
NEWS
Volume 3 Issue 11

JIM BUTTERFIELD
A bumper bundle of articles

BULLETIN
BOARD____________
Computer links by telephone
network

DISK DRIVE USERS
Inspect sequential and relative
files

CONCURRENT
CLOCK__________
detailed programming guide

COMMUNICATIONS
SPECIAL___________
Dr. Barker rides again!

f t commodore
COMPUTER '

Every PET owner
should read it ”

Chuck Peddle, Inventor of the PET

“The PET Companion” is
a fascinating collection of
essential PET information
from the pages of

Some of the topics covered:
PROGRAMMING THE PET HARDWARE REPORTS
Double Density Plotting
Modular Programming
Programming Style
Graphics

. Subroutines
Microcomputer Printout. It ?°£nngs0utSorts
contains all of the editorialTheGameofLIFE
from the 1979 & 1980
issues, including 105 PET
programming hints and
tips, 116 news reports,
reviews of 54 peripherals
ranging from light pens to
printers and 27 major
articles on PET program
ming. All of it written in
straightforward English.

Tommy’s Tips
ROM Addresses

THE SOFTWARE

Business Software Survey
Cosmic Invaders
Superchip
PETAID Do-It-Yourself Database
What’s Wrong with WORDPRO?
Screen Display Aids
Keyboard Tutor
Photography Course
Who Do You Want To Be?: Fantasy
Games
Commodore’s Assembler Develop
ment System
Programming Aids & Utilities Survey
PET Games

The New ROM Set
CBM8032 SuperPET
CompuThink Disk Drives
Hardware Repeat Key
High Resolution Graphics
The Commodore Printer
How the Keyboard Works
AIM161 A to D Convertor
Commodore's 3040 Disk Drive
PET’s Video Logic
Colour for PET: The Chromadaptor

THE SPECIAL REPORTS

PET in Education
PET Show Report
The Jim Butterfield Seminar
Hanover Fair Report
PET In Public Relations
Local User Groups
High Resolution Graphics
Commodore’s New Technology
Future Shock: Forecasting The
Future
Speech Synthesis
PET As Secret Agent
A Visit to the Commodore

plus news, letters, gossip and regular columns by leading PET
experts.

To: Printout Publications, P.O. Box 48, Newbury RG16 OBD. Tel: 0635-201131

Please rush me a copy of the PET Companion
[] I enclose cheque/postal order/money order
[] Please charge my Access/Eurocard/Mastercharge

or Barclaycard/Visa No:............................
[] UK £9.50 plus 45p postage [] USA $25 [] Overseas £12
(Credit card orders accepted b y telephone on 0635-201131)
NAME: ..
ADDRESS: ..

Postcode:

Contents

E dito rial—Seasons Greetings to the magazine.. 2/5
Using the U ser P o rt—Part 2... 6
F irst P rogram m ing Steps—beginners start here...7
The Friendly P E T —Butterfield on screen editing...8
H alf a D ialogue-Inputting—More from Butterfield.. 9
H alf a D ialogue-Reading Keys—still more from Butterfield... 10
Group Im plem entation of Large P rogram s—extending the theme of Basic Compilers...11
F orth—Is this the language of the 80’s?........... .. 12
Bulletin B oard—Fred Brown on telephone exchanges.. 14/17
C oncurrent Clock—V.P.Cheah describes an on-line digital clock.. 18/20
Quotes Test—from Philip Deakin.. 22
Program m ing Tips—a little snippet.. 23
Gentle A dventure—Read on...24
The 8032—Some user notes.. ... 26/27
Mixing SYS & USR—A full explanation... 28/29
P eriphera l Spot—Disk Drives again, including ISAM...30/32

SPECIAL SUPPLEMENT
E ditorial—Introduction to this month’s special...1
D r.B arker does it again!— ... 2/11

£59.95 + Vat

£59.95 + Vat

£86.95 + Vat

£29.95 + Vat

£12.95 + Vat

£9.99 + Vat

For the best PET software. . .
CCM4AND-0.. . . . For Basic IV CBM/PET, 39 functions £ 5 9 .9 5 + Vat

with improved “Toolkit11 commands
DISK—O-ERO.. . . For Basic II PET, adds 25 commands

including Basic IV, in one 4K rom
KRAMra.................... For any 32K HST/CBM fbr retrieving

disk data by KEYED Random Access
SPACEMAKER IV For any EET/CBM, mxmts 1-4 itxns

in one rom s lo t , switch selection
" USER I /O Fcr software selection of up to 8

roms, in any two S pacemaker Quads
FRONTO-FET.. . . Soft/hard reset for 40-colunn FETs

SUPERKRAM, REQUEST & KRAM PLUS w i l l be a v a i la b le s h o r t ly

We are sole IK Distributors for these products, tfiich are available
from 50ur local GBM cfealer, or direct from us by mail or telephone
order. To order by cheque write to: Calco Software, FREEPOST,
Kings ton-upon-Thames, Surrey KT2 7® (no stamp required). For same-day
Access/Barelaycard service, telephone 01-546-7256. O fficia l orders
accepted from educational, gpvemment & local authority establishments

.. .a t the best prices!
WOREPRO IV PLCB RRP £395 le ss £98.75 = £296.25!
WCREPRO I I I ELLS RRP £275 le ss £68.75 = £206.25!
WOREFRO I I PLUS RRP £125 le ss £31.25 = £93.75!
VISICflLC RRP £125 le ss £25.00 = £100.00!
TOOLKIT Basic IV RRP £34 le s s £9.50 = £24.50!
TOOLKIT Basic n RRP £29 le s s £7.25 = £21.75!

The itans above are available by n a il or telephone order at our
Special: Offer Price when purchased with any one of our software
products. This offer is for a LIMITED PERIOD only. IK - AED 15% VAX.
OVERSEAS airmail postage - add £3.00 (Europe), £5.00 (outside Europe).

CbIcd Software
Lakeside Hcuse - Kingston H ill - Surrey - KT2 7QT Tel 01-546-7256

Next Month
Next month sees the return of Disk Use for Begin
ners (back by popular demand), as well as the next
in our series of articles on how to write your own
compiler. The story of how your editor bravely
trod into darkest Birmingham to unearth a com
pany with more than 60 PETs is also revealed.

Reviews next time concentrate on Commodore’s
new software product The Manager, and how one
first time user coped with it.

As ever, Jim Butterfield will be regaling us with
his own brand of computeristic wisdom, and we’ll
have the usual mixture of programs in Basic and
Machine Code, for the beginner as well as the ex
perienced user.

The special section returns it’s attentions to the
role of PETs in education, and features a report on
how one school acted as a test site for the new
SP9000. As well, we have the complete up-to-the-
minute list of educational workshops both in this
country and abroad, and also, for the first time, a
list of regional, independent user groups, along
with where and when they all have their local
meetings.

See you next time!

Editorial
It’s Christmas time again, so before moving onto this month’s magazine, let me wish you all the best for
Christmas, and the New Year. I hope you all have a good time.

First of all, let me apologise for the lack of the beginners guide to machine code in the last couple of
magazines : it seems we’re fated never to learn the intricacies of this, at first, daunting language! Our first
series ended when its author, Paul Higginbottom, emigrated to Canada. When the American newsletter,
Interface, started producing a guide, I started reproducing that guide here : however, over the last couple
of issues of Interface the guide hasn’t appeared, which left me in the position of having no article for you.
My apologies for that, and, as last time, all I can say is that I’ll endeavour to find another alternative
source. We’ll find out one day! I’ve tried to find out from the States what happened, but as yet have no
news for you.

As ever, if you’ve any contribution
to make to the magazine, big or small,
I’d be delighted to take a look at it. In
particular, an article on machine code
program m ing would be most
welcome : there’s a considerable need
for more understanding in this area,
so for any program or article you’ve
written, you can reach me at the ad
dress below.

The Editor
Commodore Club News
675 Ajax Avenue
Trading Estate
Slough
Berks
To subscribe, a cheque for ten
pounds (or 15 pounds if you’re
overseas) will gurantee you a years
(12 issues) supply of magazines, star
ting from the end of the month you
send your cheque in : keep yourself in
touch with the world of Commodore!

No more for this month, the
magaine’s big enough as it is. Don’t
drink too much on New Year’s Eve!

A udiogen ic P resen t N ew
Softw are for the VIC

Enthusiastic Reading company
Audiogenic (see back cover of this
magazine for address and ‘phone
number) have just produced a new
PETPack catalogue full of software
for the PET, including new versions
of many of the arcade games, which
now work on the 80 column PET.
They’ve completely re-designed the
old Commodore PETPack Master
Library, and now present an attrac
tive range of inexpensive packages.
Ask them for a catalogue!

However, the main reason for
writing about Audiogenic is the large
number of VIC programs that they’re
selling, the vast majority of which
will run on the standard VIC without
any memory add-ons etc. Hopefully
the catalogue descriptions I saw will

change : Americans are all right, but
my goodness their catalogue descrip
tions are horrendous! I quote just one
example, from a game called Satellites
and Meterorites. “Your stalwart
defense may take you near the
greatest danger of all - THE BLACK
HOLE. You realise the gravity of the
situtation.” Thankfully, the game is a
lot better than the write-up.

A rcade G am es
As was probably inevitable in the

early days of the VIC, the programs
tend to concentrate on VIC imper
sonations of many well-known arcade
games. The ever-present Space In
vaders of course, given a new twist
(and a new title) by appearing this
time in 3D. Other games with exotic
titles include Spiders of Mars : no,
nothing to do with David Bowie, you
are a Space Fly trapped by a horde of
Martian Spiders, and desperately try
ing to escape. Amok features a lot of
robots, and “a legless, bouncing
glob”, whatever a legless, bouncing
glob may be : a glob that’s had one
over the eight prehaps ?

Pac It In, a version of the currently
popular Munchy Men (or whatever
it’s called in your area), Robot
Blasters and Astro Transporter com
plete the game line up. All use full
colour and sound of course, but the
one thing I can’t tell you at the mo
ment is the price : all will be revealed
in due course.

The othe programs tend to concen
trate on the educational side of the
VIC, and there are a couple of
programs for teaching spelling, gram
mar etc.

Finally we come to 2 programs by a
gentleman who appears to be
something of a VIC programming en-
trepeneur, namely one Len Sasso.
ViCalc, the first in a series of
calculator programs for the VIC, has
ten memory registers and four stack

ed data registers all visible on the
screen at all times. Basically, almost
Visicalc but not quite! All calcula
tions are performed instantly. His
other program is VPM, or VIC
Securities Portfolio Management. As
might be gathered from the title, it
looks after stocks and shares.

So there you have it : a whole new
series of programs for the VIC.

Job V acancies
To round off with Audiogenic for

the month, there are currently two
vacancies going there. The first is for
a Salesman for VIC and PET soft
ware, and the other is for a Produc
tion Co-ordinator at their plant in
Reading. For further det;;.? o: both
jobs contact Martin Maynard, direc
tor of Audiogenic, on Reacms STD
Code 0734) 595647.

As a footnote to the Audiogenic
story, their resident superstar Martin
Maynard recently flew over to Los
Angeles : just cruising down to LA.
for the weekend, as superstars are
wont to do from time to time. The
purpose of the visit was to fmd out
about new VIC software, and bring
back a whole range of goodies to look
at.

2

Again, a mixture of arcade games,
educational programs and home
management are the name of the
game. Probably the most exciting
development is a product called
VICTERM, which, as you might sur
mise from the name, turns your VIC
into a terminal, and allows you to log
onto Bulletin Board (amongst other
things) via the telephone lines.
Another aid, as opposed to a pro
gramme is a little gem called BUTI
(Basic Utility ROM), which is essen
tially a VIC equivalent of the world
famous Toolkit. As Martin himself
said, the original chip BUTI. Sorry ...

H om e M anagem ent
Onto home management, we find

programs such as VICAT, short for
Viable Catalogue. This is a tape based
data base system, and can handle up
to 99 files. Similar in name if not in
nature is VICHECK, a cheque book
management program. It seems that
more and more of this type will be ap
pearing as VICs begin to increase
their user-base. At present the majori
ty of the software is coming from the
States and Japan, where VICs have
been around for a while, but we ex
pect Britain to catch up very shortly.

Education will again be an area
where, at present, most of the soft
ware is coming from outside, but with
an increasing amount coming from
the U.K. as time goes by. Some of the
American programs from Audiogenic
include Super Additon and Super
Hangman, where, according to the
catalogue description anyway, the vic
tim is hung against a setting sunset.
Sky Math and Sky Division are two
further programs, which are a
mathematical equivalent of Space In
vaders. Numbers appear across the
top of the screen, and you’ve got to
shoot the correct numbers down.

G am es
Finally, onto the games. As usual,

some of the names in their original
American form leave a lot to be
desired. Master Whip, for instance,
coniures up somewhat bizarre images
:o say the least. In reality it is quite
tame however, being a version of the
fam ous M a s te rm in d . K iddy
Checkers, whilst not being quite such
2 bad name, lacks that certain flair
somehow. Still, you can at least guess
what the program’s all about.

Biastoids, as you might probably
guess, is a version of the popular
Asteroids, where hordes of space

debris fly around the screen and
you’ve got to both avoid and destroy
them, whilst doing the same to the lit
tle space ships that appear from time
to time. Amazein again is fairly
logical : a maze game.

Last, but certainly not least, the
game of games, a little gem called
Alien Blitz, which Martin assures me
is “the greatest game of all time” . I’ll
be bringing you a full review in due
course, in which we’ll put this claim
to the test!

A dditional new s on W ordform
One of my complaints about

Wordform, in the review in the Oc
tober issue of the newsletter, was the
fact that if you were a very fast typist
you would occasionally find yourself
getting ahead of what was appearing
on the screen. This has now been
cured, and that cure is amazingly sim
ple. The POKEs listed below will
solve all problems.

For 8000 series machines,
POKE4659,6
For 4000 series machines,
POKE4657,6
For 3000 series machines,
POKE4653,6
and then re-save the program. This
then keeps up with even the fastest
touch typist.

The reason why only one POKE is
required is that originally a delay was
put in to stop the average slow typist
(i.e. me) who occasionally hit a key
too hard, from getting two of each let
ter on the screen. The above POKEs
remove that delay.

Another comment I made was the
lack of Wordform’s ability to print
form letters, i.e. having the form let
ter in the main text area, and all the
personalised information (name, ad
dress, Dear Bob etc.) lying in extra
text (or storage buffer). Well, I did
Landsoft a disfavour there. Having
spoken to Ted Landsler of Landsoft
the other day, I ’ve now been shown
how to perform this particular aciton,
Of course, it’s very easy, and it’s in
the manual if I’d burrowed far
enough into it. Sorry Landsoft : it
makes Wordform even better!

The author of Wordform was
recently taken to our distributor in
Israel, on an all expenses paid trip, to
convert Wordform to Hebrew! The
flight was paid for, accomodation
paid for, the entire works. And, of
course, he also got a fee for doing it!
Having completed the conversion it

now runs succesfully in Hebrew.
Does this mean it runs backwards (or
should that be backwords ?!)

I’m also informed that Wordform
2, a distinctly up-market version of
the program, will be available from
January 1982 onwards, for something
under 200 pounds. It is claimed that
it does it all. We’ll let you know!

R eview s : Invaders in ROM ,
from Supersoft

A parcel arrived in the office the
other day, containing yet another
ROM! ROMs abound these days, and
the sight of another one was enough
to drive one to despair. However,
despair was not to be the case : this
ROM replaced one of the existing
PET ones, and so didn’t mean con
tinual swopping of Toolkits, Powers,
Faster Basics etc.

The ROM that bit the dust was the
UD7 one, and with the insertion of
the latest Supersoft ROM none of the
PET’s normal functions were lost,
and a very important one was gained :
the ability to play Space Invaders, ac
cessed with just one command!

The idea of changing one of the
PET’s ROMs for a custom built one
is a very good one. Generally you will
find a fair amount of space in any of
the ROMs inside the beast, and it
seems reasonable to put the space to
its optimum use. This removes the
need for Spacemakers, Rompagers
and the like, whilst keeping the PET
(at least as far as it is concerned) to all
intents and purposes as a normal
PET.

Thus all the programs that you’d
been used to using before will still
quite happily run in the normal
fashion, but if they’re written in
Basic, and the STOP key is still
enabled, you can break into your pro
gram, type SYS 59648 and hit
RETURN, and hey presto! Invaders
is at your command.

This is best done when no-one else
(management preferably) is around,
since the program uses the 8032’s (the
only machine for which this chip is
currently available, for a very impor
tant reason) internal speaker to
generate the usual infuriating space
game noises.

Better yet, the program uses the
whole of the 80 column screen, to
give us the first commercially
available arcade game on the 80 col
umn PET. Its use of graphics is very
good, and the game as a whole is quite
exceptional, considering it all fits into

3

about 2K of code.
To get back into your original Basic

program, at any point in the game all
you’ve got to do is hit the left arrow
key, and there you are! Clear the
screen, type CONT and away you go
again. From dreary accounting
packages, to a few minutes of joy
blasting aliens to smithereens, and
then back to the accounts program
when the boss re-appears. All it
needs now is a link to Wordpro and
Wordcraft and they’re away!

What else can I say ? A superb
game, and at only 19.95 it looks like
Supersoft have got another winner.
‘Phone 01 861 1166 for further
details.

T ech n ica l Softw are
The Technical Software Centre, bas
ed at BHRA Fluid Engineering, is
carrying out a survey of technical
software for desk-top computers on
behalf of the National Research
Development Corporation (NRDC).

It will identify programs written by
individual engineers and designers to
solve particular technical problems
with a view to assessing and adapting
suitable programs for general use.

Suitable programs will, after
testing, be produced in TSC’s TEC-
PAC format as Commodore Approv
ed Products.

Authors and users of ‘in-house’
technical software written for Com
modore computers are invited to con
tact Tony Swann, Senior Engineer,
at:

BHRA Fluid Engineering,
Cranfield.
Tel: 0234 750422

A ttention A ll Softw are Editors
(The following letter should speak for
itself)
Dear M rs Gulliford, (C PU G)

H aving recently been appointed Pro
gram s Editor o f “Personal Computer
W orld”, m y fir s t job is seeking out
original programs fo r a ll sorts o f
micros, not only in Basic but also in
Pascal (as you are possibly aware we do
not publish M achine Code as the listings
are too long. Assembler is covered in
P C W Sub Set).

I t is fo r this reason tha t I write to
you. Although we do get a fa ir number
o f programs fro m our readers, a lot o f
them are fu l l o f bugs and still more are
games or applications that turn up over
and over again. I ’m sure that among
your members you m ust have a t least a

few talented programmers who would
like to have software published —

naturally we p a y fo r it a t good rates —

and in view o f this I ’d like to hear from
them.

I would be grateful i f you would men
tion to your members tha t I am looking
fo r as much good am ateur software as I
can get on behalf o f P C W and tha t we
also have a pa id referee register going
fo r those (who know what they’re at)
who would like to check programs and
provide listings fro m cassette and disks.
Anyone interested is more than welcome
to write to me a t the address below.

Maggie Burton
Personal Computer World

14, Rathbone Place,
London W1P IDE

VIC m eets the Stars
Despite splitting the proton a while

ago, myself and Chris Palmer (VIC
Centre supremo) decided once again
to boldly go where no man has boldly
gone before (Warwick Avenue tube
station), and set the controls for the
heart of the BBC Radiophonic
Workshop : the place where most of
the wonderful soundtracks for the
BBC are produced.

Unlike our last jaunt with the BBC,
somewhere in the wilds of Ealing,
this journey presented no problems in
the form of getting up early. Indeed, I
ended up leaving Gerrard Acres later
than I normally do for work, and had
great pleasure watching everybody
else squelching to work through the
rain whilst I remained in the warmth
listening to the Blue Ridge Rangers
and drinking my cup of coffee. By the
time I had to leave to foray forth to
Taplow station the rain had decided
that it had had enough for the day,
and all was nice and dry.

From Taplow station to the VIC
centre was a model journey, helped
by the fact that the train, like myself,
was somewhat late in arriving at
Taplow. Perhaps, as someone once
said, if British Rail re-scheduled all
their time-tables by 13 minutes all
their trains would run on time. But I
digress.

The VIC Centre was very easy to
find, and conveniently situated next
to a pub and a betting office. I wonder
who decided it’s location ?! The front
half of the shop is the actual
showroom area, filled with VICs and
a very vast array of books on
microcomputers : programming
them, choosing one, and so on. If

you’re interested in visiting the VIC
centre, they’re at 154 Victoria Road,
in Acton, London W3, or give them a
ring on 01-992-9904.

Around the back of the showroom
is the area where all the work gets
done : cigarettes and cups of coffee
abounded. A mixture of VICs and
PETs, all intgerwoven with an array
of disk drives and printers, were
much in evidence. Also much in
evidence were ringing telephones :
they hardly ever stopped! We manag
ed to escape however, and set off for
the readiophonic workshop.

Arriving at Warwick Avenue, we
discovered where taxis go to die.
There were hundreds of them, all
driveless, moping in a large group
near to the station. One of them even
tually moved, and we duly arrived at
the BBC.

And what, you’re probably asking
by now, was the purpose of all this ?
The BBC just acquired a fabo syn
thesiser, all 15 grands worth of it, and
we thought they might be interested
in a low cost micro to produce some
of the lesser sounds and thus leave the
big machine free for the work it’s in
tended to do. So, we gave them a
demonstration of a VIC making
various burbles and gurgles : we put
it through its paces. When we men
tioned speech synthesis they were all
impressed, but then we said we
hadn’t got one there to demonstrate,
so we were back to square one. Then
we mentioned SID (Sound Interface
Device), and they were all impressed
again, and then we said we hadn’t got
one to demonstrate, so back to square
one again.

We promised to come back again
when we’d got the various extras, and
they agreed that they would be very
interested in VICs’ but as it stands at
present they’ve got more than enough
machinery to cope with whatever
noises they desire : speech synthesis,
and something like SID at the price,
they most certainly would want. We
will return!

After our demonstration we were
treated to a tour of the workshop, and
saw more synthesisers than I’ve ever
seen in my life before. We also heard
some harrowing tales of productions
in the past. To quote one example,
the second radio series of Hitch
Hikers Guide to the Galaxy was
originally going to go out one episode
a week, for seven weeks. This was

4

fine, all the scheduling was done and
people started getting on with the
work. Then, a change of plan : it was
going to go out on successive nights,
and seven weeks work had to be done
in seven days! By virtue of not sleep
ing for three days the final episode
was finished half-an-hour before
transmission.

And so, as in all these expeditions
with young Lim-Bim-Wim-Bim
Palmer, we repaired to the pub for
lunch : a pint of Burtons and some
food (note the order!). Another mis
sion accomplished.
Our other encounter with the stars,
and to prove that we’re unbiased, was
a visit to ITN, just off Oxford Circus.
Long after deciding that Oxford
Circus was not the most intelligent of
places to meet someone (five exits and
half a million tourists) Chris Palmer
and myself finally met up, and retired
to a hostelry for lunch, and to plan
our campaign for the afternoon.

After losing lots of money on the
local version of Space Invaders (Cen-
tillion, for those of you in the know),
we went over to ITN, and arrived to
be greeted with the words “Do you
fancy a drink in the ITN Bar ?”
Never ones to say no, we trotted off to
the bar in the hope of meeting a
galaxy of stars, talent scouts etcetera,
cursing the fact that Anna Ford had
left ITN. Well, I ’m still an editor,
and Chris is still working for the VIC
Centre, so I think we can safely
assume that we’re not going to be
‘discovered’ this year. We did en
counter fruit machines with jackpots
of 100 pounds, but only succeeded in
losing yet more money.

The purpose of this visit was a
meeting of the ITN Computer Club,
and a demonstration of the VIC. Ap
parently (we were told afterwards) the
meeting had been visited by a couple
of IT N ’s managing directors: an
unheard of event, seemingly.

I think we scored with them, as the
demonstration went very well, and
most of the questions fired at us were
fielded admirably. We spotted the
potential troublemaker (There’s
always one!) within seconds of star
ting, but in the end he was turned to
our advantage, by the simple expe
dient of answering his questions,
however technical and complex they
got. In particular, he even started
talking about some computer he’d got
that could do this, that and the other,
whereas the VIC couldn’t. This was

all very well, I suppose, but when we
pointed out the fact that his machine
cost around ten times as much as the
VIC, even the rest of his colleagues
started to laugh. Fifteen-love, as they
say.

We gave a run-down on sound, col
our, graphics, altering characters and
all the other features of the VIC, and
in the end convinced them that as a
low cost introduction to the world of
microcomputing the VIC was the
machine to buy. Mind you, we were
fighting a battle; quite a few of the

people there had made their own
computers, and were quite naturally
slightly biased in favour of their own
particular, individual machine. We
even managed to convince one or two
of them that the VIC was a useful
machine.

So out of our two visits, we ac
quired one success and one possible
success on a future visit. Not bad real
ly, and thus suitably impressed by our
work we took the only course of ac
tion possible; we got ourselves a
drink!

Do you want to advertise
Second-Hand equipment?
N am e...

A ddress...

E quipm ent...

Price(s)...

Please fill out the form above if you wish to advertise second hand
equipment for sale in Commodore Club News. Entry costs just £1.00
(cheque or postal order), and return it to :
Peter Gerrard
Commodore Business Machines
675 Ajax Avenue
Slough, Berks.

C.B.M . (U.K.) L td do not accept any responsibility for the products
advertised hereunder and prospective purchasers should satisfy
themselves in respect of any representation made.

Second-Hand C orner
The following advertisements have been received:
Dual Drive Floppy Disk CBM 3040, fitted with up-to-date DOS + soft
ware. Price £750. Taher Mahmud, 41, Comely Bank Road, Edinburgh EH4
1EJ. Telephone: (031) 332 6406

Midlectron M62 Papertape Punch/Reader as new. Run only for testing.
Price £800. K.A.Mander, 17, Beacon View, Marple, Stockport, Cheshire SK6
6PX.

Wanted — 3000 Series computer and/or Floppy Disk Drive and Printer.
Frank Pickles, 13 Central Drive, Bournemouth BH2 6LQ. Tel: 0202 293650.

Commodore Tractor Printer 3022, Price £250. V.E. Marshall, 33, Tur-
more Dale, Welwyn Garden City, Herts AL8 6HT.

5

Using the User Port
Continued from Volume 3, Issue 10

My next project was a simulation of
chemical process control. I assumed
that a chemical reaction heated up at a
rate of 10 degrees per second and
simulated this with a FOR/NEXT
loop with a T = T plus 10 condition
so that the temperature T was printed
every second. If T exceeded 110
degrees an explosion was assumed to
occur (and you graphics experts can
have a field-day!). To control the reac
tion a coolant pump can be switched
on which causes the condition T = T
-10 to replace T plus 10 so that the
printed out temperature now drops.
If it goes below -10 then the mixture

freezes (more graphics). Correct
operation of the switch enables the
reaction to continue.... The status of
the switch was read by PEEK(59471)
= S. If S was equal to 254 then cool
ing was assumed to be taking place
and T was set to T-10.

