
 ########
 ##################
 ###### ######
 #####
 ##### #### #### ## ##### #### #### #### #### #### #####
 ##### ## ## #### ## ## ## ### ## #### ## ## ##
 ##### ######## ## ## ## ##### ## ## ## ## ##
##
######
##
 ###### ###### Volume 1, Issue #4
 ################## October 5, 1992
 ########

Editor's Notes:
by Craig Taylor (duck@pembvax1.pembroke.edu)

 My apologies about this issue being posted later than was mentioned in a
 preview post on comp.sys.cbm newsgroup. Due to some problems with coding,
 school and Murphy's law the issue had to be delayed until now.

 I have asked the system admin's at my site concerning a mail-server but they
 said they did not have enough man-power (go figure) to get somebody to run it.
 I will be implementing a mail-server system in my account in the near
 future for retrieval of programs and back-issues. I'll post descriptions of
 how to use it it the next issue of C= Hacking as well as on the newsgroup
 comp.sys.cbm when I finish writing it.

 In this issue of C= Hacking we also start on an ambitious task: Developing
 a game for both the C128 and C64 modes that includes all of the features
 found in commercial games. Take a look in the Learning ML Column for more
 information.

 Also, The article concerning the 1351 mouse has _again_ been delayed due
 to time constraints. Rest assured that it will be in the next issue of
 C= Hacking.

 If you are interested in helping write for C= Hacking please feel free to
 mail duck@pembvax1.pembroke.edu (or duck@handy.pembroke.edu). We're always
 looking for new authors on almost any subject, software or hardware.

==

 Also note that this issue and prior ones are available via anonymous ftp from
 ccosun.caltech.edu under pub/rknop/HACKING.MAG.

==

 NOTICE: Permission is granted to re-distribute this "net-magazine", in
 whole, freely for non-profit use. However, please contact individual
 authors for permission to publish or re-distribute articles seperately.

 *** AUTHORS LISTED BELOW RETAIN ALL RIGHTS TO THEIR ARTICLES ***

==
In this issue:

Learning ML - Part 4

 In the next issue we'll embark on a project of making a space invaders style
game for the C=64/128 from scratch using custom characters, interrupt-driven
music, animation, using the joystick, mouse or keyboard. The C64 and C128
versions will be developed con-currently, each program taking advantage of

the machine's capabilities. This is the first in a series - written by
Craig Taylor.

The Demo Corner: FLI - more color to the screen

All of us have heard complaints about the color constraints on C64.
FLI picture can have all of the 16 colors in one character position.
What then is this FLI and how it is done ? Written by Pasi 'Albert' Ojala.

RS-232 Converter

 This article details plan for a User port TO RS232 connector using just ONE
IC and 4 capacitors. The circuit is included, and suggestions on alternative
chips and parts are examined. Written by Warren Tustin

Introduction to the VIC-II

 This article examines the VIC-II chip in detail and provides an explanation
of the various registers associated with the chip. Written by Pasi 'Albert'
Ojala.

LITTLE RED READER: MS-DOS file reader for the 128 and 1571/81 drives.

This article presents a program that reads MS-DOS files and the root directory
of MS-DOS disks. This program copies files from disk to disk so two disk
drives are required to use it (or a "virtual" drive). This scheme imposes no
limit on the maximum size of a file to be transferred. The user-interface
code is written in BASIC and presents a full-screen file selection menu. The
grunt-work code is written in assembly language and operates at maximum
velosity. Complete, explained code lisitings are included. By Craig Bruce.

===
Learning Machine Language - Part 4
by Craig Taylor (duck@pembvax1.pembroke.edu)

 +---------------------------+
 | Space Invasion - Part 1 |
 | |
 | Programming: Craig Taylor |
 | Graphics : Pasi Ojala |
 | Music/Sound: |
 | |
 +---------------------------+

I. Introduction

 In this and future Learning Machine Language's we will develop a game called
 Space Invasion. The game will be similair to Space Indvaders and will run on
 the Commodore 64 or the Commodore 128 in 80 columns. It will feature all the
 "features" and "parts" that are found in commercial games with interrupt-
 driven music, custom character definitions, 100% machine language, multi-level
 game play, and input from the keyboard, joystick or mouse.

 Note | I am looking for someone to help aid music composition that will
 -----+ be introduced in a later issue. Programming of the 6502 is helpful
 but not a requirement. Please email me at duck@pembvax1.pembroke.edu if
 you are interested.

 Many thanks to Pasi Ojala for his work with the graphics in this program.

 Also please note: This entire program has been assembled sucessfully with
 the Buddy-128 assembler for both the C=128 and C=64 version. Due to the
 length of the source files (over 1,500 lines) I'm not sure if Buddy-64 will
 handle it. Thus if you get errors during assembly, all I can say is: sorry.

 If this is the case then the next issue will handle dividing the program and
 data up into segments which can then each be loaded seperatly.

II. Machine Notes

 The Commodore 64 and 128 programs for Space Invasion will differ slightly,
 mostly in the following areas:

 - custom character definition
 - memory initialization / setup
 - sound / music

 Because the actual game play and the changes nesscesary between the areas
 listed above, we will use the Buddy Assembler notation for conditional
 assembly to allow the development of only one file containing the source
 code. In addition to conditional assembly most of the routines will be
 written as one with jumps to subroutines containing the C64 or 128 direct
 code as the algorithims are usually the same for each.

 In addation there will be several source files and some miscellaneous include
 files for graphics and sound. For those of you who are or will be converting
 the assembly source over to a different assembler the conditional
 assembly directives .if (condition) will only be true if the condition is
 non-zero. Ie: if the symbol computer is defined as 128 then the following
 example illustrates it:

 computer = 128
 .if computer-64 ; non-zero answer so therefore
 ; 128 code goes here
 .else
 ; 64 code goes here
 .ife ; end the .if condition.

 Also note that for much of the program we will _not_ be using the computer
 routines and instead be developing our own.

 In addition the program will show you how to use IRQ interrupts to simplify
 programming. We will be using them to play music in the background on three
 voices (sound effects will temporarily pre-empt the third voice from playing).
 Also animation of characters will be done via the IRQ. A little background
 on interrupts for those of you who are a bit hazy on what they are or have
 never seen them before (Also try taking a look at Rasters: What they are and
 how to use them in C= Hacking #3 - While this does not necessarily cover
 what we are going to be using interrupts for it does describe them quite
 well.) Basically the computer generates an interrupt every 1/60th a second
 from a timer on the computer (usually from the CIA chip or the screen for
 those of you who are curious). The computer will save all the registers, jump
 to a subroutine - perform the instructions there (usually updating time,
 scanning the keyboard etc...) and then recall all the registers and return
 to the user program. This is an interrupt. An IRQ interrupt describes an
 interrupt that we can allow to be "turned on" and "turned off" - ie: we
 can temporarily disable it if we have to. A NMI interrupt describes an
 interrupt which we can _not_ temporarily disable -- we will not be using
 NMI interrupts in this program.

III. The Process

 Part of what this series of articles is focused at is the development of being
 able to analyze programming tasks and break them down into smaller workable
 problems. Once these problems or subroutines are completed your original
 problem is solved.

 Let's take this approach to Space Invasion:

 Problem Statement: Build a Space Invader program called Space Invasion.

 Usually, given a problem you have to re-work the problem statement to
 encompass all of what you want. Let's try again:

 Problem Statement: Develop a Space Invader program called Space Invasion
 ----------------- utilizing the 64 or 128 screen with interrupt driven
 music / sound, and allowing input from the keyboard,
 joystick or mouse.

 Hmmm... The problem statement listed above is better but it has no real order;
 we have no clear idea of where to start and what we need to do. It does
 however tell us that we have the following sections:

 - 64 / 128 Screen Handling
 - Music / Sound
 - Input Handling
 - Game Driver (implied)

 Let's think a bit more about each of these sections and what each will
 involve:

 128 / 64 Screen Handling: - Putting characters on screen.
 ------------------------ - Initializing the Screen / Registers.
 - Setting up the Custom Characters.
 - Handling any Animation.

 Music / Sound: - Setting up the Sound Chip Registers.
 ------------- - Playing a note read from Memory.
 - Executing a Sound Effect.

 Input Handling: - Device Selection (keyboard, mouse, joystick).
 -------------- - Keyboard Scanning.
 - Mouse Scanning.
 - Joystick Scanning.

 Game Driver: - Title Screen.
 ----------- - Initialization of Memory.
 - Level Setup.
 - Movement of Aliens.
 - Movement of Missles.
 - Movement of Player.
 - Collision Checking.
 - Collision Handling.
 - End of Level.
 - Score Updating.
 - End - Game handling.
 - High Score Update.

 Shrew! Long list 'eh? - Now you may have thought of some not listed above,
 and we may have possibly overlooked some crucial routines -- that's fine --
 the above is just intended as a building block - a place to start coding from.

 If we think of these as subroutines we can build a skeleton outline of the
 program - yet we need some order in how we call them. Obviously we aren't
 going to move the player until we scan the input and that requires prior
 device selection etc...

 Hmm... Taking order into account we can re-state the problem as:

 Problem Statement: Develop a game similair to Space Invaders called Space

 ----------------- Invasion by initializing memory, the display device,
 setting up Custom Characters, setting up the Music
 Registers and displaying the title screen. From there,
 select the input device and after that setup the current
 level. Next, while playing music in the background and
 scanning the input device, move the aliens, missles and
 player checking for collisions and taking appropriate
 action as required (player dies, score increases etc or
 what-not). After each level display if the player is dead,
 or set-up for the next level and repeat. When the game has
 ended update the high score if necessary.

 Try saying that five times real fast! :-) But that problem statement is a
 whole lot better than the one we had at the beginning which simply said to
 develop a game.

IV. Not All At One Time - What We're Doing This Time
 --

 Now this program is too complex, (as seen by the problem statement above) to
 have in one article so this issue we'll concentrate on the basic main loop
 and the initialization of the Custom Characters and the title screen.

 Originally, I was planning on updating and listing the revised code in each
 issue. However, due to space limitations and the enormity of the program
 currently (1,500+ lines!!) it will be placed for anonymous ftp at
 ccosun.caltech.edu under the directory: pub/rknop/HACKING.MAG.

V. The Main Loop

 What is a main loop? Basically it's where everything gets done. It calls other
 subroutines and keeps repeating until certain criteria are met - usually when
 the player requests to exit the game. However, inside you'll find inner loops
 for level play etc.

 Our main loop for this program will be:

;; * Main Loop - This should be the last section in the source code.
;
; Main Loop
;

main'loop = *
 jsr memory'setup ; Set-Up memory.
 jsr display'setup ; " " display.
 jsr char'setup ; " " custom character display.
 jsr music'setup ; " " music chip.
 jsr title'screen ; Display the title screen.
 jsr select'input ; Select Input Device.

level'loop = *
 jsr play'music ; Start the music playing.
 jsr setup'level ; Setup the current level.

 - jsr alien'move ; Move aliens
 jsr missle'move ; " missles
 jsr player'move ; " player
 jsr check'collision ; Check for collisions
 ldx collision'flag ; Check collision flag.
 beq -

 dex ; Decrease .X by 1 so if X was 1 then
 beq player'die ; it's now 0 so we know player died.
 dex ; Decrease .X again so if X was 2 then
 beq alien'die'sound ; it's now 0 so we make alien death.
 jsr end'level ; If we got here - than end of level.
 jsr wait'next ; Wait for next keypress.
 jsr increase'level ; increase level #.
 sec ; And go back....
 bcs level'loop

alien'die'sound = *
 jsr make'alien'sound ; make alien sound.
 sec ; set carry
 bcs - ; and jump back.

player'die jsr show'player'die ; Show it on-screen.
 lda lives ; Check # of lives.
 beq end'of'game ; If 0 the end-of-game.
 bne level'loop ; go back and re-start level.
 brk ; If we get here - than an error.

end'of'game jsr end'game'screen ; Show end-of-game screen.
 jsr high'score'update ; Update the high score if need-be.
 jsr wait'next ; Wait for next-game selection.
 lda quit
 beq +
 jsr setup'level'1 ; Set-Up first level.
 sec
 bcs level'loop ; and start playing it.

 + jmp quit'game
;
; End of Main Loop
;

 Some of the routines listed above we will later replace with actual code. It's
 much easier to see:

 inc level

 than to see a

 jsr increase'level

 and try to hunt down the code. I've included them in for now so that we can
 have a better idea of what is going on.

 In the file: invasion.src most of the statements above are commented out.
 Once we write the routines we'll un-comment them. For now, this serves to
 still remind us of the routines we need to write.

 Also there are a couple of programming tricks that I used in the main loop
 that probably need some clarifying.

 When handling the collisions the .X register is loaded with the result of the
 collision checking - $00 = no collisions, $01 = player died, $02 = alien died,
 $03 = end of level. Anytime a load to a register is done the flags are
 automatically set as if you had compared it to 0 - hence we can ldx the
 collision flag and immediately branch if equal to zero for no collisions. In
 addition to the load anytime the .X or .Y registers are incremented or
 decremented an implicit comparison to zero is performed. So if the .X register
 is 1 previously, we decrement it then it will be zero and our BEQ instruction
 will branch. If it's two then it will be one and we can continue like this.
 [NOTE: Technically it's not a real comparison to zero but calling it a

 comparison to zero servers our purpose here. The only significant difference
 would be in the effect of the carry flag which is insignificant in our
 code segment here.]

 Also in several locations are the two instructions:

 sec
 bcs [label]

 What these are doing are simply programming style - they could be substituted
 with JMP [label] - however they offer advantages over JMP. They take up the
 a larger amount of execution time, however they are relocatable so any mucking
 around / moving sections of code during debugging will be less likely to
 crash. Using other flags are also valid -- the use of which flag (I prefer
 the carry flag) is usually dependent on the programmer. Geos defines a
 similair macro called BRA (branch always) which is equivlent to:

 clv
 bvc [label]

 Note that the above is just programming style, held over from my programming
 in assembly days. The use of JMP is probably preferable in terms of
 execution and also in being able to branch more than 127 bytes away (the
 branch instructions only have a range of +128/-127).

VI. Custom Characters

 Since we're writing for each of the seperate modes (64 mode, 128 mode) we have
 to take a look at the differences between the VIC chip (64 mode) and the 8563
 chip in the 128.

 The Vic-Chip

 The character sets in the VIC chip are defined as in the example below of
 the character code $00 "@" (all references are to screen "poke" codes - not
 print codes).

 .byt #%00111100 Try holding the page (or moving away from the
 .byt #%01100110 screen) and taking a look at the patterns the 1's
 .byt #%01101110 and 0's make. Each character is thus defined as
 .byt #%01101110 eight bytes who's bit patterns define it. Having a
 .byt #%01100000 total of 256 characters available makes it
 .byt #%01100010 neccesary to set aside a total of 2,048 bytes.
 .byt #%00111100
 .byt #%00000000

 Now, instead of designing all 256 character sets we'll just take advantage of
 the fact that the letters and numbers we want will already be there -- we'll
 just copy them from the ROM set into RAM, modify some of the other characters
 to reflect what we want and then tell the VIC chip to look at RAM to get the
 character set definitions.

 There are some problems with copying the 'system' characters, however. The
 Commodore 64 usually masks out the character set and typically it is only
 available to the VIC chip so that more space can be present for user programs
 and such. It also takes up the section of memory that the I/O block in
 $d000-$dfff does so that switching it in while interrupts are enabled is sure
 to result in a crash.

 We're also going to be doing a few things that you may not expect -- instead
 of copying all 256 characters - we're gonna _just_ copy the first 128. This
 will give us all of the normal characters as the last 128 are the reverse-
 video counterparts to the first 128 characters. We're doing this to conserve

 space and because we really don't need that many characters defined.

 Also location $01 contains what $d000-$dfff holds and we will have to modify
 bit 2 to switch the character ROM in. Hence, the following program code is
 used to copy the character set:

copy'chars = * ; must be run w/ interrupts disabled
 lda $01 ; register 1 = the control to switch in the char.
 ; rom.
 pha ; save it as we'll later need to sta' it back.
 and #%11111011 ; Bit 2 controls it - clear it to switch it in.
 sta $01 ; and make it so we can read it in.
 lda #>$3000 ; move chars to $3000
 sta dest+1
 lda #>$d800 ; from $d800 (start of char set) (lower-case)
 sta src+1
 ldy #$00 ; lo-bytes of both src, dest = $00.
 sty src
 sty dest
 ldx #$10 ; copy 2k of data.
 - lda (src),y ; copy byte.
 sta (dest),y
 iny
 bne - ; continue until .Y = 0.
 inc src+1 ; increase source & dest by 256
 inc dest+1
 dex ; decrease .X count.
 bne - ; if non-zero then continue copying, else
 pla ; restore value of $01
 sta $01 ; and put back.
 lda $d018 ; set VIC-chip address.
 and #$f1 ; to show char set.
 ora #$0c
 sta $d018 ; and finally tell VIC where the char set is...
 rts ; and return.

 Note that we still need to change the actual characters we're gonna be using.
 That will be handled in the section after next: Changing the Characters as
 there is a great deal of similarity between the 128 and 64 implementations.

 The 8563 Chip

 The 8563 80-Column chip usually has 16k or 64k Ram attatched to the chip
 which the CPU does not have direct control over. It has to direct the 8563
 to store and retrieve values to that memory. What makes control over that
 memory all the more difficult is the fact that the 8563 only has two lines
 or addresses that the CPU can control.

 The 8563 has a character set in much the same way the VIC chip does, save
 one exception - each character set can have up to 16 lines. Normally, the last
 eight lines are filled with $00 and are not shown. (Provisions can be made to
 have 8x16 characters but it is not needed for this game and thus, will not be
 shown - For more information See C= Hacking Issue #2: 8563: An In-Depth Look.)
 Thus the algorithim is similair to the C=64 but 8 zero-bytes will need to be
 written at the end of every eight bytes read.

 However, the 8563 does make things easier for us! - When the computer is first
 turned on a copy of the Character Set from ROM is copied into the 8563. The
 8563 has no ROM Character Set associated with it and thus we are able to just
 simply modify the character set that is in the 8563 memory instead of copying
 it over. Because of this no routine will be presented to copy a character
 set into the 8563 memory, rather the discussion of copying individually
 defined characters will take place in the next section. The C=128 also makes

 life even easier for us at the end when we will exit the program,
 modifying the character set back to the "standard" Commodore character set
 by a routine in the KERNAL that will copy the characters back. We'll take a
 look at it closer when we write the exit routine.

