CaMMODGRE LEERS

(2)

SUPER 64 Unthinlis!

- FILE LOCK
- START \& END ADDRESS
- go-hister
- AUTO-GEN

AHOY: DOCK
MAKE YOUR collection SHIPSHAPE!
roboostooe DRACON TYPE INPUT WITH BLAZING SPEDD

Flight SimulatorII

 as you practice takeofis, landings, and aerobatics. Complete documentation will get you airborne quickly even if you ve never fiown before. When you think you'reready, you can play the World Warl Ace aerial batte game. Filght Simulator il teatures include animated color 3D graphics a day, dusk, and night filying modes wover 80 airports in four scenery areas: New York, Chicago, Los Angeles, Seattle, with additional scenery areas available user variable weather, from clear blue skies to grey cloudy conditions momplate filght War Ace aerial battlo gamen complete liformation manual and filght handbook.

See your dealer . . .

or for direct orders enclose $\$ 49.95$ plus $\$ 2.00$ for shipping and specify UPS or first class mail delivery. American Express, Diner's Club, MasterCard, and Visa accepted.
(217) 359-8482 Telex: 206995
DEPARTMENTS
A View from the Bridge...of the September issue of Ahoy! 4
Guest Editorial by John C. Dvorak 5
Scuttlebutt...what's coming for the VIC, 64, 128, Amiga. 7
Art Gallery...picture-perfect computer art from readers. 34
Errata...corrections to past programs. 46
Commodares... we show no mercy with this month's challenges. 55
Reviews...we take the latest software for a spin. 63
Program Listings...more programs than ever before! 85
FEATURES
Rockets, Boats, \& Pigs in Pokes by Orson Scott Card* 18
Tumbling Dice \& Data Structures by Dale Rupert** 37
A Look Around the 1571 by Morton Kevelson 47
Touring the C-128 Keyboard by Morton Kevelson 51
Addressing the Commodore, Part II by Mark Andrews*** 7 Cadet's Column by Cheryl Peterson 81
*Includes programs: Pig in a Poke and Basic Sprites (for the 64)
Includes programs: Dice Simulator and Dice Analyzer (for the VIC and 64) *Includes programs: The Quest and Response (for the 64)
PROGRAMS
Invective for the C-64 by George Trepal 15
Superhero for the C-64 by James C. Hilty 17
Start \& End File Address for the C-64 by David S. Smart 17
Fish Math for the VIC 20 by Kevin Dewey 29
Ahoy! Dock for the C-64 by Glenn Lumpkins 30
Fastnew for the C-64 by Don Lewis 33
Auto-Gen for the C-64 by David A. Jones 59
Dragon Type for the C-64 by Bob Spirko 61
File Lock for the C-64 by Don Lewis 62
Go-Lister for the C-64 by John K. Lunde 73
Moxey's Porch for the C-64 by Bob Blackmer 73
Bug Repellents for the VIC \& 64 by Kleinert and Barron 85
Flankspeed for the C-64 by Gordon F. Wheat 86

[^0]Publisher Michael Schneider Editor David Allikas Managing Editor Michael Davila
Senior Editor Tim Moriarty
Technical Editors David Barron Bob Lloret
Consulting Editors Ben Bova Morton Kevelson Dale Rupert
Art Director JoAnn Case
Production Director Melissa Held Art Production Christopher Carter Mark Kammerer Eve Griffin

Bulletin Board SYSOP B.W. Behling

Circulation Director W. Charles Squires Advertising Director Lynne Dominick
Director of Promotion Joyce K. Fuchs Controller Dan Tunick
Managing Director Richard Stevens
Advertising Representative
JE Publishers' Representative
6855 Santa Monica Blvd., Suite 200
Los Angeles, CA 90038
(213)467-2266

Boston (617)437-7628
Dallas (214)660-2253
New York (212)724-7767
Chicago (312)445-2489
Denver (303)595-4331
San Francisco (415)864-3252
ISSUE NO. 21
SEPTEMBER 1985
Ahoy! (\#8750-4383) is published monthly by Ion International Inc., 45 W. 34th St., Suite 407, New York, NY, 10001. Subscription rate: 12 issues for $\$ 1995,24$ issues for $\$ 3795$ (Canada $\$ 2695$ and $\$ 4995$ respectively). Second class postage paid at New York, NY 10001 and additional mailing offices. ${ }^{\circ} 1985$ by Ion International Inc. All rights reserved. ${ }^{\circ}$ under Universal International and Pan American Copyrigit conventions. Reproduction of editorial or pictorial content in any manner is prohibited. No responsibility can be accepted for unsolicited material. Postmaster, send address changes to Ahoy!, 45 W . 34th Street, Suite 407, New York, NY 10001. Direct all address changes or matters concerning your subscription to Ahoy!, P.O. Box \#341, Mt. Morris, IL 61054. All editorial inquiries and software and hardware to be reviewed should be sent to Ahoy!, 45 W. 34th St., Suite 407, New York, NY 10001.

ore Programs than Ever Before?" Haven't we used that pitch already? Yes-on our March ' 85 cover. That issue contained 8 programs, which at the time was more than ever before. This issue contains 14 . Well-that's not entirely true. Our Rupert Report, Creating Your Own Games, and Commodore Roots columns include two programs each; so you could say 17. And if you count Flankspeed and Bug Repellent...

But let's not set the total too high. We don't want to make it impossible to top the next time we want to use the same cover blurb-which may be soon, as we add pages to your favorite Commodore magazine. (In fact, see next month's View from the Bridge for an announcement concerning an eight-page monthly addition to Ahoy!, covering the one major area of Commodore home computing that we've purposely neglected... until now!

In the meantime, our bursting-at-the-seams editorial policy makes it necessary to abridge our usual banter in order to describe the contents of this issue:

- Morton Kevelson continues his 128 opus with a detailed explanation of the new computer's keyboard and its 1571 disk drive. (Turn to page 47.)
- Orson Scott Card takes Creating Your Own Games into

Program Your Own EPROMS

- $\begin{array}{ll}\text { VIC } 20 \\ \text { C } 64\end{array} \quad \$ 99.50$

PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.

- Read or Program. One byte or 32K bytes!
OR Use like a disk drive. LOAD,

SAVE, GET, INPUT, PRINT, CMD,
OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.

- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {tu }}$ C1 gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {tw }}$.

Call Toll Free: 800-421-7731 or 408-287-0259
In California: 800-421-7748

JASON-RANHEIM
580 Parrott St., San Jose, CA 95112

a territory you've long anticipated-sprites-and provides Pig in a Poke, a complete game for children. (Turn to page 18.)

- Dale Rupert continues his series of Rupert Reports on realworld simulations with this month's Tumbling Dice and Data Structures. (Turn to page 37.)
- Old timers as well as new will find useful information on disk maintenance and buying software in this month's edition of Cheryl Peterson's Cadet's Column. (Turn to page 81.)
- Mark Andrews concludes his two-part article on assembly language addressing in this month's Commodore Roots. (Turn to page 77.)
- Fastnew will cut disk formatting time from 90 seconds to 20 -and, more important, will prevent your 1541 's read-write head from banging during the operation. (Turn to page 33.)
- Ahoy! Dock will let you organize your collection of Ahoy! and other computer magazines for easy access to any article by category. (Turn to page 30 .)
- Start \& End File Address will generate the load and end addresses of any program. (Turn to page 17.)
- Go-Lister produces a printout of all BASIC program lines called by GOTO, GOSUB, THEN, and ON statements. (Turn to page 73.)
- Dragon Type is the latest programming pearl from Ahoy! ace Bob Spirko-this one, an entertaining typing tutor. (Turn to page 61.)
- Superhero generates a variety of mazes that you must negotiate in order to protect the world from falling meteors. (Turn to page 17.)
- You may find yourself hurling some Invective of your own as our game of the same name turns the tables on you every 15 seconds, scrambling the position of the joystick. (Turn to page 15.)
- Fish Math offers multiplication practice for young children, arcade action for adults, and, best of all, a reason not to convert your VIC 20 to scrap metal yet! (Turn to page 29.)
- Auto-Gen reads machine language routines from memory and turns them into data statements. (Turn to page 59.)
- Moxey's Porch requires speed and dexterity to zig-zag around a freshly painted porch. (Turn to page 73.)
- File Lock enables you to scratchproof any program file. (Turn to page 62.)
Of course, you'll find Commodares at their frustrating best (turn to page 55); a new collection of reader-generated computer graphics in our Art Gallery (turn to page 34); reviews of products like On-Field Football, Blazing Paddles, and the Computereyes video acquisition system (turn to page 63); and Scuttlebutt, featuring all the Commodore-related news from the Summer ' 85 Consumer Electronics Show (turn to page 7).

We remind you that our soon-to-debut programming tips column is awaiting your submissions (see page 46); our bulletin board system is ready to take your calls 24 hours a day (see page 114); and our programs, in this issue and every issue, are available on disk or cassette (see page 23).
It was our aim in producing this issue (as with every issue) to provide enough material to keep you stimulated, challenged, and occupied until next month. Even better, well into next month. We won't rest until we've got you hopelessly backed up on your reading.
-David Allikas

E|DITOC|IAI.

IMAGE

A Viewpoimit by John C. Dvorak

s the success of Commodore a fad? A fluke? A freak of nature? We'll all know in the next year or so. Whatever the case, it's quite likely that Commodore will have to fight an uphill battle to make a long-term success of the nifty Amiga Lorraine computer.
Commodore has created the image of a company that makes a cheap disposable computer. When articles are written about home computers sent to the closet to die, what computer do they talk about? There is always a picture of a Commodore 64 or VIC 20 languishing amongst the old ski boots. Hey, it isn't bad-it's disposable.
Image is everything in this business, as any IBM critic will tell you. The Commodore dilemma reminds me of two stories. The first goes back to the early days - the days of the SOL-20 computer. The SOL was released in 1977 and quickly found a following of users, many of whom attached a little Northstar floppy disk drive to the machine. A perfect combination, it was a compact system with the first commercial $5^{1 / 4}$-inch disk drive. It was provided with a terrific BASIC and a nifty operating system. Above all it was simple and fairly inexpensive.
Processor technology, the company that made the SOL, wanted to do its own disk drive, so it spent a little over a year to come up with an expensive 8 -inch hard sectored clunker called the Helios. This fiasco was probably as responsible as anything for grounding the whole Proc Tech business. The key to the whole blunder of the Helios is that if the company had seen what its customers wanted (cheap $5 \frac{1 / 4}{4}$-inch disk systems) instead of what it thought it wanted (overpriced 8 -inch clunkers) it would be in business today.
To Commodore marketeers this anecdote questions the likelihood of success if Commodore changes from a company that makes disposable computers to a company that makes hi-grade machines. Let's assume it can do it. There's still the image problem.
Anecdote \#2. I once attended a focus group that showed a proposed Atari computer that was MS-DOS, CP/M, Apple, and Atari compatible. It would cost $\$ 1500$. Nobody knew who the manufacturer was. The question was asked: "Would you buy this machine if it were an IBM?" It was one of those "highly likely, likely, unlikely, highly unlikely" type questions. Everyone said "highly likely." The same question was repeated, but this time the manufacturer was Apple. Again, the answer was "highly likely." The focus group jumped to Atari and the answer became "highly unlikely." The group saw the Atari as a game computer. This was a semi-serious machine-not an Atari.
Commodore was never even suggested at this group. Where would it stand? I shudder to think. Undoubtedly, it would be rated in the highly unlikely category. This will remain the case unless Commodore changes its image.
It must begin to improve its image now. Commodore isn't the first thing that comes to your mind when you think of the word "innovation." That lack is the first thing that has to go
if the company is to survive. Words like "experimental," "insightful," "advanced," or even "well-made" do not bring to mind Commodore, either. What about words like "cheap computer" and "good deal"? Right! Commodore.
The Amiga will never be a truly "cheap computer" in the near term. It might be a relative good deal, but that's not what will sell the next generation of machines. Most users can get everything from a "good deal" to "trustworthy" and "reliable" from IBM. "Innovative" is the key word necessary for success.

Few companies have the wherewithal or opportunity to offer the public an advanced machine like the Amiga. Hopefully, the company will concentrate its marketing effort towards changing the public perception of Commodore. Hopefully it will create the right new image.
We sure don't want to see the Amiga in the closet with the ski boots, do we? \square
Mr. Dvorak is the former editor of InfoWorld magazine and writer of Inside Track, InfoWorld's industry news column.

Fischertechnik ${ }^{\left({ }^{(}\right)}$

Robotics Automat Kit For the Commodore 64, IBM \& Apple

WHITE HOUSE

DISK DRIVES C-6415411572MSD SingleMSD DualIndus GTCardco SCD-1
185.95
249.95
375.95
229.00 459.00 239.00
199.00

INTERFACES

Tymac
Connection/2K.
62.95
59.95
37.95

Cardco + G
Cardco B
OR-D
GPC w/2K 55.95
Grappler CD
PRINTER PAPER
Lazor 1000 shts. . 15.95
Lazor 2500 shts... 29.95

DISKETTES *

SKC

SS/SD 10.50 SS/DD
DS/DD 15.50
MAWELL
MD-1......... . 15.95
MD-2......... . 21.95
ELEPHANT
SS/SD 13.50
SS/DD 15.50
DS/DD 19.50
INNOVATIVE
CONCEPTS
Flip-N-File
10 3.50
15.............. . 8.50
25............ . 18.50
w/lock
50............. . 17.50
50. 23.50
ROM Holder. . . 17.50

ROM Holder. . . 17.50

KOALA
Pad Disk...... 39.95
Pad ROM 45.95
COMPUTERS
C-64 149.95

C-128 275.95

SOFTWARE *

batteries
INCLUDED
Paper Clipw/Spell Pk... 69.95
Paper Clip
Home Pack
Bus Card II.
B180 Board 59.00
32.95
124.95
99.95

BRODERBUND

Print Shop
Graphics Library
29.95
B.S. Writer
18.95
32.95

EPYX
FAST LOAD............ 23.95

PRINTER RIBBONS

MSP-10..................... 325 MSP-15 479
 CITIZEN

MSP-20...................... 469
MSP-25
EPSON
RX80......................... 219

C-64	
MPS 801.	179.95
802	208.95
803	175.95
MCS 801	314.95
DPS 1101	314.95
CITIZEN	
MSP-10	325
MSP-15	479
MSP-20	. 469
MSP-25	. 629

MANNSEMAN TALLY

249
MT 160L 495
MT 180L 595
STAR MICRONICS

CARDCO
LQ 1
LX80..
FX80
J×80.
RX100 369

FX100
C. 1 TOH

8510 A....................... 285
8510 BC1 329
8510 BC2.................... 389
8510 BP1 339
8510 SP 389
8510 SR 429
8510 SCP 459
8510 SCR 477
1550 BCD 485
1550 P...................... . . . 445
A10-20P 465
F10-40P/S
F10-55 P/S
.875
F10-55 P/S 1059
F10 Tractor 169
F10 Sheet Feeder 349

VIDEO CASSETTE $* *$

RECORDER $\mathbf{\$ 2 7 5 . 9 5}$

Symphonic VHS/Remote

- 105 Channel Cable Ready
- 14 Day / 1 Program Timer
- 12 Pre-set Channels
- Auto Rewind

Plus much, much more!

MONITORS

 AMDEK| 300G- | 19 |
| :---: | :---: |
| 300A | 129 |
| 310 A | 145 |
| Color 300 | 235 |
| Color 500 | 345 |
| Color 600 | 399 |
| Color 700 | 469 |
| Color 710 | 539 |
| TEKNIKA | |
| MJ-10 | 199 |
| MJ-22 | 285 |

XTRON
Comcolor I.
ZENITH
122................... 85.95
123..................... 75.95

BMC
Amber
82.95

Green 79.95

COMMODORE

C-1702
199.95

C-1802 204.95
C-1902 RGB 259.95
C-1901 Monchrome... 129.95
Dealers
Inquiries

DUST COVERS

MODEMS

C-1600.
C-1650.
C-1660.
C-1670.
$1670 \ldots . . .185 .95$ Tele
Cardco
44.95 MOD-1
54.95 C-64
54.95 MPP-1064 ... 65.95

Learning.

Compuserve
.49.95 Starter Kit . . . 21.95

WE CARRY A FULL LINE OF:
Batteries Inc., Broderbund, Contineal, Hess, Infocom, Innovative Concepts, Koala, LJK, Microbits, Micropose, Microtek, O.S.S., Professional S.W. Scarborough, S.S.I., Synapse, Time Works, Wico.

POLICY: No deposit on COD orders. FREE freight on all prepaid cash orders over $\$ 300$ in the continental USA. APO and FPO add $\$ 5$ per hundred. For priority Mail add $\$ 8$ per hundred. PA Residents add 6% sales tax. Defective products must have Prior RA number.
Schools net 15 .
Reader Service No. 141

> GAMES FOR C-64, C-128, AMIGA • COMMODORE DUAL DISK DRIVE \& 1200 BAUD MODEM • 3D LIGHT PEN • 20MB HARD DRIVE• RAM/ROM EXPANDER CARTRIDGE • RGB MONITOR • MONEY MANAGER • ALPHACOM \& COMMODORE PRINTERS • EDUCATIONAL RELEASES• TAX PROGRAM
 modore's PC10 and PC20 IBM clones. READER SERVICE NO. 104

SUMMER '85 CONSUMER ELECTRONICS SHOW-THE CHIPS ARE DOWN

Still bullish on the home computer market? You weren't at June's Consumer Electronics Show. The Wall Street Journal aptly described the computer software section as a "ghost town." For us, the proof of the pudding was in the carrying: the bag of Commodore-related press releases we toted back to New York weighed in at twelve pounds, less than half of what we brought home from January's show in Las Vegas.
Most vendors were modest in their offerings, by comparison to the endless arrays of software displayed at last summer's show. Particularly noticeable was the dearth of educational releases for the Commodore, long the most glutted sector of the 64 market. A number of prominent manufacturers were conspicuous by their absence. Rumor has it that Atari, which had pulled out weeks before the show, was given their booth at a negligible cost to prevent the mass
desertion the show's organizers feared their cancellation would signal.

Of course, some believe that canny old Jack Tramiel cancelled primarily to convince Commodore not to rush the announcement of their new Amiga computer, since Atari's 520ST would not be there to steal the show in Amiga's absence. By reentering as an exhibitor at the eleventh hourJackintosh and all-Tramiel left Commodore with nowhere near sufficient time to ready an Amiga presentation. Believe this tale of corporate intrigue if you will. The fact is that, even without Amiga, Commodore dominated the floor (helped by the fact that Atari wound up tucked away in a corner of the upstairs level).

While the hordes of newshungry reporters that invaded the Commodore booth were disappointed by Amiga's absence, Commodore did display a most impressive collection of hardware-almost none of it, un-
fortunately, intended for sale in North America. Among the new computers planned for the European market are the IBM PC-compatible PC10 and PC20 (pictured on this page), the Unix-compatible Commodore 900 Business Computer (a multiuser workstation), and the 128D, featuring a built-in disk drive and independent keyboard.
Of greater interest to American and Canadian readers were the following peripherals compatible with the $\mathrm{C}-128$ (and in some cases the C-64 as well), some previously announced but seen for the first time at the convention:

- The 1572 Dual Disk Drive, comprising two horizontal $51 / 4$ " drives, each reading double-sided, singledensity disks with up to 340 K (formatted) memory in C-128 mode and 410 K in CP / M mode.
- The Commodore 1670 Modem/ 1200 , utilizing VLSI technology to
deliver a 1200 -baud rate at a price expected to be under $\$ 100$. Using "AT" Hayes command protocol, the 1670 has auto-dialing, auto answer, auto speed, and auto mode selection.
- Compatible with the C-128 and C-64, the MPS 1000 Printer offers
parent to the 64 throne. Consider it one more indication of the depressed state of the home computer software business. Or as support for one last rumor-that a sizeable percentage of companies have already directed the bulk of their programming efforts to-
through a series of questions and prompts, in building the correct equation to solve a problem.

Homework Helper Writing (\$32.95) guides students through organizing and outlining their ideas for book reports, essays, and research pa-

Sakata composite/RGB hi-res monitor. READER SERVICE NO. 136
pers, then writing the text with the program's word processing and printing capabilities.
Spinnaker Software, One Kendall Square, Cambridge, MA 02139 (phone: 617-494-1200).

Four classics-based C-64 programs from Fisher-Price Learning Software (\$24.95 each):

Peter Rabbit Reading lets children 3-6 guide the famed bunny through a series of escapades, identifying consonant and vowel sounds and matching words to pictures.

Prokofiev's Peter and the Wolf Music introduces children 3-6 to the principles of music through seven games.

Jungle Book Reading teaches children 6-9 reading comprehension as they guide Mowgli the jungle boy through encounters with an assortment of animals.

The First Men in the Moon Math requires players 9-12 to help Professor Cavor solve the math problems with which the Sellenite creatures have blocked his way.

Fisher-Price Learning Software, P.O. Box 1327, Cambridge, MA 02238 (phone: 617-494-1222).
KIDWare has released 60 educational programs for the C-64, two to each tape (\$9.95) or disk (\$11.95), for children 1-16 years old. For more in-
formation contact KIDWare, P.O. Box 9762, Moscow, ID 83843 (phone: 208-882-3830).

Tales of Discovery makes the child the central character in two stories: Pirates of the Soft Seas (solve vocabulary and math puzzles to outwit pirates and find buried treasure) and Fossils Alive! (search for fossils and learn how a neighborhood looked in prehistoric times). For the C-64; \$29.95.
Scholastic Software, 730 Broadway, New York, NY 10003 (phone: 212-505-3000).

From Sierra On-Line:
Goofy's Word Factory teaches grammer via three games involving conveyor belts and a kooky machine. For the C-64; \$24.95.

Mickey's 3-in-1 (\$49.95) consists of a word processor, data file manager, and telecommunications system designed for children. For the C-128.

Sierra On-Line, Inc., Coarsegold, CA 93614 (phone: 209-683-6858).

GTMAN, HAVE S'MORE

Cardco's S'MORE (for Super Memory Optimized RAM/ROM Expansion) is a $\$ 69.95$ cartridge-based program that will provide your C-64 with 61,183 bytes of free RAM (that's including the 38,911 already present), over 60 new and enhanced BASIC commands and functions, full error trapping and automatic error help (which lists the error line and places a flashing cursor at the beginning of the program statement containing the error), full command selection, full up-down scrolling through program listings, and direct access to items normally PEEKed and POKEd.

Because S'MOREs command structure is similar to the C-128's, C-64 programmers can make use of the advanced programming techniques available on the C-128, facilitating later conversion.

Cardco, Inc., 300 S. Topeka, Wichita, KS 67202 (phone: 316-267-3807).

SYNGALC TEMPLATES

For use with the Syncalc spreadsheet for the C-64, the Syncalc Templates Disk (\$19.95) provides 22 com-
monly used forms and formulas for financial planning, budgeting, and record keeping. The disk also illustrates basic design principles for constructing or modifying special applications spreadsheets, from simple to complex.
Broderbund Software, 17 Paul Drive, San Rafael, CA 94903 (phone: 415-479-1170).

DEATH AND REVISIONS

Tax Command Planner, which is designed to let individuals test the tax effects of various financial alternatives, has been revised to account for Treasury Department proposals to eliminate many existing tax shelters. Purchasers of earlier versions can obtain the update by returning their program to the manufacturer. For new users, price of the 64 -compatible version is $\$ 49.95$.
Practical Programs, Inc., P.O. Box 93104, 625 N. Milwaukee St., Milwaukee, WI 53202 (phone: 414-278-0829).

ELECTRONIC COOKBOOK

The Electronic Cookbook lets C-64 users store, display, edit, and print recipes, 31 of which are included on the disk. Price is $\$ 20$ (Canada $\$ 25$) plus $\$ 2.50$ postage.
Arcturus Software, 2332 Palisade Dr. SW, Calgary, Alberta, T2V 3V1 Canada (phone: 403-281-1632).

KWIK-PITCH

Datamost has followed up the release of Kwik-Load! and Kwik-Write!, the first two releases in its Kwik-Ware! line of $\$ 19.95$ software for the C-64, with Kwik-Spell! (spelling checker for Kwik-Write! and other C-64 word processors), Kwik-File! (database management), Kwik-Calc! (spreadsheet), Kwik-Paint! (graphics editor), KwikCheck! (check balancing and maintenance), Kwik-Pad! (desk secretary), and Kwik-Phone! (communications).
Each Kwik-Ware! program has the Kwik-Load! fast loading program built in, and most are compatible with other programs in the series.
Datamost Inc., 19821 Nordhoff St., Northridge, CA 91324 (phone: 818-709-1202).

VIDEOGAMING COLLECTORS ITEMS

WE HAVE ACQUIRED THE REMAINING COPIES OF THE FOURTEEN RAREST ISSUES OF VIDEOGAMING AND COMPUTERGAMING ILLUSTRATED. AS REFERENCE TOOLS THEY ARE INVALUABLE AND THEY CONTAIN SOME OF THE BEST INTERVIEWS YOU'LL READ ALL YEAR. PLUS DAZZLING ORIGINAL ARTWORK THAT WILL KNOCK YOUR SOCKS OFF. ALL FOURTEEN ISSUES FOR ONIY \$15.95 (INCIUDING POSTAGE AND HANDLING; OUTSIDE THE U.S. ADD $\$ 6.00$).

ISSUE \#1 Aug. '82 How Tron was made, in 7 color pages! 82 's biggest arcade flops! Activision's Jim Lovy! Hooking your system into your stereo amplifier!

ISSUE \#2 Oct. '82

 Isaac Asimov praises videogames! How computers workl Grid star on foctoallvideol Conquering Pick Axe videol Conquering Pick Axe
Fete, Donkey Kong. Turba! ISSUE \#3 Dec. ' 82 E.T's on home videol Computers and the occult! How vidoogames are developed: Clift Robertson and Atari. Conquering Zaxxon, Piffill! ISSUE \#4 Feb. '83 Star Wars in film and video. Radio's Don Imus and David (Darth Vader) Prowse inter. viewodl first 30 gamel Conquering Kangarool
ISSUE \#5 April '83 Stan loe, creator of Spider. manl Astronaut defonds vid. eogamesl Computer guide! lawyer tells how to protect your game program!
ISSUE \#6 June ' 83 Ray Bradbury speaks! Star Trex gamesl Electronic Dungeons and Dragons! The Applel Conquering Spider Fighles Moon Patrol, Phoenix! ISSUE \#7

July ' 83 Atari v. Coleco, in gameplay and in court! Future of the 2000. Videogame peripher avering Golaxian, Popeye!

ISSUE \#8 Aug. '83 Coleco's Adaml Video dev. ils of the deepl Computer language made simple! Mattel y Magnavox! The Book of Videogame lists!
ISSUE \#9 Sept. '83 Traditional education bytes it: Pinball's comeback! Book of Videogame Lists continues! Joystick repair! Conquering Robot Kank, Sinistar!

ISSUE \#10 Oc. ' 83

 Uncensored videogames! Gan Geonem and lindsay Dan Gedet Player's tips on Mario Brothers!ISSUE \#11 Nov, '83 Intellivision and Odyssey on
the ropes! laserdiscl Video. the ropes! laserdisc! Video Dave Ruckert! Conquering Moonsweeper!
ISSUE \# 12 Dec. ' 83 Coleco's Adam Bombi The fall of Imagic! Chuck E. Cheese! Video Valhalia! Conquering Cosmic Chasm, Rabbit Transit, Subroc!
ISSUE \#13 Jan. '84 Predictions '841. Steve Kitchon interviewod 5200 controllers! IBM's PCir! Word processorsl Conquering Jron,
Spoce Due, Motorace USA
ISSUE \#14 Feb. '84 The best of VCl , including: conguering the eight most chalenging games of al timel Making of pinball ma-
chines) Computers in orbitl
COLLECTO INC.
P.O. BOX 1019

BRYN MAWR, PA 19010

King's Quest
II: Romancing the Throne (from Sierra On-Line, Inc.) is to our knowledge the first game announced for Commodore's Amiga computer: A C-128 version will also be available.
READER SERVICE NO. 137

GAMES FOR THE 64, 128, AMIGA

Two graphics-and-text adventure games from Spinnaker's Telarium subsidiary:

Perry Mason: The Case of the Mandarin Murder takes place in the courtroom, where the player can do everything a courtroom lawyer might, from cross-examining and introducing evidence to consulting privately with the judge. The degree of characters' cooperativeness varies as a result of the player's interaction with them.

Based on the series of science fiction novels by Roger Zelazny, Nine Princes in Amber enmeshes the player in negotiation, politics, and alliances as, in the role of the prince Corwin, he battles his brothers and sisters for the throne of Amber. Again, the game's outcome depends heavily upon the player's interaction with the other characters.

For the C-64; \$32.95 each.
Telarium Corp., One Kendall Square, Cambridge, MA 02139 (phone: 617-494-1200).

Lode Runner's Rescue casts the player as Alexandra, daughter of the original Lode Runner who is being held prisoner deep underground by the evil Bungeling Empire. She must negotiate 46 mazes on her way to free her father. Of course, included is a game editor that lets the player construct an unlimited number of mazes full of elevators, trap doors, en-
emy guards, and rushing rivers. For the C-64; \$29.95.

Synapse Software, 17 Paul Drive, San Rafael, CA 94903-2101 (phone: 415-479-1170).
Assorted new C-64 releases from

Gato: a C-128 submarine simulation. READER SERVICE NO. 138

Winter Games features six sports, including ski jumping, a ski biathlon and hotdogging, speed and freestyle events, and a bobsled race.

The World's Greatest Football Game allows coaches to develop their own plays or customize existing ones, and store up to 120 of them in a playbook. The action can be viewed from a sideline, bird's-eye, or closeup view. Joining Ballblazer and Rescue on Fractalus!, previous releases in Epyx's Lucasfilm Games Division:

The Eidolon, centering around a 19th century machine that taps psycho-kinetic forces, transporting the player to a magic realm of caverns populated with Trolls, Greps, and Guardian Dragons; and Koronis Rift, compelling the player to wrest the secrets of the ancients from a genetically engineered race of guardians that outlived their creators.
Jet Combat Simulator recreates actual flight situations that confront an F-15 pilot, including cross-wind turbulence and blind landings. Four options let the player progress from landing practice to air-to-air combat.

The components of the Temple of Apshai trilogy-Temple of Apshai, Curse of Ra, and Upper Reaches of Apshai-will be sold together for the price of a single game.

All of the above Epyx games will retail for $\$ 29-\$ 35$ (except Jet Combat Simulator and the Apshai trilogy - \$19-\$29).

Epyx, Inc., 1043 Kiel Court, Sunnyvale, CA 94089 (phone: 408-745-0700).

New for the 64 from Activision:
As Hacker begins, the player has broken into an unknown computer system that conceals a mystery. With no background information, no rules, and no clues, he must find out whose system he's hooked into and what's going on.
Fast Tracks: The Computer Slot Car Construction Kit lets the user build a race course piece by piece from a variety of types of track sections, view the course as a whole, and then race his own custom-designed car. Favorite courses can be saved to disk for future use.

Though certain to bring a sneer to Orson Scott Card's lips, Garry Kitchen's Gamemaker: The Computer Game Design Kit joins the ranks of programs that make it possible to create games without programming knowledge. The user selects characters (rocket ship, running man, etc.) from a menu, along with their speed and direction, background, sound effects, and music.
Activision, Inc., 2350 Bayshore Frontage Road, Mountain View, CA 94043 (phone: 415-960-0410).

Three new C-64 simulations from MicroProse, each \$34.95:
Acrojet, The Advanced Flight Simulator, for computer pilots whove won their wings in Solo Flight, offers a Decathlon of Sport Aviation events, including spot landings, ribbon cuts, acrobatics, and other high performance maneuvers.
Gunship, The Helicopter Simulator, simulates operation of the new AH-64 Apache attack helicopter and features multiple weapon and navigation systems.
Silent Service, The Submarine Simulation, provides a selection of historical scenarios from single ship attacks to multipatrol missions with graduated enemy skills.
MicroProse Software, 120 Lakefront Drive, Hunt Valley, MD 21030 (phone: 301-667-1151).
C-64, C-128, and Amiga releases from Sierra On-Line:
Gato, a submarine simulation previously released for IBM and Apple, will be converted to the $\mathrm{C}-128$. The game transforms the player into a World War II sub commander, prowling the Pacific in search of the Japanese Imperial Fleet. Price: $\$ 39.95$.
King's Quest II: Romancing The Throne, featuring 3D animated graphics, will be available in $\mathrm{C}-128$ and Amiga versions. Price: $\$ 49.95$.
Stunt Flyer ($\$ 39.95$) will let C-64 users pilot a Pitts Special through a number of aerobatic sequences.
The Black Onyx (\$39.95) takes C-64 adventurers down into a dungeon maze, then to the top of a mysterious tower.
Sierra On-Line, Inc., Coarsegold, CA 93614 (phone: 209-683-6858).

COMPUTER RACK SYSTEM

Designed for Commodore systems, the Hi-Rise computer/printer stand ($\$ 39.95$) will allow users to store their C-64 or VIC 20 monitor, printer, and disk drive (or printer paper) in less than two square feet of desktop space. Crafted of solid oak, it's a sure bet to outlive the rest of your configuration.

Unique Wood Products, P.O. Box 52, Mankato, MN 56001 (phone: 507-625-5123).

BIC ROGERS?

The Space Pen input device differs from other light pens in its ability to detect the third dimension, or " Z " axis, enabling the user to operate in a six foot area in front of the computer display. While no software currently available can utilize this capability, the pen will work in two dimensions with all touch tablet paint programs and an assortment of popular packages.

C-64 or VIC 20 version \$150, Amiga version $\$ 175$, including sampler software.
Soniture, Inc., 480 Vandell Way, Campbell, CA 95131 (phone: 408-866-4616).

Space Pen detects third, or Z, axis. READER SERVICE NO. 139

Hi-Rise stand: sturdy and practical. READER SERVICE NO. 140

GIANT HEAVY DUTY INFLATABLE BOATS 2 MAN \$38 3 MAN \$50 4 MAN \$65
 Before Midnight

 For The Next 30 DaysAs part of an advertising test, Dunlap Boat Mfg. will send any of above size boats to anyone who reads and responds to this test before the next 30 days. Each Boat Lot No. (Z-26 PVC) is constructed of tough high density fabric (resistant to abrasions, sunlight, salt \& oil), electronically welded embossed seams, nylon safety line grommeted all around, heavy duty oar locks, 3 separate air chambers for extra safety (4 air chambers in 4 -man), self-locking safety valves, bow lifting \& towing handle and are recommended for marine, ocean and fresh water recreation, camping, fishing or a family fun boat. Each boat will be accompanied with a LIFETIME guarantee that it must perform 100\% or it will be replaced free. Add $\$ 7$ handling \& crating for each boat requested. Dunlap Boat Mfg. pays all shipping. If your order is received within the next ten days you will receive FREE a combined hand/foot inflator/deflator bellows style pump for each boat requested. Should you wish to return your boat you may do so for a full refund Any letter postmarked after 30 days will be returned. LIMIT three (3) boats per address, no exceptions. Send appropriate sum together with your name and address to: Boat Dept. \#341B, Dunlap Boat Mfg., 2940 W. Pico Blvd., Los Angeles, CA 90006. Or for fastest service from any part of the country call 1-800-824-9988 for Boat Dept. \#341B (Calif. residents call collect 213-735-9363), before midnight seven days a week. Have credit card ready.

Reader Service No. 106

10-20 MEG HARD DRIVE

If you can live with the irony of spending $\$ 100$ for your computer and 15-30 times that for a storage device, Fiscal Information has the peripheral to fulfill your most extravagant fantasies. Lt. Kernal, a hard disk drive for the C-64, will access data up to 43 times faster than the 1541 (though compatible with it in most applications). The drive also provides 34 additional or enhanced system commands, autoboot of a selected program, built-in CP/M-like command features, up to 10 logical drives, and the ability to keep up to seven files open simultaneously. Mass and archival backup and restore facilities are available.
10MB version $\$ 1595$; 20MB, $\$ 1995$. Streaming tape option, which backs up 10 megabytes in 2 minutes, if $\$ 1525$.
Fiscal Information Inc., 143 Executive Circle, Daytona Beach, FL 32014 (phone: 1-800-874-1890).

TELECOM NEWS

General Electric is offering two hours of access to CompuServe's executive information service with the purchase of a $\$ 99.95 \mathrm{GE}$ telephone modem, model 3-8200 (see May '85 Scuttlebutt, page 9).

General Electric Company, Electronics Park, Syracuse, NY 13221 (phone: 315-456-2446).

BRKTHRU gives the user access to over 65 databases covering business and finance, science, medicine, education, general reference, and more. Cost is $\$ 75$ to sign up ($\$ 25$ credit) plus usage charges ranging from \$17.50-\$125 an hour.

BRS Information Technologies, 1200 Rt. 7, Latham, NY 12110 (phone: 518-783-1161).

SCREENPLAY REBATES

Software Resource Group will offer a $\$ 5$ rebate direct to the consumer on purchase of all Screenplay and Brown Bag Software.
Software Resource Group, 1095 Airport Road, Minden, NV 89423 (phone: 702-782-9731).

PRINT SHOP GRAPHICS

The Graphics Library, Disk Two, like the previously released Disk One, provides additional designs, symbols, and pictures for use with The Print Shop, this time in the categories of Jobs, Hobbies, People, Places, Travel, and Health. For the 64; \$24.95.
Broderbund Software, 17 Paul Drive, San Rafael, CA 94903-2101 (phone: 415-479-1170).

MAKE YOUR OWN KIND OF MUSIC

The two latest additions to MasterSoft's Mastery in Music series, Trumpet Master and Clarinet Master, let the student personalize his practice music with his choice of key and time signatures, note type, and note range. Instant access to music facts and fingerings is always available. Scales, thirds, and intervals in every major key are included. For the C-64; $\$ 49.95$ each.

MasterSoft, P.O. Box 1027, Bend, OR 97709 (phone: 503-388-7654).

A FIRST FROM JUKI

Juki's first dot matrix printer, the 5510 , churns out type at speeds ranging from 30 cps (near-letter quality mode) to 180 cps (draft mode). The printer's bidirectional, logic-seeking system combines a 9 " platen with assorted printing width capabilities. Included is a built-in tractor, 3 K buffer (expandable to 15 K). Suggested retail price is under $\$ 500$.

Additionally, Juki has extended its current customer service warranty on all its microcomputer printers to one year from date of purchase.

Juki Office Machine Corp., 299 Market St., Saddle Brook, NJ 07662 (phone: 800-932-0590).

MORSE CODE TUTOR

$I M C T$ offers a tutorial in International Morse Code, and a training program to increase your code speed from 1-25 words a minute. For the 64 ; $\$ 18.95$ (PA residents add 6% sales

tax).
AC3L Software, P.O. Box 7, New Derry, PA 15671.

ACTIVISION RELEASES

Two non-games for the C-64 from Activision:

The Complete Computer Fireworks Celebration Kit lets patriots create fireworks displays, add music and special messages, and turn their displays into computer greeting cards.

Alter Ego allows users to vicariously experience life as someone else, building a unique personality through reactions to a variety of emotional, physical, and other situations.
Activision, Inc., 2350 Bayshore Frontage Road, Mountain View, CA 94043 (phone: 415-960-0410).

BOOKS

The Greatest Games: The 93 Best Computer Games of All Time (by Ahoy! reviewers Dan Gutman and Shay Addams) reviews 93 games in 18 categories. Price is $\$ 9.95$.
COMPUTE! Publications, Inc., 324 W. Wendover Ave., Suite 200, Greensboro, NC 27408 (phone: 919-275-9809).
The latest edition of the Sofisel Product Encyclopedia, covering more than 3,000 software and hardware products in its 334 pages, is available for $\$ 29.95$.
Softsel Marketing Dept., P.O. Box 6080, Inglewood, CA 90312 (phone: 714-640-7375).
Problem Solving in BASIC with the Commodore 64 consists of a book and a 30 -minute videotape that take the user on a tour of top-down programming on the 64. Price is $\$ 59.95$.
Hayden Book Company, 10 Mul holland Drive, Hasbrouck Heights, NJ 07604 (phone: 201-393-6306).
Marketing Your Software (\$16.95) offers a 26 -step plan, from defining objectives and analyzing competition to investigating distribution and designing packaging.
Addison-Wesey, General Publishing Group, Reading, MA 01867.

Graphics Library: pix for Print Shop.
 READER SERVICE NO. 150

VIC-2O and C64 are registered trademarks of Commodore Business Machines, Inti.

Sensational Prices!

 On Our Most Popular Items!
Introducing
 THE 99¢ DISKETTE

Are you paying too much for diskettes? Try our first quality, prime, $5 \frac{1}{4^{\prime \prime}}$ diskettes (no rejects, no seconds) at these fantasic sale prices and save save, SAVE! Disks are packaged in boxes of 50; each box contains 5 shrink-wrapped 10 -packs that include diskettes in sleeves, labels, and writeprotect tabs.
Each diskette is certified to be 100% error free and comes with a lifetime warranty (if you have a problem, we'll replace the diskette). All diskettes include hub reinforcement rings and writeprotect notch.
All diskettes are double density and work in either single or double density drives.
SS, DD Diskettes, Box of 50
32391
\$49.50-s99с ea.!
DS, DD Diskettes, Box of 50 32403
\$64.50-s. 29 ea.

The Most Complete Disk Drive You Can Buy

Includes Word Processor, Spread Sheet, and Data Base Manager

INDUS GT

ONLY ${ }^{\mathbf{3}} 259$
State-of-the-art disk drive for C-64 and VIC-20 features LED sector indicator, electronic write-protect, built-in wedge, and operating speeds up to 400% faster. Package includes cables and power supply, carrying case that doubles as a disk storage file AND software starter package featuring word processor spreadsheet, and database manager program! FULL YEAR PARTS AND LABOR WARRANTYI!

CARTRIDGE EXPANDER

Plus ${ }^{22} .95$
FAST LOAD OFFER!
Stop wearing out your computer and cartridges by endiess swappingl New design cartridge expander features two cartridge slots. Select either cartridge, or the "off" position it no cartridge is to be used. Reset the computer independently of the power swich. Cartridge slots are vertical for easy access-no blind fumbling behind the computer. 34220 2-Slot Cartridge Expander
$\$ 19.95$
The cartridge expander is a great companion for the Epyx Fast Load cartridge-you can keep it permanently installed plus have a slot free for

34216 Fast Load Cartridge (Sug. Retail 134.95) $\$ 29.95$ Fast Load ONLY \$22.95
with purchase of cartridge expander!

LOWEST PRICES!

We can offer you some of the lowest prices in the country on the most popular printers, monitors and interfaces. Our normal prices are already ow, but to make sure you get the best deal you can, we will also meet most competitive prices in this publication when placed on an equal basis (Remember-we don't charge for use of your credit card, impose excessive shipping lees, or use any other hidden extras to boost the price you pay paid for.

Due to the rapid change in prices in the computer industry, we can only meet prices at the time you place your order; we cannot adjust prices on items ordered or shipped on an earlier date.) Another plus for charge card customers-your charge card is billed at time of shipment only for the items shipped-no early billing, no long wait for the merchandise you already

* THE BEST PRICES * THE BEST SERVICE * WHY SHOP ANYWHERE ELSE?

BMC
AXIOM
CARDCO

COMPUTEREAGTS TM trom SAMs

Technical Service Data for
Your Computer and Peripherals
Sams introduces COMPUTERFACTS ${ }^{\text {TM }} \ldots$....packets of information that reveal the
 inner workings of major brand micros, monitors, printers and disk drives. Includes schematic wit.
33477 Commodore 64 Computer 33513 VIC-20 Computer
33496 Commodore 1525 Printer
33508 Commodore C16 Computer
All packets 33551 Commodore Plus/4 Computer 33481 Commodore 1541 Disk Drive
33546 Commodore 1701 Monitor
s17.95 each

GRAPHICS PRINTER INTERFACE
 The PPI (Parallel Printer Interface) from DSI is a highperformance graphics printer interface for your Commodore 64 or VIC-20, offered at an unbelievable price! The PPI fully emulates a Commodore printer so that all software written for Commodore computers and printers can be run with the PPI and most any parallel printer. Print true Commodore graphics and alpha-numerics as well as any special character sets offered by your specific printer. Works with Star, Epson, BMC, and many more. Comes complete with all necessary cables for quick installation and includes easy-to-follow user's manual.
 33565 Parallel Printer Interface
 s 44.95

DUST COVER and "EVERYTHING BOOK" INTRODUCTORY SPECIAL

Get to know us by ordering this great dust cover for your VIC-20 or Commodore 64 and our catalog. "The Everything Book for the Commodore C. 64 and VIC-20 Home Computers," for \$295 (no extra shipping or handling charges). Cover is antistatic, transluscent, 8 gauge vinyl sewn to our exacting standards with reinforced seams. Discover the savings and easy shopping avail. able from Tenex Computer Express!

USE SINGLE SHEETS IN YOUR TRACTOR FEED PRINTER WITH

PAPER TRACTOR *

Paper Tractor carries ordinary sheet paper through your tractor-feed printer!
Simply place your letterhead, checks, invoices, forms, even legal-size sheets into the durable flexible plastic carrier and feed into your adjustable tractor-drive printer. Works with any printer, carries any paper.

22084
s11.95

From Your Friends At TENEX
ter

We gladly accept mail orders!
P.O. Box 6578

South Bend, IN 46660
Questions? Call 219/259-7051

SHIPPING CHARGES ORDER AMOUNT CHARGE less than $\$ 20.00$ $\$ 20.00-\$ 39.99 \quad 4.75$ $\$ 40.00-\$ 74.99 \quad 5.75$ $\begin{array}{ll}\$ 75.00-\$ 149.99 & 6.75 \\ \$ 150.00\end{array}$ \$150.00-\$299.99 $\quad 7.75$
\$300 \& up

VISA:

NO EXTRA FEE FOR CHARGES
NO HIDDEN EXTRAS
ORDER TOLL FREE
1-800-348-2778

INVECTIVE - for the C-64

By George Trepal

Invective isn't like any other game you've ever played. Nothing chases you and you're not shooting at anything. You simply move around the game board collecting points by snapping up green figures at 10 points each.
Of course there's a catch. The joystick is scrambled so that what used to move up now moves perhaps left, what used to move left now moves perhaps right, etc. The joystick is scrambled every 15 seconds to a new randomly chosen configuration. If you bump a blue figure the joystick gets rescrambled and you lose 20 points. If you bump a yellow figure you lose 50 points.
In the first 15 seconds of the 90 second game, the joystick operates normally. After that it's hard going all the way, since everything is against you. You'll be lucky to make a score as high as zero the first few times you play Invective.

That's all you need to know to play. From here on I'll just ramble about technical matters.

When you type Invective there is no need to copy the blank lines or REM statement lines.

Line 430 tells the computer to scramble the joystick every 15 seconds. If you'd like a different number of seconds, substitute your number for 15 at both places in the line. Line 680 limits play time to 90 seconds, which is expressed as 130 (for 1 minute 30 seconds) in the line.
Lines 750 to 850 tell you how the joystick has been scrambled. The game is much harder if you don't have this information, so you might want to leave it out. The easiest way to do this is to change the command to print brown letters to a command to print medium gray letters. Since the background is medium gray the letters will be invisible. The print brown (Commodore key and 2 key) is in line 750 and is easy to change to print medium gray (Commodore key and 5 key).

You may be wondering how the joystick can be scrambled. The normal way to use the joystick is to first get the value in the joystick address (location 56320). This value is then ANDed with 15 to get rid of the meaningless first four bits of the byte. The result is then subtracted from 15. A result of 0 means no change, 1 means up, 2 means down, 4 means left, and 8 means right. So far that's all by the book and all that remains is IF state-
ments. If the value is 1 move up, if 2 move down, and so on. But what would happen if we told the computer to move right instead of up when the value was 1? Answer: it would work just fine.

The values on how to move are held in the J() array and the pointers relating the J() values to the joystick are in the SA() array.

Lines 690 and 700 shuffle the SA() array. The algorithm starts with the first element of an array and exchanges it with a randomly chosen element of the array. It then repeats the process with the second, third, etc. elements. This technique is useful for computer card shuffling.

SEE PROGRAM LISTING ON PAGE 112

Nohody copies better!!

Since November 1984, Mr. Nibble has successfully copied heavily protected diskettes for grateful C-64 owners!

The next generation in archival methods is here today!

- No better disk copier at any price
- Easy-to-use - no complicated instructions
- Totally automatic - no knowledge of DOS required
- You'Il LOVE MR. NIBBLE** it not. return within 10 days for full refund

Own THE FINEST DISK COPIER SYSTEM for The C-64 and 1541 disk drive - Order today!

FULL CIRCLE SOFTWARE, INC. P.O. Box 1373 Dayton, Ohio 45401
Phone (513) 223-2102

Special MSD Version now available!

G-64 and 128* OWNERS:

Now You too can get the "Software Edgel"

Do you know the full contents of all your Disks in your Software Library?

Stop playing "Hide-and-Seek" with your Disk software! Let your Commodore $64^{\text {m }}$ "memory" do all the work for you. Easy Manual and Program Menu-Screens make everyone a "pro" in 1 day!

Here's a small "PEEK" at SOME of the FULLY-INTEGRATED POWER of PRODUCTIVITY at your fingertips. . .

MASTERDISK®:

- a SORTED Master Catalog of ALL your Disks (even those un-listable "protected" Directories: Names, ID's, File info, etc.)
- Search + List any File/Disk/ID in seconds, automatically, in any of SEVEN WAYS.
- Transfer ML-Programs or Files from Disk to Disk (CATEGORIZE your software)
- Stop disaster before it strikes: change duplicate ID's fast, without total re-copy.
- Restore accidentally-scratched files in a flash, with VERIFICATION that they're OK.
- Works with 1 or 2 Single Disk Drives (1541, MSD, etc.) with or without Printer (Commodore or ASCII).
- Handy-Reference Card for HEX/ASCII/ BINARY-TO-DECIMAL VALUE TRANSLATION + FORMULAS, included FREE.
All this + MUCH MORE, for just \$34.95. (U.S.A.), \$45.95 (Canada)
*MASTERDISK ${ }^{\circ}$ and MASTERDUAL® are also compatible with the NEW C-128 (in C-64 Mode)!
Don't MESS with anything LESS! OUR CUSTOMERS WRITE:
"Been meaning to write and let you know how much l've enjoyed it . . . So, let me say that MASTERDISK is EXCELLENT." - Middletown, NY
". . . just the thing I need." - APO, NY (Germany) "Hope to get my [MASTERDISK] yesterday." - Maple Grove, MN
"I am impressed with your product and would like to be able to endorse it for TPUG." - Ontario, Canada " . . . nothing else even comes close!" - Burlington, IA

We ship within 24 hours! Send Money Order or Check to:

INTEGRATED-SOFTWARE SYSTEMS
P.O. Box 1801, Ames, IA 50010

VISA/M.C./C.O.D., CALL (515) 233-2992
$9 \mathrm{am}-9 \mathrm{pm}$ (Central Time) Mon. Fri.
Add $\$ 3$ Shipping/plus $\$ 2$ Foreign, C.O.D. IA Residents add 4\% Sales Tax.

IN CANADA: Gricket Distribution Co.,
P.O. Box 953, Cobourg, Ontario, Canada K9A 4W4 VISA/M.C./C.O.D., CALL (416) 372-3692

9 am - 6 pm (Eastern Time) Mon.-Fri. Add \$3 Shipping/plus \$2 C.O.D.
Ontario Residents add 7\% Sales Tax

SUPERMER• for the C-64 By James C. Hiliy

Ameteor storm has caused the space shuttle to move off course and rapidly gain altitude. Upon reaching an altitude of 800 miles, the shuttle will be lost forever. The only hope of saving it is you, the Superhero. You must destroy 10 golden meteors before the shuttle reaches 800 miles. But beware-hitting the green Zyptonite meteor will render you powerless and the game will end.

The game opens with the title screen, then a graphics chart depicting the Superhero, the space shuttle, and the meteors. The playing screen incorporates a randomly drawn maze. The Superhero character is at the upper right of the maze, while a Zyptonite meteor is at the upper left. A joystick in Port 1 allows you to move Superhero while he tries to get the 10 gold meteors which are placed along the maze. The Zyptonite meteor moves randomly throughout the maze. Colliding with the Zyptonite meteor finishes you off.

The altitude is constantly displayed along with the score. If the shuttle reaches 800 miles, the game is over. Each meteor you destroy is worth 10 points. Getting all 10 of the meteors before the shuttle reaches 800 miles gives you bonus points, lowers the altitude, and allows you to progress to a new maze.

The running Superhero figure and the space shuttle in the maze cutouts are sprites which react to the different conditions going on in the maze.
The main loop (lines 870-950) uses a machine language joystick routine to move the Superhero character. The Superhero in the maze cutout is animated by POKEing different values into SPRITE 0's memory pointer. A replay option is incorporated at the end of the game. \square SEE PROGRAM LISTING ON PAGE 101

START \& END
 FILE ADDRESS for the C-64 By David S. Smart

As well as giving the start or load address of a file, this little program will give the length of a file and the end address.
The program begins by initializing the disk and then requesting the name of the file to check. It will then give the start address in both hex and decimal and continue on to read in the file. It then gives the length of the file in bytes and finally the end address in hex and decimal.

If you have another program residing in the cassette buffer, the machine language portion of this one can be easily relocated.

SEE PROGRAM LISTING ON PAGE 109

SIOPTHESPREAD
 ofadenilynus.

Quick. Deadly viruses are rapidly multiplying. If you don't act fast, they'll infiltrate your entire bloodstream. And in seconds it'll be over. So blast the invaders with interferon. And annihilate them with macrophages. With Cell Defense, you control your own immune system. You'll discover basic concepts in biology. And explore exciting scientific strategies. While at the same time, leading an attack against a host of deadly viruses. So get yourself the science simulation game Cell Defense. Your life may depend on it.
CELL DEFENSE BYHESWARE

Suggested Retail $\$ 14.95$

CONTACT YOUR LOCAL DEALER OR ORDER FACTORY DIRECT:
HESWARE P.O.BOX 631 S. SAN FRANCISCO, CA. 94083-0631 ADD $\$ 2.00$ FOR POSTAGE AND HANDLING, VISA AND MASTERCARD AVAILABLE.

PUSH AIITHE RIGHT BUTIOISAND YOUCOULI BE THE MEXT AMERICAN IN SPACE.

The race for space is not a game. It's a reality. That's why we developed a program that will challenge your ability. Expand your mind. And keep you fascinated for hours. Project Space Station is the most sophisticated way to learn to design and operate a space station. You'll even use the elements of the actual process NASA uses in their design. You can take on the mission yourself, or bring along your family and friends. So get working on Project Space Station today. America's astronauts are counting on you.

PROJECT SPACE STATIOH"BY HESWARE

Suggested Retail
$\$ 24.95$

CONTACT YOUR LOCAL DEALER OR ORDER FACTORY DIRECT:
HESWARE P.O.BOX 631 S. SAN FRANCISCO, CA. $94083-0631$
ADD $\$ 2.00$ FOR POSTAGE AND HANDLING, VISA AND MASTERCARD AVAILABLE.

How to use sprites effectively in your Commodore 64 action games - including Pig in a Poke, a simple children's game that uses sprite movement, shapechanging, and collision detection.

n case you're one of those people who always wanted to grow up to be a swineherd, this is your lucky day. The program Pig in a Poke, included with this issue of Ahoy!, is just what you've been waiting for.
If, on the other hand, you're a nearly normal adult, you'll find that Pig in a Poke is not exactly challengingit's about at the ability level of a four-year-old.

But that's all right. Four-year-olds need games, too.
And for those of you who are a bit older, the program is a clear demonstration of how to use sprites in game programming. It's very simple, using only one sprite and two sprite shapes, with the player able to control only horizontal movement. But by the time you're through studying the program, you'll know how to create sprites, move them, do shape-flipping, detect collisions, and make the sprite interact with the playfield and the player's instructions. And that's not bad for a simple program about a cute little pig trying to avoid the butcher's shop.

HOW TO PLAY

Once the program has finished setting up, you'll have a little pig on a grassy field. However, the robot swineherding machinery is in action, with moving fences sweeping across the field, trying to herd the pig toward the top of the screen.

You are the pig. All you have to do is run from side to side to avoid those fences. If they touch you, they'll push you upward, toward the top of the screen; but if you stay in the gaps between the fences, you'll be safe. Eventually, after fifty fences have gone by, the swineherds will give up and you'll be safe.

You control the pig by pressing the SHIFT key to move right and the COMMODORE key to move left. If you want to quit the game early, press SHIFT, COMMODORE, and CTRL all at the same time.

The game will end when fifty fences pass by; when you press SHIFT/COMMODORE/CTRL; or when the pig reaches the top of the screen.

WHY ARE SPRITES SO GOOD?

The pig is, of course, a sprite. But there wasn't anything I did with that pig that couldn't be done with custom characters, was there?
Shapes and Sizes. Certainly the shape of the pig could have been duplicated with custom characters-six characters, in fact, to make the whole shape. That's because ${ }_{\sigma}^{5}$ the pig is made out of 10 rows of dots, 23 columns wide. ${ }^{*}$ Since each character is eight dots by eight dots, it would . take six whole characters to make the pig shape, two rows of three characters.

By Orson Scott Card

HAS EVARIMHNG!

The sprite can even be bigger than the pig. While the maximum width of a sprite is 24 dots, it can be up to 21 rows in height-more than twice as tall as my little pig.

Furthermore, the 64 allows you to change the size even more. You can double the sprite's width, or its height, or both. When you choose to expand the sprite, the VIC-2 video chip takes the shape from memory and doubles each dot; the pattern remains the same, but it is spread out over twice as many dots on the screen. If you double the width, the sprite then becomes 48 dots wide (though the pattern is still confined to 24 dots, each of which is doubled when it is displayed). If you double the height, the sprite becomes 42 dots high.

One-byte Registers. Sprite expansion is controlled with the two sprite expansion registers. Each bit of the single byte of the horizontal expansion register (at 53277) controls a single sprite. Sprite 0 is controlled by bit 0 , sprite 1 by bit 1 , and so on to sprite 7 , controlled by bit 7 . If a sprite's control bit contains a 1 , its width will be doubled; if it contains a 0 , the width remains normal.

For instance, let's say you want to double the width of sprites $0,1,2$, and 7 , but leave the other sprites alone. To turn on sprite 0 , you need a 1 for bit 0 , which has a decimal value of 1 . Bit 1 , when "on," has a decimal value of 2 . Bit 2 , when "on," has a decimal value of 4 . You notice the pattern, of course-each bit's "on" value is double the "on" value of the bit before. Bits 3, 4, 5, and 6 have decimal values of $8,16,32$, and 64 -but since we aren't using them, we won't include those decimal values in our number. We will include the value of bit 7, however, which is 128 .

Combine those, now: $1+2+4+128=135$. To double the width of sprites $0,1,2$, and 7 , you only have to POKE 53277,135.

Several of the sprite control registers control all eight sprites with a single byte, each bit serving as an on-off switch for one of the sprites. In every case, bit 0 controls sprite 0 , bit 1 controls sprite 1 , and so on.

That's why in Pig in a Poke - as with any other program where I use sprites -I set up two arrays to control the on-off switches for the different sprites. The bit-set array, $\mathrm{BS}(0-7)$, contains the values $1,2,4,8,16,32,64$, and 128. Then, when I want to turn on, or "set," the bit that controls, say, sprite 4, I only have to:

POKE 53275, PEEK(53275) OR BS(4)
The other array, $\mathrm{BC}(0-7)$, is the bit-clear array. It contains the values $254,253,251,247,239,223,191$, and 127. Each value is a bit-mask: every single bit is "on" except the bit that controls the sprite in question. (The maximum value of a byte-all bits "on"-is 255 . So the bit-mask for bit 0 is $255-1$, or 254 ; the bit-mask for bit 3 is $255-8$, or 247 ; the bit-mask for bit 7 is $255-128$, or 127.)

Then, when I want to turn off, or "clear," the bit that controls sprite 4 , I only have to:

POKE 53271, PEEK(53271) AND BC(4)
Changing Shapes. The sprite is also versatile in its shape. You can store, theoretically, 64 separate spriteshapes in the 16 K block of video memory. (Actually, you need to leave at least 1 K for screen memory in text mode, plus room for as much character memory as your program needs.) Each of the eight sprites on the screen can take its shape from any one of the shapes you've stored in memory.
You could have all eight sprites look exactly the same by telling the VIC-2 to take their shape from the same pattern.

Or you could have one sprite cycle through dozens of different shapes in an animated sequence, with a single POKE for each change.

The sprite shape location registers aren't always in the same place, and their code is a bit complex. To understand how to use them, let's review some things we've covered in earlier columns.

Review of Video Blocks. As you remember, the VIC-2 video chip can only see 16 K of RAM at a time. So all the graphics features have to be located in that 16 K block: screen memory, character memory, sprite shapes, and bit-map memory. (The only exceptions are color memory, which is always at $55296-56319$, and ROM charac-

COU5 E:
 COU5 E:

ter memory, which is really located in a switchable bank at 53248-57343, but is seen by the VIC-2 at 36864-40959 when it is using the third video block, and at 4096-8191 when the VIC-2 is using the first video block. This is automatic, so once you select one of those blocks, the character set will be present for your use.)

The four possible video blocks are at 0 K (from 0 to 16383), at 16 K (from 16384 to 32767), at 32 K (from 32768 to 49151), and at 48 K (from 49152 to 65535). When the 64 powers up, it is using the first video block, starting at 0 K . It puts screen memory at 1024 and sees the character set as if it were at 4096 . This won't be too helpful when you're using sprites, however, because your BASIC program starts at 2048 and runs right through this whole block - there are only a few nooks and crannies into which you can tuck a sprite shape or two without bashing the BASIC program.

