other Chan
nels are open. This is only briefly mentioned in the manual. In this
program, no provision has been made for altering any of the records
that are read from the old file. This is a routine which you could
easily add for yourself by putting a GOSUB in at new lines 121 and
151.

Relative files

Serial files are very useful for a lot of purposes, but not if you want to
be able to obtain a record out of a very large number. With a long
program in the memory of the C64, there would not be much
memory left to store a great num ber of records at a time. This means
that you would have to read your records in as an array, test each
one to find if it was the one you wanted, and then read another lot in
if you couldn't find the one that you wanted. This could take a long
time, and it would be much more satisfactory if you could pinpoint
the record that you wanted andjust read that one (and possibly some
others) from the disk. This implies random access, and random
access filing can be ach ieved with the 1541 disk system, as Appendix
A demonstrates . Random access filing is by no means easy,
however, and for the type of data filing that normally needs to use
random access the 1541 drive offers a different method. It is called
relative filing and it has a lot of the advantages of random filing with
few of the disadvantages. We'll spend the rest of this chapter, then,
looking at relative files and how to use them. In the next chapter, I'll
give an example of a much longer program which makes use of
relative files to achieve a random access database. In other words,
this will be a program that allows you to file facts on the disk and get
them back whenever you want them.

File facts

A relative file has to be made up from a number of records, like any
other file. In each record, however, each field must have a fixed
maximum length. The length of a field is the number of characters
that can be stored, plus one. The reason for the 'plus l' is that when

54 Commodore 64 Disk Systems and Printers

you enter a field into the computer you press the RETU R N key , and
this puts a 'carriage return' character at theend of the field. You have
to choose for yourself how many characters will be needed in each
field. You might, for example , feel that a field of 15 characters would
be enough to store any field that contained the name of a country.
You would then have to make sure that no name that you entered
contained more than 15 characters (by taking LEFT$(MN$, 15), for
example). This might mean that a country name like Papua New
Guinea would be chopped to Papua New Guine, but this would still
be enough to recognise the country by. When you have settled on a
length number for a field in your record, everyone of these fields
must be of that length. It doesn't matter if a name doesn't fill a field
because the computer will aulomalicallr fill up the field to the
number of characters that you have chosen, using blanks which
don't appear when the name is printed. When you have several fields
in each record, as you normally do, then you don't have to use the
same number of characters per field. It's convenient , as you will see,
if you can, but it saves a lot of s pace on the disk if you keep eac h field
to the most useful size. For telephone numbers or post codes, for
example, it would be foolish to lise fields of 15 characters.

The most important feature of relative filing is that the disk
operating system keeps a track of the files for you. This is done by
setting up a set of 'side sectors', which are a form of directories to
your file. The machine will then search through these side sectors for
the record that you request, get the track and sector number from
this data, and load the sector that contains the record that you want.
All of this could be done in other ways, but only with a lot of hard
programming work.

Relative rules

On any computer there is always a price to be paid for cOFvenience,
and in this case the price is that you have to construct your filing
program according to a set of rules . We have seen that you need to
fix the number of fields per record and the number of characters per
field. You have to use a special form of OPEN command for the file,
and you must ensure that there will be at least one blank character
between each pair of fields when the file is recorded. One important
point is that a relative file is not protected in the way that programs
or serial files are protected. If you have a file called "MYDAT A"
opened and with 20 items recorded, then it is possible to replace

BASIC Filing Techniques 55

these 20 items with a different 20, to alter one of the 20, or to add
more items. Your program, then, must be constructed so that you
will not accidentally zap out a file of data. There is nothing in the
disk operating system that would prevent you from doing this .

It's time now to look at some details . Any relative file will require
two channels to be opened. One of these will be the command
channel, number 15. The other can , as usual, be any number
between 2 and 14, but because of the use of 3 and 4 for other
purposes it's ahvays best to use 5 to 14. The relative file is created
whenever the correct OPEN instruction is used. The name of the file
must start with a colon (:) or, if you have more than one drive, with
the drive number and colon, such as '0: '. You have to follow this with
a comma, the letter L and then another comma. All of this is
enclosed by quotes. You then have to add a number. The reason for
this is that each record will consist offields, and each field will have a
length (number of characters) , Since these numbers are fixed , each
record will consist of the same number of characters on the disk -
even if a lot of these are blanks. You must add one character to allow
for the carriage return and another to allow for a space between
fields, so that the size of the record is:

Sum (If field sizes+2X(number of fields)

This number must not exceed 255 and is added in the form :

+CH R$(number)

to the OPEN command. CH R$ will operate correctly only on a
number less than 256, which is why you have to be careful about the
size of the record. An example of a correct OPEN statement for a
relative file would then be:

OPEN6,8,6,":MYDATA,L,"+CH R$(150)

which would create a file called MYDAT A, each record of which
had a length of 150 characters. It's because of this fixed length
feature that the disk system can find each record so easily,

It looks reasonably straightforward, but there's one slight
problem. Because of the way that the disk operating system works,
attempting to write data to a file like this will cause an error message!
The message is RECORD NOT PRESENT, error number 50, and it
appears because the OPEN command for a relative file can be for
reading or writing. When you open the file for the first time and
write to it, nothing has yet been recorded on the file so the error
message is technically correct - there is no record present. You don't

56 Commodore 64 Disk Systems and Printers

want to let this error message stop the program, however. so you
must arrange to test the error channel (number 15) each time you
write to the file. If the error is number 50, the RECORD NOT
PRESENT error, you then ignore it and carryon. If there is any
other error, though, you will have to print the error and stop. AJJ of
this can be done by calling a suitable subroutine.

Since this is not a serial file, we have to pass some more
information to the disk operating system. We must, in particular,
pass details of the record number. If the record number is I, then the
disk will write the record on the first available piece of track. If the
number is 20, the disk will have to count out 19 records (which is 19
times the number of characters per record) to find space. The point
about this is that you can write record number I, and then recor_d
number 20, without having written numbers 2 to 19 between them.
When you do write these other records, there is space left for them.
This is another important difference between relative files and serial
(sequential) files.

The information on the record has to be passed along the
command channel, number 15. It uses a PR I NT# 15, command, and
this must be followed by "P", meaning 'pointer' . Following the "P",
you arrange four numbers, all in CH R$() form. The first number is
the channel number for the relative file. The second and third
numbers are the coded form of the record number. The last number
is the position within the record. This allows you to read individual
fields of a record, not just the whole record, if you want. A typical
example of this command is:

PRINT# 15,"P"CH R$(5)CH R$(I)CH R$(O)CH R$(I)

This would prepare for a read or write on channelS, using the first
record and starti ng at the fi rst character in the reco rd. Before we get
to grips with a sample program, however, you need to know how to
code the record number. The number is coded as two digits. Each of
these must not exceed 255, and the lower one must come first. If you
wanted to use 8, for example, it is coded as CH R$(8)CH RS(O), and
255 would be coded as CH R$(255)CH R$(O). When the record
number is more then 255, though, you have to use the other CH R$
number as well. This is because no single CH R$ number must be
allowed to exceed 255. You can find what is needed by dividing the
record number by 256. The whole number part of this is the num ber
that is used second. The difference between t he record num ber and
256X(second number) is used as the first number. In case that looks
too much like algebra, take an example. Suppose we want to code

BASIC Filing Techniques 57

the record number of 885. Now, 885 / 256=3 and a fraction. Never
mind the fraction, because the 3 is the important bit. This is the
second number in the coded form. Now work out 885 - (256X3),
which gives you 117. This is the number that you use in the first
CHR$ position. The final coded form, then , is:

CHR$(117)CHR$(3)

You don't have to go working out these numbers for yourself,
though, because a subroutine will take care of them for you. What
you do need to remember, however, is that the record number must
not exceed 65535. This is because the maximum size of number in
each CH R$ is 255, and if you use CH R$(255)CH R$(255) as your
coding, then this corresponds to the number 255*256+255, which is
65535. That's a lot of records!

Data writing

Figure 5.5 shows a program which will obtain name and address
data from you, and write it on the disk. There is a program printed in

10 OPEN15~8,15:GOSUB500
2e OPEN6;8,6,":DATA~L,"+CHR$(110)
3(1 GOSUB 1 ('~:;H3: N= 1
50 PRINTCHR$(147):RESTORE:NT=1
6'~ FORJ= 1 T05
70 READTX$:PRINTTXS,:INPUT NM$:GOSUBI50
0: IF LEFT$(NM$,l)="X"THEN 100
8~j PRINT#15, "P"CHR$ (6) CHR$ (L) CHR$ (H) CHR
$ (NT) : GOSUB10(H~
90 PRINT#6,NM$:GOSUBI000:NT=NT+22:NEXT:
N=N+1:GOSUBI100:GOT050
H"~ CLOSE6: CLOSE15: PRINT"END": END
400 DATANAME,ADDRESSl,ADDRESS2,ADDRESS3
;ADDRESS4
5'~'~ PR I NTTAB (13) " I NSTRUCT IONS"
510 PRINT:PRINTTAB(l) "YOU CAN USE THE P
ROGRAM TO ENTER NAMES"
52'~ PR I NT" AND ADDRESSES INTO P. FILE CA
LLED"
530 PRINT" -7DATA'. IF YOU DO NOT CHANG
E THE
540 PRINT" VALUE OF 'N>~ THIS FILE WILL

REPLACE"

58 Commodore 64 Disk Systems and Printers

550 PRINT" ANY PREVIOUS FILE OF THAT NA
ME."
56(1 PRINT:PRINT" PRESS SPACEBAR TO PRO
CEED. Il

8'-10 GET A$: IF AS="" THENS00
900 RETURN
1000 INPUT#15,A,B$,C,D:IF A(20THEN RETU
RN
1010 IF A<>50THENPRINTA~BS,CJD:STOP:RET
URN
102'3 RETURN
1100 L=N:IF L)255THEN H=INT(L/256):L=L-
256*H
111 (.., RETURN
1500 NMS=LEFTS(NMS,20):RETURN

Fig. 5.5. Using a relative file for writing.

the manua l for this purpose, but it is more complicated and there are
misprints . l'll go over this example in detail, so that you can see why
each step is carried out. It's very important to do this for these filing
actions, because you can spend a lot of time just staring at error
messages unless you have an example to follow.

The program starts by opening the command channel and calling
a subroutine which prints instructions on the screen. Line 20 then
opens channel 6, which is the channel that will be used for relative
filing. The name that will be used for the file is OAT A, and the
record length will be I J 0 characters. Line 30 then calls the error
routine to check that all is well with the disk system . The position in
the record is represented by the variable N, and this starts with a
value of I. The subroutine in line J 100 then converts the number N
into two characters , Hand L, which can be used in the CH R$
statement when the pointer has to be positioned. In line 50 the screen
is cleared and the OAT A list restored, and the record number NT is
also set to I. This ensures that you start a file from record number I.
If you wanted to use this routine to write any numbered record you
would need a subroutine which allowed you to input a number here.

A loop starts in line 60. The planning of this program has allowed
for five fields in each record, so each field has to be entered and
recorded. I n line 70 the name of the field is read from the DA T A line,
and this name is printed. We are using, for the sake of simplicity,
twenty characters per field, and when you type the data (NM$), the
subroutine at line 1500 chops each entry to this size if it is larger.

BASIC Filing Techniques 59

Line 80 is important. This is the command to the disk system
which places the 'pointer', and will ensure that the whole record goes
in the correct place. The "P" ensures that the pointer is positioned,
and the CH R$(6) ensures that this refers to channel 6. By using
CHR$(L) and CHR$(H), we let the numbers that have been
produced by the subroutine in line 1100 postion the record pointer.
The position within the record is then set by the variable NT, which
starts with the value of I. As usual, the error channel is checked by
the GOSUBIOOO. Line 90 then prints the value of ~M$ into the
correct position in the buffer. It doesn't go to the disk, remember,
until enough has been gathered. The disk is checked for errors, and
the NT=NT +22 advances the position of the pointer in the same
record. We have to use 22, because the number of characters is 20
and we have to add one for the carriage return and one for a space.
The loop then repeats , so that each field is input and written to the
buffer in the correct field position. The record number, N, is then
incremented, converted to H,L form. and the program repeats from
line 50. The entry is stopped by entering as a name anything that
begins with X. You could choose 0 or any other character that you
liked to terminate entry.

When entry is terminated, line 100 closes the channels, prints the
word END and ends the program. That's the sequence of events in
this writing program, and we now only need to look at the
subroutine. At line 500, we have brief instructions. These are, as
always, accompanied by a 'PRESS SPACEBAR' message, and then
line 800 is executed. This allows you as much ti me as you need to read
the instructions before you get to the serious work. It also allows you
to change disks if you want to keep the data on another disk . Thesub
routine at line 1000 reads the error report along channel IS. Theerror
number is assigned to variable A, and if this is less than 20 we want to
ignore the error. (In this version of the Commodore disk system, an
error num ber which is less than 20 can be reported but is meaningless.)
Line 1010 tests for error 50. This is the RECORD NOT PRESENT
error, and if any other error is present line 2020 will print a full
report, and stop. The RETURN that follows STOP allows you to
continue with CONT after sorting out the problem. If the error
num ber was 50, then line 1020 is ru n, and this simply causes a retu rn,
wit h no error message . I f you want to see why, just insert P R I NT B$
in this line before the RETURN! Line 1100 deals with converting
record numbers into H,L form, and 1500,aswesawearlier, prevents
you from using a name that is longer than 20 characters.

Now each time that you use this program it will create a file called

60 Commodore 64 Disk Systems and Printers

DA T A, and it will start from scratch. This may not be what you
want, and you can provide for adding to the file very easily. If you
know, for example, that you already have the file DATA created,
with 40 entries, then if you make N=41 in line 30 you can continue
adding to the file. The only change that this needs to the program is a
subroutine. This should ask "DO YOU WANT TO EXTEND THE
FILE" and, if you do, ask for the record number. This is assigned to
N, followed by a GOS U B II 00, and then you return to line 50. There
are no safeguards here to ensure that you don't start at the wrong
place, but that's a matter of how you want to construct your
program.

Reading back

Having created a relative file, we now have to look at the problem of
reading it back. Once you have been through the process of writing,
reading looks a lot simpler. For one thing, the file now exists on the
disk, and opening the file to read it is a simpler operation. You need
only OPEN,8,6,"DAT A" this time, because the disk system will
have a note that OAT A is a relative file. Figure 5.6 illustrates the
processes for reading the file. Line 200 opens the channels, and line
220 asks you for a record number. This is assigned to variable N as
before, and broken into two parts, Hand L, in the subroutine. The
screen is cleared, the OAT A list is restored, and the position in the
record, variable NT, is set to I. The loop which gets five fields then
starts in line 250. The title is read from the OAT A list, and then line
270 finds the correct position in the buffer as before. Line 280 then
reads the first field item. If, incidentally, you do not have the file
DATA on the disk, you will get the error message NO CHANNEL.
This is not what you might expect, and it can be very frustrating until
you realise what it really means. The title and the field item are then
printed, and the loop continues to read in all of the fields.

