
@(#)top:

 ########
 ##################
 ###### ######
 #####
 ##### #### #### ## ##### #### #### #### #### #### #####
 ##### ## ## #### ## ## ## ### ## #### ## ## ##
 ##### ######## ## ## ## ##### ## ## ## ## ##
##
######
##
 ###### ###### Issue #12
 ################## Version 1.3
 ######## March 1996

@(#)contents: Table of Contents

Features
 6. "Polygonamy": A Study in 3 Dimensions by Stephen Judd
 (Reference: polygon)
 Did you ever feel real time 3 Dimensional graphics was just asking
 too much from a Commodore 64? Well, ask no more, as Stephen shows
 us just hoiw it can be done. The 64 steps up to the challenge of
 displaying correctly rendered shaded 3D polygons right before your
 very eyes.
 9. Underneath the Hood of the SuperCPU by Jim Brain
 (Reference: cmdcpu)
 Delve into the technical details of this new accelerator
 under development by CMD. Jim will explain its advantages
 over existing offering, epxlain the features it provides, and
 dispel some myths about the unit.

Columns
 4. Hi Tech Trickery by Doug Cotton
 (Reference: trick)
 Trying to switch from 128 mode to 64 mode on a C128 without
 human intervwention is triccky. Doing it on modified KERNAL ROMs
 is doubly so. Doug details a routine that will work regardless of
 the ROM in use.
 12. Hacking Graphics by Levente Harsfalvi
 (Reference: gfx)
 All you Commodore Plus/4 lovers, listen up. Levente delves into
 the Commodore Plus/4 TED chip, explains its many functions and
 details its various registers. Do you know all the things the TED
 chip does in addition to handle video. Now you'll know.

Departments
 1. The (cough,cough) Hacking Editor
 (Reference: editor)
 2. Input/Output
 (Reference: io)
 3. Newsfront
 (Reference: news)
 5. Hacking the Mags
 (Reference: mags)
 7. UseNuggets
 (Reference: usenet)
 8. FIDO's Nuggets
 (Reference: fido)
 10. Hack Surfing
 (Reference: surf)
 11. Commodore Trivia
 (Reference: trivia)
 13. ? DS, DS$: rem The Error Channel
 (Reference: error)
 14. The Next Hack
 (Reference: next)
 15. Hacking the Code
 (Reference: code)

@(#)legal: Commodore Hacking Legal Notice

Commodore and the respective Commodore product names are trademarks or
registered trademarks of ESCOM GmbH. Commodore hacking is in no way

affiliated with ESCOM GmbH, owners of said trademarks. Commodore Hacking is
published 4 times yearly by:

Brain Innovations Inc.
602 N. Lemen
Fenton MI 48430

The magazine is published on on-line networks free of charge, and a nominal
fee is charged for alternate mediums of transmission.

Permission is granted to re-distribute this "net-magazine" or "e-zine" in its
entirety for non-profit use. A charge of no more than US$5.00 may be
charged by redistribution parties to cover printed duplication and no more
than US$10.00 for other types of duplication to cover duplication and media
costs for this publication. If this publications is included in a for-profit
compilation, this publication must be alternately available separately or as
part of a non-profit compilation.

This publication, in regards to its specific ordering and compilations of
various elements, is copyright(c) 1995 by Brain Innovations, Incorporated,
unless otherwise noted. Each work in this publication retains any and all
copyrights pertaining to the individual work's contents. For
redistribution rights to individual works, please contact the author of said
work or Brain Innovations, Inc.

Brain Innovations, Inc. assumes no responsibility for errors or omissions in
editorial, article, or program listing content.

@(#)info: Commodore Hacking Information

Commodore Hacking is published via the Internet 4 times yearly, and is
presented in both ISO-8859-1 and HTML versions. This and previous issues can
be found at the Commodore Hacking Home Page
(http://www.msen.com/~brain/chacking/), as well as via FTP
(ftp://ccnga.uwaterloo.ca/pub/cbm/hacking.mag/)

In addition, the Commodore Hacking mail server can be used to retrieve each
issue. To request a copy of an issue, please send the following electronic
mail message:

To: brain@mail.msen.com
Subject: MAILSERV
Body of Message:

help
catalog
send c=hacking12.txt
quit

To retrieve a PKZIP 1.01 archive of the individual articles in Commodore
Hacking, request the file c=hacking12.zip

To subscribe to the Commodore Hacking and receive new issues as
they are published, add the following command to you MAILSERV message
prior to the quit command:

subscribe c=hacking Firstname Lastname msglen

(msglen is largest size of email message in line you can receive. Each
line is roughly 50 characters, so 600 lines is about 30000 bytes. When
in doubt, choose 600)

example:

subscribe c=hacking Jim Brain 600

Although no fee is charged for this magazine, donations are gladly accepted
from corporate and individual concerns. All monies will be used to defray
any administrative costs, subscribe to publications for review, and
compensate the individual authors contributing to this issue.

Any persons wishing to author articles for inclusion in Commodore Hacking are
encouraged to view the submission guidelines on the WWW
(http://www.msen.com/~brain/pub/c-hacking-submit.txt) or via the MAILSERV
server (send c-hacking-submit.txt).

===

@(#)rch: Reading C=Hacking

Starting with Issue 11 of Commodore Hacking, the new QuickFind indexing
system is utilized to aid readers of the text version in navigating the
magazine. At the top of each article or other important place in the
magazine, a word prefixed with a special string is present. (See the
title of this article for an example. Throughout the magazine, if an
article is mentioned, it will be followed by a reference string. For
example, if we mentioned this article, we would add (Reference: rch) after
the name. By using your favorite editor's search function and searching
for the string after the word "Reference:", prefixed by the magic prefix
string, will move you directly to the article of choice. To merely skip to
the next article in the magazine, search only for the magic prefix string.

Some handy indexing strings possibly not referenced anywhere are:

top top of issue
bottom bottom of issue
contents table of contents
legal legal notice

For those with access to a UNIX system, the command "what" can be
run on the issue, which will result in all the article titles being
printed.

A slightly different magic prefix string "@(A)" is used to delimit
sub-topics or main heading in articles. The text after the magic string
differs depending on article content. For the Input/Output column
(Reference: io), the text after the magic prefix will either be "c" for
comment, or "r" for response. In features and columns, a number after
the prefix indicates the ordinal of that heading or sub-topic in the
article. If a specific sub-topic is referenced elsewhere in the article,
a sub-topic reference will be indicated. A reference to "@(A)r" would
be written as "(SubRef: r)".

As time goes on, the role of this indexing system will be expanded and
changed to ease navigation of the text version, but minimize the clutter
added by these extra items.

===

@(#)editor: The Hacking Editor
 by Jim Brain (brain@mail.msen.com)

Speed and the Web. The owners are asking about it. The developers are
looking into it. The market is readying itself for it. No, not the PC
market, I'm referring to the Commodore 8-bit market. The same market
usually referred to as "mature". The same market usually referred to with
a condescending tone. Well, mature we might be, but isn't that considered
a good thing? People are supposed to mature as they grow older. As such,
they are revered and looked up to. What parallels can we draw here?

If you haven't anything about the planned introduction of the CMD SuperCPU
20 MHz accelerator cartridges for the C64 and C128, shame on you! You
need to stay in touch more. For those who have, let's not overdo the
hype. CMD isn't the first to produce such a cartridge, but they will be
the first to introduce 20 MHz as a speed option. C128 users will rejoice
as the first 128 mode accelerator ships from CMD. When this happens,
performance approaching that of the venerable Intel 80386 will be as
close as the on/off switch.

The explosion of interest in the Internet and the World Wide Web is
changing the way people view computers. Until recently, it seemed that
people thought only computer systems including a 32 or 64 bit CPU,
multiple megabytes of RAM, gigabyte hard drives, infinite resolution
monitors and million bit sound cards were worth owning. Commodore
owners have felt the sting of ridicule as they continually take blow
after blow for remaining loyal to a machine with much to offer. Well,
be patient, because 1996 might be the year of the "network computer", a
smaller comuter system that trades all the fancy features of bloated PCs
for a smaller size, cost, and a connection to the Internet. Big names
like IBM, Oracle and Apple are pushing this idea, which would bring to
market systems with modest RAM, small drives, television displays, and
small operating systems. Does this idea sound familiar? It should, as
it describes many features of Commodore 8-bit systems. No, the CBM
8-bit still lacks a few items present in the IBM/Apple/Oracle designs,
but the bulk of features are already available on your so called
"obsolete" CBM machine. Don't gloat yet, as there's much to do, but
if your friends tout the benefits of such a machine, gently remind them
that you own of of the first and best, a Commodore 8-bit.

Enjoy YOUR magazine,

Jim Brain (brain@mail.msen.com)
editor

==

@(#)io: Input/Ouput

Obviously, Commodore Hacking depends on the comments and article submissions
from the Commodore community to flourish. Everyone sees the articles, but
let's not forget those comments. They are very helpful, and every attempt
is made to address concerns in them. Address any comments, concerns, or
suggestions to:

Commodore Hacking
602 N. Lemen
Fenton, MI 48430
brain@mail.msen.com (Internet)

@(A)c: Time Travellin'

From: Robin Harbron <rfharbro@flash.lakeheadu.ca>

Dear C=Hacking,
I was looking at the Commodore Hacking page (fantastic magazine) and
noticed that the "Publishing Schedule for 95-96" has 1995 for all the
dates, while I assume that the last 4,5,or 6 probably should be 1996.
Thanks for everything!

Robin

@(A)r:
Yep, we must have just returned from our time travel experiments when we
wrote that in the WWW pages. Note that the magazine was correct, but the
home was in error. Oh well.

@(A)c: Run (Down) the Software

From: sis319@educ.di.unito.it

Dear C=Hacking,
I really appreciate the work you are doing with the Commodore Hacking
on-line magazine. I like the new look and the new features you added, such
as newsfront and hacking the mags.

I would like to see on the magazine some reviews about the latest and more
interesting PD and Shareware software (with a list of FTP sites where these
are available) and hardware products.

Please note that Commodore Hacking is the only Commodore magazine I can
easily find here in Italy, because all the Italian magazine there were are
dead and all the foreign magazines that were distributed, such as "RUN",
"Compute!'s Gazette", "64'er" are either dead or no longer distributed.

@(A)r:
We appreciate your comments about the new look of C=Hacking. As for the
inclusion of reviews, we're looking into it. it's not that we don't want
to do it, just that we need to schedule the reviews (Commodore Hacking
shouldn't do all of them, as that creates bias), and determining what
software is worthy of review. Look for some reviews in upcoming issues.

@(A)c: Separate But Equal

From: alan.jones@qcs.org (Alan Jones)

Dear C=Hacking,
I like your new version of C=Hacking. I like the idea of including
relevant news and summaries of other magazines and disks. Size should not
be a constraint, although you should publish early when it exceeds some
critical size. Don't scrimp on source code listings and uuencoded files!
There is no other publication for this sort of bulky technical stuff.
It would also be wonderfull if we could get an apropriate means for
including diagrams or pictures, viewable by C64/128 users. I would REALLY
like to have the C64/128 html viewer/printer that you mentioned. You may
not know it but we came very close to having Al Angers Tower article
submitted to C=Hacking in place of _Commodore World_, but C=Hacking could
not really handle drawings and photos.

I have been separating C=Hacking into separate articles and files, archiving
them and placing the archive(s) on a local BBS. This compacts the length
and makes it easier to read and use. I try to make C=Hacking easy to

download and use locally, but I still want to keep it as whole and original
as possible.

@(A)r:
Alan, we're glad you approve of the new format. We're going to try to keep
the size so that it will always fit onto 2 1541 disk sides. C=Hacking
is still working on the HTML viewer, but it's taking a back seat to other
more pressing issues. We'll have it finished at some point, and start
distributing the magazine that way as well. As for your separation, we
appreciate the work you've done to make C=Hacking easier to distribute.
With issue #12, we are offering an archive of all the article in separate
files. The archival method has not been chosen just yet, but look on the
C=Hacking MAILSERV server for the file.

Late news: check Commodore Hacking Information (Reference: info) for
more information of retrieving an archive of the individual articles.

@(A)c: Enquiring Minds Wanna Know!

From: Peter Hofman <HOFMAN%NLEV00@btmv56.se.bel.alcatel.be>

Dear C=Hacking
I would like to make a suggestion for your "Commodore Hacking E-Zine" page.
Maybe you could add a link to a page with some info about the next issue of
Commodore Hacking, so people know what will be in the next issue. The reason
why I make this suggestion is that I read the other issues, and I am very
curious, what will be published.

@(A)r:
Good suggestion. So good, in fact, that we implemented it. Mind you, we
can't completely predict the future, so the information in the link may
not exactly reflect the contents of the issue when it is published, but
we'll try to keep the two in sync.

@(A)c: Pulling It Out of the Closet

From: bloodbane@rlion.com (Jeffrey S Cotterman)

Dear C=Hacking,
Well, I was just writing to say I think you did a great job on C=
Hacking... I am throughly amazed by the support and the interest in
the Commodores. I have a Vic-20, C-64, C-128, and an Amiga 1000.
I have not used any of them in a long time, I have two Beamers that I
use more. However seeing all this stuff makes me want to turn them back
on. (Actually I use the 64 quite a bit for playing games, plus the
1702 monitor works great with a Super Nintendo!) I used to be quite
proficient at the 64, but it is slipping. I will try to get my butt
back in gear so maybe I can post an article or two.... Geesh, and just
last year I got rid of all my Run and Compute's Gazette magazines....
Oh well I will look through the cobwebs and see what I can come up
with. Anyway, congrats on the mag, I think it's going great.

@(Ar:
We appreciate the thanks. And, if we can get one person to pull a C64
or other CBM machines out of the closet and turn it back on through what we
do, it is worth it.

@(A)c: C=Hacking Flunked Geography

From: Peter Karlsson <dat95pkn@idt.mdh.se>

Dear C=Hacking,
I saw your mention of Atta Bitar in Commodore Hacking.

German? Heheheh... :-)

Anyway, the English information page is available now, but not much will=20
be in English (sorry). It is a Swedish paper :)

From: Erik Paulsson <ep@algonet.se>

Dear C=Hacking,
I'm the editor of the Swedish mag Atta Bitar (8 bitter), so I thought I
should drop you a line.

I really like the "new" C= Hacking it's really great, keep up the good work!

One small comment regarding Atta Bitar, it's not in German, it's in swedish.
I just thought you should know...

@(A)r:

Picky, picky, picky. It's not like we would react that way if you said
Commodore Hacking came from CANADA. Wait, hold it.... I guess we would.
Correction made. Thanks for the update, and if we ever learn Swedish, we'll
try to read it again. (Anyone want to translate for us?)

===

@(#)news: Newsfront

* Matthew Desmond, the author of Desterm, has recently resurfaced and
 states that he is once again working on something. Although Commodore
 Hacking discourages hourds from emailing him to ask about Desterm
 progress, Matt's email address is mdesmond@ionline.net, for those
 who wish to register Desterm or express their support.

* Speaking of email addresses, LOADSTAR will be changing theirs. As
 the online service GEnie has recently been purchased and new fares
 have been put in place, LOADSTAR finds its monthly bill rising too
 high for pleasure. As of March, 1996, the Internet address for
 LOADSTAR will be loadstar@softdisk.com.

* While we're on the subject of email addresses, CMD has expanded their
 set of Internet email address contacts in order to better support its
 online users. The following addresses are now valid:

 Email Address Usage

 cmd.sales@the-spa.com Questions relating to product prices,
 catalog requests, ordering onformation,

 cmd.support@the-spa.com Technical questions concerning CMD products.

 cmd.cw@the-spa.com Questions or comments relating to Commodore
 World magazine.

 doug.cotton@the-spa.com superceded the cmd-doug@genie.geis.com address
 previously used for all CMD inquires. Should
 be used items not applicable to the above
 addresses

 cmd.cac@the-spa.com Direct link to Charles A. Christianson, VP of
 Sales and Marketing. Again, shuld be used for
 items not applicable to above email addresses.

* We're not done yet, as COMMODORE CEE has recently moved its office and
 is now at:

 COMMODORE CEE
 5443 College Oak Drive #26
 Sacramento, CA 95841
 Jack Vanderwhite@cee-64.wmeonlin.sacbbx.com (Contact)
 ceejack@crl.com (Contact)
 Jack Vanderwhite, editor.
 Fidonet: 1:203/999
 (916) 339-3403 (Bulletin Board System)

* The Commodore Zone. No, it's not an alternate universe, but a magazine
 for the Commodore gamer and/or demo fan. Each issue's 40 pages is full
 of reviews, interviews with top programmers, and an exclusive comic
 strip done by Alf Yngve. Accompanying each issue is a 5.25" disk or
 tape containing game demos, demos, and full games. Free software is
 often included.

 More information can be obtained through:

 Commodore Zone
 34 Portland Road
 Droitwich
 Worcestershire
 WR9 7QW
 England

 Copies are available for UK3.00. Make checks payable to Binary
 Zone PD.

* Also in the magazine front, Computer Workshops, Inc. is planning a
 World Wide Web magazine to feature gaming. The blurb follows:

 CWI is working on a new Web magazine to feature the newest and
 hottest in c64/128 Gaming. But, before we can do that, we need

 your help. Send us what you're working on, or, if you're a
 programmer with something for review, send us that too! Also,
 if you've got a product you'd like to advertise, we'd like to
 hear that too (a la Yahoo).

 Send it to either, or both:

 spectre@deepthought.armory.com

 Computer Workshops/Cameron Kaiser
 ATTN: Commodore Gamer
 3612 Birdie Drive
 La Mesa, CA 91941-8044

 (Please don't send binaries to the spectre@ address.)

 Thanks for your support, and barring any unforseen difficulties,
 Commodore Gamer should be ready to premiere in about two months.

 Cameron Kaiser

* The December 10, 1995 edition of the Waco Tribune Herald put one of our
 own in the spotlight. The headline read "'Antique' PCs have loyal
 fans here, elsewhere." and was written by Sherry W. Evans,
 Tribune-Herald staff writer. The Commodore user taking the spotlight
 was Karen Allison, known on the FIDO network. Sharing the spotlight
 with Karen was Brad Jackson, of Commodore Country, who said that
 a C64 was raced against an Intel 386 using identical programs, and
 the 64 won. Allison claims in the article that "the challenge is finding
 creative ways to solve problems since Commies have had no ... support..."
 Allison indirectly mentioned GeoFAX, the GEOS Fax program, and a low
 cost Tax program she uses to pay the IRS every year. Allison, a diehard
 "Commie", explained in the article that "(People who use IBMs) all
 think my Commodore can't do much and is just a toy. But for a toy,
 this computer does pretty good."

* For those good with an assembler and the VIC/SID registers, Driven
 Magazine is sponsoring a 4K Demo competition. The deadline is July
 1st 1996. Although the program must run on an NTSC 64, PAL programmers
 are encouraged to enter. The entries will be released as a group at the
 close of the contest, and entrants can re-use their entries. The
 complete rules follow:

 4k Demo Contest Rules

 - 1 file only (no secondary loading)
 - max file size is $1000 bytes
 - must be started with BASIC 'run'
 - 1 demo per coder; multiple entries per group are allowed.
 Multiple coders can collaborate on a single demo, so long
 as there remains only 1 demo per coder.
 - credits for all parts of an entry must be given at time of entry;
 if a particular credit is unknown, mark it as "unknown"
 - demos will be evaluated on NTSC c64.

 Anything not specifically denied above is allowed; e.g. packing +
 crunching, use or non-use of music or graphics, entries by PAL
 sceners, etc.

 Deadline = July 1.

 Entries need to go to coolhand:

 coolhand@kaiwan.com

 or postal mail to:

 Bill Lueck
 17411 Mayor Lane
 Huntington Beach, California, 92647
 USA

 Evaluators will be selected shortly, but will include Coolhand and 2-3
 other non-demomaking NTSC demo enthusiasts.

 There will be categories for evaluation, but there will not be separate
 winners - the scores from the categories will be added together. The
 categories will be announced after the evaluation team is established,
 but they will include design, originality, technical difficulty,
 artistic impact, and best overall impact, etc (all tentative at this
 time).

* Bo Zimmerman has put his Commodore 128 on the net. No, he didn't
 log into some Internet service from his 128, he actually PUT it on
 the 'Net. Running the BBS program called "Zelch", the machine can be
 accessed by telntting to 147.26.162.107 and giving "zelch" as the
 login. Bo warns that the system is running off a single 1571 at 2400
 bps, so don't hog the system, OK.

 For the technical types, the 128 is connected to the serial port
 of a Linux PC hooked up the Internet. Nonetheless, we're getting
 closer to the standalone CBM Internet server.

* In the March 1996 issue of _Next Generation_ magazine, on pages 31
 and 32, NG published a very unflattering definition of the Commodore
 64 as part of their: "The Next Generation 1996 Lexicon A to Z:
 A definitive guide to gaming terminology". Among other things, the
 definition's writer confused the Apple II with the Commodore 64 and
 stated that the C64 could not display lowercase, a common problem
 on early Apples. The writer was biased in favor of the Apple II line,
 but evidently had never used a C64 or never owned an early Apple II.
 In either case, the fervor caused by the definition sparked an outrage
 in the USENET newsgroup comp.sys.cbm. See UseNuggets (Reference: usenet)
 for the scoop.

 If you would like to write to _Next Generation_, even though the
 article claimed no comments would be heard on the subject, or to
 request a copy of the article, their address is:

 Editorial:

 Email: ngonline@imagine-inc.com
 Fax: (415) 696-1678
 Phone: (415) 696-1688

 Subscriptions:

 Email: ngsubs@aol.com
 Phone: (415) 696-1661

 Post Office Mail:

 Next Generation
 Imagine Publishing, Inc.
 1350 Old Bayshore Highway, Suite 210
 Burlingame, CA 94010

===

@(#): trick: RUN64: Moving to 64 Mode
 by Doug Cotton (doug.cotton@the-spa.com)

Reprinted with permission. Copyright (c) 1996 Creative Micro Designs, Inc.

Various routines have been used over the years to allow programs to move
from 128 mode to 64 mode without user intervention. With the advent of
modified Kernal ROMs (JiffyDOS, RAMLink, and others) many of the methods
that work on stock machines have either failed to do the job completely,
and in some cases fail all together.

RUN64 is the answer to those users looking to worm their way into
64 mode without having to be concerned with the different Kernal ROMs. The
program is presented here in two ways: as a BASIC program that will move to
64 mode and load the program you request, and as assembly language source
for ML programmers.

BASIC Notes: The BASIC version uses the ML code produced by the
assembly language source. This is found in the data statements beginning at
line 660. When you run it, the program will ask for the file name, device
number, and file load type (BASIC or ML). The first two parameters should
be self-explanatory, but the load type may confuse you. If the file you're
loading is itself a small loader (1, 2 or 3 blocks) then it will almost
always be an ML program. Likewise, if you usually load the file with a
",8,1" at the end of the load statement, it's ML. If you're loading a
larger file, or a file that you normally load with just a ",8", then use
the BASIC option.

Also, if you remove the REM instructions from lines 150 through 180
the program becomes a dedicated loader. Just specify the file name and
other options within those lines.

@(A): How The Routine Works

RUN64 performs its trick by masquerading as a cartridge. When started,
the code copies the payload routines into $8000, with the special header
that signifies a cartridge is present. It then resets the system. The
system initializes and checks for a cartridge. When it finds the payload
routines, it executes them just like it would any cartridge. The
pseudo-cartridge routines then switch out BASIC, call the remainder of
the KERNAL init routines, switch BASIC in, call some BASIC init routines,
set the "load" and "run" lines on screen, dump some "returns" into the
keyboard buffer, and finally jump into the BASIC interpreter.

@(A): Assembly Language Notes:

The source code is pretty well documented, and ML programmers should have
little trouble figuring out what everything does. Take note of the Buddy
Assembler .off pseudo-op used a few lines below the code label. This
adjusts all fixed references within the code that follows it to execute
properly at $8000.

The code uses some indirect vectors (ibv, ibr and ibm) to overcome not
having an indirect jsr opcode, and switches out BASIC ROM temporarily since
the KERNAL finishes intializing by indirectly jumping through the address
at $a000. Since the target application hasn't been loaded yet, the code
must put its own address at $a000 to regain control.

To use the routine, just set up a file name at filename, put a
device number in $ba, set the load type in sa1flag, then execute the
routine.

