
“Dream holiday”

Vice snapshot with Vice palette

Made with the GIMP from a photo
and converted to C64 160x200

Multicolor Mode Bitmap
by Stefano Tognon

in 2004

“The big of small”
...

Free Software Group

1

SIDin 7
version 1.00

9 January 2004

2

SIDin Contents

General Index
Editorials...4
News..5

CGSC v1.11..5
SIDPlayer 4.4...5
SID PC64 Winamp plugin v2.0...6
Sidplay2/w..7
HVSC 5.7...7
Asterion Sid-Tracker v1.1..9
reSID 0.16...9
Sidplay2 + ReSID 0.16..10
2010 SID COMPO V1...10
Libsidplay1 1.36.59..10
SIDPLAY for Mac OS X 3.3...10
CGSC v1.12..11
HVSC 5.8...11
Catweasel MK4..12
XSidplay 1.6.5.2...14
The SID Compo IV..14
SIDBrowser V2.4...14

Dustbin (Stefano Palmonari) Interview!..17
Inside Modules..20

Structure...20
Instrument...21
Pattern...21
Code..23
Conclusion..47

xxlarge...48
Code..48
Analysis ...50
In depth...50
Conclusion..52

3

Editorials
Stefano Tognon <ice00@libero.it>

Hi, again.

As you can see there is no a Marble Madness article. But I think that if you downloaded the new
HVSC update you will enjoy a rip it contains. However I have not yet finish my rip, but now there is
no pleasure to finish as we can listen to the available rip.

So this time I will present another engine from the inside: Modules tune by Ivan Del Duca.
I choose this tune primary as I like it and secondary as this is probably made with the first music

engine written by an Italian programmer.

The second article is about a very tiny sid: 256 bytes for a fantastic sound!

Well, why not making a competition about writing very small sid? A mix about programming and
sid composition...

Finally I like to remember to all the sid people around that if you want to contribute to this
magazine with article it's very simple: write something about your sid music activity and it will be a
pleasure to make it available for all.

Bye
S.T.

4

News

Some various news of players, programs , competitions and hardware:

• CGSC v1.11
• SIDPlayer 4.4
• SID PC64 Winamp plugin v2.0
• Sidplay2/w
• HVSC 5.7
• Asterion Sid-Tracker v1.1
• reSID 0.16
• Sidplay2 + ReSID 0.16
• 2010 SID COMPO V1
• Libsidplay 1.36.59
• SIDPLAY for Mac OS X 3.3
• CGSC v1.12
• HVSC 5.8
• Catweasel MK4
• XSidplay 1.6.5.2
• The SID compo IV
• SIDBrowser V2.4

CGSC v1.11

Version 1.11 of the Compute's Gazette Sid Collection was released on 8 May 2004.

The collection now contains 5913 MUS files, 1314 STR files and 1567 WDS files.

Download the update from http://www.c64music.co.uk

SIDPlayer 4.4

Released on 8 May 2004 the new version of Christian Bauer SIDPlayer (BeOS, Linux).

It this version it is fixed a problem with the wrong replay routine being called when the IRQ
vector was changed. Mastercomposer tunes (and probably others) not play correctly.

Download the player from here: http://www.uni-mainz.de/~bauec002/SPMain.html

5

SID PC64 Winamp plugin v2.0

SID PC64 is a Winamp plugin which plays .sid files on real C64 through a PC64 cable
(http://sta.c64.org/pc64.html) developed by Jakub 'Prezes' Wozniakowski.

Features and limitations:
• Multispeed songs are supported
• Tunes which use samples are not supported
• Change playing sub-tune number moving Winamp's position bar (if disabled there is only one

sub-song)
• The whole song must be transfered to C64 before playing, it can take few seconds - rasters on

borders (c64), progress window (pc)
• Plugin and c64 can hang from time to time - not all tunes have been tested. This piece of

player's code taken from HVSC will not work:

 LDA #$00
 STA kapusta
 JSR $1000
kapusta NOP
 ...

• Player on C64 is $6a bytes long (including IRQ and simple transfer routines) so don't say it's
lame ;-)

• Plugin was tested on Windows XP professional and Windows 2003 Server using Winamp 2.91,
AMD Duron 1800

Version 2.0 (released on 16 may 2004) features:
• Windows XP/2000/2003 compatible
• detailed song info
• selectable parallel (LPT) port
• custom playing time
• inproved stability
• transfer progress window

6

Sidplay2/w

A new version of sidplay2/w was released on 27 May. These are the notable changes this time:

• support for multi-subtune BASIC tunes (libsidplay2)
• sprite stealing emulated (libsidplay2)
• p00 support (libsidplay2)
• stereo mus to sid conversion (libsidplay2)
• corrected instruction overlapping (libsidplay2)
• CPU Debug improvements - same memory model, progress meter, option to enter power-on

delay value

Download it from http://www.gsldata.se/c64/spw/

HVSC 5.7

HVSC Update #39 was released on 27 May an is available at www.hvsc.c64.org

After this update, the collection should contain 27,087 SID files!

This update features (all approximates):
• 1946 new SIDs
• 275 fixed/better rips
• 3 fixes of PlaySID/Sidplay1 specific SIDs
• 12 repeats/bad rips eliminated
• 230 SID credit fixes
• 470 SID model infos
• 41 tunes moved out of /DEMOS to their composers' directories
• 11 tunes from /DEMOS/UNKNOWN identified :-) (1 goes back due to bad credits)
• 14 tunes moved out of /GAMES to their composers' directories

We're once more proud to present another monster update, consisting of overall over 2100 SID
tunes, 275 of those being fixes. With this release we also finally managed to completely unload our
huge queue of unreleased tunes to the public. There are still a couple of problem tunes left which
we'll hopefully manage to fix for the next HVSC update, but basically that's all all there is.

We've got the music compo entries from the following parties in this pack:

Breakpoint 2004, Sidwine 3, Floppy 2004, Forever 5 and 7D4

Further there are a lot of real, unmodified BASIC rips in this update:

They are basically RSID tunes, hence they need Sidplay2 or a real C64.
To make them easier to spot we have added _BASIC to the filename.

Another bunch of classical tunes from the first minute have been added to HVSC:
• Peter Weighill's Master Composer collection /DEMOS/UNKNOWN/Master_Composer/
• the Master Composer example tunes, most likely done by the author of the program, Paul

Kleimeyer.
• the Brøderbund Music Shop tunes, uncredited, but with high likeliness also composed by the

maker of the tool, Don Wilson.

7

Main Artists featured in this update:

• DRAX Yip Agemixer
• Jan Albartus Amadeus/Attic/Meka Compod
• Dwayne Bakewell & Kent Patfield (Pearl) Richard Bayliss Glenn Rune Gallefoss
• Kristian Røstøen Bzyk Comer
• Cosowi Cycleburner Hein Holt
• Jeroen Breebart Jeff Klax
• Kordiaukis Mitch & Dane Replay
• Sad Shapie Surgeon
• Taxim

NEW Artists featured in this update:

• Android Commodore (BASIC classics) Paul Kleimeyer
• Tonal Teapot 4wd-soft Amadeus/Slash
• David Bain Benno Black Dove
• Debby Cruz Freeze/The Force G-Fellow
• Ewen Gillies David Green Gummibeer
• Krwiak Lio Alexander Kern (Mac)
• Mr. Wig Stephan Parth (Nata) Rashka
• Sam/SCCS Speedcracker TheFatman
• Steven Judd (Wyndex) Tinnitus (Asterion & Trompkins) Oskar Törnros
• Steffen Wagner Nick Williams Yoshi
• Don Williams

There are a couple of things worth mentioning in this update:

• The latest release of Sidplay2 not only contains some generic emulation improvements, but it
also introduces the possibility to play back real BASIC tunes without the need to painfully
convert them to machine code, which often resulted in rather doubtful playback quality. We
ripped and re-ripped quite a lot of BASIC tunes for this update, most of which now reside in the /
Commodore directory. There are the classic example tunes of the C64 users manual, some
example tunes from "the bible", the C64 Programmer's Reference Guide. Also take a peek into
the /GAMES dir of this update, there are a couple of classic BASIC tunes too, such as Sword of
Fargoal, Telengard or the 1983 Stack Computer Services BASIC games! To make them easy to
spot we added a _BASIC suffix to all the filenames.

• After several requests, both from inside and outside the HVSC team, we decided to integrate
Peter Weighill's old Master Composer Collection into HVSC. Many of these tunes bear a lot of
nostalgic value, so it would be a shame not to have them. Be aware that due to a bug in the
libsidplay1 libraries they might sometimes lock up your sidplay1-based player. They work fine
on Sidplay2 and on a real C64, though.

• The HVSC crew got a new member: We all want to welcome back Wilfred Bos, the author of the
fabulous ACID64 Player for users with hardware based SID cards such as the Hardsid or the
Catweasel. Wilfred was a HVSC member of the first hour, but had to quit four years ago due to
real life priorities. Welcome back, Wilfred!

• While talking about Wilfred, he just recently released a new version of ACID Player, upgrading
the version number to 2.0. New features:

• Cycle based emulation of 6510 CPU, 6526 CIA and 6569 VIC-II chip
• Cycle based playback of SID data

8

• Support for sample playback of RSID and C64 Program files
• Support for playing PRG and PC64 files
• Simulation of space bar and joystick fire buttons to skip intros
• Support for restoring screen size
• Added 6510 CPU performance indicator
• Support for skipping silents of beginning of tunes
• Better resetting of SID chip
• Faster voice bar animation
• Fix for frequency adjustment to avoid warble sounds in some tunes
• Many other improvements

 Download it here: http://www.acid64.com

Asterion Sid-Tracker v1.1

Released 31 May 2004 the new version of Tinnitus editor.

major improvements:

• vibrating portamento implemented
• vibrating arpegio implemented (experimental)
• independent detune level for each instrument
• multispeed up to 4x
• pulse step programming
• 11-bit filter step programmng
• various bugs removed
• heavily refined packer

Download from http://tinnitus.prv.pl

reSID 0.16

On 11 June reSID 0.16 was released.

reSID is the sid emulation library developed by Dag Lem.

This release fixes a few bugs, most notably a one cycle error in the ADSR delay bug emulation.
This error only affected fast sampling.

Resampling is necessary to achieve the ultimate sound quality in SID emulation. In collaboration
with Laurent Ganier, the resampling code has been highly optimized and streamlined for
vectorizing compilers. High quality resampling can now be run in real time on off-the-shelf
hardware. With vectorizing compilers (e.g. Intel's icc) real time resampling can be achieved even
on somewhat older hardware.

For the full changelog and source code download reSID 0.16 at:

ftp://ftp.funet.fi/pub/cbm/crossplatform/emulators/resid/resid-0.16.tar.gz

9

Sidplay2 + ReSID 0.16

On 15 June, Simon White had released the new version of libsidplay2 library modified for taking
use of the new reSID 0.16 library and the changes made in the May released of sidplay2/w.

Download all the stuff from http://www.gsldata.se/c64/spw/ and
http://sourceforge.net/projects/sidplay2

2010 SID COMPO V1

Ended on 1 July 2004 the 2010 SID COMPO music competition organized by Rolemusic on
www.2010compo2010.tk

Here the result:

1. Hein Design/Vision Chill Addiction 7.16
2. Richard High Speed 6.64
3. Surgeon/Vulture Design NICE DREAM 6.58
4. hukka Leego II 5.77
5. maktone / fairlight mr freshness 5.66
6. Raf/Samar/Vulture design God is a girl 4.92
7. Thomas Wurgler (AKA Trez Happy Day 4.79
8. Anders Carlsson (Zapac) Theme 1:22 4.64

Libsidplay1 1.36.59

On 17 August 2004 was released an update to libsidplay1 (a low-cpu consuming sid emulation
library) that fix security bug in debian.

Download from http://www.geocities.com/SiliconValley/Lakes/5147/sidplay/linux.html

SIDPLAY for Mac OS X 3.3

This sidplayer for Mac OS X was released on 17 August 2004.

New to this version:
● Updated to latest libsidplay2 and reSID components
● Integrated HardSID support courtesy of Teli Sandor and Hard Software
● Redesigned the user interface using a separate info window
● Fixed visual glitches on Panther
● Added mixer panel with mute and solo controls
● Improved filter adjustment panel with options to add and remove filter spline points
● Added automatic download of composer photos from http://composers.c64.org/
● Added feature to play a random tune from the HVSC collection
● Added dock menu
● Improved search in playlists
● Updated to PSID64 0.6
● Fixed various major and minor bugs

Download from http://www.sidmusic.org/sidplay/mac/

10

CGSC v1.12

Version 1.12 of the Compute's Gazette Sid Collection was released on 21 August 2004.

