 KRACKER JAX REVEALED 1 & 2

 INTRO : PROTECTION SCHEME TYPE A

 Owners of the 1541 disk drive may not realize it, but every time

 they boot their favorite program and it bangs the disk drive head,

 that program is using this form of protection. It is common

 knowledge along experienced users that this form of copy protection

 is hazardous to the health of the 1541 drive. Let's face it: would

 YOU write a program that purposely banged YOUR disk drive's

 read/write head against it's end stop?

 This protection is still being used by many software publishers,

 knowing full well that the drive knock is probably the major source

 of alignment problems with the 1541/1571 disk drives. We at Kracker

 Jax can't see any purpose in the continuation of this form of

 protection.

 Sure, you can back up your software with almost ANY nybble

 utility on the market. The problem is that the backup is ALSO

 protected and will bang the drive as well. It is this protection

 type that we especially urge you to learn to break, just so you can

 preserve the alignment of your disk drive.

 The operation of this scheme is simple. The programmer writes a

 routine in the program (generally in the boot) to seek out a

 non-standard sector on the disk. If that non-standard sector is

 found, the drive will usually bang, and the program will continue

 operations. If not, the program will cease to operate or "crash".

 These non-standard sectors are generally write errors, and are

 documented in your 1541/1571 drive manual. The lost commonly used

 are the following:

 20: Block header not found I drive banger.

 21: sync character not found I sector not formatted properly I

 drive banger.

 22: Data block not present I drive banger.

 23: Checksum error in data I very common I drive banger.

 26: Attempt to write with write protect on I some programs check

 for the write protect I no drive bang.

 27: Checksum error in header I drive banger.

 29: Disk ID mismatch I whole track formatted with wrong ID

 characters I no drive bang.

 K.J. REVEALED TRILOGY PAGE [3] (C)l99O K.J.P.B

Many of the programs using this scheme are checking the

 protection with simple drive commands and the kernal routines in

 the computer ROM. Keep in mind that this check can be done with

 Basic programming as well as machine language. Once understood,

 most are fairly easy to unprotect.

 Most of the time the programmer will check for the bad sector

 with a block read. It will look something like this: Ul:aa bb cc

 dd, or B-R:aa bb cc dd. The aa denotes channel, bb denotes drive

 number, cc denote track, and dd denotes sector. A character or two

 is then returned from the drive, and a comparison is made. If the

 comparison is satisfactory, the program continues operation. If

 not, the program flow is ended or set in an endless loop. Our task

 will be to either give the program the proper characters, or to

 short circuit the program flow around the protection check.

 Before starting to work on any of the following programs, please

 do a disk log, an error scan, noting all write errors, and make a

 C-64 Fast Copier backup which will remove all errors. Place a write

 protect on the original disk.

 TAPPER : BALLY NIDWAY

 Procedure:

 Loading the original produces a drive rattle twice. An error

 scan shows write errors on the original. A backup made with Three

 Minute Backup produces a non-working copy. Before starting to work

 on this program, make two backup copies.

 working with your backup:

 1) In order to look at the boot with our monitor, we must change

 its location in memory. The reason for this is because this boot

 cannot be stopped once it has been started. This is a simple

 procedure. From your utility disk, load DISK DR <> LOAD"DISK

 DR",8,l <>. When the cursor reappears type RUN and hit RETURN.

 Remove the utility disk and insert one of your Tapper backups in

 the drive. Hit RETURN again and you will be shown Track 18,

 Sector 1. Cursor over to position 3 and hit the J key. This will

 take you to the first sector of the Boot file. The first four

 bytes in this sector are the pointer bytes. Bytes 0 and 1 are

 the pointers denoting this as the only sector and the number of

 bytes used in this sector. Bytes 2 and 3 are the program address

 bytes in reverse order. Place the cursor over the byte in

 position 2 and hit the @ key. Now, type a 1 and hit RETURN. The

 cursor should now be on position 3. Again hit the @ key and type

 an 8 and hit RETURN. To make the changes on the backup, hit the

 K.J. REVEALED TRILOGY PAGE [4] (C)l99O K.J.P.B.

C key and hit RETURN. The sector is now changed on the disk. We

 have just changed the boot address to $0801, which places it in

 Basic memory. The boot will not run properly , but we may load

 and examine it.

 2) Turn your computer off and insert the reset button assembly into

 the cartridge port. Turn on the computer and load the $8000

 monitor from the utility disk <> LOAD "32768",8,l <>. Type SYS

 32768 and hit RETURN. With the monitor active, place the altered

 backup in your drive and load the boot file <> L "BOOT",08 <>.

 disassemble code at $0801 (D 0801) and scroll down through the

 code. The code from $0838 to $0853 is a loader routine that

 loads in the file LOADER and then jumps to $COOO. This gives us

 the information we need to trace the program flow. Take this

 backup out of the drive and put the other backup in its place.

 (Remember, we altered the boot file on this backup.)

 3) Load the LOADER file <> L "LOADER" ,08 <>. When the load is

 complete, interpret memory at $C000 (I C000). Scroll down

 through the code watching the left hand screen. At address $ClA3

 you'll find the block read command Ul 2,0,32,8. This is the

 command to read Track 32 Sector 8. Our error scan has shown a 21

 error in this location. Now let's disassemble and locate the

 protection code.

 4) This protection scheme is written as a series of JSR (GOSUB in

 Basic). Remember each JSR ends with a RTS (RETURN). Code will be

 explained in segments. Try to follow the program flow.

 A] Starting at $COOO in the DISASSEMBLE mode, scroll down to

 $C017 : JSR C116.

 B] Disassemble $C116 : JSR Cl4B.

 C] Disassemble $Cl4B : JSR C172.

 D] Disassemble $C172 : Opens a channel to the drive then RTS.

 E] Disassemble $C14E : JSR C188.

 F] Disassemble $C188 : Sends Block Read command to the drive

 then RTS.

 G] Disassemble $C151 : JSR ClAF.

 H] Disassemble $ClAF : Inputs two characters from the error

 channel and stores them at $ClCA and $ClCB then RTS.

 I] Disassemble $C154 : The accumulator is loaded with the error

 character placed in $ClCA and compared with a $32. The

 K.J. REVEALED TRILOGY PAGE [5] (C)l99O K.J.P.B.

accumulator is then loaded with the error character placed in

 $ClCB and compared to a $31. This is the hexadecimal

 equivalent of a 21 error ($322, $31=l). Notice that if both

 comparisons ARE equal, the accumulator is loaded with a 0, if

 not, it's loaded with a 1, then a RTS.

 J) Disassemble $C119 : The accumulator is compared with 0, and

 if equal a branch to $C127 occurs. To see what happens, type

 G C127 and hit RUN/STOP-RESTORE. Code was transferred to the

 $8000 area of memory and was activated by the RUN/STOP -

 RESTORE. You'll have to turn of f the computer and reload the

 monitor and the LOADER file again.

 K) Disassemble $CllB : Increment $ClAB (increments the track of

 the Block Read to 33).

 L) Disassemble $CllE : Increment $ClAB (increment the sector of

 the Block Read to 09).

 M) Disassemble $C120 JSR Cl4B Goes back through the error

 check routine once again but now the 21 error at Track 33,

 Sector 9 is checked (the second drive rattle). This time if

 the code is not branched to the message screen as before, it

 will return back to $COlA to resume normal loading.

 N) This program can be broken in many different ways. Three will

 be given.

 1) Place three NOPS at $C017 (EA EA EA). This will erase the

 code that sends the program to the protection check in the

 first place (our choice). The program will never do an

 error check.

 2) Place a BNE at $C119 and $C124 (Do). This will instruct

 the program to operate in an opposite fashion in regards

 to the protection, in other words, crash if an error is

 found.

 3) Place a $30 at $C162 and $C169. This will instruct the

 program to expect NO error at the Block Read locations.

 Again, if an error is found, the program will crash.

 O) Choose one of the above methods and make your changes using

 the MEMORY command. After the change is made the LOADER file

 may be scratched and saved. Checking the disk log shows us

 the start address of $COOO and the end address of $C2BC.

 Remember to add one byte to the end address

 <> S "@0:LOADER",08,COOO,C2BD <>.

 Your backup is now broken and will never rattle the drive again.

Another benefit of this particular break is the fact that now you

 may file copy this program.

 BUCKAROO BANZAI : ADVENTURE INTHRNATIONAL

 Procedure:

 Loading the original produces a drive rattle early in the load.

 An error scan shows write errors on the original. A backup made

 with the C-64 Fast copier produces a non-working copy.

 working with your backup:

 1) The disk log shows us that the boot file SAGA resides in Basic

 memory, so let's begin by loading the boot and examining it

 <> LOAD "SAGA",8: <>. List it out and notice it loads the file

 SAGA.OBJ and does a SYS to 4863 ($1300).

 2) Turn your computer of f and insert the reset button assembly.

 Turn the computer on again and, from your utility disk, load the

 $C000 monitor <> LOAD "49152",8,l <>. When the load is complete,

 sys the monitor in with SYS 49152. Now load the SAGA.OBJ file

 from your backup, and follow the program flow

 <> L "SAGA.OBJ",08 <>. Start your disassembly at $1300 (D 1300).

 We will break the code down into sections for you. Try to follow

 along and inspect the code as we go through it.

 A) $1300-$1323 Loads the SAGA.C64 file.

 B) $1324 : Does a JSR to $137A which IS the protection check

 routine.

 C) $137A-$l3BE Opens the error channel to the drive and sends

 the Block Read command to check Track 34, Sector 4. Interpret

 memory at $13BF to see the Ul (I 13BF). Then a jump to $13CE

 is taken.

 D) $13CE-$l3FE : Two bytes are received from the error channel

 and stored at $1556 and $1557. Then a check of these two

 addresses for the proper error bytes is done. The bytes are

 compared to $32 (2 in decimal) and a $31 (1 in decimal).

 These bytes correspond to a 21 error in decimal. If the

 comparison is incorrect, the program branches to $l3FF. Do a

 GO 13FF (G 13FF) to see what happens. (You'll have to reload

 your monitor and SAGA.OBJ file again). If the comparison is

 correct, the program continues along until it encounters the

 RTS at $13FE. This will branch the code back to $1327, and

 the program load will continue.

 K.J. REVEALED TRILOGY PAGE [7] (C)l99O K.J.P.B.

3) This protection scheme is fairly simple, and extremely easy to

 defeat. Four different methods will be given to break this

 title. Choose one and make your changes with the MEMORY command.

 A) Place three NOPs at $1324. This will erase the JSR to the

 protection routine. The program will never even look for

 protection now (our choice).

 B) Place an $FO at $13E9 and $13F0. This will tell the program

 to fail if an error IS found.

 C) Replace the code at $13E3 with A9 32 EA (LDA 32 EA) and the

 code at $13EA with A9 31 EA (LDA 31 EA). This loads the

 accumulator with the correct bytes the protection check is

 looking for.

 D) Change $13E6 from a $32 to a $30 and $l3ED from a $31 to a

 $30. This tells the program to look for NO error ($30=0 in

 decimal). The program will crash if an error is found.

 4) After your changes are made, all that is left is to save the

 code back to your backup. The disk log tells us the file resides

 from $1300 to $1575. Be sure to add one byte to the end address

 <> S "@0:SAGA.OBJ",08,l300,1576 <>.

 Your backup is now free from the restrictions of copy

 protection. It will no longer bang your drive head and can even be

 file copied. This scheme can be found in approximately this form in

 many different programs. Don't be surprised if you see it again.

 SARGON III CHESS : HAYDEN SOFTWARE

 Procedure:

 Loading the original produces a drive rattle twice at the end of

 the load. An error scan shows write errors on the original. A

 backup made with the C-64 Fast Copier produces a non-working copy.

 working with your backup:

 1) Turn the computer off and insert the reset button assembly into

 the cartridge port. Turn the computer back on and from your

 utility disk, load the $8000 monitor <> LOAD "32768",8,l <>. Sys

 the monitor in with SYS 32768. Place your backup in the drive

 and load the boot file <> L "SARGON III",08 <>. Start your

 disassembly of code at $02A7 (D 02A7). The code from $02A7 to

 $02F2 loads the COPYRIGHT 1984 file in and jumps to $COOO.

 K.J. REVEALED TRILOGY PAGE [8] (C)l99O K.J.P.B.

2) Load the file COPYRIGHT 1984 <> L "COPY*",08 <>. We will explain

 the code a section at a time, so try to follow as we go through

 it. Using the DISASSEMBLE command, disassemble memory beginning

 at $COOO (D C000).

 A) Disassemble $COOO : $C000-$C091 sets up a loader routine that

 loads HAYDEN SOFTWARE and JUMPS to $C311.

 B) Disassemble $C311 : $C311-C336 opens an error channel to the

 drive and sets the Y register to 0.

 C) Disassemble $C337 : JSR $C376.

 D) Disassemble $C376 : $C376-$C389 sends Block Read command to

 Drive to check Track 2, Sector 15. The address $C2F7,Y is

 accessed. Since Y has been set to 0, the true address IS

 $C2F7. Interpret memory at $C2F7 to see the B-R (I C2F7).

 This subroutine returns when an RTS is encountered.

 E) Disassemble $C33A : JSR $C38A.

 F) Disassemble $C3BA : $C38A-$C3AO inputs two bytes from the

 error channel and compares it to a $30 (0 or no error in

 decimal). If NO error is found, a branch to $C373 is taken.

 This in turn jumps to a reset vector and the program Crashes.

 If errors are found, the program flows until the RTS is

 encountered.

 G) Disassemble $C33A Loads the Y register with 0D (13 in

 decimal).

 H) Disassemble $C33F : JSR $C376 : Same as step D, except this

 time the address $C2F7,OD ($C2F7+0D) is sent to the drive.

 This address is the same as $C304 and is the B-R command for

 Track 3, Sector 16 (I C304).

 I) Disassemble $C342 : JSR $C3BA : Same as step f. Checks for

 error and RTS if found.

 J) Disassemble $C345 : Close all channels and files; continue

 setup and jump to start of program.

 3) This protection scheme is fairly simple and can be defeated in

 many ways. Four will be given. Choose one, and make your changes

 with the MEMORY command. When the change has been made, all that

 is left is to save the file back to the disk. The disk log tells

 us the file resides in memory from $COOO to $C3A2. Remember to

 add one byte to the end address when you save it

 <> S "@0:COPYRIGHT 1984",08,C000,C3A3 <>.

 K.J. REVEALED TRILOGY PAGE [9] (C)l99O K.J.P.B.

A) Change the address $CO8F from 4C 11 C3 (JHP C311) to 4C 45 C3

 (JMP C345). This will jump the program flow completely around

 the protection check (our choice).

 B) Change $C33A and $C342 from 20 8A C3 (JSR C38A) to EA EA EA.

 This will erase the JSR to the error check.

 C) Change $C397 from FO 0A (BEQ reset address) to EA BA. This

 will erase the branch to the crash and the program flow will

 be forced to continue on.

 D) Change $C395 from C9 30 (CMP 30) to C9 32. This will force

 the program to crash if an error IS found.

 After your changes are made1 you will have a completely broken

 copy that can be fast copied and even file copied.

 THE SLUGGER : NASTERTRONICS

 Procedure:

 Loading the original produces a drive rattle. An error scan

 shows write errors on the original. A backup made with the C-64

 Fast Copier produces a non-working copy.

 working with your backup:

 1) Checking the disk log shows us the boot file is in Basic memory

 so let's start by loading it <> LOAD "THE SLUGGER",8: <>. List

 it and examine the loader. It loads various files and then does

 a SYS 514 ($0202). The disk log again tells us the address $0202

 is the start of the GOFILE file.

 2) Turn the computer off and install the reset assembly into the

 cartridge port. Turn the computer back on, and from your utility

 disk, load the $2000 monitor <> LOAD "8192",8,l <>. Sys it in

 with SYS 8192. Now from your backup, load the GOFILE file

 <> L "GOFILE",08 <>. Start disassembly at $0202 (D 0202). Scroll

 down through the code and notice that this file loads the CODE

 file and Jumps to $0340.

 3) From the backup, load the CODE file <> L "CODE",08 <>. Start

 disassembly at $0340 (D 0340). The disassembly is given in the

 sections below. Try to follow along as we go through it.

 A) $0340-$036A : Opens the error channel to the drive.

 B) $036B-$037D : Sends Ul (Block Read) command to the drive to

 K.J. REVEALED TRILOGY PAGE [l0] (C)l99O K.J.P.B.

read Track 6, Sector 7. Use the INTERPRET command to see the

 Ul (I 03E3).

 C) $037E-$0385 Set up to read two bytes from the error

 channel.

 D) $0389-$0396 : Inputs a byte from the error channel and

 compares it to a $32 (2 in decimal). Another byte is

 retrieved and compared to a $33 (3 in decimal). Each compare

 results in a branch to a crash address if not satisfied.

 Otherwise the program flow continues on to a Jump to $03A1.

 These compares are the 2 and the 3 of a number 23 error. The

 error scan confirms a 23 error at Track 6, Sector 7.

 E) $03Al-$03A8 : Close error channel and normal program flow

 continues.

 4) The break in this program is fairly simple. Four different

 methods will be given. Choose one and make your changes with the

 MEMORY command.

 A) Change $0340 to 4C AB 03 (JUMP $03AB). This will cause the

 program to jump completely around the protection check (our

 choice).

 B) Change $038D and $0394 to $30. This will instruct the

 protection check to look for NO error ($30=0 in decimal).

 C) Change $038E and $0395 to $FO. This will cause the protection

 to branch to the crash if an error IS found.

 D) change $0389 to A9 32 EA (LDA 32) and $0390 to A9 33 EA (LDA

 32). This will load the accumulator with the bytes it wants

 in the compares. The bytes will not be input from the error

 channel.

 5) When your changes are made, all that's left is to save them to

 the backup. The disk log supplies the start and end addresses.

 Be sure to add one byte to the end address

 <> S "@0:CODE",08,0340,0401 <>.

 Your backup is completely broken and may be file copied to

 another disk.

 ROGUE TROOPER : UXB

 Kracker Jax Revealed Book one dealt with this scheme in four

 different programs. We have included this one title because this

 K.J. REVEALED TRILOGY PAGE [l1] (C)l99O K.J.P.B.

exact protection is a litte tricky and has been found on quite a

 few programs.

 Procedure:

 Loading the original produces a drive rattle. An error scan

 shows massive write errors on the original. A backup made with the

 C-64 Fast Copier produces a non working copy. Before starting to

 work on this program, do a disk log and an error scan to determine

 error type and location.

 working vith your backup:

 1) Let's start by plugging Hesmon in the cartridge port and

 powering on. Insert your backup in the drive and load the boot

 file < LOAD"UXB",8,l > . From the disk log we can determine that

 this file begins at memory location $032C. Start disassembly at

 $032C < D 032C > . Cursor down through the code. This code opens

 channels to the drive and loads a one character file name at

 $035B. If you Interpret memory at $035B < I 035B > you'll find

 the file name X. After the load, a jump to $08B0 is taken.

 2) Load the X file into memory < LOAD"X" ,8,l > . Begin disassembly

 at $OBBO. The following is an explanation of the program flow.

 D $08B0 : JSR 081E

 D $081E : $081E-$0841 opens an error channel to the drive

 < I E260 > and does a JSR back because the JUMP to

 $FFCO is a kernal routine and always ends with a

 JSR.

 D $08B3 : JSR 0844

 D $0844 : Sends a Ul (Block Read) command to the drive from

 an encrypted form. The code from $084E-$085D decrypts

 and sends the Ul.

 D $0868 : JSR FFA5 : Imputs a byte from the serial port.

 D $0872 : CMP 081A ($32 or the 2 in a 23 error).

 D $0874 BNE crash.

 D $0877 : JSR FFA5 : Imputs a byte from the serial port.

 D $087A : CMP 081D ($33 or the 3 in a 23 error).

 D $087C : BEQ to a JSR which closes channels and RTS back to

 $08B6. Otherwise the program flow falls through to a

 crash.

 3) There are many ways to break this title. Three will be given.

 Make all your changes using the Memory command and then resave

 the file to the backup as < S "@0:X" OB 0801 0977 >

 A) Place 3 NOPs at $08B3 over the JSR to $0844. This will cause

 the program to not even check protection.

 K.J. REVEALED TRILOGY PAGE [l2] (C)l99O K.J.P.B.

B) Place a 30 at $OBlA and at $081D. This will allow the drive

 to send back an OK condition and pass protection because we

 will now be comparing to NO error.

 C) Place a 60 (RTS) at $0844 which will cause the routine that

 checks protection to be short circuited.

 When your changes have been made, this title may be file copied.

 INTRO : PROTECTION SCHEME TYPE B

 This protection scheme has allowed software publishers a means

 of protecting their programs from the finest nybblers on today's

 market. It employs a loader that resides in RAM at $COOO. This

 loader does the protection check and then proceeds to gather a

 Basic boot from the program disk. This boot is placed in RAM at the

 beginning of Basic ($0801-). Our task in each of these schemes will

 be to let the original disk pass protection and then place the boot

 in memory. At this point we can retrieve the boot and from then on

 use it to load our back-up, leaving the protection check completely

 behind.

 Before starting, you must understand the way a Basic program is

 placed in memory and how the pointers affect it. The reason for

 this is that most of the time upon reset, the beginning pointers

 will be destroyed and we will have to repair them ourselves.

 The pointers used by Basic are very specific, and if not

 correct, the Basic program will fail to operate properly. To show

 you how a Basic program looks in memory, let's inspect the example

 on your work disk.

 First, load the $C000 monitor from your Utility disk

 <> Load "49152",8,l <> and sys it in by typing SYS49152 and

 hitting RETURN. You should be in the monitor now so load again

 from your work disk the file called BASIC EXAMPLE

 <> L "BASIC EXAMPLE",08 <>. After the load, examine memory from

 $0801-$0890 (M 0801) Scroll up and down through the code. You

 should be looking at the same code as shown below. Please note

 that the example below has all pointer bytes underlined for ease

 of viewing.

 K.J. REVEALED TRILOGY PAGE [l3] (C)l99O K.J.P.B.

 :0801 0E 08 05 00 99 22 93 11

 :0809 11 11 O5 22 00 35 08 0A

 :0811 00 99 22 20 20 20 54 4B

 :0819 49 53 20 49 53 20 41 4E

 :0821 20 45 5B 41 4D 50 4C 45

 :0829 20 4F 46 20 46 4F 57 2D

 :0831 41 20 22 00 5A 08 14 00

 :0839 99 22 20 20 20 42 41 53

 :0841 49 43 20 50 52 4F 47 52

 :0849 41 4D 20 49 53 20 46 4F

 :0851 52 4D 41 54 45 44 20 22

 :0859 00 84 08 1E OO 99 22 2D

 :0861 20 20 49 4E 20 54 48 45

 :0869 20 4D 45 4D 4F 52 59 2D

 :0871 4F 46 20 54 48 45 20 43

 :0879 4F 4D 4D 4F 44 4F 52 45

 :0881 2E 22 00 00 00 FD BD FF

 :0889 DO FF FF E6 FF FE 00 00

 The format of Basic is as follows. Starting at $0801, the bytes

 OE 08 denote the placement of the next line number in memory in

 reverse order ($080E). The next two bytes, OS 00 denote the current

 line number in reverse order ($0005=5).

 Follow the bytes from here until you get to the next 00. This

 byte (residing at address $080D) denotes the end of the first line

 in this program. The next four bytes are again the pointers for the

 second line in our Basic program. The address $080E and $080F

 contain the bytes 35 08. These are the address of the next line

 number in our program, again in reverse order ($0835). The next two

 bytes starting at $0810 are OA 00 which is the current line number

 of our program, again in reverse order (OOOA=OA in hex or line 10

 in decimal). This format is followed all through any normal Basic

 program and ends only when three hex zeros are encountered (00 00

 00). This tells Basic that the programs end has been found. You'll

 find these bytes in our example starting at $0883.

 This means that this program could be saved with your monitor

 using the addresses from $0801-$0885. The $0801 being the beginning

 of Basic and the $0885 the last of the three zero bytes. The actual

 save command would be <> S "FILENAHE",08,0801,0886 <>. We used the

 end address $0886 because all monitor saves need one extra byte

 added to the actual ending address ($0885+l=$0886).

 By understanding the structure of Basic, we can now repair any

 damage done to our pointers when we reset out of our program loads.

 Now let's move on to our example programs.

 K.J. REVEALED TRILOGY PAGE [l4] (C)l99O K.J.P.B.

 TITLE BOUT : AVALON HILL

 Loading the original produces a rattle free load, and an error

 scan shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A backup made with a nybbler

 also produces a non-working copy. Before starting to work on this

 program, please make a non-working backup of the original.

 Working with your backup:

 1) Start by validating the BAM <> OPENl5,8,15,"V":CLOSEl5 <> to

 make room for a new file we will be adding later. Scratch The

 first file from your backup <> OPENl5,8,15,"S0:AH":CLOSE15 <>.

 Working with your original:

 2) Place a write protect tab on the original to ensure its safety

 during the breaking process.

 3) Turn of f your computer and insert your reset assembly into the

 cartridge port. Turn the computer on again and load the boot

 file and start the load process <> LOAD"AH",8,1 <> . Allow the

 program to load until the screen turns black and the words

 LOADING DATA appear in the middle of the screen. At this point,

 reset the computer.

 4) Remove the original disk from your drive and insert the utility

 disk. Load the $COOO monitor <> LOAD"49152",8,l <>. When the

 load is complete, sys the monitor in with sys 49152. The monitor

 should be active now. Remove the utility disk from the drive and

 replace it with the backup work disk.

 5) Interpret memory starting at $0801 (I 0801). Scroll through

 memory and notice the Basic program. Our task is to repair the

 pointers and save the program to your backup (see Scheme B

 Intro). Using the memory command (N 0801) inspect code at 0801.

 Notice that the first two bytes are 00 00. These two bytes

 represent the start of the flan line in this Basic program.

 Obviously, these bytes have been destroyed by the reset because

 the next line couldn't be zero. To find the correct bytes to

 replace the two zeros, follow this procedure. We know the first

 four bytes are pointer bytes ($080l-$0804). we also know that

 the next time a zero byte appears in memory ($0811), it signals

 a new line. The next address is the address that the pointer

 will point to ($0812). Therefore, the first two bytes in this

 program should be 12 08 because all addresses are read in

 K.J. REVEALED TRILOGY PAGE [l5] (C)l99O K.J.P.B.

 reverse order. Now we can scroll to the two zeros at $0801 and

 type over them 12 08 and hit RETURN. The first four bytes

 starting at $0801 should now be 12 08 Ol 00 (the Ol 00 bytes

 represent the current line number in reverse Ol 00=00 01). Our

 Basic program is now repaired and all that's left is to locate

 the end of the program and save it to your backup disk. To find

 the program end, use the HUNT command in your monitor. We'll

 hunt for the three zero bytes that signal the end of Basic.

 <>H 0801 8000 00 00 00 <>. As the first bytes begin to be

 reported, hit the number 1 key to stop the hunt. We are only

 interested in the first address reported. In this case, it

 should be $1C15. Using the MEMORY command, inspect memory around

 the address $1C15. You will notice that the third zero is at the

 location $1C15. We now have all the information needed to save

 the new boot to your backup. The start address is $0801

 (beginning of Basic) and the end address is $1C16 (all monitors

 require us to save the actual address plus one:$1C15+l=$1C16).

 Make sure your backup is in the drive and save the ~emory from

 $0801-$1C15 <> S "AH",08,0801,1C16 <>.

 When the save is complete, you will have a broken copy that will

 no longer do a protection check. We have essentially replaced

 the auto boot and the protection check with the result, a Basic

 boot.

 SUPERBOWL SUNDAY : AVALON HILL

 Procedure:

 Loading the original produces a rattle free load, and an error

 scan shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A backup made with a nybbler

 produces the same non-working copy. Before starting to work on this

 program, please make a non-working backup of the original.

 working with your backup:

 1) Start by validating the BAM <> OPENl5,8,15,"V":CLOSEl5 <> to

 make room for a new file we will be adding later. Scratch The

 first file from the backup <> OPENl5,8,15,"S0:START":CLOSEl5 <>.

 working with your original:

 2} Place a write protect tab on the original to ensure its safety

 during the breaking process.

 3) Turn your computer off and insert the reset assembly into the

 cartridge port. Turn the computer on again and load the boot

 file and start the load process <> LOAD"START",8,l <>. Allow the

 K.J. REVEALED TRILOGY PAGE [l6] (C)l99O K.J.P.B.

program to load until the game menu is on the screen. At this

 point, reset the computer.

 4) Remove the original disk from your drive and insert the utility

 disk. Load the $COOO monitor <> LOAD"49l52",8,1 <> . When the

 load is complete, sys the monitor in with SYS49152. The monitor

 should be active now. Remove the utility disk from the drive and

 replace it with the backup work disk.

 5) Interpret memory starting at $0801 (I 0801). Scroll through

 memory and notice the Basic program. Our task is to repair the

 pointers and save the program to your backup (see scheme B

 intro). Using the memory command (H 0801) inspect code at 0801.

 Notice that the first two bytes are 00 00. These two bytes

 represent the start of the next line in this Basic program.

 Obviously, these bytes have been destroyed by the reset because

 the next line couldn't be zero. To find the correct bytes to

 replace the two zeros, follow this procedure. We know that the

 first four bytes are pointer bytes ($0801-$0804). We also know

 that the next time a zero byte appears in memory ($0811), it

 signals a new line. The next address is the address that the

 pointer will point to ($0812). Therefore, the first two bytes in

 this program should be 12 OB because all addresses are read in

 reverse order. Now we can scroll to the two zeros at $0801 and

 type over them 12 08 and hit RETURN. The first four bytes

 starting at $0801 should now be 12 08 00 00 (the 00 DO bytes

 represent the current line number in reverse DO 00=00 DO; yes,

 we CAN have a line number 0!). Our BASIC program is now repaired

 and all that is left is to locate the end of the program and

 save it to our backup disk. To find the program end, use the

 HUNT command in your monitor. We'll hunt for the three zero

 bytes that signal the end of Basic. <>H 0801 8000 DO DO DO <>.

 As the first bytes begin to be reported, hit the number 1 key to

 stop the hunt. We are only interested in the first address

 reported. In this case it should be $OA6E. Using the memory

 command, inspect memory around the address $OA6E. You will

 notice that the third zero is at the location $OA7O. We now have

 all the information needed to save the new boot to our backup.

 The start address is $0801 (beginning of Basic) and the end

 address is $0A71 (all monitors require us to save the actual

 address plus one: $0A70+l=$0A71). Make sure your backup is in

 the drive and save the memory from $0801-$0A70 <>

 S"START",08,0801, 0A71 <>.

 When the save is complete, you will have a broken copy that will

 no longer do a protection check. We have essentially replaced

 the auto boot and the protection check with the result, a Basic

 boot.

 K.J. REVEALED TRILOGY PAGE [17] (C)l99O K.J.P.B.

 GULFSTRIKE : AVALON HILL

 Procedure:

 Loading the original produces a rattle free load, and an error

 scan shows no standard errors. A backup made with the C-64 Fast

 copier or a nybbler produces a non-working copy. Before starting,

 please make a non-working backup of the original.

 working with your backup:

 1) Start by validating the BAM <> OPENl5,8,15,"V":CLOSEl5 <> to

 make room for a new file we will be adding later. Scratch the

 first file from your backup <> OPENl5,8,15,"S0:BOOT":CLOSEl5 <>.

 2) Turn off your computer and insert the reset assembly into the

 cartridge port. Turn the computer on again and remove your

 backup from the drive. Insert the utility disk and load the

 $COOO monitor <> LOAD"49152",8,l <>. After the load, sys in your

 monitor with SYS 49152 and hit RETURN. We want to fill memory

 from $0801-$2000 with EA so, use the FILL command

 <> F 0801 2000 EA <>. We now have a marked work space to load

 our program into. Use the reset button to reset the computer and

 clear the screen.

 working with your original:

 3) Place a write protect on the original to ensure its safety

 during the breaking process.

 4) Load the boot file and start the load process

 <> LOAD"BOOT"18,l <>. Allow the program to load until the screen

 clears and then turns blue. At this point, reset the computer.

 5) Remove the original disk from your drive and insert the utility

 disk again. Load The $COOO monitor <> LOAD"49152",8,l <>. When

 the load is complete, sys the monitor in with 5YS49152. The

 monitor should be active now. Remove the utility disk from the

 drive and replace it with the backup work disk.

 6) Interpret memory starting at $0801 (I 0801). Scroll through

 memory and notice the Basic program. Our task is to repair the

 pointers and save the program to our backup (see Scheme B

 Intro). Using the MEMORY command (M 0801), inspect code at

 $0801. Notice that the first two bytes are 00 00. These two

 bytes represent the start of the next line in this Basic

 program. obviously, these bytes have been destroyed by the reset

 because the next line couldn't be zero. To find the correct

 K.J. REVEALED TRILOGY PAGE [l8] (C)l99O K.J.P.B.

bytes to replace the two zeros, follow this procedure. We know

 the first four bytes are pointer bytes ($0801-$0804). We also

 know that the next time a zero byte appears in memory ($080D),

 it signals a new line. The next address is the address that the

 pointer will point to ($080E). Therefore, the first two bytes in

 this program should be OE 08 because all addresses are read in

 reverse order. Now we can scroll to the two zeros at $0801 and

 type over them OE 08 and hit RETURN. The first four bytes

 starting at $0801 should now be OE 08 OA 00 (the OA 00 bytes

 represent the line number in reverse OA 00=OOOA =10 in

 decimal). Our Basic program is now repaired and all that is left

 is to locate the end of the program and save it to our backup

 disk. To find the program end, use the HUNT command in your

 monitor. We'll hunt for the first three EA bytes that signal the

 end of the program that we loaded in <> H 0801 2000 EA EA EA <>.

 This search will bring back the address $08A5. Disassembly of

 code around this address reveals a small machine language

 program placed under a Basic program. To properly capture all

 the necessary code, we must save the code from the beginning of

 Basic ($0801) to the beginning of our EA bytes ($08A5). Because

 all monitors require us to add one extra byte to the end

 address, use this command: <> S"BOOT",08,0801,08A6 <>.

 When the save is complete, you will have a broken copy that will

 no longer do a protection check. We have essentially replaced the

 auto boot and the protection check with the result, a small program

 consisting of a Basic loader with a machine language routine placed

 under it.

 CREATIVE CONTRAPTIONS : BANTAM

 Procedure:

 Loading the original produces a rattle free load, and an error

 scan shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A backup made with a nybbler

 produces the same non-working copy. Before starting to work on this

 program, please make a non-working backup of the original.

 Working with your backup:

 l) Start by scratching the first file from your backup

 <> OPENl5,8,15, "S0:CREATIVE":CLOSEl5 <>.

 Working vith your original:

 2) Place a write protect on the original to ensure its safety

 during the breaking process.

 K.J. REVEALED TRILOGY PAGE [l9] (C)l99O K.J.P.B.

 3) Turn your computer off and insert the reset assembly into the

 cartridge port. Turn the computer on again and load the boot

 file and start the load process <> LOAD"CREATIVE",8 <>. When the

 cursor appears, type RUN and hit RETURN. Let the program load

 for about 15 seconds and reset the computer.

 4) Remove the original disk from your drive and insert the utility

 disk. Load the $COOO monitor <> L0AD"49152",8,1 <>. When the

 load is complete, sys the monitor in with SYS49152. The monitor

 should be active now. Remove the utility disk from the drive and

 replace it with the backup work disk.

 5) Interpret memory starting at $0801 (I 0801). Scroll through

 memory and notice the Basic program. Our task is to repair the

 pointers and save the program to our backup (see Scheme B

 Intro). Using the MEMORY command (M 0801), inspect code at 0801.

 Notice that the first two bytes are 00 00. These two bytes

 represent the start of the next line in this Basic program.

 Obviously, these bytes have been destroyed by the reset because

 the next line couldn't be zero. To find the correct bytes to

 replace the two zeros, follow this procedure. We know the first

 four bytes are pointer bytes ($0801-$0804). We also know that

 the next time a zero byte appears in memory ($0818), it signals

 a new line. The next address is the address that the pointer

 will point to ($0819). Therefore, the first two bytes in this

 program should be 19 OB because all addresses are read in

 reverse order. Now we can scroll to the two zeros at $0801 and

 type over them 19 08 and hit RETURN. The first four bytes

 starting at $0801 should now be 19 08 OA 00 (the OA 00 bytes

 represent the current line number in reverse OA 00=OOOA =10 in

 decimal). Our Basic program is now repaired and all that is left

 is to locate the end of the program and save it to your backup

 disk. To find the program end, use the HUNT command in your

 monitor. We'll hunt for the three zero bytes that signal the end

 of Basic. <>H 0801 8000 00 00 00 <>. As the first bytes begin to

 be reported, hit the number 1 key to stop the hunt. We are only

 interested in the first address reported. In this case it should

 be $0879. Using the MEMORY command, inspect memory around the

 address $0879. You'll notice that the third zero is at the

 location $087B. We now have all the information needed to save

 the new boot to our backup. The start address is $0801

 (beginning of Basic) and the end address is $087C (all monitors

 require us to save the actual address plus one: $087B+l=$087C).

 Make sure your backup is in the drive and save the memory from

 $0801-$087B <> S"CREATIVE",08,0801,0B7C <>.

 When the save is complete, you will have a broken copy that will

 no longer do a protection check, and will even load faster than

 the original. We have essentially replaced the auto boot and

 the protection check with the result, a Basic boot.

 K.J. REVEALED TRILOGY PAGE [20] (C)l99O K.J.P.B.

 INTRO : PROTECTION SCHEME TYPE C

 This protection scheme employs the use of a "fat track" to

 prevent the user from making his backup. To make matters worse,

 the fat track is placed on the outer (36-40) tracks.

 Most of the examples covered in this manual work approximately

 the same. The following general loading procedure is taken with

 each.

 1) The boot is loaded and autostarts the program.

 2) A fast loader is set up and activated.

 3) The logo screen is loaded in and activated.

 4) The protection routine is decrypted.

 5) The files pertaining to the program are loaded in. These

 are generally encrypted.

 6) The protection is checked, which places a numeric value

 ($FF) in the disk drive's memory.

 7) The value is checked using a memory read.

 8) The value is used as a part of a decryption routine to

 decrypt the main program. Proper decryption takes place

 ONLY if the correct value is returned.

 9) The code then jumps to the start of the program.

 The Activision examples in this manual represent this protection

 scheme in it's most difficult form to un-protect. You'll find this

 same scheme being used by other software publishers, but generally

 not encrypted. They usually check for the value in the same way

 and start the program if found. One example of this will be given,

 and will be unprotected by a different method. Understanding this

 routine is imperative, because this scheme has been improved, and

 will be covered in it's expanded form in updates to this manual.

 K.J. REVEALED TRILOGY PAGE (21) (c)1990 K.J.P.B.

COUNTDOWN TO SHUTDOWN : ACTIVISION

 Procedure:

 Loading the original produces a rattle free load, and an error

 scan shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A nybbled backup produces the

 same non-working copy. Before starting to work on this program,

 please make a (non-working) backup of the original, and a disk log

 to log the file addresses.

 1) Turn off your computer and insert your reset button

 assembly into the cartridge port. Turn the computer on again. Load

 the $COOO monitor from your utility disk <> LOAD"49152",8,l <>. At

 the completion of the load, type SYS 49152 and hit RETURN. The

 monitor should be active now.

 Working with your backup:

 2) With your backup in the drive and the monitor active, load

 the boot file <> L "1C0P*",08 <>. When the load is complete,

 disassemble memory at $02A0. You'll find a loader routine that

 loads in the 1985 file and jumps to $0B79.

 3) Load the 1985 file into memory <> L " 19*",08 <>. After

 the load, start disassembly of code at $0B79 (D 0B79). The code is

 as follows: $0B79-$OBCB sets up a fast loader and loads in the

 logo screen. $OBCC is a JSR (GOSUB in BASIC) to the logo screen.

 $OBCF is the start of the main program load. It is this code

 that is of interest to us.