 Also note that since the 8563 chip supports the 80 column screen we will
 be defining two characters that can be placed side by side for each alien
 so that the playing field will be similair to the C64 version. However, for
 the title screen we will be switching the 8563 into a "40 column" mode
 to make programming easier, in addition to expanding the character bit-mapped
 logo.

 Changing the Characters

 A lot of the times you'll find yourself re-using subroutines and code that
 you have previously created, gradually, over a period of time building up
 a library of routines. When thinking through the purpose and intent of this
 routine I thought about possibly building it so it would read a table and
 change the character set based on that table. The 64/128 character sets
 would be the same - this routine would automatically generate the eight
 additional bytes needed by the 8563 if need-be and it would call the
 appropriate storage routine - store to either the 8563 or the computer
 memory.

 Now you may be asking why would you want to store to the computer memory
 in 128 mode? Why not just have two seperate versions? - Yes - that could
 be possible but I'm implementing it this way because in the future I may
 see a need to define custom characters in 128 mode for the 40 column screen.
 This way I can just extract the routine, pop it into my program and I've got
 that section of the code complete.

 This is what I was thinking of for the data table:

 .byt 1 = 8563, 0 = comp. memory.
 .word address ; address base of char-set in computer or 8563 memory.
 .byte char # ; (to start)
 .byte # of chars to define
 .byte # of characters to define
 .byte data,data,....,data8 ; character data.
 .byte data,data,....,data8 ; character data. etc....
 . . .

 Entrance into the routine will consist of .AY holding the location of the
 table. We will keep the address of the table and keep incrementing it as
 we go along in z-page locations.

 install'char = *
 sta zp1 ; save .ay in table address
 sty zp1+1
 ldy #$00 ; read computer mode.
 jsr get'byte
 sta mode
 jsr get'byte ; get address base.
 sta adr
 jsr get'byte
 sta adr+1
 jsr get'byte ; get number of characters to copy.
 sta numb
 jsr get'byte ; get next character #.
 sta wrk ; save in temp. location.
 lda #$00
 sta wrk+1
 asl wrk ; shift left x3 times = *8
 rol wrk+1

 asl wrk
 rol wrk+1
 asl wrk
 rol wrk+1
 lda mode ; if for 8563 then multiply 1 more time.
 beq +
 asl wrk
 rol wrk+1
 + lda adr ; add character address in.
 clc
 adc wrk
 sta wrk
 lda adr+1
 adc wrk+1
 sta wrk+1 ; address now calculated
 jsr setadrs ; set address in proper chip
 loop'install ldx #$08 ; copy 8 bytes.
 - jsr get'byte
 jsr writebyte ; write out byte.
 dex
 bne -
 lda mode ; if 128 then fill out 8 more $00 bytes.
 beq +
 lda #$00
 ldx #$08
 - jsr writebyte
 dex
 bne -
 + dec numb
 bne loop'install
 rts

 What? We have thre subroutines : writebyte, setadrs, and get'byte that we
 haven't examined yet. These are going to be the routines that are dependant
 on the computer type. Also, writebyte will require that .XY not be disturbed;
 setadrs requires that .Y not be disturbed hence the following:

 setadrs tya ; save .yx
 pha
 txa
 pha
 lda mode ; check computer type.
 beq + ; if C=64, then jump ahead.
 ldx #18 ; VDC register - current memory address hi
 lda wrk+1 ; get address hi
 jsr wr'vdc
 ldx #19 ; VDC register - current memory address lo
 lda wrk ; get address lo
 jsr wr'vdc
 + pla ; restore .XY
 tax
 pla
 tay
 rts ; and return.

 Note that we really don't need a setadrs for the C=64 -- we can just index
 off (wrk) in the writebyte routine which follows:

 writebyte sta temp ; save as we need it later.
 txa ; Save .XY
 pha

 tya
 pha
 lda mode ; now check computer type.
 beq + ; if c64 jump ahead
 lda temp ; recall temp.
 jsr wr'vram
 sec
 bcs ++ ; jump ahead
 + ldy #$00 ; C64 / y-index = $00
 lda temp ; get value
 sta (wrk),y ; store
 inc wrk ; now increase address
 bne +
 inc wrk+1
 + pla ; now return after recalling .XY
 tay
 pla
 tax
 rts ; and return.

 Note that the following routine is fairly short but it is called numerous
 times within the routines that use data tables such as install'char,
 write'txt and write'col.

 get'byte = *
 lda (zp1),y
 iny
 bne + ; if zero then increase zp1 hi
 inc zp1+1
 + rts

 Not bad 'eh? A quick note: The instructions: PLA, TAY, PLA, TAX, PHA, etc..
 are routines that Push or Pull (pha,pla) the .A onto the stack. The TAY, TAX,
 TXA, TYA are instructions that transfer a register to another (ie: the TAY
 transfers the A register to .Y, TXA transfers .X to .A etc...) By using the
 combination of these with the stack we can save the registers and later
 re-call them so that they are the same when we entered the routine. The
 stack is usually a "mystery" item to new programmers of the 6502 series.
 Basically it's just like any other stacks in the real world - the last item
 thrown (I'm non-practicing perfectionist so I throw stuff.. ;-)) or pushed
 on the stack will the first item removed or pulled from the stack. For
 example I've got a stack of books sitting near me :

 Mapping the Commodore 128
 128 Internals

 and I'm holding Mapping the Commodore 64 in my hands. If I push (or toss)
 the book onto the stack (and hopefully hit the stack instead of the floor)
 I'll have the following stack:

 Mapping the Commodore 64
 Mapping the Commodore 128
 128 Internals

 and it should be easy to see that if I "pull" the next book off the stack
 that I'll get the Mapping the Commodore 64 book. The next book to be "pull"ed
 after that would be the Mapping the Commodore 128 book. This idea can be
 applied to the 6502 stack -- It will keep storing values (up to 256) when you
 "push" them on (via the PHA instruction) and will retrieve the last value
 stored when you "pull" them off (via the PLA instruction). Another PLA
 instruction would return the next value that had been stored.

 The Character Bitmaps

 Pasi Ojala is to be credited with all the graphics and many thanks go out
 to him.

 The game logo is made up of 120 custom defined characters that will be
 printed in the following manner (on the 128 screen they will be centered).

 (in reverse video)...

 ABCDEFGH . . . [up to 40 characters]
 IJKLMNOP
 QRSTUVWX

 and everything will line up.

 So that it will look like a "mini-bitmap". We could have used bitmap mode
 and made a very nice looking title screen but that would have involved
 switching and allocating memory for the bitmap, etc . . . On both the
 8563 and the VIC that involves a bit more work and so custom characters
 will be used for the title screen. The regular letter and numeric characters
 will be available so that we can display credits and game instructions
 below the logo.

 Now - in the program listing we could list them as binary #'s and that would
 make editing them very easy but we're gonna use their decimal representation
 in the program listing.

 The characters are defined similair to the logo except they are treated as
 single characters. In the 128 version due to the 80 column screen we are
 going to use two characters side by side to simulate one alien so that the
 playing field will be similair to the C64 version. In addation, during the
 main loop we will modify the character sets to support animation of the
 aliens. In the data listing there is a reference to "frames" - for each of
 the aliens there are 8 differant frames.

 Oh! - There will be more characters defined in the future. Right now I'm
 mainly interested in getting some base characters down so you can see how
 custom characters are implemented. When we start setting up different levels
 and such we'll add more characters then. Currently the custom characters
 are not used - only the characters for the logo. For those of you who are
 curious try installing the characters via install'char and taking a look
 at the aliens.

VII. Title Screen

 The title screen is usually a lead-in to the actual game and it's aim is
 to tell the player how to play the game, any available options and p'haps
 present a nice graphic or two to "wow" the user into playing. In addation,
 the main musical theme can be introduced here to unify the game-playing.
 The discussion below does not take into account color but rest-assured we
 will be using varying colors in the title screen. The format for the color
 data will be almost identical to the title screen format except it will
 be structured via the following:

 .word address
 .byte num_of_chars to put color ($00= end of data)
 .byte color_value

 The routine (color'text) can be found in the source listings at the end of
 this article. Because of the similarity between it and write'text it is
 not discussed in this article.

 Title Screen BackGround

 The title screen I envisoned as a bordered screen (using the normal C=
 character set - ie: C= A,S,Z,X on the keyboard) with our bitmap in the middle
 and under-neath it a short description of the game and game-play instructions.

 Now this is my idea of the screen layout (rough drawing as we're not using
 the actual screen dimensions):

 +---+
 | -LOGO --- |
 | --------------x 3 lines------------------------------------ |
 | --- |
 | |
 | Space Invasion C64/128 |
 | Programming : Craig Taylor |
 | Graphics : Pasi Ojala |
 | Sound : ???????????? |
 | |
 | --- |
 | To Play: |
 | Use joystick in port 2, mouse in port 1 or keyboard: |
 | A - Left, Z - Right Space - Fire |
 | F1 - Restart |
 | |
 +---+

 Title Screen Formatting

 We come into a problem here -- the screen is some 1000 characters on the C64,
 and 2000 characters for the C=128. It would be extremely wasteful to store
 that many characters in memory just to reproduce a title screen - and most of
 them consisting of spaces at that!!

 What we'll do is to just specify the address on screen, the # of characters
 and then list the characters. It will be similair to our custom character
 table driver above but will be different enough that a new routine is
 warrented. We will however use the two subroutines writebyte and setadrs
 that were developed in the previous routine. The data will look like the
 following:

 .word address
 .byte num_of_chars ($00= end of data)
 .ascii "text"
 .byte address etc....

 and we'll enter with .AY containing the address of the table.

 So basically we come up with the following:

 write'txt = *
 sta zp1 ; save .ay in table address
 sty zp1+1
 ldy #$00
 loop'w'text = *
 jsr get'byte ; set address.
 sta wrk
 jsr get'byte
 sta wrk+1
 jsr get'byte ; get # of chars to write out.
 cmp #$00
 beq + ; if zero then exit.
 tax

 jsr setadrs ; set address to wrk,wrk+1
 - jsr get'byte
 jsr writebyte ; write out byte.
 dex
 bne -
 sec
 bcs loop'w'text ; this is an absolute jump to loop
 + rts ; return.

 This is similair to our previous routine, and was in fact copied and modified
 from the previous routine.

VIII. Debugging

 Now, not all programs are perfect, and during the development of this
 portion of the game there were several errors found. Tracing an error in
 Machine/Assembly-Language is like trying to find a grammatical error in a
 language you don't know. ;-) But seriously, there are several ways to track
 down errors in your code.

 1 - Try tracing it through by hand playing "What if I were the computer" and
 following what each register does.

 2 - Are you switching the LoHi order of variables? Ie: is it lda #< or
 lda #>??

 3 - Set BRK points and run the program / subroutine within a machine language
 monitor and make sure the registers / memory locations contain the values
 that they should. If not, find out why.

 4 - Try to simplify your code in terms of programming ease - Make the
 assembler do the work for you - it's a lot less likely to make errors
 than you are.

 5 - Think logically!!!

 6 - Change something at random and pray.

 I can't stress numbers 3 and 5 enough. During the writing of the install'char
 routine there were numerous bugs that were eventually tracked down by
 setting a BRK instruction further along in the code and seeing exactly what
 the register / memory locations were. Also the use of temporary load and
 store instructions into "safe" regions of memory helped me monitor what some
 of the values were.

 For example, at one point I had a section of code similair to the following:

 clc
 lda value
 adc data
 bne +
 inc data+1
 + [....]

 And it's purpose was to add value to data. Now I've found simple errors are
 usually found last, after complex errors. And not until a set a break point
 like:

 clc
 lda value
 adc data <-----Missing Instruction after here-------------+

 bne + |
 inc data+1 |
 + BRK |
 [....] |
 |
 did I actually figure out that I was missing the STA DATA instruction --+

 So, when writing, modifying, and trying to debug code try to take your time
 and isolate every possible problem. Also don't be afraid to stop the code
 mid-stream as in the above with use of the BRK. You can always remove it
 (and probahly should) in the final code and it serves as a very valuable
 debugging tool with the aid of a machine-language monitor.

IX. Memory Map Considerations

 Before you start a program it's a good idea to consider where in memory you
 will have everything. Now we've already started some of the program above
 and just blindly picked numbers at random it seemed like $3000 for the
 character set for the C=64 etc... We didn't - I'm introducing the Memory
 Map Considerations here to show the example of what if we didn't think
 about how memory was going to be organized.

 The C=64 only has 64k of memory of which typically the range $0800-$a000
 is available and $c000-$cfff is also. If we had blindly picked numbers
 all over the place to store our code then we would have a disorganized
 program that would most likely accidentally use one subroutines storage
 as temporary data for another. It's like shooting randomly in Laser Tag
 not checking to see if there is a target there or not first... The end
 result: Chaos.

 Currently we're not following the rule for "temporary variables" but as
 we gradually fade out of the normal C-64/128 default mode and write our
 own routines / interrupt handlers we'll switch things over. Also, on the
 C=128 instead of using Bank 0 with the I/O block enabled we're currently
 using the BANK 15 configuration as the program doesn't extend past $4000
 yet ($0000-$4000 is common memory in the normal C=128 configuartion).

 64 Considerations

 The 64 will have free memory in the following areas: $0800-$a000, and
 $c000-$cfff. However, if we disable the Basic Rom we can have the whole
 area from $0800-$cfff free for our program. Because we don't need the
 Basic Rom we will do just that (in the listing now we currently won't but
 it will be done in a future issue). Therefore having the character set
 at $3000-$5000, the music data at $5000-$8000, the program will have the
 area free from $8000-$cfff. $0800-$3000 will be available if needed for
 routines who need temporary storage.

 Temporary Storage is going to be defined as follows. Each routine that needs
 temporary storage will be assigned a "level" number. The lower levels will
 be assigned level 1 on up to level 3. The range $0800-$3000 will be
 broken down into the following sub-ranges.

 Level 1: $0800-$1000
 Level 2: $1000-$1800
 Level 3: $1800-$3000

 This way when writing the sub-routines we can be assured that a section of
 memory is not overwritten by a subroutine we call. When we actually start
 programming we'll decide where in each sub-range the routine will have
 access to.

 128 Considerations

 The 128 has two "banks" of 64k each. Normally for large programs we would
 think about using both banks - (from the idea: Hey! - We got it, why not
 flaunt it?) but we won't be using both banks.

 Free memory on the C128 typically consists of the range $0400-$09ff
 (where we'll be overwriting the 40 column screen (which we're gonna blank
 anyway) and the Basic run-time stack.) Also the area from $0b00-$0fff
 is free (overwriting the tape area, the rs-232 buffers,l and the sprite
 definition area). Also $1300-$cfff will be free.

 Now, the C=128 has different memory maps it can configure itself to -
 Bank 15 is the standard mode under most basic programs and allows the
 programmer to directly "sys" to calls. The MMU (memory management unit -
 the chip that does everything) sees memory in a slightly differant way
 than from basic. We'll cover it in more detail when we examine the mem_init
 routine. For now, we're just gonna set up in the program and not in the
 coding segments. The explanation of what we're doing will be "revealed"
 in a future issue.

 We will use Bank 0 of memory and from $1300+ will be the program. The ranges
 of $0400-$09ff and $0b00-$0fff will be used in a similair mannar as the C64
 ranges were for Temporary Storage. We will also have the I/O section from
 $d000-$dfff swapped in. This is not a standard "basic BANK #" but when we
 cover the init'memory routine we'll see how we can do this. Music data
 will be from $a000-$d000.

X. Looking Forward / Back

 Hopefully through the listing and the discussion of the routines you have
 started to understand the basic concept of programming: breaking down problems
 into smaller solvable steps. Try looking back over the code asking yourself
 why that instruction is there. What would happen if you switched the order?
 Is there an easier, better way to do the same thing? Why? Better yet, how?
 Examine the code, mess with it, muck it up so it doesn't work and then figure
 out exactly why. The only way to learn is by experimentation. (BTW, muck up
 a _copy_ of it - not the original ... *grins*)

 Take a look at the different sections of code and analyze them to see how
 they do what they do. Take a look at how the code was organized in terms
 of simplification. Trace through each subroutine so that you're able to
 know what the return values will be. In other words: Study, Study, Study!!
 I'm in school and so I know I just used the dreaded 'S' word but that's
 what you're going to have to do if you're interested in learning 65xx/85xx
 machine language. The only way to learn it (easily) is to study other
 people's code and try to understand why they did what they did.

 Next time we will take a look at the input routines for the mouse, joystick
 and keyboard scanning. In addition we will also allow the player to move
 the ship around on the screen to test the input drivers.

 In addation, I am still looking for an individual to help with music and
 sound composition for this program. A knowledge of the SID chip and
 programming is helpful but not required. If you're willing to help then
 please email me at duck@pembvax1.pembroke.edu

XI. Listings

 Because of the enormity of the program listing (some 1,500+ lines) it will
 not be listed in this article but will instead be available via anonymous
 ftp at ccosun.caltech.edu under pub/rknop/HACKING.MAG as invas1.sfx.

 For those of you on the mailing list who would like to recieve it, a Mail-
 Server will be set up soon to handle requests and information will be
 sent to you concerning information about using it as soon as it's completed.

 In the invasion1.sfx file there are the following files:

 invasion.src - the main file
 graphics.src - handles all graphics routines
 logo.dat - custom character logo
 chars64.dat - alien custom characters for C=64
 chars128.dat - alien custom characters for C=128
 titletxt.dat - text data for title screen
 titlecol.dat - color data for title screen
 invasion-128 - executable version of Space Invasion so far for C=128
 invasion-64 - executable version of Space Invasion so far for C=64

 Note: For the Commodore 128 it's recommended that you do a run/stop-restore
 and then a "BANK15:SYS7168" to execute the program. For the Commodore 64 it's
 recommended the border be changed via: "POKE53280,0:POKE53281,0:SYS 32768" to
 run the program.

==
The Demo Corner:

FLI - more color to the screen
by Pasi 'Albert' Ojala (po87553@cs.tut.fi or albert@cc.tut.fi)
 Written on 16-May-91 Translation 01-Jun-92

(All timings are in PAL, altho the principles will apply to NTSC too)

All of us have heard complaints about the color constraints on C64. One 8x8
pixel character position may only carry four different colors. FLI picture
can have all of the 16 colors in one char position. What then is this FLI
and how it is done ?

