
..

II L

TWIN CITIES, 128 '-' ISSUE,,' #,32 1_' JULY l 92
$3.95 MAGAZINE ONLY $9.95 MAGAZINE & DISK

Take a look at CMO's Sizzling Summer Specials
,;:::, ' HAMUnk Packages HD - RAMLlnk Packages RAM Drive Specials Swift LInk Package

• RAMLink, RAMCard II and RTC • RAMLink, RAMCard 110MB and RTC • RAMDrive 1 MB $225.00 • Swiftlink -232 Cartridge
• DB 9 to DB 25 Modem Cable
• Terminal and File Xfer Software

• RAMLink Battery • HD Series Hard DriYe • RAMDrive 2 MB $275.00
• 1 or 4 MB SIMM Module • Parallel Cable· Shipping $25.00 GEOS Combo Package $60.00 '. :.

• Shipping Charges Included
~,;':.: 1 MB RAMLink package $275.00 HD·20 Pkg $600 HD-40 Pkg $n5 • Perfect Print Complete System

4 MB RAMLink package $375.00 HD-100 Pkg $975 HD-2oo Pkg $1175 • geoMakeBoot • Shipping Induded Swiftlink Package $45.00

::":.,

Summer Specials will be off.red Ihrough Augusl 31, I 992. auant~ies may be limiled. coruGt CMD lor a.ailabil~y. CMD r.se s the right 10 change pricing ~ necessary .
. . :.

0: :0

~l perfect 19
0: • :0
~! pnnt !~

Eliminates Jagged output. Resokltion up to 360 x 360 DPI (24 Pin), 240 x 216 DPI (9 Pi.n)
GEOCABLE compatible. Allows mWtipie copy printing. HQ drivers enhance graphic output
Perfect Print LQ is a complete print enhancement package lor GEOS that delivers the highest quality dot matrix

output possbte. Includes a unique print utility and lont set 10(enhancing GEOWRITE documerts, utilkies for
creatilg fonts, and hill quality drivers fO(other GEOS applications. Improves text and graphic output on

virtually al 9 & 24 pin dot matrix printers and supports font attrbu1es such as italics, outline, underli1e, bold, etc.
Main system (All drivers, utilities, and 7 fonts) $34.95 • Fori Package (42 LQ foris) $29.95

Complete System (Main System & 49 $49.95 • ShippingHandUng $5.00 Canada add $4.50

:.:':: .• Compact -All the features you've everwanled from RAM The Ultimate In Mass Storage for the 64/128 Power Backed REU Interface and
, expansion inacorTllact UM. FIVe capacities: 512K, 1,2,
':::': 4, and 8 megabytes. Dimensions: 6'1 x 3'w x t'h.
:::',: • Expandable - Now RDX Models allow for users to
. expand RAMDrive up 10 2, 4, and 8 megabyIes.
:', • Compatible -Use RAMDrivewith GEOS, CP/M, Q-Unk,

BBS programs, productivity software and more.

,Non-Volatile -Externalpowersupplyelininalesdrainon
c:or1llU(er power supply and retains data irdefinitely.
Internal rechargeable batteries retain data up (0 7 days.
RDX urits use an optional ex(ernal battery and also retain
data lor up to 7 days.

/' . • FAST - Up to 400x faster than a 1541; 20x faster than
RAMOOS; Built-in JiffyDOS speeds access to CMD Hard
Drives and JiHyD05-equipped floppy drives.

• Easy to Use - Plugs no the catridge port. Operates like
a slcnlard disk drive. File and disk copiers ncluded along
wilhpatltioring, suppotl uliilies, and newG EOSconfigure.

• RD-DOS -OrgarizeRAMirioasmanyas30manageable
parlUlns that emulate 1541, 1571, & 1581 drives or
expcn! 10 !he lui RAM capacity with MS-DOS s(yle
SIbdirecIories. Auloboot 64 and 128 mode programs.

RD-512 $199.95 RD-l ~ RD-2 ~
RDX-l $264.95 RDX-2 $319.95 RDX-4 $399.95
RDX-8 $549.95 RDX External BaIIety una $24.95

I ftypOS-

· • Capacity - 20 /ot) to 200 Iv'b capacities enable you (0 Expandable RAM Disk
· store the equivaleri of up to 1250 1541 (I70K) disks. • Non-Vol.till Storage _ Operates on its own ex(ernal

• Speed - The fasles! CommodO(e corrpatble hard power supply. Optional rechargeable battery back-up
drives. Speeds up to SOx fasler than a 1541. retains data even during power outages.

• • c:-patibllity -ldealforusewithGEOS, CP/M, Q'Unk, • Compatible - Use GEOS, CP/M, a-Link, BBS
BBS programs, productivity software and rooch programs, productivity software and more. RAM pot!

• Compact SIze - 3112' SCSI technology allows for for connection of REU or GEORAM 01 aryt capacly.
compact case about the same size as a 1581. Pass-(tyu pot! supports most cartridges.

• ExpandabUIty -ChainuptosixSCSl"'"ui""~'''M"",.,',lE:! • User Expandable - Internal RAM Card allows
· to Macintosh, IBM-Compatible & Amiga expansion up to 16 Mb by using standard SI~s.

• Buil-in RealTme Clock -Automaticallytme • FAST -Upto400xfasterthana 1541; 20x faster than
stafT4)S files and sets the GEOS clock. RAMDOS; Buitt-n JiHyDOS plus parallel interface 10

• HD-OOS _ Orgarize saorage il10 as many as speed access to CMD Hard Drives.
partiOOns that EmJIaIe 1541, 1571, & 1581 drives • Easy to Use - Plugs n(o the Cartridge Port. Operates
expand (016'-':1 with MS-DOS sIyIe subdirectories. like a standard disk drive. Fileanddiskcopiersinduded

along ¥lith part~ioning and GEOS support utiities.
• Easy to use -Connects like a standard driYe and easy

to read manual explains all facets of drive operation. • RL'[)()S - Organize RAM into manageable part~ions
ComescofT4)iete with copiers and maintainence utilities. that emulate 1541, 1571, & 1581 drives or expand to

HD-20
HD-40
HD-100
HD-200

CALL FOR PRICE
$599.95
~ $799.95
~ $999.95

. .. . ; ;; " . ; ; .. ; ' . ; ; ;.; .:;

gateW!r Swltttir

the ful RAM capacity with MS-DOS style subdirectories.

RAloUnk (no RAMCan:I) $179.95 BattGry wlcat:le $2tU5
RAt.t.ink(w/RAMC.roI~ $211.95 HD Parallel CableS1U5
RAloUnk (RAMCIIIIIL'RTC~U5 RTC add-on Kit $2U5
RAt.card II (WitlRTC) $79.15 1 r.Il SIMM $42.
RAt.card II (wilhQJI RTC.59.95 4r.1l 51...... $145. •

11I113!111I1
~_IIOII upgrld •• P.rfonnl aU

disk _ up 10 15 tin.1 filter
GuaranlNd100% compatible. Buin-in DOS

Wedge & fU. copier. EIIY to inltall
(PI specify compuIor & drilll modal with ... iall.)

JilfyDOS 64 Of SX-64 SSUS

A Powerful New Desktap lor GEOS 2.0

Task Swilclillg' Thl88 drive suwort
AcaIs$... capacity of HD. RAMLMtIk,

RAt.()riw, e~d REU's & GEOfWol

Prawid • ., indlMy"'. IIlII styl. serial ~ iNII
"""",,,,ica\ts 1\ spttds tom 300 10 38,400 b&II ni

prawid. rtlabl. 1200 n 2400 bp& u~"'l RS·232 HojIos
compal~' mod.n I'ldlXlts terminal pr(9'ans.,.

so •• fllr tr.sfffri"'l N .. ., OINr CDmputlr.

SIl$fmphony addsasacoml~ SIlc:l-iplllyour 14. la
ni.., .. OIIaIIlod 111,.., I'0Il OI .. pifiocl
"'slllpooidoawhalontlfdimoni"'inlOUrd·e"i"~
ofpoilic n ""'''''';S,imporlIlDlllts, O'usoeom,..to!s ..
lI11s< Sfstom bo4* n SD eclilXlt'lIIc:rIil' OI,.M 11M .. music.

JillyDOSI28 0(1280 ~.\l:S. MIInr;...RCUs$2U5
..... ,. , "

geo::MaJ(gf.Boot

galoWay 64 $21.85 • galoWay 128 Utl5 SlWIlft (Carl) 131.85. SWlFlli* ClIbIe SU5 SIl CaIIrilg. 131.15· Can1Ut~ lIusic!b* $2U5
galiWay 641128 Combo $44.tS • ~: $5.00 ShIppI,.: US: SUO (CarQ, • .oo (CIbio), P.50 (8otII ~: US: $8.00 (Carl), • .00 (Bock). P.50 (BofI) .

geoMakeBoot makes bootng GEOS from nearly all devicl6l11d making back-l4l copies ci the GEOS boot disk easy and converiett. Besides
corrpatit:le with vinually aI CBM CO!T'paIibIe dElYices, geoMakeBoot also elirrinates the need for installing some desk acC8SSOlies and SI.4JPOI'IS
Hard Drives, RAMlink lIId RAt.()rive. geoMakeBoQt is sinop., inexpensive and easy to use. g.oIIakeBoot Sl U5 + SUO Ihlpplng

Ordering Information and Shipping Charges
CliO Haid 0.; ... : c......., us: $25.00 1* drilll (UPS grOllld), $35.00 (2IO-O.y), $45.00 (Nul·lny). Conadt: S5ue (AiIInaiI). COO III u.s. ~ 15.00 add'! chargo. Foreigrl picM: ~ Sl00.00 \I U.s. AoIoi PIioo
Jill-JOOS: ~ SS.58 I'll (l.PSgrOllld), "0.00 (2rO-Oay Nr), 1*4'5.00 lor APO, FI'O, N<, fI.IflllCaNcIa, or $15.00 lor No add'! shiwiru lor<looecl willi 1''1'1l000i COO'IIIt:lI SS.9G

. ;, RAilt lit.: us: $I2."!LPS), $.20.00 (am clay), COO add $5.00. Cwda: $23.00. Foreigrl: CALl
. :,> AAtiDri¥o: us: $8.SO flJ'Sj, "'.IICI (2nd clay), COO add 15.00, Cwda SI8.00,RDX Sill8lY add $3, Fo, :aiII

Poymeli: MArtsidorDlIIII s.. saM I.,,- We accopl VISA, MasllrClrd,Monty Clrda",C.O.D., ItI'dper$llllllchecks(1Iow 3 lor porsonoIc:hoc:ks 1oeN). CIoIiIcanI prcMdt tit fallowing:
:.:.:.1:.' COllI haII:Ion -, ... addrtss, hornWaoork phone, cord "., ion cIalo and i~ bar*.

Canadi.n CUslOlnil$ can now contact HOLZ COMPUTER SUPPLY, Box 47008, Dover P.O., 3525· 28th !we., SE, CagalY, Alberta, Canada T2B 3B7 Phone: 403·272·1888 Fat: 04tQ3·272·2010 . 'I . WE VER)F.Y ALL CREDIT CARD INFORMATION AND PROSECUTE IIDVIIUALS ATTEIIPTING TO PERPETRATE FRAUD·

Creative Micro DeSigns, Inc.
15 Benton Drive,P .O. Box 646
East Longmeadow, MA 01028

::.: .. :.: ... : .. :.:

ORDERS ONLY: 1-800-638-3263
Ou~~rt: 1-413-52~ • FAX: 1-413-525-0147 • BBS:

• Office Hours: 10 am -5 pm Mon.lhru Fri •

----~~-------,-------........ ----~--.~-.------~----~-------~.-~-

TWIN CITIES 128 ISSUE #32 - JULY 92
THE COMMODORE 128 JOURNAL

Table Of Contents Page # Author

HARDWARE
Internal Function Ram •.••••••••............ 14 Richard Curcio

REVIEWS
Recipe ' 04
Easy List O~

SOFTWARE
as PLUS .•..••............•.•............•.. 05
Turbo Charging CP/M ... ~•............. 23
Calendar & Memo Writer •...................• 36

ARTICLIS
Dr.Octal 13
Servicing the C-128 Keyboard 21
News •••.•••.... ~•................• 25
Geos M.L. Programming•................. 32

ADVERTISERS
·CMD ••••••••••••••••••••••••••••••••••••••• ~Ol
JD's Computer Supply 04·

MISC.
Cover- ••••.•.•.•••.•••••.••...•••.•...•••.•.. 01
Class (y)' Ads ...•......... '•...... ,• .: 30
Legal notices, Submissions,
Right to use, Ad rates•....... 31
Subscriptions 31
Checksum 128 Program ...•................... 39
Mailing Page 40

staff·
staff

Mike Gilsdorf
Steve Goldsmith
Ronald Robert

JBEE & various
Dave Farquhar
staff
Robert Knop

Publisher: Parsec, Inc. Edi tor': John Brown other Authors: Tom Adams

Twin Cities 128~s P\lblished and Copyrighted 1992 in whole by
Parsec, Inc .POl\l11 Salem, MA 01970-0111 USA All rights re~erved.
PARSEC's Telephone number 1-508-745-9125 (9-5 EST Mon - tri Answering
Machine/Voice) (10-2 EST Tues/Thur - voice support when availClble) ,

We can be contacted online:GEnie = C128.JBEE (everyday) CIS = 70661,443
(once a month). Twin Cities ,128 is done completely, except some ads,
on a ~-128 using ,P~perclip, Lii (text), Geos (graphics;), and custom DTP
softw~e. Our dat~§8.<~is _run ?n ,~cC~12,8 ~sing our own custom ~ritten
database software • pages are.9Utput .f~9ln ,a C-.l~8t.Qi.a laser pr~nter.
This Ufazine::UJ~~uce~"fX'6n(start t.9· flnisn.'on C~128 computers and
weareprolldof'it!

This magazine is dedicated to m}"mother.towhom I gratE!fuliy owe, all my.
successes &ndfailures.

Twin Cities 128 Page ,0.3 ISsue # 32',

RECIPE 128
A software review - staff

HOME COOKING WITH
HOME SPUN SOFrWARE.

Recipe is a program that comes to you on five
disks an,d it is for the C-128 in 80 column mode.
Each disk covers one area. There is a disk for
"Breads", "Desserts", "Entrees", "Vegetables", and
"Odds 'n' Ends". There are 50 recipes on each
disk, enough to give the novice cook a good start.
You have room to add your own favorite recipes.
Each disk comes with its own loader program.

At the beginning you are faced with the
opening screen and a menu bar across the bottom.

FI = List - Will list the 50 recipes on the disk.
You cannot cursor to the recipe and have it
displayed but must use F2.

F2 = View - Is the next option and you enter the
code of the recipe such as v-5 for the fifth
recipe on the vegetable disk.

F3 = Print - I couldn't get this option to work.

F4 = Write - Lets you write your own recipe and
add it to the disk.

F5 = Bdit·- Gives you the option to edit any of
the recipes on the disk. Either the ones that
came with the program or ones of your own.

F7 = Quit - You are cautioned to always use this
key to exit the program to avoid possible me

,

errors.

HELP = Help - This is another key that didn't work
possibly because of my configuration.

The quality of the recipes are on the whole
pretty good. Most are rather simple to make like,
Double Crispy Chicken, Dill Spiced Carrots, Lemon
Mutfins, Escalloped Potatoes, and Prize-Winning
Apple Pie. Pardon me while I go eat.

In the Odds'n' Ends category there are recipes
for Potato-Celery soup, Cantaloupe Motlsse, and a
Shake and Bake mixture. The recipes are quite
good and simple to make with this data base.
(continued on page # 9)

Your Source for Top Quality Disks and
Accessories - Free Shipping*too!

Diskettes
3-1/2" DSDD (30 ct)
3-1/2" DSHD (15 ct)
5-1/4" DSDD(30 ct)
5-1/4" DSHD (15 ct)
Disk Holders
3-1/2", Holds 40

Buy TWO. for only
5-1/4", Holds SO

Buy TWO for only

29.95
27.95
16.95
17.95

5.95
10.95
6.95

11.95

JD'-tCc~~
P.o. Box 873, Pearl City, HI 96782-0873

fiuw:
20# One-Part Printer Paper, 2500 ct 29.95

To Zip Codes 001-799 add an add'i 10.00
18# One-Part Printer Paper, 3000 ct 32.95

To Zip Codes 001-799 add an add'i 10.00
Carbon less Two-Part Paper, 1500 sets 42 . 95

To Zip Codes 001-799 add an add'i 10.00

Miscellaneous
Surge Surpressor 38.95

Ask about our Special Fundralslng
offer for User Groupsl

._--------------------
• Free shipping available 011 all prepaid orden or $30 or more. COO IIId orders on accounl will be billed aclUal shipping costs. PIe_ allow 14-21 days ror our rree

shipping .ervice, 5-7 days ror COD and acCOlDlt orders. UPS 2nd Day Air IIId overnight delivery (10 some \ocarions) are available at additional cosl nawaii
residents add 4% In. Shipping 10 APO/FPO, AK, GU. PR will be billed al actual COIL All products are 100% guaranteed. Not responsible ror !ypOgnIphical errors.

Twin Cities 128 Page 04 Issue # 32

OS PLUS
By Michael Gilsdorf

Change th~ Default Drive,
Display a Drive Prompt,
and More!

OVERVIEW
OS Plus is a simple time-saving routine whose

purpose is to make the C-l28 easier to use when in
direct mode. Written entirely in machine
language, it is designed to work with both
JiffyDOS and non-JiffyDOS systems, and provides
some of the same features commonly found on other
operating systems such as CP 1M and MS-DOS.

