
Official
AmigaDOS 2
Companion

by Bob Ryan

Special Foreword by Stephen Robbins,

Group Publisher, AmigaWorld

Complete guide to using the

new AmigaDOS 2

Definitive reference for Amiga

3000,2000 & 500 machines

Plus: Workbench menus & tools,

Preferences, Commodities

Exchange, Extras, DOS &

the Shell, ARexx...and more!

Official

AmigaDOS 2

Companion

By Bob Ryan

Special Preface by

Stephen C. Robbins

Publisher

AmigaWorldMagazine

IDG Books Worldwide

San Mateo, California 94402

Official

AmigaDOS 2

Companion

By Bob Ryan

Special Preface by

Stephen C. Robbins

Publisher

AmigaWorldMagazine

IDG Books Worldwide

San Mateo, California 94402

AmigaWorld Official AmigaDOS 2 Companion

Published by

IDG Books Worldwide, Inc.

155 Bovet Road, Suite 730

San Mateo, CA 94402

(415)358-1250

Copyright © 1990 by IDG Books Worldwide, Inc. All rights reserved. No part of this book may be

reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise)

without the prior written permission of the publisher.

Library of Congress Catalog Card No.: 90-84500

ISBN 1-878058-09-6

Printed in the United States ofAmerica

10987654321

Editor-in-Chief: Michael E. McCarthy

Associate Editor: Jeremy Judson

Production Manager: Lana Olson

Edited by Linda L.B. Laflamme, Editor, AmigaWorld Tech Journal

Interior design by Bill Hartman

Production by Hartman Publishing

Distributed in the United States by IDG Books Worldwide.

Distributed in Canada by Macmillan of Canada, a Division of Canada Publishing Corporation.

For information on translations and availability in other countries, contact IDG Books Worldwide.

For sales inquiries and special prices for bulk quantities, write to the address above or call IDG Books

Worldwide at (415) 358-1250.

Trademarks: Amiga is a registered trademark of Commodore Business Machines, Inc. All other brand

names and product names used in this book are trademarks, registered trademarks, or trade names oftheir

respective holders. IDG Books Worldwide and AmigaWorld are not associated with Commodore or any

other product or vendor mentioned in this book. AmigaWorld is a trademark ofIDG Communications/

Peterborough, Inc.

Limits ofLiability/Disclaimer ofWarranty: The authors and publisher ofthis book have used their best

efforts in preparing this book and its contents, and in testing the code. Nevertheless, IDG Books

Worldwide, Inc., IDG Communications/Peterborough, Inc., and the author make no representation or

warranties with respect to the accuracy or completeness ofthe contents ofthis book or the program listings

given or the programming techniques described, and specifically disclaim any implied warranties or

merchantability or fitness for any particular purpose, and shall in no event be liable for any loss ofprofit

or any other commercial damage, including but not limited to special, incidental, consequential, or other

damages.

li

Dedication

To Rosemary Gibson Ryan and Hannah Rose Ryan, with all my love.

111

Acknowledgements

I would like to thank Linda J. B. Laflamme, my friend and editor, for making this book as

intelligible as it is. Linda made me a better writer. I'd also like to thank my friends Dan

Sullivan, for pitching in on Chapter 7, and Lou Wallace, for the general commiseration that

only a fellow author under deadline can supply.

Speaking of deadlines, I'd like to acknowledge the patient help and understanding ofMike

McCarthy ofIDG Books. Mike and the rest of the staff at IDG Books have been a pleasure

to work with.

I would like to thank the many folks at Commodore who answered my questions about

Amiga OS 2.0 and to acknowledge the help of Keith Masavage, formerly Amiga Product

Manager, in keeping me up to date with the latest versions of the software.

Finally, I would like to thank my family and friends — especially my wife Rose and

daughter Hannah — for the sacrifices they've made so that I could write this book. I'm

back!

(The publisher would like to thank especially Bill Murphy, without whom this book would

not have been possible.)

IV

Table of Contents

Foreword xv

Introduction xvii

1 IntroducingAmiga OS 1

Amiga OS Defined 2

The Amiga Computer 2

Handling Multitasking 4

The Structure ofAmiga OS 8

Amiga OS and You 8

The Interface Question 10

The Workbench Approach 11

Shell Around AmigaDOS 12

Programming with ARexx 13

Conclusion 14

2 Workbench Basics 15

Configuring the System 15

Disk Action 16

The Workbench Metaphor 17

Tools, Drawers, and Projects 17

Files and Icons 18

Disks and Volumes 19

Drawers and Windows 20

The Pointer and the Mouse 23

The Selection Button 23

The Double-Click 24

Dragging Icons 27

Extended Selections 29

The Menu Button 29

The Workbench Screen 33

Windows In-Depth 33

Gadgets and Requesters 38

File and Font Requesters 42

Conclusion 42

3 Workbench AtWork 43

Menus on Workbench 43

The Workbench Menu 44

The Window Menu 50

The Icons Menu 59

Tools Menu 72

Conclusion 73

4 Preferences 75

Preferences Editors 75

Hot Links 76

The Two-File Solution 76

The Preferences Menus 77

The Font Editor 81

The IControl Editor 83

The Input Editor 87

The Overscan Editor 89

The Palette Editor 92

The Pointer Editor \ 93

The Printer Editor 94

The PrinterGfx Editor 97

The ScreenMode Editor 100

The Serial Editor 105

The Time Editor 107

The WBConfig Editor 109

The WBPattern Editor 109

Using Preferences with Floppy-Drive Systems Ill

Permanent Solution 112

Conclusion 114

VI

5 The Contents of Workbench 115

The System Drawer 116

AddMonitor 117

BindMonitor 117

The CLI and RexxMast Tools 119

DiskCopy and Format 119

The FixFonts Tool 120

NoFastMem 120

SetMap 121

The Utilities Drawer 123

The Clock 123

The Display Tool 126

The More Tool 128

The Say Tool 130

The Commodities Exchange 132

Commodity Tool Types 134

The Exchange Commodity 135

AutoPoint 137

Blanker 137

IHelp 137

NoCapsLock 138

The Expansion Drawer 138

The WBStartup Drawer 139

Conclusion 140

6 Extras and Beyond 141

The Extras Drawers 141

The Calculator 142

CMD 142

Colors 143

GraphicDump 145

IconEdit 145

IconEdit Menus 150

IconEdit: A Practical Example 154

InitPrinter 155

KeyShow 155

• •

Vll

MicroEMACS 157

MEmacs File Handling 158

More on Buffers 159

Windows Plus .. 161

PrintFiles 163

The VideoAdjust Drawer 163

HDToolBox 164

Change Drive Type 166

Bad Blocks 168

Low-Level Formats 168

Partitioning a Drive 169

Updating the Operating System 172

Conclusion 172

7 AmigaDOS and the Shell 173

AmigaDOS Nomenclature 174

The Shell Window . 175

Interpreting Input 177

Editing the Command Line 181

Copying Between Windows 182

Command History 183

AmigaDOS File Structure 184

Filenames and Pathnames 186

Relative and Absolute Pathnames 187

Directory Assignments 188

Disk Names 192

Command Templates 193

Keyword Modifiers 197

Pattern Matching 198

Console Window 200

Command Redirection 201

Conclusion 203

8 Delving into AmigaDOS 205

File Information Commands 206

List: Listing Files 206

• • •

Vlll

Assign: Assigning Logical Directories 211

Resident 215

The CD Command 217

Type 218

Search: Looking Inside Files 220

Dealing with Processes 222

Alias and UnAlias 222

ChangeTaskPri: Changing Priorities 223

NewCLI and NewShell: Starting and Ending Shells 224

LoadWB: Starting Workbench 226

Path: AmigaDOS Pathways 226

Which 227

The Prompt String 228

Run: Background Processes 229

The Stack Command 229

SetFont: Changing The Shell Font 230

Fault and Why: Explaining Errors 231

Status Report 232

Break: Remote Control 233

Dealing with Devices 234

Info: Information Please 234

Date and SetClock: Timely Matters 236

Avail: Available Memory 238

The Version Command 239

CPU: Processor Report 240

Conclusion 241

9 Manipulating Files and Devices 243

Working with the File System 243

Copy: Copying Files 243

Rename: Renaming Files 248

Relabel: Renaming a Volume 251

Delete: Deleting Files 252

Setting Protection Bits 253

Lock: Write Protecting a Volume 255

SetDate: Setting a Time/Date Stamp 255

ix

FileNote: Commenting on Files 256

MakeDir: Creating Directories 257

Join: Concatenating Files 257

Sort: Sorting Text Files 258

MakeLink: Creating Links Between Files 262

Install: Making a Volume Bootable 263

DiskDoctor: Repairing Damaged Volumes 264

TheAmigaDOS Editors 265

The Edit Command 265

The Ed Command 266

Working with Devices 272

Mount: Adding Devices 274

AddBuffers: Adding Disk Buffers 276

Binddrivers: Ties That Bind 277

The DiskChange Command 277

RAD: The Lost Command 278

Conclusion 278

10 AmigaDOS Command Scripts 279

Running Command Scripts 279

The Execute Command 280

Conditional Statements 285

Environment Variables 287

Local Variables 288

Global Variables 290

Echo: Printing to the Screen 291

Console Control Characters 292

Ask: Getting Input 293

Using Labels in Scripts 295

The Wait Command 297

Eval: Evaluating Expressions 298

The Startup-Sequence File 301

IconX: Running Scripts From Workbench 306

The IPrefs Command 307

Conclusion 307

11 Introduction to ARexx 309

ARexx Roots 310

Language Basics \ 310

Constants and Variables 312

Basic Operations 313

Basic Input and Output 315

Branching Instructions 316

Looping Structures 319

Making a Selection 322

Extending ARexx with the Built-in Functions Library 323

Filing I/O with ARexx 325

Working with External Hosts 327

TheAddLib Function 327

Hosts and Ports 328

Putting it All Together 329

Conclusion 329

12 Practical ARexx 331

The Example Program 331

The Annotated Listing 332

The Unannotated Listing 345

Program Improvements 348

Conclusion 349

A AmigaDOS Command Reference 351

B ARexx Quick Reference Guide 371

ARexx Instructions 371

The Built-in Functions 374

The RexxSupport Library 381

C Glossary 383

D AmigaDOS Error Codes 387

Index 391

XI

Foreword

By Stephen C. Robbins

Publisher

AmigaWorldMagazine

In 1985,1 had the privilege of using a new computer that was soon to be marketed by

Commodore Business Machines. Although it was uncompleted, the potential of the Amiga

was evident, encompassing true multitasking, 4,096 colors, a graphical interface, Motorola

68000 technology with custom co-processing chips, the potential ofMS-DOS

compatibility, and (the most attractive feature of all) a street price of under $1,000. We

were sure this computer was going to be a winner.

Almost five years later, we still feel the same. Today, the Amiga is a well-respected platform

in the computing industry, still delivering one of the best values when comparing price to

performance. The Amiga can be found in Walt Disney Studios being used by professional

animators, in Orlando at the Universal Studios controlling earthquake-simulation

machinery, at the SuperBowl lighting up the sign machine, and in many cable television

stations across the country running weather charts, handling titling and special effects, and

displaying program information. More importantly, the Amiga has become accepted as the

premiere platform in the video industry due to its NTSC compatibility, as well as low-cost,

high-quality hardware and software options.

Yes, the Amiga has come a long way, and AmigaWorldMagazinehas been there from the

beginning, covering all the developments within the marketplace. We launched

AmigaWorldbecause of our strong belief in the successful future of the Amiga. We have

reported on the market, reviewed products, featured unique and interesting applications,

and as a consequence are considered the foremost authority in the Amiga arena. Yet, most

important of all, we have taught users how to achieve maximum results with their

computers through tutorial information.

In the beginning, due to the Amiga's proprietary operating system and the lack of

understandable sources of information on its use, the majority of letters sent to the offices

ofAmigaWorldpertained to the use ofAmigaDOS. In 1988, we published our first book,

TheAmiga Companion, in response to that need. TheAmiga Companion has sold over ten

thousand copies to date. With changes to the Amiga's custom chips and the release of a new

operating system, Amiga OS 2.0, the need for a new, more complete source of information

has become very evident. This volume, AmigaWorld OfficialAmigaDOS2 Companion, was

Xll

born out of the need for an easy path to follow through the maze of learning a new

operating system and all its attendant features and benefits.

AmigaWorld OfficialAmigaDOS 2 Companion will guide both the advanced and the

fledgling user of the Amiga through all aspects of the Workbench, which has been enhanced

to include new capabilities and functionalities for the advanced user. It will provide an

overview ofhow the Amiga works and how to get the most from the faster, better-

performing interface made possible by the Amiga OS 2.0. ARexx, the built-in support for

communication and control of outside devices and software, is also covered. Most crucial of

all, the book points out inaccuracies in the documentation included with Amiga OS 2.0.

As users of the Amiga ourselves, we know AmigaWorld OfficialAmigaDOS2 Companion,

will become an indispensable guide for attaining the best performance from your Amiga.

The book should be kept next to your computer at all times, ready to help whenever needed

through crashes and system errors. (There are no more gurus in 2.0.) Although the Amiga

and its operating system have come a long way since 1985, this book is essential to

mastering the computer successfully.

Due to recent changes in the Amiga, I am confident of the continued success of the

computer we have all been enjoying for five years. The entire staff ofAmigaWorldMagazine

hopes that, through the continued publication of our magazine and by offering special

products such as this book and our videotapes, we will be able to increase your enjoyment,

productivity, and creativity with the Amiga computer. We look forward to your continued

satisfaction with the services we provide.

Xlll

Introduction

Read Me First

Don't you just love those "read-me" files that so many software developers include

on their release disks? Whenever I see one, I let out a groan, because it invariably

means that something has been left out of the documentation. I really shouldn't

complain, however, because without read-me files I wouldn't be able to use the

software fully.

In fact, after using Workbench and Kickstart 2.0 for a while, I actually started to

yearn for some read-me files. The Using the System Software manual that comes

with Amiga OS 2.0 was completed before the software was finished, so it contains

a lot of mistakes and omissions. I've come to look upon our book, the AmigaWorld

OfficialAmigaDOS2 Companion, as a giant, printed read-me file for Amiga OS

2.0.1 hope you will too.

Some Do's and Don'ts

The philosophy behind this book is that the best way to learn about your Amiga

computer is to use it. Consequently, I present a lot of examples in this book that I

hope you will follow with your computer. This book is meant to be read as you

work at your Amiga.

Before starting out with Amiga OS 2.0, you should make backups of all your

important system disks so that you can reconstitute your system in case something

goes wrong. You learn how to copy disks in Chapter 2 (the drag method) and

Chapter 3 (the menu method).

Most of the examples in the book involve disk activity of one kind or another. It is

critically important that you do not eject a disk while the disk-activity light is on!

Always wait at least a couple ofseconds after the light goes off before ejecting a

disk. Ifyou do not, you could corrupt the contents of the disk.

One more thing about examples: Many ofthem, particularly in the AmigaDOS

section (Chapters 7-10), require that you enter a control character. You enter such

a character by pressing the Control key and the character key at the same time. In

the book, I use the abbreviation CTRL for the Control key. When you see the

notation CTRL-C, you should hold the Control key down and press the C key.

XIV

Jumping In

Chapter 1 provides a general introduction to computer operating systems, the

Amiga operating system, and user interfaces. It isn't essential to understanding

what your Amiga does, so you can defer reading it to a later time ifyou want to

jump right in. Chapters 2 through 6 cover the Workbench interface. This is a

departure from TheAmiga Companion, which only covered the Shell. I feel that,

with the improvements made to Workbench and Intuition, this expanded coverage

is essential. Workbench is now a viable alternative to the Shell for all types of users,

even experts.

Chapters 7 through 10 document the Shell interface and the AmigaDOS

commands. They provide plenty of opportunities for hands-on experimentation.

Chapters 11 and 12 provide an introduction to ARexx. This fascinating language is

what multitasking is all about. Because of the sheer impossibility of documenting

ARexx in two chapters (it needs a book the length of this one), I opted to make

Chapter 11 an example-strewn introduction to the language and use Chapter 12 to

present a fully annotated program that uses the ARexx interprocess

communications features. I like to think that Chapters 11 and 12 give you the

information you need to tackle Commodore's murky documentation on the

subject.

Following Tradition

This book owes much, especially in its hands-on philosophy, to its predecessor,

AmigaWorkTs TheAmiga Companion by Rob Peck, which covered AmigaDOS

1.3.1 was the primary editor of that book, and I hope that this one does justice to

the standards set by Rob in his work. Rob Peck died this past summer; he is missed

both for the person he was and for the enthusiasm he brought to the Amiga

community.

In the introduction to TheAmiga Companion, Rob invited readers to write him

with questions and problems. I extend the same invitation to you. Drop me a letter

with a self-addressed stamped envelope care ofIDG Books. I don't promise to

answer every letter, but I'll do my best.

Bob Ryan

New Ipswich, NH

November, 1990

XV

XVI

f ' ' V:^":^I

When Commodore introduced the original Amiga computer, the Amiga 1000,

in the summer of 1985, most people focused on its stunning graphics. Its

4,096 colors were a welcome change at a time when all Macintoshes had only

black-and-white displays, and most IBM PCs and compatibles provided either

text-only or limited CGA (color graphics adapter) displays.

More surprising than the graphics, however, was the fact that the Amiga could

run more than one program at a time. Called multitasking, this was a standard

feature of mainframe and minicomputer systems: It was unheard of on a desk

top computer.

So unique was the Amiga's multitasking, and so amazing that Commodore was

able to pull it off in a machine with as little as 256K bytes of memory, that

many people simply didn't believe it. (By contrast, IBM and Microsoft recom

mended a minimum of 3,000K bytes — that's three million bytes — of

memory to run OS/2, their multitasking operating system.) For a long time

after the Amiga was introduced, you could still run into industry skeptics who

discounted Amiga multitasking as "not true multitasking." They seemed un

willing to believe that a computer that sold for $1,200 dollars could have an

operating system far in advance of anything available for a Macintosh or an

IBM PC/AT.

Although the Amiga hardware — the chips and boards that make up your

computer — provides important support for multitasking, it is the operating

system — Amiga OS — that ultimately lets you run more than one program at

a time. This book, in conjunction with the documentation you received with

your computer or with the Amiga OS 2.0 enhancement kit, will explain the

workings ofversion 2.0 ofAmiga OS and show you how you can get the most

out of your Amiga system.

1

AmigaWorld Official AmigaDOS 2 Companion

Amiga OS Defined

As you'd expect, the OS in Amiga OS stands for operating system. Amiga OS

contains the programs and routines that let you or your applications control

your computer hardware. Amiga OS controls all aspects ofyour machine's

operation, from the painting of pixels on your monitor to the allocation of

memory among different programs.

Because of the precedent set in the IBM world, where the predominant operat

ing system is MS-DOS, users have taken to referring to the entire Amiga oper

ating system as AmigaDOS. This is technically incorrect, although, as the title

of this book demonstrates, this usage is now common in the Amiga commu

nity. Unlike MS-DOS, which controls all aspects of the system, AmigaDOS

refers specifically to the parts of the operating system that control disk drives

and other external devices. To keep things clear, I will use AmigaDOS to refer

to only a specific subset ofAmiga OS throughout this book.

Amiga OS, like all software, is intangible. You can't see software or hold it in

your hand — although you can hold a disk that stores software code. The best

you can do is see the effects ofsoftware — the picture a graphics program cre

ates on your monitor or the letter a word processor outputs to your printer.

Software consists of instructions that your hardware can understand. Conse

quently, to understand Amiga OS, you also need some understanding of the

hardware it controls.

The Amiga Computer

Like all computers, every Amiga model consists of a central processing unit

(CPU), memory, and input/output (I/O) systems that let you get programs

and data into and out of the computer (see Figure 1-1). The CPU understands

hundreds ofvery primitive commands, such as "add what is in location 16 to

what is in location 1808 and store the results in location 500" and "move the

contents of location 3486 to location 890534." What gives a computer its

power, therefore, is not these simple basic operations that it performs, but the

speed at which it performs them. Moving a bunch of bits around in memory

may not seem like a big deal, but when the result is a stunning 3-D animation,

you begin to get a feeling for the sophistication possible by executing several

million of these primitive instructions every second.

Introducing Amiga OS

; ltepbri> ;\

Figure 1-1 Generic Computer System

As is every computer system, the Amiga is composed ofthreeprimary subsystems: the

CPU, memory, and an I/O scheme. The "brains" ofa computer, the CPU is the device

that executes the instructions ofboth the system software and applications software. In

the Amiga, as in allpersonal computers, the CPUconsists ofa single chip.

Memory in apersonal computer is referred to as RAM, which standsfor random-access

memory. RAM is a temporary storageplaceforprograms and data. When you run a

program, it loads into RAM, from where its individual instructions arefetched and

executed by the CPU Data used by theprogram also must be stored in RAM before the

CPUcan access it.

The outside world communicates with the CPUandRAM via the I/O (input/output)

system. I/O devices include the keyboard, video display, mouse, disk drives, and serial

andparallelports. For example, to run aprogram under Workbench, you double-click

on its icon. This creates a message to the operating system software, which ofcourse

executes on the CPU, to load theprogram into memoryfrom the disk drive. Both the

messagefrom the mouse and the loading oftheprogramfrom disk are examples ofI/O

functions.

The Amiga hardware differs from other personal computers in one fundamen

tal way— the Amiga supplements the CPU's operation with a set of custom

chips that perform certain functions better than the CPU. The custom chips

not only speed up the tasks they assume from the CPU, they also leave the

AmigaWorld Official AmigaDOS 2 Compani :>n

CPU free to do more of the operations foi which it is best suited. The result is

a system that performs far faster than one that relies upon the CPU alone.

The Amiga custom chips are called Agnus, Denise, and Paula (see Figure 1-2).

(The names are a little programmer whim »ey.)

Agnus contains two coprocessors: the copper, which controls the video display,

and the blitter, which excels at moving chunks ofmemory around. (Jay Miner,

the chip's designer, used to refer to the bli :ter as the bimmer, for bit-map ma

nipulator. The name never caught on, however, because it had already been

appropriated by yuppies to describe their Javorite automobile.)

Denise controls the graphics output, while Paula handles sound output and

floppy disk access. Together, these chips g ve the Amiga much of its speed,

especially in graphics applications.

One of the major functions ofAmiga OS s to provide access to all the special

ized hardware that makes up an Amiga. To put it simply, the Amiga hardware

is so complex that few programmers are capable ofwriting software that con

trols it directly. Amiga OS provides a set of standard routines that program

mers use to control the Amiga hardware. I n effect, when you write a program

for the Amiga, you don't program the har< Iware; rather, you program the sys

tem software. Only Commodore's systems programmers need know how to

program the hardware directly.

Handling Multitasking

In addition to providing the routines that et programs control the hardware,

Amiga OS provides routines that keep pro grains from stepping on one

another's toes. Remember, the multitasking Amiga can run two or more pro

grams at once. You can, for example, write a letter while your telecommunica

tions package downloads your messages from MCI Mail and your spreadsheet

recalculates your monthly budget. Amiga OS must keep track of these pro

grams, making sure they all share properly the Amiga's hardware resources (see

Figure 1-3). If they don't, the results can be disastrous.

Introducing Amiga OS

Figure 1-2 Amiga Simplified Block Diagram

TheAmiga is unique amongpersonal computers in its heavy reliance uponfast,

sophisticated custom chips that enhance system performance by taking some ofthe

processing load offofthe CPU, A diagram oftheAmiga shows the three custom chips.

The advantage ofthese chips is that they are customized to perform specificfunctions,

CPUchips by contrast are more general-purpose devices.

Note that the Amiga also has a different memory system than do other computers.

Memory on the Amiga comes in two types:fastRAMand chip RAM, Chip RAM is

accessible by both the CPUand the custom chips. Any data that the custom chips work

on, such as graphicspictures and musical notes, must reside in chip RAM, Fast RAM,

which is memory accessible only to the CPU, is where the operating system stores

programs and data that do not have to be in chip RAM, The termfastRAM refers to

thefact that the CPUalways has access to this memory, without having to waitfor the

other chips tofinish. In contrast, the custom chips can sometimes lock the CPUout of

chip RAM while they areperforming theirfunctions.

The Amiga's I/O system is also designedfor speed While most computer systems shuttle

all I/O through the CPU, theAmiga has dedicatedpathwaysfor direct-memory access

(DMA), which lets I/O devices access memory with very little helpfrom the CPU, As do

the custom chips, thisfrees the CPUfor more important tasks.

AmigaWorld Official AmigaDOS 2 Companion

Figure 1-3 Multitasking in Action

Multitasking is commonly described as the ability to run multipleprograms at one

time. Forpracticalpurposes, this description is correct; technically, however, it is a

total lie.

With the exception ofexotic machines withparallelprocessing abilities, every CPUis

capable ofexecuting only one instruction at a time. That instruction, ofcourse, can

comefrom only oneprogram. So, what is multitasking?

Multitasking is the ability ofan operating system to switch so quickly between

programs that they all appear to be executing simultaneously. The operating system

actuallypartitions time on the CPUfor the differentprograms in memory. When a

program reaches the end ofits allotted time or when it must waitfor a relatively slow

event such as a disk access, its status is saved by the operating system and it isput into

limbo until its next turn on the CPU.

Consider, for example, two programs that need to access a printer connected

to the Amiga's serial port. The first program follows all the Amiga protocols

and uses Amiga OS functions to gain control of the port. Amiga OS puts a

lock on the port to keep other programs from accessing it while the first pro

gram is printing. If, however, the second program doesn't go through Amiga

OS, and instead writes directly to the serial port hardware, it never learns of

the Amiga OS lock and will scramble the output of the first program, as well as

Introducing Amiga OS 7

its own, and will probably crash the system. If the second program had been

written correctly to access the serial port only through Amiga OS, it would

have been locked out of the port until the first program finished, avoiding a

disastrous collision. Amiga OS thus provides the means to prevent collisions

between two programs that need to access the same hardware resources. It is

the traffic cop of the Amiga (see Figure 1-4).

^. -1, ^ '

I

Serial

Part

Garbage -ty&

<-

B;
1->

Figure 1-4 Resource Sharing

One ofthe more complicatedjobs ofa multitasking operating system is lettingprograms

share resources gracefully. When two programs want access to the same resource, the

operating system must arbitrate.

In (A), two programs need to access theprinter connected to the Amiga serialport.

Program 1 usesAmigaDOS to access theprinter device and acquire use oftheport.

Program 2, contrary to the rules ofAmigaprogramming writes directly to the serial

port registers. The result is a disaster.

In (B), Program 2 is a well-behaved application and attempts to access theprinter

through AmigaDOS. When itfinds that anotherprogram has a lock on theport, it

waitspatiently until theport isfree and then outputs its data to theprinter. The result

is the graceful sharing ofa resource between two programs.

8 AmigaWorld Official AmigaDOS 2 Companion

The Structure ofAmiga OS

The hardware resources that Amiga OS must control include memory, the

serial and parallel ports, floppy disks, the sound channels, expansion hardware

(such as hard-disk drives), and the CPU itself. Amiga OS controls input from

the keyboard and mouse by channeling it to the appropriate program and

controls the machine's basic display output through the custom chips. Because

writing one program to take care of all these details would be very difficult,

Commodore has divided Amiga OS into manageable fragments called libraries

and organized these libraries into a layered hierarchy.

At the lowest level — closest to the hardware — is Exec, made up of routines

that talk most directly with the Amiga hardware. Exec is the master controller

on the Amiga. It controls multitasking, manages the applications programs,

and handles communication between different programs. On top of Exec are

such things as the graphics library, used to access the Amiga graphics, the DOS

library, used to access disk drives and other peripherals, and the Intuition li

brary, used to create the Workbench interface. At the top of the hierarchy—

furthest removed from the hardware — are the applications programs.

Workbench, the Shell, and ARexx are applications programs. They sit on top

of the hierarchy ofAmiga system software (see Figure 1-5). Unlike other appli

cations programs, which let you perform functions such as writing a letter or

painting a picture, these three applications let you control and automate the

operation ofyour computer. While other applications are designed to meet a

need in the outside world, Workbench, the Shell, and ARexx are designed to

help you control the world inside your computer. They provide an interface to

the functions ofAmiga OS.

Amiga OS andYou

Why do you need to access the functions ofAmiga OS? The simple answer is

to have greater control over your computer and get more work done faster.

Specifically, you can break the functions you'll want to perform with Amiga

OS into three categories:

• Managing files

• Configuring your system

• Automating tasks

Introducing Amiga OS

Figure 1-5 Structure ofAmiga OS

Amiga OS uses layers to insulate bothprogrammers and usersfrom the complexities of

the Amiga system. The lowest level ofsystem hardware are Exec and the software

devices, which communicate directly with the hardware. Above Exec are the special

function libraries such as layers, library, graphics, library, intuitionAibrary, and

dos, library. Applications sit on top ofthe libraries andgain access to the Amiga

hardware through them.

The layers oflibrariesprovide different levels ofabstraction to Amigaprogrammers

and users. When using Workbench, you are actually manipulatingfeatures ofthe

Intuition andDOS libraries, and through them the layers, graphics, andExec libraries

that talk directly to the hardware. Butyou don V have to know anything about all these

layers in order to access theirfunctions. The same is trueforprogrammers. Ifa simple

upper layer like the DOS libraryprovides thefunctions they need, they don't have to

delve into the arcane world ofExec and the hardware device controllers. As in a house,

these layersprovide insulation.

File Management: This is the most basic and important task you can perform

with Amiga OS. Everything you do with a computer involves files. When you

run a program, you are actually instructing AmigaDOS to load the program

file from disk and execute it. When you save a picture file or an animation,

you are creating a disk file. Files are how computers store programs and data.

You have to know how to manage files; how to store them, copy them, move

1U AmigaWorld Official AmigaDOS 2 Companion

them around, and back them up. Without knowing how to do these things

you could wipe out a year's worth ofwork in a few seconds.

System Configuration: Your Amiga gives you a bewildering array of options

for customizing your system. Using Amiga OS, you can select your printer and

control aspects of its output, change the fonts used by the system, even control

the output resolution ofyour display. As you learn more about the system, you

can experiment with different configurations to come up with the one that

best suits your requirements and tastes. Once you settle on one, you'll be

amazed at how such a personalized environment makes you a far more efficient

user.

Task Automation: Amiga OS provides a number ofways to automate certain

tasks. The Shell, for example, lets you string together commands you would

normally enter one at a time. ARexx is even more powerful in this regard. It is

a programming language that gives you a lot of flexibility in automating Amiga

OS functions. It also lets you create "super applications" by combining the

functions of different applications programs that support it. ARexx is certainly

more complex than Workbench or the Shell — it can also be far more power

ful.

The chapters that follow examine how you can manage files, configure the

system, and automate tasks with each interface available. Which interface you

choose depends upon what you need to do and how much control you want to

have over the system.

The Interface Question

Back in the early 70s, the dark ages of mainframes and batch processing, the

interface to a computer was usually a punch-card machine. When I was in

college, I'd write a program in long hand, type each line onto a punch card,

and take the entire deck to a bin where it sat until one of the computer opera

tors ran my program. Normally, I had to wait overnight for the results ofmy

program. Consequently, just weeding the typing mistakes out of my card deck

usually took me a couple ofweeks . Obviously, punch-card machines aren't the

best way to get a computer to do what you want.

With the proliferation of minicomputers in the mid-'70s, punch-cards were

replaced by video display terminals (VDTs). These hooked you directly to a

large computer and let you work interactively with it. You could run programs

and manage files in real time. VDTs were an enormous improvement over
punch cards.

Introducing Amiga OS A JL

When personal computers became popular in the late '70s and early '80s, they

used an interface similar to those of minicomputers. Like VDTs, early personal

computer displays were text-only. You typed in a command, and the computer

executed it. You still had to know the syntax of the commands and be a fairly

good typist.

During the 1970s, however, a group of people at the Xerox Palo Alto Research

Center (PARC) had a better idea. They wanted to make computers and com

puting accessible to more people. Their research resulted in the development

of the Xerox Star, a graphics-based workstation that featured windows, menus,

and a mouse as a pointing device. The Star didn't make a very big splash com

mercially, but it did make an impression on the folks at Apple, who incorpo

rated elements of its interface into the ill-fated Lisa and then the Macintosh.

By the time the Amiga was launched, such easy-to-use, graphical-user inter

faces (GUIs) were all the rage.

In 1985, the Amiga was unique among personal computers in that it offered

both a VDT-style command-line interface (CLI) and a Macintosh-style GUI.

Although the original CLI has since been replaced by the Shell and the current

Workbench (version 2.0) bears little resemblance to the original, Commodore

has remained steadfast in its commitment to giving you a choice as to how you

would like to work with your computer. Both interfaces have a lot going for

them.

TheWorkbench Approach

As a GUI, the primary aim of the Workbench is to give you an easy-to-use

interface that is consistent across different applications. The key here is consis

tency.

In the old days of personal computing, every program had its own interface.

That is, every program had a unique way of letting you get at its functions. For

example, a word processor might require that you enter CTRL-L to access the

part of the program that loads a file, while your spreadsheet might use ESC-D,

to bring up a menu of disk functions, from which you would choose Load.

Early personal computers such as the Apple II and the IBM PC had no stan

dard way of giving you or a programmer access to their functions. Thus, no

two programs worked alike, creating a lot of confusion. If you used four or five

different applications regularly, you had to know four or five different sets of

commands. Ifyou had some programs you didn't use often, you were con

stantly fishing through manuals refreshing your memory about their command

structures.

1JL AmigaWorld Official AmigaDOS 2 Companion

The aim of graphical interfaces such as Workbench is to end all that. By using

the Intuition library that Workbench is built upon, programmers automati

cally ensure that their programs share a similar look with other Amiga pro

grams. Moreover, pull-down menus safeguard you from having to learn a lot

of obtuse commands to use a program. In fact, if a program has a well-con

structed menu structure, you may not even have to read the manual to use the

program. In effect, the menus guide you through the program's operation. A

menu item labeled "Load File" is a lot clearer than CTRL-L.

While Workbench has always been an easy-to-use interface, it has lacked the

consistency across applications that characterizes programs running under the

Macintosh Desktop interface. Commodore is as much to blame as the software

developers. When the Amiga was released, Commodore didn't supply many of

the standard tools, such as a file requester, that are available to programmers

on the Mac. Neither did Commodore promulgate and enforce a strict set of

style guidelines for Amiga programs. As a result, early Amiga programs used

the Workbench interface in a variety ofways.

Workbench 2.0, the Workbench component ofAmiga OS 2.0, addresses this

consistency problem. With it, Commodore has given programmers a richer set

of standard tools, such as standard file and font requesters. (You'll learn more

about these in the next chapter.) The company has also written new interface

guidelines for developers and given Workbench a beautiful new look. The old

Workbench was so ugly, with its flat, chunky graphics that many developers

didn't want to use it. Workbench 2.0 will attract developers because it will

make their programs look much better.

Given that Workbench is so easy to use, you might wonder why Commodore

bothers to provide other interfaces to Amiga OS. The answer is that Work

bench isn't as flexible or as powerful as the Shell or ARexx. Simplicity and

consistency has a price, which Workbench pays by being less powerful than the

other Amiga OS interfaces.

Shell Around AmigaDOS

The Amiga version of a command-line interface, the Shell, is a program that

lets you execute AmigaDOS commands by entering them from your keyboard.

The Shell is the second generation Amiga command-line interface. The first

was the CLI, which came with all versions ofAmiga OS through version 1.3.

(The CLI on Workbench 2.0 is synonymous with the Shell.) The CLI was a

simpler version of the Shell.

Introducing Amiga OS A 3

Many of the functions the Shell gives you access to are also available from

Workbench. The advantage of the Shell is that it gives you a finer degree of

control over AmigaDOS functions. For example, let's say you want to list all

the files in a directory whose names contain the letters "budget90." By typing

the command

LIST#?budget90#?

in the Shell, you will get the list you want, but the Workbench offers no com

parable way to do this. The Shell also lets you string commands together into

scripts so that you can access multiple commands by entering a single com

mand from the keyboard.

If you've worked with command-oriented computers such as MS-DOS or

UNIX machines, you will have no trouble learning the Shell. On the other

hand, if the Amiga is your first computer, you may find the Shell a little mys

terious and intimidating. (You'll be in good company. After all, the people at

Xerox PARC invented the graphical user interface to get away from things like

the Shell.) Don't be scared away by the Shell; by following the examples in this

book, you will get a good grasp ofhow the Shell works. Even if you're prima

rily a Workbench user, you'll find that it sometimes pays to dip into the Shell.

Programming with ARexx

The final Amiga OS interface covered in this book is the ARexx programming

language. Some people may quibble with my characterization of a program

ming language as an interface, but I think ARexx more than fits the bill as an

interface. Like the Shell's scripting function, ARexx lets you string AmigaDOS

commands together to automate repetitive tasks. Because it is a language, how

ever, ARexx gives you a greater degree of control over scripts than does the

Shell, letting you introduce such aspects as arithmetic.

Although ARexx is an important interface to AmigaDOS, its most important

function is to tie together different Amiga programs. ARexx lets you get inside

programs and use their individual functions at will. For example, a single

ARexx program can retrieve data from a disk using your database program,

send the data to an associate over a modem using your telecommunications

package, then format and print the data using your word processor.

Because it is a programming language, ARexx is far more complicated than

Workbench or the Shell. The ARexx section of this book will give you a

grounding in the language and provide a launching pad for your explorations.

14 AmigaWorld Official AmigaDOS 2 Companion

Conclusion

Individually, the three interfaces to Amiga OS are quite powerful. Collectively,

they give you unprecedented control over the operation ofyour Amiga. As you

become proficient with Workbench, then the Shell, then ARexx, you'll dis

cover that you are using each at different times for different tasks. No one

interface is perfect for everyone, because no one interface can do it all. That's

why the Amiga has three, and why you should become familiar with them all.

When you power up your computer you set in motion the booting procedure.

Booting is computer lingo for the series of steps a computer takes to prepare

itself for real work. It comes from the phrase "pick yourself up by your boot

straps" and can be used as a verb (boot up the machine) or a noun (perform a

cold boot). Early personal computers, such as the Apple II, contained only

enough software routines in permanent ROM (read-only memory) storage to

read from the boot disk the code that loaded the disk operating system. Most

of the Amiga OS software required by your machine resides in the 512K of

ROM installed on the Amiga motherboard (main circuit board). The Amiga

booting procedure's most important function is to configure the machine to

your specifications.

Configuring the System

Turning on your Amiga sends a hardware reset signal to the CPU, which

causes the machine to execute the boot code contained in ROM. This code

consists of software routines that perform a number of diagnostic tests on your

system and initiates the Autoconfig (short for auto-configuration) procedure.

Autoconfig tells the system about any expansion devices attached to your

machine.

Added to Amiga OS with version 1.2, Autoconfig makes living with your com

puter a lot easier. All Amiga expansion devices, whether they install internally

or externally, use a standard set of signals to communicate with the Amiga.

The Autoconfig portion of the standard lets an expansion device, such as a

memory board, tell the system what the board is and how much space it occu-

15

16 AmigaWorld Official AmigaDOS 2 Companion

pies in the system memory map. The system responds with the addresses it will

use when accessing the device.

The best part ofAutoconfig is that you don't have to understand the preceding

paragraph to take advantage of it. Unlike MS-DOS expansion boards that

require you to set all kinds ofjumpers to keep them from stepping on each

other's toes, Amiga expansion devices handle all that mumbo jumbo for you.

DiskAction

After the system configures all your expansion hardware, it searches for the

boot disk. Originally, the Amiga could only boot from a floppy-disk drive.

Version 1.3 of the Amiga OS changed that by letting you boot from a hard-

disk drive whose interface card conformed to Commodore's autoboot stan

dard. If you're using an Amiga 2000HD, 2500, or 3000, your system will boot

from the internal hard drive. The same is true for an Amiga 2000, 1000, or

500 to which you've added an autobooting hard-disk system. On the other

hand, if you're using a floppy-drive system or if you've deactivated the

autobooting feature of your hard disk, you will have to boot from a floppy

disk.

If you're booting from a floppy drive and you haven't yet put a Workbench

2.0 disk in the drive, the system will prompt you to do so when you turn on

the machine. After you have inserted a bootable disk, the procedure is the same

as for autobooting hard drives.

At this point, the startup code searches the boot disk for a file called S:Startup-

sequence. This file is an AmigaDOS script that contains the names of the com

mands your system executes to configure itself. Script files in general, and

Startup-sequence in particular, are covered in detail later in the book. For now,

you need know only that one of the last commands in the standard Startup-

sequence file supplied with every Amiga is LoadWB.

Commands listed in script files are actually programs, and LoadWB is the

program that loads and manages the Workbench interface. (LoadWB is a mis

nomer. AmigaDOS loads LoadWB from the disk; the program does not load

itself.) Workbench is simply another program running on your Amiga. While

applications programs perform a specific function, Workbench makes control
ling your system and running programs easier.

Workbench Basics 1 /

The"Workbench Metaphor

If, like me, you had trouble distinguishing a simile from a metaphor in high-

school English classes, you are probably not very happy seeing the word associ

ated with your computer's interface. You can thank the folks at Apple for

bringing the word into the vocabulary ofpersonal computers. When it intro

duced the short-lived Lisa computer in 1983, Apple characterized Lisa's

graphical interface as a metaphor for how people work at their desks. This

"desktop" metaphor didn't catch on, however, until it showed up in the

Macintosh.

This metaphor is a good characterization of a graphical user interface's func

tion. Computers deal in intangible quantities; all information inside your com

puter consists of a series of+5 and +1 voltages. Thus, when you use a com

puter, you are doing nothing more than changing the state of millions of tiny

electrical switches from +1 volts to +5 volts and vice versa. Software interprets

these voltages as the 0 and 1 bits that make up all the instructions and data in a

computer. The purpose of a graphical user interface is to relate the intangible

aspects of computers to a concrete experience that everybody understands. The

metaphor behind the Workbench, a program that exists only as Os and Is, is

the workbench that you might have in your basement or garage.

What is a workbench? It's a place where you do work, store the tools to do the

work, and keep the objects you're working on. The Workbench program (see

Figure 2-1) turns your Amiga into a workbench where you perform work with

tools and store the tools and objects you are using.

Tools, Drawers, and Projects

At a workbench, you get things done by manipulating tools. You hammer

nails, drill holes, and saw wood. On the Workbench, your tools are programs;

they let you manipulate data to get things done. For example, a word-process

ing tool lets you manipulate characters, words, paragraphs, even entire docu

ments. A painting tool lets you manipulate the individual pixels (picture ele

ments) that make up computer graphics.

Naturally enough, you store Workbench tools in drawers. These let you store

similar tools together and label the drawer with a name that describes its con

tents. You can even store Workbench drawers within drawers, permitting you

a great amount of latitude over how you organize your tools.

18 AmigaWorld Official AmigaDOS 2 Companion

wbstartup ttonitorstore

syst e« ;

tools,info
nonitorstore.Info
nonitorsiore
loots

pionUors

monitors,tnfo
files ~ 16 directories -

Figure 2-1 The Workbench Interface

Like allgraphical user interfaces, Workbench combines windows, icons, menus, anda

mousepointer to letyou controlyour computer. Unlike earlier versions, Workbench

2.0features a sophisticated3-D look.

In the real world, drawers exist in a chest. On the Amiga Workbench, you find

drawers on disks. Drawers and their contents exist on your disks as files. As

you'll see later, disks are a special form of drawers.

Finally, the objects that you manipulate with your tools are called projects. A

project can be a letter created with a word processor or an animation created

with an animation program. Projects created and manipulated with tools are

stored in drawers. Thus, like tools, they are disk files. Another name for a

project is a data file.

Files and Icons

In general, a file is a collection of related information (either program instruc

tions or data) that resides on a disk. Files provide the permanence needed to

make computers useful. In fact, your computer would be useless if it couldn't

store things in a file, as you would lose all your work when you turned off the

Workbench Basics 19

power. Files give your computer persistent memory— memory that lasts after

you turn your computer off. Every file has a name so that you or the Amiga

OS can locate it. The job of the AmigaDOS subsystem is to store and retrieve

disk files.

Because they are files on a disk, tools, drawers, and projects aren't something

you can see and touch. To let you access them, the Workbench displays icons

(small pictures) that represent these different objects.

Icons (see Figure 2-2) provide information about the the different objects on

the Workbench. For example, the icon for a word-processing program might

look like a typewriter or a pen. For practical purposes, you can consider an

icon to be the object it represents. When you start up a program by double-

clicking on its icon, you should think of that as manipulating the program

directly, rather than simply manipulating a representation of the program.

Icons are actually files that contain the information about how they will appear

on the Workbench display and about the tool, project, or drawer they repre

sent. Icon files always have names that end with .info and are called "dot info"

files. The first part of an icon's name is the file it represents. For example,1

Amiga OS 2.0's clock program is named Clock and the icon file is called

Clock.info. Many Amiga files do not have corresponding .info files and thus

don't normally appear on the Workbench display. You'll learn more about

these files later.

Disks andVolumes

Disks and disk icons are special on the Amiga. When you first boot your sys

tem, the only icons you see are those that represent the disks active in the sys

tem. For a floppy-based system, these will usually be Workbench2.0 and Ram

Disk. A hard-drive system may have more active disks, because you can divide

the space on a hard disk into more than one partition, each ofwhich acts as a

separate disk.

Workbench calls disks volumes to differentiate between the disk and the drive

that holds it. Thus, Workbench2.0 is the name of a particular volume, not the

name of the drive that disk is in. When Workbench refers specifically to a disk

drive, it uses the drive's AmigaDOS device name. The device name for the first

internal drive in an Amiga is DFO: (for Disk Floppy 0). The second internal

drive on an Amiga 2000 or 3000 is called DF1:, and the first external drive is

DF2:. The first external drive on an Amiga 500 is DF1:. Workbench uses

these device names instead ofvolume names for such functions as copying

disks.

20 AmigaWorld Official AmigaDOS 2 Companion

prefs Calculator chap5.txt

$y&ten2.8 utilities dpairtt dino.plc
Qj Mork 2

Work

Trashcan

Figure 2-2 Workbench Icons

Workbench usesfive types oficons: disk, drawer, tool, project, andgarbage. At left are

some disk icons. System2.0 is the version ofthe Workbench2.0 disk that Commodore

installs on Amiga 3000 hard drives. Utilities andPrefs are drawer icons. The third

column shows a group oftool icons. The top one is the default tool icon Workbench uses

whenyou choose the Window Show All menu item. Thefourth column consists of

project icons. Again, the top one is the default used whenyou choose Window Show All.

The last column shows the standard iconfor the Trashcan. (Note:A trashcan must

always be in a window.) You can create and modify icons using the IconEdit tool in

the Tools drawer.

The Ram Disk is unique; as a piece of hardware, it doesn't exist at all! The

Ram Disk is a section of memory that AmigaDOS reserves and treats like a

disk drive. The advantage is that you can access files in the Ram Disk much

faster than you can on a physical disk drive. The negatives are that a Ram Disk

uses your precious memory and that the information in it is lost when you

turn offyour machine. Use it only as a temporary storage place.

Drawers andWindows

Workbench and its counterparts on other computers (Finder on the Mac,

Windows 3.0 on MS-DOS machines, Presentation Manager on OS/2 comput-

Workbench Basics 21

ers, and so on) are often called windowing interfaces because they present in

formation inside rectangular areas (windows) on your monitor display.

Windows regulate communication between you and the program that creates

the window. A program sends its output to you via its windows and cannot

send data to the video display outside the boundaries of its window or win

dows. Conversely, you can only input data to a program when you have se

lected its window using the mouse pointer — more on this in the next section.

On the Amiga, then, a window constitutes a "virtual" terminal. (An aside: I

love the way the computer industry uses the word virtual to describe anything

that isn't real. Imagine how many championship banners would be flying at

Fenway Park if the Red Sox could label all their losses "virtual wins.") When

you select the output window of a particular program, the keyboard and the

window connect to create a virtual terminal patterned after the physical ones

connected to big, time-sharing computers. You can thus have one terminal for

each program running on your system, ensuring that you send input to the

proper program and that each program keeps its output separate from that of

the others.

Because Workbench is a program that manages your system and launches

other programs, it uses windows in a unique way. The Workbench's output is

the icons that represent the objects you can manipulate. As do other Amiga

applications, it displays these icons in windows. The difference is that in

Workbench you can manipulate icons to change the output ofWorkbench.

You can move an icon from one window to another.

As I noted above, Workbench lets you organize tools and projects in drawers.

Like other objects on the Workbench, drawers have icons you can manipulate.

The unique property of drawers is that when you open one, Workbench dis

plays a window that shows the objects in the drawer. Each drawer opens a

window to display its contents, even if the contents include another drawer.

As an example, consider Figure 2-3, which shows the window that displays the

contents ofmy drawer called Word Processing. Inside is my word processing

program and three drawers: Book, Articles, and Letters. Each of these drawers

contains other drawers. The Book drawer, for example, contains a drawer for

every chapter of this book. By organizing my files and drawers in a logical

manner, I can find files quickly and easily. This may seem trivial when you

have only ten or twelve files and one floppy disk, but when you amass thou

sands of files on a hard disk the ability to find your files can't be taken too

lightly. Drawers let you organize your disks and view their files in a way that

makes sense.

22 AmigaWorld Official AmigaDOS 2 Companion

Workbench

Systen2.8

Work
Word Processing

aj Word Processing

flrticles

telecor

Dpatnt

i <=> jj | [■—- il j
Chapteri Chapter4 Chapter? Chapter18

Chapter? Chapters Chapter8 ChapteMt

f—i—ill
Chapter3 Chapters Chapters Chapter12

Figure 2-3 Organizing a Disk

Logically arranged drawers help you tofindfiles quickly. I organize my word

processing drawers by the types offiles I store in each. I keep materialfor this book

separatefrom materialfor articles, and keep both separatefrom correspondence. In the

book drawer, I use other drawers to segregate materialfor the individual chapters.

Although disk icons look different from drawer icons, they work in a similar

fashion. When you open one, Workbench displays a window that shows the

contents of the disk, which may include one or more drawers. (A disk window,

however, can never contain the icon of another disk.) The amount of free

space on the disk is stated in its drag bar. The distinction between a disk win

dow and a drawer window is small but important: Ifyou drag an icon between

two windows of drawers on the same disk, you are moving the object. If you

drag an icon between the windows of two drawers on different disks, you are
copying the object.

Windows on Workbench, therefore, have an important role: They display the

contents of drawers and disks, providing the tangible objects you can see. To

let you manipulate the objects, however, Workbench relies upon the mouse.

Workbench Basics JLO

The Pointer and the Mouse

The Workbench metaphor goes only so far; on the Amiga's Workbench you

can't simply reach out your hand and grab the icon for a spreadsheet program

or a document as you can a hammer or board. To manipulate the objects you

see, Workbench supplies a pointer that you control with your mouse.

When you move your mouse on the surface of a desk or table, the mouse

mechanism sends signals about its relative movement to Intuition, the part of

Amiga OS that manages the windowing interface. Intuition interprets these

signals and moves the system pointer (also called the mouse pointer) on the

display screen to correspond to the physical movement of the mouse. Thus,

the mouse gives you a way to navigate the Workbench screen and point at

icons. The mouse's two buttons let you act on what you see.

The Selection Button

Before you can work with an object on the Workbench, you have to select it;

that is, indicate to the Workbench program you want to work with the object.

This is the job of the left mouse button.

The left mouse button lets you select icons, gadgets, and windows. To select a

project icon, for example, you first move the pointer over the icon and then

click (press and release) the left mouse button once. The image of the icon will

change to a complementary image to show that it is selected and active (see

Figure 2-4). Note that when you select an icon, you automatically make inac

tive the icon on which you previously clicked. When you click outside of any

icon on the Workbench, you make all selected icons inactive.

The same procedure applies to windows. If you have multiple programs run

ning on your Workbench, you can select one by moving the pointer to any

where within the window and clicking the left mouse button. Only one win

dow can be selected at one time. The selected window then becomes the active

window; its menus appear in the screen menu bar and it can take input from

the keyboard. (The menu bar is the province of the right mouse button, which

is discussed below.) You can tell when a window is selected because its title bar

(containing the name of the window) will be blue and its scroll bars, if present,

will be white (see Figure 2-5). Inactive windows are all grey. When you first

boot up, the Workbench window is the only one open (although you will learn

how to change that) so it will naturally be the one selected.

24 AmigaWorld Official AmigaDOS 2 Companion

opy ed-startup

SystenZ.B utilities dpaint dino.pic

prefs Calculator chap5.txt

Copy ed-startup

Sj>sten2.8 utilities dpaint dino.pic

leulater chap5.txt

Figure 2-4 Selected Icons

The top group oficons are unselected. The bottom group are the same icons after they

have been selectedandare active. Unselected icons on the Workbench appear to be

above theplane ofthe display, and selected icons below theplane. Commodore creates

this effect by the use ofwhite and black lines. Unselected icons have white borders on

their left sides and tops; black borders on their right sides and bottoms. Selected icons

use opposite imagery. Some icons display alternate imagery when they are selected

Icons are not the only object that you can select with the left mouse button.

You also use it to select gadgets. For example, if you've opened a drawer into a

window, you can close the window by clicking on the close gadget in the up

per-left corner of the window. More on gadgets later.

The Double-Click

While a single-click on an icon selects that object, a double-click — clicking

twice in rapid succession — opens the object. Opening an object has different

effects depending upon the type of object. With a disk or a drawer icon, for

example, double-clicking opens the corresponding window, which displays the

contents of the disk or drawer (see Figure 2-6). So you can see for yourself,

let's open your boot disk.

Workbench Basics 25

ol Workbench

Figure 2-5 Selected Window

You can tell the currently selected window on the Workbench by the condition ofits

title bar (drag bar) andscrollgadgets. On unselected windows, the title bar and scroll

gadgets are grey. On the selected window, however, the title bar is blue and the sliders

in the scrollgadgets are white. The selected (active) window is the only one that receives

inputfrom the keyboardand mouse.

The display you get when you boot your system depends upon whether you

booted from a floppy drive or a hard-disk drive. If you booted from a floppy

and had no other disks in the drives, you will see two icons on your screen —

one labeled Ram Disk, the other Workbench2.0. Ifyou booted from a hard

drive, again with all other drives empty, you will see three icons: Ram Disk,

Work, and System2.0. Depending on your system, open either the Work-

bench2.0 or the System2.0 disk by double-clicking on its icon. You should see

a display similar to Figure 2-7. The window will open to show the disk's name

in the upper left and the icons that represent the contents of the disk.

26 AmigaWorld Official AmigaDOS 2 Companion

oI Workbench

Figure 2-6 Icons and Windows

The relationship between icons and windows is straightforward: Opening a disk or

drawer icons causes Workbench to display a window showing the contents ofthe icon.

An icon and its window have the same namet as shown here by the System2.0 icon and

window.

You can open tools in two ways. Ifyou open a tool icon by double-clicking,

Workbench will load and run the corresponding program. If you open a

project icon, Workbench will find the tool that created the project, load the

tool, and then load the project into the tool. Thus, you can load and run your

word processor by simply double-clicking on the icon of any data file created

by the word-processing program.

Workbench Basics 27

o1 Workbench

Figure2-7 WorkbenchZO Window

Theprimary boot diskforfloppy-disk-based machines is Workbench2.0. When opened,

it reveals one tool, the Shell, five drawers, anda trashcan. IfyourAmiga came with a

hard drive already installed, your boot disk isprobably called System2.0 and may

contain some drawers normallyfound on the Amiga Extras disk.

Dragging Icons

The left mouse button can perform other actions on icons if you press the

button down and hold it. This both selects the icon and "glues" it to the

pointer. For example, to copy a document to a second disk for safe keeping,

you simply press and hold the left mouse button with the pointer on the file's

icon and move the pointer, with the attached icon, over the icon of the second

drive. Once it is positioned over the disk icon, you release the button, and

Workbench copies the file and its icon to the second disk (see Figure 2-8),

leaving the original file on the first disk.

28 AmigaWorld Official AmigaDOS 2 Companion

a I Workbench

a I Ran Disk 188% I ED Me

Figure 2-8 Copying a File

To copy afile using the select button, you simply move thefile's iconfrom the drawer of

one disk to the drawer ofanother. First, click on the icon and hold down the select

button. Next, drag the icon to the new drawer. Finally, release the button and

Workbench willplace a copy ofthefile in the new drawer.

Ifyou have only one disk drive, copying a file to a second disk is more in

volved. The easiest method is to copy the file from the original disk to the

Ram Disk. Then, eject the first disk from the drive and insert the second disk.

(Warning: Never eject a disk while the disk-drive light is on. Always wait a few

seconds after the light goes off before pushing the disk-eject button.) Finally,

open the Ram Disk, grab the icon you want to copy (by pressing and holding),

and move it to the second disk, releasing the button when the pointer is posi

tioned over the second disk. Don't worry about that extra copy in the Ram

Disk, you can delete it immediately ifyou need the room; otherwise, it will

disappear when you turn your machine off.

In addition to dragging tool and project icons, you can also drag drawer and

disk icons. Like dragging tools and projects, dragging a drawer icon to another

drawer or window on the same disk moves the drawer and its contents. Drag

ging it to the disk icon of another disk or to a drawer or window of another

disk, copies the drawer and all its contents to the second disk.

Workbench Basics 29

You can also copy entire disks by dragging disk icons. If you drag the icon for

a floppy disk to the icon of another floppy disk, you will copy the contents of

the first disk to the second, erasing the latter's contents. Ifyou drag any disk

icon to the icon of a hard-disk partition, Workbench creates a drawer in the

hard-disk partition with the same name as the source disk and then copies as

much of the contents of the source disk into the new drawer as will fit.

Extended Selections

Although you can have only one active window at a time, you can have more

than one icon selected at a time. Ifyou wanted to move several icons from the

System drawer to the Ram Disk, for example, you would not have to select and

move them individually. You could select them all and then move them as a

group, simplifying the process of copying a series of related files. Workbench

also offers menu functions that work on multiple icons simultaneously. You

can select more than one icon with the selection button via two procedures.

Once you've selected one icon, you can select another without deactivating the

first by holding down either of the Shift keys while you click on subsequent

icons. To see how this works, open the System drawer on your boot disk and

select the DiskCopy icon. Now, hold down one of the Shift keys and single-

click on both the NoFastMem and SetMap icons. When you are through,

you'll see three selected icons.

New to version 2.0, the second method of activating more than one icon is

called drag selecting. To demonstrate, press the selection button while the

pointer is inside the System window but not over any icon. Hold the button

down and move the pointer. Note the rectangle that follows the pointer. Move

the rectangle so that it encompasses a number of icons. When you release the

button, all the icons that fall partially or completely within the box are se

lected. Note that even with many selected icons, the next time you click on an

icon, all the others will become inactive unless you use the Shift key.

The Menu Button

A graphical user interface not only lets you select and open objects easily, but it

also gives you the ability to send commands to programs without great effort.

The right mouse button gives you this capability. It lets you control your

Amiga's pull-down menus, and is thus called the menu button.

30 AmigaWorld Official AmigaDOS 2 Companion

Every program running on the Amiga can create its own menu system (al

though not all do). Workbench is no exception. To see the menus provided by

Workbench, select (with the left mouse button) the main Workbench window,

the one where the disk icons reside. At the top ofyour display, you'll see a

black bar that reads "Workbench 2.0 xxxxxx graphics mem xxxxxx other

mem." Now, press and hold the menu button. The bar now changes to reveal

the four Workbench menus — Workbench, Window, Icons, and Tools (see

Figure 2-9).

Sjisten2.8

Figure 2-9 Workbench Mentis

Youfind the Workbench menus in the title bar ofthe Workbench screen. They are

visible when you hold down the menu button on the mouse. The Icons menu remains

ghosted untilyou select an icon.

If, while still holding the menu button, you move the mouse pointer to the

Workbench menu, the items in the menu will appear (see Figure 2-10). As you

can see, the items in the Workbench menu are Backdrop, Execute Command,

Redraw All, Update All, Last Error, Version, and Quit. As you move the

pointer over each of the other menus, their contents will drop down in turn.

Workbench Basics 31

Figure 2-10 The Workbench Menu

To display a menu's items, hold the menu button down and move thepointer to the

menu. Items in the Workbench menu affect the Workbench environment as a whole.

Accessing a menu item is easy. Once again, hold the menu button and pull

down the Workbench menu. Now, while still holding the button, move the

pointer down to the first item, Backdrop. The Backdrop item will be high

lighted — it will appear blue on white. To perform the Backdrop function, or

any menu item function, you simply release the menu button while the item is

highlighted (see Figure 2-11). So, release the button (your finger must be get

ting tired).

What happened? At first glance the Workbench window seems to be gone.

Your disk icons are no longer inside a window, and they aren't surrounded by

a border. They are, in fact, still in the Workbench window, but the nature of

the window has changed. It has become a backdrop window, which, by defini

tion, doesn't have a title bar, borders, or any of the other normal window at

tributes. Also, a backdrop window is always behind all other windows on the

screen. In fact, with previous versions ofWorkbench (1.3 and older), the

Workbench window was always a backdrop window. It's only with Work

bench 2.0 that you can manipulate the main Workbench window as you can

other windows.

32 AmigaWorld Official AmigaDOS 2 Companion

Systen2.B

Figure 2-11 The Backdrop Menu Item

To choose a menu item, move thepointer over it while holding down the menu button.

The item — the Backdrop item, in this case — willshow up as blue on white. By

releasing the button you execute the Backdropfunction. Note the keyboard equivalents

for Backdrop, Execute Command, and Quit.

Ifyou don't like the backdrop Workbench window, hold the menu button

and pull down the Workbench menu again. This time, the Backdrop item has

a check next to it, meaning that you've turned it on. Now, move the pointer to

the Backdrop item again and release the button. Your Workbench window is

back!

Backdrop is an example of a toggle item. It works like a toggle switch, such as

an ordinary light switch. Press it once, and it turns on; press it again, and it

turns off. When you first choose Backdrop, you are turning the backdrop op

tion on; choosing Backdrop again turns the option off. Note that Backdrop

only works on the main Workbench window, not on any drawer or disk win
dows.

Workbench Basics

TheWjrkbench Screen

Unlike the other objects discussed, the black bar that holds the Workbench

menus is not connected to a window. It's a part of the Workbench screen.

On the Amiga, a window is a region that displays a program's output. A screen

is a region that displays windows and defines the environment a window ap

pears in by its colors and pixel resolution. A screen also makes menus available

to its subordinate windows. Any window that a program opens will inherit the

colors and resolution of the host screen and use that screen's menu bar. This

lets you run programs that require different resolutions on your Amiga. For

example, if your word processor needs to run on a screen that is 640 pixels

wide, and you want to run your paint program at 320 pixels to get the maxi

mum number of colors, you can run the programs at the same time on differ

ent screens. Any program that requires a number of colors, resolution, or dis

play mode — such as hold-and-modify (HAM) — that isn't supported by the

Workbench screen can open its own screen. Unless you are a programmer, the

only thing you have to know about screens is that they control access to

menus.

Try an experiment that demonstrates this relationship: Open your Work-

bench2.0 or System2.0 disk. From the window, open the Utilities drawer. In

the Utilities drawer, open the Clock icon. The Clock icon starts the Clock

tool, which produces the Clock window. Move your pointer to the Clock win

dow and select it by clicking anywhere within its borders. Now, hold down the

menu button. Notice that the menu bar no longer carries the Workbench

menus, but now contains the menus for the Clock program. When you press

the menu bar, it will always show the menus for the currently selected window.

To get back the Workbench menus, you need only click inside the main

Workbench window or one of its subordinate windows.

Remember, no matter where a window is on your display, its menu bar, which

is active only when the window is selected, will always be found on the screen

title bar.

Windows In-Depth

As you can tell by looking at your display, there is more to a window than a

rectangular array of pixels. Around the edge of most windows are a number

of items called gadgets. These permit you to perform standard functions on

windows.

34 AmigaWorld Official AmigaDOS 2 Companion

To see how gadgets operate, look at a sample window. Open your Work-

bench2.0 (or System 2.0) disk, and then the Utilities drawer. Like all windows

created by Workbench, this one has seven gadgets. Clockwise from the top-

left, they are the close gadget, drag gadget (the title bar), zoom gadget, depth

gadget, vertical scroll gadget, sizing gadget, and horizontal scroll gadget (see

Figure 2-12). These let you control various aspects of a window to give you

more control over your Workbench environment.

Figure 2-12 Window Gadgets

The standard window gadgets are close, drag zoom, depth, vertical scroll, sizing and

horizontal scroll The scrollgadgets are a combination ofaproportionalgadget and
two button gadgets.

Close Gadget: As its name implies, the close gadget closes a window. If the

window is associated with a disk or a drawer icon, the window will simply

disappear from your display. If another program created the window, the close

gadget will usually shut down the program and remove the window. Ifyou

click on the close gadget on the main Workbench window, however, the sys

tem displays a message — called a requester, because it is requesting input —

asking you ifyou are sure you want to shut down the Workbench window. In

most circumstances, your answer should be no. Closing Workbench now

would leave you no way to control your computer! When you learn how to use

the Shell, you will be able to close Workbench safely. To see the close gadget

Workbench Basics 35

in action, select the one on the Utilities drawer. It removes the drawer from

the Workbench.

Drag Gadget: The drag gadget is the thick horizontal bar at the top of a win

dow that doubles as the window's title bar. (Note that the name of its icon is

the same as the name of its window.) The drag bar lets you move a window

around on its screen. To do so, first, reopen the Utilities drawer, then position

the pointer anywhere on the title bar. Next, press and hold the select button.

Now, move the pointer. Note that the window moves as if hooked to the

pointer. This is called dragging the window. In general, pressing and holding

the select button on an object, and then moving the object, is called dragging.

The drag bar of a disk window and a drawer window differ in one respect only.

A disk window has more information in its drag bar than the window name.

For example, the Workbench disk window on my Amiga 2000 says "Work-

bench2.0 97% full, 29K free, 850K in use." The figures tell you the amount of

space you have left on the disk to store files. An abbreviation for kilobyte, K is

a measure of computer storage that corresponds roughly to 1000 bytes. Each

byte can hold a single character, such as the letter N.

Note that because the Amiga allows for multiple screens at the same time,

screens also can have drag gadgets in their title bars so that you move a screen

to see the one behind it.

Zoom Gadget: On the right side of the drag bar, you'll find two gadgets. The

left-most one is the zoom gadget.

Commodore's documentation on the zoom gadget is among the most non

committal writing I've read. According to the manual, the zoom gadget

"changes the size of a window." Well, not necessarily. It also states that "the

zoom gadget on the Workbench2.0 disk window expands the window to the

full width and height of the screen." This is only true part of the time as well.

To use a zoom gadget correctly, you have to remember that each one has a

memory. More precisely, each one has access to the information the system

maintains about its window. It uses this information to decide what to do

when you select the zoom gadget.

To see what I mean, select the zoom gadget on the Utilities window. The win

dow shrinks to its minimum size. Now, select the gadget again. The window

opens to its original size. The zoom gadget, therefore, is similar to a toggle

switch.

The confusion comes from the fact that you can set how big or small the win

dow becomes andwhtrc the window appears when you hit the zoom gadget.

For example, with the Utilities window at its original size, drag it as far as you

AmigaWorld Official AmigaDOS 2 Companion

can to the bottom left ofyour display. Now, select the zoom gadget. The win

dow moves to its original position without changing size. Select the zoom gad

get again, and the window returns to its new position at the bottom left of the

display. What is going on?

The process is not very mysterious. Every window keeps information on its

previous position and dimensions in addition to its current position and di

mensions. When you select the zoom gadget, you're telling the window to

move to its last position and resize itself to its last dimensions. There need be

no correlation between these two positions. The Utilities window shrank to its

minimum size the first time you clicked on the zoom gadget only because that

is the default size Workbench presets. You can change the presets with the drag

bar and the sizing gadget.

Depth Gadget: To the right of the zoom gadget, in a window's upper-right cor

ner, is the depth gadget. Selecting the depth gadget not only makes a window

active, but it also affects the window's placement on the Workbench screen.

When opened, each window on Workbench is assigned a unique depth that

tells Workbench which windows or parts ofwindows to hide and which parts

to display when two or more windows overlap. Windows are assigned a depth

in the reverse order of their opening, with newly opened windows on top of

older windows. Even when two windows don't overlap, they are still consid

ered to be at different depths on the Workbench screen, just in case they do

overlap later.

Ifyou click on the depth gadget for the Workbench screen's top-most window,

you send that window to the back. Ifyou hit the depth gadget on any other

window on Workbench, including the bottom-most one, you bring that win

dow to the front. The depth gadget lets you decide which windows to display

up front on your display and which ones to relegate to the rear.

The Workbench screen also has a depth gadget. In case one or more programs

open their own custom screens, this gadget lets you flip between screens. If a

screen does not have a depth gadget or a drag gadget, however, you can still get

back to the Workbench screen by pressing the Left-Amiga key and the N key

at the same time. This brings the Workbench screen to the front of all screens

open on the system. Pressing Left-Amiga-M moves the Workbench screen

behind all screens on the system.

Sizing Gadget: In the lower-right corner of a window sits the sizing gadget,

which lets you enlarge or shrink the window. To see how it works, once again

open the Utilities window. With the drag bar, move the window to the top-left

of the screen. Now, move the pointer to the sizing gadget and press and hold

the select button. Without releasing the button, move the pointer to the lower-

Workbench Basics 37

right corner of the screen. Release the button. You've just made the Utilities

window fill the entire screen. In addition to making windows larger or smaller,

the sizing gadget can change their shape. For example, by dragging the sizing

gadget around, you can make your windows tall and narrow or short and

squat.

Horizontal and Vertical Scroll Gadgets: Located at the bottom and right of a

window, respectively, the horizontal and vertical scroll gadgets each consist of a

slider and two arrow gadgets. Often, a window has too many icons to be

drawn inside its bounds. To see the icons not immediately visible, you can

either use the sizing gadget to open the window to its maximum size or you

can scroll around the window with the scroll gadgets. Note that the horizontal

scroll gadget only concerns itself with hidden icons to the left and right of the

window's visible area. The vertical scroll gadget is concerned with icons above

and below the visible confines of the window. Let's try scrolling.

Open the Prefs drawer on your Workbench or System disk and resize the win

dow so that only the Input, IControl, Printer, and Overscan icons show. Note

that the white slider, which previously filled its box entirely, now fills only a

portion of it. The size of the slider in relation to its box is in the same propor

tion as the size of the window's visible area in relation to the window's total

size (see Figure 2-13). Thus, a window large enough to display all its icons

would have two sliders that completely fill their boxes.

The sliders not only indicate the percentage of visible icons, but also their

relative location. If the horizontal slider is all the way to the left, you can find

additional icons by moving the window display to the right. If the slider is in

the middle of the box, you have undisplayed icons to both the left and the

right of the current view.

Once you know where the icons are, you can use both the slider and the ar

rows to move the window display to see them. You can grab the slider (by

pointing to it, then pressing and holding the selection button) and drag it to

the left or right (or up or down) by moving the pointer. When you release the

mouse, you'll see the icons in the area indicated by the new position of the

slider. You can also move the slider by clicking inside its box (but outside the

slider) with the selection button. Each click moves the slider one "view" to the

left or right (or up or down), depending on whether you click to the left or

right of (or above or below) the slider. The third way to scroll through a win

dow is by using the arrow gadgets. Selecting the right arrow gadget scrolls the

window a small amount to the right. The left arrow gadget moves it a small

amount to the left. Pressing and holding either of these gadgets will cause the

window to scroll continuously. Try these three methods with the reduced Prefs

window.

38 AmigaWorld Official AmigaDOS 2 Companion

a | Workbench ISM'S

Figure 2-13 Proportional Gadget

The size ofthe slider in a scrollgadget tells you theproportion ofa window's icons that

are visible. When all the icons are visible, the sliderfills its box. In this example, the

slider indicates that there are more icons to the left ofthe current window view.

Gadgets and Requesters

Gadgets appear in many places besides Workbench windows and in more vari

eties. In fact, Commodore supplies a large number of standard gadgets that

Amiga programmers can customize and use in their own applications. Often,

Workbench or an applications program puts one or more gadgets into request

ers (small windows that ask you questions). You normally have to satisfy the

program's request for information before you can proceed. The simplest re

questers ask you a yes/no question such as "Do you really want to delete that

file?" You respond by typing an answer or by clicking on a gadget. By under

standing the basic gadgets used in requesters, you should be able to respond to

any requester you come across. The basic requester gadgets are buttons, sliders,

and strings.

Workbench Basics DJ

Buttons: Most of the Workbench window gadgets are variations on a button

gadget. These gadgets expect you to use the select button to make a choice. For

example, when you use the Format item in the Workbench Disk menu to

prepare a blank disk to hold data, a requester appears asking ifyou are sure you

wish to format the indicated disk. (Formatting a disk is a big step; it will erase

the previous contents of the disk.) The requester displays three buttons; you

indicate your choice by simply selecting one (see Figure 2-14).

OK to Fornat uolune

R3888Install

(all data will be erased) ?

OK I OK-QUICK I CflNCEU

JLSU

Systen2.8

[if
R3888Install

Figure 2-14 Simple Requester

Whenyou select the Format Disk optionfrom the Icons menu, the system asks ifyou

are sureyou want toformat the indicated disk. Selecting the Continue gadget tells

Workbench to proceed withformatting. Selecting Cancel tells Workbench not toformat

the disk. Ifthe disk waspreviouslyformatted, a third button, OK-Quick, tells

Workbench to use the oldformat ofthe disk but to consider the disk empty, (In

technical terms, the OK-Quick option rewrites only the root blocks ofthe disk,)

Sliders: You've already seen one type of slider — a proportional one, in the

discussion of the vertical and horizontal scroll gadgets. Most sliders are simpler

than those and merely let you choose from a range of numeric values.

The most common example of a requester that uses a slider is a color requester.

The Amiga builds colors using four bits of information on the red component

40 AmigaWorld Official AmigaDOS 2 Companion

of a color, four bits on the blue component, and four bits on the green. A color

requester, like the one shown in Figure 2-15, has three sliders, one for each

color component. You use the sliders to select one of sixteen positions — rep

resenting the sixteen values, 0 to 15, that you can express with four bits of

information (2 raised to the fourth power equals 16). You manipulate sliders

by either dragging the slider image itself to the desired value or by clicking in

the "track" that the slider moves in. Clicking in the track moves the slider

towards the pointer.

q i y JSi

Figure 2-15 Requester With Sliders

Whenyou open the Palette toolfrom the Prefs drawer, the Palette Preferences requester

appears. By dragging one ofthe sliders or clicking in the track to the left or right ofa

slider, you move it to apositionfrom 0 to 15. You select the coloryou want to change

by clicking on it. The box at top-left shows the coloryou are altering. The Save button

saves the changes to diskfor immediate use andfor use whenyou next bootyour system.

Use letsyou work with the new colors but does not save them, and Cancel reverts to the

original colors.

String gadgets: The most versatile gadgets are ones that put the fewest re

straints upon the information they let you enter. String gadgets, also called text

gadgets, are the best examples of these. A string gadget lets you enter informa

tion from the keyboard. For example, when you rename a file using the Re-

Workbench Basics 41

name option from the Workbench Icon menu, a requester containing a string

gadget appears and lets you enter the new name of the file (see Figure 2-16).

Enter* a new ttavte for 'utilities'.

New Mane; |tit tilt tesli

utilities

Figure 2-16 Text Gadget in a Requester

Choosing the Rename itemfrom the Icons menu brings up the Rename requester. Use

the keyboard to change the icon's name. Backspacing deletes the letter to the left ofthe

cursory while the arrow keys letyou move the cursor without deleting characters.

Typing a letter inserts that letter at the cursorposition and moves the cursor and the

following letters oneposition to the right. Selecting the OKbutton accepts the new

name; Cancel reverts to the original name.

String gadgets all have a cursor — a rectangle that indicates where the next

typed character will be placed. Ifyou make a typing mistake in a string gadget,

you can edit your input before you hit the Return key, which sends the infor

mation to the program that requested it. The Del key deletes the character

under the cursor, while the Backspace key deletes the character to the left of

the cursor. Pressing the Right-Amiga key and X simultaneously deletes the

contents of the string gadget. Right-Amiga-Q restores what you deleted with

Right-Amiga-X.

Many requesters combine more than one gadget. For example, the requester

used with the Workbench Rename function also has a button that lets you

4-Z AmigaWorld Official AmigaDOS 2 Companion

cancel the operation. While most requesters are customized for a certain opera

tion, Commodore has provided two standard requesters with Amiga OS 2.0.

File and Font Requesters

One of the more frequently seen Amiga requesters is a file requester. In the

past, because Commodore didn't provide a standard file requester, each Amiga

application had to supply its own. The results were mixed: Some requesters

were excellent, some were horrible, and few were consistent across applications.

To end this confusion with what is arguably one of the most important parts

of the user interface, Commodore included a standard file requester in 2.0 for

programmers to use in new software. Commodore hopes the presence of a

standard requester will keep applications programmers from constantly

reinventing the wheel and supplying customers with different requesters with

every application.

The other standard requester is the fonts requester. This lists the fonts available

to you and lets you choose one from the list. The Font tool in the Prefs drawer

uses this requester.

Conclusion

This chapter introduced the major elements of the Workbench interface —

icons, windows, menus, gadgets — and showed you how to manipulate them.

Subsequent chapters build upon the information presented here.

Don't be put off ifyou still feel a bit uncomfortable with Workbench; you'll

grow more confident as you use it. With a bit of practice, it will begin to seem

like second nature.

^

The amazing thing about the Workbench system is that you can do so much

with a simple two-button mouse. The trick to getting up to speed quickly with

Workbench is understanding that the mouse buttons are complementary. The

menu button lets you choose what to do, and the selection button lets you

indicate what to do it to.

Chapter 2 focused mainly on the selection button. It is your primary manipu

lation tool, so you should master it first. This chapter introduces you to more

of the functions ofWorkbench and its powerful menus. You already know

how to do things; now you'll learn what to do and why.

Menus onWorkbench

Workbench divides its menu items by functionality. The first menu — Work

bench — contains items that affect the Workbench interface as a whole. Simi

larly, the Window menu contains items that work on the currently selected

window, and the Icons menu items work on icons. The fourth menu — Tools

— lets you access applications from Workbench. Of course, only applications

that support this feature can be attached to and accessed from this menu. Be

cause Workbench 2.0 is new, few applications currently take advantage of this

feature. The only function provided with Workbench that uses the Tools

menu is ResetWB.

Boot your Amiga and examine the Workbench menus. The Icons menu looks

funny, doesn't it? If you pull down the Icons menu, you'll notice its items have

the same appearance (see Figure 3-1). This look is called "ghosting."

43

44 AmigaWorld Official AmigaDOS 2 Companion

Figure 3-1 GhostedMenu and Items

Workbench menus are context sensitive; when it is inappropriate or impossible to

perform certainfunctions, Workbench "ghosts" those menu choices. The Icons menu,

which only acts on iconsyou select, remains ghosted and inaccessible untilyou select an

icon.

Menus and items are ghosted when they are inactive and cannot be accessed.

Workbench and other Amiga applications use ghosting to keep you from per

forming operations that are inappropriate or downright impossible at a given

time. Menus are context sensitive; they only let you do things that are possible

at the moment. The Icons menu is ghosted when no icon is selected on the

Workbench, because the items in this menu act only on icons. The Work

bench and Window menus, on the other hand, are always active because

Workbench is always active when it's open and always contains one active

window.

TheWorkbench Menu

The seven items in the Workbench menu (Backdrop, Execute Command,

Redraw All, Update All, Last Error, Version, and Quit) act globally upon the

Workbench interface. They are always available when the Workbench is active.

Workbench At Work 45

Backdrop: As you learned in the previous chapter, the Backdrop item toggles

the Workbench window between a standard window and a backdrop window.

I did not point out, however, the meaning of the letters to the right of the

item. The first letter, the A encased in a rounded rectangle, refers to the Right-

Amiga key on your keyboard. The second letter, B, refers to the B key. To

gether, they form the "keyboard equivalent" of the Backdrop menu item.

Pressing them simultaneously accesses the Backdrop item just as ifyou had

pulled down the Workbench menu and chosen Backdrop. Many, but not all

menu items have keyboard equivalents. On the Workbench, they always use

the Right-Amiga key in combination with some other key. The Right-Amiga

key, therefore, is sometimes called the menu key.

Execute Command: Like the Backdrop item, this one is new to Workbench

2.0. Choosing the Execute Command menu item, or typing its keyboard

equivalent (Right-Amiga-E), brings up a requester with a string gadget (see

Figure 3-2). The requester prompts you to enter a command and its argu

ments. Two buttons give you the option of executing the command you enter

(OK) or forgetting the whole thing (Cancel).

0 rJj l^l!!* tZ?T^Z

Enter Connand and its Rrgunents:

Connand: |Inf oil

Systen2.8

Figure 3-2 Execute Command

The Execute Command item brings up the Execute a File requester. Here, you enter the

name oftheAmigaDOS command, then press the Return key or click on the OK

button to perform the command.

46 AmigaWorld Official AmigaDOS 2 Companion

The commands you execute using this menu item are AmigaDOS commands

that you will learn about in later chapters. This item lets you execute a com

mand without having to open the Shell. For now, as a demonstration, choose

the Execute Command item and enter

INFO

into the requester and select the OK button. (Note: Pressing the Return key

after typing Info has the same effect as selecting the OK button.) Ifyou en

tered a legal command, Workbench opens the Workbench output window and

displays the result of the command. The Info command (see Figure 3-3) dis

plays information about all the physical disk drives mounted on your system,

giving their AmigaDOS device names, sizes, usage information, and Work

bench volume names. To close the Workbench Output Window, either select

its close gadget or type CTRL-\ when the window is selected. Obviously, you

will be able to make better use of Execute Command once you are familiar

with the AmigaDOS commands.

C Horkbencfi

Use

2
442

Unit

if
toiunes, aval table:
Ian Disk [MountedI
Jork [Mounted]

* ten2.0 [Mounted!

Ha disk
Ho disk
3in

ent
ent

^1 nilErt
7896 35s«

51311 28% 8 Read/Write Work

Figure 3-3 Workbench Output Window

Whenyou use Execute Command, Workbench creates a temporary window to hold the
commands output. Here, the window holds the output oftheAmigaDOSInfo

command, which returns information about the disk drives and other devices attached
to the system. You can have multiple output windows open at once.

Workbench At Work 47

Redraw All: Called simply Redraw on prior versions ofWorkbench, Redraw

All forces Workbench to redraw all the open windows and rectifies problems

with the refresh mechanism.

Refresh is a procedure by which the operating system or an individual program

redraws its output display after a window has been uncovered. Dozens ofwin

dows can be open on Workbench, yet only those on top are visible on your

display. When you close one of these top windows and uncover another,

Workbench must refresh the display— update it — to show the contents of

the newly revealed window.