In the normal multicolor mode can one character position (4x8 pixels) have
only four different colors and one of them is the common background color.
Color codes are stored in half bytes (nybbles) to the video matrix memory
(anywhere video matrix pointer points at, normally $0400) and to the color
memory ($D800-$DBFF). In multicolor mode the color of each pixel is
determined by two bits in the graphics memory. Bit pair 11 will refer to
color memory, background color is the color for bit pair 00, and video
matrix will define the colors for bit pairs 01 and 10.

What happens in the VIC ?

VIC (Video Interface Controller) fetches color information from memory on
each bad line. This will steal time from processor, because VIC needs to use
processor's bus cycles. Bad line is a curse in the C64 world. Fortunately
VIC's data bus is 12 bits wide and so the color data fetch for each character
position will take only one bus cycle. Color memory is physically wired to
the VIC databus lines D8-D11.

How does VIC know where to fetch the graphical information ? Some of you know
the mystical formulas needed to mess with the pixels in the hires screen.
How are these functions obtained ? Are they just magic ? No, there are some
internal counters in VIC. They always point to the right place in grafix
memory and the address is determined like this:

A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
CB13 VC9 VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 VC0 RC2 RC1 RC0

Address bits A15 and A14 change according to the selected video bank.

Address bit A13 is CB13, which may be found in VIC register $18. It
selects the right side of the video bank to be the bitmap memory. With
these bits you can set the bitmap to eight different places in memory.
However, some of them are useless because of the character ROM images and
zero page/stack. Rest of the bits come from the internal counters.

VC9-VC0 (Video Counter) forms the address bits 12-3. The counter rolls
through all 1000 character positions, 0-39 on the first eight lines, 40-79
on the second eight lines and so on. The lowest three bits come from the row
counter, RC2-RC0. This is another VIC counter and it counts the scan lines
from zero to seven.

A software graphics mode - FLI

VIC will systematically go through every byte in the bitmap memory, but how
does it know where and when to get the color information ? This is where
the main principle of FLI (Flexible Line Interpretation) lies. Color data
is fetched (and this means it is a bad line), when the line counter matches
with the vertical scroll register. VC9-VC0 defines where the color data is
inside the video matrix and color memory.

If we change the vertical scroll register, we can fool VIC to think that
every line is a bad line, so it will fetch the color information on every
line too. Because VIC will fetch the colors continuosly, we can get
independent colors on each scan line. We just have to change colors and VIC
will handle the rest. Unfortunately the result is the loss of 40 processor
cycles per line (see the Missing Cycles article for more information about
VIC stealing cycles).

Doing it in practice

In practice there is no time to change color memory, but in multicolor
mode VIC uses video matrix for color information too. We have just enough
time to change the video matrix pointer, $D018. Now VIC will see a
different video matrix on each scan line, different block of memory. With
the four upper bits in the register we select one of the 16 video memories
in the video bank. Just remember that the register also selects the position
of the graphics memory (bitmap) inside the video bank.

Because we have to keep the bitmap in the same video bank, we only have half
of the bank free for video matrices. Fortunately, that's all we need to get
individual multicolor colors for each line and character position.
VIC will fetch the color data from the eight video matrices and then it will
roll on to the next 40 bytes. After eight lines and matrices we will select
the first video matrix again. (See picture 1)

Usually it is not necassary to use the whole screen for a FLI picture,
especially if you want to have a scroller or some other effects. You just
have to make sure that VIC is foolable in the usual way. The timing is also
very important, even one cycle variations in the routine entry are not
allowed. There is many ways to do the synchronization. One way is to use a
sprite, as in the previous article. (See C= Hacking, Vol. 1, Iss. 3, The
Demo Corner: Missing Cycles).

Not much time

Because a bad line will steal 40 cycles, there is only 23 cycles left on
each scan line. It is enough for changing the video matrix and backgroud
color. There is not a moment to lose, because you must change the vertical
scroll register, video matrix pointer and the background color. This is why
you can't have sprites in front of a FLI picture.

With FLI we get two selectable colors for each character position and line,
each scan line can have it's own background color and each character position
still has its own character color from color memory. In theory each character
position could have 25 different colors, unfortunately VIC only has 16.

A little feature

VIC does not like it when we change the vertical scroll register ($D011),
and is a bit annoyed. It 'sees' code 255 (light gray) in video matrix
and 9 (brown) in the color memory instead of the correct values stored there.
Actually the color value seems to be the lower nybble of the data byte
currently on the data bus (accessed by the processor (LDA#=$A9)).
Unfortunately there is no chance to do the register change in the border
and thus the three leftmost character columns are a bit useless, because
the colors are fixed.

However, this doesn't mean that you can't use those three columns. FLI
editors may not support the fixed colors though, so it may be hard to use
them.

What to do with FLI ?

Because FLI will eat up all the available processor time (no Copper :-),
it is not suitable for any action-games. Each FLI picture takes about 17 kB
of memory: not so many pictures fit on one floppy. So, the only place for FLI
is demos, intros, board-type games and maybe a GIF viewer..

--
Picture 1: From which matrix VIC fetches the multicolor values

 _ ___
| ... | Matrix0 | Matrix0 | Matrix0 |
| , .|____3__________|____4__________|____5__________| ...
| U .| Matrix1 | Matrix1 | Matrix1 |
| s .|____3__________|____4__________|____5__________| .
|Char e | Matrix2 | Matrix2 | Matrix2 | .
|Line l |____3__________|____4__________|____5__________| .
Zero e	Matrix3	Matrix3	Matrix3
s	____3__________	____4__________	____5__________
s,	Matrix4	Matrix4	Matrix4
	____3__________	____4__________	____5__________
c	Matrix5	Matrix5	Matrix5
o	____3__________	____4__________	____5__________
l	Matrix6	Matrix6	Matrix6
u	____3__________	____4__________	____5__________
m	Matrix7	Matrix7	Matrix7
_ n	____3__________	____4__________	____5__________
 s | Matrix0 | Matrix0 | Matrix0 |
 |___43__________|___44__________|___45__________|
 | Matrix1 | Matrix1 | Matrix1 |
 |___43__________|___44__________|___45__________|
 |
 | ...
 | .
 | .
 | .

--
Additional reading

If you have an Amiga you might want to get your hands into my conversion
programs in C64GFX1.lha. The packet also includes FLI viewer for PAL C64's
and some documentation about the FLI file format. It also has the same

utilities for Koala format pictures.

Available from:
cwaves.stfx.ca
nic.funet.fi:/pub/amiga/graphics/applications/convert

C64GFX.doc
 C64Gfx1.0
 A C64 grafix format conversion package
)1991,1992 Pasi 'Albert' Ojala

 E-mail: po87553@cs.tut.fi
 albert@cc.tut.fi

This package contains programs which are used to convert portable
pixmap (ppm) files to C64 graphics formats (FLI and koala) under
AmigaOS. The package includes C source codes for the programs, so
it is possible to port the programs to another environment. C64GFX1.1
includes Unix-compilable sources.

In addition to this package you need e.g. PBMPlus to convert Amiga
ilbm files to ppm first. And of course some way to transfer files
between the machines.

===
RS-232 Converter
by Warren Tustin (warren@col.hp.com)

 This article presents a way to interface from the C= rs232 hardware
behind the user port to a standard 25pin female rs232 connector using only
one IC and a few capacitors. It is not a UART or a SWIFTLINK type interface
which take place of the internal C= rs232 circuitry, but a simple level shifting
interface that uses the internal rs232 routines and translates the user port
levels to rs232 levels. Therefore you can only get upto 2400baud/9600baud
(C=64/C=128) with this design.

 The "old" way to do this was to used MC1488 and MC1489 parts (a line
driver and line receiver), however these required a negative supply to interface
properly. The user port only supplies +5volts, hence this presents a problem.
There has been success using these parts or discrete transistors and resistors
since many modems are somewhat friendly and seem to work even though the levels
were marginal. Also, some signals were not used, allowing for potential
problems. Another way to solve this problem was to buy a $25-30 interface. If
you can find the IC below, you have another choice that is relatively
inexpensive.

 The LT1133 is basically the MC1488 and 1489 put together into one part
with an internal charge pump scheme that allows the internal drivers to output
+5 and -5 volts to the rs232 connector. It also has enough drivers and
receivers to handle all of the signals that the C= uses for rs232.

 So with this IC, 5 capacitors and the two connectors (user port and
rs232) you can build your own interface to the standard 25 pin modem cable.

 Here are the plans for an User port TO RS232 connector using just ONE IC and
4 capacitors. It uses a Linear Technology LT1133 buffer that has 3 RS232
drivers and 5 receivers. It has worked for me with no problems and takes
a minimum amout of wiring to get to work. My board is only the width of
the user port and about 1.5 inches deep in size.

Parts list:

 LT1133CN plastic dip or LT1133CJ ceramic dip RS232 driver from Linear
 Technologies

 (It takes 27mA max (17mA typical) so is well below the 100mA
 limit of the user port)

 Driver In pins (15,19,21) TTL/CMOS compatible. Unused inputs
 | | | should be tied to +5v.
 Driver Out pins (11, 7, 5) RS232 compatible. Short circuit
 protected from -30v to +30v.
 Receiver In pins (6, 8, 9, 10,12) Accept RS232 levels (+-30v)
 | | | | | and have 0.4v of hysteresis to
 | | | | | provide noise immunity.
 Receiver Out pins (20,18,17,16,14) TTL/CMOS outputs.

 NOTE: Lines above indicate which inputs go with which outputs, and
 the pairs can be interchanged freely. I connected them as
 described below because the wiring worked out the best for me.

 4 - >= 1uF capacitors Used to generate RS232 voltages by a charge pump
 technique inside IC
 1 1uF capacitor To bypass the 5volt supply for noise rejection.

 1 User port female connector. (I just dug this up, I'm not sure
 where these can be found, I think it is 0.159" spacing, 24pin.

 1 RS232 25pin female connector. Can be found at R-Shack

 Some sort of .1" spacing proto board

Connections:

 User port connector (Looking into the C64 or C128)

 1 2 3 4 5 6 7 8 9 10 11 12

 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|

 A B C D E F H J K L M N

Ground & Power:

 Pins 1, A, 12, N to Ground of board.
 LT1133 pin 2 to pin 2 of User port connector (+5 volts)
 1uF capacitor between pin2 and ground (bypass cap)
 LT1133 pin 13 to Ground.
 RS232 connector pins 7 & 1 to Ground.

LT1133 capacitors:
 1uF from pin 1 (V+) to ground (If polarized (electrolytic) + side to pin 1)
 1uF from pin 24 (V-) to ground (As above but + side to ground)
 1uF from pin 3 (C1+) to pin 4 (C1-) (Again if polarized, + side to pin 3)
 1uF from pin 22 (C2+) to pin 23 (C2-) (Again if polarized, + side to pin 22)

 Commodore side RS232 side
 User port Signal Pin of Signal Pin of RS232
 pin name LT1133 direction LT1133 connector
 --------- ------ ------ --------- ------ ---------
 B FLAG2 Din 20 <-- 6 3
 C PB0 Din also connect to above pin 20
 D PB1 RTS 21 --> 5 4
 E PB2 DTR 19 <-- 7 20
 F PB3 RI 18 --> 8 22
 H PB4 DCD 17 --> 9 8

 J PB5 Not used
 K PB6 CTS 16 --> 10 5
 L PB7 DSR 14 <-- 12 6
 M PA2 Dout 15 --> 11 2

This assumes that you want to connect all of the communication lines. I did
it this way because the C128 programmers reference guide had all of the signals
above listed. If you want to drop RI (ring indicator) you could also use an
LT1134 which has 4 drivers and 4 receivers.

Parts Substitution:

 There are other IC's available which will work in this application.
The rs232 bus levels for the LT parts are spec'ed at ~ +/- 7v typical, while
the MAXIM parts are +/-9v typical. (Both are min at +/- 5v which should work
in all applications). I think that an interface can be done with only 3
lines, Din(Rx), Dout(Tx), and either DSR or CTS, so if you can't get the
LT1133 one of these others might work, although the pinouts would be different.
The max you would need is what the LT1133 supplies, 3 drivers & 5 receivers.

Here is a description of parts that might be substituted:
(Note, with all of them you should use a bypass cap on the +5v supply which
 I have NOT included in the counts below.)

 RS232 RS232 # of EXTERNAL
NAME PINS DRIVERS RECEIVERS CAPS COMMENTS

Linear Technology parts...
(On the parts with shutdown (SD), the pin must be tied to +5 to operate)
LT1133 24 3 5 4 In article above

LT1130 28 5 5 4 Overkill (SDp14)
LT1131 28 5 4 4 2 ex Dr, 1 < Rcvr
LT1132 24 5 3 4 2 ex Dr, 2 < Rcvr
LT1134 24 4 4 4 1 < Rcvr
LT1136 28 4 5 4 1 ex Dr (SDp14)
LT1137 28 3 5 4 SDp13
LT1138 28 5 3 4 LT1132 w/SDp13

MAXIM parts... (Some also have a TTL EN_ pin that must be tied to 0v to operate)
 (On these parts, SD must be tied to 0v to operate!)
MAX232 16 2 2 4 May work
MAX233 20 2 2 0! No external caps
MAX235 24 5 5 0! Overkill, but NO caps,
 SDp21, EN_p20
MAX236 24 4 3 4 1 ex Dr, 2 < Rcvr,
 SDp21, EN_p20
MAX237 24 5 3 4 2 ex DR, 2 < Rcvr
MAX238 24 4 4 4 1 ex DR, 1 < Rcvr

 In summary, you can see there are many different parts you could use,
especially if you don't need all the signals. The MAXIM parts seem to
do the job in fewer pins and a little better typical drive spec and I
would recommend the MAX235 overall since you only need 1 bypass cap to
make it operate!

===
Introduction to the VIC-II
by Pasi 'Albert' Ojala (...)

The Video Interface Controller used in C64 have several different operating
modes and different graphical primitives. Basically there is a) character
mode, b) bitmap mode and c) movable objects that can be mixed with the
other graphics. These primitives can also be put into a more colorful mode,

but you lose half of the resolution in that process.

I. Standard Character Display Mode

In the character display mode, VIC fetches character pointers from video
matrix, which consists of 1000 8-bit bytes formatted as 25 rows of 40
characters each. The 8-bit character code implies 256 different characters
simultaneously onscreen.

Each character code can have an unique image, which consists of 8 bytes in
character memory. The position of the character memory can be moved with the
character base pointer and thus it is possible to have several character sets
simultaneosly in memory. One character memory is 2048 bytes.

In addition to the character code, each position in video matrix has an
associated color nybble (4 bits) in color memory ($D800-$DFFF). For each
zero-bit in the charset the background color from register $21 is displayed,
the color-nybble is used for the one-bit.

II. Character Multicolor Mode

In character multicolor mode, color selection is increased. Each byte is
fetched from the character memory just like in the standard character mode,
but they are interpreted differently. In this mode bytes are divided into
bit-pairs. For bit pair "00" the background color from register $21 is
displayed, background color #1 is used for bit pair "01" and background
color #2 for bit pair "10". The color nybble will define the color for bit
pair "11".

The highest bit in the color memory defines whether the character is to be
displayed in multicolor ("1") or in standard mode ("0"). Because of this,
only colors in the range from 0 to 7 are possible for bit pair "11". And since
two bits are required to specify one dot color, the character is now displayed
as a 4x8 matrix instead of the 8x8 matrix and the size of the dots are doubled
horizontally.

III. Extended Color Mode

The extended color mode allows the selection of one background color from four
possibilities for each character position in the normal 8x8 resolution. The
character image data is processed like in standard character mode, but the
two most significant bits in the character code (video matrix) are used to
select the right background color register. Only character images from 0 to 63
are accessible, because two of the most significant bits are used for the
background color selection.

Extended color mode and multicolor mode should not be selected simultaneosly,
because this will result a black screen. However, this is a very easy way to
hide something if needed.

IV. Standard Bit Map Mode

In bit map mode, a one-to-one correspondence exists between each displayed
dot and a memory bit. The bit map provides a resolution of 320H x 200V
individually controlled pixels. The video matrix is still accessed as in
character mode, but the data is interpreted as color data. When a bit is "0"
in the bit map data, the color from the lower nybble is selected. The
higher nybble from the video matrix is used for the bit "1".

V. Multicolor Bit Map Mode

In multicolor bit map mode two bits in the bit map memory determine the color
of one pixel. If the bit pair is "11", the color found from the color memory
is used. The background color is used for bit pair "00" and the video matrix
defines the colors for bit pairs "01" and "10". As it takes two bits to define
one pixel color, the horizaontal resolution is halved to 160H x 200V.

VI. Movable Object Blocks (MOBs)

The movable object block is a special type of graphical object which can be
displayed independently from the other graphics. Each one of the MOBs can
be moved independently anywhere in the screen. Eight unique MOBs can be
displayed simulataniously, each defined by 64 bytes in memory which are
displayed as a 24 x 21 pixel array.

Each MOB can be selectively enabled (MnE="1") or disabled (MnE="0"). A MOB
is positioned via its X and Y position registers. Nine bits are needed to
define the vertical position and the most significant bits of all MOBs are
stored in the register $10. As X locations 23 to 347 and Y locations 50 to
249 are entirely visible on the screen, MOBs can be smoothly moved to an
off-screen position.

Each MOB has its own color register and a MOB can be displayed either in
standard or multicolor mode (MnMC="1"). As usually, multicolor mode gives
more colors, but halves the horizontal resolution. In multicolor mode bit
pair "00" is transparent, the MOB color register defines the color for pair
"10", and MOB multicolor registers give the colors for pairs "01" and "11".

MOBs can be selectively expanded in both directions. When MOB is expanded,
the pixel size also expands and it is still displayed as 24 x 21 matrix
(12 x 21 in multicolor mode).

MOB priorities define whether a MOB appears behind or on top of the character
or bit map graphics. A "1" in MnDP means MOB is displayed behind. MOB
collision registers may be used to detect if a non-transparent data of two
MOBs or a MOB and character or bitmap foreground data is colliding.

[Ed's Note: MOB's are Sprites. Commodore initially referred to them as MOB's
and still does in some areas.]

VII. Other features

The display screen may be blanked by setting the DEN bit to a "0". The entire
screen will be filled with the border color as set in register 32 ($20).
When the screen is blanked, VIC will need only transparent memory cycles and
the processor is not slowed down. However, MOB data is still fetched, if
the MOBs are not also disabled.

The normal display consists of 25 rows of 40 characters each. The display
window can be reduced to 24 rows and 38 characters. This has no effect on how
the data is interpreted, only the characters next to the border are covered
by the border. RSEL controls the number of rows ("1" for 25 rows) and CSEL
controls the number of columns ("1" for 40 columns).