The collection now contains 5998 MUS files, 1314 STR files and 1567 WDS files.

Download the update from http://www.c64music.co.uk

HVSC 5.8

HVSC Update #40 was released on 27 September an is available at www.hvsc.c64.org

After this update, the collection should contain 27,653 SID files!

 This update features (all approximates):
 563 new SIDs
 724 fixed/better rips
 2 fixes of PlaySID/Sidplay1 specific SIDs
 10 repeats/bad rips eliminated
 323 SID credit fixes
 152 SID model/clock infos
 27 tunes moved out of /DEMOS to their composers' directories
 15 tunes from /DEMOS/UNKNOWN identified :-)
 (and two go back due to bad credits)
 12 tunes moved out of /GAMES to their composers' directories
 (and one goes back due to bad credits)

 Main Composers featured in this update:
 (Artists marked with NEW! are either completely new to the HVSC or they get their own

directory in this update)

 Deek James Hilthy (NEW!)
 Kathy and Kidd Clark (NEW!) Henning Rokling
 John Vanderaart Agemixer
 Alien Richard Bayliss
 Glenn Rune Gallefoss Ciaran
 CMP (NEW!) ELA
 G-Fellow Harmony Productions
 Hein Holt John Keding
 Sascha Zeidler (Linus) (NEW!) Lordnikon
 Maktone Murdock
 Nadira Ne7 (NEW!)
 Richard Nygaard (NEW!) Puterman
 Reed (NEW!) Scortia
 Tango Jeremy Thorne (NEW!)
 Asterion Zeus

 So what is new about this update?

● We've got the music compo entries from the following parties in this pack:
 LCP 04, North Party 9, Assembly 04, Primary Star 04 and Solskogen 04

● The mega hyped Turrican 3 soundtrack is of course also in this update, check out /VARIOUS/S-
Z/Sonic/Turrican_3.sid. And head over to www.smash-designs.de and drop a mail to AEG and
express your interest in Katakis 2, which, if all goes well, will be coproduced by ye ole master
Manfred Trenz again!

● This update contains about 500 multi speed fixes. Due to an incorrect assumption regarding the

11

number of cycles per frame (the C64 has $4CC7 and not $4CF9 cycles per frame, due to
running at 50.125Hz instead of 50Hz) most of the multi speed tunes that you will find in HVSC
were played a little slower than intended after converting them to play via the CIA timer.

Also we removed some completely unnecessary cycle eating $DC0E writes, which caused a
larger slowdown than the mere $22 cycles difference mentioned above.

Although a 0.2% speed difference may not sound much in audible terms, some tunes do require
very precise timing to get the instruments to sound correct, and so we felt it would be best to fix
them all in one big effort in this update.

Do note that we haven't fixed all the old game tunes yet, as some native CIA timed tunes were
indeed made to be played at exactly 50 Hz instead of 50.125 Hz and those will be fixed as
necessary.

● We divided the update in a /fix and /new section. This makes it easier for us to keep track of the
update during its creation and it's at the same time more convenient for you to listen through the
update pack, so you can avoid the fixes and concentrate on the new tunes only (we assume
that's your prime reason you update your collection regularly, to get new SIDs to listen to). :-)
Of course, listening to the /fix section might be interesting to some of you as well, as it almost
exclusively contains multispeed tunes! :-)

Catweasel MK4

Announced in July 2004, the new Catweasel MK4 pci card will be released as soon as some
delay due to hardware components will be resolved.

Improvements to the SID audio part in this new card:

● DC-DC converter eliminates noise. On the Catweasel MK3, it was possible that noises from
3D-graphics cards or high-speed harddrives were coupled into the 12V-power supply of the SID
audio part. This cannot happen any more on the Catweasel MK4, because a DC-DC converter
is an insuperable obstacle for such noises.

● Cycle-exact control. In addition to the known programming that's compatible with the
Catweasel MK3, the MK4 has a sophisticated script-language for SID control. This lets the
programmer define the exact time for data to be written to the SID chips. To make sample
playback sound exactly like on a real C64, the data rate to the SID chip must be kept at a
constant rate. This is accomplished with a Fifo memory that is big enough to maintain the
datarate even under high processor load conditions.

● Digiboost for new SID versions. As opposed to the 'classic SID' 6581, the newer SID-chips
8580 and 6582 cannot playback samples any more. This option, which is also called 'the fourth
voice', is replaced by two sigma-delta converters on the Catweasel MK4, so the fourth channel
is also audible with the newer SID versions. Since the filter properties and the sound of mixed
waveforms of all SID versions have their supporters, this should make the decision for the right
chip a little easier.

● Filter capacitors selectable. Commodore has defined three different capacitor values for the
filters of the SIDs during the years that this chip has been produced. The result was that the
same chip sounded differently if used in different computers. To bring the sound as close as
possible to what you are used to, the filter capacitors can be chosen with a few jumpers.

12

● Precise clocking. The Catweasel MK3 used the commodore-chip 8701 to recreate the exact
same clock. Since our stock of this chip is empty with the Catweasel MK3 being sold out, we
have cloned it on the main logic chip of the Catweasel MK4: The exact base frequency is
generated with crystals that have been made especially for us. By division and multiplication
according to the specifications of the C64 schematics from 1982, we managed to replace the
8701, which is not made any more. Even the slight difference between PAL and NTSC
computers is software-selectable!

● Two SIDs for stereo sound. You'll have twice the SID pleasure after installing a second SID
chip. Every SID has it's own selection of filter capacitors, and SIDs of all versions can be mixed.

Technology improvements:

● compatible with 3.3V and 5V PCI slots. Even though PC boards with 3.3V PCI slots are not
yet widely available, the Catweasel is prepared for it. The roadmap of the PCI special interest
group plans to abandon 5V PCI slots within forseeable time, and the Catweasel is perfectly
suited for that date. Local generation of the 3.3V power also ensures proper function on early
PCI motherboards that do not comply to the ATX standard.

● Two DMA interfaces. In addition to processor-based data transfer, the Catweasel MK4 can
exchange data with the main system through two low-speed DMA channels: The first goes
throught he PCI slot, and it has a capacity of about 8K per second and direction. The second
uses the direct connection to the onboard-floppy controller, and the speed is up to 100K per
second.

● Low power consumption. The Catweasel MK4 makes use of the latest FPGA technology with
2.5V core voltage. This reduces the power consumption of the new controller to a fraction of
what the Catweasel MK3 used. This also reduces heat generation a lot.

● Re-configurable logic. The FPGA on the Catweasel MK4 is completely re-configurable by the
drivers. This means that a hardware update can be done through the internet! Should we find a
disk format that cannot be handled with the current hardware, the core of the Catweasel can be
're-wired' to address the problem. The controller doesn't even have to be taken out of the
computer for ths update!

● Drivers for many operating systems. The Catweasel MK4 is delivered with drivers for Linux,
Windows 98(se)/ME/XP/2000, Amiga OS4, and for Mac OS X at a later date.

Other improvement not related to sid:

● Kylwalda built in
● Support for auto-eject drives
● Hard-sectored disks supported
● Dual-ported memory
● More flexible read- and write operations
● Extensive timer-functions
● All events can trigger an interrupt (IRQ)
● Amiga mice supported in hardware
● Every signal can be programmed as output
● Compatible with CD32 pads

More information from http://www.jschoenfeld.de/news/news_e.htm

13

XSidplay 1.6.5.2

Released in October 2004 the new version of the linux sid player:

● fix Qt-mt detection
● fix streampos arithmetic cast in File.cpp
● fix tab order in filter dialog
● load config from global /etc/xsidplay.ini
● fix underquoted automake definitions

The player is available at: http://www.geocities.com/SiliconValley/Lakes/5147

The SID Compo IV

The c64.sk music competition was taken from 22.november to 5.december 2004
There were 32 competing tunes plus 2 bonus tunes. Here the result, more info at the

www.c64.sk site:

Place PTS Song Name / Author ID
1 500 Natural Cause of Death / Thomas Mogensen (DRAX) 10
2 492 Natural Cause of Life / Alexander Rotzsch (Fanta/Oxyron/Plush) 31
3 467 Crush / Stellan Andersson (Dane/Booze Design) 24
4 457 Level Kamil Wolnikowski / (Jammer/EXON/MSL/Samar) 12
5 456 Vinyl Headz / Michal Hoffmann (Dat Nigga Randall / Ghettomuzik) 14
6 439 Unleas The F. Fury / Lasse rni (Cadaver/CoverBitOps 21
7 438 Sherona Red / Hein Holt (Hein/Focus) 6
8 424 Focus On Food / Ronny Engmann (Dalezy) 15
9 423 Flight of Serpent Dragon / Rafal Kazimierski (Asterion) 11
10 417 Mutator / Mark Thomas Ross (MTR1975) 3
11 395 The Battle Of [illegible] / Maciej Stankiewicz (Trompkins/Tinnitus) 17
12 394 Are you satisfied ? (prw) / Marcin Kubica (Booker/Amorphis/Onslaught 32
13 394 Garden of the Black Rose part 4 / Krzysztof Malczewski (Phobos/Samar 4
14 387 Second Steps / Aleksi Eeben (aeb/Carillon) 7
15 387 Marvel / Gerard Hultink (GH/Toondichters) 20
16 385 Sunday Weirdness / Marc van den Bovenkamp (No-XS/World Wide Expressive) 29
17 375 Path Of Pain / Daniel M. Gartke (Turtle / The Demented) 25
18 375 Cosy Brains Pulsating / Mark Waldaukat (Heinmukk/Salva Mea) 19
19 354 Your Average Giallo / Sascha Zeidler (Linus) 16
20 339 Sidcompo IV / Martin Nordell (Maktone/Fairlight) 2
21 326 Nicca Pop / Anders Carlsson (Zapac) 13
22 312 Bonuslevel! / Tony Cav (Ferrara / phObos team) 8
23 306 Lost Again / Richard Bayliss (Richard / The New Dimension) 1
24 303 TRYITON1x2&4-first48sec / Przemek Mroczkowski (Surgeon/Vulture Design) 26
25 298 FarOff CyberSpace (short) / Robert D fler (LordNikon) 9
26 291 Depleted Uranium / Linus Akerlund (Puterman/Fairlight) 18
27 286 Mididrums / Jaymz Julian (A Life in Hell) 27
28 267 Riffing On The Edge / Andrew Lemon (ne7/Creators/Napalm/Rebels) 22
29 252 COMPOSEED $c0de/ Rafal Szyja (Raf/Samar/Vulture) 30
30 229 ChipSlip / Marcus Jansson (CMP) 28
31 194 Into The Sunset / Oliver VieBrooks (Six of Dloc) 5
32 188 Distoken Disinterpretor / Langel Janson L. Bookbinder Esq. IX 23

SIDBrowser V2.4

SIDBrowser is the Windows program that let your life to be more easy with sid:

● Browse easy in HVSC
● Define favourite paths
● See picture of musician (if available)
● Play subtune by button
● Read background-information of SID tune information list (STIL)
● Multilingual: Czech, English, German, Italian, Japanese, Polish

14

● Quick Search for filename, copyright, songlength, words inside STIL
● Show while browsing filelist sorted by Year
● Read documents of HVSC easy
● Browse inside Top100 of HVSC
● Create Play-List and edit them easy
● Toggle between 5 playlists, to create your own Bestest Best of Best ;-)
● Create SIDList (Mega-playlist)
● Import Playlists from sidplay (.spl), winamp (.m3u)
● Export Playlists to sidplay (.spl, Format 2)
● Listen Playlists random (shuffle)and repeat
● History of listened SIDs
● Get and put playlists online. Exchange them with your friends all the world!
● Chat with other SIDians ;-)
● Minimizable to Tray
● Taskbutton scrolls information about actual playing SID

15

The new version was released 2 January 2005 with this new features:

● little history-bug fixed
● photos updated
● updated splashscreen
● some values updated
● new Document for reading: Songlength-Database-Readme
● Language files updated a little bit
● include the new songlength-database 5.8 for HVSC 5.8

Download from http://www.sidbrowser.com

16

Dustbin (Stefano Palmonari) Interview!
by Stefano Tognon

This time you can read an interview with Stefano Palmonari that occurs with some emails in
December.

