
AmigaDOSTM
Developer's Manual

COPYRIGHT

This manual Copyright (c) 1985, Commodore-Amiga Inc. All Rights
Reserved. This document may not, In whole or In part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without prior consent, In writing, from Com-
modore-Amiga Inc.

AmigaDOS software Copyright (c) 1985, Commodore-Amiga Inc. All Rights
Reserved. The distribution and sale of this product are Intended for the use
of the original purchaser only. Lawful users of this program are hereby
licensed only to read the program, from its medium Into memory of a com-
puter, solely for the purpose of executing the program. Duplicating, copying,
selling, or otherwise distributing this product Is a violation of the law.

DISCLAIMER

THIS PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU (AND NOT THE DEVELOPER OR
COMMODORE-AMIGA, INC. OR ITS PARENT AND AFFILIATED DEALERS)
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION. FURTHER, COMMODORE-AMIGA, INC. OR ITS PARENT
AND AFFILIATED COMPANIES DO NOT WARRANT, GUARANTEE OR MAKE
ANY REPRESENTATIONS REGARDING THE USE OF THE PROGRAM IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS,
OR OTHERWISE; AND YOU RELY ON THE PROGRAM AND RESULTS
SOLELY AT YOUR OWN RISK. IN NO EVENT WILL COMMODORE-AMIGA,
INC. OR ITS PARENT COMPANY AND AFFILIATED COMPANIES BE LIABLE
FOR DIRECT, INDIRECT , INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATE LAWS
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WAR-
RANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Amiga and AmigaDOS are trademarks of Commodore-Amiga, Inc. Unix Is a
trademark of Bell Laboratories. MS-DOS Is a trademark of Microsoft Cor-
poration. IBM Is a registered trademark of International Business Machines,
Inc. Sun Workstation, and the combination of Sun with a numeric suffix are
trademarks of Sun Microsystems, Inc.

CBM Product Number 327265-02 rev B

ACKNOWLEDGEMENTS

This manual was originallywritten by Tim King and then completely
revised by Jessica King.

A special thanks to Patria Brown whose editorial suggestions sub-
stantially contributed to the quality of the manual.

Also thanks to Bruce Barrett, Keith Stobie, Robert Peck and all the
others at Commodore-Amiga who carefully checked the contents;
to Tim King, Paul Floyd, and Alan Cosslett who did the same at
Metacomco; and to Pamela Clare and Liz Laban who spent many
hours carefully proof-reading each version.

Using Preferences
If you have a working version of Preferences and you change the
text size, for example from 60 to 80, then AmigaDOS renders any
new windows that you create in 80 columns. However, any old
windows in the system remain with a text size of 60. To incorporate
text size into the system, you need to create a new window, select
the old window, and finally delete the old window.

Follow these steps:

1. Use the newcli command.

2. Select the old window.

3. Use the endcli command in the old window to delete
the old window.

If you alter the CLI selection, the change may not take effect im-
mediately. If you give the new preferences and reboot, they take
effect.

Contents

Chapter 1: Programming on the Amiga 1-1

1. 1. Introduction 1-1

1.2 Program Development for the Amiga 1-2

1.2.1 Getting Started 1-2

1.2.2 Calling Resident Libraries 1-3

1.2.3 Creating an Executable Program 1-4

1.3 Running a Program Under the CLI 1-4

1.3.1 Initial Environment in Assembler 1-5

1.3.2 Initial Environment in C 1-6

1.3.3 Failure of Routines 1-6

1.3.4 Terminating a Program 1-6

1.4 Running a Program Under the Workbench 1-7

1.5 Cross Development 1-8

1.5.1 Cross Development on a Sun

1.5.2 Cross Development under MSDOS

1.5.3 Cross Development on Other Computers

1-8

1-16

1-17

Chapter 2: Calling AmigaDOS

2.1 Syntax

2.2 AmigaDOS Functions

2-1

2-1

2-3

Chapter 3: The Macro Assembler

3.1 Introduction to the 68000 Microchip

3.2 Calling the Assembler

3.3 Program Encoding

3.3.1 Comments

3.3.2 Executable Instructions

3.3.2.1 Label Field

3.3.2.2 Local Labels

3.3.2.3 Opcode Field

3.3.2.4 Operand Field

3.3.2.5 Comment Field

3.4 Expressions

3.4.1 Operators

3.4.2 Operand Types for Operators

3-1

3-1

3-3

3-5

3-6

3-6

3-7

3-7

3-8

3-8

3-9

3-9

3-9

3-10

3.4.3 Symbols 3-10

3.4.4 Numbers 3-12

3.5 Addressing Modes 3-12

3.6 Variants on Instruction Types 3-14

3.7 Directives 3-15

Chapter 4: The Linker 4-1

4.1 Introduction 4-1

4.2 Using the Linker 4-3

4.2.1 Command Line Syntax 4-4

4.2.2 WITH Files 4-5

4.2.3 Errors and Other Exceptions 4-7

4.2.4 MAP and XREF Output 4-8

4.3 Overlaying 4-9

4.3.1 OVERLAY Directive 4-10

4.3.2 References To Symbols 4-13

4.3.3 Cautionary Points 4-14

4.4 Error Codes and Messages 4-14

Appendix A: Console Input and Output
on the Amiga A-I

Index 1-1

Chapter 1

Programming on the Amiga

This chapter introduces the reader to programming in C or
Assembler under AmigaDOS.

1.1 Introduction

The AmigaDOS programming environment is available on the
Amiga, Sun, and IBM PC.

This manual assumes that you have some familiarity with either C or
Assembler. It does not attempt to teach either of these languages.
An introduction to C can be found in the book The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie, published
by Prentice Hall. There are a number of books on writing 68000
assembler, including Programming the MC68000 by Tim King and
Brian Knight, published by Addison-Wesley.

Programming on the Amiga 1-1

1.2 Program Development for the Amiga

This section describes how to develop programs for the Amiga. It
describes what you need before you start, how you can call the
system routines, and how to create a file that you can execute on the
Amiga.

WARNING: Before you do ANYTHING, you should make a
backup copy of your system disk. For instructions, see the section,
"Backing Up," at the beginning of the AmigaDOS User's Manual.

1.2.1 Getting Started

Before you start writing programs for the Amiga, you need the
followingitems:

1. Documentation on AmigaDOS and other system
routines that you can call. For example, you need the
AmigaDOS User's Manual, ROM Kernel Manual, and
possibly the AmigaDOS Technical Reference Manual as
well.

2. Documentation on the language you intend to use. If
you intend to use assembler or C, then this manual tells
you how to use these tools, although it does not contain
any specific information normally found in a language
reference manual.

3. Header files containing the necessary Amiga structure
definitions and the values for calling the system routines
that you need. Commodore-Amiga provides these
header files as include files for either C (usually ending
in .h) or assembler (ending in .i). To use a particular
resident library, you must include one or more header
files containing the relevant definitions. For example, to
use AmigaDOS from C, you must include the file
'dos.h.'

1-2 Programming on the Amiga

4. An assembler or compiler either running on the Amiga
itself or on one of the cross development environments.

5. The Amiga linker, again running on the Amiga or on
another computer, as well as the standard Amiga library
containing functions, interface routines, and various
absolute values.

6. Tools to download programs if you are using a
cross-development environment.

1.2.2 Calling Resident Libraries

You should note that there are two ways of calling system routines
from a user assembly program. C programmers simply call the
function as specified. You usually call a system routine in assembler
by placing the library base pointer for that resident library in register
A6 and then jumping to a suitable negative offset from that pointer.
The offsets are available to you as absolute externals in the Amiga
library, with names of the form LVO_name. So, for instance, a call
could be JSR LVO_name(A6), where you have loaded A6 with a
suitable library base pointer. These base pointers are available to
you from the OpenLibrary call to Exec; you can find the base
pointer for Exec at location 4 (the only absolute location used in the
Amiga). This location is also known as AbsExecBase which is
defined in amiga.lib. (See the ROM Kernel Manual for further
details on Exec.)

You can call certain RAM-based resident libraries and the
AmigaDOS library in this way, if required. Note that the AmigaDOS
library is called 'dos.library'. However, you do not need to use A6
to hold a pointer to the library base; you may use any other register
if you need to. In addition, you may call AmigaDOS using the
resident library call feature of the linker. In this case, simply code a
JSR to the entry point and the linker notes the fact that you have
used a reference to a resident library. When your code is loaded
into memory, the loader automatically opens the library and closes it

Programming on the Amiga 1-3

for you when you have unloaded. The loader automatically patches
references to AmigaDOS entry points to refer to the correct offset
from the library base pointer.

1.2.3 Creating an Executable Program

To produce a file that you can execute on the Amiga, you should
follow the four steps below. You can do each step either on the
Amiga itself or on a suitable cross development computer.

1. Get your program source into the Amiga. To do this,
you can type it directly in using an editor, or you can
transfer it from another computer. Note that you can
use the READ and DOWNLOAD programs on the
Amiga to transfer character or binary files.

2. Assemble or compile your program.

3. Link your program together, including any startup code
you may require at the beginning, and scan the Amiga
library and any others you may need to satisfy any
external references.

4. Load your program into the Amiga and watch it run !

1.3 Running a Program Under the eLI

There are two ways you can run a program. First, you can run your
program under a CLI (Command Line Interface). Second, you can
run your program under the Workbench. This section describes the
first of the two ways.

Running a program under the CLI is a little like using an
old-fashioned line-oriented TTY system although you might find a
CLI useful, for example, to port your program over to your Amiga

1-4 Programming on the Amiga

as a first step in development. To load and enter your program, you
simply type the name of the file that contains the binary and possibly
follow this with a number of arguments.

1.3.1 Initial Environment in Assembler

When you load a program under a CLI, you type the name of the
program and a set of arguments. You may also specify input or
output redirection by means of the '>' and '<' symbols. The CLI
automatically provides all this information for the program when it
starts up.

When the CLI starts up a program, it allocates a stack for that
program. This stack is initially 4000 bytes, but you may change the
stack size with the STACK command. AmigaDOS obtains this stack
from the general free memory heap just before you run the
program; it is not, however, the same as the stack that the CLI uses.
AmigaDOS pushes a suitable return address onto the stack that tells
the CLI to regain control and unload your program. Below this on
the stack at 4(SP) is the size of the stack in bytes, which may be
useful if you wish to perform stack checking.

Your program starts with register AO pointing to the arguments you,
or anyone else running your program typed. AmigaDOS stores the
argument line in memory within the CLI stack and this pointer
remains valid throughout your program. Register DO indicates the
number of characters in the argument line. You can use these initial
values to decode the argument line to find out what the user
requires. Note that all registers may be corrupted by a user program.

To make the initial input and output file handles available, you call
the AmigaDOS routines Input() and Output () . Remember that you
may have to open the AmigaDOS library before you do this. The
calls return file handles that refer to the standard input and output
the user requires. This standard input and output is usually the
terminal unless you redirected the I/O by including '>' or '<' on the
argument line. You should not close these file handles with your

Programming on the Amiga 1-5

program; the CLI opened them for you and it will close them, if
required.

1.3.2 Initial Environment in C

When programming in C, you should always include the startup
code as the first element in the linker input. This means that the
linker enters your program at the startup code entry point. This
section of code scans the argument list and makes the arguments
available in 'argv', with the number of arguments in 'argc' as usual.
It also opens the AmigaDOS library and calls Input() and Output()
for you, placing the resulting file handles into 'stdin' and 'stdout'. It
then calls the C function 'main.'

1.3.3 Failure of Routines

Most AmigaDOS routines return a zero if they fail; the exceptions
are the Read and Write calls that return -ion finding an error. If
you receive an error return, you can call IoErr() to obtain more
information on the failure. IoErr() returns an integer that
corresponds to a full error code, and you may wish to take different
actions depending on exactly why the call failed. A complete list of
error codes and messages can be found at the end of the AmigaDOS
User's Manual.

1.3.4 Terminating a Program

To exit from a program, it is sufficient to givea simple RTSusing the
initial stack pointer (SP). In this case, you should provide a return
code in register DO. This is zero if your program succeeded;
otherwise, it is a positive number. If you return a non-zero number,
then the CLI notices an error. Depending on the current fail value
(set by the command FAILAT), a non-interactive CLI, such as one

1-6 Programming on the Amiga

running a command sequence set up by the EXECUTE command,
terminates. A program written in C can simply return from 'main'
which returns to the startup code; this clears DOand performs an
RTS.

Alternatively a program may call the AmigaDOS function Exit,
which takes the return code as argument. This instructs your
program to exit no matter what value the stack pointer has.

It is important at this stage to stress that AmigaDOSdoes not control
any resources; this is left entirely up to the programmer. Any files
that a user program opens must be closed before the program
terminates. Likewise, any locks it obtains must be freed, any code it
loads must be unloaded, and any memory it allocates returned. Of
course, there may be cases where you do not wish to return all
resources, for example, when you have written a program that loads
a code segment into memory for later use. This is perfectly
acceptable, but you must have a mechanism for eventually returning
any memory, file locks, and so on.

1.4 Running a Program under the
Workbench

To run a program under the Workbench, you need to appreciate the
different waysin which a program may be run on the Amiga. Under
the CLI your program is running as part of the CLI process. It can
inherit I/O streams and other information from the CLI, such as the
arguments you provided.

If a program is running under the Workbench, then AmigaDOS
starts it as a new process running at the same time as Workbench.
Workbench loads the program and then sends a message to get it
started. You must therefore wait for this initial message before you
start to do anything. You must retain the message and return it back
to Workbench when your program has finished, so that Workbench
can unload the code of your program.

Programming on the Amiga 1-7

For C programmers, this is all done by simply using a different
startup routine. For assembly language programmers, this work must
be done yourself.

You should also note that a program running as a new process
initiated by Workbench has no default input and output streams.
You must ensure that your program opens all the I/O channels that
it needs, and that it closes them all when it has finished.

1.5 eross Development

If you are using a cross-development environment, then you need
to download your code onto the Amiga. This section describes the
special support Commodore-Amiga gives to Sun and MSDOS
environments. It also describes how to cross-develop in other
environments without this special support.

1.5.1 Cross Development on a Sun

The tools available on the Sun for cross development include the
assembler, linker, and two C compilers. The argument formats of
the assembler and linker on the Sun are identical to those on the
Amiga when running under the CLI. The Greenhills C compiler is
only available on the Sun and is described here.

The compiler is called metacc, and it accepts several types of files. It
assumes that filenames ending in .c represent C source programs.
The compiler then compiles these .c files and places the reSUlting
object program in the current directory with the same filename, but
ending with .obj. The suffix .obj denotes an object file. The
compiler assumes that files ending in .asm are assembly source
programs. You can use the assembler to assemble these and produce
an object file (ending with .obj) in the current directory.

1-8 Programming on the Amiga

The compiler metacc takes many options with the following format:

metacc [<opt1>[,<opt2>[, ..<optn>]]] [<file>[, ...<filen>]]

The options available are as follows:

-c -g -go -w -p -pg -O[<optflags>] -fsingle
-S -E -c -X70 -0 <output> -D <name=def>
-U <name> -I <dir> -B <string> -t [p012]

The following options instruct metacc to

-c just compile the program, suppressing the
loading phase of the compilation, and forcing
an object file to be produced even if it only
compiles one program.

-g produce additional symbol table
information for the debugger dbx and to pass
the -lg flag to ld.

-go produce additional symbol table
information in an older format set by the adb
debugger. Also, pass the -lg flag to ld.

-w suppress all warning messages.

produce profiling code to count the number of
times each routine is called. If loading takes
place, replace the standard startup routine
by one that is automatically called by the
monitor and uses a special profiling library
instead of the standard C library.

-p

-pg

Use the prof program to generate an execution
profile.

produce profiling code like -p, but invokes a
run-time recording mechanism that keeps more
extensive statistics and produces a gmon.out file
at normal termination.

Programming on the Amiga 1-9

Use the gprof program to generate an execution
profile.

-0 [<optflags>] Use the object code optimizer to improve the
generated code.

If 'optflags' appears, you include <optflags> in
the command line to run the optimizer. You
can use -0 to pass option flags.

-fsingle Use single-precision arithmetic in computations
involving only float numbers, that is, do not
convert everything to double (that is, the
default) .

Note: Floating-point parameters are still converted to
double-precision, and functions that return values still return
double-precision values.

WARNING: Certain programs run much faster using the fsingle
option, but beware that you can lose significance due to lower
precision intermediate values.

-s Compile the specified C program(s) and leave
the assembler-language output on
corresponding files ending with .obj.