Occasionally, the behavior of one or more programs with windows open on

the Workbench screen disrupts the normal Workbench refresh process. One

type ofwindow is refreshed automatically by the Amiga whenever it is uncov

ered. Another type holds the program that created it responsible for refresh.

Based upon speed and efficiency considerations, programmers choose the type

ofwindow that best fits their needs. Occasionally, a program goes awry while

refreshing its window. Commodore supplies Redraw All so you can manually

force Workbench to rethink and redraw the display. How often will you use

Redraw All? In five years, I've used the old Redraw item no more than half a

dozen times, and I've yet to need Redraw All when running under version 2.0.

Your experience may differ.

Update All: The cousin to Redraw All, this item is useful if you use both the

Workbench and the Shell interfaces. Update All tells Workbench to redraw

any currently opened windows by rereading the information about the window

from disk. If, for example, both the System and Utilities drawers ofyour

Workbench 2.0 disk are open, choosing Update All forces Workbench to re

read the icons on your disk so that the display matches the current state of the

files on the disk.

Why wouldn't the display match the files on disk? After all, ifyou create a

drawer using the New Drawer item of the Windows menu, the icon for the

drawer pops up immediately in the window. Conversely the system removes a

deleted file's icon from the window immediately. If Workbench updates its

windows with file changes automatically, why bother with an Update All item?

Workbench, however, is not the only means of creating, moving, and deleting

files on an Amiga. You can do that and more with the command-line Shell

interface. The problem is that the Shell and Workbench do not communicate

directly about the changes each interface makes to the contents of a disk. Con

sequently, if in the Shell you create or delete files on a disk or a drawer whose

window is concurrently open, the changes will not be reflected on the Work-

48 AmigaWorld Official AmigaDOS 2 Companion

bench display until you close and reopen the window, or until you choose

Update All. While Redraw All tries to recreate the display to reflect the current

state of the Workbench windows as they exist in memory, Update All recreates

the display to reflect the current state of the disks and drawers on disk.

To demonstrate Update All, open both your Workbench2.0 disk and the Ram

Disk. Move the windows so that they don't overlap. Now, choose the Execute

Command item and, in the string requester, enter:

COPY SYS:Shell.info TO RAM:

Now, press Return or select OK.

A Workbench output window pops up, informing you that:

Shell.info..copied

Close the Workbench output window and check the Ram Disk window. Al

though you just copied the Shell icon file to the Ram Disk, the icon does not

appear in that window. To see the icon, choose Update All.

Note that the icon did not appear until you forced Workbench to reexamine

the contents of the Ram Disk. Even though Execute Command is a function

available through Workbench, it actually operates by opening a limited version

of the Shell. Thus, Workbench is as much in the dark about what Execute

Command is doing to disk files as it is about what the Shell is doing.

(By the way, I'll explain the meaning of those cryptic items such as Sys: and

RAM: in the chapters on the Shell.)

Last Error: This being an imperfect world, the Workbench program some

times cannot perform a function you request. When this happens, AmigaDOS

generates an error code and sends it back to Workbench. The Workbench then

reports the error condition as a requester or as an error line on the menu bar.

For example, when you try to format a disk that is write-protected, Work

bench puts up a requester telling you that the disk is write-protected. You can

then cancel the formatting operation or change the position of the write-pro-

tect tab and continue. At other times, or even in conjunction with a requester,

Workbench writes an error message to the menu bar. This message remains

visible until you press the select button. To see the message again after it has

disappeared, you use the Last Error item.

To see an example of the latter case, open your system disk and try to drag the

Trashcan icon out of the window. (Your system disk is the disk you used to

boot your Amiga; normally either Workbench2.0 or System2.0. From now on,

I'll use the term system disk to refer to either of these volumes.) You'll get an

Workbench At Work 49

error message in the menu bar saying that it can't be moved out of its window

(see Figure 3-4). If you now click the selection button, you can still see the

message by accessing the Last Error item.

oj_ Workbench

Work

Sysien2.e Uord Processi

screencapture

telecon

ProUrite

Figure 3-4 Last Error Message

Trying to move a trashcan out ofits window results in the above error message. After

you've erased the message by hitting the selection button, you can always call it back

with the Last Error item.

Last Error isn't for error conditions only. It sometimes simply displays an in

formational item. For example, whenever you load a program using Work

bench and then check the Last Error item, the menu bar will display a message

that Workbench is attempting to load the program. ^

Version: Here is a menu item that does just what you expect. When you access

the Version item, Workbench flashes its screen and prints the version of

Workbench and Kickstart currently active in your Amiga. You may have to

check this item if you buy a program that requires a particular version of

Workbench or Kickstart. Usually, software will state on the package which

version ofAmigaDOS or the Amiga OS (1.2, 1.2 or later, 1.3, 2.0, and so on)

the software requires.

JU AmigaWorld Official AmigaDOS 2 Companion

Quit: Choosing Quit lets you shut down the Workbench interface. Before you

can quit Workbench, however, you must close all programs that you launched

from Workbench. This includes both programs that run on the Workbench

screen and those that open their own custom screens. Ifyou access the Quit

item before youVe shut down all Workbench-launched programs, Workbench

displays a message in the menu bar telling you how many Workbench pro

grams are still active. If all Workbench-launched programs have been closed,

the system puts up a requester that gives you one more chance to cancel the

Quit command. Ifyou select OK from this requester, Workbench will shut

down.

Quitting Workbench is like sawing the steering wheel off ofyour car; you can

do it, but, unless you've made arrangements for another method of control,

you won't be able to do much. Once you're comfortable with the Shell inter

face, you can safely quit Workbench as long as you have a Shell open on the

screen. Note that any Shell you launch from Workbench is considered a

Workbench program and must be closed before you can quit. Only Shells

opened using Execute Command or from another Shell will remain open after

you access the Quit item in the Workbench menu. Ifyou mistakenly shut

down Workbench without leaving an open Shell, you'll have to reboot your

computer before you can use it again.

TheWindowMenu

Unlike those in the Workbench menu, the nine items in the Window menu

work only with the currently active window. This includes the Workbench

window itself, although, because of its special nature, not all Window menu

items work on the Workbench window.

New Drawer: This first item creates a new drawer in the currently selected

window. Let's take a look: Open the Utilities drawer on your Workbench2.0

or System2.Q disk and activate the New Drawer item. Immediately, Work

bench creates a drawer in the Utilities window with the name Unnamed1.

Workbench also provides a requester (see Figure 3-5) that prompts you to

enter a new name for the drawer. Ifyou simply click on the OK button, the

drawer will keep the name Unnamed1. Because this isn't very descriptive, you

should use the text gadget in the requester to give the drawer a name — such

as Test — before you click OK. That's all it takes to create a drawer under

Workbench. Ifyou double-click on the new icon, Workbench opens a stan

dard window for the drawer. The window contains all the usual Workbench

gadgets. Because it is a standard Workbench window, you can even create new

drawers in this new drawer.

Workbench At Work 51

n| Uork 21% full, 25M fre |£3|

screencapture

Figure 3-5 Naming a New Drawer

The New Drawer item not only creates a new drawer in the active window, it also calls

up the Rename requester with the default name ofnew drawers — Unnamedl — in

the stringgadget. Ifyou choose to keep the default name, subsequent drawers will be

called Unnamed2, Unnamed3, andso on.

The only window you can't create drawers in is the main Workbench window.

Thus, when the main Workbench window is selected — even if it is a back

drop window— the New Drawer item is ghosted. Because drawers represent a

storage area on a disk, they must always be subordinate to a particular volume.

Therefore, you can't create a drawer on the Workbench; a new drawer can

only exist within an already extant drawer or volume.

New Drawer is a very important item. By letting you create new drawers,

Workbench gives you the means to organize your disks to suit your needs.

Let's say, for example, that you use your Amiga for three primary applications

— word processing, graphics, and telecommunications. To keep your pro

grams and data files organized, you should create one drawer for each ofyour

applications. You can create drawers within these main drawers to hold differ

ent kinds of files.

52 AmigaWorld Official AmigaDOS 2 Companion

Open Parent: Many times, when you have a dozen or more windows open at

once on Workbench, you may have a hard time finding a particular window.

Open Parent makes this easier.

Except for the main window, every Workbench window has a parent. The

parent window contains the icon that you used to open the current window.

For example, the Prefs drawer icon that corresponds to the Prefs window is

found in your Workbench2.0 (or System2.0) disk. Consequently, the Work-

bench2.0 window is considered the parent of the Prefs window. Thus, win

dows on the Workbench exist in a hierarchy of parents and children. At the

top is the Workbench window. Next are the windows that correspond to the

disk icons in the Workbench window. Finally, come the windows that corre

spond to the various drawers in the disk windows (see Figure 3-6).

36% full, 3H free. 2H in use

input Kontrol Palette' Pointer Font MBPattern

Figure 3-6A Hierarchy ofWindows

Maneuvering around Workbench windows is like climbing an upside-down tree. At the

top is the trunk— the Workbench window. You thenfollow apath ofthe various

branches — disk and drawer windows — down untilyou reach the tool orprojectyou

want. Files in different windows can have the same name as long as they have unique

pathnames.

Workbench At Work 53

When you open a window, you are actually moving down this hierarchical

structure — moving from parent to child. The Open Parent item lets you

move in the opposite direction, from the child to the parent. It doesn't close

the child window, but it does open the parent window, if necessary, and moves

it to the front and makes it active. To see how this item works, open the Prefs

icon in your Workbench2.0 (or System2.0) disk. Now, close the disk window

and select the Prefs window. Next, activate Open Parent. The system opens

the disk window— the parent to Prefs — automatically and moves it to the

front of the display. Ifyou access Open Parent again, the main Workbench

window— the parent to the disk window— pops to the front and becomes

active. Because this window normally covers the entire screen, bringing it to

the front will cover all the other open windows on the display. (Note that

Open Parent will not bring the main Workbench window to the front if you

have chosen the Backdrop option.)

Close: This item is simple: It closes the currently selected window. It has the

same effect as clicking on the close gadget in the upper-left corner of the win

dow. The only exception is for the main Workbench window. In this case,

Close works the same as the Quit item in the Workbench menu, closing the

Workbench if all Workbench-launched programs are shut down.

Update: This item works identically to the Update All item in the Workbench

menu, with the exception that it works in the currently selected window only.

It rereads the disk area that corresponds to the current window and updates

the icons according to the current information on disk, taking into account

any changes made in the Shell ofwhich Workbench was unaware. Update

works only on the current window. It has no affect on either the parent or

children of the current window.

Select Contents: Yet another way to select multiple icons on the Amiga, Select

Contents selects every icon in the active window. It does not affect the parent

or children of the window. Like the shift-select and drag-select functions de

scribed earlier, it lets you perform the same action — such as delete — on

multiple icons. It automatically deactivates any icon you previously selected.

Clean Up: Unlike the workbench in your basement, the Amiga Workbench

gives you a quick and easy way to clean your work area. Choosing the Clean

Up item invokes a Workbench routine that rearranges the icons in the active

window so that they appear in orderly rows and columns (see Figure 3-7).

Starting with the upper-left corner of the window, it moves the icons so that

they fill the first column, then the second, and so on, until all the icons are

rearranged. Clean Up always fills columns before rows. The effects of Clean

Up are not permanent. Ifyou close and reopen a window you cleaned up, the

icons will appear in their original, messy state.

54 AmigaWorld Official AmigaDOS 2 Companion

aj Workbench JELLS

D| SysteH2,8 38% full |E3|

Figure 3-7 Clean Up

The Window on the left needs the help ofthe Clean Up option. The window on the

right shows its results. Don'tyou wishyou could use this option onyour closets!

On previous versions ofWorkbench, Clean Up would work only if it was the

first action you took after opening a window. With Workbench 2.0, you can

invoke Clean Up anytime you have a window selected.

Snapshot: Up until now, all the menu items youVe encountered have been

simple menu items; they have performed one function only. Snapshot features

a submenu that lets you choose from two options — Window and All. You

can distinguish a simple menu item from one with a submenu by the presence

of two right-hand angle brackets (») to the right of latter's name in the menu.

When you move the pointer over an item with a submenu, the submenu ap

pears to the right. To select from the submenu, move the pointer over the

function you want and release the button, as for a standard menu (see

Figure 3-8).

Workbench At Work 55

Figure 3-8 Submenus

The Snapshot item is one that uses a submenu. Keeping the menu button down, you

can highlight the submenu items asyou would regular menu items.

Snapshot Window: Choosing this item saves the current position and dimen

sions of the active window. When you next open this window, even if you

have subsequently moved or resized it, it will appear in the same place and

at the same size as it was when you took the snapshot. Snapshot Window

works only on the window itself; it doesn't affect the icons within windows.

Snapshot All: This item saves position information on both the active win

dow and its icons. It is the natural adjunct to the Clean Up item, because it

lets you make permanent that function's changes. For the most part, when

ever you access Clean Up, the next thing you should do is access Snapshot

All. Note: Snapshot works on true icon files (.info files) only. It does not

work on the pseudo-icons created with the Show All Files item discussed

below.

Show: Through version 1.3 ofAmiga OS, you could not view files without

complementary .info files from Workbench. Because the information Work

bench needs to draw icons is contained in .info files, such files never appeared

on the Workbench interface. The Show item changes that. It gives you the

56 AmigaWorld Official AmigaDOS 2 Companion

option of seeing all the files on your disks with the Workbench interface. The

Show submenu has two items: Only Icons and All Files.

Show Only Icons: This is the default setting for Workbench. With this op

tion active only files that have a corresponding .info file will appear in any

window you open on Workbench.

Show All Files: Choosing this item causes Workbench to display both files

that have a corresponding .info file and files that don't. For files without

.info files, Workbench uses default icon information that it stores internally.

Figure 3-9 shows these default icons. Note that because the default icons are

not .info files, you can't take snapshots of them as you can true icons.

fl] Workbench

Figure 3-9 Workbench Pseudo-Icons

Whenyou choose Show All, Workbench uses default imagesforfiles that don't have

.infofiles. The drawer image is identical to that used by other drawers on the

Workbench 2.0 system disk. Also shown are the default tool andproject icons.

To see how Show All Files works, open your Workbench2.0 (or System2.0)

disk. Now, with the disk window active, choose Show All Files. Immedi

ately, seven new drawers appear: Devs, C, L, S, Rexxc, Fonts, and Libs (see

Figure 3-10). These drawers, normally invisible because you work with their

contents primarily through the Shell, are now available to Workbench.

Workbench At Work 57

a I Workbench

prefs

wbstartup nonWorstore

I

prefs

Figure 3-10System2.0 Window Using Show All

The left image is the System2.0 window as it normally appears. On the right is how it

appears afteryou choose Show AIL The drawers that appear are very importantfor

working with the Shell interface.

Unlike many other items, Show affects child windows as well as the active

window. From the example above, open the C drawer. None of the items in

this window have icons, yet they will all be visible as long as youVe selected

Show All Files in the parent window. You can override the setting of a parent

window by selecting the Show option you want explicitly for the active win

dow.

Workbench 2.0 not only lets you see files without .info files, it also lets you

perform many functions with them that you can with standard Workbench

files. To demonstrate, move the window of the C drawer to the upper-left

corner of the Workbench screen and resize it to fill the Workbench screen.

Now, double click on the icon called Dir. Workbench will display a requester

identical to that used by the Execute Command item, except that the com

mand Dir is already in the text gadget. When you select the OK button, the

system puts up a Workbench output window that displays the results of the

command. In this case, it lists the contents of the C drawer.

58 AmigaWorld Official AmigaDOS 2 Companion

View By: The last item, the Window menu, also uses a submenu. View By lets

you choose how you want to see Workbench icons in a window. The options

are Icon, Name, Date, and Size.

View By Icon: This is the Workbench default. When you open a Work

bench window, the system displays the icons of the files in the window.

View By Name: Selecting this item displays an alphabetical list of the current

window's contents. You can still manipulate the files with the mouse by

clicking on the name, but the icons are invisible. For example, you can open

the window of a drawer by double-clicking on the drawer name in the list.

The Name option also displays the sizes of the files in bytes, their protection

bits, and the date and time each file was created (see Figure 3-11). Note that

drawers don't have a size listed; they have the word "drawer" in the size field

to distinguish them from other files.

d1 Workbench

IControl

Input
Overscan
Palette

28Jun98
28-Jun-98
28-Jun-98

28-Jun-?8

28-Juit-98
23-0ct-98
20-Jun-98

28-Jun-98
28-Jun-98

28~Jur»-98
28-Jun-98
28-Jun-98

28-Jun~98

17:22:87
17:22:8?
17:22:87
17:22:88

17 s22J 89
88:47:89
17:22x89
17:22:89
17:22:13
17:22:12
17:22:88

1?2215

Figure 3-11 View By Name

This item gives more information about Workbenchfiles than do conventional icons.

From left, thefields arefilename, size ("drawer" ifthefile is a drawer), protection bits,

and date and time ofcreation. Note thatyou can select and manipulate afilenamejust
asyou can an icon.

Workbench At Work 59

View By Date: This item also lists the file in the window by name, but it

sorts them in chronological order instead of alphabetical order. It lists older

files first and newer ones last.

View By Size: This option lists the files in a Window by name, as sorted by

their size in bytes. Drawers are considered to be zero bytes in length. Files of

equal length are also sorted alphabetically.

The Icons Menu

The third Workbench menu — Icons — provides facilities that let you ma

nipulate individual files and groups of files. You indicate the files you want to

work with by selecting the appropriate icons. As you saw earlier, you can select

icons in numerous ways: clicking with the select button, drag selecting, shift

selecting, and using the Select Contents item from the Window menu. Until

you've selected one or more icons, the Icons menu remains ghosted and inac

cessible.

With one or more icons selected, the Icons menu makes 11 items available to

you — Open, Copy, Rename, Information, Snapshot, Unsnapshot, Leave

Out, Put Away, Delete, Format Disk, and Empty Trash.

Open: As you might suspect, choosing the Open item opens all selected icons.

The confusion with this item comes from the fact that the Amiga supports a

half dozen different types of icons, and the word "open" means something

different to each icon type. In all cases, however, Open performs the same

function as double-clicking on the icon with the selection butjon.

Tool: Because a tool icon normally represents an executable program, open

ing one will execute the corresponding program. The simplest example of

this is the Clock icon in your boot disk's Utilities drawer. Ifyou select the

Clock icon and choose Open from Icons, you tell Workbench to load and

run the Clock program.

One anomaly of the Open command is evident when you use the Show All

option from the Windows menu. Workbench uses its default tool icon for

any iconless file that has its Executable or Script protection bit set. (Work

bench uses protection bits to describe files and indicate the operations you

can and cannot perform on them. Protection bits are discussed in the Infor

mation item section below.) Thus, accessing the Open item lets you execute

scripts as well as programs.

(A note of caution: Be careful not to open the icon of the Startup-sequence

file in the S directory. This script should only be executed when you boot

OU AmigaWorld Official AmigaDOS 2 Companion

your system. Executing it at any other time is a sure-fire way to crash your

machine.)

Drawer: With a drawer icon selected, Open tells Workbench to open the

drawer's window.

Disk: As with drawer icons, the Open item opens the window of a selected

disk icon.

Project: Because projects are created by tools, choosing Open when a project

is selected first opens the tool that created the project and then loads the

project into the tool. For example, when you open a picture file (the

project) that was created with DeluxePaint (the tool), Workbench finds and

loads the DeluxePaint program, then loads the picture file into it. Note that

the project icon must pass information about the appropriate tool's location

to Workbench. If Workbench can't find the tool, the system displays a

requester saying that Workbench is unable to open the tool.

When a tool creates a project, it invariably inscribes its location into the

project's icon. Ifyou move the tool, however, the location in the project

icon is no longer valid. The Information item lets you provide a project

with the tool's new location.

Projects created with tools like DeluxePaint and ProWrite and other com

mercial programs have their Executable protection bits set. Even though

these projects are not programs, opening them results in the execution of a

program. When you use the Show All option, Workbench uses its default

project icon for any file that doesn't have its Executable bit set. Thus, after

using Show All, you will run into projects that do not cause Workbench to

execute a tool when you open them. Check out the projects in the Devs

drawer ofyour system disk for examples. Opening the Mountlist project,

for example, brings up the Execute Command requester. Clicking the OK

button merely brings up the Workbench output window with the message

that Mountlist is not an executable file.

Trashcan: The final icon type used by Workbench is the trashcan type.

(While trashcan icons are normally named Trashcan, you can rename

them.) A trashcan icon is a special type of drawer. Its capabilities and uses

are discussed below in the Empty Trash item section.

Why did Commodore provide the Open option for icons when double-click

ing them is much easier? Open can work on multiple icons at once. Ifyou

select four or five drawer icons and access Open, Workbench will open the

windows of each drawer. The same does not, however, hold true for executable

files. Accessing the Open option with multiple executable icons selected only

runs the file of the first icon selected.

Workbench At Work 61

Copy: In the last chapter, you learned that dragging an icon between different

volumes — or the subordinate windows of different volumes — made a copy

of the file on the destination disk. The Copy menu item lets you make dupli

cates of a file in the same window as the original. It will copy as many items as

you've selected.

Copy works not only on programs and projects, but also on drawers, trashcans,

and disks. In all cases, however, the mechanism is the same. To duplicate an

object, you select it and then choose Copy from the menu. Workbench will

make a copy of the icon (and its associated file, of course). The new file will

have the name Copy_of_xxx, where xxx is the name of the original file. Ifyou

subsequently copy either the original or the duplicate, the new file will have

the name Copy_2_of_xxx. Subsequent copies will be called Copy_3_pf_xxx

and Copy_4_of_xxx, and so on. (It's a good idea to use the Rename item after

you've made a copy of something.) Copying a trashcan, however, is a waste of

time. Because all trashcans perform the same function, and because they can't

be moved out of a window, it doesn't make much sense to copy one and wind

up with two in a single window.

Copying drawers can be a tricky proposition. The Copy item not only copies

the drawer but also the contents of the drawer. Ifyou copy a drawer that has

five levels of drawers containing 300 projects and tools, the Copy item will

duplicate them all. Be careful copying drawers, lest you get more than you

bargained for.

Copying disks is a special case. To copy a disk, Workbench calls upon the

DiskCopy tool found in the System drawer ofyour system disk. (Workbench

also uses DiskCopy if, in a two-drive system, you drag the icon for one disk on

top of another.) IfWorkbench can't find the DiskCopy tool, it will abort the

operation.

Once you've selected a disk icon and chosen the Copy item, DiskCopy puts a

window and a requester on the screen. The requester tells you to put the

source disk in DFx:, where x is a number from 0 to 3. "Source disk" is what

Workbench calls the disk you want to copy, and DFx: is the AmigaDOS name

of the disk drive the source disk is in. If you have one disk drive, it is called

DFO:. (Depending upon the model ofyour Amiga, your second drive may be

DF1: or DF2:. Consult your manual or use the Info command with the Ex

ecute Command menu item, as I demonstrated earlier.)

Write protecting the source disk is a good idea at this point. You write protect

an Amiga floppy disk by moving the write-protect tab, located at the upper-left

of the back of the disk, to the inhibit position. A disk is write-protected ifyou

62 AmigaWorld Official AmigaDOS 2 Companion

can see through the hole below the tab. A disk is write-enabled if the tab covers

the hole. With the disk write-protected, you're ready to proceed.

If the source disk isn't in the drive, put it there before you click the Continue

button on the requester. (You can click Cancel ifyou want to abort the pro

cess.) Next, DiskCopy begins reading the source disk. On my Amiga 3000, it

reads half the disk before stopping. Once it stops reading the disk, the program

prompts you to put the destination disk into the drive. Before ejecting the

source disk, be certain that the disk-activity light is out. Pushing the eject but

ton while the disk is still spinning will corrupt the disk and perhaps harm the

drive.

Now, remove the source disk and pop in the destination disk — the disk to

which you are copying. This can be a blank, unformatted disk or a previously

used volume. Note that the disk-copying procedure destroys all information

on the destination disk and replaces it with a copy of that on the source disk.

When you click the Continue button, DiskCopy writes what it previously read

to the destination disk. When it is finished writing, it again prompts you to

insert the source disk. It continues to prompt you to swap disks until the copy

is complete. As with copying other objects, the new disk is called

Copy_of_xxx, where xxx is the name of the source disk. If memory is limited

on your machine, copying a disk may take more than two swaps. Shutting

down unnecessary programs and windows will free up memory.

Last thoughts on copying disks: The Copy menu item uses only one disk drive,

even ifyou have two or more on your system. With two or more drives, you

can save time by putting the source and destination disks in different drives

and dragging the icon of the source over the icon of the destination.

Rename: The Rename function lets you change the name of an icon, thereby

changing the name of a file. When you use Rename, Workbench pops up a

requester displaying the current name of the icon in a text gadget. By changing

the name in the gadget, you change the name of the icon. After you type the

new name, you select the OK button to make the change or the Cancel button

to retain the old name. Rename works on both the .info file and the file it

represents. For example, ifyou rename the Clock icon to Timepiece, its .info

file gets renamed to Timepiece.info.

While Rename is very helpful for organizing your files and drawers, you should

not use it to rename tools or important system files. Ifyou rename tools,

Workbench won't be able to find them when you open a project. The same

goes for system files. For example, AmigaDOS expects your startup script to be

called Startup-sequence. Ifyou rename this file, AjnigaDOS won't be able to

execute it.

Workbench At Work 63

AmigaDOS has few restrictions on what you can name a file; Filenames can be

up to 31 characters long and contain numerals, letters, and special characters

such as "%" and "*". Ifyou plan to use the Shell to augment or replace the

Workbench interface, however, you should be careful to avoid filenames that

contain spaces/Although such names are permitted under AmigaDOS and the

Shell, they are harder to work with than names without spaces.

You don't have to worry about giving two files the same name. As long as the

files are not in the same window, they can have the same name. Workbench

can keep them apart because it uses a file's complete pathname, not just its

filename, to identify a file. The pathname consists of the filename and all the

names of the drawers and disks above it in the hierarchy. Thus, files with the

same name in different drawers will have different pathnames.

Information: One of the more complicated items on the Workbench, Infor

mation is also one of the most important. The name is self-explanatory: Infor

mation gives you information about icons. The type of information depends

upon the type of icon you are accessing.

Disk: Consider Figure 3-12. This is the information window for the Sys-

tem2.0 volume that came as part ofmy Amiga 3000 system. The window

displays a lot of useful data about the volume. At the top-center of the In

formation window, you find the name of the icon and its type; in this case,

System2.0 is a volume, which is what Workbench calls disks. Below the

name is a picture of the icon. To the left of the icon image are four numbers

labeled Blocks, Used, Free, and Block size. The last of these tells you that

each block on the disk contains 512 bytes of storage. This is standard for all

Amiga disks, hard and floppy. (A block is a physical division on a disk. Be

cause you access disks using filenames, you don't need to know much more

about blocks than that each holds one half kilobyte of data.) The Block

number reports the total size of the disk, while Used and Free state the

number of blocks currently used to store files and the number available to

store files, respectively. Used and Free always add up to the number in

Block.

To the right of the icon image is the read-write status of the volume. A

volume can be either read-write, allowing you to load files from and save

files to the disk, or read-only, letting you only load from the disk. You can

change the read-write status of a floppy disk by moving the read-write

(write-protect) tab on the disk.

Below the image is the date and time the volume was formatted. This infor

mation is only as accurate as your Amiga's internal clock was when you

created the volume. Below this is a text gadget that lists the icon's default

tool. In the case of a volume icon, this is the DiskCopy tool in the System

64 AmigaWorld Official AmigaDOS 2 Companion

drawer. Volumes are not executable files, so the default tool has little mean

ing. Because the default tool is listed in a text gadget, you can change it if

you like. Unlike project icons, however, you'll probably never have reason

to change the default tool of a volume icon. The Save and Cancel buttons at

the bottom of the Information window let you keep or discard changes

you've made to the icon's default tool.

Drawer: The Information window for a drawer icon differs significantly

from that of a volume icon. The display for the Utilities drawer ofyou sys

tem disk is shown in Figure 3-13. Unlike disks, drawers do not have a fixed

size, so the information display does not show information about the size of

the drawer. The second difference is the presence of protection bits.

Blocks: 1758

Used: 1758

Free: 8

Block size: 512 | \

treated! 28~Jun-9B 94131:33

Default Tool: |SYSiSystenS1>iskCopy

Save 1

J
Cancet I

Systen2.8

\\mm
Workbench. 8

3-12 Volume Information Window

Perhaps the most important informationyou need about a disk is the amount of

storage space left. The Information item lists this data in blocks, which are equal to

512 bytes. Unlike other types oficons, volumes don't haveprotection bits.

Workbench At Work 65

utilities (Drawer)

Last Changed: 25~0ct-98 21:84:19

Conrtent;

Script |

firchived i

Readable Vi

Writable }
Executable ..%/">

DeletabU ^/*j

utilities

f

tools

Trail
IT
lean

i

ill

3-13 Information on the Utilities Drawer

Theprotection bits letyou decide which actions can be taken with a drawer or its

contents. The Deletable and Writable bits are especially helpfulforprotecting valuable

filesfrom accidental overwriting and erasure.

Protection bits provide Workbench, programs, and you with information

about the status and capabilities of an icon. Workbench currently recognizes

six protection bits: Script, Archived, Readable, Writable, Executable,

Deletable. (AmigaDOS recognizes a seventh bit, the pure bit, which Work

bench doesn't use.) Protection bits are actually two-state indicators or flags:

They tell you whether or not a file currently has a particular status or at

tribute. In the Information window, Workbench puts a check next to the

attributes that are set for the current file. If the Script bit is set, the file con

tains an AmigaDOS command script — a sequence ofAmigaDOS com

mands. If you enter the file name on the Shell command line or in the Ex

ecute Command window, AmigaDOS recognizes it as a script. The

Archived bit is used by some backup programs to indicate that a file has

been backed up. The Readable bit indicates whether a file can be read from

disk, while the Writable bit indicates that you can overwrite the file with a

newer version. The Executable bit indicates whether a file is executable,

while the Deletable bit lets you protect a file from deletion, ifyou wish. You

OO AmigaWorld Official AmigaDOS 2 Companion

can change the status of the protection bits by clicking on the button next

to each one. To preserve your changes, you must click the Save button in

the lower-left of the window.

Below the icon image is the Last Changed line, which indicates when the

drawer was created, and below that comes the Comment line — a string

gadget you can use to store up to 79 characters that describe the contents

and purpose of the drawer. Use of the Comment line is optional.

Below the Comment line is the Tool Types requester, which I will discuss

below with the Tool information display. The Drawer information

window's final two gadgets let you save or cancel any changes you made.

Tool: The Information window for a tool icon adds two elements to that for

a drawer icon. The first is the size information to the left of the icon image.

This details the number of blocks the file uses on disk and the exact size of

the file in bytes. Below this is the second new element, the Stack indicator.

A stack is a special area of memory used by a program and the operating

system to store temporary information about the program. For example,

when your program calls a routine from the Amiga ROM kernel, it stores

parameters needed by the routine on the stack, where in turn the routine

looks for them automatically. Each program on the Amiga has its own stack

memory, and most Workbench and AmigaDOS programs use a stack of

4,096 bytes. Some, like the AmigaDOS Sort command, require larger

stacks. Unless instructed by the a program's documentation, you should not

change the value in the Stack gadget.

Perhaps the most important requester in the tool Information window is the

Tool Types requester, which consists of a scrollable, three-line display above

a one-line string gadget. To the left of the gadget are two buttons, New and

Del. Tool Types let you change certain parameters or attributes of a pro

gram. Not all programs support them, however, so consult the documenta

tion for each to determine how Tool Types are used. Most of the programs

that come with Workbench do not support Tool Types, but those that do

give you great flexibility.

To see what I mean, open the Utilities drawer ofyou system disk and select

the IHelp icon. Now, access the Information menu item. You'll see a dis

play similar to that in Figure 3-14. Using the scroll bar or the arrows, you'll

discover that the IHelp tool supports six Tool Types. Let's modify one to

see how Tool Types work. Scroll to the bottom of the Tool Types display.

The line ZIPWINDOW=F5 tells the IHelp tool that its Zipwindow func

tion, which is identical to the function of the zoom gadget, is controlled by

the F5 key. Thus, with the IHelp tool active, pressing the F5 key performs

the same function on the active window as does clicking on the zoom gad-

Workbench At Work 67

get. Now, select the Zipwindow Tool Type: it will appear in the string gad

get. Move the cursor to the end of the line and change the F5 to F6. Finally,

click on the Save button. When the Information window disappears,

double-click on the IHelp icon to activate its functions. Now, press the F6

key. Note that the current window— which should be the Utilities window

— reacts as if you clicked the zoom gadget. YouVe just customized the

IHelp tool to use the F6 key instead of F5.

<TOOl>

y Blocks; <H , I """"
Bytes: 5484 I

Stack*. I4896 | J
. Last Changed! 2e-Jun-98 17:2114S

firchived

Readable

Hritafele
Executable ,

DltH

Confront J £_

T«*o t Types:

DONOTMBIT

.*-: ^ ■

»'.v\\\//% >-,

3-14 IHelp Information

This tool supports six different Tool Types, thus givingyou the ability to customize how

the tool works.

Such a change certainly isn't major, but some of the things you can do with

Tool Types are. For example, I'm writing this chapter with the ProWrite

word processor, which normally opens a custom, eight-color screen. Eight-

color screens take up a lot of memory— about 50 percent more than the

default, four-color Workbench screen. Rather than forcing me to close

down other programs to make room for it, however, ProWrite provides a

Tool Type called WB that lets me modify the program to open on the

memory-efficient Workbench screen. Tool Types thus increase the flexibil

ity of the programs that offer them.

68 AmigaWorld Official AmigaDOS 2 Companion

Project: Like volume icons, the Information window of a project icon con

tains a Default Tool string gadget that provides the location of the tool used

to create the icon. Thus, when you open the icon, Workbench uses this

information to locate and execute the tool.

The location given in the string gadget is in the form of an AmigaDOS

path. A path describes a file by pinpointing its location in the hierarchy of

disks and drawers on the Workbench. In the example in Figure 3-15, the

Default Tool gadget contains the string WORK:GRAPHICS/DPAINT.

This means that the file Chart_l was created by the program DPAINT

(DeluxePaint), which resides in the Graphics drawer of the volume named

Work. (Note that volume names are always followed by a colon and drawer

names are followed by a slash. You'll learn a lot more about paths in the

Chapter 7.)

Charts (Project)

Blocks: 28 | :

Bytes: 13922 I I '^A-iiJ
Stack! |4896 | I

Last Changed! 17-0ct-98 22.'87559

Script

firchived>

Readable _^

Writable ^

Executable \f

DUtbl £

Corment; £]

Default Tool: |Hork:Graph\cs/Dpainti

FILETYPE=ILBH
Tool Types:

New I

Word Processing

I dino.pic

3-15 Project Information

The Information window ofthisproject identifies itsfile type and the name and

location ofthe tool that created it. Ifyou change the location ofthe tool, you II have to

change thepathname listed in the Default Tool stringgadget ifyou want to launch the

tool by opening theproject.

Ifyou move a tool to a different drawer and then open one of its projects,

you'll probably get a message from Workbench saying that it's unable to

Workbench At Work 69

open your tool. In this case, you'll have to modify the path in the Default

Tool gadget to reflect the new location of the tool.

Projects also support Tool Types. Some, like the example in Figure 3-15,

use Tool Types to indicate the file type of the project. For example, the file

Chart_l is identified as an ILBM (interleaved bitmap) file, which is the

Amiga IFF (interchange file format) standard for picture files. Any tool that

supports the ILBM format can load this project file. Other projects support

the entire range ofTool Types handled by their parent application. Such

projects let you modify a tool for use with a certain project without having

to modify the default Tool Types of the tool itself.

Trashcan: The Information window of a Trashcan icon is fairly simple,

consisting of its name and type, an image of the icon, its protection bits, a

Last Changed line, the Comment gadget, and the Save and Cancel buttons.

As you've seen, the Information item is important not only as a passive infor

mation display, but also as a tool to make significant changes in the attributes

and functions of many different files. You'll use the Information item often.

Snapshot: Unlike the Snapshot item in the Windows menu, which works on

the active window only or on the window and all its contents, the Icons Snap

shot works only with selected icons. In this regard, it is similar to the Snapshot

option found on older versions ofWorkbench. Snapshot saves the position in a

window of all selected icons. When you next open the window, the icons will

appear in the same locations they were in when you accessed Snapshot.. Be

cause Clean Up and Snapshot All, in the Windows menu, let you arrange your

icons automatically, you may not have much need for this older-style Snap

shot. Remember: Both this Snapshot and the one in the Window menu auto

matically overwrite any previous position information in the .info file.

UnSnapshot: The opposite of Snapshot, UnSnapshot sets an indicator in the

.info file that clears any previously set snapshot position. When you use

UnSnapshot on an icon, you are telling Workbench to use its own algorithms

for positioning the icon in its window.

Leave Out: New to Workbench 2.0, Leave Out moves the currently selected

icon to the main Workbench window, where it remains — even ifyou reboot

your machine — until you move it back to its original directory with Put

Away. The icon functions exactly as before — in fact, it still thinks it is in its

original directory. The Leave Out function simply makes it easy for you to

access frequently used projects and tools.

Put Away: This item removes an icon from the main Workbench window and

returns it to its original directory. It is the complement to the Leave Out item.

70 AmigaWorld Official AmigaDOS 2 Companion

Delete: This aptly-named item removes selected icons from their windows and

from their disk. Delete works on tools, projects, and drawers but not on disks

or trashcans. The fastest way to get rid of unwanted files on your system, De

lete eliminates both .info files and their associated files. Be careful: Delete is

irrevocable. Workbench does not provide a means to recover what you delete.

When you select an icon and access the Delete item, Workbench puts up a

requester listing the number of files and drawers you've selected for deletion

and asking ifyou want to proceed (see Figure 3-16). Always examine the re

quester thoroughly before you continue, in case it contains surprises. For ex

ample, deleting a drawer not only erases the drawer but also all the drawers and

files it contains. The requester can alert you to inadvertent selections caused by

the extended-selection capability of the shift keys, as well. I discovered this the

hard way. To free up space on my disk, I double-clicked on my picture files

drawer and, using the shift-select procedure, selected three unwanted files for

deletion. I then accessed the Delete item and, without reading the requester,

hit the Continue button. You can imaging my horror when all 19 pictures in

the drawer, and the drawer itself, vanished from my Workbench and my disk.

Warning: you cannot get back
what you delete! Ok to delete:

1 fUe(s) and

t drawer(s) (and their contents)?

OK |

T-

Dpalnt

f ig4.13

3-16 Delete Requester

Before clicking the Continue button, you should check that the number offiles and

drawers indicatedfor deletion is reasonable and correct. You can'tget back whatyou

Workbench At Work 71

My problem came about because double-clicking on the drawer icon not only

opened it but, in the process, also selected it. The drawer icon was never dese

lected because I used shift-select to select the three files I wanted to delete. (I

should have used an unshifted-select for the first file.) The Delete requester did

inform me I was about to erase 3 files and 1 drawer with all its contents, but I

didn't pay any attention to it. Always read requesters!

Format Disk: The Amiga uses standard 3-1/2-inch double-sided, double-den

sity floppy disks. Before you can use a new disk, however, you must format it.

Formatting is the process by which AmigaDOS establishes the magnetic sign

posts that it uses to store and retrieve files on a disk.

When you put an unformatted disk— or a disk formatted under another op

erating system — into an Amiga disk drive, Workbench displays an icon

named DFO:???? or the like (the name depends upon the drive the disk is in).

To make the disk usable by the Amiga, select it and choose the Format Disk

item. You then get a requester asking you to insert the disk into the drive. If

the disk is write-protected, you'll have to write-enable it before continuing.

Workbench then informs you that any data on the disk will be erased by the

formatting procedure and asks you ifyou want to continue. Selecting the Con

tinue button starts the formatting procedure, which results in a formatted,

ready-to-use disk named Empty.

In addition to formatting blank or alien disks, you can also use Format Disk to

erase Amiga disks. Rather than delete everything from a disk you want to re

use, simply reformat it. When you select an Amiga disk for formatting, Work

bench puts up a requester with an OK-Quick button. Hitting this button only

rewrites the first two blocks of the disk; this has the effect of erasing the disk,

because the first two blocks contain the pointers to all the other files on the

disk. The quick option is much faster thatn reformatting a disk from scratch.

Empty Trash: The last item in the Icons menu offers an alternative to Delete.

A trashcan is a specialized type of drawer. You can move other drawers and

files into it, and access these objects normally. The difference between a stan

dard drawer and a trashcan is the Empty Trash item. When you select a

trashcan and access the Empty Trash item, the system immediately deletes all

items in the trashcan. Trashcans are a temporary repository for icons before

you delete them.

Unlike other drawers, you can never move a trashcan out of a window or de

lete a trashcan. According to Commodore's documentation, you shouldn't be

able to copy a trashcan, but I've had no trouble doing so with my version of

Workbench 2.0. Perhaps this will be fixed in a later version.

/2* AmigaWorld Official AmigaDOS 2 Companion

How useful is the trashcan? I never use it, preferring the quickness and finality

of the Delete item. If you're uncertain whether you should delete a particular

icon, put it in the trash until you make up your mind.

Tools Menu

Tools, the last Workbench menu, is also the smallest; it has only one item —

ResetWB. It has the potential, however, to be the largest, because it is the only

menu to which you can add items.

ResetWB: When invoked, ResetWB (which stands for reset Workbench)

closes and then opens all Workbench windows, if possible. It does not work if

nonWorkbench windows, such as a Shell, or applications windows, such as

Clock, are open on the Workbench screen. If the close is successful, however,

the Workbench reopens to reset any changes you've made in its colors, fonts,

window patterns, or other Preferences items.

New to Workbench 2.0 is the capability — called AppMenuItem — of adding

third-party applications programs to the Tools menu. For example, when you

run version 3.1 of ProWrite, the program adds its name to the Tools menu

(see Figure 3-17). Whenever you choose ProWrite from the menu, its screen is

popped to the front of the display and its top window is made active. No ac

tion on your part is needed to install an application in the Tools menu; appli

cations that support this feature provide it automatically.

Also new to Workbench 2.0 is another way to load projects into programs and

to bring a program's screen to the front of the display called Applcon. Al

though not strictly a part of the AppMenuItem system, applications that sup

port one will often support the other.

Like AppMenuItem, an Applcon is an icon created by a particular program

that appears in the main Workbench window. Dragging a project icon to the

Applcon loads the project into the application. Double-clicking on the icon

brings the application to the front of the display.

Few applications support AppMenuItem and Applcon at the present time.

Many more will as developers release Workbench 2.0 versions of their pro

grams.

Workbench At Work 73

3-17AppMenuItem

When launched, the ProWrite wordprocessor adds its name to the Tools menu.

Selecting the ProWrite item brings theprogram to thefront ofthe display.

Conclusion

The Workbench menu system is both easy to use and powerful. Although at

first you may want to avoid some of the more complicated items such as the

Information item, you can still perform all the basic tasks you expect from an

operating system with very little effort. As you become familiar with the Amiga

environment and more confident in your abilities, you'll be ready to take on

Tool Types and protection bits. The next chapters discuss Preferences and

other tools that come with the Workbench interface.

/4 AmigaWorld Official AmigaDOS 2 Companion

One of the most important features of the Workbench interface is that you can

customize the ways it looks and operates. Making your preferences known is a

function of the Preferences editor programs in the Prefs drawer. Although

Preferences has been an integral part ofWorkbench since version 1.0, it has

been completely reworked in version 2.0.

Preferences Editors

The 13 Preferences editors let you modify the look and operation ofWork

bench. Many of the editors deal with the operation of peripheral devices that

you hook up to your Amiga, such as a printer, modem, or monitor. Others let

you control the visible attributes ofWorkbench; its colors, the fonts it uses,

and so on. Still others let you perform such specialized functions as setting the

internal clock-calendar and choosing keyboard equivalents to some common

mouse functions. The changes you make to Workbench using the Preferences

editors can be either temporary— in effect until you reboot your Amiga— or

lasting. In the latter case, the selections will be saved to disk and reloaded each

time you boot.

To find and reload your preferences every time you start your Amiga, the edi

tors must save them in a special place. If you open the Prefs drawer and choose

Show All from the Window menu, you'll see a drawer named Env-Archive.

Inside is another drawer called Sys, that holds the files containing your Prefer

ences settings. For example, your color preferences are stored in the file named

palette.ilbm, while the name of any printer you've chosen with the Printer

editor is stored in the file printer.prefs. Note that ifyou haven't made any

Preference choices yet, these files will not exist. When you boot your com-

75

/O AmigaWorld Official AmigaDOS 2 Companion

puter, it looks for your Preference settings in the Env-Archive/Sys drawer. If

you move, rename, or delete the Prefs, Env-Archive, or Sys drawer, the system

will be unable to locate your settings. Until you have a good understanding of

AmigaDOS, don't mess with the default location of the Preference files.

Hot Links

Your Preference settings are used not only at startup, but also throughout a

computing session. For example, the WBPattern editor lets you choose one

pattern for the background ofyour main Workbench window and another

pattern for disk and drawer windows. The system reads your pattern settings at

boot time. Ifyou later change the pattern using the WBPattern editor, how

ever, this system automatically communicates to Workbench, which institutes

them immediately.

The new automatic communication facility used by the Preferences files and

available to any Amiga program is officially called File Change Notification

and unofficially called hot links. Any Amiga program can set up hot links to

any file. Whenever such a file is changed, AmigaDOS sends a message to any

program that has established a hot link to it. Thus when notified of a change,

the program can take appropriate action.

In the case ofwindow patterns, a special AmigaDOS program called IPrefs has

hot links to both the wb.pat and the win.pat Preferences files. When you alter

either file with the WBPattern editor, AmigaDOS informs IPrefs that some

thing has happened to the files. IPrefs then checks the files and lets Work

bench know about changes to the patterns it uses in its display.

The Two-File Solution

As I mentioned above, the Preferences editors let you make both changes that

last only until you reboot, and more permanent ones that remain in effect after

you reboot. Because both types involve writing to a file to trigger hot-link

messages to Workbench, you may wonder how Workbench differentiates be

tween them. The answer is that Workbench keeps two copies of each Prefer

ences file; one for temporary changes and one for permanent ones.

The files for temporary Preferences changes are stored on the Ram Disk. Ifyou

open the Ram Disk and select the Show All menu item, you'll see three draw

ers: Env, T, and Clipboards. Inside the Env drawer is one named Sys. Inside

this are the Preferences files. (T is a temporary storage area used by many pro

grams; Clipboards is used by applications to cut and paste information be-

Preferences / /

tween programs.) The similarity between the drawer names for temporary

Preferences storage in the Ram Disk and the permanent Preference files in the

Env-Archive/Sys drawer is not coincidental. When you boot your computer,

AmigaDOS copies all the drawers and files contained in Env-Archive to the

Env directory on the Ram Disk.

The window of each Preferences editor has three action buttons: Save, Use,

and Cancel. Cancel, of course, exits the editor without making any changes.

Use saves the changes youVe made to the temporary file on the Ram Disk,

which is the file with the hot link to Workbench via IPrefs. Save saves your

changes to the Preferences files in both the Ram Disk and in the Env-Archive

drawer. Thus, because saved changes are written to the Ram Disk file, which

has a hot link to Workbench, and also to the disk file in Env-Archive, such

changes both take effect right away and survive a system reboot.

The very first time you open a Preferences editor after installing Amiga OS

2.0, it will try to read the previous settings you saved to the Env drawer on the

Ram Disk. It will, of course, fail because you have yet to save any settings. The

editor will put up one or more requesters saying that it can't read its particular

Preference file or files. Simply select the OK button when this happens. A new

requester appears, stating that the editor will use the Workbench default set

tings. After you select OK, the editor window appears. Note that some editors

such as the Font editor that create and use more than one Preference file will

put up one requester for each settings file they work with.

The Preferences Menus

Except for the Time editor, the Preferences editors share a common set of

menus that provide a way to save and recall alternate settings. In addition,

most of the editors let you save these alternate settings with an icon. After

exiting an editor, you can switch from your current setting to an alternate one

simply by double-clicking on the icon of the alternate.

The Preferences menus are Project, Edit, and Options.

Project: The project menu has three items: Open, Save As, and Quit.

Open: The first item lets you open a file preference setting you previously

saved to dfek. Although you can save these settings anywhere, the default

place to store them is the Presets drawer in the Prefs window. The files are

called preset files.

The exact contents of a preset file depends on which editor you're using. If

you are in the Fonts editor, for example, the file contains the name of one

78 AmigaWorld Official AmigaDOS 2 Companion

of the three fonts this editor lets you set. If you're in the WBPattern editor,

the file contains pattern information for the main Workbench window or

for disk and drawer windows. Preset files don't contain the current Prefer

ences settings, which are stored in the Ram Disk and in the Env-Archive

drawer, but alternative settings that you may want to substitute for the cur

rent ones.

The Open item brings up the standard Amiga file requester (see Figure 4-

1), which lets you load a preset file into the editor. A file requester consists

of three parts: a file list, one or more text gadgets, and some action buttons.

In the Open file requester, the file list contains the names of all the files in

the current drawer in black type on a grey background. If the list display is

too small to show all the files at once, the scroll gadget on the right lets you

move through the list. Using the scroll gadget also alphabetizes the list and

moves drawer names (indicated by the notation DRW) to the end. The

name of the currently selected file appears in reverse (grey on black).

Disks f Parentj Cancel 1

Figure 4-1 The StandardAmiga File Requester

With Amiga OS 2.0, Commodorefinally supplies a standardfile requester. Up to now,

software companies have had to "roll their own " requesters, which didn V make it easy

when you movedfrom oneprogram to another. As more companies upgrade their

products to 2.0, you will make greater use ofthe standard requester.

Preferences / J

Below the list window are two text gadgets. The top one shows the current

drawer, while the bottom one shows either the name of a default file or the

name of a file you selected from the list. The current drawer is the drawer

whose contents are listed in the file list. With the Preferences editors, the

current drawer defaults to Sys:Prefs/Presets. This is AmigaDOS shorthand

for the Presets drawer which is found in the Prefs drawer, located on the

system (Sys:) disk. The Preferences editors also put a default filename in the

File test gadget. For the Fonts editor, this filename is fonts.pre; for the

WBConfig editor, it is wbconfig.pre; and so on.

At the bottom of the requester are buttons: OK loads the file named in the

file gadget into the editor. Cancel aborts the Open procedure (as does the

close gadget in the upper-left of the requester). The Disks button brings up

a list of all the disks and all the assigned directories currently active on your

system. (Assigned directories are special places that AmigaDOS can access

without having to use a complete pathname. You'll learn more about them

in the section on AmigaDOS.) Disks are listed in blue text first by their

AmigaDOS names and then by their Workbench volume names. Assign

ment names are preceded by <ASN>. The Parent button moves from the

current drawer to the one above it in the hierarchy. For example, the parent

of the Presets drawer is the Prefs drawer, because Presets is located within

Prefs. Ifyour current drawer is a disk or volume name, the Parent button

has no effect because these are at the top of the AmigaDOS hierarchical file

structure.

To select a file to load, you click on its filename in the list window and

select the OK button or simply double-click on the filename.

To change the current drawer, you either select the Parent button, which

moves you up the directory tree, or the name of any drawer shown in the

list window, which moves you down into that drawer. Using the requester

you can move to any directory on any disk in the system. With the Prefer

ences editors, however, it's best to store all the presets in the Presets drawer.

The final element of a standard Amiga file requester is an associated menu.

Four of the items in the menu— OK, Disks, Parent, and Cancel — mimic

the functions of the action buttons. They are included in the menu prima

rily to provide keyboard equivalents to the action buttons. Also included are

two items that let you go through the files in the file list in alphabetical

order: Last Name replaces the filename in the file gadget with the filename

that alphabetically preceded it in the list of files. Next Name replaces the file

with the one that follows it alphabetically. Both of these items have key

board equivalents.

Save As: The second Project menu item lets you save a preset file. Save As

also brings up a file requester that allows you to access any file on your sys

tem. The only difference is that the save requester lists text as gray on black.

OU AmigaWorld Official AmigaDOS 2 Companion

Like the Open item, Save As puts a default drawer into the Drawer gadget

and a default filename into the File gadget. Stick with the default drawer for

storing presets. Use filenames that will make sense to you six months or

more from now and that relate to the editor that created the file.

Quit: Finally, Quit lets you exit the editor. It functions the same as clicking

on the Close gadget or the Cancel button.

Edit: The Edit menu has three permanent items: Reset to Defaults, Last Saved,

and Restore. It may also contain other items, depending upon the editor.

Reset to Defaults: If you've overdone it in the customization department, this

item restores the settings in an editor to those selected by Commodore and

shipped on your Workbench 2.0 disk.

Last Saved: This item reads the settings you last saved to the Sys drawer

within the Env-Archive drawer, not any you saved as a preset.

Restore: Restore returns the editor to the settings it had when you opened it.

Any changes you've made are lost.

Optional items: The Edit menu can also contain items specific to the current

editor. For example, the Edit menu of the WBPattern editor contains an

Undo item, while the Edit menu of Palette contains nine built-in presets.

Unlike the presets accessed through the Project menu and stored on disk,

these are a permanent part of the Palette editor.

Options: The Options menu has one item, Save Icons?, which isn't available

on all editors.

Save Icons':'Many editors give you the option of saving your preset files with

an icon. When you double-click this icon, it loads the editor from the disk

and resets the temporary Preference file with the information from the pre

set. The editor then exits immediately, without displaying its window. Us

ing presets with icons, you can switch between two or more Preference set

tings with the double-click of a button.

For example, let's assume that you used the Font editor to change the

Workbench's default Topaz 8 font to some of the newer, better looking

fonts available under Workbench 2.0. One problem you may encounter is

that many programs written under earlier OS versions assume that Topaz 8

is and always will be the system default font. These programs may be unable

to properly handle a larger font such as Helvetica 13 or Times 24. To get

around this, you have to reset your font Preferences back to Topaz 8. The

easiest way to do so is to create a preset file — perhaps called

TopazBack.pre — and move it into the Prefs drawer. Now, before you run

a program that expects Topaz 8, you simply double-click on the

TopazBack.pre icon and it automatically and immediately resets your font
selection.

Preferences 81

All editors have the Preferences menus in common. Now, let's look at the

individual editors and their unique functions.

The Font Editor

One of the nicest features ofWorkbench 2.0 is its support for multiple fonts.

Previously, although individual programs on the Amiga supported multiple

fonts, the Workbench display was stuck with one font, usually Topaz 8. The

fonts editor makes it easy to replace Topaz 8 with up to three others.

The Font editor's window (see Figure 4-2) is divided into three areas. The top

displays the three types of fonts you can have active on Workbench at one time

and the current selections for each type. The buttons next to the text types let

you choose which kind you want to modify: Workbench icon text, Screen text,

and System default text.

Horkbench icon text |R

Screen text _J

Systen default text _J

t tries 1& ||
tines 24
topaz 8 la]
topaz 9 hd
topaz 11 ivi

tines 18

garnet 16

courier- 18

01234S6789aAbBcCd

Color selection? Cti&rkbeiteft'0 (con text <mly>:

_J Text Onlv ; ' Text's | — | i' l|
(^ Text & Field Field: |B* MM iWil

Save I Use (| Cancel I

-<- ■ * >< l'EDl«E

Figure 4-2 The Font Editor

The Font Editor letsyou select differentfontsfor the threefont types used by

Workbench. Thefont list is context sensitive; it will only displayproportionalfonts

when appropriate.

AmigaWorld Official AmigaDOS 2 Companion

Workbench icon text: You select this button when you want to change the

font, color, or background of the icon names on the Workbench display.

Workbench icon text is the only type for which you can change both the text

and background colors. (The text color and background settings — but not

the font setting — are also used in windows where you choose one of the

Workbench menu's View By options to display names instead of icons. In this

case, the color and background settings apply to all text except the filenames.)

Screen text: This is the font that Workbench uses in its screen, window, and

requester title bars, as well as its menus. Ifyou substitute a larger font for To

paz 8, all your menus and title bars (and the gadgets within title bars) will

grow vertically.

System default text: The font you select for the system default is used in the

body of Shell windows and in windows for which you select a View By option

other than View By Icons.

Note that some text you cannot change. The system uses Topaz 8 in the body

of many requesters and windows, such as the Preferences editors' windows.

Below the text-type gadgets is the Font requester, which lists the fonts cur

rently available for use with the selected text type. If the list is longer than the

available space, you can use the scroll gadget to move through it. Next to the

list is an example of the current font, whose name appears next to the active

button in the text-type display. You can change the font by selecting a new one

from the list.

The font requester is context sensitive; it only displays the fonts that are appli

cable to a certain text type. Amiga fonts come in two varieties, fixed length and

proportional. Fixed length give each character the same width, even though,

for example, an "m" obviously needs more room than an "i". Proportional

fonts give each character just the amount of room it needs. Workbench icon

text and screen text can handle proportional as well as fixed-width fonts, so the

requester displays all your fonts when one of these types is selected. The system

default text must be fixed-width, so the requester only displays fixed-width
fonts for this text type.

Ifyou're running Workbench 2.0 on a floppy-based system, you're probably

wondering why you need a scrollable font requester to display three fonts,

Topaz 8, Topaz 9, and Topaz 11. The other fonts are available on the Ex-

tras2.0 disk, but accessing and using them can be a real headache, especially if

you have only one disk drive. See the section at the end of the chapter entitled
Using Preferences with Floppy-Drive Systems for help.

Below the font requester is the color selector for the icon text and background.
To the left are the mutually exclusive Text Only and Text & Field buttons. If

Preferences

you want your icon text displayed on the normal window background, select

Text Only. Ifyou want icon text displayed on a rectangular background, select

Text & Field.

To the right are the color gadgets for the icon text and background. Depend

ing upon the number ofWorkbench colors you've set using the ScreenMode

editor, you could have up to 16 colors displayed beside the the Text and Field

buttons. The default is four. The colors themselves come from the current

settings of the Palette editor.

To select a text color, you simply choose a color from the Text color gadget. It

will immediately show up in the box next to the left of the gadget. You use the

Field color gadget to select a background color. Note that Workbench won't

keep you from your own folly. Ifyou select identical text and background

colors, that's what you'll get, even though you'll be unable to read the icon

names. The same goes for selecting a text color in text-only mode that matches

the background color of the Workbench windows.

Once you've made your font selections you use the action buttons to save, use,

or cancel them. Figure 4-3 shows a Workbench screen that uses a white Times

18 font on a black field for the icon text, Garnet 16 for the screen text, and

Courier 18 for the system default text. In addition to showing where the differ

ent text types are used, it is a good demonstration ofhow ugly things can get if

your font selections get out of hand.

The IControl Editor

Workbench is based upon the underlying Intuition library of functions. The

IControl Editor lets you change some of the control items the Intuition library

makes available.

Figure 4-4 shows the window for the IControl editor and the five functions it

controls: Verify Timeout, Command Keys, Mouse Screen Drag, Coercion,

and Miscellaneous Flags. The IControl editor supports all the standard Prefer

ences menu items.

Verify Timeout: On occasion, a program running under Workbench can get

its communications with the Intuition library crossed up, usually when a pro

gram sets a MENUVERIFY flag. This flag tells Intuition to wait for confirma

tion that the program has completed a certain task before sending along a

user's menu selection. If the program doesn't complete the task or fails to send

confirmation, you get a deadlock with Intuition waiting to pass on a menu

selection to a program not ready to receive it.

84 AmigaWorld Official AmigaDOS 2 Companion

[l-~mj |j J [l=U || I

Devices:

PIPE AUX SPE&K R&M CON

RAW SER PAR PRT WB_2.x

DF0.-b.P2 Work
L.SYS:> I , ' . :

IE31P

Figure 4-3 Effects ofthe Font Editor

This is certainly not an ideal use ofthe Font editor, but it letsyou see exactly what text

is controlled by whatfont type on the Workbench screen. (From this example, you can

see that the Font editor obeys the most basic rule ofcomputing: garbage in, garbage

out.)

To break the deadlock, Intuition sets a time interval that it checks when it

expects input from a program. If Intuition doesn't receive the message it ex

pects within the interval, it proceeds to other things. The Verify Timeout gad

get lets you set this interval.

Verify Timeout is an example of a mutual-exclusion gadget; select one of the

buttons and all the others are automatically deselected. Commodore refers to

such a gadget as a radio gadget, because the buttons act the same way as but

tons on a car radio. You can set the timeout interval to one of five settings

from 0.5 seconds to 5 seconds. The need for the interval is rare enough that I

set mine at 5 seconds to give Intuition and the program as much time as pos

sible to straighten out their communications.

Command Keys: While Workbench is primarily a mouse-driven interface, Intu

ition does provide for keyboard equivalents ofsome functions. Command Keys

lets you set these equivalents using text gadgets. Because they mimic functions

normally performed with the selection button, all use the Left-Amiga key.

Preferences 85

Verify Tineout

.5 Second

1.8 Second

1.5 Seconds

2.9 Seconds

5.8 Seconds

|

I ii

: Requester CANCEL

Coerc ion

flvold flicker:

Preserve colors:

Miscellaneous Flags

Screen menu snap!

Text gadget filter:

presets

Figure 4-4 The IControl Editor

This editor givesyou control over some ofthefunctions ofIntuition, the system of

windows and menus upon which Workbench is built.

WB screen to front: Some programs that open custom screens don't provide a

depth gadget or a drag bar to let you move from the custom screen to

Workbench. In such situations, pressing the Left-Amiga key and N at the

same time brings Workbench to the front ofyour display. You can change

the N to another letter by selecting the text gadget and entering the new

letter. Keep in mind, however, that some programs that close down the

Workbench screen to save memory also disable the ability to move between

screens using command keys.

Front screen to back: This command-key combination lets you flip through

all the screens open on your system. It moves the front screen on your dis

play to the back, thus revealing the screen underneath.

Requester OK: Pressing this command key combination is equivalent to

selecting the OK, Retry, or Continue button on a Workbench requester

with the mouse.

Requester Cancel: This command key combination is the equivalent of se

lecting the Cancel button on a Workbench requester.

After you change a command key in its requester, you must then press the

Return key to record your choice. When you select the Use or Save buttons,

OO AmigaWorld Official AmigaDOS 2 Companion

your choice will go into effect. The requester command keys work on request

ers only, not on windows such as the IControl window.

Mouse Screen Drag: You can move any Amiga screen equipped with a drag

bar up and down by dragging it with the selection button. If the screen is

wider than your display (see the ScreenMode editor), you can also move it side

to side. Mouse screen drag lets you turn any part of a screen into a drag bar.

By pressing one of the keys listed under Mouse Screen Drag and holding down

the selection button, you can drag a screen. The selection button doesn't have

to be over the drag bar; it can be on any window on a screen.

The Shift keys, Alt keys, Control, and Left-Amiga key are all available for the

Screen Drag function. Unlike the Verify Timeout buttons, the Mouse Screen

Drag buttons are not mutually exclusive, although they should be. Selecting

more than one button turns off the Mouse Screen Drag function entirely,

instead of making more than one key for the function, as you'd expect. Per

haps future releases ofWorkbench 2.0 will fix this "feature."

Coercion: The two buttons under this heading tell Intuition how to handle

situations in which the screens on your system use different display modes.

Intuition gives the topmost screen priority and displays it in its appropriate

mode. Ifyou drag that screen down part-way to reveal a screen that uses a

different display mode, Intuition may have to "coerce" the underlying screen

into a new mode if it uses one incompatible with the topmost screen. (If the

underlying screen is using one of the A2024 modes, Intuition will simply make

it invisible.)

This coercion sometimes results in severe aspect ration distortion of the under

lying screen. To compensate, Intuition may switch the coerced screen to a

faster pixel rate, thus sacrificing some colors, or make the coerced screen inter

laced, to shorten the height of the pixels. You can tell Intuition which options

your prefer with the Avoid Flicker and Preserve Colors buttons.

Avoidflicker: When selected, this button tells Intuition not to use interlac

ing. Ifyou don't have a Display Enhancer (from Commodore) or a

flickerFixer (from MicroWay) in your system, you should probably select

this option.

Preserve Colors: Selecting this option tells Intuition not to switch to higher

resolution pixels and drop some of the screen colors. A natural ifyou have a

Display Enhancer or flickerFixer, this makes Intuition first resort to an

interlaced screen to maintain the proper aspect ratio of the coerced screen.

Miscellaneous Flags: As the name implies, these buttons handle functions that
didn't fit anywhere else.

Preferences O /

Screen Menu Snap: Workbench 2.0 lets you create screens that are bigger

than your output display and scroll around them using the drag bar, Mouse

Screen Drag, or by moving the pointer to the border of the visible display.

Because of this capability, the menu bar might not always be visible when

you press the menu button. With the Screen Menu Snap feature selected,

your display will always move to the upper-left corner of a screen when you

hit the menu button. After you select an item, the display snaps back to

your previous location on the screen. Disabling this feature means you will

have to manually scroll the menu bar into view before you can use the

menus. I can't imagine why you would want to turn Screen Menu Snap off.

Text Gadget Filter: With this option active, Intuition filters your keyboard

input into a text gadget and removes non-printing characters created when

you press the Control key in combination with an alphanumeric key. This

keeps you from entering these invisible characters into filename requesters.

When you begin using the Shell, you'll understand the problems nonprint-

able characters can create. To avoid that mess, keep this option active.

Even with the filter active, if necessary you can still enter control characters

into text gadgets by pressing both the Control and the Left-Amiga keys in

addition to the character key.

The Input Editor

For the most part, you use two devices to communicate with programs run

ning on the Amiga: the keyboard and the mouse. The Input editor lets you

change the characteristics of these devices to suit your tastes. With the Input

Preferences requester (see Figure 4-5), you can set three mouse and two key

board characteristics.

Mouse Speed: The slider at the top of the window lets you control how fast

your pointer moves across the screen in response to mouse movement. By

clicking in the slider box or dragging the slider, you can set mouse speed to 1

(the fastest), 2, or 4 (the slowest).

Mouse Speed actually tells Workbench how many pixels to move the pointer

in response to the physical movement of the mouse. The fastest setting moves

the pointer the greatest number of pixels per mouse movement, the slowest

moves it the least number. The fastest setting is fine for everyday use and mini

mizes the amount of space your mouse needs to operate. The slower settings

give you finer control over pointer positioning and are useful for detail work in

painting or design programs.

88 AmigaWorld Official AmigaDOS 2 Companion

ftcceleration;

Double-Click: 1,58 sac—' ■

Kevboapd, , -

key Repeat D>#(ay: II *Til»8, s«wi ' -* -

K&b Repeat Rate: 8.858 &ec jj j_

Key Repeat Test i L

nput 1Control Palette Pointer font MBPattern WBConflg

rinter Overscan Printer
presets

Figure 4-5 The Input Editor

This editor controls the characteristics ofthe two standardAmiga input devices, the

mouse and the keyboard

Acceleration: Below the mouse-speed slider is a check gadget that lets you turn

mouse acceleration on and off. Click once and you turn acceleration on; click

again and you turn it off. Acceleration controls how often Workbench draws

the image of the pointer as you move the mouse. With acceleration on, Work

bench reduces the number of times it draws the pointer, thus making the

pointer appear to move faster. Acceleration also cuts down on the amount of

room the mouse needs on your desk.

Double click Workbench uses one click of the left mouse button to select

objects and a double-click to open an object. It differentiates between a

double-click and two single clicks by the amount of time between the clicks.

The double-click slider lets you set the maximum time interval between the

two clicks that constitute a double-click. If the interval is below the setting the

two clicks are interpreted as one double-click; above the setting, and the two

clicks are just that — two single clicks. Using the slider, you can adjust the

interval from 0.2 seconds to four seconds. Clicking in the slider moves the bar

.02 seconds in the direction of the pointer. You can also drag the bar to the

desired setting.

Preferences Oy

The Input editor provides two gadgets that let you see the results of changing

the double-click interval. Selecting the Show gadget paints a rectangle within

the box to the gadget's right. The rectangle remains for the duration of the

double-dick interval, then disappears. The Test gadget lets you get the feel of

the double-dick interval. When you click twice on the gadget, the editor tells

you whether the two clicks would constitute a double-click under the current

interval setting. A yes means one double, no means two singles.

Key Repeat Delay: With the exception of special keys such as the Amiga, Con

trol, Shift, Alt, and the function keys, the Amiga keyboard repeats ifyou hold

down a key. Key repeat delay lets you specify how long you must hold a key

before it repeats, from 0.2 seconds to 1.5 seconds. The slider is graduated in

.02 second intervals.

Key Repeat Speed: This lets you set the interval between keystroke repeats,

from as short as .002 seconds up to .250 seconds.

Key Repeat Test: With this gadget, you can test the settings you made with

the delay and speed sliders. Click in the gadget, then hold down a key. The

character you enter begins repeating after the interval you set with the delay

slider and repeats the character at the rate you set with the speed slider.

The Input editor's settings are subjective, so I can't indicate which are best for

you. If you're a heavy-handed typist, however, you should set a long repeat

delay. Ifyou're a bad typist, go for a fast repeat speed, which shortens the time

needed to delete or backspace over your mistakes in a word processor. As with

all the Preferences editors, selecting the Cancel button or the close gadget

leaves the editor without making any changes. Selecting Use puts the changes

into immediate effect without saving them to disk. Ifyou reboot your ma

chine, your original setting will again be in effect. Selecting Save both imple

ments the changes immediately and alters your Preferences file so that the

system uses the new settings the next time you boot.

The Overscan Editor

The display on your computer monitor consists of a rectangular array of pixels

output by Workbench. This array does not quite fill your monitor screen, but

you can enlarge its area using the Overscan editor. How large an area you can

display depends upon your monitor type. The Amiga creates different sized

overscan displays for different monitors. Before you use the Overscan editor,

therefore, you must tell Workbench what type of monitor you are using.

90 AmigaWorld Official AmigaDOS 2 Companion

You have three methods for indicating your monitor's type. The first is too do

nothing. Amiga OS automatically defaults to an NTSC monitor type if you

live in the United States and Canada and a PAL-type monitor for elsewhere.

One of these monitor types will always appear in the Overscan editor window

(see Figure 4-6). Ifyou have a multiscan monitor or Commodore's A2024

monitor, you must take active measures to tell Workbench about them.

1E3I

|puTtFraeanTi

Edit

monitor

Text Overscan. •«

Edit Standard Overscan.

Text

: Standard

ttaxlrtuh

__s#,ycj

liar Size-?

Overscan*

Overscan: -

Overscan:

Use

£48

648

640

688

J

X

x

X

X

1

.. 1

488

488

490

495

Cancel I

0 1 prefs IBIS

Figure 4-6 The Overscan Editor

The Overscan editor letsyou select the monitoryou're using and the type ofoverscan

you wish to set: text or graphics.

Included in the Workbench 2.0 release is a drawer called MonitorStore, found

on the System2.0 disk of hard-drive systems and on a floppy-only system's

Extras2.0 disk. Inside this drawer are icons representing four types of moni

tors: NTSC, PAL, Multiscan, and the A2024. To indicate which you've at

tached to your system, simply drag its icon to the WBStartup drawer ofyour

system disk. When you next boot your system, it will make the monitor type

and its display modes available to you in both the Overscan editor and the

ScreenMode editor.

My hard-drive system contains a third way to get the Workbench to recognize

a monitor: the Monitor drawer on the system disk. Moving a monitor icon

here also causes the system to recognize the monitor at startup.

Preferences 91

You can, of course, lie to your system and indicate a monitor type that you

don't have. This can lead to interesting results. For example, if you move the

A2024 icon to the WBStartup drawer and then choose an A2024 mode from

the ScreenMode editor, you'll get a wild display. Luckily, you will be able to

see the icons well enough to go back into the ScreenMode editor and change

to a normal display.

Once you've indicated your monitor type to Workbench, it will appear in the

Overscan editor's selection box. You can indicate the dimension of the

overscan screen you want by selecting the proper monitor from the box and

accessing the two Overscan editing buttons.

Edit Text Overscan: Selecting this button lets you enlarge the area available to

the Workbench interface. It brings up a display (see Figure 4-7) bordered by

eight solid boxes and containing one in the middle. The thin line around the

boxes corresponds to the current limit of the text display area. You change its

size by dragging the border boxes towards the edge of the display and by drag

ging the middle box to center the overscan area. Pressing the Return key re

turns you to the Overscan editor with your setting intact; the Escape key re

turns without changes. The menu in the upper-left side of the display

accomplishes the same thing.

Edit Standard Overscan: Working identically to Edit Text Overscan, Edit

Standard Overscan enlarges the area in which programs can display graphics.

The standard overscan area will always be as large as if not larger than the text

overscan area. Ifyou change the standard overscan area to be smaller than the

text overscan, the editor automatically shrinks the text area to match the stan

dard overscan.

Below these buttons is an information display detailing the pixel size of your

currently selected overscan options. The first line lists the size of a standard

display on the monitor type you've chosen. The second lists your current selec

tion for the text overscan area's size, while the third lists your current settings

for the standard overscan area. The fourth line lists the maximum display size
ofyour monitor type's screen.

The larger display that comes from using overscan isn't free. You pay a perfor

mance penalty. If you're simply doing word processing or telecommunications,

then the larger display is probably worth the performance penalty. With other,

more computationally intensive tasks you should consider whether overscan is

worth the price. Perhaps the most popular use for overscan is in video work.

Previously, without overscan, Amiga graphics dumped to videotape had a

black border around them. Amiga OS changes that by providing for transpar

ent borders around genlocked screens, but overscan is still necessary if you

want video titles and animation to fill the entire video frame.

92 AmigaWorld Official AmigaDOS 2 Companion

Use the handLUM1 size

and place your Text Overscan

area, It nay be as big as

you like, but the whole area
should renain visible.

Press <ESOape to cancel

or <ENTER> to keepchanges,

Figure 4-7 Edit Text Overscan

Text overscan is essentially the area where Workbench can render text. You set its

dimensions by dragging the black handles with your mouse.

The Palette Editor

You can change the colors of your Workbench display with the Palette editor

(Figure 4-8). The editor consists of a box that contains the current color you

want to change, a color gadget for choosing the current color, and three sliders

for changing the current color.

To edit a color, simply select one from the color gadget. This gadget displays

from two to 16 colors, depending upon the number of colors you selected in

the ScreenMode editor. When you select a color, it appears to the left of the

color gadget and the sliders move to represent its red, green, and blue values.

You change the color by moving the sliders.

Each slider can have one of 16 different values, from 0 to 15. A 0 represents

the lack of a red-green-blue component from the final color; a 15 means that
component is saturated. Thus, pure white is 15,15,15, while pure black is

0,0,0. These sliders let you create any one of the Amiga's 4,096 colors.

Preferences 93

Cancel I

Systen2.B

oI prefs

nput IControl Palette Pointer Font WBPattern WBConfig

presets

Figure 4-8 The Palette Editor

The Palette editor letsyou select the Workbench colors. The colorgadget automatically

lists the number ofcolorsyou select in the ScreenMode editor.

The Palette editor doesn't let you save presets with icons, but it does have a

number of built-in presets that you can try. They are listed as a submenu of

the Edit menu's Presets item. All have keyboard equivalents that you can use

while the Palette window is active. To make a preset permanent, choose it

from the menu and click on the Save button.

The Pointer Editor

The Pointer editor is unique among the Preferences editors because it opens its

own custom screen. This screen is low resolution — just 320 pixels across,

instead of 640 — because the pointer is a low-resolution image. Also, Pointer

needs more colors than the standard four-color Workbench provides because

the pointer's colors don't come from the Workbench screen palette. You can

confirm that Pointer opens its own screen by dragging the screen down with

your mouse. Behind you'll find the Workbench screen.

The Pointer editor is a miniature paint program featuring an enlarged view of

the current pointer, four views of the pointer showing how it looks superim-

94 AmigaWorld Official AmigaDOS 2 Companion

posed over the Workbench screen's first four colors, a color gadget and slider

that show the four colors presently used in the pointer, four special-purpose

buttons, and the standard Save, Use, and Cancel buttons.

To edit your pointer, you select a color from the color gadget and begin paint

ing. You paint by moving the pointer to the enlarged view of the pointer and

holding down the left-mouse button. The pixels beneath the pointer will turn

to the selected color until you release the button. To change colors, you simply

select a new one from the color gadget. To create a new color, you move the

sliders until you're satisfied. As you create or modify a pointer, check the four

views to see how it will appear against Workbench's first four colors.

The four special buttons used with the Pointer editor are Test, Clear, Set

Point, and Reset Color.

Test: Selecting this button makes the image you are working on the current

pointer, so you can see how it works inside the Pointer editor. As a word of

warning, don't hit this button immediately after selecting the Clear button.

Nothing is more frustrating than an invisible pointer.

Clear: This button is fairly self-explanatory. It clears the enlarged image of the

pointer so that you can create a new one from scratch. See the caution above

about using this option with Test.

Set Point: Selecting Set Point tells the editor that the next point you select in

the enlarged view of the pointer will be the active point. The active point is the

part of the pointer that is used to select objects on the Workbench. As you can

see, you can make fairly large pointers that can overlap multiple icons. The

active point defines the true location of the pointer — the rest is just window

dressing.

ResetColor: When you select this button, you return to the colors present

when you opened the Pointer editor.

The Pointer editor supports the Save Icons? item in the Options menu as well

as the standard Preferences menus. The Save, Use, and Cancel buttons per

form their usual wizardry.

The Printer Editor

One of the more elegant aspects ofAmiga OS is how it handles printers. Un

like the IBM world's MS-DOS, Amiga OS does not require that every applica

tion program provide built-in support for every type of printer in the world.

Instead, all Amiga applications use a standard set of printer control codes. The

Preferences 95

Amiga printer device takes these codes and translates them to printer-specific

codes using the appropriate printer driver.

The Printer editor lets you pick your printer driver and set some printer de

fault values. Workbench 2.0 ships with 25 printer drivers that, because of

emulation of the most popular printers by other manufacturers, can support

over 95% of the printers on the market.

Ifyou don't find your printer on the list in the Printer editor, you will prob

ably find a driver that your printer emulates. The documentation for Amiga

OS 2.0 contains an extensive appendix on using various printers. If you can't

find a driver that supports your printer, you can use the default generic driver

for simple text output.

The Printer editor (see Figure 4-9) consists of a scrollable list of the printer

drivers, three page-description text gadgets, and six buttons, as well as the usual

three action buttons. It supports all the Preferences menu items.

iPrinter JDrlwer

-p<M*t; B_

Paper Type1. Q

^p«r.'¥4ze:' Qr|

Paper Length <Lines};

teft Harsin <CfiarsK

Riht Marg i in < Chare) I

68E3

Parallel

Single

±\:'lj*f\V

IMIS

o j prefs

Figure 4-9 The Printer Editor

Iftheprinter editor doesn't listyourprinter explicitly, you should try a compatible

printer driver. Ifall elsefails, you can select generic, which allows simple text output on

nearly allprinters.

>/O AmigaWorld Official AmigaDOS 2 Companion

Printer Driver: Ifyou have a hard-drive equipped Amiga running Workbench

2.0, you'll see a scrollable list of the 25 printer drivers when you open the

Printer editor. The small box below the list holds the name of the currently

selected printer. If youVe yet to select one, this box will contain the word ge

neric. You select the driver for your printer with the left mouse button.

Ifyou have a floppy-based system, however, your driver list will be blank; the

Extras disk holds the drivers. To learn how to access these printer drivers skip

ahead to the section entitled Using Preferences with Floppy-Drive Systems at

the end of the chapter.

Page Settings: To the right of the printer drivers are three text gadgets that let

you set the page length and margins ofyour printed output.

Paper Length: Use this gadget to enter the page length of the paper you're

using. The default is 66 lines, which translates into an 11-inch page at 6

lines per inch. If you use some other length page or line-per-inch setting,

you must alter this setting accordingly. Also, if the page breaks in your

printed output aren't consistent, you may have to experiment with alternate

page lengths. For example, I find the 60 lines per page is the proper setting

for my Hewlett-Packard LaserJet even though I use letter-sized paper and

the 6 lines-per-inch setting.

Left Margin: This setting lets you position the left margin ofyour printed

pages. It measures the distance from the left edge of the page to the start of

the margin in characters. Ifyou have the character pitch set to 10 characters

per inch, the default setting of 5 will give you a half-inch left margin. A

setting of 10 gives you a one-inch margin. To get a one-inch margin at 15

cpi requires a setting of 15.

Right Margin: This setting is distance from the left edge of the page —

given in the number of character positions — that you want the right mar

gin to begin. The setting depends upon the character pitch setting you

choose and the width of the page. A letter-sized page is 8.5 inches wide. Ten

characters per inch translates into 85 character positions. The default setting

of 75 gives you a one-inch margin on the right side of the page.

Other Settings: The lower half of the Printer editor window contains six but

tons that let you set certain printer attributes. These buttons are called cycle

gadgets, because whenever you select one, the text on the gadget changes to

reflect another option. The active option is the one you leave showing when

you exit the editor.

Printer Port: This button lets you cycle between parallel and serial. Choose

the port to which you've attached your printer.

Preferences J /

Paper Type: Here you indicate whether you are using fanfold paper or single

sheets with your printer.

Paper Size: This gadget lets you cycle through seven different sizes of printer

paper to choose the type you are using.

Print Pitch: Pitch is the number of characters per inch on a line of printed

output. Your choices are 10, 12, and 15 characters per inch.

Print Spacing: This buttons lets you choose the number of printed lines that

will appear in every inch of output. Your choices are 6 and 8 lines per inch.

Print Quality: With this you pick letter-quality mode or the coarser, yet

faster, draft mode.

Note that many word processors and desktop publishing programs also let you

determine these settings from within the program. In such cases the temporary

setting from the program may override your Preferences settings.

The PrinterGfx Editor

While the Printer editor lets you choose your printer driver and set some basic

attributes of the output page, it doesn't deal with the many variables necessary

for the graphics output. Setting those options is the function of the PrinterGfx

(the Grx means graphics) editor.

The PrinterGfx editor has a lot ofoptions, many ofwhich require fairly technical

explanations. You should read the explanations, both here and in the Commodore

documentation, but the best way to learn about what this editor does it to use it.

When you open the PrinterGfx editor, you will see a window chock full of

unfamiliar options (see Figure 4-10). Lets look at the easiest first.

Color Correct: Your Amiga can display up to 4,096 colors in HAM mode.

When you print graphics to a color printer, however, the colors on the page

don't always resemble those on your monitor.

The color-correct buttons let you select corrections for the red, green, and blue

components of the colors in the printout. Selecting these buttons produce

truer output, but will reduce the maximum number of colors in the printout

by 308 for every button you select.