 4) The code at $0C40-$0C61 is a decryption routine. Examine

 it because it is the key to the de-protection. This routine allows

 decryption and examination of the protection code. At the end of

 this decryption routine is a RTS ($0C61). Using the Memory

 command (M 0C61), change the 60 to a 00. This will allow a

 normal operation of code until the 00 (Break or Stop) is

 encountered. The program, once started, will stop right after

 the decryption, allowing us to examine the protection routine.

 5) For our purposes, we will skip over the fast loader and

 logo screens. Let's start the program after the logo screen is run

 ($OBCF). Type G OBCF and hit RETURN. The screen should turn

 black. Wait for about five seconds and reset the computer.

 Return to the monitor with SYS 49152. Using the INTERPRET

 command, examine code from $OAOO on (I OAOO). Code at $OAEF

 reveals a Block Execute (executes a protection check routine

 placed in drive memory) and code at $0B72 reveals a Memory Read

 K.J. REVEALED TRILOGY PAGE (22) (c)1990 K.J.P.B.

that reads the value placed in the drive by the protection

 check. This value, in this scheme, is always an $FF. Examine

 code at $0B42. The value is being returned to the computer by a

 Memory Read with a kernal routine. The $FFCF routine brings back

 the value $FF. It is then EORed with $AA which turns it into a

 $55 and then stores it at location $0B65. Our job is to place

 the correct value in $0B65 and disable the routine overwriting

 it. This can be accomplished by placing three NOPs at $0B47

 which will allow the routine to Memory Read the value but not

 place it in computer RAN. All that is left is to place the

 correct value of $55 at $0B65.

 6) Now we have the correct values to plug into the code to

 disable and give the protection check what it wants. The last step

 is to place the changes on the disk. This is best done with a sector

 editor because to scratch and replace the 1985 file will destroy

 necessary code placed on the disk. This code is not accessed in

 the normal fashion, so it will be overwritten if we do a scratch

 and save of the 1985 file. Finish the job by following these

 steps:

 A] We know the code was originally encrypted, so we must place

 our values on the disk in encrypted form. The three bytes at

 $0B47 and the single byte at $0B65 are the only changes

 needed. Reload the 1985 file <> L" 19*" ,08 <>. Again go to

 location $0B61 and place a 00 in memory. Inspect the three

 bytes a $0B47. They should be 29 7A 91. The byte at $0B65

 should be a A2. These are the bytes we will look for on our

 backup with the sector editor.

 B] The code can now be decrypted by typing G OBCF. Again the

 screen will turn black. After a few seconds, reset the

 computer and reactivate the monitor with SYS 49152.Using the

 MEMORY command (N 0B47), change the code at $0B47 from 8D 65

 OB to EA EA EA. change the code at $0B65 from A2 to 55.

 C] Now that our changes are in memory, we may re-encrypt the

 file (and our byte changes) by again typing G OBCF. Again,

 reset out and SYS the monitor back in with SYS 49152 and hit

 RETURN. Examine memory at $0B47 and find the encrypted byte

 changed to SB. Now we know the changes, and the location, so

 changes. They should be 4E F5 70. The byte at $0B65 has

 we may now do the actual changes to the backup.

 D] Reset the computer and load the sector editor from the

 utility disk [LOAD"DISK DR",8,l]. When the cursor appears,

 type run and hit RETURN. Remove the utility disk and place

 your backup in the drive. flit RETURN. You will be shown

 track 18, sector 1. By placing the cursor at position 35 you

 will be on the file pointers of the 1985 file. Press the J

 K.J. REVEALED TRILOGY PAGE (23) (c)1990 K.J.P.B.

 key to jump to the beginning of the 1985 file. When the

 sector comes on the screen, examine the first four bytes. The

 first two are links to the next sector of the file. The next

 two are the address bytes in reverse order ($0700). We know

 our changes are in memory block $OBOO so we can use the N key

 to page through memory. Press N to go to approximately 0800,

 press again to go to 0900, press again to go to OAOO, and

 once more to $OBOO. This block turned out to be track 17,

 sector 3 on our version. Yours could be in a different

 location on the disk but the idea will be the same.

 E] Using the cursor key to move through the code, we

 find the original three bytes 29 7A 91 at location 83. The

 change to 4E F5 70 can be accomplished with the @ key. The

 changes must be the decimal equivalent. These are 78 245 112.

 Change each byte by placing the cursor over the byte to be

 changed, and type @ and then the decimal number change. Hit

 RETURN when the change is made to lock it in. When all three

 bytes are changed, continue searching with the cursor for the

 A2 byte. This can be found at 113. Using the same change

 procedure, change it to a decimal 91 ($5B). When all changes

 have been made and locked in, press C to copy the sector back

 to the disk.

 You now have a copy that can be fast copied. The placement of

 data on the disk in methods other than directory files will not

 allow you to file copy. One other point of interest is the fast

 loader installed in many pieces of this publisher's software. This

 fast loader is NOT compatible with the 1571 disk drive. In many

 (but not all) of the programs, you may disable the fast loader and

 allow the program to load on the 1571 by changing the jump to the

 main program in the autoboot. Countdown does not work by doing

 this but, just as an example, you would change the 79 OB (JMP 0B79)

 to CF OB (use DISK Doctor and the decimal equivalents). This would

 bypass the fast-loader and the logo screen. A small price to pay

 for the 1571 owners.

 WEB DIMENSION : ACTIVISION

 Procedure:

 Loading the original produces a rattle free load, and an error

 scanner shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A backup made with a nybbler

 produces the same non-working copy. Before starting to work on

 this program, please make a (non-working) backup of the original,

 and a disk log to log the file addresses.

 K.J. REVEALED TRILOGY PAGE (24) (c)1990 K.J.P.B.

1) Turn off your computer and insert your reset button

 assembly into the cartridge port. Turn the computer on again. Load

 the $C000 monitor from your utility disk <> LOAD"49152",8,l <>. At

 the completion of the load, type SYS 49152 and hit RETURN. The

 monitor should be active now.

 working with your backup:

 2) With your backup in the drive and the monitor active,

 load the boot file <> L "COP*",08 <>. When the load is complete,

 disassemble memory at $02E0. You'll find a loader routine that

 loads in the 1985 file and jumps to $OC3D.

 3) Load the 1985 file into memory <> L "19*",08 <>. After

 the load, start disassembly of code at $OC3D (D OC3D). The code is

 as follows: $OC3D-$OC5B sets up a fast loader and loads in the

 logo screen. $OC5C is a JSR (GOSUB in BASIC) to the logo screen.

 $OC5F is the start of the main program load. It is this code

 that is of interest to us.

 4) The code at $OCE5-$0D06 is a decryption routine. Examine

 it, because it is the key to the de-protection. This routine allows

 decryption and examination of the protection code. At the end of

 this decryption routine is a RTS ($0D06). Using the MEMORY

 command (M 0D06), change the 60 to a 00. This will allow a

 normal operation of code until the 00 (Break or Stop) is

 encountered. The program, once started, will stop right after

 the decryption, allowing us to examine the protection routine.

 5) For our purposes, we will skip over the fast loader and

 logo screens. Let's start the program after the logo screen is run

 ($OC5F). Type G OC5F and hit RETURN. The screen should turn

 black. Wait for about five seconds and reset the computer.

 Return to the monitor with SYS 49152. Using the INTERPRET

 command, examine code from $OAOO on (I OAOO). Code at $OAB6

 reveals a Block Execute (executes the protection check placed in

 drive memory) and code at $OAC2 reveals a Memory Read that reads

 the value placed in the drive by the protection check. This

 value is, in this scheme, always an $FF. Examine code at $0A92.

 The value is being returned to the computer by a Memory Read

 with a kernal routine. The $FFCF routine brings back the value

 $FF. It is then EORed with $FF which turns it into a $00 and

 then stores it at location $OAB5. Our job is to place the

 correct value in $OAB5 and disable the routine overwriting it.

 This can be accomplished by placing three NOPs at $0A97 which

 will allow the routine to Memory Read the value but not place it

 in computer RAM. All that is left is to place the value of $00

 at $OAB5.

 6) Now we have the correct values to plug into the code to

 disable

 K.J. REVEALED TRILOGY PAGE (25) (c)1990 K.J.P.B.

and give the protection check what it wants. The last step is to

 place the changes on the disk. This is best done with a sector

 editor because to scratch and replace the 1985 file will destroy

 necessary code placed on the disk. This code is not accessed in

 the normal fashion, so it may be overwritten if we do a scratch

 and save of the 1985 file. Finish the job by following these

 steps:

 A] We know the code was originally encrypted, so we must

 place our values on the disk in encrypted form. The three bytes at

 $0A97 and the single byte at $OAB5 are the only changes

 needed. Reload the 1985 file <> L 19*" ,08 <>. Again, go to

 location $0D06 and place a 00 in memory. Inspect the three

 bytes at $0A97. They should be 19 8E E8. The byte at $OAB5

 should be a 8A. These are the bytes we will look for on our

 backup with the sector editor.

 B] The code can now be decrypted by typing G OC5F. Again the

 screen will turn black. After a few seconds, reset the

 computer and reactivate the monitor with SYS 49152. Using the

 MEMORY command (M 0A97), change the code at $0A97 from 8D B5

 OA to EA EA EA. Change the code at $OAB5 from AC to 00.

 C] Now that our changes are in memory, we may re-encrypt the

 file (and our byte changes) by again typing G OC5F. Again,

 reset out and SYS the monitor back in with SYS 49152 and hit

 RETURN. Examine memory at $0A97 and find the encrypted byte

 changes. They should be 7E Dl 08. The byte at $OAB5 has

 changed to 26. Now we know the changes, and the location so

 we may now do the actual changes to the backup.

 D] Reset the computer and load the sector editor from the

 utility disk <> LOAD"DISK DR",8,l <>. When the cursor

 appears, type RUN and hit RETURN. Remove the utility disk and

 place your backup in the drive. Hit RETURN. You will be shown

 track 18, sector 1. By placing the cursor at position 35, you

 will be on the file pointers of the 1985 file. Press the J

 key to jump to the beginning of the 1985 file. When the

 sector comes on the screen, examine the first four bytes. The

 first two are links to the next sector of the file. The next

 two are the address bytes in reverse order ($OAOO). We know

 our changes are in memory block $OAOO so we are in the proper

 block to make our changes. This block turned out to be track

 17, sector 2 on our version. Yours could be in a different

 location on the disk, but the idea will be the same.

 E] Using the cursor key to move through the code, we find the

 original three bytes 19 8E E8 at location 155. The change to

 7E Dl 08 can be accomplished with the @ key. The changes must

 be the decimal equivalent. These are 126 209 08. Change each

 K.J. REVEALED TRILOGY PAGE (26) (c)1990 K.J.P.B.

by placing the cursor over the byte to be changed, and

 type @ and the decimal number change. Hit RETURN when the

 change is made to lock it in. When all three bytes are

 changed, continue searching with the cursor for the BA byte.

 This can be found at position 185. Using the same change

 procedure, change it to a decimal 38 ($26). When all changes

 have been made and locked in, press C to copy the sector back

 to the disk.

 You now have a copy that can be fast copied. The placement of

 data on the disk in methods other than directory files will not

 allow you to file copy. One other point of interest is the fast

 loader installed in many pieces of this publisher's software. This

 fast loader is NOT compatible with the 1571 disk drive. In many of

 the (but not all) of the programs, you may disable the fast loader

 and allow the program to load on the 1571 by changing the jump to

 the main program in the autoboot. Web Dimension will work by doing

 this. Just change the 3D OC (JMP OC3D) to SF OC (use DISK Doctor

 and the decimal equivalents). This will bypass the fast loader and

 the logo screen. A small price to pay for the 1571 owners.

 FIREWORKS CELEBRATION KIT : ACTIVISION

 Procedure:

 Loading the original produces a rattle free load, and an error

 scanner shows no standard errors. A backup made with Three Minute

 Backup produces a non-working copy. A backup made with a nibbler

 produce the same non-working copy. Before starting to work on this

 program, please make a (non-working) backup of the original, and a

 disk log to log the file addresses.

 1) Turn of f your computer and insert your reset button

 assembly into the cartridge port. Turn the computer on again. Load

 the $COOO monitor from your utility disk <> LOAD"49152",8,l <>. At

 the completion of the load, type SYS 49152 and hit RETURN. The

 monitor should be active now.

 working with your backup:

 2) With your backup in the drive and the monitor active, load

 the boot file <> L "COP*" ,08 <>. When the load is complete,

 disassemble memory at $02E0. You'll find a loader routine that

 loads in the 1985 file and jumps to $OC3D.

 3) Load the 1985 file into memory <> L " 19*",08 <>. After

 the load, start disassembly of code at $OC3D (D OC3D). The code is

 as follows: $OC3D-$OC5B sets up a fast loader and loads in the

 K.J. REVEALED TRILOGY PAGE (27) (c)1990 K.J.P.B.

logo screen. $OC5C is a JSR (GOSUB in BASIC) to the logo screen.

 $OC5F is the start of the main program load. It is this code

 that is of interest to us.

 4) The code at $OCE2-$0D03 is a decryption routine. Examine

 it, because it is the key to the de-protection. This routine allows

 decryption and examination of the protection code. At the end of

 this decryption routine is a RTS ($0D03). Using the MEMORY

 command (M 0D03), change the 60 to a 00. This will allow a

 normal operation of code until the 00 (Break or Stop) is

 encountered. The program, once started, will stop right after

 the decryption, allowing us to examine the protection routine.

 5} For our purposes, we will skip over the fast loader and

 logo screens. Let's start the program after the logo screen is run

 ($OC5F). Type G OC5F and hit RETURN. The screen should turn

 black. Wait for about five seconds and reset the computer.

 Return to the monitor with SYS 49152. Using the INTERPRET

 command, examine code from $OAOO on (I OAOO). Code at $OAB6

 reveals a Block Execute (executes the protection check placed in

 drive memory) and code at $OAC2 reveals a Memory Read that reads

 the value placed in the drive by the protection check. This

 value, in this scheme, is always an $FF. Examine code at $0A92.

 The value is being returned to the computer by a Memory Read

 with a kernal routine. The $FFCF routine brings back the value

 $FF. It is then EORed with $FF which turns it into a $00 and

 then stores it at location $0AB5. Our job is to place the

 correct value in $OAB5 and disable the routine overwriting it.

 This can be accomplished by placing three NOPs at $0A97 which

 will allow the routine to Memory Read the value but not place it

 in computer RAM. All that is left is to place the value of $00

 at $OAB5.

 6} Now we have the correct values to plug into the code to

 disable and give the protection check what it wants. The last step

 is to place the changes on the disk. This is best done with a

 sector editor because to scratch and replace the 1985 file will

 destroy necessary code placed on the disk. This code is not

 accessed in the normal fashion, so it may be overwritten if we do

 a scratch and save of the 1985 file. Finish the job by following

 these steps:

 A] We know the code was originally encrypted, so we must

 place our values on the disk in encrypted form. The three bytes at

 $0A97 and the single byte a $OAB5 are the only changes

 needed. Reload the 1985 file <> L " 19*" ,08 <>. Again go to

 location $0D06 and place a 00 in memory. Inspect the three

 bytes at $0A97. They should be 19 8E E8. The byte at $OAB5

 should be an BA. These are the bytes we will look for on our

 backup with the sector editor.

 K.J. REVEALED TRILOGY PAGE (28) (c)1990 K.J.P.B.

 B] The code can now be decrypted by typing G OC5F. Again, the

 screen will turn black. After a few seconds, reset the

 computer and reactivate the monitor with SYS 49152. Using the

 MEMORY command (M 0A97), change the code at $0A97 from 8D B5

 OA to EA EA EA. Change the code at $OAB5 from AC to 00.

 C] Now that our changes are in memory, we may re-encrypt the

 file (and our byte changes) by again typing G OC5F. Again

 reset out and SYS the monitor back in with SYS 49152 and hit

 RETURN. Examine memory at $0A97 and find the encrypted byte

 changes. They should be 7E Dl 08. The byte at $OAB5 has

 changed to 26. Now we know the changes, and the location so

 we may now do the actual changes to the backup.

 D] Reset the computer and load the sector editor from the

 utility disk <> LOAD"DISK DR",8,1 <>. When the cursor

 appears, type RUN and hit RETURN. Remove the utility disk and

 place your backup in the drive. Hit RETURN. You will be shown

 track 18, sector 1. By placing the cursor at position 35, you

 will be on the file pointers of the 1985 file. Press the J

 key to jump to the beginning of the 1985 file. When the

 sector comes on the screen, examine the first four bytes. The

 first two are links to the next sector of the file. The next

 two are the address bytes in reverse order ($OAOO). We know

 our changes are in memory block $OAOO so we are in the proper

 block to make our changes. This block turned out to be track

 17, sector 4 on our version. Yours could be in a different

 location on the disk, but the idea will be the same.

 E] Using the cursor key to move through the code, we find the

 original three bytes 19 8E E8 at location 155. The change to

 7E Dl 08 can be accomplished with the @ key. The changes must

 be the decimal equivalent. These are 126 209 08. Change each

 byte by placing the cursor over the byte to be changed, and

 type @ and the decimal number change. Hit RETURN when the

 change is made to lock it in. When all three bytes are

 changed, continue searching with the cursor for the 8A byte.

 This can be found at position 185. Using the same change

 procedure, change it to a decimal 38 ($26). When all changes

 have been made and locked in, press C to copy the sector back

 to the disk.

 You now have a copy that can be fast copied. The placement of

 data on the disk in methods other than directory files will not

 allow you to file Copy. One other point of interest is the fast

 loader installed in many pieces of this publisher's software.

 This fast loader is NOT compatible with the 1571 disk drive. In

 many (but not all) of the programs, you may disable the fast loader

 and allow the program to load on the 1571 by changing the jump to

 the main program in the autoboot. Fireworks Kit will work by doing

 K.J. REVEALED TRILOGY PAGE (29) (c)1990 K.J.P.B.

this. Just change the 3D OC (JMP OC3D) to SF OC (use DISK Doctor

 and the decimal equivalents). This will bypass the fast loader and

 the logo screen. A small price to pay for the 1571 owners.

 RINGS OF ZILFIN : S.S.I.

 Procedure:

 Loading the original produces a rattle free load, and an error

 scanner shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A nybbled backup produces the

 same non-working copy. Before starting to work on this program,

 please make a (non-working) backup of the original, and a disk log

 to log the file addresses.

 working with your backup:

 1) Turn off your computer and insert your reset button

 assembly into the cartridge port. Turn the computer on again. Load

 the backup disk <> LOAD "*",8,l <>. Hit RETURN and the program

 will autoboot. Let the load continue until the screen turns black

 and the drive comes to a stop. The program has failed protection

 and has "crashed".

 2} Hit the reset button to return the system back to normal.

 Remove the backup, and insert your utility disk in the drive. Load

 the $COOO monitor <>LOAD "49152",8,1<> and sys it in by typing SYS

 49152 and hit RETURN. When the monitor comes up, use the

 INTERPRET command to search memory for any drive commands. Start

 your search at the beginning of BASIC memory (I 0801). scrolling

 down through memory, keep your attention on the left side of

 your screen. When you come to the memory at $6FDE, you'll find a

 B-E (Block Execute) and a M-R (Memory Read). This is the area of

 memory that contains the protection code.

 3) Disassemble memory at $6F77 (D 6F77), and scroll slowly

 down through the code. The code from $6F7A to $6FDD represents a

 subroutine that is called from the main program. This code does

 a Block Execute from track 35 sector 10. This means it loads

 that block from the program disk into the disk drive memory and

 executes that routine. At the completion of the routine, the

 code returns to computer RAM and resumes operation. Upon it's

 return, a Memory Read of the drive memory is done, looking for a

 single byte placed in drive memory by the protection check. This

 byte is transferred from the drive to computer RAM location

 $6FDD and is then compared to an $FF. If the byte is not an $FF,

 the code is directed to an endless loop. If it is an $FF, the

 code continues until a JUMP FFC3 is encountered. Because the

 K.J. REVEALED TRILOGY PAGE [30] (c)1990 K.J.P.B.

 kernal routine FFC3 has been accessed by a JUMP and not a JSR,

 it forces an RTS in the code flow. This RTS returns the

 protection check to the main program.

 4) Defeating this protection scheme is simple. We can place a RTS

 at the beginning of the routine. This will short circuit the

 protection check completely by sending the program flow back to

 the code that called for it originally. Before changing code,

 let's find out which file contains the protection check. Looking

 over the disk log, we find that the file P99 is the only likely

 candidate. The starting address is $6000 and the ending address

 is $6FF4. Remove your utility disk from the drive and again

 insert the backup in it's place. Double check the file by

 loading P99 directly from the backup <> L "P99",08 <> . Again

 disassemble code around $6F7A (D 6F7A) and make sure this file

 is the correct one that has the protection check. When

 satisfied, use the MEMORY command to change the byte at the

 address $6F7A (M 6F7A) to a 60. Now scratch and save this file

 to your backup. Remember to add one byte to the ending address.

 <> S "@0:P99",08,6000,6FF5 <>.

 Your backup is now completely broken. It can be fast copied and,

 because we have forced the program to not use the protection

 check, it can even be file copied. Remember, the Block Execute

 (which now is not used) accesses a specific spot on the disk, and

 is not picked up by directory files. Finally, note the name placed

 on the diskette directory. You'll find it on many programs. Now you

 know the secret of XEMAG 2.0 protection.

 Four examples using this scheme have been discussed above. We

 must assume that you have mastered the techniques used to defeat

 those titles. Many titles have been released using Fat Tracks.

 Some were relatively simple to break and others were quite

 difficult. Some protection programmers have been checking not only

 for the Fat Track but also to see if either their computer OR drive

 code had been tampered with. This was done by checksumming. If any

 sign of tampering was evident, the program refused to run - even if

 the break code was technically sound. If you have applied the

 methods in Kracker Jax Vol I to a similar protection, and it

 refused to work, you can assume they caught you in their code. We

 are going to give you examples of how to defeat the drive code,

 computer code, and the checksumming. Be advised, these examples

 show tricks and techniques that can be used again on other schemes.

 Breaking protection involves thought and ingenuity.

 K.J. REVEALED TRILOGY PAGE [31] (c)1990 K.J.P.B.

TITANIC : ACTIVISION

 Procedure:

 Loading the original disk produces a rattle free load, and an

 error scan shows no standard errors. A backup made with the C-64

 Fast Copier produces a non working copy. A backup made with a

 nybbler produces the same non working backup. Before starting to

 work on this program, please make a (non working) backup of the

 original, and a disk log to log the file addresses.

 Working with your backup:

 1) Let's start by plugging Hesmon in the cartridge port and loading

 the boot < L "*" 08 > . Checking with the disk log, start

 disassembly of code at $02D7 and cursor down through

 the code. The code from $O2EE to $0301 opens a channel for

 loading, sets the file name " 1985 ", loads that file in and

 Jumps to $4635. We can load that file in ourselves and inspect

 it.

 2) Cursor down to a clear spot and load the 1985 file as

 < L " 1985*" 08 > . Be sure to use two spaces before the 1985

 file name. The disk log shows this file ranges from 4400-46D8.

 Look at the file in ASCII by using the Interpret command I 4400

 and cursor down through memory. Take note of what it looks like,

 because we will be looking again later. Let's start disassembly

 at the Jump to $4635 . Cursor down through the code and

 note code from $4657 to $4668. Values are being set for the

 decrypter at $466F to $4690 (see Kracker Jax Revealed Vol I for

 more details). We want to execute the decrypter and stop the

 execution after the decryption takes place. To do this we must

 place a 00 (Break Instruction) at $4690. Use the Memory command

 to make your change and change the 60 to a 00 and hit

 return. Now we can decrypt the code by executing at $4657. Use

 the GO command

 3) When the monitor breaks, use the Interpret command again

 starting at $4400 [I 4400] and cursor down through memory again.

 This time note the Block-Execute at $4571. This command opens

 channel 2, addresses drive 0, and sends the code at track 3

 sector 0 to the RAM of the disk drive ($0400 in this case) and

 executes the code in the drive. This code is the protection

 check routine. While in the Interpret mode, also note the Ul

 (Block-Read) of the same Track 3/Sector 0. This block read is

 used to checksum the drive code to check for tampering.

 Checksums throughout the computer code also check strategic

 areas of the computer code for tampering. If changes in the

 K.J. REVEALED TRILOGY PAGE [32] (c)1990 K.J.P.B.

original code are found, the program will not run even if the

 break is correct. Here's a trick to break the drive code and

 still keep the checksums intact.

 4) Turn the computer off and back on again to clear memory. X to

 BASIC and from the Utility Disk, load the Block Read file

 < LOAD"BLOCK READ",8 > . When the ready prompt comes up. LIST

 the file and on line 10 set the TRack variable to 03 and the

 SEctor variable to 00. Hit RETURN to lock your changes in and

 relist the file to check your changes. This utility will Block

 Read Track 3/Sector 0 and send the code to $C000 in the computer

 where we can inspect it. Place the backup in the drive and start

 the Block Read by Typing RUN and hitting return. The drive will

 spin and in about 30 seconds, the ready prompt will appear.

 Return to the monitor by hitting Run/Stop-Restore. Disassemble

 code at $COOO . Cursor down through the code. The code

 from $COOO-$COll is the decryptor and will have to be executed

 before we can inspect the drive code. You'll see that it is set

 to decrypt this code in the $0400 Buffer in the drive and must

 be readdressed to decrypt at $COOO. Using the Memory Command,

 change the 04 at $C006,$C009, $COOC,and $COOF to CO. Now

 Disassemble starting at $COOO again and check the decrypter

 again. It should now be set up to decrypt code in the $COOO

 buffer.

 5) Let's execute the decrypter and inspect code. Type , and

 when the monitor breaks, Disassemble code at $COOO and

 cursor down through the code. The code from $C012-$CO4C checks

 Track 35, bumps the head a half track and if the check is

 satisfactory, stores a 0 in $0009. The Instruction at $CO4D

 loads the accumulator with the value in $0009. Next, if that

 value is not a 0, the code branches around the next two

 instructions. These are the keys to the protection. The value of

 $FF is stored at $OlFF in the drive memory. Later a Memory Read

 in the computer code will check for the $FF and if it is in

 place at $OlFF, the protection check will be passed. Our job now

 is to force this routine to pass even if the protection isn't in

 place. One way would be to place two NOPs ($EA) at $C050 to

 erase the BNE C057. This would force the code to fall through

 and store the $FF byte even if protection wasn't passed. This

 would work, but the checksum would catch us. Here's a trick to

 force the code to fall through and still pass the checksum.

 6) Because the key to this break is the BNE command at $C050, let's

 flip those bytes and see what instruction comes up. Use the

 Memory command to change the DO O5 at $C050 to O5 DO .

 Disassemble $C050 again . The BNE instruction has now

 become an ORA DO. This has effectively negated the BNE because

 this instruction is essentially worthless and performs no task

 that is actually used. The checksum will also pass because we

 K.J. REVEALED TRILOGY PAGE [33] (c)1990 K.J.P.B.

 haven't actually changed any bytes, only their position. Let's

 prepare to make our changes to the disk. Turn of f the computer

 and remove Hesmon.

 7) From the utility disk, load and run the Disk Doctor. Place the

 backup in the drive and using the b [b] command read in Track

 3/Sector 0. At position $50 (remember $C050), 80 in decimal

 you'll find the two bytes that we need to flip. These are $D4

 and $01. Remember, these are the bytes in their encrypted form.

 Change these to $01, $D4. You may use the @ key and the decimal

 values. Starting at position 80, change two bytes to 01, 212.

 Hit r to rewrite the block and y for yes. This title is

 now broken from protection, and may be fast copied. Because of

 the Block Execute to Track 3/Sector 0, you may not file copy

 this title. The drive code, even though broken, must be in place

 on the disk.

 ROCKY HORROR SHOW : ACTIVISION

 Procedure:

 Loading the original disk produces a rattle free load, and an

 error scan shows no standard errors. A backup made with the C-64

 Fast Copier produces a non working copy. A backup made with a

 nybbler produces the same non working backup. Before starting to

 work on this program, please make a (non working) backup of the

 original, and a disk log to log the file addresses.

 This break method is presented to add a trick to your arsenal.

 If it is confusing at first, a little studying of the code will

 make the break clear. Print-outs of any confusing code may also

 help to make things clear.

 Working with your backup:

 1) We will start by filling the BAM with zeros so the drive will be

 fooled into believing our backup disk is full. This way we can

 scratch and then save a file back to the disk without

 overwriting any program code that isn't allocated in the BAM.

 Use this trick whenever you suspect any hidden files not in the

 directory.

 Load Disk Doctor from the Utility Disk. Place the backup in the

 drive and go to Track 18/Sector 0 using - command. This is the

 BAN sector. Using the @ key, fill position 4 through 71 with

 zeros (@). Skip over 72 to 75 which is the directory track and

 fill 76 through 143 with zeros (@). When finished, rewrite the

 changes to the disk by hitting for rewrite and for yes.

 K.J. REVEALED TRILOGY PAGE [34] (c)1990 K.J.P.B.

 2) With Hesmon in the cartridge port, load the boot < L"*",08 >.

 Checking with the disk log, start disassembly of code at $02D7

 < D 02D7 > and cursor down through the code. The code from $02E8

 to $0301 opens a channel for loading, sets the file name

 " 1985 ", loads that file in and Jumps to $135A. We can load

 that file in ourselves and inspect it.

 3) Cursor down to a clear spot and load the 1985 file as

 < L " 1985*",08 > . Be sure to use two spaces before the 1985

 file name. The disk log shows this file ranges from lO00-143F.

 Look at the file in ASCII by using the Interpret command

 [I 1000] and cursor down through memory. Take note of what it

 looks like, because we will be looking again later. Let's start

 disassembly at the Jump to $135A < D 135A > . Cursor down

 through the code and note the decrypter code from $139B to

 $l3BC. We want to execute the decrypter and stop the execution

 after the decryption takes place. To do this we must place a 00

 (Break) at $1398. Use the Memory command to make your change

 and change the 4C to a OO and hit return. Now we can

 decrypt the code by executing at $137D. Use the GO command

 < G 137D > . After the monitor breaks, use the Interpret command

 to examine the code from $1OOO-$143F again < I 1000 > . You'll

 find it to be quite different now and you should be able to see

 quite a few commands in ASCII. Finally use the Memory command to

 change 00 we placed at $1398 back to a 4C < M 1398 >

 4) Let's trace the code starting at $135A commenting the code

 pertaining to the protection check.

 $135A-$1394 : Sets up the decryption values.

 $1395 JSR 139B : Executes decryption of 1985 file.

 $1398 JMP l3BD : Jump around decrypter already executed.

 $l3BD JSR 1184 : JSR to protection check.

 $1184 JSR 1206 : Sets up for protection check.

 $1187 JSR 118E : checks drive memory for a value of $FF at

 $OlFF. EORs that value with an $FF which

 produces a Zero (0). Places that zero at

 $1294. Later the value at $1294 is used in

 the program decryption.

 $118A JSR 1269

 $118D RTS

 $13C0 JSR 1116 : Continue on.

 5) This protection would be simple to deprotect if it weren't for

 the checksums used throughout the code. Every strategic point

 has been checked and if we are caught tampering with the code,

 the program won't work, even if the break is sound. We need to

 trick the checksums. Testing in various spots has uncovered an

 area that is not checksummed. The decrypter routine is not

 checked and if moved, will provide us with a work area to place

 K.J. REVEALED TRILOGY PAGE [35] (c)1990 K.J.P.B.

 our code in and short circuit the protection check. Let's begin

 here.

 6} Reload the 1985 file to provide fresh undecrypted code

 < L " 198*" 08 > . First let's move the decrypter to the

 outside bounds of this file. Since the file ends at $143F we can

 move it to $1440. Use the Transfer command < T 139B l3BC 1440 >.

 Disassemble code at $1440 and cursor down through the

 moved decrypter. You'll find the last byte, a $60 at $1461. This

 will become the new end address of this file.

 7) Now that the decrypter has been moved, lets prepare the work

 space. Fill the area from $1395-$13BC with NOPs

 < F 1395 l3BC EA > . Now let's use the assembler in Hesmon to

 rewrite the code in our work spot. A printout of the prior code

 to compare with our changes should make the reasons for our

 changes clear. We can start writing our code a $139A. Start by

 using the assemble command < A 139A > . Here's the code to

 write.

 A 139A JSR 1440 : Decrypt code from new decrypter location.

 JSR 1206 : Set up for protection. --code from here

 LDA #$0O : Substitutes for protection --to here will

 --replace

 STA 1293 : check at $118E --the JSR 1184 at

 JSR 1269 : --$l3BD.

 JMP 13C0 : Jump around JSR 1184 at $13BD, which is no

 longer needed

 8) When done, hit return a few times to a clear spot and

 Disassemble code and check to make sure the changes are correct

 < D 139A >. If all is well, all that's left is to scratch the

 old file and save the new. X to BASIC and scratch the 1985

 file. < OPENl5,8,15,"S0: 1985 " >. Be sure to use two spaces

 before 1985 and three spaces after. When done, hit Run/Stop-

 Restore to re-enter the monitor and save the new 1985 file. Our

 new start/end addresses are $l000-$1461+1.

 < S " 1985 " 08 1000 1462 > You're backup is now completely

 broken and may be fast copied. You can't file copy this title

 because of the various Block-Executes used in the loader for the

 fast load routine as well as protection checks. These

 Block-Executes access code not allocated by directory files.

 TRIO : SOFTSYNC

 Procedure:

 Loading the original disk produces a rattle free load, and an

 K.J. REVEALED TRILOGY PAGE [36] (c)1990 K.J.P.B.

 error scan shows no standard errors. A backup made with the C-64

 Fast Copier produces a non working copy. A backup made with a

 nybbler produces the same non working backup. Before starting to

 work on this program, please make a (non working) backup of the

 original, and a disk log to log the file addresses. Please note

 the XEMAG 2.0 in the directory header. This is the signal to you

 of Fat-track protection.

 Working vith your backup:

 1) Let's start by plugging Hesmon in the cartridge port and loading

 the boot < L "*" 08 > . Checking with the disk log, start

 disassembly of code at $02A7 and cursor down through

 the code. The code from $02C3 to $02C9 loads in a file with 7

 characters in it's name. Interpret memory at $02A7 [I 02A7] to

 see that file name. You'll find a name using a combination of

 regular and reverse characters. Again disassemble memory at

 $02A7 and cursor down through the code. At $02F7 you'll

 find a jump to $A483 which causes BASIC to execute.

 2) Power off and on again. When the monitor appears, to BASIC

 and load and list the directory < LOAD "$",8 > . Near the end,

 you'll find the file with regular and reverse characters. Load

 that file directly from the directory with a <,8:> . When the

 READY prompt comes up, cursor down to a clear spot and list that

 file. Examination of this file shows that it loads and runs the

 TRIO CALC, TRIO WORD, OR TRIO FILE depending on the menu choice

 picked by the user.

 3) Again cursor down to a clear spot and load TRIO FILE

 < LOAD "TRIO FILE",8: > . List out this file for examination.

 This program loads the file TRIO3, does a sys 32768 ($8000) to

 it, comes back, and reads drive memory at $OlFF and compares the

 value there to a (2 up arrow 8-1) which is a decimal 255 or $FF.

 If the value is not equal to an $FF, a NEW occurs which crashes

 the program. If it is equal to $FF then the program falls

 through to a GOTO 70. (You'll find similar programming in the

 TRIO WORD and TRIO CALC files.)

 4) Because the file TRIO3 resides at $8000, which is where our

 Hesmon cartridge resides, we must use a different monitor. Turn

 off the computer and pull the Hesmon. From the Utility Disk,

 load the $2000 monitor < LOAD "8192",8,l > . WHEN THE READY

 prompt comes up, sys the monitor in . Load the TRIO3

 file from the TRIO backup and start disassembly

 at $8000 . The code from $8000 to $8036 does a BLOCK

 EXECUTE to Track 35/Sector 10/. $8037 to $8062 NEMORY READS the

 drive at location $O1FF and compares to an $FF. If the value is

 not equal to an $FF, then a branch to $8070 takes place. To see

 what happens, cursor to a clear spot and do a Go $8070

 K.J. REVEALED TRILOGY PAGE [37] (c)1990 K.J.P.B.

 When done, hit Run/Stop-Restore and again sys the monitor in

 with . Again disassemble code at $8000 and cursor

 down through the code. You'll find that if the comparison to $FF

 is satisfactory, the programming falls through to $808B, which

 is a JUMP to $FFC3. This is a KERNAL routine that when JUMPed

 to, does a RTS which in this case returns the program flow back

 to the basic program (TRIO FILE in this case.).

 5) Turn the computer off, insert the Hesmon, and power up again. X

 to BASIC and from the Utility Disk, load the Block Read file

 < LOAD"BLOCK READ",8 > . When the ready prompt comes up. LIST

 the file and on line 10 set the TRack variable to 35 and the

 SEctor variable to 10. Hit RETURN to lock your changes in and

 relist the file to check your changes. This utility will now

 Block Read Track 35/Sector 10 and send the code to $COOO in the

 computer where we can inspect it. Place the backup in the drive

 and start the Block Read by Typing RUN and hitting RETURN. The

 drive will spin and in about 30 seconds, the READY prompt will

 appear. Return to the monitor by hitting Run/Stop-Restore.

 Disassemble code at $COOO . Cursor down through the

 code. The code from $COOO-$CO1O is the decryptor and will have

 to be executed before we can inspect the drive code. You'll see

 that it is set to decrypt this code in the $0400 Buffer in the

 drive and must be readdressed to decrypt at $COOO. Using the

 Memory Command, change the 04 at $C005 and $COOB to Co. Notice

 the ADC $08 at $C007. This instruction uses the value in the

 drive at location $08 to help decrypt this code. The location

 $08 is the track value last loaded into the Buffer at $0400. We

 know that this was track 35 (remember the BLOCK EXECUTE to Track

 35/Sector 10). Let's change the instruction from a ADC $08 to a

 ADC #$23. We are now using the known value of $23 (decimal 35)

 and not using any values in drive memory. The bytes for this

 instruction change are $69,$23. Use the MEMORY command to make

 your changes at $C007 < M C007 >. Again disassemble memory at

 $COOO and cursor down through the code to check to see the

 changes are correct.

 6) Let's execute the decrypter and inspect code. Type , and

 when the monitor breaks, disassemble code at $COOO and

 cursor down through the code. The code from $CO11-$C043 checks

 Track 35, bumps the head a half track and if the check is

 satisfactory, stores a 0 in $0009. The instruction at $C044

 loads the accumulator with the value in $0009. Next, if that

 value is not a 0, the code branches around the next two

 instructions. These are the keys to the protection. The value of

 $FF is stored at $O1FF in the drive memory. Later a Memory Read

 in the computer code will check for the $FF and if it is in

 place at $OlFF, the protection check will be passed. Our job now

 is to force this routine to pass even if the protection isn't in

 place.

 K.J. REVEALED TRILOGY PAGE [38] (c)1990 K.J.P.B.

7) One way to break this code is to write a simple routine to place

 an $FF in drive location $O1FF and return to the programming

 that sent it in the first place. This is accomplished simply.

 Cursor down to a clear spot and go into the ASSEMBLY mode by

 typing . Here's the code:

 A COOO LDA #$FF (A9 FF)

 A C002 STA 01FF (8D FF 01)

 A COOS RTS (60)

 When done, cursor down to a clear spot and disassemble at $CO00

 [D COOO] to see the bytes needed. You'll find the following six

 bytes: A9 FF 8D FF Ol 60. You can use the hex to decimal

 converter in Hesmon to convert the bytes to decimal

 <$A9 RET, and so on>. You'll find that the following is the

 decimal equivalent: 169 255 141 255 Ol 96.

 8) From the Utility Disk, load and run the Disk Doctor. Place the

 backup in the drive and using the b [b] command read in Track

 35/Sector 10. Starting at position $00, write in the six bytes.

 You may use the @ command to write them one at a time in Decimal

 (169 255 141 255 Ol 96). When the changes have been made, hit r

 to rewrite the block and y for yes. This title is now

 broken from protection, and may be fast copied. Because of the

 Block Execute to Track 35/Sector 10, you may not file copy this

 title. The drive code, even though broken, must be in place on

 the disk.

 ALIENS : ACTIVISION

 Loading the original produces a rattle-free load, and an error

 scanner shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A nybbled backup produces the

 same non-working copy. Before starting to work on this program,

 please make a (non-working) backup of the original, and a disk log

 to log the file addresses.