 100 rem run64.bas (c) 1996 creative micro designs, inc.
 110 :
 120 print "{CLEAR/HOME}run64"
 130 print
 140 :
 150 rem f$="filename" : rem filename
 160 rem dv=peek(186) : rem device number (8, 9, 10, etc.)
 170 rem l$="a" : rem load type (a=basic, b=ml [,1])
 180 rem goto 310
 190 :
 200 input "filename";f$
 210 input "{2 SPACES}device";dv$: if dv$="" then 230
 220 poke 186,val(dv$)
 230 dv = peek(186)
 240 print
 250 print "select a or b"
 260 print "{2 SPACES}a.
 load";chr$(34);f$;chr$(34);",";right$(str$(dv),len(str$(dv))-1)
 270 print "{2 SPACES}b.
 load";chr$(34);f$;chr$(34);",";right$(str$(dv),len(str$(dv))-1);",1"
 280 get l$: if l$<>"a" and l$<>"b" then goto 280
 290 print
 300 print l$;" selected"
 310 print
 320 print "going to 64 mode!"
 330 :
 340 : rem poke in main ml
 350 :
 360 i = 6144
 370 read d
 380 if d = -1 then 450
 390 poke i,d
 400 i = i + 1
 410 goto 370
 420 :
 430 : rem poke in filename
 440 :
 450 for i = 0 to len(f$)-1
 460 : poke 6356+i, asc(mid$(f$,i+1,1))
 470 next i
 480 poke 6356+i,0
 490 :
 500 : rem poke in device number
 510 :
 520 if dv$="" then 570
 530 poke 186,val(dv$)
 540 :
 550 : rem check load type
 560 :
 570 poke 6324,0
 580 if l$="b" then poke 6324,1

 590 :
 600 : rem sys to ml
 610 :
 620 sys6144
 630 :
 640 : rem ml data
 650 :
 660 data 32,115,239,160,0,185,22,24
 670 data 153,0,128,200,208,247,165,186
 680 data 141,157,128,76,77,255,9,128
 690 data 9,128,195,194,205,56,48,169
 700 data 0,141,4,128,120,169,0,141
 710 data 22,208,32,132,255,32,135,255
 720 data 169,230,133,1,169,43,141,0
 730 data 160,169,128,141,1,160,76,248
 740 data 252,169,231,133,1,32,148,128
 750 data 32,151,128,32,154,128,162,0
 760 data 189,159,128,240,6,32,210,255
 770 data 232,208,245,162,0,189,190,128
 780 data 240,6,32,210,255,232,208,245
 790 data 162,0,189,180,128,240,6,32
 800 data 210,255,232,208,245,173,158,128
 810 data 240,10,169,44,32,210,255,169
 820 data 49,32,210,255,169,145,32,210
 830 data 255,32,210,255,173,157,128,133
 840 data 186,162,0,189,185,128,240,6
 850 data 157,119,2,232,208,245,173,158
 860 data 128,208,2,169,4,133,198,76
 870 data 157,227,108,149,227,108,152,227
 880 data 108,155,227,0,0,17,17,68
 890 data 86,61,80,69,69,75,40,49
 900 data 56,54,41,58,76,79,65,68
 910 data 34,0,34,44,68,86,0,13
 920 data 82,213,13,0,70,73,76,69
 930 data 78,65,77,69,0,-1

; RUN64.SRC
; Doug Cotton & Mark Fellows
; (c) 1996 Creative Micro Designs, Inc.
;
 .org $1800
 .obj run64.obj

run64 jsr $ef73 ; go slow
;
 ldy #0 ; copy cartridge
- lda code,y ; code to $8000
 sta $8000,y
 iny
 bne -
;
 lda $ba ; get device number
 sta dvtemp ; and store it
;
 jmp $ff4d ; go 64
;
code .byt $09,$80 ; cold start
 .byt $09,$80 ; warm start
 .byt $c3,$c2,$cd,$38,$30 ; cbm80
;
 .off $8009 ; offset code
;
 lda #$00 ; disable
 sta $8004 ; cartridge code
 sei ; disable interrupts
;
 lda #$00 ; zero out
 sta $d016 ; VIC control Register
;
 jsr $ff84 ; initialize I/O
 jsr $ff87 ; initialize RAM
 lda #$e6 ; switch in RAM
 sta $01 ; at $A000
 lda #<reenter ; set up return vector
 sta $a000 ; at $A000 to bypass
 lda #>reenter ; BASIC statup during
 sta $a001 ; initialization
;
 jmp $fcf8 ; let Kernal finish up

;
reenter lda #$e7 ; back from Kernal, set
 sta $01 ; $A000 back to ROM
;
 jsr ibv ; initialize vectors
 jsr ibr ; initialize RAM
 jsr ibm ; initialize memory
;
 ldx #$00 ; output screen text
- lda part1,x ; to form LOAD statement
 beq +
 jsr $ffd2
 inx
 bne -
;
+ ldx #$00 ; print filename to be
- lda filename,x ; loaded at end of
 beq + ; LOAD statement
 jsr $ffd2
 inx
 bne -

;
+ ldx #$00 ; print device
- lda part2,x ; variable at end
 beq + ; of LOAD statement
 jsr $ffd2
 inx
 bne -
;
+ lda sa1flag ; check secondary
 beq + ; address flag for load
 lda #',' ; type, and print a
 jsr $ffd2 ; comma and a 1 at end
 lda #'1' ; of LOAD statement if
 jsr $ffd2 ; load type is ML
;
+ lda #$91 ; print two CRSR up
 jsr $ffd2
 jsr $ffd2
;
 lda dvtemp ; get device number
 sta $ba ; and store
;
+ ldx #$00 ; put [RETURN]rU[RETURN]
- lda keydata,x ; into keyboard buffer
 beq +
 sta $0277,x
 inx
 bne -
;
+ lda sa1flag ; get load type and
 bne + ; branch if it is ML (1)
 lda #$04 ; if not ML, change .A
+ sta $c6 ; store kybd buffer NDX
;
 jmp $e39d ; enter BASIC
;
ibv jmp ($e395) ; initialize vectors
ibr jmp ($e398) ; initialize RAM
ibm jmp ($e39b) ; initialize memory
;
dvtemp .byt $00 ; device number temp
sa1flag .byt $00 ; load type (1=ML,
 ; 0=BASIC)
;
part1 .byt $11,$11 ; 2 CRSR up
 .byt 'dv=peek(186):load'
 .byt $22 ; quote
 .byt $00
;
part2 .byt $22 ; quote
 .byt ',dv'
 .byt $00
;
keydata .byt $0d ; [RETURN]
 .byt 'rU' ; shortcut for RUN
 .byt $0d ; [RETURN]
 .byt $00
;
filename .byt 'filename' ; name of file to load

 .byt $00 ; 00 byte must follow filename!
;
 .end

===

@(#)mags: Hacking the Mags

Not everything good and/or technical comes from Commodore Hacking, which
is as it should be. (I still think we have the most, though...) Thus,
let's spotlight some good and/or technical reading from the other
Commodore publications.

If you know of a magazine that you would like to see summarized here, let
C=Hacking know about it. These summaries are only limited by Commodore
Hacking's inability to purchase subscriptions to all the Commodore
publications available. We are very grateful to those publications that
send complimentary copies of their publications for review.

@(A): COMMODORE CEE
 At press time, Issue #5 was in the works, so we'll detail the contents
 next time. However, see Newsfront (Reference: news) for address changes
 for COMMODORE CEE.

@(A): Commodore 128/64 Power User Newsletter (CPU)
 A while back, Gosser Games, Ltd., Inc. sent us a sample issue of this
 publication, which is published exclusively with a Commodore 128
 machine, much like the defunct dieHard. For those just getting into
 the BBS arena, the "Cyberspace Cowboy", R.J. Smulkowski, previously
 writing this article in dieHard, has moved his column to CPU. The
 content is light, but useful, and a godsend for new users. Reviews
 of GeoFAX and "Radio Controlled Flight Simulator" also grace the
 pages. Printed on regular bond at 7" by 9", the 16 page publication
 is small but full of potential.

@(A): Commodore World
 If you remember last time we spoke of Commodore World, we asked the
 rhetorical question: What's up with those funky graphics? We didn't
 expect an answer, but editor Doug Cotton called to explain the curious
 eye-catchers. He also mentioned that asst. editor Jenifer Esile was
 having trouble creating them now that we made fun of them. We're sorry
 Jenifer. We want you to continue, since they save us the cost of
 commercial inkblot cards for our self-psycho-analysis sessions here
 at Hacking Headquarters. (just joshing, we can be so mean sometimes).
 Speaking of Jenifer, we're not sure when she started, but the last few
 issues seem more colorful. Sure, content is great, but packaging is
 everything. We've even caught PC-centric folks perusing our copy.
 Kudos to CMD for that effect.

 Obviously, Commodore World iisn't for all, but the content is
 consistent. Issues 11 and 12 are no exception. In issue 11, Doug
 tackles high level serial bus routines and includes ML source,
 Gaelyne Moranec shares some useful WWW pages, and Jim Butterfield
 explains the nasty NULL character and its implications. Of special
 interest in this issue is the two page spread on changing device
 numbers on the pesky 1541 drives. The article is worthy of archival
 for reference. CMD also takes time to note that the SuperCPU cartridge
 will contain a 65C816 8/16 bit CPU, not the earlier mentioned 65C02
 8-bit CPU.

 Issue 12 should be subtitled the "SuperCPU" issue. We think its
 great, but it's definitely not subtle. Doug Cotton and Mark Fellows
 preview the unit while Jim Brain details the CPU inside it. CMD
 ntes that the 10 MHz version has been scrapped, but the 128 version
 has been added, dealying introduction until April for the 64 version.
 C=H was hoping to review a prototype unit this issue, but we'll do it
 next time. Jason Compton and Katherine Nelson describe HTML, the
 markup language for World Wide Web pages, and Jim Butterfield explains
 using KERNAL devices 0 (keyboard) and 3 (screen). For those wanting
 to run a Bulletin Board System, Max Cottrell describes how to ensure
 success. Of special interest in this issue is a photo of the prototype
 accelerator. We won't even hint of our opinions on this round of
 funky graphics....

@(A): Driven
 Driven #11 waxes somewhat philosophic about the demo scene in 1995. The
 tone expresses a tinge of disappoinment with the hope that 1996 will
 be a better year for demos. This issue also ushers in Driven's first
 crack at covering the PAL scene. As part of the 1995 year-end review,
 a complete list of releases is given. In the news section, Charles
 Christianson's blurb on the CMD SuperCPU is reprinted, and King Fisher

 of Triad discusses the origins of the demo scene in "Cyberpunk".

 If you've ever wondered what goes on inside the mind of a demo "scene"
 programmer, Driven #12 will fill you in. Interviews with Phantom of
 the group FOE and Zyron of F4CG are included, both telling it as it is.
 For those wanting to set up or design a BBS system Mitron takes a look
 at CNET DS2 and details some general guidelines on how the networking
 code works. Of special note is a review of this issue's Polygonamy
 sample code (Reference: polygon).

@(A): LOADSTAR
 Issue 139 starts off with the announcement that LOADSTAR is taking over
 the dieHard Spinner disk subscriptions, as reported in C=H#11. File
 Base 64 from John Serafino will be useful for anyone organizing their
 disk collection. Fender Tucker claims it is better than DCMR, the
 supposed standard. Jeff Jones cooks up the "Ultimate INPUT" for people
 wanting the perfect BASIC INPUT routine. The claims are substantial and
 Jeff delivers. The included LOADSTAR LETTER #29 contains another
 article in the Internet series.

 As we started Issue 140, we noticed something was different. We
 couldn't place it at first, but then Jeff alerted us to the change.
 LOADSTAR now has highlighted words in the text, and the color scheme
 can be changed and saved. Nice for the eyes. In addition, LS#140 can
 mark up text using highlights, bold, and underline on printers that
 support such features. Bob Markland presents a ML module that
 provides better random numbers, and Fender Tucker challenges
 programmers ML programmers to write a routine that searches an in
 memory dictionary for a word. Speed is the key. C=H gets some space,
 as Issue 11 is reprinted in the 3.5" version. Of particular note to
 programmers is Don Forsythe's "Hidden Clocks" article that describes
 in detail the CIA TOD clocks and their bugs, err "features".

 It's funny, but the LOADSTAR LETTER #40 that comes with LS #140 is
 subtitled "Special Commodore Hacking Issue". We were expecting C=H
 articles, but that shows just how egotistical we can be. Jeff Jones
 filled the issue with rumors of new products, handy tips, and
 information about CMD's SuperCPU. Of particular interest is the
 information about Craig Bruce modifying his Swiftlink to do 115,200 bps.

 Right before we went to press, issue 141 showed up in the mailbox. #141
 starts off with the changes of operation since LOADSTAR publication
 was taken over by J & F Publishing. The first is their new address:

 LOADSTAR
 606 Common Street
 Shreveport, LA 71101

 Also, they say checks should now be made out to LOADSTAR, not Softdisk.

 For all you TUI (Text User Interface) folks, Jeff Jones goes over how
 to create "buttons" that depress on screen when activated. Source code
 is provided as well, which is rare for LOADSTAR. Of particular interest
 to us was Terry Flynn's "Virtual Optics" slideshow. Hard to describe,
 it displays impossible constructions and 3D illusions. Even C=H gets
 some space, as issues 3 and 4 are available on the 3.5" disk version.
 Jim Brain supplies article 4 in the Internet series on LOADSTAR LETTER
 #31, included with the issue. Of special note is LOADSTAR's new
 Internet address, given in the LL as loadstar@softdisk.com. See
 Newsfront (Reference: news) for more information.

@(A): LOADSTAR 128
 We loaded up LS128 #30 for a look-see. Dave's Term, the 128
 Telecommunications Program presented in the last 4 issues, seems to be
 one focus of this issue. Don Graham supplies a keyboard overlay and
 macros for the terminal program, while David Jensen includes a spell
 checker. In the issue as well is ZED, the 128 editor of editors from
 Craig Bruce.

@(A): Vision
 At press time, Issue #8 was in the works, so we'll detail the contents
 next time.

Other magazines not covered in this rundown include:

* _The Underground_
* _Gatekeeper_
* _Commodore Network_
* _64'er_
* _Atta Bitar_ (_8 bitter_)
* Commodore Zone

* _Commodore Gazette_

In addition, others exist that C=Hacking is simply not aware of. As soon
as we can snag a copy of any of these, or get the foreign language ones
in English :-), we will give you the scoop on them.

==

@(#): Polygonamy: A Study in 3 Dimensions
 by Stephen L. Judd (sjudd@nwu.edu)

We've been making some pretty small potatoes for a while now, so
the time has come for a little more ambition and challenge. I decided to
think up a real challenge, containing problems that I had no idea how to
solve, and see what I could come up with.

I set out to create a 3D virtual world for the C64, e.g. a space
populated with various three-dimensional objects, which I could wander around
in. I wanted it to be full-screen 320x200 hires bitmapped. Furthermore, I
wanted the objects to be solid, and since there are only two colors I
wanted to be able to put patterns on the faces. I also wanted it to
translate nicely to the 128's VDC chip, in 2MHz mode. Finally, naturally, I
wanted the program to be fast. This was the framework in which I placed
myself, and a few other ideas presented themselves along the way. The
outcome of all of this is Polygonamy.

Just a brief history of this project: I have wanted to do a 3D
world for a very long time, and have been thinking about it for some
time in the back of my head; my imagination was probably first fired
the first time I played Elite. I wrote down the necessary equations one
afternoon last summer, for a high school student I was teaching, and
the equations are very simple. I took a break to get some work of
measureable value accomplished, but in October I began work on the graphics
algorithm. I worked steadily on this for two months, and in December I
finally began to code the graphics. In mid-January, I got them to work.
Adding the rest took a few weekends more. I have about 128 pages of notes,
analytical calculations, and BASIC test programs in my C64 notebook (which
is, I think, a nice number of pages to have :). My original plans were
to place five objects in the world, but time and memory constraints whittled
that down to three. One of my disks self-destructed about the day I was
ready to finish, so I had to reconstruct a bunch of tables, but other than
that I finally managed to finish it up, albeit with a few rough edges ;).

Although the concepts from previous articles are used as a solid
foundation, the code is almost 100% from scratch -- I only borrowed a
tiny piece of code from an earlier program, and even that I modified
somewhat.

One caveat before we begin: I am primarily interested in the
challenge of designing the algorithms, which means I like to come up
with my own solutions. Thus, you may find more efficient methods
in a graphics book or perhaps in someone else's code; I have examined
neither, so I have no idea what the relative merit of my algorithms
may be. These are simply my solutions to challenges placed before me.
And if you know of a better way to do things, please feel free to email
me!

Furthermore, I consider the code a test of the theory. Some of my
assumptions work and some do not, and these will be considered at the end
of this article.

Finally, I am not including the source code. For one thing, it is big.
Like, _HUGE_, man. I had to split it up when I ran out of editor memory
on my 128 (which, incidentally, forced me to figure out Merlin 128's very
cool and very powerful linker feature). I will include numerous code
fragments in assembly and BASIC which demonstrate all the important
concepts.

By the way, if you are interested in measuring frame rates, you can
use the first object. Every full 360 degree revolution is 128 frames.
So time how long it takes to complete a full rev (or maybe several), and
divide that number into 128, to get an idea of frames per second.
For a rundown of frame rates for stock and SuperCPU operation, see
"Underneath the Hood of the SuperCPU" (Reference: cmdcpu) found
elsewhere in thi issue.

Some brief acknowledgements: This project would not have happened without
the extremely powerful macro and linking capabilities of the Merlin 128
assembler, by Glen Bredon. It would have been _really_ tough without
JiffyDOS and my FD-2000, from CMD. I used my Action Replay extensively
for debugging, and without the excellent documentation for the 64, such as

the PRG and Mapping the 64, this would have been a nightmare. Finally, I
must acknowledge my friend George Taylor; a few days before I was all
finished I explained some routines to him, and he made a great suggestion
which made my fast fill routine blaze.

Okay, WAY too much talk. There are a ton of issues involved with this
project so let's just wade in hip-deep and deal with them as they come.

@(A): The Equations

First some relaxing abstraction. In previous articles we have discussed
how to project an object in three dimensions through the origin into a
plane. We have also discussed rotations in three dimensions. In
principle, then, we have all the mathematics we need to do a 3D world.

But we should be thoughtful. Let's say we're standing in the world and
turn to the right; we can either rotate ourselves, and change the
direction we are looking, or we can rotate the world around us, so that
we are always looking 'forward'. This may bother you on physical grounds,
but the two are mathematically equivalent. Given the way we have derived
our projection routines, it should be clear that we want to rotate the
objects in the world around us.

(Or, to put it another way, we are at the center of the world, and the
world revolves around us.)

We have another issue: how do we know when an object is visible or not?
How do we know when we've bumped into an object (or blown it out of the
sky :)? Moreover, if we have ten objects, and each object has six points,
it would be a real drag to have to rotate all sixty points, especially
if none of the objects were even visible.

It should be clear that we really want to define every object relative
to some center of the object. So we keep track of the center of each
object, and rotate and translate the centers, and only calculate the
full object if it is visible. We of course want to define the object
relative to this center.

What happens to this center when we translate or rotate the world?

Let's simplify our model a little bit and only deal with rotations about
one axis, e.g. we are driving a tank and can move forwards and backwards,
and turn left or right. The generalization to other axes is very
straightforward, but this way we can think in two dimensions instead
of three.

First we need to agree on a coordinate system. For my system I let the
x-axis go _up_ a page of paper, the y-axis comes up out of the page, and
the z-axis goes from left to right. Thus, I am standing on the paper in
the x-z plane, at the origin, with the y-axis extending upwards from me.
If you still don't understand my orientation, draw a little picture.

I am going to choose my orientation so that I am always looking straight
down the x-axis, e.g. in the direction that x is increasing. Thus, if I
walk forwards or backwards, this corresponds to decreasing or increasing
the x-component of the center coordinate:

 let C=(cx,cy,cz)
 move forwards => cx=cx-1
 move backwards=> cx=cx+1

So far so good. As always, draw a picture if you can't visualize it.
That takes care of translations, what about rotations?

We certainly know how to rotate points about the origin. In particular,
if we have a point with coordinates (x1,z1) and rotate it clockwise by
an angle s, we get the new point as follows:

 (x1,z1) -> (x1*cos(s)+z1*sin(s), z1*cos(s)-x1*sin(s))

So that's easy enough. The problem is that we have this big object
sitting around this point, and need to figure out what to do with it!

Consider the following: let's say we have a line out some distance from
the origin,

 X
 X
 | X
 z-axis ----O------------c---- c=center

 | X
 | X
 Origin X <---- line

and we rotate it by some amount theta about the origin:

 X
 XX
 Xc c=rotated center
 | XX
 z-axis ---O------------XX-
 | X
 XX

You can see (from my incredible ASCII artwork) that the line is now at an
angle with respect to the origin.

Imagine that we draw a line from the origin to the center of the point,
in the first picture (or get a pencil and paper and actually do it), so
that we have the letter "T" laying on its side. Now we rotate this "T"
by some angle theta, so that the top of the "T" -- our line -- has now
been rotated.

The stem of the "T" meets the top of the "T" at the center point c. Drop
a line from the rotated center straight down to the z-axis, and call this
line l2. Since the T is at a right angle, and we have rotated it by an
angle theta, the angle between our line and the z-axis is 90-theta. But
this means that the angle between our line (the top of the "T") and the
line l2 is just theta.

Thus, if we rotate the center by an amount theta, all we have to do
is rotate the object by an amount theta *about the center*, and our
perspectives will all be correct. How is that for simple? It should
be clear now that this works no matter where the "center" of the object
is chosen. Thus, our center is not some physical center of the object,
but rather the center of rotation of the object.

Since this is true of rotations about any axis, we now know how to
generalize to higher dimensions.

Note further that we can now implement local rotations -- that is, let's
say the object is a tank, and this tank turns independently of whether
or not we turn. Piece of cake.

You can also see that the rotations are cumulative. If we turn to the
left, and then turn left again, we can simply apply two rotations to the
points of the object. In fact, if we turn left, move forwards, and then
move left again, we still apply just two rotations to the points of the
object; the center, however, has moved.

This is quite important, as it allows us to measure an object's relative
rotation to us, whether or not it is visible. Remember that we only
want to rotate the points that define an object when the object is
visible. We never actually change the points which define an object.
Instead, we track how much the object needs to rotate, and rotate the
original points by that amount.

The center of the object will change with each rotation and translation.
We never change how we define an object about this center, though. We
simply apply a rotation to the original points when appropriate. The
object centers must be kept track of because they can undergo translation
as well as rotation.

To summarize then: we define each object relative to a center of
rotation. The center determines where the object is located in the
world, and allows us to operate on centers when we need to rotate or
translate the world. It also lets us perform local operations on an
object, so that we could, for instance, have a spinning cube located
inside our world. If an object's center is visible then we can consider
the object to be visible, and plot it.

Whoops -- what does it mean to be 'visible'? Well, think about yourself.
You can see things when they are in front of you. Or, to be more
precise, you have a field of vision. Perhaps a decent model of this
would be a cone. I think a better model, certainly one which is
easier to deal with computationally, is the intersection of two planes:
a pyramid. Anything which lies within this pyramid we consider visible,
and anything which lies outside we consider not visible.

Two-dimensionally, we draw a little wedge extending from the origin.
Anything within the wedge we count as visible, and anything outside

of it we count as not visible. The sides of this wedge are two lines,
with equal but opposite slope (i.e. slope=+/-m).

 \ Visible /
 \ View / Outside of visual area
 \Area /
 \ /
 \ /
 * <--- Me

Probably lines at some angle are more reasonable than others. But I'm a
simple guy, and the two simplest lines I can draw are at 45 degree angles
from the axis, so their slope is +/-1. Thus, any points which lie
between the lines x+z=0 and x-z=0 are visible. If the center of an
object is within this area, we will consider the object visible. That
is, if cx+cz>0 and cx-cz>0 the object is visible.

One last thing: if we are too close to the object, we either want to
bump into it (i.e. not move) or else not display it. So we also need to
check if cx<x0 for some x0.

We are now in a position to write some simple code. I wrote the
following in evil Microsoft QBasic, but BASIC7.0 on the 128 would work
just as well, although you need to change the variables (I didn't have my
128 handy, otherwise I would have written this on the 128):

@(A): Polygon Prototype Code

 SCREEN 1 '320x200

 delta= 3 'Rotations will be in 3 degree increments
 rad= 3.1415926/180
 cdel= COS(rad*delta)
 sdel= SIN(rad*delta)
 theta=0
 d=-135
 x0= 60 'Bumped into the object?
 REM z0 y0 would be 160,100 to place the object in the center
 REM of the screen
 y0= 170 'I want the bottom of screen to be ground
 z0= 160

 REM Set up the object
 REM Tetrahedron: 0,sqrt(3),0 0,0,1 0,0,-1 2,0,0
 DIM obx(4), oby(4), obz(4)

 obx(1)= 0
 oby(1)= 50*SQR(3)
 obz(1)= 0
 obx(2)= 0
 oby(2)= 0
 obz(2)= 50
 obx(3)= 0
 oby(3)= 0
 obz(3)= -50
 obx(4)= 100
 oby(4)= 0
 obz(4)= 0

 cx= 100
 cy= -10
 cz= 0

 REM Get input
 main:

 DO
 a$=INKEY$
 LOOP UNTIL a$<>""

 IF a$="[" THEN cx=cx-20
 IF a$="/" THEN cx=cx+20
 IF a$=";" THEN GOSUB rotl
 IF a$="'" THEN GOSUB rotr

 IF cx<x0 THEN CLS: GOTO main:
 IF cx<cz OR cx+cz<0 THEN CLS: GOTO main:

 ctheta= COS(rad*theta)
 stheta= SIN(rad*theta)

 p1x= cx + ctheta*obx(1) + stheta*obz(1) 'Rotate and add to center
 p1y= cy + oby(1)
 p1z= cz + ctheta*obz(1) - stheta*obx(1)
 p1y= y0 + d*p1y/p1x 'Project and add offset
 p1z= z0 + d*p1z/p1x
 [... similar for p2x,p2y,p2z,...,p4x,p4y,p4z]

 CLS
 LINE (p1z, p1y)-(p2z, p2y)
 [... lines between p2-p3, p3-p1, p1-p4, p4-p2, p4-p3]

 GOTO main: 'Main loop

 REM rotate left
 rotl:
 theta= theta + delta
 blah= cdel*cx + sdel*cz
 cz= -sdel*cx + cdel*cz
 cx= blah
 RETURN

 rotr:
 theta= theta-delta
 blah= cdel*cx - sdel*cz
 cz= sdel*cx + cdel*cz
 cx= blah
 RETURN

(You may note that cx=cx+20 is used for a translation, instead of cx=cx+1.
This will be detailed later).