The display data may be scrolled up to one character space in both vertical
and horizontal direction. Position of the screen is set with the 3 lowest
order (least significant) bits in registers 22 ($16) and 17 ($11).

Light pen latch is used to catch the position of the light pen when a pulse
is received in the LP pin. The value is latched only once in a frame.

The raster register is a dual-function register. A read from the raster
register returns the current raster position and a write to it will set the

raster compare value. When the written value and the current raster line
matches, a raster interrupt is generated if enabled. Raster register has its
most significant (9th) bit in register 17 ($11).

The interrupt register shows the status of the four sources of interrupt.
A corresponding bit will be set to "1" when an interrupt source has generated
an interrupt request. To enable an interrupt request to set the /IRQ output
to zero, the corresponding enable bit in register 26 ($1a) must be set to
"1". The interrupt latch may only be cleared by writing a "1" to the
desired latch in the interrupt register.

VIC register map (Base address $d000)

Address DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description

00 $00 M0X7 M0X6 M0X5 M0X4 M0X3 M0X2 M0X1 M0X0 MOB 0 X-position
01 $01 M0Y7 M0Y6 M0Y5 M0Y4 M0Y3 M0Y2 M0Y1 M0Y0 MOB 0 Y-position
02 $02 M1X7 M1X6 M1X5 M1X4 M1X3 M1X2 M1X1 M1X0 MOB 1 X-position
03 $03 M1Y7 M1Y6 M1Y5 M1Y4 M1Y3 M1Y2 M1Y1 M1Y0 MOB 1 Y-position
04 $04 M2X7 M2X6 M2X5 M2X4 M2X3 M2X2 M2X1 M2X0 MOB 2 X-position
05 $05 M2Y7 M2Y6 M2Y5 M2Y4 M2Y3 M2Y2 M2Y1 M2Y0 MOB 2 Y-position
06 $06 M3X7 M3X6 M3X5 M3X4 M3X3 M3X2 M3X1 M3X0 MOB 3 X-position
07 $07 M3Y7 M3Y6 M3Y5 M3Y4 M3Y3 M3Y2 M3Y1 M3Y0 MOB 3 Y-position
08 $08 M4X7 M4X6 M4X5 M4X4 M4X3 M4X2 M4X1 M4X0 MOB 4 X-position
09 $09 M4Y7 M4Y6 M4Y5 M4Y4 M4Y3 M4Y2 M4Y1 M4Y0 MOB 4 Y-position
10 $0a M5X7 M5X6 M5X5 M5X4 M5X3 M5X2 M5X1 M5X0 MOB 5 X-position
11 $0b M5Y7 M5Y6 M5Y5 M5Y4 M5Y3 M5Y2 M5Y1 M5Y0 MOB 5 Y-position
12 $0c M6X7 M6X6 M6X5 M6X4 M6X3 M6X2 M6X1 M6X0 MOB 6 X-position
13 $0d M6Y7 M6Y6 M6Y5 M6Y4 M6Y3 M6Y2 M6Y1 M6Y0 MOB 6 Y-position
14 $0e M7X7 M7X6 M7X5 M7X4 M7X3 M7X2 M7X1 M7X0 MOB 7 X-position
15 $0f M7Y7 M7Y6 M7Y5 M7Y4 M7Y3 M7Y2 M7Y1 M7Y0 MOB 7 Y-position
16 $10 M7X8 M6X8 M5X8 M4X8 M3X8 M2X8 M1X8 M0X8 MSB of X-position

17 $11 RC8 ECM BMM DEN RSEL Y2 Y1 Y0 (See text)
18 $12 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 Raster register
19 $13 LPX8 LPX7 LPX6 LPX5 LPX4 LPX3 LPX2 LPX1 Light Pen X
20 $14 LPY7 LPY6 LPY5 LPY4 LPY3 LPY2 LPY1 LPY0 Light Pen Y
21 $15 M7E M6E M5E M4E M3E M2E M1E M0E MOB Enable
22 $16 - - RES MCM CSEL X2 X1 X0 (See text)
23 $17 M7YE M6YE M5YE M4YE M3YE M2YE M1YE M0YE MOB Y-expand
24 $18 VM13 VM12 VM11 VM10 CB13 CB12 CB11 - Memory Pointers
25 $19 IRQ - - - ILP IMMC IMBC IRST Interrupt Register
26 $1a - - - - ELP EMMC EMBC ERST Enable Interrupt
27 $1b M7DP M6DP M5DP M4DP M3DP M2DP M1DP M0DP MOB-DATA Priority
28 $1c M7MC M6MC M5MC M4MC M3MC M2MC M1MC M0MC MOB Multicolor select
29 $1d M7XE M6XE M5XE M4XE M3XE M2XE M1XE M0XE MOB X-Expand
30 $1e M7M M6M M5M M4M M3M M2M M1M M0M MOB-MOB Collision
31 $1f M7D M6D M5D M4D M3D M2D M1D M0D MOB-DATA Collision

32 $20 - - - - EC3 EC2 EC1 EC0 Exterior Color
33 $21 - - - - B0C3 B0C2 B0C1 B0C0 Background #0 Color
34 $22 - - - - B1C3 B1C2 B1C1 B1C0 Background #1 Color
35 $23 - - - - B2C3 B2C2 B2C1 B2C0 Background #2 Color
36 $24 - - - - B3C3 B3C2 B3C1 B3C0 Background #3 Color
37 $25 - - - - MM03 MM02 MM01 MM00 MOB Multicolor #0
38 $26 - - - - MM13 MM12 MM11 MM10 MOB Multicolor #1

39 $27 - - - - M0C3 M0C2 M0C1 M0C0 MOB 0 Color
40 $28 - - - - M1C3 M1C2 M1C1 M1C0 MOB 1 Color
41 $29 - - - - M2C3 M2C2 M2C1 M2C0 MOB 2 Color
42 $2a - - - - M3C3 M3C2 M3C1 M3C0 MOB 3 Color
43 $2b - - - - M4C3 M4C2 M4C1 M4C0 MOB 4 Color
44 $2c - - - - M5C3 M5C2 M5C1 M5C0 MOB 5 Color
45 $2d - - - - M6C3 M6C2 M6C1 M6C0 MOB 6 Color

46 $2e - - - - M7C3 M7C2 M7C1 M7C0 MOB 7 Color

MnX = MOB n X position MnY = MOB n Y position
RC = Raster compare register ECM = Extended color mode
MBB = Bit map mode DEN = Display enable
RSEL = Row select Y = Screen Y position
LPX = Light pen X position LPY = Light pen Y position
MnE = MOB n Enable RES = Always set to zero!
MCM = Multicolor mode CSEL = Column select
X = Screen X position MnYE = MOB n Y expand
VM = Video matrix pointer CB = Character base pointer
MnDP = MOB to data priority MnMC = MOB n multicolor select
MnXE = MOB n X expand

===
LITTLE RED READER: MS-DOS file reader for the 128 and 1571/81 drives.

by Craig Bruce <csbruce@neumann.uwaterloo.ca>

1. INTRODUCTION

This article presents a program that reads MS-DOS files and the root directory
of MS-DOS disks. The program copies only from drive to drive without
buffering file data internally. This is simpler and imposes no limits on the
size of the files transferred, although it requires the use of two disk drives
(or a logical drive). The user-interface code is written in BASIC and
presents a full-screen file selection menu. The grunt-work code is written in
assembly language and operates at maximum velosity.

The Burst Command Instruction Set of the 1571/81 is used to read the MS-DOS
disk blocks and the standard kernel routines are used for outputting the
data. (I am an operating systems specialist, so I call it a kernEl!) Thus,
the MS-DOS files must be read from a 1571 or 1581 disk drive, but the output
device may be any disk drive type, the screen or a printer, or a virtual drive
type such as RAMLink, RAMDrive, or RAMDOS (for the REU). It is interesting to
note that the data can be read in from an MS-DOS disk faster than it can be
written out to a 1571, 1581, or even a RAMDOS file. A RAMLink can swallow the
data only slightly faster than it can be read.

Little Red Reader (LRR) supports double density 3.5" disks formatted with 80
tracks, 9 sectors per track, and 2 sides with a 1581 and 5.25" double density
disks formatted with 40 tracks, 9 sectors per track, and 2 sides with a 1571.
A limit of 128 directory entries and 3 File Allocation Table (FAT) sectors is
imposed. There must be 2 copies of the FAT and the cluster size may be 1 or 2
sectors. The sector size must be 512 bytes.

Oh, about the name. It is a play on the name of another MS-DOS file copier
available for the C-128. "Little" means that it is smaller in scope than the
other program, and "Red" is a different primary color to avoid any legal
complications. It is also the non-white color of the flag of the country of
origin of this program (no, I am not Japanese). Also, this program is Public
Domain Software, as is all software I develop for 8-bit Commodore Computers.
Feel free to E-mail me if you have questions or comments about this article.

2. USER GUIDE

LOAD and RUN the "lrr.128" BASIC program file. When the program is first run,
it will display an "initializing" message and will load in the binary machine
language package from the "current" Commodore DOS drive (the current drive is
obtained from PEEK(186) - the last device accessed). The binary package is
loaded only on the first run and is not reloaded on subsequent runs if the
package ID field is in place.

2.1. MAIN SCREEN

The main screen of the program is then displayed. The main screen of the
program will look something like this:

 MS-DEV=9 MS-TYPE=1581 CBM-DEV=8

 NUM S TRN TYP FILENAME EXT LENGTH
 --- - --- --- -------- --- ------
 1 * ASC SEQ HACK4 TXT 120732
 2 BIN PRG RAMDOS SFX 34923

 D=DIRECTORY M=MS-DEV F=CBM-DEV Q=QUIT
 T=TOGGLE-COLUMN, C=COPY-FILES, +/- PAGE

except that immediately after starting up, "<no files>" will be displayed
rather than filenames. The "MS-DEV" and "MS-TYPE" fields give the device
number and type of the drive containing the MS-DOS disk to copy from, and the
"CBM-DEV" gives the device number of the drive/virtual drive/character device
to copy file data to.

Information about all MS-DOS files in the root directory of the MS-DOS disk is
displayed in columns below the drive information. "NUM" gives the number of
the MS-DOS file in the directory listing, and "S" indicates whether the file
is "selected" or not. If the file is selected, an asterisk (*) is displayed;
otherwise, a blank is displayed. When you later enter Copy Mode, only the
files that have been "selected" are copied.

The "TRN" field indicates the character translation scheme to be used when the
file is copied. A value of "BIN" (binary) means no translation and a value of
"ASC" (ascii) means the file characters are to be translated from MS-DOS ASCII
(or "ASCII-CrLf") to PETSCII. The "TYP" field indicates the type of
Commodore-DOS file to create for writing the MS-DOS file contents into. The
possible values are "SEQ" (sequential) and "PRG" (program). The values of the
TRN and TYP fileds are set independently, so you can copy binary data to SEQ
files and ascii data to PRG files if you wish.

The "FILENAME" and "EXT" fields give the filename and extension type of the
MS-DOS files and "LENGTH" gives the exact length of the files in bytes. Note
that if you perform "ASC" translation on a file, its PETSCII version will have
a shorter length.

2.2. USER COMMANDS

The bottom of the screen gives the command summary. After starting the
program, you will want to setup the MS-DOS and CBM-DOS drives with the "M" and
"F" commands. Simply press the (letter) key corresponding to the command
name to activate the command. Pressing M will prompt you for the MS-DOS Drive
Number and the MS-DOS Drive Type. In both cases, type the number and press
RETURN. (Sorry for insulting all non-novices out there, but I want to be
complete). The MS-DOS drive number cannot be the same as the CBM-DOS drive
number (since the program copies from drive-to-drive without internal
buffering). For the drive type, enter an "8", "81", or "1581" for a 1581
drive or anything else for a 1571 drive.

Pressing F will prompt you for the CBM-DOS device number. You may enter a
number from 0 to 30, except that it must not be the MS-DOS drive number.
Enter a "1" for Cassette Drive (God forbid!), a "3" for the screen, a "4" for
the printer (with an automatic secondary address of 7 (lowercase)), any number
above 7 for a Commodore disk drive or special virtual drive, or a value of "0"
for the special "null" drive. A CBM-DEV value of 0 will case the program to
read MS-DOS files and do nothing with the output. You can use this feature to
check out the raw reading speed of the program.

After setting up the drives, press D to read in the root directory off the
MS-DOS disk. The data will come blazing in from the disk but BASIC will take
its good ole time sifting through it. Filenames are displayed on the screen

as they are scanned in. The program will (eventually) return to the main
screen and display the formatted file information. One note: the process of
logging in a 1581 MS-DOS disk takes about 12 seconds (on my 1581, anyway), so
be patient. An MS-DOS disk will have to be "logged in" every time you change
MS-DOS disks. (Disks are logged in automatically).

A couple of notes about accessing MS-DOS disks: don't try to access a device
that is not present because the machine language routines cannot handle this
error for some reason and will lock up, requiring a STOP+RESTORE. Also, make
sure that an actual MS-DOS disk is loaded into the drive. If you accidentally
place Commodore-DOS disk into the MS-DOS drive, the 1581 will report an
invalid boot parameters error (#60), but a 1571 will lock up (since I don't
check the sector size and my burst routines are expecting 512 bytes to come
out of a sector whereas Commodore disks have only 256 bytes per sector).

Now you are ready to pick what files you want copied and how you want them
copied. You will notice that a "cursor" appears in the "S" column of the
first file. You may move the cursor around with the cursor keys: UP, DOWN,
LEFT, RIGHT, HOME, and CLR. CLR (SHIFT-HOME) will move the cursor back to the
first file on the first screen. You can move the cursor among the select,
translation, and file-type columns of all the files. Pressing a SPACE or a
RETURN will toggle the value of the field that the cursor is on. To toggle
all of the values of the "cursor" column (including files on all other
screens), press T. You will notice that moving the cursor around and toggling
fields is a bit sluggish, especially if you are in Slow mode on the 40-column
screen. Did I mention that this program will run on either the 40 or
80-column screen? Toggling an entire column can take a couple of seconds.

If there are more than 18 MS-DOS files, you can press the "+" and "-" keys to
move among all of the screens of files. The cursor movement keys will wrap
around on the current screen. "+" is page forward, and "-" is page backward.
The screens wrap around too.

After you have selected all of the files you want to copy and their translation
and file-type fields have been set, press the C key to go into Copy Mode (next
section). After copying, you are returned to the main screen with all of the
field settings still intact. To exit from the program, press Q.

2.3. COPY MODE

When you enter copy mode, the screen will clear and the name of each selected
file is displayed as it is being copied. If an error is encountered on either
the MS-DOS or CBM-DOS drive during copying, an error message will be displayed
and copying will continue (after you press a key for MS-DOS errors).

To generate a CBM-DOS filename from an MS-DOS filename, the eight filename
characters are taken (including spaces) and a dot (.) and the three characters
of the extension are appended. Then, all spaces are removed, and if the name
ends with a dot (.) character, then that dot character is removed as well. I
think this is fairly reasonable.

If there already is a file with the same filename on the CBM-DOS disk, then
you will be prompted if you want to overwrite the file or not. Entering an
"n" will abort the copying of that file and go on to the next file, and
entering a "y" (or anything else) will cause the CBM-DOS file to be
"scratched" and then re-written.

The physical copying of the file is done completely in machine language and
nothing is displayed on the screen while this is happening, but you can follow
things by looking at das blinkin lichtes and listening for clicks and grinds.
You will probably be surprised by the MS-DOS file reading speed (I mean in a
good way). The disk data is read in whole tracks and cached in memory and the
directory information and the FAT are retained in memory as well. The result
is that minimal time is spent reading disk data, and no costly seeks are
required for opening a new MS-DOS file. A result is that small files are

copied one after another very quickly. You will have to wait, however, on the
relatively slow standard kernel/Commodore-DOS file writing.

A few changes had to be made to the program to accomodate the RAMDOS program.
RAMDOS uses memory from $2300 to $3FFF of RAM0, which is not really a good
place for a device driver, and it uses some of the zero-page locations that I
wanted to use. But, difficulties were overcome. The importance of RAMDOS
compatibility is that if you only have one disk drive but you have an REU, you
can use RAMDOS to store the MS-DOS files temporarily. If you only have one
disk drive and no REU, you are SOL (Out of Luck) unless you can get a
RamDisk-type program for an unexpanded 128. The RAMDOS program is available
from FTP site "ccosun.caltech.edu" in file "/pub/rknop/util128/ramdosii.sfx".
One note I found out about RAMDOS: you cannot use a

DOPEN#1,(CF$),U(CD),W

with it like you are supposed to be able to; you have to use a

DOPEN#1,(CF$+",W"),U(CD)

Here is a table of copying speeds for copying from 1571s and 1581s with ASC
and BIN translation modes. All figures are in bytes/second. These results
were obtained from copying a 127,280 byte text file (the text of C= Hacking
Issue #3).

 FROM \ TO: "null" RAMLink RAMDOS JD1581 JD1571
 -------+ ------ ------- ------ ------ ------
 81-bin | 5772 3441 2146 n/a 644
 81-asc | 5772 3434 2164 n/a 661
 71-bin | 4323 2991 1949 1821 n/a
 71-asc | 4323 2982 1962 1847 n/a

The "null" device is that "0" CBM-DOS device number, and a couple of entries
are "n/a" since I only have one 1571 and one 1581. Note that my 71 and 81 are
JiffyDOS-ified, so the performance of a stock 71/81 will be poorer. JiffyDOS
gives about a 2x performance improvement for the standard file accessing calls
(open, close, chrin, chrout). RAMDOS doesn't seem to be as snappy as you
might think.

The "null" figures are quite impressive, but the raw sector reading speed
without the overhead of mucking around with file organization is 6700
bytes/sec for a 1581 and 4600 B/s for a 71. The reason that the 1571 operates
so quickly is that I use a sector interleave of 4 (which is optimal) for
reading the tracks. I think that other MS-DOS file copier program uses an
interleave of 1 (which is not optimal). I lose some of the raw performance
because I copy the file data internally once before outputting it (to simplify
some of the code).