Some features of OS Plus are based upon the
conceptofa default drive. A default drive
provides you the convenience and freedom of not
haVing to type in device numbers. every time a
command is entered. The C128 uses this feature,
but unfortunately, it won't allow you to change
the default.settings. It always defaults to .
device 8 for BASIC 7.0 commands, and device 1 (the
cassette) for BASIC 2.0. JiffyDos, on the other
hand, does allow you to specify the default drive,
but it only affects the JiffyDos commands - not
the standard Basic commands.

A Partial solution to the problem is to
replace the device number in commands with
PEEK(l86), or if you own JiffyDOS, with PEEK(l90).
For example, the command:

key 3,"directory u(peek(l86»" + chr$(13)

will program the F3 key to display the directory
of the last device used. This technique will not
work though, if the last device was not a drive,
and it can be a little awkward at times if you
need to add. file· names or edit the command string,
Furthermore, if the command you want to use isn't
assigned to one of the ftaIlction keys, using
PEEK(l86) provides no real benefit in terms of

. reducing the number of key strokes.

OS Plus overCOD1,C8 these limitations by
allowing you to specify and change the default
driveJor all the drive related BASIC commands:

append backup bload boot bisave

cataloa collect coneat. copy de lear

dclose directory dload dopen . dsave

dverify header· load open rename

run save , scratch verify

Twin Cities 128 Page 05

Now, when a device number does not appear in
the command strin& Basic uses whatever default
drive you specified. This feature is only active
when the computer is in direct mode. That way, a
program that is running will not have its
operation accidently altered; Additionally, any
attemptto use the cassette will be redirected to
the defaWt drive.

OS Plus makes it easy to specify which drive
Basic should use as the default. Simply type the
drive letter followed by a carriage' return, and OS
Plus will change the current default drive
~etting. Each letter corresponds to a different
device number (e.g., A";S, B = 9, etc.). Since legal
device nwribers for drives r~ from 8 to 30,
valid drive letters are A to W.

OS Plus also provides a new informativCf
command prompt. When the computer is ready to
accept a command, instead of displaying a
"READY.", OS Plus now displays the default drive
letter followed by the error message associated
with that drive.

A> 00,0K,00,00

The prompt serves both as a reminder ohhe
current drive so you do not accidently send a
command to the wrong device, and it eliminates the'
need to Print DS$ when an error occurs on the
default drive. If the drive's error light should
flash, OS Plus will automatically read and display
the error message. It always ensures the DS$
error message is read from the default drive'-
even after using a BASIC 2.0 command. Moreover,
you can redisplay the prompt anytime by merely
pressing the return key on a blank line.; To
better illUstrate how the default drive ,feature
operates, suppose the following command is
entered:

B> 00, 0K,00,00

directory u10: directory

After the command is issued, the directory for
device 10 is displayed followed pythe directory
for device 9 (thedefatdt)::When the prompt
reappears it displays tbe ettor message of the
default drive:

B> 00,0K,00,00

Issue #32

•

If an error had occurred on device 10, it can
also be displayed by simply changing to drive C"
and reading the error message.

Besides providing anew command prompt and
programmable default drive, OS Plus also
reprograms the HE~P key so it redisplays the last
command line. This feature too is found on MS-DOS
systems (i.e., the F3 key). Now if the previous
command is no longer visible on the screen, you
can,display it again with a single key stroke,
edit it if you like, and re-execute it.

Lastly, OS Plus makes it easier to indent a
line of Basidext. As most of you know, text can
be indented by typing a line number, a shifted
character, and then spacing or tabbing over to
where you wish the text to begin. After you press
the return key, the text remains indented when
it's listed. However, this procequre requires an
extra key stroke, and if you edit the line, you
have to remember to retype the shifted character
again, otherwise you will loose the indentation.
OS Plus eliminates the need for a shifted
character or colon.

Sound like a lot of programming? Well
surprisingly, it's all accomplished in less than
256 bytes! As you will see, we will be relying
heavily on the ROM routines to do most of the work
for us.

PROGRAMMING OS PLUS
Except for a small patch to the CHRGOT routine

at $0386, OS Plus is designed to be wedged into
the operating system through the IMAIN vector at
$0302. Normally this vector points to the MAIN ,
routine in ROM ($40C6)which is executed right
after READY is displayed. MAIN's task is to
accept a command line, and determine if it is to
be executed immediately, or stored in memory as a
line of BASIC text. The BASIC loader (see program
listing) places OS Plus in the RS232 output
buffer, initializes a few free bytes at the top of
page zero, and then activates OS Plus by changing
IMAIN to point to its starting address of $ODOO.
Once OS Plus is finished executing, it returns
control back to the MAIN routine in ROM. The
purpose of the CHRGOT patch is to intercept the
drive related BASIC commands when in direct mode,
and have them use the default drive when no device
number was specified (or when the cassette was
chosen).

Now, let's look at how a drive prompt can be
generated. OS Plus begins by reading $BE and
seeing if it contains a valid drive number. If
not, the previous drive is used. It also makes

" sure the output device is not on the serial bus;
otherwise, a conflict may occur when we attempt to
read and display the drive's error message.

devchk

previous

outchk

lda $90

bmi previous

lda Sbe

cmp #$08

bcc previous

cmp l$lf

bcc outchk

lda $fe

ldx '$9a

cpx #$04

bcc readds

jmp skipmsg

;check status of current

;device

;if not present then use

;previous drive

;read default drive

;is it 8 or higher?

;no

;is it less than 31?

;yes, it's a legal drive #

;get previous drive

;get current output device

;is it on serial bus?

;no, read error channel

;don't display prompt

Once we have a valid drive number; the error

channel of the drive can now be read and stored as

DS5. If the device is not present, then the ROM

routine aborts and we trap,the condition the next

time around when the status is read.

readds sta $Ollc

jsr 59243

lda #Sbe

sta 504

lda 1$79

jsr 5f980

;set current drive

;setup to read new dsS

;set 10 byte address

;set hi byte address

;finish setup ,then jsrfar

;S79bc - read/save dsS

We have read the error channel and know the

drive is present, so now we can display the drive

letter and error message.

update lda $Ollc

sta Sbe

sta Sfe

;fetch current drive

;update default drive

;update previous drive

display clc

drive

skipmsg

adc 1t539

sta drive

jsr 59281

.byt 591

;change device number to

;a letter

;store it

;display prompt

,;eursor-up (overwrite

; Hready. 't)

.byt $41,$3e,520 ;"a> ..

.byt SOO ;end-of-string terminator

jsr 555e5

jsr $5598

;display dsS - error

;message

;carriage return

Twin Cities 128 Page 06 Issue # 32

, . . -

Before we begin writing the code to .have the
HELP key repeat the last command line, let us
briefly look at how to reprogram the HELP and RUN
keys using BASIC. BASIC 7.0 provides us With the
KEY command to reprogram any of the eight function
keysFl through FS. But it does not allow us to
reprogram the HELP or RUN keys - ordoes it? To
find out, let us examine the first few lines of
the KEY routine:

6081

60e4

60e5

60e7

60e9

60ec-6107-

jllr $87£4

dell:

cpx #$08

bcc$~OtJC,

jmp: $7d28

;read the key number

;decremant the key number

;by 1

;is the key number between

;0 and 7?

;yes

;dillplay "Ulilgal quantity"

; error

;program the key

The purpose of these lines is to ensure the
key is one of the eight function keys. U it is,
the,key~:~ogr~ed; otherwise~ atterror message
is ~:·~()W,.H these lines ue,by-passed,
then~.~,j~beJ' is not cheCkediand we can
prograuiikeJIELP and RUN keys too! Like the KEY
oom man4*wewillhaveto confine our strings toa'
m~UBlof 128 chanlcters, and the, key number must
be ~~~ a" range from 0 to 9. The RUN key is
. assigoed a:keynumberof 8, and the HELP key is
assiglled9. For example, to reprogrlilJll the HELP
key to display the drive error message, we simply
type:

sys24812"9,,,"print:ds$" + chr$(~)

Now,that we know tbeHelpkeycanbe
reprogl'ammedusiDgBasic, let us see how to do it
using machine languaae., The kernell'outinewbich '
progr.msa,functionkey,resides at $CCA2 via .
vector.$FF65 (PPKEY). So that the previous '
commandline will be displayed each time the HELP
key isi~wewill"Ve toprogram the key
each time a command line is entered. All that is
required to use PFKEYis to fill the CPU registers
With the information about the key we want to
program (i.e.,the~~ber. string length and
locati~): Thec:ontJMlJd string is always stored in
the iD.pUt'~_" pOinted toby$3D/S3E
('l'X'J'fl1l)~"";IhQ, fOU~ code programs the'HELP
key. .

,;"; ,

,'!'Win Cities 128 Page'07

findlen iny"

leia ($3d), y

bne.findlen

sty $fd

bpl keynum

null ldy #$00

keynum ldx #$0.

lda #$3d

jllr $ff65

bCII null

:iDitoializa .y regillt.er t.o

:$ffbefore ent.ering

;begin by finding lengt.h of

; coamand lIt.ring

; next., character in command

:1It.ring
:fat.ch charact.ar from input

; buffer

;if not and-of-line, keep

:lIearohing

) : lIave, lenat.h .of st.ring

;if lenath lellll t.han 128

;charact.ers, program key

;1It.rina too lons, progr.m
. ,;Jtey with null st.ring

:help kay nUllber+l

;address of lIt.rina pointer

;program t.he key (pfitey)

;if out. of memory, re-

;program key with null lIt.ring

Note: After returning from PFKEY the carry
status is set if the string was too large to fit
10 memory. 'If this occurs, BASIC normally
displays an error message. We do not want to
display an error message here though. since it may
be a source of confusion. lDstead,if the text is
too long to ,fit in memory, we will just reprogram
the HELP key with it null string.

The next feature we will program is the one
which will maintain the spaces between the line

I

number and the beginning of the text (i.e.,
indentation). Before we can write'the code, we
first need to find out· why these spaces are not
preserved. The problem can be found in the LINGET
routine at $5OAO. This routine uses the CHRGET
subroutine to read in a line numl;ler a digit at a
time, and convert it into two bexadedmal numbers.
Since CHRG:e;T skipsov~ spaces, any trailing
spaces whicbbappootofoUow_1ine number are
ignored. LlNGBT eada,wIaoa it finds the first
.non.,n1lll1Cric:cbar~"" it_a spac;:e.The
location.Qf ".ta~."lIfW4:by the text
pojoter (1'X.TP1'R)ia_l$E: Next, the CRNCH
routlDe atS430Ais ,c:a&d to tokenize the text.
Its first ,duty is 'to save the value of TXTPTR so
it knows were the BASIC text begins. But this
poiBter'<lotsnol'poiat'to the first space after
the line11UJDberanymore; instead it Points 10 the
first non-space charaeterfoJlowiDathe line
number!

.... ----.... ---

An easy way to solve the problem is move
TXTPTR back by using location $OA which holds the
number of digits in the line number. The
following code accomplishes the task.

jsr $0380 ;skip any. leading sp~ces,

;get first digit

ldx $3d ;get pointer to first digit

; of line number

;save text pointer stx $ff

jsr $5080 ;linget - change line number

;to hex and store

continue

clc

lda $ff

adc $Oa

cmp $3d

sta $3d

beq continue

inc $3d

;retrieve pointer

; add number of digits in

; line number

;any spaces after line

; number?

;save text pointer

;no spaces, then continue

;skip a.space

Now, let's look at how to change the default

drive. The code below is fairly straight forward:

ldy $fd

dey

bne iumed

lda ($3d), y

sec

sbc #$39

;fetch length of command

; string

;one character in string?

;no

;get first character

;change letter to number
jmp devchk ; check if valid, 'and change

;default drive

iumed jmp $4dd9 ;return to the main routine

;in rom

The last remaining item is to write the CHRGOT

patch that will intercept the BASIC drive

coumands. The following. code is placed at the

beginning of OS Plus to change CHRGOT so it

executes our patch whenever the computer is in

direct mode.

copy

ldy #$02

lda jump,y

sta $038d,y

dey

bpl copy

Twin Cities 128

;set to copy 3 bytes

;(jmp patch)

; ·fetch a byte

;copy it

;next byte

;if more bytes, continue

; copying

Page 08

Now when CHRGOT is entered, it gets a byte then

paases control to the patch below:

jump jmp patch

patch sta $fb ;save contents of .a

;register

lda $7f ;check for direct mode

bpl direct ;if direct mode, then

; execut'e patch

These next few lines restore CBRGOT so the

patch is not executed when a program is running.

copy2

sta $ff03

ldy #$02

lda $4286,y

sta $038d,y

dey

bpl copy2

jmp $0386

;bank 14

;set to copy 3 bytes

;(sta $ff03)

;fetch a byte

;copy it

;next byte

;if more bytes, continue

; copying

;execute a normal chrgot

At this point we know the computer is

operating in direct mode, so we need to check if a

Basic command has been issued which uses a device

number. This is done by checking the return

address on the stack, and seeing where the calling

routine originated.

direct pla ;get 10 byte address from

; stack

tay ; save it

pla ;get hi byte address from

;stack

pha ;put it back

These next lines look to see if a $A3~7 return

address was on the stack. If so . .' we know that a

BASIC·7.0 command is being executed.

cpy #$e7 ;is 10 byte address $e7?

bne basic2 ;no

cmp #$a3 ;is hi byte address $a3?

bne basic2 ;no

lda $be ; fetch default drive

sta $Ol1c ;set as current device

bne exit ; done - always exit

It is not a BASIC 7.0 command so let's see if

it is a BASIC 2.0 coumand by checking for a $91E5

return address on the stack.

basic2 cpy #$e5 ;is 10 byte address $e51

bne exit ;no

Issue # 32

,

1
1

•

j
1

j

cmp 1,$91

bne exit

cpx 1,$01

bne exit

ldx $be

stx $ba

;is hi byte address $91?

;no

;is device the cassette?

;no

;fetch default drive

;set as current device

These last lines restore the stack and register

contents, and then resume executing CHRGOT

exit tya ;retrieve 10 byte address

pha ;put it back on stack

ldy 1,$00 ; restore contents of

; . y register

lda $fb ;restore contents of

;. a register

sta $ff03 ; bank 14

jmp $0390 ;continue with chrgot

Well, that is it! The complete routine with
all the features programmed is listed below. It
is pretty much as we described it, except for some
additional code to duplicate a portion of the MAIN
routine and a little more to disable the prompt
after a Basic program line is entered.

Type in OS Plus using "TC-l28 Checksum" which
can be found elsewhere in this or a previous
issue. The checksum program occupies the same
position in memory as OS Plus, so be sure to save
OS Plus to disk before running it. Once you have
a working copy, you might want to include it as
part of your normal boot-up sequence. After you
begin using OS Plus you may fmd it to be one
utility you will not want to be without.

Questions or comments? You can reach me on
Q-LINK under the name "MlKEALL" or on GEnie
using "M.GILSDORF1". Until then ... Easy DOS it!

See the next pages for the "os plus.v1.0.src"
and "os plus.v1.0.bas"

RECIPE 128
Software review continued from page 4

Like 1 said 1 couldn't get the print function
to work, it may have something to do with my
configuration. The Servant, on a ROM chip, is
present on my computer. I tried to copy all the
disks to a single 1581 disk but you can not c,lo
that. You must use the 1541 disks supplied or a .
copy.

I '

In one way this is good, if you only want the
recipe for Soybean Sandwich Filling, you don't
have to wait for all the recipes to load. It
would be nice to have the program on a 1581 disk
though. It would also be great to be able to
cursor up to the recipe you want and have it
displayed on the screen with a < RETURN> .

Another problem is that the program is device
dependant which means that it must be in drive 8.
Why do programmers make their programs run only
from device 8 (1541s) or not recognize the fact
that the people that buy the most hardware are
also the people that buy the most software. Sorry,
if it does not work properly with our extra
hardware or frrmware, it will not work properly
with the readers' equipment either.

The seventeen page, unnumbered, dot matrix
printed manual says if you have filled up
one of your recipe disks the authors will supply
an additional disk for that category for $3.00.
Another minus.

I give this program a "C-". The recipes and
the concept are good but the form and packaging
needs work.

Buddy and Jo Anne Cowden
NCL Software 306 Highway 60 East
Dayton, TN 37321
$18.00 plus $1.50 S&H

EASYLIST
A Software review? - Staff

Easylist by Daniel Lee re-defmes your
function keys with this program.

F1, gets the directory of disk in drive 8
F2, loads the disk directory into memory
F3, prints the directory
F4, clears the screen
F5, lists a Basic program in memory
F6, sends a RUN command with a <RETURN>
F7, is "DLOAD"
FS is "DSA VE".

This a nice little program, but not worth any
money IMHO; It would make a nice type in as the
program is short, only 12 lines. For the person
just starting to use their computer this would
make I! gpod,a.ddition tQ the rest of the utilities.

1 • We believe the priCe is" $3 for the disk and one'
sheet of instructions. Daniel Lee,
1031-B Scott Street, San Francisco, CA 94115

Twin Cities 128 Page 09 Issue # 32

I .

