

THE
FINE

$\rightarrow-\quad$
GRAPHICS

INVOKE

SOREEN

MAClO
TO CONJURE EASY COLOR GRAPHICS - HEX NOT REOUIRED!

MAKE YOUR 64 SING A SONG NYTHING AUTOMATIC NOTE ENTRY SYSTEM

FAST BIT MAP
SOREEN DUMPING
WITH HELP FROM
MACHINE LANGUAGE
MAPPING 4.4 AN ONSCREEN FUNGTION PLOTIER

ARCADE ACTION GAMES! SPEEDY
A VIC 20 JOYSTICK JOLTER
GET DOWN WITH
DUCK SHOOT FOR THE 64

TOWERS OF HANOI
AN ORIENTAL ENIGMA
WE EXPLAIN
HOW MODEMS WORK
A TUTORIAL WITHOUT PARITY!

FOUR FLUSH! QUAD-PRINT

REVIEWS OF:

- BLUE MAX 2001
- CALC NOW!
- JUKI 6300
- MUSICWARE

AND MORE FOR THE
VIC AND 64...END

Technical

Breakthrough

Priceana performance no other printer interface can touch:

Only CARDCO would dare improve on its own best seller (the $+G$ has far out-sold any other printer interface, and has set the industry standard by which competitors are judged). The G-Wiz is even better - and costs 30% less. * Our 27 th major innovation in Commodore accessories has all the + G's features, and more...

Built-In Buffer for More Speed

 The G-Wiz buffer dumps high-resolution screens up to 18 times faster than competitive interfaces without buffers. No more waiting! A complex 50-minute printout now takes just 2.5 minutes with the G-Wiz.
Exclusive! Aspect Ratio Selection

Only the G-Wiz matches graphics characters to standard characters on Okidata, Epson, Star - Actual price may vary according to dealer and region.

Micronics, Prowriter, Smith Corona, C-ITOH, Gorilla Banana, and many other dot matrix printers. Now you can perfectly align high resolution graphics characters within text blocks, or in columns.
CARDCO excellence triumphs again! The G-Wiz is the "best bang for the buck" on the printer interface market today - and it's backed by CARDCO'S exclusive lifetime warranty! G-Wiz: another distant target for the competition to shoot at.

CARDCO,Inc. 300 S. Topeka/Wichita, KS 67202

CONTENTS

DEPARTMENTS

A View from the Bridge...of the June issue of Ahoy! 4 7
Scuttlebutt...the latest Commodore news washed ashore.
Scuttlebutt...the latest Commodore news washed ashore.
Ship to Shore...we slice through modem mumbo jumbo. 29
Book Review by Morton Kevelson 44
Reviews...new hardware and software torture-tested. 63
Erratum...basically, we blew it with BASIC Trace. 72
Commodares...a real challenge - if you can hack it. 81
Program Listings...type! Save! Load! Run! Enjoy! 85
FEATURES
Graphics Challenge Update by Morton Kevelson 5
Sing a Song of Anything by Orson Scott Card* 18
Rupert Report...Dale provides The Ultimate Resolution.** 37
Commodore Roots...Under the Hood by Mark Andrews. ***77
*Includes programs: Three-Voice Player, One-Voice Player,Broken Melody (for the C-64)
Includes program: The Ultimate Resolution (for the C-64)*Includes program: The 6510 Simulator (for the C-64)
PROGRAMS
Towers of Hanoi for the C-64 by Daniel Miller 17
Screen Magic for the C-64 by Bob Spirko 33
Duck Shoot for the C-64 by Bob Blackmer 35
Mapping 4.4 for the C-64 by J.M. Marcano 45
Quad-Print for the C-64 by Michael Beutjer 47
Speedy for the VIC 20 by Kevin Dewey 56
Screen Bit Dumping for the C-64 by Roger Macomber 73
Bug Repellents for the VIC and 64 by Kleinert \& Barron 86
Flankspeed for the C-64 by Gordon F. Wheat 86

Senior Editor Tim Moriarty

Technical Editor David Barron

Consulting Editors Ben Bova Morton Kevelson Dale Rupert

Art Director JoAnn Case

Production Director Raoul Norman-Tenazas

Art Production Christopher Carter Mark Kammerer Eve Griffin

Technical Advisor Bob Lloret

Circulation Director W. Charles Squires

Advertising Director Lynne Dominick
Director of Promotion Joyce K. Fuchs

Controller Dan Tunick

Managing Director Richard Stevens

Advertising Representative JE Publishers' Representative 6855 Santa Monica Blvd., Suite 200

Los Angeles, CA 90038 (213)467-2266

Boston (617)437-7628
Dallas (214)660-2253
New York (212)724-7767
Chicago (312)445-2489
Denver (303)595-4331
San Francisco (415)864-3252

ISSUE NO. 18

JUNE 1985
Ahoy' (H8750-4383) is published monthly by Ion International Inc., 45 W. 34th St., Suite 407, New York, NY, 10001. Subscription rate: 12 issues for $\$ 1995,24$ issues for \$37.95 (Canada \$26.95 and \$49.95 respectively). Second class postage paid at New York, NY 10001 and additional mailing offices. ${ }^{\circ} 1985$ by Ion International Inc. All rights reserved. © under Universal International and Pan American Copyright conventions. Reproduction of editorial or pictorial content in any manner is prohibited. No responsibility can be accepted for unsolicited material. Postmaster, send address changes to Ahoy!, 45 W. 34th Street, Suite 407, New York, NY 10001. Direct all address changes or matters concerning your subscription to Ahoy!, P.0. Box \#341, Mt. Morris, IL 6054. All editorial inquiries and software and hardware to be reviewed should be sent to Ahoy!, 45 W. 34th St., Suite 407, New York, NY 10001.

"A'Graphics Extravaganza?'" Michael Schneider asked when I showed him this month's cover headline. "A couple of programs and a tutorial doesn't make it an "extravaganza.' If Im going to call it a graphics extravaganza, it had darn well better be a 'graphics extravaganza." "
Having a publisher with ethics is a constant source of difficulty, but one the shrewd editor can live with through careful planning. In this case, careful planning involved bringing along the full lineup of graphics articles in this month's Ahoy! One by one I laid them on his desk.
"Look, Mike," I said, "Screen Magic by Bob Spirko, who wrote Alice in Adventureland for us a few months back. It provides a joystick-controlled palette and canvas for creating color graphics on the 64, without all the complicated commands.
"And Screen Dumping on the Commodore 64-a real education in creating screen bit graphics. It would have to be. It was written by Professor Roger S. Macomber of the University of Cincinnati. The program he includes uses machine language to speed up the dumping of graphics to a printer.
"Dale Rupert covered screen bit graphics in this month's

Rupert Report, too-but The Ultimate Resolution concentrates on the theory behind practical applications like Prof. Macomber's.
"Here's another example of how graphics theory can be put to use: J.M. Marcano's Mapping 4.4, which allows you to plot mathematical functions in hi-res."
Peering at me over the pile of manuscripts, Mike looked annoyed. I asked why.
"Because," he said, "you're standing here babbling when you've got a graphics extravaganza to put together!"
Gee, I thought as I left Mike's office-I didn't even get to tell him about this graphics issue's flagship piece: Quad-Print by Michael Beutjer. Mprton Kevelson will tell you all about this landmark program in his Graphics Challenge Update on the facing page.
Having justified our cover headline, we'll now do the same for the larger type on the cover-the Ahoy! logowith the finest lineup of Commodore-related articles and programs you'll find on the newsstand this month:

- For Orson Scott Card to outdo himself would take some doing (outdoing?) - but he may have succeeded with this month's installment of Creating Your Own Games on the VIC and 64. In Sing a Song of Anything, he provides a system by which C-64 users can automatically enter music into their original game programs-as easily as typing letters! (Turn to page 18.)
- The third installment of Commodore Roots, Mark Andrews' assembly language programming column, peers Under the Hood of your computer at its microprocessor. Included is the 6510 Simulator, a program which, while not an assembler, will show you how one works. (Turn to page 77.)
- Duck Shoot starts out as easy as the penny arcade version, but soon reaches a level of complexity certain to ruffle your feathers. (Turn to page 35.)
- Towers of Hanoi adapts the famous Tower of Brahma puzzle to the C-64 screen. (Turn to page 17.)
- Even the most expert joystickers will be thrown for a loss by Speedy for the unexpanded VIC 20. Its title character has a mind of his own when it comes to responding to your directions. (Turn to page 56.)
- Sheldon Leemon, author of MACTALKS and Telecomputing on the IBM PC from COMPUTE! Books, takes over at the helm of our Ship to Shore column this month with a technical overview of telecommunications. (Turn to page 29.)
- Also inside are Dale Rupert's Commodares at their most frustrating; Scuttlebutt, offering news in greater depth and more timely fashion than any other Commodore monthly; and Reviews of products like Blue Max 2001, PROMAL, and the Teknika MJ-10 color monitor.

Love to tell you more, but I have to run back to Mike's office. His secretary dropped a note on my desk-something about a "Graphics Super-Spectacular."

-David Allikas

GRAPHICS CHALLLEVGE UPDATE By Morton Kevelson

In the October 1984 issue of Ahoy!, as part of a tour de force on Commodore 64 bit mapped graphics, I issued a graphics challenge to all comers. In brief, I was looking for some way to manipulate a bit mapped graphics field which exceeded the limitations of a single 320 by 200 pixel Commodore 64 high resolution display. The response has been far from overwhelming, but some results are in.

The first answer came from Inkwell Systems, with version 4.0 of Flexidraw. Among the enhancements to version 3.0 (reviewed in November 1984) is the ability to link multiple screens on both the monitor and the printer. This allows for printouts made up of 544 pixels wide and an unlimited number of pixels high. (Look for a detailed review of Flexidraw version 5.0 later this year. This will have so many enhancements to version 3.0 that it is practically a new program.)
The second response comes from Michael Beutjer, author of Picture Perfect from KT Software (October 1984 Ahoy!). For those of you who have been unable to locate this versatile Koala screen dump program, it is now being sold as KoalaPrinter by Koala Technologies. Mr. Beutjer has responded to my challenge by providing the Quad-Print program in this month's issue. The two versions of this program will allow up to four DOODLE! files to be linked for simultaneous printout on a Gemini 10X or a Commodore 1526 printer.

Bit mapped graphics for the 1526 printer are difficult to implement, as it does not support true graphics mode. The 1526 allows for a single custom character to be defined and printed. Thus a full bit mapped screen dump requires the image to be formed eight bytes at a time. Furthermore, each time the custom character is redefined a carriage return without linefeed must be executed before it can be printed. This is what causes bit mapped screen dumps to print so slowly on the 1526 .

For advanced users, the source code listings for the Quad-Print programs have been included. Owners of the 1526 should take note of the listing labeled Fast Dump Routine. Mr. Beutjer has used a clever trick to maximize the speed of the 1526 bit map printout. The single character is not redefined unless it is found to be different from the last one. As a result, this high resolution dump for the 1526 should be the fastest available from any source. \square

We'll Have the New Advanced Commodore Products 1st!! NEW mana LOW PRICES! contiocs Free on written request.
NEED REPAIRS? We are an authorized
Commodore Repair Center!!!

NEW C-128!!! availability \& software.

Teknika MJ10 $\$ 189$ Zenith ZVM Gr/Amb . \$89/99 Commodore 1702 Call Commodore 1902 Call DATABASE MANGERS

The Consultant	\$59	PFS:File $\$ 59$
Super Base 64.	49	PFS:Report 49
The Manager	35	

WORD PROCESSORS
Paper Clip/\& speller $\$ 55 / 69$ Easy Script $\$ 35$
Fleet System 2 NEW Call Easy Spell 17.
ACCOUNTING
Peachtree GL/AP/AR . $\$ 139$ Commodore GL/AP/AR/PR/INVea. 34

BLACK NAUGAHYDE COVERS

C. 64 or 1541 Drive . . . ea. $\$ 5$	1702 Monitor	$\$ 10$	
MSD Drives $1 / 2 \ldots . .$.	$5 / 6$	$1525 /$ MPS 801	\ldots

MOST ORDERS SHIPPED WITHIN 48 HOURS' Advertised prices are for hank check or money order VISAMC orders add 3.5%. NO C.O.D ORDERS. Personal or company checks delay orders 21 days. All sales are final - defective merchandise exchanged for same product only. Add 3% for shipping (52.50 min .) Please call for shipping on monitors. Ohio residents add 5.5% sales tax. Prices \& availability subject to change. HOURS: MON-FRI 10 AM to 10 PM - SAT 10 AM to 5 PM - SUN Noon to 5 PM
800-638-2617
INFORMATION \& IN OHIO 216/758-0009

1301 BOARDMAN-POLAND ROAD POLAND, OHIO 44514

COMMODORE	SOFTWARE		Educational	
C64 $\$ 139.95$	Floppiclene Head Cleaner	\$ 14.95	Maelstorm \$	7.95
1541 \$179.00	Word Processors		Primary Math \$	7.95
1101 Daisywheel Printer \$329.95	Paperclip with spell pack	\$ 69.95	Math Tutor \$	7.95
MPS 801 \$169.95	Wordpro 64.	\$ 39.95	Ten Little Indians \$	7.95
MPS 802 \$209.00	Easyscript	\$ 39.95	Gotcha Math S	7.95
1702 \$209.00	Words Writer	\$ 44.95	Toddler Tutor \$	7.95
SX 64 \$499.00	Write Now	\$ 39.95	English Invaders \$	7.95
Modem 300/1660 \$ 89.95	Cut and Paste	\$ 39.95	Tiny Tutor \$	7.95
Power Packs \$ 29.95	Databases		Science Pack \$	7.95
Datasettes \$ 29.95	Practifile	\$ 24.95	Math Pack S	7.95
	Superbase 64	\$ 59.95	Peanuts Picture Puzzlers $\$$	19.95
PRINTERS	The Manager	S 34.95	Peanuts Maze Marathon \$	19.95
Star Printers	The Consultant	\$ 69.95	Snoopy Skywriter \$	19.95
	PFS File	S 59.95	Charlie Brown ABC s	19.95
SD 10 \$399.00	File Now	\$ 39.95	Snoopy to the Rescue S	19.95
SR 10 $\$ 499.00$	FMC (Continental)	\$ 34.95	Family Finance	
Powertype $\$ 369.00$	Games	S 34.95	Home Accountant S	69.95
Radix $10 \ldots \ldots . .$. $\$ 4999.00$	Flight Sim II	\$ 36.95	Complete Personal Accountant \$	69.95
Delta 15 CALL	Zorks, I, II, III	S 29.00	Time Money Manager S	49.95
Okidata Printers 82, 83 and $92 \ldots$ CALL	Ghostbusters	S 19.95	Financial Cookbook S	29.95
Citizen MPS $10 ~ \$ 339.00$	Pitfall	\$ 19.95	Full line of CBS Software	CALL
Panasonic $1091 ~ \$ 299.00 ~$	Chipwits	\$ 29.95	DISKETTES* ${ }^{*}$	
Axiom Elite 5 Daisywheel	Synapse Games	\$ 19.95	Computer Warehouse ss/dd .. \$	14.95
Printer \$249.00	Epyx Games from	S 9.95	Elephant ss/sd \$	13.95
With interface \$299.00	Spreadsheets		Elephant ss/dd	16.95
	Multiplan . .	\$ 59.95	Maxell MD1	18.95
MODEMS	Practicalc	\$ 29.95	Maxell MD2D	24.95
Westridge \$ 69.95	Easy Calc	\$ 49.95	SKC ss/sd	13.95
MPP 1064 \$ 89.95	Calc Result	\$ 69.95	SKC ss/dd S	16.95
Mighty Mo \$ 89.95	Swift Calc	\$ 49.95	-Prices per boxes of 10	

WILL WRITER • CHARACTER EDITORS • ASTRONOMY PROGRAMS • JUKI \& SAKATA PRINTERS • INTEGRATED SOFTWARE • MIDI INTERFACE • VCR TITLE MAKER • 4-OCTAVE KEYBOARD • COMMODORE USER SUPPORT TELECOM UPDATE • LATEST GAME \& EDUCATIONAL RELEASES • BOOKS

MODERN ROLL PLAYING

If you can analyze trends as shrewdly as we, then you realize that player piano sales are at an all-time low. So what does a piano roll company with 85 years of experience do? Convert all that digitized music to disk, of course. That's what Q-R-S Music Rolls Inc. and Micro-W. Distributing have combined to do.

Q-R-S will make its library of over 10,000 piano rolls available, digitally encoded to run on Commodore and other popular computers. Required is an instrument such as a keyboard synthesizer (to serve as the equivalent of a player piano), equipped with a Musical Instrument Digital Interface (MIDI). Micro-W's new Commodore MIDI Interface, which plugs into the 64's user port, is the lowest-priced (\$49.95) available to date. Also newly offered is the 1-2 MIDI Cable (\$19.95), which connects an instrument used in the described configuration to one or two other instruments.

Micro-W. Distributing, Inc., 1342B Route 23, Butler, NJ 07405 (phone: 201-838-9027).

RE G

When you review products prior to their release, as we try to do, announcements of this type are sometimes necessary. Cardco's OuiG interface (see page 88, April), their enhanced version of the $+G$, has been renamed the G Wiz. (Whatever the product's capabilities, you've got to be impressed by Cardco-coming up with not one, but two cute titles for a printer interface.)

Cardco, Inc., 300 S. Topeka, Wichita, KS 67202 (phone: 316-267-3807).

10,000 piano rolls going floppy. READER SERVICE NO. 291

DATABASE PROGRAMS

The icon-driven E-Files 64 lets the user set up a customized database in card file format in any of three file drawers (each with a 200 -record capacity). Sort and search by any userdefined field, selective printouts, and address book format with mailing labels are all possible. On disk; $\$ 20.95$.

VMC Software, P.O. Box 326, Cambria Heights, NY 11411.
Designed to manage a home or small business bank account, MegaBase I will scan a datafile for checks by number, company, or name, deposit listings and withdrawals, append or edit existing datafiles, auto-balance, and list a block of checks. On disk for the 64; $\$ 19.95$.

Mega-Systems, P.O. Box 415, Spring House, PA 19477 (phone: 215-855-4451).

CHARACTER EDITORS

The uses of the Chared character editor range from creating character sets for the Greek (or any other) alphabet to designing flying saucers for game use. Hi-res and multicolor
modes are supported. Two sample character sets are included. For the C-64 on tape (\$19.95) or disk (\$22.95).

APCAD Software, P.O. Box 2673, Ann Arbor, MI 48106.
Font Factory will read in any standard Commodore ASCII sequential disk file, automatically format it, and print the document with the typeface you select (eight are provided) in single or double width. On the same disk is Signwriter 64, allowing you to generate large letter signs up to 40 characters long, in characters up to 1 foot in length. Price is $\$ 29.95$.

INTEGRATED SOFTWARE

If you multiply the hundreds of thousands of copies of Lotus 1-2-3 that have been sold for the IBM PC by the program's selling price of $\$ 300-\$ 500$, it easily ranks as the bestselling computer program of all time. This success has inspired three manufacturers of C-64 software to produce their own integrated business software, wherein several programs reside simultaneously in memory, allowing data to be switched back and forth.

Vizastar, like Lotus, provides spreadsheet, database, and business graphics programs. Menu-driven, it allows you to open up to nine windows to view different parts of the spreadsheet simultaneously. As of this writing, the program will work only with the 1541 disk drive. Price is $\$ 119.97$.

Solid State Software, 1253 Corsica Lane, Foster City, CA 94404 (phone: 415-341-5606).

Harmony from International Tri Micro also offers spreadsheet, database, and business graphics programs,

WITH NIGHT MISSION

You deserve the best. You've earned it. Now reward yourself with a session of Night Mission PINBALL, the most realistic and challenging arcade simulation ever conceived! a Stunning graphics and dazzling
 sound effects put Night Mission PINBALL in a class by itself. Game features: multiball and multi-player capabilities, ten different professionally designed levels of play, and an editor that lets you create your own custom modes. a So take a break with Night Mission PINBALL from SubLOGIC. Winner of Electronic Games magazine's 1983 Arcade Award for Best Computer Audio/Visual Effects.
and adds a word processor. A windowing feature allows the user to view one set of data while working with another.

International Tri Micro, 1010 N . Batavia, Suite G, Orange, CA 92667 (phone: 714-771-4038).

Softsync's Trio comprises word processor, spreadsheet, and database programs. The spreadsheet features 48 K free memory and recalculates topologically, similarly to Lotus 1-2-3 and Multiplan. On disk, with 120page manual/tutorial; \$69.95.

Softsync, Inc., 162 Madison Ave., New York, NY 10016 (phone: 212-685-2080).

NEW PRINTERS

For the individual who must own the fastest printer on the block, Sakata's SP-1500 is a safe bet at 180 characters per second. Despite its high speed, the $\$ 585.00$ serial impact dot matrix printer operates at a noise level of $60 \mathrm{~dB}(\mathrm{~A})$. Included are a 3 K buffer, friction/tractor and reverse feed, near letter quality mode and numerous other special print features, and built-in parallel Centronics interface (serial interface optional).

Sakata U.S.A. Corporation, 651 Bonnie Lane, Elk Grove Village, IL 60007 (phone: 312-593-3211).

If speed is not important but lowcost letter-quality print is, the $\$ 295$ Juki 6000 will bang out 10 characters per second from a 100 -character daisy wheel in 10,12 , or 15 pitch. Included are both Centronics parallel and RS-232C serial interfaces.

Juki Industries of America, Inc., 299 Market Street, Saddle Brook, NJ 07662 (phone: 201-368-3666).

64 AND PALS

64 and Pals' disk and booklet lead the beginning user from setting up his C -64 through running various types of programs. Price: $\$ 14.95$.

Abnel Company, P.O. Box 397, Grand Junction, CO 81502 (phone: 303-245-3997).

TELECOM NEWS

Through Travelshopper, CompuServe subscribers can now directly access TWA's PARS reservations sys-

Juki 6000: low cost, speed. READER SERVICE NO. 292

tem to determine the lowest fares and most convenient flights-as well as make an immediate reservation and have the ticket sent to their home, the airport, or a designated travel agent. Enrollment is free and includes membership in TWA's Frequent Flight Bonus program. The TWA PARS includes up-to-date information on domestic and international flights for every published airline schedule in the world.

Additionally, CompuServe will combine with Quick \& Reilly (the nation's third largest discount brokerage firm) to offer such online services as price quotes and direct order entry for virtually every stock and option listed in the Wall Street Journal and current portfolio and tax records. Most important, clients can buy and sell securities 24 hours a day (with orders placed during evenings and weekends executed at the start of the following business day).

CompuServe Inc., 5000 Arlington Centre Blvd., P.O. Box 20212, Columbus, OH 43220 (phone: 614-457-8600).

Guide to Modems, an 8-page pamphlet published by Anchor Automation, defines basic modem technology and its applications and provides
suggestions for product selection (with an admirable lack of mention of their own product line). Copies are available at retailers.

Anchor Automation, Inc., 6913 Valjean Ave., Van Nuys, CA 91406. VIP Technologies has replaced its VIP Terminal with VIP Terminal XL, compatible with the C-64 and 128PC and featuring X-Modem file transfer protocol (to allow transfer of files to and from information services using same). Price: $\$ 39.95$.
VIP Technologies, 132 Aero Camino, Goleta, CA 93117 (phone: 805-968-4045).

Requiring only a C-64, a 1541 disk drive, and a 1526 printer, CAM- 64 (Call Accounting Manager) allows businesses to sort outgoing calls by station/extension (up to 254), area code, common carriers, and other categories, each of which may be subdivided into number of calls, length of calls, etc. Price of autostart cartridge, software, and manual is \$295.

Stop playing "Hide-and-Seek" with your Disk software! Let your commodore $64^{\text {* }}$ "memory" do all the work for you, with MASTERDISK* Easy MenuGuides make everyone a "pro" in 1 day! Here's a small "PEEK" at SOME of the POWER of PRODUCTIVITY at your fingertips

- a SORTED Master Catalog of ALL your Disks: Names, ID's, File info, etc
- Search + List any File/Disk/ID in seconds, automatically, in any of FIVE WAYS.
- Transfer ML-Programs or Files from Disk to Disk (CATEGORIZE your software)
- Stop disaster before it strikes: change duplicate ID's fast, without total re-copy.
- Restore accidentally-scratched files in a flash, with VERIFICATION that they're OK.
Works with 1 or 2 Drives (1541-type), with or without Printer (Commodore or ASCII).
- All this + MUCH MORE, for just \$29.95.

SPECIAL: Handy-Reference Card for HEX/ASCII/Binary-to-Decimal Values, + FORMULAS - only \$2 with order (\$1 for all phone orders)
PLUS: Everybody wants a FAST backupcopy program. How's 4 MINUTES, including Formatting?! -and it's FREE with MASTERDISK*! ! INTEGRATED-SOFTWARE

SYSTEMS
P.O. Box 1801

Ames, IA 50010
VISA/M.C./C.O.D., call (515) 233-2992 $9 \mathrm{am}-9 \mathrm{pm}$ M-F, $9 \mathrm{am}-1 \mathrm{pm}$ Sat \& Sun (Central) Add $\$ 3$ Shipping/plus $\$ 2$ Foreign, COD IA Residents add 4\% Sales Tax

MicroProse's Command Series of combat simulations, recreating some of the greatest battles of the twentieth century. READER SERVICE NO. 294

Input Systems, Inc., 15600 Palmetto Lake Drive, Miami, FL 33157 (phone: 305-253-8100).

Data Mart, Inc. will publish the OPPS Directory of Online Personnel, Products and Services, to be updated twice a year. Registration for the first edition is open until June 30, 1985.

Data Mart, Inc., P.O. Box 13542, New Orleans, LA 70185-3542 (phone: 504-866-0828).

NEW GAME RELEASES

MicroProse's Command Series of combat simulations puts you in charge of the great armies of the 20th century, in a variety of historical or "what if" scenarios.
The first two releases are Crusade in Europe, simulating the Allied struggle against Germany from DDay to the Battle of the Bulge, and Decision in the Desert, recreating the battle between Rommel's Afrika Korps and the British 8th Army for control of North Africa. The next wave will include Sword of Zion (the

Arab-Israeli Wars), Blitzkrieg 1940 (Germany's early-WWII victories), and Drive on Moscow (Hitler's invasion of Russia). For the C-64; \$39.95 each.
MicroProse Software, 120 Lakefront Drive, Hunt Valley, MD 21030 (phone: 301-667-1151).
Incorporating light pen technology, the Stack Light Rifle allows you to shoot'em-up from as far as 10 feet away from the screen. Included are six disk-based games: High Noon, Glorious 12th, Shooting Gallery, Rats n' Cats, Escape from Alcatraz, and Crow Shoot. Romaro Enterprises, North American distributor of the rifle, will release additional games to retail for under \$20.00 each.

Romaro Enterprises International, P.O. Box 227, Streetsville Postal Stn., Mississauga, Ontario, Canada L5M 2B8 (phone: 416-820-5235).

Between April 1 and August 31, Datasoft will mail a $\$ 5$ rebate to purchasers of Bruce Lee, Conan, The Dallas Quest, Pac Man, Dig Dug,

Pole Position, Mr. DO!, Zaxxon, or Letter Wizard. Rebate coupons can be found in appropriately marked packages, or with your dealer.

Datasoft, Inc., 19808 Nordhoff Place, Chatsworth, CA 91311 (phone: 818-701-5161).

Electronic Arts will award three $\$ 1000$ prizes to those registered owners of their Adventure Construction Set who produce the best games in the Fantasy/Medieval, Spy/Mystery, and Science Fiction categories. Copies of winning games and all other entries will be made available to registered ACS owners for the cost of disk duplication and handling. Entries must be submitted (on disk) by January 1, 1986.
Electronic Arts, 2755 Campus Drive, San Mateo, CA 94404 (phone: 415-571-7171).

LOW-COST WORD PROCESSOR

The Pagewriter 64 word processor features an 80 -column scrolling text window, onscreen command menus, and mailmerge option. A column indicator above the text lines provides a visual indication of the position of the text being entered. Available on disk (\$21.95) or cassette (\$18.95).

VMC Software, P.O. Box 326, Cambria Heights, NY 11411.

COMMODORE USER SUPPORT

Good news for Commodore user groups: the formation of Commodore World, a program designed to provide a direct link between Commodore and user groups around the world. Organizations approved for membership receive suggestions for organization, advertising support, and pre-release product news through the program's Input/Output newsletter.

Groups wishing to join should contact the User Group Coordinator at Commodore (215-431-9100); they will receive an application, sample bylaws, color advertising posters, and the first issue of the newsletter. Approved groups will receive an access code to the Commodore World section of Commodore's telecommunications network, additional posters,

Break the ${ }^{2}$ rec language barrier

VIDEO BASIC-64 - ADD $50+$ graphic and sound commands to your programs with this super development package. You can distribute free RUNTIME version without paying royalties! ISBN\# 0.916439-26-7
$\$ 59.95$
BASIC COMPILER 64 - compiles the complete BASIC language into either fast 6510 machine language and/or compact speedcode. Get your programs into high gear and protect them by compiling.
ISBN\# 0.916439-17-8
$\$ 39.95$
MASTER-64 - professional development package for serious applications. Indexed file system, full screen management, programmer's aid. BASIC extensions, 100 commands.
ISBN\# 0.916439-21-6
$\$ 39.95$
PASCAL-64 - full Pascal with extensions for graphics, sprites, file management, more. Compiles to 6510 machine code and can link to Assembler/Monitor routines. ISBN\# 0.916439-10-0
\$39.95

ADA TRAINING COURSE - teaches you the language of the future. Comprehensive subset of the language, editor, syntax checker/compiler, assembler, disassembler, $120+$ page guide.
ISBN\# 0.916439-15-1
$\$ 59.95$
FORTH-64 - loaded with hires graphics, complete synthesizer control, full screen editor, programming tools, assembler.
ISBN 0-916439-32-1
$\$ 39.95$
C LANGUAGE COMPILER - a full C language compiler. Conforms to the Kernighan \& Ritchie standard, but without bit fields. Package includes editor, compiler and linker.
ISBN\# 0.916439-28-3
$\$ 79.95$

ASSEMBLER MONITOR-64-a

macro assembler and extended monitor package. Assembler supports floating point constants. Monitor supports bank switching, quick trace, single step, more.
ISBN\# 0.916439-11-9
\$39.95

XREF-64 - indispensible tool for BASIC programmer cross-references all references to variable and line numbers.
ISBN\# 0.916439-27-5
$\$ 17.95$
OTHER TITLES ALSO AVAILABLE - WRITE OR CALL FOR A FREE COMPLETE CATALOG
Call today for the name and address of your nearest local dealer.

PHONE: (616) 241-5510

For postage and handling include $\$ 4.00$ ($\$ 8.00$ foreign) per order. Money order and checks in U.S. dollars only. Mastercard, VISA and American Express accepted. Michigan residents Movera incl 4\% sales tax.

FREE PEEKS \& POKES WALL POSTER INCLUDED WITH EVERY SOFTWARE PURCHASE

Abacus

bulk shipments of the monthly newsletter, product brochures, and-farfetched as it sounds-a "reliable" telephone contact at Commodore.

Commodore Business Machines, Inc., 1200 Wilson Drive, West Chester, PA 19380.

EDUCATIONAL PROGRAMS

The Keyboard Chord/Scale Master sharpens the user's keyboard abilities through a variety of sight and sound reinforcements. Chord Display and Scale Display let the user view and hear the most common chords and scales. Chord Review and Scale Review include drill, quiz, and compete options. The Compare mode requires comparison of one chord with another in the same or a different key signature. For the C-64; $\$ 39.95$ plus $\$ 1.50$ postage (MI residents add 4% sales tax).

Valhala Software, 205 E. Hazelhurst, Ferndale, MI 48220.

Kidbit Software has enhanced two previous VIC releases and combined them on one disk for the 64 . The

Same/Not Same Game lets children build a spaceship by telling the Central Computer which shapes, colors, directions, or letters are different from the others in the group. AlphaBee Sequence requires children to supply missing letters of the alphabet to a forgetful bee. $\$ 26.95$.

Kidbit Software, 7001 Sunkist Drive, Oakland, CA 94605 (phone: 415-638-1243).

The Chipwits are 16 robots which children must help through 49 different mazes. They do this by programming the robots to move, feel, see, smell, remember, and more. For the C-64; \$29.00-\$39.00.

Epyx, Inc., 1043 Kiel Court, Sunnyvale, CA 94089 (phone: 408-745-0700).

Wurble incorporates vocabulary and spelling training into a computer board game for ages 10 up. The game editor allows for hundreds of rule variations.

Sher-Tek, P.O. Box 6808, Stn. "J", Ottawa, Ontario, Canada K2A 3Z4.

An elementary through high school

Same/Not Same Game: for ages 3 to 7. READER SERVICE NO. 295
teacher's guide, The Investor's Challenge is designed for use with Blue Chip Software's Millionaire stock market simulation, Tycoon commodity market simulation, and Baron real estate simulation. Price is $\$ 6.95$.
Blue Chip Software, Inc., 6744 Eton Avenue, Canoga Park, CA 91303 (phone: 818-346-0730).

SOUNDCHASER 64

Passport MusicSoftware's $\$ 199.00$ Soundchaser 64 is the first four-octave music keyboard for use with the 64. Included is software that transforms the 49 -note music system into a full nine octave range, as well as allowing the user to create a variety of instrument sounds for either a monophonic or polyphonic keyboard. The keyboard can be used with Passport's Macmusic (\$49.95), which provides a visually oriented music composition system.

Passport also distributes a line of Computer Sheet Music, allowing a student to play at his own pace while the onscreen notes he plays correctly change in color.

Passport Designs, Inc., 625 Miramontes Street, Suite 103, Half Moon Bay, CA 94019 (phone: 415-726-0280).

MASTERDISK CHANGE

In February's Scuttlebutt we announced Masterdisk, which composes a master catalog of your disk library. Since then, Integrated-Software has discovered that the 4 -minute backup program included on the disk was pirated from a copyrighted German program. Taking its place will be Copy 18, which will copy track 18 (the disk directory) from any disk and make modifications.

WHEN YOU BUY TIMEWORKS SOFTWARE YOU GET MORE THAN SOFTWARE.

You get our Customer Technical Support Team

At the other end of our toll-free hotline, you'll find our full-time Customer Technical Support Team. With Timeworks, you get immediate answers . . . free of charge to all registered users. Our Timeworks experts help you use each of our programs to its fullest potential. Not everyone provides this necessary support, let alone for free.

More power for your dollar

[^0]
You gef our liberal Trade-Up Policy

If, at any time in the future, you wish to buy an updated version of any Timeworks program, or if you upgrade your computer system, you may exchange your original program for any other program we publish. Here's how:

- Purchase your new Timeworks program at your favorite dealer.
- Send us the Timeworks program you wish to trade in, your paid receipt for the new program, and the title of the Timeworks program you would like in exchange. It's FREE OF CHARGE, if the suggested retail price of both programs is the same. Or, include your check or credit card number to cover only the retail price difference between your old program and the one you wish in exchange. Please add $\$ 4.70$ for shipping and handling, in either case.
- We'll be glad to furnish a list of Timeworks' suggested retail prices, upon request.

You gef our Money Back Guaranfee

If you can find anything that works better for you, we'll buy it for you. Simply send us your Timeworks program, your paid receipt, and the name of the program you want, along with your check or credit card number for any retail price difference. If it's available, we'll send it to you.*

Look for these and other Timeworks programs at your favorite dealer. Or contact Timeworks, 444 Lake Cook Road, Deerfield, IL 60015. Phone: (312) 948-9200.

Available for Apple, IBM, Commodore, and Atari computers.**

May Catch Up Wilit lhid way COUPUSDRYES DLDCHRONC MALE LDIS YOU SHOP IODAY.

Presenting the computer shopping service that delivers discount prices, name-brand merchandise, and in-depth product information.

To make your computer even more useful, join CompuServe and shop in our Electronic Mall. Easy enough for beginners, it's open 24 hours a day, 7 days a week. And it offers a wide range of goods and services from nationally known stores and businesses including Bloomingdale's, Waldenbooks, American Express and Commodore.
CompuServe's Electronic Mall ${ }^{\text {™ }}$ lets you shop at your convenience in all these departments:

The Auto Shop, Book Bazaar, Financial Mart, Leisure Center, Merchandise

Mart, Newsstand, On-line Connection, Personal Computer Store, Record Emporium, Specialty Boutique and Travel Agency.

[^1]
The Electronic Mall-A Valuable Addition to the Vast World of CompuServe.

CompuServe Information Services bring you information, entertainment, personal communications and more.

You can access CompuServe with almost any computer and modem, terminal or communicating word processor.

To buya CompuServe Subscription Kit, see your nearest computer dealer. To receive our informative brochure, or to order direct, call or write:

CompuServe
 Information Services, P.O. Box 20212,

 5000 Arlington Centre Blvd., Columbus, OH 43220800-848-8199
In Ohio call 614-457-0802

Integrated-Software Systems, P.O. Box 1801, Ames, IA 50010 (phone: 515-233-2992).

VCR TITLE GENERATOR

The Video Title Editor lets C-64 or VIC 20 users incorporate title screens into their video tapes without the need for a camera, second VCR, or high-priced character generator. Included are over 20 displays for birthdays, weddings, vacations, and more. Customized displays can also be designed. Price is $\$ 29.95$, on either cassette or disk.
Videoware, 19777 W. 12 Mile Rd., Suite 180, Southfield, MI 48076 (phone: 313-626-7208).

HANDICAPPING PROGRAM

The Racing Analysis Program Package includes Thoroughbred, Harness, and Bet Return programs which make predictions based on past performance data. About five minutes are required to enter the data for each race. For the 64 or VIC 20, on cassette or disk; $\$ 29.95$ plus $\$ 2.00$ postage from Software Exchange, P.O. Box 5382, W. Bloomfield, MI 48033 (phone: 313-626-7208).

WILL WRITING SOFTWARE

By simply recording your answers to a series of questions, the Willwriter disk/software package generates and prints a will (good in every state except Louisiana) and provides you with information on signing and witnessing. You may update your will an unlimited number of times. For the C-64; \$39.95.
Nolo Press, 950 Parker St., Berkeley, CA 94710.

ASTRONOMY SOFTWARE

For readers who thought Commodore's Sky Travel went where no program had gone before, a list of 45 astronomical software programs has been published by the non-profit Astronomical Society of the Pacific. A list of reference books is also included. Send a $\$ 1.00$ donation to cover postage and handling to A.S.P. Computer List, 1290 24th Ave., San Francisco, CA 94122 (phone: 415-661-8660).

The Paper

Catcher will
provide a
convenient
landing
place on top
of your
printer for
continuous
feed paper.
READER
SERVICE
NO. 296

THE BUDDY SYSTEM

The Paper Catcher (\$49.95) stacks printed sheets of continuous-feed paper neatly atop a variety of $80-$ and 132 -column printers. Vinyl feet provide added stability. Built of lightweight, high impact plastic, its putty color will blend in with most hardware.

Buddy Products, 1350 South Leavitt St., Chicago, IL 60608 (phone: 312-733-6400).

FAST LOAD LOWDOWN

From the research lab of Ahoy! writer Cheryl Peterson comes the following addendum to last month's examination of Fast Load from Epyx: Commodore computers interfaced to a printer through certain parallel boxes will not be able to use the program's quick copy function. A technical support person at Epyx explained that Fast Load requires all the data lines, rendering it unoperation-

The

Master Handicapper ${ }^{\text {TM }}$ Fin

 Series by Professor Gones

BROCHURE AVAILABLE

Send check / money order / VISA / Mastercharge (Include expiration date) to

Prof. Jones 1940 W. State St. Boise, ID 83702

TERMS: FREE SHIPPING ALL SOFTWARE. Add $\$ 6.00$ hardware / $\$ 6.00$ C.O.D. / UPS Blue $\$ 6.00$ / Out of Country $\$ 9.00$ / 10 Residents 4% / 3 weeks personal checks / Cash price only, add 2% Visa, MC / Prices subject to change.

IBM, APPLE, TRS-80, C-64 AND OTHERS

al with certain interfaces. Two of the primary offenders, unfortunately, are also two of the most popular: Cardco and the (Orange Micro) Grappler.

The documentation also fails to point out that a Commodore 1541 must be used; Fast Load will not work with an MSD, Indus GT, etc. Finally, don't misunderstand Epyx' claim that the program will work with most copy-protected software. It will run most copy-protected software. It will not copy it.
Epyx, 1043 Kiel Court, Sunnyvale, CA 94089 (phone: 418-745-0700).

BOOK RELEASES

The Computerfacts series from Howard W. Sams \& Co., Inc., reveals the inner workings of Commodore hardware with wiring diagrams, photos, disassembly instructions, parts lists, troubleshooting techniques, and other repair data. Available for the C-64, C-16, Plus/4, VIC 20, 1525 printer, 1701 monitor, or 1541 disk drive; $\$ 19.95$ each.
Also newly released, the Commodore 64 Troubleshooting and Repair Guide covers proper diagnostic techniques and lists specific malfunctions in trouble charts organized by com-

Computerfacts series: diagnostic aid. READER SERVICE NO. 297
puter subsystem. List price is $\$ 18.95$. Finally from Sams, Commodore 64 for Kids from 8 to 80 works hands-on with the new user to create simple programs. Numerous illustrations are included. Price is $\$ 12.95$.

A catalog of 347 book titles is available from Howard W. Sams \& Co., Inc., 4300 W. 62 nd St., Indianapolis, IN 46268 (phone: 1-800-428-SAMS or 317-298-5400).

Four new C-64 publications from Prentice-Hall:

Easy Interfacing Projects for the Commodore 64 ($\$ 10.95$) provides dozens, ranging from mechanical actuators to analog-to-digital convertors.

Multiplan for the Commodore 64 (\$14.95) offers a tutorial and over a dozen home and business applications (with listings).

With an emphasis on graphics generation, Advanced Machine Code Programming for the Commodore 64 (\$12.95) explains how to tap into the 64's 6502/6501 microprocessor.

More BASIC Is Child's Play, Commodore edition (\$19.95) picks up where its precursor left off, teaching children as young as 7 to program. Prentice-Hall, Englewood Cliffs, NJ 07632 (phone: 201-592-2640).

Einstein's Beginner's Guide to the Commodore 64 ($\$ 7.95$) provides a general introduction to computer use and programming. Harcourt Brace Jovanovich, 1250 Sixth Ave., San Diego, CA 92101 (phone: 619-231-6616).

Understanding Microprocessors (\$14.95) covers software, programming concepts, assembly language, and applications of 4-, 8-, and 16-bit microcomputers. Texas Instruments Inc., P.O. Box 225474, M/S 8218, Dallas, TX 75265 (phone: 214-997-3926).

IT WRITES THE SONGS

Cantus, the Music Improviser purports to be the first microcomputer program that invents its own music. Instead of notes, the user enters choices for tempo, harmony, rhythm, counterpoint, voice range, and tone color, from which Cantus creates three-voice improvisations which play continuously with no repetition. Each set of choices becomes a "patch" which can be saved and later recalled. Price is $\$ 54.00$ plus $\$ 2.00$ postage and handling.

Algo-Rhythm Software, 176 Mineola Blvd., Mineola, NY 11501 (phone: 800-645-4441 or 516-294-7590).

TOW

 FORTHEC-64

 FORTHEC-64}

At the time of creation, the god Brahma placed sixtyfour rings, ranging from smallest to largest, on the first of three golden towers in the temple of Benares. He enjoined his priests with the task of moving the rings, being careful never to place a larger ring atop a smaller, until the rings were placed in like manner on another tower. When this has been accomplished, in about six hundred billion years, the universe will come to an end. Such, at least, is the legend.

Actually, Edouard Lucas, who invented the Tower of Brahma puzzle, devised this story to popularize his creation. The puzzle has been a favorite for several generations. Now you can try your skill on a less formidable (though equally challenging) version using your Commodore 64. You may select to attempt from two to eight rings. Each additional ring represents a doubling in difficulty. To move two rings requires three moves; three rings, seven moves; four rings, fifteen moves; eight rings, two hundred fifty-five moves. The number of moves is determined by the formula $2 \uparrow$ (number of rings) -1 . Assuming the priests of Brahma moved one ring each second, it would require ($2 \uparrow$ 64) $=1$ seconds, or about six billion centuries, before the smallest ring would be placed on top of the tower.

With up to four rings, the puzzle is fairly easy to solve. After that, though, you must plan your moves carefully in order to complete it in the minimum number of moves. To end the puzzle, press 'fl'. Also, if you become completely baffled, again press 'fl' and you will be asked 'Computer Solution (Y/N)?". Answer 'Y' and the puzzle will reset and solve
itself. The rings will begin to magically float across the screen and position themselves from one tower to the next until the final orientation is achieved.
The three towers and their base are built from keyboard character graphics in lines 2150-2240. Each ring is a sprite defined within lines 19902050. The DATA lines for each sprite show a way of conserving memory. The interpreter automatically READs a value of zero if a value is not entered. Another handy (though seldom used) command in the program is FRE(0). Normally, this function is used to calculate the amount of free RAM available for a program and its
variables. In a program which creates and manipulates strings such as Towers, it performs a more valuable service. String values created during the course of a program run are stored in upper memory one beneath another until space is depleted. At this point, the process of garbage collection begins and may take several minutes, during which time the program stops and the keyboard is dead. Using a statement such as $\mathrm{CT}=\mathrm{FRE}(0)$ forces an immediate garbage collection. Since this is done on each move, the number of strings that have accumulated is small and the process is instantaneous. \square
SEE PROGRAM LISTING ON PAGE III

CHEATNGYOMPOWNGAMES ONTIIIE VIC:ANI) (2-4

When the Commodore 64 first came out, one of its most touted features was the music capability. I had programmed on the Atari, and naturally I was a little skeptical about the 64's three voices-didn't the Atari have four?
Then I heard what the 64 could do with sound envelopes and waveforms, and I was willing to forgive the missing voice for the great improvement in quality.
Trouble was, all that wonderful sound was locked away from the BASIC user in a series of POKEs. They didn't give Commodore BASIC a SOUND statement comparable to the Atari's, which set the pitch, the distortion, and the volume in a single fast statement.
Instead, you have to set up the sound envelope and general volume in advance, and then each time you want to change the pitch or sound a new note, you have to:

1. Set two frequency registers for each voice.
2. Gate each voice open to begin its tone.
3. Gate each voice closed to stop.

Since every single one of these steps is a POKE, a notoriously slow command in Commodore BASIC, starting and stopping a single three-note chord takes twelve POKEs and far, far too much time.

About a year ago, I got a PCjr and, despite that machine's many drawbacks, I saw for the first time what a humane music program system could be.

Don't misunderstand-the Commodore 64 still has far and away the best sound chip on the market. The SID hasn't been matched by anybody.

But the PCjr has a mini-language for playing music. All you do is set up a string that contains the letters for the musical scale-C, D, E, F, G, A, and B-along with instructions about sharps and flats, octave changes, and the duration of the note, and BASIC plays the string. It even does it in the background, so that your program can go on long before the music's over.

All this seemed to me to be one more proof of the terrible conspiracy of the computer manufacturers. Take it from me, they all get together once a year and have a meeting like this:

COMMODORE: Look, we've got the best sound chip on the market in our new computer. You guys can't compete with it.

ATARI: That's OK-as long as you make your screen display all fuzzy and leave us as the only computer with a decent TV display, we'll let you have better sound.

IBM: You can have sound, Commodore, and you can have video, Atari. What we'll do is put superb sound and graphics commands into our BASIC. Real easy-to-program stuff. Atari, you can have a SOUND statement, but don't make it too easy to use. And you, Commodore, you can't do anything for them. Just a bunch of POKEs.
By Orson Scott Carst

pboenix

Disk 1

TEXT ADVENTURES
ZORK I
ZORK II
ZORK III
ENCHANTER
SORCEROR
STARCROSS
SUSPENDED
PLANETFALL
DEADLINE
Disk II
Disk III
MEGAVENTURES
GRAPHIC ADVENTURES

ULTIMA II
ULTIMA III
ULTIMA IV
RETURN OF HERACLES
QUESTRON
Only \$9.99!

GOTHMOGS LAIR
MASK OF THE SUN
DEATH IN THE CARIBBEAN BLADE OF BLACKPOOLE CRITICAL MASS
GRUDS IN SPACE
ULYSSES AND THE GOLDEN FLEECE WIZARD AND THE PRINCESS

ASYLUM THE INSTITUTE

Only \$9.99!

Have you ever played an Adventure Game where you just plain got stuck and couldn't get any further? Well, here's the answer - Phoenix Red's Adventure Game Tutorials. They can be used as hints or they will tell you exactly what to do to get out of all those sticky situations. These Tutorials are written for your computer (A Commodore 64) not someone elses, so they work.

We pay postage and handling.
A must-have for all adventures.
Order yours today!
Send check or Money Order to:
"We put out money where our software is, not our copy protection."

- phoenix reo

Phoenix Red Software 2705 Oak Dr. Houston, Texas 77539

COMMODORE: That's fine. We'll still sell five for every one of yours.

THE ALL-PURPOSE MUSIC ROUTINE

Are you going to sit still for that kind of collusion? Am I? Not a chance.

Instead, in this month's column I bring you Card's AllPurpose Music Player. To use this routine, you save it and then load it in at the beginning of your programming session. It uses up line 10 , lines $60-70$, and lines $9000-9990$. Then you write your program around it. Put your movement routine in lines 20-50, for instance, and your main loop at 100. Program, in other words, just like normal.

Whenever you want to play a tune - or part of a tunehave your program GOSUB 60, and a phrase of the tune will play.

STRINGING ALONG

Best of all, to enter the melody, you don't have to calculate all the frequency values for the notes you're using, or set up a bunch of DATA statements. Instead, you enter each phrase of the music as a string, using the standard musical alphabet - the scale C, D, E, F, G, A, and B.

This means that you can transfer a song more or less directly from sheet music or, if you're good at music, right out of your head. All you have to do is divide the melody into a series of usable chunks, called "phrases." Each phrase can be as long as 255 characters, but for sheer practicality you'll probably break the music up into much shorter phrases.

The note strings are set up starting at line 9500 in all three versions of the program included here (Three-Voice Player, One-Voice Player, and Broken Melody).

Line 9500 tells how many voices you're going to use, minus 1. That means that for three voices, you type $\mathrm{EV} \%=2$; for two voices, you type EV \% = 1. (One-Voice Player has no line 9500, since only one voice is possible with this version of the routine. This allows it to be streamlined, and the music can play much faster.)

In line 9510, the variable ES\% is set to the number of phrases in the song, minus 1 . That means that if your song has 9 phrases, you will type ES $\%=8$.

Starting at line 9520, the actual music strings are set up. There are three string types for each phrase:

Duration. MD\$(PH) sets the duration for each note in the phrase. This is the same for all three voices - the three voices must each execute exactly the same number of notes (or rests) per phrase. The duration string consists of numerals from 0 to 9.0 is the shortest duration, and 9 is the longest. By changing, say, the fifth number in the MD\$(PH) string, you change how long the fifth note of that phrase will sound.
(These duration numbers are used as an index into a duration array, DU \% (), which is set up at lines 9200 and 9210 . If you want to change how long a duration 1 lasts, just change the second number in the DATA statement in line 9210.)

Melody. ME $\$(\mathrm{PH}, \mathrm{VC})$ sets the pitch or frequency for each note in the phrase, with a separate string for each of the three voices. The notation is very simple. To play the note A, type A. To play the note B, type B, and so on.

To play sharps, type the letter while holding down SHIFT. For instance, to play F-sharp, hold down SHIFT and then type F. A graphics character will-appear in the string.
To play flats, type the letter while holding down the COMMODORE logo key. To play B-flat, hold down COMMODORE and then type B. Again, a graphics character will appear in the string.

To make the voice silent for one note, type the @ sign.
Octave. MV\$ $(\mathrm{PH}, \mathrm{VC})$ sets the octave in which the note will be played. There are eight possible octaves, from 0 (the lowest notes) to 7 (the highest notes). Each position in the MV\$(PH,VC) string corresponds to that voice's note in the melody string.
In other words, the octave string MV\$() determines which octave a note will be in, and the melody string ME\$() tells which note within that octave will be played.
If several notes in a row are in the same octave, you only have to enter the octave number for the first note, and then enter spaces for the subsequent notes. Thereafter, for that voice, you need only enter octave numbers when the octave changes.

Each octave consists of the notes from C up to the next B. That means that if your melody string consisted of an F-major scale, played in voice 0 , and you wanted the scale to play very quickly, your strings would be typed like this:

Duration: $\quad \mathrm{MD} \$(\mathrm{PH})=" 00000000 "$
Melody: ME $(\mathrm{PH}, 0)=$ "FGABCDEF"
Octave: $\quad \mathrm{MV} \$(\mathrm{PH}, 0)=" 4 \quad 5$ "
Notice that there are the same number of characters in each string in the same phrase. (The B would actually be a B-flat, and you would type COMMODORE-B.) The octave changes when the scale goes up from B-flat to C . In other words, C is the lowest note of each octave.
(You can cheat, however, and type C-flat, which gets you a B in the next octave down without changing octaves. Likewise, you can type B-sharp and get the C from the next octave up. But why bother?)

PLAYING AROUND

This is really all you need to know to use this routine. All three programs use the same fundamental routine, with only a few changes, so once you've typed in one, it will be relatively easy to make the changes for the other programs (One-Voice Player has the most differences).

Program Your Own EPROMS

\rightarrow VIC 20

C $64 \quad \$ 99.50$
PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.

- Read or Program. One byte or 32 K bytes!
OR Use like a disk drive. LOAD,
 SAVE, GET, INPUT, PRINT, CMD, OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.
- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {tw }} \mathrm{C} 1$ gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {Tw }}$.

Call Toll Free: 800-421-7731 or 408-287-0259
In California: 800-421-7748
\square JASON-RANHEIM
580 Parrott St., San Jose, CA 95112

To use the routine, all you need to do is type in your own songs - setting the values of $\mathrm{EV} \%$, $\mathrm{ES} \%$, and the duration, melody, and octave strings for every phrase and voice. Then whenever your program executes GOSUB 60 , the routine will play the next musical phrase.
There are other changes you can make, however. Lines 62 and 68 can be altered by REMing one and executing the other, to switch from normal to staccato; or you can REM them both and get a legato sound (or nothing at all, depending on your ADSR envelope).
You can also experiment with different duration values at 9210. One limitation, though, is that you can't get any faster than 0 . Since this is a BASIC program, not machine language, and we're still using those POKEs, there's a limit to how fast you can go. The ideal music system uses machine language routines during the vertical blank interrupt-but this is a teaching column, not a software column, and so we'll stick with BASIC.
You can also change the elements of the ADSR enveloped by altering lines $9020,9030,9040$, and 9050 ; and you can change the waveforms in line 9070 . Next month I'll get into much more detail about how waveforms and envelopes are used, and we'll experiment with some sound effects; for now, though, you can make your own experiments by changing one or two parameters at a time.
The three programs show some of the things you can do. Three-Voice Player plays God Save the King (My Country, Tis of Thee) using a stately organ tone. OneVoice Player plays The Mexican Hat Dance at top speed, with a harpsichordlike hammered-string sound. Broken Melody plays I'm on My Way (from the musical Paint Your Wagon by Alan Jay Lerner and Frederick Loewe), using a fife sound for the melody line and a plucked-violin sound for the accompaniment.
Have Patience. When using the three programs, remember that in order to make the running time for the music very quick, most of the work is done during the execution of the setup routine at 9000 . Especially timeconsuming is the conversion of the strings from musical notes to values that music routine can use efficiently. A song as long and complex as the one in Broken Melody takes a couple of minutes to be ready. If we were working in machine language, this wouldn't be necessary, but the long setup time is the price we pay for being able to enter the music as musical notes and still have it play relatively quickly.

HOW SHOULD YOUR GAME USE MUSIC?

Obviously, this routine can't be used for background music, though that's one of the best uses for music in a game. If you've ever sung along with a video game (Xevious, Gyruss, and Elevator Action are particularly musical, I've noticed), you know that background music can set the tempo and mood, getting more intense as the player gets further along in the game.
But even when the music has to take place in the foreground, stopping everything else, the phrases of a song can be very useful. For instance, in a quiz game, instead

A Printer For All Reasons Search For The Best High Quality Graphic Printer

If you have been looking very long, you have probably discovered that there are just too many claims and counterclaims in the printer market today. There are printers that have some of the features you want, but do not have others. Some features you probably don't care about; others are vitally important to you. We understand. In fact, not long ago, we were in the same position. Deluged by claims and counterclaims. Overburdened by rows and rows of specifications, we decided to separate all the facts - prove or disprove all the claims to our own satisfaction. So we bought printers. We bought samples of all major brands and tested them.

Our Objective Was Simple

We wanted to find that printer which had all the features you could want and yet be sold directly to you at the lowest price. We wanted to give our customers the best printer on the market today at a bargain price.