In general, the routine is pretty much the same as before, and the
main difference now is the error subroutine. There is nothing in the
program which prevents you from asking for an impossible record
number. In the example in the manual, the record number is
separately stored and read in, so that it can be compared to the
number which you enter. I have chosen a different method. If the
number that you pick for the record number is impossible, higher
than the largest record number on the disk , then the error number 50
will be signalled, RECORD NOT PRESENT. In line 1020 this

BASIC Filing Techniques 61

200 OPEN15~8,15:0PEN6,8,6,"0ATA"
220 I NPUT II WH I CH RECORD "; N: GOSUB 11 ,~,,:;: I
F N=0 THEN 31(1
240 PRINTCHR$(147):RESTORE:NT=1
250 FOR J=1T05
26(3 READ TX$.
27(1 PRINHt15~ "P"CHR$ (6) CHR$, (L) CHR$ (H) CH
R$(NT):GOSUB10C10
280 INPUT#6,A$:GOSUB1000:PRINTTX$~A$
290 NT=NT+22:NEXT
3,-1(1 GOT0220
310 CLOSE6:CLOSEI5
32(' PRINT"ENO" ~ END
400 DATANAME,ADDRESSl ~ ADDRESS2,AODRESS3

,. ADDRESS4
5(~l2l PR I NT" I NSTRUCT IONS "
800 GETA$: IF A$=" "THENS(30
9(1(1 RETURN
1000 INPUT#15 , A,B$,C , D:IF A<20THEN RETU
RN
1010 IF A<>50THENPR I NTA,B$~C,D:STOP :RET

URN
1020 PRINT " INCORRECT RECORD NUMBER" :RUN
1100 L=N : IF L>255THEN H= INT (L!256): L=L-
256*H
11 H3 RETURN
1500 NM$=LEFT$(NM$,20):RETURN

Fig. 5.6. Reading a relative file .

simply causes the program to print a message and then run again!
It's not an elegant solution, but it works, A better method will be
illustrated in Chapter 6.

More complications

These examples work nicely, but they are only illustrations for
learning purposes, For one thing, it's not very satisfactory that the
maximum record number is not placed on the disk file. For another
thing, you might not be able to remember record numbers. n you
want to find a name that starts with SIN, for example, this doesn't
help you to know which record number it is. It would be a lot more
useful if you could search the file for a given name rather than for a
given record number.

62 Commodore 64 Disk Systems and Printers

This is not something that you can do rapidly with relative files.
You would have to load in each record, test it, and keep repeating
this until you found the one that you wanted . The manual hints that
this can be done by keeping a list of names and record numbers on
another file . It suggests a serial file for the purpose . This is fine if the
file has a fixed length, but if you want to extend the main file it's a bit
of a pain trying to extend the serial file as well. We'll look at ways
round these pro blems in the next chapter, which ·consists of a
database program that uses relative and serial files.

Chapter S ix

A Database Example
FILING CABINET

This chapter consists mainly of one long listing (F ig. 6.1) for 2.

database type of program. T he program is called FILING
CABIJ\fET, and it allows you to specify five titles for the fields o f
your records. These field 03.mes are recorded on the disk , and will be
used from then on. You can then enter information, add to
information, read the data or select items as you please. These are
the normal actions of a simple database. Looking at the length ofthe
program, you might wonder how long a complicated program
would be, but this is a simple version. There is no facility, for
example, for changing a record. T here is no facility for printing
records in alphabetical order of any field. This is, you see, a skeleton
database, which has been included to illustrate the use of the 1541
disk drive for this type of program. Once you have this program up
and running, and have completed reading this hook, you should be
able to add whatever extra trimming~ you need.

First principles

We shall start by looking at how the program works in outline.
Three files are used, two relative files and one serial file. The serial
file is used to keep a note of the names of the: fields and the length of
each field. When you first use the program for a new variety offile
you will type these titles, and they stay with the file from then on
unless you start another type offile on the same disk. If you want to
use more than one FILI NG CABI N ET you must keep them on
separate disks, with a copy of the program on each disk. O ne o f the
relative files is used to keep the records themselves, the other is used
to keep a 'key'. The key file consists of the first three letters of the
first field of each record. This allows you to pick a record by name,
assuming that the names do not share the same fi rst three letters.

64 Commodore 64 Disk Systems and Printers

10 PRINTCHR$~147)
20 F1=0
30 POKE53281,0:POKE53280,0
40 PRINTCHR$(5):REM WHITE
50 REM START KEY FILE
6(::" OPEN7, 8,7, "KEY, L, "+CHR$ (5)
70 CLOSE?
80 X$="NO SUCH FILENAME"
1 (::"0 TT$= "F I LING CAB I NET" : GOSUB 1 '=.H3(::"
110 PRINT:PRINT"DO YOU NEED INSTRUCTIONS

(Y IN) ?": GOSUB12(30
120 IF KY$=" Y" THEN GOSUE 14'::"(3
13(3 GOSUB1600: TT$="MENU": GOSUB100(3
140 PRINT: PRINT" 1. START NEW FILE."
15(3 PRINT: PRINT" 2. WRITE TO FILE."
160 PRINT:PRINT" 3. READ FILE."
170 PRINT:PRINT" 4. END PROGRAM."
18(1 PR I NT : PR I NT " PLEASE SELECT BY NUMBER ..
190 GOSUB1200:V%=VAL(KY$)
195 IF V'l.<10RV'l.>4THENPRINT"1-4 ONLY, PLE
ASE TRY AGAIN":GOT0190
200 ON V%GOSUB2000s3000s4000~220
21(1 GOT0130
220 PRINT:PRINT"END OF PROGRAM":END
1000 D=INT«40-LEN(TT$»/2)
1010 PRINTTAB(D)CHR$(158);TT$
102(3 RETURN
1200 GETKY$: IF KY$="" THEN 120~';)

1210 RETURN
140(" GOSUB 1600: TT$=" INSTRUCTIONS": BOSUB1
000:PRINT:PRINT
14143 PRINT"READ TEXT ~ THEN WRITE YOUR OW
N ~ II

1580 PR I NT '" PRESS SPACEBAR TO CONT I NUE"
1590 GOSUB1200:RETURN
1600 PRINTCHR$(147):RETURN
1800 CLOSE5:CLOSE6
1810 CLOSE7:CLOSE15
1820 RETURN
190(3 Fl=1: PRINT: INPUT"FILE NAME, PLEASE
";FM$:GOSUB3500
1910 IF A=62 OR A=70THEN PRINTX$:FORl=1T
04000:NEXT:F1=0:RETURN
1920 RETURN

Fig. 6.1. The database program FILING CABINET.

.. A Database Example - .cILlNG CABINET 6 5

2'3(1'3 GOSUB 160'3: TT$="CREATE NEW FILE": GOS
UB 1 '3':'1(1
2010 PR INT:PRI NT "PLEASE ENTER DATA AS RE
QUESTED "
2020 PRINT:PRINT" PRESS SPACEBAR TO STAR
T ••• " : GOSUBI200:PRINT
2030 TL=2 :FORJ= 1T05
204(1 PR I NT" TI TLE " ; J;" ": INPUT TL $ (J) : PR
INTIfFIELD LENBTH- ";:INPUT LN (J)
2050 TL=TL+LN(J) +2 : IF TL(255THEN NEX T: GO
T02060
2055 PR I NT"TOO LONG- PLEASE TRY SHORTER
F IELDS" : GOT02':'I00
2(160 PR I NT : PR I NT If WHAT FILENAME WOULD YOU

LI I(E": PRINT
2070 INPUT FM$:FM$=LEFT$ (FM$,1 6)
2':'175 PRI NT: PRI NT"PLEASE WAIT FOR FI LE PR
EPARAT ION"
20HI:'I OPEN6 , 8 , 6 , "@: TITLES, S , W"
2090 PRINT#6, TL:FORJ = 1T05
2 100 PR I NT#6 , TL$(J):PRINT#6 , LN (J): NEXT : C
LOSE6
2 1 1 ':'I OPEN 15 , 8, 15: OPENS , 8 , 5 , " : "+FM$+" , L ~ "
+CHR$(TL)
2 120 PRI NT# 15 ,"P" CHR$(5)CHR$(0)CHR$ (1) CH
R$(l)
2130 PRI NT#5 ,"END":GOSUB10000:REM MAKE S
PACE FOR 2 5 6
2 14':'1 BOS UB 18'30
2150 VY.=0: Fl= 1:RETURN
3(-H3(1 BOSUB 16\.:"3 : TT$= " WR I TE TO FILE": BOSUB
1000 : GOSUB1900: I F F1=0 THEN 3080
3':'110 PRINT: PRINT"DO YOU WANT TO-If
3020 PRINT;PRINTTAB(4) "l. START A F ILE "
303(; PR INT: PRINTTAB(4} " 2. CONTINUE A FIL
E "
3'~40 PR INT:PRINTTAB (4); " PLEASE SELECT BY

NUMBER."
3050 GOSUB1200: VY.=VALCKY$}
3060 IF VY.<:~ OR VY. >2 THEN PRINT"1 OR 2 0
NL Y- PLEASE TRY AGA IN": GOT03050
3070 ON VY.GOSUB3100 , 3200
3080 GOSUB1800:VY.=0:RETURN
3100 GOSUB1600 : GOSUB7000:REM GET TITLES
3 11 0 RN= 1 :GOSUB6000

Fig. 6. 1. contd

66 Commodore 64 Disk Systems and Printers

3 120 GOSUB5000 : REM ENTRY
313(; V%=0 : RETURN
3200 GOSUB 1600 : GOSUB7000:REM TITLES
::'2 10 GOSUB353'3: PR I NT#15~ "P"CHRS (7) CHRS <0
)CHRS(0)CHRS(1) : GOSUBI0000
3220 INPUT#7~ NS: RN=I+VAL(NS):GOSUB6000

3230 GOSUB3550 : GOSUB5000:REM ENTRY
3240 V%=0:RETURN
35(·'H3 OPENI5 , 8, 15 : OPEN6, 8. 6, ": TITLES, S~ RIO
: GOSUB 1 (H30£3
3510 OPEN5 , 8,5.FMS: GOSUB10000
3520 RETURN
353£3 CLOSE5 : OPEN7 , 8 , 7, "KEY If
354(t RETURN
3550 CLOSE7 : 0PEN5 , 8,5,FMS
3560 RETURN
40'30 GOSUB 1600: TT$= II READ FILE": GOSUB 1 9'30
:IF F l =0THEN 4320
4 0 05 GOSUB700 0 : REM TITLES
4(~ 1 £3 GOSUB 1600: BOSUB 1 '~H3'3: PR I NT: PR I NT II DO

YOU WANT TO- "
402'~1 PR I NT : PR I NTTAB (4) " 1. READ ALL ITEMS
"
4030 PRINT : PRINTTAB(4) "2. READ SELECTED
ITEM";;PRINT
4035 PRINTTAB (4) " 3.. RETURN TO MAIN MENU"
404'3 PRINT : PRINTTAB(4) " PLEASE SELECT BY

NUMBER ."
4050 BOSUB 12 '30 : V~I.=VAL O<Y$)
4060 I F V%< 10R V%>3 THEN PRINT"I-3 ONLY,

PLEASE TRY AGAIN " :BOT04050
4070 ON VI. BOSUB 4 100,4200,4090
4£38(' IF V%< >0 THEN40'30
4 090 GOSUB 1800 : V%=0:RETURN
4100 GOSUB 16'3(' : GOSUB3530: PR I NT# 15, "P" CHR
$(7)CHR$(I)CHR$ (0) CHRS(I)
4 1 H'I I NPUT# 7 , A$
4120 RX=VAL (AS):GOSUB3550
4130 FOR RI'.~= 1 TOR X : GOSUB6'3'30
4140 PRINT#15~"P"CHRS(5)CHRS(L)CHR$(H)CH
RS (1)
41 50 GOSUB6100:REM READ FILE#5 AND PRINT
4160 PRINT:PRINT"PRESS SPACEBAR FOR NEXT
, Q TO QUIT . "
4i 70 GOSUB120'3: IF KYS< >"Q"THEN NEXT

Fig. 6. 1. contd

A Database Example - FILING CABINET 67

41 80 GOT0 4 320 : REM CLOSE AND RETURN
4200 GOSUBI 600 :PRINT"TYPE NAME PLEASE. ~· ..
4 2 10 I NPUT NM$: ID$ =LEFT$(NM$,3):GOSUB353
'3
4220 PRI NTttI5, "P"CHR$ (7) CHR$ (1) CHR$ (0) CH
R$ (1)
4 2 30 INPUT#7,A$:R X=VAL (A$):FORRN=2TORX+ l
4240 G05UB6(3(30: PRI NT#1 5, "P"CHR$ (7) CHR$ (L
) CHR$(H)CHR$(I)
4250 INPUT#7 , A$:IF ID$=LEFT$(A$,3)THEN42
7 ("
4260 NEX T: GOSUB3550:GOT04350
4270 RN=RN-l: GOSUB6000:GOSUB3550:GOSUB6l
0(3
4290 PRINT:PRI NT "PRESS SPACEBAR FOR NEXT
, Q TO QUIT"
43("'3 GOSUB I 20C": I F I<Y$< >"Q"THEN42'~U3
4 320 GOSUBI800 :J%=0 : RETURN
4350 PR INT" NO SUCH FILE-PLEASE TRY AGAIN
" : FORl= 1 T04 0 '30: NE XT
4360 GOT04200:REM TRY AGAIN
5000 GOSUBI60 0 : PRI NT :PRINT:Nl=1
50H'I PRI NT" ITEM "; RN: FORJ=l T05
5020 PR INTTL$ (J) ~:INPUT NM$:GOSUB5080~IF

LEFT$ (NM$, 1) = " X " THEN 5'37(1
5'325 CLOSE7
503(' 605UB6("00: PRI NT#15 , "P"CHR$ (5) CHR$ (L
)CHR$(H) CHR$ (Nl)
5040 PRINTtt5 ,NM$: Nl =N l+2+LN(J):GOSUBI000

5050 IF J = lTHEN 60SUB 5200: REM UPDATE t<E
Y

5060 NEXT : RN=RN+l : 60T0 5 000
5070 RETURN
5080 NM$=LEFT$(NM$,LN (J»:RETURN
5200 60SUB3530 : PRINTttI 5, "P"CHR$ (7) CHR$ (l
)CHR$(0) CHR$(I)
5205 PRI NT#7 ,RN: RN=RN+l:60SUB6000
5207 PRI NT# 15, lip "CHR$ (7) CHR$ (L) CHR$ (H) CH
R$ (1)
5210 PRINT#7 , LEFT$(NM$, 3):RN=RN-l:GOSUBI
0000
5220 GOSUB3550:RETURN

Fig. 6. 1. contd

68 Commodore 64 Disk Systems and Printers

6000 L=RN:IF L>255THEN H=INT(L/256):L=L-
256*H
6010 RETURN
6100 Nl=1:FORJ=lT05
6110 PRINT#15,"P"CHR$(5)CHR$(L)CHR$(H)CH
R$ (N:!)
6120 INPUT#5,NM$:PRINTNM$
6130 Nl=Nl+2+LN(J)
6140 NEXT
615'3 RETURN
7000 INPUT#6,TL:FOR J=lT05
7010 INPUT#6,TL$(J)
7020 INPUT#6,LN(J):NEXT
7030 CLOSE6:RETURN
10000 INPUT#15,A,B$,C,D
10010 IF A<20THEN 10050
1002(-) IF A=50THEN 10050
10030 IF A=62THEN10050
10035 IF A=70 THEN 10050
10040 PRINTB$:STOP:RETURN
10050 RETURN

Fig. 6. 1. contd

You could use the first two and the last letter as another way of
identification, or devise other combinations to suit yourself. As I
said, this is a skeleton program, and it's yours to trim to shape and
pad out as you please. One thing that we have to be very careful
about is that the 1541 does not like having two relative files open at
the same time. This causes NO CHANNEL error reports, and other
complications.