Smoothing: Next to the color-correction buttons is the smoothing button.

With this button selected, the printer driver tries to smooth out diagonal lines

that traditionally suffer from the jaggies. Smoothing results in better-looking

output, but it can slow your printing speed to a crawl. Smoothing cannot be

used with Floyd-Steinberg dithering.

98 AmigaWorld Official AmigaDOS 2 Companion

Color Correct

J Colors »

Dithering:

Scaling;

Image:

Aspect:

Shade;

Threshold: 7

Save |

3172

Ol

O|
CM

Ol
Ol

Snoothing

Ordered

Fraction

Positive

Horizontal

Grey Scale 1

■ 1

"I"' 1

Type:

Width

Height

No.

Left Offset

Inches! \MM®
. ^iSi«

Ml -
Center Picture: Vt

Limits

t3t\

C

<

Density:

Ignore

) i |tfS83ft3Biiiil

4 ■

|
HI

r

Cancel <

Figure 4-10 The PrinterGfic Editor

One ofthe more complex editors, PrinterGfic givesyou a great deal ofcontrol over how

yourAmigaprints graphics. Remember, however, that asyou increase the quality of

yourprintouts, you also increase the time it takes to produce them.

Left Offset: Below the Left Offset heading are two gadgets, No. Inches and

Center Picture.

No. Inches: You use this string gadget to enter the width of the left margin

when printing graphics. You can enter the information in 0.1-inch incre

ments.

Center Picture: Selecting this button centers your graphics output on the

page and overrides the setting in the No. Inches gadget.

Dithering: Below the color-correction buttons are five buttons; the first, Dith

ering, cycles between three different dithering modes. Dithering is the process

by which a printer combines dots of different colors to produce patterns that

look like other colors. Most color printers only use four-color ribbons or four-

ink jets. To produce thousands of colors requires that the printer mix dots of

these primary colors so that the resultant patterns look like new colors. With

grey-scale printing on a black-and-white printer, dithering varies the density of

black dots on the white page. Greater density of dots means a darker shade,

lesser density means a lighter one.

Preferences JJ

Ordered: This dithering method creates different colors by printing orderly

rows and columns of colored dots. The dots have the same size and density.

It produces grey scales by varying the pattern of the dots.

Halftone: Similar to the way newspapers print pictures, this method produces

colors and grey scales by varying the size and density of the dots in a region.

Floyd-Steinberg: A complex mathematical dithering method, Floyd-

Steinberg can produce excellent results. However, it is the slowest of the

dithering methods.

Scaling: The next gadget controls the technique used to scale the output im

age. (You set the actual size of the image with the Limits button.)

Fraction: This option multiplies the horizontal and vertical dimensions of

the image by the same factor to produce the desired image size.

Integer: Under the Integer option, each pixel in the image being printed will

be represented by an integer multiple of dots on the output. This setting

overrides the Aspect option setting and is useful for printing graphical text

and images containing horizontal and vertical lines.

Image: The third button lets you select whether the image is printed as a

positive image (what is black on the screen prints black on the paper) or as a

negative image (what is black on the screen appears white on the printout).

Aspect: Using Aspect, you can choose between printing a horizontalim&gz

(oriented as its is on the screen) or a vertical image (prints sideways).

Shade: This button lets you indicate the colors or grey scales used to print your

graphics.

Black & White: Selecting this option prints your graphics in black and

white, without dithering or grey scales. Black & White uses the Threshold

slider to determine which colors on the screen are printed as black and

which as white.

Grey Scale1: To print colors as shades of grey, select Grey Scale 1, which is

the standard setting for black-and-white printers.

Grey Scale2: Designed to be used with the A2024 monitor, Grey Scale2

prints a maximum of four shades of grey.

Color: Ifyou have a color printer, this setting will print your pictures in color.

Threshold: This setting applies only if you've selected Black & White as your

Shade setting. It determines the dividing line between which on-screen colors

print as black and which remain white. The lower the threshold, the fewer the

on-screen colors that are printed black. Changing the Image setting from posi

tive to negative means that values below the threshold will appear white on the

printed output.

100 AmigaWorld Official AmigaDOS 2 Companion

Type: To the right of the cycle gadgets is the Limits gadget, which lets you

specify the size ofyour output. With it, you enter the width and height values

for the printout into appropriate gadgets. How these values are interpreted,

however, depends upon the selection you make with the Type button.

Ignore: As its name implies, Ignore ignores the values you place into the

Height and Width text gadgets. It lets the application determine the size of

the printout instead, considering the size of the paper and the margins set in

the Printer editor.

Bounded: With this option the width and height settings are interpreted as

tenths of an inch. Thus, a value of 50 equals five inches. Bounded sets and

upper limit on the horizontal and vertical dimensions of the output image.

Absolute: This function interprets the Width and Height settings as absolute

values. Ifyou enter 60 and 50 into the Width and Height gadgets, respec

tively, you'll get a printout 6 inches wide and 5 inches tall. This could pro

duce a severe aspect-ratio problem. To produce images with the proper

aspect ratio, enter an absolute value into one gadget and enter 0 into the

other. Ifyou set both the Width and Height to 0, the output will be as wide
as possible given the paper size and the margin settings and the height will

be enough to ensure a proper aspect ratio.

Pixels: With Pixels, the Width and Height settings are interpreted as the

number of dots used in each dimension. Entering 0 into one of the gadgets

ensures a proper aspect ratio.

Multiply: Multiply treats the Width and Height values as multipliers. The

system multiplies them by the number of pixels in the corresponding di

mension of the screen image to determine the number of dots printed on

the page. With one of the values set to 0, this option retains the aspect ratio

of the screen image.

Density: A slider, Density determines the number of dots per inch used to

print your images. A value of 1 corresponds to the lowest density output of

which your printer is capable; a 7 corresponds to your printer's highest density

level. Most printers can handle four or five levels. Check you printer's manual

for details. Setting the density value above your printer's highest level ensures

its highest density output. The higher the density, the better looking the out

put, but the longer it takes to print.

The ScreenMode Editor

One of the more important of the Preferences editors, ScreenMode lets you set

your Workbench screen's display mode.

Preferences 101

As I mentioned in Chapter 2, Amiga windows derive such basic properties as

the number of colors they support and the maximum resolution they can at

tain from their underlying screen. Workbench windows are no different: They

get their basic characteristics from the Workbench screen. The ScreenMode

editor lets you alter those basic characteristics.

Choose Display Mode: At the upper-left of the ScreenMode window (see

Figure 4-11) you'll find a scrollable list of the available display modes. The

editor determines which modes to display here based upon the monitors you

added to your system (either by placing them into the WBStartup drawer or

by running the AddMonitor program). In addition, the editor always displays

the NTSC or PAL modes, because, subject to restrictions, these modes are

always available to you. The currently selected mode appears below the list

display.

Choose Display Model

NTSC.Hires
NTSC:SuperHires

NTSC:Hires-Inter laced
NTSC:SuperHIres-lnterUced
Productivity . \ "

|NTSC;Hires-inter laced

tH&lble Size: £48 x 4«»

> Mtn Size; 648 x 288

Max Size: 16368 x 16384

Max Colors: 16

Interlaced
Supports Genlock
Draggable

* \"'*--?"'<' , .
Catice I \

rimer , Overscan Fruiter

Figure 4-11 The ScreenMode Editor

This editor letsyou set the basic characteristics ofthe Workbench screen, and, for the

first time, permits a screen with more thanfour colors. With Commodore rumored to

be working on an 8-bit display chip set due in early '91, ScreenMode may soon letyou

create a 256-color Workbench,

Note that the display modes listed are not the only ones available on your

Amiga, but the only ones available to Workbench. Many programs open cus-

1 \jJL AmigaWorld Official AmigaDOS 2 Companion

torn screens that use one of the other Amiga display modes such as lo-res, lo

res interlaced, and the HAM and ExtraJHalfbrite (EHB) modes.

Ifyou loaded up all the monitor types into the WBStartup drawer and booted

your system, you'd discover that Workbench supports the following display

modes:

NTSC Hires: Hires stands for high-resolution. Any Amiga screen whose

visible area is 640 pixels wide is called hi-res. The NTSC designation means

that the standard number of vertical pixels is 200. Like all Amiga hi-res

modes, it lets you use up to 16 colors (out of a possible 4,096) at once. For

Amiga 500 owners, or for Amiga 2000 owners who don't own either a Dis

play Enhancer or a flickerFixer, this will probably be the most useful display

mode because the screen doesn't flicker.

NTSC SuperHires: This mode features a horizontal resolution of 1,280 pix

els although it limits you to four colors. Requiring the Enhanced Chip Set

be installed in your Ajniga, NTSC SuperHires is designed for use with a

15.75 KHz monitor such as the Commodore 1084. If you view its output

on a multiscan monitor attached to the Display Enhancer circuitry on the

Amiga 3000 (or on a display enhancer card in an Amiga 2000), every other

horizontal pixel in the display will be missing. This mode is designed prima

rily for video-titling applications.

NTSC Hires-Interlaced: This mode doubles the number of horizontal pixels

but produces flicker on a standard 15.75 KHz monitor. Commodore rec

ommends this mode, however, for those Amigas that contain hardware

intended to eliminate flicker by buffering the output and using a 31.5 KHz

monitor, such as a multiscan.

NTSCSuperHires-Interlaced: This mode produces twice the vertical resolution

ofSuperHires. Viewed on a multiscan through the Display Enhancer circuitry,

it loses every other horizontal pixel and also produces an unsteady looking

display. It has the same limitations and requirements as the SuperHires mode;

in addition, it greatly slows the CPU's access to chip RAM.

PAL Hires: Features the European television standard 256-pixel vertical

resolution instead of the North American 200-pixel vertical resolution. You

can view this mode through an NTSC or multiscan monitor, but the 50 Hz

PAL refresh rate produces an unsettling display.

PAL SuperHires: Once again, this mode is the same as its NTSC cousin

except that the vertical resolution is 256 pixels.

PAL Hires-Interlaced: Here the vertical resolution is 512 pixels. The mode

requires a Display Enhancer or a flickerFixer to eliminate interlace flicker

and looks strange on a 60 Hz NTSC monitor.

Preferences 103

PAL SuperHires-Interlaced: Choose this mode for a l,280-by-512-pixel dis

play. You'll get the same limitations and requirements, however, as the

NTSC version.

Productivity: Even ifyou don't have specialized hardware, Productivity

mode produces a four-color, 640-by-480 pixel display that doesn't flicker.

You will need the ECS and a multiscan monitor. Commodore designed

Productivity mode for people who wanted more vertical resolution but who

didn't have access to flicker-elimination boards. Like SuperHires, this mode

ties up chip RAM a great deal, shutting out the CPU from accessing it.

Called bus contentions, this condition can degrade system performance

significantly. You may want to limit your use of productivity mode to such

noncomputationally intensive applications as word processing. (Note: On

an Amiga 3000, the bus contention is significantly reduced because of the

32-bit access the CPU has to chip RAM.)

Productivity-Interlaced: Would you believe Commodore added a 640-by-

960-pixel display that flickers even on a multiscan monitor attached to a

Display Enhancer or flickerFixer? To get a steady display with this mode

would require a 65 or a 70 KHz monitor. Then there's the bus contention

to worry about.

A2024_10Hz:This mode produces a l,008-by-800, four grey-scale display

on a Commodore A2024 display. The monitor builds it display from sepa

rate "panels" output from the Amiga. Watching this display on a normal

monitor is an experience to be missed.

A2024_15Hz: Producing the same display resolution as the 10 Hz mode,

A2024_15Hz updates the screen more frequently for a steadier display. The

trade off is that this mode consumes more processing power from the com

puter than does the 10 Hz mode.

Properties of the selected mode: To the right of the mode display list is an

other display box. When you select a display mode, this box automatically lists

some of that mode's properties.

Supports Genlock: A genlock synchronizes the Amiga output with an exter

nal video signal, allowing you to overlay graphics on a video picture. This

mode supports genlocks by letting you designate any of its colors as the

ChromaKey, the color that is replaced by the video signal in the combined

picture. It also lets any bitplane enable the video display and can provide

either a transparent or opaque border around the screen.

Draggable: These modes support screens that can be pulled down to reveal

the screens behind them.

ECS: To use these modes, your computer must be equipped with the En

hanced Chip Set.

1U4 AmigaWorld Official AmigaDOS 2 Companion

Requires bypassing the Display Enhancer: Obviously, these modes don't work

well with the Display Enhancer.

Interlaced: The down side is that this produces a flicker on 15.75 KHz

monitors; on the other hand, the display's vertical resolution doubles.

PAL: Ifyou have the ECS installed on your NTSC machines, you can use

modes with this property.

NTSC: The mode is available to PAL machines with the ECS installed.

Panelled: On monitors like the A2024, Panelled indicates the use of com

bined display panels to produce output.

Does not support Genlock, Not draggable: Need I say more?

Screen Sizes: Whenever you select a display mode, information about its size

characteristics appears below the list of modes.

Visible Size: Check here for the dimensions of a screen in pixels when it fills

your output display.

Min Size: Screens can be shorter than the output display. This item lists the

smallest vertical resolution.

Max Size: One of the exciting things about Workbench 2.0 is that screens

can be bigger — a lot bigger — than their visible size. When a screen takes

up more than the visible display, you can scroll it using the mouse.

Max Colors: The maximum number of colors the mode can display at once

is shown here.

Under the Properties list are a couple of text gadgets that let you set the size of a

screen, a slider for selecting the number ofcolors in the screen, and a check gadget.

Width: Width lets you enter the width of the screen, up to the maximum

width shown in the Max Size line. Selecting the default sets this value to the

horizontal dimension of the Visible Size.

Height: You use this text gadget to set the maximum height of the screen, up

to the value shown in the Max Size display. Selecting the default button sets

this value to the vertical dimension of the Visible Size. Note that the size of

your screen may also be limited by the availability of chip RAM.

Colors: Four is the default number of colors for a Workbench screen, although

many modes allow up to 16. This slider lets you choose the number of colors

supported by your Workbench screen. Note that 16 colors with a Hires-Inter

laced screen will produce considerable bus contention on all Amigas except the

Amiga 3000. More colors also mean greater memory requirements. For a 640-

Preferences 105

by-400 pixel screen, you increase memory usage by 32K every time you double

the number of colors.

AutoScroll: When a screen is bigger than its visible size, you need a way to

move around to see it all. With this check gadget selected, the display scrolls

when you move the pointer to an edge to reveal new portions of the screen.

Without AutoScroll selected, you have to use the drag bar or mouse screen

drag to scroll around the screen.

At the bottom of the window are the familiar Save, Use, and Cancel buttons.

ScreenMode is an important editor, one that you must understand well to

make intelligent selections. I recommend that you start out conservatively by

limiting your Workbench screen colors to four and your screen to the visible

size. You can always experiment when you have more confidence and experi

ence.

The Serial Editor

Many printers and all modems exchange data with your Amiga using serial

communications. In serial communications, one device sends data as a stream

of bits to another. To work, both devices must be packaging the bits in the

same way and be transmitting and receiving them at the same rate. They must

also establish a system so that when one is ready to send data, the other is ready

to receive. The items that define such a system collectively are called the serial

communications parameters.

The Serial editor (see Figure 4-12) lets you set the communications parameters

for your Amiga's serial port. For the most part, you'll use this editor ifyou

have a serial printer. Check your printer documentation for the proper param

eters and set the serial port to match them. When using a modem, you'll dis

cover that your telecommunications program lets you set the communications

parameters from inside the program.

Baud Rate: The slider at the top of the window lets you set the baud rate,

which is effectively the number of bits the port will send or receive per second.

To communicate, two devices must use the same baud rate. Most printers

work at 9,600 baud, most modems at 2,400. AmigaDOS 2.0 supports baud

rates up to 31,250.

Input Buffer: Below the Baud Rate slider is one that lets you set the size of the

input buffer for the serial port. 512 bytes is sufficient for most applications. If

your Amiga holds up the device on the other end of the serial connection,

however, you can increase this setting up to 64K bytes.

106 AmigaWorld Official AmigaDOS 2 Companion

BflUD Rate; 9688

Input Buffer Size: 1824 J

Handshaking

xbn/xoff m

ftTSXCTS '_J

; Parity

> None (§1

Even _)

Hark ^J

Bits >T Char Stop Bits
'7O '" 1 (i
8 <S 2 J>

-72 7#<? Serial Editor

Because telecommunicationspackages usually set the serialport themselves, you'll only

need to access this editor ifyou use a serialprinter or make a direct connection with

another computer.

Handshaking: Serial devices must establish a protocol that keeps both devices

from sending data at the same time. You select a particular handshaking

method by clicking the button next to your choice. Two types of serial proto

cols exist, software and hardware.

xON/xOFF: The software communications protocol xON/xOFF is the most

common serial communications protocol. Under it, the different devices

send special control characters to one another to indicate when they can and

cannot receive data.

RTS/CTS: Used mostly for communications with printers, the protocol uses

two physical lines within the serial cable to signal a request-to-send or a

dear-to-send signal.

None: This option turns off all serial handshaking. It may be handy when

you're simply dumping data from one device to another, but I've never used

it and can't image ever doing so.

Note that these handshaking protocols are not the same as the binary transfer

protocols, such as Xmodem and Kermit, that you use in telecommunications.

Preferences 107

Such upper-level protocols are concerned more with high-level error checking

than with basic handshaking.

Parity: Parity checking is a simple error-checking protocol. It helps ensure that

data bits have been transmitted without error. In serial communications, data

bits are sent in bunches — called words — of either seven or eight bits. When

seven bits are used, the system can employ the eighth bit for parity checking.

The radio buttons below the Parity heading list the parity options.

None: Under this option, data bits are sent eight bits at a time; no parity

checking is done. Most telecommunications networks use the None parity

setting.

Even: As the name implies, with even parity the number of 1 bits in the data

word must be an even number. If the number of 1 bits is odd, the sender

attaches a 1 parity bit. If the number is even, a 0 is attached. If the receiver

detects an odd number of 1 bits, it knows an error has occurred.

Odd: In this case, the number of 1 bits sent is always odd. The sender adds a

0 or a 1 to fulfill this condition.

Mark: With this setting, the eighth bit is always a 1.

Space: Select Space and the eighth bit will always be a 0.

Bits/Char: This radio button lets you specify the number of data bits in a

word. If you're not using parity checking, you should set Bits/Char to 8. Using

parity checking, you should use 7 bits per character.

Stop Bits: These bits provide a timeout so that the receiving computer can

digest the previously sent data bits. Your choices are 1 or 2 stop bits. The 1

setting is used almost universally today.

The Time Editor

The Time editor sets your Amiga's system clock and its battery-backed clock.

The system clock is read by the Clock program and by AmigaDOS when it

puts a creation date and time on a file. All Amigas come with a system clock.

With the exception of the original Amiga 1000 and a stock 512K Amiga 500,

all Amigas also come equipped with a battery-backed clock. Unlike the system

clock, this one doesn't lose its information when your computer loses power.

The system uses the battery-backed clock to reset the system clock when you

boot your Amiga.

The Time editor (see Figure 4-13) lets you set both clocks' time and calendar

information.

108 AmigaWorld Official AmigaDOS 2 Companion

saw? i Cancel |

| prefs

Figure 4-13 The Time Editor

You 'IIfind that setting the time with this editor is much simpler than using the

AmigaDOS Date command.

Calendar: When you open the editor, you should first enter the proper year in

the text gadget at the top-center of the window. (Be sure to press Return!)

Next, use the cycle gadget to the left to choose the month. The editor contains

a perpetual calendar, so after you enter the month and year, the proper calen

dar will appear below. To set the day of the month, simply select it with the

left mouse button.

Time: You set the time of day with the two sliders at the right side of the win

dow. The left slider sets the hour; the right one sets the minute. Because the

hour slider does not recognize AM and PM, you choose values from 0(12

AM) to 23 (11 PM). The minute slider lets you select a value from 0 to 59.

The Use button sets the system clock, and the Save button sets both the system

and the battery-backed clocks. Ifyou have a battery-backed clock, you should

have to use this editor only when you first unpack your new Amiga, move to a

new time zone, or daylight savings begins and ends.

Preferences 109

TheWBConfig Editor

The simplest of the Preferences editors, the WBConfig editor contains two

check buttons.

Workbench window as backdrop: As if the Workbench menu Backdrop item

wasn't enough, Commodore presents this button. By selecting it, you can

choose to have the main Workbench window appear as a standard resizable,

draggable, zoomable window or as a backdrop window. Save your selection to

have Workbench boot to the new specifications.

Double click for window to front: When I showed the Workbench 2.0 inter

face to a Macintosh aficionado, he commented that the interface was much

improved but that he still didn't like using depth gadgets to bring windows to

the front. (On the Mac, clicking in a window automatically brings it to the

front.) I agreed, but I pointed out that automatically bringing a window to the

front can be just as annoying. Imagine my delight when I later discovered that,

on the Amiga, you can have it both ways.

With this option selected, you can bring a window to the front of the screen

by double-clicking in the background area of the window. Double-clicking on

an icon works the same as before, while double-clicking on the borders has no

effect. I strongly recommend that you use this option.

TheWBPattern Editor

Tired of that drab background you find in every Workbench window? The

WBPattern editor can liven up your computer display. The WBPattern editor

lets you select new background patterns for both the main Workbench win

dow and the windows associated with disks and drawers. You can either create

your own patterns or choose one of the editor's presets.

Pattern: When you open the WBPattern editor, you see the display shown in

Figure 4-14. The radio button at the top left switches between Workbench

and Windows, letting you select which type ofwindow pattern you want to

work on. You can have different patterns for each type ofwindow.

Views: To the right of the Pattern button is an enlarged view box that re

sembles a miniature paint program. By holding down the selection button, you

create a blown-up version ofyour pattern. The second view area in the upper-

right of the window shows how the pattern in progress will look at normal size.

It shows 12 iterations. When you use a pattern in a real window, it repeats

until it fills the window.

110 AmigaWorld Official AmigaDOS 2 Companion

a\ prefs 1E3H5

Figure 4-14 The WBPattern Editor

As with the Palette editor, the number ofcolors available with the WBPattern editor is

determined by the ScreenMode editor.

Color Gadget: To the right of the enlarged view is a color gadget. The number

of colors it displays depends upon the number you selected in the ScreenMode

editor; the colors themselves depend upon the choices you've made with the

Palette editor. At the top of the color buttons is a box showing the currently

selected color.

Presets: Below the normal-sized view area are eight pattern presets. When you

select one of these, the pattern immediately appears in the enlarged view and

normal-sized view areas, overwriting what was there. You can then modify the

preset to your heart's content. (Actually, the original preset remains un

changed; you are modifying a copy.)

Buttons: Finally, below the Pattern buttons are three special buttons. These

are Test, Clear, and Undo.

Test: If you're not satisfied with the limited number of iterations provided

in the normal-sized viewing area, you can test your pattern by selecting this

button. Test uses the pattern in the enlarged area on the window-type speci

fied by the Pattern buttons. Unlike the view areas in the editor, however,

Preferences 111

Test does not automatically display subsequent pattern modifications. If

you exit the editor without saving or using the last pattern tested, the target

window type will revert to its original appearance.

Clear: Selecting this button paints the entire enlarged view area with the

color shown at the top of the color gadget.

Undo: Whenever you release the selection button after making a change in

the enlarged view, the editor records the pattern in temporary memory.

When you next make changes with the selection button, the editor shows

the enlarged view's previous state in the small box to the right of the Undo

button. Selecting Undo restores the pattern in this box to the enlarged view.

Undo is also available as an item in the Edit menu.

Using Preferences with Floppy-Drive Systems

Ifyour Amiga is equipped with floppy drives only, you will run into problems

using some of the Preferences editors — the Font and Printer editors in par

ticular. These programs expect the font and printer-driver files to be on the

your system disk (Workbench2.0). Because Workbench2.0 was full, Commo

dore put them on the Extras disk instead.

Ifyou have two floppy drives, the situation is not so bad. Before you run the

Font editor, for example, you should put the Extras2.0 disk into your second

disk drive. Next, select the Execute Command item from the Workbench

menu and enter the following:

ASSIGN FONTS: Extras2.0:FONTS

Now press the Return key or select the OK button. This command changes

the location where Workbench looks for fonts from the Fonts drawer on the

system disk to the Fonts drawer on Extras2.0. Now when you open the Font

editor, you will see a complete list of the Amiga fonts.

With a one-drive system, your job is harder. Making a simple assignment of

Fonts: to Extras2.0:Fonts doesn't work, because you still need Workbench2.0

in your drive to open the Font editor, and, contrary to the way most Amiga

programs work, the editor ignores the assignment if Extras2.0 isn't in a drive

when the editor looks for fonts. (Most Amiga programs would have the system

put up a requester asking you to insert the Extras2.0 disk.)

The simplest solution is to assign Font: to Extras2.0:Font using the Execute

Command item, copy the Font editor to the Ram Disk, and replace the Work-

bench2.0 disk with the Extras2.0 disk. Before opening the Font editor from

JL LjL AmigaWorld Official AmigaDOS 2 Companion

the Ram Disk, however, you need to access Execute Command again and en

ter the following:

ASSIGN ENVARC: RAM:ENV/SYS

Again, press Return or select OK to execute the command. This assignment

ensures that you won't have to remove the Extras disk and insert the Work

bench disk when you open the Font editor from the Ram Disk. With the

proper assignments made and with the Extras2.0 disk in your drive, you can

now open the copy of the Fonts editor on the Ram Disk and make your font

selections.

For printer drivers, the solution is similar. In this case, however, the assign

ment statement tells the operating system where to find the printer drivers, not

the fonts. The printer drivers are in the Devs/Printers drawer on Extras2.0. To

direct the Printer editor there, enter the following in the Execute Command

window before you use the Printer editor:

ASSIGN DEVS: Extras2.0:DEVS

One-drive owners will still have to make the second assignment for Env-Archive.

When your done with either the Font or the Printer editor, you should reset

the assignments to the defaults. Using the Execute Command item, you reset

the Fonts: assignment by entering:

ASSIGN FONTS: SYS:FONTS

For the printer drivers, you enter:

ASSIGN DEVS: SYS:DEVS

Permanent Solution

The problem with these fixes for one and two drive systems is that they don't

let you make permanent changes to your font and printer selections. Sure, you

can select the Save button in the editors, but the changes will not survive a

reboot ofyour system. Even on a two-drive system with Extras2.0 is in the

external drive, your system won't find the fonts or printer drivers when you

reboot unless you modify your Startup-sequence, which you don't know how

to do (yet). On one-drive systems, the Save button merely saves your selections

to the Ram Disk, which is wiped out with a reboot.

The best solution to both problems is to make room on your Workbench2.0

disk for all your fonts and the driver for your printer. So what do you move off

Preferences

ofyour Workbench2.0 disk to free space? You have lots of possibilities, from

the narrator.device to little-used AmigaDOS commands, but I recommend

that you move the Preferences editors from Workbench2.0 to Extras2.0. That

may seem like a radical solution, but it really isn't. The editors do look in spe

cific places for their current settings and presets, but the editors themselves

don't have to be in a specific drawer or disk. They are natural candidates for

migration to another disk.

With a two-drive system, moving the editors is easy. Put Workbench2.0 in one

drive and Extras2.0 in another. Open the Workbench2.0 icon and drag the

Prefs drawer over the Extras2.0 icon. When you release the button, Work

bench will copy the Prefs drawer and its contents to Extras2.0.

Copying from one disk to another on a one-drive system is a little harder and

usually requires a lot of disk swapping. To avoid that, open the Workbench2.0

disk and drag the Prefs drawer to the Ram Disk icon. Next, replace Work

bench^.0 with Extras2.0, open the Ram Disk, and drag the Prefs drawer from

the Ram Disk to the Extras2.0 icon.

With a copy of the Prefs drawer on the Extras2.0 disk, it's time to clean up.

With a one-drive system, you should first go into the Ram Disk, select the

Prefs drawer, and delete it using the Icon menu's Delete item. With both one-

and-two drive systems, you should open the Prefs drawer on the Work-

bench2.0 disk (put it back in a drive ifyou removed it). Select one of the edi

tor icons, and then shift select all the others. Do not select the Presets drawer

or the Env-Archive drawer, if it is visible. Go to the Icons menu and select

Delete. When the confirmation requester appears, make sure that you're delet

ing 13 files and no drawers before selecting OK. Whew! You now have room

on your Workbench2.0 disk for the fonts and one printer driver.

Copying them over is fairly easy. With a two-drive system, put Workbench2.0

in one drive and Extras2.0 in the other, open both disk icons, and choose

Show All Files from the Window menu for each of the disk windows. Now,

drag the Fonts drawer from the Extras2.0 window to the Workbench2.0 win

dow. This will replace Workbench2.0's Fonts drawer with a copy of the one

on Extras2.0. Be careful that when you drag Fonts drawer icon to the Work

bench window that you don't release the button while the icon is over any

other drawer. You want to copy to the main Workbench2.0 window, not to

one of its drawers.

Copying the printer driver you selected with the Printer editor is only a little

more involved. First, with Show All Files still active on both disks, open the

Devs drawer on each disk, and the Printers drawer inside each Devs window.

Next, drag the icon ofyour printer's driver from the Printer window of

AmigaWorld Official AmigaDOS 2 Companion

Extras2.0's Devs window to the Printer window ofWorkbench2.0 Devs win

dow.

With a one-drive system, you're going to do the same things: Drag

Extras2.0:Fonts to Workbench2.0 and drag your driver from Extras2.0:Devs/

Printers to Workbench2.0:Devs/Printers. To avoid disk swapping, you should

use the Ram Disk as a go-between by first dragging the appropriate drawer and

driver from Extras2.0 to the Ram Disk, swapping Extras2.0 for Work-

bench2.0, and then dragging the drawers from the Ram Disk to their destina

tions on the Workbench2.0 disk.

Commodore has been known to change the number of files on its release disks,

and so you may find that not all your fonts will fit on Workbench2.0 or that

you later need room for other things. In this case, you should delete some of

the fonts you don't want or like to make more room. Later, as you learn more

about your system, you will discover other ways to make room on Work-

bench2.0.

Deleting a font is tricky. The actual fonts are the files with names such as 13

and 18 that you find in the drawers named Helvetica, Times, and so on,

within the Fonts drawer. The files named Times.font and garnet.font simply

describe the sizes of the fonts contained in the numbered files in the Times

and garnet drawers, respectively. Deleting a .font file means that you can't

access the group of fonts to which that file points. To get rid of individual

fonts, you have to go into the font drawers and delete the files you don't want.

Note that ifyou delete only a few of a drawer's fonts (for example, deleting 11

and 13 from the Courier drawer while keeping 15, 18, and 24), you'll have to

run the FixFonts tool described in the next chapter.

Conclusion

The power the Amiga Preferences system gives you to customize your com

puter working environment is unprecedented in personal computers. Don't be

afraid to experiment and make mistakes. There is no damage you can do with

the Preferences editors that can't be undone. After all, you still have your origi

nal copies ofWorkbench2.0 and Extras2.0 tucked away in a safe place, don't

you?

— "5 —

The Contents

of Workbench

Your system disk contains a lot more than the Prefs drawer. This chapter ex

amines the Workbench tools available to you on your Workbench2.0 disk,

while Chapter 6 describes the Workbench tools available on the Extras2.0 disk.

Ifyou have a hard-drive system, the contents of these two disks are combined

in your hard drive's System2.0 partition. You should have no trouble, how

ever, following the discussion.

Figure 5-1 shows the windows of the Workbench2.0, Extras2.0, and Sys-

tem2.0 disks. Disregarding Trashcans, the Workbench2.0 and Extras2.0 disks

together contain seven drawers and one project. The System2.0 disk has eight

drawers and one project. Hard-drive systems use the extra drawer — Monitors

— to add monitors to the system via an AmigaDOS command in the Startup-

sequence. This lets you add monitors without starting Workbench. Because

Workbench lets you add monitors by moving their icons to the WBStartup

drawer, the absence of the Monitors drawer on the floppy-disk release of

Workbench makes no difference in performance.

Apart from this minor difference, both floppy- and hard-disk-based systems

come with the same set of drawers which, to a large degree, have the same

contents. As we examine the drawers, I'll point out any differences between

floppy- and hard-disk systems.

First, note one project — Shell — is available at the root level of the Sys-

tem2.0 and Workbench2.0 disks. This project and the functions of its default

tool, CLI, are the subject of Chapters 7 through 10, so for now I'll skip over

the Shell and the related iconless drawers.

115

116 AmigaWorld Official AmigaDOS 2 Companion

1 oj SystenOT

Systen2.8

Workbench. B

Extras2.8

wbstartup utilities

tools nonitorstore Monitors

expansion

pj Horkbench2.B 31% full, 29K free, 856K i|E3l

Prefs
Utilities Expansion

Q\ Extras2.6 76% full, 2B9K free|E31t&

Trashcan

lion it orStore

Figure 5-1 Amiga OS2 Volumes

Ifyou have a hard-disk system, the System2.0 volume holds the contents oftheAmiga

OS2 release. Due to the 880Klimitation offloppy disks, thefloppy version ofAmiga

OS2 takes two volumes, Workbench2.0 andExtras2.0.

The System Drawer

As you might expect, the System drawer contains tools that affect the opera

tion ofyour system. The nine tools are: CLI, AddMonitor, BindMonitor,

SetMap, Format, DiskCopy, NoFastMem, RexxMast, and FixFonts. Many of

these are vital to the operation ofyour computer. For example, the Workbench

interface calls the Format tool when you choose the Format Disk option from

the Icons menu. If you drag the icon for one disk over that of another, Work

bench calls the DiskCopy tool.

If you rename the System drawer or move it out of the system disk's root win

dow, Workbench cannot access these tools and make their functions available

to you. All in all, it's best not to mess with the name and location of this

drawer or its contents. Now, let's look at the contents in alphabetical order.

The Contents ofWorkbench 11/

AddMonitor

This tool lets you inform the system what type of monitor you are using with

your Amiga. The default monitors are NTSC monitors — such as the Com

modore 1084S — in North America and PAL monitors elsewhere. Support for

your default monitor is built into the system.

To add a new monitor, open the MonitorStore drawer. (MonitorStore is on

Extras2.0 on floppy-drive systems.) Each of the monitor icons in MonitorStore

is actually an AddMonitor project. Double-clicking on one of these adds the

monitor to the system list.

To automatically add a monitor at startup, move a monitor icon from

MonitorStore to the WBStartup drawer. WBStartup has a special property:

Workbench opens anything in it when you start the machine. Because the

monitor icons list AddMonitor as their default tool, opening them causes the

system to run AddMonitor. AddMonitor doesn't open a window or create its

own menus. It does its job and exits without any fuss. You see its results when

you open the Overscan and ScreenMode editors and find the new modes

available.

BindMonitor

While AddMonitor serves a vital system function, BindMonitor provides the

finishing touches by assigning names to the Amiga's display modes. Internally,

your system uses hexadecimal numbers to keep track of the different modes.

BindMonitor equates these numbers with understandable names.

BindMonitor uses the Mode_Names project found in the WBStartup drawer.

If you select this project and then choose Information from the Icons menu,

you'll see a list of the Tool Types that Mode_Names and, by extension,

BindMonitor can recognize (see Figure 5-2). With the exception of modes

(such as Lores) that aren't available for the Workbench screen, the names in

the Tool Types list correspond to the names used in the ScreenMode editor.

To see how BindMonitor works, select the Tool Type for NTSdHires from

the list. When it appears in the text gadget below the list, edit the name to

NTSGGeorge and press the Return key. Exit the Information display

by selecting Save. Now, invoke BindMonitor by double-clicking on the

Mode_Names project, and open the ScreenMode editor. Notice that you

now have a display mode called NTSCrGeorge. Ifyou think Hires is a more

descriptive name for this mode, you can repeat the process and edit George

back to Hires.

118 AmigaWorld Official AmigaDOS 2 Companion

Slocks:

Mode^Nawes (Project)

l&tack! 14896 I

Laj&t Changed;

Script

Readable

Writable _&_

Executable <f

DeUtable

imre

Default Tool; Isys;Systert/gindnonitor

8x19888=NTSC:Hires

Tool Typos: 8x1982e=NTSC:SuperHires

|ii'i)&iiiiiiirii»iiiii;t;iiiiiirSiiiJi'i;iiiiiif«

prefs

Figure 5-2 Mode_Names Tool Types

The information display ofthe Mode_Namesproject reveals how BindMonitor assigns

English-like names to the internal representations ofthe Amiga's graphics modes.

Because BindMonitor recognizes all the Tool Types listed in the Mode_Names

project, you can change any name by adding the appropriate Tool Type into

BindMonitor's own Tool Type list. For example, select BindMonitor and

choose Information from the Icons menu. Enter the following into the

BindMonitor Tool Type text gadget:

0xl9000=NTSC:George2

Press Return and select the Save button. Next, double-click on BindMonitor.

Finally, open the ScreenMode editor to see your new George2 display mode.

Ifyou don't pass any Tool Type to BindMonitor, either through a project or

its own Information window, it has no affect on the mode names currently in

use. If the Mode_Names project is missing from the WBStartup drawer when

you boot your system, you get the visible size numbers of the modes instead of

mode names in the ScreenMode editor list.

BindMonitor is not a very important tool, and you'll probably never access it

directly. It demonstrates, however, how far Commodore has gone to attend to

every detail in the design ofAmiga OS 2.0.

The Contents ofWorkbench 119

The CLI and RexxMast Tools

The CLI (command line interpreter) is the default tool of the Shell project.

The subject of the second part of this book, it accepts typed commands and

calls the appropriate programs to execute the command.

Through Amiga OS version 1.2, CLI was the name of the Amiga command-

oriented interface. In version 1.3 the CLI was joined by the Shell, a more pow

erful version of the original CLI program. With Amiga OS 2.0, the CLI and

Shell have become synonymous. Because the 2.0 command interface is an

outgrowth of the 1.3 Shell program, I will refer to the AmigaDOS 2.0 com

mand interface as the Shell.

Double-clicking on the RexxMast (short for Rexx Master) tool loads the

ARexx interpreter into memory, where it is available to you and to applications

programs that use ARexx. IfyouVe already loaded ARexx, opening this tool

will produce a message that ARexx is already active on your system. Normally,

the Startup-sequence file starts ARexx when you boot Workbench2.0 or

System2.0.

DiskCopy and Format

DiskCopy is the tool that Workbench uses when it copies a disk. Ifyou drag

one disk icon onto another or select a disk icon and choose Copy from the

Icons menu, Workbench calls this program. You can also copy a disk by select

ing a disk icon, and then double-clicking DiskCopy while holding down a

Shift key. Ifyou open the DiskCopy icon without selecting a disk icon, the

system tells you to access the DiskCopy item in Icons to copy a disk.

DiskCopy isn't designed for use with hard disks. Just for fun, I selected the

icon for a 30 MB partition on my hard drive and, with a Shift key depressed,

double-clicked on DiskCopy. After about a minute, I received a message that

the copy would require over 97 million disk swaps. I decided to cancel the

copy operation.

Before you can use a disk on your Amiga, you have to set up the electronic

signposts that AmigaDOS uses to find and store files on the disk. Called for

matting or initialization, this process is the job of the Format tool.

Format is the same tool that Workbench accesses when you select the Format

Disk item from the Icons menu (see Chapter 3). You open the Format tool by

selecting a disk icon and shift double-clicking on the Format icon. Note that

you don't have to format a new disk before copying an entire disk to it using

LjL\j AmigaWorld Official AmigaDOS 2 Companion

DiskCopy. In addition to copying the files and drawers, DiskCopy reproduces

the formatting of the source disk.

For the most part, you'll access DiskCopy and Format through the Icons

menu rather than directly. Do not, therefore, move or rename these files.

The FixFonts Tool

By definition, a font is a collection of characters that are the same size and

share the same typeface. To speak of the Times font is incorrect; Times is a

typeface. Times 24 is a font. Your Amiga stores fonts with two files. One file

has a .font ending and describes the sizes of the font available to you. A second

file, contained within a directory named for the typeface, holds the actual de

scription of the font. This second file is always named by a number, such as 24

or 11. The combination of the .font file and the number file describes a font.

Often, you may want to delete little-used fonts from or add a font size or a

new typeface to your system. Whenever you do this, you have to run the

FixFonts tool to ensure that the entries in the .fonts files match the fonts avail

able in the font drawers. FixFonts doesn't open a window or create any menus.

It simply makes sure that the information contained in the .font files matches

the actual fonts in the font drawers.

NoFastMem

You can have two kinds ofmemory in your system: chip RAM (also called

graphics memory), which stores the information that creates the output dis

play, and fast RAM, which stores everything else. Chip RAM is so called be

cause it is accessible by both the central processor and the Amiga custom chips.

Your system must always contain some chip RAM, but fast RAM is optional.

The first Amiga model — the A1000 — came with 256K bytes of memory,

expandable to 512K, all ofwhich was chip RAM. In fact, Amiga OS 1.2 was

the first version to contain the routines that let you add Autoconfig fast RAM

expansion boards to your Amiga. Many early programs assumed that all the

memory in your machine was chip RAM. Thus, they didn't explicitly assign

things to chip RAM that they should have. Because the Amiga OS assigns data

to fast RAM unless an explicit assignment is made, some information that

belonged in chip RAM ended up in fast RAM instead. The most frequent

oversight was pointer imagery. Most programs provide their own data for the

pointer. When fast RAM expansion boards first appeared, it wasn't uncom

mon to load a program and be unable to run it because you couldn't see the

pointer, which had been stuck up in fast RAM by the operating system.

The Contents ofWorkbench 1L1

NoFastMem lets you run these early programs by deleting, all fast memory

from your system's memory list. Most commercial programs fixed this bug

years ago, but you might occasionally find a program you want to run that

doesn't allocate chip RAM properly. In that case, double-clicking on

NoFastMem before starting the program should let it run properly.

Ifyou have an unexpanded Amiga 500, you will never have to use

NoFastMem because all your memory is chip RAM. Only when you have fast

RAM on your system might you encounter this problem. You can see the re

sults of running NoFastMem in the menu bar of the Workbench screen: It

changes the value for "other mem" to 0.

SetMap

Commodore is an international company and sells Amigas all over the world.

In fact, there are more than twice as many Amigas outside of the United States

as there are inside. The SetMap tool lets you configure your keyboard to con

form with different languages. The Amiga supports 15 different mappings of

the keys on its keyboard. One mapping — usal — is built into ROM; the

other 14 are supplied on disk with Amiga OS 2.0.

On a hard-disk system, you find the alternate keymaps in the Keymaps drawer,

which resides in the Devs drawer of the System2.0 disk. (You need to first

activate the Show All Files option to see them.) If you're using a floppy-based

version of OS 2.0, your Workbench2.0 disk also has a Keymaps drawer inside

its Devs drawer, but it is empty; To save room on the disk, the keymaps are

stored in the Keymaps drawer in the Devs drawer of the Extras2.0 disk. Before

you can use a keymap other than usal, you must move it from Extras2.0 to the

Keymaps drawer on Workbench2.0. With Show All Files active, this is easy;

just drag the appropriate icon from Extras2.0:Devs/Keymaps to

Workbench2.0:Devs/Keymaps.

Figuring out the Amiga keymap files' short, cryptic names is a little tougher.

Here is a list of the available files and the languages or countries they support.

can

chl

ch2

d

dk

e

f

French Canadian

Swiss French

Swiss German

German

Danish

Spanish

French

i

is

n

s

usaO

usa2

Great Britain

Italian

Icelandic

Norwegian

Swedish

United States/Canada

Dvorak, United States/Canada

122 AmigaWorld Official AmigaDOS 2 Companion

The usaO keymap is the default included with the earliest version ofAmiga

OS. Commodore makes it available for compatibility purposes.

Although most Indo-European languages use the same alphabet, the different

keymaps have special characters and accents, plus the proper currency charac

ter. As you will see, most characters and accents are available via the the Alt,

Shift, and Control keys. SetMap simply makes the main keys reflect the lan

guage of the user.

Unlike tools such as DiskCopy and Format that you can access through a vari

ety ofways, SetMap gives Workbench users only one way to set the keymap.

First, you must move the desired keymap into the Devs/Keymaps drawer of

your system disk. Select SetMap and access Information from the Icons menu.

Next, click on the New button beside the Tool Type list and enter the follow

ing into the text gadget:

\fLtyma$=yourchoice

where yourchoice is the name of the keymap that you want to use (see Figure 5-

3). Press Return and select the Save button to exit the Information window.

To make your selection active, double-click on the SetMap icon.

Setnap (Tool)

Blocks: 9

Bytes: 4112

Stack: |4896 1 Tr>

Last Changed: 2S-Jun-98 17:21:41

Cortwent; £

Script

firehived "
Readable
Writable

Executable %/*

Deletable

-LHJS

Figure 5-3 Setting a Keymap

You set a keymapforyour keyboard with the SetMap tool. In thefigure, the keymap is

being set to gb, which standsfor Great Britain.

The Contents ofWorkbench

Ifyou want to make your keymap selection permanent, you will either have to

modify your startup-sequence to run SetMap when you boot or move the

SetMap tool (with the proper Tool Type set) to the WBStartup drawer. Ifyou

don't run SetMap sometime during the boot procedure, the keymap will be set

to usal. If, after booting with an alternative Tool Type, you want to switch to

the default, simply enter the usal keymap in the Information window. Don't

worry that usal doesn't appear in your Devs/Keymaps drawer; it is built into

ROM.

The Utilities Drawer

The tools in the Utilities drawer perform more practical tasks than those in the

System drawer. Three (Display, More, and Say) provide alternate ways for you

to get output from files, while a fourth (Clock) tells you the time. These pro

grams are fairly old hat on the Amiga.

New to Workbench 2.0 is a system called the Commodities Exchange. Rather

than trading in pork belly futures, however, the Workbench Commodities

Exchange provides an environment in which small utility programs can coexist

on the Amiga without interfering with each other or with other applications

running on the system. In addition to the exchange control program — aptly

named Exchange — Workbench 2.0 contains four commodities utilities. As

the distribution ofAmiga OS 2.0 spreads, you'll see additional commodities

available both commercially and through the public domain. Besides the Ex

change program, the commodities available in the drawer are AutoPoint,

Blanker, IHelp, and NoCapsLock.

The Clock

The Clock program displays the time from the Amiga's system clock. Ifyour

Amiga has a battery-backed clock, a statement in the standard Startup-se

quence file loads the contents of the battery-backed-up clock into the system

clock. Thus, the Clock should always display the correct time. Ifyour system

does not have a battery-backed clock, you will have to set the system time

manually through the Time editor or the AmigaDOS Date command before

the Clock registers the correct time.

When you open the clock, its window displays the time on a 12-hour clock

face and an AM or PM indicator in the upper-right corner. The window uses

all the standard window gadgets except the scroll gadgets. Because the program

sizes the clock face dynamically to fill the output window, scroll gadgets are

unnecessary. The program also has five menus. To see them, open the Clock

1-Z4 AmigaWorld Official AmigaDOS 2 Companion

and click in its window. The Clock menus (Type, Mode, Seconds, Date, and

Alarm) will now be visible when you press the menu button.

Type: Type's two items, Analog and Digital, are mutually exclusive; when you

choose one, you automatically cancel the other. A check mark indicates your

current selection.

Analog: The default value, Analog causes the Clock program to output

the time using a standard clock face, with hour and minute hands, in its

window.

Digital: Choosing this item reduces the output window to a small title bar

that contains the time in digital form. The title bar doubles as a drag bar,

allowing you to position the Clock in an unobtrusive place on your output

display. Also available are a close gadget and a depth gadget.

Mode: The Mode menu lets you switch between a 12-hour clock and a 24-

hour clock. The items are mutually exclusive and marked with a check.

12 Hour: With an analog clock, this displays the time on a clock face di

vided into 12 hours. An indicator in the upper-right of the window tells

whether it is AM or PM. On a digital clock, the AM/PM indicator shares

the title bar with the time.

24 Hour: More familiar in Europe and the military is the 24-hour clock

provided by this item. On a digital display, it shows the hour as the number

of hours since midnight. For example, 10 PM thus becomes 22:00. There is

no AM/PM indicator. On an analog display, this item removes the AM/PM

indicator but doesn't change the standard clock face. This item thus isn't

too useful with an analog display.

Seconds: This menu has two mutually exclusive items.

Seconds On: On an analog display, this item displays a sweep second hand

on the clock face. On a digital display, it adds the seconds to the time dis

play in the title bar.

Seconds Off: Remove the second hand or the seconds digits from the output

by selecting Seconds Off.

Date: The fourth menu also has two mutually exclusive items.

Date On: On an analog display, this item makes the current date appear at

the bottom center of the window. On a digital display, the date alternates

with the time every two seconds.

Date Q/^The opposite of Date On, this item keeps Clock from displaying

the current date.

The Contents ofWorkbench 125

Alarm: With the items in this menu, you can have Clock notify you at a spe

cific time.

Set: The dots after this item indicate, as always, that the item brings up a

requester. If you've selected a 12-hour clock type, the Alarm Set window

comes up with an hour slider divided into 12 segments, a minute slider, and

an AM/PM cycle gadget (see Figure 5-4). The 24-hour clock's requester

lacks AM/PM gadget, but has an hour slider with 24 increments. You use

the sliders and the gadget (if present) to indicate the time you want an

alarm sounded.

Alarm On: This item and Alarm Off are mutually exclusive. If the clock

reaches the time you set when Alarm On is active, the system emits a tone

and flashes the screen. (You must have speakers hooked up to your Amiga

to hear the sound.) The Clock program must still be running for the alarm

to work. You can't save an alarm setting, but must reset it every time you

open the Clock.

Alarm Off: Keeps the alarm from going offwhen the system time reaches

that specified in the Set item.

o I Workbench } C(oik

Ran Disk

Figure 5-4 Setting the Alarm

Choosing the Set item in the Clock's Alarm menu letsyou set the time when the alarm

goes off. TheAmiga bothflashes the screen and makes a noise when the alarm goes off.

126 AmigaWorld Official AmigaDOS 2 Companion

The Display Tool

The Amiga is a great computer for creating pictures, whether you use a digi

tizer such as Digi-View or draw them from scratch with a paint program such

as DeluxePaint III. Display lets you view those picture files on your Amiga. By

selecting a picture file icon, and then holding the Shift key and double-clicking

on Display, the program loads and displays the picture file. If you click on the

picture, the message "<- Close when title hidden, or Control-C" toggles on

and off in the picture's title bar (see Figure 5-5). The message tells you that

when it is not visible, you can close the picture by selecting the invisible close

gadget in the upper-left corner of the screen or by pressing CTRL-C.

Figure 5-5 Closing a Picture

To close apictureyou're displaying, you click in the upper-left ofthe display screen

while the message is not visible. Clicking within thepicture toggles the appearance of

the message.

Ifyou extend select several files, Display will cycle through them one at a time.

You determine when the next picture comes up by clicking either mouse but

ton or by closing the current picture with CTRL-C. The pictures continue

cycling until you enter CTRLtD. You can print a picture at any time by press

ing CTRL-P.

The Contents ofWorkbench

You can control the behavior of Display by altering its Tool Types through the

Icon menu's Information item. The first four Tool Types can appear either in

Display's Tool Type list or in the list of a FileList project. The fifth Tool Type

is for a FileList project only, and the last three can appear in the Tool Type list

of any picture file you want to view.

Timer=<n>: The first Tool Type lets you determine how long you want to

display a picture before the program closes it. Here, <n> equals the display

time in seconds.

Mouse=: A Boolean Tool Type, Mouse= can be set to either True or False.

When True, it lets you use close a picture by clicking either mouse button.

Note, however, that it only works when you've selected multiple files for view

ing. As with any Boolean Tool Type, the absence of this item from the Tool

Type list is the equivalent of setting the item to False.

Loop=: When you've set this Boolean Tool Type to True and selected multiple

picture-file icons, Display will continuously cycle through the pictures until

you press CTRL-D. When set to False or when absent, Display shows each

picture only once before exiting.

Print=: When set to True, this Boolean Tool Type tells Display to dump the

currently displayed picture to your printer.

Back=: You use the Back=True setting to display your pictures behind the

Workbench screen. This may seem odd until you realize that it takes much less

time and memory to print a picture that isn't in view than it does to print one

that is. You should use Back in conjunction with Print.

FileList=: When set to True, this Tool Type identifies a FileList project. A

FileList is simply a file containing a list of the names of the picture files you

want to view with Display. To create such a project, you first use a text editor

or word processor to create a file of names, then save it to the drawer that con

tains the picture files. If your word processor or editor creates an icon for this

file, you select the icon, call up the Information item, select the New button

on the Tool Type list gadget, and enter:

FileList=True

You must then change the default tool to:

SYS:UTILITIES/Display

If, like AmigaDOS' Ed editor, your text editor does not create an icon file

when you save a file, you must use the IconEditor tool in the Tools drawer to

AmigaWorld Official AmigaDOS 2 Companion

create a new project icon and save it with the same name as your file list, add

ing a .info extension. See the section on the IconEditor for more information.

EHB=: Used in the Tool Type list of a picture file icon, this Boolean item tells

Display that the picture should be displayed in Extra_Halfbrite mode, which

doubles the number of colors in the picture.

NOTRANSB=: When set to True, this Tool Type informs Display that the

picture shouldn't be displayed with a transparent border region.

Video=: When set to True, the final Tool Type informs Display that it should

use overscan and a transparent border to display the picture file.

With its ability to read a list of files contained in a FileList project, Display lets

you create simple slide shows that you can automate with the Timer Tool

Type. You should be careful, however, when using the Back option. Ifyou use

the Workbench screen depth gadget or the command keys to bring a Display

screen to the front, you may be unable to return to Workbench.

The More Tool

Like Display, More is a file viewer. The difference is that More lets you view

text files. You can choose a file to view in two ways. If the file has an icon, you

can select the icon and then, while holding down the Shift key, double-click

on More. The second method is to open More directly.

Double-clicking on More without a file selected brings up the system file re

quester. Here, you can choose any file on any disk in your system for viewing.

The details of operation of the system file requester are discussed in the section

on the default Preferences menus in Chapter 4.

More is intended for viewing ASCII text files. ASCII text uses seven bits of an

eight-bit byte to store a character. Most text editors and word processors pro

duce ASCII text files that can be viewed using More. Many other Amiga files

such as program files and picture files are not text files but binary files. When

More detects that a file may contain binary data, it warns you and gives you

the option to quit. At this point, you press q to quit or the spacebar to con

tinue. Ifyou continue, More tries to interpret the binary data as best it can.

Most often, this means printing some characters from the Amiga's alternate

character set. This output doesn't often make sense (see Figure 5-6).

Once you've loaded a text file into More, the program displays the contents 22

lines at a time. If you're using an interlaced screen, this fills just halfyour

screen. You can use the drag sizing gadget on the More window to open it to

fill your display.

The Contents ofWorkbench 129

a 1 Workbench

' ,xl

JfpaWsejUJfpaf*J let f" IVjKrSa* # l/NSpftJlPfD hv* lN®y ^tfl? Kg*f KC i y|

1 yaiet9^ ^palLpHNlNtigraph ics«1 ibrary Intuit ion* I ibraryPalette

Figure 5-6 Viewing Binary Files with More

The More utility is designed to work with textfiles only. When you load a binaryfile

such as aprogram, it tries to display the text equivalents ofthe binary numbers. Most

ofthese equivalents arefrom the alternate character set.

At the bottom of the More window is a message indicating the percentage of

the file youVe viewed so far. You move about in the file by using the following

More commands.

Spacebar: Pressing the spacebar while viewing a file advances you one page in

the file. A page is the number of lines of text that More can display at once.

You can use the sizing gadget to alter the page size. Pressing the spacebar with

the message "End-of File" showing will close the More window.

Return: Pressing the Return key advances you one line in the text file. If you're

at the end of the file, pressing Return closes the window.

Backspace: Hitting Backspace moves you up one page in the file, letting you

scroll backwards.

q: Pressing q at any time closes the More window. It has the same effect as

selecting the close gadget or pressing CTRL-C.

<: Pressing the less-than key returns you to the beginning of the file.

AmigaWorld Official AmigaDOS 2 Companion

>: The greater-than key moves you to the last page of the file.

%<n>: Entering the percent key followed by <n>, where <n> is a number from

0 to 100, scrolls the display that far into the file. Entering a value outside the

range moves you to the end of the file.

/<search-string>: More can search a text file for a word, phrase, or group of

letters. To search for a sequence of characters, press the slash key and type the

<search string>, the desired group of characters. When you press Return, More

starts the search from the top of the file. The slash preceding the string initiates

a case-sensitive search, which requires the string in the text file to have the

same capitalization as well as spelling to match the search string. Thus,

/George would not produce a match with george or GEORGE. Upon finding

the first occurrence of the string, More scrolls line containing the string to the

top of the window. If it can't match the string, it displays the message "Not

Found."

.<search-string>: Starting with a period initiates a noncase-sensitive search. In

this case, .workbench would produce a match with all of the following:

WORKBENCH, workbench, wOrkbench, Workbench, and so on.

n: After you've started either type of search, press the n key to scroll the next

occurrence of the search string to the top of the display.

h: This most useful of the More command keys brings up a list of the utility's

commands. Pressing the Help key has the same effect. To return to the More

window, press any other key.

CTRL-L: If the More window has not refreshed properly after an overlapping

window or requester has been removed, you can force a refresh by pressing

CTRL-L.

To see More in action, try looking at a file I've talked a lot about — the

startup-sequence file. First, open the More icon. When the file requester pops

up, select the Disks button. Near the bottom of the list window, you will see a

drawer named S that has an <ASN> label. Open the drawer by clicking on the

S. From the list of files in S, click on Startup-sequence and then select the OK

button. More now loads the Startup-sequence file and displays it. You should

see about 70 percent of the file in the first page. Use the command keys to

scroll through the file and perform some searches. You can't hurt the Startup-

sequence file; More is simply a file viewer, it isn't an editor.

The Say Tool

Like the Clock, Say has been around since the first release ofAmiga OS. Say

translates words and characters you type at the keyboard into speech. Obvi-

The Contents ofWorkbench 131

ously, you must have your Amiga's sound output jacks hooked up to an ampli

fied speaker.

When you open Say, it creates a Phoneme window and an Input window (see

Figure 5-7). Input, where you type what you want output as speech, must be

active in order to receive input. The Phoneme window displays the phonemes^

or parts of speech that the program translates your input into and also lets you

modify the spoken output. When first opened, the Phoneme window lists the

commands you can enter into the Input window to change the characteristics

of the spoken output. All commands must be preceded by a minus sign (-).

■pJ:Phone»e; window : ~fE31

P

j

•HEH4L0H NER4L& 1
1 - '.-;;■'. '* i/
/ -,, ^ r

lip^lH^MiSKlHiiiii^iilH]
lei Co World ; : "

; - . - - *

,' , ',-, ' '' ■■ i *■) i, ■ ■■■■■ ', > ' «>jv;f ■>.

Figure 5-7 The Say Windows

Say opens two windows, oneforyour input and another to display thephonemes

created byyour input. You exit theprogram by entering a carriage return as thefirst

character on an input line.

-m: This command outputs the speech using a male voice.

-f: Output uses a female voice.

-r: Output is robot-like.

-n: Output is more natural sounding.

AmigaWorld Official AmigaDOS 2 Companion

-p<n>: Sets the pitch of the output, where <n> is a number from 65 to 320.

The higher the number, the higher the pitch.

-s<n>: Sets the speed of the output, where <n> is a number from 40 to 400.

The higher the number, the faster the output.

Finally, Say also lets your Amiga speak a text file. To demonstrate, let's have

Say read the Startup-sequence file.

Because the file-output option is only available through a command-line inter

face, you must first access the Execute Command item from the Workbench

menu. Now, enter the following into the text gadget:

SYS:UTILITIES/SAY -x SrStartup-sequence

Say will then say the contents ofyour Startup-sequence file. If it encounters

anything in the file that it thinks are commands but that it can't understand, it

will print error messages in a Workbench output window as it goes through

the file. To exit Say, either select the Input window's close gadget or enter the

Return key as the first character on a line in the Input window.

The Commodities Exchange

Commodities are small utility programs that monitor the input stream from

your mouse and keyboard into Intuition. They can respond to predetermined

"hot keys," take action based upon the actions — or inactions — of the

mouse, and even modify the input to Intuition windows. Commodore devel

oped the Commodities Exchange in response to the growing number of com

mercial and public-domain utilities that hang off the system input stream.

These programs never knew about one another and often interfered with each

other's operations. The Exchange provides a way for programmers to write

input stream utilities that don't interfere with one another.

You start a commodity as you would any other program, by opening its icon.

Commodities come in two flavors — those that open their own windows and

those that don't. Commodities that open their own windows have a special

capability not available to other Workbench tools; they can make their win

dows disappear and still remain active. You can recall these windows at any

time by pressing the proper hot key combination. Note that a hot key doesn't

start up a commodity, it just recalls the window of one that is already active.

For example, the Blanker commodity is a utility that blanks your display

screen after there has been no mouse or keyboard activity for a certain length

of time. It is an example of a screen saver; a utility that keeps your monitor's

The Contents ofWorkbench 133

phosphors from burning through, as can happen if the monitor display doesn't

change every once in a while. When you open Blanker, it opens a window (see

Figure 5-8) that contains a simple requester. This requester contains a text

gadget that lets you enter the number of seconds of inactivity that Blanker

must detect before shutting off the display. The default is 60 seconds. The

requester also contains two buttons, Hide and Quit. Quit closes down the

Blanker program. Hide, on the other hand, closes the window but keeps

Blanker active. You won't find its window anywhere on the Workbench, but if

you don't hit a key or move the mouse for 60 seconds, Blanker will shut down

your display.

Pi Workbench

Syster»2.8

Figure 5-8 The Blanker Commodity

Like all commodities thatproduce display windows, blanker displays its hot-key combi

nation in its title bar. You can change this by using the CX_POPKEY Tool Type.

The Blanker window also displays another common commodity feature: a hot

key. In the title bar of the window is the message "Hot Key=shift fl." This

means that ifyou want to recall the Blanker window while it is hidden, you

need only press one of the Shift keys and the Fl key together. Note that a hot

key will only bring a commodity to the front of the Workbench screen. If

you're working on another screen, you'll have to return to the Workbench

screen to see the window.

AmigaWorld Official AmigaDOS 2 Companion

If a commodity doesn't open a window, you can always shut it down by

double-clicking on its icon again — commodity icons act like toggles — or

through the Exchange commodity.

CommodityTool Types

In addition to any private Tool Type that a commodity supports, all com

modities support the CX_PRIORITY Tool Type. In addition, commodities

that open their own windows also support the CX_POPKEY and CX_POPUP

Tool Types. (The commodities programs also support the WBStartup Tool

Types. See the discussion of the WBStartup drawer below for a discussion of

these.)

CX_POPKEY: This Tool Type lets you define the hot key for a commodity

that opens a window. All commodities come with a predefined hot key. As the

number of commodities available grows, you may find yourselfwith one or

more that use the same hot-key combination. CX_POPKEY lets you change a

commodity's hot key. A hot key cannot simply be one of the characters from

your keyboard. If must be either a function key, or a character key pressed in

conjunction with one more of the qualifiers listed below:

Alt

RAlt

LAlt

Shift

RShift

LShift

RCommand

LCommand

Control

Numericpad

Rbutton

Lbutton

either Alt key

right Alt key

left Alt key

either Shift key

right Shift key

left Shift key

right Amiga key

left Amiga key

Control key

a key on the numeric keypad

the right-mouse button

the left mouse button

For example, ifyou wanted to change the hot key for Blanker so that its win

dow came up when you pressed the Right Alt, Control, and B keys together,

you'd enter the following into the Tool Types gadget in Blanker's Information

window:

CX_POPKEY=RAlt Control B

The Contents ofWorkbench

Selecting the Save button preserves your choice. Now, the next time you run

Blanker, you'll be able to pop its window with the hot key you've defined.

CX_POPUP: This is a Boolean Tool Type. When set to True, CX_POPUP

causes a commodity that uses a window to open its window when you start the

commodity. Otherwise, the commodity begins with a hidden window. The

only time you'd probably want to set the Tool Type to False is when you place

a commodity in the WBStartup window. You may not want a bunch ofwin

dows jumping out at you when you boot your machine.

CX_PRIORITY: All Commodities Exchange programs are constantly moni

toring the stream of signals between your input devices and Intuition. Some

programs may be looking for the same input events or respond to the same hot

key combination. To avoid potential conflicts, you can assign priorities to the

commodities. Then, if two commodities are waiting for the same input event,

only the one with the higher priority will see the event and respond to it. For

example, ifyou assign Blanker and Exchange the same hot key and give Ex

change a higher priority than Blanker, the hot key will always bring up the

Exchange window.

You can set the priority of a commodity to any value from -128 to 127. Priori

ties shouldn't be a big concern unless you begin to amass a significant number

of commodities.

The Exchange Commodity

The most significant commodity supplied with Amiga OS 2.0 is the Exchange

program. It serves as controller for itself and the other commodities active on

your system.

When you open Exchange, or call it with its hot key, it presents the window

shown in Figure 5-9. In addition to the name Exchange, the title bar lists the

program's currently active hot key. You can change the hot key using the

CX_POPKEY Tool Type. In the center of the window is a scrolling list of

commodities that are active (available) on the system. Note that Exchange is

listed; you can control it as you would any other commodity. You select a

commodity to work on by clicking on its name in the list. Below the list is a

three-line display that carries information about the currently selected com

modity. Title tells you the selected commodity's name, while Description gives

you an idea of the commodity's function. Status indicates whether the com

modity is enabled or disabled.

136 AmigaWorld Official AmigaDOS 2 Companion

Q[Workbench

ftuaiIabIe CormodIf i t*s

I blanker

Figure 5-9 The Exchange Commodity

From the window ofthe Exchange commodity, you can activate and deactivate any

commodity currently running on the system, including the Exchange commodity.

To the right of the list window are five buttons that let you control the cur

rently selected commodity. If the selected commodity opens a window, all five

buttons will be available, otherwise, the Hide and Show buttons will be

ghosted.

Show: The equivalent of hitting the commodity's hot key, the Show button

pops up the window of a commodity. Once the window is open, you can

modify the commodity's operation. For example, ifyou called up the window

for Blanker, you could change the length of system inactivity required before

Blanker shuts down the display.

Hide: Selecting this button hides the window of the currently selected com

modity, even if the window wasn't opened with the Show button.

Enable: This button reactivates a previously disabled commodity.

Disable: Ifyou want to temporarily suspend the activity of a commodity with

out terminating the program, select Disable. This is useful when you want to

run a program that might be interfered with by the action of the commodity.

The Contents ofWorkbench

A disabled commodity doesn't respond to its hot key. However, you can al

ways bring up the window of any commodity— even a disabled one — by

double-clicking on its icon.

Kill: This button shuts down the activity of the selected commodity and re

moves it from memory.

The Hide and Quit buttons to the left of the list window control the Exchange

itself. Hide, of course, hides the Exchange window, and Quit closes down the

Exchange program.

You don't have to have Exchange active to use any of the commodities. Note,

however, that because you can always access the other commodities through

Exchange, you don't have to remember the hot keys of any other commodity.

AutoPoint

With the AutoPoint commodity active, and neither mouse button depressed,

the window under the pointer is always selected as the active window. When

you move the pointer from over one window to another, the new window will

automatically be selected. You start up AutoPoint by double-clicking on its

icon. Because it doesn't open a window, you must either double-click on its

icon again or use the Exchange program to kill it.

Blanker

I discussed Blanker at length in the Commodities Exchange section above, so I

won't repeat myself here. Suffice it to say, Blanker performs its magic by dis

abling the Amiga output circuitry. To see your display again after Blanker has

removed it, simply hit any key or move the mouse. Blanker's default hot key is

Shift-Fl. Because monitors are expensive devices, I recommend you use this

commodity.

IHelp

For typing-intensive applications, having to constantly take your hands off of

the keyboard to use the mouse can be both slow and bothersome. The IHelp

commodity lets you perform five common Intuition operations with the func

tions keys instead of the mouse (cycling between nondrawer windows, enlarg

ing a window, shrinking a window, cycling between screens, and zooming a

window). These functions are currently set to the first five function keys, but

100 AmigaWorld Official AmigaDOS 2 Companion

you can change any of the key assignments used by using the IHelp Tool Type

display. IHelp does not open a window.

CYCLE=fl: With this Tool Type activated, you can select successive Work

bench applications windows by pressing the Fl key. This function cycles be

tween all open applications windows on the topmost screen. Note that cycle

doesn't work with disk and drawer windows, only with windows opened by

such programs as the Clock and the Shell.

MAKEBIG=£2: Pressing the F2 key with the MAKEBIG option active makes

the currently selected window grow as large as it can without moving its up

per-left corner. The effect is the same as dragging the sizing gadget as far right

and down as the screen will allow.

MAKESMALL=f3: This Tool Type instructs IHelp to make the currently

selected window as small as possible when you press the F3 key. It performs

the same function as dragging the sizing gadget as far as you can up and to

the left.

CYCLESCREEN=f4:1 find this to be the most useful IHelp function. By.

hitting F4, you can cycle through all the screens on your system. This is the

fastest and easiest way to move between different screens. The effect is the

same as hitting successive screen-depth gadgets.

ZIPWINDOW=f5: Pressing F5 performs the same function as selecting the

zoom gadget in the currently active window.

NoCapsLock

The final commodity supplied with Amiga OS 2.0 is NoCapsLock. When

active, it disables the Caps Lock key, although the Shift keys continue to func

tion normally. NoCapsLock does not open a window; you close it either using

Exchange or by double-clicking again on its icon. It performs as advertised.

The Expansion Drawer

The Expansion drawer does not contain any tools, but is very important in

configuring your system. The system accesses it whenever you boot.

As I mentioned in Chapter 1, the Amiga OS can auto-configure; it polls ex

pansion hardware to discover what youVe added to your system and then as

signs the hardware to a specific address space in the system memory map. This

The Contents ofWorkbench 139

is fine for memory expansion cards, but other types of hardware such as hard-

disk drives and serial boards usually require a special software program called a

device driver to work correctly. Device drivers are similar to printer drivers;

they convert Amiga commands into commands the expansion hardware can

understand.

If you buy a hardware expansion device that attaches to the expansion port of

an Amiga 500 or slides into a slot in the Amiga 2000 or 3000, the manufac

turer may supply a device driver on disk with the hardware. You should move

this device driver into the Expansion drawer.

As part of the boot procedure, AmigaDOS issues a Binddrivers command

that searches the Expansion drawer for device drivers it can match with the

Autoconfig devices attached to the machine. When it finds a match, it binds

the driver to the device, ensuring that AmigaDOS will be able to communicate

with the device. Do not delete, move, or rename the Expansion drawer!

TheWBStartup Drawer

Another drawer that serves an important function at boot time is the

WBStartup drawer. Whenever your system initializes the Workbench

interface by running the LoadWB program, it executes any projects and

tools that you've put into the WBStartup drawer.

When you first install Amiga OS 2.0, WBStartup contains one file, the

Mode_Names project. Mode_Names is a project of the BindMonitor pro

gram, which assigns descriptive names to the various Workbench screen

modes. One of the first things you should do after you install 2.0 is to

move the appropriate monitor icons from the MonitorStore drawer to the

WBStartup drawer. These icons are projects of the AddMonitor program.

Workbench uses them to determine which modes it should make available

to you through the ScreenMode editor.

You can put your own projects and tools into the WBStartup drawer, but

you've got to watch out for a common pitfall. Unless you indicate otherwise,

Workbench completes the execution of each project or tool in the WBStartup

drawer before proceeding with the next one. Ifyou move a project from your

favorite word processor into the drawer, intending to use it after you boot,

Workbench expects a signal from the program saying that it has ended before

it proceeds with the next item in the WBStartup drawer. Eventually, Work

bench will proceed without hearing back from the system, but ifyou later close

the word processor, you can crash the system. The solution is to take advan-

140 AmigaWorld Official AmigaDOS 2 Companion

tage of the DONOTWAIT, STARTPRI, and WAIT Tool Types that Work

bench recognizes in regard to items in the WBStartup drawer.

DONOTWAIT: When this Tool Type appears in a project or tool in the

WBStartup drawer, it tells Workbench not to wait for a return message from

the program before launching the next WBStartup program. In fact,

DONOTWAIT alleviates the program ofhaving to inform the WBStartup

code when the program exits. DONOTWAIT doesn't take any arguments. So

ifyou want your favorite word processor ready and waiting after your machine

boots, be sure to add the DONOTWAIT to the project or tool icon that you

put into WBStartup. Note that all of the commodities in the Utilities drawer

already have this Tool Type set.

STARTPRI=<n>: Ifyou want the projects and tools in the WBStartup drawer

to run in a certain order, you assign them different start priorities. STARTPRI

uses a number, <n>, from -128 to 127 to determine which programs to start

first. The tool or project with the highest priority gets started first. If

STARTPPJ isn't set, the priority of the tool or project is set to 0.

WAIT=<n>: Sometimes, you may want to ensure that a project or tool is com

pleted before you run another one. The WAIT Tool Type lets you specify how

long Workbench should wait after opening the current project or tool before

opening the next one. You specify the length of time, <n>, in seconds.

WBStartup is especially useful for running such utilities as the commodities

managed by the Commodities Exchange. Trying to run too many applications,

however, will severely lengthen the time it takes you to boot your computer.

Conclusion

That wraps up our discussion of the visible contents of the Workbench2.0

disk, which, of course, includes most of the contents of the System2.0 parti

tion. The next chapter discusses the Workbench tools available on the Ex-

tras2.0 disk and some special Workbench utilities that come with hard disk

systems and the Amiga 3000.

You might think that, with a name like Extras, the contents of this disk aren't

very important. True, some of the tools on this disk— such as Calculator —

are not vital to the smooth operation ofyour Amiga. Others, however, perform

functions that I wouldn't want to be without. The major difference between

Extras2.0 and its predecessors in earlier versions ofAmiga OS is the absence of

Amiga Basic, the Amiga version of Microsoft Basic.

The Extras Drawers

The Extras2.0 disk contains two visible drawers: MonitorStore and Tools.

You've encountered MonitorStore before, in the discussions of the

AddMonitor tool and the WBStartup drawer. This drawer has no function

other than to store the projects of the AddMonitor tool until you decide to

add one to the system by dragging it to the WBStartup drawer.

By default the more important drawer on the Extras disk is the Tools drawer.

Depending upon whether you get Amiga OS 2.0 with an Amiga 3000, a hard-

drive equipped Amiga 2000, or as a floppy-disk upgrade kit from Commo

dore, the contents of the Tool drawer may vary. (Notice that I use the word

"may" here; Commodore's plans for Amiga 500 and 2000 upgrade kits were

not finalized as this book went to press.)

To keep confusion to a minimum, I've divided the discussion of the contents

of the Tools drawer into two parts. The first discusses the nine tools — Calcu

lator, CMD, Colors, GraphicDump, IconEdit, InitPrinter, KeyShow,

MEmacs, PrintFiles — that will appear in everyone's Tool drawer. After that, I

describe such tools as HDToolBox that only appear in the Tool drawers of

specific systems.

141

142 AmigaWorld Official AmigaDOS 2 Companion

The Calculator

This is one of the simplest programs in the Tools drawer. Opening the Calcu

lator brings up a small, fixed-size window titled Calc (see Figure 6-1). The

Calculator is a simple arithmetic calculator that lets you enter numbers and

specify functions by using the mouse, the keyboard, or a combination of the

two. Ifyou click on a number button or press a number key with the Calc

window selected, that number goes into the text gadget at the top of the win

dow. After entering a number, select an operation and enter another number if

necessary. CE clears the current entry, and CA clears the calculator's memory.

ff| frJorfcbench

VideoHdjust

Figure 6-1 The Calc Window

Produced by the Calculatorprogram, the Calc window consists ofbuttons that

correspond to numbers* mathematical operators. The results ofany operations you

perform appear in the display window at top.

CMD

An output redirection program, CMD intercepts output normally meant for

the printer and redirects it to a disk file. This can be very handy ifyou don't

have a printer but can access an Amiga that does. In conjunction with the

Extras and Beyond 14O

GraphicDump program, it also lets you save Amiga screens to disk that you

can later dump to a printer. Note, however, that you cannot load screens that

were captured to disk via this method into a paint program; they are not saved

in the Amiga IFF picture file format.

CMD is unusual in that it doesn't set up its own menus or open its own win

dow. To activate it, you double-click on its icon. After it has intercepted out

put meant for the printer, it displays a message saying that it redirected a cer

tain number of bytes from your parallel or serial device to disk. It then tells

you that it removed itself from the system. Because it doesn't have a window

or menus for input, you control the operation ofCMD through its Tool

Types — DEVICE, FILE, SKIP, MULTIPLE, and NOTIFY.

DEVICE: DEVICE takes two arguments, parallel and serial. You use it to

indicate the port to which your printer is connected. If absent, the default

setting (parallel) is used.

FILE: The File Tool Type lets you indicate where and under what name

you wish to store the file redirected by CMD. The default setting is

FILE=RAM:CMD_file. Ifyou use CMD to save more than one file, it

will not name the files sequentially: The second file will be CMDjfile. 1,

the third CMDjfile.2, and so on.

SKIP: This is a Boolean Tool Type. You use it to indicate whether CMD

should skip any initial write that it intercepts. Such initial writes are often

printer initialization codes that are not strictly a part of the file. The default

setting is SKIP=True, causing CMD to ignore initial writes.

MULTIPLE: Another Boolean Tool Type, MULTIPLE lets you determine

whether CMD should stay active for an indefinite period to redirect multiple

files or whether it should remove itself after it has redirected one file. The latter

case (MULTIPLE=False) is the default. After choosing the MULTIPLE=True

option, close down CMD by double-clicking on its icon again.

NOTIFY: Also a Boolean Tool Type, NOTIFY lets you specify whether

CMD should keep you appraised of its progress by issuing the messages I

mentioned above. The default is True.

Colors

If the Colors tool gives you a feeling of deja vu, you're not alone. When you

click on the Colors icon, the tool opens a window (see Figure 6-2) that looks

remarkably like that of the Palette Preferences editor. Unlike the colors you set

with the editor, the colors you choose with Colors will be lost when you

144 AmigaWorld Official AmigaDOS 2 Companion

reboot. The other difference is that Colors uses hexadecimal numbers (base

16), to indicate the different red, green, and blue values, while Palette uses

decimal numbers* The former may be of greater use to programmers who are

experimenting with different colors for their programs. The big plus of Colors

is that it can change the colors of any Amiga screen, not only the Workbench

screen.

d| Uorkbench

With the IconLditor

ise the thickness of the line:
jdoun the Control key as you i

"the second endpoint. This cau:

left of euery dot that conprisi

created by the

elease the

es IconEdit to add

s the line. The

Figure 6-2 The Color Program

Whenyou open Color with another screen in theforeground, it opens on that screen,

allowingyou to change thepalette ofthe screen. In thefigure, Color is open on an

eight-color ProWrite screen.

To use Colors with a screen other than Workbench, you first need to move

the custom screen to the front with the screen-depth gadgets or the IHelp

CYCLESCREEN function. Next, drag the custom screen about halfway down

the display to uncover the Workbench screen. Now, move the pointer to the

Workbench screen and open the Colors window, which has the remarkable

property of always appearing on the topmost screen. The Colors window dis

plays the current palette of the screen on which it opens, adjusting the number

of colors it displays to match the properties of the screen. The Reset button

returns the palette to the condition that existed when you opened Colors. Use

causes the screen to adopt the palette you've set, while Cancel scraps the

changes.

Extras and Beyond

GraphicDump

The GraphicDump tool prints the top-most screen on your display with the

printer you select using the Printer editor. When you open GraphicDump, it

loads itself and then gives you about 10 seconds to move the screen you want

to the front and to arrange its windows, menus, and icons to your liking. The

only thing that GraphicDump can't print is the pointer. Pointers are sprites,

they are not a part of the underlying display.

Because GraphicDump uses the Preferences-set printer driver, the printout

uses the parameters you set with the PrintGfx editor. GraphicDump does sup

port one Tool Type, SIZE, that affects the printout; however, it is only effec

tive if the Limits Type gadget in the PrintGfx editor is set to Ignore. When

active, SIZE uses one of the following parameters.

SIZE=tiny: This parameter prints the screen with a horizontal dimension 1/4

the maximum allowed by the printer. As with all the modes, the height is auto

matically set to maintain the proper aspect ratio.

SIZE=small: Prints the image at 1/2 the allowable maximum width.

SIZE=medium: Prints an image at 3/4 the allowable maximum width.

SIZE=large: For a full-width picture, choose large.

SIZE=<xdots>:<ydots>: This parameter lets you specify absolute values for the

number of dots that will comprise the horizontal <xdots> and vertical <ydots>

resolutions of the printout. These values are subject to the capabilities of the

printer.

IconEdit

A large application that creates its own menu bar and features a complex input

window, IconEdit lets you create and alter icons. This is not simply an aes

thetic function; IconEdit is indispensable for creating icons for tools and

projects that don't have any.

When you open IconEdit, you see a window like that in Figure 6-3. A magni

fied view of the default tool icon fills the left two-thirds of the window. This

view is the canvas of a miniature paint program where you create new icons.

Beside the magnified view are the color gadget, six painting tools, and Clear

and Undo buttons. The last column of the window contains normal-sized

views of the icon as it will appear both deselected and selected, a button to

toggle the magnified view between these two views, and a positioning gadget.

146 AmigaWorld Official AmigaDOS 2 Companion

fm Nomal

_J Selected

VideoHdjust

Figure 6-3 IconEdit

Most ofthe IconEdit window is taken up with the icon display. Here, the display

contains the image ofthe Workbench default tool icon.

Magnified View: This box, like the magnified view areas in the WBPattern

and Pointer editors in the Prefs drawer, is an active drawing area that lets you

change the color of any point using the mouse pointer. You select the drawing

color from the color gadget to the right of the view area. To draw in the mag

nified view area, move the pointer to where you want to draw and press the

select button to change the color of the spot beneath the pointer. Ifyou drag

the mouse pointer slowly, it will change the color of all the points that appear

beneath it.

The magnified view always contains the image of the Workbench default tool

icon when you open IconEdit. Notice that the icon doesn't fill the view. You

can create icons larger (or smaller) than the default icons.

The size of the icon you create with IconEdit is limited by the size of the mag

nified view area. Inside this area, the size of the icon is determined by the back

ground color, which is the first color in the color gadget under the selected

color box. IconEdit uses the background color to determine where to crop

icons that it creates. When it saves an icon, IconEdit doesn't save the entire

Extras and Beyond 14/

magnified view; rather, it saves a rectangle that begins in the upper-left corner

of the magnified view and contains all the dots in the view that are not the

background color, plus a four-or-five-dot border around this area.