I then decided to use the Com-
munikit to check the operation of a
“ 555” timer. This simple and cheap
device is very useful and easily ob
tained. The circuit I used is given in
Figure 6, the LED is merely present
to help monitor what is happening.
For the same reason I slowed the pro

gram down with FOR/NEXT loops
and kept the program as simple as
possible.

A puzzle from PA O (output) was
used as the trigger to start the timer
while the output from the timer was
fed to PA 1 (input) and monitored as
in the previous program. To my great
surprise the system worked im
mediately (NOT my usual experience
with electronic circuits) and I checked
the time difference found by the PET
with the time by theory. Since it was
not in very good agreement I wrote a
program so that the test was repeated
10 times and the result averaged. I
then tried checking several different
resistors and soon found the source of
the error. It was simply the plus or
minus 10% tolerance expected of a
cheap resistor! I had therefore
calibrated my test capacitor. The ob
vious next step was to try several dif
feren t capacitors against my
resistances and so on. I then had a
set of calibrated R’s and C’s which I
arranged so that they could be switch
ed in at will using an 8 position DIL
switch and I had made my own
multimeter. What next? Any devices
which showed a change of resistance
could be incorporated, thermistors,
an ORP 12 (a light dependent
resistance) or a level indicator based
on conductivity changes were first to
come to mind.

Since I knew or could easily find
out the approximate resistance of my
device all I had to do was switch in
the appropriate capacitor and I was
away. My thermistor had a room
temperature resistance of about 60 K
ohms which dropped to around 16 K
ohms at 50 degrees Centigrade. I
wrote a program to represent the time
difference as a bar-chart so that I had
a recording thermometer, (see “REC-
THERM ”) (overleaf).

The ORP 12 had a very high
resistance in the dark and very low
resistance in normal electric light so it
was very easy to detect if a light was
turned on (burglar alarm ?). I found
that it would detect the light from an
L.E.D. and could even “see” the dif
ference in brightness between the
print and dark parts of the video
screen or between the light from a
black or white strip of paper. I also
could make a light pen it seemed.

And finally a project still (ap
propriately) on the drawingboard....a
drawing-pad. This could consist of a
sheet of special resistance paper or an
ordinary sheet of paper soaked in salt

Figure 6

lLb

10 R E M : ::T I M E R P R O G R A M :
20 N = 5 9 4 5 9 :'X*=255: V*=5?471
30 P O K E N , 2 5 5 : P O K E N ,X - 1
40 FORI = 1 T O 1 0 0 0 :N E X T
50 P O K E N * X :F O R I = 1T O 5 0 0 :N E X T
60 B=TI
7 0 I F P E E K < V ; > 1 T H E N 7 0
8 0 C=TI
9 0 P R I N T "TI M E E L A P S E D = ";C-
100 G O T 0 2 0

I I s 1 MEGOHMS

ft 2 > 1 1 0 OHMS

C 1 * 0 - 4 7 / #

6

solution. Electrodes in strip form
would be placed along two edges at
right angles and connected in turn to
PA 1 and PA 2 (PA 0 would still be
the trigger). Each connection would
measure the resistance between a
stylus and the electrode connected.
The resistance is a measure of the
distance of the stylus from the elec
trode or in other words the X and Y
co-ordinates of the stylus postion.
This position would then be plotted
on screen and the stylus moved on.
The principle could be tested with a
BASIC program but to be of any real
use machine code would have to be
used.

RECTHERM (RECORDING THERMOMETER)

5 N=59459:X=255-V-59471
10 POKEN,X-l
20 FORI=1TO1000:NEXT
30 POKEN,X
40 FORI=1TO500•NEXT
45 B=TI
50 IFPEEK < V)>1THEN50
55 C=TI
60 T=C-B
70 GOTO100
100 fl=32768
110 F0RI=1T039-TPRINT"**" ; : NEXT
120 POKER, 48 : FOR I = 1T09 : FOKEA+1,32: NEXT
130 POKEfl+11,49:POKER+12,48:FORI=1TOS:POKER+I,32:NEXT:POKEfi+21,50:P0KER+22,43
160 PRINT
170 FORI=1TO500:NEXT
130 S=S+1:IFS=23THENPRINT"H"
190 IFS=23THENS=0
200 GOTOS

FOOTNOTE. A “ 555” timer cir
cuit is shown on p 93 of the PET
Revealed together with a machine

code count program. I am informed
that line FO 07 BEQ TEST should be
F0 F7 BEQ TEST.

First Programming Steps. Jim Butterfield, Toronto

The first programs that a beginner
writes tend to be simple. That’s good,
of course: the programmer is develop
ing skills which will be useful when
he tackles more ambitious jobs. Here
are a few suggestions on how to go
about these early projects; the em
phasis will be more on sound prac
tices and clear style rather than clever
coding methods. Some of the sugges
tions might be useful for experienced
programmers, too...

Try to lay out your programs in
“blocks” . Each block should have a
clear, simple function. One block
might do an input job, another might
calculate, and a third generate output.
If you start planning a program by
thinking out the blocks you will need,
your program will be better planned.
Some programmers make each block
into a subroutine so that the main
program simply calls in these units as
needed.

Title each section or block with a
remarks REM statement. You don’t
have to put comments on each line,
but it’s useful to be able to find a sec
tion of code quickly. Perhaps you
think that you can remember the code
- after all, you wrote it - but wait a
couple of months. It’s amazing how a
crystal clear program can suddenly
become gibberish after you’ve been
away from it for a while. Leave
yourself some highway markers so
that you can find your way around
later.

Name your variables in a semi
meaningful way. Totals can start with

the letter T, counts with a C, and so
on. I’m not a fan of large alphabetic
names, since they have pitfalls: TER
RIFIC is a great label, but it doesn’t
work since the keyword IF is hidden
in the middle. Can you find the hid
den keywords in GRANDPA, CAT
NIP, CRUNCH and FRONT? It’s
fun to play word games, but not when
you’re trying to write a program. I
prefer a single letter followed by a
numeric: T4, B7 and so on. By the
way, don’t forget that variable B has
nothing to do with integer variable
B% or string B$ or for that matter ar
ray variable B(3). They are all com
pletely independent values.

Don’t ley anyone hustle you about
program size or speed. If others write
in less m em ory and few er
milliseconds, let them. You’ll have
space enough for most of your pro
grams and the tenth of a second saved
in run time won’t give you time for a
cup of coffee. On the other hand, do
look for better methods. Better isn’t
always faster or smaller, but you’ll
recognize it when you see it.

Keep track of your variables; it’s
useful to make a list on a sheet of
paper. That way, you won’t acciden-
taly use variable X for two different
jobs and get them mixed up. In fact, it
doesn’t hurt to do paperwork plann
ing before turning your computer on.
There’s a kind of “heat” in working
directly on the machine that
sometimes leads to hasty programm
ing. A little leisurely planning
befoehand can generate sounder and
better programs.

Don’t be afraid to write loosely.
The fanatic who tells you that you’ll
save memory and time by compacting
FOR M = S TO P STEP V into
FORM = STOPSTEPV is steering
you wrong in most cases. If legibility
costs you four bytes and one millise
cond, take it: it’s a bargain.

If your program doesn’t work right
the first time, don’t lose heart. It hap
pens to most of us. The easy errors
are where the computer tells you
where the problem is, most common
ly ?SYNTAX ERROR IN ... The
problem will likely be obvious when
you look at the line, if not, you can try
rewriting it slightly to see what hap
pens. The hard errors are where the
computer doesn’t stop, but gives you
the wrong answers.

Debugging can be great fun if you
take the right attitude. Look at the
variables: you can call them up with
direct PRINT statements. Change
them if it suits your purpose. Put
STOP commands into your program
and check everything out when you
come to the halt. You can resume
where you left off with CONT. Us
ing the RUN/STOP key to break
your program in mid-extension is less
precise but will also do the job.

Getting a program together can be
a rewarding experience - not
necessarily rewarding in money, but
in a sense of accomplishment. Each
program will be a work of art, done in
your own style. When you put your
signature to your latest masterpiece,
you’ll feel good about it if you’ve used
good coding craftmanship.

7

The Friendly PET - Screen editing Jim Butterfield, Toronto

One of the friendliest things about the
PET, CBM and VIC is the way they
allow you to make a change or correc
tion. If the line on the screen is wrong
- whether it is a program line or a
direct command - we can move the
cursor back and type over the line.
Pressing the RETURN key will make
the change take effect.
C orrecting P rogram s

This is very handy for programs.
When your first program attempts
result in a message such as ?SYN-
TAX ERROR IN 350 you can list
350 to see what the trouble is. If line
350 happens to say PWINT X, you
can move the cursor back, type R
over the W to give PRINT X, and
strike RETURN. The line has been
corrected with a minimum of typing
on your part.

If you need to make an insertion in
to your program, you may use the IN
SERT key. If the mistake was PINT
X, the technique is to position the
cursor over the I, hold down the
SHIFT key, and press INST for in
sert; the computer will open up space
and you can type in the missing R.
On the other hand, if the error was
PHRINT X you’ll want to make a
deletion: place the cursor over the R,
press the DEL key to delete, and the
H will disappear. In either case, don’t
forget to press RETURN to make the
change permanent.

If you happen to goof in making the
change, start over. In this case, don’t
press RETURN. Hold down SHIFT
and then press RETURN: this will
take you to the next line without any
program change being made. Shifted-
RETURN is quite a handy key com
bination to know for many reasons. If
you wanted to leave a note on the
computer’s screen for someone to
read, you might type MARY - PUT
THE CAT OUT. At this point, strik
ing RETURN would cause the com
puter to try to “perform” the line,
and you’d get PSYNTAX ERROR. If
you press S h ifted -R E T U R N ,
however, you’ll just go to the next
line and the computer won’t try to do
anything with the contents of the
previous line.

The INSERT key has some special
rules. After you have pressed the
INSERT key a number of times
(don’t forget to hold down SHIFT)

there will be an open space on the
screen where you can insert the new
characters. At this point, you’ll be in
“programmed cursor” mode. This
means that the cursor keys don’t
move the cursor; instead they will
print as special reversed characters.
This is the same way that the PET
behaves after you press the quote-
mark, with two important exceptions:
the computer remains in this mode
only for the number of characters to
be inserted; and the Delete (DEL) and
Insert (INST) keys work in a different
way. More about this another time; in
the meantime, you’ll get used to them
quite quickly.

A problem sometimes crops up if a
program line is too long. Sometimes
this means that there’s no extra space
available to make a desired insertion -
eighty characters is the screen limit.
Worse, the line is too long to start
with; it occupies over 80 characters
even before we make a change. It
might be more sensible to change it to
two lines and relieve the crowding;
but if you must, the trick is to look
through the line to find a keyword
that can be abbreviated. PRINT is
the most popular, since it can be
rewritten as a question mark. Close
up the space, making sure that
everything is packed into the
80-column work area, and then make
the change if it fits.

Direct lines - Basic commands
typed in without a line number so
they are expected right away - are
usually easy to fix. If you mistype
LOAD “PROGRAM” so that it
comes out LOUD “ PROGRAM”,
don’t be dismayed by the PSYNTAX
ERROR. You can slip the cursor
back, change the U to an A, press
RETURN and the load will take
place.

Correcting mistakes in Direct lines
can leave a cluttered screen. When I
try to load BOTTLESHIPS from the
disk, I got several lines which tell me
that there’s no such program. When I
move the cursor back and correct to
BATTLESHIPS, the following lines
don’t go away unless written over. It
looks messy, but works OK.

There’s a sharper problem when I
~ direct statement to print a

number. If I ask the PET to calculate
4*5*6, yielding a product of 120, and

then decide that I really want addi
tion, I can go back and change the
asterisks to plus signs. The PET will
now produce a total of 15, but the last
digit of the previous answer won’t be
wiped out; the zero will be left on the
screen and our sum will look like 150
instead of 15. The solution? Wipe out
any numbers you want recalculated
so that the new values will print on a
fresh line.

Special screenings
When you press RETURN, the

PET sees only what’s on the screen.
You may have done deletions, in-
serions, and changes but the final
screen result is all that counts. This is
true of program lines, direct com
mand, and responses to program IN
PUT statemens.

You may want to run a program
several times while testing, with
similar answers to INPUT questions
on each run. With screen editing, it’s
a snap. After you have run once,
move the cursor back to the RUN
statement. Press RETURN (no need
to type RUN: it’s on the screen). For
each INPUT, the cursor will appear
over the answer you typed on the
previous run. If you want to go with
the same response this time, just
press RETURN and the program
will accpet the same input from the
screen. IF you want to change, type
your new input.

Here’s a hint of advance techniques
that you’ll learn as you become more
familiar with your computer. You can
actually get the PET to type its own
input - even its own program changes
- to the screen. Then, with a stroke of
the RETURN key, you can activate
the input or program change. When
used for INPUT activities, this pro
vides a “default” input for the user.
As a program change, the program
could suggest DATA statements that
it would like to see included in a
future run. Mind boggling! At this
rate, the computer could program
itself and make us all obsolete.

At least, the computer still needs us
to press the RETURN, key; it can’t
do that by itself. Or can it? Technical
ty ro s su ggest th a t PO K E
158,l:POKE 623,13 (or on Original
ROMs, POKE 525,l:POKE 527,13)
would actually cause the PET to send
a carriage return to itself...

8

Half a dialogue - Inputting Jim Butterfield, Toronto

Asking a program to go and get input
from the user is a subtle thing for
beginners. When you write your first
program, it’s hard to look ahead and
see the program independently com
municating with the user. “If the pro
gram needs a value, I ’ll program it in
right now ...” It takes a level of
sophistication to imagine a program
accepting working values at a later
time, when it runs, and using dif
ferent values supplied by the user in
different runs.

There are three fundamental ways
of checking what the user is doing at
the keyboard: INPUT, GET, and a
PEEK. We’ll talk about each, and its
uses.

IN PU T .
The INPUT statement does a lot of

work for you. It’s certainly one of the
most powerful statements in Basic.
Some of us would like to see it more
powerful, and some would like to see
it less sophisticated; for the moment,
we’ll have to accept it as it is.

When you give the command IN
PUT in a program, a prompting
question mark is printed and the cur
sor begins to flash. Your program is
held in suspended animiation; it will
no t resum e o p e ra tio n u n ti l
RETURN is pressed. There’s no
code which allows something like:
INPUT M:IF (NO REPLY IN 15
SECONDS) GOTO...

Your code will hang on the INPUT
statement forever if the user doesn’t
reply.

When the user presses RETURN,
INPUT takes the information from
the screen. It doesn’t matter if the
user wandered back and forth, chang
ing, deleting and inserting, INPUT
looks only at the screen which is the
result of his actions. In fact, if there’s
something on the screen that the user
didn’t type, INPUT will take that
too. This can be useful for promp
ting: you can arrange to type a sample
response on the screen, and the user
will then be able to press RETURN
to have that response entered. As in
put takes the information from the
screen, it trims away all leading and
trailing spaces; other than that it takes
the whole line, even though it may
not necessarily need it.

Now IN PUT starts to plow
through the line, digging out the in
formation you need for your pro
gram. If it’s looking for a number it
will not like to find a string, and will
ask, REDO FROM START. If it’s
looking for a string it won’t mind a
number at all: it will accept it as a str
ing.

R oad signs for IN PU T .
Whether INPUT is looking for a

number or a string, it will stop its
search when it finds one of three
things; comma, colon, or end of line.
If if finds a comma it will assume that
more information will be needed later
in the INPUT statement; if it finds a
colon or end of line it assumes that
there is no more useful input from the
user. If it needs more, it will ask for
it.

Suppose you need to input a string
that contains a comma or a colon,
such as ULYSSES M PHIPPS, PHD
or ATTENTION: JOHN, MARY.
Since INPUT normally stops at the
comma or colon character, we need to
do something. The answer is easy: the
user must put the desired input in
quotes: “ ATTEN TION : JOHN,
MARY” and the whole thing, com
mas, colon and all, will be received as
a single string.

Keep in mind that the INPUT
statement allows prompting. INPUT
“YOUR NAME”;N$ causes the
computer to type YOUR NAME?

and wait for input. That’s a good
human interface; help the user along.

If a user presses RETURN without
supplying any information on the
screen, programs on the PET/CBM
will stop. There are several ways to
prevent this from happening; the
easiest is to add a “canned reply” to
the input prompt message. When you
are writing the INPUT statement
prompt (such as YOUR NAME) add
two extra spaces and, say, an asterisk
character; then type three Cursor-
Lefts (they will print as an odd-
looking reversed bar) and close the
quotes on the prompt. Finish the IN
PUT statement in the usual way: a
semicolon behind the prompt and
then the name of the variable to be in
put. Now: the askerisk or whatever
will print to the right of the prompt
and question mark. Unless the user
overtypes it, this character will be
received from the screen as his input -
and the proram won’t stop.

One last comment: don’t forget that
INPUT can accept several values.
You can say INPUT N$,A$,C$ and
allow the user to type JOE BLOW,
CITY HALL, DENVER. It’s often
better to use separate input
statements: users can respond better
when prompted for each piece of in
formation.
GET and PEEK: a preview
GET isn’t as clever as INPUT, but it
has valuable uses. First of all, it
doesn’t wait; if a key isn’t ready in the
keyboard buffer, the GET statement
lets Basic continue. Secondly,
keystrokes received with GET don’t
affect the screen unless you, the pro
grammer, decide to allow them to do
so. This means that you have much
more control over what the user can
do.

T h e r e ’s a P E E K lo ca tio n
PEEK (151) on most PET/CBMs,
PEEK (515) on Original ROMs, and
PEEK (197) on the VIC that tells you
whether a key is being held down or
not. This can be useful to avoid the
situation where a user needs to press
the same key repeatedly to cause some
action; you can program so that the
key repeats its action if it is held
down.

We’ll talk in more detail about the
GET and PEEK in the next article —
Reading Keys.

9

Half a dialogue - Reading keys Jim Butterfield, Toronto

We’ve already discussed the INPUT
statement. When you do an INPUT,
the program pauses and waits for the
user to compose a line on the screen.
When the user presses RETURN,
the program resumes and uses the in
formation entered.

This is often useful and convenient;
but when we use INPUT, we don’t
have complete control over the user.
If the user doesn’t answer, the pro
gram is stopped forever, and other
jobs will not take place. The user
might also do undesirable things like
clearing the screen, and might even
stop the program if he presses
RETURN without any input on the
screen.

We can deal with the user on a
more elemental level by using the
GET command.

GET.
GET takes one character directly

from the keyboard buffer; the
character does not go via the screen.
It’s usually a good idea to echo the
character to the screen so that the
user can see what he’s typing (GET
X$:PRINT X$;). There is a GET
numeric (GET X) which gets a single
numeric digit, but it’s rare since the
program will stop if the user inadver
tantly presses an alphabetic key.

GET doesn’t wait. If there’s no
character in the input buffer, GET
returns with a null string. We can
wait for a key to be pressed with a line
like:
300 GET X$:IF X$ = “ ” GOTO 300
You can see that if we get no
character, we go back and try again.
More sophisticated versions of the
same program might allow us to wait
for up to 10 seconds for the user to
type a key.

GET receives everything typed at
the keyboard. Even cursor movement
or insert and delete keys are received
as single character strings. The
RUN/STOP key and the SHIFT are
about the only keys that GET won’t
receive directly.

Screen control keys - cursor move,
reverse, home, etc. - are picked up
directly by GET and don’t influence
the screen when typed. If you want
them actioned, you’ll have to arrange
for it yourself, again by echoing the
character with a PRINT. On the

other hand, GET is an excellent way
to prevent a user from clearing the
screen or doing other things that you
don’t want. The easiest way to iden
tify such characters is by their ASC
ascii value, but the obvious also
works: GET X$:IF X$ = HOME”
GOTO... The Reverse-S symbol will
appear where I have typed HOME.

Sometimes there are left-over
characters in the keyboard buffer.
The user might have touched the
keyboard accidentally, or the last key
pressed might have “bounced” and
been registered twice. You can strip
out such characters with simple
coding like GET X$,X$,X$,X$. If
the keyboard buffer contains up to
four characters, they will be cleared
out; if there were none, GET still
doesn’t hold anything up.

Rem ember that G ET takes
characters from the keyboard buffer.
For one key depression, no matter if
you tap a key quickly or hold it down
for five minutes, only one character
will go into the buffer and GET will
find it there only once.
PEEK

The value of PEEK (151) will tell
you whether or not a key is being held
down. If you find 255 there, no key is
being pressed - except maybe the
SHIFT key which doesn’t register
there. If there is any value other than
255 in PEEK (151), somebody’s
holding down a key.

Special note: for Original ROM
PETs, the place to check is
PEEK (515). And on the VIC, check
location PEEK (197); a value of 64
means that no key is being pressed.

It’s possible to figure out which key

is pressed on the value you find in the
PEEK location, but I don’t recom
mend it. Different keyboards are
“decoded” in different ways, and
what works on one machine won’t
necessarily work on another. The best
way to sort out which key is pressed is
to use the PEEK together with the
GET statement.

The trick is this: if GET says that
there is no character in the keyboard
buffer and PEEK says that someone
is holding a key down, it’s safe to
assume that the key being held down
is the last one you received with
GET. Timing is important here,
since a key could be touched in the
split second between two Basic
statements. I recommend the follow
ing kind of sequence:

300 X = PEEK (151)
310 GET X$:IF X$ “ ”

THEN XI = ASC(X$)
:GOTO 330

320 IF X = 255 GOTO (...NO
KEY ACTIVE)

330KEY ACTIVITY

This kind of test is very good for
movement games, where you are
directing something (a ball, a paddle,
a tank) around the screen based on
whether a key is held down or not.

Sum m ary
GET is more elementary than IN

PUT. You’ll need to do more work
with GET, but you’ll have more con
trol over the user input.

Use the PEEK where it’s necessary
to find out if a key is being held down
or not ... it can give you a nice inter
face, especially where the user would
otherwise pound repeatedly on a key.

10

The Group implementation of ‘large5 programs John Stout

This article goes in to more detail
about a proposal mentioned in the ar
ticle Basic Compilers, that of
writing ‘large’ programs, e.g. a
BASIC compiler for the PET, by us
ing a number of people, each with ac
cess to the required hardware, to
write sections of the program so that
any one person’s job is well within
their capabilities and resources.

Most software firms do indeed split
up large jobs between individual pro
grammers since it is difficult for one
person to retain detailed knowledge
about every section of large programs
such as operating systems. It is of
course far easier to accomplish this
when all the programmers are in the
same organisation (sometimes under
the same roof) and one of the first re
quirements for a group implementa
tion will be excellent communications
between the members. A simple solu
tion using the postal services and
floppy disks with the telephone for
emergencies seems most practical.
The sort of thing I envisage is a pair
of floppy disks making their way
from member to member, each
member taking off the disks the pro
grams and documentation written by
other members and adding their own.
For a large group this ‘chain’ would
result in obvious delays and so an
alternative ‘star’ could be adopted
where one member of the group
would act as a ‘librarian’ to whom
each member of the group would
send his/her own work and receive
back copies of everyone else’s. Using
member’s own disks and sending
SAEs with each disk would mean that
each member would pay their own
way and thus avoid any problems

with finance.
A second requirement for the

project to have any hope of suc
ceeding would be the agreement of
everyone involved to a set of stan
dards, for programming style,
documentation and work. I have in
mind such things as spaces after every
BASIC keyword, no GOTOs to
REMd lines, REMarks at the start of
every subroutine detailing purpose,
variables used and so on. Documenta
tion should be distributed in machine
and human readable form so that each
member could be supplied with a sim
ple word processing program in order
to read other’s documentation and to
create their own. The program would
be designed so that every person’s
documentation would have the same
structure although obviously dif
ferent contents. Similarly we would
need standards of work, e.g.
minimum number of hours per week
otherwise a number of energetic pro
grammers could end up supporting
the rest of the group. The aim of all
these standards would be to have a
situation where any member of the
group could take over the programm
ing of any other member and con
tinue that work with as little wasted
time as possible.

Members should be able to take
criticism since everyone’s work
would be open to examination and
evaluation by the rest of the group.
Procedures for dealing with criticism
would need to be worked out and an
arbitrator appointed for cases where
the two sides to an argument cannot
come to some agreement or com
promise. Alternatively the group
members not involved could arbitrate

which would lead to a fairer decision
but one which would take longer to
reach.

Another requirement, technical this
time, would be a program to merge
together member’s work from disk,
either into memory or into another
disk file and do this reliably time after
time, coping with duplicate line
numbers, out of memory errors and
so on. It would be crippling to have
completed one’s section of program
ming only to have it corrupted by try
ing to merge in some other section.

Before the program gets under way
the group members would need to
come to some arrangement about
copyright and the possibility of sell
ing the program when completed.
Sharing any profits equally, in the
ratio of number of lines produced or
in the ration of time taken are just a
few of the financial ideas to be con
sidered.

Among the projects amenable to a
group implementation would be such
things as compilers (each member be
ing responsible for the subroutine to
generate code for a particular state
ment type), word processors (each
member being responsible for the
programming for a particular com
mand) and so on. Special interest
groups could collaborate on such
things as accounting software, sym
bolic mathematic systems (possibly
using LISP) and financial modelling
programs. As long as a clear division
can be made between separate parts of
the program and agreement reached
on the points mentioned above, the
philosophy of ‘divide and conquer’
can be applied to programming as
well as to warfare.

Once upon a tim e, to a select group
of attendees, an event of historic
im portance took place. Graham
“H oudi” Sutherland, of Com
m odore Business Machines, John
Kyle-Price, of the B ristol Software
Factory, and R ichard Pawson, of
Printout, m ade a very special an
nouncement. To an astonished
world, Silicon Office was launched
fo r the f ir s t time!!

1 1

Forth coming Peter Bengston

FORTH is something which I will
readily admit comes under my list of
things I know next to nothing about.
So, the following article landed as a
very nice surprise on the desk the
other day, which was as ever snowed
under with all kinds of goodies. If,
after reading the article, you want fur
ther information, write to:—

Peter A. Bengtson
Software Development Manager
Datatronic AB Sweden
P.O. Box 42094
S-126 12 Stockholm
Sweden

FO RTH - T he Language o f the
Eighties?

How about a language that is in
teractive, structured, modular, exten
sible, very fast, compact, portable,
supports virtual memory, works in
any numeric base, allows you to free
ly mix assembler and high-level code,
cuts development time in half, and
occupies just 8.5 kilobytes - in
cluding a resident macro assembler
and a resident text editor?