In a couple of places you will notice that ASC translation gives slightly
better or slightly worse performance than BIN. This is because although
slightly more work is required to translate the characters, slightly fewer
characters will have to be written to the CBM-DOS file, since PETSCII uses
only CR where MS-DOS ASCII uses CR and LF to represent end-of-line.
Translation is done by using a table (that you can change if you wish). Many
entries in this table contain a value of zero, which means that no character
will be output on translation. Most of the control characters and all of the
characters of value 128 (0x80) or greater are thrown away on being
translated. The table is set up so that CR characters are thrown away and the
LF character is translated to a CBM-DOS CR character. Thus, both MS-DOS ASCII
files and UNIX ASCII files can be translated correctly.

2. BURST COMMANDS

Three burst commands from the 1571/81 disk drive Burst Command Instruction Set
are required to allow this program to read the MS-DOS disks: Query Disk

Format, Sector Interleave, and Read. The grungy details about issuing burst
commands and burst mode handshaking are covered in C= Hacking Issue #3. The
Query Disk Format command is used to "log in" the MS-DOS disk. The Inquire
Disk burst command cannot be used with an MS-DOS disk on the 1581 for some
unknown reason. I found this out the hard way. The Query Disk Format command
has the following format:

 BYTE \ bit: 7 6 5 4 3 2 1 0 | Value
 -------+--------+-----+-----+-----+-----+-----+-----+-----+-------
 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | "U"
 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | "0"
 2 | F | X | X | S | 1 | 0 | 1 | N | 10
 -------+--+-------

where the F, S, and N bits have a value of 0 for our purposes. A response of
a burst status byte and six other throw-away bytes is given from the drive.
This command takes quite a long time to execute on my 1581 but works quite
quickly on my 1571. You only have to log in a disk whenever you change
disks.

The Sector Interleave command is used to set a soft interleave for the Read
command. I use an interleave of 1 for the 1581 and an interleave of 4 for the
1571. This means that the MS-DOS sectors will come from 1571 to the computer
in the following order: 1, 5, 9, 4, 8, 3, 7, 2, 6 (there are 9 sectors per
track on an MS-DOS disk (both 3.5" and 5.25"), numbered from 1 to 9). LRR
handles the data coming in in this order, and in straight order from the
1581. The Sector Interleave command has the following format, where the W and
N bits are 0 for us:

 BYTE \ bit: 7 6 5 4 3 2 1 0 | Value
 -------+--------+-----+-----+-----+-----+-----+-----+-----+-------
 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | "U"
 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | "0"
 2 | W | X | X | 0 | 1 | 0 | 0 | N | 8
 3 | <interleave> | 1 or 4
 -------+--+-------

The Read command is used to transfer the nine sectors of a track to the
computer in the order specified by the interleave. The format is:

 BYTE \ bit: 7 6 5 4 3 2 1 0 | Value
 -------+--------+-----+-----+-----+-----+-----+-----+-----+-------
 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | "U"
 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | "0"
 2 | T/L | E | B/X | S | 0 | 0 | 0 | N | 0 or 16
 3 | <track> | ???
 4 | <sector> | 1
 5 | <number of sectors> | 9
 -------+--+-------

There are a couple of differences between the 1571 and 1581 versions of this
command. Most important, the S bit (Side of disk to use) has the opposite
meaning on the two drives. There's no good reason that I know of for this
inconsistency. This is the reason that LRR needs to know what type of MS-DOS
drive it is dealing with (plus interleaving).

The read command returns the following data using burst mode handshaking:

 +-------------------+
 0 | Burst Status Byte |
 +-------------------+
 1 | |
 ... + 512 Data Bytes |
 512 | |
 +-------------------+

for each sector transferred. If the Burst Status Byte indicates an error,
then the data is not transferred and none of the following sectors are
either. If the status byte gives a "Disk Changed" error, then you have to log
in the disk with the Query Disk Format command before read will work
properly. This is actually a good feature since it lets you know about a disk
change so you can update any data structures you may have. LRR simply re-logs
in the disk without updating any data structures and re-tries the failed read
operation.

3. MS-DOS DISK FORMAT

An MS-DOS disk is separated into 4 different parts: the Boot Sector, the
FAT(s), the Root Directory, and the File Data Sectors. The logical sectors
(blocks) of a disk are numbered from 0 to some maximum number (1439 for a
3.5", 719 for a 5.25" DD disk). The physical layout and the logical sector
numbers typically used by a 3.5" disk are shown here:

 +-------------------+
 0 | Boot Sector |
 +-------------------+
 1..3 | FAT copy #1 |
 +-------------------+
 4..6 | FAT copy #2 |
 +-------------------+
 7..14 | Root Directory |
 +-------------------+
 15 | |
 ... | File Data Sectors |
 1439 | |
 +-------------------+

3.1. THE BOOT SECTOR

The Boot Sector is always at logical sector number 0. It contains some
important information about the format of the disk and it also contains code
to boot an MS-DOS machine from. We aren't concerned with the bootstrapping
code, but the important values we need to obtain from the boot sector are:

 ABBR OFFSET 1571 1581 DESCRIPTION
 ---- ------ ---- ---- -----------
 CS 13 2 2 Cluster size in sectors
 NB 14 1 1 Number of boot sectors
 NF 16 2 2 Number of FATs
 FL 23 2 3 FAT size in sectors
 DE 17 112 112 Number of root directory entries
 TS 19,20 720 1440 Total Number of sectors
 NS 24 9 9 Number of sectors per track
 NH 26 2 2 Number of sides

The 1571 and 1581 columns give the typical values of these parameters for
5.25" and 3.5" disks. The OFFSET is the address of the parameter within the
boot sector. The total number of sectors is given in low-byte, high-byte
order (since the 80x86 family is little-endian like the 6502 family). From
the above parameters, we can derive the following important parameters:

 ABBR FORMULA 1571 1581 DESCRIPTION
 ---- ------- ---- ---- -----------
 F1 NB+NF*FL 5 7 First root directory sector
 FS NB+NF*FL+DE 12 14 First file data sector number
 NC (TS-FS)/CS 354 713 Total number of file clusters

LRR imposes a number of limits on these parameters and will error-out if you
try to use a disk that is outside of LRR's limits.

3.2. CHEWING THE FAT

MS-DOS disks use a data structure called a File Allocation Table (FAT) to
record which clusters belong to which file in what order and which blocks are
free. A cluster is a set of contiguous sectors which are allocated to files
as a group. LRR handles cluster sizes of 1 and 2 sectors, giving a logical
file block size of 512 or 1024 bytes. Typically, a cluster size of 2 sectors
is used.

The FAT is an array of 12-bit numbers, with an entry corresponding to each
cluster that can be allocated to files. FAT entries 0 and 1 are reserved. If
a FAT entry contains a value of $000, then the corresponding cluster is free
and can be allocated to a file; otherwise, the cluster is allocated and the
FAT entry contains the number of the NEXT FAT entry that belongs to the file.
Thus, MS-DOS files are stored in a singly-linked list of clusters like
Commodore-DOS files are, except that the links are not in the data sectors but
rather are in the FAT. The pointer to the first FAT entry for a file is given
in the file's directory entry.

A special NULL/NIL pointer value of $FFF is used to indicate the end of the
chain of clusters allocated to a file. This value is stored in the FAT entry
of the last cluster allocated to a file (of course). Consider the following
example FAT:

 ENTRY VALUE
 ----- -----
 $000 $FFF
 $001 $FFF
 $002 |----$003 <------Directory Entry
 $003 +--> $005----+
 $004 $000 |
 $005 $FFF <--+

Entries 0 and 1 are insignificant since they are reserved. Say that a file
starts at FAT entry #2. Then, it consists of the following chain of clusters:
2, 3, and 5. Cluster #4 is free. Clusters can be allocated to a file in
random order, but if they are allocated contiguously in forward order, then
the file will be able to be read faster. The FAT is such an important data
structure that typically two copies are kept on the disk incase one of them
should become corrupted.

The MS-DOS designers were a little sneaky in storing the 12-bit FAT entries -
they used only 12 real bits per entry. Ie., they store two FAT entries in
three bytes, where the two entries share the two nybbles of the middle byte.
The following diagram shows how the nybbles 1 (high), 2 (mid), and 3 (low) are
stored into FAT entries A and B:

 BYTE: 0 1 2
 +---+---+ +---+---+ +---+---+
 ENTRY: | A | A | | B | A | | B | B |
 NYBBLE: | 2 | 3 | | 3 | 1 | | 1 | 2 |
 +---+---+ +---+---+ +---+---+

Anyway, let's just say it's a bit tricky to extract the 12-bit values from
this compressed data structure. On top of that, I don't think there is any
saving in disk space resulting from compressing this structure; they might as
well have just used a 16-bit FAT (like they do nowadays on larger disks).

3.3. THE ROOT DIRECTORY

The root directory has a fixed size, although I don't think that
subdirectories do. LRR cannot access subdirectories. Each 512-byte sector of
the root directory contains sixteen 32-byte directory entries. One directory
entry is required for each file stored on the disk. A directory entry has the
following structure:

 OFFSET LEN DESCRIPTION
 ------ --- -----------
 0..7 8 Filename
 8..10 3 Extension
 11 1 <unused?>
 12 1 Attributes: $10=Directory, $08=VolumeId
 13..21 9 <unused>
 22..25 4 Date
 26..27 2 Starting FAT entry number
 28..31 4 File length in bytes

The filename and extension are stored with trailing padding spaces. If a
directory entry is unused or deleted, then the first character of the filename
is either a $00 or a $E5 (229). This is why you have to provide the first
character of a filename if you are undeleting a file on an MS-DOS machine.
Note that there is enough unused space that Microsoft or IBM could have
ditched the annoying 8+3 character filename format.

The attributes bits tell whether the directory entry is for a regular file, a
subdirectory, a disk volume name (in which case there is no file data), and a
couple of other things I can't remember. I'm not sure about the exact
position or format of the date, but LRR doesn't use it anyway. The starting
FAT entry number and the file length are stored in lower-byte-first order.

3.4. THE FILE DATA SPACE

The ramainder of the disk space is used for storing file data in clusters of 1
or 2 sectors each. Given a cluster number (which is also the FAT entry
number), the following formula is used to calculate the starting logical
sector number of the cluster:

(ClusterNumber - 2) * ClusterSizeInBlocks + FirstFileDataLogicalSectorNumber

where "FirstFileDataLogicalSectorNumber" is the "FS" parameter derived
earlier. The following consecutive logical sector numbers up to the number of
sectors per cluster form the rest of the cluster. Note that a single cluster
can span sectors from one side of the disk to another or from one track to
another. We perform the "(ClusterNumber - 2)" portion of the calculation
since the first two FAT entries are reserved.

Since the Read burst command of the 1571/81 wants the side, track, and sector
number of a sector rather than its logical number, we also need formulae for
these conversions:

 Track = LogicalSectorNumber / 18
 Sector = LogicalSectorNumber % 9 + 1
 Side = (LogicalSectorNumber / 9) % 2

These formulae are more problematic than the previous one since they require
division by 9 and 18. LRR uses the method of repeated subtraction to perfrom
the necessary division (only one division is necessary). The above formulae
imply that sequential logical sectors are stored on the top of the disk
first and then the bottom of the disk of the same track, and then on the top
of the next track, etc. This is a good sector numbering scheme (unlike the
CBM-DOS scheme for 1571 sectors) since it is faster to switch sides of the
disk than it is to switch tracks, so you can read the disk faster.

Oh yeah, the way that you know how many file data bytes are in the last
cluster of a file chain (the cluster with the NULL FAT entry) is to take the
file length from the directory entry and "mod" (the C language % operator) it
with the cluster size. One special case is if this calculation results in a
zero, then the last cluster is completely full (rather than completely empty
as the calculation would suggest). This calculation is easily done in
machine language with an AND operation since the cluster size is always a

power of two.

4. FILE COPYING PACKAGE

This section discusses the interface to and implementation of the MS-DOS file
copying package. It is written in assembly language and is loaded into memory
at address $8000 on bank 0 and requires about 13K of memory. The package is
loaded at this high address to be out of the way of the main BASIC program,
even if RAMDOS is installed.

4.1. INTERFACE

The subroutine call and parameter passing interface to the file copying
package is summarized as follows:

 ADDRESS DESCRIPTION
 ------- -----------
 PK InitPackage subroutine
 PK+3 LoadDirectory subroutine
 PK+6 CopyFile subroutine
 PK+9 two-byte package identification number
 PK+15 errno : error code returned
 PK+16 MS-DOS device number (8 to 30)
 PK+17 MS-DOS device type ($00=1571, $FF=1581)
 PK+18 two-byte starting cluster number for file copying
 PK+20 low and mid bytes of file length for copying

where "PK" is the load address of the package. Additional subroutine
parameters are passed in the processor registers.

The "InitPackage" subroutine should be called when the package is first
installed, whenever the MS-DOS device number is changed, and whenever a new
disk is mounted to invalidate the internal track cache. It requires no
parameters.

The "LoadDirectory" subroutine will load the directory, FAT, and the Boot
Sector parameters into the internal memory of the package from the current
MS-DOS device number. No (other) input parameters are needed and the
subroutine returns a pointer to the directory space in the .AY registers and
the number of directory entries in the .X register. If an error occurs, then
the subroutine returns with the Carry flag set and the error code is available
in the "errno" interface variable. The directory entry data is in the
directory space as it was read in raw from the directory sectors on the MS-DOS
disk.

The "CopyFile" subroutine will copy a single file from the MS-DOS disk to a
specified CBM-Kernal logical file number (the CBM file must already be
opened). If the CBM logical file number is zero, then the file data is simply
discarded after it is read from the MS-DOS file. The starting cluster number
of the file to copy and the low and mid bytes of the file length are passed in
the PK+18 and PK+20 interface words. The translation mode to use is passed in
the .A register ($00=binary, $FF=ascii) and the CBM logical file number to
output to is passed in the .X register. If an error occurs, the routine
returns with the Carry flag set and the error code in the "errno" interface
variable. There are no other output parameters.

Note that since the starting cluster number and low-file length of the file to
be copied are required rather than the filename, it is the responsibility of
the front-end application program to dig through the raw directory sector data
to get this information. The application must also open the Commodore-DOS
file of whatever filetype on whatever device is required; the package does not
need to know the Commodore-DOS device number.

The MS-DOS device number and device type interface variables allow you to set
the MS-DOS drive and the package identification number allows the application

program to check if the package is already loaded into memory so that it only
has to load the package the first time the application is run and not on
re-runs. The identification sequence is a value of $CB followed by a value
of 131.

4.2. IMPLEMENTATION

This section presents the code that implements the MS-DOS file reading
package. It is here in a special form; each code line is preceded by a few
special characters and the line number. The special characters are there to
allow you to easily extract the assembler code from the rest of this magazine
(and all of my ugly comments). On a Unix system, all you have to do is
execute the following command line (substitute filenames as appropriate):

grep '^\.%...\!' Hack4 | sed 's/^.%...\!..//' | sed 's/.%...\!//' >lrr.s

You'll notice that the initial comment lines here were an afterthought.

.%000! ;Little Red Reader MS-DOS file copier program

.%000! ;written 92/10/03 by Craig Bruce for C= Hacking Net Magazine

.%000!

The code is written for the Buddy assembler and here are a couple setup
directives. Note that my comments come before the section of code.

.%001! .org $8000

.%002! .obj "@:lrr.bin"

.%003!

.%004! ;====jump table and parameters interface ====

.%005!

.%006! jmp initPackage

.%007! jmp loadDirectory

.%008! jmp copyFile

.%009!

.%010! .byte $cb,131 ;identification

.%011! .byte 0,0,0,0

.%012!

These variables are included in the package program space to minimize unwanted
interaction with other programs loaded at the same time, such as the RAMDOS
device driver.

.%013! errno .buf 1 ;(location pk+15)

.%014! sourceDevice .buf 1

.%015! sourceType .buf 1 ;$00=1571, $ff=1581

.%016! startCluster .buf 2

.%017! lenML .buf 2 ;length medium and low bytes

.%018!

.%019! ;====global declaraions====

.%020!

.%021! kernelListen = $ffb1

.%022! kernelSecond = $ff93

.%023! kernelUnlsn = $ffae

.%024! kernelAcptr = $ffa2

.%025! kernelCiout = $ffa8

.%026! kernelSpinp = $ff47

.%027! kernelChkout = $ffc9

.%028! kernelClrchn = $ffcc

.%029! kernelChrout = $ffd2

.%030!

.%031! st = $d0

.%032! ciaClock = $dd00

.%033! ciaFlags = $dc0d

.%034! ciaData = $dc0c

.%035!

These are the parameters and derived parameters from the boot sector. They
are kept in the program space to avoid interactions.

.%036! clusterBlockCount .buf 1 ;1 or 2

.%037! fatBlocks .buf 1 ;up to 3

.%038! rootDirBlocks .buf 1 ;up to 8

.%039! rootDirEntries .buf 1 ;up to 128

.%040! totalSectors .buf 2 ;up to 1440

.%041! firstFileBlock .buf 1

.%042! firstRootDirBlock .buf 1

.%043! fileClusterCount .buf 2

.%044!

The cylinder (track) and side that is currently stored in the trach cache.

.%045! bufCylinder .buf 1

.%046! bufSide .buf 1

.%047! formatParms .buf 6

.%048!

This package is split into a number of levels. This level interfaces with the
Kernal serial bus routines and the burst command protocol of the disk drives.

.%049! ;====hardware level====

.%050!

Connect to the MS-DOS device and send the "U0" burst command prefix and the
burst command byte.

.%051! sendU0 = * ;(.A=burstCommandCode) : .CS=err

.%052! pha

.%053! lda #0

.%054! sta st

.%055! lda sourceDevice

.%056! jsr kernelListen

.%057! lda #$6f

.%058! jsr kernelSecond

.%059! lda #"u"

.%060! jsr kernelCiout

.%061! bit st

.%062! bmi sendU0Error

.%063! lda #"0"

.%064! jsr kernelCiout

.%065! pla

.%066! jsr kernelCiout

.%067! bit st

.%068! bmi sendU0Error

.%069! clc

.%070! rts

.%071!

.%072! sendU0Error = *

.%073! lda #5

.%074! sta errno

.%075! sec

.%076! rts

.%077!

Toggle the "Data Accepted / Ready For More" clock signal for the burst
transfer protocol.

.%078! toggleClock = *

.%079! lda ciaClock

.%080! eor #$10

.%081! sta ciaClock

.%082! rts

.%083!

Wait for a burst byte to arrive in the serial data register of CIA#1 from the
fast serial bus.

.%084! serialWait = *

.%085! lda #$08

.%086! - bit ciaFlags

.%087! beq -

.%088! rts

.%089!

Wait for and get a burst byte from the fast serial bus, and send the "Data
Accepted" signal.

