
 
 
 
 
GEOS PROGRAMMING INFO: 
 
This small article is not intended to teach 8-bit Machine Language but 
to get started with ML and GEOS/Wheels programming, mainly for 
programming 
your own applications. 
 
My best Teacher for learning the basics of GEOS/Wheels code: 
Werner Weicht whom resides in Denmark and is the supporter for the 
European MP3 upgrade for GEOS.  Mr Weicht has many years of GEOS/Wheels 
MP3 programming experience and I cannot recommend a more patient 
teacher. 
My thanks goes out to Mr Werner Weicht. 
 
Getting started what is needed: 
 
Basic setup: 
C=REU(not required for GEOS but better) 
C=64 
C=128  
C=128DCR 
2 floppy drives  
C= 1351 mouse 
 
GEOS V2.0 (good stable but not a lot of RAM to work with) 
IN this case the programmer has to pack code to conserve memory in 
the app. 
Geo Programmer 
Geo Programmer user manual 
Other possible ML books 
--------------------------------------------------------------------------------------------------------------------
-------------------------- 
Advanced hardware setup: 



 
C= 17XX REU's (need some sort of RAM expansion to boot Wheels OS) 
CMD V1 or V2 Super CPU (FROM 1MB TO 16MB ramcard). 
CMD HD 
CMD Ramlink with Paralell cable 
1351 mouse 
 
Wheels 64/ Wheels 128 GEOS update (handles RAM better) 
Have all of the latest Wheels updates installed, WHY! Because some 
Wheels apps 
have check routines to check for these updates, if the updates are not 
installed the 
application will not fun or may not work correctly,  VERY IMPORTANT. 
 
Wheels still too only has so much Ram to work with, so the 
programmer has to keep in mind to 
keep all routines small and simple, packing code may still be 
necessary if this is a long app. 
 
Concept 
Concept+ 
 
Geo Programmer and Concept all use Geo Write to create code and 
editing code, very simple. 
NOTE: Concept and Concept+ do not work with the original Geo 
Programmer: Geo Debugger, both  
are incompatible. 
 
When creating code it is best to start with one routine, sort that 
routine from the rest 
in its own single page, or routines.  This keeps things organized to 
where all routines are 
easily found and then debugging is easier. 
 
In ML or GEOS code you will see semicolons and information after 
semicolon, these are simply 
Comments that explain what routines do etc. 



Comments do not use up RAM they are simply ignored when 
assembled, Comments explain code and help 
new programmers understand (sometimes) how the code works. 
 
In GEOS/Wheels you start with the Header file which contains all file 
information, including 
the small Icon you click on to start any GEOS/Wheels application. 
These at first are hard to figure out the "EXACT SIZE"  the guy that 
helped me with the basics 
made me a GeoPaint template.  That template helps stay within the 
size the Icon is supposed  
to be.  If you go to big your Icon will look funny.  If too small it will 
work but will be very small. 
So for now try to use the Icon template. 
The Icon can be created right in GeoPaint, then cut and saved, then 
you copy and paste that 
right into the Header file, (the code section where the icon belongs) 
which in my example 
says:  Paste Icon here which are in Comments. If you do this that is all 
is needed and it should work 
if you follow these guidelines. 
 
The actual code: 
After the Header file is the main code or however the programmer sets 
these code files up. 
I have found it is best to work in small goals or steps in the code, then 
assemble the code. 
Believe me you will get errors in programming.  
NOTE: these are not the errors you get in BASIC programming these 
are OPP code errors 
which then requires knowing or having ML programming knowledge to 
debug and fix  
programming : 
Errors, bugs, typos etc.  For example from one of my fun debugging 
experiences (funny), was a  
typo but a typo for a label in GEOS code, for example: 
 
DoThis: 



                 LDA  more code etc                                 :  this does this 
 
Are you paying attention, note the Colon, this is supposed to be a Semi 
colon  very easy to slip up and 
type this, which can make you pull your hair out, what does this do. 
 
The assembler thinks, :this does this  is a simple label (only an 
example here), then there is no code 
for it. Heh because the programmer slips up and makes this silly typo.  
:-P  Not fun if youre not paying 
much attention, but soon you will laugh at yourself and see your 
simple error.  Other typos can occur 
which can also cause annoying bugs, so be careful when typing.  But 
sometimes these things happen so 
you have to "think" and look in your code, "even" in your comments. 
 