Color Gadget: This gadget consists of a number of colored rectangles that

reflect the number of colors you set in the ScreenMode editor and the color

values you set with the Palette editor. The box at the top of the gadget displays

the currently selected color. To change it, move the pointer over one of the

other colors and click the left mouse button.

Because you can have Workbench screens that display up to 16 colors, you can

create 16-color icons with IconEdit. Ifyou later switch your Workbench back

to eight, four, or even two colors, however, the extra colors are lost.

The IconEdit color gadget has the interesting ability to let you select two col

ors at a time. First, you select one color normally; then, shift-select another

color. In the selected color box, you'll see a color that looks like a mix of the

two youVe selected. It is actually a checkerboard pattern of alternating dots of

the two colors. This hybrid color isn't used when you draw simple points and

lines; these use the first of the two colors you selected. The hybrid colors are

instead used in the area-painting gadgets — Circle, Box, and Fill — that are

discussed below.

Painting Gadgets: Below the color gadget are six small buttons with different

shapes drawn on them. These are the painting gadgets: Freehand, Continuous

Freehand, Circle, Box, Line, and Fill. The Painting gadgets act like radio but

tons; when you select one, you deselect another. One painting gadget is always

active.

Freehand Gadget: Active when you first open the IconEdit window, the

Freehand gadget changes the color of the dot below the pointer whenever

the select button is depressed. Ifyou drag the mouse quickly, however, the

gadget may not be able to color all the intervening dots between the old

position of the pointer and the new one. The priority of the freehand gadget

is to keep up with the pointer; it will skip intervening dots to do so.

Continuous Freehand Gadget: This gadget differs in one significant respect

from the freehand gadget. Its priority is not to keep up with the pointer, but

to change the color of every dot you drag the pointer over. Thus, it may lag

behind the pointer ifyou drag the mouse quickly, but it will not miss any
intervening points.

Circle Gadget: One side of the imagery on this gadget, shows a hollow circle

and the other shows a filled one. By selecting one side or the other, you can

choose to draw either the perimeter of a circle or a completely filled one.

The procedure for actually drawing hollow and filled circles is the same.

148 AmigaWorld Official AmigaDOS 2 Companion

After selecting the Circle gadget, move the pointer to the pixel in the mag

nified view that you want to be the center of the circle. Press the select but

ton and hold it down. Now, drag the mouse on a horizontal line away from

the center; you should see a straight line forming on both sides of the cen

ter. Next, drag the mouse straight up or down and you'll see the line open

ing into an oval and then a circle. Dragging the mouse in different direc

tions lets you change the shape of the circle at will. When the circle is in the

shape you want, release the selection button. Ifyou draw a hollow circle, the

shape you just created remains in the view window; ifyou use the filled-

circle, the new shape is immediately filled with the currently selected color.

Ifyou used a hybrid color from the Color gadget, the filled circle will con

sist of alternating dots of the two colors. Note that in the currently-selected

color box and the normal view box, this checkerboard pattern often looks

like another color intermediate between the two that make up the pattern.

This is an excellent example of using dithering to create the illusion that

you have more colors available than you actually do.

Ifyou use the hollow-circle option, you can double the thickness of the left

and right sides of the circle by pressing and holding the Control key as you

release the selection button. Experiment with this option to see its effect.

Box Gadget: The Box gadget works similarly to the Circle gadget. Select the

left side of the gadget to draw the outline of a box; select the right side for a

filled box. This time, however, the dot the mouse pointer is over when you

first press the selection button becomes one of the box's corners. Which it is

depends on where you drag the pointer to before you release the button.

Like the Circle gadget, the filled-box option takes advantage of shift-selected

colors, and the hollow-box option doubles the right and left sides of the box

via the Control key.

Line Gadget: As you might expect, the Line gadget lets you draw straight

lines quickly and easily. With it selected, you move the pointer to the mag

nified view area and press the selection button over the point you want as

one endpoint. Now, drag the pointer to the other endpoint and release the

button. That's all there is to creating a line.

You'll notice, however, that not all lines on the Amiga— or on any com

puter, for that matter — are created equal. Except for horizontal and verti

cal lines, and for those diagonal lines that match the slope of the Amiga's

aspect ratio, all straight lines exhibit the jaggies to one degree or another.

The term jaggies describes the staircase-like look exhibited by most so-called

straight lines on a computer. Sophisticated programs can use small color

gradations to minimize the effects of the jaggies. With the IconEditor, how

ever, you have to live with them.

Extras and Beyond 14J

You can increase the thickness of the lines created by the line gadget by

holding down the Control key as you release the selection button over the

second endpoint. This causes IconEdit to add color one dot to the left of

every dot that comprises the line. The technique doesn't have much affect

on the jaggies, but it makes lines look more solid in the normal-sized view

ing modes.

Fill Gadget: With the Fill gadget selected, you can fill any bounded area in

the magnified view with the current color by selecting any point within the

bounded area. A bounded area is an area in the magnified view that is com

pletely surrounded by dots of one color. For example, when you create a

circle with the Circle gadget, you create a bounded area inside the circle.

You can use the Fill gadget to change the color of every dot inside the circle.

To put it more precisely, the Fill gadget changes the color of the dot be

neath the pointer to the selected color. It then changes the color of every

dot that is both the same color as the original dot and contiguous to it in a

cardinal direction (up, down, left, or right). It then repeats the procedure,

treating every dot that changed color as it did the original dot until there are

no more dots that fulfill both conditions of change. Besides a mouthful,

that is a description of a recursive algorithm. To get a feel for how the Fill

gadget works, you have to use it. Like Circle and Box, the Fill gadget takes

advantage of the hybrid colors created by shift-selecting a second color in

the Color gadget.

Clear: Choosing Clear paints the entire magnified view with the currently

selected color.

Undo: Selecting the Undo button restores the magnified view to the condition

it was in before you last pressed the selection button inside the view window or

over the Clear button. Practically speaking, it erases the last action you took in

the magnified view window. For example, ifyou hit the Clear button by mis

take and wiped out your drawing, Undo restores it. Note that you can't reverse

an Undo.

Normal View: In the upper-right corner of the IconEdit window is a standard-

sized view of the icon you're working on in the magnified view. This is what

the icon will look like when it is deselected. Note that ifyou hold the selection

button down on this view, you can see how the icon will look when selected.

Normal/Selected Button: Below the normal view is a radio button that lets

you switch what you see in the magnified view window. With the Normal

button selected, the magnified view lets you edit the icon's deselected image.

Click on the Selected button to move the selected version of the icon to the

magnified view window. Note that this button is only active when you choose

the Image item from the Highlight menu.

150 AmigaWorld Official AmigaDOS 2 Companion

Selected View: With the Image item active, this box will show the image that

will be displayed when the icon is selected. You can edit this image in the mag

nified view box by hitting the Selected button.

Positioning Gadget: Below the Selected View box are four arrows that let you

move the dots that make up the magnified view box. Selecting an arrow moves

the dots in the indicated direction. Ifyou move part of the icon image beyond

the borders of the view box, the image gets clipped by the border. You can't

retrieve anything you've moved beyond the borders of the view area. One an

noying thing about the positioning arrows is that you can't hold the selection

button down to make them repeat. You must continuously press and release

the button.

IconEdit Menus

IconEdit uses five menus (Project, Type, Highlight, Images, and Misc) in con

junction with the gadgets in its input window.

Project Menu: The six items in the Project menu let you load old icons and

save new and edited ones.

New: Unlike in most Amiga programs, here the New item does more than

simply erase whatever you have in the magnified view area. New also loads

one of the system default icons into the magnified view for editing or sav

ing. You determine which icon will appear in the magnified view when

New is chosen by accessing the Type menu (see below). The default icon

of the desired type appears in the magnified view when you select the New

item. Ifyou access New after changing the image in the magnified view or

the type of icon using the Type menu, you'll see a requester asking whether

you want to cancel the New operation, save the current icon before creating

a new one, or continue with New. Click on the appropriate button in re

sponse.

Open: Accessing this item brings up a standard file requester that lets you

open any icon file on your system. You can open an icon by either selecting

a .info file directly or by selecting the file associated with a .info file. For

example, choosing Calculator from the file list will have the same effect as

picking Calculator.info. If a file is not an icon file and does not have an icon

associated with it, the Open command will tell you so. When you load an

icon, you get more than its image. The menu selections in the Type and

Highlight menus also change to match the characteristics of the newly

loaded icon.

Extras and Beyond

Save: Save overwrites the icon file you previously loaded using the Open

item with the contents of the magnified view window. If you have not pre

viously loaded an existing icon or you selected New in the meantime,

IconEdit considers Save to be Save As.

Save As: Unlike Save, which automatically overwrites a known file, Save As

brings up the Amiga file requester and lets you either enter a name for the

icon file or choose a file you want to overwrite. Ifyou neglect to add the

.info extension after the name of the icon, IconEdit does it for you. Be very

careful when saving icons using Save As. You don't want to overwrite an

icon file with one of another type. For example, ifyou save a drawer icon

with the name Calculator to the Tools drawer, you'll be unable to open the

Calculator program from Workbench. Use this item with care.

Save As Default Icon: This item lets you save the new icon as one of the

default system icons. Which default icon it becomes depends upon the cur

rent icon type you indicated in the Type menu. When you save an icon as a

default, IconEdit saves it to both the Env:Sys drawer and the EnvaraSys

drawer. Normally, these drawers are assigned to RAM:Env/Sys and

Sys:Prefs/Env-Archive/Sys, respectively. When Workbench needs to use a

default icon (for example when you choose Show All or access the New

Drawer item) it checks Env:Sys to see if you saved an icon file that overrides

the built-in defaults. Ifyou have, Workbench uses that file instead of its

built-in icons.

Ifyou save an icon as a default icon, it takes its filename from the type of

icon it is. For example, the tool default icon file is called def_tool, and the

drawer default is called def_drawer. Because these files are stored perma

nently on disk, they survive when you reboot your machine. To revert back

to the built-in Workbench defaults, you must load these from your system

disk and reboot.

Quit: Choosing this item is the equivalent of selecting the close gadget on

the IconEdit window. If you haven't saved the current image in the magni

fied view area, IconEdit will put up a requester asking ifyou want to do so.

The Save First button lets you save the icon before quitting, while Continue

quits without saving. The Cancel button aborts the quit operation.

Type Menu: The items in the Type menu (Disk, Drawer, Tool, Project, and

Garbage) correspond to the five types of icons you have available on your sys

tem. When you're working with an icon, you can determine its type by simply

choosing the type you want from the menu. When you save an icon, it takes

its type from the current setting of the Type menu. The five items in the Type

menu are mutually exclusive; when you select a type, you automatically dese

lect all the other types.

1 ^2* AmigaWorld Official AmigaDOS 2 Companion

Highlight Menu: The items in this menu let you indicate how you want an

icon to appear when it is selected. They are mutually exclusive; an icon cannot

use multiple methods to show that it is selected.

Complement: When an icon uses the complement method, it shows that it

has been selected by swapping its original colors with their complementary

colors. The colors on a standard four-color Workbench are numbered from

0 to 3. For example, the background color — gray, ifyou haven't changed

the default palette settings — is color 0. In fact, the colors are shown in the

Color gadget in their numerical order. When you select an icon that uses

the complement method to show selection, it swaps its color 0 for the high

est numbered color in its list, color 1 for the next highest numbered color,

and so on. Deselecting the icon reverts back to the original colors.

Backfill: New to Amiga OS 2.0, this method of indicating selection helps

give Amiga icons their 3-D look. Workbench 2.0 icons are supposed to look

as though they are raised above the plane of the Workbench. When se

lected, an icon is supposed to look as though you had pushed it below the

plane of the Workbench. Commodore swaps the position of the thin white

and black lines — denoting light and shadow— that surround every icon

to achieve this effect. All icons on Workbench 2.0, even those created before

2.0 existed, exhibit this 3-D effect.

To enhance the 3-D effect, Backfill complements the colors in the icon just

as Complement does except when the border of the icon matches the back

ground color of the screen. In this case, it fills the area from the borders of

the icon — using the same algorithm as the Fill gadget — with the back

ground color of the screen. Thus, if the background color of your icon does

not match the Workbench background color, a Backfill icon behaves like a

Complement icon. If the backgrounds do match, then the border area of a

Backfill icon is not complemented when it is selected.

Image: The most interesting icons are those that display a completely differ

ent image when they are selected. The Prefs drawer is an excellent example

of this, although, if you look closely, you'll see that all the Workbench

drawers use an alternate image when they are selected. When you access the

Image item, you activate the Normal/Selected button on the IconEdit win

dow. You can now switch the magnified view to create and edit both the

selected and normal images of the icon. Icons that use an alternate image

store both images in the same .info file.

Images Menu: This menu contains items concerned with creating icons that

display an alternate image when selected. Using any of these menu items, auto

matically resets the selection in the Highlight menu to Image.

Exchange: Choosing this item swaps the image in the Normal view box with

what is in the Selected view box.

Extras and Beyond 1JO

Copy: If the Normal/Selected button is on Normal, then this item copies the

image in the Normal view into the Selected view and switches the button to

Selected. With the Normal/Selected button set to selected, Copy makes the

opposite switch.

Load: This item consists of a four-item submenu.

LoadNormal Image: Via the standard file requester, this item lets you load

the normal image — and only the image — of any icon on the disk. You

can load the image into either the Normal or the Selected view boxes, de

pending upon the state of the Normal/Selected button.

Load Selected Image: This item lets you load an icon's selected image into

either the Normal or Selected view boxes, depending upon the condition of

the Normal/Selected button. If you try to load an icon that does not show

an alternate image when selected, you get a message saying "No Image."

Load Both Images: You access this menu item when you want to load both

the normal and selected icon images from a disk file. After you select a file

from the requester, IconEdit attempts to load both icon images into the

appropriate view windows. If the file doesn't have a separate selected image,

you'll see a "No Image" message.

LoadIFFBrush: Many Amiga paint programs offer the capability to paint

using software "brushes." IconEdit can load these brushes into both the

Normal and Selected view boxes. Thus, you can use the sophisticated fea

tures of a paint program to create your icons, and simply use IconEdit to

merge an image with an icon type. Ifyou select anything other than an IFF

brush file from the item's file requester, you'll get an error message saying

that the file isn't an IFF file. After you've selected a brush file, the program

will load it into the view window indicated by the Normal/Selected button.

Note that the magnified view area is approximately 80 pixels wide and 40

pixels high. Ifyou load an IFF brush that is larger than this, IconEdit will

crop it along the right side and bottom to fit in the view.

Save IFF Brush: This option lets you save the image in either the Normal or

Selected view boxes as an IFF brush. Given the better graphics editing fea

tures of an IFF paint program, you won't do this often.

Restore: Accessing this item restores the image in view that was present when

you opened the IconEdit window to the magnified view. Note, however, that

any changes you made in the Type and Highlight menus are still in effect.

Misc Menu: A grab bag, the Misc menu has three functions.

Grid: With this option activated, the dots in the magnified view window are

separated into individual cells by a tiny grid ofvertical and horizontal lines

rendered in the background color for easier access. Switching Grid off re

moves the lines and lets the dots touch adjacent dots.

AmigaWorld Official AmigaDOS 2 Companion

Remap B/W: This item is well named only ifyou use the default Workbench

colors. When selected, it turns all the color 1 dots to color 2 and all the

color 2 dots to color 1. The item gets its name from the fact that black is

color 1 and white is color 2 in the default Workbench palette.

Auto TopLeft: The final choice moves the image in the magnified view win

dow so that the left-most, non-background color dot in the image touches

the left border of the box and the top-most, non-background color dot

touches the top border.

IconEdit: A Practical Example

More than simply a place to create pretty pictures, the IconEditor can

also provide files with icons, a valuable function. For example, using the

AmigaDOS text editor, Ed, I created a file that contained the names ofsome

picture files I wanted the Display tool (see Chapter 5) to display. I saved

the file to the Utilities drawer ofmy System2.0 disk, giving it the name

PictureList, and then exited the text editor. Because Ed does not create .info

files, PictureList did not show up in the Utilities drawer when I opened it.

Worse, because it didn't have an icon, I couldn't enter the Tool Type that

would tell Display that PictureList was a list of picture files. IconEdit solves

the problem.

When I opened IconEdit, it came up with the image of the default tool icon.

I wanted the image of a project icon, so I chose the Project item from the Type

menu and selected New from the Project menu. The resulting requester in

formed me that "<untitled> had been changed." I selected the requester's Con

tinue button, as I didn't care about the tool icon image I was erasing. The

program then loaded the default project icon (see Figure 6-4). Rather than

trusting my artistic talents and editing the image, I simply accessed the Save As

item from the Project menu.

Save As brought up the standard Amiga file requester. I wanted to get to the

Utilities directory, so I first clicked the Disks button and then selected Sys-

tem2.0 from the list of drives. As the requester listed the files and drawers on

the System2.0 disk, I clicked once in the scroll gadget to request an alphabet

ized display with the drawers below the files. I then scrolled down to the bot

tom of the list, where I found and selected the Utilities drawer. Toward the

bottom of the list of files in Utilities, I found PictureList. I selected it, so that it

appeared in the File gadget of the requester, and then I clicked on OK.

IconEdit appended a .info to the name PictureList, giving the file the name

PictureList.info, and saved it to the Utilities drawer. Once it was in the same

drawer as PictureList, it became that file's icon file.

Extras and Beyond 155

Figure 6-4 Creating a Project Icon

By selecting Projectfrom the Type menu and then Newfrom the Project menu, you get

the defaultproject icon. You can then save this icon as a .infofile.

Because my file list now had an icon, I was able to call up its Information win

dow and enter Sys:Utilities/Display as its default tool and FileList=True into

the Tool Type list. In doing so I created a project file for a tool that doesn't

create its own. Have fun creating interesting icons with IconEdit, but don't

forget that it serves another important function as well.

InitPrinter

Unlike IconEdit, InitPrinter is a simple program without a window or a menu

bar. It takes the information you entered with the Printer and PrintGfx editors

and passes it to the printer. Although most programs that use the printer also

initialize it, InitPrinter is useful for those programs that don't.

KeyShow

Suppose you had to write a report that included some foreign phrases and

needed foreign-language characters, such as an umlaut. Before you switch

156 AmigaWorld Official AmigaDOS 2 Companion

keymaps to access these characters, think again. The usal character set, for

example, contains many foreign-language character and symbols and KeyShow

shows you how to access them. (The discussion that follows assumes that you

are using the usal keymap. Other keymaps have equivalent features to the ones

described here.)

When you open KeyShow, it opens the window shown in Figure 6-5. The

characters shown on the keycaps are what the keyboard sends to the Amiga

when you press each key. The original KeyShow display shows the standard

lowercase character set; I'll explain why some are shown in bold italic type and

others are in plain text later.

■J]
j JL irvn

a u £ r t y >& i a p .:■£■-.>

[* ws~ p f/' ^g " h "' JT k 7 \L *: v " "

z x c v b iir mi < > "?

Figure 6-5 KeyShow Display

KeyShow letsyou see the mappings ofyour keys. By clicking on the Control, Shift, and

Alt keys, you can see how these keys alter the charactersproduced by the alphanumeric

keys.

Press a Shift key on your keyboard, or select a Shift key on the KeyShow dis

play. The Shift key turns blue, and the keys display their shifted characters —

capital letters for the alphabetic characters and the special symbols for the nu

meric characters. The Shift keys, along with the Control key and the Alt keys,

are called qualifier or modifier keys. They don't produce characters themselves,

but, when pressed in conjunction with another key, they modify its character.

Extras and Beyond

Now select the Control key or simply press it on your keyboard. You'll see all

the control characters you can send from the keyboard. Preceded by a tilde (-)

or a caret (A), control characters are nonprinting characters that convey special

information. Because the ASCII code computers use was originally developed

for teletype communications, most of the control codes deal with page-format

ting information. Control-M, for example, is a carriage return; Control-I is a

tab.

As you saw with the Display tool, some Amiga programs let you use Control

characters to send instructions to the program. The most common control

character is Control-C, which many programs use as an alternate way to break

out of the program.

The most interesting special characters are produced in conjunction with the

Alt keys. Both shifted and unshifted, the Alt keys give you access to foreign

characters and accents. Alt-L and Alt-1 for example, produce the symbol for the

British pound (£), while Alt-s produces the Greek beta (fi) and both Alt-u and

Alt-U give you the scientific symbol for a micron (|Ll). The Alt keys also let you

place accent marks over standard characters. You can accent any character that

appears on the screen keyboard in bold-italic type. Thus, you can accent an A,

but not an S; an N, but not an M. To accent a character, you first type one of

the accent keys; Alt-f (gauche), Alt-g (grave), Alt-h (circumflex), Alt-j (tilde),

or Alt-k (umlaut) — the shifted characters work as well — and then type the

character you want to accent. For example, to put an umlaut over an e, you

press Alt-k, followed by e.

With the usal keymap, all the qualifiers have strange effects on the Tab key.

The Control and Alt keys produce a blank on the Tab key display, and Shift-

Tab results in When used in a word processor, both Control-Tab and Alt-Tab

produce a tab, while Shift-Tab flashes the screen of the word processor's

screen. Control- and Alt-Tab default to the function of an unmodified Tab;

Shift-Tab sends an unidentified character code to the Amiga.

MicroEMACS

Shorthand for MicroEMACS, MEmacs is the filename of a screen-oriented,

multiple-file text editor. Based on EMACS, a text editor originally developed

on minicomputers, MicroEMACS shows its roots. It is not a true Amiga Intu

ition program, but a command-line program with a large and confusing menu

system grafted onto it. For simple jobs like creating small AmigaDOS scripts

or FileList projects for the Display tool, MicroEMACS is overkill; I prefer the

simpler Ed editor. For bigger jobs, such as creating C program source files —

the job EMACS was created to do — MicroEMACS is an acceptable tool. You

158 AmigaWorld Official AmigaDOS 2 Companion

might want to check out some commercially available text editors, however,

before you commit to producing a quarter-million lines of code with

MicroEMACS. Like any text editor, MicroEMACS lets you enter and edit

text, save files to disk, and load previously saved files. You can think of a text

editor as a word processor without the fancy formatting and printing capabili

ties.

When you run MicroEMACS, it opens a two-color custom screen. Ifyou

don't like its black on gray color scheme, use the Color tool to change it. The

screen consists of a title/menu bar and a large, text buffer area with the cursor

(called the dot in MicroEMACS) in the upper-left corner. At the bottom of

the buffer is a line that identifies the program (MicroEMACS), the buffer

(main), and, if youVe loaded a file into the buffer or saved the buffer to disk,

the name of the file associated with the buffer. Below this status line is a com

mand line where you enter the arguments for the menu commands.

To enter text into the buffer, simply start typing. When you get to the end of

the line, you'll notice that, unlike a word processor, MicroEMACS doesn't

automatically break the line and wrap it to the next line. It simply puts a $ at

the end of the line and lets you continue entering text, although you can't see

any text beyond the end of the line. You don't move to a new line in

MicroEMACS until you press Return. These features, more than anything

else, point up MicroEMACS roots as a programmer's text editor. Ifyou want

to change the program and put it into wrap mode, you have to access the Set

item in the Extras menu.

The dot marks the point at which you enter text. It moves to keep up with the

text you're entering. You can move the dot, and therefore the point at which

you enter text, by clicking on a new spot with the left mouse button or press

ing the keyboard's cursor keys. When you move the dot to the midst of a line

of text and begin typing, MicroEMACS inserts the new text by displacing the

existing text to the right. The Del key erases the character under the dot, while

Backspace deletes the character to the dot's left.

MEmacs File Handling

MicroEMACS lets you manage files through the Project menu. Once you've

entered text into the main buffer, you can save the file to disk in several ways.

The most obvious method, choosing the Save-File item, turns out to be wrong.

You have to name a file before you can save it. You choose the Rename item,

enter a name for the file on the command line, then access Save-File. For

quicker results, you can choose the Save-File-As item, which prompts you for a

filename and then saves the file, all in one stroke. Once you've named a file,

you can use Save-File to save it from then on. MicroEMACS has two other

Extras and Beyond 1JJ

Save options: Save-Mod saves all buffers that you've modified since you last

saved them (as you'll see, MicroEMACS lets you open multiple buffers), and

Save-Exit saves all the modified buffers and then exits the program.

Saving a simple file with MicroEMACS teaches two important aspects of the

program. First, every menu item has a keyboard equivalent. Second, Micro

EMACS does not use the standard Amiga file requester: It doesn't use any file

requester at all. You have to understand AmigaDOS pathnames to use the

program.

You'll especially miss a file requester when you try to load a file into Micro

EMACS, because you must know the path and name of the file at the outset.

The most frequently used file input command is the Read-File item. When

you access this item, MicroEMACS prompts you to enter the name of the file

you want to load on the command line. Once you've entered the pathname of

the file, MicroEMACS loads it into the main buffer, overwriting whatever was

there before. Two other commands load files into MicroEMACS without

destroying the main buffer's contents. Visit-File lets you load a file into an

other buffer, which takes the name of the file you loaded. Insert-File lets you

load a file into the current buffer on the line above the position of the dot.

To compensate for not using file requesters, MicroEMACS provides for two

ways to access AmigaDOS commands from the Project menu. The first,

New-CLI, opens a Shell on the Workbench screen. You can then enter all

the AmigaDOS commands you wish (such as Dir to see a list of files and

directories); EndShell or EndCLI closes the window and sends you back to

MicroEMACS. Note that ifyou use the screen depth gadgets to move back

to MicroEMACS while a spawned CLI is open, you won't be able to use the

program; it is locked until the CLI process ends. The second way to access

AmigaDOS commands is through the CLI-command item, which lets you

enter a single AmigaDOS command on the MicroEMACS command line and

puts the output of the command into a buffer called spawn.output that you

can access and edit. Whenever you use the CLI-command item, the output of

the latest command overwrites the previous contents of spawn.output.

There are two other items in the Project menu. Quit exits the program, after

asking you ifyou want to save any buffers that have been modified since the

last time they were saved. The About item lists the authors of the program.

More on Buffers

As you've seen, you can load different files into multiple MicroEMACS buff

ers. The Edit menu lets you move among the buffers and move blocks of text

between buffers or between different parts of the same buffer.

160 AmigaWorld Official AmigaDOS 2 Companion

If two buffers are visible on screen (see Figure 6-6), you can move from one to

the other by clicking in the destination buffer. If the buffer you want to work

with is not currently visible, you can move to it by choosing the Select-buffer

item from the Edit menu and then entering its name on the command line. If

you don't know which buffers are present, the List-buffers item will show you.

notint mix* , . » ^ -s,-^ .. . ■.-.. ■ $\ " \ ■
nount pJtpe» ■ - , \ . >■ .

path ran: t: sys:utlittles sys:rexxc sys:systen s: sys:prefs sys.ubstartup add
if exists sysitooIs , ■ . ■
path sysitools add
endif . ,,.',.
rexxnast >HIL: / -.*>*,: . y- . , .
if exists s:user-startup .
execute s s usep-^tart*!!*

-- HlcrofcMRCS — nain — File: s:startup-sequence

1 ;TrojectM
2 **Opep...

2 "Sa«e

2 "flbout
2 "flylt
1 "Movenent"

"Top
rot ton

ESCop"

EStsa"
ESCsa1"

/f\\ei /"

'sa ? /Saue

ESCq" "q11

Htcrol —? ed-stai*tup

ESCb

£SCf

**t"

Mf ? /Find string: /"

Figure 6-6MicroEMACS Display

MicroEMACS letsyou divide its display between multiple buffers. You can view

differentparts ofthe samefile, or differentfiles, in the separate buffers.

All text editors perform cut-and-paste operations, and MicroEMACS is no

exception. It lets you select a block of text you want to cut or copy from a

buffer, and then lets you paste that text back into the original buffer or into

another. A block of text can be a character, word, sentence, paragraph, entire

document, or any part of the text in the buffer. In MicroEMACS nomencla

ture, the cut operation is referred to as kill, paste is yank, and copy, mercifully,

is copy.

Before you can kill or copy a block of text, you must select the block. You do

so by marking the beginning of the block and then moving the dot to the end

of the block. To mark the beginning, move the dot there and then either select

Edit's Set-mark item or double-click on the dot. Now, simply move the dot to

define the end of the block.

Extras and Beyond 101

To delete the block, you select the Kill-region item, which cuts the text from

the bufifer and places it in a special kill buffer. Ifyou kill successive regions of a

buffer, each is appended to the buffer as long as you haven't yanked anything

from the kill buffer or copied anything into it.

To copy the contents of the kill buffer into a normal buffer (a paste operation),

move the dot to the point where you want the text inserted and choose the

Yank item. You can thus move text from one buffer to another by killing it in

one and yanking in into another.

You can also move text into the kill buffer without deleting it from its original

buffer: Choose the Copy-region item instead of Kill-region. Another way to

move text from one buffer to another is by positioning the dot at the text's

new location and then choosing Insert-buffer. MicroEMACS prompts you for

the name of the buffer you want, then inserts the text on the line above the

dot's current position. Insert-buffer is a copy operation; it doesn't delete the

contents of the inserted buffer.

Other capabilities available from the Edit menu are items that let you set re

gions of text to all uppercase (Upper-region) or all lowercase (Lower-region),

an item that kills the entire contents of a buffer (Kill-buffer), and one that left-

justifies a buffer's contents (Justify-buffer). You can also redraw the screen

(Redisplay), use MicroEMACS command strings in the test (Quote-char),

have the dot autoindent (Indent), transpose the. position of two characters

(Transpose), and cancel an ongoing operation (Cancel).

Windows Plus

One of the more interesting features ofMicroEMACS is its use ofwindows:

You can split a buffer into multiple windows. Each window can move to any

part of the buffer, and the changes made in any one window are reflected in all

other windows open to the same buffer. MicroEMACS windows are nothing

like Workbench windows; rather, they are views into a buffer.

The Window menu contains items that let you split a buffer into two win

dows, and then split these window further (Split-window), that let you recom-

bine all the windows open on a buffer into one window (One-window), and

that let you move around among windows (Next-window and Prev-window).

You can also change the size ofwindows (Expand-window, Shrink-window),

and scroll by page inside a window (Next-w-page, Prev-w-page). Windows are

great when you have to see the contents of one part of a file while entering text

or editing another part.

162 AmigaWorld Official AmigaDOS 2 Companion

The level of detail in the next three menus give you an idea of the number of

ways that MicroEMACS gives you to manipulate text. The Move menu con

tains items that let you move the dot about a word, line, page, window, or

even a buffer at a time. Next to Move is the Line menu, which lets you posi

tion the dot on a line, delete a line, and delete part of a line. Following the

Line menu is the Word menu, which lets you delete individual words and

change the case of letters in a word.

The Search menu provides items that let you search forward and backward for a

specific string of characters (Search-forward and Search-backward), both auto

matic and manual string replacement functions (Search-replace, Query-s-r), and

Fence-match, an item that moves the dot to the next occurrence ofthe character

currently under the dot.

The final MicroEMACS menu, Extras, lets you define how MicroEMACS

performs some of its operations. The Set-arg item lets you specify how many

times the operation following will occur. For example, ifyou wanted to type

15 r's, you'd access Set-arg, enter 15 in the command line, and then enter the

letter r. Warning: Do not press the Return key after entering the value for arg,

otherwise you'll wind up with 15 carriage returns.

The Set item lets you control a number of important program parameters. You

can toggle MicroEMACS between its own screen and the Workbench screen

by entering the word Screen, turn interlace on and off by entering Interlace,

set the Left and Right margins, define the number of spaces for a Tab, define

the number of spaces for an Indent, toggle between case-sensitive and case-

insensitive searches (Case), and toggle the backup function by entering the

keyword Backup and then one of the following: On, which backs the current

file up to the T: directory, Safe, which keeps you from overwriting an existing

file, and Off, which does none of the above. Most importantly, the Set item

lets you enable word wrap at the end of a line. You first access Set and then

enter wrap in the command line. You are then prompted for the column num

ber where word wrap begins. With word wrap enabled, MicroEMACS is a

much more tolerable general text editor.

The last few items in the Extras menu let you record, begin, and end macros,

redefine just about any key on your keyboard as a macro key, and execute files

of macro commands.

I've been deliberately short in my descriptions of many of the features in all

but the first three MicroEMACS menus. Rather than repeat Commodore's 30

pages of documentation, I wanted to give you simply the information you

Extras and Beyond 103

need to get started working with MicroEMACS. MicroEMACS has enough

features that you could spend months learning them all, yet you can learn the

ones you need'm just a few hours.

PrintFiles

Because neither MicroEMACS nor Ed can print a file, Commodore provides

PrintFiles with Amiga OS 2.0. PrintFiles sends the files youVe selected to your

printer and is used. It is used primarily to print ASCII text files produced by

the Amiga text editors. You can print multiple files by shift-selecting the files

and then double-clicking on the PrintFiles menu while the Shift key is down.

To ensure that the output from each file in a multiple-file printout begins on a

new page, you should add Flags=Formfeed to the Tool Types list of the

PrintFiles Information window.

TheVideoAdjust Drawer

One of the new features on the Amiga 3000 is its built-in Display Enhancer.

The Display Enhancer eliminates the flicker that accompanies interlaced

screens and also eliminates the visible scan lines on non-interlaced screens.

The Tools drawer of the System2.0 volume on Amiga 3000s contains a drawer

called VideoAdjust. Inside you will find three icons: Test_l, Test_2, and

Test_3. Test_l and Test_2 are project icons: When you open one of them,

it loads the Display tool in Sys:Utilities and then loads itself into Display. Al

though it looks like the other two, and its Information window says that it

is a project, Test_3 is a self-contained program.

The test files help you adjust the output ofyour video display. Test_l is a non

interlaced high-resolution screen that contains numerous patterns and gray

scales (see Figure 6-7). With it on your display, you use the fine-tuning con

trols on your monitor to eliminate any flicker you see. Test_2 is a high-resolu

tion interlaced screen of line patterns and color combinations. The idea once

again is to use the fine-tuning controls on you monitor to produce as steady a

display as possible. When you open Test_3, it opens a "Display Enhancer PLL

Tuning Window" on your Workbench screen. By turning the Display En

hancer control on the back ofyour machine to produce the steadiest display in

the tuning window, you ensure that you're getting the best possible output

from the Display Enhancer hardware.

164 AmigaWorld Official AmigaDOS 2 Companion

Figure 6-7 Tuningyour Monitor

The threefiles in the VideoAdjustdrawer giveyou testpatternsyou can use to adjust

your monitor. This one is thefirst, Test_L

HDToolBox

To many new Amiga owners, the setup, care, and management of a hard-disk

drive is akin to travelling in the Twilight Zone: Everything looks familiar, but

nothing works the same. The job of HDToolBox is to make setting up and

using hard disks easier. HDToolBox lets you prepare a new hard disk for use

or change the parameters of an existing hard drive. It is designed specifically to

work with Commodore's hard-drive controllers on the Amiga 2000 and 3000,

although it also works with the ST506 interface used in the A590 expansion

box.

Hard drives are wonderful devices. Spinning at 3,600 rpm, they are much

faster than floppies, and a lot roomier too. The problem is that you can't sim

ply plug them in and start working. To use the drive correctly, the system

must first receive details about the drive's physical characteristics. If the drive

doesn't supply this information automatically, you must. Similar to a floppy, a

hard drive has to undergo a low-level format that prepares it to receive data.

Extras and Beyond 165

Then, you have to tell the system how you want the drive to be partitioned.

Partitioning is the process of creating two or more volumes on a single hard-

disk drive. Once the drive is partitioned, it then undergoes a quick AmigaDOS

format which writes the appropriate root block information to the partitions.

Finally, your drive is ready for use. HDToolBox tries to make preparation

easier. (Ifyou have a hard drive that is functioning normally and that is parti

tioned to your satisfaction, you don't have a need to access HDToolBox.)

When you open HDToolBox, the program first searches for any hard-disk

drives attached to your system. Once HDToolBox has interrogated your

drives, it displays the window shown in Figure 6-8. Ifyou have a previously

formatted hard drive, the manufacturer and model name ofyour drive will

appear in the "Hard Drives in System" display. You can proceed directly to the

section on partitioning a drive. If the drive is new and unformatted, it will

show up as "Unknown" under the drive-type heading. In this case, you'll have

to select the Change Drive Type button to supply the system with the infor

mation about your drive.

Qj i4orkbench

Interface flddress LUN

Hard Drivesin Systen

Status Drive Typ

$8<<Bmi 6 titGha nqem iQURNTUM ?A8S194■B548?9
; ^\y^,j

Change Dr

Modify

fornat Drive 1

;

,'■.'• ' % < , '\ f*?>v " '

Figure 6-8 HDToolBox

The main window ofthe HDToolBoxprogram shows the hard drives currently

attached to your system. Using the buttons below, you can prepare the hard drivefor

use andpartition the space on it between multiple volumes.

166 AmigaWorld Official AmigaDOS 2 Companion

Change Drive Type

When you attach a new hard drive to your system, AmigaDOS needs to know

the physical configuration of the drive (number of heads it has, number of

cylinders, and so on) to format it properly. To enter this information about an

Unknown drive, you select it from the drive list and then hit the Change Drive

Type button.

In the resulting Set Drive Type window, you first select the type of interface

you are using with the drive by clicking on either the SCSI or XT (ST506)

buttons. Below these buttons is a list of drives whose specifications are stored

internally in the HDToolBox program. If the drive you're using shows up on

the list in the window, select it. Finally, click on OK to return to the main

WBToolBox window. (The program will now put up a requester informing

you that you're about to wipe out any data on the drive; with a new drive, this

isn't a concern. Select the Continue button.)

Ifyour drive doesn't appear in the internal list, you'll have to select the Define

New Drive Type button. The Define/Edit Drive Type window contains text

gadgets that let you enter the physical characteristics ofyour hard drive, which

are detailed in the drive's documentation. Ifyour drive is a SCSI drive you

may yet be able to avoid entering information into all those text gadgets. Most

SCSI drives store information about their configurations in their own ROM.

By selecting Read Configuration From Drive, you're instructing HDToolBox

to try and read the drive configuration information from the drive. Most SCSI

drives support this feature. Ifyour drive does, the system will read the informa

tion from the drive into the gadgets. Select OK to return to the Change Drive

Type window, where you can select the drive from the list and hit OK to re

turn to the main HDToolBox window.

If all else fails, you must enter the information by hand. The first text gadget is

Filename and holds the name of the file that contains specifications for drives

not directly supported by HDToolBox. Leave Filename on its default setting.

The next three gadgets ask for the name of the drive manufacturer, the model

name of the drive, and the revision number of the drive. It is not absolutely

necessary that you enter all this information. You can get by with entering

dummy information ifyou don't know the exact model name of the drive or

the revision number.

With the next four gadgets, you have no leeway; you have to enter this infor

mation correctly for AmigaDOS to recognize and access your drive. Ifyou

can't find this information with the documentation that comes with the drive,

Extras and Beyond 167

contact your dealer or the drive manufacturer directly. Cylinders refers to the

number of storage tracks available on a single disk surface multiplied by the

number of recording surfaces on all the disks in the drive. Many hard-disk

drives contain more than one disk. Tracks are concentric storage areas on the

surface of a disk. Heads refers to the number of read-write heads the drive

contains. Drives often contain two, four, or more heads. Blocks per Track is

the number of 512 byte blocks (sometimes called sectors) available on a single

track, and Blocks per Cylinders is the number of blocks in a cylinder. This

latter number is normally the blocks per track multiplied by the number of

read-write heads contained in the system. Figure 6-9 shows a graphic represen

tation ofwhat these different values mean. If you've entered the information

about the drive correctly, the size of the drive as it is listed in the window

should be close to the size of the drive as listed by the manufacturer. In fact,

most manufacturers understate the sizes of their drives by a small fraction.

Track

^
=====

Block

Figure 6-9A TypicalHardDisk

A block — also called a sector — is the smallestphysicalpartition on a disk. A track

consists ofa ring ofblocks. A cylinder consists ofcorresponding blocks on the different

recording surfaces in the hard-disk drive. A drive will have as many read-write heads

as it has recording surfaces.

168 AmigaWorld Official AmigaDOS 2 Companion

Of the other four gadgets in the window, you need concern yourself only with

the one that asks if your drive supports reselection and the one that prompts

you to enter the number of the cylinder where the read-write head parks when

you power down your computer. The other two are not supported by the

Amiga. The information on reselection and the parking cylinder is available in

the documentation that accompanies the drive. If the drive automatically parks

its heads, you needn't worry about entering the information manually. Ifyou

can't find the information on the park cylinder, use the number of the last

cylinder on the system, which is the number of cylinders minus one.

After you enter the information about your drive, select the OK button or

click Cancel if you want to exit without preserving the information. Both but

tons return you to the Set Drive Type window; ifyou selected OK, the drive

you just described will be listed in the scrolling list of drives. Select it from the

list and hit OK. This brings up the requester informing you that you're about

to lose any partitions on the drive. With a new drive, there are no partitions

anyway, so select Continue. Ifyou're working with an already partitioned

drive, you should select Cancel and exit HDToolBox until you've backed up

everything you need from the drive. The Set Drive Type window also lets you

edit or delete any drive definitions you've previously made.

Bad Blocks

Because hard disk platters are expensive to make, manufacturers don't reject a

disk if it has a few defects. Rather, the locations of the defects are noted either

in written form or, in the case of most SCSI drives, in the ROM of the drive

itself. A SCSI drive automatically reports this information to HDToolBox,

which keeps AmigaDOS from using the blocks where the defects are located. If

you have an ST506 drive or a simple SCSI drive, you may have to enter bad-

block data by hand before you format the drive. Figure 6-10 shows the Bad

Block Entry requester.

Low-Level Formats

When you first add a drive to your system, or if a drive is developing a lot of

errors, you have to perform a low-level format. When you access this option,

you receive a warning that a low-level format will destroy everything on a disk.

You can choose to cancel the procedure at this point.

Extras and Beyond 1 O>/

a I Workbench

Bad Block Entr

Cylinder Head

I fldd Bad 8 lock II

Bad Blocks Happed out by drive! 8

Figure 6-10 BadBlocks

Although most SCSI drives map out bad blocks automatically, some drives require that

you enter the information by hand This is especially true ofthe ST506controllers used

in manyAmiga 500s.

Partitioning a Drive

Selecting this option brings up the requester shown in Figure 6-11. This is a

graphical representation of the partitions on you hard disk. The horizontal bar

represents all the storage space on your hard disk, with a black bar representing

the current partition, a gray bar representing unused space, and a hatched bar

representing an already existing partition. You can set the size of the current

partition by dragging the blue triangle, and change the current partition by

clicking in another partition.

The Delete Partition button deletes the current partition, while New Partition

lets you create a partition in unused space. Default Setup divides the disk into

two equal-sized partitions. The Help button gives you some on-line help.

170 AmigaWorld Official AmigaDOS 2 Companion

a | Workbench lEHC)

9

Unused

SCSI Address 6, LUN 8

= fl partition

Cvi

234

Current partition

Size!
19 Meg

I Pe I etc Part 11 i orill [Mew Part It ion II I Default Setupll IHelpjl

I advanced Opt ions] Partition Device Nane File Systen: Fast File Systen

J

Bootable? I Wo I

[| Cancel |]

Figure 6-11 The Partition Display

HDToolBoxprovides a simple way to divide a hard disk into different volumes. This

display shows that my hard drive consists ofthreepartitions. I've made the largest one

smaller before adding afourth partition.

The Partition Device Name gadget lets you enter the AmigaDOS device name

of the partition, and the Bootable? gadget lets you make it possible to boot

from the partition. The File System label identifies the file system used by the

partition. It should read Fast File System.

Selecting the Advanced Options button brings up the display shown in Figure

6-12. The Start, End, and Total Cyl gadgets let you precisely define the size of

the partition in cylinders, while Buffers lets you enter the number of

AmigaDOS buffers to give the drive (see AddBuffers in Chapter 9). Ifyou

have more than one bootable volume mounted on a system, the one with the

higher Boot Priority becomes the volume that AmigaDOS boots from. Don't

set a hard disk's boot priority above 4, because you will always want the option

of booting from DFO:, which has a boot priority of 5.

Extras and Beyond 171

a 1 Workbench

Unused

SCSI flddress G, LUN 8

fl partition

Cvl
234

= Current partition

Start Cyl

End

Total Cyl;

Buffers!

Figure 6-12 Advanced Options

Ifyou want to createpartitions ofa precise size, you can enter the number ofcylinders

directly without using the graphic display. Advanced options also letyou mount new

file systems.

The Change File System button lets you designate a file system besides Fast

File System. Unless Commodore comes out with an improved file system,

you'll probably never use this option. The same goes for Add/Update File

Systems, which lets you make other file system available to AmigaDOS.

Once youVe set up your partitions, you select OK to return to the main

HDToolBox window. To put your changes into effect, you select Save

Changes to Drive. To cancel the changes, you simply select Exit.

Although Commodore's documentation discusses a Workbench-oriented hard-

drive backup utility called HDBackup that is supposed to complement

HDToolBox, the program didn't make it into the final release. Unless you

want to try the Shell-only utility, BRU, described in Appendix C of the Using

the System Software manual, you should check out one of the fine commercial

backup utilities such as Quarterback from Central Coast Software.

\/Z, AmigaWorld Official AmigaDOS 2 Companion

Updating the Operating System

Because Amiga OS 2.0 was first released with a RAM-based Kickstart for the

Amiga 3000, Commodore included a simple IconX project called Update2.X.

This executes a simple script that lets you update to the latest Kickstart release.

(For more on IconX and script files, see Chapter 10.) Once Kickstart 2.0 is

committed to ROM, this project may no longer be supplied with Amiga OS

2.0.

Conclusion

That wraps up the discussion of the contents of the Extras2.0 disk and, more

importantly, of the discussion of the Workbench interface. The next four

chapters are devoted to the Amiga command-line interface, the Shell.

When using the Workbench interface, you work with disk files by manipulat

ing icons. You can execute a program file by double-clicking a tool or a project

icon, or copy any file by dragging its icon from one window to another. Work

ing in the Shell, however, is different. Unlike Workbench, which is a graphi

cal-user interface (GUI), the Shell is a command-line interface, similar to those

on MS-DOS and UNIX systems.

For a time, the Amiga was unique in offering a command-oriented and*

graphical interface, but most major computers now offer both. For instance,

Microsoft offers both MS-DOS and Windows for IBM PC and PC-compat

ible computers, while both UNIX International and the Open Software Foun

dation offer graphical interfaces for UNIX. Even Apple has recognized that no

one interface is best for all applications: it plans to introduce a scripting capa

bility with the next release of its operating-system software for the Macintosh.

What can a command-line interface give you that a graphical interface can't?

First, greater flexibility. With a GUI you must specify each file or drawer you

want to work with by selecting its icon. Ifyou want to work on some files in a

window but not others, you have to select the individual files. With a com

mand line, you can use wildcard characters to specify files. For example, you

can delete all files in a directory that relate to an already completed project

with one command (provided you have used meaningful filenames). A second

advantage of a command-line interface is the ability to automate tasks by

stringing commands together in a script. Finally, there are some AmigaDOS

functions that simply are not available from Workbench.

173

1 /~r AmigaWorld Official AmigaDOS 2 Companion

AmigaDOS Nomenclature

Just as Workbench is built upon the Amiga Intuition library, the Shell is built

upon the AmigaDOS library, which controls access to disk drives, printers,

and other devices attached to your Amiga. Thus, you will often hear people

talk about "using AmigaDOS" (or, more simply, "using DOS"); what they are

actually talking about is accessing AmigaDOS through the Shell.

With the Workbench interface, you manipulate objects called drawers, tools,

and projects — all ofwhich represent different types of files. The pictures on

the icons relate to the function of the file, making it easier to choose the right

icon for the right job.

With the Shell, you manipulate files by name. Because you don't have the

visual clues to remind you what a file does, it is important that you give your

files meaningful names. Because it is not concerned with pictures, the Shell

also dispenses with the Workbench terms for different types of icons. Thus, a

tool under Workbench becomes a program file when accessed from the Shell.

Likewise, a project becomes a data file, a drawer becomes a directory file, and a

volume becomes a disk or a partition on a hard disk. There is no Shell equiva

lent, however, to the Trashcan.

The most important attribute of a file — its name — can be made up of any

combination up to 31 letters, numbers, and special characters, except for the

slash (/) and colon (:). Some special characters, such as the question mark (?)

and hash mark (#), are permitted, but using them will make wildcard pattern

matching harder to perform, so I suggest you avoid them. When I have to

separate words in a filename, I use a period (.) or an underscore (_). You can

also include spaces in a filename, but this makes it harder to manipulate the

file from the command line. I suggest that you also avoid spaces in filenames,

even in those you access through Workbench. Examples ofvalid AmigaDOS

filenames are:

90_biidget

Startup-sequence

Letter.to.John.Doe

Chapter 2

Shell.info

Note that the fourth example above includes a space. Invalid filenames include:

Letter: John Doe

Chapter/2

THIS NAME HAS MORE THAN THIRTY ONE CHARACTERS

AmigaDOS and the Shell 175

Note that filenames can contain both uppercase and lowercase characters.

AmigaDOS, however, does not distinguish between upper- and lowercase,

therefore, the names Data_File, datajile, and DATAJFILE are all equivalent.

Each filename in a directory, even if it is the name of another directory, must

be unique. The system will keep you from creating two files with the same

name in the same directory. Ifyou move or copy a file into a directory that

already contains a file with the same name, the new file will overwrite the older

one. You can, however, have files with identical names on the same disk as

long as they are not in the same directory.

Many operating systems make wide use of filename extensions. MS-DOS lets

you use filenames that consist of eight characters, a period, and a three-charac

ter extension. The extension usually defines the file type. For example,

LETTER.TXT indicates that letter is a text file, while BUDGET.DBF means

that budget is a data file for dBASE III. Some Amiga programs also use file

extensions, but they are not required for most AmigaDOS files — although

icon files do need a .info extension in order to be recognized by Workbench.

The ShellWindow

There are a number ofways to start up a Shell project from Workbench. You

can open the Shell icon in the window ofyour system disk or open the CLI

tool in the System drawer. You can even open a Shell by accessing the Execute

Command item in the Workbench window. In this case, enter the command

NEWSHELL

into the text gadget and either press the Return key or select the OK gadget.

All of these methods bring up a Shell window and make it the active window

(see Figure 7-1). Once you have a Shell window open, you can bring up others

by entering the NewShell command on the command line. To follow the ex

amples below, use a Shell window that you open by double-clicking on the

Shell project in the window ofyour system disk.

Shell windows share many properties with Workbench windows. They contain

a close gadget, zoom and depth gadgets, and a sizing gadget (although no scroll

gadget), and all work the same as they do on other windows. Within its bor

ders, however, a Shell window is very different from other windows. It is de

signed specifically to accept typed input from the keyboard and to display text

output: Shell windows don't do graphics. In this regard, they imitate the text

terminals used by most minicomputers and mainframes and the text-oriented

command interpreters ofMS-DOS and UNIX computers.

176 AmigaWorld Official AmigaDOS 2 Companion

Figure 7-1 The Shell Window

The windowyou use to input commands to AmigaDOS, which has many ofthe same

gadgets as Workbench windows. The biggest difference is the lack ofscrollgadgets.

When you open a Shell window, the only thing you see is the prompt. The

default prompt used with Amiga OS 2.0 lists the number of the Shell process

and the name of the current directory followed by a prompt character (the

greater-than sign [>]). Thus, when you open the Shell project on your system

disk, your prompt looks like this:

l.Sys:>B

Following the prompt is a colored rectangle, the cursor.

In a Shell window, you can enter commands on only one line at a time — the

line containing the cursor. The cursor marks the point on the line where the

next character will appear after you type. It also marks the point where, ifyou

wish, you can delete a character. As you enter commands and press the carriage

return, the text in the window scrolls up a line. You cannot, however, scroll up

to see text that has gone above the top of the window— although, as we will

see later in this chapter, the Shell provides a way to recall previously executed

commands.

AmigaDOS and the Shell 177

Shutting down a Shell is a simple matter. Either select the close gadget at the

upper-left corner of the Shell window, or enter

ENDSHELL

and then press Return.

Note that you cannot close down a Shell ifyou used it to run a program that

itself has not shut down. While you can still type into the Shell window, press

ing the Return key will have no effect except to move the cursor down one

line. You can avoid this problem if you launch programs using the Run com

mand.

Interpreting Input

To issue a command to AmigaDOS, simply enter the name of the command

using your keyboard. For example, enter the following at the prompt:

DIR

and press the Return key. The Shell then executes the Dir (Directory) com

mand and displays its output in the Shell window. Without any arguments

that modify its behavior, Dir displays a list of all files — including directory

files — contained in the current directory. Figure 7-2 shows the directory list

ing of the Sys: directory of an Amiga 3000. Compare this directory with Fig

ure 7-3, which shows the window of the Amiga 3000 System2.0 disk. Note

that any file with a .info extension shows up in the Workbench window as an

icon, while files without .info extensions are not displayed. Files with the (dir)

notation after their names are, in fact, directories themselves.

If the output of a command is scrolling by too fast in the Shell window, you

can halt output temporarily by pressing the Spacebar. You can resume output

by pressing the Backspace key. Ifyou want to stop the operation of a com

mand, press CTRL-C.

You may have noticed that just after you pressed the Return key above, the

light for the disk drive holding your system disk came on. That was

AmigaDOS loading the Dir command from disk. The commands you enter

into the Shell are programs that exist on a disk, in memory, or in your Amiga's

Kickstart ROM. When on disk, the AmigaDOS commands are kept in a spe

cial directory called the C: directory. (You will learn about this directory later.)

You should note, however, that you are not restricted to running only

AmigaDOS commands from the Shell. You can use the Shell to run just

about any program you can launch from Workbench simply by entering

the program's name on the command line.

178 AmigaWorld Official AmigaDOS 2 Companion

ntmitors (dir)

expansion,iofo

iUt fct
e

trashean.info%* -,

Figure 7-2A Directory Listing

This is a listing ofthe root directory ofthe System2.0 disk. It shows an alphabetical list

ofdirectoriesfollowed by a two-column list offiles.

As I mentioned before, AmigaDOS commands can accept arguments that alter

what they do or how they do it. The Dir command is no exception. To dem

onstrate, enter the following:

DIR UTILITIES

and press Return. Here the output is different from that of the Dir command

alone; it is a listing of the contents of the Utilities directory. You have modi

fied the directory that is listed by the Dir command by passing it an argument

— Utilities — that tells it what directory to list. Ifyou do not pass Dir an

argument, it defaults to listing the current directory.

In the example above, the command — Dir — and its argument — Utilities

— are separated by a space. The space character has a special function in the

Shell; it is used to separate the commands and arguments you enter. For ex

ample, assume you have used the New Drawer item from the Window menu

to create a drawer called Word Processing Files. Now, in order to get a listing

of this directory, suppose you entered

DIR Word Processing Files

AmigaDOS and the Shell 179

£1

8

<~

Figure 7-3 The System2.0 Drawer

Note the difference between the Sy$tem2.0 listing (Figure 7-2) and its drawer. Only

files and directories with .infofiles appear in the drawer window; allfiles and

directories appear in a Dir listing.

followed by Return. You might expect to get a listing of the files in the direc

tory Word Processing Files, but instead, you will get a message saying the sys

tem could not find the directory Word. YouVe just strayed from the procedure

that the Shell uses to interpret what you input on the command line.

When you press the Return key after entering a command and its arguments,

the Shell parses the characters (filters them from left to right) on the command

line, looking for spaces. When it finds the first space in the line, it sends the

characters before the space to AmigaDOS as the name of the command. (If

there is no space in the command line, the Shell considers the entire line to be

the name of the command.) The Shell then parses the line for other spaces and

sends the characters between spaces, and between the last space and the end of

the line, as the arguments of the command. (See Figure 7-4 for a graphic ex

ample of the parsing procedure.)

The problem, then, with the above example is that the Shell interprets the line

DIR Word Processing Files

180 AmigaWorld Official AmigaDOS 2 Companion

prompt command

1.SYS:> DIR WORD PROCESSING FILES

first argument second argument third argument

prompt command argument

1 .SYS:> DIR "WORD PROCESSING FILES'

Figure 7-4 Command-Line Parsing

The Shell treats the space character as the delimiter between different words on the

command line. From the beginning ofthe line to thefirst space is the command name;

other words are argumentsfor the command. Note that by using quotation marks, you

can get the Shell to treat names that contain spaces as a single AmigaDOS word.

as four separate groups of characters, or words. The first word, by default, is the

name of the command. The next three are interpreted as the arguments you

want to pass to the command. When Dir receives its arguments, it always takes

the first one as the name of the directory you want to list. In this case, when it

tries to list the directory named Word, which doesn't exist, it generates an

error and produces an error message.

One solution — and the one I favor because I use the Shell frequently — is

never to create a file, even using Workbench, that contains a space in its name.

Ifyou use Workbench primarily and like the freedom to include spaces in

filenames, you can still access these files from the Shell by enclosing any

filename containing spaces in quotes on the command line. The Shell will then

interpret everything between the quotes as one word. Thus, the Shell interprets

DIR "Word Processing Files"

as two words: the command — Dir — and its one argument — Word Pro

cessing Files.

AmigaDOS and the Shell 181

Note that the Shell does not begin to parse the command line until you press

the Return key. To avoid repetition, from now on when I indicate that you

should enter a command line, I'll assumeyou understandyou mustfollow up by

pressing Return.

Editing the Command Line

Unless you happen to be a flawless typist, occasionally you will make mistakes

when entering commands and arguments into the Shell. One way to handle

such errors is to press the Return key, let AmigaDOS give you an error mes

sage, and start again. Because some command lines are quite long, however, a

better method is to edit the input before you press Return.

The Shell supports such basic editing keys as the Delete key, the Backspace

key, the Cursor Left and Cursor Right (left-arrow and right-arrow) keys, and

some control keys. Use the Cursor Left and Cursor Right keys to position the

cursor on the command line. These are "nondestructive" keys, meaning they

do not delete the characters they pass over on the line. Pressing the Shift-Cur

sor Left key combination moves you to the beginning of the line, while Shift-

Cursor Right moves you to the end of the line.

The Delete and Backspace Keys do erase characters from the command line.

DEL erases the character currently under the cursor, thus moving the charac

ters to the right of the cursor one position to the left. Pressing the Backspace

key moves the cursor one character to the left of its position, erasing the char

acter in that position. Like the Delete key, it also moves the rest of the line one

character to the left.

If you want to insert characters in the command line, you simply move to the

appropriate spot and start typing. Each character you enter appears at the cur

sor position and moves the characters on the rest of the line one position to the

left. The Shell does not support an overstrike mode, where entering a character

replaces the character beneath the cursor. You have to use either DEL or the

Backspace key to erase individual characters.

To erase more than one character at a time, and also to perform some special

actions, the Shell lets you use a number of control-key (CTRL) functions.

CTRL-W (pressing the Control key and w key simultaneously) allows you to

delete the word to the left of the cursor; it deletes all the characters to the left

of the cursor until it reaches a space character. CTRL-X and CTRL-B delete

all characters on the current line. CTRL-K deletes the characters from the

cursor to the end of the line, while CTRL-U deletes the characters from the

cursor to the beginning of the line. Two control-key combinations perform the

10JL AmigaWorld Official AmigaDOS 2 Companion

same functions as dedicated keys: CTRL-H performs a backspace, and

CTRL-M produces a carriage return.

One of the more interesting control-key combinations is CTRL-J, the linefeed,

which allows you to enter two or more commands, one after the other, and

have them execute sequentially. For example, to move from the Sys: directory

to the Utilities directory and get a directory listing, enter:

UTILITIES<CTRL-J>

DIR

(I put the CTRL-J key combination in angle brackets because it is not a print

able character.) When you enter the actual keystrokes, the cursor moves to the

next line. Each line is treated as a separate command, but no line is sent to the

Shell parser until you press Return.

To see how command-line editing works, consider the following example.

Let's say you entered the following on the command line:

DOOR UTILITIES

Instead of pressing Return and having AmigaDOS tell you that it cannot find

the command "door," simply press the Cursor Left key until the cursor is over

the first o in door, press the Delete key twice, and then press i. Now, when you

press Return, you will get a listing of the files and directories in the Utilities

directory.

Note that once you have edited a command line, you do not have to move the

cursor back to the end of the line before pressing Return. No matter where the

cursor is, pressing Return sends the entire line to the Shell for parsing.

Copying BetweenWindows

In addition to editing and deleting characters on the command line, the Shell

also lets you copy information between different Shell windows, and between

the Shell and other character-based console windows, such as the windows

created by the Ed editor. The first step in the copying process is selecting the

text you want to copy. To select text, such as the output of a Dir command,

select the beginning point of the text you want to copy with the left mouse

button, drag the pointer to the end of the area you want to copy, and release

the button. This action highlights the text between your beginning and end

points (see Figure 7-5). You then press the right Amiga key and the x key to

gether to copy the material to a temporary area. The original text is unaffected.

(This is copy and paste, not cut and paste.)

AmigaDOS and the Shell 183

a I Workbench

. into

expansion.Info
nonitorstore.info
Shell.info

systen.info
trashtan,info
wbstartup.info

t.SYS:>|

Monitors,info
prefs.Info
sorted.list
tools,info

utilities.info

Figure 7-5 Highlighted Text

By dragging the mouse over the text in a Shell window, you select the text. You can

then copy the highlighted text to any otherAmigaDOS window or to the Ed editor.

You then move the pointer and activate the window you want to copy. With

the cursor positioned where you want the incoming text to appear, press the

Right Amiga and v keys together to copy the text in the window. Note that if

you try to copy text on the command line of a Shell, the Shell will try to inter

pret each line of the copied material as a command line. This can lead to some

bizarre error messages.

Command History

The Shell also supports the Cursor Up and Cursor Down (up-arrow and

down-arrow) keys, but not as cursor-positioning keys. You use these keys to

scroll through the command-history buffer.

Whenever you press Return on the command line, the Shell not only parses

the line and sends the results to AmigaDOS, it also saves the line in a tempo

rary storage area called the command-history buffer. This buffer contains the

last 2,048 bytes you have input to that Shell. When you press the Cursor Up

10~r AmigaWorld Official AmigaDOS 2 Companion

key, you copy the last line you input from the buffer to the command line. For

example, ifyou enter the command

DIRPREFS

and wait for the command to finish its output, you will get the command

prompt back. Ifyou then press the Cursor Up key once, the Shell will copy the

previous command line — DIR PREFS — to the current command line. All

you need do to execute the command again is press Return. When you do so,

the command is again copied to the buffer.

Once a command line is copied from the buffer, you can edit it as you would

anything else you enter from the keyboard. Thus, the command-history buffer

is an excellent way to correct typing errors that you might miss before pressing

Return.

As stated, the size of the command-history buffer is 2,048 bytes, which is

enough space to store several dozen long commands with arguments, or a

couple of hundred short commands. You scroll back in the buffer using Cursor

Up, and forward in the buffer using Cursor Down. In effect, Cursor Up moves

you backwards in time; Cursor Down returns you to your present position.

When the buffer is full and you enter another command, the oldest line in the

buffer is bumped to make room for the newest line.

The Cursor Up and Cursor Down keys also perform special functions when

used with the Shift key. Shift-Cursor Down moves you to the bottom of the

command buffer, while Shift-Cursor Up acts as a search function. The latter

searches backwards through the command buffer for the most recent form of

your current command line. The search can be for multiple words, single

words, or just fragments. When a match is found for that line in the buffer, the

entire line is copied to the command line.

AmigaDOS File Structure

In a previous example, you listed the contents of the Utilities directory by

including the directory name as an argument on the command line. There are,

however, other ways to list the contents of Utilities. The easiest is to simply

make it the current directory.

I've used the analogy of an upside-down tree to describe the structure that the

Amiga uses when it stores files on a disk, and the analogy holds true for the

command-line interface. The current directory describes your position in the

file structure. It is the directory on which the AmigaDOS commands operate

AmigaDOS and the Shell 185

by default, unless your override that default by using command-line argu

ments.

When you first open a Shell using the Shell project or the CLI tool, you are at

the top of the directory structure ofyour system disk— the root of the upside-

down tree. In fact, AmigaDOS refers to the top-most directory of a disk as the

root directory. (Ifyou open a Shell by entering NewShell using the Execute-

Command item, you will be at the root of the RAM: disk.) Unless you specify

otherwise with a command-line argument, the commands you enter will work

with and on this directory. You can change the current directory— thus

changing the directory the commands work on by default — by entering the

name of the directory to which you want to move. For example, if Sys: is your

current directory — the one listed before the prompt — you can move to the

Utilities directory by entering

UTILITIES

This changes the current directory to Utilities. Note that the prompt also

changes to reflect the current directory. Ifyou now enter

DIR

you get a listing of the Utilities directory.

In addition to entering pathnames, you can also use some special characters to

move around in the directory structure. Entering a slash (/) moves you up one

level in the directory structure; two slashes move you two levels up, and so on.

Entering a colon (:) moves you directly to the root directory of the current

disk. Thus, ifyou have moved to the Sys:Prefs/Env-Archive/Sys drawer and

you want to return to the root directory, you can enter either

or

Note that when you return to the root ofyour system disk, the prompt dis

plays the volume name of the disk (Workbench2.0 or System2.0) instead of its

logical name, Sys:. Don't worry: The two names are equivalent, as you will see

in the section below on directory assignments.

Because entering a pathname lets you move to any directory on any disk at

tached to your Amiga, it is a good idea to learn more about pathnames. To use

this feature effectively, you need to have a good understanding of the different

ways you can specify the location of a file or directory.

1OU AmigaWorld Official AmigaDOS 2 Companion

Filenames and Pathnames

Workbench is a direct-manipulation interface. To work on a file or to see the

contents of a drawer, you must have the object in front ofyou. The Shell al

lows you to access files and directories that are not in the current directory and

to move from the current directory to any other directory on any disk attached

to your system — ifyou specify the proper pathname.

A pathname consists of a filename plus the directories and the disk above the

filename in the AmigaDOS file structure. For example, your Prefs directory

contains a program with the filename ScreenMode. In a floppy-disk system, its

complete pathname is Workbench2.0:Prefs/ScreenMode. With a hard-disk

system, its pathname is System2.0:Prefs/ScreenMode. (In both systems, the file

probably has a second pathname, namely, Sys:Prefs/ScreenMode. That's be

cause with both floppy- and hard-disk setups, the system disk gets the logical

assignment Sys:. We'll have more on assignments later.)

Unlike filenames, each pathname on your system refers to one and only one

file or directory. Because of logical assignments, however, one file can have

many pathnames, but every pathname points to one file only. Ifyou know the

pathname of a file or directory, you can access it no matter where you are in

the AmigaDOS file structure.

Let's dissect the pathname of the ScreenMode program. The first item in the

pathname is the name of the disk where the file is located. Under AmigaDOS,

the disk name is always followed by a colon (:). After the disk name come the

names of the directory in which the file resides. Directory names are followed

by a slash (/). Finally, the last item in the pathname is the filename. Figure 7-6

relates the pathname to the file's position in the AmigaDOS file structure.

If a file is nested within two or more directories under the root directory of a

disk, you need to specify all the directories in its pathname. For example, the

file that contains the bit pattern for the Times 24 font is named 24. It is lo

cated within the Times directory within the Fonts directory within the root

directory ofyour system disk. Its pathname on a hard-disk system is therefore

System2.0:Fonts/Times/24. Figure 7-7 relates this name to the file's location

in the file structure.

If any component of a pathname — a disk, directory, or filename — contains

a space, then the entire pathname must be enclosed in quotation marks when

you enter it on the command line. For example, ifyou want to get a directory

of the Env directory of the Ram Disk, enter

DIR"RAMDISK:ENV"

AmigaDOS and the Shell 187

PATH System2.0:Prefs/ScreenMode

Root

Directories

Files

System

NoFastMem

Format

DiskCopy

etc.

Svstem2.0

1
1 1

Utilities | Prefs | Etc.
1

Clock

IHelp

etc.

Palette

ScreenMode |

Time

Printer

etc.

Figure 7-6 ScreenMode Path

Thepathnamefor the ScreenModeprogram consists ofitsfilename and all the

directories above it in thefile structure. In this case, thepathname consists ofthe

volume name, one directory name, and thefilename.

Note that I did not put a slash after the name of the Env directory. When a

directory name is the last item in a pathname, you do not have to include the

slash after its name. The same does not hold true for disk volume names.

These must always be followed by a colon.

Relative and Absolute Pathnames

Pathnames come in two flavors: relative and absolute. Absolute pathnames are

those that include the name of the disk where the file resides. No matter what

the current directory, you can access any file on the system if you know its

absolute pathname.

A relative pathname is a different matter. It does not describe the absolute

position of the file in the file structure, but only its position relative to the

current directory. Thus, if your current directory is the Fonts directory of your

system disk, you can get a listing of the files in the Times directory in two ways

— by entering the absolute address:

188 AmigaWorld Official AmigaDOS 2 Companion

PATH System2.0:Fonts/Times/24

Svstem2.0

i—
System Utilities

_L

Fonts

NoFastMem

Format

DiskCopy

etc.

Clock

IHelp

etc.

Etc.

Garnet

J2

!4

Figure 7-7 Finding the Times 24 Font

The Times 24font is in afile named24 in the Times directory, which is in the Fonts

directory in the system disk. Thefile 24 is one level deeper in the diskfile structure

than is ScreenMode.

DIR System2.0:FONTS/TIMES

or by entering the relative address:

DIR TIMES

Relative pathnames work only if the file or directory you want to access is at or

below the current directory in the file structure (see Figure 7-8) In effect, the

system combines the relative pathname with the path of the current directory

to produce an absolute pathname.

DirectoryAssignments

In addition to relative and absolute pathnames, AmigaDOS gives you another

method for accessing particular directories, namely, using a shortcut called a

logical assignment.

AmigaDOS and the Shell 189

PATH System2.0:Fonts/Times/24

Svstem2.0

1

current dir

I / I

System Utilities

NoFastMem

Format

DiskCopy

etc.

Clock

Fonts

1 Times |

IHelp

etc.

Etc.

ectory

Garnet btc.

18

m

Figure 7-8 Relative Pathname

By moving to the Fonts directory on the system disk, you can access the 24file without

entering the absolutepathname. You can instead use thatpart ofthepathname relative

to the current directory,

A logical assignment is a name that replaces a pathname. For example, if you

have a directory with the pathname System2.0:Word.Processing/Data/Letters/

Mom, you can, using the Assign command, equate this pathname to a logical

name such as Mom: by entering the following:

ASSIGN MOM: System2.0:Word.Processing/Data/Letters/Mom

From then on, whenever you use Mom: in the Shell, AmigaDOS automati

cally substitutes the real pathname for the logical one. Ifyou have directories

that you access often, you might consider giving them logical assignments.

Logical assignments are more than just a way to cut down on your typing.

AmigaDOS makes 10 logical assignments when you boot your system. These

assignments point to the location ofvarious system resources that any person

or program can access. The default assignments contained within the Kickstart

ROM are:

190 AmigaWorld Official AmigaDOS 2 Companion

SYS:

C:

S:

FONTS:

DEVS:

LIBS:

L:

ENVARC

In addition, t

ENV:

T:

CLIPS:

The disk you booted from, either Workbench2.0 or

System2.0

Sys:C

Sys:S

Sys:Fonts

Sys:Devs

Sys:Libs

Sys:L

: Sys:Prefs/ENV-Archive

:he standard Startup-sequence makes the following assignments:

RAM:Env

RAM:T

RAM:Clipboards

Using logical directory names, any user or program can access basic system

resources. For example, if a program wants to load a font, it does not have to

know the absolute pathname of the Fonts directory; it need only use Fonts:

directory.

The defined purpose of each of the default assignments is as follows:

SYS: The Sys: directory is assigned to the root directory ofyour boot disk. It

provides a simple shorthand for accessing what is probably the most important

disk on your system, and it is used by the system to make the other default

assignments. It is also the current directory of all Shells you open with the

Shell or CLI icons.

C: The C: (Commands) directory is the default location of the AmigaDOS

disk-based commands. When you enter a command into the Shell,

AmigaDOS first checks to see if the command is one of its internal commands

or if the command has been made resident. It then checks the current direc

tory. If it cannot find the command in these places, it checks for it in the C:

directory. Ifyou have a program that you want to be able to run easily no mat

ter what directory you are in, you can simply put it into the C: directory. You

can add to the places where AmigaDOS searches for commands — its so-

called search path — using the Path command.

Ifyou have a one-drive system and want to use AmigaDOS to work with a

disk besides your system disk, you may find yourself being prompted to per

form a lot of disk swapping to enable AmigaDOS to load commands from the

C: directory. Be patient: Further on we will learn how to avoid a lot of this

kind of disk swapping.

AmigaDOS and the Shell 191

The internal AmigaDOS commands and the contents of the C: directory are

the primary focus of this section of the book. Appendix A provides a quick

reference to these commands.

S: The S: (Scripts) directory is the default location ofAmigaDOS and other

script files. A script is a series of commands that you can execute by accessing

the script file. The most important script file in the S: directory is the Startup-

sequence file, which AmigaDOS executes every time you boot your computer.

Other scripts include ED-startup and Shell-startup. You'll learn more about

scripts in Chapter 10.

FONTS: This directory is the default location for font files and directories.

The font files contain the sizes of the fonts available in a particular typeface.

For example, Courier.font lists the pixel sizes of the available Courier fonts.

The Courier directory actually holds the font files, which have numbers for

names. The numbers correspond to the vertical size of the font in pixels.

LIBS: This directory stores disk-based libraries. A library is a collection of

routines that perform related functions. For example, the Intuition library

consists of routines that create and manage the Amiga windowing interface.

Most Amiga libraries reside in ROM; some, less-frequently used libraries reside

in the Libs directory and are loaded by programs that need them. Some third-

party software programs even come with their own libraries that you must

move into the Libs: directory.

L: The L: directory is used as the default storage place for device handlers.

Handlers are software routines that interface the operating system to certain

hardware features or redefine how the system works with hardware. For ex

ample, the RAM_handler lets AmigaDOS access main memory as if it were a

disk drive.

DEVS: The Devs: directory contains device drivers, which allow AmigaDOS

to interface with peripheral devices using a standard set of commands. Inside

the Devs: directory, for example, are the keymaps and printers directories,

which store the definitions for the alternate keymaps you can use on your sys

tem and the printer drivers available with the system, respectively. (See Chap

ter 9 for more on AmigaDOS devices.)

ENVARC: This directory contains the default location for the settings files

you create with the Preferences editors. The files themselves are stored in the

Envarc:Sys directory. In addition, any icon images that you wish to use in

place of the default images supplied by Workbench for files without .info files

are stored here.

ENV: The Env: directory is used to store environment variables. In addition,

AmigaDOS copies the EnvarcSys drawer to Env: during startup. ENV:Sys

1J2* AmigaWorld Official AmigaDOS 2 Companion

always contains the Preferences settings and default icon images currently in

use.

CLIPS: This directory is used by programs that support the Amiga clipboard

device, which allows you to cut and paste text and graphics between the win

dows of applications. When you cut or copy text from a window, it winds up

in Clips:, where any other program will know where to find the material.

T: T: is a directory used to store temporary files. Many programs create and

discard temporary files during execution. Assigning T: to the Ram Disk en

sures that the temporary storage location is always available.

Until you have a lot more experience with AmigaDOS, I recommend that you

do not change the default assignments or delete or rename any of the directo

ries used in those assignments. Doing so can produce unusual results. At any

time, you can see the logical assignments currently active on your system by

entering:

ASSIGN

The output of the Assign command (Figure 7-9) lists the volumes mounted on

your system, the currently active directory assignments, and the devices

mounted on your system.

Disk Names

Under Workbench, you access a disk by clicking on an icon with the disk's

volume name. The volume name refers to the disk itself, not the drive it was

in. Under AmigaDOS, you can also access a disk using its volume name, al

though you will have to use quotation marks if the name, such as Ram Disk,

contains a space.

In addition to volume names, AmigaDOS also lets you access a disk by using

the name of the disk drive that holds the disk. This name is called the device

name. For example, ifyou have a single-floppy system, your disk drive has the

device name DFO:, for disk floppy 0, and your system disk is named Work-

bench2.0. With Workbench2.0 in DFO:, you can refer to the disk by using

either its volume name or the name of its device. Ifyou change disks, DFO:

will refer to the new disk in the drive, while Workbench2.0 will still refer to

that particular volume. Note that you can have two disks with the same vol

ume name active on your system. AmigaDOS can tell disks apart even if they

have the same name.

AmigaDOS and the Shell 193

wies;

an Disk [Mounted]
[dork U1ounted3
Spsten2.B mounted!

Work: i

Ran Disk clipboards
Ran Diskienv

Start Dtsk:t
Systen2,8:prefs/Enu-Rrch ive
" sten2.8:
sten2.8:c

ysten2.8:s
ty

Systen2.8:devs
Systen2.8:fonts
Systen2.8:I

Figure 7-9 LogicalAssignments

The Assign command lists anything on your system that isfollowed by a colon. This

includes volumes, assigned directories, and devices.

Ifyou add an external floppy drive to an Amiga 500 or a second internal drive

to an A2000 or an A3000, this drive is called DF1:. A second external drive on

an A500 or the first external drive on an A2000 or an A3000 is called DF2:.

The Ram Disk whose icon appears when you boot your system also has a de

vice name — RAM:. You will see this designation used most often when work

ing in AmigaDOS because it does not contain a space. Hard drives and parti

tions also have device names, and you can use these in place of the volume

names ifyou wish. The standard Amiga 3000 hard drive comes with two

Amiga OS 2.0 partitions: System2.0 and Work. The device names of these

volumes are WB_2.x: and WORK:

Command Templates

Between the internal commands now stored in ROM (all commands were

disk-based in earlier versions ofAmigaDOS) and those in the C: directory, you

194 AmigaWorld Official AmigaDOS 2 Companion

have access to over 70 AmigaDOS commands. Most have numerous options

and arguments, resulting in literally thousands of different ways you can use

the AmigaDOS commands. With these many options, your main problem is

remembering what each command can do.

This book gives you that information, but once you have learned a command,

you often do not need all the information given here. You simply need a re

minder about how to access the options a command offers. Just about every

AmigaDOS command has such a reminder built in — in the form of a com

mand template.

Command templates are a shorthand notation that tells you the options

that a command can recognize. It is not essential that you know how to

decipher a command template, but it can make your computing a lot easier

ifyou do.

To see the command template for a command, simply enter the command,

followed by a space and a question mark. For example, entering

DIR?

brings up the following:

DIR,OPT/K,ALL/S,DIRS/S,FILES/S,INTER/S:

The cursor sits just after the template, waiting for you to enter an argument for

the command. I'll use the template of the Dir command as an example ofhow

to make sense of a command template because it has both standard and non-

standard features.

When used alone, the Dir command brings up a sorted list of the directories

and files contained in a directory. Directories are listed first, with a (dir)

marker, followed by the files in two columns. The template lists the ways you

can modify the operation of the command.

The various arguments you can send to the Dir command are separated by

commas in the template, but do not use commas when you enter them. In

stead, you should separate the arguments with a space. Arguments are repre

sented by a keyword, which may or may not be required on the command line

in order to access the argument. Many keywords are followed by modifiers —

such as /A or /S — that give more information about the keyword or the argu

ment itself.

The first argument for the Dir command is defined by the keyword DIR,

which indicates that you can enter the pathname of any directory that you

wish to list. Thus, ifyou enter

DIR DIR RAM:

AmigaDOS and the Shell 195

you will get a directory of the root directory ofyour Ram Disk. In this ex

ample, the first DIR is the command name, the second DIR is the argument

keyword, and RAM: is the argument itself. Because the keyword DIR is not

followed by a /K modifier, you do not have to include it with the argument.

You can get the same results by entering the following:

DIR RAM:

This is the usual form of the Dir command. Except when testing the com

mand for this book, I've never used the DIR keyword with the DIR argument.

Note that the DIR keyword also lacks a /A modifier. This means that the argu

ment itself is optional. As you know, when you enter the Dir command with

out an argument, it gives you a directory listing of the current directory.

The next argument is OPT/K. The /K modifier means that ifyou use the ar

gument, you must include the keyword on the command line. Using the argu

ment is optional, however, because the keyword is not followed by a /A modi

fier. OPT stands for options; it lets you access some of the predefined options
of the Dir command.

These options are available by entering the proper letters on the command

line. They are A, I, AI, D, and F. (Note that these letters are not listed in the

template, which is why the world needs reference books.) A brief explanation

of these options is as follows:

A: This option stands for all. When you use it, as in

DIR OPT A

it causes Dir to list every file in every directory below the current directory,

indenting each list of files to reflect its relative position in the file structure (see

Figure 7-10). Ifyou enter this command from the root directory of a disk, you

will get a list of every file on the disk. Note that you can have multiple argu

ments on a command line. Thus, to see all the file in and below the Fonts:

directory, enter

DIR FONTS: OPT A

I: The Dir command uses the I option to produce an interactive directory. It

will list each file and directory in a directory, one at a time, followed by a ques

tion mark. At this point, you have seven options:

Return: Pressing the Return key moves you to the next item in the interac

tive directory listing.

196 AmigaWorld Official AmigaDOS 2 Companion

o I Workbench

rexxs^sliB* *-«w^
version.library

ubstartup Cdtr)

MuItiscan

prefs (dlrJ k
presets (dV)

. Info

r trans latoi*

EniHTrcTrchive (dir)
sys Cilir)

l

info

*lnfo
screenfont.prefs

ft-prefs
prefs

screenfo
susfont-prefs
wbfont.pf

;info
Font, info ;

KontroUinfo
Inpwt Mfo
O«ierscaiiinfo
Paiett*. infii
Pointer/Info
Printer
PrinteH&fx 4
ScreenMode

; Font
Icontrol

rscan /

Pointer,-' '
presets, info
PI* Inter dftfo
PrtnierOTX^ inf
ScreenHode. Inf

7-2^ TheALL Option

You can get an idea oftheAmigaDOSfile structure by using theALL option with Dir.

Lt indents directory andfilenames to reflect how deep they are in thefile structure.

E: Pressing this key when a directory name is displayed will move you into

that directory, where the interactive listing continues with the first item in

the directory. The listing will go through every item in this directory before

returning to the upper directory to continue the list.

B: This key returns you to the upper directory immediately, without listing

the rest of the contents of the present directory.

Q; Quits interactive mode.

DEL: The three letters, not the Delete key. Entering them deletes the cur

rent file.

T: This key displays the current file on screen. You can press CTRL-C to

abort the display and return to the directory listing.

?: Entered at the question-mark prompt, this character lists commands

available in interactive mode.

COM: Entering these letters, or simply C, lets you suspend the interactive

directory and execute most AmigaDOS commands. You will be prompted to

enter a command on the next line, or you can enter COM or C followed by

the command in quotation marks on the same line. Commodore cautions that

AmigaDOS and the Shell 197

you should not start another interactive directory using the C option, and that

you should avoid formatting a disk with it, because when called in this man

ner, Format does not put up any confirmation requesters. When the command

you indicate finishes executing, you return to the interactive directory.