When the program runs a KEY file is opened, and you are
presented with the main menu. The first time that you use the
program on a disk you should go for the START NEW FILE
option. This allows you to choose five titles for the fields of your
record, and asks you for the length of each field. These names and
figures will be recorded and used forever after, so you should plan
them carefully. Figure 6.2 shows a typical display. After entering the
fields and lengths, you are prompted for a filename. You can choose
anything you like, as long as it has 16 characters or less and is not
KEY or TITLES. The reason, of course, is that these filenames are
used for other files. Perhaps you might like to add a line 2072, which
rejected these names as filenames and asked again.

A Database Example - FILING CABINET 69

TITLE I SURNAME
FIELD LNGTH- 20

TITLE 2 FORENAME
FIELD LNGTH- 15

TITLE 3 DATE OF BIRTH (DDMMYY)
FIELD LNGTH- 6

TITLE 4 OCCUPATION
FIELD LNGTH- 30

TITLE 5 PHONE NUMBER
FIELD LENGTH- 12

WHAT FILENAME WOULD YOU LIKE
?WORKFORCE

Fig. 6.2. A typical screen display after the entry of titles and field lengths .

Once the filename has been typed and RETURN pressed, the
main file is opened with the name you have selected . The pointer is
then moved to record number 256 and the word END placed there.
This takes time, and a 'Please wait' message is printed to remind you.
At several places in the program the disk will be busy and you may
have to wait for it. When the file has been created, the program
returns to the menu .

You can now type into your file by choosing the WRITE TO
FILE option. You will then be asked for the filename. This is to
ensure that the correct file is identified. If you choose the wrong
name, you will be informed and the menu will reappear. When you
use the correct filename, this brings up a new menu in which your
choice is either to START A FILE or to CONTINUE A FILE. If
you have just entered the field names you will be starting a file, and
you would also pick this option if you wanted to wipe out and
replace a file of the same name. I n this option, you will be prompted

by the field names (such as ADDRESS, NAME, etc.) to type data.
The data will be chopped to the field size that you have specified, and
recorded. There is a noticeable pause following the first name in each
field . This is because the first three letters of this field are also
recorded on the KEY file. Don't rush your typing after you press
RETURN on this first field. You will also find that the disk spins at
other places while you enter data, and you have to wait until the
screen cursor is visible again before you can continue typing. To end
the entry, you type X, or a name that starts with X. If this is
inconvenient, change it (line 5020)! If you have a file already

70 Commodore 64 Disk Systems and Printers

created, you can use the other write option to extend the file. You
don't have to input the record number, because this is recorded with
the KEY file and the file will be extended with no gaps.

If you select the READ option from the main menu you will once
again be presented with another menu, after checking for the
filename. This time the choice is to list all of the names or pick a
name. If you choose to list all names, the disk starts to work hard
and a complete record is printed on the screen . You can press the
spacebar to get the next record until the end of the file, or you can
press Q to return to the start of this menu with the FILENAME
prompt. I f you choose to select a name, you are asked to type the
name . This will be the name of the first field item. Only the first three
letters are important in the program as it is organised at present. The
program then opens the KEY file, and looks for these letters. Since
this is a much shorter file than the main file, the search is quick.
When the letters are found, the record number is calculated and the
main file is read to proGuce the record that you want. At present
there is no facility to produce more than one record with the same
identifying letters, and the program will always pick the first record
that answers the description. Once again, it's your program change
it as you want. I f you ask for a name that does not appear in the file,
then you will be advised and asked to try again. That's it!

The prograrr. in detail

Now for the hard work. There are a lot of points in this program
which are important. If you try to design your own database
programs you will need to know what the 1541 disk drive does, and
this listing reveals a lot that isn't exactly made clear by the manual,
and which is not so easy to illustrate by short examples. No matter
how much you may hate looking at other people's programs, then, it
will be useful to study this one so that you can appreciate reasons.
Unless you do so, you can waste a lot of time looking at the 1541 's
inscrutable error messages and wondering why they arise.

The program is built round a core and a set of subroutines. A lot
of the programming is straightforward BASIC, and I have made no
use of fancy colour or screen presentation effects there's quite
enough to type as it is. I'll concentrate on the explanations that relate
to the use of the disk drive, rather than explain everything in detail.
In other words, I'm assuming that you knew a reasonable amount of
BASIC before you bought a disk drive.

A Database Example - FILING CABINET 71

Lines 10 -80 are concerned with initial values of constants and
setting screen display. The relative file KEY is also opened. By using
this opening statement at this point, we can then use OPEN7,8,7,
"KEY" in future commands. The variable X$ is used to deliver an
error message at a place in one of the subroutines, and the program
starts in earnest in line 100. This prints a title, centred by the
GOS UBI 000, and asks if you need instructions. The GOS U B 1200 is
a GET KY$ routine which will wait for a key to be pressed. A ny key
apart from Y will cause the instructions to be skipped. I have not
written detailed instructions, because these arejust another load of
typing. You can type your own instructions when you have modified
the program for your own use.

Line 130 clears the screen (GOSUBI600) and then prints the
menu. You are asked to select by number, using the G ET K Y$
subroutine and converting to number form with V A L. This number
is assigned to V% (an integer) and tested. If the range is acceptable,
then line 200 carries out the choice. in the course of this choice, the
value of V% can be changed. This can cause another subroutine to
run when the RETURN is used, so each ~ubroutine ends with V%=O
to prevent this. Line 210 ensures that the menu is repeated unless you
have picked the END PROGRAM option. The subroutines then
carry out the main actions . This is important, because it makes the
program very easy to change. Practically all the subroutines that you
might need for your own 'custom' version are listed, so if you know
in detail what each subroutine does, making your own version is
relatively easy.

The creation subroutine

The su broutine that starts in line 2000 creates a new file. T his will
wipe out any other file that has been created with this program on
the same disk, which is why it's useful to have several copies of the
program on different disks. The loop that starts in line 2030 gets title
names for each field, and also a length number. The length number is
not tested, and it might be useful to reject lengths of less than I or
more than, say, 50. Each title and length is assigned to a n array,
using TL$ for the title and LN for the length offield . If the total field
length, allowing for spaces and carriage returns, is too long, then
you will have to start again. This test is made in line 2050. If all is
well, then you are asked for a filename in line 2060 . O nce again, it
might be useful to test this to make sure that the names KEY and

72 Commodore 64 Disk Systems and Printers

TITLES were not used. Line 2080 then opens a serial file for writing.
By using@ in the filename of TITLES, any previous file of this name
is deleted. The total length of record, each title name and each field
length figure are then recorded in this serial file, and the file is closed.
Line 2110 then opens the command channel, and channel 5 is
opened for a relative file whose name is the one that you have
selected, FM$. The record length has already been calculated as TL,
and this can be included in the OPEN statement. In line 2120, the
pointer is placed at a position for the 256th record, and END is
printed to make room. This causes filing to operate faster in future,
and it would have been an advantage to do the same with the KEY
file early in the program. Try it!

It takes time to allocate space for 256 records, ~o a message to this
effect is printed in line 2075 . Line 2949 calls a subroutine that closes
all files, and line 2150 sets 'flag' variables and returns. Your titles and
field lengths are now recorded, and the files are set up and ready to
use.

Writing to the file

Selecting the WRITE option in the main menu leads to line 3000.
The filename for the data file is checked, and if all is well another
menu is presented. This gives the options of starting a file of data or
continuing a file. If the START FILE option is selected, this will
replace any existing file. The ST ART option then leads to line 3100.
This uses GOS U B7000 to read the serial file, TITLES, so that the
titles of each field are read into the array TL$ and the lengths into
LN. This is important because whatever you enter will have to be cut
to t he correct size if it exceeds the allocated field length. For a new
file, the record number RN will start with a value of I, and the
subroutine at 6000 converts this number into H,L form. The main
entry is then carried out (l ine 3120) by calling the entry subroutine at
line 5000. When entry is complete (X is typed), line 3130 sets V% to
0, and returns.

When the CONTINUE A FILE option is selected, the subroutine
starts at 3200. This reads the titles once again, but then has to find
the correct value of record number RN to extend the file. This
process star,s in line 3210. The GOS U B3530 closes the main file
channel (#5) and opens the KEY file channel , #7. This has to be
done, because you can't PRINT# or INPUT# with both relative files
open. The pointer is then put to the first record of the KEY file. This

A Database Example - FILING CABINET 73

is used, as we'll see later, to hold the maximum record number so
that this quantity can be read in line 3220 and converted back to
number form. We then add I to prepare for the next record, and use
GOSU B600 to convert into H,L form. In line 3230, the GOS UB3550
closes channel 7 and reopens channel 5, the main data channel. The
program then makes use of the entry subroutine at line 500 again to
get another set of data. When this is complete, line 3240 sets V% to
zero, and returns.

Reading the file

The file reading option in the main menu once again causes a prompt
for a filename, and the file is checked by the subroutine in line 1900.
The new menu that is then presented gives the options of reading all
files or a selected file. If the ALL FILES option is picked, the
su broutine which starts at Ii ne 41 00 is run. The first three lines of this
subroutine are used to read the maximum record number from the
KEY file . As before, this involves closing #5, opening #7, reading the
value, and then closing #7 and opening #5 again . The value of
maximum record number is assigned to RX, and this is used as the
terminating value in a loop which starts in line 4130. I n each pass of
the loop, RN is assigned to a number, the H,L values are found, and
these are used to position the pointer in the main file. Line 4150 then
calls the subroutine that reads the file and prints the data. After each
read, a PRESS SPACEBAR TO CONTINUE step is used to
prevent the data scrolling out of sight before you have had time to
read it. A 'quit' option is also included so that you can stop when you
have had enough.

Using the SELECTED ITEM option leads to line 4200 . You are
asked to type the name that you want, meaning the name of the first
field of the record . The variable ID$ is then used to hold the first
three letters of this name. Channel 7 is then selected by the
subroutine at 3530, and the pointer is placed at the start of the KEY
file. Line 4230 gets the first item in this file, which is the maximum
number of records. The rest of the file, starting at record number 2,
consists of the first three letters of names, and so this file can now be
searched. The loop starts at the end of line 4230, and uses the
maximum record number RX+I as its terminator. The '+1' is
needed because the KEY file always contains one more item than the
main file. This is the maximum record number which is stored at the
start of the file. The file then goes from record number 2 to one more

74 Commodore 64 Disk Systems and Printers

than the value of record number that is recorded. Lines4240 and4250
set the pointer for each value ofRN, read the KEY file and compare the
letters. If a match is found, the loop drops out to line4270 (not good
practice!) and RN=RN-I restores the correct value of R N for the
main file. If no match is found at the end of the loop, the files are
swopped over (#7 closed, #5 opened), a message is printed, and the
subroutine starts again. If the name is found the files also have to be
swopped, and the reading subroutine at 6100 is used to read the full
file entry. Lines 4290, 4300 then give you a chance to get another
entry or to quit. The subroutine ends in 4320 by closing files, setting
V% to zero, and returning to the menu.

The entry subroutine

The entry subroutine starts at line 5000. The correct channels must
have been opened by the time this is called, and this is something you
must ensure if you extend the program. In addition, the subroutine
will use whatever value of RN is passed to it by the main program.
This value is printed as an item number in line 5010, and a loop starts
to read in field values. In each pass of the loop the title for the file is
printed, and then you must input a value (name or number). The
entry is chopped to size by the GOS U B5080, and the program
checks for the entry of X, which terminates the procedure. Line 5025
ensures that channel#7 is closed, because you can't use two open
relative files . Lines 5030 and 5040 then place the entry on disk (or,
more correctly, in a buffer). The pointer is set, using Hand L values,
and with N I as the position in the record. The number N I is
calculated from the field lengths, allowing for the added carriage
return and a space. Line 5050 detects if this is the first field, because
this is the key field. If so, the subroutine at 5200 is called to print the
record number and the first three letters of the first field into the
KEY file. We'll look at that later. The loop ends in line 5060, and the
record number is incremented . The GOT05000 then makes this
action repeat until an X is entered. The entry of X causes line 5070 to
return to the calling point.

The subroutine at 5200 is closely related to the writing routine,
because it writes on the KEY file for each first field in the main file.
Line 5200 selects the correct file (close #5, open #7), and places the
pointer at record number I. Line 5205 then prints RN in this
position, and the number RN has to be incremented. The
incremented value is then used to place the pointer in the KEY file

A Database Example - FILING CABINET 75

and print the first three letters of the key field (line 52lO). The RN
value is then restored, the files are also restored (#7 closed, #5
opened), and the routine returns.

Reading, and some loose ends

The general reading routine starts in line 6100. Once again, i";l is
used for position in the record and the loop is used to read each field.
Line 6110 sets the pointer, and line 6120 reads in the data and prints
it. Line 6130 updates the value of N 12, using the same formula as
was used when files were written. A t the end of the loop the routine
returns. This is one of the most straightforward of the file-using
routine<;.