Hello, Stefano,
Can you introduce yourself to the readers: something about you and your real life.

Hi everybody! My name is Stefano Palmonari, I'm 31 years old and I was known in the scene as
Dustbin. I started composing computer music at 15 without any specific musical knowledge: just a
lot of Rob Hubbard's tunes recorded on a tape... And tons of Jeroen Tel's tunes played 24:7 :-) so
I learned some tricks just listening to the musics... I was very lucky too, 'cause I met a guy from
F4CG in Ferrara, wich I was born, that gave me some music editors like, for example, Future
Composer. I started typing shit in it until I was able to produce something "ear-able":-))
Actually I sing in a Queen-Tribute band, I'm married and I have a daughter:
she's 2 years old and she already likes music of every kind: from Mozart to Coal Chamber...!

You are one of the few Italian sid composers that worked into a game company that
produce games in '90. Can you speak about those (old) days?

Well... Italian musicians were talented (ie: Ivan Del Duca, Paolo Galimberti, Gianluca Gaiba, Nicola
Tomljianovic...) and graphic artists too... Italian coders were quite good but not at the same level
as Dan Phillips :-)) ... The only impressive Italian coders I remember are Paolo Galimberti and
Andrea Pompili. Anyway, the main problem were the Software Houses themselves... They wanted
talented people but they didn't wanted to pay them... :-|
Talking about those good old days, I remember a lot of hours passed on the C64 learning to use
the editors. I was 17 and you can't imagine how happy I was when I finished my first shitty-tune
done in Rockmonitor :-) That shitty tune was sent to Simulmondo, more or less as a joke, but they
called me to work for them... So I did.
90's were, computerically speaking, AMAZING...

You have compose music for Amiga, PC, and even for Game Boy: what are the difference
about composing music for the Sid chip and the other architectures?

Everybody knows that .mod format was introduced with the Amiga but in some way we can
consider Rockmonitor, on the glorious C64, as an ancestral of it.
The SID chip allows you to manage just 3 channels and you have to practice a lot on it to gain a
balance between technique, full control of the tracks and musical skill!
On the Game Boy I did 3-tracks midi files (Rayman), testing it with a proprietary player: that was
quite easy, 'cause the midi editor and my Roland makes the difference. On the C64, using the
good old editors, we have to think in hex and write something like

SND.01
DUR.0c
C-5
SND.02
C-4
DUR.18
F#4
...

Then we have to handle the arpeggio table, filter table, wave table... Every C64 editor, or at least

17

the editors I used, works keeping in mind the amount of memory, not a user friendly interface. I
think the differences in composing music, between the platforms, are related to the interface... With
PC-trackers you have a full control of every single note, at tick resolution. You can find some
trackers for the GB, too, but the best seems to be Musicbox, a commercial product. In my opinion
it's very difficult to use due to the hardware used: a real GB :-)) In order to compose in a
"reasonable" way on the GB you have to use a pc-tracker in audio-emulation, like Paragon 5
Tracker.
Well, I found quite easy to compose on the Amiga/PC but tremendously difficult to compose with
the C64. I found Renoise, on the PC, a fantastic editor/tracker... I hope they'll add a realtime sid-
emulation plug-in/VST... something like that :-))

I know that you are not a musician/composer, but your Sid music I'm listening now is what I
call fantastic music! Maybe you can tell as how this is possible (some sid people could
learn something from your experience).

Oh... Thank you! But maybe "Fantastic" is too much. Anyway, I think the best feature invented is
the arpeggio... You can use it "chopped" for funky tunes. I have to say one other thing: none of the
workstations I used, neither a soundcard, gives you that typical WARM lead sound... Maybe just a
minimoog! The SID chip is unique, and every SID chip is unique (someone said "filters" ? :-)
Here's a good snare ripped from zakazazam by Glenn Rune Gallefoss:

wavetable 81 41 40 80 80
arptable CE AE AC CA DE

This data works fine with Sadotracker... :-) (You can break it and shake it and re-compose it but...
I think first Rob Hubbard music routines were studied well :-))
C64 produces some of the best sounds I ever heard...
Anyway, as I said, in my humble opinion, there are something to keep in mind when you compose
on the SID:

● SID has just 3 channels (+1, when available :-) , you can try to do miracles but only if...
● ... you reach a good balance between technique and the channels available.
● Learn to use PERFECTLY one or two editors... don't waste your time trying to learn all the

editors around
● Listen to the best .sid around and try to remake it with your ears only (That's what I did 10

years ago!! With the difference I didn't have .sid files like today but just tapes live-recorded from
TV :-) (no audio out).

At this point a question that I already know the answer :-) : can we listen again to a your
new composition for the C64 (hint: LSS2)?

hehe, yes! :-) Thanks to you, the coder, I did some jingles for Little Sara Sisters 2 :-))) Nothing
special, but it was very exciting to type the good old commands in the pattern editor :-))

A technical question: what do you find the actual editor/tracker compared with the ones
you use 12 years ago? Some years are passed, the SID chip is the same, but what about the
tools?

I find Cybertracker and Odintracker user friendly and it's fantastic to see they've been developed in
this years, after the death (just for the market!) of the C64.
Anyway, for some nostalgic reasons, but technical also, my preference goes to Sadotracker: the
essential features are fully present and I don't have to remember a lot of keys to type and activate
something.

18

Now some quick final (standard) questions:
Real machine vs emulator: what do you think of?

Although the C64 is 99% emulated I will not sell my real C64 for any amount of money (I've
already sold one of my two C64's but I won't sell the last one).
Above all the SID chip is critical to emulate: it's almost impossible to emulate it perfectly. They
reached good results but emulating filters, for example, requires a lot of CPU and it doesn't work
fine. This speaking about technical facts.
Emulation is fantastic because, personally, I re-discovered forgotten feelings when I played with
Gyruss, for example... Or Cybernoid... That was the first Tel's tune I've listened to... And it's still
beautiful.

6581 vs 8580 chip: any (musical) preference?

6581, without doubts. The new 8580 was not good compared to the old 6581!
Sounds incredible but I think so.

What is the worst sid that you compose and the better one?

The worst one was the title music of Big Game Fishing... On the other hand, I think my best work
was did for Basket Play Off.

Who are your best sid authors?

What the hell... :-) Rob Hubbard, who invented the profession, Jeroen Tel, whose technical skill
was, and still is, incredible (he was already musician at age 0) and Martin Galway. These three
persons has changed the story of the C64. Jeroen Tel is my music hero, but Rob Hubbard is the
best and many musicians (and music-routines coders, too) have to say "thanx" to him.

What are the best sids ever in your opinion?

Hard question to answer... I think Sanxion's tape loader music...
Then Cybernoid's title track and, last but not least, Wizball's soundtrack...
I think Wizball is the best game ever made on the C64.

Finally, many thanks for the time you give for this interview, and now you can say any
things you want that the people will read from you!

Thank you very much for interviewing me!
Well, first of all excuse my spaghetti-english, sooner or later I'll improve it :-)))
My dream is to turn back child at age 13 when my parents brought to me my first C64.
Then start again with all the things I did (maybe with some minor changes :-))

19

Inside Modules
by Stefano Tognon <ice00@libero.it>

Modules is one of the game programmed by
Italian people in the '80 and in particular Ivan Del
Duca has wrote his own music engine for creating
his music.

Ivan has declared in some Italian interview that
he was not a true musician (he is a game coder,
even today), but that he probably wrote the first
Italian music engine around, instead of used the
one's that were available.

I would like to see how the engine works, and I
choose to analyze Modules because I like the

music of this game.

Structure

The player use some common structures:

● Tracks
● Patterns
● Music commands

A track is composed by a sequence of patterns to executes. There are 3 tables of tracks: one for
each voices.

An entry in the track has this structure:

● high address of pattern to execute
● low address of pattern to execute
● max index in pattern to execute (FF=max, can be terminate by instruction)
● number of times to repeat the given pattern

This means that we have an 16 bit address of the pattern to execute, the max number of
instruction in the pattern to execute (a FF values means that will be a special instruction into the
pattern that will end the pattern execution) and the number of times this pattern will be repeated.

Some examples:

track1:
 .byte >pat00, <pat00, $3D, $02
 .byte >pat01, <pat01, $51, $00
 .byte >pat03, <pat03, $FF, $00

Here pat00 will be executed for $3D instructions and it will be repeated 3 times, then pat01 will
be executed 1 time for $51 instructions and finally pat03 will be executed 1 time until the instruction
flow reach the instruction that terminate the pattern.

20

Instrument

This engine handles 16 instruments (even if it could be possible to use up to 256 if we extend
the tables of attributes). In fact an instrument is built by 9 parameters putted into 9 tables of 16
entries.

Let we analyze one instrument definition:

● Attack-Decay of the voice
● Sustain-Release of the voice
● Low value of wave (for rectangular waveform)
● High value of wave (for rectangular waveform)
● Control of voice when it is on
● Control of voice when it is off (e.g. release)
● Hight byte of filter cut frequency
● Filter resonance
● Filter mode

As we can see, one instrument has very limited capability: ADSR, Wave duty cycle (fixed) and
control values for the voice (two types). This means that all the effects that the player can
reproduce are not associated with the instrument, with one exception: the filter.

In fact, the last 3 bytes of the instrument definition are for controlling the filter of the voice, by
selecting the type of filter and resonance/cut frequency (however dynamically change onto filter
are to be performed with instruction in the pattern)

Pattern

The instructions used into the patterns are quite complicated, as they use low address pointer as
an instruction (so, the code cannot be relocated easily).

But let we see how the instructions are made, by looking at the program (in pseudocode)

● Read a pattern value
● If it is 0, then the next value is a note duration
● If it is negative (e.g with value from $80 to $FF) it is a command
● Else it is a note; After a note, we read another value:

● If it is above $9F this is a note duration
● Else it is another note and the duration is like the previous used one

As you can see this is not a so clear code, as note duration need even special command (0
byte) for be used correctly.

A declared note is an index for frequency values: a table of 12 frequencies is used (one octave)
and the others are calculated each times by manipulating that little table. The note is so made in
this manner:

octave-note

Where octave is the octave to use (from 0 to 7) and note goes from 1 to C.

Valid note duration values are from $A0 to $E0: this is an index that is used for read the real

21

duration from a table of duration. This table is of 16bit, so we can have very-very long sound.

Finally, we must see the commands available. Remember that a value of a command is the low
pointer of the memory location that contains the code. The high value of the pointer is fixed.

Value Command

$80 End of pattern

$83 Set control for release

$86 Set a new instrument

$89 Set the volume

$8C Portamento add

$8F Portamento down

$92 Stop effect

$95 Copy sid register values

$98 Not used

$9B Various action: vibrato, gosub, return, play note

● The command $80 will terminate the pattern. Remember that the pattern can be terminate by
the length that is given into the track, or by this command.

● $83 will make the release of the envelope (gate=0). The value used is the one declared into the
instrument table.

● $86 is the command for changing the instrument. It has two parameters:
1. The instrument number to use
2. A flag: <> 0 means to reload the filter parameters, otherwise currents will be used

● $89 sets the volume, and so it has only one parameter:
1. The volume (from $0 to $F) to use

● $8C and $8F will perform the portamento up and down, so it has those parameters:
1. Frequency step to add/sub
2. Delay between an add/sub

● $92 is a command that stop all effects that are being done to this voice.

● $95 is a command that is to be used for copy the values of sid registers. It has two parameters:
1. Offset of source sid register
2. Offset of destination sid register

You can, for example, use this for copying the oscillator 3 value to one other register for putting
a random value in it.

● $9B is a command that performs many actions, according to the first parameter, so now we will
see all the cases.

22

Values Command

$9B $02 indType limit step delay(speed)

This command is for making effect like vibrato.
There is the limit that will invert the adding
sequence to became descendant. Step is the
amount of value to add/subtract. Delay is the
ticks between two add/sub, and so it is the speed.

Finally indType is an index to a table of effect to
use:

0: Manage actual filter cut frequency high value

1: Manage the wave high value of a voice

2: Manage the frequency high value of a voice
(vibrato)

$9B $03 Return instruction: the flow of execution is
passed back to the caller

$9B $05 note

This instruction will put note as output
frequency. No action is taken about duration of
this note.