AI: This option produces an interactive directory identical to the I option. The

only difference is that when you use the Q option to quit interactive mode,

you get the rest of the directory in All mode.

D: The D option lists only the directories contained in the indicated directory.

F: This option lists only the files in that directory.

The other four arguments in the Dir command template access the same func

tions as the corresponding OPT options. All of them — ALL (OPT A), DIRS

(OPT D), INTER (OPT I), and FILES (OPT F) — are followed by the /S

modifier. This identifies the keyword as a switch, meaning that the option is

only active ifyou include the keyword on the command line. Thus, ifyou

enter:

DIR ALL

you get the same listing as you get with:

DIR OPT A

The Dir template does not tell you everything about the command — it does

not list the OPT letters or the interactive commands — but it does give

enough information about the command to serve as a gentle reminder when

you forget how to access one of its arguments. You simply need to remember

that the OPT options are identical to the first letters of the switches, and that

the interactive commands are available at the question-mark prompt.

Keyword Modifiers

The arguments of the Dir command do not use all the keyword modifiers used

by AmigaDOS. The complete list of modifiers is as follows:

/A: Indicates that the argument described by the keyword is mandatory. The

command cannot execute without the argument.

/K: Indicates the keyword is mandatory ifyou want to use the argument. Oth

erwise, the keyword is optional.

/S: The keyword is a switch. To use it, you must include the keyword on the

command line, and you must include it every time you want to access that option.

AmigaWorld Official AmigaDOS 2 Companion

/N: Indicates that the argument must be a numeric value.

/M: Indicates that you can enter as many of the arguments of the indicated

type as you like.

/F: Indicates that the argument must be the final one on the command line.

This modifier is used only with arguments that are character strings. With this

modifier, the string may contain spaces; you do not have to use quotation

marks.

Many arguments have more than one modifier. For example, a keyword fol

lowed by /A/K means that both the argument and its keyword must be

present. /K/N indicates that the keyword must always be present, and that the

argument is a numeric value.

Other characters you will see in templates include a comma (,), which means

that the command has no template, and an equals sign (=), which when used

in an argument indicates two equivalent keywords for the same argument.

AmigaDOS commands expect their arguments in the order they appear in the

template. With the Dir command, for example, the command expects the DIR

argument before any of the options. You can alter the order of the parameters

by using the keywords with the arguments, even when the keywords are not

required. Thus,

DIR Prefs FILES

and

DIR FILES DIR Prefs

yield the same results.

The AmigaDOS commands use many different keywords in their templates.

Listing them in one place is not useful because the functions described by key

words are often specific to a certain command. I define the keywords a com

mand accepts when I introduce the command and also in Appendix A.

Pattern Matching

Many AmigaDOS commands let you perform some action on more than one

file or directory at a time through the magic of pattern matching. Here you

may substitute one or more characters in an argument with wildcard characters

that can stand in for any character. For example, if your current directory has

AmigaDOS and the Shell 199

three IFF picture files named mountain.pic, ocean.pic, and still-life.pic, you

could copy all three files to the Ram disk with a single command:

COPY#?.pictoRAM:

#? defines a pattern. The Copy command acts upon any file that matches the

pattern.

The special characters used in pattern matching are the question mark, pound

sign, vertical bar, parentheses, and apostrophe. A pattern can be any combina

tion of normal characters and special ones. An explanation of these special

characters is as follows:

?: The question mark stands in for any one character. For example, if you en

tered

COPY file.? TO SYS:

when the current directory contained file. 1, file. 12, file.2, oldfile.l, and file3,

the files copied would be file. 1 and file.2. The other filenames do not match

the pattern.

#: The pound sign matches zero or more occurrences of the character that

follows it. Thus, the pattern #file matches all the following:

ile

file

ffile

fffile

The pound sign and the question mark combine to form the ultimate in pat

tern matching. When used together they stand in for any number of any char

acters. Thus,

COPY Utilities/#? TO RAM:

copies every file in the Utilities drawer to your Ram Disk. Together, these two

characters are the equivalent of the wildcard character (*) used by MS-DOS

and other operating systems.

I: When two patterns on the command line are separated by a vertical bar,

AmigaDOS will act on any file that matches either of the patterns. In the fol

lowing example,

COPY Utilities/#?c#?l#?er TO RAM:

200 AmigaWorld Official AmigaDOS 2 Companion

copies any file that has a c in its name and any file ending with er.

(): You use parentheses to group patterns together to form a larger pattern. For

example,

COPY let#?(txtldoc) to RAM:

matches all files whose names begin with let, are followed by any number of

any characters, and end with either txt or doc.

%: The percent sign matches a null string. It is used most often with the verti

cal bar when you are not sure that a filename will have a certain number of

characters. For example,

COPY (alol°/o)pict#? to RAM:

copies to RAM: any files whose names begin with apict, opict, or pict.

': The apostrophe is used to call off pattern matching. It indicates that the

character that follows should be taken literally and not as a pattern. For ex

ample, ifyou wish to list the contents of a directory named Budgets?, you can

enter

DIR Budgets'?

The apostrophe indicates that the question mark is part of the filename and

not a pattern for matching.

^: The tilde negates the following pattern. For example,

DIR-#?.info

lists all the files that do not have .info extensions.

Pattern matching using wildcard characters is a very powerful feature. It lets

you use a single command, such as Copy, Type, or Delete, to act on many files

at once.

ConsoleWindow

Ifyou are familiar with pattern matching on other computers, you know that

the asterisk (*) is the most common wildcard character on other systems. On

the Amiga, the asterisk has a different meaning; it refers to the current Shell

window.

AmigaDOS and the Shell 201

By using the asterisk, you can tell a command to get its input or display its

output in the current window, instead ofwhere it normally does. For example,

the Copy command usually takes one file and copies it to another location.

You can change that procedure by entering the following:

COPY*TOMy_File

After entering this line, whatever you type into the Shell is copied to a file

named My_File. To stop the operation and return to the Shell prompt, you

have to enter the AmigaDOS end-of-file character, CTRL-\.

You can also reverse the process and copy a file to the Shell window with

COPYMyJileTO*

In effect, this lets you use the Copy command as a Type command.

Command Redirection

Because the Shell uses a console device, all AmigaDOS commands expect to

get their input from the keyboard and to display any output in the Shell win

dow. These are the standard input and standard output devices for the Shell.

You can direct that a command get its input from another source — or send

its output to another destination — by using command redirection.

The command redirection characters are the greater-than (>) character and the

less-than character (<), also called the right- and left-angle brackets. The

greater-than character redirects a command's output, while the less-than char

acter redirects its input.

Ifyou use a redirection character on a command line, it should come after the

command and before any arguments. It must be separated from the command

by a space, although it need not be separated from the first argument on the

command line.

Command redirection has many uses. One of the more common is in conjunc

tion with the Type command, as in

TYPE >PRT: My_File

As you will see in Chapter 8, the Type command normally outputs the con

tents of a file to the screen. In this case, however, you have redirected the out

put of the command to PRT:, which is the AmigaDOS name for the Amiga

printer device. Thus, this command outputs the contents of My_File to your

printer.

2AjJL AmigaWorid Official AmigaDOS 2 Companion

Note that command redirection affects the current command line only. The

next line you enter will use the standard input and output devices, unless you

again use a redirection character.

Another common use of output redirection is to send the output of a com

mand to a file. For example,

DIR >disk.catalog SYS: ALL

sends the output of the Dir command to a file named disk.catalog. If the file

does not exist, it will automatically be created. The file will contain the names

of every file and directory on your system disk.

The most common use of output redirection is in conjunction with the NIL:

device. The NIL: device is a "bit bucket," a place where you send unwanted

output. Many commands produce messages after performing their functions.

The Copy command tells you about every file it copies, while the Delete com

mand informs you of all the files it has deleted. Frequently, especially when

executing a script, you do not want to see these messages. To get rid of them,

simply redirect the output of the commands to the NIL: device. Your startup-

sequence has at least three examples of redirecting output to the NIL: device.

One of these

ENDCLI >NIL:

is the last item in the Startup-sequence file. It suppresses the informational

message that you normally get when you close a Shell. (Note that EndCLI

and EndShell are equivalent.)

Input redirection is much less common than output redirection, simply be

cause most commands take so little input that it makes no sense to get the

input from a file or another source.

One final form of redirection involves the use of the append operator (»). By

using it to redirect output to a file, you do not overwrite the previous contents

of the file; instead, you append the new material to the end of it. For example,

create a file named command.list by entering

DIR >command.list C:

When you output the file using the Type command, you will see a list of the

files in C:. Ifyou then enter

RESIDENT >command.list

AmigaDOS and the Shell 203

the output of the Resident command will overwrite the previous contents of
the file. To prevent this, use the append operator:

RESIDENT »command.list

This adds the output of the Resident command to the previous output of the

Dir command. The resulting file lists all 73 of the AmigaDOS commands.

Conclusion

With the information in this chapter, you should be able to use the Shell inter

face effectively and efficiently. The following three chapters tell you how to use

the AmigaDOS commands. Chapter 8 describes the commands that provide
information about your system and let you change the system configuration.

Chapter 9 covers the commands that let you manipulate AmigaDOS files and

devices. Chapter 10 finishes the discussion ofAmigaDOS with a look at com
mand scripts.

204 AmigaWorld Official AmigaDOS 2 Companion

You find AmigaDOS commands in two places. The primary location is the C:

directory, which, unless you changed it, is assigned to the Sys:C directory. On

the Amiga 3000 release disk, this directory holds 43 AmigaDOS commands;

the number probably won't vary in the releases for the Amiga 500 and 2000.

You can view these commands by entering:

DIRC:

Figure 8-1 shows the output of this command.

In addition, with Amiga OS 2.0, 30 AmigaDOS commands are stored in the

system's Kickstart ROM and are thus always available. You can see these com

mands by entering:

RESIDENT

The commands marked Internal (see Figure 8-2) are those contained in

Kickstart. Notice that three commands found in the C: directory— Assign,

List, and Execute — also show up in the list of resident commands, although

they are not labeled as being internal. These are actually disk-based commands

that are made resident by the Workbench2.0 and System 2.0 Startup-se

quence. You'll learn more about the Resident command later in this chapter.

For purposes of organization, I've divided the 73 AmigaDOS commands into

three categories and devoted one chapter to each category. This chapter deals

with commands that give you information about the current state of

AmigaDOS and, in many cases, let you change that state. (I call these the in

formation and configuration commands.) Chapter 9 deals with commands

that let you modify files and devices, while Chapter 10 describes how you cre

ate and modify command scripts.

205

206 AmigaWorld Official AmigaDOS 2 Companion

d I Workbench

Ran Disk

Work

Systen2.8

rgii«&

flddBuffers

Break

dIp* i
DiskDoetor

Execute
IconX

Install

Join
LoadUB
NakeDlr
Mount
Relabel
Renane
SetClock
SetFont
Status
Version

Which
t,SYSi> i

fissign ' ■
BtndDrivers ||
ChangeTaskPri ||

DiskChange I
£d ' III

Eual . |
RUnote ■
Info
IPrefs

List
Lock
hakeLink

Protect
RenRRD
Search
SetDate
Sort

■
■
1
I
1
I
1
1
1■

III

Figure 8-1 Disk-Based Commands

The C: directory contains the disk-basedAmigaDOS commands. Wheneveryou use

such a commandfrom the Shell, AmigaDOS must load itfrom disk before executing it.

File Information Commands

From the last chapter, you already know about Dir, the most commonly used

information command. It returns information about the files and directories

on the disks mounted on your computer. Other commands that can return

information about any file or directory are List, Assign, Resident, CD, Type,

and Search.

list: listing Files

The List command is a more sophisticated version of Dir. In addition to listing

the files in a directory, it displays other useful information. Dir is best for find

ing a particular file; List gives you much more information. Figure 8-3 shows

some example output of a List command.

Delving into AmigaDOS 207

Figure 8-2 Resident Commands

The resident commands come in twoflavors: commandsyou make resident with the

Resident commandand those built into Kickstart. Theformer have a Use Count

associated with them; the latter are markedInternal in the resident listing.

Unless you change its operation using command arguments, the List com

mand displays the name, size, protection bit settings, date and time stamp, and

file note for each file and directory in the current directory. The name, of

course, is the name of the file or directory, while size is the number of bytes of

disk space required to store the file. Directories don't have a length; they are

marked with a Dir in the size column. The protection bits are flags that you set

with the Protect command. The date/time stamp lists the date and time you

created or modified the file, and the file note is a comment that you append to

a file using the Filenote command (see Chapter 9 for more on Protect and

FileNote).

The List command's template is long, reflecting your many options:

DIR/M,P=PAT/K,KEYS/S,DATES/S,NODATES/S,

TO/K,SUB/K,SINCE/K,UPTO/K,QUICK/S,BLOCK/S,

NOHEAD/S,FILES/S,DIRS/S,LFORMAT/K,ALL/S

208 AmigaWorld Official AmigaDOS 2 Companion

oj Workbench HEM'S

Ran Ku-Ten
Jalt
Jers ion

Status
Sort

SetDate
SetClock
Search
lenarte
leiiRflD
lelabel
Protect

lakeDir

"oadWB
-1st
Join
IPrefs
Install

888 ~p-rwed ztj-Jun

788 —p-rwed 28-Jun
2548 —p-rued 28-Jun
1448 —p-rued 28-Jun-!'
79» —p-rwed 28-Jun-L _

2192 —p-rwed 28-Jun-98
'** " J 28-JIH1-98

-98 17
-98 17

1848
1164
1124
268
1288
5648

348
468

—P"t»cii 11":
un98
un-98

m
1161!

—-rwed

IconX
Filenote
Execute
Evol

43 files
YS |

- 383 blocks used

28-Jun-98

8-Jwn-98
:8-Jim-98
B-Jun-JI
e^-Jun-SS

r IB-JimH
—p-rwed 28^Jun-1

3f»a*fe —pj-rwed 28^110-^11
988 —pprwed 28~J«fi~98

4712 —p-rwed 28-J«n-

iiw
:22:83
:22:fl3

17f22:83

17*22*83
17;22:83
17;22J82
17:22:82
17:22:82
17:22J82
17:22:82
17:22:81
17:22j81
17:22:81

17:22:81
17:22581
17S22J88

__ 17:22:88

is mm

17:21:59
17:21:59

17:21:58

Figure 8-3 The List Command

Unlike Dir, the List commandgivesyou thefiles' sizes, protection status, the time and

date they were created or last modified, andany comments attached to them, as well as

their names. At the bottom ofthe list, it displays the number offiles and directories

listed and the total disk space used, in blocks.

The DIR/M argument lets you list the contents of directories other than the

current directory (which is the default) or, if you enter a filename, List will

display information on that file only. You simply include the names of the files

and directories you want on the command line.

List also supports pattern matching. The P=PAT/K argument indicates that

you need to use the keyword P or PAT before a pattern for which you want to

search, but this is not true. List supports patterns without the P and PAT key

words. List is restricted, however, in how it uses patterns. It cannot use them

to match directories, but can be used to match the files within directories. For

example, if you're in the root directory ofyour system disk, you can list the

contents of the System and Utilities directory by entering:

LIST SYSTEM UTILITIES

Entering the following pattern:

LIST #?e#?

Delving into AmigaDOS ZSjJ

would produce only a list of files and directories within the current directory

whose names contain the letter e, not a listing of all the directories whose

names match the pattern. List uses pattern matching to decide which files —

including directory files — it will display within a directory. It doesn't use

pattern matching to determine which directories to list.

List also supports a substring search. Using the SUB/K argument, you can

define a substring that a file or directory name must contain to be listed. For

example:

LIST SUB yst

lists all the files with names that contain the character sequence yst. You can

use pattern-matching wildcards in the substring, as well.

When you use the KEYS/S keyword, List displays the block number on the

disk where storage of the file or directory begins. The BLOCK/S keyword

displays the files' sizes in disk blocks used, as opposed to bytes.

The DATES/S keyword displays the date portion of the date/time stamp in

DD-MMM-YY format, where DD is the day of of the month, MMM is a

three letter abbreviation for the month, and YY is the last two digits of the

year. In its default format, List uses the DD-MMM-YY format unless the file

was created or modified within the last week, in which case it uses the day of

the week (for example, Monday or Yesterday). DATES/S overrides this special

treatment for recently created files. NODATES/S leaves off the date/time

stamp entirely.

SINCE/K and UPTO/K let you list files based upon the date in their date-

time stamps. SINCE/K limits the display to files created or modified since the

date you enter, while UPTO/K specifies files created or modified up to the

supplied date. For example, to see which files were created or modified since

October 1, 1990, you enter:

LIST SINCE 01-oct-90

Note that in addition to entering dates in DD-MMM-YY format, you can also

use the days of the week, Yesterday, Today, and Future with the SINCE and

UPTO arguments.

TO/K lets you redirect List's output to a file. It functions identically to the

output redirection operator. Thus, the following two commands perform the Q

same function:

LIST >list_of_files

LIST TO list ofjfilcs

JL1U AmigaWorld Official AmigaDOS 2 Companion

List also lets you display files or directories only, by using the FILES/S and

DIRS/S arguments, respectively. As a variation, QUICK/S displays the file

and directory names only, without all the other information. Using the

QUICK/S option is identical to using Dir, except that Dir alphabetizes its

list, separates files from directories, and arranges filenames in two columns.

The NOHEAD/S argument suppresses the heading that states the directory

being shown and the date, plus suppresses the final message that details the

number of files and directories listed and how many disk blocks they fill.

The ALL/S option works as it does with the Dir command, showing all files

and directories in and below the current directory. It doesn't indent filenames

to show the relative depth of files within the AmigaDOS file structure as it

does with Dir, but it does provide the aggregate space used by all the files and

directories it lists.

The last option recognized by List is LFORMAT/K, which lets you format the

output of the List command. Specifically, it lets you embed the output in a

string of characters. For example, ifyou enter:

LIST C: LFORMAT The AmigaDOS command %S.

your output will look similar to that in Figure 8-4. Here, LFORMAT/S caused

List to embed its output in a string by substituting its output for the %S sub

stitution operator. When using LFORMAT, the NOHEAD and QUICK

options are automatically invoked.

Why would you use LFORMAT/S? Well, it is a great way to automatically

generate script files. For example, ifyou wanted to add the same extension to

all the files in a directory — such as appending a .pic extension to a directory

full of IFF picture files — you couldn't use a single Rename command because

it does not support pattern matching. Instead, you could create a script file

with one Rename command for every file in the directory. If the picture direc

tory were named Work:Pictures, you would create the script file by entering:

LIST >rename.script WORK:PICTURES LFORMAT RENAME %S%S

%S%S.pic

This command creates a file named rename.script. Each line in the file is a

command that renames one of the files in the Work:Pictures directory by ap

pending a .pic extension to the filename. To rename the files, you then enter:

EXECUTE rename.script

(For more about scripts and the Execute command, see Chapter 10.)

Delving into AmigaDOS 211

he
he
he
he
he g
he flni|aDOS
he Bnif—
he flnig
he flnlg
he flnig
he flhr
he flni
he fli
he
he fin i^aDOS
he FlniqaDOS Connand

/%wr^ 5-^ 7%^ LFORMATArgument

LFORMATletsyou embed the output ofthe List command in a string oftext. By

redirecting the output ofthe command to a diskfile, you can easily make command

scripts that work on everyfile listed

Note the multiple appearances of the %S substitution character in the example

command. Exactly what is substituted for %S depends upon how many of

these characters are in the LFORMAT string. List replaces one %S with the

filenames; with two %S characters, List replaces the first one with the path and

the second with the filename. With three %S characters, List substitutes the

path for the first, and the filename for the second and third. With four charac

ters, as in the example above, List substitutes the path for the first character,

the filename for the second, the path for the third, and the filename for the

fourth. Thus, each line in the rename.script file created above has the form:

RENAME pathlfilenamepath/filename.pic

Assign: Assigning Logical Directories

In the last chapter, you learned about logical directories that AmigaDOS uses

to ensure programs always know where to find the AmigaDOS commands or

212 AmigaWorld Official AmigaDOS 2 Companion

the disk-based libraries. You also learned how to use logical directories as

shortcuts in place of long pathnames. Listing and modifying the current

assignments active on your system is the Assign command's task.

When entered without arguments:

ASSIGN

the command lists all the logical names active on the system (see Figure 8-5),

showing the assignments given volumes, directories, and devices. In effect, it

lists all the items on your system that you can access by a single name followed

by a colon.

a 1 Workbench

Work

Systen2.8

-fork
Systen2.B [Mounted]

Mrectortesi

INURRC
SYS

.IBS

tffs

HPE RUX SPERK RRH CON
IRI4 SER PRR PRT UB_2.x
)F8 DF2 Uork
1.SYS:> |

Ran Disk:t
Sjisten2.81prefs/Enu-flrch iue
Systen2.8:
Systen2.fl:c
Susten2.8:s

Systen2,e:Libs
Systen2,8;devs
Systen2.8:fonts
St28:l

Figure 8-5 TheASSIGN Command

Assign lists all the disk volumes, logical directories, and devices active on your system.

Here, it shows the basic assignments active afteryou boot an Amiga 3000. Assign also

letsyou makeyour own logical assignments to volumes and directories.

You don't change volume or device names using Assign. You change the vol

ume names shown in the Assign listing via the Relabel or Rename commands

(see Chapter 9) or the Icon menu's Rename item. You add volumes as you put

disks in your drives, and subtract them as you remove disks. You add devices

using the Mount command. Assign is primarily concerned with adding, sub

tracting, and changing logical directories.

Delving into AmigaDOS 213

The Assign command's template is:

NAME,TARGET/M,UST/S,EXISTS/S,DISMOUNT/S,

DEFER/S,PATH/S,ADD/S,REMOVE/S,VOLS/S,

DIRS/S,DEVICES/S

To make a logical assignment, you first enter the name you want to use, fol

lowed by the name of a physical directory. For example, to assign the name

Pics: to the Work:Pictures directory, enter:

ASSIGN PICS: WorlcPictures

The logical name must end with a colon and be separated from the physical

pathname by a space. From the template, you'll note that the TARGET argu

ment has a /M modifier. This means that you can assign the same logical name

to different physical directories. For example, ifyou have another directory on

Work named Graphics that also has a lot of picture files, you might want to

use the following:

ASSIGN PICS: Work:Pictures Work:Graphics

Whenever you refer to Pics: from AmigaDOS or a program, AmigaDOS will

check the first directory listed; If it can't find the required information, it

checks the second directory. Ifyou had already made one assignment for Pics:,

you don't have to reenter that assignment to add another directory. With Pics:

already assigned to Work:Pictures, you can add the Work:Graphics directory

using the ADD/S argument:

ASSIGN PICS: Work:Graphics ADD

Contrary to Commodore's documentation, the Assign command does not take

a SUB argument that lets you subtract one of the physical directories assigned

to a logical directory. You can, however, erase an assignment by making a new

one or by using the REMOVE/S keyword. For example, the following erases

the assignment for Pics:.

ASSIGN PICS: REMOVE

You can also remove volumes and devices from the assignment list using the

DISMOUNT/S argument. Removing a disk drive from the list of devices

means that you'll be unable to access the disk from the Shell, although it will

still be available through Workbench. Using DISMOUNT/S doesn't save any

system resources. Refrain from using it.

When you assign a name to a physical directory, Assign tries to make sure that

the directory exists. If the directory is on a disk that is not mounted, Assign

asks you to insert the disk so that it can confirm the directory's presence. To

214 AmigaWorld Official AmigaDOS 2 Companion

suppress this check, use the DEFER/S option to keep AmigaDOS from look

ing for the physical directory until you actually use the logical name.

By default, the Assign command also expects you to enter the pathname of a

directory when you assign a logical name to it. You can enter either a relative

or absolute pathname, but it expects a unique pathname for every assign. You

can change this default using the PATH/S option. In this case, you enter the

path for a directory without specifying its volume. For example, if you enter

the following:

ASSIGN PATH C: :C

AmigaDOS will look for its commands on any disk that has a C: directory —

rather only on the disk that you used to boot your system. This is especially

helpful to people with one disk drive who have to swap their Workbench disk

with another disk in order to run a program.

The EXISTS/S argument is useful for in script files. It determines whether a

logical assignment already exists. If the assignment doesn't, the command re

turns with a warning. (For more on return codes and how to test them, see

Chapter 10.) When you use the EXISTS/S argument interactively from the

Shell, it either tells you the directory a logical name is assigned to or it indi

cates that the logical directory doesn't exist. Note that this argument checks for

the existence of a logical name, not for the use of a physical directory.

The final four arguments deal with the information the Assign command re

turns. The LIST/S keyword outputs the same list as using Assign without an

argument; you therefore never need use it. The VOLS/S argument causes As

sign to list the volumes, while DIRS/S and DEVICES/S output the assigned

directories and mounted devices, respectively. Thus, the following three com

mands are equivalent:

ASSIGN

ASSIGN LIST

ASSIGN VOLS DIRS DEVICES

Remember that none of the logical directory assignments are carved in stone.

You can change the assignments of the C: and L: directories as easily as you

can for logical directories you create yourself. You must be sure that any direc

tory you assign to one of the system directories can handle that directory's

functions. For example, ifyou assign C: to My_Disk:AmigaDOS/Commands

then you'd better have some commands in the latter directory.

One further note about the Assign command: It places restrictions on the

names you can give disk volumes. Ifyou name a disk C:, for example,

Delving into AmigaDOS 2*1. J

AmigaDOS may confuse it with the logical directory C:. The same goes for the

other logical names active on the system. You should avoid using any names

for disks that conflict with the logical names active on your system.

Resident

As I noted above, AmigaDOS commands are stored in two places; the C: di

rectory ofyour system disk and in Kickstart 2.0. You get a listing of the former

by entering:

DIRC:

For a listing of the latter, type:

RESIDENT

Commands in the list followed by a Use Count are those that you (or your

Startup-sequence) made resident. Commands marked Internal are always

present in Kickstart.

Commands listed by Resident are always available to you. Unlike the C: com

mands, which you may have to swap disks to use if the disk containing the C:

directory isn't in a drive, resident commands are always on hand, because they

have, in effect, been incorporated into AmigaDOS. Resident not only lists

such commands, but also lets you make other C: commands resident.

To be resident, a command should be pure; that is, it should be re-entrant and

reexecutable. A re-entrant command is one that can be interrupted at any

point and can later continue execution as if nothing had happened. A

reexecutable command isn't changed when it is executed; no matter how often

you run it, it performs identically as it did the first time you ran it. Both these

qualities are vital for commands running in a multitasking system. Any resi

dent command must be ready to be executed from more than one Shell at the

same time. If you run the same command from the C: directory in two differ

ent Shells, each Shell loads its own copy of the command. If the command is

resident, each Shell is executing the same code at the same time. This requires

pure code.

The template of the Resident command is:

NAME,FILE,REMOVE/S,ADD/S,REPLACE/S,PURE=FORCE/S,SYSTEM/S

To make a command resident, you have to specify its complete pathname. For

example, to make the Copy command resident, you enter:

RESIDENT OCOPY

2* 10 AmigaWorld Official AmigaDOS 2 Companion

If Copy is pure, the system adds it to the resident commands and subtracts the

amount ofmemory that Copy occupies from the available memory. The

filename Copy will appear in the resident list.

An interesting aspect of the Resident command, the NAME argument lets you

give a command a different name from the one it has on disk. For example, if

you enter:

RESIDENT George GDIR

you will make the Dir command resident under the name George. Now, when

you enter:

George

you get a listing of the current directory. This isn't a terribly useful feature, but

it can be helpful if you're used to other command names on other operating

systems.

To remove a command from the resident list and free up the memory it uses,

you use the REMOVE/S option:

RESIDENT George REMOVE

Note that you can't remove a command if it is being used by another Shell.

Check the Use Counts in the resident list for a command's status. A

command's Use Count must be zero before it can be removed. Ifyou remove

an internal command, the system will treat it as if it doesn't exist, although, of

course, it is still present in Kickstart. It will show up again only when you

reboot your system. Removing internal commands is useful ifyou want to use

a disk-based command that has the same name.

The ADD/S and REPLACE/S options are redundant. ADD/S says to add a

name to the resident list and is the default setting of the Resident command.

Likewise, ifyou specify a name that is already in the resident list, Resident

automatically replaces the old name with the new, without the REPLACE
keyword.

Ifyou try to make a command resident that isn't pure, you get a message say

ing that the object is not of required type. To override this objection, use the

PURE=FORCE/S option. For example, the Eval command in C: is not pure,
but you can make it resident by entering:

RESIDENT GEVAL PURE

or, because they are equivalent:

RESIDENT GEVAL FORCE

Delving into AmigaDOS 2* 1 /

The question is, do you want to make impure commands resident? Ifyou

make commands that are not re-entrant and reexecutable resident, you're ask

ing for software failure. Avoid forcing any impure command to be resident.

How do you tell if a command is pure? Just look at the output of the List com

mand. A pure command has its p (for Pure) protection bit set. Ifyou enter:

LIST C:

all the commands with p as one of their protection bits are pure. Avoid the

temptation to use the Protect command to set the pure bit on a command that

isn't. Setting the bit doesn't make a command pure — only proper develop

ment and extensive testing can ensure that. Unless you are an accomplished

programmer and software tester, don't mess with the p protection bit or force

nonpure commands to be resident.

The final option for the Resident command is SYSTEM/S. When used alone,

this argument lists those pieces of code (they aren't always commands) that

have been added to the system software. For example, enter:

RESIDENT SYSTEM

Figure 8-6 shows the results ofthis command. Unlike normal resident and internal

commands, files labeled System can't be removed from the resident list.

When used with a command pathname, the SYSTEM/S option adds the file to

the system list. Commands you add to the system list stay resident until you

reboot. You should avoid using this option, which is intended primarily for

important system software.

Ifyou have a lot of memory, you should make any commands you use often

resident. Because resident commands don't have to be loaded from disk, they

execute much faster. If you have a single-drive system, you should also consider

making the more popular commands like Dir and Copy resident to free you

from disk swapping. The default Startup-sequence for AmigaDOS 2.0 already

makes Assign, List, and Execute resident. Resident lets you add to these three.

The CD Command

In Chapter 7, you saw how you could move about the AmigaDOS file struc

ture simply by entering the name of a directory. For example, ifyou are in the

root directory ofyour system disk, you can move to the Utilities directory by

entering:

UTILITIES

218 AmigaWorld Official AmigaDOS 2 Companion

o| Workbench

Ran Disk

Work

Systen2.8
Setenu

Skip
Stack
Una lias
Jnset
Jnsetenv

%
FileHandler

NT
SYSTEM

TEH

Figure 8-6 The SYSTEM Option

Entering the SYSTEM option with the Resident command letsyou see those resident

files thatyou cannot remove. They appear after the listing ofthe Internal commands.

This capability is new to AmigaDOS 2.0. In earlier versions, you had to use

the CD (Current Directory) command to change directories, as in:

CD UTILITIES

CD has one other function, to list the current directory. Thus, when you enter:

CD

after moving into the Utilities directory, AmigaDOS will respond:

Workbench2.0/Utilities

Because this information is available in the prompt string as well, CD is pretty

much obsolete.

Type

Unlike commands that display lists of files, the Type command is useful for

examining the contents of both programs and data files.

Delving into AmigaDOS

The template of the Type command is:

FROM/A/M,TO/K,OPT/K,HEX/S,NUMBER/S

By default, Type displays the contents of a file you indicate to the Shell win

dow. Thus, by entering:

TYPE S:Startup-sequence

you see the contents ofyour Startup-sequence file. Because the FROM argu

ment is required — it has a IK modifier — you'll get an error message ifyou

enter Type without specifying a filename. Of course, the /M modifier means

that you can type multiple files by entering their names on the command line.

The TO/K argument lets you redirect Type's output to a file or AmigaDOS

device. For example, entering:

TYPE S:Startup-sequence TO PRT:

outputs the file to your printer. Redirecting the output ofType to another

file in effect copies the original file. Note that unlike earlier versions of

AmigaDOS, the TO keyword is now required in order to redirect the output

ofType to another file.

The OPT/K argument provides two options, H and N, which are equivalent

to the HEX/S and NUMBER/S arguments, respectively. Ifyou try to type a

file that contains binary data — a program file is a good example — you wind

up with a lot of strange characters on your screen. To properly view a binary

file, such as the Preferences Palette editor, you should enter either:

TYPE Sys:Prefs/Palette OPT H

or

TYPE SYS:PREFS/Palette HEX

Both of the above commands produce the output that is partially shown in

Figure 8-7. Each line of the output consists of a hexadecimal number that

shows the offset of the line from the beginning of the file, the contents of 16

bytes of the file, and the ASCII interpretation of those bytes. ASCII is a stan

dard way to represent alphanumeric characters with numbers. Because most of

the contents of a binary file usually doesn't translate into ASCII, this part of

the output may be gibberish.

The OPT N and NUMBER keywords output files with line numbers, but are

not available with the hexadecimal output.

220 AmigaWorld Official AmigaDOS 2 Companion

a I Workbench

Hx.M/<,.
.uHl.!»/•<...Mil .

68R91C
214B081G

4EREFFBE
220895CR

8618:
9626:

8638:

8648:
8658:
6668;
8678:

61888438
226B8832

788868
286C88R2 2C6C8814

060FFFF
26C838H

95CR283C
284B224B

2C6C
6188

755861
6E6365

8888587
2E884F88

756974
657365

2C6C88
4EREF
FEF878
889428

i
86H8s
86B8:
96C6:

86D8:

.LBL.NuPalett
e Preferences.to
paz.font..Projec
t.Open....O.Saue

Rs.....QuU.,.,
Q.Edit..Reset To
Default..Last S
aved..Restore.Pr
esets.Tint..1.Ph
araoh.2.Sunset..

74884F78
2841732E

666F6E74
656E2E2E

2E2E8888
69748888
61756C74

68883288

Figure 8-7 Typing a Binary File

This is what a binaryfile — in this case, the Preferences Palette editor — looks like

when output with the HEX option. Note that the hexadecimal digits are 0-9 andA-F.

TheASCII interpretation to the right ofthe hexadecimal digits often won't make sense

whenyou're dealing with aprogramfile.

Remember that, as with any command, you can halt output by pressing any

key and resume it by pressing the Backspace key or CTRL-Q. You can abort

the output by pressing CTRL-C.

Search: Looking Inside Files

Type simply outputs the contents of files; it is useful for examining a short file,

but it can be tedious if you have to look through a large number of files for a

particular piece of data. That is the province of the Search command.

Search looks through the files you specify for a particular string of characters.

If successful, the command reports the location of the string in the file. For

example, if you have a number ofword-processing files in a directory and you

can't remember which one has the information on your department's 1991

budget, you can automatically search all the files for the characters 1991
Budget.

Delving into AmigaDOS 22 1

The template for Search differs in important ways from the one given in

Commodore's documentation. It is:

FROM/A/M,SEARCH/A,ALL/S,NONUM/S,QUIET/S,

QUICK/S,FILE/S,PATTERN/S

FROM/A/M lets you indicate the files you want to search. You can search a

single file, multiple files, or multiple directories, or use pattern matching to

determine which files to search. The SEARCH/A argument is the string you

want to find. It can contain pattern-matching wildcards, but you need not

worry about capitalization because Search ignores case. If the search string

includes a space, you must enclose the entire string in double quotes. Thus, to

search all the files in your Work:WordProcessing drawer for the sequence Bud

get 1991, you enter:

SEARCH WORK:WORDPROCESSING Budget 1991

The Search command responds by listing all the files it has searched, and all

the occurrences of the string in those files. It prints both the line number and

the contents of all lines in the files containing the string.

Search gives you three output options and two search options. The NONUM/

S argument lists the lines that match the search string without using line num

bers. QUICK/S outputs the files that contain matches for the search string,

without displaying the matching lines. QUIET/S lists only the files that pro

duce a match.

If you specify a directory for your search, the ALL/S option not only lets you

search that directory, but also look through all the files and directories below

the specified one in the AmigaDOS file structure. The FILE/S options let you

indicate that the string you're searching for is a filename and not a text string

within a file. Thus, to search your entire Workbench disk for a file named

Clock, you enter:

SEARCH Workbench2.0: Clock FILE ALL

Search then does a quiet search ofyour entire disk, listing the complete

pathnames of all files named Clock. Note that you can't search for directories

using FILE/S.

For my money, the ability to find a filename anywhere on a disk is the most

useful function provided by Search. I never used this command before re

searching this book; now I use it all the time to find files that I've lost on my

hard drive.

2,2*2* AmigaWorld Official AmigaDOS 2 Companion

Dealing with Processes

Up to this point, the commands in this chapter have dealt primarily with files

and directories. The commands below deal more with process than with files.

In many cases, the scope of these commands is limited to the Shell in which

you are currently working.

The commands in this section are Alias, Break, ChangeTaskPri, EndCLI,

EndShell, Fault, LoadWB, NewCLI, NewShell, Path, Prompt, Run, SetFont,

Stack, Status, UnAlias, Which, and Why.

In Amiga parlance, each Shell is a process. The commands in this section deal

with individual processes.

Alias and UnAlias

Alias is a simple yet powerful command that lets you tell the Shell to treat one

string of characters as another. As an example, examine the alias names set up

by the standard Shell-startup file (see NewShell below). Enter:

ALIAS

The Shell responds:

emacs memacs

xcopy copy clone

The left column contains the names the Shell looks for in the command posi

tion on the input line. Alias only substitutes for the first wordyon enter on the

command line (see Chapter 7). The right column shows what the system sends

to AmigaDOS when the Shell parser encounters the sequence in the left col

umn. Thus, when you enter emacs on the command line, the Shell actually

sends Memecs to AmigaDOS. Thus, you can start up the MicroEMACS edi

tor by entering emacs instead of its actual filename, which is Memacs.

Who cares? Well, ifyou use EMACS on another system, you might want the

convenience of accessing it with same name on your Amiga. True, you could

simply rename the Memacs file, but then programs that call Memacs wouldn't

be able to find it. Using an alias, you can call the file anything you want with

out interfering with the ability of programs or other users to find it.

Setting up an alias is easy. The template for the command is:

NAME,STRING/F

Delving into AmigaDOS 2*2*0

NAME is the new name the Shell will accept in place of the STRING. Re

member, the /F modifier means that you can include spaces in the string with

out using quotes as long as the string is the last item on the command line.

Because you can not be sure that what you enter here will always be the last

thing on every command line that uses the alias, you should enclose the

STRING argument with quotations marks if it contains spaces.

For example, let's assume that you don't like the default output of the List

command, yet you're tired of entering all the keywords it takes to get the out

put you want. You can create an alias for List that includes all the parameters

you want. To see what I mean, enter:

ALIAS li LIST NODATES BLOCK KEYS

Now, whenever you enter li, you get the same results as entering List with its

three arguments. Alias is a great way to change defaults you don't like without

having to reprogram a command. It's also a great way to cut down on your

typing. For example, ifyou use the alias CPI for the command ChangeTaskPri,

you'll save yourself a lot of typing. You'll also ensure that any program that

calls ChangeTaskPri will be able to find it — something it couldn't do ifyou

simply renamed the command.

UnAlias is the opposite ofAlias; it removes a name from the alias list. Its tem

plate is:

NAME

Ifyou enter UnAlias without entering a name, it simply lists the aliases active

in the current Shell.

ChangeTaskPri: Changing Priorities

As a multitasking operating system, Amiga OS is performing a constant jug

gling act. To create the illusion that all active processes are executing simulta

neously, the operating system gives each process a set amount of time on the

CPU. When one's time is up, the operating system swaps out that process and

swaps in another. This can happen hundreds of times per second.

The ChangeTaskPri commalid lets you have some control over the relative

amounts of time different processes have access to the processor. A process

with a high priority will have more time on the processor than one with a low

priority, and will thus execute faster. The template for ChangeTaskPri is:

PRI=PRIORITY/A/N,PROCESS/K/N

224 AmigaWorld Official AmigaDOS 2 Companion

' PRI (or PRIORITY) is a number from -128 to 127; the higher the number,

the higher the priority. The default setting for all processes is 0. To give a pro

cess greater than average access to the CPU, you enter a positive number. En

tering a negative number assigns a relatively low priority. Commodore recom

mends setting priorities between -4 and 4. Below -4, the process may take too

long to execute. Above 4, it may interfere with vital operating system processes.

PROCESS/K/N indicates the number of the process whose priority you wish

to change. The process number is in front of the name of the current directory

in the prompt string. Ifyou leave off the PROCESS argument, you are by

default setting the priority of the current Shell.

For example, to change the priority of process 4 to 2, you enter:

CHANGETASKPRI 2 PROCESS 4

Process numbers are also available using the Status command.

NewCLI and NewShell: Starting and Ending Shells

From Workbench, you open a Shell by opening the Shell project in the root

directory of your system disk. You can also open a Shell from a Shell, using the

NewCLI and NewShell commands. These two commands are equivalent; the

two names are a carryover from earlier versions of the operating system when a

Shell and a CLI were two different things. To keep the discussion simple, I'll

describe NewShell only.

When you enter NewShell without any arguments, it opens a Shell window at

the top of your screen that inherits the stack and path settings of the Shell

from which it was spawned. NewShell's template is:

WINDOW,FROM

As you can see, neither the WINDOW or the FROM arguments are required

(no /A modifiers); in fact, they are hardly ever used. The WINDOW argu

ment lets you use an alternate console device besides the standard CON: and

define the dimensions and location of the Shell window. The WINDOW

argument takes the following form:

console deviceixlylwlhltitle

console device: A console device lets an Amiga window emulate the functions

of a video display terminal. The standard Amiga console device, CON:, is

built into Kickstart and automatically mounted when you boot your system.

If you wish to use an alternate console device, you must move its handler to

Delving into AmigaDOS JL2*J

the L: directory, provide a mountlist entry, and mount the device (see the

Mount command in Chapter 9). With the improvements made to CON:,

the reasons for seeking out an alternate console handler from the public

domain aren't as compelling as they were for users ofAmiga OS 1.2.

x: Indicates the number of pixels from the left edge of the screen where the

top-left corner of the Shell window will appear.

y: Sets the number of pixels from the top of the screen where the top-left

corner of the window will appear. In conjunction with x, it defines the loca

tion of the top-left corner of the window.

w: Defines the width of the Shell window in pixels.

h: Defines the height of the window in pixels.

title: A string that indicates the name that will appear in the Shell title bar.

If the title contains a space, the entire WINDOW argument must be en

closed in quotation marks.

Curiously, any Shell you open using a WINDOW argument to override the

defaults comes up without a close gadget.

The FROM argument lets you specify a startup file for the Shell. A startup file

is an AmigaDOS script file. Whenever you open a Shell, you can have it ex

ecute an AmigaDOS script. Normally, the script you execute will configure the

Shell as desired. Without a FROM argument, NewShell executes the script

Shell-startup, located in the S: directory. When you Type this file, you see:

alias xcopy copy clone

alias emacs memacs

;alias clear echo * *E[0;0H*E[J*

;alias reverse echo * *E[0;0H*E[41;30m*E[J*

;alias normal echo **E[0;0H*E[40;31m*E[J*

Prompt %N.%S>

These are the commands that NewShell automatically executes when it starts

up a new Shell. You're already familiar with Alias, so you know what the first

two commands do. (They're the reason that every Shell you start has the same

two default aliases.) The next three lines, with Alias commands preceded by

semicolons, are comment lines. Everything on a command line after a semico

lon is ignored by AmigaDOS. Thus, these strange Alias commands don't take

effect unless you use a text editor to delete the semicolons. Echo is a command

you'll encounter in Chapter 10, where you'll also find out the meaning of the

strange console-control characters. You'll learn about the Prompt command

later in this chapter. When you learn how to create command scripts in Chap

ter 10, you'll be able to customize your own Shell startup files.

226 AmigaWorld Official AmigaDOS 2 Companion

When you're through using a Shell created with NewShell or NewCLI, you

can close it by simply entering EndShell or EndCLI. Neither of these com

mands takes any arguments. If you've launched a process using the Run com

mand from a Shell, you can't close it until the process terminates. (See "Re

mote Control," later in this chapter, to break out of a process.)

LoadWB: StartingWorkbench

In addition to starting other Shell processes, you can also start up the Work

bench interface from the Shell. LoadWB, the program that creates and oper

ates the Workbench interface, is an AmigaDOS command that resides in the

C: directory ofyour system disk. LoadWB doesn't take any arguments. Ifyou

execute it while the Workbench is active, it does nothing— you can't have

two Workbench screens active at once on your machine. Ifyou ever quit

Workbench, or due to some error, drop out of the Startup-sequence script

before you get to the LoadWB command, you can enter the command manu

ally to start up the Workbench interface.

Path: AmigaDOS Pathways

When you press Return after entering a command into the Shell, the Shell

sends the first word it parses on the line alone to AmigaDOS. The first word,

of course, is the command name. To execute the command, AmigaDOS must

be able to find and load the command. Using the Path command, you can tell

AmigaDOS where to search for its commands.

Ifyou enter a command you've made resident or that is internal, AmigaDOS

doesn't have to search; these commands are immediately available. With all

other commands, however, AmigaDOS must find and load the commands

before executing them. AmigaDOS first looks for commands in the current

directory. If unsuccessful, it next searches all the directories in the specified

search path. After checking the path, it looks in the C: directory. If, after all

this, AmigaDOS hasn't found the command you entered, it will report object

not found. (You'll also get this message ifyou spelled the name of the com

mand wrong.) AmigaDOS uses the same path to search for commands and

command scripts.

To show or alter the command search path, you use the Path command. It has

the following template:

PATH/M,ADD/S,SHOW/S,RESET/S,QUIET/S,REMOVE/S

Delving into AmigaDOS JL2* /

To see the current search path, enter:

PATH

The system returns a list of all the directories that AmigaDOS searches when

you enter a command or command script. If the path includes a directory that

is on an unmounted disk, you'll be prompted to insert the disk into a drive.

Entering the Path command without arguments is equivalent to using the

SHOW/S argument.

To add directories, you enter their pathnames on the command line, separated

by spaces. (You can also include the ADD/S argument but, like SHOW/S, this

is the default, rendering the keyword unnecessary.) Thus, to add the Prefs and

Prefs/Presets directories to your search path, you enter:

PATH Sys:Prefs Sys:Prefs/presets

When you next enter Path, these will show up in the listing. If you enter a

directory on a disk that is not mounted, you'll be prompted to insert the disk.

PATH settings are inherited from one Shell to another. When you first open a

Shell after booting it inherits the path established by the Startup-sequence. If

you change this path, any Shells you spawn will inherit the new path.

You can remove a directory from the search path by using the REMOVE/S ar

gument. For example, to remove the two directories we just added, you enter:

PATH Sys:Prefs Sys:Prefs/presets REMOVE

To remove all directories from the search path except for the current directory

and C: (which can never be removed), you enter:

PATH RESET

The final Path argument is QUIET/S, which is supposed to keep AmigaDOS

from prompting you to enter a disk when your path contains directories from

unmounted disks. In the version ofAmiga OS I worked with, this option sim

ply suppressed all output from the Path command. Obviously, it needs a little

work.

Which

The Which command is a cousin to Path. When you enter a command name

with Which, it returns the complete pathname to the command. If the system

cannot find the command in the current search path, Which returns a warning

228 AmigaWorld Official AmigaDOS 2 Companion

(return code equals 5) that you can test for in a script file. The template for

Which is:

FILE/A,NORES/S,RES/S,ALL/S

The FILE/A argument is the name of the command you wish to find. Ifyou

include the NORES switch, Which will not search the resident list for the

command. (Internal commands are considered resident by Which.) The RES

switch searches the resident command list only.

Normally, Which quits after it finds a file that satisfies your search. Ifyou use

the ALL/S argument, the command searches every directory in the path, re

gardless ofhow many hits it gets in its search. For example, to find every place

the command Copy exists in the search path, you enter:

WHICH COPYALL

The Prompt String

Every Shell window has a prompt string; those characters to the left of the

cursor that normally indicate the process number of the Shell and the current

directory. This standard prompt comes from the Prompt command in the

Shell-startup command script.

The Prompt command template is, simply:

PROMPT

which can be any string of characters you wish. For example, if you enter:

PROMPT Go Red Sox! >

that will be your new command-line prompt.

The Prompt string supports two substitution characters. Ifyou put a %N in

the Prompt string, the Shell outputs its process number instead. Ifyou use %S,

the Shell puts the path of the current directory in the prompt. Thus, the de

fault prompt is actually defined by the simple command:

PROMPT %N.%S>.

Prompts are inherited when you create a NewShell. If you enter Prompt with

out any argument, it resets the prompt to the default.

Delving into AmigaDOS

Run: Background Processes

Normally, when you execute a program — such as an AmigaDOS command

— from the Shell, you can't use the Shell until the program finishes execution.

Most commands normally execute quickly, but sometimes you'll start a

lengthy program that will lock you out of the Shell until it finishes. To avoid

this conflict, you can run such programs in a background process using the

Run command.

Run has no template; when used with another command, it runs that com

mand in the background, freeing the Shell for your use. A background process

doesn't open its own input and output window, although the program run

ning in the process can.

For example, if you want to have your Shell free while you open the Ed editor,

you enter:

RUN ED myfile

Ed will open its window, and you'll be free to continue working in the Shell.

The only restriction is that you can't close the Shell until Ed finishes running.

To break the connection between the Shell and the background process com

pletely, you redirect the output of Run to the NIL: device:

RUN >NIL: ED myfile

Using the Run command, you can string many AmigaDOS command lines

together using the addition operator (+). For example:

RUN DIR >SYS:dir.list DF0:+

TYPE TO SYS:start_file S:Startup-sequence+

RESIDENT >PRT:

will execute all three commands automatically. Note that because none of the

commands open their own window, I had them redirect their output from the

Shell window so that they wouldn't interfere with my continued use of the

Shell.

The Stack Command

Every Shell has a stack, an area of temporary storage that commands use dur

ing execution. For example, when a command is interrupted to give another

process time on the processor, the current state of the command is saved to the

230 AmigaWorld Official AmigaDOS 2 Companion

stack and used to restart the command when the processor is again free. The

Stack command lets you see and set the size of the stack for a Shell process.

When you enter Stack without an argument, it returns the size of the stack

allocated to the current process. The standard Shell stack is 4,096 bytes long.

To change the value, simply enter Stack, followed by the new size in bytes.

Thus, to up the stack to 50,000 bytes, enter:

STACK 50000

Most AmigaDOS commands work fine with 4,096 bytes, but Sort may need

more. Some commercial programs require a larger stack; you should check

their documentation. Remember that unused memory in the stack is wasted

and not available. Unless you run into recurring problems with a program,

keep the stack at the default size.

SetFont: ChangingThe Shell Font

Another way you can customize the appearance of the Shell window is to

change the font used to render text. Normally, the Shell uses the system de

fault font set with the Preferences Font editor. You can override this default

using the SetFont command, whose template is:

NAME/A,SIZE/A,SCALE/S,PROP/S,ITALIC/S,BOLD/S,UNDERLINE/S

The NAME/A and SIZE/A arguments are the font you wish to use in the Shell

window. This font must exist in your Fonts directory. For example, to change

the font used to Courier 24, you enter:

SETFONT Courier 24

The three style arguments, ITALIC/S, BOLD/S, and UNDERLINE/S, let you

set the type style for the font. You can use all three styles in the same window

ifyou want.

The CON: device doesn't handle proportional fonts very well on the com

mand line, so you may want to stick with fixed width-fonts for the Shell. Spe

cifically, when you use a proportional font, the cursor is often narrower than

many of the characters you enter on the command line. Thus, it often chops

off about half of each character, rendering your input unreadable. Commodore

included the PROP/S argument apparently to let you indicate that you were

specifying a proportional font so the Shell could adjust. From what I've seen,

the PROP/S argument has no affect on how the Shell handles proportional

fonts. If you want to use a typeface other than Topaz or Courier in your Shell

Delving into AmigaDOS

window, be prepared for unreadable input. Proportional output doesn't seem

to be a problem.

The most interesting argument for SetFont is SCALE. It lets you scale an existing

typeface up to 100 pixels high. For example, to create a Topaz 72 font, enter:

SETFONT Topaz 72 SCALE

The results are shown in Figure 8-8. The simple scaling method does not cre

ate sophisticated outline fonts, but it's better than nothing.

Figure 8-8 Scalable Fonts

Amiga OS2.0provides supportfor scalablefonts. This letsyou define apixel sizefor a

typeface other than the ones contained in the Fonts: directory. Because Amigafonts are

bitmapped and not outlinefonts, they can lookpretty ragged when scaled to large sizes.

This shows a 72-pixel Topazfont.

Fault andWhy: Explaining Errors

Occasionally, when a command aborts execution because of an error, it prints

an error number in the Shell window. For a slightly (and I do mean slightly)

more enlightening explanation of the error, you can enter Fault, followed by

2*02* AmigaWorld Official AmigaDOS 2 Companion

the error number. For example, if a command reports error code 116, you can

enter:

FAULT 116

which brings the response:

Fault 116: required argument missing

You can enter up to ten error code numbers on a single command line.

Fault is related to the Why command. When a command fails, you can enter

Why on the command line for an explanation of the failure. Most AmigaDOS

commands now provide fairly verbose reasons for their failure, so the informa

tion provided by the Why command is often redundant.

Fault and Why can be helpful in tracking down a problem, but they are lim

ited. For example, if they tell you an object was not found, you're still left with

a lot of possibilities. Did you misspell the name of a file or use the wrong path?

Appendix D, which explains the AmigaDOS error codes, may help you deci

pher what went wrong.

Status Report

Not terribly relevant to the average user, Status reports on the status of pro

cesses running on the CPU and has the following template:

PROCESS/N,FULL/S,TCB/S,CLI=ALL/S,COM=COMMAND/K

Ifyou simply enter:

STATUS

the command produces a report like that in Figure 8-9, which lists the differ

ent processes running on your system and the commands currently loaded in

them. This default report is also available using the CLI/S argument or its

equivalent, ALL/S. By indicating a process number with PROCESS/N, you

get a report of that process only. By entering a command name after the COM

or COMMAND keywords, the system returns the number of processes run

ning the command you indicate. Thus, to find the number of the process that

is running the Sort command, you enter:

STATUS COM SORT

The command responds with the process number.

Delving into AmigaDOS 2*t)t)

r$' < j'"

j_y f\-\ -

Process
Process

tests
ill

loaded as
lo coiwand
[o connanc

,.■"! "

connand
loaded
loaded

- ->

5/;irt¥r»''X";;';

, , - - m

iill111sill Blli
-% '

Figure 8-9 The Status Command

Status tellsyou whichprocesses are active and which commands are running in them.

The TCB/S switch reports the task-control block information about all active

processes, instead of the command information. The task control block gives

the size of the stack (stk), information on the global vectors (gv), and the prior

ity of the process (pri). The FULL/S option lists both task-control block and

command information about the processes.

Unless you're a programmer, the information provided by the Status com

mand is not very useful.

Break: Remote Control

Once you've used the Status command to learn the numbers of the different

processes running on your system, you can use the Break command to abort

any of them. Break lets you set the attention flags (CTRL-C, CTRL-D,

CTRL-E, and CTRL-F) of any process on the system. CTRL-C aborts a com

mand, while CTRL-D aborts a command script. The other two are currently

undefined.

AmigaWorld Official AmigaDOS 2 Companion

The template for the Break command is:

PROCESS/A/N,ALL/S,C/S,D/S,E/S,F/S

The PROCESS/A/N argument is the number of the process you want to

break. The ALL/S option sends all the attention flags, while the C/S, D/S, E/S,

and F/S arguments send CTRL-C, CTRL-D, CTRL-E, and CTRL-F, respec

tively. Ifyou don't use one of the flags as an argument, the system sets CTRL-

C by default.

Dealing with Devices

Thus far in this chapter, the commands have dealt primarily with directories

and processes. AmigaDOS is also concerned with devices and has a number of

commands that provide information about the state ofAmigaDOS devices.

Avail, CPU, Date, Info, SetClock, and Version give you information about

devices. Strictly speaking, SetClock is not an information command, but it is

so closely tied to Date that I discuss them together.

Info: Information Please

The Info command gives you information about the disk devices attached to

your system. For a report, you simply enter:

INFO

The top half of the output (see Figure 8-10) consists of eight columns of infor

mation about the disk devices — hard disks, hard-disk partitions, RAM disks,

and floppy disks — mounted on your system. The columns are Unit, Size,

Used, Free, Full, Errs, Status, and Name.

Unit: The unit name of the physical name of a particular disk or partition.

If a drive is mounted but has no disk in it, you'll see a message saying no

disk present.

Size: Size lists the storage capacity of all mounted disks, in kilobytes (K) or

megabytes (M).

Used: The Used column tells you how much storage space is already allo

cated to storing files. As you create more files on a disk, its Used figure

increases.

Free: Lists the amount of unallocated storage space on a disk.

Delving into AmigaDOS 235

a I workbench

Figure 8-10 Disk Information

The Info command lets you know what disks and volumes are available to you and

how much more data they can store.

Full: This column lists the amount of used space on the disk as a percentage

of total disk storage. The Ram Disk is always full, because it expands and

contracts dynamically as you add and delete files.

Errs: The Errs referred to here are soft errors. AmigaDOS uses a complex

system of keys and checksums to ensure the integrity of the file system and,

occasionally, the checksums don't match. A soft error can be serious, and

you should try to isolate and eliminate them. For more details, see the

DiskDoctor command in the next chapter.

Status: A disk can be in one of two states — read/write or read Only. Obvi

ously, you can't write to a read only disk. You set the status of a hard disk,

hard-disk partition, or floppy disk using the Lock command (Chapter 9).

You can also set the status of a floppy disk with its write-protect tab.

Name: The Name of a disk is its volume name — the name it goes by under

the Workbench interface. Using AmigaDOS, you can use either the volume

name or the device name.

The bottom part of the Info display lists the volumes currently available to the

file system and labels those that are mounted. An unmounted volume will be

236 AmigaWorld Official AmigaDOS 2 Companion

available if it contains a directory that is part of the search path or is assigned a

logical directory.

The Info command takes one optional argument, DEVICE. It lets you specify

a device on which you want information. For example, to see the information

on your internal floppy drive, you enter:

INFO DFO:

The DEVICE argument is rarely used because you get the same information

— and more — by simply entering Info.

Date and SetClock: Timely Matters

The Amiga has two dock/calendars, the system clock and the battery-backed

one, so AmigaDOS supplies two commands — Date and SetClock— that let

you work with both. (The SetDate command, covered in the next chapter, is

concerned with the time/date stamps on files, not with the clocks.)

The original Amiga, the A1000, has only the system clock, which the Clock

program and AmigaDOS use to put time/date stamps on files. Whenever you

turn on an Amiga 1000, you have to set the system clock using the Date com

mand to have accurate time/date stamps and an accurate clock. With the

Amiga 2000 and models that followed, Commodore built in a battery-backed

clock/calendar (or supplied it as an option with the A501 memory board for

the A500) that you only needed to set once. The clock keeps running after you

power down. The problem was that AmigaDOS, the Clock, and any other

programs that need time and date information were written to use the system

clock, not the battery-backed one.

The solution to the two-clock dilemma is the SetClock command. SetClock

doesn't let you directly set the battery-backed clock; instead, SetClock lets you

set the battery-backed clock from the system clock and then set the system

clock from the battery-backed clock. Let's see how Date and SetClock work

together in practice.

To get all the clocks in your system running properly, you first use the Date

command to set the system clock. Date has the following template:

DAY,DATE,TIME,TO=VER/K

When used without arguments, Date returns the current data and time settings

of the system clock. The TO argument lets you direct the output of the com

mand to a file or device, such as your printer. The DATE and TIME argu

ments let you set the data and time, respectively.

Delving into AmigaDOS 2*0 /

The DATE argument takes the form DD-MMM-YY, where DD is the day of

the month (leading zeros are not required), MMM is the first three letters in

the month name, and YY is the last two digits in the year. Note that you can't

set the clock to a date before January 1, 1978. Years from 00 to 77 are consid

ered 2000 to 2077. Commodore is ready for the 21st century.

The DAY argument lets you substitute a day of the week for the DATE argu

ment. When you use a day of the week, the command substitutes the date the

day will fall upon in the next week. Of course, it makes this substitution based

upon the current setting of the clock; if the clock is incorrect, the date you get

entering a day of the week will also be incorrect.

The TIME argument takes the form HH:MM:SS, where HH is the hour of

the day (0-23), MM is the minute (0-59), and SS is the second (0-59). The

seconds part of the time is optional. Thus, to set the time and date to 6:55

PM, July 5, 1991, you enter:

DATE 18:55 5-jul-91

Once you have the system clock set, you use it — and the SetClock command

— to set the battery-backed clock.

SetClock has the following template:

LOAD/S,SAVE/S,RESET/S

The SAVE/S argument tells SetClock to set the battery-backed clock with the

time and date in the system clock. If you've previously set the system clock

with the Date command, this argument will ensure that the battery-backed

clock has the correct time and date.

Having set the battery-backed clock once with

SETCLOCK SAVE

you need never set it again unless you move to another time zone or wish to

keep up with the daylight-savings changes. You still need to set the system

clock, however, every time you turn on your system. Instead of using Date to

enter the time and date manually, you use the LOADIS option of SetClock.

The LOAD/S option is the opposite of SAVE/S. It sets the system clock from

the battery-backed clock. Ifyou do this once every time you turn on your sys

tem, you'll always have the correct time and date in the system clock, and thus

always have the correct time and date for the Clock program and for

AmigaDOS time/date stamps. When you examine the standard AmigaDOS

Startup-sequence in Chapter 10, you'll see that the first command is:

SETCLOCK LOAD

2*0O AmigaWorld Official AmigaDOS 2 Companion

The last SetClock argument, RESET/S, is rarely used. Ifyou find that some

rogue program has messed up your battery-backed clock and you're unable to

set it properly with the SAVE/S option, try this argument before attempting

another save.

In conclusion, to get all your clocks synchronized and running correctly, you

first set the time and date with the Date command, save that information to

the battery-backed clock with the SetClock SAVE option, and then, every time

you boot your computer, execute a SetClock LOAD command, preferably

from your Startup-sequence.

Avail: Available Memory

Memory is probably the most precious resource on you Amiga. The amount

you have determines how many programs you can run at once and even how

fast the programs execute. The Avail command tells you how much memory

you have on your system and how much of that has yet to be allocated to

program.

Avail's command template is:

CHIP/S,FAST/S,TOTAL/S,FLUSH

When you enter Avail without arguments, it reports on the amounts of chip

and fast RAM you have on your system as well as on the total of the two. Chip

RAM is memory used to store graphics and sounds, fast RAM is used primarily

to hold executing programs. Ifyour computer has only chip RAM, it will use

this memory to store both its graphics data and its programs. An Amiga can't

operate without chip RAM.

The Avail command reports four pieces of information about the chip, fast,

and total memory on your system (see Figure 8-11). It reports on the available

memory (that which has yet to be allocated to any program), the memory in

use, the maximum memory (the combination of the available and in-use

memory), and the largest block of memory available.

The largest block is very important, because the Amiga OS allocates memory

in contiguous blocks. As programs open and close, they fragment memory into

discontinuous blocks. Ifyou want to run a program that requires 300K of

memory and the largest block available is 250K, you won't be able to run the

program, even if the total available memory is 500K. In such a case, you can

try the FLUSH/S argument, which forces Amiga OS to flush its memory lists

of any de-allocated memory that hasn't been returned to the available memory

Delving into AmigaDOS 239

pool. If this doesn't get you a contiguous block large enough for your program,

you may have to close down any executing programs and reboot your system.

After a reboot, memory is much less fragmented than it is after the machine

has been in use for a while.

, Itm.&tJK

Figure 8-11 Memory Information

What Info doesfor disks, Avail doesfor memory. The Total row is simply the sum of

the chip andfast memory.

The CHIP/S, FAST/S, and TOTAL/S arguments let you selectively examine

chip, fast, and total memory, respectively. These options are rarely used be

cause the default, showing all three, is easier to access and more informative.

TheVersion Command

Having the correct version of the system software is very important. Some

programs won't run ifyou don't have a specific version of Kickstart or a system

library. The Version command lets you check the version number of Kickstart,

Workbench, and the system libraries and devices. It has the template:

NAME,VERSION/N,REVISION/N,UNIT/N

AmigaWorld Official AmigaDOS 2 Companion

NAME is the name of the library or device you want to check. Ifyou don't use

a name, the command returns the version numbers ofyour Kickstart and

Workbench. The VERSION/N and REVISION/N arguments let you com

pare the numbers the command returns with numbers you provide. If the

command finds numbers that are greater than or equal to the version and revi

sion numbers you provide on the command line, it sets a return code of 0.

Otherwise, the return code is 5. The UNIT/N argument lets you specify the

unit number of a device you want checked; some devices have multiple units.

Checking version numbers to ensure the presence of compatible libraries and

devices is usually performed internally by software programs. It is not some

thing you have to know about unless you are a software developer.

As you'll see in Chapter 10, Version also sets two environment variables,

Kickstart and Workbench.

CPU: Processor Report

The most important single hardware item in your computer is the CPU chip

that runs the system. The CPU command reports on the processor itself and

lets you change some processor settings. The template of the CPU command

is:

CACHE/S,BURST/S,NOCACHE/S,NOBURST/S,DATACACHE/S,

DATABURST/S,NODATACACHE/S,NODATABURST/S,

INSTCACHE/S,INSTBURST/S,NOINSTCACHE/S,

NOINSTBURST/S,FASTROM/S,NOFASTROM/S,TRAP/S,

NOTRAP/S,NOMMUTEST/S,CHECK/K:

Ifyou simply enter:

CPU

The command returns information about your CPU. For example, on my

Amiga 3000, the command responds with:

68030 68882 FastROM (INST: Cache Burst) (DATA: Cache

NoBurst)

This tells me that my computer has a 68030 processor, a 68882 math

coprocessor; that the Kickstart ROM has been moved to fast RAM, and that

the instruction cache is active and enabled for burst mode while the data cache

is active but not enabled for burst mode.

Delving into AmigaDOS 241

A detailed description of all the options of the CPU command would require a

lengthy dissertation on microprocessor design that is beyond the scope of this

book. From the names of the switches, you can deduce that the CPU com

mand lets you enable and disable your CPU's instruction caches

(INSTCACHE/S, NOINSTCACHE/S), data caches (DATACACHE/S,

NODATACACHE/S), or both (CACHE/S, NOCACHE/S). You can also

enable or disable burst mode on the instruction (INSTBURST/S,

NOINSTBURST/S) and data (DATABURST/S, NODATABURST/S) pipe

lines, or on both at once (BURST/S, NOBURST/S). Of course, to use burst

mode you must have memory chips that are capable of burst mode. You can

enable and disable exception trapping with TRAP/S and NOTRAP/S, respec

tively, and test for the presence or absence of an MMU (memory-management

unit) with NOMMUTEST/S.

The FASTROM/S argument lets Amigas equipped with an MMU move

Kickstart from ROM to fast RAM, where it can execute library calls much

faster. (The 68030 has an MMU built-in; with a 68020, you need a separate

MMU chip. The 68000 does not support an MMU.) Once Kickstart 2.0 is in

ROM, Amiga 3000Js will not longer need the FASTROM/S option because

the A3000's ROMS are 32 bits wide. NOFASTROM/S turns off this feature.

CHECK/S, when followed by CPU, MMU, or FPU, performs a check of

these hardware components.

What are you going to do with the CPU command? Hopefully, nothing. If

your computer is running fine, don't mess with these options. If you buy a

68020 or 68030 accelerator for your Amiga 500 or 2000 and you have extra

fast RAM, you may want to enable the FASTROM/S option. Otherwise, you

should keep the CPU settings to the factory defaults.

Conclusion

Using the commands detailed in this chapter, you can gather information

about the internal organization ofAmigaDOS and change that organization to

suit your needs. Although commands like CPU and Status are a bit esoteric for

the average user, you need a good working knowledge of most of these com

mands to get the most out of your system. List and Assign are particularly

important.

The next chapter deals with commands that let you change the actual files and

devices on your system. This is where you can put the information you gleaned

from the commands in this chapter to work.

JLQ.2* AmigaWorld Oflficial AmigaDOS 2 Companion

In Chapter 8, you learned about the many commands that let you investigate,
and sometimes change, the state of the AmigaDOS file system, devices, and
processes. The commands in this chapter are different; they let you physically
modify different aspects ofAmigaDOS. They let you copy files, edit text,
mount devices, change protection flags, and more. They are more concerned
with whatAmigaDOS does, rather than how it does it.

Working with the File System

Like the commands in the last chapter, those discussed here work with both
files and devices. Because you spend most ofyour time with AmigaDOS work
ing with files, I'll start there. The commands that let you create and modify
files, directories, and volumes are Copy, Delete, DiskDoctor, FileNote, Install,
Join, Lock, MakeDir, MakeLink, Protect, Relabel, Rename, SetDate, and Sort.

Copy: Copying Files

Along with Dir and List, Copy is one of the most frequently used AmigaDOS
commands. It lets you duplicate individual files or whole sections of the
AmigaDOS file structure. The template of the Copy command is:

FROM/A/M,TO/A,ALL/S,QUIET/S,BUF=BUFFER/K/N,
CLONE/S,DATES/S,NOPRO/S,COM/S,NOREQ/S

The FROM/A/M argument stands for the source file or files you wish to copy.
You must always include this argument on the command line; you can include

243

244 AmigaWorld Official AmigaDOS 2 Companion

many sources ifyou wish. The TO argument gives the destination file or direc

tory for the copy source. In its simplest form, the command looks like this:

COPYfilelTOfile2

This command copies the contents of file 1 to file2. If file2 does not exist be

fore you execute Copy, the command creates it. If it does exist, the command

overwrites the old contents with the contents of file 1. The system doesn't warn

you, so be careful or you'll overwrite an important file.

In addition to simple filenames, the FROM and TO arguments can also be

pathnames. For example,

COPYfilel TO RAM:file2

copies filel from the current directory to a file named file2 on the RAM: disk.

You can also use logical names in the FROM and TO arguments:

COPY Extras2.0/Devs/Printers/EpsonQTO DEVS:Printers/EpsonQ

copies the EpsonQ printer driver from the Extras2.0 disk to the Printers direc

tory of the DEVS: directory.

When you copy a file outside of its directory, you can use the original filename

for the destination file by not supplying a filename in the TO pathname. In

the above example, you get the same results by entering:

COPY Extras2.0/Devs/Printers/EpsonQTO Devs:Printers

This command copies the EpsonQ driver into the destination directory and

gives the destination file the same name as the source file. Note also that the

TO keyword is optional; as long as you put the FROM argument first and the

TO argument second, you can omit the keywords. (I always use the TO key

word, however, because it's a good visual clue for what's happening.)

Ifyou specify a directory for the FROM argument, Copy copies all the files

(not the directories) inside the FROM directory. In this case, the TO argu

ment must specify a directory. For example,

COPY System2.0/System TO System2.0/Utilities

copies all the files in the System directory of a hard-drive-equipped Amiga to

the Utilities directory. However,

COPY System2.0/System TO Utilities/Clock

Manipulating Files and Devices 245

produces the following error message:

Destination must be a directory

You can also use wildcard patterns for the FROM argument. For example,

COPY SYS:System/#?m#? TO RAM:

copies all the files in the System directory that have the letter m in their names

to the Ram Disk. Note that when you copy more than one file at a time, either

by putting multiple source files on the command line, specifying a directory as

the source, or a wildcard pattern, the Copy command reports all the files it has

copied. For example, ifyou executed the above command, Copy would output

the list shown in Figure 9-1.

,-_. ft? T01
.Inf0%.cop t ed.

itor,.copled, ; ;
^ „_ inItar,Infof•*copladI
RddMonitor..copied. ■■
Rexxnast. info». c op i ed. ..•.,'■■:.:.

, RexxWast ;*4t op 101J; ,r '- r -<f V'c
i Setrtap. info, .copied.

%enanfOjrcpHe^ r
. .copied* ;-

" o- '^.' r

■ni

Figure 9-1 Copying Multiple Files

Whenyou copy multiplefiles with a wildcard, Copy reports everyfile that it copies.

Note thatyou must specify a directory as the destination ofa multiple-file copy.

An important point about the Copy command is that multiple-file copies al

ways go to a directory. Ifyou specify an existing file as the destination of the

multiple-file copy, the system sends an error message. Ifyou specify a filename

that does not exist, Copy creates a directory with that name and copies the files

246 AmigaWorld Official AmigaDOS 2 Companion

indicated into it. For example, if you try to use a wildcard as the destination,

Copy has a surprise for you. For example, you might think that

COPY SYS:System/#?m#? TO RAM:Mfile_#?

would copy all the files from System whose names contain the letter m to the

Ram Disk and append "Mfile_" to each of their names. What happens, how

ever, is that Copy creates a directory named Mfile_#? on the Ram Disk and

then copies the files into it. The TO argument does not support wildcard char

acters.

While the Copy command does copy the contents of a file exactly, it does not

copy everything associated with the file; specifically, it does not copy the time/

date stamp or any comments. It gives the destination files a time/date stamp

that reflects the time of their creation by the Copy command. One attribute

that is copied, however, is the protection status of the source file.

The ALL/S argument not only copies all the files in the source directory, but

also all the directories and files below the source in the AmigaDOS file struc

ture. Copy will recreate the file structure of the source directory as it copies

files to the destination directory. For example, ifyou enter:

COPY FONTS: TO RAM: ALL

Copy duplicates the directory structure of the Fonts: directory in the RAM:

directory. If, after executing this command, you enter:

DIRRAM:ALL

You get the list shown in Figure 9-2.

The QUIET/S argument suppresses the report that Copy outputs when it

copies multiple files. CLONE/S copies the source file's time/date stamp and

the comment, in addition to its contents and protection bits. DATE/S in

cludes the date-time stamp in the attributes copied to the destination, while

COM/S includes the comment. Thus, the following two commands are

equivalent:

COPY filel TO file2 CLONE

COPY filel TO file2 DATE COM

The NOPRO/S argument tells Copy not to duplicate the protection bits of

the original to the destination file. Instead, Copy sets the r, w, e, and d flags on

the destination file, regardless of the protection settings of the source file. The

NOREQ/S argument suppresses any requesters generated by the command.

For example, ifyou try to use a volume that is not mounted as the source or

Manipulating Files and Devices -Z4 /

a| Workbench

I
5J> DIR RRnl FILL
helvetica (dir)

11 13
15 18
24 9

tines (dir)
11 13
15 18
24

courier (dir)
11 13

II
sapphire (dir)

14 19
ruby (dir)

12 15

garnet (dir} ;
16 9

enerald (dir)

opal (dir)

Figure 9-2 CopyALL

Whenyou use theALL option, the Copy command duplicates the entire AmigaDOS

file structure at and below thepointyou specify as the source ofthe copy operation. In

the example, one Copy command copied all thefiles and directories in the Fonts:

directory to the RAM: disk

destination of a copy, the command will normally put up a requester asking

you to insert the unmounted volume. If you specify NOREQon the com

mand line, however, Copy will instead output the message:

copy: device (or volume) is not mounted

and set a return code of 20. NOREQ/S is used mostly in command scripts

where you can test for the return code and take action if the command fails.

Besides duplicating existing files, Copy also lets you create files from the key

board. Ifyou enter:

COPY*TOmy_file

the command copies whatever you type into the Shell window to a file named

my_file, which Copy creates if it does not already exist. To close the file and

bring back the prompt, enter CTRL-\.

AmigaWorld Official AmigaDOS 2 Companion

Copy lets you copy files to devices as well as to files. You can copy files to the

printer device by entering:

COPYmyJileTOPRT:

or even copy a file to the Shell window by entering:

COPYmyJileto*

In this latter instance, Copy acts like the Type command. (Of course, it lacks

all the output options of the Type command.)

When you experiment with the Copy command, I suggest that you use the

Ram Disk as the destination. That way, you can simply reboot your computer

to erase all the practice files you created.

Rename: Renaming Files

The Rename command lets you change the names of files and directories. In

its simplest form, it looks like this:

RENAME harry george

This command will change the name of the file harry to george as long as a file

named george does not already exist in the same directory. If george already

exists, the system sends the following message:

Can ft rename harry as george because object already exists.

Beyond renaming a single file within the same directory, the Rename com

mand resembles the Copy command. In fact, once you start renaming multiple

files and directories, you can think of Rename as a copy operation that auto

matically deletes the source files and directories.

The template for Rename is:

FROM/A/M,TO=AS/A,QUIET/S

Like Copy, the Rename FROM/A/M argument can be a single file, multiple

files, a file pattern, or a directory. Again, as with the Copy command, ifyou

specify more than one file in the FROM/A/M argument, you must specify a

directory as the TO=AS/A argument. Ifyou specify a file as the destination of

a multiple-file rename or specify a name that doesn't exit you get an error mes

sage. Unlike Copy, however, Rename doesn't create directories. The QUIET/S

argument suppresses the messages that Rename produces as it renames mul

tiple files.

Manipulating Files and Devices 249

Rename could just as easily be called Move, because it lets you move files and

directories around in the AmigaDOS file structure. For example, assume you

have a data disk named Data: that contains three directories — Letters, Re

ports, and Memos — in its root directory, and multiple files in each sub

directory. (Figure 9-3 shows what the disk looks like when you use the ALL

option of the Dir command.) Now, suppose that you decided that memos was

simply a subcategory of letters, so you wanted to move the Memos directory
inside the Letters directory. You'd enter:

RENAME Data:MEMOS TO Data:LETTERS

lt§:> DIR RLL
Trashcan (rflrX
Letters (iliiO :

- ' ' ' LefcterJI, ' "

Reports (dir)
| Reports ,
1 Rfpwtjt ;

4.Data:> i
Trashcan.Info

Figure 9-3 Structure ofData:

This listing shows how thefiles and directories are arranged on the Data: disk before

any Rename operation.

Rename responds:

Renaming Data:Memos as Data:Letters/Memos

Figure 9-4 shows the new directory structure of the disk.

250 AmigaWorld Official AmigaDOS 2 Companion

ol Workbench IEQI

4.Data;>
ienaiilng
4.Data:> DIR

Trashcan (dir)

LetterJ
Letters

Reports (dir)
Reports!
Report_3

.info
4.Datai* §

Figure 9-4 RenamingMemos

By renaming DataiMemos to Data:Letters/Memos, you rearrange the directory

structure ofthe Data: disk.

Now suppose that you decide that the directories should really be structured as

a simple hierarchy with Letters at the top, Reports under Letters, and Memos

under reports. You can accomplish this by entering:

RENAME Data:LETTER/MEMOS TO Data:REPORTS

RENAME Data:REPORTS TO DataiLETTERS

Figure 9-5 shows the results of your directory restructuring. Note that if you

substitute the name Move for Rename in the commands, you get a much

clearer idea ofwhat's actually going on. In fact, in my Startup-sequence, I've

added the command:

ALIAS Rename Move

I use Rename when I want to rename a file and Move when I want to re

arrange my directory structure. The two names load and execute the same

command, but better reflect the different functions of the Rename command.

Manipulating Files and Devices 251

Trashcan (dlr)

Utters (dtr)
REPORTjMdtr)

MenOj

Repor
LetterJL
Ltt3

*_1
*J3

Figure 9-5 More Renaming

Thisfigure shows the results oftwo more Rename commands. Except when used onfiles
in a single directory, Rename works like a Move command.

A final note about Rename: It does not work across disks and devices. Any new
name you give a file or directory must be on the same disk as the old name.

Thus, if you enter:

RENAME SYS:System TO RAM:

an error message stating that you can't rename across disks and devices ap

pears.

Relabel: Renaming aVolume

AmigaDOS provides a special command — Relabel — for renaming disk vol

umes. Its template is:

DRIVE/A,NAME/A

252 AmigaWorld Official AmigaDOS 2 Companion

The DRIVE/A argument is the device name of the drive that contains the

volume you want to rename, while NAME/A is the new volume name. For

example, to rename the disk in your internal floppy to Data:, you enter:

RELABEL DFO: Data

Note that you don't put a colon after the new volume name.

Delete: Deleting Files

As you use your computer more and more, you'll accumulate a lot of files that
you no longer use. To get rid of unwanted files, you use the Delete command,

which has the template:

FILE/M/A,ALL/S,QUIET/S,FORCE/S

In its simplest form, Delete looks like this:

DELETE my_file

The above command deletes the file named my_file in the current directory.

From the template, the FILE/M/A argument lists the file or files that you want

to delete. You can list a single file, multiple files, a file pattern, or a directory.

For example, to clear a directory named Letters of all files whose names include

the letter x, you enter:

DELETE LETTERS/#?x#?

To delete a directory, it must be empty. For example, ifyou have a directory

named Pictures on your data disk that contains many files and subdirectories

and you enter:

DELETE Data:PICTURES

The system tells you:

Data:PICTURES Not Deleted: directory not empty

You now have two options: You can go into Pictures and all the directories

below it and delete all the files and directories individually or you can enter:

DELETE Data:PICTURES ALL

The ALL/S argument deletes a directory and all the files and directories below

it in the file structure. The QUIET/S argument suppresses the messages that

Delete produces when disposing of multiple files.

Manipulating Files and Devices

Normally, if a file or directory does not have its delete bit set, you can't delete

it. Using the FORCE/S argument, however, you can delete such files.

Delete is a very powerful command that, unlike the Delete item in the Icons

menu, does not produce any requesters that give you a chance to change your

mind. Be very careful using wildcards and the FORCE/S and ALL/S options

with Delete; you could inadvertently delete some vital information. Ifyou find

that you've started a disastrous multiple-file delete, hit CTRL-C to abort the
command and minimize the damage.

Setting Protection Bits

Each Amiga file and directory has a set ofprotection bits that give information

about the file and indicate the actions you can take with it. The eight defined
protection bits are Archived (a), Executable (e), Hidden (h), Pure (p), Read (r),
Script (s), and Write (w).

Archived: The archived bit is used primarily by disk-backup utilities, which

will set the archived bit when they back up a file. If, sometime later, the file is

altered by an editor, renamed, or copied to, the archive bit is removed. When

the backup utility is next run, it knows that it must backup this file. If the

archive bit is still set, indicating that the file has not been altered, the back up

utility knows that it doesn't have to archive this file again.

Deletable: With this bit set, you can delete the file; if it is absent, you can't

delete the file unless you use the FORCE/S option of the Delete command.

This bit works as advertised.

Executable: If an executable file has this bit set, then you can execute the com

mand. If an executable file does not have the Executable bit set, you can ex

ecute the file. If a nonexecutable file has this bit set, you still can't execute the

file. In other words, the Executable bit identifies executable files, it doesn't

make them executable.