The Results Are In

The search is over. We hae reduced the field to a single printer that meets all our goals (and more). The printer is the GP-550 from Seikosha, a division of Seiko. We ran this printer through our battery of tests and it came out shining. This printer can do it all. Standard draft printing up to a respectable (and honest) 86 characters per second, and with a very readable 9 (horizontal) by 8 (vertical) character matrix. At this rate, you will get an average 30 line letter printed in only 28 seconds.

' $\mathrm{Y} L \mathrm{Q}$ " Mode

One of our highest concerns was about print quality and readability. The GP-550 has a print mode termed Near Letter Quality printing (NLQ mode). This is where the GP-550 outshines all the competition. Hands down! The character matrix in NLQ mode is a very dense 9 (horizontal) by 16 (vertical). This equates to 14,400 addressable dots per square inch. Now we're talking quality printing. You can even do graphics in the high resolution mode. The results are the best we've ever seen. The only other printers currently available having resolution this high go for $\$ 500$ and more without the interface or cable needed to hook up to your computer.

Features That Won't Quit

With the GP-550 your computer can now print $40,48,68,80,96$, or 136 characters per line. You can print in ANY of 18 font styles. You not only have the standard Pica, Elite, Condensed and Italics, but also true Superscripts and Subscripts. Never again will you have to worry about how to print $\mathrm{H}_{2} \mathrm{O}$ or X^{2}. This fantastic machine will do it automatically, through easy software commands right from your keyboard. All fonts have true descenders.
One of the fonts we like best is "Proportional" because it looks most like typesetting. The spacing for thin characters like " i " and " 1 " are given less space which "tightens" the word making reading easier and faster. This is only one example of the careful planning put into the GP-550.

Do you sometimes want to emphasize a word? It's easy, just use bold (double strike) to make the words stand out. Or, if you wish to be even more emphatic, underline the words. Or do both. You may also wish to "headline" a title. Each basic font has a corresponding elongated (double-wide) version. You can combine any of these modes to make the variation almost endless. Do you wnat to express something that you can't do with words? Use graphics with your text - even on the same line.

You can now do virtually any line spacing you want. You may select $6,8,71 / 2$ or 12 lines per inch. PLUS you have variable line spacing of 1.2 lines per inch to infinity (no space at all) and 97 other software selectable settings in between. You control line spacing on a dot-bydot basis. If you've ever had a letter or other document that was just a few lines too long to fit a page, you can see how handy this feature is. Simply reduce the line spacing slightly and ... VOILA! The letter now fits on one page.

Forms? Yes!

Your Letterhead? Of Course!

Do you print forms? No problem. This unit will do them all. Any form up to 10 inches wide. The tractors are adjustable from $41 / 2$ to 10 in ches. Yes, you can also use single sheets. Plain typins paper, your letterhed, short memo forms, anything you choose. Any size under $10^{\prime \prime}$ in width. Multiple copies? Absolutely! Put forms or individual sheets with carbons (up to 3 deep), and the last copy will be as readable as the first. Spread sheets with many columns? Of course! Just go to condensed mode printing and print a full 136 columns wide. Forget expensive wide-carriage printers and changing to wide carriage paper. You can no do it all on a standard $81 / 2^{\prime \prime}$ page.

Consistent Print Quality

Most printers have a continuous loop ribbon cartridge or a single spool ribbon which gives nice dark printing when new, but quickly starts to fade after a while. To keep the printers' output looking consistently dark, the ribbons must be changed more often than is healthy for the pocketbok. The GP-550 solves this problem completely by using a replaceable, inexpensive ink cassette which is separately replaceable from the actual ribbon. It keeps
the ribbon loaded with ink at all times. You only replace the ribbon when it truly wears out, not when it starts to run low on ink. Just another example of the superb engineering applied to the GP-550. (When you finally do wear out your ribbon, replacement cost is only $\$ 10.95$. Ink cassette replacement cost is only $\$ 5.95$, both postpaid.)

The Best Part

When shopping for a quality printer with all these features, you could expect to pay around $\$ 500$ or more. Not any more! We have done our homework. You don't have to worry about interfaces or cables. Everything is included. You need absolutely nothing else to start printing - just add paper.

No Risk Offer

We give you a 15 -day satisfaction guarantee. If you are not completely satisfied for any reason we will refund the full purchase price. A 1-year warranty is included with your printer.

The Bottom Dollar

GP-550A Standard Parallel (No Cable)............ $\$ 249.95$ GP-550CD Commodore (Direct Connect).......... $\$ 259.95$ GP-550AT Atari (Direct Connect)...................... $\mathbf{\$ 2 5 9 . 9 5}$ GP-550AP Apple II or Ile (Direct Connect)......... $\$ 299.95$ GP-550PC IBM PC \& Compatables (No Cable)... $\$ 259.95$ GP-550TI TI 99/4A (Direct Connect)............... $\$ 299.95$
"Prices \& Availability Subject to Change. CALLI"
.Shipping is $\$ 8.00$ - UPS within the continental USA. If you are in a hurry, UPS Blue (second day air) is $\$ 18.00$. Canada, Alaska, Mexico are $\$ 25.00$ (air). Other foreign is $\$ 60.00$ (air). California residents add 6% tax. These are cash prices - VISA and MC add 3\% to total. We ship the next business day on money orders, cashiers' checks, and charge cards. A 14 -day clearing period is required for checks.

TO ORDER CALL TOLL FREE
 1-(800) 962-5800 USA
 OR 1-(800) 962-3800 CALIF.
 or send payment to:

APROPOS TECHNOLOGY
1071-A Avenida Acaso
Camarillo, CA 93010
Technical Info: 1-(805) 482-3604

Wafer Drive. A NewTechnology

Floppy disk performance for your Commodore ${ }^{\circ}$ at audio cassette prices.

Entrepo's QUICK DATA DRIVE" brings high speed mass storage to the Commodore $64^{\text {Tu }}$ and VIC 20 . ${ }^{\text {x }}$ Designed as a replacement for data cassettes, the QUICK DATA DRIVE plugs into existing cassette ports. You can now load a 24 K program in about 20 seconds instead of 8 minutes for audio cassettes and 1 minute for the Commodore Disk Drive.

- Suggested retail price under $\$ 85$
- 20 times faster than audio cassette
- Fully automatic opera-tion-needs no rewinding
- Highly reliable
- Can be used with a second drive or an audio cassette
- Comes with file management system and utility program
- Top selling software available on Microwafer ${ }^{\text {w" }}$ media

* entrepo

ENTREPO, INC.
1294 Lawrence Station Road Sunnyvale, California 94089 (408) 734-3133

Telex 176337
of the incessant "beep" for wrong and "ding-dong" for right answers, you can play one phrase of a song as the question is asked, and then play the next phrase when the player gets the right answer. But for a wrong answer, the song is left dangling-which will certainly increase the player's desire to get the answer right and finish the stupid melody!

Songs are also useful while players are reading instructions, checking scores, consulting maps, and so on.

And there's no rule that says the phrases have to be pieces from the same song. You can have a dozen different songs, and play different ones at different times. Just set the value of PH to the number of the phrase you want to play, and then GOSUB 60 -the phrase you called for will be the one that plays. (If you don't specify a value for PH , the next phrase in numerical order will always play next.)

Broken Melody is designed to show how a tune can be broken up into pieces, with the different phrases played only if and when the player gives certain input. The other two programs play continuously until the player presses SHIFT. Broken Melody, however, waits for the player to press SHIFT before playing anything, and stops to wait for another keypress between phrases. Pressing any key besides SHIFT, COMMODORE, and CONTROL will end the program.

If you hold down a key during a song, you'll notice that the song slows down. This is because the timing for the music is done with FOR-NEXT loops, and when you press a key it causes an interrupt that uses up processor time; this cuts down the number of repetitions of the FORNEXT loop per second, which makes the notes last longer and slows down the song.

DECIPHERING THE ROUTINE

For your ease in understanding how the program works, here is a list of the variables and what they are used for:

ME\$(phrase, voice) or ME\$(phrase): After the conversion routine at 9900 , this variable contains both the pitch and octave code numbers in ASCII form, for use as an index into the pitch value tables in $\mathrm{PI} \%$ ().

MV\$(phrase, voice) or MV\$(phrase): Used only during the conversion routine at 9900; its information is contained thereafter in ME\$.

MD\$(phrase): Contains the duration values; the VAL() function retrieves the values for use as an index into the duration table DU\% ().

ES\%: The number of phrases in the song, minus 1.
$\mathrm{EV} \%$: The number of voices in the song, minus 1.
PI\% (code, 0) and PI\% (code, 1): The pitch table, consisting of the low byte and high byte, respectively, for the frequencies corresponding to the musical scale. The code is derived from the ME\$ string using the MID\$() and ASC() functions. The PI\% () values are POKEd into the frequency registers.

FR (voice, 0) and FR(voice, 1): The address of the two frequency registers for each voice. Voice 0 , for instance, is at 54272 and 54273 , so those are the values of $\operatorname{FR}(0,0)$
and $\operatorname{FR}(0,1)$.
G\% (voice): The gate value. POKEing this into the gate register causes that voice to begin to sound. The gate value also determines the waveform (see line 9070).

UG\% (voice): The ungate value. POKEing this into the gate register causes the sound of that voice to stop.
GR(voice): The address of the gate register for each voice.

DU \% (code): The duration table. Each of the ten possible durations ($0-9$) consist of the number of times the empty loop at line 67 , should be repeated. The code is derived from the MD\$ string using the MID\$() and VAL() functions.

VC: The current voice number. This is used whenever the program cycles through the voices; it is the counter variable in a $\mathrm{FOR} \mathrm{VC}=0$ TO 1 loop.

PH: The current phrase number. This is automatically incremented (increased by 1) each time the routine is executed, but your program can set this variable independently and take the phrases in any order.

N : The current note number. This is the counter variable in the loop FOR N $=1$ TO LEN(MD\$(PH)) at line 60; it is used with the MID\$() function as the index into the ME\$ and DU\$ strings.
$\mathrm{AT} \%, \mathrm{DY} \%, \mathrm{SN} \%, \mathrm{RE} \%, \mathrm{WF} \%$: These variables are used in setting up the envelopes and waveforms; they are

not used after the music is initialized at 9000 , so they can be used again in your own program.
$\mathrm{X} \%, \mathrm{Y} \%, \mathrm{~V} \$, \mathrm{~A}$, I: These variables are used as placeholders and counters at various times during the program. They are never used after the music is initialized at 9000 , so they can be used again in your own program.
Line by line, here's what's happening in the sound routine at 60-70.
60 Begin a loop through every character in the duration and melody strings.
61 Begin a loop through each of the three voices.
62 Un-gate the sounds left over from the last note. (REM this line if you're using the line at 68.)
63 Begin a loop through the two frequency registers for each voice.
64 POKE the pitch values-PI\% ()-into the frequency registers-FR(). (Remember that a rest ("@") in the original tune produces the $\mathrm{PI} \%$ value of 0 in both registers, which makes the voice silent for the duration of the note.)
65 Close the VC and I loops. (The N loop is still open.)
66 Open a new VC loop, only this time backward, to gate the voices open. This causes the new pitches to play. Close the loop.
67 Execute the duration loop.
68 Open a new VC loop to gate off the sound. This line is REMed; remove the REM and cause the line to be executed if you want clearly separated, staccato sounds.

ATTENTION COMMODORE 64 OWNERS DID YOU BUY THE WRONG PRODUCT? WE'LL PAY YOU FOR YOUR MISTAKE!*

PRINTER INTERFAGE BLUES

 No graphics, doesn't work with your software, Bad aspect ratios, no available buffer, well you wouldn't have these problems with the Micro-World M W-350. We'll give you $\$ 59$. off the list price of $\$ 129$. for that strange interface that's causing you trouble.
LAST YEARS BACK UP SOFTWARE

Everyone has Back-up software that reproduces errors, but will it back up non-standard sectors, reproduce density frequency alterations, alter the number of sectors, copy single sync bits, and reformat a single track? We don't think so. Send your antique back and recieve $\$ 25$. credit toward the "New Revised Clone Machine" at $\$ 49.95$. We've added an MSD dual drive Clone Machine also available for only $\$ 39.95$. Upgrade your products to the latest state of the art today.

GALL - 201 - 838-9027
 ancel this ofter at any time without notice

LOADS OF MONEY AND PLENTY OF SPARE TIME TO ENJOY IT

With a personal computer and an hour-and-a-half a day, you can make more money faster than you ever thought possible. It all hinges on one great idea.

More money, less work.

Today I am in the spray finishing business and the personal computer business. I'm a greater success than ever. And I work less than ever, too. All because of the change that occurred when I came up with my great idea.

A few trusted employees manage my spray finishing concern when I'm not there. And my home-based personal computer business-why that's not work, it's parttime fun that's paying me a handsome fulltime salary.

Life's a ball. I threw a few parties at the beachhouse last summer. Go skeet shooting every chance I get. And am looking forward to some exciting vacations.

Now I'd like to share my idea with you. Because the market's too big for just Larry Carter. Because I get a kick out of helping others. And because I believe more folks should work for themselves. For as I well know, when you're self-employed, you're happier, more independent and enjoy the full reward of your own effort.

With my idea, that reward can be substantial. You can make as much as three thousand five hundred dollars $-\$ 3,500-$ in your first two weeks of operation. With only $11 / 2$ hours of work a day. And that's only the beginning.

Make as much as $\$ 25,000$ a month.

In just 90 days, once you're established, you can make as much as $\$ 25,000$ a month. Yes, $\$ 25,000$ a month! And you'll still be working an hour-and-a-half a day.

All you need is ambition and the desire to succeed. For when you use my idea, you don't have to sell door-to-door. You don't have to bother friends or relatives.

You don't need lots of start-up capital. There's virtually no investment involved. You don't need to live near other personal computer owners. Don't need to be a programmer. My idea is based on applied business and common sense, not a knowledge of computers. There's nothing complicated about what I have to show you.

Easy-to-follow steps.

In my new book, "The Profit Potential in

Your Personal Computer. The $\$ 25,000$-aMonth Idea," I'll tell you how to put my concept to work. Give you all the simple-tounderstand instructions. Help you start making money the day you put my plan into action.
Now I'm going to hit you with two surprises.
Surprise \#1. You don't need to own a personal computer to benefit from my book. If you have access to one at school or work, you can follow my guidelines and watch the dollars roll in.

Surprise \#2. My book only costs $\$ 39.95$, a remarkably low figure when you make a simple comparison - the price of the book versus the money you can make by using it.

Three FREE gifts and a money-back

 Guarantee.To make your investment even more attractive, I'm also going to send you three FREE gifts: (1) a second thought-provoking book crammed with ideas (less profitable than mine but just as creative) on how to increase your income with a personal computer, (2) an audio cassette that accompanies my book, and (3) periodic updates on material that relates to my idea.
I also want you to be pleased with your purchase, so if you are not happy with the books and cassettes, return them within 14 days. Your purchase price will be refunded in full. No questions asked.

Don't wait. Fill out the coupon now. Or for fastest possible processing of your order, dial this 24 -hour-a-day toll-free number: 800-835-2246 ext. 209.

Remember, the sooner you order, the faster you'll start making big money. So mail the coupon now. Turn your personal computer into a $\$ 25,000-\mathrm{a}-\mathrm{Month}$ Profit Center. And a means to a fun-filled new lifestyle.

To

Lawrence Carter

Carter Publications Inc., 65 Eckford St., Brooklyn NY 11222 (Dept. AJ)
Dear Mr. Carter:
Please send me "The Profit Potential in Your Personal Computer. The $\$ 25,000-\mathrm{a}$ Month Idea"plus my three FREE gifts. I enclose $\$ 39.95$ plus $\$ 3.00$ (foreign orders add $\$ 20.00$ air freight, Canada add $\$ 7.00$) postage $\&$ handling or authorization to charge my credit card.* If not satisfied, I may return my purchase within 14 days for a full refund.
Name
Address
City State \quad Zip
\square Check or money order enclosed
\square Charge to \square MasterCard \square Visa
*New York residents please add local sales tax.
Card number
Expiration date
Signature
like having strangers - particularly armed and dangerous ones-mucking about in their towns.

When you enter a village, your expedition is represented by a single figure, however many men you have with you. If you bump into one of the many figures representing natives, that native is killed. And since they come jostling around you pretty quickly, you have to scramble to keep from bumping them. Bump one or two, and maybe you can still trade with them-kill a third, and you've got a battle on your hands.

Fortunately, you have a few things in your favor. The first time you enter a village, you can choose to amaze the natives; this makes them stand back and let you through for a second or two. Then, when you get to the center of the village, where the chief is waiting for you, you can give him gifts. (You can also give gifts to the common folk, but it gets you little more than the time of day.) When you've given the chief enough gifts, he'll trade with you.
The chief is the key to winning battles, too. I hate to tell you the defect of character that led me to discover this, but if you begin a battle by treacherously killing the chief before attacking anyone else, you win a lot more easily, with less loss of life on both sides. This means that whether you want to trade or invade, you still are better off doing as Cortez and Pizarro did-make your way to the head man before you show your guns.

After you trade with or vanquish a village, many of the natives become bearers, allowing you to carry far more gold and food than your men could carry alone. These bearers usually stay with you until you board your ship and sail away.

Word spreads among the natives, too. If you've made friends with the natives, they'll tell you about other towns and you'll see the villages without having to stumble across them-a great time-saver. But if you've been wantonly killing, the next village will be warned and will attack you immediately.

Believe me-killing everything that moves is a sure way to achieve disaster.

When you conquer a village, you can usually establish a mission there; but the natives will be hostile, and will often overthrow the garrison you left behind. However, if you have been unusually kind in your dealings with a village, the chief will voluntarily ask you to establish a mission.

In other words, the way you behave, the moral character you establish in the game, affects the way the other characters in the game respond to you. If you're bloodthirsty or careless of your men, either the natives or starvation will finish you off; if you're careful and wiseand sometimes ruthless-you'll achieve high rank when
you return to Spain. The best I've done at journeyman level is Viceroy-it's hard to imagine the King giving you any higher rank! But there's an advanced game that I haven't even tried to play.

An added benefit is the world-building program. If, like me, you are familiar enough with the history of the European conquest of America that you know all the places to go to conquer great empires, then you can use the world-building option to create new continents. The program was well-designed: the invented continents are realistically laid out. And this time, you really are exploring a world that no one has ever seen before.

In other words, this is that rare thing: a perfect game, which is worth the price you pay for it.

The graphics are beautiful, I love the world-building, the simplicity of acting out a very complex story is amazing - but what I like best is the fact that the game responds to you on a moral level.

This is way beyond anything you've played in the arcades. Most shoot'em-up games have a kill-or-be-killed premise. When I first started playing text adventures, I tried talking to the dwarfs and other creatures in the underground caverns, but they were only interested in killing. A few text adventures-The Lords of Karma, the many Infocom games - have more variety, in that not everybody you meet wants you dead, but I have seen none that do what I've been asking for since I first wrote to the guys at Infocom back in 1980: I want the game to change to respond to the kind of person my player-figure reveals himself to be.

I imagined then a text adventure in which, if a player kills everything that moves, within a few turns all the creatures in the cave get together and wipe him out. That's civilization, isn't it? Ganging up on the killers?

More important, though, I wanted the adventure worlds to be peopled with characters who respond to you individually. If you show yourself to be greedy, the thieving types would gravitate to you; if you're considerate, people who need help will call on you and then help you in return; if you're generous, you'll be trusted - but you'll also be taken advantage of; if you're cowardly, you'll be bullied. Certain characters will become your friends and fellow travelers; others will be your enemies; still others will be indifferent.

Seven Cities of Gold is the first program I've seen that takes an important step in this direction. It gives gameplaying, for the first time, the moral dimension that has previously been reserved to the storytelling arts like film and theatre and fiction.

I hope this game does so well that other game designers learn from it.

SEE PROGRAM LISTINGS ON PAGE 88

SI-IIP TO SI-IOINE

HOW MODEMS WORK

The subject of computer telecommunications completely baffles most novices. Anyone who has ever been a teenager knows how people use a telephone, but the way in which a computer communicates over the phone lines is much less obvious. After all, they don't have any arms, lips, ears, or dimes, and even if they did, what's a computer going to talk about? Complain about his disk drive, or gossip about that cute little VIC down the street? To make matters worse, telecomputing carries with it an imposing load of jargon. Just when you were beginning to understand the difference between ROM and RAM (or had given up trying), along come terms like modem, terminal, duplex mode, carrier, answer and originate modes, and parity bits. As Mr. Bill would say, "Oh Noooo0000."

Not to worry. As surely as a telecommunications system transforms electrical signals into information, this installment of Ship to Shore will cut through the mum-bo-jumbo surrounding computer communications. We'll take a look at the equipment used in telecomputing, how it operates, and some of the terms associated with that operation.

Anyone who has used a computer knows that they communicate through input or output devices. We use input devices such as the keyboard, joystick, light pen, or game paddles when we want to send information to the computer. We use output devices such as the display screen or printer to take information from the computer. During telecommunications, the computer receives information from another computer just as it does from the keyboard, and it sends out information to another computer the same way it sends it out to the display screen. The only difference is that unlike most input/output devices, the other computer is not physically present in the same room as yours. Usually, you hook up your computer to external devices like a printer or disk drive by attaching the two with a cable. Since a telecommunications link is established over phone lines, some extra equipment is needed.

Figure 1 shows the basic elements of a telecommunications link. At either end of the link is a computer (labelled "c") connected to a phone line by a device called a modem (labelled " m ", and pronounced "moe'dem"). Usually, a computer communicates to outside devices by means of electrical signals running through wires. But the phone lines which serve ás the most common medium for communicating between two points are designed to carry sounds, not the tiny electrical impulses that a
computer generates. That's where the modem comes in. It takes the electrical signals from your computer and turns them into sounds that can be sent over the phone lines (or MOdulates them), and takes the sounds that were sent over the phone lines from another computer/modem combination and turns them back into electrical signals (or DEModulates them). The net effect is the same as if the two computers were connected by wires, and exchanged electrical signals directly. The only difference is that sometimes if there is static on the phone line, the information may be garbled during the transmission.
Most Commodore users have modems that were made specifically for Commodore computers and plug right into the user port. But it is also possible to use gener-al-purpose modems with the help of what is known as an RS-232 interface (the box connected to the remote computer in Figure 1, labelled "r"). The name RS-232 may sound mysterious, but actually, it stands for Recommended Standard 232. It just so happens that Standard number 232 of the Electrical Industry Association describes a standard interface to be used with telecommunications devices. Since computers use a lot of different kinds of signals internally, the electronics industry decided to define standard plug and socket connections, as well as standard electrical signal levels, so that the same telecommunications equipment will work with all different kinds of computer equipment. By buying an RS-232 interface (for about $\$ 40$) that plugs into the User Port, you can make your Commodore computer send out electrical signals that are compatible with all kinds of non-Commodore modems, and other RS-232 devices as well (such as printers and speech synthesizers).

So far, we've shown what it takes to physically connect your computer (sometimes called a terminal, because it sits at the end of the line) and the remote computer (sometimes called the host, because it allows "guests" like yourself to operate its programs by remote control). But all the hardware hookup does is allow the two computers to exchange electrical signals. Before we can use this system to actually transfer information, we have to get the two computers to agree on what those signals mean. This is accomplished by the terminal software that controls the exchange.

Since computers only understand numbers, and not letters, the first task is to convert the text using a code that

By Sheldon Leemon

CHECK \& STATIONERY VINYL CARRIERS

For Adjustable Tractor-Type Printers
The CHF Computer Check Carrier ${ }^{T / M}$. Allows You to Use Regular Bank Checks for Fast Computer Processing . . .

ELIMINATES NEED FOR COSTLY SPECIAL COMPUTER CHECKS . . . Designed
for adjustable, tractor-type printers, this slotted, translucent, vinyl sheeting accessory uses inexpensive personal or company checks as supplied by your bank. Checks with carbons are easily accommodated, too!

PRODUCES PROFESSIONAL-LOOKING CHECKS - TWICE AS FAST! And it
helps you to enjoy the full capability of your system. Included is a BASIC program to format checks for your system. It may also be used as a sub-routine in an existing BASIC program. Check printing and entry into check register are simultaneous.

CARRIERS ARE ALSO AVAILABLE FOR OTHER TYPES OF STATIONERY, TOO!
Select other carriers listed below for your stationery needs. CHF makes
carriers for most other forms of stationery. Check with your local computer store or fill in the order blank below and return for fast shipment of your order.

NEW "E" MODELS DOUBLE THE LENGTH OF OUR STANDARD CARRIERS.
The new S100E model gives you twice the carrying capacity, sixteen checks versus the standard eight. The " E " model is also available for all other Carriers except the S824 - double the holding capacity stated below for the " E " model of any Carrier. Suggested retail price for all " E " models is $\$ 19.95$.

SPECIALIZING IN CHECK AND STATIONERY CARRIERS FOR COMPUTER USE

Indicate carrier you wish to order: (Place an " E " in the box to indicate extended version.)*
$\square \mathrm{S} 100$ Hoids eight standard $(21 / 4 \times 6)$ size personal checks. Carrier is $8^{\prime \prime}$ wide.S101 Same as the $\$ 100$ except that this carrier is $91 / 2^{\prime \prime}$ wide for printers that are not adjustable ($\$ 1.00$ extra).S103 Holds eight $21 / 4 \times 61 / 4$ Canadian Size Personal Checks. $91 / 2^{\prime \prime}$ wide Carrier.
$\square \mathrm{S} 200$ Holds six business $(31 / \times 8 \%)$ size checks. Carrier is $91 / 2^{\prime \prime}$ wide.
\square s303 Holds five $3 \% \times 6 / / 2$ envelopes. Carrier is 8 "wide.
\square S306 Holds five $31 / 2 \times 8 \frac{1}{2}$ envelopes. Carrier is $101 / 2^{\prime \prime}$ wide (requires your printer to expand to $101 / 2^{\prime \prime}$).
\square s309 Holds five $4 \% \times 9 / 2$ envelopes. Carrier is 1012^{*} wide (requires your printer to expand to $101 /{ }^{\prime \prime}$).
\square S404 Rolodex Petite. Carrier is $8^{\prime \prime}$ wide. Holds eight Rolodex Petite cards.
\square S408 Rolodex $21 / 2 \times 4$. Carrier is $8^{\prime \prime}$ wide. Holds eight cards.
\square S412 Rolodex 3×5. Carrier is $8^{\prime \prime}$ wide. Holds seven cards.
\square S505 $31 / 2 \times 51 / 2$ Index and Post Cards. Holds five cards. Carrier is 8 " wide.S510 4x6 Index Cards. Holds four Index Cards. Carrier is $91 / 2^{\prime \prime}$ wide.S515 3×5 Index Cards. Hoids five index Cards. Carrier is 8° wide.
\square S520 5x8 Index Cards. Holds four Index Cards. Carrier is 10° wide.
\square S707 Letterhead $81 / 2 \times 11$. Holds three Letterheads. Carrier is $10^{\prime \prime}$ wide.
$\square \mathrm{S} 714$ Memo size $51 / 2 \times 81 / 2$. Holds three Memo size sheets. Carrier is $8^{\prime \prime}$ wide.
\square S721 Legal Letterhead $81 / 2 \times 14$. Holds two Legal Letterheads. Carrier is $10^{\prime \prime}$ wide.
\square S 728 Ditto or Forms $81 / 2 \times 111 / 2$. Holds two. Carrier is $10^{\prime \prime}$ wide.
\square S735 Forms $81 / 2 \times 111 / 4$. Holds two. Carrier is 10° wide.
\square s808 Voucher Checks, Quick Letters, Quick Reply, Invoices, Purchase Orders $81 / 2 \times 7 \% /$. Holds three $81 / 2 \times 7 \%$ Forms. Carrier is 10° wide.
\square S816 Blank Carrier. Carrier is $91 / 2^{\prime \prime}$ wide. This Carrier allows you to make your own hoiders for non-standard size stationery. Includes instructions on "How To."
\square s 824 Label Carrier. Carrier is $91 / 2^{*}$ wide. Allows you to purchase regular pressure-sensitive labels, place the labels on The Label Carrier and you are all ready to go. (Name tags, address labels, etc.)

Send check or money order. Ohio residents add $51 / 2 \%$ saies tax. retidents acd $5 \% \%$ zailes tax.
Alow two weeks for delivery. Ba Alow two weeks for deivery. Be
certain to specily model. VISA \& Masteriard accepted. ""E" Model \$19.95.

THE CHF COMPANY

P.O. BOX $185 \cdot$ OBERLIN, OH 44074 216/775-7338
"CompuServe ${ }^{\text {T.M. }}$ - EMAILTM. 74266.601 " Dealer Inquiries Invited!
\qquad
Address
City State Zip \qquad
\square Check or money order enclosed. (U.S. currency only.) Make payable to The CHF Company. Please do not send cash.

MasterCard No.
Bank No. (if M.C.)
VISA No.
Expiration Date
Signature
VISA and MasterCard orders may be placed by phone $-216 / 775.7338$
the computer can understand. The most common code is called ASCII (American Standard Code for Information Interchange). In ASCII, the number 65 stands for the letter " A ", 66 stands for the letter " B ", 97 stands for " a ", etc. Internally, your Commodore computer uses a variant of this code called PETASCII, in which 65 stands for " a ", while 97 stands for " A ", but your terminal program will make the conversions so that you communicate in the same standard ASCII everyone else uses.

Let's follow the process of how your computer converts text to numbers, step by step. First, the program starts with text characters that you type in. For our example, let's use the letters

V I C

The ASCII codes for these letters are:

$86 \quad 73 \quad 67$

These numbers are in the form of decimals, the base ten numbering system that humans use. But computers use base two, or binary numbers. They find these numbers easier to work with, because in base two, all numbers are expressed using only two digits, the " 0 " and the " 1 ". Of course, it takes a lot more digits to write a number in binary. In fact, in order to write any number from 0 to 127 (as you must in order to use the 128 characters of the ASCII code), you need at least seven binary digits. The seven-digit binary equivalent of the ASCII numbers above is

101011010010011000011

As you will see later, not only are these kinds of numbers easy for the computer to work with, but they are also easy to convert into sounds.

Even though we have changed our text characters a lot so far, we're not through yet. For one thing, some telecommunications programs use an extra binary digit (or bit) for what is called parity. In the early days of telecommunications, noisy telephone lines were an obstacle to information exchange, because the noise on the line could be misinterpreted as a false signal. Some way of determining whether the data received was exactly the same as the data being sent was needed. By adding one more digit to each character, a crude form of error detection called "character parity" was implemented. The way it works is simple: if you choose EVEN parity, the extra digit is used to insure that the number of "l" digits is even, and if you choose ODD parity, the extra digit is used to insure that the number of " 1 " digits remains ODD. For example, using even parity, our binary representation of the letters VIC:

101011010010011000011

becomes

010101101100100111000011

The receiving computer would use this parity bit as a safeguard against bad transmission. If the bits didn't add up, the computer would know that the transmission
was faulty, and could ask for the character to be sent again. This kind of simple error checking really belongs more to the era of mechanical teleprinters than today's modern computers. Nowadays, very few systems use parity. When you select NO PARITY with your terminal software, the eighth bit is always changed to zero (unless you want to send special, non-ASCII characters), so that our binary code for VIC becomes

010101100100100101000011

We're almost ready to ship out our data, but we still have one last manipulation to perform. We've got to add "framing" bits that show where each character begins and ends. In order to understand why, let's go over the way in which the modem translates electrical signals to sounds.

Modems use two sets of frequencies to send and receive data. These are technically known as "answer" and "originate" frequencies, but let's just call them "high" and "low" tones. One modem will send information using the high voice, and will listen for a reply which the other computer sends using the low voice. The other will use the opposite pair of tones. Two sets of tones are needed so that the modem can differentiate between tones which it is sending, and those received over the phone lines.

Figure 1: Telecommunications Link
M: modem
T: telephone link
C : computer
R: RS-232 interface

Each voice uses notes of two different frequencies, called MARK and SPACE. As you might guess from their names, MARK represents the "1" character, while SPACE represents the "0" character. By convention, the normal "quiet" state of a phone line when no data is being transmitted is a continuous MARK tone, which can be considered a constant stream of ones (this continuous tone is also called a "carrier," because the data string of ones and zeroes is superimposed upon it). To isolate our text character, which has now been converted to a stream of ones and zeroes, we "frame" it by putting a SPACE or zero character on either side of it. The zero character that comes before our text is called a start bit, while the one that comes at the end is known as a stop bit. Therefore, the binary numbers which stand for the letters VIC:
010101100100100101000011

become

001010110000100100100010000110

Finally, we're ready to send this text. Here we have
a "quiet" communications line (all MARK tones, or ones, remember) just waiting for some data:

MMMMMMMMMMMMMMMMMMMMMMM MMM

When we type the letters "VIC", the ASCII codes for which are

$86 \quad 73 \quad 67$

our computer recognizes what we typed as
010101100100100101000011
and our telecommunication software adds in the start and stop bits to change it to

001010110000100100100010000110

This data is sent to the modem, which changes the zeroes and ones into the high and low sounds known as MARK and SPACE tones:

SSMSMSMMSS SSMSSMSSMS SSMSSSSMMS

The modem superimposes these tones over the continuous MARK tone of the "quiet" line:

```
MMMSSMSMSMMSSMMMMSSMSSMSSMSMMM MMSSMSSSSMMSMMM
```

The receiving modem changes it back into a string of ones and zeroes again:

111001010110011110010010010111110010000110111

The telecommunications software on the computer at the receiving end must watch this stream of characters. Because of the agreed upon convention, it knows that the first zero it sees means "Hey! The next eight bits are a character, and ninth bit had better be a zero that marks the end of the character. After you get that last zero, you'll see some ones for a while, until you get another zero that starts another character." In this way, the extraneous ones added in by the continuous drone of the "carrier" tone are stripped away, and the computer at the other end receives the characters

001010110000100100100010000110
which it displays as the letters
VIC
This may seem like a lot of work for just three letters! Fortunately, your computer and modem can handle the whole operation at a high rate of speed. What speed, you ask? The most common rate is 300 bits per second. As you have seen above, each character requires at least 10 bits, so 300 bps equals a little under 30 characters per second. Sometimes you will hear operation at 300 bps referred to as 300 baud. This unit of measurement is named after Georges Baudot, the inventor of an early teleprinter code. But it refers only to how many times per second the tones change frequency, not how many bits are sent. At 300 bps , the tones change frequency at a rate of 300 baud, so the terms may correctly be used interchangeably to describe the speed of transmission. Modems that transfer data at 1200 bps , however, only change the frequency of the tones at a rate of 600 baud, so to term them " 1200 baud" modems is a mistake.

The only term left to explain is "echoplex" or "duplex" mode. This has to do more with how information is displayed on your screen than how it is transmitted. Most communications links are in what is called "full duplex" mode. This means that the remote computer actually echoes back every character that you send it, and the text that you type in at your keyboard does not appear on your screen until it is sent back from the computer on the other end. This makes it easy to spot any trouble, because if the other computer isn't receiving your text, you won't see it on your screen as you type! The other possible mode is called "half duplex." In this mode, all of the characters that you type are displayed directly on your screen. This is necessary only if the remote system isn't echoing your characters back. If it is, then you will see each character on your screen twice, once from the "local echo" and once from the "remote echo," lliikkee tthhiiss.

That about covers our painless introduction to telecomputing. If you have any questions, please send them along, and we'll try to cover them in future columns.

Sheldon Leemon
CompuServe ID 72705,1355
Source BBX878

A Graphics Generator for the C-64

By Bob Spirko
he C-64 provides a variety of graphics, but producing them on the screen is no easy matter. Take for instance the procedure of placing a red, reversed heart symbol in the middle of the screen. First we use the two cursor keys to get to the location. Then we press CTRL and RVS, followed by CTRL and RED. Next we have to find the character on our keyboard...there it is. Now we press COM and S. There. Eight keys later we have our symbol on the screen. That's a lot of work for one character.
Drawing a complex picture in this manner is not something you would do for fun, but sometimes we'll write a program that demands it. Even as I wrote Screen Magic, I was wishing I had help.
Screen Magic takes your hands away from the keyboard and places them on that device we all love to handle: the joystick. Using only the joystick, you can choose the character that you want and print it on the screen. These include graphic characters, letters, numbers, and other symbols as well. On the screen, along with the character table, there is a palette of colors. Most of the screen, however, is your canvas. Although you can draw effectively without the keyboard, there are a number of special keys you'll want to use. I'll get to these in a minute; first let's type in the program.

It's in machine language-and it's long-but Flankspeed (see page 86) should eliminate all the typos. Once you've typed itin, be sure to save it before running. Then plug your joystick into port 2. Type NEW and hit RETURN. Then type SYS 49152 and press RETURN.

The screen will display a table of symbols and colorsunlike the keyboard, these are neatly grouped together for quick selection. To start, just push your joystick. First you'll have to pick a character to print. Center your cursor, which is an open box, over the symbol you want and press the fire button; the character will be tucked away in a tiny buffer. Then move to the palette and select a color in the same way. Now go to the right side of the screen and hit the joystick button; your character will be printed. You can, of course, hold down the button and draw a string of characters as you move across the screen. Keep in mind that your cursor picks up letters and colors when it's in the symbol table, but outside of the table, it prints them.

As you move about the screen you may find the cursor speed too slow or too fast. To change it, press V and you'll be asked to enter a number. The fastest is 0 and the slowest is 9 . You can also use the cursor keys to maneuver around, and the space bar to pick up or drop a
character. Use DEL (or print a space) to erase a character, and CLR to clean your canvas. Some characters, such as letters and numbers, have no reverse case displayed in the symbol table, but you can toggle reverse by pressing 9 (press RVS without holding the CTRL key down). When you've finished drawing, press X to exit to BASIC.

Now for those special keys I mentioned. After drawing your picture, you may find that it is not centered on the screen. If this is the case, you can scroll your canvas to the right by pressing fl. Similarly, use f 2 f f , and f 4 to scroll left, down, and up. To change the background color, press f5. No doubt you'll want to save some of your creations; if so, press f8 and you'll be asked for a file name. Once entered it'll be stored (disk only) for later retrieval. To LOAD it, press f 7.

Often you might want to draw a symmetrical figure, such as a border. Tap the back arrow and you'll be in the symmetry mode. Whatever you draw on the left side of your canvas will be duplicated on the right. If your cursor is on the right side of the screen, no duplication takes place. Press the back arrow again to turn off the symmetry mode.

The keys I like most are A and SHIFT-A. Let's say you want to draw a line with hearts and diamonds so that the first character is a heart, the second a diamond, the third a heart, and so on, alternating down the line. If you already have a heart in your buffer, toggle key A. The heart will be transposed to another buffer. Now move your cursor over the diamond and press the fire button. With both characters stashed away, you can now print alternating symbols. Each time one character is printed, the buffers are switched so that the next character to be printed is different. To turn off alternating characters, hit A again. Toggle SHIFT-A to alternate colors.

Here's a rundown on the commands:

f1 : scroll right	f8	: save to disk
f2 : scroll left	\leftarrow	: symmetry mode
f3 : scroll down	A	: alternate characters
f4 : scroll up	SHIFT A : alternate colors	
f5 : change bkgrd. color	V	: cursor velocity
f7 : load from disk	X	: exit to BASIC

When loading Screen Magic back in, you'll have to do so with a " 1 ":

LOAD"SCREEN MAGIC", 8,1

as it is all ML. When the cursor returns to the screen, type SYS 49152, then RETURN. This will activate the program. \square SEE PROGRAM LISTING ON PAGE 102

CAN THE JUKI 6300 REALYY PRINT OVER 500 LETTERS IN 8 HOURS?
STAND BACK AND WATCH!

Busy offices, take note: Our new letter-quality printer zips along at 40 characters per second and sells for only $\$ 995$. Its $13^{\prime \prime}$ print line will handle your spreadsheets and every imaginable kind of correspondenceplus graphics! Quiet, too-less than 60 dbA . And the 3 K buffer memory (expandable to 15 K) lets you use your computer for other purposes while the JUKI is printing. Compatible with most computers. (You can even get an optional tractor feed and cut-sheet feeder for it!) Now you know why JUKI printers are humming in
offices all over the world!

a ILKKi
The worker.
JUKI OFFICE MACHINE CORP.

EAST COAST:
299 Market St., Saddle Brook, NJ 07662 (800) 932-0590

WEST COAST:
23844 Hawthorne Blvd., Suite 101, Torrance, CA 90505 (800) 325-6134 • (800) 435-6315 (California)

ARCADE ACTION

for the C-64

By Bob Blackmer
 uck Shoot is a colorful arcade-style shooting gallery, inspired by the old carnival game. You simply aim your gun sights at the ducks on the screen and fire.
Shooting down ten ducks will put you in a timed target round, consisting of a series of targets that appear on the screen for brief periods. The higher your score, the faster the required reaction time. If four ducks in a row get by, the game ends and your score and the high score are displayed.
The duck's speed will increase as you progress through the rounds.
Ducks are worth 25 points each, and the targets are worth 50 points each.
There are eight target rounds, after which the game becomes a flurry of ducks moving faster and faster until the game ends.

Commodore 64 Programming Made Simple

Learn to program! David A. Lien has taught thousands of people BASIC programming and introduced them to writing custom software. Hands-on instructions in a simple, comprehensive and even humorous style make learning fun. With Learning Commodore 64 BASIC you can enjoy the full powers of your C-64!

Order by calling TOLL FREE 800-854-6505 (in Calif. 619-588-0996) or send $\$ 14.95$ plus $\$ 2.00$ ($\$ 3.00$ foreign) for postage and handling. Visa and MasterCard users, include card \# and expiration date. Mail to:

Reader Service No. 283

*DATABASES \& UTILITIES

*FOREIGN LANGUAGES
*ADVENTURE GAMES
*ARCADE GAMES
*TRIVIA
*EDUCATIONAL SOFTWARE
*CHILDREN'S PROGRAMS

Cail toll-free outside Texas: 1-800-433.2938

- Inside Texas call : 817-292-7396

HAS EVMRIIHING!

|RU|P|ET?T IREITOCITT

The Ultimate Resolution Exploring Bit Map Graphics on the Commodore 64 By Dale Rupert

Exploring any new feature of the Commodore 64 is always an adventure. Originally I had planned to deal with the random number generator this month. There are several interesting computer simulations involving random numbers. The Buffon Needle problem and the "infinite number of monkeys at the keyboard" problem can both be simulated by using the RND function in BASIC. Before developing those problems, I wanted to do some elementary inves-
tigations into the random number generator itself. That's where this diversion into bit map graphics began.

It is well known from the advertisements that the Commodore 64 has a graphics resolution of 320 dots (horizontal) by 200 dots (vertical). What isn't obvious from the ads is that accessing those 64,000 dots is much easier said than done. All I wanted to do was choose a random value for X from 1 to 320 and a random value for Y from 1 to 200 and then plot each X-Y pair. Truly ran-

ISSUE \#1-JAN. '84 \$4.00 64 v . the Peanut! Telecommunications! Tales of the Commodore! And ready to enter: Multi Draw 64 Graphics System! Interrupt Music Maker/Editor! A Peek at Memory! Sequential Files!

ISSUE \#2-FEB. '84 \$4.00 Illustrated tour of the 1541 ! Artificial intelligence! Synapse's Ihor Wolosenko interviewed! And ready to enter: Music Maker Part II! Screen Manipulation! Night Attack! Relative Files!

ISSUE \#5-MAY '84 \$4.00 Future of Commodore! Inside BASIC storage! Memory management on the VIC \& 64! Spreadsheets! And ready to enter: Math Master! Air Assault! Biorhythms! VIC Calculator!

ISSUE \#9-SEPT. '84 \$4.00 Program your own text adventure! Build a C-64 cassette interface! Video RAM! And ready to enter: Salvage Diver! DOS! Sound Explorer! Castle of Darkness! Base Conversions!

ISSUE \#6-JUNE '84 \$4.00 Game programming column begins! Program generators! Rupert on inputting! Memory management continues! And ready to enter: Post Time for the 64 \& VIC! Alpiner! Sound Concept!

ISSUE \#10-OCT. '84 \$4.00 C-64 Graphics programs! Bit- mapped graphics! Joystick programming! And ready to enter: VIC 40 Operating System! BAM Read \& Print! Emerald Elephant of Cipangu! Lawn Job!

ISSUE \#7-JULY '84 \$4.00 MSD Dual Disk! Database buyer's guide! Training your cursor! Screen displays! File Sleuth! Users Groups! And ready to enter: Renumbering! Checklist! Math Defender! Brisk!

ISSUE \#11-NOV. '84 \$4.00 Music programs \& keyboards for the 64! Graphics feature continues! And ready to enter: PTE word processor! Block Editor! Alternate Character Set for the 64! Tunnel of Tomachon!

ISSUE \#8-AUG. '84 \$4.00 Choosing a word processor! Computational wizardry! Creating your own word games! Sound on the 64! And ready to enter: Micro-Minder! Directory Assistance! Terrible Twins!

ISSUE \#12-DEC. '84\$4.00 Buyer's guide to printers! 1525 printer tutorial! Custom characters! User Guide to KMMM Pascal! Diving into BASIC! And ready to enter: Construction Co.! Space Patrol! Cross Ref!

ISSUE \#13-JAN. '85 \$4.00 VIC/64 OS exposed! Sprites! 1541 device \# disconnect switch! Ghostbusters! And ready to enter: Ultra Mail! Music Tutor! Alice in Adventureland! Midprint! To the Top!

ISSUE \#14-FEB. $\mathbf{8 5} \mathbf{\$ 4 . 0 0}$
Printer interlacing! Multicolor sprites! Modems! Bulletin boards! Theory of game design! And ready to enter: FuIurewar! Fontasia! VIC Eraser! Insurance Agent! Telelink 64!

ISSUE \#15-MAR. 85 \$4.00 Making multiscreen gameboards! Inside the Plus/4! Commodore DOS! And ready to enter: Old Routine! Programmable Functions! Automatic Line Nos.! Home Budget! Salmon Run!

ISSUE \#16-APR.'85 \$4.00 Assembly language column begins! Programming the joystick! 1541 disk drive alternatives! And ready to enter: Hop Around! Faster 64! Booter! Elecheck! BASIC Trace! Space Hunt!

ISSUE \#17-MAY '85 \$4.00 Disk drive enhancements! Install a reset switch! Assembler escapades! And ready to enter: Super Duper! 2Column Directory! DSKDU! Raid! DOS Plus! Font Editor! Tile Time!

Send coupon or facsimile to: Ahoy! Back Issues
Ion International Inc.
45 West 34th Street-Suite 407 New York, NY 10001
dom numbers should produce a truly random looking pattern of dots on the screen.
Those of you who use one of the enhanced versions of BASIC are undoubtedly able to type PLOT (X,Y), or something similar, and thereby put a dot on the screen effortlessly. This article is for those of you who do not use a fancy BASIC. Or those of you who enjoy a complicated puzzle and want to find out more about the amazing silicon brains we are using.

This month we will investigate the Standard High-Resolution Bit Map Mode of displaying graphics on the Commodore 64 . We will see that BASIC is barely able to operate in this mode. BASIC is very slow and cumbersome at manipulating 64,000 dots in most applications. For that reason, next month we will create some assembly language routines to help speed things up. First let's review some of the basic screen concepts we've previously discussed.

PRELIMINARIES

In the normal character mode of operation, there are twenty-five rows of characters with forty characters in each row. That gives a total of one thousand individual characters (25 times 40) which may be displayed at one time. There are 256 different characters to choose from for each of those 1000 locations. Furthermore, each and every character may be any one of sixteen colors.

The Video Matrix is the technical name for the one thousand consecutive bytes of memory whose contents are normally displayed on the screen. The Video Matrix begins at memory address 1024 and goes to address 2023 when we turn on the computer. Those addresses may be changed by programming, but we will assume that they have not been.

Each byte of the Video Matrix contains an eight-bit value ranging from 0 to 255 . In normal character mode, the VIC-II Video Interface Chip translates each byte into a pattern of pixels (picture elements) which appear on the screen in some recognizable form. Appendix E in the C-64 User's Guide and Appendix B in the Programmer's Reference Guide (PRG) show 128 of the 256 possible forms. The other 128 characters are reverse images of those shown. There are indeed two sets of 256 characters each, but only one of those sets may be selected at a time. In fact it is possible to create still other sets of characters to replace these, but that is a topic for another article.
If we put the value 20 into address 1024 (POKE 1024,20), the result is a letter " T " in the upper left corner of the screen. As we have discussed before, it may not be visible until we put a contrasting color value into the corresponding color memory location (POKE 55296,1). The VIC-II uses the 20 as an index into the Character Base. The Character Base provides a 64 bit dot pattern which represents the character "T". The normal Character Base originates in ROM.

Each character consists of a box which is eight screen dots wide by eight scan lines high. Within that box of

64 dots or pixels, some of the dots are one color and the rest are another color. The dots that contrast with the background color are arranged in the shape of a " T ".

To get an idea of the size of the pixels we are dealing with, put character 102 onto the screen (POKE 1024,102 : POKE 55296,1). You might be able to count the individual pixels, depending upon your monitor and your eyes. Each small square in the pattern contains four pixels. Keep in mind that those 64 pixels are generated as a result of the one-byte quantity stored in location 1024.
In graphics bit map mode, the VIC-II treats each onebyte value in locations 1024 through 2023 quite differently. Instead of representing predefined character symbols, each one-byte value is interpreted as two four-bit color codes. In the bit map memory, the " 0 " bits will be displayed as one color and the "1" bits will be shown as the other color. But just a moment. What is this bit map memory?

THE BIT MAP

We have already calculated that a 320 by 200 resolution display needs 64,000 bits or 8000 bytes of storage. The C-64 hardware is arranged so that the 8000 byte bit map memory may begin at either location 0 or location 8192. Since BASIC and the operating system are very dependent on the page zero memory, we wouldn't get very far by POKEing random data there. Consequently we must use the 8000 bytes beginning at address 8192 for our bit map memory.
Having defined a suitable block of memory, we can create an image on the screen by turning some of the 64,000 bits on and turning others off. The first eight bytes of this memory contain 64 bits which correspond to the small, character-sized region in the upper left hand corner of the screen. The bits that are l's will be displayed as one color, and those that are 0's will be displayed as another color. The actual colors depend upon the value stored in location 1024. The next block of 64 pixels will also be displayed in two colors. Those colors are determined by the value stored in location 1025. And so forth.
There is a very definite similarity between the character mode and the bit map graphics mode. Each mode has a data memory and a separate color memory. For character mode, data memory consists of 1000 bytes beginning at location 1024. Its color memory consists of 1000 nybbles beginning at location 55296. Each of the 1000 characters may have any one of sixteen colors. For bit map mode, data memory consists of 8000 bytes beginning at location 8192 . The corresponding color memory begins at location 1024 . Each of the 1000 bytes starting at 1024 contain two color nybbles. Each block of eight bytes in data memory can be displayed in any two of sixteen possible colors. As we discuss the details, the confusion should subside.

THE DETAILS

Pick two colors, any two colors, as long as they are from the group of sixteen listed in Appendix G of the

User's Manual or Appendix D of the $P R G$. A number 20 in location 1024 while in bit map mode is interpreted as the colors white and purple. The easiest way to see this is to convert it to hexadecimal. In hexadecimal, 20 becomes $\$ 14$ where the " $\$$ " signifies that this is a hexadecimal value.

The " 4 " is in the units place, and " 4 " corresponds to purple. The " 1 " representing white is in the 16 's place. The decimal value of $\$ 14$ is $1 * 16+4$ or 20 . That is how the value 20 in location 1024 represents the colors white and purple.
If you want the 64 pixels in the upper left corner of the screen to be light blue or yellow, you must poke 231 into address 1024. Light blue has a value of 14 , and yellow has a value of $7(14 * 6+7=231)$. The color value in the most significant nybble is treated as the foreground color, and the other is the background color. Poking 126 into 1024 would reverse the colors since $7 * 16+14=126$.

A simple example should clarify the situation. Assume we are working in bit map mode, and location 1024 contains the value 20 (white/purple). Put values $255,0,255$, $0,255,0,255,0$ into the first eight locations starting at address 8192 . Remember that these eight bytes represent the pixel pattern displayed in the upper left corner of the screen. That eight by eight square will look like this:

> 11111111
> eresergergers
> 11111111
> ejergergores
> 11111111
> ergesjojesers
> 11111111
> dejejojojeros

The number 255 contains all l's, and of course 0 is stored as all 0's. The computer does not display l's and 0 's on the screen. Instead all the l's are displayed as white pixels, and all the 0's are shown as purple pixels. Consequently there will be a white and purple striped square in the upper left corner of the screen.

If we replace the 255 in location 8192 with 254, the pixel in the upper right corner of the box above will change from white to purple. If we put the value 1 into memory location 8199 , the lower right corner of the box will change from purple to white. If we change the value in location 1024 from 20 to 231, the box will change from white and purple stripes to light blue and yellow stripes as we calculated earlier.

It should now be clearer as to where the term "bit map graphics" originates. The value of each bit corresponds to a pixel on the screen. The screen image is essentially a map of the bits in memory.

The details of the organization of the 8000 byte bit map memory are shown on page 125 of the $P R G$. Unfortunately the calculations needed to determine the specific byte and bit to turn on any given pixel on the screen are somewhat involved.

Using the terminology in the $P R G$, the formulas for locating the pixel at location X, Y are as follows:
BYTE $=$ BASE $+320 *$ ROW $+8 *$ CHAR + LINE
$\mathrm{BIT}=7-(\mathrm{X}$ AND Y$)$
where
BASE $=8192$ (the starting address of the bit map)
ROW $=\operatorname{INT}(\mathrm{Y} / 8)$
$\mathrm{CHAR}=\mathrm{INT}(\mathrm{X} / 8)$
LINE $=($ Y AND 7 $)$
The calculated BIT is set to 1 or reset to 0 in address BYTE in order to select the foreground color or the background color for the pixel at screen location X, Y. X ranges from 0 to 319 and Y ranges from 0 to 199 with the origin 0,0 in the upper left corner of the screen.

Unfortunately these formulas represent a fair amount of work for BASIC to locate just one pixel. You enter the bit map mode in BASIC only if you have plenty of time. Let's look at the details of initiating bit map mode and working in it.

USING THE BIT MAP

The steps required for using bit map mode are as follows:

1. Set the bit map starting address to 8192 .
2. Enter bit map mode.
3. Clear the bit map memory.
4. Put desired color(s) into the color memory.
5. Set (or reset) desired bits in bit map memory.

The sequence for these steps depends upon the application. The program on page 88 shows how these steps are implemented.

We will use the "set bit" and "reset bit" functions which we have discussed in previous columns. They are defined in lines 10 and 20 . Line 420 shows how these functions are used. The argument of the function must be a number from 0 to 7 corresponding to the chosen bit. The memory location must be stored in the variable named MM. The statement POKE MM, FNSB(5) will set bit 5 of address MM to 1 . If BIT has a value of 3 and MM equals 9000 , then POKE MM,FNRB(BIT) will reset bit 3 of location 9000 to 0 .

To place the bit map memory at address 8192 , we must set bit 3 of VIC-II register 24. ("Set" will mean to give a value of one and "reset" will mean to give a value of zero in the following discussion.) The VIC-II registers begin at location 53248. Register 24 is at address 53248 +24 . The variable VV in line 30 stores the starting address of the VIC-II registers. Line 40 sets bit 3 of register 24 and defines the starting location of bit map memory.

To enter bit map mode, line 50 sets bit 5 of VIC-II register 17. If you stop the program at this point, you see a jumble of dots, especially if the screen had characters on it before you typed RUN. The eight by eight demarcations should be visible as the colors vary from box to box. The colors are determined by the characters which were on the screen when you ran this program. The dots within the boxes show the data that happened

to be in memory beginning at location 8192 when you ran the program.
Lines 70 and 80 POKE 0 into the 8000 bit map locations. This seems to take forever. (A good place for a machine language routine!) The whole screen will now display the background color(s).
Line 90 sets the foreground color Cl to white (1) and the background color C 0 to black (0). Not very imaginative, but feel free to pick your own colors. The 1000 bytes of color memory are filled with this one color combination in line 100. Remember, you may put various color combinations anywhere within the color memory.
The main program in lines 200 through 220 performs the operation described at the start of this article. Random values for X and Y are chosen, and the corresponding X-Y pixel is turned on (set to the foreground color). The main program calls the subroutine at lines 400 through 430, which performs the calculations for an XY pair and lights the proper pixel. Notice that some of the formulas mentioned earlier have been combined into one formula in line 410 to help speed things up.
A pause in line 250 allows you to see the screen for a while after the one thousandth random pixel has been lit. Lines 310 and 330 return things to normal character mode. All the characters which were on the screen are now P's. Do you know why? Look at line 100 for a clue. List the program to see that everything is in fact normal.