$9B val

Gosub intruction: the flow of execution is passed
to the pattern that has $C9 as high address and
val as low address

As I have commented a lot the first patterns into the code, you can see how those commands are
used directly by looking into the code.

Code

Here the reverse engineering source code of the player. Note that all he right remain to Ivan.

;PSID file version 2
;Load Address: 0
;Init Address: c57b
;Play Address: cfe8
;name: Modulus
;author: Ivan Del Duca
;copyright: 1988 System
;songs: 1 (startsong: 1)
 processor 6502
 .org $C000

 ldx #$00
 stx vTemp

loopNext:
 lda disVoice,x ; voice 1 disable?
 bne nextVoice

 lda flagMus,x ; is to process music flow?
 beq nextVoice

 dec flagMus,x ; no more to process
 stx vIndex ; voice index
 jsr processMusic

nextVoice:
 inc vTemp ; next voice
 ldx vTemp
 cpx #$03
 bne loopNext

 jsr makeDurEffect
 lda disMusic ; is to disable music?

23

 bne disPlayer
 rts

vTemp: ; voice temp index
 .byte $03

disPlayer:
 jsr disablePlayer
 lda #$00
 sta actFiltCut
 rts

processMusic:
 lda maxIndex,x ; max index of pattern to execute
 cmp patIndex,x ; actual pattern index
 beq readTrack

makePatFlow:
 jsr setPatAddr
 lda patIndex,x ; actual pattern index
 inc patIndex,x ; actual pattern index
 tay
 lda ($14),y ; read from pattern
 beq jmpSetDuration
 bmi execInstr ; is an instruction?
 tay ; it's a packet note
 jsr makeControlOff

setFreq:
 jsr setFrequency ; set frequency of this note
 lda relDelay,x ; delay to reload
 sta actDelay,x ; actual delay
 jsr makeControlOn

setDuration:
 jsr readNextValue ; read note duration
 cmp #$9F
 bcs readDuration
 jsr goBackPIndex ; go back with index
 lda packDuration,x ; use previous pack duration

readDuration:
 sta packDuration,x
 sec
 sbc #$A0
 tay
 lda durationHiTab,y
 sta durationHi,x
 lda durationTab,y
 sta duration,x
 rts

jmpSetDuration:
 jmp setDuration

execInstr:
 sta instAddr
 jmp (instAddr) ; execute the instruction

;================================
; Read next attern value
; in case it reads a new pattern
; from track
;================================
readNextValue:
 lda maxIndex,x ; max index of pattern to execute
 cmp patIndex,x ; actual pattern index
 beq readTrack

 jsr setPatAddr
 lda patIndex,x ; actual pattern index
 inc patIndex,x ; actual pattern index
 tay
 lda ($14),y
 rts

readTrack:
 lda trackIndex,x ; actual track index
 tay
 cpx #$00
 beq readTrack1
 cpx #$01
 beq readTrack2

readTrack3:
 jsr testForRepeat
 lda track3,y
 sta hiPatAddr,x
 iny

24

 lda track3,Y
 sta loPatAddr,x
 iny
 lda track3,y
 sta maxIndex,x ; max index of pattern to execute
 lda #$00 ; reset pattern index
 sta patIndex,x ; actual pattern index
 jsr readNRepeat3
 sty trackIndex+2 ; actual track index
 jmp makePatFlow

readTrack2:
 jsr testForRepeat
 lda track2,y
 sta hiPatAddr,x
 iny
 lda track2,y
 sta loPatAddr,x
 iny
 lda track2,y
 sta maxIndex,x ; max index of pattern to execute
 lda #$00 ; reset pattern index
 sta patIndex,x ; actual pattern index
 jsr readNRepeat2
 sty trackIndex+1 ; actual track index
 jmp makePatFlow

readTrack1:
 jsr testForRepeat
 lda track1,y
 sta hiPatAddr,x
 iny
 lda track1,y
 sta loPatAddr,x
 iny
 lda track1,y
 sta maxIndex,x ; max index of pattern to execute
 lda #$00 ; reset pattern index
 sta patIndex,x ; actual pattern index
 iny
 lda track1,y
 sta nRepeat,x ; number ot times to repeat
 iny
 sty trackIndex ; actual track index
 jmp makePatFlow

;================================
; Set pattern index address
;================================
setPatAddr:
 lda loPatAddr,x
 sta $14
 lda hiPatAddr,x
 sta $15
 rts

;=================================
; Make the voice control off
;=================================
makeControlOff:
 lda vCntOff,x
 jsr indexToOffset
 sta $D404,x ; Voice 1: Control registers
 ldx vIndex ; voice index
 rts

;================================
; Make the voice control on
;================================
makeControlOn:
 lda vCntOn,x
 jsr indexToOffset
 sta $D404,x ; Voice 1: Control registers
 ldx vIndex ; voice index
 rts

;================================
; go back pattern index
;================================
goBackPIndex:
 dec patIndex,x ; actual pattern index
 rts

;================================
; set instrument to use
;================================
setInstrument:
 jsr readNextValue
 tay ; instrument number

25

setInstrumentY:
 jsr indexToOffset
 lda tbAD,y
 sta $D405,x ; Generator 1: Attack/Decay

 lda tbSR,y
 sta $D406,x ; Generator 1: Sustain/Release

 lda tbWLo,y
 sta $D402,x ; Voice 1: Wave form pulsation amplitude (lo byte)

 lda tbWHi,y
 sta $D403,x ; Voice 1: Wave form pulsation amplitude (hi byte)

 ldx vIndex ; voice index
 sta waveHi,x
 sta waveHiRel,x

 lda tbCntOn,y ; voice control (on)
 sta vCntOn,x

 lda tbCntOff,y ; voice control (off)
 sta vCntOff,x

 tya
 sta actInstr,x ; actual instrument number

modCode:
 sty temp
 jsr readNextValue ; filter flag state (<>0=reload filter paramethers)
 bne reloadFilter
 lda bitWiseTab,x
 eor #$FF
 and actFiltRes
 sta actFiltRes
 sta $D417 ; Filter resonance control/voice input control
 cpx #$00
 bne noResAFC

 lda #$00 ; reset for voice 0
 sta actFiltCut
noResAFC:
 jmp jmpProcessMusic

reloadFilter:
 ldy temp

reloadFilterY:
 lda filtCutFH,y
 sta $D416 ; Filter cut frequency: hi byte
 cpx #$00
 bne skipActFC
 sta actFiltCut

skipActFC:
 sta actFiltCutFH
 lda actFiltRes
 and #$0F
 ora filterResCtr,y
 sta actFiltRes
 lda actFiltVol
 and #$0F
 ora filterMode,y
 sta actFiltVol
 sta $D418 ; Select volume and filter mode
 lda bitWiseTab,x
 ora actFiltRes
 sta actFiltRes
 sta $D417 ; Filter resonance control/voice input control
 jmp jmpProcessMusic

;================================
; Disable the passed x voices
;================================
disableVoice:
 lda #$01
 sta disVoice,x ; disable this voice
 rts

;================================
; Set the volume of voices
;================================
setVolume:
 jsr readNextValue ; read the volume
 sta temp
 lda actFiltVol
 and #$F0
 ora temp

26

 sta actFiltVol
 sta $D418 ; Select volume and filter mode
 jmp jmpProcessMusic

;=================================
; Change control of voice for
; release phase
;=================================
makeRelease:
 jsr makeControlOff
 jmp jmpProcessMusic

;=================================
; portamento up effect (can be used
; also for vibrato in conjuction
; with portamento down)
; par1: freq. step to add
; par2: delay to reload
;=================================
portUp:
 jsr readNextValue ; freq. step to add
 sta freqStep,x
 jsr readNextValue ; delay to apply
 sta relDelay,x ; delay to reload
 sta actDelay,x ; actual delay
 inx
 txa
 dex
 ldy #$01 ; freq. add
 jsr onEffect
 jmp jmpProcessMusic

;=================================
; portamento down effect (can be used
; also for vibrato in conjuction
; with portamento up)
; par1: freq. step to sub
; par2: delay to reload
;=================================
portDown:
 jsr readNextValue ; freq. step to sub
 sta freqStep,x
 jsr readNextValue
 sta relDelay,x ; delay to reload
 sta actDelay,x ; actual delay
 ldy #$02 ; freq. sub
 jsr onEffect
 jmp jmpProcessMusic

;================================
; Stop effect in the passed x voice
;================================
stopEffect:
 lda #$00
 sta flagEff,x ; flag effect for each voices
 lda flagEff
 bne goProcessMusic
 lda flagEff+1
 bne goProcessMusic
 lda flagEff+2
 bne goProcessMusic

 lda #$00
 sta abilEffect ; stop all effects

goProcessMusic:
 jmp jmpProcessMusic

;================================
; copy a sid register to another
; par1: SID index source
; par2: SID index destination
;================================
sidCopy:
 jsr readNextValue
 sta fromIndex,x
 jsr readNextValue
 sta toIndex,x
 ldy #$03
 jsr onEffect
 jmp jmpProcessMusic

;================================
; 02 indType limit step delay(speed)
; 03
; 05 packet_note
; <>
;================================
varyAction:

27

 jsr readNextValue
 cmp #$02
 beq setVibLikeEf
 cmp #$03 ; return (restore state)
 beq jmpInstReturn
 cmp #$05 ; set packet note
 beq setPacketNote
 jmp instGosub ; gosub (store state)

jmpInstReturn:
 jmp instReturn

setPacketNote:
 jsr readNextValue ; read packet note
 tay
 jmp setFreq

setVibLikeEf:
 jsr readNextValue ; index type
 sta indType,x
 jsr readNextValue ; limit value
 sta limit,x
 lsr
 lsr
 sta lowLimit,x
 lda #$00
 sta currValue,x
 jsr readNextValue ; read the step
 sta step,x
 jsr readNextValue ; read delay (speed)
 sta delayRelod,x
 sta delay,x
 ldy #$05 ; vibrato like effect
 jsr onEffect
 jmp jmpProcessMusic

;================================
; Performe a gosub instruction
;================================
instGosub:
 sta temp ; low address of gosub routine
 lda loPatAddr,x
 sta storedLoPatAddr
 lda hiPatAddr,x
 sta storedHiPatAddr
 lda temp
 sta loPatAddr,x ; set low address
 lda patIndex,x ; actual pattern index
 sta storedPatIndex
 lda maxIndex,x ; max index of pattern to execute
 sta storedMaxIndex
 lda actInstr ; act instrument voice 1
 sta storedInstr
 lda #$C9
 sta hiPatAddr,x ; set high address
 lda #$00
 sta patIndex,x ; actual pattern index
 lda #$FF
 sta maxIndex,x ; max index of pattern to execute
 jsr setPatAddr
 jmp jmpProcessMusic

;================================
; Performe a return instruction
;================================
instReturn:
 lda storedLoPatAddr
 sta loPatAddr,x
 lda storedHiPatAddr
 sta hiPatAddr,x
 lda storedPatIndex
 sta patIndex,x ; actual pattern index
 lda storedMaxIndex
 sta maxIndex,x ; max index of pattern to execute
 jsr setPatAddr
 ldy storedInstr
 lda #$60
 sta modCode ; put rts
 jsr setInstrumentY ; set only instrument paremeter
 lda #$8C ; put sty absolute
 sta modCode
 lda actFiltCut ; actual filter cut frequency
 bne toReload
 jmp jmpProcessMusic

toReload:
 jmp reloadFilterY

;================================

28

; Test for repeat the current pattern
;================================
testForRepeat:
 lda cRepeat,x ; repeat counter
 cmp nRepeat,x ; number of times to repeat
 bne incTestRepeat
 rts

incTestRepeat:
 inc cRepeat,x ; inc repeat counter
 lda cRepeat,x ; repeat counter
 cmp nRepeat,x ; number of times to repeat
 beq noRepeat

 dey ; go back to previous row in track
 dey
 dey
 dey
 rts

noRepeat:
 lda #$00
 sta cRepeat,x ; reset repeat counter
 rts

;================================
; Read the number of time to
; repeat for track 3
;================================
readNRepeat3:
 iny
 lda track3,y
 sta nRepeat,x ; number of times to repeat
 iny
 rts

;================================
; Read the number of time to
; repeat for track 2
;================================
readNRepeat2:
 iny
 lda track2,y
 sta nRepeat,x ; number of times to repeat
 iny
 rts