PROGRAM NAME: OS PLUS.V1.0.SRC

kc

hd

19

eo

le

jf

ge

oj

hh

gm

gd

jf

df

mJ

jk

fl

bh

nb

cc

of

dm

ld

cm

cj

hf

cb

gp

em

hf

ek

fa

ho

df

op

gm

nk

eg

jk

1m

dm

ci

me

jk

if

gm

ok

ic

cl

bf

bc

ek

oi

jm

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

************ as plus vl.O ***************

******* by michael gilsdorf **********

******* copyright (c) feb 1992 **********

******* parsec inc po box 111 **********

******* salem rna 01970-0111 usa **********

os plus is designed to be patched into the main ($0302)

and chrgot ($0386) vectors. c128 mode only

features:

(1) allows default drive to be changed for all basic commands

(2) displayd drive prompt and error message

(3) help key displays last command

(4) supports indentation of text in basic lines

1180 * $OdOO ;assemble in rs232 output buffer, bank 0

1190

1200

1210 copy

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330 devchk

1340

1350

1360

1370

1380 chkmore

1390

1400 previous

1410

1420 outchk

1430

1440

1450

1460

1470

1480 immed

1490

1500 newcmd

1510 "
1520

ldy #$02

lda jump,y

sta $038d,y

dey

bpl copy

sty $3c

lda $fc

bpl skipmsg

lda $90

bmi previous

1da $be

cmp ft$08

bcc chkmore

cmp ft$lf

bcc outchk

tya

bpl immed

lda $fe

ldx $9a

cpx ft$04

bcc readds

tya

bmi skipmsg

jmp $4dd9

ldy $fd

dey
, 1

,
bne immed

;set to copy 3 bytes (jmp patch)

; fetch a byte

;copy it

;next byte

;if more bytes, continue copying

; (curlin+1)

;lYas a basic program line just entered"?

;yes, don't display drive prompt

;check status of current device

;if device not present, use previous drive

;defau1t device no.

;is it 8 or higher"?

;no

; is it less than 31"?

;yes, it's a valid drive no.

;illegal drive was entered

;previous device no.

;current output device no.

;is it on serial bus"?

;no

;don't display prompt

;back to main - execute cmd

;length of command line

;one character in string"?

;no

Twin Cities 128 Page 10 Issue # 32

---------------~----------------------------------

PROGRAM NAME: OS PLUS.V1.0.SRC

(continued from previous page)

hi 1530

la 1540

ga 1550

cj 1560

gd 1570

bp 1580 cmdchk

an 1590 noready

ib 1600

bm 1610 readds

pm 1620

jp 1630

mf 1640

00 1650

nd 1660

ih 1670

nb 1680

ko 1690

an 1700

de 1710

pj 1720

ji 1730 update

fa 1740

dl 1750

cb 1760

nk 1770 dislay

kg 1780

ee 1790

db 1800

fn 1810

io 1820 drive

he 1830

lc 1840

ie 1850

ig 1860

om 1870 skipmsg

dc 1880

me 1890

pl 1900

ge 1910

mc 1920

In 1930 indent

mn 1940

cf 1950

fd 1960

ia 1970

bn 1980

nl 1990

fj 2000

11 2010

bj 2020

da 2030

la 2040 setmsg

ef 2050

lda ($3d) ,y

sec

sbc #$39

jmp devchk

bne newcmd

jmp $4dba

sta $Ollc

sty $fd

jsr $9243

lda #$bc

sta $04

lda #$79

jsr $f980

ldy $fd

bmi update

jsr $4d2a

lda $Ollc

sta $be

sta $fe

clc

adc #$39

sta drive

jsr $9281

.byt $91

.byt $41,$3e,$20

.byt $00

jsr $55e5

jsr $5598

jsr $4f93

jsr $7923

jsr $0380

pha:php

bcs setmsg

ldx $3d

stx $ff

jsr $50aO

clc

lda $ff

adc $Oa

cmp $3d

sta $3d

beq setmsg

inc $3d

stx $fc

Twin Cities 128

;get first character

;change letter to number

;check if valid - change default drive

;check for drive change command

; back to main - no "r eady ." prompt

;set current drive

; save . y flag

:setup to read new ds$

;set 10 byte address

;set hi byte address

;finish setup, jsrfar $79bc - read/save ds$

:was a drive change command issued"?

;no

; display: cr "ready.' cr

;fetch current drive

;update default drive

;update previous drive

;change device no. to letter

;store it

;(bprimm) display prompt

; cursor-up to overwrite "ready."

;"a> "

;end-of-string terminator

;display ds$ - error message

;cr

;(inlin) input line of text

;save.x=txtptr($3d)=$ff save.y=txtptr+1=$01

;(chrget) skip leading spaces, get 1st char

;save .a and .p

;1st char not a number - not a program line

:get pointer to 1st digit of line number

;save text pointer

; (linget)change line # to hex,rtn.x=O.y=O

;retrieve pointer

:add number of digits in line number

; any spaces after line number"?

;save text pointer

;no spaces, then continue

;skip a space

;set message display flag

Page 11 Issue # 32

PROGRAM NAME: as PLUS.V1.0.SRC

(continued from previous page)

ie 2060 dey

fp 2070 find1en iny

hh 2080 lda ($3d),y

em 2090

be 2100

11 2110

11 2120 null

dl 2130 keynum

ck 2140

en 2150

j1 2160

ln 2170

of 2180

bb 2190

nj 2200

of 2210

jb 2220 jump

lh 2230 patch

pp 2240

ie.2250

bh 2260

cd 2270

bk 2280

kj 2290 copy2

gi 2300

gg 2310.

ae 2320

gj 2330

gi 2340

gp 2350 direct

bg 2360

be 2370

hg 2380

jd 2390

ik 2400

gp 2410

jf 2420

ea 2430

pm 2440 basic2

ca 2450

jp 2460

de 2470

ih 2480

ei 2490

ao 2500

co 2510

op 2520 exit

nn 2530

c1 2540

dm 2550

dg 2560

ep 2570

em 2580

bne findlen

sty $fd

bpl keynum

ldy 1F$00

ldx 1F$Oa

lda 1F$3d

jsr $ff65

bcs null

plp:pla

bcs cmdchk

jmp $4de5

jmp patch

sta $ib

lda $7f

bpl direct

sta $ffG3

ldy 1,$02

lda $4286 .. y

sta $036d,y

dey

bpl copy2'

jmp $0386

pla:tay

pla:pha

cpy #$e7

bne basic2

cmp 1,$a3

bne basic2

lda $be

sta $Ol1c

bne exit

cpy 1,$e5

bne exit

cmp 1,$91

bne exit

cpx 1,$01

bne exit

ldx $be

stx $ba

tya:pha

ldy 1,$00

lda $ib

sta $ff03

jmp $0390

. end

Twin Cities 128

:set to $ff

;search for end of command line

;save length of command string

;if length < 128 chars, program key

;string too long so null it

;help key number+1

;address of string pointer

;program the key tpfkeYJ

;if no memorY,reprogram key with null

string

;retrieve .a and .p

;not a basic program line

;back to main - enter/delete basic line

;save .a

·;direct moqe"?

;yes

;bank 14

;set to copy 3 bytes (sta $ff03)

;fetch a byte

;copy it

;next byte

; if more bytes, continue. copying

;cqrgot

;get.lo byte address from stack

;get hi byte address from stack

;is 10 byte address $e7"?

;no

;is hi byte address Sa3'"

;no

:fetch default drive

:set default drive for basic 7.0

; Jump always

;is 10 byte address Se5'"

;no

;is hi byte address $91"?

;no

;is deVice the cassette'"

;no

;fetch default drive

;set default drive for basic 2.0

:restore stack

;restore .y

;restore .a

;bank 14

; continue with chrgot

Page 12 Issue # 32

PROGRAM NAME: OS PLUS. V1. 0 . BAS

mo 100 rem os plus v1.0

, en 110 rem by michael gilsdorf

kh 120 rem copyright (c) feb 92

kj 130 rem parsec inc pob 111 salem ma

01970-0111

mg 140 :

mb 150 d=peek(186): if d<8 then d=8

cc 160 for a=3328 to 3580: read b: poke a,b:

c=c+b: next

ka 170 if c<>29413 then print "error in

data statements": end

di 180 poke 190,d: poke 254,d: poke 252,255

: rem initialize

co 190 poke 770,0:, P9ke 771,13: rem

activate os, plus

bj 200 print "os, plus vl. 0 a~tivated"

fc 210 end

bg 220 :

gj230 data 160, 2,185,180, 13,153,141, 3

f1 240 data 136, 16,247,132, 60,165,252, 16

mel 250 data 100,165,144, 48, 13,165,190,201

gi 260 data 8,144, 4,201, 31,144, 5,152

01 270 data 16, 11,165,254,166,154,224, 4

ne 280 dat.a 144,24,152,48,72,76,217,77

ld' 290 data 164,253,136,208,248,177, 61, 56

oj 300 data 233, 57, 76, 23, 13,208,241, 76

ap 310 data, 186, 77,141, 28, 1,132,253, 32

ef' 320 data ' 67,146,11)9,188,133, 4, 169,121

oc 330 data 32,128,249,164,253, 48, 3, 32

gk 340 data 42, ,77,173,28, 1,133,190.133

fa 350 data 254, 24,105, 57,141,107, 13, 32

ah 360 'data 129,146,145, 68, 62, 32, 0, 32

bm 370 data 229, 85, 32,152, 85, 32,147, 79

jg 380 data 32, 35,121, 32,128, 3, 72", 8

jp 390 data 176, 20,166, 61,134,255,32,160

db 400 data 80, 24,165,255,101, 10,197. 61

ik 410 data 133, 61,240, 2,230, 61,134,252

jm 420 data 136,200,177, 61,208,251,132,253

ha 430 data 16, 2.180, 0,162, 10,169. 61

bi 440 data 32,101,255,17&',245, 40,104,176

ca 450 data 140, 76,229, 77. 76,183, 13,133

gp 460 data 251,165,127, 16, 17,141, 3.255

rie 470 data 160, 2,185,134, 66,153,141. 3

be 480 data 136, 16,247, 76,134, 3,104,168

hi 490 data 104, 72,192,231,208, 11,201,163

ce 500 data 208, "7,165.190,141,28. 1,208

np 51,0 ~~ta 16,192 • .a29,2il8, 12,201,145,208

df 520 'data 8,224" 1,208;4,166,190,,134

mk530 dat.a186,152" 72,,160, 0,165,251,141,

11 540. (lata ,3, 255 ,16';:~... 3

Twin Cities 128

DR. OCTAL'S
SHARP OPERATING TIPS

Tip #0001
Gateway & Switcher
From:JBEE
, One ofthe really neat things about gateWay
(from CMD) is the task switcher that you can use
under Geos. This is especially handy when using
geoPaint to paste a image from one geoPaint to
another OR even the same picture! '

Boot up Geos, run geoPaint, load your picture,
and hit the Escape key (saving geoPaint and the
document). Call this copy #01. Hit the Escape
key again saving the second copy. Call this copy
#02. Hit the Escape again. Now clip an area from
geoPaint - Copy #01. The area is now saved to
disk as a "scrap". Hit escape and enter Copy#02
and post the scrap in a new position or over
something else. This makes lining up graphics for
things like disk labels a snap! Keep pasting from
Copy #01 to Copy #02. This trick works because
Geos saves only one paint scrap to a disk,
replacing previously saved' scraps with newer ones
whenever you clip from a geoPaint. A note of
caution: try not to scroll too much and close both
copies starting with Copy #02.

Tip #0002
Handyscanner
From:J .Robbins

Use a flashlight over the green plastic window
of the Handyscanner 64 on those dark background
pictures with the first position set on dither,
between a 200 and 250% capture, bright arrow lined
up with the solid arrow, and contrast lined up
with the large end of the arrow. Then the dark
backgroWld pictures transfer almost exactly the
same as the Macpaints and Gifs do to geoPaint
(except the color of course). He reports a blue
ruter gives the best results. After seeing some
of his awesome geoPaints (digital captures) we
agree!

Tip #0003
C-1571
From:MikeMinnig

If you have a C-128D and other disk drives you
mu,st have been frustrated already by programs that
willilOt boot from any other device number except
#8 or by Geos that will not recognize more than
three disk drives or performs a swap with one of
(continued on page 25)

page 13 Issue # 32

INTERNAL FUNCTION RAM
By Richard Curcio

I.F.R. REVISITED V2.1
My Internal Function Ram project as it

appeared inTC128 #29 has problems. This project
allowed the C128 to have a Static Rani in the empty
sdcket reserved for a function ROM'or Eprom. The
circuit included battery-backup so the Static Ram
could retain its contents while the computer was
turned off.

I offer no excuses for not detecting the
p~oblems sooner. Instead, I offer a fixed and
(serendipitously) more versatile design, which
will, if you already have a ROM in the empty
socket, allow selection of it or the Static Ram,

, via a switch or software. The program for the
original project has been revised as well.

I apologize for any frustrations the earlier
project may have caused.

OBSTACLES
A detailed recounting of how the original

design was supposed to work and why I thought that
. all was well -- in other words, what I had
overlooked -- would take up too muCh space. The
older circuit won't harm the cm and will perform
as described -- with limitations. If I took the
time to explain those limitations, I'm sure most
readers would agree that they're unacceptable. So
let's just get right to the new circuit.

The Bank 4-7 configurations of the C128 select
. internal function ROM. In these standcu'd banks a
ROM or Eprom in socket U36 occupies '$8000 to $ffff
with a 4K gap at $d()()() for I/O. You can'tjust
plug a Static Ram (Sram) into the empty socket·
because 1) RjW is not present on the function ROM
socket and 2) when the Programmed Logic Array
(PLA) detects a WRite to what is supposed to be a
ROM location, the function ROM enable (called
/FROM in the P.R.G. schematic,) "goes away" and
system Ram is instead enabled and written. Since
the PLA won't permit writing to a ROM or anything
else in the U36 socket, the new design bypasses
the PLA. This is not as difficult as one might
expect.

Two signals from the MMU called MSO and MS1
tell the PLA to enable system ROM, external or
internal ROM, or system Ram. Wben MSO =0 and MS1

= 1 internal ROM is selected. The PLA considers a.
number of other signals in determining which
enable to generate. When RfW is low, thePLA
disregards the state of MSO/l. The new circuitry
removes R/W from the decision and substitutes the
"1" period of the two-speed system clock, which is
when the processor has control of the address and
data busses. The result is a nice, clean enable of
the proper duration.

THE CIRCUIT
Figure 1 shows the new design in a mix of

mechanical and schematic representation. The
static Ram is inserted in the 128's empty ROM
socket with its pins 1, 20, 27 and 28 bent out. A
74HC138 decoder receives MSO, MS1 and the 2MHz
clock on its inputs and its Y3 output enables the
Sram. This decoder MUST be an 'HC part if
battery-backup is included. The Sram and the
'HC138 are powered by the computer's + 5 volts OR
the battery. If you choose to omit the battery and
diodes, insert the Sram's pin 28 into the socket
and connect pin 16 of the 'HC138 to + 5 volts.

The Sram's Write Enable input /WE connects to
FRfW, a ReadfWrite internal to the 128. (It's
called RfWA in the SAMs schematics.) It does not
appear on the expansion connector, so an REU or
other external device cannotpull it low and alter
the Sram.(An REU-initiated WRite to what is
supposed to be a ROM bank will simply
"fall-through" to underlying system Ram, leaving
the Sram untouched.) In the low-proftle 128, FR/W
is available at pin 1 of U57, inside the video
box, w~ch is quite close to the empty ROM socket.
In the 128D, this signal is at pin 3 of U61, near
the left side of the main circuit board and also
close to the empty socket.

The nearest point to get the 2MHz clock on the
low-proftle 128 is at pin 4 of U22, the 80 column
controller, which is also inside the video box. On
the 'D, different versions of this chip have 2MHz
on different pins. For certainty, obtain this
signal at pin 1 Qf the 8502 microprocessor, U6.
MSO and MS1 are at pins 18 and 17 respectively of
the PLA, UU, whichis located at center front of
both the low-proftle and 'D. (Although they are
rare, there are 'Ds in existence that use a
low-proftle mother-board. For a positive
determination, count the nWDber of dynamic Rams at
the front left of the board. Sixteen 16-pin ICs
indicates a low~proftle board, while four 18-pin
chips means you have a true 'P.)

Twin Cities 128 Page 14 Issue # 32

..
i

4

j , ,

Because the pin-out of the Sram is slightly
different from that of a ROM or Eprom, pin 1 must
be bent out and conneCted to address bit A14.0n '
my flat 128 I foundA14 at the feed-through
immediately to the right of the "2" of the
identifier "R32" near U32 and U33. On the 'D, A14
is at pin 27 of ROMs U32 and U34 or pin 18 of U42
(74LS244).

The~2K x8 static Ram could be a.62256, 43256
or 58256. For maximum battery life it should be a
low-power device (-L or -LP suffix,) having a
"standby" current consumption of l00microAmps.
Regular power Sramshave a standby current of 2
milliAmps,whicllis still pretty miniscule.

I in.stalled the 'HC138 in my low-profIle 128
by sticking it to the main board upside-down using
double-stick foam tape. Connections were made by
wire wrapping directly to the pins. Lithium "coin"
batteries are .available with solder-tabs, and
these can have wires soldered to theni. A holder
for tab-less coin batteries can be constructed
with two rectangular pieces of un-etched printed
circuit board; solder wires to the bare copper,
put the battery in between the two pieces and hold
together with rubber banqs and wrap the sandwich
with paper and more rubber bands. (Of course the
polarity of the battery is important, but the
diodes will prevent reversed polarity from .
damaging the Sram, 'HC138 or the computer itself.)
This can then be tucked behind·thevideo box or
someplace.where it won't flop around. In the 'D,
there's enough room for a holder for two AA cells.
These won't last as long as lithium, but they
should last their shelf life -- at least a few ,
years.

. Note that-the Sramin the U36 socket still
receives the PIA-generated IFROM on its Output
Enable (/OE) pin. Normally the PIA enables each
ROM via lOB. A write will therefore disable the
Sram output and that's fine; for the Sram, IOE is
"don't care" When /WE =0. (Certain other memory
ICs require that fOE =1 when /WE =0.) .