So much for the easy part.

@(A): Filling

If there is one thing that the previous programs have taught us, it is
that graphics are slow. At least, they are far and above the major thing
slowing down the program, and deserve the most attention and thought for
improvement. Moreover, because there is lots of looping involved, the
elimination of just a few instructions can translate to thousands of
cycles saved.

We have examined several fill routines up to now, but neither of them is
up to the task of Polygonamy. The cookie-cutter method is OK, but doesn't
allow multiple objects, and certainly doesn't allow pattern fills. Using
an EOR-buffer is just plain slow and inefficient and a big drag. So it's
time to rethink this problem.

Recall that on the 64 the bitmap screen is divided into 8x8 cells, which
are arranged horizontally in rows. It's a pretty kooky way of doing
things, but we shall overcome.

First of all it should be clear that we want to fill from left to right
(as opposed from top to bottom). We can then fill a byte at a time,
instead of dinking in little pixels at a time.

Previously we used a custom character set to plot into. One of the major
reasons for doing so was to use Y as the Y-coordinate, so that storing a
particular point was as simple as STA COLUMN,Y. We can still use this
idea, but only within each row. That is, if we let Y=0..7, we can address
each individual pixel-row within each 8x8 block row with an STA ADDRESS,Y.

For real speed, we are going to want an unrolled fill routine. That is,
we don't want to mess around with loop counters and updating pointers and
such. Since there are 25 rows on the screen (25 times 8 = 200 pixels
high) we are probably going to need 25 separate fill routines.

I constructed my fill routine as follows:

 STA COL1,Y
 DEX
 BEQ :DONE
 STA COL2,Y
 DEX
 BEQ :DONE
 STA COL3,Y
 ... etc.
 :DONE RTS

Thus X would be my counter into the number of columns to fill, A can

contain our pattern to fill with, and Y can range from 0..7 to index the
individual rows within the block. The first thing to notice is that each
STA/DEX/BEQ code chunk is six bytes. So, all we need to do is calculate
which row to start filling at, multiply by six, and add that number to
the start of the fill routine. The idea is then to jump into the correct
place in the fill, and let it fill the right number of columns, stored in
X.

There is a little problem though -- what we're talking about doing is an
indirect JSR, and there is no such thing. But it's easy enough to fake,
because we can use an indirect JMP. So a call to the fill routine would
look like the following:

 ...
 JSR FILL
 ...
FILL JMP (ADDRESS)

where ADDRESS simply points to the correct entry point in the fill routine.

Moreover, you may also note that 40 columns times 6 bytes/column is 240
bytes, so that each little fill routine handily fits in a page. Thus,
moving between rows in the bitmap corresponds to a simple decrement or
increment of the high byte of the ADDRESS pointer.

This was the state of things when, days before I was to be all done with
Polygonamy, I mentioned it to my friend George Taylor, who suggested the
following modification: instead of using X to count how many columns to
fill, just make the fill routine:

 STA COL1,Y
 STA COL2,Y
 STA COL3,Y
 ...

Then, insert an RTS into the right place in the routine. Thus, we
calculate which column to stop filling at, multiply by three, and stick
an RTS in the fill routine at that point. To fix it up we stick an
STA ..,Y back on top of the RTS.

I don't think you're going to make a fill routine faster than that :).

Moreover, note that each fill routine takes up just 120 bytes, so we can
now fit two fill routines in each page. I did not do this, but it is
easy to do, and instantly frees up 25 pages.

@(A): Filled Polygons

I mean, hey, this _is_ "Polygonamy", so let's talk polygons, and lots of
them.

Clearly all that is needed to draw an object are the left and right
endpoints of the object, since everything in-between will be filled.

An observation to make is that if you take a slice out of a convex
polygon, the slice will intersect the polygon at exactly two points.
Another, more important, observation is to note that the highest and
lowest point of a polygon will always be at a vertex. Finally, it is
important to note that any vertex of a polygon has exactly two lines
extending out of it, one to the left, and one to the right.

Consider a piece of a polygon:

 \ /
 \ /
 \ /
 \ /
 \ /
 * <--- Vertex v0

where the vertex v0 is the lowest point of the polygon. All that needs
to be done is to move upwards (DEY), compute the left and right points
of the polygon at that point, and then fill between the two (JSR FILL).

The idea then is to start at the bottom (or the top) and to steadily move
upwards while _simultaneously_ calculating the endpoints of the left and
right lines, and filling in-between. But we need the equations of the
left and right lines to do this.

Now it's time for another observation. Let's say we have a polygon with

n vertices v1, v2, ..., vn, and furthermore that as we move between these
points we move around the polygon counter-clockwise. Thus v3 is to the
right of v2, v1 is to the left of v2, v4 is to the right of v3, etc.
For example:

 v1____v3
 \ /
 \/
 v2

What happens if we rotate this polygon?

 v2____v1
 \ /
 \/
 v3

The vertices have changed position, but *their order has not*. v3 is
still to the right of v2, and v1 is still to the left.

Now we have a real plan. We simply define the polygon as a list of
points v1 v2 v3 ... vn. We then figure out which one is lowest, i.e. has
the smallest (or greatest) y-coordinate, call this vertex vm (vmax). The
endpoints of the left and right lines are vm-1,vm and vm,vm+1. So move
along those lines until the next vertex is reached. At that point,
recompute the appropriate line, and keep moving upwards until the top of
the polygon is reached.

Perhaps an example would be helpful:

 v1
 |\
 | \ v3
 | /
 |/
 v2

v2 is the minimum. The left line has endpoints (v1,v2) and the right
line has endpoints (v2,v3). We steadily move along the left and right
lines as we creep upwards. At some point we hit v3, and at this point
we compute a new equation for the right line, this time with endpoints
(v3,v1). Now we continue to creep upwards and move along the left and
right lines, until we hit v1, at which point we are finished.

It is important to keep in mind that the order of the points never
changes. We don't need to do anything complicated like sorting the
points; we only need to find the lowest point, and branch left and right
from there, keeping in mind that the points are cyclic (i.e. v1 is to the
right of vn).

It is now time to start thinking about code. One aspect of the fill
routine we haven't considered is the clear. In the past the entire draw
buffer was cleared and then the new stuff was drawn into it. But this
seems like a bit of a waste; it seems wasteful to clear a bunch of memory
that is just going to be overwritten again. So, as long as we can do it
efficiently, it might be smart to combine the clear and fill routines.

Here is how Polygonamy does it: If a line needs to be cleared, then it
is cleared up to the edges of the object, but the part that is going to
be filled is ignored. (It isn't clear if this provides any substantial
efficiency gains, though).

To see the status of a particular line, a table is used, containing a
value for each Y-coordinate. If the entry is 255 then the line is clear,
if it's 0 then the line has old junk in it, and if it's 1 then the line
has new junk in it. Thus we only clear the line if its entry in the fill
table is a zero.

So a fill routine might flow like the following:

 let Y count from 7..0

 If we are at the left endpoint then recalculate the left line.
 If we are at the right endpoint the recalculate the right line.
 Update xleft & xright
 If line needs to be cleared then clear line.
 If the starting fill column is different than the previous fill
 column then update the pointers, etc.
 Plot the left and right endpoints (since the fill routine only plots
 eight bits at a time)
 Fill the in-between parts

 Update Y
 If Y passes through zero then update fill entry point, set Y=7 etc.
 Keep going until we reach the top

The next thing to figure out is how to calculate the left and right
lines. We do have the old line routine, which we could use to advance
to the left and right endpoints, but clearly this isn't too efficient.

The question is: if the y-coordinate increases by one, then how much does
the x-coordinate increase by? The equation of a line is:

 (y-y0) = m*(x-x0) m=slope

or

 change in y = m*change in x

So, if the change in y is 1, then then the change in x is 1/m. All we
need to do then is calculate the inverse-slope=dx/dy, where dx=x2-x1 and
dy=y2-y1, and add this to the x-coordinate with each step in y.

Isn't this a fraction? Sure, big deal. The fraction can be written
as dx/dy = N + Rem/dy, where N is an integer, and Rem is the remainder,
which is always less than dy. So to calculate x=x+dx/dy:

 x= x+N
 xrem= xrem+Rem
 If xrem>=dy then x=x+1:xrem=xrem-dy

As usual, we want to start xrem at dy/2, which has the effect of rounding
numbers up.

 10 REM LINE ROUTINE TAKE TWO SLJ 11/24/95
 12 REM ACTUALLY IT'S A FILL RTY NOW
 15 GRAPHIC 1,1
 20 X0=160:Y0=100
 30 X1=5:Y1=-50:X2=7:Y2=11:XL=X1:YL=Y1:Y=Y1
 35 X3=50:Y3=Y1:X4=X3+100:Y4=Y2:XR=X3:YR=Y3
 40 D1=Y2-Y1+1:DX=X2-X1:LI=INT(DX/D1):LR=DX-LI*D1
 45 TL=INT(D1/2)
 46 D2=Y4-Y3+1:DX=X4-X3:RI=INT(DX/D2):RR=DX-RI*D2
 48 TR=INT(D2/2)
 50 DRAW1, X0+X1,Y0-Y1 TO X0+X2,Y0-Y2, X0+X3,Y0-Y3 TO X0+X4,Y0-Y4
 60 REM MAIN LOOP
 70 XR=XR+RI:TR=TR+RR:IF TR>=D2 THEN TR=TR-D2:XR=XR+1
 75 DRAW1, X0+XL,Y0-Y TO X0+XR,Y0-Y
 80 XL=XL+LI:TL=TL+LR:IF TL>=D1 THEN TL=TL-D1:XL=XL+1
 90 REM DRAW1, X0+XL,Y0-Y TO X0+XR,T0-T
 100 Y=Y+1:IF Y<=Y2 THEN 60

In this program (x1,y1)-(x2,y2) is the left line, and (x3,y3)-(x4,y4) is
the right line. The first thing to note is that in lines 40 and 46,
Y=y2-y1+1. This issue was discussed in the very first C=Hacking
3D-graphics article. The problem is that although the line will be
anatomically correct with DY=y2-y1, it will look silly. The easiest way
to see this is to consider y2-y1=1, e.g. say we draw a line between
(0,10) to (50,11). Ideally this line will consist of two line segments,
one from (0,10) to (25,10) and the other from (26,11) to (50,11). But ifi
we use DY=1 we will have one line segment from (0,10) to (50,10), and a
single point at (50,11).

Adding one to DY is just a simple cheat. Most of the time the lines will
look just fine, but lines which have a slope near one will come out a bit
wrong. The other, accurate solution, which was used in the first
article, is more complicated to implement in this routine. Adding one to
DY will also have a useful benefit which we shall shortly see.

In line 50 above the boundaries of our object are drawn in, to check the
accuracy of the algorithm.

In lines 70-80 the right point is updated, then the thing is filled, then
the left point is updated. This is because both lines are moving to the
right, e.g. they both have positive slope. Think about how the line
segments will be drawn; in general, we want to draw from the left end of
the left line segment to the right end of the right line segment.
(Sometimes this will look a little off where the two lines meet).

Since the left and right lines can each have either positive or negative
slopes, there are four possibilities: Plus-Plus, Plus-Minus, Minus-Minus,
and Minus-Plus.

 Plus-Plus: Update right, fill, then update left
 Plus-Minus: Fill, update left, update right
 Minus-Minus:Update left, fill, update right
 Minus-Plus: Update left, update right, fill

If this is still confusing, try out the above program with various left
and right line segments, and these things will jump right out.

Now we need to think about implementing this in assembly. Since this is
being done in hires 320x200, the x-coordinate requires two bytes, and the
y-coordinate requires one. We also need another byte to store the
remainder portion of the x-coordinate.

The most glaring question is the calculation of dx/dy: somehow we need a
fast way of exactly dividing an eight bit number dy into a nine bit
number dx. Recall that we always add one to dy, so that dy actually
ranges from 2 to 200. Since the maximum value of dx is 320 or so, the
largest value of dx/dy that we can have is 320/2 = 160. In other words,
both the integer and remainder part of dx/dy will fit in a byte. Simply
adding one to dy makes life pretty easy at this end.

One very fast method of doing division is of course by using logarithms.
But they have a problem with accuracy. One the other hand, one thing we
know how to do very quickly is multiplication.

This then is the plan: use logarithmic division to get an estimate for N,
the integer part. Then calculate N*dy, compare with dx, and adjust the
integer part accordingly.

A quick reminder of how logarithms can be used for division:

 log(a/b) = log(a) - log(b)
 exp(log(x)) = x

thus

 a/b = exp(log(a)-log(b)).

How do we take the log of a 9-bit number? We don't. Instead, we
construct a table of f(x)=log(2*x), and use, not x, but x/2, as a
parameter. Remember that the logarithms merely give an estimate to the
integer part.

Moreover, if the tables are constructed carefully we can insure that the
estimate for N is either exact or too small. Thus we only need to check
for undershoots, which simplifies the calculation considerably. In
particular, the tables were constructed as follows:

 10 DIM L1%(160), L2%(200), EX%(255): C=255/LOG(160)
 20 FOR I=1 TO 160
 30 L1%(I)=INT(C*LOG(I))
 40 NEXT
 50 FOR I=2 TO 200
 60 L2%(I)=INT(C*LOG(I/2)+0.5)
 70 NEXT
 80 FOR I=0 TO 255
 90 EX%(I)=INT(EXP(I/C))
 95 IF(I=129)OR(I=148)OR(I=153)OR(I=81)OR(I=98)THEN EX%(I)= EX%(I)-1
 100 NEXT
 110 L2%(3)=L2%(3)+1

The constant C is needed obviously to improve accuracy (log(160) simply
isn't a very large number). Note that I divided the arguments of the
logarithms in half; instead of calculating 2*dx/dy I calculate dx/(dy/2),
which is of course the same thing. This was done to make C work out.
By 'fixing' the tables in this manner, exactly 3927 calculations will
undershoot, which works out to about 6% of all possible calculations we
may perform.

The actual division routine works out pretty slick in assembly:

 DIVXY MAC ;Macro to compute 2*X/Y
 LDA LOG1,X ;This is the division part
 SEC
 SBC LOG2,Y
 BCS CONT
 LDX #00 ;dx/dy < 1
 LDA]1 ;LDA dx, since dx is exactly the remainder
 BCC L2
 CONT
 TAX

 LDA EXP,X
 TAX ;X is now integer estimate
 STA MULT1
 EOR #$FF
 ADC #00 ;Carry is guaranteed set
 STA MULT2
 LDA]1 ;ldxlo or rdxlo (i.e. low byte of dx)
 ADC (MULT2),Y
 SEC
 SBC (MULT1),Y ;Calculate remainder
 L2 CMP]2 ;ldy or rdy (i.e.]2 = dy)
 BCC DONE
 L1 INX ;Remainder is too large, so up int estimate
 SBC]2 ;and subtract dy
 CMP]2 ;Repeat until remainder<dy
 BCS L1
 DONE <<< ;Now X contains integer, A remainder

Do you see how it works? First the initial guess N is calculated. If
log(x) - log(y/2) is negative then dx/dy is less that one, so the
remainder is simply dx and the integer part is zero. Otherwise,
R= dx - N*dy is calculated. Since N always undershoots, dx-N*dy will
always be positive, so the high byte of dx isn't needed. This quantity
R is the remainder, so if it is larger than dy simply increase the
integer estimate and subtract dy from R, and repeat if necessary.

The end result then is a 9-bit/8-bit divide which takes 52 cycles
in the best case. Pretty neat, huh? And quite adequate for our
purposes.

Wait just a minute there, bub... what about when dy=0? Consider what
dy=0 means: it means that two vertices lie along the same line. That in
turn means that the next vertex can be immediately skipped to. That is,
simply move on to the next point in the list, be it to the right or to
the left, if dy=0.

Well, ah reckon that that just about completes the polygon fill routine.
To summarize: start at the bottom (top, whatever) of the polygon.
Calculate the "slopes" of the right and left lines from that point.
Update the coordinates, fill the in-between parts, and plot the
end-sections. Then update Y and keep going. If another vertex is hit,
then recalculate the corresponding line.

Alert people may have noticed that this algorithm translates very nicely
to the 128's VDC chip.

I should probably briefly mention the pattern fills. I use Y as an index
to a pattern table, so it was very natural to use 8x8 character patterns.
With different indexing of course more complicated patterns can be used.
Moreover, it dawned on me that animated patterns were just as easy as
normal ones, so I tried to think up a few interesting animated patterns
(there are two in Polygonamy, each pattern is eight frames).

So that's the graphics part, more or less.

We ain't even CLOSE to being done yet.

@(A): 3D Code

Now it's FINALLY time to start writing the master program to control the
3D world. Luckily we have the BASIC program from waaaay up above to
work from.

First is to decide how angles will be measured. The smart thing to do is
to let the angle variable vary between 0..127 or 0..255; that is, to
measure angles in units of 2*pi/128 (or 2*pi/256). The reason this is
smart is because the angle is now periodic, wrapping around 256. Angles
can be added together without checking for overflow, etc. (257=1, 258=2,
259=3, etc.). Note that in previous programs I did a very dumb thing
and let the angle variable vary from 0..119, so angles were measured in
three degree increments, and I had to place all sorts of checks into the
code. Polygonamy uses angle increments of delta=2*pi/128.

Next there is the issue of cx=cx+20 instead of cx=cx+1. The problem is
that if cx=cx+1 is used it takes forever to move around in the world.
Moreover, the objects get really small at around cx=5000. What this
means is that in the assembly version we can use a single byte for cx,
and just treat each unit of cx as 20 "real world" units. That is, in
the assembly program, we will keep track of cx/20 instead of cx.

Sort-of.

Consider the rotation which takes place when we turn left or right: the
world is rotated through an angle delta=2*pi/128, so the calculation is:

 blah= cdel*cx + sdel*cz.
 cz= -sdel*cx + cdel*cz

The problem is that sin(2*pi/128)=0.049 and cos(delta)=0.9988, which
means that, in practice, cdel*cx=cx. Equally bad is that sdel*cz is very
small when cz starts to get small (e.g. 10*sdel = 0.49). The result of
this is that objects close to the origin (e.g. us) will not be rotated at
all!

Thus the centers need to be calculated more accurately. In particular, a
second byte is needed to store the 'decimal' part of the center. To be
precise, this second byte will contain the decimal part of the center
times 256. This way we can add and subtract remainders and any over- or
underflows will then affect the integer parts cx,cy,cz.

Very quickly we should decide how to represent remainders of negative
numbers. A number like -1.5 can be represented as -1 - 0.5, but it can
just as well be represented as -2.0 + 0.5. By using the second method
remainders are always positive, and that's the smart way to do things (if
nothing else it lets the remainder be a fraction of 256, instead of a
fraction of 128). It's also the way any computer will round: type
INT(-1.5) and see what happens.

further question arises about how to represent the centers, specifically,
how do we represent an object which is behind us, e.g. has a negative
value for cx. The normal way to represent negative numbers is of course
to use 2's complement notation, but this has some disadvantages. One of
them is multiplication: recall that in an earlier code some really fancy
footwork needed to be done just to be able to multiply numbers between
-64..64, and we certainly want the centers to range over more numbers
than that. This gets worse if we decide to use more bits to represent
the centers, as we must do if a larger world is constructed.

Moreover, Polygonamy is an excuse for testing new and different ideas and
investigating their strengths and limitations, so why not try something
different. As I look through my notes I'm not really sure what motivated
this choice, but how about the following: let's add 128 to all of our
numbers.(I think this is called excess-128 notation). -2 will be
represented as 126, -1 will be represented as 127, six will be
represented as 134, etc.

Shifting between the excess numbers and 'real' numbers is as simple as
EOR #128. Recall that to multiply two numbers, let f(x)=x^2/4, so that
a*b = f(a+b) - f(a-b). In the new system:

 xo = 128+x
 yo = 128+y

which means:

 xo+yo = 256 + (x+y)
 256+xo-yo = 256 + (x-y).

The 256 added above can be thought of as the carry bit. What this means
is that all that is needed is to construct a single function,

 f(x) = (x-256)^2

where x=-255..255. We can now very quickly multiply signed numbers in
the range -128..128, and with just a single (albeit 512 byte) table,
using essentially the same multiplication procedure as before.

Now the downside of this method: adding and subtracting excess-128
numbers, and in particular checking for overflow.

 xo+yo = 256 + (x+y)
 if x+y >= 128 then we have overflow
 if x+y < -128 then we have underflow

which implies:

 xo+yo >= 256+128 implies overflow
 xo+yo < 128 implies underflow

with similar results for subtraction. Note also that after every
addition or subtraction 128 needs to be either added or subtracted from

the result, which either way corresponds to an EOR #$80. So it's a
little more work to add numbers in this system. (Of course, adding
normal numbers to excess-128 numbers is no problem, so INC and DEC work
fine).

Back to rotations. The most obvious thing to do is to create two tables:

 f(x) = (x-128)*cos(delta) + 128
 g(x) = (x-128)*sin(delta) + 128

but remember that the remainders are also needed:

 fr(x) = 256*(remainder((x-128)*cos(delta)))
 gr(x) = 256*(remainder((x-128)*sin(delta)))

Since remainders are always positive none of this excess-128 junk is
needed. Note that we could also let f(x) and g(x) be 2's-complement
tables, then convert from two's-complement into excess-128 after
performing additions etc. The conversion is, what do you know, EOR #$80.
This is the smarter thing to do, and an even smarter thing to do is to
let the cosine table (f(x) above) to be in excess-128 format, and the
sine table g(x) in 2's complement. This way the numbers can be added
as normal, and no conversion need take place:

* Compare to BaSiC subroutine rotl: above

 ROTL
 INC THETA
 LDY #NUMOBJS ;Y indexes the object
 DEY

 :LOOP LDX CX,Y ;center coordinate
 LDA CDEL,X ;CDEL = f(x) above
 LDX CZ,Y
 CLC
 ADC SDEL,X
 STA TEMP ;t1 = ci+si
 LDA CXREM,Y
 CLC
 ADC SDELREM,Y ;Add remainders
 BCC :CONT1
 INC TEMP
 CLC
 :CONT1 LDX CX,Y
 ADC CDELREM,X
 BCC :CONT2
 INC TEMP
 :CONT2 STA CXREM,Y

 LDX CZ,Y
 LDA CDEL,X
 LDX CX,Y
 SEC
 SBC SDEL,X
 STA TEMP2 ;t2=cz-si
 LDA CZREM,Y
 SEC
 SBC SDELREM,X
 BCS :CONT3
 DEC TEMP2
 :CONT3 LDX CZ,Y
 CLC
 ADC CDELREM,X
 BCC :CONT4
 INC TEMP2
 :CONT4 STA CZREM,Y
 LDA TEMP2
 STA CZ,Y
 LDA TEMP
 STA CX,Y
 DEY
 BPL :LOOP

Well, that takes care of two lines of BASIC code :). As it turns out,
using a single byte for the remainder does a pretty good job of holding
the number. Rotating by 360 degrees one way, then rotating back again,
produces a center which is within a few decimal places of the starting
value.

Next up: projections. The projection calcuation is:

 Proj(P) = d*(P+C)/(px+cx)

where P=(px,py,pz) and C=(cx,cy,cz). In terms of the implementation, we
want to calculate:

 d*((P-128) + s*(C-128)) / ((px-128) + s*(cx-128))

where s=20, to translate C into the 'real world'. To calculate this,
consider the following function:

 g(x) = r*d / (s*((px-128)/s + cx-128)) + 128

where r is some scaling factor. The projection calculation then becomes:

 1/r*((g-128)*(P-128) + s*(g-128)*(C-128))

Thus we need some more tables, one of 1/(4r) * (256-x)^2, the other of
s/(4r) * (256-x)^2, to do the multiplication. Furthermore a table of
(x-128)/s would be pretty handy, and finally we need a table of
g(x) = r*d/(s*(x-128)) + 128.