;================================
; Set the frequency of note
; Y=packet note: octave/note
;================================
setFrequency:
 tya
 tax
 and #$0F ; take the note
 tay
 dey
 lda freqTableHi,y
 sta actFreqHigh
 lda freqTableLo,y
 sta actFreqLow
 txa
 and #$F0 ; take the octave of the note
 lsr
 lsr
 lsr
 lsr
 tay ; octave
 cpy #$00
 beq freqOk

calcFreq:
 lsr actFreqHigh
 ror actFreqLow
 dey
 bne calcFreq
freqOk:
 jsr indexToOffset
 lda actFreqLow
 sta $D400,x ; Voice 1: Frequency control (lo byte)
 ldx vIndex ; voice index
 sta actFreqLo,x
 jsr indexToOffset
 lda actFreqHigh
 sta $D401,x ; Voice 1: Frequency control (hi byte)
 ldx vIndex ; voice index
 sta actFreqHi,x
 lda #$00
 sta currValue,x

29

 lda waveHiRel,x ; wave high to reload
 sta waveHi,X
 rts

jmpProcessMusic:
 lda vIndex ; voice index
 jmp processMusic

;================================
; Convert voice index to sid offset
;================================
indexToOffset:
 sta temp
 ldx vIndex ; voice index
 lda vOffset,x ; read voice offset of sid
 tax
 lda temp
 rts

onEffect:
 inx
 txa
 dex
 sta flagEff,x ; store voice+1
 tya
 sta freqEffect,x ; store frequency effect
 sta abilEffect ; abilitate all effects
 rts

;================================
; activate effects
;================================
activateEffects:
 lda flagEff
 beq testV2
 lda #$00
 sta vIndex ; voice index
 jsr makeEffect

testV2:
 lda flagEff+1
 beq testV3
 lda #$01
 sta vIndex ; voice index
 jsr makeEffect

testV3:
 lda flagEff+2
 beq skipEff
 lda #$02
 sta vIndex ; voice index
 jsr makeEffect
skipEff:
 rts

;================================
; Make freq. effect
;================================
makeEffect:
 ldx vIndex ; voice index
 lda freqEffect,x
 cmp #$01 ; freq. add
 beq addFreq
 cmp #$02 ; freq. sub
 beq subFreq
 cmp #$03 ; sid copy
 beq efSidCopy
 cmp #$05 ; vibrato like effect (even for wave and filter)
 beq jsrDecDelay
 rts

efSidCopy:
 jsr sidCopyEffect
 rts

jsrDecDelay:
 jsr decDelay
 rts

addFreq:
 lda actDelay,x ; actual delay
 bne decADelay
 clc
 lda actFreqLo,x
 adc freqStep,x
 sta actFreqLo,x
 jsr indexToOffset
 sta $D400,x ; Voice 1: Frequency control (lo byte)

30

 ldx vIndex ; voice index
 lda actFreqHi,x
 adc #$00
 sta actFreqHi,x
 jsr indexToOffset
 sta $D401,x ; Voice 1: Frequency control (hi byte)

 ldx vIndex ; voice index
 lda relDelay,x ; delay to reload
 sta actDelay,x ; actual delay
 rts

decADelay:
 dec actDelay,x ; dec actual delay
 rts

subFreq:
 lda actDelay,x ; actual delay
 bne decSDelay

 sec
 lda actFreqLo,x
 sbc freqStep,x
 sta actFreqLo,x
 jsr indexToOffset
 sta $D400,x ; Voice 1: Frequency control (lo byte)

 ldx vIndex ; voice index
 lda actFreqHi,x
 sbc #$00
 sta actFreqHi,x
 jsr indexToOffset
 sta $D401,x ; Voice 1: Frequency control (hi byte)

 ldx vIndex ; voice index
 lda relDelay,x ; delay to reload
 sta actDelay,x ; actual delay
 rts

decSDelay:
 dec actDelay,x ; dec actual delay
 rts

;================================
; copy sid register values effect
;================================
sidCopyEffect:
 lda fromIndex,x
 tay
 lda $D400,y ; Voice 1: Frequency control (lo byte)
 tay
 lda toIndex,x
 tax
 tya
 sta $D400,x ; Voice 1: Frequency control (lo byte)
 ldx vIndex ; voice index
 rts

decDelay:
 dec delay,x
 beq delayIs0
 rts

delayIs0:
 lda delayRelod,x
 sta delay,x ; reload the delay
 jsr setAddrForEff
 lda lowLimit,x
 sta temp
 lda currValue,x
 cmp temp
 bcc effectAdd
 jsr incByLowlimit

 cmp temp
 bcc effectSub
 jsr incByLowlimit
 cmp temp
 bcc effectSub
 jmp effectAdd

;================================
; set the address for effect
;================================
setAddrForEff:
 lda indType,x ; index type of effect
 tax
 lda loIndType,x
 sta $8C

31

 lda hiIndType,x
 sta $8B
 lda #$D4
 sta $67
 lda sidIntType,x
 sta $66
 ldx vIndex ; voice index
 rts

effectAdd:
 ldy #$00
 jsr adapt2ForVoice
 lda ($8B),y ; read actual value for the effect
 clc
 adc step,x
 sta ($8B),y ; store the new value
 jsr adaptForVoice
 sta ($66),y ; put sid effect
 ldx vIndex ; voice index
 jmp testLimit

effectSub:
 ldy #$00
 jsr adapt2ForVoice
 lda ($8B),y
 sec
 sbc step,x
 sta ($8B),y
 jsr adaptForVoice
 sta ($66),y ; put sid effect
 ldx vIndex ; voice index
 jmp testLimit

;================================
; Test limit for curr value and
; reset if necessary
;================================
testLimit:
 inc currValue,x
 lda currValue,x
 cmp limit,x
 bne skipResetCV
 lda #$00
 sta currValue,x
skipResetCV:
 rts

loIndType:
 .byte >actFiltCutFH, >waveHi, >freqHi

hiIndType:
 .byte <actFiltCutFH, <waveHi, <freqHi

sidIntType: ; filter cut f high, wave high, freq. hi
 .byte $16, $03, $01

;================================
; Adapt the register for the voice
;================================
adaptForVoice:
 sta temp
 lda $66
 cmp #$16 ; this is a value not depending of voice
 beq skipAsFix ; so skip
 lda vOffset,x ; read offset for the voice
 tay
skipAsFix:
 lda temp
 rts

;================================
; Adapt2 the register for the voice
;================================
adapt2ForVoice:
 lda $66
 cmp #$16 ; this is a value not depending of voice
 beq skipAsFix2 ; so skip
 ldy vIndex ; voice index
skipAsFix2:
 rts

;================================
; Increment temp by low limit
;================================
incByLowlimit:
 lda temp
 clc
 adc lowLimit,x
 sta temp

32

 lda currValue,x
 rts

;================================
; Make note duration and effects
;================================
makeDurEffect:
 ldx #$00

testDVoice:
 lda disVoice,x ; is voice disable?
 bne nextVoice_

 dec duration,x ; dec low of note duration
 bne nextVoice_
 dec durationHi,x ; dec high of note duration
 lda durationHi,x
 cmp #$FF
 bne nextVoice_

 lda #$01 ; music flow is to process
 sta flagMus,x

nextVoice_:
 inx
 cpx #$03
 bne testDVoice

 lda abilEffect ; abilitate effects
 beq skipAbil
 jsr activateEffects
skipAbil:
 lda disVoice
 beq skipDisable
 lda disVoice+1
 beq skipDisable
 lda disVoice+2
 beq skipDisable

 lda #$01
 sta disMusic ; disable music

skipDisable:
 rts

;================================
; Init music
;================================
initMusic:
 lda #$00
 ldx #$00

repClear:
 sta disVoice,x
 inx
 cpx #$5F
 bne repClear

 lda #$01
 sta flagMus
 sta flagMus+1
 sta flagMus+2
 sta bitWiseTab
 lda #$C6
 sta instAddr+1
 lda #$07
 sta vOffset+1
 lda #$0E
 sta vOffset+2
 lda #$02
 sta bitWiseTab+1
 lda #$04
 sta bitWiseTab+2
 rts

;================================
; disable the player
;================================
disablePlayer:
 lda #$60 ; put rts
 sta $C000
 rts

;C5B5
 .byte $C0, $60, $00, $00
 .byte $FF, $FF, $FF, $FB
 .byte $00, $00, $02, $FF
 .byte $FF, $FF, $FF, $FF
 .byte $FF, $FF, $FF, $FF

33

 .byte $FF, $FF, $FF, $FF
 .byte $FF, $FF, $FF, $FF
 .byte $FF, $FF, $FF, $FF
 .byte $FF, $FF, $FF, $FF
 .byte $FF, $FF, $FF, $FF
 .byte $FF, $FF, $FF, $FF
 .byte $FF, $FF, $FF, $FF

actFreqHigh:
 .byte $54

actFreqLow:
 .byte $7D

freqTableLo:
 .byte $1E, $18, $8B, $7E
 .byte $FA, $06, $AC, $F3
 .byte $E6, $8F, $F8, $2E

freqTableHi:
 .byte $86, $8E, $96, $9F
 .byte $A8, $B3, $BD, $C8
 .byte $D4, $E1, $EE, $FD

durationHiTab: ; table of not duration (high value)
 .byte $03, $01, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $02, $01, $00, $00
 .byte $00, $00, $00, $00

durationTab: ; table of note duration
 .byte $C0, $E0, $F0, $A0
 .byte $78, $60, $50, $45
 .byte $3C, $35, $30, $2C
 .byte $28, $25, $22, $20
 .byte $1E, $1C, $1B, $19
 .byte $18, $17, $16, $15
 .byte $14, $13, $13, $12
 .byte $11, $11, $10, $0F
 .byte $0F, $0F, $0E, $0E
 .byte $0D, $0D, $0D, $0C
 .byte $0C, $0C, $0B, $0B
 .byte $0B, $0B, $0A, $0A
 .byte $0A, $08, $06, $05
 .byte $04, $03, $02, $01
 .byte $D0, $68, $B4, $5A
 .byte $2D, $A4, $D2, $69

 .byte $FF

 .org $C680
 JMP disableVoice ; 80: end of pattern
 JMP makeRelease ; 83: set control for release
 JMP setInstrument ; 86: set a new instrument
 JMP setVolume ; 89: set the volume
 JMP portUp ; 8C: portamento add
 JMP portDown ; 8F: portamento down
 JMP stopEffect ; 92: stop effect
 JMP sidCopy ; 95: copy sid register values
 JMP $0000 ; 98: not used
 JMP varyAction ; 9B: various action: vibrato, gosub, return, play note

 .byte $00, $00

disVoice: ; 1=disable voice
 .byte $00, $00, $00

flagMus: ; 1=process music flow
 .byte $00, $00, $00

vIndex: ; voice index
 .byte $02

disMusic:
 .byte $00

maxIndex: ; max index of pattern to execute

34

 .byte $3D, $F5, $0E

patIndex: ; actual pattern index
 .byte $3A, $13, $0E

durationHi: ; high part of duration of note
 .byte $00, $00, $00

duration: ; duration of note
 .byte $08, $80, $80

vCntOn: ; voice control on
 .byte $11, $85, $41

vOffset: ; voice offset
 .byte $00, $07, $0E

instAddr: ; instruction address to execute
 .byte $9B, $C6

 .byte $00

nRepeat: ; number of imes to repeat
 .byte $02, $00, $02

temp:
 .byte $48

trackIndex: ; actual track index
 .byte $04, $04, $04

loPatAddr: ; low pattern index
 .byte $00, $00, $00

hiPatAddr: ; high pattern index
 .byte $CA, $CB, $CC

actFiltVol: ; actual filter and volume of sid
 .byte $3F

bitWiseTab: ; a table for bitwise operation
 .byte $01, $02, $04

actFiltRes: ; actual filter res
 .byte $F2

freqStep:
 .byte $00, $00, $00

relDelay: ; delay to reload
 .byte $00, $00, $00

actDelay: ; actual delay
 .byte $00, $00, $00

flagEff: ; flag effect for each voices
 .byte $01, $02, $03

freqEffect:
 .byte $05, $05, $05

abilEffect: ; flag for abilitate effects
 .byte $05

freqHi:
actFreqHi: ; actual frequency high value
 byte $54, $3F, $05

actFreqLo: ; actual value of frequency low
 .byte $7D, $4B, $47
;C6E5
 .byte $00, $00, $00

cRepeat: ; repeat counter
 .byte $00, $00, $00

actInstr: ; actual insrument number
 .byte $00, $02, $01

fromIndex: ; sid index for from
 .byte $00, $00, $00

toIndex: ; sid index for to
 .byte $00, $00, $00

actFiltCutFH:
 .byte $48, $00, $00

storedLoPatAddr:

35

 .byte $00

storedHiPatAddr:
 .byte $00

storedPatIndex:
 .byte $00

storedMaxIndex:
 .byte $00

storedInstr:
 .byte $00

actFiltCut: ; actual filter cut frequency
 .byte $00

packDuration: ; pack duration
 .byte $A8, $A0, $A0

tbAD: ; attack decay table
 .byte $2A, $58, $82, $0C
 .byte $FA, $08, $09, $0C
 .byte $08, $08, $09, $0C
 .byte $3A, $09, $09, $00

tbSR: ; sustain release table
 .byte $3C, $5C, $50, $00
 .byte $00, $00, $4C, $50
 .byte $00, $50, $00, $5A
 .byte $4A, $00, $00, $00

tbWLo: ; wave low table
 .byte $0A, $7A, $00, $7A
 .byte $7A, $00, $7A, $00
 .byte $00, $50, $00, $40
 .byte $00, $00, $00, $00

tbWHi: ; wave high table
 .byte $06, $07, $00, $07
 .byte $08, $08, $08, $0C
 .byte $00, $08, $00, $08
 .byte $00, $00, $00, $00

tbCntOn: ; control voice (on) table
 .byte $11, $41, $85, $41
 .byte $41, $15, $41, $15
 .byte $11, $41, $11, $15
 .byte $81, $81, $11, $00

tbCntOff: ; control voice (off) table
 .byte $10, $40, $84, $40
 .byte $40, $14, $40, $14
 .byte $10, $40, $10, $14
 .byte $80, $80, $10, $00

filtCutFH: ; filter cut frequency high byte table (one values for each
instrument)
 .byte $80, $30, $70, $90
 .byte $5D, $00, $A0, $00
 .byte $00, $00, $00, $80
 .byte $90, $00, $00, $00

filterResCtr: ; filter resonance control table for the instrument
 .byte $F0, $F0, $F0, $F0
 .byte $F0, $00, $F0, $00
 .byte $00, $00, $00, $F0
 .byte $F0, $00, $00, $00

filterMode: ; filter mode (type) table for the instrument
 .byte $10, $10, $30, $30
 .byte $30, $00, $10, $00
 .byte $00, $00, $00, $10
 .byte $10, $00, $00, $00

;C790
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

currValue: ; current value for effect
 .byte $00, $68, $13

delay:

36

 .byte $02, $08, $08

vCntOff: ; voice control off
 .byte $10, $84, $40

waveHi:
 .byte $06, $00, $04

indType: ; index type of effect
 .byte $02, $00, $01

step:
 .byte $01, $01, $01

limit: ; limit value
 .byte $04, $80, $20

delayRelod:
 .byte $06, $08, $0A

lowLimit: ; low limit value
 .byte $01, $20, $08

waveHiRel: ; wave high to reload
 .byte $06, $00, $07

 .byte $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

; track format:
; high address of pattern to execute
; low address of pattern to execute
; max index in pattern to execute (FF=max, can be terminate by instruction)
; number of times to repeat the given pattern

track1:
 .byte >pat00, <pat00, $3D, $02
 .byte >pat00, <pat00, $51, $00
 .byte >pat01, <pat01, $0A, $04
 .byte >pat02, <pat02, $16, $08
 .byte >pat03, <pat03, $10, $16
 .byte >pat03, <pat03, $FF, $00
 .byte >pat0b, <pat0b, $FF, $00
 .byte >pat0c, <pat0c, $FF, $00
 .byte >pat0d, <pat0d, $FF, $00
 .byte >pat0e, <pat0e, $FF, $00
 .byte >pat0f, <pat0f, $FF, $00
 .byte >pat10, <pat10, $FF, $00
 .byte >pat11, <pat11, $FF, $00
 .byte >pat12, <pat12, $FF, $00
 .byte >pat13, <pat13, $FF, $00
 .byte >pat14, <pat14, $FF, $00
 .byte >pat15, <pat15, $FF, $00
 .byte >pat16, <pat16, $FF, $00
 .byte >pat17, <pat17, $FF, $00
 .byte >pat18, <pat18, $FF, $00
 .byte >pat26, <pat26, $FF, $00
 .byte >pat37, <pat37, $FF, $00
 .byte >pat27, <pat27, $FF, $00
 .byte $00, $00, $00, $00

track2:
 .byte >pat05, <pat05, $F5, $00
 .byte >pat0a, <pat0a, $5B, $00
 .byte >pat04, <pat04, $FF, $00
 .byte >pat19, <pat19, $FF, $00
 .byte >pat1a, <pat1a, $FF, $00
 .byte >pat1b, <pat1b, $FF, $00
 .byte >pat1c, <pat1c, $FF, $00
 .byte >pat1d, <pat1d, $FF, $00
 .byte >pat1e, <pat1e, $FF, $00
 .byte >pat1f, <pat1f, $FF, $00
 .byte >pat20, <pat20, $FF, $00
 .byte >pat21, <pat21, $FF, $00
 .byte >pat22, <pat22, $FF, $00
 .byte >pat23, <pat23, $FF, $00
 .byte >pat24, <pat24, $FF, $00
 .byte >pat25, <pat25, $FF, $00

37

;C8A0
track3:
 .byte >pat06, <pat06, $0E, $02
 .byte >pat06, <pat06, $3C, $00
 .byte >pat07, <pat07, $24, $05
 .byte >pat08, <pat08, $39, $05
 .byte >pat07, <pat07, $24, $02
 .byte >pat09, <pat09, $FF, $00
 .byte >pat28, <pat28, $FF, $00
 .byte >pat29, <pat29, $FF, $00
 .byte >pat2a, <pat2a, $FF, $00
 .byte >pat2b, <pat2b, $FF, $00
 .byte >pat2c, <pat2c, $FF, $00
 .byte >pat2d, <pat2d, $FF, $00
 .byte >pat2e, <pat2e, $FF, $00
 .byte >pat2f, <pat2f, $FF, $00
 .byte >pat30, <pat30, $FF, $00
 .byte >pat31, <pat31, $FF, $00
 .byte >pat32, <pat32, $FF, $00
 .byte >pat33, <pat33, $FF, $00
 .byte >pat34, <pat34, $FF, $00
 .byte >pat35, <pat35, $FF, $00
 .byte >pat36, <pat36, $FF, $00

;C8F4
 .byte $00, $00, $00, $00
 .byte >pat36, <pat36, $FF, $00
 .byte $00, $00, $00, $00

;C900
pat38:
 .byte $86, $0D, $00 ; set instrument
 .byte $23, $D5
 .byte $9B, $05, $23 ; play note
 .byte $86, $0E, $00 ; set instrument
 .byte $9B, $05, $5A ; play note
 .byte $D6
 .byte $9B, $05, $5A ; play note
 .byte $86, $0D, $00 ; set instrument
 .byte $9B, $05, $23
 .byte $D5
 .byte $9B, $05, $23 ; play note
 .byte $86, $0E, $00 ; set instrument
 .byte $9B, $05, $5A ; play note
 .byte $D6
 .byte $9B, $05, $5A ; play note
 .byte $86, $0F, $00 ; set instrument
 .byte $00, $D0
 .byte $9B, $03 ; restore state
 .byte $00
 .byte $00, $00

;C930
pat39:
 .byte $86, $0D, $00 ; set instrument
 .byte $26, $D5
 .byte $9B, $05, $23 ; play note
 .byte $86, $0E, $00 ; set instrument
 .byte $9B, $05, $5A ; play note
 .byte $D6
 .byte $9B, $05, $5A ; play note
 .byte $86, $0D, $00 ; set instrument
 .byte $9B, $05, $26 ; play note
 .byte $D5
 .byte $9B, $05, $23 ; play note
 .byte $86, $0E, $00 ; set instrument
 .byte $9B, $05, $5A ; play note
 .byte $D6
 .byte $9B, $05, $5A ; play note
 .byte $86, $0F, $00 ; set instrument
 .byte $00, $D0
 .byte $9B, $03 ; restore state

 .byte $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

38

 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

pat00:
;CA00
 .byte $86, $00, $00 ; set instrument
 .byte $9B, $02, $02, $04, $01, $06
 .byte $83 ; set control for release
 .byte $83 ; set control for release
 .byte $2A
 .byte $A8 ; note duration
 .byte $15, $11, $13
 .byte $2A, $15, $11, $13
 .byte $2A, $15, $11, $13
 .byte $2A, $15, $11, $13
 .byte $26, $15, $11, $13
 .byte $26, $15, $11, $13
 .byte $26, $15, $11, $13
 .byte $26, $15, $11, $13
 .byte $25, $15, $11, $13
 .byte $25, $15, $11, $13
 .byte $25, $15, $11, $13
 .byte $25, $15, $11, $13
 .byte $A8 ; note duration
 .byte $2A
 .byte $83 ; set control for release
 .byte $00, $D8 ; note duration
 .byte $00, $DA ; note duration
 .byte $00, $A0 ; note duration
 .byte $00, $A0 ; note duration

pat01:
;CA47
 .byte $00, $A8 ; note duration
 .byte $9B, <pat39 ; gosub instruction
 .byte $00, $DB ; note duration
 .byte $9B, <pat39 ; gosub instruction
 .byte $9B, <pat38 ; gosub instruction
 .byte $92 ; stop effect
 .byte $92 ; stop effect

pat02:
;CA53
 .byte $86, $05, $00 ; set instrument
 .byte $9B, $02, $02, $04, $01, $06
 .byte $1A, $B0, $18 ; note + note duration + note
 .byte $9B, <pat39 ; gosub instruction
 .byte $1A, $A8 ; note + note duration
 .byte $00, $B0 ; note duration
 .byte $9B, <pat39 ; gosub instruction
 .byte $9B, <pat38 ; gosub instruction

pat03:
;CA69
 .byte $86, $05, $00 ; set instrument
 .byte $1A, $B0, $18 ; note + note duration + note
 .byte $9B, <pat39
 .byte $1A, $A8 ; note + note duration
 .byte $9B, <pat38 ; gosub instruction
 .byte $9B, <pat39 ; gosub instruction
 .byte $9B, <pat38 ; gosub instruction
 .byte $86, $06, $00 ; set instrument
 .byte $3A, $A1 ; note + note duration
 .byte $83 ; set control for release

39

 .byte $9B, $05, $36 ; play note
 .byte $9B, $05, $4A ; play note
 .byte $9B, $05, $46 ; play note
 .byte $3A, $A2 ; note + note duration
 .byte $83 ; set control for release
 .byte $92 ; stop effect
;CA8C
 .byte $80, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
;CAB8
 .byte $16, $26, $21, $26
 .byte $28, $11, $16, $26
 .byte $C0, $80, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

pat04:
;CAE0
 .byte $86, $02, $01 ; set instrument
 .byte $9B, $02, $00, $80, $01, $08
 .byte $25, $A0 ; note + note duration
 .byte $9B, $05, $21 ; play note
 .byte $9B, $05, $2A ; play note
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern
;CAF4
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

pat05:
;CB00
 .byte $89, $0F ; set volume
 .byte $86, $02, $01 ; set instrument
 .byte $9B, $02, $00, $80, $01, $08
 .byte $25, $A0 ; note + note duration
 .byte $9B, $05, $21 ; play note
 .byte $9B, $05, $2C ; play note
 .byte $83 ; set control for release
 .byte $86, $03, $01 ; set instrument
 .byte $9B, $02, $01, $20, $01, $01
 .byte $31, $A1, $4A
 .byte $A8, $3A, $A4, $38
 .byte $A8, $35, $A2, $46
 .byte $A1, $4A, $A8, $48
 .byte $31, $4A, $A2, $4A
 .byte $A8, $45, $A1, $41
 .byte $C0, $43, $45, $43
 .byte $45, $46, $48, $46
 .byte $48, $4A, $4C, $4A
 .byte $4C, $31, $33, $35
 .byte $33, $35, $36, $38
 .byte $3A, $38, $3A, $A4
 .byte $00, $B0 ; note duration
 .byte $4A, $A1 ; note + note duration
;CB50
 .byte $86, $02, $01 ; set instrument
 .byte $9B, $02, $00, $40, $01, $08
 .byte $83 ; set control for release
 .byte $83 ; set control for release
 .byte $25, $A1 ; note + note duration
 .byte $9B, $05, $21 ; play note
 .byte $A0
 .byte $9B, $05, $2C ; play note
 .byte $A0
 .byte $9B, $05, $25 ; play note
 .byte $A0
 .byte $9B, $05, $2C ; play note
 .byte $9B, $05, $11 ; play note
 .byte $9B, $02, $02, $04, $01, $04
 .byte $86, $03, $00 ; set instrument
 .byte $2A, $A2, $23, $A8
 .byte $21, $25, $A4, $2A
 .byte $A4, $26, $D9, $00