OPTIONS
Whentlle optional Write:Proted switch within

the dottC'dlines in figure 1 is open.FR/Wcan't ,
reacllthe Srar:n,.Use this to ptevent~J:cidental .'
writes to the Sranfor to fully emwate',hla. Eprom ..

The 10k resistor on the 'HC138 'B input
insures that the proper combination of inputs
causes output Y3 to go low, selecting the Sram. If

'B is made low by grounding it withthe optional
Select switth.,thetl:another Sram or an Eprom could
be selected by cOnnecting its /CS to Yl (pin 12).
One would think that, since the 128 has only one \
empty socket, this idea is mere theory. There are
ways to obtain the room for a second 28-pin IC,
but different methods are needed for the
low-profIle and 128D. These will covered later on.

TESTINGISOFTWARE
After installing the circuit, use the Machine

Language Monitor "m" command to display the first
page of the IFR: m 48000 < return>. You should $ee
random values. Cursor up to the m command and hit
return .• f ~y of the previously displayed) values
charlge, bank 4 is empty -- the Sram isn't getting
enabled; Turn off yo~ computer and find your
mistake. If the random bytes remain constant, fill
that first page with some value, say $55 or$aa:

f 48000 480ff 55

Now use the m command to confirm that the fIll
was successful. If it was, turn off the computer,
wait a few seconds, then power up and confirm .that
the battery-backed Sram retained the fill value.

Before your Internal Function Ram can be used .
from Basic, it must be initialized. Use the m1m .
Transfer command to copy the routines in the last

, page of system ROM to the same locations in Bank
4:
. ,

t fffiJ5 fff44 4ff05

CpIsor up and change the lOt" to a "c"
(Compare) and hit return. The mlm sho.uld print
nothing, indicating that all the locations match.
Now transfer the system vectors to the last six
bytes of Bank 4:

tffffa fffff 4fffa

IgDore the "?" that appears upon completion.
Yqu ~noWsafely a~ss your 1FR with P~
Poke;,}3LOAD, BSA VB and SYS. (Thetitlmsafely
accei$ed bank 4 before the initialization because
it diSables interI:uptsduring "m", "f', "t" and ..
"c".) Bear in,mind, hOWeVer, Poke and BLOADwill
also alter undedyibg syStem Ram (Ram 0 when Bank
4). Note also that thestandardlFRBanlcs ~Tand
U in~ude 1/0 in ~e $dOOO-dfff range.

'Program 1 is the loader for a Mover·which will '
transfer data to the IFR without altering the

Twin Cities 128 Page 15 Issue # 32

system Ram under it. It is designed to reside and
execute in the IFR. The ml can be relocated to a ,
different start address by changing the variable.
SA in line 200. SA must be between 32768 and
48924. Access the routine with

bank 12: sys sa, host bank, direction", host
start, host end, ifr start

You MUST use Bank 12, which includes the
Kernal and I/O. The host bank is system memory in
the standard Bank confIgurations; 0-3,14 and 15.
Banks 4-13 are not allowed. This restriction can
be bypassed. Direction is zero to move data TO
internal function Ram and greater than zero to
recall data FROM that Ram. The three commas must
be present. Host start and end are self
explanatory, while IFR start must be at least
32768. No address can be greater than 65279, as
that would affect the MMU registers at $ffOO-$ff04
and the important routines and vectors in page
$ff. As the routine moves data, it checks its
pointers and will halt the move and set the Carry
bit if either the source or destination reaches
page $ff. Carry is also set if either pointer
"Wraps" to zero page -- which theoretically can't
happen, but one never knows. Use the" RREG function
to test the Carry from Basic. The routine does not
detect if an IFR destination will write over the
Mover itself.

The Mover caIls the system INDSTA and INDFET
routines at their Ram 0 locations, instead of
through the Kernal jump table. Calling these
routines via the jump table is time consuming,
because the bank number is converted to a
confIguration value for each byte. To speed things
up, the Mover performs the host bank to
confIguration conversion just once. Also, to
access $dOOO-dfff of the Sram amodilled Bank 4
must be used because the standard Banks include
I/O in that range.

Because writing to the Sram also writes system
Ram, the Mover performs two loads and stores for
each byte moved to the IFR. First the byte in Ram
o "under" the IFR destination is read and stored
on the stack. Then the host source byte is written
to the IFR, changing Ram 0 in the process. The
byte on the stack is then restored to Ram O. In
this way, we do not lose the use of the underlying
system Ram. This is why Banks 4-13 are not allowed
as "host." If the "from" portion of the routine
were to move data to the IFR as host, the byte
under the IFR destination would be lost. The "to"

Twin Cities 128 Page 16

operation would work properly, but this' is a
"dumb" mover; if the source and destination are in
the same bank, and they overlap, the move becomes
a ftIl. If you really need to move data around
inside the IFR, and don't care about the
under-bytes, you may use Banks 4-13 as host by
calling the routine at sa + 27.

The "to'" portion of the Mover assumes that the
MMU Pre-ConfIguration Register at $d501 (PCRA)
contains its default value, selecting the Bank 0
confIguration when any value is stored in the
corresponding Load ConfIguration Register at $ff01
(LCRA).

I Ip.ust emphasize that writing to Bank 4 or the
other internal function ROM confIgurations enables
the Static Ram and system Ram simultaneously, a
very different situation than what normally occurs
when attempting to write to ROM. Any routines you
place in your IFR should not use the short-cut
method of writing to an internal function ROM
region to accomplish a write of system Ram that is
not at the moment visible. Use INDSTA. However, if
the optional Write Protect switch is installed and
opened, then the Sram is as unwriteable as a ROM.
or Eprom.

128DPLUG-IN BOARD
In a 128D, to have a choice of Sram or Eprom

in Bank 4, a board can be constructed to plug into
the empty ROM socket As shown in fIgure 2, socket
1 is intended to hold an Eprom. This ~hould be a
wire-wrap socket with "2-level" length pins. These
are long enough to allow the plug-in board to
clear the main board components that will be under
it; 3-levellength pins are acceptable, but longer
than necessary and you may have trouble keeping
them properly aligned. The perforated board should
have "pad-per-hole" copper plating so that the
socket can be frrmly soldered to it. Pin 20 of
socket 1 is cut close to the board so it does not
make contact with the corresponding receptaCle of
the main board U36 socket. The two other sockets .
could be solder "tail" or wire-wrap with the pins
cut as short as possible

Pins 28 and 1 of socket 1 bring + '5 volts to
the plug-in board, while pin 14 supplies ground.
Each pin of socket 1 is wired to the same pin of
socket 2 EXCEPT for pins 1, 20, 27 and 28. Pin 27
of socket 1 connects to pin 1 of socket 2 (address
bit A14). Pin 27 of socket 2 is the Sram Write

Issue # 32

Enable /WE and it gets wired to FRjW, either
directly or through the optional switch. Both
28-pin sockets continue to receive jFROM at their
JOE pins 22. Pin 20 of each socket gets wired to
the specified 'HC138 outputs. All other signals
from the main bOard can connect directly to the
plug-in or, better yet, through connectors and
pins so that the whole assembly can be removed
without unsoldering. There's a large hole in the
front of the 1280 chassis which will permit wires
from the plug-in to reach any switches you mount
on the fr()ntpanel. Other, smaller holes can be
used to secure a double AA battery holder using
twist ties.

To have a secQnd Sram instead of an Eprom, the
. simplest method. would be to plug it into socket 1
with its pins 1, 22, 27 and 28 bent out and wired
as shown in figure 1. As illustrated in figure 2,
the plug-in is somewhat roomier than absolutely
necessary, but about as roomy as it ought to get.

WW-PROFILE STRATEGY
To gain another 28-pin socket in the . '

low-profile 128 you need an Eprom programmer so
that the two 16K ROMs holding Basic and the
Machine Language Monitor can be combined dnoone
27256 32K Eprom. One ROM, U33, holds the Basic
interpreter from $4000 to $7fff (call it baslo).
The other ROM,U34, holds the rest of Basic and
the MLM (bashi; $8000 to Sbfff). The original ROMs
can be copied without removing them from the
system board by saving their contents to disk:

bsave "baslo", b15, p16384 to p32768 {end + 1)
bsave "bashi", b15, p32768 to p49152

Burn baslo into the lower 16K (0-S3fft) of a
200 nanoSecond 27256 and bashi into the upper 16K
($4000-$7fff). It's a good idea to label each
originall,lOM with the socket npmber it came from,
so they canbere-installed correctly, if needed.
(If your Eprommer software works only in C64 mode,
use the ,128 m1m to transfer bashi to $4000-7fff in
Ram 0, then BSA VE "BASHI", 00, P16384 TO P32768.
Ine64 mode load and burn each file separately.)

FJgUfe ~ showS,bOW linsta.lled this Basic
Eprom in my flat 128.'Oiode logic enables the,.
Eprom's 10E Wltefbaslo (label~ j R9M2i,lthe,.
P.R.G. schematic) OR bashi (/ROM3) go low. TheSe
'signalS are obtained at feed-through holes near
the sockets. (Note that the bashi feed-through is

. partially covered by the U34 socket.)

Additionally, baslo pulls the Eprom's A1410w,
selecting the lower 16K. The Sram can then be
installed in the U34 socket, and a function ROM or
ready programmed Eprom (if I ever get one,)
plugged into U36 with its pin 20 lifted and wired
to pin 14 of the 'HC138. I could instead install a
second Sram.

The Eprom could also be burned with baslo in
the UPPER 16K, and bashi in the lower, duplicating
the arrangement in 1280 Roms. In this case, the
feed-through connections would be reversed, so
that bashi pulls' pin 27 low. ,Incidentally, all 128
system ROMs have large areas containing $ff; that
is, unused. Once a ROM has been copied to Eprom,
the ambitious might consider burning their oWn
routines into these unused areas. Note that the
128 Kernal ROM must be removed from the computer
to copy it because 4K of Z80 start-up code is
"hidden" while the 128 is in 8502 native mode.
You'll need to use another 128 or 64.

SOFfSELECf
Since a logic 0 or 1 on input B ofthe 'HC138

allows a. choice of pins 12 or 14 as the device
enable, this can be accomplished via software,
instead ola switch. One possibility is to use a
Cassette control line. CASS SE~SE, which detects
when play jrecord on the Datasette is pressed, is
normally an input. It defaults to logic 1 on
reset. Connect this to pin 2 of the 'HC138 and,
when low, it will select whatever is connected to
pin 14 (Y1). The first time you want to change the
state of CASS SENSE you'll have to change bit 4 of
the data direction register at location 0: Poke 0,
Peek(O) OR 16 (or the ml equivalent,) does this
without changing the other ddr bits. Thereafter, a
o on bit 4 of location 1 will select pin 14 of the
'HC138 as the active output, while a 1 will select
pin 12. Use Poke 1, Peek(1) AND 239 for a zero bit
4, and Poke 1, Peek(1) OR 16 for a 1. (Note that'
some software, after manipulating location 1, may
not return it to the state in which it was found.
Be wary of programs that use custom characters in
40 columns or tinker with the VIC's Color Memory
blocks. All the system routines that 81ter
location 1 do so in a "considefate" manner.)

CASS SENSEis awilable at pin 26 of the 8S02
(U6) or fiDger 6 of the cassette connector. U
CASS SENSE == 1 selects Sram as the default Internal
Function device, you could Write an auto-starting
program that looks for a certain keypress on start

. up to keep the Sram or sele(:t function ROM, if
any. All of this assumes you will not be using

Twin Cities 128 Page 17 -Issue # 32

cassette storage.

Note that ground on input C of the 'HC138
selects pins 12 or 14 as active outputs.
Connecting Ginstead to another control line (CASS
WRT?) would allow pins 10 and 7 to select two more
Internal Function devices for a total of four!
This, I think, might be taking things a bit too
far, especially in the cramped quarters of the
flat 128.

PROGRAM NAME: IFR.MJVER. BAS

hn 100 rem written by richard curcio

di 110 remeopyright (c) 1992

cd 120 rem parsec inc po box 111

co 130 rem salem ma 01970-0111 usa

IDS 140

om 150. rem program name 'ifr.mover.bas"

nk 160

ek 170 rem *** initialize bank 4 ***

na 180 bank15:poke53274,0:rem irqs off

pc 190 fori=65285t065348 :rem ff05-ff44

ph 200 bank15:x=peek(i):bank4:pokei,x:next

1c 210 fori=65530t065535 :rem fffa-ffff

al 220 bank15:x=peek(i):bank4:pokei,x:next

mb 230 bank15:poke53274,241:rem irqs on

ck 240

jd 250 rem *** install ifr mover ***

hg 260 rem I!! destroys ram 0 bytes I!!

fd 270 sa=34000:rem relocating

kg 280 ifsa<48923andsa>32768then300

fl 290 print"bad address!":end

ek 300 ck=0:bank12

kf 310 fori=Ot0226:readd:pokesa+i,d:ck=ck+d

md 320 next

kj 330 ifck=29213then350

mc 340 print"error in data!":end

dp 350 x=sa+192:gosub420

mm 360 pokesa+38,1:pokesa+39,h

cc 370 x=sa+203:gosub420 .

hi 380 pokesa+166,1:pokesa+167,h

eo 39.0 print"ifr mover installed in"

de 400 print"bank 12,"sa"to"sa+226

bl 410 end

ng 420 h=int(x/256):1=x-h*256:return

ca 430 data 201, 16,144, 15,169, 15,162,125

jl 440 data 160, 40,133, 2,134, 3,132, 4

po 450 data 76,227, 2,201, 14,176 4,201

1m 460 data 4,176,233,134,207,170, 32,107

of 470 data 255,133,206,162, 11,189,192, 19

jo 480 data 157, 16, 1,202, 16,247, 32, 16

dd 490 data 1,132,172,133,173,.32, 16, 1

all 500 data 201,255,240,200,132,174,133,175

bp 510 data 32,183,238,176,191, 32, 16, 1

co 520 data 201,255,240,184,201,128,144,180

Twin Cities 128 Page 18

el 530 data 132,195,133,196,162,195,160,172

hd 540 data 165,207,240, 65,142,170, 2,140

bo 550 data 185, 2,160, 0,169,255,197,173

nb 560 data 240, 41,197,196,240, 37,162, 23

an 570 data 32,162, 2,166,206, 32,175. 2

ph 580 data 56,165,172,229,174,165,173,229

pb 590 data 175,240, 18,230,172,208, 4,230

b1 600 data 173,240, 8,230,195,208, 8,230

pg 610 data 196,208, 4, 56, 96, 24, 96,165

ji 620 data 207,208,201,240, 19,140,170, 2

jm 630 data 142,185; 2,162, 23,189,203, 19

19 640 data 157, 16, 1,202, 16,247,160, 0

kc 650 data 169,255,197,173,240,221,197,196

kg 660 data 240,217, 32, 16, I, 56,176,185

ek 670 data 32,221, 2, 32, 15,136,162, 6

kID 680 data 76,201, 2,141, 1,255,177,195

fm 690 data 72,166,206, 32,162, 2,162, 23

fh 700 data 32,175, 2,104,145,195,162, 6

jo 710 data 76,201, 2

PROGRAM NAME: IFR.SRC

db 1000 sys4000

da 1010

md 1020 ;written by richard curcio

ed 1030 ;copyright (c) 1992

no 1040 ;parsec inc po box 111

fk 1050 ; salem ma 01970-0111 usa

gd 1060

bp .1070 ;program name 'ifr.src'

hh 1080

ib 1090

ag 1100 ;power assembler (buddy128)

jf 1110

kID 1120 *= 884dO

kj 1130

be 1140 ;address 34000 decimal

In 1150

hk 1160 . bank 12

nb 1170

fg 1180 ;some assemblers might not allow a

dh 1190 ; rom bank. if so, assemble to ram 0

ad 1200 ;and use m1m to transfer to bank 4

pj 1210

jd 1220 .mem

an 1230

gm 1240 ;move to/from internal function ram

gp 1250 : in bank4 (normally eprom or rom)

cl 1260

ff 1270 :.a=bank (0-3,14,15), .x=O=to

ea 1280

pc 1290 setup cmp 1810 ;host bank <16

gc 1300 bec xcp ;yes

fo 1310

oe 1320 :call basic illegal quantity

Issue II 32

af 1330 ;using jmpfar

hm 1340

hk 1350 illgty lda #$Of

jf 1360 ldx #$7d

;bank15

; addr hi

;addr 10 lc 1370

hl 1380

oi 1390

pn 1400

im 1410

l1IIl 1420

en 1430 xcp

cj 1440

cg 1450

ml 1460

ob 1470 ok

nc 1480

hn 1490

ldy #$28

sta $02

stx $03

sty $04

jmp $02e3 ;jmpfar

cmp #$oe

bcs ok ;banks 4-13

cmp #$04 ;not allowed

bcs illgty

stx $cf ;save direction

tax

jsr $ff6b ;get config.

ce 1500 sta $ce ;store it

cg 1510

bj 1520 ;copy code to low end of stack

dk 1530

op 1540

ph 1550 cs1

ob 1560

bj 1570

ki 1580

he 1590

ib 1600

bn 1610

be 1620

oi 1630

pg 1640

jj 1650

np 1660

ja 1670

an 1680

lc 1690

ad 1700

elm 1710

mo 1720

do 1730

kn 1740

hb 1750 mlalt

hi 1760

oc 1770

gc 1780

gb 1790

If 1800

fe 1810

ldx ft$ob

lda stack1,x

sta $0110,x

dex

bpl cs1

jsr $0110 ;call it

sty Sac

sta Sad

jsr $0110

cmp fl$ff

;host start 10

;host start hi

;get host end

beg illgty ;page ff no good

sty $ae

sta $af

jsr $eeb7 ;start < end

bcs illgty

jsr $0110 ;get ifr start

cmp /t$ff

beg illgty

cmp #$80

bcc illgty ;<$8000 n.g.

sty $c3

sta $c4

ldx #$c3

ldy II$ac

lda $cf

beg movto

;direction flag

jb 1820 ;move data from into func. ram

gi 1830

ae 1840

dj 1850

ke 1860

stx $02aa

sty $02b9

ldy #$00

;indfet pointer

:indsta pointer

in 1870 movfr lda #$ff

Twin Cities 128 Page 19

op 1880

jb i890

am 1900

kf 1910

fm 1920

bl 1930

fn 1940

fd 1950

gk 1960

de 1970 cbump

ao 1980

if 1990

kn 2000

mk 2010

kd 2020

nf 2030

nh 2040

cmp Sad

beg fferr

cmp $c4

beg fferr

ldx #$17

jsr $02a2

ldx $ce

jsr $02af

sec

lda Sac

sbc $ae

lda Sad

sbc $af

beg exit

inc Sac

bne zzzz

inc Sad

;page $ff n.g.