The general outline of a program would be:

 Get keypress
 1- If translate, then update all cx's (just some INCs and DECs)
 2- If rotate left or right, then rotate world
 3- Update angles for global & local rotation matrix (e.g. theta)
 4- Figure out which objects to display/construct a list
 5- Call each object in turn
 6- Update bitmap: clear out remaining garbage and swap bitmaps

Numbers 1 and 2 are done. In number three, by global matrix I mean the
object rotation that results from us turning left or right. By local
rotation I mean rotations independent of whether or not we turn. The
local rotation allows e.g. the octahedron to spin around in Polygonamy.

Figuring out which objects to display is easy: just check to make sure it
lies within the viewing cone/pyramid, that we are not too close, etc. If
an object is to be displayed, it needs to be placed in a list. I
constructed the list to make sure that objects which are farther away are
drawn first; that way objects can overlap one another correctly. This
was done via a simple insertion sort -- i.e. bump up objects in the list
until the right spot is reached to insert the object.

We have most of the tools to deal with #5. Handling an object consists
of rotating and projecting it, then displaying it. Rotation is the same
as it has always been, albeit now involving sixteen bits, and projection
is described above. Then each polygon needs to be drawn, by sticking the
points of the polygon into the polygon list, setting up the fill pattern
and the pointer to the minimum Y-value, and calling the polygon fill
routine. Of course, if the face is hidden then we certainly don't want
to plot it.

The minimum y-value can be found very easily while inserting the points
into the point list -- just keep track of ymax and compare to each point
as it is inserted.

We have discussed several methods of calculating hidden faces --
cross-product, rotated normal, parallel faces -- each of which involves
looking at a vector normal to the face, and either projecting it or
taking the dot product with a vector going to the origin. What a big
pain in the butt, especially since values can be sixteen-bits, etc.

Did you ever stop to wonder about what happens to all the previous
polygon-fill calculations if the point-list is entered in reverse order?
Quite simply, left -> right and right -> left. And what happens when a
face is invisible? The polygon is turned away from our eye. The points
in the polygon, which go counter-clockwise around the polygon, will go
clockwise when the polygon is turned around. (I should point out that at
least in my code the points on the polygon are actually done in
clockwise-order, since projection reverses the points).

So, we have hidden-faces already built-in to the polygon plot routine!
In essence, we simply don't plot any polygon which the routine will freak
out on. We can of course be systematic about this; within the plot
routine:

 - Calculate the left and right lines.
 - Take a trial step along the left and right lines
 - If xleft < xright then we are OK, otherwise punt.

In principle we only need to do this on the first calculation, and use
some properties of the lines to make things easier (for instance, if the
left line is moving left and the right line is moving right, and they
emanate from the same point, we know the polygon is visible).
Unfortunately, nasty situations can arise, for instance when the left and
right slopes have the same integer parts. So a check needs to be placed
within the fill code to make sure the left point doesn't get ahead of the
right point. This is unfortunate, as every cycle counts in the fill
code, but luckily there is (was) a natural place to put in a quick check.

All that is left then is #6: run through the fill table, and clear any
lines that still have old junk in them. Since I used two bitmaps as a
double-buffer, all that is left is to swap the bitmaps, and do it all
again.

Et voila.

@(A): Analysis and Conclusions

As you can see, the program is not without its flaws. The biggest one,
I think, deals with the projection. Recall that I calculate px/s, where
s=20, and add it to cx. My feeling was that px was going to be very
small compared with cx, and so not modify the projection by much. But
either this is a bad assumption, or the rotations are all screwed up,
because certain rotations look a bit goofy. For instance, when you walk
up close to the octahedron it starts to get jumpy, or wobbly. I note
further that when you are far away from an object it looks much better,
so that might be a way to fudge around the problem (e.g. make the value
of d in the projection much larger).

Speaking of rotations, the 'funky shake' which used to plague the old
programs has now been fixed. For instance, a rotation in the y-direction
would work well but at some point it would appear to start rotating
backwards, then start going the right way again. The problem was due to
an overflow in the calculation of the rotation matrix, in a term that
looked like(sin(t1) + sin(t2) - sin(t3) - sin(t4))/4, and the solution is
to split such terms into two, e.g. (sin(t1)+sin(t2))/4 -
(sin(t3)+sin(t4))/4.

Speaking further of rotations, I find the current system of rotation and
projection unsatisfying, in particular too slow. Notice how much the
program slows down when all three objects are visible; some 40 points
are being rotated, both locally and globally, at this point. It is
possible to reduce the number of matrix multiplications from 9 to 8 (and
even lower, with lots of extra overhead), but I find this unsatisfying.
A better method is needed...

There is another bug somewhere in the global rotations which sometimes
causes the objects to wander around -- occasionally I can get the ship or
the octahedron to move close to the pyramid. Also, when you are really
close to an object and turn, you might notice the curious effect of the
object rotating by small amounts, and then jumping position by a large
amount. This is due to the 'units of 20' that are used in the program;
the remainder part of (cx,cy,cz) needs to be used here, and then the
display will be smooth as well.

Of course, if multicolor mode was used many of the calculations would be
much simpler, since the screen x-coordinate would only require one byte
instead of two.

The program should be made more efficient memory-wise of course. Shoving
the fill routines for each buffer together would help out, and a system
for rotating points out of a list, similar to that used in the last 3D
program, would greatly streamline things (although it would be a tad
slower).

There is still a minor bug or two in the fill routine, which causes
little blue chunks to be taken off the ends of some polygons, but I
didn't feel like tracking it down.

Note that although Polygonamy only lets you run around in a plane,
running around in a full three dimensions is quite simple to add. And,
although there are only three objects in the world, it is all set up to
deal with a lot more. In summary, I see no major problems standing
in the way of doing reasonably fast 3D graphics on the 64.

The object file for this article is available in "Hacking the Code"
(Reference: code, SubRef: polycode) found elsewhere in this issue.

==

@(#)usenet: UseNuggets

COMP.SYS.CBM: The breeding ground of programmers and users alike. Let's
see what topics are showing up this month:

@(A): What is the HECK is BCD?
 As most ML programmers know, the 65XX CPU line has a arithmetic mode
 called "decimal mode", and is used to manipulate Binary Coded Decimal
 numbers (BCD). BCD numbers treat each nybble as a decimal digit.
 Possibel values for a byte than ar $00 to $99. Some fool asked on the
 group what earthly use BCD has on the 65XX CPU. Well, among other things,
 Willem-Jan Monsuwe shared this tidbit:

 I recall someone asking what the use of BCD (Binary Coded
 Decimal) was. I have here a 99-byte program that uses it to
 print out a number stored in the memory in decimal, with a
 maximum of more than 10^500 digits, Within 5 seconds ;).
 What's the use ?? Well, you can impress your friends by
 calculating the answer to the chessboard-problem (2^64
 - 1 or 0xFFFFFFFFFFFFFFFF) within 0.06 of a second. Oh,
 and the maximum is pretty easy to overcome, with a slight
 code change, if anyone needs numbers greater than, oh,
 509 digits.. ;)

 * = $1000

 SNUM = $1100
 BUFF = $1200

 PRINT = $FFD2

 SNUMPTR = $FB
 SNUMBF = $FC
 BUFFEND = $FD

 LDA #0
 TAX
 CLRBUFF STA BUFF,X
 INX
 BNE CLRBUFF
 SED
 STA BUFFPTR
 LDY #210
 STY SNUMPTR
 BYTELOOP LDA SNUM,Y
 STA SNUMBF
 LDY #8
 BITLOOP ASL SNUMBF
 LDX #0
 ADDLOOP LDA BUFF,X
 ADC BUFF,X
 STA BUFF,X
 INX
 BCS ADDLOOP
 CPX BUFFEND
 BCC ADDLOOP
 STX BUFFEND
 DEY
 BNE BITLOOP
 DEC SNUMPTR
 LDY SNUMPTR
 CPY #$FF
 BNE BYTELOOP
 CLD
 LDA #13
 JSR PRINT
 DEX
 LDA BUFF,X
 AND #$F0
 BEQ LOWNYB
 PRINTLOOP LDA BUFF,X
 LSR
 LSR
 LSR
 LSR
 CLC
 ADC #48
 JSR PRINT
 LOWNYB LDA BUFF,X
 AND #$0F

 CLC
 ADC #48
 JSR PRINT
 DEX
 CPX #$FF
 BNE PRINTLOOP

@(A): Commodore's Can't Compute! (or can they?)
 OK, try the following on your beloved 128:

 print 23.13 - 22.87 hit RETURN

 Do you get .260000005?

 The resuling thread after this question was posed started to lean in the
 direction of attacking the arithmetic units of BASIC in the Commodore
 8-bit machines. Then an eloquent post from Alan Jones
 (alan.jones@qcs.org) started to set the record straight. We can't
 express it any better than Alan:

 Recently, the C64/128 floating point arithmetic has been maligned
 here. The C64/128 has good floating point math. It uses 5 byte reals
 with a 4 byte (32 bit) mantissa. There are no bugs in the basic FP
 arithmetic. The reals ARE limited in range and precision. They are
 more useful than compters using 32 bit reals, but not up to IEEE
 standard arithmetic. IEEE FP arithmetic (double and extended
 precision...) would be much slower than our existing FP routines. Of
 course it might be possible to interface a hardware FPU to the new
 Super64/128CPU (65816).

 The other C64/128 FP routines, such as SIN, EXP, and functions that use
 them are not accurate to full 32 bit FP precision. When used with
 care, they are often accurate enough for engineering work.

 The most annoying inaccuracy may be the conversion between binary FP
 and decimal for I/O. BASIC only prints 9 decimal digits of a FP
 number, but our binary FP number has about 9.6 decimal digits of
 precision. What you see is not what you have! Of course there are
 some simple tricks that you can use to print the FP number with more
 decimal precision, and you could do I/O using HEX notation. If you
 save intermediate results for later use, make sure you write the FP
 values as binary rather than ASCII (converted to decimal).

 If you do accounting type stuff with dollars and cents, using binary FP
 with its limited precision and rounding can be anoying. If your
 results are off one penny, all of your work will be suspect. Our 6502
 family of CPUs also has decimal arithmetic. It can do decimal
 arithmetic exactly, although you may have to program it yourself. I
 think the Paperclip word Processor will do simple calculations with up
 to 40 decimal digits of precision.

 If you are using 64+ bit FP you can compute some things in a fast and
 sloppy manner. Some programs that work OK on an IBM PC or workstation
 need more careful attention when coded for a C64/128.

 Some numbers can not be represented exactly in binary FP formats of any
 precision. If you want to calculate:

 a:=(1/3)*(1/5)*(1/7)*(1/11)

 You should code it as:

 a:=1/(3*5*7*11)

 Aside from being faster, it is more accurate.

 There are many tips for preserving numerical accuracy in computations.
 There are often interesting tradoffs between computation speed, memory
 usage, and accuracy and stability. There are even some C64/128
 specific tips. (e.g. we usually store a real value in 5 bytes of
 memory but push it onto a stack as 6 bytes when we want to use it.)

 This is not intended to be a Commodore FP tutorial. It is reminder
 that the C64/128 can be used for "heavy math", and there are no bugs
 in the Commodore +, -, *, /, Floating Point arithmetic routines. It
 uses 32 binary bit mantisa FP reals with proper rounding.
 Simple examples can always be contrived to demonstrate a perceived FP
 bug by computer illiterates(?).

 Alan got his dig in at the end there. That post, and others like it,
 pretty much squelched the arithmetic discussion. But, as is usually the

 case, we all learned a neat trick along the way. Peter Karlsson shared
 his easy way of determining whether his programs are running on a C64 or
 C128 by issueing the following statement:

 C=64+64*INT(.1+.9)

 Since the 64 and 128 differ ever so slightly in their arithmetic
 routines, the above line gives 64 on a C64 and 128 on a C128.

@(A): We need another OS!
 It all started when Benjamin Moos posted a message in the newsgroup
 mentioning that he had been off the net for a while but was returning
 and wondered whether anyone would want him to finish work on a C++ based
 comiler for the GEOS 2.0 environment. Of course, everyone was for that,
 but Moos continued on, asking if there was any interest in an alternate
 OS for the 64 or 128. Moos mentioned that he had been also working on
 Common Graphic OPerating Environment (CGOE), and was thinking about
 finishing the project, which would provide a C= graphics character
 based graphic windowing system that would allow all 64 programs to run
 in the 128 80 column screen in 40 column windows.

 Well, that brought out some friendly debate, to state the obvious. Part
 of the group posted words of encouragement, noting that we need to
 support those programming for the environment. The other half of
 the camp echoed the words of Patrick Leung, who expressed concern that
 there are many programmers in the arena that are doing the same thing
 separately. He encouraged programmers to consolidate features and code
 bases to arrive at robust full-featured programs instead of fragile bare-
 bones applications that single programmers can't support. ACE, Craig
 Bruce's UNIX-like OS detailed in earlier C=Hacking issues, was brought
 up by some, who asked that programmers heed Leung's advice and build
 modules for the already supported ACE environment.

 Perhaps J. Shell has the best idea, as he is planning to set up an
 interactive WWW site to allows programmers to work with him to build
 COMMIX System II (CX2). The site will allow programmers to bring new
 ideas to the table and have them rapidly incorported into the design.
 We'll see if Mr. Shell can deliver on this neat idea.

 Going full circle, Benjamin Moos reponded to some of the posts, saying
 that the OS work was going to be placed on the shelf for now, as many
 had expressed interest in the C++ like compiler. However, he did say
 that work would begin again at a later date, but no decision was made
 as to how he will proceed.

@(A): The "More Power" Swiftlink
 Ever striving to squeeze the most performance out of his C128 system,
 Craig Bruce modified his Swiftlink and lived to tell about it in the
 newsgroup.. Basically, after researching the data sheets for the 6551
 ACIA IC used in the SL, Craig noted that Dr. Evil Labs (the original
 creators of the SL) had used a double speed crystal to up the 19,200
 bps maximum in the ACIA to 38,400 bps. The IC claims that any baud
 rate up to 125,000bps can be achieved with the IC, given the correct
 crystal frequency. Well, another feature of the 6551 is to use the
 crystal frequency/16 as the bps rate, which is 230,400 bps or the
 stock crystal. Too fast for the IC. However, by replacing the
 crystal (a 3.6864 MHz unit) with a 1.8432 MHz unit, the 1/16 speed
 becomes 115,200. That speed, less than 125,000 bps, is the standard
 top frequency for IBM UARTs and is supported by most newer modems.
 Craig verified that his 2MHz 128 can keep up with the extra data
 that his modofoed SL allows him to receive, but not always. he
 claims that every once in a while, the systm gets choked up and
 crashes, so he is working on solutions. Understandably, one will need
 very tight terminal program code to keep up with this speed, but it
 will fit nicely with the SuperCPU.

 As with all things, there is a downside in that 19,200 becomes the
 next lower bps rate. 38,400 is gone forever. Craig speculated that
 perhaps a switch could be installed, but wasn't sure of the effects.

@(A): The Eternal Problem
 Although this didn't receive much discussion, C=Hacking feels many users
 can relate. How many have ever went into the local CompUSA of local
 computer store and asked to look at modems, printers, or SCSI drives,
 only to hear the dreaded laugh and chide that you should "buy a REAL
 computer", or watch the quizzical look of the sales person as they exclaim
 "You can't hook that up to a Commodore!" We particularly enjoyed the
 ending to the lament that appeared in the newsgroup:

 When someone keeps an old car around, babies it, works on it,
 adds to it, drives it around in style, no one says "Look at

 this dummy driving an out-dated gas guzzler that can't even do
 80, and gets atrocious gas mileage. The frame is archaic.
 The windows aren't electric. Why doesn't he upgrade?". Nah..
 they are 'enthusiasts of classic automobiles'.

 Well, ... we are "enthusiasts of a classic computer".

==

@(#)fido: FIDO's Nuggets

The CBM and CBM-128 FIDONet echoes. The place where Commodore users
unite. Let's what things they discussed over the past month or two:

@(A): UNZIP 2 or not UNZIP 2?
 For a while now, Commodore users have been able to uncompress
 archives created with the popular PKZIP 1.01 compression program
 by PKWare or one of its clones. Well, PKWare upped the ante and
 upgraded the PKZIP product to version 2, and that left a bunch of
 Commodore users compressed! The easy solution is to ask all
 archive creators to not use version 2 of the ZIP product, but that
 presents a problem. Most of the FIDONet crowd reads their mail
 offline via popular programs like QWKIE 3.1 on the 64 or QWKRR128
 4.3 on the 128. The programs work by retrieving a COMPRESSED
 packet of news and mail from a BBS. Well, it turns out that BBS
 systems have migrated over to the new version of ZIP, and some
 refuse to offer ZIP version 1 as an optional compression method
 for retrieval packets. So, the FIDONet crowd, including David
 Schmoll and others, have been working on or searching for a way
 to bring PKZIP 2 functionality to the 64. Some thought it was a
 done deal when a FIDNetter contacted Info-Zip, the authors of a
 free clone of PKZIP 2 by the same name. They were told the source
 code was available. The catch, it is written in C, and so far,
 no compilation on the 64 or 128 has been successful.

@(A): QWKIE v3.1 FREE!
 Many C64 users have delighted over the use of QWKIE v3.1 to read
 offline news and mail. However, many had been unable to register
 the product. The mystery was solved as of late a letter by the
 author was read that stated that he was ceasing support for the
 product and had placed it into the public domain. As well,
 interested programmers could contact him about source code. So,
 QWKIE FREE, a patched version of the program that is marked as
 registered, was uplodade to the many CBM BBS systems for users to
 enjoy.

@(A): That Darn Internet!
 As of late, many FIDONet regulars have been diappointed in the
 trafiic flow on the CBM echoes. They blame the growing
 popularity of the Internet as one reason the amount of messages
 has dwindled. Almost immediately, reasons why FIDONet is still
 useful started popping up in the echoes. Many claim that the
 Internet and FIDONet are complementary for the Commodore user, and
 that both resources are needed. Others, however, stressed that
 FIDONet is still the most useful. While C=Hacking isn't going
 to cast a vote here, we do hope that interest in the echoes stays
 high, as some only have access to FIDONet, and Commodore support
 should be on every network.

@(A): Let's Randomize
 Some soul on the echo was looking for a way to generate a random
 number from 2 to 350. Well, always eager to help, many FIDONetters
 came to the rescue, with varying degrees of complexity.

 The first post, by Ken Waugh, included the text from one of
 Rick Kepharts WWW Site pages that explained, in two BASIC lines or
 less, how to create a set of 255 nonrepeating random numbers.

 Then, ever the guru, George Hug, of 2400 bps on a 64 fame, described
 a method to find random numbers based on "linear maximal length
 shift registers", complete with 3 part article on the method. Wow!
 needless to say, the method looks promising, but was probably more
 than what the original author was looking for. Nonetheless, the
 treatise looks worthy of inclusion in an upcoming C=Hacking issue.

@(A): Catch the Wave!
 By now, most know that Maurice Randall, the author of GeoFAX, has been
 working on a GEOS telecommunications program that will operate at the
 14,400 bps or better mark. It's been discussed in both USENET and
 FIDONet before, but Gaelyne Moranec reopened the discussion with a
 statement that World Wide Web page viewing support might possibly

 be incoporated and under test. Mr. Randall was hoping to add such
 support at some time, but it was unclear when. It looks like sooner
 rather than later.

@(A): Who's First?
 Rod Gasson posed an interesting question on FIDONet a while back. He
 asked which CPU was in control of the 128 when it is first powere up.
 The abvious answer of "the 8502" was given many times over, but Rod
 finally noted that it is, in fact, the Z-80 in the system that gains
 control of the system first. Herman Yan supplied the relevant page
 from the C128 Programmer's Reference Guide that explains the
 reasons. If you want to know more, check out page 576 in the manual.

@(A): Desterm Confusion
 Many in the 128 arena use a telecommunications program called Desterm,
 by Matt Desmond. At present, there are two versions of the shareware
 application out, 2.00 that works on all drives except the RAMLink, and
 2.01 that works with RAMLink, but has bugs not present in 2.00. So,
 which to use? That questions gets asked in verious forms in the echoes
 repeatedly. That, coupled with the inability to find Mr. Desmond for
 a while, the supposed hand-over of the code to Steve Cuthbert, and the
 recent emergence of Matt (Reference: news) added to the confusion. The
 current thinking is that Matt will be working on a new release of
 Desterm that will include CTS/RTS support (the present version only
 supports XON/XOFF flow control) and some bug fixes. Somehow, the
 rumor that Matt will add Z-modem capabilities keeps pooping up, but
 Matt has denied any such work. He merely doesn;t see a need, since
 add in modules can be created to do this.

So, that gives you a glimpse into the world of FIDO, the wonder dog of
networks. C=Hacking laments that their own FIDO feed has been
experiencing problems as of late, so we too may have missed some juicy
tidbits. We'll catch them later on, though.

Here, boy....

===

@(#)cmdcpu: Underneath the Hood of the SuperCPU
 by Jim Brain

Does your mind go blank when you hear about the SuperCPU? With all the
mention of it in magazines and newsletters, are you left wondering how
much of the discussion is hype and how much is true? Are you worried
that this latest attempt is just another design destined for failure
like the others before it? Well, if so, then you're not alone. With
the reputation accelerator cartridges and their manufacturers have
acquired over the years, you are wise to be concerned. Judge for
yourself, as we peer under the hood of the Creative Micro Designs
SuperCPU accelerator cartridges.

Note: The information contained in this article has been gleaned from
talks with CMD, Mr. Charlie Christianson's post to comp.sys.cbm,
responses to USENET posts by Mr. Doug Cotton, and information from Commodore
World Issue #12. While general information is not likely to change,
some details discussed in this article may differ slightly from those
incorporated in the final product.

@(A): What's An Accelerator?

Did you know a Commodore 64 CPU executes things at 1 MHz? A tiny clock
inside the 64 ticks off 1 million "cycles" per second, and instructs
the CPU to move forward one cycle at a time. The CPU, in turn,
either executes an internal operation, reads from memory, or writes
to memory during that cycle. These operations are concatenated to
form funtions, which is the smallest piece of work a programmer can
ask the CPU to perform. These function are called instruction, and
take an average of 3 cycles each to perform. So, the typical C64
CPU does 333,333 things a second. The C128 fares a bit better, as it
can run twice as fast when in "fast" mode. In either case, there is
an upper bound on the amount of useful work each CPU can do in a
amount of time.

An accelerator increases that amount of work done by substituting a
faster CPU and clock speed for the 1 MHz 64 CPU. The ratio of
increase should be as easy to determine as dividing the new clock
frequency by 1 MHz for a 64. If this were true, an accelerator that
runs at 4 Mhz would execute things at 4 times the speed of a stock 64.
Sadly, this is not true, since not all parts of the system can be sped
up to the higher frequency. So, the accelerator runs at full speed while
it utilizes ICs designed for the faster clock speed, and slows down when

it must "talk" with ICs like the SID and VIC-II in the 64, which run only
at the slow 1 MHz clock speed.

Most accelerators are produced as large cartridges that plug into the
expansion port of the computer system. Some require special wires be
attached to internal components, while others do not.

@(A) The New Kid on the Block

In mid 1995, Creative Micro Designs, after having evaluated the FLASH 8
accelerator from Europe with only mild success, noted that there might
possibly be a market for a speedy accelerator that would run GEOS and
other useful applications in the USA. After surveying the readership
of Commodore World, the Internet, and FIDONet, CMD decided that interest
in such a unit was forthcoming. Shortly thereafter, the SuperCPU
announcement was made.

As development work ensued, progress reports and preliminary information
about the product surfaced from CMD. The first items involved the processor
choice, which was originally the 65C02S but is now its bigger brother, the
16 bit 65C816S. Another piece of information involved the case, which is
an enclosure 6" wide by 2" deep by 3" wide. This enclosire contains
a circuit board protruding from the front of the unit that will plug into
the Commodore 64 or 128 expansion port. In back, a complementary card
edge connector is provided to pass signals through the cartridge. This
will allow users to attach other expansion port cartidges to the
system. On top sit three switches, described below.

The first switch enables or disables the SuperCPU unit. The second switch
enables or disables JiffyDOS, which is built into the unit. The third
switch determines the speed of the unit. This third switch has three
positions. The first position forces the accelerator to operate at 1
MHz speed (the same speed as the stock C64). The second position allows
the programmer to change the speed via a register in the SuperCPU memory
map. The third position locks the SuperCPU into 20 MHz mode, regardless
of register settings.

The use of the CMD SuperCPU will be straightforward. Simply plug the
unit into the expansion port, set the appropriate switches on the top of
the unit, and powering on the unit.

@(A) Technical Details

The basic system utilizes a WDC W65C816S 16 bit microprocessor running at
20 MHz. This CPU can not only fully emulate a CMOS 6502, it can be
switched into "native" mode which allows access to 16 bit registers and
16 megabytes of RAM without bank switching, DMA, or paging.