 1) Turn off your computer and insert your reset button assembly

 into the cartridge port. Turn on the computer again. Load the

 $COOO monitor from your Utility Disk < LOAD"49152",8,1 >. At the

 completion of the load, type < SY549152 > and hit < RETURN >.

 The monitor should be active now.

 2) With your backup in the drive and the monitor active, load the

 boot file < L "0:*",08 > . When the load is complete,

 disassemble memory at $O2CB. You'll find a loader routine that

 loads in the

 K.J. REVEALED TRILOGY PAGE [39] (c)1990 K.J.P.B.

 "ACTIVISION INC." file and jumps to $8000.

 3) Load the "ACTIVISION INC." file into memory < L"A*",08 >. After

 the load, start disassembly of code at $8000 < D 8000 > . Also

 do an ASCII dump < I 8000 > to check for DOS commands. Examine

 the routines carefully. You will soon find a Block-Execute

 (B-E 2,0,18,7) drive command at $8ODD. Further examination of

 the code reveals that the protection scheme is doing a lot of

 direct access to the serial port at $DDOO.

 The key to cracking this variation on Activision's standard

 protection scheme is to ignore this code because it has a rather

 involved loop that is a pain to follow and de-protect. With this

 code, the drive is where the action's at. Let's take a closer

 look at that Block-Execute code on track/sector 18/7.

 4) Reset the computer and load ALIENSLOADER from the Utility Disk

 < LOAD "ALIENSLOADER",8 > , < RUN > and follow the instructions.

 Reload the 49152 monitor and < SY549152 > . In the drive, the

 code would be located at $0300. We will be using $2300 (in the

 computer). Disassemble the code at $2300 < D 2300 > . The

 routine at $2322 - $234A, despite it's apparent complexity, does

 nothing more than load the code in track/sector's 18/7 - 18/11

 into drive memory locations $0400 - $O7FF. The ALIENSLOADER

 routine has conveniently loaded these for us already. The code,

 from $2400 - $27FF, is encrypted. A routine at $2356 does the

 decryption. We can modify the code to decrypt it for us by

 simply adding $2000 to the LDA and STA address references, i.e.

 $0400 becomes $2400, $0500 becomes $2500, etc..< A 2358 LDA

 $2400,Y etc.. > . Also put a break command at $237F

 < A 237F BRK > and run the code < G 2356 >

 NOW examine the code starting at $2400 < D 2400 > . Most of this

 code is the fast loader. Armed with the knowledge that

 Activision fat tracks start with track 35 ($23), we find a

 suspicious routine at $24D0 - $24F8. This is it, folks. This

 itty-bitty loop is the heart and soul of this protection scheme.

 It can be disabled easily with one byte change. Change the LDA

 operand byte at $24DE from $80 to $01 < A 24DD LDA #$01 >.

 Instead of READING the intended sector, the $01 byte tells the

 drive's DOS that the job was completed successfully. This is

 exactly what you want it to do. The fringe benefit of this

 method is that the program loads about 8 seconds faster and

 you'll hear a pleasant clicking noise when the protection scheme

 executes the code with your byte change (when the screen

 blanks).

 5) Re-encrypt the code using the same routine at $2356 < G 2356 >

 Before we load up the sector editor to write the bytes back,

 let's look back at the decryption loop at $2356 < D 2356 >

 K.J. REVEALED TRILOGY PAGE [40] (c)1990 K.J.P.B.

it's exchanging bytes between $2400) $2500 and $2600) $2700.

 Our changed byte (now $54) is at $25DE, -not- at $24DE. It will

 be written to track/sector 18/9 at position $DE (222 decimal).

 6) Now reset the computer, re-insert the Utility Disk and reload

 the sector editor < LOAD"DISK D*",8 > . Insert your backup and

 [RUN]. Press the < B > key. Enter 18 < RETURN > and 9

 < RETURN > to read in track/sector 18/9. Move the cursor to

 position 222 and press the @ key. Enter 84 and press < RETURN >

 To write the modified sector, press < R and Y >

 7) Reset and load the backup. It DOES load faster than the

 original, doesn't it?

 TRANSFORKKRS : ACTIVISION

 Procedure:

 Loading the original produces a rattle-free load, and an error

 scanner shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non-working copy. A nybbled backup produces the

 same non-working copy. Before starting to work on this program,

 please make a (non-working) backup of the original, and a disk log

 to log the file addresses.

 1) Turn off the computer and insert your reset button assembly

 into the cartridge port. Turn on the computer again and load the

 $C000 monitor from your Utility Disk < L0AD"49152",8,1 > . At

 the completion of the load, type < 5Y549152 > and hit < RETURN>.

 The monitor should be active now.

 2) With your backup in the drive and the monitor active, load the

 boot file < L"COP*",08 > . When the load is complete,

 disassemble memory at $02E0. You'll find a loader routine that

 loads in the " 1986 " file and jumps to $0506.

 3) Because the " 1986 " file loads into screen memory where we

 normally can't look at it, we must first change the load address

 to something more accessible. Reset the computer, insert the

 Utility Disk and load the sector editor < LOAD "DISK D*",8 >

 Insert your backup disk and < RUN > . Go to track/sector 18/01

 < B 18 RETURN 1 RETURN >. Cursor over to position 35. The first

 sector of "1986" is 17/01 ($11/Ol-hex). Jump to there < j >

 Move to position 3, press the '@' key and change the byte $05 to

 37 ($25) and press RETURN. This changes the load address to

 $2500. Write the sector back to disk < R Y > and reset your

 computer.

 K.J. REVEALED TRILOGY PAGE [41] (C)l990 K.J.P.B.

 4) Again insert the Utility Disk and load and activate the 49152

 monitor. Load the " 1986 " file into memory < L "19*",08 >

 After the load, start disassembly of code at $2500 < D 2500 >

 Also do an ASCII dump < I 2500 > to check for DOS commands.

 Examine the routines carefully. You will soon find a

 Block-Execute (B-E 2,0,1,1) drive command at $271E. Further

 examination of the code reveals that the protection scheme is

 doing a lot of direct access to the serial port at $DDOO. The

 key to cracking this variation on Activision's standard

 protection scheme is to ignore this code because it has a rather

 involved loop that is a pain to follow and de-protect. With this

 code, the drive is where the action's at. Let's take a closer

 look ~t that Block-Execute code on track/sector 1/1. (Before

 going on to step five, change the load address of the " 1986 "

 file back to $0500. Use the same procedure as outlined in step

 3.

 5) Reset the computer and load TRANSLOADER from the Utility Disk

 < LOAD "TRANSLOADER" ,8 >, < RUN > and follow the instructions.

 Reload the 49152 monitor and < 5Y549152 > . In the drive, the

 code would be located at $0300. We will be using $2300 (in the

 computer). Disassemble the code at $2300 < D 2300 > . The

 routine at $2321 - $2349, despite it's apparent complexity, does

 nothing more than load the code in track/sector's 1/2 - 1/5 into

 drive memory locations $0400 - $O7FF. The TRANSLOADER routine

 has conveniently loaded these for us already. The code, from

 $2400 - $27FF is encrypted. A routine at $2355 does the

 decryption. We can modify the code to decrypt it for us by

 simply adding $2000 to the LDA and STA address references, i.e.

 $0400 becomes $2400, $0500 becomes $2500, etc... < A 2357 LDA

 $2400,Y etc.. > . Also put a break command at $237E

 < A 237E BRK > and run the code < G 2355 >

 NOW examine the code starting at $2400 < D 2400 > . Most of this

 code is the fast loader. Armed with the knowledge that

 Activision fat tracks start with track 35 ($23), we find a

 suspicious routine at $24B4 - $250F. This is it, folks. This

 itty-bitty loop is the heart and soul of this protection scheme.

 It can be disabled easily with one byte change. Change the LDA

 operand byte at $24C2 from $80 to $01 < A 24C1 LDA #$0l >

 Instead of reading the intended sector, the $01 byte tells the

 drive's DOS that the job was completed successfully. This is

 exactly what you want it to do. The fringe benefit of this

 method is that the program loads about 8 seconds faster and

 you'll hear a pleasant clicking noise when the protection scheme

 executes the code with your byte change (when the title screen

 appears).

 6) Re-encrypt the code using the same routine at $2355 < G 2355 >

 Before we load up the sector editor to write the bytes back,

 K.J. REVEALED TRILOGY PAGE [42] (C)l990 K.J.P.B.

 let's look back at the decryption loop at $2355 < D 2355 >

 it's exchanging bytes between $2400) $2500 and $2600) $2700.

 Our changed byte (now $54) is at $25C2, -not- at $24C2. It will

 be written to track/sector 1/3 at position $C2 (194 decimal).

 7) Now reset the computer, re-insert the Utility Disk and reload

 the sector editor < LOAD "DISK ?*",8 > . Insert your backup and

 < RUN > . Press the [B] key. Enter 1 < RETURN > and 3 < RETURN >

 to read in track/sector 1/3. Move the cursor to position 194 and

 press the < @ > key. Enter 84 and press < RETURN > . To write

 the modified sector, press < R > and < Y >

 8) Reset and load the backup. It DOES load faster than the

 original, doesn't it?

 INTRO : PROTECTION SCHEME TYPE D

 When this protection scheme was first introduced, the copy

 programs available were unable to backup any software that used

 it.

 Most of the nybble utilities on the market today have the

 capability of producing a backup. This scheme is usually referred

 to as the "long sector". The following similarities are

 characteristic of this protection. A nybble utility can back up

 the title, while a fast copier can't. The load is rattle free and

 smooth. An error scan produces a number twenty read error on the

 last sector of any particular track.

 This protection is based on placing an extra sector on any

 chosen track (sometimes more than one track) on the original disk.

 This sector contains one block of valid program data. A non-nybbler

 or file copy utility will not pick up this sector, because it is

 not standard disk format. This will prevent the program from

 operating properly. Our job in each of the following programs will

 be to gather the block of data and place it in the program at the

 proper location.

 The protection itself is nothing more than a special Block Read

 set up to read the non-standard block of data. The routine almost

 always starts out as an encrypted block. This block begins as a

 decryption routine that decrypts one block of data. This, in turn,

 reveals a protection check that does nothing more than read in the

 long sector and place that long sector data directly over itself.

 By doing this, the valid code completely hides the protection

 check itself.

 Recognizing the decryption routine is the best way to locate the

 protection check. Once located, we will start the routine up and

 K.J. REVEALED TRILOGY PAGE [43) (C)1990 X.J.P.B.

let it gather the data we need to break the title. Then a simple

 memory save is all that's needed to complete the job.

 The benefit of breaking the programs using this protection

 scheme is the fact that almost all of them are file copyable

 afterwards. This means they can be placed on a disk with other

 programs.

 Please note that this protection scheme is very important to

 understand. The reason for this is the fact that there is a new

 scheme now on the market that very closely resembles it. This new

 scheme is NOT copyable by any nybble utility and must be hand

 broken. You'll find this new scheme discussed in the next

 chapter.

 IMPOSSIBLE MISSION : EPYX

 Procedure:

 Loading the original produces a rattle free load, and an error

 scan shows a number twenty error on track 16, sector 20. A backup

 made with the C-64 Fast Copier provides a non-working backup.

 Nybble utilities are capable of providing a backup. Loading the

 backup results in a load that stalls rather quickly. We can assume

 the protection is in the loader file. Before starting to work on

 this title, please make a backup and do a disk log (print-out is

 best).

 working with your original:

 1) Turn off your computer and insert your reset button assembly

 into the cartridge port. Turn the computer on again and, from

 the utility disk, load the $8000 monitor <> LOAD "32768",8,1 <>.

 Sys the monitor in with SYS 32768 and hit RETURN. Let's begin by

 loading and inspecting the boot file <> L "RUN ME",08 <>. At the

 end of the load, start disassembly at $02A7 (D 02A7). Scroll

 down through the code and notice that the boot loads the file

 LOADER (LO*) and jumps to $BOOO.

 2) Load the LOADER file <> L "LO*",08 <>. Because this tile

 resides in the BASIC interpreter location, we must turn BASIC

 off before we can examine any code. Change address location

 $0001 from 37 (77 on C-128) to 36 (76 on C-128). Use the MEMORY

 command (M 0001) to make your change. When the change has been

 made, we can inspect the code beginning at $BOOO.

 3) Disassemble starting at $BOOO (D BOOO) and inspect the code from

 $BOOO to BOOF. This is a decryption routine and is the heart of

 this protection scheme, as discussed in the introduction. Our

 K.J. REVEALED TRILOGY PAGE [44] (C)l990 K.J.P.B.

 job will be to trade the protection code for the valid program

 code. Believe it or not, this is the easy part.

 4) Make sure you have a write protect on your ORIGINAL and that the

 original is in the disk drive. Start the program working by

 typing GO BOOO and hit RETURN. The drive should start up and, a

 few moments later, the screen should change colors. At this

 point, reset your computer and turn the disk drive off and on

 again. Re-SYS the monitor back in (SYS 32768) and again turn off

 BASIC as described above. Disassemble code at $BOOO (D BOOO)

 again and note that the code has, indeed, changed. The encrypted

 code has been replaced with loader code. All that's left now is

 to save the file back to the backup.

 Working with your backup:

 5) Checking the disk log provides the start and ending addresses

 ($BOOO-$BlA2) to the LOADER file. When saving it, be sure to add

 one byte to the end address <> S "@0:LOADER",08,BOOO,BlA3 <>.

 Your backup is now protection free and may be file copied. One

 small problem remains. That is the directory. The repair for this

 is simple. Using the Name/Id Changer on the utility disk, change

 the disk name AND the ID number. You must use five figures when

 changing the ID number. For example, you could name the disk

 IMPOSSIBLE and renumber it IM 2A. When this is completed, your

 break will be complete and even the directory can be 'viewed.

 BREAK DANCE : EPYX

 Procedure:

 Loading the original produces a rattle free load, and an error

 scan shows a number twenty error on track 16, sector 20 and track

 15, sector 20. A backup made with the C-64 Fast Copier provides a

 non-working backup. Nybble utilities are capable of providing a

 backup. Before starting to work on this title, please make a

 backup and do a disk log (print-out is best).

 Working with your original:

 1) Turn of f your computer and insert the reset assembly into the

 cartridge port. Turn your computer on again. From your utility

 disk, load the $8000 monitor <> LOAD "32768" ,8,1 <>. Now, type

 NEW, and hit RETURN. When loading the boot file on this disk, it

 will autoboot and continue running. In order to inspect it,

 here's a trick to use. We're going to load the autoboot into

 BASIC memory for the purposes of inspection. Load the boot file

 K.J. REVEALED TRILOGY PAGE [45] (C)l990 K.J.P.B.

 this way: <> LOAD "BOOT",8 <>. When the load is complete (you

 may have to hit RUNSTOP/RESTORE), sys the monitor in with SYS

 32768 and hit RETURN. You can now find the boot file in BASIC

 memory at $0801. Interpret memory and scroll down from $0801 (I

 0801). Notice the INTRO. Disassembly of memory at $0801 (D 0801)

 and scrolling down reveals a loader file that loads the INTRO

 file and jumps to $2015.

 2) Load the INTRO file <> L "INTRO",08 <>. Start by disassembling

 memory at $2015 (D 2015). Scroll down through memory, and at

 $201A note the JSR $26B9. Disassemble $26B9 (D 26B9). Here we

 find the decryption routine that is the heart of this protection

 scheme. Refer to the Introduction for general information on

 this. Our task is to replace the encrypted data with valid

 program data. This is relatively easy. Be sure you have a write

 protect on your original and that the ORIGINAL is in the drive.

 Type G 26B9 to start the program up. The drive will run for a

 short time, and then stall. When the drive stops, reset the

 computer and re-SYS the monitor back in (SYS 32768). Disassemble

 memory at $26B9 again and notice that the code has indeed

 changed. This is the valid program code we needed for the break.

 Working with your backup:

 3) Now, all that's left is to save the retrieved data back to the

 backup. Checking the disk log provides the start and end

 addresses of $2000-2A00. Be sure to add one byte to the end

 address and save it to the backup

 <> S "@0:INTRO",08,2000,2A01 <>.

 4) Turn the computer off and on, and boot up your backup. It should

 load past the point that it loaded before our break.

 Unfortunately, It still refuses to load fully. Remember, we did

 find two separate number twenty errors on the original. We have

 disabled half of the protection, now let's do the rest.

 5) Reload the $8000 monitor <> LOAD "32768",8,1 <> Sys it in with

 SYS 32768. From the half broken BACKUP, reload the INTRO file

 <> L "INTRO" 08 <> . Again, start your disassembly at $2015

 (D 2015). Scroll down, and try to follow the program flow. At

 $2140 you'll find a JUMP $COOO. Using the MEMORY command change

 the 4C at $2140 (M 2140) to 00 and hit RETURN. This will stop or

 BREAK the program flow just before it jumps to $COOO, allowing

 us to inspect memory in the LOADER file. Activate the INTRO file

 by typing GO 2015.

 6) When the drive stops, reset the computer and reload your $8000

 monitor <> LOAD "32768",8,1 <> . Sys it in with SYS 32768. Start

 by disassembling the code at $COOO (D COOO). You'll find a jump

 to $C024. Disassembly of $C024 reveals another decryption

 K.J. REVEALED TRILOGY PAGE [46] (C)l990 K.J.P.B.

 scheme. This is the second protection routine.

 Working with your original:

 7) Place the original disk in the drive and Type GO C024 to start

 the program up. The drive should start up and in a short time

 the game menu will come on the screen. At this point, reset the

 computer and re-SYS the monitor back in with SYS 32768.

 Working with your backup:

 8) Checking the disk log provides us with the start and end address

 of the LOADER file. Again, remember to add an extra byte to the

 end address. Save it back to your BACKUP

 <> S "@0:LOADER",08,COOO,CF81 <>. When the save is complete your

 backup will be completely broken. One small problem remains. The

 directory cannot be read properly. To fix it easily, just use

 the NAME/ID CHANGER on your utility disk. Be sure to use five

 figures when you give it a new ID number. For example, you could

 name it BREAK DANCE and renumber it BD 2A.

 PIT$TOP II : EPYX

 Procedure:

 Loading the original produces a rattle free load, and an error

 scan shows a number twenty error on track 16, sector 20. A

 backup made with the C-64 Fast Copier provides a non-working

 backup. Nybble utilities are capable of providing a backup.

 Before starting to work on this title, please make a backup,

 format a blank work disk, and do a disk log (print-out is best).

 Working with your original:

 1) Turn off your computer and insert your reset button assembly

 into the cartridge port. Turn the computer on again and, from

 the utility disk, load the $C000 monitor <> LOAD "49152",8,1 <>.

 Sys the monitor in with SYS 49152 and hit RETURN. Let's begin by

 loading and inspecting the boot file <> L "PITSTOP",08 <>. At

 the end of the load, start disassembly at $02A7 (D 02A7). Scroll

 down through the code and notice that the boot loads the file

 RUN ME and jumps to $0820.

 2) Load the RUN ME file <> L "RUN ME",08 <> . Disassemble memory

 starting at $0820 (D 0820) and scroll down through the code.

 This file loads all game files and then at $08E4 does a jump to

 $9403. The disk log tells us this address is located in the PITS

 file. Load the PITS file <> L "1PITS",08 <>. When the load is

 K.J. REVEALED TRILOGY PAGE [47] (C)l990 K.J.P.B.

 complete, we can start our inspection at $9403.

 3) Because this file occupies memory in the BASIC interpreter

 ($AOOO-$BFFF), we have to turn BASIC off. This can be

 accomplished by changing $0001 from a 37 (77 on the C-128) to a

 36 (76 on the C-128). Use the MEMORY command to make your

 changes (M 0001). When done, start disassembly at $9403

 (D 9403). You'll find a decryption scheme at this location

 ($9403-$9412) that is the heart of this protection scheme (see

 the Introduction). Make sure your ORIGINAL has a write protect

 tab on it and is in the drive. Start the program working by

 typing G 9403 and hit RETURN. The drive should start up and a

 few moments later, the game menu should come on the screen. At

 this point, reset your computer and remove the original disk

 from the drive. From the utility disk, reboot the $COOO monitor

 and sys it in again (SYS 49152). Again turn off BASIC. Now place

 your formatted work disk in the drive and save the changed code

 from $9403-$9512 <> S "SECTOR",08,9403,9512 <> When the save

 is complete, remove the work disk from the drive.

 Working with your backup:

 4) Complete the break by following the steps below.

 A] Reset the computer. Place your backup in the drive and

 scratch the PITS file <> OPENl5,8,15,"S0:PITS" <>. Re-SYS the

 monitor back in (SYS 49152).

 B] From the original disk, load the PITS file <> L "PITS",08 <>.

 C] From the work disk, load the saved SECTOR file

 <> L "SECTOR",08 <>. This will lay the code retrieved from

 the break process over the encrypted protection check code.

 D] Turn off BASIC again as described above.

 E] Place your backup in the drive and save the PITS file now in

 memory <> S "PITS",08,l000,COOO <>.

 Your Backup is now broken. All that's left is to repair the

 directory. This can be accomplished easily with the NAME/ID

 CHANGER on the utility disk. Be sure to use five figures in the new

 ID number. For example, you could name the disk PITSTOP and

 renumber it PS-II. When this is complete, you can view the

 directory and file copy this title.

 K.J. REVEALED TRILOGY PAGE [48] (C)l990 K.J.P.B.

 THE BODY TRANSPARENT : DESIGNWARE

 Loading the original produces a rattle free load, and an error

 scan shows a number twenty error on track 32, sector 16. A backup

 made with the C-64 Fast Copier provides a non-working backup.

 Nybble utilities are capable of providing a backup. Before

 starting to work on this title, please make a Three Minute Backup,

 and do a disk log (print-out is best).

 Working with your backup:

 1) Let's begin our break by preparing the backup to receive the

 changes we will be making. From your utility disk, load the

 NAME/ID Changer and rename and re-ID your backup. Be sure to use

 five figures in the new ID. For example, you could name the

 backup BODY TRANS and number it BT-2A. This will make the

 directory listable.

 2) Because this program does not use directory files to store

 information, we run the risk of overwriting program code when we

 save our changes to the backup. There is a sure way to avoid

 this. That is to allocate or use all available blocks in the

 BAM. What we are going to do is fool the drive into believing

 that there are no blocks free on the disk. When we scratch a

 file, the blocks used by THAT file will become free for use.

 Then when we save that file back to the disk, they will be

 placed on the exact same blocks that they came from.

 3) From the utility disk, load and run DISK DR. Place the backup in

 the drive and press RETURN to get to track 18, sector 1. Press -

 to go to track 18, sector 0. This is the BAM Sector and here is

 where we will allocate all blocks. Use the cursor key to cursor

 to position 4 (all references will be in decimal). With the

 cursor on position 4 press the @ key and then press 0. Repeat

 the @ key and 0 key until all values from position 4 through 71

 are changed to zero. This takes care of tracks 1 through 17. Now

 cursor over to position 76 and do the same changes from position

 76 through 143. This will take care of tracks 19 through 35.

 Now, to make the changes to the disk, press R and then Y and hit

 RETURN. The new BAM is now on the backup. Your backup is now

 ready to receive new information. Load the directory and check

 it. You should have a listable directory with zero blocks free.

 Working with your original;

 4) Turn off the computer and insert the reset assembly into the

 K.J. REVEALED TRILOGY PAGE (49] (C)l990 K.J.P.B.

 cartridge port. Turn the computer on again and load the boot

 file from the original <> LOAD "DWARF",8: <>. You can list this

 file and inspect it. You'll find it loads the file called BOOT2

 and then a SYS 49152 ($COOO).

 5) From your utility disk, load the~$2000 monitor

 <> LOAD "8192",8,1 <>. Sys it in with SYS 8192. Now load the

 BOOT2 file <> L "BOOT2"108 <> and start disassembly at $cooo

 (D COOO). The first instruction at $COOO is a JSR to $C028.

 Disassemble $C028 (D C028) and here you'll find the decryption

 routine that is the heart of this protection scheme. It resides

 from $C028 to $C037. The break itself is very simple. Make sure

 you have a write protect tab on the ORIGINAL and that it is in

 the drive. Start the program by typing G C028 and press RETURN.

 The drive will spin for a short time and then stop. At this

 point, reset the computer and re-SYS the monitor back in with

 SYS 8192. Again disassemble code at $C028. You should find new

 code in the place of the encrypted code. All that's left is to

 save this broken loader back to the backup.

 working with your backup:

 6) Reset the computer and place your prepared backup in the drive.

 Scratch the BOOT2 file <> OPENl5,8,15,"S0:BOOT2" <> . Re-SYS the

 monitor in with SYS 8192. The disk log provides the start and

 end addresses of the BOOT2 file. Be sure to add one byte to the

 end address. With your backup in the drive, save the BOOT2 file

 back to the backup <> S "BOOT2",08,COOO,C151 <>.

 Your backup is completely broken and can now be copied with any

 whole disk copier. Unfortunately, it remains non-file copyable

 because of the way the programers set up the disk files.

 INTRO : PROTECTION SCHEME TYPE K

 This protection scheme is, at this writing, one of the most

 effective and prevalent methods of defeating today's nybble

 copiers. When you know what to look for, you'll find this scheme

 is being employed by many different software houses. I like to

 think of this protection as the "big brother" of the long sectors

 discussed in the previous section.

 This scheme can be recognized by the following similarities. When a

 disk error check is done, no write errors will be found on the

 original. When booted, no drive rattle will be encountered. The

 program cannot be backed up with either a fast copier or a nybbler.

 Usually, you will find data in the directory other than normal

 K.J. REVEALED TRILOGY PAGE [50] (C)l990 K.J.P.B.

 directory data. Most important: when tracing the program through

 it's loading process, you will generally run into a decryption

 routine and a sector or two of encrypted code.

 When this encryption is located, you can be sure it is hiding the

 protection check code.

 Remember, I stated that a sector or two in memory will be

 encrypted, and that this area in memory surely contained

 the protection check. Well, one other thing needs to be

 mentioned.

 This is the fact that this encrypted memory starts out as garbled

 code, then decrypts into a protection check routine and finally

 after the protection check has been satisfied, is REPLACED with

 valid programcode. This code, as previously stated, is one or two

 sectors in length and can be found anywhere on the program disk.

 You'll find that the directory track (track 18) is the most likely

 spot. In most cases, we can let the program insert the hidden code

 in it's proper place. Then a memory save and replacement over the

 encrypted code in the proper file will not only defeat protection

 but will totally remove the check for it.

 Most of the programs protected with this scheme can be

 defeated with a simple memory save, but a few have had to

 have some of the code re-written by hand. This is

 relatively uncommon and cannot be explained in the scope

 of this manual.

 Experience will prove to be the best teacher.

 Before starting to work on the following programs, please

 do a disk file log (print out is best), format a blank

 work disk, and have a (non-working) backup available.

 Please make sure you have a write protect tab on your

 original program disk as you will be using it in the

 breaking process. Now let's get on to the specifics.

 INFILTRATOR : NINDSCAPE

 Procedure:

 Loading the original produces a rattle free load, and an

 error scan shows no standard errors. A backup made with

 the C-64 Fast Copier provides a non-working backup. Nybble

 utilities also provide a non-working backup. Loading the

 backup results in a load that stalls rather quickly. We

 can assume the protection is in the loader file. Before

 starting to work on this title, please make a backup and a

 disk log (printout is best).

 working with your original:

 1) Place a write protect tab on your original to

 protect it during the breaking process.

 K.J. REVEALED TRILOGY PAGE [51] (C)1990 K.J.P.B.

 2) Turn off your computer and insert the reset assembly into

 the cartridge port. Turn your computer on again. From your utility

 disk, load the $C000 monitor <> LOAD "49152",8,l <>. When the

 load is complete, sys the monitor in with SYS 49152. When

 loading the boot file on this disk, it will autoboot and

 continue running. In order to inspect it, here's a trick to use.

 We're going to load the autoboot in BASIC memory for the

 purposes of inspection. With the monitor active, type X and hit

 RETURN. You are now back to BASIC. Type NEW and hit RETURN. Now

 load the boot file this way: <> LOAD "INFILT*",8 <>. When the

 load is complete, return to the monitor by hitting

 RUNSTOP/RESTORE. Then re-SYS the monitor back in with SYS 49152.

 You can now find the boot file in BASIC memory at $0801.

 Interpret memory and scroll down from $0801 (I 0801). Notice the

 INTRO. Disassembly of memory at $0801 (D 0801) and scrolling

 down reveals a loader file at $082D-$0854. This loader loads the

 INTRO file and jumps to $0880.

 3) Load the INTRO file <> L "INTRO",08 <>. When the load is

 complete, disassemble memory at $0880 (D 0880). Scroll down

 through memory to $089A. You'll find a JSR 0A25. Disassemble

 $0A25 (D 0A25) and scroll down to $0A25. Here you'll find a JSR

 0C18. Disassemble $0C18 (D 0C18) and notice that we have just

 run into a decryption routine. Inspect this routine because this

 is the heart of this protection scheme. Scroll down through the

 code and notice that it is garbled for about one sector

 ($0C18-$0D18). As mentioned in the introduction, this code is an

 encrypted protection scheme that will decrypt into a protection

 checker and then load valid program code over itself. This will

 not only allow the program to operate properly, but will also

 hide the protection code from the curious.

 4) The break is fairly simple now that we know where the

 protection is. Start the program code up by typing G 0C18 and hit

 RETURN.

 The drive should start up and run for a short time. When the

 drive stops, turn the drive OFF and ON again and reset the

 computer with your reset button. Restart the monitor by again

 typing SYS 49152 an hit RETURN. Now go back and disassemble code

 at $0C18 again (D 0C18). Surprise; the code has changed into

 good code. To get an idea what is there, interpret memory at

 $0C18 (I 0C18) and scroll down through memory. You'll see that

 this is the completion of the loader file. All the data needed

 to run the loader file properly is now in memory. All that is

 left to do is replace the INTRO file on the disk with the INTRO

 file NOW in memory. This can be accomplished with a small memory

 save. From the disk log, we know that the INTRO file starts at

 $0880 and ends at $16C3. Remove the original disk from the drive

 and insert your backup in it's place. Replace the INTRO file now

 in memory with the one now on your disk. Remember to add one

 byte to the ending address <> S"@0:INTRO",08,0880,16C4 <>.

 K.J. REVEALED TRILOGY PAGE [52] (C)1990 K.J.P.B.

 5} Your backup is now broken and will not even check for

 protection. For those wishing to look at the protection check

 code, redo the steps above but when you type G OCl8, reset the

 computer in about one second. If the drive is allowed to run

 more than a moment or two, the protection code will be hidden.

 BOP 'N WRESTLE : KINDSCAPE

 Procedure:

 Loading the original produces a rattle free load, and an error scan

 shows no standard errors. A backup made with the C-64 Fast Copier

 provides a non-working backup. Nybble utilities also provide a

 non-working backup. Before starting to work on this title, please

 make a backup, format a blank disk, and do a disk log (printout is

 best).

 Working with your original:

 l) Make sure a write protect tab is on your original to

 protect it during the breaking process.

 2) Turn of f your computer and insert the reset assembly into

 the cartridge port. Turn your computer on again. From your utility

 disk, load the $2000 monitor <> LOAD "8192",8,l <>. When the load

 is complete, sys the monitor in with SYS 8192. When loading the

 boot file on this disk, it will autoboot and continue running. In

 order to inspect it, here's a trick to use. We're going to load

 the autoboot in BASIC memory for the purposes of inspection. With

 the monitor ~ctive, type X and hit RETURN. You are now back to

 BASIC. Type NEW and hit RETURN. Now load the boot file this way:

 <> LOAD "BL",8 <>. When the load is complete, return to the

 monitor by hitting RUNSTOP/RESTORE then re-SYS the monitor back in

 with SYS 8192. You can now find the boot file in BASIC memory at

 $0801. Interpret memory and scroll down from $0801 (I 0801).

 Notice the BOPl.

 Disassembly of memory at $0801 (D 0801) and scrolling down reveals

 a loader file at $082D-$0854. This loader loads the BOPl file and

 jumps to $0816.

 3) Load the BOPl file <> L "BOPl",08 <>. When the load is

 complete, disassemble memory at $0816 (D 0816). Scroll down

 through memory to $0889. You'll find a JMP COOO. Using the MEMORY

 command (M0889), place a 00 (BRK) at $0889. If we start the code

 running from $0816 it will execute and stop just before it would

 have jumped to $COOO. We can then disassemble memory at $COOO and

 trace the program flow. Use the GO command to execute this code

 (G 0816).

 K.J. REVEALED TRILOGY PAGE [53] (C)1990 K.J.P.B.

 4) The load will resume and the LOGO file and LOADALL file

 will be loaded. When the program stalls, reset out and reboot your

 monitor from the utility disk <> LOAD"8192",8,l <>. When the

 load is complete, sys the monitor in with SYS 8192. Disassemble

 code at $C000 (D C000) now and scroll down through memory.

 you'll find a very long loader file. When you reach the code at

 $C27A you'll find a JMP C3FD. Disassembly of C3FD shows no valid

 code so this is a likely spot to place another break in the

 program flow. Using the MEMORY command (N C27A), place a O0

 (BRK) at $C27A. Now restart the program with another GO command

 (G C000). When the program stalls out, reset the computer again

 and reload and activate your 2000 monitor <> LOAD"8192",8,l <>.

 Now we can disassemble memory at $C3FD and again follow the

 program flow (D C3FD). This returns a JMP to 0B40. Disassembly

 of memory at $0B40 reveals the decryption code that we discussed

 in the introduction. This is the heart of this protection

 scheme.

 5) Let's execute the code at $0B40. Make sure your original

 is in the drive. Start up the code with G 0B40. The drive should

 start up and soon stall again. Reset out, re-SYS your monitor in

 (SYS 49152), and disassemble code again starting at $0B40. You'll

 now find different code. Remove the original copy and place your

 formatted work disk in the drive. We can now save this new code

 to our work disk <> S "CODE",08,0B40,0C52 <>.

 working with your backup:

 6) We now have the code necessary to break this title. Now we

 have to place it on the disk in the proper spot. Checking the disk

 log, we find the files LOGO, BNKl2A, TITLE, and BOPl all have

 the correct addressing to be likely places for this file. We

 must load and check in each one with our monitor the address

 $0B40. The file BNKl2A turns out to be the correct file. Now all

 that is left is to place our changed code over the original

 code. Because BNKl28 begins in screen memory, we will have to

 pull a few tricks out of the bag to replace our revised code.

 Remember, this file starts in screen memory, and we can't save

 screen memory properly. Follow these steps and try to reason

 them out as we go through them.

 A) Load DISK DR from your utility disk. When the cursor

 reappears, type RUN and hit RETURN. Place your backup in the

 drive and hit RETURN. You'll be shown track 18, sector 1. The

 jump link to the BNHl2A file is at position 195. Cursor over

 to position 195 and hit the J key. You will be taken to the

 first sector in the file. The first four bytes in the file

 are the pointer bytes. We want to change the program address

 from $0400 to $0900, so cursor over to position 3 and hit the

 @ key. Now, hit the 9 and press RETURN. Hit the R key to make

 K.J. REVEALED TRILOGY PAGE [54] (C)1990 K.J.P.B.

 the change to the backup.

 B) Reset the computer and load the $COOO monitor from your

 utility disk <>LOAD"49152",8,l <>. Sys it in with SYS 49152.

 Now, from your formatted disk, load the CODE file

 <> L"CODE",08 <>. We now will transfer it to a holding spot

 in memory, for later use <> T 0B40 0C50 7B40. This will send

 the code to $7B40.

 C) Now from the BACKUP load the altered file BNDl28

 <> L"BNDl28",08 <>. Remember, it will now load five sectors

 ahead of it's normal spot (from $0400 to $0900). When the

 load is complete, disassemble the code at $1040. Again here

 is our decryption routine.

 D) Transfer the code we placed at $7B40 to its proper

 place in the altered file <> T 7B40 7C50 1040 <>. When the

 cursor reappears, check the code at $1040. It should now contain

 the new code we saved from the break.

 E) Save the altered file back to the backup

 <> S "@0:BNKl2A",08,0900,6101 <>. Note we are adding five

 sectors to every address, plus one byte to the end address.

 F) Now all that's left is to change the file address back

 to $0400. Follow the same procedure as in step 6a, except change

 the address pointer from an 09 to an 04.

 You now have a completely broken copy. The protection scheme has

 been totally wiped out.

 PRINT SHOP COMPANION : BRODERBUND

 Loading the original produces a rattle free load, and an error scan

 shows no standard errors. A backup made with the C-64 Fast Copier

 provides a non-working backup. Nybble utilities also provide a

 non-working backup. Before starting to work on this title,

 please make a backup of both sides, and do a disk log (printout is

 best).

 I must admit that this program was fairly difficult to trace

 through the loading sequence. After several tries, it was time to

 reason the situation out. Watching the backup load a few times lit

 up the old mental light bulb. The load seemed complete; the only

 problem were the ICONS on the first menu screen. They were there,

 but non-operative. Checking the directory provided the file I felt

 deserved immediate attention.

 K.J. REVEALED TRILOGY PAGE [55] (C)1990 K.J.P.B.

 Working with the original:

 1) Make sure to place write protect tabs on the original to

 protect it during the breaking process.

 2) Turn the computer off and insert your reset assembly into

 the cartridge port. Turn the computer on again and from your

 utility disk, load the $COOO monitor <> LOAD"49152",8,l <>. Sys the

 monitor in with SYS 49152. Remove the utility disk from the

 drive and replace it with your original (Side A). Load the file

 ICONS <> L "ICONS",08 <>. The disk log tells us this file

 resides at $6000 in memory, so let's start our disassembly at

 $6000 (D 6000). Cursor down through memory and notice the

 decryption scheme at $6005-$6012. Remember from the

 introduction, this is the heart of this protection scheme.

 3) Let's execute the code at the beginning of the decryption

 scheme. Start it working with G 6005. The drive should start up,

 and in a short time, stall again. Reset the computer and re-SYS

 the monitor back in with SYS 49152. Disassemble memory at $6000

 again. Cursor down through memory and notice the code HAS

 changed. We now have all the data necessary in memory to break

 this program. Let's save our altered ICONS file back to the

 backup.

 Working with your backup:

 4) Checking the disk log shows that the ICONS file starts at

 $6000 and ends at $69AD in memory. With the backup in the drive,

 save the ICONS file, remembering to add one byte to the end address

 <> S "@0:ICONS",08,6000,69AE <>. Now turn the disk over and save

 the file to Side B as well.

 You may now load and check your backup. You'll find it to be

 completely broken, and now it can even be fast copied. For those

 who want to see the actual protection check, you can go back

 through the same steps as before. When you do the G 6005, just

 reset out after about ONE second. If the drive is allowed to run,

 it will pick up the break data from the original, and hide the

 protection check in memory.

 BANK STREET SPELLER : BRODERBUND

 Procedure:

 Loading the original produces a rattle free load, and an error scan

 shows no standard errors. A backup made with the C-64 Fast

 K.J. REVEALED TRILOGY PAGE [56] (C)1990 K.J.P.B.

 Copier provides a non-working backup. Nybble utilities also

 provide a non-working backup. Before starting to work on this title

 please make a backup, and do a disk log (printout is best).

 Working vith the original:

 1) Make sure to place a write protect tab on the original to

 protect it during the breaking process.

 2) Turn the computer of f and insert your reset assembly into

 the cartridge port. Turn the computer on again and from your

 utility disk, load the $COOO monitor <> LOAD"COOO",8,l <>. Sys

 the monitor in with SYS 49152. Remove the utility disk from the

 drive and replace it with your original. Load the boot file BSS

 <> L"BSS",08 <>. Using the disk log to guide us, let's

 disassemble memory at $02C4 (D 02C4). Cursor down through memory

 and notice the loader loads the file BSSL and does a jump to

 $7000. Let's load the BSSL file ourselves and follow the load

 sequence <> L "BSSL",08 <>.

 3) When the drive stops, disassemble memory at $7000 (D 7000)

 Cursor down through memory, and inspect the long loader file

 that loads in the entire program and the jumps to the start

 address. At the address $20C7 you'll find a JNP 0803. Using the

 MEMORY command (M 70C7) type a 00 over the 4C and hit RETURN.