Run only the C preprocessor on the named C
program(s) and send the result to the standard
output.

Prevent the C preprocessor from removing
comments.

-E

-C

-X70 Generate code using Amiga floating point
format. This code is compatible with the
floating point math ROM library provided on
the Amiga.

Name the final output file 'output'. If you use
this option, the file a.out is left undisturbed.

-0 <output>

1-10 Programming on the Amiga

- D<name=def> Define 'name' to the preprocessor, as if by
#define. If no definition is given, define the
name as '1'.

-U<name> Remove any initial definition of 'name'.

-I<dir> Always look for #include files whose names do
not begin with '/' first in the directory of the
<file> argument, then look in the <dir>
specified in the -I option, and finally look in
the /usr/include directory.

-B<string> Find substitute compiler passes in the files
specified by <string> with the endings cpp,
ccom, and c2. If 'string' is empty, use a backup
version.

-t[p012] Find only the designated compiler passes in the
files whose names are constructed by a - B
option. In the absence of a -B option, assume
<string> to be /usr/new/.

The letter and number combinations that you can specify for the -t
option have the following meanings:

p cpp (the C preprocessor)

o metacom (both phases of the C) compiler, but not
the optimizer.

1 Ignored in this system (this option would be for the
second phase of a two-phase compiler but in the
Sun system; ccom includes both phases.

2 c2 (the object code optimizer).

The compiler metacc assumes that other arguments are loaded
option arguments, object programs, or libraries of object programs.
Unless you specify -c, -S, or -E, metacc loads these programs and
libraries together with the results of any compilations or assemblies
specified, (in the order given) to produce an executable program

Programming on the Amiga 1-11

named a.out. To override the name a.out, you can use the loader's
-o<name> option.

If a single C program is compiled and loaded all at once, the
intermediate .0 file is deleted.

Figure i-A lists the filenames of special metacc files and their
descriptions.

Special Files

File Description

C source code
Assembler source file
Object file
Library of object files
Executable output files
Temporary files
Preprocessor
Compiler
Optional optimizer
Runtime startoff
Startoff for profiling
Startoff for gprof-profiling
Standard library
Profiling library
Standard directory (#include.
Files produced for analysis
by prof
File produced for analysis
by gprof

Filename

file.c
file.asm
file.o
file.lib
a.out
/tmp/ctm
/lib/cpp
/lib/ccom
/lib/c2
/lib/crtO.o
/lib/mcrtO.o
/usr /lib/ gcrtO.0
/lib/libc.a
/usr /lib/libc _p. a
/usr/include

mon.out

Figure 1.A: Special metacc Filenames

gmon.out

1-12 Programming on the Amiga

You can download the files you produce from the linker on the Sun
to your Amiga in three ways: the first, and by far the easiest,
requires a BillBoard; the second requires a parallel port; and the
third requires a serial line.

If you have the special hardware device called a BillBoard, you can
download your linked load file (by convention this should end with
.ld) as follows:

1. Startup the program 'binload' on the Sun

binload -p &

(this need only be done once)

2. On the Amiga, type

download <sun filename> <amiga filename>

3. To run the program, type

<amiga filename>

For example:

On the Sun, type

binload -p &

On the Amiga, type

download test.ld test

or type

download /usr/commodore/amiga/V24/examples/Dos/test.ld test

then type

Programming on the Amiga 1-13

test

Note that DOWNLOAD gains access to files on the Sun relative to
the directory where binload started. If the directory on the Sun was
/usr/commodore/amiga/V24/examples/DOS as above, the filename
test.ld is all that is necessary. If you cannot remember the directory
where binload started, you must specify the full name. To stop
binload, do a 'ps' and then a 'kill' on its PID. Note that the soft
reset of the computer tells binload to write a message to its standard
output (thedefault is the window where it started). If the transfer
hangs, press CTRL-C at the Amiga to kill DOWNLOAD. (See the
AmigaDOS User's Manual for further information on the
AmigaDOS control conventions CTRL-C, CTRL-D, CTRL-E, and
CTRL-F.)

If you do not have a BillBoard, you can download files through a
parallel port. To do this, follow these steps:

1. Send the download ASCII files to the Amiga via the
parallel port by typing

send demo.ld

If you do not give 'send' any arguments, the standard
input is used. The default output device is /dev/lpO,
which is usually correct. To change the defaultoutput,
use the -0 argument.

2. On the Amiga, type the following:

READ demo

READ then reads characters from the parallel port and
places them in the file named 'demo'.

3. Once READ has finished, type

demo

1-14 Programming on the Amiga

to run the program demo.

You can also download files serially. To do this, follow these steps:

1. Convert the Binary Load File into an ASCII hex file
ending with Q by typing

convert <demo.ld >demo.dl

(where .dl, by convention, stands for DownLoad). The
above rule exists in the included makefile, makeamiga.
(See the AmigaDOS Technical Reference Manual for
further details on the Amiga Binary Load files.)

2. Type

tip amiga

3. On the Amiga, type

READ demo serial

4. Within tip, type

-> demo.dl

5. When the READ completes on the Amiga, type the
filename 'demo' to run it.

WARNING: The Sun serial link often hangs for no apparent
reason. Reboot the Sun if this happens.

If the Sun serial link should happen to hang, reboot the Sun, then
type

tip

and within tip, type

Programming on the Amiga 1-15

Q

to get the READ on the Amiga to complete. Once this is done, start
a new READ and type the following symbols on the Sun

->

1.5.2 Cross Development under MSDOS

To cross develop on a computer running MSDOS for your Amiga,
you need various tools that are supplied in the directory \ V25\bin.
These include the C compiler, assembler, and linker as well as
commands to assist in downloading. You use the same syntax for the
tools running under MSDOS as under the CLI on the Amiga.

To download via an IBM PC serial port (called AUX), follow these
steps:

1. Type on your Amiga:

READ file SERIAL

2. On the PC, type

convert <file.ld >AUX:

3. On your Amiga, you can now type

file

to try the program out.

1-16 Programming on the Amiga

1.5.3 Cross Development on Other Computers

You'll need to have a suitable cross compiler or assembler, and the
include files defining all the entry points. You'll also need either the
Amiga linker ALINK running on your equipment or on the Amiga.
Finally you'll need a way to convert a binary file into a hexadecimal
stream terminated with a Q (as this is the way that READ accepts
data), and a way of putting this data out from a serial or parallel
port.

Once you have created a suitable binary file, you must transfer this
to the Amiga using the READ command (as described in Section
1.5.2 of this manual). If you have the Amiga linker running on your
computer, then you can transfer complete binary load files;
otherwise, you'll have to transfer binary object files in the format
accepted by ALINK, and then perform the link step on the Amiga.

Programming on the Amiga 1-17

Chapter 2

Calling AmigaDOS

This chapter describes the functions provided by the AmigaDOS
resident library. To help you, it provides the following: an
explanation of the syntax, a full description of each function, and a
quick reference card of the available functions.

2.1 Syntax

The syntax used in this chapter shows the C function call for each
AmigaDOS function and the corresponding register you use when
you program in assembler.

CallingAmigaDOS 2-1

1. Register values

The letter/number combinations (DO...Dn) represent registers. The
text to the left of an equals sign represents the result of a function.
A register (that is, DO) appearing under such text indicates the
register value of the result. Text to the right of an equals sign
represents a function and its arguments, where the text enclosed in
parentheses is a list of the arguments. A register (for example, D2)
appearing under an argument indicates the register value of that
argument.

Note that not all functions return a result.

2. Case

The letter case (that is, lower or upper case) IS significant. For
example, you must enter the word 'FilelnfoBlock' with the first
letter of each component word in upper case.

3. Boolean returns

-1 (TRUE or SUCCESS), 0 (FALSE or FAILURE).

4. Values

All values are longwords (that is, 4 byte values or 32 bits). Values
referred to as "string" are 32 bit pointers to NULL terminated series
of characters.

2-2 Calling AmigaDOS

5. Format, Argument, and Result

Look at 'Argument:' and 'Result:' for further details on the syntax
used after 'Format:'. Result describes what is returned by the
function (that is, the left of the equal sign). Argument describes
what the function expects to work on (that is, the list in
parentheses). Figure 2-A should help explain the syntax.

Format of function result = Function (argument)
Register Register

Example lock = CreateDir(name)
DO Dl

Figure 2-A: Format of Functions and Registers

2.2 AmigaDOS Functions

This reference section describes the functions provided by the
AmigaDOS resident library. Each function is arranged alphabetically
under the following headings: File Handling, Process Handling, and
Loading Code. These headings indicate the action of the functions
they cover. Under each function name, there is a brief description
of the function's purpose, a specification of the format and the
register values, a fuller description of the function, and an
explanation of the syntax of the arguments and result. To use any of
these functions, you must link with amiga.lib.

Calling AmigaDOS 2-3

File Handling

CLOSE

Purpose: To close a file for input or output.

Form: Close (file)
Dl

Argument: file - file handle

Description:

The file handle 'file' indicates the file that Close should close. You
obtain this file handle as a result of a call to Open. You must
remember to close explicitly all the files you open in a program.
However, you should not close inherited file handles opened
elsewhere.

CREATEDIR

Purpose: To create a new directory.

Form: lock = CreateDir(name)
DO Dl

Argument: name - string

Result: lock - pointer to a lock

Description:

CreateDir creates a new directory with the name you specified, if
possible. It returns an error if it fails. Remember that AmigaDOS

2-4 Calling AmigaDOS

can only create directories on devices which support them, for
example, disks.

A return of zero means that AmigaDOS has found an error (such
as: disk write protected), you should then call IoErr(); otherwise,
CreateDir returns a shared read lock on the new directory.

CURRENTDIR

Purpose: To make a directory associated with a lock
the current working directory.

Form: oldLock = CurrentDir (lock)
DO Dl

Argument: lock - pointer to a lock

Result: oldLock - pointer to a lock

Description:

CurrentDir makes current a directory associated with a lock. (See
also LOCK). It returns the old current directory lock.

A value of zero is a valid result here and indicates that the current
directory is the root of the initial start-up disk.

Calling AmigaDOS 2-5

DELETEFILE

Purpose: To delete a file or directory.

Form: success = DeleteFile(name)
DO Dl

Argument: name - string

Result: success - boolean

Description:

DeleteFile attempts to delete the file or directory 'name'. It returns
an error if the deletion fails. Note that you must delete all the files
within a directory before you can delete the directory itself.

DUPLOCK

Purpose: To duplicate a lock.

Form: newLock = DupLock(lock)
DO Dl

Argument: lock - pointer to a lock

Result: newLock - pointer to a lock

Description:

DupLock takes a shared filingsystemread lock and returns another
shared read lock to the same object. It is impossibleto create a copy
of a write lock. (For more information on locks, see under LOCK.)

2-6 Calling AmigaDOS

EXAMINE

Purpose: To examine a directory or file associated
with a lock.

Form: success = Examine (lock, FileInfoBlock)
DO Dl D2

Argument: lock - pointer to a lock FileInfoBlock -
pointer to a file info block

Result: success - boolean

Description:

Examine fills in information in the FileInfoBlock concerning the file
or directory associated with the lock. This information includes the
name, size, creation date, and whether it is a file or directory.

Note: FileInfoBlock must be longword aligned. You can ensure this
in the language C if you use Allocmem. (See the ROM Kernel
Manual for further details on the exec call Allocmem.)

Examine gives a return code of zero if it fails.

EXNEXT

Purpose: To examine the next entry in a directory.

Form: success = ExNext(lock, FileInfoBlock)
DO Dl D2

Argument: lock - pointer to a lock FileInfoBlock -
pointer to a file info block

Result: success - boolean

Calling AmigaDOS 2-7

Description:

This routine is passed a lock, usually associated with a directory,
and a FileInfoBlock filled in by a previous call to Examine. The
FilelnfoBlock contains information concerning the first file or
directory stored in the directory associated with the lock. ExNext
also modifies the FileInfoBlock so that subsequent calls return
information about each following entry in the directory.

ExNext gives a return code of zero if it fails for some reason. One
reason for failure is reaching the last entry in the directory.
However, IoErr() holds a code that may give more information on
the exact cause of a failure. When ExNext finishes after the last
entry, it returns ERROR_NO_MORE_ENTRIES

So, follow these steps to examine a directory:

1. Use Examine to get a FileInfoBlock about the directory
you wish to examine.

2. Pass ExNext the lock related to the directory and the
FilelnfoBlock filled in by the previous call to Examine.

3. Keep calling ExNext until it fails
held in IoErr ()
ERROR_NO_MORE_ENTRIES.

with the error code
equal to

4. Note that if you don't know what you are examining,
inspect the type field of the FileInfoBlock returned
from Examine to find out whether it is a file or a
directory which is worth calling ExNext for.

The type field in the FilelnfoBlock has two values: if it is negative,
then the file system object is a file; if it is positive, then it is a
directory.

2-8 Calling AmigaDOS

INFO

Purpose: Returns information about the disk.

Form: success = Info (lock, Info_Data)
DO Dl D2

Argument: lock - pointer to a lock Info_Data - pointer
to an Info_Data structure

Result: success - boolean

Description:

Info finds out information about any disk in use. 'lock' refers to the
disk, or any file on the disk. Info returns the Info_Data structure
with information about the size of the disk, number of free blocks
and any soft errors. Note that Info_Data must be longword aligned.

INPUT

Form: file = Input()
DO

Result: file - file handle

Descri ption:

To identify the program's initial input file handle, you use Input.
(To identify the initial output, see under OUTPUT.)

Calling AmigaDOS 2-9

IOERR

Purpose: To return extra information from the
system.

Form: error = IoErr()
DO

Result: error - integer

Description:

I/O routines return zero to indicate an error. When an error occurs,
call this routine to find out more information. Some routines use
IoErr(), for example, DeviceProc, to pass back a secondary result.

ISINTERACTIVE

Purpose: To discover whether a file is connected to a
virtual terminal or not.

Form: bool = IsInteractive (file)
DO Dl

Argument: file - file handle

Result: bool - boolean

Description:

The function IsInteractive gives a boolean return. This indicates
whether or not the file associated with the file handle 'file' is
connected to a virtual terminal.

2-10 Calling AmigaDOS

LOCK

Purpose: To lock a directory or file.

Form: lock = Lock(name, accessMode)
DO Dl D2

Argument: name - string
accessMode - integer

Result: lock - pointer to a lock

Description:

Lock returns, if possible, a filingsystem lock on the file or directory
'name'. If the accessMode is ACCESS_READ, the lock is a shared
read lock; if the accessMode is ACCESS_WRITE, then it is an
exclusive write lock. If LOCK fails (that is, if it cannot obtain a filing
system lock on the file or directory) it returns a zero.

Note that the overhead for doing a Lock is less than that for doing
an Open, so that, if you want to test to see if a file exists, you should
use Lock. Of course, once you've found that it exists, you have to
use Open to open it.

OPEN

Purpose: To open a file for input or output.

Form: file = Open(name, accessMode)
DO Dl D2

Argument: name - string accessMode - integer

Result: file - file handle

Calling AmigaDOS 2-11

Description:

Open opens 'name' and returns a file handle. If the accessMode is
MODE_OLDFILE (=1005), OPEN opens an existing file for
reading or writing. However, Open creates a new file for writing if
the value is MODE_NEWFILE (=1006). The 'name' can be a
filename (optionally prefaced by a device name), a simple device
such as NIL:, a window specification such as CON: or RAW:
followed by window parameters, or *, representing the current
window.

For further details on the devices NIL:, CON:, and RAW:, see
Chapter 1 of the of the AmigaDOS User's Manual. If Open cannot
open the file 'name' for some reason, it returns the value zero (0).
In this case, a call to the routine IoErr() supplies a secondary error
code.

For testing to see if a file exists, see the entry under LOCK.

OUTPUT

Form: file = Output ()
DO

Result: file - file handle

Description:

To identify the program's initial output file handle, you use Output.
(To identify the initial input, see under INPUT.)

2-12 Calling AmigaDOS

PARENTDIR

Purpose: To obtain the parent of a directory or file.

Form: Lock = ParentDir (lock)
DO Dl

Argument: lock - pointer to a lock

Result: lock - pointer to a lock

Description:

This function returns a lock associated with the parent directory of a
file or directory. That is, ParentDir takes a lock associated with a
file or directory and returns the lock of its parent directory.

Note: The result of ParentDir may be zero (0) for the root of the
current filing system.

READ

Purpose: To read bytes of data from a file.