40

 .byte $A2, $2A, $A4, $25
 .byte $A8, $11, $B0, $2C
 .byte $2A, $A4, $21, $A8
 .byte $11, $B0, $2C, $2A
 .byte $A2, $11, $B0, $2C
 .byte $11, $2C, $11, $2C
 .byte $28, $26, $2A, $A4
 .byte $11, $B0, $15, $1A
 .byte $A2, $2A, $A8, $25
 .byte $A8, $21, $C0, $15
 .byte $21, $16, $21, $18
 .byte $21, $1A, $21, $01
 .byte $A8, $01, $C0, $1A
 .byte $01, $18, $01, $16
 .byte $01, $15, $01, $13
 .byte $01, $11, $DA, $2A
 .byte $A8, $13, $B0, $2A
 .byte $15, $2A, $18, $2A
 .byte $A4, $25, $C0, $23
 .byte $21, $23, $25, $28
 .byte $2A, $B0, $11, $13
 .byte $15, $18, $1A, $A0
 .byte $00, $B0 ; note duration
 .byte $86, $01, $00 ; set instrument
 .byte $11, $A4, $11
 .byte $A8, $2A, $25, $B0
 .byte $21, $A8, $11, $B0
 .byte $2A, $25, $2A, $11
 .byte $2A, $25, $23, $21
 .byte $A4
 .byte $80 ; end of pattern

 .byte $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

pat06:
;CC00
 .byte $86, $01, $00 ; set instrument
 .byte $9B, $02, $01, $20, $01, $0A
 .byte $5A, $A0, $56
 .byte $55, $A0, $5A, $A8
 .byte $83 ; set control for release
 .byte $00, $D8
 .byte $86, $04, $00 ; set instrument
 .byte $00
 .byte $DA

pat07:
;CC18
 .byte $4A, $A8, $3A, $B0
 .byte $4A, $DB, $3A, $A8
 .byte $4A, $A8, $3A, $B0
 .byte $4A, $DB, $3A, $A8
 .byte $83 ; set control for release
 .byte $86, $01, $00 ; set instrument
 .byte $46, $A8, $36, $B0
 .byte $46, $DB, $36, $A8
 .byte $46, $A8, $36, $B0
 .byte $46, $DB, $36, $A8

pat08:
;CC3C
 .byte $4A, $A8, $3A, $C0
 .byte $3A, $38, $B0, $31
 .byte $4A, $3A, $C0, $4A
 .byte $3A, $4A, $4A, $A8
 .byte $3A, $C0, $3A, $38
 .byte $B0, $31, $4A, $3A
 .byte $C0, $4A, $3A, $4A
 .byte $46, $A8, $36, $C0
 .byte $36, $31, $B0, $4A
 .byte $46, $36, $C0, $46
 .byte $36, $46, $46, $A8
 .byte $36, $C0, $36, $31
 .byte $B0, $4A, $46, $36
 .byte $C0, $46, $36, $46
 .byte $C0

pat09:
;CC75
 .byte $5A, $A2
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

 .byte $00, $00
 .byte $00, $80, $00, $00
 .byte $00, $00, $00, $00

41

 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

pat0a:
;CCA0
 .byte $2A, $B0, $2C, $C0
 .byte $11, $13, $15, $1A
 .byte $B0, $01, $03, $05
 .byte $08, $A8
 .byte $86, $07, $00 ; set instrument
 .byte $0A, $A0
 .byte $86, $03, $01 ; set instrument
 .byte $9B, $02, $01, $20, $01, $01
 .byte $1A, $A4, $15, $B0
 .byte $18, $A4, $2A, $15
 .byte $B0, $18, $1A, $A4
 .byte $15, $A8, $11, $A4
 .byte $01, $A8, $1A, $A4
 .byte $13, $B0, $11, $A8
 .byte $1A, $B0, $15, $A8
 .byte $2A, $C0, $2B, $2C
 .byte $11, $12, $13, $14
 .byte $15, $16, $17, $18
 .byte $19, $1A, $A4, $18
 .byte $A8, $15, $13, $B0
 .byte $11, $A8, $2A, $B0
 .byte $25, $2A, $A8, $25
 .byte $B0, $21, $25, $A8
 .byte $2A, $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

 .byte $00, $00, $00, $00

pat0b:
;CD00
 .byte $89, $0F ; set the volume
 .byte $86, $08, $00 ; set instrument
 .byte $2A, $D5, $1A
 .byte $11, $01
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat0c:
;CD0C
 .byte $89, $0F ; set the volume
 .byte $86, $07, $00 ; set instrument
 .byte $8F, $FF, $01
 .byte $31, $C0
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat0d:
;CD19
 .byte $89, $0F ; set the volume
 .byte $86, $09, $00 ; set instrument
 .byte $8C, $80 ; portamento add
 .byte $01, $41, $B4
 .byte $92 ; stop effect
 .byte $00, $B0
 .byte $8F, $80 ; portamento down
 .byte $01, $00, $B4
 .byte $92 ; stop effect
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat0e:
;CD2E
 .byte $89, $0F ; set the volume
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $31, $A8, $83
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat0f:
;CD3E
 .byte $89, $0F ; set the volume
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $33, $A8
 .byte $83 ; set control for release
 .byte $92 ; stop effect

42

 .byte $80 ; end of pattern

pat10:
;CD4E
 .byte $89, $0F ; set the volume
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $35, $A8
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat11:
;CD5E
 .byte $89, $0F ; set the volume
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $36, $A8
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat12:
;CD6E
 .byte $89, $0F ; set the volume
 .byte $86, $0A, $00 ; set instrument
 .byte $9B, $02, $02, $10, $01, $03
 .byte $21, $B0
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat13:
;CD7E
 .byte $89, $0F ; set the volume
 .byte $86, $0A, $00 ; set instrument
 .byte $2A
 .byte $D3, $1A, $2A, $26
 .byte $2A, $1A
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat14:
;CD8C
 .byte $89, $0F ; set the volume
 .byte $86, $08, $00 ; set instrument
 .byte $11, $D0, $1A
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat15:
;CD96
 .byte $89, $0F ; set the volume
 .byte $9B, $02, $02, $10, $05, $02
 .byte $86, $05, $00 ; set instrument
 .byte $21, $C0, $25
 .byte $2A
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat16:
;CDA8
 .byte $89, $0A ; set the volume
 .byte $86, $0B, $00 ; set instrument
 .byte $21, $A2
 .byte $9B, $05, $21
 .byte $A8
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat17:
;CDB6
 .byte $89, $0F ; set the volume
 .byte $86, $0C, $00 ; set instrument
 .byte $9B, $02, $02, $08, $0A, $01
 .byte $21, $DB
 .byte $83 ; set control for release
 .byte $00, $A4
 .byte $86, $0F, $00 ; set instrument
 .byte $80 ; end of pattern

pat18:
;CDCA
 .byte $89, $0F ; set the volume
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $3A, $C0, $35

43

 .byte $33, $3A, $35, $33
 .byte $3A, $35, $33, $3A
 .byte $B0, $3A
 .byte $83 ; set control for release
 .byte $00
 .byte $A8
 .byte $80 ; end of pattern

 .byte $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

pat19:
;CE00
 .byte $86, $08, $00 ; set instrument
 .byte $21
 .byte $D5, $11, $25, $15
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat1a:
;CE0A
 .byte $86, $03 ; set the volume
 .byte $00, $41, $C0
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat1b:
;CE11
 .byte $86, $02, $00 ; set instrument
 .byte $8C, $80, $01
 .byte $41
 .byte $B4
 .byte $92 ; stop effect
 .byte $00, $B0
 .byte $8F, $80, $01
 .byte $00
 .byte $B4
 .byte $92 ; stop effect
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat1c:
;CE24
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $31, $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat1d:
;CE31
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $33, $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat1e:
;CE3E
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $35
 .byte $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat1f:
;CE4B
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $36, $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat20:
;CE58
 .byte $86, $05, $00 ; set instrument
 .byte $11
 .byte $C0, $15
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat21:
;CE60

44

 .byte $86, $0A, $00 ; set instrument
 .byte $9B, $02, $02, $10, $05, $02
 .byte $21, $B0
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat22:
;CE6D
 .byte $86, $08, $00 ; set instrument
 .byte $21, $D0, $2A
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat23:
;CE75
 .byte $86, $05, $00 ; set instrument
 .byte $11, $B0, $00, $C0
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat24:
;CE7E
 .byte $86, $0B, $00 ; set instrument
 .byte $9B, $02, $02, $08, $03, $04
 .byte $11
 .byte $A2
 .byte $9B, $05, $11 ; play note
 .byte $A8
 .byte $83 ; set control for release
 .byte $00, $B0
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat25:
 .byte $86, $0C, $00 ; set instrument
 .byte $9B, $02, $02, $10, $0A, $02
 .byte $21
 .byte $DB
 .byte $83 ; set control for release
 .byte $00, $A4
 .byte $86, $0F, $00 ; set instrument
 .byte $80 ; end of pattern

pat26:
CEA4
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $20, $01, $05
 .byte $2A, $C0, $25
 .byte $23, $2A, $25, $23
 .byte $2A, $25, $23, $2A
 .byte $B0, $2A
 .byte $83 ; set control for release
 .byte $00
 .byte $A8
 .byte $80 ; end of pattern

pat27:
;CEBE
 .byte $86, $00, $00 ; set instrument
 .byte $9B, $02, $02, $04, $01, $04
 .byte $2A
 .byte $A8, $21, $B0, $25
 .byte $A4, $25, $A8, $21
 .byte $B0, $3A, $A8
 .byte $83 ; set control for release
 .byte $00, $A2
 .byte $80 ; end of pattern
 .byte $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $11, $21, $11
 .byte $83 ; set control for release
 .byte $80 ; end of pattern
 .byte $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00

pat28:
;CF00
 .byte $86, $08, $00 ; set instrument
 .byte $21
 .byte $D5, $11, $25, $15
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

45

pat29:
;CF0A
 .byte $86, $08, $00 ; set instrument
 .byte $25, $C0
 .byte $80 ; end of pattern

pat2a:
;CF10
 .byte $86, $07, $00 ; set instrument
 .byte $9B, $02, $02, $04, $0A, $04
 .byte $31, $AA, $00
 .byte $B0
 .byte $83 ; set control for release
 .byte $80
 .byte $00 ; end of pattern

pat2b:
;CF20
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $31, $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat2c:
;CF2D
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $33, $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat2d:
;CF3A
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $35
 .byte $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat2e:
;CF47
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $01, $10, $01, $05
 .byte $36, $A8
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat2f:
;CF54
 .byte $86, $0A, $00 ; set instrument
 .byte $9B, $02, $02, $04, $0A, $02
 .byte $21, $B0
 .byte $83 ; set control for release
 .byte $92 ; stop effect
 .byte $80 ; end of pattern

pat30:
;CF62
 .byte $86, $05, $00 ; set instrument
 .byte $35, $D0, $31
 .byte $4A
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat31:
;CF6B
 .byte $86, $05, $00 ; set instrument
 .byte $11, $D3
 .byte $01, $1A, $0A
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat32:
 .byte $86, $05, $00 ; set instrument
 .byte $9B, $02, $02, $10, $05, $02
 .byte $21, $B0, $2A, $C0
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat33:
;CF84
 .byte $86, $03, $00 ; set instrument
 .byte $8C ; portamento add
 .byte $10, $00, $21, $A2
 .byte $92 ; stop effect
 .byte $00, $A8
 .byte $83 ; set control for release

46

 .byte $80 ; end of pattern

pat34:
;CF91
 .byte $86, $0B, $00 ; set instrument
 .byte $95, $1B, $0F ; put osc3 to freq. hi
 .byte $83
 .byte $83 ; set control for release
 .byte $83 ; set control for release
 .byte $51, $DB
 .byte $83 ; set control for release
 .byte $00, $A4
 .byte $86, $0F, $00 ; set instrument
 .byte $80 ; end of pattern

pat35:
;CFA3
 .byte $86, $03, $00 ; set instrument
 .byte $9B, $02, $00, $40, $05, $02
 .byte $83 ; set control for release
 .byte $5A, $B0, $51, $C0
 .byte $58, $B0, $51, $C0
 .byte $5A, $B0, $55, $C0
 .byte $5A, $B0, $5A
 .byte $83 ; set control for release
 .byte $80 ; end of pattern

pat36:
;CFBE
 .byte $86, $00, $00 ; set instrument
 .byte $95, $1C, $16 ; put asdr3 to filter freq hi
 .byte $4A, $A8, $41, $A8
 .byte $5A, $A4, $4A, $B0
 .byte $3A
 .byte $83 ; set control for release
 .byte $00, $A2
 .byte $80 ; end of pattern
 .byte $00, $00, $00
 .byte $00, $00, $00, $00

pat37:
;CFD8
 .byte $89, $0F ; set volume
 .byte $86, $00, $00 ; set instrument
 .byte $2A, $A8, $21
 .byte $B0, $25, $A2
 .byte $83 ; set control for release
 .byte $80 ; end of pattern
 .byte $00, $00, $00

playMusic:
 jsr $C000
 jsr $C000
 rts

 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00, $00, $00, $00
 .byte $00

Conclusion

The engine is not so powerful compared to some player of the same year, but probably only the
features needed by Ivan were implemented into the player.