Hidden: When set, the hidden bit is supposed to keep a file from being listed

with List or Dir. Unfortunately, this feature has never been implemented. For

now, the Hidden bit is meaningless.

Pure: The Pure bit identifies program files as reentrant and reexecutable. The

Resident command checks this bit when it tries to make a command resident.

Note that setting the bit does not make a program pure; it merely makes the

program palatable to the Resident command. Don't change the factory setting

of the Pure bit on any file that comes with AmigaDOS 2.0; making a com

mand resident that isn't really pure is not a good idea.

254 AmigaWorld Official AmigaDOS 2 Companion

Readable: The Readable bit is supposed to identify those files that any editor

or the Type command can read. When absent, the file should be unreadable.

In practice, the AmigaDOS commands ignore the setting of the Readable bit,

although some commercial programs pay attention to it.

Script: The Script bit identifies AmigaDOS script files. With the bit set, you

can execute a script by simply entering its name on the command line, without

having to call it as an argument to the Execute command (see Chapter 10).

Scripts called by Execute don't need this bit set.

Writable: With the Writable bit set, you can write to a file; if it is absent, you

should be unable to write to the file. In practice, the AmigaDOS commands

ignore this bit, although some commercial programs do not.

You set and clear the protection bits using the Protect command. It has the

template:

FILE/A,FLAGS,ADD/S,SUB/S,ALL/S,QUIET/S

The FILE/A argument lists the name of the file or directory whose protection

bits you wish to change. Note that the protection status of a directory is com

pletely independent of the protections status of the files it contains. FILE/A

can also be a file pattern.

The FLAGS argument identifies the protection bits you want to set or clear.

You must use the abbreviation of the name of the bit, which is the first letter

of the name. ADD/S and SUB/S indicate whether you are adding (setting) the

indicated bit or subtracting (erasing) it. For example, to make your Startup-

sequence file nondeletable, you enter:

PROTECT S:Startup-sequence d SUB

You can set more than one flag at once. For example,

PROTECT myjile shapdwre ADD

sets all the bits on the file my_file. The bits don't have to be in any particular

order.

The ADD/S and SUB/S keywords are mutually exclusive; they can't be on the

same command line. You can substitute a plus sign (+) for ADD, and a minus

sign (-) for SUB. Note that the plus or minus sign can come before or after the

flags, but, unlike the ADD and SUB keywords, there must be no space be

tween the sign and the flags. Thus, to make your Startup-sequence file

deletable again, you can enter:

PROTECT S:Startup-sequence +d

Manipulating Files and Devices

Ifyou use a directory name with the ALL/S option, Protect adds or subtracts

the bits you indicate from every file and directory in the directory, and from

every file and directory below it in the file structure. For example,

PROTECT SYS:PREFS -d ALL

protects every file in or below your Prefs directory from deletion. The

QUIET/S option suppresses the messages that Protect outputs when it

works with multiple files at a time.

Lock: Write Protecting aVolume

The Lock command lets you write protect a floppy disk, hard disk, or hard-

disk partition. (You can't copy or save anything to a write-protected disk.)

Lock's template is:

DRIVE/A,ON/S,OFF/S,PASSKEY

Without an argument, Lock returns the write-protect status of a disk. For

example:

LOCKSYS:

tells you whether or not your system disk is write-protected. The keywords

ON/S and OFF/S let you turn write protection on and off, respectively. Thus,

to write-protect your system disk, you enter:

LOCKSYS: ON

The PASSKEY is a four-character string that you can specify when you lock a

disk or partition. When you use it with the ON/S argument, you won't be able

to unlock the disk unless you enter the same string with the OFF/S argument.

Keep in mind that if the write-protect tab on a floppy disk is set to protect,

you can't unlock the drive using the Lock command, although you can write

protect such a disk if its write-protect tab is set to enable.

SetDate: Setting a Time/Date Stamp

Whenever you create or modify a file, AmigaDOS automatically stamps the

file with the time and date of creation or modification. (AmigaDOS doesn't

actually stamp anything; it saves the time and date with the file). The SetDate

command lets you manually input a time/date stamp, or have AmigaDOS

create a new one. The template for the SetDate command is:

FILE/A,DATE,TIME,ALL/S

AmigaWorld Official AmigaDOS 2 Companion

The only argument required for the SetDate command is FILE/A, which lets

you specify the file or directory to which you want to give a time/date stamp.

The argument can be a pattern, so you can change more than one file at a

time. The DATE and TIME arguments take the forms DD-MMM-YY and

HH:MM:SS, respectively. (See the Date command for an explanation of these

formats.)

Ifyou enter the command and the FILE/A argument without a DATE or

TIME, SetDate will stamp the file with the current contents of the system

clock. If you use the ALL/S argument, SetDate will stamp all the files that

match the FILE/A argument in the current directory and every directory below

the current one. Thus, to give every file and directory on a disk in the internal

drive a time/date stamp that reflects the current setting of the internal clock,

you enter:

SETDATE DF0:#? ALL

FileNote: Commenting on Files

When using AmigaDOS, you should try to make your filenames as descriptive

as possible. Descriptive filenames, however, tend to be long and annoying to

type repeatedly. AmigaDOS provides relief from this dilemma by letting you

append a 79-character comment to a file using the FileNote command. This

comment is printed when you use the List command to view the files in a

directory.

The template for FileNote is:

FILE/A,COMMENT,ALL/S,QUIET/S

The FILE/A argument lets you specify the file or directory to which you want

to append a comment. The argument can be a name or a pattern; you can thus

give multiple files the same comment.

The COMMENT argument is the string of characters that make up the

comment. As with just about everything else in AmigaDOS, you have to

put quotes around the entire comment if it contains a space. Ifyou want to

include quotes inside the comment, you have to precede each with an asterisk

and\)\it quotes around the entire comment, even if it doesn't contain a space.

For example, to append the comment Outline for "Operation Recycle" to a

file named recycle.txt, you enter:

FILENOTE recycle.txt "Outline for *"Operation Recycle.*""

Manipulating Files and Devices

Note that the COMMENT argument is not required. When you leave it off,

you delete the comment from the specified file or files. FileNote displays a

message with the filename and the word "Done" whenever it creates a new

comment. The QUIET/S option suppresses this message.

The ALL/S option appends a comment to every file and directory in and be

low the current directory that matches the FILE/A argument.

MakeDir: Creating Directories

The most important reason for having a hierarchical file structure such as the

one used by AmigaDOS is that it lets you organize your files in a logical man

ner. You can group like files, and separate dissimilar ones. One of the most

important commands in helping you achieve this goal is MakeDir.

MakeDir is short for make directory; its purpose is to create a place where you

can store files that share a similar function. The template of the MakeDir com

mand is:

NAME/M

The lone argument is simply the name of a directory you want to create. For

example, to create a directory named DiskUtils in the Utilities directory of

your system disk, you enter:

MAKEDIR SYS:UTILITIES/Disk.Utils

Ifyou were already in the Utilities directory, you wouldn't need the absolute

pathname for the new directory. You could simply enter:

MAKEDIR DiskUtils

The /M modifier means you can create multiple directories with one MakeDir

command by separating the names on the command line with spaces. Once

you've created a directory, you can use it to store other files and directories.

Giving your directories logical names and a logical organization makes work

ing with your computer a lot easier.

Join: Concatenating Files

The Join command lets you create a file by copying the contents of multiple

files into the destination file. It has the following template:

FILE/M,AS=TO/K/A

AmigaWorld Official AmigaDOS 2 Companion

The FILE/M argument consists of any number of files or file patterns that you

wish to combine into one large file. None of the input files are changed by

joining them. The AS=TO/K/A argument is the name of the combined file. It

can't be the name of one of the input files. For example, to combine all the

script files in your S: directory into one file named all_scripts, you enter:

JOINS:*? AS adscripts

You can combine all types of files — programs, data files, icon files, and so on

— with Join, but most of the time you will use Join to combine text files. For

example, if you've used Dir with the ALL option to create files that list the

contents of every disk you own, you can create a master file of the contents of

all your disks by using the Join command.

Sort: Sorting Text Files

Let's say you captured a list of all the files in your Sys:System directory by

entering:

LIST >files.list Sys:System NOHEAD

When you type the file, you get the output shown in Figure 9-6, accurate but

unorganized. To sort the filenames in alphabetical order, you enter:

SORT files.list TO sorted.list

When you type sorted.list, you'll see that its contents are alphabetized (see

Figure 9-7) thanks to the Sort command, which sorts the lines of a text file. Its

template is:

FROM/A,TO/A,COLSTART/K,CASE/S,NUMERIC/S

The FROM/A argument names the file you want to sort, while TO/A identi

fies the sorted file produced by the command. Note that the two files can be

the same.

The COLSTART/K argument specifies the first character of the key to the

sort. A sort key is the character or group of characters in each line that the Sort

command tests to determine where each line should appear in the sorted out

put. If necessary, the Sort command will use the entire line as a sort key. By

default, the key to a sort begins with the first character on each line. You can

change the beginning character of the key with the COLSTART/K argument.

For example, ifyou sort the files.list with a different COLSTART/K, you get

different results. Enter the following:

SORT files.list TO newsort.list COLSTART 2

Manipulating Files and Devices 259

a\ Workbench

Km Disk

.Susten2.8J> TYPE fties. 11st
ixFonts.info ; 454
IxFonts | 3488
iskCopy.info !
iskCopy

ttor.Info
nifcor

jitor.Info
nltor

. info

omat. info
ornat
info
St

HQct»98 21:84:87

Figure 9-6 Presorted List

The List commandgives more information than Dir, but it doesn *t alphabetize its

output. Here is afile created by List before being sorted

When you type the file newsort.list (see Figure 9-8), you'll see that the lines are

sorted based upon the alphabetical position of the second character in each line,

instead of the first.

Normally, the Sort command is case-sensitive, ranking uppercase letters before

lowercase ones ("Z" comes before "a"). Ifyou use the CASE/S argument, Sort

does not differentiate between upper- and lowercase letters ("a" comes before

"Z"). Note that the Amiga OS 2.0 documentation from Commodore explains

this situation backwards.

The NUMERIC/S switch lets you sort numbers based upon their numeric

values, instead of their character values. For example, enter the following lines

into the Shell:

COPY * TO number.list

12345

9

3333

3

260 AmigaWorld Official AmigaDOS 2 Companion

ol Workbench JSLLO

I. System. 8:> SORT
».Svsten2.8:> TYPE
.info
ddMan iior
ddMonitor.info
Bindlionitor

BindMonitor.info

_U. info
HsfcCopn

fiITes i I utt TO
sorted.list

sorted.list

FixFonts.info
Fornat
Fornat.info
NoFastfien

fioFasttien. info
RexxHast
Rexxfiast. Info
Setnap :
Setnap.info
lSt28 §

12b
8384

326

16!

454
13248
454
1776
486
2312

4I

h—

h~
!

I
l-p.

I—"

I

I 1

l>:
n—

l—

r—*

t—

i—

N——

rued
rued
rued
rued

rued
rwed
rued
rued
rued
rued
rued
rued
rued
rued
med
rued

rued
rued

:87

S
25-0ct-98 21:6
28-Jun-98 17:2
28-*Jun-98 17:22:52

17:21:37

28-Jun-9|
28-Jun-98

28-Jun-96 17:22:51
28-Jun-98 17:21:48
28~Jun-98 17:22:53

I88:ffl
28»Jutt~98 17:22:52

Figure 9-7 Sorted List

Using the sort command on thefile shown in Figure 9-6, youproduce afile sorted by

thefirst letter ofthefilenames.

123

98

1

0

344

100

CTRL-\

(Be sure you press the CTRL key and the Backslash key together for the last

line; do not enter the characters C, T, R, L, -, and You just created a file

named number.list in the current directory that contains the lines of data you

typed. Now, sort the file with the following command:

SORT number.list TO sortl.list

Manipulating Files and Devices 261

\i-ii&*"xmm*m *

.info

itor
ddMonltor.Info

etnap
etnap, Info

M
exxtiast, info
indNonitor
tndMonitor.

«info
)iskCopy
HskCqpp. infa
FixFonts
Fixfoiits* Info
loFasttten
oFastrien.info
ornat
ornat.info
S

3488 h—rued 28-Jun-98

Figure 9-8An Alternate Sort Key

Using the COLSTARTargument, you can sort on some value other than thefirst letter

ofthefilenames. This is the samefile shown in Figures 9-6and9-7, but sorted on the

second character ofthefilename.

and type the output file. Figure 9-9 shows the output list. Note that its order is

not based on the numbers' numeric values, but on their character values. To

sort the file on purely numeric considerations, you enter:

SORT number.list TO sort2.1ist NUMERIC

Now, when you type the output file (see Figure 9-10), you'll see the lines of

the file arranged by their numeric values.

Commodore designed the Sort command to work with text files, but you can try

to sort binary files. Because Sort delineates lines by carriage return characters —

which binary files lack — such sorts are not very successful or meaningful.

Before tackling an extremely large file, consider that the Sort command can eat

up stack space very quickly. You should increase the size ofyour stack with the

Stack command. When I sort files, I normally use a stack of 50,000 bytes. I

reduce it again to 4,096 when I'm finished.

262 AmigaWorld Official AmigaDOS 2 Companion

4.Svsten2.8J> SORT (timber, list TO sort!.list
4kSysteti2;8r* TYPE sort!.Ust

2349

1333
344
11

98
.Systen2.e:>

Figure 9-9 Sorting Numbers

The Sort command treats numbers like any other character, and sorts them by their

character values, instead oftheir numeric values.

MakeLink: Creating Links Between Files

The MakeLink command creates a file that points to another, already existing

file. Whenever you use the name of the first file in a command, the command

actually accesses the second file. For example, ifyou enter:

MAKELINK SYS:link TO GDir

link

you get a directory listing of the current directory! The link file is actually a

copy of the file to which it is linked. If the linked file changes (GDir here),

however, the link file (Sys:link) automatically changes also. The template of

MakeLink is:

FROM/A,TO/A,HARD/S

Manipulating Files and Devices

~§i

4.S&Psten2.g:> SORT nuHber.Ust TO sort2.list NUMERIC
4,Systtepi2.8i> TYPE sort2. list j

188
123
344

3i§3§49
Syster>2.8:> g

Figure 9-10 The NUMERICArgument

By specifying NUMERICas an argument, youforce Sort to treat numeric characters as

numbers, instead ofas characters.

The FROM/A argument is the link file and cannot be a previously existing

file. The TO/A argument is the linked file. Files that are linked must be on the

same volume. Commodore's documentation states that the command creates

"soft" links — the default — that can exist across volumes. This is incorrect;

the command only creates links between files on the same volume, what the

manual describes are "hard" links accessible using the HARD/S keyword. Ac

cording to a source at Commodore, the MakeLink command does not work

correctly in the first release ofWorkbench 2.0. It will probably be fixed in later

releases, but, for now, I would avoid the MakeLink command.

Install: Making aVolume Bootable

When you initialize a floppy disk with the Format tool, you prepare the disk to

store Amiga program and data files. The Install command goes one step fur

ther; it sets up a disk so that you can boot your Amiga with it. Install^ tem

plate follows:

DRIVE/A,NOBOOT/S,CHECK/S,FFS/S

264 AmigaWorld Official AmigaDOS 2 Companion

DRIVE/A is the device name of the floppy drive that contains the disk you

want to make bootable. To make a floppy disk in the internal drive bootable,

you enter:

INSTALL DFO:

The NOBOOT/S argument reverses the action of the Install command; it

overwrites the boot block of a bootable disk and makes it nonbootable.

The CHECK/S argument does not write anything to the disk. Instead, it ex

amines the disk to determine if it has a valid boot block. Some virus programs

modify a disk's boot block, and some commercial programs do the same as

part of their copy-protection schemes. When CHECK/S reveals a nonstandard

boot block, you have to decide whether the cause is a virus or a copy-protec

tion scheme. The best way to detect a virus is to use VirusX, a public-domain

program written by Steve Tibbets. You can obtain a copy ofVirusX from an

Amiga users' group, a company that distributes public-domain programs (they

advertise in the Amiga magazines), an electronic bulletin-board system (BBS),

or an on-line information service such as PeopleLink, CompuServe, GEnie, or

BIX. Install is very useful in combating viruses because it destroys boot-block

viruses.

The FFS/S argument lets you install the boot block of the FastFileSystem in

stead of the default, which is the old file system (OFS).

DiskDoctor: Repairing DamagedVolumes

When you insert a disk into a drive, AmigaDOS attempts to validate the disk.

If the disk validator finds errors, it reports that the disk is unreadable. (A com

mon cause is ejecting a disk from the drive while the drive's disk-activity light

is on.) To recover as many files from the damaged disk as possible, you use the

DiskDoctor command, which has the template:

DRIVE/A

Unlike some commercial and public-domain disk recovery utilities,

DiskDoctor writes to the damaged disk. Because of this, you may want to try

another utility such as the public-domain DiskSalv before using DiskDoctor.

DiskSalv does not change the damaged disk, but tries to copy as much infor

mation off it as possible. You can run DiskDoctor after you've run DiskSalv,

but DiskSalv is useless ifyou've already run DiskDoctor on a disk.

When you run DiskDoctor, it prompts you to put the damaged disk in the

drive. It then reads every cylinder on the disk, trying to recover all the files.

When it recovers a file, it prints the filename. It also prints the location of any

Manipulating Files and Devices

errors it finds on the disk. If DiskDoctor is unable to recover the root block of

the disk, it renames the disk as "Lazarus." When DiskDoctor is finished with a

disk, you should immediately copy all the recovered files to a good disk. You

can then try DiskDoctor on the disk again, but your chances of recovering

more files are slim. After treating a disk with DiskDoctor, you should reformat

the disk (with the normal option, not the quick option!) before using it again.

If the disk doesn't work correctly after reformatting, throw it out.

The AmigaDOS Editors

Besides the MicroEMACS editor in the Workbench Tools drawer, two other

text editors, Edit and Ed, come with your Amiga. You can access both through

AmigaDOS. Both of these programs are heavily documented in the Using the

System Software manual from Commodore, so I won't repeat that discussion

here. Instead, I'll provide an overview of the philosophy behind each editor

and detail some of the points the Commodore documentation overlooks.

The Edit Command

A line-oriented editor, Edit lets you edit a source file one line at a time, al

though it does support some global actions. The advantages of Edit are that it

can work with a file of any size and that it can edit binary files. The disadvan

tages to Edit are legion. You can't scroll around in a file, positioning your cur

sor to make changes in the text. Edit doesn't have a cursor, and you can only

have one line of the file available for editing at a time (see Figure 9-11). You

can only see more than the current line by entering a special command!

To move from one line to another, you enter commands such as N (next), P

(previous), and Mn (move to line n). Once you move to the line you want to

edit, you still can't directly change anything on the line. For example, say the

current line contains a misspelled word, such as "computir." To change the "i"

to an "e", you have to enter the command:

E/i/e/

To insert the word "Red" between the words "Go Sox" on a line, you have to

enter:

A/Go /Red /

or

B/ Sox/ Red/

266 AmigaWorld Official AmigaDOS 2 Companion

kSusten2.8:> EDIT SJSTRRTOP-SEOUENCE

opy >NIL: ENURRC: ran:env all quiet noreq

Figure 9-11 The Edit Editor

Because it is line-oriented. Edit only lets you work on one line ofafile at a time. Even

then, you can't edit the line directly;you must use awkward commands.

Too hard to learn and use, line-oriented editors went out of style in the 1970s

and were replaced by screen-oriented editors. The Edit command is unsuited

for creating the script and ARexx files you'll be using with your Amiga. Ifyou

need an editor that can handle files of any length and that can input binary

data, check out a commercial text editor such as TxEd from MicroSmiths or

CygnsEd Pro from ASDG. As far as Edit is concerned, I advise that you ignore

its existence completely. It's the first command I delete from my system disk

when I want to free up space.

The Ed Command

A step up from Edit, Ed is a screen-oriented editor. With Ed, you can scroll

around a text file using the cursor keys and position the cursor where you want

to insert or delete text. Ed is far more intuitive than Edit and far easier to use.

Figure 9-12 shows what Ed looks like when editing the Startup-sequence file.

Up to now, the biggest knock against Ed was that, on a machine that offers a

superb windowing interface, it supported neither the mouse nor menus.

AmigaDOS 2.0 changes that.

Manipulating Files and Devices 267

n\ Workbench

ersion

llt 21

y >WIt? EfiyRRC: ranseny
r erfir raHst rarii c 14|»bj
assign Ts ranit ;set up
if exists sys:Monitors
list >t:non-start sps:«
execute tJnon-start
end if
assigi

run >l__
wait >NIL:

2.8?Release*

,__, $m
BindDriveps
resident c^Execute pure add
resident clList pure add
resident ctRsslgn pure add
assign CLIPS: ran:clipboards
rtount speak:
nount aux:

*- lount pipe? -■
path ran: a

>*>'*< :^>4%

i%«r^ 5^-/2 Editing with Ed

The Ed editor shows one screen ofthefile at a time, and letsyou scroll around thefile

using the cursor keys. It also letsyou edit text directly.

To start Ed, you enter its name on the command line, followed by the name of

the file you wish to edit. If the file does not exist, Ed will create it. Thus, to

create a file in S: called new-startup, you enter:

ED S:new-startup

Ed offers some other options on its command line as its template shows:

FROM/A,SIZE/N,WITH/K,WINDOW/K,TABS/N,

WIDTH=COLS/N,HEIGHT=ROWS/N

The SIZE/S argument lets you determine how much memory to set aside for

the file you want to edit. The default is 60,000 bytes. Most command scripts

and ARexx programs will be much shorter. The WITH/K argument designates

a file containing lines of Ed commands. You can automatically edit the

FROM/A file with Ed commands you have previously stored in the WITH/K

file. Ifyou don't designate a WITH/K file, Ed uses the ED-Startup file found

in the S: directory.

The ED-Startup file is very interesting because it contains some undocu

mented commands, specifically SI and EM. The effect of these commands is to

.ZOO AmigaWorld Official AmigaDOS 2 Companion

reset the default Ed menus. (SI probably stands for Set Item, while EM might

mean End Menus.) You'll learn more about the Ed menus below.

The WINDOW/K, WIDTH=COLS/N, and HEIGHT=ROWS/N arguments

let you use an alternate console type (the default is CON:) and set the number

of characters the window can display horizontally and vertically. The WIN-

DOW/K argument takes the same form as it does with the NewShell com

mand (see Chapter 8). The TABS/N argument sets the number of spaces in a

tab stop; the default is 3.

Ed uses the cursor keys and mouse to position the cursor within a file, and has

two types of commands — immediate and extended — to perform operations

beyond simple character deletions and insertions. The immediate commands

are available through simple keystrokes; to access extended commands, you

first press the Escape key. Commonly used immediate commands are:

CTRL-A Insert a line at the cursor

CTRL-B Delete the line the cursor is on

CTRL-Y Delete from the cursor to end of the line

When you press ESC, an asterisk appears at the bottom of the Ed window.

This is your prompt to enter an extended command. Common extended com

mands are;

B Move the cursor to the bottom of the file

BE Cursor position is the end of a block of text

BS Cursor position is the start of block of text

DB Delete block of text marked by BE and BS

E/s/t/ Find the text s and replace it with t

F/s/ Find the text string s and position the cursor there

Q Quit Ed without saving the file to disk

RP Repeat the command; used with F and E

SA Save the file to disk

T Move the cursor to the top of the file

X Save the file to disk and and quit Ed

A new aspect ofEd is that many of these commands are now available through

menus. When you use the default ED-Startup, you gain access to the following

menus: Project, Movement, and Edit.

Project: The items in the Project menu are Open, Save, Save As, About, and

Quit.

Manipulating Files and Devices 2A&J

Open: The Open item calls up the standard Amiga file requester to let you

choose a file to edit. Ifyou have already loaded a file, Ed lets you cancel the

operation before you overwrite the file in memory.

Save: This item saves the file in memory to disk.

Save As: Save As calls up the standard file requester and lets you save the

current file under a new name.

About: This item displays information such as the tab and margin settings,

the start and end of the currently selected block, the size of the file buffer in

bytes, and the percentage of the buffer that has been filled with text.

Quit: Quit lets you exit Ed without saving the contents of the buffer. When

selected, it gives you a chance to change your mind before exiting.

Movement: The Movement menu deals with cursor positioning. Its items are

Top, Bottom, Find, and Backwards Find.

Top: Moves the cursor to the top of the file.

Bottom: Moves the cursor to the bottom of the file.

Find: This item first prompts you to enter a string at the bottom of the Ed

window. It then searches forward in the file from the current cursor posi

tion until it finds the specified string or reaches the end of the file.

Backwards Find: Almost identical to Find, this item searches for the string

from the current cursor position to the top of the file.

Edit: The Edit menu consists of Delete Line, Query-Replace, and Redisplay.

Delete Line: This item deletes the line under the cursor.

Query-Replace: When you access Query-Replace, it prompts you for the

string you want to replace in the file and then for the string you want to use

in place of the first string. Ed then searches for the first string from the cur

rent cursor position. If it finds the string, it swaps in the second string.

Redisplay: Redraws the output window.

By putting many of the common Ed commands into menus, Commodore has

made Ed much easier to use. The above menus and items are only a subset of
the Ed menus. To see all the menus, you must first rename the ED-Startup file

so that the Ed command can't find it:

RENAME S:ED-Startup S:Orig_ED-Startup

If you decide you don't want to use Ed with the extended menus, you can

always rename the file back to ED-Startup or call it explicidy with:

ED my_file WITH S:Orig_ED-Startup

2/0 AmigaWorld Official AmigaDOS 2 Companion

When Ed can't find the ED-Startup file, it opens with six default menus:

Project, Edit, Movement, Search, Settings, and Commands.

Project: In addition to the items listed above, the default Project menu now

includes New, Insert File, Write Block, and Save & Exit.

New: When you select New, Ed clears the file buffer (after asking you if

your really want to do it). You can then begin entering a new file. The first

time you save the file, you'll have to use Save As to give it a name.

Insert File: This item brings up the standard file requester, then inserts the

contents of the file you choose into the file buffer at the current cursor

position.

Write Block: Selecting Write Block brings up the standard file requester and

lets you save the currently selected block as a file.

Save &Exit: This item saves the current file buffer to disk and exits Ed.

Edit: The default Edit menu bears little resemblance to the one defined by

ED-Startup. The only item they have in common is Delete Line. The other

Edit items are Undo Line, Start Block, End Block, Show Block, Insert Block,

and Delete Block.

Undo Line: Ifyou want to reverse changes made to the line where the cursor

is positioned, you select Undo Line. Note that this item does not undo a

Delete Line command.

Start Block: When you select this item, the current cursor position is marked

as the start of a text block.

End Block: After marking the start of a block, you move the cursor to the

end of the block you want to define and select End Block. The block defini

tion stays in effect only as long as you make no changes to the text of the

file.

Show Block: This item moves the start of the currently selected block to the
top of the Ed window.

Insert Block: Copies the contents of the currently selected block to the cursor

position. Using Insert block does not deselect the current block.

Delete Block: Deletes the text of the current block.

Movement: The default menu adds Go to Line, Next Page, and Previous Page

to the Top and Bottom items defined in the ED-Startup Movement menu.

Go to Line: This item moves the cursor to the line number you designate.

Ed doesn't display line numbers, so you'll have to use your best estimate.

Manipulating Files and Devices 2* / 1

Next Page: Selecting this item scrolls the text one page down in the file. A

page is the number of lines currently visible in the Ed window.

Previous Page: Scrolls the text one page up in the file.

Search: The Search menu consists of Find, Find Next, Reverse Find, Reverse

Find Next, Replace, Global Replace, Query Replace, and Global Q-Replace.

Find: Find prompts you for a search string and then moves the cursor to the

next occurrence of that string in the file.

Find Next: Repeats the previous Find search, using the same string.

Reverse Find: Reverse Find lets you search for a string from the current cur

sor position towards the top of the file.

Reverse Find Next: Repeats the previous Reverse Find search, using the same

search string.

Replace: Replace prompts you to enter a search string and a replacement

string. Starting from the cursor position, it looks for the search string.

When it succeeds, it replaces the search string in the file with the replace

ment string.

Global Replace: As with Replace, Global Replace prompts you to enter a

search string and a replacement string. The only difference is that Global

Replace replaces every occurrence of the search string with the replacement

string from the cursor position to the end of the file.

Query Replace: This item is identical to Replace except that it asks you to

confirm the substitution of the search string with the replacement string.

Global Q-Replace: Performs a global replace, but it asks you to confirm each

replacement it makes.

Settings: The Setting menu has seven items: Set FN Key, Show FN Key, Reset

Keys, Right Margin, Left Margin, Ignore Case, and Case Sensitive.

Set FNKey: This item lets you assign any Ed-extended command to a func

tion key. You can see the current setting of a function key by selecting Show

FNKey, and erase the settings of the functions keys with Reset Keys.

Right Margin: Right Margin lets you set the column number of the right

margin. Left Margin does the same for the opposite side of the window.

Ignore Case: This item tells Ed to ignore capitalization when using the find

and replace functions. Case Sensitive sets the opposite condition.

Commands: The Commands menu has five items: Extended Command, Re

peat Last, Run File, AREXX Command, and Redisplay.

2* / 2* AmigaWorld Official AmigaDOS 2 Companion

Extended Command: This item is the equivalent of pressing the Escape key;

it brings up the Ed command prompt at the bottom of the window. You

can'then enter an extended command.

Repeat Last: This item repeats the last command you issued, whether from

the command line or a menu.

Run File: When you access Run File, it brings up the Amiga file requester.

You can then load and execute any file containing Ed commands. For ex

ample, if you renamed your ED-Startup file to Orig_ED-Startup to see all

the Ed menus, you can reset the menus by calling up Orig_ED-Startup

with Run File.

AREXX Command: This item lets you launch an ARexx script from inside

ED. For more on ARexx, see Chapter 11.

Redisplay: This item forces a refresh of the Ed window.

If you are just starting out with Ed, you should use ED-Startup and the lim

ited menus it provides. Often, the more options you have, the more confused

things can become. As you become proficient with Ed, you can graduate to the

default menus.

With the addition of menu and function-key support, Ed has become a far

easier and more powerful text editor. Between it and MicroEMACS, you have

two very good tools for creating and modifying AmigaDOS and ARexx scripts.

\ftforking with Devices

When you talk about AmigaDOS devices, you are talking about a number of

different things. An Amiga device can be a group of software functions that

communicate with some peripheral hardware, such as the printer device —

PRT: — which translates Amiga printer codes into the codes your printer

understands. An Amiga device can also be a group of related functions that

manage a software structure.The RAM: device redefines how the system treats

a certain portion of memory, causing AmigaDOS to see some ofyour RAM as

a disk drive.

AmigaDOS Devices are accessed and controlled by the device handlers in the

L: directory, the device drivers in the Devs: directory, device drivers for expan

sion hardware that you copy to the Expansion drawer, and handlers and driv

ers built into Kickstart. Generally, you can divide AmigaDOS devices into

those that are associated with the AmigaDOS filing system and those that are

not. The former group includes all the floppy drives, hard-disk drives, and

partitions on your system, and the RAM: device. The latter group includes

Manipulating Files and Devices 2*7O

PRT:, SER:, PAR:, and SPEAK:, which deal with the peripheral ports, AUX:,

RAW:, and CON:, which set up and communicate with console windows, and

the PIPE: and NIL: devices, which handle program input and output.

Hard-Disk Devices: In the past, getting hard disks to work with AmigaDOS

was a chore, because you had to define the characteristics of the drive in the

system mountlist file and mount the devices in the Startup-sequence. These

days, dealing with hard disks is much easier. Amiga hard-drive controllers,

whether from Commodore or third-party manufacturers, adhere to a standard

called Rigid Disk Blocks that stores the drive's characteristics on the drive itself

and automounts the drive when you boot your system.

All hard-drive controllers come with preparation software like the HDToolBox

that lets you format and partition the drive. Besides using supplied tools to .

prepare a drive, you may have to move the driver for your hard disk to the

Workbench Expansion drawer. With autobooting and automounting hard-

disk drives, however, you no longer have to worry about incomprehensible

mountlist entries.

Floppy Disk Devices: Like the current generation of hard drives, floppy disk

drives are automatically recognized and mounted by AmigaDOS when you

boot your Amiga. The floppy drives are named DF«:, where n is a number

from 0 to 3.

RAM: The RAM: device is a chunk of memory that acts like a disk drive. It

provides fast storage but, because it is memory based, you lose its contents

when you reboot your system. AmigaDOS automatically mounts the RAM:

disk and gives it the volume name Ram Disk when you first access the disk.

PRT: The printer device lets you access and control your printer.

PAR: The PAR: device lets you output data through the parallel port.

SER: The SER: device lets you communicate with serial devices through the

serial port.

SPEAK: With SPEAK: you can output text through the Amiga's voice output

system as easily as you direct output to the printer. It must be mounted before

use.

CON: The Shell uses the CON: device to control input and output for Amiga

console windows. In addition to the features of the Shell described in Chapter

7, it also supports a wide variety of codes that let you control various aspects of

the display. See the Echo command in the next chapter for details. CON:

automatically mounts when you boot your system.

274 AmigaWorld Official AmigaDOS 2 Companion

RAW: An alternative to CON:, the RAW: device is used by programs that

want to work on the input from the keyboard directly. Like CON:, RAW: is

automounted and always available.

AUX: The AUX: device provides unbuffered access to the serial port. By using

it instead of CON: for the Shell console, you can use the serial port as a loca

tion for Shell input and output, allowing you to control a Shell from a termi

nal hooked up to the serial port. AUX: must be mounted before you can use it.

PIPE: The PIPE: device creates a direct link between the output of one pro

gram and the input of another. The PIPE: device must be explicitly mounted.

NIL: A catch-all device, NIL: is where you send output you don't care about.

It is used a lot in command scripts to keep unimportant messages from clutter

ing the output window.

Most AmigaDOS commands access Amiga devices in one way or another; the

following commands work directly with the devices: Addbuffers, Binddrivers,

DiskChange, Mount, and RemRAD. Of these, Mount is by far the most im

portant.

Mount: Adding Devices

The Mount command adds devices to AmigaDOS. It specifies the name of the

device and any information AmigaDOS requires — such as the location of the

device's driver. The template for the Mount command is:

DEVICE/A,FROM/K

The DEVICE/A argument is the name of the device. This name must match

the name of an entry in the Devs:mountlist file or in a mountlist file you desig

nate with the FROM/K argument.

The standard mountlist for AmigaDOS 2.0 contains entries for four devices —

SPEAK:, PIPE:, AUX:, and RAD: (see Figure 9-13). You can only mount the

first three, however, because the driver for the RAD: device isn't present in the

Devs: directory. For example, to mount the SPEAK: device, you enter:

MOUNT SPEAK:

To make the Amiga produce spoken output, you redirect output to the

SPEAK: device. For example, to hear the mountlist file, you enter:

TYPE >SPEAK: DEVS:mountlist

Manipulating Files and Devices 2*7 J

n- \-:''

*# This is an exanple of a nount list entry for using the recoverable
ran disk. Depending on the anount of nenory you wish 'ta. dey#teON*^ *
it, you nay want to change th^H^9hCyI value, ^ ^ ; ^x;k\<*&; %\Z

Figure 9-13 The Mountlist

The Mountlist contains vital information about the devicesyou add to the system with

the Mount command Before the advent ofRigidDisk Blocks, knowledge ofthe

Mountlist was vital to operate a hard disk. Now, you use utilities such as HDToolBox

to prepare andpartition hard-disk drives.

To control the output you hear, you can send options to the SPEAK: device by

including the OPT keyword when you access SPEAK:. The options supported

are:

p###: Sets the pitch to a number from 65 to 320.

s###: Sets the speed from 30 to 400.

m: Sets the voice to male.

f: Sets the voice to female.

r: Gives the voice a robot-like quality.

oO: Options can't be changed in the output stream.

ol: Options are allowed in the output stream.

aO: Use translator.library.

al: Don't use translator.library; output data are phonemes.

dO: Use punctuation alone to break up sentences.

dl: Breaks on-line feeds, carriage returns, and punctuation.

2* / O AmigaWorld Official AmigaDOS 2 Companion

For example, to output the Startup-sequence file with a high-pitched, fast,

robotic voice, enter:

TYPE >SPEAK:OPT/r/p300/s350 SiStartup-sequence

Options are separated by slashes.

The AUX: device also uses a simple Mount command:

MOUNT AUX:

To create a process that lets a terminal attached to the serial port run

AmigaDOS commands, you enter:

NEWSHELLAUX:

The serial port will be the standard input and output for this process.

The other device you can mount from the mountlist is PIPE:, which uses the

output of one command as the input of another. To do so, you simply enter:

MOUNT PIPE:

To use PIPE: you designate a file that acts as a conduit between two programs.

For example, you can capture the output of a Dir ALL command in the Ed

editor by entering:

RUN DIR >PIPE:my_file SYS: ALL

ED PIPE:myJile

The PIPE: file uses a 4,096-byte buffer between the program supplying output

and the program using it for input. When the output program fills the buffer,

it halts until the input program reads from the buffer.

The standard 2.0 Startup-sequence automatically mounts the SPEAK:, AUX:,

and PIPE: devices. If you're tight on memory, you can edit the appropriate

Mount commands from the Startup-sequence file to free up a little memory.

Unless you obtain a commercial or public-domain device that you need to

mount, you may never have to issue the Mount command from the keyboard.

AddBuffers: Adding Disk Buffers

Each disk drive attached to your Amiga has a buffer associated with it. This

buffer speeds up access to and from disks by storing the most recently accessed

disk blocks in RAM, where programs can read from and write to them faster.

Manipulating Files and Devices 2* / /

The larger the size of the buffer, the faster the apparent access time to the disk.

The Addbuffers command lets you add and subtract memory from the cache

buffer of each drive. It has the following template:

DRIVE/A,BUFFERS/A

The DRIVE/A argument is the device name of the drive to whose cache you

wish to add or subtract memory. BUFFERS/N lists the number of 512-byte

chunks ofRAM you want to add to or subtract from the cache. If the number

is positive, the buffers are added; negative, and they are subtracted. You can't

reduce the size of the cache to less than one buffer. For example, to add ten

512-byte buffers to the cache for your internal disk drive, you enter:

ADDBUFFERS DFO: 10

Adding buffers has a price; any memory devoted to disk buffers is not available

to programs and data.

Binddrivers: Ties That Bind

In Chapter 5,1 discussed the Expansion drawer, which holds device drivers for

expansion hardware. The Binddrivers command matches the hardware with

the driver that accesses it. Binddrivers has no template. It should be one of the

first commands in the Startup-sequence file, where it can ensure that the sys

tem will be able to access and control your expansion hardware.

The DiskChange Command

Whenever you change a disk in one of the Amiga 3 1/2-inch floppy drives, the

system automatically detects the change and updates its internal lists accord

ingly. The DiskChange command lets you inform the system when youVe

changed a disk in a drive that cannot automatically inform AmigaDOS about

such changes.

What kind of drives are those? Any drive that lets you remove a disk and re

place it with another may require that you use DiskChange. Examples are

some of the new, high-density floppy drives, optical drives such as CD ROMs,

WORMs, and magneto-optical read-write systems, and even the 5 1/4-inch

drives that Commodore used to sell that let you read and write MS-DOS disks

with the Amiga. These days, CrossDOS, a utility from Consultron that lets

your Amiga floppy drives read and write 3 1/2-inch MS-DOS disks has just

about eliminated the need for the Commodore 5 1/4-inch drive.

2*7O AmigaWorld Oflficial AmigaDOS 2 Companion

DiskChange has the following template:

DEVICE/A

To tell the system you've changed the disk in a drive, you simply enter the

command, followed by the device name of the drive.

RAD: The Lost Command

Included in the Devs:mountlist is an entry for RAD:, a recoverable RAM disk.

Unlike RAM:, the contents of RAD: can survive a warm boot. RAD: is un

available under AmigaDOS 2.0, however, because Commodore did not supply

its device handler on the release disk.

This of course makes the RemRAD command superfluous. Designed to re

move the RAD: disk and return the memory it uses to the system memory

pool, RemRAD now has nothing to remove. In the future, I hope Commo

dore either incorporates RAD: into Kickstart or supplies a new driver; RAD: is

a useful device.

Conclusion

This chapter detailed the most important commands for manipulating the

AmigaDOS file system and devices. In addition to accessing the commands in

this and the previous chapter from the command line, you can also use these

commands from within command scripts, the subject of Chapter 10.

An AmigaDOS script file resembles any ASCII text file on your Amiga system.

You can create and edit it with Ed, see its contents with Type, and send it to

your printer by copying it to PRT:. The major difference is that scripts consist

ofAmigaDOS commands. Script files let you automate tasks that would re

quire multiple commands if entered into the Shell. The best example of a

script file is SrStartup-sequence. Every time you boot your Amiga, AmigaDOS

executes the contents of this file to configure your system. Ifyou entered all

the commands in Startup-sequence by hand, you'd have over 30 commands.

A script file is more than just a list of commands: it is a program. Commands

are executed one at at time, starting from the top and moving sequentially

through the script. Based upon the results of previous commands and user

input, however, the script can decide to execute some commands and not ex

ecute others. Controlling the action of a script as it executes is the province of

some special AmigaDOS commands.

The commands you'll learn about in this chapter are Ask, Echo, Else, Endlf,

EndSkip, Eval, Execute, FailAt, Get, GetEnv, IconX, If, IPrefs, Lab, Quit, Set,

SetEnv, Skip, UnSet, UnSetEnv, and Wait. Some of these can be used only in

a script, others are available from the command line but most often used in

scripts, and one, IPrefs, is here by default because it doesn't fit anywhere else.

The most important script command is Execute.

Running Command Scripts

The most common way to execute a command script is with the Execute com

mand. Execute takes a script file as input and oversees the execution of the

279

280 AmigaWorld Official AmigaDOS 2 Companion

individual commands. It also lets you include arguments on the command line

that are passed to the command script. Execute looks for the script file you

designate in the current directory first and then in the S: directory, which is

AmigaDOS' default storage location for script files.

Another way to execute a script is to call the script directly from the Shell. If a

script file has its s bit set, you can execute it by simply entering its name on the

command line. The Shell will search the current directory, the AmigaDOS

search path, and finally the S: directory for the script file.

The NewShell and NewCLI commands also let you specify an AmigaDOS

script that executes when you open a new Shell. (The ED-Startup file is not an

AmigaDOS script, but a list ofEd commands.) Finally, from Workbench, you

can execute a script by opening an IconX project (more on that later). Finally,

you can execute a script by rebooting you system, which of course executes the

Startup-sequence. No matter how you start them, however, AmigaDOS com

mand scripts use the same commands.

The Execute Command

The Execute command doesn't have a template. It simply expects that the first

argument passed to it will be the name of a script file. All other arguments are

passed to the script itself.

You can create a script file in any text editor or from the keyboard. Enter the

following:

COPY*TOS:my_script

DIR

CTRL-\

Now, to execute the script you've just created, enter:

EXECUTE my_script

The result of this one-command script is a listing of the current directory's

contents.

Execute requires the use of one or more temporary files when it executes a

script. It creates its temporary files in two places: the T: logical directory and

the :t directory (:t means a physical directory named t located in the root direc

tory of the current disk). The default Startup-sequence assigns T: to RAM:, so

AmigaDOS Command Scripts

you should have no trouble running Execute. Ifyou ever get the following
message:

Cannot create: ":t/Command-0-t01"

you'll know that Execute can't find a place to create its temporary files.

The Execute command lets you enter arguments for a script command on

the command line. Just as command arguments let you control the actions

ofAmigaDOS commands, script arguments let you control the action of
AmigaDOS scripts.

Why would you need to pass arguments to a script? Say, for example, that you

created a script that uses the List command to capture the contents of a direc

tory in a file and the Sort command to sort the filenames alphabetically. You

called the script Alist (for alphabetical list) and stored it in S:. By entering

TYPE SrAlist

you now see the script's component commands:

LIST >list.file NOHEAD

STACK 20000

SORT list.file TO sort.list CASE

TYPE sort.list

DELETE sort.list list.file QUIET

STACK 4096

This script is simple and effective, giving you an alphabetical listing of files (see

Figure 10-1), and cleaning up after itself. The problem is that it only works on

the current directory. To list another directory, you have to move to that direc

tory. By entering arguments on the command line, however, you can have the

script work on any directory you designate.

Execute recognizes a number of parameter substitution statements in scripts.

(A parameter is what you call an argument once it has been passed to its desti

nation.) The most important is .KEY, which defines the parameter variables in

the script.

A .KEY statement takes the form:

.KEY <parameter1 >,<parameter2>,<parameter3>,etc.

The parameters are variable names used in the script. After parameter substitu

tion, the variable name will stand in for the argument entered on the com

mand line. To see how this works, look at what happens to Alist when you

make some minor changes:

282 AmigaWorld Official AmigaDOS 2 Companion

monitors
lonitors.lnfo
lOhitorstore !
lonitprstore.Info
ewsort.ltst '—--Tired Today

35 ——rued Tt>day 22:58:23

irefs* info
rexxc

Shell.info

sort^Ust
* Ylist

Souls
tools,info
trashcan
trashcan.info
utilities
at i1It ies.Info
jbstartup
bttp.info

11_

-—wed B«
rwed 2S-0ct

—i—rwe<j 23-0ct

Mr rwed Z4-0ct

824 rHved
Dir ^~~-ri#ed
824 rwed

22:44:35
81:B4:24

;84i

Dct~98 15:28 _.
Dct-98 81:84:24

Figure 10-1 The Alist Script

Onefunction ofscripts is to create new "commands" by combining the capabilities of

two or more existingAmigaDOS commands. OurAlist script, for example, combines

the alphabetized listing ofDir with the information provided by List.

.KEY directory__name

LIST >list.file <directory_name> NOHEAD

STACK 20000

SORT list.file TO sort.list CASE

TYPE sort.list

DELETE sort.list list.file QUIET

STACK 4096

The variable "directory name" stores the first parameter passed to the script file

by Execute. In this case, it will be the name of the directory you want to list.

On the next line, the parameter name appears within brackets. When Execute

sees this, it substitutes the value of the parameter for the parameter name.

Thus, the argument you enter on the command line winds up in the parameter

variable called directory_name. When this variable is accessed by a command,

the command actually receives the value of the variable, which is the argument
entered on the command line. For example, ifyou enter:

EXECUTE Alist SYS:Utilities

AmigaDOS Command Scripts 283

Execute passes the argument Sys:Utilities to the parameter variable

directory_name. When directory_name is used by a command, the command

actually receives the variables value, Sys:Utilities. Thus, when it finally ex

ecutes, the List command looks like this:

LIST >list.file SYS:Utilities NOHEAD

and, in combination with the rest of the script, produces the output shown in

Figure 10-2. This shows how you can use a script file to make a custom utility.

,SYS:> EXECUTE flLIST,1
info
utoPoint
utoPoint.info
tanker
Ianker.info
:iock
lock,info

Display
Display.info
Exchange
Exchange.info
IHelp
IHclp.info

re.info
CapsLock

oCapsLock.info

nfo

SY$:UTIUTIE$
83 ——~rwed

4880

18768 rwed
516 rwed

13128 wed
478 rwed

2122
5w

11572 rwed
485 rued

rued

28-
8-Jun-
8-Jun-

-Jim-
-Jun-98

28-Jun-9B
28-Jun-98
28-Jun-98

28~Jutl-98
8~Jun-
8~Jun-

17:21:44
17:22:48

4444ed

468 rwed
7124 rwed
486 rwed

Figure 10-2Argumentsfor Scripts

The .KEYkeyword in a script letsyou pass an argumentfrom the command line into a

variable within the script. In this case, the argument is the name ofthe directory

(SYS:UTILITIES) you wish to list with the result shown here.

Ifyou don't include an argument for the directoryjname parameter on the

command line, the parameter takes the value of a blank space. In the example,

it would result in the listing of the current directory. You can define multiple

parameters with the .KEY statement; they must be separated by commas only,

no spaces. You can also have more than one .KEY statement in a script, but

only the first one is recognized. Of course, the .KEY statement must appear

before parameter variables in the script.

284 AmigaWorld Official AmigaDOS 2 Companion

Ifyou use multiple parameters in a script, Execute expects you to enter the

arguments on the command line in the same order the parameters are defined

in the key statement. You can alter the order of the parameters only ifyou

precede the arguments with the names of the parameters. For example, ifyou

have a script named My_script with the following .KEY statement:

.KEY paraml,param2,param3

it expects the arguments on the command line to be in the same order: ALL,

RAM:, and Sys:. You can change the order of the arguments by matching

them with the parameter names on the command line. For example:

EXECUTE My.script param3 SYS: ALL RAM:

alters the sequence of arguments by explicitly matching param3 with the first

argument. This is similar to the way you can use keywords to alter the order of

arguments for an AmigaDOS command.

Besides .KEY, Execute recognizes several other keywords.

.DOT s: Changes the character that precedes the Execute keywords to s.

.BRA s: Changes the character that precedes a parameter variable in a script to s.

.KET s: Changes the character that follows a parameter variable to s.

.DOLLAR s: Changes the character that separates a parameter variable from its

default value to s. The default delimiter is $. The keyword can be abbreviated

to .DOL.

.DEF parameter "value": Assigns the string "value"to the parameter variable

parameter.

The last two items point out how you can assign default values to parameter

variables. Once a parameter is defined with the .KEY statement, you can de

fine its value with .DEF. For example:

.KEY volume

defines a parameter called volume, and

.DEF volume "DFO:"

assigns the value DFO: to the variable. The default value is used ifyou don't

include an argument for the parameter on the Execute command line. Another

way to define a default value is when the variable is used in the script. Ifyou've

defined a parameter named device_name, you can assign the value PRT: to it

in the command script by separating the variable name from the default with a

AmigaDOS Command Scripts

$, as in <device_name$PRT:>. As with the .DEF statement, the default in

used when no argument is passed for that parameter.

Conditional Statements

AmigaDOS supplies a number of commands that let you test for conditions in

a command script and to take different actions based upon the results of the

test. You use the command If to create the test conditions, and the Endlf and

Else statements to set the branches.

If sets up a simple test, the answer to which will be true or false. It takes two
basic forms:

IF <condition>

<TRUE commands>

ENDIF

and

IF <condition>

<TRUE commands>

ELSE -

<FALSE commands>

ENDIF

In the first form, when the condition tested is true, the TRUE commands are

executed; when false, the script continues with the command after the Endlf

command. In the second form, the TRUE commands are executed if the con

dition is true, and the FALSE commands are executed if the condition is not

true. The conditions you can test for are found in the template of the If com

mand:

NOT/S,WARN/S,ERROR/S,FAIL/S,,EQ/K,GT/K,GE/K,VAL/S,EXISTS/K

(See "Keyword Modifiers" at the end of Chapter 7 for definitions of/S, /K, etc.)

Perhaps the most common condition tested for in command scripts is whether

or not a file exists. Such tests take the form:

IF EXISTS filename

One example ofhow to use this test is in the standard Startup-sequence script

for Amiga OS 2.0. Recall that on hard-disk-equipped Amigas, the Tools direc

tory is on the system disk, while on floppy-based machines, it is on the Ex-

tras2.0 disk. On a hard-disk system, the Startup-sequence wants to add Tools

AmigaWorld Official AmigaDOS 2 Companion

to the search path. Here is how it does so without generating an error on

floppy systems:

IF EXISTS SYS:Tools

PATH SYSrTools ADD

ENDIF

On a hard-disk system, the condition is true and the Path command is ex

ecuted. On floppy systems, the condition is false and the script avoids an error

by jumping over the Path command.

The WARN/S, ERROR/S, and FAIL/S conditions refer to the AmigaDOS

return codes. Whenever an AmigaDOS command finishes executing, it sets a

return code that you can test. 0 means that the command executed normally.

If the command encounters an unexpected condition but can still exit nor

mally, it sets the return code to 5, equivalent to a warning. For example, if the

Which command can't find the command you specify, it sets the return code

to 5. The same happens ifyou ask the Assign command if a particular logical

directory exists and the answer is no.

If a command encounters an error, it returns a 10, and if it fails completely, it

returns a 20. For example, ifyou try to have Type output a file that doesn't

exist, it returns a 10; ifyou neglect to pass it an argument, it returns a 20.

The return codes 5, 10, and 20 correspond to the WARN, ERROR, and FAIL

keywords. You use the keywords to see if the previous command returned one

of the error codes. If the return code is equal to or greater than the tested con

dition, the test is "true".

For example, ifyou have the Which command look for a particular command

on the path, you can test the results and take appropriate action:

WHICH >NIL: Display

IF WARN

ECHO "Display program not found on search path"

ELSE

DISPLAY mypicture

ENDIF

With this script, if a return code of 5 (WARN) or higher occurs, the message
appears on the screen. The FailAt command is often used in conjunction with

the If command. FailAt sets the level at which an error will cause an entire
script to abort. It remains in effect for one command only, so you should use it

just before executing a command that may fail. For example, ifyou wrote a
script that tries to type a nonexistent file, you will get a return code of 10. It

won't do you any good to test for this code, however, because by default, script
files abort if any command in them returns a code of 10 or better. To change

AmigaDOS Command Scripts

this default, you use the FailAt. For example, to continue running a script in

the event that Type doesn't find a file, you include a FailAt command in your

script just before the Type command:

FAILAT 11

TYPE myfile

IF ERROR

ECHO "File not found"

ENDIF

Because the fail level was set at 11, the script will not abort ifType can't find

myfile. The next line checks the return code set by the Type command and

prints an appropriate message.

The EQ/K, GT/K, and GE/K keywords let you test whether one string or

variable is equal to, greater than, or greater than or equal to another string or

variable. For example:

IF<parameterl>EQ"ALL"

To have the items compared as numeric values instead of strings, you include

the VAL/S keyword. The NOT/S keyword negates the result ofwhatever com

parison you're performing. For example,

IF NOT EXISTS myfile

is true if myfile does not exist. Similarly,

IF "ALL" NOT EQ parameter1>

is true if parameter1 does not contain the word "All." You can use NOT/S to

make up for some of the logical operations that aren't represented in the If

keywords. For example, NOT GT is the equivalent of less than or equal to,

and NOT GE is the same as less than.

EnvironmentVariables

Besides using variables created with the .KEY statement, command scripts can

also access environment variables, which come in two types: local and global. A

local environment variable is only accessible from within a specified process;

global environment variables are accessible from all processes running on the

system.

What are environment variables? They are values that describe and define your

current computing environment. Every AmigaDOS process has some default
environment variables that describe the process. In the Startup-sequence,

AmigaWorld Official AmigaDOS 2 Companion

AmigaDOS sets two global environment variables, Kickstart and Workbench,

to the version numbers of the Kickstart and Workbench used by your com

puter. Finally, you can set your own local and global environment variables.

Six commands deal with environment variables: Get, Set, and Unset deal with

local environment variables and GetEnv, SetEnv, and UnSetEnv deal with

global variables.

Local Variables

Whenever AmigaDOS creates a process, it sets up three environment variables

for the process: Process, RC, and Result2. Process contains the process number

of the process, RC contains the result code returned by the last command that

ran in the process, and Result2 contains the number of any exception or error

created by the last command. To see the values of the local environment vari

ables, you enter:

SET

AmigaDOS returns the short list shown in Figure 10-3. These are the values of

the variables for the current process. Ifyou create a new process with NewShell

or NewCLI, it will have its own local variables.

The template of the Set command is:

NAME,STRING/F

As youVe seen, when used without an argument, Set produces a list of the

local variables. When used with arguments, it lets you set local variables. For

example,

SET myname Bob Ryan

creates the environment variable name and sets its value to "Bob Ryan." When

you enter Set without arguments again, the new variable and its value are listed.

You can also set two local variables by executing the Version command, which

automatically creates two local variables — Kickstart and Workbench — and

sets their values to the current version numbers.

You can recall environment variables in two ways, with the $ operator or with

the Get command. Using the $ operator, you can use the variable from within
a command. For example, ifyou want to print the value of the myname vari
able in the Shell window, you enter:

ECHO $myname

AmigaDOS Command Scripts 289

o I Workbench

Figure 10-3 The Set Command

In addition to lettingyou create local variables, Set also displays anyyou've created

plus the three — Process, RC, andResult2— that are created whenyou open a Shell

The system responds:

Bob Ryan

Whenever $myname appears on the command line or in a script file, the value

of the variable myname is used in the command. (The Echo command is de

scribed later in this chapter.)

The Get command retrieves the value of the variable without using the $ op

erator. For example, ifyou enter:

GET myname

AmigaDOS responds

Bob Ryan

Ifyou use the $ operator and Get together, you get some interesting results.

For example, let's say you've created a variable my_var and assigned it the

290 AmigaWorld Official AmigaDOS 2 Companion

value my_name, and you've also created a variable my__name and assigned it

the value Bob. When you enter:

GET $my_var

you get the response:

Bob

Because both $ and Get return the contents of a variable, $ and Get together

return the contents of the contents of a variable.

To erase a local variable, you use the UnSet command. When you enter it

without an argument, it simply lists the local variables. When you enter it with

the name of a variable, it deletes the variable and its value. For example:

UNSET myname

deletes the variable myname. You can delete any local variable you set up or

any one set by the system. Whenever you close down a process, you erase the

local variables.

Note that any local variables you create in one process are inherited by any

Shells you spawn from the original process.

Global Variables

The global counterparts to Get, Set, and Unset are GetEnv, SetEnv, and

UnSetEnv. These three commands deal with variables that are available to all

processes running on the system.

SetEnv lets you set global environment variables available to all processes. It

has the same template as Set. To create a global variable named model and give

it a value "Amiga 3000," you enter:

SetEnv model Amiga 3000

When you enter SetEnv without an argument, you get a list of the local^ envi

ronment variables, not the list of global variables you'd expect. To see the glo

bal variables, you simply get a directory listing of the Env: directory, which is

normally assigned to RAM:Env. All global variables are stored in Env:

The GetEnv command and the $ operator both retrieve global environment

variables. The UnSet command deletes an environment variable.

AmigaDOS Command Scripts 2*j\

Global variables are particularly useful in command scripts, where you can use

them as loop counters. For an example, see the Eval command below.

Echo: Printing to the Screen

Oftentimes when you're executing a script, you want to print information to

the screen. This could be information about an error or exception encountered

in the script or the result of an action taken by the script. The Echo command

provides this capability.

Echo has the template:

,NOLINE/S,FIRST/K/N,LEN/K/N

Echo outputs a string to the Shell window. For example, ifyou enter:

ECHO "This is a test of Echo."

you'll see:

This is a test of Echo.

in the Shell window. Echo prints what is between the quotation marks as a

literal string. Echo can also output local and global environment variables. For

example, if you are in process 1 and enter the following:

ECHO "The current process is number: " $process

your Shell will read

The current process is number 1

The NOLINE/S argument suppresses the carriage return at the end of the line.

This is useful when you're prompting for input for the Ask command (more

on this later). The FIRST/K/N and LEN/K/N arguments let you output part

of a string only. The former defines the first character in the string that is out

put, and the latter determines the length of the output. For example:

ECHO "To be or not to be" FIRST 10 LEN 9

results in

not to be

292 AmigaWorld Official AmigaDOS 2 Companion

Console Control Characters

One of the most interesting uses for Echo is sending console-control characters

to the CON: device. Console-control characters let you make changes to the

console device such as clearing the window, changing the type style to bold or

italic, and using inverse characters for output.

Console-control characters come in two flavors: immediate commands and

escape-sequence commands. In Chapter 7, you learned about the immediate

commands involved in command-line editing. One more you should know

about is CTRL-L, the form feed character. This command clears the Shell

window and moves the cursor to the top of the window.

The most interesting console characters are the escape-sequence commands,

which are so called because they are all preceded by the escape character. You

can send these to the console device with the Echo and Prompt commands.

Because the escape character is nonprintable, the console device recognizes the

character combination *E as the escape character when it appears within a

string. The console device also recognizes *N as the newline character.

There are about 20 console-control escape sequences, but most are rarely used

formatting commands that are of little interest to most people. I've listed those

commands, with short comments, in Figure 10-4. The two most interesting

escape sequences are:

*Ec This sequence resets the graphics mode to normal and clears the screen.

*E[«;«;...mn This sequence sets the graphics rendition mode, where n is any

number of the following:

0 set type style to plain text

1 set type style to boldface

3 set type style to italic

4 set type style to underline

7 use inverse type

3w set foreground text color to n, where n is a number from 0 to 7

An set background text color to n, where n is a number from 0 to 7

To move down two lines, set the text style of the Shell window to bold italic

inverse, print a message, reset to plain text, and move the cursor down two

more lines, you enter:

ECHO "*N*N*E[l;3;7m Hello, World *E[0m*N*N"

AmigaDOS Command Scripts

*EC<i>n<d>P Inserts <i>n<d> spaces into the current line. If
<n> is absent, the default is 1.

*E[<i>n<d>H Moues the cursor up <l>n<d> nunber of lines. The
default is 1.

*EC<i>n<d>B Move the cursor down <i>n<d> lines; default is 1.

*E[<i>n<d>C Move cursor <i>n<d> spaces to the riantj default
is 1.

*EE<i>n<d>D Moues cursor <i>n<d> spaces to the left; default
is 1.

*EC<i>n<d>E Moves cursor to colunn 1, <i>n<d> lines down;
default is 1.

HE[<i>n-*d>F Moues cursor to colunn 1, <i>n<d> lines up;
default is 1.

ttE[<i>l<d>;-<i>c-<d5i-H Moves cursor to line <i>l*d>, colunn -^i^c-^d^.
**E[J Erases the screen fron the current cursor

position.

KECK Erases the current line fron the cursor to the
end.

E[^i>n-<!:d5i-L Inserts ^i^n^d lines above current cursor;
default is 1

*E[<i>n<d>M Deletes <i>n<d> lines; default is 1.
Deletes <l>n<d> characters under the cursor;
default Is 1.
Delete <i>n<d> lines fron the top of the uindou;
default is 1.

*ECT<i>n<d> Delete <i>n<d> lines fron the botton of the
uindou; default is 1.

it

Figure 10-4 Console Control Sequences

The control sequences recognized by the console device letyouformat output in a Shell

window. The sequences listed here are often less used than the ones described in the

main text.

Figure 10-5 shows the output of this command in a large font. The Shell-

startup file (see Figure 10-6) is a script that is executed by default whenever

you open a Shell. It contains three escape sequences to clear the Shell window,

use reverse video, and return to normal output. It even gives you aliases to

make access to these functions easier. To activate these options, use a text edi

tor to strip the semicolons from in front of the Alias commands and save the

file back to disk.

Ask: Getting Input

In addition to letting you output messages from a script, you can also input

information to a script using the Ask command. The template of the Ask com

mand is:

PROMPT/A

294 AmigaWorld Official AmigaDOS 2 Companion

Figure 10-5 Escape Sequence Example

This sequence skips two lines, sets the type style to bold italic inverse, prints the message

"Hello World," resets the type toplain text, and skips two more lines, all with one

command (see text).

The PROMPT/A argument is a character string that prompts the user for

input. The Ask command only accepts Y and N for input; it sets a return code

of 5 ifyou enter Y, and 0 ifyou enter N or press the Return key. To test for

input, you check the return code. For example,

ASK "Do You wish to Exit? "

IF WARN

QUITO

ENDIF

Ifyou enter a Y in response to the prompt, the If condition is true and you

execute the Quit command. Otherwise, you skip over the Quit command.

Another method of getting input for a script is described with the Skip com

mand, in conjunction with labels.

AmigaDOS Command Scripts 295

1,SYS:> TYPE S:Shell-startup
alias xcopy "copy clone *'
alias enaes rtertacs
2attas clear "echo *"»Ei:8*8HKEUl*" "
;a|las reverse "echo *"KEC8;BHKEr4i;38fiKElJ*"H
:alias i»or«al "echo *"*EE8;8H*Et4fl:31ft*E:rj**m

> M

70-<> 7#* Shell-Startup File

Whenyou create a new Shell this scriptfile is automatically executed unlessyou

designate another script with the NewShellFROMargument. By stripping the

comment characters (;)from infront ofthe Alias commands, you make the clear,

reverse, and normalfunctions available to you in your Shell sessions.

Using Labels in Scripts

You can label a specific point in a script using the Lab command, which helps

you control the flow of the script. Lab acts as a target for the Skip command.

It takes a single argument, a string of characters that are the label name. For

example:

LAB Marker

establishes a label named Marker within a script.

You use labels in conjunction with Skip. When a script encounters a Skip

command, it jumps forward to the label specified by the Skip. For example,

SKIP Marker

DELETE S:#?

296 AmigaWorld Official AmigaDOS 2 Companion

DELETE C:#?

LAB Marker

causes the Execute command to skip from the Skip command to the label

Marker; the two delete commands are not executed. If Skip doesn't find the

specified label, it skips all the commands until it reaches the end of the script

or encounters an Endskip command. Skip has the template:

LABEL,BACK/S

The BACK/S argument lets you tell Skip to search backwards through the

script for its label. This is very important for creating loops that execute some

commands again.

One of the most powerful features of Skip is its ability to accept your input

while a script is running. Ifyou use a question mark as the label in a Skip com

mand, the command accepts input from the keyboard and skips to the label

you enter. This is an excellent way to set up menus from script files. For ex

ample, ifyou have a script that creates a sorted list of files, you can ask where

you want the list to wind up.

LAB Begin

ECHO "Enter P for Printer, S for Screen, A to append."

SKIP <* >NIL: ?

>

; Input is P

LABP

TYPEsordistTOPRT:

QUITO

j

; Input is S

LABS

TYPE sort.list

QUITO

j

; Input is A

LABA

IF EXISTS SYS:master_directory

JOIN SYS:master_directory sort.list TO SYS:mas_dir.temp

RENAME SYS:mas_dir.temp TO SYS:master_directory
ELSE

RENAME sort.list SYS:master_directory

ECHO "Master directory file created"

ENDIF

QUIT 0

AmigaDOS Command Scripts 2*}/

; No valid input, loop to top

ENDSKIP

ECHO "Invalid input, try again"

SKIP BACK Begin

This script lets you input either a P, S, or an A, which instruct it to print your

sorted list file, output it to the Shell window, or append it to a master directory

file, respectively. Note that your input to the Skip command must be followed

by a Return keypress. I've set off the different parts of the script with com

ments lines that begin with a semicolon (;). You include comment lines in a

script to describe what is going on in case you want to change a script at a later

date. Here, I use comments to make the script easier for me to follow.

Take careful notice ofhow the script handles bad input. Ifyou enter anything

other than P, S, or A, the Skip command falls through to the EndSkip com

mand, from which, after printing a message, the script skips back to the Begin

label. Note also the test made when you select the append option. If

master_directory exists, the script appends your sort.list file to it; if it doesn't

exist, the script makes sort.list the master directory file, ensuring that it will

exist the next time you run the script.

Note also the use of the Quit command. This causes the script to exit and set

the indicated return code. If you nest scripts, you can test this return value in a

script that calls the exiting script. For example, to exit a script and return a

warning, you use the command:

QUIT 5

TheWait Command

Often, you want to pause the execution o£a script to give a command time to

complete execution or to give the user time to read some output before con

tinuing with a script. You may even want to wait for a specific time before

executing a command. The Wait command handles these functions. It has the

following template:

/N,SEC=SECS/S,MIN=MINS/S,UNTIL/K

By default, Wait suspends execution of the script for one second. Ifyou enter a

number, Wait suspends execution for that number of seconds. You can use the

SEC=SECS/S keyword to make this clear in your scripts, although, because

seconds is the default this keyword is redundant. You use the MIN=MINS/S

keyword to set the wait time in minutes.

298 AmigaWorld Official AmigaDOS 2 Companion

UNTIL/S waits until the system clock reaches the specified hour and minute.

For example, ifyou have a telecommunications package named CompCom

that you've set up to automatically access a stock quotation service and down

load information about your portfolio, you can initiate this procedure auto

matically at 5:30 PM with the following script:

WAIT UNTIL 17:30

CompCom

Eval: Evaluating Expressions

The Eval command lets you perform integer arithmetic in AmigaDOS. You

can take actions within a script based upon the results of Eval. The command's

template is:

VALUE1/A,OP,VALUE2,TO,LFORMAT/K

Eval requires only one argument. For example, ifyou enter:

EVAL 100

you get the response:

100

To get useful results out of Eval, you have to enter an arithmetic or logical

expression using the OP argument. The keyword OP itself is optional and is

rarely used. The operations performed by Eval are listed in Figure 10-7. Some

example Eval expressions and their results are:

EVAL 12 + 6

18

EVAL 15* 3

45

EVAL 13 / 3

4

EVAL 13 MOD 3

l

Note that Eval performs integer arithmetic only; ifyou enter a number with a

decimal point, the part to the right of the decimal point gets truncated. If the

answer contains a decimal, the decimal part is dropped, which is how 13 di

vided by 3 comes out to be 4. The MOD operator shown above gets its results

AmigaDOS Command Scripts 299

by dividing the first number by the second and then outputting the remainder
of the division.

Funct ion

Rddition

Subtraction
Multiplication
Division
Modulo

Logical FIND
Logical OR
Logical NOT
Logical exclusive OR
Negate

Shift Left
Shift Right
Bitwise Equivalence

Operator

+
_

ff

/

MOD

&
1

NOT
XOR

«

»

EQU

Figure 10-7Eval Operations

Although Eval supports a lot offunctions, the simple arithmetic and logicalfunctions

are used most commonly. The bit-manipulationfunctions are rarely used.

Many of the Eval operations are designed primarily for programmers to use.

The great majority of people have no need to OR or Left Shift a string of bi

nary digits. Likewise, it will be rare that you use the LFORMAT/K argument,

which lets you output the results of Eval in hexadecimal (%X), octal (%O),

decimal (%N), or character (%C) format. (LFORMAT/K also supports the

newline character (*N), which I always use to make sure the cursor moves

down to the next line.) To convert the number 58, for example, from decimal

to hexadecimal, you enter:

EVAL 58 LFORMAT "%X2 *N"

and Eval returns

3A

You specify the number of digits in the output by including a decimal number

after the symbol for the type of output. You can also specify hexadecimal and

300 AmigaWorld Official AmigaDOS 2 Companion

octal numbers for input. Hexadecimal numbers are preceded by Ox or #x; octal

numbers are preceded by 0 or #. For example, to add a hexadecimal number to

a octal number and see the results in decimal, you enter:

EVAL 0x2F +017

and Eval returns

62

In addition to constants, you can also use parameter variables and environment

variables in an Eval expression. For example:

.KEY input

.DEF input 10

SET constant 20

EVAL >ENV:answer <input> + $constant

ECHO $answer

This script outputs the number 30 ifyou don't include a value for input on

the Execute command line. Note that by directing the results of Eval into

Env:, you automatically create the global environment variable answer, which

is available to other commands in the script. One use for this facility is to cre

ate looping structures. For example:

.KEY command

.DEF command DIR

SETENV loopcount 3

LAB Begin

EVAL $loopcount

IFEQ0

QUIT 0

ENDIF

<command>

EVAL >ENV:temp $loopcount - 1

SETENV loopcount $temp

SKIP BACK Begin

This script runs the Dir command three times. (It will run some other com

mand ifyou enter the command name on the Execute command line.) By

using Skip BACK, it loops to the Begin label until the value of the loopcount

variable is 0. Because loopcount then satisfies the test, the script exits. Note

how every time through the loop between the Begin label and the Skip com

mand, the value of loopcount decreases by one. Eval sets the value of temp to

the current value of loopcount minus 1; the SetEnv command that follows
resets loopcount to the value of temp. As you can see, Eval gives you a great

AmigaDOS Command Scripts

deal of flexibility in what commands your script executes and how many times

it executes them.

The Startup-Sequence File

The most important script on your Amiga is the Startup-sequence file. It con

tains the commands that AmigaDOS executes whenever you boot your system.

To illustrate how AmigaDOS scripts work and exactly what the most impor

tant script on you computer does, I'll go through the standard Amiga OS 2.0

Startup-sequence file, line by line. First, here is the file in its entirety.

VERSION >NIL:

FAILAT 21

SETCLOCK >NIL: LOAD

COPY>NIL: ENVARC: RAM:Env ALL QUIET NOREQ

MAKEDIR RAM:t RAMxlipboards

ASSIGN T: ram:t ;set up T: directory for scripts

IF EXISTS SYS:Monitors

LIST >T:mon-start SYS:monitors/-#?.info LFORMAT="RUN >NIL: %s%s"

EXECUTE T:mon-start

ENDIF

ASSIGN ENV: ram:env

RUN >NIL: IPREFS >NIL:

WAIT>NIL:5

ADDBUFFERS >NIL: DFO: 15

ECHO "Amiga Workbench Disk. 2.0 Release Version $Workbench"

BINDDRIVERS

SETENV Workbench $Workbench

SETENV Kickstart $Kickstart

RESIDENT GEXECUTE PURE ADD

RESIDENT CrLIST PURE ADD

RESIDENT GASSIGN PUREADD

ASSIGN CLIPS: RAMxlipboards

MOUNT SPEAK:

MOUNT AUX:

MOUNT PIPE:

PATH RAM: C: SYS:Utilities SYS:Rexxc SYS:System S: SYS:Prefs

SYS:WBStartupADD

IF EXISTS SYS:Tools

PATH SYS:Tools ADD

ENDIF

RexxMast >NIL:

302 AmigaWorld Official AmigaDOS 2 Companion

IF EXISTS S:User-startup

EXECUTE S:User-startup

ENDIF

LOADWB

ENDCLI >NIL:

Now, let's look at the Startup-sequence file, line by line.

VERSION >NIL:

You might wonder why you'd want to execute the Version command, only

to send the output to NIL:, the Amiga black hole device. The answer is that

Version also sets two local environment variables — Kickstart and Work

bench — when it executes. These variables carry the version numbers of

your copies of Kickstart and Workbench.

FAILAT21

This is for Amiga 500 owners who don't have battery-backed clocks. Ifyou

don't set the return code to above 20 and you don't have a battery-backed

clock, the next command would abort the entire Startup-sequence.

SETCLOCK >NIL: LOAD

This command sets the system clock from the battery-backed clock. The

only output SetClock sends to the screen is a carriage return. Because these

aren't terribly aesthetic, they are sent to NIL:

COPY >NIL: ENVARC: RAM:Env ALL QUIET NOREQ

By copying the contents of Envarc: to RAM:Env, the Startup-sequence

ensures that IPrefs and the Preferences editors can access the settings files.

Also, this command creates the RAM: disk, which is mounted automatically

the first time it is accessed. The ALL option ensures that the EnvarcSys

directory is also copied; QUIET, NOREQ, and the redirection to NIL:

ensure that nothing is displayed to the screen while this command sequence

is executing.

MAKEDIR RAM:t RAMxlipboards

The MakeDir command sets up some important directories on the RAM:
disk.

ASSIGN T: RAM:t ;set up T: directory for scripts

Assigns the logical directory T to RAM:t. You need a T: directory before

you can execute a command in a script that uses substitution.

AmigaDOS Command Scripts

IF EXISTS SYS:Monitors

Sys:, of course, refers to the boot disk. My Amiga 3000 came with a Moni

tors drawer; floppy-based systems do not. This command checks for the

presence of the drawer and skips the next few commands if the drawer is

absent.

LIST >T:mon-start SYS:monitors/^#?.info LFORMAT="RUN >NIL: %s%s"

Now we're having fun. This command creates a script file (note the

redirection to T:mon-start). Each line of the script file reads "RUN >NIL:

pathname!filename' The pathnames and filenames are those of all the moni

tor projects youVe moved into the Monitors drawer.

Note the use of the tilde character (-) in the pattern matching wildcard.

This character means NOT; it negates the rest of the search pattern. Thus,

-#?.info actually means match all the files that do not end. with .info.

EXECUTE T:mon-start

Executes the script created with the previous command. Because it is the the

default tool of all the monitor projects, the Run commands that make up

the script actually execute AddMonitor.

ENDIF

Signifies the end of the If block. Systems without Monitor drawers pick up

the script again with the following command.

ASSIGN ENV: ram:env

Determines the location of the global environment variables.

RUN >NIL: IPREFS >NIL:

Executes the IPrefs daemon, which remains active as long as the system is

on. IPrefs monitors the Preferences settings in Env: and reports to Work

bench when you change them with the Preferences editors.

WAIT >NIL: 5

This command gives IPrefs enough time to set itself up.

ADDBUFFERS >NIL: DFO: 15

Adds 15, 512-byte buffers to the default 5 allotted to DFO: to speed up disk

access.

304 AmigaWorld Official AmigaDOS 2 Companion

ECHO "Amiga Workbench Disk. 2.0 Release Version $Workbench"

Takes advantage of one of the local variables to report your Workbench

version number. The copyright notice that appears before this message is

built into Kickstart.

BINDDRIVERS

Looks in the Expansion drawer for device drivers that it can match to any

autoconfig hardware attached to your system.

SETENV Workbench $Workbench

Sets a global Workbench variable from the local one.

SETENV Kickstart $Kickstart

Ditto for Kickstart.

RESIDENT OEXECUTE PURE ADD

Adds an often-used command to the resident list. Note the use of PURE

and ADD are optional; this usage is a holdover from AmigaDOS 1.3.

RESIDENT OUST PURE ADD

Adds another often-used command to those kept in memory.

RESIDENT GASSIGN PURE ADD

And another. If memory is very tight on your machine, you can remove the

previous three commands from your Startup-sequence file.

ASSIGN CLIPS: RAMxlipboards

Sets the default location for clipboard information.

MOUNT SPEAK:

Forces AmigaDOS to recognize the speech device.

MOUNT AUX:

And the AUX: device.

MOUNT PIPE:

And the PIPE: device. Ifyou want to save a little memory, and you rarely
use these devices, delete the last previous commands.

AmigaDOS Command Scripts

PATH RAM: C: SYSrUtilities SYS:Rexxc SYS:System S: SYSrPrefs

SYS:WBStartupADD

Add a whole lot of directories to the AmigaDOS search path. The impor

tant thing to note here is the addition of the C: directory to the list. This

may seem redundant, considering that C: is always in the search path. How

ever, it is always the last item in the default path. Putting it closer toward

the front of the list means you won't be searching a lot of directories before

you search C: which, after all, is where most ofyour commands are. Also

note that the ADD keyword is not required.

IF EXISTS SYS:Tools

This test keeps the Startup-sequence from aborting on floppy-based sys

tems, where Tools is not on the boot disk but on Extras2.0.

PATH SYS:Tools ADD

Adds the Tools directory to the AmigaDOS search path for systems where

Tools is on the boot disk. The ADD keyword is not required.

ENDIF

End of the If block. Floppy-based systems take up the script again with the

next command.

RexxMast >NIL:

Starts up the ARexx resident process. Ensures that applications that use

ARexx won't have to force you to load the process.

IF EXISTS SrUser-startup

Ifyou want to add commands to the Startup-sequence without altering the

Startup-sequence file, you can create a file named SrUser-startup and put

the additional commands you want in there. If you don't create a User-

startup file, you skip the next command.

EXECUTE S:User-startup

If the program passed the previous test, you must have a User-startup file.

This command executes it.

ENDIF

Systems without a User-startup file rejoin the action with the next com

mand.

AmigaWorld Official AmigaDOS 2 Companion

LOADWB

Loads and runs the Workbench interface.

ENDCLI >NIL:

Ends the original Shell process. Ifyou want to have a Shell active when you

boot, you can delete this command.

That's it for our look at the Startup-sequence file. It contains many illustrative

examples ofhow to write scripts — especially ofhow to deal with potential

errors before they occur. Use it as a model ofyour own scripts, and don't be

afraid to modify it. Just remember to rename the original Startup-sequence file

to something like Orig-startup before you go with a modified startup.

IconX: Running Scripts FromWorkbench

Command scripts are not limited to AmigaDOS. The IconX (Icon eXecute)

command lets you execute a script by double-clicking on an Icon from Work

bench.

You access IconX from an IconX project. You create such a project by attach

ing a .info file to an AmigaDOS script file. See the section "IconEdit: A Practi

cal Example" in Chapter 6 to learn how to attach project icons to icon-less

files. Once you've created a project icon for your script file, you have to set the

Default Tool in the project's Information window to GlconX.

IconX projects can use two Tool Types, DELAY and WINDOW.

DELAY=: The DELAY Tool Type lets you enter a number that indicates how

much time will elapse between the termination of the script and the closing of

its output window. You can use it to keep the window open long enough to

see the output of the script. Ifyou enter:

DELAY=0

IconX will keep the window open until you enter CTRL-C. The DELAY value

isn't in seconds. On my Amiga 3000, a delay of 100 lasted about 3 seconds.

WINDOW=: This Tool Type lets you specify the console device, position,

and size of the output window created by IconX. The window information

takes the form:

console, device/x/y/w/h/title

consok.device: Lets you specify the console device to be used for the output

window. You should stick to CON:.

AmigaDOS Command Scripts

x: This specifies the distance in pixels from the left-edge of the screen to the

left-edge of the output window.

y: The distance in pixels from the top of the screen to the top of the output

window.

w: The width of the window in pixels.

h: The height of the window in pixels.

title: The name of the output window.

Even ifyou don't plan to use IconX for your own scripts, you should not de

lete it from the C: directory. Many commercial programs use it for installation

scripts.

The IPrefs Command

I stuck IPrefs in the last section of the last AmigaDOS chapter for a reason; it

is unlike any other AmigaDOS command. Because ofhow it operates, it is in a

class of programs called a daemon. When run, IPrefs remains active and in

memory for as long as your machine is on, although you can close it down by

sending it an attention flag using the Break command. It uses hot links to

determine when the settings of the Preferences editors have been changed, and

gets Workbench to update its display based upon those changes. IPrefs should

always be called from your Startup-sequence file. I guess that's why I put it in

this chapter.

Conclusion

We've reached the end of our discussion ofAmigaDOS command scripts and

AmigaDOS itself. As you become familiar with how commands and scripts

work, you'll build scripts that combine commands into new commands. As

long as you keep your important data files backed up, you shouldn't hesitate to

experiment with commands and scripts. They greatly extend your power over

your system.

308 AmigaWorld Official AmigaDOS 2 Companion

Unlike Workbench and the Shell, which have been included in one form or

another in every release of the Amiga OS, ARexx is new to the Amiga system

software. ARexx is not, however, new to the Amiga; it has been available since

1987 from its creator William Hawes. The fact that Commodore is making it

a permanent part of the operating system is a testament to Hawe's excellent

work in bringing ARexx to the Amiga.

What is ARexx? The simplest answer is that it is a programming language. It

lets you string together a number of instructions for your Amiga to execute. In

this regard, it doesn't differ much from Amiga Basic, the language it replaced.

ARexx, however, is a different programming language: ARexx programs can

communicate easily with other programs on your system and can send com

mands to these programs. For example, you can have an ARexx program issue

AmigaDOS commands to the Shell. In effect, an ARexx program can integrate

the capabilities of many different applications. ARexx lets you create meta-

applications by combining the capabilities of many individual applications.