Attached to the CPU is a bank of 64 kilobytes of Read Only Memory (ROM)
and 128 bilobytes of high speed static RAM (SRAM). The extra RAM above
64 kB is used to "mirror" the contents of the slower ROM. See below for
details.

A number of features designed to maximize the performance of the
SuperCPU are being developed into the unit. Since the late 1980's
ROM speeds have not been able to keep pace with CPU clock frequencies.
With the CMD accelerator moving into the frequency range of newer
PC systems, this becomes a problem for the SuperCPU as well. The
Commodore typically stores its KERNAL and BASIC code in ROMS, and the
SuperCPU will need to read that code. The easiest solution is to read
the stock ROMs in the computer, but those ICs can only be accessed
at 1 MHz (they are part of that set of older ICs that cannot be utilized
at 20 MHz). So, the next option is to copy that code into faster ROMs
and instal those ROMs int the cartridge. Well, as stated earlier,
ROMs of sufficient speed are very expensive and not widely available.
So, the third option, which is the one CMD will use, is to copy the
KERNAL and BASIC at startup to RAM and write protect the RAM area, making
it look like ROM. Fast static RAM (SRAM) is available to meet the
20 MHz clock requirements, and is not terribly expensive, as most new
PC systems use the same memory for similar uses. This technique is
called ROM shadowing and has been utilized for a few years in the IBM
PC community.

The heart of the unit is the Altera Complex Programmable Logic Device
(CPLD). Analogous to electonic "glue", this single chip can replace
ten or hundreds of discrete ICs in circuits. This unit is responsible
for decoding the complex series of signals presented in the expansion
port, handling DMA requests to an REU unit, emulating the specialize
I/O port found at locations $00 and $01 on the 6510 CPU, and handling
the synchronization of the SuperCPU memory and C64 memory.

One item that has plagued accelerator designers for years and minimized
the widespread acceptance of accelerators invoves this RAM sync operation
the Altera CPLD handles. In areas of the stock C64 memory map where
only RAM is present, like $0002 - $40959, the synchronization of
memory can be handled very easily. However, when dealing with areas
like $d000, where RAM AND IO can be present, the situation becomes more
complex. The SuperCPU overcomes this problem as well, which is important
since many video applications use the RAM under IO at $d000 for graphics
or text.

As the VIC-II IC in the C64 and C128 requires that screen information be
present in on-board memory, memory "mirriring" is necessary. However,
CMD has introduced two new technologies, called WriteSmart(tm) and
CacheWrite(tm) to reduce the slowdown associated with mirroring the
SuperCPU SRAM and the slower on-board DRAM. According to documentation,
WriteSmart allows the programmer to decide which portions of memory need
mirroring. The four selections include "BASIC", where only text and
color memory are mirrored, "GEOS", where GEOS foreground bitmap and color
memory are mirrored, "ALL", where all 64 kB of RAM is mirrored, and
"NONE", where the SuperCPU does not attempt to syncronize memory contents
between the two RAM areas.

The other technology, called CacheWrite(tm), minimizes the effect of
this mirroring. When storing a value into SuperCPU RAM in a range of
RAM that requires mirroring, the value is stored not only in SuperCPU
RAM, but also into a special cache memory location. The SuperCPU is
allowed to continue processing, while the system waits for the on board
DRAM to acknowledge readiness to store a value. When successive stores
to mirror ranges are done, the system must slow down, but can still
operate at about 4 MHz. This speed is achieved because the SuperCPU need
not wait for the value to be successfully stored before it attempts to
fetch the next opcode and operand. Since opcodes that write value to
memory avarage 4 cycles to complete, the SuperCPU can effectively do 4
cycles worth of processing in 1 period of the 1 MHz clock. Note that
this slowdown does not occur if the cache is not full when a store
instruction is executed.

@(A) Features

Being a CMD product, the CMD SuperCPU comes with JiffyDOS, CMD's
flagship speed enhancement routines, installed. However, JiffyDOS
can be switched out for those applications that fail to run with this
serial bus enhancement functionality.

The unit also features compatibility with RAMLink, CMD's RAM drive unit.
As the RAMLink fucntions by sharing the CPU with the computer system and
runs a special set of instructions called RL-DOS, the SuperCPU contains its
own version of RL-DOS optimized to take advantage of the speed and extra
features available in the 65C816S. Preliminary information suggests that
RAMLink data retrieval, typicially much slower the REU data retrieval,
will now operate at speeds approaching that of the REU. In addition, the
on-baord RL-DOS will handle usage of the special parallel CMD HD drive
cable available with the RAMLink.

For those with expansion in mind, CMD has incorporated a special
expansion port internal to the unit. The port, called the "Rocket
Socket", will allow access to the complete signal set from the W65C816S
CPU and possibly other support ICs. This will allow developers to
produce peripheral cards for the unit containing hardware that will run
at 20 MHz (The cartridge port will still be limited to slow speed).

@(A): Myths About the Unit

In the early phases of development, CMD hinted that possibly extra RAM
installed in the unit could be used as a fast RAM disk, a la RAMLink.
However, the inability to battery back up that RAM area, coupled with the
small increase in speed gained form doing so and the lengthy development
time needed to realize this feature, has prompted CMD to abandon this
idea for the time being. Later in the development cycle, such an idea
might resurface, but the feature is most likely never to be implemented.

Also, early information about the units noted that two speed options would
be available, but low support for the slower 10 MHz model prompted CMD to
discontinue development on that version. As of now, there is only one
speed option available: 20 MHz.

When CMD first announced the unit to the public, it was to include the
Western Design Center W65C02S microprocessor. However, in late 1995/early
1996, CMD opted to switch from that CPU to its bigger brother, the W65C816
16 bit CPU, owing to small increase in per item cost, more flexibility, and
more expansion options.

Although the speed of the CPU in the SuperCPU unit is running at 20 MHz,
that does not imply all operations will occur twenty times faster. Some
operations, like reads from I/O ICs, derial bus operation, and mirroring
of video memory, require the CPU to slow down temporarily. This will
reduce the effective speed to about 17-18 MHz.

@(A): Compatibility Issues

All legal 6502/6510/8502 opcodes are supported in the accelerator.
Undocumented or "illegal" opcodes are not supported and will fail.

Although not a compatibility issue, some applications that rely on the
CPU running at a certain speed to correctly time events will most likely
fail or operate too quickly to be useful. Event or interrupt driven
code should operate correctly.

The SuperCPU 64 model will operate correctly with any C64 or C64C model
of computer system, as well as with any C128 or C128D in 64 mode. However,
CMD has recently announced a 128 native version of the cartridge.

@(A): Super128CPU

In early 1996, CMD announced that interest was compelling and that would
begin development on a 128 version of the SuperCPU. As a result of this
announcement, the ship date was moved from Februarty to April as CMD
validated the SuperCPU design so that it could be used to manufacture
both the SuperCPU 64 and SuperCPU 128. Both units will operate at a
maximum of 20 MHz, and will most likely be packaged in the same enclosure.
The SuperCPU 128 will operate in both 64 mode and native 128 mode. It
will not enhance CP/M mode on the C128. CMD announced that the
availability of this unit would be Auguest or September ot 1996. As far
as cost is concerned, a current estimate falls at $300.00, and advance
orders are being taken with a security deposit of US$50.00 needed to
place an advance order.

As this announcement was made, some confusion has resulted in the naming
scheme. Previously called the SuperCPU or SuperCPU 64/20 (64 model at
20 MHz), the new models are referred to as alternately:

128 model 64 model

Super128CPU Super64CPU
SuperCPU 128/20 SuperCPU 64/20

@(A) Prototype Testing and Benchmarks

As no developer unit have shipped as of this date, CMD has the sole unit
availabel for be testing and benchmarks. CMD's prototype unit consists
of a handwired unit on perfboard. At first, CMD was hesitant that the
prototype would actually run at 20 MHz, since such designs are not
"clean" and can suffer from eignal degradation, signal skew, and
crosstalk, which inhibits operation at higher frequencies. So, with
that in mind, early tests were done at 4 MHz. CMD reported in late
Fenbruary 1996 that the prototype had been ramped up to 20 MHz and was
operating correctly. In fact, the unit appears to run faster than it
can, illustrated by the following example:

CMD tested the following program at 1 MHz on a Commodore 64

10 TI$="000000"
20 FORI=1TO10000:NEXT
30 PRINTTI

The result from this test was 660. After enabling the unit, the test was
rerun and the result printed out again: 31.

Quick calculations by the CMD personnel verified that the unit was
executing this program 21.29 times the normal speed. However, that
is impossible, as the CPU is only clocked 20 times the nortmal speed.

The supposed impossibility is explained if you delve deeper into the
timing of the 64. As many know, the VIC-II "steals" cycles from the CPU
in order to refresh the VIC-II video screen. Extra cycles are "stolen"
for sprites. With the SuoperCPU disabled, the above code runs at 1 MHz
minus the amount of time the VIC-II "steals" from the CPU. With the
SuperCPU enabled, the VIC-II does not "steal" cycles from the unit, as
the accelerator uses it own private memory area for operation. The VIC,
meanwhile, uses the on-board C64 memory.

CMD notes that games that use timers or are event driven function

correctly, but hotse that count processor cycles or utilize spin-wait
loops run so quickly as to be virtually unusable.

Of partiular note to Commodore Hacking readers is the test done with the
object code for the Polygonamy (Reference: polygon) article elsewhere in
this issue. On a stock 64, the program renderes approximately 12-13
frames per second. With the SuperCPU enabled, the frame rate jumped to 128
fps. CMD notes that further gains might be realized if the code was
modified to cooperate more fully with the CupserCPU memory scheme.

As for Ram Expansion Unit compatibility, CMD responds that the issues
have been tackled and that DMA operation is available on the SuperCPU
unit. In adiition, CMD notes that the CPU need not be running at 1 MHz
to initiate a DMA transfer.

As stated from the beginning, the 64 model of the SuperCPU accelerator
wil work on the Commodore 128 in 64 mode, and test have confirmed that
the prototype 64 model does indeed frunction correctly any the C128 and
C128D.

@(A): Conclusion

While it is too early to determine the success of the CMD SuperCPU
product, the company has a reputation for delivering stable products
packed with features. While no accelerator can guarantee 100%
compatibility with all Commodore software, the CMD offering should provide
the best compatibility options thus far, due to its solutions to
RAM synchronization problems that have plagued accelerator designers for
years. The fact that CMD also owns the marketing rights to the GEOS
family of software products and manufacturers a wide variety of
successful mass media storage devices bodes well for compatibility with
those applications and peripherals.

@(A): For More Information

TO find out more about the CMD SuperCPU family of accelerators, contact
CMD at the following address of via email:

Creative Micro Designs, Inc.
P.O. Box 646
East Longmeadow, MA 01028-0646
(413) 525-0023 (Information)
(800) 638-3263 (Ordering only)
cmd.sales@the-spa.com (Internet Contact for Sales)

Advance orders are being taken for all units, and the cost to place an
advance order is $50.00.

For programmers, CMD is planning to make available a Developer's Package,
which will help those wanting to exploit the potential of the new unit to
achieve success. A W65C816S assembler supporting all the new opcodes and
addressing modes will be provided, as will documentation pertaining to the
unit, the CPU, and its capabilities.

===

@(#)surf: Hack Surfing

For those who can access that great expanse of area called the World Wide
Web, here is some new places to visit that are of interest to the Commodore
community. In early 1994, when the US Commodore WWW Site started, the number
of sites online that catered to Commodore numbered in the 10's. Now, the
number is in the 100's. What a change.

If you know of a site that is not listed here, please feel free to send it
to the magazine. The following links have been gleaned from those recently
changed or added to the US Commodore WWW Site Links page
(http://www.msen.com/~brain/cbmlinks/).

To encourage these sites to strive to continually enhance their creations,
and because we like to gripe :-), we'll point out an improvements that
could be made at each site.

@(A): Companies

o http://www.armory.com/~spectre/cwi.html
 Computer Workshops Incorporated. CWI shows off their newest software
 offerings on this well-crafted WWW site. The darkbackground provides
 for visual effects, and the content is good as well. At the time we "hit"
 the page, CWI was working on a new game called Nether for the 64/128.
 From the information, it looks like a 3D action adventure. CWI offers

 both CBM and MS-DOS titles. Some are shareware, while others are
 commercial. C=Hacking gripe: We don't mind the MS-DOS information, but
 the diehard CBM user should be able to skip it. As of now, it's all on
 the same page.

o http://www.msen.com/~brain/guest/Gaelyne_Moranec/qwkrr/
 QWKRR128, by Rod Gasson. Gaelyne Moranec, a supporter of QWKRR, presents
 this site for new and advanced users. The site is devoted to QWKRR128, a
 QWK-based offline mail reading program for BBS and Internet use, and
 Browser, a utility for reading large files on the 64/128. The site
 is clean and simple, with no fancy graphics, but lots of meaty information.
 Links include the QWKRR128 user's manual, the actual product's binaries,
 and helper applications needed to use QWKRR128. C=H gripe: It's hard to
 tell what all I need to read Internet email via QWKRR128.

o http://www.msen.com/~brain/guest/rms/
 RMS Computer Systems. RMS offers up its line of services from this site,
 including software distribution, parts and accessories, and consulting/
 training. RMS can even design your WWW pages. The pages are colorful
 and clean, using either Microsoft Explorer or Netscape Navigator
 extension depending on the browser chosen off the home page. RMS offers
 the C-Net BBS software for sale and present information on the 64 and
 128 versions of the program. C=H gripe: The home page offers a choice
 of using Netscape of Microsoft Explorer. What about the Lynx text mode
 browser? Which do they pick?

@(A): Publications

o http://www.the-spa.com/cmd/cwhome.html
 Commodore World. CMD's publications is presented at this site, with
 select articles, and information for potential writers and subscribers
 is detailed. The site is laid out well and provides for easy reading.
 Of course, we're not sure it does justice to the magazine, but that's
 true of LOADSTAR's home page as well. C=H gripe: the site needs updating,
 as the change dates are 9-95. When they do update it, we hope they'll
 remove that annoying "blink" tag!

@(A): User's Groups

o http://www.ccn.cs.dal.ca/Technology/CUGNS/CBM.html
 Cnada Commodore Users Group of Nova Scotia. The site makes use of
 color and grpahics to provide links to a number of Commodore content
 sites on the Internet. It links up with other user groups on the 'Net,
 and provides a public download area for software retrieval. C=H gripe:
 We still think this is a user's group, but no meetings, minutes,
 newsletters, or times and dates were mentioned. Whare are they?

o http://www.fastlane.net/homepages/msessums/64.html
 Metro C-64/128 User's Group. Meeting dates, times, agendas, and some
 general information are provided on this page. You can also learn about
 this groups parent organization, the Metroplex Commodore Computer Club.
 C=H gripe: some newsletters from past meetings and a bit more about the
 group would be nice.

o http://www.inna.net/mpcug/mpcug.html
 The Middle Peninsula Computer Users Group. Go here to find out just
 WHY the groups is named this way. Meeting times, dates, places, past
 newsletter articles, and background information is provided. The site
 has a sprinkle of color and graphcis to break up the text. C=H gripe:
 It looks like the group is multi-platform, but no mention is made of
 what Commodore 8-bit owners will find at meetings. Maybe we missed it.

@(A): Demo Groups

o http://rphc1.physik.uni-regensburg.de/~pem03049/eqx/
 The EQUINOXE WWW Site. This demo group puts on a good show, with
 content and color on their WWW site. Here is where you can find
 the announcement on the upcoming Shout! #2 magazine release. The list
 of links is implressive as well. C=H gripe: The front page use of large
 fonts sizes is a bit overdone.

o http://flash.lakeheadu.ca/~jgvotour/index.html
 The OMNI/Revenge WWW Site. Color and content are mixed well on this
 site as well. A bit of history about Revenge is given, links to the
 demos to download is present, and information about upcoming releases
 is detailed. C=H gripe: We'd like to know more about the person behind
 the well-done page.

@(A): Miscellaneous

o http://vanbc.wimsey.com/~danf/cbm/languages.html

 Dan Fandrich's Commodore Languages List. Extensive doesn't really
 describe this page, which provides information on assemblers, compilers,
 cross-compilers, and interpreters for many different programming
 langauges supported by the Commodore 8-bit. Rare items like language
 support for the 264 series and the SuperPET are described as well.
 C=H gripe: the page is HUGE. Any chance of a breakdown into spearate
 files?

o http://rrnet.com/~bfrandse/viccarts.html
 The Commodore VIC-20 Cartridge List. Cartridges from many different
 software companies are detailed, and both games and utilities are listed.
 As with the Programming Language Page, this list is extensive. It notes
 in the opening credits the trasnsitions the list has made to arrive at
 this current form. C=H gripe: same as for the langauge list. This thing
 is LARGE, and might benefit from a more heirachial listing treatment.

o http://fox.nstn.ca/~ptiwana/john/webpage1.html
 John Elliot's WWW Site. This page explores the use of Commodore computers
 and other "orphan" machines to better education by improving the student/
 computer ratio. The information presented in this site is heartwarming,
 as it shows practical uses to dispel the myth that 8-bits are truly
 useless. C=H gripe: Not really a gripe, but we sure would like to see more
 of these reall world examples.

o http://www.ksk.sala.se/~sp93rob/dungeon/
 The Alternate Reality WWW Site. For those wanting to relive the best of
 this game for the 64, visit this site. Everything from tips to tricks,
 stories to confidential material, and screenshots are available at this
 site. C=H gripe: The color scheme is a bit rough on the eyes, but it
 does look neat.

o http://www.lysator.liu.se/tolkien-games/c64.html
 Fredrik Ekman's Tolkien Games WWW Site. The name says it all. If
 you've ever played a Tolkien game, here is where they are listed and
 examined. Fredrik give the history of each game, the solutions if there are
 any, and describes the game itself. C=H gripe: We left impressed with the
 information but wondering why someone would go to this effort. Tell us,
 Fredrik.

o http://ubmail.ubalt.edu/~telliott/commodore.html
 Todd Elliott's Commodore 64/128 WWW Site. Todd provides some commentary
 and links to hardware hacks and ML tips. Of particular interst is his
 introduction to the Commodore C64 and C128 computers, which explains
 some of the history behind the machines. Our favorite passage in this
 page details his experisnces with Radio Shack.... C=H gripe: We'd like
 to know how Todd Elliott fits into the Commodore 8-bit arena.

@(A): Change of Address

o CMD recently moved to http://www.the-spa.com/cmd/
 CMD heard our issue #11 gripe, as the home page now has links directly
 to the SuperCPU information.

o LOADSTAR has moved to http://www.softdisk.com/comp/loadstar/

o Marc-Jano Knopp's CBM WWW Site is at:
 http://www.student.informatik.th-darmstadt.de/~supermjk/c64.html

o The US Commodore WWW Links Site has moved to:
 http://www.msen.com/~brain/cbmlinks/

==

@(#)trivia: Commodore Trivia
 by Jim Brain (brain@mail.msen.com)

@(A): Introduction

I had the good fortune of receiving some fine back issue of magazine and
old books from a friend in Michigan (thanks Gaelyne), so I got busy reading
and gleaning. The result is a new crop of trivia questions guaranteed to
rack your brain and have you reachin' for those numerous Commodore
publications. Go ahead, I won't mind.

As some may know, these questions are part of a contest held each month on
the Internet, in which the winner receives a donated prize. I encourage
those who can received the newest editions of trivia to enter the contest.

This article contains the questions and answers for trivia editions #23-26,
with questions for the current contest, #27.

If you wish, you can subscribe to the trivia mailing list and receive the
newest editions of the trivia via Internet email. To add your name to the
list, please mail a message:

To: brain@mail.msen.com
Subject: MAILSERV
Body:
subscribe trivia Firstname Lastname
help
quit

@(#): Trivia Questions

 A publication describing BASIC on the Commodore makes the claim that
 BASIC variables are limited to 5 characters, with the first two being
 significant. The example to prove this point in the book is given as:

 ABCDE=5 works, while
 ABCDEF=6 does not.

 The following questions refer to this claim:

Q $160) What is wrong with the above statement?

A $160) Variables can indeed be longer than 5 characters.

Q $161) What causes the variable ABCDEF to fail?

A $161) The variable name fails becase the BASIC keyword "DEF" in it.

Q $162) How long can variable names really be?

 Extra Credit: Who was the book publisher?

A $162) As long as the maximum command line length. Theoretically, using
 automated code generation, you can get a variable name that is
 just shy of 255 characters in length.

 Oh, and Abacus wrote the offending book.

 The Commodore LCD Computer system, much like the Commodore 65,
 was a product that never reached the market. Do you remember this
 pint-size CBM machine?

Q $163) How many keys were on the CLCD keyboard?

A $163) 72 keys, including 8 function keys and 4 separate cursor keys.

Q $164) What does LCD in the Commodore LCD stand for?

A $164) Liquid Crystal Display.

Q $165) Was an internal modem to be includes?

A $165) Yep, A 300 bps auto dial/auto answer modem.

Q $166) Like the Plus/4 the CLCD unit had integrated software. What programs
 were included?

A $166) As referenced in $158, there are 8 integrated programs:

 Word Processor
 File Manager
 Spreadsheet
 Address Book
 Scheduler
 Calculator
 Memo Pad
 Telecommunications Package

Q $167) How many batteries of what type did the CLCD use for power?

A $167) 4 AA alkaline batteries.

Q $168) Approximately how much did the CLCD unit weigh?

A $168) 5 pounds.

Q $169) What version of BASIC was to be included with the CLCD computer?

A $169) 3.6. It contained all of Basic 3.5 plus a few extras.

Q $16A) The CLCD unit contained a port that could be used with a
 Hewlett-Packard device. What did the device do?

A $16A) An HP bar code reader.

Q $16B) What microprocessor did the CLCD unit utilize?

A $16B) The 65C102 CPU. This CPU was built using the 65C02 core from
 Western Design Center, who licenses the popular 65C816S CPU
 as well. CBM licensed this chip at little or no cost as a result
 of a lawsuit settlement between WDC and CBM over 6502 architecture
 patent infringements.

Q $16C) In addition to the usual inclusion of standard Commodore ports,
 what two industry standard ports were included on the CLCD?

A $16C) Centronics Parallel (printer) port, and an EIA-232 (RS-232C) port.

Q $16D) How much RAM did the CLCD computer include?

A $16D) 32kB of battery backed RAM.

Q $16E) How many pixels are on the LCD screen on the CLCD machine?

A $16E) 480 x 128 or 61440 pixels

Q $16F) How much ROM did the CLCD computer contain?

A $16F) 96kB of ROM, which held the OS and the integrated programs.

Q $170) What text is displayed on the screen of a Commodore 128 upon
 bootup?

A $170) The following text is centered on either the 40 or 80 column
 screen:

 COMMODORE BASIC V7.0 122365 BYTES FREE
 (C)1985 COMMODORE ELECTRONICS, LTD.
 (C)1977 MICROSOFT CORP.
 ALL RIGHTS RESERVED

Q $171) How many bytes free does a Commodore 128 have on powerup?

A $171) As shown above in Q $170, 122365 bytes.

Q $172) On the Commodore B-128 series, the bell beeps at the right margin.
 What column is the default right margin on the B-128?

A $172) Column 70.

Q $173) When a Commodore C64 is hooked up to a 1541 and an MPS 801
 printer, everything is powered up and connected correctly, and
 the floppy won't load. What is wrong?

A $173) The printer is offline. Put the printer on-line, and the floppy
 will operate correctly.

Q $174) How do you access the "hidden message" in the C128DCR?

A $174) One brute force way:

 While in the machine language monitor, type:

 m f63f5 f640b

Q $175) Some of you may remember the Commodore Magic Voice cartridge.
 If so, how many words was in the base unit's vocabulary?

A $175) 235

Q $176) Who write the 3+1 software bundled with the Commodore
 Plus/4 in ROM.

A $176) Tri Micro wrote the code, and created a version for the C64.
 It turns out that the 3+1 software included with the Commodore
 Plus/4 was originally designed to be but one of the many choices
 for bundled software with the 264. When the focus changed, 3+1
 became the only software bundled, and some assumed Commodore
 had written it. (Ref. RUN April 1985:43)

Q $177) The BASIC extension "Simon's BASIC" was created by whom?

A $177) David Simons (Ref: Commodore Power/Play April/May 1985:56-7)

Q $178) Simons' BASIC was influenced a lot by what other computer
 manufacturer's BASIC?

A $178) Hewlett Packard. (Commodore Power/Play April/May 1985:56)

Q $179) How many commands does Simons' BASIC add to the Commodore 64?

A $179) 114. (P/P Apr/May 1985:57)

Q $17A) In the United Kingdom, there was an extension to Simons' BASIC
 developed by David. Among other things, what major complaint
 about the original BASIC extension does it address?

A $17A) Renumbering GOTOs and GOSUBs when renumbering a program.

Q $17B) In the Commodore Plus/4 File Manager, there exists two bugs,
 which show up if you have over a certain number of records. What
 is this magic number?