Form: actualLength = Read(file, buffer, length)
DO Dl D2 D3

Argument: file - file handle
buffer - pointer to buffer
length - integer

Result: actualLength - integer

Calling AmigaDOS 2-13

Description:

You can copy data with a combination of Read and Write. Read
reads bytes of information from an opened file (represented here by
the argument 'file') into the memory buffer indicated. Read
attempts to read as many bytes as fit into the buffer as indicated by
the value of length. You should always make sure that the value you
give as the length really does represent the size of the buffer. Read
may return a result indicating that it read less bytes than you
requested, for example, when reading a line of data that you typed
at the terminal.

The value returned is the length of the information actually read.
That is to say, when 'actualLength' is greater than zero, the value of
'actualLength' is the the number of characters read. A value of zero
means that end-of-file has been reached. Errors are indicated by a
value of -1. Read from the console returns a value when a return is
found or the buffer is full.

A call to Read also modifies or changes the value of IoErr()· IoErr()
gives more information about an error (for example, actualLength
equals -1) when it is called.

RENAME

Purpose: To rename a directory or file.

Form: success = Rename(oldName, newName)
DO Dl D2

Argument: oldName - string
newName - string

Result: success - boolean

2-14 Calling AmigaDOS

Description:

Rename attempts to rename the file or directory specified as
'oldName' with the name 'newName'. If the file or directory
'newName' exists, Rename fails and Rename returns an error.

Both the 'oldName' and the 'newName' can be complex filenames
containing a directory specification. In this case, the file will be
moved from one directory to another. However, the destination
directory must exist before you do this.

Note: It is impossible to rename a file from one volume to another.

SEEK

Purpose: To move to a logical position in a file.

Form: oldPosition = Seek(file, position, mode)
DO Dl D2 D3

Argument: file - file handle
position - integer
mode - integer

Result: oldPosition - integer

Description:

Seek sets the read/write cursor for the file 'file' to the position
'position'. Both Read and Write use this position as a place to start
reading or writing. If all goes well, the result is the previous position
in the file. If an error occurs, the result is -1. You can then use
IoErr() to find out more information about the error.

'mode' can be OFFSET_BEGINNING (=-1), OFFSET_CURRENT
(=0) or OFFSET_END (=1). You use it to specify the relative start
position. For example, 20 from current is a position twenty bytes

Calling AmigaDOS 2-15

forward from current, -20 from end is 20 bytes before the end of
the current file.

To find out the current file position without altering it, you call to
Seekspecifying an offset of zero from the current position.

To move to the end of a file, Seek to end-of-file offset with zero
position. Note that you can append information to a file by moving
to the end of a file with Seek and then writing. You cannot Seek
beyond the end of a file.

SETCOMMENT

Purpose: To set a comment.

Form: Success = SetComment(name, comment)
DO Dl D2

Argument: name - file name
comment - pointer to a string

Result: success - boolean

Description:

SetComment sets a comment on a file or directory. The comment is
a pointer to a null-terminated string of up to 80 characters.

2-16 Calling AmigaDOS

SETPROTECTION

Purpose: To set file, or directory, protection.

Form: Success = SetProtection(name, mask)
DO Dl D2

Argument: name - file name
mask - the protection mask required

Result: success - boolean

Descri ption:

SetProtection sets the protection attributes on a file or directory.
The lower four bits of the mask are as follows:

bit 3: if 1 then reads not allowed, else reads allowed.
bit 2: if 1 then writes not allowed, else writes allowed.
bit 1: if 1 then execution not allowed, else execution allowed.
bit 0: if 1 then deletion not allowed, else deletion allowed.
bits 31-4 Reserved.

Only delete is checked for in the current release of AmigaDOS.
Rather than referring to bits by number you should use the
definitions in "include/libraries/dos.h".

Calling AmigaDOS 2-17

UNLOCK

Purpose: To unlock a directory or file.

Form: UnLock (lock)
Dl

Argument: lock - pointer to a lock

Description:

UnLock removes a filing system lock obtained from Lock,
DupLock, or CreateDir.

WAITFORCHAR

Purpose: To indicate whether characters arrive within
a time limit or not.

Form: bool = WaitForChar(file, timeout)
DO Dl D2

Argument: file - file handle
timeout - integer

Result: bool - boolean

Description:

If a character is available to be read from the file associated with the
handle 'file' within a certain time, indicated by 'timeout',
WaitForChar returns -1 (TRUE); otherwise, it returns 0 (FALSE).
If a character is available, you can use Read to read it. Note that
WaitForChar is only valid when the I/O streams are connected to a
virtual terminal device. 'timeout' specified in microseconds.

2-18 Calling AmigaDOS

WRITE

Purpose: To write bytes of data to a file.

Form: returnedLength = Write(file, buffer, length)
DO Dl D2 D3

Argument: file - file handle
buffer - pointer to buffer
length - integer

Result: returnedLength - integer

Description:

You can copy data with a combination of Read and Write. Write
writes bytes of data to the opened file 'file'. 'length' refers to the
actual length of data to be transferred; 'buffer' refers to the buffer
size.

Write returns a value that indicates the length of information
actually written. That is to say, when 'length' is greater than zero,
the value of 'length' is the number of characters written. A value of
-1 indicates an error. The user of this call must always check for an
error return which may, for example, indicate that the disk is full.

Calling AmigaDOS 2-19

Process Handling

CREATEPROC

Purpose: To create a new process.

Form: process = CreateProc(name, pri, segment, stackSize)
DO Dl D2 D3 D4

Argument: name - string
pri - integer
segment - pointer to a segment
stackSize - integer

Result: process - process identifier

Description:

CreateProc creates a process with the name 'name'. That is to say,
CreateProc allocates a process control structure from the free
memory area and then initializes it.

CreateProc takes a segment list as the argument 'segment'. (See also
under LOADSEG and UNLOADSEG.) This segment list represents
the section of code that you intend to run as a new process.
CreateProc enters the code at the first segment in the segment list,
which should contain suitable initialization code or a jump to such.

'stackSize' represents the size of the root stack in bytes when
CreateProc activates the process. 'pri' specifies the required priority
of the new process. The result is the process identifier of the new
process, or zero if the routine failed.

The argument 'name' specifies the process name.

A zero return code implies an error of some kind.

2-20 Calling AmigaDOS

DATESTAMP

Purpose: To obtain the date and time in internal
format.

Form: v:= DateStamp(v)

Argument: v - pointer

Description:

DateStamp takes a vector of three longwords that is set to the
current time. The first element in the vector is a count of the
number of days. The second element is the number of minutes
elapsed in the day. The third is the number of ticks elapsed in the
current minute. A tick happens 50 times a second. DateStamp
ensures that the day and minute are consistent. All three elements
are zero if the date is unset. DateStamp currently only returns even
multiples of 50 ticks. Therefore the time you get is always an even
number of ticks.

DELAY

Purpose: To delay a process for a specified time.

Form: Delay(timeout)
Dl

Argument: timeout - integer

Description:

The function Delay takes an argument 'timeout'. 'timeout' allows
you to specify how long the process should wait in ticks (50 per
second).

CallingAmigaDOS 2-21

DEVICEPROC

Purpose: To return the process identifier of the
process handling that 110.

Form: process = DeviceProc (name)
DO Dl

Argument: name - string

Result: process - process identifier

Description:

DeviceProc returns the process identifier of the process that handles
the device associated with the specified name. If DeviceProc cannot
find a process handler, the result is zero. If 'name' refers to a file on
a mounted device, then IoErr() returns a pointer to a directory
lock.

You can use this function to determine the process identification of
the handler process where the system should send its messages.

EXIT

Purpose: To exit from a program.

Form: Exit(returnCode)
Dl

Argument: returnCode - integer

Description:

Exit acts differently depending on whether you are running a
program under a CLI or not. If you run, as a command under a

2-22 Calling AmigaDOS

CLI, a program that calls Exit, the command finishes and control
reverts to the CLI. Exit then interprets the argument 'returnCode'
as the return code from the program.

If you run the program as a distinct process, Exit deletes the process
and releases the space associated with the stack, segment list, and
process structure.

Loading Code

EXECUTE

Purpose: To execute a CLI command.

Form: Success = Execute(commandString, input, output)
DO Dl D2 D3

Argument: command String - string
input - file handle
output - file handle

Result: Success - boolean

Description:

This function takes a string (command String) that specifies a CLI
command and arguments, and attempts to execute it. The CLI string
can contain any valid input that you could type directly at a CLI,
including input and output indirection using> and <.

The input file handle will normally be zero, and in this case the
EXECUTE command will perform whatever was requested in the
commandString and then return. If the input file handle is nonzero
then after the (possibly nUll) commandString is performed

Calling AmigaDOS 2-23

subsequent input is read from the specified input file handle until
end of file is reached.

In most cases the output file handle must be provided, and will be
used by the CLI commands as their output stream unless redirection
was specified. If the output file handle is set to zero then the current
window, normally specified as *, is used. Note that programs
running under the Workbench do not normally have a current
window.

The Execute function may also be used to create a new interactive
CLI process just like those created with the NEWCLI function. In
order to do this you should call Execute with an empty
commandString, and pass a file handle relating to a new window as
the input file handle. The output file handle should be set to zero.
The CLI will read commands from the new window, and will use the
same window for output. This new CLI window can only be
terminated by using the ENDCLI command. For this command to
work the program C:RUN must be present in C:.

LOADSEG

Purpose: To load a load module into memory.

Form: segment = LoadSeg(name)
DO Dl

Argument: name - string

Result: segment - pointer to a segment

Description:

The file 'name' is a load module produced by the linker. LoadSeg
takes this and scatter loads the code segments into memory,
chaining the segments together on their first words. It recognizes a
zero as indicating the end of the chain.

2-24 Calling AmigaDOS

If an error occurs, Loadseg unloads any loaded blocks and returns a
false (zero) result.

If all goes well (that is, LoadSeg has loaded the module correctly),
then Loadseg returns a pointer to the beginning of the list of blocks.
Once you have finished with the loaded code, you can unload it with
a call to UnLoadSeg. (For using the loaded code, see under
CREA TEPROC.)

UNLOADSEG

Purpose: To unload a segment previously loaded by
LOADSEG.

Form: UnLoadSeg(segment)
Dl

Argument: segment - pointer to a segment

Description:

UnLoadSeg unloads the segment identifier that was returned by
LoadSeg. 'segment' may be zero.

Calling AmigaDOS 2-25

Quick Reference

File Handling

Close to close a file for input or output.

CreateDir to create a new directory.

CurrentDir to make a directory associated with a lock
the current working directory.

DeleteFile to delete a file or directory.

DupLock to duplicate a lock.

Examine to examine a directory or file associated
with a lock.

ExNext to examine the next entry in a directory.

Info to return information about the disk.

Input to identify the initial input file handle.

IoErr to return extra information from the
system.

IsInteractive to discover whether a file is connected to a
virtual terminal or not.

Lock to lock a file or directory.

Open to open a file for input or output.

Output to identify the initial output file handle.

ParentDir to obtain the parent of a directory or file.

Read to read bytes of data from a file.

2-26 Calling AmigaDOS

Rename

Seek

SetComment

SetProtection

Unlock

WaitForChar

Write

Process Handling

CreateProc

DateStamp

Delay

DeviceProc

Exit

Loading Code

Execute

LoadSeg

UnloadSeg

to rename a file or directory.

to move to a logical position in a file.

to set a comment.

to set file, or directory, protection.

to unlock a file or directory.

to indicate whether characters arrive within
a time limit or not.

to write bytes of data to a file.

to create a new process.

to obtain the date and time in internal
format.

to delay a process for a specified time.

to return the process identifier of the
process handling that I/O.

to exit from a program.

to execute a CLI command.

to load a load module into memory

to unload a segment previously loaded by
LOADSEG.

Calling AmigaDOS 2-27

Chapter 3

The Macro Assembler

This chapter describes the AmigaDOS Macro Assembler. It gives a
brief introduction to the 68000 microchip. This chapter is intended
for the reader who is acquainted with an assembly language on
another computer.

3.1 Introduction to the 68000 Microchip

This section gives a brief introduction to the 68000 microchip. It
should help you to understand the concepts introduced later in the
chapter. It assumes that you have already had experience with
assembly language on another computer.

The Macro Assembler 3-1

The memory available to the 68000 consists of

 the internal registers (on the chip), and

 the external main memory.

There are 17 registers, but only 16 are available at any given
moment. Eight of them are data registers named DO to D7, and the
others are address registers called AO to A7. Each register contains
32 bits. In many contexts, you may use either kind of register, but
others demand a specific kind. For instance, you may use any
register for operations on word (16-bit) and long word (32-bit)
quantities or for indexed addressing of main memory. Although, for
operations on byte (8-bit) operands, you may only use data
registers, and for addressing main memory, you may only use
address registers as stack pointers or base registers. Register A7 is
the stack pointer, this is in fact two distinct registers; the system
stack pointer available in supervisor mode and the user stack pointer
available in user mode.

The main memory consists of a number of bytes of memory. Each
byte has an identifying number called its address. Memory is usually
(but not always) arranged so that its bytes have addresses 0, 1, 2,
... , N-2, N-1 where there are N bytes of memory in total. The size
of memory that you can directly access is very large - up to 16
million bytes. The 68000 can perform operations on bytes, words,
or long words of memory. A word is two consecutive bytes. In a
word, the first byte has an even address. A long word is four
consecutive bytes also starting at an even address. The address of a
long word is the even address of its lowest numbered first byte.

As well as holding items of data being manipulated by the computer,
the main memory also holds the instructions that tell the computer
what to do. Each instruction occupies from one to 5 words,
consisting of an operation word between zero and four operand
words. The operation word specifies what action is to be performed
(and implicitly how many words there are in the whole instruction).
The operand words indicate where in the registers or main memory

3-2 The Macro Assembler

are the items to be manipulated, and where the result should be
placed.

The assembler usually executes instructions one at a time in the
order that they occur in memory, like the way you follow the steps
in a recipe or play the notes in a piece of written music. There is a
special register called the program counter (PC) which you use to
hold the address of the instruction you want the assembler to
execute next. Some instructions, called jumps or branches, upset
the usual order, and force the assembler to continue executing the
instruction at a specific address. This lets the computer perform an
action repeatedly, or do different things depending on the values of
data items.

To remember particular things about the state of the computer, you
can use one other special register called the status register (SR).

3.2 Calling the Assembler

The command template for assem is

"PROG=FROM/A,-O/K,-V/K,-L/K,-H/K,-C/K,-I/K"

Alternatively, the format of the command line can be described as

assem <source file> [-0 <object file>]
[-1 <listing file>]
[-v <verification file>]
[-h <header file>]
[-c <options>]
[-i <include dirlist>]

The assembler does not produce an object file or a listing file unless
you request them explicitly.

As the assembler is running, it generates diagnostic messages
(errors, warnings, and assembly statistics) and sends them to the
screen unless you specify a verification file.

The Macro Assembler 3-3

To force the inclusion of the named file in the assembly at the head
of the source file, you use -h <filename> on the command line. This
has the same effect as using

INCLUDE "<filename>"

on line 1 of the source file.

To set up the list of directories that the assembler should search for
any INCLUDEd files, you use the -i keyword. You should specify as
many directories as you require after the -i, separating the directory
names by a comma (,), a plus sign (+), or a space. Note that if you
use a space, you must enclose the entire directory list in double
quotes ("). Unix users, however, must escape any double quotes
with a backslash (\").

The order of the list determines the order of the directories where
the assembler should search for INCLUDEd files. The assembler
initially searches the current directory before any others. Thus any
file that you INCLUDE in a program must be in the current
directory, or in one of the directories listed in the -i list. For
instance, if the program 'fred' INCLUDEs, apart from files in the
current directory, a file from the directory 'intrnl/incl', a file from
the directory 'include/asm', and a file from the directory
'extrnl/incl', you can give the -i directory list in these three ways:

assem fred -i intrnl/incl,include/asm,extrnl/incl
assem fred -i intrnl/incl+include/asm+extrnl/incl
assem fred -i "intrnl/incl include/asm extrnl/incl"

or, by using the space separator on the Sun under Unix, like this

assem fred -i \"intrnl/incl include/asm extrnl/incl\"

The -c keyword allowsyou to pass certain options to the assembler.
Each option consists of a single character (in either upper or lower
case), possibly followed immediately by a number. Valid options
follow here:

3-4 The Macro Assembler

S produces a symbol dump as a part of the object file.

D inhibits the dumping of local labels as part of a symbol dump.
(For C programmers, any label beginning with a period is
considered as a local label).

C ignores the distinction between upper and lower case in labels.

X produces a cross-reference table at the end of the listing file.