A dream? No - the language is
FORTH, a not-so-new language that
has been around for over ten years by
now. It is rapidly gaining acceptance
in wide circles thanks to the efforts of
a FORTH Interest Group started in
1978, now having 3000 members
worldwide and growing all the time.

FORTH was created by Charles H.
Moore in 1969 at the National Radio
Astronomy Observatory, Virginia.
He was fed up with the tediousness of
programming a computer at that
time. Job Control Languages, Linker
Languages, Macro Languages, FOR
TRAN, COBOL, PL/1, etc, etc. He
wanted to replace all these languages
by just one - FORTH. FORTH
developed over a period of ten years,
slowly and carefully. Thus it benefits
from the consistency gained from be
ing the product of one mind.

However, FORTH is not a
“frozen” language, as most conven
tional languages are; it is extensible.
When you are programming in FOR
TH, you are actually extending the
language, making it have new proper
ties and capabilities. You can add
your own data structures, or even ex

tend it with new types of program
structure. This feature is unique to
FORTH, and is not shared by any
other programming language.

FORTH is modular and complete
ly structured. Programming consists
of combining pre-defined or user-
defined modules (called “words”) in
to increasingly powerful units. Final
ly you will have one word that is your
whole program. Debugging is made
simple; all modules may be tested in
dividually before combining then into
higher levels.

The implications of this are far-
reaching. If you mainly are interested
in business applications, you will
soon have extended FORTH with
words turning it into a business-
oriented language. If your interests
are in process control, the language
will turn into a dedicated process con
trol language. In fact, you can have
both at the same time.

This means that you will create a
library of words, suited to your par
ticular area of programming. They
may then be used over and over
again, since they are independent of
their context. You may find, when
writing an application, that it is
already written to 80% by your
previous applications. This will bring
down the developem ent time
dramatically; a tenfold increase in
productivity is claimed by some.

FORTH is also very fast and com
pact. It is implemented as threaded
code, a very powerful language im
plementation technique used in, for
example, many COBOL compilers.
FORTH employs a variant called in
direct threaded code, to which it ows
much of its flexibility and compact
ness. For example, a typical FORTH
macroassembler, written in FORTH,
usually occupies just over 1500 bytes.
FORTH programs are generally
shorter than machine code, due to the
threaded code principle. As for speed,
1000 empty loops take under one se
cond. Commodore BASIC - a fast one
- does the same thing in thirteen
seconds. FORTH is usually 30 to 70
percent slower than pure machine
code, compared to BASIC that is over
1000 percent slower.

If your application requires it, in a
time-critical part for example, you

may re-code parts (or all) of your pro
gram in assembler code, using the
FORTH resident macro assembler. It
is structured, meaning it has IF-
ELSE-THEN (sic), BEGIN-UNTIL,
BEG IN -W H ILE-R EPEA T, and
BEGIN-REPEAT instructions.
With a FORTH assembler, it is not
uncommon to have the code working
the first time. Modules created by the
assembler are treated in exactly the
same way as all other FORTH words,
standard or user-defined; not even the
compiler is able to detect any dif
ference.

FORTH can also work in any
desired numeric base, without affec
ting computation speed. You may
work in vinary, trinary, octal,
decimal, unidecimal, hexadecimal,
dodekadecimal, or in any other base
of your choice. When printing or
displaying values, you can format the
value as you wish. In accounting, for
example, you may wish to put paren
theses around a negative value: you
simply extend FORTH with a new
printing operator to do this; it is
defined in half a line.

All arithmetic in FORTH operates
on a stack. If you own an HP
calculator you will be familiar with
this type of arithmetic. FORTH uses
postfix notation of expressions,
meaning that the operators follow
their operands. For example, the ex
pression “(1 + 2) * 3” is written in
postfix notation as “ 1 2 + 3 This
has many advantages apart from mak
ing all parentheses unnecessary; in
fact, it is the way you really think
when evaluating an expression. After
the “initial shock” you will rapidly
become proficient in postfix notation
- you will realize, perhaps reluctantly,
that it really is the only way to go.
Traditional (infix) notation is not
something “ natural” ; it is just
something we happened to learn in
school.

Postfix has other advantages too.
FORTH procedures do not need any
parameter lists; they simply take their
parameters from the stack. Any
results is put on the stack, where later
other procedures may pick them up.
Natrually, this scheme of parameter
passing elegantly allows recursion, a
very useful programming technique.

12

Normally, FORTH operates on in
tegers. This is partly because
history in automatization; integer
arithmetic is very fast. FORTH has a
multitude of single- and double
precision operators that partly
eliminate the need for floating point
arithmetic. In fact, complete Fourier
transforms have been written in
FORTH without floating point
words. Floating point is however
becoming available. Many FORTH
vendors supply floating point
packages as extensions, to be loaded
when needed. If the computer has
floating point software in ROM,
FORTH can easily link to it. This is
the method adopted in PET-
FORTH, a full, extended FORTH
supplied by my company, Datatronic
AB. The floating point software,
complete with trigonometric func
tions, does not occupy memory space
when not desired, since you (or your
programs) load it only when it is
needed in your particular application.

As for portability, FORTH systems
are very much alike, and programs
are usually portable from one com
puter to another with very little
change. The FORTH Interest Group
has published compatible source
lis tin g s fo r a lm ost every
microprocessor available (1802, 8080,
PACE 6502, 8086/8088, ALPHA
MICRO, 6800, 9900, PDP-11, 6809,
NOVA, and more to come) at a very
low cost ($20). However, these ver
sions need customization before they
can run on a computer. FORTH Inc,
a company owned and operated by
Charles Moore, have even more ver
sions available, and they can provide
training on-site, when installating.
They have put FORTH on - watch
out - the IBM 1130, Burroughs 5500,
Univac 1108, Honeywell 316, IBM
360, NOVA, HP 2100, PDP-8, PDP-
10, and PDP-11, Varian 620, Mod-
Comp II, GA/SPC-16, CDC 6400,
Computer Automation LSI-4, RCA
1802, Interdata, Motorola 6800,
6809, and 68000, Intel 8080 and
8086, Mos Technology 6502, Four
Phase, ILLIAC, and the TI 9900,
just to mention a few. And they will
not stop there, I think. Soon, the pro
duction of a special FORTH pro
cessor will start; it will have FORTH
as its machine code language.

FORTH does not need much
memory, unlike many popular high-
level languages like Pascal and FOR
TRAN. The famous ADA languages

will not comfortably fit into even 64k!
FORTH programs usually fit into
16k of memory, and 32k is almost
luxury. If your program is huge, you
can use segmentation and/or virtual
memory for your data areas and pro
gram modules. Memory is normally
not a problem in FORTH.

You’re probably wondering “why
this sudden activity around FORTH
now, instead of ten years ago?” A
few years ago, not even computer
scientists knew of it. The few people
who were using FORTH were (and
are) very enthusiastic about the
language and its capabilities. To
make the FORTH language wider
known, a handful of FORTH pro
grammers formed the FORTH In
terest Group (FIG) in 1978. Through
their version of FORTH (fig-
FORTH; now almost an industry
standard), they have managed to do
just that in a very short time. Another
important event was that BYTE
magazine devoted their entire August
1980 issue to FORTH, thereby
creating a floodwave of enquiries to
FIG. FIG estimates to exceed 5000
members in a year.

Who is using FORTH, and for
what? The first applications were in
astronomy observatory automation,
in fact, that was what FORTH Inc
was founded to do. Quickly they
realized, after having automated
almost every observatory in the
world, that you couldn’t support a
company on that rather exclusive
market. So they went into the ad
ministrative world. They have
developed many powerful database
systems, and are now entering a ma
jor expansion phase.

Atari is using FORTH to replace
machine code in arcade games. It is
used in science fiction movies to do
animation and control space ship
models, for example in the movie
“ Battle Beyond the Stars.” A
FORTH-like language called SNAP
is used inside the Hand Held Com
puter, developed by Friends Amis,
U.S.A. FORTH controls satellites or
biting the Earth, prints invoices,
calculates salaries, controls com
munication nets, sorts peaches,
monitors laboratories, analyzes pic
tures, synthesizes music, and many
other things. LISP and PASCAL in
terpreters have been written in FOR
TH. Datatronic AB has used it to

control residual gas analyzers, involv
ing a lot of fast graphics and computa
tions. We have also written a schedul
ing system, using n-dimensional vir
tual matrices. I’ve written an Adven
ture game in FORTH in my spare
time. In fact (and this is not an
overstatement), you can program any
application in FORTH.

By using a Target Compiler, you
can get a compacted version of your
program, suitable for burning into a
PROM, with a typical overhead of
500-800 bytes. Then, you can use this
PROM without any other software to
do whatever you wish. Target Com
pilers are usually hard to get, since
they are intended for industrial use;
but with some effort you can usually
find one.

How can you get FORTH for your
computer? If you are good at machine
code programming, and will enjoy
typing 80 pages of assembler listings
into your computer, you can get a
listing from FIG (Forth Interest
Group, P.O. Box 1105, San Carlos,
CA 94070) for your particular
microprocessor. It will take some
time to customize, but the cost is after
all only twenty dollars.

You can also purchase a customized
version from a vendor. If you own a
PET 8032, you might want to contact
us. PET-FORTH includes double
precision a rithm etic , random
numbers, IEEE handling, trig func
tions and a powerful string package
with string searching capabilities. A
textbook and reference manual of 322
pages is included in the price ($390).
Floating point routines are available
as an extension. The program has a
life-time guarantee. Versions will be
available for the CBM 8096 and the
MMF 9000. We do also sell a Target
Compiler.

Another of FIG’s goals is to raise
user expectancy of the behaviour of
h igher-level languages, using
FORTH as an example. FORTH is
much more than a language; it can
also be regarded as an operating
system. Some have even questioned
whether or not it is a language. So
meone proposed the name “meta
language” . Charles Moore: ” ...Is
FORTH an operating system? Is it a
language? No programmer can af
ford to bypass it.

Peter Bengsten

1 3

Bulletin Board Fred Brown

One of the fastest uses for microcomputers in the United States, is
for exchanging information between computers over the phone.

Micro owners now have access to many networking systems and
databases, like the SOURCE and MICRONET where you will find a
wealth of information ranging from stock prices to the latest news
from this New York times.

But the most popular is local networking systems called bulletin
boards also known as electronic mail systems, permitting users to
enter and retrieve messages or information.

In the past 18 months bulletin
boards have been set up all over the
states, nearly every town or city have
at least one, some large cities have
several.
Some bulletin boards specialise in
subjects like education, medical, there
is even one for other bulletin board
numbers, and in San Francisco there
is one for gays.

Bulletin boards have now been
operating in the U.K. for over a year
and all operate electronic message
system, programme library and infor
mation retrieveal, plus other items
like Forum-80 (HULL) as TRS-80
and PET user’s sections.

To access a bulletin board system
you need an RS232(if your computer
hasn’t got one) and a modem plus
software and any microcomputer can
be used.

Once you have set up your RS232
(see list2) and loaded your pro
gramme, you are ready to call a
bulletin board.

Pick up the telephone and call one
of the system numbers (see list no 1)’

When the other end answers, you
should hear a tone on the line, now
set your modem to originate (or place
your handset in the cups if you are us
ing an acustic modem) and if all goes
well a message will appear on your
CRT, if not press carriage return a
few times until the distant system
responds.

E xam ple o f signing on to a
FO R U M -8O B u lletin B oard

The FORUM-8O is designed to ac
cept a wide range of 300 baud con
figurations including 7 or 8 bit words.
However, the standard configuration
of 7 bits, no parity and 1 stop bit is
best. When you sign on, a greeting

will be displayed
WELCOME TO THE FORUM-8O
OF (HULL, ENGLAND),
the system will ask you the following
questions to which you give ap
propriate answer:
WHAT IS YOUR FIRST NAME?
BOB
WHAT IS YOUR LAST NAME?
SMITH
WHERE ARE YOU CALLING
FROM?
SWINEFLEET, YORKS.
NAME: BOB SMITH
FROM: SWINEFLEET, YORKS.
IS THIS CORRECT, BOB?

C hecking users files.
At any point, our FORUM-8O

system is checking to see if you have
signed on to this system recently. If
you had signed on recently, a record
of your terminal configuration would
exist. This is one of the handiest
features of FORUM-8O. Suppose you
are using an Apple II to talk to
FORUM-80. Your control characters
for various functions (clear screen, in
put prompt, etc.) are unique to the
Apple. The same problem exists with
many other microcomputers and
dumb terminals. FORUM-8O solves
this problem by allowing you to set
up your own configuration table that
the FORUM-8O uses every time you
sign on. The user file is not perma
nent. You must call the system fairly
regularly to keep your user file in
system. Creating a user file for your
terminal/micro is done by entering
command “C” . If you have never
called a particular FORUM -8O
system before, a “UNIVERSAL”
configuration will be used. Then the
system will give you the following in
formation:

YOU ARE THE CALLER %%%%
LAST MESSAGE IN SYSTEM
ON YOUR LAST CALL: %%%%
VERSION 3.1 08/08/81
At this point, the system will tell you
if there are any messages in the
system addressed to you (assuming
correct spelling of your name was
observed by the sender). To retrieve
the message(s), simply enter an “F”
for Flagged Retrieval once you enter
the command mode. The system
automatically flags these messages for
you.
** BULLETINS **
(HIT ‘S’ TO SKIP BULLETINS)
(HIT ‘P’ TO PAUSE)
The bulletins that the system
operator has entered will appear next.
If you want to skip them, press “S”
key. You can use the “S” key in many
other parts of the FORUM-8O system
to stop output. If you are reading the
bulletins and you want to pause the
output for a moment, press the “P”
key. Once the bulletin has been
displayed or bypassed, you enter the
command mode. The following will
appear every time you enter the com
mand mode:
00:45 COMMAND:
The numbers just before the word
“COMMAND” indicate how long
you have been on the system (in this
example, 45 seconds). If you press
Carriage Return, “Enter” key or
otherwise send an invalid input, the
command table will automatically be
displayed to you. If you are using a
video-type terminal and have entered
any invalid input, the command table
will automatically be displayed to
you. If you are using a video-type and
have properly configured the system
to your terminal (using the command
“C’), the screen will clear after a com
mand is entered.

M ain com m ands
00:47 COMMAND: (send a c/r will

print a list of Subcmds)
S = SUMMARIZE MESSAGES
E = ENTER MESSAGES
F = FLAGGED MSG

RETRIEVAL
O = OTHER SYSTEM

NUMBERS

14

H = HELP WITH SYS OPERA
TION

C = CONFIGURATION
CHANGES

T = TERMINATE CONNEC
TION

R = RETRIEVE MESSAGES
K = KILL MESSAGES
M = MESSAGES IN SYSTEM
I = INFORMATION ABOUT

SYSTEM
U = USER LOG
L = LOCAL FEATURES SEC

TION
02:04 COMMAND:
The above are the valid commands of
FORUM-8O (3.1). Some FORUM-8O
systems may also have an “L” com
mand in this list. Entering a “L”
command gives you access to special
LOCAL features that may be sup
ported by a particular FOURM-80.
Lets examine each command.

S um m arize m essages
T y p in g “ S” and p ress in g

“ E N T E R ” or “ C A R R IA G E
RETURN” lets you enter the
message summary mode. In this
mode, you can look at a summary of
the messages currently in the system.
You can examine all the message
headers, which contain information
like who the message is to and from,
the subject of the message and the
category of the message (-M-
Miscellaneous, -C- Commercial, -G-
G rap h ics or E x p e rim e n ta l,
-P-Personal passworded). Here is the
list of subcommands in the SUM-
MERIZE MESSAGE mode:
00:30 COMMAND:
LOADING FILE - (S) SUMMARY
03:40 (S) SUBCMD:
C = COMPLETE (FULL) SUM

MARY
Q = QUICK (ABBREVIATED)

SUMMARY
S = SEARCH SUMMARY FILE
F = FLAGGED RETRIEVAL
A = ABORT AND RETURN TO

COMMAND MODE
03:48 (S) SUBCMD:

E nter a m essage
Message entry is full of handy

features that, to the unaware user, can
cause some difficulty! These features
are explained in Volume 2 of the
Users Guide. Here we can only say
“experiment at your own risk!” .
Below is an example of the standard
method of entering a message into the
system 09:10 COMMAND: ‘E’

LOADING FILE - (E) ENTER
MESSAGES
09:19 (E) SUBCMD:
M = MISCELLANEOUS

(GENERAL INTEREST)
P = PERSONAL (PASSWORD

PROTECTED)
C = COMMERCIAL (FOR SALE,

WANTED TO BUY, ETC.)
G = GRAPHICS OR EX

PERIMENTAL
A = ABORT AND RETURN TO

THE COMMAND MODE
09:27 (E) SUBCMD:

These are the categories discussed in
the summary search function.
Passworded messages are accessible
only to those who know the message
password. Graphic or Experimental,
Miscellaneous and Commercial
messages are accessible by the user.
Graphics and Experimental are
described in further detail in
Volume2 of the Users Guide. Choose
the Commercial category only if you
have something to buy-sell-trade etc.

In summation, remember these two
things about message entry:

1. Leave BLOCK Entry alone
unless you know what you
are doing!

2. SAVE before ABORT, or
the system will “forget” the
message you just entered!

O ther system num bers
Entering the letter “O” puts you

into the directory of other system
phone numbers. In this mode, you
can selectively look at a list of system
numbers for a particular city, area
code, state, or system type (ABBS,
CBBS, FORUM-8O, etc) or all
system numbers in the listing. The
listing is as accurate as humanly
possible and is updated regularly by
the SY ST E M O P E R A T O R ,
however-we do not promise or
guarantee that you will always get a
computer at the other end! Here is an
example of how the “O” command
works:
13:05 COMMAND ‘O’
LOADING FILE - (O) OTHER
SYSTEMS PHONE NUMBERS
13:19 (O) SUBCMD:
F = FORUM-8O SYSTEMS
O = OTHER SYSTEMS
S = SEARCH FILE
A = ABORT AND RETURN TO

COMMAND MODE

H elp w ith system operation
Most of the contents of this part of

the system are explained elsewhere in
this users guide. However, there is
one section that is not and describes
one of the most POWERFUL
features of the FORUM-8O system. It
is the M ULTIPLE COMMAND
ENTRY feature. If you are calling
long distance and you want to con
serve your system access time
(resulting in a SMALLER phone bill)
you should memorize the following
explanation from the HELP file on
M ULTIPLE COMMAND EN
TRY:

The system is equipped to receive
multiple command in a single input.

Multiple commands are accepted
only in the COMMAND MODE in
put, subcmd prompts do not accept
multiple command. The multiple
command string may consist of from
1 TO 20 sequenced commands as
long as all commands operate within
the same function. The multiple com
mand sequence is terminated when
you re-enter the COMMAND
MODE (or execute the last command
of the sequence).

The choice of the delimiter bet
ween commands is up to the user, any
non-alphanumeric ASCII character
may be used but the same delimiter
must be used throughout the multiple
command string. For example, if you
are inputing a mult/cmd string which
will not include a search string, then a
space may be used as delimiter.
However, if your mult/cmd string
will include a search string with an
embedded space, such as ‘JIM
BROWN’ then another delimiter
such as, or ; or : should be used.

C onfiguration changes
If you wish to take advantage of the

full potential of the FORUM-8O
systems, you will want to set up a
configuration table to match the
FORUM’s control characters to your
terminal. For example: the Apple II
computer, when using the D.C.
Hayes MICROMODEM, clears the
screen every time the FORUM Sends
a OE(HEX) character. On the TRS-
80, this character turns on the cur
sor., In earlier versions of the
FORUM-8O software, every time the
system looks for input from the user,
it would send a QE character. An Ap
ple User would just barely get a
chance to read the question asked by
the system because the screen would
go blank when the QE character was

15

sent!! To eliminate this problem and
other similar ones due to lack of con
trol character standards for terminals,
the C O N F IG U R A T IO N
CHANGES function was designed.
It allows you to set up a configuration
table that the FORUM-8O software
uses to process the control characters
you wish to be sent by the system.

R etrieve m essages
Entering an “R” in the command

mode lets you enter the Message
Retrieve mode. These are the SUBC
MD s available:
21:20 (R) SUBCMD:
F = FORWARD SEQUENTIAL

RETRIEVAL
R = REVERSE SEQUENTIAL

RETRIEVAL
I = INDIVIDUAL MESSAGE

RETRIEVAL
P = PERSONAL MESSAGE

RETRIEVAL
S = SEARCH MESSAGE FILE
G = GRAPHICS / EXPERIMEN

TAL RETRIEVAL
A = ABORT AND RETURN TO

COMMAND MODE
Forward sequential retrieval example:
FORWARD SEQUENTIAL
(MSG 2677 to 3039)
START AT MSG:
The messages will be displayed star
ting at 2800 continuing to 2677
or until you press the “S” key to stop.
Reverse sequential retrieval example:
R E V E R SE S E Q U E N T IA L
RETRIEVAL
(MSG 26 to 3039)
START AT MSG:
The messages will be displayed star
ting at 2800 and continuting to 2677
or until you press the “S” key to stop.
Individual retrieval example:
INDIVIDUAL RETRIEVAL
(MSGS 2677 to 3039 C/R TO END)
MSG NO:
Message 2765 will be displayed,
assuming that a message is assigned
to that number. As messages are
purged from the system by users,
message numbers are not reassigned
to new messages or existing messages
in order to avoid confusion in identi
fying a specific message with a
specific message number. The system
will ask you for another message
number. If you are done, enter a
cariage return to exit to the SUBC
MD function. Otherwise, enter
another message number to view
another message.

Kill m essages
The kill function let’s you kill

messages from the system as
necessary. You MUST know the
message password in order to kill the
message!
22:34 COMMAND:
LOADING FILE - (K) KILL
MESSAGE
22:43 (K) MSG NO:
MSG: 2767
DATE: 04/10 -22.34
FROM: JIM CAMBERON
TO: KILL TESTERS
SUDJ: TEST KILL
IS THIS THE CORRECT MSG
(Y/N) ?
ENTER PASSWORD:
MESSAGE KILLED

Inform ation about system
Entering a “I” will display infor

mation concerning the hours of
operation of the system, the equip
ment configuration used, and the ad
dress of the FORUM-8O Head
quarters. System hours of operation
are controlled by the local system
operator and will vary from system to
system.

U ser log
Entering a “U” will display a list of

users who have called the system in
reverse chronological order. The user
log shows only the most recent call of
a particular user.

T erm inate connection
To terminate your connection with

the FORUM-8O, enter a “T ” .
26:30 COMMAND:
If the system is equipped with a com
ment file, the following will appear:
WOULD YOU LIKE TO LEAVE
CONFIDENTIAL
COMMENTS TO THE SYSTEM
OPERATOR?
USE LINES SHORTER THAN
80 CHARACTERS
H IT C A R R IA G E R E T U R N
ALONE WHEN FINISHED.

1
2

When you are finished with your
comment and have hit a single car
riage return, the following will be
displayed:
T H A N K S FO R C A L L IN G
FORUM-80, BOB
LAST MESSAGE:2800
TIME ON SYSTEM: 28:14
DATE: 08/08/81
CONNECTION TERMINATED

That’s it! Study this guide carefully
and you should get great satisfaction
out of using bulletin systems. As
mentioned throughout this guide,
Volume 2 deals with the more
sophisticated features of the FORUM
software and will include notes on up
dates to the software that will affect
user operation.

A system is only as good as it’s
users, so feel free to leave messages on
your local system on the headquarters
system if you have any comments or
questions about the bulletin board
system. REMEMBER, the system is
designed to operate with a wide varie
ty of terminal or microcomputer con
figurations. It is not written especial
ly for any particular system. If you
have problems communicating with
the FORUM-8O, we want to know all
the details of the problem. Leave
comments explaining your difficulty
on any FORUM-80 system or drop a
line to F O R U M -80 H E A D
QUARTERS, this will enable us to
make the FORUM-8O a “UNIVER
SAL” hobbiest Electronic Message
System.

LISTING no 1.
1)FORUM-80 HULL. (Forum-80
H,Q) tel: 0482 859169
The worlds first international
bulletin board.
System operator FRED ERICK
BROWN.
International electronic mail. Library
for up/down loading software.
Forum-80 users group, Pet users sec
tion, Shopping list.
System hours, 7 days a week mid
night to 8.00 am
Tues/Thurs 7.00 pm to 10.00 pm
Sat/Sun 1.00 pm to 10.00 pm

2)FORUM-80 LONDON tel: 01-286
6207
System operator LEON JAY
E lectronic m ail, L ib rary for
downloading.
System hours Tues/Fri/Sat/Sun 7.00
pm to 11.00 pm

3)FORUM-80 M ILTON (TRS 80
users group 80-NET) Tel: 0908
566660
System operators LEON HELLER
& BRIAN PAIN.
Electronic mail, Library, Newletter,
TRS-80 information
System hours 7 days a week 7.00 pm
to 10.00 pm

4)FGRUM-80 HOLLAND Tel:
010-313512 633
System o p e ra to r N IC O

16

Communications Editorial

Welcome to this, the third in our series of communications specials.
When starting this central pullout feature, my only ‘aim’ was to have,
every other month, a feature on education, and let the other months
be taken up with whatever came along. However, owing to the ex
cellence of the articles contributed in August and October by Dr.
Philip Barker (principal lecturer in the department of Computer
Science at Teeside Polytechnic) I had no hesitation in devoting those
month’s features to the role of the PET in differing aspects of com
munications : firstly ‘Using a Microcomputer as an Interactive Ter
minal’, and secondly ‘Algorithms for Intelligent Terminal Opera
tion’.

After publishing those two it seem
ed only fitting to round off the year
with a third article by Dr. Barker, and
so here we have ‘Computer Networks
and Program Distribution’. This
month the article concerns itself with
an introduction to computer net
works, and explains clearly and
precisely just what computer net
working means. We then move onto

the implications of distributed com
puting for users of personal com
puters, and an outline of some of the
problems associated with software ex
change. Finally, he describes a
technique for transmitting programs
over the public switched telephone
network.

As in the two previous specials, we
are concentrating in particular on the

role of PETs in the world of com
munications. Although the majority
of Dr. Barker’s article is aimed at
microcomputers in general, the
algorithms and routines that he
describes are aimed at the PET itself:
a 3032, to be precise. So the article
becomes useful not only to 3032
owners, but also to owners of other
PETs as well.

As you may be aware, 1982 is Infor
mation Technology year, so you can
guarantee that there’ll be more ar
ticles coming up. If you’ve developed
anything in this field, write and let
me know. All contributions should be
sent to the usual address at the front
of the magazine.

Well, I’ve said enough, and its time
for Dr. Barker to take over. Let’s start
communicating!

Computer Networks and Program Distribution
Philip G Barker, D epartm ent o f Computer Science, Teeside Polytechnic, County Cleveland.