Make your C-64 or VIC versatile with: Custom Character Sets: chared for the c. 64

Features:

Menu Driven with full screen display Save and Load Character Sets
\square Use with Multi-color Mode
\square Built-in Utilities for reverse, copy
and boldface characters

Sports:

Features:
\square Course design and game programs \square Trees, Sandtraps, user designed Greens \square Built-in Adjustable Pin Placement \square Hi-Res ML Graphics for speed

Word Processing: for the M. Gis and vic.20
Features:
\square Document editing: Create, modity, save \square Print command with indentation and tape and disk SEQuential data files \square Line image Editor using simple commands
Full Screen Editor
 margin control
Complete User's Guide included \square Complete User's Guide included
Specify: TexED for C-64. TexED20 fo VIC-20 with 16 K expansion PLOTVIC8 Hi-Res Graphics Kit

Features:

\square Menu Drven with Full Screen Display Keyboard or Lightpen Input
\square Basic Geometry (point, line, ellipse) element-color selection, 3-D

1) Functions stand alone for use with Functions stand alone for use w
personal programming (BASIC) personal programming (BASIC)
User's Guide-llustrated graphics tutoria User's Guide-illustrated graph
and technical explanations and technical explanations
Specify PLOTVIC8 (requires $8 K+$)

Po Box 2673
Ann Arbot Mi 48106
Mail completed form to APCAD PO Box 2673 Ann Arbor, MI 48106. Send check for $\$ 19.95$ (US) for tape, $\$ 22.95$ disk, or $\$ 34.95$ for two ($\$ 39.95$ disk). S \& H included.

Specify: \qquad CHARED
\qquad City/State/Zip: also accepted: \square VISA \square MC \square AMEX
Acct. No. Expir. Date:

Here are a few tips before you take off on your own to work with this graphics mode. Remember that RUNSTOP/RESTORE will return the screen to normal mode. I found it useful to memorize the line number 300. If I stopped the program before it finished, I would blindly type GOTO300 which allowed the program to return the screen to normal. That way my screen colors weren't reset as they would be with RUN-STOP/RESTORE.

It is very frustrating to sit and wait for 8000 bytes of memory to be cleared every time the program is run. You might put in a statement to bypass lines 70 and 80 after memory has been cleared once. You will end up with multiple images on the screen but that may not be objectionable for debugging.

Put your own statements between lines 100 and 300 . Just define values for X and Y then GOSUB 400. This program does not check the validity of any parameters, so be careful with your values of X and Y , or add checking routines (and slow the program down even more).
Horizontal and vertical lines are easily generated. A sequence such as this creates a small rectangle:

215 $Y=2 r^{\circ}$: GOSUB 4 rرs
220 $\mathrm{Y}=4 \mathrm{r}^{\prime}$: GOSUB $\left.4 \mathrm{r} \boldsymbol{r}\right)$
235 NEXT X
245 FOR Y=2 5 , TO 4r)
25r) $X=15 \rho 5$: GOSUB 4rر)
26r) $X=13 r^{\prime}$: GOSUB 40 rر
275) NEXT Y

These instructions from the $P R G$ draw a sine wave:
2rر) FOR X=r) TO 319 STEP 厅. 5
21ヶ) $\mathrm{Y}=\operatorname{INT}(9$ ($)+8$ ($) * \operatorname{SIN}(\mathrm{X} / 1$ (ر) $)$)
22 ${ }^{\circ}$) GOSUB 4 4 ر)
235) NEXT X

There is a warning on page 127 of the $P R G$ that BASIC variables can overlay the high resolution screen. It is clear from the memory map on page 320 of the $P R G$ that our bit map memory (8192 to 16191) is in the midst of the BASIC program space. BASIC closes in on this bit map memory from both directions. This is all right if the two regions don't reach the bit map memory. If your program is so large that an overlap occurs, you will have to move the bottom of BASIC memory up above address 16191. The TXTTAB pointer at locations 43 and 44 determines the lowest address used by your BASIC program. Change this if your programs conflict with bit map memory.

It's obvious after running the program on page 88 that the random number generator doesn't generate patternless random numbers. We'll go further with random numbers another time. Next month well replace some of these sluggish BASIC statements with high-speed assembly routines. In the meantime, what will you do with those 64,000 pixels now that you have control of them?

FREE!

BONUS GIFT WITH ANY SOFTWARE ORDER - AN EXCELLENT PUBLIC DOMAIN VERSION OF AN ARCADE HIT GAME ON ITS OWN DISK.

ARCADE	
Archon	28.95
Archon II Adept	28.95
Beachead II	25.95
Bruce Lee	24.95
Castles of Dr. Creep	20.95
Championship Loderunner	24.95
Computer Quarterback ..	28.95
F15 Strike Eagle	23.95
Flight Simulator II	35.95
Impossible Mission	23.95
International Soccer	19.95
Kennedy Approach	23.95
Micro League Baseball	28.95
Statistics Disk (1984)	13.95
Mig Alley Ace	23.95
Night Mission Pinball	21.95
One On One .	28.95
Pitstop II	27.95
Questron	27.95
Raid Over Moscow	27.95
Solo Flight	23.95
Strip Poker	20.95
Tournament Tennis	17.95
Zaxxon	24.95

ADVENTURE AND MIND GAMES

Amazon	23.95
Adventure Construction Set	37.95
Adventure Master	27.95
Below the Root	18.95
Bridge 4.0	17.95
Cutthroats	28.95
Dragonworld	23.95
Fahrenheit 451	23.95
Felony	23.95
Hitchhikers Guide	25.95
Infidel	25.95
Monty Plays Scrabble	27.95
Murder By The Dozen	23.95
Party Quiz	49.95
Party Quiz Refills	17.95
Rendevous With Rama	23.95
Robots of Dawn	27.95
Sargon III	34.95
Seven Cities of Gold	28.95
Starcross	26.95
Suspended	26.95
Swiss Family Robinson	18.95
Trivia Fever	27.95
Ultima III	39.95
Witness	25.95

EDUCATIONAL PROGRAMS
 Agent USA
 Cave of the Word Wizard … 21.95

CBS Success w/Math Series ea. 18.95
Evelyn Wood's Dynamic Reader 35.95
Harcourt Brace Computer SAT 54.95
Kidwriter 19.95 Memory Manor 19.95
Muppet Learning Keys 49.95
Spell It
33.95

Spellicopter 27.95
Story Machine 22.95
Word Attack 33.95

WORD PROC.-DATE BASES-

 SPREADSHEETSBatteries Included Home Organizers

Electronic Address Book
Home Inventory
Mail List
Photos/Slides/Movies
Recipes

Batteries Included Home Pak	34.95
Calc Result Advanced	69.95
Calc Result Easy	35.95
Complete Personal Accountant	54.95
Consultant (Delphi'	68.95
Cut and Paste	36.95
Financial Cookbook	35.95
Fleet Systems	56.95
Magic Desk I	35.95
Mirage Data Base Manager	67.95
Mirage Word Processor	56.95
Net Worth	55.95
Paperclip w/Spellpack	82.95
PFS File	55.95
Practi Calc	34.95
Practi File	34.95
Superbase 64	52.95
Total Text 2.6	31.95
Total Mailing List \& Labels	16.95
GRAPHICS	
Animation Station	63.95
Doodle	28.95
Future House Light Pen	23.95
Moviemaker	37.95
Pen \& Peripheral Vision	41.95
Print Shop	31.95
MISCELLANEOUS	
Bulk Discs - Quantities of 10	12.95
Compuserve Starter Kit	21.95
Fast Load	27.95
Maxell Disks - Box of 10	16.95
Pro-Tech Vinyl Covers	5.35
Simon's Basic	38.95
Tac II Joystick	9.95
Vidtex	21.95
VIP Terminal	29.95

SPECIALS
Cardco Numeric Keypad 32.95

Compuserve Starter Kit/Vidtex
39.95

S-Games
(Formerly Hes Games)
11.95

HARDWARE AND P	
B.I. 80 Column Display	
Cardco +G Interface	69.95
Commodore 801 Ribbons	7.95
Commodore Hardware	CALL
Indux Disk Drive	279.00
Okinate $10 \mathrm{w} / \mathrm{Plug}$ and Print	199.00
Okinate 10 BIk \& Wht Ribbon	4.7
Okinate 10 Color Ribbon	5.25
Panasonic KXP1091 Printer	279.00
Prowriter 7500 Printer	229.00
Prowriter 8510 AP Printer	299.00
Prowriter 8510 Ribbons	
EROY'S CHEATSHEE	

Blanks (3)
Calc Result Adv
Calc Result Easy
Comal (1.4)
The Consultant
Doodle
Easy Script
Flight Simulator II
For the Beginner
Hes Writer
Logo Sheet
Logo Sheet 2
The Manager
Multiplan

Paperclip
Practicalo
Printers Epson RX80
Gemini 10X
1525/801/
Quick Brown Fox
Simon's Basic
Speedscript
Sprites Only
Superbase 64
Terminals
Smart 64
Vidtex
VIP
Word Pro 3/Plus

SPECIALS
Cardco Numeric Keypad
32.95
Compuserve Starter
Kit/Vidtex
39.95
S-Games
(Formerly Hes Games)
11.95

TOLL FREE
1-800-633-8699
In Pa. Call
A.C. 717 838-8632

ORDERING \& TERMS

- VISA \& M.C. accepted with no charge in the continental U.S.A.
- $\$ 2.50$ shipping charge on orders under $\$ 100.00$
- Pa. Residents add 6\% Sales Tax
- Prices subject to change w/o notice
- 48 hour shipping for cashier check - Money order - charge

MAPPING THE COMMODORE 64 by Sheldon Leemon (COMPUTE! Publications, Inc., 1984; \$14.95). 268 pages, 65536 memory locations, softbound.

Mention memory map to a veteran peruser of computer journals and you will conjure up a vision of a nearly endless column of numbers, flanked by cryptic labels to the left and equally cryptic descriptive messages to the right. While this sort of information is eminently useful to those familiar with the innermost secrets of their computer, it provides the average user with very little that's definitive.

Mapping The Commodore 64 is a memory map with a difference. The list of numbers (in hexadecimal and decimal) is still there along with the cryptic labels and associated comments. However, comparing this book to a memory map is akin to comparing a detailed travel guide to a simple road map. Each significant address or group of addresses is annotated in considerable - yet concise - detail. These are not just one or two sentence descriptions. The shortest explanations run several paragraphs. The longest are actually comprehensive tutorials on the specific features on the Commodore 64.

For example, the memory locations devoted to the VIC chip comprise a surprisingly thorough description of the graphics capabilities of the Commodore 64. This book

by my side proved a valuable aid in preparing the graphics articles for the October and November issues of Ahoy! Actually, the entire C-64 4K I/O block (53248-57343; \$D000-\$DFFF) spans nearly 100 pages.

The layout follows the memory arrangement of the C-64. Thus chapter 1 is entitled "Page 0 " in reference to the machine language notation for the first 256 bytes (0-255) of available memory. This has nothing to do with the page numbering of the book. As a result, the book lacks a definitive topical organization other than that which may be associated with a specific memory block. Beginners should take warning. Some idea of what you are looking for is needed to comfortably find your way around this format. Detailed explanations of specific locations are often associated with other addresses which may be further on in the text.

Specific areas of emphasis are the first kilobyte of RAM (used by BASIC and the operating system) and the ROMs themselves. Most of the addresses in the first group include useful hints and tips on the effect of modifying the contents of the particular location. The second group is broken down into the specific operating system routines. Brief descriptions are provided on just what each routine does.

Sprinkled throughout are program examples in both BASIC and ML which are used to illustrate the various points. These range from brief one or two line affairs to full blown utilities. For example, the Vector to Keyboard Table Setup Routine, addresses 655-656 (\$28F\$290), includes a C-64 version of a keypress routine which generates an entire BASIC keyword from a single SHIFTed or COMMODOREd keystroke.

The index was a bit unusual. Rather than the customary page numbers, each item was referenced to its actual memory address. On occasion this proved to be a minor boon, particularly when all that was needed was the actual address associated with the item in question. Most of the time, this arrangement was less than optimum as the relationship between page numbers and address was not immediately obvious (let's see now, 56576 should be around page 203 or thereabouts...). The most serious flaw in this system was trying to find my way around the I/O block, which in the C-64 is multilayered. Tracking down the description of the character generator ROM took a little doing.
The appendix section was surprisingly brief, consisting only of a program typing guide and a list of the Commodore ASCII, screen, color and key codes. You definitely get a lot of meat in this volume.
Mapping the Commodore 64 is a must-have for anyone serious about using the 64 for anything other than running canned software. For beginners, appreciation will increase directly with their computational sophistication. Advanced users will find many surprises within its covers. All users will find it a valuable aid in working with their machine.
-Morton Kevelson

This program will provide assistance in solving numerous problems in physics, mathematics, and other fields where it is necessary to see the behavior of a mathematical function. It will plot a function, in high resolution, into a given range on a small screen (which is large enough for most applications). It is practically error-proof and easy to use, employing the same principles as bit map graphics, but over a screen of only 9600 pixels ($120 * 80$). The user can specify the portion of the function he wants depicted, and change the function.

For programmers, the listing on page 109 is easy to understand. It is composed almost entirely of subroutines, and contains many REM's throughout.

HOW TO USE THE PROGRAM

On the bottom of the screen, the names of all the keys that can be used are displayed. Their functions are as follows:
f1: Graph Cleaner. Clears the small screen, but not the equation. You can ask for another range without respecifying the function.
f3: Range Changer. When you press this key, the program will request the minimum value (XO) and the maximum value (XM) on the X Axis into which you want to plot the function. It will then request the minimum and maximum values on the Y-Axis (YO, YM). It will then ask for
the number of pixels you want to use in making the graphic. The plotting will follow this last input.
f5: Function Changer. Changes the function in the program. It is located on line 55 of the program. After this operation the values of all the variables vanish, due to the fact that the program is ENDed and then RUN again.
f7: Compare with Memory. This key, when pressed once, shows the graphic on the screen together
with the one in memory, in order to allow you to compare them. When you press the key again, it returns the screen to its original condition.
f2: Store $\mathbf{M}+$. When this key is pressed, any graphic on the screen is copied into memory over any graphic residing there.
f4: Recall. Calls the graphic in memory back, and puts it on the screen over any graphic that is there.
f6: Clear Memory. \square SEE PROGRAM LISTING ON PAGE 109

On Screen Status Display

| PAGE |
| :--- | :--- | :--- |
| INE |
| COL |

Overview of FONTMASTER word processor features:

1) Powerful block manipulation commands (Cut, Paste, Move, Overlay). 2) User - friendly effects include (fonts, super/sub scripts, underlining, bold face, etc.)
2) Up to eight different fonts can be used simultaneously.
3) Many printing options such as page numbering, titles, word-wrap, right justification, and more.
Create Your Own or choose from over 15 type styles provided in this unique program.

Now you and your friends can enjoy a fast paced game of \$HARK while all banking transactions, collecting of rents, managing properties and other time consuming duties are handled automatically.

SAGE SOFTWARE

P.O. Box 2578-F

Freeport, Tx 77541-2578

Our Guarantee: If you are not sarisfied with your disk, please return to Sage Software for a free replacement.

With \$HARK, you can:

- Buy and mortgage property
- Build and tear down houses
- List your cash, property and net worth
- Make DEALS and TRADES with other players
- Include or void different game options
- Have up to 6 people play at one time

(Screen Simulation)

A Real Estate Trading Game
Send check or money order to: SAGE SOFTWARE
P.O. BOX 2578-F

Freeport, TX 77541-2578

$$
\begin{aligned}
& \text { (Peose Pint) } \\
& \text { Nome }
\end{aligned}
$$

Address
Ciry _ Stote _I_ Zip ___

Sage Soffware promises prompt delivery!

QUAD-PRINT

 A Screen-Dump Utility for the C-64 running it. When you run it, you will see a menu screen with descriptions of the program functions. The even numbered function keys load pictures from the disk drive. When answering the filename request, be sure to type the DD prefix for $D O O D L E!$ files. The odd numbered keys display the pictures currently in memory. The pictures are numbered 1-4 and when they are printed together, they will be arranged according to Table 1. Check before you print your picture to be sure you have the four screens arranged properly. If you need to swap pictures from one place to another, use the @ key from the main menu and enter the numbers of the screens you want to swap. Notice that your picture names are printed at the top of the menu screen to help you keep track of them.

Other program functions are positive or negative dump (English pound sign or left arrow key, respectively), and quick view screens (asterisk) which display the pictures in "slide show" fashion. To use the quick view feature, press the asterisk key from the main menu. Screen 1 will be displayed, and you may cycle through the screens by pressing the odd numbered function keys. To return to the

	TABLE 1	
Picture No.	Address	Position
1	$\$ 4000$	Top Left
2	$\$ 6000$	Top Right
3	$\$ 8000$	Bottom Left
4	$\$ A 000$	Bottom Right
	TABLE 2	
	Epson/Gemini	
ML Routine	Address	1526 Address
Move Picture	49490	49430
Display on/off	49188	49188
Dump positive	49209	49209
Dump negative	49205	49205
Load picture	49454	49374
Note that all "POKE" values are the same for either version.		

main menu, press the space bar. To use the single screen dump for the 1526, press the up arrow key and indicate which screen (1-4) you wish to
dump.
Let's look at the Epson/Gemini version to see how it works. (The 1526 version works in generally the
same way and the SYS addresses for it are in Table 2.) There are four machine language subroutines that the BASIC program uses to handle the jobs of loading, moving, and printing your pictures. The move routine starts at 49490 , and it moves both the bit map and the color information block anywhere in the computer's memory. To use it, we must pass the "from" and "to" addresses to the routine. POKE the desired addresses as follows:

POKE	Value
49152	Bit Map : From
49153	Bit Map : To
49154	Color Info : From
49155	Color Info: To

We need only POKE the high byte of these addresses - the low byte must always be zero. The routine moves the two areas independently; it is up to us to keep track of where we have put them. We may use any of the

Main Routine

; Quad-Print
(C) 1984
by M. Beutjer
; This program
; dumps 4 hi-res
; screens side by
; side to produce
; one 640×400
; printout on
; a 1526 printer.
$*=\$ \mathrm{C} 000$
; DATA AREA

ORIG	. BYTE	0
DEST	. BYTE	0
CORIG	. BYTE	0
CDEST	. BYTE	0
LENGTH	. BYTE	0
NAME	*=*+16	
PBLOCK	- BYTE	0 ,
	0, 0, 0,0	
ROWCNT	. BYTE	0
COLCNT	. BYTE	0
FCSAVE	. BYTE	0
FBSAVE	. BYTE	0
REVRSE	. BYTE	0
TEMP	. BYTE	0
FLAG	.BYTE	0

; LABEL DEFINITIONS
SCREEN $=\$ 2000$
SCRN $1=\$ 4000$
SCRN $2=\$ 6000$
SCRN $3=\$ 8000$
SCRN $4=\$ A 000$
CODES $=$ SC1D0

POINTR $=$ \$FB		
; KERNaL Labels		
CHKOUT $=$ \$FFC9		
CHROUT $=$ \$FFD 2		
CLOSE $=$ \$FFC3		
CLRCHN $=$ \$FFCC		
OPEN=\$FFC0		
SETLFS $=$ \$FFBA		
SETNAM=\$FFBD		
LOAD $=$ \$FFD5		
CLALL=\$FFE7		
ISTOP $=$ \$FFE1		
UNLSN=\$FFAE		
\vdots PROGRAM AREA		
; TURN HIRES SCREEN ON OR OFF		
DISPL	PL LDA	\$D011
	EOR	\#\$20
	STA	\$D011
	LDA	\$D018
	EOR	\#\$08
STARTS		
dump routine		
; NEGATIVE ENTRY		
REV	LDA	\#255
BNE STORE		
NORMAL ENTRY		
NOREVS	EvS LDA	\#0
STORE; POIN		Revrse
		COPEN
SCRE	SCreen 1	
	LDA	\#<SCRN
	STA	POINTR
	LDA	\# > SCRN1

STA	POINTR+
LDA	\#<SCRRN2
STA	FBSAVE
LDA	\# $>$ SCRN2
STA	FCSAVE
ROWS	PER SCREE
NT 2	SCREENS
LDA	\#25
STA	ROWCNT
JSR	ROW

```
; POINT TO
```

; SCREEN 3 \&
LDA \#<SCRN3
STA POINTR
LDA \#>SCRN3
STA POINTR+1
LDA \#<SCRN4
STA FBSAVE
LDA \#>SCRN4
PRINT 2 MORE!
LDA \#25
STA ROWCNT
JSR ROW
JSR ROW
JSR CFIN
; DO 25 ROWS
; OF 80 COLUMNS
; SEND GRAPHICS
ROW JSR CLFD
; SEND 40 COLUMNS
JSR DOCOL
; SAVE POINTER
LDA \$FB
PHA
LDA
LFC
PHA
; POINT TO
; SECOND SCREEN
$\begin{array}{ll}\text { LDA } & \text { FBSAVE } \\ \text { STA } & \text { SFB }\end{array}$

LDA FCSAVE STA \$FC SEND 40 MORE COLUMNS

JSR DOCOL

```
RESTORE SCREEN
```

POINTERS

LDA	SFB
STA	FBSAVE
LDA	\$FC
STA	FCSAVE
PLA	
STA	SFC
PLA	SFB
STA	SFB
STOP	KEY
JSR	STOP
BNE	NOQUIT
PLA	
PLA	
JMP	QUIT

NEXT ROW
NOQUIT DEC ROWCNT BNE ROW

PRINT 40 COLUMNS
DOCOL LDA \#40
STA COLCNT COLUMN LDY \#0
ROTATE LDX \#0
: TURN OFF BASIC ROM
SEI
LDA \#46
STA 1
LDA (POINTR), Y
STA TEMP
TURN ON BASIC ROM
LDA \#47
STA 1
CLI
SHIFT BITS INTO

Iransform your C-64 into a powerful, serious business

 computer with these three add-on tools.
U|BuSGardIIIT

Mix and match the hardware peripherals of your preference. Increase your programming power with easier-to-use disk commands and machine language. All with one plug-in module.

- lets you use almost any combination of Commodore-compatible floppy or hard disk drives and Centronics-type parallel printers
- all interface functions and device allocations are set by switches on the BusCard II module; errors due to software incompatibility are eliminated
- includes BASIC 4.0, the same powerful language used in Commodore's top-of-the-line business computers, plus a machine language monitor

- \& 0. gion Co

 Column Adaptor for Poperdip and The ConsulfantDouble your screen capacity when using your favourite Batteries Included software programs. B.I.- 80 turns your 40 -column screen into a crystal-clear, high-visibility 80 -column display. Works with PaperClip wordprocessor and The Consultant database managermaximum readability and minimum eye-strain, even with a screen full of characters. It's the fast, easy, plug-in way to get twice the amount of data onto your monitor screen. And B.I.-80 also gives you the easier-touse disk commands, with BASIC 4.0 language built right into the module.

- fully self-initializing, no commands to enter; just plug B.I.- 80 into the cartridge slot and you're ready to run
- switch back and forth
between 80 and 40 column display at any time
- completely eliminates snow, fuzziness, hashing and interference
- easy-to-install module incorporates highest quality hardware components throughout; oneyear manufacturer's warranty is standard
- comes complete with 80 column operating system and comprehensive documentation, including full description of BASIC 4.0 commands
- use with Commodore 1701 and 1702 color monitors, or any monochrome video monitor
$\left\{\begin{array}{l}5 W \% \\ \text { NEW! }\}\end{array}\right.$
$\xi_{\text {New }}$ B.I. -80 Column Adaptor coming soon for Atari XL computers!

Use the printer of your choice with your Commodore computer-just plug in this compact module, and you're instantly compatible! Take advantage of today's high-speed, high-quality printers with the B.I. Printer Interface.

- works with any Centronics-type parallel printer, which includes almost all major printers on the market
- completely self-contained and ready to run; no extras to buy, no hardware or software modifications to printer or computer are required
- all print functions are controlled by switches on the module; just set them once, and never worry about it again

USE THESE TOOLS wITH PaperClip, The Cimisultant, AND OTHER HARD-WORKING, HIGH-QUALITY SOFTWARE PROGRAMS FROM BATTERIES INCWDED

Quad-Print dump on a Gemini 10X printer.

C-64's RAM including "under" the kernal or BASIC, but to avoid conflicts the BASIC program doesn't store screen maps between $\$ 0000$ and
$\$ 1 \mathrm{C} 00$ or $\$ \mathrm{C} 000$ to $\$ \mathrm{CFFF}$.
The display on/off routine toggles hi-res display on or off. The picture's bit map must already be at 8192
(\$2000), and the screen memory section must be at 1024 (\$0400). The BASIC program uses the move routine to copy the desired picture into position, and the second to turn it on for viewing. When you are finished viewing it, calling the second routine again will turn it off.

The load routine is done from machine language so that the address header of the disk file may be ignored easily. The routine loads the bit map file in the display area so that there are no conflicts with already loaded pictures. It is then moved to the desired location. Before using this routine, the filename must be POKEd into the filename area at 49157, and the filename length must be POKEd into 49156.
The print routine has two entry points: 49209 and 49205 for normal and negative printouts respectively. Table 1 gives the start address of the bit maps which are printed. Printer

"THOROUGHLPRESSED!"

"THE CONSULTANT is capable of very large and complicated searches. It is a very good system at a reasonable price. Documentation: excellent. overall rating: 9/10"

-TPUG MAGAZINE

".. you should definitely try out THE CONSULTANT...powerful and very well designed."
-EVERYTHING YOU CAN DO WITH YOUR COMMODORE, 1984 EDITION

"For a truly professional data management program, you will have to look a long time before you find a better one than THE CONSULTANT." -HOME APPLICATIONS FOR THE C-64

Consultiant

 for your Commodore 64. A database manager ofsimplicity. simplicity:

- flexible, expandable file structure; up to 9 pages (7000 characters) per record
- total number and size of files limimited only by disc spsibilities file layout pos sorting and sub-sort
sophisticated sophisticated using up to 9 criteria functions, mail list and mail label - built-in m routines
printing rouetic functions, allowing
full arithmet
page sub-totals, report totals and
statistical analysis Clip word-processor
- interfaces with Paper complex reports and to produce valuable output
Now Includes:
- 80 column report space
- On screen help files
- Enhanced label functions multiple files

Report systems allomplates ideal for Mail
Lists, Inventory, Recipes, Budgets and much more!
AND IT'S Compatible with Paperclip the polumn word processor atteries Included! display from Batteries Included.

Like a smart, computerized filing cabinet, THE CONSULTANT controls your information for you. You choose the file size and format - THE CONSULTANT's flexible file structure adapts to almost any application you can think of. And you can change the structure of your files without having to re-enter any data - a great time saver. Easy to learn and simple to use. Big system speed and sophisticated sorting functions, all for an exceptionally low price. No wonder THE CONSULTANT comes highly recommended! AVAILABLE NOW FOR THE COMMODORE 64. COMING SOON FOR THE IBM PC.
 incluped

"The Energized Software Company!"

ALBERT

Single screen dump on a Commodore 1526 printer.

setup information for the Epson/ Gemini version is contained in the
modules at the end of the DATA statements. The first byte of each
command contains the number of bytes in the command string followed by the actual string. The line spacing command area begins at 49600 ($\$ \mathrm{Cl} 0$); the line graphics setup command begins at 49608 (\$ClC8). If you have a printer other than Epson or Gemini, you will need to change these values to those recognized by your printer. This will not guarantee that the routine will work, because there are differences in the way printers translate graphics codes into print patterns. The Epson and Gemini patterns print bit 7 at the top and bit 0 at the bottom of each column of eight dots of graphics byte. If your printer is different, you may need to do another translation of the printer codes before you print them; however you will have to use the source code (reproduced on these pages) and an assembler to do this.

We're sure you're looking forward to trying out the programs in this issue of Ahoy! But we're equally sure that you're not looking forward to typing them in. If you're an average typist, that should take you upwards of 25 hours. Not counting time spent correcting your typing errors, of course. How long that will take is anyone's guess.

- How would you like someone to type the programs for you? At a price oi, say-32¢ an hour? Wouldn't it be worth 326 an hour to free yourself up for more pleasant pursuitslike enjoying the rest of your Ahoy! magazine? - If you order the Ahoy! Program Disk or Cassette, you'll be getting that service for just under $32 ¢$ an hour. Because for $\$ 7.95$ (postage included); we'll mail you all the programs in this issue, on a disk or cassette that's tested and disks or cassettes for $\$ 79.95,24$ for $\$ 149.95$ (postage included)*. Back issues are available as well. - You already know how to type. Why not use the hours you spend with your Commodore to learn something new?
${ }^{*}$ Canadian and foreign prices higher.

SINGLE ISSUE AND SUBSCRIPTION PRICES

(Postage and Handling Included) U.S.A.

CANADA

| \square June '85 Ahoy! Disk | $\$ 7.95$ | $\$ 12.95$ | $\$ 13.95$ |
| :--- | :---: | :---: | :---: | :---: |
| June '85 Ahoy! Cassette | $\$ 79.95$ | $\$ 99.95$ | $\$ 124.95$ |
| 12-Month Disk Subscription | $\$ 149.95$ | $\$ 179.95$ | - |
| 12-Month Cassette Subscription | | | |

Make check or money order payable to Double L Software.
N.Y. State Residents must add $81 / 4 \%$ sales tax.

Jan. ' 84 issue $\$ 9.95$; all other back issues $\$ 8.95$. Indicate your choices below, and specify disk or cassette at the bottom. In Canada add \$2.00 per issue; outside U.S. and Canada add $\$ 4.00$ per issue.

$\square]$ Jan. '84	$\$ 9.95$	\square	$\$ 8.95$
	$\$ 8.95$	\square	$\$ 8.95$
$\square]$	$\$ 8.95$	\square	$\$ 8.95$
\square	$\$ 8.95$	\square	$\$ 8.95$

Send coupon or facsimile to: Ahoy! Program Disk/Cassette Ion International Inc.
45 West 34th Street, Suite 407
New York, NY 10001

NAME

ADDRESS

CITY
STATE
ZIP

Quad-Print dump on a Commodore 1526 printer.

You should also keep in mind the fact that the interface you use (for your Epson or Gemini printer) will affect the graphics operation. These programs assume that your printer does no translation of the data that is sent by the computer (transparent), and that the printer will do a linefeed automatically whenever it receives a
carriage return
For those of you using the 1526 version, I'm sure you will notice that your printer seems to do a lot of moving back and forth to print the pictures. Unfortunately, this seems to be unavoidable due to the way Commodore has set up the graphics for this printer. According to the manual, you
may print one graphics character per line. The only way to print more than one graphics character per line is to send the printer a CHR\$(141), or \$8D hex, which is a "line reset" command. This command causes a carriage return without a linefeed, and that is why you see all the shaking. I don't think it will cause any problems, as I have dumped numerous pictures on mine. If there is a better way to do this, I haven't seen it. (But I would like to!)

Although hi-res screen design programs for the 64 are presently limited to one screen for the "sketch pad," this utility will allow you to do a lot of designs with your computer and printer that are not yet possible any other way. Good luck and happy doodling!
SEE PROGRAM LISTINGS ON PAGE 95

INNOVATIVE ORGANIZERS, INC. For Commodore $64{ }^{\text {TM }}$ \& VIC-20 ${ }^{\text {TM }}$

WELCOME, to the family of INNOVATIVE ORGANIZERS. These ATTRACTIVE power organizer stands, made of ABS PLASTICS, U.L. RATED, provide an opportunity for a more PROFESSIONAL looking computer installation, both at HOME and in the WORK PLACE.

There is AMPLE room under the organizer to place all the computer accessories: POWER SUPPLY, MODEM, GAME CARTRIDGES, MEMORY EXPANSION, and MUCH MORE.

Now, let's examine how these organizers work. There are 3 CRT-Models.
CRT-1 holds a Monitor or T.V. Set and a VIC 20 or 64. All wires \& cartridges fit neatly under the organizer.

CRT-2 same as CRT-1, but also has: ONE-STEP MASTER SWITCH (permits 4 pieces of hardware to be turned on and off from one switch, plus circuit protection, incoming power fused with 6AMP Fuse).

CRT-3 same as CRT-2, but also has: SURGE \& SPIKE PROTECTION built in. P-D-1: HOLDS 1525 PRINTER \& 1541 DISK DRIVE. All wires \& cartridges fit neatly under the organizer.

Ask about our Power Lock Switch \& Power Portable Computer Fan \& 2 Outlet Surge \& Spike Protection.

CALL FOR LIST OF SOFTWARE AVAILABLE
VIC 20 and Commodore bt are trademark of Commodore Electronics. L.T.D.
P.O. Box 108, Markleville, IN 46056

CRT-1 $\$ 17.98$
CRT-2 $\$ 29.97$
CRT-3 \$37.97
P-D-1 $\$ 19.48$

Optional Accessories
SS-1 Surge \& Spike Suppressor $\$ 29.95$

CF-1 Computer Fan $\$ 29.95$

Plus Shipping
CALL TOLL FREE
1-800-233-3645 Ext. 15

For the Unexpanded VIC 20 By Kevin Dewey

In this game you are Speedy, the fastest being in the universe-not an amazing accomplishment, seeing that no one else can move. Your goal is to collect all your smiley-faced green friends for a party you're throwing, while avoiding your frowning purple enemies, who are no fun at all, and in fact tend to make you explode upon contact with them. Yes, they are party poopers.

You get seven little Speedy clones to do this, and you gain another for every screen of friends you successfully clear. Speedy clones move very fast, and in all directions, so good reflexes and hand-eye coordination come in handy, but it's wise to also incorporate a bit of strategy into your gameplay. For instance, try to find the easiest ways to get a friend out from a group of enemies before plunging into the group. This, as well as other ways of using brain power instead of relying solely on a fast hand, will affect the outcome of the game for the better.

SCORING

The game is scored as follows. Every friend you pick up is worth seven points. Every bonus token is worth the number of the screen you are on, multiplied by the
number of friends you have picked up thus far on that screen. For this reason, it is best to pick up a lot of your friends on a screen, and then pick up the bonus object when there are, say, one or two friends left, to maximize your score. The bonus objects are easy to spot, because they look unlike anything else.

At the end of the game, 50 bonus points are awarded for each screen you have successfully passed during the course of the game.

SKILL LEVELS

There are 15 skill levels, 1 being the easiest and 15 being the hardest. The main difference between the skill levels is in the amount of enemies. On screens like 15 there will be a great deal more purple faces than on the easier screens, but this can be looked at two ways. While it is harder to clear a screen of goodies when there are a lot of enemies around, the higher the skill level, the more the bonus token is worth, and the more points are possible. To get really high scores, you must learn to play well on the harder screens.
I hope you enjoy playing Speedy! \square
SEE PROGRAM LISTING ON PAGE 108

the Short Wave Listener for RECEPTION OF MORSE CODE \& RADIO TELETYPE SIGNALS.

Plug the SWL cartridge into your Commodore " 64 " Expansion Port, connect a shortwave radio and you'll be watching text readout from weather stations, news services, ships and HAM radio operators all over the world. A whole new use for your home computer. The SWL contains both program in ROM and radio interface circuit to copy Morse code and all speeds/shifts of radio teletype. Plus the on screen tuning indicators mean you never have to take your eyes off the video for perfect tuning. Housed in a small $3^{\prime \prime} \times 2-1 / 2^{\prime \prime} \times 7 / 8^{\prime \prime}$ enclosure, with speaker in/out and practice hand key jacks, it needs no other computer connection or power supply. Unshift on space, word wrap around, real time clock, and keyword or manual printer control for permanent paper copy, so that you won't miss a single bit of the action. For about the price of another "Pac-Zapper" game, you can tie into the exciting world of digital communication with the Microlog SWL.

at TUSSEY COMPUTER PRODUCTS*. WE KNOW WHAT YOU WANT!

WE VALUE YOUR BUSINESS. IN ORDER TO EARN IT, WE ARE GOING TO GIVE YOU THE THINGS YOU WANT MOST FROM A MAIL ORDER COMPUTER STORE 1) Low Prices! We try to have the lowest prices around. If you do find a lower price. please give us a chance to beat it.
2) Fast, dependable service - Our shipping department works hard to get your orders out quickly, usually within one business day.
ORDERS ONLY PLEASE: 800-468-9044
3) Straight talk - We will give you accurate information as to our stocking condition
4) Personnel who care - The people at TCP sincerely want you to be happy with the way your order is handled. We all know our jobs depend on having a happy customer.

INFORMATION \& PA ORDERS: 814-234-2236 PHONE LINES OPEN 10-8 MON-FRI, 10-5 SAT

THE PANASONIC KXP 1091 PRINTER
Near letter quality at the flick of a switch The 1091 zips along at 120 cos and has a ik butter. It also has all the print modes of the Gemini $10 X$ and Epson RX-8Q plus a BIG difference. The 1091 has a nex letter quabitry switch. Flip ta and rou get a super tight
12 by 18 matinx m wh characters that twal a daisy wheell The 1091 has 12 by 18 matrin with characters that trala a daisy wheell The 1091 has both friction and tractor feed.
Our price $\$ 279.00$
Panasonic KXP 1090 $\$ 199.00$

SG 10, NLQ Dot Matrix from Star
Call

Commodore 64 is $\$ 147.00^{*}$

With the purchase of any printer, disk drive, monitor, or modem.
1541 Disk Drive
PRINTERS

Xetec GPI Xetec SPI/B Xetec SPI Cardco $7 / \cdot G$ Cardeo $7 / 8$ Cardeo PS Interface DATABASES

Mirage Database Manager/ Report Generator

Supetbase 64 (d) s 69.99
Data Manager II by Timeworks........... s 32.99
Practitile by MS(d) s 37.00

Total Telecom (1650 compatible) ...

Commodore 1660 Newt.
Compuserve starter kt

1702 Color Monitor
\$195.00
1660 Modem Call
Plus 4, C-16, others Call
SX 64
$\$ 49500$

NEW PRINTER FROM STAR!

The SG-10 is an upgrade of the popular Gemini 10x. It runs at 120 CPS, and has all the print modes of the 10X. What makes this printer different is a near letter quality mode at 60 CPS, with a 17 by 11 matrix! With this mode the printer does double duty. eliminating a need for a letter quality printer. It also includes a built in 2 k buffer, and a 1 year warranty.
PLEASE CALL FOR OUR LOW PRICE!

BUY A BUNDLE\$AVE A BUNDLE

Order one of these popular packages of products by number for super savings!

Package 45	$\begin{array}{c}\text { WORD PROCESSOR } 64 \text { and SPELLPRO } 64 \\ \text { The word processor and speling checker from Proline Sottware }\end{array}$

$\$ 73.99$

Package $=6$	
1541 EXPRESS and the FAST CABLE Everything you need to speed up your disk drive	
	\$119.99
Package $\# 7$	
CONSULTANT and PAPERCLIP W/SPELLPACK These are the popular Database and Word Processor from Battenes included	
	\$129.99
Package ${ }^{2} 9$ MIRAGE DATABASE/ADVANCED REPORT GENERATOR and MIRAGE PROFESSIONAL WORD PROCESSOR A powerful package that integrates together	
	\$124.95

Package $\quad 10$
BI-80 and PAPERCLIP W/SPELLPACK
tatteries included P wiph the Basic 40 buit in and the Papercip w/spelipack both from the 80 -column card to give you a powerful word
$\$ 209.95$

trio from Softsync, integrated W P.

 Database. Spreadsheet

Homepak from Bat Incl. Integrated W P Database. Telecommunications. Vizastar-Int. Spreadsheet. Database. Business Graphics
Epyx Fast load.
.................................... Call
Broderbund Prut Shop
3199
Please Note: When we ask you to call for a price ifs because prices on those temis are volatile. and we want to be sute we can give you the lowest prices we
can
"DEALER INQUIRIES INVITED"
Other product lines available! Call for prices.

COMPUTER AND SOFTWARE
 SUPER AUTO SALE

* with \$19.95 Software Purchase

- 170K Disk Drive $\$ 149.00$ *
- Tractor Friction Printer $\$ 169.00$
- 13' Hi-Res Color Monitor $\$ 189.00$ * * See Page 13

SPECIAL SOFTWARE COUPON

(Best communications package in USA)

PRICES
MAY
BE LOWER

- Computer Learning Pad $\$ 37.95$
- New Voice Synthesizer $\$ 49.00$
- 12' Green or Amber Monitor \$79.95
- 12' Daisy Wheel Printer $\$ 199.00$

* COMMODORE 64 COMPUTER $\$ 139.00$

You pay only $\$ 139.00$ (with the $\$ 19.95$ software purchase, see below) when you order the powerful 84 K COMMODORE 64 COMPUTER! LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your computer that allows you to SAVE OVER $\$ 500$ off software sale prices!! With only $\$ 100$ of savings applied, your net computer cost is $\$ 39.00$!

* 170K DISK DRIVE $\$ 149.00$

You pay only $\$ 149.00$ (with the $\$ 19.95$ software purchase, see below) when you order the 170K Disk Drive! LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your disk drive that allows you to SAVE OVER $\$ 500$ off software sale prices!! With only $\$ 100$ of savings applied, your net disk drive cost is $\$ 49.00$.

* $13^{\prime \prime}$ HI-RES COLOR MONITOR $\$ 189.00$ You pay only $\$ 189.00$ (with the $\$ 19.95$ software purchase, see below) when you order this $13^{\prime \prime}$ COLOR MONITOR with sharper and clearer resolution than any other color monitors we have tested! LESS value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your monitor that allows you to save over $\$ 500$ off software sale prices!! With only $\$ 100$ of savings applied, your net color monitor cost is only \$89.00. (16 Colors).

80 COLUMN 80 CPS

TRACTION/FRICTION PRINTER $\$ 169.00$ You pay only $\$ 169.00$ when you order the Comstar T/F deluxe line printer that prints $81 / 2 \times 11$ full size, single sheet, roll or fan fold paper, labels, etc. Impact dot matrix, bidirectional. LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your printer that allows you to SAVE OVER $\$ 500$ off soffware sale prices!! With only $\$ 100$ of savings applied your net printer cost is only $\$ 69.00$.

80 COLUMN BOARD $\$ 79.00$

Now you program 80 COLUMNS on the screen at one time! Converts your Commodore 64 to 80 COLUMNS when you plug in the 80 COLUMN EXPANSION BOARD!! PLUS 4 slot expander! Can use with most software.

80 COLUMNS IN COLOR

EXECUTIVE WORD PROCESSOR $\$ 39.00$
This EXECUTIVE WORD PROCESSOR is the finest available for the COMMODORE 64 computer! The ULTIMATE FOR PROFESSIONAL Word Processing. DISPLAYS 40 or 80 COLUMNS IN COLOR or black and white! Simple to operate, powerful text editing with 250 WORD DICTIONARY, complete cursor and insert/delete key controls line and paragraph insertion, automatic deletion, centering, margin settings and output to all printers! Includes a powerful mail merge.
List \$99.00 SALE $\$ 39.00$ Coupon $\$ 29.95$

We pack a SPECIAL SOFTWARE DISCOUNT COUPON with every COMMODORE 64 COMPUTER, DISK DRIVE, PRINTER, or MONITOR we sell! This coupon allows you to SAVE OVER $\$ 500$ OFF SALE PRICES!!

(Examples)

PROFESSIONAL SOFTWARE COMMODORE 64

Name	List	Sale	Coupon
Executive Word Processor	599.00	\$39.00	\$29.95
Executive Data Base	\$69.00	\$29.00	\$19.95
20,000 Word Dictionary	\$24.95	\$14.95	\$10.00
Practicalc II	\$69.95	549.95	\$44.95
Print Shop (Disk)	\$44.95	\$32.95	\$26.95
Practicalc	\$59.95	\$24.95	\$19.95
Programmers Reference Guide	\$20.95	\$16.95	\$12.50
Programmers Helper (Disk)	\$59.95	\$29.95	\$19.95
80 Column Screen (Disk)	559.95	529.95	\$19.95
Disk Filer (by Flip.N.File)	\$39.95	\$14.95	\$12.95
Deluxe Tape Cassette	589.00	\$44.95	\$34.95
Pro Joy Stick	519.95	\$12.95	\$10.00
Light Pen	\$39.95	\$14.95	\$ 9.95
Dust Cover	58.95	S 6.95	\$ 4.60
Simon's Basic	\$29.95	\$22.95	\$19.95
Pitstop II Epyx	\$39.95	\$24.95	\$19.95
Super Graphics Expander	\$29.95	\$22.95	\$19.95
Music Cale 1	\$59.95	\$29.95	\$24.95
Filewriter	\$59.95	\$29.95	\$24.95
(See over 100 coupon items in our catalog)			
Write Sample SPECIAL S	TW A	CO	ON!

> EXECUTIVE QUALITY
> PROFESSIONAL BUSINESS SOFTWARE The Cadillac of Business Programs for Commodore 64 Computers

SUPER AUTO DIAL MODEM $\$ 59.00$

Easy to use. Just plug into your Commodore 64 computer and you're ready to transmit and receive messages. Easier to use than dialing your telephone just push one key on your computer! Includes exclusive easy to use program for up and down loading to printer and disk drives.
List \$129.00 SALE \$59.00
NEW COMPUTER LEARNING PAD $\$ 37.95$ Makes other graphics tablets obsolete. This new TECH SKETCH LEARNING PAD allows you to draw on your T.V. or Monitor and then you can print whatever you draw on the screen on your printers. FANTASIIC!!! List $\$ 79.95$ SALE $\$ 37.95$

NEW VOICE SYNTHESIZER \$ $\mathbf{4 9 . 0 0}$

For Com- 64 or VIC- 20 computers. Just plug it in and you can program words and sentences, adjust volume and pitch, make talking adventure games, sound action games and customized talkies!! FOR ONLY $\$ 19.95$ you can add TEXT TO SPEECH, just type a word and hear your computer talk - ADD SOUND TO "Zork". SCOTT ADAMS AND AARDVARK ADVENTURE GAMES ! ! (Disk or tape.)

12'' GREEN OR AMBER MONITOR $\$ 79.95$

Your choice of green or amber screen monitor, top quality, 80 columns $\times 24$ lines, easy to read, antiglare! PLUS $\$ 9995$ for connecting cable. Com-64 or VIC-20.

12' DAISY WHEEL PRINTER $\$ 199.00$
"JUKI" Superb letter quality daisy wheel printer, 12 extra large carriage, up to 12 CPS bi-directional printing, drop in cassette ribbon, centronics parallel or RS232 serial port built in! (Specify) List $\$ 299.00$ SALE $\$ 199.00$

CARDCO G + INTERFACE $\mathbf{\$ 5 9 . 0 0}$

For Commodore 64 and Vic 20 computers. Lets you use other printers with Centronics interfaces. This interface lets the printer act like a Commodore printer including printing the Commodore graphics (Dot matrix with graphic capability printers). List $\$ 109.00$ SALE $\$ 59.00$.

PROTECTO WARRANTY

All Protecto's products carry a minimum 90 day warranty. Therefore, if anything fails within 90 days from the date of purchase, you simply send your product to us via United Parcel Service prepaid. We will IMMEDIATELY send you a replacement at no charge via United Parcel Service prepaid. This warranty proves once again that We Love Our Customers.

- LOWEST PRICES • 15 DAY FREE TRIAL
- BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL

PHONE ORDERS

$8 \mathrm{a} . \mathrm{m} .-8 \mathrm{p} . \mathrm{m}$. Weekdays
$9 \mathrm{a} . \mathrm{m} .12$ noon Saturdays

- 90 DAY FREE REPLACEMENT WARRANTY
- OVER 500 PROGRAMS • FREE CATALOGS

Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO. HAWAII. ALASKA. APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! VISA - MASTER CARD - C.O.D.

No C.O.D. to Canada, APO-FPO

We Love Our Customers Box 550, Barrington, Illinois 60010

FANTASTIC COMPUTER PRINTER SALE!!

Premium Quality 130-150 CPS 10X COM-STAR Printer \$199

$10^{\prime \prime}$ carriage, prints $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ standard single sheet or continuous feed paper, Bi-directional, impact, dot matrix, 130 150 CPS, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution big image, underlining, back spacing, true lower descenders with super and subscripts, prints standard, italic, block graphics, and special characters. It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) (Better than Epson FX80). List \$499.00. Sale \$199.00.

Premium Quality 150-170 CPS 15 $1 / 2$ X COM-STAR Business Printer $\$ 319.00$

Has all the features of the 10 X COMSTAR PRINTER plus $151 / 2^{\prime \prime}$ carriage and more powerful electronics components to handle large ledger business forms! (Better than Epson FX 100). List $\$ 599$. Sale \$319.00.

12', DAISY WHEEL

PRIN'TER \$199.00 "JUKI" Superb letter quality daisy wheel printer, 12 ', extra large carriage, up to 12 CPS bi-directional printing, drop-in cassette ribbon, (90 day warranty) centronics parallel or RS232 serial port built in! (Specify).
List $\$ 299.00$. Sale $\$ 199.00$.

- IUKI'

Printer/Typewriter Combination \$279.00

 "JUKI" Superb letter quality, daisy wheel printer/typewriter combination. Two machines in one - just a flick of the switch. 12" extra large carriage, typewriter keyboard, automatic margin control and relocate key drop in cassette ribbon! (90 day warranty) centronics parallel or RS232 serial port built in (Specify). List $\$ 399.00$. Sale $\$ 279.00$.
(1) Olympia

Executive Letter Quality $\$ 339.00$ 15 "' Daisy Wheel Printer This is the world's finest daisy wheel printer. Fantastic letter quality, up to 20 CPS bi-directional, will handle $14.4^{\prime \prime}$ forms width! Has a 256 character print buffer, special print enhancements, built in tractor-feed (Centronics Parallel and RS232C Interface) (90 day warranty). List $\$ 649.00$. Sale $\$ 339.00$

- Olympia

Printer/Typewriter Combination \$439.00 Better than IBM Selectric. Superb computer printer combined with the world's finest electronic typewriter. Two machines in one, just flick the switch for up to 20 CPS printing (300 Words per minute) on a $15^{\prime \prime}$ carriage that handles up to $141 / 8^{\prime \prime}$ in. paper. Drop in cassette ribbon - express lift off correction, Centronics parallel interface (90 day warranty). List $\$ 749.00$. Sale $\$ 439.00$.

- 15 Day Free Trial - 1 Year Immediate Replacement Warranty

PARALLEL INTERFACES

Atari - \$59.00. For VIC-20 and COM-64 - \$59.00. Apple - $\$ 79.00$.

Add $\$ 14.50$ for shipping handling and insurance. Illinois residents please add 6% tox. Add $\$ 29.00$ for CANADA. PUERTO RICO. HAWAII. ALASKA. APO-FPO orders. Canadian orders must be in U.S. dollars.

WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA. Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days delivery. 2 to 7 days for phone orders. 1 day express mail!
VISA - MASTERCARD - C.O.D. No C.O.D. to Conada or APO.FPO

We Love Our Customers
Box 550, Barrington, Illinois 60010
312/382-5244 to order

FANTASTIC PRINTER ${ }^{5} 4^{95}$ SALE ${ }^{\text {s }} \mathbf{2 4}^{95}$ Commodore 64 - VIC 20 - Atari

* 40 And 80 Column Printers Up To 100 Characters Per Second Full Graphics Capability \& Upper And Lower Case is Advanced Thermal Technology For Quiet Operation

3100 Alphacom 42-80 CPS 40 Column Printer

Print out listings with full computer character sets (interface required, see below). Print in upper and lower case. Comes with a roll of paper and all power adapters needed. Perfect for a spare printer or program lister. List $\$ 99.00$. Sale $\$ 24.95$.

40 Column Extra Paper	LIST	SALE
3103	25 Meter Rolls Blue	$\$ 9.95$
$\mathbf{\$ 3 . 0 0}$		
3104	40 Meter Rolls Blue	$\$ 16.95$
3105	$\mathbf{\$ 3 . 9 5}$	
3106	25 Meter Rolls Black (1 per pkg.)	$\$ 12.95$
$\mathbf{\$ 3 . 9 5}$		
3107	25 Meter Rolls Blue (2 per pkg.)	$\$ 19.95$
$\mathbf{\$ 5 . 9 5}$		

3150 Alphacom 81-100 CPS 80 Column Printer Now you can have a printer for the cost of a large box of paper. This printer prints in upper and lower case with true lower descenders. Comes with 1 roll of paper and power adapter. With the intelligent interfaces (sold below) you can do Ascii graphics as well as Atari or Commodore graphics. Plus you can do underlining and expanded modes. Print out pictures, program listings, word processing pages, etc. Perfect for the student or homeowner. List \$199.00. Sale \$39.95.

80 Column Extra Paper
315340 Meter Rolls Blue
315440 Meter Rolls Black
315525 Meter Rolls Blue (2 per pkg.)
315625 Meter Rolls Black (2 per pkg.)

LIST SALE
$\$ 14.95 \quad \$ 3.95$
$\$ 19.95 \quad \$ 4.95$
$\$ 19.95 \quad \$ 7.95$
$\$ 19.95 \quad \$ 8.95$

3101 Intelligent Commodore Interface - Allows you to hook the 40 or 80 column printer to the Commodore 64, do program listings, allows software screen dumps, etc. Includes Commodore graphics and reverse characters. (Specify 40 or 80 Column) List $\$ 59.95$.
40 Column Sale $\$ 9.95$.
80 Column Sale $\$ 14.95$.

3102 Intelligent Atari Interface - Allows you to hook the 40 or 80 column printer to the Atari computer, do program listings, allows software screen dumps, etc. Includes Atari graphics and reverse characters. (Specify 40 or 80 Column) List $\$ 59.95$.
40 Column Sale \$9.95.
80 Column Sale $\$ 14.95$.

[^2]

We Love Our Customers Box 550, Barrington, lllinois 60010
312/382-5244 to order

List \$129.95

Telecommunications

FOR CHILDREN•ADULTS•BUSINESS

Complete Auto Dial Telecommunications Package

"The only telecommunications package you will ever need." (Exclusive Easy To Use Features)

Telecommunications

- 300 Baud Modem - Auto Dial - Auto Answer • Upload \& Download - Membership in 52 Database Services (UPI News, etc.)
 Reach Out and Access Someone
 - Educational courses
 - Financial Information
 - Popular Games
 - Banking at Home
 - News Updates and Information
 - Electronic Shopping
 - Research and Reference Materials

The Total Telecommonications Package offers you all this plus ...

- Auto Log-on
- Dialing from Keyboard
- On-line Clock
- Capture and Display High Resolution Characters
- Download Text, Program or Data Files
- Stores on Disk Downloaded Files
- Reads Files from Disk and Uploads Text or Program Files
- Select Any Protocol (access almost any computer or modem)
- Plus Much, Much More

List \$129.95

Special Low-Low Price

We are so sure this is the only telecommunications package you will need we will give you 15 days Free Trial.

[^3]

JUKI 6300

Juki Office Machine Corporation $\$ 995$

There is basically one word to describe the Juki 6300: professional. It has every feature that a daisy wheel printer should, and they all work flawlessly.
The 6300 prints at speeds up to 40 characters per second bidirectionally. It will vary the pitch from 10 to 12 to 15 characters per inch, or proportionally space text. Daisy wheels are readily available, for it uses the standard Diablo format. I found the print quality to be excellent. All characters were fully formed, and the alignment was perfect.
Printing effects are numerous. The 6300 will boldface, underscore, shadow print, subscript, and superscript. One unique feature is called high quality mode. Normally, the printer advances the ribbon a fraction of a space between characters. In high quality mode, the increment is one full space for each character printed. In addition to proportionally spacing text, the printer will auto-justifyadd $1 / 120$ " spaces to the proportionally spaced text until the margins are reached.
Physically, the Juki 6300 is large. Measuring $22.4 \times 15.8 \times 4.7$ " and weighing almost 31 pounds, this printer is going to need some elbow room. The carriage is wide enough to accommodate paper up to 16 " in width, making it ideal for most business forms. The paper feed is by friction only. A tractor would be useful, but I did not note any substantial paper slippage.
The 215 -page manual includes virtually everything you need to know about the printer, unless, that is, you are a Commodore user. Operating instructions are provided for virtually all popular computers but Commodore's. Hopefully, this omission will be corrected soon.
As stated earlier, this is a professional printer, and it has a profession-

The Juki 6300 daisy wheel printer offers auto-justification, numerous printing effects, and 40 cps speed.
READER
SERVICE
NO. 238

al price: $\$ 995$. While this is inexpensive for a printer of its type (intended for small office use), it's a little steep for the average user. I would not recommend purchasing a 6300 to print an occasional letter, but if your interest is serious word processing or small business use, then it is an excellent choice.

Juki Office Machine Corporation, 299 Market Street, Saddle Brook, NJ 07662 (phone: 201-368-3666).
-David Barron

21st-century sequel to Blue Max. READER SERVICE NO. 239

BLUE MAX 2001
 Synapse Software
 Commodore 64
 Disk; \$29.95

Bob Polin's Blue Max parlayed its brand of scrolling action combat into a slew of awards last year. Now the same author leaps from biplanes to futuristic hovercraft in this exciting sequel.
Blue Max 2001 puts the computerist into the flight suit of Max Chats-
worth IX, a remote descendant of the heroic aviator of Blue Max fame. The implacable FURXX Empire has extended its tentacles to Earthbase Gamma IV. The game scenario begins just after the FURXX have conquered the planet and drained the lifeforce of the survivors to lengthen the lifespans of imperial bigwigs.

If the FURXX aren't stopped, their attack will spread to other colonies and eventually engulf Earth itself. The player must use the joystick to guide a single hovercraft in a desperate attack against the alien invaders.