; bank 4 , no i/o

;do indfet

;get dest cnfg

;do indsta

;compare Sac/ad

;to $ae/af

;reached end

; increment pntr

ob 2050 beg fferr ;$ad rolled over

ch 2060 zzzz inc $c3

jf 2070 bne dtest

jm 2080 inc $c4

kj 2090 bne dtest

bm 2100 fferr sec

gm 2110 rts

hc 2120 exit clc

ia 2130

jp 2140

rts

;rolled over

; complete move

bh 2150 dtest lda $cf ;direction

pl 2160 bne movfr

ji 2170

mh 2180

beg mov2

hl 2190 ;move data to into func. ram,

aj 2200 ;preserving underlying data,

ii 2210 ;byte by byte

op 2220

fb 2230 movto sty $02aa ; indfet pointer

;indsta fk 2240 stx $02b9

ga 2250 ldx #$17 ; copy to stack

mo 2260 cs2

kj 2270

ob 2280

hh 2290

dp 2300

gi 2310

md 2320 mov2

ld 2330

ff 2340

na 2350

gj 2360

ig 2370

ei 2380

jk 2390

ce 2400

ho 2410

lda stack2,x

sta $0110, x

dex

bpl cs2

ldy #$00

lda #$ff

cmp Sad

beg fferr

cmp $c4

beg fferr

;page $ff n.g.

jsr $0110 ;stack code

sec

bcs cbump

Issue # 32

li 2420

ao 2430 ;these routines are moved to the

ci 2440 ;low end of the stack as needed.

ng 2450

kd 2460 ;the first sets bank 15, calls

en 2470 ;basic expression evaluator, sets

og 2480 ;bank 12 and returns

po 2490

ph 2500 stack1 jsr $02dd ;part of jsrfar

; . y=lo, . a=hi

;bank 12

oc 2510

fb 2520

cl 2530

da 2540

jsr $880f

ldx 1~$06

jmp $02c9

mm 2550 ; this code moves data from host

fn 2560 ; to into funct . ram, preserving

ca 2570 ;ram 0 bytes

fj 2580

hf 2590 stack2 sta $ff01 ; lcra=ramO

hg 2600

da 2610

fg 2620

ah 2630

cp 2640

dg 2650

nl 2660

me 2670

pc 2680

gc 2690

me 2700 .end

+5v

ida ($c3),y;get byte

pha ;save it

ldx $ee ;host config.

jsr $02a2 ;indfet

ldx #$17 ;bank4 , no i/o

jsr $02af ;indsta

pia ;restore byte

sta ($e3),y;to ram 0

ldx #$06 ;bank 12

jmp $02c9 ;& rts

cs J:
~o

cz:
COCl:

at)(1.1
~~ W'=

NS
(!'len

:l volt
+

lithium I
Resistor = 11 'I Watt baue"" '"

1 Rev 2.01 Diodes = lN91'1 Of IN'Il'18

* = See teHt
~ --. -----------. -----. -

Figure 1
Internnl Function RAM

R.C.'92

Twin Cities 128

Cut

Figure 2
Plug-in boord for 1Z8D.

A1-4

Page 20

· · · . o. Room to(oOoo.oOo.

:: coin bC1tte(l.~ : : :
• .o. o. & holder ... o. .. o.

R.C.'92

U:l6, pin 22
'HC1:l8

r----:: S-RAt1 ~
r- EPROt1 --,

vpp 1 28 Vee
A12 2 27 A1-4 WE

A7 :l 26 Al:l
A6 -4 25 A8
A5 5 2-4 A9
A-4 6 2:l A11
A:l 7 22 at
A2 8 21 A19
Al 9 20 CE CS
A9 10 19 07
09 11 18 06

-01 12 17 05
02 1:l 16 0-4

Gnd 1-4 15 O:l 4 L- l1lS6 -l ~ 41lS6. 6llS6
S8lS6

Figure 4
pin ossignments

Issue # 32

SERVICING THE C-128 KEYBOARD
by Dave Farquhar

DISClAIMER
This modification will render any warranties

on your equipment null and void. The Author and
Publisher do not assume any liability for
Purchaser's implementation of these instructions.
All information is believed to be accurate.

SERVICING THE C-128 KEYBOARD
Traditionally, Commodore microcomputers have

been extremely reliable. The C-128 is no
exception. However, nearly every computer,
Commodore or otherwise, eventually develops
problems with its keyboard, because it is exposed
to the elements much more than any other
component.

Such failures are usually caused by dust
accumulation on the printed board, a film
developing on the conductive rubber pads of one or
more keys, or a combination of the two.

When you fall victim to this problem, you
have several options. You could take the machine
to the local service center, if there is one, for
repair. But, this can be time-consuming and
expensive. You could replace the keyboard, but
C-128 keyboards can cost you $70 or more, if you
can fmd one. This price is outrageous when you
consider that Radio Shack sold surplus C-16
keyboards for years at $4.95 a pop. The last
option is to service the keyboard yourself.
This is not as monumental a task as it first
seems. Usually, it can be done in 20 minutes or
less, at a very low cost using household items.

You will need the following materials:

Flathead Screwdriver
3/32" or 2.4 mm Phillips screwdriver
3/16" or 3 mm hex socket
3.8 mm Phillips screwdriver
Soldering iron
3 containers
Cotton swab
Isopropanol or Rubbing Alcohol
Pencil Eraser

If you cannot match the screwdriver or socket
sizes exactly, don't worry about it, the sizes are
approximate. Also, if you do not have a Phillips

Twin Cities 128 Page 21

screwdriver that fits, a flathead will do, but be
very careful not to strip the screw's head.

It is best to read these instructions at least
once before attempting this project, and it is
probably best not to undertake it until failure
arises. This is not a difficult project, but I
feel that the old adage "If it ain't broke, don't
fix it" applies here.

This project should be undertaken on a
relatively dark surface, such as a dark table
cloth or bedsheet, so as to make it harder to lose
the screws. This is because sheet metal screws
are tough to fmd on a light surface because the
screws themselves are light in color.

The first and most difficult step is actually
opening the keyboard of the flat C-128. First,
unplug the power supply from the wall outlet.
Next, unplug the power supply from the computer.
Remove the screws on the bottom of the machine and
put them in one of the containers for retrieval.
Then, insert the flathead screwdriver near the
place where the seam angles. Gently pry out on
the lower half of the case, while simultaneously
prying in on the top half. The case should then
separate fairly easily.

The keyboard is bolted to the top half of the
case, and attached to the motherboard via a
grounding strap and a "D" connector. Unscrew the
grounding strap, and gently unplug the keyboard
with a rocking, upward motion, being extremely
careful not to bend or break the pins. Set the
lower half of the case aside.

Before proceeding further, it is a good idea
to now plug in the soldering iron, so it will be
ready when you need it.

Next, using the hex socket, unbolt the
keyboard from the top half of the case, being sure
to keep track of the bolts and their plastic
washers. Set aside the top half of the case. You
may wish to use a socket wrench for this, but I
fmd it just as easy to grasp the socket between
two fmgers and turn it that way.

There are several methods to the actual
cleaning, presented below.

The slowest but most economical and most
thorough method involves a complete disassembly.
Gently remove the many tiny screws on the lower
surface of the keyboard, being extremely careful

Issue # 32

not to lose them. Take your time, as the screws
are very easy to strip.

You will notice that 3 keys on the board have
soldered connections: shift lock, caps lock, and
40/80 display. You will need to de-solder these
before you can disassemble the keyboard any
further. If you are uneasy about using a
soldering iron, you could clip these connections
with wire cutters, but you will lose use of those
3 keys. The desoldering process is simple: hold
the flathead screwdriver beneath the wire, touch
the soldering iron to the connection, and pry up
with the screwdriver as soon as the solder melts.
After all 6 connections have been detached, the
keyboard easily lifts away from the printed board.

Examine the printed board, especially the
areas beneath whatever keys have been
malfunctioning. Clean any offending areas with a
cotton swab soaked with alcohol. Next, examine
the rubber pads of the keyboard. A like-new pad
will have a slightly dull fmish. If the computer
has been used in the vicinity of smokers,
humidifiers, or fIreplaces, they may have
developed a nonconducting fUm on them. Clean any
offending pads with a pencil eraser (do not do
this to all of the pads, as it would be time
consuming and would expose them to unnecessary
wear). Personally, I like the Pentel "Clic"
erasers, available in many college book stores,
because they are very thorough yet less abrasive
than most erasers, but any eraser should do.
Simply rub the eraser on each pad until its
surface is dull.

A second, less ambitious method simply
involves running the entire keyboard under hot
water for a few minutes and blow-drying it. This
will work, but may not eliminate the fUm on the
rubber pads. Also, if your community has
particularly hard water, you could be subjecting
your keyboard to excess mineral build-up, although
. probably not enough to cause serious problems. Be
sure the keyboard is completely dry before
reassembly.

Another method simply requires soaking the
entire keyboard in an alcohol bath. This
procedure is thorough and faster drying than
water, but the alcohol could wash off the key
designations, or possibly damage the plastic. It
also may not be enough to remove fUm from the
contacts.

Twin Cities 128 Page 22

Re-assembly is relatively simple: just reverse
the disassembly process.

The fmal result of this project: a like-new
keyboard, money saved, and the satisfaction of
having done the job yourself. The cost was
negligible as well: just the price of this
magazine, the cost of the materials used, and your
time. Better deals are few and far between.

A few additional procedures will be mentioned
for people with well used and worn keyboards.

Before you close up your C-l28 you can use a
good keycap plunger for a "dead" or "flat" one.

Since most people hardly use the shift/lock, Q, X,
or tab keys on a regular basis these are prime keys
to Use to revive "flat" or "dead" ones. You could
also use the keys from the numerical keypad or from
the top row of number keys.

If your springs are weak you can always use the
springs from the C-16 keyboard mentioned earlier in
the article.

Though C-16 keyboards are not even close to a
match you can still use some of the parts. If you
cut the springs for the C-16 keycaps down to the
proper height (not an easy job) and carefully fIt
them under the caps of the C-l28 keyboard, they do
provide good enough bounce. The C-16 springs are
especially good for the F-Keys and other heavily
used keys.

One caution t)lOugh, use care when removing the
keycaps because it is easy enough to damage the
keycap assembly. Since these sell for $8 a key
(a unit) a bit of caution and a light hand
is advised.

Dave Farquhar: This project is dedicated to
the memory of the late Norbert McGuire, who made
this entire project possible about 2 years ago by
loaning the author equipment and instructing him
in its use, changing him from an unenlightened
goof to an enlightened one. Thanks, lowe you
one.

Issue # 32

--- - --- ---- --------~--------~-------

.. -""--- .. -----~----------------------------------.

TURBO CHARGINGCP1M WITH
"SG TOOLS ,PROGRAMMER'S TOOL Box"
by Steve Goldsmith

Part 1 of 3 - Updated: 03/31/92

INTRODUCfION
How would you'like to have 80 column colot

windows that pop up in atlash, drop down menus,
page flipping, full access to all the C128's 1/0
chips, and more in CP 1M mode? Just imagine all
the applications you could create if yOu had a
programmer's toolbox cUstomiZed for the C128 in
CP 1M mode. Now you don't have to imagine because
we are going to buildour own CP/M tool box with
Turbo PascalI I have used SG Tools to create a 80
column, color ,windowing application, a VDC
640X200· PCX file viewer, and more in CP 1M!

OVERVIEW
This series of articles is not intended to be

a tutorial of Pascal. If you have not used
Pascal, but are proficient in Basic or 'structured
Basic I recommend "Turbo Pascal for Basic
programmers· from Que books. Pascal is easy to
. learn because it was designed as'8 teaching
Ianguagelit,e Basic and there are many good books
on Pascal programming. You can also port the tool
box mOduJesto Mac, .Rmac, Basic, C, or other'
Pascal (X)DlpiJ.ers, so even if you don't program in
Turl:i()'P~ you can sti111earn how to build a
C128 CP/M tool boX.

The SG Tools tool bOx was created, so the
programmer can access all, the C128's' features
under CP/M and create appliCations ready for the
90's! We will start by oo~ring all the,low level
code needed to accesS the 1j0 chips, VDC, and
memory.' The second instaUment will use these low
levelmodUieS to create page flipping, fast write,
and window modules to drive the 80 column screen.
The tiDal_aJlment will cover calling CP 1M's
BDOS'functi~ building applicationS and
customizi'.'8 your new tool box.

WHY ussTtiRBo PASCAL?

• pascal is designed to be a compiled
langUageuUubiAterpreted BASIC an<ithe. , ..
resultingexeeUtable ,code is many timeSTastetahd
usUally smaller than equivalent BASIC' code.

• The Turbo Pascal System has a built in text
editor that uses Word Star commands. If you get a
compiler or run-time error the compiler puts your
cursor at the offending statement in the editor!

* TurbO PaSc8Icompiles, assembles and links
programs to memory or a CP/M stand alone COM file
all in one step. COM files can be sold or
distributed. Many CP 1M versions ~f BASIC, Pascal,
C, and Small C require a separate proprietary
run-time system me and/or have a separate slow
assemble and link process. '

• Source code can be ported to many different
types of computers that have Turbo Pascal
compilers. I have done this with a text adventure
game I wrote back in 1987. It was originally
written for MS DOS, but it compiled and ran
without modification under CP/M. If you want to
learn Object-Oriented prOgramming you can step up
to Turbo Pascal 6.0 for Ms-Dos with
Object-Oriented extensions and Borland's own
Object-Oriented tool box called Turbo Vision. All
the stuff you learn with Turbo Pascal and CP/M you
can take with you to Ms-Dos, Microsoft Windows,
and beyond. .

GETTING STARTED
Here is a list of itelJl.s you will need to get ,

started:

The CP/M boot disk that came with your C128.
1 used the May PJ/' release to develop all my
programs.

1 suggest you read the article "Supercharging
Your CP/M BIOS, CCP, & Bootdisk Utilities" by
Randy Winchester in TCl28 Issue ~28. This will
give you helpful information on optimizing your
CP /Msystem as well as coveriiig some good public
domain CP/M utilities. '

TC-128 on disk. Due to the volume of source
code and progtamsIstrongly suggest ord~riDgthe
TC-128 aimpanion disk., Each disk will ~ude all
source code, pre-cOmp~ programs, and bonus
programs that can be run with or without. T~bo
Pascal. TJiis.issueWillmclude a 80 column color
window demonstration with sound!

TurI?oP~2.0()i"'er fOt CP/M. There
are acolipIc,ofways you can go to obtain a copy.
The cheapest wayiS to find someone at a CP/M
user's group with an original copy of Turbo Pascal
2.0 Or higher and buy it for $25.00 or less. I

Twin Cities 128 Page 23' Issue # 3:2"'~

bought a bunch of CP/M stuff from a guy with an
Apple II CP 1M system that included Turbo Pascal
2.0.

You can also buy the latest and greatest Turbo
Pascal 3.1 for CP/M from Elliam Associates (listed
at the end of the article). Turbo Pascal 3.1 is
$64.95 plus $3.50 shipping in the U.S.. They also
carry a large selection of CP/M software. Send
$1.00 to the listed address for their catalog.

Some useful utilities include: SID, other 8080
or Z80 disassemblers, MAC, RMAC, Native Z80
Assemblers or a Z80 macro library like the one
Commodore gives you with the 1581 version of CP/M.

Some type of file utility program other than
PIP like SWEEP (New Sweep) for file maintenance.

Books that most Commodore programmers have
like: the "Commodore 128 Programmer's Reference
Guide", "CP/M Plus Programmer's Guide", Compute!'s
"128 Programmer's Guide", books on programming the
8080, Z80 and 6502, the December 1988: Volume 9,
Issue 2 of the ''Transactor" has a good C-128 C:P 1M
Plus memory map with comments, "Programming the
Z80" in the August 1986 Issue 38, Volume 4,
COMPUTErs Gazette, or any other related material.

STRUCTURE OF TOOL BOX
Each module of SG tools is a separate include

(.INC) file. To add modules to your main program'
use Turbo Pascal's include file compiler
directive: [$1 MODULE.INClwhere "module" is the
name of the tool box module. It is best to keep
the modules as simple as possible, so you do not
have a lot of uncalled procedures which generate
dead code at compile time. You also want to be
able to reuse modules for many different
applications. Borland did not add units and smart
linking until Turbo Pascal 4.0 for Ms-Dos. So
make sure you call all or most of the procedures
in a' module. Some modules may depend on others
being previously defmed. This will become
clearer in the next issue when we cover fast
string writes and windows. Now that we have all
the basic information out of the way let's start
programming some I/O ports!