 This will allow the loader to operate, and, when done, will

 BREAK just before the jump to $0803. We can then follow the

 program flow, beginning at $0803. Start the loader execution by

 doing a GO 7000 (G 7000). The drive will start up and the files

 will appear on the screen as they are being loaded. When the

 drive finally stops, reset the computer and re-sys the monitor

 back in (SYS 49152).

 4) Now let's disassemble memory at $0803 (D 0803). The first

 instruction we find is a JSR 09E1, so disassemble $09E1 (D

 09E1). This disassembly reveals the decryption scheme that is

 hiding the protection check. You'll find it resides at $09E1 -

 $09F2. Study it closely, for it is the heart of this protection

 scheme.

 5) Be sure your original disk is in the drive and start the

 code up by doing a GO 09E1 (G 09E1). The drive will start up and in

 a few seconds will stall again. Again, reset the computer and re-

 SYS the monitor in with SYS 49152. Disassemble memory at $09E1

 (0 09E1) and inspect the code again. It has changed into valid

 program code. Now all that's left is to save the changed code

 back to the disk.

 Working with the backup:

 K.J. REVEALED TRILOGY PAGE [57] (C)1990 K.J.P.B.

 6) Inspection of the disk log tells us that the file BSSO is

 the likely candidate to contain the protection code. You may , as

 we did, load BSSO and inspect the proper addresses to ensure our

 save is to the proper file. Then, when satisfied, just redo step

 five and, when the code has been replaced again1 save the file

 back to your BACKUP disk. The disk log tells us the file resides

 for $0800-$1600. Be sure to add one byte to the end address

 <> S "@O:BSSO",08,0800,1601 <>.

 When this save is complete, your backup will be completely broken,

 and may be copied with any fast copier. For those who want to

 inspect the protection code, just load in the BSSO file and do a GO

 to 09E1. After about one second, reset out and re-SYS the monitor

 in and inspect that memory area. You'll find the protection code

 intact. If you allow the drive to run for long, the protection code

 will be replaced by valid program code.

 EXPRESS RAIDER : DATAKAST

 Procedure:

 Loading the original disk produces a rattle free load, and an

 error scan shows no standard errors. A backup made with the C-64

 Fast Copier produces a non working copy, A backup made with a

 nybbler produces the same non working backup. Before starting to

 work on this title, make a fast-copier backup and a formatted work

 disk. Because the only file on the directory of this title is the

 loader, special procedures will be required. You will need a reset

 button of some sort.

 working with your backup:

 1) With the reset switch in place, load the backup three or

 four times to get the feel of when the program stalls. When you

 have gotten the timing down, try to reset the computer just before

 that stall occurs. You will hear the head swing out if you are

 too late. We want to reset just before it does. After reset,

 from the Utility disk, load the $COOO monitor

 < LOAD "49152",8,l > and after the load sys it in .

 2) If you have performed previous breaks in Section E, you

 will remember that we are looking for a decrypter that hides the

 protection check. That decrypter ALWAYS begins with AO 00 A9. So

 we can search most of memory, flip out the BASIC Interpreter by

 changing memory location $0001 from a $37 to a $36 ($76 on the

 C-128) < M 0001 > . Now do a hunt for the key bytes in memory

 < H 0800 BFFF AO 00 A9 > . If you have reset out at the proper

 time, the following addresses will be returned: 84C0 8759 9629

 K.J. REVEALED TRILOGY PAGE [58] (C)1990 K.J.P.B.

 9A4C . Start by disassembling $84C0 < D 84C0> and inspecting the

 code below that address. If the code is clean, it is not what we

 are looking for. Inspect all the returned addresses and look for

 programming that has code beneath it that does not disassemble

 properly (usually you'll find a lot of ?????) . You'll find that

 $9626 fits the bill exactly. Here you'll find the decrypter with

 about a sector of encrypted code beneath it

 3) Because of the no directory files problem, this break

 poses a slight inconvenience. We will have to search the disk for

 the proper place to lay down the break code. This type of loader

 uses a Track & Sector method of loading. You'll find that each

 page in memory occupies its own sector on the disk. Because the

 break code is between $9600 and $9800, we need to record the

 first 5 or 6 bytes from $9600 and $9700 to make it easier to

 locate these on the disk. (Remember these will be the first

 bytes in the sectors they occupy.) Using the Memory command,

 inspect and record the first few bytes in each: $9600 96 4C EO

 97 4C FB 97/$9700= 40 ED 84 99 Ol 99 74. Again disassemble

 memory at the decrypter and use the cursor key to scroll down

 through memory < D 9626 > . You must scroll down at least a full

 sector ($9726) and a bit more, until you see clean code again.

 At $9736 you'll find a JUMP to $9744 (4C 44 97). Record this

 information for later reference.

 Working with your original:

 4) Power off and on again to clear memory. Load the original

 disk until the game has started up and again hit the reset button.

 From the Utility Disk, again load and activate the $C000 monitor

 as before. Start disassembly at $9626 < D 9626 > . You'll find

 new code has replaced the previous encrypted code. The key to

 breaking this type of protection is to replace the encrypted

 code with this new code. Disassemble again at $9626 and cursor

 down through memory. At $9736, you'll find the same three bytes

 as we recorded earlier: 4C 44 97. This tells us that the code

 from here on is the same as it was in the unrun and encrypted

 state. Place your formatted work disk in the drive and save the

 new code < S "BLOCK",08,9626,9738 >

 Working with your backup:

 5) Our task now is to transfer the code in the BLOCK file to

 the backup disk in the proper location. Here's the procedure. Power

 off and on again. Load the Disk Dr from the Utility Disk and RUN

 it < LOAD "DISK DOCTOR",8,l > . Using the - command from Disk

 Dr., search from Track 18/Sector 0 backwards one sector at a

 time. You'll be looking for the Sector that contains 96 4C EO 97

 4C FB 97 as it's first seven bytes ($9600 in Memory) and 40 ED

 84 99 Ol 99 74 as it's first seven bytes ($9700 in Memory). This

 K.J. REVEALED TRILOGY PAGE [59] (C)1990 K.J.P.B

 search is time consuming but necessary. You will find that

 $9600-$96FF will be at Track 11) Sector 8 and $9700-$97FF at

 Track 11/Sector 16. Thus the code must be placed at Track

 11/Sector 8 Position $26 (38 in decimal) and continues on to

 Track 11/Sector 16 position $00 to end.

 6) Using Hesmon, convert our BLOCK start and end addresses to

 decimal. $9626 = 38438 and $9736 = 38710. Power down and remove

 Hesmon. Now let's begin creating the parameter that will lay

 down the saved code in the proper location on the backup for us.

 Follow these instructions precisely.

 A] From the work disk load the BLOCK file

 B] Type NEW and hit RETURN.

 C] From the Utility Disk load the PARM TEMPLATE

 < LOAD "PARM TEMPLATE",8 >

 D] List out the template and inspect. Start the data maker by

 typing GOTO6OO

 E] Hit RETURN to continue. Enter Start as 38438 and END as

 38710.

 F] Record the number of bytes for use later (273 bytes) and

 hit RETURN.

 C] The datamaker will now PEEK memory where our BLOCK is

 stored and convert the bytes to data statements in decimal.

 H] When the program ends, LIST again. Edit line 5 for the

 desired title.

 I] List out line 100 and Edit :TR=ll:SE=8:FB=38:NB=218

 Tr=TRack(ll),SE=SEctor(8),FB=First Byte Position (38),

 NB=NUmber of bytes (218) <256-38=218>. Hit RETURN to lock

 in.

 J] Type a 101 over the 100 in line 100 and Edit

 Tr=ll : SE=16 : FB=00 NB=55

 Tr=TRack(11) ,SE=SEctor(16) ,FB=First Byte Position (00),

 NB=Number of bytes (55) <273-218=55>.Hit RETURN to lock in.

 K] Save the new parm to the work disk < SAVE "TEST",8 > .

 7) Now run the parameter on the backup. Load the backup, and

 test it. You'll find that it doesn't work. Some titles require a

 little more work. Again with the reset switch in, load the

 original again, resetting just before the head swing. Again load

 the $COOO monitor and sys it in < SYS 49152 > . We need to find

 K.J. REVEALED TRILOGY PAGE [60] (C)1990 K.J.P.B.

 the routine that either does a JSR or a JNP to the protection

 routine at $9626. Again change the $0001 address to $36 and use

 the HUNT command to search for a JSR 9626 or a JMP 9626 < H 0800

 BFFF 20 26 96 >, and < H 0800 BFFF 4C 26 96 >. You should get a

 76A1 returned. Disassembly of $76A1 shows a JSR 9626.

 Occasionally you will have to change the JSR (20) to a JMP (4C)

 or completely erase it with NOP's RA RA RA. As before, record

 the bytes at $7600 so we may find the sector containing this

 code on the disk. $7600 = 2F SD 11 DO BE 20 DO BE. Again power

 down and on again and load the Disk Dr from the Utility disk.

 Search the first bytes of each sector until you locate the

 desired pattern. We found it at Track 19/Sector 10. The 20 26 96

 bytes are located at position $Al (72 in decimal).

 8) Reload the TEST parameter for another change. List out line

 l00. Type a 99 over the 100 in line 100 and Edit

 Tr=19:SE=l0:FB=72:NB-03 (Tr=TRack(19),SE=SEctor(l0), FB=First

 Byte Position (72), NB=NUmber of bytes (03)). Hit

 RETURN to lock in. Finally add a new data statement. In a clear

 spot, TYPE : < 1900 DATA234,234,234 > and hit RETURN. Again,

 save the new parm to the work disk < SAVE "TEST 2",8 > . Run the

 parameter on the backup again. This time you'll find it works

 fine. This title although not file copyable is completely void

 of copy protection. Note: if you are confused as to how the

 parameter should look after you're done, list out the Express

 Raider parm from the Utility disk and list it out. It may become

 a little clearer to you.

 BREAKTHROUGH : DATABAST

 Procedure:

 Loading the original disk produces a rattle free load, and an

 error scan shows no standard errors. A backup made with the C-64

 Fast Copier produces a non working copy, A backup made with a

 nybbler produces the same non working backup. Before starting to

 work on this title, make a fast-copier backup and a formatted work

 disk. Because the only file on the directory of this title is the

 loader, special procedures will be required. You will need a reset

 button of some sort.

 Working with your backup:

 1) With the reset switch in place, load the backup three or

 four times to get the feel of when the program stalls. When you have

 gotten the timing down, try to reset the computer just before

 that stall occurs. You will hear the head swing out if you are

 too late. We want to reset just before it does. After reset,

 K.J. REVEALED TRILOGY PAGE [61] (C)1990 K.J.P.B.

 from the Utility disk, load the $COOO monitor

 < LOAD "49152",8,l > and after the load sys it in < SYS 49152 >.

 2) If you have performed the previous breaks in Section E, you

 will remember that we are looking for a decrypter that hides the

 protection check. That decrypter'ALWAYS begins with AO 00 A9. So

 we can search most of memory, flip out the BASIC Interpreter by

 changing memory location $0001 from a $37 to a $36 ($76 on the

 C-128) < M 0001 > . Now do a hunt for the key bytes in memory

 < H 0800 BFFF AO 00 A9 > . If you have reset out at the proper

 time, the following addresses will be returned: 0F13 B4ED B9E8

 Start by disassembling $0F13 < D 0F13> and inspecting the code

 below that address. If the code is clean, it is not what we are

 looking for. Inspect all the returned addresses and look for

 programming that has code beneath it that does not disassemble

 properly (usually you'll find a lot of ?) You'll find that

 $0F13 fits the bill exactly. Here you'll find the decrypter with

 about a sector of encrypted code beneath it.

 3) Because of the no directory files problem, this break poses

 a slight inconvenience. We will have to search the disk for the

 proper place to lay down the break code. This type of loader

 uses a Track & Sector method of loading. You'll find that each

 page in memory occupies its own sector on the disk. Because the

 break code is between $OFOO and $1100, we need to record the

 first 5 or 6 bytes from $OFOO and $1000 to make it easier to

 locate these on the disk. (Remember these will be the first

 bytes in the sectors they occupy. Using the Memory command,

 inspect and record the first few bytes in each: $OFOO= 8D 5A OD

 A9 81 85 02/$l000= 00 00 00 00 00 00 00. Again disassemble

 memory at the decrypter and use the cursor key to scroll down

 through memory < D 0F13 > . You must scroll down at least a full

 sector ($1013) and a bit more, until you see clean code again.

 From $1013-$1041 you'll find all zero bytes. Record this

 information for later reference.

 Working with your original:

 4) Power off and on again to clear memory. Load the original

 disk until the game has started up and again hit the reset button.

 From the Utility Disk, again load and activate the $COOO monitor

 as before. Start disassembly at $0F13 < D 0F13 > . You'll find

 new code has replaced the previous encrypted code. The key to

 breaking this type of protection is to replace the encrypted

 code with this new code. Disassemble again at $0F13 and cursor

 down through memory. At $1013-$1041, you'll find the same zero

 bytes as we recorded earlier. This tells us that the code from

 here on is the same as it was in the unrun and encrypted state.

 Place your formatted work disk in the drive and save the new

 code < S "BLOCK",08,0F13,1014 >

 K.J. REVEALED TRILOGY PAGE [62] (C)1990 K.J.P.B

 Working with your backup:

 5) Our task now is to transfer the code in the BLOCK file to

 the backup disk in the proper location. Here's the procedure. Power

 off and on again. Load the Disk Dr from the Utility Disk and RUN

 it < LOAD "DISK DOCTOR",8,1 > . Using the - command from Disk

 Dr, search from Track 18/Sector 0 backwards one sector at a

 time. You'll be looking for the Sector that contains

 8D SA OD A9 81 85 02 as it's first seven bytes ($OFOO in Memory)

 and 00 00 00 00 00 00 00 as it's first seven bytes ($1000 in

 Memory). This search is time consuming but necessary. You will

 find that $OFOO-$OFFF will be at Track 17) Sector 19 and

 $1000-$lOFF at Track 17/Sector 6. Thus the code must be placed

 at Track 17/Sector 19 Position $13 (19 in decimal) and continues

 on to Track 17/Sector 6 position $00 to end.

 6) Using Hesmon, convert our BLOCK start and end addresses to

 decimal. $0F13 3859 and $1013 4115. Power down and remove

 Hesmon. Now let's begin creating the parameter that will lay

 down the saved code in the proper location on the backup for us.

 Follow these instructions precisely.

 A) From the work disk load the BLOCK file < LOAD "BLOCK",8,1 >

 B) Type NEW and hit RETURN.

 C) From the Utility Disk load the PARM TEMPLATE

 < LOAD "PARM TEMPLATE",8 >

 D) List out the template and inspect. Start the data maker by

 typing GOTO6OO

 E) Hit RETURN to continue. Enter Start as 3859 and END as 4115.

 F) Record the number of bytes for use later (257 bytes) and hit

 RETURN.

 G) The datamaker will now PEEK memory where our BLOCK is stored

 and convert the bytes to data statements in decimal.

 H) When the program ends, LIST again. Edit line 5 for the

 desired title.

 I) List out line 100 and Edit :TR=17:SE=19:FB=19:NB=237 /

 Tr=TRack(17) ,SE=SEctor(19) ,FB=First Byte Position (19),

 NB=NUmber of bytes (237) <256-19=237>. Hit RETURN to lock in.

 J) Type a 101 over the 100 in line 100 and Edit

 Tr--17 :SE=6 : FB=00 :NB=20 / Tr=TRack(17),

 SE--SEctor(6), FB=First

 K.J. REVEALED TRILOGY PAGE [63] (C)1990 K.J.P.B.

 Byte Position (00), NB=NUmber of bytes (20) <257-237=20>.Hit

 RETURN to lock in.

 K] Save the new parm to the work disk < SAVE "TEST",8 >

 7) Run the parameter on the backup again. You'll find it works

 fine. This title although not file copyable is completely

 void of copy protection. Note: if you are confused as to how

 the parameter should look after you're done, list out

 the Breakthrough parm from the Utility disk and list it out.

 It may become a little clearer to you.

 INTRO : PROTECTION SCREME TYPE F

 This protection scheme although tough to copy, can usually be

 reproduced by a few of the modern nybblers such as The Shotgun.

 Because the protection is on one of the outer tracks (36-40), you

 must copy out to track 40. This scheme was developed in England

 and is seen on many of the Firebird releases. A few other

 publishers have used this scheme but those also had obvious English

 origins.

 Characteristics of this scheme are references to GMA in the

 loader code or in the directory. Shortly after booting a non

 working copy, you can hear the head swing out and then the drive

 will lock up. Opening the drive door produces no flicker of the

 working drive light. Many times after a load failure, you will

 have to initialize your drive.

 In short, this protection is executed at the beginning of the

 boot up process. It is generally accessed by a JSR to code that

 checks special code placed on an outer track, usually track 38. A

 numeric value is returned back only if the protection is in place.

 If a non working copy is being booted, the drive head will swing

 out and lock up. Some of these schemes use the ~umeric value

 brought back and some do not. We will examine three types. In all

 cases we will show you how to fool the code into not even doing

 the protection check. Also we will show you how to repair the often

 times corrupted directories.

 Before working on these titles, please make a Fast Copy, and

 repair the directory. (See the general instructions below.) A disk

 log would also be helpful.

 Using Disk Doctor and the map below, you should be able to

 repair most any directory. Let's begin with Track 18 sector 1. The

 first two bytes represent the link bytes. They will either point

 to the next track and sector or will indicate that this sector is

 the

 K.J. REVEALED TRILOGY PAGE [64] (C)1990 K.J.P.B.

last one in the directory. Generally if more than one sector is

 used in the directory, you will find an rd at position 0. This

 represents a link to track 18 sector 4. A @ followed by a decimal

 255 represents the last sector of the directory. If when starting

 at track 18 sector 0 you cannot use the n key and link the

 directory sectors together, you will have to repair these pointer

 bytes. After a little practice, this task will become easy. Now

 for the file entries. Most changes can be made in the text mode.

 Program type is rarely corrupted and a @ at that position

 indicates a scratched file. These are normal and should remain

 scratched.

 The track and sector pointers must point to valid tracks and sectors

 or they are most likely dummy files meant to prevent file copying.

 Titles may have only upper and lower text in them. Those with text

 followed by other than a shifted space (decimal 160) should be

 filled with shifted spaces. Only occasionally will a program

 demand an unstandard file name. Finally, the number of sectors are

 not of major importance and will be normalized after file copying

 (when possible).

 Track 18 Sector 0 represents the BAM and is often corrupted

 also. The main spots are position 2 which is the DOS flag byte. A

 byte other than an A will prevent you from writing to that disk.

 Change this byte if not normal using the text mode. Position 144

 (decimal) represents the disk title and ID. These are in almost

 all cases, cosmetic and should be normalized. The title should be

 normal text and any unused title spaces should contain shifted

 spaces (decimal 160). The ID beginning at decimal position 162 can

 if desired, be 5 characters. These must however be normal text

 characters.

 Maps of normal sectors have been given. Use these maps and Disk

 Doctor to examine our Utility Disk. When you understand the normal

 format, the abnormal will become easy to fix.

 K.J. REVEALED TRILOGY PAGE [65] (C)1990 K.J.P.B.

 Track 18/Sector 0

 Title Sh/Spaces ID Sh/Space 2A Sh/Spaces

 Pos: 144-159 160-161 162-163 164 165-166 167-170

 Track 18/Sector 1-18

 Program Track Sector Title # of

 Type Sectors

 2 * 3 * 4 * 5-20 * 30

 34 * 35 * 36 * 37-52 * 62

 66 * 67 * 68 * 69-84 * 94

 98 * 99 * 100 * 101-116 * 126

 130 * 131 * 132 * 133-148 * 158

 162 * 163 * 164 * 165-180 * 190

 194 * 195 * 196 * 197-212 * 222

 226 * 227 * 228 * 229-244 * 254

 ARTIST 64 : WIGMORE

 Procedure:

 Loading the original disk reveals the GMA symbol on the opening

 loader screen. A fast copy when booted, locks up the drive and

 sends it into an endless spin. Before starting, make a fast copy

 using our C-64 Fast Copy. Repair the directory according to the

 step one instructions and then validate the disk. Finally, a disk

 log may be helpful.

 Working with your backup:

 1) Load Disk Doctor from the Utility Disk, and inspect Track

 18/Sector 1. You should find this sector to be normal. Use the -

 key to go to Track 18 } Sector 0. You'll find the NAME and ID

 number to be corrupted. One way to repair it is as follows:

 Cursor to position 144 and type for text mode. In this mode

 type ARTIST 64 followed by shifted spaces (decimal 160) to

 position 162. Now type AR/64 and hit RETURN. Write these changes

 to the backup by typing followed by a . Lastly while at

 this sector hit to go to the next sector in the directory.

 K.J. REVEALED TRILOGY PAGE [66] (C)1990 K.J.P.B.

 You'll find that it goes to Track 18/Sector 4. At Track

 18/Sector 4 you'll find no directory entries. The correct path

 is to Track 18/Sector 1 so go back to Track 18/Sector 0

 and change the first two bytes from rd to ra or 18 1 in decimal.

 Use the @ key to make each change and be sure to rewrite your

 changes to the backup. Now power down and load and check the

 directory. The file names should be present. Validate the disk

 and then using the disk logger, log the file addresses.

 2) With Hesmon in the cartridge port, load the boot file

 < L"B" 08 >. At the end of the load, Disassemble code at $02A7

 and using the cursor down key, scroll down through

 memory. The code highlights are:

 A] D 02C6 : JSR FF90 (control load messages)

 B] D O2CF : JSR FFBA (set logical addresses)

 C] D 02D8 : JSR FFBD (set file name:3 characters located at

 $02C1:Use I command to see [I 02C1] the file name GM1.

 D] D 02F1 : JSR FFD5 (load into ram)

 E] D O2FD : JMP COOO (Jump to location $COOO.)

 3) We now know that the next file loaded in is GM1 and that the

 code at $COOO is the jump link. Load the GM1 file as

 < L"GM1" 08 >. Start disassembly of code at $COOO.

 A) Let's execute the code at $COOO and see what happens. Type

 [G COOO]. Notice the beginning screen comes up and asks for y

 or n for fast loader. Type n and listen. A short load takes

 place and the head swings out. The drive will be locked up.

 Power down and up again, type X to return to basic and

 initialize your drive. When the drive stops, hit

 RUNSTOP/RESTORE to return to the monitor.

 B] Again load the GM1 file as before and start Disassembling

 code at $C0000 < D COOO >. Cursor down through the code to

 $C024. Here you 'll find a JSR C800. This is the actual

 protection check routine. Notice the next instruction is a

 PHA which places the numeric value returned from the

 protection check on the stack. This value is the key to this

 protection scheme.

 C] Make sure you place a write protect on the ORIGINAL Artist 64

 and place it into the drive. Using the Memory Command, change

 the PHA(48) at $C027 to a BRK(00). . We can now

 execute the protection code from the original and the value

 in the left in the A register when the code breaks will be

 the numeric value we're looking for. Execute the code by

 typing < G COOO >.

 D] The opening screen will again appear and input N again and

 K.J. REVEALED TRILOGY PAGE [67] (C)1990 K.J.P.B.

the load will continue. This time the head will swing out and

 a few moments later the program will break. The registers

 will be on the screen. Note the A register has a value of 24.

 This is the value we're looking for. (Those who want to

 inspect the drive routine that checks protection may find it

 starting at $C800.)

 E] The break is now quite simple. We can replace the JSR C800

 instruction with the value and totally skip the protection

 check. By replacing it with A9 24 EA (LDA 24 NOP) we can

 directly load the accumulator with a 24 which then will be

 pushed onto the stack. Let's make our changes with Disk

 Doctor.

 F] Using the converter in Hesmon, find the decimal equivalent to

 A9 24 EA. In a clear work space type <$ 00A9>. The decimal

 value 169 will be returned. The same procedure for 0024 and

 OOEA will return 36 and 234 respectively. Power down and

 remove Hesmon. From the Utility disk, load Disk Doctor and

 again insert the backup into the drive. At Track 18/Sector 1,

 position 34, you'll find the Prg byte for the GM1 file. Place

 the cursor on the Track pointer at position 35 and press j to

 Jump to Link. You'll be taken to Track 17, Sector 1. Starting

 at position 0 cursor along and look for the hex bytes 20 00

 C8 (JSR C800) pattern. At position 40 you'll find the first

 byte of that pattern. Use the @ key to change three bytes

 starting at position 40 to 169, 36, 234 (decimal equivalent).

 Hit the key to rewrite the sector and then < y > for yes.

 Your title is now free from all protection and may even be

 file copied if desired.

 COLOSSUS CHESS : FIREBIRD

 Procedure.

 Loading the original disk reveals the GMA symbol on the opening

 loader screen. A fast copy when booted, locks up the drive and

 sends it into an endless spin. Before starting, make a fast copy

 using our C-64 Fast Copy. Repair the directory according to the

 step one instructions. Be sure to validate the disk and do a log

 the disk as a part of your preparation.

 Working with your backup:

 1) Load Disk Doctor from the Utility Disk, and inspect Track

 18/Sector 1. You should find this sector to be normal. Use the -

 key to go to Track 18 Sector 0. You'll find the NAME and ID

 K.J. REVEALED TRILOGY PAGE [68] (C)1990 K.J.P.B.

 number to be corrupted. One way to repair it is as follows:

 Cursor to position 144 and type for text mode. In this mode

 type COLOSSUS followed by shifted spaces (decimal 160) to

 position 162. Now type CHESS and hit RETURN. Write these changes

 to the backup by typing followed by a . Lastly while at

 this sector hit to go to the next sector in the directory.

 You'll find that it goes to Track 18/Sector 1. Continue hitting

 n to go to each linked sector in the directory. You'll find

 every sector to be normal with the last directory sector at

 Track 18) Sector 5. Now power down and load and check the

 directory. The file names should be present. Validate the disk

 and then using the disk logger, log the file addresses.

 2) With Hesmon in the cartridge port, load the boot file

 < "Firebird",08 >. At the end of the load, Disassemble code at

 $02A7 and using the cursor down key, scroll down

 through memory. The code highlights are:

 A] D 02C6 : JSR FF90 (control load messages)

 B] D O2CF : JSR FFBA (set logical addresses)

 C] D 02D8 : JSR FFBD (set file name:3 characters located at

 $02C1:Use Interpret command to see < I 02C1 > the file name

 GMl.

 D] D 02F1 : JSR FFD5 (load into ram)

 E] D O2FD : JMP 0334 (Jump to location $0334.)

 3) We now know that the next file loaded in is GMl and that the

 code at $0334 is the jump link. Load the GM1 file as

 < L "GMl" 08 >. Notice that the code fills the screen. This is

 because it is loaded into screen memory. Cursor down and start

 disassembly of code at $0334.

 A] Disassemble code at $0334 . You'll find a jump to

 $034B. Cursor down and inspect the code from $034B-$036B.

 This code represents the key to the protection.

 This particular code can be found in many similar titles

 and the break for all is about the same. This code sets up

 a load of the actual protection check code within the GMA3

 file. (Those of you interested in the drive code for the

 protection should load and inspect GMA3.) A JSR to $C800

 within this code checks protection, and if the check is

 successful, a value of $97 is place at computer location

 $0002. Upon return from the JSR C800, the value in

 location $0002 is loaded into the accumulator and EORed

 with a value of $97. Lastly the code Branches if Equal

 (to 0) to $036C. Remember, if protection WAS satisfied, a

 value of $97 was placed at $0002. The EOR Truth Table in

 the back of the book tells us that $97 EORed with

 K.J. REVEALED TRILOGY PAGE [69] (C)1990 K.J.P.B.

 $97 is in fact zero. If the branch does take place, it will

 cause a jump around the instruction at $0369 which is a JMP

 ($FFFC). This instruction is actually a Jump to a Kernal

 routine that does a system reset, which in turn will crash

 the load process.

 B] The break is now quite simple. We can jump around the whole

 protection check. All that is necessary is to replace the JSR

 C800 with a JUMP around the reset code to $036C. We will

 replace the 20 00 C8 with 4C 6C 03 (JMP 036C). Remember, we

 don't want to allow any protection check because if the

 protection is not in place, the drive hangs up and goes into

 an endless spin. Let's make our changes with Disk Doctor.

 C] Using the converter in Hesmon, find the decimal equivalent

 to 4C 6C 03. In a clear work space type <$ 004C>. The

 decimal value 76 will be returned. The same procedure for

 006C and 0003 will return 108 and 03 respectively. Power

 down and remove Hesmon. From the Utility disk, load Disk

 Doctor and again insert the backup into the drive. At

 Track 18/Sector 1, position 34, you'll find the Prq byte

 for the GM1 file. Place the cursor on the Track pointer at

 position 35 and press to Jump to Link. You'll be taken

 to Track 17, Sector 1. Starting at position 0 cursor along

 and look for the hex bytes 20 00 C8 (JSR C800) pattern. At

 position 48 you'll find the first byte of that pattern. Use

 the @ key to change three bytes starting at position 48 to

 76, 108, 03 (decimal equivalent). Hit the key to

 rewrite the sector and then for yes. Your title is now

 free from all protection and may even be file copied if

 desired.

 COMPUTER SCRABBLE : LEISURE GENIUS

 Procedure:

 Loading the directory of the original disk reveals the GMA

 symbol. A fast copy when booted, locks up the drive and sends it

 into an endless spin. Before starting, make a fast copy using our

 C-64 Fast Copy. Repair the directory according to the step one

 instructions. Be sure to validate the disk and do a log the disk

 as a part of your preparation.

 Working with your backup:

 l) Load Disk Doctor from the Utility Disk, and inspect Track

 18/Sector 1. You should find this sector to be normal. Use the -

 key to go to Track 18) Sector 0. You'll find the NAME and ID

 K.J. REVEALED TRILOGY PAGE [70] (C)1990 K.J.P.B.

number to be corrupted. One way to repair it is as follows:

 Cursor to position 144 and type for text Rode. In this mode

 type SCRABBLE followed by shifted spaces (decimal 160) to

 position 162. Now type LaG/SC and hit RETURN. Write these changes

 to the backup by typing followed by a . Lastly while at

 this sector hit to go to the next sector in the directory.

 You'll find that it goes to Track 18/Sector 1. Continue hitting

 n to go to each linked sector in the directory. You'll find

 every sector to be normal with the last directory sector at

 Track 18) Sector 4. Now power down and load and check the

 directory. The file names should be present. Validate the disk

 and then using the disk logger, log the file addresses.

 2) With Hesmon in the cartridge port, load the boot file

 < L"B" 08 >. At the end of the load, Disassemble code at $02A7

 < D 02A7 > and using the cursor down key, scroll down through

 memory. The code highlights are:

 A] D 02C6 : JSR FF90 (control load messages)

 B] D O2CF : JSR FFBA (set logical addresses)

 C] D 02D8 : JSR FFBD (set file name:3 characters located at

 $02C1: Use Interpret command to see< I 02C1 >the file

 name GMl.

 D] D 02F1 : JSR FFD5 (load into ram)

 E] D O2FD : JMP 3800 (Jump to location $3800.)

 3) We now know that the next file loaded in is GMl and that the

 code at $3800 is the jump~link. Load the GMl file as

 < L"GMl" 08 >. Start disassembly of code at $3800.

 A] Let's execute the code at $3800 and see what happens. Type

 < G 3800 >. Notice the beginning screen comes up and asks for y

 or n for fast loader. Type n and listen. A short load takes

 place and the head swings out. The drive will be locked up.

 Power down and up again, type X to return to basic and

 initialize your drive. When the drive stops, hit

 RUNSTOP/RESTORE to return to the monitor.

 B] Again load the GMl file as before and start Disassembling

 code at $3800 . Cursor down through the code to

 $384A. Here you'll find a JSR C800. This is the actual

 protection check routine. Notice the next instruction is a

 PHA which places the numeric value returned from the

 protection check on the stack. This value is the key to this

 protection scheme.

 C] Make sure you place a write protect on the ORIGINAL Artist 64

 K.J. REVEALED TRILOGY PAGE [71] (C)l990 K.J.P.B.

 and place it into the drive. Using the Memory Command, change

 the PHA(48) at $384D to a BRK(00). < M 384D >. We can now

 execute the protection code from the original and the value

 in the left in the A register when the code breaks will be

 the numeric value we're looking for. Execute the code by

 typing .

 D] The opening screen will again appear and input N again and

 the load will continue. This time the head will swing out and

 a few moments later the program will break. The registers

 will be on the screen. Note the A register has a value of 58.

 This is the value we're looking for. (Those who want to

 inspect the drive routine that checks protection may find it

 starting at $C800.)

 E] The break is now quite simple. We can replace the JSR C800

 instruction with the value and totally skip the protection

 check. By replacing it with A9 58 EA (LDA 58 NOP) we can

 directly load the accumulator with a 58 which then will be

 pushed onto the stack. Let's make our changes with Disk

 Doctor.

 F] Using the converter in Hesmon, find the decimal equivalent to

 A9 58 EA. In a clear work space type <$ 00A9>. The decimal

 value 169 will be returned. The same procedure for 0058 and

 OOEA will return 88 and 234 respectively. Power down and

 remove Hesmon. From the Utility Disk, load Disk Doctor and

 again insert the backup into the drive. At Track 18/Sector 1,

 position 34, you'll find the Prg byte for the GMl file. Place

 the cursor on the Track pointer at position 35 and press

 to Jump to Link. You'll be taken to Track 17, Sector 1.

 Starting at position 0 cursor along and look for the hex

 bytes 20 00 C8 (JSR C800) pattern. At position 78 you'll find

 the first byte of that pattern. Use the ~ key to change three

 bytes starting at position 78 to 169, 88, 234 (decimal

 equivalent). Hit the key to rewrite the sector and then

 for yes. Your title is now free from all protection and

 may even be file copied if desired.

 FAULKLANDS 82 : FIREBIRD

 Procedure:

 Loading the original disk reveals the GMA symbol on the opening

 loader screen. A fast copy when booted, locks up the drive and

 sends it into an endless spin. Before starting, make a fast copy

 using our C-64 Fast Copy. Repair the directory according to the

 step one instructions. Be sure to validate the disk and do a log

 K.J. REVEALED TRILOGY PAGE [72] (C)l990 K.J.P.B.

the disk as a part of your preparation.

 working with your backup:

 1) Load Disk Doctor from the Utility Disk, and inspect Track

 18/Sector 1. You should find this sector to be normal. Use the -

 key to go to Track 18) Sector 0. You'll find the NAME and ID

 number to be corrupted. One way to repair it is as follows:

 Cursor to position 144 and type for text mode. In this mode

 type FALKLANDS followed by shifted spaces (decimal 160) to

 position 162. Now type FL/82 and hit RETURN. Write these changes

 to the backup by typing followed by a . Now take a look

 at position 2. Anything other than a capital A in that spot will

 prevent you from writing to the disk. You must cursor up to

 position 2 and hit for text mode then type A to that

 position. Hit for rewrite and for yes. Lastly while at

 this sector hit to go to the next sector in the directory.

 You'll find that it goes to Track 18/Sector 1. Continue hitting

 n to go to each linked sector in the directory. You'll find

 every sector to be normal with the last directory sector at

 Track 18) Sector 4. Now power down and load and check the

 directory. The file names should be present. Validate the disk

 and then using the disk logger, log the file addresses.

 2) With Hesmon in the cartridge port, load the boot file

 < L"Firebird" 08 >. At the end of the load, Disassemble code at

 $02A7 and using the cursor down key, scroll down

 through memory. The code highlights are:

 A] D 02C6 : JSR FF90 (control load messages)

 B] D O2CF : JSR FFBA (set logical addresses)

 C] D 02D8 : JSR FFBD (set file name:3 characters located at

 $02C1: Use Interpret command to see< I 02C1 >the file

 name GMl.

 D] D 02F1 : JSR FFD5 (load into ram)

 E] D O2FD : JMP COOO (Jump to location $COOO.)

 3) We now know that the next file loaded in is GMl and that the

 code at $COOO is the jump link. Load the GMl file as

 < L"GMl" 08 >. Cursor down and start disassembly of code at

 $COOO.

 A] Disassemble code at $C000 < D COOO >. You'll find a Jump to

 $COOF. Cursor down and inspect the code from $COOF-$C029.

 This code represents the key to the protection. This

 particular code can be found in many similar titles and the

 K.J. REVEALED TRILOGY PAGE [73] (C)1990 ~.J.P.B.

break for all is about the same. This code sets up a load of

 the actual protection check code within the GMA3 file. (Those

 of you interested in the drive code for the protection should

 load and inspect GMA3.) A JSR to $C800 within this code

 checks protection, and if the check is successful, a value of

 $97 is place at computer location $0002. Upon return from the

 JSR C800, the value in location $0002 is loaded into the

 accumulator and EORed with a value of $97. Lastly the code

 Branches if Equal(to 0) to $CO2A. Remember, if protection WAS

 satisfied, a value of $97 was placed at $0002. The EOR Truth

 Table in the back of the book tells us that $97 EORed with

 $97 is in fact zero. If the branch does take place, it will

 cause a jump around the instruction at $C027 which is a JMP

 ($FFFC). This instruction is actually a Jump to a Kernal

 routine that does a system reset, which in turn will crash

 the load process.

 B] The break is now quite simple. We can jump around the whole

 protection check. All that is necessary is to replace the JSR

 C800 with a JUMP around the reset code to $CO2A. We will

 replace the 20 00 C8 with 4C 2A Co (JMP CO2A). Remember, we

 don't want to allow any protection check because if the

 protection is not in place, the drive hangs up and goes into

 an endless spin. Let's make our changes with Disk Doctor.

 C] Using the converter in Hesmon, find the decimal equivalent to

 4C 2A CO. In a clear work space type <$ 004C>. The decimal

 value 76 will be returned. The same procedure for 002A and

 OOCO will return 42 and 192 respectively. Power down and

 remove Hesmon. From the Utility Disk, load Disk Doctor and

 again insert the backup into the drive. At Track 18/Sector 1,

 position 34, you'll find the Prg byte for the GMl file. Place

 the cursor on the Track pointer at position 35 and press j to

 Jump to Link. You'll be taken to Track 17, Sector 1. Starting

 at position 0 cursor along and look for the hex bytes 20 00

 C8 (JSR C800) pattern. At position 34 you'll find the first

 byte of that pattern. Use the @ key to change three bytes

 starting at position 34 to 76, 42, 192 (decimal equivalent).

 Hit the r key to rewrite the sector and then y for yes. Your

 title is now free from all protection and may even be file

 copied if desired.

 INTRO : PROTECTION SCHEME TYPE G

 Most computer software houses utilize some form of "copy

 protection" that prevents the average consumer from making backup

 copies of the program(s) that the company distributes. Even the

 K.J. REVEALED TRILOGY PAGE [74] (C)1990 K.J.P.B.

most basic Commodore user is aware that protection is included on

 most of the commercial programs he buys. Using a simple

 data-copier to archive the original usually fails to make a working

 copy.

 One company on the other hand, uses a different approach for

 their latest series of sports games. Instead of encoding the

 protection upon the diskette where the game is stored, included

 with the sale of each of their programs is a device called a

 Ndongleel The dongle is simply a small plastic device that plugs

 into the cassette port of your Commodore 64/l28~. The dongle

 includes a small resistor that makes it look complicated, but it is

 actually a very simple device. The resistor merely ties a positive

 6 volt lead to an input port that the Commodore uses for cassette

 load/save interfacing. The fact is, the resistor on the dongle

 could be replaced with a simple piece of wire. The resistor serves

 merely either to avoid "shorting" out your Commodore (which is

 doubtful), or, as most of us tend to see it, as a deceiving

 device.

 Through software, the programmer checks a certain memory location

 to see if that particular bit has a 0 value (dongle in place), or

 a 1 value (dongle not plugged in.) If the bit value retrieved is a

 "1", the program refuses to operate.

 The following tutorials will deal with deprotecting the software

 checks in the program code. Looking through machine-language code

 for a protection-check is quite a time-consuming task since there

 are probably a million ways to check if a bit value at a certain

 memory location is either on or of f. In the following pages, we

 will try to give you some of the more popular methods.