Introduction
One of the most interesting and useful areas of mathematics is that which deals with graph theory and its
applications to science and engineering. In computer technology graphs are used for a variety of different
purposes. Some of the more well known uses include: the formulation of flow charts and data structure
diagrams in programming; the representation of electronic circuit diagrams; and, as a notational tool for
use in the design of data bases and distributed computing systems. Of the graph structures that are com
monly encountered one particular type, the network, is of significant importance. It is used widely in soft
ware engineering and in many areas of computer design. Essentially, a network consists of a collection of
‘point locations’ called nodes (or vertices) that are inter-connected by a series of directed arcs or edges.

When designing or building com- micros, minis, mainframes and super- (through redundancy) and more flex-
puter systems graphs are often
employed in order to model the en
tities under consideration. Nodes of
the graph structure are used to denote
the various components from which
the system is (to be) constructed
-these could be resistors, chips, tape
decks or complete computer installa
tions. The directed arcs of the graph
then represent the inter-connections
between the building blocks of the
system. In reality these might be cop
per tracks on a printed circuit board,
strands of wire on a patch board, op-
tical fibres, te lephone lines,
microwave beams or lasers.

Computer systems technology em
braces a wide variety of components:

computers (IEE80). The latter are
based upon the highly parallel inter
connection of many processing
elements to produce multiple CPU
configuration and array processors.
The latest trend in this domain is
towards the use of ultracomputers
(Sch 80). These require a means of
p u tt in g to g e th e r co m p u tin g
assemblages consisting of thousands
of inter-linked elements. The prac
tical realisation of such an arrange
ment depends upon the use of VLSI
technology. The motivation for con
necting computing elements together
lies in the fact that with such
machines it is possible to achieve
faster computational speeds (through
parallelism), greater reliability

bility as a result of dynamic sub-task
allocation. Computers linked together
in this way are usually located within
fairly close proximity - often within
the same room. The term multi
processing is often used in order to
describe this type of inter-connection.

There are many other reasons for
wanting to link up computer systems
- particularly, in situations where the
distances between the elements to be
linked is geographically large
-perhaps, thousands of miles. The
term computer networking is used to
describe this approach to digital
systems inter-connection. Figure 1
shows the technology of a typical net
work configuration.

1

figure 1.

C om puter N etw orks - an
O verview

In this diagram individual com
puters in the network are represented
by the nodes of the graph. The con
necting lines (arcs) now represent
data transmission links that enable
data and information to flow between
the various nodes. The term com
munication sub-network is often used
to refer to the underlying data
transmission arrangements that sup
port the integrated computer system.
The geographical distribution of the
nodes in the network will usually not
influence its operation or the func
tions it is designed to perform. Thus,
in figure 1, computer A might be
located in London, B in Paris, C in
New York and D in Oslo. Sometimes
there will be more than one direct
link between given nodes (as in the
case of A and D) in order to provide
greater overall system reliability.

Closely dependent on the idea of
computer networks and a concept of
growing importance is that of
distributed computing. Here the com
putational tasks to be performed in
solving a problem are serviced by the
resources of the computer network as
a whole rather than those associated
with any particular individual node.
Suppose, for example, that the simple
network described above was to be us
ed for some scientific experiment. It
is feasible that laboratory data col
lected by a data acquisition system at
tached to computer D could be
transmitted to computer A for pro
cessing; then, following this, the
results could be sent to computers B
and C for storage. Retrieval requests
for inspection of particular items of
data might then arise from users of
any of the four computers, A, B, C or
D. Distributed processing of this type
can offer many advantages such as:
high availability and greater reliabili

ty; improved work throughput and
response time; distributed data pro
cessing, storage and retrieval; load
levelling and resource sharing;
greater security, integrity and privacy
of data; and, system modularity and
the implications that this offers form
highly structured approach to im
plementation.

Essentially, a distributed process
ing system may be thought of as an
inter-connection of geographically
distributed digital sub-systems. Each
has certain processing capabilities and
communicates with other sub-systems
through the exchange of messages of
various sorts - a more rigorous list of
criteria has been given by Enslow
(Ens78). Within such a distributed
system each host node may have its
own local operating system and ap
plications software. This may be uni
que to a particular node. The various
hosts will communicate with each
other using common message
transmission protocols. Two com
monly used techniques for transmis
sion of information around a network
are message switching and packet
switching, these will be described in
more detail later. One important
feature of the network is that the
route information takes from an
originating node to its destination
node will not be guranteed since this
will be influenced by the state of the
network at any time. To the user the
system will present a common com
mand language via the network
operating system. This will usually
provide a set of high level commands
that enable the user to control the ser
vices and facilities that the network
offers - for example, CREATE,
SEND, FETCH, FIND to control
the manipulation of files of stored;
DATABASE XYZ, to establish con
nection with a particular data base
system, and so on.

Since their inception, computer
networks have grown from simple in-
house affairs to systems that span
both national and international boun
daries. They have expanded across
continents in order to interconnect
major computing faciities around the
world. Nowadays, with the advent of
inexpensive micros and minicom
puters (and equipment based upon
them), computer connections are ex
tending between buildings and along
corridors to enable the linking
together (via Local Area Networks or
LANs) of officies and laoratories on a
world-wide scale. Progress in this

area is very rapid - particularly since
the development of satellite links.

T ypes o f netw ork and their
purpose

Computer networks may be
classified by any of a wide range of
possible attributes: by their topology
(star, tree, loop, etc); by the control
d isc ip lin e used (c e n tra l or
distributed); by the type of informa
tion that the network carries: the
mechanisms for transmitting it
(message or packet switching); by the
communication links involved (cable,
twisted pair, radio, etc); and, the
nature of the computers involved -
these may be of the same type or may
d iffe r q u ite s ig n if ic a n tly
(homogenous and hetergeneous net
works, respectively). These attributes
represent just a few of those that are
widely used to describe and classify
the different types of computer net
works that currently exist. In this sec
tion some of these attributes will be
briefly explained.

N etwork T opology
The term topology refers to the

geometrical arrangement of links and
nodes of a network. Within these
nodes it is possible to locate several
different types of hardware and soft
ware depending upon the function
that an individual node is to perform.
When designing a network, many dif
ferent factors must be evaluated in
order to choose the most suitable
topology. One major factor that is
likely to strongly influence this choice
is the type of participation required
by each of the nodes. Thus, it is
possible for a node to act

1) exclusively as a consumer of
resources,

2) exclusively as a provider or
resources, or,

3) as both a consumer and pro
vider of network resources.

Depending upon the likely resource
utilisation and the way in which
nodes need to communicate with each
other, about half a dozen “standard”
types of network topology are com
monly used. These are summarised in
the seven diagrams (A through G)
contained in figure 2.

The simplest type of configuration
is the point-to-point agreement shown
in diagram A. Here two nodes are
joined by a single communication
link. This may be a private wire or a
switched line - as in the public dial-up

2

telephone network. A more complex
arrangement of nodes is illustrated in
the multi-point system depicted in
diagram B. This requires that several
nodes share the same communication
link. One of the nodes in the network
is designated as the controller and the
others then become tributory sta
tions. The controller manages net
work traffic by means of polling, that
is, it invites other stations to send
messages in turn. Multi-point net
works are usually established over
non-switched leased lines.

Diagram C shows another popular
network arrangement called a cen
tralised star system. In this configura
tion all users communicate with a
central point that has supervisory
control over the system. Peripheral
nodes can only communicate with
each other via the central controller.
This thus provides a central message
switching service for the other nodes.

A typical hierarchical structure is
shown in sketch D. Such an arrange
ment is often employed in industrial
environments to supervise a variety of
real-time process monitoring applica

tions. A hierarchy of computers is us
ed to control various processes, syn
chronise them and report on their
status. Both microcomputers and
minicomputers are used as nodes in
this type of arrangement. These oc
cupy the lower levels of the tree struc
ture with, perhaps, a mainframe or
large minicomputer at the top.

Many organisations design their
computer networks in the form of a
loop or ring structure (diagram E). In
an arrangement of this type there is a
common communication loop to
which all nodes are attached. The
data to be transmitted is then looped
around the nodes in turn. A loop or
ring arrangement of this type is very
economical when several remote sta
tions and host processors are located
near to each other - perhaps within
the same building or distributed over
a manufacturing plant. However,
when the stations are geographically
dispersed over long distances the line
costs would probably be too expen
sive for a loop structure and a cheaper
form of distributed network would
probably be required. Two of these

are described below.
The multi-star network similar to

that shown in diagram F is an often
used configuration in which there are
several supervisory or exchange
points each with their local cluster of
attached nodes. The local hosts usual
ly service the requirements of their at
tached nodes but also permit general
communication between any of the
other points in the network. If pro
perly designed, distributed networks
can offer significant reliability advan
tages, since a failure at one node does
not affect the rest of the configura
tion. Indeed, in applications where
the reliability of continuous com
munication is important, a fully
distributed network (diagram G) in
which every point is connected to
several neighbouring points may be
preferred. The additional transmis
sion paths provided by this type of
structure improves the overall perfor
mance of the system quite substantial
ly. When using this type of topology,
detailed traffic analysis must usually
be performed in order to determine
where the links are required.

The network structures described
above and illustrated in figure 2
represent the most common types of
discrete network architecture. It is
feasible, however, to use these as
basic building blocks to construct
even more complex arrangements.
Thus, two, three, or more, networks
having topologies similar to that
shown in diagram G may be inter
connected to form a highly
distributed arrangement of nodes.
Logically, the arrangement will ap
pear as three separate networks linked
at particular points. Because the in
dividual networks will require to re
tain various attributes of autonomy,
and, because they will differ con
siderably from each other in their
characteristics, special modes of inter
connection are required. Nodes that
are used to interlink networks of dif
ferent types in this way are called
gateway nodes. Their design has been
described by a number of authors
(Hig 75, Wal 75). A description of
one such gateway that connects the
University of Rochester to the APRA
network in the USA has been
presented by Ball et al (Bal76).

C ircu it, M essage and P acket
Sw itch ing Netw orks

There are three basic methods for
routing communications traffic from
a source to a destination within a

3

computer network: circuit switching,
message switching and packet swit
ching. In a circuit switching network
- similar to the public switched
telephone system - the role of the
switching centre(s) is to establish a
direct connection between nodes in
the network. Once established these
may then carry on one-way or two-
way communication with minimal
delay between the transmission of a
message and its arrival at its destina
tion. When communication is com
plete, the switching centres discon
nect the circuit and restore the system
in readiness for other connections.
Circuit switching often requires long
connect times and ties up transmis
sion capacity for long periods. This
arises because of a fundamental pro
perty of circuit switching - once a
path is determined through the net
work nodes, all traffic between a
source and destination pair then
follows the same path.

FIGURE 3 MESSAGE AND PACKET STRUCTURE

header------------------

destination
address

source
address message text

error
check

k------------------------- ----------------b lock --------------------------- ------------------ *1

A - MESSAGE STRUCTURE

1 destination
I address

source
oddress

packet
number messoge text £3. B - PACKET STRUCTURE

FIGURE 4 SIMPLE VIDEOTEX NETWORK

An alternative mode of transmis
sion which does not require a fixed
route between source/destination
could have many advantages. Using
such an approach, two possibilities
exist - depending upon the volume of
data to be transmitted: message swit
ching and packet switching. In
message switching, each item of data
is sent into the network as a discrete
unit and is then routed to its destina
tion. The format of the unit that is
transmitted is illustrated in diagram
A of figure 3.

A message makes its way through
the network to the destination whose
address is specified in the header.
Each node in the network uses an ap
propriate routine algorithm in of
order to decide which node the
message has to got to next in order to
reach its destination. Since some sta
tions may be busy, a message may
often have to be stored at in
termediate nodes before it is passed
on. For this reason an arrangement
such as its often called a ‘store and
forward’ system.

Packet switching is essentially
similar to message switching and is
used when large volumes of informa
tion are to be transmitted. At the
source station a large message is sub
divided into a series of fixed length
segments (called packets) of size 1,000
-8,000 bits. Each packet has a unique
number associated with it to enable

the reconstruction of the complete
message at the destination. The for
mat of a packet is similar to that of a
message and is shown in figure 3
(diagram B).

Packets are treated individually and
are forwarded along the best available
route, that is, the route with the
shortest transmission delay. Each
packet is checked for errors at each
node along the way by means of the
error checking field contained in the
packet. Because long messages are
broken up and sent over different
routes it is possible for them to arrive
at their destination more quickly.
Furthermore, since intermediate
nodes in a packet switched network

only have access to segments of the
whole they are unable to assemble
the entire message. Thus, if data en
cryption is not being used, transmis
sion is more secure.

V ideotex Netw orks
Videotex networks (Bal80) were

orignally introduced to provide low
cost public data and information
retrieval networks based upon broad
cast TV signals or a switched
telephone network. Intended primari
ly for use as public information
utilities the systems were designed
around the use of a single tree struc
tured data base. Modified TV sets are
used as user terminals through which
could be implemented a variety of

4

menu selection techniques in order to
facilitate data/information retrieval
operations. Figure 4 shows the way in
which the components of a typical
videotex network might be intercon
nected.

There are two types of terminal:
IPT - the Information Provider’s Ter
minal and U T - the User’s Terminal.
The information provider is the per
son responsible for entering data into
the data base and ensuring its correct
ness. The arrangement of com
ponents is essentially a star network
with the computer at the centre and
the terminals and videotex data base
(M) attached as peripheral nodes.
This type of equipment is often used
for the provision of in-house informa
tion systems - for a laboratory, opera
tions room or sales office. In additon
to their prime use as information
retrieval tools, the two-way com
munication capability of many of
these systems enables the implemen
tation of a wide variety of ‘electronic
m ail’ and ‘electronic journal’
facilities. On a larger scale such
systems are used to provide global or
national information utilities. Typical
examples of systems, of this type in
clude P R E S T E L (U K),
BILD CH IRM TEX T (Germany),
ANTIOPE (France), and TELIDON
(Canada). These videotex networks
are widely used for the provision of a
variety of commerical, scientific and
technical information to the general
public.

T he N eed for Standards
One of the basic pre-requisites

necessary for the construction of a
viable computer network is the ability
to easily connect various kinds of
computing equipment to a com
munication sub-system. Unfortunate
ly, this is not always as easy in prac
tise as it is in theory. Most people
have probably experienced the pro
blems encountered when an attempt
is made to interface one electronic
device (such as a computer) to
another (say, a printer or laboratory
instrument). The problems can be
quite substantial unless some form of
standard interface is used. For
peripheral interfacing the IEEE-488
or RS-232-C conventions are now
commonly used. Analogous interfac
ing standards also exist to facilitate
computer networking.

When network components are
inter-connected many problems can
arise unless agreed upon conventions

are used. Because of their much
greater complexity, there will ob
viously be many more difficulties
associated with the formulation of
standards for networks compared
with those necessary for simple
com puter-peripheral interfacing.
Usually, two classes of standard are
needed: one to deal with hardware
related matters and another to cater
for software factors. Hardware
related standards specify how com
ponents are to be physically con
nected with each other. Here, typical
considerations include electrical
signal characteristics, signal speeds,
signal types, electrical connector
dimensions, etc). Software standards
deal with the way in which informa
tion is transmitted around the net
work. Important factors in this
category are line protocols, error
checking algorithms, encryption
methods and so on. Most of these are
adequately documented in the
technical literature.

The numerous documents that are
available cover a wide variety of data
transmission and networking stan
dards. Most of these originate from
manufacturers (product specific) or
from international standards such as
CCITT, EIA and ISO. Those
originating from the latter are usually
product independents. Much of the
more important material relating to
standards is covered in text books on
telecommunications (Dav73, Can80).
One of the more useful introductory
hand-books is the “V-Series Report”
(B008I). This explains most of the
important technical telecommunica
tions terminology in a readable and
digestable fashion. It also contains
details of the popular data transmis
sion standards and describes their
relevance to networking. Anyone in
tending to use a data communication
system would find this book a
valuable asset. At a more advanced
level another useful publication is the
“Network Independent File Transfer
Protocol” (HLP81). This specifies a
file transfer scheme that permits the
exchange of information files of any
kind over any type of data com
munication network (public or
private) regardless of the nature of the
hardware that is used. This latter
standard is thus orientated towards
some of the software aspects of net
working.

In the future it is likely that more
and more organisations will become
involved in computer networking

-perhaps, through public packet swit
ching systems such as the U K ’s PSS.
As this happens the continous evolu
tion of appropriate standards will be a
necessary prerequisite if acceptable
user-orientated systems are to be pro
duced. As will be discussed in the
next section, one the the largest
potential growth areas for networking
facilities is likely to be users of per
sonal computer systems. Activity in
this domain will undoubtedly
necessitate the formulation of yet
more networking standards.

T he Im plications o f C om puter
N etworks

A few years ago, pocket calculators
were very much the fashion. Most
people seem ed to own one
-shopkeepers, business personnel,
managers, house-wives, teachers and
students. Unfortunately, despite their
popularity and significant utility, for
the average user calculators were
never ex cep tio n a lly exc iting
machines. After all, what could they
do? Their repertoire was extremely
narrow. They were only capable of
performing numerical calculations in
a way which was faster, more precise
and (one trusts) less error prone than
computations performed manually,
via a slide rule or using log tables.

More recent developments in elec
tronics, computing and communica
tions technology now put us at the
forefront of what is likely to be yet
another significant era in the develop
ment of the human species - the
widespread availability of the per
sonal computer. Unlike the pocket
calculator, this new device is far more
interesting since it has a potential to
act as:

1) a powerful numerical
calculator,

2) a processor for many dif
ferent kinds of textual, sonic
and graphic information,

3) a large capacity storage ar
chive for a wide variety of
personal data and informa
tion,

4) a sophisticated learning
medium, and,

5) a channel for interpersonal
communication.

As society moves towards an age of
‘personal computing’ and to enable
each of the above objectives to be
realised, there is a going need to
facilitate the easy exchange of pro-

grams and data between one person
and another. Ideally, this will be
achieved by means of some form of
commonly available global com
munication network. The more im
portant approaches to networking
have been described in the previous
section. Many of these techniques are
now being explored. Some of the
more important developments within
the UK are:

a) dissemination via broadcast
teletext facilities, (for exam
ple, ORACLE and
CEEFAX),

b) distribution via viewdata
systems, (for example,
PRESTEL), and,

c) use of a distributed computer
network, (for example,
NUNET, POLYNET).

Each of these approaches has its ad
van tag es and d isad v an tag es .
ORACLE and CEEFAX obviously
only allow one way transmission of

information from a central depository
to a consumer population. Both the
BBC and ITV are currently in
vestigating this type of ‘telesoftware’
distribution (Hay81). The PRESTEL
approach partially removes the
u n id ire c tio n a l lim ita tio n s o f
CEEFAX and ORACLE. This is
possible because some degree of ‘two-
way’ exchange of information is per
mitted. In this type of system, there
are two categories of user - the or
dinary customer (who just retrieves
and examines pages of stored
material) and the information pro
vider. The major drawback of this
system is that not all users can be in
formation providers. The Council for
Educational Technology is currently
investigating this mode of informa
tion dissemination in conjunction
with a number of schools and colleges
(CET 81).

The third approach to program and
data dsstribution is via a truly
d istributed computing network

(Can80, Dav73). Such a system has
the advantage of enabling totally
unrestricted bi-directional inter
change of data between any two
users. In the remaining part of this ar
ticle the use of the public switched
network (PSN) as a means of
distributing programs and data bet
ween users of personal computers
will be described.

T ranm ission o f Source P ro
gram s b etw een M icro co m
puters

The architecture of the distributed
computing system will significantly
influence the types of data transfer
that it will support. However, two
broad types are generally feasible -
depending upon whether or not there
is any intermediate storage of
material. These are illustrated
schematically in figure 5.

In case A, the micro owner at site X
is able to dial the telephone number
of the micro at site Y and then
transmit information to it. In the con
text of data exchange, transmission
takes place as if the two micros were
directly linked together (Cam81).
However, because messages passing
over the communication network are
likely to be influenced by noise,
suitable error detection and correc
tion procedures need to be added to
the software in the micros. This mode
of data exchange does not utilise any
intermediate storage of the informa
tion being transmitted. Consequent
ly, if either micro fails to respond to a
call from its incipient partner, no
transfer can take place.

An alternative method, shown in
diagram 5B, illustrates a situation in
which a micro at location X can ar
chive material in a mainframe at site
V or W. At some later stage the
stored material can be retrieved by
micro owners at sites X, Y or Z - pro
vided, in the case of the latter two,
they can meet the necessary access
control requirements. Through this
kind of technique the sharing of infor
mation is a trivial problem. What is
more important, however, is that it
now becomes a simple matter to
physically distribute the information
to many different geographical loca
tions. Details of using a microcom
puter as an interactive terminal device
over the public switched telephone
network have been described
elsewhere (Bar 81a, Bar 81b), Similar
ly, the use of a microcomputer as an

FIGURE 5 PROGRAM EXCHANGE BETWEEN PERSONAL COMPUTERS

Ia I D irect Transfer

MICRO
X

MICRO
Y

Transfer via an Intermediate Mainframe

6

intelligent terminal has also been
outlined (Bar81c). In this latter work
algorithms to enable the transfer of
files of information between a main
frame and a microcomputer were
described in some detail. Implemen
tations of these algorithms have also
been presented. Essentially, the pro
grams that have been constructed
allow complete mobility of files bet
ween micro and mainframe systems.
These files may contain machine code
programs, high level (source code)
programs or data. Using this software
the movement of programs between
one micro and another (via a main
frame) is a reasonably straightforward
task. However, a decision must be
made regarding whether these should
be ‘shipped’ around in machine code
or source level format.

Historically, program portability
has always been significantly in
fluenced by four important factors,

a) the use of high level
languages,

b) the availability of interna
tionally accepted language
standards,

c) the extent to which pro
grammers remain within the
limitations imposed by (b),
and,

d) the arthitectural-differences
between the computers on
which the programs run.

These factors alone are probably suf
ficient to justify any decision to
transmit program files in source code
format rather than as machine code
memory images. In this context we
have been examining the problems
associated with transmitting both
PASCAL and BASIC programs over
the PSN between micros and main
frames. Some interesting results have
been observed - one of which is
described in the next section of this
article.

The files that are transmitted bet
ween the two computers are organis
ed in the form of a contiguous set of
characters. Certain special ones (for
example, end of line-$OD) interspers
ed in the sequence serve to impose a
simple record structure on these files.
Although they might not be physical
ly stored in this way on either the
source or destination computers, this
simplistic view of their structure is
sufficient to enable the ensuing
discussion to be followed.

Loading BASIC Program s
from Secondary Storage

Once a BASIC program has been
transmitted from a remote computer
and stored locally on a secondary
storage device (either tape or disk) it
is a simple matter to load this into
memory for subsequent execution.
The exact mechanism for loading a
program will obviously depend upon
the type of microcomputer that is us
ed. For the purpose of illustration, in
the example that is described below a
Commodore PET (3000 series) has
been employed.

The function of a ‘loader’ program
is quite simple. It has to read BASIC
statements contained in a secondary
storage file, convert these to the ap
propriate internal format and store
them at the correct location within
PET’s memory space. The functional
requirements of such a program are
summarised in diagram A of figure 6.
As can be seen from this simple il
lustration, the storage area for BASIC
programs commences at $0400 and
extends upwards to $7FFF (for a 32K
machine). However, because the
loader program itself occupies a sec
tion of memory just below the upper
limit, there will be an inherent restric
tion on the size of the programs that it
can handle.

One of the major tasks that the
loader has to perform is the conver
sion of program code from its exter
nal format into its internal representa
tion in ‘tokenised’ form. When
represented in this way each of the
keywords and special operators in the
language is internally stored as a
single 8-bit numeric value. A com
parison of the external and internal
forms of a small BASIC program is
shown in diagram B of figure 6 shown
overpage. In internal format, each
statement consists of a two byte
pointer, a two byte encoding of the

figure a.

statement number, a sequence of
bytes representing the tokenied ver
sion of the original souce line and
finally, a byte containing an end-of-
line marker.
In figure 6B underlining is used to in
dicate the position of the statement
numbers in the internal representa
tion of the program. The structure of
BASIC statements and programs are
discusse in more detail in most of the
standard PET handbooks (Don81).
Once a statement has been tokenised,
it has to be inserted into its correct
position in memory. Both tokenisa-
tion and insertion are usually achiev
ed by means of special routines built
into the PET operating system
(residing at ROM locations $C34B
through $C43F). There is no in
herent reason why this code cannot
be employed by user programs.
However, in order to utilise it in the
desired way a slight modification to
the ROM code would be necessary.
Because it is not possible to alter this,
the relevant section of the PET’s
operating system must be copied
across to RAM and used from there.
This is easily achieved by means of a
simple assembly language program
that is written in such a way that
when it is assembled a gap is left in
the normally contiguous sequences of
address allocated to it. Later, when
the program is executed, this gap can
be filled by the appropriate copied
code.

The basic algorithm upon which
the implementation of the loader
depends is shown in figure a.
As was mentioned earlier, step 7 will

be performed by ‘borrowed code’
while the remaining steps will be im
plemented via user written statements
(see figure 6C). A listing of an
assembly language program that im
plements the above algorithm - for
BASIC source files residing on
casette tape - is shown in figure 7. Ac-

StartS Borrow coda from the operating system.
Step l: Initialisa PET BASIC system - (parform s NEW).
Stap 2! Raad input file (Gat next source character).
Stap 3! If 9nd-of-line detected than go to step S.
Step 4! If end-of-file detected than go to step 8.
Stap 5! Store source character in BASIC buffer area.

Go to step 2.
Step 6: Prepare for entry into the operating system

ro ut i n e s .
Step 7: Tokenise the source statement held in the BASIC

buffer area.
Enter tokenised statement into SASIC msmory area.
Go to step 2.

Step 8! Pass control back to BASIC command mods with a
"REA0Y" message.