The flying ship is equipped with two super weapons capable of breaching the FURXX defense system. The gravonic penetrator, fired by pressing the action button while pointing the stick in the desired cardinal direction, can strafe ground installations or knock aircraft out of the sky. The hovercraft also carries 40 gravonic annihilator bombs which it can drop on buildings, bridges, and vehicles.

Two special targets merit the highest priority. The diamond-shaped Shield Enhancer increases the hovercraft's defensive capabilities. The Terrain Sequencer, a disk with a rotating core, allows the lone attacker to advance to the next alien hoverfield.
Once the hovercraft takes off from its field, the gamer pushes the stick up and to the left to start the terrain scrolling diagonally down the screen. The scrolling can be stopped by moving the stick down and to the right.

Slik Load

Slik Load is a Kartridge for the C-64.
Slik Load is the most reliable, effective and thought out Kartridge of it's kind.
The options include:

- 5 times faster load
- Eliminates drive rattle when errors are encountered.
- Old and un-new Will restore a basic program
- Status key will give you information on device number, bytes free and status of the drive.
- Silk Load is also fully compatible with the 1541 Super Rom

\$29.95

DMS-Errors 20, 21, 22, 23, $27 \& 29$ Format Single Tracks Read Disk Errors
1/2 Track Reader-read and select $1 / 2$ track $1 / 2$ Track Formatter-Format a disk with $1 / 2$ tracks. This is where the next protection schemes are coming from.
Drive Mon-Disk Drive assembler/disassembler. For your 1541.
The Doc-Disk Doctor that reads code under errors.
Sync Maker-Place a sync mark on any track out to 41. Also used for protection.

Sync Reader-Check for Sync bits on any
track out to 41.
Change Drive No.-Changes drive number (7-30).
Diak Logger-Finds starting track sector; start and end addresses.
Disk Match-Compare any two diskettes. Byte for byte.
New Wedge-Easier to use DOS wedge. ID Check-Check ID's on any track. Unscratch-Restore a scratched file. View-BAM-Visual display of the free and used sectors on a diskette.

Read/Write Teat-1541 performance test. Repair a Track-Repair a track with checksum errors. Reads code under errors and restores track. Fast Format-Format a disk in just 10 seconds (with verify!).

This is the only utility of its kind. It even has a 3 min . copy on it.

WAR GAMES AUTODIALER

2-Review Numbers will review numbers that were answered by a computer.
3-Save Numbers will save numbers where a computer answered.
4-Hardcopy of Numbers will print out list of numbers where a computer answered. 5-LOAD Numbers will load in numbers to continue where it left off. 6 -Continue will pick up dialing where it was interrupted.

s29.95

 3rd

 3rd

 Edition

 Edition}THIRD EDITION! NOW AVAILABLE!

If you're tired of being harassed by protected software and too many copy programs, then this is the book for you! This 224 page manual covers the gambit from legalities to protection methods to step-by-step back up procedures. Now you can learn both how to protect and unprotect software! The techniques covered include copying cartridges to tape or disk, tape protection, and disk protection. Disk protection covers error no.'s 20, 21, 22, 23, 27 and 29 plus single track formatting, header modification, header swappnot be without!

KARTRIDGE MRACKER

NOW you can own this unique and powerful tool which will allow you to dump the contents of 8 K and 16 K cartridges onto disk! But what's really great is that you can also RUN the cartridges programs without plugging in the cartridge! the KRACKER gets YOU INSIDE the cartridge! Put all your favorites on disk and get rid of the clutter. This package provides your with the software and hardware needed to get started. Program on disk included. (Some cartridges require use of external RAM not included)

\$44.95

TOP SECRET STUFF II
 All C128 Compatible

Split Screens (Horizontally) Smooth Scrolling Save Ram From Under Roms No Drive Rattle On Errors Triple Drive Head Speed Autoboot Maker Koala Screen DUmp
Display GCR
Fast' Disk Eraser

Protect Scheme For Your Disks Write Protect Disk
Unwrite Protect Disk
Mini D.O.S. Wedge
Fast Diskmatcher
Data Statement Maker
Unnew
3 Minute Copy
D.M.S.

If you have TSS\#1, You'll Like This One! All'on one disk $\$ 1995$

Bulletin Board
 Set up and operate your own bulletin board with one

ing, half track reading and writing, reading and writing modified bit densities, formatting illegal tracks/sectors, sync writing and more! The Third edition explains, tells how to detect and how to write them with included software. Eleven useful utilities and many protection listings! Our disk analysis programs reveal the protection methods used on your originals. A diskette with all software is available for a minimum extra charge. This may not be the only book your should have for the C-64, but it is certainly the one book you should

C64 Book only	\$19.95 US
Book \& Disk of all programs	\$29.95 US
Vic 20 book . . . Cart. \& Tapes only	\$9.95 US

Vic 20 book. . Cart. \& Tapes only . \$9.95 US or two disk drives. This one has all the features and you can customize it easily yourself.
1-RUN MEGASOFT-BBS 8-READ SYSOP MESSAGES 2-CREATE MEGA FILES 9 9-WRITE OPENING MESSAGE 3-ADD TO SYSOP'S CORNER 10-READ LOG

THIS MANUAL DOES NOT CONDONE PIRACY

P.O. Box 1080, Battle Ground, Washington 98604 Phone (206) 687-5116 • BBS 687-5205 Atter Hours Computer to Computer

Enclose Cashiers Check, Money Ordet, or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders. Canada orders must be in US Dollars. VISA - MASTER CARD - COD
Programs for C. 64 $\$ 2.00 \mathrm{~S}$ \& H on all orders

[^4]
D-Compiler

The first D-Compiler to give you back your source code after your program has been compiled with *Blitz.
'Blitz is a trademark of Skyles Electric Works

1541 Super ROM

- Fast Save Load Verity
- Fast Scratch and Validate
- 10 Second Format with Verify
- No more Drive Head rattling during Format or Error Reading
\$39.95
also Save with Replace is Improved
- Two times faster, Eight times faster when used with Turbo 64 which is included

- 1541 Super ROM is 100\% Compatible

APALLO copies it all

APALLO Does it All. This program is the latest generation of copy programs. It will do everything the $\$ 39.00$ and $\$ 49.00$ programs will do and more. It Copies ALL drive errors, bad tracks and sectors, non-standard format, bad syncs, and half tracks. We feel this is the best program of its kind available...

MSD Sure Copy

At last a complete utility package for the MSD Dual Drive. This is the first MSD utility program that does it all. The main menu options include:

Sure Copy will put all errors automatically on disk: 20, 21, 22, 23, 27 and 29's.

D-CODER

- Translates any machine language program into easy-to-read English descriptions with complete explanations of each command!
- Makes complete notations of all important memory locations accessed by the program! (SID, VIC, MOS, KERNAL, etc.)
- Gives you three ways of accessing programs: 1) Will read and list programs from DISK 2) WIII read and list programs from MEMORYI 3) Direct user input (from magazines, etc.)
- Can be used to locate and examine any machine language program's protection routines!
- Can be used to easily break apart machine language programs for study and examination!
- Printer option for complete hard copy listings!
- Copy Protected Disk
- Copy Files
- Format a Disk
- Change Disk Name
- Quit
- Copy Unprotected Disk
- Scratch a File
- Rename a File
- View Directory

N-CODER

\$19.95
the machine language manipulator..

The perfect companion program to D-CODER!

Allows you to easily make changes in machine language programs... right on the disk!

- Rewrite ability allows code to be altered and then rewritten directly to the disk!
- Features sector-by-sector scrolling assembly language display of machine language programs!
- Notation of ASCII text equibalents for easy spotting of embedded text strings!
- Handy reference display of all assembly language commands and their ML numerical equivelents!
- Byte splitter for easy splitting of decimal addresses into low byte-high byte format!

Super Loader

Super Loader is a Kartridge that plugs into your expansion port, that allows the computor, on power up start the disk drive and load the first preselected program on the disk.

- Change colors
- Load wedge
- Works with more drive
- Takes up no memory
- Reset switch included

Only
$\$ 29^{95}$

This Disk has over 100 routines, some of them are routines for protection, smooth scrooling, modem routines, and sound and color
routines. They can easily be incorporated into all of your programs.
It is also fully documented.

42	APCAD	258
11	Abacus	263
C-4	Access Software	262
68	Alphacom, Inc.	265
23	Apropos Technology	268
49	Batteries Included	$*$

An open letter to the readers of Ahoy Magazine Vincent Kurek

 President: The Ennon CorporationMy purpose in writing is to ask you to join me in shaping the future of the new and most unusual field in computer technology today: Artificial Intelligence.
This incredible power and spectacular creative potential are available to you, for your computer right now. However, there is an alarming possibility that such amazing technology which you have every right to, may not be available to you other that through this offer.

This is unfortunate but somewhat understandable due to the way technology is created. You see, only the business oriented corporation can finance research. It therefore is in a position to dictate immediate research goals. These goals are increasing profits through more efficient production. While valid, they are merely creative and do absolutely nothing to foster exploration in new applications. The result: technology is never used to its fullest potential. But what's worst of all is that these competitve corporations have absolutely no desire to share technology with each other, let alone with you. So, they don't. As a result, the infinitesimal amount of technology that finally trickles down to you is:
A. So expensive you are prohibited from procurring it
B. Shamefully inferior to the real thing
remember...you can buy high-tech consumer goods, but never the technology that creates it.

This same situation confronts you in the new Artificial Intelligence field, but with a difference: There is no true Artificial Intelligence for the home computer user! The few programs claiming to be Artificial Intelligence are really simulators. They are not the real thing. Possessing a mere token of the power and versatility, simulators are clearly not worth their expensive price.
I have tried repeatedly to convince my colleagues that it is in their best interest to release genuine Artificial Intelligence to the general public. The refinement, modification and adaptation as individuals create new applications would improve Artificial Intelligence tremendously. This would benefit everyone in the long run.

I have met with little success. Apparently, it seems that immediate corporate profit is more important than sharing technology with the public. Therefore, the Ennon Corporation stands alone in offering superior Artificial Intelligence programming directly to the home computer enthusiast.

Announcing AN-83:

The "Thinking" Program
Believe me when I say AN-83 is the real thing. It is a true "thinking" program that receives an initial "knowledge base" from a data file read when AN-83 is started. Using inductive and deductive logical analysis, this amazing program deduces everything from that data and adds it to its memory. Conversing with you, AN-83 adds and combines with facts already known. It generates new conclusions not explicitly contained in its original knowledge base-just like your own thinking process! The result: it knows considerably more than the specific facts given to it.

AN-83 can also think about anything. It is virtually unlimited in its application. Think of your possibilities. The potential is limitless. In the right hands, AN-83 would revolutionize the adventure, strategy and other smart gameplaying programs to say nothing of classic arcade games. On the other hand, AN-83 could be one of the most powerful business analysts available to the home computer.

FREE SOFTWARE

In addition, you will be receiving free, Eliza-the most amazing conversational A.I. program to date. Run this for your friends and jaws will drop with amazement. Eliza's responses are so human, it's uncanny. An entertaining program, Eliza will answer once and for all the question: What can your computer do?

How to Learn
 Artificial Intelligence

You can be creative. Experiment and modify to fit your personal use because $\mathrm{AN}-83$ and Eliza both possess source code in basic, the most popular easy to use language for the micro. Their extensive, easy to understand commands walk you through the source code
step by step. It's surprisingly simple. Even the beginner can understand the "How and Why of A.I."

A Fantastic Savings

The real profit to Ennon Corporation will be your participation in the future of Artificial Intelligence. Therefore, I am pleased to say nobody will miss this chance because they could not afford it. AN-83 is priced to cover just a fraction of its research and developmental costs.

The "Thinking" Program AN-83 is just \$21.57. What's more, the astounding Eliza is yours absolutely free.
I guess it's obvious that I want you to participate in the future of Artificial Intelligence. Forgive my excitement and enthusiasm but I just know you are going to be very happy and impressed that such things could be done with your computer. You just won't believe it. Please take this opportunity now. Simply fill out your coupon below and mail today. Don't miss out. It's such a wonderful future of discovery and excitement that awaits you.

With very best of wishes,

Vincent Kurek
\square Please send me the "Thinking" Program AN-83 for only \$21.57. In addition, I will receive absolutely FREE Eliza-the most impressive conversational Artificial Intelligence program to date.
Available in disk only.
For use with the Commodore 64.
Name \qquad
Address
City
State \qquad

THE ENNON CORPORATION 1817 W. Call St., Suite B-8 Tallahassee, FL 32304

Canadian orders must be in U.S. dollars.
We export to other countries.
Commodore is a registered trademark.

The Alphacom Pluswriter (see review on page 66) cruises at a moderate 18cps. The printer emulates the Diablo 630, so many special effects are possible. READER SERVICE NO. 265
gram. That first spreadsheet program was Visicalc, which through its symbiotic relationship with the Apple introduced thousands of burned-out Pong players to the really useful aspects of computing.

Today, more spreadsheet programs exist than you can shake a ledger at. Regardless, the market is always on the lookout for a better, cheaper program. Depending on your exact needs, Calc Now! from Cardco may be exactly that.

Cardco began its product line with hardware add-ons like its numeric keypad. More recently, it has expanded into software with programs like Write Now!, a wordprocessor with a mail merge feature, and Graph Now. Cardco's latest release, Calc Now!, is compatible with all three. For the $\$ 39.95$ price, you get most of the features of spreadsheet programs costing much more.

Calc Now! is a single load program - no disk-swapping needed. Once it's loaded, Calc Now! runs much like other spreadsheets. For details on the basic operations of spreadsheet programs, pull out your May 1984 issue of Ahoy! and reread Terry Silveria's comprehensive review and evaluations of ten competing products. To compare Calc Now! to those programs, here's the information for Terry's chart of spreadsheet features:

Relative Copy	Yes
If Then Command	Yes
Row/Column Insert	Yes (and row/column delete)
Rejustify Cell Contents	Yes (either left or right)
Split Screen	Yes (either vertical or horizontal, syn- chronized or unsynchronized
Adjustable Column Width	Yes (from 3 to 36)
Logic Operators	Yes (And, Or, Not)
Fix Titles	Yes (lock the top row(s) or the left column(s) or both in place)
Graph	Yes (print rows of asterisks to repre-- sent values)
Sort	Yes (alphabetical or numerical on any column)
Search	No
Link	No
Maximum Column Width	36
Maximum \# Columns	64
Maximum \# Cells	1600 (with an 8- digit number in each
Maximum \# Rows	254
Price	\$3995

Calc Now! uses the top (status) lines of the screen to show you the
cell number, type, justification, contents, and format. Available formats are dollar, floating point, integer, graph ${ }^{*}$), logical (true/false), and set number of decimal places. The status lines also tell you whether recalculation will occur automatically or must be triggered and how much memory is left for your data. After the program is loaded, 39 K is available. If you build spreadsheets that are larger than this, you may need to consider one of the other programs that can link spreadsheets by allowing you to reference one spreadsheet in another.
Several functions are available in Calc Now! that work on ranges of cells. SUM will total the contents of a range of cells; AVERAGE will average them; MIN will find the smallest; MAX the largest; and COUNT will return the number of non-blank cells. Two other powerful and more unusual functions also work on ranges. GET will evaluate a formula, count down that number of cells, and return the value in the cell it finds. FIND will evaluate an expression, search through a range of cells until it finds a value which is lower, and return the value in the next cell. Linked with the sort feature, FIND gives you a very sophisticated spreadsheet tool.

Here are some one-liners on features I especially like. Sorting rows based on the contents of any column (or part of a column) is fast; only a couple of seconds even for a big spreadsheet. Existing cell formulas can be edited-you don't have to retype a long formula which has an error near the end. Whenever you need to reference another cell in a formula, you can, after pressing the British pound sign key, point (with the cursor) to the cell you want and automatically enter its number, a necessary feature for multiscreen spreadsheets. You can command Calc Now! to move the cursor up, down, left, or right when you hit return-handy when you change from entering columns of numbers to entering rows.
More? Okay. Instead of printing all or part of your spreadsheet, you can choose to print all of its formulas for

verification. (If you've ever made a mistake with pencil and paper, wait until you see what havoc you can create with a spreadsheet.) Individual cells can be protected, a handy feature for spreadsheets used infrequently or by someone else. Without exiting from Calc Now! you can initialize a disk, get a directory, delete or rename files, and specify disk and printer device numbers.

That's a lot of features, but is Calc Now! hard to use? No, if you're at all familiar with spreadsheets, it's a snap. Even if you're not, keyboard templates describe the uses of function and other command keys. Forgetful? Hit the help key followed by any command key you are unsure of. In an onscreen window, a description of that key's function will appear. The program I reviewed had only an 11page temporary manual, so I cannot say what the documentation will look like. But Cardco does provide technical support by phone.

My favorite, and final, help feature is something we all demand of ourselves in programs we write, but which is not available from spreadsheet programs. A non-printing comment or documentation can follow the contents of any cell; just start it with a semicolon. If you have ever tried to decipher one of your old spreadsheets, much less someone else's, you'll know how valuable this can be.

Cardco, Inc., 300 S. Topeka, Wichita, KS 67202 (phone: 316-267-6525). -Richard Herring

MJ-10 MONITOR
 Teknika Electronics Corporation \$279.95

When the carton containing the Teknika MJ-10 appeared on my desk one morning for review, I thought I would be taking a look at just another monitor. I was wrong. The MJ-10 produces a surprisingly good picture, easily the equal of the Commodore 1702's. This is partially due to the fact that the MJ-10, like the 1702, accepts separate luminance and chrominance inputs. This helps achieve a level of clarity and color rendition not possible with monitors boasting only composite video inputs.
On the front of the monitor are an exposed power switch, power light, and volume control. Hidden behind a flip-out panel are controls for horizontal position, vertical position, contrast, brightness, color, and tint. Other controls-vertical linearity, vertical size, horizontal hold, and input level-are on the back.
My only complaint with the MJ-10 has nothing to do with the video, but rather the audio. Its speaker is undersized and does not reproduce sound very well. Additionally, a larger amplifier and an earphone jack would have been useful.

All in all, the MJ-10 is an excellent choice in a monitor if the highest possible picture quality is a must.
Teknika Electronics Corporation, 353 Route 46 West, Fairfield, NJ 07006 (phone: 201-575-0380).
-David Barron

MUSICWARE SONG BUILDER
SONG EDITOR
SONG PRINTER
SOUND MAKER
Sequential Circuits
Commodore 64
Disk; $\$ 39.95$ each
I was immediately impressed with the MusicMate keyboard from Sequential Circuits. Its 32 keys have nice action, and the lightweight and sturdy construction make it ideal for creating music on the $\mathrm{C}-64$. I was less than overwhelmed, though, by the supplied driver software, the \#970 MusicMate Musicware. It's your basic meat-and-potatoes program, devoid of any gravy. While it does what it was designed to do-demonstrate the capabilities of the keyboard by allowing you to try several different sounds, store your creations in RAM, and play them back-no provisions are included for saving your songs to disk, recording individual voices, creating new sounds, editing, or printing out your compositions. Clearly, the MusicMate keyboard would be much more valuable to computer musicians if it had software that was commensurate with its own capabilities.

To fill this need, Sequential has released the MusicWare line. They've taken the modular approach, whereby dedicated software modules have specific functions, and you only buy the particular utilities you need when you need them.

The MusicWare line consists of four additions to the software that comes with the keyboard: \#971 Song Builder, \#972 Song Editor, \#973 Song Printer, and \#974 Sound Maker. The module names provide you with a good description of the functions. Let's take a look at each individually, as well as interactively.

\#971 SONG BUILDER

Song Builder is the music composition module. It allows you to enter your melodies, one voice at a time, and record them on disk. You're given a selection of stock sounds that simulate a wide variety of musical instruments. A metronome feature

a Breakthrough in Value! ULTRABYTE DISK DUPLICATORS with FREE BACKUP COPIES

ULTRABYTE NOW OFFERS TWO OF THE BEST COPY PROGRAMS ON THE MARKET, AND BOTH COME WITH FREE BACKUP COPIES.

ULTRACOPY II

Jim Lagerkvist's sequel to the original ULTRACOPY 64 owned by thousands of satisfied customers.

- Copies protected disks in 8 minutes on a single 1541
- Does not "hammer" the disk drive. Will not affect alignment
- Formats, copies and produces errors automatically in one step
- Features Normal Scan for reliable copies of most disks
- Includes Deep Scan with 38 track and half track capability
- Copies 99% of programs on the market
- Free backup copy - two disks for the price of one
- Technical support available by telephone
- Simple to use. Tone signals disk swaps

ULTRABYTE DISK NIBBLER

Uses proprietary revision of disk operating system (DOS) to make a bit by bit copy. This process, called nibbling, copies the format, data and errors, all at the same time. Errors are not recognized and do not hammer the drive. Built in fast load environment allows copies in 8 minutes with a single 1541 disk drive.

- Easy to use. No separate analysis or error production
- Choose $35,36,37$ or 38 tracks to copy incl. half tracks
- Makes up to 5 copies of each original - (UNIQUE FEATURE)
- Backs up 99% of all software
- Free backup copy - two disks for the price of one
FREE BACKUP DISK

ULTRACOPY II and the NIBBLER are independent products by different authors. Both are excellent and either should meet your needs. You may order two disks of one product for $\$ 39.95$ plus $\$ 4.00$ shipping and obtain a single disk of the other for $\$ 20.00$ plus $\$ 3.00$ shipping. Sorry, free backup must be same as disk purchased.

S39. ${ }^{95}$
 FOR 2 COPIES OF EITHER ULTRACOPY II OR THE DISK NIBBLER

plus $\$ 4.00$ shipping and handling. Mastercard, Visa, Check or M.Q, Foreign orders or COD add $\$ 2.00$. Calif, add 6.5% ($\$ 2.60$) sales tax. Additional backup copies are $\$ 20.00$ plus $\$ 3.00$ shipping
ATTENTION: Owners of ULTRACOPY or the NIBBLER whose names are in our file may order a single copy of either product for $\$ 20.00$ plus $\$ 3.00$ shipping.

> Write or Call 24 Hour Order Line ULTRABYTE (818) 796-0576 P.O. Box 789 La Canada, CA 91011
helps you keep time while recording your tracks.
The program is menu-driven, and only eight keys on the C-64 are used for selection or advancing through the menu items. The MusicMate keyboard is used exclusively for note entry. The documentation booklet is written in a well-illustrated, easy to understand style. Additionally, help screens concisely explain how to access the program's functions.
One of the most impressive aspects of Song Builder is its sequencing capability, allowing you to create individual sections, or sequences, of music and treat them as individual entities. After recording your sequences, you can link them in any desired order, or even change the key and tempo of different sequences. This lets you create whole songs of any length quickly by treating individual song sections as sequences. Let's say that your song contains these components: verse 1 , verse 2 , chorus, verse 3 , chorus, chorus. To create a complete song, you need only record one verse and one chorus, then assemble them in the right order, since the music for the verses and choruses is the same each time they recur. What would Beethoven have thought of such a work saver? He would have loved it, I'm sure!

\#972 SONG EDITOR

The Song Editor module provides you with the editing capability to do minor touchups on your songs or major rewrites on given measures. The documentation explains how to access its many features, and the program contains multiple help screens. As with the other MusicWare modules, Song Editor is entirely menu driven and very easy to use, requiring only eight of the C-64's keys for implementing functions. All note entry is handled through the MusicMate keyboard.

Possibly the most outstanding feature of Song Editor is that it automatically calculates the effects of your editing changes and compensates for them. If you alter the pitch or duration value of any note in the composition, Song Editor automatically

REVIEWS

takes care of the rests! To change any note on the display, strike the correct note on the MusicMate keyboard and it will appear instantly on the staff. You can even change the time signatures or transpose the key with this program.

Another big plus is the ability to step through your music one note at a time, or view your score one masure at a time. The video display is in traditional grand-staff format, with signatures, notes, and rests looking exactly as they should.

Song Editor is a tremendously powerful music editing program that picks up where Builder leaves off and carries you further down the musical path.

\#973 SONG PRINTER

If you have need of printed musical scores in standard notation, Song Printer will allow you to print out sheet music of your songs, and even give you the options of which voices to print. Consistent with the other products in the MusicWare line, it is menu-driven and easy to use. The program is accompanied by excellent documentation, and help screens are included.

Song Printer will work with the Commodore 1525, 801 , or other compatible dot matrix printers suitably interfaced. Because the music symbols and graphics must be created, letterquality or daisy wheel printers wont work.

In addition to printing out excellent quality music scores, Song Printer allows you to choose the melody lines) to be printed. This is particularly useful for learning harmony parts in vocal arrangements, whereby the soprano, alto, and tenor may each have a score with their particular parts on it. The piano accompanist, however, may utilize a score showing all three parts. This is a great print option to have, and Song Print$e r$ is, to my knowledge, the only music printing program that allows this sort of flexibility.

\#974 SOUND MAKER

Your C-64's SID chip is capable of creating some awesome sounds, and
the Sound Maker module makes such sonic tailoring easy. The program disk contains twenty musical instrument sounds and sound effects which you may alter to your heart's content. Included are several help screens that explain the functions of the control settings; additionally, the documentation expands on this information.

Sound Maker also provides you with a novel video display while creating sounds. Unlike music synthesis programs which rely on bar or numeric setting displays, you get a simulated analog control display that depits knobs for adjusting sound qualities. This feature really imparts the feel of a traditional electronic music synthesizer to the program. Another nice wrinkle is the ability to select different octaves for the sound, in addition to "tweaking" the bass, rebile, or a combination of the two.

You can try out your sounds as you create them by using the MusicMate keyboard with the program. And when you've created one you particularly like, you can store it on diskette for use with other programs in the MusicWare line.

SUMMARY

All the MusicWare modules reflect a lot of thought on the part of their designers. They're very easy to use; even for the computer music novice, they perform flawlessly, and they are all interactively compatible. The modular software approach allows you to purchase specific-capability features as your needs dictate, and combining these MusicWare modules produces a full-featured music package that's hard to beat.

Sequential Circuits, Inc., 3051 North First Street, San Jose, CA 95134 (phone: 408-946-5240).
-Tom Benford

BROMAL

Systems Management Associates

 Commodore 64
Disk; \$49.95

BASIC, stand aside. A new generation of computer languages has arrived and is taking over. And, of the structured languages, PROMAL is one of the very best.

505
 10 DISKETTES OR
 20 C-20 CASSETTES

A subscription to the 'Cassette of the Month' gets you a tape or disk full of 10 quality Commodore 64 programs delivered to you by first class mail every month. The documentation included will help you run great utilities like 'Word Processor,' and 'Budget Analyzer,' or enjoy great games like 'Frogjump' and 'Caterpillar Cave' FOR AS LITTLE AS 50 CENTS EACH!
\star Limited offer \star Subscribe for a year on cassette and receive 20 Free C-20 chssetter or subscribe for a year on disk and receive 10 Free $5 \frac{1}{4}$ single sided double

* We've been in business for over three years! acquiring
* Over 4000 satisfied color
computer owners * Commodore 64 required

Mich. Res. add 4\% Overseas ADD $\$ 10$ to subscription and $\$ 1.00$ to single issues
PERSONAL CHECKS WELCOME!
T\&DSubscription Software P. O. BOX $256-\mathrm{C}$ HOLLAND, MI 49423 (616) 396 -7577

Reader Service No. 253

E-FILESG4
A VERSATILE ELECTRONIC CARD FILE/DATA BASE. EASY TO USE PICTURE DRIVEN MENU. DESIGN CUSTOMIZED FILES. SORT/ SEARCH/ MAIL LIST/LABELS. 3 DRAWERS/ 200 REC/DRAWER. ON DISK ONLY.. $\$ 20.95$

PageWriter

 EASY TO USE, LOW COST WORD

 PROCESSING. 80 COLUMN TEXT WINDOW. FULL TEXT EDITING, EASY MAILMERGE (DISK).DISK $\$ 21.95$
LAS $\$ 18.95$

CHECK/MONEY ORDER $+\$ 2.00$ SHIPPING
N.Y. RES. ADD SALES TAX.

VMCSOFTWARE
 PoO. BOX 326
 CAMBRIA HTS.N.Y.II4II

Reader Service No. 254

PROMAL makes a compromise between the loose syntax of BASIC and the intense structure of LISPtype languages. PROMAL is proce-dure-oriented, which means that programs are written in little modules, each of which performs a specific task. All of the small units of code are then called by a main procedure (program), in a structure which resembles BASIC "GOSUB-RETURN"called subroutines.
There are two types of modules in PROMAL: procedures and functions. When called, functions return a value (data or a Boolean). Procedures are series of program commands, which return no value. Within a module, local variables may be defined. In fact, modules may even be defined recursively with up to 256 levels of nesting. All modules may be sent arguments (data) on which to perform operations. The data structures in PROMAL are similar to those in BASIC, with the exception of Boolean data.
Boolean data are the values TRUE and FALSE which may be assigned to a variable or be returned as the result of the evaluation of an expression. One example of an expression which returns a Boolean when evaluated is the CMPSTR function. CMPSTR compares two strings in relationship to an operator ($<,<=,<>,=,>=,>$). If the relationship is true (e.g. $\mathrm{A}<\mathrm{B}$), the CMPSTR returns TRUE, else FALSE.
PROMAL also has a very different way of treating command words. All programs, including the main program and all modules, are given names and told what arguments are needed for proper operation when initially defined. To execute a program, only the use of the name and inclusion of argument values are necessary. In a way, definition of a module is the same as creating a new command. It is even possible to create a whole range of sound and color commands, avoiding the annoyance of POKEing all those values into memory.
However, in terms of syntax of individual statements, PROMAL and

BASIC vary by very little. The basic assignment primative is the $=$ operator (a primitive is an element of a computer language which is originally written in machine language, as opposed to modules-written in PROMAL). The conditional constructs are IF-ELSE, IF-THEN, and CHOOSE. The looping constructs are WHILE, REPEAT-UNTIL, and FOR.

The most interesting and useful new primative is the ESCAPEREFUGE construct. When an error occurs in a module called by another module, it is often desirable to return to the original module and restore all variables to their original state. Using REFUGE, it is possible to define three places and states to which the program may return and "recover" from a disaster. Each REFUGE is given a number from one to three. When an ESCAPE command is executed, the refuge number is specified and all state variables are restored at the location corresponding to the appropriate refuge.

PROMAL statements, unlike those in BASIC, have no line numbers, may only occupy one line, and must have spaces between keywords and variables. However, these small inconveniences are more than compensated for by the fact that PROMAL is a compiled language. There are two
fundamental types of languages, interpreted and compiled. BASIC is interpreted. Interpreted languages are evaluated sequentially, as individual lines are executed. This is understandably slow. Compiled languages are evaluated into machine language in one large translation effort and stored in machine language form in an object file, on disk. Then, when the object file is executed, it is as if the program was originally written in machine language. However, the usual problem which arises with compiled languages is that the original program must be written into a document file, through a separate word processing program. PROMAL fully supports creation of document source files by supplying a built-in editor. An EXECUTIVE (operating system) is also included, completing the PROMAL environment.

As an introduction to structured programming languages and as an alternative to BASIC, PROMAL is well worth the time needed to learn it and the $\$ 49.95$ to purchase it. Systems Management Associates deserves a round of applause for greatly extending the computing powers of the Commodore 64.

Systems Management Associates, 3700 Computer Drive, P.O. Box 20025, Raleigh, NC 27619 (phone: 919-787-7703). - Rachel Schleimer

ERRATUM

On page 107 of our April ' 85 issue, we listed incorrect last byte information for the BASIC Trace program. The correct last byte is C1FA. To enter it, load your version of Trace $(, 8,1)$, then load and run Flankspeed. Enter first and (correct) last byte, hit f5, and continue from address C1F8. After typing in the last line, save the program.

CALLING ALL STARVING COMPUTER ARTISTS...

[^5]
SCREFN DUMPING

THW
 COMMMODORE 64

sooner or later every programmer with an interest in computer graphics will tap the versatility of bit mapped graphics. The program described here will serve not only as a primer on the creation of screen bit graphics, but will also allow reproduction of the screen image on your printer. In addition, if you study the program (see page 107) carefully you will learn something about memory management on the Commodore 64, as well as experiencing the dramatic effect of machine language on the speed of execution of the program.

The program requires an 8 -pin dot matrix printer with bit graphics capability. It was written for use on either a Gemini 10 or 10 X , using a standard Centronics serial to parallel interface; use with other 8 -bit graphics printers will require some modification.

SCREEN BIT GRAPHICS

First, let's examine how bit graphics are generated on the monitor screen. Each standard screen character comprises an 8 dot by $8 \operatorname{dot}$ (64 pixel) array. If we multiply this by 40
characters per row and 25 rows, we note there are 64,000 total pixels (320 across by 200 down), each of which can be separately activated to form the screen image. Because each pixel is turned on or off by a 1 or 0 (a single bit) in the appropriate character memory location, the most direct approach is to manipulate 8 pixels at a time as one byte of memory.
The basic idea behind creation of a screen image is depicted in Figure

1 (see page 74). By examining the "zeroth" byte of character memory (hereafter referred to as the bit map), we see that pixel number 1 is controlled by bit 7 , pixel 2 by bit 6 , etc. Thus, for any of the possible numbers from 0 to 255 which may be stored in a byte, we generate a different pattern of activated pixels. The entire screen will require 8000 bytes, arranged as shown in Figure 2 (see page 74).

Let's examine version I of the program through line 180. In order to allow for later expansion of the BASIC program without overwriting screen memory, you should carry out the POKEs described in line 1. This moves the beginning of the BASIC program to memory location 16384 (\$4000). Next (line 20) we select an 8 K block of memory beginning at location 8192 (\$2000) for the bit map. The POKE tells the VIC-II chip where to find the bit map and screen memory. Line 25 activates the screen bit mode. Line 30 clears the 8000 bytes of the bit map, a process that takes over a minute in BASIC. As we will see later, it is nearly instantaneous in assembly language. Line 40

"Zeroth" Byte
 of Bit Map

bit \#

Figure 1

The correspondence between the bit map and its screen image. \bigcirc and represent deactivated and activated pixels, respectively. The bit image to the right results from the four different values stored in the corresponding single byte on the left.
stores in screen memory what colors will be used for activated and deactivated pixels. The upper 4 bits of each byte control the color of activated pixels in the corresponding character, the lower 4 bits control the color of the deactivated pixel $(0=$ black, $1=$ white, $2=$ red, etc.). Thus, a $1(00000001)$ results in a white background and black dots.

Changing the 1 to $16(00010000)$ produces the reverse. Lines 100-180 actually create the screen bit map. As an example I have chosen an exponentially damped cosine wave. Recalling that our screen image is 320 pixels wide and 200 pixels high, we generate a set of X , Y points which describe the function in lines 100 and 105. ($\mathrm{Y}=0, \mathrm{X}=0$ corresponds to

Figure 2
The arrangement of bit map memory.

Image in First 8
Pixels of Screen
the upper-left-most pixel.) Lines 150 through 165 determine which byte of the bit map (Figure 2) will contain the data for each point, while line 170 determines which bit of the byte should be activated. For example, consider the point $\mathrm{X}=6, \mathrm{Y}=8$ (shaded pixel in Figure 2). This corresponds to LINE 0 of CHARAC-

Contents of
Decimal

Printed Printer Byte Equivalent Image | 7 |
| :--- |
| 6 |
| 5 |
| 4 |
| 3 |
| 2 |
| 1 |
| 0 |
| 7 |
| 0 |

0

1

Figure 3
The correspondence of printer bit map to printed image. \bigcirc and represent blanks and printed dots, respectively. (This is the order for the Gemini and Epson series of printers; the C -Itoh printers reverse the bit order.)

Figure 4
The arrangement of bit map memory for the printer.

TER 0 in ROW 1. Since there are 320 bytes per row (see Figure 2), and 8 bytes per character, the location of the appropriate byte is $8192+1 * 320+$ $0 * 8+0=8512$. Line 170 determines that bit 1 (seven over from the left; see Figure 1) will receive the "1". Line 175 makes the appropriate POKE, and the point appears on the screen. Line 180 sends us back to calculate the next point, and this continues until the X domain has been exhausted.

BIT GRAPHICS ON YOUR PRINTER

Your Gemini 10X (with interface in transparent mode) can be used to create printed pictures in a manner quite analogous to screen bit graphics. The main difference is in the way the bit map is accessed by the printer. The printer prints one row at a time with the height of each row determined by the number of pins in the print head. An 8 -pin print head can print any combination of zero to 8 dots (vertically aligned), as shown in Figure 3. Comparison of this with Figure 1 shows that the bit map for
a printer must be arranged differently (Figure 4) than the screen bit map (Figure 2). If you are doing printed bit graphics directly, you can plan your memory setup to correspond to Figure 4. The problem we have, however, is to take a screen image stored as in Figure 2, and make it accessible, bit by bit, as shown in Figure 4. Thus, to create the "zeroth" printer byte, we need the 7th bit of each of
the first 8 bytes of the screen bit map, each multiplied by the appropriate power of 2. Printer byte 1 comes from the 6th bit of each of the first 8 bytes of the bit map, and so on.
Now let's look at the rest of version 1 . Line 190 starts the printing sequence when you depress the fl key on the Commodore keyboard. Lines 205 and 210 activate the printer and set the linefeed length to $16 / 144$ ".

Nabady copies better!!

Since November 1984, Mr. Nibble has successfully copied heavily protected diskettes for grateful C-64 owners!

The next generation in archival methods is here today!

- No better disk copier at any price
- Easy-to-use - no complicated instructions
- Totally automatic - no knowledge of DOS required
- You'll LOVE MR. NIBBLE ${ }^{\text {w }}$ - if not return within 10 days for full refund

Own THE FINEST DISK COPIER SYSTEM for The C-64 and 1541 disk drive - Order today!

FULL CIRCLE SOFTWARE, INC
P.O. Box 1373

Dayton, Ohio 45401
Phone (513) 223-2102
549.95
includes shipping \& handling (Ohio residents add 6\% sales tax)

Special MSD Version now available!

Lines 215 and 220 draw a horizontal border，indented one inch．The ac－ tual printing takes place in a loop of instructions $225-270$ ．For each printed row（ 8 dots high）the high resolution bit mode is activated（225），then a one inch margin is created，marked with a＂I＂［CHR\＄（245）in 230］． Next，in a series of nested loops（lines 235－265），an entire row is assembled and printed byte by byte from the screen bit map．To discover how this section works，I recommend setting up a sample＂character＂（8 horizon－ tally stacked bytes of the screen bit map）and carry through the process by hand to create the corresponding 8 sequential vertical bytes of the printer bit map．Note also that each byte is printed twice（line 255）to im－ prove clarity．At the end of the row another＂｜＂is printed（line 265） and we return to assemble the next row．After the 25 th row $(L=24)$ we draw another indented horizontal line （line 275,280 ），and finally close up shop．
Now that you understand how it works，save it and run it．Don＇t for－ get the preliminary POKEs！Right before your eyes you will see the bit map zeroed（about 70 seconds），the field turned white（all pixels are de－ activated，remember？），and black dots describing the function begin－ ning to appear．After the screen has filled（about 2 minutes），press fl． Now the wait begins，because each printed line requires over 2 minutes to be assembled，making the entire plot an hour－long process！The final
printed result is shown in Figure 5.

A LITTLE HELP FROM ASSEMBLY LANGUAGE

It would certain be preferable to have the image printed in a matter of seconds rather than hours．Fortunate－ ly，this can be readily accomplished using machine language for the time－ consuming loops（lines 230 through 265）as well as the task of clearing the bit map（line 30）and setting col－ ors（line 40）．Using the technique of appending machine code at the end of our BASIC program，we now gen－ erate version II of the program as follows：
1）delete lines $20-40$ ，and $225-265$ from version I
2）add lines 5，30，195，200，225， 230 and 265 of version II
3）by PEEKing in 45 （40）and 46 （67），we note the location of the end of the BASIC program is at 17192 ． Now，POKE 45， 250 to extend the memory allocation by 210 bytes， more than enough to accommodate the machine code．
4）add the following instruction：

15）FORI＝「ノ TO 2「J6：INPUTB\％：P OKES1＋I，B\％：NEXT：STOP

5）run the program，and enter the 207 bytes of machine code，one by one，as listed at the end of version II．Do it slowly and carefully！＊
6）delete line 10
Now save version II，and run it． Notice anything different？First，the bit map is cleared and the screen

Figure 5
The final printed output from both versions of the program．
turns white instantly．But the big change comes when you hit fl to print the screen image．Now each line is assembled almost as fast as the print－ er can print it．The entire bit map is assembled and printed in one min－ ute（see Figure 5）！So，you now have the capability to create whatever type of bit map you desire on the screen by modifying the portion of the pro－ gram between lines 100 and 150 ．And then you can print the screen image as hard copy．（For another applica－ tion of this program，see the follow－ up article next month．）
> ＊Should you ever want to print the ma－ chine code at the end of your program， use the following sequence：

7 OPEN4，4，2：CMD4：J＝r）
9 FORI＝（ر）TO 2 2 6：PRINT PEEK （S1＋I）；：J＝J +1
11 IF J＞ 15 THEN PRINT CH $R \$(10) ;: J=()$
13 NEXT：PRINT\＃4，：CLOSE4：ST OP

A WORD ABOUT THE MACHINE CODE

If you＇re interested in how the ma－ chine code does its job，disassem－ bling the program and studying the assembly language is recommended． The first 31 lines accomplish the clearing of the bit map and setting screen color．Note that locations 251 （\＄FB）and $252(\$ \mathrm{FC})$ are used as zero page indirect addresses to the bit map．
The assembling of lines for the printer is more complicated，and be－ gins in line 32．Again locations 251 and 252 are used as indirect point－ ers for the section of memory being assembled（see line 195 in version II）． Also，a table of powers of 2 is stored in 2048－2055（\＄0800－\＄0807）；see line 200 of version II．A step－by－step an－ alysis of this program，though beyond the scope of this paper，would show that it accomplishes all the same things as lines 230－265 in the origin－ al version，but the machine code ex－ ecutes over 100 times faster！For those starting their foray into machine language programming，I recommend this as an instructive example．
SEE PROGRAM LISTING ON PAGE 107

COMMOIDOIIE IROCTS

An Inside Look At Your Commodores Microprocessor

EBy Mramila Ancincervs

very computer can be divided into three main parts: a memory (often subdivided into RAM and ROM), input and output devices (such as keyboards, video monitors, cassette recorders, and disk drives), and a central processing unit, or CPU.

In a microcomputer such as the Commodore 64, all the functions of a CPU are contained in a microprocessor unit (sometimes abbreviated MPU). And your Commodore's MPU is a very large scale integrated circuit (VLSI) called the 6510. In this column, we're going to peek inside the 6510 chip and see what makes it go.

The 6510 microprocessor, an improved version of the 6502 chip used in Apple and Atari computers, contains seven main parts: an arithmetic-logical unit (ALU) and six addressable registers.

The ALU is one of the most important components of the 6510 chip. Every time the 6510 performs a calculation or a logical operation, the ALU is where all the work is done.

The ALU can actually perform only two kinds of calculations: addition and subtraction. Division and multiplication problems can also be solved by the ALU, but only in sequences of addition and subtraction operations.

The ALU can compare values, too - būt only by subtracting one value from the other. By performing a subtraction operation, the ALU can determine whether one number is larger than the other, or the two numbers are the same.

When two numbers are to be added, subtracted, or compared, both are fed into the ALU, along with a simple three-letter instruction called a mnemonic. When the requested calculation has been performed, its result is left in a special 6510 register called an accumulator. Once a value is stored in the 6510's accumulator, it can be moved into any other 6510 register, or any register in your Commodore's memory.

Now we'll look at how the ALU and the accumulator in the 6510 chip work together. Suppose you wanted your computer to add 2 and 2, then place the result into a certain memory register. You could use an assembly language routine like this:

LDA \#02
ADC \#02
STA \$FB
The first instruction in this routine, "LDA", means "load the accumulator" (with the value that follows). In this case, that value is 2 . The "\#" sign that is in front of the 2 means that the 2 is to be interpreted as a literal number, rather than as the address of a memory location in your computer.

The second instruction in the routine, "ADC", means "add with carry." In this addition problem, there is no number to be carried, so the "carry" part of the instruction has no effect here, and all the ADC instruction does is add 2 and 2.

The third and last instruction in our routine, "STA", means "store the contents of the accumulator" (in the memory address that follows).

As you can see, the memory address that follows the instruction "STA" is \$FB-the hexadecimal equivalent of the decimal number 251.

Since there is no "\#" sign in front of the hex number \$FB, your assembler will not interpret \$FB as a literal number. Instead, \$FB will be interpreted as a memory address - and your Commodore will store the sum of 2 and 2 in Memory Register \$FB.
(Incidentally, if you did want your assembler to interpret $\$ \mathrm{FB}$ as a literal number, you would have to write it "\#\$FB." When both a "\#" symbol and a dollar sign appear before a number, it is interpreted as a literal hexadecimal number.)

If the third line of our routine read "STA \#\$FB", however, that would be a syntax error-because "STA" (store the contents of the accumulator in...) is an instruction that must be followed by a value that can be interpreted as a memory address, not by a literal number.

Besides the accumulator, the 6510 processor has five other registers: the X Register, the Y Register, the Program Counter, the Stack Pointer, and the Processor Status Register. Here is a brief summation of the functions of each:

- The X Register (abbreviated " X ") is an 8-bit register often used for temporary storage of data during a pro-
gram. But it has a special feature: it can be incremented and decremented with a pair of one-byte assembly language instructions (INX and DEX). It is therefore often used as an index register, or counter, during loops and read/data-type instructions in programs.
- The Y Register (abbreviated "Y") is also an 8-bit register, and can also be incremented and decremented with a pair of one-byte instructions (INY and DEY). So, like the X Register, it is used both for data storage and as a counter.
- The Program Counter (abbreviated "PC") is a pair of 8 -bit registers used together as one 16 -bit register. The two 8 -bit registers are sometimes referred to as "Program Counter-Low (PCL)" and "Program Counter-High (PCH)."
The program counter always contains the 16 -bit memory address of the next instruction to be executed by the 6510 processor. When that instruction has been carried out, the address of the next instruction is loaded into the program counter.
- The Stack Pointer (abbreviated "S" or "SP") is an 8 -bit register that always contains the address of the top element in a block of RAM, called the hardware stack (usually called simply "the stack"). This is a segment of memory in which data is often stored temporarily during the execution of a program. We'll go into more detail about how the stack works later on.
- The Processor Status Register (usually called just the "status register," but abbreviated " P ") is an 8 -bit register that keeps track of the results of operations performed by the 6510 processor.

THE PROCESSOR STATUS REGISTER

The processor status register is different from the other registers in the 6510 microprocessor. It isn't used for storing ordinary 8 -bit numbers, as the others are. Instead, it uses its bits as flags to keep track of several kinds of important information.

Four of the status register's bits are called status flags: the carry flag (C), the overflow flag (V), the negative flag (N), and the zero flag (Z). These are used to keep track of the results of operations being carried out by the other registers inside the 6510 processor.

Three of the P register's other bits, called condition flags, are used to determine whether certain conditions exist in a program. These three bits are the interrupt disable flag (I), the break flag (B), and the decimal mode flag (D).

An eighth bit in the status register is not used.

THE PROCESSOR STATUS FLAG

The processor status register can be visualized as a rectangular box containing six square compartments. Each "compartment" in the box is actually a bit, and each bit is used as a flag.

If a given bit is a "l" instead of a " 0 ," it is said to be a flag that is set.

If a given bit is a " 0 " instead of a " 1 ," it is said to be
a flag that is cleared.
The bits in the 6510 status register-like the bits in all 8 -bit registers-are customarily numbered from 0 to 7 . The rightmost bit is Bit 0 , the leftmost is Bit 7 .

THE PROCESSOR STATUS REGISTER

Following is a complete list of the flags in the 6510's processor status register, and an explanation of each.

Bit 0-The Carry Flag (C): As you'll recall from last month, it isn't easy to do 16 -bit arithmetic with an 8 -bit chip like the 6510 . When the 6510 chip is required to perform an addition operation on a number greater than 255 -or if the result of a calculation might be greater than 255 - a program has to be written that will break each number down into 8 -bit segments for processing, and will then patch all of the numbers back together.

This kind of mathematical cutting and pasting involves a lot of carrying (during addition) and borrowing (during subtraction). And the carry flag of the 6510 P register is the flag that keeps up with all of this carrying and borrowing. If an addition operation results in a carry, the carry flag is automatically set; if a subtraction operation requires a borrow, the carry flag notes that, too.

Since the carry flag is almost constantly being set and cleared as a result of carries and borrows in addition and subtraction, it's a good idea to clear it before an addition operation is to be carried out-and to set it before a subtraction operation takes place. Otherwise, your calculations may be messed up by the leftover results of previous operations.

The assembly language instruction that clears the P register's carry bit is CLC, which stands for "clear carry." The instruction that sets the carry bit is SEC, which stands for "set carry."

Bit 1-The Zero Flag (Z): When the result of an arithmetical or logical operation is zero, the status register's zero flag is automatically set. Addition, subtraction, and logical operations can all result in changes in the status of the zero flag. If a memory location or an index register is decremented to zero, that will also result in a set zero flag.

An ironic 6510 convention is that when the result of an operation is zero, the zero flag is set to 1 , and when the result of an operation is not zero, the zero flag is cleared to 0 . It's important to understand this concept, since it would be easy to assume that the zero flag operates in the opposite manner.

There are no assembly language instructions to clear or set the zero flag. It's strictly a "read" bit, so instructions to write to it are not provided.

Bit 2-The Interrupt Disable Flag (I): Some Commodore programs contain interrupts-instructions that halt operations temporarily so that other operations can take place. Some of these are called maskable interrupts because you can prevent them from taking place by in-

Quality For Your Commodore 64 ORDERBYPHONEAND WE PAYFORYOUR CALL!

TO ORDER CALL 612 922-0516 • \$1.50 OFF EVERY PHONE ORDER

The printer enhancer and full spooling buffer for the Commodore $64^{\text {™ }}$.

- Gives you control of your printer while printing
- Enhances the speed of your printer
- Provides the 1525 and 801 printers with true descenders and underlining

SPECIAL \$19.95

- Fully Menu Driven
- Auto Answer - Auto Dial - completely supports modems of this type
- On Line Printing - enables you to print while the computer is in terminal session
- Full uploading and downloading - enables you to send files to and from the disk over the phone

NOW ONLY \$29.95

GinMic Milili C.ivs

The Graphic Printer Cable is the truly universal graphic parallel printer interface for the Commodore $64^{\text {Tu }}$, $\mathrm{S} \times 64^{\text {tw }}$, and Vic-20 ${ }^{\text {tw }}$ computers.

- For virtually all Centronics-Parallel Dot Matrix Printers
- An intelligent 2 k buffer is standard
- Software Configurable allowing Commodore ${ }^{\text {Tw }}$ printer emulation
External printer selection switches

The fastest, most reliable and easiest-to-use copy prograam for the Commodore $64^{\text {™ }}$.
■ Contains a TRUE INTELLIGENT NIBBLER which copies all the information on a disk and even the newest copy protection including half tracks and track $36+$

- FULLY AUTOMATIC! There are no parameters to set. You don't even need to swap disks when using two drives.
- REVIRGINS DISKS rather than erasing them, and also contains a utility that automatically backs up any data disk and removes all data errors in just two minutes.

NOW ONLY \$39.95

Seven day money back guaranteed.
\square Tn

The $100 \% 1650$ compatible modem. Order it with Q-Term and get both for only \$69.95
Seven day money back guaranteed.

STAR SG-10 ${ }^{\text {TM }}$ printer with GPC ONLY \$339.00

Star SG-10 features:

- 120 CPS bidirectional-logic seeking printer
- Full graphic-word processing features!
- Near letter quality mode!
cluding "masking" instructions in a program. Others are called nonmaskable because you can't stop them from taking place, no matter what you do.
You can disable a maskable interrupt with the P register's interrupt disable flag. When it is set, maskable interrupts are not permitted; when it is clear, they are.
The assembly language instruction to clear the interrupt flag is CLI. The instruction to set the interrupt flag is SEI.

Bit 3-The Decimal Mode Flag (D): The 6510 processor normally operates in binary mode, using standard binary numbers of the type discussed last month. But the 6510 can also operate in what is known as a binarycoded decimal (or BCD) mode. To put the 6510 into BCD mode, you have to set the decimal flag of the 6510 status register.
BCD arithmetic is slower than plain binary arithmetic, and it consumes more memory. But its results, unlike those of plain binary arithmetic, are always 100% accurate. So it is often used in programs in which accuracy is more important than speed or memory efficiency.
The assembly language instruction that clears the decimal flag is CLD. The instruction that sets the flag is SED.
Bit 4-The Break Flag (B): The break flag is set by a special assembly language instruction, BRK. Programmers often use the break instruction while debugging.

When the instruction is used and the break flag is set, certain error-flagging operations take place and control of the computer returns to the programmer.
Bit 5-Unused: For some reason, the microprogrammers who designed the 6510 status register left one bit unused. This is the one.

Bit 6-The Overflow Flag (V): The overflow flag is used to detect an overflow from Bit 6 (the next-to-leftmost bit) in a binary number. If you don't know what that means yet, don't be concerned. The overflow flag is used primarily in advanced 6510 arithmetic - specifically, to keep track of changes in the plus and minus signs of signed numbers when signed binary arithmetic is being performed. As a beginning- or intermediate-level Commodore assembly language programmer, you'll rarely -if ever-have occasion to use the overflow flag. Nevertheless, we'll discuss it at length in a later column.

The assembly language instruction that clears the overflow flag is CLV. There is no instruction to set the flag, since it's read-only.
Bit 7-The Negative Flag (\mathbf{N}): The negative flag is set when the result of an operation is negative, and cleared when the result is zero. It is often used in operations involving signed numbers, and has other uses that will be discussed in later columns. There are no instructions to set or clear the negative flag; there is no need for any, since the flag is used for test purposes only.

PROGRAM: THE 6510 SIMULATOR

To give you a closeup look at what happens inside your computer when it runs an assembly language program, I've created a BASIC program called the 6510 Simulator (see page 98). It is not a machine language assembler, but it works much like one. When you load it and run it, it will present you with a screen display that will show you exactly what happens inside your 6510 chip's X, Y, and P registers when your computer is running an assembly language program.

To use the 6510 Simulator, all you have to do is type in legal statements written in assembly language. You can use it with any of the instructions mentioned in this column, and with all other instructions that are legal in 6502/ 6510 assembly language. The simulator will not accept labels or indirect addressing modes (two more topics that will be discussed in later columns). It will also reject statements that contain incorrect spacing, syntax errors, illegal address modes, and unacceptably long numbers. And, although it can read memory locations, it can't write to them. So it can't freeze up your computer while you're testing out a program.

The 6510 Simulator is a rather long and complex program, but well worth the time it will take to type it. If an assembly language routine won't work correctly, the 6510 Simulator will often show you exactly what's going wrong. So please type it and save it (or purchase this month's Ahoy! disk or cassette). By the time we get to later columns in this series, you'll be glad you did. \square

SEE PROGRAM LISTING ON PAGE 98

COMMOIDAIIIES

PROGRAMMING CHALLENGES By Dale Rupert

Each month, we'll present several challenges designed to stimulate your synapses and toggle the bits in your cerebral random access memory. We invite you to send your solutions to:

Commodares c/o Ahoy!

P.O. Box 723

Bethel, CT 06801
We will print the most interesting and/or unusual solutions. Be sure to identify the name and number of the problems you are solving. Also show sample runs if possible, where appropriate. Programs on diskettes are welcome, but they must be accompanied by listings. Also tell what makes your solutions unique or interesting, if they are. You must enclose a stamped, self-addressed envelope if you want any of your materials returned.
Your original programming problems, suggestions, and ideas are equally welcome! The best ones will become Commodares.

Problem \#18-1: Cycling Function

Jim Speers (Niles, MI) suggested this problem. Complete the function definition in line 10 so that the output in line 30 will cycle from 0 to 100 and back again in steps of 5 . Perhaps a little head scratching is in order.
10) $\operatorname{DEF} \operatorname{FNC}(\mathrm{D})=.$. .

2ヶ) $\mathrm{D}=5$: $\mathrm{X}=$ ($)$
3r) PRINT X : X=X+D : $\mathrm{D}=\mathrm{FNC}(\mathrm{D})$: GOTO 3r)
Jim sent some general purpose cycling functions which we will reveal next month.

Problem \#18-2: Billiard Balls

Wallace Leeker (Lemay, MO) has sent his solution to the classic billiard ball problem. A warning before you start on this one: it's addictive and time consuming. Here it is:
You have twelve billiard balls, all identical in appearance. One has an internal flaw, making it either heavier or lighter than the other eleven. The computer has a simple balance scale and is allowed only three weighings in order to determine which is the flawed ball.
The user will decide which of the balls, numbered 1 through 12, is the culprit. The computer will select a combination of balls to put onto the balance (some on the left side and some on the right). The user will then tell the computer whether the scale is a) heavy on the
left, b) balanced, or c) heavy on the right. The computer will repeat this sequence two more times. After the user's third response, the computer will tell which ball is different and whether it is heavy or light.
If some of you end up dreaming about billiard balls, don't say we didn't warn you.