Often you'll use the second video block, at 16 K , especially if your BASIC program is short enough to leave you some room. However, in that block you have to define your own character set. The third video block, at 32 K , allows the VIC-2 to see character memory at 36 K . You also can't use the last 8 K of this block, from 40 K to 48 K , because that is BASIC ROM! But you still have 4 K to contain screen memory and sprite shapes-and most of the time that will be enough, with plenty of room below 32 K for a long BASIC program. The fourth block, at

WORD RUNNER Word Processing System by N-Systems

Perfect for the first-time user -

- No printer or page set-up required for standard format. Just enter a file name and start typing.
- All editing is done in "normal" text entry mode. No special insert or edit modes.
- Single-keystroke commands-no complicated command syntax.
- Fast, efficient machine language operation.

For the advanced user too -

- Move up to six thousand characters of text at one time-even between documents.
- Full screen editing.
- Global Search-Search and Replace.
- Built-in commands for italic, underline, bold-face, double width, superscript and subscript.
- Automatic page numbering.
- Display each page on the screen and edit before printing, or print entire document in continuous stream
- Document length may be up to entire disk.

AND-WORD RUNNER costs ONLY \$44.95!

To order WORD RUNNER, send check or money order to: N-Systems • P.O. Box 160 • Steger, IL 60475 (Illinois residents add sales tax)
WORD RUNNER is available for Commodore-64 on disk only and will work with Epson, Gemini, Okidata, and Commodore printers.

48 K , contains so much ROM that it's virtually unusable for video purposes.
The first two bits of the register at 56576 tell the VIC-2 which video block to use. First you AND the register with 252 to blank out those two bits, then OR it \bar{w} ith the code for the video block you want. The code for 0 K is 3 ; for $16 \mathrm{~K}, 2$; for $32 \mathrm{~K}, 1$; and for $48 \mathrm{~K}, 0$. (You need to diddle with the data direction register at 56578.) Here's how to select the 32 K block:

POKE 56578, PEEK(56578)OR 3:POKE 56576, (P EEK (56576)AND 252)OR 1

You also need to tell the VIC-2 where screen and character memory are, which is done at 53272; and tell BASIC where to find screen memory by POKEing the page number into 648. In Pig in a Poke, screen memory is right at 32 K , which to the VIC-2 is 0 K within the video block; BASIC uses the absolute page number, which is 128 . Character memory is at 36 K , which to the VIC-2 is 4 K within the block. So the number POKEd into 648 is 128 , and the number POKEd into 53272 is character memory $I K$ boundary plus sixteen times screen memory $1 K$ boundary, or $4+16^{*} 0$. (For those of you who grew up with the New Math, that adds up to 4. A lot of work just to get a dumb little one-digit number, isn't it?)

Now that we've told the VIC-2 where to find all this stuff, where are those sprite location registers? The sprite location registers are the last eight bytes of the IK block where screen memory resides. That's why we had to go through all this rigmarole. You have to know where screen memory is to find out where the sprite location registers are. The address is video block address plus screen memory $1 K$ boundary times 1024 plus 1016. In Pig in a Poke, that's $32768+0+1023$, or 33791 .

Each sprite shape location register contains a number from 0 to 63 , representing one of the 64 possible 64 -byte blocks of memory within the video block. For instance, a 10 tells the VIC-2 to look for the block starting at address video block plus ten times 64. A 55 would tell the VIC-2 to look at video block plus 55 times 64. Since our video block starts at 32768 , sprite shape block number 10 (the eleventh block, since the first block is numbered $0)$ starts at $32768+10 * 64$, or 33408 .

However, since screen memory in our program starts at 32768 , and uses 1000 bytes of memory, that sprite block is within screen memory. Now, this doesn't cause the VIC-2 any trouble. It will merrily display both the screen and the sprite, using overlapping regions of memory. VIC-2 doesn't care. But you probably will. As the screen display changes, so will your sprite shape!

A Small Example. Let's throw a sprite shape onto the screen showing just how that works. Power up your 64, and enter the following program lines in direct mode. Notice that we will not change the video block-we're using the screen as you normally have it.

POKE 53269,1

The

We＇re sure you＇re looking forward to trying out the programs in this issue of Ahoy！But we＇re equally sure that you＇re not looking forward to typing them in．If you＇re an average typist，that should take you upwards of 25 hours．Not counting time spent correcting your typing errors，of course．How long that will take is anyone＇s guess．
－How would you like someone to type the programs for you？At a price of，say－32c an hour？Wouldn＇t it be worth $32 ¢$ an hour to free yourself up for more pleasant pursuits－ like enjoying the rest of your Ahoy！magazine？－If you order the Ahoy！Program Disk or Cassette，you＇ll be getting that service for just under 32 C an hour．Because for $\$ 7.95$（postage included）；we＇ll mail you all the programs in this issue，on a disk or cassette that＇s tested and
premium quality disks． ready to run with your C－64 or VIC 20．If you subscribe，you＇ll save even more： 12 monthly disks or cassettes for $\$ 79.95,24$ for $\$ 149.95$（postage included）＊．Back issues are available as well．－You already know how to type．Why not use the hours you spend with your Commodore to learn something new？
＇Canadian and foreign prices higher．

SINGLE ISSUE AND SUBSCRIPTION PRICES

（Postage and Handling Included）	U．S．A．	CANADA	ELSEWHERE	
September＇85 Ahoy！Disk	$\$ 7.95$	\＄ 12.95	$\$ 13.95$	
September＇85 Ahoy！Cassette				
12－Month Disk Subscription	$\$ 79.95$	$\$ 99.95$	$\$ 124.95$	
12－Month Cassette Subscription	$\$ 149.95$	$\$ 179.95$		
24－Month Disk Subscription				
24－Month Cassette Subscription	Best of＇84（disk only）	10.95	$\$ 10.95$	$\$ 10.95$

BACK ISSUES $\$ 8.95$

（except months listed） In Canada add $\$ 2.00$ per issue；outside US and Canada add $\$ 4.00$ per issue．

\square Jan．＇84	$\$ 9.95 \square$	$\$ 8.95$
\square	$\$ 8.95$	$\$ 8.95$
\square	$\$ 8.95$	$\$ 85$
\square	$\$ 8.95$	
SPECIFY		
\square DISK \square CASSETTE		

Make check or money order payable to Double L Software．N．Y．State Residents must add $81 / 4 \%$ sales tax．

Send coupon or facsimile to： Ahoy！Program Disk／Cassette Ion International Inc．
45 West 34th Street，Suite 407 New York，NY 10001

NAME

ADDRESS

CITY STATE

Bade chinchandis

ISSUE \#1-JAN. $84 \quad \$ 4.00$
64 v . the Peanut! Telecommunications Tales of the Commodore! And ready to enter: Multi Draw 64 Graphics System! Interrupt Music Maker Editor! A Peek at Memory! Sequential Files!

ISSUE \#2-FEB. '84 \$4.00 Illustrated tour of the 1541! Artificial intelligence! Synapse's Ihor Wolosenko interviewed: And ready to enter: Music Maker Part II! Screen Manipulation! Night Attack! Relative Files!

Sorry...Issues \#1, \#2, and \#7 sold outl Reprint editions (programs and feature articles only) available for $\$ 4.00$ each.

ISSUE \#3-MAR. '84 \$4.00 Anatomy of the 64! Printer interfacing for VIC \& 64! Educational software series begins! And ready to enter: Address Book! Space Lanes! Random Files on the 64! Dynamic Power!

ISSUE \#7-JULY '84 \$4.00 MSD dual disk drive! Database buyer's guide! Training your cursor! Screen displays! File Sleuth! Users Groups! And ready to enter: Renumbering! Checklist! Math Defender! Brisk!

ISSUE \#12-DEC. '84 \$4.00 Buyer's guide to printers! 1525 printer tutorial! Custom characters! User Guide to KMMM Pascal! Diving into BASIC! And ready to enter: Construction Co.! Space Patro!! Cross Ref!

ISSUE \#8-AUG. '84 \$4.00 Choosing a word processor! Computational wizardry! Creating your own word games! Sound on the 64! And ready to enter: Micro-Minder! Directory Assistance! The Terrible Twins!

ISSUE \#13-JAN. '85 \$4.00 VIC/64 OS exposed! 'Sprites! 1541 device \# disconnect switch! Ghostbusters! And ready to enter: Ultra Mail! Music Tutor! Alice in Adventureland! Midprint! To the Top! Tape/Disk Transfer!

ISSUE \#17-MAY '85 \$4.00 Disk drive enhancements! Install a reset switch! Assembler escapades! And ready to enter: Super Duper! Two-Column Directory! DSKDU! Raid! DOS Plus! Font Editor! Tile Time!

ISSUE \#18-JUNE '85 \$4.00 Music \& graphics entry systems! How modems work! Inside the 6510! And ready to enter: Quad-print! Mapping 4.4! Towers of Hanoi! Speedy! Duck Shoot! The 6510 Simulator!

ISSUE \#4-APR. '84 \$4.00 Petspeed and Easy Script tutorials! Printer interfacing continues! Laserdisc! And ready to enter: Apple Pie! Lunar Lander! Name that Star! Lower case descenders on the 1525 printer!

ISSUE \#9-SEPT. '84 \$4.00 Program your own text adventure! Build a C-64 cassette interface! Video RAM! And ready to enter: Salvage Diver! DOS! Sound Explorer! The Castle of Darkness! Base Conversions!

ISSUE \#14-FEB. '85 \$4.00 Printer interfacing! Multicolor sprites Modems! Bulletin boards! Theory of game design! And ready to enter: Fu turewar! Fontasia! VIC Eraser! Insurance Agent! Flankspeed! Telelink 64!

ISSUE \#5-MAY '84 \$4.00 Future of Commodore! Inside BASIC storage! Memory management on the VIC \& 64! Guide to spreadsheets! And ready to enter: Math Master! Air Assault! Biorhythms! VIC Calculator!

ISSUE \#10-OCT. ' $84 \$ 4.00$ C-64 graphics programs! Bit-mapped graphics! Joystick programming! And ready to enter: VIC 40 Column Operating System! BAM Read \& Print! Emerald Elephant! Lawn Job!

ISSUE \#15-MAR. ' 85 \$4.00 Making multiscreen gameboards! Inside the Plus/4! Commodore DOS! And ready to enter: Old Routine! Programmable Functions! Automatic Line Nos.! Home Budget! Salmon Run!

ISSUE \#19-JULY '85 \$4.00

 PROM programming! 3-part harmonies on VIC/64! Speeding pixels! And ready to enter: Auto-Append! Script Analysis! Wizard of Im! Lucky Lottery! Brainframe! Etch! Printat!ISSUE \#16-APR. ' 85 \$4.00 Assembly language column begins! Programming the joystick! 1541 disk $=$ drive alternatives! And ready toentër:Hop Around! Faster 64! Booter! Elecheck! BASIC Trace! Space Hunt!

ISSUE \#20-AUG. '85 \$4.00 Inside the 128 ! Read-world simulations! Sound effects! And ready to enter: Windows! Formatter! Sound-aRama! Screen Dump! Selectachrome! Disintegrator! Fidgits! Gators N Snakes!

ISSUE \#11-NOV. '84 \$4.00 Music programs \& keyboards for the 64 ! Graphics feature continues! And ready to enter: PTE word processor! Block Editor! Alternate Character Set for the 64 ! The Tunnel of Tomachon!

ISSUE \#6-JUNE '84 \$4.00 Game programming column begins! Program generators! Rupert on inputting! Memory management continues! And ready to enter: Post Time for the 64 \& VIC! Alpiner! Sound Concept!

Use coupon or facsimile. If ordering more than three issues, list choices on separate sheet.

If you have a modem and want more complete information on any of the back issues listed, call Ahoy!'s Bulletin Board Service at 718-383-8909.

Mooy?	Please Send Me The Following:	Enclosed Please Find My Check or Money Order for S (Outside the USA please add $\$ 1.00$ for every copy)
	Copies of issue number	
TION	NAME	
45 West 34 th Street	ADDRESS	
Suite 407	CITY STATE	ZIP CODE

This enables sprite 0 .
POKE 53248,175:POKE 53249,135
This puts the sprite at horizontal coordinate 175 and vertical coordinate 135. That's just about in the middle of the screen.

You'll notice that at this point the sprite is a rectangular display of garbage. But it isn't just any garbage - it is the garbage pointed to by the sprite shape location register for sprite 0 . Remember, this is found at byte 1016 from the start of screen memory. The default screen memory for the 64 is at 1024 , so that the sprite 0 location register is at $1024+1016$, or 2040.

Upon powering up, my machine puts a 32 at 2040. This means that until I change it, sprite 0 will display whatever is in memory at $0+32^{*} 64$ (video block 0 K plus 64 times sprite shape location code 32), or 2048. It just so happens that this is the address of the beginning of the BASIC program area. Just enter a few meaningless lines, like 100 REM and 200 REM THIS IS JUST A TEST. With each line you enter, you'll see the sprite shape change as BASIC builds a program in the sprite shape block. (If your 64 shows something else, POKE 2040,32 and enter or delete program lines.)

Now let's move the sprite shape block somewhere else. In direct mode:

POKE 2rر4r, 2
Right in the middle of the sprite you'll see some flickering dots. These are the constantly changing bytes at 167 and 168 , where the operating system maintains a clock.

Can't see it clearly enough? Try using the horizontal and vertical expansion features:

POKE 53271,1
That makes it nice and tall.
POKE 53277,1
And now it's fat, too. If you POKE zeroes into the same location, it becomes short and skinny again.

Bits to Make Shapes. How does the VIC-2 read the sprite shape matrix? Basically, it reads the matrix the way we read books, starting at the upper left-hand corner of the sprite shape and reading across to the right; when the line ends, it drops down to the left-hand edge of the next line. Each of the 24 dots on each row is represented by one bit in the sprite shape block. The first byte of the block contains the bits that control dots 0-7 of the first row of the shape; the second byte, dots $8-15$; the third byte, dots 16-23. That's all for the first row, so the next byte in the shape block controls dots $0-7$ of the second row of the shape, and so on, until the 63rd, or second to last, byte of the block controls dots 16-23 of the row 20 (the 21 st row, since we began with row 0). The
very last byte of the 64 -byte sprite shape block controls nothing at all-the VIC-2 ignores it, and so can you.

The example program Basic Sprites shows how to create sprite shapes quite easily. The routine in lines $800-810$ reads some DATA statements that contain the sprite shapes as strings. This is so you can design the shape right there on the screen without any complicated graph paper calculations. Each string represents one row of the sprite shape, with asterisks representing "on" bits and periods representing "off" bits. The routine breaks the string into three 8 -character chunks, each of which corresponds to a byte of the sprite shape block. Byte by byte, row by row, it reads, converts, and POKEs in the sprite shape.

Since we're only using two sprites and three sprite shapes, they are being POKEd into the cassette I/O buffer at 832 (sprite shape block 13), 896 (block 14), and 960 (block 15). Thus they don't interfere with BASIC's program storage above 2048. We aren't doing any fancy changing of the video block for this program.

And once it's SAVEd, you can go ahead and change the sprite shapes in the DATA statements starting at 810 . Just remember that every string has to contain 24 characters, one for each bit of the sprite's width, and there must be 21 strings per sprite, one for each row of the sprite shape block.

Movement. With character graphics we were able to move objects around the screen with some good speed,
RENT
BUY

IBM
Apple -Atari
Software

EXCITEMENT

*DATABASES \& UTILITIES

*FOREIGN LANGUAGES
_ATIONAL SOFTWARE
*CHILDREN'S PROGRAMS
Call toll-free outside Texas: $1-800-433-2938$

- Inside Texas call: 817-292-7396
WEDGWOOD RENTAL
5316 Woodway Drive
Fort Worth, Texas 76133
using the PRINT command. However, since a character can only be in one 8 -by- 8 grid or another, each movement had to be at least eight dots at a time. It looks jumpy and is hard to watch.
Sprites can move much more smoothly, since they aren't mapped onto the text screen. They can move one dot at a time, vertically or horizontally, as the program Basic Sprites showed. (The program Pig in a Poke moves the pig two dots at a time horizontally, to increase the speed; that's about as big a jump as you can take without losing smoothness. It also moves eight dots at a time vertically, so it will always stay in alignment with the charactergraphics fences.)
Each sprite has its own horizontal position register and vertical position register. These registers start at 53248. They proceed in order, starting with sprite 0's horizontal position register at 53248, sprite 0's vertical position register at 53249 , sprite l's horizontal register at 53250 , sprite l's vertical register at 53251 , and so on.
The registers contain coordinates that correspond with dots on the screen. They always specify the location of the dot in the upper left-hand corner of the sprite's shape matrix. This has nothing to do with whether that dot is turned on or not-even if your whole sprite shape is crowded down at the bottom of the shape block, the VIC-2 will still use the position registers to calculate the location of the upper left-hand corner of the sprite shape

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Make your C-64 or VIC versatile with:} \\
\hline \multicolumn{2}{|l|}{Custom Character Sets: chaned for the c-64} \\
\hline \begin{tabular}{l}
Features: \\
Menu Driven with full screen display \\
Save and Load Character Sets \\
Use with Multi-color Mode \\
Builtin Utilities for reverse, copy and boldface characters
\end{tabular} \& \begin{tabular}{l}

Use with BASIC or ML.

Create Fonts or Game Graphics

Koyboard or Joystick Input

Cut and Paste Feature
Specity CHARED
\end{tabular}

\hline Sports: \&

\hline \begin{tabular}{l}
Features:

Course design and game programs

Trees, Sanctraps user designod Greens
\square Buili-in Adjustable Pin Placement

Hi-Res ML Graphics for speed

 \&

18 hole course included

\square Unlimited number of Courses

\square Sice and Hook around Obstacles

\square Specify Mr. GOLF (joystick required)
\end{tabular}

\hline \multicolumn{2}{|l|}{Word Processing: $\begin{aligned} & \text { ToxED } \\ & \text { Tor the } \\ & \text { c-64 and vic-20 }\end{aligned}$}

\hline | Features: |
| :--- |
| Document edting: Create, modity, save tape and disk SEQuential data files Line image Editor using simple comrnands |
| Full Screen Editor | \& | Print command with indentation and margin control |
| :--- |
| Complete User's Guide included Specity: TexED for C-64. TexED20 for VIC-20 with 16 K expansion |

\hline Graphics: \&

\hline | Features: |
| :--- |
| Menu Drven with Full Screen Display |
| Keyboard or Lightpen Input Basic Geometry (point. line, ellipse) element-color selection, 3-D |
| Screen to printer or plotter (Hi-Res) | \& | Functions stand alone for use with personal programming (BASIC) User's Guide-flustrated graphics tutorial and technical explanations |
| :--- |
| Specify PLOTVIC8 (requires $8 \mathrm{~K}+$) |

\hline \multicolumn{2}{|l|}{Mail completed form to APCAD PO. Box 2673 Ann Arbor, MI 48106 USA. Send check for \$ 19.95 (US.) for tape, \$22.95 disk, or \$34.95 for two (\$3995 disk). S \& H included.}

\hline Name: \& Specity: CHARED

\hline Address: \& - Mc GOLF

\hline Creert Cards also accepted: \& TexED20

\hline \square VISA MC AMEX \& PLOTVIC8

\hline Acct. No. Expir. Date: \& Signature:

\hline
\end{tabular}

Word Processing: Tor the c. 64 and vic. 20

Features:
tape and disk SER Line image Editor using simple comrnands
\square Print command with indentation and Margin control
\square Complete User's Guide included Specity: TexED for C-64. TexED20 for VIC-20 with 16 K expansion

Features:

block.
A sprite can be half on and half off the display area. Whatever part of the sprite is past the edge of the display area and into the screen border will seem to move "behind" the border-that is, the dots that are off the edge of the display area are simply not displayed.
That's why a sprite with a horizontal or vertical position of 0 is completely off the screen-it's "behind" the border. The leftmost position a sprite can have and still be completely visible on the screen is 24 . The highest position is 50 . The first position to the right that will have the sprite completely off the screen is 344 , and the first position on the bottom that will make the sprite completely disappear is 250 . (When the sprite starts to disappear on the right-hand edge or the bottom of the screen depends on whether or not it has been expanded in either direction.)
You'll notice, though, that the horizontal position can go well over 255 , which is the highest number that can be POKEd into a single byte of memory. This means that once the sprite reaches horizontal position 255 , the horizontal position register can't possibly move it any farther to the right-the number 256 cannot be contained in the register.
The VIC-2 gets around this by putting a sort of International Date Line at position 256. When the sprite reaches that horizontal position, a flag bit is set Somewhere Else, and the horizontal position register starts over at 0 . So to move across the International Date Line, you POKE the horizontal register with $253,254,255$, then set the flag bit, and go on with $0,1,2$, and so on.
The flag bits for all eight sprites are in a single register at 53264. Sprite 0's flag bit is bit 0, and so on, as with all the other one-byte sprite control registers. If a sprite's flag bit is clear (contains a 0), then the VIC-2 will count the sprite's horizontal position from far left of the screen; if a sprite's flag bit is set (contains a 1), then the VIC-2 will count the sprite's horizontal position from the International Date Line right on the screen.
To handle the horizontal and vertical ranges smoothly, both the Basic Sprites example program and the Pig in a Poke game use three arrays. The array VV (n) contains all the "valid" vertical locations. In Pig in a Poke, there are only 20 valid vertical positions, at every eighth row starting with row 53 . So in lines 900 and 906 , this array is set up to have 20 elements, from 0 to 19 , which contain, in order, the vertical position codes $53,61,69$, $77,85,93,101,109,117$, and so on to 205 . Now the program only has to keep track of which of the twenty valid vertical positions the sprite should be on, using the variable VP. Then it sets the vertical positions with POKE 53248,VV(VP).
A similar thing is done with the horizontal position, except that two arrays are used. The first array, $\mathrm{HH}(n)$, contains all the valid horizontal position codes for the horizontal position register. The second array, $\mathrm{HB}(n)$, contains the flag bits for the register at 53264. Each time the sprite is moved horizontally, both numbers are POKEd
into the control registers.
Why both numbers every time? For smoothness. You could use an IF-THEN test to change the flag bit only when the sprite is actually crossing the International Date Line. But in a BASIC program, with its slow POKE statement, that will mean that the sprite hesitates for a moment. By POKEing those values every time, overall movement will be slower, but there's no hesitation. (However, in either case there will be a bit of blinking at that point, because for the moment between POKEing the horizontal register the POKEing the flag-bit register, the sprite will be completely offscreen. This is avoidable only in machine language.)
Another solution, of course, is to keep your sprites from crossing the International Date Line at all. Display something else to the right of the line, and keep the sprites always to the left. No flicker then!
Three Dimensions. The priority register at 53275 controls whether the sprite moves in front of objects on the screen or behind them. Each bit of the byte at 53275 controls the corresponding sprite. If sprite 0's bit, bit 0 , is set (equals 1) then the sprite will seem to move behind objects on the screen. That is, the sprite will be visible whenever it is in front of the background color of the screen, but every dot that is on the same spot as a dot in a character shape on the screen will be invisible-the character shape will seem to be in front of the sprite. If bit 0 is clear (equals 0) then the sprite will move in front of the character shape as well as the background.
This lets you create the illusion of three dimensions on the screen. However, setting and clearing individual bits of the priority register is so cumbersome that in a BASIC program you will probably want to set the priority once and leave it alone. Only in machine language can you fiddle it on and off without slowing down program execution hopelessly.
Collisions. For game programming, one of the most important features of sprites is that the VIC-2 automatically keeps track of whether sprites have bumped into each other or into any character shapes on the screen. Two collision registers keep track of whether each sprite has been involved in a collision since the register was last checked. To see if sprite 4 has bumped into another sprite, examine bit 4 of the sprite/sprite collision register at 53278. To see if sprite 7 has bumped into any of the character shapes (or bit-map designs) on the screen, examine bit 7 of the sprite/foreground collision register at 53279 .
When does a collision take place? Only when an "on" dot in the sprite shape occupies the same screen position as an "on" dot in another sprite or an "on" dot in a character shape. If the transparent portion of a sprite's shape matrix passes over another sprite or a character, nothing happens to the collision registers. Only when the dots that are actually displayed come into "contact" is a collision reported.

The collision registers "remember" every collision until your program PEEKs (or LDAs or CMPs, in machine
language) the collision register. This means that you should always clear the collision registers by PEEKing them once at the beginning of the program, before you start checking them in earnest. Also, it means that you can't PEEK the sprite/sprite register to check for a collision for sprite 0 and then check it again for a collision for sprite 1 -when you checked it the first time, it was erased! That's why you'll want to put the byte in a variable, like this: $\mathrm{Z}=\mathrm{PEEK}$ (53278). Then you can check the variable Z to test for as many collisions as you want.

Unfortunately, these registers don't tell you which sprite or character shape you bumped into. Of course, if only sprites 0 and 1 in the sprite/sprite collision register report a collision, you can bet they bumped into each other. But if sprites 0,1 , and 2 report a collision, you don't know if both 0 and 1 bumped into 2, but not into each other, or if they all bumped into each other-and it can get even more complex.

To know which sprite was bumped, you either have to track the location of every single sprite (in which case a BASIC program will crawl along at the speed of a student driver), or you have to decide that all sprite collisions have the same effect, so you don't care which sprite bumped which.
That's what Pig in a Poke does. Since there's only one sprite onscreen, there can't be any sprite/sprite collisions at all. And any collision with character patterns has ex-

PROBLEM SOLVING SOFTWARE

DISK SLEUTH ORGANIZING SYSTEM
Catalogs the contents of up to 100 disks into one alphabetized master directory disk. Each entry ald of your personal comments. Master directory can beviewed, printed, or searched Allows key files to group programs, MSD or 1541. \$24.95

ELECTRONIC CIRCUIT ANALYSIS
Two powerful programs to analyze the frequency and phase response of most any electronic circuit. Analyzes ladder circuits of up to 200 components, and user specified circuits of up to 40 components and 25 junctions. Resistors, capacitors, inductors, NPN and FET transistors, op-amps and transormers. \$29.95

ELECTRONIC CIRCUIT DESIGN

13 programs to design active and passive filters 22 types) and solve numerous electronic design problems including: resonance. Ohm's law, decibel conversions, attenuators, and more. \$19.95

CURVE FITTING
Fits your X, Y data to 20 different mathematical curve types and selects those which best fit the data. The curves can be used to make projections based on the data, and to express the data mathmatically in programs. $\$ 29.95$

All programs available on disk only for the Commodore 64. Include $\$ 2.00$ postage per order. California residents add 6% sales tax.

> Nth DIGIT SOLUTIONS

3243 Arlington Avenue, No. 195 Riverside, CA 92506
actly the same effect-bouncing the pig toward the top of the screen.

If I had wanted to have characters on the screen that the pig could touch at will, then I would have had to use sprites for the fences moving up the screen. In that case, sprite/foreground collisions would have been ignored, and only sprite/sprite collisions would have mattered. Furthermore, it wouldn't have mattered which sprite the pig bumped into, because any sprite would have the same effect.

Any time it doesn't matter which sprite the player's sprite bumped into, collision handling is simple. When it does matter, it becomes complex and generally has to

SPRITE MEMORY MAP

For easy reference, here are the sprite-control registers in the Commodore 64. For explanations, see the text of the article.

Floating Memory Locations

1016-1023 after the start of screen memory (default 2040-2047): The eight shape location registers. (If you're using bit-map mode, they can be found at bytes 1016-1023 after the beginning of bit-map color memory.)

0-63: The codes for the possible location of each sprite shape block within the video block. The actual address is found by multiplying this code by 64 and adding the result to the absolute address of the start of the video block. The first 63 bytes of the sprite shape block determine which dots will be "on." Every 1 bit causes a dot to be displayed; a 0 bit allows the playfield display to show through.

Permanent Control Registers

$53248,53250,53252,53254,53256,53258,53260,53262$: Horizontal position registers for sprites 0 through 7, in order.
53249, 53251, 53253, 53255, 53257, 53259, 53261, 53263: Vertical position registers for sprites 0 through 7 , in order.

53264: Flag-bit register for horizontal position of all eight sprites.
53269: Sprite enable register. (255 enables all sprites; 0 disables all sprites.)

53271: Sprite vertical expansion register. (255 expands all sprites.)
53272: Screen and character memory location register. Where screen memory is located determines where the sprite shape location registers are located. The high four bits are significant for screen memory location:
screen location $=($ PEEK (53272)AND 240) $/ 16+$ video block starting address
53275: Sprite priority register. (0 means all sprites appear in front of foreground; 255 means all sprites appear behind foreground.)
53276: Sprite multicolor enable register. (255 makes all sprites display using multicolor option.)
53277: Sprite horizontal expansion register. (255 expands all sprites.)
53278: Sprite/sprite collision register. (0 means no collisions; PEEKing this location clears the register.)

53279: Sprite/foreground collision register. (0 means no collisions; PEEKing this location clears the register.)
53285: Sprite multicolor register 0, controlling the color of 01 bit-pairs.
53286: Sprite multicolor register 1, controlling the color of 11 bit-pairs.
$53287,53288,53289,53290,53291,53292,53293,53294$: Sprite color registers for sprites 0-7, in order. Default colors are white, red, cyan, purple, green, blue, yellow, and medium gray. (In multicolor mode, these registers control the color of 10 bit-pairs.)
53276: Video block selection register. Bits 0 and 1 determine which video block the VIC-2 chip will read.
be handled in machine language.
Other Features. Sprites have several other possible features, which Ill discuss in later columns, like multicolor display. These features have their own registers, which are mentioned in the Sprite Memory Map but not explained here.

The sprites' colors are controlled by eight sprite color registers; however, the 64 automatically assigns eight different colors to the sprites when the machine is turned on, and the example programs don't change them. If you want to, however, just POKE into them the number of the color you want, from 0 to 15 , just as you do with the background color register at 53281. The sprite color registers are located at 53287 through 53294.

Also, there are advanced techniques like animation (shape-flipping), rotation, and complex sprites, which we'll go through in the next couple of months, including an interrupt-driven machine-language routine that will allow you to speed up sprite movement drastically while still controlling it all from BASIC.

HOW PIG IN A POKE WORKS

In th meantime, though, let's go through Pig in a Poke section by section in order to see exactly what's going on.
The Variables. One of the most confusing things in studying somebody else's program is to try to remember what all the variables mean. So here is a list of the major variables used by both Pig in a Poke and Basic Sprites:
VB
SB
BB
LT(0-7)

CT(0-7)
Address of the video block
Address of screen memory
The screen memory page number (used by BASIC The address of each sprite's shape location register, located starting at byte 1016 after the start of screen memory.
The address of each sprites color register.
HT(0-7) The address of each sprite's horizontal position register.
$\mathrm{VT}(0-7) \quad$ The address of each sprites vertical position register.
HR
ES
VE
HE
PR
EM
MR
CS
CF
$\mathrm{BS}(0-7) \quad$ The bit-set values for each sprite.
$\mathrm{BC}(0-7) \quad$ The bit-clear values for each sprite.
ST $(n) \quad$ The codes for the location of each sprite shape block; these numbers are POKEd into the sprite location registers at LT (n).
NS
$\mathrm{VV}(n)$
HH (n)
$\mathrm{HB}(n)$ The address of the flag-bit register for horizontal movement across the "International Date Line." The address of the sprite enable register.
The address of the vertical expansion register.
The address of the horizontal expansion register. The address of the priority register.
The address of the multicolor enable register.
The address of the first multicolor color-selection register.
The address of the sprite/sprite collision register. The address of the sprite/foreground collision register.

FISH MATH for the

VIC 20

By Kevin Dewey

n this educational game for children ages eight through twelve, the player is in control of a group of ten fishes that must be led to the top of the stream safely and with the right amount of food in their tummies. The player figures out how much food each fish requires by working out a simple multiplication problem at the bottom of the screen. He then leads the fish up the stream, gobbling up food as he goes, and avoiding the shark known as Gums. Contact with Gums makes you into shark-bait.

Controlling the fishies is a very complex process to learn, but very easy once you get the hang of it. There are only two keys - for right and left. The CRSR keys are used, CRSR UP/DOWN moving the fishy left and CRSR right/left moving the fishy right. Doesn't sound too complex, does it? But your fishy is always moving up, almost automatically, except when you are pushing down a CRSR key. So if you have a lot of food to eat, you'd better not go too long without moving right or left, or before you know it, you'll be on the top of the screen, with far less food than the fish requires. This problem can be solved, however, by scrolling off the side of the screen and moving down. You only move down on the right side. If you scroll off the left side, you move up. So if you're too close to the top of the stream with not enough food, you can head back down if you keep going right.

Another key that comes in handy is SHIFT/LOCK. This pauses the game, allowing the player to think over the multiplication problem presented, or the best way to avoid Gums, whichever is most pressing at the moment. Play is resumed by depressing the key.

SCORING

For every fish brought to the top safe and well-nourished, a point is added to your score. For every fish either overfed or underfed, a point is taken away. If Gums gets a fish, the game ends.

The educational emphasis in this game is on teaching basic multiplication facts. I had originally chosen to make it an addition game, but chose not to when I realized the arcade element of the game might become frustrating for the younger set of children.

Instead, I chose multiplication because older children can appreciate the challenges of an arcade game while learning, instead of becoming frustrated by it. The game really is quite hard to master, and though children may not realize it, they are being drilled in multiplication skills as they play. \square SEE PROGRAM LISTING ON PAGE 110

DIGITAL VISION, INC.
14 Oak Street - Sulte 2 Needham, MA 02192 |617) 444-9040, 449-7160

AHOY! DOCK

A Mini Dafabase Manager for the C-64

By Glenn Lumpkins

 ow many times has this scene been played? Your latest issue of Ahoy! arrives with the mail. You flip through the pages thinking: boy-these-are-great-programs, the ads, all-those-helpful-hints, and the many other inspiring articles. I'll read this issue and type in the programs when I have time to really concentrate. For now, I'll make some mental notes about this issue. You now add this issue to the month's stack of magazines which sit on top of last month's stack, which sit on top of the previous month's stack, and so on.

When was the last time you went to that stack of material needing a routine, a helpful hint, an item, or an article on a specific subject? Pulling issues out of the stack and scanning their indexes, you think to yourself:

THE AMAZING VOICE MASTER

 Three Exciting Products in One:

- Speech Synthesizer - Your Computer can talk to you in your own voice.
- Word Recognition - Make your computer respond to your spoken commands.
- Voice Harp - A totally new musical instrument that you play and compose by humming.
Based upon new technologies invented by COVOX. Performance is equal to other systems costing thousands of dollars more. One low price buys the entire system.

ONLY \$89.95 (suggestec retail)

Available from your dealer or by mail. When ordering by mail, please include $\$ 4.00$ shipping and handling ($\$ 10.00$ for foreign orders).
Call (503) 342-1271 for a telephone demonstration and ordering information. VISA or MC accepted. FREE brochure available.

675-D Conger Street, Eugene, OR 97402 Telex 706017 (AV ALARM UD)
"One of these days I've just got to get this stack organized. But the issues keep piling up higher and there seems to be no end to it. There must be a magnetic quality to the computer desk, as everything seems to gather there. Maybe tomorrow I'll get started."

HELP IS ON THE WAY!

I wrote Ahoy! Dock because I receive and save several computer publications each month. More than once I have tried to catalog and file these issues, all to no avail.
Now with Ahoy! Dock and a 1541 disk drive, I have an index of every article in my issues that I might ever want to use or read. Ahoy! Dock allows me to add to my file at any time, search for a program or articles, delete old items, modify the file, print or list the files, and sort the file on multiple fields. It now takes minutes instead of hours to find the information I need and my desk is much neater, thereby allowing me more computer time.
Ahoy! Dock is simply a mini-database manager designed for use with an auxiliary storage device and a floppy disk. It will allow you to index information according to 14 categories, with each category containing 500 independent records. With its simple menu operations, the program is as easy to use as pressing the function keys.

When you run Ahoy! Dock, you'll see a main menu. Step-by-step instructions are asked for by each of the menus, with every attempt made to prevent an incorrect entry. If all else fails, at any point of entry a "/" will allow you to escape back to the main menu.

When you select an option from the menu, a submenu of categories will be read to the screen for you to choose from. When you select the ADD option and a category, the program will direct the computer to read the error channel from the disk drive to see if that category exists. If the category doesn't exist, you are asked to create the file or return. Choosing the create option will initialize that file.

With just a little of your time, you'll soon have a comprehensive disk file that will index all the magazine articles and programs you wish.

Ahoy! Dock was written for computer magazines. You can easily alter it for any type of publication by changing the data subject categories and the program lines. \square

SEE PROGRAM LISTING ON PAGE 103

"I don't have enough time or space to listall the good points!" --Noland Brown, MIDNITESOFTWARE GAZETTE
"This disk is fantastic!" -- Tom Lynch, THE USERS PORT
"Why all the enthusiasm? Because COMAL is a composite of the best features of the most popular programming languages... the familiarity of BASIC commands with the structural programming environment of Pascal and the turtle graphics of Logo." -- Mark Brown, INFO 64
"COMAL was just what I was looking for." .- Colin Thompson, RUN
Seeing is Believing. Take a look at what COMAL has to offer: the complete COMAL 0.14 System forCommodore $64^{\text {TM }}$ includes the
Tutorial Disk* (teaches you the fundamentals of COMAL), plus the Auto-Run DEMO Disk* (demonstrates 26 COMAL programs
including games, graphics, sprites and sounds), all for just $\$ 7.00$!
You can add the reference book, COMAL from A to Z, for just $\$ 4.00$ more.
\$7 or \$11 - - either way you're a winner!
"Everybody who gets it, likes it! (I'll guarantee it.)" -- Len Lindsay, President, Comal Users Group

Call TOLL-FREE: 1-800-356-5324 ext. 1307
VISA or MasterCard Orders ONLY.
Questions and information must call our Info Line: 608-222-4432. All orders prepaid only - no C.O.D.

Send check or money order in US Dollars to:

6041 Monona Drive, \#111, Madison, WI 53716 phone: (608) 222-4432

WHY PAY MORE?

\$99.45 COMPLETE
Thousands of these MADE IN AMERICA printers have
been sold worldwide at sise for use in homes, been sold worldwide at $\$ 142$ for use in homes,
businesses, and schools. Through our immense buying power for internal consumption we can offer you the identical printer at less than stee.

THE ONLY 00 COLURN PRINTER FOR UNOER $\mathbf{1} 200$ anturieae in the norlo

```
Wo uso this printer in our oun connuntcations systens
because of its small size, reliability, and quiet
operation. You'11 love it beczuse of dot-addressable
grophice that't1 knock your sock, off. It's even
compatible with popular C54 and viCze praphice
prograns the
            GRODERBUN'S PRINT SHOR
You'll love it because it's gs characters per second,
blows the doors off all other low cost printers,
You'11 even love it because of what it doesn't do,
Thus '......MAKE NOISE.
This baby'tso quiet you can run listings in the
niddle of the night and Mon and Dad won't even know
you're up. It you're a tad bit older, you'11 love
the woy it prints your sproadsteets in a full
TO COLUNM FORMAT
on 8 1/2 inch wide paper. Schools buy 'on by the
BUY ON YOUR BANKCARD FOR SAME CAY SHIPMENT,
MASTERCARD & UISA GLADLY ACCEPTED.
FOR immEDIATE ACTION CALL
            1-890-672-3470 x841 IN CALIFORNIA
            1-820-530-8157 X841
            post technologies, ing.
            CHONCHILLA, CA
```

(SMACK IN ThE MEART OF SILICON VALLEY SOUTH.)
Reader Service No. 152

Because upon starting the Commodore, $\mathrm{RND}(1)$ always produces the same series of random numbers, and because RND (0) is rather suspect, I use one of the following lines in programs that use random numbers:

```
1fff) R = RND(1): GET A$: IF A\$="" THEN 1rر)
```

or
$10 \rho \rho=R=R N D(1): \operatorname{IF}($ PEEK (5
$632(\rho)$ AND15) $=15$ THEN $1 \rho \rho)$
Depending upon the length of the pause, line 100 will generate a varying number of random numbers, which changes the starting point for the series of random numbers used in the program. The more often the program can zero line 100 , the better. -Jacqueline L. Callaway Orange Beach, AL

I would like to address an article in the May issue of your fine magazine: Disk Spinners, Part II by Morton Kevelson. I have used all three of the referenced devices. I purchased the 1541 Flash after reading the article and cannot offer enough praise for this fine product.
I have the updated model with the switch on the disk drives (2). I have been using the Flash for about a month and have found only two games that will not work with the Flash installed.
I use word processors and PFS (File \& Report). I have found that with the Flash installed it is a pleasure not waiting between searches during file update and printing.
On the Commodore I have, the Kernal ROM was soldered in and did require the tricky removal of the old Kernal to install the socket furnished with the kit; after this was done the rest of the modification went without any problems.
I would like to thank Mr. Kevelson for his article and Skyles Elec-
tric Works for their product.

- David J. Farrell Sr.

Enfield, CT
I recently purchased the Fast Load cartridge from Epyx. One of the first programs that I tried Fast Load on was Microsoft's Multiplan for the C-64. Multiplan is a superb spreadsheet, but frustratingly slow. When I attempted to save some changes to my data disk, Fast Load restructured my files so that I could not retrieve them.
I called Epyx to find out what happened. The gentleman I talked to said the problem was relative files. His belated advice was "don't use Fast Load on any program containing relative files."
In all the reviews that I have read in your magazine and others, nowhere is this problem mentioned. And nowhere are there any warnings about potential problems like this.

Please address this problem for my benefit and the benefit of all your readers. -Edward S. Champa Indianapolis, IN

Scuttlebutt would be even better if it incorporated, though in abridged form, the same thoughtful judgment that's found in your Reviews section. Any chance of that? -Mel Getty Orono, ME
Not if we want to keep Scuttlebutt the most current-as well as complete -Commodore news section on the stands. We announce new products as soon as we learn of their existence. Waiting for review samples would make our news section yesterday's papers.
We incorrectly listed the address and phone number of Navarone Industries, Inc. on the back cover of our August issue. Correct address and phone number are:

Navarone Industries, Inc.
19968 El Ray Lane
Sonora, CA 95370
Phone: 209-533-8349

FASTNEM A 20-Second Formatter for the 1541

By Don Lewis

astnew is a fast disk formatting program. The 1541 has a built-in command for formatting, i.e. N0:(diskname, id). So why a special program? Because Fastnew improves on the 1541 resident formatter in three important areas:
a. Speed. The normal format takes about 90 seconds. Fastnew formats a disk in 20 seconds.
b. Reliability. The normal format routine includes a verify. Unfortunately, this verify has a bug in it which allows some format errors to go undetected. Fastnew has a correct verify, insuring error-free formatting.
c. NO Head Bang. The normal format kills 1541's. Every time you use the normal format, the read/write head is BANGed against a hard stop in the drive. Eventually this will throw the disk out of alignment, and cost you an expensive repair. Fastnew never bangs the read/write head when formatting.

Fastnew consists of three sections, a BASIC portion and two machine language (ML) routines. The BASIC code handles screen output and user input. One ML routine is a fast memory mover used to transfer code from the 64 to the 1541 . The other ML section is the formatter proper. It is transferred to the 1541, then executed using an M-E command. This code relies heavily on subroutines in the 1541 ROM's to perform the formatting.

When typing in Fastnew, be sure to double (and triple) check the data statements at lines 4000-4999 and 5000-5999. Make sure you save a copy to disk before running the program. Until you get a completely working Fastnew, be prepared to quickly turn your disk drive off. Typos in the data statements can cause the 1541 to really go wild.

Source code for the 1541 resident code is available for $\$ 8.00$ postpaid from the author (see address below). Careful study of the source code will suggest all sorts of possibilities for custom formatting, such as varying data or header block lengths, extra tracks or sectors, and recording density shifts. Custom formatting has been where most copy protection schemes originate.

Fastnew is faster because it avoids a lot of the work the normal format does, without compromising integrity. When formatting a disk the 1541 normally does quite a bit of work. First it writes $10250 \$ 55$ bytes (non-synch marks) to the disk. Then it writes an alternating pattern of $\$ 55$ and $\$$ FF (synch marks) bytes to the disk. It then reads the track and counts how many synch and non-
synch marks were actually written on the track. From these counts, it calculates the optimal inter-sector gap length. The goal is to divide the track into evenly spaced sectors. The actual number of bytes written out as the inter-sector gap depends on the length of the track (track 35 is shorter than track 1), the number of sectors on the tracks, and the speed of the disk drive, which may vary from day to day. After calculating the inter-sector gap, the actual formatting is done. The header block and a dummy data block are written out for each sector on the disk. The Read/Write head is then stepped to the next track and the process repeated.
In practice all this work isn't necessary. There is no reason to try to get an even sector distribution around the track, provided there is enough space for all the sectors. It is important, however, to have some gap between the end of one sector and the start of another. If a gap did not exist, you'd run the risk of having a data block write into the header block of the next sector, causing a disk error number 20. This could happen if the speed of the disk drive varies from day to day.

Rather than go through all the calculations described above, Fastnew assumes that a gap of 8 bytes between sectors is sufficient. This is based on an examination of the inter-sector gaps on a number of normally formatted disks.
Head bang occurs when the R/W head is pulled back to track 1 by the normal format routine. The normal format assumes that the head is as far away as possible and steps the head back 45 tracks-BANG!! However, provided that the disk drive has accessed at least one properly formatted disk, the current position of the R/W head can always be found at memory location $\$ 22$. Fastnew reads this location and calculates the necessary steps to pull the head to track 1 with NO bang.

As I said, Fastnew makes one assumption, that the disk drive has previously accessed a properly formatted disk. (A small price to pay for extending the life of your 1541 disk drive.)

I hope that you will find Fastnew a useful utility. I would like to extend my appreciation to my colleagues at R . J. Brachman Assoc., Inc. for their assistance in developing this program. I welcome correspondence from readers. Write to Don Lewis, P.O. Box 521, Folsom, PA 19033. Please include a stamped and self-addressed envelope if you desire a reply.

SEE PROGRAM LISTING ON PAGE III

All of Michael Montauck's (Brooklyn, NY) images were created with the Koala Pad and Koala Painter sofiware: his representotions of CIS (the CompuServe Information System) and Graffifi (bottom), and the swinging cats at Ahoy! (bottom right, page 35).

Contributors to Ahoyl's Art Gallery will receive royalties based on the sale of disks containing the best computer grophics received, both published and unpublished. Send your best work on disk, accompanied by a stamped and self-addressed mailer, to Morton Kevelson, P.0. Box 260, Homecrest Staiion, Brocklyn, NY 11229. Indicate the drawing package that was used to create the image. If you employed a bit map of your own design, indicate the appropriate file parameters, i.e., hi-res or mulficolor, location of bit map, screen or color dato.

Responding to our initial request for starving computer artists, John Matthews Jr. (San Antonio, TX) indicates that he is storving, but only for attention. Hence his choice of attention-getting celebrities for his images, all created on the Koala Pod. Betty Boop (right) and charter Gremlin Gizmo (below) were drawn freehand, pixel by pixel, using Koala zoom mode. Yosemife Sam (left) was drawn freehand, based on a grid designed to proportion the screen pixels to match the proportions of the Okimate 10 color primter. (The proportions actually look better on the printout than on the screen shot shown.) John digitized his image of Jane Russell (above) with Computereyes (see review, p. 66) and added finishing details by hand.

MSD Sure Copy

At last a complete utility package for the MSD Dual Drive. This is the first MSD utility program that does it all. The main menu options include:

Sure Copy will put all errors automatically on disk: 20, 21, 22, 23, 27 and 29's.

- Copy Protected Disk
- Copy Files
- Format a Disk
- Change Disk Name
- Quit
- Copy Unprotected Disk
- Scratch a File
- Rename a File
- View Directory
\$3995

s29.95

SDFTURRE/ SPROTECTION MRNDESURH
 3rd
 Edition

THIRD EDITION! NOW AVAILABLE!

If you're tired of being harassed by protected software and too many copy programs, then this is the book for you! This 224 page manual covers the gambit from legalities to protection methods to step-by-step back up procedures. Now you can learn both how to protect and unprotect software! The techniques covered include copying cartridges to tape or disk, tape protection, and disk protection. Disk protection covers error no.'s 20, 21, 22, 23, 27 and 29 plus single track formatting, header modification, header swapping, half track reading and writing, reading and writing modified bit densities, formatting illegal tracks/sectors, sync writing and more! The Third edition explains, tells how to detect and how to write them with included software. Eleven useful utilities and many protection listings! Our disk analysis programs reveal the protection methods used on your originals. A diskette with all sottware is available for a minimum extra charge. This may not be the only book your should have for the C-64, but it is certainly the one book you should not be without!

C64 Book only
$\$ 19.95$ US
Book \& Disk of all programs $\$ 29.95$ US
Vic 20 book... Cart. \& Tapes only

> THIS MANUAL DOES NOT CONDONE PIRACY
-SHIPPING: $\$ 2.00$

TOP SECRET STUFF II
 All C128 Compatible

- Spilt Screens (Horizontally)
- Smooth Scroliling
- Save Ram From Under Roms
- No Drive Rattle On Errors
- Triple Drive Head Speed
- Autoboot Maker
- Koala Screen Dump
- Display GCR
- Fast Disk Eraser
- Protect Scheme For Your Disks
- Write Protect Disk
- Unwrite Protect Disk
- Mini D.O.S. Wedge
- Fast Diskmatcher
- Data Statement Maker
- Unnew
- 3 Minute Copy
- D.M.S.
s19
95

D-CODER

- Translates any machine language program into easy-toread English descriptions with complete explanations of each command!
- Makes complete notations of all important memory locations accessed by the program! (SID, VIC, MOS, KERNAL, etc.)
- Gives you three ways of accessing programs:

1) WIII read and Iist programs from DISK
2) Will read and list programs from MEMORY
3) Direct user imput (from magazines, etc.)

- Can be used to locate and examine any machine language program's protection routines!
- Can be used to easily break apart machine language programs for study and examination!
- Printer option for complete hard copy listings!

N-CODER

the machine
The perfect companion program to D-CODER! language manipulator. or...
Allows you to easily make changes in machine language programs... right on the disk!

- Rewrite ability allows code to be altered and then rewritten directly to the disk!
- Features sector-by-sector scrolling assembly language display of machine language programs!
- Notation of ASCII text equivalents for easy spotting of embedded text strings!
- handy reference display of all assembly language commands and their ML numerical equivelents!

You Now Longer need to be an EGGHEAD to read Machine Language.
s19.95

- Byte splitter for easy splitting of decimal addresses into low byte-high byte format!

Bulletin Board

Set up and operate your own bullotin board with one
or two disk drives. This one has all the features and you can customize it easily yourself.
1-RUN MEGASOFT-BBS 8-READ SYSOP MESSAGES 2-CREATE MEGA FILES 9-WRITE OPENING MESSAGE 3-ADD TO SYSOP'S CORNER 10-READ LOG 4.ADE SYSOP'S CORNER 4.NEW SYSOP'S CORNER 11.CYCLE LOG
5.READ MESSAGES 6. SCRATCH MESSAGE 7.CYCLE MESSAGES 13-SCRATCH DOWNLOAD FILE 550
15.CREATE OTHER SYSTEMS BBS

59.95

- Leveled Access
- Private Message Base
- Expert Mode
- Up to 300 Passwords
- Open Chalk Board for

Highest Level Access

\boldsymbol{T}he next roll of the dice may determine your future. Three dice rattle in the cup. The question is this: What is the probability that you will roll an eleven? You confidently reach for your portable computer and quickly load the three-dice simulation program. Within moments it has calculated the answer to this final question on your statistics exam.

This article will not reveal the answer to the question. We will develop some programs to solve it, though. We will also look at a loftier topic than dice rolling, called data structure. The data structures of a program affect its speed, versatility, and debuggability. We will look at some of the tradeoffs of using different data structures.

As we saw last month, there are essentially three ways to determine probabilities: (1) formula evaluation, (2) random simulation, and (3) enumeration. It is very unlikely that any reference book contains the formulas of specific outcomes for the roll of three dice, so Method 1 is no good for solving our problem. This month we will develop procedures for implementing Methods 2 and 3.

Method 2 is sometimes referred to as a Monte Carlo approach. It is often used when the total number of possible outcomes is so large that it is impossible to list them all. Method 3 lists all possible outcomes and is feasible only in cases where that number is small enough and determinable.

PO. Box 1080 Battle Ground, Washington 98604
Phone (206) 687.5116.88S 687.5205 Atter-Hours Computerto-Cormputer Ordering

It is easy to calculate all possible outcomes for three dice. These nested FOR-NEXT loops generate every combination:
15) FOR $A=1$ TO 6 : FOR B=1 TO 6 : FOR $C=1$ TO 6
2r) PRINT A;B;C
3) NEXT C, B, A

Instantly the most tedious part of statistics class is eliminated! You might send this output to the printer. Then you could find the sum of each triple and keep track of how many of those totals equal the desired value. The probability of rolling an eleven is the quotient of the number of "successful outcomes" divided by the number of possible outcomes. Here a successful outcome is one in which the sum of the three dice is eleven.
Of course we will let the computer keep track of the sums and any other information about the dice that we desire. But before we proceed with this enumeration process, let's try the random simulation method.

ON TO MONTE CARLO

Very little work is needed to simulate and analyze the rolling of three dice, as the Dice Simulator program on page 99 shows. Random values from 1 to 6 are chosen for each of the dice. Their total value is calculated and compared with the desired value. If their sum is eleven, the variable GOOD is incremented. The variable N keeps track of the total number of rolls. The number of "good" rolls divided by the total number of rolls should approach the probability we are looking for. Line 70 displays 100 times this probability, giving us the percent probability.

Supposedly the longer this program runs, the closer the result comes to the theoretical value. Of course it is possible that the first three dice we roll have a sum of eleven, giving a 100% probability. On the other hand, we may roll 100 sets of dice before getting a sum of eleven. Neither result is very accurate. Only after numerous rolls with a good random number generator will the results settle down to a value close to the true value.

We have seen in previous articles that the random number generator in our microcomputers is not truly random. The non-randomness may cause the program to "home in" on an inaccurate value. Using an imperfect random number generator is equivalent to rolling loaded dice. I suggest that you run the Dice Simulator program to see if you can determine the actual probability before you evaluate it exactly in our next program.

The disadvantages of using this Monte Carlo method should be clear. It may require a fair amount of time to arrive at a reasonable value. Also, it may be difficult to know how reasonable the value is. If the random number generator is not very good, the answer may not be very good either.

The main advantage of this method is that you don't have to be able to list all possible outcomes or even know how many there are. For simulating radioactive decays
and molecular motion (topics for next month), this is certainly a desirable characteristic.

You can easily modify the Dice Simulator program to answer other questions, such as:

1) Are you more likely to roll a seven or an eleven with three dice?
2) What is the probability of rolling a total value greater than fifteen?
3) What is the probability that the value on one die equals the sum of the values on the other two dice?
4) Is there a fifty percent probability that all three dice show an even number?
Use your intuition to make a guess on each of these before running your program. Probabilities are not always intuitive.

To help you get started on Problem 1, you might add this line:

65 IF TTL=7 THEN G2=G2+1

Also change line 70 to print the value of $100 * \mathrm{G} 2 / \mathrm{N}$ next to the other probability for a side-by-side comparison.

MORE SOPHISTICATION

The bare-bones Dice Simulator program uses the most basic data structure, simple numerical variables. The next program goes to the other extreme. It contains numeri-

BridgePro is the first program l've seen that provides a challenge for the average-to-excellent bridge player. . . The documentation is excellent and allows a new bridge player to learn the basics. - Harvey Bernstein, Antic Magazine, Feb. 1985

After having tried three other bridge programs, I find that BridgePro is indeed a pro game. . It is designed for both the beginner and the advanced player. . . I didn't find anything that could be improved upon. -Helen Garret, Apple-Dayton Journal, March 1985

If you like to play bridge and don't have three other players evereager to play, this software is a must. For bridge freaks it's good enough to justify buying a computer

Whether you are a "master" or a beginner, this is great software. -Christian Basler, NY Commodore Users Group Review, Sept. 1984

BridgePro is designed to let you learn, improve, or just enjoy the card game of bridge. The program provides complete bidding, play and scoring for 1 or 2 players. Features include random hands, bidding help, demonstration mode, hand replay/quit, best hand, auto finish, duplicate mode, and fast machine language speed.
\$35
DISK
CA Residents add $\$ 2.28$ Sales Tax Add $\$ 2$ for COD/UPS 2nd Day Air

> Commodore 64 - Atari Apple II - IBM PC/PC jr

Money Back Guarantee 24-Hour Toll Free Orders 1-800-443-0100 ext. 158
Computer Management Corp.
2424 Exbourne Ct.
Walnut Creek, CA 94596 Dealer Inquiries Invited
cal arrays which are indexed by other numerical arrays．
When three dice are rolled，there are 216 possible out－ comes．Each die may have any one of six possible values， and $6 * 6 * 6$ is 216 ．The computer can readily handle this many items．The program Dice Analyzer（on page 99） generates all of the 216 outcomes and stores the values of each of the dice in a numeric array．This program an－ alyzes the probabilities of various events by the exact pro－ cess of enumeration．Once the list of outcomes is deter－ mined，the computer may look through the list，identify－ ing＂successful＂outcomes and calculating the desired probabilities．A successful outcome is one which meets certain criteria，such as the sum of the three dice being eleven．

The value of each die for every one of the 216 possi－ ble outcomes is stored in the numeric array ROLL（N，D） where N is the outcome number（ 1 through 216）and D is the dies identifying number（ 1 through 3 ）．If $\operatorname{ROLL}(7,2)$ equals 4 ，then the value of the second die is four on the seventh roll of the dice．If the third die had a value of five on the twentieth roll，then $\operatorname{ROLL}(20,3)$ equals 5.

In addition to keeping track of each die＇s value，the program stores the count of each face value for every roll in the numeric array $\mathrm{CT}(\mathrm{N}, \mathrm{V})$ ．Again N is the out－ come number，and V is the face value（ 1 through 6 ）．If $\mathrm{CT}(9,2)=1$ ，then only one die had a value of two in the ninth roll．If no dice had a value of two in the 216th roll， then $\mathrm{CT}(216,2)=0$ ．

One other numeric array is filled as the various out－ comes are enumerated．The array TTL（N）stores the sum of the three dice on the Nth roll．If $\operatorname{TTL}(40)=7$ ，then a total value of seven occurred in the fortieth roll．

Lines 40 through 110 enumerate the outcomes and fill the arrays．This program determines exactly the proba－ bilities that

1）Three ones are rolled．
2）At least one three and no sixes are rolled．
3）No twos are rolled．
4）The sum of the three dice is eleven．
This program is actually＂overkill＂for the sake of il－ lustration．It is certainly not necessary to set up such a complicated set of arrays in order to find these proba－ bilities．We could keep a tally of all successful outcomes as the values are generated in line 60．In fact，the simp－ ler method would run more quickly and use less memory．

Why bother with this more complicated program？With the more sophisticated data structure we gain greater ease of analysis and greater flexibility in displaying the re－ sults．To implement Test 2 listed above with the simpler structure，we might have to use line 65 such as：

65 IF（ $A=3$ OR $B=3$ OR $C=3$ ）AND（ $A<>6$ AND Bく＞6 AND Cく＞6）THEN $T 2=T 2+1$

This is somewhat more cumbersome than the correspond－ ing statement in line 150 ：

150）IF CT（N，3）＞＝1 AND CT（N，6）＝厅）THEN T2＝ T2＋1

Try to determine the probability that exactly one three and no sixes are rolled．I don＇t think such a test could be contained in one line with the simpler data structure． （Let me know if I＇m wrong！）Line 150 could be easily modified by removing the＂＜＂to perform such a test．

The ROLL array is needed only if selected outcomes are to be listed，as was done for Test 4．RNUM（M）keeps a list of all the roll number indices which satisfy Test 4．For example，if the twentieth roll had a sum of ele－ ven，and if four previous rolls also had sums of eleven， RNUM（5）would equal twenty．RNUM is used as an in－ dex into ROLL so that the events satisfying Test 4 can be printed in line 290.

