 POWER C SHELL ENVIRONMENT ASSEMBLERS

 PROGRAMMERS' WORKSHOP CONFERENCE 5/25/89

 by SYSOP JL

 There are two 65xx symbolic assemblers which operate in the Power C Shell

 environment. In order to use these assemblers you must have Power C from

 Spinnaker Software. Then, using one of these assemblers, you can assemble

 your own machine language functions callable from C or even write stand

 alone ML programs with the features afforded by the assemblers and the

 Power C linker.

 The two assemblers are ASSM.SH and ASM.SH. The ASSM.SH program is

 downloadable from the Programmers' Workshop / C Language / Source

 library. ASM.SH is part of the Power Assembler package from Spinnaker or

 the update to it, Buddy V10 available from the program author, Chris

 Miller. ASSM.SH runs under the C64 version of Power C while ASM.SH runs

 only under the C128 version of Power C.

 FEATURES

 CASSM is a fairly basic symbolic assembler. Source code is SEQ PETASCII

 files on disk, typically created with the Power C editor. Its main

 feature is that it produces relocatable .obj output files on disk which

 are then linked using the Power C Linker. The linker is used to

 optionally specify a load address and to link other .obj files together,

 producing a loadable or executable file.

 ASM is a full featured symbolic assembler. Source code is SEQ PETASCII on

 disk or RAMDISK, typically created by the Power C editor or by the EBUD

 editor (ED128) which is part of the "Buddy" system (Power Assembler).

 Assembler features are essentially the same as the family of Buddy

 assemblers including temporary labels, long labels, conditional assembly,

 offset assembly and user definable macros for Buddy V10. Like ASSM it

 creates relocatable .obj files that are combined using the Power C Linker

 to create loadable or executable disk files.

 USES

 There are three typical uses for these 65xx assemblers. 1) Modifying

 Power C library functions; 2) Creating ML functions for use in C programs

 written for Power C; and 3) Creating stand alone ML programs in a modular

 fashion. The procedures to follow for each of these purposes are covered

 below.

 MODIFYING POWER C LIBRARY FUNCTIONS

 You may wish to modify Power C library functions for special purposes or

 to create new functions closely related to existing library functions.

 The steps to do this are as follows...

 1. Use RA.SH (from downloaded file RA.ARC) to disassemble the .obj

 library module from one of the Power C disks. The result will be a

 ASSM.SH compatible source file on the work disk. This is done in C64

 mode using the C64 Power C version, but a C128 library function can

 be disassembled in this fashion also.

 2. Use a SEQ file editor (such as ED.SH in Power C) to make the desired

 changes. If you are using Buddy's ASM.SH to assemble the file on a

 C128 then you also need to make the (minor) source format changes for

 compatibility with this assembler. Include notes on the changes made

 and reasons for the changes.

 3. Use ASSM.SH or ASM.SH to assemble the modified function. This file

 should be written to a work disk other than the Power C library disk

 along with the edited source. Now do either of two things to update

 the Power C library. Give the new file a different name than the old

 file, copy it to the library disk, and update the .l library file

 which references it using the LIB.SH program on the Power C disk; or

 Rename the old .obj function to something else (to keep it), then

 copy the new function to the library disk giving it the same name as

 the original function.

 4. Test the revised function thoroughly.

 CREATING A NEW ML FUNCTION FOR POWER C

 The steps to create a new ML function for use with your Power C programs

 are as follows :

 NOTE: THROUGHOUT THE FOLLOWING EXAMPLES THE CHARACTER ' (SEMI-QUOTE) IS

 USED IN PLACE OF THE UNDERLINE CHARACTER. The Power C editor allows for

 the use of this character as part of a label and C functions use it

 extensively. However, not all word processors, printers and SEQ file

 readers will allow for it printing. Thus the substitution in this text.

 This is particularly important to note with regard to explicit

 definitions of labels of Power C library functions such as C$FUNCT¤INIT

 including the underline character, which are shown here in as

 C$FUNCT'INIT.

 1. Write the source code for your ML function using a SEQ file editor

 such as the Power C editor or Buddy's EBUD. Documentation for the

 ASSM.SH assembler is in the C-ASSM.ARC file. The Buddy ASM.SH

 assembler is basically the same as BUD or EBUD except that .BAS,

 .ORG, .OFS, and .OBJ pseudo-ops are not allowed. There is no specific

 documentation on ASM.SH in the Power Assembler package, but Buddy V10

 from Chris Miller includes enough info to use it. The following

 machine specific info may be helpful...

 - C64 Power C : The C64 Power C parameter stack starts at $033c and

 moves upwards. Zero page function work area is available at $4b-$74.

 Upon entering your function, to get access to parameters passed from

 the C function call, include the following code...

 jsr c$funct'init ; get parameter stack index

 stx temp ; in case you need it again

 lda param'stack,x ; $033c indexed by the parameter stack pointer

 Parameters will be passed in the internal format defined in the Power

 C manual; INT parameters and pointers as 2 byte parameters in

 low-byte / high-byte order; long int, short and char are converted to

 INT; float and double passed as float with 5 bytes per value; etc.

 Using ASSM.SH, any label, including the callable function name, that

 is to be accessed from C or other ML functions must be defined in a

 .def statement somewhere in the source code. These identify the

 labels in your ML for which the linker needs your .obj file to

 resolve.

 .def internal'label,internal'label,...