Examples

assem fred.asm -0 fred.o

assembles the file fred.asm and produces an object module in the
file fred.o.

assem fred.asm -0 fred.o -l fred.lst

assembles the file fred.asm, produces an object module in the file
fred.o, and produces a listing file in fred.lst.

3.3 Program Encoding

A program acceptable to the assembler takes the form of a series of
input lines that can include any of the following:

 Comment or Blank lines

 Executable Instructions

 Assembler Directives

The Macro Assembler 3-5

3.3.1 Comments

To introduce comments into the program, you can use three
different methods:

1. Type a semicolon (;) anywhere on a line and follow it
with the text of the comment. For example,

CMPA.L Al,A2 ; Are the pointers equal?

2. Type an asterisk (*) in column one of a line and follow
it with the text of the comment. For example,

* This entire line is a comment

3. Follow any complete instruction or directive with a least
one space and some text. For example,

MOVEQ #IO,DO place initial value in DO

In addition, note that all blank lines are treated by the assembler as
comment lines.

3.3.2 Executable Instructions

The source statements have the general overall format:

[<label>] <opcode> [<operand> [,<operand>] ...] [<comment>]

To separate each field from the next, press the SPACEBAR or TAB
key. This produces a separator character. You may use more than
one space to separate fields.

3-6 The Macro Assembler

3.3.2. 1 Label Field

A label is a user symbol, or programmer-defined name, that either

a) Starts in the first column and is separated from the next
field by at least one space, or

b) Starts in any column, and is followed immediately with a
colon (:).

If a label is present, then it must be the first non-blank item on the
line. The assembler assigns the value and type of the program
counter, that is, the memory address of the first byte of the
instruction or data being referenced, to the label. Labels are allowed
on all instructions, and on some directives, or they may stand alone
on a line. See the specifications of individual directives in Section
3.7 for whether a label field is allowed.

Note: You must not give multiple definitions to labels. Also, you
must not use instruction names, directives, or register names as
labels.

3.3.2.2 Local Labels

Local labels are provided as an extension to the MOTOROLA
specification. They take the form nnn$ and are only valid between
any proper (named) labels. Thus, in the following example code
segment

Labels Opcodes Operands

FOO: MOVE.L D6,DO
1$: MOVE.B (AO)+, (A1)+

DBRA DO,l$
MOVEQ #20,DO

BAA: TRAP #4

the label 1$ is only available from the line following the one labelled
FOO to the line before the one labelled BAA. In this case, you

The Macro Assembler 3-7

could then use the label 1$ in a different scope elsewhere in the
program.

3.3.2.3 Opcode Field

The Opcode field follows the Label field and is separated from it by
at least one space. Entries in this field are of three types.

1. The MC68000 operation codes, as defined in the
MC68000 User Manual.

2. Assembler Directives.

3. Macro invocations.

To enter instructions and directives that can operate on more than
one data size, you use an optional Size-Specifier subfield, which is
separated from the opcode by the period (.) character. Possible size
specifiers are as follows:

S

Byte-sized data (8 bits)
Word-sized data (16 bits)
Long Word-sized data (32 bits)
or Long Branch specifier
Short Branch specifier

B
W
L

The size specifier must match with the instruction or directive type
that you use.

3.3.2.4 Operand Field

If present, the operand field contains one or more operands to the
instruction or directive, and must be separated from it by at least
one space. When you have two or more operands in the field, you
must separate them with a comma (,). The operand field terminates
with a space or newline character (a newline character is what the
assembler receives when you press RETURN), so you must not use
spaces between operands.

3-8 The Macro Assembler

3.3.2.5 Comment Field

Anything after the terminating space of the operand field is ignored.
So the assembler treats any characters you insert after a space as a
comment.

3.4 Expressions

An expression is a combination of symbols, constants, algebraic
operators, and parentheses that you can use to specify the operand
field to instructions or directives. You may include relative symbols
in expressions, but they can only be operated on by a subset of the
operators.

3.4.1 Operators

The available operators are listed below in order of precedence.

1. Monadic Minus, Logical NOT (- and ~)
2. Lshift, Rshift «< and »)
3. Logical AND, Logical OR (& and I)
4. Multiply, Divide (* and /)
5. Add, Subtract (+ and -)

To override the precedence of the operators, enclose
sub-expressions in parentheses. The assembler evaluates operators
of equal precedence from left to right. Note that, normally, you
should not have any spaces in an expression, as a space is regarded
as a delimiter between one field and another.

The Macro Assembler 3-9

3.4.2 Operand Types for Operators

In the following table, 'A' represents absolute symbols, and R
represents relative symbols. The table shows all the possible
operator/operand combinations, with the type of the resulting value.
'x' indicates an error. The Monadic minus and the Logical not
operators are only valid with an absolute operand.

Operands
Operators A op A R op R A op R R op A

+ A x R R
A A x R

* A x x x
/ A x x x
& A x x x
! A x x x

» A x x x
« A x x x

-

Table 3-A: Operand Types for Operators

3.4.3 Symbols

A symbol is a string of up to 30 characters. The first character of a
symbol must be one of following:

 An alphabetic charcter, that is, a through z,
or A through Z.

 An underscore (_).

 A period (.).

3-10 The Macro Assembler

The rest of the characters in the string can be any of these
characters or also numeric (0 through 9). In all symbols, the lower
case characters (a-z) are not treated as synonyms with their upper
case equivalents (unless you use the option C when you invoke the
assembler). So 'fred' is different from 'FRED' and 'FRed'.
However, the assembler recognizes instruction optcodes, directives,
and register names in either upper or lower case. A label equated to
a register name with EQUR is also recognized by the assembler in
either upper or lower case. Symbols can be up to 30 characters in
length, all of which are significant. The assembler takes symbols
longer than this and truncates them to 30 characters, giving a
warning that it has done so. The Instruction names, Directive
names, Register names, and special symbols CCR, SR, SP and USP
cannot be used as user symbols. A symbol can be one of three types:

Absolute:

a) The symbol was SET or EQUated to an Absolute value

Relative:

a) The symbol was SET or EQUated to a Relative value

b) The symbol was used as a label

Register:

a) The symbol was set to a register name using EQUR (this is an
extension from the MOTOROLA specification).

There is a special symbol *, which has the value and type of the
current program counter, that is, the address of the current
instruction or directive that the assembler is acting on.

The Macro Assembler 3-11

3.4.4 Numbers

You may use a number as a term of an expression, or as a single
value. Numbers ALWAYS have absolute values and can take one of
the following formats:

Decimal (a string of decimal digits)

Example: 1234

Hexadecimal ($ followed by a string of hex digits)

Example: $89AB

Octal (@ followed by a string of octal digits)

Example: @743

Binary (% followed by zeros and ones)

Example: %10110111

ASCII Literal (Up to 4 ASCII characters within quotes)

Examples: 'ABCD' ,*,

Strings of less than 4 characters are justified to the right, using NUL
as the packing character.

To obtain a quote character in the string, you must use two quotes.
An example of this is

It"s'

3.5 Addressing Modes

The effective address modes define the operands to instructions and
directives, and you can find a detailed description of them in any

3-12 The Macro Assembler

good reference book on the 68000. Addresses refer to individual
bytes, but instructions, Word and Long Word references, access
more than one byte, and the address for these must be word
aligned.

In the following table, Dn represents one of the data registers
(DO-D7), 'An' represents one of the address registers (AO-A7, SP
and PC), 'a' represents an absolute expression, 'r' represents a
relative expression, and 'Xn' represents An or Dn, with an optional
, .W' or '. L' size specifier. The syntax for each of the modes is as
follows:

Table 3-B: Macro Assembler Address Modes and Registers

Address
Mode

Dn

An

(An)

(An) +

-(An)

a (An)

Description and Examples

Data Register Direct
Example: MOVE DO,Dl

Address Register Direct
Example: MOVEA AO,Al

Address Register Indirect
Example: MOVE DO,(Al)

Address Register Indirect Post Increment
Example: MOVE (A7)+,DO

Address Register Indirect Pre Decrement
Example: MOVE DO,-(A7)

Address Register Indirect with Displacement
Example: MOVE 20(AO),Dl

The Macro Assembler 3-13

a(An,Xn)

a

a

r

r(Xn)

#a

USP
CCR
SR

Address Register Indirect with Index
Example: MOVE O(AO,DO),Dl

MOVE 12(Al,AO.L),D2
MOVE 120(AO,D6.W),D4

Short absolute (16 bits)
Example: MOVE $1000,D0

Long absolute (32 bits)
Example: MOVE $10000,D0

Program Counter Relative with Displacement
Example: MOVE ABC,D0

(ABC is relative)

Program Counter Relative with Index
Example: MOVE ABC(D0.L),Dl

(ABC is relative)

Immediate data
Example: MOVE #1234,D0

Special addressing modes
Example: MOVE A0,USP

MOVE D0,CCR
MOVE Dl,SR

3.6 Variants on Instruction Types

Certain instructions (for example, ADD, CMP) have an address
variant (that refers to address registers as destinations), immediate
and quick forms (when immediate data possibly within a restricted
size range appears as an operand), and a memory variant (where
both operands must be a postincrement address).

3-14 The Macro Assembler

To force a particular variant to be used, you may append A, Q, lor
M to the instruction mnemonic. In this case, the assembler uses the
specified form of the instruction, if it exists, or gives an error
message.

If, however, you specify no particular variant, the assembler
automatically converts to the '1', 'A' or 'M' forms where
appropriate. However, it does not convert to the 'Q' form. For
example, the assembler converts the following:

ADD.L A2,Al to
ADDA.L A2,Al

3.7 Directives

All assembler directives (with the exception of DC and DCB) are
instructions to the assembler, rather than instructions to be
translated into object code. At the beginning of this section, there is
a list of all the directives (Table 3-C), arranged by function; at the
end there is an individual decription for each directive, arranged by
function.

Note that the assembler only allows labels on directives where
specified. For example, EQU is allowed a label. It is optional for
RORG, but not allowed for LLEN or TTL.

The following table lists the directives by function:

The Macro Assembler 3-15

Table 3-C: Directives

Directive

Assembly Control

Description

SECTION
RORG
OFFSET
END

Program section
Relocatable origin
Define offsets
Program end

Directive

Symbol Definition

EQU
EQUR
REG
SET

Description

Assign permanent value
Assign permanent register value
Assign permanent value
Assign temporary value

Directive

Data Definition

DC
DCB
DS

Directive

Listing Control

PAGE
LIST
NOLIST (NOL)
SPC n
NO PAGE
LLEN n
PLEN n
TTL

Description

Define constants
Define Constant Block
Define storage

Description

Page-throw to listing
Turn on listing
Turn off listing
Skip n blank lines
Turn off paging
Set line length (60 <= n <= 132)
Set page length (24 <= n <= 100)
Set program title (max 80 chars)

3-16 The Macro Assembler

NOOBJ
FAIL
FORMAT
NOFORMAT

Disable object code output
Generate an assembly error
No action
No action

Conditional Assembly

Directive Description

CNOP
IFEQ
IFNE
IFGT
IFGE
IFLT
IFLE
IFC
IFNC
IFD
IFND
ENDC

Conditional NOP for alignment
Assemble if expression is 0
Assemble if expression is not 0
Assemble if expression > 0
Assemble if expression >= 0
Assemble if expression < 0
Assemble if expression <= 0
Assemble if strings are identical
Assemble if strings are not identical
Assemble if symbol is defined
Assemble if symbols is not defined
End of conditional assembly

Macro Directives

Directive Description

MACRO
NARG
ENDM
MEXIT

Define a macro name
Special symbol
End of macro definition
Exit the macro expansion

External Symbols

Directive Description

XDEF
XREF

Define external name
Reference external name

The Macro Assembler 3-17

General Directives

Directive Description

INCLUDE
MASK2
IDNT

Insert file in the source
No action
Name program unit

Assembly Control Directives

SECTION Program Section

Format: [<label>] SECTION <name> [,<type>]

This directive tells the assembler to restore the counter to the last
location allocated in the named section (or to zero if used for the
first time).

<name> is a character string optionally enclosed in double quotes.
<type> if included, must be one of the following keywords:

CODE indicates that the section contains relocatable
code. This is the default.

DATA indicates that the section contains initialized
data (only).

BSS indicates that the section contains uninitialized
data

The assembler can maintain up to 255 sections. Initially, the
assembler begins with an unnamed CODE section. The assembler
assigns the optional symbol <labels> to the value of the program
counter after it has executed the SECTION directive. In addition,
where a section is unnamed, the shorthand for that section is the
keyword CODE.

3-18 The Macro Assembler

RORG Set Relative Origin

Format: [<label>] RORG <absexp>

The RORG directive changes the program counter to be <absexp>
bytes from the start of the current relocatable section. The
assembler assigns relocatable memory locations to subsequent
statements, starting with the value assigned to the program counter.
To do addressing in relocatable sections, you use the 'program
counter relative with displacement' addressing mode. The label
value assignment is the same as for SECTION.

OFFSET Define offsets

Format: OFFSET <absexp>

To define a table of offsets via the DS directive beginning at the
address <absexp>, you use the OFFSET directive. Symbols defined
in an OFFSET table are kept internally, but no code-producing
intructions or directives may appear. To terminate an OFFSET
section, you use a RORG, OFFSET, SECTION, or END directive.

END End of program

Format: [<label>] END

The END directive tells the assembler that the source is finished,
and the assembler ignores subsequent source statements. When the
assembler encounters the END directive during the first pass, it
begins the second pass. If, however, it detects an end-of-file before
an END directive, it gives a warning message. If the label field is
present, then the assembler assignsthe value of the current program
counter to the label before it executes the END directive.

The Macro Assembler 3-19

Symbol Definition Directives

EQU Equate symbol value

Format: <label> EQU <exp>

The EQU directive assigns the value of the expression in the
operand field to the symbol in the label field. The value assigned is
permanent, so you may not define the label anywhere else in the
program.

Note: Do not insert forward references within the expression.

EQUR Equate register value

Format: <label> EQUR <register>

This directive lets you equate one of the processor registers with a
user symbol. Only the Address and Data registers are valid, so
special symbols like SR, CCR, and USP are illegal here. The register
is permanent, so you cannot define the label anywhere else in the
program. The register must not be a forward reference to another
EQUR statement. The assembler matches labels defined in this way
without distinguishing upper and lower case.

REG Define register list

Format: <label> REG <register list>

The REG directive assigns a value to label that the assembler can
translate into the register list mask format used in the MOVEM
instruction. <register list> is of the form

Rl [-R2] [/R3 [-R4]] ...

3-20 The Macro Assembler

SET Set symbol value

Format: <label> SET <exp>

The SET directive assigns the value of the expression in the operand
field to the symbol in the label field. SET is identical to EQU, apart
from the fact that the assignment is temporary. You can always
change SET later on in the program.

Note: You should not insert forward references within the
expression or refer forward to symbols that you defined with SET.

Data Definition Directives

DC Define Constant

Format: [<label>] DC[. <size>] <list>

The DC directive defines a constant value in memory. It may have
any number of operands, separated by commas (,). The values in
the list must be capable of being held in the data location whose size
is given by the size specifier on the directive. If you do not give a
size specifier, DC assumes it is .W. If the size is .B, then there is one
other data type that can be used: that of the ASCII string. This is an
arbitrarily long series of ASCII characters, contained within
quotation marks. As with ASCII literals, if you require a quotation
mark in the string, then you must enter two. If the size is .W or .L,
then the assembler aligns the data onto a word boundary.

The Macro Assembler 3-21

DCB Define Constant Block

Format: [<label>] DCB[.<size>] <absexp>,<exp>

You use the DCB directive to set a number (given by <absexp» of
bytes, words, or longwords to the value of the expression <exp>.
DCB.<size> n,exp is equivalent to repeating n times the statement
DC. <size> exp.

DS Define Storage

Format: [<label>] DS [.<size>] <absexp>

To reserve memory locations, you use the DS directive. DS,
however, does no initialization. The amount of space the assembler
allocates depends on the data size (that you give with the size
specifier on the directive), and the value of the expression in the
operand field. The assembler interprets this as the number of data
items of that size to allocate. As with DC, if the size specifier is .W
or .L, DS aligns the space onto a word boundary. So, DS.W 0 has
the effect of aligning to a word boundary only. If you do not give a
size specifier, DS assumes a default of .W. See CNOP for a more
general way of handling alignment.

Listing Control Directives

PAGE Page Throw

Format: PAGE

Unless paging has been inhibited, PAGE advances the assembly
listing to the top of the next page. The PAGE directive does not
appear on the output listing.