Problem \#18-3: Scroll Ski

Use the Commodore's screen scrolling to create a downhill skiing game. One simple catch: your program must be only one or two lines long. As easy as that!

Problem \#18-4: Letter Math

Here's one of millions of similar problems. Perhaps you've solved them with paper and pencil before. This time you can be lazy and let the computer do all the work. Write a program to let the computer find values of X, Y, and Z to make this sum correct. Except for FOR and NEXT statements, use only one statement per program line. By the way, Z must not be 0 .
XYZ
ZY
X
YXX

This month we will look at reader's solutions to February's Commodares as well as a few odds and ends. First I want to reiterate the time schedule for this column. This June issue is being written in mid-February. All letters received by the middle of the magazine cover month will be given prime consideration for publication. Responses to February Commodares received after the middle of February will still be read, but they have less probability of being mentioned since they are too late to be discussed this month. Don't let that discourage you from sending your solutions any time. The most unusual ones will be included in this column. If you sent a valid solution to some of the Commodares but your name didn't appear in genuine print, it is probably because your solution didn't reach us before mid-month.
In response to Commodare \#10-1: Numeric Palindrome from last October, James Killman (Memphis, TN) mentioned that he ran his program for 28 days, 12 hours, 28 minutes, and 46 seconds before he got fed up and
quit－without a solution！His program cycled through 12，954 passes and reached a number 5，366 digits long． The problem was to take a number（196），reverse it，add the two together，see if the sum is a palindrome，and if not repeat the process using the sum instead of the ori－ ginal number．The palindrome for 196 has supposedly not been determined even on large computers．Mr．Kill－ man＇s routine POKEs each digit into a reserved section of memory，reversing the direction each time．It POKEs， compares，reverses the digits，and then adds them．The numbers can be as large as the amount of memory al－ lows．If you would like to see a listing of Mr．Killman＇s twenty line BASIC program，send a stamped，self－ad－ dressed envelope to Commodares with your request．

Rick Nash（Millersburg，OH）sent the following as－ sembly language implementation of Commodare \＃13－3： Micro Calc．As we mentioned last month，the solution to this problem doesn＇t really do anything that isn＇t al－ ready available in BASIC．The user can easily type in a string of numbers and mathematical operators in com－ mand mode and let the computer print the results．Writing a program to let the user type the numbers and opera－ tors gives some insight into the problems of parsing and of how a compiler might be created．Rick＇s solution shows some useful procedures for accessing various BASIC util－ ity routines from assembly language．The assembly lan－ guage listing and a BASIC program to run it are listed below：

```
1 REM ASSEMBLY LANGUAGE USR ROUTINE
2 REM SOLUTION TO PROBLEM #13-3
3 \text { REM MICRO CALC}
4 ~ R E M ~ B Y ~ R I C K ~ N A S H
5 \text { REM}
9() :*=$\J2A7 ;PROGRAM ORIGIN
1r(r):TXTPTR=$7A
11% :INDEX =$22
12() :FRESPC=$35
13() : VARPTR=$64
14() : BUFFER=$()20)
15() :CHRGET=$0rs73
16():MOVSTR=$B68C (VIC=$D68C)
17r):CRUNCH=$A57C (VIC=$C57C)
18() : FRMEVL=$AD9E (VIC=$CD9E)
19r, REM SAVE TEXT POINTER ON STACK
2r今) :LDA TXTPTR
21% :PHA
229 :LDA TXTPTR+1
235):PHA
24() REM (64) PTS. TO STRING DESCRIPTOR
25!) :LDY #厅
26r) :LDA (VARPTR),Y ;STRING LENGTH
27% :PHA ;ON STACK
28() :INY
29r) :LDA (VARPTR),Y ;ADDRESS LOW
3r(r):STA INDEX
31% :INY
32^ :LDA (VARPTR),Y ;ADDRESS HIGH
```

33（）：STA INDEX＋1
345 ：PLA ；STRING LENGTH
35 ：：TAY ；TO Y
36（）：LDA \＃r
37ر ：STA BUFFER，Y ；SET END
38（）：LDA \＃＜BUFFER
39（）：LDX \＃＞BUFFER
4rر）：STA FRESPC ；SET PTRS FOR
415 ：STX FRESPC＋1 ；VARIABLE MOVE
42 0 ：STA TXTPTR ；SET PTRS FOR
430）：STX TXTPTR＋1 ；CRUNCH ROUTINE
445）：TYA ；．A＝VAR LENGTH
45（）REM MOVE VARIABLE TO INPUT BUFFER
46（）：JSR MOVSTR
47ノ REM TOKENIZE STRING
48r）：JSR CRUNCH
49r，REM BUMP TEXT POINTER
5 fr，：JSR CHRGET
51r）REM EVALUATE EXPRESSION
52（）：JSR FRMEVL
53（）REM RESTORE TEXT POINTER
545）：PLA
55（）：STA TXTPTR＋1
56（）：PLA
57r）：STA TXTPTR
58（）REM RETURN TO USR ROUTINE \＆ASSIGN
59（）REM VALUE IN FAC1 TO FLOATING
6rرf）REM POINT VARIABLE
619 ：RTS

1 REM BASIC SOLUTION TO PROBLEM \＃13－3
2 REM MICRO CALC
3 REM BY RICK NASH
4 REM
4（）FORA＝679 TO 738：READ D：POKE A，D：NEXT
5（）POKE 785，167：POKE 786，2
6（）INPUT＂PROBLEM＂；A\＄：IF A\＄＝＂END＂THEN E ND
7r）PRINT＂THE ANSWER IS：＂；USR（A\＄）：PRINT： GOTO 6r）
8（）DATA $165,122,72,165,123$
9r）DATA $72,16(\mathrm{r}, \mathrm{r}, 177,1 \mathrm{r})$

$11($ DATA 34,2 rرr），177，1rrر， 133
12 （）DATA 35,1 （ر4，168，169，r）
13（）DATA 153，厄，2，169，•
14r）DATA $162,2,133,53,134$
15r）DATA $54,133,122,134,123$
16（）DATA $152,32,14$ ，$, 182,32$
17 （）DATA $124,165,32,115$, ，
18（）DATA $32,158,173,154,133$
19（J）DATA 123，1rر4，133，122，96
The BASIC program installs the machine language rou－ tine，then asks the user to enter a numeric problem such as $2-3 * \operatorname{SQR}(18)$ ，which is stored as a string．You may use any BASIC functions，previously defined floating point or integer variables，or mathematical or Boolean
operators in the numeric problem. In the machine language program, the sequence is as follows: 1) the string (A\$) is copied into the input buffer (\$0200), 2) the string is scanned and tokenized, 3) the formula is evaluated using BASIC's evaluator routine with the result left in the floating point accumulator, and 4) the USR routine returns the value from the floating point accumulator (FACl)
Below is the solution from R.W. Kober (Buffalo, TX) to his Commodare \#17-2: Printer Sentinel from last month:

1 REM R.W. KOBER
2 REM PROBLEM \#17-2 : PRINTER SENTINEL
5 GOTO 10)
15) OPEN 4,4

2r) PRINT\#4:IF ST AND 128 THEN 4r)
3) CLOSE 4:RETURN
45) PRINT TAB(248)"THE PRINTER IS NOT ON! "CHR\$(19):GOTO 20
99 REM ---MAIN PROGRAM---
1رf) PRINT CHR $\$(147)$
110) GOSUB 15 : REM <<< CHECK ON PRINTER
120) OPEN 4,4:PRINT\#4, "PRINTER IS ON"

13r) CLOSE 4
Before printing, the program calls this subroutine. If the printer is not on, the message is printed, and the subroutine loops until the printer is turned on. If the printer is on, control is returned immediately to the calling program. Notice the use of the ST (STATUS) function. Also notice that the space between the ST and the AND is necessary. Can you figure out why? Omit the space and see what happens.
John Twardowski (Albany, NY) sent solutions Commodares \#14-1: Maximus Input and \#14-2: Singles Only combined into one program.

1 REM JOHN TWARDOWSKI
2 REM PROBLEMS 14-1 AND 14-2
3 REM MAXIMUS INPUT AND SINGLES ONLY
4 REM
15) PRINT CHR\$(147) : LF\$=CHR\$(157)
25) PRINT CHR\$(164);

3r) GET A\$:IF A\$="" THEN 3()
40) IF A\$=CHR $\$$ (13) THEN PRINT LF\$" " : GO

TO 75
50) IF A\$=CHR $\$$ (2r) THEN PRINT LF\$" "LF\$LF
\$;:B\$=LEFT\$(B\$,LEN(B\$)-1):GOTO 2「
6r) $\mathrm{B} \$=\mathrm{B} \$+\mathrm{A} \$:$ PRINT LF\$A\$;:GOTO 2r
7r) DIM A(9r) :FOR K=1 TO LEN(B\$):B=ASC(MI
$D \$(B \$, K, 1)): A(B)=A(B)+1:$ NEXT
80) PRINT:PRINT"MISSING":FOR K=65 TO 9rر:I

F $A(K)=\Gamma$ THEN PRINT CHR $\$(K) "$ ";
9r) NEXT:PRINT:PRINT"DUPLICATES":FOR K=65
TO 9r):IF A(K)>1 THEN PRINT CHR\$(K)" ";
10ρ NEXT
Several other readers took a similar approach to creating a cursor in Problem \#14-1. There was no require-
ment that the cursor must blink. The majority of the solutions to Problem \#14-2 were much like John's approach.
Paul Sisul (St. Louis, MO) sent the following solution to Problem \#14-2: Singles Only which doesn't use any IF statements. Instead he uses logical expressions. Furthermore, his solution contains no arrays or subscripted variables.

```
1 REM PAUL SISUL
2 REM PROBLEM #14-2 : SINGLES ONLY
3 REM
2() INPUT S$:FOR J=65 TO 9r):C=r):FOR K=1 T
O LEN(S$):C=C-(MID$(S$,K,1)=CHR$(J))
30) NEXT K:PRINT CHR$(48*(1+(C=1))+C);" "
;CHR$(J*-(Cく>1)),:NEXT J
```

To understand Paul's solution, recall that a logical expression has a value of 0 if it is false and -1 if it is true. Consequently the function CHR $\$(\mathrm{~J} *-(\mathrm{C}<>1)$) represents $\mathrm{CHRS}(0)$ for any letter whose count is equal to one If the current letter's count does not equal one, the expression $(\mathrm{C}<>1)$ is true and has the value -1 . Therefore $-(\mathrm{C}<>1)$ equals 1 , and $\operatorname{CHR} \$(\mathrm{~J} *-(\mathrm{C}<>1))$ equals CHR $\$(\mathrm{~J})$. The other CHR\$ function in line 30 converts the count C into its ASCII value which is also printed. Some tricky but interesting programming!

Several readers sent panagrams from various sources in response to Problem \#14-2: Singles Only. Mike Skloff (New York, NY) included his favorite typing test, "Pack my box with five dozen liquor jugs" as well as an even shorter "Waltz, nymph, for quick jigs vex Bud." Neither of these are perfect pangrams since they contain duplicate letters. Some of the perfect ones he sent include:

Cwm, fjord-bank glyphs vext quiz.
Zing! Vext cwm fly jabs Kurd qoph.
Milk-vat fez bugs qoph-crwd jynx.
These are from Dmitri A. Borgmann's book Language on Vacation (Scribner's, 1965). Mr. Skloff leaves the translations of these sentences up to you. Dig out the unabridged dictionary for these!
Jim Root (Whitmore Lake, MI) sent this sentence containing all the letters: "Wafting zephyrs quickly vexed Jumbo." I think he's talking about a flying elephant. Clifford Dedmore Jr. (North Bend, OR) sent "Cwm kvutza qoph jynx fled brigs" from the Guinness Book of World Records, which was supposedly found with the use of three computers. Again, the translation is up to you.

There were many good solutions to Problem \#14-3: Digital Deduction. Most readers knew that by using binary search techniques the computer can deduce the user's number (between 1 and 1000) in ten or fewer guesses. In fact, since 1024 is two raised to the tenth power, the range of numbers could be 1 to 1024 and still guarantee that not more than ten guesses are needed.

David Alan Wright (New Britain, CT) sent the following solution which requires only (are you ready for this?) nine, yes, nine guesses by the computer! Now before you start throwing the books on mathematical theory at me,
a word of explanation. As David points out, "The maximum number of guesses is nine. After each guess, the possibilities are halved. On the ninth guess, only one possible number is left, and the program tells you the answer rather than asks, so a tenth guess is unnecessary." Voilà! His solution is listed below.

1 REM COMMODARE \#14-3:DIGITAL DEDUCTION
2 REM SOLUTION BY DAVID ALAN WRIGHT 3 REM
10) PRINT" CHOOSE A NUMBER FROM 1 TO $10 \rho \rho$

AND HIT RETURN":INPUT A\$:H=10رjر)
20) $A \$=$ " X " $: \operatorname{IF}(\mathrm{L}+\mathrm{H}) / 2\langle \rangle \mathrm{L}+1$ THEN $\mathrm{N}=\mathrm{INT}((\mathrm{L}+\mathrm{H})$
/2):PRINT"IS"N"H, L OR EQUAL";:INPUT A\$
3r) IF LEFT\$(A\$,1)="H" THEN $\mathrm{H}=\mathrm{N}: \mathrm{G}=\mathrm{G}+1$: GOT 020
45) IF LEFT\$(A\$,1)="L" THEN L=N:G=G+1:GOT 0 2r
50) PRINT"AFTER"G"GUESSES YOUR NUMBER IS ";:IF ($\mathrm{L}+\mathrm{H}$)/2=L+1 THEN PRINT L+1:END 65) PRINT N

Chuck McGaffin (Ballston Lake, NY) sent an equation for calculating the maximum number of guesses (N) required to find a single item from a group of M items:

$$
N=\operatorname{INT}(\operatorname{LOG}(M) / \operatorname{LOG}(2)+1)
$$

Wallace Leeker (Lemay, MO) simplified the mathematics of this problem by making his first guess 512 . From then on, he merely divided the guess by two and either added or subtracted the result to obtain the next guess. That way he eliminated all the INT and rounding statements that other readers used.
John Deering (Tustin, CA) and Chuck McGaffin both sent separate programs which simulated the entire game. Both programs tabulated the numbers of computer guesses required for each chosen number from 1 to 1000 . For example if the user thought of the number 500, the computer would guess it on the first try. If the target number was 250 , the computer could guess it on the second try, and so forth. Mr. Dearing's program calculated the maximum and the average number of guesses required for all selected numbers. Mr. McGaffin's program below keeps track of the total of one-guess numbers, two-guess numbers, etc. Perhaps you could expand this concept to find the "safest" targets, i.e., the numbers that require the most computer guesses to deduce.

1 REM CHUCK MCGAFFIN
2 REM PROBLEM \#14-3 : DIGITAL DEDUCTION
3 REM COMPUTER SIMULATION TO VERIFY THAT EVERY NUMBER IS GUESSED IN < 10 TRIES
4 REM
15) FOR N=1 TO 10 (r) 5 : $\mathrm{NG}=1$

30) $I=I N T((L L+U L) * .5): N G=N G+1$

4r) IF N $\angle I$ THEN UL=I-1:GOTO 3rر
50) IF N $>$ I THEN LL=I+1:GOTO 30

6r) IF NG>10 THEN PRINT N
75, $G(N G)=G(N G)+1$
85) NEXT

9r) FOR J=1 TO 1厅:PRINT G(J);:NEXT
The final solutions this month are for Problem \#14-4: Roman Translation. The user types a Roman numeral and the computer gives the Arabic equivalent. These programs from Clifford Dedmore Jr. (North Bend, OR) and John Immarino (Hackensack, NJ) were chosen from several submitted because of their brevity and because they use such greatly differing approaches to the solution.

```
1 REM CLIFFORD DEDMORE JR.
2 REM PROBLEM #14-4 : ROMAN TRANSLATION
3 REM
15) DIM T(2`):INPUT"ENTER ROMAN NUMERAL";
A$
2`) FOR K=1 TO LEN(A$):B$=MID$(A$,K,1)
3r) L=-(B$="I")-5*(B$="V")-1rر*(B$="X")-5rر
*(B$="L")-1\rhoر)*(B$="C")-5rر)*(B$="D")
35 L=L-10)\rhoっ%*(B$="M")
45)}\textrm{T}(\textrm{K})=\textrm{L}:NEX
50. FOR K=1 TO LEN(A$):IF T(K)>=T(K+1) TH
EN TT=TT+T(K):GOTO 7r)
6r) TT=TT+T(K+1)-T(K):K=K+1
70 NEXT:PRINT TT
```

```
1 REM JOHN IMMARINO
2 REM PROBLEM #14-4 : ROMAN TRANSLATION
3 REM
10) V$="MDCLXVI"
2` INPUT"ROMAN NUMERAL";R$:L=7
30) FOR A=LEN(R$) TO 1 STEP -1
4():X=2:F=5(5),
50) ::FOR B=1 TO 7
6r) :::IF MID$(R$,A,1)=MID$(V$,B,1) THEN
C=B:B=7
7r) :::X=ABS(X-7):F=F/X
85) ::NEXT B
90):T=T+F*((C>L)-(C<=L)):L=C
10,S NEXT A
110) PRINT"ARABIC";T:PRINT:T=r!:GOTO 20,
```

Notice Clifford's use of the "conditional LET" statement in line 102. This technique is based upon the concepts of logical expressions which we discussed above. John also employs a logical expression in line 180 to determine the correct result when a smaller value occurs before a larger value and must be subtracted from it. A good exercise would be to "play computer" and figure out how both of these programs work. Jim Speers (Niles, MI) pointed out that these programs work only if the user types in Roman numerals in the proper format. An input such as "CIVX," for example, will be evaluated, but it

Continued on page 114

PROGRAM LISTINGS

> Attention new Ahoy! readers! You must read the following information very carefully prior to typing in programs listed in Ahoy! Certain Commodore characters, commands, and strings of characters and commands will appear in a special format. Follow the instructions and listing guide on this page.

0n the following pages you'll find several programs that you can enter on your Commodore computer. But before doing so, read this entire page carefully.
To insure clear reproductions, Ahoy!'s program listings are generated on a daisy wheel printer, incapable of printing the commands and graphic characters used in Commodore programs. These are therefore represented by various codes enclosed in brackets []. For example: the SHIFT CLR/HOME command is represented onscreen by a heart . The code we use in our listings is [CLEAR]. The chart below lists all such codes which you'll encounter in our listings, except for one other special case.
The other special case is the COMMODORE and SHIFT characters. On the front of most keys are two symbols. The symbol on the left is obtained by pressing that key while holding down the COMMODORE key; the symbol on the right, by pressing that key while holding down the SHIFT key. COMMODORE and SHIFT characters are represented in our listings by a lower-case " s " or "c" followed by the symbol of the key you must hit. COMMODORE

J , for example, is represented by [c J], and SHIFT J by [s J].

Additionally, any character that occurs more than two times in a row will be displayed by a coded listing. For example, [3 "[LEFT]"] would be 3 CuRSoR left commands in a row, [5 "is EP]"] would be 5 SHIFTed English Pounds, and so on. Multiple blank spaces will be noted in similar fashion: 22 spaces, for example, as [22 " "].

Sometimes you'll find a program line that's too long for the computer to accept ($\mathrm{C}-64$ lines are a maximum of 80 characters, or 2 screen lines, long; VIC 20 lines, a maximum of 88 characters, or 4 screen lines). To enter these lines, refer to the BASIC Command Abbreviations Appendix in your User Manual.

On the next page you'll find our Bug Repellent programs for the VIC 20 and C-64. The version appropriate for your machine will help you proofread our programs after you type them. (Please note: the Bug Repellent line codes that follow each program line, in the whited-out area, should not be typed in. See the instructions preceding each program.)

IMPORTANT
 BUG REPELLENT

 Letters on white background are Bug Repellent line codes．Do not enter them！This and the preceding page explain these codes and provide other essential information on entering Ahoy！programs．Read these pages before entering programs．This program will let you debug any Ahoy！program．Follow in－ structions for VIC 20 （cassette or disk）or C－64．

VIC 20 VERSION

By Michael Kleinert and David Barron

For cassette：type in and save the Bug Repellent program，then type RUN 63000 ［RETURN］SYS 828 ［RETURN］．If you typed the program properly，it will generate a set of two－letter line codes that will match those listed to the right of the respective program lines，
Once you＇ve got a working Bug Repellent，type in the program you wish to check．Save it and type the RUN and SYS commands listed above once again，then compare the line codes generated to those listed in the magazine．If you spot a discrepancy，a typing error exists in that line．Important：you must use exactly the same spacing as the program in the magazine．Due to memory limitations on the VIC，the VIC Bug Repellent will register an error if your spacing varies from what＇s printed．
You may type SYS 828 as many times as you wish，but if you use the cassette for anything，type RUN 63000 to restore the Repellent．
When your program has been disinfected you may delete all lines from 63000 on．（Be sure the program you type doesn＇t include lines above 63000！）
For disk：enter Bug Repellent，save it，and type RUN：NEW ［RETURN］．Type in the program you wish to check，then SYS 828. To pause the line codes listing，press SHIFT．
To send the list to the printer type OPEN 4，4：CMD 4：SYS 828 ［RETURN］．When the cursor comes back，type PRINT\＃4：CLOSE 4［RETURN］．
－63rرr）FORX＝828TO1rر23：READY：POKEX，Y：NEXT：END AC －63rرノノ1 DATA169，r，133，63，133，64，165，43，133，251 JL －63rرr，2 DATA165，44，133，252，16ヶ，r，132，254，32，228 DF －63rر）3 DATA3，234，177，251，2rر8，3，76，2rر8，3，23r）OE

 8
－63rر）． 6 DATA2，23r），252，177，251，32，2（J5，221，169， 58 JJ
－63rرァ7 DATA32，21ヶ，255，169，厄，133，253，23r，254， 32 OK
－63rرァ8 DATA228，3，234，165，253，16r，r），17ヶ，177， 251 LG

－63ノ」10 DATA138，133，253，177，251，2「ر8，226，165，253 ，41
－63（）11 DATA24 ，74，74，74，74，24，1ヶ5，65，32，21ヶ）
－63（J12 DATA255，165，253，41，15，24，1（15，65，32，21）
－63（J13 DATA255，169，13，32，21ヶ，255，173，141，2，41

－63ヶノ16 DATA16r，3，32，3r，2rر3，166，63，165，64，32
－63ノノ17 DATA2（今5，221，169，13，32，21ヶ，255，96，23ヶ，25 1
－63ヶノ18 DATA2「ر8，2，23ヶ，252，96，ヶ，76，73，78，69
－63ヶ，19 DATA83，58，32，ケ，76，73，78，69，32，35

C－64 VERSION

By Michael Kleinert and David Barron

Type in．SAVE，and RUN the Bug Repellent．Type NEW，then type in or LOAD the Ahoy！program you wish to check．When that＇s done．SAVE your program（don＇t RUN it！）and type SYS 49152 ［RETURN］．

To pause the listing depress and hold the SHIFT key．
Compare the codes your machine generates to the codes listed to the right of the respective program lines．If you spot a difference． an error exists in that line．Jot down the number of lines where
contradictions occur．LIST each line，spot the errors．and correct them．
－5rر）FORXX＝49152T049488：READY：POKEX，Y：NEXT：END GJ
－ 50 f（1）DATA32，161，192，165，43，133，251，165，44，133 DL
－50（ケ）DATA252，16r，，，132，254，32，37，193，234，177 DB

－5رノ厂4 DATA23（），252，76，43，192，76，73，78，69，32
－ 5 rرr， 5 DATA35，32，r，169，35，16r，192，32，3r，171
－50， 56 DATA16r，()$, 177,251,175,235,251,25,8,2,23($,
－ 50 ऽ（57 DATA252，177，251，32，25，5，189，169，58，32，215 JE
－5fノノ 8 DATA255，169，rァ，133，253，23r，254，32，37，193 CL
－ 5 frر） DATA234，165，253，16ヶ，$), 76,13,193,133,253$ NB
－5ر11）DATA177，251，258，237，165，253，41，24ケ，74，74 MB
－ 5 f111 DATA74，74，24，1ノ5，65，32，21ヶ，255，165，253
－5 5）12 DATA41，15，24，155，65，32，21ヶ，255，169，13

－5ノ114 DATA251，2（98，2，23r），252，76，11，192，169，153
－5（）15 DATA16r），192，32，3（），171，166，63，165，64，76
－5ر16 DATA231，192，96，76，73，78，69，83，58，32
－5r，17 DATAr），169，247，16r），192，32，3r，171，169，3
－5ノ18 DATA133，254，32，228，255，2「1，83，24ヶ，6，2（J1

－5r）2r）DATA166，254，16（），255，32，186，255，169，r），133 CL
－5f）21 DATA63，133，64，133，2，32，189，255，32，192
－5f）22 DATA255，166，254，32，2ケ1，255，76，73，193，96
－5厅）23 DATA32，21ヶ，255，173，141，2，41，1，2ヶ，8，249
－ 5 （ر）24 DATA96，32，25）5，189，169，13，32，215，255，32
－ 5 （），25 DATA2（J4， $255,169,4,76,195,255,147,83,67$
－5526 DATA82，69，69，78，32，79，82，32，81， 82
－5「ノ27 DATA73，78，84，69，82，32，63，32，ケ，76
－5 5）28 DATA44，193，234，177，251，2 251，32，24r），6，138
－5（J29 DATA113，251，69，254，17（），138，76，88，192，r）

－ 5 「333 DATA32，2「18，212，198，254，76，29，193，ケ，169

FLANESDEED FORTHEC－64

By Gordon F．Wheat

Flankspeed will allow you to enter machine language Ahoy！pro－ grams without any mistakes．Once you have typed the program in． save it for future use．While entering an ML program with Flankspeed there is no need to enter spaces or hit the carriage return． This is all done automatically．If you make an error in a line a bell will ring and you will be asked to enter it again．To LOAD in a program Saved with Flankspeed use LOAD＂name＂． 1.1 for tape． or LOAD＂name＂ 8.1 for disk．The function keys may be used after the starting and ending addresses have been entered．
fI－SAVEs what you have entered so far
f3－LOADs in a program worked on previously
$\mathrm{f5}$－To continue on a line you stopped on after LOADing in the previously saved work．
17－Scans through the program to locate a particular line．or to find out where you stopped the last time you entered the program． 17 temporarily freezes the output as well

```
-5 POKE5328!,12:POKE53281,11
•6 PRINT"[CLEAR][c 8][RVSON][15" "]FLANKSPEED[
15" "]";
1% PRINT"[RVSON][5" "]MISTAKEPROOF ML ENTRY P
ROGRAM[6" "]"
15 PRINT"[RVSON][9" "]CREATED BY G. F. WHEAT[
9" "]"
2r) PRINT"[RVSON][3" "]COPR. 1984, ION INTERNA
```

TIONAL INC．［3＂＂］＂
－30）FORA＝54272T054296：POKEA，门：NEXT
－45 POKE54272，4：POKE54273，48：POKE54277，っ：POKE5 4278，249：POKE54296， 15
－79）FORA＝68）TO699：READB：POKEA，B：NEXT
－ 75 DATA169，251，166，253，164，254，32，216，255，96
－76 DATA169，ヶ，166，251，164，252，32，213，255，96
－80） $\mathrm{B} \$=$＂STARTING ADDRESS IN HEX＂：GOSUB2の1ヶ）：AD＝ B：SR＝B
－85 GOSUB252ヶ：IFB＝r，（3HEN8）
－86 POKE251，T（4）＋T（3）＊16：POKE252，T（2）＋T（1）＊16
－9r， $\mathrm{B} \$=$＂ENDING ADDRESS IN HEX＂：GOSUB2ヶ1ヶ）：EN＝B
－95 GOSUB251r，：IFB＝rرTHEN8（）
－96 POKE254，T（2）$+\mathrm{T}(1) * 16: \mathrm{B}=\mathrm{T}(4)+1+\mathrm{T}(3) * 16$
－97 IFB＞255THENB＝B－255：POKE254，PEEK（254）+1
． 98 POKE253，B：PRINT
－1fرf REM GET HEX LINE
－119 GOSUB3ヶ1ヶ）：PRINT＂：［c P］［LEFT］＂；：FORA＝rرT08
－12ヶ FORB＝（رTO1：GOTO21ヶ）
－ 125 NEXTB
－130 $\mathrm{A} \%(\mathrm{~A})=\mathrm{T}(1)+\mathrm{T}(\mathrm{r}) * 16:$ IFAD $+\mathrm{A}-1=$ ENTHEN31 $)$
－ 135 PRINT＂［c P］［LEFT］＂；
－14ر NEXTA：T＝AD－（INT（AD／256）＊256）：PRINT＂＂
－150）FORA＝（）TO7：T＝T＋A\％（A）： IFT >255 THENT $=T-255$
－160 NEXT
－17r）IFA\％（8）＜＞TTHENGOSUB1ヶ1ヶ：GOTO11ヶ
－18（）FORA $=$（رTO7：POKEAD $+\mathrm{A}, \mathrm{A} \%(\mathrm{~A}): \mathrm{NEXT}: \mathrm{AD}=\mathrm{AD}+8: \mathrm{GOT}$ 0115）
－ 2 rرr REM GET HEX INPUT
－218 GETA\＄：IFA\＄＝＂＇＂THEN21r
－ 211 IFA $=$ CHR $\$(2$（ $)$ THEN 27 ）

－ 213 IFA\＄$=$ CHR $\$(134$ ）THEN41رr
－ 214 IFA\＄＝CHR\＄（135）THENPRINT＂＂：GOT045（r）
－ 215 IFA\＄$=$ CHR $\$(136)$ THENPRINT＂＂：GOTO47r，r^{\prime}
－22r）IFA\＄＞＂＠＂ANDA\＄＜＂G＂THENT（B）＝ASC（A\＄）－55：GOTO
25（）
－230 IFA\＄＞＂／＂ANDA\＄＜＂：＂THENT（B）＝ASC（A\＄）－48：GOTO 250
－249 GOSUB11ヶヶ）：GOTO21s）
－25r）PRINTA\＄＂［c P］［LEFT］＂；
－26（）GOTO125
－27r）IFA＞$>$ JTHEN28r，
－ $272 \mathrm{~A}=-1$ ：IFB＝1THEN29r）
－ 274 GOTO14
－289）IFB＝$=$ رTHENPRINTCHR $\$(20)$ ； $\operatorname{CHR} \$(20)$ ；$: A=A-1$
－ $285 \mathrm{~A}=\mathrm{A}-1$
－29rر PRINTCHR $\$(2 r)$ ）：GOTO14rر
－30，r ）REM LAST LINE
－31ر PRINT＂＂：T＝AD－（INT（AD／256）＊256）
－32の $\mathrm{FORB}=$（ノTOA $-1: \mathrm{T}=\mathrm{T}+\mathrm{A} \%$（ B$)$ ： $\mathrm{IFT}>255 \mathrm{THENT}=\mathrm{T}-255$
－33（ ）NEXT
－34（）IFA\％（A）＜＞TTHENGOSUB1ヶ1ヶ：GOTO11ヶ

－36 3 ）PRINT：PRINT＂YOU ARE FINISHED！＂：GOTO4rرrرヶ
－1rرrر）REM BELL AND ERROR MESSAGES
－1rノ1r PRINT：PRINT＂LINE ENTERED INCORRECTLY＂：PR INT：GOTO11rر）
－1r20 PRINT：PRINT＂INPUT A 4 DIGIT HEX VALUE！＂： GOT011rsf
－1r30）PRINT：PRINT＂ENDING IS LESS THAN STARTING ！＂：B＝（）：GOTO11رノر）
－1rر40，PRINT：PRINT＂ADDRESS NOT WITHIN SPECIFIED RANGE！＂：B＝r）：GOTO11rر）
－1（55（）PRINT：PRINT＂NOT ZERO PAGE OR ROM！＂：B＝（）：G OTOI1sers

DH IM
H NH
KO
HJ
JB
HC
FO
KE
IF
FP
MN

IL
FG
MD
ME
LH
IK
PD
LK
IA
FK
MN
$A B$
HO
GC
MD
KF
GE
BJ

EI
－1rر7r）PRINT＂？ERROR IN LOAD＂：GOTO11rر厅 GL
－－1（ر8r）PRINT：PRINT：PRINT＂END OF ML AREA＂：PRINT PG
－11rرf POKE54276，17：POKE54276，16：RETURN BH
－ 12 rر，OPEN $15,8,15$ ：INPUT\＃15，A A A ：CLOSE15：PRINTA
\＄：RETURN
－ 2 rرrjrs REM GET FOUR DIGIT HEX
－2rر1r PRINT：PRINTB\＄；：INPUTT\＄
PC

2r2r IFLEN（T\＄）＜＞41HENGOSUB1r，2r）：GOTO2r1r，II

A）$=16$ THENGOSUB1 (1)（ $)$ GOTO2 91 （ $)$ AD
－ 2 （ر50）NEXT： $\mathrm{B}=(\mathrm{T}(1) * 4$（ر）96）$+(\mathrm{T}(2) * 256)+(\mathrm{T}(3) * 16)+$ T（4）：RETURN

GF
－2r，6r）IFA\＄＞＂＠＂ANDA\＄＜＂G＂THENT（A）＝ASC（A\＄）－55：RET
URN EH
－2rر7の IFA\＄＞＂／＂ANDA\＄＜＂：＂THENT（A）＝ASC（A\＄）－48：RET
URN
KP
－2rر8） $\mathrm{T}(\mathrm{A})=16:$ RETURN NP
－25 5 ر）ρ REM ADRESS CHECK
LI
－2510 IFAD $>$ ENTHEN1（3）3 ，MI
－ 2515 IFB＜SRORB＞ENTHEN1rs4r）MG
－252（）IFB＜2560R（B＞4（ر96（JANDB＜49152）ORB $>53247 \mathrm{THE}$ N1（55）

MI

－253（J）RETURN
－3rرror REM ADDRESS TO HEX EB
－3rر1r $A C=A D: A=4$ rر96：GOSUB3r，7r，HG
－3rر2r $A=256$ ：GOSUB3（）7rs
－3r）3r）$A=16$ ：GOSUB3rs7r，

－3r，60）RETURN
CE

3rfr）RETURN ．
－3r，7r， $\mathrm{T}=\mathrm{INT}(\mathrm{AC} / \mathrm{A}): \mathrm{IFT}>9 \mathrm{THENA} \$=$ CHR $\$(\mathrm{~T}+55):$ GOTO3
r， 9 gr
CJ
－3（188）$A \$=\operatorname{CHR} \$(T+48)$ JP
－3rرgr，PRINTA\＄；：AC＝AC－A＊T：RETURN AC
－4rر）A\＄$=$＂＊＊SAVE＊＊＂：GOSUB42rر）AI
－4r，5r）OPEN1，T，1，A\＄：SYS68（）：CLOSE1 LH
－4rر6r）IFST＝r，THENEND EO

－4rر8 GOTO4rerرs FF
－41ر今 A\＄＝＂＊＊LOAD＊＊＂：GOSUB42rر）AB
－415（）OPEN1，T，ケ，A\＄：SYS69r）：CLOSE1 MF
－4160）IFST＝64THEN110 JH
－417r）GOSUB1rر7r）：IFT＝8THENGOSUB12のヶの CM
－418r，GOT041rر）FO
－42（ر）PRINT＂＂：PRINTTAB（14）A\＄FG
－4210 PRINT：A\＄＝＂＂：INPUT＂FILENAME＂；A\＄OM
－4215 IFA\＄＝＂＇＂THEN4219 GF
－422（）PRINT：PRINT＂TAPE OR DISK？＂：PRINT DF
－423）GETB $:$ T＝1：IFB $\$=$＂D＂THENT＝8：A\＄＝＂＠rر：＂＋A\＄：RE
TURN
IG
－424r）IFB\＄＜＞＂T＂THEN423r，FN
－425）RETURN IM
－45rر）B\＄＝＂CONTINUE FROM ADDRESS＂：GOSUB2のノ1ヶ）：AD＝ B

DK
－4510 GOSUB2515：IFB＝（JTHEN45（ر）MA
－452 9 PRINT：GOT011ヶ OI
－47rر）B\＄＝＂BEGIN SCAN AT ADDRESS＂：GOSUB2ヶ1ヶ）：AD＝

```
B FH
```

－47ヶ5 GOSUB2515：IFB＝0，THEN47ヶ）N NK
－47r，6 PRINT：GOT0474r，DI

$=$ ENTHENAD＝SR：GOSUB1（ر8）$)$ GOT0110 BK
－4715 PRINT＂＂；：NEXTB EC
－472 1 ）PRINT： $\mathrm{AD}=\mathrm{AD}+8 \mathrm{GN}$
－4730 GETB $\$:$ IFB $\$=$ CHR $\$(136)$ THEN11 ρ MN
－4740）GOSUB3 J1ヶ：PRINT＂：＂；：G0T0471r，JD

The Ultimate
 Resolution

FROM PAGE 37
－ 1 REM
－ 2 REM RUPERT REPORT \＃18
－ 3 REM
－ 4 REM BIT MAP GRAPHICS
－ 5 REM
－10 DEF $\operatorname{FNSB}(\mathrm{N})=$ PEEK．（MM）OR 2［UPARROW］N
－2「 ${ }^{\circ}$ DEF $\operatorname{FNRB}(\mathrm{N})=$ PEEK（MM）AND（255－2［UPARR OW ］N）

FP

－30）VV＝53248 ：REM VIC－II REGISTER か
－ 35 ：REM＞＞＞PUT BIT MAP AT 8192 〈＜＜
（SET BIT 3 OF VIC REGISTER 24）
－45） $\mathrm{MM}=\mathrm{VV}+24$ ：POKE MM， $\operatorname{FNSB}(3)$
－ 45 ：REM＞＞＞SELECT BIT MAP MODE＜＜＜
（SET BIT 5 OF VIC REGISTER 17）
－ 5 f） $\mathrm{MM}=\mathrm{VV}+17$ ：POKE MM， $\operatorname{FNSB}(5)$
－6r） $\mathrm{BASE}=8192$ ：REM START BIT MAP MEMORY
－ 65 ：REM＞＞＞CLEAR BIT MAP＜＜＜
－70）FOR MM＝BASE TO BASE＋7999
－88）POKE MM，「ノ ：NEXT MM
－ 85 ：REM＞＞＞SELECT COLORS C1 AND C C$) \lll$
－9（） $\mathrm{Cl}=1:($（ $)=$（）$: C C=16 * \mathrm{Cl}+\mathrm{Cr})$
－ 95 ：REM＞＞FILL SCREEN MEMORY WITH COLOR
－10ر）FOR MM＝1ヶ24 TO 2ヶ， $23:$ POKE MM，CC：NEXT
－194 ：
－195 ：：REM：：MAIN PROGRAM ：：
－ 196 ：

－22r）GOSUB 4rر）：NEXT
－250）FOR P＝1 TO 30jor）：NEXT
－ 294 ：
－ 296 ：
－30ر）：REM＞＞＞RESET BIT MAP MODE＜＜＜
－310）MM＝VV＋17 ：POKE MM，FNRB（5）
－32r）：REM＞＞＞RESTORE SCREEN MEMORY BASE
－33（） $\mathrm{MM}=\mathrm{VV}+24$ ：POKE MM， FNRB（3）
－39r）END
－ 395 ：REM＞＞＞TURN ON PIXEL AT（X，Y）
－40， f ，BIT＝7－（X AND 7）
－410） $\mathrm{MM}=\mathrm{BASE}+32$（）＊INT $(\mathrm{Y} / 8)+8 * \operatorname{INT}(\mathrm{X} / 8)+(\mathrm{Y} \mathrm{A}$ ND 7）
－42r）POKE MM，FNSB（BIT）
－43r）RETURN JM

HG
FN
OP

OUTINE
OP
－ 3 REM ADD IT TO YOUR PROGRAMS：ADJUST TH E DURATIONS AT 920ر）－9215 AS NEEDED
－ 4 REM
－5 REM PLAYS＂GOD SAVE THE KING＂（＂MY COU

PA－ 6 REM

LI •10 GOSUB 9rرros：GOTO 120
KG－6r）FOR N＝1 TO LEN（MD\＄（PH））
JD－ 61 FOR VC＝r，TO EV\％
LG－ 62 POKE GR（VC），UG\％（VC）：REM NORMAL NOTES； DON＇T POKE UG\％FOR LEGATO AE
－ 63 FOR $I=$ r，TO 1
FL－ 64 POKE FR（VC，I），PI\％（ASC（MID\＄（ME\＄（PH，VC） ， $\mathrm{N}, 1)$ ），I）
JA $\cdot 65$ NEXT：NEXT
$00 \cdot 66$ FOR VC＝EV\％TO ；STEP－1：POKE GR（VC），G \％（VC）：NEXT
DH－ 67 FOR $I=$ r）TO DU\％（VAL（MID\＄（MD\＄（PH）$, \mathrm{N}, 1)$ ）
KD－ 68 REM FOR VC＝r）TO EV\％：POKE GR（VC），UG\％（V
C）：NEXT：REM STACCATO NOTES BO
－ 69 NEXT： $\mathrm{PH}=\mathrm{PH}+1:$ IF $\mathrm{PH}>E S \%$ THEN $\mathrm{PH}=$ r， IJ
－7r）FOR VC＝r）TO EV\％：POKE GR（VC），UG\％（VC）：N EXT：RETURN
－1rرf GOSUB 6r，
－11r）IF PEEK（653）＞r）THEN END
－12ヶ PRINT＂PHRASE＂PH FCFF
－190 GOTO 10， CF
－ 8997 REM JD
－ 8998 REM SET UP SOUND SHAPE FD
－ 8999 REM
－9rرjor DIM MD\＄（23），ME\＄（23，2），MV\＄（23，2），G\％（2）， $\operatorname{GR}(2), \mathrm{FR}(2,1), \mathrm{AD}(2)$CF
－9ffrl DIM DU\％（9），PI\％（168，1），AK\％（2），DY\％（2） ， $\mathrm{SN} \%(2), \mathrm{RE} \%(2), \mathrm{WF} \mathrm{\%}$（2） OF
－9r（r） 7 REM JD
－9rرf8 REM ATTACK－－VOICES r，1，2 KG
－grojg REM NUMBER FROM r）TO 15；LOWER NUMB ER＝SHARPER ATTACK OK
－9r，1ヶ $A K \%($（ر）$)=2: A K \%(1)=2: A K \%(2)=2$ AN
－9015 FOR $I=$（）TO 2：AK\％（I）＝AK\％（I）＊16：NEXT FF
－9017 REM JD
－9rر18 REM DECAY－－VOICES ヶ，1，2 PK
－9r，19 REM NUMBER FROM r）TO 15；LOWER NUMB ER＝FASTER DECLINE GA
 NC
－9r227 REM JD
－9r，28 REM SUSTAIN－－VOICES ヶ，1，2 FC
－9rJ29 REM NUMBER FROM ¢ TO 15；LOWER NUMB ER＝SOFTER VOLUME DURING SUSTAIN JM
 FB
－9r335 FOR I＝ 1 ）TO 2：SN\％（I）＝SN\％（I）＊16：NEXT BD
－9r）37 REM JD
－9r338 REM RELEASE－－VOICES ヶ，1，2 OK－9r339 REM NUMBER FROM \upharpoonright TO 15 ；LOWER NUMB

FROM PAGE 18

THREE－VOICE PLAYER
－ 1 REM＂THREE VOICE PLAYER＂
－ 2 REM PLAY 1，2，OR 3 VOICES WITH THIS R

ER＝FASTER DROP TO SILENCE AT END

－ $9 r, 147$ REM
－ 9 rر48 REM SET SOUND ADDRESSES
－ $9 r 149$ REM
 $=54286$
－9r，55 FOR $I=$ r）TO 2：FR $(I, 1)=1+F R(I$, （）$): G R(I$ $)=F R(I, \rho)+4: A D(I)=G R(I)+1: N E X T$
－9rر57 REM
－ 9 rر58 REM POKE ADSR ENVELOPES
－ 9 9 159 REM
－9（ر6r）FOR I＝ 1 ）TO 2：POKE AD（I），AT\％（I）OR D Y\％（I）
－9rر65 POKE AD（I）＋1，SN\％（I）OR RE\％（I）：NEXT
－9rر66 REM
－ 9 （J）67 REM SET UP GATES
－9rر68 REM WAVEFORMS，VOICES 〕，1，2（ADD VA LUES）：
－9rر69 REM TRIANGLE ON＝16；SAWTOOTH ON＝32；
PULSE ON＝64（SET WIDTH！）；NOISE ON＝128

－9r）75 FOR I＝＾ノ TO 2：G\％（I）＝1 OR WF\％（I）：UG\％（ I）$=\mathrm{G} \%$（I）AND 254：NEXT
－9r）77 REM
－9r，78 REM SET PULSE WIDTHS
－9r，79 REM VOICES ヶ， 1,2 ；LOW BYTE，HIGH BY TE

－9rر81 POKE GR（1）－2，2rر）：POKE GR（1）－1，3
－9rر82 POKE GR（2）－2，2ヶر）：POKE GR（2）－1，3
－ 91 ر96 REM
－ 9 rر9 97 REM SET UP PITCH ARRAY
－ 9 （ر98 REM EACH NOTE，IN ALL ITS OCTAVES
－ 9 （ر99 REM C
－91رr）X\％＝3：GOSUB 919r）
－9101 DATA $12,1,24,2,48,4,97,8,195,16,135$ ，33，15，67，3ヶ，134
－9192 REM D
－91rر X\％＝4：GOSUB 919r）
 $62,37,69,75,139,15()$
－9105 REM E（F－FLAT）
－91ر」 X\％＝5：GOSUB 919r）：Y\％＝13：GOSUB 9195 DN
－9157 DATA $81,1,163,2,71,5,143,1$ ，$, 31,21,6$ $2,42,125,84,25$ ）， 168
－91ر 98 REM F（E－SHARP）
－91رノ9 X\％＝6：GOSUB 919 1 ：Y\％＝19：GOSUB 9195
 193，44，131，89，6， 179
－9111 REM G
． 9112 X\％＝7：GOSUB 919r，
$\cdot 9113$ DATA $145,1,35,3,71,6,143,12,3$ ），25，6

－9114 REM A
． 9115 X\％＝1：GOSUB 919（ر）
－ 9116 DATA $195,1,134,3,12,7,24,14,49,28,9$ 9，56，199，112，143，225

PJ ． 9117 REM B
BG ． 9118 X\％＝ $2:$ GOSUB 919（ر）
JD $\cdot 9119$ DATA 25 r， $1,244,3,233,7,21$（ر，15，165，3
JC $1,75,63,151,126,46,253$
JD ． 912 ，REM D－FLAT（C－SHARP）
． 9121 X\％＝11：GOSUB 919 $):$ Y\％＝17：GOSUB 9195 NN
$\cdot 9122$ DATA $28,1,56,2,112,4,225,8,195,17,1$
34，35，12，71，24， 142
－ 9123 REM E－FLAT（D－SHARP）
KJ
－ 9124 X\％＝12：GOSUB 9190：Y\％＝18：GOSUB 9195 LD
$\cdot 9125$ DATA $62,1,125,2,251,4,247,9,239,19$ ，
223，39，191，79，126，159
FB
.9126 REM G－FLAT（F－SHARP）
． 9127 X\％＝ 14 ：GOSUB 919 $):$ Y\％＝ 2 （ $)$ ：GOSUB 9195 HK
$\cdot 9128$ DATA $123,1,246,2,237,5,218,11,181,2$
3，157，47，214，94，172， 189
－ 9129 REM A－FLAT（G－SHARP）
－913r）X\％＝8：GOSUB 919r）：Y\％＝21：GOSUB 9195 GN
$\cdot 9131$ DATA $169,1,83,3,167,6,78,13,156,26$ ， $57,53,115,156,231,212$
－ 9132 REM B－FLAT（A－SHARP）
． 9133 X\％＝9：GOSUB 919 $):$ Y\％＝15：GOSUB 9195 DD
$\cdot 9134$ DATA $221,1,187,3,119,7,239,14,223,2$ 9，19r），59，124，119，248， 238
－ 9135 REM C－FLAT
AC ． 9136 X\％＝1 $): G O S U B ~ 919(ر)$
$\cdot 9137$ DATA $4,1,25 ヶ, 1,244,3,233,7,21 ヶ, 15,1$ 65，31，75，63，151，126
－ 9138 REM B－SHARP
－ 9139 X\％＝16：GOSUB 919 1 ） IN

CJ
－9145 DATA $24,2,48,4,97,8,195,16,135,33,1$ 5，67，3rر，134，255， 255
－ 9185 GOTO 92rر）
－ 9189 REM READ PITCHES NA
－919r）FOR I＝（）TO 147 STEP 21：READ PI\％（I＋X \％，（）），PI\％（I＋X\％，1）：NEXT：RETURN FN

－ 9194 REM IDENTICAL PITCHES
－ 9195 FOR $\mathrm{I}=$（）TO 147 STEP 21：PI\％（ $\mathrm{I}+\mathrm{Y} \%$, ，$)=$ $\mathrm{PI} \%(\mathrm{I}+\mathrm{X} \%, \mathrm{r}): \mathrm{PI} \%(\mathrm{I}+\mathrm{Y} \%, 1)=\mathrm{PI} \%(\mathrm{I}+\mathrm{X} \%, 1) \quad \mathrm{LN}$
－ 9196 NEXT：RETURN EJ
－ 9197 REM
－ 9198 REM SET UP DURATIONS
－ 9199 REM
－92rر）FOR I＝r，TO 9：READ DU\％（I）：NEXT MB
－92「5 DATA ケ，128，256，384，512，64ヶ，768，1ヶ24 ，1152，128

CA
－ 9296 REM
－ 9297 REM SET FILTER AND VOLUME
JD
BN
－9298 REM FILTER FREQUENCY DE
－ 9299 REM LOW BYTE（ $(\jmath-7)$ X\％；HIGH BYTE（ (ρ) －255）Y\％

PA
－93（r）X\％＝（ $: ~ Y \%=10$（ر）
－93r5 POKE 54293，X\％：POKE 54294，Y\％
GD
－93rر 8 REM FILTER ON？DD
－93r） 9 REM VOICE $1 \mathrm{ON}=1 ; 2 \mathrm{ON}=2 ; 3 \mathrm{ON}=4 ; 1$ \＆2 $\mathrm{ON}=3$ ； $2 \& 3 \mathrm{ON}=6$ ；ALL $\mathrm{ON}=7$
． $9310 \mathrm{X} \%=$＝
FM
－ 9318 REM FILTER RESONANCE
－9319 REM PEAK VOLUME（ $(\mathrm{J}=\mathrm{LOW}, 15=\mathrm{HIGH})$
－932（）Y\％＝14
－ 9325 Y\％＝Y\％＊16：POKE 54295，X\％OR Y\％
－ 9328 REM SELECT FILTER TYPE
－9329 REM LOW－PASS＝1；BAND－PASS＝2；HIGH－PAS S＝4；LO－BAND＝3；HI－BAND＝6；ALL＝7
－933 $\mathrm{X} \mathrm{\%}=1$
－ 9335 X\％$=X \%$＊ 16
－ 9337 REM
－9338 REM SELECT OVERALL VOLUME
－ 9339 REM 15＝HIGH，「＝LOW
－9345 $\mathrm{Y} \%=15$
－9345 POKE 54296，X\％OR Y\％
－ 9496 REM
－9497 REM SET MELODIES HERE
－ 9498 REM
－ 9499 REM HOW MANY VOICES？（MINUS ONE）
－95（J）EV\％＝2
－95r） 8 REM
－95J9 REM HOW MANY PHRASES？（MINUS ONE）
－9515 ES\％＝1
－ 9514 REM
－9515 REM MELODY STRINGS
－ 9516 REM
－ 9517 REM EACH PHRASE HAS ONLY ONE DU\％（PH ）STRING，NO MATTER HOW MANY VOICES
－ 9518 REM EACH PHRASE HAS ONE ME\＄（PH，VC）
\＆ONE MV $\$(\mathrm{PH}, \mathrm{VC})$ STRING PER VOICE
－9519 REM PHRASE ρ

－9521 ME $(0,0)=$＂FFGEFGAA［c B］AGFGFEF＂
－9522 MV $($（ $)$, ，$)=" 5\left[15^{\prime \prime}\right.$＂］＂
－9523 ME $(1), 1)=$＂CCDCDECFGFEADAGC＂
－9524 MV\＄（ 0,1$)=" 5\left[12^{\prime \prime}\right.$＂$] 45^{\prime \prime}$
． 9525 ME\＄$(r, 2)=$＂FA［ $\left.\begin{array}{c}C \\ B\end{array}\right]\left[3^{\prime \prime} C^{\prime \prime}\right] F D\left[\begin{array}{cc}C & B] C C D[C\end{array}\right.$ B］CCA＂
－9526 MV $\$(r, 2)=" 3 \quad 234 \quad 34 \quad 343$＂
－9529 REM PHRASE 1
 0ر）228＂
－9531 ME\＄$(1,0)="\left[4^{\prime \prime} C^{\prime \prime}\right]\left[\begin{array}{ll}c & B\end{array}\right] A\left[4^{\prime \prime}\left[\begin{array}{cc}c & B\end{array}\right] "\right] A G A$ ［ $\left.\begin{array}{c}c \\ E\end{array}\right]$ AGFA $\left[\begin{array}{cc}C & B\end{array}\right] C D\left[\begin{array}{cc}c & B\end{array}\right] A G F "$
－9532 MV \＄（ 1,0 ）＝＂6［3＂＂］5［14＂＂］6 5［3＂＂］＂LP
－9533 ME $(1,1)="\left[4^{\prime \prime} A^{\prime \prime}\right] G F\left[4^{\prime \prime} G^{\prime \prime}\right]$ FEFF＠F＠FEFF GFEA＂
－9534 MV\＄（1，1）＝＂43 4［3＂＂］3 4［3＂＂］3［3＂＂ ］4［6＂＂］3＂
－9535 ME $(1,2)=$＂FAC［ 3 ＂${ }^{\prime \prime}$＂$]$ CEGCBCFDC［ C B］AC GA［c B］DCCF＂
－ $9536 \operatorname{MV} \$(1,2)=" 2$ 32［6＂＂］1234 302321
－ 9897 REM
－9898 REM CONVERT STRINGS TO USABLE FORM
－ 9899 REM
－990） FOR PH＝r）TO ES\％：FOR VC＝r，TO EV\％
－99（5）A\＄＝ME\＄（PH，VC）：ME\＄（PH，VC）＝＂＂
－9915 FOR I＝1 TO LEN（A\＄）
－9920 X\％＝ASC（MID\＄（A\＄，I，1））

ONE－VOICE PLAYER

－1 REM ONE VOICE PLAYER（FAST）	EH
－ 2 REM PLAYS＂MEXICAN HAT DANCE＂	NB
－ 3 REM	JD
－1r GOSUB 9rرrjrs：GOTO 12rs	LE
－6r）FOR N＝1 TO LEN（MD\＄（PH））	FJ
－61 D\％＝VAL（MID\＄（MD\＄（PH）， $\mathrm{N}, 1)$ ）	LE
－64 POKE GR，UG\％：REM NORMAL NOTES；DELETE	
PORES FOR LEGATO	IF
－65 FOR I＝$)$ ）TO 1：PORE FR（I），PI\％（ASC（MID\＄（	
ME\＄（PH）， $\mathrm{N}, 1)$ ）， I$)$ ：NEXT	JN
－66 POKE GR，G\％	NA

－ 66 POKE GR，G\％
KL－67 FOR I＝$=$ ）TO DU\％（VAL（MID\＄（MD\＄（PH），N，1））

KI
PB

DG

HP
）：NEXT
－ 68 REM POKE GR，UG\％：REM STACCATO NOTES EE
－ 69 NEXT： $\mathrm{PH}=\mathrm{PH}+1:$ IF $\mathrm{PH}>E S \%$ THEN $\mathrm{PH}=$ ， IJ
－75 PORE GR，UG：RETURN NF
－10رr GOSUB 6r
－110 IF PEEK（653）＞）THEN END
PC
－125 PRINT＂PHRASE＂PH FC
－190 GOTO 10 10 CF CF
－ 8997 REM JD
－ 8998 REM SET UP SOUND SHAPE FD
－8999 REM JD
－9ffrf）DIM MV\＄（23），MD\＄（23），ME\＄（23），FR（1）JI
－9rرノ1 DIM DU\％（9），PI\％（ 168,1 ）PB
－9rرr） 7 REM
－9rر）REM ATTACK FE
－90رJ） 9 REM NUMBER FROM $ケ T O ~ 15 ; ~ L O W E R ~ N U M B ~$
ER＝SHARPER ATTACK
OK
－901r）$A K \%=$（）
－9rر15 AK\％＝AK\％＊16
－9017 REM
－9918 REM DECAY
－9rر19 REM NUMBER FROM ρ TO 15；LOWER NUMB ER＝FASTER DECLINE

PJ
－9r）27 REM
－9r228 REM SUSTAIN
－993（）IF X\％＜72 THEN X\％＝X\％－64：IF X\％＜r）THEN $\mathrm{X} \%=$（）