FIGURE 6 FUNCTION OF A SOURCE CODE LOADER

0 P R IN C IP L E OF OPERATION

PET Memory Space

$0400

$7E00

$7FFF

Reserved Area

Screen Memory

(5] COMPARISON OF INTERNAL AND EXTERNAL FORMS OF A BASIC PROGRAM

SOURCE CODE INTERNAL FORMAT

10 PRINT"HELL0"

20 X»3+2

30 Y»3*2

40 PRINT X,Y

50 PRINT"G000BYE"

0400 00 0E 0A 00 99 22 .48

0408 45 4C 4C 4F 22 00 18 04

0410 14 00 58 B2 33 AA 32 00

0418 22 04 IE 00 59 B2 33 AC

0420 32 00 2C 04 28 00 99 20

0428 58 2C 59 00 38 04 32 00

0430 99 22 47 4F 4F 44 42 59

0438 45 22 00 00 00 AA AA AA

(C] MEMORY MAP FOR A TYPICAL LOADER

RAM ROM

8

FIGURE 7 BASIC SOURCE CODE LOADER WRITTEN IN ASSEMBLER

0001 0000
0002 0000 •TAPE .OADER PROGRAM
0003 0000
0004 0000
0005 0000 TAPERD=$F855 TAPE READ ROUTINE
0006 0000 DEVICE=$D4 INPUT DEVICE NUMBER
0007 0000 BASBUF=$0200 BASIC BUFFER
0008 0000 BUFFER=$027A TAPE BUFFER
0009 0000 NEWSYS=$C55D PERFORM "NEW"
0010 0000 CHRGET=$0070 LINE FETCH ROUTINE
0011 0000 0SC0DE=$C3AB START OF CODE TO BE COPIED
0012 0000 BASIC=$C389 BACK TO BASIC
0013 0000 *=$7E00
0014 7E00 AO 00 START LDY no
0015 7E02 B9 AB C3 COPY LDA OSCODE.Y COPY OS CODE
0016 7E05 99 50 7E STA INSERT,Y INTO THIS PROGRAM
0017 7E08 C8 INY
0018 7E09 CC FE 7E CPY NUM ALL DONE?
0019 7E0C DO F4 BNE COPY NO - GET SOME MORE
0020 7E0E 20 5D C5 STEP! JSR NEWSYS INITIALISE SYSTEM
0021 7E11 20 FO 7E JSR TPREAD READ A TAPE BLOCK
0022 7E14 20 FO 7E JSR TPREAD READ A TAPE BLOCK
0023 7E17 A2 00 LDX #$0 INITIALISE X-REGISTER
0024 7E19 A0 01 LDY #$1 INITIALISE Y-REGISTER
0025 7E1B B9 7A 02 STEP2 LDA BUFFER,Y GET A CHARACTER FROM TAPE BUFFER
0026 7E1E C9 OD CMP #$0D IS JT END OF LINE?
0027 7E20 *

0028 7E20 F0 IB STEP3 BEQ STEP6 YES
0029 7E22 C9 00 CMP #$00 IS IT END OF FILE?
0030 7E24 DO 03 STEP4 BNE STEP5 NO
0031 7E26 4C EC 7E JMP STEP8 YES
0032 7E29 9D 00 02 STEP5 STA BASBUF.X STORE IN BASIC BUFFER
0033 7E2C E8 INX INCREMENT X-REGISTER
0034 7E2D C8 LY INY INCREMENT Y-REGISTER
0035 7E2E CO CO CPY #$C0 END OF DATA BLOCK?
0036 7E30 F0 03 BEQ GBLOCK YES - GO GET ANOTHER
0037 7E32 4C IB 7E JMP STEP2 NO - GO GET NEXT CHARACTER
0038 7E35 20 FO 7E GBLOCK JSR TPREAD GET ANOTHER BLOCK
0039 7E38 AO 01 LDY #$1 INITIALISE COUNT
0040 7E3A 4C IB 7E JMP STEP2 RETURN TO MAIN LOOP
0041 7E3D A9 00 STEP6 LDA #$00 PUT EOL INTO BASIC
0042 7E3F 9D 00 02 STA BASBUF.X BUFFER AREA
0043 7E42 A2 FF LDX #$FF SET UP POINTERS TO THE
0044 7E44 86 77 STX $77 ADDRESS OF BASIC
0045 7E46 A2 01 LDX #$01 SOURCE TO BE PROCESSED
0046 7E48 86 78 STX $78
0047 7E4A 8C 00 7F STY YIND SAVE CONTENTS OF Y-REGISTER
0048 7E4D 20 70 00 STEP7 JSR CHRGET INVOKE CHRGET ROUTINE
0049 7E50 INSERT TOKENISE STATEMENT
0050 7E50 *=*+$94 AND INSERT RESULT INTO
0051 7EE4 BASIC PROGRAM AREA
0052 7EE4 GET READY TO GO BACK AND
0053 7EE4 PROCESS NEXT STATEMENT
0054 7EE4 AC 00 7F LDY YIND RESTORE Y-REGISTER
0055 7EE7 A2 00 LDX #$0 INITIALISE X-REGISTER
0056 7EE9 4C 2D 7E JMP LY GO BACK TO MAIN LOOP
0057 7EEC EA STEP8 NOP END OF FILE
0058 7EED 4C 89 C3 JMP BASIC RETURN TO BASIC
0059 7EF0
0060 7EF0 ROUTINE TO READ A TAPE BLOCK
0061 7EF0
0062 7EF0 AO 01 TPREAD LDY #$1 LOAD INPUT DEV
0063 7EF2 84 D4 STY DEVICE PASS TO OPSYS
0064 7EF4 8E FF 7E STX XIND SAVE X-REGISTER
0065 7EF7 20 55 F8 JSR TAPERD READ A TAPE BLOCK
0066 7EFA AE FF 7E LDX XIND RESTORE X-REGISTER
0067 7EFD 60 RTS RETURN TO CALLER
0068 7EFE
0069 7EFE DATA STORAGE AREAS
0070 7EFE
0071 7EFE 94 NUM .BYTE $94 NUMBER OF BYTES TO COPY
0072 7EFF 00 XIND .BYTE 0 PLACE FOR X-REGISTER
0073 7FOO 00 YIND .BYTE 0 PLACE FOR Y-REGISTER
0074 7F01 .END

9

companying this, in figure 8, is a
complementary data flow diagram.

When invoked the initialisation
code copies $94 bytes (starting from
$C34B) down to the vacant slot
previously reserved for it by suitable
manipulation of the assembler loca
tion counter. As soon as this has been
completed the loading operation
starts. The program depends upon a
subroutine called TPREAD to
transfer a block of data from cassette
into its associated buffer area. In turn,
this routine calls the operating system
utility code commencing at $F855.
Characters are then copied one at a
time from the tape buffer ($027A)
across to the BASIC input buffer
($0200 - $0250) using the Y- and
X-registers, respectively, as pointers
in indexed load and store operations.
Each time an end-of-line character
($OD) is encountered in the input
stream (IN CHA R) an end-of-
statement marker ($0 0) is sent to the
output stream (OUTCHAR) for

placement in the BASIC buffer.
Subsequently, at step 6, the pointers at
$77 and $78 are set up so that they
point to the memory area containing
the new statement. A subroutine call
to the operating system utility
CHRGET routine has been printed
essentially a line fetch routine that
sets up the next basic statement for
processing. Its detailed mode of
operation is described elsewhere
(Ham80, Doy80a, Doy80b). Once the
CHRGET routine hasy been primed
the code for tokenising/inserting the
new line into the BASIC program
area can commence execution. Fur
ther source statements are then pro
cessed one at a time until an end-of-
file code ($00 for tape files) detected
on INCHAR terminates the loading
process and passes control back to
BASIC direct command mode with
the prompt “READY” .

A major disadvantage of the loader
shown in figure 7 is its lack of identity
checking. Inherent in the program is

the assumption that the tape will be
positioned at the point from which
loading is to commence; the first
(program identity) block is then skip
ped over. If it was necessary it would
be a simple matter to replace the first
reference to TPREAD (line 21) by a
call to a subroutine that provides a
better user interface. This could be
designed in such a way that it inter
rogates the user in order to ascertain
the name of the file to be loaded and
then, automatically, positions the
tape ready for loading. A routine of
this type is, of course, a necessity for
the version of the loader used to han
dle source programs that are resident
on disk (Bar81d).

It is interesting to compare the load
times of BASIC programs in their dif
ferent formats. In order to do this a
19 Kbyte program was transmitted
over the PSN and stored on cassette
tape. This was then loaded into
memory using the tape loader and its
load time was recorded. The loaded
program was then SAVEd (in
memory image format) onto cassette
tape and reloaded using a LOAD
command. As might be expected the
latter process is much faster (by factor
of about 2.9) than source code
loading. However, in view of the fact
that programs in source form are
more easily exhanged than their
equivalent machine code versions, the
overhead is an acceptable one.

Analogous programs exist to enable
the loading of source programs from
flexible disk (DKREAD in figure 8).
These embody the same princliples as
the tape loader but, as might be an
ticipated, are much faster in opera
tion. Details of these are given
elsewhere (Bar81d).

The program illustrated in figure 7
is assembled to reside in a section of
the available RAM area of the
microcomputer. This means that the
amount of storage available for
loading BASIC programs is less than
might normally be the case. Should
the need arise, this limitation may
easily be overcome by utilising the ex
pansion ROM sockets of the PET. It
is a simple matter to re-assemble the
loader program so that it resides in a
w rite-enab led IR O M m odule
(Bar81e) located a base address
$9000. All demands of the loader for
BASIC RAM can thus be totally
removed.

FIGURE 8 DATA FLOW DIAGRAM FOR SOURCE CODE LOADER

REMOTE COMPUTER

10

C onclusion
The fundamental nature of a com

puter based communication system
has been described. Currently, three
broad approaches to data and pro
gram distribution are being actively
investigated: broadcast teletext,
viewdata systems and distributed
computing networks. Of these, only
the latter provides true bi-directional
information exchange mechanisms to
be implemented. Such systems thus
have significant potential for program
exchange between users of personal
computers. As those in the public sec
tor gain easier access to appropriate

communication systems (such as PSS
and IPSS) program interchange (par
ticu larly betw een educational
establishments) should become much

easier. The nature of the software
necessary to achieve source program
exchange has been described by
means of an appropriate illustration.

Start of a new
training course
with M ike
Gross-Niklaus!

R eferences

Bal76 Ball, J.E., Feldman, J., Low, J.R., Rashid, R.
and Rovner, P., RIG: Rochester’s Intelligent
Gateway: System Overview, IEEE Transac
tions on Software Engineering, SE-2, 4,
321-328, December 1976.

Bal80 Ball, A.J.S., Bochman, G.V. and Gecsei, J.,
Videotex Networks, IEEE COMPUTER,
volume 13, No 12, 8-13, December 1980.

Bar81a Barker, P.G., Using a Microcomputer as
an Interactive Terminal, Interactive
Systems Research Group Working Paper,
April 1981.

Bar81b Barker, P.G., Using the PET as an In
teractive Terminal, Interactive Systems
Research Group Working Paper, June 1981.

Bar81c Barker, P.G., Algorithms For Intelligent
Terminal Operation, Interactive Systems
Research Group Working Paper, July 1981.

Bar81d Barker, P.G., Program Transfer via the
Public Switched Network, Interactive
Systems Research Group Working Paper, Ju
ly 1981.

Bar81e Barker, P.G., Experiments with IROM
and EPROM, Interactive Systems Research
Group Working Paper, October, 1981.

B008I Bootstrap Ltd., 9 George Ave., Blackrock,
Co. Dublin, Ireland, The V-Series Report
-Stardards for Data Transmission by
Telephone, ISBN: 0-9507550-0-1, 1981.

Cam81 Campbell, G., The Commodore 8010
Modem, CPUCN, Volume 3, Issue 6, page
18, July 1981.

CET81 Council for Educational Technology, Paper
CID 81.2, Technical Developments Pro
gramme - Telesoftware Project. 1981.

Can80 Cannon, D.L. and Luecke, G., Understan
ding Communications Systems, Radio
Shack, ISBN: 0-89512-035-6, 1980.

Dav73 Davies, D.W. and Barber D.L.A, Com
munication Networks for Computers, -
John Wiley & Sons, ISBN: 0-471-19874-9,
1973.

Don81 Conahue C.S. and Osborne, A., PET/CBM
Personal Computer Guide,
Osborne/McGraw-Hill, ISBN: 0-931988-55-1,
340-341, 1981.

Doy80a Doyle, D., Dimp: A Machine Language
Routine for the PET to Handle Algebraic in
put, CPUCN, Volume 2, Issue 8, 19-20,
1980.

Doy80b Doyle, D., Dimp Revisited, CPUCN,
Volume 3, Issue 2, page 31, 1980.

Ens78 Enslow, P.H., What is a “Distributed” Pro
cessing System?, IEEE COMPUTER,
Volume 11, No. 1, 13-21, January 1978.

Ham80 Hampshire, N., The PET Revealed, Com-
putabits Ltd., 77-78, 1980.

Hay81 Hayman, M., Brighton Project sets out on
the Micro Road, PRACTICAL COM
PUTING, Volume 4, Issue 8, 75-76 August
1981.

Hig75 Higginson, P.L. and Hinchley, A.J., The
Problems of Linking Several Networks with
a Gateway Computer, 453-465 in
Proc. of the European Computing Con
ference on Communications Networks.
Online Conferences Ltd., Uxbridge, UK,
ISBN: 0-903796-05-8, 1975.

HLP81 High Level Protocol Group, Data Com
munication Protocols Unit, National Physical
Laboratory, Teddington, Middlesex, TW11
OLW, A Network Independent File
Transfer Protocol, February 1981.

IEE80 Institute of Electrical and Electronic
Engineers Inc., Supersystems for the 80’s,
IEEE COMPUTER, Volume 13, No. 11,
November 1980.

Sch80 Schwartz, J.T., Ultracomputers, ACM
Transactions on Programming
Languages and Systems, Volume 2, No. 4,
484-421, October 1980.

Wal75 Walden, D.C. and Rettberg, R.D., Gateway
Design for Computer Network Interconnec
tions, 113-128 in Proc. Of the European
Computing Conference on Communica
tions Networks, Online Conferences Ltd.,
Uxbridge, UK, ISBN: 0-903796-05-8, 1975.

The ‘how-to’ magazine all about
Commodore’s VIC computer

VIC Computing is a great new magazine for users of the VIC.
Each issue is packed with valuable programming hints, software
reviews, ‘how-to’ articles and program listings.

You don’t have to be an expert to enjoy VIC Computing. It is
written in straightforward English for beginners - not computer
experts.

Features in the first colour packed issue included: “Anyone can
Program”, an article to teach you to program in one hour; “But
What Can It Do?”, an introduction to VIC’s capabilities;
“Expansion of the VIC", a guided tour of its add-on capabilities;
“Using Graphics” covering programming in colour; “Converting
Software for VIC” - how to convert PET programs; “VIC Sound”,
data sheet on sound generation; plus “Dear VIC”, “Beginners
Queries” and “VIC hints” .

It costs just £6 a year to subscribe to VIC Computing. Can you
afford not to?

i

To: Printout Publications, PO Box 48, Newbury RG16 OBD
I

Please enter my subscription to VIC Computing.
I enclose a cheque/Postal Order for [] £6 UK [] EIR8.50 Eire
[] £9 Europe [] $20 USA Surface [] $30 USA Air i
[] £9 Rest of World Surface [] £16 Rest of World Air
or Charge my Access/Mastercharge/Eurocard or Barclaycard/Visa card
N o :....................................... i

I
NAME: .. [

I
ADDRESS: .. '

KARSSEMEYER.
Electronic mail, Library for up/down
loading, Shopping list
System hours Tues to Sat 6.00 pm to
7.00 am
from 6.00 pm Sat to 7.00 am Tues

5)CBBS LONDON tel: 01-399 2136
System o p e ra to r P E T E R
GOLDMANN.
Electronic, mail, L ibrary for
downloading. Peter says more
features will be added when time
allows.
System hours
Wed 7.00 am to 9.00 am

7.00 pm to 10.00 pm
Fri 7.00 pm to 10.00 pm
Sun 4.00 pm to 10.00 pm
To any person or group wishing to
run or write a bulletin board pro
gram. In order to keep all computer
bulletin boards compatable com
mands and terminal software write
for details of controls, codes etc used
in the above systems and most
systems in the United States.
To
Frederick Brown.
421 Endike Lane.
HULL HU6-8AG.

A Concurrent Clock for the PET V.P. Cheah

This is the realization of one of those ‘Wouldn’t it be nice if . . .”
dreams. It is an online digital clock (from now on called klock) which
can be used concurrently with any Basic or Assembler program
which does not alter the IRQ vector in zero page. If the IRQ vector
has to be altered (eg to disable RUN/STOP) then some modifications
will have to be made.

Our reason for writing klock may
sound peculiar to some: neither of us
are watch wearers and have to rely on
either the large digital clock supplied
by the Birmingham Post, which is
visible from most of Birmingham (ex
cept our terminal room) or on other
people in the room. This soon got the
better of us as we often missed the im
portant issues of the day (eg lunch,
opening times etc.) when were at the
terminals. One day, someone said
“Wouldn’t it be nice if the PETs had
online clocks like the ICL” . That was
when everything started ticking.

The algorithm used by klock is sim
ple. On every 30th IRQ, the jiffy
count is converted into hours,
minutes and seconds. This is in turn
converted into its display equivalent
in screen memory and punched
directly onto the screen. Although
this does not cause ‘snow’ to fall on
the 30XX and 80XX series machines,
it may do so on the 20XX series
machines. For minute details please
refer to the program listing.

On the 80 column PET, klock is
displayed on the top line. On the 40
column PET, it is displayed on the
second line. The reason for this will
become apparent if CLEAR and
HOME are used frequently. If the
display were on the first line, the cur
sor would have to be moved down by
one line everytime otherwise a syntax
error would result. Somehow this
never becomes second nature: in fact
it gets rather annoying after a while.

There are two routines (DIVIDE
and BINBCD) which could be made
more efficient (either in space or in
time) but being hard pressed
postgraduates with little time to
spare, we have not done anything
about it. DIVIDE divides a three byte
number by 60. BINBCD converts a
binary number in the range 0 to 59 to
Binary Coded Decimal (BCD for
those who only recognise short
forms). This is equivalent to the DAA
instruction on the 808X and 680X
microprocessors. The program is fair

ly small (248 bytes); it may have to be
modified for the ever growing range
of CBM machines.

Klock given in the program listing
was written for the CBM 8032.
Assuming that you have typed in the
program correctly, all you have to do
to get it to execute concurrently with
another program is given below:
POKE 52,0:POKE53,120:CLR
SYS machine language monitor

. L “O:KLOCK”,80

. X
Load your program
SYS clock on
RUN

If klock in the given listing is im
plemented, it may be enabled by SYS
30729 and disabled by SYS30736. It
should be disabled before loading any
programs. If you forget, the machine
will hang. If this happens, all you
have to do is to hit RUN/STOP.
Klock will stop ticking but the whole
program will be in core.

Finally, we’ve found klock so useful
that we have ‘engraved’ it in ROM on
one of our machines.

,PAGE 0001

LINE£ LOG CODE

0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0000

0012 0000
0013 0000
0014 0000
0015 0000
00 1 6 7300
001 7 7800
0013 7801

0020 7801
0021 7801
0022 7804
0023
0024 7803
0025 7808
0026 7308
0027 7809
0023

0030 7809
0031 7809
0032 7809
0033 7809
0034 730'~/
0035 730'r/
0036 7309 73
0037 780A A* 55
0038 730C A2 E4
0039 7S0E DO 05
0040 7810
0041 7810 73
0042 7311 A 9 20
0043 7813 A 2 73
0044 7815 .-.er 90
0045 73 1 7 36 91
0046 7819 AO IE
0047 73 IB SC 00
0043 78 IE 5:3
0049 73 IF 60

: K'LOCI
: KLOCI

»S»W"
> Si W"

STARTED:
UPDATED:

10/04/31j
13/04/81*

CUP
CUP

PURPOSE: RUN r
THIS
VECTQI
EVERY

CLOCK CONCURRENTLY WITH BASIC
IS DONE BY ALTERING THE INTERRL
R. THE CLOCK IS UPDATED AFTE.p

TH INTERRUPT.

*= $7300
CLOCK = 141 ■JIFFY COUNTER
CNTDWN *= *+1 COUNTDOWN
DISPOS = $8000+56 DISPLAY POSITION
HI = 1 THE HIGH BYTE
INTVEC = 144 INTERRUPT VECTOR
OF'ND *= *+3
REM *= *+1
RSLT *= *+3
RVS = *80 REVERSE FIELD
STDINT = $E455 STANDARD 30XX INTE
STOX *+1 TEMPORARY VALUE OF
TOPSCR - 224 TOP OF SCREEN
ZERO = $30 ZERO IN ASCII

PUR -'OSE: INITIAL ZE OR CANCEL CLOCK
; BY ALTEF:ING THE INTERRUPT V

INF JT : CHKTIMi STDINT
OUT =MJT : INTVEC

CLKOFF = *
SEI CLOCK OFF
LDA £ STDINT
LDX £' STDINT
BNE SETVEC

CLK'ON = *
SEI CLOCK ON
LDA £ CHKTIM
LDX £>CHK.T IM

SETVEC STA INTVEC SET INTERRUPT VEC'T
STX H C m + JC

LDY £30 ; SET COUNTDOWN
STY CNTDWN
CL I
RTS

18

0 : K L O C K * ■ ■ ■ . . P A G E 0 0 0 2

L I N E £ L DC C O D E L I N E

0 0 5 1 -J 5 2 0 P U R P O S E : C H E C K IF IT I S T I M E T O A L T E R T H E
0 0 5 2 7 3 2 0 D I S P L A Y I F I T IS, T H E N C O N V E R T T H E
0 0 5 3 7 3 2 0 J I F F I E S I N T O H O U R S , M I N U T E S A N D
0 0 5 4 - r 3 2 0 S E C O N D S O T H E R W S E J U S T C A R R Y O N W I T H
0 0 5 5 ~r 3 2 0 T H E S T A N D A R D I N T E R R U P T . T H E C L O C K
0 0 5 6 7 3 2 0 I S U P D A T E D E V E R Y H A L F S E C O N D .
0 0 5 7 7 3 2 0 I N P U T : C L O C K , 3 0 R F A C
0 0 5 8 7 3 2 0 O U T P U T : -
0 0 5 9 7 3 2 0 U S E : OF'ND i R E M , R S L T
0 0 6 0 7 3 2 0 C A L L S : B I N B C D . C L E A R , D I V I D E , S T D I N T

“7v U O I / (.j r

0 0 6 2 7 3 2 0 C H K T I M = *

0 0 6 3 7 3 2 0 C E 0 0 7 8 D E C C N T D W N ; T I M E T O U P D A T E ?
0 0 6 4 7 3 2 3 D O 2 A B N E G O I N T
0 0 6 5 / 3 2 5 A 9 IE L D A £ 3 0 ; R E S E T C O U N T D O W N
0 0 6 6 7 3 2 7 8 D 0 0 7 0 S T A C N T D W N
0 0 6 7 7 3 2 A D 8 C L D
0 0 6 8 7 3 2 B A 2 0 2 L D X £ 2 ; T R A N S F E R J I F F I E S T O W O R K S P A C E
0 0 6 9 7 3 2 D E 5 8 D X F E R L D A C L O C K , X
0 0 7 0 7 3 2 F 9 D 01 7 8 S T A OF'ND, X
0 0 7 1 7 3 3 2 C A D E X
0 0 7 2 7 3 3 3 10 F 8 B P L X F E R
0 0 7 3 7 3 3 5 A 2 0 0 L D X £ 0 ; C O N V E R T J I F F I E S T O H M S
0 0 7 4 7 3 3 7 2 0 6 o' 7 8 J S R C L E A R
0 0 7 5 7 3 3 A A 2 0 7 L D X £ 7
0 0 7 6 7 3 3 C 2 0 5 6 7 8 J S R D I V I D E
0 0 7 7 7 3 3 F A 2 0 4 L D X £ 4
0 0 7 8 7 341 2 0 5 6 7 8 J S R D I V I D E
0 0 7 9 7 3 4 4 A D 0 7 7 8 L D A R S L T + 2
0 0 8 0 -7 3 4 7 8 D 0 4 7 8 S T A R E M
0 0 8 1 ~T/ 3 4 A A 2 01 L D X £1
0 0 8 2 7 3 4 C 2 0 Cl 7 8 J S R B I N B C D
0 0 8 3 / 3 4 F A 9 01 G O I N T L D A £1 ; C L O B B E R T O P O F S C R E E N W I T H
0 0 8 4 -T

/ 351 C'ET E O S T A TOF ' S C R ; E N S U R E C L O C K I S N O T C L E A R E D
0 0 8 5 7 3 5 3 4 C 5 5 E 4 J M P S T D I N T ; C O N T W I T H S T D I N T E R R U P T

0 0 8 7
7"‘S/'i P U R P O S E : D I V I D E R S L T B Y 6 0 : I N I T I A L L Y R S L T I S

0 0 8 8 7 3 5 6 ; S H I F T E D I N T O OF'ND. T H E R E M A I N D E R I S
0 0 8 9 7 3 5 6 ; IN REM. T H I S R O U T I N E F A L L S I N T O B I N B C D .
0 0 9 0 7 3 5 6 ; I N P U T : X C F ' R I N T I N T P O S I T I O N]
0 0 9 1 T 3 5 6 ; O U T P U T : R E M
0 0 9 2 7 3 5 6 ; U S E : OF'ND, R:3 L T
0 0 9 3 7 3 5 6

cr
j C A L L S : -

0 0 9 5
/
3 5 6 D I V I D E = *

0 0 9 6 7 r.cr̂ i A D 0 7 7 a L D A R S L T + 2 X F E R R E S U L T T O OF'ND
0 0 9 7 7 3 5 9 8 D 0 3 7 8 S T A OF'ND+ 2
0 0 9 8 / 3 5 C A D 0 6 7 8 L D A R S L T + l
0 0 9 9 7 35 F 8 D 0 2 7 8 S T A O P N D + 1
0 1 0 0 7 3 6 2 A D 0 5 7 a L D A R S L T
0 1 0 1 *7 “165 3 D 01 -T i- i

/ o S T A OF'ND
0 1 0 2 7 3 6 8 A 9 0 0 C L E A R L D A £ 0 C L E A R R S L T & R E M A I N D E R
0 1 0 3 7 3 6 A 8 D 0 4 7 8 S T A ‘R E M

0: K L O C :K P A G E 0 0 0 3

L I N E £ L O G C O D E L I N E

0 1 0 4 7 3 6 D 8 D 0 5 7 8 S T A R S L T
0 1 0 5 7 3 7 0 8 D 0 6 j S T A R S L T + l
0 1 0 6 ■73 7 3 8 D 0 7 7 8 S T A R S L T + 2
0 1 0 7 7 3 7 6 A D 01 7 8 L D A OF'ND ; F I N D N O O F B I T S I N D I V I D E N D
0 1 0 8 7 3 7 9 F O 0 4 B E Q B I T 1 6
0 1 0 9 7 3 7 E A O I S L D Y £ 2 4
0 1 1 0 7 3 7 D D O 1 C B N E S H I F T
0 1 11 7 3 7 F A D 0 2 7 8 B I T 1 6 L D A OF'ND+1
0 1 1 2 7 F O O D B E Q B I T S
0 1 1 3 7 3 8 4 8 D 01 7 o S T A OF'ND
0 1 1 4 -7/ 3 8 7 A D 0 3 7 a L D A O F'ND+2
0 1 1 5 7 3 8 A 8 D 0 2 7 8 S T A OF'ND+1
0 1 1 6 7 3 8 D A O 10 L D Y £ 1 6
0 1 1 7 7 3 8 F D O O A B N E S H I F T
0 1 1 8 7 3 9 1 A D 0 3 7 8 BITS' L D A OF' N D + 2
01 1 9 7 3 9 4 F O 2 8 B E Q D I S R Q D
0 1 2 0 7 3 9 6 3 D 01 / a; S T A OF'ND
0 1 2 1 7 3 9 9 A O O S L D Y £ 8

/ 3 9 B O E 0 3 7 8 S H I F T A S L O P N D + 2 ; S H I F T OF'ND

19

0 1 --' 7 8 9 E 2 E 0 2 -7.-. R U L U P N D + 1
0 1 2 4 7 3 A 1 2 E 0 1 7 8 R O L OF'ND
0 1 2 5 7 S A 4 2 E 0 4 7 j—i R O L R E M
0 1 2 6 7 3 A 7 2 E 0 6 7 8 R O L R S L T + l
0 1 2 7 7 3 A A 2 E 0 5 7 8 R O L R S L T
0 1 2 3 7 3 A D 3 8 S E C ' C H E C K I F > 6 0
0 1 2 9 7 3 A E A D 0 4 ~7l-i/ o L D A R E M
0 1 3 0 7 3 El E 9 3 C S E C £ 6 0
0 1 3 1 7 3 B 3 9 0 0 6 B C C N E X B I T
0 1 3 2 ~T

/ 3 B 5 3 D 0 4 *7i"i/ o S T A R E M
0 1 3 3 ~ f

/ 3 B 8 E E 0 7 7 8 I N C R S L T + 2
0 1 3 4 / 3 B B !-!!-! N E X B I T D E Y
0 1 3 5 7 S E C D O D D B N E S H I F T
0 1 3 6 / S E E S A D I S R Q D T X A ’ D I S P L A Y R E Q U I R E D ?
0 1 3 7 3 E F F O 2 9 B E Q E N D D I S

0 1 3 9 7 8 C l P U R P O S E : C O N V E R T A B I N A R Y N U M B E R T O T W O D E C I M A L
0 1 4 0 7 S C I N U M B E R S I N A S C I I F O R M .
0 1 4 1 7 SC 1 I N P U T : R E M) R V b i Z E R U ? X CF'KINT F'L-^ITIuNJ
0 1 4 2 7 S C 1: O U T P U T : D I SF'OS
0 1 4 3 7 S C I U S E : S T O X
0 1 4 4 7 S C 1 C A L L S : -
0 1 4-1 / C"_- i
0 1 4 6 7 3 C 1 B I N B C D = *
0 1 4 7 7 S C I : •8 E 0 8 7 8 S T X S T O X ! F I N D M S A N D L S
0 1 4 8 7 S C 4 A O 0 0 L D Y £ 0 : N I B B L E S O F B C D N O
0 1 4 9 7 3 C 6 A D 0 4 7 8 L D A R E M

0 : K L O C k . P f G E 0 0 0 4

L I N E £ L O C C O D E L I N E

0 1 5 1 7 3 C 9 '
0 1 5 2 7 S C 9 T H I S I S S I M I L A R T O T H E D A A I N S T R U C T I O N O N T H E
0 1 5 3 - j 3 C 9 I N T E L 8 0 8 X A N D T H E M O T O R O L A 6 SOX.