ACCESSING I/O PORTS WITH THE Z80
As a C-64 or C-128 programmer you know how to

,access the Sid, Vic and Cia chips with65XX "Ida"
and "sta" instructions or Basic "peek" and "poke"
commands. But the Z80 works a little differently

with the C128's I/O block. You cannot access the
I/O"chipswith Z80 LD type instructions, but the
Z80 can communicate with the c128's I/O chips via
IN reg,(C) and OUT (C),reg instructions. We will
be using Turbo Pascal's Inline method to insert .
8080 and Z80 machine code. You can easily create
in-line machine code by writing your Assembler
modules with MAC and using the output listing.
Just load the listing file in a text editor or
Turbo Pascal and use the machine code portion for
your in-line code.

The first SG Tools module is called PORT .INC.
This allows your applications to access the C-128's
Input and Output chips.
(see the listing at the end of the article)

Problems with Turbo Pascal's
PORT ARRAY

If you are' an experienced Turbo Pascal
programmer you might say that Turbo Pascal already
has an I/O array called Port. To access a VIC
register you might use BorderColor : = Port[$d02O].
This would be great if it worked on the C128, but
it doesn't. I have found using Turbo Pascal's
Port array to read the C128's I/O block returns
false values. Like any other hacker I wrote a
simple program using Turbo Pascal's Port array and
fired up my disassembler to fmd out why this
occurs. What I found is that Turbo Pascal uses IN
E,(C) and OUT (C),E just like my PortIn and
PortOut, so why doesn't it work? If you can fmd
the answer send it to JBEE or myself via GEnie.
To be safe we will be using my port routines
because I know they work all the time onthe C128!
I would like to stress' that using Turbo Pascal's
Port array to write works tine though. For an
example of this anomaly, compile and run
PORT128.PAS or run PORT128.COM 'on the TC128
disk. PORTl28 will read and display various I/O
locations on the C128 with My Portln and Turbo
Pascal's Port array.

ACCESSING THE VDC
I was programming late one night on a IBM PC

in Dos and thought how great it would be if CP/M
had the nice user interfaces like Dos, Windows
3.x, Geos, native 64, and 128 mode applications.
You are probably saying to yourself that CP/M is
too slow to handle the windowing and full screen
updates required in a gr~phic operating
enviroment. Well, your right, but who needs CP/M
to read and write the screen? I'm sure you have
displayed'eharacters dire~tly to screen memory in

Twin Cities 128 Page 24 Issue # 32

native 64 or 128 mode instead of using the
Kernal's CHROUT ro¥tine because it is much faster.
Most of the professional .tool boxes for IBM PC DOS
use direct screen I/O instead of DOS or BIOS calls
for the same reason. Direct screen I/O can also
be applied to CP/M on theC-128.

Our next SG Tools module is called VDC.lNC.
It allows you to read and write VDC registers.
Once again we willbe usinglnline code for speed.
(see the listing at the end of the article)

ACCESSING MEMORY
Your application can easiJy access meJJJ.ory with

Turbo Pascal's Mem array.

To read memory use: Buffer: = Mem[$80J;
To write memory use: Mem[$80] : = Buffer;

Buffer is a byte type variable. Now thatwe
have a way to accCsstheC128'sljO ports, VOOland
memory let us see how fast they are.

TIMING EVENTS IN
TURBO PASCAL

. HowJast is fast? TermsJike "Turbo Charging"
and "Supercharging" do not really tell you how
fast a certain procedure is, so I Cleated a timing
module ~ed "timer.inc". It usesCIA#2's "time
of day" clock and does not affect CP 1M's system
time. ,The program 10128.PAS compares. variQus lIO
operations by timing how longittakes to do
10,000 operations. of each. TOtal time in'seconds, '
tenth of seconds and operations per second are .
displayed. My VDe routines are 30% .faster than
using Turbo Pascal's Port array! My PortInand
PortOut are much slower that Turbo Pascal's Port
array, but they always work on the C-128.Turbo
Pascal's Port and Mem are the fastest I/O methods

. of all. This is not surprising considering the
overhead of calling a procedure for port I/O '
compared to using the port array. ~. TIMER.INC
me depends on PORT.INC being previously defined.
(see the listing at the end of the article)

FINAL THOUGHTS " i .

We have covered quite.a bit of ground with
this frrstinstallment! lencourage you ~o modify .,

the example progr~and experiment with the ,
C-128's I/O chips in CP/M mode. If yQ,u're a "
hacker you may be Ie to tweak my ~ules for
greater speed. If you do, add them to tQ128.PAS,
so we can compare m thods. The modules provided
here are fast enough to drive windows,page

flipping, 80 column video games, or whatever other
applicationS you can dream up!

If you have .y questions or ideas, send me a
message on GEnie at address "s.goldsmith2". Until
next time; ..

Mail address:
Elliarn' Associates
PO Box 2664
Atascadero, CA 93423

UPS address:
Elliam Associates
4067 ArizonaAve.,
Atascadero, CA 93422
(805) 466-8440

(DR.OCTAL TIPS - CONTINUED PG#25)
" your hardwired #11 devices. Here is a hatdwarc
(f ;' ' :,~, ~ethod I~;fi~m a' frielld: ~' v

,.!,<, *Find u113 \ '1'
*Cut pin 1 at the point where it enters the board
using an exaeto knife. Put a spit switch between
pin 1 of the ic and where pin 1 used to enter the
motherbo~d.,XPu can mount tbeswitch ,atlrwhere,

" preferably ,.a~thedriveled.' Thereisa ~ of ,'. "
,room on theC':128d's front panel. .
*With the "A TN" line out of the serial loop
(switch open), the device is effectively off the
bus and Win not be recognized, no matter~hat
device.# you use for.it.

NEWS RELEASES:
Note that news releases are NOT an endorsement

of the product. They are news tidbits available
for your use in case you want to pursue something
further that sounds interesting.

Bookdisks: "Non-Abberrational Capitalism:Template
for a New World Order" is a, book on disk(s) that
comes on two double-sided 1541 diskettes. The
diskettes also include a functional text reader
which allows the ,reader to print oUt the text
meso Cost isSS and available from: Paperless
Pressrl0947 117tb St;OzonePark, NY 11420

\' ,. , , ' ". "

'Video Board: The Auxiliary Video Board (A VB) is
basically a C-128 80 Column VDC chip wi~ 64K Dram
to be plugged into your exp~on port. A VB blank
PCB, asSembly and bOard Options, parts. list, and
examples are aftiIable for S34 plusS5 S&H from:
Gregory Clark, PO Box 660366, Sacramento CA 95866

•
I

, Twin Cities 128 p~,
-: '~ '. ~--" '

Issue # 32 '

PROGRAM NAME: PORT. INC
To read a port you use: BorderColor := PortIn ($d020);
To write a port use: PortOut ($d020,BorderColor);

BorderColor is a byte type variable.

function PortIn (MemLoc : integer) : byte;

var

Load : byte;
RegPair integer;

begin
RegPair := MemLoc;
Inline (

$ED/$4B/RegPair/
$ED/$S8/
$7B/
$32/Load

) ;
PortIn := Load

end;

procedure PortOut (MemLoc
Value

var

Store byte;
RegPair : integer;

begin
RegPair := MemLoc;
Store := Value;
Inline (

$ED/$4B/RegPair/
$3A/Store/
$SF/
$ED/$S9

)
end; .

PROGRAM NAME: VDC.INC

[ld
[in
[mov
[sta

bc I (RegPair)]
e, (c)]
a,e]
Load]

integer;
byte) ;

[Store = byte value to store]

[ld bc,(RegPair)]
[Ida Store]
[mov e,a]
[out (C) , e)

To read a VDC register use: FgBgColor:= ReadVDC (26)
To write a VDC register use: WriteVDC (26,FgBgColor)
FgBgColor isa byte type variable.
I have also included TPVDC.INC which uses TP's Port array instead
of Inline code.

function ReadVDC (Reg : byte) : byte;

var

Twin Cities 128 Page 26 Issue # 32

I
I

PROGRAM NAME: VDC.INC (continued from previous'pag~)
VDCReg : byte;

'begin
VDCReg := Reg;
Inline (

$01/$00/$D6/
$3A/VDCReg/
$ED/$79/
$ED/$78/
$CB/$7F/
$28/$FA/
$OC/
$ED/$78/
$32/VDCReg

); ,

ReadVDC :=,'VDCReg
end;

[lxi
[Ida
[outp
[inp
[bit
[jrz
[inr
[inp
[sta

procedure writeVDC (Reg byte;
Value byte);

var

VDCReg,
VDCVal ue': byte;

begin
VDCReg := Reg;
VDCValue := Value;
Inline l

,)
end;

$01/$00/$1>6/
$3A/VDCReg/
$ED/$79/
$ED/$78/
$CB/$7F/
$28/$FA/
$OC/
$3A/VDCValue/
$ED/$79

PROGRAM NAME: TIMER. INC
To read time, use: GetTOD;

[lxi
[Ida
[outp
[inp
[bit
[jrz
[inr
[Ida
[outp

b,$d600
VDCReg
a
a
7,a
rep
c
a
VDCReg

point BC to $d600]
VDC reg]
VDC reg to read]
get VDC status]
test status bit]
until bit high]
point BC to $d601]
read VDC reg]
stash result]

b,$d600 point BC .to VDC]
a VDC reg]
a put reg in VDC]
a get VDC reg]
7,a check status]
Rep until bit high]
cpoint BC data reg]
b value to store]
a put value i.n VDC reg]

Values are stored in Global todvariabies.

To set time use: SetTOD (Hours,Mins,Secs,Tens)i.

const
cia~TODTen =$dd08;
cia2TODSec= $dd09;
cia2TODMin = $ddOa;
cia2TODHrs = $ddOb;
cia2ConRegB = $ddOf;

'I\d.n, Cities 128 Page 27

I

var

todTen, todSec, todMin, todHrs

procedure GetTODi

begin
todHrs . - Portln (cia2TODHrs)i .-
todMin := Portln (cia2TODMin);
todSec := Portln (cia2TODSec);
todTen' := Portln (cia2TODTen)

end;

procedure SetTOD (hh,mm,ss,tt

begin
PortOut (cia2ConRegB,$OO);
PortOut (cia2TODHrS,hh);
PortOut (cia2TODMin,mm);
Portout (cia2TODSec,ss);
PortOut (cia2TODTen,tt)

end;

MUSIC PROGRAM USING PORTOUT
PROGRAM NAME: MUSIC.COM

byte;

byte) ;

This simple program uses PortOut to play music with the SID chip.
[
SG Tools (C) 1992 Parsec, Inc.

Music is a short music demo using PortOut to access the SID chip.
]

program Music;

[$B-,R-]

[$1 PORT. INC]

const

Sid = $d400i
Music: array[O •• 50] of integer =
(
25,177,250,
28,214,250,
25,177,250,
25,177,250,
25, +1;17,125,
28,214,125,
32,94,750,
.25,1,77,250,
,,28, :rt4 ~250 ,
19,63,250,
19,63,250,
19 , '63 , 250 ,

Twin Cities 128 Page 28 Issue # 32

PROGRAM NAME: MUSIC. COM (continued from previous page)
21,154,63,
24,63,63,
25,177,250,
24,63,125,
19,63,250
) ;

procedure ClearSID;

var

I byte;

begin
for I := Sid to Sid+24 do

PortOut (Sid,O)
end;

procedure Run;

var

I byte;

begin
PortOut (Sid+5,9)i
PortOut (Sid+6,0);
PortOut (Sid+24,15);
for I != ° to 16 do
begin

[attack/decay]
[sustain/release]
[maximum volume]

write ('.');
PortOut (Sid+1,Music[I*3]);
PortOut (Sid,Music[I*3+1]);
PortOut (Sid+4,33);
Delay (Music[I*3+2]);
PortOut (Sid+4,32);
Delay (10)

end;
ClearSID

end;

procedure Init;

begin
ClrScr;
ClearSID;

[high freq]
[10 freq]
[gate sawtooth]
[note duration]
[release sawtooth]

writeln ('Music (C) 1992 Parsec, Inc. - All Rights Reserved');
Writeln;
writeln ('Music will playa short song with the SID.');
Writeln

end;
begin

Init;
Run

end.

Twin Cities 128 Page 29 Issue # 32

* CLASS (Y) ADS *

These ads are free for TC128 subscribers and

advertisers. Commodore BBS and UG listings are

free to all.

All people with POBs have to submit a street

address to Parsec with a matching night time

telephone number (we will not release the street

address to anyone UNLESS there is an unresolved

problem with your ad). For sale and wanted ads

must include either an address (street or POB) OR

a telephone with the time to call. An example is,

(1-508-745-9125 EST 9-5 answering machine) so

people can easily contact you.

All ads will run until you ask for them to be

removed or until they are "bumped" off the listing

by a newer ad. The date the ad was 1st run will

be expressed as 920105 (year 92, 1st month, fifth

day) .

ALL ADS *MUST* be submitted on either 1541 or

1581 disks as either PetAscii or straight Ascii

sequential text disk files, no exceptions! If you

can send matching hardcopy it would be appreciated.

We will take ads from subscribers through e-mail.

We are not responsible for anything including typos.

BUYER BEWARE!

The guidelines to buying through the mail are

unless you know the person well:

1) Buyers and sellers should insist on COD,

ship by UPS (if possible), cash or money order!

2) Get a telephone number!

3) Try to have some fun horse trading! :)

FOR SALE HARDWARE

*920201 - Clay MacDonald 303-927-4498

C128D, JD V6.0, fan, all docs, like new $300.00,

1581, JD, like new $100 - both units have device

switches. QBB 64 - $50, 1764(512k) - $100, Many

other items

*920201 Alex Dundek 612-645-6636

1571 - new in box - best offer over $150

*920221 Bill Golden, PSC 76 Box 2629 Army,

APO AP 96319-2629

1581 $135, 1571 $125, 1541 device #8 $65

FOR SALE SOFTWARE

WANTED HARDWARE

*920220 John Stewart 602-378-6316

BI Buscard II IEEE Interface

CSI 425 or Interpod serial to IEEE interface

Users and/or Maintainence Manual MSD drive

Twin Cities 128

WANTED SOFTWARE

*920220 John Stewart 602-378-6316

Catalog program by Intergrated Software Systems

Masterdisk, Masterdual, Super-Masterdisk(preferred)

SI/FI - MISC

*920709 Wanted - a complete set of the Transactor

magazines. Willing to pay $2.50 per issue - contact

Parsec Inc. by phone, mail, or e-mail.

BBS LISTINGS

USER GROUP LISTINGS

*920201 - Basic Bits Commodore Group, PO Box 447

PO Box 447, North Ridgeville OH 44039

*920225 - CBM Users Group of Lewis County

c/o Al Kistenmacher 2476 PeEII-McDonald Rd.

Chehalis, WA 98532

*920310 - Boise Area Commodore Users Group

3213 Kelly Way, Boise, 10 83704-4620

*920626 - "Meeting 64/128 Users Through

the Mail'·

1576B County Rd 2350 E. St. Joseph, IL 61873

is a correspondence User Group 6 years old

with 240 members. Dues $12. Write for more

information.

Page 30 Issue # 32

--- --- ----~-

Legal Notices, ads, submissions:

*No part of Twin Cities 128 the magazine or disk

may be copied in whole or in part for any reason.

*Twin Cities 128 may not be transmitted, stored.

copied, or sold in any way, shape, or form except

by Parsec, Inc. Twin Cities 128 is sold only

through Parsec, Inc. Twin Cities 128 is

distributed by Parsec, Inc. and RIO computers.

* C-128, C-128D, CBM, and other names of

Commodore equipment are trademarks of Commodore
Business Machines. All other trademarks or service

marks mentioned in this magazine belong to their

respective owners and are mentioned for their

benefit or for editorial purposes.
*Liteweir, Lweir, RUR U2, Software Light Years Ahead

of the Rest, Twin Cities 128-trademarks of Parsec,Inc.

NOTICE ABOUT SOFTWARE The programs and files on

our companion disk are CCHmRCIAL programs and just

because you own a copy of the magazine DOES NOT

entitle you to a free copy of the disk and

programs. The Twin Cities 128 companion disks are

only sold legally through Parsec, Inc. and RIO

computers.

SOFTWARE NOTICE, RIGHT TO USE:
The software (or hardware) and routines published

in this magazine can be used free of charge only
if ALL of the following conditions are meet:

*l)The program is Public Domain, free, AND if you

were a subscriber when the issue was published.

*2)You have to give a written notice on your first

screen or title screen, where this type of phrase

can be clearly noted by the user <as an example):

"Sound Routines from Twin Cities 128 - issue #32".

"Graphic Routines from Twin Cities 128 - issue #32"
*3)You have to send us a copy on disk or upload the

program to our library on GEnie. Don't send by email!

*4)If there is any kind of a charge for the program

either as commercial or shareware software, or if it

is a "demo" for a company, contact us FIRST before
releasing the software/hardware so we can talk
about the liscening fee. This usually will be some
thing amall, such as copy of the finished product.
If we find out after the fact it will cost
you *MUCH* more. Only written releases from us

through the U·.S. mail will be considered valid.
*These routines may not be uploaded to any network.

*These routines may NOT put into ANY disk library

collection - individual use only - no exceptions!

*Submisaions:"submissions greedily accepted"
Average author rate is $25-$100 plus a free six

issue extension with the disk. We gladly consider

any program, article, software, or hardware for

publication. Reviews of software and hardware are

done by established staff members that have already
J \' ~ I ,

'had article. published .• *Ad rates: full page with

color(s) $200+, full page B&W $150, 1/2 page $60.