ED
－9931 IF X\％＞192AND X\％＜2 5ρ THEN X\％＝X\％－178 GP
－9932 IF X\％＝176 THEN X\％＝8
IF
FN
II
IM
LA
IE
HL
DL

PG

PI
HP
IM
－9rر29 REM NUMBER FROM © TO 15；LOWER NUMB
ER＝SOFTER VOLUME DURING SUSTAIN
－9（13）SN\％＝1
－9rر35 SN\％＝SN\％＊16
－9r）37 REM
－9 9338 REM RELEASE
－9rر39 REM NUMBER FROM r）TO 15；LOWER NUMB
ER＝FASTER DROP TO SILENCE AT END
－9（94） $\mathrm{RE} \%=$（）
－ 9 rf47 REM
－9r，48 REM SET SOUND ADDRESSES
－9rر49 REM
－9（55） $\mathrm{FR}(\mathrm{r})=54272$
－9（）55 $\mathrm{FR}(1)=1+\mathrm{FR}(\mathrm{\rho})): \mathrm{GR}=\mathrm{FR}($（ ）$)+4: \mathrm{AD}=\mathrm{GR}+1$
－9r）57 REM
－9rر58 REM POKE ADSR ENVELOPE
－9r559 REM
－9rر6r POKE AD，AT\％OR DY\％
－9rر65 POKE AD＋1，SN\％OR RE\％
－9rJ66 REM
－9r，67 REM SET UP GATE
－9rJ68 REM WAVEFORMS（ADD VALUES）：
－9r，69 REM TRIANGLE ON＝16；SAWTOOTH ON＝32；
PULSE ON＝64（SET WIDTH！）；NOISE ON＝128
－9rر75）WF\％＝32
－9 9775 G\％＝1 OR WF\％：UG\％＝G\％AND 254
－9r777 REM
－9r）78 REM SET PULSE WIDTH
－9r）79 REM LOW BYTE，HIGH BYTE
－9rر8）POKE GR－2，2rر）：POKE GR－1，3
－9rر96 REM
－9rر97 REM SET UP PITCH ARRAY
－9rJ98 REM EACH NOTE，IN ALL ITS OCTAVES
－9rj99 REM C
－91رf X\％＝3：GOSUB 919r）
－9101 DATA $12,1,24,2,48,4,97,8,195,16,135$ ，33，15，67，35，134
－91رJ2 REM D
－91rJ X\％＝4：GOSUB 9191）
 62，37，69，75，139，15（）
－9105 REM E（F－FLAT）
－9156 X\％＝5：GOSUB 919r）：Y\％＝13：GOSUB 9195
－9107 DATA $81,1,163,2,71,5,143,1 〕, 31,21,6$ 2，42，125，84，25「，168
－9108 REM F（E－SHARP）
－91积 X\％＝6：GOSUB 919）：Y\％＝19：GOSUB 9195
－9115 DATA 152，1，254，2，152，5，48，11，96，22， 193，44，131，89，6，179
－ 9111 REM G
－9112 X\％＝7：GOSUB 919r）
－ 9113 DATA $145,1,35,3,71,6,143,12,3 ヶ, 25,6$

－ 9114 REM A
－9115 X\％＝1：GOSUB 9191）
－9116 DATA $195,1,134,3,12,7,24,14,49,28,9$
9，56，199，112，143，225
－ 9117 REM B
－9118 X\％＝2：GOSUB 919r）
PF
JM－ 9119 DATA 25r），1，244，3，233，7，21ヶ，15，165，3
LL $1,75,63,151,126,46,253$
HB 912 ）REM D－FLAT（C－SHARP）JL
JD •9121 X\％＝11：GOSUB 9190）：Y\％＝17：GOSUB 9195 NN
IP－ 9122 DATA $28,1,56,2,112,4,225,8,195,17,1$ 34，35，12，71，24，142 \qquad
PJ • 9123 REM E－FLAT（D－SHARP）
FD
KA ． 9124 X\％＝12：GOSUB 9190）：Y\％＝18：GOSUB 9195 LD
JD－ 9125 DATA $62,1,125,2,251,4,247,9,239,19$ ，
JC 223，39，191，79，126，159
JD • 9126 REM G－FLAT（F－SHARP）
OK ． 9127 X\％$=14$ ：GOSUB 9190： $\mathrm{Y} \%=20$ ：GOSUB 9195 HK
CI－ 9128 DATA $123,1,246,2,237,5,218,11,181,2$
JD 3,1 ， $7,47,214,94,172,189$
FE－9129 REM A－FLAT（G－SHARP）
JD •913 $\mathrm{X} \%=8$ ：GOSUB 919r）：Y\％＝21：GOSUB 9195 GN
KD • 9131 DATA $169,1,83,3,167,6,78,13,156,26$ ，
GJ 57，53，115，1•6，23ヶ， 212 PA
JD 9132 REM B－FLAT（A－SHARP）FP
EN •9133 X\％＝9：GOSUB 919 1 ：Y\％＝15：GOSUB 9195 DD
GB $\cdot 9134$ DATA $221,1,187,3,119,7,239,14,2:, 2$ 9，191），59，124，119，248，238

CN
－9135 REM C－FLAT
NP－ 9136 X\％$=1$（ $)$ ：GOSUB 919 $)$
CH
 65，31，75，63，151，126
－ 9138 REM B－SHARP
－ 9139 X\％＝16：GOSUB 919rر
AK

9139 X
－914 ${ }^{9}$ DATA $24,2,48,4,97,8,195,16,135,33,1$ 5，67，3「，134，255，255

NM
－915（）FOR $I=$（ $)$ TO 147 STEP 21：PI\％（ $I,(j)=(\rho): P$
I\％（ $\mathrm{I}, 1$ ）$=$＝$)$ ：NEXT
CM
－ 9185 GOTO 920）
FM
BK $\cdot 9189$ REM READ PITCHES NA
－9190）FOR I＝r）TO 147 STEP 21：READ PI\％（I＋X \％，（J），PI\％（I＋X\％，1）：NEXT：RETURN

FN
NH .9194 REM IDENTICAL PITCHES GA
PH $\cdot 9195$ FOR I＝$=$ ノ TO 147 STEP 21：PI\％（ $I+Y \%,(\jmath)=$ $\mathrm{PI} \mathrm{\%}(\mathrm{I}+\mathrm{X} \mathrm{\%}, \mathrm{r}): \mathrm{PI} \mathrm{\%}(\mathrm{I}+\mathrm{Y} \%, 1)=\mathrm{PI} \mathrm{\%}(\mathrm{I}+\mathrm{X} \mathrm{\%}, 1) \quad \mathrm{LN}$
PA 9196 NEXT：RETURN EJ
MH－9197 REM
DN • 9198 REM SET UP DURATIONS
－ 9199 REM
－920ر）FOR I＝ 0 ，TO 9：READ DU\％（I）：NEXT MB
－92丁5 DATA $16,32,48,64,96,128,16 r), 192,256$ ， 320

PD
－ 9296 REM
－ 9297 REM SET FILTER AND VOLUME
－ 9298 REM FILTER FREQUENCY
JD

DN LOW BYTE（ 1 －7）D\％；DE
AO 9299 REM LOW BYTE（ $(J-7)$ X\％；HIGH BYTE（ $(\Omega$ －255）Y\％

PA
－930rر X\％＝r：$Y \%=10$ rر
－9355 POKE 54293，X\％：POKE 54294，Y\％
－93ノر 8 REM FILTER ON？
－93rر9 REM VOICE 1 ON＝1
－9310 X\％＝r）
－ 9318 REM FILTER RESONANCE

GD
KJ
DD
FK
FM
CE
－9319 REM PEAK VOLUME（ $\mathrm{r}=\mathrm{L}=\mathrm{LOW}, 15=\mathrm{HIGH}$ ）
－932 $5 \%=14$
－9325 Y\％＝Y\％＊16：PORE 54295，X\％OR Y\％
－9328 REM SELECT FILTER TYPE
－9329 REM LOW－PASS＝1；BAND－PASS＝2；HIGH－PAS $\mathrm{S}=4$ ；LO－BAND $=3$ ； $\mathrm{HI}-\mathrm{BAND}=6$ ； $\mathrm{ALL}=7$
－933 $\mathrm{X} \mathrm{\%}=1$
－9335 X\％＝X\％＊16
－ 9337 REM
－9338 REM SELECT OVERALL VOLUME
－9339 REM 15＝HIGH，「＝LOW
－9340 Y\％$=15$
－9345 POKE 54296，X\％OR Y\％
－ 9496 REM
－ 9497 REM SET MELODY
－9498 REM
－95 19 REM HOW MANY PHRASES？（MINUS ONE）
－9515 $\mathrm{ES} \mathrm{\%}=5$
－ 9514 REM
－9515 REM MELODY STRINGS
－ 9516 REM
－9517 REM EACH PHRASE HAS ONLY ONE DU\％（PH
\％）STRING，NO MATTER HOW MANY VOICES
－9518 REM EACH PHRASE HAS ONE ME\＄（PH\％，VC\％ ）\＆ONE MV $\$(\mathrm{PH} \%, \mathrm{VC} \mathrm{\%})$ STRING PER VOICE
－9519 REM PHRASE r

－9521 ME\＄（（J）$=$＂G［s F］GE［s D］ECBCGEFGABCDEF D＂
－9522 MV\＄（ 9 ）＝＂6［6＂＂］565［5＂＂］6［4＂＂］＂
－9529 REM PHRASE 1

－9531 ME\＄（1）＝＂FEFD［s C］DB［s A］BGG［s F］GAG FEDC＂
． 9532 MV\＄（1）＝＂6［5＂＂］5［3＂＂］6［8＂＂］＂
－9539 REM PHRASE 2

－9541 ME\＄（2）＝＂GC＠GC＠GC＠GCDCB＠CD＠＂
－9542 MV \＄（2）＝＂34 34343434 ＂
－9549 REM PHRASE 3
－955）MD\＄（3）＝＂［7＂ケ＂］15［7＂厅）＂］15＂
－9551 ME\＄（3）＝＂GB＠GB＠GB＠GBCBA＠BC＠＂
－9552 MV \＄（3）＝＂3［10＂＂］43［3＂＂］4＂
－9559 REM PHRASE 4
－956r）MD\＄（4）＝＂［9＂1＂］5［9＂1＂］5＂
－9561 ME $9(4)="\left[3^{\prime \prime} D^{\prime \prime}\right]\left[3^{\prime \prime} A^{\prime \prime}\right]\left[3^{\prime \prime} C^{\prime \prime}\right] \mathrm{B}\left[3^{\prime \prime} \mathrm{D}^{\prime \prime}\right][3$ ＂A＂］［3＂C＂］B＂
－9562 MV $(4)=" 5 \quad 4 \quad 5 \quad 45 \quad 4 \quad 5 \quad 4 "$
－9569 REM PHRASE 5
－9575）MD\＄（5）＝＂［9＂1＂］5［8＂1＂］8＂
－9571 ME（5）＝＂［3＂D＂］［3＂A＂］［3＂C＂］BD［s C］DE DCBAG＂
－9572 MV\＄（5）＝＂5 4 5 45［5＂＂］4＂
－ 9898 REM CONVERT STRINGS TO USABLE FORM
－ 9899 REM
－99rf）FOR PH＝r，TO ES\％
－ 9995 A\＄＝ME（PH）：ME（PH）$=$＂＇＂
－9915 FOR I＝1 TO LEN（A\＄）

FH－992 5 X\％＝ASC（MID\＄（A\＄，I，1））
JL •993（）IF $\mathrm{X} \%<72$ THEN $\mathrm{X} \mathrm{\%}=\mathrm{X} \mathrm{\%}$－64：IF $\mathrm{X} \%<$（）THEN $\mathrm{X} \%=$ r）

ED
－9931 IF X\％＞192AND X\％＜2ヶر）THEN X\％＝X\％－178 GP
－ 9932 IF X\％＝176 THEN X\％＝8
－ 9933 IF X\％＝191 THEN X\％＝9
FP－ 9934 IF X\％＝188 THEN X\％＝15
LC $\cdot 9935$ IF X\％＝172 THEN X\％＝11
FP $\cdot 9934$ IF X\％＝188 THEN X\％＝1S
LC $\cdot 9935$ IF X\％＝172 THEN X\％＝11
JD •9936 IF X\％＝177 THEN X\％＝12
FJ • 9937 IF X\％＝187 THEN X\％＝13
PB •9938 IF X\％＝165 THEN X\％＝14
JK •9939 IF X\％>21 THEN X\％＝（）
HN－994r，V\＄＝MID\＄（MV\＄（PH），I，1）：IF V\＄く＞＂＂THE N Y\％＝21＊VAL（V\＄）
EJ－995 $\mathrm{X} \mathrm{\%}=\mathrm{X} \mathrm{\%}+\mathrm{Y} \%$ MJ
JD－997r）ME（PH）$=\mathrm{ME} \$(\mathrm{PH})+\mathrm{CHR} \$(\mathrm{X} \%)$ CP
MA 9975 NEXT：NEXT EFKC－998（ $\mathrm{PH}=$（）
HPJD •999（）RETURN

JD •999rJ RETURN

BROKEN MELODY

－ 1 REM＂BROKEN MELODY＂
JC
CE $\cdot 2$ REM THREE VOICES WAIT FOR USER INPUT B ETWEEN PHRASES

HL

NB－ 3 REM USE THIS ROUTINE FOR A SERIES OF R
IP EWARDS
FA .4 REM
－ 5 REM PLAYS＂I＇M ON MY WAY＂（FROM＂PAINT YOUR WAGON＂BY LERNER \＆LOEWE）MK
HN－ 6 REM

NA－6r）FOR N＝1 TO LEN（MD\＄（PH））FJ
－ 61 FOR VC＝r）TO EV\％
OF－ 62 POKE GR（VC），UG\％（VC）：REM NORMAL NOTES；
PF DON＇T POKE UG\％FOR LEGATO
JB $\cdot 63$ FOR I＝ （ TO 1 JB
PN－ 64 POKE FR（VC，I），PI\％（ASC（MID\＄（ME\＄（PH，VC）
AO ， $\mathrm{N}, 1$ ）），I）
FO $\cdot 65$ NEXT：NEXT
EF
JA •66 FOR VC＝EV\％TO 厅 STEP－1：POKE GR（VC），G
EO \％（VC）：NEXTMB

AA $\cdot 67$ FOR $I=$ r）TO DU\％（VAL（MID\＄（MD\＄（PH），N，1））
PM ）：NEXT
JD • 68 REM FOR VC＝r）TO EV\％：POKE GR（VC），UG\％（V

IB • 7 （ $)$ FOR VC＝r）TO EV\％：POKE GR（VC），UG\％（VC）：N
LG EXT：RETURN
JC •1 15ر PRINT＂PRESS SHIFT FOR PHRASE＂PH JB
KK •11厅 PRINT＂ANY OTHER KEY TO STOP＂LG
－12厅 IF PEEK（2ヶ3）＜＞64 THEN END
KG •130）IF $\operatorname{PEEK}(653)=0$ ，THEN 120 GC
AI－14r）GOSUB 6r
IG－190）GOTO 10r）
JD－ 8997 REM
EI－ 8998 REM SET UP SOUND SHAPE
JB $\cdot 8999$ REM JD

2）， $\mathrm{GR}(2), \mathrm{FR}(2,1), \mathrm{AD}(2)$
－9rر） 1 DIM DU\％（9），PI\％（168，1），AK\％（2），DY\％（2） ，SN\％（2），RE\％（2），WF\％（2）
－9rr， 7 REM
－9rر）8 REM ATTACK－－VOICES ケ，1，2
－9rر） 9 REM NUMBER FROM $)$ TO 15；LOWER NUMB ER＝SHARPER ATTACK
－9（1） 10 ）$A K \%(0)=(r): A K \%(1)=(0): A K \%(2)=r)$
－9r）15 FOR I＝r，TO 2：AK\％（I）＝AK\％（I）＊16：NEXT
－9017 REM
－9rر18 REM DECAY－－VOICES 厄，1，2
－9019 REM NUMBER FROM ¢ TO 15；LOWER NUMB ER＝FASTER DECLINE

－9r）27 REM

- 9rر28 REM SUSTAIN－－VOICES 厄，1，2
- 9rر29 REM NUMBER FROM 厅 TO 15；LOWER NUMB ER＝SOFTER VOLUME DURING SUSTAIN

－9r335 FOR I＝r）TO 2：SN\％（I）＝SN\％（I）＊16：NEXT
－9r337 REM
－9「338 REM RELEASE－－VOICES 厅，1，2
－9rر39 REM NUMBER FROM r）TO 15；LOWER NUMB ER＝FASTER DROP TO SILENCE AT END

－9r，47 REM
－9r，48 REM SET SOUND ADDRESSES
－9r，49 REM
 ＝54286
－9055 FOR $I=$ r）TO 2： $\mathrm{FR}(\mathrm{I}, 1)=1+\mathrm{FR}(\mathrm{I}, \mathrm{r}): \operatorname{GR}(\mathrm{I}$ $)=F R(I$, （ر）$)+4: \operatorname{AD}(\mathrm{I})=\mathrm{GR}(\mathrm{I})+1: \operatorname{NEXT}$
－9r）57 REM
－9rر58 REM POKE ADSR ENVELOPES
－9r，59 REM
－9r（6）FOR I＝r，TO 2：POKE AD（I），AT\％（I）OR D Y\％（I）
－9 965 POKE AD（I）＋1，SN\％（I）OR RE\％（I）：NEXT
－9r，66 REM
－ 9 rf67 REM SET UP GATES
－9rJ68 REM WAVEFORMS，VOICES r，1，2（ADD VA LUES）：
－9rر69 REM TRIANGLE ON＝16；SAWTOOTH ON＝32；
PULSE ON＝64（SET WIDTH！）；NOISE ON＝128

－9r）75 FOR I＝r）TO 2：G\％（I）＝1 OR WF\％（I）：UG\％（ I）$=$ G\％（I）AND 254：NEXT
－9r，77 REM
－9078 REM SET PULSE WIDTHS
－9r）79 REM VOICES r，1，2；LOW BYTE，HIGH BY TE

－9rر81 POKE GR（1）－2，2ヶr）：POKE GR（1）－1，3
－9rر82 POKE GR（2）－2，2rر）：POKE GR（2）－1，3
－9r）96 REM
－9 9 （97 REM SET UP PITCH ARRAY
－9fノ98 REM EACH NOTE，IN ALL ITS OCTAVES
－9rر99 REM C
－91رfノ X\％＝3：GOSUB 919r）
BK
－91＇ノ1 DATA $12,1,24,2,48,4,97,8,195,16,135$ ，33，15，67，3ヶ，134
－91ヶ2 REM D
－91䄧 X\％＝4：GOSUB 9190）
IF
JD
KG
OK
CP
FF
JD
PK

GA

AN
JD
\％，（）），PI\％（I＋X\％，1）：NEXT：RETURN
－ 9194 REM IDENTICAL PITCHES
－ 9195 FOR $I=$（ $) ~ T O ~ 147 ~ S T E P ~ 21: P I \% ~(I+Y \%, ~(~) ~=~$ $P I \%(I+X \%, \Gamma): P I \%(I+Y \%, 1)=P I \%(I+X \%, 1)$
－ 9196 NEXT：RETURN
－ 9197 REM
－ 9198 REM SET UP DURATIONS
－ 9199 REM
－ 92 （r）FOR I＝（ر）TO 9：READ DU\％（I）：NEXT
－92ノ5 DATA 1ヶ，128，256，384，512，64ヶ，768，1ノ2
4，1152，128
－ 9296 REM
－ 9297 REM SET FILTER AND VOLUME
－ 9298 REM FILTER FREQUENCY
－ 9299 REM LOW BYTE（ 1 ） 7 ）X\％；HIGH BYTE（ (1) －255）Y\％
－930rs $X \%=(\mathrm{r}: \mathrm{Y} \%=1$（r）
－93 95 POKE 54293，X\％：POKE 54294，Y\％
－93（ر）REM FILTER ON？
－93rر9 REM VOICE $10 \mathrm{~N}=1$ ； $2 \mathrm{ON}=2$ ； $30 \mathrm{ON}=4$ ； 1
\＆2 $0 N=3 ; 2 \& 30 N=6$ ；ALL $0 N=7$
．9315 X\％＝0）
－ 9318 REM FILTER RESONANCE
－ 9319 REM PEAK VOLUME（ $\mathrm{r} \boldsymbol{\jmath}=\mathrm{LOW}, 15=\mathrm{HIGH}$ ）
－932 9 Y $\%=14$
－ $9325 \mathrm{Y} \%=\mathrm{Y} \% * 16$ ：POKE 54295，X\％OR Y\％
－ 9328 REM SELECT FILTER TYPE
－ 9329 REM LOW－PASS＝1；BAND－PASS $=2$ ；HIGH－PAS
$\mathrm{S}=4 ; \mathrm{LO}-\mathrm{BAND}=3 ; \mathrm{HI}-\mathrm{BAND}=6 ; \mathrm{ALL}=7$
－9330 X\％＝1
－9335 X\％＝X\％＊16
－ 9337 REM
－ 9338 REM SELECT OVERALL VOLUME
－ 9339 REM 15＝HIGH，$\gamma \boldsymbol{r}=\mathrm{LOW}$
－9345）Y\％＝15
． 9345 POKE 54296，X\％OR Y\％
－ 9496 REM
－ 9497 REM SET MELODIES HERE
－ 9498 REM
－ 9499 REM HOW MANY VOICES？（MINUS ONE）
－95rر）EV\％＝2
－95 9 88 REM
－95رノ9 REM HOW MANY PHRASES？（MINUS ONE）
－951 ES ．$=8$
－ 9514 REM
－ 9515 REM MELODY STRINGS
－ 9516 REM
－ 9517 REM EACH PHRASE HAS ONLY ONE DU\％（PH
）STRING，NO MATTER HOW MANY VOICES
－ 9518 REM EACH PHRASE HAS ONE ME\＄（PH，VC） \＆ONE MV\＄（PH，VC）STRING PER VOICE
－ 9519 REM PHRASE ρ
－952（ MD $\$(0)=$＂$\left[16^{\prime \prime} \text {（ノ）＂}\right]^{\prime \prime}$
－9521 ME $\$(\bigcirc, \bigcirc)=$＂$\left[3^{\prime \prime} \mathrm{F}^{\prime \prime}\right]$ GAFG＠［3＂F＂］GAFGE＂
． $9522 \mathrm{MV} \$(0$, ）$)=$＂ $6\left[15^{\prime \prime}\right.$＂］＂
． 9523 ME $(\Upsilon, 1)=$＂CCDCGD［ $4^{\prime \prime} C^{\prime \prime}$ ］DCGDCC＂
－9524 MV $\$(\Gamma, 1)=" 4545354545453545^{\prime \prime}$
． 9525 ME $(\rho, 2)=$＂FAEAGBC［ $\left.\begin{array}{c}c \\ \text { B }\end{array}\right] F A D A G B C\left[\begin{array}{cc}c & B\end{array}\right]$＂NH
LN
EJ

KF
JD
BN
DE

FN－ 9526 MV $\$(r), 2)=" 3434343434343434$＂
GA •9529 REM PHRASE 1
－953（ $\mathrm{MD} \$(1)=$＂$\left[16^{\prime \prime} \text { ノر＂}\right]^{\prime \prime}$

JD $.9533 \mathrm{ME} \$(1,1)=$＂FCECDBCCFCECDACA＂
ME－9534 MV $\$(1,1)=" 45454545454 \quad 5 "$
JD $\cdot 9535 \mathrm{ME} \$(1,2)=$＂FAEADBC［ c B］FAEADFCF＂
MB • 9536 MV $(1,2)=" 3434343434343435$＂
－ 9539 REM PHRASE 2

94 AHOY！

－9592 MV\＄（7，厄）＝＂6［11＂＂］7＂
－9593 ME\＄ 7,1 ）＝＂FCECDBCC＠A＠［c B］CF＠＂
－9594 MV $\$(7,1)=" 45454545$＂
－9595 ME $\$(7,2)=$＂FAEADBC［ c B］FFGRA［C E］＠＂
－9596 MV\＄$(7,2)=" 34343434343435$＂
－ 9599 REM PHRASE 8
－96гر）MD\＄（8）＝＂［17＂ヶ＂］＂
 ＂］＂
－96「ノ2 MV\＄$(8$, ，$)=" 7[3$＂＂］6［8＂＂］7［3＂＂］＂BN
－96rر3 ME\＄$(8,1)=$＂$\left[\begin{array}{c}\text { B B］CACA＠C＠CFDC［ } \\ \text { B }\end{array}\right.$ ］A＠F＠ ＂

CL
－96r， 4 MV $\$(8,1)=" 5[8 " 74654$＂
－96rر5 ME $(8,2)=$＂DCFCFCAC［ $\begin{gathered}\text { B }] F[c ~ B] A G F @ F @ ~\end{gathered}$ ＂
－96「J6 MV $\$(8,2)=$＂545354 3435［4＂＂］3＂
－ 9897 REM
－9898 REM CONVERT STRINGS TO USABLE FORM
－ 9899 REM
－990（J）FOR PH＝r）TO ES\％：FOR VC＝r）TO EV\％
－99rر5 A\＄＝ME\＄（PH，VC）：ME（PH，VC）＝＂＂
－991ر FOR I＝1 TO LEN（A\＄）
－992丁 X\％＝ASC（MID\＄（A\＄，I，1））
－993（）IF X\％＜72 THEN X\％＝X\％－64：IF X\％＜r，THEN $\mathrm{X} \%=\mathrm{r})$
－ 9931 IF X\％＞192AND X\％＜2ヶ今 THEN X\％＝X\％－178
－9932 IF X\％＝176 THEN X\％＝8
－9933 IF X\％＝191 THEN X\％＝9
－ 9934 IF X\％＝188 THEN X\％＝15
－9935 IF X\％＝172 THEN X\％＝11
－ 9936 IF X\％＝177 THEN X\％＝12
－ 9937 IF X\％＝187 THEN X\％＝13
－ 9938 IF X\％＝165 THEN X\％＝14
－ 9939 IF X\％＞21 THEN X\％＝$=1$
－995「）V\＄＝MID\＄（MV\＄（PH，VC），I，1）：IF V\＄＜＞＂＂ THEN Y\％＝21＊VAL（V\＄）
－996r IF X\％く〉ノ THEN X\％＝X\％＋Y\％
－9975 ME $\$(\mathrm{PH}, \mathrm{VC})=\mathrm{ME}$（ PH, VC ）$+\mathrm{CHR} \$(\mathrm{X} \%)$
－ 9975 NEXT：NEXT：NEXT
－998（） $\mathrm{PH}=$（）
－9990）RETURN

QUAD－PRINT

FROM PAGE 47
MENU
－5 PRINT＂［CLEAR］［DOWN］［RVSON］［BLACK］QUAD PRINT（C） 1984 BY MICHAEL BEUTJER
－1ヶ）POKE55，「л：POKE56，28
－25 PRINT＂［3＂［DOWN］＂］［WHITE］SELECT YOUR P RINTER TYPE．［DOWN］［DOWN］＂
－30）PRINT＂PRESS F1 FOR EPSON RX／FX 80 OR 15ر」．＂
－45 PRINT＂［DOWN］PRESS F3 FOR COMMODORE 15 26．＂
－5r）GETA\＄：IFA\＄＝＂＂THEN5 $)$
－60） $\operatorname{IFASC}(A \$)=133 T H E N B \$=$＂QP E＊＂$:$ PRINT＂［CL
LF
BP
AL
MK
LM
JH
EG
KN
－115 PRINT＂［DOWN］［RIGHT］［RVSON］［EP］＝ DUMP POS［RVSOFF］［5＂＂］［RVSON］［BACKAR ROW］＝DUMP NEG＂
－120）PRINT＂［DOWN］［RIGHT］［5＂＂］［RVSON］［3＂ ＂］＊＝QUICK VIEW SCREENS＂OC
－13 13）PRINT＂［DOWN］［RIGHT］［5＂＂］［RVSON］［3＂ ＂］＠＝SWAP SCREENS［7＂＂］＂

HI
EAR］［10＂［DOWN］＂］［6＂＂］LOADING EPSON／GEMINI VERSION＂
－75 $\operatorname{IFASC}(A \$)=134 \mathrm{THENB} \$=" \mathrm{QP}$ C＊＂：PRINT＂［CLEAR］［15＂［DOWN］＂］［5＂＂］LOADING COMMODORE1526 VERSION＂NL
－75 IFB\＄＝＂＇THEN5！ PN
－85）POKE5328r，6：POKE53281，14：PRINT＂［HOME］［c 7］［3＂［DOWN］＂］LOAD＂CHR\＄（34）B\＄CHR\＄（34）＂F0
－9r）PRINT＂［HOME］＂：POKE198，5：FORX＝rرTO4：REA DA：POKE631＋X，A：NEXT：END C0
－50ر）DATA13，31，82，213，13 GO
1526 VERSION
－5 PRINT＂［CLEAR］［4＂［DOWN］＂］［8＂＂］INITIALIZING［3＂．＂］＂CE
－10 GOSUB57r） CMINT＂［CLEAR］［DOWN］［DOWN］［12＂＂］QUAD－PRINT1526＂
－30）DIMB\＄（4）：PRINT＂［DOWN］［9＂＂］（C） 1984 BY M．BEUTJER＂KK
－4r） $\mathrm{IFB}=$（गTHENB＝1：GOTO7r） MM
－50）PRINT＂［CLEAR］［DOWN］PIC 1 （UPPER LEFT）：＂B\＄（1）：PRINT＂PIC 2 （UPPER RTGHT）：＂ $\mathrm{B} \$(2)$
－60）PRINT＂PIC 3 （LOWER LEFT）：＂B\＄（3）：PRINT＂PIC 4 （LOWER RIGHT）：＂B\＄（4）EP－7r）PRINT＂［DOWN］［RIGHT］［RVSON］F1＝DISPLAY 1 ［RVSOFF］［5＂＂］［RVSON］F2＝LOAD 1［3＂＂］＂NN－80）PRINT＂［DOWN］［RIGHT］［RVSON］F3＝DISPLAY 2 ［RVSOFF］［5＂＂］［RVSON］F4＝LOAD 2［3＂＂］＂－9r）PRINT＂［DOWN］［RIGHT］［RVSON］F5＝DISPLAY 3 ［RVSOFF］［5＂＂］［RVSON］F6＝LOAD 3［3＂＂］＂PB
－1rر）PRINT＂［DOWN］［RIGHT］［RVSON］F7＝DIS PLAY 4 ［RVSOFF］［5＂＂］［RVSON］F8＝LOAD 4［3＂＂］＂

CF
－14）PRINT＂［DOWN］［RIGHT］［5＂＂］［2VSON］［3＂ ＂］［UPARROW］＝SINGLE PRINT［7＂＂］［DOWN］＂IK
－15 GETA\＄：IFA\＄く＞＂＂THEN150）AO
－16r）GETA\＄：IFA\＄＝＂＂THEN16r）HK
－17r）$A=A S C(A \$)$ GE
－180 IFA＝92THENSYS492 199 ：GOTO4の EG
－19r）IFA＝95THENSYS492r，5：GOT04 ${ }^{\circ}$ ，GL
－2rر）IFA＝42THENA＝1：GOSUB54r：SYS49430：SYS4 9188：GOTO3ヶの，
－219 IFA＝64THEN33 $)$
－22（ $)$ IFA＝94THEN55 $)$
－23r）IFA＜133THEN16 ${ }^{\circ}$
－24（）IFA >14（JTHEN16 ${ }^{\circ}$
－25r）$A=A-132$ ：IFA＞4THENGOSUB46（）：GOTO4 $)$
－26r）GOSUB54r）：SYS4943r）：SYS49188
－27r）GETA\＄：IFA\＄く＞＂＇THEN27r
－280）GETA\＄：IFA\＄＝＂＂THEN28
－29r）SYS49188：GOTO4
－3rر）GETA\＄：A＝ASC（A\＄＋CHR\＄（ $(\jmath)): I F A=32 T H E N S Y$ S49188：G0T04「）
－310 IFA＜1330RA＞136THEN3ヶノノ
－32（ A＝A－132：GOSUB54（SYS4943（）：GOTO3（ر）
－33（）PRINT＂ENTER THE NUMBERS OF THE SCREE NS＂
－340）PRINT＂YOU WANT TO SWAP（1－4）．＂
－350 INPUT＂1ST SCREEN ：＂；A
－36r）INPUT＂2ND SCREEN ：＂；B
－37ヶ IFA＜10RA＞40RB＜10RB＞4THEN33（）
－38（）GOSUB54r）：SYS4943
－39r）POKE49153，16＊（2＋A＊2）：POKE49152，16＊（2 $+B * 2$ ）
－4ヶノノ POKE49155，224＋（B－1）＊4：POKE49154，224＋ （A－1）＊4
－41r）SYS4943rر
－42（）POKE49152，32：POKE49153，16＊（2＋B＊2）：P0 KE49155，224＋（A－1）＊4：POKE49154，4
－430）SYS4943（）
－440）$A \$=B \$(A): B \$(A)=B \$(B): B \$(B)=A \$$
－45（）GOTO4
－46（）REM GET FILENAME AND LOAD IT．
－47r） $\mathrm{A}=\mathrm{A}-4:$ ：PRINT＂ENTER FILENAME OF PIC＂A ＂：＂；：INPUTA\＄
－48 $)^{\prime}$ IFLEN（A\＄）>16 THEN47r，
－ 49 r B （ A$)=\mathrm{A} \$$
－5ヶرノ POKE49156，LEN（A\＄）：POKE49152，32：POKE4 9153，16＊$(2+A * 2)$
－52（）FORX＝1TOLEN（A\＄）：POKE49156＋X，ASC（MID\＄ （A\＄，X，1））：NEXT
－530）SYS49394：POKE49155，224＋（A－1）＊4：POKE4 9154，28：SYS49431）：RETURN
－545 POKE49153，32：POKE49152，16＊$(2+A * 2)$ ：PO
KE49154，224＋（A－1）＊4：POKE49155，4：RETURN MC
－550）INPUT＂ENTER NO．OF PICTURE TO PRINT （1－4）：＂；A
－ 555 PRINT＂PRESS P FOR POSITIVE，N FOR NE GATIVE＂
－56（）GETA\＄：IFA\＄＜＂N＂ORA\＄＞＂P＂THEN560）
－ $562 \mathrm{P}=49788:$ IFA $=$＂ P ＂THENP＝49792
－ 565 POKE49152，16＊（2＋A＊2）：SYSP：GOTO4の）
－57 I I＝49152
－58（）READ A：IF A＝256 THEN RETURN
－59（）POKE I，A：I＝I＋1：GOTO58 1

－61ノ DATA 32，126，197，169，76，44，169，96
－62の DATA 133，138，169，44，133，ケ，ケ，「

CL

NP

- 67r DATA 2，169，门，141，33，192，32，117
- 68）DATA 193，169，门，133，251，169，64，133
- 69r）DATA 252，169，厄，141，32，192，169，96
－7rرノ DATA 141，31，192，169，25，141，29，192
－710 DATA 32，121，192，169，ケ，133，251，169
－72（）DATA $128,133,252,169, 门, 141,32,192$
－73（ ）DATA $169,160,141,31,192,169,25,141$
－74（）DATA 29，192，32，121，192，32，45，194
－75（）DATA 96，32，197，193，32，178，192，165
－76（）DATA 251，72，165，252，72，173，32，192
－77ノ DATA $133,251,173,31,192,133,252,32$
－78（ ）DATA $178,192,165,251,141,32,192,165$
－79r）DATA $252,141,31,192,1$ 1 $4,133,252,1$ 1 14

－845 DATA $177,251,141,34,192,169,47,133$
－85（）DATA 1，88，14，34，192，62，21， 192

－ 87 IJ DATA 2 2 $9,223,24,165,251,1 ノ 5,8,133$
－880 DATA 251，165，252，105，厄，133，252， 162

－9rjr DATA $198,96,169,1,162,8,16(\jmath$, r）
－915 DATA 32，186，255，173，4，192，162，5

－93（）DATA 16r， $28,32,213,255,169,1,32$
－94（ 1 DATA $195,255,32,2$ ， $4,255,96,16$（），「）
－95（ ）DATA $132,251,174,1,192,134,252,132$
－96r DATA 253，174，r， $192,134,254,142,34$
－97ノ DATA $192,238,34,192,2$（ر）$, 192,32,2$（ر）
－98（）DATA 248,16 r），$ァ, 12$（ $, 169,46,133,1$
－99r J DATA $177,253,145,251,169,47,133,1$

－1r2 2 DATA 3，192，133，252，173，2，192，133 AB
－1ノ3ノ DATA 254，162，4，12r，169，4r，133，1 HP

0

－1rj6r DATA 133，1，88，96，（），169，4，17r）MB

－1rf8r DATA $189,255,32,192,255,176,4$ 「， 169 NE
－1 1ر9（J DATA 6，168，162，4，32，186，255，169 KI
－11ヶノ DATA 厅，32，189，255，32，192，255，176
－111ر DATA 22，169，5，168，162，4，32，186
－1120 DATA 255，169，厄，32，189，255，32，192
PB • 113（ DATA 255，176，4，32，176，193，24，96
AJ • 114（ ）DATA $162,6,32,2$（ $1,255,169,21,32$
HN •115（ DATA 21ヶ，255，169，13，32，21ヶ，255， 32
CD－116（）DATA $174,255,32,2(\jmath 4,255,162,4,32$
$\mathrm{OH} \cdot 117$（）DATA 2 （ $) 1,255,169,13,32,21 \rho, 255,32$
LH • 118（ DATA $174,255,32,2$（ $4,255,169$, ，, 141

II •121ノ DATA 21ヶ，255，32，174，255，32，2ヶ，4，255 DM
－ 122 （）DATA $162,5,32,2$（1）$, 255,162$, ，, 189
－123ヶ DATA 21，192，77，33，192，32，21ヶ，255
－124）DATA 232，224，8，2 1 ， $8,242,32,174,255$
－1250 DATA 162，4，32，251，255，174，116，193
－126r）DATA 24r，9，169，32，32，21ヶ，255，2ヶ2
－127r）DATA $76,16,194,238,116,193,169,254$
－128）DATA 32，215，255，32，174，255，32，2rر4
－129r）DATA 255，32，1（19，194，96，32，197，193
－130ヶ DATA 162，6，32，201，255，169，24，32
－131ヶ DATA 21ヶ，255，169，13，32，21ヶ，255， 32
－1320 DATA 174，255，32，2r，4，255，32，231，255
－133 J DATA 96，162，4，32，201，255，169，254
－134 DATA 32，21r，255，32，174，255，32，2r，4
－135）DATA 255，238，116，193，96，162，「ノ，189
－136 J DATA 21，192，221，123，194，2 1 （1），5，232
－137ノ DATA $224,8,2$ •8，243，96，162，， 189
－138（）DATA 21，192，157，123，194，232，224，8

－14rر）DATA 169，「，141，33，192，32，117，193
－1410 DATA 169, r，133，251，173，，192，133
－142丁 DATA 252，169，25，141，29，192，32，197
－ 143 rJ DATA $193,32,178,192,32,225,255,258$
－144「J DATA 3，76，169，194，2 5 ， $6,29,192,258$
－1450 DATA 237，32，45，194，96，256

EPSON／GEMINI VERSION

Program as listed is for Epson printers．See introduc－ tory article for changes required for Gemini printers． －5 PRINT＂［CLEAR］［4＂［DOWN］＂］［8＂＂］INITIALI ZING［3＂．＂］＂
－10）GOSUB54
－2ヶ）POKE5328ヶ，っ：POKE53281，っ：POKE646，15：PR INT＂［CLEAR］［DOWN］［DOWN］［14＂＂］QUAD－PRINT ＂
－30）DIMB\＄（4）：PRINT＂［DOWN］［9＂＂］（C） 1984 B Y．M．BEUTJER＂
－45） $\mathrm{IFB}=$（गTHENB＝1：GOT07（）
－50）PRINT＂［CLEAR］［DOWN］PIC 1 （UPPER LEFT ）：＂B\＄（1）：PRINT＂PIC 2 （UPPER RIGHT）： ＂B\＄（2）
－6r）PRINT＂PIC 3 （LOWER LEFT ）：＂B\＄（3）：P RINT＂PIC 4 （LOWER RIGHT）：＂B\＄（4）
－7r）PRINT＂［DOWN］［RIGHT］［RVSON］F1＝DISP LAY 1 ［RVSOFF］［5＂＂］［RVSON］F2＝LOAD 1 ［3＂＂］＂
－88）PRINT＂［DOWN］［RIGHT］［RVSON］F3＝DISP LAY 2 ［RVSOFF］［5＂＂］［RVSON］F4＝LOAD 2 ［3＂＂］＂
－90）PRINT＂［DOWN］［RIGHT］［RVSON］F5＝DISP LAY 3 ［RVSOFF］［5＂＂］［RVSON］F6＝LOAD 3 ［3＂＂］＂
－10ヶ PRINT＂［DOWN］［RIGHT］［RVSON］F7＝DIS PLAY 4 ［RVSOFF］［5＂＂］［RVSON］F8＝LOAD 4［3＂＂］＂
－115 PRINT＂［DOWN］［RIGHT］［RVSON］［EP］＝ DUMP POS［RVSOFF］［5＂＂］［RVSON］［BACKAR ROW］＝DUMP NEG＂
－120 PRINT＂［DOWN］［RIGHT］［5＂＂］［RVSON］［3＂

AH＂］＊＝QUICK VIEW SCREENS＂
OC
LN •13 1 PRINT＂［DOWN］［RIGHT］［5＂＂］［RVSON］［3＂
NN＂］＠＝SWAP SCREENS［7＂＂］［DOWN］＂GL
JJ •140 GETA\＄：IFA\＄く＞＂＂THEN14rj AL
FE •15（）GETA\＄：IFA\＄＝＂＇THEN15 $)$ HN
DI $\cdot 16{ }^{\prime}$ ）$A=A S C(A \$)$
GJ－17r IFA＝92THENSYS492（ر）：GOTO4 $)$
IE－180）IFA＝95THENSYS492（55：GOT04（）
GE
EG
MC－190 IFA $=42$ THENA $=1$ ：GOSUB52 5 ：SYS4949 ）：SYS4
FL 9188：GOTO28 ${ }^{\text {（ }}$
MJ－2rرs IFA＝64THEN31s
OJ－210 IFA＜133THEN150
GJ－22（J）IFA＞14 JJTHEN15（）
CP－23（）A＝A－132：IFA＞4THENGOSUB44 ；GOT04（）
PP－24r）GOSUB52（）：SYS4949 $)$ ：SYS49188
FF－25（）GETA\＄：IFA\＄く＞＂＇THEN25 $)$
JC－26r GETA\＄：IFA\＄＝＂＂THEN26r，
MO－27r SYS49188：GOT04 $)$
LH－28 $)$ GETA\＄：$A=A S C(A \$+C H R \$(r J)): I F A=32 T H E N S Y$
LB S49188：GOTO4 $)$
OM－29「 IFA＜1330RA＞136THEN28（J

IN－315 PRINT＂ENTER THE NUMBERS OF THE SCREE
NF NS＂
－320 PRINT＂YOU WANT TO SWAP（1－4）．＂
－330）INPUT＂1ST SCREEN ：＂；A
－345 INPUT＂2ND SCREEN ：＂；B
－350 IFA＜10RA＞40RB＜10RB＞4THEN31ノ
－36r）GOSUB52（5：SYS4949r）
－375 POKE49153，16＊（2＋A＊2）：POKE49152，16＊（2 $+B * 2$ ）
－38ヶ）POKE49155，224＋（B－1）＊4：POKE49154，224＋ （A－1）＊4
－390）SYS4949
－4رゥノ POKE49152，32：POKE49153，16＊（2＋B＊2）：PO
KE49155，224＋（A－1）＊4：POKE49154，4
－410）SYS4949
－42 A A $=\mathrm{B} \$(\mathrm{~A}): B \$(A)=B \$(B): B \$(B)=A \$$
－430）GOTO4r）
－445）REM GET FILENAME AND LOAD IT．
－450）A＝A－4：PRINT＂ENTER FILENAME OF PIC＂A ＂：＂；：INPUTA\＄
－46『 $\operatorname{IFLEN}(A \$)>16$ THEN45 $)$
－479）B $\$(A)=A \$$
－485）POKE49156，LEN（A\＄）：POKE49152，32：POKE4 9153，16＊（2＋A＊2）
－50رf）FORX＝1TOLEN（A\＄）：POKE49156＋X，ASC（MID\＄ （A\＄，X，1））：NEXT
－510）SYS49454：POKE49155，224＋（A－1）＊4：POKE4 9154，28：SYS49491）：RETURN
－52 5 POKE49153，32：POKE49152，16＊（2＋A＊2）：PO KE49154，224＋（A－1）＊4：POKE49155，4：RETURN
－535 REM POKE IN ML ROUTINE
－54）I＝49152
－550）READA：IFA＝256THEN565
－56 5 SUM＝SUM + A：POKE $I, A: I=I+1$ ：GOT055（ $)$ EE
DM
－ 565 IFSUM＜＞61145THENPRINT＂ERROR IN DATA STATEMENTS．＂：END：REM SUM＝61166 FOR 1今X BF

－ 566 RETURN

－58（J）DATA 32，126，197，169，76，44，169，96
－59「）DATA $133,138,169,44,133$, 厄，っ，ノ

－62丁 DATA 32，141，17，2「8，173，24，2「ر8，73
－63ノ DATA $8,141,24,2$ • $8,96,169,255,258$
－64）DATA 2，169，「，141，33，192，169，4
－650 DATA 162，4，16r），（，32，186，255，169

- 66！DATA 厄，32，189，255，32，192，255，162
- 675 DATA 4，32，2「1，255，169，「，133，251
－68゚ DATA $169,64,133,252,169$, ， 141,32
－69r）DATA $192,169,96,141,31,192,162,21$（）
－75， 5 DATA $32,176,193,32,215,255,169,25$
－715 DATA 141，29，192，32，163，192，169，（）
－729 DATA $133,251,169,128,133,252,169$ ，$)$
－730 DATA 141，32，192，169，16r，141，31，192
－745 DATA 169，25，141，29，192，32，163，192
－75！）DATA 169，27，32，21r，255，169，64，32
－76r）DATA 210，255，169，4，32，195，255，32
－775 DATA 254，255，96，162，2ヶr），32，176，193
－789 DATA 32，227，192，165，251，72，165，252
－790 DATA 72，173，32，192，133，251，173，31
－8「今 DATA 192，133，252，32，227，192，165，251
－815 DATA 141，32，192，165，252，141，31，192
－820 DATA $154,133,252,154,133,251,169,13$
－83（）DATA 32，21ヶ，255，32，225，255，2「8，5
－845 DATA 1 1J4， 1 （J） $4,76,144,192,256,29,192$
－85（）DATA 2「ر8，193，96，169，4r，141，3（），192

－875 DATA $1,177,251,141,34,192,169,47$
－88）DATA $133,1,88,14,34,192,62,21$
－895 DATA 192，232，224，8，2 $198,245,20 ヶ, 192$
－9rر）DATA $8,258,223,24,165,251,155,8$
－915 DATA $133,251,165,252,1$（J5，$), 133,252$
－92！DATA 162, r，189，21，192，77，33，192
－93ヶ DATA 32，21ヶ，255，232，224，8，2ヶ，8，242
－945 DATA 2 2 ，6，35，192，2（18，187，96，169，1

－96r）DATA 4，192，162，5，16r，192，32，189
－97r）DATA 255,169, r， 17 （, 16 r），28，32，213
－989 DATA 255，169，1，32，195，255，32，2 2 ， 4
－99r）DATA 255，96，16r，（r），132，251，174，1

－1r10 DATA 134，254，142，34，192，238，34，192

－1rJ3 J DATA $169,46,133,1,177,253,145,251$

－1050）DATA 23r，252，23r，254，165，254，2（55，34 AL
－156r）DATA 192，258，228，173，3，192，133，252
－107（）DATA $173,2,192,133,254,162,4,125$
－1（1）8 D DATA 169,4 （），133，1，177，253，145，251 OC

2
－11JJ DATA 2 2ر8，242，169，47，133，1，88，96
－111（J DATA $142,188,193,142,195,193,16$ r，っ DC
－112r）DATA 162, r， $232,189,2$ rf， $193,32,21$（）
－113r）DATA 255，138，217，2rر），193，48，243，96 DK
－ 1135 REM
－ 1136 REM
－ 1137 REM PRINTER CONTROL CODES
－ 1138 REM
－ 1139 REM
－1145 REM＊EPSON PRINTER MODULE＊LG
－1150 DATA 5，27，42，6，128，2，（ァ，ケ，ケっ，○ CJ

－119（）DATA 3，27，51，16，ノ，○，○，256

6510 SIMULATOR

FROM PAGE 77
－10 15 REM＊＊＊＊＊＊＊6515 SIMULATOR＊＊＊＊＊＊＊＊＊BD
－110 DATA ASL，BRK，CLC，CLD，CLI，CLV，DEX，DEY
，INX，INY，LSR，NOP ，PHA，PHP，PLA
－120 DATA PLP，ROL，ROR，RTI，RTS，SEC，SED，SEI
，TAX，TAY，TSX，TXA，TXS，TYA
－13（）DATA ADC，AND，CMP，CPX ，CPY ，EOR，LDA ，LDX ，LDY，ORA，SBC
－145）DATA ADC，AND，ASL ，BCC，BCS ，BEQ，BIT ，BMI ，BNE，BPL，BVC，BVS，CMP ，CPX，CPY
－15r）DATA DEC，EOR，INC，JMP，JSR，LDA，LDX，LDY ，LSR，ORA，ROL，ROR，SBC，STA，STX
－ 160 DATA STY，ASL，LSR，ROL，ROR
－17ヶ DATA ケ， $1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ BK
 110， 0111
－190 DATA $10 \rho 50,10251,1010,1011,1100,1101,1$ 11ヶ， 1111
－2rر）DIM HEX\＄（8），BIT\＄（8），H\＄（16），B\＄（16），TE MP\＄（2），BIT（8），N\＄（75）

 ］＂
－23（）$N=(r): V=(r): B=(): D=(r): I=(r): Z=(r): C=(r) \quad N N$
－240 IF RIGHT\＄（A\＄，1）＝＂＂THEN 30ヶ）：REM TYPE
A SPACE BETWEEN THE QUOTES
－250 FOR L＝1 TO 75：READ N\＄（L）：NEXT L MA
－26r）FOR L＝1 TO 16：READ H\＄（L）：NEXT L：FOR
L＝1 TO 16：READ B\＄（L）：NEXT L
－275 PRINT CHR $\$(147)$ ：REM CLEAR SCREEN
－280）PRINT＂N V－B D I Z C＂
＂•B；D；I；Z；C：PRINT NF
－29rر PRINT＂A：＂；AH\＄；＂［7＂＂］X：＂；XH\＄；＂［7＂
＂］Y：＂；YH\＄
KM
－295 PRINT AB\＄；＂［4＂＂］＂；XB\＄；＂［4＂＂］＂；YB\＄： PRINT
－30r） $\mathrm{B}=\mathrm{r}_{\mathrm{r}}: \mathrm{A} \$=$＂＂ l ：INPUT＂＂；A\＄：REM TYPE SPAC E BETWEEN SECOND PAIR OF QUOTES
－320 IF $\operatorname{LEN}(A \$)<3$ OR LEN（A\＄）>10 THEN 30 ro CD －33 ）IF LEN（A\＄）$=3$ THEN 42r）：REM GO TO IMPL IED－ADDRESS ROUTINES
－34r）IF MID\＄（A\＄，4，1）＜＞CHR\＄（32）THEN 3rر）AJ
－35r）IF RIGHT\＄（A\＄，1）＝CHR\＄（32）THEN 3rjr）PC
－36 GOTO 450）：REM GO TO IMMEDIATE－AND AB SOLUTE－ADDRESS ROUTINES
－375 REM＊＊＊ROUTINE TO CONVERT OP\＄\＆AD\＄ TO BINARY NUMBERS＊＊＊
－385）OD\＄＝OP\＄：GOSUB 113ヶ：FOR L＝1 TO 8：BIT\＄ （L）$=\mathrm{Z} \$$ ：NEXT L
－39r）FOR L＝1 TO 8：B1\＄（L）$=$ MID\＄（OB\＄，L，1）：NE XT L
－4rof FOR L＝1 TO 8：B2\＄（L）$=$ MID $\$(A B \$, L, 1): N E$ XT L：RETURN

OI
－415 REM＊＊＊IMPLIED－ADDRESSING ROUTINES ＊＊＊
－420）FOR L＝1 TO 29：IF A\＄＝N\＄（L）THEN OC $\$=A$ \＄：OC＝L：GOTO 135r，
－430）NEXT L：GOTO 3rر）
－445 REM＊＊＊IMMEDIATE，ABSOLUTE \＆ACCUMU LATOR ADDRESS MODES＊＊＊
－45r，OC $\$=\operatorname{LEFT} \$(A \$, 3): O P \$=M I D \$(A \$, 5) \quad$ NC
－46r）IF LEFT\＄（OP\＄，1）＝＂\＃＂AND MID\＄（OP\＄，2，1 ）＝＂\＄＂THEN FLAG\＄＝＂AH＂：GOTO 530 KH
－47r）IF LEFT\＄（OP\＄，1）＝＂\＃＂THEN FLAG\＄＝＂AD＂： GOTO 62r
－48 ${ }^{\circ}$ ）IF LEFT\＄（OP\＄，1）＝＂\＄＂THEN FLAG\＄＝＂IH＂： GOTO 69r，
－49r）IF OP\＄＝＂A＂THEN 79rر
－5\％）IF IF LEFT\＄（OP\＄，1）＜＂厅ノ＂AND LEFT\＄（OP\＄，1） $>" 9$＂THEN 3rر）：REM TRY AGAIN