3-22 The Macro Assembler

LIST Turn on Listing

Format: LIST

The LIST directive tells the assembler to produce the assembly
listing file. Listing continues until it encounters either an END or a
NOLIST directive. This directive is only active when the assembler
is producing a listing file. The LIST directive does not appear on the
output listing.

NOLIST Turn off Listing

Format: NOLIST
NOL

The NOLIST or NOL directive turns off the production of the
assembly listing file. Listing ceases until the assembler encounters
either an END or a LIST directive. The NOLIST directive does not
appear on the program listing.

SPC Space Blank Lines

Format: SPC <number>

The SPC directive outputs the number of blank lines given by the
operand field, to the assembly listing. The SPC directive does not
appear on the program listing.

The Macro Assembler 3-23

NOPAGE Turn off Paging

Format: NOPAGE

The NOPAGE directive turns off the printing of page throws and
title headers on the assembly listing.

LLEN Set Line Length

Format: LLEN <number>

The LLEN directive sets the line length of the assembly listing file to
the value you specified in the operand field. The value must lie
between 60 and 132, and can only be set once in the program. The
LLEN directive does not appear on the assembly listing. The default
is 132 characters.

PLEN Set Page Length

Format: PLEN <number>

The PLEN directive sets the page length of the assembly listing file
to the value you specified in the operand field. The value must lie
between 24 and 100, and you can only set it once in the program.
The default is 60 lines.

TTL Set Program Title

Format: TTL <title string>

The TTL directive sets the title of the program to the string you gave
in the operand field. This string appears as the page heading in the
assembly listing. The string starts at the first non-blank character

3-24 The Macro Assembler

after the TTL, and continues until the end of line. It must not be
longer than 40 characters in length. The TTL directive does not
appear on the program listing.

NOOBJ Disable Object Code Generation

Format: NOOBJ

The NOOBJ directive disables the production of the object code file
at the end of assembly. This directive disables the production of the
code file, even if you specified a file name when you called the

assembler.

FAIL Generate a user error

Format: FAIL

The FAIL directive tells the assembler to flag an error for this input

line.

FORMAT No action

Format: FORMAT

The assembler accepts this directive but takes no action on receiving
it. FORMAT is included for compatibility with other assemblers.

The Macro Assembler 3-25

NOFORMAT No action

Format: NOFORMAT

The assembler accepts this directive but takes no action on receiving
it. NOFORMAT is included for compatibility with other assemblers.

Conditional Assembly Directives

CNOP Conditional NOP

Format: [<label>] CNOP <number>,<number>

This directive is an extension from the Motorola standard and
allows a section of code to be aligned on any boundary. In
particular, it allows any data structure or entry point to be aligned to
a long word boundary.

The first expression represents an offset, while the second
expression represents the alignment required for the base. The code
is aligned to the specified offset from the nearest required alignment
boundary. Thus

CNOP 0,4

aligns code to the next long word boundary while

CNOP 2,4

aligns code to the word boundary 2 bytes beyond the nearest long
word aligned boundary.

3-26 The Macro Assembler

IFEQ
IFNE
IFGT
IFGE
IFLT
IFLE

Format: IFxx

Assemble if expresion = 0

Assemble if expression <> 0

Assemble if expression > 0
Assemble if expression >= 0

Assemble if expression < 0
Assemble if expression <= 0

<absexp>

You use the IFxx range of directives to enable or disable assembly,
depending on the value of the expression in the operand field. If the
condition is not TRUE (for example, IFEQ 2+1), assembly ceases
(that is, it is disabled). The conditional assembly switch remains
active until the assembler finds a matching ENDC statement. You
can nest conditional assembly switches arbitrarily, terminating each
level of nesting with a matching ENDC.

IFC
IFNC

Format: IFC
IFNC

Assemble if strings are identical
Assemble if strings are not identical

<string> ,<string>
<string>, <string>

The strings must be a series of ASCII characters enclosed in single
quotes, for example, 'FOO' or " (the empty string). If the condition
is not TRUE, assembly ceases (that is, it is disabled). Again the
conditional assembly switch remains active until the assembler finds
a matching ENDC statement.

The Macro Assembler 3-27

IFD
IFND

Assemble if symbol defined

Assemble if symbol not defined

Format: IFD
IFND

<symbol name>
<symbol name>

Depending on whether or not you have already defined the symbol,
the assembler enables or disables assembly until it finds a matching
ENDC.

ENDC End conditional assembly

Format: ENDC

To terminate a conditional assembly, you use the ENDC directive,
set up with any of the 8 IFxx directives above. ENDC matches the
most recently encountered condition directive.

Macro Directives

MACRO Start a macro definition

Format: <label> MACRO

MACRO introduces a macro definition. ENDM terminates a macro
definition. You must provide a label, which the assembler uses as
the name of the macro; subsequent uses of that label as an operand
expand the contents of the macro and insert them into the source
code. A macro can contain any opcode, most assembler directives,
or any previously defined macro. A plus sign (+) in the listing,
marks any code generated by macro expansion. When you use a
macro name, you may append a number of arguments, separated by

3-28 The Macro Assembler

commas. If the argument contains a space (for example, a string
containing a space) then you must enclose the entire argument
within < (less than) and> (greater than) symbols.

The assembler stores up and saves the source code that you enter
(after a MACRO directive and before an ENDM directive) as the
contents of the macro. The code can contain any normal source
code. In addition, the symbol \ (backslash) has a special meaning.
Backslash followedby a number n indicates that the value of the nth
argument is to be inserted into the code. If the nth argument is
omitted then nothing is inserted. Backslash followed by the symbol
'@' tells the assembler to generate the text' .nnn', where nnn is the
number of times the \@ combination it has encountered. This is
normally used to generate unique labels within a macro.

You may not nest macro definitions, that is, you cannot define a
macro within a macro, although you can call a macro you previously
defined. There is a limit to the level of nesting of macro calls. This
limit is currently set at ten.

Macro expansion stops when the assembler encounters the end of
the stored macro text, or when it finds a MEXIT directive.

NARG Special symbol

Format: NARG

The symbol NARG is a special reserved symbol and the assembler
assigns it the index of the last argument passed to the macro in the
parameter list (even nulls). Outside of a macro expansion, NARG
has the value 0.

The Macro Assembler 3-29

ENDM Terminate a macro definition

Format: ENDM

This terminates a macro definition introduced by a MACRO
directive.

MEXIT Exit from macro expansion

Format: MEXIT

You use this directive to exit from macro expansion mode, usually in
conjunction with the IFEQ and IFNE directives. It allows
conditional expansion of macros. Once it has executed the directive,
the assembler stops expanding the current macro as though there
were no more stored text to include.

External Symbols

XDEF Define an internal label as an external entry point

Format: XDEF <label> [,<label> ...]

One or more absolute or relocatable labels may follow the XDEF
directive. Each label defined here generates an external symbol
definition. You can make references to the symbol in other modules
(possibly from a high-level language) and satisfy the references with
a linker. If you use this directive or XREF, then you cannot directly
execute the code produced by the assembler.

3-30 The Macro Assembler

XREF Define an external name

Format: XREF <label> [,<label> ...]

One or more labels that must not have been defined elsewhere in
the program follow the XREF directive. Subsequent uses of the label
tell the assembler to generate an external reference for that label.
You use the label as if it referred to an absolute or relocatable value
depending on whether the matching XDEF referred to an absolute
or relocatable symbol.

The actual value used is filled in from another module by the linker.
The linker also generates any relocation information that may be
required in order for the resulting code to be relocatable.

External symbols are normally used as follows. To specify a routine
in one program segment as an external definition, you place a label
at the start of the routine and quote the label after an XDEF
directive. Another program may call that routine if it declares a
label via the XREF directive and then jumps to the label so
declared.

General Directives

INCLUDE Insert an external file

Format: INCLUDE "<file name>"

The INCLUDE directive allows the inclusion of external files into
the program source. You set up the file that INCLUDE inserts with
the string descriptor in the operand field. You can nest INCLUDE
directives up to a depth of three, enclosing the file names in quotes
as shown. INCLUDE is especially useful when you require a
standard set of macro definitions or EQUs in several programs.

The Macro Assembler 3-31

You can place the definitions in a single file and then refer to them
from other programs with a suitable INCLUDE. It is often
convenient to place NOLIST and LIST directives at the head and
tail of files you intend to include via INCLUDE. AmigaDOS
searches for the file specification first in the current directory, then
in each subsequent directory in the list you gave in the -i option.

MASK2 No action

Format: MASK2

The assembler accepts the MASK2 directive, but it takes no action
on receiving it.

IDNT Name program unit

Format: IDNT <string>

A program unit, which consists of one or more sections, must have a
name. Using the IDNT directive, you can define a name consisting
of a string optionally enclosed in double quotes. If the assembler
does not find a IDNT directive, it outputs a program unit name that
is a null string.

3-32 The Macro Assembler

Chapter 4

The Linker

This chapter describes the AmigaDOS Linker. The AmigaDOS
Linker produces a single binary load file from one or more input
files. It can also produce overlaid programs.

4.1 Introduction

ALINK produces a single binary output file from one or more input
files. These input files, known as object files, may contain external
symbol information. To produce object files, you use your assembler
or language translator. Before producing the output, or load file, the
linker resolves all references to symbols.

The Linker 4-1

The linker can also produce a link map and symbol cross reference
table.

Associated with the linker is an overlay supervisor. You can use the
overlay supervisor to overlay programs written in a variety of
languages. The linker produces load files suitable for overlaying in
this way.

You can drive the linker in two ways:

1. as a Command line. You can specify most of the
information necessary for running the linker in the
command parameters.

2. as a Parameter file. As an alternative, if a program is
being linked repetitively, you can use a parameter file to
specify all the data for the linker.

These two methods can take three types of input files:

1. Primary binary input. This refers to one or more object
files that form the initial binary input to the linker.
These files are always output to the load file, and the
primary input must not be empty.

2. Overlay files. If overlaying, the primary input forms the
root of the overlay tree, and the overlay files form the
rest of the structure.

3. Libraries. This refers to specified code that the linker
incorporates automatically. Libraries may be resident or
scanned. A resident library is a load file which may be
resident in memory, or loaded as part of the 'library
open' call in the operating system. A scanned library is
an object file within an archive format file. The linker
only loads the file if there are any outstanding external
references to the library.

4-2 The Linker

The linker works in two passes.

1. In the first pass, the linker reads all the primary, library
and overlay files, and records the code segments and
external symbol information. At the end of the first
pass, the linker outputs the map and cross reference
table, if required.

2. If you specify an output file, then the linker makes
second pass through the input. First it copies the
primary input files to the output, resolving symbol
references in the process, and then it copies out the
required library code segments in the same way. Note
that the library code segments form part of the root of
the overlay tree. Next, the linker produces data for the
overlay supervisor, and finally outputs the overlay files.

In the first pass, after reading the primary and overlay input files,
the linker inspects its table of symbols, and if there are any
remaining unresolved references, it reads the files, if any, that you
specified as the library input. The linker then marks any code
segments containing external definitions for these unresolved
references for subsequent inclusion in the load file. The linker only
includes those library code segments that you have referenced.

4.2 Using the Linker

To use the linker, you must know the command syntax, the type of
input and output that the linker uses, and the possible errors that
may occur. This section attempts to explain these things.

The Linker 4-3

4.2.1 Command Line Syntax.

The ALINK command has the following parameters:

ALINK [FROM | ROOT] files [TO file] [WITH file]
[VER file] [LIBRARY I LIB files] [MAP file]
[XREF file] [WIDTH n]

The keyword template is

"FROM=ROOT,TO/K,WITH/K,VER/K,LIBRARY=LIB/K,
MAP/K,XREF/K,WIDTH/K"

In the above, file means a single file name, 'files' means zero or
more file names, separated by a comma or plus sign, and 'n' is an
integer.

The following are examples of valid uses of the ALINK command:

ALINK a
ALINK ROOT a+b+c+d MAP map-file WIDTH 120
ALINK a,b,c TO output LIBRARY :flib/lib,obj/newlib

When you give a list of files, the linker reads them in the order you
specify.

The parameters have the following meanings:

FROM: specifies the object files that you want as the
primary binary input. The linker always copies the
contents of these files to the load file to form part of
the overlay root. At least one primary binary input
file must be specified. ROOT is a synonym for
FROM.

TO: specifies the destination for the load file. If this
parameter is not given, the linker omits the second
pass.

4-4 The Linker

WITH:

VER:

LIBRARY:

MAP:

XREF:

WIDTH:

specifies files containing the linker parameters, for
example, normal command lines. Usually you only
use one file here, but, for completeness, you can
give a list of files. Note that parameters on the
command line override those in WITH files. You
can find a full description of the syntax of these files
in section 4.2.2 of this manual.

specifies the destination of messages from the
linker. If you do not specify VER, the linker sends
all messages to the standard output (usually the
terminal) .

specifies the files that you want to be scanned as the
library. The linker includes only referenced code
segments. LIB is a valid alternative for LIBRARY.

specifies the destination of the link map.

specifies the destination of the cross reference
output.

specifies the output width that the linker can use
when producing the link map and cross reference
table. For example, if you send output to a printer,
you may need this parameter.

4.2.2 WITH Files

WITH files contain parameters for the linker. You use them to save
typing a long and complex ALINK command line many times.

A WITH file consists of a series of parameters, one per line, each
consisting of a keyword followed by data. You can terminate lines
with a semicolon (;), where the linker ignores the rest of the line.

The Linker 4-5

You can then use the rest of the line after the semicolon to include a
comment. The linker ignores blank lines.

The keywords available are as follows:

FROM (or ROOT) files
TO file
LIBRARY files
MAP [file]
XREF [file]
OVERLAY tree specification

#
WIDTH n

where 'file' is a single filename, 'files' is one or more filenames,
'[file]' is an optional filename, and 'n' is an integer. You may use
an asterisk symbol (*) to split long lines; placing one at the end of a
line tells the printer to read the next line as a continuation line. If
the filename after MAP or XREF is omitted, the output goes to the
VER file (the terminal by default).

Parameters on the command line override those in a WITH file, so
that you can make small variations on standard links by combining
command line parameters and WITH files. Similarly, if you specify
a parameter more than once in WITH files, the linker uses the first
occurrence.

Note: In the second example below, this is true even if the first
value given to a parameter is null.

Examples of WITH files and the corresponding ALINK calls:

ALINK WITH link-file

where 'link-file' contains

FROM
TO
LIBRARY
MAP XREF

obj/main,obj/s
bin/test
obj /lib
xo

4-6 The Linker

is the same as specifying

ALINK FROM obj/main,obj/s TO bin/test
LIBRARY obj/lib XREF xo

The command

ALINK WITH lkin LIBRARY""

where 'lkin' contains

FROM bin/prog,bin/subs
LIBRARY nag/fortlib
TO linklib/prog

is the same as the command line

ALINK FROM bin/prog,bin/subs TO linklib.prog

Note: In the example above, the null parameter for LIBRARYon
the command line overrides the value 'nag/fortlib' in the WITH file,
and so the linker does not read any libraries.

4.2.3 Errors and Other Exceptions

Various errors can occur while the linker is running. Most of the
messages are self-explanatory and refer to the failure to open files,
or to errors in command or binary file format. After an error, the
linker terminates at once.

There are a few messages that are warnings only. The most
important ones refer to undefined or multiply-defined symbols. The
linker should not terminate after receiving a warning.

If any undefined symbols remain at the end of the first pass, the
linker produces a warning, and outputs a table of such symbols.
During the second pass, references to these symbols become
references to location zero.

The Linker 4-7

If the linker finds more than one definition of a symbol during the
first pass, it puts out a warning, and ignores the later definition. The
linker does not produce this message if the second definition occurs
in a library file, so that you can replace library routines without it
producing spurious messages. A serious error follows if the linker
finds inconsistent symbol references, and linking then terminates at
once.

Since the linker only uses the first definition of any symbol, it is
important that you understand the following order in which files are
read.

1. Primary (FROM or ROOT) input.
2. Overlay files.
3. LIBRARY files.

Within each group, the linker reads the files in the order that you
specify in the file list. Thus definitions in the primary input override
those in the overlay files, and those in the libraries have lowest
priority.

4.2.4 MAP and XREF Output

The link map, which the linker produces after the first pass, lists all
the code segments that the linker output to the load file in the
second pass, in the order that they must be written.

For each code segment, the linker outputs a header, starting with
the name of the file (truncated to eight letters), the code segment
reference number, the type (that is, data, code, bss, or COMMON),
and size. If the code segment was in an overlay file, the linker also
gives the overlay level and overlay ordinate.