* Twin Cities 128 Subscrigtion Information *
* *
* Magazine only: *
* 6 issues a year - $20 for tbe US *
* 6 issues a year - $26 all otbers *
* *
* Magazine witb companion disks: *
* 6 issues a year - $36.50 for tbe US *
* 6 issues a year - $46.50 for all others *
* *
* User Group Rates (minimum of two subscriptions) *
* Magazine only: *
* 6 issues a year - $17 for tbe US *
* Magazine witb companion disks: *
* 6 issues a year - $26.00 for tbe US *
* *
* Fortbe US: *
* The cost to add tbe companion disk to TC128 *
* from a current subscription starting witb *
* issue #32 is $4.00 for each remaining issue. *
* *
* For all otbers: *
* The cost to add tbe companion disk to TC128 *
* from a current subscription starting witb *
* issue #32 is $6.00 for each remaining issue. *
* *
* Effective 920201 we will acknowledge all *
* (re)subscriptions, change of addresses, *
* and subscription inquires by eitber a letter or *
* postcard. *
* *
* How to read your address label: *
* 1st line: ## # ABC.XXXXXX.XXX *
* *
* The first number is tbe issue on which your *
* subscription ends and tbe second number following *
* It will have a "1" if you are owed tbe companion *
* disk. The tbird set of letters & numbers is your *
* customer ID #. This may not be on all labels *
* *
* 2nd Ilne:Attention line - usually not used *
* *
* 3rd line:¥our Name *
* 4tb Ilne:Your Address *
* 5tb line:City, State, Postal Code *
* 6tb line:Country (not written on US labels) *
* *
* Make checks payable in U.S. funds to: *
* *
* PARSEC INC *
* PO BOX 111 *
* SALEM ~ 01970-4)111 *
"USA '
* *

Twin Cities 128 Page 31 Issue # 32

GEOS MACHINE LANGUAGE PROGRAMMING
ON THE 128:
"THE TOOLS OF THE TRADE"
by Robert A. Knop Jr.

I. INTRODUCTION
Why would the prospective C-l28 machine language

programmer want to program under Geos? For one,
the Geosl28 operating system provides an excellent
user interface, which you might want to take
advantage of in your own programs. More
importantly, under Geos it is a lot easier to
write powerful user-friendly programs than it is
on a cold C-l28. The Geos KernaJ. supplies routines
for icons, menus, dialogue boxes, graphics, text,
and more, all available to an application, which
reduces the burden on the application's
programmer. No longer do you have to worry about
"how" to implement a pull-down menu; tell Geos
what menus to put on the screen and what to do
when one is selected, and Geos takes care of the
rest.

II. YOUR PRIMARY PROGRAMMER'S TOOL:
GEOPROGRAMMER

In 1987, Berkeley Softworks published
geoProgrammer, a complete software development
system for Geos64. GeoProgrammer has three parts.

First is geoAssembler, which does the dirty
work of converting your assembly language source
(written with geoWrite) into relocatable machine
language code. GeoAssembler is an extremely
powerful label-based assembler, complete with
local labels, macros, conditional assembly, an
impressive expression evaluation facility, and
more.

The second application, geoLinker, allows you
to build a program out of several separate
modules, each independently assembled with
geoAssembler. GeoLinker also allows you to create
VLIR applications. A VLIR application consists of
one memory resident module, as well as several
swap modules which are loaded from disk as needed.
This means you can write programs longer than the
memory space available. For instance, both·
geoWrite and geoPairit are VLIR applications.

The third and perpaps 1post impre&slve pait of . 0

geoProgrammer is the geoDebugger. 'With this; you
can set break points ib your code~ step'through .'

your code, examine memory, and track down
lingering bugs in your program. The original
geoDebugger came in two forms: the powerful
label-based Super Debugger, available only if you
have a RAM expansion unit, and the scaled down
mini-Debugger.

Plus, aside from the three major applications,
a number of goodies come with the geoProgrammer
package. This includes a complete flle of the
Geos symbols which you can include in your
source code, as well as a flle of useful macros
for common operations like loading a memory
location with an immediate value. Full source
code to three sample do-nothing applications is
included. Which is useful in demonstrating
the structure of the various Geos application
types.

Shortly after the release of the fIrst version
of geoProgrammer, advertisements started to appear
for the soon-to-be-released geoProgrammer2.0,
which promised support for the Commodore 128.
Unfortunately, geoProgrammer2.0 was never
published, but was left unfinished as Berkeley
Softworks (now GeoWorks) began to develop PC-Geos
for MS-DOS machines. Thus, it would seem that
potential Geosl28 programmers were out of luck.
If they wanted to develop applications for
Geosl28, they would have to do so under Geos64.
Fortunately, some Geos programmers were not
content to let things sit the way they were.

PATCHING GEOPROGRAMMER
As it is, the three geoProgrammer

applications, geoAssembler, geoLinker, and
geoDebugger, refuse to run under Geos128, due to a
flag in their headers which says that they can
only be run from Geos64. If that flag is changed,
geoAssembler and geoLinker "almost" run under
Geos128. More precisely, they do run, but things
are slightly out of kilter in 80 columns; and if
one is going to geoprogram on the 128, it would be
nice to take advantage of the 128's two megahertz
fast mode available only in 80 columns.

All is not lost; at least two people have
developed patches for the geoProgrammer
applications which allow them to be run neatly
from Geosl28. The patch I shall discuss,
"geoProgrammer Patch 2.1," was written by Robert

.. J.G. Norton; patches fOl: the programs have also
. been written by Jean F. Major. .-

Twin Cities 128 Page 32 Issue # 32

Once the patch has been applied, geoAssembler
and geoLinker both run quite nicely in 40 or 80
columns under Geos128. The patched geoDebugger
can only debug 40 column applications, and the
patched SuperDebugger trashes the 128's RAM reboot
code. However, one need not concern oneself with
this, due to the existence of geoDebugger2.0,
which I shall discuss shortly.

How does one perform this patch? The patch is
designed to operate on an already installec:.
geoProgramnier. Moreover, it is wise to perform
the patch on a copy of your geoProgrammer
applications, rather than the original disk. This
is not a problem if you have both Geos64 and
Geos128, and if bothbave the same Kernal ID.
If, when installing oneKernal, you told it to
match itself to an application installed with the
other Kernal, then both Kernels will have the same
ID. If you are unsure whether both have the same
Kemal ID, try running a Geos64 program, say
~Paint, from Geod28 .. If it doesn't complain,
then you should be OK. . In this case, you can
simply install the progr8D1swith Geos64, copy them
to another ~.aa4.perform the patch on the
second disk witb.~128.

,'., '

If you don't ba\iC..,Q~s64, don't despair. In
order to instalh~programs with Geos128, you
must modify.QIie byte in the header of each
application. TO'd9 this, you will need a disk
sector editor (such as Disk Doctor 128, or
DiskMon). Sector editor in hand, look at track
18, sector 1 ($12, $1) of your geoProgrammer disk.
You should see the first block of the disk's

,directory. Locate the directory entry for (say)
geoA$sembler. That directory entiy will look like
(sample DiskMon output):

>OObOO, 1~ Of} .8!L.Oa 04 47 45 4£
.. ' 4~, 53.>,.Sa .45 4d 42 4c 45

;: qeOa$semble.
~', -."

>OOblO· 52 aO/;.o aO aO .Oa 11 01
06 57 Ob O~Oe 2£ 56 00
.: -r •••• w'~· flf,.,/v,.::

. . . ' .

Imm~fonowing the 16 character tile
name (paddeQ.withaO')is a track $eCtor pair.
This is the.tr~and~orof the. header record. ,
for geoAssembler- in this example, tracklO, .
sector 17 ($080 $11). Read that sector. The %th
($60) byte of that sector should contain the value
128 ($80).

This is the flag whIch in9icates that .
geoAssembler cannot be run from Geosl28.
Change this byte to OJ which indicates that the
application can be rUn from Geos128 in 40 columns.
Be very careful when doing this; a misstep could
scramble your geoProgrammer disk!

Repeat this procedure for geoLinker. Once
fmished, you should be able to install both
programs with Geos128. Note that if you are using
a 1571disk drive, you must temporarily configure
it (using, of Course, Configure) as a 1541 for the
installation to work.

Now that you have installed the geoProgrammer
applications, copy them to a second disk; do not
patch your original copy ofgeoProgtammer. Then
copy the geoProgrammer Patch 2.1 program to that
disk. Simply double click on the Patcl;1 program,
follow the instructions the program gives you, and
you will have copy of geoAssembler and geoLinker
that can be cleanly run from Geosl28! At this
point, in order to distinguish the patched
applications from the originals, you may want to
rename them to "GEOASM 128"and "GEOLINK
128," or something along those lines.

GEODEBUGGER 2;0
Although geoProgrammer 2.0 was never released,

it was reasonably close to being fmished. In
. particular, version 2.0 of the Debugger had been
nearly completed; This Debugger features ful1128
support .. One impressive feature is·the Bacl(RAM
debugger. With this, one does not need an RAM
EXPANSION UNIT to run the SuperDebugger! The
SuperDebugger loads itself into the"other"64K of
the 128's RAM, giving the full power of the
SuperDebugger without taking away any of your .
application space.

Much to the delight ofGeosprogrammers,
GeoWorks (the new name for BerkeleySoftworks)
released the 2.0 debugger fpr informal
distribl,ltion.as an upgrade for geoProgrammer
owners. What this means is, if you own
geoProgrammer, then you are entitled to upgrade to
the 2.0 Debugger by downloading it from Q-Unk, or
wherever else you can find it. (Note, however,
that legally you must purchase geoProgrammer
before obtaining a copy of geoDebugget2.0~)

Although ·geoDebuggei:2.0 works quite nicely
as-is with the 128, this has not stopped people
from writing patches which enhance the'
fUnctionality of the debugger. For instance, in .

Twin Cities 128 Page 33 Issue # 32

order to get the BackRAM debugger, you must hold
down the space bar while geoDebugger loads. Since
forgetting to do this loads the SuperDebugger into
your ram expansion unit, trashing the ram reboot
code, I wrote a patch (backdebug.patch) which
forces geoDebugger 2.0 to load the BackRAM
debugger. Other patches which improve upon the
2.0 debugger exist, such as Jean Po Major's .
"Debugger. Update."

COPING WITHOUT GEOPROGRAMMER
If you don't have geoProgrammer, there do

exist (at least) two shareware Geos assemblers:
geoCope, by Bill Sharp, and the Springboard
Assembler by Jim Holloway. Both assemblers
produce Geos code/and work with Geosl28, although
only in 40 column mode. Each of these assemblers
is a single unit; neither provides, 'nor requires,
a linker.

GeoCope comes with its own editor and
assembler, as well as with some sample files.
Since the assembler takes files from the editor,
you can't use the full power of geoWrite to edit
your source code. The.editor, while usable, isn't
nearly as powerful as geoWrite, and is at times
somewhat hard to use. For instance, you can't use
the mouse to position the cursor, and I wasn't
able to figure out how to move more than a line at
a time within a page. The assemble~is label
based, allows the use of multiple source files
through the .include directive, and does support
VLIR files. It is limited to 8K of object code.
One thing nice about this assembler is that it
gives more information about the program being
assembled than does geoProgrammer.

The Springboard Assembler takes as its source
geoWrite files. It too is label based, although
with certain commands (e.g. Ida, sta) you can't
use forward referenced labels. This makes it
difficult to put data blocks after the end of your
code. Like geoCope, the Springboard Assembler
lets you have separate source code modules.
However, the~e is no .include directive, so any
equates you use will have to be typed directly
into the source file that needs them.

If you are serious about programming in Geos,
you are going to want to get a hold of
geoProgrammer. However, if you just want to
dabble in programming Geos, or experiment with
some small things, then either of these assemblers

could be useful for you. The shareware price of
geoCope is $15; of the Springboard Assembler, $5.

III. TEXTW ARE
The manual which comes with geoProgrammer is

excellent. It clearly and completely describes
the operation of all three geoProgrammer
applications. However, it assumes prior knowledge
. of both assembly language and programming under
Geos.

"The Official Geos Programmers Reference Guide"
(PRG) from Bantam Books is a good book for
learning how to program under Geos, It assumes
knowledge of 6502 assembly language, and a USer's
familiarity with Geos, and from there quickly gets
you up to speed on the basics of programming in
Geos.

It describes the concept of event-driven
programming, and discusses how Geos uses this. It
goes on to describe howtocreate icons and menus,
and use them within your programs. Following a
chapter on how to convert applications to Geos
format (which can be ignored by.geoProgrammer
owners, since geoProgrammer takes care of all of
that for you), the book gooson to discuss using
graphics and text with Geos, as well as more
advanced topics such as processes, dialogue boxes,
the file system, input drivers, and printer
drivers.

Although occasionally obtuse, and sprinkled
with a truly amazing number of typos, the PRG is
very useful for the progratn.nler who wants to learn
how to program Geos. Unfortunately, the PRG is
now out of print, but you may be able to find a
copy at a local used bookstore, or convince a
friend who no longer needs it .to sell it to you.

When GeoWorks deci4ed to make the move into
MS-DOS software, they stopped work on a second
Geos programming manual. 'Although they maintain
the copyright, GeoWorks has released the latest
draft of this manual as the freely distributable
"Hitchhiker's Guide to Geos". You can obtain this
manual by copying it from a friend, or by sending
$25 to GeoWorks.

Sporting an alphabetical list of all the Geos
Kenutl routines, as well as chapters of updated
programming informati~ and more in-depth
technical information about Geos64, Geosl28, and

Twin Cities 128 Page 34 Issue #·32

r
• $ 4 UP • i out

Apple Geos, the Hitchhiker's Guide is a better
reference than the Programmer?s'Reference Guide.
It is more complete •. and its informatiOn is more
up-ta-date and thus more reliable. Moreover, it
has Some information specific to Geos on the

. Commodore 128, something lacking from the PRG.
Also, in' spite of being a draft rather than a
final work, it has far fewer typos than the PRG!

Before geoProgrammer or the PRGc:ame out, an
individual by the name of Ale~der Bayce .
disassembled and deciphered the entire Geos64
kernal. The result of his efforts is his
shareware "Geos Programmer's Reference Manual"
(not to be confused with the Official PRGby
Berkeley Software). This manual contains succinct
and clear documentation of the Geos Kernal
routines, as well as some general informational
topics. The infotttlation is not current Ot was
written loogbefore Geos128 v2.0), and-because
Boy~ had to invent his own symbol names, his
labels for routines are completely different from
the Geos s~andard.! (If you can get your hands on
a copy of Volume 9, Issue 3 of the "Tran;sactor!',
'you will see that Francis Kostella has compiled a
completecr_reference between geoProgrammer
symbok andBOyce's symbols.)

Boyce's manual is interesting as a different
writer's explanation of the Geos Kernal; it is
also impr~ accurate, although he does fail .
to note certaiD .tC$tIietions and conventions that
can be found in the official literature .. (For
instance, he doesn't note certain parts of zero
page which are off limits for Desk Accessories.)
He does address a few topics not found in either
the PRG or the~chhiker's Guide (for example,
the geoPaint fIle format). It can be found, among
other places, in archived PET ASCII format in the
GEnie FlagShip library under the names
"GeosTECHREFxARC", where x is 1, 2, and 3.

Finally, the standard programming refetences
for the 128 Gancome in hanttyl' This includes your
favorite book on 128 assembly ianguage~· as well as
other classics such as Bantam's "Commodore 128
Programmer's Reference Guic1e'\ ;COIUpute! Books'
"Mapping the 128", and ABACUS's "128 Internals".

IV .. HARDWARE' , ;,f

Although indleory. You.oouldgeoprogtWnthe
C-128 withjusta C-128, Geosi28,'and'a'tS41distC
drive, pr8ctiadly speaking,' attlie very least you
will need a 1571 or a second drive for anything .

but small projects. Although' an application may
only take up (say) 10K on a disk, its numerous
geoWrite assembly source fIles can become quite
large.

As with anything iIi Geos, the presence of an
ram expansion unit makes everything much faster,
smoother, and easier. With a sufficiently large
ram disk (and for a large enoUgh project, a ' -.
ram1571 may not be enough!), you can put
geoProgtammer, your source fIles, intermediate
fIles and final assembled and linked prograuu; all
on a ram. disk (remembering to frequently -copy;
modified source fIles to a disk). Or, perhaps you
would prefer to use a shadowed drive. If pinched
for space, you can keep the applications and

. output fIles ona RAM QISK, and store the valuable
source files on a floppy. In any event, a ram
expansion unit· is almost a necessity if you want
to do much geoprogramming and stay sane.

V. CONCLUSION
Geoprogramming is not just for the 64. Thanks

to the efforts of some dedicated Geos128
'I

programmers, you can take advantage of the full
power of geoProgrammer completely ftomyour
Commodore 128. If you have programmed in assembly
language before, you will be surprised how little
effort ittakes to produce very impressive results
under the Geos operating system. For a true
programmer, there is no~ like the'satisfaction
of seeing a complete, powerful, user-friendly
program ... with your name in the Info box!

The freely-distributable software discussed in
this article such asgeoProgrammer Patch 2.1,
geoCope, and the Springboard Assembler, as well as
geoDebugger2.0, can be found on Q-Link, GEnie, and
the internet ftp site milton.u.washington.edu.
Also check other on-line services, and BaSs local
to your area.

Editor's note: you can also find these mes
on Parsec's public domain disks Geou 13, Geou 14,
Geou 15, and Geou 16.