 The bit that the dongle triggers is located at memory location

 $0001. Using a machine-language monitor, we can verify that bit 4

 is always on without the dongle plugged in.

 $0001:

 Bit 7 6 5 4 3 2 1 0

 X X X l X X X X

 Bit 4 will become "0" when the dongle is plugged in. A short

 machine-code program assembled in the cassette buffer ($0334) can

 check the 4th bit:

 A 0334 LDA #$l0

 0336 BIT $01

 0338 BEQ $033A

 0339 BRK

 033A BRK

 Type G 0334 with the dongle in or out.

 K.J. REVEALED TRILOGY PAGE [75] (C)l990 K.J.P.B.

The BIT instruction "AND's" memory location $01 with the value

 in the accumulator (#$l0 = check bit 4). If the dongle is plugged

 in, both bits will match up (both l's), and the branch instruction

 will be bypassed and the program will break into the monitor at

 $0339.

 Running the program again with the dongle plugged in will AND a

 1 bit with the dongle 0 bit, causing the branch to be executed.

 The program will break into the monitor at $033A. This is just one

 method in which ACCESS checks their protection. We can "break"

 their protection checks by replacing LDA #$l0 with LDA #$00. This

 way, the BIT instruction will always result in setting the zero

 flag, which emulates the dongle!

 Here are some other code forms for checking the dongle:

 LDA #$l0

 BIT $00 (memory location zero, bit 4 holds an image of $0001)

 BEQ dongle in

 Solution: replace LDA #$l0 with LDA #$00.

 LDA $01

 AND #$l0

 BEQ dongle in

 Solution: replace AND #$l0 with AND #$00.

 LDA #$40

 LSR

 LSR

 TAX

 AND $FFFl,X

 BEQ dongle in

 Solution: replace LDA #$40 with LDA #$00.

 LDA $0001

 ASL

 TAX

 ASL

 ASL

 ASL

 BCS dongle out

 Solution: replace BCS with two "NOP"'s.

 There are many other ways to check memory location $0001 for the

 K.J. REVEALED TRILOGY PAGE [76] (C)1990 K.J.P.B.

dongle bit. In the following pages you will find instructions on

 how to disable the checks in four programs. These should give you

 the insight necessary to continue on your own.

 LEADERBOARD : ACCESS

 Use the C-64 Fast Copier utility to make an exact data-copy of

 the original. This backup will run like the original ONLY if the

 dongle is in place. The following procedure will eliminate all

 dongle-checks:

 Working with your backup:

 1) Turn on your computer and from the Utility Disk, load the Disk

 Logger by typing < LOAD "DISK LOGGER",8 > . Then type RUN.

 Insert your backup copy of Leaderboard in the drive and log it.

 The two files on the disk that contain code that check for the

 dongle are called "L" and "H". Take note of the addresses in

 memory where these programs reside:

 "L" $081D - $3E32

 "H" $9280 - $AB9A

 This information is important since we need to load a

 machine-language monitor into memory where these programs

 aren't! We can choose from one of three monitors ($2000 = 8192,

 $8000 = 32768, or $COOO = 49152). The monitor at $COOO does not

 conflict with Leaderboard memory, so let's use it.

 2) Turn on the computer again and load the $COOO monitor from your

 utility disk < LOAD "49152",8,l > followed by < SYS 49152 > to

 execute it.

 3) To start with a clean slate, let's clear out all memory below

 the monitor by typing < F 0800 BFFF EA >

 4) From the monitor, we must load the two Leaderboard files. Insert

 your backup copy in the drive and load both files: < L "H",08 >

 and < L "L",08 >

 5) Since the "H" file resides in the RAM underneath the BASIC ROMS

 ($AOOO-$BFFF), we have to use the bank select bits to bank out

 the ROM and bank in the RAM so we can view the "H" file code.

 Using the memory command, change location $0001 to 36 (76 on the

 128) < M 0001 >.

 6) Now we will began searching for the certain "dongle-check" byte

 K.J. REVEALED TRILOGY PAGE [77] (C)l990 K.J.P.B.

 sequences. We can use the monitor "H" command to hunt through

 memory for these patterns. Type < H 0800 BFFF A9 10 24 Ol >

 After a brief wait, the monitor should return addresses: 0AA2

 112F AO3C.

 7) Disassemble each of these addresses using the < D > command. Use

 the cursor-down key to scroll through the next couple of

 addresses. At the top after each assembly, change the LDA #$l0

 command to: LDA #$00 (see intro). i.e. - < D 0AA2 >, < A 0AA2

 LDA #$00 >... do the same for the other two addresses. The rest

 of the byte changes are performed in this manner, so they won't

 be in detail.

 8) Type < H 0800 BFFF A9 40 4A 4A AA > Monitor finds: 1245 9D20.

 9) Disassemble both addresses, and change the LDA #$40 command to

 LDA #$00 (see intro).

 10) Type < H 0800 BFFF AD Ol 00 > Monitor finds: 9AEO.

 11) Disassemble $9AEO and cursor down 10 or 11 times. Find the BCS

 instruction and replace it with two NOPs (see intro).

 < A 9AE8 NOP > < A 9AE9 NOP >

 12) Type < H 0800 BFFF 58 FF > . Monitor finds: 14D1 A6F4.

 13) First, disassemble a few bytes before $14D1, say at $14C0. You

 will discover a routine that looks something like the

 following:

 LDX #$09

 LDA $14D8,X

 EOR #$FF

 STA $FF58,X

 Notice that this routine decrypts a sequence of bytes beginning

 at $14D8 by EOR'ing it with the value of #$FF and stores it in

 hi-memory hidden beneath the Kernal ROMs. The routine itself

 breaks into the IRQ routine and checks the dongle bit every

 time the IRQ routine pointed to by vector $0314-$0315 is

 executed. To see the decrypted code, you will have to point the

 routine to a location in RAM that is easily visible, say $0801

 (FF58 0801). If you do, be sure to start the break procedure

 over, for you will have corrupted our work up to now.

 14) To "trick" the routine into thinking that the dongle is always

 in, type < M 14D8 > . The monitor should return a sequence of 8

 bytes.

 15) Edit the 4th byte over (should be $EF) and change it to $FF.

 K.J. REVEALED TRILOGY PAGE [78] (C)1990 K.J.P.B.

16) Next, disassemble memory a few bytes before $A6F4 by typing

 < D A6FO > . Use cursor/down to display the next 14 or 15

 bytes. The monitor should show you something like:

 LDX #$09

 CLC

 ADC $FF58,X

 DEX

 17) This group of instructions is simply a checksum check of the

 IRQ dongle-check routine we just finished working with. In

 other words, they are "double-checking" their protection code.

 Find the instruction that compares the checksum value in the

 accumulator with a set value. Notice the 'BEQ' immediately

 afterwards that bypasses protection failure. Simply change 1CMP

 #$5A' with 'LDA #$00'. We have just set the zero flag

 permanently, and the routine is tricked".

 18) Now that we have finished removing all the dongle-check

 routines, we need to re-save the two files to your backup disk.

 Type:< S"@0:L",08,081D,3E33 > < S"@0:H",08,9280,AB9B >

 19) You now have a dongle-free backup of Leaderboard. It may be

 archived using any simple data copier. Note: The parameter

 LEADERB. PARM 1 represents this particular break method.

 LEADERB. PARM 2 is a variation of this break and can be run on

 a backup and examined with the monitor.

 EXECUTIVE LEADERBOARD : ACCESS

 Use the C-64 Fast Copier utility to make an exact data-copy of

 the original. This backup will run like the original ONLY if the

 dongle is in place. The following procedure will eliminate all

 dongle-checks:

 working with your backup:

 1) Turn on your computer and from the Utility Disk, load the Disk

 Logger by typing < LOAD "DISK LOGGERN,8 > . Then type RUN.

 Insert your backup copy of Executive Leaderboard #1 in the drive

 and log it. The two files on the disk that contain code that

 check for the dongle are called "L" and "H". Take note of the

 addresses in memory where these programs reside:

 "L" $081D - $3FAF

 K.J. REVEALED TRILOGY PAGE (79] (C)l990 K.J.P.B.

 "H" $9280 - $BAEC

 This information is important since we need to load a

 machine-language monitor into memory where these programs

 aren't! We can choose from one of three monitors ($2000 = 8192,

 $8000 = 32768, or $COOO = 49152). The monitor at $COOO does not

 conflict with Exec Leaderboard #1 memory, so we will use it.

 2) Turn on the computer again and load the $COOO monitor from your

 utility disk < LOAD "49152",8,l > followed by < SYS 49152 > to

 execute it.

 3) To start with a clean-slate, let's clear out all memory below

 the monitor by typing < F 0800 BFFF EA >

 4) From the monitor, we must load the two Exec Leaderboard #1

 files. Insert your backup copy in the drive and load both files:

 < L "H",08 > and < L "L",08 >

 5) Since the "H" files resides in the RAM underneath the BASIC ROMS

 ($AOOO-BFFF), we have to use the bank select bits to bank out

 the ROM and bank in the RAM so we can view the "H" file code.

 Using the memory command, change memory location $0001 to 36 (76

 on the 128) < M 0001 >

 6) Now, we will began searching for the certain "dongle-check" byte

 sequences. We can use the monitor "H" command to hunt through

 memory for these patterns. Type < H 0800 BFFF A9 10 24 Ol >

 After a brief wait, the monitor should return addresses: OA9C

 1114 9FA2.

 7) Disassemble each of these addresses using the "D" command. Use

 the cursor-down key to scroll through the next couple of

 addresses. At the top after each assembly, change the LDA #$l0

 command to: LDA #$00 . i.e. - < D OA9C > < A OA9C LDA #$00 >

 do the same for the other two addresses. The rest of the

 byte changes are performed in this manner, so they won't be in

 detail!

 8) Type < H 0800 BFFF A9 40 4A 4A AA > . Monitor finds: 1237 9D3E.

 9) Disassemble both addresses, and change the LDA #$40 command to

 LDA #$00

 10) Type < H 0800 BFFF A9 10 24 00 > . Monitor finds: 93EF.

 11) Disassemble and change LDA #$l0 to LDA #$00.

 12) Type < H 0800 BFFF AD OE C2 OA AA > . Monitor finds: 9AFE.

 13) Disassemble $9AFE and scroll down 6 or 7 times. Find the BCS

 K.J. REVEALED TRILOGY PAGE [80] (C)l99O K.J.P.B.

 instruction and replace it with two NOPs. < A 9B06 NOP > ,

 < A 9B07 NOP > .

 14) Type < H 0800 BFFF 58 FF > . Monitor finds: 14AC A5E7.

 15) First, disassemble a few bytes before $14AC, say at $14A3. You

 will discover a routine that looks something like the following

 LDX #$09

 LDA $14B3,X

 EOR #$FF

 STA $FF58,X

 Notice that this routine decrypts a sequence of bytes beginning

 at $14B3 by EOR'ing it with the value of #$FF and stores it in

 hi-memory hidden beneath the Kernal ROMs. The routine itself

 breaks into the IRQ routine and checks the dongle bit every

 time the IRQ routine pointed to by vector $0314-0315 is

 executed. To see the decrypted code, you will have to point the

 routine to a location in RAM that is easily visible, say $0801

 (FF58 = 0801). If you do, be sure to start the break procedure

 over, for you will have corrupted our work up till now.

 16) To "trick" the routine into thinking that the dongle is always

 in, type < M 14B3 > . The monitor should return a sequence of

 8 bytes.

 17) Edit the 4th byte over (should be $EF) and change it to $FF.

 18) Next, disassemble memory a few bytes before $A5E7 by typing

 < D A5E1 > . Use cursor-down to display the next 14 or 15

 bytes.

 The monitor should show you something like:

 LDX #$09

 CLC

 ADC $FF58,X

 DEX

 19) This group of instructions is simply a checksum check of the

 IRQ dongle-check routine we just finished working with. In

 other words, they are "double-checking" their protection code.

 Find the instruction that compares the checksum value in the

 accumulator with a set value. Notice the BEQ immediately

 afterwards that bypasses protection failure. Simply change

 CMP #$5A with LDA #$00 . We have just set the zero flag

 permanently, and the routine is tricked.

 20) Now that we have finished removing all the dongle-check

 routines, we need to re-save the two files to your backup disk.

 K.J. REVEALED TRILOGY PAGE [81] (C)l99O K.J.P.B.

Type: < S"@0:L",08,081D,3FB0 > < S"@0:H",08,9280,BAED >

 21) The exact same procedure described above must be repeated for

 two files "L5" and "H5", which are identical other than name to

 "L" and "H". So repeat steps 3-20 but use "L5" and "H5" as

 filenames instead!

 22) After this is done, you will have a dongle-free backup of

 Executive Leaderboard #1. It may be archived using any simple

 data copier. Note: The parameter for LB Exec #1 on the utility

 disk represents a variation of this break and can be run on a

 backup and examined with the monitor. You'll find all changes

 in about the same memory locations.

 LEADERBOARD TOURNAMENT DISK : ACCESS

 Procedure:

 Use the C-64 Fast Copier to make an exact data-copy of the

 original. This backup will run like the original ONLY if the

 dongle is in place. The following procedure will eliminate all

 dongle-checks:

 Working with your backup:

 1) Turn on your computer and from the Utility Disk, load the Disk

 Logger utility by typing < LOAD "DISK LOGGER",8 > . Then type

 < RUN >. Insert your backup copy of Leaderboard Tournament in

 the drive and log it. The file on the disk that contains the

 code that checks for the dongle is called "B". Take note of

 the addresses in memory where this program resides:

 "B" $9280 - $BF53 . This information is important since we

 need to load a machine-language monitor into memory where this

 program isn't! We can choose from one of three monitors

 ($2000 = 8192, $8000 = 32768, or $C000 = 49152). The monitor

 at $C000 does not conflict with Leaderboard memory, so we will

 use it.

 2) Turn on the computer again and load the $C000 monitor from your

 utility disk < LOAD "49152",8,1 > followed by < SYS 49152 > to

 execute it.

 3) To start with a clean-slate, let's clear out all memory below

 the monitor by typing < F 0800 BFFF EA > .

 4) From the monitor, we must load the Leaderboard file. Insert

 your backup copy in the drive and load the file: < L"B",08>.

 5) Since the "B" file resides in the RAM underneath the BASIC ROMS

 ($A000-BFFF), we have to use the bank select bits to bank out

 K.J. REVEALED TRILOGY PAGE [82] (C)l99O K.J.P.B.

 the ROM and bank in the RAM so we can view the "B" file code.

 Using the memory command, change memory location $0001 to 36

 (76 on the 128) < M 0001 > .

 6) Now, we will began searching for the certain "dongle-check"

 byte sequences. We can use the monitor "H" command to hunt

 through memory for these patterns. Type

 < H 9000 BFFF A9 10 24 01 >. After a brief wait, the monitor

 should return address: A03C

 7) Disassemble this address using the "D" command. Use the

 cursor-down key to scroll through the next couple of addresses.

 At the top, change the LDA #$10 command to: LDA #$00 . i.e. -

 < D A03C > , < A A03C LDA #$00 >. The rest of the byte changes

 are performed in this manner, so they won't be in detail!

 8) Type < H 9000 BFFF A9 40 4A 4A AA > . Monitor finds: 9D20.

 9) Disassemble and change the LDA #$40 command to LDA #$00 .

 10) Type < H 9000 BFFF A9 10 24 00 > . Monitor finds: 93EF.

 11) Disassemble and change LDA #$10 to LDA #$00 .

 12) Type < H 9000 BFFF AD 01 00 0A AA > . Monitor finds: 9AE0.

 13) Disassemble $9AE0 and scroll down 6 or 7 times. Find the BCS

 instruction and replace it with two NOP's. < A 9AE8 NOP >,

 < A 9AE9 NOP > .

 14) Type < H 9000 BFFF 58 FF > . Monitor finds: A6F4.

 15) Disassemble memory a few bytes before $A6F4 by typing

 < D A6E0 >. Use cursor-down to display the next 14 or 15 bytes.

 The monitor should show you something like:

 LDX #$09

 CLC

 ADC $FF58,X

 DEX

 16) This group of instructions is simply a checksum check of the

 IRQ dongle-check routine we worked with in the Leaderboard

 portion of this manual. In other words, they are

 "double-checking" their protection code. Find the instruction

 that compares the checksum value in the accumulator with a set

 value. Notice the BEQ immediately afterwards that bypasses

 protection failure. Simply change CMP #$5A with LDA #$00 . We

 have just set the zero flag permanently, and the routine is

 tricked.

 K.J. REVEALED TRILOGY PAGE [83] (C)l99O K.J.P.B.

17) Now that we have finished removing all the dongle-check

 routines, we need to re-save the file to your backup disk.

 Type: < S"@0:B",08,9280,BF54 > .

 18) Now that you have removed all the dongle-check routines, you

 have a dongle-less working copy of Leaderboard Tournament Disk

 #1. It may be backed-up with any data copier. Note: the

 parameter for LB Tourn #1 on the Utility Disk represents a

 variation of this break and can be run on a backup and examined

 with the monitor. You'll find all changes in about the same

 memory locations.

 --

 TENTH FRAME : ACCESS

 Procedure:

 Use the C-64 Fast Copier to make an exact data-copy of the

 original. This backup will run like the original ONLY if the

 dongle is in place. The following procedure will eliminate all

 dongle-checks.

 Working with your backup:

 1) Turn on your computer and from the Utility Disk, load the Disk

 Logger by typing < LOAD "DISK LOGGER",8 > . Then type < RUN > .

 Insert your backup copy of Tenth Frame in the drive and log it.

 The two files on the disk that contain code that check for the

 dongle are called "L" and "S". Take note of the addresses in

 memory where these programs reside:

 "L" $081D - $3FFE

 "S" $6E00 - $9FFE

 This information is important since we need to load a

 machine-language monitor into memory where these programs

 aren't! We can choose from one of three monitors ($2000 = 8192,

 $8000 = 32768, or $C000 = 49152). The monitor at $C000 does not

 conflict with Tenth Frame memory, so we will use it.

 2) Turn on the computer again and load the $8000 monitor from your

 utility disk < LOAD "49152",8,1 > followed by < SYS49152 > to

 execute it.

 3) To start with a clean slate, let's clear out all memory below

 the monitor by typing < F 0800 BFFF EA > .

 4) From the monitor, we must load the two Tenth Frame files. Insert

 your backup copy in the drive and load both files: < L"H",08 >

 K.J. REVEALED TRILOGY PAGE [84] (C)l99O K.J.P.B.

 and < L"S",08 >

 5) Now, we will began searching for the certain "dongle-check"

 byte sequences. We can use the monitor "H" command to hunt

 through memory for these patterns. Type

 < H 0800 9FFF A9 10 24 01 >. After a brief wait, the monitor

 should return addresses: 0F66 17DO.

 6) Disassemble each of these addresses using the < D > command.

 Use the key to scroll through the next couple of

 addresses. At the top after each assembly, change the LDA #$10

 command to: LDA #$00 . i.e. - < D 0F66 >,< A 0F66 LDA #$00 >..

 do the same for the other address. The rest of the byte changes

 are performed in this manner, so they won't be in detail!

 7) Type < H 0800 9FFF A9 40 4A 4A AA >. Monitor finds: 0FF9 16E6

 8) Disassemble both addresses, and change the LDA #$40 command to

 LDA #$00

 9) Type < H 0800 9FFF A9 10 25 01 >. Monitor finds 162B 1E3D.

 10) Disassemble both addresses and change LDA #$10 to LDA #$00 .

 11) Type < H 0800 9FFF A5 01 29 10 >. Monitor finds 0EEC 11CA 1C5A

 2C85 3141.

 12) Disassemble each address and change AND #$10 to AND #$00 .

 13) Type < H 0800 9FFF A9 10 24 00 >. Monitor finds 1227.

 14) Disassemble and change LDA #$10 to LDA #$00 .

 15) Type < H 0800 9FFF A9 08 0A EA 31 2B >. Monitor finds 2BB6.

 16) Disassemble and change AND ($2B),Y to AND #$00 .

 17) Type < H 0800 9FFF A9 D0 49 FF D1 2B >. Monitor finds 2C37.

 18) Disassemble the next 9 or 10 bytes. Find the BEQ instruction

 and replace the next instruction immediately after it with an

 RTS :< A 2C3F RTS > . The BEQ instruction is executed if the

 dongle is in, and it hits an RTS too, so putting another RTS

 after the BEQ guarantees that the program will not crash with

 the dongle out.

 19) Type < H 0800 9FFF 18 A9 00 7D 00 C0 > . Monitor finds 6EC2.

 20) Disassemble $6EC2 and scroll down 15 or 16 instructions. Find

 the BEQ instruction and replace the next instruction after it

 with an RTS again: < A 6ED9 RTS > . (We just fixed a

 K.J. REVEALED TRILOGY PAGE [85] (C)l99O K.J.P.B.

 dongle-related checksumming problem.)

 21) Now that all the dongle-check routines in these files have been

 removed, we need to re-save the two files to our backup:

 < S"@0:L",08,081D,3FFF > < S"@0:S",08,6E00,9FFF >

 22) There are two other dongle-routines that need to be changed on

 the Tenth Frame disk. The only problem is that they reside in

 a file called "P", which loads underneath the KERNAL ROM. There

 is no way to use our monitors to view, change and re-save this

 file. Instead, load the Disk Doctor utility by typing

 < LOAD "DISK D*",8 > and then < RUN >.

 23) Insert your backup copy of Tenth Frame and press . Use

 the < B > command to read Track 20, Sector 1. Use the cursor

 keys to move to position 63. Using the < @ > command, change

 the byte value (48) to 32. Re-write the sector with the < r >

 command. Then use < + > key to read Track 20, Sector 2. Move

 cursor to position 150. Change byte value (15) to 7. Re-write

 the sector with the < r > command.

 24) Let's investigate why we made the changes in the "P" file. From

 the $C000 (49152) monitor, load the "P" file from your backup

 copy by typing <> L"P",08.

 25) Since the "P" file resides in memory from $E000-$FEBF, it is

 now residing in the RAM that is "hidden" beneath the KERNAL

 ROM's ($E000-SFFFF). Our monitor won't let us view the RAM, so

 we need to write a short ML program to transfer $E000-$FFFF

 down to lower memory from $4000-$5FFF so we can look at the "P"

 code.

 Type in the following routine starting at $0334:

 A 0334 SEI

 0335 LDA #$35

 0337 STA $01

 0339 LDX #$00

 033B LDA $E000,X

 033E STA $4000,X

 0341 INX

 0342 BNE $033B

 0344 INC $0340

 0347 INC $033D

 034A BNE $033B

 034C LDA #$37

 034E STA $01

 0350 BRK

 25) Type <> G 0334 to execute the routine.

 K.J. REVEALED TRILOGY PAGE [86] (C)l99O K.J.P.B.

26) Type <> D 550E and cursor-down a few bytes. You should see a

 dongle-check routine that looks like:

 550E LDA $01

 AND #$30

 ORA #$8C

 STA $3A4E

 The byte we changed using the DISK DOCTOR on track 20, sector 1

 changed the "AND #$30" instruction to "AND #$20". This

 permanently masks out the dongle-bit to a "0" value, so the

 computer "thinks" that the dongle is actually in place.

 27) Type <> D 575D and cursor-down a few bytes. You should see:

 575D LDA $01

 LSR

 STA $A01F

 AND #$0F

 STA $A027

 The byte we changed on track 20, sector 2 changed the "AND

 #$0F" instruction to "AND #$07". This also masks out the dongle

 bit from location $01 to appear to be on (0 bit).

 28) After all changes have been made, your Tenth Frame disk is

 completely broken and the dongle is no longer necessary.

 ===

 < < < RAPIDLOK PROTECTION REVEALED > > >

 Most Commodore users are aware of the standard format that the

 1541/71 disk drives read. We can load and save programs, directory

 the disk, and perform a variety of other commands. The program

 code that knows how to execute all these functions is stored within

 the ROM's of the disk drive. Most Disk-Drive Operating Systems are

 called "DOS". RapidLok is a recent protection scheme that has

 appeared on the disks of some recent big-name producers (Accolade,

 Avalon Hill, Microprose...), and uses its own "DOS" system to load

 files. RapidLok disks will usually have only track 18 standard

 formatted, the rest of the tracks being formatted in the RapidLok

 manner. The RapidLok DOS resides in an encoded format on track 18,

 sectors 18, 15, 12, 9, 6, and 3. Each time a file is loaded through

 RapidLok, a short machine-language auto-boot file loads the

 RapidLok DOS from track 18 and stores it in the disk-drive memory

 from S0300-07FF. Currently, we know of 6 different versions of

 RapidLok DOS. Each relies on the same basic track formatting, but

 K.J. REVEALED TRILOGY PAGE [87] (C)l99O K.J.P.B

in addition to loading RapidLok files, they do a complicated check

 on certain sync lengths, header lengths, and track to track

 alignment.

 RAPIDLOK FORMAT

 Like Commodore DOS, RapidLok formats its tracks by first writing

 a header block, and then a $0255 byte long data block. The method

 through which RapidLok converts this data into REAL bytes is much

 too confusing to explain in this overview. The following is how

 RapidLok would format one track:

 1/ The Reference Header:

 The first header on a RapidLok track is the track reference

 header. It is actually a normal Commodore DOS header for that

 track, sector 0 in GCR format. It is written with a SYNC LENGTH of

 $0029 bytes, if RapidLok DOS detects a reference header without the

 correct sync length, the load will abort.

 Example:

 SYNC: $0029 Bytes: 52 57 35 29 6B 74 DC B5 = track 19, sector 0

 2/ The LONG-SYNC RapidLok Header:

 The second header on a RapidLok track is actually the header for

 RapidLok sector 0. All RapidLok headers begin with a $75, and

 contain 7 important bytes that the RapidLok loader needs to detect.

 These bytes are followed by 3 or 4 GAP BYTES that are written out

 as #$OO's. (Any attempt to read these bytes will return a different

 byte value each time.) The RapidLok header block for sector 0 (1st

 header block) has a SYNC LENGTH of $003c bytes, though. The

 RapidLok loader will fail if this sync length is not found.

 Example:

 SYNC: $003C BYTES: 75 93 59 25 D6 ED 7A 4C 00 00 00 00 = sector 0

 The remaining headers for sectors 1 through the maximum have SYNC

 LENGTHS of $0005, and are not checked by the loader.

 3/ The RapidLok Data block:

 Each data block begins with a $6B value and follows the header

 for that particular sector. Each data block contains approximately

 $0255 bytes of data, which is converted into normal DATA and sent

 from the drive to the computer. Each data block has a sync-length

 of $0005 bytes, and is not checked by the loader. Sometimes a

 RapidLok sector will be blank. The data block will then begin with

 K.J. REVEALED TRILOGY PAGE [88] (C)l99O K.J.P.B.

 a $55 byte and continue with $0254 more #$55 bytes.

 Example of Full RapidLok Data block:

 SYNC $0005 Bytes: 6B BB C9 24 BA FF 35 DF............

 Example of Empty RapidLok Data block:

 SYNC $0005 Bytes: 55 55 55 55 55 55 55 55............

 4/ The RapidLok Bit Rate:

 As far as BIT RATES and storage sizes go, RAPIDLOK formats

 tracks in the following manners for the following zones:

 Track Zone Bit-Rate # of Sectors

 --

 1-17 $60 12

 19-35 $40 11

 5/ The RapidLok EXTRA-SECTOR

 After all the headers and data blocks for each sector of a track

 are written out, a special "extra-sector" is written on the disk as

 part of the RapidLok's main protection scheme. The block has a SYNC

 LENGTH of $0014, and begins with a #$55 byte. The first byte is

 followed by a certain number of #$7B bytes in a row, giving the

 entire block a specific LENGTH. A special "decoder" master-key

 block is written on track 36 of each RapidLok disk. At the

 beginning BOOT of the program, RapidLok DOS moves the disk-drive

 head to track 36, reads in the special key, decodes it and ends up

 with a list of 35 numbers. Each number is the specific length of

 the EXTRA SECTOR for each equivalent track! During RapidLok file

 loads, if the DOS extra-sector length does no match the master-key

 number for that track, the DOS dies. The MASTER-KEY on track 36 is

 the most difficult portion of RapidLok formats to reproduce.

 Example of Extra-sector:

 SYNC $0014 Bytes: 55 7B 7B 7B 7B 7B.....7B (x amount of bytes)

 6/ Overview of RapidLok DOS:

 Each track contains sectors 0-11 (Tracks 1-17) or sectors 0-10

 (Tracks 19-35). Each "sector" is composed of a header block

 beginning with a $75 and is followed by a data-block beginning with

 a $6B (or a $55 if blank). Each RapidLok track also contains a

 reference header AND an extra-sector of special length that must

 match a "master-key". Remember, during loads, RapidLok DOS is

 K.J. REVEALED TRILOGY PAGE [89] (C)l99O K.J.P.B.

constantly checking the special sync lengths described above. Even

 the slightest mismatch from the norm will halt the program load.

 Thus, if your DISK DRIVE speed is slightly off from 300 RPM, you

 may experience difficulties in loading some RapidLok formatted

 programs.

 If you examine the directory sectors of track 18 on a RapidLok

 disk with a track and sector editor, you will notice that after

 each file name is a sequence of two or three bytes. RapidLok DOS

 actually uses these bytes much in the way Commodore DOS does the

 track and sector pointer! The actual beginning track and sector

 number and program length are embedded (encoded) in these bytes.

 Little is known about the RapidLok master-key on track 36. The

 routine that RapidLok uses to decode it can be copied, but actually

 writing out the key has not yet been done!

 On recent RapidLok versions (5 and 6 to be specific), they use

 TRACK to TRACK alignment. What this means is that if your were on

 track 19 and you had just read sector 0, if you were to

 immediately skip the drive-head to track 20 and read the first

 information you encountered, you would be reading the data for

 sector 0 of track 20! This is a very simple explanation. Sometimes

 track-to-track alignment can be done with a "skew". i.e. track 19,

 sector 0 matches track 20, sector 6, which in turn matches track

 21, sector 12. The skew is 6.

 RapidLok DOS uses a combination of blank sectors ($55) and full

 sectors ($6B) on one track. This track must be perfectly aligned

 with the track before it. When DOS finishes reading the last sector

 of the first track, it bumps the drive-head to the half and half

 track. If the track-to-track alignment is correct, it will

 encounter a full RapidLok sector, and will continue to load. If the

 alignment is incorrect, even off by one sector!, the drive will

 encounter an empty sector ($55) and the loader will then commit

 suicide within your drive! So even if a person could exactly

 duplicate two RapidLok tracks, he would also have to get the timing

 within his format routine exact enough to align the tracks

 correctly.

 An example RapidLok Protected track:

 SYNC LENGTH BYTES DESCRIPTION

 $0029 52 55 35 29 4B 74 DC B5 track 1,0 reference header

 $003C 75 93 59 25 D6 ED 7A 00 sector 0 header

 $0005 6B BB C9 24 BA FF 35 DF sector 0 data block

 $0005 75 92 59 25 D6 ED 6E 00 sector 1 header

 $0005 6B DE 59 24 96 7B ED F7 sector 1 data block

 K.J. REVEALED TRILOGY PAGE [90] (C)l99O K.J.P.B.

 $0005 75 92 E9 25 D6 ED 65 00 sector 11 header

 $0005 6B F7 D9 24 EF 4E AD DB sector 11 data block

 $0014 55 7B 7B 7B 7B 7B 7B 7B "extra-sector" for key

 7/ Points of Interest:

 Track 18 on ALL RapidLok disks is formatted in standard

 Commodore DOS (i.e.- 18 sectors), but it also contains the RapidLok

 "extra-sector" ($55 7b 7b 7b 7b...etc). The RapidLok auto-boot will

 not load RapidLok DOS into drive memory UNLESS this extra sector is

 found. It uses the 2nd byte (78) as a decoder for the DOS stored on

 sector 18,15,12,9,6 and 3.

 On all RapidLok disks released in the past 2 years, tracks 19

 through 35 have ALWAYS been formatted in RapidLok style. Tracks

 1-17 usually vary, depending upon the program. Huge programs will

 RapidLok format all these tracks, others will use combinations of

 standard format with RapidLok format. Often if a game has a

 highscore list that is saved to disk, the RapidLok format will

 leave track 1 open as standard Commodore DOS so the high-score list

 can be written to disk using a simple B-W or U2 command. Writing

 out in RapidLok format is almost impossible! (it would take up too

 much disk drive memory!)

 8/ In Conclusion:

 As we have seen, the RapidLok format is not standard in any way to

 the format that Commodore DOS is using to reading. Because of this,

 the only way to break the protection of titles that have the

 RapidLok format is to break the separate files from the computer

 memory and tie them together. This, unfortunately is beyond the

 scope of this manual.

 We can however, give you a method of reproducing most RapidLok

 protected disks. This system (developed by the Kracker Jax team) is

 the most effective RapidLok copier on the market. In the next

 section, we will document our RapidLok copier in detail. With our

 scanner, you will be able to distinguish the RapidLok tracks from

 the standard tracks and even know the RapidLok copier version.

 Armed with this information, you will build your own copier driver.

 Enjoy!

 K.J. REVEALED TRILOGY PAGE [91] (C)l99O K.J.P.B.

 KRACKKR JAX RAPIDLOK COPIERS

 RapidLok protection has offered software publishers a very

 effective means of copy protecting their software. Other copy

 utility companies have released copiers for a title or two, but

 because of multiple protection schemes and the extreme difficulty

 in writing the copiers for those titles, they have been relatively

 ineffective.

 After many months of research and testing, we have developed

 copiers for what we believe to be ALL existing versions of

 RapidLok. Unlike our competitors, we have not only developed

 individual copiers for every version of every title we could find,

 but have even provided you with an extremely easy way of examining

 and copying ANY RapidLok protected disk released to date (July

 1987). We are confident that if you follow our instructions

 carefully, YOU will easily construct a copier to archive your

 particular version of a RapidLok protected disk.

 In order to copy a RapidLok protected disk with our system, we

 must first identify it as such. Companies such as Microprose

 Accolade, Avantaqe, Avalon Hill, and Capeom are known users of

 RapidLok. Others do exist and using our system will identify them.

 The heart of our system is our RapidLok Scanner. With this

 scanner you can not only tell if the disk in question is in fact

 RapidLok, but also the variation of tracks and which version it is.

 No more guessing and endless backup attempts. You are armed with

 EXACT information, and that information can be plugged into a

 Skeleton Copier to provide fast results.

 Let's try one out. From the Utility Disk, LOAD and RUN the

 RapidLok Scanner. When the program is loaded, insert any suspect

 disk into the drive and press RETURN. If it is a Rapidloked9(tm)N

 disk, you will see the red and green indicators fill the track

 line. Last, the version number will appear. The RapidLok disk is

 made up of two completely different formats. Those tracks shown as

 red donuts are tracks that must be copied with a RapidLok copier

 and those shown as green circles must be copied with our Nibbler.

 The version number shown determines the correct RapidLok copier to

 use.

 After writing down all RapidLok tracks, all regular tracks and the

 version number, you are ready to create your own copier. Follow

 these easy steps.

 1) Format a work disk. File copy from the Utility disk to your work

 disk the following files: RLVO, RLVl, RLV2, RLV3, RLV4, RLV5,

 RLV6, NIBBLER, and COPIER TEMPLATE.

 K.J. REVEALED TRILOGY PAGE [92] (C)l99O K.J.P.B.

2) When completed, load the BASIC file < COPIER TEMPLATE > (from

 your work disk directory) and LIST it out.

 3) Lines 10 and 20 are reserved for standard tracks. Lines 30 and

 40 are for RapidLok tracks. Simply type each track number,

 seperated by commas, on the appropriate lines. To end the

 sequence, type a 0 (zero). See the example below:

 10 data l,2,3,4,5,6,7,8,9,18,31,32,33

 20 data 34,35,0

 30 data l0,1l,12,13,14,15,16,17,19,20

 40 data 21,22,23,24,24,26,27,28,29,30,0

 This is an example of coping standard tracks 1-9, 18, 31-35, and

 RapidLoked tracks 10-17, and 19-30. Notice the zeros ending the

 sequences in each copier type. Do not end a line with a comma,

 or forget to place information on EACH data line. This WILL

 cause the copiers to stall.

 4) Line 50 contains the title information. You may type any title

 you wish instead of PARAMETER TITLE. Adjust the quotes to suit

 the length of the title.

 5) Line 60 must contain the proper version number of RapidLok

 copier to use. Type the correct number in the quotes following

 the RLV . Be sure to press RETURN to lock in all changes made.

 6) When these steps are done, list the parameter out again and

 double check the changes. If all is well, you may save the file

 to your work disk. Name it appropriately as it is a custom

 copier for your title.

 To use your custom copier, simply load and run it. The screen

 will prompt you for disk swaps. When the procedure is done, power

 down and up again and try your copy. It should run just as the

 original did. If not, double check your parameter for possible

 errors.

 In Conclusion:

 We've found NO RapidLok'ed titles we couldn't back-up. We HAVE

 had to try a different drive on occassion. Some drives just don't

 like writing some titles. 1571 drives seem to be extremely

 effective copiers using this system, but most 1541 drives will work

 fine. Also, we have had to copy a title or two a bit differently

 than normal. The tracks had to be copied in an out of order

 sequence.

 Other points of interest are: This system only works with

 K.J. REVEALED TRILOGY PAGE [93] (C)l99O K.J.P.B.

working ORIGINALS. Backups made with other copiers can't be backed

 up. You may back up second generations of backups made with this

 system, but you must use the RLVO copier with the correct track

 sequences (again, use the scanner). The original protection scheme

 is flakey in loading and the copies are no better (sorry).

 INTRO : PROTECTION SCHEME TYPE I

 GEOS (Graphic Environment Operating System), from Berkeley

 Softworks, has revolutionized the way people use their C-64s. It's

 icon-based, user-friendly, desktop interface has extended the life

 of this machine to 1990 and lured leery buyers into the world of

 Commodore computing. With the newly available 1764 RAM expansion,

 GEOS will allow a C-64 to approach the capabilities of its younger,

 but more powerful brother, the C-128.

 But unlike other operating systems (CP/M, MS-DOS..), GEOS is

 copy-protected. Who needs a copy-protected operating system? What

 if you own a large selection of GEOS application programs and your

 GEOS original crashes? The programs are usel~ss while you try to

 attain a replacement and you can't borrow a' friend's copy because

 of the serial number protection! Clearly, it benefits only

 Berkeley.

 Meanwhile, we've been agonizing over which Berkeley releases to

 cover in this edition of Kracker Jax Revealed. We were reasonably

 sure that most of you would own GEOS vl.2 and Deskpak I, so we've

 included those. PLUS a quick-n-dirty way to defeat GEOS vl.3's

 "Trojan horse" scheme, which will erase your system files if the

 file "GEOSBoot" fails a checksum test. GEOS vl.3's protection might

 be covered in a future edition if readers demand it, but its

 complexity might be intimidating to some.

 Be forewarned,though, that the going will be tough if you aren't

 familiar with "The Official GEOS Programmer's Reference Guide" or

 Richard Immers/Gerald Neufeld's "Inside Commodore DOS". GEOS and

 it's protection schemes are heavily I/O bound and good working

 knowledge of the 1541 drive and GEOS KERNAL routines is essential

 to understanding the following articles.

 Please note:

 Geos, Geos vl.2, Deskpak I, Geos vl.3, Berkeley Softworks, and

 The Official Geos Programmer's Guide are all registered trademarks

 of Berkeley Softworks.

 K.J. REVEALED TRILOGY PAGE [94] (C)l99O K.J.P.B.

 HOBBLING GEOS vl.3's TROJAN HORSE : BERKELEY SOFTWORKS

 The now infamous 'Trojan Horse', is an incredibly sneaky and

 rather sloppily-executed scheme that deletes your system files

 "GEOS", "GEOS BOOT", "KERNAL" and "DESKTOP" from an unauthorized

 copy of GEOS vl.3 while you are rearranging your directory pages.

 It usually occurs within four moves. It actually doesn't delete the

 files, it completely zeroes out their directory entries.

 The mechanism, located in "DESKTOP", is rather simple. A counter

 is incremented randomly during directory moves. At certain

 intervals, a checksum routine is performed on "GEOS BOOT". If the

 checksum is wrong, the Desktop checks the first four entries of the

 first directory page for GEOS file-type soc (system boot file). If

 they match, it fills them with 00's and writes the block back to

 disk. The disk is no longer bootable unless you can re-create the

 directory entries.