A $17B) When merging over 255 records in the Word Processor, a printout might
 stop early int the file and continually reprint a single record, or
 entering one record might trash another record. (RUN April 1985:43)

Q $17C) Commodore Semiconductor Group (CSG) manufactured an 8500 IC.
 What common IC number is this IC functionally equivalent to?

A $17C) The 6502. The change in number owes more to a change in
 manufacturing process than anything else.

Q $17D) How many BASIC commands were included in BASIC 3.5, not
 including the monitor commands?

A $17D) 80. (RUN November 1984:37)

Q $17E) On the Commodore VIC-20, 64, and C16 keyboards, what row and
 column pins on the keyboard connector does the letter D
 correspond to?

A $17E) Row 2 Column 2. (RUN July 1984:109)

Q $17F) What is special about the keys in Row 4 of the hardware keyboard
 matrix?

A $17F) Column 2-4 spell out CBM. (RUN July 84:109)

Q $180) Most people know what CPU is in a Commodore disk drive, but what
 CPU powers the venerable CBM 1525 printer?

A $180) You had better sit down.... The 1525 is powered by an Intel 8039
 8-bit microcontroller. Actually, this isn't so hard to believe,
 since Commodore didn't actually develop the printer, but used a
 Seikosha GP-100 printer mechanism for the unit, and most likely
 contracted Seikosha to develop the firmware.

Q $181) What is the maximum number of characters per line on a CBM 1520?

A $181) 80. 22 columns per inch times 3.63... inches of usable paper width.

Q $182) Commodore rarely manufactured its own printer mechanisms. Who's
 mechanism did Commodore use in the DPS 1101?

A $182) The Juki 6100 printer mechanism.

Q $183) What is unique about the DPS 1101 printer?

A $183) It is daisy-wheel, but Commodore made other daisy-wheel printers. what
 makes it unique is that it is the only such serial daisy-wheel made
 for the Commodore line.

Q $184) Which was the first Commodore modem with DTMF dialling capabilities?

A $184) The first to offer some kind of DTMF support was the Commodore 1660
 modem. The modem itself didn't provide any DTMF support, but included
 a cable to allow the SID to output to the phone line. Thus, with the
 SID's ability to reproduce DTMF tones, the modem could tone dial.
 Note that this was only possible on the C64, which has a SID. The
 first mode to INCORPORATE DTMF into the modem itself was the 1670.

Q $185) Which was the last Commodore 8-bit peripheral drive developed?

A $185) By develop, we are referring to actually produced models. With that
 definition, the 1581 holds this title. For models not actually
 produced, The prototype 1590-D-1 3.5" 1.44 MB model owned by Jack
 Vander White probably was the last under development.

Q $186) What is the maximum size of RAM available for use for program
 storage on an expanded VIC-20

A $186) If you discount the screen area (512 bytes) and Color RAM (512 bytes),
 up to 28159 bytes can used for BASIC programs and variables (original
 3583 bytes and 3 banks of 8192 bytes each), and up to 40448 bytes can
 be used for ML programs. (0-32767 minus 512 bytes for screen and
 40960-49151).

Q $187) One of the most poular magazines for computers in the 1980's was
 COMPUTE! What Commodore content magazine did it give birth to?

A $187) COMPUTE!'s Gazette.

Q $188) In a strange twist of irony, COMPUTE! was itself descended from a
 Commodore content magazine. Which one?

A $188) The PET Gazette. The PET Gazette was started in April 1978 by Len
 Lindsey. For the first year, the magazine was sent out for free to
 at times 4000 people. In August of 1979, Small Systems Services,
 headed by Robert Lock, purchased the magazine from Len and changed
 the name to COMPUTE. The focus changed from PETs to all computer
 systems at that time. The first issue of COMPUTE. appeared in the
 Fall of 1979. It seems the relationship between Len Lindsay and
 Robert Lock was less than ideal, but I refer readers to INFO #15,
 page 8 for the scoop.

Q $189) COMPUTE! underwent a name change very shortly after introduction.
 What subtle change was made to the name?

A $189) COMPUTE. changed to COMPUTE! Notice the change?

Q $18A) How were LOADSTAR and Commodore Microcomputing-Power/Play once
 connected?

A $18A) In the mid 1980's, LOADSTAR distributed the type in programs for
 both magazines in the disk magazine.

Q $18B) What is the fastest Commodore ever clocked a 6502 or derivative
 CPU in a machine?

A $18B) The CSG65CE02 CPU, clocked at up to 3.54 MHz in the Commodore 65
 (64DX) prototype.

Q $18C) Name one byte that yields the same character when printed and poked
 to a Commodore screen.

A $18C) Any byte between 32 and 63 will produce identical results.

Q $18D) Quick, which chr$ value flips to uppercase/lowercase mode?

A $18D) chr$(14)

Q $18E) Quicker, which chr$ value flips it back to uppercase/graphics?

A $18E) chr$(142)

Q $18F) How do you get INPUT to not display a question mark?

A $18F) open 1,0:input#0,a$

Q $190) In reference to Commodore, what does TOI stand for?

A $190) The Other Intellect. Evidently, it was the computer the CBM
 engineers were working on before the VIC-20 project. The name
 sounds like it was dreamed up after the fact. In either case, this
 machine might have been the "Color PET" mention in _The Home
 Computer Wars_ that Chuck Peddle was designing before company
 shifted to the VIC architecture.

Q $191) Name two values that, when poked to the screen, will yield the
 identical character appearance.

A $191) 32 and 96 or 160 and 224. Space and reverse space.
 103 and 106 or 101 and 116. Left and right lines.

Q $192) What chr$ codes lock out and re enable the shift/commodore keyboard
 flip from uppercase to lowercase on the VIC-20?

A $192) chr$(8) and chr$(9), respectively.

Q $193) What chr$ codes lock out and re enable the shift/commodore keyboard
 flip from uppercase to lowercase on the C64?

A $193) chr$(8) and chr$(9), respectively.

Q $194) What chr$ codes lock out and re enable the shift/commodore keyboard
 flip from uppercase to lowercase on the C128?

A $194) chr$(11) and chr$(12), respectively, while in 128 mode.

Q $195) On CBM machines prior to the VIC-20, what chr$ code outputs the
 same character as chr$(44), the comma.

A $195) 108.

Q $196) Is the character described in $195 of any use?

A $196) To put commas in strings read via INPUT. Remember, INPUT treats
 a comma (chr$(44)) as a delimiter between input fields, but chr$(108)
 does not produce the same effect, so you could replace 44 with 108 in
 data written to disk, and read it in with INPUT.

Q $197) The speed of Commmodore BASIC increased dramatically after the first
 OS upgrade in 1979. Why?

A $197) Jim Butterfield supplies us the answer:

 "The original PET 2001 suffered from the same kind of "screen
 sparkle" that was later seen in the early Commodore 64. So
 the original code would write to screen memory only during
 the "refresh" period; that really slowed down the speed of
 output to the screen. By the time the first revised PET came
 out, the screen sparkle was solved, and characters were
 delivered to the screen with no wait. (The new operating
 system also did a massive relocation of system variables,
 and used zero page very heavily, to the dismay of home
 programmers. When asked about this, Commodore pointed
 proudly at the "new, higher speed". But in fact it was
 the screen reorganization that caused 95% of the
 improvement)."
 --Jim

 Related to this question is $00C, which implies that the
 "sparkle" problem was fixed in the original PETs, so some people
 increased the performance of the original PET by setting the RETRACE
 line mentioned above to an output, which fooled the system into
 thinking the video was ALWAYS in RETRACE mode.

Q $198) COMAL, a programming language available for Commodore computers, was
 created by whom?

A $198) Borge Christensen and Benedict Lofstedt, although Borge is given
 the most credit.

Q $199) At the 1980 COMDEX, Commodore PETs proved instrumental during a
 crisis. What happened?

A $199) The following is excerpted from _The Whole PET Catalog_, page 21:

 "PET PROVEN USEFUL" During the 1980 MGM Grand fire in Las
 Vegas, Commodore moved its entire COMDEX '80 booth dowstairs
 to help track rooms, guests, etc. According to _InfoWorld_,
 7 PETs with OZZ data-bases (predecessor to SILICON OFFICE)
 were used for two straight days. Local police agreed they
 could not have kept of the guests as well as the PETs did.
 Also, untrained operators quickly learned the system. In the
 crisis, PET was both powerful and useable.

Q $19A) Who designed the PET/CBM 8032 computer?

A $19A) Bill Seiler, the able assistant to Chuck Peddle, designed the unit.

Q $19B) What was the "cursor gone out to lunch" bug in the first PETs?

A $19B) No answer available yet (I can't find my notes!)

Q $19C) On a PET/CBM (early models), what will "POKE 14,1" do?

A $19C) If done immediately prior to an INPUT, the poke will suppress the
 question mark prompt.

Q $19D) What version of BASIC would not utilize disk drives?

A $19D) BASIC 1.0

Q $19E) Who is Lyman Duggan and why is he important?

A $19E) He is one of the founding fathers of the Toronto PET User's Group
 (TPUG), along with Jim Butterfield.

Q $19F) Jim Butterfield notes to me that he received plenty of help in
 creating the first PET memory map (Q $0D8) from the Sphinx group,
 who published critical information in their early newsletters. How
 did Commodore influence the name of the group?

A $19F) The name "Sphinx" was chosen because of the way early PETs resembled
 the Great Sphinx, the Lion with the head of a pharoah.

Q $1A0) Commodore produced an assembler for the 128 called HCD65. What
 does HCD stand for?

Q $1A1) Who wrote most of RAM DOS?

Q $1A2) What is the name of the first C64 disk copy program? (hint: it
 sported a "gas gauge".)

Q $1A3) What was the case color of the original Commodore 64s?

Q $1A4) There are at least two ways to enter 64 mode from 128 mode on a C128:
 go 64 and sys 65357. They produce the same result (64 mode), but
 they differ in at least one noticable way. How?

Q $1A5) What CPU powers the B-128 computer system?

Q $1A6) What type of drive mechanisms are in the D series hard drives from
 Commodore?

Q $1A7) Commodore produced a 16kB RAM expander for the Commodore VIC-20.
 What is its model number?

Q $1A8) Commodore produced at least one disk drive with an optical track
 one sensor. Which drive?

Q $1A9) The Commodore PET series used the IEEE bus to communicate with
 peripherals. Each peripheral had a unique ID. What range of IDs
 are supported by the PET?

Q $1AA) Many people have developed Commodore software with the PAL assembler.
 What does PAL stand for?

Q $1AB) Many people remember Compute's Gazette. This magazine is best known
 for the word processor program it shared with thousands of
 subscribers. Name the program?

Q $1AC) In some 6502 assemblers, the opcode "bge" is available. It stands
 for "branch if greater than or equal to". What more common opcode
 is this opcode referring to?

Q $1AD) If I wanted to do a "blt" (branch if result less than), what 6502
 opcode would i use?

Q $1AE) Each Commodore peripheral has a device number, which is associated
 with a type of device. 8-15 implied disk drive, 4-5 implies
 printer. These have remained constant from the PET to the C128.
 However, one peripheral in the PET was phased out and its device
 number was reused. What device number was reused?

Q $1AF) What is the maximum amount of general purpose RAM can one utilize
 in a stock C64? (I need an exact number here)

===

@(#)gfx: Talking to TED: The MOS 7360/8360 Text Display ICs
 by Levente Harsfalvi (TLC@MSZI.PMMF.HU)

@(A): Introduction

This information file is based on my old books, descriptions, and especially
my experiences while I was coding. That's no mistake. The Plus/4 series
was not very famous in the world, but they were very poular in mideast
Europe. In fact, there were even demo groups for the machine. I learned
some of this information while writing demos for the machine in demo groups,
while other things were gleaned from personal work on the machine. These
computers did indeed play an important part in Commodore computer history.

I started my first code development on a Plus/4 in late 1986. After I saw a
HomeLab 3 (made in Hungary, U880 - GDR made Z80 compatible proc, B/W, 16K),
I started writing demos and other software for the Plus/4 machine I owned.
It actually wasn't that strange to see demo groups sprout up for all
kinds of machines, including the Plus/4. All over, there were groups
and individuals, writing software while trying to keep the flame lit for
each machine. In fact, I know people currently working in groups writing
for the Plus/4 in Hungary, Germany, and as far away as Alaska.

@(A): Overview

Let's discuss the TExt Editor (TED) IC and its environment. This DIL-48 IC
was designed specifically for the 264 series of machines, which initially
included the CV364 and the 264, evolving into the Plus/4, C16, and C116
machines. Unlike the CIA or ACIA or other machines, this IC isn't well
suited to any other system.

The TED contains all functions done by several chips in former Commodore
computers. The TED is a complete video-interface and composite video
signal generator, sound generator, keyboard input latch, timer,
clock generator, memory manager and DRAM refresher in a single IC. It can
address the full memory map of the 264 series machines, and it generates
the RAS', CAS', and MUX signals for the DRAM memory used in that series.
For ROM, it generates the chip select (CS) lines, depending on the state
of the internal registers. So, in addition to all the above duties, the
TED IC is a simplistic MMU as well.

@(A): Video Information

We see the TED chip shine as it does its primary job, displaying graphics.
Its abilities mostly parallel those of the uniquitous VIC-II video IC in the
C64. It has the following modes:

* 40x25 screen (characters)
* enhanced color mode
* multicolor mode
* 320x200 Hi-Res Graphics
* 160x200 Multicolor Graphics

Of course, there are differences. TED does not contain sprite support.

To offset this omission, the TED chip can select 8 intensities for each of
the 16 supported colors, giving 121 colors (the 8 shades of black are all
black). Other features include a hardware cursor, hardware text blinking,
and hardware inverse character support. Character sets, screen and color
memory, and graphics bitplanes can be addressed directly, without additional
logic as found on the C64. In fact, even RAM/ROM selection requires change
of a single bit.

Character modes need $800 bytes of RAM for screen and color memory. The
first $400 bytes act as color memory (the memory permanently located at
$d800 on the C64), with the lower 4 bits containing color codes, exactly
as found on the 64. Bits 4-6 denote the intensity level of the color, while
the high bit select flashing/no-flashing attributes. The other $400 bytes
contain the screen codes for the displayed characters. If hardware
character inversion is selected, the lower 7 bits hold the screen code and
the high bit selects inversion for the character. If character inversion
is not selected, all 8 bits denote the screen code. Extended Color Mode (ECM)
and Multi Color Mode (MCM) modes work exactly as described on the 64. While
these two modes are in effect, inversion and blinking are disabled.

Things get a bit more complex in graphics mode (pun unintentional). In
graphcis mode, the bitplane occupies $2000 bytes and is handled just like a
VIC-II biplane. The colors are handled differently. $800 bytes are needed
for color memory, which is laid out in $400 bytes of intensity memory
and $400 bytes of color memory. An "off" bit in the bitplane uses the
lowest nybble of the appropriate color memory location as the color and
retreieves the intensity from bits 4-6 of the appropriate intensity memory
location. For an "on" bit, the color is taken from the high nybble of the
appropriate color memory location, while the intensity is taken from bits

0-2 of the intensity memory location. Bits 3 and 7 in intensity memory are
unused.

In multicolor mode, differences abound. The 64's VIC-II enabled one to
utilize 3 different colors in each 8x8 cell and a single background. The
TED simply cannot accomplish this due to the lack of adequate color memory.
So, TED allows only 2 varying colors per 8x8 cell. Those colors are chosen
from the palette of 121. The remaining 2 colors are chosen for the
entire screen, again from the 121 color palette. The mapping is as
follows:

 00 background color
 01 same as "off" color in hires mode
 10 same as "on" color in hires mode
 11 another "background" color

The TED IC is able to generate both PAL and NTSC compatible signals from
a single IC. Only the crystal need be changed to go from one standard to
the other. In PAL mode, there are 312 lines hown, while NTSC only has 262
lines of display. The line synchronization is the same in either PAL or
NTSC mode. It's always 57 clock cycles per rasterline. The TED divides
the supplied crystal frequency by 20 for PAL display and by 16 for NTSC.

For the serious video programmer, raster interrupts are implemented as on the
VIC-II. However, the 0 line of the register corresponds to the first line
of the character screen area, not the top of the border. In addition, the
current raster line can be read from TED registers. you can modify the
counter as well. Doing so will most likely affect the screen display. As
a bonus, the horizontal location of the raster can be read and modified in
the same way. Unfortunately, these registers provide the basis for most
effects, as the TED can't handle sprites.

@(A): Running The Show

As earlier mentioned, the TED IC does more than produce graphics. One of
its tasks involves generating the clock signal for the 7501/8501
microprocessor. The clock is not constant, as it switches from from
885 kHz and twice that speed, 1.773 Mhz. The speed depends on TED's current
task. It generates the slower clock signal when refreshing DRAM or fetching
data for the video screen. Otherwise, the high clock signal is generated.
The user can disable fast clock generation via a register. The end result
is a machine that operates at approximately 1 MHz, as the CPU runs in slow
mode while the screen is displayed, and operates in fast mode when the
TED starts drawing the top and bottom borders.

@(A): Sound Advice

As far as a sound device is concerned, the TED doesn't stack up to the
SID in the 64. Just 2 squarewave generators, of which the second can be
switched to generate white-noise, are available for sound generation.
Volume control is available in 8 levels.

To play samples, the TED can switch the sound generators to constant level
outputs. D/A is then done by changing the volume register setting. Each
generator can generate frequencies from 100Hz to 23kHz.

@(A): Other features

The timers available in the TED appear to be nothing more than 16
bit decrementing timers. They are always clocked with the slow clock.
The first timer reloads its starting value when it reaches 0, the other 2
are free-running.

Since it already does almost everything else, it's not unusual to notice
the TED handles the keyboard matrix. A simple 8-bit imput latch handles
keyboard interfacing.

As noted above, a single bit in the register space will page ROM or
RAM into the upper 32kB of the address map. Since the TED knows what is
paged in at all times, it knows what to output to access the memory
locations in this area.

@(A): Conclusion

Well, that about wraps up the TED IC. All that is left is a map of the
registers. Assume all registers are read/write unless noted otherwise.
If you have questions, I cna be reached at the Internet address listed above
or at:

Levente Harsfalvi
7200 Dombovar

Gorkij 33.
Hungary

By the way, catch FLI ED. V1.0; Its info file may contain some more about
TED's screen-handling. It may be retrieved as
ftp://ftp.funet.fi/pub/cbm/plus4/tlc/cns.lzh

@(A): Register Map

Register Description
-------- -----------
$ff00- $ff01: Counter #01. It always starts to decrement from the last
 written value into it.
$ff02- $ff03: Counter #02. It runs freely from $ffff.
$ff04- $ff05: Counter #03. Same as above.
$ff06 : Mostly the same as VIC's $d011.
 Bit 0,1,2 : Vertical smooth-scrolling
 Bit 3 : 24/25 rows screen
 Bit 4 : Blank screen
 Bit 5 : Bitplane mode
 Bit 6 : Enhanced color mode
 Bit 7 : TED's internal test, it should be 0.
$ff07 : Most similar VIC-reg is $d016.
 Bit 0,1,2 : Horizontal smooth-scrolling
 Bit 3 : 40/38 columns screen
 Bit 4 : Multicolor mode
 Bit 5 : TED stop. If set, the TED stops it's counters and
 screen-generating, only single clock and refresh
 cycles remain.
 Bit 6 : PAL/NTSC. 0:PAL, 1:NTSC
 Bit 7 : Disable reverse mode. If 0, we got 128 characters
 and higmost bit tells if the character should
 appear in inverse. If set, no inverse mode but
 256 characters.
$ff08 : Keyboard input latch. Giving a strobe - writing to the register,
 the latch stores the values of the input-lines. Then, we
 can read them from this register.
$ff09 : Interrupt request register. When a counter sends want to send
 an IRQ, it's bit will appear as a 0; then, if the IRQ was
 caused then highmost bit is set.
 Bit 0 : Unused
 Bit 1 : Raster-counter
 Bit 2 : Lightpen. Not implemented.
 Bit 3 : Counter #1
 Bit 4 : Counter #2
 Bit 5 : Unused
 Bit 6 : Counter #3
 Bit 7 : Interrupt occured. This bit is set when an IRQ
 was enabled and therefore, the IRQ was sent to the
 processor. Physically, this is the negated level of
 the TED's IRQ output. The IRQ should be deleted
 with writing the register-value back after
 accepting an interrupt.
$ff0a : Interrupt mask register. These bits could be used to disable and
 enable interrupt-sources. When a place is set to 1, that will
 be able to cause an interrupt to the processor. If not, the sign
 of the interrupt request will only be appear in the above
 register.
 Bit 0 : 9th bit of $ff0b (see there)
 Bit 1 : Raster-counter
 Bit 2 : Lightpen. Not implemented.
 Bit 3 : Counter #1
 Bit 4 : Counter #2
 Bit 5 : Unused
 Bit 6 : Counter #3
 Bit 7 : Unused
$ff0b : Raster interrupt register. Same as $d012 when writing; it stores
 the position of occuring raster interrupt. Higmost bit is in
 $ff0a's 0. bit.
$ff0c,$ff0d : Hardware-cursor position (10 bits). Lower bits: $ff0d, higher
 2 bits in $ff0c's 0. and 1. places. Beyond 1000 the cursor is
 not seeable.
$ff0e : This reg is the first sound-source's frq-value's lowmost 8 bit.
 More 2 bits are in $ff10's 0. and 1. places.
$ff0f : 2nd. source, lowmost 8 bits. More 2 bits in $ff12, 0. and 1.
 places.
 The soundregister-value can be calculated as
 reg=1024-(111860.781/frq[Hz]) (NTSC)
 reg=1024-(111840.45 /frq[Hz]) (PAL)
$ff10 : 1st. sound-source, higmost 2 bits. 2-7 bits are unused.
$ff11 : Sound control register.

 Bit 0-3 : Volume. Maximum value is 8.
 Bit 4 : Sound #1 on/off.
 Bit 5 : Sound #2 squarewave on/off.
 Bit 6 : Sound #2 noise on/off. If You set both, the square
 will sound.
 Bit 7 : D/A mode. See above for more.
$ff12 : Bit 0,1 : 2nd sound-source, highmost bits.
 Bit 2 : Character generator in ROM or RAM. When set, TED
 will enable ROM when trying to get data from the
 charactergenerator to build screen. Else, it will
 give out control-signals to the DRAM's.
 Bit 3,4,5 : These bits tell, where to find bitplane in the
 memory when using bitplane-mode. TED assumes them
 as A15,A14 and A13 bits. So, the bitplanes can be
 switched as 8K pages, anywhere in the 64K.
 Bit 6-7 : Unused.
$ff13 Bit 0 : A sign to having control about memory paging. This
 bit always sets to 1 when ROM is active over $8000.
 Else, it will be 0. READ ONLY.
 Bit 1 : Force single clock mode. Then, TED will disable to
 generate twiee clock.
 Bit 2-7 : Charactergenerator. Bit 7 corresponds to A15, 6 to
 A14 and so on. This value shows and sets the start
 of the charactergenerator. It can be paged as $400
 bytes. Use with addition of $ff12-2.bit.
$ff14 Bit 0-2 : Unused
 Bit 3-7 : Start of the video-ram. Bit 7 also corresponds to
 the A15 line as above. So, video-ram is mappable
 as $800 bytes - 2K. The above $ff12-2.bit doesn't
 affect this, but the actual RAM/ROM mapping (see at
 $ff3e/$ff3f and $ff13/0) does.
$ff15 : Background. Lower bits contain color-code, higher 3 luminance
 and higmost is ignored.
$ff16 : Color-reg 1
$ff17 : Color-reg 2
$ff18 : Color reg 3. This and the above are used in ECM and MCM modes.
$ff19 : Border. All color registers use codes as described in $ff15.
$ff1a : Bit 0-1 : Higmost bits of the next $ff1b
 Bit 2-7 : Unused
$ff1b : Actual character-position. Higmost bits in the above register.
 TED counts the characters that it had fetched and put out to
 the screen. The number is increasing by 40 after every
 characterline (8 rasterline).
$ff1c : Bit 0 : Higmost bit of $ff1d
 Bit 1-7 : Unused
$ff1d : Actual position of vertical scanning. Higmost
 bit is in $ff1c. Read/Writeable!
$ff1e : Actual position of horizontal scanning. R/W!. Lowmost bit is
 unused. It contains the TED's internal counter's highmost 8
 bits. So, it increases 4 with every character. When writing,
 it seems to put the value to a functionally different register
 (writing back a reading value in right time affects the screen).
$ff1f : Bit 0,1,2 : Actual vertical scanning-line in a character-row.
 R/W!.
 Bit 3-6 : Flashing counter. It's value increases with every
 frame, and TED fits it's flashing feature to this
 register's reaching to 15.
 Bit 7 : Unused
$ff3e : Switching to ROM. A writing statement to this address will
 cause to turn on the ROM between $8000-$ffff. It's an other
 matter, which one; this time, only sure thing that it'll give
 CS signals instead of RAS', CAS' and MUX.
 See $ff13/0 and $ff14
$ff3f : Switching to RAM. The opposite of the above.