After the header, the linker prints each symbol defined in the code
segment, together with its value. It prints the symbols in ascending
order of their values, appending an asterisk (*) to absolute values.

4-8 The Linker

The value of the WIDTH parameter determines the number of
symbols printed per line. If this is too small, then the linker prints
one symbol on each line.

The cross reference output also lists each code segment, with the
same header as in the map.

The header is followedby a list of the symbolswith their references.
Each reference consists of a pair of integers, givingthe offset of the
reference and the number of the code segment in which it occurs.
The code segment number refers to the number given in each
header.

4.3 Overlaying

The automatic overlay systemprovided by the linker and the overlay
supervisor allows programs to occupy less memory when running,
without any alterations to the program structure.

When using overlaying, you should consider the program as a tree
structure. That is, with the root of the tree as the primary binary
input, together with library code segments and COMMON blocks.
This root is always resident in memory. The overlay files then form
the other nodes of the tree, according to specifications in the
OVERLAY directive.

The output from the linker when overlaying, as in the usual case, is
a singlebinary file, which consists of all the code segments, together
with information givingthe location within the file of each node of
the overlay tree. When you load the program only the root is
brought into memory. An overlay supervisor takes care of loading
and unloading the overlay segments automatically. The linker
includes this overlay supervisor in the output file produced from an
link using overlays. The overlay supervisor is invisibleto the program
running.

The Linker 4-9

4.3.1 OVERLAY Directive

To specify the tree structure of a program to the linker, you use the
OVERLAY directive. This directive is exceptional in that you can
only use it in WITH files. As with other parameters, the linker uses
the first OVERLAY directive you give it.

The format of the directive is

OVERLAY
Xfiles

#

Note: The overlay directive can span many lines. The linker
recognizes a hash sign (#) or the end-of-file as a terminator for the
directive.

Each line after OVERLAY specifies one node of the tree, and
consists of a count X and a file list.

The level of a node specifies its 'depth' in the tree, starting at zero,
which is the level of the root. The count, X, given in the directive,
consists of zero or more asterisks, and the overlay level of the node
is given by X+1.

As well as the level, each node other than the root has an ordinate
value. This refers to the order in which the linker should read the
descendents of each node, and starts at 1, for the first 'offspring' of
a parent node.

Note: There may be nodes with the same level and ordinate, but
with different parents.

While reading the OVERLAY directive, the linker remembers the
current level, and, for each new node, compares the level specified
with this value. If less, then the new node is a descendent of a
previous one. If equal, the new node has the same parent as the

4-10 The Linker

current one. If greater, the new node is a direct descendant of the
current one, and so the new level must be one greater than the
current value.

A number of examples may help to clarify this:

Directive Level Ordinate Tree

OVERLAY ROOT

a 1 1 /1\
b 1 2 abc

c 1 3
#

OVERLAY ROOT

a 1 1 /\
b 1 2 a b

*c 2 1 /1
*d 2 2 c d

#

OVERLAY -ROOT-

a 1 1 / /|\ \
b 1 2 / / 1 \ \
*c 2 1 a b e f l
*d 2 2 /1 /1\
e 1 3 c d g h k

f 1 4 /1
*g 2 1 i j

*h 2 2

**i 3 1

**j 3 2
*k 2 3
l 1 5
#

Figure 4-A

The level and ordinate values given above refer to the node
specified on the same line. Note that all the files given in the

The Linker 4-11

examples above could have been file lists. Single letters are for
clarity. For example, Figure 4-B

ROOT bin/mainaaa
OVERLAY
bin/mainbbb,bin/mainccc,bin/mainddd
*bin/makereal
bin/trbblock,bin/transint,bin/transr
bin/transri

bin/outcode
#

Figure 4-B

specifies the tree in the followingfigure:

bin/mainaaa
/\

/ \
/ \

/ \
/ \

/ \
bin/mainbbb bin/outcode
bin/mainccc
bin/mainddd
/\

/ \
/ \

/ \
/ \

/ \
bin/makereal bin/trbblock

bin/transint
bin/transr
bin/transri

Figure 4-C

During linking, the linker reads the overlay files in the order you
specified in the directive, line by line. The linker preserves this
order in the map and cross reference output, and so you can deduce

4-12 The Linker

the exact tree structure from the overlay level and ordinate the
linker prints with each code segment.

4.3.2 References To Symbols

While linking an overlaid program, the linker checks each symbol
reference for validity.

Suppose that the reference is in a tree node R, and the symbol in a
node S. Then the reference is legal if one of the followingis true.

(a) Rand S are the same node.
(b) R is a descendent of S.
(c) R is the parent of S.

References of the third type above are known as overlay references.
In this case, the linker enters the overlay supervisor when the
program is run. The overlay supervisor then checks to see if the
code segment containing the symbol is already in memory. If not,
first the code segment, if any, at this level, and all its descendents
are unloaded, and then the node containing the symbol is brought
into memory. An overlaid code segment returns directly to its caller,
and so is not unloaded from memory until another node is loaded
on top of it.

For example, suppose that the tree is:

A
/1
/ I
B c
/1\
/ I \
o E F

When the linker first loads the program, onlyA is in memory. When
the linker finds a reference in A to a symbol in B, it loads and
enters B. If B in turn callsD then again a new node is loaded. When
B returns to A, both Band D are left in memory, and the linker

The Linker 4-13

does not reload them if the program requires them later. Now
suppose that A calls C. First the linker unloads the code segments
that it does not require, and which it may overwrite. In this case,
these are Band D. Once it has reclaimed the memory for these, the
linker can load C.

Thus, when the linker executes a given node, all the node's
'ancestors', up to the root are in memory, and possibly some of its
descendents.

4.3.3 Cautionary Points

The linker assumes that all overlay references are jumps or
subroutine calls, and routes them through the overlay supervisor.
Thus, you should not use overlay symbols as data labels.

Try to avoid impure code when overlaying because the linker does
not always load a node that is fresh from the load file.

The linker gives each symbol that has an overlay reference an
overlay number. It uses this value, which is zero or more, to
construct the overlay supervisor entry label associated with that
symbol. This label is of the form 'OVLYnnnn', where nnnn is the
overlay number. You should not use symbols with this format
elsewhere.

The linker gathers together all program sections with the same
section name. It does this so that it can then load them continuously
in memory.

4.4 Error Codes and Messages

These errors should be rare. If they do occur, the error is probably
in the compiler and not in your program. However, you should first
check to see that you sent the linker a proper program (for

4-14 The Linker

example, an input program must have an introductory program unit
that tells the linker to expect a program).

Invalid Object Modules

2 Invalid use of overlay symbol.
3 Invalid use of symbol
4 Invalid use of common
5 Invalid use of overlay reference
6 Non-zero overlay reference
7 Invalid external block relocation
8 Invalid bss relocation
9 Invalid program unit relocation
10 Bad offset during 32 bit relocation
11 Bad offset during 6/8 bit relocation
12 Bad offset with 32 bit reference
13 Bad offset with 6/8 bit reference
14 Unexpected end of file
15 Hunk.end missing
16 Invalid termination of file
17 Premature termination of file
18 Premature termination of file

Internal Errors

19
20
21
22

Invalid type in hunk list
Internal error during library scan
Invalid argument freevector
Symbol not defined in second pass

The Linker 4-15

Appendix A

Console Input and Output on
the Amiga

Note: Throughout this appendix, the characters "<CSI>" represent
the Control Sequence Introducer. For output, you may either use
the two character sequence Esc- [or the one byte value $9B (hex).
For input, you receive $9B's.

Introduction

This appendix describes several ways to do console (keyboard and
screen) input and output on the Amiga. You can open the console
as you would any other AmigaDOS file (with "*", "CON:",

Appendix A A-l

"RAW:") or do direct calls to console.library. The advantages of
using each are listed below:

* "Star" does not open any windows; it just uses
the existingCLI window. You do not receive any
complex character sequences. You do receive
lowercase letters a-z, uppercase letters A-Z,
numbers, ASCII special symbols, and control
characters. Basically, if a teletype can generate
the character with a single keystroke, you can
receive it. In addition to these characters, you
can receive each of them with the high-order bit
set ($80-$FF). Line editing is also performed for
you. This means AmigaDOS accepts
<BackSpace> and CRTL-X for character and
line deletions. You do not have to deal with
these. Any <CSI> sequence is swallowed for you
as well as control characters: C, D, E, F, H, and
X. Any <CR> or CTRL-M characters are
converted to CTRL-J (new-line).

CON: Is just like "*" except that you also get to define
a new window.

RAW: The simple case: With RAW: (as compared to
CON:) you lose the line editing functions and
you gain access to the function and arrow keys.
These are sent as sequences of characters which
you must parse in an intelligent manner.

The "complex" cases: By issuing additional
commands to the console processor (by doing
writes to RAW:), you can get even more detailed
information. For example, you can request key
press and release information or data on mouse
events. See "Selection of RAW Input Events"
below for details on requesting this information.

A-2 Appendix A

console.library: With this method, you have full control over the
console device. You may change the KeyMap to
one of your own design and completely
"redesign" your keyboard.

Helpful AmigaDOS Commands

Two very helpful AmigaDOS commands let you play with these
functions. The first:

TYPE RAW:I0/I0/I00/30/ opt h

accepts input from a RAW: window and displays the results in hex
and ASCII. If you want to know for sure what characters the
keyboard is sending, this command provides a very simple way.

The second:

COpy "RAW:10/10/100/30/RAW Input" "RAW:100/10/200/100/RAW

output"

lets you type sequences into the input window and watch the cursor
movement in the output window. COPY cannot detect end of file on
RAW: input, so you have to reboot when you are finished with this
command.

CON Keyboard Input

If you read from the CON: device, the keyboard inputs are
preprocessed for you.

You get the ASCII characters like "B". Most normal text gathering
programs read from the CON: device. Special programs like word
processors and music keyboard programs use RAW:.

Appendix A A-3

To generate the international and special characters at the
keyboard, you can press either ALT key. This sets the high bit of
the ASCII code returned for the key pressed.

Generating $FF (umlaut y) is a special case. If it followed the
standard convention, it would be generated by ALT- DEL. But since
the ASCII code (hex 7F) is not generally a printable
character and it is our philosophy that Alt-non-printing character
should not generate a printing character, we have substituted
ALT-numeric pad "-".

Table A-1 lists the characters you can display on the Amiga. The
characters NBSP (non-break space) and SHY (soft hyphen) are
used to render a space and hyphen in text processing with additional
meaning about the properties of the character.

A-4 Appendix A

Table A-I: International Character Code

Appendix A A-5

Note: AmigaDOS uses CON: input for the CLI and most other
commands. When it does this, it filters out ALL of the function key
and cursor key inputs. Programs that run under AmigaDOS can
(and some do) still open the RAW: console handler and process
function key input.

CON Screen Output

CON: screen output is just like RAW: screen output except that
<LF> (hex OA) is translated into a new-line character. The net
effect is that the cursor moves to the first column of the next line
whenever a <LF> is displayed.

RAW Screen Output

ANSI x3.64 CODES SUPPORTED For writing text to the display:

Independent Control Functions (no introducer):

Ctrl Hex Name Definition
H 08 BS BACKSPACE Move the cursor left

1 column

I 09 TAB TAB Move right 1 column

J OA LF LINE FEED

K OB VT VERTICAL TAB Move cursor up 1,
scroll if necessary

L OC FF FORM FEED Clear the screen

M OD CR CARRIAGE RETURN Move to first column

N OE SO SHIFT OUT Set MSB of each character
before displaying

0 OF SI SHIFT IN Undo SHIFT OUT

[1B ESC ESCAPE See below

A-6 Appendix A

Precede the following characters with <ESC> to perform the
indicated actions.

Chr Name Definition

c RIS RESET TO INITIAL STATE

Precede the following characters with <Esc> or press CTRL-ALT
and the letter to perform the indicated actions.

Hex Chr Name Definition

845tD
85
8D
9B

IND
E
M
[

INDEX: move the active position down one line
NEL NEXT LINE:
RI REVERSE INDEX:
CSI CONTROL SEQUENCE INTRODUCER:

see next list

Control Sequences (introduced by <CSI» with parameters. The first
character in the following table (under the <CSI> column)
represents the number of allowable parameters, as follows:

"0" indicates no parameters allowed.
"1" indicates 0 or 1 numeric parameters.
"2" indicates 2 numeric parameters. ('14;94')
"3" indicates any number of numeric parameters, separated

by semicolons.
"4" indicates exactly 4 numeric parameters.
"8" indicates exactly 8 numeric parameters.

Appendix A A-7

<CSI> Name Definition

1@ ICH INSERT CHARACTER Inserts 1 or more
spaces, shifting the
remainder of the
line to the right.

lA CUU CURSOR UP
1 B CUD CURSOR DOWN
1 C CUF CURSOR FORWARD
1 D CUB CURSOR BACKWARD

1 E CNL CURSOR NEXT LINE Down n lines to
column 1

1 F CPL CURSOR PRECEDING LINE Up n lines to
column 1

2H CUP CURSOR POSITION "<CSI>row;columnH"

1 J ED ERASE IN DISPLAY (only to end of
display)

1 K EL ERASE IN LINE (only to eol)

1 L IL INSERT LINE Inserts a blank line
BEFORE the line
containing the
cursor.

1M DL DELETE LINE Removes the
current line.
Moves all lines
below up by one.
Blanks the bottom
line.

A-8 Appendix A

1 P DCH DELETE CHARACTER

2R CPR CURSOR POSITION REPORT (in Read stream
only) Format of
report:

"<CSI>row;columnR"

1 S SU SCROLL UP Removes line from
top of screen.
Moves all other
lines up one.
Blanks last line.

1 T SD SCROLL DOWN Removes line from
bottom of screen.
Moves all other
lines down one.
Blanks top line.

3h SM SET MODE <CSI>20h causes
RAW: to convert
<LF> to
<new-line> on
output.

3 I RM RESET MODE <CSI>201 undoes
SET MODE 20

3m SGR SELECT GRAPHIC RENDITION

1 n DSR DEVICE STATUS REPORT

Appendix A A-9

The following are not ANSI standard sequences; rather, they are
private Amiga sequences.

1 t aSLPP SET PAGE LENGTH
1 u aSLL SET LINE LENGTH
1 x aSLO SET LEFT OFFSET
1 y aSTO SET TOP OFFSET
3 { aSRE SET RAW EVENTS
8 | aIER INPUT EVENT REPORT (read)
3 } aRRE RESET RAW EVENTS
1 ~ aSKR SPECIAL KEY REPORT (read)
1 p aSCR SET CURSOR RENDITION

<Esc> p turns the cursor off
o q aWSR WINDOW STATUS REQUEST
4 r aWBR WINDOW BOUNDS REPORT (read)

Examples:

Move cursor right by 1:

<CSI>C or <Tab> or <CSI>lC

Move cursor right by 20:

<CSI>20C

Move cursor to upper left corner (home):

<CSI>H or <CSI>l;lH or <CSI>;lH or <CSI>l;H

Move cursor to the forth column of the first line of the window:

<CSI>1;4H or <CSI>;4H

Clear the screen:

<FF> or CTRL-L {clear screen character} or
<CSI>H<CSI>J {home and clear to end of screen} or
<CSI>H<CSI>23M {home and delete 23 lines} or
<CSI>1;1H<CSI>23L {home and insert 23 lines}

A-l0 Appendix A

RAW Keyboard Input

Reading input from the RAW: console device returns an ANSI
x3.64 standard byte stream. This stream may contain normal
characters and/or RAW input event information. You may also
request other RAW input events using the SET RAW EVENTS
(aSRE) and RESET RAW EVENTS (aRRE) control sequences
discussed below. See "Selection of RAW input events" for details.

If you issue a RAW input request and there is no pending input, the
read command waits until some input is received. You can test for
characters pending by doing "WaitforChar" requests.

In the default state, the function and arrow keys cause the following
sequences to be sent to your process:

Key Unshifted Sends Shifted Sends

Fl <CSI>O~ <CSI>10~

F2 <CSI>l~ <CSI>11~

F3 <CSI>2~ <CSI>12~

F4 <CSI>3~ <CSI>13~

F5 <CSI>4~ <CSI>14~

F6 <CSI>5~ <CSI>lS~

F7 <CSI>6~ <CSI>16~

F8 <CSI>7~ <CSI>17~

F9 <CSI>8~ <CSI>18~

FlO <CSI>9~ <CSI>19~

HELP <CSI>?~ <CSI>?~ (same)

Appendix A A-11

Arrow keys:

Key Unshifted Sends Shifted Sends

Up
Down
Left
Right

<CSI>A
<CSI>B
<CSI>C
<CSI>D

<CSI>T~
<CSI>S~
<CSI> A~ (note space)
<CSI> @~ (note space)

Selection of RAW Input Events:

If you are using RAW by default, you get the ANSI data and control
sequences mentioned above. If this does not give you enough
information about input events, you can request additional
information from the console driver.