DATA STRUCTURE OF DICE ANALYZER

The diagram shows the relation between TTL（ ）， ROLL（ ），and RNUM（ ）．On the 29th roll（ $\mathrm{N}=29$ ），the dice had values 1,5 ，and 5 ．The sum of their values is eleven so TTL（29）equals 11 ．This was the second oc－ currence of a total value of eleven．Consequently RNUM（2）equals 29 ．Similarly the 114th roll was the thir－ teenth occurrence of an eleven．The diagram shows that RNUM（13）equals 114，TTL（114）equals 11 ，and the three dice had values 4,1 ，and 6 ．

We have covered the fundamental concepts of index－ ing，pointers，and linked lists in the Dice Analyzer pro－ gram．Study the program and the data structure to under－ stand how the variables are defined and related．Better yet，see if you can modify the program to handle more dice．Perhaps you could change the Dice Analyzer pro－ gram to answer the four questions suggested earlier for the Dice Simulator program．

Think about the possible data structures as you begin to create any program．A more complicated structure might be harder to implement，but it may pay off with ease of expandability and versatility later．

SEE PROGRAM LISTINGS ON PAGE 99

prosenting ...CAPTURE

A NEW WAY TO UNLOCK THE POWER OF YOUR C64 OR C128*

- CAPTURE IS A CARTRIDGE THAT PLUGS INTO YOUR COMPUTER'S EXPANSION PORT.
- CAPTURE DOES NOTHING - UNTIL YOU PRESS ITS CAPTURE BUTTON. UNTIL THEN, A RUNNING PROGRAM CANNOT DETECT ITS PRESENCE.
- CAPTURE THEN TAKES CONTROL - NO IFS, ANDS OR BUTS - AND PRESENTS A MENU.
- CAPTURE WILL NEATLY SAVE EVERYTHING IN YOUR COMPUTER TO YOUR 1541 OR COMPATIBLE DISK DRIVE - ALL 64K OF RAM, CPU, VIC AND SID CHIP REGISTERS - EVERYTHING. IN EASY TO VIEW CHUNKS.
- CAPTURE WILL, IF YOU WANT, PRE-CONFIGURE YOUR COMPUTER'S RAM SO THAT ONLY MEMORY ALTERED BY YOUR PROGRAM NEED BE SAVED.
- Capture will write a boot on your disk so you can reload and begin EXECUTION RIGHT WHERE YOU LEFT OFF.
- CAPTURE does all this at a cost of just $\$ \mathbf{3 9 . 9 5}$

BUT HERE'S THE BEST PART

- CAPTURE WILL MAKE AN AUTO-START CARTRIDGE OF YOUR PROGRAM. IT'S EASY! JUST FOLLOW THE DIRECTIONS ON THE SCREEN. NOW PLUG IN YOUR CARTRIDGE AND TURN ON YOUR COMPUTER. IN LESS THAN TWO SECONDS YOUR PROGRAM BEGINS AGAIN AT PRECISELY THE POINT WHERE YOU CAPTURE'D IT. MAGIC!
BESIDES CAPTURE, YOU NEED A promenade C1 AND A SUPPLY OF CPR3 CARTRIDGE KITS.

ORDERING INFORMATION

- CAPTURE CARTRIDGE - COMPLETE WITH INSTRUCTIONS \$ 39.95
- promenade C1 - EPROM PROGRAMMER WITH DISK SOFTWARE 99.50
- CPR3 CARTRIDGE KIT - PC BOARD, CASE AND 3 EPROMS 29.95
- DR-EPROM ERASER, TWO AT A TIME, 3 TO 10 MINUTES . 34.95
- STARTER SET - CAPTURE, promenade C1 AND 1 CPR3.......................... 149.95
- DELUXE SET - CAPTURE, promenade C1, DR AND 2 CPR's 199.95

SHIPPING AND HANDLING - USA: UPS SURFACE $\$ 3.00$ BLUE LABEL $\$ 5.00$ NEXT DAY AIR $\$ 13.00$
CANADA: AIR MAIL $\$ 7.00$
OTHER FOREIGN AIR $\$ 12.00$
CALIFORNIA RESIDENTS ADD APPLICABLE SALES TAX COD ORDERS, USA ONLY, ADD $\$ 3.00$

C64 AND C128 TM COMMODORE ELECTRONICS, LTD. *WHEN OPERATING IN 64 MODE

TO ORDER: TOLL FREE 800-421-7731
FROM CALIFORNIA 800-421-7748

TECHNICAL SUPPORT AND 408-287-0259
FROM OUTSIDE THE US: 408-287-0264
Soler Commodore 64 Accessories

Sale Positively Ends $\mathbf{9 - 1 5 - 8 5}$ Prices will go back to regular sale prices
C128 Commodore Computer
Expandable to 512 K , runs C-64, CPM, and 7.0 Programs (Add \$10 Shipping)

Near Letter Quality. Multiple Pin Tractor Friction Feed. Best Printer Value in U.S.A. (Add $\$ 17.50$ Shipping)
Commodore-64 IEEE Interface
Allows you to run Pet Peripherals on the C.64, including the One Megabyte Disk Drive and $15^{\prime} 2^{\prime \prime}$ Printer

Letter Quality, daisy wheel, use as typewriter and or printer
(auto correction) (Add S10 Shipping)
SCM 80 CPS Printer

Tractor Friction 10 " Famous Name Printer does Graphics
w Interface. (Add $\$ 10$ Shipping)

Cardco G Plus Interface

Converts Commodore to centronics for use with most printers, plus does Commodore graphics on graphic printers
Alphacom 40 Column Printer
Thermal technology - does graphics. (Add $\$ 7.50$ Shipping) Alphacom C. 64 or Atari Interface $\$ 8.95$.

190K Slim-Line Disk Drive

Cooler, 20% faster, quieter than 1541 drive (Add $\$ 10$ Shipping)
One Megabyte Disk Drive (1000K)
Double sided drive hooks up to C .64 with IEEE interface, perfect as a second drive. (Add $\$ 10$ Shipping)
13' Premium Quality Color Monitor
Voice Synthesizer
Allows you to talk through your computer. Optional software lets you play talking adventure games (Zork, etc.)
80 Column Board - 4 Slot Expander
Allows you to program in 80 columns, plus gives you a 4 slot switch selectable expander
Auto Dial Modem with Super Smart Software
Upload, Download, Print, Catalog, This Package has it all!!! Best Modem Value in the U.S.A.!!
Musicalc I Software
The Best Musical Software for the C.64, allows you to change all parameters.
Oil Barrons Software
Better than Monopoly, comes with game board, disks and instruction manual. Strike Oil or Live in the Poor Farm

[^1]Reg. Sale Price
${ }^{5} 349^{\circ 0} \quad 5299^{\circ 9}$
s $299^{\circ 0}$
6900
${ }^{5} 349^{\circ 0} \quad{ }^{5} \mathbf{2 4 9 0 0}$
${ }^{5} 299^{\circ 0} \quad{ }^{5} 15900$
${ }^{5} 109^{\circ 0} \quad 59^{\circ 0}$
${ }^{5} 99^{00} \quad \mathbf{2 4} 4^{95}$
$\begin{array}{ll}{ }^{\mathrm{s}} 249^{\circ 0} & { }^{\mathrm{s}} 169^{\circ 0} \\ { }^{\mathrm{s}} 889^{\circ 0} & { }^{\mathrm{s}} 199^{\circ 0}\end{array}$

$5399^{\circ 0}$	${ }^{5} 199^{\circ 0}$
${ }^{5} 89^{\circ 0}$	

${ }^{5} 149^{\circ 0} \quad{ }^{5} 79^{00}$
${ }^{5} 129^{\circ 5} \quad{ }^{5} 59^{\circ 0}$

55995 $\quad 29^{95}$
${ }^{5} 49^{95} \quad{ }^{5} 19^{95}$

Summer Sizzler Sale
$\$ 289^{95^{*}}$
$\$ 799.95$
$\$.5595$
$\$ 229^{95}$ *
$\$ 749^{95^{*}}$
$\$ 4995$
$\$ 22^{95}$
$\$ 139^{95^{*}}$
$\$ 779^{95}$ * $\$ 169^{95}$ * $\$ 39^{95}$ $\$ 5995$
$\$ 3995$
\$ 1495
$\$ 9.95$

* plus Software Coupon Discounts

FANTASTIC COMPUTER PRINTER SALE!

10X COM-STAR ${ }^{\circ}$ HIGH SPEED

Tractor Friction Printer
Only 130-150 CPS

151/2" ${ }^{\prime \prime}$ 150-170 CPS Printer $\$ 319^{90}$

- Lowest Sale Price, Premium Quality, Tractor/Friction Printer in the U.S.A. (Best Value)
- High Speed 130-150 Characters Per Second • 40, 46, 66, 80, 96, 132 line spacing
- Word Processing, Letfers • Business Forms • Labels, Graphics, Tables • List Programs
- Fantastic Graphics - Print Modem Data - The Most Important Accessory For Your Computer

Premium Quality

130-150 CPS 10X COM-STAR High Speed Printer $\$ 199$ 10° ". carriage, 2 K buffer, prints $81 /{ }^{\prime \prime} \times 11^{\prime \prime}$ standard single sheet or continuous feed paper, Bi-directional, impact, dot matrix, $130-150$ CPS, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image, underlining, downloadable characters, true lower descenders with super and subscripts. prints standard, block graphics, and special characters. It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) (Better than Epson FX80 and Gemini 10x).
List \$499.00. Sale $\$ 199.00$.
Premium Quality 150-170 CPS 151/2X COM-STAR Business Super High Speed Printer $\$ 319.00$ Has all the features of the 10X COMSTAR PRINTER plus $15^{\prime \prime} / 2^{\prime \prime}$ carriage and more powerful electronics components to handle large ledger business forms! (Better than Epson FX $100 \&$ Delta 15$)$
List \$599. Sale \$319.00.

所\|\|!E SMITH
 CORONA

10'' 80 CPS Printer

Friction/Tractor Bidirectional Dot Matrix printer with six pitches including condensed and enlarged type for impeccable printing. Drop in cassette ribbon; centronics interface included.
List \$299.00. Summer Sale $\$ 149.00$ (Limited Quantities)

Super Summer Sale Ends 9-15-85

Printer/Typewriter Combination $\mathbf{\$ 2 2 9 . 0 0}$

 "JUKI" Superb letter quality, daisy wheel printer/typewriter combination. Two machines in one just a flick of the switch. $12^{\prime \prime}$ extra large carriage, typewriter keyboard, automatic margin control and relocate key, drop in cassette ribbon! (90 day warranty) centronics parallel or RS232 serial port built in (Specify). List $\$ 349.00$. Sale $\$ 229.00$.
(1) Olympia

Executive Letter Quality $\$ 299.00$ 15 " Daisy Wheel Printer
This is the world's finest daisy wheel printer. Fantastic letter quality, up to 20 CPS bi-directional, will handle $14.4^{\prime \prime}$ forms width! Has a 256 character print buffer. special print enhancements, built in tractor-feed (Centronics Parallel and RS232C Interface) (90 day warranty).
List \$649.00. Summer Sale sz99.00

(1) Olympia

Printer/Typewriter Combination $\$ 399.00$ Better than IBM Selectric. Superb computer printer combined with the world's finest electronic typewriter. Two machines in one, just flick the switch for up to 20 CPS printing (300 Words per minute) on a $15^{\prime \prime}$ carriage that handles up to $141 / 8^{\prime \prime}$ in. paper Drop in cassette ribbon - express lift off correction. Centronics parallel interface (90 day warranty)
List $\$ 749.00$. Summer Sale $\$ 399.00$.

- 15 Day Free Trial - 1 Year Immediate Replacement Warranty

PARALLEL INTERFACES

For VIC-20 and COM-64 - \$59.00. Apple - \$59.00. Atari - \$59.00.

Add $\$ 14.50$ for shipping handling and insurance. Illinois residents please add 6% tax. Add $\$ 29.00$ for CANADA. PUERTO RICO. HAWAII ALASKA. APO.FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA. Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days delivery. 2 to 7 days for phone orders. I day express mail! VISA - MASTERCARD - C.O.D. No C.O.D. to Canada or APO.FPO

We Love Our Customers 22292 N. Pepper Rd., Barrington, Illinois 60010 312/382-5244 to order

Store Spreadsheets, Databases, Wordprocessing Data, Etc. - Commodore 64 • PET - 8032 • B128

Abstract

The one megabyte disk keeps you from hunting through hundreds of disks for your programs; plus running out of room on your drive for Data base Data, Word processing Text, Spreadsheet Data, Business program Data, etc. With the One Megabyte Disk Drive you can store over $51 / 2$ times the capacity of the 1541. You can store your own programs and any back-upable commercial programs plus data from your business programs*. Perfect as a second Drive!!!! Enter the world of professional computers today. C- 64 requires IEEE interface. List \$899.00. Sale $\$ \mathbf{1 7 9 . 0 0}$. LIMITED QUANTITIES! - Requires 2 drive software.

'19900 Sale '19900
 15½'High Speed 150-170 CPS
 BUSINESS PRINTER

The 8023 is a highly advanced 136.250 column 15 $1 /{ }^{\prime \prime}$ "professional tractor/friction printer with full Bit image graphics and downloadable characters for custom reports and program listings. The paper feed includes a multiple pin tractor for smooth error free operation. With the ribbon rated at 1 million characters (no mess cartridge) and the print head at 100 million characters this printer will last a lifetime. Full formatting with near letter quality makes lining up decimal points, automatic " S " signs and tabbing look fantastic and easy to use. With out a doubt THIS IS THE BEST PRINTER VALUE IN THE U.S.A. List $\$ 899.00$ Sale $\$ \mathbf{1 9 9 . 0 0}$.

LIMITED QUANTITIES!

SPECIFICATIONS

PRINTING METHOD
Serial Impact Dot Matrix
PRINT RATE
150-170 Characters per second (CPS)
PRINT STYLE
Near Letter Quality
PRINT DIRECTION
Bi-directional

COLUMN CAPACITY 136 - 250
LINE SPACING
Programmable
COPIES
3. including original

RIBBON TYPE
Cartridge (\$14.95)

RIBBON LIFE
1 Million Characters
PAPER WIDTH
$3^{\prime \prime}$ to $15^{1 / 2} 2^{\prime \prime}$ tractor or single sheet friction
INTERFACE
IEEE Protocol
CHARACTER SIZE
$0.116^{\prime \prime}$ high, $0.08^{\prime \prime}$ wide

GRAPHICS

Bit Image
Programmable Characters
Reverse Characters

ERROR HANDLING

Internal
Self-Diagnostics
Microprocessor

Commodore 64 IEEE Interface

This interface plugs into your Commodore 64 Disk Drive port and allows you to hook up the 1 Megabyte Disk Drive and
8023 Printer as well as other IEEE devices. Separte power supply insures reliability. Fantastic Interface.
List $\$ 109.95$. If bought with printer or disk drive $\$ 69.00$.
(no interface needed for PET, B-128, and 8032 computers)

[^2]

(Premium Quality)

- Built in Speaker and Audio
- Front Panel Controls
- For Video Recorders
- For Small Business Computers
- Apple - Commodore -Atari-Franklin-etc.

Add $\$ 14.50$ shipping handling and insurance Allinois residents please add 6°. tax. We do Canada) Alaska Puerto Rico APO.FPO Enclose Cashier
Enclose Cashiers Check Money Order or Personal Check. Allow 14 days for delivery 2 107 days for phone orders. I day express

13' Color Computer Monitor

(Premium Qualify)

- Beautiful Color Contrast
- High Resolution
- Separated Video
- Sharp Clear Text
- Anti-Glare Screen
- 40 Columns $\times 24$ Lines
- Supports 80 Columns

List \$32900
Reg. Sale siseor Summer Sale \$16995*

14' COMMODORE 1702 COLOR MONITOR
(add 14.50 shipping)
List $\$ 299.00$ $\begin{gathered}\text { Super Summer } \\ \text { Sizzler Sale }\end{gathered} \$ 700$ *

15 Day Free Trial - 90 Day Immediate Replacement Warranty

80 Columns $\times 24$ Lines. Super Hi-Resolution 1000 lines Green or Amber
Super-Clear "Easy to Read" text with special anti-glare screen! (Ltd. Qty.)

Sizzler Sale
List $\$ 249.00$

12" ZENITH HI-RESOLUTION GREEN OR AMBER TEXT DISPLAY MONITOR read text with anti-glare screen! A MUST for word processing. (Ltd. Qty.) List $\$ 199.00$ Super Summer $\$ 8.85^{\text {* }}$ 12' MONITOR GREEN OR AMBER TEXT

80 Columns $\times 24$ Lines, easy to read up front controls (Ltd Qty.)
List \$159.00
Super Summer
Sizzler Sale $\$ 095$ * Sizzler Sale

* Connecting cable $\$ 9.95$

Super Summer $\$ 200$ *
Sizzler Sale
13' ${ }^{\prime \prime}$ RGB \& COMPOSITE MONITOR
Must be used to get 80 columns with C128 \& Atari ST
List \$399.00

- LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY - BEST SERVICE IN U.S.A. ONE DAY EXPRESS MAIL• OVER 500 PROGRAMS • FREE CATALOGS

Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO. HAWAII. ALASKA. APO.FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA
Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders, 1 day express mail!
VISA - MASTER CARD - C.O.D. No C.O.D. to Canada, APO.FPO

Reader Service No. 160

"Our operator will show you how easy it is to operate. At the moment, however, he's getting his diaper changed..."

EERPATA

We omitted two characters from line 620 in Lucky Lottery (July '85), causing the program to crap out with a syntax error. Correct line 620 to read as follows:

$$
\begin{aligned}
& \text { •62r, IF A\$く>"[F1]" OR A\$<>"[F3]" OR A\$く>" } \\
& \text { [F5]" THEN58r) }
\end{aligned}
$$

In Duck Shoot (June '85), a printer malfunction added extra spaces to lines 10 and 120-160. These spaces should be ignored.

We apologize for any problems caused by the above errors. Remember that corrections to Ahoy! programs are posted on our bulletin board (718-383-8909-modem required!) as soon as errors are spotted.

SMALL THINGS CONSIDERED

Ahoy! offers its congratulations to

> Kenny Hill Jamaica, NY
winner of a subscription to Ahoy! courtesy of New York's Small Things Considered radio show (heard weeknights 5-8 and Saturdays 6-8 on WNYC AM83).

PROGRAMMING TIPS WANTED

Here's a chance for you, the readers of Ahoy!, and us, the editors of Ahoy!, to work together. If we each do our part, we can make Ahoy!'s soon-to-debut programming tips column the finest in any magazine. Your part will be to provide hints, tips, and programming routines that can simplify your fellow Commodore computerists' lives, enhance their abilities, or both. Our part will be to come up with a catchier title by the time this column actually appears.

Keep run-of-the-mill, twice-told tips to yourselves. This is Ahoy! We want valuable programming tips. And we'll pay premium rates for them.

Send your submissions to Ahoy! Programming Tips, Ion International Inc., 45 West 34th Street-Suite 407, New York, NY 10001.

A Look Around 1571

 Commodore's Disk Drive Companion to the 128After taking a close look at the capabilities of our 1571 prototype, we have been very favorably impressed. In most areas operating speed has been improved, as much as nine times for a straight LOAD. Even faster performance can be obtained under certain conditions. Commodore also appears to have learned their lessons on the 1541 very well, as careful attention has been given to previously troublesome hardware details.

SPECIFICATIONS

To fulfill its primary purpose of supporting the Commodore 128 computer, the 1571 has two distinct personalities. As a Commodore drive it behaves very much like a double sided 1541 disk drive. Formatting a disk (a 43 second process) results in tracks 1 to 35 being laid down on side 0 , the same as on the 1541 . The flip side, side 1 , contains tracks 36 to 70 . Note that side 0 , the side which the 1541 uses, is the underside of the disk when it is placed on a surface with the label facing up. As expected, double siding the disk also doubles the overall data storage capability. However, not all of the drive capacities are doubled.

Total disk capacity for a Commodore formatted disk is now up to 349,696 bytes. A look at the directory of a disk freshly formatted on a 1571 shows a total of 1328 blocks free. The maximum size of a sequential file has been increased to a total of 337,312 bytes. A file this size will

How the 1541 and 1571 drives stack up. READER SERVICE NO. 101

By Morton Kevelson

span both sides of the disk. Interestingly enough, the maximum size of a relative file is 167,132 bytes, the same as on the 1541.

Track 18 on side 0 is reserved for the block availability map (BAM) and the disk directory. The BAM tells the disk drive which sectors have been reserved for data storage. Sector zero of this track contains the BAM for both sides of the disk. A separate copy of the BAM for side 1 is maintained in sector 0 of track 53. The capacity of the directory is limited to

144 file entries, as on the 1541 , although the remainder of track 53 does not appear to be used for any purpose.

THE DOS

Much work appears to have gone into the built-in disk operating system (DOS), so much so that Commodore has upgraded the DOS version to number 3.0. This is puzzling, as DOS 3.0 is also used in the Commodore D9060 and D9090 hard disk units. The most recent DOS for a Commodore floppy disk unit was version 2.7 on the 8250 dual drive and its SFD 1001 single drive counterpart. The latest revision on the 1541 is DOS 2.6.

TIMING

With regard to operating speed we have some good news. As mentioned above, formatting time for both sides of the disk is only 43 seconds. Program loading time, when used with a C-128, has been speeded up by a factor of nine as compared to a C-64 with a 1541 disk drive. The following table shows the result of some simple benchmarks tests:

C-64/1541 C-128/1571

30K LOAD	77 Sec .	8.5 Sec .	
30K SAVE	87 Sec .	58	Sec.
40K SEQ File			
Read \& Write	230 Sec .	145	Sec.
Read Only	112 Sec .	45	Sec .
Write Only	120 Sec .	100	Sec .
REL File	271 Sec .	280	Sec .

The sequential file tests were conducted by running the following BASIC program:

The 1571 drive with its lid removed. The power supply is on the right.

Main circuit board rests below power supply and drive mechanism.

```
10 REM DISK DRIVE TIMING
2` REM SEQUENTIAL FILE BEN
CHMARK
3r) A$="ABCDEFGHIJK"
45) FORI=1T08
5()}\textrm{B}$=\textrm{B}$+\textrm{A}
60) NEXT
70) OPEN8,8,8,"SEQ FILE TES
T,S,W"
85) FORI=1T046!
9r) PRINT#8,B$
10%) NEXTI
115) CLOSE8
12r) OPEN8, 8,8,"SEQ FILE TE
ST,S,R"
13r) FORI=1T046r,
145) INPUT#8,B$
15() NEXTI
16r) CLOSE8
```

The relative file test consisted of creating a file with 512 records where each record was 254 bytes. Only the last record was written to.

These timing tests are only part of the story. The 1571 has a "burst" mode which should result in much faster data transfer rates between the disk drive and a $\mathrm{C}-128$. The burst mode is recommended only for non-critical data, such as bit maps, where a data error is not fatal. The
high speeds used by the burst mode leave little time for DOS error checking routines. Commodore 64 users will not be able to take advantage of the faster operating speeds without special software. The C-64 operating system does not have the required routines. Using a 1571 with a C-64 will not give any speed advantage, although the extra disk capacity will still be available.
The discussion until this point has centered about the Group Code Recording (GCR) scheme which is virtually unique to Commodore formatted disks. The 1571's second personality gives it the ability to format disks using modified frequency modulation (MFM) double density recording techniques. This format has been adopted by a large segment of the personal computer community, most notably by many CP/M machines. Even in this case there are variations among machines, most notably in the total capacity of a formatted disk. This can be related directly to the number of bytes in a disk sector.

The 1571 has considerable flexibility with the MFM format. Sector capacity can vary from 128 bytes up to 1024 bytes. The following table shows the possible combinations.

Sector Capacity	\# of Sectors per Track	Disk Capacity*
128 Bytes	26	260 K
256 Bytes	16	320 K
512 Bytes	9	360 K
1024 Bytes	5	400 K

*Formatted capacity for a double sided disk.
The MFM formats, as well as the high speed burst mode, are accessed via a new direct disk command, U0. The preliminary documentation indicated that mixing of the various MFM and GCR formats was possible on a single disk. Even formatting of single tracks is possible. These prospects are sure to gladden the hearts of many copy protection enthusiasts.

We will report on CP / M on the $\mathrm{C}-128$ with the 1571 in the near future. As of this writing (mid-June) Commodore has not released the CP / M operating system and support

Closeup of the main circuit board. See key at right for chip layout.
utility disks.

COMPATIBILITY

Although the 1571 is a double sided drive, it is still fully capable of reading and writing single sided disks formatted on a 1541 disk drive. When working within C-128 mode, the drive initially assumes that the disk is double sided. If a single sided disk is inserted it takes the drive about 15 seconds to convince itself that the second side is blank. Once done, all subsequent reads and writes are done in single sided mode. Unfortunately this second side checking routine occurs every time disks are swapped. The 15 second delay could become annoying if single sided format disks are frequently mixed with double sided disks.
Double sided disks are filled on side 0 first. If you use a 1541 with a double sided disk you will not be able to access the second side. Flipping the disk will not work as the rotation is reversed. In addition, the track numbers run from 36 to 70. These are illegal as far as the 1541 DOS is concerned. The real difficulty is when a 1571 is added to an existing C-64 system. As the disk fills, files will spill over to the second side. Trying to read one of these on a 1541 will

1571 MAIN CIRCUIT BOARD LAYOUT

A-CIA CHIP
B-MICROPROCESSOR
C-VIA CHIP
D-MFM DISK DRIVE CONTROLLER
E-DEVICE NUMBER SELECTION SWITCH
F-SERIAL PORT CONNECTORS
return an illegal track or sector error. The 1541 does not recognize track numbers greater than 35 .

When the 1571 is connected to a $\mathrm{C}-64$ it reverts to 1541 mode. Under these conditions the drive will not read the second side of a double sided disk. Even formatting time reverts to 70 seconds for a single side! Compatibility with 1541 software is very good. All the standard DOS commands function as before. Nearly all of the copy protected disks we tried LOADed without any difficulty.

THE ELECTRONICS

The internal works consist of three modules, two for the drive electronics and one for the hardware. The power supply module is completely contained in a perforated metal cage located directly above the main circuit board. This mounting position insures that heat dissipation will be away from the main electronics. The major heat generating components are the twin voltage regulators and
transformer on the left side. These supply the five volt DC and twelve volt DC requirements for the drive. The 120 volt supply line is fully filtered.

The heart of the drive electronics is a 6502 A microprocessor with 32 kilobytes of disk operating system in ROM supported by two kilobytes of RAM. A 6526 CIA chip and a 6522 VIA chip handle the I/O requirements. The Commodore format GCR recording is handled by a custom large scale integrated circuit. The MFM recording for CP/M format disks is taken care of by a Western Digital WD1770 chip.

MECHANICALS

As with all of Commodore's disk drives, the design of the 1571 is revolutionary. For the end user the most significant improvement is the incorporation of an optical sensor for the track one head position. This should virtually eliminate the alignment problems which plagued the $1540 /$ 1541 disk drives. The mechanical stops are still present but they are not normally used. The disk operating system arrests head movement at the track one position when formatting a disk or error checking as might be done with some forms of copy protection.

To insure proper seating of the disk, the 1571 spins the drive spindle every time a disk is inserted or removed. This operation is triggered by the write protect sensor. Of course, the same electronics also inform the DOS whenever a disk is swapped.
The 1571 is a double sided drive. Two heads (which in this case are definitely better than one) are provided to accommodate the storage of data on both sides of the floppy surface. These are situated in diametrically opposing positions so as to sandwich the floppy medium between them. These hard, highly polished, precision surfaces must never make contact lest their finish be marred. A mechanical interlock has been incorporated into the latch mechanism for this very purpose. The heads will remain in the open position unless a disk is inserted to trigger the inter-

Closeup of drive mechanism, which incorporates a brushless DC motor.

A closeup and inside view of the 1571 disk drive's power supply.
lock. This is true regardless of the position of the external operating lever.

Head cleaning, for those who shun the costly cleaning kits, requires a minimum of disassembly. Simply remove the top cover to gain access to the heads. As can be seen from the photographs, the power supply and the main electronics board are situated behind and below the drive mechanicals. There is no need to remove any of these components to clean the heads. Do not attempt to force the upper head support arm beyond its mechanical stop. Movement is rather restricted as compared to the design on the 1541 . A good-quality clean cotton swab, moistened with isopropyl alcohol (91%), does the job. As with all component disassembly, we caution our readers to use their own good judgment. Opening of the disk drive may void the warranty. If you have any doubts on your ability to handle this work, leave it for a qualified service technician.
The drive mechanism is manufactured by Newtronics/Mitsumi Electric Co. Ltd. It incorporates a brushless direct drive DC motor for spinning the disk. The motor control electronics are on a circuit board which surrounds the armature.

As expected, the back panel includes a pair of serial ports to allow daisy chaining of peripherals, the main power socket, and the on/off switch. A significant new addition is a pair of miniature switches right next to the serial port connectors. These allow the selection of device numbers 8 through 11. Interestingly enough, the preliminary documentation still talks about the cutting of internal jumpers to change device numbers.

In addition to the mandatory disk slot, the front panel sports a twist lock door latch and a pair of colored indicating lights. For some reason Commodore has departed from their previous color scheme. In direct opposition to the 1541 the power on light is red and the drive indicator light is green.

THE MANUAL

Judging from the draft copy of the manual, users will be in for a pleasant surprise. Although it is directed to the reader with some knowledge of BASIC, the manual contains a lot
more information than the early editions of the 1541 book. Carefully written explanations with numerous detailed examples are sprinkled throughout the text. The draft manual is over sixty pages, with two more chapters yet to come.

Numerous tidbits of information have been included. Many of these were apparently gleaned from the pages of the various Commodore publications. Commodore has even officially named the ignominious asterisk file as a "splat" file. Splat files occur when a file is opened and not properly closed by the DOS. They list in the directory with an asterisk next to their file names. As many a user has woefully found out, they can foul up a disk if not properly treated. Details for their cure are now an official part of the 1571 manual.

CONCLUSION

The 1571 disk drive makes an excellent companion to the $\mathrm{C}-128$. The system provides all of the features Commodore users have been looking

BACKUP PROTECTED SOFTWARE with COPY II 64 ${ }^{\mathrm{mm}}$

From the team who first brought you COPY II PLUS (Apple), COPY II PC (IBM) and COPY II MAC (Macintosh) comes a revolutionary new copy program for the Commodore 64, COPY II 64!

- Copies most* protected software - automatically.
- Copies even protected disks in just $31 / 2$ minutes.
- Maximum of four disk swaps on a single drive.
- Copies half and full tracks.
- Requires just one 1541 drive on the Commodore 64.

Call M-F 8-5:30 (W. Coast time) with your VEA : 503/244-5782. Or send a check (add $\$ 3 \mathrm{~s} / \mathrm{h}, \$ 8$ overseas) to

We update Copy II 64 regularly to handle new protections; you as a registered owner may update at any time for $1 / 2$ price! (To update, just send original disk and $\$ 20$.)
for since the introduction of the VIC 20. Much has been done to improve on the marginal performance of the serial bus as implemented on the 1541. (This bus was actually a low cost compromise which allowed the C-64 to appear on the market in a hurry.)
The flexibility of the 1571's operating modes will be put to full use by the CP/M 3.0 Plus operating system. Several popular disk formats will be directly supported or easily accessed by a set of simple keyboard commands. In particular, the supported formats are:

1. Commodore Formats (GCR)

- The existing CP/M 2.2 disk format, which is used by a Commodore 64 with the CP/M cartridge. Disk capacity is limited to 136 kilobytes in this format.
- A new Commodore CP/M format which will utilize the full 360 kilobyte capacity of a double-sided 1571 disk.

2. Non-Commodore Formats (MFM)

- Osborne (single sided only)
- Kaypro
- Epson
- IBM CP/M-86 (single- and dou-ble-sided disk capacities from 160 kilobytes to 360 kilobytes)
Additional formats are possible but will require special programming of the 1571 disk drive. In all cases data files may be transferred between the Commodore 128 and the respective machines. Of course, you cannot run IBM programs since CP/M 3.0 runs on an eight bit Z-80 microprocessor while CP/M-86 runs on a 16 bit 8088 microprocessor.
The 1571 is only the first step in high quality peripheral support for the C-128. Work is already well under way on the 1572 , a dual drive version of the 1571. It also would not surprise us to see a Commodore $31 / 4$ inch hard disk with a 10 to 20 megabyte capacity for under $\$ 500$ in the near future. This combination of features with low cost is sure to encourage many existing Commodore users into the upgrade path. We also expect to welcome many new users into the Commodore fold.

Touring the Commodore 128 Keyboard

> Last month we presented an inside view of the C-128. Starting this month we will take a closeup look at some of the specific features which make this new machine a significant improvement over its predecessors.

By Morton Kevelson

The ergonomic considerations in the design of the C-128 keyboard are readily apparent. The keyboard's low profile should help reduce fatigue by allowing the user's wrists to rest comfortably on the table. Touch typists will welcome the raised dimples on the F and J home keys, as well as on the 5 key of the numeric keypad. The $21 / 2$ inch wide clear space between the keys and the cooling vents is sure to become a haven for all sorts of keyboard overlays. All in all, there are 92 keys to bewilder the novice.

Observant readers will also note that the main part of the keyboard is nearly an exact duplicate of the Commodore 64's. The only notable change is the relocation of the function keys to a horizontal configuration at the right of the top row. Present 64 owners should have very little trouble becoming comfortable with the $\mathrm{C}-128$ layout.
Physical attributes aside, there is a lot more to the C-128 keyboard than meets the eye. Hidden beneath the tactile array, under control of the new operating system, lurks a multitude of functions designed to ease the user's sojourn into the realm of computing with the C-128.
If you have been using a VIC 20 or a C-64, you will already be familiar with a good portion of the keyboard's capabilities. The full screen editor functions in the same way as these machines'. The INST/DEL key

Above the main keyboard of the 128 are (top) Esc, Tab, Alt, Caps Lock, (middle) Help, Line Feed, 40/80, No Scroll, and (bottom) cursor keys.
still eats characters to the left, or when shifted opens spaces to the right. The quote and insert modes still operate in the same fashion which nonCommodorists find so thoroughly befuddling. The CLR/HOME key still moves the cursor to the top left corner of the screen, or when shifted clears the entire screen. As with the

C-64, text can be displayed in 16 colors, as the labels on the 1 to 8 keys indicate. These colors are still accessed by holding down the CONTROL key or the Commodore logo key. Unlike the C-64, the labels on the number keys now indicate both colors which are available for that key. As before, text display can be reversed with a CONTROL/9 and restored with a CONTROL/0.
The real power of the C-128 keyboard is in the new editing and control features which have been incorporated into the BASIC 7.0 operating system. For convenience, we have classified these features into three categories: the function keys, the ESCape key sequences, and the CONTROL key sequences. Let's take a close look at each in turn.

THE FUNGTION KEYS

On power up, eight useful BASIC phrases are preassigned to the $\mathrm{C}-128$ function keys. These phrases can be viewed by executing BASIC 7.0's new KEY command without any parameters. The following list should appear on the display.

KEY 1,"GRAPHIC"
KEY 2,"DLOAD"+CHR\$(34)
KEY 3,"DIRECTORY" + CHR\$(13)
KEY 4,"SCNCLR"+CHR\$(13)
KEY 5,"DSAVE" + CHR\$(34)
KEY 6,"RUN"+CHR\$(13)
KEY 7,"LIST" + CHR\$(13)
KEY 8,"MONITOR"+CHR\$(13)

Getting this list on the screen serves two purposes. First, it reminds you what is programmed into the keys. Secondly, it gives you the opportunity to easily change the contents in any of the eight function keys. For example, if you are not planning to do any graphic programming, you may want to redefine fl. Just cursor up to the " 3 " in KEY 3 and change it to a " 1 ". Hit RETURN and the directory will now be displayed by fl. Enter

KEY 3,"OPEN 4,4:CMD4"+CHR\$ (13)
followed by
KEY 4, "PRINT\#4:CLOSE4"+CHR\$ (13)
and you will be all set for easy printer listing. Note how the numbers 1 through 8 which immediately follow the KEY statement refer only to the function keys. No other keys are affected by this command.

There is one possible disadvantage to having the function keys preprogrammed. BASIC programs written for the C-64 do not expect to find a lengthy message when examining the function keys. This can be easily remedied by reprogramming all eight keys with the following:

FOR $\mathrm{I}=1$ TO 8:KEY I,CHR\$(I+1 32): NEXT

This will place the traditional (for VIC 20 and C-64 users) CHR\$ codes into the function keys. You will probably want to do this in every program which uses the function keys to control program operation.

ESCape KEY SEQUENCES

The C-128 has the powerful full screen editor that a veteran Commodore user will not feel at home without. This editor has been greatly enhanced with the addition of a series of ESCape key commands. The result is that the C-128 screen editor approaches the capabilities of a full blown text editor. Writing and editing BASIC programs has never been

C-128 KEYBOARD DISTINCTIONS

The C-128 sports a numeric keypad which should greatly speed up data entry in numerically intensive applications, most notably spreadsheets. These keys, as well as the discrete cursor keys, duplicate existing keys on the main keyboard. There are applications where a numeric keypad may be of little or no interest. Instead, various program control functions could be assigned to the new keys.

For such applications it would be desirable to distinguish the keypad from the number keys on the main keyboard. The traditional ASCII code check following a GET will not work, since the same ASCII code will be returned by the corresponding keys. For example, pressing a " 1 " on the keyboard or keypad returns an ASCII value of 49. Fortunately, there is a simple way for BASIC to distinguish which physical key has been pressed

Locations 211 and 212 are used by the operating system for this purpose. The values stored here every sixtieth of a second are unique for every key. At address 211 the SHIFT, Commodore logo, and CONTROL keys are identified. These keys will set bits zero, one, and two respectively at this address. If you PRINT PEEK(2II) a zero will normally be returned. The SHIFT key changes this to a one. The logo key returns a two and the CONTROL key results in a four. These values are additive, so holding all three keys down gives a seven.
The remainder of the keys, with the ex-

easier.

There are 21 ESCape key sequences implemented on the $\mathrm{C}-128$, almost one for every letter of the alphabet. These sequences are so useful that you will probably want to become familiar with them in a hurry. The best way to become acquainted with them is just to use them while writing a program. Afterwards, if you really want to see how dependent you have become on the new features, just GO 64 and enter the same program. Be forewarned, you may be in for a frus-
ception of the RUN/STOP, RESTORE, ALT, and $40 / 80$ keys, place a unique value in address 212 when pressed. On the C-128 this location contains an 88 when no key is pressed. Press any other valid key and a value between 0 and 87 will appear. The table above shows the values generated in location 212 by the keys on the C-128 keyboard. The following program can be used to reproduce these results:
10) DO:GETKEY AS
20) PRINT ASC(A\$);PEEK (212)

30 LOOP
The same program in BASIC 2.0 on the C-64 or VIC 20 would be:
10) GET A\$:IFAS=""THEN10
20) PRINT ASC(A\$);PEEK (203)
30) GOTO 15

Note the change in the PEEKed address. The operating systems on all Commodore machines have many similarities. Addresses 203 and 653 on the VIC 20 and the C-64 are equivalent to 212 and 211 on the $\mathrm{C}-128$. The values in 203 for the $\mathrm{C}-64$ will be the same for the corresponding keys in 212 on the C-128. However, the results on the VIC 20 are quite different. The shift flag values are the same for all three computers. You may want to use the KEY statement on the C-128 to clear the function keys before RUNning this program, or strange things may result.
trating experience.
Each of the ESCape sequence commands are executed by pressing and releasing the ESC key followed by the appropriate letter key. Do not hold down both keys at once. For example, pressing the ESC key followed by the "A" key places the editor in automatic insert mode. Anything you type will automatically push the remainder of the display ahead of it. This is a tremendous convenience for rearranging text between quotes or for adding temporary com-
mands during program debugging．It is especially useful when you keep in mind that the C－128 permits entry of up to 160 characters（four 40 column lines or two 80 column lines）into a BASIC program line．Note that this is not the same as opening a gap by using the INST／DEL key．All of the keyboard control functions，such as the cursor keys and the CLR／HOME key as well as the INST／DEL key，re－ tain their usual functions．In other words，insert mode does not place the screen editor into quote mode．
The screen parser has been en－ hanced in other ways as well．It will now link up to a full screen of text at one time．By comparison，the C－64 is limited to only two screen lines and the VIC 20 handles four screen lines． However，trying to enter more than 160 screen characters into a single BASIC program line results in a ？STRING TOO LONG ERROR．By comparison，exceeding the C－64＇s two line limit simply resets the screen linker to the next two lines．This full screen linking on the C－128 must be kept in mind when using the ESCape functions．The erase to end of line command（ESC Q）will remove all text from the current cursor position to the end of screen text or the next carriage return，whichever comes first．The erase to beginning of line command（ESC J）works analogously but in the opposite direction．The same is true of the move to end of line（ESC K）and move to beginning of line（ESC J）．On the other hand， the insert a line（ESC I）command is a screen line function．Use of this command within a BASIC line opens up one screen line while maintaining the line links for BASIC editing．
All of these functions can also be obtained under program control．The following sample program illustrates some of the effects which can be eas－ ily obtained by using the ESCape se－ quences in PRINT statements：

15）PRINT CHR\＄（147）：REM CLE AR SCREEN
25）CHAR， 14,11 ，＂OFF THE TOP ＂
3r）CHAR，12，12，＂DOWN THE BO TTOM＂

4「）CHAR，「， 12
5r）FOR I＝ rjTO 12
6r）PRINT CHR\＄（27）＂I＂CHR\＄（2 7）＂I＂；：REM INSERT TWO LINE S
75）PRINT CHR\＄（27）＂V＂；：REM MOVE SCREEN UP ONE LINE 85）NEXT

Note that CHR\＄（27）is the ESCape key．Several keystrokes can be saved by programming PRINT＂＜reverse ［ $>$ X＂where the reversed left brac－ ket is obtained by simultaneously pressing CONTROL，SHIFT，and the colon keys while in quote mode． The reverse left bracket between quotes in a BASIC statement will generate a CHR\＄（27）．This is a use－ ful trick to keep in mind for sending escape codes to a printer with a PRINT\＃statement．Note that the ESCape key commands only work when sent to the screen．If you want to see how the program works try adding the following lines：

65 SLEEP 1

75 SLEEP 1
The SLEEP command pauses pro－ gram execution for the specified number of seconds．Also note the use of the CHAR command to conveni－ ently position the cursor on the screen．The CHAR command is real－ ly meant to display text on a graphic screen．In this context it is being used as a PRINT AT command．

One of the more interesting capa－ bilities of BASIC 7.0 is the ability to define windows．Once a window is set，all subsequent screen output is restricted to this area．Try the follow－ ing program：

15）PRINT CHR\＄（147）
 2ヶ CHAR，1ヶ，1ヶ，CHR\＄（27）＂T＂
 35）CHAR，1『，1「，CHR\＄（27）＂B＂
 45）LIST

This will define a screen window whose upper left hand corner is at the tenth row and tenth column position． The lower right hand corner will be at twentieth row and column position． Note the use of the CHAR statement to position the cursor as well as to
set the window coordinates．Also note the coordinates in the CHAR statement of line 30 ．These are cor－ rect as shown．The CHAR statement references its coordinates from the upper left hand corner of the current－ ly active screen window．Since this has been already defined by line 20 ， we have to take this into considera－ tion for line 30.
To help keep track of the current screen window，BASIC 7.0 includes the RWINDOW function．The fol－ lowing sequence of commands：
$\mathrm{R}=$ RWINDOW (r)
$\mathrm{C}=\mathrm{RWINDOW}(1)$
will place the number of rows and columns into the variables R and C ．
While entering a BASIC program， the window commands can be used to partition the screen into a message area and a text area．Just write your－ self some notes at the top of the screen and set the screen window． Continue to enter BASIC program lines．All screen control functions，

FREE？DISKETTES

SAVE MONEYI C64 and VIC 20 users can use the diskette flip side，if another ＇write enable＇notch is correctly made．

TOP NOTCH ${ }^{+4}$ by QUORUM quickly solves that problem． It＇s like FREE DISKETTES！
－Stainless Steel Guide
－Easy Leverage Handle －Clippings Catcher －Square Notch Cut －Black Finish
Lifetime Warranty
Get THE BEST！Ask our customers； U．S．National Bureau of Standards TRW • IBM • Digital Research－ATST Ciba－Geigy Pharmaceuticals－International Paper
US Postal Service U．S．Postal Service－Rockwell International General Electric Corporate Research \＆Development Alcoa • U．．Naval Weapons Research Center
100% Moneo Bach Saticfaction Guarantece ！
TOP NOTCH ${ }^{\text {w }}$ Just $\mathbf{\$ 1 4 . 9 5}$
Add $\$ 2.00 \mathrm{~s} / \mathrm{h}$－CA Res．add 97 C tax

ORDER DIRECT FROM QUORUM
1－800－227－3800
24 Hours a Day Orders only

Ext 30 Khy
Dealers Invited
QUORUM INTGRNATIONAL，Unlid，
INDUSTRIAL STATION PO BOX 2134－AH OAKLAND．CA 94614
Reader Service No． 131
AHOY！
such as clear or home, will not affect the message area. To cancel a window just hit the HOME key twice.

Under program control, a window can be used to eliminate the need to continuously rePRINT a screen layout. The message area in the window can be manipulated as desired without affecting the remainder of the screen. Note that only one window can be active at any time.
A word about the scroll commands. Turning scrolling off, with an ESC M, causes the cursor to wrap from the bottom of the screen to the top of the screen. There is also a NO SCROLL key which according to the preliminary documentation is supposed to perform the same function. This is not so. We found this key to work as a pause as described below.

CONTROL KEY SEQUENCES

Turn on your C-128, hold down the CONTROL key, and press G. Surprise! If you had the volume turned up on your television or monitor, you were rewarded with a pleasant bell

tone. This may not seem like much, but if I had a nickel for every time someone asked me for a simple way to make that noise on a C-64, I would have retired a wealthy man some time ago. Commodore has finally implemented the traditional teletype "bell" in the C-128 console. The same tone can be produced with a PRINT CHR\$(7).

In general the CONTROL functions are not unique to the $\mathrm{C}-128$. Most of them will be familiar to present users of the VIC 20 or the C-64. The C-128 does have some significant changes and additions to this keystroke sequence. Note that unlike the ESCape key sequence you have to hold down the CONTROL key while pressing the second key. Also, CONTROL key commands can be placed into PRINT statements while the screen editor is in quote mode. In contrast, pressing the ESCape key while in quote mode will activate the ESCape key sequence.

As mentioned above, a CONTROL left bracket will send an ESCape character. Try it. If the editor is not in quote mode, this key sequence will initiate the ESCape mode. This lit-tle-known key sequence will also generate a CHRS(27) on the C-64 and the VIC 20. Of course, this has no direct effect on these two machines.

The C-128 has a TAB key on its keyboard right next to the ESCape key. Pressing this key generates a CHR\$(9), which moves the cursor to the next tab stop on the screen. The CONTROL I key combination will have the same effect. On the VIC 20 or the C-64, a CHR\$(9) will enable the character set switch capability. On the $\mathrm{C}-128$ this has been moved to CONTROL K (CHRS(11)). The dis-able-character-set-change command has also been changed to CONTROL L (CHR\$(12)), although the old CONTROL H (CHR\$(8)) has no unique $\mathrm{C}-128$ function. Programmers accustomed to these codes on the VIC 20 or C-64 should take note.

Getting back to the tab functions, the CONTROL X (CHR\$(24)) will set or clear a tab at the current cursor position. However, to clear all tabs you have to use the ESCape Z

TABLE OF ESCAPE KEY COMMANDS
(@) Erase screen from cursor to end of window
A Automatic insert mode
B Set bottom right corner of window at cursor
C Cancel automatic insert mode
D Delete current linked line
Insert a screen line, preserve line links
J Move to the beginning of current linked line
K Move to the end of current linked line
L Turn on scrolling
M Turn off scrolling
N Un-reverse 80 column display
O Cancel insert, quote, reverse, and flash modes
P Erase from the beginning of current linked line to the cursor
Q Erase from cursor to the end of current linked line
R Reverse 80 column display
T Set top left corner of window at cursor position
V Scroll screen up one line
W Scroll screen down one line
X Toggle between 40 and 80 column display
Y Restore default TAB stops at every eighth character position
Z Clear all TAB stops
ESC Cancel ESCape mode. (Any nonimplemented character will also cancel ESCape mode.)
sequence. The best way to learn about the tab stops is just to play with them. Note that a TAB command does not wrap the cursor to the following screen line. Tabbing to the end of a line simply leaves the cursor at that position.

Another change is worth noting. The CONTROL J (CHR\$(10)) code generates a linefeed without a carriage return. On the C-64 and VIC 20 both a linefeed and carriage return will be produced.

The remaining unique $\mathrm{C}-128$ CONTROL codes are associated with the 80 column display. CONTROL B (CHR\$(2)) turns underline on. However, there is no corresponding CONTROL sequence to turn it off. You will have to PRINT CHR $\$(130)$ to cancel underline mode. The 80 column characters can be set to flash by using a CONTROL 0 (CHR\$(15)). As with underline mode, there is no CONTROL sequence to turn flash off. Use PRINT CHRS(143).

Continued on page 74

COMMOIDAINES

PROGRAMMING CHALLENGES

By Dale Rupert

Each month, well present several challenges designed to stimulate your synapses and toggle the bits in your cerebral random access memory. We invite you to send your solutions to:

Commodares, c/o Ahoy!

P.O. Box 723

Bethel, CT 06801
We will print and discuss the cleverest, simplest, shortest, most interesting and/or most unusual solutions. Be sure to identify the name and number of the problem you are solving. Also show sample runs if possible, where appropriate. Be sure to tell what makes your solutions unique or interesting, if they are. Programs on diskettes are welcome, but they must be accompanied by listings. You must enclose a stamped, self-addressed envelope if you want any of your materials returned. Solutions received by the middle of the month shown on the magazine cover are most likely to be discussed, but you may send solutions and comments any time. Your original programming problems, suggestions, and ideas are equally welcome. The best ones will become Commodares!

Problem \#21-1: Geometry Fun

This challenge was suggested by Phil MacLean (Columbus, OH). The user inputs three ordered pairs of numbers (x, y values in Cartesian coordinates), and the computer tells whether or not they represent collinear points. The three points are collinear if they lie on the same line. If they are, the computer tells which lies between the other two on the line. Any values of x and y are allowed. Better dust off the geometry books!

Problem \#21-2: Logical Fun

Michael P. Marron (Stony Brook, NY) submitted this Commodare. Four students were discussing their upcoming report card marks. They made the following statements:

AL: (1) We'll all get different marks.
(2) If I get a 95 , then Connie will get a 65 .

BETTY: (3) If Connie gets a 75 , then Al will get a 65 .
(4) Al will get a better grade than Dan.

CONNIE: (5) If Betty doesn't get a 95 , then Al will get a 75 .
(6) If I get an 85, then Dan won't get a 65 .

DAN: (7) If Connie doesn't get a 95 , then Ill get an 85 .
(8) If Betty doesn't get an 85 , then I won't either.

Your task is to write a program which (A) determines the mark for each student assuming the above statements are all true, and (B) finds all possible solutions assum-
ing statement number (1) is false. For extra credit, determine how many of the original eight conditions can be eliminated and still have only one solution.

Problem \#21-3: Decimal Columns

E. Harvey Hammett (Houston, TX) asked for a short method of lining up decimal points when numbers are printed in a column. Your routine should print on the screen, but it should also be usable on a printer. That means you are not allowed to use any cursor movement keys. If the user enters $12.5,134.56, .0026,23$, and 1.234 , the computer prints out:

12.5
134.56
. r$) \mathrm{f}$ 26
23
1.234

Problem \#21-4: REM Remover

Jim Speers (Niles, MI) has sent a five line subprogram which may be added to the end of another program beginning at line 55000. When the user types GOTO 55000, this subprogram deletes all lines beginning with REM or a colon. Jim uses this subprogram in debugging. Any trace statements to print variables or to STOP the program may be preceded by a colon. They will be executable, but when debugging is done, they may be removed simply by typing GOTO 55000. Can you come up with such a program?

This month we have readers' solutions to the May 1985 Commodares. Problem \#17-1: Decimalizing Dates brought a grand total of three responses. The problem is not really very difficult, and it is a "real world" problem. Business programs typically use a decimal form of a date rather than a "month, day, year" format for internal calculations. The solution from Jim Speers (Niles, MI) is listed below. Jim claims that mid-1985 should be listed as 1984.5 since he considers the first year as 0 . Midway into the first year should then be 0.5 . We'll leave it up to you to modify the program if you want mid-1985 to be shown as 1985.5 .

1 REM

2 REM PROBLEM \＃17－1：DECIMALIZING DATES
3 REM SOLUTION BY JIM SPEERS
4 REM
1rرf） $\operatorname{DIMD}(12), \mathrm{I} \$(3): F O R I=1 T 012: \operatorname{READD}(\mathrm{I}): \mathrm{N}$ EXT
115）DATA厅ノ，31，59，9ヶノ，12ヶ，151，181，212，243，2 73，3rر4，334
129）PRINT＂［CLEAR］［DOWN］ENTER DATA（E．G． 1r／5／1985）＂；：INPUTA\＄：K＝1：FORI＝1TOLEN（A\＄） 13r） $\mathrm{Z} \$=\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{I}, 1): \mathrm{IFZ} \$=$＂／＂ORZ\＄＝＂－＂THEN $\mathrm{K}=\mathrm{K}+1$ ：GOTO15（ $)$
145）$I \$(K)=I \$(K)+Z \$$
150）NEXT：M＝VAL（I\＄（1））：D＝VAL（I\＄（2））：Y＝VAL （ $I \$(3)): L Y=1$ ，
 ENLY＝1
17r） $\mathrm{DT}=\mathrm{Y}-1+((\mathrm{D}(\mathrm{M})+\mathrm{D}-\mathrm{LY} *(\mathrm{~A}>2)-.5) /(365+\mathrm{LY}$

180）PRINT：PRINT＂THE DECIMALIZED DATE FOR ＂A\＄＂IS＂：PRINT：PRINTDT

Jim＇s program calculates the decimalized date as of twelve noon，hence the -0.5 in line 70 ．Each hour is 0.000114 part of a year．Line 160 tests for leap years．The DATA statement stores the number of cumulative days in months prior to the given date．David Alan Wright （New Britain，CT）and James Borden（Carlisle，PA）also

KIWISOFT PROGRAMS

Programs on diskette from
KुचూISOFT．． PROGRAMS

Ace Software，P．O．Box 9332，Columbus，MS 39705 Phone：601－328－9491

Reader Service No． 121
sent solutions．Both Jim＇s and David＇s programs allow the user to enter dates in $\mathrm{mm} / \mathrm{dd} / \mathrm{yr}$ or mm －dd－yr format．
Several readers tackled Problem \＃17－2：Printer Sentin－ $e l$ ．The solution from Brian J．Wilcox（Coldwater，OH） is listed．Since his program is similar in approach to many others，I concluded that it must work－on some printers at least．It doesn＇t work on mine．A modified version of Brian＇s program is also shown，which works on my Epson MX－80 printer with a serial－to－parallel converter．

1 REM
2 REM SOLUTION TO COMMODARE \＃17－2
3 REM PRINTER SENTINEL
4 REM SUGGESTED BY BRIAN J WILCOX
5 REM
15）PRINT CHR\＄（147）
25）GOSUB 1\％ر）
3r）PRINT＂THE PRINTER IS ON＂
45）END
1رr）OPEN4，4：PRINT\＃4：CLOSE4：IF NOT（ST AND －128）THEN RETURN
11rs PRINT＂［HOME］PRINTER IS NOT ON LINE＂ ：GOTO 1rر）

1 REM
2 REM SOLUTION TO COMMODARE \＃17－2
3 REM PRINTER SENTINEL
4 REM MODIFIED
5 REM
15）PRINT CHR \＄（147）
20）GOSUB 105
35）PRINT＂THE PRINTER IS ON＂
49）END
1ヶヶ）PRINT＂［HOME］THE PRINTER IS NOT ON＂： 0 PEN4，4：PRINT\＃4
105 PRINT\＃4：IF NOT（ST AND－128）THEN
PRINT＂［HOME］＂：R ETURN
115）CLOSE 4：PRINT＂［HOME］PRINTER IS NOT 0 N LINE＂：GOTO 1رת

Even when my printer is off，the computer can sent it one message without the STatus variable indicating any problem．If the program sends a second message，the computer sits and waits forever at the PRINT\＃statement． Consequently I couldn＇t display a＂Printer Off＂message if the printer was off．Instead I had to display the＂Print－ er Is Not On＂message before writing to the printer，and if the printer was on，the message was quickly erased． If the printer is off，the message remains on the screen until the printer is turned on（or online）．If neither of these routines works for your printer，you might compare ST with 0 instead of -128 ．Refer to the STatus descrip－ tion in the Programmer＇s Reference Manual．

Other solutions to this problem came from Ron Giedd （Sioux Falls，SD），Clarice A．Baker（Kamloops，BC）， Jim Speers（Niles，MI），James E．Borden（Carlisle，PA）， and Lonnie Welch（Independence，MO）．

BONUS GIFT WITH ANY SOFTWARE ORDER - AN EXCELLENT PUBLIC DOMAIN VERSION OF AN ARCADE HIT GAME ON ITS OWN DISK.

ARCADE	
Archon	28.95
Archon II Adept	28.95
Beachead II	25.95
Bruce Lee	24.95
Castles of Dr. Creep	20.95
Championship Loderunner	24.95
Computer Quarterback	28.95
F15 Strike Eagle	23.95
Flight Simulator II	35.95
Impossible Mission	23.95
International Soccer	19.95
Kennedy Approach	23.95
Micro League Baseball	28.95
Statistics Disk (1984)	13.95
Mig Alley Ace	23.95
Night Mission Pinball	21.95
One On One .	28.95
Pitstop II	27.95
Questron	27.95
Raid Over Moscow	27.95
Solo Flight	23.95
Strip Poker	20.95
Tournament Tennis	17.95
Zaxxon	24.95

ADVENTURE AND MIND GAMES

Adventure Construction	37.95
Adventure Master	27.95
Below the Root	18.95
Bridge 4.0	17.95
Cutthroats	28.95
Dragonworld	23.95
Fahrenheit 451	23.95
Felony	23.95
Hitchhikers Guide	25.95
Infidel	25.95
Monty Plays Scrabble	27.95
Murder By The Dozen	23.95
Party Quiz	49.95
Party Quiz Refills	17.95
Rendevous With Rama	23.95
Robots of Dawn	27.95
Sargon III	34.95
Seven Cities of Gold	28.95
Starcross	26.95
Suspended	26.95
Swiss Family Robinson	18.95
Trivia Fever	27.95
Ultima III	39.95
Witness	25.95

EDUCATIONAL PROGRAMS

Agent USA 21.95
Cave of the Word Wizard 24.95
CBS Success w/Math Series ea. ea. 18.95
Evelyn Wood's Dynamic Reader 35.95
Harcourt Brace Computer SAT 54.95
Kidwriter 19.95 Memory Manor 19.95
Muppet Learning Keys 49.95
Spell It 33.95
Spellicopter 27.95
Story Machine 22.95
Word Attack 33.95

WORD PROC.-DATE BASESSPREADSHEETS

Batteries Included Home Organizers

Batteries Included Home Pak 34.95
Calc Result Advanced 69.95

Calc Result Easy 35.95
Complete Personal Accountant 54.95
Consultant (Delphi's Oracle) 68.95
Cut and Paste 36.95
Financial Cookbook 35.95
Fleet Systems 56.95
Magic Desk I . 35.95
Mirage Data Base Manager 67.95
Mirage Word Processor 56.95
Net Worth 55.95
Paperclip w/Spellpack 82.95
PFS File 55.95
Practi Calc 34.95
Practi File 34.95
Superbase 64 52.95
Total Text 2.6 31.95
Total Mailing List \& Labels 16.95
GRAPHICS
Animation Station 63.95
Doodle 28.95
Future House Light Pen 23.95
Moviemaker 37.95
Pen \& Peripheral Vision 41.95
Print Shop 31.95
MISCELLANEOUS
Bulk Discs - Quantities of 10 12.95
Compuserve Starter Kit 21.95
Fast Load 27.95
Maxell Disks - Box of 10 16.95
Pro-Tech Vinyl Covers 5.35
Simon's Basic 38.95
Tac II Joystick . 9.95
Vidtex 21.95
VIP Terminal 29.95

HARDWARE AND PERIPHERALS

B.I. 80 Column Display 134.95

Cardco + G Interface 69.95
Commodore 801 Ribbons 7.95
Commodore Hardware CALL
Indux Disk Drive 279.00
Okinate $10 \mathrm{w} /$ Plug and Print 199.00
Okinate 10 Blk \& Wht Ribbon 4.75
Okinate 10 Color Ribbon 5.25
Panasonic KXP1091 Printer 279.00
Prowriter 7500 Printer 229.00
Prowriter 8510 AP Printer 299.00
Prowriter 8510 Ribbons 5.95
LEROY'S CHEATSHEETS \$2.95

Basic	Paperclip
Blanks (3)	Practicalc
Calc Result Adv.	Printers
Calc Result Easy	Epson RX80
Comal (1.4)	Gemini 10X
The Consultant	1525/801/
Doodle	Quick Brown Fox
Easy Script	Simon's Basic
Flight Simulator II	Speedscript
For the Beginner	Sprites Only
Hes Writer	Superbase 64
Logo Sheet 1	Terminals
Logo Sheet 2	Smart 64
The Manager	Vidtex
Multiplan	VIP
	Word Pro 3/Plus

SPECIALS
Cardco Numeric Keypad 32.95

Compuserve Starter Kit/Vidtex
39.95

S-Games
(Formerly Hes Games)
11.95

ORDERING \& TERMS

- VISA \& M.C. accepted with no charge in the continental U.S.A.
- $\$ 2.50$ shipping charge on orders under $\$ 100.00$
- Pa. Residents add 6\% Sales Tax
- Prices subject to change w/o notice
48 hour shipping for cashier check - Money order - charge

The most compact solution to Problem \＃17－3：MID\＄ Statement came from Ken Karow（Chicago，IL）．Ken in－ cluded some sample strings for testing the routine．The value of N tells how many characters of $\mathrm{Y} \$$ are used to replace characters of $\mathrm{X} \$$ starting at position S of X ．This can be a very useful routine．

1 REM
2 REM SOLUTION TO COMMODARE \＃17－3
3 REM MID\＄STATEMENT
4 REM SUBMITTED BY KEN KAROW
5 REM
1ر厅） $\mathrm{Y} \$=$＂ABCD＂： $\mathrm{S}=4: \mathrm{N}=3$
115 X\＄＝＂1234567＂：GOSUB2ヶر）：PRINT S，N， X\＄：INPUT＂START，NUMBER＂；S，N：GOTO 11s
2rر）IF $N=$ r）$O R \quad N>\operatorname{LEN}(Y \$)$ THEN $N=L E N(Y \$)$
21『） $\mathrm{X} \$=\mathrm{LEFT} \$(\operatorname{LEFT} \$(\mathrm{X} \$, \mathrm{~S}-1)+\operatorname{LEFT} \$(\mathrm{Y} \$, \mathrm{~N})+\mathrm{M}$ ID ${ }^{(X \$, S+N), L E N(X \$)) ~: ~ R E T U R N ~}$

The most popular Commodare was Problem \＃17－4： Number Speller．Solutions ranged from the reasonably short one by Rob Lackey（Albuquerque，NM）listed below to multipage programs．

```
1 REM
2 REM SOLUTION TO COMMODARE #17-4
3 \text { REM NUMBER SPELLER}
4 REM SUBMITTED BY ROB LACKEY
```


5 REM
1r）DIM $\left.D \$(3)^{\prime}\right): F O R I=1$ TO 3rر：READ $D \$(I): N E$ XT
 3r）$A=\operatorname{LEN}(\operatorname{STR} \$(N))-1: O N$ A GOTO 9r），6r， 5 （r）， 4 （）

V >1 THEN $N \$=N \$+D \$(V)+$＂＂＋D\＄（29）＋＂＂

70） $\mathrm{N} \$=\mathrm{N} \$+\mathrm{D} \$(\mathrm{~T}+1):$ GOTO 10 f$)$
80 $\mathrm{N} \$=\mathrm{N} \$+\mathrm{D} \$(\mathrm{INT}(\mathrm{T} / 1 \mathrm{~J})+19)+{ }^{\prime \prime}$＂
9f） $\mathrm{N} \$=\mathrm{N} \$+\mathrm{D} \$(\mathrm{~N}-1$（）＊INT（N／1厅）+1$)$
1fノ）PRINT N\＄：END
119 DATA＂＇＂，ONE，TWO，THREE，FOUR，FIVE，SIX
12ヶ DATA SEVEN，EIGHT，NINE，TEN，ELEVEN
13r）DATA TWELVE，THIRTEEN，FOURTEEN
14）DATA FIFTEEN，SIXTEEN，SEVENTEEN
15）DATA EIGHTEEN，NINETEEN，TWENTY
16）DATA THIRTY，FORTY，FIFTY，SIXTY
179 DATA SEVENTY，EIGHTY，NINETY，HUNDRED
185）DATA THOUSAND
Rob＇s program handles numbers up to 9999 ．Other solu－ tions went up to billions and beyond without much addi－ tional coding．Perhaps you can modify Rob＇s program to handle even larger numbers．This program might be useful for writing checks．I have used this type of pro－ gram with a speech synthesizer．The speech synthesizer pronounces words which are sent to it in PRINT state－ ments，so multidigit numbers must first be converted into text strings to be spoken properly．
Solutions to these last two problems came from the following readers not mentioned earlier：

Mac Reiter（Mustang，OK）
M．B．Lanphear（Cheyenne，WY）
Thomson Fung（San Diego，CA）
Paul DeLuca（Bradford，MA） Ed Taylor（Waukesha，WI） Carlton Burton（Easton，TX） R．R．Goings（Washington，IL） Darin Jett（Paducah，KY） Crile Carvey（Salinas，CA） Clay R．Reed（Edwards，CA）

Steve Werkman（Perrysburg，OH） William Manganaro（Ctr．Moriches，NY） William Binder（Northville，MI） Jerry Anderton（Florence，AL） Tony Herrington（Jeffersonville，IN） Sheldon C．Wotring（Palmerton，PA） Michael J．Strawn（Warren，MI） Paul A．Dobransky（Fombell，PA） Richard Oberle（Columbus，OH） Nancy Balfour（Honolulu，HI）

Special thanks to Ricardo Chan from the Republic of Panama and to Daniel R．Propst from Caracas，Venezu－ ela for their letters and programs．It is exciting to see how far－reaching Commodore computers and Ahoy！mag－ azine are．
One final note．Lonnie Welch（Independence，MO） gave one example of a mandatory space in BASIC．This statement using the logical OR of variables F and Q re－ sults in a Syntax Error．Do you see why？

19） $\mathrm{F}=$（）： $\mathrm{Q}=1:$ PRINTFORQ

Have you come across any other situations where BASIC requires a space？If so，let us know．This month＇s prob－ lems should keep you busy for a while．See you next month．

Automated Generation of DATA Statements on the C-64

BY DAVID A. JONES

ncorporating machine language routines into BASIC programs is often used to increase program execution speed. Sometimes the machine language is a separate program called and loaded by the main BASIC program. This requires two or more programs always to be on the disk, and making duplicates can become a chore. A common alternative is to store the machine language program as a series of DATA statements. This is a tedious task if these statements are typed in by hand. While the routine is under development, or should the need to modify it later arise, one simple change could necessitate retyping the entire sequence of DATA statements. Some form of automation is in order here, and the Auto-Gen utility program is my solution.