0 1 5 4 —r
/ 3 C 9

0 1 5 5 7 3 C 9 3 8 S U B 1 0 S E C
0 1 5 6 7 S C A A A T A X
0 1 5 7 7 3 C E E ? O A S B C £ 1 0
0 1 5 3 7 3 C D 9 0 0 3 B C C C O N V L S
0 1 5 9 ~T/ 3 C F c s I N Y
0 1 6 0 7 S D O D O F 7 B N E S U E 1 0
0 1 6 1 7 3 D 2
0 1 6 2 7 3 D 2 C O N V E R T T O A S C I I . F O R S O M E O D D R E A S O N T H E

0 1 6 3 7 3 D 2 C B M A S S E M B L E R D O E S N O T L I K E E X P R E S S I O N S
0 1 6 4 7 3 D 2 C O N T A I N I N G A S C I I L I T E R A L S
0 1 6 5 7 3 D 2
0 1 6 6 7 3 D 2 E . G . L D A £ R V S + ’ :
0 1 6 7 7 3 D 2
0 1 6 3 7 3 D 2 N O E R R O R S A R E F L A G G E D B U T T H E Y A S S E M B L E I N C O R R E C T L Y
0 1 6 9 7 3 D 2
0 1 7 0 7 3 D 2 S A !X i N V L S T X A ; L S B Y T E
0 1 7 1 -r/ 3 D 3 0 9 B O O R A £ R V S + Z E R u
0 1 7 2 7 S D 5 A E 0 8 -7.-1 L D X S T O X
0 1 7 3 7 3 D o 9 D 3 8 8 0 S T A D I S P O S i X
0 1 7 4 7 3 D B C A D E X
0 1 7 5 7 3 D C 9;=; T Y A ! M S B Y T E
017-i 7 3 D D 0 9 B O O R A £ R V S + Z E R U
0 1 7 7 T/ S D F 9 D 3 8 S O S T A D I S P O S i X
0 1 7 8 7 :'E2 C A D E X
0 1 7 9 7 3 0 0 5 B M I E N D D I S
0 1 3 0 7 3 E 5 A 9 B A L D A £ R V o + S o A " S E F ' A R A T U R f.: 1

0 1 8 1 7 3 E 7 9 D 3 8 8 0 S T A D I S P O S i X
0 1 8 2 / S E A 6 0 E N D D I S R T S
0 1 8 3 7S E E . E N D

E R R O R S = 0 0 0 0

S Y M B O L T A B L E

S Y M B O L V A L U E
B I N B C D T;- Cl B I T 1 6 7 3 7 F B I T S 7 8 9 1 C H K T I M 7 8 2 0
C L E A R / c 6 8 C L K O F F 7 8 0 9 C L K O N 7 8 1 0 C L O C K 0 0 8 D
C N T D W N 7£ 0 0 C O N V L S 7 S D 2 DI S F 'O S 8 0 3 S D I S R Q D 7 S E E
D I V I D E 7 8 CT E N D D I S 7 S E A G O I N T 7 8 4 F H I 0 0 0 1
I N T V E C OC 9 0 N E X B I T 7 8 B E OF'ND 7 8 0 1 R E M 7 8 0 4
R S L T 7 ;- 0 5 R V S 0 0 8 0 S E T V E C 7 8 1 5 S H I F T 7 S 9 B
S T D I N T E 4 ejcr S T O X 7 8 0 8 S U B 1 0 7 3 C 9 T O P S C R O O E O
X F E R 7S 2 D Z E R O 0 0 3 0

E N D O F !V3SEMBL'!

20

ADD TO YOUR &A?
COMMODORE COMPUTER

PO W ER produces a d ram atic im provem ent in the ease of p rog ram
ming BASIC on C om m odore com puters. PO W ER is a p rogram m er's
u tility package (in a 4K ROM) that contains a series of new com m ands
and utilities w hich are added to the Screen Editor and the BASIC In ter
preter. Designed for the CBM BASIC user, PO W ER contains special
editing, p rogram m ing, and softw are debugging tools no t found in any
o ther m icrocom puter BASIC. POW ER is easy to use and is sold com
plete w ith a full op era to r's m anual w ritten by Jim Butterfield.

POW ER'S special keyboard instant action ' features and additional
com m ands m ake up for, and go beyond the lim itations of CBM
BASIC. The added features include au to line num bering, com plete
tracing functions, single stepping th rough program s, line renum ber
ing, and defin ition of keys as BASIC keyw ords. POW ER'S 'W HY'
com m and enhances debugging by listing the ap p ro p ria te p rog ram line
and highlighting w here BASIC stopped executing. The cursor m ove
m ent keys are enhanced by the add ition of auto-repeat, and text
search and replace functions are added to help ease program m odifica
tion. PO W ER can even execute a sequential tape o r disk file as though

it w ere typed on the keyboard , a llow ing the user to m erge tw o BASIC
program s together. C urso r UP and C urso r D O W N produce previous
and next lines of source code. COM PLETE BASIC PR O G R A M
listings in m em ory can be d isplayed on the screen and scrolled in
either d irection . You can even add y o u r ow n com m ands to BASIC.
Like our very successful W ord Processing P rogram s (the "W ordP ro"
series), PO W ER even includes convenient "stick-on" keycap labels
w hich define new functions on the keyboard . POW ER is a m ust for
every dedicated CBM user.

Call us today, for the name of the Professional Software dealer nearest
you.

Professional Software, Ltd.
153 High Street
Potters Bar
Hertfordshire EN6 5BB
Tel: (STD 0707) 42184 / (STD London 77)

P o w erT M js a registered trademark of Professional Software Inc.

Quotes Test
Dear Sir,

I am writing in response to
an offer in the Editorial of the latest
copy of CPUCN about the “Com
modore Data Entry Environment”
System. I have a small software house
Grove Data Systems providing
custom built programs for PETs and
I feel that standardization is very im
portant. I would be grateful to receive
it.

On a different subject I was very
impressed with the program listing
routine given in the previous
CPUCN.

I have added another few routines
which I have put into it. I enclose the
whole program which you might like
to publish.

I will describe the extras
1) It prints the title and date at the top
of the listing (the title may be dif
ferent from the filename).
2) It pages, printing the page number
and title at the bottom of each page.
In addition it always finishes a pro
gram line before going onto another
page.
3) All cursor controls, clear, home II
etc are printed as CLS RVS

SPC and so on making the listing
much clearer.

The SPC can be a bit over
whelming but it makes it possible to
put in the exact format of say printed
headings.
4) The line numbers are right
justified which looks neater.
5) The “in the left hand side margin
is eliminated by changing CHR$ (34)
to CHR$ (98) before it prints.
6) The problem with most listings is
that anything in “ ” in the program
which is in upper case will appear as
graphics in the listing. There is a
routine unclustered which prints text
as it would appear on the screen. If
the program switches mode, the
listing of the text will change mode.
This makes the listing very readable
and I haven’t seen it done elsewhere.
The default value is graphics mode. I
have included a small demonstration
listing called “Quotes Test” which
show it. In an ordinary listing lines 15
and 25 would appear identical.

I hope this is of interest, as you
mention that you are short of Basic
Programs to include. It could I am
sure be polished up but it does work.

Yours faithfully, Phillip Deakin

PROGRAM NAME • QUOTES TEST DATE 16-03-81

10 P0KE59463, 14
15 OPEN 1,4,1, PR I NT# 1, " CCccflflaa"
20 P0KE59468,12
25 OPEN 1,4,1, PR I NT# 1, CCt*AA"
30 END

QUOTES TEST PAGE 1

PROGRAM NAME ■ PROGRAM L IS T DATE 16-03-81

10000 DIM0P$<75>:SC$="59468
, 1“

10010 PC=1 :LC=0 -LW=3 5 :X=0 :NQ=1 :
OPEN15,8 , 15:0PEN3 ,3 ■E=2 5 6 'QU$
=CHR#<34>:GOTO10040

10020 INPUT#15,ER,B$,TR,SE:1 FSE=0
THENRETURN 10030 PRINTER,B*;TR;SE:GOTO10050 10040 GOSUB19150 10050 IFCH=4THEN10080 10060 PRINT"[CRD][CRB][CRD][CRD]
[CRD][CRR][CRR]C CRR]C CRR]
PRESSCSPC]AHV
CSPC]KEV"

10070 GETA$:IFA$=””THEN 10070
10080 POKE158,0 :END 10090 FOR I =0TO7 5 : READOF'f < I > ■ NEXT '
10100 DATAEND, FOR, NEXT, DAT A, I NF'UT#,

INPUT,DIM,READ,LET,GOTO,RUN,I
F,RESTORE 10110 DATA [SPC]GOSUB,RETURN,REM,STO
P,ON,WAIT,LOAD,SAVE,VERIFV,DE
F,POKE,PRINT#10120 DATA C SPC]PRINT,CONT,LIST,CLR,
CMD,SVS,OPEN,CLOSE,GET,NEW,TA
B <,TO,FN,SPC <,THEN 10130 DATANOT, STEP, +, -, *, /, t, AND, OR
,>,=,<,SGN,INT,AES,USR,FRE,PO
S,SQR,RND,LOG

10140 DATA [SPC]EXP,COS,SIN,TAN,ATN,
PEEK,LEN,STR$,VAL,flSC,CHR#,LE
FT$,RIGHT*,MID$,GO

10150 PRINT"CCLS]LIST":B
=3 0■PRINT"CCRD]CCRD]"10160 CMD3, : INPUT " C CRD 3 t CRD] [CRD]
FILENAME[SPC]
? [SPC]"Ff - F*=LEFT$ < Ft-, 15
> PRINT

10170 CMD3 ,; ■INPUT"C CRD]DRI
VE[SPC]NUMBER
[SPC] ? C SPC]" DHf: I FDN$
<:" 0" ORDNi>" 1 ” GOTO 10170

10180 PRINT:0PEH2 ,8 ,0 ,DH$+":" F*
I", F'RG, READ" : UOSUB 100̂ 10 10190 CH=3 :CMD3 , ; - INPUT"[CRD]SC

REEN[SPC]OR C SPC]
PRINTER[SPC]?
[SPC] S [CRL] "; AJ: F'R I NT :
IF A$="P"THENCH=4 10200 PRINT"[CLS]"■OPEN4 ,CH

PROGRAM LIST PAGE 1

2 2

1 0 2 1 0 P R I N T # 4 , C H R $ a 9 >
1 0 2 2 0 G O S U B 1 0 0 9 0
1 0 2 3 0 I F C H = 3 G O T O 1 0 2 9 0
1 0 2 4 0 I N P U T " C C R D 3 W H A T C S P C 3

I S C S P C] T H E C S P C 3
D A T E C S P C 3T Q B A
V [S P C 1 C SPC:] [S P C] C R V S]
D D M M V V [R V F] C C R L]
[C R L 3 C C R L 3 [C R L 3 C C R L 3 C C R L 3
C C R L 3 C C R L 3 " ; D * :X 1 $ = L E F T $ <

1 0 2 5 0 X 2 $ = H I D $ <D * , 3 , 2 > :X 3 * = R I G H T $ <D
$, 2) :D * = " C S P C K S P C 3 C S P C]
D A T E I! S P C] C S P C] " + X -
l * + " - " + X 2 $ + " - " + X 3 $:P R I N T

1 0 2 6 0 P R I N T # 4 :P R I H T # 4
1 0 2 7 0 I N P U T " C C R D 3 C C R D] P R O

G R A M C S P C] N A M E
C S P C] 1 1 P $ ■' P R I N T #4.. " P R O
G R A M C S P C 3 N A M E
c s p c] ■ c s p c 3"; i a:>p

I < 1 2 9 > ; D
10280 PRINT#4: PRIHT#4: F'RINT#4: LC=LC+6
10290 C=2:GOSUB10650
10300 LM=LN = Q=0 = GOSUB10650:IFLN=0

THEHPRINT#4, R* ■ GOSUB10340 •'
CLOSE2-GOTO10050

10310 IFLC<56THEN10370
10320 IFLI=1THEN10370
10330 GOSUB10340:PRINT#4•PRINT#4 = LC

=2:PC-PC+1=GOTO10370
10340 IFCH=3THEN10360
10350 FORZ=1T062-LC•PRINT#4:NEXT;

P R I N T # 4 , S P C (1 8) ; P $: " C S P C] C S P C]
C S P C] [S P C] C S P C] P A G
E C S P C] " ; P C :P R I N T # 4 :
F'R I N T # 4 : P R I N T # 4

1 0 3 7 0 I F L E N < R t - > > L E H < S T R $ C L M) > + 7
T H E N P R I N T # 4 .. R $ ■ L C = L C + 1 L I = 0

1 0 3 8 0 I F L 0 5 6 A N B L I = 0 T H E N G O S U B 1 0 3 4 0 :
F ' R I N T # 4 : P R I N T # 4 = L C = 2 : P C = P C + 1

1 0 3 9 0 G O S U B 1 0 6 5 0 :R $ = R I G H T $ < " C S P C 3
C S P C 3 C S P C 3 C S P C 3 C S P C 3 C S P C 3
C S P C 3 " + S T R * < L N > , 5 > + " C S P C 3
C S P C 3"

1 0 4 0 0 G E T # 2 , A $ =I F S T O 0 T H E N P R I N T C R t ;
E F f ■C L 0 S E 2 :G O T O 1 0 0 5 0

1 0 4 1 0 I F R t = " " T H E H Q = 0 'G O T O 1 0 4 3 0
1 0 4 2 0 G O T O 1 0 4 5 0
1 0 4 3 0 I F A R = 1 T H E H A R = 0
1 0 4 4 0 R O T O 1 0 3 0 0
1 0 4 5 0 I F A f = Q U * T H E N Q = N O T Q
1 0 4 6 0 I F C H = 4 T H E N L W = 7 0
1 0 4 7 0 I F R R = 0 A N D f l S C <fl$) = > 1 2 8 G 0 T 0 1061
1 0 4 8 0 I F R R = 0 A N D A S C < m)= 3 4 T H E N A R = 1 ’

G O T O 1 0 5 5 0

P R O G R A M L I S T P A G E

10490 IFRR=1ANDASC<fit)=34THENRP=0■S
2=0:GOTO10505

10500 IFAR=1ANDASC<A* >=58THENRR=0 = S
Z=0:GOTO10505

10505 IFS2=0THEN10550
10510 IFS2>0fiNDMID*OSC$,S2,1>=A$

THENS2=S2+1

10530 IFS2=8ANDASC(A$)=50THENSX=0•S
V=0:SZ=0:GOTO10550

10540 IFS2=8ANDflSC<A$)=52THENSX=145
:SV=17■SZ=0

10550 GOSUB10730
10560 IFASCCA$O=98THEN10590
10570 IFAR=1ANDASC C Af)<128THENA*=

C H R t <: S V) + A $ + C H R f < S X) : G O T O 1 0 5 9
1 0 5 8 0 I F A R = 1 A N D A S C < A $) > 1 2 8 T H E H A * =

HHR$(SV)+fl$
1 0 5 9 0 R $ = R * + A $: I F L E N < R *) = > L M T H E N

P R I N T # 4 , R $ ■G O S U B 1 0 6 9 0 : L C = L C + 1
1 0 6 0 0 G O T O 1 0 4 0 0
1 0 6 1 0 I F Q O R A S C <A *) > 2 0 3 G O T O 1 0 5 9 0
1 0 6 2 0 A $ = O P $ < A S C < A f > - 1 2 8) = IFA$="F'

O K E " T H E N C S P C 3 S 2 = 1
1 0 6 3 0 I F L E N < R $ + A $) = > L W T H E N P R I H T # 4 , R

* : G O S U B 1 0 6 9 0 :R $ = R * + A $:L C = L C + 1
:L I = 1 :G O T O 1 0 4 0 0

1 0 6 4 0 R $ = R # + A f : G O T O 1 0 4 0 0
1 0 6 5 0 G E T # C , R $ ■ L N = 0 : I F A S O " " T H E N L N

= A S C < A $)
1 0 6 6 0 G E T # C , A $: I F A t O " " T H E N L N = L N + E

^ A S C (A t ’i
1 0 6 7 0 G E T A $: I F A * = " C "G O T O 1 0 0 5 0
1 0 6 9 0 R $ = " C S P C 3 C S P C 3 C S P C 3 C S P C 3

[S P C 3 C S P C 3 C S P C 3 "
1 0 7 0 0 I F N Q = 0 G O T O 1 0 7 2 0
1 0 7 2 0 I F Q T H E N R $ = C H R * (3 4) + L E F T $ < R * ..

L E N (R $) - 1)
1 0 7 3 0 I F R S C C fl$) = 1 9 T H E N A * = " C H M

S 3 "
1 0 7 4 0 I F A S C < fl$) = 1 4 7 T H E N A $ = " C C L

S 3 "
1 0 7 5 0 I F A S C C A *) = 17 T H E N A $ = " C C R

D 3 "
1 0 7 6 0 I F A S C C A $) = 1 8 T H E N f l J = " C R V

S 3 "
1 0 7 7 0 I F A S C < A $)= 2 0 T H E N f l $ = " C D E

L3 "
1 0 7 8 0 I F A S C C A * > = 2 9 T H E N A t = " CCR

R 3 "
1 0 7 9 0 I F A S C < A $) = 1 4 5 T H E N f l # = " C C R

II]"
1 0 8 0 0 I F A S C C A $ > = 1 4 6 T H E N A * = " C R V

F 3 "
1 0 8 1 0 I F A S C <: f t $) ■= 15 7 T H E N A $ = " C C R

L 3 "

P R O G R A M L I S T P A G E 3

10820 IFASC CA$)=222THENA$="CPI
CSPC]]"

10830 IFASC < fi$ >=148THENfl$=“CIN
S] "

10840 IFASC C R $)=32THEHA$="C SP
C3 "

10850 IFASC <At)=34THENA$=CHRfC 98):
IFVC=1THEHVC=0

10860 RETURN

P R O G R A M L I S T P A G E 4

Programming Tips
In the July issue of the newsletter we
published a short machine code pro
gram for helping you recover from
the disasters of typing NEW when
really you knew you shouldn’t have
done. Well, thanks to Mark Hum
phrey, resident genius at Supersoft,
we have a far simpler method. No, it
does not involve reaching for the
nearest bottle of whisky, but rather
the fo llow ing sequence o f
commands:-

BASIC 1 - POKE1026,4:SYS50224
and then RETURN
BASIC 2 - POKE1026,4:SYS50242
and then RETURN
BASIC 4 - POKE 1026,4:SYS46262
and then RETURN

After this I would strongly recom
mend SAVEing (I know it’s not spelt
like that, but the keyword is SAVE
after all) your program, as an attempt
to add lines to that program will

result in some very strange things
happening. However, for those of you
with Basic Aid, Toolkit, or anything
that has a FIND command, we can
get round this, providing that Basic
Aid or whatever is up and running at
the time. After doing the POKE and
SYS commands, type in -
FIND/BANNANAS/
or any other word which is not likely
to occur in the program, and hit
RETURN. Voila! All is now safe.

23

Gentle Adventure

Once upon a time, deep, deep in the
forest, lived a family of Dongles.
They had lived there happily for
generations, secure and peaceful.
Father Dongle, a trader, used to go to
the village to work, and there he
would turn the key of his silicon of
fice and with his office mate settle
down for a good day’s labour. Mother
Dongle used to stay at home looking
after the little Dongles, especially
Graham Dongle, who for a twelve
year old was difficult to monitor.

She would entertain them with all
their favourite stories. Adventures
with the wizzard of ozz were always
the stories they wanted to hear, and
she found it difficult to stop for them,
even to kram some food down them.

Not so father Dongle, who was very
skilled at cracking hidden messages,
and who always went to the village
inn at lunchtime for a pint of Old
Netkit, a renowned local brew. He
was so good at this skill that in the
village he was known as the champion
bar code reader. But he never used to
stop there for long - soon he’d be back
in his office beavering away.

In the evenings the whole family
used to gather round the fire, and the
children would be told stories warn
ing them not to go into the forest at
night. The story that always frighten
ed them the most, and made sure they
didn’t stray far, was about the evil,
corrupt family of Disks who lived in
the heart of the forests where the trees
were densest, and the ferns were pret
ty stupid as well.

At the weekends the whole family
used to go to one of the prettiest spots
in the area. There they would meet
their near neighbours, the Mupets.
Whilst the fathers would find that
there was plenty of rom at the nearby
inn (The Prep and Telex), the little
Dongles and Mupets would happily
play in the nearby river, trying to
avoid being stung by the bees.

And so this happy scene continued
for many weeks, until one day a new
family came to live nearby - once
given the key of their new home, the
‘Data’, the Mafia were ready to move
in!

All the little Dongles and Mupets
were told to stay away from the
Mafia, and this they did. The corrupt
Disks may have been a myth, but the
Mafia were very, very real.

One day, at the height of the sum
mer, Graham Dongle was wandering
alone through the forest, minding his
own business, when who should ap
pear but C.B., the Mafia’s evil
Manager. Graham was frightened at
first, but soon, under the wicked
charm of C.B., he was talking happily
away and the two of them began walk
ing together. Getting ever nearer to
the ‘Data’ as they went, it wasn’t until
they got inside that Graham realised
he’d been kidnapped!

C .B ., th rea ten in g to break
Graham’s legs if he tried to run away,
sent a ransom note to the Dongles.
Father Dongle read it, and the whole
family went into mourning. The note
read “We will return your son, if you
send us 1,000,000 Turnkeys” .

“But I only earn 20 a week” sighed
father.

Mother was distraught. “If only
Supercow were here....”

Meanwhile, in a field not too far
away, a herd of cows was quietly graz
ing on the grass, munching con
tentedly in the sun. One of them, call
ed Clark, was in a particularly good

mood that day. No real reason, but
life was treating Clark well lately.
“It’s a cow’s life” , he mused.

The farmer came rushing into the
field, shouting to one of his hands
“Its the Mafia! They’ve kidnapped
young Graham Dongle!” “ Oh No!”
cried his other hand.

“Hmm”, thought Clark, “sounds
like a case for Supercow. But how can
I get away without anyone noticing ?”
For mild-mannered bovine Clark was
really the astounding Supercow, able
to leap tall barns in a single bound,
more powerful than a combine
harvester, faster than a speeding trac
tor. And then he thought “Easy. All I
need is a telephone kiosk” .

A pparently w ithout concern,
whistling a little tune as he went, he
began strolling over to the edge of the
field, where a rather large telephone
kiosk was situated. Showing suprising
agility for a cow his size he leapt into
the kiosk, only to emerge seconds
later as SUPERCOW, resplendent in
cape and with a large letter ‘S’
emblazoned across his chest.

As he flew over the barn, a group of
cows stared in amazement.
“Is it a wombat ?”
“Is it a flying VIC ?”
“No, it’s Supercow!!!”

Supercow, flying faster than an ex
press dairy, raced to the scene. C.B.
looked in amazement as a cow with a
cape and red underpants burst in
through the door. He fired bullets,
threatened to chop legs off at the
knees, but to no avail. Mighty Super
cow picked up young Graham
Dongle and whisked him back to the
safetly of his family.

“ Thank you Supercow” , said
mother Dongle. “How can we ever
repay you ?”

“No repayment ma’am. Simply
remember what we’re fighting for.
Truth, justice and the arable way of
life” . And with that he was away, and
Graham Dongle had learnt a lesson
he would never forget. A Dongle
should always stay at home.

2 4

P A Y R O L L P LU S £ 1 5 0 + V A T

This must be the finest PLA IN PAPER P A Y R O L L system available for the CBM PET.