The routine at line 7000 reads the serial file so as to obtain the
names of the fields. In the program, this subroutine has been used
rather too much . I have assumed that the program is used once and
then switched off, so that the titles have to be read for each use. 'n
fact , once you have read the titles they stay until you run the
program again. You might want to put a test at every point where
GOSUB7000 is used. A suitable test would be:

IF NM$(I)="" THEN GOSUB7000

which would call the subroutine only ifit were needed. This will save
a lot of time and disk use.

The error routines are located at 10000. These follow the lines that
we discussed in Chapter 5, but error 70 is also tested. This is the NO
C H ANN E L error, and it seems to occur if there is no file or if the file
is of the wrong name. The main use for this is in the subroutine at
line 1900. This uses a 'flag' variable FI which is initially set at a value
of I. When you type the file name, FM$, the subroutine at 3500 is
called. This opens files, but the order of opening is very important.
The command channel # J 5 must be opened before #5 can be opened,
and the OPE;\i5,8,5 ,"FM$" must be the last opened. The reason is
that we are going to use the error message from this step to set the
flag F I. I f you put this command in the first of the lines, 3500, then
its error message will have disappeared when the serial file is opened .
If the filename is wrong, there will be an error which will be number
62 or 70 (I always found 70). This causes the program to print the
string X$, and wait. The flag is set to zero, and the subroutine
returns. This value of F I is then used to prevent any file action in the
subroutines, either for writing or for reading.

76 Commodore 64 Disk Systems and Printers

That's all there is to it. Taken as a whole it looks rather
intimidating, but when you split it into core and subroutines, as it
was when it was written, it looks a lot simpler. It's yours now.
Modify it as you wish, but please don't sell it or publish it as your
own work!

Chapter Seven

Printers

Whenever your use of a computer extends beyond playing games
that other people have written, there are two additions to your
computer equipment that you will urgently want. One of these is a
disk system, and that's a topic that has filled the first six chapters of
this book. The next must be a printer. I n many cases, the printer has
an even higher priority than the disk system.

The reasons for using a printer are obvious if you use the machine
for business purposes. You can hardly expect your accountant or
your income-tax inspector to look at accounts that can be shown
only on the screen. It would be a total waste of time if you kept your
stock records with a computer and then had to write down each
change on a piece of paper, copying from the display on the screen.
For all of these purposes, and particularly for word processing, the
printer is an essential part of the computer system. Output on paper
is referred to as 'hard copy', and this hard copy is essential if the
computer is to be of any use in business applications. For word
processing uses, it's not enough just to have a printer -- you need a
printer with a high-quality output, with characters as clear as those
of a first-class electric typewriter.

Even if your computer is never used for any kind of business
purpose you can run up against the need for a printer. If you use,
modify or write programs, the printer can pay for itself in terms of
your time. Trying to trace what a program does from a listing that
you can see only a few lines at a time on the screen is totally
frustrating. Quite apart from anything else, the BASIC of the C'64
relies a lot on the use of GOTO for loops, and you might have to list a
dozen different pieces of a program just to find where one GOTO
could lead you to. The problem is even worse if you write your own
programs. Even a very modest program may need a hundred lines of
BASIC, especially when the C'64 permits only such short lines.
Trying to check a program of a hundred lines when you may be able

78 Commodore 64 Disk Systems and Printers

to see only a dozen or so at a time is like bailing out a leaky boat with
a teaspoon. With a printer attached to your C'64, however, you can
print out the whole listing and then examine it at your leisure. If you
design your programs the way you ought to, using a 'core' and
subroutines, then you can print each subroutine on a separate piece
of paper. In this way you can keep a note of each different
subroutine, with variable names noted. On each sheet you can write
what the subroutine does, what quantities are represented by the
variable names, and how it is used. If you have a utility program that
allows you to merge subroutines, you can then construct programs
painlessly using your library of tested wbroutines.

Printer types

Granted, then, that the use ofa printer is a high priority for the really
serious computer user, what sort of printers are available'? The C'64
in its natural state allows only Commodore printers to be attached,
but thanks to the ingenuity of a great number of independent
suppliers you can, for a small sum, now attach almost any printer
you Ii ke to the C'64. This opens up the way for the use of any of the
printers which are offered at such attractive prices in the magazines.

Printers that are used with small computers will use one of the
mechanisms that are listed in Fig. 7.1 . Of these, the impact do/-

Dot matrix
impact
thermal

electrostatic

Type impact
type stalk
daisywheel

Plotters
graphics printers
x-v plotters

Ink-jet
single colour
multicolour

Fig. 7. 1. A list of printer mecha nism types.

view from the
paper head seen

sideways

Fig. 7.2. Illustrating a dot-matrix printhead.

Printers 79

matrix type is the most common. A dot matrix printer creates each
character out of a set of dots, and when you look at the print closely
you can see the dot structure. The printhead of the dot-matrix
printer consists of a set of tiny electromagnets, each of which acts on
a set of needles that are arranged in a vertical line (Fig. 7.2). By firing
these needles at an inked ribbon which is placed between the head
and the paper, dots can be marked on the paper. Each character is
printed by firing some needles, moving the head slightly, then firing
another set of needles, and so on until the character shape is
completely drawn (Fig. 7.3). The most common pattern of dots for
low-cost printers is the 7X5, meaning that the characters can be

: •• : letter b

/t\\
four steps of formation

/ I \ \
6 2 2 3

- needles fired -

Fig. 7. 3. How a 7X 5 dot matrix ~,ead creates a character.

made out of up to seven dots in height and up to five in width. This
implies that the head moves across the paper in five steps to print
each character, and that up to seven needles can be fired. Using a
7X5 structure gives characters which are readable, but not good
looking. The dots are very evident, and some of the letters are
misshapen. You will find, for example, that lower case letters lack
'descenders'. This means the tails on letters y,g,p,q will either be
missing or will be on the same level as the foot of other letters. When

80 Commodore 64 Disk Systems and Printers

this print is used for listings which are in upper-case only, there is no
problem. You would not, however, use a printer of this class to print
letters or other documents that anyone else would have to read.

Rather better results can be obtained if the number of needles in
the printhead is increased. Using 9X9 (nine needles, nine steps
across) or 15X9 heads can create much better-looking characters,
lower-case or upper-case. Another advantage of these printheads is
that the characters are not limited to the ordinary letters of the
alphabet and the numbers. Foreign characters can usually be
printed, and it is possible to print Arabic script or to make up your
own character set, for example.

Most of the dot-matrix printers are impact types. This means
w hat it says, that the paper is marked by the impact of a needle on an
inked ribbon which hits the paper. There are also thermal and
electrostatic dot-matrix printers. These use needles, but the needles
do not move. Instead, the needles are used to affect a special type of
paper. In the electrostatic printer (such as the ZX printer) the
needles are used to pass sparks to the paper, removing a thin coating
of metal from the black backing paper. The thermal type of printer
uses hot needles to make marks on heat-sensitive paper. Both of
these printers require expensive special paper and are unsuitable for
serious business purposes, so we won't spend any time on them here.
If you want a cheap printer for listings, there are better methods.

The ultimate in print-quality at the moment is provided by the
daisywheel printer. This uses a typewriter approach, with the letters
and other characters placed on stalks round a wheel. The principle is
that the wheel spins to get the letter that you want at the top, and
then a small hammer hits the back of the letter, pressing it against the
ribbon and on to the paper. Because this is exactly the same way as a
typewriter produces text, the quality of print is very high. It's also
possible now to buy a combination of typewriter and daisywheel
printer. This looks like a typewriter, with a normal typewriter
keyboard, but has an interface connection for a computer. You can
use it as a typewriter, and then connect it to the computer and use it
as a printer. Machines of this sort are made by leading typewriter
manufacturers such as Silver Reed, Brother, Triumph-Adler,
Smith-Corona, and others. If you need a typewriter as well as a
printer, then this type of machine is an obvious choice.

The third kind of mechanism that we shall look at here is the
graphics printer. This is a remarkable mechanism which uses four
miniature baJl pens to mark the paper direct, with no ribbon . It can
be used for graphics work, and when it is used as a printer the letters

Printers 81

are drawn rather than printed. Because four pens are used, the
markings can be in four different colours. Printers of this type are
not expensive (as printers go) and can be very useful, particularly if
you want graphics output in colour.

Another type of printer that is now becoming available is the ink
jet printer, which operates by shooting fine jets of ink at the paper.
This one shares the disadvantage of the thermal and the electrostatic
types in that you get only one copy. Impact printers all have the great
advantage that you can get an extra copy by using a sheet of carbon
paper and another sheet of plain paper. You can also buy listing
paper which has a built-in carbon, or which uses the NCR (No
Carbon Required) principle to produce two copies.

Interfaces

The printer has to be connected by a cable to the computer so that
signals can be passed in each direction. The computer will pass to the
printer the signals that make the printer produce characters on the
paper, but the printer must also be able to pass signals to the
computer. This is because the printer operates much more slowly
than the computer. Unless the printer contains a large memory
buffer, so that it can store all the signals from the computer and then
get to work on them at its own pace, some sort of 'handshaking' is
needed. This means that the printer will accept as many signals as its
memory will take, and then send out a signal to the computer which
makes the computer hang up. When the printer has completed a
number of characters (one line, one thousand, or possibly just one
character) it changes the 'handshake' signal and the computer sends
another batch. This continues until all of the text has been printed.
This can mean that you don't have the use of the computer until the
printer has finished. Printers can be very slow, particularly
daisywheel and plotter types. Even the fastest dot-matrix printers
can make you wait for a minute or more for a listing.

Two types of interface are used by practically all printers. These
are classed as serial or parallel. A parallel printer is connected to the
computer by a cable which uses a large number of separate strands.
Since each character in ASCII code uses seven signals, the parallel
printer sends these along seven separate strands· many printers can
use an eighth signal and this is usually sent as well. In addition, there
are cable strands for the 'handshake' signals. The best-known, and
most-used variety of parallel connection is called Centronics, after

82 Commodore 64 Disk Systems and Printers

the printer manufacturer which first used it. Practically all of the
popular printers use this type of parallel interface.

The serial interface sends the signals out one at a time. This means
that at least seven signals have to be sent for each character, and in
practice this must be ten or eleven, to allow for 'start and stop'
signals which are used to mark where the signals for each character
start and stop. This system uses less cabling because only two
strands need to be used for signals, and the cables can be longer
because there's no risk of one signal interfacing with another. The
standard system is called RS-232. Printers can be obtained with RS-
232, but seldom as standard , and often only as an extra costing up to
£50. The Commodore 64 uses a serial system, but it is not one of the
standard forms, so only Commodore printers can be connected
unless you attach an interface. We'll deal later with this point. For
now, we'll look at just one of the range of Commodore printers that
can be attached to your C'64 .

The VIC 1515 printer

Of all the printers that can attach directly to the C'64, the VIC 1515 is
the lowest priced, and this is the printer that was supplied with my
C'64. It is no longer listed, and the current equivalent is the 1525.
Nevertheless, there are still lots of 1515s being sold, and the details of
operation should apply to the 1525 also. The advantage of the later
type of printer is that paper is much easier to obtain. Though the
1515 uses 'ordinary' listing paper, this is of an odd size and must be
perforated. Like many small printers, the 1515 uses 'pin feed',
meaning that the paper is pulled and located by a set of pins that
engage in holes at the side of the pa per. The V I C 1515 req uires paper
of no more than eight inches wide. If, however, you remove the
paper stops which are screwed in place where the paper is loaded
into the printer, you can use standard eight and a half inch width
paper. This makes the printer a better buy if you are short of money!
The main cost after that is ribbons. These use twin spools, and the
length of ribbon is very short so they have a comparatively short life.
It's better to buy them in bulk, at least a dozen at a time.

The VIC 1515 is connected to the C'64 or to the disk drive by a
cable which uses the same sort of six-pin DIN plug as the C'64 disk
drive. If you have no disk drive on your C'64, this cable plugs into
the D IN socket that lies nex t to the cassette socket. If you have a dis k
drive connected, you will find that there is a spare socket of this type

Printers 83

on the disk drive. The other end of the cable plugs into a similar
socket at the back of the printer. Just next to this socket is a small
switch which is labelled '4 5 T. This allows you to select auto-test (T)
so that the printer will run over its set of characters when you switch
it on. The numbers allow you to select a 'filenumber' of 4 or 5. This
must be opened in the usual way, and you can use the number in
PRINT# commands. The usual num ber to select is 4.

Having connected your printer, then, feed some paper into it. This
can be a bit of a struggle, and it needs a lot of shuffling to make sure
that the paper engages correctly with the pins. Once this has been
done and the paper clamped in place, select T with the switch and
switch on the printer. You should see the printer characters
appearing until the printer is switched off. Try to use the cover on the
printer at all times, because the VIC 1515 is unbelievably noisy if this
cover is removed.

Listings are the main reason for using this printer, so we'll look at
how it's done. You must have the program that you want to list in the
memory of the computer. You then type:

OPEN3,4 (press RETURN)
CM03 (press RETURN)

and then LIST (press RETURN). The program will then list on the
printer instead of on the screen (which is the effect of the CM03). At
the end of the listing you have to type PRINT#3 to cancel the
CM 03, and if you are not using the printer again you add CLOSE3.
If you want to start the listing with a comment, you can do this
hefore you use CM03. Suppose, for example, you want to print the
words VERSION 2.1, then you will need to type
PRINT#3,"VERSION 2.1" and press RETU RN. You can then use
CM 03, and then LIST. The effect of CM 03 is to send everything
that would normally go to the screen to the printer instead.

Very often, you may want a program to produce printed output
with the screen being used only for messages to the operator. This is
the most common way of using the printer and the screen in business
programs, for example, and it can also be of advantage for a lot of
other types of program that deal with data. You will need to have
opened the printer channel early in the program by using OPEN3,4
(assuming that you have set the switch on the printer to 4). Wherever
you want printed material, you will need to use a PRINT#3," in
place of the PRINT" that you would use for the screen. There are
utility programs for the C'64 that allow you to program the keys at
the right-hand side of the keyboard (yes, they can be used!) so that

10
20

84 Commodore 64 Disk Systems and Printers

one press of a key can enter a complete phrase like PRINT#3,", and
this can save a lot of time when you are programming.

10 REM THIS IS THE NORMAL UprSR CASE
20 REM PRiNT OF THE VIC 1515

Fig. 7.4. The normal upper-case text of the VIC 1515 printer.