 The GEOS file-type I.D. is located in byte # 24 (18) of each

 file's directory entry. If this byte is changed to a GEOS system

 file-type ($04) in the above-mentioned files, the old horse never

 gets rolled into Troy and you can rearrange your directory with

 peace-of-mind.

 GEOS v1.2 : BERKELEY SOFTWORKS

 1) A fast-copied or nybbled copy of GEOS vl.2 will not run. It will

 merely do a system reset after the protection check. An error

 scan shows no normal DOS errors but there is data on track 36

 (visible with a good GCR Editor). Track 36 is not normally

 copyable because it has no sync marks.

 2) Load the $COOO monitor "49152" from your Utility Disk then load

 "GE0S" from a backup copy of GEOS vl.2. Disassemble the code at

 $0123. This routine loads "GEOS BOOT" and jumps to $6000. Load

 in "GEOS BOOT" and disassemble the code at $6000. Examination of

 the code reveals that the majority of it is encrypted but the

 decryption routine at $606C is rather simple. The code will

 decrypt it for us by placing a BRK instruction at $6086 and

 executing the code at $606C.

 3) Now look at the code again. Sharp-eyed hackers will notice the

 drive code starting at $623F. Here's some of the other high

 points of the loader:

 $6167:Print "Booting GEOS...".

 K.J. REVEALED TRILOGY PAGE [95] (C)l99O K.J.P.B.

 $6177:Execute Memory-Write command and output fast-loader

 routine to drive, then send Memory-Execute command at

 $61AD.

 $6013:Direct I/O to drive through the serial port $DDOO.

 After the Memory-Execute command is sent, the code at

 $61BB waits for a signal back from the drive. At $61D4, a

 byte comparison is done. If it fails, the JMP instruction

 at $6086 is altered to SFCE1 (C-64 system reset). It then

 Jumps back to the decryption routine which, this time,

 re-encrypts the code and then performs the system reset.

 Let's disable the reset by placing a "BEQ $61EC" at $61D8.

 Re-encrypt the code by again executing the routine at

 $606C. Note the new encryption values at $61D8. These will

 be written to the proper sector on your backup copy.

 4) Load the sector editor from the Utility Disk and trace the "GEOS

 BOOT" file on your backup copy. Address $61D8 would be in the

 second block of the file (it should be Track/Sector 1/4)

 starting at byte # $DE (222). Place our byte changes there and

 rewrite the sector back to the disk. Now reboot GEOS. What

 happens? No reset this time but the drive shuts off and the

 screen fills with garbage. The real meat must be in the drive

 code.

 5) Use the sector editor to restore T/S 1/4 back to its original

 state. Again load the $C000 monitor and "GEOS BOOT". Decrypt the

 code again as mentioned above. The drive code starts at $623F

 but we want to relocate to an address we can equate to the

 actual drive address. This code is written to $0300 in drive

 memory so lets move our code to $1300 (T 632F 642B 1300). The

 Memory-Execute command at $60CD jumps to $0375 in the drive so

 disassemble code at $1375. Remember to add or subtract $1000

 from the address references (i.e. JSR $0300 - the subroutine

 would be located at $1300) when appropriate.

 6) Study the code for a while just to get a feel for it. Remember

 from our scan of the disk that track 36 is suspicious. 36 in

 hexadecimal is $24. See any references to $24? That's right! At

 $143A, the accumulator is loaded with the value $24 then the

 subroutine at $13BB ($03BB) steps the head to track $24 (36).

 Then a counter of $8000 (32,768) is set up, and a comparison for

 specific byte values read from track 36 begins. If the counter

 times-out to zero or all values don't match, the code at $148A

 is executed. Otherwise it branches to $1485. We want it to

 branch to $1485 unconditionally. A great place would be at the

 first byte comparison from $1463 - $1466: if the byte's not

 equal, make it go to $1485 (A 1465 BNE $1485). Apply this change

 to the equivalent drive code at $63A4.

 K.J. REVEALED TRILOGY PAGE [96] (C)l99O K.J.P.B.

 Note your encrypted byte changes and use the sector editor to

 write them to you backup copy. It should be Track/Sector 1/20,

 byte positions $AE/AF (174/175). Also make sure you have

 corrected the first change we made. Now reboot the GEOS backup.

 "Booting GEOS..."... no reset... You hear the drive head swing

 out to 36 and back. Its loading! The screen clears, the Desktop

 appears, and ... where's the mouse pointer? The joystick's dead.

 We've been caught! But how?

 8) The most common method is through checksums. If any bytes in the

 code have been changed, a checksum routine will usually detect

 it. The protection scheme can then assume tampering and take

 appropriate action. We could hunt for the checksum code or we

 could cover our tracks. Let's try covering our tracks.

 9) We really only altered one byte in "GEOSBOOT" but we'll have to

 change a few more to pull this one off. Where could we place our

 code? A technique we use is to add it right to the end of the

 file. The last byte of "GEOSBOOT" is at $642B so we can start

 our code at $642C. But what's going to call our routine? Look

 for a jump instruction away from the $6000 area. At $621F, the

 code jumps to the $C000 area. Change that to jump to our code

 (JMP $642C).

 10)Now we have three bytes to correct: the drive code branch

 address at $63A5 and the JMP to our new code at $6220/6221. Our

 new code should be similar to the following:

 A 642C LDX #$E7 ; restore original drive code BNE address

 STX $63A5

 LDX #$03 ; restore original JMP address - lo-byte

 STX $6220

 LDX #$CO ; restore original JMP address - hi-byte

 STX $6221

 JMP $621F

 Re-encrypt the code and look at our new code at $642C. It, too,

 has been encrypted. Write down the encrypted bytes and the new

 jump address at $6220. We'll write these to the backup.

 11)After loading the sector editor, write our new, encrypted jump

 address to Track/Sector 1/20 - byte position 40 ($28). Then add

 our new, encrypted code to the last sector in the file - T/S

 1/7. Don't forget to change the last byte pointer at position 1

 to the last byte of the new code. Using the above example code,

 the new bytes would be start at position 56 ($38) and the last

 byte would be at position 73 ($49). Position 1 will changed to

 73 ($49).

 12)Now reboot GEOS. It should load clean as a whistle. Just

 K.J. REVEALED TRILOGY PAGE [97] (C)l99O K.J.P.B.

remember to watch your step when dealing with protection from

 Berkeley. They are notorious for their endless checksum

 routines.

 DESKPAK I : BERKELEY SOFTWORKS

 Dealing with Berkeley's protected applications presents a

 two-fold problem: 1) The installation code1 which stamps your GEOS

 serial number on the master and does a protection check and

 checksum routine. 2) The I%&%#$'&$ serial number verification that

 prevents you from taking your GEOS application to a friend's house

 and using it with his GEOS. Both, however, are relatively easy to

 break. This will be a general discussion of the first-generation of

 Berkeley applications, using Deskpak I as an example.

 The protection scheme on this first-generation is essentially

 the same. The code first checks to see if the disk has been

 installed. If it hasn't, it whips out to Track/Sector 35/0 and

 reads in the block. The block contains a direct I/O routine and

 some drive code that looks for non-standard data. If every thing

 checks out, it installs your internal GEOS serial number to the

 master (no write-protect tabs allowed). It never does the check

 again, allowing you to copy the application to work disks. From

 then on, it does nothing but the serial number check. This works

 fine in theory, but is rather inconvenient if you want to show it

 to somebody else and you've forgotten your copy of GEOS.

 The protection does checksum itself, however. To bypass this,

 we'll demonstrate a technique we use called the byte-swap. This

 entails switching bytes in the code among themselves to force the

 protection to pass.

 Get out your GEOS Programmer's Reference Guide and make a backup

 of an UNINSTALLED Deskpak I master. Load the "DESKPAK READ" file

 from the Utility Disk and and run it. The program reads

 Track/Sector 35/0 into 32768 ($8000) in memory. Load the $COOO

 monitor ("49152") from the utility disk and study the code at

 $8000. Look up the GEOS subroutine calls in the reference guide.

 Half of this code is the drive routine that is sent to the 1541.

 The other half suspends GEOS I/O and sends the drive routine to the

 1541.

 The protection check itself is at $803E. It reads in some bytes

 and compares them. If they all match, it falls through to $8061.

 Otherwise, it branches to $8064. In fact, its not unlike GEOS vl.2

 protection (see previous GEOS vl.2 discussion). We can break the

 installation protection right here. However, we must contend with a

 checksum routine located in the main code, so we must keep the

 K.J. REVEALED TRILOGY PAGE [98] (C)l99O K.J.P.B.

bytes intact. A simple way is the byte swap. The code contains many

 branch instructions. What if we swapped a BEQ (branch-if-equal) and

 a BNE (branch-if-not-equal) instruction at just the right place?

 Experimentation will reveal that swapping the branch opcodes at

 $803c and $804B will force the code to go to $8064.

 Write this change to Track/Sector 35/0 using Disk Doctor from

 the Utility Disk. Load "GEOS" and boot "Graphics Grabber" (the only

 protected application on the disk). The protection fails. Look at

 the code at $8061-$8065 again. There are two sets of LDA

 instructions there, each loading a different value. Why not try

 another byte swap? Switch the two bytes that are being loaded at

 $8061-$8065. Now it will be forced to load a different value. Make

 this change to sector 0 on track 35. You should now have both sets

 of byte swaps written to 35/0. Boot "Graphics Grabber" again. This

 time it installs successfully. But you still can't use it with a

 different GEOS, only the copy from which it was installed.

 The serial number check is really the toughest part of some of

 the applications. Writer's Workshop and GEOdex both try to disguise

 the call to GetserialNumber", an internal GEOS routine ($c196). One

 uses encryption and the other uses GEOS's ~callRoutine" which does

 an indirect JSR (Jump-To-Subroutine) to the serial number routine.

 An additional problem is that GEOS workspace starts at $0400 in

 memory, which the C64 normally uses as screen memory. Resetting the

 computer will lose all the code located from $0400-$0800. Yet

 another problem is that some of the applications are stored in VLIR

 (variable length indexed record) files, which are split into

 multiple parts and special modifications have to be made to the

 directory to load these files like normal programs. We'll save

 these for a future exercise.

 Deskpak I's serial number check is conveniently located at $2362

 on our version. To catch this code, reset the computer while the

 application is loading. Load the "49152" monitor and disassemble

 the code at $2362. You'll see this same routine in most of the

 Berkeley applications. It first checks to see if the serial number

 is zero. If it is, it executes the install routine that we disabled

 earlier (the GetBlock and checksum routine starts at $2448). If the

 serial number is there, it branches to $240D and checks the serial

 number in GEOS to see if it matches. If it doesn't, it displays a

 Dialogue Box asking you to reboot with the correct GEOS.

 The whole protection and serial number check can be disabled

 rather simply by placing a CLC (clear-carry-flag) and RTS

 (return-from-subroutine) instruction at the top of the code

 ($2362). On our version of Deskpak I, the location on the original

 is Track/Sector 12/18, byte position # 156 ($9C). You might have to

 calculate the position or do a manual search of the file to track

 down the offending code. Write byte values 24 ($18) and 96 ($60) to

 K.J. REVEALED TRILOGY PAGE [99] (C)l99O K.J.P.B.

the appropriate location in the file. You should have no trouble

 booting "Graphics Grabber" from any copy of GEOS now.

 A good Snapshot type utility is helpful for some of the latest

 applications (GEOfile etc...). They will inevitably place the

 protection in screen memory and the snapshotter can capture that

 code for your casual viewing.

 --

 DEEP SPACE : SIR TECH

 Procedure :

 Loading the original produces a rattle-free load, and an error

 scan shows no standard errors. A backup made with the C-64 Fast

 Copier produces a non working backup. A backup made with a nybbler

 produces the same non working backup. Before starting, make a fast

 copy using the C-64 Fast Copier and use the Disk Logger to log the

 files.

 Working with your backup:

 1) The disk log shows us that the boot file "DS" loads into memory

 from $0302 to $09EB. This means that it starts in the autoboot

 area and runs through screen memory and into BASIC RAM. Load the

 boot and you will see the screen react and the program will fail

 in the first few seconds. This means the protection is probably

 in the boot file.

 2) Turn off the computer and insert Hesmon. X to Basic and load the

 boot file < LOAD "DS",8,1 > . When the program stalls, hit

 < RUNSTOP/RESTORE > to activate the monitor. Interpret memory

 starting at $0801 < I 0801 > because this is the beginning of

 BASIC RAM. Scroll down through memory and notice the BASIC

 program there. The Boot starts at the autostart vectors for

 BASIC and continues on to place a BASIC boot in memory. This is

 a good way to hide it from the average person. Type < X > to

 return to BASIC and type < LIST > to see the boot. Inspection

 shows that this is the protection check as well as the loader.

 3) Lets go through the code line by line.:

 1- Lock up the keyboard and set number of trys to 0.

 2- Initialize the drive.

 3- Send Memory-Writes to the drive locations $06/$07 which

 represent the Track and Sector read into $0300 in the drive.

 K.J. REVEALED TRILOGY PAGE [100] (C)l99O K.J.P.B.

 The Memory-Writes place a 37/0 into those locations (Track

 37/Sector 0).

 4- Send Memory-Write to drive location $00 (Job Queue) $B0

 (dec 176) = Seek any Sector.

 5- Set up Memory Read loop of drive location $00.

 6- Get value at S00.

 7- Set a numerical value for E (M-R value). If trys=500 then

 test for protection pass.

 8- If E has not been read in as an error code ($01-$10) then try

 all over again.

 9- Initialize, close channels, and test E for $01; job completed

 successfully, and if so then branch to line 10 (pass

 protection). If not, goto line 10 and crash.

 10- Jump to $02A7 and crash (because no loader has been poked in.

 11- Poke in a loader and JUMP to it.

 4) Armed with this information, the way to break this code easily

 is to delete line 10. One way to do that is to put a REM right

 after the 10 which will nullify the whole line. The REM

 instruction is actually represented by one byte called a token.

 It is a 143 in decimal. We can easily install the byte with

 Disk Doctor.

 5) From the Utility Disk, load Disk Doctor < LOAD "DISK D*",8 > and

 < RUN >. At Track/Sector 18/1 Cursor to position 3 and < j >

 Jump to the first sector of the DS file. Use the < n > key to

 follow the file to Track/Sector 31/4. Cursor to position 232 and

 use the < @ > key to change the Poke byte to a REM with a 143.

 Hit < r and y > to rewrite the sector.

 You'll find that the backup works perfectly now and can probably

 be file copied.

 ===

 GRAPHICS INTEGRATOR II : INKWELL

 Procedure:

 Loading the original produces a rattle-free load, and an error

 scan shows no standard errors. A backup made with the C-64 Fast

 K.J. REVEALED TRILOGY PAGE [101] (C)l99O K.J.P.B.

Copier produces a non working backup. A backup made with a nybbler

 produces the same non working backup. Before starting, make a fast

 copy using the C-64 Fast Copier.

 Working with your backup:

 1) Before beginning the break, let's repair the directory so we can

 view our files. From the Utility Disk, load the Disk Dr. as

 < LOAD"DISK D*",8,1 > and RUN. When the title screen comes up,

 insert your backup and hit RETURN. The Track/Sector brought up

 will be 18/1 which is the first sector of directory entries. To

 repair the directory, you must fill the following positions (in

 decimal) with shifted spaces (decimal 160).

 pos 4-44

 pos 72-76

 pos 104-108

 pos 136-140

 pos 169-174

 pos 200-204

 pos 232-236

 When your changes have been made, hit for rewrite and

 for yes. Now hit for the next block (Sector 7) and make the

 appropriate changes to that Sector (pos 12). Again rewrite the

 track and hit to go to the next block (sector 5). Notice the

 first two bytes direct the load back to Track 18/Sector 1 which

 causes the endless directory. Using the <@> key, change position

 0 and 1 to 0 and 255 respectively. Again be sure to rewrite the

 Sector.

 Finally with the command, go back to Track 18/Sector 0.

 Repair the title and ID by using the text command and

 placing spaces at position 144-148 and at pos 162 give a new ID

 number such as GI and again rewrite the sector. Power down and

 check the directory. It should appear normal.

 2) With the directory repaired, you may use the Disk Logger utility

 from the Utility Disk to log all files on the backup.

 < LOAD"DISK LOGGER",8,1 > . Inspection of the log shows a file

 that resides in BASIC memory starting at $0801 which is the

 beginning of BASIC. Let's check it out. Power down, insert your

 Hesmon cartridge and power up again. to BASIC and load the

 ME file < LOAD"ME",8,1 > . List the file out. Lines 600-630

 represent the call for the protection check. Let's examine the

 call, line by line.

 600 Open channels, initialize, set the Track (T) to 34 and

 Sector (S) to 8.

 K.J. REVEALED TRILOGY PAGE [102] (C)l99O K.J.P.B.

 610 Open a channel to the drive.

 620 Send a Block Execute command to the drive. CHR$(66)=B

 CHR$(44)=-CHR$(69)=E. In other words read Track 34, Sector

 8 from the disk and send it to a buffer in the drive.

 Execute that code starting at the first byte.

 630 Close channels : RETURN to GOSUB that called the check in

 line 65.

 3) Let's examine the Block Execute code. From the utility disk,

 load the program called BLOCK READ. < LOAD"BLOCK READ",8,1 > .

 list the code and in line 10 set the TRack to 34 and the Sector

 to 8. Place the backup in the drive and type RUN. The drive will

 read the proper block and transfer the code to $C000 in the

 computer memory. When the READY prompt comes up, hit

 RUNSTOP/RESTORE to enter the monitor.

 4) Begin disassembly at $C000 < D C000 >. Examine the code from

 $C015-$C02A. The drive reads Track 35/Sector 0 through the job

 Queue. The Error message is read at position $00 and if equal

 to $02 (header block not found), the code falls through and

 places a value of $7F at $003B in the drive and returns to the

 BASIC program that called the B-E in the first place. If the

 check is not satisfied, a Branch is taken to $C038 which causes

 the head to go to track one and go in an endless loop.

 5) The break is now quite simple. If we place two NOPs at $C029

 and $C030, the code will not be able to Branch and must fall

 through even if the protection doesn't pass. The changes can be

 made with Disk Dr. Power down and remove your Hesmon cartridge.

 Power up and with the Utility Disk in the drive,

 < LOAD"DISK D*",8,1 > . Use the command to read in Track

 34/Sector 8 from the backup. At pos $29 (decimal 41) you'll

 find the BNE command. Using the <@> key, change position 41 and

 42 to 234 ($EA=NOP).

 6) This title is now broken and can be fast copied with any data

 copier. Because it still uses the B-E command, you will not be

 able to file copy. One way to possibly break the B-E code might

 be to store the $7F at $3B in the drive using a M-W

 (memory-Write) command. Replace the B-E in the Me file with a

 M-W (Line 620). We will leave this to you as an exercise for

 further practice.

 K.J. REVEALED TRILOGY PAGE [103] (C)l99O K.J.P.B.

 INTRODUCTION To K.J. REVELED III

 « Publisher's Notes »

 Welcome to Kracker Jax Revealed Vol III. We at Kracker Jax want

 to thank you for your purchase and let you know that we do

 appreciate your support of our products.

 First of all, we'll assume that you have read Kracker Jax

 Revealed Vols I & II (the previous sections in this manual) and

 that you've performed many of the procedures in those sections. The

 format of Vol III has changed substantially. Although we've

 retained the cookbook approach, we have been forced to drop the

 major types. Protection has progressed to the point of excellence

 (in some cases) and is often better than the programs that it

 protects! Most programs today are protected in very individual

 styles. In this edition of Kracker Jax Revealed, we try to hit the

 highlights and prepare you for your trek ahead.

 Please understand that we can't be responsible for the machine

 language training that must be done before you can thoroughly

 understand the procedures and principles set forth in this manual.

 You don't have to be a fluent MIL programmer, but you MUST have a

 cursory knowledge of MIL and a strong natural curiosity. Don't

 expect to discover (as some beginners do) a generic method of de-

 protection. It just doesn't exist. We can and will give you hints,

 tips, and technique8 that can be applied to other programs, even if

 they are a completely different protection type than discussed in

 this manual.

 Finally, many protection schemes are based on the fact that no

 standard or nybble copier on the market can duplicate the program

 data. This protection becomes even harder to back up. No longer are

 we dealing with a sector or track of special protection; EVERY byte

 on the disk is protected. These programs must be either broken from

 memory or have a special copier developed to duplicate that

 program's format. Both of these methods are far too complicated to

 discuss within this manual. As you become more and more proficient

 at the patch method, the memory break method will become obvious.

 Writing copiers is in the realm of DOS experts that have a complete

 knowledge of NIL. Leave the special copiers to them.

 Kracker Jax Revealed Vol III has many features worth mentioning.

 Berkeley fans will really enjoy Bob's new work on GEOS. He shows us

 exactly how to use Super Snapshot to obtain a working copy of GEOS

 that may be booted from ANY drive. Also, for those of you more

 inclined to know the internal workings of GEOS protection, Bob has

 K.J. REVEALED TRILOGY PAGE [104] (C)l99O K.J.P.B.

done a great job on GEOS v2.O. We know you'll love this one.

 After trying out the many break routines throughout this manual,

 you'll want to check out the Protection Scheme Bection. We show you

 how to create and use disk protection. Learning by doing is a great

 way to expand your knowledge.

 For those with the courage, we suggest the V-Max! Section. Be

 warned, a good knowledge of the 1541 is mandatory.

 Also, as promised, we have included the Hacker's Utility Kit on

 your work disk. We have done a slight re-format to allow those with

 PAL (European) systems to load this software. Because the PAL

 System is very different from the U.S. Commodore, we can't

 guarantee that all the features will work properly. Sorry.

 « Author's Notes »

 When I first started breaking copy protection routines, there

 was no such thing as "too much" information. I spent a fortune

 combing BBS's across the country looking for hints and tips. Every

 publication that even hinted at protection information eventually

 found its way to my door. I first became associated with Kracker

 Jax after they had released KJ REVEALED VOL I, which filled in

 several gaps in my copy-protection education and confirmed that I

 was on the right track in other areas. I gained enough confidence

 to submit a parameter to Kracker Jax that was eventually published.

 I was subsequently asked to contribute several pieces to REVEALED

 II, which I was glad to do.

 If some of the tutorials in Revealed III are over your head,

 don't be discouraged. There is no "easy" way to learn protection

 removal. It takes the patience of a saint and a willingness to

 spend long, backbreaking hours at the console, oblivious to the

 hole being burned in the back of your neck by your spouse's

 disgusted stare. Most of all, it takes a thirst for knowledge and a

 competitive nature that will not bend to the will of the

 PUZZLEMASTER.

 The software protection war is not a myth: there is plenty of

 evidence that protection programmers ARE paying attention to what

 we are doing and ARE taking steps to make it harder.

 Bob Mills

 Programmer

 K.J. REVEALED TRILOGY PAGE [105] (C)l99O K.J.P.B.

 < < < BERKELEY SOFTNORKS : GEOS 2.0 > > >

 Warning: Trying to understand this chapter may be hazardous to

 your mental health. If you haven't read "Inside Commodore DOS",

 "CSM's Program Protection Manual Vol. 2", and "The Official GEOS

 Programmer's Reference Guide" at least twice, cover-to-cover, then

 turn the page

 The copy protection routine in GEOS has been a thorn in the

 side of everyone who ever needed a working backup of their

 original. A backup copy of GEOS only boots and loads properly when

 all of the several layers of protection checks have been satisfied

 perfectly. We found this out the hard way with our first GEOS 1.3

 parameter. What appeared to be an ideal way around the protection

 check turned into a nightmare. Customers complained that file

 selection dialogue boxes acted strangely; that the dreaded "SYSTEM

 ERROR NEAR $XXXX" appeared at odd times; and that; sometimes, the

 GEOS System files would inexplicably disappear.

 That we had failed was obvious. What was not obvious was the

 subtle complexity of the protection scheme. It took almost a week

 of sleepless nights to come up with a satisfactory solution to the

 problem. If you're still game, let's analyze exactly what GEOS BOOT

 does and how it does it.

 Prepare a fast copy of your ORIGINAL GEOS 2.0. It should

 contain little or no modifications to the disk structure and

 directory, especially the System Boot Files "GEOS", "GEOS BOOT",

 and "KERNAL". Make sure you have a work disk ready so you can save

 code to it. You will also need a reset button and the "GMON" drive

 monitor on the Revealed III utility disk to conveniently follow the

 boot routine from its humble beginning to the bitter end. "GMON" is

 a modified "Kracker Mon" and is NOT relocatable. It was assembled

 to occupy C-64 memory from $2000 - $3FFF, which GEOS ignores until

 the inevitable entrance of "DESK TOP". It may be activated from

 BASIC with the command "SYS 8192".

 If you use the included Disk Logger, you will find that "GEOS"

 and "GEOS BOOT" (GB) load respectively from $0110 - $0206 and $6000

 - $64A9. Using "GMON", load and examine "GEOS" in memory. No funny

 stuff here. Its only purpose is loading and executing GB. You may

 safely ignore this file and directly load GB with "GMON".

 The next step is to browse through the program code. You'll

 find a lot of areas that don't disassemble properly because the

 code is encrypted. The decryption routine is actually fairly

 simple. It may be seen near the bottom of the GB file at $6483 in

 K.J. REVEALED TRILOGY PAGE [106] (C)l99O K.J.P.B.

memory. The program code from $6140 to $6440 is encrypted with the

 value $C9: we'll need this piece of info later. To view the

 program in an executable state, change "JMP $6140" at $64AO to

 "JMP $64AO" This creates an infinite loop from which we can safely

 press the reset button.

 Start the decryption process from GMON with the command "G 6000".

 The familiar "BOOTING GEOS ..." message appears on the screen,

 the drive whirs for a few seconds, then ... nothing. Press the

 reset button and re-activate GMON from BASIC (SYS 8192). Again

 browse through the program code. Things look a little less

 confusing now.

 It's not immediately obvious where the call to the decryption

 routine takes place. We do know that our infinite loop at $64AO

 did not happen until AFTER the disk drive was accessed. Lets start

 from the top:

 $6000: JMP to $60A8

 $60A8: C-64 KERNAL system and non-maskable interrupt vectors

 initialized. Sprites are turned off. Screen memory is

 cleared, color memory filled, and the text "BOOTING GEOS..."

 is written directly to screen memory.

 $60EB: Check if GEOS BOOT should load from disk or RAM

 Expansion Unit (REU).

 $612A: Prepare for loading the fast loader (turbo) and

 protection code to the drive. The JSR to $6081 at $613A

 should be examined closely - this is where the decryption

 routine is called after the drive is initialized. Notice

 that the values $64 and $82 are placed into the C-64 Stack

 area ($0100 - $01FF). When the RTS at $60A2 is executed,

 the microprocessor will pull these two values from the stack

 and add 1 to get the return address ($6482 + 1 = $6483).

 $6140: This is the entry point after the decryption is complete.

 Here, the turbo code is being transmitted to the drive in a

 convoluted way - appropriate because the drive code itself

 is scattered in pieces throughout the program. As if

 fragmenting wasn't enough (it eventually wasn't), the turbo

 code is also BACKWARD! Backward and in pieces, the turbo

 code is eventually reconstructed in the 1541 drive RAM and

 finally activated at $6192.

 $61A1: Begin receiving data from the drive. Three separate program

 segments are loaded using zero-page indirect addressing mode

 ($04/$05 contain the current address being loaded). The

 firstsegment is loaded into S9000. GEOS keeps its disk

 turbo code here, regardless of the drive type. Without an

 REU, GEOS programs must swap

 K.J. REVEALED TRILOGY PAGE [107] (C)l99O K.J.P.B.

the turbo code for different drive types (1571 or 1581) in

 and out of this reserved area as needed. Desk Top does this

 (rather poorly sometimes).

 $61B1: Get random value from the C-64 VIC raster interrupt and

 store it to $02FE. This becomes the seed value for the GEOS

 serial number generated when the original disk is first

 booted (installed).

 $61B7: Load second segment to $5000: This is the cold start routine

 to activate the GEOS KERNAL. If an REU is present, the code

 at $C000 is copied here (see $60EB above).

 $61C2: Load last segment from $BF00 to $FFF9. This is the actual

 GEOS RERNAL. The first protection check by the drive is

 executed prior to this. If the check fails, no KERNAL code

 is sent. The computer checks $05 (the load address high

 byte) for any change from its initial value ($BF). If it

 still equals $BF, the protection check failed and GEOS BOOT

 resets the computer (JMP $FCE2).

 $61D6: The protection passed and a second VIC raster value is

 stored to $02FF for serial number generation if this is a

 firsttime load. Any open drive channels are closed and GEOS

 BOOT jumps to $5000 (KERNAL cold start) indirectly through

 the jump address stored at $C003.

 Now that we have a better idea of the protection's strategy,

 let's take a peek inside the drive. Reload "GEOS BOOT" and again

 create the infinite loop at the bottom of the decryption routine.

 When the computer freezes up, press your reset button and

 reactivate "GMON". Using the "M" (monitor) command, look for "M-E"

 (Memory-Execute) text in memory between $6000 and $64A9. When you

 find it (at $61FB on our version), remember the execution address:

 $0457.

 To trap the drive code in a viewable state, we need to make

 the drive shut down without resetting. Drive memory is normally

 wiped out during a reset. We'll change the M-E address to a DOS

 routine that will exit gracefully and allow us into the drive.

 Fairly reliable is TURNOFF (turn off drive motor) at $F98F. Because

 the M-E command is encrypted, we'll add a short routine to change

 the drive address to the correct value. Reset the computer,

 activate "GMON" and reload "GEOS BOOT" (sigh) again.

 At $64A0, enter: A 64A0 JMP $64A9

 At $64A9, enter: A 64A9 LDA #$8F ;change M-E

 , 64AB STA $61FE ;address to

 , 64AE LDA #$F9 ; TURNOFF

 K.J. REVEALED TRILOGY PAGE [108] (C)l99O K.J.P.B.

 64B0 STA $61FF ; ($F98F)

 64B3 JMP $6140 ;continue...

 Start up the boot again (G 6000), but this time, as soon as you

 hear the drive motor turn on, UNPLUG THE SERIAL CABLE FROM THE BACK

 OF THE COMPUTER. DO NOT TURN OFF THE DRIVE! Reset the computer,

 activate "GMON", THEN reconnect the serial cable to you computer.

 Using "GNON's" drive monitor, enter drive memory and IMMEDIATELY

 transfer the drive code from $0300 to $07FF in drive memory to a

 safe area of memory in the computer. How about $8300 - $87FF ?

 After the transfer has completed, reset the drive and save the

 drive code from computer memory to your work disk. Now that it's

 safely stored, print a disassembly of the code.

 Look through it carefully before you read any further. Ready?

 Nervous? Do you have 'Inside Commodore DOS" open and waiting?

 Lets DO IT!

 $0457: Disable interrupts, save stack pointer, and signal

 computer that the data will be coming soon.

 $0466: JSR to MAIN LOOP of loader.

 $0483: Set up buffer pointer for data buffer at $0600.

 $048B: Read and send first segment (turbo code). First

 track/sector is $l3/$0D and is stored at

 $0528/$0529 for use by other subroutines.

 Let's stop here. Using a sector editor or "GMON" drivemon, look

 at the first sector of the GEOS KERNAL. This is a block of

 track/sector pointers (GEOS VLIR file). Our GEOS shows 3 file

 chains starting at $13/$0D (!!!), $14/$11, and $14/$0F. WRITE THESE

 DOWN! (Your GEOS may have slightly different values but the concept

 is the same).

 JSR $04CF: Main subroutine to read and transmit the data. Tracing

 it through reveals a fairly standard fast loader. I

 won't go into detail about these subroutines unless

 they're directly related to the protection scheme. If

 you want to understand how each of the DOS and Floppy

 Disk Controller routines work, READ THE REFERENCE

 GUIDES MENTIONED ABOVE AND TRY ALL OF THE EXAMPLES!

 The data transmission routine from $03FF - $0456 is

 VERY significant. Stay tuned ...

 $0490: Here's where the nastiness really starts. A value of

 #$59 is stored to $0413. Big deal,right? Look what

 effect it has on the transmission routine:

 K.J. REVEALED TRILOGY PAGE [109] (C)l99O K.J.P.B.

 LDA #$59 > $0413: 2C 2A 04 BIT $042A

 || > || |||

 || > || |||

 STA $0413 > $0413: 59 2A 04 EOR $042A,Y

 The innocuous BIT instruction has instantly been

 transformed into EOR - the favorite scrambling tool of

 copy protection programmers everywhere. Every sector

 transmitted from this point on will be EOR'd with the

 drive code before it's sent to the computer. Consider

 what happens if just ONE byte of the drive code from

 $042A - $0529 is altered: the main GEOS KERNAL,

 excluding work areas and disk drivers, is approximately

 16384 bytes. If 1 byte of every 254 is wrong, we have

 64 bytes with unknown values occupying our operating

 system, a system error for every occasion!

 $0495: The next few instructions should seem familiar if

 you've been reading closely. They start the load of the

 second segment - the GEOS cold start routine at $5000.

 Look again at the VLIR block of the GEOS KERNAL: the

 third set of track/sector pointers reads - you got it -

 $14/$0F, consistent with what we've learned so far.

 $049F: Something different is happening here. If you've

 done your homework, you'll recognize the 1541 SEARCH

 subroutine $F510. This searches the current track for

 the specified sector header GCR bytes, the first eight

 of them significant and the rest as filler preceding

 the sector data block. If SEARCH fails to find a sync

 mark and 1541's normal error handler instead of

 returning to the fast loader.

 $04A7: And here's the main attraction, ladies and

 gentlemen. Read two GCR bytes with JSR $04F3.

 $04C2: Congratulations! You've just entered the BYTE COUNT

 ZONE. The protection check is checking the tail gap of

 every header and data block on the current track ($14)

 for 2 precisely located bytes. The .X register contains

 the sector count ($13 = 19 dec). The protection check

 loops as follows: JSR $0502: This routine waits for

 either a GCR $55 or $67 in the current header/tail gap.

 If neither byte appears, the return address is pulled

 off the stack. The protection has failed and is

 getting ready to call it a day.

 $04B0: Count $100 (256) GCR bytes on the track.

 $04B5: Count $45 (69) GCR bytes on the track. We've just

 K.J. REVEALED TRILOGY PAGE [110] (C)l99O K.J.P.B.

 counted to the end of the data block.

 $O4BA: JSR $0502 (see above) to check this tail gap.

 $O4BD: Count $OA (10) bytes on the track. This is the next

 header block.

 $04C2: We're back to the top of the loop. JSR $0502 (see above)

 to check this header gap. Decrement the sector count. If

 zero, we're done1 otherwise branch back to $04B0.

 $04C8: We've passed the protection check. Read and send

 the third and last segment at track/sector $14/$ll

 (remember the KERNAL VLIR sector ?).

 The drive code has done it's job and exits. Now how do we

 disable the protection check without scrambling the data?.

 You might have noticed that the drive's BAM buffer from $0700-

 $07FF is totally unused by the drive code. If we copy the

 block of drive code that's being used as the decryption key to

 $0700 and change the BITIEOR address at $0413 to look there

 instead, we can freely alter the protection check. Change the LDY

 $lC00 at $0502 to read JMP $O4FD and the 2 bytes ($55 and $67)

 will never be checked.

 Getting inside the drive during the loading process presents a

 problem, however. Remember that the drive code is stored in pieces

 in GEOS BOOT. Alterations there would be tedious and

 mistake-prone.

 But if our code was already waiting inside the drive, all we have

 to do is change the M-E address that GEOS BOOT sends (the same one

 we changed in the first place) and we're in-like-Flint. When GEOS

 BOOT starts, the disk BAM (track/sector $12/$00) is sitting at

 $0700. There is empty space in the BAM from $07A0 - $O7FF: a great

 place for extra code.

 But how can we copy the drive into $0700 if we're there? We

 would destroy ourselves. The answer is to make our BAM code load

 our copy/alter routine into drive buffer $0600. We then jump to

 THAT code, which copies the drive code to $0700, alters the

 protection check, and jumps to $0457 (fast loader entry point).

 If this sounds complicated, it's because it IS. Use the provided

 GEOS 2.0 parameter on your backup copy and examine thE BAM code.

 It will clarify what we've been discussing.

 We're still not finished with GEOS BOOT! There is ANOTHER

 protection check that drove us crazy until we found it. The last

 sector of the KERNAL that's loaded remains in the drive at $0600

 K.J. REVEALED TRILOGY PAGE [lll] (C)l990 K.J.P.B.

when the drive code exits. The sector's last byte pointer is set at

 $3D. But PAST that code, at $4E is ANOThER check for the $55/$67

 byte pair. This is called from the turbo code (first load segment)

 during the KERNAL cold 8tart. Place an RTS ($60) at position $4E to

 kill this little terror.

And then there's the matter of the TROJAN HORSE routine in Desk

 Top that will delete the SYSTEN BOOT files from your disk if it

 detects any changes in GEOS BOOT. To date, we have found four

 versions of Desk Top containing this check, all slightly different

 and very hard to pinpoint if you don't have a sound working

 knowledge of the internal workings of GEOS. Again, use the provided

 Desk Top parameter to explore this further.

As a final exercise, use the included GCR editor tolook at the

 header and tail gap bytes we discussed above. They can be found at

 position $OA in ANY header block and position $145 in ANY data

 block on your ORIGINAL GEOS boot disk.

In closing, we hope you have a better understanding~of what kind

 of effort can go into finding and disabling a protection scheme as

 complex as this one. It's easy to complain about copy protection...

 but doing something about it is a whole new ball game.

 < < < HOW TO SNAPSHOT GEOS 1.3 & 2.0 > > >

If you've ever tried using Super Snapshot's (SSS) excellent

 archiving talents on GEOS, you know that any interruption of GEOS,

 even with a hardware device, will ultimately produce a total system

 freeze or crash. There are several minor reasons this occurs but

 only one major reason: GEOS uses custom drive "turbo" code to speed

 up disk accesses. It is almost always "talking" to the currently

 active drive via the serial port at $DDO0 while the drive is

 checking its end of the serial bus ($1800 in drive memory) for any

 command signals (load, save, etc...).

GEOS keeps track of the state of the drives through 4 status

 bytes (called TURBO FLAGS) located at $8492 - $8495 in computer

 memory. Each of these 4 bytes corresponds to GEOS drives A through

 D or DOS devices 8, 9, 10, and 11. If the status byte contains $00,

 the drive is either inactive or is not running the turbo code (i.e.

 available for normal DOS commands). A status of $80 indicates that

 the turbo code is present in the drive but not active. Finally, a

 status value of $c0 means that the turbo code is up and running.

When the SSS button is pressed, the entire state of the computer

 is preserved. But the drive(s) running the turbo code are still

 waiting for a command signal from GEOS. At this point, any attempt

 K.J. REVEALED TRILOGY PAGE [112] (C)l99O K.J.P.B.

to communicate with the drive through DOS is fruitless - unless

 the drive is turned off and on again. Now the drive can be accessed

 normally and the Snapshot process can be completed. However, when

 the Snapshotted GEOS is re-booted, it will continue no further

 BECAUSE THE TURBO FLAGS STILL SHOW THAT THE DRIVES ARE RUNNING THE

 TURBO CODE ! GEOS assumes that the turbo code is active and will

 try to signal the drives, GEOS-style. The drives will, of course,

 not respond properly (if at all) and the operating system, by now

 totally confused, heads for the remote island of Catatonia to sort

 it all out.

 Fortunately, GEOS Desk Top allows us to get our foot in the door

 through the RESET option located in the SPECIAL menu. This option

 clears the screen, re-initializes the drive(s), and opens the

 current disk(s). Perform steps 1 through 9 EXACTLY as described to

 properly Snapshot GEOS.

 1) Boot GEOS to the Desk Top. Your system should be configured

 to your liking (number and type of drives, etc..). If not,

 do it now.

 2) Format a disk to contain the Snapshotted GEOS files. This

 will become your new boot disk.