==

@(#)error: ? DS, DS$: rem The Error Channel

We are not aware of any errors with issue 11, save the changes to some WWW
addresses as noted in Hack Surfing (Reference: surf).

==

@(#)next: The Next Hack

"... and that's not all you get." Well, it is for this issue, but here's
what Commodore Hacking is cooking in its TV informercial cookware for
issue #13:

o CMD has announced that SuperCPU development units should be made

 available shortly, so C=Hacking will scrutinize it and detail the
 registers of interest as soon as it shows up.

o Exploiting the 65C816S. We're holding this article over to next issue
 to allow testing of the examples with the CMD SuperCPU. This article
 will detail the new opcodes available to programmers, show how to
 detect CPU clock speed on any C64, accelerated or not, and discuss
 pitfalls in code migration.

o Let's get HTMLized! It's about time the Commodore 8-bit learned to
 do HTML. There's nothing that says this popular WWW markup language
 can't do used to create nice disk magazines and newsletters on the
 CBM system, so C=Hacking begins a 4 part series on the language and
 how to render HTML pages on a Commodore machine.

o And, of course, C=Hacking's regular goodies.

So, go ahead, buy that box of disks, and label one now for Commodore
Hacking Issue #13.

==

@(#)editor: Hacking the Code

For articles in Commodore Hacking that include binary files as part
of their article, these binaries files are made available in this section
as encoded text files. The format used for encoding is called UUCode,
which is a standard widely used on the Internet to transmit binary files
using only printable ASCII characters. To that end, each of these files
must be decoded with a suitable decoding program before they can executed.
Typical examples inlucde UUXFER for the 64, uudecode on the ACE OS for the
64 and 128, and uudecode on most UNIX OS machines. Some encoders can decode
multiple files, while others will require the user to manually split this
section into individual pieces prior to decoding.

WARNING: The UUCode format trasnlates files from binary to ASCII, not
PETSCII. Therefore, either decode this section before downloading this
section to a PETSCII mode computer system, or download this section without
translation to PETSCII. Some decoder programs can handle PETSCII converted
UUCode files, but the practice is not recommended because conversion is
typically done in a telecommunications program and cannot be guaranteed to
be accurate.

@(A)polycode: Binary for Polygonamy

begin 600 polygonamy
M`0@0",0'GC(P-C8@5C4N,````'BB_YJ]-PB=^`#*T/>.$=#N,-"&`:G-H&F%
M+80NA:Z$KZ`Y3``!`*@%D3_,:;TL"9WH!^C0]^X"`>X%`8C0[J("()T!\"S)
M!I`2*0&H()H!:0:0"*H@G0&%^1#CA8NE_#CEBX7\A8RE_>D`A?V%C2"&`:;Y
M\`3&^1#%()T!\`D@F@&B`H:+D!OH()T!\`GH()T!()H!:0%I`X6+Z""=`<@@
MF@%E_H6,I8UE_X6-.""&`?",I(NE_N6+A?ZP`L;_L8R1_HC0^6"^Z@&I`(6-
MI/OP#`;Z*B:-QOO*$/*H8(6.L?R%^JD(A?NECJ3\T`+&_<;\P.?0W*3]P`?0
MUJDWA0'.,-"I&XT1T%BI`(T`""!@IB".IDRNIP,'"PL("@">,C`V,>-_>*E_
MS+&I-(4RC0R@(KFJ:9G=_XC`_]#USB#JE0CL'0@XC>8!HO.:R&"""B$!F+X+
M*=@8@$I*4MK(T.KN/PL.0@CN2<B`.0C./`@0V:(.XP<"U)T#<"&=!.`&")T%
MU*F`G0;4BCCI!ZH0XJ`/J0`*D!>B_XX.U(X/U(T3;GSPCA34HH&.$J!XCXP8
MU*`"J?^@.-R9`=V(T/?`$+`,N3#@>0#<N4`;W;D`#9D`T,C`+]#E(%`-K3#`
M>L.M,0.%R*D@H@:-8)F-_M_@#-ZFH`!,C@![69I,!,Y)FHV#"$@@+)!H(,J.
M)("I"B\UR@(T`U0#=`.4I,5U*PC$'X88AB"Q"L8<A0"E$)$*B!#SQA[*E7?G
M3`X"?P@(@0$(4[(M_Y5"_P1J8`1X)0`DR@J0&2(#,,84!$BMW:/F8:3.4V)@
M%*J`F!#P+,KM\`6D!(6$H`O)__#C4`+T\!0&WY`$)M_&ET;_D.$@2(V1W,C0
M^.;=T.AR[*T2T,F`T/DR#``$W`P`K0C=)N_JZL8!(8"I_XU@`*(*3!$`J7N-
M$=#F`820A(0``H0"`!#%62@0,$.H`F#___S]""8!`P$`,S@Y,3%JW#`P,'X`
MQ@8`+P,`BP%`"@!$````O;U*`.J9/_]]F0X"B!#ZC!G0ZH8!:S,`:$`("``P
M`(!&X>FG>::<X\FZ)TX,YT(&L:@R`%,!T`H<.(8@)&P#&3J,#+!28*)"D!-J
MO1!,!`(K/*@8>J1P%!=<`"$Q>`EA"Q#Q`HH0`$`,`$P`$(+Q[NY&`$``X>$H
M`"4`"$%H$1$CBQX>C0"0X"`$!9LWUJ`5R``5</`L"`[^]BD`"!*3_)2%F(B3
M*P=L/1*,QP`_!@`PGQ&L`'\0$(-Y$/NBF%^E,T0>D30P'N$%,`XAI357'I$V
M,![=XQ%C0*4WC01,.(PH@HT%<@BQI3F-!MRE.HQB@HT'F@)"W*U`"2T@`]VE
M,(T-W&`%GC,R-S;/`#@`+C%*+D^B.+W)!94"Y9V1`LH0\^8!J9`L$=`P^\T2
MT-#VJ0@2X@Q`W7'=H#U(:*4`J0&B"(T.W(X/W*D`HG=,X`$%./'Y,`B!"`4"
M;P44/A:`#KX$"B=+$`=(ZP"JL9&S(J$X`"`/B@1Q@!F!>@IVHP4&`$"CL[V2
M-87@&0`!`S"2H`[%H#BHD)FD!2$FC__P!04`"J/F>M`"YGNM!@+).K`*!18C
M3F/W@Z1DZAJGY*>&KMBL3$BR`#'J`[!'_DKSD?(.\E#R,_-7\<KQ[?8^\2_S
M9OZE].WUR2#P[T6-!S`XZ=!@@$_'4EA`+/-D57\"!``*@`!O`!&!)H`""0!8
MIG+V/`,D(PUO8&`(GX,0:*`!%A'$"`L(P=$)()3`!P``)Q@-P'`'A$41A0('
MA@(&A\#;@>LLIVN`3#)7KR`0#PP9!P\.`0T9`D<3M`OL(%0%$`@%#B`,+B`*
M%00$`04TG3(8(#(O-B\Y-@+`(3,#%!,@-CHX(#HI`A<T"P'H(`$8O0`,RU<%
M!@<("0H+#`T.#U"91A.2&Q=)<B0;T9$@J%`06"C@D2&82(SAA8+@(P$+%55E
MA8JP(U^)C@0L9I2H4!"4;@@I<Y2@4'=R0GM\?7YA"8&"@X2%AH>(B8J+C(V.
MCY"1DI.4E9:7F)F:FYR=GI^@H:*CI*6FIZBIJJNLK:ZOL+&RL[2UMK>XN;J[

MO+V^O\#!PL/$Q<;'R,G*R\S-SL_0T=+3U-76U]C9VMO<W=[?X.'BX^3EYN?H
MZ>KK[.WN[_#Q\O/T]?;W^/GZ^_S]Y>X1!P;Y=Q!TEA44.DL5RIT-%87.DA4%
M!P7((B`>'!D7%1,0#@P*"`8#`?_]^_GW]?,]XMH1Z.;DXN#>W!36CM&A;$?'
MQ</!P+Z\NKBW$+D[KZZLJJBGI:.BH)Z=8NZ.E).1D(Z,BXF(AH6#@J`S=Q1W
M=G1S<7!OA;UC9F5D8F%@7EU<6XB\'4M.34P+CT`ZOO`=1R"/8#P"\@B\+1"W
M(2!H,+KC"?86B,<1P*,)YA&,QQ'*HP@?``80*((!"`<*B$@+`$@(`4!P`D@%
M`T"B6T@2'DTHCR/L6C`>2S"/%A8CC<<?'Y/8(R)ACR5D/8(J*[0>04B/(WQ'
M%]XC3$U.2X];7%U>8&%B9&5F);)[#(&B<W1V=T+W*(*#A8:(B8N,CI"1DY0Z
MQT>=GJ"BHZ6GJ*JLKJ^0>3ZWN+J\OL#!P\7'0IZ/T:#(Q]S>X.+DYNA0F#Z"
M_7W^?O]_P$#!@@*#`X0$Q47&1P>("!>$`$"\)`"`O$``@^;`/[\^OCV]/+P
M[NSJZ>?EX^'?W=O:V-;4TM#/S<O)R,;$PL&_O;NZN+:UL[&PKJRKJ:>FI*.A
MGYZ<FYF8EI63DI"/C8R*B8>&A(.!@']]?'IY>'9U=')Q<&YM;&II:&=E9&-B
M8%]>75M:65A75E134E%03TY-2TI)2$=&141#0D%`/SX]/#LZ.3@W-K[PP30S
M,C$P+\&Q+2PK*EDH.O0E)!15(HX_!0$5$%1P4(%"!7'A4,%9C5!6&B@O`4
M%A6$(*`G)FH))<`'<"$$BF@`#@L0@4P,`$P(`4P&`N.``PD$3`0%!@8&&%ZG
MH)R";PH*BJ@I#`P-#0X.#P\0$!$1$A(3$Q04%146%Q<8&!D:&AL<'!T>'A\@
M("$B(R,D)28F)R@I*2HK+"TN+B\P,3(S-#4U-C<X.3H[/#T^/T!!0D-$149'
M2$E*2TU.3U!14E-45E=865I;75Y?8&)C9&3_F&EJZ&-P<7)T=79X>7I\?7^`
M@8.$AH>)BHR-CY"2DY66F)F;G)Z?H:.DIJ>IJZRNL+&SM;:XNKN]O\'"Q,;(
MR<O-S]#2U-;8VMO=W^'CY>?IZNSN\/+T]OCZ_/ZM@%,F^<V@=$@<\<6:;T09
M[L2:<$8<\LF@=TXE_=6LA%TU#N:_F7)+)?_9LXUH0AWXU*^+9D(?^]>TD6Y+
M*`;DPJ!^7#L:^=BWEW96-A;WU[B9>EL]'@#BQ*:);$\R%?C<OZ.';%`U&O_D
MR:^4>F!&+1/ZX<BPEW]F3C<?!_#9PJN5?FA2/"81_.;1O:B4?VM70S`<"?;C
MT;ZLFHAV9%-!,!\/_N[>SKZ2KIZ/@'%B5$4W*1L-`/+EV,N_LJ::CH)V:V!5
M2C\T*B`6#`+Y\.;=U<S$N[.KI)R5CH>`>7-M9F!;55!*14$\-S,O*R<C(!T:
M%Q01#PT+"0<&!`/_ID?_5298F>`]`0(#!`8'"0L-#Q%2QAH=(",G*R\S-SQ!
M14I055M@9FUS>8"'CI6<I*NSN\3,U=WF\/D"#!8@*C0_2E5@:W:"CIJFLK_+
MV.7R``T;*3=%5&)Q@(^>KK[.WN[^#Q\P05-D=HB:K+[1X_8)'#!#5VM_E*B]
MT>;\$28\4FA^E:O"V?`''S=.9G^7L,CA^A,M1F!ZE*_)Y/\:-5!LAZ._W/@5
M,D]LB:;$X@`>/5MZF;C7]Q8V5G:7M]CY&CM<?J#"Y`8H2VZ1M-?['T)FBZ_4
M^!U":(VSV?\E2W*9O^8.-5V$K-7])4YWH,GR'$9PFL3N&41OFL7Q'$ATH,WY
M)E.`GWZB!!;Z`^Z$,`>XA1D0P@"NJ`*<@)`$$`4/$&X`F5@!2H`/(`.8`!J`
M`S5$%S8`%Q8!%Q("%PX#%PT$8#H%%PL&%PH'8)@(8`@)%PD*D@M@"`P7"`TR
M#F`(#X80%P<1(`,2)A-@`A07!A72*P<2D?H)^YB`_`G]F(#^"?^8@``)`9B`
M`@D#F(`$!Q0%!Q(&`@*#Y)TA-$%*4%9:76!C96=H:FML;6YO;W!Q<7)R<W-T
M='1U=74;#W8"!'<"!G@""'D""WH"#WL"&'P"$WT(<9L(`%@-`U(&`!0#`!0`
MB!```01P`D``_Q@\\"A()R8F)B4E)20D)"%9(R(B(B$A(2`@("%9'QX>'AT=
M'1P<'"%9&QH:&AD9&1@8&"%9%Q86%A45%104%"&Y$Q(2$A$1$1`0$`\/#^%9
M#@T-#0P,#`L+"R%9"@D)"0@("`<'!R%9!@4%!00$!`,#`R%9`F'^(P```/__
M_V"%_OW]_?S_/O[^V2%^OGY^?CX^/?W]V2%]O7U]?3T]//S\^2&\O'Q\?#P
M\._O[^[N[F>%[>SL[.OKZ^KJZF2%Z>CHZ.?GY^;FYF2%Y>3DY./CX^+BXF2%
MX>#@X-_?W][>WB@$W=S<W-O;V]K:VMG9V;C%T=[J]P00'2DV0D\@#W6!CIJG
ML\`=#N;R_PL8)#$^2E=C<'R)C0ZON\C4X>WZ!Q,@+#E%4HT.>(21G:JVP]#<
MZ?4"#AN-#D%-6F9S?XP=#K*^R]?D\/T*%B,O/$A586Y[AY2@K;G&T]_L^`41
M'BHW1%!=:7:"CYRHM<'.VN?S``T9)C(_2UAD<7Z*EZ.PO,G6XN_["!0A+3I'
M4V!L>862GZNXQ-'=ZO8#$!PI-4).6VAT@8V:IK._S-GE\OX+%R0P/4I68V]\
MB)6BKKO'U.#M^083'RPX15%>:W>$D)VIML+/W.CU`0X:)S1`35EF<G^+F*6Q
MOLK7X_#\"18B+XUZYJCM`@0`R)!@!0`H!$!,@,`$P`(('`3).]`.Z"@(\!#H
MQ#+P"\``\`>F'$4Q1R2%!2C0!Z1/Q#+0`>CD'(8<\#S@";`XO(`?Q3+PP.*#
M$2`P`2$3(C`!(Q,E,`FR<P`2@3*C`!*Q,L,`MR\P`3`3,3`!,A,T,`$U
M$S8P`3<3.3`!.A,[,`$\`0@^N0`)D13(QB_0]HT$_ZD`8,E@D`(I7V"@!(0&
MHC4^V4<@??^.('51++I$:2`-`*(%H"<@A$0@8@!:'<X;!Z\(")B`$`D8F(`@
M"2B8@#`).)B`0`E(F(!0"5B8@&`):)B`<`EXF("`"8B8@)`)F)B`H`FHF("P
M";B8@,`)R)B`T`G8F(#@">B8@/`)^"`HL0@(F(`0"1B8@"`)*)B`,$$X(2CU
M*$)(P`103%C`!&!,:,`$<$QXP`2`3(C`!)!,F,`$H$RHP`2P3+C`!,!,R,`$
MT$S8P`3@3.C`!/!,^"%`B44(P`003!C`!"!,*,`$,$PXP`1`3$C`!%!,6,`$
M8$QHP`1P#'@B0JE'$0*()I!@`I@FH&`"J":P8`*X)L!@`L@FT&`"V";@8`+H
M)O!@`O@B2BP"""808`(8)B!@`B@F,&`"."9`8`)()E!@`E@F8&`":"9P8`)X
M)H!@`H@FD&`"F":@8`*H)K!@$+@C2CV*$,@P`=`3V#`!X!/H,`'P$_@C4&(1
M"#`!$!,8,`$@$R@P`3`3.#`!0!-(,`%0$U@P`6`3:#`!<!-X,`&`$X@P`9`3
MF#`!H!.H,`&P$[@P`<`3R#`!T!/8,`'@$^@P`?`D)20VZE&$@`@)$)B`&`D@
MF(`H"3"8@#@)0)B`2`E0F(!8"6"8@&@)<)B`>`F`F("("9"8@)@)H)B`J`FP
MF("X"<"8@,@)T)B`V`G@F(#H"?"8@/@E$HN`"`D0F(`8"2"8@"@),!B$."92
MCR(2Q0P`183&#`!&A,<,`$>$R`P`2(3)#`!)A,H,`JRPP`2X3,#`!,A,
MT,`VS@P`3H3/#`!/@FE%@$"$P0P`083"#`!"A,,,`$.$Q`P`1(3%#`!%A,
M8,`$:$QPP"!X)Y1Z%"&(8`*0)IA@`J`FJ&`"L":X8`+`)LA@`M`FV&`"X";H
M8`+P)O@GH,0B"&`"$"888`(@)BA@`C`F.&`"0"9(8`)0)EA@`F`F:&`"<"9X
M8`*`)HA@`I`FF&`"H":H8`*P!K@HH=2C"`'($]`P`=@3X#`!Z!/P,`'X*"46
M`0@3$#`!&!,@,`$H$S`P`3@30#`!2!-0,`%8$V`P`6@3<#`!>!.`,`&($Y`P
M`9@3H#`!J!.P,`&X$\`P`<@3T#`!V!/@,`'H$_`I4&(IHQY%"`B8@!`)&)B`
M(`DHF(`P"3B8@$`)2)B`4`E8F(!@"6B8@'`)>)B`@`F(F("0"9B8@*`)J)B`
ML`FXF(#`"<B8@-`)V)B`X`GHF(#P"?@J*+$(")B`$`D8F(`@"2B8@#!!."LH
M]2A"2,`4Q8P`1@3&C`!'!,>,`$@$R(P`203)C`!*!,J,`LRXP`3`3,C`
M!-!,V,`XSHP`3P3/@K0(E%",`$$$P8P`0@3"C`!#!,.,`0Q(P`103%C`
M!&!,:,`$<`QX+$*I1Q$"B":08`*8)J!@`J@FL&`"N";`8`+()M!@`M@FX&`"
MZ";P8`+X+$HL`@@F$&`"&"8@8`(H)C!@`C@F0&`"2"908`)8)F!@`F@F<&`"
M>":`8`*()I!@`I@FH&`"J":P8!"X+4H]BA#(,`'0$]@P`>`3Z#`!\!/X+5!B
M$0@P`1`3&#`!(!,H,`$P$S@P`4`32#`!4!-8,`%@$V@P`7`3>#`!@!.(,`&0
M$Y@P`:`3J#`!L!.X,`'`$\@P`=`3V#`!X!/H,`'P+B4N-NI1A(`("1"8@!@)
M()B`*`DPF(`X"4"8@$@)4)B`6`E@F(!H"7"8@'@)@)B`B`F0F("8":"8@*@)
ML)B`N`G`F(#("="8@-@)X)B`Z`GPF(#X+Q*+@`@)$)B`&`D@F(`H"3`8A#@P