Figure 7.4 shows the normal text of the VIC 1515. This is
acceptable for a listing, and all of the characters will appear in
upper-case when the printer is used in this way. To obtain a printout
of anything that is typed in lower-case, you have to send an
appropriate command to the printer. For listings that were made in
lower-case, this consists of OPEN3,4,7. The 7 is the 'cursor down'
command code, and it will cause the printer to operate in lower-case.
The REMs that were in upper-case in this example have not been
printed . This demonstrates that lower-case can be printed, but the
appearance is not pleasing (Fig. 7.5) . Lower-case print commands

10 this is in low~r case
20 to d~manstrat@ how this looks an the 1515.

9 ~ d p q letters

Fig. 7.5. The lower-case of the VIC 1515.

have to include CH R$(17) before the text to place the printer into
'cursor down' mode .

The graphics characters of the C'64 can also be printed, and this is
the main advantage of using the 1515 or any of its later counterparts.
If you use the CLR key, for example, placed between quotes, then
the symbol that appears on the screen is the heart shape. This will be
produced by the 1515 printer, but not by any non-Commodore
printer. A further bonus of the J 515 is that it can print in larger-than
normal letters. If you OPEN3,4, and then use PRINT#3,CHR$(J4),
you can then list in double-width characters, as Fig. 7.6 illustrates .

REM
Fe:EM

DOUBLE
OF THE

.... J I DTH CHARACTERS

..... IC 1515
Fig. 7.6. Double-width characters on the VIC 1515, using CHRS(14) .

The double-width characters can be cancelled by using
PRINT#3,CHR$(15). Reverse field (white on black) and graphics
printing is also possi ble. The graphics printing allows you to print

Printers 85

patterns by directly controlling which of the printhead needles are
fired at the paper.

The range of Commodore printers is fairly large, and you may
very well feel that there is no need for you to look at any other printer
types. The non-standard interface is a disadvantage, however. Most
computers can make use of printers which have the Centronics
parallel interface, and it is a great advantage to have this. For one
thing, it allows you to use the most popular printers that are the best
value for money. For another thing, if you ever change machines
you will not have to part with a printer which uses a Centronics
interface because it will work with practically all other computers.
The Commodore printers are modified versions of the popular
printers designed to work with Commodore machines only.
Fortunately, it is comparatively easy to convert your C'64 so that it
can be connected to a Centronics style of interface.

The Centronics interface

Several suppliers advertise Centronics interfaces for the C'64. These
consist of a cable which plugs into the socket at the back left-hand
side of the C'64 and which has a Centronics printer socket at the
other end. This is not enough for printing, however, and you need a
program in machine code to send the correct signals to the printer.
This can be supplied on cassette or on disk. At the time of writing,
the 'best buy' in such interfaces was from Microport, 7 Clydesdale
Close, Borehamwood, Herts. WD6 2SD, at a price of around £26 for
the cassette version. If you want the disk version, or you think the
price may have changed since this was written, you should contact
Mick Bignell at the above address.

When the program runs, machine code is placed into high
memory, and the C'64 will drive a printer with a Centronics
interface. This does not mean that the graphics can be reproduced,
so if you insist on using graphics in your programs you should make
them of the CHR$(nn) variety rather than by using the graphics
keys. In this book, for example, the listings have been reproduced on
an Epson RX80 printer. This uses a 9X9 matrix for characters, so
that the appearance of the characters is better. In addition, the
Epson can operate in 'emphasised' mode. In this printing mode each
dot is struck twice, but the head is shifted slightly between dots. This
causes the dots to look almost joined up, and makes the appearance
of the print much more acceptable.

86 Commodore 64 Disk Systems and Printers

A problem that you are bound to run up against when you use any
non-Commodore printer is that of line feed and carriage return. A
lot of computers send out only one code num ber, the carriage return
code (13), at the end of a line. Other machines send both the line feed
(code 10) and carriage return codes. Printers are arranged,
therefore, so that either possibility can be catered for by a switch. If
you connect your printer and find that everything is printed on one
line (as may happen when the C'64 is driving the printer), then don't
return the printer. Just look in the manual and find the switch that
alters the line feed setting. If, on the other hand you are using
another computer with your printer and you find that each line is
double-spaced, then this switch will have to be set to the opposite
position.

The Epson RX80

The Epson range of printers has for a long time been the most
popular range of moderately-priced printers, offering good print
quality at reasonable prices. The RX80 is the latest in this line, but if
you are offered a second-hand MX80, then this also is a good buy . A
particular feature of the Epson range is that the print heads can
easily be replaced when they wear out. Myoid Epson MX80 isjust
beginning to show signs of head-wear after printing half a million
words, so it might not be a problem for you!

The standard version of the RX80 uses pin-feed, but the
RX80F IT can take any form of paper, including rolls. You have to
pay extra for a paper roll holder, but if you are handy with wood this
is something that you could easily make for yourself. The advantage
of using the F I T version is that plain, unperforated paper rolls are
very much cheaper to buy, and it also means that you can use plain
paper sheets if you want to. When you use a lot of paper for listings
this can be a great saving. Paper width of four to ten inches in pin
feed can be used, so you can buy whatever paper size is on offer. If
you use the FIT option, you can then buy the teletype rolls which are
eight and a half inches wide.

The RX80 offers a full set of upper- or lower-case letters, and you
don't have to go through any elaborate antics to select which one

10 REM USING RX80 IN NORMAL MODE
20 R&M WHICH PRINTS AT MAXIMUM SPEED
Fig. 7. 7. The normal upper-case characters of the Epson RX80.

Printers 87

you want. Figure 7.7 shows the normal upper-case letters of the
RX80, as you would use them for a listing. The print speed is very
fast, and most listings will be completed in under a minute. Figure
7.8 shows the lower-case letters, which were produced by selecting

10 rem lower case on the screen
20 rem can also be produced on the printer.

Fig. 7.8. The lower-case characters of the Epson RX80.

10 REM THIS SHOWS THE EMPHASISED
20 REM STYLE OF PRINT OF THE RX80

Fig. 7.9. The emphasised print of the RX80.

lower-case before typing the program. This is made possible by the
machine code which is part of the interface. Figure 7.9 shows the
'emphasised' type of the MX80. This is achieved by typing
PRINT#3,CH R$(27)CH R$(69) (press RETU RN) before listing.
The emphasised print can be cancelled by using PR1NT#3,
CH R$(27)CH R$(70). These commands can be used in programs, so
that you can print normal, condensed, emphasised, double-width,
and all of the other varieties, under program control. This makes it
very easy to produce good headings, produce words in bold type or
italics, and to underline. For a lot of word processing actions, the
RX80 can be a very satisfactory low-cost alternative to a daisywheel.

Switch 1
Position

2
3
4
5

n
Switch 2
Position

I
2
3
4

ON
Condensed
Graphics
No buzzer
12inch
Not detected
Selects from international
character set of
eight languages

ON
Slashed
Control pin
Line feed
Skip

OFF
Pica (print size)
Control code
Buzzer on (end of paper)
I I inch (form length)
Detected (paper end)

OFF
N on-slashed (zero)
Not fixed
No line feed (with Cf R)
Don't skip (perforation)

Fig. 7.10. List of RX80 switch settings.

88 Commodore 64 Disk Systems and Printers

Each of the letter codes will be preceded by CH R$(27), the ESC code. Some
of the CHR$(number) codes can be used alone - consult the manual for
details.

Code
J
M
P
CHR$(14)
CHR$(20)
W
CHR$(15)
CHR$(18)

E
F
G
H
S
T
CHR$(8)
CHR$(4)
CHR$(5)
m
o
I
2
3
A
CHR$(9)
CHR$(II)
e
f
C
N
o
Q
I
8
9

<
@

U
S

Effect
Adjust line spacing in 1/216 inch units.
Elite size characters.
Pica size characters.
Enlarged print.
Cancel enlarged print.
Second enlarged print mode.
Condensed print.
Cancel condensed print.
Underline on/ off switch.
Set emphasised mode.
Cancel emphasised mode.
Double strike mode.
Cancel double strike mode.
Superscript/ su bscript switch.
Cancel superscript/subscript.
Backspace.
Alternate character set.
Cancel alternate character set.
Choose graphics or control characters.
1/ 8 inch line spacing.
7/72 inch line spacing.
1/6 inch line spacing.
Set spacing in 1/ 216 inch units.
Set line spacing in 1/ 72 inch units.
Horizontal tab.
Vertical ta b.
Tab unit setting.
Skip position setting.
Form length setting.
Skip over perforation setting.
Skip over perforation cancel.
Right margin set.
Left margin set.
Ignore paper end detector.
Enable paper end detector.
One line unidirectional printing.
Restore normal settings.
Unidirectional printing.
Half speed (quiet!) printing.

Printers 89

Other codes can be used to cuntrol each pin in the head so that graphics can
be printed. This allows 'screen dump' programs which place a copy of the
screen graphics on to the paper to be written for this printer.

Fig. 7.11. The software selections of the RX80.

International character sets (U .s.A., France, Germany, England,
Denmark, Sweden, Italy, Spain, Japan, Norway) can be printed,
and are under software control. This means that selection is done by
printing CHR$ numbers rather than by altering switches on the
printer itself. The only switches that you have to alter are for such
items as are listed in Fig. 7.10. For a lot of purposes, you would
probably never need to alter the factory settings of these switches .
Figure 7.11 shows the options that can be selected by sending
CHR$(27)CHR$(N) codes to the printer.

The Juki 6100 daisywheel

The Juki was one of the first low-cost daisywheel printers to become
available. Like most printers, it comes with a Centronics parallel
interface, though an RS-232 serial interface is available at extra cost.
The Juki is a large and very heavy machine which can accept paper
up to thirteen inches wide. The daisywheel is of the same type as is
used on Triumph-Adler printers, and the ribbon cartridge is an IBM
Selectric 82jC type. The ribbon that was supplied with my Juki was
of the ' single strike' variety, and this had a very short life (about three
cha pters of this book !). A 'multistrike' type of ri b bon is much better .
These ribbons are very easy to obtain from a lot of suppliers. The
ribbons are carbon film rather than inked nylon, and are thrown
away after use. This always seems a pity, because the cartridge
contains a lot of mechanism that look as if it could easily be used
again. Some day, I'll try reloading one of these cartridges.

The print head of the J uki will print in either direction, and there is
a 2K buffer. This means that short pieces of text can be transferred
to the printer buffer almost instantly, and the computer can be used
for other purposes while the printer gets on with the printing actions .
Printing is much slower than the normal rate of the Epson, but not
so much slower than the emphasised mode of the Epson as to make
the daisywheel seem irritatingly slow. Its enormous advantage is the
quality of the type. This is exceptionally clear on the top copy, and
even three carbons later it is still very legible. For any letter work, or
for the manuscript of a book, the Juki is ideal.

90 Commodore 64 Disk Systems and Printers

READY.

10 REM DEMONS1RATION OF JUKI
20 OPEN3,4
30 PRINT#3, "THlS IS JUKI NORMAL PRINT"
40 PRINT#3 ,Offi.$ (27) i "E" i "THIS IS UNDERLINED" iCHR$ (27) "R"
50 PRINT#3, "WE CAN CHANGE "iCHR$ (27) i "0" i "TO BOW PRINT"
60 PRINT#3, "WE CAN CHANGE TO "iCHR$ (27) i "w" i "SHAOOW PRIN'I'."

READY"

THlS IS JDKI NORMAL PRINT
THIS IS UNDERLINED
WE CAN CHANGE TO BOW PRINT'
WE CAN CHANGE TO SIlAIXW PRINl'.

Fig. 7.12. The printing of the Juki daisywheel, using the Courier 10
daisywheel.

As you would expect of any modern design of printer, the Juki
permits a lot of character sets, but you need to have the appropriate
daisywheels fitted for each language. You cannot, for example, have
words in alternate character sets without changing wheels in
between. Changing wheels is particularly simple, but this is
something that you don't have to worry about with dot-matrix
printers because the same dot-matrix head can produce any
character, under software control. The Juki allows underlining,
bold type, and shadow type in addition to the normal printing style,
and you can select your print style from a range of at least fourteen
daisywheels. The daisywheels are expensive in comparison to others
on the market, but ribbons are cheap. Figure 7.12 shows a printout
from the Juki with the standard Courier daisywheel fitted.

Like the Epson, the Juki permits a number of changes to be made
simply by sending control codes to the printer. These use the ESC
character CHR$(27) followed by one more character, so that
whatever immediately follows CHR$(27) is never printed. The
options include graphics mode, left and right margins, lines per
page, half-line feeds in either direction (for printing subscripts and
superscripts), top and bottom page margins, and some special
characters including the English pound sign. Even more usefully, the
pri nt can be changed to bold or shadow by sending such codes, and
text can be underlined . Figure 7.13 lists these actions.

Printers 91

Each of these codes will be preceded by CHR$(27).

Code
I
2
3
4
5
6
7
8
9
o
CHR$(9)
CHR$(10)
CHR$(I I)
CHR$(12)

CHR$(13)P
CHR$(30)
CHR$(31)
C
D
U
L
T
Y
Z
H
I
J
K

/
\
S
CHR$(26)A
CHR$(26)I
CHR$(26)1
P
Q
CHR$(17)
E
R
o
W

Effect
Set horizontal tab (HT) at present position.
Clear all tabs.
Graphics mode on (Cj R clears) .
Graphics mode off.
Forward print on (C / R clears).
Backward print on (C / R clears).
Print suppress on (C/ R clears).
Clear present HT stop.
Set left margin at present position.
Set right margin at present position .
Set HT (tab number follows).
Set lines per page (number follows) .
Vertical tab (VT) set (number follows).
Set lines per page (number follows).
Sets VT at present position.
Remote reset.
Sets line spacing (number follows).
Sets character spacing.
Clears top/bottom margins.
Reverse half-line feed.
Normal half-line feed.
Sets bottom margin at present position .
Sets top margin at present position.
Special character.
Special character.
Special character (new paragraph symbol).
English pound sign.
Diaeresis mark.
Spanish c with cedilla .
Automatic backward print.
Disable backward print.
Set character spacing.
Remote error reset.
Initialise printer.
Status (serial interface only).
Proportional spacing on .
Proportional spacing off.
Offset selection.
Underline on.
Underline off.
Bold print on (C / R clears).
Shadow print on (C/R clears) .

92 Commodore 64 Disk Systems and Printers

&
%
N
CH R$(8)
X

Bold or shadow print off.
Carriage settling time.
Clear carriage settling time.
1/ 120 inch back space.
Cancels all word processing modes except proportional
spacing.