 ASSM.SH also requires that you define labels that you use which are

 external to your function. This is done with the .ref pseudo-op.

 .ref external'label,external'label,...

 For example, if your C function is called from C with BELLS(ch); and

 returns with a status byte saved at the static location BELLS'STATUS

 then the following code elements would be needed for ASSM.SH...

 .ref c$funct'init

 .ref c$chkout,c$chrout

 .def BELLS, BELLS'STATUS

 ;

 parms = $033c ; Power C C64 Parameter stack location

 bells = * ; called from external procedure

 jsr c$funct'init ; get parameter stack index

 stx temp ; save it for return params

 lda parms,x ; get parameter ch in .A

 sta bells'status ; accessible externally

 rts

 temp .byte 0 ; local index save

 bells'status .byte 0 ; globally accessible static variable

 You can return a function value to C by storing it on the parameter

 stack at the original X register index offset. In the above example

 you could have returned the char value bells'status as a return

 parameter to the C call with the following code in place of the sta

 bells'status...

 ldx temp ; get the original offset

 sta parms,x ; save the byte (char) return value

 lda #0 ; dummy high byte set to zero

 sta parms+1,x ; save it as the high byte of the return

 In the C64, BASIC ROM is banked out but I/O and Kernal ROM are

 visible. Save your source file with a .A or .ASM extension (for

 example, bells.a) to indicate it is an assembler source code file.

 - C128 Power C : The C128 parameter stack is at $0400 and moves

 upward to $05ff. C programs start at $0600. Zero page temporary work

 area is available at $a0. If you need extensive zero page you should

 relocate page 0. As with the C64 configuration, a jsr c$funct'init

 will return the parameter stack pointer in the X register. Buddy's

 ASM.SH assembler requires that labels in your routine that are

 intended to be externally referenced be defined with a .ext pseudo-

 op. For the example in the C64 info above...

 .ext bells,bells'status

 This pseudo-op takes the place of the .def pseudo-op in the ASSM.SH

 assembler. ASM.SH does not require you to explicitly identify

 external references (the .ref pseudo-op in ASSM.SH).

 C128 C programs are linked to run in C128 RAM bank 1 with only RAM in

 context. To get access to I/O you must save the REU configuration

 register ($ff00), set it to I/O in context ($7e), and restore it to

 bank 1 RAM ($7f) before returning. Access to the Kernal routines is

 through common RAM long JSR's generally called by a jsr to a C

 library function with a label c$ plus the Kernal function name.

 Disassemble c$kernal.obj for a complete list.

 2. Assemble your new ML function using ASSM.SH (C64) or ASM.SH (C128).

 For example, the shell call...

 ASSM BELLS.A or ASM d:BELLS.A d:BELLS (d: is the drive)

 will load the assembler from the system disk, assemble BELLS.A from

 the work disk and save the relocatable object file (linker file) as

 BELLS.OBJ to the work disk. ASSM.SH replaces the .A extension of the

 source file name with the .OBJ extension when it saves the file.

 ASM.SH requires you to give a file name to save the output file to

 and it automatically adds a .OBJ to the end of the file name. With

 ASM.SH, if you do not specify a output file name the assembler will

 run and produce error reports, output listings requested, etc but

 will not save the assembled file.

 3. Write a small driver program in C or ML and test your routine.

 4. To link your new routine with a C program, give the relocatable

 object file name to the linker after your C compiled object file(s)

 have been linked and before the library files. For example...

 link

 > bellstest.o

 > bells.obj

 > ^

 STAND ALONE ML PROGRAM DEVELOPMENT

 The Power C shell environment assemblers may also be used in developing

 stand alone ML programs for the C64 or C128. This way you can create

 separately assembled, relocatable modules that can be linked with the

 Power C linker, LINK.SH. When used in this way you do not have to be

 concerned about the C memory configuration or usage. You have complete

 control of memory use just as you would with any assembled ML program.

 Each assembly module that is separately assembled would have to include

 the appropriate .ext, .ref and .def pseudo-ops as discussed above.

 One additional thing that is needed by the linker that is not obvious...

 a label MUST be defined in one of the program modules as an entry point

 when the file is loaded. This beginning execution address must have a

 label MAIN and that label must be defined as external by a .ext or .def

 pseudo-op. When the linker combines the relocatable object modules

 including the one with the MAIN label it will produce a JMP to MAIN at

 the load address supplied to the linker. Use the -S option on the LINK

 call line to produce the stand alone executable file. This linker command

 is documented in the Power C manual. If -S and an address is specified

 then that address will be the program load address. Otherwise the program

 will be linked to load at the start of BASIC as a load and run program

 with a SYS to the start address.

 REFERENCE FILES

 Here is a list of files in the Programmers' Workshop library which will

 be of interest in connection with this topic. All files are located in

 the Programmers' Workshop / Software Libraries / C Language library in

 either the Source or Utility sections as noted.

 File name Uploader Date Sublib Description

 ---------------- ---------- -------- ------ --------------------------

 cassm64stuff.arc Mark MM 9/12/88 Source Example assm src files

 cassm.arc Mark MM 4/14/88 Source The assm.sh files

 asm.sh-info Mark MM 4/14/88 Source Text info on using ASM.SH

 newshell.arc Dan B15 2/4/89 Utility C64 C Shell assm src code

 ra.arc Mark MM 9/12/88 Utility C64 C symbolic disassembler