WHAT IT DOES

Once a machine language program is in memory, usually from the output of an assembler, just load and run Auto-Gen and the DATA statements will be automatically generated and written to disk for you. The program prompts you for the addresses of the first and last memory locations to be saved. These may be entered in decimal or, if preceded with a \$ (dollar sign), in hexadecimal. Next you are asked for the starting BASIC line number. (Be sure not to use the same line numbers that are used by the main portion of the program under development.) You are then asked for the number of data items desired per line, and finally the name of the output file you want to create.

While the program is running, it displays the line number being generated to inform you of its progress.

HOW IT WORKS

A quick review of how a line of a BASIC program is stored in the computer will help us understand the task to be accomplished. The normal starting location for the C-64 is 2049 ($\$ 0801$). The byte here plus the following one make up a link or pointer to the beginning of the next line of the program. This link is the "low byte first, high byte second" format typical of 6502 machine language. This address can be converted to decimal by multiplying the second, or high byte, by 256 and then adding the first, or low byte, to the product. Conversely, if we have the decimal value we can obtain the two bytes by dividing by 256 . The integer quotient is the high byte, and the remainder is the low byte. Our formula will be $\mathrm{HB}=\mathrm{INT}(\mathrm{NL} / 256): \mathrm{LB}=\mathrm{NL}-(\mathrm{INT}(\mathrm{NL} / 256)$), where HB is the high byte, LB is the low byte, and NL is the address of the start of the next line.

The next two locations hold the number of the current program line. Again, the number is stored in low bytehigh byte format and the same formula is used to convert to and from decimal.

The rest of the line contains the BASIC program statements. Each BASIC keyword is stored as a token, i.e., reduced to a one byte symbol. This has a twofold purpose. One is to reduce memory requirements and the second is to simplify interpretation during program execution. For our needs, the token for "DATA" is 131 in decimal (\$83 in hex). Spaces, commas, and literals (numbers or letters representing their own value as opposed to variables) are stored in their ASCII form. The numbers 0 through 9 are 48 through 57 respectively. A comma is 44 and a space is 32 . The end of the line is indicated with a zero byte, and the last line of the program is terminated with three consecutive zero bytes.

With this limited knowledge we can construct our own BASIC "DATA" statements. Since one numeric data item can have a maximum value of 255 , we will allocate one memory location for each digit or three locations per item. Each item must be separated by a comma, so add one per item except for the last one on a line.

Include in our tally 2 for the link to the next line, 2 for the line number, 1 for the DATA token, and 1 for the terminator, and we have the following formula. $2+2+$ $1+4 * \mathrm{ND}+1=$ the number of memory locations required to store one program line. ND is equal to the number of data items desired on each line. Add this number to the address of the beginning of the current line and we have the address of the start of the following line. NL will be the variable in our program that holds this address.

If we want to increment the line number by 10 we simply add 10 to the previous line number. LN is the variable here. When we reach the end of the program add two zero bytes to the one that terminates the last line and our work is almost done.

A program stored on disk or tape has as its first two bytes an address indicating where the program should be loaded. This is low byte-high byte format again and for our purposes the address is a constant. The C-64 uses 2049 ($\$ 0801$) and the VIC 201025 (\$0401).

That's about all we need to know to create a file of DATA statements directly on disk.

We assemble and load our machine language file into memory, note the first and last memory locations used, and we're ready to begin.

A loop that starts with the first data location and increments by the number of data items per line until the

Confused by Mail Order Ads???
 Price is not the only concern. You should ask . . .

1. Do you have the advertised product in stock?
2. If the product is defective who handles the warranty?
3. What is the total price delivered to my door?

For the straight answers to these

Send Self Address Stamped Business Envelope for Complete Product List!!! C-64 Hardware'still available, Call!

C-128 HARDWARE

1700 128K Expander 1571 Drive 350K DS/DD 1750 384K Expander 1670 Auto Modem . . 1200 Baud 1902 Color Monitor $13^{\prime \prime}$ RGB/Composite . . . 80/40 Column Display Teknika MJ22 Same Specs as 1902
. \$289 1350 Mouse
. E
JANE

C-128 SOFTWARE

Integrated Software for use with 1350

MODEMS

| Commodore 1660 | \ldots | $\$ 59$ | Westridge 6420 | \ldots | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | Call

ACCESSORIES

Com Cool Drive Fan \$49 Power Pak \$27
Com Cool Plus w/ surge . . . 69 Surge Protector 4-Plug . . . 25

- SPECIAL • Xidex Diskettes SS/DD $\$ 10.95$ - SPECIAL BLACK NAUGAHYDE COVERS

C-64 or 1541 Drive . . . ea. \$5	1702 Monitor 10
MSD Drives 1/2 5/6	1525/MPS 801
Gemini 10X 9	1526/MPS 802 8
DATABASE	MANAGERS
The Consultant $\$ 59$	PFS:File $\$ 59$
Super Base 64 49	PFS:Report 49

WORD PROCESSORS

Paper Clip/\& speller $\$ 55 / 69$ Easy Script $\$ 35$
Fleet System 2 Call Easy Spell 17
MOST ORDERS SHIPPED WITHIN 48 HOURS! Advertised prices are for bank check or money order VISAMC orders add 3.55 . NO C.O.D ORDERS. Personal or company checks delay orders 21 days. All sales are final - defective merchandise exchanged for same product only. Call for teturn authorization number. All returned products are subject to a restocking fee unless they are defective and returned for exact exchange. In the continental U.S. add 3% for shipping ($\$ 2.50 \mathrm{~min}$.) Please call for shipping on monitors. Ohio residents add 5.5% sales tax. Prices \& availability subject to change.
HOURS: MONDAY-FRIDAY 11 AM to 7 PM - SATURDAY 10 AM to 5 PM

 INFORMATION \& IN OHIO 216/758-0009

1301 BOARDMAN-POLAND ROAD POLAND, OHIO 44514 Reader Service No. 133
last location is reached will be the main loop of our utility. This loop keeps track of the start locations of each line and the line numbers themselves. It writes the first part of each line to disk up to and including the token for DATA and additionally writes the line number to the screen to show the user the progress of the program.
Inside the main loop a smaller loop, incrementing by one up to the number of items per line, creates each item for the DATA statements. Internal to this loop is a third loop to step through the conversion of data items into ASCII characters and write them to disk.

Last is a counter to determine where to insert commas. We don't want a comma after the last item on a line.

Prior to entering the main loop of the program, the disk file is opened and the program load address is written. Each iteration through the loop writes a program line and at the end of the loop the program terminator is written and the file is closed.

Two subroutines are used. One does the error checking on the disk file and the second is to allow hexadecimal inputs for the first and last memory locations to be saved. Since the main function of this program will be saving machine language routines, a hexadecimal input will probably be the norm. Hexadecimal input numbers must be preceded with a dollar sign to distinguish them from decimal.

Once the file is on disk it can be edited just like any other, or appended to an existing file.

Existing programs that have an unequal number of data items per line or that for some other reason need to be reformatted can also benefit from this program. Simply load the old program and let it POKE in the data. Then load Auto-Gen and let it do its work. Finally reload the original program, delete the old DATA statements, and append the new. The result is a neatly formatted program with an equal number of DATA items on each line.

VARIATIONS

I like my program listings to be neatly formatted and easy to read. Consequently, I have no reservations about including spaces and blank lines to achieve this end. Lines 1560,1580 , and 1470 in the program would be the ones to change if you absolutely must have files without leading spaces on data items less than three digits.
The choice of the number of data items on each line is arbitrary, but a few points should be considered. 10 is a nice round number and helps us count items easily. 16 is a good choice when working with machine language as it allows quick conversion to hexadecimal. 17 fits the maximum number of a C-64 program line and 19 does the same for a VIC 20.

Incidentally, the sample output of this program is the first part of the DOS Wedge 5.1. It was created by saving from 52224 to 52273 . To store the complete wedge use 53081 as the end address. Don't be surprised at the length of the resulting program, though. Using DATA statements to store machine language programs is most inefficient. \square SEE PROGRAM LISTING ON PAGE 89

DRAGON TYPE For the C-64 By Bob Spirko

computer programming offers the frustrating paradox of not lending to one's typing skills. After months or even years of programming, many of us still cannot type with any speed. This is especially apparent in telecommunications, where each party takes turns plodding letters on the screen. And when it comes to word processing, we suffer the same inertia.
Fed up with my own keyboard struggles, I went and bought a typing-drill program. This was a neat setup where you shot down a flying saucer by correctly typing in words. After each session, your speed, accuracy, and score were given. This, along with color and sound, helped to assuage the drudgery of practice. And the drills worked. In a few weeks I was typing faster and more accurately. But in time, I became bored with typing the same words. Besides, wouldn't it be better to type a variety of words? Unfortunately, I could not change the words, since the program was copy-protected.
Keeping this in mind I wrote my own typing-drill program. It includes the best features of the other, but it allows you to change the words. This provides you with an unlimited number of skill levels. If you find the words that I chose too difficult or too easy to type, or you simply become weary of them, replace them with your own. With Dragon Type you can also practice typing symbols: it accepts ASCII codes 32 to 90 .

Nor did I stop there, I replaced the flying saucer and laser gun with a dragon. Using the magic of machine language, I brought the little beast to life so that it could run across the screen and eat words. How well he's fed, though, is up to you, for he can only eat those letters that have been correctly typed.

Dragon Type consists of two programs: the first is in machine language and the second in BASIC. Type in and SAVE both programs. Now RUN the first program. After the machine language is LOADed into memory, the second program is automatically LOADed and RUN. Then the fun begins.

First, the dragon does a quick warm-up; then you're asked to choose a level. There are three animation speeds. While a novice can use the fast level, he may feel intimidated by a frantically paced sprite. On the other hand, a good typist might find that a slow sprite cannot keep up with his speed. Once your choice is selected, words fill the screen.

Now enters the dragon. He emerges from the left side
of the screen, races to the first word, and stops. Poised over the first letter, he snaps his jaws wide open and awaits your command. Tap in that letter, and the dragon gulps it down and moves on to the next letter. Continue typing and the letters disappear as the voracious creature munches them (he eats spaces, too). Press the wrong key and a beep is sounded, signaling an incorrect entry. (You can abort the meal by pressing f7.) At the end of each line, he speeds off the screen only to reappear on the next line, ready for another course. Once your dragon consumes all the words, the screen displays your speed and the number of typing errors. Also shown is your score and your highest score; these reflect both your speed and accuracy. To go another round, just press the space bar. Pressing RETURN ends the program.

SEE PROGRAM LISTING ON PAGE 88

PRINTER Interfaces	1702 Color \$199.95
G-Wiz CALL	Gorilla (green) . . \$ 79.95
Cardco B \$49.95	Gorilla (amber) . . \$ 89.95
Turbo Print \$79.95	Sakata Color \$179.95
MODEMS	
Westridge Automodem $\$ 69.95$	Word Processors Paper Clip
Modem 300 (1660) \$79.95	(w/spell) $\$ 79.95$
MPP 1064 C64 ... \$79.95	Word Pro 3+ (64) \$39.95
Total Telecommunication $\$ 39.95$	Write Now \$34.95
PRINTERS	Superbase $64 \quad \$ 69.95$
Epson Homewriter with Interface . \$299.95	The Consultant \$74.95
Commodore 803. \$179.95	Spread Sheets $\$ 39.95$
(tractor feed	Cal. Kit ${ }_{\text {Calc Result }} \mathbf{\$ 3 9 . 9 5}$
option) \$ 29.95	Utility Software
(Daisy wheel) $\$ 299.95$	Print Shop \$29.95
Star SG-10 \$224.95	Floppiclene Head
Panasonic 1091 . \$299.95	Cleaner \$12.95
Citizen MSP-10 . . $\$ 329.95$	Mach 5 \$24.95
G.E. Printer . . . \$219.55	
MONTIORS C128 CALL	Please call for any special requests!

COMPUTER WAREH:OUSE

(in FL) 305-274-3680; 1-800-372-0214 7222 S.W. 117th Avenue, Miami, FL 33183

[^3]Credit card orders should add 3%. Prices subject to change without notice.

Reader Service No. 108

FILE LOCK Scratchproofing for Your C-64 Programs BY DON LEMMS

 ow many times have you scratched a file, and then immediately regretted it? If you're like me, I'll bet a lot of times. Lately there have been several UNSCRATCH utilities published, but that's a pound of cure. What's really needed is an ounce of prevention and that's where File Lock comes in.

File Lock provides a scratchproof feature for the 1541. Built into the DOS, but kept secret by Commodore, the 1541 has the ability to lock out the scratch command on a file by file basis. This LOCK/UNLOCK is not supported by any built-in commands in the 1541, but is available through a utility like File Lock.

File Lock has a very convenient user interface. When

MERLIN 64

THE BEST MACRO ASSEMBLER FOR THE COMMODORE 64 Easy to use for the beginner or professional. Merlin 64 is an extremely powerful macro assembler. Just a few of its features include:

- Fast assembly times
- Word processor like editor
- Conditional assemblies, Optional assembly to disk
- Includes Sourceror, an easy to use disassembler that creates Merlin 64 source files from binary data
- Macro library of common operations
- Cross Ref. utility program
- 80 column display compatibility
"This is the best assembler l've seen for the Commodore 64..." Wm. Sanders / Assembly Language for Kids ". . . an outstanding value...I can't imagine how it could be better." *4 \quad C Peterson / AHOY! Magazine Ask your local dealer for details, or just write or call:
you run File Lock, the program prompts you to insert a disk. It then reads the directory of file names from the disk. Two large boxes appear on the screen with the file names in them. Below the boxes is the command line:
The command line has the following commands available:
SCRATCH - scratch files
LOCK - scratchproof files
UNLOCK - remove lock
PAGE - advance to next screen of files
BOOT - restart program
QUIT - exit to BASIC (READY)
Choose the command you want by typing the first letter of the command word, for example, L for LOCK. After you have made your choice, a small arrow appears on the screen next to the first file name. Files are selected by moving this arrow around the screen with the cursor keys, HOME key, and RETURN key. Files selected are highlighted in reverse video. Hitting the left arrow key will cancel all the files selected and return you to the beginning of the program.

After selecting the files, operation is started by hitting the first letter of the desired operation: S for scratch, L for lock, U for unlock.

File Lock works by modifying a bit in the file type byte in the directory entry for that file. (See page 67 of the 1541 manual.) As an example, a $P R G$ file has a file type of $\$ 82(10000010)$ if it is not locked. When locked, bit 6 is set, yielding \$C2(1100 0010).

Locked files are marked in the directory listing by a < symbol next to the file name. Once a file has been locked, the 1541 will send the error message 'FILE NOT FOUND' if an attempt is made to scratch the file.

File Lock tends to be a bit sluggish in its operation since it is a BASIC program. However, when it is compiled with a BASIC compiler such as Blitz!, its performance is greatly improved. If you like File Lock, I would recommend that you Blitz! it for the best performance.

As with my other program in this issue (Fastnew, p. 33), I wish to acknowledge the assistance of my colleagues at R. J. Brachman Associates, Inc. (Havertown, PA) in developing this program. Please address any correspondence to D. Lewis, P.O. Box 521, Folsom, PA 19033. Include a SASE if you wish a reply.

SEE PROGRAM LISTING ON PAGE 93

MANY WAYS TO SAY I LOVE YOU CBS Software Commodore 64 Disk; \$29.95

Fred Rogers has used music and conversation to teach children to value themselves and their families for almost 18 years on Mister Rogers' Neighborhood, the longest running program on public television. In an effort to expand the relationship between parents and children, Many Ways to Say I Love You gives children an electronic forum to creatively display their affections.
All the songs in the program are easily recognized, either popular folk tunes or regulars from the show. My two year old had no problem singing along with Won't You Be My Neighbor and It's Such a Good Feeling. Before long she had picked up Twinkle, Twinkle, Little Star and Frère Jacques.
Ah! But what are the songs for, you ask? Many Ways to Say I Love You helps a child design and deliver an electronic greeting card, complete with moving pictures and music. The child can pick a message like "I think you're special" to appear at the top of the card type in text on the bottom. In this way, each card can be personalized.
The graphics are great. Choice of "stickers" includes animals, trees, flowers, moon, stars, houses, a castle, and residents of Mister Rogers' Neighborhood (including the trolley, Mr. McFeeley, and several characters

Child picks background, border, more. READER SERVICE NO. 102

Lets tykes design and personalize (but not print) electronic greeting cards.
from the land of make-believe). All the stickers will perform some action while the card is being "delivered." Before choosing pictures to illustrate the card, a background and a border design can be chosen.

There are two levels of difficulty: a full frills card or a simplified one with just background, stickers, and music. The simplified version is good for youngsters who have not yet learned to read.

The program does have an option to save cards to disk. Up to 24 cards can be saved on your master disk; however, I wouldn't take the chance. CBS takes pains to explain the buyer's rights in the program, and these rights include making a backup.

While I'm skeptical as to whether this well-designed program will open any heartfelt chats between parents or children, it does offer a chance for closer interaction. Any parent who buys it should be prepared to spend time listening to cards. There is no printout option, so you won't be able to send greetings to friends and family around the country.

If nothing else, my daughter has learned to sing two new songs. And the youngster I borrowed from downstairs showed her mom that computers can be used for something be-
sides shooting aliens and learning to add and subtract.
CBS Software, One Fawcett Place, Greenwich, CT 06836 (phone: 203-622-2500). -Cheryl Peterson

ON-FIELD FOOTBALL Gamestar Commodore 64 Disk; \$29.95

The popularity of football has leveled off on television, but there's a real boom underway in home computing. On-Field Football is only one of three pigskin programs scheduled for release in time for a fall kickoff, and at least one more is due early in 1986.

Unlike the other newcomers, which stress authenticity, On-Field emphasizes freewheeling fun. The media hype of the Super Bowl is light-years away from this brand of football.
The inspiration for designers John Fitzpatrick and Scott Orr is not the National Football League, but rather the sandlot and pickup football games which fill youngsters' fall and winter afternoons. This is four-against-four, not big-time football.

Don't expect to be able to mimic all the latest wrinkles in pro and college football. The coaches in this oneor two-player contest can choose from a variety of offensive and defensive moves, but the true simulations like Super Bowl Sunday (Avalon Hill Game Company) and The World's Greatest Football Game

Players have individualized strengths. READER SERVICE NO. 103

MASTERTR

ONIC

Redellot prices!

Look for MASTERTRONIC programs at your local computer dealer or mass merchant. For more information write or call (301) 695-8877

MASTERTRONIC INTERNATIONAL INC

 7311B Grove Road, Frederick, Maryland 21701
READER SERVICE INDEX

Page No.	Company	Suc. No.
56	Ace Software	121
8	Alphacom	135
74	Alsoft	115
26	APCAD	111
60	Big Bytes	133
12	Broderbund Software	150
54	Cambria	109
63	CBS Software	102
50	Central Point Software, Inc.	125
31	Comal Users Group, USA, Ltd.	-
47	Commodore Business Machines	101
7	Commodore Business Machines	104
39	Computer Management Corp.	117
61	Computer Warehouse	108
30	Covox, Inc.	124
79	Custom Programming Group, Inc.	128
58	CVC Online	113
29	Digital Vision, Inc.	126
67	Digital Vision, Inc.	105
11	Dunlap Boat Mfg.	106
57	Floppy House	143
15	Full Circle Software	130
63	Gamestar	103
75	Genesis Computer Corp.	134
17	Hesware	132
16	Integrated-Software Systems	142
4	Jason-Ranheim	151
41	Jason-Ranheim	156
64,65	Mastertronic International Inc.	145
36	MegaSoft Limited	148
38	MegaSoft Limited	149
73	Micron Technology, Inc.	107
C-4	Navarone Industries, Inc.	146
22	N -Systems	122
27	Nth Digit Solution	112
5	Parsec Research	110
32	Post Technology	152
46	Professor Jones	160
$42-45$	Protecto Enterprizes	147
53	Quorum International, Unltd.	131
21	R.J. Brachman Associates, Inc.	123
78	Robin's Software	127
62	Roger Wagner Publishing, Inc.	159
9	Sakata U.S.A. Corporation	136
10	Sierra On-Line, Inc.	137
10	Sierra On-Line, Inc.	138
72	Solid State Software	118
11	Soniture, Inc.	139
C-2	SubLOGIC Corporation	158
83	TPUG	162
13	Talktronics, Inc.	163
14	Tenex Computer Express	157
72	T\&D Subscription Software	116
71	Ultrabyte	119
11	Unique Wood Products	140
32	Universal	161
70	VMC Software	120
25	Wedgewood Rental	114
6	White House Computer	141
69	Xetec Inc.	129

The publisher cannot assume responsibility for errors in the above listing.
(Epyx) boast significantly heftier playbooks.

Joystick control makes On-Field Football exceptionally easy to learn and play. The coaches create each play by following a series of onscreen prompts. On offense, the gamer pushes the joystick forward, back, left, or right to select one of five possible formations: " I " right (run), " I " left, split left (pass), slot right (pass), and kick. Then the offensive coach individually programs the video athletes who are going to run with the ball or catch it. Finally, the computerist can revise the play at the line of scrimmage by calling an audible. Pressing the action button when prompted to do so changes the instructions for the halfback or the wide receiver, depending on whether it is, respectively, a running or passing play.

Coaches issue orders to the defense in the same way. The display prompts the gamer to choose separate options for the rush and secondary. The defense can call an audible to change the pass coverage at the last second.

Once both teams complete play-selection, the action button snaps the ball to start the action phase. The offensive coach controls the passer with the joystick and employs a simple system to hand off the ball on running plays or choose between the two eligible receivers when putting the pigskin into the air. The defensive coach guides the free safety with the stick and can even try to blitz the quarterback for a big loss.

The players are more than just animated cursors in On-Field Football. As in the same publisher's On-Court Tennis, the coaches pick individual players from a roster of possibilities prior to the opening whistle. For instance, there's a choice between the slick-passing "Pinpoint" Pepper and the more mobile "Scrambles" Smith. The teams can bring in replacements for tired players between the third and fourth quarters. It's too bad that the same concept wasn't extended to include members of the defense, who remain anonymous. This makes the game much less involving when the other team has the ball.

The playfield is oriented so that the
team with the ball always moves up the screen against defenders protecting the goal line at the top. When possession changes, the teams swap places.

Gamers traditionally favor football programs in which the action moves side-to-side, but this attempt is more successful than most previous tries. The traditional complaint against vertical gridirons is that they don't provide enough room for passers, runners, and receivers to maneuver. The designers of On-Field Football have made the players as small (relative to the size of the field) as practical to minimize this. Most computerists will still prefer horizontal football fields, but the overall effect isn't bad.
The most useful of a batch of special features lets players choose between regular 15 -minute quarters and shorter 5-minute ones. The program also allows each coach to call three time-outs during the game. It is also possible to "pause" play entirely when the phone rings or nature calls.
Like other Gamestar titles, OnField Football takes practice to master. (Not, however, quite as much as Starbowl Football, also by Gamestar.) Computer sports fans who want an action-oriented football contest, rather than one which relies on pure strategy, are the most likely to enjoy this clever game.

Gamestar, Inc., 1302 State Street, Santa Barbara, CA 93101 (phone: 805-963-3487). -Arnie Katz

COMPUTEREYES

Digital Vision Inc.

Commodore 64

Hardware, disk; \$129.95

There is an old saying that a word is worth a millipicture. Nothing brings this truth home more clearly

than working with digitized images. On the Commodore 64 a word is actually worth even less, at most an
eighth of a millipicture. If color is considered, the fraction can be as small as one tenth. Of course, the words we are talking about are eight bits or one byte each. Nevertheless, the veracity of the adage is brought home with a vengeance.

The Computereyes Video Acquisition system adds vision, without foresight, to the ever-growing list of possible applications for the C-64. The system will allow you to capture those fleeting images and translate them into the $8-10,000$ bytes needed to describe a bit mapped image.

The physical appearance of the package belies its impressive performance. Computereyes is an excellent example of what a clever design with good programming can accomplish when coupled with the capabilities of the 64 .

In keeping with this introduction we have included several screen shots which illustrate the capabilities of the system. The Chinese plates show how Wayne Schmidt used the information contained in a digitized DOODLE! image. The color and fine detailing were all added afterwards. We should all be familiar with the original on which the Washington head on page 68 is based. The young lady below it is the cover model from another of this company's publications.

THE HARDWARE

The Computereyes module is a small black box that plugs into the user port. It serves as an interface between any standard video signal and the computer. Suitable sources are video cameras, VCR's, video disc players, or TV's with video outputs. The video signal is fed to a standard

Color and fine detail were added (left) to a digitized DOODLE! image. READER SERVICE NO. 105

RCA type jack on the back of the module. One of the two controls allows for the fine tuning or synchronization to the video source. The adjustment is non-critical and easily accomplished with the supporting software. You will most likely find that the setting will not change for a particular video source.

The other control compensates for the relative strength or brightness of the signal. The brightness control has a direct effect on the appearance of the acquired image. We found the setting of this control to be critical but manageable. Small adjustments of the brightness control have a significant impact on the final image.

THE VIDEO SIGNAL

The images displayed on a TV are redrawn 30 times a second. Each individual image consists of 512 horizontal lines. These are sequentially drawn from top to bottom of the picture tube. Creating an image in this manner is called scanning. Each image or screen is built up from two passes of 256 lines each. The first pass fills the entire screen; the second fills in the gaps between the lines of the first scan. This arrangement is called interleaving. It follows that the ideal TV picture would be able to resolve 512 discrete verticle points. However, in practice this is not so.
The capabilities of most TV's are about half of the theoretical maximum. The newer "monitor" receivers are somewhat better, on the order of 350 lines. The Commodore 1701 and 1702 monitors fall into this class. Home VCR's are able to resolve about 260 lines at this time, although better equipment is in the works. Laserdisc players generally exceed the resolving capabilities of the best TV sets.

SELECTING A VIDEO SOURCE

Since the Computereyes module merely acts as an interface, you will have to provide it with a standard video signal. If you already have a home video system, with a color camera, then you're all set. In comparison to the overall cost of a complete video system, the $\$ 130$ price of this package is almost too good to pass up. If
you do not have a home video system. a black and white video camera is your best bet. These are available as no frills units for use with closed circuit television security systems. The Ikegami model ITC-40 Surveillance camera is a high quality unit of this type. It is available as an option from Digital Vision. The package price of camera and module is $\$ 350$. Bear in mind that surveillance cameras are truly no frills devices, lacking any type of viewfinder or sound pickup.
A home VCR is a less than ideal video source for this application. The process of acquiring a detailed image takes quite a few seconds and several tries as the brightness is fine tuned. A stationary image must be provided for these several minutes. The freeze frame mode of a VCR provides less resolution than normal operation. Also, the VCR will automatically start running after five minutes or so to prevent the wearing of a hole through the tape. A laserdisc player should make a very good source. These devices provide a very high quality single frame image for unlimited intervals.

A color video camera will work well. You may want to use its associated VCR as an intermediary device to avoid the cost of an additional cable and adapter. We did all of our tests with the Ikegami camera.

A BIT OF A PICTURE

The Commodore 64 has the ability to create a graphic image composed of 320 horizontal dots by 200 vertical dots. This is a bit-mapped image, which means that each one of these 64,000 dots or pixels corresponds to a single bit of computer memory. This is where we get the 8,000 bytes or words mentioned above. A total of 16 colors may also be displayed. The color information requires another 1,000 bytes of memory.
An alternate display mode permits the display of only 160 horizontal dots with the same number of vertical dots. The tradeoff for this multicolor mode is increased flexibility in the display of color. The memory requirements of the bit map for this mode are the same as above. The increased color capabilities call for 2,000 bytes of
storage. (For additional discussion of Commodore 64 bit mapped graphics, see the October and November 1984 1ssues of Ahoy!)
As we can see, a C-64 bit map would seem to contain as much information as a TV picture. The reason it cannot create a televisionlike image is that the 64 is limited to a total of 16 possible shades or colors. A television image is capable of thousands of brightness and color combinations. Nevertheless, impressive results can be obtained, some examples of which can be found in our Art Gallery (see pages 34 and 35).
A number of software packages allow the user to draw or create graphic images on the 64, including Flexidraw from Inkwell Systems, DOODLE! from City Software, and Koala Painter from Koala Technologies. Detailed reviews of these and a number of other packages were presented with the discussions on bit mapped graphics previously mentioned. These packages are supported by the Computereyes software.

GETTING THE PICTURE

The Computereyes software allows you to capture a video image as a Commodore bit map. Three different bit map formats are directly supported. The optional software for use with the above graphics packages adds seven more formats. We will go into these in some detail.
The first step is to set the synchronization control. A built-in routine

George digitized with Koala support software, in low contrast format. With multicolor packages like Koala, compatible image modes are limited to low and high contrast capture, with up to four gray levels in each char-
acter cell.

simplifies the process to just a few seconds. Once set, the sync control is left alone. The second step is to set the brightness control. A special display mode performs a continuously visible image scan every six seconds. We found that by setting the brightness control so that only the brightest highlights showed resulted in the best starting setting for subsequent operations. The operation of the package was very sensitive to the setting of the brightness control. Although the adjustment was manageable, some sort of fine tuning would have been welcome. The controls also lacked pointers or markings, a minor inconvenience. It would be a good idea to mark the position of the controls after the initial setup. This would eliminate the need for these preliminary adjustments for each subsequent use.
The package is menu-driven, with

> Model from magazine cover digitized with DOODLE! high contrast capture, resulting in a bit map image with three intensity levels-white, gray, and black -with maximum resolution of 320 X 200 pixels and two levels possible in each character cell.
built-in help screens. It is a complete image capture utility which allows for the LOADing, SAVEing, and viewing of the captured images. The disk directory may be viewed without exiting the program; however, disk commands, such as for formatting a disk, cannot be issued. The programs are written in BASIC with the digitizer parts in machine language. Since no copy protection is used, it should be fairly easy to add whatever frills you may want. The starter package makes full use of the high resolution bit map.

The quickest way to digitize an image is to use "Normal Capture." This produces a high contrast black and white image. The original picture is scanned once with all parts above a certain brightness level assigned to white. Maximum resolution is obtained at the expense of any tonal gradation. This mode is relatively fast, completing a scan in less than seven seconds.

Somewhat slower but generally more pleasing is the "4-Level Capture." The original image is scanned four times at different exposure levels. Each level is assigned to a shade of gray by turning on different numbers of pixels. The tradeoff is loss of resolution, as four pixels are required for each part of the image. A 4-Level scan requires about 26 seconds.
The "8-Level Capture" is similar to the above. Eight synthesized grey levels are formed with a corresponding reduction in image resolution. Capture time is a bit over 50 seconds.

OPTIONAL SOFTWARE

The basic software generates a pure

8 K bit map without any color information. If you have the Flexidraw graphics package, any of the above formats can be loaded in and worked on. Good results will also be obtained with the Flexidraw print utility, since these are pure bit map images. For use with other packages, Digital Vision offers Compatibility System Software in support of Koala, DOODLE!, Flexidraw, and The Print Shop. Each disk tailors the captured image to the specific package.

For the hi-res packages, namely Flexidraw and DOODLE!, the abovementioned capture modes are supported. Two additional modes are also provided. The "Low Contrast Capture" makes use of the C-64 color capabilities to generate a true five level gray scale composed of the three grays, black, and white. In this mode the full bit map resolution is preserved while still allowing for image shading. Since the high resolution bit map is used, only two gray levels will appear in any 8×8 pixel character cell. The "High Contrast Capture" is similar to the above, except every other gray level is used.

Since Koala is a multicolor package, the compatible image modes are limited to the Low Contrast and High Contrast captures. The difference is that finer gray scale resolution is obtained, since multicolor mode allows up to four colors in each character cell. As a result the Koala images are apt to be the most pleasing for many subjects, even with the reduced resolution of the multicolor bit map.

The latest addition is the Print Shop support package (see the review of the Print Shop in the July ' 85 issue). This will create images for both the Kaleidoscope and the Graphics Editor utilities. The support for the latter is very well done. A large portion of a full image is marked by a movable mask. Simply use the cursor keys to select the portion you want. The software then blocks the image into the reduced detail for the graphics editor. When selecting a source image for conversion, keep in mind the 88 by 52 dot resolution of the Graphics Editor (44 by 45 dots for 1525 printers). Images with large solid areas will work the best.

The Print Shop support package can be used to convert any 8 K hi-res bit map image. The ones generated by Flexidraw, without color, are perfectly suitable. Image files created by the DOODLE! package will have to be stripped of their leading kilobyte of color data. To do this you simply LOAD "DDPICTURE",8,1; where "DDPICTURE" is the file you want to convert. Next POKE 45,0:POKE 46,96. Finally SAVE "PICTURE",8; where "PICTURE" is the name of the file you want to create. The resulting 33 block disk file will be a pure bit map, without the color information, ready for processing by the Computereyes Print Shop support package.

PRINTING THE PICTURE

The built-in print utilities of both DOODLE! and Flexidraw will do a fine job with the first three image formats. Strange results are likely if you try to print either the Low or High Contrast images. These images depend on the color information to pro-
duce the different shades of gray. The Koala screen dump utility will do a good job with either of the Koala formats. The Graphic Printer package by Michael Keryan takes into account the color information of a high-resolution bit mapped image. It is designed to work with the high density print modes of the Star Micronics Gemini series of printers or the Epson graphics-capable printers. Contact the Computerist, Inc., P.O. Box 6502, Chelmsford, MA 01824 (phone: 617-256-3649) for information about this package.
For a real personal touch, try transferring a digitized image to a T -shirt by using the Underware Ribbon. This ribbon for the Epson, Gemini, and Okidata printers contains thermal transfer ink for iron-on images. Just remember to do a left to right flip with the DOODLE! software before printing. The ribbons are available for $\$ 19.95$ from Diversions Inc., 1550 Winding Way, Belmont, CA 94002 (phone: 415-591-0660) (see the May '85 Scuttlebutt).

Create Your Own or choose from over 15 type styles provided in this unique program. Epson/Epson compatible/Star Micronics printer. 1541 drives only.

SOME OPERATING TIPS

The techniques used for black and white photography can be applied to imaging with the Computereyes system. As such, good photography practices apply. Pay careful attention to lighting and background. If you are using a black and white camera, photographic colored filters for contrast enhancement can be quite useful.

Want to get close up? A low power magnifying lens placed directly in front of the camera lens will allow you to focus much closer than otherwise possible. The cost is minimal and image quality will be virtually unaffected.

Being able to directly view the video image greatly simplifies the setup procedure. If you are using a monitor with your computer, a simple RCA type " y " adapter and a two position video switch are all you need. Just intercept the camera signal with the " y " adapter and send it to both the Computereyes module and the video switch. The computer video output

Reader Service No. 120
goes to the other side of the switch to complete the hookup. The Commodore 1701 and 1702 monitors are ideally suited for this purpose. Simply send the camera output to the video jack on the front of the monitor. The computer should go to the back connectors. The switch on the back panel will let you select between the two sources.
The camera video signal cannot be fed directly to the antenna terminals of a TV set. It will have to be converted to the radio frequency broadcast format. An RF Modulator, available from Radio Shack as catalog number 15-1273 for $\$ 24.95$, will do the job. If you can do some of your own tinkering, then the basic RF modulator, sans power supply, is available for $\$ 9.95$ as catalog number 277-221. Simply feed both the computer and the modulated video signals to the set's antenna terminals via a game selector switch. Or set one to channel 3 and the other to channel 4 and use the set's tuner.

CONCLUSIONS

Computereyes is an easy to use image digitizing system for the 64. The resulting images are remarkably detailed for such a low cost system. With care, directly usable images can be readily generated. The optional supporting software allows the images to be saved for subsequent editing by some of the more popular graphics packages. The resulting images provide a wealth of detail for manipulation in this environment.

Digital Vision Inc., 14 Oak StreetSuite 2, Needham, MA 02192 (phone: 617-444-9040).

AUTHOR'S NOTE

While working with Computereyes for this review I rapidly accumulated several disks full of images on a variety of subjects. In fact the process became rather addictive. If you would like to have these for your own use I would be glad to provide a diskful for $\$ 12$ to cover copying and distribution. Just specify which format you would like. An SASE will get you a listing of available disks and their contents. Send payment to Morton Kevelson, P.O. Box 260, Homecrest Station, Brooklyn, NY 11229.

BLAZING PADDLES

Baudville

Commodore 64

Disk; $\$ 34.95$

Billed as a graphics package that will work with most of the input devices available for the Commodore, I found that Blazing Saddles worked well with both a joystick and the Koala Pad. Although it worked with a Tech Sketch Light Pen, it was extremely erratic. While supposed to work with track balls, paddles, light pens, joysticks, or graphics tablets, it can only be used with one device each time it is booted up. If you wish to change devices during a session, you must reboot the program-a three-minute process. Quick loaders like FastLoad and Mach 5 have no effect on Blazing Paddles.

One annoying deficiency can be found as soon as you decide to boot the program. The documentation warns not to plug or unplug devices while the program is running, but doesn't bother to tell you which input devices use which ports. Despite the warning, when the joystick failed to move the cursor I switched it to the other port. Fortunately, nothing blew up. From my experience the Koala Pad and light pen used port 1, the joystick used port 2.
The program is designed well, with most of the features we've come to know and love: sketch, fill, zoom, and draw dots, lines, frames and boxes, ovals and circles. Especially nice is the undo command. Hitting a single key cancels your last update. A spray paint mode lets you brush in color a little at a time. Subsequent strokes darken the shading.
The cut and paste window can be used to duplicate things on the screen without having to redraw them. A window's contents can be saved and reloaded using a separate filename, as well.
The screen can be cleared to any of the 16 colors. Since this is a twostep process requiring some precision, it is very difficult to accidentally wipe out your work. In fact, about the only way to really mess up is to change the background color to the same color you're using to draw

REVIEWS

a Breakthrough in Value! ULTRABYTE NEW PRODUCTS - ALL with FREE BACKUP COPIES

ULTRABYTE DISK NIBBLER

Uses proprietary revision of disk operating system (DOS) to make a bit by bit copy. This process, called nibbling, copies the format. data and errors, all at the same time. Errors are not recognized and do not hammer the drive. Built in fast load environment allows copies in 8 minutes with a single 1541 disk drive.

- Easy to use. No separate analysis or error production
- Choose 35. 36. 37 or 38 tracks to copy incl. half tracks
- Makes up to 5 copies of each original - (UNIQUE FEATURE)
- Backs up 99% of all protected software
- Free backup copy - two disks for the price of one

s3g 95
 FOR 2 COPIES OF THE DISK NIBBLER

plus $\$ 4.00$ shipping and handling. Mastercard. Visa. Check or M.O.. Foreign orders or COD add $\$ 2.00$. Calit. add 6.5% ($\$ 2.60$) sales tax. Additional backup copies are $\$ 20.00$ plus $\$ 3.00$ shipping. ATTENTION: Owners of ULTRACOPY whose names are in our file may order a single copy for $\$ 20.00$ plus $\$ 3.00$ shipping.

FREE BACKUP DISKS

McMURPHY'S MANSION
AN ULTRABYTE TEXT ADVENTURE

It seems that an unknown uncle has died in faraway Scotland and left you his vast fortune. $\$ 10,000.000$ to be exact !!
There is only one small problem. Dear old uncle McMurphy was a bit demented and has hidden your inheritance somewhere in his mansion.
He left you only one small clue, a brass key. It is now up to you to find your fortune.

- 30 - 60 hours of challenge
- Sealed envelope of hints for beginners
- Instruction manual included
- Solution sheet available \$29.95 for 2 disks plus $\$ 4.00$ shipping. COD or Foreign add $\$ 2.00$. CA tax $\$ 1.95$

THE DISK SURGEON

- Read data from, edit and write to disk
- Analyze disk errors without "hammering"
- Write errors 20.21.22.23.27 \& 29 on disk
- Read data under errors, erase errors
- Decimal. HEX. Octal \& Binary conversions
- Format a single track with any ID
- Detailed instructions for beginners
- Much more

INCLUDES THREE PUBLIC DOMAIN COPY
PROGRAMS THAT ARE NOT PROTECTED

1) FILE COPY to copy portions of a disk
2) SINGLE TRACK COPY
3) 4 MINUTE COPY of entire disk. Protected disks also require error production
$\Rightarrow \$ 29.95$ for 2 disks plus $\$ 4.00$ shipping. COD or Foreign add $\$ 2.00$. CA tax $\$ 1.95$
[^4]
FREE
 10 DISKETTES
 OR
 20 C-20 CASSETTES

A subscription to the 'Cassette of the Month' gets you a tape or disk full of 10 quality Commodore 64 programs delivered to you by first class mail every month. The documentation included will help you run great utilities like 'Word Processor,' and 'Budget Analyzer,' or enjoy great games like 'Frogjump' and 'Caterpillar Cave' FOR AS LITTLE AS 50 CENTS EACH!
\star Limited offer \star Subscribe for a year on cassette and receive 20 Free C-20 cassettes or subscribe for a year on disk and receive 10 Free $51 / 4$ single sided double density diskettes!

* We've beeninbusinessfor Mich. Res. add 4\%
over three yearsl acquiring Overseas ADD $\$ 10$ to subscription
\star Over 4000 satisfied color
computer owners
* Commodore 64 required

PERSONAL CHECKS WELCOMEI
T\&D Subscription Sotware P.O. BOX $256-\mathrm{C}$ HOLLAND, MI 49423 (616) 396-7577
most impossible, especialy if they're diagonals.

Except for the one flaw mentioned at the beginning, the documentation is very good. Besides the manual, there is an onscreen help menu. Although it's a nice idea, by the time the help file loads you could have looked it up in the manual. Keyed to the input device you are using, it gives brief instructions on how to enter commands.
For instance, the joystick will draw on the canvas as long as the fire button is held down. To go back to the main menu, you must press f5 to take the cursor off the screen and then hit the fire button. For some reason, when using the joystick the cursor won't go over into the border.
The joystick is very slow to respond, by the way. The light pen button wouldn't work, so I had to use the control key instead. Also, the calibration on the light pen was off by about half an inch. In addition, whenever

I tried to change the brush color, the background color of my drawing would change, too. Although the fl key could be used to change it back, it was a pain in the neck. Of all the input devices used, I enjoyed the Koala Pad most. It responded quickly, and didn't give me any trouble.

This is a nice graphics package, although the input device you use will ultimately determine how satisfied you are with it. I would rate it about equal to other packages in its price range. Unless you are specifically looking for a package to use with several input devices, you would probably do just as well to buy any of the devices that comes with its own software and leave it at that. If you want to spend the extra money for the shapes disks, then Blazing Paddles becomes a good value.

Baudville, 1001 Medical Park Drive S.E., Grand Rapids, MI 49506 (phone: 800-824-8873).
-Cheryl Peterson

Dreams CAN come true!

Back in June of 1983, Kelvin Lacy had a dream. He dreamed of creating one integrated program that would include a spreadsheet, business graphics and a database. A program with the power of Lotus 1-2-3. On the Commodore 64. People laughed! He had just finished OmniWriter, to be marketed by HESWARE. Ignoring the skeptical, he started on VIZASTAR.
Now, after 15 months, his dream has come true. VIZASTAR has a full. featured spreadsheet, as good as Multiplan. But much faster-faster than many spreadsheets on the IBM PC! It is written 100% in 6502 machine language code and is ALWAYS in memory. It is menudriven, using the latest techniques in user-friendliness. It is compatible with virtually all printers and word processors. Up to 9 windows can be open simultaneously, anywhere. Remarkably, 10K of memory is available for spreadsheet use.

The database is equally impressive. Create file layouts by simply painting a picture of the layout on up to 9 screens, showing where a field starts and ends; VIZASTAR does the rest.
Imagine the power of a spreadsheet integrated with a database. Now add graphics - bar, line, and multi-color pie and 3-D "skyscraper" graphs. You could access a customer's profile in the database, transfer the data to the worksheet, and let it calculate discounts, sales tax etc. and then transfer the updated data back to the database. Open up a window anywhere and display a graph of your data, instantly. This integration is the key to VIZASTAR's power-the first and only program of this kind on the C.64. All commands can be automated, so you can "program" your own applications and run them with one keystroke.

Trademarks: Lotus 1.23 Lotus Development. Commodore 64 Commodore Electronics Lid. Multiplan/Microsoft.

FeII Sheet File Print Data Graph. Format, Calce Protect, Hidthe Skipto....

Actual screen dump printed by VIZASTAR
VIZASTAR includes a cartridge, a 1541 diskette with a backup, reference and tutorial manuals. VIZASTAR is ONLY $\$ 119.97$. We are so positive you will be delighted with VIZASTAR that we offer a 15 day money-back guarantee. Try it riskfree! Compare VIZASTAR with any other spreadsheet or database.
So order today. Call or send a check or Money Order. Calif. residents add 6.5\% sales tax. MC/VISA accepted. Add P\&H: UPS-\$3; COD, Canada-\$6

$50 L 10$ STRTE SOFTURRE

1125 E. Hillsdale Blvd., Suite 104

Foster City, CA 94404-1609
(415) 341-5606

Dealer Inquiries Welcome

A Programming Aid for the C-64

 By John K. Lunde o-Lister is a machine language utility that produces a printout showing which BASIC program lines are called by GOTO, GOSUB, THEN, and ON statements in other program lines.
Anyone who has ever tried to modify a program written by someone else, or who has simply lost track of where the GOTOs get to in his own program, knows the frustration of changing a line in some apparently innocuous way only to have the program begin to act strangely because the line is accessed by a transfer statement somewhere else.
This utility provides a warning when a particular line is used by several other lines in common, and shows when
it is safe to 'crunch' one or more lines together.
It is also useful in analyzing programs, since knowing which lines are called by others gives you a good idea of the program's structure.

Go-Lister must be typed in using our Flankspeed machine language entry program. Follow the instructions on page 86 for typing and saving Flankspeed. Then run Flankspeed, and type in and save Go-Lister.
To use Go-Lister, type LOAD "GO-LISTER",8,1 and load your target program, then type SYS 49152 to run Go-Lister. The only restrictions are that the target program must start at the usual start-of-BASIC location (2049) and that the printer must be device \#4.

SEE PROGRAM LISTING ON PAGE 109

MOXEY'S PORCH

For the C-64

By Bob Blackmer

Moxey's Porch is an arcade-style game played on a three dimensional multistep porch.

After entering and running the game you will be asked if you want instructions. Then enter the level (1-9) that you wish to start at (level 9 is easiest).
You control Enzo as he jumps on his pogo stick. His neighbor, Moxey, a likeable fellow, has just put the finishing touches on his newly painted porch.
Using the joystick in port \#2, maneuver Enzo around the porch marking up the steps. Don't let Moxey catch you as he runs around his porch trying to stop you, or the game is over.
After you mark up all the steps, you reach the next level where Moxey gets a little faster. See how long you can keep going once you reach level 1.
Moxey's Porch is a good example of the game screens made possible by using multicolor custom character sets and multicolor sprites.

SEE PROGRAM LISTING ON PAGE 91

Now Your Computer Can See! \$295.00*

A total imaging system complete and ready for plug-and-go operation with your personal computer.

The MicronEye* offers selectable resolution modes of 256×128 and 128×64 with operating speeds up to 15 FPS. An electronic shutter
 is easily controlled by software or manual functions, and the included sample programs allow you to continuously scan, freeze frame, frame store, frame compare, print and produce pictures in shades of grey from the moment you begin operation.

Only the MicronEye* uses the revolutionary IS32 OpticRAM* image sensor for automatic solid state image digitizing, with capability for greytone imaging through multiple scans. And with these features, the MicronEye* is perfectly suited for graphics input, robotics, text and pattern recognition, security, digitizing, automated process control and many other applications.

The MicronEye* is available with immediate delivery for these computers: Apple II. IBM PC. Commodore 64 and the TRS-80CC (trademarks of Apple Computer Inc., International Business Ma chines. Commodore Corp., and Tandy Corp respectively).
Phone for MicronEye* information on the Macintosh, TI PC and RS232 (trademarks of Apple Computer Inc., and Texas instruments respectively.)

- (Add $\$ 10.00$ for shipping and handing [Federal Express Stendard Aifl: residents of the following Extess must add sales tacic AK. AZ. CA. CO. CT. FL. states mus add sales tax. AK, AZ M. MO. CT. NL NJ, MY, OH, PA, SC, TN, TX, UT, VA, VT, WA, WI.)

TECHNOLOGY, INC. SYSTEMS GROUP 1475 Tyrell Lane Boise, Idaho 83706 (208) 386-3800 TWX 910-970-5973

Reader Service No. 107

TOURING THE COMMODORE 128 KEYBOARD

Continued from page 54

THE REST OF THE KEYS

The top row of the keyboard has a total of 16 keys in groups of four. The four function keys on the right have been described above. The leftmost grouping includes the ESCape and the TAB keys as well as an ALT key and a CAPS LOCK key. The ALT key is intended for use with alternate character sets under program control. This will be a topic for future discussion. The CAPS LOCK key acts as a SHIFT key only on the letter keys. As with the SHIFT LOCK key, the CAPS LOCK key includes a mechanical latch to hold it down.

The next group starts with a HELP key. If this key is pressed immediately after a BASIC program error, the offending BASIC line will be dis-

> HARNESS RACE ANALYZER
> Let the speed and power of your computer give you that added edge! Features:
> औ Analyses 11 important categories (all found on the daily racing form).
> औ Morning line odds are NOT used in the computations. This gives you a source of information independent from the morning line.
> औ Simplified data entry - approximately five minutes per race.
> औ Info on up to 20 races printed on one page master printout including ratings for each horse, bet suggestions, and best bets of the day.
> औ If no printer is available, information is sent to the screen.
> \& Bet suggestions include: best win, place, show quinella, perfecta, exacta, trifecta and tri-box.
> \& Printout info can also be saved to disk for later use.
> Available on disk for the C-64*, PLUS/4* and C-16*
> Please specify which computer you are using.
> Send Check or Money Order for S24.95 to:
> ALSOFT
> BOX 164 : CLAlRTON, PA 15025
*Trademark of Commodore Electronics

TABLE OF CONTROL KEY FUNCTIONS

CONTROL B	CHR\$(2)	Turn underline on in 80 column display
CONTROL G	CHR\$(7)	Produce bell tone
CONTROL H	CHR\$(8)	No effect
CONTROL I	CHR\$(9)	Move cursor to next tab stop
CONTROL J	CHR\$(10)	Send a linefeed without a carriage return
CONTROL K	CHR\$(11)	Enable character set change
CONTROL L	CHRS(12)	Disable character set change
CONTROL O	CHR\$(15)	Turn flash on in 80 column display
CONTROL X	CHR\$(24)	Tab set or clear
CONTROL I	CHR\$(27)	Send an ESCape character
	CHR\$(130)	Cancel 80 column underline

played. Starting with the point in the line at which the error occurred, the remainder of the line will be displayed in reverse on the 40 column display and underlined on the 80 column display.

The LINE FEED key moves the cursor down without a carriage return. This is the same as the CONTROL J (CHRS(10)) described above. The 40/80 DISPLAY key is another mechanically latched button. It determines the display mode on power up or when the reset button is depressed. Latching it down defaults to the 80 column display. It has no effect once the computer is up and running. The NO SCROLL key acts as a pause button. It comes in handy for freezing a program or directory listing in its tracks. Hitting a key a second time restarts the listing. In a similar fashion, it also pauses program execution.

The next group consists of four independent cursor keys. These duplicate the operation of the cursor keys at the bottom of the keyboard. The notable exception is that it is not necessary to SHIFT for a cursor up or a cursor right. I found that I have grown so accustomed to the old cursor keys that I almost never used the new ones. Perhaps the need to reach to the top of the keyboard discourages their use.

Finally, a 14-key numeric keypad duplicates the function of the number, plus, minus, period/decimal point, and RETURN/ENTER keys. The numeric keypad and the four independent cursor keys are electrically different from the number keys and
the cursor keys on the Commodore 64 subset of the keyboard. Although they return the same CHR\$ code with a GET statement, it is possible to distinguish them by PEEKing an appropriate location. (See sidebar on page 52 for details.)
This hardware separation of the keypad from the rest of the keyboard is a minor disappointment to C-64 upgraders. If the keypad had been kept electrically identical to the number keys on the keyboard it would have been usable in C-64 mode as well. This would have allowed the use of all existing Commodore 64 programs with the numeric keypad. Keeping the keypad compatible could have been easily accomplished by simply paralleling the existing contacts. Actually, this would have been cheaper to implement than the scheme used. Apparently, Commodore felt the extra flexibility offered by the electrical separation was worth the extra effort.

LAST BUT NOT LEAST

Tucked away on the right side of the C-128, next to the on/off switch, is a small square push button. It is mounted flush with the surface, making accidental activation unlikely. This is a true hardware reset button. Pressed on its own, it will bring the C-128 back to its initial power up state in the current mode. In conjunction with the Commodore logo key, it will force a reset to C-64 mode. If the RUN/STOP key is held down, the $\mathrm{C}-128$ will come up in the machine language monitor with the current BASIC program in memory intact!

Rockets, Boats, and Pigs in Pokes

into the flag-bit register at HR.
VZ The lowest vertical position allowable on the screen, minus 1 .
HZ The rightmost horizontal position allowable on the screen, minus 1.
VP The current vertical position (a number from 0 to VZ).
HP The current horizontal position (a number from 0 to HZ).

In addition, Pig in a Poke uses several game-control variables:
wSS
$\mathrm{WL}(n)$

RC
RT
DT
DL

This string contains all the fence units; segments are randomly selected to make each new fence moving up the screen.
This array determines the starting points for each difficulty level in selecting a segment of the fence to display.
Row count - how many blank lines have been inserted between fences.
The total number of fences added to the screen so far.
T The delay variable - how many seconds should pass before the fences are scrolled upward. The difficulty level, or gap-width variable - how far into the string WS\$ the next fence should come from. Since gaps are narrower and fences wider the farther you go into WS\$, the higher this number, the more difficult to get through the fence. The spacing between fences. It begins with five
blank lines between fences, then progresses to only one blank line before the program ends. End-of-game flag. Several ending conditions set this flag, which causes the program to jump to the ending routines.
$\mathrm{K}, \mathrm{K}(n), \mathrm{KP}(n)$ In the main loop, these variables are used to interpret keypress data.
The current direction of movement. This is used with $\mathrm{LT}(n)$ and $\mathrm{ST}(n)$ to determine whether to display the shape of a left-facing pig or the shape of a right-facing pig.
At the beginning of Pig in a Poke, line 5 moves the top of BASIC memory below the video block at 32768 . Then lines 10 through 13 send the program to four setup routines.

Video Memory Set-Up. Lines 600-604 tell the VIC-2 to find the video block at 32768 , and where within that block the VIC-2 and BASIC can find screen memory.
Lines 610-634 assign the addresses of various registers to the variables listed above. Lines 636-637 set up the set-bit and clear-bit arrays.

Lines 640-654 set the initial values of most registers. If you want to experiment, change these at will and see how they affect the game.

Lines 690-696 disable the SHIFT/COMMODORE and RUN-STOP/RESTORE interrupts. This is because SHIFT and COMMODORE are used for left and right movement in the game, and we don't want the character set shifting back and forth; and because video memory has been relocated, a RUN-STOP/RESTORE would cause the machine to become virtually unusable.

with Genesis Home Control Products

At Genesis Computer we produce a complete line of home security and energy management products. They combine with your Commodore 64 to make your home safer and more energy efficient while increasing your personal convenience.
The Genesis VIController allows you to control up to 256 lights and appliances throughout your home using standard BSR receiver modules. With the included software, you can create daily and weekly control schedules.
Your system can be expanded by adding Genesis' COMsense input device, Super
Schedule Plus software, and available sensors. Commands can
then be issued in response to on/off inputs such as the
opening of a door or analog inputs such as a change in
light level. By adding COMclock, a crystal
controlled clock/calendar, your system will
have an accurate, battery backed-up time base.
COMclock's Autoboot ROM acts as a failsafe restart for the system in the event of a power failure.

Sold separately the VIController,
COMsense and COMclock
sell for $\$ 69.95$ each and
the Super Schedule Plus software sells for $\$ 19.95$. All four products are available together in our HOME CONTROL PACKAGE for only $\$ 199.95$.

Call 215-861-0850 to order direct or contact your local dealer.

Genesis Computer Corp. - P.O. Box 152 - Hellertown, PA 18055

Background Preparation. Lines 700 to 730 set up the wall string WS\$ and the variable WL (n), which controls the starting points for random wall segments at different difficulty levels. Line 740 sets the initial difficulty levels. DL should start at 0 . DT is the number of seconds the program waits before inserting rows. A value of 0 is too fast to play. DS is the number of spaces between rows at the beginning. You have to make sure the game ends before the program drops the value of DS below 0 -this will cause a program-crashing error.
Sprite Shape. Lines $800-808$ read the strings of sprite data, and interpret them so that they can be POKEd into sprite shape blocks in the correct order. If you change the shapes, make sure that each string has 24 characters and there are as many rows as are called for by the variable TS plus 1 . If $\mathrm{TS}=9$, then there must be ten strings of sprite information per shape. There must also be as many shapes as are called for by NS plus 1 , so that if $\mathrm{NS}=1$, there must be 2 whole sprite shapes.
Sprite Positioning. Line 900 sets the number of vertical and horizontal positions that will be allowed, and DIMensions the applicable arrays.