Fig. 7.13. The software selections of the Juki.

The same quality of print can now be obtained from a large
number of daisywheel typewriters, and many of these can be
obtained with a Centronics parallel interface. This type of machine
offers a lot of advantages because it can be used as a typewriter for
small items that do notjustify the use of the computer, yet is available
for word processing use along with the C'64 and such programs as
Viza-write. These machines can now be bought in the high street
stores as well as from office supply shops. The only thing to make
sure of is that replacement ribbons and daisywheels are obtainable
from several different sources. There's nothing worse than being
stuck with a machine for which you can get spares from only one
supplier.

The CGP-115 four-colour graphics printer

One of the most popular small graphics printer mechanisms is made
under the trademark of ALPS. It's Japanese, and in place of the
mechanisms that are used by most printers it actually draws its
characters with a set of four miniature ball pens. The reason for the
set of four is that this allows printing in four different colours -
black, blue, red and green . The mechanism is made into boxed units
by many manufacturers and sold under a wide variety of names, but
it is most easily obtained from Tandy stores under the Tandy code
number of CG P-l J 5. This version includes both a Centronics and a
serial interface, which makes the printer usable on practically any
microcomputer which uses reasonably standard interfaces. Since
the Tandy stores offer a good service on spares (pens, paper, etc.) and
trou ble-shooting, it makes sense to buy the Tandy version as there is
a Tandy store in most large towns. In addition to being used as a
printer, however, this machine acts as a graphics plotter, and you

Printers 93

can draw diagrams and other pictures by means of instructions sent
from the computer. Commodore advertise what appears to be a
version of this printer (for use with Commodore machines only) as
the 1520 graphics printer.

The CGP-115 in detai l

The printer uses a plain paper roll which is four and a half inches
wide. Tandy stores sell three rolls, each about 145 to 150 feet long,
for just under £5. These paper rolls are also used by a wide variety of
adding machines, so if you haunt your local office supply stores you
may find alternative sources at lower prices. The paper is tightly
gripped by the printer, because it is moved around a lot in the course
of printing. The printing carriage consists of a holder which is
loaded with four miniature ball pens. This holder can be rotated so
that one pen is touching the paper. Printing is done by moving the
pen holder from side to side and the paper up and down, and it's such
a fascinating sight that you'll probably print listings over and over
again just for the pleasure of watching the mechanism! I know that I
did. When the printer is switched on it goes into a 'pen test' routine,
slowly drawing a square in each colour so that you can check that
none of the pens has run dry. They have a surprisingly long life, and
each pack of three pens costs around £1.99 from Tandy stores. "ou
won't find alternative supplies quite so easily in this case!

Normally, the CG P-15 acts as a printer and you can use it to print
listings. It is not quite so fast as the VIC printer, but the results are
much easier to read. The enormous advantage of using the Tandy
printer, however, is that it can be used as a graphics plotter. This
means that if you send suitable instructions to the printer it will draw
diagrams. The instructions are not the same as the graphics
instructions of the C'64 (or any other computer), but this is not a
disadvantage. I fat '>ome stage you change to another computer the
Tandy printer will still be useful, and the graphics programs that you
have used with C'64 can easily be adapted to another computer. This
is very useful to know if your household is on the verge of becoming
a two-computer family!

The CG P-l 15 has a small set of four switches at the back which
can be used for setting up the printer. For the C'64, the settings of the
switches are: I OFF, 2 ON, 3 ON, 4 ON. This gives the correct line
feed, and the normal size of print, with the parallel interface in use.

94 Commodore 64 Disk Systems and Printers

The Tandy CGP-115 commands

Because this book is mainly concerned with the use of the
Commodore disk drive and several different printers, 1 have had to
resist the temptation to add several chapters on the Tandy graphics
printer. Many C'64 owners, however, will probably want to make
use of this type of printer mechanism, which is sold under a variety
of other brand names. The following is a list of the commands which
are available when the Tandy version is used. The commands are
shown in their C'64 form, assuming that the command OPEN3,4 has
been carried out. Figure 7. 14 demonstrates the use of these
commands in printing a name in four different directions .

PRINT#3,CHR$ (8)

PRINT#3,CHR$ (II)

PRINT#3,CHR$ (17)
PRINT#3,CHR$ (18)
PRINT#3 ,CH R$ (29)

Move one space left (backspace). Used
in text mode.
Reverse line feed move paper down
by one line in text mode.
Select text mode from graphics mode.
Select graphics mode from text mode.
Change colour in text mode.

Graphics commands
The following letters can be sent when the printer is in graphics
mode. The letters are no ! printed; instead, they are used as
commands . Several of these commands must be followed by
numbers, such as X, Y co-ordinate num bers, to specify positions. All
of these letters would be sent to the printer by using PR INT#3 after
executing PR I NT#3,CH R$(I8).

A Reset pen to left margin, no line drawn, return to text

Cn
Dx,y

H

Jx,y

mode.
Change colour of pen. n is colour number, 0 to 3.
Draw from present position to point x,y. Can be
extended to more than one point.
Move pen to origin without drawing a line . The origin is
a specified starting point.
Set new origin at current pen position. If you want a new
origin at point 5, 10, then place the pen there and
PRINT#3, "I".
Jump, or draw-relative. Draws a line from present
position to one x steps to the right and y steps up. Do not
confuse this with 0, which draws to the absolute point

x,y.

Ln

Mx,y
Pchars

Qdir

Rx,y

Sn

Xa,b,c

Printers 95

Change line type.~f n=O, the line is solid, but using
numbers I to 15 will draw various dotted lines.
Move to point x,y without drawing a line.
Print the following characters while the printer IS In

graphics mode. The size of the characters can be
controlled, and characters can be printed vertically or
backwards.
Change print direction . ~l-he number 'dir' can be in the
range 0 to 3. 0 giv~s normal printing, I gives top to
bottom, 2 gives upside down , 3 gives bottom to top.
Relative move. Move pen, without drawing, to a point x
steps to the right and y steps up. Using -x moves left,
using -y moves down .
Selects size of characters to be printed. n must be
between 0 and 63.
Draw graph axis. n is 0 for a Y-axis, I for X-axis . T he
distance between marks on the axis is specified by 'b',
which must be between -999 and +999. T he number of
steps is 'c', between I and 255.

96 Commodore 64 Disk Systems and Printers

READY"

10 REM DIRECTIONS
20 OPEN3,4
30 PRINT#3,CHR$(18)
40 PRINT#3,"M50,0"
50 INPIJT"YClLlR NAI'1Es
60 PRINT#3, "P" jNM$
7O PRINT#3, "Ql"
80 PRINT#3, lip"~ jNM$
90 PRINT#3, "Q2"
1OO PRINT#3, "P" ;NM$
110 PRINTff3, "QT'
120 PRINTff3,"P" ;NM$
130 PRINHI3, "Q0"
140 PRINTff3,"A"
150 END

READY,

TAN SINCLAIR

(f)

z

z
n
I
:J)

~ /0
~ICJlJNrS NCJT

PLEASE " jNM$

Fig. 714. A printout from the Tandy CGP-115 graphics printer.

Appendix A

Random Access Files

T he C'64 disk system permits the use of ran,jom access files.
Random access means that any track, any sector, and any byte can
be read or written. T his technique requires a let of care in use, and
for data filing it's always better to make use I)f serial files or relative
files. The only purpose for v.Jhich t~ue random access filing is really
useful is for machine sode work, and for writing programs that
examine or change the characters on the disk. T he reason you have to
be careful with the use of random access is that any part of the disk
san be changed when this filing method is in use. You could , for
exo.mple, write data all over the directory track and make a disk
unusable. W hen you mz.ke use of serial o r relative files, accidents of
that kind can't happe'1.

A random access file is opened by the same type of command as
we have used for other files, but with the # symbol enclosed between
quotes. :r;or example, OPEN 5,8,5"#" would open a random access
file on channel 5. You can, if you want to, specify which buffer
num ber within the computer is to be used . By using "# I" in place of
"#", for example, you can specify that buffer number I will be used.
This is not something you would normally want to do except for
specialised purposes. These purposes would include controlling the
disk drive directly by the use ')f machine code, and that's ')utside the
scope of this boo k.

Once the channel has been opened for random acsess, and the disk
control channel 15 has also been opened, you can send random
access commands. The first two of these t:1at you need to know are
B-R and B-P. B-R means 'buffer-read', and it causes a sector to be
loaded from the disk into a buffer memory. The B-R command has
to be followed by four numbers which are, in order, the channel
number, the drive number, the track number and the sector number.
The result of the command will be to loac the whole of the specified
sector into buffer memory . Associated with this is the B-P (,buffer

98 Commodore 64 Disk Systems and Printers

pointer') command. This allows a portion to be selected from the
buffer. The B-P command has to be followed by two numbers. The
first of these is the channel number as before, the second is the
position in the buffer where reading is to start. After these
commands have been executed, the bytes in the buffer can be read by
using a loop that contains GET A$.

100PEN15,8,15
200PEN6,8,6,"#"
30 PRINT#15, "B-R: " ;6;0; 18;(j
40 PRINT#15 , "B-P";6;144
5'j FORN= 1 T054j
60 GET#6,A$
70 V=ASC (A$+CHR$ (,~))
80 IF V<310RV>127THEN V=32
85 PRINTCHR$(V);
9(1 NEXT
100 CLOSE6:CLOSE15
200 END
1 'j430 OPEN15, 8, 15
1010 INPUT#15,A,B$,C~D
10243 PRINT B$

Fig. A. 1. Readi ng a sector

Figure A.I contains an example of the use of these commands.
Lines 10 and 20 open the two channels, with the hashmark used to
open channel 6 for random access. Line 30 specifies that track 18,
sector 0, will be read, and the buffer pointer in line 40 specifies the
place in this sector where the name ofthedisk is stored. The loop that
starts in line 50 will then read characters from this point on. If we
want to print the results, we have to be careful to filter out any
characters that do not print but which might have undesirable
results. This is done by lines 70 and 80. Note that CH R$(O) has to be
added to a character before taking VAL, because if the character is a
zero a straight V AL(A$) would cause an error. It's a peculiarity of
the C'64 that can baffle you if you don't know about it.

Now take a look at a development of this program in Fig. A .2.
This time the name of the disk is read, and a new name is requested .
The name is packed with CHR$(160), which is the SHIFT / SPACE
character that is used for this purpose. The name is then chopped to
18 letters, and the block write command is used to place the name
back on the disk. Note carefully the order in which things have to be
done. The pointer is set, then the title printed into the buffer, and

100PEN1 5 ,8,1 5
2'J OPEN6, 8, 6, ":It"

Random Access Files 99

30 PR INT#15," B-R:"; 6;0;18;0
40 PRINT# 15 ," B-P";6;144
50 B$= "":FORN=:!.T0 18
60 GET#6, A$: B~=B$+A$:NEXT

70 PRINTB$
80 PR I NT "PLEASE TYPE NEW TI TLE"
90 INPUT TT$
100 FORN= lT018:TT$=TT$+CHR$(160)
110 TT$=LEFT$ (TT$, 18)
120 PR INT#1 5 ," B-P:";6;144
140 FORN=IT0 18
150 PRINT#6,MID$(TT$,N, 1) ;: NEXT
155 PRINT#15 , "B-W: ";6;0; 18;'3
160 CLOSE6:CLOSE 15
2t:hJ END
1t~("0 OPEN15 , 8 , 15
1010 INPUT#1 5 ,A,B$,C,D
102,-~ PR I NT B$

Fig. A. 2. How to rename a disk.

lastly the write command transfers it to the disk. Note also the
semicolons in the block commands. You will get disk syntax error
message~ if you substitute commas. Using the same techniques you
can alter any part of any sector on the disk. Before you start to
experiment, however, you can alter any part of any sector on the
disk. Before you start to experiment, however, make sure that you
keep backups of any disk that you work with. It's quite easy to make
a disk almost unreadable if you are careless, which is why you should
stick to serial and relative files for data use.

Appendix B

List of Commands

The list of commands which follows is intended as a reminder. You
might like to copy the list and place it close to your computer. The
order of the list is not alphabetical; it is arranged in the most likely
order of importance, so you should find that the commands which
you use the most will be close to the top of the list. As you become
really familiar with the operation of your disk system you can
remove the top of the list. To avoid elaborate descriptions I have
assumed that one drive is used, and that its device number is 8.
Owners of double drives can easily make the adjustments that are
needed.

The following abbreviations have been used . The word 'filnam'
means a filename for the program or data file , and can be a name
enclosed by quotes or a string variable such as NM$ which has been
assigned earlier in the program. The use of 'f' implies a single letter
name. The words 'file', ' chan', 'tr', 'sr', are used to mean the numbers
that are allocated for a command . S$ means a string variable name.
The word 'cmd' means a disk operating command, and 'dsknam'
means a disk title.

LOAD"filnam",8
LOAD"filnam",8, I
LOAD"$",8

LOAD"f*",8
LOAD"$:f*"

SA VE"filnam",8
SA VE"filnam",8, J

SA VE"@:filnam",8

Loads a BASIC program.
Loads a machine code program.
Loads directory and wipes out any
BA SIC program in the computer.
Loads a file whose name starts with 'f' .
Loads any directory entries that start
with 'f'.
Save BASIC program.
Save machine code program (to reload
at the same addresses) .
Save BASIC program, and replace
another of the same filename.

List of Commands 'j 01

VERIFY"filnam",8 Checks that program has been recorded.
Unlike use of directory, this does not
remove the program from memory.

OPENfile,8,chan,"cmd" Opens a channel number 'chan' to be
used with the file identifier number 'fir.
A single command, 'cmd', can be sent
with this format.

Commands to be used with OPEN
":filnam,S,dir" Serial file, name 'filnam'. The last letter

'dir' can be R (read) or W (write).
":filnam,L,"+chan$(rec) Relative file, name 'filnam'. Record

length is 'rec' and must not exceed 2SS.
This command is used to open a relative
file of this name for the first time on a
disk.

fil,8,chan,"filnam" Is used to reopen a relative file that has
already been recorded. Only the file
name is enclosed by quotes.

"#" U sed to open a random access file. The
hashmark may be followed by a buffer
num ber (0 to IS).

PRINT#fil,S$ Passes the string 'str' to the disk system
using file number 'fil' . This must have
been opened earlier.

INPUT#fil,s$ Inputs a string from the disk, using file
number 'fil', which must have been
opened.

G ET#fil,S$ Reads one character from the disk using
file number 'fil', and allocates this
character to S$.

Disk system commands
These commands are sent to the disk system by using channel IS .
The syntax t:an be:

OPEN IS,8, IS,"command" if the channel has not previously
been opened, or
PRINT# IS,"command" if channel IS is already open.