 
So be careful when typing, but I do suppose this could happen to 
anyone, but if this does occur then 
always look at your comments:   example: 
 
;my comment  But make sure you do type the semi colon and not the 
Colon, can really drive you nuts when the 
assembler says this label exists and you do not see it, hmmm  just 
watch the typos and if they occur look in your 
comments and look for a colon, can save time and frustration and  
being confused, as to where did it find this 
mysterious label.  It took me sometime to figure this out and it was 
just a simple comment that turned out 
to be interpreted as a label.  Yeah and hours later your hair is being 
pulled out and the gnashing of the teeth.    :P 
 
GEOS Macro's 
On your original Geo Programmer disk are: 
GEOS Macro's  these are hard to explain but they tell the assembler 
how to assemble etc, mainly the main Macro is: 
 



geosMac  these are the "main" Geos macros that tells the assembler 
what GEOS 
routines are being used in any application code.  These are needed in 
any application so the 
assembler knows how to "recognize"  All GEOS routines.  Without this 
the assembler has no clue 
and will give you lots of errors, WHY?  Simple it does not yet know 
about the GEOS main routines 
and is totally dumb without them.  In my own experience it took me 
awhile to think about this and 
then by looking at others code I finally figured this out, very simple but 
one does not think about this,  
but this simple macro is what is needed at the start of any application. 
 
NOTE: in all Geos Macros and routines you will see all caps, mixed 
caps, small caps in routines, 
GEOS/Wheels routines are formatted in this manner so it is very 
important the programmer type all 
macro files, and routines the exact way you see those routines, if not 
this will either create errors or hard to 
find bugs in your code, or whatever your coding wont work at all. 
 
NOTE: GEOS/wheels code uses these routines and is its own unique 
routines, therefore standard ML code 
will not work, because not starting code with GEOS specific routines.  
At times you can use HEX values 
but you need to start with GEOS routines or the rest will not work etc. 
(to my knowledge). 
 
Starting new routines: 
 
it is always best to format and start new routines with the following 
code: 
 
.noglbl 
.noeqin 
.if    Pass1 



.include    geosSym ;Also a necessary standard GEOS macro 

.include    geosMac 

.endif 

.eqin 

.glbl 
 
Starting app code: 
 
The programmer simply starts with the apps first label which gets the 
app ready for coding, so 
you can start with something like: 
 
;******************************** 
;     My application Main 
;     Coded by: "your name" 
;     Date 
;     others authors code names 
;******************************** 
 
ProgStart: 
 
Setting up screen and menu 
;setup graphical screen 
 
  LoadB dispBufferOn,#(ST_WR_FORE|ST_WR_BACK) 
  LoadW r0,#ClearScreen  ;clear screen 
  jsr  GraphicsString 
 
  jsr  CkVersion   ;Checks for Wheels 
Ver.4.0: If not exit if not this version 
 LoadW  r0,#MenuTable  ;start of menu 
    lda #0 
  jsr  DoMenu   ;bring up menu window 
 
  rts      ;return to GEOS main loop 
 
ClrScrn: 



  .byte NEWPATTERN,5   ;GEOS main screen pattern 
(choose your own) 
  .byte MOVEPENTO   ;move pen to draw screen 
  .word 0    ;position where pen is 
moved to 
  .byte  0 
  .byte RECTANGLETO   ;draw screen REGTANGLE  
  .word 319    ;screen size: Horizontal 
and Vertical 
  .byte  199 
  .byte  NULL 
 
;check Wheels version number: 
CKVersion: 
  lda  $c00f   ;Wheels kernal version = 
$C00F 
  cmp  #$41    ;is this kernal version 4.1 
or higher? 
  bcc  90$    ;branch if not this version! 
  lda  $904f   ;Wheels driver version = 
904F 
 
  cmp  #$52    ;are the driver's 5.2 or 
higher? 
  bcc  90$    ;branch if not this version! 
  rts      ;this version of Wheels will 
work, now return to main loop. 
 
90$ 
  LoadW r0,#badBox  ;not a good box, hes a bad 
boy!  :-P 
  jsr  DoDlgBox   ;tell user they need Wheels 
OS only 
  jmp  EnterDesktop  ;exit back to Desktop 
wrong version. :-( 
        ;Time to update your 
version of Wheels. 
 



badBox: 
  .byte  DEF_DB_POS  ;good example of coding a 
Dialogue box 
  .byte  DBTXTSTR,TXT_LN_X,TXT_LN_2_Y ;Geesh  
  .word bad1Txt 
  .byte  DBTXTSTR,TXT_LN_X,TXT_LN_3_Y ;more 
coordinates I guess 
  .word bad2Txt 
  .byte  DBSYSOPV  ;exit DB with a Mouse 
Click: a clickie little mouse. :P 
  .byte  0 
 
bad1Txt: 
  .byte  BOLDON,"This software requires",0 
bad2Txt: 
  .byte  BOLDON,"Wheel's V4.2 or higher",0 
;Good example for checking for Wheels version in your own Wheels 
apps! 
 