Lines 902-904 set the horizontal position values, starting with the leftmost position, 24, and increasing each position by 2 . Line 906 sets the vertical positions, starting at 53 and increasing each position by 8 .

Lines 920-922 set up the variables used in interpreting keypresses. $\mathrm{KP}(n)$ is indexed by the raw keypress at location 653. Values that mean nothing are set to 2 ; a keypress calling for left movement is set to 0 , for right movements, to 1 . The keypress that calls for the end of the game (SHIFT/COMMODORE/CTRL) is set to 3. These will be interpreted in the main loop.
$\mathrm{K}(n)$ has only two possible values: $\mathrm{K}(0)=-1$ and $\mathrm{K}(1)$ $=1$. When indexed by $\operatorname{KP}(n)$, these values will be added to or subtracted from the current horizontal position (HP) of the sprite.

Lines 930-931 set the initial sprite position and POKE it into the proper registers. Line 940 POKEs the current shape block code into the sprite location register.

Lines 950-960 set up the initial playfield screen. Line 960 is especially important, because if it were not done, the screen would scroll two lines at a time each time a

fence was moved off the top of the screen.
Lines 970-990 clear the collision registers and set the timer back to 0 .
Main Loop. After the set-up subroutines are executed, the program jumps to the main loop. Line 100 reads the keyboard for SHIFT, COMMODORE, and CTRL keypresses. If the end of the game is called for, the program jumps to the End-of-game routine at 300 .
Line 105 checks for meaningless keypresses and ignores them. Line 110-115 change the horizontal position, depending on the keypress, and cause the pig to "wrap around" if he goes off the edge of the screen.
Line 120 checks to see if the pig has changed direction. If he has, the sprite shape location register is changed accordingly. Line 125 POKEs the new horizontal position into the two registers affected.
Line 130 checks the timer to see if it's time to scroll the screen. Line 135 checks to see if the player has moved the pig so it bumps into a fence.
Ending Routines. Lines 300-315 display the end of game messages, indicating the score, which gives points for the number of fences displayed before the end and how low the pig was on the screen at the end. Then they move the pig down to the middle of the screen. Line 320 checks for a keypress; if Q is pressed, the program jumps to 370 , the end-of-game routine.

Lines 325-330 cause the pig to move along the screen continuously while the program waits for the player to input a choice. Line 345 keeps the program looping through the pig's movement unless the player has pressed P to play again, in which case line 350 resets the initial variables and goes back to line 100 for the next game.

Lines 370-390 put video memory back to normal and reenable all the key combinations that were disabled before; then the program ENDs.

Collision Handling. This routine is only executed if a collision has already taken place. It bounces the pig up to the next valid vertical position. Then it clears the collision registers and checks again to see if the pig is still touching a fence, in which case it starts over again, bouncing the pig up still one more row. If the vertical position, VP, is ever higher than the top of the screen, EG is set to 1 , which will end the game when the main loop is executed again.

Scrolling Routines. If were between fences ($\mathrm{RC}<\mathrm{DS}$), then line 502 PRINTs enough cursor-down characters to cause the screen to scroll up one line. The fence-adding routine is skipped.

Lines 506-508 select a new fence segment, PRINT it, and then advance all the counters, changing the difficulty level if necessary. Line 510 checks to see if the maximum number of rows has been added. Right now the game is set up to PRINT 50 new rows on the screen before it ends.

Line 520 checks for collisions. Line 580 clears the screen line link table so the screen will only scroll one line at a time. Then the timer is reset.

SEE PROGRAM LISTINGS ON PAGE 95

COMMCIJCIIE IROCTS

ADDRESSING
 THE COMMODORE, PART II

The Second of Two Columns on Assembly Language Addressing

By Mark Andrews

 ooking for a byte of data in a computer is something like looking for a street address in a large city. If you don't know the city and don't have a map, the task is virtually impossible. If you can find a map, it helps. And with or without a map, the job gets easier as you learn your way around.
Last month, we saw how a set of programming tools called addressing modes can be used to retrieve data from memory (and store data in memory) in Commodore 64/ Commodore 128 assembly language. In case you missed that column, here's a brief review:
There are 13 addressing modes in C-64/C-128 assembly language. Of these, one of the simplest (and most commonly used) is absolute addressing. Using the absolute addressing mode is like going straight to a street address that someone has given you, and immediately finding what you're looking for.
This is the format used for writing a statement using absolute addressing in C-64/C-128 assembly language:

LDA \$1234

The above statement means, "Load the accumulator with the content of memory address $\$ 1234$." If this statement were encountered in an assembly language program, the contents of the Memory Address $\$ 1234$ would be loaded into the 6510/8502 accumulator, the main internal register in the main microprocessor of a C-64 or a C-128. (As you may recall from previous columns, loading a value into the 6510/8502 accumulator is the initial step in many different kinds of assembly language operations. As you may also remember, the " $\$$ " sign in front of the number 1234 means that it's a hexadecimal number.)

INDEXED ADDRESSING

A slightly more complex addressing mode is called indexed addressing. Using it is like using a street address to find an apartment building, and then using an apartment number to find an apartment in that building. In a statement written using indexed addressing, the instruction specifies both an address and an index register
(either the X register or the Y register, if you're programming in C-64/C-128 assembly language). The value of the index register is then added to the specified address, and the sum of this addition operation is the final address of the instruction.
Indexed addressing is often used in loops that are designed to retrieve bytes of data in succession from data tables. Since the X and Y registers are often used as counters in such loops, they have been provided with a special set of instructions that enable them to be incremented and decremented very easily. There are also instructions that can be used to compare the values of the X and Y registers with other values. These comparison instructions are often quite useful in determining the boundaries of data tables.

In C-64/C-128 assembly language, this is the format for writing a statement using indexed addressing:

LDA $\$ 1234, \mathrm{X}$

A PROGRAM ILLUSTRATING INDEXED ADDRESSING

The Quest, found on page 100 of the program listings section, illustrates the technique of indexed addressing. The program was written using the Commodore 64 Macro Assembler, but can be easily modified to work with other assemblers.
One feature of The Quest we have not encountered until now is a directive, or pseudo-op, in Lines 110 to 130.This directive is written "BYTE" in programs created with the Commodore 64 Assembler. If you own a Merlin 64, use the Merlin equivalent of this directive, which is DFB. If you own a Panther $C-64$ the equivalent is DFC.

The .BYTE/DFB/DFC directive is sometimes called a pseudo-operation code, or pseudo-op, because it appears in the op-code column of assembly language source code listing but is not actually a part of the 6510/8502 assembly language instruction set. Instead, it's a specialized directive that varies in format from assembler to assembler. Many other pseudo-ops have formats that differ from one assembler to another, because there are no generally accepted standards for writing pseudo-op directives.

When the "BYTE" directive (or one of its equiv-
alents) is used in a program, the bytes that follow are assembled into consecutive locations in RAM. In The Quest, the bytes that follow the label TEXT are ASCII codes for a series of text characters - as you will see when you type and run the program.

In The Quest, the X register is used as an index register. In Line 150, the X register is loaded with a zero. Then in Line 170, indirect addressing is used to load the accumulator with the first byte of the data segment labeled TEXT, plus the value of the X register. Since the value of the X register starts out as zero, the first value that will be loaded into the accumulator is the first byte of the line labeled TEXT, which is the number 87 -or the ASCII code for the letter " W ". So, in Line 180, the routine CHROUT (a screen-printing subroutine built into the C-64/C-128 operating system, or Kernal), will print a "W" on the screen.
Next, in Line 190, the instruction INX ("increment the X register") is used to increment the value of the X register. Then in Line 200, the value of the X register is compared with the number 23 -the length, in bytes, of the text string being printed on the screen. If 23 characters have not yet been printed, the program cycles back to Line 170, labeled LOOP, and the next character is printed. Finally, when all 23 characters have been printed, the program ends.

> \$9.95 each!!!
> for the Commodore 64 BLACKJACK GIN RUMMY DISK or TAPE PYSCO SOFTWARE Box 301 Bristol, CT 06010

WANTED

COMMODORE 64 computers and 1541 Disk Drives; $\$ 75$ for those in working condition. Please call 205-221-5211

[^5]
INDIRECT ADDRESSING

Indirect addressing is a form of indexed addressing slightly more complex than the simple, no-frills indexed addressing used in The Quest. When indirect addressing is used in an assembly language program, the contents of a pair of memory addresses - rather than the addresses themselves-are added to the value of an index register. The sum is then used as the final address of an instruction.
Indirect addressing could be compared to a situation in which several persons need to get to a meeting each week, but are never sure where the meeting is being held because its location changes from time to time. One solution would be to direct everyone to the same address every week, and let them know in advance where to look when they arrived - under the doormat, for example-for a note containing the address of that week's meeting.
In 6510/8502 assembly language, indirect addressing is often used when rapid changes must be made in data being accessed by a program. If indirect addressing did not exist, huge blocks of data would often have to be moved into and out of programs in real time, resulting in tremendous delays in processing. Fortunately, the existence of indirect addressing can usually eliminate this problem. In a program that uses indirect addressing, it is not usually necessary to incorporate large blocks of data into the body of a program, and to move them around in memory when one block of data must be exchanged with another. Instead, the address of a block of data can be used in a program. Then, when it is time to replace that block of data with another block, all a programmer has to do is substitute the address of the new block of data for the address of the old one. In this way, by changing only a few bytes of memory during the execution of a program, an assembly language programmer can juggle blocks of data that are hundreds, or even thousands, of bytes long in a tiny fraction of the time it would take to move one whole block of data out of a section of memory and then move another block of data in.

Actually, there are two indirect-addressing modes in 6510/8502 assembly language: indexed indirect addressing and indirect indexed addressing. As mentioned last month, one way to keep these two confusing terms straight is to remember that the word "indexed," which contains an "X," is the first word in the term "indexed indirect addressing"-the form that uses the X register. And the other mode-indirect indexed addressing-is the mode that makes use of the Y register.

Both indexed indirect addressing and indirect indexed addressing have one unfortunate limitation: they can be used only with zero-page addresses, that is, with memory locations that have addresses ranging from $\$ \mathrm{OO}$ to $\$ \mathrm{FF}$ (or from 0 to 255 in decimal notation). Much more will be said about zero-page addresses in later columns, but this is all we need to know about them right now: since there are only 256 such addresses in the memory space of a Commodore computer-and since most of those are used by the Commodore's BASIC interpreter and operating system-the zero-page memory requirements of
indirect addressing place rather severe restrictions on the use of indirect addressing in user-written programs. These restrictions are especially severe in the case of indexed indirect addressing, because indexed indirect addressing can be used only with address tables that are located in their entirety on Page Zero. Because of this limitation, indexed indirect addressing is not often employed in user-written programs. It is a good idea to know how it works, however, since it is sometimes encountered in ROM routines, and can even come in handy now and then in user-written programs, provided that the necessary space on Page Zero can be found.

INDEXED INDIRECT ADDRESSING

When indexed indirect addressing is used in a program, the format is:

LDA (\$FB, X)

If the above statement appeared in an assembly language program, the value of the X register would be added to the value of SFB. The resulting sum would then be interpreted as another address. However, the accumulator would not be loaded with the value of that address. Instead, the content of that address, and the content of the following address, would be interpreted as still another
address. In other words, the indexed address would be used as a pointer to still another address. And that would be the final address of the instruction LDA.

As an illustration of this concept, let us assume that the X register contained the value 2 when the statement "LDA ($\$ F B, X$)" was encountered in a program. First, the number $\$ 02$-the value of X register-would be added to the value $\$ F B$. The sum of this calculation would, of course, be \$FD. And the content of that address - plus the content of the following address, \$FE-would point to the final address to be accessed by the mnemonic LDA.

Now let us suppose the 16 -bit value of $\$ 1234$ were stored in the zero-page pointers \$FD and \$FE. Since the low byte of a 16-bit value always comes first in 6510/8502 assembly language, the contents of page-zero pointers $\$ \mathrm{FD}$ and $\$ \mathrm{FE}$ would thus be as follows:
ADDRESS
\$FD
\$FE

CONTENT

\$34
\$12

Now let us suppose that the value $\$ \mathrm{C} 000$ were stored in memory address $\$ 1234$. If the value of $\$ 1234$ were stored in page-zero pointers \$FD and \$FE, as illustrated above, the 16 -bit value contained in \$FD and \$FE would contain, or point to, the address $\$ 1234$. So the final ef-

CARTRIDGE-MAKER-64

Create your own COMMODORE-64 Video game and program cartridges!

Easy Menu-Driven instructions allow you to:

Copy your BASIC or ASSEMBLER programs to cartridge
Copy from cartridge to cartridge
Copy your cartridge to diskette or cassette

CARTRIDGE-MAKER-64 $\$ 129.00$
CARTRIDGE-ERASER $\$ 59.00$
CARTRIDGE-64 (16K) $\$ 25.00$
CARTRIDGE-MAKER SYSTEM $\$ 189.00$ Includes CARTRIDGE-MAKER-64, CARTRIDGE-ERASER, and 1 Blank CARTRIDGE-64 (16K each)
Purchase of 5 Blank CARTRIDGE-64's (16K each). . $\$ 115.00$

SHIPPING:\$3.00 (If C.O.D., add \$2.00. PA residents add 6% sales tax) VISA-MASTERCARD-C. O.D.-CHECK
DEALER \& DISTRIBUTOR INQUIRIES INVITED

Custom Programming Group, Inc.
47-2A Marchwood Road • Exton, PA 19341
(215) 363-8840
\square Erase and reuse cartridge
\square Create Autostart cartridges without the need to be skilled in machine language.
Also Available from CPG:
6502 Single Board Computer $\$ 389.00$
5 Volt Switching Power Supply 79.00
8K EPROM's (2764). 5 .50
16K EPROM's (27128) $\$ 9.95$
EPROM sockets 0 .50
CARTRIDGE-64 Bare Boards 12.00
Cartridge Cases 3.00
Cartridge Board with Case 14.00
6 -position DIP Switch 2.00
ASYNC-CARTRIDGE-64 (ACIA) 59.95
ASYNC-WEDGE-64 (Software) 19.95
ADD-A-SOUND-64 29.95
Real-Time Calendar/Clock 79.95
Software for COMMODORE-64 Call or write for prices
fect of the statement "LDA (\$FB, X)" would be to load the accumulator with the value $\$ \mathrm{C} 000$.

INDIRECT INDEXED ADDRESSING

Indirect indexed addressing is more versatile-and therefore more useful-than is indexed indirect addressing. When indirect indexed addressing is used to retrieve a value from a table or a block of data, only two bytes of valuable zero-page address space are needed. (In contrast, in the indexed indirect addressing mode, a whole table of address pointers must reside on Page Zero.) Therefore, indirect indexed addressing is used much more often in user-written programs than is indexed addressing.
The format of a statement that uses indirect indexed addressing is:

LDA (\$FB), Y

In the above statement, it is worthwhile to note that while parentheses enclose the address $\$ F B$, the " Y " which represents the Y register lies outside the parentheses. This is important to remember, since it means that in indirect indexed addressing, the value of the Y register is used not to index the address $\$ \mathrm{FB}$, but rather to index the content of the address \$FB.
Now let us return to the statement "LDA (\$FB),Y". If this statement were encountered in an assembly language program, the content of memory address $\$ \mathrm{FB}$, plus the content of the following memory address - that is, \$FCwould be interpreted as a memory address. Next, the value of the Y register would be added to that address. And finally, the accumulator would be loaded with the content of that final address. In other words, the 16 -bit value stored in the addresses \$FB and \$FC would be used as a pointer to indicate the final address of the instruction LDA.

To more clearly illustrate how indirect indexed addressing works, let us assume that memory addresses \$FB and $\$ \mathrm{FC}$ held the address $\$ 1234$ when the statement "LDA (\$FB), Y was encountered. Since the low byte of a 16 -bit value always comes first in 6510/8502 assembly language, the contents of memory addresses $\$ \mathrm{FB}$ and $\$ \mathrm{FC}$ would thus be as follows:

ADDRESS
 \$FB
 CONTENT
 \$FC \$34

Now let us suppose that the Y register contained a 2 when the statement "LDA (\$FB),Y" appeared. In this event, the number $\$ 02-$ the value of the Y registerwould be added to the 16 -bit address $\$ 1234$. The sum of this calculation would, of course, be $\$ 1236$. So the content of memory address $\$ 1236$ would be interpreted as the final address to be accessed by the mnemonic LDA.

Finally, let us suppose that the value \$FOAC were stored
in memory address $\$ 1236$. If this were the case, the final effect of the statement "LDA (\$FB),Y" would be to load the accumulator with the value $\$$ FOAC.

IMPROVING THE QUEST

Before I sign off this month, Id like to direct your attention to another program, Response, which appears after The Quest in the program listings section of this issue (see page 100). Response works somewhat like The Quest, but demonstrates a few more programming techniquesand, in addition, provides an answer to the riddle presented in The Quest.
In Line 130, insted of using ASCII codes to represent typed characters, Response uses a pair of delimiters to enclose a real string of typed characters - a feature provided in one form or another by most assemblers, including the Commodore 64 Assembler, the Merlin 64, and the Panther C-64.
At the end of this text string, however, there is one ASCII code: the number 13 , which equates to an end-of-line (or "EOL") character. (An ASCII code had to be used here, since typing an actual return character would cause the assembler to move on to another line.)

In Lines 150 through 210 of Response, a text buffer (created in Line 510) is filled, or "stuffed," with blank characters, or spaces. Next, in Lines 250 through 320, an X loop is used to place the text string in Line 130 in the now-empty text buffer. Then, in Lines 360 through 460, the message in the buffer is printed on the screen.

The loop that prints the message works somewhat differently than the printing loop used in The Quest; instead of counting the number of characters in the text string which is being used, this loop keeps checking the accumulator for the presence of an end-of-line character. If no EOL character is detected, the program loops back to Line 370, and prints the next letter on the screen. When the EOL character that ends the text string is finally found, the program ends.

WHAT'S AHEAD

Next month's column will include the most advanced type-and-run program that has been presented in this space so far. Called The Name Game, it is an interactive game that will demonstrate the use of indirect indexed addressing, and do a bit more, too. The Name Game, which I have used for years to demonstrate certain programming principles, is a simple interactive game in which the player converses with the computer. It will not only print messages on the screen, it will also accept typed-in text, and print that on the screen, too. It will then compare the data that is typed in with a string of data stored in a buffer-and will use this comparison to determine the outcome of the game. So-see you in next month's column.

SEE PROGRAM LISTINGS ON PAGE 100

C:ADEITS C:OIUMN

FOR BEGINNING USERS OF THE COMMODORE COMPUTERS - By Cheryl Peterson

ommodore's sales figures for Christmas 1984 showed twice as many disk drive sales as Commodore 64 sales. So it's a safe bet that most of you have already upgraded your systems to include this much-needed peripheral. That's great, because most of this month's column is going to concern the disk drive. For those of you who don't have drives, read this installment to find out some of the reasons for getting one. With the prices being dropped (I've seen them as low as \$159), now may be the time to buy.

Despite complaints about the 154l's speed, it's a vast improvement over tape. Having used a disk drive from the very beginning, I can't even contemplate waiting for a tape program to load. Only twice have I been in a situation desperate enough to warrant using the cassette drive, and both times I was elated to go back to my disk.

DISK BASICS

Although they may seem obvious to experienced disk users, there are some basic facts about using a disk based system that you should know. And don't think just because you've been around, you know everything.

Case in point: a professional musician who uses an electronic synthesizer calls my husband (who repairs electronic equipment). Since it's fairly late in the evening, my husband is reluctant to run across town. The problem is eventually traced to the disk drive in the synthesizer. In a brilliant flash of insight my husband asks, "Do you have the drive sitting on a speaker cabinet?" He did! Although moving the drive did not entirely solve the problem, the incident does demonstrate that even experienced users sometimes forget the basics.

Disks (and to a much lesser extent, drives) are susceptible to magnetic fields. A computer diskette is nothing more than a round recording tape; a piece of plastic with an iron oxide coating melded to it. Data is stored on the disk by polarizing the magnetic fields of the iron ions. If you take a disk and place it in an area where there is a high magnetic field (for instance, around speakers connected to stereo systems), it is entirely possible that you will erase the disk or scramble the data.
The plastic on which the iron is mounted is similar to that used in record albums. Heat can warp the plastic and cold can make it brittle. At sufficiently low temperatures, the iron oxide loses its bond to the plastic and there goes your data.

Disk sleeves were made to be used. Please don't throw them away. The keeper of our user group library never could see any reason to take up extra space in files by leaving the jackets on the disks. After about six months of rubbing together, the oxide started falling off, and the
entire library (some 120 disks worth) had to be recopied onto new disks. Besides the expense of buying more disks, it took days to make the new copies.

What I'm trying to point out is that disks are fragile. Even the best disks will wear out eventually. But if you treat them right, they can last for several years. Disks that see heavy use may only last a year, but that's why you always keep backup disks, right?!

A good rule of thumb is to make a backup copy of the file in which you are working at least once every half hour. This way you never lose more than 30 minutes of work. Frequently, the backup copy is on the same disk as the original. Most word processors and other heavy use software have a save and continue working feature that will quickly create a duplicate of the file so far and then let you continue where you left off. This is your first backup.
At day's end, it's a good practice to use a copy program to make a duplicate of each disk modified that day. (These copies should be made on disks that will be stored separately from those you use each day.) If you are doing anything more important than writing letters to goldfish, a safety is a necessity. I hope to compare a few of the commercial copy programs in a future column. Fast Load has such a program built into it.

ORGANIZATION

Most beginners don't have any idea how fast the disks collect. With a typical family, before you know it, you'll have disks with programs written in BASIC, COMAL, PASCAL, machine language, or any combination thereof. You'll have databases, letters created with different word processors, songs written with music processors, sprites made with sprite generators, pictures created with a variety of graphics packages, and data disks that track your progress with the very latest in adventure games.

And all of them will have cryptic labels that list about three files! If you're lucky, there might even be a semimeaningful diskname. Something like WN!DD1. 01 (Write Now! Data Disk 1.01) And if you've been making safeties like you should, whew!

Now for the good news! You, as beginners, are in the perfect position to nip this problem in the bud. Start out with some plan for labeling disks. Everyone who uses the computer should help come up with a logical system for organizing disks. I recommend using disknames that key the data to whatever disk was used to create it and then a general category type.

For instance:
WN!Personal Let.JA
WN!Personal Let.FB
WN!Business Let. 01

BSWTom Creative.WR
BSWSusan Book R. 01
BSWSusan Book R. 02
Ahoy! PRG Files. 01
CompuServe Down. 01
Cher PRG Games. 01
With a little imagination, these disknames can identify the disk's information; WN! =Write Now!, Let = Letters, JA=January, FB=February, BSW=Bank Street Writ$e r$, WR=Writing, $\mathrm{R}=$ Reports, $\mathrm{PRG}=$ program files, Down=Downloaded files. Tom, Susan, and Cher are family members who regularly use the disk.

It took me three days to organize the mess that six months of haphazard disk and file naming had created. Oh, how I wished someone had warned me to be organized from the beginning.

Even with organization, it can still be tough to find a particular file that you haven't looked at for months. A good disk catalog program will really help here. I've seen one that costs about $\$ 30$ and includes an option to print labels.

MACH 5's DISK CATALOG PROGRAM

For my money, Id get Access Software's Mach 5 cartridge instead. Although it doesn't print labels, its features are almost indispensible. Besides speeding up disk access, Mach 5 enables a catalog program that comes on disk.

Another option lets you view or print a listing of the disks in a catalog (see figure 2). This is especially useful at the beginning of your catalog, since it lists how much free space each disk has. Ever wonder which of your disks has enough room for a 20 block file and spend half an hour swapping disks in and out to find one? With this program, you never will.

To update a listing, you delete modified disks by entering their disknames. It isn't necessary to delete each file name; the program automatically finds each one associated with a deleted diskname and removes it. Then you use the "Add a disk function" to update the files.
There's even an option to change a diskname without having to reformat the whole disk (something I've seen no other program do). Even if you're a few months along in "haphazard" mode, it isn't too late to start getting organized with Mach 5.
One big hassle facing new drive users is learning the new, save, load, format, initialize, and validate commands. A disk provided with the drives contains a DOS (Disk Operating System) wedge that is supposed to make using these features easier. The wedge must be loaded before using it, however. Mach 5 has a built in DOS wedge, accessible from BASIC. Because it is on cartridge, though, Mach 5's DOS doesn't have to be loaded from BASIC. The command structure looks much like that of the Commodore DOS wedge, so the commands aren't confusing to more experienced users.
Beginners may not be aware that before you can use

- 10 issues of TPUG magazine
- Advice from experts like Jim Butterfield and Elizabeth Deal
- Access to a huge library of outstanding public domain software
- An invitation to attend the Annual TPUG conference, May 25 and 26 in Toronto, Canada, with two full days of seminars on all aspects of Commodore computing.

JOIN NOW!

I would like to join TPUG as an associate member at a cost of US\$25.00.
Send your cheque, money order or credit card number to:
TPUG Inc.,
1912A Avenue Road,
Toronto, Ontario, Canada
M5M 4A1

Name \qquad

Address \qquad
\square Cheque
\square Money Order
\square Credit Card \qquad Amount in U.S. funds \$
\qquad Expiry date \qquad Signature \qquad

Type of Computer \qquad Disk Drive \qquad Printer \qquad Modem \qquad Other \qquad
a disk with the Commodore drive, it must be formatted. This two-minute process requires typing the command line (in BASIC):

PRINT\#15,"NEW():NAME,ID"

where "name, id" is the diskname and identification code. If the DOS wedge is loaded or the Mach 5 cartridge is in, you can type @ instead of PRINT\#15.
Even without its quick loading features, Mach 5 is an excellent package. And at $\$ 34.95$, it's a bargain, too.

TIPS ON BUYING SOFTMARE

Although I don't buy software often, there are a few tricks I've picked up along the way that I'll pass on to you. (Don't be surprised if they don't agree with anything you've heard elsewhere.)

Before deciding to buy any "productivity" type software, check back issues of magazines for buyer's guides and indepth reviews. Make a list of the features you definitely need and those you'd like to have if the price isn't too high. Be careful not to pay exorbitant prices for "bells and whistles" you don't need or want.
Read as many current Commodore magazines as you can get your hands on. Don't be an indiscriminate reader; look for useful buying information. Read magazines with a pen in your hand and a pile of note cards sitting next to you. If the family's decided to buy a word processing program in the next couple of weeks, make notes on all the pertinent advertisements: software name and manufacturer, what features are offered, asking price, page and magazine of advertisement. If you see a package that interests you, look for the discounted price being offered by mail order firms.
Mind you, I didn't recommend buying it from a mail order company. Find a local dealer who doesn't mind letting you hang around the store. Hang around. Try out the software you're interested in. Try it on a system similar to yours. Be sure the package will work with your hardware combinations. What kind of printer, interface, modem, or input devices do you need? Does that software need a high resolution or low resolution light pen?

While you're in the store, check the prices of disks. Even if you don't find the software you want, you can always use a few more disks and the store owner may be running a sale. You'd be surprised at the number of times I've walked out of a store empty-handed only to discover two days later that I had only one clean disk left.

Before buying, compare prices realistically.
Most mail order places now add a three to four per cent surcharge to credit card orders or a three to five dollar charge for COD. On top of that, there's a three dollar to five per cent shipping and handling charge. By the time you add it all up, you may only be saving a couple of dollars.

Then there's the waiting. If you buy software at a local store, it's yours when you walk out. You run right home and use it. Not so with mail order. If you pay by
check, there's a two week wait while it clears. Discounters advertise some products that are not in stock, since magazine ads must be placed two to three months in advance. A particularly popular package may be temporarily sold out, as well. Even if it is in stock, UPS generally takes 5 to 8 days to deliver.
Though mail order companies must ship your order within 30 days or inform you of the delay and offer to refund your money, they are not required to pay you interest on your money while they hold it. If there's a chance the software will come in a future shipment, they'll usually advise you to wait another couple of weeks before requesting a refund. After all, it takes the accounting department a couple of weeks to issue a refund check.

For your two dollar savings, you've given away the opportunity to take the software back to the store for a credit if it doesn't work. Since most local dealers want to keep your business, they'll try very hard to make you happy. Usually all you need do is bring the software back and show that it doesn't work on their computers, either.
This may lead to finding you actually have a hardware problem, or it could get you another copy of the software. At the very least, if the software won't load, most stores will give you a credit against any other merchandise you want to buy. Refunds are almost unheard of, no matter where you buy.
If you bought from a discount house, you can be almost guaranteed hassles. Don't hold your breath while waiting for most mail order houses to issue a return authorization number. Did I mention that you'll have to call on their user support line, so you get to pay long distance charges? 800 numbers are for orders only. When you do get permission to send it back, you go stand in line at the post office to send the package "Return receipt requested." This way you get back a post card that confirms that software company "XYZ" got the software.
And wait, and wait, and wait.
After several weeks, you may get a package with another copy of the software. If not, you call the company and hassle it out.
With certain software manufacturers, this isn't necessary. They offer a warranty! You ship the faulty disks to their main office and they send you new ones that should work. Usually, it'll only cost you another five dollars more plus shipping. Don't forget "Return receipt requested." And should the problem be hardware related, the new disks won't work, either.
So don't be so sure mail order is really cheaper. It may save a couple of dollars initially, but you'll probably pay for it in waiting time later.
Buying software can be a harrowing exercise. The best protection against disappointment is research. Magazines are a good starting point, but personal recommendations from friends or members of the local user group can lead to bargains. Try before you buy is still the best guarantee of satisfaction, though.

Next month, a few words about fans, furniture, and other fun stuff.

PROGRAM LISTINGS

Abstract

Attention new Ahoy! readers! You must read the following information very carefully prior to typing in programs listed in Ahoy! Certain Commodore characters, commands, and strings of characters and commands will appear in a special format. Follow the instructions and listing guide on this page.

0n the following pages you'll find several programs that you can enter on your Commodore computer. But before doing so, read this entire page carefully.
To insure clear reproductions, Ahoy!'s program listings are generated on a daisy wheel printer, incapable of printing the commands and graphic characters used in Commodore programs. These are therefore represented by various codes enclosed in brackets []. For example: the SHIFT CLR/HOME command is represented onscreen by a heart . The code we use in our listings is [CLEAR]. The chart below lists all such codes which you'll encounter in our listings, except for one other special case.

The other special case is the COMMODORE and SHIFT characters. On the front of most keys are two symbols. The symbol on the left is obtained by pressing that key while holding down the COMMODORE key; the symbol on the right, by pressing that key while holding down the SHIFT key. COMMODORE and SHIFT characters are represented in our listings by a lower-case " s " or "c" followed by the symbol of the key you must hit. COMMODORE J, for example, is represented by [c J],
and SHIFT J by [s J].
Additionally, any character that occurs more than two times in a row will be displayed by a coded listing. For example, [3 "[LEFT]"] would be 3 CuRSoR left commands in a row, [5 "[s EP]"] would be 5 SHIFTed English Pounds, and so on. Multiple blank spaces will be noted in similar fashion: e.g., 22 spaces as [22 ""].

Sometimes you'll find a program line that's too long for the computer to accept ($\mathrm{C}-64$ lines are a maximum of 80 characters, or 2 screen lines long; VIC 20 lines, a maximum of 88 characters, or 4 screen lines). To enter these lines, refer to the BASIC Command Abbreviations Appendix in your User Manual.

On the next page you'll find our Bug Repellent programs for the VIC 20 and C-64. The version appropriate for your machine will help you proofread our programs after you type them. (Please note: the Bug Repellent line codes that follow each program line, in the whited-out area, should not be typed in. See the instructions preceding each program.)

Also on the following page you will find Flankspeed, our ML entry program, and instructions on its use.

Call Ahoy! at 212-239-0855 with any problems.

IMPORTANT！
 BUG REPELLENT

Letters on white background are Bug Repellent line codes．Do not enter them！This and the preceding explain these codes and provide other essential information on entering Ahoy！programs．Read these pages before entering programs．

This program will let you debug any Ahoy！program．Follow in－ structions for VIC 20 （cassette or disk）or C－64．

VIC 20 VERSION

By Michael Kleinert and David Barron

For cassette：type in and save the Bug Repellent program，then type RUN 63000 ［RETURN］SYS 828 ［RETURN］．If you typed the program properly，it will generate a set of two－letter line codes that will match those listed to the right of the respective program lines．

Once you＇ve got a working Bug Repellent，type in the program you wish to check．Save it and type the RUN and SYS commands listed above once again，then compare the line codes generated to those listed in the magazine．If you spot a discrepancy，a typing error exists in that line．Important：you must use exactly the same spacing as the program in the magazine．Due to memory limitations on the VIC，the VIC Bug Repellent will register an error if your spacing varies from what＇s printed．

You may type SYS 828 as many times as you wish，but if you use the cassette for anything，type RUN 63000 to restore the Repellent．

When your program has been disinfected you may delete all lines from 63000 on．（Be sure the program you type doesn＇t include lines above 63000！）
For disk：enter Bug Repellent，save it，and type RUN：NEW ［RETURN］．Type in the program you wish to check，then SYS 828.
To pause the line codes listing，press SHIFT．
To send the list to the printer type OPEN 4．4：CMD 4：SYS 828 ［RETURN］．When the cursor comes back，type PRINT\＃4：CLOSE 4［RETURN］．
－630rfr FORX $=828 \mathrm{TO}$（ $) 23$ ：READY：POKEX，Y：NEXT：END
－630ノノ DATA169，ノ，133，63，133，64，165，43，133，251
－63rر）2 DATA165，44，133，252，16ヶ，ケ，132，254，32，228 DF

－63ヶر） 8
－630ノJ6 DATA2，230，252，177，251，32，295，221，169，58 JJ

－63rر） 8 DATA228，3，234，165，253，16（），（），17ヶ，177，251 LG
－630رノ9 DATA2（ر）$, 32,24$ r），6，138，113，251，69，254，17r）BP
－63019 DATA138，133，253，177，251，2ヶ8，226，165，253 ，41
－63011 DATA24r，74，74，74，74，24，155，65，32，215 EK
－63012 DATA255，165，253，41，15，24，105，65，32，210
－63013 DATA255，169，13，32，21ヶ，255，173，141，2，41

－63ノ15 DATA251，2r，8，2，23r，252，76，74，3，169，236
－63（）16 DATA16r），3，32，35，2r）3，166，63，165，64，32
－63ヶ17 DATA2 $15,221,169,13,32,21 ヶ, 255,96,23$ ノ， 25 1

－63019 DATA83，58，32，ケ，76，73，78，69，32，35

C－ 64 VERSION

By Michael Kleinert and David Barron

Type in．SAVE，and RUN the Bug Repellent．Type NEW，then type in or LOAD the Ahoy！program you wish to check．When that＇s done．SAVE your program（don＇t RUN it！）and type SYS 49152 ［RETURN］．
To pause the listing depress and hold the SHIFT key．
Compare the codes your machine generates to the codes listed to the right of the respective program lines．If you spot a difference． an error exists in that line．Jot down the number of lines where
contradictions oceur．LIST each line，spot the errors，and correct
them．
－5rرfor FORX $=49152$ TO49488：READY：POKEX，Y：NEXT：END GJ
－5forsl DATA32，161，192，165，43，133，251，165，44，133 DL
－50 rf2 DATA252，16r，ケ，132，254，32，37，193，234，177 DB

－50رr4 DATA23r，252，76，43，192，76，73，78，69，32
－50， 55 DATA35，32，r，169，35，160，192，32，30， 171

－50ノノ7 DATA252，177，251，32，2ノ5，189，169，58，32，210 JE
－5rر）DATA255，169，ノ，133，253，23ヶ，254，32，37，193 CL

－5011 DATA74，74，24，105，65，32，210，255，165，253
－50，12 DATA41，15，24，155，65，32，21ヶ，255，169，13

－ 5 （ر14 DATA251，2 $98,2,23$ ），252，76，11，192，169， 153

－ 5016 DATA231，192， $96,76,73,78,69,83,58,32$
－5017 DATA（），169，247，16r），192，32，3（），171，169，3
－5 5）18 DATA133，254，32，228，255，2ヶ1，83，24ヶ，6，2ヶノ1

－50， 20 DATA166，254，16ヶ，255，32，186，255，169，厄， 133 CL
－5r，21 DATA63，133，64，133，2，32，189，255，32，192
－50，22 DATA255，166，254，32，201，255，76，73，193，96
－5ノ23 DATA32，21ノ，255，173，141，2，41，1，2ヶر8，249
－50，24 DATA96，32，25 5，189，169，13，32，21ノ，255， 32

－5 5 26 DATA82，69，69，78，32，79，82，32，81）， 82
－5r）27 DATA73，78，84，69，82，32，63，32，门，76
－ 5 r，28 DATA44，193，234，177，251，2ヶ11，32，24ヶ，6， 138
－5ر）29 DATA113，251，69，254，17ヶ，138，76，88，192，$)$

－5「J32 DATA255，133，2，165，2，2 2 ， $8,218,177,251,2$（）1

PLANISODPED FORTHEC． 64

By Gordon F．Wheat

Flankspeed will allow you to enter machine language A／toy！pro－ grams without any mistakes．Once you have typed the program in． save it for future use．While entering an ML program with Flankspeed there is no need to enter spaces or hit the carriage return． This is all done automatically．If you make an error in a line a bell will ring and you will be asked to enter it again．To LOAD in a program Saved with Flamkspeed use LOAD＂name＂．1．1 for tape． or LOAD＂name＂．8．I for disk．The function keys may be used after the starting and ending addresses have been entered．
f1－SAVEs what you have entered so far．
B－LOADs in a program worked on previously
15 －To continue on a line you stopped on after LOADing in the previously saved work．
17－Scans through the program to locate a particular line，or to find out where you stopped the last time you entered the program． 17 temporarily freezes the output as well
－ 5 POKE5328（ر，12：POKE53281，11
－ 6 PRINT＂［CLEAR ］［c 8］［RVSON］［15＂＂］FLANKSPEED［ 15＂＂］＂；
－10 PRINT＂［RVSON］［5＂＂］MISTAKEPROOF ML ENTRY P ROGRAM［6＂＂］＂
－ 15 PRINT＂［RVSON］［9＂＂］CREATED BY G．F．WHEAT［ 9＂＂］＂
－2r）PRINT＂［RVSON］［3＂＂］COPR．1984，ION INTERNA

TIONAL INC．［3＂＂］＂
－3r）FORA $=54272 \mathrm{~T} 054296$ ：POKEA，ノ）：NEXT
49）POKE54272，4：POKE54273，48：POKE54277，）：POKE5 4278，249：POKE54296， 15
－79）FORA $=689$ TO699：READB：POKEA，B：NEXT
－ 75 DATA169，251，166，253，164，254，32，216，255，96
－76 DATA169，ノ，166，251，164，252，32，213，255，96
－8） $\mathrm{B} \$=$＂STARTING ADDRESS IN HEX＂：GOSUB2 11 ）：AD＝ B：$S R=B$
－ 85 GOSUB252ヶ：IFB＝ヶTHEN8）
－ 86 POKE251，T（4）＋T（3）＊16：POKE252，T（2）＋T（1）＊16
－99） $\mathrm{B} \$=$＂ENDING ADDRESS IN HEX＂：GOSUB2rر1ヶ：EN＝B
－95 GOSUB2510：IFB＝（JTHEN8（）
－ 96 POKE254， $\mathrm{T}(2)+\mathrm{T}(1) * 16: \mathrm{B}=\mathrm{T}(4)+1+\mathrm{T}(3) * 16$
－ 97 IFB >255 THENB $=\mathrm{B}-255$ ： $\operatorname{POKE} 254$ ， $\operatorname{PEEK}(254)+1$
－ 98 POKE253，B：PRINT
－ 150 REM GET HEX LINE
－119 GOSUB301ヶ：PRINT＂：［c P］［LEFT］＂；：FORA＝r）T08
－12ヶ $\mathrm{FORB}=$（）TO1 ：GOT0219
－ 125 NEXTB
－ $130 \mathrm{~A} \%(\mathrm{~A})=\mathrm{T}(1)+\mathrm{T}(\mathrm{r}) * 16$ ：IFAD $+\mathrm{A}-1=$ ENTHEN31 10
－ 135 PRINT＂［ c P］［LEFT］＂；
－ 14 r）NEXTA：T＝AD－（INT（AD／256）＊256）：PRINT＂＂
－150）FORA $=$（ $\int T O 7: T=T+A \%(A): I F T>255 T H E N T=T-255$
－16r，NEXT
－17r）IFA\％（8）＜＞TTHENGOSUB1ヶ1ヶ：GOTO110
－18） $\mathrm{FORA}=(\mathrm{TO}: \mathrm{POKEAD}+\mathrm{A}, \mathrm{A} \%(\mathrm{~A}): \mathrm{NEXT}: \mathrm{AD}=\mathrm{AD}+8: \mathrm{GOT}$ 0115
－ $2 r$ rر REM GET HEX INPUT
－21r GETA\＄：IFA\＄＝＂＇＂THEN219
－ 211 IFAS＝CHR\＄（2 9 ）THEN27r）
－ 212 IFAS＝CHR\＄（133）THEN4 5 jrs
－ 213 IFA\＄＝CHR\＄（134）THEN415O
－ 214 IFA\＄＝CHR\＄（135）THENPRINT＂＂：GOTO450r）
－ 215 IFA $=$ CHR $\$(136)$ THENPRINT＂＂：GOTO47rرr
－220 IFA\＄＞＂＠＂ANDA\＄＜＂G＂THENT（B）＝ASC（A\＄）－55：GOTO
250）
－230 IFA\＄＞＂／＂ANDA\＄＜＂：＂THENT（B）＝ASC（A\＄）－48：GOTO
255
－240）GOSUB11ر）：GOTO21\％
－250）PRINTA\＄＂［c P］［LEFT］＂；
－260）GOTO125
－279 IFA＞（JTHEN28 ${ }^{\circ}$
－ $272 \mathrm{~A}=-1$ ：IFB＝1THEN29r，
－ 274 GOTO14 1
－280 IFB＝ 0 JHENPRINTCHR $\$(20)$ ；CHR $\$(20) ;: A=A-1$
－ 285 A＝A－1
－ 290 PRINTCHR\＄（29）；：GOTO140
－300）REM LAST LINE
－315 PRINT＂＂：T＝AD－（INT（AD／256）＊256）
－32r） $\mathrm{FORB}=\mathrm{r}$ ，TOA $-1: \mathrm{T}=\mathrm{T}+\mathrm{A} \%(\mathrm{~B}): \mathrm{IFT}>255 \mathrm{THENT}=\mathrm{T}-255$
－33 5 NEXT
－34r）IFA\％（A）＜＞TTHENGOSUB1ヶ1ヶ）：GOTO110
－35r） $\mathrm{FORB}=9 \mathrm{TOA}-1: \mathrm{POKEAD}+\mathrm{B}, \mathrm{A} \%(\mathrm{~B})$ ：NEXT
－360）PRINT：PRINT＂YOUU ARE FINISHED！＂：GOTO4 000 ر）
－ 100 r， REM BELL AND ERROR MESSAGES
－191\％PRINT：PRINT＂LINE ENTERED INCORRECTLY＂：PR INT：GOTO115 5
－1020 PRINT：PRINT＂INPUT A 4 DIGIT HEX VALUE！＂： GOTO1150）
－1030）PRINT：PRINT＂ENDING IS LESS THAN STARTING ！＂：B＝（）：GOTO110f
－1ر45 PRINT：PRINT＂ADDRESS NOT WITHIN SPECIFIED RANGE！＂：B＝ 0 ：GOTO11ヶ介）
－1 155（）PRINT：PRINT＂NOT ZERO PAGE OR ROM！＂： $\mathrm{B}=$（）： G OTO115 r

DH
－1ر60 PRINT＂？ERROR IN SAVE＂：GOTO11رf，
－1979 PRINT＂？ERROR IN LOAD＂：GOTO11رノ
＊1 1 188^{\prime} ）PRINT：PRINT：PRINT＂END OF ML AREA＂：PRINT
－11rر）POKE54276，17：POKE54276，16：RETURN BH
－ 12 rر）OPEN15，8，15：INPUT\＃15，A，A\＄：CLOSE15：PRINTA \＄：RETURN
－2rرors REM GET FOUR DIGIT HEX
PC
－201ノ PRINT：PRINTB\＄；：INPUTT\＄
GM
－ 2020 IFLEN（T\＄）＜＞4THENGOSUB1 $(20$ ）：GOTO2 010 II

A）$=16$ THENGOSUB1ヶ， 2 （ ：GOTO2（1）
$A D$
－2050 NEXT： $\mathrm{B}=(\mathrm{T}(1) * 4 \rho 96)+(\mathrm{T}(2) * 256)+(\mathrm{T}(3) * 16)+$
T（4）：RETURN GF
－ 2 rj6r）IFA\＄＞＂＠＂ANDA\＄＜＂G＂THENT（A）＝ASC（A\＄）－55：RET
URN
－ 2070 IFA\＄＞＂／＂ANDA\＄＜＂：＂THENT（A）$=$ ASC（A\＄）－48：RET
URN
KP
－ 2 2 80 T $\mathrm{T}(\mathrm{A})=16$ ：RETURN
NP
－ 250 ر）REM ADRESS CHECK

－ 2515 IFB＜SRORB＞ENTHEN1（ 44 （）
－ 252 （） $\mathrm{IFB}<2560 \mathrm{R}(\mathrm{B}>4$（） 96 （ $\mathrm{ANDB}<49152$ ）ORB $>53247 \mathrm{THE}$ N1050
－ 2535 RETURN
MI
－3rorjr REM ADDRESS TO HEX EB
－3019） $\mathrm{AC}=\mathrm{AD}: \mathrm{A}=4$（ر） $96:$ GOSUB30 7 （r）HG
－302の $A=256$ ：GOSUB3（）7r）
－3r）3r）$A=16$ ：GOSUB3（）7r）
－3 3 ）4r）$A=1$ ：GOSUB3（97r）
－3（J60）RETURN
－30，7r） $\mathrm{T}=\mathrm{INT}(\mathrm{AC} / \mathrm{A}):$ IFT >9 THENA $\$=$ CHR $\$(\mathrm{~T}+55):$ GOTO3
r， 19 r
－ 3 rرs 8 ） $\mathrm{A} \$=$ CHR $\$(\mathrm{~T}+48)$
－3rر9r）PRINTA\＄；：AC＝AC－A＊T：RETURN AC
－4rرfr）A\＄＝＂＊＊SAVE＊＊＂：GOSUB42rر）AI
－4（55）OPEN1，T，1，A\＄：SYS68（）：CLOSE1 LH
－4 4 （6） $\mathrm{IFST}=$（ $)$ THENEND

EO
－4r88 GOTO4 Grors
－410r）A\＄＝＂＊＊LOAD＊＊＂：GOSUB42r，
－415ヶ）OPEN1，T，ヶ，A\＄：SYS69r）：CLOSE1
－416 －IFST＝64THEN11 19
－417r）GOSUB1 97 ）：IFT＝8THENGOSUB120 5
－4180 GOT041ror
－ 420 万 PRINT＂＂：PRINTTAB（14）A\＄
－4215）PRINT：A\＄＝＂＂＇：INPUT＂FILENAME＂；A\＄
$\cdot 4215$ IFA $=$＝＂＇THEN4215
－ 4220 PRINT：PRINT＂TAPE OR DISK？＂：PRINT
CE
PN
．423）GETB $:$ T $=1:$ IFB $\$=" D " T H E N T=8: A \$="(a r): "+A \$: R E$
TURN
－4240）IFB\＄＜＞＂T＂THEN4230
IG
－4250 RETURN IM
－45ヶر） $\mathrm{B} \$=$＂CONTINUE FROM ADDRESS＂：GOSUB2（）1ر： $\mathrm{AD}=$ B
－451r）GOSUB2515：IFB＝（THEN45（J）MA
－452 9 PRINT：GOTO11 （4）OI
－47rر） $\mathrm{B} \$=$＂BEGIN SCAN AT ADDRESS＂：GOSUB2（ر1）：AD＝ B
． 47505 GOSUB2515：IFB＝OTHEN47rر）NK
． 4796 PRINT：GOTO474 1 ，

＝ENTHENAD＝SR：GOSUB1ノ80）：GOTO110
BK
． 4715 PRINT＂＂；：NEXTB EC
．4729 PRINT： $\mathrm{AD}=\mathrm{AD}+8 \mathrm{GN}$
－473（）GETB\＄：IFB\＄＝CHR\＄（136）THEN115
MN
．4740，GOSUB3（1）：PRINT＂：＂；：GOT0471r，

DRAGON TYPE

FROM PAGE 61
 PROGRAM 1

－15 REM PROGRAM 1
－2r）PRINT＂［CLEAR］［DOWN］［DOWN］LOADING MAC HINE LANGUAGE＂
－30）FORI＝49152T049946：READA：POKEI，A：NEXT： REM CHECKSUM＝98881
－4r）PRINT＂［DOWN］LOADING DRAGON TYPE2＂ －50）LOAD＂DRAGON TYPE2＂， 8
－10ヶ DATA32，115，193，169，2ヶ5，133，128， 169
－ $1 r 11$ DATA $4,133,129,169,11,141,39,2 r 8$
－ 192 DATA141，4厅，2 $198,141,41,298,169,1$

－ 1 ＇15 DATA195，169，85，141，2 $93,194,173,23$
－156 DATA195，141，206，194，169，11，141，207
－107 DATA194，32，38，193，169，15，141，248

- 198 DATA7，169，门，141，2ケ9，194，32，154
- 1ノ9 DATA192，2「ノ1，136，24厅，69，32，38，193

－ 111 DATA24，173，2（13，194，155，16，291，220
－ 112 DATA176，9，141，2 1 3，194，32，132，193
－ 113 DATA76，57，192，169，14，141，248，7
－ 114 DATA169，ケ，141，16，2 1 ， $8,169,164,141$

－ 116 DATA厅， $141,39,2$（ر），169，5，141，33
－ 117 DATA2 $18,169,13,141,32,2$ 1，8，32，121
－ 118 DATA193，96，169，1，141，26，195，76
－ 119 DATAl（97，192，32，228，255，201，136，249）
－129 DATA55，201，32，144，245，141，2ヶر8，194
－ 121 DATA32，217，192，224，1，245，235，201
－ 122 DATA91，176，231，169，14，141，248，7
－ 123 DATA32，3，193，32，153，193，174，24
－ 124 DATA195，32，1ノ3，193，169，15，141，248
－ 125 DATA7，32，3，193，173，16，2 2 ， 8,24 （

－ 127 DATA96，172，209，194，177，128，201，32
－ 128 DATA144，27，56，237，2 $188,194,24$ ，, 11
－ 129 DATA238，25，195，32，197，193，162，1
－139 DATA76，252，192，169，32，145，128，238
－ 131 DATA2 $19,194,162$ ，ノ， $96,24,105,64$
－ 132 DATA76，226，192，169，4，141，2 2 ， 4,194

－ 136 DATA173，254，194，2ヶ88，227，96，173，2r3
－ 137 DATA194，141，1，2ケ18，173，257，194，141
－ 138 DATA2 $55,194,169,4,141,254,194,238$

－145 DATA2 $56,254,194,173,254,194,258,239$
－ 141 DATA173，248，7，2ケ1，13，2 5 ， $8,6,238$
－ 142 DATA248，7，238，248，7，256，248，7
－ 143 DATA2 56,2 ， $55,194,173,205,194,258,215$

－ 146 DATA141，211，194，165，129，141，215，194
－ 147 DATA96，173，211，194，133，128，173，210
－ 148 DATA194，133，129，96，24，177，128，32
－ 149 DATA215， $255,105,64,165,128,105,815$
－150）DATA133，128，165，129，155，厄，133，129
－ 151 DATA96，169，15，141，ऽ，212，169，85
－ 152 DATA141，24，212，169，18，141，1，212
－ 153 DATA169，65，141，6，212，169，28，141
－ 154 DATA5，212，169，129，141，4，212，162

－ 156 DATA128，141，4，212，96，169，ノ， 141
－ 157 DATAノ， $212,169,2,141,32,258,169$
－ 158 DATA85，141，24，212，169，38，141，1
CH $\cdot 159$ DATA212，169，65，141，6，212，169，45
BM－16 ${ }^{\prime}$ ）DATA141，5，212，169，33，141，4，212
KG $\cdot 161$ DATA162，45，32，97，193，2（92，2 $\left.2,8,25{ }^{\circ}\right)$
KK $\cdot 162$ DATA169，32，141，4，212，169，5，141
PN
CE
EH
AH
BN
DB
OJ
NM
NK
HN
KF
KK
GF
LI
KK
MO
HA
NJ
MJ
CF
LA
AC
J0
ON
GE
DD
NP
FK
EB
HA
FH
EN
－1f）REM PROGRAM 2
－2r）PRINT＂［DOWN］RUN＂
－30） $\mathrm{N}=99$ ：DIMW $(\mathrm{N}): S C=5328$ ，
－1rر）FORJ $=832$ TO1r 22 ：READB：POKEJ，B：NEXT

－150 POKE792，193：SYS49659
－ 155 FORI＝ 1 TON ：READW\＄（I）：NEXT
－16（）PRINT＂［HOME ］［15＂［DOWN］＂］［BLACK ］＂TAB（ 10）＂ CHOOSE TYPING SPEED［DOWN］＂
－17ヶ PRINTTAB（15）＂［BLUE］1．FAST［DOWN］＂：PR INTTAB（15）＂2．MEDIUM［DOWN］＂：PRINTTAB（15） ＂3．SLOW＂
－19rر GETA\＄：IFA\＄＝＂＂THEN19rر
－ 2 rرf $A=V A L(A \$):$ IFA $\langle 10 R A>3$ THEN19rر
－21（ر）POKE49943，A：POKE49944，A＊3rر
－50，（）PRINT＂［CLEAR ］［4＂［DOWN ］＂］［BLUE］＂：POKE SC，5：POKESC $+1,15$
－51 F FORJ＝1T09：A $\$=$＂$\left[4^{\prime \prime} \text {＂＂}\right]^{\prime \prime}: F O R I=0$ ）TO6：R＝IN T（RND（ J$) * \mathrm{~N})$
－ 52 r A $=A \$+$＂＂$+W \(R) ：NEXT
－53（）PRINTLEFT\＄（A\＄，35）：PRINT：NEXT：POKE198 ，ノ：Tノ＝TI：SYS49152
－54 ） $\mathrm{T}=(\mathrm{TI}-\mathrm{TO}) / 360$ ر）： $\mathrm{E}=\mathrm{PEEK}(49945):$ POKESC， 5：POKESC $+1,13: S=\operatorname{INT}(47 / T+.5)$
－ $545 \operatorname{IFPEEK}(49946)$ THENS $=$（ $): E=$（
－550） $\mathrm{SR}=\mathrm{S} * 9$（ر）-2 （ $3 * E:$ IFSR $>$ HSTHENHS $=$ SR
－56 ） $\mathrm{S} \$=\mathrm{RIGHT} \$(\mathrm{STR} \$(\mathrm{~S}), 2): \mathrm{E} \$=$ RIGHT\＄（STR\＄（ E），2）
－ 565 SR $\$=$ RIGHT\＄（STR\＄（SR），4）：HS\＄＝RIGHT\＄（ST R\＄（HS），4）
－57r）PRINT＂［CLEAR ］［BLUE］［12＂［DOWN ］＂］＂TAB（ 11）＂SPEED［10＂．＂］＂S\＄
－58 ）PRINTTAB（11）＂［DOWN ］ERRORS［10＂．＂］＂E\＄
－59r）PRINTTAB（11）＂［DOWN］SCORE［9＂．＂］＂SR\＄BM
－6rرr PRINTTAB（11）＂［DOWN ］HIGH SCORE［4＂．＂］＂ HS\＄
－619 PRINTTAB（8）＂［4＂［DOWN ］＂］［RED ］［9＂［c P c $^{\prime \prime}$ ＂］＂SPC（7）＂［8＂［c P］＂］＂
－620 PRINTTAB（8）＂［RVSON］SPACE＂SPC（7）＂ RETURN＂
－630 PRINTTAB（8）＂［DOWN ］［BLACK］CONTINUE＂SP C（1ノ）＂END＂
－7ヶヶ POKE198，「
－71r）GETA\＄：IFA\＄＝＂＂THEN710
－72 1 IFA\＄＜＞CHR\＄（13）ANDA\＄＜＞CHR\＄（32）THEN71 10
－ 725 POKE53269，○
－73r）IFA\＄＝CHR\＄（32）THEN5 5 ）ρ
－74r）POKE792，71：END
－Irjors DATAr，127，128，1，249，192，3，248
－1rرノノ1 DATA224，3，255，231，3，255，253，35
－1JJJ2 DATA255，255，33，255，192，64，243，254

－1rノJ5 DATA246，厄，111，243，128，63，224，64

NH
PC
DJ
KH
－1ヶノر8 DATA1，255，ৎ，3，243，128，7，241

PM
－1rر10 DATA255，254，99，255，128，17，243， 252
FB
－ 1 厄11 DATA16， $112, \uparrow, 32,12$（, ，$, 65,248$

－ 1 ऽ13 DATA252，$, 111,246, ヶ, 63,226$, ，
－ 1 ノ14 DATA31，194，ノ，7，192，ケ，3， 128

- 1ヶ15 DATA厅，7，అ，ケ，15，224，ケ， 21
- 1ノ16 DATA厅，127，Ю，1，249，199，3， 248
－1ノ17 DATA253，3，255，255，3，255，24ケ，3
－ 1018 DATA255，224，17，255，192，16，247， 128
－1ノ19 DATA32，115，128，32，113，128，65， 248
－1ヶ2の DATA192，71，248，96，79，252，1， 111
－1rر21 DATA246，厄，111，243，128，63，224，64
－1r）22 DATA31，192，ヶ，7，224，ヶ，3r， 96

IB
FD
MB
EO
PJ
PG
HM
MM
PA
CO
－ 2 rرァノ ρ DATAKNIGHT，MAIDEN，KING，QUEEN，PRINCE ，SWORD，ZEBRA，VISE，PEASANT，KNAVE LA
－ 2 rر厅J 5 DATALANCE，BUCKET，QUILT，FLAGON，WIZAR D，BIRD，HUT ，BRIDGE，PIKE，MAN
－2ヶ1今 DATAHEX，CHILD，RIVER，CHEST，GOLD，SILV
ER，COIN，CASTLE，TUNIC，SPEAR OP
－ 2915 DATAPATH，MAIL，JOKER，HELMET，FLASK，BE AST，ANIMAL，MAZE，BAY，LORD OC
－2r， 2 の DATATORCH，TABLE，CHAIR，STABLE，HORSE， BISHOP ，JESTER，CROWN，GAME，BOOK BG
－ 2 （J25 DATAYEOMAN，XEBEC，GORGE，PIT，SHIELD，A
RMOUR，THIEF，YAM，COOK，SHOE FD
－2rر3r）DATALIVER，MALLET，CART，TAX，RAVINE，QU
AIL，BOW，ARROW，HEN，FIRE IA
－ 2 ノJ35 DATABABY，WINE，JEWEL，DUNGEON，KNIFE，S
ERF，CROSS，DAMSEL，QUIVER，HAZE CP
 ，LOG ，GRATE，NUT，CANNON

DN
－ 2 r 45 DATAQUARRY，IBEX，KEY，KID，BAZAAR，CLOA
K，GEM，LANTERN，STAG，SCARF
NH

AUTO－GEN

FROM PAGE 59

－1rرляر PRINTSPC（15）＂AUTO－GEN＂
－1r1r PRINTSPC（13）＂SEP［3＂＂］1，1984＂NE
－192の PRINTSPC（13）＂DAVID A JONES＂
JF
－1rJ3r）REM CREATES DISK FILE OF DATA STATE MENTS CONTAINING IMAGE OF MEMORY
－1 1045 ：
－1050 FL＝：R REM FIRST MEMORY LOCA
TION TO BE SAVED
DI
－1（J60）LL＝0 ：REM LAST MEMORY LOCAT
ION TO BE SAVED
－1070 LN＝10ر厅ر）
：REM OUTPUT PROGRAM LI
MB
NE NUMBER
I
：REM LOW BYTE OF 16 BI
：REM HIGH BYTE OF 16 B
BO
：REM TEMP STORE FOR HE