"C:filnam=:ofilnam" Copies data from old file 'ofilnam' to
new file 'filnam'. The old file is not
erased.

102 Commodore 64 Disk Systems and Printers

"R: nfilnam=:ofilnam"

"S:filnam"
"N: dsknam"

"N :dsknam,I D"

"I"

Renames a file called 'ofilnam' to
'nfilnam' . After this has been executed,
the file name ' ofilnam' no longer exists in
the directory .
Removes file from the directory.
Clears the directory of a complete disk,
and titles the disk 'dsknam'.
Reformats a disk with title 'dsknam' and
new 1D characters.
Restores disk to normal. Valuable if a
program has stopped with files open.

"V" Compacts a disk, removing unused
spaces. This should never be done on a
disk which contains random acess files.

"P"CH R$(chan)CH R$(L)CH R$(H) CH R$(P)
Positions pointer for a relative file -
chan is channel number, L is record
number low byte, H is record number
high byte, P is position number (0 to
255) in the file.

The following are random access commands:

"8- R ";c han;dr;tr;sr

"8-W";chan;d r;tr;sr

"8-A " ;d r; tr;s r

"8-F";d r, tr, sr

"8-P";chan; pos

"U l:";chan;dr; tr;sr
"U 2: ";chan;d r; tr;sr

Reads sector number 'sr' from track 'tr'
using channel 'chan' on drive 'dr'.
Writes to a sector, with the meanings
shown above.
Allocates a free track and sector for
random access filing.
Frees a sector for other uses so that it can
be reallocated .
Sets pointer in a buffer to position
number 'pos'.
Reads whole of a sector 'sr'.
Writes whole of a sector.

The following commands refer to locations in the memory of the
disk controller, and are used for machine code control of the disk
system.

"M-R :"CHR$(L)CHR$(H) Read controller memory at address
HL.

List of Commands 103

"M-W:"CH R$(L)CH R$(H)CH R$(N)"data"
Write data to controller starting with
memory address HL. The number of
bytes of data is given by 'N' (up to
255).

"M-E:"CHR$(L)CHR$(H) Execute machine code starting at
address HL.

"B-E:";chan;dr;tr;sr Load a complete sector 'sr' from track
'tr' , using drive 'dr' and channel
'chan'. T his sector must contain
machine code v"hich will be executed
as soon as it has been loaded. This
can, for example, be used to load and
ru n a Centronics interface program,
or to make a BASIC program load
and run. For machine code experts
only!

Appendix C

Disk Head Care

A disk system is such a reliable mechanism that it's easy to forget
that it gets a lot of use. This large amount of use involves many
movements of the head, much contact of the head with the disk, and
it has two effects. One is that the stepping motor will eventually wear
out. The stepping motor, as its name suggests, is the device that is
responsible for moving the head in steps from one track to another.
Modern stepping motors have a very long life, but wear is inevitable,
particularly if you use programs which continually access a disk (like
spelling checkers). When the stepping motor starts to wear out, you
will find that disks do not format properly, and it can sometimes
become difficult to read programs at the extremes of the disk.
Overhaul and replacement are the only remedy available when this
happens. It should not happen, though, in ordinary use, for a long
time. What constitutes a long time depends on how much you use
disks. For the hobbyist user, it's likely that the disk drive might
outlive the use of the computer!

The other problem that arises is head contamination. Disks are
clean when you receive them from the manufacturers, but they pick
up dirt in use. The jacket helps to protect disks to a considerable
extent, but if disk drives are used near a kitchen, or in a place where
smoke is present, then :he disks will pick up a film of greasy
materials. This will be passed on to the disk head as the disk is used.
Gradually, the film hardens and thickens, and the eventual result is
that the space between the head and the disk becomes too great for
reliable use. You may find that writing is still possible, but that
reading the disk is less easy. When this state occurs it's time to clean
the disk drive head.

Professional maintenance of disk drives involve" stripping down
the drive to that the head can be cleaned directly. For obvious
reasons, this is a method that most of us would prefer to avoid and
the alternative is to use one of the disk-drive cleaners that are

Disk Head Care 105

marketed by the firms whose names are listed in Appendix F. These
cleaning systems use a disk of textile material , enclosed in the usual
jacket. The cleaning disk surface can be impregnated with cleaning
liquid (a quick-drying alcohol) and the disk inserted into the drive.
Using a LOAD"$",8 command will then cause the head to make
contact with the disk. This rubs the fibre of the disk, along with the
cleaning liquid , against the head. The liquid dissolves and loosens
greasy deposits, and the spinning cloth disk will wipe the head clean.
By the time that the system rejects the disk as being unformatted, the
head should be clean. However, if there is a noticeable amount of
dirt on the cloth surface of the cleaning disk the action should be
repeated with another cleaning disk.

Some cleaning disks come with one surface only exposed, but this
is not the surface that a Commodore head touches. In this case, you
will find that the disk jacket has a perforated tear-out flap on the
other side. Removing this flap will allow the Commodore disk head
to touch the cloth disk. The head of the Commodore drive is above
the disk, nol below.

Locating disk drives

Some faults which might appear to be disk faults are, in fact, due to
location of the disk drive relative to colour monitors . When a disk
drive is used, the normal formatting command will carry out
marking, recording and verifying. If you find that disks consistently
show formatting faults, particularly refusing to format beyond some
point on the disk , then the fault may lie in the positioning of the disk
drive unit. Several modern colour monitors , and colour TV
receivers used as monitors, have very strong magnetic fields
underneath them. These strong magnetic fields will demagnetise a
disk, even a disk in a drive a few inches below the monitor. This can
be a problem, because a favourite way of assembling a computer
system is with the disk drive over the computer and the monitor
above the disk drive. Many commercial computer stands are
arranged so that the components can be stacked in this way . If you
find problems with formatting disks or loading programs, then
before returning your drive(s), it is worthwhile to check the effect of
placing the monitor another few inches away from the disk drive.

Appendix D

Word Processing with a
Disk System

One of the main reasons for any computer user buying a disk system
is because he/she wants to make use of word processing. Word
processing is much more greedy with memory than most other
computer applications, and the use of a disk system is almost
essential because of the very slow rate of saving or loading with tape
There are, however, considerable differences in the way that word
processing programs will handle the disk system.

Some WP programs use the disk system just as the cassette system
would be used. That is to say, the disk system is used simply to dump
all the text after the document or chapter has been typed. All of the
work of editing and alteration is carried out with the text stored in
the memory of the machine. This has the advantage that editing can
be very fast. On the other hand, any interruption to the power supply
before the text has been completed will cause the whole of the text to
be lost. Most W P programs wi Il allow you to save text to the disk at
intervals. You should do this for each page of text unless this is
repeat text for which you already have a backup copy. A few WP
programs will automatically save text each time there is enough to
fill a sector on the disk. With this system, you can never lose more
than 256 characters, about 40 words. This is an advantage only if the
program can also recover text as you require it. Because the C64
disk system is rather slow in operation, it is better to edit by filling
the memory from the disk rather than by calling up text from the
disk as it is needed.

Spelling checkers

Several types of word processing programs offer spelling checker
programs in addition. The principle is that a disk is filled with
'dictionary' words, and the text to be checked is loaded into the

Word Processing with a Disk System 107

memory of the computer. Each word is then checked against the
dictionary disk to find if the spelling is correct. This is a slow
business, even with a fast disk drive, and it should be used only
where the advantages outweight the loss of time. The advantages
include trapping unusual words, eliminating typing errors, and the
ability to check for alternative spellings. Typically, such a program
will call the operator's attention to any word which does not appear
in the dictionary disk. The operator can then alter the word, add it to
the dictionary, or store it temporarily. It's important to note that
words like 'I'll' and 'you're' are seldom catered for, because many
spelling checkers ignore apostrophes, and will present 'II' and 're' as
words to be checked. A good spelling checker should allow you to
create your own dictionary disks, so that you can have, for example,
U.S. and U.K. dictionaries which allow you to convert spellings
from one set of standards to another. You can also add technical
words to your own dictionary, and build up a disk which is ideally
suited to your own use of words .

Appendix E

Saving Machine Code as
a Serial File

The disk system of the C'64 can be used to help overcome one of the
serious faults of the machine - the poor provision for saving
machine code. A number of very helpful utility programs for the
C'64 exist in machine code form, and a lot of these are either entered
as a BASIC POKE program, or as machine code tapes. In either
case, it would be extremely useful to be able to save such programs
on disk .

This is generally very easy when the machine code is entered as a
POKE program, using BASIC. You will have to note the start and
end address numbers that are used in the program. You should then
create a serial file , and save the PEEK of each address, using a loop.
Typically, this would mean lines such as:

10 OPEN2,8,2," :CODE,S, R"
20 N=49900
30 FORJ=O TO 599
40 PRINT#2,PEEK(N+J):NEXT
50 CLOSE2
60 END

This is less easy if you have loaded the machine code program from
tape, and are unsure of its starting and finishing addresses. I n such a
case, a good clue is the SYS number that is used to call the program
into action. I fyou try saving from one address below this number to,
perhaps three hundred above, you will be able to save the vast
majority of machine-code programs. The test is to load back, and see
if the program works . If it does not, reload the original, and try
saving a larger range of numbers . You might have to start from
several numbers below the SYS number, and perhaps five hundred
or so above. Unless you can dig out precise information, as for
example by the use of the M I K RO cartridge, you will have to rely on
this cut-and-try scheme.

Saving Machine Code as a Serial File 109

Reloading the machine code then becomes a matter of reading a
serial file and poking each number into memory. Typically, you
might use a program of the form:

10 OPEN2,8,2":CODE,S,R"
20 N=49900
30 FOR J--=O TO 599
40 INPUT#2,A:POKEN+ J,A
50 NEXT:CLOSE2

you must make certain that the addresses in memory that you are
using will have been protected against use by BASIC.

Note that if you use the M IK RO assembler cartridge, you will get
routines for saving and loading machine code as part of this
cartridge. You can also make use of Centronics printers along with
your C'64, providing you have a suitable cable link to connect the
printer to the C'64.

Appendix F

Suppliers

Until you have had considerable experi ence with the use of disk
systems and printers, you will not have ex plored the sources of
supply for items such as disks, paper and ribbons. The suppliers
whom I have listed here have either supplied me regularly, or
supplied items and information for this book . I have no hesitation in
recommending them to the reader.

Commodore 64 utilities and programs

Mick Bignell ,
Microport,
7 Clydesdale Close,
Borehamwood,
HERTS WD6 2SD

Tel: 01-953-8385

Su pplies a Centronics interface, PR INTLI N K 64 on tape or on disk .
Also the VIZA WRITE and VIZASPELL programs for text
processing and the MIKRO assembler among products mentioned
in this book.

Simple Software Ltd .,
15 Havelock Rd.,
Brighton,
Sussex BN I 6G L

Tel: (0273) 504879

Software for all CBM machines.

Disks and disk accessories

Pinner Wordpro,
34 Cannonbury Avenue,
Pinner,
Middx HA5 ITS

Tel : 01-868-9548

Suppliers 111

Supply disks at very competitive prices, with excellent delivery. Very
good line of single-sided, single density Memorex disks which are
ideal for Commodore 64 system, priced at the time of writing at
about £14.50 per box of ten (plus VAT). Also stock disk storage
boxes, cleaning kits, printers and ribbons.

Print Supplies

Willis Computer Supplies Ltd,
P.O. Box 10,
South Mill Road,
Bishop's Stortford,
HERTS CM23 30N

Tel: (0279) 506491

Supply a very wide range of paper, ribbons, printwheels, office
furniture and disks, along with almost every computer requirement.
Small orders are not turned away, but please don't ask them to
supply one £2.10 ribbon!

Action Computer Supplies,
6 Abercorn Trading Estate,
Manor Farm Road,
Alperton,
Wembley,
Middx HAO IWL

Tel: (0 I) 903 3921

Excellent range of supplies including paper, rihbons ~including
ribbons for VIC 1525), disks and cables .

112 Commodore 64 Disk Systems and Printers

INMAC (UK) Ltd.,
Davy Road,
Astmoor,
Runcorn,
Cheshire WA 7 I PZ

Tel: 09285 67551 (for orders· Answerphone service at night).

Large catalogue lists all types of supplies, including paper, ribbons,
disks, cables and furniture.

Cortex Computer Store,
At Rymans, First Floor,
6-10 Great Portland S t,
LONDON WI

Useful for printers and stationery. One of the few sources I have
found for Juki daisywheels, with a good choice of types.