JO
－515 FLAG $=$＝＂ID＂：GOTO 84r）CB
－52 \int REM＊＊＊HEX OPERAND，ABSOLUTE ADDRES S＊＊＊
－53ヶ OP\＄＝MID $\$(0 \mathrm{P} \$, 3)$
－545 FOR L＝30 TO 4r）：IF OC $\$=\mathrm{N} \$(\mathrm{~L})$ THEN OC＝ L：GOTO 56r）
－55r）NEXT L：GOTO 3r，
－56r）IF LEN（OP\＄）＞2 THEN 3rر）
FI
－570）FOR L＝1 TO LEN（OP\＄）：X\＄＝MID\＄（OP\＄，L， 1 ）：IF X\＄＜Z\＄OR X\＄＞＂F＂THEN 3（r）
－580）IF X\＄＞＂9＂AND X\＄＜＂A＂THEN 30ヶر
－590）IF LEN（OP\＄）$=1$ THEN OP\＄＝Z\＄＋OP\＄
－6rf， $0 \mathrm{H} \$=0 \mathrm{P} \$$ ：GOSUB 1535 ：OP $\$=0 \mathrm{D} \$$ ：GOTO 67r，IN
－615 REM＊＊＊DECIMAL OPERAND，ABSOLUTE AD DRESSING＊＊＊
－62r）OP\＄＝MID\＄（OP\＄，2）
－630）FOR L＝3（JTO 4r）：IF OC $\$=\mathrm{N} \$(\mathrm{~L})$ THEN OC＝L ：GOTO 65「）
－64r）NEXT L：GOTO 3rj）
－650）IF VAL（OP\＄）>255 THEN 3rر）
CH
－660 FOR L＝1 TO LEN（OP\＄）：X $\$=$ MID $\$(0 P \$, L, 1$ ）：IFASC（X\＄）＜48 OR ASC（X\＄）＞57 THEN 42の）
－675 OC＝OC－29：GOTO 142「）
－685）REM＊＊＊HEX OPERAND，IMMEDIATE ADDRE SS＊＊＊
－69f）OP\＄＝MID\＄（OP\＄，2）
－7rر）FOR L＝41 TO 71：IF OC\＄＝N\＄（L）THEN OC ＝L：GOT072r
－715 NEXT L：GOTO 3rر）
CH
－720 IF LEN（OP\＄）>4 THEN 30 KF K
－730）FOR L＝1 TO LEN（OP\＄）：X\＄＝MID\＄（OP\＄，L，1）
：IF X\＄＜Z\＄OR X\＄＞＂F＂THEN 3ر）
PC
－745 IF X\＄＞＂9＂AND X\＄＜＂A＂THEN 30ر
－75r）NEXT L
－760） $\mathrm{OH} \$=0 \mathrm{P} \$:$ GOSUB 1030 ： $0 \mathrm{P} \$=0 \mathrm{D} \$$ ：OP $\$=$ STR $\$($ PEEK（VAL（OP\＄）））
－775 OC＝0C－4の：GOTO 143「） IA
－781）REM＊＊＊ACCUMULATOR ADDRESSING＊＊＊ EG
－790）OP\＄＝＂A＂ AL
－8rر）FOR L＝72 T075：IF OC $\$=\mathrm{N} \$(\mathrm{~L})$ THEN OC＝L －71：GOTO 82の
－815 NEXT L：GOTO 35ر） CH
－82ヶ ON OC GOTO 151ヶ，176r），179ヶ，181ヶ IL
－83 ${ }^{\circ}$ REM＊＊＊DECIMAL OPERAND，IMMEDIATE A DDRESS＊＊ JC
－845）IF VAL（OP\＄）＞65535 THEN 3 3ر） JD
－86r）FOR L＝1 TO LEN（OP\＄）：X\＄＝MID\＄（OP\＄，L，1）：IF ASC（X\＄）＜48 OR ASC（X\＄）＞57 THEN 3rر）EI－870）FOR L＝41 TO 71：IF OC $\$=\mathrm{N} \$(\mathrm{~L})$ THEN OC＝L：GOTO 89f，CP
－889）NEXT L：GOTO 3rر） CH
－890）OP\＄＝STR\＄（PEEK（VAL（OP\＄））） IN
－9r（5）OC＝OC－4r）：GOTO 1430 IA
－915 REM＊＊＊DECIMAL－TO－HEXADECIMAL CONVE RSION＊＊＊ JN
－929 FOR L＝1 TO 4：HEX\＄（L）＝＂＂：NEXT L KJ
－930）FOR L＝1 TO 5：T\＄＝RIGHT\＄（OD\＄，L）：NEXT L HO－945）NR＝VAL（OD\＄）：X＝4KF
－950）TMP＝NR：NR＝INT（NR／16）：TMP＝TMP－NR＊16 DM
－960）IF TMP＜10）THEN HEX\＄（X）＝RIGHT\＄（STR\＄（TMP），1）：GOTO 98（BN
－979）HEX $\$(\mathrm{X})=$ CHR $\$(T M P-1 \rho+A S C(" A "))$－985）IF NRく〉（）THEN X＝X－1：GOTO 950）－990）OH\＄＝HEX\＄（1）+ HEX\＄（2）＋HEX\＄（3）＋HEX\＄（4）PN－10rj）IF LEN $(0 \mathrm{OH} \$)=1$ THEN $\mathrm{OH} \$=2 \$+\mathrm{OH} \$$BP
－1010 RETURN－1ヶ2の REM＊＊＊HEXADECIMAL－TO－DECIMAL CONVERSION＊＊＊GB
－1030）NR＝r）：FOR L＝1 TO LEN（OH\＄）：HEX\＄（L）＝MID $\$(0 H \$, L, 1)$FF
－104の IF HEX\＄（L）＜＝＂9＂THEN NR＝NR＊16＋VAL（HEX\＄（L））：GOTO 1560GO
－1050 NR＝NR＊16＋ASC（HEX\＄（L））－ASC（＂A＂）＋10） CE
－106！）NEXT L：OD\＄＝STR\＄（NR）：RETURN OK
1575）REM＊＊＊BINARY－TO－DECIMAL CONVERSION＊＊＊FC
－1ر80）FOR L＝8 TO 1 STEP $-1: B \$(L)=M I D \$(0 B \$$，L，1）：NEXT L－1090）FOR L＝1 TO 8：BIT（L）$=\operatorname{VAL}(B \$(L)):$ NEXT$\mathrm{L}: \mathrm{OD}=\mathrm{C}$ ： $\mathrm{NR}=256$NL
－110）FOR $\mathrm{L}=1 \mathrm{~T} 08: \mathrm{NR}=\mathrm{NR} / 2: O \mathrm{D}=\mathrm{OD}+\mathrm{BIT}(\mathrm{L}) * \mathrm{~N}$ R：NEXT L GF
EA
MG $\cdot 1120$ REM＊＊＊DECIMAL－TO－BINARY CONVERSIO
－1130 OD＝VAL（OP\＄）：FOR L＝8 TO 1 STEP $-1: T M$ $\mathrm{P}=0 \mathrm{D} / 2$ ： $\mathrm{NR}=\mathrm{TMP}-\mathrm{INT}(\mathrm{TMP})$
－1140）IF NR＝（ر）THEN BT\＄（L）$=2 \$$ ：GOTO 116 1
－1150）BT\＄（L）＝＂1＂
－116r）OD＝INT（TMP）：NEXT L
－117r）OB\＄＝BT\＄（1）＋BT\＄（2）＋BT\＄（3）＋BT\＄（4）＋BT\＄ （5）$+\mathrm{BT} \$(6)+\mathrm{BT} \$(7)+\mathrm{BT} \$(8):$ RETURN
－1180 REM＊＊＊HEX－TO－BINARY CONVERSION＊＊ ＊
－1190）HEX\＄（1）＝＂＂：HEX\＄（2）＝＂＂：FOR L＝1 TOLEN （OH\＄）：HEX\＄（L）＝MID\＄（OH\＄，L，1）
－12rرf NEXT L：IF HEX\＄（2）＝＂＂THEN HEX\＄（2）＝H EX\＄（1）：HEX\＄（1）＝Z\＄
－121）FOR L＝1 TO 16：IF HEX\＄（1）＝H\＄（L）THEN BIT\＄（1）＝B\＄（L）
－1229 NEXT L：FOR L＝1 TO 16：IF HEX\＄（2）$=\mathrm{H} \$($
L）THEN BIT\＄（2）$=\mathrm{B} \$(\mathrm{~L})$
－124r）NEXT L：OB\＄＝BIT\＄（1）＋BIT\＄（2）：PRINT：RE TURN
－126（J）REM＊＊＊BINARY－TO－HEX CONVERSION＊＊ ＊
－127r）FOR L＝1 TO 8：BIT\＄（L）$=$ MID\＄（OB\＄，L， 1$)$ ： NEXT L
－128（ $\mathrm{BIT}=\mathrm{BIT} \$(1)+\mathrm{BIT} \$(2)+\mathrm{BIT} \$(3)+\mathrm{BIT} \$(4$ $)+\mathrm{BIT} \$(5)+\mathrm{BIT} \$(6)+\mathrm{BIT} \$(7)+\mathrm{BIT} \(8)
－129r）T1\＄＝LEFT\＄（BIT\＄，4）：T2\＄＝RIGHT\＄（BIT\＄， 4 ）：FOR L＝1 TO 16
－13rرァ IF T1\＄＝B\＄（L）THEN HEX\＄（1）＝H\＄（L）IL
－1310 NEXT L：FOR L＝1 TO $16: I F T 2 \$=B \$(L) T$ HEN HEX $\$(2)=\mathrm{H} \$(\mathrm{~L}) \quad$ NK
－132 \circlearrowleft NEXT L：IF HEX\＄（1）$=$＂＇＂THEN HEX $\$(1)=2$ \＄
－1330 0H\＄＝HEX\＄（1）＋HEX\＄（2）：RETURN

F

－134（）REM＊＊＊ON／GOTO DATA＊＊＊

－136（ $\mathrm{NR}=0 \mathrm{C}-1$ 1ヶ：ON NR GOTO 176（），178（），178 ）， 178ヶ，178ヶ，178ヶ，179（），181ヶ，183ヶ，184ヶ）KG
 188ヶ，19ヶヶァ，192ヶ，193ヶ，194ヶ，195ヶ，184ヶ）C

－143 ON OC GOTO 197（ر，235（），325（ر，178（），178（）

－1440 NR＝OC－1ヶ：ON NR GOTO 178ヶ，178（1），325（）， 225（），232（），326（），239（），329（），178（），178（）
－1460）NR＝NR－1ヶ：ON NR GOTO 245（），255（），265（）， 332ヶ，275（），334（），336（），281（），178（），178（）
－148（）NR＝NR－1r）：ON NR GOTO 178 $)$ ，339 ر
－15rر）REM＊＊＊IMPLIED－ADDRESS OP－CODE ROU TINES
－151ر）$C=V A L(\operatorname{LEFT} \$(A B \$, 1)): A B \$=\operatorname{MID} \$(A B \$, 2)$ ＋Z\＄：REM＊＊＊ASL＊＊＊
－152（ OB\＄$=\mathrm{AB} \$$ ：GOSUB 127r）： $\mathrm{AH} \$=0 \mathrm{H} \$: \mathrm{OP} \$=0 \mathrm{H} \$$ ： GOSUB 1ヶ3（）： $\mathrm{N}=$（）： $\mathrm{Z}=$（）

DNLE

DG－153（）IF LEFT\＄（OB\＄，1）＝＂ 1 ＂THEN $N=1$
－154r）IF VAL（OD\＄）＝rJTHEN Z＝1
－155（）GOTO 339 $)$
－156（）B＝1：GOTO 339r）：REM＊＊＊BRK＊＊＊
－157r）C＝「ノ：GOTO 339 ）：REM＊＊＊CLC＊＊＊

－159（）I＝（）：GOTO 339（）：REM＊＊＊CLI＊＊＊

IL • 174（，YD＝YD＋1：IF YD >255 THEN YD＝ 1 ）
－175 f GOTO 167rر
CO
FJ
176r CovalB\＄，7）：REM＊＊＊LSR＊＊＊00
－177r GOTO 152 5 FN
CO

－178（1）GOTO 339rر：REM＊＊＊NOP，PHA，PHP，PLA A
－16rر）V＝rノ：GOTO 339r」：REM＊＊＊CLV＊＊＊＊
－161ノ OH\＄＝XH\＄：GOSUB 1ノ30）：XD＝VAL（OD\＄）：REM ＊＊＊DEX＊＊
－162の XD＝XD－1：IF XD（ r ）THEN XD＝255 JO
 119（）：XB\＄＝0B\＄

BF
－164 T）TMP＝XD：GOSUB 341r：GOTO 28 ${ }^{\prime}$ ，EF
－165 $)$ OH\＄＝YH\＄：GOSUB 1rر3r）：YD＝VAL（OD $\$$ ）：REM ＊＊＊DEY＊＊＊

00
－1660 YD＝YD－1：IF YD＜ 1 ，THEN YD＝255 BC
－167ノ OD\＄＝STR\＄（YD）：GOSUB 92 1 ：YH\＄＝0H\＄：GOSU B $119 \mathrm{I}_{\mathrm{\prime}}: \mathrm{YB} \$=0 \mathrm{~B} \$$

KK

－168（）TMP＝YD：GOSUB 341（）：GOTO 280 FE
 ＊＊＊INX＊＊＊
－17rرr）OD\＄＝STR\＄（XD）：GOSUB 92r）：XH\＄＝0H\＄：GOSU
B 1190： $\mathrm{XB} \$=0 \mathrm{~B} \$$
－171ヶ XD＝XD＋1：IF XD >255 THEN XD＝ 1 ）
－172r GOTO 163rر
BF

FN
－1730）OH\＄＝YH\＄：GOSUB 1ر3（ر：YD＝VAL（OD\＄）：REM ＊＊＊INY＊＊＊ ND PLP＊＊＊

OP

－179rر GOTO 334rر：REM＊＊＊ROL＊＊＊AC
－1810 GOTO 336ヶ：REM＊＊＊ROR＊＊＊EC
－183（） $\mathrm{N}=(): \mathrm{V}=(): \mathrm{B}=(): \mathrm{D}=(\mathrm{r}): \mathrm{I}=(\mathrm{r}): \mathrm{Z}=(): \mathrm{C}=():$ GOTO 28
r）REM＊＊＊RTI＊＊＊
ND
－1840 GOT 339r）：REM＊＊＊RTS＊＊＊LG
－185 C＝1：GOTO 339（）：REM＊＊＊SEC＊＊＊ID
－186 18 D＝1：GOTO 339r；REM＊＊＊SED＊＊＊HG
－187r I＝1：GOTO 339r）：REM＊＊＊SEI＊＊＊GP
－1880）XH\＄＝AH\＄：XB\＄＝AB\＄：OP\＄＝AH\＄：GOSUB 1ノ3（）：
TMP＝VAL（OD\＄）：REM＊＊＊TAX＊＊＊
CG
－189rر GOSUB 341ヶ：GOTO 339rر PI
－19rرл YH\＄＝AH\＄：YB\＄＝AB\＄：OP\＄＝AH\＄：GOSUB 1ノ3（）：
TMP＝VAL（OD\＄）：REM＊＊＊TAY＊＊＊
CN
－1910 GOSUB 341ヶ：GOTO 339rر PI
－192の XH\＄＝＂ヶヶノ＂：XB\＄＝＂［8＂（ヶ＂］＂：GOSUB 341ヶ）：G0
TO 339r：REM＊＊＊TSX＊＊＊LN
－193（）AH\＄＝XH\＄：AB\＄＝XB\＄：GOTO 152（）：REM＊＊＊T XA＊＊＊

AO
－194 GOTO 339（）：REM＊＊＊TXS＊＊＊DL
－1950）AH\＄＝YH\＄：AB\＄＝YB\＄：GOTO 152（）：REM＊＊＊T YA＊＊＊HP
－1960 REM＊＊＊ABSOLUTE－ADDRESS OPERANDS＊ ＊＊

FI
－1975 IF D THEN 295 ）：REM＊＊＊ADC＊＊＊
－198f OP＝VAL（OP\＄）：TMP\＄＝AB\＄
－199r）GOSUB 113r）：PLUS\＄＝0B\＄
－20رл） $\mathrm{OH} \$=\mathrm{AH} \$:$ GOSUB 1 （ر） 3 ）$: \mathrm{AD} \$=0 \mathrm{D} \$$ ： $\mathrm{AD}=\mathrm{VAL}(\mathrm{A}$ D\＄）：TMP＝AD
－2010 $\mathrm{AD}=\mathrm{AD}+\mathrm{OP}+\mathrm{C}: \mathrm{C}=$ 厄）：IF AD＞255 THEN GOSUB 2 2 ر9 1
－2020 $\mathrm{AD} \$=\mathrm{STR} \$(\mathrm{AD}): 0 \mathrm{D} \$=\mathrm{AD} \$:$ GOSUB92r）$: \mathrm{AH} \$=0$ H\＄
－2rر3（）GOSUB 1190）：AB\＄＝0B\＄

－ 2 ro6r $V=$＝
－2 2 ر75 IF LEFT\＄（TMP $\$, 1$ ）$=$ LEFT $\$($ PLUS $\$, 1)$ AND LEFT\＄（TMP\＄，1）＜＞LEFT\＄（AB\＄，1）THEN $V=1$

－2rر90） $\mathrm{C}=1:$ AD＝AD－256：RETURN
－215ر）GOSUB 38（）：REM＊＊＊AND＊＊＊
－2115 FOR L＝1 TO 8：BIT\＄（L）＝＂厅＂：NEXT L
－2120 FOR L＝1 TO 8：IF B1\＄（L）＝＂1＂AND B2\＄（ $\mathrm{L})=" 1$＂THEN BIT\＄（L）$=$＂ 1 ＂
－2130 NEXT L
－2145）AB\＄＝BIT\＄（1）＋BIT\＄（2）＋BIT\＄（3）＋BIT\＄（4） + BIT\＄（5）+ BIT\＄（6）+ BIT\＄（7）+ BIT\＄（8）
－2150）OB\＄＝AB\＄：GOSUB 127r）： $\mathrm{AH} \$=0 \mathrm{O} \$$
－216r）GOSUB 1r）3r）：TMP＝VAL（OD\＄）：GOSUB341r）：P RINT：GOTO 289，
－217r） $\mathrm{OH} \$=\mathrm{AH} \$$ ： $\operatorname{GOSUB} 1 \mathrm{r} 3 \mathrm{r})$ ： $\mathrm{AD} \$=0 \mathrm{D} \$$ ： $\mathrm{AD}=\mathrm{VAL}(\mathrm{A}$ D\＄）：OP＝VAL（OP\＄）：REM＊＊＊CMP＊＊＊
－218（） $\mathrm{Z}=$ r）：IF $\mathrm{AD}=0 \mathrm{P}$ THEN $\mathrm{Z}=1$
－219r）N＝r）：IF OP＞AD THEN N＝1
－2220 $\mathrm{C}=$（）：IF $\quad \mathrm{AD}>\mathrm{OP}$ OR $\mathrm{AD}=0 \mathrm{P}$ THEN $\mathrm{C}=1$
－224r GOTO 339r）
－225r） $\mathrm{OH} \$=\mathrm{XH} \$$ ：GOSUB 1 （ر）3 ）：XD $\$=0 \mathrm{D} \$$ ：XD＝VAL（X D\＄）：OP＝VAL（OP\＄）：REM＊＊＊CPX＊＊＊
－226r） $\mathrm{Z}=$ r）：IF XD＝OP THEN $\mathrm{Z}=1$
－2280 $\mathrm{N}=$（ $)$ ：IF OP $>$ XD THEN $\mathrm{N}=1$
－230） $\mathrm{C}=\mathrm{r}$ ：$:$ IF XD $>$ OP OR XD＝OP THEN $\mathrm{C}=1$
－231r）GOTO 338r）
 D $\$$ ）：OP＝VAL（OP\＄）：REM＊＊＊CPY＊＊＊
－233（） $\mathrm{Z}=$（ $):$ IF YD $=0 \mathrm{P}$ THEN $\mathrm{Z}=1$
－234（ $\mathrm{N}=$ r）：IF OP＞YD THEN N＝1
－235（ $\mathrm{C}=$（）：IF YD $>$ OP OR YD＝OP THEN $\mathrm{C}=1$
－2385 GOTO 338
－239r）GOSUB 38（）：REM＊＊＊EOR＊＊＊
－24ر）FOR L＝1 TO 8：BIT $\$(\mathrm{~L})=\mathrm{Z} \$$ ：NEXT L
－2410 FOR L＝1 TO 8：IF B1\＄（L）$=$＂ 1 ＂AND B2\＄（ L）$=$＂ 1 ＂THEN BIT\＄（L）＝＂rノ＂：GOTO 244r） －242r）IF B1 $\$(L)=" 1$＂OR B2 $\$(L)=" 1 "$ THEN BI T\＄（L）$=$＂ 1 ＂
－2440 NEXT L：GOTO 214 ${ }^{\circ}$
－245（）IF D＝1 THEN 248 ）：REM＊＊＊LDA＊＊＊
－2460）OD\＄＝OP\＄：GOSUB 92（）：AH\＄$=0 H \$$ ：GOSUB 119万： $\mathrm{AB} \$=0 \mathrm{~B} \$$
－2475 TMP＝VAL（OP\＄）：GOSUB 3415：GOTO 280）
－ 248 f 1 IF FLAG $\$=" A D$＂AND VAL（OP\＄）$>99$ THEN 30,5

NJ－249 ，IF FLAG\＄＜＞＂AD＂THEN OD\＄＝OP\＄：GOSUB 9 OM 2rر：AH\＄＝0H\＄：GOTO 253 ）
HA－25fر）IF LEN（OP $\$$ ）$=1$ THEN OP $\$=2 \$+0 \mathrm{P} \$$
－2515 AHS $=0 \mathrm{P} \$:$ OH $\$=$ AH $\$$ ：GOTO 253 $)$
－2525 OD $\$=0 \mathrm{P} \$$ ：GOSUB 92 ）$: \mathrm{AH} \$=0 \mathrm{H} \$$
－2535 GOSUB 1190）：AB\＄＝0B\＄
－2545 TMP＝VAL（OP\＄）：GOSUB 3410）：GOTO 2470）JN
－255 f）IF D＝1 THEN 258（）：REM＊＊＊LDX＊＊＊MM
－256r）OD\＄＝OP\＄：GOSUB 92 1 ： $\mathrm{XH} \$=0 \mathrm{H} \$$ ：GOSUB 119
斤： $\mathrm{XB} \$=0 \mathrm{~B} \$$
NO
NO－2575 TMP＝VAL（OP\＄）：GOSUB 341 5 ：GOTO 285 HA
FC－258 ）IF FLAG $\$=$＂AD＂AND VAL（OP\＄）$>99$ THEN
DL 30 r
JD
－259r）IF FLAG\＄＜＞＂AD＂THEN OD\＄＝OP\＄：GOSUB 9
25： $\mathrm{XH} \$=0 \mathrm{H} \$$ ：GOTO 2630
－ 26 rر） IF LEN $(O P \$)=1$ THEN OP $\$=Z \$+O P \$$
－2615 $\mathrm{XH} \$=0 \mathrm{P} \$: 0 \mathrm{H} \$=\mathrm{XH} \$$ ：GOTO 263r）
－2625 OD\＄＝0P\＄：GOSUB 92ヶ： $\mathrm{XH} \$=0 \mathrm{H} \$$
－2630 GOSUB 119r）：XB\＄＝0B\＄
－2645 TMP＝VAL（OP\＄）•GOSUB 3410．GOTO 2570 JK
－265 f）IF D＝1 THEN 268（）：REM＊＊＊LDX＊＊＊OJ
MO－266r，OD\＄＝OP\＄：GOSUB 92r）：YH\＄＝0H\＄：GOSUB 119万： $\mathrm{YB} \$=0 \mathrm{~B} \$$

JG

LC－2675 TMP＝VAL（OP\＄）：GOSUB 3410：GOTO 285）HA
LN－268＇）IF FLAG $\$=$＂AD＂AND VAL（OP\＄）$>99$ THEN 3505

JD
KC－2690，IF FLAG\＄＜＞＂AD＂THEN OD\＄＝OP\＄：GOSUB 9 25： $\mathrm{YH} \$=0 \mathrm{H} \$$ ：GOTO 273）

NN $\cdot 2710$ YH\＄$=0 \mathrm{P} \$:$ OH\＄$=\mathrm{YH} \$:$ GOTO 273 $)$
NA $\cdot 272)^{\circ}$ OD $\$=0 \mathrm{P} \$$ ：GOSUB 925 ： $\mathrm{XH} \$=0 \mathrm{H} \$$
CN－2730）GOSUB 1190）：YB $\$=0 \mathrm{~B} \$$
PN
JH
EL

FK－2740，TMP＝VAL（OP\＄）：GOSUB 3410）：GOTO 2670 JP
－275（）GOSUB 38 ）：REM＊＊＊ORA＊＊＊KE
CG－276r）FOR L＝1 T08：IF B1\＄（L）$=$＂ 1 ＂OR B2\＄（L）
LK $=$＂ 1 ＂THEN BIT\＄（L）$=$＂ $1 "$
KC
NL－2775 NEXT L：AB\＄$=$＂＇＂：FOR L＝1 TO 8： $\mathrm{AB} \$=\mathrm{AB} \$+$
GF BIT\＄（L）：NEXT L
GD－279（ OB\＄＝AB\＄：GOSUB 127r）：AH\＄＝OH\＄LN
－280ر）GOSUB 1ヶ30）：TMP＝VAL（0D\＄）：GOSUB341ヶ）：G OT0 3390

FB
NF－2810 IF D THEN 3rر6r ：REM＊＊＊SBC＊＊＊NI
$\mathrm{NI} \cdot 2820 \mathrm{OP}=\mathrm{VAL}(\mathrm{OP} \$): \mathrm{TMP} \$=\mathrm{AB} \$ \quad \mathrm{OM}$
FN－283 ）GOSUB 113 ）：MI\＄＝OB\＄LJ
GD－284 ） $0 H \$=A H \$: G O S U B 1 r) 3(): A D \$=O D \$: A D=V A L(A$
OG D\＄）：TMP＝AD
PJ－285（）$A D=A D-O P: I F(=$（）THEN $A D=A D-1$ IN
－2860 IF $A D$（ （）THEN AD＝256＋AD：C＝ ，AN
K0－2870） $\mathrm{AD} \$=\mathrm{STR} \$(\mathrm{AD}): 0 \mathrm{D} \$=\mathrm{AD} \$:$ GOSUB 920）： $\mathrm{AH} \$=$ 0H\＄

BL
FE－288 ${ }^{\prime}$ ，GOSUB 1190； $\mathrm{AB} \$=0 \mathrm{~B} \$ \mathrm{JK}$
FP－2890 $\mathrm{N}=$（）：IF AD＞127 THEN $\mathrm{N}=1$ NO
LG－29rر） $\mathrm{Z}=$（ $:$ ：IF $\mathrm{AD}=$（）THEN $\mathrm{Z}=1$ FC
－2910 $\mathrm{V}=$（ $):$ IF LEFT $\$(\mathrm{TMP} \$, 1)=\mathrm{LEFT} \$(\mathrm{MI} \$, 1) \mathrm{T}$ HEN 2930
HA－2920 IF LEFT\＄（AB\＄，1）＝LEFT\＄（TMP\＄，1）THEN $\mathrm{V}=1$

HI
JD－2930 OD\＄＝AD\＄：GOSUB 1 1ر3（）：AH\＄＝0H\＄：GOTO 285）DC

TO ENTEP PCPEFN MAGIC You must use the Flankspeed program．See the instructions and listing
 TO ENTER SCREEN MAG／G．．．for Flankspeed on page 86.

－2945 REM＊＊＊BCD ADDITION ROUTINE＊＊＊AC

－296r）IF LEFT\＄（AH\＄，1）＞＂9＂OR RIGHT\＄（AH\＄，1 ）${ }^{\prime \prime} 9$＂THEN 3（J3r）
－2975 AD＝VAL（AH\＄）
－2989 OP＝VAL（OP\＄）：AD＝AD＋OP＋C：C＝r）
－2990）GOSUB 1 1 （3） 5 ：TMP＝VAL（OD\＄）：GOSUB 341ヶ）
－3rjors IF AD＞99 THEN GOSUB 3r，4r，
－3010，AH\＄＝STR\＄（AD）：IF LEN（AH\＄）＝1 THEN AH\＄ ＝Z\＄＋AH\＄
－302の $\mathrm{OH} \$=\mathrm{AH} \$:$ GOSUB 1190）：AB\＄＝0B\＄：GOTO 280）ID
 D\＄）：GOTO 2985
－3rر4） $\mathrm{C}=1: \mathrm{AD}=\mathrm{AD}-10 \mathrm{r}):$ RETURN
－3055 REM＊＊＊BCD SUBTRACTION ROUTINE＊＊＊
－3060 IF FLAG\＄〈＞＂AD＂THEN 282 ${ }^{\circ}$
－307）IF LEFT\＄（AH\＄，1）＞＂9＂OR RIGHT\＄（AH\＄，1 ）${ }^{\prime \prime} 9$＂THEN 312 1
－3080） $\mathrm{AD}=\mathrm{VAL}(\mathrm{AH} \$): 0 \mathrm{P}=\mathrm{VAL}(\mathrm{OP} \$): \mathrm{AD}=\mathrm{AD}-0 \mathrm{P}: \mathrm{IF}$ C＝r）THEN AD＝AD－1
－310ر）IF ADく（ THEN GOSUB 313r）
－311r GOTO 301r
－3120） $0 \mathrm{H} \$=\mathrm{AH} \$:$ GOSUB 1 1ر3 $): \mathrm{AD} \$=0 \mathrm{D} \$$ ： $\mathrm{AD}=\mathrm{VAL}(\mathrm{A}$ D\＄）：GOTO 3（ر） 9 （）

－314r）REM＊＊＊IMMEDIATE－ADDRESS ROUTINES ＊＊＊

AN
－315 3 OD $\$=0 \mathrm{P} \$$ ：GOSUB 92 $)$ ：GOSUB 1190）：REM＊＊ ＊ASL＊＊＊

CL
－316r） $\mathrm{C}=\mathrm{VAL}(\mathrm{LEFT} \$(0 \mathrm{~B} \$, 1)): 0 \mathrm{~B} \$=\mathrm{MID} \$(0 \mathrm{~B} \$, 2)$ ＋Z\＄

AD
－317ヶ）GOSUB 127r）：GOSUB 1 1 J3 5 ： $\mathrm{X}=\mathrm{VAL}(0 \mathrm{D} \$): \mathrm{N}=$「）：IF $X<$（ $)$ THEN $N=1$
－318（） $\mathrm{Z}=$（ $:$ ：IF $\mathrm{X}=$（）THEN $\mathrm{Z}=1$
－319f GOTO 28r）
 ＊＊＊
－3215）GOSUB 113（）： $\mathrm{N}=\mathrm{VAL}(\operatorname{LEFT} \$(0 B \$, 1)): V=V A$ L（MID\＄（0B\＄，2，1））
－322r）GOSUB 4（ r ）： $\mathrm{Z}=1$ ：FOR L＝1 T0 8

－324r）NEXT L：GOTO 339r）
－3255 GOTO 2170
－3260 $\mathrm{OP}=\mathrm{VAL}(\mathrm{OP} \$): O \mathrm{P}=0 \mathrm{P}-1: I F \mathrm{OP}\langle\bigcirc$ THEN N ： REM＊＊＊DEC＊＊＊
－327r）IF OP＝r，THEN $\mathrm{Z}=1$
AC
－3280 GOTO 339r）
FK
－3290） $\mathrm{OP}=\mathrm{VAL}(\mathrm{OP} \$): \mathrm{OP}=0 \mathrm{P}+1: \mathrm{IF} \mathrm{OP}\langle\rho$ ）THEN $\mathrm{N}=$ 1：REM＊＊＊INC＊＊＊
－335） 5 IF $O P=Z$ THEN $\mathrm{Z}=1$
CA
－3310 GOTO 339r）
FK
－332 OD $\$=0 \mathrm{P} \$$ ：GOSUB 92ヶ：GOSUB 1190）EC
 B\＄，7）：GOTO 317r

DK
－334r）IF C＝1 THEN J\＄＝＂1＂：REM＊＊＊ROL＊＊＊GF
－ 3341 IF C＝rノ THEN J\＄＝＂ノ＂
PA
－3342 C＝VAL（LEFT\＄（AB\＄，1））：AB\＄＝RIGHT\＄（AB\＄， 7）$+\mathrm{J} \$$
－335（）OB\＄＝AB\＄：GOSUB 127r）： $\mathrm{AH} \$=0 \mathrm{H} \$$ ：OP $\$=0 \mathrm{H} \$$ ：

－3355 IF LEFT\＄（OB\＄，1）＝＂ 1 ＂THEN $\mathrm{N}=1 \quad$ OP
－ 3356 IF VAL（OD\＄）＝「गTHEN Z＝1
－ 3357 GOTO 339r）
－336r）IF C＝1 THEN J\＄＝＂1＂：REM＊＊＊ROR＊＊＊
－3365 IF C＝r）THEN J\＄＝Z\＄
DF
BO
FK
GH
－3375） $\mathrm{C}=\mathrm{VAL}(\operatorname{RIGHT} \$(\mathrm{AB} \$, 1)): \mathrm{AB} \$=\mathrm{J} \$+\operatorname{LEFT} \$(\mathrm{~A}$ B\＄，7）
－ 3371 GOTO 335r，
DL
－338r）REM＊＊＊PRINT LINE SPACE \＆GET ANOT HER LINE＊＊＊
－339r）PRINT：GOTO 28r，
－34ر）REM＊＊＊SET Z AND N FLAGS＊＊＊
－3410 $\mathrm{N}=$（）：IF TMP＞127 THEN N＝1
－342の $\mathrm{Z}=$（）：IF TMP＝r）THEN $\mathrm{Z}=1$

SEREEN MAGJE

FROM PAGE 33
First byte：C000
Last byte：C8E7
SYS to Start：RUN

crosjo	A9 8	8r） 8	8D	8A	¢2	2 r	44	E5	8E
cors	A9	rر） 8	8D	21	D ${ }^{\text {r }}$	8D	15	D ${ }^{\text {d }}$	A 4
Cr）15	A9	ノB 8	8D	25	Dr）	8D	86	r） 2	59
Cr18	Ar）	18 A	A 2	17	A9	12	25	D2	29
Cr）29	FF 1	182	2 J	Fr）	FF	A 9	B4	21	C7
Cr）28	D2	FF	CA	Er	FF	Dr）	F2	2 r	8A
C03r）	66	E5	A9	リD	8D	EB	C8		1 F
CrJ38	C7 8	85 F	FE	A9	C7	85	FF	21	B
Cr）4r）：	68	Cr） 2	2 J	68	Cr）	A9	D9	85	B
Cr） 48 ：	FE	A9	C7	85	FF	29	68	Cr	87
Crs5）：	$2 \mathrm{C})$	68	Cr	A9	0，	8D	EB	C8	85
Crs58：	A9	EB 8	85	FE	A9	C7	85	FF	69
Cro6）	296	68	Cr）	Ar	0ر）	4 C	76	Cr	$C D$
Cr）68：	Ar）	rof）	B1	FE	25	D2	FF	C8	
Cr）7¢：	CD E	EB	C8	Dr	F5	60）	B9	AA	E
¢78	C7 9	99	Cr	3E	C8	Cr）	1 D	Dr	）
Cr）80，	F5 A	A9	ros	99	Cr）	3E	C8	Cr	2
Cr）88：	49）	Dr）F	F8	A9	2E	8D	ros）	Dr，	C8
C	A9 7	751	8D	¢1	Dr	A9	r）7	8D	48
Cr998	27	Dr） A	A9	rof	8D	15	Dr）	A9	2
Crsars	FB	8D F	F8	r）7	2 J	6r）	C3	A9	8
Cr）A	¢18	8D 1	15	Dr）	AD	ros）	DC	C9	
Cの吅）	7F F	Fr） F	F9	21	71	C3	AD	rjof	
Cr） 88 ：	DC 4	49 F	FF	8D	EB	C8	29	15	
Crjers：	C9 1	10 F	Fr）	6F	AD	EB	C8	29	86
Crse8：	¢F	C9 ri	¢1	Fr）	72	C9	r， 2	Fr	2
Crdrs：	6B	C9	1）4	Fr）	64	C9	1）	Fr	22
Crs 8 ：	5D 2	$2)^{1} \mathrm{E}$	E4	FF	C9	56	Fr，	62	A
CJEO：	C9 8	85	Fr）	76	C9	89	Fr）	75	
CrE8：	C9 8	86 F	Fr）	74	C9	8A	Fr，	73	57
CrF\％）	C9 8	87 F	Fr）	51	C9	88	Fr）	5	

CrFF 8：C9 8C Fr） 58 C9 14 Fr 48 AF C1rر）：C9 $13 \mathrm{Fr} 47 \mathrm{C} 91 \mathrm{D} F \mathrm{Fr}_{2}$ 2E 1B C1rs：C9 9D Fr，2D C9 91 Ff 2F r，9 C11ヶ：C9 11 Fr） 28 C9 39 Ff 36 2E C118：C9 20 Ff， 17 C9 93 Fケ 3189 C12r：C9 5F Frj 42 C9 41 Fr） 49 C1 C128：C9 C1 Ffj 58 C9 58 Ff 6777 C13r：4C B6 Cr 4C 82 C2 4C 厅A DB C138：C2 4C 46 C2 4C D4 C1 4C 7F C14）：B2 C1 4C 2E C5 4C 8F C3 94 C148：4C A4 C3 4C EA C3 4C FC 41 C15ノ：C3 4C 厄7 C4 4C 58 C4 4C E1 C158：C6 C4 4C ケ2 C6 4C 3B C6 47 C16）：4C 76 C6 4C C5 C6 AD 45 B5 C168：C7 49 队1 8D 45 C7 4C B6 18 C17ヶ：Cの AD 44 C7 49 ケ1 8D 44 ヶ7 C178：C7 FO 19 AD 41 C7 8D EE 7D C18ヶ：C8 4C B6 Cr AD 43 C7 49 ヶF C188：队1 8D 43 C7 Fケ ノ6 AD 27 ED C19ヶ：Dr 8D EF C8 4C B6 Cr 2r）8B C198： 44 E5 A9 ヶر）8D 15 Dケ 8D 6D C1Aケ：8A ケ2 A9 ケE 8D 86 ケ2 8D 88 C1A8：2ヶ Dr）A9 「ر6 8D 21 Dr 2 2r E8 C1Br）： 74 A4 A9 r8 8D EA C8 2r DC C1B8： 66 C3 CE 厅1 D D CE EA C8 ケ」 C1Cr）：AD EA C8 Drر F2 AD ヶ1 Drر 65 C1C8：C9 28 D \wp 「5 A9 E8 8D 队1 B1 C1Dr：Dr 4C B6 Cr AD 厅1 Dr C9 AE C1D8：E8 Fr， 27 A9 r8 8D EA C8 CC
 C1E8：C8 AD EA C8 D 5 F2 AD 介1 85 C1Fr）：Drر C9 Fr，Dr 95 A9 3r）8D B9 C1F8：ر1 Drر A9 رлの 8D 1B Dr 4C 3A C2ヶر）：B6 Cr A9 ヶر 8D 1B Drر 4C E7 C2ケ8：DB C1 A9 ノ8 8D EA C8 2ヶ B8 C21ヶ： 66 C3 EE ヶرの Dr AD ケرの Dr 78 C218：FJ 12 CE EA C8 AD EA C8 FE C22ヶ：D 9 ED AD अر厅 D D C9 56 Fr 6E C228：厅B 4C 43 C2 A9 厅1 8D 1の CD C230：Dr 4C 1A C2 AD 10 Dr）Fr A9 C238：厅A A9 ケرण 8D 10 D 5 A9 5E 62 C24ヶ：8D गر）Dr 4C B6 Cr）A9 「ر 814 C248：8D EA C8 2r） 66 C3 CE رfr）A2 C25ヶ：Dr AD rر）Dr，Fr 12 CE EA 5C
 C26ヶ：D 5 C9 ケE Frノ ケB 4C 7F C2 93 C268：A9 رゥ厅 8D 10 Dr 4C 56 C2 E5 C27ヶ：AD 19 D D D D リA A9 ヶ1 8D 12 C278：1ヶ Dr A9 4E 8D رゥr Dr 4C FB C28『：B6 Cr 2の 97 C3 AD 10 D 91
 C29r）：1B 9r，1C AD 41 C7 81 FE 8 F C298：AD 27 D 981 FC AD 45 C7 77
 C2A8： 43 C7 D 929 4C C4 Cr $A D 2 D$ C2Br）：介1 Drر C9 49 9介 ノ8 A1 FE CE C2B8：8D 41 C7 4C C4 Cr A1 FC BF C2Cr：8D 27 Dr）4C C4 Cr AC 41 ग6

C2C8：C7 AE EE C8 8E 41 C7 8C 1B C2Dr）：EE C8 4C A7 C2 AC 27 Dr）E3 C2D8：AE EF C8 8E 27 Drر 8C EF 43 C2Eの：C8 4C AC C2 AD rر厅 Dr C9 AD C2E8：D6 Br B7 AD 10 Dr）Dr B2 3A C2F5：AD F1 C8 691838 E5 FE F7 C2F8：厅A A8 AD $41 \mathrm{C} 791 \mathrm{FE} A D \mathrm{Ar}$ C3rر）： 27 Dr 91 FC 4C A2 C2 38 7r C3rر：AD rر1 Dr E9 3r，4A 4A 4A 8r C31ヶ：8D E7 C8 ケA ケA 6D E7 C8 8r C318：A2 ケرケ 8E E7 C8 ケA ケA 2E 3C C32ケ：E7 C8 ケA 2E E7 C8 85 FE 3E C328：8D F1 C8 AD E7 C8 69 r． 4 3C C33ヶ： 85 FF AD 10 Dr 8 D E9 C8 84 C338： 38 AD rرの D （）E9 16 8D E8 65 C34ヶ：C8 AD E9 C8 E9 गرゥ 4A 6E 「JC C348：E8 C8 AD E8 C8 4A 4A 6553 C35）：FE 85 FE 85 FC A5 FF 6965 C358：ر） 85 FF 69 D4 85 FD 6r）FF C36（）：Ar）C8 88 Dr）FD 6r）AE 4272 C368：C7 2r）6r，C3 CA Dr FA 6r）6B C37ノ：A今 28 A9 戶B 99 BF DB A9 CC
 C389：F1 6r）A2 1818 2r Fr）FF B6 C388：AD 27 Dr 8D 86 厄2 6r，EE 93 C39の： 21 Dr $A D 21$ Dr 29 厅F C9 24 C398：厅B F厅 ノJ3 4C B6 Cケ EE 21 6B C3Aケ：Dr 4C B6 Cr） 29 ケ 7 C3 AD CD
 C3Br）：5E Frf ケ9 9r） 28 A9 2r） 81 ケD C3B8：FE 4C 46 C2 A9 56 8D 「رノ 9A C3Cケ：Dr A9 队1 8D 1厅 Dr AD か1 59
 C3Dr：ر1 Dr，4C B5 C3 A9 3r，8D CF C3D8：厅1 Dr 4C B5 C3 A9 56 8D FD
 C3E8： 46 C2 A9 5E 8D ケrر Dr A9 厄2
 C3F8：D $\int 5$ 4C B6 Cr $A D 41$ C7 69 AD C4rر）：7F 8D 41 C7 4C B6 Cr A9 83 C4ヶ8：「） 85 FE A9 5485 FF A2 6A C41ر： 17 A厅 1 F A9 20 91 FE 88 C9 C418：D \boldsymbol{C} F9 18 A5 FE 692885 B6 C42の：FE A5 FF 69 رf） 85 FF CA 7E C428：Ef，FF Dr）E5 4C EA C3 Ef 9B C43r）：4r）Fr，1F A9 fors 8D 21 Dr）A9 C438：A厅 rر9 2ヶ 82 C3 A9 C7 85 3F C44の：FF A9 8E 85 FE A9 ケرの 8 D 34 C448：EB C8 2r， 68 Cr 2の C 4 FF 4 B C45 ）：Fr，FB 2r）7r）C3 4C B6 Cr） 55 C458：A厅 ノの9 2ヶ 82 C3 A9 C7 85 5F C46r）：FF A9 5E 85 FE A9 rرO 8D 24 C468：EB C8 2の 68 Cr Aの 19 2 （9 37 C47ノ： 82 C3 2r） 76 C5 AD F2 C8 7C C478：F厅 43 A9 『1 8D Fr）C8 2の BE C48ヶ：5E C5 A2 ر1 2の C9 FF AD DF C488： 21 D 9 2の D2 FF 2厅 BD C5 11 C490）：A2 18 AO $1 F$ B1 FE 29 D2 AE

C498：FF B1 FC 2厅 D2 FF 88 Dr） 93 C4A厅：F3 2r，CC C5 CA Dr EB A9 78 C4A8：01 20 C3 FF 2ヶ CC FF A9 24
 C4B8：Dr A6 9r，Dr，r6 2r 7 7r C3 EB C4Cr：4C B6 Cr）4C 2F C4 Ar 1996 E C4C8：2丁 82 C3 A9 C7 85 FF A9 CF C4D ： 7685 FE A9 「ر厅 8D EB C8 B7
 C4E厅：2厅 76 C5 AD F2 C8 Fr D5 6D C4E8：A9 ر厅ر 8D Fの C8 2の 5E C5 1E C4Fの：A2 か1 2け C6 FF 2け E4 FF 8「 C4F8：8D 21 D C_{2} 2の BD C5 A9 18 DD C5ヶ゚の：8D EC C8 A9 1F 8D ED C8 5r） C5ヶ8：2「 E4 FF AC ED C8 91 FE 厅1 C51ヶ：2「 E4 FF AC ED C8 91 FC ヶ7 C518：CE ED C8 AD ED C8 D C E8 BB C52け：2丁 CC C5 CE EC C8 AD EC F1 C528：C8 Drر D8 4C A7 C4 A厅 「9 FC C53ヶ：2ヶ 82 C3 A厅 「ر）B9 46 C7 FE
 C54ヶ：4C 35 C5 2ヶ E4 FF C9 「رの 56 C548：F0 F9 C9 3r）9r，F5 C9 3A B7 C55r）：Br）F1 38 E9 2F 8D 42 C7 DB C558：2厅 7r）C3 4C B6 Cr AD F2 11 C56r）：C8 Ar，C8 A2 F3 2厅 BD FF 厅， 7 C568：A9 厅1 A2 ノ8 AC F厅 C8 2厅 44 C57r：BA FF 20 Cr）FF 6r，A9 गر厅 16 C578：8D F2 C8 2r）E4 FF Fr，FB B3 C585：C9 ヶD Fr）1C C9 14 Fr 19 4C C588：C9 2r）9r，EF C9 6r，Br EB B9 C591）：AC F2 C8 99 F3 C8 2 9 D2 42 C598：FF EE F2 C8 Cr ケF Dr DB BF C5Aの：6r）AD F2 C8 C9 رゥの Fr D3 F8 C5A8：A9 9D 2丁 D2 FF A9 2丁 2丁 CC C5Br）：D2 FF A9 9D 2r）D2 FF CE 8C C5B8：F2 C8 4C 7B C5 A9 ノ8 $85 \quad 39$ C5Cr）：FE 85 FC A9 14485 FF A9 1 F C5C8：D8 85 FD 60 18 A5 FE 69 AB C5D J： 2885 FE A5 FF 69 rر） 8512 C5D8：FF 18 A5 FC $6928 \quad 85$ FC A7 C5E厅：A5 FD 69 رノノ 85 FD 6038 ケA C5E8：A5 FE E9 2885 FE A5 FF C9 C5Fの：E9 rر） 85 FF 38 A5 FC E9 25 C5F8： 2885 FC A5 FD E9 rر） 85 B6 C6rj）：FD 6r，2r，BD C5 A2 18 Ar）5D C6r）8：1F B1 FE 8D EC C8 B1 FC C9 C61ヶ：8D ED C8 88 B1 FE 8D EA 16 C618：C8 B1 FC C8 91 FC AD EA 7 F C62ヶ：C8 91 FE 8888 D 9 ED C8 12 C628：AD EC C8 91 FE AD ED C8 8r） C63r）： 91 FC 2r CC C5 CA D 5 CF DC C638：4C B6 Cr 29 BD C5 A2 18 5A C64）：A厅 今1 B1 FE 8D EC C8 B1 87 C648：FC 8D ED C8 C8 B1 FE 8D 9r） C651）：EA C8 B1 FC 8891 FC AD 77 C658：EA C8 91 FE C8 C8 Cr）2厅 ケF C660：D J EB 88 AD EC C8 91 FE 99

C668：AD ED C8 91 FC 2厅 CC C5 厅J C675：CA D \int CD 4C B6 Cr Ar $1 F 5 \mathrm{D}$ C678：A2 17 A9 AS 85 FE 85 FC 83 C681）：A9 厅7 85 FF A9 DB 85 FD BF C688：B1 FE 8D EC C8 B1 FC 8D B8 C69r）：ED C8 2r）E7 C5 B1 FE 8D 53 C698：E8 C8 B1 FC 8D E7 C8 2r 57 C6Af：CC C5 AD E8 C8 91 FE AD Dr C6A8：E7 C8 91 FC 2r 26 C7 CA Cr C6Br）：Dr）E3 2ヶ CC C5 AD EC C8 7B C6B8： 91 FE AD ED C8 91 FC 88 C4 C6Cr）：Dr）B6 4C B6 Cr）Ar） 1 F A2 6E C6C8：ر1 2「 BD C5 B1 FE 8D EC 98 C6Dr：C8 B1 FC 8D ED C8 2r CC 79 C6D8：C5 B1 FE 8D E8 C8 B1 FC 3D C6E ： 8 D E7 C8 2r，E7 C5 AD E8 83 C6E8：C8 91 FE AD E7 C8 91 FC 2 F C6Fr）：2ヶ ケB C7 E8 E厅 18 Dケ E1 78 C6F8：2 1 E7 C5 AD EC C8 91 FE BA C7ヶノノ：AD ED C8 91 FC 88 Dr BF rJC C7ノ8：4C B6 Cr 18 A5 FE 69 5r， 42 C719： 85 FE A5 FF 69 गرण 85 FF 29 C718： 18 A5 FC 69 5r， 85 FC A5 B4 C72ヶ：FD 69 rر） 85 FD 6r， 38 A5 49 C728：FE E9 55， 85 FE A5 FF E9 75 C73ヶ：णر） 85 FF 38 A5 FC E9 5r）CA C738： 85 FC A5 FD E9 rر厅 85 FD CB
 C748： $55 \quad 52534 F 52$ 2r 5645 Ar C75）：4C 4F 43495459 2の 28 6E C758：3ヶ 2D 392920 ر厅の 2953 AB

 C79 ）：3C 3C 3C 3C 3C 3C 20 44 5E
 C7A「： 52 2r） 3 E 3E 3E 3E 3E 3E 88

 C7Drノ：ケ5 2r 1F 2r 9A 2r 9F 2r AF C7D8：ノD $1299201 \mathrm{E} 2 \mathrm{2r} 9 \mathrm{E} 2 \mathrm{2r} \mathrm{AE}$ C7Eか： 96 2r 1C 2r 9C 2 2r 812020 C7E8： 95 2け ノJ 97 D5 C9 12 D5 CA C7Fr）：C9 92 Br AE 12 Br AE OD 2B C7F8：CA CB 12 CA CB 92 AD BD 36 C8رノノ： 12 AD BD 厂，B3 B1 DD DB A9 C8ノ8：D6 Cr B2 AB ケD 12 B3 B1 82 C81ヶ：DD DB D6 Cr）B2 AB ケD D1 9E C818：D7 D8 D3 DA C1 4r）2A 厅D Br C82ヶ：A3 B7 B8 12 A 2 B9 AF A4 F6 C828：2ヶ ノD A4 AF B9 A2 12 B8 D 9 C83ヶ：B7 A3 2ヶ リD A7 B6 12 A1 CA

C838：	B5	B4	92	DC	A 8	2）	fD	12	）
C84）：	AA	B6	92	A1	B5	B4	A6	D9	C）
C848：	12	D4	SD	C5	C4	C6	D2	CE	2 F
C85）：	CD	C8	12	C7	ノD	12	C5	C4	6A
C858：	C6	D2	CE	CD	92	C7	12	C8	C3
C86）	ノD	BA	CC	12	BA	CC	BF	92	Ef
C868	2B	D4	12	D9	JD	D）	CF	12	14
C87）	D ${ }^{\text {d }}$	CF	92	BF	2D	5B	5D	万D	56
C878	12	A9	DF	92	AC	BB	12	AC	CD
C88）	BB	92	3C	3E	JD	DF	A9	BC	9C
C888：	BE	12	BC	BE	92	28	29	今D	C5
C891）：	41	42	43	44	45	46	47	48	B6
C898	リD	49	4A	4 B	4 C	4D	4E	4 F	B B
C8A「：	51）	ノD	51	52	53	54	55	56	F4
C8A8：	57	58	リD	59	5A	24	27	2E	92
C8B）：	23	39）	31	ノD	32	33	34	35	11
C8B8	36	37	38	39	ノD	12	29	29	F6
C8C）：	29	29	29	29	29	29	29	92	34
C8C8：	2，	2 r	9A	53	43	52	45	45	17
C8D）：	4E	29	4D	41	47	49	43	29	C1
C8D8：	29	42	59	29	42	4 F	42	2 万	A 8
C8Eか：	53	5r）	49	52	4B	4F	rر）	ノ1	B B

FROM PAGE 35

－ 5 PRINTCHR $\$(142):$ HS＝ヶっ：GOSUB11ヶっっ：POKE5328 け，$)$
－1r）PRINT＂［HOME］［DOWN］［DOWN］＂SPC（8）＂［ $\left.\begin{array}{cc}\text { c } 6\end{array}\right]$ ［s Q s ［WHITE］［s W］［c 6］［s Q］［WHITE］［s W］［ c 6］［s Q］［WHITE］［s W］［c 6］［s Q］［WHITE］［s W］［cc 6$][\mathrm{s}$ Q］［WHITE］［s W］［cc 6$]\left[\begin{array}{ll}\mathrm{s} & \mathrm{Q}][\mathrm{WHIT}\end{array}\right.$ $E]\left[\begin{array}{ll}s & W\end{array}\right]\left[\begin{array}{cc}c & 6\end{array}\right]\left[\begin{array}{ll}s & Q\end{array}\right][W H I T E]\left[\begin{array}{ll}s & W\end{array}\right]\left[\begin{array}{ll}c & 6\end{array}\right]\left[\begin{array}{ll}s & Q\end{array}\right][$ WHITE $]\left[\begin{array}{c}s \\ W\end{array}\right]\left[\begin{array}{ll}c & 6\end{array}\right]\left[\begin{array}{ll}s & Q\end{array}\right][W H I T E]\left[\begin{array}{ll}s & W\end{array}\right]\left[\begin{array}{ll}c & 6\end{array}\right][s$ Q］［WHITE］［s W］
$\left[\begin{array}{cc}c & 6\end{array}\right]\left[\begin{array}{ll}s & \text { Q }\end{array}\right.$ WHITE $]\left[\begin{array}{ll}\mathrm{s} & \mathrm{W}\end{array}\right]^{\prime \prime}$
－29）PRINTSPC（7）＂［WHITE］［s W］［RVSON］［YELLO W］［sEP］［RVSOFF］［2r，＂＂］［RVSON］［c＊］［RVSOF F］［ $\left.\begin{array}{ll}c & 6\end{array}\right]\left[\begin{array}{ll}s & Q\end{array}\right]^{\prime \prime}$
－3（）PRINTSPC（6）＂［ c 6］［s Q］［YELLOW］［RVSON］ ［sEP］［RVSOFF］［2r，＂＂］［RVSON］［c＊］［RVSOF F］［WHITE］［s W］＂
－45）PRINTSPC（5）＂［WHITE］［s W］［YELLOW］［RVSO $\left.\mathrm{N}][s E P] \quad[\mathrm{RVSOFF}][2 \rho)^{\prime \prime} "\right][\mathrm{RVSON}] \quad[\mathrm{c} *][\mathrm{R}$ VSOFF］［ $\left.\begin{array}{c}c \\ 6\end{array}\right]\left[\begin{array}{ll}s & Q\end{array}\right]^{\prime \prime}$
－50）PRINTSPC（4）＂［s Q］［YELLOW］［RVSON］［sEP］ ［3＂＂］［RVSOFF］［2，＂＂］［RVSON］［3＂＂］［c＊］［ RVSOFF］［WHITE］［s W］＂
－6r）PRINTSPC（4）＂［WHITE］［s W］［YELLOW］［RVSO N］［4＂＂］［RVSOFF］［20＂＂］［RVSON］［4＂＂］［RVS OFF］［ $\left.\begin{array}{cc}c & 6\end{array}\right]\left[\begin{array}{ll}s & \text { Q＂}\end{array}\right.$
－7r）PRINTSPC（4）＂［s Q］［YELLOW］［RVSON］［4＂＂ ］［RVSOFF］［2r＂＂＂］［RVSON］［4＂＂］［RVSOFF］［WH ITE］［s W］＂
－80）PRINTSPC（4）＂［WHITE］［s W］［YELLOW］［RVSO N］［4＂＂］［RVSOFF］［2O＂＂］［RVSON］［4＂＂］［RVS

OFF ］［ c 6$]\left[\begin{array}{ll}\mathrm{s} & \mathrm{Q}\end{array}\right]^{\prime \prime}$
LG
－90）PRINTSPC（4）＂［ c 6 $][s$ Q $][Y E L L O W][R V S O N]$
［RVSOFF］［sEP］［22＂［c T］＂］［c＊］［RVSON］
［RVSOFF］［WHITE］［s W］＂
－1ヶر）PRINTSPC（4）＂［WHITE］［s W］［YELLOW］［sEP ］［26＂［c T］＂］［ $\left.\begin{array}{c}c \\ \text {＊}\end{array}\right]\left[\begin{array}{ll}c & 6\end{array}\right]\left[\begin{array}{ll}\mathrm{s} & \mathrm{Q}\end{array}\right]^{\prime \prime}$
－11ر PRINTSPC（5）＂［WHITE］［28＂［s Z］＂］＂IK
－12ヶ PRINTSPC（5）＂［WHITE］［s Z］［s Z］［RED］［R VSON］［3＂＂］［RVSOFF］［WHITE］［s Z］［s Z］［RED ］［RVSON］［RVSOFF］［WHITE］［s Z］［s Z］［RED］［ RVSON］［RVSOFF］［WHITE］［s Z］［RED］［RVSON］［ $4^{\prime \prime}$＂］［RVSOFF］［WHITE］［s Z］［RVSON］［RED］［R VSOFF］［WHITE］［s Z］［s Z］［RED］［RVSON］［RVS OFF］［WHITE］［s Z
］［RED］［RVSON］［4＂＂］［RVSOFF］［WHITE］［s Z］［ s Z］＂
－130）PRINTSPC（5）＂［WHITE］［s Z］［s Z］［RVSON］ ［RED］［RVSOFF］［WHITE］［s Z］［s Z］［RED］［RVS ON］［RVSOFF］［WHITE］［s Z］［RED］［RVSON］［RV SOFF］［WHITE］［s Z］［s Z］［RVSON］［RED］［RVSO FF ］［WHITE］［s Z］［RVSON］［RED］［RVSOFF］［WHI TE］［4＂［s Z ${ }^{\prime \prime}$＂］［RVSON］［RED］［RVSOFF］［WHITE ］［s Z］［RED］［RVS
ON］［RVSOFF］［WHITE］［s Z］［s Z］［RED］［RVSON ］［RVSOFF］［WHITE］［5＂［s Z］＂］＇
－140）PRINTSPC（5）＂［WHITE］［s Z］［s Z］［RED］［R VSON］［RVSOFF］［WHITE］［s Z］［s Z］［RED］［RVS ON］［WHITE］［RVSOFF］［s Z］［RED］［RVSON］［WH ITE］［RVSOFF］［s Z］［s Z］［RED］［RVSON］［WHIT E］［RVSOFF］［s Z］［RED］［RVSON］［WHITE］［RVSO FF］［4＂［s Z ］＂$][$ RED $][R V S O N]$［WHITE］［RVSOF F］［3＂［s Z $\left.]^{\prime \prime}\right][R E$
D］［RVSON ］［4＂＂］［WHITE］［RVSOFF］［ $\left.\begin{array}{ll}\mathrm{s}^{\prime \prime} & Z\end{array}\right]\left[\begin{array}{ll}s & Z\end{array}\right]$
－150）PRINTSPC（5）＂［WHITE］［s Z］［s Z］［RED］［R VSON］［WHITE］［RVSOFF］［s Z］［s Z］［RED］［RVS ON］［WHITE］［RVSOFF］［s Z］［RED］［RVSON］［WH ITE］［RVSOFF］［s Z］［s Z］［RED］［RVSON］［WHIT E］［RVSOFF］［s Z］［RED］［RVSON］［WHITE］［RVSO FF］［4＂［s Z ${ }^{\prime \prime}$＂］［RED］［RVSON］［WHITE］［RVSOFF ］［s Z］［RED］［RVS
ON ］［WHITE］［RVSOFF］［5＂［s Z］＂］［RED］［RVSON ］［RVSOFF］［WHITE］［s Z］［s s$]^{\prime \prime}$
－16（）PRINTSPC（5）＂［WHITE］［s Z］［s Z］［RED］［R VSON］［3＂＂］［WHITE］［RVSOFF］［s Z］［s Z］［RED ］［RVSON］［4＂＂］［WHITE］［RVSOFF］［s Z］［RED］［ RVSON］［4＂＂］［WHITE］［RVSOFF］［s Z］［RED］［RV SON］［WHITE］［RVSOFF］［s Z］［s Z］［RED］［RVSO N］［WHITE］［RVSOFF］［s Z］［RED］［RVSON］［4＂＂ ］［WHITE］［RVSOFF
－17ヶ PRINTSPC（5）＂［WHITE］［28＂［s Z ］＂］＂IK －18（）PRINTSPC（5）＂［YELLOW］［s 0］［4＂［c T］＂］［ s P］［CYAN ］SHOOTING GALLERY［YELLOW］［s 0 ］［ $4^{\prime \prime}\left[\begin{array}{cc}c & T\end{array}{ }^{\prime \prime}\right]\left[\begin{array}{ll}\mathrm{s} & \mathrm{P}]^{\prime \prime}\end{array}\right.$
－190）PRINTSPC（5）＂［c G］［4＂＂］［s N］［16＂［c T