.%090! getBurstByte = *

.%091! jsr serialWait

.%092! ldx ciaData

.%093! jsr toggleClock

.%094! txa

.%095! rts

.%096!

Send the burst commands to "log in" the MS-DOS disk and set the Read sector
interleave factor.

.%097! mountDisk = * ;() : .CS=err

.%098! lda #%00011010

.%099! jsr sendU0

.%100! bcc +

.%101! rts

.%102! + jsr kernelUnlsn

.%103! bit st

.%104! bmi sendU0Error

.%105! clc

.%106! jsr kernelSpinp

.%107! bit ciaFlags

.%108! jsr toggleClock

.%109! jsr getBurstByte

.%110! sta errno

.%111! and #$0f

.%112! cmp #2

.%113! bcs mountExit

Grab the throw-away parameters from the mount operation.

.%114! ldy #0

.%115! - jsr getBurstByte

.%116! sta formatParms,y

.%117! iny

.%118! cpy #6

.%119! bcc -

.%120! clc

Set the sector interleave to 1 for a 1581 or 4 for a 1571.

.%121! ;** set interleave

.%122! lda #%00001000

.%123! jsr sendU0

.%124! bcc +

.%125! rts

.%126! + lda #1 ;interleave of 1 for 1581

.%127! bit sourceType

.%128! bmi +

.%129! lda #4 ;interleave of 4 for 1571

.%130! + jsr kernelCiout

.%131! jsr kernelUnlsn

.%132! mountExit = *

.%133! rts

.%134!

Read all of the sectors of a given track into the track cache.

.%135! bufptr = 2

.%136! secnum = 4

.%137!

.%138! readTrack = * ;(.A=cylinder, .X=side) : trackbuf, .CS=err

.%139! pha

.%140! txa

Get the side and put it into the command byte. Remember that we have to flip
the side bit for a 1581.

.%141! and #$01

.%142! asl

.%143! asl

.%144! asl

.%145! asl

.%146! bit sourceType

.%147! bpl +

.%148! eor #$10

.%149! + jsr sendU0

.%150! bcc +

.%151! rts

.%152! + pla ;cylinder number

.%153! jsr kernelCiout

.%154! lda #1 ;start sector number

.%155! jsr kernelCiout

.%156! lda #9 ;sector count

.%157! jsr kernelCiout

.%158! jsr kernelUnlsn

Prepare to receive the track data.

.%159! sei

.%160! clc

.%161! jsr kernelSpinp

.%162! bit ciaFlags

.%163! jsr toggleClock

.%164! lda #<trackbuf

.%165! ldy #>trackbuf

.%166! sta bufptr

.%167! sty bufptr+1

Get the sector data for each of the 9 sectors of the track.

.%168! lda #0

.%169! sta secnum

.%170! - bit sourceType

.%171! bmi +

If we are dealing with a 1571, we have to set the buffer pointer for the next
sector, taking into account the soft interleave of 4.

.%172! jsr get1571BufPtr

.%173! + jsr readSector

.%174! bcs trackExit

.%175! inc secnum

.%176! lda secnum

.%177! cmp #9

.%178! bcc -

.%179! clc

.%180! trackExit = *

.%181! cli

.%182! rts

.%183!

Get the buffer pointer for the next 1571 sector.

.%184! get1571BufPtr = *

.%185! lda #<trackbuf

.%186! sta bufptr

.%187! ldx secnum

.%188! clc

.%189! lda #>trackbuf

.%190! adc bufptr1571,x

.%191! sta bufptr+1

.%192! rts

.%193!

.%194! bufptr1571 = *

.%195! .byte 0,8,16,6,14,4,12,2,10

.%196!

Read an individual sector into memory at the specified address.

.%197! readSector = * ;(bufptr) : .CS=err

Get and check the burst status byte for errors.

.%198! jsr getBurstByte

.%199! sta errno

.%200! and #$0f

.%201! cmp #2

.%202! bcc +

.%203! rts

.%204! + ldx #2

.%205! ldy #0

.%206!

Receive the 512 sector data bytes into memory.

.%207! readByte = *

.%208! lda #$08

.%209! - bit ciaFlags

.%210! beq -

.%211! lda ciaClock

.%212! eor #$10

.%213! sta ciaClock

.%214! lda ciaData

.%215! sta (bufptr),y

.%216! iny

.%217! bne readByte

.%218! inc bufptr+1

.%219! dex

.%220! bne readByte

.%221! rts

.%222!

This next level of routines deals with logical sectors and the track cache
rather than with hardware.

.%223! ;====logical sector level====

.%224!

Invalidate the track cache if the MS-DOS drive number is changed or if a new
disk is inserted. This routine has to establish a RAM configuration of $0E
since it will be called from RAM0. Configuration $0E gives RAM0 from $0000 to
$BFFF, Kernal ROM from $C000 to $FFFF, and the I/O space over the Kernal from
$D000 to $DFFF. This configuration is set by all application interface
subroutines.

.%225! initPackage = *

.%226! lda #$0e

.%227! sta $ff00

.%228! lda #$ff

.%229! sta bufCylinder

.%230! sta bufSide

.%231! clc

.%232! rts

.%233!

Locate a sector (block) in the track cache, or read the corresponding physical
track into the track cache if necessary. This routine accepts the cylinder,
side, and sector numbers of the block.

.%234! sectorSave = 5

.%235!

.%236! readBlock = * ;(.A=cylinder,.X=side,.Y=sector) : .AY=blkPtr,.CS=err

Check if the correct track is in the track cache.

.%237! cmp bufCylinder

.%238! bne readBlockPhysical

.%239! cpx bufSide

.%240! bne readBlockPhysical

If so, then locate the sector's address and return that.

.%241! dey

.%242! tya

.%243! asl

.%244! clc

.%245! adc #>trackbuf

.%246! tay

.%247! lda #<trackbuf

.%248! clc

.%249! rts

.%250!

Here, we have to read the physical track into the track cache. We save the
input parameters and call the hardware-level track-reading routine.

.%251! readBlockPhysical = *

.%252! sta bufCylinder

.%253! stx bufSide

.%254! sty sectorSave

.%255! jsr readTrack

Check for errors.

.%256! bcc readBlockPhysicalOk

.%257! lda errno

.%258! and #$0f

.%259! cmp #11 ;disk change

.%260! beq +

.%261! sec

.%262! rts

If the error that happened is a "Disk Change" error, then mount the disk and

try to read the physical track again.

.%263! + jsr mountDisk

.%264! lda bufCylinder

.%265! ldx bufSide

.%266! ldy sectorSave

.%267! bcc readBlockPhysical

.%268! rts

.%269!

Here, the physical track has been read into the track cache ok, so we recover
the original input parameters and try the top of the routine again.

.%270! readBlockPhysicalOk = *

.%271! lda bufCylinder

.%272! ldx bufSide

.%273! ldy sectorSave

.%274! jmp readBlock

.%275!

Divide the given number by 18. This is needed for the calculations to convert
a logical sector number to the corresponding physical cylinder, side, and
sector numbers that the lower-level routines require. The method of repeated
subtraction is used. This routine would probably work faster if we tried to
repeatedly subtract 360 (18*20) at the top, but I didn't bother.

.%276! divideBy18 = * ;(.AY=number) : .A=quotient, .Y=remainder

.%277! ;** could repeatedly subtract 360 here

.%278! ldx #$ff

.%279! - inx

.%280! sec

.%281! sbc #18

.%282! bcs -

.%283! dey

.%284! bpl -

.%285! clc

.%286! adc #18

.%287! iny

.%288! tay

.%289! txa

.%290! rts

.%291!

Convert the given logical block number to the corresponding physical cylinder,
side, and sector numbers. This routine follows the formulae given earlier
with a few simplifying tricks.

.%292! convertLogicalBlockNum = * ;(.AY=blockNum) : .A=cyl, .X=side, .Y=sec

.%293! jsr divideBy18

.%294! ldx #0

.%295! cpy #9

.%296! bcc +

.%297! pha

.%298! tya

.%299! sbc #9

.%300! tay

.%301! pla

.%302! ldx #1

.%303! + iny

.%304! rts

.%305!

Copy a sequential group of logical sectors into memory. This routine is used
by the directory loading routine to load the FAT and Root Directory, and is
used by the cluster reading routine to retrieve all of the blocks of a

cluster. After the given starting logical sector number is converted into its
physical cylinder, side, and sector equivalent, the physical values are
incremented to get the address of successive sectors of the group. This
avoids the overhead of the logical to physical conversion. Quite a number of
temporaries are needed.

.%306! destPtr = 6

.%307! curCylinder = 8

.%308! curSide = 9

.%309! curSector = 10

.%310! blockCountdown = 11

.%311! sourcePtr = 12

.%312!

.%313! copyBlocks = * ;(.AY=startBlock, .X=blockCount, ($6)=dest) : .CS=err

.%314! stx blockCountdown

.%315! jsr convertLogicalBlockNum

.%316! sta curCylinder

.%317! stx curSide

.%318! sty curSector

.%319!

.%320! copyBlockLoop = *

.%321! lda curCylinder

.%322! ldx curSide

.%323! ldy curSector

.%324! jsr readBlock

.%325! bcc +

.%326! rts

.%327! + sta sourcePtr

.%328! sty sourcePtr+1

.%329! ldx #2

.%330! ldy #0

Here I unroll the copying loop a little bit to cut the overhead of the branch
instruction in half. (A cycle saved... you know).

.%331! - lda (sourcePtr),y

.%332! sta (destPtr),y

.%333! iny

.%334! lda (sourcePtr),y

.%335! sta (destPtr),y

.%336! iny

.%337! bne -

.%338! inc sourcePtr+1

.%339! inc destPtr+1

.%340! dex

.%341! bne -

Increment the cylinder, side, sector values.

.%342! inc curSector

.%343! lda curSector

.%344! cmp #10

.%345! bcc +

.%346! lda #1

.%347! sta curSector

.%348! inc curSide

.%349! lda curSide

.%350! cmp #2

.%351! bcc +

.%352! lda #0

.%353! sta curSide

.%354! inc curCylinder

.%355! + dec blockCountdown

.%356! bne copyBlockLoop

.%357! clc

.%358! rts

.%359!

Read a cluster into the Cluster Buffer, given the cluster number. The cluster
number is converted to a logical sector number and then the sector copying
routine is called. The formula given earlier is used for the conversion.

.%360! readCluster = * ;(.AY=clusterNumber) : clusterBuf, .CS=err

.%361! ;** convert cluster number to logical block number

.%362! sec

.%363! sbc #2

.%364! bcs +

.%365! dey

.%366! + ldx clusterBlockCount

.%367! cpx #1

.%368! beq +

.%369! asl

.%370! sty 7

.%371! rol 7

.%372! ldy 7

.%373! + clc

.%374! adc firstFileBlock

.%375! bcc +

.%376! iny

.%377!

.%378! ;** read logical blocks comprising cluster

.%379! + ldx #<clusterBuf

.%380! stx 6

.%381! ldx #>clusterBuf

.%382! stx 7

.%383! ldx clusterBlockCount

.%384! jmp copyBlocks

.%385!

This next level of routines deal with the data structures of the MS-DOS disk
format.

.%386! ;====MS-DOS format level====

.%387!

.%388! bootBlock = 2

.%389!

Read the disk format parameters, directory, and FAT into memory.

.%390! loadDirectory = * ;() : .AY=dirbuf, .X=dirEntries, .CS=err

.%391! lda #$0e

.%392! sta $ff00

.%393!

Read the boot sector and extract the parameters.

.%394! ;** get parameters from boot sector

.%395! lda #0

.%396! ldy #0

.%397! jsr convertLogicalBlockNum

.%398! jsr readBlock

.%399! bcc +

.%400! rts

.%401! + sta bootBlock

.%402! sty bootBlock+1

.%403! ldy #13 ;get cluster size

.%404! lda (bootBlock),y

.%405! sta clusterBlockCount

.%406! cmp #3

.%407! bcc +

.%408!

If a disk parameter is found to exceed the limits of LRR, error code #60 is
returned.

.%409! invalidParms = *

.%410! lda #60

.%411! sta errno

.%412! sec

.%413! rts

.%414!

.%415! + ldy #16 ;check FAT replication count, must be 2

.%416! lda (bootBlock),y

.%417! cmp #2

.%418! bne invalidParms

.%419! ldy #22 ;get FAT size in sectors

.%420! lda (bootBlock),y

.%421! sta fatBlocks

.%422! cmp #4

.%423! bcs invalidParms

.%424! ldy #17 ;get directory size

.%425! lda (bootBlock),y

.%426! sta rootDirEntries

.%427! cmp #129

.%428! bcs invalidParms

.%429! lsr

.%430! lsr

.%431! lsr

.%432! lsr

.%433! sta rootDirBlocks

.%434! ldy #19 ;get total sector count

.%435! lda (bootBlock),y

.%436! sta totalSectors

.%437! iny

.%438! lda (bootBlock),y

.%439! sta totalSectors+1

.%440! ldy #24 ;check sectors per track, must be 9

.%441! lda (bootBlock),y

.%442! cmp #9

.%443! bne invalidParms

.%444! ldy #26

.%445! lda (bootBlock),y

.%446! cmp #2 ;check number of sides, must be 2

.%447! bne invalidParms

.%448! ldy #14 ;check number of boot sectors, must be 1

.%449! lda (bootBlock),y

.%450! cmp #1

.%451! bne invalidParms

.%452!

Calculate the derived parameters.

.%453! ;** get derived parameters

.%454! lda fatBlocks ;first root directory sector

.%455! asl

.%456! clc

.%457! adc #1

.%458! sta firstRootDirBlock

.%459! clc ;first file sector

.%460! adc rootDirBlocks

.%461! sta firstFileBlock

.%462! lda totalSectors ;number of file clusters

.%463! ldy totalSectors+1

.%464! sec

.%465! sbc firstFileBlock

.%466! bcs +

.%467! dey

.%468! + sta fileClusterCount

.%469! sty fileClusterCount+1

.%470! lda clusterBlockCount

.%471! cmp #2

.%472! bne +

.%473! lsr fileClusterCount+1

.%474! ror fileClusterCount

.%475!

Gee, I have more comments embedded in the code than I did last issue.

.%476! ;** load FAT

.%477! + lda #<fatbuf

.%478! ldy #>fatbuf

.%479! sta 6

.%480! sty 7

.%481! lda #1

.%482! ldy #0

.%483! ldx fatBlocks

.%484! jsr copyBlocks

.%485! bcc +

.%486! rts

.%487!

.%488! ;** load actual directory

.%489! + lda #<dirbuf

.%490! ldy #>dirbuf

.%491! sta 6

.%492! sty 7

.%493! lda firstRootDirBlock

.%494! ldy #0

.%495! ldx rootDirBlocks

.%496! jsr copyBlocks

.%497! bcc +

.%498! rts

.%499! + lda #<dirbuf

.%500! ldy #>dirbuf

.%501! ldx rootDirEntries

.%502! clc

.%503! rts

.%504!

This routine locates the given FAT table entry number and returns the value
stored in it. Some work is needed to deal with the 12-bit compressed data
structure.

.%505! entryAddr = 2

.%506! entryWork = 4

.%507! entryBits = 5

.%508! entryData0 = 6

.%509! entryData1 = 7

.%510! entryData2 = 8

.%511!

.%512! getFatEntry = * ;(.AY=fatEntryNumber) : .AY=fatEntryValue

.%513! sta entryBits

Divide the FAT entry number by two and multiply by three because two FAT
entries are stored in three bytes. Then add the FAT base address and we have
the address of the three bytes that contain the FAT entry we are interested
in. I retrieve the three bytes into zero-page memory for easy manipulation.

.%514! ;** divide by two

.%515! sty entryAddr+1

.%516! lsr entryAddr+1

.%517! ror

.%518!

.%519! ;** times three

.%520! sta entryWork

.%521! ldx entryAddr+1

.%522! asl

.%523! rol entryAddr+1

.%524! clc

.%525! adc entryWork

.%526! sta entryAddr

.%527! txa

.%528! adc entryAddr+1

.%529! sta entryAddr+1

.%530!

.%531! ;** add base, get data

.%532! clc

.%533! lda entryAddr

.%534! adc #<fatbuf

.%535! sta entryAddr

.%536! lda entryAddr+1

.%537! adc #>fatbuf

.%538! sta entryAddr+1

.%539! ldy #2

.%540! - lda (entryAddr),y

.%541! sta entryData0,y

.%542! dey

.%543! bpl -

.%544! lda entryBits

.%545! and #1

.%546! bne +

.%547!

If the original given FAT entry number is even, then we want the first 12-bit
compressed field. The nybbles are extracted according to the diagram shown
earlier.

.%548! ;** case 1: first 12-bit cluster

.%549! lda entryData1

.%550! and #$0f

.%551! tay

.%552! lda entryData0

.%553! rts

.%554!

Otherwise, we want the second 12-bit field.

.%555! ;** case 2: second 12-bit cluster

.%556! + lda entryData1

.%557! ldx #4

.%558! - lsr entryData2

.%559! ror

.%560! dex

.%561! bne -

.%562! ldy entryData2

.%563! rts

.%564!

Finally, this is the file copying level. It deals with reading the clusters
of MS-DOS files and copying the data they contain to the already-open CBM
Kernal file, possibly with ASCII-to-PETSCII translation.

.%565! ;====file copy level====

.%566!

.%567! transMode = 14

.%568! lfn = 15

.%569! cbmDataPtr = $60

.%570! cbmDataLen = $62

.%571! cluster = $64

.%572!

Copy the given cluster to the CBM output file. This routine fetches the next
cluster of the file for the next time this routine is called, and if it hits
the NULL pointer of the last cluster of a file, it adjusts the number of valid
file data bytes the current cluster contains to FileLength % ClusterLength
(see note below).

.%573! copyFileCluster = * ;(cluster, lfn, transMode) : .CS=err

Read the cluster and setup to copy the whole cluster to the CBM file.

.%574! lda cluster

.%575! ldy cluster+1

.%576! jsr readCluster

.%577! bcc +

.%578! rts

.%579! + lda #<clusterBuf

.%580! ldy #>clusterBuf

.%581! sta cbmDataPtr

.%582! sty cbmDataPtr+1

.%583! lda #0

.%584! sta cbmDataLen

.%585! lda clusterBlockCount

.%586! asl

.%587! sta cbmDataLen+1

.%588!

Fetch the next cluster number of the file, and adjust the cluster data length
for the last cluster of the file.