If, for example, you need to know when each key is pressed and
released, you would request "RAW keyboard input." This is done
by writing "<CSI>l{" to the console. The following is a list of valid
RAW input requests:

A-12 Appendix A

RAW Input Event Types

Request
Number Description

0 nop Used internally

1 RAW keyboard input
2 RAW mouse input
3 Event Sent whenever your window is

made active

4 Pointer position
5 (unused)
6 Timer
7 Gadget pressed
8 Gadget released
9 Requester activity
10 Menu numbers
11 Close Gadget
12 Window resized
13 Window refreshed
14 Preferences changed (not yet implemented)

15 Disk removed
16 Disk inserted

If you select any of these events, you start to get information about
the events in the following form:

<CSI><class>;<subclass>;<keycode>;<qualifiers>;<x>;<y>;
<seconds>;<microseconds>I

<CSI> is a one byte field. It is the Control Sequence Introducer, 9B
hex.

<class> is the RAW input event type, from the above table.

<subclass> is not currently used and is always zero (0).

<keycode> indicates which key number was pressed (see Figure A-l
and Table A-2). This field can also be used for mouse information.

Appendix A A-13

The <qualifiers> field indicates the state of the keyboard and
system. The qualifiers are defined as follows:

Bit Mask Key

0 0001 left shift
1 0002 right shift
2 0004 capslock * special, see below
3 0008 control
4 0010 left alt
5 0020 right alt
6 0040 left Amiga key pressed
7 0080 right Amiga key pressed
8 O10IO numeric pad
9 0200 repeat
10 0400 interrupt Not currently used
11 0800 multi broadcast This (active) or all

windows
12 1000 left mouse button
13 2000 right mouse button
14 4000 middle mouse button (not available on

std mouse)
15 8000 relative mouse Indicates mouse

coordinates are
relative, not
absolute

The CAPS LOCK key is handled in a special manner. It only
generates a keycode when it is pressed, not when it is released.
However, the up and down bit (80 hex) is still used and reported. If
pressing the CAPS LOCK key turns on the LED, then key code 62
(CAPS LOCK pressed) is sent. If pressing the caps lock key
extinguishes the LED, then key code 190 (CAPS LOCK released) is
sent. In effect, the keyboard reports this key being held down until
it is struck again.

The <seconds> and <microseconds> fields are system time stamp
taken at the time the event occurred. These values are stored as

A-14 Appendix A

long-words by the system and as such could (theoretically) reach 4

billion.

With RAW: keyboard input, selected keys no longer return a simple
1 character" A" to "Z" but rather return raw keycode reports with
the following form:

<CSI>1;0;<keycode>;<qualifiers>;0;0;<secs>;<microsecs>|

For example, if the user pressed and released the "B" key with the
left SHIFT and right Amiga keys also pressed, you might receive the
following data:

<CSI>1;0;35;129;0;0;23987;991 <CSI>1;0;163;129;0;0;24003;181

The "0;0;" fields are for not used for keyboard input but are, rather
used if you select mouse input. For mouse input, these fields would
indicate the X and Y coordinates of the mouse.

The <keycode> field is an ASCII decimal value representing the key
pressed or released. Adding 128 to the pressed key code results in
the released keycode. Figure A-l lets you convert quickly from a
key to its keycode. Table A-l lets you convert quickly from a
keycode to a key.

Aopendix A A-15

Figure A-I, reduced copy of keyboard template

A-16 AppendixA

Table A-2: Converting from Keycodes to Keys

The default values given in the following table correspond to:

1. The values the CON: device returns when these keys
are pressed, and

2. The keycaps as shipped with the standard American
keyboard.

Table A-2

Raw Unshifted Shifted
Key Default Default
Number ValueValue

00 ' (Accent grave) ~ (tilde)
01 1 !
02 2 @

03 3 #

04 4 $

05 5 %
06 6

A

07 7 &
08 8 *
09 9 (
OA 0)
OB - (Hyphen) _ (Underscore)

OC = +
OD \ I
OE (undefined)
OF 0 o (Numeric pad)

10 Q q
11 W w
12 E e
13 R r
14 T t

Appendix A A-17

Raw Unshifted Shifted
Key Default Default
Number ValueValue

15 y y
16 U u
17 I i
18 0 0
19 P P
lA { [
lB }]
lC (undefined)
lD 1 1 (Numeric pad)
lE 2 2 (Numeric pad)
iF 3 3 (Numeric pad)

20 A a
21 S s
22 D d
23 F f
24 G g
25 H h
26 J j
27 K k
28 L I
29 : ;
2A " , (single quote)
2B (RESERVED) (RESERVED)
2C (undefined)
2D 4 4 (Numeric pad)
2E 5 5 (Numeric pad)
2F 6 6 (Numeric pad)
30 (RESERVED) (RESERVED)
31 Z z
32 X x
33 C c
34 V v
35 B b

A-18 Appendix A

Raw Unshifted Shifted
Key Default Default
Number ValueValue

36 N n
37 M m
38 < , (comma)
39 > . (period)
3A ? /
3B (undefined)
3C . (Numeric pad)
3D 7 7 (Numeric pad)
3E 8 8 (Numeric pad)
3F 9 9 (Numeric pad)

40 Space
41 BACKSPACE
42 TAB
43 ENTER ENTER (Numeric pad)
44 RETURN
45 Escape (Esc)
46 DEL
47 (undefined)
48 (undefined)
49 (undefined)
4A - - (Numeric Pad)
4B (undefined)
4C Cursor Up Scroll down
4D Cursor Down Scroll up
4E Cursor Forward Scroll left
4F Cursor Backward Scroll right

50 Fl <CSI>10~
51 F2 <CSI>ll~
52 F3 <CSI>12~
53 F4 <CSI>13~
54 F5 <CSI>14~
55 F6 <CSI>15~

Appendix A A-19

Raw
Key

Unshifted
Default

Shifted
Default

Number ValueValue

56
57
58
59

F7
F8
F9
FlO

<CSI>16~
<CSI>17~
<CSI>18~
<CSI>19~

SA (undefined)
5B (undefined)
5C (undefined)
5D (undefined)
5E (undefined)
SF Help
60 SHIFT (left of space bar)
61 SHIFT (right of space bar)
62 Caps Lock
63 Control
64 Left Alt
65 Right Alt
66 "Amiga" (left of space bar)
67 "Amiga" (right of space bar)

68 Left Mouse Button (not converted) Inputs are only
for the

69 Right Mouse Button (not converted) mouse connected
to Intuition,

6A Middle Mouse Button (not converted) currently
"gameport" one.

6B (undefined)
6C (undefined)
6D (undefined)
6E (undefined)
6F (undefined)

A-20 Appendix A

Raw
Key

Unshifted
Default

Shifted
Default

Number ValueValue

70-7F (undefined)

80-F8 Up transition (release or unpress key) of one of the
above keys. 80 for 00, F8 for 7F.

F9 Last keycode was bad (was sent in order to resync)
FA Keyboard buffer overflow.

FB (undefined, reserved for keyboard processor
catastrophe)

FC Keyboard self-test failed.

FD Power-up key stream start. Keys pressed or stuck at
power-up are sent between FD and FE.

FE Power-up key stream end.
FF (undefined, reserved)
FF Mouse event, movement only, No button change. (not

converted)

Notes about the preceding table:
1. "(undefined)" indicates that the current keyboard design

should not generate this number. If you are using "SetKeyMap"
to change the key map, the entries for these numbers must still
be included.

2. The "(not converted)" refers to mouse button events. You must
use the sequence "<CSI>2{" to inform the console driver that
you wish to receive mouse events;
transmitted.

3. "(RESERVED)" indicates that these keycodes have been
reserved for non-US keyboards. The "2B" code key is between
the double quote and return keys. The "30" code key is
between the SHIFT and Z keys.

otherwise, these are not

Appendix A A-21

Index
AO-A7, 3-13
AbsExecBase, 1-3
Absolute, 3-11
Add, 3-9
address, 1-5, 3-2, 3-3, 3-7, 3-11, 3-12, 3-13, 3-14,

3-19
addressing, 3-2, 3-14, 3-19
alignment, 3-17, 3-22, 3-26
ALINK, 1-17,4-1,4-4,4-5,4-6,4-7
allocated, 3-18
Allocmem, 2-7
alt, A-14
ALT-DEL, A-4
Alt-non-printing, A-4
ALT-numeric, A-4
ALWAYS,3-12
Amiga, I-I, 1-2, 1-3, 1-4, 1-7, 1-8, 1-11, 1-13,

1-14, 1-15, 1-16, 1-17, A-I, A-4, A-I0, A-14,
A-15, A-20
AmigaDOS, I-I, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-14,

1-15, 2-1, 2-3, 2-4, 2-5, 2-12, 2-17, 3-1,
3-32, 4-1, A-I, A-3, A-6

AND,3-9
ANSI, A-6, A-I0, A-11, A-12
ANYTHING, 1-2
argc, 1-6
argument, 1-5, 1-6, 1-7, 1-8, 1-11, 1-14,2-2, 2-3,

2-14, 2-20, 2-21, 2-23, 3-29, 4-15
argv, 1-6
arithmetic, 1-10
arranged, 2-3, 3-2, 3-15
aRRE, A-I0, A-11
arrow, A-2, A-II
As, 3-2, 3-3, 3-21, 3-22, 4-2, 4-10
ASCII, 1-14, 1-15, 3-12, 3-21, 3-27, A-2, A-3, A-4,
A-15
aSCR, A-I0
aSKR, A-I0
aSLL, A-I0
aSLO, A-I0
aSLPP, A-I0
asm, 1-8, 1-12, 3-4, 3-5
aSRE, A-I0, A-11
assem, 3-3, 3-4, 3-5
assembler, 1-1, 1-2, 1-3, 1-8, 1-16, 1-17,2-1,3-3,

3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-11, 3-15,
3-18, 3-19, 3-20, 3-21, 3-22, 3-23, 3-25, 3-26,
3-27,3-28,3-29,3-30,3-31,3-32,4-1

assembler-language, 1-10

Index 1-1

assembly, 1-3, 1-8, 3-1, 3-3, 3-4, 3-17, 3-22, 3-23,
3-24, 3-25, 3-27, 3-28

Assign, 3-16
assigned, 3-19, 3-20
assignment, 3-19, 3-21

backslash, 3-4, 3-29
BACKSPACE,A-6, A-19
backup, 1-2, 1-11
Backward,A-19
BEFORE,A-8
BillBoard, 1-13, 1-14
binary, 1-4, 1-5, 1-17,4-1,4-2,4-4,4-7,4-9
binload, 1-13, 1-14
Blanks, A-8, A-9
boolean, 2-6, 2-7, 2-9, 2-10, 2-14, 2-16, 2-17, 2-18,

2-23
BOUNDS,A-I0
branches, 3-3
BSS, 3-18
byte, 2-2, 3-2, 3-7, 3-13, A-I, A-11, A-13
Byte-sized, 3-8

C, I-I, 1-2, 1-3, 1-6, 1-7, 1-8, 1-9, 1-10,
1-11, 1-12, 1-16,2-1,2-7,2-24,3-5,3-11,
4-13, 4-14, A-2, A-8, A-I0, A-12, A-18

CAPS, A-14
capslock, A-14
CARRIAGE,A-6
case, 1-3, 1-6, 2-2, 2-12, 2-15, 2-23, 3-4, 3-5,

3-7,3-11,3-15,3-20,4-9,4-13,4-14, A-2,
A-4

CCR, 3-11, 3-14, 3-20
chain, 2-24
character, 1-4, 2-18, 3-4, 3-6, 3-8, 3-10, 3-12, 3-18,

3-24, A-I, A-2, A-4, A-6, A-7, A-I0, A-15
chars, 3-16
Chr, A-7
CLI, 1-4, 1-5, 1-6, 1-7, 1-8, 1-16, 2-22, 2-23,

2-24, 2-27, A-2, A-6
Close 1-5, 1-6, 2-4, 2-26
CNOP, 3-17, 3-22, 3-26
CODE,3-18
code, 1-3, 1-4, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11,

1-12, 2-7, 2-8, 2-12, 2-20, 2-23, 2-24, 2-25,
3-7, 3-15, 3-17, 3-18, 3-25, 3-26, 3-28, 3-29,
3-30, 3-31, 4-2, 4-3, 4-5, 4-8,4-9, 4-13,
4-14, A-4, A-14, A-15, A-21

colon, 3-7
comma, 3-4, 3-8, 4-4, A-19
command, 1-5, 1-6, 1-7, 1-10, 1-17,2-22,2-23,2-24,

2-27, 3-3, 3-4, 4-2, 4-3, 4-4, 4-5, 4-6,
4-7, A-3, A-11

comment, 2-16, 2-27, 3-6, 3-9, 4-6
compile, 1-4, 1-9

1-2 Index

compiler, 1-3, 1-8, 1-9, 1-11, 1-12, 1-16, 1-17, 4-14
CON, 2-12, A-I, A-2, A-3, A-6, A-17
conditional, 3-17, 3-27, 3-28, 3-30
constants, 3-9, 3-16
convention, 1-13, 1-15, A-4
convert, 1-10, 1-15, 1-16, 1-17, 3-15, A-9, A-15
copy, 1-2, 2-6, 2-14, 2-19, A-16
counter, 3-3, 3-7, 3-11, 3-18, 3-19
create, 1-2, 2-4, 2-5, 2-6, 2-20, 2-24, 2-26, 2-27
CreateDir, 2-3, 2-4, 2-5, 2-18, 2-26
CreateProc, 2-20, 2-27
cross-development, 1-3, 1-8
cross-reference, 3-5
CTRL-ALT, A-7
CTRL-C, 1-14
CTRL-D, 1-14
CTRL-E, 1-14
CTRL-F, 1-14
CTRL-J, A-2
CTRL-L, A-I0
CTRL-M, A-2
current, 1-6, 1-8, 2-5, 2-12, 2-13, 2-15, 2-16, 2-17,

2-21, 2-24, 2-26, 3-4, 3-11, 3-19, 3-30, 3-32,
4-10, 4-11, A-8, A-21

CurrentDir, 2-5, 2-26

DO-D7, 3-13
DATA, 3-18
data, 1-17,2-13,2-14,2-19,2-26,2-27,3-2,3-3,

3-7, 3-8, 3-13, 3-14, 3-18, 3-21, 3-22, 3-26,
4-2, 4-3, 4-5, 4-8, 4-14, A-2, A-12, A-15

date, 2-7, 2-21, 2-27
DateStamp, 2-21, 2-27
DC, 3-15, 3-16, 3-21, 3-22
DCB, 3-15, 3-16, 3-22
decimal, 3-12, A-15
default, 1-8, 1-10, 1-14, 3-18, 3-22, 3-24, 4-6, A-11,

A-12, A-17
defaultoutput, 1-14
define, 1-11, 3-12, 3-19, 3-20, 3-29, 3-32, A-2
delay, 2-21, 2-27
DeleteFile, 2-6, 2-26
device, 1-13, 1-14, 2-12, 2-18, 2-22, A-3, A-11, A-17
DeviceProc,2-10, 2-22, 2-27
diagnostic, 3-3
directive, 3-6, 3-8, 3-11, 3-15, 3-18, 3-19, 3-20, 3-21,

3-22, 3-23, 3-24, 3-25, 3-26, 3-28, 3-29, 3-30,
3-31, 3-32, 4-9, 4-10, 4-12

directives, 3-7, 3-8, 3-9, 3-11, 3-12, 3-15, 3-19, 3-27,
3-28, 3-30, 3-31, 3-32

directory, 1-8, 1-11, 1-12, 1-14, 1-16, 2-4, 2-5, 2-6,
2-7,2-8,2-11,2-13,2-14,2-15,2-16,2-17,
2-18, 2-22, 2-26, 2-27, 3-4, 3-32

disable, 3-27
disk, 1-2, 2-5, 2-9, 2-19, 2-26

Index 1-3

Divide, 3-9
download, 1-3, 1-8, 1-13, 1-14, 1-15, 1-16
downloading,1-16
DS, 3-16, 3-19, 3-22
dumping, 3-5
duplicate, 2-6, 2-26
DupLock, 2-6, 2-18, 2-26

enable, 3-27
Encoding, 3-5
END, 3-16, 3-19, 3-23
end, 1-6, 1-13, 2-16, 2-24, 3-5, 3-15, 3-16, 3-25,