Twin Cities 128 Page 35 IS$ue'#'~2

MEMO WRITER & CALENDAR

F<>r CMD Hard Drives and
RamLinks

by Ronald Robert

INTRODUCTION
When I first got RamLink I wrote a two line

program to read the hard drive clock and write the
time and date to the screen on power up. Then I
thought gee wouldn't it be nice if I could leave .
myself reminders and have them list on power up
too. Well having a 128 I wanted it to work in all
modes and be a relatively short program. The
following is what I came up with. I used some
Jiffy Dos commands in the prograJU'so if you want
to use them without Jiffy Dos (why 'WOUld anyone
have a CND hard drive and not have Jiffy Dos?)
you'll have'to make some changes. By the way it
also worD'with the Ramcard II time clock. The
two programs are written in basic so they can be
easily· customized.

MEMO WRITER
This is a text editor that creates a lislof

up to 12 things to do. The list is stored by date
and used by the calendar program. The first few
lines set the storage device number and default
date, they can be changed as required. The
program will run in 64 or 128 mode in either 40 or
80 column mode. It starts by asking for the memo
date, this is the date that you want your list to
be displayed on. Once you input the date the
program checks for an existing memo for that date.
If one exists, it is loaded into the editor and
is displayed. The current memo date is shown at
the top of the screen then the 12 lines of the
things to do list. Below that is a list of
commands, they all use the Commodore key and a
letter, they ate as follows:

C -- Change line:
This command will let you type the information

on lines 1 thru 12. You will be askeCI which line
#, then JOu can type in the informatiOn. The line
can only be 36 characters long so don't type past
the arrow. If you need more room use the next
line to complete your note. When you hit return
the line will be added to the list.

Twin Cities 128

~~
, D - Delete a line:

.. :,' :~ •. !: .'
',' ,

Page' 36

This will delete a line or a range of lines.
Ex. (3 to 3) will delete line three. (3 to 5)
will delete lines 3, 4 and 5.

I - Insert a line:
Will move the lines so you can put a note

between two existing lines.

S - Switch a line:
Can be used to exchange the positions of 2 of

the 12 memos.

P - Print a list:
Dumps the list of the 12 things to do to

device 4, the printer.

W - Write a file:
Saves the list to the storage device. NOTE:

It will automatically overwrite an existing ftle
of the same date.

R - Read me and Reset memo date:
This will change the memo date but when it

does it will check to see if there is already a
memo for that date. If there is the existing memo
will be loaded and the memo on the screen will be
overwritten.

0- Ouit:
Although the Commodore 0 command is not listed

in the command box it is available and will reset
the computer.

NOTE; If you want to put leading spaces iIi a memo
to indent a line for instance, you must use
shifted spaces.

CALENDAR
Now that you have a list of things to do you

need a utility to show it to you on the right day.
Well this is it. The frrst few lines set the time
clock device # and the storage device # (should be
the same as the storage device # in memo writer)
these can also be changed as required.

This utility can be run .when you want to check
your memos or set up as an autoboot file and will
display the date and time when ever you start your
computer, along with any messages that there are
for that particular day. If there are any
messages they will be listed then you will be
given the option to delete them. If you say yes
(Y) the me will be scratched and the screen will

Issue # 32

.04 •

clear. The next time you turn the computer on
that day there will be no messages. If you say no
(N) the screen will clear but the file will stay
intact so that the next time you power up the
Iilessage will be shown again.

I use the programs in ramlink (in the default
partition) and use the ramcard D dock so that is
what the programs are set up for·. 'If you want to

. use the hard drive and hard drive clock, you can,
'by changing the variables as explained in the
, first few lines of both programs. I used the hard
drive clock before I upgraded to ramcard D and it
worked fine a little slower but fine. This
program also runs in 64 and 128 40 and ~ column
modes.

The lines to change in "Calendar .bas" fur your
device numbers are on line :# 160, the variables
"te" and "sd".

The lines to change in "Memo.writer.bas" for
your device number is on line :# 160, the variables
"sd".

TC==Time Clock
SD == Storage Device
ADS==Default Memo Date

ao 100 rem by rouliJ,.d robert

hh, 110 rem copyd.&ht (c) 1992 by

id 120 rem JIU_cinc: pobl11

ao 130 rem aalem me 01970-0111

ja 140 rem proaram name - calendar.bas
na lS0 :

ld 160 to-08:sd-08'

dj '170 rem to -t!'-clock davice #.

lh 180' rem 'ad ," ID8IIIO aDd prQlram storaae davice, #,

em 190 printclul$(147):s"8:~'(~1$)-128t1ens"'s+20
cf 200 pr.\J:l~(14) ,.

pb 210 cPn15, te.15 c

cp 220. pr~t.llSj ?t+n.~' ';'1'

, hp 230 a~t.l15J. .. : tS-ts+e8 :!it~<~f.b_SQ·
j1.Ja40·~loa.15

ph 2~O' dta.l.eftS (tS • 13) ,

lb 2601lllllS'"lllid$(\S'~ 5; 8)

lh 270. dy$-1eftS(tS,4):IO,sub460

ed 280 hrs.t1J$.(tS,lS,5) ,

nb 290 cms-z:1"tS(t$,4) ',"

1m 300 priDtt~h)" toc1at i.-dy$i1ImS
. '

'ke 310 printtab(s)" the time is "hrS+dn$

jj 320't.ri~t$(dtS,,8},tc

Twin Cities 128

8111 330 open15,sd,15:input#15,e:close15

dn 340 ife-62thenaot0420

ml 350 print"delete t.oday's messaaes n"

bh 360 forzq-1t.ol:print.chrS(145);:next

fo 370 forzq-1t.023:print.chrS(28);:next:input dlS

bc 380 ifdl$-"y"thenaoto430

lh 380 ifdlS-"n"thangot0410

np 400 aot0350

en 410printchrS(1~7):prinichrS(142)

eh 420 new
md 430 scS-"s:"+rightS(dt.S,8)

kc ,,40 @acS,sd

lh 450 printchrS~47):printchrS(142):n8W

mh 460 ifdy~"sun. "t.h.ndYS-"Sun. ":r.t.urn

jj 470 ifcSyS-"lIIOn. "t.hendyS-"Hon ... : return

&k 4,80 .ifdyS-"tuas "thendyS-"ruall" : r.t.urn

hh 490 ifdyS-"1ifed."th.ndyS-"Wed.":return
na 500 ifdyS-"thur .. t.hendy$-"Thur"': ret.urn

nc 510 ifdyS-"fri."thendyS-"Fri:":ret.urn
ja 520 ifdy$-.. sat ... t.h.ndy$-.. Sat. ... :r.turn

fi 530 aotQ410

PR.OGRAH NAME: ME!I). WRITER. BAS

eo 100 raaby ronald robert.

hh 110' raacopyright. (c) 1882 by

id 120 raa parsec inc pob 111
ao 130 rem salam me 01970-0111

pj 140 ram proaram nama - memo.writ.r.bas

na 150 :

bh 160 IId-D8:ad$-"01/11/82"

ah 170 printchrS(14)

ph 180 ram sd ill t.he proaram and memo storage

device fi,

cn 190 ram adS is default memo date

elm 200 op.n15,sd,15,"i"
be 210 ja-1:dtm ttS(12)
ih 220 spa."
np 230 .poke 53280,15:poka 53281,15:pok. 646,1
ilt 240 dS-"[SH/H)":n-1:aot.o1240 -

dl 250 ram IDlInu scre.n / dS is option choice

ak 260 aosub 400
ad 270 printchrS(147):print.. "+adS

ba 280 print" list of t.hins_ to do

ilt 290 forl~lto13:print chrS(17);:naxt
dn 300 priatP " [} cOlllllOdore key + letter

dj 310 print" [C)-chana. lin.

dd 320 print" {D]-delet.e line

nl 3,30 print" , [W]-write file

[I] -insart line ..

[S] "switch 1-1-na ..

[p)..print'li.tt

01 340 print" Uti-read file and reset. memo date ...

fa 350 print.:print:printspc(38)"·"

df 360 printspc(17)"dont type past h.re

mj 370 ifja<>Othan380

al 380 return

." ,

Issue # 32'

bg 390 rem

if 400 printchr$(19):forzq=lt020:printchr$(17);

:nextzq

em 410 print"

jj 420 printchr$(19):forzq=lt020:printchr$(17);

:nextzq

dn 430 return

no 440 rem display

jl 450 printchr$(19):print:print

dl 460 for x=nton+11

nd 470 print right$(Btr$(x),2);"

(sp$,36-(len(tt$(x»»

id 480 next:printchr$(19)

hj 490 return

kj 500 rem main menu

gk 510 gosub260:jg=1

fo 520 gOBub450

nc 530 getdS:ifd$=""then530

jb 540 if d$="[C=/C]"then630

cg 550 if d$=" [C=/D] "then700

cf 560 if d$=" [C"'/I] "then840

ik 570 if d$=" [C=/S] "then950

jh S80 if d$="[C=/W]"then1210

jl 590 if d$-" [C-/R] "then1210

oa 600 ifdS="[C=/P]"then1280

nm 610 ifd$="[C-/Q]"then1380

lk 620 goto 530

in 630 go sub 400

kg 640 input" what number";wn

ck 650 if wn<l or wn>12 then 690

nl 660 go sub 400

pa 670 input" ";tt$(wn)

";tt$(x)+right$

bg 680 if len(tt$(wn) »36 then tt$(wn)=""

pk 690 goto 510

ad 700 goaub 400

aa 710 input" from what number";ff

ef 720 if ff<l or ff>12 then 830

cb 730 goaub 400

ke 740 input" to what number";tn

00 750 if tn<ff or tn>12 then 830

el 760 for x=ff to

nl 770 tt$(x)-""

jb 780 next

tn

bl 790 if tn=12then830

ga 800 for x=tn+1to12

hn 810 tt$(x-(tn+1)+ff)=tt$(x)

lj 820 next

ih 830 go to 510

ja 840 gO sub 400

hj 850 input" what number";wn

no 860 if wn<l or wn>12 then 940

ko 870 gosub 400

kp 880 input" ";tt$

hn 890 if len(tt$»36 then 940

ok 900 for x=z11 to wn step-1

Twin Cities 128

ab 910 tt$(x+1)-tt$(x)

bn 920 next

tt$(wn)-tt$

goto 510

kl930

pf 940

po 950

mi 960

nj 970

bm 980

cn 990

gosub .400

input" firBt number"; ff

if ff<l or ff>12 then 1020

gosub 400

input" second number" ;sn

me 1000 if 8n<1 or sn>12 then 1020

kf 1010 s,$-tt$(ff): tt$(ff)-tt$(,m) :tt$(an)-ss$

ef 1020 goto 510

ci 1030 aw$=ad$+",s,w"

10 1040 print#15, "sO: "+ad$

hm 1050 open8,sd,8,aw$

01 1060 for x=lto12

dm 1070 if tt$(x)=""then tt$(x)-" "

nn 1080 print#8,tt$(x)

mi' 1090 next

ga 1100 close8

ka 1110 go to 510

cl 1120 al$-adS+",s,r"

fo 1130 open8,sd,8,al$

10 1140 inputl15 ,a: ifa<>Othenl190

ef 1150 forx=lto12

bj 1160 input#8,tt$(x)

on 1170 if Bt-64thenl19Q

cc 1180 next

lk 1190 cloBe8

pk 1200 goto 510

ad 1210 gosub400

om 1220 ifd$-" [C=/R] "thenprint"Read Memo Date

ee 1230 ifdS-" [C=/W] "thenprint"Write Memo Date

gp 1240 ifd$-" [C=/N] "thendS-" [C-/R]" : print" Bet

date "+adS;

U+ad$;

"+adS;

memo

co 1250 fori-1to10:printchr$(157);:nexti:input adS

ed 1260 ifdS-"[C=/W]"then1030

eg 1270 ifdS-" [C=/R] "then1l20

jb 1280 open4,4,7:cloBe4:open4,4,7

go 1290 print#4,chr$(14);"thingB to do ";aciS

bj 1300 print#4

og 1310 forx-1to12

dh 1320 iftt$(x)-""thentt$(x)-" "

jd 1330 print#4,right$(Btr$(x),2);" ";tt$(x)

md 1340 next

kl 1350 print#4, :print#4, :print#4, :print#4,:

print#4. :print#4, :print#4

fn 1360 cloBe4

kf 1370 got0510

at 1380 md-peek(215):ifmd-13thenBy~64738

ci 1390 BYB57344

A note about letters inside of brackets [] within

quotes. [C=/W] = Press the Commodore key with the W

key. [SHIN]" PresB a shifted Nwith the quotes.

Page .. 38 Issue # 32

TWIN CITIES 128 CHECKSUM PROGRAM BY MICHAEL GILSDORF

If you decide to type in programs from Twin

Cities 128 magazine, you should first type in and

run TC128 Checksum. This program checks your

typing by generating a two-letter checksum each

time you enter a program line and press the RETURN

key. The checksum is displayed in the upper left

hand corner (home position) of the 40 or 80 column

screen. To check for typing errors, compare the

checksum on the screen with the one appearing in

the magazine listing. If they're different, then

you know you've made a typing error. The magazine

listing will show the correct two letter checksum

in front of each line number.

TC128 Checksum will detect most typing errors

such as transposed characters and misspellings

but can on rare occasion be fooled. It uses the

line number and value of each character as well as

its position on the line to generate the checksum.

TC128 Checksum will ignore spaces unless they

appear inside quotes or within BASIC keywords.

You can use BASIC keyword abbreviations such as

for PRINT without affecting the result.

TC128 Checksum is also designed to make it

easier for you to indent text or enter blank

lines. To indent text, simply type the line

number, space or tab over to where you wish the

text to begin, and then begin typing. This

feature will improve the readability of your

listings by making portions of your program such

as FOR-NEXT loops and DO loops stand out more

easily. To enter a blank line, type a line number

followed by at least two spaces (or tab) and a

shifted character. When the program is listed,

only the line number will appear.

30 FOR J=l TO 80

TC128 Checksum also has the ability to

generate a checksum listing. This listing will

show the checksum along side each line number as

the program is listed. To begin the listing, type

a # in direct mode (without a line number) as the

first character on a line. Do not include any

additional BASIC commands on the line; otherwise

they will be ignored. Once the listing begins,

you can use the NO SCROLL key or STOP key to pause

or stop the listing as desired. You'll find the

checksum listing especially useful if you need to

redisplay the checksums and double check the

lines you've already entered.

OB 30 FOR J=l TO 80

Also, should you decide to submit a program

listing to .Twin Cities 128 magazine for

publication, you can use the I command to save a

checksum listing to disk. To create ~ a SEQ file

listing, type:

Twin Cities 128 Page 39

OPEN 2,8,2,"0:FILENAME,S,W": CMD 2

/F

PRINT# 2: CLOSE 2

The same technique can be used to send the

listing to a printer:

OPEN 2,4: CMD 2

PRINT# 2: CLOSE 2

The TC128 Checksum program is listed below.

Be sure to save a copy to disk before running it.

Once run, it will automatically activate itself.

1 print chr$(147);"tc128 checksum v1.0"

2 print "by mike gilsdorf (c) oct 91": print

3 bank 15: for a=3328 to 3583: read d: poke a,d:

t=t+d: next

4 if t<>29208 then print "data error": end

5 poke 770,0: poke 771,13

6 print "tc128 checksum activated"

print "to list, type: iF": print

8 print ··to deactivate, type:"

9 print "poke 770,198: poke 771,77"

10 :

100 data 162, 255, 134, 60, 32, 147, 79, 134

105 data 61, 132, 62, 32, 128, 3, 170, 240

110 data 14, 144, 15, 201, 35, 208, 7, 166

115 data 45, 165, 46, 76, 223, 13, 56, 76

120 data 212, 77, 32, 160, 80, 169, 32, 198

125 data 61, 209, 61, 208, 8, 198, 61, 209

130 data 61, 240, 250, 230, 61, 230, 61, 32

135 data 10, 67, 132, 13, 160, 0, 32, 89

140 data 13, 56, 32, 240, 255, 32, 129, 146

145 data 19, 18, 32, 78, 75, 32, 146, 27

150 data 81, 0, 24, 32, 240, 255, 76, 234

155 data 77 162, 0, 134, 251, 134, 254, 24

160 data 165, 22, 101, 23, 133, 253, 177, 61

165 data 240, 33, 170, 224, 34, 208, 2, 230

170 data 251. 165, 251, 74, 176, 4, 224, 32

175 data 240, 14, 166, 254, 177, 61, 24, 101

180 data 253, 133, 253, 202, 16, 246, 230, 254

185 data 200, 208, 219, 152, 208, 5, 169, 45

190 data 168, 208, 17, 165, 253, 74, 74, 74

195 data 74, 24, 105, 65, 168, 165, 253, 41

200 data 15, 24, 105, 65, 140, 75, 13, 140

205 data 205, 13, 141, 76, 13, 141, 206, 13

210 data 96, 200, 32, 236, 66, 153, 20, a
215 data 192. 3, 208, 245, 200, 169,

220 data 0, 255, 32, 89, 13, 169,

225 data 0, 255, 32, 129, 146, 78,

63, 141

0, 141

75, 32

230 data 0, 166, 22, 165, 23, 32, 35, 81

235 data 32. 181, 75, 166, 65, 165,

240 data 97, 134, 61, 133, 98, 133,

245 data 152, 85, 160, 0, 32, 236,

250 data 65, 200, 32, 236, 66, 133,

255 data 184, 197, 65, 208, 180, 76,

66, 134

62, 32

66, 133

66, 208

55, 77

Issue # 32

t

L

PARSEC INC
POB 111
SALEM MA 01970-0111 USA

ADDRESS CORRECTION

CUSTOMS INFORMATION:
REGULAR PRINTED MATTER

000

CINCINNATI COMM. COMPUTER CLUB
ROGER HOYER
5575 PLEASANT HILL RD
MILFORD OH 45150

BULK RATE
U.S. POSTAGE

PAID
SALEM, MA

PERMIT NO. 188