It is designed to the Inland Revenue Specifications for Computerised Payroll. The program is very 'user friendly' and
should present no problems even to those who have had no previous computer experience. The manual is written in
simple language and avoids computer jargon.

W O R D F O R M £ 7 5 + V A T

This remarkable M A C H IN E CODE program will solve the problem of the majority of PET owners who desire high-
grade word-processing capability but cannot really justify the usual high prices associated with the better packages.
It will literally perform 90% of the functions of the expensive programs, and it would be rare to require the extra
few functions in actual use.

See them at your approved dealer

Published by L A N D S L E R S O F T W A R E 29a T o lw o rth Park Road, S urb iton , Surrey T e l: 3 9 9 2 4 7 6

PETALECT. An all-round computer service.
P ETA LE C T CO M PU TER S of Woking, Surrey have the experience and
expert capability in all aspects of today's micro-computer and word
processor systems to provide users, first tim e or otherwise, w ith the
Service and A fte r Sales support they need.

COMPUTER REPAIRS AND SERVICE
If you're located w ithin 50 miles of Surrey, P E T A LE C T can
offer FAST, R E L IA B LE Servicing w ith their own team of
highly qualified engineers.
24 hour maintenance contracts available. O ur service contracts
start at around only 10% of your hardware cost per annum
for on-site, or if you bring it to us at our own service dept.,
it costs only £ 2 5 plus parts. Representing real value for money.

MICRO COMPUTER SUPPLIES
P ETA LE C T can supply the great m ajority of essential microcomputer-related
products prom ptly and at really competitive prices. Such items as:—
TAPES* PAPER* FLOPPY DISKS •PROGRAM M ES FOR BUSINESS*SCIENTIFIC OR
RECREATIONAL APPLICATIO N S*M AN UALS*C O M PU TER TABLES*DUST COVERS
RIBBONS *T O O L K ITS *PR IN TER S*E LEC TR O N IC INTERFACES WHICH ARE
PETALECT'S SPECIALITY.
If you want to find out more about what we can and would like to do
for you, why not give us a ring on Woking 6 9 0 3 2 /2 1 7 7 6 .

SHOWROOM
32, Chertsey Road, Woking, Surrey

We're worth getting in touch with.

iPCTALECTi SERVICE DEPT.
33/35 Portugal Road, Woking, i

| COMPUTERS |

NOTES ON 8032 & 12" 4032 Mark Humphrey

The 8032 and the new 12" screen 4032 both have a single chip video controller, this is new to the PET and is
not found on any of the 9" screen machines. This chip completely controls the video display and has 18
registers which control various aspects of the display.

Firstly although the chip has 18 registers it only occupys 2 locations in memory, the first ($E880 Decimal 59520) is
an address register and the second ($E881 Decimal 59521) is the location of the other registers. Each register is address
ed by poking the number of that reigster into the address register, and then that register will ocupy address 59521. Un
fortunately both the address register and the most of the 18 control registers are read only so it is worth remembering
what you poked it with.

Below is a list of all the control registers and their function. To prevent ambiguity I shall explain a few of the terms I
have used. The screen is the physical glass screen. The Frame is the area of screen between the upper and lower edge
and left and right margins which actually displays the picture. The upper and lower edges are the very top and bottom
of the picture. The left and right margins are the extreme left and right edges of the picture, it is however possible to
have the left margin to the right margin. A line as an actual scanned line (8 of these make up one character
block). A display line is a length of characters usually 8 lines high, from the left margin to the right margin. A column is
each individual dot position (there are 8 columns in a character and 640 columns on an 80 character display line). A pix
el is one line in height and one column in width.

REG No. Functi on Default. Value
8032 4032

0 Horizontal -total number o-f characters on
line K H h t) inc I u d i n g h o r i z o n t a. 1 r e t r a.c e.
(true value= number + 1)
D i v i de by 2 -for b'W32

49 49?

1 Horizontal number o-f characters displayed
(Nhd) Divide by 2 tor 8032

40 40?

2 D i s tance < i n Ch ar- acters) tro m I e +'t marg i n
to right ot screen +1. Divide by 2 tor 8032

41 20?

Sync width. Low order 4 bits ar-e vertical
sync width <in lines'1. High order 4 bits
are horiztontal sync (in characters).

15 ?

4 Humber of display lines including retrace
(Hvt).

32/40 ?

5 Vertical position of frame <fine> 3/5 ?

Number of display lines in frame (Hvd) 25 25?

~7 Hieght of upper edge from bottom of
screen (i n d i sp1ay 1 i nes>

2 y / o v

I n tel ac e ar r ci S k e w : -
bit 0 1 = inter laced mode 0=noninter laced rnoc
bit 1 if bit 0=1 then interlace arid video

mode
bit 2 not used
bit 3 not used
bit 4 l=scan from 32770 in memory
bit 5 i=scar from 32772 in memory
bit 6 cursor (not implemented on the RET"1
bit 7 cursor (not implemented on the PET)

0 6?
0 0?

0 1 ?
0 1 ?
0 0?
0 0?
0 0?
0 0?

9 Humber of lines between top of one
display line arid top of next

9/7 9/11?

10 Cursor (not implemented on the PET) 0 0?

11 Cursor (not imp lemented on the PET) 0 0?

26

13

14

15

16

1?

Control register
bit 0 add 256 to start address 0
bit 1 add 512 to start address 0
N.B. bit 0 & 1 add 512 and 1024 on 8032
bit 2 invert fly back 0
bit 3 invert video signal 1
bit 4 use top half of 4k character 0

generator
bit 5 (not implemented on the PET) 0
bit 6 (not implemented on the PET) 0
bit 7 not used 0

Value +32768 is address of first character 0
character (multiply by 2 for 8032)

Cursor location HI (not implemented on the 0
PET)

Cursor location LO (not implemented on the 0
PET)

y?
0?

0?
0?
0?

0
0
0

Light pen position HI (read only) 0 0

Light pen position LO (read only) 0 0

Any register which has two figures is changed when the screen
is expanded or compressed the first number is the power up value.

Try this program listed below :

10 F'OKE59520,2:REM SELECT REGISTER NO. 2
20 FORI=0TO40:P0KE59521,I:NEXT
30 FORI—40TO0STEP—1:P0KE59521,1:NEXT
40 GOT020

One useful hint should you stop the program, and are unable to
see what you are typing, if you hold down the two shift keys and
tap the quotes key this wi11 restore the display to the normal
u p p e r c as e / g r ap hies d i p 1 ay.

This routine could be used as an error warning

10 P0KE59520,12
20 FORI=1T020:P0KE59521,0:P0KE59521,16:NEXT

The chip has the facility to have a cursor (either blinking or
not) but this is not connected on the PET. There is also the
facility to have a 4K character generator the top 2K can be
accessed using

POKE59520,12:P0KE59521,24

N.B Some of the registers if poked
P x c ture to co 1 apse
IMEDIATELY.

should this
certain values can cause the
happen SWITCH OFF THE PET

27

Mixing SYS and USR functions on the PET
fro m A la n Price - L iverpool Polytechnic D epartm ent o f M athem atics

This article describes the facilities for pasing data to and from machine-code routines called by the BASIC
SYS and USR commands, and shows how multiple SYS and USR functions may co-exist. A method of
changing the number and type of parameters which USR can accept is described. Specific details o f the
PET monitor and BASIC interpreter refer to the PET 30XX (BASIC 2).

SYS and USR facilities in BASIC
allow the use of machine-code
routines to augment the facilities of
BASIC, either because they do not
exist in BASIC, or because of speed
requirements. SYS is a command,
followed by a store address of the
machine code to be obeyed. This
must make its own arrangements to
communicate with BASIC, e.g. by us
ing routines in the BASIC interpreter
to read the remainder of the SYS
command. See, for example, pages 16
and 17 of CPUCN volume 3 issue 3.
As I showed in that article, the inter
pretation of the SYS itself can be
quite time consuming, being most ef
ficient if the SYS address is 0. This
would appear to make the co
existence of multiple SYS and USR
functions impossible.

USR is treated as a function. As
described in the BASIC manual, it
can have one parameter, which must
be a numeric value (constant or ex
pression) and can return one value,
which can be numeric or string. Since
it is entered via store locations 1 and
2, it would appear that there can only
be one USR function at a time.

Multiple SYS commands can be
implemented by arranging all SYS
commands to go to location 0, which
contains a jump to a routine to read
the next character from the program,
and use it to select one of a number of
routines from a Jump Table (see the
article by Mike Gross-Niklaus in
CPUCN Vol 3 issue 3). If the jump
table is set up to correspond to the let
ters of the alphabet, SYS.A would be
sent to the routine with the first ad
dress in the table, SYS.B the second
and so on. The reason for the full-
stop is that BASIC must read a
numeric value after SYS, which we
want to be zero: and . followed by
anything other than a digit or E is the
shortest and quickest way of achiev
ing this. The letters A,B and so on are
not BASIC variables, and do not take
up space in the variable store. This
method of entering SYS routines is
fast (about 1.02 milli seconds) and the

BASIC programmer does not have to
know the actual store addresses of the
machine-code routines.

This would seem to scupper the use
of USR functions. The solution to
that is simple, if draconian: to insert a
“wedge” into BASIC to trap USR
functions before BASIC evaluates
then become very much like SYS
code, and read as many parameters of
whatever type they like. The dif
ferences are that USR code should
check that the last parameter is
followed by a closing bracket, and
must leave a value (numeric or string)
lying about for BASIC to pick up on

exit from the USR function, in the
usual way.

The machine-code routine shown
provides multiple SYS and USR
facilities. It is loaded into the second
cassette buffer, but could be modified
to sit in high memory if preferred.

Location $'827 contains a count of
the number of addresses in the jump
table, which is stored in $828 on
wards. The program starts in $880,
leaving room for 26 addresses, cor
responding to the letters A-Z. The
Monitor routine CHRGET, at store
location $112($70) is altered to jump
to $880, which tests whether a USR

10 REM "DYNARRAY" 22 /06 /81
20 PRINT" DYNAMICALLY EXTENDABLE ARRAY FACILITY
30 PR TNTn*************************************
40 HUNT
50 PRINT"A CNE-DIMENSIONAL ARRAY OF ANY TYPE MAY
60 PRINT"EE EXTENDED AT ANY TIME BY A CALL OF
70 PRINTnTHIS ROUTINE, E.G.
80 FRINT"SYS826,A(5)
90 PRINT-THIS WILL EXTEND THE ARRAY A BY 5
100 PRINT " ELEMENTS, MOVING ANY IATER ARRAYS UP
110 PRINT "THE STORE TO MAKE ROCM. THE NUMBER OF
120 ERINT"ELEMENTS AIDED MUST NOT EXCEED THE
130 HUNT"CURRENT SIZE OF THE ARRAY, IF THE
140 PRINT"ARRAY DID NOT EXIST, IT WILL BE
150 PRINT" AUIO-OIMENSICNED WITH A SIZE OF 10
160 PRINT"BEFQR EXTENSION (BY UP TO 1 0) .
170 PRINT" ERRORS
180 HUNT"BAD SUBSCRIPT ERROR EXTENSION TOO BIG
190 PRINT" SYNTAX ERROR NO OOM4A AFTER 826
200 HUNT" -* * - MCRE THAN CNE DIMENSION
210 PRINT"OUT OF MEMORY ERROR NOT ENOUGH SPACE
220 PRINT "NDTE: -THE NEW ELEMENTS ARE NOT ZEROED
800 EORI=82610936: READJ: PCKEI, J , : NEXTI
826 DATA 32, 248, 205, 32, 109, 207, 196, 44, 176, 7 , 197, 45, 176, 3
840 DATA 76 , 3 , 206, 229, 85, 133, 110, 152, 229, 86 , 133, 111, 160, 4
854 DATA 177, 92, 201, 1 , 208, 236, 160, 2 , 24, 165, 92, 133, 37 , 113
868 DATA 92, 170, 200, 165, 93, 133, 38, 113, 92, 133, 93, 134, 92, 165
882 DATA 47, 166, 46, 133, 88 , 134, 87, 101, 111, 168, 138, 101, 110, 144
896 DATA 1 , 200, 133, 85, 132, 86, 32, 216, 194, 160, 6 , 24, 177 , 37
910 DATA 101, 97, 145, 37, 136 , 177, 37, 101, 98, 145, 37, 160, 2, 177
924 DATA 37, 101, 110, 145, 37, 200, 177 , 37, 101, 111, 145, 37, 96
READY.

10 REM INSTAL CODE FROM DATA TO HIMEM,ADJUST HIMEM
20 F0R I=1T 02
30 READZ:W=PEEK(5 2)+256*PE E K (5 3) -Z
40 FORY =WTOW+Z- 1 : READX: POKEY, X : NEXT
50 Z = IN T (W /256) :W=W-256*Z
60 POKE4 8 ,W: POKE50,W: POKE52,W: POKE828+2*PEEK(8 2 7) ,W
70 POKE49, Z : POKE51, Z : POKE53, Z : POKE829+2*PEEK(8 2 7) ,Z
80 POKE827, PEEK(8 2 7) + 1 : REM INCREASE ROUTINES COUNT
90 NEXTI
100 DATA34: REM 1 6 -B IT PEEK- USRA(<ADDRESS>)
110 DATA165, 1 8 , 7 2 , 1 6 5 , 1 7 , 7 2 , 3 2 , 1 3 9 , 2 0 4 , 3 2 , 2 1 0 , 2 1 4
120 DATA32, 2 4 2 , 2 0 5 , 1 6 0 , 1 , 1 7 7 , 1 7 , 1 7 0 , 1 3 6 , 1 7 7 , 1 7
130 DATA168,1 0 4 , 1 3 3 , 1 7 , 1 0 4 , 1 3 3 , 1 8 , 1 3 8 , 7 6 , 1 0 9 , 2 1 0
140 DATA38: REM 1 6 - B I T POKE- SYS. B<ADDRESS>, <VALUE>
1 50 DATA32,1 3 9 , 2 0 4 , 3 2 , 2 1 0 , 2 1 4 , 1 6 5 , 1 8 , 7 2 , 1 6 5 , 1 7 , 7 2
160 DATA32 , 248 , 205 , 32 ,1 3 9 , 20 4 , 32 , 210 , 214 , 1 7 0 , 1 0 4
170 DATA133, 1 7 , 1 0 4 , 1 3 3 , 1 8 , 1 5 2 , 1 6 0 , 0 , 1 4 5 , 1 7 , 2 0 0
180 DATA138, 1 4 5 , 1 7 , 9 6
READY.

28

function is being processed by look
ing at the stack; if not, the instruc
tions which were in CHRGET at
$.112-$ 117 are obeyed at $906-$911.
If USR, the character immediately
after USR is saved in X, and the next
character checked to be

Location $1-2 is set up so that SYS.
will jump to $932. The letter follow
ing SYS. letter and USR letter (is ex
ecuted. ($939-$967). This checks that
the saved character is a letter A-, and
corresponds to an entry in the jump
table, and performs an indirect jump
to it.

The machine code initially stored
in $826-$864 can be called by SYS
826. This plants an RTS instruction
at $826 to prevent re-initialisation,
and sets the initial value of the jump
table count in $ 1-2, and alters
CHRGET to jump to the USR code.
All the user has to do is fill up the
jump table, and alter the count in
$827 to match.
Note that SYS.E should not be used,
as E is not a number terminator: it
may be reserved for a USR function,
i.e. USRE (-) .

Having thrown away the BASIC in
terpreter USR action, what will you
have to do to replace it? The simplest
way to tell is to look at what you are
missing, i.e what BASIC does to
USR. In the general expression
evaluation routine, if a symbol with
internal ‘token’ of value $B4 to $CA
appears, this represents a function.
The $80 bit is removed and the result
saved, shifted left one place (i.e.
doubled), ready to look up a jump
table stored in $C046 onward. The
entry in the jump table corresponding
to USR (token $B7) is zero, causing a
jump to location zero, where a jump
to the actual location of the USR
function must be stored, e.g. figure 1
The machine code described in para.
6 effectively takes USR functions out
from $CE8F, so you are losing the se
quence from $CEB3, onward e.g.
evaluation of parameters, entry to
function, and testing the type of the
result. Useful routines are as in fig. 2
If you make your own strings or
floating-point numbers, location $7
must be set to indicate the type, e.g. 0
for numbers -1 for strings. See the ex
amples on page 17 of CPUCN
Volume 3 issue 3. The evaluate and
convert routines described above set
$7 correctly. RTS (Return) at the end
of your code will return to the address
that the code at $CC8E does, i.e.
bypassing the numeric test. Note that

an ordinary USR function can bypass
the test by executing PLA PLA
before its final RTS.

As an illustration, the second pro
gram installs two pieces of machine

code in high memory, and plants
pointers to them in the jump table.
The first, called by USRA (address),
is 16-bit PEEK: the second; SYS.B
address, value is 16-bit POKE.

10 REM SET UP MULTIPLE SYS/USR FUNCTIONS.
11 REM TRANSFERS MULUSR TO BUFFER ^ 2 , THEN
12 REM IN ITIA LISES SYS/USR AND CLEARS THE
13 REM JUMP TABLE COUNT.
100 F 0 R I= 826T 0924 : READJ: POKEI, J : NEXT
101 REM LOAD MULUSR TO BUFFER ^ 2 .
110 SYS826: STOP
826 DATA 1 7 3 , 9 6 , 3 , 1 4 1 , 5 8 , 3 , 1 6 9 , 0 , 1 4 1 , 59
836 DATA 3 , 1 6 9 , 1 6 4 , 1 3 3 , 1 , 1 6 9 , 3 , 1 3 3 , 2 , 160
846 DATA 5 , 1 8 5 , 1 2 2 , 0 , 1 7 0 , 1 8 5 , 1 3 8 , 3 , 1 5 3 , 112
856 DATA 0 , 1 3 8 , 1 5 3 , 1 3 8 , 3 , 1 3 6 , 1 6 , 2 3 9 , 9 6 , 255
866 DATA 0 , 2 5 5 , 0 , 2 5 5 , 0 , 2 5 5 , 0 , 2 5 5 , 0 , 255
876 DATA 0 , 2 5 5 , 0 , 2 5 5 , 1 3 8 , 7 2 , 1 8 6 , 1 8 9 , 2 , 1
886 DATA 2 0 1 , 1 4 2 , 2 0 8 , 1 4 , 1 8 9 , 3 , 1 , 2 0 1 , 2 0 6 , 208
896 DATA 7 , 1 8 9 , 4 , 1 , 2 0 1 , 1 1 0 , 2 4 0 , 1 1 , 1 0 4 , 170
906 DATA 7 6 , 1 1 2 , 3 , 2 3 4 , 2 3 4 , 2 3 4 , 7 6 , 1 1 8 , 0 , 104
916 DATA 1 0 4 , 1 0 4 , 1 0 4 , 3 2 , 1 3 8 , 3 , 1 7 0 , 3 2 , 1 3 8 , 3
926 DATA 3 2 , 2 4 5 , 2 0 5 , 7 6 , 1 7 1 , 3 , 3 2 , 1 1 8 , 0 , 170
936 DATA 3 2 , 1 3 8 , 3 , 1 3 8 , 5 6 , 2 3 3 , 6 5 , 1 7 6 , 3 , 76
946 DATA 3 , 2 0 6 , 2 0 5 , 5 9 , 3 , 1 7 6 , 2 4 8 , 1 0 , 1 6 8 , 185
956 DATA 6 0 , 3 , 1 3 3 , 8 2 , 1 8 5 , 6 1 , 3 , 1 3 3 , 8 3 , 108
966 DATA 8 2 , 0
READY.

figure 1.

$CE89 ASL
PHA

TAX

A ; 2* token le a s $80
; save jump ta b le Index

JSR $70 ; g e t c h a ra c te r fo llo w in g fu n c tio n token

$CE8F CPX #$8F ; t e s t f o r LEFT$, RIGHT$, MID$

BCC $CEB3

JSR $CDF5 ; s t r i n g fu n c tio n s - check fo r " ("

JSR SCC9F ; e v a lu a te e x p re ss io n - f i r s t param eter

JSR

00p% ; check f o r comma

JSR $CC90 ; check param eter i s a s t r in g

$CEB3 JSR

PLA
TAY

$CDEC ; e v a lu a te (ex p ress io n)

LDA $BFDE,,Y ; do jump ta b le lookup

STA $52 J

LDA $BFDF,i Y ; ($51 c o n ta in s "JMP" code)

STA $53

JSR $51 ; su b ro u tin e jump to fu n c tio n

JMP 1 i
A

i
o o 00

1
M ; on r e tu r n from fu n c tio n , t e s t type

$CC8E ; in $7 i s num eric, RETURN.

figure 2.
JSR $CC9F E v alu a te e x p re ss io n (num eric o r s t r in g)

JSR $CC90 Check e x p re ss io n i s s t r in g

JSR $CC8E Check ex p re ss io n i s num eric

JSR $D6D2 Convert num eric v a lu e to in te g e r

JSR 9D26D Convert in te g e r to num eric (f lo a t in g p o in t)

JSR $CDF8 Check fo r comma

JSR $CDF2 Check fo r c lo s in g b ra c k e t

29

Peripheral Spot
Another collection of disk-based programs for you, and a very overseas based collection at that. The ma
jority of the programs come from Peter Gabor, of Gaborton in Israel, and include programs to inspect se
quential files, a revamped version of an earlier program which is an editor for relative files, and finally a
program that allows a repeat function to co-exist with DOS support. This latter is most useful, as it goes
into great detail on how the programs were written, and should thus serve as a useful guide to those of you
attempting to do a similar thing.

INSPECT SEQUENTIAL FILES - Peter Gabor M ACHINE
-Peter Gabor

CODE LISTING

IFPf THEN21Q
PRINT"CCLR3
PRINT" *
PRINT" +
PRINT" *
PRINT"
IFPEEh

INSPECT SEQUENT IHL FILES *"
DISABLE REPEAT
SET TO LOWER CF

160
170
180190
200
210

******************************C2CD3
721>=169ANDPEEKC722>-85THENSVS720:REM

PI--PEEK■:59468> :P0KE59468,14: REM
PRINT"A MACHINE CODE PROGRAM FOR INSPECTION"
PRINT"OF SEQUENTIONAL FILES IS NOW BEING"
PRINT"LOADED.CCD3"
PRINT"THIS PROGRAM WILL CO-EXIST WITH ANV "
PRINT"OTHER PROGRAM TO BE LOADED."
PRINT"CCD3TO CALL THE PROGRAM IN THE FUTURE, SET"
PRINT"DISPLAV TO LOWER CASE AND ENTER C RVS3SVS32177"
PRINT"CCD3TO STOP LISTING, PRESS CRVS3STOPCOFF3 KEV."
PRINT"TO CONTINUE, PRESS ANV OTHER KEV."
PRINT"TO SLOW DOWN DISPLAV, PRESS CRVS3OFF/RVSCOFF3."
POKE52,176:P0KE53 -125: REM LOWER MEMOR'i
DLOAD"SEQ/SVS32177"
PRINT" CCD3___ "

240
250

READ'

PRINT"CRVS3DO VOU WISH TO INSPECT
GET A* : 1 FASO- " V " AND ASO- " N " THEN230
IFAS="V "THENPRINT"C CD 3 ENTER NAME
P0KE5946S,PK:PRINT"C CLR3" : NEW

FILE NOW? V/N "

7DB0 FiH A 9 OE 8D 4C E8 A9 3E
7DB8 8D 62 ES 20 E2 B4 A9 00
7DC0 85 DA A9 02 85 DB A9 02
7DC8 85 02 A9 08 35 D4 A9 02
7DD0 85 03 A2 00 BD 00 02 F0
7DD8 07 E8 20 35 F3 4C D4 7D
7DE0 86 01 20 63 F5 R2 02 20
7DE8 AF F7 A2 00 A0 00 8E 00
7DF0 10 20 35 F3 F0 03 4C 03
7DF8 7E 20 E4 FF F0 FB 02 02
7E00 20 AF F7 A9 00 20 C0 FI
7E08 A4 96 D0 08 HE 00 10 AO
7E10 00 4C 23 7E A2 00 A0 00
7E18 A5 D2 20 E2 F2 2© CC FF
7E20 20 FF B3 A3 C0 0D D0 08
7E28 20 67 E3 A2 00 4C EE 7D
7E30 98 9D C.0 83 E8 E0 28 90
7E38 B5 4C 28 7E AA AA AA AA

FIXIT-EDITOR FOR RELATIVE FILES
- Peter Gabor

2000

10 REM ******************************* 2030
20 REM * * 2040
30 REM * F I X I T * 2O50
40 REM * * 2060
50 REM * EDITOR FOR RELATIVE FILES * 2070
60 REM * 1/6/81 * 3980
70 REM * * 3985
80 REM ******************************* 3990
90 REM 3995
100 2=1/254 3998
200 GS<0>=" CRVS3 ,---■---,— .— i— ■— ,— i— ■— .— i— , 4000
210 G K 1 > - " CRVS3 I | 0 |1 |2 13 14 15 16 17 18 19 I 4010
220 GS<2>=" CRVS3 1---1---1— 1— 1— 1— 1— 1— 1— 1— 1— 1 4030
230 GS<3>=" CRVS3 | IC0FF3 1 1 i 1 1 1 1 1 1 1 4035
250 GMS=" C RVS 3 I---I-E0FF3-- 1 [1 1— 1-4 4 -\— k H 4040
260 GBS=" CRVS3 1---LC0FF3-- 1— 1— 1— 1— 1— 1— 1— 1— 1— 1 4045
300 ACS="CCR3":0S="C4C03":SPS=" ":ADS="C3CD3" 4048
310 FORK=1TO5:SPS=SPS+SPS:ADS=ADS+DS:ACS=ACS+ACS:NEXT 4050
320 C7S=LEFTS<ACS,7> :SPS=SPS+LEFTS<SPS, 100> 4060
330 PPS=" ":TMS=CHRS <13 > 4080
450 GOSUB7000 4085
500 INPUT"C CLR 3 INPUT FILENAME C 3CL3";AS 4090
510 IFAS=" "THENPRINT"CCLR3";:END: REM JUST HIT RETURN 4095
520 I F A S O " * " THENNFS=AS TO EXIT 4098
570 INPUT"CCD3LENGTH OF RECORD";RL 4100
580 DOPEN# 1 , NFS > , L < RL > , 00 4110
590 IFRL>90THEN2000 4120
600 FB=1:LB=RL 4130
610 GOSUB5000:0S="C CD 3 : REM PRINT GRID 4135
620 GOSUB950 :1 NPUT " RECORD # C 3CL 3 " RS 4140
630 GOSUB1000:IFRS=" "THENDCLOSE:GOTO500 4145
640 REC=VAL<RS> 4148
650 RECORD#1,<REC>:GOSUB950 4150
660 GOSUB5400: REM READ RECORD 4160
680 PR I NT "RECORD # "REC.: 4170
690 GOSUB5200:POKE158,0 : REM WRITE ON SCREEN 4180
700 GETAS:IFAS=""THEN700: REM EDIT 4185
710 IFAS="CINST3"THEN400O 4190
720 IFAS=CHRS<20 > THEN4050 4195
730 IFAS="C CL 3"THEN4100 4198
740 IFAS="C CR 3"THEN4150 4200
750 IFAS="C CU 3"THEN4200 4210
760 IFAS="C CD 3"THEN4250 4220
770 IFAS="@ "THENPRINTOS:GOTO620 4230
780 IFAS="t"THENREC=REC+1:PRINTOS:G0T0650 4235
790 IFAS=CHRS<34>THENAS="*":GOTO4300 4240
800 I FAS=CHRS ■: 141 > THEN4800 4245
810 IFAS=CHRS< 13>THENAS= " :GOTO43O0 4248
850 IFAS="C HOME3"THEN590 4250
860 I FAS= " C CLR 3 " THENDCLOSE : PR I NT " C HOME 3 " : END 4260
890 GOTO4300 4270
930 REM 4280
935 REM **************************** 4285
940 REM * CURSOR TO LINE # 2 4 * 4290
945 REM **************************** 4295
948 REM 4298
950 PRINT"C CLR3"ADSLEFTS CSPS.30>"CCLR3"ADS r:PE TURN 4300
955 REM 4310
985 REM **************************** 4680
990 REM * CHECK ERRORS + 4685
995 REM **************************** 4690
998 REM 4695
1000 IFDS<20THENRETURN 4698
1010 PRINT"C RVS 3"D S S :DCLOSE:END 4700