XIDECIAML CONVERSION
-1119 MM $=$（ J REM DECIMAL VALUE OF
NUMBER CONVERTED
FROM STRING
－1120 ND＝1r ：REM NUMBER OF DATA IT
EMS PER LINE
－113ヶ）NL＝2 1549 ：REM POINTER TO START
OF NEXT BASIC LINE
－114（）$X=$（）
R
－1150）$Y=$（）
R
－1160） $\mathrm{Z}=$＝ ，
－1175）C\＄＝＂，＂：REM COMMA LH
－118r） $\mathrm{D} \$=$ CHR $\$(131)$ ：REM BASIC TOKEN FOR＂ DATA＂
－119f S\＄＝＂＂
：REM SPACE
－12rر）FI $\$=" \prime \prime$ ：REM OUTPUT FILE NAME KI
－1210 NN $\$=$＂＇＂：REM NUMBER STRING INP
UT
－1220 X $\$=$＂＂：REM 4 CHARACTER STRIN
G REPRESENTING 1 MEMORY LOCATION
－123（）：
－1245）：REM MAIN PROGRAM
－1250）：
－1260 PRINT：INPUT＂FIRST MEMORY LOCATION＂； NN\＄
－1275 MM＝VAL（NN\＄）
－1280 IF LEFT\＄（NN\＄，1）＝＂\＄＂THEN GOSUB 1830，AI
－1290）FL＝MM
－13ヶر PRINT：INPUT＂LAST MEMORY LOCATION＂；N N\＄
－1310）MM＝VAL（NN\＄）
－1325 IF LEFT\＄（NN\＄，1）＝＂\＄＂THEN GOSUB 183r，AI
－133（ LL＝MM
－134 1 PRINT：INPUT＂STARTING LINE NUMBER＂；L N
－1350）PRINT：INPUT＂NUMBER OF DATA ITEMS PE R LINE＂；ND
－136r PRINT：INPUT＂OUTPUT FILENAME＂；FI\＄
－1375）：
－138）OPEN 15，8，15
－139 O OPEN 8，8，8，＂「ノ：＂＋FI\＄＋＂，P，W＂
－14rors GOSUB 192r
－1419 ：
－1420 PRINT\＃8，CHR\＄（1）；CHR\＄（8）；：REM PROGR AM LOAD LOCATION
－143 ）：
－1445）：REM MAIN LOOP
－1455）：
－1460 FOR X＝FL TO LL STEP ND
－1479） $\mathrm{NL}=\mathrm{NL}+2+2+1+4 * \mathrm{ND}+1$
－1489） $\mathrm{LB}=\mathrm{NL}-256 *(\mathrm{INT}(\mathrm{NL} / 256)): \mathrm{HB}=\mathrm{INT}(\mathrm{NL} /$ 256）KL
－149r）PRINT\＃8，CHR\＄（LB）；CHR\＄（HB）；：REM NEX T BASIC LINE

NG
EE
\qquad
JE
MB
LH
MG
ML

EN
CM
DI
AM

PD •15ff， $\mathrm{LB}=\mathrm{LN}-256 *(\operatorname{INT}(\mathrm{LN} / 256)): \mathrm{HB}=\mathrm{INT}(\mathrm{LN} /$ 256）

OP
MA－151（）PRINT\＃8，CHR\＄（LB）；CHR\＄（HB）；：REM NEX T LINE NUMBER

DE
HC－152（ PRINT LN；：REM SHOW USER WHAT＇S HAP PENING
－161）：
－162 $\mathrm{Z}=\mathrm{Z}+1$
－163r）IF Z＜ND THEN PRINT\＃8，C\＄；
－1645 NEXT Y
－1650）：
FL
－153（J）PRINT\＃8，D\＄；：REM DATA TOKEN
－1545）：
BL
DI
 ITEMS

MB
－156 X \＄＝RIGHT $\$($＂$[4$＂＂］＂＋STR\＄（PEEK（Y）），3）NM －157）：
－158 ）FOR I＝1 TO 3 IM
－159r，PRINT\＃8，CHR\＄（ASC（MID\＄（X\＄，I，1）））；OE
－16rر）NEXT I MN
DI
EB
IA
NN
AO－166 ）PRINT\＃8，CHR \＄（ (1) ；：REM END OF LINE T ERMINATOR

AP
AK－1670 $\mathrm{LN}=\mathrm{LN}+10$
DI－1689 $\mathrm{Z}=$＝ ）
－169r）GOSUB 1920
$\mathrm{CH} \cdot 17 \mathrm{r} \boldsymbol{\mathrm { H }}$ ）NEXT X
CC－1710 ：
DeM aid di
－1720 ：REM ADD END OF PROGRAM TERMIN ATOR

JM
－1730 ：
1740 PRINT\＃8，CHR\＄（ 10$)$ ；CHR\＄（1））；
－175r CLOSE 8
－176r GOSUB 192r
－1770 CLOSE 15
－1780）PRINT：PRINT＂COMPLETE＂
AH－1790 END
－1805 ：

NJ $\cdot 1850$ HH＝ASC（MID\＄（NN\＄，（X），1））－48
GF $\cdot 186 \rho \mathrm{MM}=16 * \mathrm{MM}+\mathrm{HH}+7 *(\mathrm{HH}>9)$
DI－1875 NEXT

DI－192 ，INPUT\＃15，EN\＄，EM\＄，ET\＄，ES\＄：EN＝VAL（EN
KL \＄）
JA－193（ IF EN＝ （，THEN 197r，
－1945 PRINT＂DISK I／O ERROR＂；
KL－195「ر PRINT EN\＄，EM\＄，ET\＄，ES\＄
－1960 CLOSE 8：CLOSE 15：STOP
KG •1975 RETURN

DI
DK
NI
GF
$A B$
BJ
IC
DI
EM
DI
DM
CI
IP
JO
IA
IM
DI
DG
DI
－188 1 J RETURN
－189r）：
－190ر）：REM DISK I／f ERROR
－15 POKE52，48：POKE56，48：CLR
－2f REM＊MOXEYS PORCH＊BY BOB BLACKMER NK
－35）DIMMV（136）：HS＝r）：A＝2：B＝39：C＝41：MP\＄＝＂MO XEYS PORCH＂：PS＝5327r，
－4ケ $V=53248: S=54272: M=5632$ ）：POKEV $+21,65: P$ OKE5328ケ， 6 ：POKE53281， $11: \mathrm{U}=14$ け1
－50）FORL＝STOS＋24：POKEL，（：NEXTL
－60）POKES $+5,21$ ：POKES $+1,2$ ， 1 ：POKES $+6,24 \rho$ ：POK ES $+4,17$ ：GOSUB111r，
－7r）PRINT＂［CLEAR］［HOME］［DOWN］［DOWN］［RVSON ［［YELLOW］DO YOU WANT INSTRUCTIONS？（Y／N）
－8r）GETI\＄：IFI\＄＝＂＂THEN8（，
－9rر IFI\＄＝＂N＂THEN3（J）
－10ヶ IFI\＄く＞＂Y＂THEN8 ${ }^{\prime}$
－115）PRINT＂［CLEAR］［HOME］＂TAB（11）＂［ c 6］＂MP \＄＂［DOWN］［DOWN］＂
－125）PRINT＂［DOWN］［CYAN］ENZO［7＂＂］JUST GOT A POGO STICK AND＂
－130）PRINTTAB（11）＂JUMPED OVER TO HIS NEIG HBORS＂
－140）PRINTTAB（11）＂MULTI－STEP FRONT PORCH． ［3＂［DOWN］＂］＂
－150）PRINT＂［YELLOW］MOXIE［6＂＂］DOESN＇T LIK E THE MARKS＂
－16r）PRINTTAB（11）＂ENZO＇S POGO STICK IS MA KING＂
－175）PRINTTAB（11）＂ON HIS PORCH．［3＂［DOWN］＂ ］＂
－ 18 r）PRINTTAB（3）＂［ c 8］TO PLAY USE JOYSTIC K \＃2 AND MARK UP［ 5 ＂＂］ALL THE STEPS ON＂；I
－190）PRINT＂MOXIE＇S PORCH，＂：PRINTTAB（3）＂W HILE TRYING TO AVOID MOXIE＇S PURSUIT＂CG
－200）PRINTTAB（3）＂［UP］IF SUCCESSFUL YOU AR E REWARDED WITH＂
－ 210 PRINTTAB（3）＂ANOTHER PORCH AND A FAST ER MOXIE．［DOWN］［DOWN］＂
－22ヶ POKEV $+23,65:$ POKEV $+29,65:$ POKE2r」4ヶ，$P: P$ OKE2r」46，Q：POKEV $+37,6:$ POKEV $+38,5$
－23（）POKEV，6rj：POKEV $+1,75$
－245）POKEV $+12,6$（ $)$ ：POKEV $+13,115$
－25（J）PRINTTAB（1ر）＂［RVSON］［c 6］HIT ANY KEY
TO BEGIN＂：FORK＝1T099：NEXTK
－26r，GETS $\$:$ IFS $\$=$＂＂THEN28r，
－27r）IFS $\$<>$＂＇THEN29r）
－280）PRINTTAB（1 15$)$＂［UP］HIT ANY KEY TO BEGI N［UP］＂：FORK＝1T099：NEXTK：GOT025
－29r）POKEV +23 ，っ：POKEV +29 ，ヶ
－ 30 r） $\mathrm{SL}=$＝ 1
－31s）PRINT＂［CLEAR］［HOME］［3＂［DOWN］＂］＂TAB（7 ）＂LEVEL（1－9）＂
－320）PRINT＂［DOWN］＂TAB（7）＂1 IS THE HARDEST ＂
－33（）GETLV\＄：IFLV\＄＝＂＇THEN33）
－340）IFLV\＄く＂1＂ORLV\＄＞＂9＂THEN33）

PO
－350） $\mathrm{LV}=\mathrm{VAL}(\mathrm{LV} \$)+1$CI
－36r）PRINT＂［CLEAR］＂：POKE53272，（PEEK（53272）AND24（J）＋14
－37r）POKE53282，2：POKE53283，7：POKE5327r，PEEK（5327r）OR16HM
 JD
－39r）IFLV－1＜1THENLV＝2 CP
－ 40 rر $\mathrm{LV}=\mathrm{LV}-1$ MF
－415 PRINT＂［HOME］＂TAB（12）＂［3＂［DOWN］＂］［CYAAA
 CN
－430）JV＝PEEK（M）：FR＝JVAND16 ON
－44）JV＝15－（JVAND15）：RETURN CG
－45r）PRINT＂［HOME］［7＂［DOWN］＂］［ c 6］＂ AH
－460）PRINTTAB（17）＂\＃\＄＂GM
－475）PRINTTAB（16）＂\＃\％\＆\＄＂ KL
－485）PRINTTAB（15）＂\＃\％\＆\％\＆\＄＂ 00
－490）PRINTTAB（14）＂\＃\％\＆\％\＆\％\＆＂ DJ
－50ر）PRINTTAB（13）＂\＃\％\＆\％\＆\％\＆\％\＆\＄＂ HI
－515 PRINTTAB（12）＂\＃\％\＆\％\＆\％\＆\％\＆\％\＆＂ BH
－52（ PRINTTAB（11）＂\＃\％\＆\％\＆\％\％\％\％\＆\％\＆\＄＂ FC
－530 PRINTTAB（1ر）＂\＃\％\＆\％\＆\％\＆\％\％\＆\％\＆\％\＆＂ GN
－545 PRINTTAB（9）＂\＃\％\＆\％\＆\％\＆\％\％\％\＆\％\＆\％\＆\％\＆\＄＂ HK
－55 J PRINTTAB（8）＂\＃\％\＆\％\＆\％\＆\％\＆\％\＆\％\％\％\％\＆\％\＆ HJ
KES $+24,15$BM
－ 57 （）FORL $=1$ TO136 STEP2 MJ
－585）POKES $+4,17$ ：POKES $+1,55:$ POKES $+4,16$ LJ
－ 59 r） $\mathrm{X} 2=\mathrm{X} 2+\mathrm{MV}(\mathrm{L}): \mathrm{Y} 2=\mathrm{Y} 2+\mathrm{MV}(\mathrm{L}+1)$ NB
－6rر）FORG＝LVTO1STEP－1 HE
－615 K＝1 ：GOSUB43r， JF
 BI
－63r）POKE2 $546, Q$ ON
－645 REM＊＊＊NOTE＊＊＊LINES 65（ر－66r）MUST BE ENTERED USING ABBREVIATIONS NG
－655）POKEV，X1：POKEV +1 ，Y1： $\operatorname{IFPEEK}(\mathrm{U})=37$ THEN POKEU，C：POKEU $+1, \mathrm{C}+1$ ： $\mathrm{SC}=\mathrm{SC}+1$ ：POKES $+4,129$ ： POKES＋4，128 OM
－660）POKEV，X1：POKEV +1 ，Y1 ： $\operatorname{IFPEEK}(\mathrm{U})=39$ THEN POKEU，43：POKEU $+1,44$ ： $\mathrm{SC}=\mathrm{SC}+1$ ：POKES $+4,129$ ： POKES＋4， 128 HG
－675，POKEV $+12, \mathrm{X} 2$ ：POKEV $+13, \mathrm{Y} 2$ KG
－689） $\mathrm{P}=\mathrm{P}+1:$ IFP >15 THENP $=13$ IL
－690） $\mathrm{Q}=\mathrm{Q}+1$ ： IFQ $>199 \mathrm{THENQ}=198$ OP
－75ر）IFP＝14THENPOKES＋4，129：POKES＋4，128 JD
－715 $\mathrm{IFJV}=4 \mathrm{THENX} 1=\mathrm{X1}-16: \mathrm{U}=\mathrm{U}-\mathrm{A}:$ IFPEEK $(\mathrm{U})=3$2THENU $=\mathrm{U}+\mathrm{A}: \mathrm{X} 1=\mathrm{X} 1+16$PO
－725）IFJV $=8$ THENX1 $=\mathrm{X} 1+16: \mathrm{U}=\mathrm{U}+\mathrm{A}: \operatorname{IFPEEK}(\mathrm{U})=3$20 RPEEK $(\mathrm{U})=36$ THENU $=\mathrm{U}-\mathrm{A}: \mathrm{X} 1=\mathrm{X} 1-16$BP
－731） $\mathrm{IFJV}=5 \mathrm{THENX1}=\mathrm{X1} 1-8: \mathrm{Y} 1=\mathrm{Y} 1-8: \mathrm{U}=\mathrm{U}-\mathrm{C}:$ IFPEEK $(\mathrm{U})=32$ THENU $=\mathrm{U}+\mathrm{C}: \mathrm{X} 1=\mathrm{X} 1+8: \mathrm{Y} 1=\mathrm{Y} 1+8$EN
－740）IFJV $=6$ THENX1 $=\mathrm{X} 1-8: \mathrm{Y} 1=\mathrm{Y} 1+8: \mathrm{U}=\mathrm{U}+\mathrm{B}:$ IFPE $\mathrm{EK}(\mathrm{U})=32 \mathrm{THENU}=\mathrm{U}-\mathrm{B}: \mathrm{X} 1=\mathrm{Xl}+8: \mathrm{Y} 1=\mathrm{Y} 1-8$ J0
－75r）REM＊＊＊NOTE＊＊＊LINES 76rر－77r MUST BE ENTERED USING ABBREVIATIONS D0
－76r） $\mathrm{IFJV}=9 \mathrm{THENX1}=\mathrm{X1}+8: \mathrm{Y} 1=\mathrm{Y} 1-8: \mathrm{U}=\mathrm{U}-\mathrm{B}:$ IFPE$\operatorname{EK}(\mathrm{U})=320 \operatorname{RPEEK}(\mathrm{U})=36 \mathrm{THENU}=\mathrm{U}+\mathrm{B}: \mathrm{X} 1=\mathrm{X} 1-8: \mathrm{Y} 1$$=\mathrm{Y} 1+8$
－77（）IFJV $=1$（رTHENX1 $=\mathrm{Xl}+8: \mathrm{Y} 1=\mathrm{Y} 1+8: \mathrm{U}=\mathrm{U}+\mathrm{C}:$ IFP $\operatorname{EEK}(\mathrm{U})=4$ 万ORPEEK $(\mathrm{U})=32$ THENU $=\mathrm{U}-\mathrm{C}: \mathrm{X} 1=\mathrm{X} 1-8: Y$ $1=\mathrm{Y} 1-8$
－789 IFSC＝55THEN97ノ
－790 IFY1＝Y2ANDX1－2＝X2THEN81r
－8rرr NEXTG：NEXTL：GOT057r，
－810）POKEV $+23,64: \mathrm{POKEV}+29,64: \mathrm{POKES}+4,17: \mathrm{P}$

－82の FORL＝1T099STEP2
－83！ $\mathrm{X} 2=\mathrm{X} 2+\mathrm{MV}(\mathrm{L}): \mathrm{Y} 2=\mathrm{Y} 2+\mathrm{MV}(\mathrm{L}+1)$
－84r）POKEV +12 ，X2：POKEV $+13, \mathrm{Y} 2$
－ 85 r POKES $+1, L+2$ r）
－860 FORK＝1T04 ：NEXTK
－87）NEXTL
－88ヶ，POKES +24 ，っ：POKEV +23 ，っ：POKEV +29 ，っ：PRI NT＂［CLEAR］＂：POKEPS $+2,21$ ：POKEPS，PEEK（PS）A ND239
－89（ر）SL＝SL＋SC＊1ヶ：SC＝っ：PRINTSPC（12）＂［YELLO W］［RVSON ］＂MP\＄：PRINTTAB（11）＂［DOWN］［ $\left.\begin{array}{c}\text { c } \\ \text { 6 }\end{array}\right] Y 0$ UR SCORE：［YELLOW］＂；SL
－9rرァ IFSL $>$ HSTHENHS＝SL
－910）PRINTTAB（11）＂［DOWN］［c 8］HIGH SCORE：＂ ；HS
－92 9 ）PRINT＂［YELLOW］［RVSON］［DOWN］［DOWN］［RI GHT ］［RIGHT］WOULD YOU LIKE TO PLAY AGAIN？ （ Y / N ）＂
－93（）GETF\＄：IFF\＄＝＂＇THEN93 $)$
－94ヶ IFF $=$＝＂N＂THENPOKEV +21 ，ヶ：POKES +24 ，っ：PR INT＂［CLEAR］＂：END
－95（）IFF\＄＜＞＂Y＂THEN930
－960 GOTOZors
－975 POKEV＋23，1：POKEV＋29，1：POKES＋4，17：POK $\mathrm{ES}+6,24$（）：X1 $=17$（ ）：Y1 $=166$
－98（）FORL＝1T099STEP2
－99r）X1＝X1＋MV（L）：Y1 $=\mathrm{Y} 1+\mathrm{MV}(\mathrm{L}+1)$
－1rjors POKEV，X1：POKEV +1 ，Y1
－1rرls POKES＋1，L＋2r
－1r）2r）FORK＝1T04r）：NEXTK
－1rj3r）NEXTL

 INT＂［CLEAR］＂$:$ POKEPS +2 ， 21 ：POKEPS，PEEK（PS ） AND239
－1060，PRINTTAB（12）＂［DOWN ］［DOWN ］［CYAN］［RVS ON ］＂MP \＄：PRINTTAB（13）＂［DOWN ］［YELLOW ］SCORE ：＂；SL：SC＝（）
－1 107 I）IFLV－1＜1THENLV＝2
－1 1ر8（ PRINTTAB（1ヶ）＂［YELLOW］［DOWN］［DOWN ］YO U HAVE REACHED＂${ }^{\prime \prime}$ PRINTTAB（14）＂［DOWN ］LEVEL ：$\left[\begin{array}{cc}\text { c } & \text { ］＂}\end{array}\right.$ ；LV－1
－1rر9r）FORK＝1TO15rرァ：NEXTK
－11ر今，POKEPS，PEEK（PS）OR16：POKEPS +2 ，（PEEK（ PS＋2）AND24（ ）+14 ：GOTO36（ $)$
－1110 PRINT＂［CLEAR］［HOME ］［5＂［DOWN］＂］［YELL OW］I＇M WORKING［4＂．＂］PLEASE BE PATIENT＂MO －112の POKE56334，PEEK（56334）AND254：POKE1，P EEK（1）AND251
－1130）FORI＝厅OTO57
K

EL
MC
－1145 FORJ＝ 5 TOT
－115（1）POKE14336＋I＊8＋J，PEEK（V＋I＊8＋J）

121）POKE14336＋（8＊CH）＋BY，NU
NB $\cdot 122$ ，NEXT BY：NEXT CH
KG $\cdot 1230$ IFCK $\langle>1045$ rرTHENPRINT＂ERROR IN DATA－
－116r）NEXTJ：NEXTI
IC
PM
－117r）POKE1，PEEK（1）OR4：POKE56334，PEEK（563 34）OR1
－1180） $\mathrm{CK}=$ ノノ： $\mathrm{FORCH}=35 \mathrm{~T} 045$
－119r）FORBY＝「ノTO7
－ 12 rر）READ NU： $\mathrm{CK}=\mathrm{CK}+\mathrm{NU}$ LINES 13rرアノ－14rرァ＂：END
－124ヶ） $\mathrm{CK}=$ ノ $:$ FORS1 $=832 \mathrm{~T} 0894$ ：READQ1： $\mathrm{CK}=\mathrm{CK}+\mathrm{Q1}$ ：POKES1，Q1：NEXT
－1250 FORS2 $=896$ T0958：READQ2： $\mathrm{CK}=\mathrm{CK}+\mathrm{Q} 2: \mathrm{POKE}$ S2，Q2：NEXT
－1260 FORS3＝960TO1 $/ 22$ ：READQ3： $\mathrm{CK}=\mathrm{CK}+\mathrm{Q} 3:$ POK ES3，Q3：NEXT
－127ノ FORS $4=12672 \mathrm{TO12734}:$ READQ4： $\mathrm{CK}=\mathrm{CK}+\mathrm{Q4}$ ： POKES4，Q4：NEXT
－128（）FORS5＝12736T012798：READQ5： $\mathrm{CK}=\mathrm{CK}+\mathrm{Q} 5$ ： POKES5，Q5：NEXT： $\mathrm{P}=13: \mathrm{Q}=198$
－1290 IFCK〈＞8699THENPRINT＂ERROR IN DATA－L INES 141r－18ヶのノ＂：END
 $\mathrm{W})=\mathrm{Q} 6: \mathrm{MV}(\mathrm{W}+1)=\mathrm{Q} 7: \mathrm{CK}=\mathrm{CK}+\mathrm{Q} 6+\mathrm{Q} 7: \mathrm{NEXTW}$
－131ر IFCK〈〉厅THENPRINT＂ERROR IN DATA LINE S 181今－187r，＂：END
－132才 POKEV $+28,65: \mathrm{POKEV}+37,6: \mathrm{POKEV}+38,5: \mathrm{P}$ OKEV +45, ，$:$ POKEV $+39,15:$ RETURN

－136（）DATA171，175，191，255，255，254，25ヶ， 234 PI
－137r）DATA1（ $6,9{ }^{\prime}, 86,85,85,21,5,1$
－138（1）DATA171，175，191，255，255，252，24 ， 192 DA
－139（1）DATA1（J4，9r， $86,85,85,149,165,169$ PE

－141r）DATA1（J4，9 $9,86,85,85,21,5,1$
－142（）DATA43，175，191，255，255，252，24ヶ， 192

－156（1）DATA ケ，4，81，（），4，169，『， 1

DP

NF

HB

JN

MK

OG

PE
in H

KL
IE
PB
NE
IC
JH
GL


```
-162! DATA 112,!,1,84,!,4,81,r
-163() DATA 4,169,r,1, 36,r),厄,32
-1640) DATA ケ,1,36,饣,1,36,饣,1
-165!) DATA 36,r,1,36,`,1,36,r
-166!) DATA ヶ,168,ケ,ケ,32,け,け,32
-1675 DATA ケ,ケ,ケ,ケ,门,门,门
```



```
-172! DATA128,2,235,16r, 2,17r,16r),2
-173ヶ DATA255,224,2,17ヶ,16r, (),17ヶ,128
-174!) DATA厅,42,ケ,ケ,34,ソ,2,162
```



```
-1810 DATA235,16r, 2,17r,16r, 2,255,224
-182! DATA2,191,16r, r),17ヶ,128,r,42
-183` DATA厅,`, 34, 厄, 2,162,16r)
-184() DATA-16, r, -16, ヶ, -16, ), -16,ヶ, -16,ヶ,8
    ,-8,8,-8,8,-8,8,-8,-8,-8
-185!) DATA-8,-8,8,-8,8,-8,8,8,8,8,8,8,8,8
    ,-8,8,-8,8,-16,!
-186r, DATA-16, ,,-16, ァ, -8,8,16, ァ, 16, ),-8,-
8,-8,-8,8,-8,8,-8,8,-8
-187! DATA8, 8,8,8,8,8,8,8,-8,8,-8,8,-8,8,
16,ヶ,16,饣,16,门
-188!) DATA16, (),-8,-8,-8,-8,-16,ケ,8,8,-8,8
    ,-16,!,-16,5
-189() DATA-16,!,8,-8,8,-8,-8,-8,8,-8,-16,
ケ,-16,ケ,-16, ,,-8,8
-19ヶл) DATA-8,8,-8,8,-8,8,16,ヶ,16,ヶ,16,ю,1
6,ヶ,8,-8,16, ,16, っ,16, )
```


FILE LOCK

FROM PAGE 62
－ 5 REM FILE LOCK VIJ222／85
KI
－1r GOTO 10rjors
－50 POKE 198，
－ 52 GET A\＄：IF A\＄＝＂＂THEN GOTO 52
－ 55 RETURN
－75 REM WAIT FOR RETURN
－80）POKE 198，っ：POKE 2 2 ， 4,5
－85 GET A\＄：POKE 207，，）：IF A\＄く＞CHR\＄（13）THE N GOTO 85
－9ヶ POKE 2ヶ54，1：PRINT＂＂CHR\＄（157）；：RETURN KP
－10， 0 REM WAIT FOR KEY
－1rJ5 POKE 198， $1:$ POKE 2 214,0
 115POGFIJ

FF－15（）REM BOX ROUTINE
JG－ 152 GOSUB 19r） CO
NN $\cdot 155$ PRINT CHR\＄（117）；：FOR $I=$（ $)$ TO W－2：PRIN
AH
PD • 158 FOR J＝© TO H－2：RW＝RW＋1：GOSUB 19r）LI
FG •16r）PRINT CHR\＄（1ヶ3）；：FOR $I=$ r，TO W－2：PRIN
FG
FG $\cdot 161$ NEXT J
LO • 162 RW＝RW＋1：GOSUB 190 MM
PG $\cdot 165$ PRINT CHR\＄（106）；：FOR I＝ 1 ，TO W－2：PRIN
HC T CHR\＄（99）；：NEXT I：PRINT CHR\＄（107）； PE
－17r）PRINT BL\＄；：RETURN EF
－190）REM SET CURSOR LOCATIOM OH H
－195 POKE 214，RW：POKE 211，CL：SYS 5864介：RETURNAF
－2rر）REM READ DIRECTORY HI
－210 OPEN 15，8，15，＂Ir）：＂：OPEN 2，8，2，＂\＃＂ EI
－22 2 TK＝18： $\mathrm{SC}=1: \mathrm{NF}=$（ $)$ D0
－23ヶ PRINT\＃15，＂U1＂；2；；；TK；SC LN
－245 GET\＃2，A\＄：A\＄＝A\＄＋CHR\＄（r）：T＝ASC（A\＄） NL
－250）GET\＃2，A\＄：A\＄＝A\＄＋CHR\＄（r）：S＝ASC（A\＄） AG
－260）FOR F＝r，TO 7：REM 8 ENTRIES／SEC LM
－270）PRINT\＃15，＂B－P＂；2；F＊32＋2 NK
－275 GET\＃2，A\＄：IF A\＄＝＂＂THEN A\＄＝CHR\＄（ 10$)$ LB
－280 $A=A S C(A \$): I F A S C(A \$)=$（）THEN GOTO 325 BK
－285 L\＄＝＂＞＂：IF（A AND 64）＝ 1 ，THEN L\＄＝＂［SS］＂
OA
－290）GET\＃2，A\＄：GET\＃2，A\＄ GE
－30ر F $\$=L \$+" \prime$ ID
－3rر5 FOR I＝r）TO 15：GET\＃2，A\＄：IF A\＄＝＂＂THE
－ $322 \mathrm{FL} \$(\mathrm{NF})=\mathrm{F} \$: \mathrm{S}(\mathrm{NF})=\mathrm{SC}: \mathrm{EN}(\mathrm{NF})=\mathrm{F}: \mathrm{NF}=\mathrm{NF}+1 \mathrm{IP}$
－ 325 NEXT F MI
－33（）IF $T<>$（）THEN TK＝T：SC＝S：GOTO 23r） CJ
－335 CLOSE2：CLOSE15 BI
－34）NF＝NF－1：RETURN IA
－ 4 rj）REM PRINT FORMATTED SCREEN KA
－405 PRINT CHR\＄（147）；：PRINT HD\＄：PRINT KD
－41（）RW＝2：CL＝$): \mathrm{H}=2$ 2）： $\mathrm{W}=19: G O S U B 150$ ： BM
－415 RW＝2：CL＝2 $5: \mathrm{H}=2$（ $): W=19:$ GOSUB 15 $)$ GC
－45）REM FILL SCREEN WITH FILES
－455 RW＝3：CL＝1：GOSUB 19r）：ZN＝（） GE
－46「）FOR J＝「）TO 18：I＝PG＊38＋ZN＊19＋J CM
462 IF $\operatorname{SF}(I)=$（）THEN PRINT FL\＄（I）；：GOTO 464OG
－463 IF SF（I）＝1 THEN PRINT RV\＄FL\＄（I）RO\＄； FM
－ 464 RW＝RW＋1：GOSUB 19「）：NEXT J HF
－ 465 RW＝3：CL＝21：GOSUB 19「」：ZN＝1 MD
－47リ）FOR J＝TO $18: \mathrm{I}=\mathrm{PG} * 38+2 \mathrm{~N} * 19+\mathrm{J}$ CM
－ 472 IF $\mathrm{SF}(\mathrm{I})=$（r）THEN PRINT FL\＄（I）；：GOTO 474
－31ر）IF ASC $(A \$)=160$ THEN GOTO 320 BM
－ $315 \mathrm{~F} \$=\mathrm{F} \$+\mathrm{A} \$$ IO
－32r NEXT I MN
KMCMC
FG
F F${ }^{1}$
I L M ．

$$
2
$$

\qquad

－473 IF SF（I）＝1 THEN PRINT RV\＄FL\＄（I）RO\＄；
－474 RW＝RW＋1：GOSUB 19ヶ）：NEXT J
－ $475 \mathrm{ZN}=$ 「ノ：RETURN
－50， 5 REM SCRATCH
－515）NC\＄＝＂SCRATCH FILES＂
－ 515 GOSUB 8rر）
－ 519 OPEN 15，8，15
－520）FOR $I=$（）TO NF：IF $\mathrm{SF}(\mathrm{I})=$（ر）THEN GOTO 5 45）
－525 F\＄＝FL\＄（I）：IF LEFT\＄（F\＄，1）＝＂＞＂THEN GO TO 545
－530 F\＄＝RIGHT\＄（F\＄，LEN（F\＄）－1）
－535 PRINT\＃15，＂S（）：＂F\＄：GOSUB 9رっ」
－540 NEXT I
－55r）CLOSE 15
－599 RETURN
－6rر）REM LOCK
－615 NC\＄＝＂［3＂＂］LOCK FILES＂
－ 615 GOSUB 8رл
－619 OPEN 15，8，15：OPEN 2，8，2，＂\＃＂
－620 FOR $I=$（）TO NF：IF $\mathrm{SF}(\mathrm{I})=$ ¢ ）THEN GOTO 6
$6{ }^{6}$
－630）GOSUB 69r）
－ 635 GET\＃2，A\＄：IF A $\$=$＂＂＇THEN A\＄＝CHR\＄（ 10$)$
－645） $\mathrm{FT}=\mathrm{ASC}(\mathrm{A} \$): \mathrm{FT}=(\mathrm{FT}$ OR 64）
－650 GOSUB 689
－ 655 GOSUB 9rر）
－66r）NEXT I
－670 CLOSE 2：CLOSE15：RETURN
－689）GOSUB 695：PRINT\＃2，CHR\＄（FT）；
－684 PRINT\＃15，＂B－P＂；2；
－685 PRINT\＃15，＂U2＂；2；「；18；S（I）：RETURN
－690）PRINT\＃15，＂U1＂；2；（）；18；S（I）
－695 PRINT\＃15，＂B－P＂；2；EN（I）＊32＋2：RETURN
－ 699 RETURN
－7ros REM UNLOCK
－7r5 RW＝1：CL＝12：GOSUB 19r）

PROGRAMMERS！

Ahoy！wishes to continue publishing the best Commodore－compatible programs available in magazines today．We＇re looking for games，utili－ ties，educational，music，and graphics programs， and programs that completely defy description．If you have an original C－64，C－128，or VIC 20 pro－ gram，in BASIC or machine language，we＇d like to see it．Payment will be made upon acceptance， at competitive industry rates．You will also receive royalties based on the sale of our program disks． Send a copy of your program on disk or tape， accompanied by a printout and documentation，to Ahoy！， 45 West 34th Street－Suite 407，New York，NY 10001．Include a self－addressed mailer with sufficient return postage affixed．（Program printouts not accompanied by a disk or tape will be returned unread；programs not accompanied by sufficient return postage will not be returned．）