M4H\B!$A,4,`$6$Q@P`1H3'#`!'A,@,`$B$R0P`283*#`!*A,L,`$N$S`P`3(
M3-#`!-A,X,`ZSPP`3X,)18!`A,$,`$&$P@P`0H3##`!#A,0,`$2$Q0P`18
M3&#`!&A,<,`@>#&4>A0AB&`"D":88`*@)JA@`K`FN&`"P";(8`+0)MA@`N`F
MZ&`"\";X,:#$(@A@`A`F&&`"("8H8`(P)CA@`D`F2&`"4"988`)@)FA@`G`F
M>&`"@":(8`*0)IA@`J`FJ&`"L`:X,J'4HP@!R!/0,`'8$^`P`>@3\#`!^#(E
M%@$($Q`P`1@3(#`!*!,P,`XT`P`4@34#`!6!-@,`%H$W`P`7@3@#`!B!.0
M,`&8$Z`P`:@3L#`!N!/`,`'($]`P`=@3X#`!Z!/P,U!B,Z,>10@(F(`0"1B8
M@"`)*)B`,`DXF(!`"4B8@%`)6)B`8`EHF(!P"7B8@(`)B)B`D`F8F("@":B8
M@+`)N)B`P`G(F(#0"=B8@.`)Z)B`\`GX-"BQ"`B8@!`)&)B`(`DHF(`P03@U
M*/4H0DC`!%!,6,`8QHP`1P3'C`!(!,B,`DR8P`2@3*C`!+!,N,`PS(
MP`303-C`!.!,Z,`$\$SX-4")10C`!!!,&,`$($PHP`0P3#C`!$!,2,`$4$Q8
MP`1@3&C`!'`,>#9"J4<1`H@FD&`"F":@8`*H)K!@`K@FP&`"R";08`+8)N!@
M`N@F\&`"^#9*+`(()A!@`A@F(&`"*"8P8`(X)D!@`D@F4&`"6"9@8`)H)G!@
M`G@F@&`"B":08`*8)J!@`J@FL&`0N#=*/8H0R#`!T!/8,`'@$^@P`?`3^#=0
M8A$(,`$0$Q@P`2`3*#`!,!,X,`%`$T@P`5`36#`!8!-H,`%P$W@P`8`3B#`!
MD!.8,`&@$Z@P`;`3N#`!P!/(,`'0$]@P`>`3Z#`!\#@E.#;J482`"`D0F(`8
M"2"8@"@),)B`.`E`F(!("5"8@%@)8)B`:`EPF(!X"8"8@(@)D)B`F`F@F("H
M";"8@+@)P)B`R`G0F(#8">"8@.@)\)B`^#D2BX`("1"8@!@)()B`*`DP&(0X
M.KH30$I(P`103%C`!&!,:,`$<$QXP`2`3(C`!)!,F,`$H$RHP`2P3+C`!,!,
MR,`TS8P`3@3.C`!/!,^#I`B44(P`003!C`!"!,*,`$,$PXP`1`3$C`!%!,
M6,`8QHP`1P#'@[0MT)@"6(8`*0)IA@`J`FJ&`"L":X8`+`)LA@`M`FV&`"
MX";H8`+P)O@[H,0B"&`"$"888`(@)BA@`C`F.&`"0"9(8`)0)EA@`F`F:&`"
M<"9X8`*`)HA@`I`FF&`"H":H8`*P!K@\H>Z$P!+(,`'0$]@P`>`3Z#`!\!/X
M/%!B$0@P`1`3&#`!(!,H,`$P$S@P`4`32#`!4!-8,`%@$V@P`7`3>#`!@!.(
M,`&0$Y@P`:`3J#`!L!.X,`'`$\@P`=`3V#`!X!/H,`'P/24]-GA`\(J`"`D0
MF(`8"2"8@"@),)B`.`E`F(!("5"8@%@)8)B`:`EPF(!X"8"8@(@)D)B`F`F@
MF("H";"8@+@)P)B`R`G0F(#8">"8@.@)\)B`^#Z9``P(F(`0"1B8@"`)*)B`
M,#^9.#\!B.&S(/\>+R#`R@"`8@"`"`!20,!`"<#E"&"K`F$F8F`"8R9E8`)F
M)F=@`F@F:F`":R9L8`)M)F]@`G`F<6`"<B9T8`)U)G9@`G<F>6`">B9[8`)\
M)GY@`G\F@&`"@2:#8`*$)H4!"(8@`1`-`$"&`2T`(`$`"`!``0"]`:D/X+&-
M(=#('B,5A?Q3C_U,38&3#AP1`0Z05T],64=S'DU9#04!$F`<#1\($F&9IT`E
M-"(4R(W$`$1)3;J)4TE:#B:!A"H*8W-OQE!&CX)LLFH\!T!!!5U32E5$1$!.
M5U4N1415SR.0`08@<T5%PX19`YYC/6A!0TLRK$Z0($99($16K4%)3%/F!Y4!
M!R!UFAD).I%`$1&=+Y$[QS01`H!624=!)6*0#9P!!2`^/CX@<"3;Q5\@T$M%
MD%@H3P$%14<YDB`\/#P-#9IAJ2XN+G-/4E+AE4%"3U5<`N(G0E5'4R$-=&$-
M&@(!!=Y-DZQ3(%"<`T].04Q)5%D@14Y(04Y#15)3`+'\\"X@TO\F#O8W<#$%
M!4]W%4$@4T5#4D4(#U1%6%0@34534T%'1303(%E/5R$@Y/_)`/#YI0$I_H4!
MJ0AT$T<8C1C0K<<.Q`$"@A`%*?P)`[DPK<D)((T1T,#:_(7^80\>:&!,!@"-
M05DP4*D$A?VI7('7@ZD6LB2,YOWFEBORB8'`2-#WJ1V1_)'^R-#YHL"&6NB&
M6*(*AFBB#(9JH@Z&;*(0AFZB$H9PD,@=*W*AEB`P`F$2"%*[DNA)M(T$%`(!
MR$R-`L`-@XTAW(*-(L`-1(U!W+R-0A9`=HT@%HTERP5G\3DV1'@@G_^ER\E`
M\"_)+LT*0MY)("#)-]`+H@/*_@`6RA#Z,!')+6(W1Z.%3)N"R3+"UP:&$0'F
M..8YI3H$%P.%.J6QK`+)P#"6$%^QI?@8:0C!Z\"%^*4YE"*L#%UL`#L%`4$H
MO!0$A3PI"(T_^0!"/<$,`#J%/FTB"CN%0*4\=@!"I?]HA3@#0#C)-`5$ICND
M//6112EY3$9AG<L*(,E'ID)@QD)(4,*?$-Z`22%X"`%L@E@D]!A(A0GH`L(0
M%.!`Y@<+?D200$FF0Z1$:HD1$$J0'B/(3:9`OQ,\`%=`6&$"",L2`0Q%"SZD
M/=)DRCCYL(202Z8_I$)!#:#0ID"D0;VS`8#*&!`!.&HXY?^F/:0^Q'-HRR07
M`,NU*4RB`-EA!`_)AI`KV>@`)AAY0!:0(,(*A?^$^8I(\`ZT!KD`%L7_D`58
M%T3RI/F4!VBJZ(@0R\HP)(:MM0?)`%?W`6B)9``!T`8@3(M,=83)`M`#(-"/
MIJW*$-REO]`_-/$;&*3L`!B%QD`I+EH!X<>B&,%PC%FB(X036Z+(O7`P'-[_
M6/`7AJ!XBDI*2AAIIX5<BBD'J.(9(7*FIO_*T-R"I22_J<:B>(X8T(T`W:D9
MA;Q,8X(B5^Z)<(B.(`DL*$5612*>`!<`4S`$1$0IQAT)@0?$0`4P`:$(24Q(
M&_05L@2;<0)%*#1S$F(4$R%1%2,2U,DT]25$%,LA=#$R!.3U0@2E535$E&
M6=+L2$4@5T%94R!/1B!G3T0@5$\@34%.(B`M+2"0X@!%+D-534U)3D=3YLM6
M4C`4PA<0"(U0&Q``E!=LA/`%!!KYHY``-$:(XL:LH`.(Z@5``@20,`!,_[F*
M./VB3`+&_[<<B$`"!)@0%L(`-@@')@J`"87YN4@8,0D8_D8OHTU?0`7D`+F
M!`]0S/F90!9`AID`%H@0HV`.KP#(Q<8+,$#8B"ZTK+X`R25&",06>*+_BD@6
MT3CE0C6W"*;_DD[</%NX8M9(4B-B29%!2K'(H$&E2]AJ1$PL,BA-EAD3PZ5%
MI#M>&F#!`D:D/#/P0H5'I#V%:[%K2$0L0JAHI)9KP4F`@A04$*@^R0JP7/^J
MO0`5JJ0>5@HJ%@,/H$*D0'90,$BIH+:"_Y`#YD,5"X9":&4S0TKP!LVP6(B&
MJ&K)H)`(W#Y"J8D:0Z1!#B0D:29#:2D@9^,!9Q0/::"`1*0_BH5.2F^821QI
M`44IL6](L6VD_SCQ;87_:/%OI?]<=T$0"UP!#:D`\`D8::C)R)`"J<>%09$:
M/((893G6'4?NZ8XC6(`8M*,)(D@P0S%H1Q.T@H'&H!U-$$$"2%"0&)JF0"DY
M>Y'D1,"2$P`)3@0@!2>"0()G7?B3X#&2#)\S8WCG(VQ'BR$S:@QW<P2P6#%X
MQ(RA=HY@$T-XE1'#5M08!*A@I:Q(..4Z*`P7P7`$3>7!Q9`63;P9,8)-?*&-
MKB""Q90)$T-:-$1%'C^1.T?&N>!&5<BM+[#)B.&V1@PU2G"-&B7DU8AA+6H,
MW78$T`K"G'T068QB:(6L:%4``XWA7YI@%7AD`Q_$L33(!@%1`LAG]I@@D0
MK$)3BV`!8OB7)H@@J&7"Q)`R31"(U2E8"HT!)#,2(909"4'*C`2OAREBIR<B
M$$$H$8@FH!19C$$T:@RG5(0<(;SB&5QE!"PX27&#&HTB]8"(DF<C@IAE49
MI?@3DZ88?&;$L%<U!H<Y@@X0$&K$<$,UACHK0HX0@&C$$$PUAL,IIBG28Z48
M@++&$$%%8!D5@@.,X;ZJCS+F8KBOO*H\N!CVJPE00+;)<3'L5Z)3OFP,>K8$
MF@I02N;!Q=!<540Y?4%L:\AQ<G2"V-:0(=B"P(-B33E.04Y/D!(AX,!06$Y1
MD!-2Q-R6`!(4)%.6$U3D!%4!ISL$R3RIC#(0.AJQT%`;0D,<B4"]J3B:E)@D
M`@4E%"@CH$`!(V5>7@PGT0F<1"=P$IU`F@S!D@DC<2`4[4@Q),F0-L4+-RA>
M0#79,C.*%S10O(`RX@4R%*=H,>A$L"8NB9H$+$5-@K`80P"CJ4`E`414400B
M52@"$5.4TXHQG,0.<!([P$GL`"<A#V+0`0+MC!A.8@<XB1W@)':`DY`',>@`
M(44'(B@Z0"#1`2!*2/P8_HU3`HMB>(\DX#V2@/=(`DIC"'I8N+="OP0A*G:`
MJ-@!HF('B`H=(+S'#O`>.\![[`!T,P0:2*;0,`%B1@RN-&.I**)A0E3L`%&Q
M`T3%#A`5.D`VT0$WB@XU4'2`-0)#()4<IDTA)0&WD03<1A)P&TG`;2`!&P4)
M'"A(0!I!`AI*_50PQ9-.*/<13Y3["$T*?@0I`-,^)88C*3&8QXB!.222Y0A$
MRG($!`4YC@2E5(TE.E6-17`/4XT%1U,Q$D`%I5&-)AU2C4;&I5"-!L;D4%C^

MC`:@V$8'HC5#&)F-_S`#3'6B*D@13(``B6(0D"H(A#B+04"J8`($2!2#@%1N
M)<?%("!5T`.#RGH,&4R`@0(?.882DJ&,Q(LRY00S.31!RH6&<GJ.3)LU6,XV
MD7,W)#6^*N(%*Q0O*:!X`2FE2R<H7D`H\0(FBA<F4+B().(%)10O(Z!X`2$T
MAI"EI;$DT"@MBE4$+L4J@BPR%4<VL8HWH%A%-5"L(C4H53$S%*L(-(I5!#+%
M*H(R4A5#P(LCY"Z"0W(700.YBR`$10,2%`1)8APA1`EF*""6$R'D!"(I$5]*
MHXLCY00D.25!2H19DN-B)CDG04XHD"6`I4R8*5A.*I`3*Z1$IR@G?LB$B2SE
M!"TY+JEBA3NIH84\J7R%/:T"07H^K2+@!C^M0A:%0"!IAJ5!A2^E0H4PI4.%
M,:4A1AP)(BA(0"`I,B<*$BA0D(`F@@0FE",DH2`!)04)(RA(0"/YD4(@<5*E
M*HV$A:4KC5ZE*8WI!46JI3"-(?X.,8U!G"^-`<--+[`"7*4MC2)W#BZ-0L:E
M+(T"QN0L+.NJH`*$^ZD#A:.%_R!VF6"D^UU;!310A?ZH2DI*&*:_T`YI0/0\
M&C`*0!MAT`QII\B!6H;!O@!;AL*%7(5FA6"I:;);F"D'A?I@".V:LL"Y+9R;
M0&+2D!9#T!?LG6#:)74!WP@/\F<8D2^\FQ,.HV%6@C]`*Q*"#I@H=A`(Y:FJ
MF.D`D/KPND.@8-`4C)>*\)2->D":HOJO+O2&1BRU6B"GJBKEJ)`6J(HGN)"0
M`<@XY;<"YH@P!B"LG$SQI&`8IJ=[YHHE9$6FM98&(X5EJ&JV$03&J&`*M(UF
M65*J"-W1;I4YH2+T6<)A*NX.1Y*%G\"0.^R<DXB,#UE2J@COD6QPCK2D-,<^
MHI+*:-$@,$/H#8$9P@(1>+817F!>@F4R+T'8!;;*MD09IB+K<"19^`D,N4.?
M,]'(C[G%#_V9DKF@!/T,GQ#^`SONYY]-#Y)H@)%HPWD,$L4\BK!`%!0'D`_H
M.H8`%MF0`QCFJ)$^QXP!/VX-4S*$G\B0.YJAQJ70>Z3\$_<%I*.(X,E9Z84)
MI83_?*0<!9Y2+VAXA.G2A^H4"#"#Z2ADZ9*'*96]HBDT@>DQ:0T/ZK$#ZN&
MJ<:ST'VD_9BJR,2CT`*@ZX/_$`H)_I@)!@#&\.>%LH6SA/V0)0"2<+1`'/D0
MAK`#3)"=2KT@XH$X0,:%MD^(:JJDLLAUPCCY`,.P!J(`.'Z0%*HXX,2JA5=)
M_VD`A5FEM'%9./%7ZX*0!^CELL6RL/F%N)A*Y]V&MZ6K?`N&<*2=!B"XQH$2
M6JNEI^6IA:<1Y@2HBJCKI!K%7_`0A5^!<8U`J#^\7LBQN]`F;R8300&X`!"$
M3[)?,(="`/$@4JA5(-BE94(]7[`;:0/0%*2GN<D<I+4Y)Q(+$4&P(*1!^K%Q
M(%6FIJ<@<<S"(%V17::UO0#-,7$18Y'@S+DXY;BP$V6R5-P`&!0#D`Z%N:6U
MY;>%M:JP)G.V&$Z1\`*4?0#%Q#4#Q67P'"V%PJP(@29,`HHI^!AEP24X"+9E
MPA.I`:3^D;N8\`G&_@+&^C`&JO9,2*;!<(C&8,9FQERI8,0RH`>$^J5=P0E`
M7:5>4UZE8\`2@&.E9*9DI<$XZ4"%P:7"Z0&%PDSQHZ1EJ9F16V!L6P"*!V4`
M;%\``JB]%+='$`@P`1`3&#`!(!,H,`$P$S@P`4`32#`!4!-8,`%@$V@P`7`3
M>#`!@!,00R$6`9@3H#`!J!.P,`&X$\`P`<@3T#`!V!/@,`'H$_`P`?A@)18!
M"!,0,`8R`P`2@3,#`(.&&E'D4(2)B`4`E8F(!@"6B8@'`)>)B`@`F(F("0
M"9B8@*`)J)B`L`FXF(#`"<B8@-`)V)B`X`GHF(#P"?AA*+$(")B`$`D8F(`@
M"2B8@#`).)B`0`E(F(!0"5B8@&`):)B`<$%X8BCU*$*(P`203)C`!*!,J,`$
ML$RXP`3`3,C`!-!,V,`$X$SHP`3P3/AB0(E%",`$$$P8P`0@3"C`!#!,.,`$
M0$Q(P`103%C`!&!,:,`$<$QXP`2`3(C`!)!,F,`$H$RHP`2P#+AC0JE'$0+(
M)M!@`M@FX&`"Z";P8`+X8THL`@@F$&`"&"8@8`(H)C!@`C@F0&`"2"908`)8
M)F!@`F@F<&`">":`8`*()I!@`I@FH&`"J":P8`*X)L!@`L@FT&`"V";@8`+H
M)O!DH,1D1CV*$`@P`1`3&#`!(!,H,`$P$S@P`4`32#`!4!-8,`%@$V@P`7`3
M>#`!@!.(,`&0$Y@P`:`3J#`!L!.X,`'`$\@P`=`3V#`!X!/H,`'P$_AE4&(1
M"#`!$!,8,`$@$R@P`3"#.&90ZE&$@$@)4)B`6`E@F(!H"7"8@'@)@)B`B`F0
MF("8":"8@*@)L)B`N`G`F(#("="8@-@)X)B`Z`GPF(#X9A*+@`@)$)B`&`D@
MF(`H"3"8@#@)0)B`2`E0F(!8"6"8@&@)<!B$>&=2CR($B$R0P`283*#`!*A,
ML,`NS`P`3(3-#`!-A,X,`ZSPP`3X9Y18!`A,$,`$&$P@P`0H3##`!#A,
M0,`2Q0P`183&#`!&A,<,`$>$R`P`2(3)#`!)A,H,`JRPP""X:)1Z%"'(
M8`+0)MA@`N`FZ&`"\";X:*#$(@A@`A`F&&`"("8H8`(P)CA@`D`F2&`"4"98
M8`)@)FA@`G`F>&`"@":(8`*0)IA@`J`FJ&`"L":X8`+`)LA@`M`FV&`"X";H
M8`+P:4II;-2C"`$($Q`P`1@3(#`!*!,P,`XT`P`4@34#`!6!-@,`%H$W`P
M`7@3@#`!B!.0,`&8$Z`P`:@3L#`!N!/`,`'($]`P`=@3X#`!Z!/P,`'X:B46
M`0@3$#`!&!,@,`$H$S`P"#AKI1Y%"$B8@%`)6)B`8`EHF(!P"7B8@(`)B)B`
MD`F8F("@":B8@+`)N)B`P`G(F(#0"=B8@.`)Z)B`\`GX:RBQ"`B8@!`)&)B`
M(`DHF(`P"3B8@$`)2)B`4`E8F(!@"6B8@'!!>&PH]2A"B,`DR8P`2@3*C`
M!+!,N,`PS(P`303-C`!.!,Z,`$\$SX;$")10C`!!!,&,`$($PHP`0P3#C`
M!$!,2,`$4$Q8P`1@3&C`!'!,>,`$@$R(P`203)C`!*!,J,`$L`RX;4*I1Q$"
MR";08`+8)N!@`N@F\&`"^&U*+`(()A!@`A@F(&`"*"8P8`(X)D!@`D@F4&`"
M6"9@8`)H)G!@`G@F@&`"B":08`*8)J!@`J@FL&`"N";`8`+()M!@`M@FX&`"
MZ";P;J#$;D8]BA`(,`$0$Q@P`2`3*#`!,!,X,`%`$T@P`5`36#`!8!-H,`%P
M$W@P`8`3B#`!D!.8,`&@$Z@P`;`3N#`!P!/(,`'0$]@P`>`3Z#`!\!/X;U!B
M$0@P`1`3&#`!(!,H,`$P@SAP4.I1A(!("5"8@%@)8)B`:`EPF(!X"8"8@(@)
MD)B`F`F@F("H";"8@+@)P)B`R`G0F(#8">"8@.@)\)B`^'`2BX`("1"8@!@)
M()B`*`DPF(`X"4"8@$@)4)B`6`E@F(!H"7`8A'AQ4H\B!(A,D,`FR@P`2H
M3+#`!+A,P,`RS0P`383.#`!.A,\,`$^'&46`0(3!#`!!A,(,`$*$PPP`0X
M3$#`!$A,4,`6Q@P`1H3'#`!'A,@,`BR0P`283*#`!*A,L,`@N'*4>A0A
MR&`"T";88`+@)NA@`O`F^'*@Q"((8`(0)AA@`B`F*&`","8X8`)`)DA@`E`F
M6&`"8"9H8`)P)GA@`H`FB&`"D":88`*@)JA@`K`FN&`"P";(8`+0)MA@`N`F
MZ&`"\'-*<VS4HP@!"!,0,`8R`P`2@3,#`!.!-`,`%($U`P`5@38#`!:!-P
M,`%X$X`P`8@3D#`!F!.@,`&H$[`P`;@3P#`!R!/0,`'8$^`P`>@3\#`!^'0E
M%@$($Q`P`1@3(#`!*!,P,`@X=:4>10A(F(!0"5B8@&`):)B`<`EXF("`"8B8
M@)`)F)B`H`FHF("P";B8@,`)R)B`T`G8F(#@">B8@/`)^'4HL0@(F(`0"1B8
M@"`)*)B`,`DXF(!`"4B8@%`)6)B`8`EHF(!P07AV*/4H0HC`!)!,F,`HRH
MP`2P3+C`!,!,R,`TS8P`3@3.C`!/!,^'9`B44(P`003!C`!"!,*,`$,$PX
MP`1`3$C`!%!,6,`$8$QHP`1P3'C`!(!,B,`$D$R8P`2@3*C`!+`,N'="J4<1
M`L@FT&`"V";@8`+H)O!@`OAW2BP"""808`(8)B!@`B@F,&`"."9`8`)()E!@
M`E@F8&`":"9P8`)X)H!@`H@FD&`"F":@8`*H)K!@`K@FP&`"R";08`+8)N!@
M`N@F\'B@Q'A&/8H0"#`!$!,8,`$@$R@P`3`3.#`!0!-(,`%0$U@P`6`3:#`!
M<!-X,`&`$X@P`9`3F#`!H!.H,`&P$[@P`<`3R#`!T!/8,`'@$^@P`?`3^'E0
M8A$(,`$0$Q@P`2`3*#`!,(,X>E!W0D`)2)B`4`E8F(!@"6B8@'`)>)B`@`F(
MF("0"9B8@*`)J)B`L`FXF(#`"<B8@-`)V)B`X`GHF(#P"?AZ*+$(")B`$`D8
MF(`@"2B8@#`).)B`0`E(F(!0"5B8@&`):)B`<$%X>Z@[@*$$B$R0P`283*#`
M!*A,L,`NS`P`3(3-#`!-A,X,`ZSPP`3X>Y18!`A,$,`$&$P@P`0H3##`
M!#A,0,`2Q0P`183&#`!&A,<,`$>$R`P`2(3)#`!)A,H,`JRPP""X?-2=
MP%`"R";08`+8)N!@`N@F\&`"^'Q*+`(()A!@`A@F(&`"*"8P8`(X)D!@`D@F

M4&`"6"9@8`)H)G!@`G@F@&`"B":08`*8)J!@`J@FL&`"N";`8`+()M!@`M@F
MX&`"Z";P?:#$?28/`?&*@`@)$)B`&`D@F(`H"3"8@#@)0)B`2`E0F(!8"6"8
M@&@)<)B`>`F`F("("9"8@)@)H)B`J`FPF("X"<"8@,@)T)B`V`G@F(#H"?"8
M@/A^F0`,")B`$`D8F(`@"2B8@#!_F3A_`8AAGX`!@@2&"8P0E!F>)*HQN$#(
M4=ID[GD$D!RI-L12X7``D"&R1-9I_)`DN4[D>A&H0-AQ"J0^V700K$GFA"+!
M8`"@0>*$)LEL$+19_J1*\9A`Z)$ZY(XYY)`\Z99$\J%0`+!A$L1V*=R01/FN
M9!K1B$#XL6HDWIE4$,R)1@3"@4``P(%"!,:)3!#4F5XDZK%X0`C1FF0N^<20
M7"GVQ))A,`#0H7)$%NF\D&0Y#N2ZD6A`&/'*I'Y9-!#LR::$8D$@`.#!HH1F
M22P0]-F^I(IQ6$`H$?KDSKFDD'QI5D0R(1``\.'2Q+:IG)"$>6YD6E%(0#@Q
M*B0>&100#`D&!`+W_P`!`@0&"0P0%!D>)"HQ.$!(45ID;GF$D)RIML32X?``
M$"$R1%9I?)"DN<[D^A$H0%AQBJ2^V?00+$EFA*+!X``@06*$ILGL$#19?J3*
M\1A`:)&ZY`XY9)"\Z19$<J'0`#!ADL3V*5R0Q/DN9)K1"$!XL>HD7IG4$$R)
MQ@1"@<``0('"!$:)S!!4F=XD:K'X0(C1&F2N^420W"EVQ!)AL`!0H?)$END\
MD.0YCN0ZD>A`F/%*I/Y9M!!LR2:$XD&@`&#!(H3F2:P0=-D^I`IQV$"H$7KD
M3KDDD/QIUD2R(9``<.%2Q#:I')`$>>YDVE'(0+@QJB2>&900C`F&!((!@$?^
M`1/];R(W15!:86AN<WA\@(2(BXZN]@]9G9^AHZ6GJ:JLKJ^QLK2UMKC*>B*\
MOK_`0HW$Q<;'R,G*2)@DS<XBE`C2BDL$,!$$F@AN(MS<XHG?W^#@4-.",!1!
MIN;GY^CHZ>GJZNOK[.SM[>WN[N_O\/#P\?'R\O+S_3T]/6%X[)Y?]G9VMK:
MV]O;8H7<W=W=WM[>W]_?9(*PJB`$X@SCY.3D00;E3.;`".>,"!$,D"";0<#-
M(``080`("`$`#P`"(7IF.CHC`3H5`CH.`SH,!#H)!3K0FC("!SH&"#()8`@*
MY@LZ!0P-#0TZ!`X/#P\0$!`1$1$2$A(3$Q04%!45%A87%Q@8&1D:(,CW*0CX
M5"`A(2(C(R0E)B8G*"DJ*RLL+2XO,#$R,S0U-C<X.3L\/3Y`U/%F"9AE3"C*
M45)45EA96UU?86-E9VEK;6]R='9Y>WZ`@X6(BXTOKB29G)^95P,D`083"3`!
M#!,/,`2Q4P`1@3&S`!'A,A,`DR<P`2H3+3`!,!,S,`VSDP`3P3/S`!
M0A-%,`%($TLP`4X343`!5!-7,`%:$UT!"&"0'5P`@@)J_`!.`$Y4=#450\6L
M='AA8"<^/CX@;75L=,5V<X-'3@5%A$!XH$A)1TB@0EE480Q&,RY9"")T99'H
M0D4(/41T-UIP;(/8<&]S>7)P3U-)(Q&`H$]2MJ`_E!]LY"(V:88D2)`P5$A%
M3I$G8605(S$V.),Y041$+*!!3D2@24:@<W1I;&R@3D5'051)5D4N+BXOCF-M
M<'`1,@,1!V)C8R`Z;VL-(&QD82`C,#`@.W-%5*!43Z!:10$M'A!5"/\`[N[N
M`+N[QP!`4%6[@0"`JA&J1"A@510`(`!5JA0`[MV[=Q`!@'>[W>X(`+M5[C2%
M?D$!`O_;3IF]P]3!K1@$YY#%(``,`(D@``S_D`$@&.<@!`!&&-O,``!^O5,"
M!O]^`0EKH@0$0``P]^OW[]?O"#8`,"("6/O5J]\`5RW?J]7]/`@`_]^OW_OU
M^_\!I'$ORZ&/U@%B'P+L!I[`J;Z]O+NZN+>UL[&OK:NIIJ2AGIN8EI.0C(F&
M@X!]>G=T<&UJ:&5B7UQ:5U5344]-2TE(1D5$0T(;\X$!!4!!04)#1$5&2$E+
M34]14U576EQ?$/^H:FUP='=Z?8"#AHF,D).6F)N>H:2FJ:NMK[&SM;>XNKMH
M?*B"H0H!`00:D.:!0,8@("`!"(!N``(#!08("0L,#@\0$A,4%1<8&1KNB!P=
M2H@!0"`?'Q\>'AT<&QL:&1@7%103$A`/#@P+"0@&!0,"`/[]^_KX]_7T\O'P
M[NWLZ^GHY^;GRB/DXRHA!@$'X.'AX>+BX^3EY>;GZ.GK[.WN\/'R]/7W^/K[
M_?Z0<0!\`P">`0#'`(`%`/]_/Q\/!P,!)#$`O@$`SP"`8P#``@"`P.#P^/P2
MV#8,F'^]U(`Z`X(&`""#0/0`O?7V]O;W]_?X^/GY^?KZ^OO[^_S_/W]_?[^
M_MC%1;2P`04-(W``"$30`"((YB$`B#``!(2`__#_`00`_P`"`!0!%2,N-S]&
M3%%66EYB96AL;G%T=GA[?7^!@X6&B(J+C8Z0D9.4E9>8F9J;G)Z?H*&BHZ2E
MIJ>GJ*FJJZRMK:ZOL+"QLK.SM+6UMK>WN+FYNKN[O+R]OKZ_O\#`P<'"P\/$
MQ,7%QL;'Q\?(R,G)RLK+R\S,S,W-SL[/S_0T-'1T=+2T]/3U-34U=75UM;7
MU]?8V-C9V9#F`;``@(03))0PO3'JI$?^2O.1\@[R4/(S\U?QRO'M]C[Q+_-F
M_J7T[?4!L$6,`P"]`0$`O1H:&AH:&AH:&AH:&AH:&AH:&AH:&AH:&AH:&AH:
,&AH:&AH:&AH:&AH:
`
end

===
@(#): bottom

	ffd2.com
	http://www.ffd2.com/fridge/chacking/c=hacking12.txt