.%589! ;**get next cluster

.%590! lda cluster

.%591! ldy cluster+1

.%592! jsr getFatEntry

.%593! sta cluster

.%594! sty cluster+1

.%595! cmp #$ff

.%596! bne copyFileClusterData

.%597! cpy #$0f

.%598! bne copyFileClusterData

.%599! lda lenML

.%600! sta cbmDataLen

.%601! lda #$01

.%602! ldx clusterBlockCount

.%603! cpx #1

.%604! beq +

.%605! lda #$03

.%606! + and lenML+1

The following three lines were added in a last minute panic after realizing
that if FileLength % ClusterSize == 0, then the last cluster of the file
contains ClusterSize bytes, not zero bytes.

.%000! bne +

.%000! ldx lenML

.%000! beq copyFileClusterData

.%607! + sta cbmDataLen+1

.%608!

.%609! copyFileClusterData = *

.%610! jsr commieOut

.%611! rts

.%612!

Copy the file data in the MS-DOS cluster buffer to the CBM output file.

.%613! cbmDataLimit = $66

.%614!

.%615! commieOut = * ;(cbmDataPtr, cbmDataLen) : .CS=err

If the the logical file number to copy to is 0 ("null device"), then don't
bother copying anything.

.%616! ldx lfn

.%617! bne +

.%618! clc

.%619! rts

Otherwise, prepare the logical file number for output.

.%620! + jsr kernelChkout

.%621! bcc commieOutMore

.%622! sta errno

.%623! rts

.%624!

.%625! commieOutMore = *

Process the cluster data in chunks of up to 255 bytes or the number of data
bytes remaining in the cluster.

.%626! lda #255

.%627! ldx cbmDataLen+1

.%628! bne +

.%629! lda cbmDataLen

.%630! + sta cbmDataLimit

.%631! ldy #0

.%632! - lda (cbmDataPtr),y

.%633! bit transMode

.%634! bpl +

If we have to translate the current ASCII character, look up the PETSCII value
in the translation table and output that value. If the translation table
entry value is $00, then don't output a character (filter out invalid
character codes).

.%635! tax

.%636! lda transBuf,x

.%637! beq commieNext

.%638! + jsr kernelChrout

.%639! commieNext = *

.%640! iny

.%641! cpy cbmDataLimit

.%642! bne -

.%643!

Increment the cluster buffer pointer and decrement the cluster buffer character
count according to the number of bytes just processed, and repeat the above if
more file data remains in the current cluster.

.%644! clc

.%645! lda cbmDataPtr

.%646! adc cbmDataLimit

.%647! sta cbmDataPtr

.%648! bcc +

.%649! inc cbmDataPtr+1

.%650! + sec

.%651! lda cbmDataLen

.%652! sbc cbmDataLimit

.%653! sta cbmDataLen

.%654! bcs +

.%655! dec cbmDataLen+1

.%656! + lda cbmDataLen

.%657! ora cbmDataLen+1

.%658! bne commieOutMore

If we are finished with the cluster, then clear the CBM Kernal output channel.

.%659! jsr kernelClrchn

.%660! clc

.%661! rts

.%662!

The file copying main routine. Set up for the starting cluster, and call
the cluster copying routine until end-of-file is reached. Checks for a
NULL cluster pointer in the directory entry to handle zero-length files.

.%663! copyFile = * ;(startCluster, lenML, .A=transMode, .X=lfn) : .CS=err

.%664! ldy #$0e

.%665! sty $ff00

.%666! sta transMode

.%667! stx lfn

.%668! lda startCluster

.%669! ldy startCluster+1

.%670! sta cluster

.%671! sty cluster+1

.%672! jmp +

.%673! - jsr copyFileCluster

.%674! bcc +

.%675! rts

.%676! + lda cluster

.%677! cmp #$ff

.%678! bne -

.%679! lda cluster+1

.%680! cmp #$0f

.%681! bne -

.%682! clc

.%683! rts

.%684!

This is the translation table used to convert from ASCII to PETSCII. You can
modify it to suit your needs if you wish. If you cannot reassemble this file,
then you can sift through the binary file and locate the tabel and change it
there. An entry of $00 means the corresponding ASCII character will not be
translated. You'll notice that I have set up translations for the following
ASCII control characters into PETSCII: Backspace, Tab, Linefeed (CR), and
Formfeed. I also translate the non-PETSCII characters such as {, |, ~, and _
according to what they probably would have been if Commodore wasn't so
concerned with the graphics characters.

.%685! transBuf = *

.%686! ;0 1 2 3 4 5 6 7 8 9 a b c d e f

.%687! .byte $00,$00,$00,$00,$00,$00,$00,$00,$14,$09,$0d,$00,$93,$00,$00,$00 ;0

.%688! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;1

.%689! .byte $20,$21,$22,$23,$24,$25,$26,$27,$28,$29,$2a,$2b,$2c,$2d,$2e,$2f ;2

.%690! .byte $30,$31,$32,$33,$34,$35,$36,$37,$38,$39,$3a,$3b,$3c,$3d,$3e,$3f ;3

.%691! .byte $40,$c1,$c2,$c3,$c4,$c5,$c6,$c7,$c8,$c9,$ca,$cb,$cc,$cd,$ce,$cf ;4

.%692! .byte $d0,$d1,$d2,$d3,$d4,$d5,$d6,$d7,$d8,$d9,$da,$5b,$5c,$5d,$5e,$5f ;5

.%693! .byte $c0,$41,$42,$43,$44,$45,$46,$47,$48,$49,$4a,$4b,$4c,$4d,$4e,$4f ;6

.%694! .byte $50,$51,$52,$53,$54,$55,$56,$57,$58,$59,$5a,$db,$dc,$dd,$de,$df ;7

.%695! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;8

.%696! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;9

.%697! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;a

.%698! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;b

.%699! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;c

.%700! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;d

.%701! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;e

.%702! .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00 ;f

.%703!

This is where the track cache, etc. are stored. This section requires 11K of
storage space but does not increase the length of the binary program file
since these storage areas are DEFINED rather than allocated with ".buf"
directives. The Unix terminology for this type of uninitialized data is "bss".

.%704! ;====bss storage====

.%705!

.%706! bss = *

.%707! trackbuf = bss

.%708! clusterBuf = trackbuf+4608

.%709! fatbuf = clusterBuf+1024

.%710! dirbuf = fatbuf+1536

.%711! end = dirbuf+4096

5. USER-INTERFACE PROGRAM

This section presents the listing of the user-interface BASIC program. You
should be aware that you can easily change some of the defaults to your own
preferences if you wish. This program is not listed in the ".%nnn!" format
that the assembler listing is since you can recover this listing from the
uuencoded binary program file. This program should be a little easier to
follow than the assembler listing since BASIC is a self-commenting language. :-)

10 rem little red reader, by craig bruce, 30-sep-92, for c= hacking netmag
11 :

These lines set up the default CBM-DOS and MS-DOS device numbers, taking care
to disallow them to be the same device. You can change this to your own drive
configuration.

20 cd=peek(186) : rem ** default cbm-dos drive **
25 dv=9:dt=0 : rem ** ms-dos drive, type (0=1571,255=1581)
26 if dv=cd then dv=8:dt=0 : rem ** alternate ms-dos drive
27 :
30 print chr$(147);"initializing..." : print
40 bank0 : pk=dec("8000")
50 if peek(pk+9)=dec("cb") and peek(pk+10)=131 then 60
55 print"loading machine language routines..." : bload"lrr.bin",u(cd)
60 poke pk+16,dv : poke pk+17,dt : sys pk

I "dim" the following variables before the arrays to avoid the overhead of
pushing the arrays around when creating new scalar variables.

70 dim t,r,b,i,a$,c,dt$,fl$,il$,x,x$
80 dim di$(128),cl(128),sz(128)
90 if dt=255 then dt$="1581" :else dt$="1571"
100 fl$=chr$(19)+chr$(17)+chr$(17)+chr$(17)+chr$(17)
110 il$=fl$:fori=1to19:il$=il$+chr$(17):next
120 goto 500
130 :
131 rem ** load ms-dos directory **
140 print"loading directory..." : print
150 sys pk : sys pk+3
160 dl=0

The "rreg" instruction returns the return values of the .A, .X, .Y, and .S
registers from the last "sys" call. I check the 1-bit of the .S register
(the Carry flag) for error returns.

170 rreg bl,dc,bh,s : e=peek(pk+15)
180 if (s and 1) then gosub 380 : return
190 print"scanning directory..." : print
200 db=bl+256*bh
210 if dc=0 then 360
220 for dp=db to db+32*(dc-1) step 32
230 if peek(dp)=0 or peek(dp)=229 then 350
240 if peek(dp+12) and 24 then 350
250 dl=dl+1

This next line is where I set the default selection status, translation type,
and CBM file type for the MS-DOS files. You can change these defaults simply
by overtyping the string in (| ||| |||) the "V" locations.
 V VVV VVV
260 d$=right$(" "+str$(dl),3)+" asc seq " : rem ** default sel/tr/ft **
270 a$="" : fori=0to10 : a$=a$+chr$(peek(dp+i)) : next
280 a$=left$(a$,8)+" "+right$(a$,3)
290 print dl; a$
300 d$=d$+a$+" "
310 cl(dl)=peek(dp+26)+256*peek(dp+27)
320 sz=peek(dp+28)+256*peek(dp+29)+65536*peek(dp+30)
330 di$(dl)=d$+right$(" "+str$(sz),6)
340 sz(dl)=sz
350 next dp
360 return
370 :
371 rem ** report ms-dos disk error **
380 print chr$(18);"ms-dos disk error #";mid$(str$(e),2);
390 print " ($";mid$(hex$(e),3);"), press key.";chr$(146)
400 getkey a$: return
410 :
411 rem ** screen heading **
420 printchr$(147);"ms-dev=";mid$(str$(dv),2);" ms-type=";dt$;
430 print" cbm-dev=";mid$(str$(cd),2):print
440 return
450 :
451 rem ** screen footing **
460 print il$;"d=directory m=ms-dev f=cbm-dev q=quit"
470 print"t=toggle-column, c=copy-files, +/- page";
480 return
490 :
491 rem ** main routine **
500 t=1 : c=0
510 r=0
520 gosub 420
530 print "num s trn typ filename ext length"
540 print "--- - --- --- -------- --- ------"
550 gosub 460
560 b=t+17 : if b>dl then b=dl
570 print fl$;: if t>dl then 590
580 for i=t to b : print di$(i) : next
590 if dl=0 then print chr$(18);"<no files>";chr$(146)
600 if dl=0 then 660
610 print left$(il$,r+5);chr$(18);
620 on c+1 goto 630,640,650
630 print spc(4);mid$(di$(t+r),5,3) : goto 660
640 print spc(7);mid$(di$(t+r),8,5) : goto 660
650 print spc(12);mid$(di$(t+r),13,5) : goto 660
660 getkey a$

Oh shi^Hoot. I screwed up the following line in the string after the
"+chr$(13)+" part. You'll notice that I have avoided putting cursor control
characters into the strings everywhere else, but I forgot to do that here.
The "{stuff}" should be CursorUp, CursorDown, CursorLeft, CursorRight,

CursorHome, and CursorCLR control characters, respectively. These characters
give the index for the "on" statement below.

670 i=instr("dmftc+-q "+chr$(13)+"{stuff}",a$)
680 print left$(il$,r+5);di$(t+r)
690 if i=0 then 600
700 onigoto760,1050,1110,950,1150,1000,1020,730,860,860,770,790,810,830,850,500
710 stop
720 :
721 rem ** various menu options **
730 print chr$(147);"have an awesome day."
740 end
760 gosub 420 : gosub 140 : goto 500
770 r=r-1 : if r<0 then r=b-t
780 goto 600
790 r=r+1 : if t+r>b then r=0
800 goto 600
810 c=c-1 : if c<0 then c=2
820 goto 600
830 c=c+1 : if c>2 then c=0
840 goto 600
850 r=0 : c=0 : goto 600
860 if dl=0 then 600
870 x=t+r : on c+1 gosub 890,910,930
880 print left$(il$,r+5);di$(x) : goto 600
890 if mid$(di$(x),6,1)=" " then x$="*" :else x$=" "
900 mid$(di$(x),6,1)=x$: return
910 if mid$(di$(x),9,1)="a" then x$="bin" :else x$="asc"
920 mid$(di$(x),9,3)=x$: return
930 if mid$(di$(x),14,1)="s" then x$="prg" :else x$="seq"
940 mid$(di$(x),14,3)=x$: return
950 if dl=0 then 600
960 for x=1 to dl
970 on c+1 gosub 890,910,930
980 next x
990 goto 520
1000 if b=dl then t=1 : goto 510
1010 t=t+18 : goto 510
1020 if t=1 then t=dl-(dl-int(dl/18)*18)+1 : goto 510
1030 t=t-18 : if t<1 then t=1
1040 goto 510
1050 print il$;chr$(27);"@";
1060 input"ms-dos device number (8-30)";dv
1061 if cd=dv then print"ms-dos and cbm-dos devices must be different!":goto1060
1070 input"ms-dos device type (71/81)";x
1080 if x=8 or x=81 or x=1581 then dt=255:dt$="1581" :else dt=0:dt$="1571"
1090 poke pk+16,dv : poke pk+17,dt : sys pk
1100 goto 520
1110 print il$;chr$(27);"@";
1120 input "cbm-dos device number (0-30)";cd
1130 if cd=dv then print"ms-dos and cbm-dos devices must be different!":goto1120
1140 goto 520
1141 :
1142 rem ** copy files **
1150 print chr$(147);"copy files":print:print
1160 if dl=0 then fc=0 : goto 1190
1170 fc=0 : for f=1 to dl : if mid$(di$(f),6,1)="*" then gosub 1200
1180 next f
1190 print : print"files copied =";fc;" - press key"
1191 getkey a$: goto 520
1200 fc=fc+1
1210 x$=mid$(di$(f),19,8)+"."+mid$(di$(f),29,3)
1220 cf$="":fori=1tolen(x$):if mid$(x$,i,1)<>" " then cf$=cf$+mid$(x$,i,1)
1230 next
1231 if right$(cf$,1)="." then cf$=left$(cf$,len(cf$)-1)

1232 cf$=cf$+","+mid$(di$(f),14,1)
1240 print str$(fc);". ";chr$(34);cf$;chr$(34);tab(20);sz(f)"bytes";
1245 print tab(35);mid$(di$(f),9,3)
1250 cl=cl(f) : lb=sz(f) - int(sz(f)/65536)*65536

I had to use a DOPEN statement here for disk files because the regular OPEN
statment does not redirect the DS and DS$ pseudo-variables. You'll notice
that the non-disk OPEN statment below has a secondary address of 7. This is
to put the printer into lowercase mode if you are outputting directly to it.
You can replace this with a 5 (or whatever) if you have a special interface
to an IBM-compatible printer and you want to print directly in ASCII. In this
case, you would select the "BIN" translation mode for the file you are routing
directly to the printer.

1260 if cd>=8 then dopen#1,(cf$+",w"),u(cd) :else if cd<>0 then open 1,cd,7
1265 if cd<8 then 1288
1270 if ds<>63 then 1288
1275 x$="y" : print "file exists; overwrite (y/n)";
1280 close 1 : input x$: if x$="n" then fc=fc-1 : return
1285 scratch(cf$),u(cd)
1286 dopen#1,(cf$+",w"),u(cd)
1288 if cd<8 then 1320
1300 if ds<20 then 1320
1310 print chr$(18)+"cbm disk error: "+ds$: fc=fc-1 : close1 : return
1320 poke pk+19,cl/256 : poke pk+18,cl-peek(pk+19)*256
1330 poke pk+21,lb/256 : poke pk+20,lb-peek(pk+21)*256
1340 tr=0 : if mid$(di$(f),9,1)="a" then tr=255
1346 x=1 : if cd=0 then x=0
1350 sys pk+6,tr,x
1355 rreg x,x,x,s : e=peek(pk+15)
1356 if (s and 1) then gosub 380 : fc=fc-1
1360 if cd<>0 and cd<8 then close1
1370 if cd>=8 then dclose#1 : if ds>=20 then 1310
1380 return

6. UUENCODED FILES

Here are the binary executables in uuencoded form. The CRC32s of the two
files are as follows:

 "lrr.128" 1106058594
 "lrr.bin" 460671650

The "lrr.128" file is the main BASIC program and the "lrr.bin" file contains
the machine lanugage disk-accessing routines.

begin 640 lrr.128
M`1Q+'`H`CR!,25143$4@4D5$(%)%041%4BP@0ED@0U)!24<@0E)50T4L(#,P
M+5-%4"TY,BP@1D]2($,]($A!0TM)3D<@3D5434%'`%$<"P`Z`(`<%`!#1++"
M*#$X-BD@(#H@CR`J*B!$149!54Q4($-"32U$3U,@1%))5D4@*BH`O!P9`$16
MLCDZ1%2R,"`@.B`@CR`J*B!-4RU$3U,@1%))5D4L(%194$4@*#`],34W,2PR
M-34],34X,2D`\AP:`(L@1%:R0T0@IR!$5K(X.D14LC`@.B"/("HJ($%,5$52
M3D%412!-4RU$3U,@1%))5D4`^!P;`#H`&QT>`)D@QR@Q-#<I.R))3DE424%,
M25I)3D<N+BXB(#H@F0`R'2@`_@(P(#H@4$NRT2@B.#`P,"(I`%P=,@"+(,(H
M4$NJ.2FRT2@B0T(B*2"O(,(H4$NJ,3`ILC$S,2"G(#8P`)P=-P"9(DQ/041)
M3D<@34%#2$E.12!,04Y'54%'12!23U5424Y%4RXN+B(@.B#^$2),4E(N0DE.
M(BQ5*$-$*0"_'3P`ER!02ZHQ-BQ$5B`Z()<@4$NJ,3<L1%0@.B">(%!+`.,=
M1@"&(%0L4BQ"+$DL020L0RQ$5"0L1DPD+$E,)"Q8+%@D``(>4`"&($1))"@Q
M,C@I+$-,*#$R."DL4UHH,3(X*0`J'EH`BR!$5+(R-34@IR!$5"2R(C$U.#$B
M(#K5($14)+(B,34W,2(`4!YD`$9,)++'*#$Y*:K'*#$W*:K'*#$W*:K'*#$W
M*:K'*#$W*0!T'FX`24PDLD9,)#J!2;(QI#$Y.DE,)+))3"2JQR@Q-RDZ@@!^
M'G@`B2`U,#``A!Z"`#H`IAZ#`(\@*BH@3$]!1"!-4RU$3U,@1$E214-43U)9
M("HJ`,8>C`"9(DQ/041)3D<@1$E214-43U)9+BXN(B`Z()D`V!Z6`)X@4$L@
M.B">(%!+JC,`X1Z@`$1,LC```!^J`/X)($),+$1#+$)(+%,@.B!%LL(H4$NJ
M,34I`!H?M`"+("A3(*\@,2D@IR"-(#,X,"`Z((X`.Q^^`)DB4T-!3DY)3D<@