KM－72r FOR $I=$ ， ，TO NF：IF $S F(I)=$ r）THEN GOTO 6 KJ 6r
CI •73（）GOSUB 69r，
AM－ 735 GET\＃2，A\＄：IF A $\$=$＂＂THEN A $\$=C H R \(0)
－745， $\mathrm{FT}=\mathrm{ASC}(\mathrm{A} \$): \mathrm{FT}=(\mathrm{FT}$ AND 191）
－ 824 CL＝TP：RETURN
－840 $\mathrm{I}=\mathrm{PG} * 38+\mathrm{ZN} * 19+\mathrm{J}: I F I=N F$ THEN RETURN－ $841 \mathrm{~J}=\mathrm{J}+1$ ：IF $\mathrm{J}>19$ THEN $\mathrm{J}=19$－ 844 GOSUB 19r：PRINT＂＂；－ $845 \mathrm{RW}=\mathrm{RW}+1$ ：IF $\mathrm{RW}>21$ THEN RW＝21：J＝J－1－850）GOSUB 19ヶ；PRINT AR\＄；：RETURN
－86r） $\mathrm{J}=\mathrm{J}-1$ ：IF $\mathrm{J}\left\langle\right.$（ r THEN $\mathrm{J}=$（ ${ }^{\prime}$－861 GOSUB 19（）：PRINT＂＂；－ 865 RW＝RW－1：IF RW＜3 THEN RW＝3－875 GOSUB 19f：PRINT AR\＄；：RETURN－88）IF NF＜PG＊38＋19 THEN RETURN－885 GOSUB 19ヶ）：PRINT＂＂；：RW＝3：CL＝38：J＝0！ZN＝1：GOSUB 190：PRINT AR\＄；：RETURN
－89r）REMJD
－895 GOSUB 19ヶ）：PRINT＂＂；：RW＝3：CL＝18：J＝「ノ： ZN＝（）：GOSUB 190：PRINT AR\＄；：RETURN KJ
－9rر）INPUT\＃15，A\＄，B\＄，C\＄，D\＄ CN
－9r）5 RW＝23：CL＝r）：GOSUB 19r）：PRINT＂［38＂＂］＂；MO
91ヶ RW＝23：CL＝「）：GOSUB 19ヶ）：PRINT A\＄＂［SS］＂B \＄＂［SS］＂C\＄＂［SS］＂D\＄；：ER＝1：RETURN

```
-92^) ER=^\rho:RETURN
-1rj\rho, IF NF<38 THEN RETURN
-10ر55 PG=PG+1:IF PG*38>NF THEN PG=r)
-1r1r) GOSUB 40^):RETURN
-1rjofjr, CLR:DIM FL$(76),S(76),EN(76),SF(76
    )
-10005 BL$=CHR$(154):YL$=CHR$(158):RV$=CH
    R$ (18):RO$=CHR$ (146):AR$=CHR$ (95)
-10ヶJ10 POKE 5328(%,11:POKE 53281,ヶ:PRINT C
    HR$ (147)BL$;
    -10ケ12 CD$=BL$+" <CRSR> <HOME>"+YL$+" MO
        VES "+BL$+" <RTRN>"+YL$+" SELECTS [SS]"+
        BL$
    -10015 HD$=CHR$(18)+"[10" "]FFLLE LOCK Vr,[
    3"2"]/85[12" "']"+CHR$(146)
    -1\rho\rho)20 PRINT HD$;
    -10rj30) PRINT:PRINT "INSERT DISK AND HIT "
        YL$"<RETURN>"BL$;
    •10ヶJ35 GOSUB 7r:PRINT:PRINT "READING DIRE
        CTORY":
    -1rors4r) GOSUB 2r():PG=():ZN=r):GOSUB 4rj)
    -10r55) RW=24:CL=r!:GOSUB 19r)
    -1rرJ55 PRINTYL$ "SCRATCH LOCK UNLOCK PAGE
        BOOT QUIT ? "BL$CHR$(157);
    -1rرrs56 GOSUB 15r)
    -1rرJ60) IF A$ ="Q" THEN END
    -1fノJ65 IF A$="S" THEN PRINT A$;:CM$=A$:GO
    SUB 5rjrj:GOTO 1rjorjr,
    -1rر)7r, IF A$="L" THEN PRINT A$;:CM$=A$:GO
    SUB 6rjo:GOTO 1rofjors
    -1rر)75 IF A$="U" THEN PRINT A$;:CM$=A$:GO
    SUB 7rjr:GOTO 1rorsj)
    -1rر\rho80) IF A$="B" THEN PRINT A$;:GOTO 1rfor)
        f)
        -1rرr)85 IF A$="P" THEN PRINT A$;:GOSUB 1rرr
        f
    - 1rorgar, GOTO 1rorj5r,
    -6rj\jmath\jmath\rhoノ CLOSE 15:OPEN 15,8,15, "Ir!:":CLOSE1
        5
    .6rjァr1 SAVE "@r:FILE LOCK Vr[3"2"]",8 GA
    -61ر\jmath,^J OPEN 15,8,15:INPUT#15,A$,B$,C$,D$ GK
    .61rر)1 PRINT:PRINT A$"[SS]"B$"[SS]"C$"[SS
        ]"D$:CLOSE15:STOP
EH
NO
IG
LC
－10رJ55 PRINTYL\＄＂SCRATCH LOCK UNLOCK PAGE
        -1 REM *** PIG IN A POKE *** IE
            - 2 REM AN EXAMPLE OF GAME PROGRAMMING WIT
        H A SPRITE
        - 4 REM ** MOVE TOP OF MEMORY TO MAKE ROOM
        FOR VIDEO BLOCK AT 32768
            CA
            - 5 POKE 55,255:POKE 56,127:POKE 643,255:P

\section*{ROCKETS, BOATS \& \\ PIGS IN POKES \\ FROM PAGE 18 PIG IN A POKE \\ ROCKES，：OATS 2 PIGS IN POKES \\ FROM PACE 18 PIG IN A POKE}
－ 1 REM＊＊＊PIG IN A POKE＊＊＊IE
-2 REM AN EXAMPLE OF GAME PROGRAMMING WIT H A SPRITE

OE
－ 4 REM＊＊MOVE TOP OF MEMORY TO MAKE ROOM
FOR VIDEO BLOCK AT 32768
CA
－5 POKE 55，255：POKE 56，127：POKE 643，255：P

EN OKE 644，127
IJ－9 REM＊＊＊SET－UP SUBROUTINES＊＊＊OF
MF－10）GOSUB 6r 5 ；：REM（VIDEO MEMORY）II
OJ \(\cdot 11\) GOSUB \(75(\rho)\) REM（BACKGROUND STRING）BM
－ 12 GOSUB 8 8 \(ر\) ）：REM（SPRITE SHAPES）PB
－ 13 GOSUB 90ر）：REM（SPRITE POSITIONS）IE
－ 15 GOTO 15ر）
－98 REM＊＊＊ACTION LOOP＊＊＊
KJ
－ 10 f）\(K=K P(\operatorname{PEEK}(653))\) ：IF \(\mathrm{K}>2\) OR EG＝1 THEN 305）

NO
－ 105 IF K \(>1\) THEN 13r）
－110 \(\mathrm{HP}=\mathrm{HP}+\mathrm{K}(\mathrm{K}):\) IF \(\mathrm{HP}<\sigma\) ，THEN \(\mathrm{HP}=\mathrm{HZ} \quad \mathrm{HE}\)
－115 IF HP＞HZ THEN HP＝（）KM
－12 12 IF K〈〉XK THEN XK＝K：POKE LT（ \((1)\) ，ST（XK）KN
－ 125 POKE HT（ 10\()\) ，HH（HP）：POKE HR，HB（HP）AO
－130 IF VAL（TI\＄）\(>=\) DT THEN GOSUB 5 0 （ 0 EB
－ 135 IF PEEK（CF）＞0，THEN GOSUB 40， 0 NA
－196 GOTO 10ヶ）CF
－ 198 REM＊＊＊WAIT FOR RESPONSE＊＊＊HO
－296 RETURN IM
－ 298 REM＊＊＊ENDING ROUTINES＊＊＊NL
－30ر）PRINT＂［CLEAR］FINAL SCORE：＂RT＊1rر54 VP＊10：PRINT：PRINT：VP＝15：POKE VT（ノ），VV（VP
）NM
－31／PRINT＂TO PLAY AGAIN，PRESS P＂：PRINT ＂TO QUIT，PRESS Q＂：HP＝79 JE
\(-315 \mathrm{HP}=79:\) POKE HR， \(\mathrm{HB}(\mathrm{HP}):\) POKE HT（け）， \(\mathrm{HH}(\mathrm{H}\)
\(\mathrm{P}): \mathrm{XP}=1: \mathrm{POKE} \mathrm{LT}(\mathrm{J}), \mathrm{ST}(\mathrm{XP})\)
－32ヶ Z＝PEEK（2ヶ3）：IF Z＝62 THEN 37r）EA
－ 325 POKE HT（r），HH（HP）：POKE HR，HB（HP）AO
－330） \(\mathrm{HP}=\mathrm{HP}+1\) ：IF \(\mathrm{HP}>\mathrm{HZ}\) THEN HP＝r）FJ
－345 IF Z＜＞41 THEN 32の PE

－ 369 REM＊＊PUT VIDEO MEMORY BACK TO FIRS T BLOCK，AND SCREEN MEMORY TO 1024 EG
－37r）POKE 56578，PEEK（56578）OR3：POKE 56576 ，（PEEK（56576）AND 252）OR 3
－371 POKE 53272，2r）：POKE 648，4 OM
－ 379 REM＊＊REENABLE SHIFT／COMMODORE AND RUN－STOP／RESTORE
－385 POKE 657，っ：POKE 792，71：POKE 8 8 ， 8,237 PK
－39rJ END IC
－ 398 REM＊＊＊COLLISION HANDLER＊＊＊IG
－399 REM＊＊END GAME？CE
－40ر）VP＝VP－1：IF VP \(<\)（ \()\) THEN EG＝1：RETURN PN
－401 REM＊＊MOVE UP
NJ
－ 402 POKE VT（ 0\()\) ，VV（VP）
MD
－4 53 REM＊＊CLEAR COLLISION REGISTER BF
－4r， \(4 \mathrm{Z}=\mathrm{PEEK}(\mathrm{CS}): \mathrm{Z}=\) PEEK（CF）KI
． 405 REM＊＊NEW COLLISION？ON

－ 496 RETURN
－498 REM＊＊＊SCROLL ROUTINE＊＊＊
－499 REM＊＊NEW ROW OR SIMPLE JUMP？PJ
－ 50 fر）IF RC＝DS THEN 506 NB
－ 501 REM＊＊SIMPLE JUMP
． 5 r） 2 PRINT＂［HOME］［25＂［DOWN］＂］［HOME］＂；
－ \(503 \mathrm{RC}=\mathrm{RC}+1\) ：GOTO 529
－ 505 REM＊＊PUT NEW ROW ON SCREEN
．5r，6 PRINT＂［HOME］［24＂［DOWN］＂］＂MID\＄（WS\＄，W \(\mathrm{L}(\mathrm{DL})+\operatorname{INT}(19 * \operatorname{RND}(9)), 45)^{\prime \prime}[\text { HOME }]^{\prime \prime}\) ；
－ 5 （ر） \(\mathrm{RC}=\)（）\(: \mathrm{RT}=\mathrm{RT}+1: \mathrm{DL}=\mathrm{DL}+1: \mathrm{IF} \mathrm{DL}>8\) THEN DL ＝（）：DS＝DS -1
． 51 万9 REM＊＊END OF GAME？
－510 IF RT \(>49\) THEN EG＝1
 COLLISION
－580 POKE 217，L1：POKE 218，L2
－ 589 REM＊＊RESET TIMER
－591）TI\＄＝＂\(\left[6^{\prime \prime} 斤\right.\)＂\(]\)＂
－ 596 RETURN
－ 598 REM＊＊＊ARRANGE MEMORY＊＊＊
.599 REM USE THIRD VIDEO BLOCK（32768 TO 49151），SO ROM CHARACTER SET IS USABLE． －6rر）VB＝32768：POKE 56578，PEEK（56578）OR3：P OKE 56576，（PEEK（56576）AND 252）OR 1 CN
－6「1 REM＊＊TELL VIC－2 WHERE SCREEN IS WI THOUT CHANGING CHARACTER SET LOCATION GA －6ヶ）2 SB＝ヶ：POKE 53272，（SB＊16）＋4： \(\mathrm{SB}=\mathrm{VB}+1 \rho 24\) ＊SB
－603 REM＊＊TELL BASIC WHERE SCREEN IS
－ \(6154 \mathrm{BB}=\mathrm{SB} / 256:\) POKE 648，BB
－6rر8 REM＊＊＊REGISTER ADDRESSES＊＊＊
－ \(6 r 99\) REM＊＊SPRITE SHAPE LOCATION TABLE IF
－615） \(\mathrm{LT}(1))=\mathrm{SB}+1016: \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} 7: \mathrm{LT}(\mathrm{I})=\mathrm{LT}(\) I－1）\(+1:\) NEXT
－ 611 REM＊＊SPRITE COLOR TABLE
－ \(612 \mathrm{CT}(\)（ ）\()=53287:\) FOR \(\mathrm{I}=1 \mathrm{TO} 7: \mathrm{CT}(\mathrm{I})=\mathrm{CT}(\mathrm{I}-\) 1）\(+1:\) NEXT
－ 613 REM＊＊SPRITE HORIZONTAL POSITION TA BLE（LOW BYTES）
－614 HT（ J\()=53248:\) FOR \(\mathrm{I}=1\) TO \(7: \mathrm{HT}(\mathrm{I})=\mathrm{HT}(\mathrm{I}-\) 1）+2 ：NEXT
－ 615 REM＊＊SPRITE VERTICAL POSITION TABL E
－616 VT \((\mathrm{J})=53249\) ：FOR \(\mathrm{I}=1\) TO \(7: \mathrm{VT}(\mathrm{I})=\mathrm{VT}(\mathrm{I}-\) 1）+2 ：NEXT
－ 617 REM＊＊SPRITE HORIZONTAL HIGH－BIT RE GISTER
－ 618 HR＝53264
－ 619 REM＊＊SPRITE ENABLE REGISTER
－62の）ES＝53269
－ 621 REM＊＊VERTICAL EXPANSION REGISTER（ \(1=\) DOUBLE HEIGHT）
－ \(622 \mathrm{VE}=53271\)
－ 623 REM＊＊HORIZONTAL EXPANSION REGISTER （ \(1=\) DOUBLE WIDTH）
－ \(624 \mathrm{HE}=53277\)
－ 625 REM＊＊SPRITE PRIORITY REGISTER（ \(1=S\) PRITE IS IN FRONT OF FOREGROUND）
－ \(626 \mathrm{PR}=53275\)
－ 627 REM＊＊MULTICOLOR ENABLE REGISTER（1 \(=M U L T I-C O L O R\) ENABLED）

FE
\(\mathrm{NJ} \cdot 628 \quad \mathrm{EM}=53276\)
EK
OJ \(\cdot 629\) REM＊＊SPRITE MULTICOLOR COLOR REGIS
CK TERS
OH
BG－63（）MR＝53285：REM（＇\(ر 1\)＇REGISTER：ADD 1 T 0 MR FOR＇ 11 ＇REGISTER）
PL－631 REM＊＊SPRITE－SPRITE COLLISION REGIS TER

OF
LE •633 REM＊＊SPRITE－FOREGROUND COLLISION R
GG EGISTER
－ \(634 \mathrm{CF}=53279\)
FK
KN ． 635 REM＊＊SET－BIT AND CLEAR－BIT VALUES BI
PJ \(\cdot 636 \mathrm{BS}(\rho)=1:\) FOR \(I=1\) TO \(7: \mathrm{BS}(\mathrm{I})=2 * \mathrm{BS}(I-1)\)
NP ：NEXT
NI \(\cdot 637\) FOR \(I=\) f）TO \(7: B C(I)=255-B S(I): N E X T\)
IM－ 638 REM＊＊＊INITIALIZE VALUES＊＊＊
KB－639 REM＊＊FOREGROUND COLOR
－640）POKE 53281，9：PRINT＂［CLEAR］［llll＂； 2 ：R
EM（BROWN）
－ 641 REM＊＊BACKGROUND COLOR
－ 642 POKE 53281，5 ：REM（GREEN）
－ 643 REM＊＊BORDER COLOR
－ 644 POKE 5328（），9：REM（BROWN）
－ 645 REM＊＊SPRITE COLORS（DEFAULTS：WHI， RED，L－GRN ，PUR，GRN，BLU，YEL，M－GRAY）IE
－ 646 POKE CT（丁），\(-7:\) REM（THE PIG IS WHITE）FI
－ 647 REM＊＊SET PRIORITY
－ 648 POKE PR，厄：REM（ALL IN FRONT）
－ 649 REM＊＊SET HORIZONTAL SIZES
－65！POKE HE，ノ：REM（ALL NORMAL WIDTH）
－ 651 REM＊＊SET VERTICAL SIZES
－ 652 POKE VE，ノ：REM（ALL NORMAL HEIGHT）
－ 653 REM＊\({ }^{2}\) ENABLE SPRITES
－ 654 POKE ES，BS（ヶ）：REM（SPRITE 厅 ONLY）
－ 689 REM＊＊＊SAFETY PROCEDURES＊＊＊CM
－691ر POKE 657，128：REM DISABLE SHIFT／COMMO DORE CHARACTER SET SWITCH
－ 691 POKE 8ノ，8，234：POKE 792，193：REM DISABL E STOP AND STOP／RESTORE
－ 696 RETURN
－ 698 REM＊＊＊BACKGROUND STRING＊＊＊
－7rر）WC\＄＝＂［s V］＂：BC\＄＝＂＂
－7099 REM SET UP WALL STRING
FB • 714 REM EACH WALL UNIT IS WIDER，EACH GA
AF P NARROWER

NUMBER OF LINES PER SPRITE SHAPE（ -1 ） －80ر）NS＝1：TS＝9
－ 801 REM＊＊LOCATE SPRITE SHAPE MEMORY
－8「」2 ST（け）\(=16\) ：FOR \(I=1\) TO NS：ST（I）\(=\) ST（I－1） ＋1：NEXT
－8rر3 REM＊＊LOOPS
 ：FOR K＝r）TO 2： \(\mathrm{X}=\)（ \(): \mathrm{Y}=\mathrm{VB}+\mathrm{ST}(\mathrm{I}) * 64+\mathrm{J} * 3+\mathrm{K}\) IB
－ 805 REM＊＊CONVERT STRINGS TO SHAPE BYTE S（USE BS（ケー7）TO SET BITS）
－80j6 FOR L＝1 TO 8：M＝L＋8＊K：M＝ASC（MID\＄（SS\＄， M，1））：IF \(\mathrm{M}=42\) THEN \(\mathrm{X}=\mathrm{X}\) OR BS（ \(8-\mathrm{L}\) ）
－8rر7 NEXT：POKE Y，X：NEXT：PRINT SS\＄：NEXT G
－8rر \(8 \mathrm{Z}=64\)－（TS＊3＋2）：FOR J＝Y＋1 TO Y +Z ：POKE J，ハ：NEXT：NEXT
－ 8 rر 9 REM SPRITE SHAPE DATA， 21 LINES PER SHAPE：＊＝＇ON＇\(={ }^{\prime}\) OFF＇
－815 DATA＂［5＂．＂］＊［14＂．＂］＊＊．．＂
－811 DATA＂［5＂．＂］＊＊［4＂．＂］［6＂＊＂］［5＂．＂］＊．＂
－812 DATA＂［4＂．＂］［16＂＊＂］．＊．．＂
－813 DATA＂［3＂．＂］＊．［16＂＊＂］［3＂．＂］＂
－814 DATA＂［22＂＊＂］．．＂
－815 DATA＂［22＂＊＂］．．＂
－ 816 DATA＂［4＂•＂］［17＂＊＂］［3＂．＂］＂
－817 DATA＂［6＂．＂］［14＂＊＂］［4＂．＂］＂
－818 DATA＂［6＂．＂］＊＊．＊［5＂．＂］＊．＊＊［5＂．＂］＂
819 DATA＂［5＂．＂］＊
（19 DATA＂ \(\left.5^{\prime \prime}.\right]^{* *}\). ．＊＊\(^{*} 3^{\prime \prime} . "\) ］＊＊．＊＊［5＂．＂］＂DC
－82 5 REM＊＊2ND SHAPE
－821 DATA＂．＊＊［14＂．＂］＊［6＂．＂］＂
－822 DATA＂＊［5＂．＂］［6＂＊＂］［4＂．＂］＊＊［6＂．＂］＂
－823 DATA＂．＊．［16＂＊＂］［5＂．＂］＂
－824 DATA＂．．［16＂＊＂］．＊［4＂．＂］＂
－825 DATA＂．［22＂＊＂］．＂
－826 DATA＂．［22＂＊＂］．＂
－827 DATA＂．．［17＂＊＂］［5＂．＂］＂
－ 828 DATA＂［3＂．＂］［14＂＊＂］［7＂．＂］＂
－829 DATA＂［4＂．＂］＊＊．＊［5＂．＂］＊．＊＊［7＂．＂］＂
－83（）DATA＂［4＂．＂］＊＊．＊＊［3＂．＂］＊＊．．＊＊［6＂．＂］＂
－896 RETURN
－898 REM＊＊＊SPRITE POSITIONS＊＊＊
－ 899 REM＊＊POSSIBLE POSITIONS DIM \({ }^{\prime}\) ED
－90， \(\mathrm{f}, \mathrm{VZ}=19: \mathrm{HZ}=147\) ： \(\mathrm{DIM} \mathrm{HH}(\mathrm{HZ}), \mathrm{VV}(\mathrm{VZ}), \mathrm{HB}(\mathrm{HZ}\) ）
－901 REM＊＊ASSIGN HORIZONTAL VALUES IA
－9rر2 \(\mathrm{X}=24\) ： \(\mathrm{B}=\)（ \()\) ：FOR \(\mathrm{I}=\)（r） \(\mathrm{TO} \mathrm{HZ}: \mathrm{HH}(\mathrm{I})=\mathrm{X}: \mathrm{HB}(\mathrm{I})\) ＝B
－9r） \(\mathrm{X}=\mathrm{X}+2\) ：IF \(\mathrm{X}>255\) THEN \(\mathrm{X}=\mathrm{X}-256: \mathrm{B}=1\)
－9014 NEXT
－9r5 REM＊＊ASSIGN VERTICAL VALUES
－9rر6 X＝53：FOR \(I=\) r）TO VZ：VV（I）\(=\mathrm{X}: \mathrm{X}=\mathrm{X}+8\) ：NEX T
－919 REM＊＊KEYPRESS MATRIX
－92 9 DIM KP（7），K（2）
－ 921 FOR \(I=\) r）TO \(7: K P(I)=2: N E X T: K P(1)=1: K P\)
（2）\(=\)（ \(): K P(7)=3\)
－ \(922 K(1)=-1: K(1)=1: K(2)=\)（）
－929 REM＊＊INITIAL SPRITE POSITIONING
－930） \(\mathrm{HP}=79\) ： \(\mathrm{VP}=\mathrm{VZ}: \mathrm{XK}=1\)
.931 POKE VT（r），VV（VP）：POKE HT（r）\(), \mathrm{HH}(\mathrm{HP})\) ：
POKE \(\mathrm{HR}, \mathrm{HB}(\mathrm{HP})\)
－939 REM＊＊TELL VIC－2 WHERE TO FIND SPRIHK
－940 POKE LT（ \((1)\) ），ST（XK） ..... HF－949 REM＊＊CREATE SCREEN DISPLAY－95）PRINT＂［CLEAR］＂；：FOR I＝ ，TO 5：FOR J＝
戶 TO DS：PRINT＂［DOWN］＂；：NEXT ..... IF
－955 PRINT MID\＄（WS\＄，1＋INT（19＊RND（9）），4 1 ）；：NEXT：PRINT＂［HOME］＂；OK
－959 REM＊＊CLEAR SCREEN LINE LINK TABLE KP
－96r）L1＝PEEK（217）OR 128：L2＝PEEK（218）OR 12
8：POKE 217，L1：POKE 218，L2DN
－969 REM＊＊CLEAR COLLISION REGISTERS ..... GC
－97r）Z＝PEEK（CF）：Z＝PEEK（CS） ..... IA
－989 REM＊＊SET CLOCK ..... EI
－990 TI\＄＝＂［6＂ケ）＂］＂ ..... NI
－996 RETURN ..... IM
BASIC SPRITES
－ 1 REM ＊＊＊BASIC SPRITES＊＊＊ ..... GC
－ 2 REM A SHIP AND A ROCKET DEMONSTRATE SP RITE CREATION AND MOVEMENT ..... MN
－9 REM＊＊＊SET－UP SUBROUTINES＊＊＊ ..... OF
－15 GOSUB 6 \(6 \boldsymbol{\rho} \rho\) ：REM（VIDEO MEMORY） ..... II
－ 11 GOSUB 7rر）：REM（BACKGROUND） ..... AA
－ 12 GOSUB 8 （r）：REM（SPRITE SHAPES） ..... PB
－ 13 GOSUB 9rر）：REM（SPRITE POSITIONS） ..... IE
－ 15 GOTO 1رfs ..... CF
－ 98 REM＊＊＊ACTION LOOP＊＊＊ ..... KJ
－ 10 r） \(\mathrm{VP}=\mathrm{VP}+1: I F \mathrm{VP}>\mathrm{VZ}\) THEN VP＝r， ..... BH
－110 HP＝HP－1：IF HP（r）THEN HP＝HZ ..... GG
－12ノ POKE VT（1），VV（VP） ..... LO
－130）POKE HT（（J），HH（HP）：POKE HR，HB（HP）：POK E HT（1），HH（HP） ..... LP
－14 1 （ \(W V=W V-1\) ：IF WV \(<1\) THEN WV＝8 ..... EG
－15r）PRINT DD\＄MID\＄（ST\＄，WV，4r）＂［HOME］＂； ..... CI
－ 196 GOTO 1rjf ..... CF
－198 REM＊＊＊＊WAIT FOR RESPONSE＊＊＊ ..... HO
－ 296 RETURN ..... IM
－ 298 REM＊＊＊ENDING ROUTINES＊＊＊ ..... NL
－30ر）PRINT＂［CLEAR］FINAL SCORE：＂RT＊1ヶر）+VP＊10：PRINT：PRINT：VP＝15：POKE VT（0），VV（VP）
－31ヶ PRINT＂TO PLAY AGAIN，PRESS P＂：PRINT ＂TO QUIT，PRESS Q＂：HP＝79 ..... JE
－ \(315 \mathrm{HP}=79\) ：POKE HR， \(\mathrm{HB}(\mathrm{HP})\) ：POKE HT（ \((\jmath)\) ， \(\mathrm{HH}(\mathrm{H}\)P）： \(\mathrm{XP}=1\) ：POKE LT（ \(\boldsymbol{\text { r }}\) ）， \(\mathrm{ST}(\mathrm{XP}\) ）JM
 ..... EA
－ 325 POKE HT（r），HH（HP）：POKE HR，HB（HP） ..... AO
－33（）HP＝HP＋1：IF HP＞HZ THEN HP＝r） ..... FJ
－345 IF Zく＞41 THEN 32 \({ }^{\prime}\) ..... PE
 930：GOTO 1rر） ..... AK
－ 369 REM＊＊PUT VIDEO MEMORY BACK TO FIRST BLOCK，AND SCREEN MEMORY TO 1 J 24 EG－375，POKE 56578，PEEK（56578）OR3：POKE 56576，（PEEK（56576）AND 252）OR 3MB
－371 POKE 53272，20：POKE 648，4
－379 REM＊＊REENABLE SHIFT／COMMODORE AND RUN－STOP／RESTORE
－38ヶ）POKE 657，ノ：POKE 792，71：POKE 8rノ8，237
－390 END
－ 598 REM＊＊＊ARRANGE MEMORY＊＊＊
－ 599 REM USE FIRST VIDEO BLOCK（ 1 ）TO 1638
3）SO NOTHING FANCY HAS TO BE DONE．
－ 6 （er） \(\mathrm{VB}=\) er
－6r） 1 REM＊＊SCREEN MEMORY STAYS WHERE IT IS
－6r） 8 REM＊＊＊REGISTER ADDRESSES＊＊＊
－6rر9 REM＊＊SPRITE SHAPE LOCATION TABLE IF
 ）＋1：NEXT
－611 REM＊＊SPRITE COLOR TABLE
－612 CT（（ノ）\(=53287\) ：FOR \(I=1\) TO 7：CT（I）\(=\mathrm{CT}\)（I－ 1）+1 ：NEXT
－613 REM＊＊SPRITE HORIZONTAL POSITION TA BLE（LOW BYTES）
－614 HT（（1）\()=53248:\) FOR I＝1 TO 7：HT（I）\(=\) HT（I－ 1）+2 ：NEXT
－615 REM＊＊SPRITE VERTICAL POSITION TABL E
－616 VT（（ノ）\(=53249\) ：FOR \(\mathrm{I}=1\) TO 7：VT（I）\(=\mathrm{VT}(\mathrm{I}-\) 1）+2 ：NEXT
－ 617 REM＊＊SPRITE HORIZONTAL HIGH－BIT RE GISTER
－ 618 HR＝53264
－619 REM＊＊SPRITE ENABLE REGISTER
－62 6 ES＝53269
－621 REM＊＊VERTICAL EXPANSION REGISTER（ \(1=\) DOUBLE HEIGHT）
－ \(622 \mathrm{VE}=53271\)
－623 REM＊＊HORIZONTAL EXPANSION REGISTER （ \(1=\) DOUBLE WIDTH）
－ \(624 \mathrm{HE}=53277\)
－ 625 REM＊＊SPRITE PRIORITY REGISTER（ \(1=\) S PRITE IS IN FRONT OF FOREGROUND）
－ \(626 \mathrm{PR}=53275\)
－627 REM＊＊MULTICOLOR ENABLE REGISTER（1 ＝MULTI－COLOR ENABLED）
－ \(628 \mathrm{EM}=53276\)
－ 629 REM＊＊SPRITE MULTICOLOR COLOR REGIS TERS
－630）MR＝53285：REM（＇rر1＇REGISTER：ADD 1 T 0 MR FOR＇11＇REGISTER）
－631 REM＊＊SPRITE－SPRITE COLLISION REGIS TER
－ \(632 \mathrm{CS}=53278\)
－633 REM＊＊SPRITE－FOREGROUND COLLISION R EGISTER
－ \(634 \mathrm{CF}=53279\)
－ 635 REM＊＊SET－BIT AND CLEAR－BIT VALUES BI
－ \(636 \mathrm{BS}(\)（ \()=1:\) FOR \(\mathrm{I}=1\) TO \(7: \mathrm{BS}(\mathrm{I})=2 * \mathrm{BS}(\mathrm{I}-1)\) ：NEXT
－ 637 FOR \(I=\) r，TO 7：BC（I）\(=255-\mathrm{BS}(\mathrm{I}):\) NEXT
－638 REM＊＊＊INITIALIZE VALUES＊＊＊

－ 639 REM＊＊FOREGROUND COLOR
－645）POKE 53281，6：PRINT＂［CLEAR］［BLUE］＂；： REM（BLUE）
－ 641 REM＊＊BACKGROUND COLOR
－ 642 POKE 53281，14：REM（LIGHT BLUE）
－ 643 REM＊＊BORDER COLOR
－ 644 POKE 5328「，っ）：REM（BLACK）
－ 645 REM＊＊SPRITE COLORS（DEFAULTS：WHI， RED，L－GRN，PUR，GRN，BLU，YEL，M－GRAY）I
－646 POKE CT（（ر），，：POKE CT（1），2：REM（THE S HIP IS BLACK，THE ROCKET RED）
－ 647 REM＊＊SET PRIORITY
－648 POKE PR，255：REM（ALL BEHIND）
－ 649 REM＊＊SET HORIZONTAL SIZES
－65f POKE HE，1：REM（SHIP IS DOUBLE WIDTH， ROCKET IS NORMAL WIDTH）
－651 REM＊＊SET VERTICAL SIZES
－ 652 POKE VE，2：REM（ROCKET IS DOUBLE HEIG HT）
－ 653 REM＊＊ENABLE SPRITES OD
－654 POKE ES，BS（ノ）OR BS（1）：REM（SPRITES f）AND 1）
－ 696 RETURN
－ 698 REM＊＊＊SET UP OCEAN＊＊＊
－7rر） \(\mathrm{R} \$=\operatorname{CHR} \$(18): \mathrm{RX} \$=\operatorname{CHR} \$(146): \mathrm{B} \$="\)
－7r） \(\mathrm{FD} \$=\mathrm{CHR} \$(162)+\mathrm{CHR} \$(185)+\mathrm{CHR} \$(175)+\mathrm{CH}\) R\＄（228）
－7r3 FU \(=\mathrm{B} \$+\mathrm{CHR} \$(228)+\mathrm{CHR} \$(175)+\mathrm{CHR} \$(185) \mathrm{BF}\)
－7rر5 S\＄＝R\＄：FOR I＝1 TO 40：S\＄＝S\＄＋B\＄：NEXT：S\＄ ＝S\＄＋RX\＄
－7ノJ6 ST\＄＝FU\＄＋FD\＄＋FU\＄＋FD\＄＋FU\＄＋FD\＄：ST\＄＝ST\＄＋ ST\＄
－797 DD\＄＝＂［HOME］［20＂［DOWN］＂］＂
－7r， \(\mathrm{WV}=8\)
－715 PRINT＂［CLEAR］＂DD\＄MID\＄（ST\＄，WV，4（J）S\＄S \＄S\＄LEFT\＄（S\＄，4r）＂［HOME］＂RX\＄；
－ 711 POKE 2（J23，16r）
－ 796 RETURN
－798 REM＊＊＊SPRITE SHAPES＊＊＊CD
－ 799 REM＊＊＊NUMBER OF SPRITE SHAPES（ -1 ）； NUMBER OF LINES PER SPRITE SHAPE（ -1 ）
－80）NS \(=1\)
－8r）REM＊＊LOCATE SPRITE SHAPE MEMORY
－8 8 ）2 ST（ 10\()=13: \operatorname{ST}(1)=14\)
－803 REM＊＊LOOPS
－804 FOR I＝r）TO NS：FOR J＝（ノ）TO 2 2 ：READ SS\＄ ：FOR K＝（ر）TO 2： \(\mathrm{X}=\)（ \(): \mathrm{Y}=\mathrm{VB}+\mathrm{ST}(\mathrm{I}) * 64+\mathrm{J} * 3+\mathrm{K} \quad\) IG
－855 REM＊＊CONVERT STRINGS TO SHAPE BYTE \(S\)（USE BS（ \(1,-7\) ）TO SET BITS）
－8rر6 FOR L＝1 TO 8：M＝L＋8＊K：M＝ASC（MID\＄（SS\＄， \(\mathrm{M}, 1)\) ）：IF \(\mathrm{M}=42\) THEN \(\mathrm{X}=\mathrm{X}\) OR BS（ \(8-\mathrm{L}\) ）
－8r，7 NEXT：POKE Y，X：NEXT：NEXT：NEXT HP
－8 899 REM SPRITE SHAPE DATA， 21 LINES PER SHAPE： ＊\(^{\prime}\)＇ON＇\(\quad=\)＇OFF＇
－810 DATA＂［9＂．＂］＊［14＂．＂］＂
－ 811 DATA＂［9＂．＂］＊［14＂．＂］＂
－812 DATA＂［9＂．＂］＊．．＊＊［1官＂．＂］＂
－813 DATA＂［9＂．＂］＊．．＊＊［1，＂．＂］＂
FL

\section*{98 AHOY！}
－814 DATA＂［8＂．＂］＊＊．．＊＊［10＂．＂］＂
－815 DATA＂［8＂．＂］＊＊．［3＂＊＂］［19＂．＂］＂
－816 DATA＂［9＂．＂］［5＂＊＂］［1Sر＂．＂］＂
－817 DATA＂［7＂．＂］［9＂＊＂］［8＂．＂］＂
.818 DATA＂［24＂＊＂］＂ .819 DATA＂［24＂＊＂］＂
－82の）DATA＂．．［25＂＊＂］．．＂
－821 DATA＂［3＂．＂］［18＂＊＂］［3＂．＂］＂
－822 DATA＂［3＂．＂］［18＂＊＂］［3＂．＂］＂
－823 DATA＂［3＂．＂］［19＂＊＂］．．＂
． 824 DATA＂［4＂．＂］［18＂＊＂］．．＂
－825 DATA＂［5＂．＂］［17＂＊＂］．．＂
－ 826 data＂［24＂．＂］＂
－827 DATA＂［24＂．＂］＂
－ 828 DATA＂［24＂．＂］＂
－829 DATA＂\([24\)＂．＂＂］＂
－83＇）DATA＂［24＂．＂］＂
－831 REM＊＊2ND SPRITE SHAPE
－832 DATA＂［21＂．＂］＊．．＂
－833 DATA＂［21＂．＂］＊．．＂
－834 DATA＂［2厅＂．＂］［3＂＊＂］．＂
－835 data＂［2r）＂．＂］［3＂＊＂］．＂
－836 DATA＂［20＂．＂］［3＂＊＂］．＂
－837 DATA＂［2の＂．＂］［3＂＊＂］．＂
－838 DATA＂［20＂．＂］［3＂＊＂］．＂
－839 data＂［25＂．＂］［3＂＊＂］．＂
- 845 DATA＂［2丁＂．＂］＊．＊．＂
- 841 DATA＂［2丁＂．＂］＊．＊．＂
－ 842 DATA＂［24＂．＂］＂
－ 843 DATA＂\([24\)＂．＂］＂
－844 DATA＂［24＂．＂］＂
－845 DATA＂［24＂．＂］＂
－ 846 DATA＂［24＂．＂］＂
－847 DATA＂［24＂．＂］＂
－848 DATA＂［24＂．＂］＂
－ 849 DATA＂［24＂．＂］＂
－85＇）DATA＂［24＂．＂］＂
－851 DATA＂［24＂．＂］＂
－852 DATA＂［24＂．＂］＂
－853 DATA＂［24＂．＂］＂
－896 RETURN
－898 REM＊＊＊SPRITE POSITIONS＊＊＊
－899 REM＊＊POSSIBLE POSITIONS DIM＇ED
－90f） \(\mathrm{VZ}=32\) ： \(\mathrm{HZ}=362\) ：DIM HH（HZ），VV（VZ）， \(\mathrm{HB}(\mathrm{HZ}\) ）
－9r1 REM＊＊ASSIGN HORIZONTAL VALUES
 B
－9r13 X＝X＋1：IF X＞255 THEN X＝X－256：B＝3
－9r4 NEXT
－9r，5 REM＊＊ASSIGN VERTICAL VALUES
－9rر6 X＝2r）2：FOR I＝r）TO 9：VV（I）＝X：X＝X－1：NEX
T：FOR \(I=10\) TO \(14: V V(I)=X: X=X-2: N E X T \quad L A\)
－907 ：FOR I＝15 TO 18：VV（I）＝X：X＝X－3：NEXT：F OR I＝19 TO \(21: \mathrm{VV}(\mathrm{I})=\mathrm{X}: \mathrm{X=X} \mathbf{= 6}:\) NEXT
－9rر FOR \(I=22\) TO VZ：VV（I）\(=\mathrm{X}: \mathrm{X}=\mathrm{X}-12\) ：NEXT
IM
KA
MK
OD
IA

IK ． 929 REM＊＊INITIAL SPRITE POSITIONING
IO
LO－935 \(\mathrm{HP}=16 \mathrm{r}: \mathrm{VP=}=\) ）
LG
AG－931 POKE VT（ ()\(), \mathrm{VV}(\mathrm{VP}):\) POKE HT（ \((\boldsymbol{\jmath}), \mathrm{HH}(\mathrm{HP})\) ：
FG POKE HR，HB（HP）
LC－932 POKE VT（1），vV（VP）：POKE HT（1），HH（HP）CB
LC－939 REM＊＊TELL VIC－2 WHERE TO FIND SPRI
HC TE SHAPES
MC－94（ر）POKE LT（ 1 ），ST（ 1 ）：POKE LT（1），ST（1）
MC－ 996 RETURN

\title{
TVM：BHMC DICE 8 DATA STiUCTMRES＊ FROM PAGE 37
}

DIGE SIMULATOR
\(A B \cdot 1\) REM
JD
AG \(\cdot 2\) REM－－DICE SIMULATOR－－BA
AG • 3 REM RUPERT REPORT \＃21 OI
LG \(\cdot 4\) REM
LG • 5 REM RANDOMLY SIMULATE THE
LG－ 6 REM OUTCOMES FOR ROLLING THREE DICE
LG \(\cdot 7\) REM
LG－ 8 REM＞＞DETERMINE THE PROBABILITY THAT
LG－9 REM THE SUM IS ELEVEN
PC • \(10 \mathrm{~N}=1\) ：R \(\$=\operatorname{CHR} \$(18)\) ：REM RVS ON
PC－2f PRINT CHR\＄（147）；
PC •30）PRINT TAB（15）R\＄；＂く＜\＃ROLLS＂DO
PC－4r）PRINT TAB（15）R\＄；＂＜＜\＃SUCCESS＂AG
PC－50）PRINT TAB（15）R\＄；＂＜＜\％PROBABILITY＂BO
PC－60 \(A=\operatorname{INT}(\operatorname{RND}(0) * 6)+1 \quad\) PI
PC－7r） \(\mathrm{B}=\mathrm{INT}(\operatorname{RND}(\)（ر）\() * 6)+1 \quad \mathrm{AL}\)
PC－8r） \(\mathrm{C}=\mathrm{INT}(\operatorname{RND}(\)（ ）\() * 6)+1\) AO
PC－9r，TTL \(=A+B+C\) LK
PC－10ر）IF TTL＝11 THEN SXCS＝SXCS＋1 KO
PC •11ر PRINT CHR\＄（19）； \(\mathrm{N}:\) PRINT SXCS JM
PC－12r PROB \(=1 ヶ\) rر）＊SXCS／N ：PRINT PROB JG
PC－13（）\(N=N+1\)
CJ
PC－14r，GOTO 6r）
PG
＊Bug Repellent line codes at right of program lines are for C－64 only！See VIC codes on next page．
－ 1 REM
－ 2 REM－DICE ANALYZER－－
－ 3 REM RUPERT REPORT \＃21
－ 5 REM ENUMERATE ALL POSSIBLE
－ 6 REM OUTCOMES FOR ROLLING THREE DICE JE
－ 7 REM
－ 8 REM＞CALCULATE THE PROBABILITY THAT NA
－10 REM 1） 3 ONES ARE ROLLED NP
－ 11 REM 2）AT LEAST 1 THREE AND 1 SIX
\(\cdot 12\) REM 3）NO TWOS ARE ROLLED
－ 13 REM 4）THE SUM IS ELEVEN
－ 15 REM \(>\) ON THE NTH ROLL（ \(\mathrm{N}=1\) TO 216）：
－ \(16 \operatorname{REM} \operatorname{ROLL}(\mathrm{~N}, \mathrm{Y})=\operatorname{DIE} \mathrm{Y}^{\prime} \mathrm{S}\) VALUE
－ 17 REM CT \((\mathrm{N}, \mathrm{Z})=\#\) DICE WITH VALUE Z
－ 18 REM \(\operatorname{TTL}(\mathrm{N})=\) SUM OF DICE VALUES
－19 REM
－25 DIM \(\operatorname{ROLL}(216,3), \operatorname{CT}(216,6), \operatorname{TTL}(216), \operatorname{RN}\) UM（216）
－30）\(N=1: M=1\) ：PRINT CHR\＄（147）
－40）FOR A＝1 TO 6 ：FOR B＝1 TO 6
－5f）FOR C＝1 TO 6
－6r）PRINT A；B；C
－79） \(\operatorname{ROLL}(N, 1)=A: \operatorname{ROLL}(N, 2)=B: \operatorname{ROLL}(N, 3)=C\)
－80 \(\mathrm{CT}(\mathrm{N}, \mathrm{A})=\mathrm{CT}(\mathrm{N}, \mathrm{A})+1: \mathrm{CT}(\mathrm{N}, \mathrm{B})=\mathrm{CT}(\mathrm{N}, \mathrm{B})+1\)
－9f） \(\mathrm{CT}(\mathrm{N}, \mathrm{C})=\mathrm{CT}(\mathrm{N}, \mathrm{C})+1\)
－ 1 rر \(r\) ） \(\operatorname{TTL}(\mathrm{N})=\mathrm{A}+\mathrm{B}+\mathrm{C}\)
－11（） \(\mathrm{N}=\mathrm{N}+1\) ：NEXT C ：NEXT B ：NEXT A
－125）PRINT＂CALCULATING［3＂．＂］＂
－135）FOR N＝1 TO 216
－140）\(: \operatorname{IF} \operatorname{CT}(\mathrm{N}, 1)=3\) THEN \(\mathrm{T} 1=\mathrm{T} 1+1\)
－15（）：IF \(\operatorname{CT}(\mathrm{N}, 3)>=1\) AND \(\mathrm{CT}(\mathrm{N}, 6)>=1\) THEN \(T\) \(2=\mathrm{T} 2+1\)
－16r）： \(\operatorname{IF} \operatorname{CT}(\mathrm{N}, 2)=\) r）THEN T3＝T3＋1
－179）：IF TTL \((\mathrm{N})=11\) THEN \(T 4=\mathrm{T} 4+1: \operatorname{RNUM}(\mathrm{M})=\mathrm{N}\) ： \(\mathrm{M}=\mathrm{M}+1\)
－189）NEXT N
－190 PRINT
－2ヶر PRINT，＂\＃SUCCESS＂，＂\％PROBABILITY＂
－210 PRINT＂TEST 1＂，T1，T1＊1رヶر／216
－22ヶ PRINT＂TEST 2 ＂，T2，T2＊1sر）／216
－23ヶ PRINT＂TEST 3＂，T3，T3＊1ヶヶ）／216
－245 PRINT＂TEST 4＂，T4，T4＊10ヶ）／216
－250 PRINT
－26r PRINT＂SUCCESSFUL ROLLS FOR TEST 4：＂
－275）FOR M＝1 TO T4
－285）RM＝RNUM（M）
－290）PRINT ROLL（RM，1）；ROLL（RM，2）；ROLL（RM， 3），
－3rرr）NEXT M

\section*{VIC 20 BUG REPELLENT LINE CODES FOR TUMBLING DICE \＆DATA STRUCTURES} DICE SIMULATOR
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(1:\) & JD & 7： & JD & \＃4r）： & LK & ） \\
\hline 2： & PB & \＃8： & KJ & \＃5r）： & ME & \＃115：N0 \\
\hline 3： & OE & \＃9： & LG & \＃6r）： & PI & \＃12r）：CM \\
\hline 4： & JD & \＃15， & MI & \＃7r）： & AL & \＃13r）：CJ \\
\hline 5： & KL & \＃20， & JH & \＃80）： & A0 & \＃14ヶ）PD \\
\hline 6： & MK & \＃30）： & F0 & \＃9r）： & LK & \\
\hline
\end{tabular}

\section*{DICE ANALYZER（I6K EXPANSION REQUIRED！）}
\＃
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & JD & \＃7： & JD & \＃14： & JD & \＃ & \\
\hline 2： & IK & \＃8： & JI & \＃15： & IC & \＃ & 30： \\
\hline 3： & OE & \＃1）： & OI & \＃16： & IH & \＃ & 45 \\
\hline \＃4： & JD & \＃11： & MM & \＃17： & IE & \＃ & 50 \\
\hline & EF & \＃12： & FC & \＃18： & PO & \＃ & 6r， \\
\hline & & & & & & & \\
\hline
\end{tabular}

DF
DF
KK
AH
JD
JN
HH
FJ
ID
OD
OL
HH
NP
IA
BN
JP
AE
LI

\section*{15）；}

20）；RESPONSE
3r）

（J）
50）；
6r）EOL＝13 ；END－OF－LINE CHARACTER
7 7）BUFLEN \(=4\) ；；；LENGTH OF TEXT BUFFER
85）FILLCH＝\＄2r）；ASCII CODE FOR A SPACE
9r）CHROUT＝\＄FFD2
10（5）；
115）JMP START
125）；
130）TEXT ．BYTE＇YOU CAN FIND HIM IN 64K＇ ， 13
145）；
15 ）；CLEAR TEXT BUFFER
165）；
175）START LDA \＃FILLCH

\section*{RESPONSE}

100）；
11（）TEXT ．BYTE 87，72，69，82，69，32，73，83
12（）．BYTE \(32,84,72,69,32,67,79,77\)
13）．BYTE 77，79，68，79，82，69，63
14）；
15ヶ）BEGIN LDX \＃\({ }^{\circ}\)
16）；
179）LOOP LDA TEXT，X
189）JSR CHROUT
19r）INX
2rر）CPX \＃BUFLEN
215 BNE LOOP
220）RTS
See article for instructions on enteringl）
THE QUEST
1）；
2r）；THE QUEST
35）；

50）；
LEN＝23
7）CHROUT＝\＄FFD2
8r）；
J）JMP BEGIN

Yiguthery
\begin{tabular}{|c|c|c|}
\hline \＃8r）：EA & \＃140）：IL & \＃2rر）：GN \\
\hline \＃9r）：NP & \＃15r）：J0 & \＃21r）：NK \\
\hline \＃10r）：IA & \＃16r）：IB & \＃220：KH \\
\hline \＃115：AJ & \＃175：FF & \＃23r）：BA \\
\hline \＃12ヶ）：EL & \＃189：NG & \＃24r）：KN \\
\hline \＃13r）： ON & \＃191）：JJ & \＃250：JJ \\
\hline A D & & Tr19 \\
\hline
\end{tabular}

26r）：MG
279：OM
28）：CB
291）：NG
3050 ：NH
\(\longrightarrow\)

\section*{ADDRESSING THE}
）
\(\square\)
            ;
            *=\$8rjof ;OR 'ORG EQU \$8
            LDX \#BUFLEN
19r) STUFF DEX
2rر) STA TXTBUF, X
215 BNE STUFF

22（）；
230）；STORE MESSAGE IN BUFFER
245）；
250）LDX \＃
26r）LOOP1 LDA TEXT，X
275）STA TXTBUF，X
28）CMP \＃EOL
290）BEQ PRINT
3rs）INX
315）CPX \＃BUFLEN
32f）BCC LOOP1
33（）；
345 ；PRINT MESSAGE
35（）；
360 PRINT LDX \＃\({ }^{3}\) ）
375）LOOP2 LDA TXTBUF，X
38）PHA
39r）JSR CHROUT
40 r）PLA
41\％CMP \＃EOL
420 BNE NEXT
43r）JMP FINI
445）NEXT INX
450）CPX \＃BUFLEN
46r）BCC LOOP2
475）；
485）FINI
490）RTS
50）
519，TXTBUF＝＊
520＊＝＊＋BUFLEN
53（）；
545）．END

\section*{SUPERHERO \\ FROM PAGE 17}

－10）REM
－2r）REM BY J．C．HILTY
－30）REM 1 1 36 BARNSLEY DR．
－4r）REM LIBRARY，PA．， 15129
－1ر厅ノ PRINT＂［CLEAR］＂

－1رJ3 Q＝192：L＝1141：C＝28：CM＝54272：M＝「ر
－1rر5 V＝53248：0＝54272
－1rر8 POKE 52，48：POKE 56，48
－11ヶ POKE 53281，6：POKE 5328「，2
12r）PRINT＂［DOWN］［DOWN］＂TAB（5）＂［RVSON］［RE
D］［7 \(]\)［c＊］
CH
130）PRINT TAB（5）＂［RVSON］［8＂＂］［c＊］＂NL 14）PRINT TAB（5）＂［RVSON］［BLACK］［RED］［Y BLACK］［PED］［ c ＊］［BLACK］［PED］［ \(\mathrm{c} *\) ； B LACK］［RED］［ \(c\)＊］［BLACK］［RED］［ \(c *\) ］＂CE
－15r）PRINT TAB（5）＂［RVSON］［BLACK］［YELLOW ］［7＂＂］［BLACK］［RED］［ \(c\)＊］［BLACK］［RED］ ［BLACK］［RED］［3＂＂］［BLACK］［RED］［3＂＂］ ［BLACK］［RED］［c＊］＂
－16r）PRINT TAB（5）＂［RVSON］［BLACK］［YELLOW ］［5＂＂］［BLACK］［3＂＂］［YELLOW］［BLACK］［ YELLOW］［BLACK］［YELLOW］［3＂＂］［BLACK］［ YELLOW］［3＂＂］［BLACK］［YELLOW］［3＂＂］＂JG
－17r）PRINT TAB（5）＂［BLACK］［c＊］［RVSON］［YE LLOW］［7＂＂］［BLACK］［YELLOW］［BLACK］［Y ELLOW］［BLACK］［YELLOW］［BLACK］［YELLOW ］［BLACK］［YELLOW］［BLACK］［YELLOW］［B LACK］［YELLOW］＂
－180）PRINT TAB（6）＂［BLACK］［c＊］［RVSON］［YEL LOW］［7＂＂］［BLACK］［YELLOW］［BLACK］［YE LLOW］［BLACK］［YELLOW］［3＂＂］［BLACK］［YE LLOW］［RVSOFF］［RVSON］［BLACK］［YELLOW］［ 3＂＂］［BLACK］［c＊］＂
－190）PRINT TAB（1 15\()\)＂［RVSON］［BLACK］［YELLO W］［BLACK］［YELLOW］［BLACK］［YELLOW］ ［BLACK］［YELLOW］［RVSOFF］［BLACK］［c＊］［ RVSON］［YELLOW］［3＂＂］［RVSOFF］［BLACK］［c＊ ］［RVSON］［YELLOW］［RVSOFF］［BLACK］［c＊］［R VSON］［YELLOW］＂
－20ر）PRINT TAB（5）＂［RVSON］［BLACK］［RED］［4＂ ＂］［BLACK］［YELLOW］［BLACK］［YELLOW］［6 ＂＂］［RVSOFF］［BLACK］［c＊］［RVSON］［YELLOW］ ＂
－22（）PRINT TAB（5）＂［BLACK］［c＊］［RVSON］［YE LLOW］［7＂＂］＂
－235）PRINT TAB（6）＂［BLACK］［c＊］［RVSON］［YEL LOW］［7＂＂］［RVSOFF］［RVSON］［BLACK］［RED］［ c＊］［BLACK］［RED］［c＊］［RVSOFF］［RVSON］［B LACK］［RED］［3＂＂］［c＊］［RVSOFF］［RVSON］［B LACK］［RED］［c＊］［RVSOFF］［RVSON］［BLAC K］［RED］［c＊］＂
－245 PRINT TAB（15）＂［RVSON］［BLACK］［YELLOW ］［BLACK］［YELLOW］［RVSOFF］［RVSON］［BLAC K］［YELLOW］［4＂＂］［RVSOFF］［RVSON］［BLACK］ ［YELLOW］［3＂＂］［RVSOFF］［RVSON］［BLACK］ ［YELLOW］［3＂＂］＂
－250）PRINT TAB（15）＂［RVSON］［BLACK］［YELLOW ］［BLACK］［YELLOW］［RVSOFF］［RVSON］［BLAC K］［YELLOW］［BLACK］［c＊］［RVSOFF］［RVSO N ］［YELLOW］［BLACK］［YELLOW］［RVSOFF］［ RVSON］［BLACK］［YELLOW］［BLACK］［YELLOW］ ＂
－26！PRINT TAB（15）＂［RVSON］［BLACK］［YELLOW ］［3＂＂］［RVSOFF］［RVSON］［BLACK］［YELLOW］［ 3＂＂］［RVSOFF］［RVSON］［BLACK］［YELLOW］［3 ＂＂］［RVSOFF］［RVSON］［BLACK］［YELLOW］［B LACK］［YELLOW］＂
－275 PRINT TAB（15）＂［RVSON］［BLACK］［YELLOW ］［BLACK］［YELLOW］［RVSOFF］［RVSON］［BLAC K］［YELLOW］［BLACK］［c＊］［RVSOFF］［RVSO

N］［BLACK］［YELLOW］［BLACK］［RVSOFF］［c＊］［ RVSON］［YELLOW］［RVSOFF］［RVSON］［BLACK］ ［YELLOW］［BLACK］［YELLOW］＂
－28r）PRINT TAB（15）＂［BLACK］［c＊］［RVSON］［YE LLOW］［RVSOFF］［BLACK］［c＊］［RVSON］［YELLOW ］［RVSOFF］［BLACK］［c＊］［RVSON］［YELLOW］［4 ＂＂］［RVSOFF］［BLACK］［c＊］［RVSON］［YELLOW］ ［RVSOFF］［BLACK］［c＊］［RVSON］［YELLOW］［R VSOFF］［BLACK］［c＊］［RVSON］［YELLOW］［3＂＂］ ＂
－29rر PRINT
－30ر）PRINT TAB（9）＂SAVE THE SPACE SHUTTLE＂
－315 PRINT TAB（16）＂PRESS ANY KEY＂
－320 GET A\＄：IF A\＄＝＂＇＂THEN 32 \({ }^{\circ}\)
－330）PRINT＂［HOME］＂：PRINT＂［21＂［DOWN］＂］＂T AB（15）＂PLEASE WAIT［ 3 ＂．＂］＂
－345 PRINT TAB（15）＂READING DATA＂
－375 FOR X＝12288 TO 1235（）
－38 ）READ A：POKE X，A：NEXT
－39（）FOR X＝12352 TO 12414
－4rf）READ A：POKE X，A：NEXT
－41f FOR X＝ 12416 TO 12478
－42 5 READ A：POKE X，A：NEXT
－435 FOR X＝1248（）TO 12542
－445）READ A：POKEX，A：NEXT
－464 FOR X＝828 TO 973
－ 466 READ A：POKEX，A：NEXT
－475）PRINT＂［CLEAR］＂
－48ヶ POKE 5328ヶ，っ：POKE 53281，っ
－490）POKE 2rر4r，194：POKE 2r44， 195
－ 50 ر）POKE V \(+39,6\) ：POKE \(V+4\) r， 1
 POKE V \(+3,14\) ；
－53f）POKE \(V+29,3\) ：POKE \(V+23,3\)
－54 ）POKE V \(+28,1\) ：POKE V +37 ， 1 ノ ：POKE \(V+38,2\) OD
－550）PRINT＂［HOME］＂：PRINT＂［DOWN］［CYAN］＂TAB （12）＂GRAPHICS［3＂＂］CHART＂
－56「今 POKE V＋21，3
－57ヶ）PRINT＂［5＂［DOWN］＂］＂TAB（12）＂［EP］［6＂＂］ SUPERHERO＂
－589）PRINT＂［6＂［DOWN］＂］＂TAB（18）＂SPACESHUTT LE＂
－590）PRINT＂［4＂［DOWN］＂］＂TAB（12）＂［GREEN］＊［C YAN］［5＂＂］ZYPTONITE METEOR＂
－6rر）PRINT＂［DOWN］＂TAB（14）＂PRESS ANY KEY＂
－615 GET A\＄：IF A\＄＝＂＂THEN 610
－620 PRINT＂［CLEAR］＂：POKE V＋21，r，
－63ヶ POKE 5328ヶ，2：POKE 53281，っ
－7rر）DIMA（3）
－71ヶ \(A(\)（ر）\()=2: A(1)=-8\) ノ \(: A(2)=-2: A(3)=8\)（
－729 WL＝16 \()\) ： \(\mathrm{HL}=32: S C=1\)（24： \(\mathrm{A}=\mathrm{SC}+81\)
－745 FOR I＝1 TO 6
－741 PRINT＂［RVSON］［GREEN］［15＂＂］［RV SOFF］［7＂＂］［RVSON］［17＂＂］＂
－ 742 NEXT I
－ 744 FOR I＝1 TO 9
－745 PRINT＂［RVSON］［39＂＂］＂
－ 746 NEXT I
－748 FOR I＝1 TO 8
DA
－750）PRINT＂［RVSON］［15＂＂］［RVSOFF］［7＂＂］［R VSON］［17＂＂］＂

PM
－760 NEXT I
－775 POKEA，4
－785 \(\mathrm{J}=\mathrm{INT}(\operatorname{RND}(1) * 4): \mathrm{X}=\mathrm{J}\) MN

MO
－790） \(\mathrm{B}=\mathrm{A}+\mathrm{A}(\mathrm{J})\) ：IF PEEK（B）＝WLTHENPOKEB， \(\mathrm{J}:\) PO KEA＋A（J）／2，HL：A＝B：GOTO 785

BP

－819 J＝PEEK（A）：POKE A，HL：IFJく4THENA＝A－A（J ）：GOTO 78
－825 PRINT＂［HOME］＂：PRINT＂［15＂［DOWN］＂］＂TAB （16）＂［CYAN ］SCORE＂

DN
－835）PRINT TAB（17）；SR LI
－831 PRINT＂［4＂［DOWN］＂］＂TAB（16）＂ALT＂：PRINT TAB（16）；ALT
－ 832 PORE 2 2 なヶ）， 192 MF
－ 833 POKE \(V+\)（r， 15 （ \()\) ：POKE \(V+1,6 r\) ：POKE \(V+2,15\)
ケ：POKE V＋3，19r）
OK
－ 834 POKE V＋21，3
－845 POKE 1113，81 ：POKE 1113＋CM， 7
－ 842 POKE 1835，81：POKE 1835＋CM， 7 FC

JF
FD \(\cdot 844\) POKE 1825，81：PORE 1825＋CM， 7 AH
BA－846 POKE 15 \(159,81:\) POKE 15 ノ \(9+\) CM， 7 EP
DC \(\cdot 848\) POKE 1599，81：POKE 1599＋CM， 7 EF
BA－850 POKE 16r，5，81：POKE 16r，5＋CM， 7 PL
KC •852 POKE 1137，81：POKE 1137＋CM， 7 AF
BA－854 POKE 1131，81：POKE 1131＋CM，7 GJ
HH－856 POKE 1857，81：POKE 1857＋CM， 7 JF
BH－858 POKE 1851，81：POKE 1851＋CM，7 GJ
IP－86r）POKE 1141，28：POKE 1141＋CM，3 FE

IMPORTANT！
Letters on white background are Bug Repellent line codes．Do not enter them！Pages 85 and 86 explain these codes and provide other essential information on entering Ahoy！programs．Refer to these pages before entering any programs！

 KEO \(+6,248\)
－ 2 rر2 \()\) POKEO \(+24,15\) ：POKEO \(+4,17\)
－2rر3r）FOR T＝rرTO5（NEXT
－ 2 rر4r POKEO＋4， 16
－2050 FOR T＝r，TO5 \()\) ：NEXT
－2rر6r）POKEO＋24， 0
－2r 170 RETURN
－ 21 rر \(r\) FOR \(X=0\) TO \(0+24\) ：POKEX，r）：NEXT
－ 2110 POKEO \(+24,15\) ：POKEO \(+12,16\) ）：POKEO \(+13,2\) 52
－ 212 （ 1 POKEO \(+8,8\)（ \():\) POKEO \(+7,4\) ヶ \(:\) POKE \(0+11,129\)
－213rر FOR T＝rرTO1rرノ：NEXT
－214rر POKEO＋11，128：RETURN
－25（ر）\(ر\) PRINT＂［CLEAR］＂
－250）2 PRINT＂［CYAN］［15＂［DOWN］＂］＂TAB（6）＂CON GRATULATIONS＂
－25rJ3 PRINT＂［DOWN］［6＂＂］PLAY ON！＂
－25r）4 FOR T＝r）TO 3rرrرr）：NEXT
－251（ \() \mathrm{M}=\)（ \()\)
－ 252 の \(\mathrm{SR}=\mathrm{SR}+1\)（ر） \(\mathrm{f}: \mathrm{ALT}=\mathrm{ALT}-2\)（ر）
－ \(2525 \mathrm{~L}=1141\)
－ 2528 PRINT＂［CLEAR］＂
－253（J）GOTO 71
－3rرrرrs PRINT＂［CLEAR］＂
－ 3 rors 5 FOR T＝1 TO 30
－3rر1r）POKE V＋39，2：POKE V＋39，1：POKE V＋39，6 LL
－3r）2r NEXT
－3rر3or GOSUB 21 ror
－3rر40 PRINT＂［14＂［DOWN］＂］SORRY，A ZYPTONITE
METEOR CRUSHED YOU．＂

－3rjors GOTO 4rjors
－350ر）PRINT＂［CLEAR］＂
－351r）FOR T＝1 TO 2r

－353rر NEXT
－354（ ）GOSUB 21rر）
－355（）PRINT＂［12＂［DOWN］＂］［CYAN］THE SHUTTLE IS 8rر厅 MILES UP－－TOO LATE．＂

－357rs GOTO 4rorjos
－4rرァرs PRINT＂［CLEAR］＂
－4rرO5 POKE V＋21， 5
－4厅1の PRINT＂［12＂［DOWN］＂］［RED］S C O R E＂ ；SR
－4ヶ2の PRINT＂［DOWN］［DOWN］PLAY AGAIN［3＂－＂］ OR N＂

－404r）GET A\＄：IF A\＄＝＂＂THEN 4rر4
－4050 IF A\＄＝＂Y＂THEN 4060
－ 4 （J55 END
－4rر6r）PRINT＂［CLEAR］＂
－ 4 r） 7 （ \() ~ M=\)（
－4rر8r）L＝1141
－4rjgr）ALT＝rرrjes

CE

\section*{NL}

GB
IM
GC
IM
GH
IM
CH
JO
FB
LC
HA
HH
GK
KF
PL
DG
NI
LN
HH
CA
HH
NI
IA
FE

PL
FF
HH
MF
FD
IA
FE

PL
FF
HH
FF

OM

DK
FG
LO
MF
IC
HH
DG
LN
LN
－ 41 （ر）SR \(\mathrm{S}=\) ر ..... IO
－411r GOTO 715 ..... CA
－624今 REM MULTICOLOR SUPERHERO X3 ..... OF
ケ， 3,16 ヶ，ヶ， 12,16 ヶ，っIG
 128, ケ，192，128，ケ，192，192， ..... MJ
－627ヶ DATA 192,192, ヶ，192，128，ヶ，192，128，厄，AN
－628『 DATA ケ，192，ァ，ケ，192，ケ，ケ，24ヶ，『 ..... FI

 ..... EI
6，192，ケ，192，192，ァ，194，32，ケKF
8,12, ，，12，12，门，ケ，15，门IN


2，192，ヶ，192，192，ヶ，194，32，ヶ）MO
 3，48，ヶ，3，48，ヶ，3，252，っ） ..... GA
－635 • REM SPACESHUTTLE ..... EA
OJ
－637r，DATA 63，255，192，63，255，224，61，85，48，63，255，56OJ
，厄，厄，48，「GG
，门，门，门CG
－645 6 ，REM ML JOYSTICK ROUTINE ..... PM
－646（6）DATA \(173,1,22\)（ \(, 74,176,4\)（），74，74，176，11，169，厄FB
－647ノ DATA \(133,254,169,41,133,253,76,182\) ，3，74，176，11，169，厄，133，254，169，39NM
－648（J）DATA \(133,253,76,182,3,169\), ケ，133， 254，169，4（ ，133，253，76，182，3，74， 176CA
－649（）DATA 39，74，176，11，169，39，133，254，169，门，133，253，76，182，3，74，176， 11KH
－65ヶر DATA \(169,41,133,254,169\), 门，133，253，7\(6,182,3,169,4 \rho, 133,254,169\), ，NF－651今 DATA \(133,253,76,182,3,74,176,11,169\)，ケ，133，254，169，1，133，253，76，182，3 LG
-652 ( ) DATA 74, 176, 11, 169,1,133,254,169, ァ,
    \(133,253,76,182,3,169\), , \(, 133,254 \mathrm{CH}\)
    -653() DATA \(133,253,173,1,22\) (), 74, 74, 74, 74,LJ
 ..... EM
AHOY！DOCK
FROM PAGE 30
－厅 PRINT＂［CLEAR］＂HH
IB
－ 2 GOTO1OrCF
－15 PRINT＂［CLEAR］＂：PRINTTAB（12）；＂ONE MOME NT READING＂：PRINT：PRINTTAB（2〕－LEN（Z\＄）／2） ；Z\＄
－15 OPEN5，8，5，＂「：：＂＋Z\＄＋＂，S，R＂：INPUT\＃15，AX，
 － 18 FORI＝1TO5かっ： \(\mathrm{C}=\mathrm{I}\)
2r）INPUT\＃5，SU\＄（I），TA\＄（I），AN\＄（I），MN\＄（I），I D\＄（I），CM\＄（I）
－30）IFSU\＄（I）＝＂EOF＂THENCLOSE5：C＝C－1：RETURN EM
－4r）NEXT
－50）PRINT：PRINT＂4r）CHARACTERS MAXIMUM＂：FO RI＝1T04رった：NEXT：PRINT＂［CLEAR］＂：RETURN OJ －6rJ PRINT：PRINT＂ 8 （J）CHARACTER MAXIMUM＂：FOR I＝1T04 今） \(0:\) NEXT：PRINT＂［CLEAR］＂：RETURN NB －88）OPEN5，8，5，＂＠ノ：＂＋Z\＄＋＂，S，W＂：FORI＝1TOC HN －82 PRINT\＃5，SU\＄（I）：PRINT\＃5，TA\＄（I）：PRINT\＃5 ，AN\＄（I）：PRINT\＃5，MN\＄（I）：PRINT\＃5，ID\＄（I）NF －83 PRINT\＃5，CM\＄（I）：NEXT：I＝C＋1
－84 SU\＄（I）＝＂EOF＂：TA\＄（I）＝＂TITLE＂：AN\＄（I）＝＂A UTHOR＂：MN\＄（I）＝＂MAG＂：ID\＄（I）＝＂ISSUE＂
－86 CM\＄（I）＝＂COMMENT＂：PRINT\＃5，SU\＄（I）：PRINT \＃5，TA\＄（I）：PRINT\＃5，AN\＄（I）：PRINT\＃5，MN\＄（I）JP
87 PRINT\＃5，ID\＄（I）：PRINT\＃5，CM\＄（I）
－ 88 CLOSE5：RETURN
－1ر厅）PRINT＂［CLEAR］＂：POKE5328ヶ，6：POKE53281 ，（）：FORI＝1T04ヶ）：PRINT＂［RED］［s S］［WHITE］［s S］＂；：NEXT：PRINT＂［RED］［s S］［WHITE］［s S］＂；KI －110 PRINT＂［RVSON］［c A］［32＂［s C］＂］［c S］［ RVSOFF］＂；
－12の PRINT＂［RED］［s S］［WHITE］［s S］＂；：PRIN T＂［RED］［s S］［WHITE］［s S］［RVSON］［s B］［RV SOFF］［32＂＝＂］［RVSON］［s B］［RVSOFF］［RED］［s S］［WHITE］［s S］＂；
－13（s）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＊＂］AHOY DO CK FILE［3＂＊＂］［RVSOFF］［5＂＝＂］［RVSON］［s B］ ［RVSOFF］［RED］［s S］［WHITE］［s S］＂；
－14）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［ \(5^{\prime \prime}=\)＂\(][\) RVSON］［22＂＂］［RVSOFF ］［5＂＝＂］［RVSON］［s B］［RVSOFF］［RED］［s S］［W HITE］［s S］＂；
－15（）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＂］ADD［4＂＂ ］－／－RECORD［RVSOFF］［5＂＝＂］［RVSON］［s B］［ RVSOFF］［RED］［s S］［WHITE］［s S］＂；
－16 5 PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＂］SEARCH－ ／－RECORD［RVSOFF］［5＂＝＂］［RVSON］［s B］［RV SOFF］［RED］［s S］［WHITE］［s S］＂；
－175）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＂］DELETE－ ／－RECORD［RVSOFF］［5＂＝＂］［RVSON］［s B］［RV SOFF］［RED］［s S］［WHITE］［s S］＂；
－18＇）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＂］MODIFY－ ／－RECORD［RVSOFF］［5＂＝＂］［RVSON］［s B］［RV SOFF］［RED］［s S］［WHITE］［s S］＂；
－190 PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］NFJP
［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＂］SORT［3＂ ＂］－／－RECORD［RVSOFF］［5＂＝＂］［RVSON］［s B］ ［RVSOFF］［RED］［s S］［WHITE］［s S］＂；OE
2rر）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＂］LIST［3＂ ＂］－／－RECORD［RVSOFF］［5＂＝＂］［RVSON］［s B］ ［RVSOFF］［RED］［s S］［WHITE］［s S］＂；
215 PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［3＂＂］PRINT－ ／－RECORD［RVSOFF］［5＂＝＂］［RVSON］［s B］［RV SOFF］［RED］［s S］［WHITE］［s S］＂；
－ 215 PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［5＂＝＂］［RVSON］［22＂＂］［RVSOFF ］［5＂＝＂］［RVSON］［s B］［RVSOFF］［RED］［s S］［W HITE］［s S］＂；
－22 \({ }^{\circ}\) PRINT＂\({ }^{\prime \prime}\) RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］［32＂＝＂］［RVSON］［s B］［RVSOFF］ ［RED］［s S］［WHITE］［s S］＂；
－ 23 r）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［c Q］［32＂［s C］＂］［c W］［RVSOFF］［RED］［s S］ ［WHITE］［s S］＂；
－24r）PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］＂；：PRINTCHR\＄（159）；：PRINT＂［R VSON］F1［3＂．＂］ADD［4＂＂］＂；：PRINTCHR\＄（5）；PG 25r）PRINT＂ 6 ＂\(=\)＂］＂；：PRINTCHR\＄（159）；：PRINT ＂［RVSON］F2［3＂．＂］SEARCH＂；：PRINTCHR\＄（31） ；：
－26r）PRINT＂［WHITE］［RVSON］［s B］［RVSOFF］［R ED］［s S］［WHITE］［s S］＂；：PRINT＂［RED］［s S］［ WHITE］［s S］［RVSON］［s B］［RVSOFF］＂；：PRINT CHR \(\$(159)\) ；：PRINT＂［RVSON］F3［3＂．＂］DELETE ＂；
27r）PRINTCHR\＄（5）；：PRINT＂［6＂＝＂］＂；：PRINTCH R\＄（159）；：PRINT＂［RVSON］F4［3＂．＂］MODIFY＂；BJ －285）PRINTCHR\＄（31）；：PRINT＂［WHITE］［RVSON］［ s B］［RVSOFF］［RED］［s S］［WHITE］［s S］＂；：PR INT＂［RED］［s S］［WHITE］［s S］［RVSON］［s B］［ RVSOFF］＂；：PRINTCHR\＄（159）；
－3 3ر）PRINTCHR \(\$(159)\) ；：PRINT＂［RVSON］F6［3＂ ＂］LIST［3＂＂］＂；：PRINTCHR\＄（31）；：PRINT＂［WHI TE］［RVSON］［s B］［RVSOFF］［RED］［s S］［WHITE ］［s S］［WHITE］＂；
－31s PRINT＂［RED］［s S］［WHITE］［s S］［RVSON］ ［s B］［RVSOFF］＂；：PRINTCHR\＄（159）；：PRINT＂［R VSON］F7［3＂．＂］PRINT＂；：PRINTCHR\＄（5）；：CE －325 PRINT＂［6＂＝＂］＂；：PRINTCHR\＄（159）；：PRINT ＂［RVSON］F8［3＂．＂］END［4＂＂］＂；：PRINTCHR\＄（3 1）；：
－33（）PRINT＂［WHITE］［RVSON］［s B］［RVSOFF］［R ED］［s S］［WHITE］［s S］＂；：PRINT＂［RED］［s S］［ WHITE］［s S］［RVSON］［c Z］［32＂［s s ］＂］［c X］ ［RVSOFF］＂；
－345）PRINT＂［RED］［s S］［WHITE］［s S］＂；：FORI ＝1T04r：PRINT＂［RED］［s S］＂；：PRINT＂［WHITE］［ s S］＂；：NEXT
－35r）GETRE \(:\) IFRE \(\$=\)＂＂THEN35 \(ر)\)
－36 3 IFRE \(\$=\) CHR \(\$(14\)（ر）THEN68 \()\)
－4rر）FORI＝133TO14r）：IFRE\＄＝CHR\＄（I）THEN52 0
－41r）NEXT
－42ヶ PRINT＂［CLEAR］＂：POKE53281，っ：POKE5328゚ر ，ノ：PRINT＂［WHITE］＂：PRINTTAB（12）；＂INVALID RESPONSE＂
－430）PRINT：PRINTTAB（7）；＂PLEASE PRESS FUNC TION KEY＂：RE \(={ }^{\prime \prime \prime \prime}:\) FORI＝1TO4（ر）\():\) NEXT
－44r）GOTO1号
－45r）DATA +++++++++++++++++++++++ ，＋．．．SELE
CTION MENU．．．．．＋，＋
\(+\mathrm{BN}\)
－460 DATA＋1－－BUSINESS＋，＋2－－－DI
SK OPERATION＋，＋3－－EDUCATIONAL＋AM
－47ノ DATA＋4－－FUN AND GAMES,\(++5--G R\)
APHICS,\(++6--\) HARDWARE + BM
－48 J DATA＋7－－HOME USE,\(++8--\) LA NGUAGES－MLX＋，＋9－－MISCELLANEOUS＋IL
－490 DATA＋10－MUSICAL＋，＋11－SI
MULATIONS,\(++12-\) SOFTWARE + EI
－50ヶノ DATA＋13－TUTORIAL＋，＋14－UT
ILITIES＋，＋＋BJ
－515 DATA＋．．．．PLEASE SELECT．．．．．＋，++++++++
\(+++++++++++++++\)
PN
－52（）PRINT＂［CLEAR］＂：PRINT：POKE5328ヶ」，7：POK E53281，1：PRINT＂［BLACK］＂：FORI＝1TO2ヶノ：READM \＄
－53（）PRINTTAB（9）；M\＄：NEXT：RESTORE：INPUT＂［9 ＂［RIGHT］＂］＂；SE\＄：SE＝VAL（SE\＄）
－ 532 IFSE \(=\)＂／＂THEN44 \()\)
－ 535 IFSE＜10RSE＞14THEN52の
－54（）IFSE \(={ }^{\prime \prime} 1\)＂THENZ \(=\)＂BUSINESS＂
－55 f \(ر\) IFSE \(=\)＂ 2 ＂THENZ \(=\)＂DISK OPERATION＂
－560 IFSE \(\$=\)＂ 3 ＂THENZ \(\$=\)＂EDUCATIONAL＂
－570 IFSE \(\$=\)＂ 4 ＂THENZ \(\$=\)＂FUN \＆GAMES＂
－580）IFSE \(=\)＂ 5 ＂THENZ \(=\)＂GRAPHICS＂
－59 f IFSE \(=\)＂ 6 ＂THENZ\＄＝＂HARDWARE＂
－6rرァ IFSE \(=\)＂ 7 ＂THENZ \(=\)＂HOME USE＂
－61ر IFSE \(=\)＂ 8 ＂THENZ\＄＝＂LANGUAGES－MLX＂
－62ر IFSE \(\$=\)＂ 9 ＂THENZ \(\$=\)＂MISCELLANEOUS＂
－630 IFSE \(=\)＂19 \({ }^{\prime \prime}\) THENZ\＄＝＂MUSICAL＂
－64r）IFSE \(=\)＂ 11 ＂THENZ\＄＝＂SIMULATIONS＂
－65r）IFSE \(\$=\)＂ 12 ＂THENZ \(=\)＝＂SOFTWARE＂
－66今 IFSE \(=\)＝＂13＂THENZ\＄＝＂TUTORIAL＂
－67r IFSE \(=\)＝＂ \(14^{\text {＂}}\) THENZ \(\$=\)＂UTILITIES＂
－680）RE＝ASC（RE\＄）：ON（RE－132）GOSUB1


－7ر今ノ REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊
－715 REM＊WRITTEN BY GLENN LUMPKINS
－72 9 REM＊FEB． 1985
－730 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊
－999 REM \(=====\) ADD ROUTINE \(=====\)
－1rرゥノر PRINT＂［CLEAR］＂：GOSUB1ヶ：PRINT＂［CLEAR \(]^{\prime \prime}: C=C+1\)
－1ヶ1ノ IFK＝1THENK＝＝：RETURN
－102の PRINTTAB（8）；＂［RVSON］：SUBJECT OFPJFJ
EI
DHEM

PL ARTICLE ：［RVSOFF］＂：PRINT＂［BLUE］＂；：INPUTS GK U\＄（C）
－1的25 IFSU\＄（C）＝＂／＂THENRETURN ..... DD
－1ヶ33 IFLEN（SU\＄（C））＞79THENGOSUB6「）：PRINT： GOTO1S2の

OL •1 154（）PRINT＂［BLACK］＂：PRINTTAB（8）；＂［RVSON］ ：TITLE［4＂＂］OF ARTICLE ：［RVSOFF］＂：PRIN T＂［BLUE］＂；：INPUTTA\＄（C）
－1rر45 IFTA\＄（C）＝＂／＂THEN1厅2の ..... GG
－1置5（）IFLEN（TA\＄（C））＞39THENGOSUB5（）：PRINT：G OTO154 5 ..... LH
－106r）PRINT＂［BLACK］＂：PRINTTAB（8）；＂［RVSON］：AUTHOR＇S［8＂＂］NAME ：［RVSOFF］＂：PRINT＂［BLUE］＂；：INPUTAN\＄（C）IJ
－10665 IFAN\＄（C）＝＂／＂THEN1（J4r） ..... GC
－1rر7r）IFLEN（AN\＄（C））＞39THENGOSUSB5ヶ）：PRINT：
GOTO1r， 6 rsMO
－1ر88ノ PRINT＂［BLACK］＂：PRINTTAB（8）；＂［RVSON］ ：［SS］NAME［5＂＂］OF MAGAZINE ：［RVSOFF］＂：PR INT＂［BLUE］＂；：INPUTMN\＄（C） ..... MM
 ..... JM
－1rر9r）IFLEN（MN\＄（C））\(>39\) THENGOSUB5（）：PRINT：G 0T01ヶ8 \({ }^{\circ}\) ..... AN
－110ヶ PRINT＂［BLACK］＂：PRINTTAB（8）；＂［RVSON］ ：ISSUE \＃／PAGE／DATE ：［RVSOFF］＂：PRINT＂ ［BLUE］＂；：INPUTID\＄（C） ..... AO
－11＇ノ5 IFID\＄（C）＝＂／＂THEN1 \(18{ }^{\circ}{ }^{\circ}\) ..... HI
－1110 IFLEN（ID\＄（C））\(>39\) THENGOSUSB5 \(!\) ：PRINT：
GOTO115，GH
－1120 PRINT＂［BLACK］＂：PRINTTAB（8）；＂［RVSON］
：COMMENTS OR［3＂＂］NOTES ：［RVSOFF］＂：PRINT＂［BLUE］＂；：INPUTCM\＄（C）IP
－113r）IFLEN（CM\＄（C））\(>79\) THENGOSUB6 \((\) ）：PRINT： GOTO112 5 ..... CO
 ..... HI
－1145）PRINT＂［BLACK］＂：PRINTTAB（5）；＂－＞PRESS
EG
KE
GC •115（）GETDE \(:\) ：IFDE \(=\)＝＂＇THEN115 \()\) ..... BO
AI

-116rJ PRINT"[CLEAR]":PRINTTAB(2rر-LEN(Z\$)/
CK •1175 PRINTTAB（5）；＂［RVSON］［C］［RVSOFF］ONTI
BP NUE OR［RVSON］［W］［RVSOFF］RITE TO DISK＂ ..... OF
    2) \(; \mathrm{Z} \$:\) PRINT
－118「）GETDE\＄：IFDE\＄＝＂＇THEN118「） ..... CD
－ 1185 IFDES＝＂／＂THENRETURN ..... IO
－119r）IFDE\＄＜＞＂C＂ANDDE\＄＜＞＂W＂THEN118r） ..... D0
－120ヶ）IFDE \(\$=\)＂C＂THENPRINT＂［CLEAR］＂： \(\mathrm{C}=\mathrm{C}+1: \mathrm{G}\) OTO1号2r ..... BL
－12ऽ5 PRINT：PRINTTAB（15）；＂WRITING TO＂：PRI NT：PRINTTAB（2「－LEN（Z\＄）／2）；Z\＄ ..... ED
－1219 GOSUB8「）：RETURN ..... MF
－ 1999 REM \(====\) DELETE ROUTINE \(=======\) ..... DN
－ 2 ったرノ PRINT＂［CLEAR］＂：PRINT：PRINT：PRINT ..... PH
－20ر） 5 PRINT＂DELETE［RVSON］［E］［RVSOFF］NT
IRE FILE OR［RVSON］［0］［RVSOFF］NE RECORD＂GEB0
－ 2 r）15 IFDE \(=\)＝＂／＂THENRETURN ..... IO
 ..... FI
－2rر3）IFDE \(\$=\)＂E＂THENGOSUB92 \(5 \rho\) ：RETURN ..... EP

－ 2999 REM＝＝＝＝＝SORT PART1＝＝＝＝＝＝＝
－3rرгァл GOSUB1ヶ：PRINT＂［CLEAR］＂：FORI＝1T05：PR INT：NEXT：PRINTTAB（15）；＂SORT BY＂：PRINT

－3rر2rر IFDE \(=\)＝＂S＂THENK1＝1：GOSUB93rرr）：GOTO3r）7 f
－3rر3r）IFDE\＄＝＂T＂THENK1＝2：GOSUB93rرr）：GOT03r）7「
 f）

GP
－3（）5rر IFDE \(=\)＝＂M＂THENK1＝4：GOSUB93（ر）：GOTO3r）7 f
－3rر6r）IFDE\＄＝＂I＂THENK1＝5：GOSUB93rرヶ）：GOT03r）7 （）
－3ヶ7ク）K1＝．：PRINT＂［CLEAR］＂：PRINTTAB（8）；＂ON E MOMENT WRITING SORTED＂：PRINT

－3rر9rر GOSUB8rر：RETURN
－ 3999 REM \(======\) PRINT RECORD／FILE \(======\)
－4гرァノノ PRINT＂［CLEAR］＂：PRINTTAB（8）；＂［RVSON］
［E］［RVSOFF］NTIRE OR［RVSON］［O］［RVSOFF］NE RECORD＂
－4rノ1の GETDE\＄：IFDE\＄＝＂＇THEN4の19
－4r2の IFDE\＄＝＂／＂THENRETURN
－4r3ア IFDE\＄〈＞＂E＂ANDDE\＄〈＞＂0＂THEN4の1の
 HENRETURN

－4（J6）OPEN3，4：XX \(=\)＝＂［s T］［17＂＝＂］［s Y］＂：PRI
NT\＃3，Z\＄；＂RECORD NUMBER＂；I：PRINT\＃3
－4ヶファノ PRINT\＃3：PRINT\＃3，XX\＄：PRINT\＃3，TAB（3）；
＂S U B J E C T＂：PRINT\＃3
－4（ر8）PRINT\＃3，SU\＄（I）：PRINT\＃3：PRINT\＃3，XX\＄：
PRINT\＃3，TAB（5）；＂T I T L E＂：PRINT\＃3
－4（ر9）PRINT\＃3，TA\＄（I）：PRINT\＃3：PRINT\＃3，XX\＄： PRINT\＃3，TAB（4）；＂A U T H O R＂：PRINT\＃3 JC
－41rر）PRINT\＃3，AN\＄（I）：PRINT\＃3：PRINT\＃3，XX\＄： PRINT\＃3，TAB（2）；＂M A G A Z I N E＂PG －411ヶ PRINT\＃3：PRINT\＃3，MN\＄（I）：PRINT\＃3：PRIN T\＃3，XX\＄：PRINT\＃3，TAB（5）；＂I S S U E＂NH －412 今 PRINT\＃3：PRINT\＃3，ID\＄（I）：PRINT\＃3：PRIN T\＃3，XX\＄：PRINT\＃3，TAB（3）；＂C O M M E N T＂BJ －4130 PRINT\＃3：PRINT\＃3，CM\＄（I）：CLOSE3：RETUR N

FL
－ 4199 REM \(=====\) PRINT ENTIRE RECORD \(======\) GL
－42ヶرノ PRINT＂［CLEAR］＂：PRINTTAB（14）；＂NOW PR INTING＂：PRINT：PRINTTAB（2rر－LEN（Z\＄）／2）；Z\＄OJ －421ر XX\＄＝＂［s T］［17＂＝＂］［s Y］＂：OPEN3，4：PRI NT：PRINT＂RECORD NUMBER＂
－4230 PRINT\＃3，Z\＄；＂FILE＂：PRINT\＃3 GH
－4245 FORI＝1TOC：PRINTI：PRINT\＃3：PRINT\＃3，＂\(=\) \(\Rightarrow\) RECORD NUMBER＂；\({ }^{\prime \prime}<=={ }^{\prime \prime}:\) PRINT\＃3 AA
－4250）PRINT\＃3，XX\＄：PRINT\＃3，TAB（3）；＂S U B J E C T＂：PRINT\＃3：PRINT\＃3，SU\＄（I）：PRINT\＃3 PD
－4260，PRINT\＃3，XX\＄：PRINT\＃3，TAB（5）；＂T I T L E＂：PRINT\＃3：PRINT\＃3，TA\＄（I）：PRINT\＃3 PE
－427rر PRINT\＃3，XX\＄：PRINT\＃3，TAB（4）；＂A U T H

－515（）PRINT＂［CLEAR］＂：PRINTTAB（12）；＂ENTER ＂；：PRINT＂［BLUE］＂；：PRINT＂［MAGAZINE］＂：PRIN T＂［BLACK］＂

AL
－516 INPUTM\＄：GOSUB1ノ：GOTO53rرゥ NF
－ 517 万 PRINT＂［CLEAR］＂：PRINTTAB（13）；＂ENTER ＂；：PRINT＂［BLUE］＂；：PRINT＂［ISSUE］＂：PRINT＂［ BLACK ］＂

JM
－518 INPUTI\＄：GOSUB1ヶ：GOT0530ヶ MJ M
－53 ر今 PRINT＂［CLEAR］＂：PRINT＂\＃＂；TAB（10）；＂0 NE MOMENT SEARCHING＂：PRINTTAB（2r）－LEN（Z\＄） ／2）； \(\mathrm{Z} \$\)

FE
－531，FORI＝1TOC
－514rر INPUTA\＄：GOSUB1ヶ：GOTO53ヶァر
－513（）PRINT＂［CLEAR］＂：PRINTTAB（13）；＂ENTER ＂；：PRINT＂［BLUE］＂；：PRINT＂［AUTHOR］＂：PRINT＂ ［BLACK］＂

JB
428「）PRINT\＃3，XX\＄：PRINT\＃3，TAB（2）；＂M A G A
Z I N E＂：PRINT\＃3：PRINT\＃3，MN\＄（I）
－429『）PRINT\＃3：PRINT\＃3，XX\＄：PRINT\＃3，TAB（5）；
＂I S S U E＂：PRINT\＃3：PRINT\＃3，ID\＄（I）BP
－43ヶرл PRINT\＃3：PRINT\＃3，XX\＄：PRINT\＃3，TAB（3）；
＂C 0 M M E N T＂：PRINT\＃3：PRINT\＃3，CM\＄（I）MI
－4319 PRINT\＃3：NEXT：CLOSE3：RETURN
GC
－4999 REM \(=====\) SEARCH ROUTINE \(======\) AA
－5rرrjr，PRINT＂［CLEAR］＂：FORI＝1TO5：PRINT：NEXT ：PRINTTAB（15）；＂SEARCH BY＂：PRINT

HN
501〕 PRINT：PRINTTAB（15）；＂［RVSON］［S］［RVSO FF ］UBJECT＂：PRINT：PRINTTAB（15）；＂［RVSON］［T ］［RVSOFF］ITLE＂：PRINT

CG
5ヶ2の PRINTTAB（15）；＂［RVSON］［A］［RVSOFF ］UTH OR＂：PRINT：PRINTTAB（15）；＂［RVSON］［M］［RVSOF F］AGAZINE＂：PRINT

EK
E

\begin{abstract}

\end{abstract}

C
0

\section*{C}

N
\[
\begin{align*}
& \text { MI } \\
& \text { GC } \\
& \text { AA } \\
& \text { HN }  \tag{C}\\
& \text { CG } \\
& \text { EK } \\
& \text { BL } \\
& \text { EC } \\
& \text { IO } \\
& \text { IC } \\
& \text { KC } \\
& \text { PL }  \tag{f}\\
& \text { AH }
\end{align*}
\] BLACK］＂
－512ヶ INPUTT\＄：G0SUB1ヶ：GOT053ヶァァ


\section*{}

A
```