Index

@, protection system, 33
@ use, 18

abbreviations, 100
advantages, disk, I
ALPS mechanism, 92
arrangement of sectors, 7
auto test, VIC printer, 83
automatic operation, I

B-P command. 97
B-R command, 97
backing up disk, 27
ball-pens. 92
block availability map (BAM). 10
blocks. 7
buffer, 38
buffer pointer, 98
buffer read, 97
busy warning light. 14
byte, 7, 14

care of disks, 12
carriage return, 86
carriage return character, 54
catalogue data, typical, 41
catalogue, disk, 2
Centronics interface, 81
Centronics interfaces for C'64. 85
channel number, 46
chips, 3
CLOSE command, 49
CMD3 command. 83
command channel. 19, 21
commands list. 100
commands to disk system, 18
COPY, 28
copying file, 28
crash. 20
create file, database. 71
cursor down mode, 84

daisywheel printer. 80
daisywheel typewriter, 80, 92
data cable. 3
data writing, relative file, 57-8
database example, 63
deleting file. 29
demagnetising disks, 12
denary scale, 25
descenders of letters. 79
DFS . 3
DIR program, 38
directory entries, maximum number. II
directory printout. 17
directory recording. 17
directory space. II
directory track. 10
directory. reading, 16
disk, 5
disk catalogue. 2
disk controlling circuits, 3
disk drive. 3
disk editing. 40
disk fault on formatting. 9
disk filing. 44
disk filing system (DFS), 3. 13
DISK FULL message. 32
disk operating system. 3
disk operation error. 14
disk sector editor, 35
disk sector reader. 35
disk system. 3
disk system commands, 10 I
disk utilities, 35
DISPLA Y 1&S program. 27, 38
double width characters, 84
dollar sign, 27
DOS-Disk , 4
dot matrix principle, 79
drive number, 17

editing disk, 40

114 Index

electrostatic printers, 80
emphasised mode, Epson, 85
end of file code (EOF) , 49
entry subroutine , 74
EOF, 49
Epson R X-80, 86
Epson print, 87
Epson switch settings, 87
error message, 22
error message on sa ving, 16
error number, 22
error read subroutine , 22
error system, 20
error, disk operation, 14
ESC character, 90
example, CGP-115 , 96
extra commands, 2
extra memory, use of disk, II

field , 44
FILE EXISTS message , 29
file number, 47
filena mes , 15
FILES SCRATCHED message , 30
filing, 13
FILING CABINET program, 63
filing techniques, 43
fingerprint , 12
fixed length fields, 53
flag variable, 75
flag variables, database, 72
formatting, 8
formatting fault, 9
four-way socket strip, 3

games programs on disk, 16
graphics commands, CGP-115, 94
graphics printer, 80, 92

handle, 46
handshaking, 81
hard copy, 77
hardware, 3
head, disk drive, 5
hex, 25
hex scale, 26
hexadecimal scale, 25
high quality print, 77
hotline , J 9
hub of disk, 5

IBM ribbon, 88
10 , 10
I D mismatch, 31

identification, database, 68
identity code (I D), 10
identity number, filetype, 42
impact printers, 80
INITIALISE command, 20
ink-jet printer, 81
inserting disks, illustration, 9
interfaces, 81

jacket of disk, 5
luki 6100 daisywheel, 88
Juki print example, 90

KEY file, database, 68

language of disk recording, 5
leaving files open , 49
lights on drive, 14
line feed, 86
list of commands, 100
LOAD,15
LOAD"*" ,8 command, 31
loading machine code programs, 16
lower-case of VIC, 84

machine code, 13, 97
machine-code book, 42
mains cable , 3
marker, sector, 8
maximum record number, 57
mechanisms, printer, 78
memory, 14
merge BASIC programs, 40
merge subroutines, 78
MIKRO assembler , 42
multistrike ribbon , 88

name of disk , 10
needles, dot matrix, 79
NO CHANNEL error, 60, 75
number 8 disk reference, 15

open channel , 47
OPEN command, 47
open files, 50
OPENI5,8,15 command, 19
organisation of data, 13

page zero add resses, 26
parallel printers, 81
pen-test routine, 93
pin feed, 82
plug, mains, 3
pointer, file, 56

Index 115

POKE start of BASIC, 23
precautions, disk use, II
PRINT# command, 48
PRINT#15 commands, 21
printer buffer, Juki, 88
printer types, 78
printers, 77
printhead , Juki, 88
print head , dot-matrix, 79
printing carriage, CGP-115, 93
printing to file, 48
printout to directory, 17
protecting disks, 33
protecting subroutine , 22

quit option, database, 73

RAM , 4
random access commands, 101
random access file, 45, 97
reading directory, 16
reading file, 50
reading file, database, 73
reading relative file, 60
reading sector program, 98
record, 43
record name, 48
RECORD NOT PRESENT error, 56
record number cod ing, 56
recording directory , 17
reformatting, 19
reinforced hub, 5
relative files, 44 , 53
reliability, disk recording, 3
RENAME command, 34
rename disk program, 99
renaming files , 33
renaming program, 19
retitling, 19
retitling, non-destructive, 19
reverse field, 84
ribbon cost, 82
RS-232 standard, 82

same filename, 18
SAVE,15
saving machine code, 42
SCRATCH command, 29
sectors, 7
sequential files, 44

serial files , 44
serial filing on disk , 45
serial printers, 81
serial recording, 2
side sectors, 55
SINGLE DISK BACKUP program, 36
slot in jacket, 5
soft -sectori ng, 7
software, 3
speed of operation,
splicing tape, 27
ST variable, 50
sticky tabs, 33
storage space, 10
subroutine library, 78
switching, order, 13

Tandy CGP-115 , 92
test on format, 8
testing ST, 50
text files , 42
text writer, I
thermal pri nters , 80
tokens, 42
track 18, 10
tracks, disk, 6
Triumph-Adler, 88
twin drive backup, 28
type of file indicator, 40
typical directory, 17

unformatted disk error, 21
update file , 51
updating file, 29
upper-case of VIC, 84
use of @, 18
utility disk, 35
utility programs, 28
utility programs in manual, 38

VALIDATE,32
VERIFY , 16
VIC 1515 printer, 3, 82

wildcard characters, 30
word processing, 77
word processor programs, 42
write-protect notch, 33
write-protect tab, 33
writing file, database, 72

APPLE II

APPLE II PROGRAMMER'S
!iANDIIOOI(

0246 12027 4 £10.95

THE AQUARIUS AND HOW
TO GET THE MOST FROM IT
0246122951 £5.95

ATAR!

GET MORE FROM THE ATARI
0246121491 £595

THE ATARI BOOK OF GAMES
024612277 3 £595

IICMICRO

ADVANCED MACHINE
CODE TECHNIQUES FOR
THE IBC MICRO
024612227 7 £6 95

ADVANCED
PIIOGRAMMING FOR
THE IBC MICRO
0246121580 £595

THE IIC MICRO:
AN EXPERT GUIDE
0246120142 £6.95

IIC MICRO GRAPHICS
AND SOUND
0246121564 £695

DISCOVERING IBC MICRO
MACHINE CODE
024612160 2 £695

DISK SYSTEMS FOIl
THE IIC MICRO
024612325 7 £7 95
HANOIIOOK OF
PROCEDURES AND
FUNCTIONS FOIl
THE IBC MICRO
0246124156 £695

INTRODUCING
THE IIC MICRO
024612146 7 £5 95

LEARNING IS FUN:
40 EDUCATIONAL GAMES
FOR THE IBC MICRO
n:?!.:. ;23176 £595

TAKE OFF WITH THE
ELECTRON AND IIC MICRO
024612356 7 £5.95

21 GAMES FOIl
THE BBC MICRO
0246 12103 3 £595

PRACTICAL PROGRAMS
FOR THE IIC MICRO
0246124059 £6'7:;

THE COLOUR GENIE

MASTERING THE
COLOUR GENIE
024612'904 £595

COMMODORE 64

BUSINESS SYSTEMS ON
THE COMMOOOIIE 64
0246124229 £695

ADVENTURE GAMES FOIl
THE COMMODORE 64
0246124121 £695

COMMODORE 64
COMPUTING
0246120304 £595

COMMODORE 64 DISK
SYSTEMS AND PRINTERS
0246124091 £695

THE COMMODORE 64
GAMESBOOK
024612258 7 £5 95

COMMODORE 64
GRAPHICS AND SOUND
024612342 7 £6 95

COMMODORE 64
WARGAMING
0246124105 £695

SOFTWARE 64: PRACTICAL
PROGRAMS FOR THE
COMMODORE 64
024612266 8 £595

INTRODUCING
COMMODORE 64
MACHINE CODE
024612338 9 £795

40 EDUCA T10NAL GAMES
FOR THE COMMODORE 64
0246123184 £5.95

DRAGON

THE DRAGON 32 AND HOW
TO MAKE THE MOST OF IT
024612114 9 £595

THE DRAGON 32
BOOK OF GAMES
024612102 5 £5 95

THE DRAGON PROGRAMMER
024612133 5 £5.95

DRAGON GRAPHICS
AND SOUND
0246121475 £6.95

INTRODUCING DRAGON
MACHINE CODE
0246123249 £795

ELECTRON

ADVANCED ELECTRON
MACHINE CODE
TECHNIQUES
024612403 2 £6 95

ADVANCED PROGRAMMING
FOR THE ELECTRON
0246124024 £595

ADVENTURE GAMES FOR
THE ELECTRON
0246124172 £6 95

ELECTRON GRAPIoICS
AND SOUND
0246124113 £6.95

ELECTRON MACHINE
CODE FOR IfGtNNERS
0246121521 £795

THE ELECTRON
PROGRAMMER
0246 12340 0 £595

HANOIIOOK OF
PROCEDURES AND
FUNCTIONS FOR THE
ELECTRON
0246124164 £695

PRACTICAL PROGRAMS
FOR THE ELECTRON
0246123621 £795

21 GAMES FOIl
THE ELECTRON
o 246 12344 3 £5.95

40 EOUCA TIONAL GAMES
FOR THE ELECTRON
024612404 0 £5 95

TAKE OFF WITH THE
ELECTRON AND IIC MICRO
024612356 7 £5.95

IBM

THE IBM PERSONAL
COMPUTER
0246121513 £695

LYNX

LYNX COMPUllNG
0246 121319 £6 95

MEMOTECH

MEMOTECH COMPUTING
0246 12408 3 £595

THE MEMOTECH
GAMES BOOK
o 246 124075 £5.95

ORIC·1

THE ORIC-1 AND HOW TO
GET THE MOST FROM IT
0246121300 £5.95

THE ORIC PROGRAMMER
0246 121572 £6.95

THE ORIC BOOK OF GAMES
0246121556 £595

T199/4A

GET MORE FROM THE T199/4A
0246122811 £595

VJC.20

GET MORE FROM THE VIC-20
024612148 3 £595

THE VIC-20 GAMES BOOK
0246121874 £595

ZXSPECTRUM

AN EXPERT GUIDE TO THE
SPECTRUM
024612278 1 £6.95

INTRODUCING SPECTRUM
MACHINE CODE
0246120827 £795

LEARNING IS FUN:
40 EDUCATIONAL GAMES
FOIl THE SPECTRUM
0246122331 £595

MAKE THE MOST OF YOUR
ZX MICROORIVE
024612406 7 £595

THE SPECTRUM
BOOK OF GAMES
0246120479 £595

SPECTRUM GRAPHICS
AND SOUND
0246121920 £695

THE SPECTRUM
PROGRAMMER
0246120258 £595

THE ZX SPECTRUM AND HOW
TO GET THE MOST FROM IT
0246120185 £5.95

WHICH COMPUTER?

CHOOSING A
MICROCOMPUTER
0246120290 £4 95

LANGUAGES

COMPUTER LANGUAGES
AND THEIR USES
0246120223 £595

EXPlORING FORTH
0246121882 £595

INTRODUCING LOGO
0246123230 £595

INTRODUCING PASCAL
0246123222 £595

MACHINE CODE

Z80 MACHINE CODE
FOR HUMANS
0246120312 £795

6502 MACHINE CODE
FOR HUMANS
0246120762 £795

SOFTWARE GUIDES

WORKING WITH dlASE II
0246 123761 £7 95

USING YOUR MICRO

COMPUTING FOIl THE
HOBBYIST AND SMALL
BUSINESS
o 246 12023 1 £6.95

DATABASES FOR FUN
AND PROFIT
0246 120320 £5.95

FIGURING OUT FACTS
WITH A MICRO
0246122218 £595

INSIDE YOUR COMPUTER
024612235 8 £495

SIMPLE INTERFACING
PROJECTS
0246120266 £695

PROGRAMMING

COMPUTE GRAPIoICS
PIIOGRAMMER
o 246 12280 3 £6.95

THE COMPUTE
PROGRAMMER
0246120150 £595

PROGRAMMING WITH
GRAPHICS
0246120215 £5.95

WORD PROCESSING

CHOOSING A WORD
PROCESSOR
0246123478 £795

WORD PROCESSING
FOR BEGINNERS
024612353 2 £595

FOR YOUNGER READERS

BEGINNERS' MICRO GUIDES:
ZXSPECTRUM
024612259 5 £2 95

BEGINNERS' MICRO GUIDES:
IICMICRO
0246122609 £295

BEGINNERS' MK::RO GUIDES:
ACORN ELECTRON
0246123818 £295

MICROMATES

SIMPLE ANIMATION
0246 '22730 £195

SIMPLE PICT\JRES
0246122692 £195

SIMPLE SHAPES
0246 122714 £195

SIMPLE SOUNDS
0246 12270 6 £195

SIMPLE SPEWNG
024612272 2 £195

SIMPLE SUMS
0246 12268 4 £195

GRANADA GUIDES:
COMPUTERS
0246118954 £195

SCANNED BY:

CommanderF
CommodoreFan
TCS

OVERDRIVE PERFORMANCE FROM YOUR 64!

The Commodore 64 is ideal for both home and business
but you need a printer and a disk system to develop the
full potential of the machine.

This book covers the advantages, principles, and details of
the disk systems for the Commodore 64. It sets out the
ordinary adions of LOAD and SAVE, machine code
loading and saving, and the special commands that are
peculiar to disk systems. The adions of filing are
explained in detail, since filing on disk is such an
important feature of business and other database
applications, and available disk utilities are reviewed.

The different types of printers are described, with their
particular advantages and disadvantages, and their
pradical operation in listing programs and printing data.
Word processing and the graphics applications of printers
are also covered.

A disk system and printer will transform your computing.
This book gives you the inside knowledge to exploit the
advantages most effectively.

The Author
Ian Sinclair is a well-known contributor to journals such as
Personal Computer World, Computing Today, Electronics
and Computing Monthly, Hobby Electronics and Electronics
Today International. He has written over fifty books on
aspects of electronics and computing, mainly aimed at the
beginner.

More books on the Commodore 64 from Granada

COMMODORE 64 COMPUTING
Ian Sinclair
0246120304

INTRODUCING COMMODORE 64
MACHINE CODE
Ian Sinclair
0246123389

Front cover illustration by Alan Craddock

GRANADA PUBLISHING
Printed in Great Brilain 0246124091

COMMODORE 64
GRAPHICS AND SOUND
Steve Money
0246123427

SOflWARE64
Pradical Programs for
the Commodore 64
Owen Bishop
0246122668

£5.95 net

	document001
	document002
	document003
	document004
	document005
	document006
	document007
	document008
	document009
	document010
	document011
	document012
	document013
	document014
	document015
	document016
	document017
	document018
	document019
	document020
	document021
	document022
	document023
	document024
	document025
	document026
	document027
	document028
	document029
	document030
	document031
	document032
	document033
	document034
	document035
	document036
	document037
	document038
	document039
	document040
	document041
	document042
	document043
	document044
	document045
	document046
	document047
	document048
	document049
	document050
	document051
	document052
	document053
	document054
	document055
	document056
	document057
	document058
	document059
	document060
	document061
	document062
	document063
	document064
	document065
	document066
	document067
	document068
	document069
	document070
	document071
	document072
	document073
	document074
	document075
	document076
	document077
	document078
	document079
	document080
	document081
	document082
	document083
	document084
	document085
	document086
	document087
	document088
	document089
	document090
	document091
	document092
	document093
	document094
	document095
	document096
	document097
	document098
	document099
	document100
	document101
	document102
	document103
	document104
	document105
	document106
	document107
	document108
	document109
	document110
	document111
	document112
	document113
	document114
	document115
	document116
	document117
	document118
	document119
	document120
	document121
	document122
	document123
	document124
	document125
	document126
	document127
	document128