 3) Copy the following GEOS files to your new boot disk:

 a) "DESK TOP"

 b) "CONFIGURE"

 c) "Preferences" [optional].

 d) "Pad Color Pref" (GEOS 2.0) [optional].

 e) Your current input driver file (Ex: "COMM 1351")

 f) Your current printer driver file (Ex: "MPS-801")

 g) Any other desired files, as long as you leave at least 58

 kbytes (237 disk blocks) free.

 4) Place your new boot disk into the drive from which the

 Snapshotted GEOS will be booting.

 5) Open the SPECIAL menu and click RESET. You now have exactly

 1.6 seconds to press the SSS button (for stopwatch buffs)

 -OR- press it before the screen clears completely. It's a

 good idea to practice a few times (pretend to press the

 button) until you feel confident enough for the real thing.

 6) Confident, eh? Repeat step 5 but actually press the

 button.The SSS sub-system menu should appear. If it doesn't,

 Keep trying step 1 and steps 4 through 6, until step 6 is

 completed properly.

 7) Turn off all drives for at least 5 seconds. Turn them back on.

 K.J. REVEALED TRILOGY PAGE [113] (C)1990 K.J.P.B.

 8) Enter the 555 ML Monitor. Type the following exactly:

 :8492 00 00 00 00

 Now press RETURN. This resets the TURBO FLAGS to reflect the

 new status of the drives - no disk turbo; normal nos active.

 9) Exit the monitor (X RETURN) to return to the SSS

 sub-system menu and select the SNAPSHOT option. Save the

 program to your new boot disk. When the sub-system menu

 returns, select RESUME EXECUTION.

 When Desk Top reappears, there will be a slight delay as GEOS

 uploads the turbo code to the drives. The RESET sequence will then

 continue as if nothing happened. When the RESET is complete, use

 the Desk Top to place the first file that SSS saved (the boot

 file) to the top of the directory for easy loading.

 * * N~O T E * *

 The only limitation to the method in this article is the lack of

 automatic drive type detection and configuration that occurs when

 booting from the GEOS SYSTEM boot disk. If you use different

 combinations of drives for various applications, create a boot

 disk for each of these unique combinations. For example: if the new

 boot disk was created while using a 1571 as the boot drive, don't

 copy the Snapshotted GEOS file(s) to a 1541 or 1581 and expect it

 to boot properly from that drive. GEOS only has enough space in the

 operating system code to handle 1 drive type at a time. This is

 not the case if a Ram Expansion Unit (REU) is detected. Up to 3

 disk drivers are automatically stored in and accessed from the REU

 by the CONFIGURE utility and Desk Top. The CONFIGURE utility was

 added later to allow GEOS to support new drives as they appeared.

 Beginning with GEOS 2.0, it is the application's responsibility to

 move the appropriate disk driver code in and out of the reserved

 area.

 < < < EPYX : DEATH SWORD Vl/V2 > > >

 If you have studied the procedures set forth in the Rad Warrior

 section, you'll find Death Sword protection to be very similar. At

 this time, we have found two almost identical versions of Death

 Sword protection on the market. Both versions are identical to

 each other except where noted as V2.

 K.J. REVEALED TRILOGY PAGE [114] (C)1990 K.J.P.B.

 You will need the following:

 1) An original "Death Sword" (DS) diskette.

 2) A backup copy of both sides DS using any good nybbler.

 3) A disk log of the DS disk to get the load addresses.

 4) An error scan of the original DS disk.

 5) A reset button that will reset the screen.

 Examining the disk map shows that the disk appears to be

 completely normal. This is common to most Epyx releases. They have

 an impressive fast loader routine that requires a slight

 modification to the sector headers. A fast copier will ignore

 these eccentricities, but a nybbler can reproduce them well enough

 to fool the fast loader. obviously1 this isn't where the protection

 lies.

 Load the nybbled copy of DS and observe what happens. When the

 fancy "EPYX" screen appears, the disk drive stops and the computer

 takes a permanent time-out. This, then, is where the protection

 check occurs.

 The DS boot file resides from $02A7 - $0303. The program start

 address can be found in the BASIC warm start vector in $0302 -

 $0303. The entry point is $02C1. This routine does little more

 thanload the only other file in the directory "(C) 1987 EPYX" and

 then jumps to $0600. The file resides from $0409 to $0618: SCREEN

 MEMORY! This makes it a little tougher for us to examine. A

 software based monitor like "Kracker-Mon" has to use screen memory

 to display. Anything loaded there will be immediately destroyed.

 We must relocate the file as we load it.

 Load the $COOO monitor and relocate the file by entering:

 L"(C)*" ,08,1409

 The file will now reside at $1409. Begin disassembly at the entry

 point of $0600 (for consistency's sake, I'll refer to the actual

 address. Just add $1000 to any address within $0409 - $0618). You

 should be looking at a short routine that ends with a JMP to $67E9

 at $0614. Examine the other subroutine calls to $05F1 and $05F4.

 These are the initialization routines that start the drive code

 and fast loader. A logical place to stop the loading process is the

 JMP $67E9, but its location (screen memory) requires us to use the

 supplied File Tracer utility to patch this JKP on the nybbled

 backup disk so that it JMP's to itself (JMP $0614). Then we'll

 reset the computer and check the code at $67E9.

 K.J. REVEALED TRILOGY PAGE [115] (C)1990 K.J.P.B.

 After applying the patch to your backup, boot it. The program

 should freeze up. Press your reset button and load the $COOO

 monitor. Disassemble the code at $67E9. The subroutine call to

 $68CA (V2 $68E6) reveals several calls to the load routines in

 screen memory, followed by a comparison to a byte value at $68E6

 (V2 = $6902). If the byte doesn't match, the code branches to

 $68EF (V2 = $690B), where it executes an undocumented opeode ($02)

 that sends the computer into an infinite loop. What would happen

 if we just bypassed this code altogether? Again, we'll have to

 patch the backup disk.

 But where is this code? Try to find it with the Byte Pattern

 Searcher. You won't find it. Epyx' fast load routine requires the

 disk data to be written a special way that Commodore Dos doesn't

 understand. But we CAN patch the code in memory, after it's

 loaded.

 Use the drivemon (see Rad Warrior elsewhere in this manual) to

 load the last sector of the "(C) 1987 EPYX" file

 (T/S 17/4 or $l1/$04).

 Change the JMP $67E9 at position $13 (V2 $14) to read:

 LDA #$60 ;An "RTS"

 STA $68CA (V2 $68E6) ;is placed at top of

 JMP $67E9 ;of protection check

 ;and then JMP

 You also must alter the last-byte pointer at position 1 in the

 sector to reflect our added code (from $16 to $1A (V2 $lB)) so

 that it loads properly. Write the sector back to the nybbled

 backup and boot it. It worked! The protection check is bypassed.

 You may apply the same procedure to the other side of the disk.

 < < < EPYX : RAD WARRIOR > > >

 Epyx, like many other major software producers, uses many

 different protection schemes in their program releases. The

 complexity of the protection is apparently related to anticipated

 sales of the release. Hence, their "U.S. Gold" and "Maxx Out"

 (bargain division) series are easily nybbled, with only a few

 requiring a (usually) short parameter. "Rad Warrior" falls into

 this group - it appears that the protection on this title was

 designed to thwart only software based nybblers. The actually

 protection is easy to disable - once you find it.

 You will need the following:

 1) An original "Rad Warrior" (RW) diskette.

 2) A backup copy of RW using any good nybbler.

 K.J. REVEALED TRILOGY PAGE [116] (C)1990 K.J.P.B.

 3) A disk log of the RW disk to get the load addresses.

 4) An error-scan of the original RW disk.

 5) A reset button that will reset the screen.

 Examining the disk map shows that the disk appears to be

 completely normal. This is common to most Epyx releases. They have

 a VERY fast loader routine that requires a slight modification to

 the sector headers. A fast copier will ignore these eccentricities

 but a nybbler can reproduce them well enough to fool the fast

 loader. Obviously, this is not where the protection lies.

 Load the nybbled copy of RW and observe what happens. When the

 "Maxx-OUT" screen appears, the disk drive hangs. If you listen

 closely to the drive when this happens~ you will hear the drive

 head move a long way across the disk before it goes into a coma.

 This, then, is where the protection check occurs.

 The RW boot file resides from $02A7 - $0303. The program start

 address can be found in the BASIC warm start vector at $0302 -

 $0303. The entry point is $02C1. This routine does little more

 than load the only other file in the directory ("(C) 1987 EPYX")

 and then jumps to $0600. The file resides from $0409 to $0626:

 SCREEN MEMORY ! This makes it a little tougher for us to examine. A

 software based monitor like flKracker~MonN has to use screen

 memory to display. Anything loaded there will be immediately

 destroyed. We must relocate the file as we load it.

 Load the $C000 monitor and relocate the file by entering:

 L"(C)*",08,1409

 The file will now reside at $1409. Begin disassembly at the

 entry point of $0600 (for consistency's sake, I'll refer to the

 actual address. Just add $1000 to any address within $0409 -

 $0626). You should be looking at a short routine that ends with a

 JMP to $67E9 at $061E. Examine the other subroutine calls to $05F1

 and $05F4. These are the initialization routines that start the

 drive code and fast loader. A logical place to stop the loading

 process is the JMP $67E9, but its location (screen memory)

 requires us to use the supplied File Tracer utility to patch this

 JMP on the nybbled backup disk so that it JMP's to itself

 (JMP $061E). Then we'll reset the computer and check the code at

 $67E9.

 After applying the above patch to your backup, boot it. The

 program should lock up. Press your reset button and load the $COOO

 monitor. Disassemble the code at $67E9. The subroutine call to

 K.J. REVEALED TRILOGY PAGE [117] (C)1990 K.J.P.B.

 $6909 reveals several calls to the load routines in screen memory,

 followed by a comparison to a byte value at $6925. If the byte

 doesn't match, the code branches to $692E, where it executes an

 undocumented opeode ($02) that sends the computer into an infinite

 loop. What would happen if we just bypassed this code altogether?

 Againg we'll have to patch the backup disk.

 But where is this code? Try to find it with the Byte Pattern

 Searcher. No Go, Joe! Epyx' fast load routine requires the disk

 data to be written a special way that Commodore DOS doesn't

 understand. But we CAN patch the code after it's loaded into the

 computer. Use the drivemon to load the last sector of the "(C)

 1987 EPYX" file (18/5 or $12/$05). With the Kracker-Mon in drive

 mode, initialize the drive and place a $12 in location $06 and a

 $05 in location $07. By placing an $80 in location $00 and pressing

 RETURN, you can read the sector into the $0300 buffer in the

 drive.

 Change the JMP $67E9 at position $031D to read:

 A9 60 LDA #$60 ;An "RTS"

 8D 09 69 STA $6909 ;is placed at top of

 4C E9 67 JMP $67E9 ;of protection check

 ;and then JMP

 You must also alter the last-byte pointer at position $0301 in

 the sector to reflect our added code (from $031F to $0324) so that

 it loads properly. Write the sector back (place a $90 in position

 $00 and press RETURN) to the nybbled backup and boot it. It

 worked!

 The protection check is bypassed.

 < < < EPYX : SPIDERBOT > > >

 Epyx, like many other major companies, uses many different

 protection schemes in their software releases. The complexity of

 the protection is usually directly related to anticipated sales of

 the release. Hence, their "U.S. Gold" and "Maxx Out" (bargain

 division) series are easily nybbled, with only a few requiring a

 (usually) short parameter. "Spiderbot" is one of these: it appears

 that the protection on this title was designed to thwart only

 software-based nybblers. The actual protection is easy to disable

 -

 once you find it.

 You will need the following:

 1) An original "Spiderbot" (SB) diskette.

 2) A backup copy of SB using any good nybbler.

 3) A disk log of the SB disk to get the load addresses.

 K.J. REVEALED TRILOGY PAGE [118] (C)1990 K.J.P.B.

 4) An error scan of the original SB disk.

 5) A reset button that will reset the screen.

 Examining the disk map shows that the disk appears to be

 completely normal. This is common to many Epyx releases: they have

 an impressive fast loader routine that requires a slight

 modification to the sector headers. A fast copier will ignore

 these eccentricities but a nybbler can reproduce them well enough to

 fool the fast loader. Obviously, this is not where the protection

 lies.

 Load the nybbled copy of SB and observe what happens: when the

 "Maxx-OUT" screen appears, the disk drive hangs. If you listen

 closely to the drive when this happens, you'll hear the drive head

 move a long way across the disk before it gets spindizzy. This,

 then, is where the protection check occurs.

 Load the $COOO monitor and the SB boot file1 which resides from

 $02A7 - $0303. The program start address can be found in the BASIC

 warm start vector at $0302 - $0303. The entry point is $02C1. This

 routine does little more than load the only other file in the

 directory "(C) 1987 EPYX" and then jumps to $7F06. This file

 resides from $7D09 to $7F73. Nost of this routine is the fast

 loader initialization code and drive-to-computer transfer

 routines.

 At $7D2C, you can see the text for the Block-Execute (B-E) command

 that starts up the drive code on track/sector (TIS) 18/6

 ($12/$06).

 The drive code is interesting to study (see "L. A. Crackdown"

 elsewhere in this manual for all the gory details) but, if there's

 an easier way, why bother?

 Begin disassembly at the entry point of $7F06. You should be

 looking at a short routine that ends with a JMP to $67E9 at $7F24.

 Examine the other subroutine calls to $7EFl and $7EF4. These are

 the initialization routines referred to above. A logical place to

 stop the loading process is the JMP $67E9. Change this instruction

 so that it JMP's to itself (JMP $7F24). Execute the code at $7F06

 (G 7F06).The program should freeze up. Press your reset button and

 load the $COOO monitor.

 Disassemble the code at $67E9. The subroutine call to $6909

 reveals several calls to the load routines we saw earlier,

 followed by a comparison to a byte value at $6925. If the byte

 doesn't match, the code branches to $692E, where it

 executes an undocumented opcode ($02) that sends the computer into

 an infinite loop. What would happen if we just bypassed this code

 altogether?

 Again, we'll have to patch the backup disk.

 But where is this code? Try to find it with the Byte Pattern

 Searcher. Good luck! Epyx' fast load routine requires the disk

 data

 K.J. REVEALED TRILOGY PAGE (119] (C)l990 K.J.P.B.

 to be written a special way that Commodore DOS doesn't understand.

 But we CAN patch the code after it's loaded. The best place is at

 the end of "(C) 1987 EPYX" file, which ends at $7F73. Use the

 drivemon to load the last sector of the "(C) 1987 EPYX" file (T/S

 18/5 or $12/$05). Change the JMP $67E9 at position $23 to read:

 JMP $7F73 ($4C $73 $7F). See the Rad Warrior section elsewhere in

 this manual for details on the use of the drivemon for this

 purpose.

 Then add the following at position $72:

 LDA #$60 ; An "RTS"

 STA $6909 ;is placed at top of

 JMP $67E9 ;of protection check

 ;and then JMP

 You also must alter the last-byte pointer at position 1 in the

 sector to reflect our added code (from $72 to $7A) so that it

 loads properly. Write the sector back to the nybbled backup and

 boot it.

 It worked! The protection check is bypassed.

 < < < RAINBIRD : TRACKER > > >

 Examination and analysis of the protection code in "Tracker"

 (TK) is a frustrating process: there are many, MANY code transfer

 and decryption routines. It is very easy to get lost and

 eventually one gets tired of tracing this nonsense. There must be

 an easier way.

 There is. But first, make a FAST COPY of your original TK and

 then boot it several times in a row so you are familiar with the

 sequence of events that occur during the load. It's especially

 important to listen carefully to the drive while the program is

 loading so you get the "feel" or sense of rhythm of the loading

 process. Timing~is critical to discovering the protection check.

 Let's examine the loading process. The auto-boot routine blanks

 the screen, there is some disk activity1 then nothing for about 5

 seconds. The title screen appears and the load continues. After

 about 45 seconds the screen again blanks and the drive shuts off.

 Thirty seconds later the drive activates and you can hear the

 drive head swing a long distance across the disk and back again. If

 you are loading from the original disk, the first game screen will

 appear. Otherwise, a backup copy will produce garbage. So we can,

 for now, assume that the protection check occurred sometime during

 that long head swing.

 The next step is to find the protection code. Repeat the loading

 K.J. REVEALED TRILOGY PAGE [120] (C)1990 K.J.P.B.

process and wait for the long head swing we discussed above. When

 it starts to move back, hit your reset button. Load the $8000

 monitor and start searching for drive command text (B-E, M-W, M-E,

 etc...). Often, these drive command strings are stored in memory

 in reverse, so keep trying. You should find a reversed 'M-W' and

 'M-E' stored respectively at $09A6 and $O9AB. These commands write

 to and execute code at $0300 in the drive. Disassemble the code at

 $0900. Careful study will reveal what the drive is being told to

 do. First, the drive routine at $9OAE is sent to $0300 in the drive

 by a Memory-Write. Then, the routine is Memory-Executed after

 sending 3 additional bytes: $80, $28, and $OE. The drive routine

 stores these 3 bytes into job queue $01, producing a read ($80) of

 track 40 ($28) Isector 14 ($OE) into drive memory $0400. The

 computer waits for this read to complete then stores the sector of

 data at $9600 - $96FF, not caring if the read was successful or

 not. It assumes all the needed data is in place and starts up the

 game.

 Use the drive monitor and the original TK disk to look at this

 sector. Initialize the disk and place $28 and $OE into job queue

 $08 and $09. Then place $80 into $01. When the drive shuts off,

 check $01 for a successful read: if it contains a $01 then the job

 completed successfully (a backup should produce an error code

 ($02-$0A). Disassemble the data at $0400. This is the code the

 protection is trying to load at $9600 in the computer. A bad read

 attempt will not produce the correct data, therefore whatever is

 loaded into $9600 will be executed, whether its valid code or not.

 This results in a system crash.

 To produce a copyable backup we must relocate this sector to a

 normal DOS track. We prefer to use directory sectors when possible.

 Track/sector 18/6 ($12/06) is available so use the job queue to

 write our data to it. Insert your backup copy, initialize the

 drive and place a $12 into $08, $06 into $09 and $90 into $01. Our

 sector is now easily accessible - to us. The protection routine

 will still look for it on track 40. We must find a way to re-direct

 the sector read to our new location.

 There might be a simpler way, however. The nature of the 1541

 DOS is that a sector header error (which will occur with a backup

 copy of SG) will NOT corrupt the current contents of the drive

 buffer. That is, the data residing in the buffer will still be

 intact after a header error. If we can read our sector at the

 appropriate time, the protection check will not destroy the data,

 assuming it doesn't find a valid header in track 40. One way is to

 "wedge" ourselves into the drive code.

 One of the first things the auto-boot routine does is to execute

 the custom loader routine in the drive. This code reads in a sector

 of data and transmits it to the computer. What if we modified the

 routine to read our sector at $12/$06 AFTER it has

 K.J. REVEALED TRILOGY PAGE [121] (C)1990 K.J.P.B.

 completed its other duties? This would leave the data in $0400 as

 described above and the protection check would be satisfied.

 Reboot TX and allow it to load until the drive motor turns off.

 Press the reset button and load in the $8000 monitor. Examine the

 auto-boot code at $0l0E. This routine outputs a block-execute

 command (backwards at $0191 - 'B-E 2 0 18 02') that starts up drive

 code located on T/S 18/2 ($12/$02).

 Insert your backup copy of TK, initialize the drive and use the

 drivemon to load this sector into drive buffer $0300 using the job

 queue. Disassemble the code in the drive at $0300. This code, when

 executed, loads T/S $12/$12 (18/18) into drive buffer $0600 and

 decrypts it. Control is then passed back to the computer, where a

 memory-execute (M-E) command of $0693 is sent to the drive. This

 initializes the drive side of the loader. To view the decrypted

 code at $0600, insert your backup copy of TK and do the

 following:

 1) Use the job queue to read T/S $12/$12 into drive memory $0600

 (T/S $12/$02 should already be present at $0300).

 2) Assemble the following at $0400:

 A 0400 JSR $0314

 0403 JMP $F969

 3) Execute our routine at $0400 by placing the value $12 into

 drive memory $08 and $09, then place the value $EO (job queue

 execute command) into $01.

 After a short period of drive activity, you may disassemble the

 decrypted code at $0600. The entry point of the loader is $0693,

 where some setup is done. Then a loop is executed to load and

 transmit each sector. After the load is completed, the code

 exits by JMP'ing to $D048, which re-initializes the drive. This

 is the ideal place for us to "wedge" ourselves into the loader.

 We can execute a job queue read of our sector at $12/$06 THEN

 jump to $D048. The drive code from $06E0 - $O6FF is filled with

 zeroes and is available for our use. Assemble the following code

 at $06E0:

 A 06E0 LDA #$12

 06E2 STA $08

 06E4 LDA #$06

 06E6 STA $09

 06E8 LDA #$80

 O6EA STA $01

 O6EC LDA $01

 O6EE BMI $O6EC

 06F0 JMP $D048

 And the following at $06C4:

 K.J. REVEALED TRILOGY PAGE [122] (C)l990 K.J.P.B.

 A 06C4 JMP $06E0

 This "patch" will load our sector into drive buffer $0400 and

 exit the same way as the original code.

 Because the loader is encrypted we must also re-encrypt the code

 containing our patch. To do this, re-execute step #3 above.

 Rewrite the re-encrypted code at $0600 back to T/S $12/$12 by

 placing the value $90 into drive memory $03. When the drive LED

 turns off, reset the computer and try out your newly broken

 backup.

 < < < RAINBIRD: STARGLIDER > > >

 Examination and analysis of the protection code in "Starglider"

 (SG) is a frustrating process: there are many, MANY code transfer

 and decryption routines. It is very easy to get lost and

 eventually one gets tired of tracing this nonsense. There must be

 an easier way.

 There is. But first, make a FAST COPY of your original SG and

 then boot it several times in a row so that you're familiar with

 the sequence of events that occur during the load. It's especially

 important to listen carefully to the drive while the program is

 loading so that you get the "feel" or sense of rhythm of the

 loading process. Timing is critical to discovering the protection

 check.

 Let's examine the loading process. The auto-boot routine blanks

 the screen, there is some disk activity, then nothing for about 5

 seconds. The title screen appears and. the load continues. After

 about 45 seconds the screen again blanks and the drive shuts off. A

 few seconds later, the drive activates and you can hear the drive

 head swing a long distance across the disk and back again. If you

 are loading from the original disk, the first game screen will

 appear. Otherwise, a backup copy will produce garbage. So for now,

 we can assume that the protection check occurred sometime during

 that long head swing.

 The next step is to find the protection code. Repeat the loading

 process and wait for the long head swing we discussed above. When

 it starts to move back, hit your reset button. Load the $1000

 monitor and start searching for drive command text (B-E, M-W, M-E,

 etc...). Often, these drive command strings are stored in memory

 in reverse, so keep trying. You should find a reversed 'M-W' and

 'M-E' stored respectively at $90A6 and $9OAB. These commands write

 to and execute code at $0300 in the drive. Disassemble the code at

 $9000. Careful study will reveal what the drive is being told to

 do.

 K.J. REVEALED TRILOGY PAGE [123] (C)l990 K.J.P.B.

 First, the drive routine at $9OAE is sent to $0300 in the drive by

 a Memory-Write. Then, the routine is Memory-Executed after sending

 3 additional bytes: $80, $28, and $OE. The drive routine stores

 these 3 bytes into job queue $01, producing a read ($80) of track

 40 ($28)/sector 14 ($OE) into drive memory $0400. The computer

 waits for this read to be completed6 then stores the sector of

 data at $4200 - $42FF, not caring if the read was successful or

 not. It assumes all the needed data is in place and starts up the

 game.

 Use the drive monitor and the original SG disk to look at this

 sector. Initialize the disk and place $28 and $0E into job queue

 $08 and $09. Then place $80 into $01. When the drive shuts off,

 check $01 for a successful read: if it contains a $01 then the job

 completed successfully (a backup should produce an error code

 ($02 - $OA). Disassemble the data at $0400. This is the code the

 protection is trying to load at $4200 in the computer. A bad read

 attempt will not produce the correct data, therefore whatever is

 loaded into $4200 will be executed, whether it's valid code or

 not.

 This results in a system crash.

 To produce a copyable backup, we must relocate this sector to a

 normal DOS track. We prefer to use directory sectors when

 possible.

 Track/sector 18/6 ($12/06) is available, so use the job queue to

 write our data to it. Insert your backup copy, initialize the

 drive, and place $12 into $08, $06 into $09 and $90 into $01. Our

 sector is now easily accessible - to us. The protection routine

 will still look for it on track 40. We must find a way to

 re-direct the sector read to our new location.

 There might be a simpler way, however. The nature of the 1541

 DOS is that a sector header error (which will occur with a backup

 copy of SG) will NOT corrupt the current contents of the drive

 buffer. That is, the data residing in the buffer will still be

 intact after a header error. If we can read our sector at the

 appropriate time, the protection check will not destroy the data,

 assuming it doesn't find a valid header in track 40. One way is to

 "wedge" ourselves into the drive code.

 One of the first things the auto-boot routine does is to

 execute the custom loader routine in the drive. This code reads in

 a sector of data and transmits it to the computer. What if we

 modified the routine to read our sector at $12/$06 AFTER it has

 completed its other duties? This would leave the data in $0400 as

 described above and the protection check would be satisfied.

 Reboot SG and allow it to load until the drive motor turns off.

 Press the reset button and load in the $1000 monitor. Examine the

 auto-boot code at $OlOE. This routine outputs a block-execute

 command (backwards at $0191 - 'B-E 2 0 18 02') that starts up drive

 code located on T/S 18/2 ($12/02).

 K.J. REVEALED TRILOGY PAGE [124] (C)l990 K.J.P.B.

 Insert your backup copy of SG, initialize the drive, and use

 the drivemon to load this sector into drive buffer $0300 using the

 job queue. Disassemble the code in the drive at $0300. This code,

 when executed, loads T/S $12/12 (18/18) into drive buffer $0600 and

 decrypts it. Control is then passed back to the computer, where a

 memory-execute (M-E) command of $0693 is sent to the drive. This

 initialize the drive side of the loader. To view the decrypted code

 at $600, insert your backup copy of SG and do the following:

 1) Use the job queue to read T/S $12/$12 into drive memory $0600

 (T/S $12/$02 should already be present at $0300).

 2) Assemble the following at $0400:

 A 0400 JSR $0314

 0403 JMP $F969

 3) Execute our routine at $0400 by placing the value $12 into

 drive memory $08 and $09, then place the value $EO (job queue

 execute command) into $01.

 After a short period of drive activity, you may disassemble the

 decrypted code at $0600. The entry point of the loader is $0693,

 where some setup is done. Then, a loop is executed to load and

 transmit each sector. After the load is completed, the code exits

 by JMP'ing to $D048, which re-initialize the drive. This is the

 ideal place for us to "wedge" ourselves into the loader. We can

 execute a job queue read of our sector at $12/$06, THEN jump to

 $D048. The drive code from $06E0 - $O6FF is filled with zeroes and

 is available for our use. Assemble the following code at $06E0:

 A 06E0 LDA #$12

 06E2 STA $08

 06E4 LDA #$06

 06E6 STA $09

 06E8 LDA 1$80

 O6EA STA $01

 O6EC LDA $01

 O6EE BMI $O6EC

 06F0 JMP $D048

 And the following at $06C4:

 A 06C4 JMP $06E0

 This "patch" will load our sector into drive buffer $0400 and

 exit the same way as the original code.

 Because the loader is encrypted, we must also re-encrypt the

 code containing our patch. To do this, re-execute step #3 above.

 K.J. REVEALED TRILOGY PAGE [125] (C)l990 K.J.P.B.

 Rewrite the re-encrypted code at $0600 back to T/S $12/$12 by

 placing the value $90 into drive memory $03. When the drive LED

 turns off, reset the computer and try out your newly broken backup.

 < < < NicroLeague : WF wrestling > > >

 "WWF Wrestling" uses a protection scheme that takes its sweet

 time before making the protection check, which leads you on until

 you're convinced that the backup you made is sound. Then,

 SURPRISE!, it fails. Fortunately, there are two ways to create a

 working backup of this piece. You can disable the protection check

 or you can use the included GCR EDITOR to reproduce the physical

 disk protection. Let's explore the protection check first.

 Use any fast data copier to make a copy of your ORIGINAL WWF.

 Boot it and let it (oh so slowly) make its way towards the

 protection check, which occurs during the disk access preceding the

 actual beginning of the wrestling match. Reset the computer and

 load the $1000 monitor. Search memory for disk commands such as

 "M-E, B-E, Ul, etc...". You should find a "Ul" (read sector) and

 "B-E" (Block-Execute) command referencing track/sectors $12/$03

 and $12/$04 (18/3 & 4).

 Use the drivemon to load and disassemble these two sectors in

 drive buffers $0500 and $0600, respectively. You are now looking at

 the (fast?) loader drive code. If you're familiar with a normal

 read of GCR data, you'll notice something funny about the read

 routine in T/S $12/$04 at drive memory $0695. This code swings out

 to track 35, waits for a data block, and counts $144 bytes to the

 end of the data block, placing us in the tail gap (this is an

 effective protection technique because software-based nybblers

 will seldom copy tail-gap bytes).

 Then the scheme looks for a GCR byte equal to the value of $73.

 If it's not found, the Y register is incremented and loops back

 to try again until Y is equal to $OA (10). If the $73 byte is

 found or .Y equals $OA, the current value of .Y is stored to $0300

 in drive memory. The protection scheme is using this odd GCR byte

 ($73) to set a different byte to a certain value. We can break

 this protection check if we know the proper value of the Y

 register.

 Load the included GCR editor and read track 35 of your ORIGINAL

 WWF diskette. Read in each data block and look for a $73 byte

 starting from position $144 on the GCR (left) side of the display.

 You should find the $73 byte on sector 0 at position $146. $146

 minus $144 equals 2, giving us the value of the Y register. You

 can satisfy the protection check right here by reading this same

 K.J. REVEALED TRILOGY PAGE [126] (C)l990 K.J.P.B.

 sector on your backup copy, editing the data block so that it

 contains the $73 byte at position $146, and then writing the

 sector back to the backup copy. This duplicates the physical disk

 protection on the backup.

 If you want to completely disable the protection check, reload

 drivemon and read track/sector $12/$04 (18/04) into drive buffer

 $0600. Enter the following:

 A O6DF CPY #$02 ;this was "CPY #$OA"

 06E1 BEQ $06E6 ;this was "BNE $06A2"

 This "patch" will let the code execute normally but exit at the

 proper time with the correct value in .Y (2). Write the sector to

 your backup copy and you'll have a completely unprotected backup!

 Note: This same patch will have to be applied to each WWF

 "Match" diskette because the drive code in track/sectors $12/$03

 and $12/$04 is present on each of these releases - including SIDE

 2 of the "Game" diskette.

 < < < SOFTWARE TOOLWORKS : MAVIS BEACON > > >

 "Mavis Beacon Teaches Typing" (MBTT) is another in a class of

 protection schemes that depends upon a sector of data located on a

 non-standard track. The mechanism is simple: critical data is

 placed on a track that is not used by standard DOS (36 - 40). A

 routine is called to read in the sector and transmit the data to

 the computer. Without this data the program will either crash or

 function improperly - sometimes in very subtle ways.

 Before proceeding, use any good nybbler to copy side A, tracks 1

 through 36 of an original copy of MBTT. Then use the provided File

 Logger to determine the start and end addresses of the files on

 MBTT Side A and error scan it to get an error map of the original.

 Try to boot your backup copy. It will fail, due to some subtle,

 deliberate alterations to track 36.

 The error map shows us that valid sectors ARE present on track

 36. The next step is to find the code that reads that track. Lets

 look at the auto-boot file. Load the $2000 monitor then insert your

 backup copy of MBTT and load "MAVIS". The file resides from $032C

 to $0400. The first 2 bytes are the KERNAL "close all files" vector

 (CLALL), which now contain $34 and $03. This is the entry point of

 the auto-booter ($0334). Analysis of this code at $0334 reveals

 that a series of Block-Reads are made of track 35 (the "Ul" command

 text is located at $03D6) then a JMP to $OFOO at $03C5 continues

 the loading process.

 K.J. REVEALED TRILOGY PAGE [127] (C)l990 K.J.P.B.

 Change the code at $03C5 to JMP $2000 and execute the code at

 $0334 (G 0334). The screen will turn black, the disk drive will

 activate, and after a short time, control will return to the

 monitor. Disassemble the code at $OFOO. The routine from $OFOO -

 $0F22 copies the freshly-loaded code from $0C3C - $123B to

 $033C - $093B, then JMP's to $0623. This makes viewing the code in

 its proper location more difficult. By locating and executing the

 protection code in screen memory ($0400- $07F7), MBTT protects

 itself from a monitor like the one we are using. In addition, a

 normal reset of the computer will destroy ALL of this code. We can

 relocate it ourselves to a more convenient area ($733C) by using

 the monitor's (T)ransfer command:

 T OC3C 123B 733C

 When disassembling this relocated code, remember to add $7000 to

 all address references in the program and the following text.

 The entry point here is at $0623 ($7623 - remember: add

 $7000).The routine at $0633 copies the drive fast loader code to

 $5000 - $52FF, then calls the subroutine at $0342 to send it to the

 drive, execute it, and change the KERNAL LOAD vector to point to

 the fast loader. The next step at $064F is the key to the

 protection scheme: what appears to be a normal load routine is

 actually reading the protected sector into $0C00. The KERNAL SETNAM

 call at $0654 is pointing to a rather odd file name consisting of

 4 hex bytes at $0690 with the values $01 $24 $10 $01. Hex 24 ($24)

 36 decimal and $10 16. Track/sector (T/S) 36/16 is the sector

 containing the protected data! The data is then decrypted and moved

 to $C002, where it is executed to continue the loading process.

 The easiest way past a protection scheme like this is to capture

 the data ourselves, write it to a safe place on our backup copy,

 and change the protection code to look at our new location. This

 will be especially easy because the code is not encrypted. To do

 this, enter the drivemon, insert an ORIGINAL NBTT, and initialize

 the drive. Use the drive's job queue to read in T/S $24/$l0 (our

 protected sector) and write it to your backup copy. An unused

 directory sector is usually a good bet, so we'll use T/S $12/$12

 (18/18).

 The last step is to change the reference to the original

 protected sector to our newly relocated sector. Recall that the

 code we've been analyzing was loaded from track 35. Use the

 provided Byte Pattern Scanner to search for the 4 hex bytes ($01,

 $24, $10, $01) that we discussed earlier. Enter 35 for the starting

 AND ending tracks. The scanner should report the bytes' location on

 T/S 35/14 ($23/$OE) at position $54 (84). Use any sector editor or

 the drivemon to change the 2 bytes at position $55 on T/S 35/14

 ($23/$OE) from $24/$l0 to $12/$12 and rewrite them to your backup

 K.J. REVEALED TRILOGY PAGE [128] (C)l990 K.J.P.B.

 copy. Now the protection scheme will look for our relocated data on

 track/sector 18/18 ($12/$12), load it in, and continue on its merry

 way. After you copy sides B through D of MBTT using any nybbler

 (tracks 1 through 35) you'll have a fully functional, unprotected

 backup of your valued typing tutor.

 < < < CAPCON : 1942 V2 & GHOSTS & GOBLINS > > >

 It was quite a surprise when CAPCOM released these titles using

 a protection scheme other than RapidLok. This scheme is as

 different from RapidLok as it is easy to trace and defeat. Please

 note that both programs are identical in their protection check

 routines except as noted.

 You will need the following:

 1) An original "1942" or "Ghosts & Goblins" diskette.

 2) A backup copy of both sides of 1942 or Ghosts & Goblins using

 our "C-64 Fast Copier".

 3) A disk log of the 1942 or Ghosts & Goblins disk to get the

 load addresses.

 One thing is obvious when you boot the copy of these programs:

 they check protection immediately! Load the $8000 Kracker-Mon then

 the boot file "1942 or GHOSTS & GOBLINS". They load from $O2BB-

 $0305. The BASIC cold/warm start vectors at $0300/$0302 show the

 entry point to be $02D6. The boot file loads the "1.0" file, then

 jumps to $CCOO.

 Load "1.0", which resides from $C900 - $DOOO. The entry point at

 $CCOO JMPs to $CC7l, which calls a subroutine at $C900. This

 subroutine sends protection check code to the drive. If you look at

 memory in the range $CAOO - $CAFF, you will see numerous BACKWARDS

 "Memory-Write" (M-W) commands. The drive code is at $CA8D. This

 code looks for some special bytes on the disk and stores them in

 drive memory. When its finished, the computer Memory-Reads them

 into memory and stores them.

 Disassemble the code from $C900 and keep scrolling down to

 $C9EO. This is the M-R routine. At $C9EC, it reads in 3 bytes and

 over-writes them into $CA87 - $CA89. It checks $CA87 for a zero

 value. If it's zero, the protection fails. If not, it reads 2 more

 bytes into $CA8A - $CA8B. At $CA36, the weak point in this

 protection scheme becomes readily apparent. It checks the 5 bytes

 from the drive for specific values. It even shows us the values! If

 all the values are correct, it stores an $FF at $CFFF. Lets store

 K.J. REVEALED TRILOGY PAGE (129] (C)l990 K.J.P.B.

the $FF ourselves and see what happens. Change the code at $CA3l

 to read:

 A CA3l LDA #$FF

 CA33 STA $CFFF

 CA36 RTS

 Now execute the loader (G CCOO). It should load. In fact, if you

 return to the subroutine call at $CC71, you can see where it checks

 the value of $CFFF. If it doesn't match, it goes into an endless

 loop. You could change the JMP $CC7l at $CCOO to JMP $CC79 for a

 one-byte break ($71 = $79)! Use the File Tracer utility to make any

 of these changes to your backup copy for a completely un-protected

 backup.

 < < < EPYX : L.A. CRACKDOWN > > >

 "L.A. Crackdown" represents state of the art disk protection

 caught with its pants down. It is uncopyable with software

 nybblers, but it CAN be had with a little persistence and

 ingenuity.

 You will need the following:

 1) An original "L.A. Crackdown" (LAC) diskette.

 2) A backup copy of LAC using "C-64 Fast Copy".

 3) A formatted blank work disk.

 4) A printout or the results of an error-scan of both sides of

 the original diskette.

 Examining the disk maps show that side 2 is completely normal,

 but tracks 1 - 5 and part of track 18 on side 1 are unreadable by

 normal methods. A directory shows only 2 short files with 432

 blocks free on the diskette. We know from our error-scan that there

 are very few unused sectors on side 1. So where is the program

 coming from? Use the file tracer to determine the files' beginning

 and ending addresses. Boot MONlOOO, and let's examine these 2

 files. The first file loads at $02A7 - $0304. Disassembly shows

 that it does nothing more than load the second file, followed by a

 JMP to $CAOO.

 Load the "(C) 1988 EPYX" file. It resides from $C74F - $CA19.

 Disassemble from $CAOO, which is the entry point. The first few

 instructions do some initialization of the system, followed by 2

 K.J. REVEALED TRILOGY PAGE [130] (C)1990 K.J.P.B.

 JSR's and then a JMP to $4000. Look at the code in the first

 subroutine at $C9Fl. Careful tracing will reveal that this routine

 boots the fast loader code in the drive by issuing a

 'Block-Execute' command to the drive. The command string is located

 at $C955 and the drive code is stored on track/sector (T/S) 18/6

 ($12/$06). We'll look at that in a moment. The second subroutine is

 the computer side of the loader that communicates with the drive

 and retrieves the data. After the load has completed, the JMP to

 $4000 is executed.

 Let's stop the program after the load. Replace the JMP to $4000

 with JMP $CAl6. This creates an endless loop that we can interrupt

 with RUN/STOP-RESTORE. Then, fill memory from $4000 - $BFFF with an

 oddball value (I use $99). Make sure the ORIGINAL LAC disk is in

 the drive and then execute the code at $CAOO. The screen should

 blank, followed by a flurry of disk activity. When the screen

 re-appears (full of garbage) press RUN/STOP-RESTORE and re-enter

 the monitor (5Y54096). Switch in the RAM underneath BASIC (place a

 $36 at location $02 if you are using Kracker-mon) and look for the

 start of your filler bytes. You should find them at $A900. The data

 loaded from $4000 to $A8FF.