However we know that wonderful sid music can be produced even with simple player (look at
“Lazy Jones” in SIDin #2) and so I think that with this player, Modulus is resulted very-very good.

47

xxlarge
by Stefano Tognon <ice00@libero.it>

xxlarge is a tune created by Ninja/theDream is less than 256 byte. Before reading this article,
goes to download and listen to it! (http://noname.c64.org/csdb/release/?id=14337)

The tune is a cover of Jeff's “X large” and you will note that it is played a little slower that the
original.

Now I think you are wondering how music and code can be fitted in so little space, as Jeff
original is large about 800 bytes!

Here I go to analyze the code to show how this can be made and finally I hope that one of you
would like to take the challenge to produce a 256/512b tune (but this will be explained later).

Code

Here the complete code that were released together with the music.

 include standard.c64

mus_pnt = $17 ; $16
mus_filtercnt = $39 ; $05 (basic line lo)
mus_v1pos = $3b
mus_v2pos = mus_v1pos+7
mus_v3pos = mus_v1pos+14
pattern_idx = $3d ; $0b
mus_bufferv23 = $b3 ; $03
mus_pulsecnt = $cd ; Cursor Blink Cnt :)

 org $0801

 adr $080c, $05
 byt $97,"789,8" ; POKE

pattern_list: ; $08 = 8
 byt pattern3, pattern2
 byt pattern3, pattern2
 byt pattern1, pattern1
 byt pattern5, pattern4

pulse_tab: ; $14 = 20
 byt $07,$47,$87,$B7,$08,$38,$88,$B8
 byt $09,$39,$89,$49,$09,$B8,$88,$38
 byt $08,$B7,$87,$37

SR_tab: ; 3 + 2*6 = 15
 byt $d7
filter_cut: byt $60,$78,$90,$a8,$c0,$DB
 byt $77
filter_res: byt $01,$41,$71,$a1,$e1,$1f
 byt $38

mus_irq:
 ldx mus_pulsecnt
 lda pulse_tab - 1,x
 STA $D403
 STA $D402
 asl
 bpl mus_exit

 LDA mus_bufferv23
 STA mus_v3pos
 LDA mus_v2pos
 STA mus_bufferv23
 LDA mus_v1pos
 STA mus_v2pos
 byt $2c
mus_filterchange: ; c=0
 ror mus_filtercnt ; inc <-> ror

48

IRQ activation

BIT absolute instruction

 ldy mus_filtercnt
 LDA filter_res,y
 STA $D418 - 5,y
 STA $D417
get_nybble:
 lda mus_pnt
 inc mus_pnt
 lsr
 tax
 lda patterns,x
 bne do_note

 dec pattern_idx
 lda pattern_idx
 lsr
 and #7
 tax
 lda #$66<<1
 ror
 sta mus_filterchange
 lda pattern_list,x
 sta mus_pnt
 txa ; fall through to get_nybble
do_note:
 bcs mus_getlo
 lsr
 lsr
 lsr
 lsr
mus_getlo:
 and #$0f
 STA mus_v1pos
 asl
 beq mus_filterchange
 adc filter_cut,y
 STA $D416

loop_base = $100 - 3*7
 ldy #loop_base
 lda #$41
mus_l1:
 sta $d404 - loop_base,y
 lda SR_tab - loop_base,y
 sta $d406 - loop_base,y
 ldx lo(mus_v1pos - loop_base),y
 LDA notes_lo - 2,X
 STA $D400 - loop_base,y
 LDA notes_hi - 2,X
 STA $D401 - loop_base,y
 tya
 adc #7
 tay
 lda #$11
 bcc mus_l1
mus_exit:
 if 0
 lda mus_filtercnt
 sta $0400
 lda mus_pnt
 sta $0402
 lda pattern_idx
 and #15
 ldx mus_pulsecnt
 sta $0404,x
 endif
 jmp $ea31

notes_lo: ; $0e = 14
 byt $5a,$ce,$c1,$b4,$9c,$09,$d0,$82
 byt $68,$88,$af,$39,$13,$a1
notes_hi: ; $0e = 14
 byt $04,$05,$07,$08,$0b,$0d,$0d,$0f
 byt $11,$13,$14,$17,$1a,$1b

patterns = *
pattern3 = (* - patterns) * 2 ; $0b = 11
pattern5 = pattern3 + 6
 byt $03*$10+$05,$06*$10+$07,$00*$10+$08
 byt $03*$10+$0a,$06*$10+$00,$0d*$10+$03,$0c*$10+$0b
 byt $06*$10+$09,$03*$10+$0a
 byt 0
pattern1 = (* - patterns) * 2 ; $0a = 10
 byt $02*$10+$00,$05*$10+$04,$02*$10+$00,$05*$10+$02
 byt $0a*$10+$05,$00*$10+$09,$02*$10+$05,$0a*$10+$05
 byt $04*$10+$02,$0a*$10+$02
 byt 0
pattern2 = (* - patterns) * 2 ; $09 = 9
 byt $02*$10+$05,$07*$10+$0b,$0c*$10+$02,$0d*$10+$05

49

Voice 1 rectangular

Voice 2/3 triangular

cycle throw patterns

Insert DEC (ROR)

 byt $0f*$10+$02,$0e*$10+$0c,$05*$10+$0b,$02*$10+$0a
 byt 0
pattern4 = (* - patterns) * 2 ; $0a = 10
 byt $02*$10+$05,$00*$10+$04,$02*$10+$00,$05*$10+$02
 byt 0
pattern_end = (* - patterns) * 2

 byt "NINJA"

 end $0801

Analysis

One of the first things that a player must do is to add a IRQ handler after it has initialize the
engine. The IRQ has to call the player routine at each programmed interval (like by CIA or VIC).

This is a task that require many bytes, but we have to use the less we can, so look at this heavy
optimized peaces of code:

● The player did not initialize itself, or in other words, it did not use an init routine, as all that is
needed is done inside the play routine (and with variables already initialized).

● The IRQ initialization use the BASIC instruction: POKE 789,8

The last is a very optimized way to initialize IRQ.

The address 788/789 contains the Hardware Interrupt vector that standard Kernal IRQ routine
will give control during an IRQ call. It is very common to change this address to assign an self
made IRQ routine. In this case, the high byte of the IRQ routine is assigned to 08.

What this means? Simple, as normally the IRQ vector is at $EA31, with this instruction it will be
located to $0831. In other words, the IRQ routine mus_irq must be starting at $0831 and we don't
need anymore BASIC instructions to go away. If you look at the source, before the $0831 address,
we have lot of bytes used by the player for patterns and tables.

Before going into further analysis of the source we have to say that the player as these features:

● The player use a track for the music: pattern_list
● The track is composed by a sequences of patterns
● Each pattern contains sequence of note and filter command (packed in one byte)
● All 3 voices are used
● The player has a wave and filter table for dynamic effects onto the voices

In depth

Now we start to look at the end of the source from loop_base = $100 – 3*7

This is a cycle that:
● Initialize voice control register to rectangular for voice 1 and triangular for voice 2

and 3
● Set the Sustain/Release of each voice
● Set the high/low byte of frequency for the current note to play

All is similar to sta $d404 – loop_base,y with y equals to loop_base at beginning and then it is
increased by 7 (for next voices), so we have:

$D404 -loop_base + loop_base = $D404

50

The loop will end when adding 7 to y will make the carry positive, and as y starts from $100-3*7,
this will occurs after we finish to pass the 3° voice.

As we see, voice 1 is rectangular, so it must be set his wave pulse values. This is done at the
beginning of the routine. High and low value of wave are the same, but values are taken from a
table, so they are not fixed. The nice idea for saving space, is to use the value in $cd as index for
the table. This is the values used for making the cursor blinking animation by the Kernal. Its value
goes from $14 to $1.

The high bit of the wave value read from the table is then used for skipping or not the rest of the
player: this give some delay in calling the player.

What is missing into the player is that it not set the Attack/Decay value of each voices: according
to Ninja there where no more space to add this features.

Now goes to see from get_nibble: here current pointer to music notes (mus_pnt) is incremented
and then a pattern value is read using the pointer. A 0 values means that the pattern is ended and
so the pattern_idx is decremented and a new pattern is taken from the track (mus_pnt is also
initialized to the right place. Note that pattern_idx is always decremented as the track is composed
by 8 patterns, only the 3 lower bits are used.

Each pattern values are composed by two nibbles: each nibble has this meaning:
● $00 change mus_filtercnt
● $01 not used
● $02-$0f notes index (from tables)

So, goes to the mus_filterchange label: before this there is a BIT instruction (opcode $2C): this
means that each time the player is executed, no action is taken to the current mus_filtercnt, and so
the same value from table is putted to the filter.

Instead, as soon as a nibble is zero, (look after mus_getlo) the flow is passed to the
mus_filterchange position and so the current filter position is changed.

In fact at mus_filterchange we can have these instructions:
● inc mus_filtercnt
● ror mus_filtercnt

and so filter index table is incremented and decremented (ror is shorted than dec, but according
to Ninja it is still good enough).

The instructions that made inc to ror are:
lda #$66<<1
ror
sta mus_filterchange

If Carry is 0 a $66 (ror) is putted into mus_filterchange, while if Carry is 1, $E6 (inc) is putted.

Finally, each patterns are played twice, so during the first time the filter table is incremented, in
the second it is decremented.

In the source if you made compile the “if 0” statement, you will have a look of how mus_filtercn
behaves.

51

Conclusion

I hope that you have found interesting the analysis of this wonderful peace of code, so why not
try yourself?

Well, this is why I'm near to organize the “Tiny Sid Competition”: see what coder/musician are
able to produce with less space.

“Tiny Sid Competition” will be executed from 15 January 2005 to 21 April 2005 instead of the
“SidWine compo” (sorry, but SidWine compo take me too many months to organize, so I go for
something less time consuming this year).

Allowed sizes will be:

● 256 bytes
● 512 bytes

Maybe a size of 1K could be another chance if required, but I think that 1KB are big enough,
even if it could be interesting too.

Allowed will be all tunes that fit in that categories as prg executable (e.g. they must be runnable
with run after loading) and they can be even cover/remix of existing tunes (cover with less byte is
hard in every case).

Reverse engineering source code (or better original source) may be allowed by the author to be
published in an article like this in SIDin.

I don't know how many people could be interesting in such compo, but if we did not try...

Check: http://digilander.iol.it/ice00/tsid/tinysid

Finally I like to thank Ninja for allowing me to write this article about his work and to have give
some in-depth description of the engine.

52

SIDin 7 end

53