G

```

KL • 5rj3（）PRINTTAB（15）；＂［RVSON］［I］［RVSOFF］SSU

－51ヶر INPUTS\＄：GOSUB1ヶ：GOTO53ヶرの

GG

－511ノ PRINT＂［CLEAR］＂：PRINTTAB（13）；＂ENTER
 ＂；：PRINT＂［BLUE］＂；：PRINT＂［TITLE］＂：PRINT＂［

LH



－5rر45 IFDE \(=\)＂／＂THENRETURN IO


 DE\＄く＞＂M＂ANDDE\＄く＞＂I＂THEN5ヶرァァر IC

－5 5055 IFF1＝1THENF1＝．：RETURN KC


 04 ：PRINT：NEXT：GOTO5（J9（）

－507 0 ）IFDE \(=\)＂T＂THENPRINT＂［CLEAR］＂：FORI＝1T
 04：PRINT：NEXT：GOTO5119

AH

－50）75 IFDE \(=\)＂ \(\mathrm{A}^{\text {＂THENPRINT＂}}\)［CLEAR］＂：FORI＝1T
 04：PRINT：NEXT：GOTO513

OM

－5（）8 ）IFDE \(=\)＂M＂THENPRINT＂［CLEAR］＂：FORI＝1T
 04：PRINT：NEXT：GOTO515 1

－5rر9rر PRINT＂［CLEAR］＂：PRINTTAB（13）；＂ENTER
 ＂；：PRINT＂［BLUE］＂；：PRINT＂［SUBJECT］＂：PRINT
 ＂［BLACK］＂


\section*{106 AHOY！}
 （SU\＄（I），LEN（S\＄））THENPRINTI；SU\＄（I）： \(\mathrm{K}=\mathrm{K}+1\) JB
－533 1 ，IFDE \(\$=\)＂T＂ANDLEFT \(\$(T \$\) ，LEN（T\＄））\(=\) LEFT \(\$\) （TA\＄（I），LEN（T\＄））THENPRINTI；TA\＄（I）： \(\mathrm{K}=\mathrm{K}+1\) LF
－5345 IFDE \(=\)＂I＂ANDLEFT\＄（I\＄，LEN（I\＄））＝LEFT\＄ （ID\＄（I），LEN（I\＄））THENPRINTI；ID\＄（I）： \(\mathrm{K}=\mathrm{K}+1\)
 （MN\＄（I），LEN（M\＄））THENPRINTI；MN\＄（I）：\(K=K+1 \quad B B\)
－5360 \(\operatorname{IFDE} \$=\)＂A＂ANDLEFT\＄（A\＄，LEN（A\＄））＝LEFT\＄ （AN\＄（I），LEN（A\＄））THENPRINTI；AN\＄（I）： \(\mathrm{K}=\mathrm{K}+1 \mathrm{~KB}\)
－537r）IFK＝15THENK＝r）：PRINT：PRINTTAB（4）；＂C0 RRECT RECORD FOUND［RVSON］［Y］［RVSOFF］OR ［RVSON］［N］［RVSOFF］＂：Y＝1
－538（）IFY＝1THENGETRE\＄：IFRE\＄＝＂＂THEN538（）
－ 5385 IFRE \(\$=\)＂／＂THENRETURN
－5390 IFY＝1ANDRE\＄く＞＂N＂ANDRE\＄く＞＂Y＂THEN538ノ DK
－54rر）IFRE\＄＝＂N＂THENPRINT＂［CLEAR］＂： \(\mathrm{Y}=.:\) RE \(\$\) ＝＂＂：NEXT：GOTO544r）

－ 5415 IFC \(=\) IANDK \(\Rightarrow\) ITHENK \(=15\) ：GOTO537 ，
－5420 NEXT：PRINT
－5430）PRINTTAB（11）；＂RECORD NOT FOUND＂：PRI NT
－5440）PRINTTAB（19）＂［RVSON］［A］［RVSOFF］BORT OR［RVSON］［R］［RVSOFF］ETRY
－545（）GETDE\＄：IFDE \(=="\) THEN545 \({ }^{\circ}\) ）
－546 5 IFDE \(=\)＝＂／＂ORDE \(\$=\)＂\(A\)＂THENRETURN
－547r）IFDE \(=\)＝＂R＂THENDE\＄＝＂＂：GOTO5rرjر
－548（ IFDE\＄＜＞＂A＂ANDDE\＄く＞＂R＂THEN545 5
－550ر）PRINT：PRINTTAB（13）；＂SELECT RECORD＂： PRINT＂［BLUE］＂；：INPUTRN：IFRN＞CTHEN55rر）KB
－551介 PRINT＂［BLACK］＂：PRINT＂［CLEAR］＂：I＝RN： FA＝1：GOTO7（S1r）
－ 5999 REM \(====\) MODIFY RECORD \(======\)

－6010 PRINTTAB（7）；＂［BLACK］＂；＂［RVSON］［1．S UBJECT OF ARTICLE ］［RVSOFF］＂：PRINT＂［BLUE ］＂；SU\＄（I）：PRINT
－6020）PRINTTAB（7）；＂［BLACK］＂；＂［RVSON］［2．T ITLE OF ARTICLE［3＂＂］］［RVSOFF］＂：PRINT＂［B LUE］＂；TA\＄（I）：PRINT
－6030）PRINTTAB（7）；＂［BLACK］＂；＂［RVSON］［3．A UTHOR＇S NAME［6＂＂］］［RVSOFF］＂：PRINT＂［BLUE ］＂；AN\＄（I）：PRINT
－6054）PRINTTAB（7）；＂［BLACK］＂；＂［RVSON］［4．N AME OF MAGAZINE［ 3 ＂＂］］［RVSOFF］＂：PRINT＂［B LUE］＂；MN\＄（I）：PRINT
－6r）5r）PRINTTAB（7）；＂［BLACK］＂；＂［RVSON］［5．I SSUE \＃／PAGE／DATE ］［RVSOFF］＂：PRINT＂［BLUE ］＂；ID\＄（I）：PRINT
－6r，6r，PRINTTAB（7）；＂［BLACK］＂；＂［RVSON］［6．C OMMENT OR NOTE［ 4 ＂＂］］［RVSOFF］＂：PRINT＂［BL UE］＂；CM\＄（I）：PRINT
－6077）PRINTTAB（7）；＂［BLACK］＂；＂［RVSON］［7．W RITE TO DISK［6＂＂］］［RVSOFF］＂：PRINT OC
－6rر8r）PRINTTAB（7）；＂［3＂＝＂］＞CHANGE WHICH LI NEく＝＝＂
－6rرgr）GETDE\＄：IFDE\＄＝＂＇THEN6rرgrر
－61ر厅）DE＝VAL（DE\＄）：IFDE\＄＝＂／＂THENRETURN
NL
－611r IFDE＜10RDE＞7THEN6 1 gorر
－6129 IFDE＝7THENGOSUB8（：RETURN
－613）IFDE＝1THENPRINT＂［CLEAR］＂：PRINTTAB（5 ）；＂［RVSON］：SUBJECT OF ARTICLE ：［RVSOFF］ ＂：PRINT：PRINT＂［BLUE］＂；
－6145 IFDE \(=1\) THENPRINTSU\＄（I）：PRINT：PRINT＂E
NTER NEW VALUE＂：PRINT：INPUTSU\＄（I）NH
－6150 IFLEN（SU\＄（I））\(>79\) THENGOSUB6 \()\) ：PRINT：G
OT0613r）
－6155 IFSU\＄（I）＝＂／＂THENRETURN GN
－6160）IFDE＝2THENPRINT＂［CLEAR］＂：PRINTTAB（5 ）；＂［RVSON］：TITLE OF ARTICLE ：［RVSOFF］＂： PRINT：PRINT＂［BLUE］＂；

－6175 IFDE＝2THENPRINTTA\＄（I）：PRINT：PRINT＂E
 NTER NEW VALUE＂：PRINT：INPUTTA\＄（I）
－618（）IFLEN（TA\＄（I））\(>39\) THENGOSUB5（）：PRINT：G 0T0616r）
－6185 IFTA\＄（I）＝＂／＂THENRETURN ..... GO
－6190）IFDE＝3THENPRINT＂［CLEAR］＂：PRINTTAB（5 ）；＂［RVSON］：AUTHOR＇S NAME ：［RVSOFF］＂：PRI NT：PRINT＂［BLUE］＂； ..... HE
－62ヶر）IFDE＝3THENPRINTAN\＄（I）：PRINT：PRINT＂E NTER NEW VALUE＂：PRINT：INPUTAN\＄（I） ..... FL
－6215 IFLEN（AN\＄（I））\(>39\) THENGOSUB5（）：PRINT：G OT0619r， ..... OI
－ 6215 IFAN \(\$(I)=\)＂／＂THENRETURN ..... DA
－622 5 IFDE＝4THENPRINT＂［CLEAR］＂：PRINTTAB（5）；＂［RVSON］：NAME OF MAGAZIZNE ：［RVSOFF］＂：PRINT：PRINT＂［BLUE］＂；EE
－623（）IFDE＝4THENPRINTMN\＄（I）：PRINT：PRINT＂E NTER NEW VALUE＂：PRINT：INPUTMN\＄（I） ..... KG
－6240 IFLEN（MN\＄（I））\(>39\) THENGOSUB5（）：PRINT：G 0T0622r ..... GM
－ 6245 IFMN \(\$(I)=\)＂／＂THENRETURN ..... EE
－625r）IFDE＝5THENPRINT＂［CLEAR］＂：PRINTTAB（5 ）；＂［RVSON］：ISSUE／PAGE／DATE ：［RVSOFF ］＂：PRINT：PRINT＂［BLUE］＂； ..... IA
－626r）IFDE＝5THENPRINTID\＄（I）：PRINT：PRINT＂E NTER NEW VALUE＂：PRINT：INPUTID\＄（I） ..... JB
－627r）IFLEN（ID\＄（I））＞39THENGOSUB5 \(\int\) ：PRINT：G 0T0625！ ..... DP
－6275 IFID\＄（I）＝＂／＂THENRETURN ..... DG
－6285）IFDE＝6THENPRINT＂［CLEAR］＂：PRINTTAB（5 ）；＂［RVSON］：COMMENTS OR NOTES ：＂：PRINT：P RINT＂［BLUE］＂； ..... BL
－629r）IFDE＝6THENPRINTCM\＄（I）：PRINT：PRINT＂E NTER NEW VALUE＂：PRINT：INPUTCM\＄（I） ..... AO
－63（ر）IFLEN（CM\＄（I））\(>7\)（JTHENGOSUB6 \():\) PRINT，G 0T0628， ..... DP
－63（J5 IFCM\＄（I）＝＂／＂THENRETURN ..... CF
－6310 PRINT＂［CLEAR］＂：GOTO6rs1rs ..... PO
－6999 REM \(====\) LIST + DELETE ROUTINE \(======\) ＝ ..... CE
－7rرァァ）PRINT＂［CLEAR］＂：GOSUB1ヶ：PRINT＂［CLEAR］＂：FORI＝1TOC：PRINT：PRINTOB
－7015 PRINTTAB（9）；＂［RVSON］［：SUBJECT OF ARTICLE：］［RVSOFF］＂：PRINT＂［BLUE］＂；SU\＄（I）：PR

INT
－702の PRINTTAB（9）；＂［BLACK］［RVSON］［：TITLE OF ARTICLE ：］［RVSOFF］＂：PRINT＂［BLUE］＂；TA \＄（I）：PRINT
－7ノ3゚）PRINTTAB（9）；＂［BLACK］［RVSON］［：AUTHOR ＇S NAME［5＂＂］：］［RVSOFF］＂：PRINT＂［BLUE］＂；A N\＄（I）：PRINT
－7ア4の）PRINTTAB（9）；＂［BLACK］［RVSON］［：NAME 0 F MAGAZINE ：］［RVSOFF］＂：PRINT＂［BLUE］＂；MN \＄（I）：PRINT
－7rノ5 \()\) PRINTTAB（9）；＂［BLACK］［RVSON］［：ISSUE \＃／PAGE／DATE ：］［RVSOFF］＂：PRINT＂［BLUE］＂；ID \＄（I）：PRINT
－7（J6）PRINTTAB（9）；＂［BLACK］［RVSON］［：COMMEN T OR NOTES ：］［RVSOFF］＂：PRINT＂［BLUE］＂；CM \＄（I）：PRINT
－7「65 IFFA＝1THENPRINT：PRINT＂［BLACK］＂；TAB 8）；＂PRESS ANY KEY TO CONTINUE＂

－7975 IFDE\＄＝＂／＂THENRETURN
－7r88）IFFA＝1THENFA＝．：RETURN
－7ヶ9の）IFFL＝1THENPRINT＂［BLACK］＂；TAB（5）；＂DE LETE THIS RECORD［RVSON］［Y］［RVSOFF］OR［ RVSON］［N］［RVSOFF］＂
－71رヶ IFFL＝1THENGETDE\＄：IFDE\＄＝＂＂THEN71ヶヶ
－711r IFFL＝1ANDDE \(=\)＂\(Y^{\prime \prime}\) THEN718 \({ }^{\prime}\)
－7120 IFFL＝1THENPRINT＂［CLEAR］＂：NEXTI：RETU RN
－ 7125 IFF4＝1THENPRINT＂［BLACK］＂；TAB（5）；＂MO DIFY THIS RECORD［RVSON］［Y］［RVSOFF］OR［ RVSON］［N］［RVSOFF］＂：GOTO7145
－713（）PRINT＂［BLACK］＂；TAB（7）；＂CONTINUE PAG ING［RVSON］［Y］［RVSOFF］OR［RVSON］［N］［RVS OFF］＂

－7145 IFDE\＄＝＂／＂THENRETURN
－715 1 万 IFDE\＄〈＞＂Y＂ANDDE\＄〈＞＂N＂THEN714rر
－ 7155 IFF4＝1ANDDE \(\$=\)＂N＂THENPRINT＂［CLEAR］＂： NEXT：RETURN
－716 ）IFDE＝＝＂N＂THENRETURN
－ 7165 IFF4＝1ANDDE \(\$=\)＂Y＂THENF4 \(=\). ：PRINT＂［CLE AR］＂：RETURN
－717ヶ PRINT＂［CLEAR］＂ ：NEXT：K2＝．：RETURN
－718r）SU\＄（I）＝＂DELETE＂：OPEN5，8，5，＂＠ノっ：＂＋Z\＄＋ ＂，S，W＂：PRINT＂［CLEAR］＂
－7190）PRINTTAB（4）；＂ONE MOMENT DELETING RE CORD \＃＂；I：FORI＝1TOC
－72ヶر IFSU \((\mathrm{I})=\)＂DELETE＂THENC \(=\mathrm{C}-1\) ：NEXT BI
－721ヶ PRINT\＃5，SU\＄（I）P\＄TA\＄（I）P\＄AN\＄（I）P\＄MN\＄ （I）P\＄ID\＄（I）P\＄CM\＄（I）
 LE＂：AN\＄（I）＝＂AUTHOR＂：MN\＄（I）＝＂MAG＂
－723r）ID\＄（I）＝＂ISSUE＂：CM\＄（I）＝＂COMMENT＂
－724r，PRINT\＃5，SU\＄（I）P\＄TA\＄（I）P\＄AN\＄（I）P\＄MN\＄ （I）P\＄ID\＄（I）P\＄CM\＄（I）：CLOSE5：FL＝．：RETURN
－ 7999 REM \(=====\mathrm{END}==\)
－8 8رっ今，PRINT＂［CLEAR］＂：FORX＝1TO12：PRINT：NEX T：PRINTTAB（9）；＂IT＇S BEEN A PLEASURE＂

BM

\section*{IMPORTANT！} Letters on white background are Bug Repellent line codes．Do not enter them！Pages 85 and 86 explain these codes and provide other essential information on entering Ahoy！programs．Refer to these pages before entering any programs！
\begin{tabular}{|c|c|}
\hline （）IFMN\＄（J）＜＝ & NC \\
\hline －952rر GOSUSB10jrjors & PP \\
\hline －953）NEXT：IFF＝1THEN950） & NK \\
\hline －954 \({ }^{\text {a }}\) RETURN & IM \\
\hline －9550）F＝．：FORI＝1TOC－1 & M \\
\hline  & NK \\
\hline －957rs GOSUB19jerjos & II \\
\hline －958）NEXT：IFF＝1THEN955 & NF \\
\hline －9590）RETURN & IM \\
\hline  \(1 \$=\mathrm{MN} \$(\mathrm{~J}): \mathrm{I} 1 \$=\mathrm{ID} \$(\mathrm{~J}): \mathrm{C} \$=\mathrm{CM}\)（J） & \\
\hline －1rر）10 SU\＄（J）＝SU\＄（J＋1）：SU\＄（ \(\mathrm{J}+1)=\) S1\＄：TA\＄（ J & \\
\hline \()=T A \$(\mathrm{~J}+1): \mathrm{TA} \$(\mathrm{~J}+1)=\mathrm{T} 1 \$\) ：F＝1 & OJ \\
\hline  & \\
\hline \()=\) MN \(\$(\mathrm{~J}+1): \mathrm{MN}\)（ \(\mathrm{J}+1)=\mathrm{M} 1\) \＄ & M0 \\
\hline －10ヶ）3r） \(\operatorname{ID\$ (J)=ID\$ (J+1):~ID\$ (J+1)=I1\$ :CM\$ (J~}\) & \\
\hline \()=\mathrm{CM} \mathrm{\$}(\mathrm{~J}+1): \mathrm{CM}\)（ \(\mathrm{J}+1)=\mathrm{Cl}\) \＄：RETURN & KA \\
\hline
\end{tabular}

\section*{cO－LISTER＊}

\section*{FROM PAGE 73}



\section*{START \＆END FILE ADDRESS \\ FROM PAGE 17}
－2 PRINT＂［CLEAR］［DOWN］［7＂＂］［RVSON］START \＆END FILE ADDRESS＂：REM BY DAVE SMART
－4 FORI \(=828\) T09 14 ：READA：POKEI，A：NEXT
A－6 OPEN15，8，15，＂I＇）＂
－ 8 INPUT＂［3＂［DOWN］＂］FILE TO CHECK＂；F\＄：P RINT
－15＂PMSD－3＂SEQ OG
－12 POKE251，P－S＊256：POKE252，S CI
－14 PRINT＂＂；F\＄
－16 OPEN1，8，2，＂「）：＂＋F\＄
－ 18 GET\＃1，A\＄，B\＄
GO
－2rر \(\mathrm{D}=\mathrm{ASC}(\mathrm{A} \$+\operatorname{CHR} \$(\mathrm{r}))+256 * \operatorname{ASC}(\mathrm{~B} \$+\mathrm{CHR} \$(\mathrm{r})) \mathrm{IL}\)
－22 INPUT\＃15，E，E\＄，E1，E2 ED
－24 IFE＞OTHENPRINT：PRINT，E\＄：CLOSE1：CLOSE1 5：END

KL
－35）PRINTTAB（15）＂START ADDR．（DEC）＂D JH
－32 W＝D：GOSUB54
－34 PRINTTAB（26）＂（HEX）＂H\＄
－36 PRINT＂［DOWN］PLEASE WAIT［3＂．＂］＂
－38 SYS831
－45 \(\mathrm{F}=\mathrm{P}: \operatorname{P}=\operatorname{PEEK}(251)+\operatorname{PEEK}(252) * 256: T=P\)
－42 Z\＄＝RIGHT\＄（＂［3＂＂］＂＋STR\＄（T－F），5）
－44 PRINT＂［UP］［18＂＂］＂Z\＄；＂BYTES OF MEM．［ DOWN］＂

JP
－46 \(\mathrm{Z}=\mathrm{VAL}(\mathrm{Z} \$) \quad \mathrm{KH}\)
－48 PRINTTAB（17）＂END ADDR．（DEC）＂\(Z+W: D=W+Z\) ：GOSUB54
－50）PRINTTAB（26）＂（HEX）＂H\＄NJ
－52 GOTO6r PG
－ \(54 \mathrm{H} \$=" \mathrm{l}: \mathrm{M}=4\)（ \() 96: \mathrm{N}=3:\) IFD＜256THENM＝16：N＝1 AL
－ 56 FORH＝rTON：C＝INT（D／M）：D \(=D-C * M: M=M / 16: C\) \(=\mathrm{C}+48\) ：IFC \(>57 \mathrm{THENC}=\mathrm{C}+7\)
－ \(58 \mathrm{H} \$=\mathrm{H} \$+\mathrm{CHR} \$(\mathrm{C}):\) NEXT：RETURN BL
－6r）CLOSE1：CLOSE15 BB
－62 PRINT＂［DOWN］［DOWN］DO YOU WISH TO CHEC K ANOTHER FILE（ \(\mathrm{Y} / \mathrm{N}\) ）＂

NH
－64 GETA\＄：IFA\＄＝＂＂THEN64 GB
－66 IFA\＄く＞＂Y＂THENEND DI
－68 IFA\＄\(=\)＂Y＂THEN6 DG
－75）DATA 76，96，3，162，1，32，198，255，32 NH
－ 72 DATA \(228,255,16\) r，（），145，251，23 OB OB
－ 74 DATA 251,2 「 \(8,8,23\) r），252，165，252 HA

DM
KH
00
DE

KC

JH

\section*{NJ}

IJ
DN

\section*{CN}

DH

\section*{AN \\ N}
－ 78 DATA 24 \(5,231,76,2\)（ر4，255，162，1，32

－ 82 DATA \(177,251,32,21\) ヶ，255，23ヶ， 251

－ 86 DATA 2 2 ر \(8,239,165,252,197,254,2\) ， 18
－ 88 DATA 233，162，55，134，1，76，2（ر4，255

\section*{FISH MATH}

FROM PAGE 29
－©）GOTO9（）
－ \(2 \mathrm{D}=\operatorname{INT}(\operatorname{RND}(1) * 9)+1\)
－ \(3 \mathrm{E}=\mathrm{INT}(\mathrm{RND}(1) * 9)+1: \mathrm{I}=\mathrm{D} * \mathrm{E}:\) PRINT＂［HOME］［2 2＂［DOWN］＂］［7＂［RIGHT］＂］＂；D；＂［RVSON］［s V］＂ ；E；

EM
－4 \(\mathrm{X}=2: \mathrm{Q}=\)（）：FORT \(=1 \mathrm{TO}:\) POKEU， \(241:\) FORTT＝1TO3 ケر：NEXT：POKEU，ノ：FORTT＝1TO5 ：NEXT：NEXT：GO T034
－8 IFQ＝ITHEN 18
－9 IFQく＞ITHEN7ノ
－ 14 POKEA，G：POKEA \(+\mathrm{B}, 2: \mathrm{Q}=\mathrm{Q}+1: \mathrm{FORT}=17\) 万TO135 STEP－1：POKEU＋1，T：NEXT：POKEU +1 ， ，\(:\) POKEA， 32 ：GOT040
－ \(18 \mathrm{~K}=\mathrm{K}+1\) ：PRINT＂［CLEAR］［BLACK］［RVSON］GREA T［3＂！＂］＂：PRINT＂［DOWN］［DOWN］［RED］［RVSON］C ORRECT ANSWER！＂：PRINT＂［DOWN］［DOWN］＂；D；＂［ RVSON］［s V］＂；E；＂＝＂；I
－19 PRINT＂［DOWN］［PURPLE］［RVSON］YOUR SCORE IS NOW＂；K：FORT＝135TO241：POKEU，T：NEXT D
－2（）POKEU，（ر：FORT＝1TO2：POKEU，241：FORTT＝1TO 2ヶヶ）：NEXT：POKEU，\(): F O R T T=1 T O 5 ヶ\) ：NEXT：NEXT
－ 21 PRINT＂［ \(\left.4^{\prime \prime}[D O W N]^{\prime \prime}\right][B L A C K][R V S O N] H I T ~ S P\) ACE＂
－ 22 IFPEEK（197）＜＞32THEN22
－ \(23 \mathrm{PP}=\mathrm{PP}+1:\) IFPP \(<1\) JTHEN29
－ 24 POKE36869，24r）：PRINT＂［CLEAR］［7＂＂］GAME OVER＂：PRINT＂［3＂［DOWN］＂］FINAL SCORE：＂；K OJ
－ 25 PRINT＂［4＂［DOWN］＂］YOU HAVE COMPLETED T EN PROBLEMS WITHOUT GUMS GETTING YOU！＂J
－ 26 PRINT＂［3＂［DOWN］＂］HIT［RVSON］F1［RVSOFF ］TO PLAY［10＂＂］AGAIN．＂
－ 27 IFPEEK（197）＜＞39THEN27
－ 28 RUN95
－29 PRINT＂［CLEAR］＂：POKE36869，255
－30） \(\mathrm{A}=8131\) ： \(\mathrm{B}=3\)（ر） 72 （ \(): \mathrm{C}=768\) ）\(: \mathrm{V}=36878\) ：POKEV ， 1
5： \(\mathrm{U}=36876: \mathrm{POKEV}+1,238: \mathrm{X}=1\)
－ 31 FORT \(=1 \mathrm{TO} 25: \mathrm{S}=\operatorname{INT}(\operatorname{RND}(1) * 396)+77 \mathrm{r} 2: \mathrm{PO}\)
KES，5：POKES＋B，ノ：NEXT：H＝7679
－ 33 IFX＝1THEN2
ML
－ 34 POKEC＋B，っ：POKEC \(+1+\mathrm{B}\) ，っ：POKEC， \(3:\) POKEC +1
， 4 ：IFA \(=\) CORA \(=\) C +1 THEN55
－ 35 WAIT653，1，1：IFC＞816rرTHENPOKEC，32：POKE \(\mathrm{C}+1,32: \mathrm{C}=768\) ，
－36 POKEA，32：F＝PEEK（197）：IFF \(\langle>23 A N D F<>31 T\) HENA＝A－22：G＝「）

AD
－ 37 IFF \(=31\) THENA \(=\mathrm{A}-1: \mathrm{G}=2\)
BC
－ 42 GOT033－ \(55 \mathrm{~L}=15\)GD
－ 56 FORT＝2ر厅TO135STEP－1：POKEU＋1，T：NEXT：POKEU \(+1,135\) ：FORT \(=1\) T05（ \()\) ：NEXT：POKEU +1 ， ，CL
－ \(57 \mathrm{~L}=\mathrm{L}-1:\) POKEV， \(\mathrm{L}:\) IFL \(>5\) THEN56 ..... KA
－58 FORT＝1TO15（r）：NEXT：POKEU－2，135：FORT＝1T O1ヶرゥヶ：NEXT：POKEU－2， ..... AL
－6r）POKE36869，24（）：PRINT＂［CLEAR］GUMS GOT Y A！＂：PRINT＂［4＂［DOWN］＂］BUT DON＇T WORRY，YOU［3＂＂］WERE DELICOUS！！＂BI
－61 PRINT＂［4＂［DOWN］＂］HIT［RIGHT］［RVSON］F1［ RVSOFF］TO PLAY AGAIN＂ ..... EO
－62 IFPEEK（197）＜＞39THEN62 ..... BC
－ 63 RUN29 ..... PO
－75 POKE36869，24r）：IFQ＞ITHENPRINT＂［CLEAR］Y OU ATE TOO MUCH！＂ ..... ID
－ 71 IFQ＜ITHENPRINT＂［CLEAR］YOU DIDN＇T EATENOUGH！＂ED
－72 FORT＝241TO135STEP－1：POKEU，T：NEXT：POKE U，っ：FORTT＝1TO1ヶヶ：NEXT：POKEU，14ヶ：FORT＝1T0 15 f 5 r
－73 NEXT：POKEU，厄：PRINT＂［DOWN］［DOWN］＂；D；＂［ s V］＂；E；＂＝＂；I；：PRINT＂［DOWN］［DOWN］YOU ATE ＂；Q
－ \(74 \mathrm{~K}=\mathrm{K}-1\) ：PRINT＂［DOWN］［DOWN ］YOUR SCORE IS NOW＂；K：GOTO21
－9r）POKE52，28：POKE56，28：CLR：FORI＝7168T076
79：POKEI，PEEK（I +256 rر \()\) ）：NEXT
－91 RESTORE：FORT＝1TO2 \():\) READF： \(\mathrm{NEXT}:\) FORG＝71 68T07221：READF：POKEG，F：NEXT
－ 92 DATA135，145，155，145，155，165，155，165，1 \(75,185,185,195,165,165,165,195,195,165,1\) 65，215
－93 DATA24，4ヶ，122，114，6「ノ，24，24，6ヶノ，ケ， 12,15 8，253，247，144，12，っ，ノ，48，121，191，239，9，48 ，\()\)
－94 DATA14，7，143，223，255，255，223，143，ケ，ケ，
 28，，厄，厄
－1رf）POKE36879，8：PRINT＂［CLEAR］［CYAN］［3＂［c ＋］＂］［SS］［3＂［c＋］＂］［SS］［3＂［c＋］＂］［SS］［c ＋］［SS］［c＋］＂：PRINT＂［c＋］［4＂［SS］＂］［c＋］［S S］［SS］［c＋］［3＂［SS］＂］［c＋］［SS］［c＋］＂：PRIN \(T^{\prime \prime}[c+][c+]\left[3^{\prime \prime}[S S]^{\prime \prime}\right][c+][S S][S S]\left[3^{\prime \prime}[c\right.\) ＋］＂］［SS］［3＂［c＋］＂］＂
－1رノ1 PRINT＂［c＋］［4＂［SS］＂］［c＋］［4＂［SS］＂］［c ＋］［SS］［c＋］［SS］［c＋］＂：PRINT＂［c＋］［3＂［SS ］＂］［3＂［c＋］＂］［SS］［3＂［c＋］＂］［SS］［c＋］［SS］ ［c＋］＂：PRINT：PRINT＂［3＂＂］［c＋］［3＂［SS］＂］［ \(c+][S S]\left[3^{\prime \prime}[c+]^{\prime \prime}\right][S S]\left[3^{\prime \prime}[c+]^{\prime \prime}\right][S S][c+\)
］［SS］［c＋］＂
－152 PRINT＂\([3\)＂＂］［c＋\(][\mathrm{c}+\)＋］［SS］［c＋］［c＋］ ［SS］［c＋］［SS］［c＋］［SS］［SS］［c＋］［SS］［SS］［ c＋］［SS］［c＋］＂：PRINT＂［3＂［SS］＂］［c＋］［SS］［ c＋］［SS］［c＋］［SS］［3＂［c＋］＂］［SS］［SS］［c＋］ ［SS］［SS］［3＂［c＋］＂］＂：PRINT＂［ 3 ＂＂］［c＋］［3＂ ［SS］＂］［c＋］［SS］［c＋］［SS］［c＋］［SS］［SS］［c ＋］［SS］［SS］［c＋］
［c＋］＂
－103 PRINT＂［3＂＂］［c＋］［3＂［SS］＂］［c＋］［SS］［ c＋］［SS ］［c＋］［SS］［SS］［c＋］［SS］［SS］［c＋］［ SS］［c＋］＂：PRINT＂［DOWN］［DOWN］［YELLOW］［3＂ ＂JBY KEVIN DEWEY．＂
－1rر4 PRINT＂［DOWN］［DOWN］［5＂＂］HIT ANY KEY＂ ；：POKE198，,
－105 PRINT＂［BLACK］＂：POKE36878，15
－156 RESTORE：FORT＝1T029：READU：POKE36876，U ：FORTT＝1TO1S厅：NEXT：POKE36876，\()^{\text {r }}\)
－157 GETA\＄：IFA\＄く＞＂＂THEN29
－ 108 NEXT
－159 G0T0156

\section*{PASTNEM}

\section*{FROM PAGE 33}
－15）REM
－11 REM FAST NEW
－12 REM DON LEWIS V（J1r）585（REV V123184）
－14 REM
－ 15 GOTO 10رл
－16 ：
－19 REM DOWNLOAD CODE INTO 1541
－25）RESTORE：PRINT CHR\＄（151）

－35 IF（I／1 \(\boldsymbol{\prime})-\mathrm{INT}(\mathrm{I} / 1 \rho)=\)＝ ）THEN PRINT＂［ \(c\) P］＂；
－4）NEXT I
－5f）FOR I＝r，TO 511：READ A：POKE I＋9472，A
－ 55 IF（ \(\mathrm{I} / 18\) ）－INT（ \(\mathrm{I} / 18\) ）＝r）THEN PRINT＂［ c P］＂；
－6r）NEXT I：PRINT CHR\＄（3 3 ）；：RETURN
－99 ：
－10f REM PROMPT AND WAIT FOR RESPONSE
\(\cdot 105\) PRINT：PRINT＂INSERT DISK and HIT＂RT \＄；
－11r）GOSUB \(20 \int 5\) ：IF A\＄＜＞CHR\＄（13）THEN GOTO 115
－12 12 RETURN
－199 ：
－20f）REM GET CHAR FROM KB，WITH PROMPT
－255 POKE 198， 5 ：POKE 254，
－215 GET A\＄：POKE 207，厄）：IF A\＄＝＂＂THEN GOTO 215
－215 PORE 2rJ4，1：PRINT＂［LEFT］＂；：RETURN
． 299 ：
－4JJ REM DO A DISK JOB，THANKS＂INSIDE CO MMODORE DOS＂BY DICK EMMERS，DATAMOST JH
\＄（2）CHR\＄（T）CHR\＄（S）
KH
－42ノ）PRINT\＃15，＂M－W＂CHR\＄（1）CHR\＄（0）CHR\＄（1）C HR \＄（JB）

KH
－430） \(\mathrm{TY}=\mathrm{TY}+1 \quad \mathrm{OK}\)
－44）PRINT\＃15，＂M－R＂CHR\＄（1）CHR\＄（ア）OD
－450）GET\＃15，E\＄：IF E\＄＝＂＇＂THEN E\＄＝CHR\＄（0）AH
－46r） \(\mathrm{E}=\mathrm{ASC}(\mathrm{E} \$)\)
－470）IF TY＝5 5）THEN GOTO 495
GE
GI
BO
． 485 IF E〈＞1 THEN GOTO 495
AL
－495 PRINT：PRINT＂FATAL ERROR TRY AGAIN＂：S
－ 10 rر 7 PN \(=\) CHR \(\$(31)+\)＂\(\left[\begin{array}{ll}s & B\end{array}\right]+\) CHR \(\$(3 r)+"\) FAS T NEW Vノ1ノ585＂＋CHR\＄（31）＋＂［s B］＂＋CHR\＄（3『）EO
－10رf8 TB\＄＝CHR\＄（31）＋＂［s J］［19＂［s C］＂］［s K］
＂＋CHR\＄（3r）

C0
－1010 PRINT CHR\＄（147）CHR\＄（13）＂［10＂＂］＂TP\＄GE
－1ऽ11 PRINT＂［10＂＂］＂PN\＄OC
－1ऽ12 PRINT＂［1ऽ＂＂］＂TB\＄：PRINT KI
－1015 IF FG＝1 THEN GOTO 1 1J35 AF
－1020 PRINT＂PLEASE WAIT．．＂；JI
－1 103（）GOSUB 2 2 ： PR INT：FG＝1
－1rر35 SYS 82r：DN\＄＝＂NAME ME＂
－1r40 POKE 198，r．TNPUT＂DISK NAME＂．DN\＄AN
－1r50）POKE 198，厄ノ：INPUT＂DISK ID＂；DI\＄GL
LM
MN
PE
MM
CH
DI
HJ
－106r）DI\＄＝LEFT\＄（DI\＄＋＂ZZ＂，2） ..... CL
－1575）I1＝ASC（LEFT\＄（DI\＄，1））：I2＝ASC（RIGHT\＄（ DI \＄，1）） ..... JM
－108（）OPEN 15，8，15：PRINT\＃15，＂M－W＂CHR\＄（18）
CHR \＄（ 1 ）CHR\＄（2）CHR\＄（I1）CHR\＄（I2）；：CLOSE15 ..... KH
－1rر90 GOSUB 105 ..... CJ
－2ヶرノノ OPEN 15，8，15：PRINT\＃15，＂M－E＂CHR\＄（ヶ）C HR \＄（5）；：CLOSE15：OPEN 15，8，15 ..... DI
 ..... EA
－ 2 2 2 2 \() \mathrm{JB}=128\) ：GOSUB 4 \(4 \mathrm{r} \boldsymbol{\rho}\) ：REM READ ..... DL
－2（J3）PRINT\＃15，＂M－W＂CHR\＄（r）CHR\＄（4）CHR\＄（3） CHR\＄（18）CHR\＄（1）CHR\＄（65） ..... HG
－2 2 ر4 5 JB＝144：GOSUB 4rر）：REM WRITE ..... IK
－2 205（）S＝1：JB＝128：REM READ ..... BN
－2060）PRINT\＃15，＂M－W＂CHR\＄（r）CHR\＄（4）CHR\＄（2） CHR\＄（ 1 ）CHR \(\$\)（255） ..... LC
－29 ر） ..... IK
－2rر89 CLOSE 15 ..... AB
－2 2f9r）OPEN 15，8，15：PRINT\＃15，＂N厅：＂DN\＄ ..... DN
－21s fr CLOSE 15 ..... \(A B\)
－30rjr）PRINT：PRINT：PRINT＂FORMAT COMPLETE， REMOVE DISK＂ ..... DM－3010 PRINT：PRINT＂HIT＂RT\＄＂TO FORMAT ANO

THER DISK，＂
－3015 PRINT Q\＄＂TO QUIT＂；：GOSUB 2ر厅

－3r）30）END
－4rejus data \(169,16,133,255,169\), r，133， 251
－4010 DATA 169，37，133，252，169，○，133，253
－4厅2の DATA 169，5，133，254，165，186，32，177
－4 4 J3 J DATA \(255,169,111,32,147,255,165,251\) E
－4045）DATA 164，252，141，152，3，14ケ，153，3
－4r55）DATA 16（），（），185，149，3，32，168，255


－4（J8）DATA \(246,165,251,155,31,133,251,165\) EH
－4rر9（）DATA 252，1く5，厄ノ，133，252，165，253，105 AG

－411ヶ DATA \(254,32,174,255,198,255,2\)（ \(\left.18,18{ }^{\circ}\right) \mathrm{EP}\)
－412（）DATA 96，77，45，87，（），ノ， 32
－ 4999 REM CODE DOWNLOADED INTO 1541 RAM
－5fj）D DATA 12r，173，（），28，9，12，141，（）
－5ノر1r DATA 28，169，45，133，74，32，21ヶ，6
－5r）2r DATA 198，74，2ヶ，8，249，162，，32，217
－503 3 （J DATA \(6,169,1,133,34,165,34,2\)（）1
－5 5） 4 （5）DATA 36,24 （），12，32，75，5，48，7
－5rر5（）DATA 23（），34，32，2rر），6，24r），238，173
－5ヶ，6r）DATA ケ，28，41，243，141，厄，28，169
－50，7r）DATA 236，141，12，28，165，75，245，5

－5099（）DATA 242，133，67，138，15，15，10，10）
－51ر厅ノ DATA 15，133，68，173，（5，28，41，159
－511r DATA 5，68，141，ハ，28，169，238，141
－512『 DATA \(12,28,16\) ケ，厄，132，77，165，57



－516r DATA 18,153, r），3，2rر），169，15，153

－518（J DATA 25（），2，89，251，2，89，252，2
－519r）DATA \(89,253,2,153,249,2,23\)（ر， 77
－52rj）data \(165,77,197,67,144,192,152,72\)
－5215 DATA \(169,3,133,49,32,48,254,1\)（r） 4
－522r）DATA \(168,136,32,229,253,32,245,253\)
－523r）DATA \(169,1,162\), r），157，r， 4,232

－525r）DATA 245，133，58，32，143，247，169，256
－526 \({ }^{\prime}\) DATA \(141,12,28,169,255,141,1,28\)
－527！DATA \(141,3,28,32,243,6,169, r)\)
－528（）DATA \(133,5{ }^{\prime}, 169,255,141,1,28,162\)
－5290 DATA 5，85，254，184，252，258，259， 162

－531r）DATA \(3,141,1,28,2\) rر） 2 （ \() 2,2\) rر 8,243
－532（）DATA \(162,9,8)^{\prime}, 254,184,169,85,141\)
－533（）DATA \(1,28,2\)（J2，2 2 （ \(8,245,162,5,169\)
－534ヶ DATA 255，8ヶ，254，184，141，1，28，2ヶ 2
－535（）DATA 2 \({ }^{\circ} 8,247,162,187,8\) r），254，184，189 PI
－536ヶ DATA ケ，1，141，1，28，232，2ケ8，244


GG
PG

－539（）DATA 8，85，254，184，141，1，28，202

－5415 DATA 5 5 ，198，77，2 \(58,149,85,254,184\)

－543r DATA \(133,48,169,3,133,49,165,67\)
－5445 DATA 133，77，32，176，6，162，1（， 8 （ \()\)
－545 \({ }^{\circ}\) ）DATA \(254,184,173,1,28,259,48,2\)（ر） 8

－5475，DATA 1 （J5，15，133，48，76，132，6，169
－548（）DATA \(244,133,75,96,32,176,6,16{ }^{\prime}\)
－549（J DATA 187,8 r \(^{2}, 254,184,173,1,28,217\)

－551厅 DATA 252，8ヶ，254，184，173，1，28，217


- 554『 DATA 169,2 （ر） \(8,141,5,24,169,161,44\)
- 555（）DATA 5，24，16，197，44，「，28，48
- 556『 DATA \(246,173,1,28,184,16\) r），「， 96
－557ノ DATA 32,2 •3， 6,174, ，\(, 28,232,76\)
－558（J）DATA 217，6，32，213，6，174，厄， 28
－559（）DATA 2 2 \(2,138,41,3,133,68,173\) ， \(\boldsymbol{r}\)
－560）\({ }^{\circ}\) DATA \(28,41,252,5,68,141\), ，, 28

HI
JK
NP
IE
PB
LJ
ML
DB
II
BF
OA
JI
AE
CD
ML
ML
MN
FL
HK
LH
EL
BP
EL
OI
－563r）DATA 16r， 32,2 rر, 24 ，\(, 234,234,234,234\) PK
－6rرfofjr）CLOSE15：OPEN 15，8，15：INPUT\＃15，A\＄，B \＄，C\＄，D\＄

\section*{LK}
－6rرrjos PRINT A\＄＂［SS］＂B\＄＂［SS］＂C\＄＂［SS］＂D\＄：C LOSE15：STOP
－62rرjヶ）CLOSE 15：OPEN 15，8，15：PRINT\＃15，＂M－ R＂CHR\＄（18）CHR\＄（ \((1)\) ：GET\＃15，I1\＄
－62ヶرノ1 PRINT\＃15，＂M－R＂CHR\＄（19）CHR\＄（ヶ）：GET\＃ 15，I2\＄
－62rrj2 PRINT I1\＄I2\＄ －62rر） 4 CLOSE 15：STOP

\section*{INVECTIVE}

\section*{FROM PAGE 15}
－15 REM PROGRAM：INVECTIVE
－ 20 REM GEORGE TREPAL

\section*{II2 AHOY！}
［4＂＂］\([c+][3 "\)＂］\([c+][4 "\)＂］\([c+] \quad[B L A C\) K］［ \(\left.\begin{array}{ll}c & B\end{array}\right]^{\prime \prime}\)
－15r）G\＄（3）＝＂［BLACK］［4r）＂［ \(\begin{array}{cc}c & B] "] " ~\end{array}\)
－16r）G\＄（4）＝＂［BLACK］［c B］［4＂＂］［YELLOW］［s Z］［8＂＂］［s Z］［1秀＂＂］［s Z］［8＂＂］［s Z］［4＂ ＂］［BLACK］［ c B］＂
－175）PRINT G\＄（3）；G\＄（4）；G\＄（2）；G\＄（2）；G\＄
（1）；G\＄（2）；G\＄（2）；G\＄（4）；
－180）PRINT G\＄（4）；G\＄（4）；G\＄（2）；G\＄（2）；G\＄ （1）；G\＄（2）；G\＄（2）；G\＄（4）；
－19rر PRINT G\＄（4）；G\＄（4）；G\＄（2）；G\＄（2）；G\＄ （1）；G\＄（4）；G\＄（4）；G\＄（3）；
－ 2 r 5 r\()\) ：
－215 REM POKE GREEN POINTS
－220 CM＝54272：REM CM＝COLOR MEMORY
－230 FOR J＝1 TO 5 5 ）
－24ヶ RN \(=\operatorname{INT}(\operatorname{RND}(1) * 92\)（ر）\()+1\)（ 24
－25（）IF PEEK（RN）＜＞32 THEN 24r）
－26（J）POKE RN，105：POKE RN＋CM， 13
－275 NEXT
－28）：
－290 REM SET JOYSTICK VALUES J（）AND SCRA MBLE ARRAY VALUES SA（）
－30ヶ \(J(1)=-4\) 斤：\(J(2)=4\) ）：\(J(4)=-1: ~ J(8)=1\)
－315 \(\mathrm{SA}(1)=1: ~ \mathrm{SA}(2)=2: ~ \mathrm{SA}(3)=4: ~ S A(4)=8\)
－329 ：
－330）REM SET UP PLAYER SP＝SPACES OVER D N\＄＝HOW FAR DOWN P＝POSITION
－34r）REM BM\＄＝BOTTOM OF SCREEN TI\＄＝TIMER NF
－35！）PRINT＂［HOME］［DOWN］［WHITE］［RIGHT］［s Q ］＂
－360） \(\mathrm{SP}=1: \mathrm{DN} \$=\)＂［WHITE］［HOME］［DOWN］＂： \(\mathrm{P}=1\)「65：TI\＄＝＂［5＂厅ノ＂］1＂
－375）BM\＄＝＂［HOME］［24＂［DOWN］＂］＂：GOSUB 750： GOSUB 10 jors
－385）：
－39（）REM READ PORT 2 JOYSTICK
－40ヶ）JV＝PEEK（5632 5 ）
－415）JV＝15－（JVAND15）
－42r）PRINTBM\＄；＂［WHITE］SCORE＂；SC；
－43（）VT＝VAL（TI\＄）：IF VT／15＝INT（VT／15）THEN GOSUB 680）
－440）IF JV＝r，THEN 4（r）
－450）：
－46r REM FIND CHARACTER MOVED TO
－475） \(\mathrm{T}=\mathrm{P}+\mathrm{J}(\mathrm{JV})\)
－480） \(\mathrm{CH}=(\operatorname{PEEK}(\mathrm{T}))\)
－49「）IF CH＝32 THEN GOSUB 57r）GOTO 4rر）： REM BLANK SPACE
－ 50 ر）IF \(\mathrm{CH}=1\) 1 55 THEN \(\mathrm{SC}=\mathrm{SC}+1\) 1ヶ：GOSUB 57（）： GOSUB 1رヶر厅：GOTO 4rر）：REM GREEN SCORE
－51（）REM BLUE JOYSTICK SCRAMBLE
－52ヶ）IF CH＝1ヶ2 THEN GOSUB 57ヶ）：GOSUB 68ヶ）： SC＝SC－2r：GOTO4（r）
－53（）IF \(\mathrm{CH}=9\)（）THEN SC＝SC－5 \()\) ：GOSUB 57r）：G OSUB 95r）：GOTO 4 5 r）：REM YELLOW SCORE
－54 GOTO4 Grs
－550）：
LC
IB

LE
BF
DC
－560 REM WIPE OUT PLAYER POSITION
－57ノ PRINT DN\＄；SPC（SP）＂＂；
－585）：
－590 REM PRINT NEW PLAYER POSITION OD
LL
－ 60 rر） \(\mathrm{P}=\mathrm{T}\)
FB
－96（）FOR DL＝1 TO 25：NEXT ..... BG


－98（）： ..... EB ..... EB
JH－99r，REM GREEN SOUND ..... LN
PM－1fرノر）POKE 54296，15：POKE 54276，17：POKE
EL－1 1 IS FOR DL＝1 TO 25：NEXT ..... BG
－1ヶ2の POKE 54296，ノ：POKE 54276，ノ：RETURN ..... EBDP－1 1 3 3 ）：
CA－1rر4r）REM END GAME ..... OEDI •1 155r）PRINT＂［CLEAR］［8＂［DOWN］＂］＂；SPC（15）；＂
－72rر GOSUB 9rرrر
EB
－730 ：
DI
－745 REM POSITION HINTS
－75（ \()\) PRINT BM\＄；SPC（13）＂［lll \(\left.\begin{array}{c}\text { 2 }\end{array}\right]^{\prime \prime}\) ；
LH
－76 1 f FOR J＝1 TO 8
AJ
－77r IF J＝1 THEN PRINT＂UP＂；
AL
－78の IF \(\mathrm{J}=2\) THEN PRINT＂DN＂．
－790）IF J＝4 THEN PRINT＂LT＂；LL
－80」 IF J＝8 THEN PRINT＂RT＂；KF
－815 IF \(\mathrm{J}(\mathrm{J})=1\) THEN PRINT＂＞＂；PG
- 82丁 IF \(\mathrm{J}(\mathrm{J})=-1\) THEN PRINT＂く＂；FN
- 83）IF \(\mathrm{J}(\mathrm{J})=4\) 「 ，THEN PRINT＂V［3＂＂］＂；DP
－840）IF \(\mathrm{J}(\mathrm{J})=-4\) r）THEN PRINT＂［UPARROW］＂

\section*{－85r）NEXT}
－86rر POKE 5328r，2：POKE 53281，2：FOR DL＝ 1 TO 8r）：NEXT
－875 POKE 5328ヶ，12：POKE 53281，12 NO
－880）：
DI
－890）REM SCRAMBLE SOUND KE
－9rر）POKE 54296，15：POKE 54276，17：POKE 5
4277，15：POKE 54273，6r
HP
－915 FOR DL＝1 TO 25：NEXT
BG
－92ヶ POKE 54296，厄：POKE 54276，ノ：RETURN
EB
－93（）：
DI
KD

\section*{\(\qquad\)}
－61f IF \(\mathrm{J}(\mathrm{JV})=1\) THEN \(\mathrm{SP}=\mathrm{SP}+1\)
MB
－625 IF \(\mathrm{J}(\mathrm{JV})=-1\) THEN \(\mathrm{SP}=\mathrm{SP}-1\) FB
－633）IF \(\mathrm{J}(\mathrm{JV})=40\) THEN DN\＄＝DN\＄＋＂［DOWN］＂AK
－645）IF \(\mathrm{J}(\mathrm{JV})=-4 \mathrm{r}^{\prime}\) THEN DN\＄\(=\) LEFT \(\$(\mathrm{DN} \$\) ，LEN \((\)
－650）PRINT DN\＄；SPC（SP）＂［s Q］＂；：RETURN
ID
－66（）：
DI
－675 REM SCRAMBLE JOYSTICK
LB

－691ر FOR J＝1 TO 4：RN＝INT（RND（1）＊4）＋1 GG
－70ر）\(T=S A(J): S A(J)=S A(R N): ~ S A(R N)=T: N E X\)
T GH
－710 \(J(S A(1))=1: J(S A(2))=-1: J(S A(3))=4 r^{\prime}\)
H ：\(J(S A(4))=-4 r)\)
I


\section*{N}
54277，15：POKE 54273，30 ..... KA，


SCORE＂；SC
－1rر6r FOR J＝1 TO 4：GOSUB 9rر）：GOSUB 95r： GOSUB 9rر）
－1075 GOSUB 10rرrs：NEXT
－1r80）PRINT＂［4＂［DOWN］＂］PRESS JOYSTICK B UTTON TO PLAY AGAIN＂
－1rر90 JV＝PEEK（5632（ \()\) ）
－115ر）FR＝JVAND16
－1115 \(\operatorname{IF}\) FR \(=16\) THEN 1590）
－112r GOTO 11s
－113 5 ：
－114 J REM INTRO
－1150）PRINT＂［CYAN］［CLEAR］［DOWN］＂：POKE 532 8「，っ：POKE 53281，っ：
－116ヶ）PRINTSPC（16）＂INVECTIVE［DOWN］＂
CA
－117r）PRINTSPC（12）＂BY GEORGE TREPAL［DOWN］ ［DOWN］＂
－1180）PRINTSPC（11）＂［ c 6 \(]\) GREEN \(=10\) POINTSGAEDDMDI
－1190）PRINTSPC（1ヶ）＂\([\) DOWN］［YELLOW］YELLOW＝ －50）POINTS＂
－12rر）PRINTSPC（2）＂［DOWN］［［Cl \(\left.\begin{array}{cc}\mathrm{c} & 7\end{array}\right]\) BLUE \(=-20 \mathrm{P}\) OINTS AND SCRAMBLES THE＂JP
－1210 PRINTSPC（16）＂JOYSTICK［DOWN］＂ ..... IA
BFAN－123（ PRINTSPC（2）＂SECONDS WHETHER YOU HITDH •125r）PRINTSPC（7）＂［DOWN］THE GAME LASTS 90SECONDS＂AC
－126（）PRINTSPC（5）＂［DOWN］PRESS THE FIRE BUEJ
－127『 JV＝PEEK（5632ヶ） ..... GA
－128（）FR＝JVAND16 ..... AN
－129（）IF FR＝ 16 THEN 127（） ..... EH
PH－13 JJJ RETURN ..... IM


\section*{Call us the modern way－ on Ahoy！＇s Bulletin Board System！}

If your computer is equipped with a modem，you can call Ahoy＇s Bulletin Board System any hour of the day，any day of the week to exchange electronic mail with other Commodore users or download files like the following：
－Editorial calendar for upcorning issues
－Excerpts from future edi－ tions of Scuttlebutt
－Corrections lo programs and articles
－Detailed descriptions of back issues
－Program disk and subscription information
－Classified advertising

Set your modem for 300 baud，full duplex，no parity， 1 stop bit， 8 －bit word length，and dial away！
System Configuration of Ahoy！Bulletin Board System：

Commodore 64 MSD SD－2 Dual Disk Drive Corminodore International 1200 Wilson Drive West Chestor．PA 19380 Phone：215－431－9100

Vision Bes V8． 3 Vision Software Co． PO．Box 534 Bronx．NY 10461 Phone：212－829－1538

MSO Systerns．Thc．
toosh Morroe Street－Ste 206 10031 Monroe Stree
Dallas，IX 75229 Phone 214－357－4434

Superstand I A World of Plastic，L．td． 2535 United Lane Ek Grove Village，it 60007 Phone \(312-860-2525\)
tmpact Printer Fidelity Electronics，Lida： 8800 NW． 36 th Street Miami，FL 33178 Phone：305－594－1000

Uni－Kool C． 100
Uni－Koot
909 Witliamson Loop Grants Pass，OR 97526 Phone：503－476－1860

Mitey Mo Auto Modem
USI international 71 Park Lane Brisbane，CA 94005 Phone： \(415-468-4900\)

Electra Computer Pad Charleswater Products，Inc 93 Border Street West Newton，MA 02165 Phone 617.964 －8370

Sakata SC－100 Color Monitor Sakata US A．Corporation 651 Bonnie Lane Elik Grove Vilage，il 60007 Phone：312．593－3211

Computer Stands＊5933 \＆\＆ 0640 Royal Seating Corporation P．O．Box 753
Caneron．TX 76520
Phone： 817.697 .6421

\section*{CALL TODAY：718－383－8909}

\section*{．．COMING IN UHE ©GOBE：AHOH（ONGALE SEPIFMBE：3）．．．}


\section*{PROGRAMMNG BIT BY BIT \\ PERFORMING SINGLE BIT MANIPULATIONS ON BINARY NUMBERS}

\section*{DONT MISS THE BOAT!}


\title{
SUBSCRIBE TOAHOY!
}
\(\square\) Send me twelve issues of AHOY! for \$19.95 (\$26.95 Canada \& elsewhere). I understand that I will be billed later.
\(\square\) Send me twenty-four issues of AHOY! for \$37.95 (\$49.95 Canada \& elsewhere). I understand that I will be billed later.
NAME \(\qquad\)
ADDRESS
CITY
STATE \(\qquad\) ZIP

\section*{READER SERVICE CARD}

To request additional information on any product advertised or otherwise pictured in this issue of Ahoy! that is accompanied by a reader service number, circle the corresponding number below and mail this card. We will promptly forward your request to the designated companies.
\(\begin{array}{llllllllllllllllllllllllllllllllllllllllllll}101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130\end{array}\)

 \(\begin{array}{llllllllllllllllllllllllllllllllllll}191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219\end{array}\) \(\begin{array}{lllllllllllllllllllllllllllllllllllllllllllll}211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 & 237 & 238 & 240\end{array}\)



PLEASE ANSWER THE QUESTIONS BELOW.
\begin{tabular}{ll} 
Sex and age & \\
A \(\square\) male \(\quad\) B female & age \\
& \\
Educational level completed & \\
C \(\square\) elementary & F \(\square\) college graduate \\
D high school & G \(\square\) masters degree \\
E \(\square\) junior college & H \(\square\) phd
\end{tabular}

> From which of the following sources did you obtain your copy?
> \(\mathrm{K} \square\) newsstand \(\mathrm{N} \square\) subscription (mail)
> L \(\square\) from a friend or family member
> M other

If not currently a subscriber, do you plan to become one?
\(1 \square\) yes J no

Name \(\qquad\)
Street \(\qquad\)
City \(\qquad\) State \(\qquad\) Zip

\title{
BUSINESS REPLY CARD \\ FIRST CLASS PERMIT NO. 65 MT. MORRIS, ILL.
}

POSTAGE WILL BE PAID BY ADDRESSEE

\section*{Ahoy:}
P.O. BOX 341

MT. MORRIS, ILL. 61054


PLACE
STAMP
HERE

\section*{The Better Letter Box}

Introducing EasyPlex. The new, easy-to-use electronic mail system from CompuServe.

Finally! Electronic Mail that's so easy to use you can start composing and sending messages the first time you get online.

Designed for various experience levels, EasyPlex has a menu mode with simple, easy-to-follow directions for beginners, and it lets experienced users save time by working in the prompt or command modes. With EasyPlex, you can compose, edit, send, file, and take advantage of sophisticated
options previously available only with more expensive services.

CompuServe's EasyPlex lets friends and relatives, associations and club members communicate any time of the day or night. And small business owners, real estate professionals, insurance agents, lawyers, writers, etc. can communicate quickly and simply-either interoffice or interstate. "It's Easy" "Just Plexit!"

Best of all, EasyPlex is available to all CompuServe subscribers. And, along with EasyPlex, you get hundreds of valuable and entertaining computing options. Plus the assurance of belonging to the largest, fastest
growing computer information service in the world and the premier supplier of business information to FORTUNE 500 companies.

Startcommunicating! To buy a CompuServe Subscription Kit, see your nearest computer dealer. To receive our informative brochure or to order direct, call or write:

5000 Arlington Centre Blvd., Columbus, Ohio 43220
800-848-8199
In Ohio, call 614-457-0802
```


[^0]: Cover art by James Regan; art and photos inside screens by Morton Kevelson, James Regan, and Javier Romero

[^1]: Add $\$ 3.00$ for shipping, handling and insurance. Hlinois residents please add 6% tax. Add $\$ 6.00$ for CANADA. PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA.
 Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders. 1 day express mail! VISA - MASTER CARD - C.O.D.

 NoC.O.D. to Canada. APO.FPO.

[^2]: Add $\$ 17.50$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 35.00$ for CANADA. PUERTO RICO, HAWAII. ALASKA. APO.FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA.
 Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders, I day express mail! VISA - MASTER CARD - C.O.D.

 No C.O.D. to Canada, APO.FPO.

[^3]: $\$ 3$ minimum order, or add 3% for shipping and handing charges. Ad prices reflect 3\% cash discount.

[^4]: All Products for Commodore 64 \& 1541 Disk Drive Only Write or Call 24 Hour Order Line ULTRABYTE (818) 796-0576 P.O. Box 789 La Canada, CA 91011

 DEALERS \& DISTRIBUTORS WANTED

[^5]: Reader Service No. 127