Now for the Menu code: 
 
The menu here was built with the app: 
Geo Beaver.  This app spits out Hex code,  
$0000, $009d etc.  This app takes a little getting used to but 
helps in the designing of Menu's, Dialogue boxes, Icons etc. 
www.zimmers.net  (Bo Zimmerman)   
 
The below menu is one way but other ways you can lay out 
GEOS menus, but coded in this manner, so experiment. 
(Horizontal only)... 
 
MenuTable: 
  .byte  $00,$0e   ;menu top and bottom 
  .word  $0000,$009d  ;menu left and right 
  .byte  HORIZONTAL|$03 ;VERTICAL Menu|#items : The 
vertical bar is a GEOS parameter 



        ;find all GEOS conventions in 
the GeoProgrammer manual. 
  .word  MnuTxt00   ;menu text pointer 
  .byte  MENU_ACTION  ;menu action 
  .word  quitprg   ;pointer to EXIT application. 
 
  .word  MnuTxt01   ;menu text pointer 
  .byte  MENU_ACTION  ;menu action 
  .word  DlgBox   ;pointer to--> ABOUT DB:  
 
  .word  MnuTxt02   ;menu text pointer 
  .byte  MENU_ACTION  ;menu action 
  .word  OpenS   ;pointer to Open DB 
 
MnuTxt00: .byte  27,"Exit App",0  ;Exit text parms etc 
MnuTxt01: .byte  27,"About App",0  ;About text parms etc 
MnuTxt02: .byte  27,"Open App",0  ;Open File text parms etc 
 
quitprg: 
  jmp  EnterDeskTop  ;Exits app back to Desktop.  
        ;This routine is very 
important, if you dont use this routine 
        ;or forget this routine, you 
are stuck, only way to exit is to 
        ;Reset Commodore and 
reboot GEOS or Wheels, so think 
        ;about what youre doing, or 
paint yourself into a corner. 
 
Creating Dialogue Boxes:  
 
DlgBox: 
  jsr  ReDoMenu    ;go back to first 
menu 
  LoadW r0,#DlgDat    ;text pointer to 
Dialogue box 
  jsr  DoDlgBox    ;start DB 
  rts       ;return to GEOS main 
loop 
;Dialogue box created with GeoBeaver app 



DlgDat: 
  .byte  $81     ;size of flag, and 
shadow pattern 
  .byte  $0b,$07,$0a    
  .word DlgT00 
  .byte  $0b,$05,$14 
  .word DlgT01 
  .byte  $0b,$05,$20 
  .word DlgT02 
  .byte  $0b,$05,$29 
  .word DlgT03 
  .byte  $01,$0b,$3a   ; OK button 
  .byte  $00     ;end of DB table 
 
DlgT00: 
  .byte  "AppName  Version: By Author",27,0 
DlgT01: 
  .byte  "Other programmers",27,0 
DlgT02: 
  .byte  "Copyright Dates",27,0 
DlgT03: 
  .byte  "Description on apps use",27,0 
 
 
At this time I have not done anything with Icons so one of these days I 
will learn how to 
do this. 
 
For now these are the basics of programming GEOS or Wheels apps, I 
assume 
for just 8-bit routines for GEOS or wheels. 
 
Someone that could help Wheels programmers wishing to program for 
16 bit code 
email Mr Werner Weicht and I bet he could help, if you can ever get 
him to land for even 
a day.  Hee hee  :-P 
 



Enjoy this information and by no means have fun with coding for either 
GEOS or Wheels 
in the Millenium we need more assembly language and GEOS/Wheels 
programmers. 
Fire up GEOS or smoke your tires with Wheels and lets do some 
programming. 
 
  I myself would like to start up a new GEOS/Wheels either forum or 
email list for: 
 
GEOS/Wheels support, using, help etc. 
GEOS/Wheels programming, etc. 
 
Any interested parties please contact me at the following places: 
 
Address: 
 
Terry L. Raymond 
P.O. Box 173 
Pavillion, WY 82523 
 
EMAIL: 
traymond20@gmail.com 
 
I hope you enjoy this information on GEOS/Wheels programming 
have a  nice day. 
 
If you have any programming questions comments feel free to email 
me at the above address. 
 
Thank you. 
TERRY RAYMOND 
 