This chapter and the next introduce ARexx and provide examples of using the

language. They are meant to supplement the reference information that Com

modore provides in Using the System Software. They hit on the high points so

that you can get started with ARexx quickly and easily, and give you enough

background so that you can understand the Commodore documentation.

Note that I use lowercase characters when talking about ARexx instructions, to

differentiate them from AmigaDOS commands.

309

310 AmigaWorld Official AmigaDOS 2 Companion

ARexx Roots

ARexx is the Amiga version of Rexx, a program developed by Michael

Cowlishaw ofIBM for IBM mainframe computers. Cowlishaw had a number

of goals in mind when he developed Rexx. Most importantly, he wanted a

language that was easy to learn and use. Consequently, he limited the number

of built-in instructions and eliminated the need to deal with data types. Every

value in a Rexx program is a string and can be stored and manipulated as a

string.

Cowlishaw developed Rexx between 1979 and 1982, and it became a part of

the IBM VMS operating system in 1983. It has since found its way to many

IBM platforms, including OS/2. It has also been ported to many other operat

ing systems, such as MS-DOS.

Since William Hawes brought it to the Amiga, ARexx has enjoyed a steadily

growing popularity, primarily because of its ability to tie multiple applications

together. To be available to ARexx programs, however, an application program

must contain an ARexx message port. At first, no Amiga programs had such a

port. Over the past couple years, however, programs as diverse as Digi-Paint 3

from NewTek, ProWrite 3.0 from New Horizons, and MicroFiche Filer Plus

from Software Visions have added ARexx support. With ARexx now an inte

gral part ofAmiga OS, you will see a lot more products supporting ARexx in

the future.

Language Basics

To run ARexx programs on your Amiga, RexxMast must be active. The stan

dard Startup-sequence for Amiga OS 2.0 loads RexxMast automatically, so it

will be active on your system after you boot your computer. If you've altered

the Startup-sequence, you can activate ARexx by opening the RexxMast icon

or by entering from the Shell:

SYS:System/REXXMAST

Ifyou're going to use ARexx, you should also make a logical assignment so

that RexxMast knows where you've stored your ARexx programs.

ASSIGN REXX: SYS:Rexxc

tells RexxMast to look for your ARexx programs in the Sys:Rexxc directory.

Introduction to ARexx

To create ARexx programs, you need to use a text editor. For most ARexx

programming, I use the Ed editor. For long, complicated programs, I use one

of the powerful commercial text editors available for the Amiga. For most jobs,

however, Ed is just fine.

Let's create a simple ARexx program. First, you have to call up Ed.

ED REXX:myprog.rexx

This creates the file myprog.rexx in the REXX: directory. You don't have to

include the .rexx extension to the filename; but I and many other people use it

as a reminder that the file is an ARexx program.

Once in Ed, enter the following:

/* An ARexx Program */

say 'The say instruction prints to the screen.'

say 'It prints anything between the quote marks.'

Now select the Save item from the Project menu, followed by Quit. (If you're

using the extended Ed menus, you can select Save & Exit.) From the com

mand line, enter the following:

rx myprog

The rx command passes the file myprog to ARexx, which interprets the con

tents of the file and produces the result:

The say command prints to the screen.

It prints anything between the quote marks.

You use rx to execute ARexx programs from the Shell command line. Notice

that the ARexx program uses the same output window as the Shell process that

called it.

Although the above program is simple, it illustrates two important points,

besides describing in a nutshell what the say command does. First, every

ARexx program must begin with a comment, which is defined as any text

string between the comment delimiters /* and */. More importantly, it illus

trates the fact that in ARexx, like all other programming languages, instruc

tions are executed in the order they appear in the program. Only by using

special instructions can you change the order of instruction execution.

AmigaWorld Official AmigaDOS 2 Companion

Constants andVariables

All computer programs manipulate information, and ARexx is no different. It

lets you manipulate data in the form of constants and variables.

A constant, also known as a literal, is simply a number or a string of characters.

For example:

'Amiga'

931

'The HMS Titanic'

are all examples of literals. They are the data.

You can also store data in variables. As the name implies, the data stored in a

variable can change. A variable has two components, a name and a value. Ex

amples ofvariable names are:

Amiga

TheHMSTitanic

Variable names, also called symbols, can't begin with a numeral. They can

contain any letter or numeral and periods (.), exclamation points (!), question

marks (?), and underscores (_). To assign a value to a variable, you use the

assignment operator (=). For example,

/* Using Variables*/

Name = 'John'

Name__2 = 'Mary'

John = Name_2

say 'The name contained in John is1 John

say

John = 5

Name= 10

say 'The sum ofJohn and Name is' John + Name

When you run this program, you get the following results:

The name contained in John is Mary

The sum of John and Name is 15

This program illustrates some important principles. First, you use the assign
ment operator (=) to give a variable a value. On the left side of the operator is

the variable name, on the right is its value. As the third line shows, the value
you assign can be the contents of another variable; it can also be the results of

Introduction to ARexx 01D

an arithmetic or string operation. In the fourth line, the say command printed

the literal as it appeared in the program, and then printed the value of the

variable John. Whenever a variable name appears in an instruction, the instruc

tion always works with the value contained in the variable. After the second say

instruction printed a blank line, the program assigned a number to the variable

John, which had previously held a character string. Although this is strictly

forbidden in most other languages, it is permitted is ARexx. You don't have to

declare that a variable can only hold one type of data. ARexx variables can hold

any type of data at any time. (The data itself is always stored as a string of char

acters. ARexx decides whether to treat it as numeric information or character

information depending upon how the data is used in an instruction.)

In addition to simple variables that contain one value, ARexx lets you create

compound variables that contain many values. A compound variable or sym

bol consists of a stem and a tail. For example, the compound variable

Name,number

consists of the stem Name, (including the period) and the tail number, while

the compound variable

Name.george

has a tail named george. To assign a value to a compound variable, you use the

assignment operator:

Name.number = "George"

Name.george = "Harry"

When you assign a value to the stem of a compound variable, you set the value

of every instance of that stem to the value. For example:

Name. = 'Mary'

assigns the value 'Mary' to both Name.number and Name.george. Compound

variables let you set up arrays of numbers and strings. More on these later.

Basic Operations

To store data in a variable, you use the assignment operator. To manipulate

data in other ways, ARexx provides nearly two dozen arithmetic, string, and

logical operators.

The most familiar operators are addition (+), subtraction (-), multiplication

(*), and division (/). You use these to manipulate numeric data. For example:

314 AmigaWorld Official AmigaDOS 2 Companion

/* Basic Math */

Numl = 4

Num2 = 3

say 'the sum of the numbers is ' Numl + Num2

say 'the product of the numbers is ' Numl * Num2

say 'the quotient ofNuml divided by Num2 is ' Numl/Num2

say 'the difference between Numl and Num2 is ' Numl - Num2

This program prints:

the sum of the numbers is 7

the product of the numbers is 12

the quotient of Numl divided by Num2 is 1.33333333

the difference between Numl and Num2 is 1

You don't use arithmetic operators with the say instruction only; you also use

it to set the value of variables. For example:

/* Miles Per Gallon */

distance = 493.5 /* distance traveled in miles */

gas_consumed = 14.6 /* gas used in U.S. gallons */

price = 1.65 /* price per gallon */

mpg = distance / gas_consumed /* miles per gallon */

say 'Our mileage for the trip was 'mpg 'miles per gallon'

ppm = (gas_consumed * price) / distance /* price per mile */

say 'and the price per mile was $'

The mileage, as computed by this program is just over 33.8 MPG and the

price per mile is just under 4.9 cents per gallon. Note the use of comments to

document the program, and the use of parentheses in the computation of the

price per gallon. The parentheses ensured that the multiplication was carried

out before the division.

The other arithmetic operators are exponentiations (**), integer division (%),
and modulus division (//). For example:

/* Still More Math */

numl = 10

num2 = 3

say numl ** num2 numl // num2 numl % num2

returns the values

1000 1 3

Introduction to ARexx 315

The exponentiation operator returned 10 raised to the 3rd power, or 1000.

The modulus operator returned the remainder of 10 divided by 3, while the

integer division operator returned the integer portion of the same operation.

In addition to the operations that act on numeric data, ARexx has three opera

tors for string data, all ofwhich concatenate one string with another. The first

operator is simply a blank space. Ifyou use it between two variables containing

character information or between a variable and a literal, you get a combina
tion of the two with a blank in between. For example:

/* Combining Strings */

First_Name = 'George'

Name = First_Name 'Bush'

say Name

prints out

George Bush

The second operator (II) concatenates without an intervening space. The third

concatenation operator is implied; ifyou don't leave a space between strings,

whether literal strings or variables, ARexx concatenates them. For example:

/* Read My Strings*/

first_name = 'George'

last_name = 'Bush'

name = first_name II last_name

namel = first_name'Bush'

say name namel

gives you

GeorgeBush GeorgeBush

Note that the Commodore manual sometimes shows the concatenation char

acter to be two Greek letters not available on an Amiga keyboard. Just remem

ber that the operator is two vertical bars produced by the shifted-Backslash

key.

Basic Input and Output

You've already seen how the Say command outputs information to the screen.

You can input data to an ARexx program with the pull command. By not hav

ing to specify the value of every variable when you create a program, the pull

316 AmigaWorld Official AmigaDOS 2 Companion

command lets you create far more general and useful programs. Compare the

following program with the Miles Per Gallon program used above.

/* Son of Miles Per Gallon*/

say 'The Automatic Mileage Calculator'

say 'Enter distance traveled'

pull distance /* enter the distance */

say 'Enter gasoline consumed'

pull gallons /* enter fuel consumed */

say 'Enter price per gallon'

pull price /* enter price of gas */

say

mpg = distance / gallons

ppm = (gallons * price) / distance

say 'Your car got' mpg 'miles per gallon on this trip.'

say 'You paid ' ppm 'cents per mile.'

The most important difference between the two programs is their versatility.

The first program calculated the mpg and ppm for one trip only. To change

the variables, you have to change the program. The second program pauses to

let you enter values for its variables from the keyboard as the program runs.

You can use it to calculate your mileage and costs for any trip, making it a

much more general and useful program.

The pull instruction is actually a special case of the more general parse instruc

tion, which lets you manipulate strings in many different ways. Pull takes its

input from the keyboard and, if the input is text, converts any lowercase char

acters to uppercase. In default mode, pull simply waits for you to enter data at

the cursor. You can set a prompt for pull by using the options instruction. For

example,

options prompt 'Enter input:'

will display

Enter input:

Whenever your program uses the pull command.

Branching Instructions

If all a programming language could do was execute instructions serially from

the top of the program to the bottom, they wouldn't be of much use. A pro-

Introduction to ARexx O 1 /

gram has to be able to make decisions based upon input it receives and results

it calculates. With ARexx, the basic decision-making instruction is if.

Like the If command in AmigaDOS, the ARexx if tests a condition to see if it

is true or false. The condition can be either a comparison of two values or a

logical expression. The if instruction works with the then instruction and the

else instruction to create logical control blocks in ARexx. To see how ifworks,

run the following program.

/* If I Were a Rich Man*/

say 'Input total of all assets'

options prompt 'Enter here:'

pull assets

say 'Input total of all debts'

pull debts

net = assets - debts

if net > 0 then say 'Wow! your net worth is $'net

if net = 0 then say 'Cutting it close, aren"t you?'

if net < 0 then say 'Money isn"t that important anyway'

Taking your input, the program tests the condition and prints the appropriate

message. It has made a decision and executed the instruction that handled that

condition. (Another item of note in this program is the use of the two single

quotes in the second and third if clauses. These let you use the single-quote

character within a string, instead of always having it delimit the end of the

string. One single-quote character still delimits a string, but two together puts

one single quote into the string.)

The above program is rather inefficient because it will test the equals and mi

nus conditions even if the plus condition is true. You can get around this in a

couple of different ways. For example:

/* More on if*/

say 'Input total of all assets'

pull assets

say 'Input total of all debts'

pull debts

net = assets - debts

if net > 0 then say 'Wow! Your net worth is $'net

else if net =0 then say 'You"re cutting it dose.'

else say 'Money can"t buy you love'

With this program, if the first condition is true, the other conditions are not

tested.

J 10 AmigaWorld Official AmigaDOS 2 Companion

You are not limited to one instruction after a then or an else instruction. You

can execute a block of instructions by using the do instruction. For example:

/* If-Then-Else Blocks */

say ' Enter first number'

pull numl

say ' Enter second number'

pull num2

begin:

say 'Do you wish to:'

say ' Add two numbers (a)1

say ' Multiply two numbers (m)'

pull choice

if choice = 'A' then do

sum = numl + num2

say 'The sum of numl ' and ' num2 ' is ' sum

end /* end a true block */

else if choice = 'M' then do

product = numl * num2

say 'The product of' numl ' and ' num2 ' is ' product

end /* end ofm true block */

else do

say 'You must enter an m or an a!1

signal begin

end

Remember that when you input a character or character strings with pull, the

input is converted automatically to uppercase. So, even though you can enter a

lowercase m or a, you must test the choice in the program with uppercase char

acters.

In addition to comparing two values with =, > (greater than), >= (greater than

or equal to), < (less than), <= (less than or equal to), and -= (not equal to), you

can also test Boolean expressions. For example, the test

if flag

will be true if the value of flag is 1 and false if it is 0, while

if-flag

sets the opposite condition. The following expression,

if (flag I count)

Introduction to ARexx 319

is true if either flag or count (or both) is 1, false if both are 0. The other Bool

ean operators available are & (AND) and && (Exclusive OR). Note that you

can also use Boolean operators to combine comparison operators, as in:

if (count = 5) & (response = 'Y')

In the above program, the do and end instructions delimit the blocks of code

that are executed based on the results of the condition tests. The signal instruc

tion, which is only executed if neither an a or an m is entered, jumps the pro

gram back to the begin: label. A label is simply a string of characters that ends

with a colon (:). It acts as a target for signal instructions.

Looping Structures

You usually use if-then-else blocks when you have multiple conditions to test

and you anticipate executing the code just once. Combined with some other

special instructions, the do instructions let you loop through a block of state

ments as many times as you like.

In loops, the do instruction takes three forms. In the first, do sets up a loop that

you execute a predetermined number of times. For example, try this program.

/* Looping a Set Number ofTimes */

say 'This program loops five times'

do 5

say 'Hello World' /* every programming tutorial needs

one Hello World program */

end

/* Looping a User-Set Number ofTimes */

say 'Enter the number of iterations' /

pull count

do count

say 'Hello World1 /* or maybe two... */

end

Of course, you can always loop forever.

/* Looping Forever */

say 'This program loops until you press CTRL-C

do forever

say 'Hello World' /* or three! */

end

320 AmigaWorld Official AmigaDOS 2 Companion

Each of these programs repeats the statements between the do and the end the

number of times indicated with the do instruction. In the third one, you have

to press CTRL-C to break out of the loop.

You can also set the number of iterations in a loop by taking a step-wise ap
proach:

/* Stepping Through a Loop */

do count = 1 to 10 by .5

say 'the square of'count' is 'count * count

end

This loop sets an initial condition, an end condition, and a step value. The

first time through the loop, count is set to 1. When end is reached, count is

incremented by the step value, .5, and the loop is repeated. The loop exits

when the count is greater than 10. This loop is similar to a FOR/NEXT loop
in BASIC.

Like a FOR/NEXT loop, this style of do loop is useful for stepping through an

array. For example:

/* Working with Arrays */

say 'Calculate class average and print the sorted scores'

options prompt 'Enter input:'

say 'Enter number of students in class'

pull number

total = 0

do i = 1 to number by 1

say 'Enter score of student #'i

pull score, i

total = total + score, i

end

do i = 1 to number-1 by 1

do j = i + 1 to number by 1

if score, i >= score.j then iterate

else do

temp = score, i

score, i = score.j

score.j = temp

end /*if*/

end /* inner do */

end /* outer do */

say 'In order, the scores were:'

Introduction to ARexx 321

do i = 1 to number by 1

say score, i

end

say 'The average was 'total / number)

In this example, you enter the scores into a group of compound symbols that

share the score, stem. This sets up an array of variables that you can access

using the stem plus a tail that identifies the location of the variable within the

array. The do loop is a natural way to step through such an array, letting you

access all the variables while using just one name.

The second part of this program is a bubble sort. It will sort any numeric or

string array. Every time through the inner loop, it "bubbles" the highest value

left in the unsorted part of the array to the current score.i variable. The iterate

in the comparison instruction jumps the loop to the end statement (if score.i is

greater than or equal to score.j, they are already in the correct order). The

bubble sort is not the most efficient sorting algorithm, but it gets the job done.

In many cases, you can't predict how many times you will be going through a

loop. The do instruction combines with two others, while and until, to handle

these indefinite situations. The while option goes like this:

/* Do-While Loop */

response = Y

do while response = 'Y'

say 'enter a number'

pull number

say 'The square of 'number ' is 'number ** 2

say 'Do you wish to square another number (Y/N)?'

pull response

end

The until option looks similar.

/* Do-Until */

tries = 0

do until flag = 1

say 'What is the product of 6 X 4'

pull response

if response = 24 then flag = 1

else say 'Incorrect, try again.1

tries = tries + 1

end

if tries = 1 then do

322 AmigaWorld Official AmigaDOS 2 Companion

say 'Correct! you got it on the first try!1

exit

end

else if tries = 2 then do

say 'Not bad, you only needed 2 tries.'

exit

end

else do

say That"s correct, 6X4 equals 24'

say 'You needed 'tries 'tries. Better hit the books.'

end

The while instruction keeps the loop running as long as certain conditions

remain constant. Until keeps going until a condition reaches a certain level.

Making a Selection

Oftentimes, when you have to make multiple comparisons to discover the

value of a variable, using a lot of if-then-else instructions strung together can

be difficult to code and understand. ARexx provides the ^^instruction for

such occasions. To illustrate, enter this program.

/* Menu Selector */

menu:

say 'Do you wish to:'

say 'a) Add two numbers'

say 'c) Cube a number'

say 'm) Multiply two numbers'

say 's) Square a number'

say 'x) Exit

options prompt 'Enter selection:'

pull answer

options prompt 'Enter number:'

select

when answer = 'A' then do

pull a

pullb

say a 'plus ' b ' equals ' a + b

end

when answer = 'C then do

pull a

Introduction to ARexx

say 'The cube of' a ' is ' a ** 3

end

when answer = 'M1 then do

pull a

pull b

say a 'times ' b ' equals ' a * b

end

when answer = 'S' then do

pull a

say 'The square of' a ' is ' a ** 2

end

when answer = 'X' then exit

otherwise say 'You must enter a menu item'

end

signal menu

The select instruction tests the when conditions until it finds one that is true.

After executing the then instructions, it falls through to the end instruction

without making any other tests. If none of the when conditions are true, select

executes the otherwise instruction. In the example above, ifyou don't enter

one of the recognized menu choices, you see the message:

You must enter a menu item

The program will loop until you enter the letter x.

ExtendingARexx with the Built-in Functions Library

Although I've glossed over some of the ARexx instructions and skipped over

others entirely, the above sections provide a basic working knowledge of the

ARexx language. ARexx is a small language, which is part of its appeal. Often,

however, you need access to more features than a small language can provide.

You can extend the features available to your ARexx program by using the

Built-in Functions library, external function libraries, and external hosts.

If you've ever programmed in the C language, you'll be right at home with the

Built-in Functions library. Like C, ARexx is a minimal language; it doesn't

have hundreds of instructions and keywords. Also like C, it has a standard

library of functions that provide essential I/O services and extend the language

in various ways. In C, you access the standard language extensions through

stdio.h; in ARexx the standard language extensions are in the Built-in Func

tions library.

324 AmigaWorld Official AmigaDOS 2 Companion

The ARexx Built-in Functions library consists of 87 functions concerned with

everything from manipulating individual bits to opening files and libraries.

You access these functions by calling them by name. (In the discussion below,

I capitalize the first letter of function names to differentiate them from internal

ARexx instructions.)

For example, one of the functions in the library — Show— lets you find out

the name of the available ARexx hosts currently active on your system. These

are programs that have ARexx message ports and are able to respond to ARexx

commands. You need the name of a port, however, before you can send it a

command. To see the port names, you enter:

/* Show Ports*/

say Show(ports)

On my machine, with the ProWrite 3.0 word processor active, this function

returns:

REXX AREXX ProWrite IPrefs.rendezvous

If you need to, you can assign the results of the function called to a variable,

and then, using the powerful parsing and string manipulations tools available

with ARexx, extract the names of each individual port. You could then test

whether the port you need is active.

With Show, you can also test to see if a specific external host is available. For

example, to test for the existence of the ProWrite host, you enter

test = Show(ports,ProWrite)

If the ProWrite port exists, the test variable will contain a 0, a condition you

can test. If the port isn't available and you need it to send commands to

ProWrite, you can tell the Shell to run ProWrite. More on that later.

The way Show is used in these two examples is representative ofhow you use

the functions in the Built-in Functions library. You call a function by name

and include its arguments in an ARexx statement. The functions will either

return with some values that you have to handle or it will send a return code

that you can check. Because the Built-in Functions library is automatically

activated when you start RexxMast, you can consider these functions to be as

much a part of the language as say and do.

You can find a short description of the Built-in Functions in Appendix B, and

more detailed syntax information in the ARexx portion ofyour manual. Here,

I'll concentrate on the functions you absolutely need to be proficient with

Introduction to ARexx 325

ARexx. These include the file handling functions and functions that communi

cate with and return information about external hosts. As you use ARexx more

and more, you can experiment with its outstanding string-handling functions,

as well as with the bit-manipulation and program-debugging functions.

Filing I/O with ARexx

Because ARexx proper doesn't provide any file-handling instructions, they

must be provided via Built-in Functions. The primary file-handling functions

are Open, Close, ReadCh, ReadLn, EOF, WriteCh, and WriteLn.

Open: Before reading from or writing to a data file from an ARexx program,

you must open the file. The arguments you send with the Open functions

define the logical name that other file I/O functions will use to access the file,

the AmigaDOS pathname, and a character — R, W, or A— that indicates

whether you're opening the file to read from it, write over it, or append infor

mation to the end of it. For example:

return = Open(file_ 1,'SYS:data1,'R')

tries to open the file Sys:data and makes its contents available for input. The

Open function returns a Boolean value that indicates whether it was successful.

(0 = failure, 1 = success). Note the use of quote characters around the

pathname and the mode indicator. Because the Open function passes these

values along to the AmigaDOS file system, you must enclose them in quotes to

avoid an Invalid expression error. Knowing when quotes are need and when

they are not is one of the most difficult aspects of learning to use ARexx. The

safest solution is to enclose all non-numeric arguments in quotes. Occasionally,

you may find that you needed two quote marks; at other times, none. Experi

mentation is the best teacher.

Ifyou try to open a file that doesn't exist for input, Open fails and returns a 0.

Ifyou try to open a nonexistent file for output, Open creates the file and re

turns a 1. Note that you can have a file open for input, close it, and reopen it

for writing in the same program.

Close: The Close function takes the logical name of a file as its argument. It

closes the file for I/O operations. Although ARexx closes all files when your

programs exit, you should close a file when you're done with it so that if the

system crashes before the program exits, you won't have errors on your disk.

ReadLn: The ReadLn function reads a line from the indicated logical file and

puts it into a variable. For example, if the file Sys:data is open for reading, you

326 AmigaWorld Official AmigaDOS 2 Companion

get the next line of data from the file by entering:

inputline = ReadLn(file_l)

Lines in a file are demarcated by the newline character, which is equivalent to a

carriage return. You read a file from the top down. Ifyou are at the end of the

file and attempt to read another line, the function returns a null string.

ReadCh: This function reads from an open file the number of characters you

supply in the argument. Its other argument is the logical name of the file.
«

EOF: Unlike some other languages, ARexx doesn't return an error ifyou at

tempt a read when you are at the end of a file. It simply returns a null string. If

you base branching decisions on whether you've read all the data from a file,

however, you want to know when the file is completely read. To learn this,

you use the EOF function. For example, assuming the file data_l is open, you

might read from it like this:

count = 0

do until EOF(data_l)

count = count + 1

names.count = ReadLn(data_l)

end

Close(data_l)

if count = 0 then say 'File data_l is empty1

This program segment reads the entire contents of the file data_l into the

array names.count. The until condition will skip over the body of the do loop

if the file contains no data.

WriteLn: This function writes a literal or a variable to the indicated logical file

and appends a carriage return to the end of the output line.

WriteCh: Writes a string or variable to the indicated file. It returns the num

ber of characters it wrote. For example, if the variable name_l contains a 12-

character string,

numchar = WriteCh(file_l,name__l)

say numchar

will result in

12

Introduction to ARexx

Putting these commands together, you get an idea ofhow to create and ma

nipulate data files for your ARexx applications.

/* Writing and Reading */

Open(file_l,'SYS:data7W)
name.l = "Katie"

name.2 = "Slim"

name.3 = "Mae"

do i = 1 to 3 by 1

WriteLn(file_l ,name.i)

end

Close(file_l)

Open(file_l,'SYS:data7R')
do until EOF(file_l)

sayReadLn(file_l)

end

Close(file_l)

^forking with External Hosts

Commodore did not include ARexx with Amiga OS 2.0 only because of its

wealth of features. The main reason is that a single ARexx program can control

the operations of any and all running applications that have ARexx ports, al

lowing you to mix and match the features of different applications to create

super applications.

The primary instructions and functions that provide access to external hosts

are address, shell, AddLib, Address, and Show. The first two are ARexx in

structions, the last three are functions in the Built-in Function library.

The AddLib Function

Of the commands listed, AddLib is special because it deals with ARexx librar

ies. It lets you add support libraries to ARexx. Libraries differ from external

hosts in that you can access the functions in them without having to specify

the library with the address or shell instruction. Once a library is added, you

access its functions just as you access the ones in the Built-in Functions library.

For example, to add the library Libs:rexxsupport.library to the ARexx system,

you enter:

AddLib("rexxsupport.library",0,-30,0)

AmigaWorld Official AmigaDOS 2 Companion

Hosts and Ports

Whenever your ARexx program issues a non-ARexx command, a function you

created within the program, a Built-in Function, or a function in another li

brary you added with AddLib, ARexx sends the command to the ARexx mes

sage port of the current external host program for execution. Only if the host

doesn't recognize the command does ARexx report:

Function not found

To see this in operation, run the following ARexx program:

/* Sending a Command to an External Host */

DIR

When you run this program, you get a directory listing of the current direc

tory! What's going on here? Dir, as you well know, is an AmigaDOS com

mand. When ARexx encounters Dir in the program, it checks first to see if the

command is an internal instruction, then if it is a function defined in the pro

gram, then if it's a Built-in Function, and then if it's a function in an added

library. After all this, it throws up its (figurative) hands and passes the com

mand along to the current host address. In this case, the current host is REXX,

which is synonymous with the Shell from which the ARexx program was in

voked. If the host can handle the command, it does. In this case, the Shell does

what it always does when it sees Dir, it loads and runs C:Dir.

RexxMast sets REXX as the current host when it starts up. To change the cur

rent host to one you choose, you use the address or shell instruction — they

are synonymous. For example, to change the host from the current Shell to

CygnusEd Professional, a text editor from ASDG, you enter:

address 'rexx_ced'

This instruction makes 'rexx_ced' the current host and REXX the "previous"

host. When entered alone, as in:

address

the address instruction swaps the current host with the previous one. When

you specify yet another host with address, such as

address 'ProWrite1

the current host is bumped to the "previous" position and the previous one is

bumped out of the picture.

Introduction to ARexx

To see the name of the current host, you use the Address function. Note that

address is an ARexx instruction — it is part of the core language — while Ad

dress is a function in the Built-in Functions library.

So see the name of the current host, you enter:

sayAddress()

the system responds with the name. Note that Address takes no arguments. To

see the names of all the active ARexx hosts, you use the Show function, which

was described above.

Putting it All Together

You now know how to find the names of the available external hosts (Show),

how to see the name of the current host (Address), and how to make any host

the current one (address and shell). The only things you're missing are the

commands and arguments to send to the different hosts.

If you've read Chapters 7 through 10, then you have an intimate knowledge

of the commands and arguments to send the REXX host. After all, the com

mands that the REXX host understands are the AmigaDOS commands! What

about the other hosts? Programs like Digi-Paint 3, MicroFiche Filer Plus, and

ProWrite 3.0? Each ARexx host understands different commands that are

documented in their manuals. To use them with ARexx, to combine them into

super applications, you must know what commands they support with their

individual ARexx interfaces.

Conclusion

You've seen what ARexx does and a bit ofhow it does it. The next chapter

documents an ARexx program that makes use of external hosts. Use it as a

guide for your own super applications.

Don't be lulled into thinking that you've seen all that ARexx has to offer.

Once you're comfortable with the basic language as I've outlined it here, check

out the many options, instructions, and functions that I never touched upon.

(You'll be amazed at the number ofways ARexx lets you dissect a string of

characters.) This chapter was designed to give you enough background to

make sense of Commodore's ARexx documentation. It was an introduction

to ARexx. I think you'll find it worth your while to get well-acquainted.

330 AmigaWorld Official AmigaDOS 2 Companion

The last chapter was concerned with the important ARexx instructions and

functions. This chapter presents a complete ARexx application. The point,

however, is not to supply you with an application (although that certainly is a

by-product of the chapter), but to give you a detailed, annotated example of

how ARexx works. By reading about what an ARexx program does line by line,

you should be able to see how they are put together.

In the example, I use ARexx instructions, Built-in functions, and commands

to two different external hosts. One of the hosts is the Shell, and the other is

ProWrite 3.1 from New Horizons software. Ifyou don't own ProWrite 3.1,

you simply stop entering the program where I indicate.

The Example Program

The first thing you need to do when writing a program is define what you

want it to do. I wanted a program that would create a file that contained the

name of every file on any one ofmy mounted volumes. Also listed, would be

the pathname of every file, the date it was created or last modified, and its size

in blocks. The list would also be alphabetized. I then wanted the file to be

marked with the name of the volume and the date the catalog was created, and

then output with page breaks to my printer. The result was Catalog Maker.

Just as I did with the Startup-sequence file in Chapter 10, IVe listed Catalog

Maker below with a comment for every line. See the section entitled "The

Unannotated Program" for a listing without the comments. This latter listing

is easier to follow if you're entering it into a text editor.

331

AmigaWorld Official AmigaDOS 2 Companion

Because I provide an annotated copy of the program, I don't include com

ments in the program itself. Normally, you'll want to use comments to remind

you of the functions performed by certain sections ofyour programs. Com

ments can be a life saver when you try to modify a program you wrote months

ago.

The Annotated Listing

In the listings, I've used lowercase for ARexx instructions, variable names, and

AmigaDOS filenames; upper/lower case for ARexx functions, and uppercase

for Shell and ProWrite commands. Last chapter, I used single quotes as the

string delimiters. This chapter, to demonstrate that they are equivalent, I use

double quotes as string delimiters.

/* Catalog Maker */

Every ARexx program must begin with a comment. I use it to name the

program.

address command

This instruction makes REXX— the Shell from which you run the pro

gram — the current external host. REXX is the default, so you may wonder

why I bother with this instruction. Quite simply, I wanted to be sure that if

another ARexx program has altered the current host, my program will still

run correctly.

ASSIGN >"T:temp VOLS"

The program is going to let you choose which volume to catalog. This com

mand lists the currently available volumes to a file. Note that as it is a com

mand to the current external host, I had to put the arguments for the Assign

command in parentheses. When it encounters an external command, ARexx

evaluates the information after the command, resolves it into a string and

then ships it with the command to the host environment. By enclosing the

arguments in quotes, you keep ARexx from evaluating the arguments for

Assign as ARexx variables or instructions.

Note that ifyou have deleted the assignment to T: from your Startup-se

quence, this program will not work.

return = Open(vol_file,"T:temp","R")

Because I just created this file, I don't bother checking the return condition.

This function opens the file created with the Assign command that contains

the names of the mounted volumes.

Practical ARexx

count = 0

Sets up a counter. Watch how it is used.

do until EOF(vol_file)

Voljfile is the logical name I gave T:temp when I opened it. This loop,

which reads the volume names from the file, continues until all the names

are read. At that point (when end-of-file is True), program control passes to

the first line after the end statement. Note that I don't know how many

volumes will be mounted, so I can't know how many reads I will need to

get all the names.

vol.count = ReadLn(vol_file)

Now you see that count is actually the subscript for the array vol, which will

hold the volume names. When count = 0, this function reads the first line

of the file into vol.0.

count = count + 1

Incrementing count so that subsequent reads go into vol.1, vol.2, and so on.

end

This instruction ends the do block. Program control now passes to the

above do instruction.

return = Close(vol_file)

Once I've read all the data from T:temp, I can close the file.

DELETE ">NIL: T:temp"

I don't use the file again, so I might as well get rid of it. The redirection to

NIL: keeps unsightly messages from cluttering the output window.

count = count - 2

I want count to hold the number of volumes available. The current value of

count is too high for two reasons. First, the last line in T:temp contains

only a linefeed character. This line shouldn't count towards the number of

volumes. Second, count gets incremented after the final line is read but

before the EOF test. Thus, the actual number ofvolumes is count - 2.

do i = 1 to count by 1

The program now loops through the list ofvolumes, stripping off the

"[Mounted]" message that Assign puts there (see Figure 12-1). Note that

the loop starts with vol.1, not vol.0. In its output, Assign prints the message

334 AmigaWorld Official AmigaDOS 2 Companion

"Volumes:" before actually listing the volumes. Starting the loop at vol.1

chops off this message.

einM^vrj** Wk- -] .-,, \ s /r»«>

Figure 12-1 Assign VOLUMES

In order to useyour menu selection in a command, CatalogMaker mustfirst strip the

[Mounted] messagefrom any volume name it appears after.

bracket = Pos("["vol.i)

The Pos function is one of the many ARexx string-manipulation functions.

It reports the position of the character "[" in the string vol.i. The "i"

changes each time through the loop, so this check is performed on every

volume name.

if bracket = 0 then iterate

If the volume name doesn't include a bracket (meaning that it is available

but not currently mounted), it is already formatted correctly for the next

section. This statement skips to the end statement.

bracket = bracket - 2

Subtracting 2 from the bracket position (1 for the bracket and 1 for the

space preceding it), gives you the position of the last character in the volume

name.

Practical ARexx 335

vol.i = Left(vol.i,bracket)

This Left function copies only the characters up to the end of the volume

name back into the vol array.

end

Marks the end of the above do loop. Once completed, every item in the vol

array contains just a volume name, without any extraneous characters.

menu:

Provides a label for the next section. Ifyou fail to enter a recognized menu

choice, the program displays the menu again.

say

Prints a blank line to make the output look nicer.

say "Indicate the volume you wish to catalog"

Prints the above message, getting the user ready for the menu.

say

Another blank line provided to make the output look better.

numchar= C2D("@")

The C2D function puts the ASCII value of the character @ into the nu

meric variable numchar. As it happens, @ is the character just before upper

case A in the table ofASCII codes. I could have looked up the value of@

and used it directly, but why bother when the computer will do the work

for you?

do i = 1 to count

Here is count back again. It still contains the number ofvolume names in

the array vol.

say D2C(numchar +• i) vol.i

First time through the loop, this line prints the letter A followed by the first

volume name in vol.i; second time through, it prints B followed by the

second name, and so on.

I had to resort to using the ASCII character codes because I had no way of

knowing when I wrote the program how many volumes would be available.

336 AmigaWorld Official AmigaDOS 2 Companion

The program has to work as well with ten volumes as with one. The D2C is

the opposite of C2D; it converts a number into its ASCII character.

end

Once the program has displayed all the volumes available, the loop ends.

Figures 12-2 and 12-3 show the different menus this program creates when

there are different numbers of mounted volumes.

u\ Uorkbench

Systen2.0

rx Cata log.Master

ndicate the uolune you wish to catalog

I Ran Disk
'i Work

: Systen2.8

inter your selection; i

Figure 12-2 CatalogMaker Menu

Using the informationfrom the Assign command, theprogramputs up a menu

showing all the currently available volumes.

say

Once again, I print a blank line to keep the output lines from crowding

each other.

options prompt "Enter your selection:"

This instruction defines a prompt string to accompany the pull instruction.

pull response

Prompts the user to enter a selection from the menu created above and

places the response into the variable response.

Practical ARexx 337

a I Workbench

Systen2.8

^1
H3888Install

1.Systen2.8:rexxc> rx CataIog.Master

Indicate the uolurte you uish to catalog

fi3888Install
5 Data
C Raw Disk
Work

E Systen2.8

Enter your selection:

Figure 12-3 Dynamic Menus

No matter how many volumes available on your system, CatalogMaker will display

their names in the menu. It determines the number ofitems to display in the menu

automatically.

respnum = C2D(response)

To check to see if the response is in the range of acceptable values, you first

have to convert it into a number.

if (respnum <= numchar)

count) then do

(respnum > numchar +

Checks to see if the response falls between the ASCII value of the letter A

and the value of the last letter in the menu. The test is true if the response is

outside the range.

say "You must enter a letter from A to "D2C(numchar

+ count)

A gentle reminder to the user about what to enter.

say

Another formatting blank.

AmigaWorld Official AmigaDOS 2 Companion

signal menu

Because an invalid response was entered, the program displays the menu

again.

end

Marks the end of the true block. If the letter entered was a valid response,

the program continues on the next line.

volsub = respnum - numchar

Here is how the response relates to the names in the vol array. Subtracting

the ASCII value — numchar— of the character @ from the response gives

you a 1 if the user entered an A, a 2 if the user entered a B, and so on.

volname = """" || vol.volsub || ":"""

Don't go into shock. All those quotation marks are easy to explain. What

I'm doing here is putting the volume name selected by the user in quotation

marks and adding a colon to it. I need to append quotation marks because a

volume name can contain a space, and I'm going to be sending the name to

AmigaDOS, which doesn't like spaces in names. Let's dissect the first string,

which consists of four quotation marks.

The first quotation mark delimits the string, as an initial quote always does.

The second one, because it isn't an initial quote yet precedes another, tells

ARexx that the next delimiter isn't really a delimiter but that it is actually

part of the string. The third quote, because it follows a quote that isn't a

delimiter, is treated as a quotation character. The fourth quote, because it is

doesn't precede another quote, is treated as a delimiter. (I'll leave it to you

to figure out what the ":""" means.)

The upshot of all these quotes is that, if the volume name in vol.volsub is

Ram Disk, volname will contain "Ram Disk:". (Remember, II is the concat

enation operator.)

LIST " >T:cat" volname "DATES BLOCK ALL"

The point to the above quotation gymnastics: When ARexx evaluates the

arguments for List, it will substitute the volume name for the variable

volname.

List puts the information about the files contained on the user-selected

volume selected into the file T:cat.

return = Open (input__file, "T:cat", "R")

Opens T:cat for input.

Practical ARexx 339

return = Open(out_file,"T:list","W")

Creates an output file that will hold the formatted catalog information.

do until EOF(input_file)

This initiates the main processing loop. Here, the file information in T:cat

will be converted into the formatted information in T:list. Each line from

Txat will be processed separately.

in_line = ReadLn(input_file)

If it isn't the end of the file, ReadLn takes the next line from Txat and puts

it into the variable in-line. Note that all files keep an internal pointer,

which is automatically incremented whenever you read from a file. The

pointer starts at the first line of the file and moves down one line whenever

you read a line. You don't have to explicitly move the pointer in the pro

gram.

The List ALL command creates different types of output lines (see Figure

12-4), each ofwhich must be handled differently. The following lines test

for and handle the different line types.

nl Workbench 3mm

Directory
I. info
test.pre ^

SystenZ. 8 J prefs/presets on Thursday

—rued 23O

blocks used

II ----Fued 2¥Qtt-n 80:47:89
288 rued 22-Oct-98 23:44:36
491 rued 22-Oct-98 23*44*36

directory "Susten2.8:prefs/Enu-flrchlue" on Thursday 88-Nou-98
sys Dir rwed 38-Oct-98 13:47:35
.Info 28 rwed 85-Oct-98 21:51:59
1 file - 1 directory - 3 blocks used

Directory "Susten2.8:prefs/Enu~Rrchlue/sys" on Thursday 88~Nou~98
tibconf ig.prefs 54 -—rued 88-Oct-98 12:43:32
ubfont.prefs 1?8 rued 28~Oct~?8 12i49s4"
screenfont.prefs
sysfont.prefs
.info
screennode.prefs

T
1
1
2

—--rwed 28~Oct~98 12:49:41
219 rwed 85~0ct~98 21:52:81
62 rwed 22-Oct-98 21:44:51

Figure 12-4 List Output

Catalog Maker must handle the different types oflines output by list including blank

lines, comment lines, lines that start a new directory, lines thatgive the number of

blocks used by a directory, and, ofcourse, lines withfile and directory names.

340 AmigaWorld Official AmigaDOS 2 Companion

if in_line = "" then iterate

Some of the lines output by the List command are blank. By jumping from

here to the end instruction, this statement effectively eliminates blank lines

from the output file.

if Left(in_line,l) = ":" then iterate

Comment lines get the same treatment. They are not written to the output

file.

if Left(in_line,ll) = "Directory""" then do

Tests to see if the first 11 characters on the line are "Directory "as in Direc

tory "Ram Disk:env"on Thursday 13-Sep-90. Such message lines are regularly

output by a List ALL command, and must be dealt with.

len = Length(in_line)

If the above test is true, Length returns the number of characters in in_line.

in_line = SubStr(in_line,12,len +1-12)

This function takes in_line, pulls out all the characters in it except the first

11, and puts them back into in_line. In effect, it deletes the first 11 charac

ters of the current input line.

qpos = Pos ("»»",in_line)

Just when you thought you were safe from quotation marks. The Pos func

tion looks for the first occurrence of a quotation character in in_line and

returns its position in qpos. With the first 11 characters stripped away, the

first quotation is located just after the pathname of the next group of files.

curdir = Left(in_line,qpos - 1)

Saves the directory pathname of the next group of files in the variable

curdir.

iterate

All you want to do with lines in the form Directory "xxxx" etc. is extract the

new current directory. Once you've done that, you want to read from the

file again.

end

Marks the end of the block of statements that handle the directory message

lines.

Practical ARexx 341

if Find(in-line,"blocks used") ~= 0 then iterate

Another type of line put out by List ALL that you want to ignore are those

that indicate how many blocks are used to store each directory. When this

statement encounters such a line, it jumps the program to the end of the

file-input loop.

An input line that has failed all the above exception tests is one that con

tains file information. This is the information we want in the catalog file.

The following statements process such lines.

timepos = LastPos(" ",in_line)

The LastPos function searches a string (such as in_line) backwards from the

last character in the string— as is the case here — or from a predetermined

position in the string, as is the case below. In eflFect, this statement finds the

position of the last space character in the input line. In List command out

put, the last space always occurs just before the time information.

datepos = LastPos (" ",in_line,timepos - 1)

The previous statement found the start of the time information by searching

for the last space character in the line. This statement starts one character to

the left of the last space (timepos - 1) and searches backwards for the next

space character which, as a glance at the output of List will tell you, comes

just before the data information on a line.

propos = LastPos(" ",in_line,datepos - 1)

Locates the beginning of the protection information.

blockpos = LastPos(" ",in_line,propos - 1)

Locates the beginning of the size information.

fpos = LastPos (" ",in_line,blockpos - 1)

Locates the endof the filename information.

fname = Left(in_line,fpos -1)

Puts the filename into a separate string.

fname = Strip(fname,"T")

Strips trailing spaces from the filename.

342 AmigaWorld Official AmigaDOS 2 Companion

fdate = SubStr(in_line,datepos + l,timepos - datepos)

Extracts the date information from the input line, based upon the position

information gathered earlier.

block = SubStr(in_line,blockpos + l,propos - blockpos)

Extracts the size information and puts it into block.

if block = "Dir" then

I want to output information about directories differently from that about

normal files, so I perform this test.

return = WriteLn(out_file,fname "(Dir)

Path="curdir" C/M="fdate)

In the case of directories, I want the message "(DIR)" printed after the di

rectory name, followed by the path and the date. This statements writes the

line to the output file.

else

If the above conditions are false, the line describes a file.

return = WriteLn(out_file,fname " Path="curdir" C/

M="fdate"Size="block)

This statement writes the information about files to the output file, includ

ing the size of the file in blocks.

end

When the loop reaches here, control returns to the do instruction, which

tests for the end of the input file. When EOF is true, control jumps to the

following statement.

return = Close(input_file)

All the lines have been processed so we might as well close the file.

return = Close(out_file)

Likewise, there is nothing more to write to the output file.

STACK 25000

In preparation for the Sort command, I increase the stack size. If you're

producing a catalog for a very large hard disk, you may want an even bigger
stack.

Practical ARexx 343

SORT "T:list TO T:sorted.list CASE"

This command sorts the lines in the formatted file alphabetically. The

CASE argument means that capitalization of the filename has no effect on

the sort.

STACK 4096

With the sort finished, the stack can return to normal, thus freeing more

memory for the system.

DELETE ">NIL: T:list T:cat"

These files have served their purpose and can be discarded.

/* Ifyou don't own ProWrite 3.0 or later you should stop here. Use the

AmigaDOS Type command to see the sorted.list file, and Copy to move it to a

more permanent location */.

The rest of the program only works if you have ProWrite 3.0 or higher. Ifyour

word processor or text editor supports ARexx, you can substitute its formatting

commands for the one shown here.

if -Show(Ports,"ProWrite")' then do

This line tests to see whether ProWrite is currently loaded and in memory.

If ProWrite is running, and thus, if its ARexx port is available, the test re

turns false (the ~ operator negates the normal true result).

RUN "WorkrProWrite/ProWrite" /* Note, make sure you

use the location of ProWrite on your disk. This is

where ProWrite is located on my disk. */

If ProWrite isn't running, run it now.

do until Show(Ports,"ProWrite")

Test to see if ProWrite has loaded yet. If not...

WAIT

...give ProWrite time to load.

end

This marks the end of the Wait loop.

end

This marks the end of the test loop. By now, ProWrite is loaded and its

port is available.

344 AmigaWorld Official AmigaDOS 2 Companion

address "ProWrite"

Switches REXX from being the current host to being the previous one, and

makes ProWrite the host to external commands. Note that port names are

case sensitive, so you must enclose ProWrite in quotes to keep ARexx from

converting the name into all caps.

OPEN "T:sorted.list"

This command has ProWrite opening the sorted list file.

/* Here you will have to respond to the requester about where to put

linefeeds. Just press Return to accept the default. */

Whenever it opens a text file, ProWrite lets you indicate whether the file uses

hard or soft carriage returns. Like mostAmiga files, sorted.list uses soft returns.

TYPE "Catalog of:"

This ProWrite command enters the string into the ProWrite document at

the current cursor position. When you first open a ProWrite file, the cursor

is always at the top of the file, so this string is entered into the top of the

file. Note that because we switched the external host with the address in

struction, this command is sent to ProWrite and not to AmigaDOS.

STYLEBOLD

Changes the style of the text input to bold.

TYPE vol.volsub

Inserts the name of the volume that you cataloged in bold type.

STYLEPLAIN

Resets the type style to plain text.

NEWPARAGRAPH

Inserts a hard carriage return into the document. The cursor moves to the

first column of the next line.

INSERTDATE

Enters the system date, in plain text.

NEWPARAGRAPH

Inserts a hard carriage return.

Practical ARexx 345

NEWPARAGRAPH

And another, which helps separate the title from the text.

SELECTALL

Selects the entire document. The next command will thus work on the

entire list.

COLORBLUE

Changes any selected text to blue.

SAVE

Brings up the ProWrite Save requester, which lets you save the file.

/* PRINT */

I left the above command inside a comment. Ifyou want to print the file,

delete the comment delimiters. The program will then bring up the

ProWrite Print requester.

QUIT

Exits ProWrite and, because it is the last command, exits the Catalog Maker

program! See Figure 12-5 for a look at how the output looks in ProWrite.

The Unannotated Listing

This is the same listing that appears above. I provide it without commentary to

make it easier for you to copy the listing to your text editor.

/* Catalog Maker */

address command

ASSIGN ">T:temp VOLS"

return = Open(vol_file,"T:temp","R")

count = 0

do until EOF(vol_file)

vol.count = ReadLn(vol_file)

count = count + 1

end"

return = Close(vol_file)

DELETE ">NIL: T:temp"

count = count - 2

346 AmigaWorld Official AmigaDOS 2 Companion

ProMrite 3.1 - © 199B Hew Horizons Software, Inc

ii T t t Ml \~\

Catalog of: Ran Disk
11/08/90

.info Path=Ran Disk:env On=88-Nov-98 Size=1

.info Path=Ran Disk:env/sys C/tl°88-Mov-98 Size=1
cat Path=Ran Disk:t C/M=B8-Mou-98 Size=1
clipboards (Dir) Path=Ran Disk: C/f1=88-t1ou-98
enw (Dir) Path=Ran Disk: <VM=88-Nov-9B
Kickstart Path=Ran Disk:env C/M=88-Mov-98 Size=1

non-start Path=Ran Disk:t C/M=88-nov-9B Size=enpty
palette.ilbn Path=Ran Disk:enu/sys C/n=88-Mou-96 Size=1
screenfont.prefs Path=Ran Diskienu/s^s C/?1=88-Mou-98 Size=1
screennode.prefs Path=Ran Disk:enu/sys C/M=88-Nou-9B Slze=1
sys (Dir) Path=Ran Disk:env C/n=88-Nov-98

sysfont.prefs Path=Ran Disk:env/sys C/I1=88-I1ov-98 Size=1
t (Dir) Path=Ran Disk: C/M=B8-Mou-9B
ubconfig.prefs Path=Ran Disk:enu/sys C/n=88-Mou-98 Size=1
ubfont.prefs Path-Ran Disk:enu/sys C^M=88-Nou-98 Size=1
Uorkbench Path-Ran Disk:env C/M=88-Nom-98 Size=1

Figure 12-5 CatalogMaker Results

This list was created andformatted automatically by an ARexxprogram using internal

ARexx instructions, Built-infunctions, and two external hosts. It shows howyou can

useARexx to manipulate otherprograms.

do i = 1 to count by 1

bracket = pos("[",vol.i)

if bracket = 0 then iterate

bracket = bracket - 2

vol.i = Left(vol.i,bracket)

end

menu:

say

say "Indicate the volume you wish to catalog"

say

numchar= C2D("@")

do i = 1 to count

say D2C(numchar + i) vol.i

end

say

options prompt "Enter your selection: "

pull response

Practical ARexx 347

respnum = C2D(response)

if (respnum <= numchar) | (respnum > numchar +

count) then do

say "You must enter a letter from A to "D2C(numchar

+ count)

say

signal menu

end

volsub = respnum - numchar

volname = """" || vol.volsub || ":"""

LIST " >T:cat" volname "DATES BLOCK ALL"

return = Open(input_file,"Treat","R")

return = Open(out_file,"T:list","W")

do until EOF (input_file)

in__line = ReadLn (input_file)

if in_line = "" then iterate

if Left (in_line,l) = ":" then iterate

if Left (in_line,ll) = "Directory """ then do

len = Length(in_line)

in_line = SubStr(in_line,12,len +1-12)

qpos = Pos("""",in_line)

curdir = Left (in_line,qpos - 1)

iterate

end

if Find(in_line,"blocks used") ~= 0 then iterate

timepos = LastPos(" ",in_line)

datepos = LastPos(" ",in_line,timepos - 1)

propos = LastPos(" ",in_line,datepos - 1)

blockpos = LastPos(" ",in_line,propos - 1)

fpos = LastPos(" ",in_line,blockpos - 1)

fname = Left(in_line,fpos -1)

fname = Strip(fname,"T")

fdate = SubStr(in_line,datepos + 1,timepos -

datepos)

block = SubStr(in_line,blockpos + 1,propos -

blockpos)

if block = "Dir" then

return = WriteLn(out_file,fname "(Dir)

Path="curdir" C/M="fdate)

else

return = WriteLn(out_file,fname " Path="curdir" C/

M="fdate"Size="block)

end

348 AmigaWorld Official AmigaDOS 2 Companion

return = Close (input__file)

return = Close(out_file)

STACK 25000

SORT "Trlist TO T:sorted.list CASE"

STACK 4096

DELETE ">NIL: T:list Treat"

/* If you don't own ProWrite 3.0 or later you should

stop here. Use the AmigaDOS Type command to see the

file, and Copy to move it to a more permanent loca

tion */

if -Show(Ports,"ProWrite") then do

RUN "Work:Prowrite/ProWrite"

do until Show(Ports,"ProWrite")

WAIT

end

end

address "ProWrite"

OPEN "T:sorted.list"

/* Here you will have to respond to the requester

about where to put linefeeds. Just press Return to

accept the default. */

TYPE "Catalog of: "

STYLEBOLD

TYPE vol.volsub

STYLEPLAIN

NEWPARAGRAPH

INSERTDATE

NEWPARAGRAPH

NEWPARAGRAPH

SELECTALL

COLORBLUE

SAVE

/* PRINT */

QUIT

Program Improvements

Catalog Maker merely scratches the surface of the different ways you could

format the output. You might want to give the output a more tabular format

by inserting the Tab character (ASCII 9) into the output string, or to show file

sizes in bytes instead of blocks. You could insert a page break character (ASCII

Practical ARexx 349

12) whenever the initial letter of the filename changes. (Of course, this would

mean working with the sorted file.) My primary reason for including Catalog

Maker was to show how ARexx instructions, functions, and external com

mands work together; any real use you get out of the program is a bonus.

Conclusion

That wraps up this chapter, the ARexx section, and the book. I hope you'll use

Catalog Maker as a starting place for your exploration ofARexx. As you've

seen, it is very easy to control different applications from one program. As

more Amiga programs support ARexx, you'll have a wider variety ofprograms

to use in your super applications.

I have two major complaints about ARexx: It doesn't let you create Intuition-

based programs and it doesn't come with an integrated editor. Just as I was

finishing this book, however, I received a preliminary copy of a RXTools from

TTR Development Inc., an ARexx programming environment that corrects

both shortcomings. I've no doubt that RXTools and products like it will soon

make ARexx programming as easy as BASIC programming.

I hope you enjoy your explorations ofARexx and of the Amiga in general. And

I hope that this book has helped you on your way.

OJU AmigaWorld Official AmigaDOS 2 Companion

This appendix contains the AmigaDOS commands contained in the C: direc

tory and internal to Kickstart 2.0. I've also included the SetPatch command,

which will undoubtedly be added to C: as Commodore patches some of the

bugs in Kickstart.

Addbuffers

Function: Add 512-byte memory buffers to a disk device.

Template: DRIVE/A,BUFFERS/A

DRIVE/A is the name of the disk device to which you are adding buffers.

BUFFERS/A is the number of 512-byte buffers to add to the disk. A negative

number subtracts buffers, returning the memory to the system.

Alias

Function: Creates an alternate name for a command and lists all current aliases

(the default).

Template: NAME,STRING/F

NAME is the label you use on the command line to refer to the STRING/F.

STRING/F is the name and arguments of an AmigaDOS command.

Ask

Function: Get a Y or an N response from the user of a command script. N or a

carriage return sets a return code of 0; Y sets a WARN.

351

AmigaWorld Official AmigaDOS 2 Companion

Template: PROMPT/A

PROMPT/A is a string written to prompt the user for input.

Assign

Function: Assigns logical names to physical directories and lists previously

made assignments (the default).

r^^^NAME,TARGET/M,LIST/S,EXISTS/S,DISMOUNT/S,

DEFER/S,PATH/S,ADD/S,REMOVE/S,VOLS/S,DIRS/S,DEVICES/S

NAME is the logical name you're giving a physical directory.

TARGET/M are the physical directories to which you are giving a logical

name.

LIST/S lists the current logical volumes, directories, and devices. It is the de

fault when Assign is used without arguments.

EXISTS/S sets a WARN if an assigned name already exists.

DISMOUNT/S removes a volume or device from the Assign list.

DEFER/S doesn't confirm the existence of a physical directory until the logical

name is used.

PATH/S uses path relative to the root of any volume, as opposed to an abso

lute pathname, for a TARGET/M.

ADD/S adds the NAME to the assignment list.

REMOVE/S removes a NAME from the assignment list.

VOLS/S lists currently available volumes.

DIRS/S lists currently assigned logical directories.

DEVICES/S lists currently mounted devices.

Avail

Function: Returns the total, available, and in-use amounts of chip and fast

RAM available in your system, and the total of the two.

Template: CHIP/S,FAST/S,TOTAL/S,FLUSH

CHIP/S returns the total, in-use, and available, chip RAM in your system.

AmigaDOS Command Reference JJJ

FAST/S returns the total, in-use, and available fast RAM in your system.

TOTAL/S returns the total, in-use, and available RAM in your system.

FLUSH/S checks the system memory lists to unfragment memory.

Binddrivers

Function: Attaches a device driver in the Expansion drawer to the appropriate

expansion device.

Template: None.

Break

Function: Sends an attention flag to a process.

r^//^:PROCESS/A/N,ALL/S,C/S,D/S,E/S,F/S

PROCESS/A/N is the number of an AmigaDOS process.

ALL/S sends all the flags to the process.

C/S is the CTRL-C flag. It aborts program running in a Shell process.

D/S is the CTRL-D flag. It aborts a Shell command script.

E/S is the CTRL-E flag. Its function is undefined.

F/S is the CTRL-F flag. Its function is undefined.

CD

Function: To list (the default) and change the current directory.

Template: DIR

DIR is the pathname of the new current directory.

ChangeTaskPri

Function: Changes the priority of a process.

Template: PRI=PRIORITY/A/N,PROCESS/K/N

PRI=PRIORITY/A/N is the priority number, from -128 to 127.

PROCESS/K/N is the number of the process with the new priority. The de

fault is the current process.

AmigaWorld Official AmigaDOS 2 Companion

Copy

Function: To duplicate AmigaDOS files and directories.

r^^^:FROM/A/M,TO/A,ALL/S,QUIET/S,BUF=BUFFER/K/N,

CLONE/S,DATES/S,NOPRO/S,COM/S,NOREQ/S

FROM/A/M lists the files to be copied.

TO/A lists the destination of the copied files.

ALL/S copies the entire AmigaDOS file structure below the copy source.

QUIET/S suppresses the information messages produced during multiple-file

copies.

BUF=BUFFER/K/N is the number of memory buffers made available to the

Copy command.

CLONE/S copies the file-creation date and the comment of the source file.

DATE/S copies the file-creation date of the source.

NOPRO/S doesn't copy the source file's protection bits.

COM/S copies the source file's comment field.

NOREQ/S suppresses the display of a requester if the destination volume of a

copy operation is not mounted.

CPU

Function: Returns information about the state of the CPU (the default) and

lets you change that state.

7^>^:CACHE/S3URST/S,NOCACHE/S,NOBURST7S,

DATACACHE/S)DATABURST/S,NODATACACHE/S,

NODATABURST/SJNSTCACHE/S.INSTBURST/S,

NOINSTCACHE/S,NOINSTBURST/S,FASTROM/S,

NOFASTROM/S,TRAP/S,NOTRAP/S,NOMMUTEST/S,
CHECK/K:

CACHE/S enables the instruction and data caches.

BURST/S enables burst mode for instruction and data fetches.

NOCACHE/S disables the instruction and data caches.

NOBURST/S disables burst mode for instruction and data fetches.

DATACACHE/S enables the data cache.

AmigaDOS Command Reference

DATABURST/S enables burst mode for data fetches.

NODATACACHE/S disables the data cache.

NODATABURST/S disables burst mode for data fetches.

INSTCACHE/S enables the instruction cache.

INSTBURST/S enables burst mode for instruction fetches.

NOINSTCACHE/S disables the instruction cache.

NOINSTBURST/S disables burst mode for instruction fetches.

FASTROM/S moves the Kickstart image to 32-bit RAM on MMU-equipped

machines.

NOFASTROM/S disables the FastROM option.

TRAP/S enables CPU trapping.

NOTRAP/S disables trapping.

NOMMUTEST/S returns 0 ifyou don't have an MMU, WARN ifyou do.

CHECK/K lets you check for a specific CPU. It returns a warning if you check

for a 68000 on a 32-bit processor machine.

Date

Function: Returns the current settings of the system clock (default), and lets

you change the settings.

Template: DAY,DATE,TIME,TO=VER/K

DAY lets you set the date with a day name.

DATE sets the date using DD-MMM-YY format.

TIME sets the time using HH:MM:SS format. SS is optional.

TO=VER/K saves the date to the indicated location.

Delete

Function: Deletes files and directories from disk devices.

Template: FILE/M/A,ALL/S,QUIET/S,FORCE/S

FILE/M/A indicates the files to be deleted.

356 AmigaWorld Official AmigaDOS 2 Companion

ALL/S deletes all files below the FILE/M/A argument in the AmigaDOS hier

archy.

QUIET/S suppresses the messages produced during multiple-file deletes.

FORCE/S delete files that don't have the d protection bit set.

Dir

Function: Lists the files and directories in a directory.

r^y^:DIR,OPT/K,ALL/S,DIRS/S,FILES/S,INTER/S

DIR is the name of directory to be listed. The default is the current directory.

OPT/K specifies an option, A, I, AI, D, and F.

ALL/S lists the contents of the indicated directory and all directories below it

in the AmigaDOS hierarchy.

DIRS/S lists only directories, not files.

FILES/S lists only files, not directories.

INTER/S starts an interactive directory listing.

DiskChange

Function: Tells AmigaDOS that you've changed the volume in a disk device.

Template: DEVICE/A

DEVICE/A is the device name of the drive where you changed volumes.

DiskDoctor

Function: Attempts to recover data from damaged disks.

Template: DRIVE/A

DRIVE/A is the device name of the drive holding the damaged volume.

Echo

Function: Prints a string to the console screen.

Template: NOLINE/S,FIRST/K/N,LEN/K/N

NOLINE/S suppresses the carriage return normally appended to an Echo
string.

AmigaDOS Command Reference JJ /

FIRST/K/N sets the first character in the string to be output.

LEN/K/N sets the length of the output string.

Ed

Function: Use the full-screen editor.

Template: FROM/A,SIZE/N,WITH/K,WINDOW/K,

TABS/N,WIDTH=COLS/N,HEIGHT=ROWS/N

FROM/A indicates the name of the file you want to edit.

SIZE/N indicates the size of the text buffer.

WITH/K is the name of a script file of Ed commands that will be executed on

the file.

WINDOW/K sets the console device, size, and location of the Ed window.

TABS/S sets the number of space characters in a Tab.

WIDTH=COLS/N sets the number of characters in a line.

HEIGHT=ROWS/N sets the height of the window in lines of text.

Edit

Function: Use the line-oriented editor

r(?^/^:FROM/A,TO,WITH/K,VER/K,OPT/K,WIDTH/N,

PREVIOUS/N

FROM/A is the name of the file to be edited.

TO is the name of a destination file.

WITH/K is a macro file of Edit commands executed on the input file.

VER/K designates a file for error messages and verifications.

OPT/K accesses the P and W options, which are equivalent to the PREVI

OUS and WIDTH keywords, respectively.

WIDTH/N sets the maximum line length. The default is 120.

PREVIOUS/N sets the number of lines kept in memory. The default is 40.

358 AmigaWorld Official AmigaDOS 2 Companion

Else

Function: Indicates the commands in a script that are executed if a condition is

false.

Template: None.

EndCLI (see EndShell)

Endlf

Function: Indicates the end of an If block.

Template: None.

EndShell

Function: Shuts down a Shell process.

Template: None.

EndSkip

Function: Stops the search by the Skip command for an indicated label in a

script file.

Template: None.

Eval

Function: To perform arithmetic, logical, and bit-manipulation operations.

Template: VALUE1/A,OP,VALUE2,TO,LFORMAT/K

VALUE1/A is the first operand of the operation.

OP indicates the operation to be performed.

VALUE2 is the second operand.

TO indicates the name of the results file.

LFORMAT/K lets you indicate whether you are using hexadecimal, octal, or

decimal numbers or ASCII characters.

Execute

Function: Executes a command script file.

Template: None, although it does recognize special characters used in param
eter substitution and variable evaluation. See the text.

AmigaDOS Command Reference

FailAt

Function: Sets the return value at which a script will abort operation.

Template: RCUM/N

RCLIM/N is the value of the return code at which a script will abort. The

default is 10.

Fault

Function: Returns the error message associated with a particular error number.

Template: INJNJNJNJNJNJNJNJNJN,

/N is the number of an AmigaDOS error code.

FileNote

Function: Appends or removes a comment to a file or directory.

Template: FILE/A,COMMENT,ALL/S,QUIET/S

FILE/A indicates the files that will get the comment.

COMMENT is the comment string. If absent, the current comment of the

indicated files are deleted.

ALL/S appends the comment to all files and directories below FILE/A in the

AmigaDOS hierarchy.

QUIET/S suppresses information messages produced by FileNote.

Get

Function: Returns the value of a local environment variable.

Template: NAME/A

NAME/A is the name of the environment variable.

GetEnv

Function: Returns the value of a global environment variable.

Template: NAME/A

NAME/A is the name of the environment variable.

360 AmigaWorld Official AmigaDOS 2 Companion

IconX

Function: Executes a command script indicated by a Workbench icon.

Template: None, although its projects support two Tool Types, DELAY and
WINDOW. See the text.

If

Function: Test a condition in a command script.

7>^/^;NOT/S,WARN/S,ERROR/S,FAIL/S,,EQ/K,GT/K,GE/K,
VAL/S,EXISTS/K

NOT/S is true if the condition is false.

WARN/S is true if the previous return code is greater than or equal to 5.

ERROR/S is true if the previous return code is greater than or equal to 10.

FAIL/S is true if the previous return code is greater than or equal to 20.

EQ/K is true if the two values are equal.

GT/K is true if the first value is greater than the second.

GE/K is true if the first value is greater than or equal to the second.

VAL/S evaluates the values as numbers, not ASCII characters.

EXISTS/K is true if the file or directory exists.

Info

Function: Returns information about all mounted disk devices.

Template: DEVICE

DEVICE returns information about the indicated device.

Install

Function: Makes a volume bootable.

Template: DRIVE/A,NOBOOT/S,CHECK/S,FFS/S

DRIVE/A is the device name where the volume resides.

NOBOOT/S makes a bootable disk unbootable.

AmigaDOS Command Reference O01

CHECK/S checks for a nonstandard boot block. If it finds one, it returns a

WARN.

FFS/S uses the Fast File System on the disk.

IPrefs

Function: Launches the IPrefs deamon, which monitors Preferences changes.

Template: None.

Join

Function: Creates a file by joining two or more files together.

Template: FILE/M,AS=TO/K/A

FILE/M are the files to be joined.

AS=TO/K/A is the name of the newly created file. It can't be any of the

FILE/M files.

Lab

Function: Sets up a label in a script file for a Skip command.

Template: None.

List

Function: Lists information about file and directories.

r^^/^;DIR/M,P=PAT/K,KEYS/S,DATES/S,NODATES/S,TO/K,

SUB/K,SINCE/K,UPTO/K,QUICK/S,BLOCK/S,NOHEAD/S,

FILES/S,DIRS/S,LFORMAT/K,ALL/S

DIR/M is the directory to be listed. The default is the current directory.

P=PAT/K indicates the pattern of files to be listed.

KEYS/S lists the key blocks of the files and directories.

DATES/S lists the create/last modified date.

NODATES/S suppresses the date information.

TO/K sends the output of List to a file or device.

362 AmigaWorld Official AmigaDOS 2 Companion

SUB/K lists files containing the indicated substring.

SINCE/K lists files created or modified since the indicated day or date.

UPTO/K lists the files created or modified up to the indicated day or date.

QUICK/S lists the file and directory names only.

BLOCK/S reports file sizes in blocks.

NOHEAD/S suppresses headers.

FILES/S lists files only.

DIRS/S lists directories only.

LFORMAT/K embeds the list information in a text string.

ALL/S lists all files and directories below the one indicated in the DIR argu

ment.

Lock

Function: Write protects a volume.

Template: DRIVE/A,ON/S,OFF/S,PASSKEY

DRIVE/A is the volume or device name.

ON/S sets write protection.

OFF/S disables write protection.

PASSKEY is a four-character password you set with ON/S that must be used

to disable write protection with OFF/S.

LoadWB

Function: Loads and runs the Workbench interface.

Template: None.

MakeDir

Function: Creates a new directory.

Template: NAME/M

NAME/M is the pathname of the new directory.

AmigaDOS Command Reference

MakeLink

Function: Links two files, so that accessing the first actually accesses the second.

Template: FROM/A,TO/A,HARD/S

FROM/A is the name of the link file.

TO/A is the name of the linked file accessed when FROM/A is accessed.

HARD/S is a link between files on the same volume, the only type allowed

under the current version of the command.

Mount

Function: To make a device available to AmigaDOS.

Template: DEVICE/A,FROM/K

DEVICE/A is the name of a device.

FROM/K is the name of the mountlist containing information about the de

vice. If not indicated, the mountlist used is Devs:mountlist.

NewCLI (see NewShell)

NewShell

Function: To start a new Shell process.

Template: WINDOW,FROM

WINDOW indicates the console device, height, width, location, and name of

the Shell window.

FROM is the name of the Shell-startup file. The default is S:Shell startup.

Path

Function: To view and set the AmigaDOS search path.

r^/>/^:PATH/MADD/S,SHOW/S,RESET/S,QUIET/S,REMOVE/S

PATH/M are the directories added to the search path.

ADD/S adds the indicated directories to the path. It is the default.

SHOW/S displays the current search path. It is the default if the PATH/M

argument isn't used.

364 AmigaWorld Official AmigaDOS 2 Companion

RESET/S sets the path to the current directory and C:.

QUIET/S suppresses the search for paths on unmounted disks.

REMOVE/S removes the indicated directory from the path.

Prompt

Function: Sets the command-line prompt.

Template: PROMPT

PROMPT is the new prompt string. It supports two special characters; %N,

the number of the current process, and %S, the path of the current directory.

Protect

Function: Modify a file's protection bits.

Template: FILE/A,FLAGS,ADD/S,SUB/S,ALL/S,QUIET/S

FILE/A are the files whose bits you want to modify.

FLAGS are the bits you want to modify.

ADD/S sets the indicated FLAGS.

SUB/S unsets the indicated FLAGS.

ALL/S modifies all files and directories below FILE/A in the hierarchy.

QUIET/S suppresses messages produced by Protect.

Quit

Function: Sets a return code and quits a script.

Template: RC/N

RC/N is the return code of the script.

Relabel

Function: changes the name of a volume.

Template: DRIVE/A,NAME/A

DRIVE/A designates the volume whose name you want changed.

NAME/A is the new name of the volume.

AmigaDOS Command Reference

RemRad

Function: Removes a recoverable RAM disk device.

Template: DEVICE,FORCE

DEVICE indicates the name of the RAD: disk you wish to remove.

FORCE removes the disk regardless of its lock status.

Rename

Function: Renames and moves files and directories.

Template: FROM/A/M,TO=AS/A,QUIET/S

FORM/A/M indicates the files and directories you wish to rename.

TO=AS/A is the new name of the files or directories.

QUIETVS suppresses information messages.

Resident

Function: View the list of resident commands and make commands resident.

Template: NAME,FILE,REMOVE/S,ADD/S,REPLACE/S,

PURE=FORCE/S,SYSTEM/S

NAME is the name by which the command will be called in the resident list. If

not used, the filename becomes the resident name.

FILE is the pathname of the file made resident.

REMOVE/S removes the indicated name from the resident list.

ADD/S adds the indicated name to the list.

REPLACE/S replaces the indicated name with the new file. This is the default

when NAME and FILE are indicated.

PURE=FORCE/S makes the command resident regardless of the setting of the

pure bit.

SYSTEM/S means that the name can't be removed from the resident list.

Run

Function: Executes the indicated command in the background.

366 AmigaWorld Official AmigaDOS 2 Companion

Template: COMMAND/F

COMMAND/F is the command you want run in the background.

Search

Function: Searches for the indicated string in a file.

r^^^:FROM/A/M,SEARCH/A,ALL/S,NONUM/S,QUIET/S,

QUICK/S,FILE/S,PATTERN/S

FROM/A/M are the files you want searched.

SEARCH/A is the search string.

ALL/S searches all files below FROM/A/M in the file hierarchy.

NONUM/S suppresses the line numbers of matching strings.

QUIET/S keeps quiet about what files are being searched.

QUICK/S uses a compact output format.

FILE/S searches for filenames with the indicated search string, rather than

strings within files.

PATTERN/S lets you use pattern matching in the search string.

Set

Function: Display and set local environment variables.

Template: NAME,STRING/F

NAME is the name of the variable. If not indicated, the command displays all

the local variables and their values.

STRING/F is the value of the indicated variable.

SetClock

Function: Copy information between the system clock and the battery-backed

clock.

Template: LOAD/S,SAVE/S,RESET/S

LOADIS sets the system clock with the contents of the battery-backed clock.

SAVE/S sets the battery-backed clock from the system clock.

RESET/S resets the battery-backed clock in the event of an error.

AmigaDOS Command Reference 36/

SetDate

Function: Sets the time/date stamp of a file.

Template: FILE/A,DATE,TIME,ALL/S

FILE/A are the files you want to stamp.

DATE is the new date stamp, in DD-MMM-YY format.

TIME is the new time stamp, in HH:MM:SS format.

ALL/S uses the new stamp for all files below FILE/A in the AmigaDOS file

structure.

SetEnv

Function: Sets global environment variables and displays local ones.

Template: NAME,STRING/F

NAME is the name of a new global variable. If no name is indicated, SetEnv

displays the name and values of the /^/environment variables.

STRING/F is the value of the variable.

SetFont

Function: Sets the system default text.

r^^/^:NAME/A,SIZE/A,SCALE/S,PROP/S,ITALIC/S,

BOLD/S,UNDERLINE/S

NAME is the typeface of the new font.

SIZE is the size in pixels of the new font.

SCALE/S indicates the font is a scaled version of one of the existing fonts.

PROP/S indicates the font is proportional.

ITALIC/S sets the type style to italic.

BOLD/S sets the type style to boldface.

UNDERLINE/S sets the type style to underline.

SetPatch

Function: Patches the Kickstart image.

368 AmigaWorld Official AmigaDOS 2 Companion

Template: None. (Note that this command doesn't appear in the first release of

Amiga OS 2 for the Amiga 3000. It will inevitably appear in future releases as
Commodore fixes bugs in the OS code.)

Skip

Function: Jump to the indicated label in a command script.

Template: LABEL,BACK/S

LABEL is the label to skip to.

BACK/S searches backwards in the script for the indicated label.

Sort

Function: Orders the lines in a file.

r^^/^;FROM/A,TO/A,COLSTART/K,CASE/S,NUMERIC/S

FROM/A is the name of the file to be sorted.

TO/A is the name of the sorted file.

COLSTART/K indicates the column on which the command is to begin sort
ing.

CASE/S makes the sort case-insensitive.

NUMERIC/S treats numbers as numeric values rather than ASCII characters.

Stack

Function: Sets the stack size for a process.

Template: SIZE/N

SIZE/N is the new stack size in bytes.

Status

Function: Returns information about all current processes.

r^//^;PROCESS/N,FULL/S,TCB/S,CLI=ALL/S,COM=COMMAND/K

PROCESS/N lets you indicate which process to display.

FULL/S prints both command and TCB information.

TCB/S prints task-control block information.

AmigaDOS Command Reference

CLI=ALL/S produces the default report on all current processes.

COM=COMMAND/K returns the process number of those processes run

ning the indicated command.

Type

Function: Display the contents of a file.

7>m^^:FROM/A/M,TO/K,OPT/K,HEX/S,NUMBER/S

FROM/A/M are the files you want to output.

TO/K indicates the destination of the files. The default is the console window.

OPT/K supports the H and N options.

HEX/S outputs binary files.

NUMBER/S provides a number for every line in the file.

UnAlias

Function: Removes a name from the list of aliases.

Template: NAME

NAME is the alias you want to remove.

UnSet

Function: Removes a local environment variable.

Template: NAME

NAME is the variable you want to remove.

UnSetEnv

Function: Removes a global environment variable.

Template: NAME

NAME is the global variable you want to remove.

Version

Function: Reports the current versions ofyour Kickstart and Workbench, and

sets local variables to those values. Also checks versions of libraries and devices.

Template: NAME,VERSION/N,REVISION/N,UNIT/N

370 AmigaWorld Official AmigaDOS 2 Companion

NAME is a library or device whose version you want to check.

VERSION/N is a version number for a library or device. If the version avail

able on the system is greater than or equal to the VERSION/N, the command

returns 0; otherwise, it returns WARN.

REVISION/N works the same as VERSION/N, except that it checks revision

numbers.

UNIT/N specifies the unit number of a device you want checked.

Wait

Function: Suspends a process for the specified time interval.

7>w^^:/N,SEC=SECS/S,MIN=MINS/S,UNTIL/K

/N is the length of the wait.

SEC=SECS/S indicates that /N is measured in seconds.

MIN=MINS/S indicates that /N is measured in hours.

UNTIL/K indicates that /N is an absolute time in the form HH:MM.

Which

Function: Searches the search path for a particular command and returns its

pathname.

Template: FILE/A,NORES/S,RES/S,ALL/S

FILE/A is the command you want found.

NORES/A doesn't include the resident list in the search.

RES/S searches only the resident list.

ALL/S returns all instances of the name in the path, not just the first one.

Why

Function: Attempts to explain why the previous command failed.

Template: None.

Contained in this appendix are the names and functions of the ARexx lan

guage instructions, the Built-in Functions, and the rexxsupport.library. See

your Using the System Software manual for detailed syntax information.

ARexx Instructions

address

Lets you change the current external host. You can toggle between the current

and the previous host, or specify a completely new one.

arg

Retrieves argument strings for the program.

break

Exits from a do loop.

call

Invokes either an internal or an external function.

do

Specifies the start of a block of instructions that ends with the corresponding

end instruction. Do is also used in conjunction with other instructions to de

termine how many times the block is executed.

371

3/2 AmigaWorld Official AmigaDOS 2 Companion

drop

Resets a variable to its uninitialized state.

echo

A synonym for the say instruction.

else

In an if-then-else block, the else instruction begins the block of instructions

that are executed if the condition is false.

end

Delineates the end of a do or a select block. When reached in a looping struc

ture, program control returns to the do instruction to test whether an exit

condition has been satisfied.

exit

Ends an ARexx program.

if

Tests whether a condition is true or false. If true, the block is executed. If false,

an else block may be executed, although this is optional.

interpret

Evaluates an expression and executes the result.

iterate

In effect, jumps to the end instruction in a loop, which then tests the appropri

ate do condition.

leave

Exits a do loop.

nop

No Operation. It may be needed in an else block.

numeric

Sets the precision and format of numeric data.

ARexx Quick Reference Guide O /D

options

Sets a fail-at limit, a prompt for the pull instruction, and indicates that a result

is expected from an external host.

otherwise

The block of instructions that are executed when all the when conditions in a

select block are false.

parse

Extracts substrings from strings. Provides very powerful string handling capa

bilities.

procedure

Creates a new symbol table, providing for local variables and recursive func

tions.

pull

Gets input from the keyboard.

push

Puts data on the stack in last-in, first-out order.

queue

Puts data on the stack in first-in, first-but order.

return

Exits a function and returns the result.

say

Writes to the output window.

select

Sets up a block ofwhen instructions which will be tested only until on is

found to be true.

shell

Synonymous with the address instruction.

3/4 AmigaWorld Official AmigaDOS 2 Companion

signal

Controls the state of process signal flags and transfers control to a specified

label.

when

Similar to if, it tests for a true-false condition within a select block.

The Built-in Functions

Abbrev

Indicates whether one string is an abbreviation of another.

Abs

Returns the absolute value of a number.

AddLib

Adds a function library to the list of libraries available to ARexx.

Address

Returns the name of the current external host.

Arg

Returns the number of arguments passed to the current program.

B2C

Converts binary digits to their character representation.

BitAND

Performs a logical AND on two arguments.

BitChg

Changes the state of a specified bit.

BitClr

Clears the specified bit.

ARexx Quick Reference Guide O / J

BitComp

Compares two strings for bit differences.

BitOR

Performs a logical OR on two strings.

BitSet

Sets a specified bit in a string.

BitTst

Indicates the state of a specified bit.

BitXOR

Performs an exclusive OR on two strings.

C2B

Converts a character string to its binary equivalent.

C2D

Converts a character string to its decimal equivalent.

C2X

Converts a character string to its hexadecimal equivalent.

Center (Centre)

Centers a string using pad characters.

Close

Closes a file.

Compress

Removes spaces from a string.

Compare

Compares two strings for character differences.

Copies

Creates a string by combining multiple copies of the original.

376 AmigaWorld Official AmigaDOS 2 Companion

D2C

Converts a decimal number to its corresponding ASCII character.

D2X

Converts a decimal number to hexadecimal.

Date

Returns the current date.

DataType

Tests whether a string is a valid number.

DelStr

Deletes a substring from a string.

DelWord

Deletes a substring from a string based upon a certain word.

Digits

Returns the digits setting of the numeric instruction.

EOF

Checks for the end of a file.

ErrorText

Returns the message associated with an ARexx error code.

Exists

Tests whether an external file exists.

Export

Copies data into external memory.

Form

Returns the current format setting of the numeric instruction.

Find

Finds a phrase in a string.

ARexx Quick Reference Guide O / /

FreeSpace

Returns a block ofmemory back to the interpreter's memory pool.

Fuzz

Returns the fuzz setting of the numeric instruction.

GetClip

Returns a value from the Clip List.

GetSpace

Allocates memory from the interpreter's memory pool.

Hash

Returns the hash value of a string.

Import

Copies data from a specific address.

Index

Searches for the first occurrence of a pattern in a string.

Insert

Inserts one string into another.

LastPos

Searches backwards for the occurrence of a pattern in a string.

Left

Extracts a substring from the left-most characters of a string.

Length

Returns the length of a string.

Lines

Returns the number of lines typed ahead at the keyboard.

Max

Returns the largest of the supplied arguments.

378 AmigaWorld Official AmigaDOS 2 Companion

Min

Returns the smallest of the supplied arguments.

Open

Opens an external file.

Overlay

Overlays one string onto another.

Pos

Returns the position of a pattern in a string.

Pragma

Lets a program change its priority or current directory.

Random

Returns a pseudorandom number.

RandU

Returns a uniformly-distributed random number.

ReadCh

Reads a given number of characters from a file.

ReadLn

Reads a line from a file.

RemLib

Removes a library from the ARexx library list.

Reverse

Reverses the characters in a string.

Right

Creates a string from the right-most characters in another string.

ARexx Quick Reference Guide D /J

Seek

Moves to a new position in a file.

SetClip

Adds a variable name and value to the Clip List.