REM
REM ******************♦***+*+***
REM * SET RANGE FOR INSPECTION +
r e m
REM
INPUT"CH0ME3FIRST BVTE TO BE VIEWED C3CL3";AS
IFAS= " "THENDCLOSE:GOTO500
FB=VALt:Af‘
IFRL-FB<81THENLB=RL:G0T061O
INPUT"NR OF BVTES TO BE VIEWED"rA#
A=VAL <AS • :IFA>80THENPRINT"RANGE TOO LARGE!":GOTO204G
IFFB+A>RLTHENLB=RL:G0T0610
LB=FB+A-1:G0T0610
REM
REM ***************************
REM * INSERT *
REM ***************************
REM
B2S=LEFTS<" "+B2S,LEN< B2S > >
GOSUB5200:GOTO700
REM
REM ***************************
REM * DELETE *
REM ***************************
REM
B2$=MIDS<B2S,2>+" "
GOSUB5200:GOTO700
REM
REM ***************************
REM * CRSR LEFT *
REM ***************************
REM
I FLEN < B 1 S > =0ORBN=FBTHEN700 : REM
B=1 :GOSUB4700
GOTO700
REM
REM ***************************
REM * CRSR RIGHT *
REM ***************************
REM
I FLEN < B2S > =0ORBN=LBTHEN700: REM
B=1:GOSUB4750
GOTO700
REM
REM ***************************
REM * CURSOR UP *
REM ***************************
REM
I FLEN B 1 S > < 10ORBNCFB+10THEN700 : REM
B = 10:GOSUB4700
GOTO700
REM
REM ***************************
REM * CRSR DOWN *
REM ***************************
REM
IFLEN CB2$><10ORBN>LB-10THEN700: REM
B=10:GOSUB4750
GOTO700
REM
REM ***************************
REM * PRINT A* & MOVE MARKER *
REM ***************************
REM
PRINTAS"C CL 3";:B2S=AS+MIDS<B2S,2 >
GOTO4150
REM
REM ***************************
REM * SBR FOR CRSR LEFT *
REM ***************************
REM
PRINTOS:BN=BN-B:GOSUB5500

CURSOR IN FIRST POS

CURSOR IN LAST POS

NO HIGHER LINE AVAILABLE

NO LOWER LINE AVAILABE

30

4710 B2*=R IGHT* CB1 * , B > +B2*
4720 B 1 *=LEFT* < B 1 ■$, LEN < B 1 * > -B >
4730 RETURN
4735 REM
4 7 4 0 rem ###########################
4745 REM * SBR FOR CRSR RIGHT #
4748 REM
4749 REM
4750 PRINTO*:BN=BH+B:GOSUB5500
4760 B 1 *=B 1 *+LEFT* B2* , B >
4770 B2S=MIDS <B2 *,1+B >
4780 RETURN
4785 REM
4790 REM #############################
4795'REM # REPLACE RECORD CENTER.-) *
4798 REM *###############**##***##*###
4799 REM
4800 PRINTO*:GOSUB5600
4810 REC=REC+1:GOTO650
4980 REM
4985 REM ###################********#
4990 REM * PRINT GRID ON SCREEN #
4995 REM *####*################*##*##
4998 REM
5000 PRINT"C HOME 3"

5010 FORK=0TO3
5020 PRINTG$<K> :NEXT
5030 FORK®INT <FB/10> TOLB/10
5040 N'i=R IGHT$ < STRS < K > , 2 >
5050 GN*=" CRVS3 |"+N*+M ICOFF3
5060 PRINTGN*:PRINTGM$:NEXT
5070 PRINT"ECU3"G B * :RETURN
5180 REM
5185 REM ##*#*##################*#**##
5190 REM # PUT B2* ON SCREEN #
5195 REM ###*#*#######################.
5198 REM
5200 BN=LENt B 1*> +1:GOSUB5500: REM
5210 PRINT"CCD 3-ECU,CL 3";:FORK=1TOLB-BN+1
5220 BV*=MID*<B2*,K ,1>
5230 PRINTBV*"E CR3 "":PS=PS+1
5240 I FPS= 10THENPS=0 : PR I N T T M * T M * C 7 * : REM
5250 NEXT
5260 GOSUB5500
5270 RETURN
5375 REM
5380 REM *****************************
5385 REM * READ RECORD INTO Hi* *
5390 REM * DIVIDE INTO Bit & B2* *
5395 REM *############################
5398 REM
5400 GOSUB1000:fl1*="":FORK=1TORL
5410 GET#1,B*
5415 IFLEN<B*>=8 THEN B*=" "
5420 IFB*=CHR*< 13>tHENB«=H«-H
5430 IFB*=CHR*<34 > THENB*="#"
5440 fl1$=A 1$+ B*:IFST=64THENK=RL
5450 NEXT : B 1 * = " " sA=LEN <fl 1 * >

I I I I I I I t I I

POSITION CURSOR

ROW NUMBER
COL NUMBER

5455 IFACRL-1THENfl1*=A1*+LEFT*<SP*,RL-fl>
5460 IFFB>1THENB1S=LEFT*< flit,FB-1>
5470 B2$= M10 $ < fl 1 $, FB > >
5475 RETURN
5479 REM
5480 REM #####*#######################
5485 REM * POSITION CURSOR TO BN & *
5490 REM * PRINT ON GRID *
5495 REM *****************************
5498 REM
5500 fl=INT <BN/10+2 >:R=fl-1NT <FB/10+2 >: REM
5510 PS= I NT ■:! BN/10-fl > # 10+2 > : REM
5520 R=6+2#R:C=7+2#PS
5530 PR I NT " E CLR 3 " LEFT $ ■:! HD# , R > LEFT* C AC* , C >
5540 PR I NT " -J-C CL , CU 3 " ;
5550 RETURN
5575 REM
5580 REM ###***########*#######*###**#
5585 REM * READ B1*&B2* INTO RECORD *
5590 REM *****************************
5595 REM
5600 RECORD#1,C REC>;GOSUB1000:B*=""
5605 fll*=Bl*+B2*
5610 FORK=1TOLB
5620 A*=LEFT*<A 1 *, 1 > : A 1 *=MID* < A 1 * ,2 >
5630 I FA$= " +■” THENA*=CHR* < 13 >
5640 IFA*="*"THENA$=CHR$<34 >
5650 B$=B$+A$
5660 NEXT
5670 PRINT#1,B*;:GOSUB1000
5680 RETURN
6975 REM
6980 REM ###*#########################
6985 REM # INSTRUCTIONS *
6990 REM #*****####:###############****
6995 REM
7000 P0KE59468,14:PRINT"CHOME3"TAB<12>LEFT* <PP*,9>TMSTAB<12>"CRVS3* FIXIT
7010 PRINTTM*"THIS IS AN EDITOR FOR RELATIVE FILES.
7020 PRINT"FILES HAVING MORE THAN 90 BVTES CAN BE
7030 PRINT"EDITED IN SECTIONS OF UP TO 80 BVTES."TM*
7050 PR I NT "THE BVTE BEING EDITED IS MARKED BV
7060 PRINT"AND THIS POSITION CAN BE MOVED BV THE
7070 PRINT"REGULAR CURSOR CONTROL CHARACTERS."TM*
7080 PRINT"FOLLOWING COMMANDS ARE ALSO OPERATIVE:-"

CHANGE RECORD #
GO TO NEXT RECORD, WITHOUT
ENTERING SCREEN
CHANGE BVTE RANGE
EXIT FROM EDITOR"TM*

7090 PRINT" @
7100 PRINT" t
7110 PRINT"
7120 PRINT" 'HOME•'-
7130 PRINT" 'CLR' -
7140 PRINT"TO ENTER RECORD, HIT SHIFTED CARR.RET.
7150 PR I NT "TO CHANGE FILENAME, HIT r@-r AND XR'"TM*
716© PRINT"CARRIAGE RETURN IS DISPLAYED BV THE
7170 PR I NT" ED I TOR AS AND QUOTES AS A HEART.
7180 PRINT"C C D ,6C R,RVS D HIT ANV KEV TO CONTINUE!I C U 1"; :
7190 POKE158,O :WAIT158,1:P0KE59468,12
7200 POKE158,0:PRINT"C HOME1":RETURN

READV.

D O S ■ R EP - MIX
One of the most useful Utility Pro

grams for the Disk Drive is the
“Universal Wedge” also known as
“Dos Support” . It makes all disk
handling and program loading very
easy.

Another extremely useful program
is “Repeat” (The Pet Revealed, page
132). It is absolutely essential for fast
editing.

Since both programs are in constant
use, I decided to make a composite for
convenience. Naturally, a few pro
blems had to be resolved:-

1) The second cassette buffer
should remain free for all those
little routines, that appear in the
“Newsletter” . Therefore the
routine had to be relocated to
sit in the first cassette buffer.

2) A command had to be provided
for turning the repeat function
off. The Pet runs faster without
Repeat, and with the “Repeat”
activated some commands’ such
as “DLOAD” do not work pro
perly.

3) Having a notoriously bad
memory, I wanted to display the
proper ‘SYS’ command(s) every
time the program is loaded.

I came up with the (BASIC4 Version)

shown in figure 1.

figure 1
28 ++ f - f 78 a9 y a 85 9-3

8 286 jQ 82 85 91 a9 01 85 82
0 2 8 8 58 68 a5 97 ea. e a ea. e a
8 2 9 0 ea. ea e a e a e a e a ea. e a
8 2 9 8 e a e a e a e a e a e a e a e a
02a 0 e a e a e a e a e a c 5 80 f 8
82-5.8 89 85 00 aS 10 85 01 4c
8 2 b 8 55 e4 c9 ■f0 +9 a»« 01
8 2 b 8 + 0 04 cS 01 d 8 f l c 6 02
8 2 c 0 d 0 ed a9 84 85 02 a9 00
02c 8 85 97 a9 02 85 aw d 0 d f
02d 8 78 a9 55 85 90 a9 e4 85
02 dS 91 58 60 ■f-f •f-f ■f-f ■f f -f-f

r e a d y .

The “Repeat” function is activiated
by ‘SYS635’ and deactivated by
‘SYS720’.

The train of “ea”s’ (NoOp; $208C
to $02A5) is for those, who like to fool
around with the interrupt routine.

It is easy, for example, to change
the display mode without having to
POKE something or other (I forgot
the exact numbers). Just put
C9 07 DO 05 A2 0C 8E 4C E8 C9 0E

DO 03 8D 4C E8
into locations $028C to $029B and
the square brackets (,) will take care
of changing Graphics to Lower Case
and visa versa.

Another possibility is to use the
‘STOP’ key to deactivate Repeat in
stead of SYS720 . Write following se

quence into locations $029C to
$02A2:-

C9 04 DO 05 20 DO 02
The completed program now looks
like figure 2.
Now for the actual merging of
“DOS” with “Repeat” :-

If you have the “Universal Wedge”
Program, that works for both
BASIC2 & 4, then load the program,
but DO NOT RUN IT. Enter the
Repeat program with TIM (type
SYS4, .M 0278 02D8, etc). Now exit
from the Monitor and list your pro
gram. It should look like figure 3.
The Machine Languages Loader for
the wedge program is located from
$0500 to $08AD. Editing the Basic

figure 2.
. : 8 2 7 8 ■f-f -f-f -f-f a9 y a 98
. : 8 2 8 0 a9 02 85 91 a9 0 1 85 02
. : 0 2 8 8 58 60 a.5 97 c9 07 d 0 05
. : 0 2 9 0 a 2 0C 8 e 4 c e 8 c 9 8 e d 8
. : 0 2 9 8 03 3d 4 c e 8 c9 04 d 0 85
. : 0 2 a 0 20 d 0 02 e a e a c 5 80 "f 0
. : 0 2 a 8 09 85 00 a9 10 85 0 1 4 c
. : 0 2 b 0 55 e4 c9 -f-f ■f 0 ■f9 a.5 81
. : 0 2 b 8 ■f 0 04 c 6 01 d 0 f l c 6 82
, : 0 2 c 0 d 0 ed a9 04 OCT 02 a9 88
. : 0 2 c 8 85 97 a9 02 85 a.8 d 8 d-f
, : 0 2 d 0 78 a9 55 85 90 a9 e4 85
. : 0 2 dS 91 58 60 -f-f -f-f -f-f -f-f

re a d y CBRSIC4 v e r s i o n)

Continued on next page

31

5 a= 12$ 16$3 : r em $c00G
10 i fp e e k a.> <3>7 6 1 h e n s y s 1639 : r ern lc«as i c 2
15 i +p e e k £ a> = 7 6 th e n s y s 2 151 :re m b a s ic 4
20 p r i r i t ,,i3aEUEETZEEEEra u n i v e r s a l do
30 new

r e a d y .

Change this to:

5 a = 12#1683
10 i tpeek a> <>76thensys 1639 : pokeS88 r 46 : poke689 , 230 : poke722 r 46 :

Poke726r230
15 i +peek < a> =76thensys2151 :rern basic4
20 print''£EEEEI3fl2EEEl universal dos support loadedSt-H"
30 print" activate repeat with sys63531"
40 print" deactivate rep. with *a=:tok-sKEKEgl1'
50 new

ready.

figure 3.

s s u p p o r t toa.dedZBTZEBEEET'

Continued from previous page
program will displace the lower up
wards. To relocate it into its original
position, enter following commands
in direct mode:

FO R K = 1 TO 120: IF
PEEK (1280 + K) < > 234 THEN
NEXT (return)
FOR J = 1280 TO 2225: POKE
J,PEEK (J + K): NEXT (return)
Now enter the monitor (SYS 4) and
save the program with the com
mands:
.S “0: DOS-REP-MIX
“,08,027A,08AF
Exit from the Monitor, type ‘RUN’
and you are in business!

For those, who have BASIC2 with
the old version of DOS (displaying all
the instructions on the screeen), I
should suggest following procedure:

1. Enter the ‘Repeat’ program, taking
care to change following bytes:

Location Contents Change to
$02B0 ■#$55 #$2E
$02B1 #$E4 #$E 6
$02D2 #$55 #$2E
$02D6 //<h #$E6

2. If you want to keep the original
display of the instructions, you can

save ‘Repeat’ program with the
monitor, but be careful to save all
bytes to $03FF (.S “ 0:REP”
,08,017A,03FF) and then append this
to the DOS program using the COPY
c o m m a n d

(OPENl,8,15:PRINT#l,“CO:
DOS-REP-MIX =0:PET DOS
SUPPORT ,0:REP”).
3. You might wish to include instruc
tion for ‘Repeat’. In this case list lines
250 to 260:
250 print” special commands start in
col 1 and
260 print” are followed by a 2040
filename.
ready.

and change them using the editor to:
250 print sys635 activate repeat ”
260 print” stop deactivate repeat ”

Be careful with the number of spaces
at the end of each line! They are in
cluded to keep the length of the
BASIC program constant. To check
this, peek locations 1792 & 1793. You
should get 234 & 230 respectively.
4. Save the program with the Monitor
(.S “ 0: D O S - R E P - M I X
”, 08,027A,0900).

In conclusion, I believe you will
find that the time spent for entering
this utility is very well compensated
for by the pleasure you will have us
ing it.

KEYPRINT/826 (BASIC 4) SCREEN PR IN T (BASIC 4)

M 9 3 3 8 3 3 C S M i i 3 3 8 £ 3 B :

a 0 3 3 8 0 0 0 0 r ’ f i 9 0 3 8 5 9 i f t 9 , : 0 3 3 8 0 0 0 0 0 9 8 0 8 5 2 0 0 9 f i d

„ • 0 3 4 0 4 5 9 0 5 8 6 0 0 5 9 7 C 9 . 0 3 4 0 8 5 I F 0 9 0 4 E 0
C * £ \ B 4

a • 0 3 4 8 4 5 D 0 0 3 2 0 5 1 0 3 4 C 5 5 „ : 0 3 4 8 2 0 B 5 F 0 4 a F l 0 9 . 1 9

9 • 0 3 5 0 E 4 h 9 8 0
O nr
O •_* 2 ' H H 0 0

nr
O - J a 0 3 5 0

p e r
c l c i 0 9 0 B

o n r
O - J 2 1 2 P i 1 1 2

„ ' 0 3 5 3 I F f l y 0 4
o c r
O - J E 0 8 5 D 4 2 0 a • y . j . j y F F - 0 . 9 1 1 H E 4 C E 8 E 0 0 C

« : 0 3 6 0 B 5 F 0 2 0 4 o F l 0 9 i 9
Onr. a 0 3 6 0 B 0 0 2 0 9 9 1 2 0 B 2 F F 0 0

„ • 0 3 6 8 2 2 0 9 0 D 8 5 Z 1 2 0 B 2 F F • 0 3 6 8 0 0 E l I F 2 9 7 F 0 0 E l I F
„ •* 0 3 7 0 0 9 1 1 H E 4 C E 8 E 0 0 C B 0 „ • 0 3 7 0 4 5 2 1 1 0 0 E E l I F 8 5 2 1

* :
^ •‘j O

0 2 f l 9 9 1 2 0 B 2 F F f l 0 0 0 0 3 7 8 8 0
j .

9 2 2 0 B 2 F F 8 0

,, • 0 3 8 0 E l I F 2 9 7 F 0 0 E l I F 4 5 0 3 8 0 C 9 2 0 E 0 0 4 y 9 4 0 B 0 0 E

0 3 8 8 2 1 1 0 0 B E l 1 U-
i i

p c ;
2 1 2 9 3 0 3 8 8 C 9 4 0 9 0 0 0 C 9 6 0 E 0 0 4

•4 • 0 3 9 0 8 0 4 9 9 2 2 0 B 2 F F 8 f l C 9 0 3 9 0 0 9 8 0 B 0 0 2 4 9 C 0 2 0 B 2

y . j 9 8 2 0 E 0 y 4 y 9 4 0 B 0 0 E C 9 0 3 9 8
p p C 8 C 0 9 0 C E 0 5 I F

0 3 R 0 4 0 y h 0 f l C 9 6 0 E 0 0 4 0 9 . 0 3 0 0 6 9
■■**» “7

Pt^i 1 F 9 0 0 2 E 6 2 0

0 3 0 8 8 0 D 0 0 2 4 9 0 0 2 0 B 2 F F , : 0 3 0 8 C b 2 2 B 0 0 6 0 9 0 B 2 0 B 2

0 3 E 0 f ; C 0 c L O 9 0 C E f l 5 1 F 6 9 , : 0 3 E 0
p p

4 C C C F F 0 0 0 0 0 0 0 0

0 3 E 8 8 5 I F 9 0 0 2 E 6 2 0 C 6 0 3 E 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

„ • 0 3 C 0
” i

D 0 Hfc* 0 9 0 D 2 0 B 2
P f y

- ; 0 3 C 8 4 C C C F F F F F F FF F F F F i V y t ■ 2 6

Note:
Only Bytes 0349 and 034C have to be changed in
order to make the screen dump work on Basic 4.

32

BUY IT WRITE ffllWW!
PAGEWRITER is a machine code word processor crammed into a single 2k chip! Obviously
in a mere 2k we couldn't fit all of the facilities of WORDPRO, WORDCRAFT, or our own
MICROSCRIPT, but you'll be pleasantly surprised to find how powerful and easy-to-use
it is!

PAGEWRITER doesn't limit you to a 40 or 80 character line length, but scrolls the
screen left or right, up or down as the cursor nears the edge. In fact, the
electronic 'page' that you type onto can be up to 240 columns wide and up to 191
lines long (subject to memory size).

PAGEWRITER prints out your text exactly as you see it on the screen! There are no
margin or tab settings to worry about. When writing or editing a document all the
normal cursor controls may be used - and in control mode PAGEWRITER has more
sophisticated functions enabling you to DELETE or INSERT a LINE, or MOVE a BLOCK of
text. If you use the CBM 3022 or 4022 printer then PAGEWRITER gives you full control
over the programmable character - as many as 26 characters can be defined at any time
(a pre-defined set is included in the chip).

When you've finished writing you can SAVE text to cassette or disk. The whole thing
is really so amazingly simple that you'll wonder why nobody thought of it before!
And remember, because PAGEWRITER is written entirely in 6502 machine code it's FAST!

PAGEWRITER is available to fit in any spare ROM socket of an 8, 16 or 32k PET with
New Roms or Basic 4 (please state socket & model when ordering). And the best thing
of all is the price, just £39 plus VAT!

P.S. PAGEWRITER is also available in a 4k chip with ARROW, the chip that can LOAD,
SAVE, VERIFY and APPEND at 6 to 7 times normal speed. ARROW on its own is £30 plus
VAT, the two together cost £69 plus VAT.

ALSO IN OUR NEW CATALOGUE. ..
SUPERSORT (£40) heads the list of new utilities in our latest catalogue. Whereas
MULTISORT (£25) will sort a string array and move a number of other string arrays
around in parallel, SUPERSORT handles numeric arrays too, and will sort on one field
within another all the way down the line.

DISK SEARCH 2 (£40) is an improved version of another powerful utility. If you need
to search a RELATIVE FILE all you have to do is put the strings you are looking for
into an array - then call up DISK SEARCH 2. You can request records that contain ANY
ONE of the strings sought - or just those that contain ALL of the them. Why buy a
database program when with DISK SEARCH 2 you can design your own?

MAKRO DISASSEMBLER (£25) is a true disassembler - it will take a machine code program
apart and turn it into ASSEMBLER SOURCE CODE complete with labels! If you own MAKRO
ASSEMBLER (£50) you can then make changes and re-assemble the code - just as if it
was one of your own programs! And we've developed a special version of MAKRO with a
find-and-replace facility that you'll find particularly useful (put in your own
labels etc). MAKRO-XR is available as an upgrade to the standard MAKRO at a cost of
just £10.

First F loor, 10—14 Canning Road, Wealdstone,
H arrow, Middlesex, H A 3 7SJ, England

Telephone: 01-861 1166

w r l w i v y w i w * w v s ^ n i D

CHIP SHOP
EDEX 2.0 & 4.1

adds commands to BASIC for use within your Program

I f THEN ELSE • PLOT • BEEP • PRINTUSING • SWAP
MERGE • HARD COPY • PLUS A RANGE OF TOOLKIT

TYPE FUNCTIONS AND A FAST £01 TING SYSTEM
EDEX is an extension to BASIC which co n s id erab ly enhances the potentialities of the Commodore PET/CBM
It consists in a 4K-BYTE ROM which installs inside the PET/CBM .

EDEX is compatible with Commodore disk devices as well as with the DOS Support Program.
EDEX operation is fully transparent towards the Microsoft Basic Interpreter
EDEX is fully compatible with prior programs written without EDEX.

AU TO
Activates automatic line numbering.
APPEN D *
Allows the creation of a program with a subroutine library
BEEP
Gives a sound of programable pitch and duration
CALL
Calls a machine language subroutine with transmission
of up to 16 arguments
DELETE
Allows multiple line suppression
DU M P
Listsall variables in a program, togetherw iththeirvalues
E D IT IN G *
e.g.iffi M prints MID$
ERROR
Shows where an error has occurred
FIN D
Lists all lines where a given character string is present

EDEX 2.0 for use with BASIC 2 40 Colum n Pets £39.50

HARD CO PY □
Dumps screen to printer
IF T H E N ELSE
With up to 16 nested conditions
M E R G E D
Merge two programs files
PLOT
Plots curves of 50 x 80 or 160 resolution
P R IN T U S IN G
Formats printing on screen or any printer
RENU
Program renumbering
RESET
Suppresses a dot (contrary of PLOT)
SW AP □
Swap one program for another keeping variables
T R A C E D
Single line execution (displayed at top of PET)
* EDEX 2.0 only D EDEX 4.1 only

EDEX 4 ■ 1 for use with 80 Column Pets £49.50

IEEE-488 PACK
Available shortly for BASIC 4 40 Column PETs

PO W E RF U L L

BUS CO NTROLLER

The end of instrumentation's problems.lt resolves all kind of troubles
- Time-out
- Special characters (“null” , and so on...)

IEEE-PACK allows the use of IEEE-488 Universal Commands:
- DCL (Device clear) -SDC (Selective device clear)
-SPE (Serial poll enable) - SPD (Serial poll disable)
- LLO (Local lockout) - GTL (Goto local
-PPL (Parallel poll -PPU (Parallel poll

configure) unconfigured)
IEEE-PACK also allows BASIC interrupt with functions:

- ONKEY “x” , line number
- ONSRQ line number (On Service Request)

IEEE-PACK comes complete with two ROMs. £89.50

MULTEX

□ □ □
B)

jX -i| PR IN TER H I

MULTEX allows several CBM 8032 to work together on the same
peripherals.
MULTEX is a ROM which replaces a ROM of the CBM 8032.
Except the substitution of this ROM no other modification is
required on the CBM 8032.
MULTEX is much cheaper than any other system.

MULTEX £69.50

ALL PRICES IN C L U D E V.A.T. & P.P.
AVAILABLE FROM ALL G O O D DEALERS OR D IR E C T FROM

■ EXRRE55
VISA

AUDIOGENIC, P.O. Box 88, 34-36 Crown Street, Reading, Berks. Tel: Reading (0734) 595269