 If you try to execute the code at $4000, the computer will lock

 up. Why? Because the fast loader in the drive is still running and

 it polls the serial bus constantly, waiting for the next load

 command. Only a complete reset of the drive will re-establish

 communication. What we must do is start up the drive code before

 executing the code at $4000. Recall that the routine at $C9F1 was

 the routine that activated the drive code. Turn the drive off for

 three seconds, then back on. Place a JSR $C9Fl at $3FFD and save

 the code from $4000 - $A900 to your work disk. Re-insert the

 ORIGINAL LAC diskette and again load the "(C) 1988 EPYX" file, then

 execute the code at $3FFD. If the title screen appears after a

 moment, you've done everything right. The code from $4000 - $A900

 CAN be saved from memory, reloaded and started back up if the "(C)

 1988 EPYX" file is also loaded.

 Now let's look at the drive code on T/S 18/6 ($12/$06). Reload

 "MONl000", insert the ORIGINAL LAC, and initialize the drive. Use

 the drive monitor to load the sector into drive buffer $02 ($0500

 in drive memory) so we can disassemble it. Please refer to the Rad

 Warrior section elsewhere in this manual. The $0500 buffer is

 accessed at drive locations $OA (Track) and $OB (Sector). Use

 location $02 to execute the command byte $80. The code from $0500

 -

 $051F is a decryption routine. It then JMP's to $0160. If we let it

 JMP, we will lose control of the drive to the fast loader. To view

 the decrypted code at $0160, place a 'JMP $F969' (job completed) at

 $0522 and $EO (execute) in drive job queue $02. After the drive

 motor shuts down, disassemble the code at $0160. This routine reads

 and decrypts the drive code located in the protected sectors on

 K.J. REVEALED TRILOGY PAGE [131] (C)1990 K.J.P.B.

 track 18. How are we going to trap that drive code so we can use it

 on an un-protected disk?

 Clearly, we must let the routine continue and interrupt it at

 the right moment. Study the code. The protected drive code is

 stored from $0300 through $O6FF by the routine. At $O1AD, a JSR

 $O3BE is executed. Since this is the first call made to the newly

 loaded drive code, this seems a good place to stop it. Again, place

 a 'JMP $F969' at $OlAD. To continue execution of the code, place a

 'JMP $0160' at $0500 and place $EO in drive job queue $02. After

 the drive motor shuts down, disassemble the code at $0300 -

 $O6FF.

 Now we need to save it. Insert your backup copy and initialize

 the disk (@I). The error-scan shows that there are several unused

 directory sectors on side 1 so we can safely save our

 newly-captured code to these - we'll use sectors 15 - 18 ($OF -

 $12). Using the drivemon, place the following bytes into job queue

 $06 - $OD: 12 OF 12 10 12 11 12 12. Then place $90 (write job) into

 job queue $00, $01, $02, and $03. Wait until the drive motor shuts

 off. The needed drive code is now stored on your backup disk.

 The next step is to trap and save the decrypted code on T/S

 $12/$06 and write a short routine to load up our four drive code

 sectors. Again, read T/S $12/$06 into drive memory $0500 and place

 "JMP $F969" at $0522. Place $EO in drive job queue $02 to decrypt

 the code. Transfer the decrypted code from $0160 - $OlFF to $0560.

 Our new start-up routine at $0500 will load the four drive code

 sectors using the DOS job queue. Use the assembly capability of the

 monitor to enter the following into drive memory:

]A 0500: SEI

], 0501: LDX 10 ;move code to a safe place

], 0503: LDA $0500~X

], 0506: STA $0700,X

], 0509: INX

], 050A: BNE $0503

], OSOC: JNP $070F ;continue execution

 Transfer the code from $0500 - $05FF to $0700. Continue entering

 code at $070F:

]A 070F: LDX 1$OD ;load up the job queue with T/S

], 0711: LDA $0740,X ;numbers and read commands ($80)

], 0714: STA $00,X

], 0716: DEX

], 0717: BPL $0711

], 0719: LDX #$03 ;wait until all sectors have

], 071B: LDA $oo,x ;been loaded

], 071D: BMI $071B

], 071F: DEX

 K.J. REVEALED TRILOGY PAGE [132] (C)l990 K.J.P.B.

], 0720: BPL $071B

], 0722: SEI ;move code at $0760 to $0160

], 0723: LDX #$60

], 0725: LDA $0700,X

], 0728: STA $0100,X

], 072B: INX

], 072C: BNE $0725

], 072E: JMP $OlAD ;fire up the fast loader

 3:0740 80 80 80 80 00 00 12 OF ;DOS job queue data

 3:0748 12 10 12 11 12 12

 Transfer the code at $0700 - $O7FF back to $0500. Write it to

 the backup disk by placing a $90 into drive job queue at $02.

 The last steps involve modifying the BAM of the backup disk so

 you can copy the $4000 file on your work disk to the backup. You

 must then alter the auto-boot to load both the $4000 file and "(C)

 1988 EPYX", start up the drive code (JSR $CF91) and JMP to the

 entry point ($4000). The $4000 file should be 106 blocks long.

 Curiously enough, the tracks now available, 1 - 5 (5 * 21 = 105),

 plus the one unused sector on T/S $ll/$OC, totals 106 blocks!

 Load the BAM into drive memory $0500. Use the monitor to enter

 the following data:

]:0504 15 FF FF lF 15 FF FF lF

]:050C 15 FF FF lF 15 FF FF lF

]:0514 15 FF FF lF

 This makes tracks 1 - 5 available. Now till $0518 - $058F with

 $00 to allocate the rest of the available sectors. To free-up the

 sector at $l1/$OC enter:

]:0544 Ol 00 10 00

 Place $90 into job queue $02 to write the BAM back to your

 backup. Initialize the diskette (@I) and view the directory (@$).

 It should show 106 blocks free.

 Modifying the auto-boot file to load our $4000 file presents a

 problem because it resides in the directory (T/S $12/$02).

 Re-saving the file will use the first available sector: namely, our

 much needed block at $l1/$OC. What we CAN do, after modifying the

 auto-boot, is use the drive monitor to place the auto-boot code on

 to $12/$02. Return to the computer monitor and load the "L.A.

 CRACKDOWN" file. Enter the following commands and code:

 T 02D1 O2EC 02A7 ;copy load routine to $02A7

 K.J. REVEALED TRILOGY PAGE [133] (C)1990 K.J.P.B.

 A O2ED JMP $02A7 ;change JMP $4000 to our new code

 : 0302 CC 02 ;new entry point for auto-boot($02CC)

 A 02C3 JSR $C9F1 ;fire up the drive code

 02C6 JMP $4000 ;continue execution

 : 02F0 4C 41 ;our new file name ("LA")

 A 02B2 LDX #$FO ;point load to our new file name

 Together,these changes will load the "(C) 1988 EPYX" file and

 our new "LA" file, activate the drive code, and start-up the

 program. Now we must copy the routine over the original. Enter the

 drive monitor and load T/S $12/$02 into drive memory $0500. Copy

 our new code into the drive by entering:

 TC 02A7 0300 0504

 Re-write the modified sector to the backup diskette. Return to

 computer monitor and insert the work disk containing our $4000 file

 and load it. Switch out BASIC (place a $36 at computer location $02

 when using Kracker-Mon), insert your LAC backup copy, and save the

 file, naming it "LA". A directory of the diskette should show 0

 blocks free. Your backup copy is now completed.

 < < < V-MAX! v1.? > > >

 When V-MAX! first appeared on the copy protection scene, one

 could stay up late at night and almost hear the endless nocturnal

 muttering from every protection removal expert in the country. With

 two, and sometimes three levels of physical disk protection, here

 was a formidable foe, indeed! We have identified two major

 versions of V-MAX!. Information on the last modifications of V1 is

 included in this Tutorial.

 LEVEL 1:

 Protection level 1 is the method of storage of the custom fast

 loader code on a V-MAX! formatted disk. On the master disk, the

 drive code is pre-processed by submitting each byte of the drive

 code to a routine that generates two GCR bytes for each drive

 code hex byte. This is then attached to a series of carefully

 chosen bytes and written to a track (usually track 20) on the

 master disk in one disk revolution. The only way to reproduce

 this track is with a hardware-based copier.

 K.J. REVEALED TRILOGY PAGE [134] (C)l990 K.J.P.B.

 LEVEL 2:

 V-MAX! uses only two density levels in its disk format. Instead

 of the two normal density levels used for tracks 25 - 40, the

 density level for tracks 18 - 24 is substituted. To copy the

 disk properly (excluding track 20), you must use a copier

 capable of detecting and reproducing these abnoruial densities.

 The quality of the copy is very important and should be made on

 a drive that is in excellent condition. Correct drive speed is

 of the utmost importance!

 LEVEL 3:

 Some V-MAX! titles require ninor changes to a sector or two to

 disable a third level of protection that looks for a hard-to-

 copy byte sequence on a track. Finding these little routines is

 actually the hardest part of making a backup copy of a V-MAX!

 protected program. If you don't have a modified 1541 DOS KERNAL

 that can trap this protection code (it executes in the command

 buffer at $0200), you have little hope of finding and breaking

 these routines. Because of this, we'll have to give you these

 modifications without further explanation.

 The following pages contain specific instructions for making

 functional backups of three V-MAX!ed titles: Xevious, Into The

 Eagle's Nest, and Paperboy.

 * V-MAX! V2 is a whole new ball game, and requires 8K of drive

 RAM to duplicate. Special copier routines must be written for these

 protection schemes. Also, for your information, we have spoken to

 several software publishers about V-MAX!, and their programs using

 it. They claim that V-MAX! is NOT a protection scheme, but a fast

 loader system only. We are skeptical.

 < < < MINDSCAPE: INTO THE EAGLE'S NEST > > >

 The entire protection removal process will take place in the

 drive. We are going to let the protected code on track 20 load into

 the drive and then re-write it to some empty directory sectors. We

 will then modify the code that reads track 20 50 that it instead

 loads our newly-filled sectors.

 Prepare a work copy of EAGLE'S NEST using the MAX Copier on your

 utility disk, and then load the $1000 monitor. Insert your original

 EAGLE'S NEST, initialize the drive (~I) and enter the drive-mon.

 We'll be using the 1541/71's job queue to do a lot of the work for

 us.

Read TIS $12/$OD into buffer $0700 by entering:

 K.J. REVEALED TRILOGY PAGE [135] (C)l99O K.J.P.B.

 :OOOE 12 OD

 :0004 80

 Disassemble the code at $0700 (D 0700). The first thing the code

 does is move the drive read/write head forward two tracks to track

 20. It then initializes a set of pointers to start the load process

 at buffer $0300 and starts reading bytes from the drive. There are

 no sync marks on the track: the routine reads until it finds a GCR

 byte with the value $5A, of which there is a long series. When the

 $5A byte sequence ends, the code reads and EOR's each successive

 pair of bytes together and stores the result byte to buffers

 $0300 - $O6FF. This produces the custom fast loader code.

 You can now understand how a normal nybbler is dead in the water

 if it can't reproduce this track. But we can trap the code easily.

 Bypass the JMP instruction at $0797 by entering:

]A 078E LDA #$0l

], 0790 JMP $F969

 This will return control to the drive-mon when the code has

 finished execution. To execute it, enter

 :0004 EQ

 When the monitor returns you will be able to look at V-MAX! in all

 its glory. We first must make a minor modification to the code in

 case your work copy is not perfect. There is a sector checksum

 verification routine at $03F3 that will fail if the sector checksum

 is not zero. This can be defeated by entering:

 :03F5 A9 00

 Now we need to re-write the loader code at $0700. Start with a

 fresh copy by re-loading T/S $12/$OD like we did above.

 Directory sectors $04, $07, $OA, and $OC will contain the code

 from $0300 - $O6FF. Beginning at $0700, re-write the drive code as

 follows:

 0700 SEI ;disable interrupts

 0701 LDX #$OD

 0703 LDA $071A,X ;store read data to job queue

 0706 STA $00,X

 0708 DEX

 0709 BPL $0703

 070B CLI

 070C LDA $00 ;wait for read to complete

 070E ORA $01

 K.J. REVEALED TRILOGY PAGE [136] (C)1990 K.J.P.B.

 0710 ORA $02

 0712 ORA $03

 0714 BMI $070C

 0716 SEI ;continue normally ...

 0717 JMP $078E

 071A 80 80 80 80 00 00 12 04

 0722 12 07 12 OA 12 OC

 Make sure all of the original code from $078E - $O7FF is left

 undisturbed.

 Now write all the code to the work copy by inserting your work

 copy into the drive and entering:

]:0006 12 04 12 07 12 OA 12 OC

]:OOOE 12 OD

]:0000 90 90 90 90 90

 There is the third level protection present on this title. To

 remove it, enter the following:

]:0006 18 OD

]:0000 80

]:0362 6B

]:036E 45

]:0000 90

 That's all there is to it! Enjoy your backup copy.

 < < < NINDSCAPE: PAPERBOY > > >

 The entire protection removal process will take place in the

 drive. We are going to let the protected code on track 20 load into

 the drive and then re-write it to some empty directory sectors. We

 will then modify the code that reads track 20 so that it instead

 loads our newly-filled sectors.

 Prepare a work copy of Paperboy using the MAX Copier on your

 utility disk, and then load the $1000 monitor. Insert your original

 Paperboy, initialize the drive (@I) and enter the drive-mon. We'll

 be using the 1541/71's job queue to do a lot of the work for us.

 Read T/S $12/$OD into buffer $0700 by entering:

 :OOOE 12 OD

 :0004 80

 K.J. REVEALED TRILOGY PAGE [137] (C)l990 K.J.P.B.

 Disassemble the code at $0700 (D 0700). The first thing the code

 does is move the drive read/write head forward two tracks to track 20.

 It then initializes a set of pointers to start the load process

 at buffer $0300 and starts reading bytes from the drive. There are

 no sync marks on the track: the routine reads until it finds a GCR

 byte with the value $5A, of which there is a long series. When the

 $5A byte sequence ends, the code reads and EOR's each successive

 pair of bytes together and stores the result byte to buffers

 $0300 - $O6FF. This produces the custom fast loader code.

 You can now understand how a normal nybbler is dead in the water

 if it can't reproduce this track. But we can trap the code easily.

 Bypass the JMP instruction at $0797 by entering:

]A 078E LDA #$01

], 0790 JMP $F969

 This will return control to the drive-mon when the code has

 finished execution. To execute it, enter:

 :0004 EO

 When the monitor returns you will be able to look at V-MAX! in

 all its glory. We first must make a minor modification to the code

 in case your work copy is not perfect. There is a sector checksum

 verification routine at $03F3 that will fail if the sector checksum

 is not zero. This can be defeated by entering:

 :03F5 A9 00

 Now we need to re-write the loader code at $0700. Start with a

 fresh copy by re-loading T/S $12/$OD like we did above.

 Directory sectors $04, $07, $OA, and $OC will contain the code

 from $0300 - $O6FF. Beginning at $0700, re-write the drive code as

 follows:

 0700 SEI ;disable interrupts

 0701 LDX #$OD

 0703 LDA $071A,X ;store read data to job queue

 0706 STA $00,X

 0708 DEX

 0709 BPL $0703

 070B CLI

 070C LDA $00 ;wait for read to complete

 070E ORA $01

 0710 ORA $02

 0712 ORA $03

 0714 BMI $070c

 0716 SEI ;continue normally

 K.J. REVEALED TRILOGY PAGE [138] (C)1990 K.J.P.B.

 0717 JMP $078E

 071A 80 80 80 80 00 00 12 04

 0722 12 07 12 OA 12 OC

 Make sure all of the original code from $078E - $O7FF is left

 undisturbed.

 Now write all the code to the work copy by inserting your work

 copy into the drive and entering:

]:0006 12 04 12 07 12 OA 12 OC

]:OOOE 12 OD

]:0000 90 90 90 90 90

 There is the third level protection present on this title. To

 remove it enter the following:

]:0006 19 Ol

]:0000 80

]:035C 60

]:0368 6F

]:0000 90

 That's all there is to it! Enjoy your backup copy.

 < < < HINDSCAPE : XEVIOUS > > >

 The entire protection removal process will take place in the

 drive. We are going to let the protected code on track 20 load into

 the drive and then re-write it to some empty directory sectors. We

 will then modify the code that reads track 20 50 that it instead

 loads our newly-filled sectors.

 Prepare a work copy of Xevious using the MAX Copier on your

 utility disk, and then load the $1000 monitor. Insert your original

 Xevious, initialize the drive (@I) and enter the drive-mon. We'll

 be using the 1541/71's job queue to do a lot of the work for us.

 Read T/S $12/$OD into buffer $0700 by entering:

 :OOOE 12 OD

 :0004 80

 Disassemble the code at $0700 (D 0700). The first thing the code

 does is move the drive read/write head forward two tracks to track

 20.

 It then initializes a set of pointers to start the load process

 at buffer $0300 and starts reading bytes from the drive. There are

 K.J. REVEALED TRILOGY PAGE [139] (C)l990 K.J.P.B.

 no sync marks on the track: the routine reads until it finds a GCR

 byte with the value $5A, of which there is a long series. When the

 $5A byte sequence ends1 the code reads and EOR's each successive

 pair of bytes together and stores the result byte to buffers

 $0300 - $06FF. This produces the custom fast loader code.

 You can now understand how a normal nybbler is dead in the water

 if it can't reproduce this track. But we can trap the code easily.

 Bypass the JMP instruction at $0797 by entering:

]A 078E LDA #501

], 0790 JMP $F969

 This will return control to the drive-mon when the code has

 finished execution. To execute it, enter

 :0004 EO

 When the monitor returns you will be able to look at V-MAX! in

 all its glory. We first must make a minor modification to the code

 in case your work copy is not perfect. There is a sector checksum

 verification routine at $03F3 that will fail if the sector checksum

 is not zero. This can be defeated by entering:

 :03F5 A9 00

 Now we need to re-write the loader code at $0700. Start with a

 fresh copy by re-loading T/S $12/$OD like we did above.

 Directory sectors $04, $07, $OA, and $OC will contain the code

 from $0300 - $O6FF. Beginning at $0700, re-write the drive code as

 follows:

 0700 SEI ;disable interrupts

 0701 LDX #$OD

 0703 LDA $071A,X ;store read data to job queue

 0706 STA $00;X

 0708 DEX

 0709 BPL $0703

 070B CLI

 070C LDA $00 ;wait for read to complete

 070E ORA $01

 0710 ORA $02

 0712 ORA $03

 0714 BMI $070C

 0716 SEI ;continue normally ...

 0717 JMP $078E

 071A 80 80 80 80 OD 00 12 04

 0722 12 07 12 OA 12 OC

 K.J. REVEALED TRILOGY PAGE [l40] (C)1990 K.J.P.B.

 Make sure all of the original code from $078E - $O7FF is left

 undisturbed

 Now write all the code to the work copy by inserting your work

 copy into the drive and entering:

]:0006 12 04 12 07 12 0A 12 0C

]:OOOE 12 0D

]:0000 90 90 90 90 90

 That's all there is to it! Enjoy your backup copy.

 < < < PROTECTION SCHEME #1 > > >

 Protection scheme #1 is a simple routine that creates DOS error

 # 22: DATA BLOCK NOT FOUND. This is accomplished by reading a

 sector on disk, changing the default data block ID (normally $07)

 in drive memory $0047 to a new value, then rewriting the data block

 using the new data block ID. Please note that any good nybbler can

 reproduce this protection type.

 There are two simple ways for a programmer to use this type of

 copy protection. One way is to create the error, and check that the

 error is present at that sector. The other method is to create the

 error in a sector that contains data imperative to the operation of

 the program. Only a specialized routine can read in the data if the

 error is present. If the error isn't present, the routine written

 to pull the sector will not operate correctly and the data will be

 left behind. Let's start with this type.

 22 Error - Data Recovery

 The new data block ID is a GCR value whose high bit (bit 7) must

 equal zero; therefore, the new ID can have one of the following

 range of values:

 Dec Hex

 0 - 7 $00 - $07

 9 - 31 $09 - $lF

 64 - 95 $40 - $5F

 112 - 127 $70 - $7F

 192 - 207 $C0 - $CF

 Any attempt to read a sector with a non-standard data block ID

 will fail unless the default value in drive memory $0047 is changed

 to the new data block ID value.

 K.J. REVEALED TRILOGY PAGE [141] (C)l99O K.J.P.B.

 Use the included BASIC program "DBWRITE" to rewrite the desired

 sector(s) with a new data block ID (creating the 22 Error).

 "DBREAD" can then be used to read the protected sector(s) and

 place it in drive memory at $0300 where it can be accessed with a

 "Memory-Read" command. From there you can either transfer the code

 down to the computer or leave it in the driveg if it's drive code.

 You may use the included assembly code in a machine language

 program if you wish.

 DBWRITE.ASM

 This program is for educational and personal use only

 No commercial use of this program is permitted.

 All rights reserved (C) 1989 K.J.P.B.

 ***;

 Job:

 Rewrite a data block with a different

 data block ID code. High nibble of code

 must be $Ox, $lx, $4x, $5x, $8x or $Cx;

 (x = any hex number from $0- $F)

 The following code must be written to

 drive memory $0500 and can be executed

 from BASIC with the following statement:

 OPEN 15,8,l5,"UC:"+CHR$(new id code)+CHR$(trk)+CHR$(sec)

 CLOSE 15

 ***;

 org $0500 ;code executes in drive here writdbid

 sei ;disable interrupts

 lda $47 ;save current data block id char

 sta oldid

 ida $203 ;get new id from command buffer

 sta newid

 lda $204 ;get track for new data block id

 sta $06 ;will be read into $0300

 lda $205 ;get sector for new data block id

 sta $07

 ida #$BO ;seek track/sector

 jsr waitjob

 ida #$80 ;read track/sector into $0300

 jsr waitjob

 lda newid ;setup new data block id

 sta $47

 ida #$90 ;write trise with new data block id

 jsr waitjob

 pha ;save error code ($01 = O.K.)

 lda oldid ;restore old data block id

 K.J. REVEALED TRILOGY PAGE [142] (C)l99O K.J.P.B

 sta$47

 pla ;get error code

 cli ;enable interrupts

 rts ;and exit

 waitjob

 sta$00 ;store job code to job queue

 cli ;enable interrupts

 wjloop

 ida$00 ;wait for job to finish

 bmiwjloop

 sei ;disable interrupts

 rts ;return

 newid .hex 00 ;storage for new data block id

 oldid .hex 00 ;storage for old data block id

 end

 DBREAD.ASM

 This program is for educational and personal use only

 No commercial use of this program is permitted.

 All rights reserved (C) 1989 K.J.P.B.

 ***;

 Job:

 Read a data block with a different

 data block ID code.

 The following code must be written to

 drive memory $0500 and can be executed

 from BASIC with the following statement:

 OPEN 15,8,15,"UC:"+CHR$(new id code)+CHR$(trk)+CHR$(sec)

 CLOSE 15

 Data block can then be read from $0300 in drive memory.

 ***;

 .org $0500 ;code executes in drive here readdbid

 sei ;disable interrupts

 lda $47 ;save current data block id char

 sta oldid

 lda $203 ;get new id from command buffer

 sta newid

 lda $204 ;get track for new data block id

 sta $06 ;will be read into $0300

 lda $205 ;get sector for new data block id

 sta $07

 lda newid ;setup new data block id

 sta $47

 lda #$80 ;read track/sector into $0300

 K.J. REVEALED TRILOGY PAGE [143] (C)l99O K.J.P.B.

 sta $00 ;store job code to job queue

 cli ;enable interrupts

 wjloop

 lda $00 ;wait for job to finish

 bmi wjloop

 ldx oldid ;restore old data block id

 stx $47

 rts ;and exit

 newid .hex 00 ;storage fo? new data block id

 oldid .hex 00 ;storage for old data block id

 end

 22 ERROR - ERROR PRESENT CHECK

 You can make a simpler protection check by using DBWRITE to

 create a DOS 22 error, and then do nothing more than check the

 drive error channel for the proper error code. The BASIC code would

 read as follows:

 10 REM: CHECK FOR 22 ERROR

 20 OPEN 15,8,15,"I":REM INITIALIZE DRIVE

 30 OPEN 2,8,2,"#": REM RESERVE BUFFER FOR SECTOR READ

 40 PRINT#15,"Ul:2 0 Ol 00":REM READ TRACK/SECTOR 1/0

 50 GET#l5,A$:REM READ ERROR CHANNEL:CLOSE 2:ClOSE 15

 60 IF A$="2" THEN PRINT "DATA BLOCK NOT FOUND!":END:REM

 PROTECTION PASSED

 70 PRINT "DATA BLOCK WAS FOUND":REM PROTECTION FAILED

 A machine-language routine to do the same would read as follows:

 .org $cOOO

 lda #$00 ;open cmd channel

 jsr $ffbd ;SETNAM

 lda #$of

 ldx #$08 ;to drive 8

 tay

 jsr $ffba ; SETLFS

 jsr $ffco : OPEN

 lda #$0l ;open buffer channel

 ldx #pound

 jsr $ffbd

 lda #$02

 ldx #$08

 tay

 jsr $ffba

 jsr $ffco

 jsr $ffcc ;clear channels CLRCHN

 ldx #$of ;output "ul" command

 K.J. REVEALED TRILOGY PAGE [144] (C)l99O K.J.P.B.

 jsr $ffc9 ;CHKOUT

 ldy #$00

 loop lda ulcmd,y

 jsr $ffd2 ;CHROUT

 iny

 cmp #$0d

 bne loop

 jsr $ffcc

 ldx #$0f ;input error code

 jsr $ffc6 ;CHKIN

 jsr $ffcf ;CHRIN

 sta $fb ;store first error code to 251

 jsr $ffcf

 sta $fc ;store second error code to 252

 loop1 jsr $ffcf ;read until you receive a character

 cmp #$0d

 bne loop1

 jsr $ffe7 ;close all channels ;CLALL

 rts

 pound byt "#"

 ulcmd byt "ul: 2 0 0l 00"

 byt $0d

 This MIL routine can be stored at $COOO (49152) and called from

 BASIC as follows.

 10 OPENl5,8,15,"I":CLOSEl5

 20 SYS49152

 30 IF PEEK(251)<>ASC("2") AND PEEK(252)<>ASC("2") THEN PRINT

 "DATA BLOCK NOT FOUND!"1:END:REM PROTECTION PASSED

 40 PRINT "DATA BLOCK WAS FOUND":REM PROTECTION FAILED

 < < < Protection Scheme # 2 > > >

 This protection scheme is guaranteed to defeat ANY non-hardware-

 assisted nybbler on the market; including Fast Hack'em and our very

 own set of comprehensive nybblers. The physical protection invclves

 placing a set of GCR bytes in the tail gap of a sector on disk.

 Drive memory limitations prevent a software-only nybbler from

 copying these bytes, which are located after the end of the GCR

 bytes that make up the sector on disk. Only extra drive RAM and

 software to support it can copy these bytes. To better illustrate

 this, let's look at a typical sector on disk.

 Format a work disk, then load the GCR Editor (GCRKD) from the

 Hacker's Utility Kit. With your work disk in the drive, input 1

 fQr the track number and press twice. The GCRED will

 display a summary of all the header/data blocks on the track. Both

 K.J. REVEALED TRILOGY PAGE [145] (C)l99O K.J.P.B.

 sides of the screen are showing you the same information in

 different ways. On the right, the (hex) bytes are displayed as they

 were before they were written to the disk. On the left are the

 converted (GCR) bytes as they actually appear when reading, or

 writing to, the track directly.

 For every four hex bvtes there are five GCR bytes. Group Code

 Recording ensures that there are never more than eight consecutive

 "1" bits or two consecutive "0" bits written to the disk. This

 allows the drive to use ten consecutive "l" bits as a signal that a

 header or data block will be read starting with the first "0" bit

 read. This is referred to as a sync mark. A normal sync mark is

 forty consecutive "1" bits (five hex $FF bytes). This is a

 deliberate overkill to make the disk format as reliable as

 possible.

 Using < CURSOR UP/DOWN >, you can highlight either a header block,

 whose first byte is GCR $52 or hex $08; or a data block -

 GCR $55/hex $07. Cursor down to the last data block. This is sector

 $14 (20) of track 1. Press [SPACE] to read the entire data block

 into memory. The GCRED will display an editing screen, again with

 GCR on the left and hex on the right. Pressing [S] (Side) will move

 the cursor from the left to the right side or visa-versa. We will

 onlv be working on the GCR side.

 Above the sector data, POS shows you the position in the data

 block of your cursor. Use the cursor keys to place the cursor at

 position $0144. This is the last byte of the data block. This is

 where everv software-onlv nybbler stoos reading the data block. ANY

 GCR bytes written past this point are ignored by the copier. Many,

 MANY protection schemes depend on this fact when they create their

 phvsical disk protection. The logical protection involves a custom

 drive program to look past the end of the data block for the

 special bytes that have been placed there. A special routine is not

 needed to write the physical protection: the GCRED is fully capable

 of such chores.

 Move the cursor to position $0145. Press [SPACE] to enter EDIT

 mode and type the following:

 AA AB AC AD AE 55 55

 then press (RETURN) to exit EDIT mode, [W] to write the sector back

 to disk, and [R] to re-read the modified sector. Verify that the

 bytes $AA - $AE are present at positions $0145 - $0149 (ignore the

 two $55 bytes). If not, try entering and writing them again. We

 have just created the physical protection.

 The next thing we concern ourselves with is the logical

 K.J. REVEALED TRILOGY PAGE [146] (C)l99O K.J.P.B.

 protection. We need a special drive routine to check for the bytes

 that we added to the end of the data block. Below is an assembler

 listing of such a routine. What you do with the bytes is up to you:

 you could use them as a key to decrypt some data necessary to the

 operation of your protected program or send the drive into an

 endless loop so that the program could proceed no further. We'll

 simply place the bytes in drive memory where they can be tested by

 your routine.

 TGREAD.ASM

 This program is for educational and personal use only

 No commercial use of this program is permitted.

 All rights reserved (C) 1989 X.J.P.B.

 ***;

 JOB: Read 5 tail-gap bytes from a given track and sector.

 The following code must be written to

 drive memory $0500 and can be executed

 from BASIC with the following statement:

 OPEN 15,8,15,"UC:"+CHR$(track)+CHR$(sector):CLOSE 15

 The tail-gap bytes can then be read from $0300 - $0304 in

 drive memory.

 ***;

 .org $0500 ;code executes in drive here

 ;this routine sets up READTG for execution

 setup

 sei ;disable interrupts

 lda #$4c ;set up for job queue EXEC command

 sta $0300 ; (JMP READTG)

 lda #readtg

 sta $0301

 lda #>readtg

 sta $0302

 lda $203 ;get track for tail-gap read

 sta $06 ;will be read into $0300

 lda $204 ;get sector for tail-gap read

 ;from command buffer.

 sta $07

 lda S$EO ;store EXEC cmd to job queue

 sta $00

 cli ;enable interrupts

 wjloop

 lda $00 ;wait for job to finish

 bmi wjloop

 rts ;exit

 ;This is the actual read routine.

 K.J. REVEALED TRILOGY PAGE [147] (C)l99O K.J.P.B.

 readtg

 sei

 jsr $f510 ;search for the header block of our sector.

 ;If not found, this subroutine will exit

 ;and NOT return to us.

 syncloop

 bit $lcOO ;The header block was found so wait

 ;sync Bark preceding the data block

 bpl syncloop

 sloop1

 bit $lcOO ;got a sync, now wait for it to end

 bmi sloop1

 lda $1cO1 ;throw away the sync image

 clv

 ldx #$01 ;set up .x/.y to count $0145 bytes

 ldy #$45 ;($000O -$0144) to the end of the data

 ;block

 dataloop

 bvc * ;wait for data byte ready

 clv ;clear ready flag

 lda $1cO1 ;read byte from diskette $0144 times

 dey

 bne dataloop ;

 dex

 bpl dataloop ;

 dloop1

 bvc * ;we're now at position $0145 -

 clv ;in the TAIL GAP

 lda $lcOl ;read our 5 bytes

 sta $0300,y ;and store them from $0300 - $0304

 iny

 cpy #$05

 bne dloop1

 jsr $f98f ;turn off drive motor

 lda #$01 ;O.K.

 sta $00 ;and exit back to SETUP

 cli

 rts

 end

 A sample BASIC program named "TGREAD" is included on disk that

 sends the above code (stored in data statements) to the drive,

 executes it, and displays whether the protection passed or failed.

 KRACKER JAX PRESENTS

 K.J. REVEALED TRILOGY PAGE [148] (C)l99O K.J.P.B.

 THE HACKER'S UTILITY KIT

 programmed by:

 Mike Howard I Joe Peter

 Paul Rowe I Jeff Spangenberg

 Designed by: Les Lawrence

 (C)1987 K.J.P.B.

 Welcome to The Hacker's Utility Kit. This program represents the

 finest set of disk examination and manipulation tools ever

 assembled into one package. We are confident you will find it to be

 one of the most useful disks in your library. Each and every module

 included in this package has been put through it's paces in real

 use. We feel you'll find them not only extremely powerful, but also

 user friendly. Many extras have been put into The Hacker's Utility

 Kit. Please be sure to read each segment of this manual before

 using any of the tools. This will insure that you obtain full use

 of each and every feature. Before we get on to the goodies, we want

 to thank the programers listed above for their efforts in writing

 this package. We are very proud to present their finest effort

 ever. They, just like you, are "Hackers" at heart. This program is

 a showcase of their real talent.

 Loading Instructions

 Place the Utility disk in your disk drive, reverse side up. Type

 < LOAD"*",8,1 > and hit RETURN. In a short time, the menu will

 appear. Use the cursor U/D key to move the hand-pointer to the

 desired feature. Press RETURN and that utility will automatically

 load in and self start. We'll discuss each utility in it's order

 of display on the menu.

 Sector Usage and Error Scanner

 Selecting input 1 from the main menu will automatically boot this

 utility. When the menu appears, you may make your selection using

 the cursor or number keys to position the arrow pointer. Press

 RETURN to activate your choice.

 1. Scan Disk:

 P : Print output after scan (use standard Commodore printer).

 S : Begin scan.

 E : Exit to beginning menu.

 M : Modify range of tracks to scan. Defaults are 1-38.

 The following characters are used in the scan to represent the

 condition of any scanned diskette.

 S : Sync track (1 sync, no data).

 K.J. REVEALED TRILOGY PAGE [149] (C)l99O K.J.P.B.

 0 : Block header not found.

 1 : No sync character found.

 2 : Data block not present.

 3 : Checksum errorin data block.

 7 : Checksum error in header.

 9 : Disk ID mismatch.

 - : 1571 normal format with no data.

 + : 1541 normal format with no data.

 . : Data in these sectors.

 2. Directory : Read any diskette in the drive.

 3. Quit : Reboot Hacker's Utility Kit main menu.

 Density Scanner

 Selecting input 2 from the main menu will automatically boot this

 utility. When the menu appears, you may make your selection using

 the cursor or number keys to position the arrow pointer. Press

 RETURN to activate your choice.

 1. Scan Disk:

 P : Print output after scan (use standard Commodore printer).

 S : Begin scan.

 E : Exit to beginning menu.

 N : Modify range of tracks to scan. Defaults are tracks 1-38.

 The following represents the values you can expect on a normal

 disk. Any deviation represents a non standard condition. (More than

 one scan may be needed to determine density on some diskettes.)

 1 : Tracks 1-17.

 2 : Tracks 18-24.

 3 : Tracks 25-30.

 4 : Tracks 31-35.

 2. Directory : Read any diskette in the drive.

 3. Quit : Reboot Hacker's Utility Kit main menu.

 KRACKER HACKER GCR EDITOR

 The GCR Editor is the most powerful tool you'll ever use to examine

 a disk. It will allow you to view raw data the way it was

 originally written to the disk. Our GCR Editor has every feature we

 could think of to examine and manipulate headers and data. A

 thorough knowledge of the makeup of Commodore format is necessary

 to have full use of this utility. For complete information on this

 subject, we suggest "Inside Commodore DOS", written by Richard

 K.J. REVEALED TRILOGY PAGE [150] (C)l99O K.J.P.B.

 Immers. This manual contains a wealth of information on the makeup

 of the Commodore format and the Disk Operating System (DOS). With

 this manual and our GCR Editor, you can achieve a new level of

 understanding.

 In the following instructions, we will give you all the command

 features available to you with the Kracker Hacker GCR Editor. Only

 use and study can make you proficient. Enjoy!

 What is GCR?

 When you load and save files from the C-64 to disk, they are not

 written bit for bit straight to the diskette. The Commodore 1541/71

 disk drive cannot write more than three "0" bits in a row to a

 disk, so writing a hex byte like #$06 poses a problem! Commodore

 developers created the GCR coding scheme to read and write data to

 and from the drive. It converts each four bits of hex code into 5

 bits of GCR code. For every four bytes of hex data, there are five

 GCR bytes. Lastly, this data is written at a standard rate,

 depending on its placement on the diskette. Standard Bit Rates are

 as follows: Tracks 1-17 = $60, Tracks 18-24 = $40, Tracks 25-30 =

 $20, Tracks 31-35 = $00.

 Commodore DOS protection is, for the most part, simply the

 placement of NON-STANDARD data on the diskette. This can be created

 by using single bytes in non-standard locations, abnormal drive

 speeds, or rewriting the format (single sectors, tracks, or the

 entire disk). By using your GCR Editor, you can obtain exact format

 information. You even have the power to duplicate many protection

 schemes on non-working backups. Let's go through the commands

 available to you in this powerful utility. From the main start-up

 menu, choose option 3 and press RETURN.

 First Screen (Header Selection)

 Track Selection: Track values are entered in decimal. Values from

 1-40.5 are accepted.

 Bit Rate Selection: Press RETURN for default value, otherwise enter

 one of four bit rates ($00,$20,$40,$60).

 After Scan of Track: The number of headers equals the number of

 syncs on a track. Left column = GCR of first 8 bytes. The right

 column = converted GCR bytes. The message bar just above the list

 of headers gives you information about the current header the

 cursor is on. Left hand will say: Sector: xx if the current header

 is part of a standard formatted track. It will give you the sector

 number in decimal so you can use the GCR Editor like a sector

 editor. The right hand will either say DATA or HEADER, depending

 upon whether the cursor is on the data block header (starts with a

 K.J. REVEALED TRILOGY PAGE [151] (C)1990 K.J.P.B.

 $52) or the actual data block itself (starts with a $55).

 Commands (First Screen):

 Shifted H: Help screens.

 T: Enter a new track.

 R: Enter a new bit rate for the current track.

 Fl: Directory of disk in drive.

 F3: Prompt to reboot main menu.

 Cursor U/D: Scroll through headers.

 Space Bar: Read current selected header and go to edit (2nd)

 screen.

 P: Print list of headers to printer (Standard

 Commodore printers).

 + or -: Go back or forwards one track and read.

 C: Create a Track : You may access this feature after

 reading a track.

 options Include:

 1. Fill track with no-sync: wipes out entire track with $55s.

 2. Fill track with full-sync: fills entire track with $FFs.

 3. Create Notepad header: Wipes out an entire track with $55s,

 and then creates a one header/one sync track using Notepad

 code.

 Second Screen (Header Edit Screen)

 Header Info: Appears at the top of the screen. Sync is the actual

 length of the sync mark of this header. Length is the length in

 bytes of the header. Note: if the header has more than $0500 bytes,

 the buffer for editing will only go up to byte $O4FF, since the

 disk drive cannot read long blocks unless you have expanded memory.

 Header and Data Tables: Rows of ten GCR bytes appear on the left.

 The converted eight hex bytes appear on the right. Remember, five

 GCR bytes equal 4 Hex bytes.

 Commands (Second Screen)

 R: Reread the header data.

 W: Write altered data back to disk.

 Z: Find zero GCR bytes and mark them.

 P: Print out data to printer.

 SPACE BAR: Enter edit mode.(See more info below.)

 + or -: Increment or decrement sync length by one.

 CURSOR UD/RL: Move cursor around data table.

 < : Delete one byte from cursor spot.

 > : Insert one byte ($00) at cursor spot.

 DEL: Delete bytes (from end of table)

 K.J. REVEALED TRILOGY PAGE [152] (C)1990 K.J.P.B.