Show

Shows the contents of the Clip List, the names of currently open files, the

contents of the library list, or the names of available external hosts.

Sign

Returns the sign of a number.

SourceLine

Returns the currently executing line of the ARexx program as a string. Also

returns the total number of lines in a program.

Space

Sets the number of spaces between words in a string.

Storage

Returns available system memory or stores a string in external memory.

Strip

Deletes leading and trailing spaces from a string.

SubStr

Returns a substring from a string.

SubWord

Returns a substring consisting ofwhole words.

Symbol

Returns the type of an ARexx symbol.

Time

Returns the current system time.

380 AmigaWorld Official AmigaDOS 2 Companion

Trace

Sets the tracing debugging mode.

Translate

Replaces selected characters in a string.

Trim

Removes trailing spaces from a string.

Trunc

Returns the integer portion of a number.

Upper

Converts a string into uppercase.

Value

Returns the value of a variable.

Verify

Returns the position of characters in a string that don't match a specific

argument.

Word

Returns a word from a string.

Wordlndex

Returns the position of a word in a string.

WordLength

Returns the length of the specified word.

Words

Returns the number ofwords in a string.

WriteCh

Writes a specified number of characters to a file.

ARexx Quick Reference Guide 381

WriteLn

Writes a line to a file.

X2C

Converts a string of hexadecimal digits to their ASCII equivalent.

X2D

Converts hexadecimal to decimal.

XRange

Generates a string of characters that fall between two characters.

The RexxSupport Library

AIlocMem

Allocates a block of memory and returns its starting address.

ClosePort

Closes an ARexx message port.

FreeMem

Releases previously allocated memory to the system.

GetArg

Extracts an argument from an ARexx message packet.

GetPkt

Checks a specified message port for available messages.

OpenPort

Opens an ARexx message port.

Reply

Returns a message packet to its sender with a result set.

AmigaWorld Official AmigaDOS 2 Companion

ShowDir

Returns the contents of a directory.

ShowList

Returns lists of libraries, devices, and ready-and-waiting ports.

StateF

Returns information about a file.

WaitPkt

Waits for a message to be received by a specified port.

AmigaDOS. The part of the Amiga operating system that handles files and

devices is called AmigaDOS (Amiga Disk Operating System). The name is also

commonly used to refer to the entire Amiga OS.

Amiga OS. The software that controls the operation of the Amiga and manages

applications programs is called Amiga OS. 11 stands forAmiga Operating System.

ARexx. Based upon IBM's mainframe REXX interprocess language, ARexx is a

programming language that lets you control many application programs from

a single ARexx program.

argument. Instructions understood internally by a command are called argu

ments. You send arguments to an AmigaDOS command by including them on

the command line.

boot. The process of loading the operating system into a computer is called

booting. A cold boot occurs when you turn the power on in your computer. A

warm boot is caused by a .software reset, which you can initiate by pressing the

Left-Amiga, Right-Amiga, and Control keys at the same time.

byte. The amount ofmemory needed to store single alphanumeric characters;

a byte consists of eight bits.

chip RAM. Memory used by the custom chips to create your output display or

to store sound data is called chip RAM. The CPU can sometimes be shut out

of chip RAM for a limited time when both the CPU and the custom chips

need to access this memory at the same time. This situation is called bus con

tention.

383

384 AmigaWorld Official AmigaDOS 2 Companion

command-line interface. A method of controlling a computer where you enter

the commands you want performed from the keyboard, and they are inter

preted by the program or operating system line by line as you enter them.

command scripts. An AmigaDOS command script is a simple program where

the instructions consist of individual AmigaDOS commands. It is also known

as a batch file.

CPU. The Central Processor Unit of a computer is the brains of the machine;

it executes the software instructions. On the Amiga, the CPU is a microproces

sor, a "computer on a chip." The Amiga uses the Motorola 68000 line of mi

croprocessors.

custom chips. The Amiga custom chips perform specialized functions faster

than the CPU, thus freeing the CPU to do what it does best. See entries for

Agnus, Denise, and Paula in the index.

device. An AmigaDOS device is a software interface between the operating

system and the hardware. Such devices recognize a common set of commands

that allow applications and the operating system to control the hardware.

directory. A directory is an area on a disk that lists the names and locations of

files on the disk.

disk. A flexible or fixed rotating electronic media used to store files.

drawer. The Workbench equivalent of an AmigaDOS directory.

Exec. A library of routines in the Amiga OS that controls such basic functions

as memory allocation, multitasking, and interprocess communication.

fast RAM. Memory on the Amiga that is available only to the CPU. Ifyou

have fast RAM on your system, AmigaDOS will load programs here to execute

them faster. See also chip RAM.

file. A group of related bytes stored on a disk and accessed by name.

format. The process of preparing a disk to hold information in electronic form.

gadget. A graphic picture on the screen that performs a function when you

select it. Examples of gadgets are the close, drag, and zoom gadgets attached to

a Workbench window.

genlock. The process of synchronizing two video signals so that they can be

combined into one.

graphical user interface (GUI). A type ofscreen display presented to users for

control of a computer. A GUI can present information and selections in

Glossary

graphical form, in contrast to a text-only interface. It commonly features

mouse control, multiple windows, pull-down menus, and icons that represent

tasks, files, and resources. The Amiga GUI is called Workbench.

HAM. Short for hold-and-modify, this Amiga display mode lets you see 4,096

colors onscreen at the same time.

handler. Software that redefines how AmigaDOS uses a particular hardware

resource. For example, the Aux-handler lets AmigaDOS use the serial device

for unbuffered two-way communications.

icon. Pictures on the screen that represent operations (such as Copy a file) or

objects (such as a file). You use the mouse to point to icons to access the func

tions the pictures represent.

interprocess communications. A feature of computer operating systems that

allows programs (processes) to pass information back and forth among them

selves. On the Amiga, the ARexx language can be used to manage interprocess

communications, thus accomplishing tasks that require the cooperation of

several separate programs.

Intuition. The Amiga Workbench interface is built upon Intuition, a set of

routines which controls the creation and operation ofwindows, menus, and

gadgets.

Kickstart. The basic operating system routines of the Amiga are contained in

Kickstart. Included are libraries such as Exec, Intuition, graphics, and layers,

and device drivers and handlers. While the first release of Kickstart 2.0 was on

disk, it will eventually wind up in ROM chips.

library. An Amiga library is a group of software routines that perform related

functions. Some libraries are contained in Kickstart, while others reside on disk

until a program loads them.

menu. Generally, a list ofchoices offered by a program. On Workbench, it is a list

of related functions accessed by pulling down the menu from the menu bar.

multitasking. The ability of a computer's operating system to run several pro

grams at the same time. Actually, microcomputers multitask by switching

among programs so fast that it appears they are executing simultaneously. The

two primary forms of multitasking are preemptive, which Amiga OS and other

sophisticated operating systems use, and cooperative, used by the Macintosh

MultiFinder.

partition. A division on a hard disk that corresponds to one volume.

386 AmigaWorld Official AmigaDOS 2 Companion

path. The directories that AmigaDOS searches to find a command you've

entered in the Shell.

pathname. The complete description of the location of a file on a disk.

pixel. A picture element. Computer graphics displays are composed of thou

sands of dots known as pixels.

pointer. The visible analog to the mouse; the pointer lets you select and ma

nipulate objects on the Workbench.

project. Under Workbench, a data file used by an Amiga tool. For example, a

paint program creates picture projects.

requester. A simple window created by the Amiga OS or a program that

prompts you for input. Normally, you can't continue with a program until

you satisfy the input request.

screen. On the Amiga, a screen is a data structure that defines the physical

characteristics ofyour display. It sets the resolution and colors of the display.

Shell. The AmigaDOS command-line interface. On earlier versions of the

operating system, it was called the CLI (command-line interface).

Startup-sequence. The command script file in the S: directory ofyour boot

disk that is executed whenever you boot your system.

subdirectory. A name sometimes given to a directory that resides within an

other directory.

system disk. The disk from which you boot your computer. On a hard disk

system, it will be called System2.0. On a floppy-based system, it is Work-

bench2.0.

tool. Under Workbench, a tool is a program.

trashcan. Under Workbench, a special type of directory available that lets you

delete files by dragging them into the trash.

volume. The contents of a disk or disk partition, as opposed to the drive that

contains the disk.

window. Rectangular areas on your screen display used by programs to display

their output.

Workbench. The program that displays an interface that lets you control the

Amiga using a mouse is called Workbench. It is built upon the Intuition library.

This appendix lists the AmigaDOS error codes and gives some indication of

what causes the indicated errors.

103 — Insufficient free store

There is not enough free memory to run the last command you entered. Try

AVAIL FLUSH, or closing down unneeded windows. If your memory list is

badly fragmented, you may have to reboot.

104 —Task table full

You probably will never see this error. AmigaDOS used to have a limit of 20

processes. That limit has been eliminated with 2.0.

120 — Argument line invalid or too long

You've entered the arguments for a command incorrectly. Use command his

tory to edit the line and try again. Also note that a command line can't exceed

255 characters.

121 — File is not an object module

You've tried to run a file that isn't a program. Make sure you have the correct

name of the executable file. If the file is one you've recently downloaded, be

sure that there is no XModem padding appended to the file.

122 — Invalid resident library during load

There is a problem with either ofyour disk-based libraries or with a resident

library. It may indicate an old version of a library. The only way to recover is

387

388 AmigaWorld Official AmigaDOS 2 Companion

to reboot. You may need to copy the Libs: directory from your backup Work

bench disk to your working copy.

202 — Object in use

You've tried to access a file that is already being accessed by another program.

You'll also get this message ifyou try to delete a file or directory that has been

assigned a logical name.

203 — Object already exists

You've tried to create a directory that already exists. Try another name with

MakeDir.

204 — Directory not found

Either you've entered the directory name incorrectly, or it doesn't exist. Try

again.

205 — Object not found

Probably the most common AmigaDOS error. It usually indicates that you've

entered the name of a command or file incorrectly. It can also mean that

you've tried to access a file on a nonexistent directory or unmounted device.

206 — Invalid window description

The window description you've used with NewShell is invalid either because of

syntax problems or because the dimensions are out of bounds.

207 — Invalid stream component name

You've entered a file name that is too long or contains a control character.

212 — Object not of required type

You've indicated a directory name where a file is required, or a filename where

a directory is required.

213 — Disk not validated

You may have a corrupt disk. If the error persists, you'll have to use

DiskDoctor to recover what you can from the disk.

214 — Disk is write-protected

You've tried to write to a write-protected disk. Move the write-protect tab to

the enable position or use another disk.

AmigaDOS Error Codes 389

215 — Rename across devices attempted

You can't use Rename to move a file from one disk or disk partition to an

other. Try the Copy command instead.

216 — Directory not empty

YouVe tried to delete a directory that has files in it. Delete the files first or use

the DELETE ALL option.

218 — Device not mounted

YouVe tried to access a device that hasn't been added to the system. Most

often, this indicates a typing error (such as DFo: for DFO:).

220 — Comment too big

Comments can't be longer than 80 characters.

221 — Disk full

There isn't enough room on the disk to complete the last command. You

might try deleting some unneeded files on the disk or use another disk.

222 — File is protected from deletion

The files-deletable bit has been cleared. You can use the Information item

from Workbench or Protect from the Shell to set the bit, or use DELETE

FORCE to delete the file.

223 — File is protected from writing

This is an error you won't see, because AmigaDOS ignores the w protection

bit.

224 — File is protected from reading

Another error that can't occur because AmigaDOS doesn't yet make use of the

r protection bit.

225 —Not a DOS disk

This may be caused by inserting an unformatted disk, a corrupt disk, a disk

formatted by another operating system, or a copy-protected disk. If the disk is

corrupt, you'll have to call on DiskDoctor.

226 — No disk in drive

Put a disk in the drive or use a drive that has a disk.

AmigaWorld Official AmigaDOS 2 Companion

12 Hour menu item, 124

24 Hour menu item, 124

— A—

A2024 monitor, 103-104

Ab function, 374

Abbrev function, 374

About menu item, 159, 269

AddBuffers command, 276-277,

351

AddLib function, 327, 374

AddMonitor tool, 117, 141

Address function, 328-329, 374

address instruction, 371

Agnus chip, 4

Alarm menu, 125

Alarm Offmenu item, 125

Alarm On menu item, 125

Alias command, 222-223, 351

All Files option, 56

All option, 54-55

AllocMem function, 381

Alt key, 86, 122, 156-157

AM/PM cycle gadget, 125

Amiga OS (Operating System), 1-

10

AmigaDOS, 2, 173-241

accessing commands with

MicroEMACS text editor,

159

command

reference, 351-370

scripts, 279-306

templates, 193-198

controlling with the Shell, 13

error codes, 387-389

executing commands, 46

file structure, 184-185

filenames, 63, 186-187

formatting disks, 71

integer arithmetic, 298-300

issuing commands to, 177-182

logical assignments, 189-192

nomenclature, 174-175

pathnames, 186-188

pathways, 226-227

AmigaDOS End-of-File (CTRL-\)

keys, 201, 260

AmigaDOS library, 174

Analog menu item, 124

Angus chip, blitter, 4

Applcon, 72

applications programs

adding to tools menu, 72

choosing size of printed

graphic, 100

AppMenuItem, 72

Archived protection bit, 65, 253

ARexx, 8, 13, 309-329

adding support libraries, 327

arithmetic operators, 313-315

branching instructions, 316-

319

Built-in Functions library, 323-

327

Catalog Maker application,

332-348

constants, 312-313

data, 313-316

file-handling functions, 325-

326

functions, 374-381

hosts and ports, 328-329

instructions, 371-374

loading into memory, 119

looping structures, 319-322

multiple comparisons, 322-323

operators, 313-315

programs and, 311, 324

quick reference guide, 371-382

RexxSupport Library, 381-382

running applications with

ARexx ports, 327

string operators, 315

variables, 312-313

AREXX Command menu item,

272

Arg function, 374

arg instruction, 371

Argument Numeric (/N) modifier,

198

Argument Required (/A) modifier,

195, 197

ASCII text files, 128, 163

Ask command, 293-294, 351-352

Assign command, 111-112, 189,

192,205,211-215,352

assigned directories, 79

assignment (=) operator, 312-313

Auto TopLeft menu item, 154

391

392 AmigaWorld Official AmigaDOS 2 Companion

Autoconfig procedure, 15-16

AutoPoint commodity, 123, 137

AutoScroll text gadget, 105

AUX: device, 274, 276

Avail command, 238-239, 352-353

— B —

B2C function, 374

Back= Tool Type, 127

Backdrop menu item, 30-32, 45

Right-Amiga-B keyboard

equivalent, 45

backdrop window, 31-32

Backfill menu item, 152

background

colors, 82-83

patterns, 109-111

Backspace (CTRL-H) keys, 182

Backspace key, 41, 129, 158, 181,

220

Backwards Find menu item, 269

Bad Block Entry requester, 168

baud rate, 105

Beginning of File (<) More tool

key, 129

Beginning of Line (Shift-Cursor

Left) keys, 181

binary files, 128

BindDrivers command, 139, 277,

353

BindMonitor tool, 117-118

BitAND function, 374

BitChg function, 374

BitClr function, 374

BitComp function, 375

BitOR function, 375

BitSet function, 375

BitTst function, 375

BitXOR function, 375

Blanker commodity, 123, 132-133,

137

Shift-Fl hot keys, 133, 137

Bootable? gadget, 170

booting, 15-16

Bottom menu item, 269

Bottom of Buffer (Shift-Cursor

Down) keys, 184

bounded area, 149

Box gadget, 148

BRA statement, 284

branching instructions, 316-318

Break command, 233-234, 353

buffers

adding, 276-277

command-history, 183-184

loading files into, 159-161

Built-in Functions library, 323-

327

bus contention, 103

— c—

C2B function, 375

C2D function, 375

C2X function, 375

C: directory, 177, 190-191, 205

Calculator tool, 142

calendar, setting, 108

call instruction, 371

Cancel menu item, 161

Carriage Return (CTRL-M) keys,

182

Case Sensitive menu item, 271

Catalog Maker application, 332-

348

CD command, 217-218, 353

Center function, 375

ChangeTaskPri command, 223-

224, 353

character strings, 220-223

characters

%S substitution, 211

accessing international from

other keymaps, 155-157

control codes, 157

deleting, 41

nonprintable, 87

special, 157

child windows, viewing files, 57

chip RAM, 5, 120

Circle gadget, 147-148

Clean Up menu items, 53-54

CLI (command-line interface),

119,173,175

CLI-command menu item, 159

Clipboards drawer, 76-77

CLIPS: directory, 192

clock, 107-108, 123-125, 236-238

Clock program, 123-124

Close (CTRL-C) keys, 126, 157

Close function, 375

close gadget, 34-35

Close menu item, 53

Close More Window (q) More tool

key, 129

Close Workbench Output Win

dow (CTRL-\) keys, 46

ClosePort function, 381

CMD tool, 142-143

Coercion function, 86

color gadget, 83, 92-94, 110, 145,

147-148, 152

color printers, 97-99

color requester, 39-40

Colors text gadget, 104-105

Colors tool, 143-144

Command Keys function, 84-86

command reference, 351-370

command scripts, 279-307

see also scripts

IconX command, 306-307

running, 279-285

stopping, 233-234

command templates, 193-198

command-history buffer, scrolling,

183-184

command-line, 179-182

command-line interface (CLI), 11-

12

commands, 46

AddBufFers, 276-277, 351

Alias, 222-223, 351

Ask, 293-294, 351-352

Assign, 111-112,189, 192,

205,211-215,352

Avail, 238-239, 352-353

BindDrivers, 139, 277, 353

Break, 233-234, 353

CD, 217-218, 353

ChangeTaskPri, 223-224, 353

conditional statements, 285-

287

Copy, 201, 243-248, 354

CPU, 240-241, 354-355

Date, 236-238, 355

devices, 234-241

Delete, 252-253,355-356

Dir, 177-178, 185,194-197,

202, 205-206, 356

Index 393

DiskChange, 277-278, 356

DiskDoctor, 264-265, 356

Echo, 291-293, 356-357

Ed, 266-272, 357

Edit, 265-266, 357

Else, 358

EndCLI, 202, 226, 358

Endlf, 358

ENDSHELL, 177, 202, 226,

358

EndSkip, 297, 358

entering in Shell window, 176

Eval, 298-300, 358

Execute, 205,279-285, 358

explanation of errors, 231-232

FailAt, 359

Fault, 231-232, 359

file information, 206-221

FileNote, 256-257, 359

Get, 289-290, 359

GetEnv, 290, 359

getting input from another

source, 201-203

IconX, 306-307, 360

If, 285-287, 360

Info, 234-236, 360

Install, 263-264, 360-361

internal, 215-217

IPrefs, 307, 361

issuing to AmigaDOS, 177-182

Join, 257-258, 361

Kickstart ROM, 205, 215-217

Lab, 295-296, 361

List, 205-211,217, 361-362

LoadWB, 16, 226, 362

Lock, 255, 362

MakeDir, 257, 362

MakeLink, 262-263, 363

modifiers, 194-198

Mount, 274-276, 363

NewCLI, 224-226, 280, 363

NEWSHELL, 175, 224-226,

280, 363

parsing characters, 179-180

Path, 226-227, 363-364

pattern matching, 198-200

processes, 222-234

Prompt, 228, 364

Protect, 254-255, 364

Quit, 364

re-entrant, 215

redirection, 201-203

Relabel, 212, 251-252, 364

RemRad, 365

Rename, 210, 212, 248-251,

365

Resident, 202-203,205, 215-

217, 365

Run, 226, 229, 365-366

Search, 220-221, 366

separating arguments with

space character, 178-180

Set, 288-289, 366

SetClock, 236-238, 366

SetDate, 255-256, 367

SetEnv, 290, 367

SetFont, 230-231, 367

SetPatch, 367-368

Skip, 295-297, 368

Sort, 258-261, 368

Stack, 229-230, 368

Status, 232-233, 368-369

stopping, 233-234

Type, 201, 218-220, 369

UnAlias, 222-223, 369

Unset, 290, 369

UnSetEnv, 369

Version, 239-240, 369-370

Wait, 297-298, 370

Which, 227-228, 370

Why, 232, 370

Commands menu, 271-272

Commodities Exchange, 132-137

AutoPoint commodity, 137

Blanker commodity, 132-133,

137

Exchange Commodity, 135-

137

IHelp commodity, 137-138

priorities of commodities, 135

Tool Types, 134-135

Commodore A2024 monitor, 90

communications, serial, 105-107

Compare function, 375

Complement menu item, 152

Compress function, 375

CON: device, 273, 292

conditional statements, 285-287

console control characters, 292

constants, 312-313

Continue gadget, 39

Continuous Freehand gadget, 147

control codes, 157

Control key, 86, 122, 156

Copies function, 375

Copy (Amiga-Right-X) keys, 182

Copy command, 201, 243-248,

354

Copy menu item, 61-62, 119, 153

Copy-region menu item, 161

CPU (central processing unit), 2-3

status report, 232-233, 240-

241

CPU command, 240-241, 354-355

CrossDOS (Consultron), 277

current (*) Shell window, 200-201

cursor

Shell window, 176

string gadgets, 41

Cursor Down key, 183-184

Cursor Left key, 181

Cursor Right key, 181

Cursor Up key, 183-184

custom chips, 3-5

custom screen, colors, 144

Custom screen to Workbench

Screen (Left-Amiga-N key

board equivalent, 85

CX_POPKEY Tool Type, 133-135

CX.POPUP Tool Type, 134-135

CX.PRIORITY Tool Type, 134-

135

CYCLE (Fl) key, 138

cycle gadget, 108, 125

Cycle Picture Files (CTRL-D)

keys, 126-127

CYCLESCREEN (F4) key, 138

— D —

D2C function, 376

D2X function, 376

DataType function, 376

date, displaying/hiding on clock,

124

Date command, 236-238, 355

Date function, 376

Date menu, 124

Date Off menu item, 124

394 AmigaWorld Official AmigaDOS 2 Companion

Date On menu item, 124

Date option, 59

DEF statement, 284-285

Default Tool string gadget, 68-69

Define/Edit Drive Type window,

166

def_drawer drawer, 151

def_tool icon file, 151

Del key, 41, 158

DELAY Tool Type, 306

Deletable protection bit, 65, 253

Delete Block menu item, 270

Delete command, 252-253, 355-

356

Delete from Cursor to Beginning

of Line (CTRL-U) keys, 181

Delete from Cursor to End of Line

(CTRL-K) keys, 181

Delete key, 181

Delete Line menu item, 269

Delete menu item, 70-71, 113

Delete String Gadget (Right-

Amiga-X) keyboard equivalent,

41

Delete to End of Line

(CTRL-B) keys, 181

(CTRL-X) keys, 181

Delete Word Left (CTRL-W) keys,

181

DelStr function, 376

DelWord function, 376

Denise chip, 4

depth gadget, 34, 36

destination disk, 62

DEVICE Tool Type, 143

devices, 234-236, 272-276

AUX:, 274, 276

CON:, 273

drivers, 139

floppy-disk, 273

hard-disk, 273

names, 193

NIL:, 202, 274

PAR:, 273

PIPE:, 274, 276

PRT: (printer), 273

RAD:, 274

RAM:, 273

RAW:, 274

SER:, 273

SPEAK:, 273-276

Devs drawer, 121

Devs/Keymaps drawer, 122-123

DEVS: directory, 191

DFO (Disk Floppy 0), 19

DF1 (Disk Floppy 1), 19

DF2 (Disk Floppy 2), 19

Digital menu item, 124

Digits function, 376

Dir command, 177-178, 185, 194-

198,202,205-206,356

direct-memory access (DMA), 5

directories, 257

assigned, 79

Q, 177, 190-191

changing, 185

CLIPS:, 192

deleting file, 196

default, 190-191

DEVS:, 191

disk-based libraries, 191

displaying file on-screen, 196

ENV:, 191-192

ENVARC:, 191

environmental variables, 191-

192

FONTS:, 191

halting/continuing listing, 177

interactive, 195-197

L:, 191

LIBS:, 191

listing, 177-178, 185, 195,

197,217-218

logical assignment, 188-192,

211-215

names, 186-187

root, 185, 190

S:, 191

SYS:, 190

T:, 192

temporary files, 192

Utilities, 178

disk devices information, 234-236

disk drive names, 61, 192-193

disk files, 142-143

Disk icon, 20, 60, 63-64

disk window, 22, 35

disk-repairing software, DiskSalv,

264

DiskChange command, 277-278,

356

DiskCopy tool, 61-64, 119-120

DiskDoctor command, 264-265,

356

disks, 19

adding buffers, 276-277

alerting system about change,

277-278

as volumes, 19

blocks, 63-64

bootable, 263-264

copying, 29, 61-62, 119

default tool, 63-64

destination, 62

erasing, 71

Extras2.0, 115,121

formatting, 71, 119-120

information about, 63-64

name, 186-187, 192-193

organizing, 21, 51

read-write status, 63

repairing damaged, 264-265

source, 61-62

system, 48

System2.0, 115, 121

Workbench2.0, 115, 121

write-enabling, 62

write-protecting, 61-62, 255

DiskSalv disk-repairing software,

264

Display Enhancer (Commodore),

86, 102-104,163

display modes, 86

A2024_10Hz, 103

A2024_15Hz, 103

assigning names, 117-118

NTSC, 101

NTSC Hires, 102

NTSC Hires-Interlaced, 102

NTSC SuperHires, 102

NTSC SuperHires-Interlaced,

102

PAL, 101

PAL Hires, 102

PAL Hires-Interlaced, 102

PAL SuperHires, 102

PAL SuperHires-Interlaced,

103

Index 395

Productivity, 103

Productivity-Interlaced, 103

properties, 103-104

screen sizes, 104

selecting, 101-103

Display tool, 126-128

dithering graphics, 98-99

do instruction, 318-322, 371

DOLLAR statement, 284

DONOTWAIT Tool Type, 140

DOS library, 8

dos.library function library, 9

DOT statement, 284

double-clicking, 24

drag gadget, 34-35

drag sizing gadget, 128

draw windows drag bar, 35

Drawer gadget as default drawer,

80

Drawer icon, 60, 64-67

drawers, 17-22,50-51

Clipboards, 76-77

copying, 28, 61

defjdrawer, 151

deleting, 70-71

Devs, 121

Devs/Keymaps, 122-123

Env, 76

Env-Archive/Sys, 76-77

Env:Sys, 151

Expansion, 138-139

icons, 20

information about, 64-67

Keymaps, 121

Monitors, 90, 115

MonitorStore, 90, 117

moving to different from

requester, 79

moving tool to another, 68-69

naming, 51

Prefs,42,75, 113

S, 130

Sys:Prefs/Env-Archive/Sys, 151

Sys:Prefs/Presets, 79

System, 116-123

T,76

Tools, 127, 141-163

Utilities, 123-138

VideoAdjust, 163

vs. icons, 22

WBStartup, 90, 117-118, 123,

139-140

window, 21-22, 60

drop instruction, 372

— E—

Echo command, 291-293, 356-357

echo instruction, 372

Ed command, 266-272, 357

Ed text editor, 265-272

ARexx programs, 311

commands and extended com

mands, 268

menus, 268-272

Edit command, 265-266, 357

Edit menu, 77, 80, 159-161, 269-

270

Edit text editor, 265-266

EHB= Tool Type, 128

Else command, 358

Else conditional statement, 285

else instruction, 317-318, 372

Empty Trash menu item, 71-72

End Block menu item, 270

End gadget, 170

end instruction, 372

End of File (>) More tool key, 130

End of Line (Shift-Cursor Right)

keys, 181

EndCLI command, 202, 226, 358

EndCLI menu item, 159

Endlf command, 358

Endif conditional statement, 285

ENDSHELL command, 177, 202,

226, 358

EndShell menu item, 159

EndSkip command, 297, 358

Enhanced Chip Set (ECS), 102-104

Env drawer, 76

Env-Archive/Sys drawer, 76-77

ENV: directory, 191-192

Env:Sys drawer, 151

ENVARC: directory, 191

environment variables, 287-290

EOF function, 326, 376

error codes, 387-389

errors, reporting as requester or

error line, 48-49

ErrorText function, 376

Eval command, 298-300, 358

Exchange Commodity, 135-137

Exchange menu item, 152

Exchange program, 123

Exec, 8-9

Executable protection bit, 65, 253

Execute a File requester, 45

Execute command, 205, 279-285,

358

Execute Command menu item, 30,

32,45-46,111-112,132,175

Right-Amiga-E keyboard

equivalent, 45-46

Exists function, 376

exit instruction, 372

Expand-window menu item, 161

Expansion drawer, 138-139

Export function, 376

expressions, evaluating, 298-300

Extended Command menu item,

272

Extras menu, 158, 162

Extras2.0 disk, 115, 121, 141-172

HDToolBox program, 164-

171

MonitorStore drawer, 141

moving Preferences editors to,

113-114

Tools drawer, 141-163

Update2.X IconX project, 172

ExtraJHalfbrite mode, 128

p

FailAt command, 359

fast RAM, 5, 120-121

Fault command, 231-232, 359

Female Voice (-f) Say tool com

mand, 131

Field color gadget, 83

File Change Notification, 76

file extensions

.font, 120

.info, 19, 55, 128, 150-151,

175, 177

.pic, 210

File gadget as default file name, 80

file requester, 42, 159

FILE Tool Type, 143

FileList projects, 127-128

FileList= Tool Type, 127

396 AmigaWorld Official AmigaDOS 2 Companion

Filename text gadget, 166

filenames, 186-187

FileNote command, 256-257, 359

files, 18-19

appending to, 202-203

binary, 128

completely reading, 326

concatenating, 257-258

copying, 27-29, 243-248

date/time stamp display, 209

deleting, 70-71, 252-253

descriptive comments, 256-257

duplicating in same window,

61

fonts.pre, 79

garnet.font, 114

IFF brush, 153

ILBM (interleaved bitmap), 69

information about, 58

information commands, 206-

221

linking, 262-263

listing, 177-178,206-211

loading into buffers, 159-161

manipulating, 9-10, 57-59,

243-265

MicroEMACS text editor

handling, 158-161

naming, 174-175

opening, 325

organizing, 21

palette.ilbm, 75

path, 68

Preferences, 75-76

preset, 77-78

printer.prefs, 75

protection bits, 253-255

reading, 325-326

redirecting output, 209

renaming, 62-63, 158, 248-251

saving, 158-159

script, 16

searching for character string,

220-221

Shell manipulation, 174-175

size, 66

Startup-sequence, 16, 59, 301-

306

structure, 184-185

time/date stamping, 255-256

Times.font, 114

TopazBackpre, 80

typing contents to screen, 218-

220

viewing on disk, 55-57

wbconfig.pre, 79

writing to, 326

Fill gadget, 149

Final Argument (/F) modifier, 198

Find function, 376

Find menu item, 269, 271

Find Next menu item, 271

fixed-length fonts, 82

FixFonts tool, 120

Flags=Formfeed Tools Types, 163

flickerFixer (MicroWay), 86, 102-

103

floppy disks accessing Paula chip, 4

floppy-based system

alternate keymaps, 121

booting, 25, 27

printer driver selection, 96

Ram Disk icon, 19

Preferences editors, 111-114

Workbench2.0 disk, 112-114

Workbench 2.0 icon, 19

floppy-disk devices, 273

Floyd-Steinberg dithering, 99

Font editor, 81-83, 111-112

font files, 120

Font requester, 82

Font tool, 42

fonts

default, 80

deleting, 114

fixed-length, 82

proportional, 82

selecting, 42, 81-83

Shell, 230-231

Topaz 8, 80

Workbench2.0 disk, 112-114

Fonts editor, 77-79

fonts requesters, 42

fonts.pre file, 79

FONTS: directory, 191

Form function, 376

Format Disk menu item, 71, 119

Format tool, 119-120

Formfeed character (CTRL-L)

keys, 292

Fraction option, 99

Freehand gadget, 147

FreeMem function, 381

FreeSpace function, 377

function keys

see also keys, 138

performing Intuition opera

tions, 137-138

function libraries see libraries

functions

Ab, 374

Abbrev, 374

AddLib, 327, 374

Address, 328-329, 374

AllocMem, 381

Arg, 374

B2C, 374

BitAND, 374

BitChg, 374

BitClr, 374

BitComp, 375

BitOR, 375

BitSet, 375

BitTst, 375

BitXOR, 375

C2B, 375

C2D, 375

C2X, 375

Center, 375

Close, 375

ClosePort, 381

Coercion, 86

Command Keys, 84-86

Compare, 375

Compress, 375

Copies, 375

D2C, 376

D2X, 376

DataType, 376

Date, 376

DelStr, 376

DelWord, 376

Digits, 376

EOF, 326, 376

ErrorText, 376

Exists, 376

Export, 376

Index 397

file-handling, 325-326

Find, 376

Form, 376

FreeMem, 381

FreeSpace, 377

Fuzz, 377

GetArg, 381

GetClip, 377

GetPkt,381

GetSpace, 377

Hash, 377

Import, 377

Index, 377

Insert, 377

LastPos, 377

Left, 377

Length, 377

Lines, 377

Max, 377

Min, 378

Miscellaneous Flags, 86-87

Mouse Screen Drag, 86

Open, 325, 378

OpenPort, 381

Overlay, 378

Pos, 378

Pragma, 378

Random, 378

RandU, 378

ReadCh, 326, 378

ReadLn, 325-326, 378

RemLib, 378

Reply, 381

Reverse, 378

Right, 378

Seek, 379

SetClip, 379

Show, 324, 379

ShowDir, 382

ShowList, 382

Sign, 379

SourceLine, 379

Space, 379

StateF, 382

Storage, 379

Strip, 379

SubStr, 379

SubWord, 379

Symbol, 379

Time, 379

Trace, 380

Translate, 380

Trim, 380

Trunc, 380

Upper, 380

Value, 380

Verify, 83-84, 380

WaitPkt, 382

Word, 380

Wordlndex, 380

WordLength, 380

Words, 380

WriteCh, 326, 380

WriteLn, 326, 381

X2Q381

X2D,381

XRange,381

Fuzz function, 377

— G—

gadgets, 33

see individual gadgets

garbage icons, 20

garnet.font file, 114

genlock, 103

Get command, 289-290, 359

GetArg function, 381

GetClip function, 377

GetEnv command, 290, 359

GetPkt function, 381

GetSpace function, 377

global environment variables, 288

Global Q-Replace menu item, 271

Global Replace menu item, 271

global variables, 290-292

glossary, 383-386

Go to Line menu item, 270

graphical-user interfaces (GUI),

11,18

GraphicDump tool, 145

graphics

absolute printing values, 100

applications choosing size, 100

aspect ratio, 100

bounded sets, 100

colors, 99

Denise chip controlling

output, 4

dithering, 98-99

enlarging display area, 91

gray scales, 99

* horizontal or vertical aspect, 99

left margin when printing, 98

negative image, 99

output, 97-100

positive image, 99

printing centered, 98

smoothing lines, 97

threshold for black-and-white,

99

graphics.library function library, 8-

9

Grid menu item, 153

— H —

halftones, 99

hard disks

attaching new, 166-167

autobooting, 16

backing up, 171

blocks, 167-168

cylinders, 167

devices, 273

heads, 167

low-level formats, 168

management, 164-171

names, 193

partitioning, 165, 169-171

tracks, 167

hard-drive system

alternate keymaps, 121-123

booting, 25, 27

Monitors drawer, 115

printer driver selection, 96

hardware resources, 8

Hash function, 377

HDToolBox program, 164-171

Height text gadget, 100, 104

Hidden protection bit, 253

Highlight menu, 149, 152

hold-and-modify (HAM), 33

horizontal scroll gadget, 34, 37

hosts, 328-329

hot keys, defining for commodity

that opens window, 134-135

hot links, 76

398 AmigaWorld Official AmigaDOS 2 Companion

j

I/O (input/output), 2-3, 5

icon files, 19, 150-151

Icon menu, 212

Icon option, 58

IconEdit tool, 20, 127, 145-155

icons, 19-20, 63-67, 145-155

3-D effect, 152

active and inactive, 23-24

alternate image, 152

boxes, 148

changing fonts on Workbench

display, 82

circles, 147-148

clearing position information,

69

coloring, 149, 152

copying, 22, 27-29, 153

default information, 56

deleting, 70-72

disk, 20, 60, 63-64

dragging, 27, 29

drawer, 20, 60, 64, 65-67

drawing, 147-148

editing, 145-155

erasing, 150

file for FileList projects, 127-

128

garbage, 20

grids, 153

IHelp, 66-67

lines, 148-149

loading, 150, 153

magnified view, 146-147, 149

moving, 21-22, 69

normal view, 149

opening, 59-60

painting, 153

pointing to, 23

project, 20, 60, 68-69

quitting, 151

Ram Disk, 19, 113

rearranging, 53-54

removing from main Work

bench window, 69

renaming, 41, 62

RexxMast, 310

saving

new as default icon, 151

preset files with, 80

window and, 55, 69

selected view, 150

selecting multiple, 29, 53

status and capabilities, 65-66

swapping images, 152

Test_l, 163

Test_2, 163

Test_3, 163

text and background colors, 82

tool, 20, 59, 66

Trashcan, 60, 69

types, 151

vs. drawers, 22

windows and, 26, 58-59

Workbench 2.0, 19

Workbench default tool, 146

Icons menu, 30, 43-44, 59, 60-72,

113, 117,119, 122

IControl editor, 83-87

IconX command, 360

command scripts, 306-307

IconX projects, Update2.X, 172

If command, 285-287, 360

if instruction, 317, 372

IFF (interchange file format), 69

IFF brush file, 153

Ignore Case menu item, 271

IHelp commodity, 123, 137-138

IHelp icon, Zipwindow Tool

Type, 66-67

IHelp tool, customizing, 67

ILBM (interleaved bitmap) file, 69

Image menu item, 149-150, 152

Images menu, 152-153

Import function, 377

Include Keyword (/K) modifier,

195,197

Indent menu item, 161

Index function, 377

Info command, 234-236, 360

info file extension, 19, 55, 128,

151, 175, 177

info files, 150

position information, 69

renaming, 62

showing files that have, 56

Information menu item, 63-69,

117, 122

Information window, 68

InitPrinter tool, 155

input buffer, 105

Input editor, 87-89

Input Preferences requester, 87

Input window, 131

Insert Block menu item, 270

Insert File menu item, 159, 270

Insert function, 377

Insert-buffer menu item, 161

Install command, 263-264, 360-

361

instructions

address, 371

arg, 371

branching, 316-319

call, 371

decision-making, 317

do, 318-322, 371

drop, 372

echo, 372

else, 317-318, 372

end, 372

executing block, 318

exit, 372

if, 317, 372

interpret, 372

iterate, 372

leave, 372

nop, 372

numeric, 372

options, 373

otherwise, 373

parse, 373

procedure, 373

pull, 315-316, 373

push, 373

queue, 373

return, 373

say, 373

select, 322-323, 373

shell, 373

signal, 374

then, 317-318

when, 374

integer arithmetic, 298-300

Integer option, 99

Index 399

interfaces, 10-13

ARexx programming language,

13

graphical-user interfaces (GUI),

11

Intuition, 23

Shell, 12-13

windowing, 21

Workbench, 11-12

international languages, keyboard

mapping, 121-123

Intuition library, 8, 12, 23

changing control items, 83-84

different display modes, 86

filtering keyboard input into

text gadget, 87

function keys performing

operations, 137-138

keyboard equivalents, 84-86

timed program input interval,

83-84

intuition.library function library, 9

IPrefs command, 307, 361

IPrefs program, 76

iterate instruction, 372

-J-K-

Join command, 257-258, 361

Justify-buffer menu item, 161

KET statement, 284

Key Repeat Test gadget, 89

KEY statement, 281-284

keyboard equivalents, 32, 159

Left-Amiga-M (Workbench

Screen Back), 36

Left-Amiga-N (Workbench

Screen Front), 36, 85

Right-Amiga-B (Backdrop

menu item), 45

Right-Amiga-E (Execute Com

mand menu item), 45-46

Right-Amiga-Q (Restore String

Gadget), 41

Right-Amiga-V (Paste), 183

Right-Amiga-X (Delete String

Gadget), 41

Right-Amiga-X (Copy), 182

setting with Intuition library,

84-86

keyboards, 87-89

entering information from, 40-

41

mapping to international

languages, 121-123

speech from, 130-132

keymaps, 121-123

accessing international charac

ters from other, 155-157

Keymaps drawer, 121

keys

/ (Up One Directory Level),

185

: (Root Directory Level), 185

Alt, 86, 122, 156-157

Backspace, 41, 158, 181,220

Control, 86, 122, 156

CTRL-B (Delete to End of

Line), 181

CTRL-C (Close), 126,157

CTRL-C (Stop Command),

177, 220, 233, 253

CTRL-D (Cycle Picture Files),

126-127

CTRL-D (Stop Command

Script), 233

CTRL-H (Backspace), 182

CTRL-J (Linefeed), 182

CTRL-K (Delete from Cursor

to End of Line), 181

CTRL-L (Formfeed character),

292

CTRL-L (Refresh Screen), 130

CTRL-M (Carriage Return),

182

CTRL-P (Print Picture), 126

CTRL-Q (Resume Command),

220

CTRL-U (Delete from Cursor

to Beginning of Line),181

CTRL-W (Delete Word Left),

181

CTRL-X (Delete To End of

Line), 181

CTRL-\ (AmigaDOS End-of-

File), 201, 260

CTRL-\ (Close Workbench

Output Window), 46

Cursor Down, 183-184

Cursor Left, 181

Cursor Right, 181

Cursor Up, 183-184

Del, 41, 158

delay speed, 89

Delete, 181

Fl (CYCLE), 138

F2 (MAKEBIG), 138

F3 (MAKESMALL), 138

F4 (CYCLESCREEN), 138

F5 (ZIPWINDOW), 138

Left-Amiga, 84, 86

repetition speed, 89

Return, 41, 46, 181

Shift, 29, 86, 122, 156

Shift-Cursor Down (Bottom of

Buffer), 184

Shift-Cursor Left (Beginning of

Line), 181

Shift-Cursor Right (End of

Line), 181

Shift-Cursor Up (Search

Buffer), 184

Tab, 157

viewing mapping, 156-157

KeyShow tool, 155-157

Keyword is Switch (IS) modifier,

197

keyword modifiers see modifiers

Kickstart

displaying version, 49

global environment variables,

288

listing commands, 215-217

updating, 172

Kickstart ROM commands, 205

Kill-buffer menu item, 161

Kill-region menu item, 161

— l—

L: directory, 191

Lab command, 295-296, 361

Last Error menu item, 30,48-49

Last Saved menu item, 80

LastPos function, 377

layers,library function library, 9

leave instruction, 372

Leave Out menu item, 69

Left function, 377

400 AmigaWorld Official AmigaDOS 2 Companion

Left: Margin menu item, 271

Left Margin text gadget, 96

Left-Amiga key, 84, 86

Length function, 377

libraries

AmigaDOS, 174

Built-in Functions, 323-327

dos.library, 8-9

graphics.library, 8-9

intuition.library, 8-9, 12, 83-84

layers.library, 9

LIBS: directory, 191

Limits gadget, 100

Line gadget, 148-149

Line menu, 162

Linefeed (CTRL-J) keys, 182

Lines function, 377

List command, 205-211, 217, 361-

362

List Commands (h) More tools

key, 130

List-buffers menu item, 160

Load Both Images menu item, 153

Load IFF Brush menu item, 153

Load menu item, 153

Load Normal Image menu item,

153

Load Selected Image menu item,

153

Load submenu, 153

LoadWB command, 16, 226, 362

local variables, 288-290

Lock command, 255, 362

logical assignments, 188-192, 211-

215

Loop= Tool Type, 127

looping structures, 319-322

Lower-region menu item, 161

— m —

macros (MicroEMACS text edi

tor), 162

MAKEBIG (F2) key, 138

MakeDir command, 257, 362

MakeLink command, 262-263,

363

MAKESMALL (F3) key, 138

Male Voice (-m) Say tool com

mand, 131

margins, 96, 98

Max function, 377

MEmacs see MicroEMACS

memory, 3

available, 238-239

chip RAM, 5, 120

fast RAM, 5, 120-121

movement with Agnus chip, 4

menu items

12 Hour, 124

24 Hour, 124

About, 159,269

accessing, 30-32

acting globally on Workbench,

44-45

adding to Tools menu, 72

additional Preferences editor

items, 80

Alarm Off, 125

Alarm On, 125

All, 54-55

All Files, 56

Analog, 124

AREXX Command, 272

AutoTopLeft, 154

Backdrop, 30-32, 45

Backfill, 152

Backwards Find, 269

Bottom, 269

Cancel, 161

Case Sensitive, 271

Clean Up, 53-54

CLI-command, 159

Close, 53

Complement, 152

Copy, 61-62, 119, 153

Copy-region, 161

Date, 59

Date Off, 124

Date On, 124

Delete, 70-71, 113

Delete Block, 270

Delete Line, 269

Digital, 124

Empty Trash, 71-72

End Block, 270

EndCLI, 159

EndShell, 159

Exchange, 152

Execute Command, 30, 32, 45-

46, 111-112, 132, 175

Expand-window, 161

Extended Command, 272

Find, 269, 271

Find Next, 271

Format Disk, 71, 119

Fraction, 99

Global Q-Replace, 271

Global Replace, 271

Go to Line, 270

Grid, 153

Icon, 58

Ignore Case, 271

Image, 149-150, 152

inactive, 44

Indent, 161

Information, 63-69, 117, 122

Insert Block, 270

Insert File, 159,270

Insert-buffer, 161

Integer, 99

Justify-buffer, 161

Kill-buffer, 161

Kill-region, 161

Last Error, 30, 48-49

Last Saved, 80

Leave Out, 69

Left Margin, 271

List-buffers, 160

Load, 153

Load Both Images, 153

Load IFF Brush, 153

Load Normal Image, 153

Load Selected Image, 153

Lower-region, 161

marking those with submenus,

54-55

Name, 58

New, 150,270

New Drawer, 50-51

New-CLI, 159

Next Page, 271

Next-w-page, 161

Next-window, 161

One-Window, 161

Only Icons, 56

Open, 59-60, 77-79, 150, 269

Open Parent, 52-53

Index 401

Prev-w-page, 161

Prev-window, 161

Previous Page, 271

Put Away, 69

Query-Replace, 269, 271

Query-s-r, 162

Quit, 30, 32, 50, 80, 151, 159,

269

Quote-char, 161

Read-File, 159

Redisplay, 161,269,272

Redraw All, 30, 47

Remap B/W, 154

Rename, 62-63, 158,212

Repeat Last, 272

Replace, 271

Reset Keys, 271

Reset to Defaults, 80

ResetWB, 43, 72

Restore, 80, 153

Reverse Find, 271

Reverse Find Next, 271

Right Margin, 271

Run File, 272

Save, 151,269,311

Save & Exit, 270

Save As, 79-80, 151,269

Save As Default Icon, 151

Save Icons?, 80

Save IFF Brush, 153

Save-Exit, 159

Save-File, 158

Save-File-As, 158

Save-Mod, 159

Search-backward, 162

Search-forward, 162

Search-replace, 162

Seconds Off, 124

Seconds On, 124

Select Contents, 53

Select-buffer, 160

Set, 125, 158, 162

Set FN Key, 271

Set-arg, 162

Show, 55-57

Show Block, 270

Show FN Key, 271

Shrink-window, 161

Size, 59

Snapshot, 54-56, 69

Split-window, 161

Start Block, 270

de, 32

Top, 269

Transpose, 161

Undo Line, 270

UnSnapshot, 69

Update, 53

Update All, 30, 47-48

Upper-region, 161

Version, 30, 49

View By, 58-59

Visit-File, 159

Window, 54-55

Write Block, 270

menus

Alarm, 125

changing fonts, 82

Commands, 271-272

controlling, 29-30

Date, 124

Edit, 77, 80, 159, 160-161,

269-270

Extras, 158, 162

ghosting, 43-44

Highlight, 149, 152

Icons, 30, 43-44, 59-72,113,

117, 119, 122,212

Images, 152-153

inactive, 44

Line, 162

Misc, 153-154

Mode, 124

Move, 162

Movement, 269-271

Options, 77y 80

Project, 77-80, 150-151, 159,

268-270,311

Search, 162, 271

Seconds, 124

Settings, 271

Tools, 43, 72

Type, 124

Window, 30, 43-44, 50-59,

161

Workbench, 30-32, 43-50, 132

MENUVERIFYflag, 83

MicroEMACS text editor, 157-163

accessing AmigaDOS com

mands, 159

defining operations, 162

file handling, 158-161

keyboard equivalents, 159

macros, 162

text, 158, 160-162

window handling, 161

Min function, 378

Misc menu, 153-154

Miscellaneous Flags function, 86-

87

MOD operator, 298

Mode menu, 124

modems, serial communications,

105-107

Mode_Names project, 117-118,

139

modifiers, 194-198

IK (Argument Required), 195,

197

/F (Final Argument), 198

/K (Include Keyword), 195,

197

/M (Multiple Arguments), 198

/N (Argument Numeric), 198

/S (Keyword is Switch), 197

Monitor drawer, 90

monitors

A2024, 104

adding, 115, 117

Commodore A2024, 90

enlarging display, 89-91

indicating type, 90-91, 117

multiscan, 90, 102-103

NTSC90, 102, 104, 117

PAL, 90, 117

Monitors drawer, 115

MonitorStore drawer, 90, 117, 141

More tool, 128-130

Mount command, 274-276, 363

mouse, 23, 87-89

clicking, 23-24

closing picture files, 127

double-clicking, 24, 26

dragging, 27-29

menu button, 29-30

selection button, 23

402 AmigaWorld Official AmigaDOS 2 Companion

Mouse Screen Drag function, 86

Mouse= Tool Type, 127

Move menu, 162

Movement menu, 269-271

Multiple Arguments (/M) modi

fier, 198

MULTIPLE Tool Type, 143

multiscan monitor, 90, 102-103

multitasking, 1, 4-7', 223-224

mutual-exclusion gadget, 84

— N—

Name option, 58

Natural Voice (-m) Say tool com

mand, 131

New Drawer menu item, 50-51

New menu item, 150, 270

New-CLI menu item, 159

NewCLI command, 224-226, 280,

363

NEWSHELL command, 175, 224-

226, 280, 363

Next Page menu item, 271

Next String (n) More tool key, 130

Next-w-page menu item, 161

Next-window menu item, 161

NIL: device, 202, 274

NoCapsLock program, 123

NoFastMem tool, 120-121

nonprintable characters, 87

nop instruction, 372

NOTIFY Tool Type, 143

NOTRANSB= Tool Type, 128

NTSC display mode, 101

NTSC Hires display mode, 102

NTSC Hires-Interlaced display

mode, 102

NTSC monitor, 90, 102, 104, 117

NTSC SuperHires display mode,

102

NTSC SuperHires-Interlaced

display mode, 102

numeric instruction, 372

— o—

One-window menu item, 161

Only Icons option, 56

Open file requester, 78-79

Open function, 325, 378

Open menu item, 59, 60, 77-79,

150,269

Open Parent menu item, 52-53

OpenPort function, 381

operating system see Amiga OS

(Operating System)

operators

assignment (=), 312-313

MOD, 298

options instruction, 373

Options menu, 11, 80

otherwise instruction, 373

output, printing to disk file, 142-

143

Overlay function, 378

Overscan editor, 89-91

— P —

painting gadgets, 147

PAL display mode, 101

PAL Hires display mode, 102

PAL Hires-Interlaced display

mode, 102

PAL SuperHires display mode, 102

PAL SuperHires-Interlaced display

mode, 103

PAL monitor, 90, 117

Palette editor, 92-93, 147

Palette Preferences requester, 40

palette.ilbm file, 75

Paper Length text gadget, 96

PAR: device, 273

parent windows and Workbench

windows, 52-53

parity checking, 107

parse instruction, 373

Partition Device Name gadget, 170

partitions, 193

Paste (Amiga-Right-V) keys, 183

path, 68

Path command, 226-227, 363-364

pathnames, 185-188

pattern matching, 198-200, 208

Paula chip, 4

Phoneme window, 131

pic file extension, 210

picture files, 128-128

IFF (interchange file format),

69

PIPE: device, 274, 276

Pitch ofVoice (-p<n>) Say tool

command, 132

Pointer editor, 93-94

pointers, 23, 93-94

editing, 93-94

redrawing frequency, 88

window under is active, 137

ports, 328-329

indicating for printer, 143

locking, 6-1

parallel, 96

serial, 96, 105-107

Pos function, 378

Positioning gadget, 146, 150

Pragma function, 378

Preferences editors, 75-114

action buttons, 11

additional menu items, 80

default, 79-80

floppy-drive systems, 111-114

Font editor, 81-83, 111-112

IControl editor, 83-87

Input editor, 87-89

loading preset files, 78

moving to Extras2.0 disk, 113-

114

opening first time, 11

Overscan editor, 89-91

Palette editor, 92-93

Pointer editor, 93-94

Printer editor, 94-97, 112

PrinterGfx editor, 97-100

quitting, 80

ScreenMode editor, 100-105

Serial editor, 105-107

Time editor, 107-108

WBConfig editor, 109

WBPattern editor, 16y 109-111

Preferences files, 75-79

Prefs drawer, 42, 75, 113

preset files, 77-78

built-in, 93

Fonts editor, 77-78

loading into editor, 78

resetting to defaults, 80

saving, 79-80

WBPattern editor, 78

Index 403

Prev-w-page menu item, 161

Prev-window menu item, 161

Previous Page menu item, 271

Print Picture (CTRL-P) keys, 126

Print= Tool Type, 127

printer drivers

selecting, 95-96

Workbench2.0 disk, 112-114

Printer editor, 94-97, 112

printer intialization files, skipping,

143

printer.prefs file, 75

PrinterGfx editor, 97-99, 100

printers, 94-95

color, 97

density of output, 100

fanfold or single sheet, 97

indicating type of port, 143

initializing, 155

serial communications, 6-7',

105-107

standard control codes, 94-95

PrintFiles tool, 163

printing

ASCII text files, 163

picture files, 127

to screen, 291-292

procedure instruction, 373

Productivity display mode, 103

Productivity-Interlaced display

mode, 103

programs

ARexx, 311

as tools, 17-18

automatic startup, 140

AutoPoint, 123

background processing, 229

Blanker, 123

Clock, 123-124

closing, 34

communicating custom prefer

ences, 76

CrossDOS (Consultron), 277

enlarging graphics display area,

91

Exchange, 123

HDToolBox, 164-171

hot links, 76

IHelp, 123

increasing flexibility with Tool

Types, 67

IPrefs, 76

loading and running, 26

NoCapsLock, 123

opening, 59

prioritizing startup, 140

Quarterback (Central Coast

Software), 171

timed input interval for Intu

ition library, 83-84

waiting interval before starting,

140

Project icon, 20, 26, 60, 68-69

Project menu, 77-80, 150-151,

159,268-270,311

projects, 17-18

deleting, 70-71

FileList, 127-128

Mode_Names, 117-118, 139

Shell, 115

Tool Types, 69

Prompt command, 228, 364

proportional fonts, 82

proportional gadget, 38

Protect command, 254-255, 364

protection bits, 64-66

Archived, 65, 253

Deletable, 65, 253

Executable, 65, 253

Hidden, 253

Pure, 253

Readable, 65, 254

Script, 65, 254

Writable, 65, 254

protocols, 106

PRT: (printer) device, 273

pull instruction, 315-316, 373

Pure protection bit, 253

push instruction, 373

Put Away menu item, 69

-Q-
Quarterback (Central Coast Soft

ware), 171

Query-Replace menu item, 269,

271

Query-s-r menu item, 162

queue instruction, 373

Quit command, 364

Quit menu item, 30, 32, 50, 80,

151,159,269

Quote-char menu item, 161

— R—

RAD: device, 274, 278

radio gadget, 84

RAM (random-access memory), 3,

5

Ram Disk, 20

Name, 193

recoverable, 278

Ram Disk icon, 19, 113

RAM: device, 273

Random function, 378

RandU function, 378

RAW: device, 274

Read Configuration From Drive

text gadget, 166

Read-File menu item, 159

Readable protection bit, 65, 254

ReadCh function, 326, 378

ReadLn function, 325-326, 378

recursive algorithm, 149

Redisplay menu item, 161, 269,

272

Redraw All menu item, 30, 47

Refresh Screen (CTRL-L) keys,

130

Relabel command, 212, 251-252,

364

Remap B/W menu item, 154

RemLib function, 378

RemRad command, 365

Rename command, 210, 212, 248-

251,365

Rename menu item, 62-63, 158,

212

Rename requester, 41

Repeat Last menu item, 272

Replace menu item, 271

Reply function, 381

requester message, 34

requesters, 39-40

associated menu, 79

Bad Block Entry, 168

Execute a File, 45

file, 42, 159

404 AmigaWorld Official AmigaDOS 2 Companion

files and drawers for deletion,

70-71

Font, 82

fonts, 42

gadgets and, 38-42

Input Preferences, 87

moving to different drawers, 79

Open file, 78-79

Palette Preferences, 40

Rename, 41

standard Amiga file, 78-79

string gadgets, 40-41, 45-46

title bars, 82

Tool Types, 66-67

Reset Keys menu item, 271

Reset to Defaults menu item, 80

ResetWB menu item, 43, 72

Resident command, 202-203, 205,

215-217, 365

Restore menu item, 80, 153

Restore String Gadget (Right-

Amiga-Q) keyboard equivalent,

41

Resume Command (CTRL-Q)

keys, 220

return instruction, 373

Return key, 41, 46, 129,181

Reverse Find menu item, 271

Reverse Find Next menu item, 271

Reverse function, 378

RexxMast icon, 310

RexxMast tool, 119

Right function, 378

Right Margin menu item, 271

Right Margin text gadget, 96

Robot-like Voice (-r) Say tool

command, 131

root directory, 185, 190

Root Directory Level (:) key, 185

RTS/CTS protocol, 106

Run command, 226, 229, 365-366

Run File menu item, 272

rx command, 311

— s —

%S substitution character, 211

S drawer, 130

S: directory, 191

S:Startup-sequence file, 16

Save & Exit menu item, 270

Save As Default Icon menu item,

151

Save As menu item, 79-80, 151,

269

Save Icons? menu item, 80

Save IFF Brush menu item, 153

Save menu item, 151, 269, 311

Save-File menu item, 158-159

Save-File-As menu item, 158

Save-Mod menu option, 159

say instruction, 373

Say tool, 130-132

Screen Menu Snap feature, 87

Screen text, 81-82

ScreenMode editor, 100-105, 147

screens, 33

blanker, 137

changing fonts, 82

colors, 143-144

display modes sizes, 104

dragging, 86

enlarging display, 89-91

height, 104

larger than output display, 87

printing

to, 291-292

topmost, 145

refreshing, 47

saver, 132-133

scrolling, 105

width, 104

script files, 16

automatically generating, 210

default directory, 191

Script protection bit, 65, 254

scripts

see also command scripts

inputing information, 293-294

labels in, 295-297

pausing, 297-298

Scroll Into File (%<n>) More tool

keys, 130

Search Buffer (Shift-Cursor Up)

keys, 184

Search command, 220-221, 366

Search menu, 162, 271

Search-backward menu item, 162

Search-forward menu item, 162

Search-replace menu item, 162

Seconds menu, 124

Seconds Offmenu item, 124

Seconds On menu item, 124

Seek function, 379

Select Contents menu item, 53

select instruction, 322-323, 373

Select-buffer menu item, 160

selection button, 23

SER: device, 273

serial communications, 105-107

Serial editor, 105-107

serial ports, 6-7y 105-107

Set command, 288-289, 366

Set Drive Type window, 166, 168

Set FN Key menu item, 271

Set menu item, 125, 158, 162

Set-arg menu item, 162

SetClip function, 379

SetClock command, 236-238, 366

SetDate command, 255-256, 367

SetEnv command, 290, 367

SetFont command, 230-231, 367

SetMap tool, 121-123

SetPatch command, 367-368

Settings menu, 271

Shell, 8, 173

background processing, 229

changing fonts, 230-231

editing command-line, 181-

182

manipulating files, 174-175

opening, 175

parsing command characters,

179-180

stack, 229-230

starting and ending, 224-226

updating Workbench from, 47-

48

shell instruction, 373

Shell project, 115, 119

Shell window, 175-177

changing fonts, 82

copying between, 182

current (*), 200-201

prompt string, 228

Shift key, 29, 86, 122, 156

Index 405

Show Block menu item, 270

Show FN key menu item, 271

Show function, 324, 379

Show gadget, 89

Show menu item, 55-57

Show submenu, 56

ShowDir function, 382

ShowList function, 382

Shrink-window menu item, 161

Sign function, 379

signal instruction, 374

single-drive systems, copying files,

28

Size option, 59

SIZE Tool Type, 145

sizing gadget, 34, 36-37

Skip command, 295-297, 368

SKIP Tool Type, 143

sliders, 37, 39-40

Snapshot menu item, 54-56, 69

Snapshot submenu, 54-55

software devices, 9

Sort command, 258-261, 368

sound, Paula chip controlling

output, 4

source disk, 61-62

SourceLine function, 379

space character, separating com

mands with arguments, 178-

180

Space function, 379

Spacebar More tool, 129

SPEAK: device, 273-276

speech from keyboard, 130-132

Speed ofVoice (-s<n>) Say tool

command, 132

Split-window menu item, 161

stack, 66y 229-230

Stack command, 229-230, 368

standard Amiga file requester, 78-

79

Start Block menu item, 270

Start gadget, 170

STARTRI=<n> Tool Type, 140

Startup-sequence file, 59, 301-306

StateF function, 382

statements

.BRA, 284

.DEF, 284-285

.DOLLAR, 284

.DOT, 284

.KET, 284

.KEY, 281-284

conditional, 285-287

Status command, 232-233, 368-

369

Stop Command (CTRL-C) keys,

177, 220, 233, 253

Stop Command Script (CTRL-D)

keys, 233

Storage function, 379

string gadgets, 40-41

Default Tool, 68-69

with requester, 45-46

Strip function, 379

submenus

Load, 153

Show, 56

Snapshot, 54-55

View By, 58-59

SubStr function, 379

substring search, 209

SubWord function, 379

Symbol function, 379

Sys drawer, reading last settings

saved to, 80

SYS: directory, 190

Sys:Prefs/Env-Archive/Sys drawer,

151

Sys:Prefs/Presets drawer, 79

system

aborting processes, 233-234

clock, 123-125, 236-238

configuration, 15-16, 138-139

deleting fast RAM from

memory list, 121

disk, 48

monitor type, 117

software version, 239-240

updating, 172

System 2.0 disk, 115, 121

System default text, 81-82

System drawer, 116-123

AddMonitor tool, 117

BindMonitor tool, 117-118

CLI (command line inter

preter) tool, 119

DiskCopy tool, 119-120

FixFonts tool, 120

Format tool, 119-120

NoFastMem tool, 120-121

RexxMast tool, 119

SetMap tool, 121-123

tools, 116-123

— T—

T drawer, 76

T: directory, 192

Tab key, 157

task automation, 10

temporary files

directory, 192

Execute command, 280

Test gadget, 89

text

colors, 82-83

copying, 161

cutting and pasting, 160-161

deleting, 161

MicroEMACS text editor, 158,

162

selecting, 182, 183

Text color gadget, 83

text editors

Ed, 265-272

Edit, 265-266

MicroEMACS, 157-163

text files

ASCII, 128

search string, 130

sorting, 258-261

speaking, 132

viewing, 128-130

Text Gadget Filter, 87

text gadgets, 40-41, 79, 84-85

AutoScroll, 105

Colors, 104-105

editing, 62

Filename, 166

Height, 100, 104

Left Margin, 96

Paper Length, 96

Read Configuration From

Drive, 166

Right Margin, 96

Width, 100, 104

406 AmigaWorld Official AmigaDOS 2 Companion

text types, 81-82

then instruction, 317-318

Time editor, 107-108

Time function, 379

Timer=<n> Tool Type, 127

Times.font file, 114

title bar, 35

toggle menu item, 32

tool icon, 20

file size, 66

opening, 26, 59

Tool Types, 117-118

altering Display tool, 127

Back=, 127

Commodities Exchange, 134-

135

CX.POPKEY, 133-135

CXJPOPUP, 134-135

CX_PRIORITY, 134-135

DELAY, 306

DEVICE, 143

DONOTWAIT, 140

EHB=, 128

FILE, 143

FileList=, 127

Flags=Formfeed, 163

Loop=, 127

Mouse=, 127

MULTIPLE, 143

NOTIFY, 143

NOTRANSB=, 128

Print=, 127

projects, 69

requester, 66-67

SIZE, 145

SKIP, 143

STARTPRI=<n>, 140

Timer=<n>, 127

Video=, 128

WAIT=<n>, 140

WB, 67

WINDOW, 306-307

tools, 17

AddMonitor, 117,141

BindMonitor, 117-118

Calculator, 142

CLI (command line inter

preter), 119, 175

CMD, 142-143

Colors, 143-144

deleting, 70-71

DiskCopy, 61-64, 119-120

Display, 126-128

FixFonts, 120

Font, 42

Format, 119-120

GraphicDump, 145

IconEdit,20, 127, 145-155

InitPrinter, 155

KeyShow, 155-157

location, 68

More, 128-130

moving to another drawer, 68-

69

NoFastMem, 120-121

PrintFiles, 163

RexxMast, 119

Say, 130-132

SetMap, 121-123

System drawer, 116-123

Tools drawer, 127, 141-163

Calculator tool, 142

CMD tool, 142-143

Colors tool, 143-144

GraphicDump tool, 145

IconEdit tool, 145-155

InitPrinter tool, 155

KeyShow tool, 155-157

MicroEMACS text editor, 157-

163

PrintFiles tool, 163

tools, 142-163

Tools menu, 30, 43, 72

Top menu item, 269

Topaz 8 font, 80

TopazBackpre file, 80

Total Cyl gadget, 170

Trace function, 380

Translate function, 380

Transpose menu item, 161

trashcan, deleting items, 71-72

Trashcan icon, 60, 69

Trim function, 380

Trunc function, 380

Type command, 201, 218-220,

369

Type menu, 124, 151

— u—

UnAlias command, 222-223, 369

Undo Line menu item, 270

Undo menu item, 80

Unset command, 290, 369

UnSetEnv command, 369

UnSnapshot menu item, 69

Up One Directory Level (/) key,

185

Update All menu item, 30, 47-48

Update menu item, 53

Update2.X IconX project, 172

Upper function, 380

Upper-region menu item, 161

Utilities directory, 178

Utilities drawer, 123-138

Commodities Exchange, 132-

137

Display tool, 126-128

More tool, 128-130

Say tool, 130-132

tools, 123-132

— V—

Value function, 380

variables, 312-313

environment, 287-290

global, 290-292

local, 288-289

VDTs (video display terminals), 10

Verify function, 380

Verify Timeout gadget, 83-84

Version command, 239-240, 369-

370

Version menu item, 30, 49

vertical scroll gadget, 34, 37

Video= Tool Type, 128

VideoAdjust drawer, 163

View By menu item, 58-59

View By submenu, 58-59

VirusX virus-protection software,

264

Visit-File menu item, 159

volumes, 19

names, 192

relabeling, 251-252

Index 407

—w—

Wait command, 297-298, 370

WAIT=<n> Tool Type, 140

WaitPkt function, 382

WB Tool Type, 67

wb.pat Preferences file, 76

WBConfig editor, 79, 109

wbconfig.pre file, 79

WBPattern editor, 76, 78, 80, 109-

111

WBStartup drawer, 90, 117-118,

123,139-140

when instruction, 374

Which command, 227-228, 370

Why command, 232, 370

Width text gadget, 100, 104

win.pat Preferences file, 76

Window menu, 30, 43-44, 50-59

Window option, 54-55

WINDOW Tool Type, 306-307

windowing interfaces, 21

windows, 20-22, 33-38

activating, 36

active and inactive, 23, 2554-

55,137

arrow gadgets, 37

automatically bringing to front,

109

backdrop, 31-32

background, 109-111

changing fonts, 82

closing, 34, 53

Define/Edit Drive Type, 166

dragging, 35

drawers, 50-51

duplicating, 61

Font editor, 81

gadgets, 33-37

hierarchy, 52-53

icons and, 21, 26, 58-59

Information, 68

Input, 131

MicroEMACS text editor

handling, 161

moving, 35

Phoneme, 131

placement on Workbench

screen, 36

position memory, 35-36, 45

rearranging in active, 53-54

redrawing, 47-48

requesters, 38-42

saving, 55, 69

scrolling, 37

Set Drive Type, 166-168

Shell, 175-177

sizing, 35-37

sliders, 37

standard, 109

title bar, 35

updating current, 53

Workbench output, 46

Windows menu, 161

Word function, 380

Wordlndex function, 380

WordLength function, 380

words, 180

Words function, 380

work area, cleaning up, 53-54

Workbench, 8, 11-12, 43-72

as graphical user interface

(GUI), 18

Autoconfig procedure, 15-16

basics, 15-42

closing, 34, 50

customizing, 75-114

default tool icon, 146

definition of, 17

disks, 19

display, 91-93, 100

displaying version, 49

drawers, 17-22, 51

files, 18-19

gadgets, 38

global environment variables,

288

icons, 19-20,69,81-82

Icons menu, 30

Intuition library, 12

loading, 226

menus, 43-45

mouse, 23

output window, 46

pointer, 23, 88

Preferences files, 76-77

projects, 17-18

refreshing screen, 47

removing icons from main

window, 69

resetting, 72

screen, 33, 36

color numbers, 104-105

printing picture files be

hind, W

selecting type, 109

system configuration, 15-16

tools, 17, 115-140

Tools menu, 30

updating from Shell, 47-48

Window menu, 30

windows, 20-22, 33-38, 47

display mode, 101-103

parent windows, 52-53

Workbench menu, 30-32, 43-50,

132

Workbench Screen Back (Left-

Amiga-M) keyboard equiva

lent, 36

Workbench Screen Front (Left-

Amiga-N) keyboard equivalent,

36

Workbench2.0 disk, 121

Expansion drawer, 138-139

floppy-drive systems and, 112-

114

System drawer, 116-123

tools, 115-140

Utilities drawer, 123-138

WBStartup drawer, 139-140

Writable protection bit, 65, 254

Write Block menu item, 270

WriteCh function, 326, 380

WriteLn function, 326, 381

— X-Z —

X2C function, 381

X2D function, 381

xON/xOFF protocol, 106

XRange function, 381

ZIPWINDOW (F5) key, 138

Zipwindow Tool Type, 67

zoom gadget, 34-36

About The Author

Bob Ryan is currently a Technical Editor at BYTEmagazine, where he

works on the State of the Art section. He is the author of the magazine's

recent cover story on the Amiga 3000 computer. Formerly, Bob was the

first Technical Editor ofAmigaWorldmagazine, where he was immersed

in all aspects ofAmiga technology. He holds a BA degree from Clark

University.

Bob resides in New Ipswich, NH with his wife, daughter, dog, and two

cats. When not delving into the innards of the Amiga, he enjoys his fam

ily and friends, reads history, plays a little golf, and roots real hard for the

Boston Red Sox.

Check

What's

Available

From

STEP INTO THE WORLD OFAMIGA...

The Pathway To Your Imagination

For a computer as extraordinary as the Amiga™,

you need a magazine that can match its

excellence, AmigaWorld.

AmigaWorld is the only magazine which provides

you with ideas and information to get maximum

performance from the Amiga's tremendous

power and versatility.

Each issue gives you valuable insights to boost

your productivity and enhance your

creativity.

Whether you choose the Amiga as a serious

business tool for its speed and multitasking

capabilities... or for its superb graphics,

drawing, color (over 4,000 colors), and

animation... or for its state-of-the-art music

and speech... or for its scientific and CAD abilities,

AmigaWorld can help you achieve superior results.

With its timely news features, product announcements and reviews,

useful operating tips and stunning graphics, AmigaWorld is as dynamic as the
market it covers.

Don't wait! Become a subscriber and save 58% off the cover price. Return the
coupon, or for immediate service, call toll-free 1-800-258-5473.

Save 58% 0 YES!

I want to discover the full potential of this powerful machine. And save 58% off

the cover price. Enter my one year (12 issues) subscription to AmigaWorld for the

special price of $19.97. If I'm not satisfied at any time, I will receive a full refund-

no questions asked.

□ Payment enclosed □ Bill me

Name __

Address

City State Zip

Canada & Mexico $29.97, Foreign Surface $49.97, Foreign Airmail $84.97 (U.S. Funds drawn on U.S.

bank). Prepayment required on foreign orders. All rates are 1 year only. Please allow 6—8 weeks for delivery.

AmigaWorld PO Box 58804, Boulder, CO 80322-8804
Amiga is a trademark of Commodore-Amiga, Inc. 5DGA

THEAMIGAWORLD TOOL CHEST

Quality Software

At An Affordable Price!

Here's some of what

you'll get with

VOLUME 2,

ISSUE 1:

* Circe. Battle your

computer to take over

the planet Circe.

* Colors. A

programmer's color

reference utility for

assigning RGB values

to printer and screen

output.

* EasyFile. This

powerful database

manager is suitable for

both home and small

business.

* Sprite Editor. Create

animated sprites by

editing up to 100

frames at once.

* Sound Effects.

Digitized sounds of a

car in trouble, driving,

a creaky rocker, sawing

wood and a frightened

crowd.

* Batchman. This

handy utility allows

you execute CLI

programs, batch files

and ARexx scripts with

the simple click of a

TOOL CHEST
is brought to you by the

same top-quality editors who

publish AmigaWorld.

Whatever your skill level may

be—or whatever model of

Amiga you own—you'll be

thrilled with how Tool Chest

can help make breakthrough

computing inexpensive, easy

and fun.

Every dual-disk issue of
Tool Chest is loaded with

entertaining games, elaborate

animation, exquisite 3D,

useful utilities, original clip

art, and wild sound effects to

help you maximize the value

ofyour Amiga computer.

From graphics to animation, from programming to
productivity, you can do it faster and easier with the

Tool Chest. If you want the work you are producing

on your Amiga to be the very best, subscribe to Tool

Chest today.

EXCLUSIVE

OFFER

Subscribe to Tool Chest, save

$20.00 off the single copy

price, and receive these special

subscriber benefits:

* AmigaWorld subscription/

renewal discounts

* Discount offAmiExpo

admissions

* Full Money Back Guarantee.

If ever you are not

completely satisfied with the

AmigaWorld Tool Chest,

simply return it for a full

refund.

I YES!
I want to save $20.00 and receive my

special subscriber benefits. Enter my

one year (6 dual-disk issues) subscription for only $69.95.

□ Send me the following AmigaWorld Tool Chest Edition(s)

for only $14.95 each: □ Volume 2, Issue 1 (see above)

□ Specify other

Name

Address_

City State

□ Check/Money Order enclosed

□ Charge my □ MasterCard □ American Express □ Visa □ Discover

Acct. # Exp. Date

Signature . j
Foreign orders, add $2.50 for air mail delivery. Foreign subscriptions are $94.95 postpaid. Payment j

required in U.S. Funds drawn on U.S. bank. Note that some animations require 1MB of memory. |

AmigaWorld Tool Chest • 80 Elm Street • Peterborough, NH 03458 j

Or Call 800-343-0728 for immediate service idgbks j
i

The AmigaWorld Video Library

It's like having a professional computer consultant

at your side, 24 hours a day!

Animation Video Volume I
When the Editors ofAmigaWorld canvassed the Amiga community

looking for the best in Amiga animation, the response was over

whelming! Submissions poured in from Amiga master artists and

super-talented readers. The result is a dramatic video featuring

dozens of world-class animators. This video is quickly becoming a

collector's item! Approximately 48 minutes in length. Available

inNTSC.

Desktop Video Don't miss out while others get the
inside angle on: Pre-production, production and post-production;

Home and studio settings; Selecting video equipment and acces

sories; Edit-free shooting with your camera; Recording from the

Amiga onto video tape; Selecting a Genlock and how to get the most

from it; Tips and Tricks on how to improve your video skills;

Adding special effects; And lots more!

The MllSiCal Amiga Your Amiga has exquisite sound
and music capabilities. Learn all the details of getting started with

music... what you need to begin and playing music with existing

software. We'll teach you digitizing and audio sampling and even

give you an introduction to MIDI (Musical Instrument Digital

Interface). This video is the best instructional tool for any Amiga

owner interested in learning how to create music with their Amiga!

Amiga Graphics (Volume I)
There's no easier, faster or better way to learn how to create your own

Amiga masterpieces! This hour-long video can teach you all you need

to know about how to get started in graphics.. .paint programs...

elements of design.. .creating an image.. .and lots more! Plus, three

extensive sessions on FONTS, CLIP ART, and even DIGITIZING!

Getting Started With Your Amiga
This comprehensive, easy-to-follow video is packed with valuable

information. Learn how to assemble your Amiga.. .how to use the

Workbench.. .add a digitizer or genlock.. .how to use system utilities.

. .and much, much more! Best of all, GETTING STARTED WITH

YOUR AMIGA is there whenever you need a quick refresher on any

aspect of Amiga computing!

Fill out coupon and mail to:

Video Library, PO Box 802,80 Elm Street, Peterborough, NH 03458

or call 1-800-343-0728

S^YES! Please send me the tapes I've selected below!

Qty.

Nam©

Address

City

Description

Getting Started With Your Amiga

Amiga Graphics (Volume I)

Desktop Video

The Musical Amiga

Animation Video (Volume I)

Price

$29.95

$29.95

$29.95

$29.95

$19.95

Snhtntai

.Shipping/I

State Zip Tota

Handling *

1 Enclosed

Total

Payment method: [] Check

Charge my: [] MC [] VISA [] American Express [] Discover

Card # Exp. Date

Signature

Available in VHS only. Make checks payable to AmigaWorld Video Library. Please allow 4-6 weeks for delivery. Foreign orders add $7.50 for air

mail orders. Payment must be made in US funds which can be drawn on a US bank. PAL is available if specified. Add an additional $10.00 for

PAL version plus $7.50 air mail delivery. IDG/Pet lrborough, publisher of AmigaWorld, is the licensed North American distributor of all above-men

tioned videos. © 1990 by Razza Video USA. All n]hts reserved. Amiga is a registered trademark of the Commodoore Business Machines, Inc.

* Shipping/Handling Per Order:

1 Tape = $2.95

2 or more Tapes = $5.00

Also available from IDG Books Worldwide and AmigaWorld:

AmigaWorld Official AmigaVision Handbook
by Lou Wallace, Sr. Editor, AmigaWorld Magazine

Now get the definitive guide to multimedia & AmigaVision!

Only the experts at AmigaWorld could produce the ultimate guide to

Commodore's exciting interface for the Amiga, AmigaVision. Inside the

AmigaWorld Official AmigaVision Handbook, you'll find:

• How to get started: the basics of AmigaVision & Multimedia

• Detailed programming information, with programming concepts,

techniques

• Technical AmigaVision authoring, including user/application

interface design, database design and programming, and

external program control with ARexx, AmigaDOS, and Workbench

• Plus, a section dedicated to applications, with a special

emphasis on multimedia

Call now for your copy: (800) 28BOOKS

Also available at bookstores, software, and electronics stores.

Price: $24.95, $3.00 shipping & handling in U.S.; $4.00 in Canada. ISBN: 1-878058-15-0

AWD1

International Data Group (IDG), International Environment Group,

Inc. (IEG), an affiliate of IDG based in Peterborough, N.H., and

IDG Books Worldwide, Inc., an affiliate of IDG based in San

Mateo, CA, are committed to directing the power of business and

industry toward improving the environment.

ATA

This book was printed on recycled paper, and can be recycled.

IDG Books Worldwide Registration Card -

AmigaWorld Official AmigaDOS Companion

Fill this out to hear about updates to this book and new information about other IDG Books Worldwide products.

Thank you!

Name.

Company/Title.

Address

City/State/Zip _

What is the single most important reason you bought this book?.

Where did you buy this book?

□ Bookstore (Name—- —)

□ Electronics/Software Store (Name)

O Advertisement (If magazine, which?)

□ Mail Order

D Other:

How did you hear about this book? How many computer books do you

□ Book review in: purchase a year?

O Advertisement in: CM □ 6-10

□ Catalog □ 2-5 □ More than 10

O Found in store

□ Other:

How would you rate the overall content of this book?

O Very good □ Satisfactory

□ Good □ Poor

Why? —

What do you like best about the book?.

What do you like least?

What other topics/products would you like to see added to future editions of this book?

Please give us any additional comments.

Thank you for your help.

O I liked this book! By checking this box, I give you permission to use my name and quote me in future IDG Books

Worldwide promotional materials.

FOLD HERE

IDG Books Worldwide, Inc.

155 Bovet Road, Ste. 730

San Mateo, CA 94402

Attn: Reader Response

FOLD HERE

IDG Books Worldwide, Inc.

155 Bovet Road, Ste. 730

San Mateo, CA 94402

Attn: Reader Response

If
Official AmigaDOS 2 Companion _

Get into the new Amiga operating system—and get more

out of it!

This is the most comprehensive, authoritative guide you can find

to using AmigaDOS and the new Amiga operating system. You get

step-by-step instructions, hundreds of tips and screen shots, and

definitive references to using Amiga OS 2 via the workbench,
AmigaDOS & the Shell, and ARexx!

Inside, find expert help in these important areas:

• The Amiga OS, including the Workbench, Shell, and ARexx

• The Workbench GUI—windows, screens, menus, gadgets,

requesters, the mouse pointer

• Detailed information on Workbench menus

• The 13 Preferences editors and their functions

• Workbench tools—system programs & the Commodities

Exchange

• The Extras 2 disk—new programs and hard disk utilities

• AmigaDOS—handling disks, files, devices via the shell

• Configuring AmigaDOS and getting information out of AmigaDOS

• Manipulating files with:

Copy, Delete, MakeDir, Rename, and more

• AmigaDOS command scripts

• Getting up to speed with ARexx macro language

• A fully annotated ARexx program that you can customize

• And more!

Plus, command references, valuable glossary, and error code

summary for solving problems more easily.

Computer Book Shelving Category

Amiga/AmigaDOS/Operating System

$24.95 U.S./$33.95 Canada/£22.95 U.K.

PRINTED ON RECYCLED PAPER

Designed by Ovretis/Lutler. Art by Jim Sachs, created on an Amiga with DeluxePaint 3.

Amiga is a registered trademark of Commodore-Amiga Inc.

Book Level:

Beginning to

Intermediate

About the Author:

Bob Ryan is currently Technical Editor

at BYTE magazine, working on the

State of the Art section. Formerly, Bob

was the first Technical Editor of

AmigaWorid magazine.

BOOK

IDG Books Worldwide

San Mateo, CA 94402

An International Data Group Company

ISBN 1-

9 781878 058096

5249 5