＂＊＂］［BLACK ］WELCOME［RED］［3＂＊＂］＂
－1149 PRINT＂［DOWN ］＂SPC（14）＂［BLUE］DUCK－－SH 00T＂
－116 ）PRINTSPC（8）＂［BLUE］A SHOOTING GALLER Y GAME［DOWN］＂
－1180）PRINTSPC（5）＂［BLACK］DUCKS ARE WORTH 25 PTS EACH［DOWN］＂
－120ヶ）PRINTSPC（5）＂WHEN YOU SHOOT DOWN 1\％ DUCKS［DOWN］＂
－121ヶ PRINTSPC（5）＂YOU ENTER A TIMED TARGE T ROUND［DOWN］＂
－122（ ）PRINTSPC（5）＂TARGETS ARE WORTH 5！PT S EACH［DOWN］＂
－123（）PRINTSPC（5）＂THE MORE DUCKS YOU［RED ］SHOOT［BLACK］DOWN［DOWN］＂

GJ
－1245 PRINTSPC（5）＂THE［RED］FASTER［BLACK］ THEY WILL GO［DOWN］＂

MF
－ 1241 PRINTSPC（5）＂WHEN YOU MISS 4 DUCKS I N A ROW［DOWN ］＂
－ 1242 PRINTSPC（5）＂THE GAME IS OVER［DOWN］＂JE
－ 1245 PRINTSPC（5）＂USE JOYSTICK－－PORT \＃2＂GJ
－125r）PRINT＂［HOME ］［23＂［DOWN］＂］＂SPC（8）＂［GR EEN］PRESS ANY KEY TO BEGIN＂：FORL＝1TO9（）：N EXT
－ 1255 PRINT＂［HOME ］［23＂［DOWN］＂］＂SPC（8）＂［YE LLOW］PRESS ANY KEY TO BEGIN＂：FORL＝1TO1ノ： NEXT
－1260）GETA\＄：IFA\＄＝＂＇THEN1250）
－127厅 PRINT＂［CLEAR］＂：POKE53281，6
－130rر RETURN
－ 2 （ر）
－ 2 （r）D D

－211ヶ DATA ケ，2，213，门，5，ァ，2， 169
－212（）DATA ケ， $11,233,64,53,86,32,238$
－213（）DATA 236，32，21，64，32，5，128，64

－ 219 （ر）DATA ケ，2，24ケ，ソ，5，14，2， 169
－22rرrノ DATA 「，11，233，64，53，86，32，239
－221r DATA 188，32，21，64，32，5，128，64

－21ヶ PRINT CHR\＄（27）＂＠＂：PRINT CHR\＄（27）CHR \＄（51）CHR\＄（16） AF
－ 215 PRINT＂［18）＂＂］＂； FG
－22の）PRINT＂［54＂－＂］＂CHR\＄（1ヶ） JK
－ 225 FORL＝1）TO 24：PRINT CHR\＄（27）CHR\＄（76） FK
－23（）FOR I＝1 TO 119：PRINT CHR\＄（け）；：NEXTI： PRINT CHR $\$(245)$ ； LD
－ 235 FOR CR＝○ TO 39： EI
 7－P）
－ 245 FOR LC $=$ 饣 TO 7
－250 ）PBYT $=\operatorname{PBYT}-(($ PEEK $(\mathrm{B}+\mathrm{LC})$ AND E$)>\boldsymbol{>}) * 2$ ［UPARROW］（7－LC）
－ 255 NEXT LC：PRINT CHR\＄（PBYT）CHR\＄（PBYT）

－180）NEXT X

－190 GET A\＄：IF A\＄＜＞CHR\＄（133）THEN 19rر IH
－ 295 OPEN4，4，5：CMD4：PRINT CHR\＄（10）CHR\＄（1

SCRTEN DUMPING FROM PAGE 73
 VERSION I

$\cdot 1$ Rem before loading this program you mu ST POKE44，64：POKE16384，厄：NEW
－29） $\mathrm{B}=8192$ ：POKE53272，24
－ 25 POKE 53265， $\operatorname{PEEK}(53265)$ OR 32
－30）FOR I＝（）TO 7999 ：POKE B＋I，$)$ ：NEXT
－45 FOR J＝1ヶ）24 TO 2043 ：POKEJ， $1:$ NEXT
－10ر）FOR X＝ 1 ，TO 319 STEP ． 4
 ））
－150）CHAR $=$ INT $(X / 8)$
－155 ROW＝INT（Y／8）
－16r）LINE＝Y AND 7
－ 165 BYTE $=$ B + ROW＊32 $9+$ CHAR＊ $8+$ LINE BC
－175 BIT＝7－（X AND 7）PJ
－ 175 POKE BYTE，PEEK（BYTE）OR（2［UPARROW］ BIT）

BO

Abstract

 ））
－15（）CHAR＝INT（X／8）
－ 155 ROW＝INT（Y／8）
－160）LINE＝Y AND 7
－ 165 BYTE $=\mathrm{B}+$ ROW＊32 $\boldsymbol{\jmath}$＋CHAR＊8＋LINE
－17ノ BIT＝7－（X AND 7）
－ 175 POKE BYTE，PEEK（BYTE）OR（2［UPARROW］ BIT）
－189 NEXT X
－19r）GET A\＄：IF A\＄＜＞CHR\＄（133）THEN 19rر
－ 195 POKE 251，门 ：POKE 252，32
－ 2 rر）FOR $I=$ r，TO 7 ：POKE 2 rر $48+I, 2$［UPARR OW］I ：NEXT
－205 OPEN4，4，5：CMD4：PRINT CHR\＄（1ヶ）CHR\＄（1 （J）
－21ر）PRINT CHR\＄（27）＂＠＂：PRINT CHR\＄（27）CHR \＄（51）CHR\＄（16）
－ 215 PRINT＂［15）＂＂］＂；
－220 PRINT＂［54＂－＂］＂CHR\＄（10）
－ 225 FORL＝r，TO 24：PRINT CHR\＄（27）CHR\＄（76） CHR $\$\left(25{ }^{\prime} \mathrm{J}\right)$ CHR $\$(2)$ ；
－230）SYS S2
－ 265 PRINT CHR\＄（245）CHR\＄（1ヶ）；
－27ノ NEXT L：PRINT CHR\＄（27）＂＠＂
－ 275 PRINT＂［15＂＂］＂；
－28（ ${ }^{\prime}$ PRINT＂［54＂－＂］＂
－ 285 PRINT\＃4，：CLOSE4
－ 29 （J）END

Machine code to be appended to VERSION II （see article for instructions）

 2512 2ر） 2 2ر8 25116625223213425222464 29824216941332521322511691145 2512 2ヶノ 2 2ر $8251166252232134252224 \quad 8$ 2ヶ8 24296162 厅 169 厅 32 21ヶ） 255232224 12の） 2 厅8 24616924532 21ヶ 255169 厅 1418 8141981411081411181697562379 817 ノ 189 厅 8141128169756237108 17ヶ） 189 け 814113817210817725145 128240 10 173138241 1ر9 118141118 174 10） 8232142108224820821217311 832 21厅 25532 21ヶ） 255169 け 141 1ヶ 8141
厅） 141981698241 1ر1 2511332511445 1662522321342521748823214288 224 45） 2 2ر 14196

FROM PAGE 56

－ 2 GOT085
－ 4 P＝－22：GOTO39
－ $5 \mathrm{P}=+22$ ：GOT039 D

NK
I
KO
－7 P＝－1：GOTO39
FJ $\cdot 8 \mathrm{P}=-23$ ：GOT039
PI－9 P＝＋21：GOT039
AG •11 P＝＋1：G0T039
BC •12 P＝－21：GOT039
AF－ $13 \mathrm{P}=+23$ ：GOT039

＝ZTHEN52

－ 16 POKEE，135：POKEE－2，厄：GOTO48
－ 43 IFA >8142 THENA $=A-484$
－ 44 IFA＜ $7724 \mathrm{THENA}=A+484$
－ 48 GOT038
－ 41 IFQ $=2$ THEN6 ${ }^{\text {r }}$
－ 42 IFQ＝3THEN56
－ 52 POKEG，32：POKEA，．：POKEA＋B，2：POKEE－2，24 1：FORT＝1TO5ر）：NEXT：POKEE－1，241：FORT＝1TO5 r， 5 ： ：NEXT
－ 53 RL＝RL＋1：POKEE，241：FORT＝1T09ر） ：NEXT：PO KEE，．：POKEE－2，．：POKEE－1，．
－ $54 \mathrm{~S}=\mathrm{S}+1$ ： $\mathrm{P}=$（ $)$ ： $\mathrm{F}=$（）：GOT03（
－ 56 POKEE，$:$ POKEG，32：POKEA，．：POKEA＋B， $2:$ PO KEE，155：GOSUB59：POKEE，っ：GOSUB59：POKEE， 2 （） ）
－57 GOSUB59：POKEE，r，：GOSUB59：POKEE，241：GOS UB59：POKEE，ノ：GOSUB59：POKEE，135：0＝0＋F＊EC： $\mathrm{P}=\mathrm{r}$ ）
－ 58 GOT043
－59 FORT＝1TO1r）：NEXT：RETURN
PB
－6r）POKEG， 32 ：POKEA， $4:$ POKEA＋B， $7:$ FORT＝15TOr STEP－1：POKEV，T：POKEE $+1,225+T$ ：NEXT：POKEE + $1,1)$
－ 62 S＝S－1：IFS＝rJTHEN65
－63 P＝r）：F＝r）：Z＝Z－5：GOT03r）BG
－650＝0＋RL＊5）：PRINT＂［HOME］［11＂［DOWN］＂］［5 ＂［RIGHT］＂］［RVSON］［YELLOW］GAME OVER［BLACK ］＂：FORT＝1TO1rر）
PL •66 POKE36879， 24 ：PRINT＂［CLEAR］［DOWN］［RVSO
GG N］YOUR［DOWN］［4＂［LEFT］＂］SCORE＝＂；0：PRINT＂［
FB 3＂［DOWN］＂］［RVSON］HIGH［DOWN］［4＂［LEFT］＂］SC

ORE＝＂；L
－67 IFO＜LANDL－0＜50，THENPRINT＂［DOWN］［DOWN］［ RVSON ］CLOSE，BUT NOT CLOSE［6＂＂］ENOUGH．＂
－68 PRINT＂［DOWN］［DOWN］［RVSON］YOU GOT TO S CREEN＂；RL：PRINTRL＊5ヶ；＂［RVSON］BONUS．＂：PRI NT＂［3＂［DOWN］＂］［RVSON］HIT A KEY TO TRY AG AIN＂
－69 GETA\＄：IFA\＄＝＂＂THEN69

－72 POKE36879，8：PRINT＂［CLEAR］［3＂［DOWN］＂］［ 8＂［RIGHT］＂］［RVSON］［YELLOW］S［RED］P［GREEN］ E［CYAN］E［PURPLE］D［YELLOW］Y＂：PRINT＂［DOWN］
［PURPLE］［8＂［RIGHT］＂］BY［DOWN］［LEFT］［LEFT］ KEVIN［DOWN］［5＂［LEFT］＂］DEWEY＂
－73 POKE36869，24r）：PRINT＂［DOWN］［GREEN］SKIL L LEVEL（1－15）＂；：INPUTEC
－74 IFEC＜10REC＞15THEN72
－ 75 GOTO3r，
－ 85 POKE52，28：POKE56，28：CLR：FOR A＝828 T0 881：READB：POKEA，B：NEXT
－86 FORI＝7168T07679：POKEI，PEEK（ $\mathrm{I}+256$（ر）$)$ ： N EXT：FORC＝7168T072） 8 ：READB：POKEC，B：NEXT
－9「）DATA 「，「，「，169，127，141，34，145，169，厄， 1 $41,19,145,173,32,145,74,74,41,32,141,62$ ， 3
－ 91 DATA $173,17,145,41,28,13,62,3,74,74$ ， 73，15，141，6r），3，173，17，145，41，32
－92 DATA $73,32,141,61,3,169,255,141,34,14$ 5，96
－93 DATA6r， $126,219,255,231,189,66,6$ r $^{\prime}, 255$ ， 126，9「），255，165，189，129，255，255，9г），126， 23 1，255
－94 DATA129，189，255，255，145，145，159，249，1
 －99 S＝7：RL＝1：GOT072

MAPMM G A A

FROM PAGE 45
－1 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊DN
－ 2 REM＊
－3 REM＊
－4 REM＊
MAPPING 4.4
BY
－5 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
－ 6 REM
8／29／84
－10 REM＊＊＊＊＊＊＊CENTRAL SECTION＊＊＊＊＊＊
－15 POKE5328ヶ，8：POKE53281，っ：D\＄＝＂？？？＂
－2厅）PRINTCHR\＄（147）：FORI＝1TO11：PRINT：NEXT： PRINTCHR\＄（158）SPC（17）＂WAIT＂
－ 25 FOR AD＝828T0888：READVA：POKEAD，VA：NEXT AD
－3r）FORI＝49152T049543：READC：POKEI，C：NEXT HE
－4r）SYS493（ر）：SYS49385：POKE81，197：SYS49512 ：GOSUB16r）：SYS49152：GOSUB1（r）：GOSUB35（）
－5（）REM＊＊ALL THE FUNCTIONS COME HERE＊＊LL
－ $55 \operatorname{DEFFNF}(\mathrm{X})=\operatorname{SIN}(X)$
－6r）GOSUB21r

BIHN
＊IA＊PB

FJ－1ff $ر$ REM＊＊＊DIRECTORY FOR F＇S KEYS＊＊＊＊FK
－115 PRINTCHR\＄（19）CHR\＄（3（）：FORI＝1TO2 ）：PRI NT：NEXT
－ 115 PRINT＂F1：GRAPHIC CLEANER［7＂＂］F2：ST ORE（M＋）＂
－12（）PRINT＂F3：RANGE CHANGER［9＂＂］F4：RECA LL＂
－13r）PRINT＂F5：FUNCTION CHANGER［6＂＂］F6：C LEAR MRY＂

NK
－14（）PRINT＂F7：COMPARE WITH MRY［6＂＂］F8：N 0 DEFINED＂CHR\＄（19）CHR\＄（154）
－15 15 RETURN
－160 REM＊＊TRANSFER THE CHAR．TO SCREEN＊＊BI

FH
－18）FORI＝rرTO14：POKEJ $+\mathrm{I}, \mathrm{L}:$ POKEC $+\mathrm{I}, 1: \mathrm{L}=\mathrm{L}+1$ ：NEXT
－190 $\mathrm{C}=\mathrm{C}+4$（）：J＝J＋4r）：IFJ <1464 THEN18 ）ML
－ 2005 RETURN
IM
－ 255 REM＊＊＊SET UP ERROR TRAPPING IN 879， ＊＊＊

－2 257 FOR AD $=1$ TO LEN（T\＄）：POKE891＋AD，ASC（M ID $\$(T \$, A D, 1)):$ NEXTAD
－ 2 （1）SYS875
EF
－ 259 RETURN
IM
－215 REM＊＊＊＊＊＊INPUT SUBROUTINE＊＊＊＊＊＊BK
－ 215 GOSUB2rJ5
－220 GETK ：IFK $\$=$＂＂THEN220 GH
－235）IFK $\$=$ CHR $\$(133)$ ORK $\$=C H R \$(134) O R K \$=C H R$
\＄（135）ORK $\$=$ CHR $\$(136)$ THEN245）
－ 231 IFK $\$=$ CHR $\$(137)$ ORK $\$=C H R \$(138) O R K \$=C H R$
\＄（139）ORK $\$=$ CHR $\$(14$（）$)$ THEN24r）
－ 235 GOTO22
－245 $K=A S C(K \$)-132$
－250 RETURN

```PH
```－26r）REM＊＊CLEAR CHAR．＊＊（F1 ROUTINE）－27r SYS49385：GOTO6rIG－285 REM＊＊CLEAR OPERATION＊＊（F7 ROUTINE）ON
－ 285 ONNGOTO29（）， 295BM－291）POKE81，2r）2：SYS49512：POKE81，2ヶ2：SYS49416：POKE81，197：SYS49464：N＝2：GOTO6r，－ 295 SYS49385：POKE81， 2 J 2 ：SYS49464：N＝1：GOT
06r）NLHM
－310 FORJ＝1 \(1564 \mathrm{TO1424STEP} 4\)（） NL
－32 FORI \(=\mathrm{J}+23 \mathrm{TOJ}+39\) ：POKEI， 32 ：NEXTI：NEXTJ：RETURN
KF－33「 REM＊＊＊CLEAR WORK AREA＊＊＊
－345）FORI \(=1544 \mathrm{TO1743}\) ：POKEI， 32 ：NEXT：RETURN GD－35r）REM＊＊＊SET UP DATA AREA＊＊＊
FM－36r）PRINTCHR\＄（19）CHR\＄（159）：PRINT：PRINTTA\(B(23) " X()=" ; X \rho\)
GM
－375）PRINTTAB（23）＂XM＝＂；XM NO
－385）PRINTTAB（23）＂ \(\mathrm{Y}(=\)＝＂； \(\mathrm{Y} \rho)\) LI
－395）PRINTTAB（23）＂YM＝＂；YM OK
－40ヶ）PRINT：PRINTTAB（23）＂PIXELS：＂；DX BA
－410）PRINT：PRINTTAB（23）＂DATA FROM＂CHR\＄（1 54）；D\＄
－42r）RETURN
－431）REM＊＊＊SET UP THE FUNCTION AREA＊＊＊
－44r）FORI＝rرTO39：PORE1784＋I，32：NEXT
－45（J）PRINTCHR\＄（19）CHR\＄（159）：FORI＝1T018：PR INT：NEXT：PRINT＂ \(\mathrm{Y}=\)＂；A\＄
－46r）RETURN
－475）REM＊＊＊＊POSITION ON WORK AREA＊＊＊＊
－48（J）PRINTCHR\＄（19）：FORI＝1T013：PRINT：NEXT： RETURN
－491）REM＊＊INPUT FUNCTION＊＊（F5 ROUTINE）
－495 GOSUB33（）：GOSUB475
－50， 5 PRINTCHR\＄（159）＂ENTER THE 2DN MEMBER OF THE F＇N ON X＂
－505 INPUTA\＄：IFLEN（A\＄）＜29THEN510
－5 5 J6 PRINT＂MUST HAS LESS THAN 29 CHARACTE RS＂：FORI＝rرTO1ヶヶ）
－515）GOSUB33 ：GOSUB43（）：PRINTCHR\＄（19）CHR\＄（ 144）：FORI＝1T014：PRINT：NEXT：PRINT；
－52「）PRINT＂55D［s E］FNF（X）＝＂；A\＄
－53（）PRINT＂RUN5 \({ }^{\text {（ }}\)
－55＇）POKE631，13：POKE632，13：POKE633，13：POK E198，3：END
－56r）REM＊＊＊INPUT RANGE SUBROUTINE＊＊＊
－575）PRINTCHR\＄（154）：GOSUB33 ）：GOSUB47r）：INP UT＂X厂，XM＂；X厂，XM
－585）IFX（，＜XMTHEN6（J）
 XT：GOTO575

－61r）IFY（J＜YMTHEN63r，
 XT：GOTO6r，

AF
－63r）GOSUB33（）：GOSUB47r）：INPUT＂AMOUNT OF PI XELS FOR THE GRAPHIC＂；DX
－635 IFDX\ggJTHENGOSUB33「）：RETURN
 GOT063r）
－65r）REM＊＊＊＊FUNCTION EVALUATER＊＊＊＊
－66r） \(\operatorname{IFSGN}(\mathrm{X}\)（J）\()=\) SGN（XM）THEN67r
 SUB75（）：NEXT
－675 \(\operatorname{IFSGN}(\mathrm{Y} \rho)=\) SGN（YM）THEN7ヶ今
－675 Y＝Y（っ＊79／（YM－Y（）+79 ：FORX＝ 1 ノTO119STEP5： GOSUB75 1 ：NEXT
－70ヶ） \(\mathrm{SX}=(\mathrm{XM}-\mathrm{X}(\mathrm{J}) / \mathrm{DX}\)
－71ヶ FORI＝XノTOXMSTEPSX
－72の \(\mathrm{F}=\mathrm{FNF}(\mathrm{I}):\) ：IFF＜Y（OORF＞YMTHEN74r，

）＊79＋79：GOSUB75r）
－745）NEXT：RETURN
－75「 REM＊＊＊＊＊＊＊GRAPHIC MAKER＊＊＊＊＊＊＊
－76r） \(\mathrm{RO}=\mathrm{INT}(\mathrm{Y} / 8): \mathrm{CH}=\mathrm{INT}(\mathrm{X} / 8): \mathrm{LI}=\mathrm{Y}\) AND7
－775） \(\mathrm{BIT}=7\)－（XAND7）： \(\mathrm{BYT}=13136+\mathrm{RO} * 12\)（ + ＋CH＊8＋
LI：POKEBYT，PEEK（BYT）OR（2［UPARROW］BIT）
－789）RETURN
－790）REM＊＊INPUT RANGE ROUTINE＊＊（F3－ROUTI
NE）
－8rر）D\＄＝＂USER＂：GOSUB56（）：GOSUB3（r）：GOSUB65（）
IM
CN
JM
KH
IM
BA
FI
OD

KL

IH 850 PEM＊
85）REM＊＊MEMORY CLEANER＊＊（F6－ROUTINE）MN
－86rر POKE81，197：SYS49512：POKE55296，厄ノ：GOTO
GE 6r）
IH－875 REM＊＊＊ERROR TRAPPING＊＊＊IL
－885 GOSUB47r，
FH－885 EN＝PEEK（889）：IFEN＞127THENPRINTCHR \(\$\)（1
9）：FORI＝1TO11：PRINT：NEXT：END MG
NE－9rر）IFEN＝11THENPRINT＂CHECK THE FUNCTION．
MA USE 〈F5〉＂KP
BO－91（）IFEN＝2厅THENPRINT＂DIVISION BY ZERO．［4 ＂＂］CHANGE RANGE＂
－925 IFEN＝25THENPRINT＂THE FUNCTION IS TOO COMPLEX．REDEFINE IT＂

KC
－93 IFEN＝15THENPRINT＂NUMBER TOO SMALL OR TOO HIGH．REDIFINE IT＂
－94 9 IFEN＝5THENPRINT＂DEVICE NOT PRESENT． REPEAT OPERATION＂

DN
－950 GOTO5 1 PD
－ 50 rjر）REM＊＊MACHINE LANGUAGE ROUTINES＊＊JA
－5015 REM 49152－SET UP THE FORMAT GM
－5r）2r）REM 493（ر）－MOVE CHARACTERS RAM［BACKA RROW ］ROM
－ 5 （J3 3 ）REM 49385－CLEAR THESE CHARACTERS DI
－6r，6r）DATA76，86，192，169，69，162，15，157，188 ，5，2「ノ2，2「ر8，25ヶ，169，82，162，15，157，4，4 HB
 88，217，157，4，216，2「ノ2，2「ر8，247，96，173，14 АН
－60（8）DATA22（），41，254，141，14，22ヶ，165，1，41， 251，133，1，169，r），133，8ヶ，133，78，169，2 1,8 DH
－6rjgr）DATA133，81，169，48，133，79，162，8，16r），

 165，1，9，4，133，1，173，14，22ヶ，9，1，141，14
－6115 DATA22 \(), 173,24,2\)（） \(8,41,24\) ， \(9,12,141\) ， 24，2 58,96

 （J8，248，96
－6145 DATA169，8r），133，78，169，51，133，79，169 ，（），133，8「），234，234，234，234，162，5，16r），（）FM

 \(6,169,8\) г ，133， \(78,169,51,133,79,169\), ，\(\quad\) AG
－6175 DATA133，81，234，234，234，234，162，5，16

 ケ，17，78，145，78，2ヶケノ，192，177，2ケ8，245，96 DE －619（）DATA169，（），133，8 8），234，234，234，234，16 \(2,5,16 r^{\prime}, r_{r}, 169, r, 145,8 r^{\prime}, 2(r), 2 r, 8,251\) JD
 92，177，2ヶر8，249，96

\section*{TOW \\ FROM PAGE 17}
－15）REM－TOWERS OF HANOI FOR COMMODORE 6 4
－2rر REM－DANIEL MILLER
－3r）REM－ 281534 STREET
－45 REM－ASTORIA，QUEENS
－5r）REM－NEW YORK，NEW YORK \(1111 \rho 3\)
－6r）REM－SEPTEMBER 1， 1983
－7r）REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
－8r）GOTO215r）
－9r）POKE53281，1：ZZ＝1：PRINTCL\＄；LEFT\＄（DO\＄， 2 ）；TAB（11）；HDG\＄；
－10ヶ）POKE55587，1ヶ：POKE1315，49：POKE55595， 1 ケ：POKE1323，50：POKE556（）3，1ヶ）：POKE1331，51 DF
 T\＄（DO\＄，9）；TAB（11）；A\＄（3）；
－12r）PRINTLEFT\＄（DO\＄，9）；TAB（19）；A\＄（3）；LEFT \＄（DO\＄， 9\() ; \mathrm{TAB}(27) ; \mathrm{A} \$(3)\)
－13「 REM－PLACE SPRITES ON TOWER \＃1
－14 1 POKEV \(+14,93\) ：POKEV \(+15,16{ }^{\prime}\) ：POKEV \(+12,93\) ：POKEV \(+13,151\) ：POKEV +15 ， 93 ：POKEV \(+11,142\) ML －15）POKEV \(+8,93:\) POKEV \(+9,133:\) POKEV \(+6,93:\) PO KEV \(+7,124\) ：POKEV \(+4,93:\) POKEV \(+5,115\)DKGMHN

KEV＋1，97
OA
－17r）IF YN\＄＝＂Y＂THENN2＝8－NUM：GOTO2 5 （r）FO
－189）IF ZZ＝r，THEN35r）
HO
－190）PRINTLEFT\＄（DO\＄，22）；TAB（8）；NUM\＄；：INPU
T NUM： \(\mathrm{N} 2=8\)－NUM： \(\mathrm{SP}=\)（）：IF NUM＝8 THEN27r）KC
－2rر）IF NUM＜2 OR NUM＞8 THENPRINT LEFT\＄（DO \＄，22）；TAB（5）；SP\＄；：GOTO19r）
－215 IF NUM＝8 AND YN\＄＝＂Y＂THEN27r） HA

－225）N4＝N2
－230 FOR X＝1 TO N4
－245） \(\mathrm{SP}=\mathrm{SP}+\)（2［UPARROW］（N4－1））
－250）N4＝N4－1：NEXT X
LG

\section*{－37r）NUM\＄＝＂＂：SLV\＄（1）＝＂＇：SLV\＄（2）＝＂＂}
－26『 POKEV＋21，（255－SP） GP
－27r） \(\mathrm{ZZ}=\)（ ）：FOR TM＝1 TO 25 \()\) ：NEXT TM：PRINTLE FT\＄（DO\＄，22）；TAB（5）；SP\＄； LF
－285）T1\＄＝＂＂：T2\＄＝＂＂：T3\＄＝＂＂：N3＝N2＋1 DB
－29r）FOR X＝1 TO NUM：T1\＄＝T1\＄＋T4\＄（X）：T2\＄＝T2\＄＋T5\＄（X）：T3\＄＝T3\＄＋T6\＄（X）：NEXT XGN
－30rs IF YN\＄＝＂Y＂THEN143r） BE
－315 FOR X＝1 TO NUM：Y＝2［UPARROW］X－1：NEXT X NG
V\＄＋G2\＄＋STR \(\$(\mathrm{Y})+\mathrm{SLV} \$(2): \mathrm{YC}=\mathrm{Y}\)NL
－33「ر PRINTLEFT\＄（DO\＄，22）；TAB（6）；NUM\＄；：FORTM＝1 TO \(2 \rho \mathrm{f} \rho \mathrm{f})\) ：NEXT TMLF
－34（）FOR TM＝1 TO 25r）：NEXT TM：PRINTLEFT\＄（D0\＄，22）；TAB（5）；SP\＄；PF
－350）PRINTLEFT\＄（D0\＄，22）；TAB（6）；F9\＄；＂［4＂＂］＂；TAB（24）；T9\＄；＂［4＂＂］＂；KAGG

－38）IF \(\mathrm{ZA}=2\) THEN42r） FP
－390）GET TWR\＄（1）：IF TWR\＄（1）＝＂＂THEN390） AO
OE
OA AL
410 IF（TWR\＄（1）＜＂1＂OR TWR\＄（1）＞＂3＂）THEN TWR\＄（1）＝＂＂：GOTO39の， FB
－42 PRINT RV\＄＋RED\＄＋TWR\＄（1）＋RO\＄； BN
－43r）GOSUB52r CL
－445 PRINTLEFT\＄（D0\＄，22）；TAB（34）；＂＂；CR\＄； DN
－46r）GET TWR\＄（2）：IF TWR\＄（2）＝＂＂THEN46r） GIR\＄（2）＝＂＂：GOTO46r
BK
－485）PRINT RV\＄＋RED\＄＋TWR\＄（2）＋RO\＄； FC
－49r）IF TWR\＄（1）＜＞TWR\＄（2）THEN51rs AJGOT0610BL
－519 GOT064 CG
－529 X＝1：GOSUB53r）：RETURN GM
－53（ر）ON VAL（TWR\＄（X））GOTO54r，56「，58「） GI
－545）IF VAL（T1\＄）＝r）THEN6rر） HL
－55r）RETURNIM
－560 \(\operatorname{IF} \operatorname{VAL}(T 2 \$)=0\) THEN6rر）
．57r）RETURN
－589 IF VAL（T3\＄）＝r，THEN6（r）
－59r）RETURN
－6rر）ER\＄＝RV\＄＋RED\＄＋＂TOWER \＃＂＋TWR\＄（X）＋＂IS EMPTY＂+ RO\＄
－61ノ FOR \(\mathrm{Y}=1\) TO 5：PRINTLEFT\＄（DO\＄，24）；TAB（ 12）ER\＄；：FOR TM＝1 TO 25ر）：NEXT TM
－62r）PRINTLEFT\＄（DO\＄，24）；TAB（12）；LEFT\＄（SP\＄ ，18）；：FOR TM＝1 TO 25
－63r）NEXT TM，Y：ER\＄＝＂＇＂：GOTO35 ，
－645 ON VAL（TWR\＄（1））GOTO65（），68（），71ر）
－65r）FOR X＝1 TO NUM：IF MID\＄（T1\＄，X，1）＝＂1＂ THEN67r）

－67r）LOC（1）＝T1（N2＋X）：T4\＄（N2＋X）＝＂rر＂：GOTO74 f）
－68（）FOR X＝1 TO NUM：IF MID\＄（T2\＄，X，1）＝＂1＂ THEN7rر）
－69r）NEXT X：LOC（1）＝16 1 ：GOTO74 ）
－7rر）LOC（1）＝T2（N2＋X）：T5\＄（N2＋X）＝＂ケノ＂：G0T074 f）
－715 FOR X＝1 TO NUM：IF MID\＄（T3\＄，X，1）＝＂1＂ THEN73f）
－72（）NEXT X：LOC（1）＝16（）：GOTO74（ر）
－730 \(\mathrm{LOC}(1)=\mathrm{T} 3(\mathrm{~N} 2+\mathrm{X}): \mathrm{T} 6 \$(\mathrm{~N} 2+\mathrm{X})=\)＂厅，
－74r）LC＝L0C（1）：GOSUB88 1 ：SP（1）＝SP

－76r）FOR X＝1 TO NUM：IF MID\＄（T1\＄，X，1）＝＂1＂ THEN78 \({ }^{\prime}\)
－77r）NEXT X：LOC（2）＝16r）：T4\＄（N2＋X－1）＝＂1＂：GO T085 \()\)
－780） \(\mathrm{LOC}(2)=\mathrm{T} 1(\mathrm{~N} 2+\mathrm{X}-1): \mathrm{T} 4 \$(\mathrm{~N} 2+\mathrm{X}-1)=\)＂ 1 ＂：GO T085 \()\)
－790 FOR X＝1 TO NUM：IF MID\＄（T2\＄，X，1）＝＂1＂ THEN819
－8rر）NEXT X：LOC（2）＝16ヶ）：T5\＄（N2＋X－1）＝＂1＂：GO T085 \()\)
－81）LOC（2）＝T2（N2＋X－1）：T5\＄（N2＋X－1）＝＂1＂：G0 T085（）
－ 82 万 FOR X＝1 TO NUM：IF MID\＄（T3\＄， \(\mathrm{X}, 1)=" 1\)＂ THEN84 \({ }^{\prime}\)
－83（）NEXT X：LOC（2）＝16r：T6\＄（N2＋X－1）＝＂1＂：GO T085 \()\)
－845）LOC（2）＝T3（N2＋X－1）：T6\＄（N2＋X－1）＝＂1＂
－85r）LC＝LOC（2）：GOSUB88 \()\) ：SP（2）\(=\) SP
－86r）T1\＄＝＂＂＂：T2\＄＝＂＂＇：T3\＄＝＂＂：N5＝N2＋1
－870，FOR X＝N5 TO 8：T1\＄＝T1\＄＋T4\＄（X）：T2\＄＝T2\＄
\(+\mathrm{T} 5 \$(\mathrm{X}): \mathrm{T} 3 \$=\mathrm{T} 3 \$+\mathrm{T} 6 \$(\mathrm{X}):\) NEXT X：GOTO96r）
－88（）IF LC＝97 THENSP＝1：RETURN
－890 IF LC＝1 1 J 6 THENSP＝2：RETURN
－9rر）IF LC＝115 THENSP＝3：RETURN
－915 IF LC＝124 THENSP＝4：RETURN
－92 ）IF LC＝133 THENSP＝5：RETURN
－930 IF LC＝142 THENSP＝6：RETURN
－94（）IF LC＝151 THENSP＝7：RETURN
－95（）IF LC＝16r，THENSP＝8：RETURN
－960 ON VAL（TWR\＄（1））GOTO97r，98（），99rر
－97r， \(\mathrm{SQ} \%=\mathrm{R} 1 \%(1, \mathrm{SP}(1)): \mathrm{R} 1 \%(1, \mathrm{SP}(1))=8: G 0 T 0\)

IM
HJ IM

10 jof
FH
－98（） \(\mathrm{SQ} \%=\mathrm{R} 2 \%(1, \mathrm{SP}(1)): \mathrm{R} 2 \%(1, \mathrm{SP}(1))=8: \mathrm{GOTO}\)
10jors

\section*{KN}
－ \(991 \mathrm{SQ} \mathrm{SQ}=\mathrm{R} 3 \%(1, \mathrm{SP}(1)): \mathrm{R} 3 \%(1, \mathrm{SP}(1))=8 \quad\) GI

－101r R1\％（1，SP（2））＝SQ\％：GOT01rs4r，IH
－1r2r R2\％（1，SP（2））＝SQ\％：GOTO1r，4r）KK
－1ノ3r）R3\％（1，SP（2））＝SQ\％EE

－1rر50 X1＝93：GOT01rر8r）DC
－1r60 X1＝157：GOTO1r，8r HJ HJ H
－107r）X1＝222
－1rر8r）ON VAL（TWR\＄（2））GOTO1rر9rر，11ヶヶ，1110 JF
－1rر9r）X2＝93：G0T0112r
－11rر）X2＝157：GOTO112r EA
－111r）X2＝222
IB
－112r REM－MOVE SPRITE OB
－113（）ON SQ\％＋1 GOTO114（ر，115（），116（），117r），11

OC
－114（） \(\mathrm{SP}=\)（）： \(\mathrm{SQ}=1: \mathrm{GOTO122} \mathrm{(}\) KL
－115r） \(\mathrm{SP}=2: \mathrm{SQ}=3: \mathrm{GOTO} 122\)（ 1 MP
－116r， \(\mathrm{SP}=4: \mathrm{SQ}=5: \mathrm{GOTO122}\) ，BD
－1179 \(\mathrm{SP}=6: \mathrm{SQ}=7: \mathrm{GOTO} 22\)（ OH
－118r） \(\mathrm{SP}=8: \mathrm{SQ}=9: \mathrm{GOTO} 122\)（ \()\) ML
－119r） \(\mathrm{SP}=1 \mathrm{r}) \mathrm{SQ}=11: \mathrm{GOTO122}\) 万 CK
－12rر） \(\mathrm{SP}=12: \mathrm{SQ}=13: \mathrm{GOTO} 22 \mathrm{r}\) CK
－1215 \(\mathrm{SP}=14: \mathrm{SQ}=15 \mathrm{JN}\)
－1220 IF VAL（TWR\＄（1））＞VAL（TWR\＄（2））THEN 12 PE
－123（）FOR YY＝LOC（1）TO 55 STEP－1：POKE V＋S P，X1：POKE V＋SQ，YY：NEXT YY

EA
－124r）FOR XX＝X1 TO X2：POKE V＋SP，XX：POKE V
＋SQ，55：NEXT XX
－125（）FOR YY＝55 TO LOC（2）：POKE V＋SP，X2：PO
KE V＋SQ，YY：NEXT YY：GOTO129r）GE
－126（）FOR YY＝LOC（1）TO 55 STEP－1：POKE V＋S
P，X1：POKE V＋SQ，YY：NEXT YY
－127ノ FOR XX＝X1 TO X2 STEP－1：POKE V＋SP，XX ：POKE V＋SQ，55：NEXT XX
－128（）FOR YY＝55 TO LOC（2）：POKEV＋SP，X2：POK
EV＋SQ，YY：NEXT YY
NM
－129r）MV＝MV＋1：PRINTLEFT\＄（DO\＄， 24 ）；TAB（17）； MV \＄＋RV \＄＋B2 \＄＋STR \＄（MV）＋RO\＄；

HD
－130ر）IF \(\mathrm{ZA}=2\) THENMW＝MW＋1：GOTO144r）：REM－ COMPUTER＇S NEXT MOVE
－131r）GOTO35（）：REM－PLAYER＇S NEXT MOVE GN
－132r REM－COMPUTER SOLUTION NO
－133（）TWR\＄\((1)=" "\) ：PRINTLEFT\＄（DO\＄，24）；TAB（7 ）；CMP\＄；
－134r）GET YN\＄：IF YN\＄＝＂＂＂THEN134r，ID
－135 IF YN\＄＝＂Y＂THEN137r，BH
－136（ 1 ）YN\＄〈＞＂N＂THENYN\＄＝＂＂＇：GOTO133 ر）JG
－137r）PRINT RV\＄＋BL\＄＋＂＂+ YN\＄＋RO\＄；：FOR TM＝1
TO 5 \(ر\) ر \():\) NEXT TM：IF YN\＄＝＂Y＂THEN142 9 JF
－138 1 fOR TM＝1 TO 1rر今ノっ：NEXT TM MJ
－139r）PRINTLEFT\＄（DO\＄， 24 ）；TAB（7）；SP\＄；LEFT\＄ （DO\＄， 24 ）；TAB（9）；EN\＄；

OD
－140ر）GET RT\＄：IF RT\＄〈＞CHR\＄（13）THEN140ر）BI
－141ヶ POKE V＋21，ノ：PRINT CL\＄；：END
－142（ \(\mathrm{SP}=\)（）：MV＝ （）：MW＝1：GOTO199r，
－143r）YN\＄＝＂＂：ZA＝2：PRINTLEFT\＄（DO\＄，24）；TAB（ 7）；SP\＄；
－144）BI\＄＝＂＂：FOR X＝1 TO 8：BI\＄（X）＝＂ケノ＂：NEXT X
－145（）IF MV＝Y（）THEN138 \()\)
－1460）CT＝FRE（「）

－148）DEC＝MW
－149（）FOR Y＝r）TO 8：IF INT（2［UPARROW］Y）\(>\) DE C THENY＝Y－1：BI\＄（Y）＝＂1＂：GOTO151ऽ，

－151ヶ DEC＝DEC－2［UPARROW］Y：IF DEC＝rノ THEN15 35）
－152r）GOTO149「
－153ヶ）FOR Y＝7 TO ヶ STEP－1：BI\＄＝BI\＄＋BI\＄（Y）： NEXT Y
－154 F）FOR X＝8 TO 1 STEP－1：IF MID\＄（BI\＄，X，1 ）＝＂厅ノ＂THENC2＝C2＋1：NEXT X
－155（） \(\mathrm{C} 2=\mathrm{C} 2+1\)
－156 1 RI\％＝C2＋NUM－1：ON NUM－1 GOTO157r，158（） ，159ヶ，16ヶرヶ，161ヶ，162「），163「）
－1575 RI\％＝RI\％＋4：GOT0164（）
－1585）RI\％＝RI\％＋2：GOTO164）
－159）GOTO164，
－16rر）RI\％＝RI\％－2：GOTO164r）
－1615 RI\％＝RI\％－4：GOTO164，
－162（）RI\％＝RI\％－6：GOTO164）
－163）RI\％＝ABS（RI\％－8）
－164 ）FOR X＝1 TO 8：IF R1\％（1，X）＝RI\％THENTW R\＄（1）＝＂1＂：G0T0167r，
－165）NEXT X：FOR X＝1 TO 8：IF R2\％（1，X）＝RI\％ THENTWR \(\$(1)=" 2\)＂：GOTO167r，
－166r）NEXT X：TWR\＄（1）＝＂3＂
－167r） \(\mathrm{L} \$=T W R \$(1)\)
－168）FOR X＝1 TO 8：IF MID\＄（BI\＄，X，1）＝＂ 1 ＂T HENC3＝C3＋1：NEXT X：GOTO17r，r）
－1690）NEXT X
－170，IF C3＞1 THEN174r，
－1710 IF VAL（T1\＄）＝r）THENTWR\＄（2）＝＂1＂：GOTO3 5r）
－172の IF VAL（T2\＄）＝r）THENTWR\＄（2）＝＂2＂：GOTO3 5r）
－1730）IF VAL（T3\＄）＝0）THENTWR\＄（2）＝＂3＂：GOT03 51）
－174（）FOR X＝8 TO 1 STEP－1：C4＝C4＋1：IF MID\＄ （BI\＄，X，1）＝＂r）＂THENNEXT X
－1750）C6＝C4
－176 FJ FOR X＝8－C4 TO 1 STEP－1：C6＝C6＋1：IF M ID\＄（BI\＄，X，1）＝＂「）＂THENC5＝C5＋1：NEXT X IF
－1775） \(\mathrm{RJ} \%=C 6+\) NUM \(-1: O N\) NUM－1 GOTO178f， 179 （） ，18ヶヶ，181ヶ，182「），183ヶ，184
－178（）RJ\％＝RJ\％＋4：GOT0185（）
－179（ RJ\％＝RJ\％＋2：GOT0185 ）
－18ヶ）GOTO185
－181（ RJ\％＝RJ\％－2：GOT0185（）
－182（ \(\mathrm{RJ} \%=\mathrm{RJ} \%-4\) ：GOTO185（）

MG •183（ \(\mathrm{RJ} \%=\) RJ\％-6 ：GOTO185（）
－185）FOR X＝1 TO 8：IF R1\％（1，X）＝RJ\％THENTX \＄＝＂1＂：GOTO188r）
－186r）NEXT X：FOR X＝1 TO 8：IF R2\％（1，X）＝RJ\％ THENTX \(\$=\)＂2＂：GOTO188 \()\)
－187ヶ）NEXT X：TX\＄＝＂3＂
－188r， \(\mathrm{M} \$=\mathrm{TX} \$ \mathrm{PH}\)
CB
－189（）LM \(\$=L \$+M \$\)
AO
-190 （r）IF \((\mathrm{C} 5 / 2)=\) INT（C5／2）OR C5＝r，THENTWR
\(\$(2)=\mathrm{TX} \$: G 0 T 01970\)
－191ノ IF LM \(\$=\)＂ 12 ＂THENTWR\＄（2）＝＂3＂：GOTO197 OC
－192 1 IF LM \(\$=\)＂ 13 ＂THENTWR \(\$(2)=" 2\)＂：GOTO197「 DC
－193 1 IF LM\＄＝＂23＂THENTWR\＄（2）＝＂1＂：GOTO197「 HA

MB－198（）REM－BUILD SPRITES FI
FM－199r， \(\mathrm{V}=53248:\) POKEV \(+21,255\) ：POKEV \(+23,255\) ： P
MC OKEV＋29，255
PE
 194：POKE2r，43，195：POKE2r 44,196 ND
 199
HH－2ヶ2の POKEV＋39，3：POKEV＋4ケ，15：POKEV＋41，13： POKEV＋42，9：POKEV＋43，14：POKEV＋44，5
216）BLK \(\$=\) CHR \(\$\)（144）：RED \(\$=\) CHR \(\$(28):\) YEL \(\$=C\)
－1945 IF LM \(\$=\)＂ 21 ＂THENTWR\＄（2）＝＂ 3 ＂：GOTO197 「 NI
－1950 IF LM \(\$=\)＂ 31 ＂THENTWR\＄（2）＝＂2＂：GOT0197r）OG
－196r）IF LM \(=\)＝＂ 32 ＂THENTWR\＄（2）＝＂1＂ EL
－1975）L\＄＝＂＂：M\＄＝＂＂：LM\＄＝＂＂：CT＝FRE（ア）：GO＇1035F0
－2rر3（）POKE V＋45，8：POKEV＋46，r， CG
－2（144）RESTORE：N （ \(=12288\) ：FOR X＝1 TO 8：FOR N ＝r）TO 62：READ Q：POKE Nr \(+\mathrm{N}, \mathrm{Q}:\) NEXT N EF
－2r）5（）N \(\mathrm{N}^{2}=\mathrm{N}(\mathrm{H}+64\) ：NEXT X NB
 ＂］＂ DP
－2r）7r）FOR \(X=1\) TO 8：T4 \(\$(X)=M I D \$(T 1 \$, X, 1): N\)EXT XFJ
EXT XMJ
－2r99）FOR X＝1 TO 8：T6\＄（X）＝MID\＄（T3\＄，X，1）：NEXT XPF
－21ヶر） \(\mathrm{Z} \mathrm{\%}=97:\) FOR \(\mathrm{X}=1 \mathrm{TO} 8: \mathrm{T1}(\mathrm{X})=\mathrm{Z} \mathrm{\%}: \mathrm{T} 2(\mathrm{X})=\mathrm{Z}\)\％：T3（X）\(=\mathrm{Z} \mathrm{\%}: \mathrm{Z} \mathrm{\%}=\mathrm{Z} \mathrm{\%}+9\) ：NEXT XPC
－2115） \(\mathrm{Y} \%=\)（ \():\) FOR \(\mathrm{X}=1 \mathrm{TO} 8: \mathrm{R1} \mathrm{\%}(1, \mathrm{X})=\mathrm{Y} \%: \mathrm{Y} \%=\mathrm{Y} \%\)＋1：NEXT XPF
－2125）FOR X＝1 TO 8：R2\％（ \(1, X\) ）\(=9: R 3 \%(1, X)=9:\)
XT XDM
－2135）IF YN\＄＝＂Y＂THEN14） OG
－214rs GOTO9r）
－2150 REM－BUILD CHARACTER GRAPHICS PHHR \(\$(158):\) B2LU \(\$=C H R \$(31):\) CY \(\$=C H R \$(159) M L\)
－217）G1REY \(\$=\)＂［ \(\left.\begin{array}{c}c \\ \text { 4 }\end{array}\right]\)＂：G2REY \(\$=\)＂\(\left[\begin{array}{ll}c & 5\end{array}\right] ":\) REM－\(C=(4)\) ；\(C=(5)\)
－218f）RV \(\$=C H R \$(18):\) RO\＄＝CHR\＄（146）HK MH－219） \(\mathrm{CL} \$=\mathrm{CHR} \$(147): \mathrm{DW} \$=\mathrm{CHR} \$(17): \mathrm{LF} \$=\mathrm{CHR} \$\)（157）－22ヶر）FOR X＝1 TO 24：DO\＄＝DO\＄＋DW\＄：NEXT X：DO\(\$=\) CHR \(\$\)（19）+ DO \＄GG
－221r）A\＄（1）＝RV\＄＋B2\＄＋＂［3r）＂＂］＂＋RO\＄ A0
2220）A\＄（2）＝RV\＄＋YEL\＄＋＂＂＋DW\＄＋LF\＄ OK
－223r）FOR X＝1 TO 1r）：A\＄（3）＝A\＄（3）＋A\＄（2）：NEXT X－2245）A\＄（3）＝A\＄（3）＋＂＂＋RO\＄NM2250）HDG\＄＝RV\＄＋WH\＄＋＂TOWERS OF HANOI＂＋RO\＄DB
－226r）NUM\＄＝RV\＄＋B2\＄＋＂NUMBER OF RINGS（2－8）＂＋RO\＄NJ
－227r）SP\＄＝＂［3rر＂＂］＂ PK
－228「）F9\＄＝RV\＄＋G1\＄＋＂FROM TOWER \＃＂＋R0\＄：T9\＄＝RV\＄＋G1\＄＋＂TO TOWER \＃＂＋RO\＄HG
－229r）CR\＄＝RV\＄＋CY\＄＋＂＂＋RO\＄ HK
23（j）SLV \(\$(1)=\) RV \(\$+G 2 \$+"\) RINGS REQUIRES＂+ R
0\＄：SLV\＄（2）＝RV\＄＋G2\＄＋＂MOVES．＂＋RO\＄ DA
－231r，MV\＄＝RV\＄＋B2\＄＋＂MOVE \＃＂＋RO\＄ FC
－2325 CMP\＄＝RV\＄＋G1\＄＋＂COMPUTER SOLUTION（Y／N）？＂+ RO\＄
AP－2330 EN\＄＝RV\＄＋G1\＄＋＂PRESS 〈RETURN〉TO END＂
＋RO\＄ KL
－234r）GOT0199r）
－235r）REM－DATA FOR SPRITES NKGC－236r REM－SPRITE
NB
－237r DATA
：REM 53 COMMASLJ
－238（）DATA \(1,255,128,1,255,128,1,255,128\)FH
－2395 REM－SPRITE 1 NA
－ 24 rors DATA
－241f DATA 3，255，192，3，255，192，3，255，192
MO
－242の REM－SPRITE 2 NH
－243 \({ }^{\circ}\) DATAMH
－2445 DATA 7，255，224，7，255，224，7，255，224 00
－245 \({ }^{\circ}\) ）REM－SPRITE 3 NG
－246r）DATAMH
45）JD
－248（）REM－SPRITE 4 NF
－249 5 DATAMH
－25（j）DATA \(31,255,248,31,255,248,31,255,2\) 48 IJ
－2510 REM－SPRITE 5 NE
－2520 DATAMH
－253「 DATA 63，255，252，63，255，252，63，255，52AB
－254 5 REM－SPRITE 6 NL
－2550）DATA MH
－256r）DATA \(127,255,254,127,255,254,127,25\) 5，254AF
－2575 REM－SPRITE 7 NK
－2589）DATAMH，，＇，，，\(,+, \cdot, \cdot\),NI
COMMOPDARES
Continued from page 84is meaningless．Jim＇s solution checked for proper syn－tax as it evaluated the input．That makes the problemquite a bit tougher．We＇ll leave that as an additional chal－lenge for those of you who found this one too easy．

The follow people who haven＇t been mentioned ear－ lier also sent solutions to February Commodares：Donald H．Graham（Baltimore，MD），Paul Sturm（Weatherford，

TX），Jesus Geliga－Torres（Aguadilla，PR），Dan R．King （High Rolls，NM），Thomas Lambert（Severna Park， MD），Richard Balliet（Nuangola，PA），Glenn Elliot （Rutherford，NJ），Robert Lackey（Albuquerque，NM）， Jack Thompson（Kirkwood，MO），Bruce Landrum（Fay－ etteville，AR），Dex Peterson（LeRoy，MI），Royce Crabtree （Madisonville，KY），and Aaron Hughart（Pocatello，ID）．

Once again，these are the people whose solutions to February＇s Commodares have reached us by the middle of February．Put on those thinking caps and get busy on this month＇s challenges．You＇ve got a lot of work to do！\(\square\)

\section*{．．．．．．COMING IN THE JULY AHOY！（ON SALE JUNE 4）．．．．．．}

\title{
SUWMERGMESII: :GHITNEWW:ISTOCO FORTHE COLD.
}

ED BEACH-HEAD - As chie commander of armed force in the Pacific. youk firs assignment is a tough one. Your mission is to obtain a guic naval victory and invade enemy territory with land forces. BEACH-HEAD I - The wartime drama continues - with "The Dictator Strikes Back. BEACH-HEAD II is a true "head to head". two player game with yoic simulation and superb multiscreen graphics. RAID OVER MOSCOW: The Soviets launch a first strike against the United States. Cari you commandos react in time to stop the attack?
```


[^0]:    - Offer valid for 90 days from date of purchase.
    " Registered trademarks of Apple Computer, Inc., International Business Machines Corporation, Commodore
    Computer Systems, and Atari, Inc.
    © 1985 Timeworks, Inc. All rights reserved.

[^1]:    Take the CompuServe Electronic Mall 15-Minute Comparison Test. What you can do in 15 minutes shopping the Electronic Mall way.

    - Access descriptions of the latest in computer printers, for instance.
    - Pick one and enter the order command.
    - Check complete descriptions of places to stay on your next vacation.
    - Pick several and request travel brochures.
    - Access a department store catalog and pick out a wine rack, tools, toys...anything!
    - Place your order.

    What you can do in 15 minutes shopping the old way.

    - Round up the family and get in the car.

[^2]:    Add $\$ 10.00$ for shipping. handling and insurance. Ilinois residents please add $6 \%$ tax. Add $\$ 20.00$ for CANADA, PUERIO RICO. HAWAII, ALASKA. APO.FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA.
    Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders, 1 day express mail! VISA - MASTER CARD - C.O.D. No C.O.D. to Canada. APO.FPO

[^3]:    Add $\$ 3.00$ for shipping, handling and insurance. Illinois residents please add $6 \%$ tax. Add $\$ 6.00$ for CANADA, PUERTO RICO, HAWAII. ALASKA. APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA. Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! VISA - MASTER CARD - C.O.D.

    No C.O.D. to Canada, APO.FPO.

[^4]:    Software Submissions Invited.

[^5]:    If you're in need of a square meal, we can't help you. But if it's publicity you're starved for, we've got just the ticket. In future issues, Ahoy! will feature a gallery of the finest computer graphics our readers can generate.
    We invite you to send your best work on disk, accompanied by a stamped and self-addressed mailer, to Morton Kevelson, P.O. Box 260, Homecrest Station, Brooklyn, NY 11229. Indicate the drawing package that was used to create the image. If you employed a bit map of your own design, indicate the appropriate file parameters, i.e., hi-res or multicolor, location of bit map, screen and color data.

    Send along your latest masterpiece today. Who knows who might be reading?