M1$E214-43U)9+BXN(B`Z()D`3!_(`$1"LD),JC(U-JQ"2`!='](`BR!$0[(P
M(*<@,S8P`'T?W`"!($10LD1"(*0@1$*J,S*L*$1#JS$I(*D@,S(`G1_F`(L@
MPBA$4"FR,""P(,(H1%`ILC(R.2"G(#,U,`"W'_``BR#"*$10JC$R*2"O(#(T
M(*<@,S4P`,,?^@!$3+)$3*HQ``<@!`%$)++)*"(@(JK$*$1,*2PS*:HB("`@
M("!!4T,@(%-%42`@(B`Z((\@*BH@1$5&055,5"!314PO5%(O1E0@*BH`,B`.
M`4$DLB(B(#H@@4FR,*0Q,"`Z($$DLD$DJL<HPBA$4*I)*2D@.B""`$X@&`%!
M)++(*$$D+#@IJB(@("*JR2A!)"PS*0!;("(!F2!$3#L@020`;2`L`40DLD0D
MJD$DJB(@("(`CB`V`4-,*$1,*;+"*$10JC(V*:HR-3:LPBA$4*HR-RD`NB!`
M`5-:LL(H1%"J,C@IJC(U-JS"*$10JC(Y*:HV-34S-JS"*$10JC,P*0#;($H!
M1$DD*$1,*;)$)*K)*"(@("`@(JK$*%-:*2PV*0#I(%0!4UHH1$PILE-:`/(@
M7@&"($10`/@@:`&.`/X@<@$Z`",A<P&/("HJ(%)%4$]25"!-4RU$3U,@1$E3
M2R!%4E)/4B`J*@!0(7P!F2#'*#$X*3LB35,M1$]3($1)4TL@15)23U(@(R([
MRBC$*$4I+#(I.P!](88!F2`B("@D(CO**-(H12DL,RD[(BDL(%!215-3($M%
M62XB.\<H,30V*0"+(9`!H?D@020@.B".`)$AF@$Z`*PAFP&/("HJ(%-#4D5%
M3B!(14%$24Y'("HJ`.$AI`&9QR@Q-#<I.R)-4RU$158](CO**,0H1%8I+#(I
M.R(@("`@35,M5%E013TB.T14)#L``B*N`9DB("`@($-"32U$158](CO**,0H
M0T0I+#(I.ID`""*X`8X`#B+"`3H`*2+#`8\@*BH@4T-2145.($9/3U1)3D<@
M*BH`72+,`9D@24PD.R)$/41)4D5#5$]262`@33U-4RU$158@($8]0T)-+41%
M5B!1/5%5250B`(TBU@&9(E0]5$]'1TQ%+4-/3%5-3BP@0SU#3U!9+49)3$53
M+"`K+RT@4$%'12([`),BX`&.`)DBZ@$Z`+(BZP&/("HJ($U!24X@4D]55$E.
M12`J*@#`(O0!5+(Q(#H@0[(P`,@B_@%2LC``TB((`HT@-#(P``(C$@*9(").
M54T@(%,@(%123B`@5%E0("!&24Q%3D%-12`@15A4("!,14Y'5$@B`#(C'`*9
M("(M+2T@("T@("TM+2`@+2TM("`M+2TM+2TM+2`@+2TM("`M+2TM+2TB`#PC
M)@*-(#0V,`!7(S`"0K)4JC$W(#H@BR!"L41,(*<@0K)$3`!P(SH"F2!&3"0[
M.B"+(%2Q1$P@IR`U.3``C2-$`H$@2;)4(*0@0B`Z()D@1$DD*$DI(#H@@@"V
M(TX"BR!$3+(P(*<@F2#'*#$X*3LB/$Y/($9)3$53/B([QR@Q-#8I`,<C6`*+
M($1,LC`@IR`V-C``WR-B`ID@R"A)3"0L4JHU*3O'*#$X*3L`]R-L`I$@0ZHQ
M((D@-C,P+#8T,"PV-3``&21V`ID@IC0I.\HH1$DD*%2J4BDL-2PS*2`Z((D@
M-C8P`#LD@`*9(*8W*3O**$1))"A4JE(I+#@L-2D@.B")(#8V,`!?)(H"F2"F
M,3(I.\HH1$DD*%2J4BDL,3,L-2D@.B")(#8V,`!I))0"H?D@020`D"2>`DFR
MU"@B1$U&5$,K+5$@(JK'*#$S*:HBD1&='1.3(BQ!)"D`JB2H`ID@R"A)3"0L
M4JHU*3M$220H5*I2*0"Z)+("BR!)LC`@IR`V,#``!B6\`I%)B3<V,"PQ,#4P
M+#$Q,3`L.34P+#$Q-3`L,3`P,"PQ,#(P+#<S,"PX-C`L.#8P+#<W,"PW.3`L
M.#$P+#@S,"PX-3`L-3`P``PEQ@*0`!(ET`(Z`#,ET0*/("HJ(%9!4DE/55,@
M345.52!/4%1)3TY3("HJ`%<EV@*9(,<H,30W*3LB2$%612!!3B!!5T533TU%
M($1!62XB`%TEY`*``'<E^`*-(#0R,"`Z((T@,30P(#H@B2`U,#``D24"`U*R
M4JLQ(#H@BR!2LS`@IR!2LD*K5`";)0P#B2`V,#``M246`U*R4JHQ(#H@BR!4
MJE*Q0B"G(%*R,`"_)2`#B2`V,#``UR4J`T.R0ZLQ(#H@BR!#LS`@IR!#LC(`
MX24T`XD@-C`P`/DE/@-#LD.J,2`Z((L@0[$R(*<@0[(P``,F2`.)(#8P,``9
M)E(#4K(P(#H@0[(P(#H@B2`V,#``*B9<`XL@1$RR,""G(#8P,`!*)F8#6+)4
MJE(@.B"1($.J,2"-(#@Y,"PY,3`L.3,P`&HF<`.9(,@H24PD+%*J-2D[1$DD
M*%@I(#H@B2`V,#``E29Z`XL@RBA$220H6"DL-BPQ*;(B("(@IR!8)+(B*B(@
M.M4@6"2R(B`B`*XFA`/**$1))"A8*2PV+#$ILE@D(#H@C@#=)HX#BR#**$1)
M)"A8*2PY+#$ILB)!(B"G(%@DLB)"24XB(#K5(%@DLB)!4T,B`/8FF`/**$1)
M)"A8*2PY+#,ILE@D(#H@C@`F)Z(#BR#**$1))"A8*2PQ-"PQ*;(B4R(@IR!8
M)+(B4%)'(B`ZU2!8)+(B4T51(@!`)ZP#RBA$220H6"DL,30L,RFR6"0@.B".
M`%$GM@.+($1,LC`@IR`V,#``8"?``X$@6+(Q(*0@1$P`>"?*`Y$@0ZHQ((T@
M.#DP+#DQ,"PY,S``@"?4`X(@6`"*)]X#B2`U,C``HR?H`XL@0K)$3""G(%2R
M,2`Z((D@-3$P`+8G\@-4LE2J,3@@.B")(#4Q,`#B)_P#BR!4LC$@IR!4LD1,
MJRA$3*NU*$1,K3$X*:PQ."FJ,2`Z((D@-3$P`/LG!@14LE2K,3@@.B"+(%2S
M,2"G(%2R,0`%*!`$B2`U,3``&B@:!)D@24PD.\<H,C<I.R)`(CL`0"@D!(4B
M35,M1$]3($1%5DE#12!.54U"15(@*#@M,S`I(CM$5@"%*"4$BR!#1+)$5B"G
M()DB35,M1$]3($%.1"!#0DTM1$]3($1%5DE#15,@35535"!"12!$249&15)%
M3E0A(CJ),3`V,`"J*"X$A2)-4RU$3U,@1$5624-%(%194$4@("@W,2\X,2DB
M.U@`ZR@X!(L@6+(X(+`@6+(X,2"P(%BR,34X,2"G($14LC(U-3I$5"2R(C$U
M.#$B(#K5($14LC`Z1%0DLB(Q-3<Q(@`.*4($ER!02ZHQ-BQ$5B`Z()<@4$NJ
M,3<L1%0@.B">(%!+`!@I3`2)(#4R,``M*58$F2!)3"0[QR@R-RD[(D`B.P!5
M*6`$A2`B0T)-+41/4R!$159)0T4@3E5-0D52("@P+3,P*2([0T0`FBEJ!(L@
M0T2R1%8@IR"9(DU3+41/4R!!3D0@0T)-+41/4R!$159)0T53($U54U0@0D4@
M1$E&1D5214Y4(2(ZB3$Q,C``I"ET!(D@-3(P`*HI=00Z`,$I=@2/("HJ($-/
M4%D@1DE,15,@*BH`WRE^!)D@QR@Q-#<I.R)#3U!9($9)3$53(CJ9.ID`^BF(
M!(L@1$RR,""G($9#LC`@.B")(#$Q.3``+RJ2!$9#LC`@.B"!($:R,2"D($1,
M(#H@BR#**$1))"A&*2PV+#$ILB(J(B"G((T@,3(P,``W*IP$@B!&`&,JI@29
M(#H@F2)&24Q%4R!#3U!)140@/2([1D,[(B`M(%!215-3($M%62(`=2JG!*'Y
M($$D(#H@B2`U,C``@2JP!$9#LD9#JC$`JBJZ!%@DLLHH1$DD*$8I+#$Y+#@I

MJB(N(JK**$1))"A&*2PR.2PS*0#E*L0$0T8DLB(B.H%)LC&DPRA8)"DZBR#*
M*%@D+$DL,2FSL2(@(B"G($-&)+)#1B2JRBA8)"Q)+#$I`.LJS@2"`!0KSP2+
M(,DH0T8D+#$ILB(N(B"G($-&)++(*$-&)"S#*$-&)"FK,2D`,RO0!$-&)+)#
M1B2J(BPBJLHH1$DD*$8I+#$T+#$I`&<KV`29(,0H1D,I.R(N("([QR@S-"D[
M0T8D.\<H,S0I.Z,R,"D[4UHH1BDB0EE415,B.P"`*]T$F2"C,S4I.\HH1$DD
M*$8I+#DL,RD`KROB!$-,LD-,*$8I(#H@3$*R4UHH1BD@JR"U*%-:*$8IK38U
M-3,V*:PV-34S-@#I*^P$BR!#1+&R.""G(/X-(S$L*$-&)*HB+%<B*2Q5*$-$
M*2`ZU2"+($-$L[$P(*<@GR`Q+$-$+#<`^ROQ!(L@0T2S.""G(#$R.#@`#RSV
M!(L@1%.SL38S(*<@,3(X.``^+/L$6"2R(EDB(#H@F2`B1DE,12!%6$E35%,[
M($]615)74DE412`H62].*2([`&8L``6@(#$@.B"%(%@D(#H@BR!8)+(B3B(@
MIR!&0[)&0ZLQ(#H@C@!W+`4%\BA#1B0I+%4H0T0I`)$L!@7^#2,Q+"A#1B2J
M(BQ7(BDL52A#1"D`HRP(!8L@0T2S.""G(#$S,C``MBP4!8L@1%.S,C`@IR`Q
M,S(P`.PL'@69(,<H,3@IJB)#0DT@1$E32R!%4E)/4CH@(JI$4R0@.B!&0[)&
M0ZLQ(#H@H#$@.B".`!DM*`67(%!+JC$Y+$-,K3(U-B`Z()<@4$NJ,3@L0TRK
MPBA02ZHQ.2FL,C4V`$8M,@67(%!+JC(Q+$Q"K3(U-B`Z()<@4$NJ,C`L3$*K
MPBA02ZHR,2FL,C4V`&XM/`544K(P(#H@BR#**$1))"A&*2PY+#$ILB)!(B"G
M(%12LC(U-0"%+4(%6+(Q(#H@BR!#1+(P(*<@6+(P`)4M1@6>(%!+JC8L5%(L
M6`"Q+4L%_@D@6"Q8+%@L4R`Z($6RPBA02ZHQ-2D`T2U,!8L@*%,@KR`Q*2"G
M((T@,S@P(#H@1D.R1D.K,0#I+5`%BR!#1+.Q,""O($-$LS@@IR"@,0`.+EH%
IBR!#1+&R.""G(/X/(S$@.B"+($13L;(R,""G(#$S,3``%"YD!8X`````
`
end

begin 640 lrr.bin
M`(!,68%,3H),#H3+@P``````````````````````````````````````2*D`
MA="M$(`@L?^I;R"3_ZE5(*C_)-`P#ZDP(*C_:""H_R30,`(88*D%C0^`.&"M
M`-U)$(T`W6"I""P-W/#[8"!@@*X,W"!7@(I@J1H@*("0`6`@KO\DT##.&"!'
M_RP-W"!7@"!H@(T/@"D/R0*P):``(&B`F2*`R,`&D/48J0@@*("0`6"I`2P1
M@#`"J00@J/\@KO]@2(HI`0H*"@HL$8`0`DD0("B`D`%@:""H_ZD!(*C_J0D@
MJ/\@KO]X&"!'_RP-W"!7@*DXH(6%`H0#J0"%!"P1@#`#(!.!("N!L`GF!*4$
MR0F0ZQA88*DXA0*F!!BIA7TB@84#8``($`8.!`P""B!H@(T/@"D/R0*0`6"B
M`J``J0@L#=SP^ZT`W4D0C0#=K0S<D0+(T.GF`\K0Y&"I#HT`_ZG_C2"`C2&`
M&&#-((#0$.PA@-`+B)@*&&F%J*DX&&"-((".(8"$!2"^@)`9K0^`*0_)"_`"
M.&`@<X"M(("N(8"D!9#;8*T@@*XA@*0%3&B!HO_H..D2L/J($/<8:1+(J(I@
M(*Z!H@#`"9`(2)CI":AHH@'(8(8+(,"!A0B&"80*I0BF":0*(&B!D`%@A0R$
M#:("H`"Q#)$&R+$,D0;(T/3F#>8'RM#MY@JE"LD*D!*I`84*Y@FE"<D"D`:I
M`(4)Y@C&"]"[&&`XZ0*P`8BN%H#@`?`'"H0')@>D!QAM'("0`<BB.(8&HI>&
M!ZX6@$S3@:D.C0#_J0"@`"#`@2!H@9`!8(4"A`.@#;$"C1:`R0.0!ZD\C0^`
M.&"@$+$"R0+0\:`6L0*-%X#)!+#FH!&Q`HT9@,F!L-M*2DI*C1B`H!.Q`HT:
M@,BQ`HT;@*`8L0+)"="_H!JQ`LD"T+>@#K$"R0'0KZT7@`H8:0&-'8`8;1B`
MC1R`K1J`K!N`..T<@+`!B(T>@(P?@*T6@,D"T`9.'X!N'H"I.*";A0:$!ZD!
MH`"N%X`@TX&0`6"I.*"AA0:$!ZT=@*``KAB`(-.!D`%@J3B@H:X9@!A@A06$
M`T8#:H4$I@,*)@,8902%`HIE`X4#&*4":3B%`J4#:9N%`Z`"L0*9!@"($/BE
M!2D!T`BE!RD/J*4&8*4'H@1&"&K*T/JD"&"E9*1E("6"D`%@J3B@EX5@A&&I
M`(5BK1:`"H5CI62D92`E@X5DA&7)_]`@P`_0'*T4@(5BJ0&N%H#@`?`"J0,M
M%8#0!:X4@/`"A6,@OH-@I@_0`AA@(,G_D`2-#X!@J?^F8]`"I6*%9J``L6`D
M#A`&JKTXA/`#(-+_R,1FT.P8I6!E9H5@D`+F83BE8N5FA6*P`L9CI6(%8]#$
M(,S_&&"@#HP`_X4.A@^M$H"L$X"%9(1E3"J$(&^#D`%@I63)_]#TI67)#]#N
M&&```````````!0)#0"3`````````````````````````"`A(B,D)28G*"DJ
M*RPM+B\P,3(S-#4V-S@Y.CL\/3X_0,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7
MV-G:6UQ=7E_`04)#1$5&1TA)2DM,34Y/4%%24U155E=865K;W-W>WP``````
M``
M``
A``
`
end

7. BIBLIOGRAPHY

The following works were consulted in creating this article:

[1] Jim Butterfield, "Jim Butterfield's Complete C128 Memory Map",
 _The_Transactor_, Volume 7, Issue 01, July 1986 (A Must!).

[2] Commodore Business Machines, _Commodore_1571_Disk_Drive_User's_Guide_,

 CBM, 1985.

[3] Some program called "msdos-to-128" included with "cs-dos" by
 M. G-something. Originally published in COMPUTE!'s Gazzette, I think.

[4] Commodore Business Machines, _Commodore_128_Programmer's_Reference_Guide_,
 Bantam Books, 1986.

[5] _The_Transactor_, Volume 4, Issue 05 ("The Reference Issue"), May 1983.

===
Next Issue:

Learning Machine Language - Part 5

The SPACE INVASION is continued with the design and implementation of the
player and alien animation along with a look at device scanning for the
1351 mouse, joystick and keyboard.

The 1351 Mouse Demystified

Finally! - After 2 delays, this article will explain how the 1351 mouse
works as well as provide a easy to use interface in machine language for
both basic and machine language programmers. An example program will be
given to illustrate both the 1351 mouse and the multi-tasking system.

Multi-tasking on the C=128

A rudimentary multi-tasking system will be implemented for tasks to run
con-currently with each other. While intended for machine language programmers
some discussion of how to use this within basic will be given so that more than
one basic / ml program can be run at a time. An example program will be given to
illustrate both the 1351 mouse and the multi-tasking system.

Stretching sprites

You might have heard that it is possible to expand sprites to more than twice
their original size. But there is no need to expand all of them equally. This
article will examine on how to expand them 2,3 or more multiples of their
original size.

LITTLE RED WRITER: MS-DOS file writer for the 128 and 1571/81 drives.

This article will extend the Little Red Reader program to be able to write
Commodore-DOS files to an MS-DOS disk.
===