3-29 4-3 4-6 4-7 4-15 A-3 A-8 A-I0A-21 , , , ,
ENDC, 3-17, 3-27, 3-28
ENDCLI,2-24
ENDM, 3-17, 3-28, 3-29, 3-30
ENTER, A-19
entry, 1-3, 1-4, 1-6, 1-17, 2-7, 2-8, 2-12, 2-26,

3-26, 3-30, 4-14
EQU, 3-15, 3-16, 3-20, 3-21
equate, 3-20
EQUR, 3-11, 3-16, 3-20
escape, 3-4
Examine, 2-7, 2-8, 2-26
example, 1-2, 1-4, 1-7, 1-9, 1-13, 1-14, 1-15, 1-16,

2-2, 2-5, 2-10, 2-14, 2-15, 2-19, 3-6, 3-7,
3-12,3-14,3-15,3-27,3-29,4-5,4-6,4-7,
4-12, 4-13, 4-15, A-2, A-12, A-15

exceptions, 1-6
executable, 1-12
EXECUTE, 1-7, 2-23
execute, 1-2, 1-4, 2-23, 2-27, 3-3, 3-30
EXIT,2-22
Exit, 1-7,2-22,2-23,2-27,3-17,3-30
exit, 1-6, 1-7,2-22,2-27,3-30

ExNext, 2-7, 2-8, 2-26
expressions, 3-9
external, 1-4,3-2,3-17,3-30,3-31,4-1,4-2,4-3,

4-15
externals, 1-3

FAIL, 3-17, 3-25
FAILAT, 1-6
failure, 1-6, 2-8, 4-7
file, 1-2, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10,

1-11, 1-12, 1-13, 1-15, 1-16, 1-17, 2-4, 2-6,
2-7, 2-8, 2-9, 2-10, 2-11, 2-12, 2-13, 2-14,
2-15, 2-16, 2-17, 2-18, 2-19, 2-22, 2-23, 2-24,
2-26,2-27, 3-3, 3-4, 3-5, 3-18, 3-23, 3-24,
3-25, 3-31, 3-32, 4-1, 4-2, 4-3, 4-4, 4-5,
4-6,4-7, 4-8, 4-9, 4-10, 4-12, 4-14, 4-15,
A-I, A-3

FilelnfoBlock,2-2, 2-7, 2-8

1-4 Index

filename, 1-8, 1-13, 1-14, 1-15, 2-12, 3-4, 4-6
files, 1-2, 1-4, 1-7, 1-8, 1-10, 1-11, 1-12, 1-13,

1-14, 1-15, 1-17,2-4,2-6,3-4,3-31,3-32,
4-1,4-2,4-3,4-4,4-5,4-6,4-7,4-8,
4-9, 4-10, 4-11, 4-12

find, 1-3, 1-4, 1-5, 2-8, 2-10, 2-15, 2-16, 2-22,
3-12, 3-32, 4-5
flag, 1-9, 3-25
FORMAT, 3-17, 3-25
format, 1-9, 1-11, 1-17, 2-3, 2-21, 2-27, 3-3, 3-6,

3-20, 4-2, 4-7, 4-10, 4-14
forward, 2-16, 3-20, 3-21
free, 1-5, 2-9, 2-20
FROM, 3-3,4-4, 4-6, 4-7, 4-8
functions, 1-3, 1-10, 2-1, 2-2, 2-3, A-2, A-3

general, 1-5, 3-6, 3-22
generate, 1-9, 1-10, 3-29, 3-31, A-2, A-4, A-21
Greenhills, 1-8
header, 1-2, 3-3, 4-8, 4-9
hexadecimal, 1-17
IDNT, 3-18, 3-32
IFC, 3-17, 3-27
IFD, 3-17, 3-28
IFEQ, 3-17, 3-27, 3-30
IFGE, 3-17, 3-27
IFGT, 3-17, 3-27
IFLE, 3-17, 3-27
IFLT, 3-17, 3-27
IFNC, 3-17, 3-27
IFND, 3-17, 3-28
IFNE, 3-17, 3-27, 3-30
immediate, 3-14
INCLUDE, 3-4, 3-18, 3-31, 3-32
include, 1-2, 1-6, 1-8, 1-10, 1-11, 1-12, 1-16, 1-17,

2-17, 3-3, 3-4, 3-5, 3-9, 3-30, 3-32, 4-6
indexed, 3-2
Info, 2-9
initial, 1-5, 1-6, 1-7, 1-11,2-5,2-9,2-12,2-26,

3-6, 4-2
initialization, 2-20, 3-22
initialized, 3-18
Input, 1-5, 1-6, 1-8, 1-14, 2-4, 2-9, 2-11, 2-12,

2-23, 2-24, 2-26, 3-5, 3-25, 4-1, 4-2, 4-3,
4-4, 4-8, 4-9, 4-15, A-I, A-3, A-6, A-11,
A-12, A-13, A-15

insert, 3-9, 3-20, 3-21, 3-28, A-I0
instruction, 3-2, 3-3, 3-6, 3-7, 3-8, 3-11, 3-15, 3-20
instructions, 1-2, 3-2, 3-3, 3-7, 3-8, 3-9, 3-12, 3-13,

3-14, 3-15
interface, 1-3
internal, 2-21, 2-27, 3-2, 3-30
Intuition, A-20
IoErr, 1-6, 2-5, 2-8, 2-10, 2-12, 2-14, 2-15, 2-22,

2-26

Index 1-5

IsInteractive,2-10, 2-26

JSR, 1-3
jumps, 3-3, 3-31, 4-14

keyword,3-4, 3-18, 4-4, 4-5

label, 3-5, 3-6, 3-7, 3-8, 3-11, 3-15, 3-18, 3-19,
3-20, 3-21, 3-22, 3-26, 3-28, 3-30, 3-31, 4-14

level, 3-27, 3-29, 4-8, 4-10, 4-11, 4-13
libraries, 1-3, 1-12, 2-17, 4-7, 4-8
library, 1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-11, 1-12,

2-1, 2-3, 4-2, 4-3, 4-5, 4-8, 4-9, 4-15,
A-2, A-3

line, 1-5, 1-10, 1-13, 2-14, 3-3, 3-4, 3-6, 3-7,
3-16, 3-24, 3-25, 4-2, 4-5, 4-6, 4-7, 4-9,
4-10,4-11,4-12, A-2, A-6, A-7, A-8, A-9,
A-I0

lines, 3-5, 3-6, 3-16, 3-23, 3-24, 4-5, 4-6, 4-10,
A-8, A-I0, A-21

link, 1-15, 1-16, 1-17, 2-3, 4-2, 4-5, 4-8, 4-9
linker, 1-3, 1-6, 1-8, 1-13, 1-16, 1-17, 2-24, 3-30,

3-31, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7,
4-8, 4-9, 4-10, 4-12, 4-13, 4-14, 4-15

LIST, 3-16, 3-23, 3-32
list, 1-2, 1-3, 1-4, 1-6, 1-13, 1-14, 1-15, 1-16,

2-2, 2-3, 2-8, 2-20, 2-23, 2-25, 3-2, 3-4,
3-5, 3-6, 3-7, 3-8, 3-15, 3-20, 3-21, 3-29,
3-32, 4-2, 4-3, 4-4, 4-5, 4-8, 4-9, 4-10,
4-15, A-7, A-12, A-17, A-21

listing, 3-3, 3-5, 3-16, 3-22, 3-23, 3-24, 3-25, 3-28
LLEN, 3-15, 3-16, 3-24
load, 1-5, 1-13, 1-17,2-24,2-27,4-1,4-2,4-3,

4-4, 4-8, 4-9, 4-14
loader, 1-3, 1-4, 1-12
loading, 1-9, 4-9
LoadSeg,2-24, 2-25, 2-27
local, 3-5
Lock, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-11,

2-13,2-18, 2-22, 2-26, A-14
locks, 1-7, 2-6
logical, 2-15, 2-27
long, 2-21, 3-2, 3-21, 3-26, 4-5, 4-6
longword,2-7, 2-9
lower, 1-10,2-2,2-17,3-4, 3-5, 3-11, 3-20
Lshift, 3-9

MACRO,3-17, 3-28, 3-29, 3-30
macro, 3-17, 3-28, 3-29, 3-30, 3-31
main, 1-6, 1-7, 3-2, 4-6, 4-7
makeamiga, 1-15
makefile, 1-15
map, 4-2, 4-3, 4-5, 4-8, 4-9,4-12, A-21
Mask, A-14
mask, 2-17, 3-20

1-6 Index

MASK, 2, 3-18, 3-32
memory, 1-3, 1-5, 1-7,2-14,2-20,2-24,2-27,3-2,

3-3, 3-7, 3-14, 3-19, 3-21, 3-22, 4-2, 4-9,
4-13, 4-14

message, 1-7, 1-14, 3-15, 3-19, 4-8
metacc, 1-8, 1-9, 1-12, 1-13
MEXIT, 3-17, 3-29, 3-30
MSDOS, 1-8, 1-16
multiple, 3-7
Multiply, 3-9

NARG, 3-17, 3-29
nesting, 3-27, 3-29
new, 1-7, 1-8, 1-11, 1-16, 2-4, 2-5, 2-12, 2-20,

2-24,2-26, 2-27, 4-10, 4-11, 4-13, A-2
NEWCLI, 2-24
NOFORMAT, 3-17, 3-26
NOL, 3-16, 3-23
NOLlST, 3-16, 3-23, 3-32
NOOBJ, 3-17, 3-25
NOP, 3-17, 3-26
nop, A-13
null, 2-23, 3-32, 4-6, 4-7
numbers, 1-10, A-2, A-13, A-21

object, 1-8, 1-9, 1-10, 1-12, 1-17, 2-6, 2-8, 3-3,
3-5, 3-15, 3-17, 3-25, 4-1, 4-2, 4-4

OFFSET, 3-16, 3-19, A-I0
offset, 1-3, 1-4, 2-16, 3-26, 4-9, 4-15
opcode, 3-6, 3-8, 3-28
Open, 1-5,2-4,2-11,2-12,2-26,4-2,4-7, A-I,

A-2, A-6
operand, 3-2, 3-6, 3-8, 3-9, 3-10, 3-14, 3-20, 3-21,

3-22, 3-23, 3-24, 3-27, 3-28, 3-31
operands, 3-2, 3-8, 3-12, 3-14, 3-21
operation, 3-2, 3-8
operator, 3-10
operators, 3-9, 3-10
options, 1-9, 3-3, 3-4
order, 1-12, 2-24, 3-3, 3-4, 3-9, 3-31, 4-4, 4-8,

4-10, 4-12, A-21
origin, 3-16
Output, 1-5, 1-8, 1-9, 1-10, 1-11, 1-12, 1-14,2-4,

2-9, 2-11, 2-12, 2-23, 2-24, 2-26, 3-17, 3-22,
3-23, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6, 4-8,
4-9, 4-12, A-I, A-3, A-6, A-9

overlay, 4-2, 4-3, 4-4, 4-8, 4-9, 4-10, 4-12, 4-13,
4-14, 4-15

override, 1-12, 3-9, 4-5, 4-6, 4-8

PAGE, 3-16, 3-22, A-10
page, 3-16, 3-22, 3-24
Page-throw, 3-16
paging, 3-16, 3-22
parallel, 1-13, 1-14, 1-15, 1-17

Index 1-7

parameter, 3-29, 4-2, 4-4, 4-5, 4-6, 4-7, 4-9
parameters, 1-10,2-12, 4-2, 4-4, 4-5, 4-6, 4-10, A-7
ParentDir, 2-13, 2-26
permanent, 3-16, 3-20
PLEN, 3-16, 3-24
pointer, 1-3, 1-4, 1-5, 1-6, 1-7,2-4,2-5,2-6,

2-7, 2-9, 2-11, 2-13, 2-16, 2-18, 2-19, 2-20,
2-21, 2-22, 2-24, 2-25, 3-2

pointers, 1-3, 2-2, 3-2, 3-6
pointing, 1-5
precedence, 3-9
priority, 2-20, 4-8
process, 1-7, 1-8, 2-20, 2-21, 2-22, 2-23, 2-24, 2-27,

4-3, A-6, A-11
program, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-12,
1-13, 1-15, 1-16, 2-1, 2-4, 2-9, 2-12, 2-22,
2-23, 2-24, 2-27, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8,
3-11, 3-16, 3-18, 3-19, 3-20, 3-21, 3-23, 3-24,
3-25, 3-31, 3-32, 4-2, 4-9, 4-10, 4-13, 4-14, 4-15
protection, 2-17, 2-27

RAM-based, 1-3
RAW, 2-12, A-2, A-3, A-6, A-9, A-10, A-11, A-12,
A-13, A-15
READ, 1-4, 1-14, 1-15, 1-16, 1-17,2-13
read, 2-5, 2-6, 2-11, 2-13, 2-14, 2-15, 2-18, 2-24,

2-26, 4-6, 4-7, 4-8, 4-10, A-3, A-I0, A-11
reference, 1-2, 1-3, 2-1, 2-3, 3-13, 3-20, 3-31,4-2,

4-3, 4-5, 4-8, 4-9, 4-12, 4-13, 4-14, 4-15
REG, 3-16, 3-20
register, 1-3, 1-5, 1-6, 2-1, 2-2, 2-3, 3-2, 3-3,

3-7, 3-11, 3-16, 3-20
registers, 1-5, 2-2, 3-2, 3-13, 3-14, 3-20
relative, 1-14, 2-15, 3-9, 3-10, 3-13, 3-14, 3-19, A-14
relocatable, 3-18, 3-19, 3-30, 3-31
Rename, 2-14, 2-15, 2-27
RESERVED,A-18, A-21
reserved, 3-29, A-21
RESET, A-7, A-9, A-10, A-11
resident, 1-2, 1-3, 2-1, 2-3, 4-2, 4-9
result, 1-10, 2-2, 2-3, 2-4, 2-5, 2-10, 2-13, 2-14,

2-15, 2-20, 2-22, 2-25, 3-3
return, 1-5, 1-6, 1-7, 1-10, 2-2, 2-5, 2-7, 2-8,

2-10, 2-14, 2-19, 2-20, 2-22, 2-23, 2-26, 2-27,
A-15, A-21

root, 2-5, 2-13, 2-20, 4-2, 4-3, 4-4, 4-9, 4-10,
4-14

RORG,3-15, 3-16, 3-19
routines, 1-2, 1-3, 1-5, 1-6, 2-10, 4-8
Rshift, 3-9
RTS, 1-6, 1-7

scan, 1-4, 4-15
SECTION, 3-16, 3-18, 3-19
Seek, 2-15, 2-16, 2-27

1-8 Index

send, 1-10, 1-14, 2-22, 4-5
serial, 1-13, 1-15, 1-16, 1-17
SET, 3-11, 3-16, 3-21, A-9, A-I0, A-11
Set, 3-16, 3-19, 3-21, 3-24, A-6
set, 1-5, 1-6, 1-7, 1-9,2-16,2-17,2-21,2-24,

2-27, 3-4, 3-11, 3-22, 3-24, 3-28, 3-29, 3-31,
A-2

SETCOMMENT,2-16
SetComment,2-16, 2-27
SetKeyMap,A-21
SETPROTECTION,2-17
SetProtection,2-17, 2-27
shared, 2-5, 2-6, 2-11
Size-Specifier,3-8
Skip, 3-16
source, 1-4, 1-8, 1-12, 3-3, 3-4, 3-6, 3-18, 3-19,

3-28, 3-29, 3-31
SP, 1-5, 1-6, 3-11, 3-13
space, 2-23, 3-4, 3-6, 3-7, 3-8, 3-9, 3-22, 3-29,

A-4, A-12, A-20
SPC, 3-16, 3-23
special, 1-8, 1-9, 1-12, 1-13, 3-3, 3-11, 3-20, 3-29,

A-2, A-4, A-14
SR, 3-3, 3-11, 3-14, 3-20
stack, 1-5, 1-6, 1-7, 2-20, 2-23, 3-2
stackSize, 2-20
standard, 1-3, 1-5, 1-9, 1-10, 1-14, 3-26, 3-31, 4-5,

4-6, A-4, A-I0, A-11, A-17
start, 1-2, 1-7, 1-16,2-15, 3-19, 3-31, A-13, A-21
startup, 1-4, 1-6, 1-7, 1-8, 1-9
status, 3-3
storage, 3-16
string, 1-9, 1-11, 2-2, 2-4, 2-6, 2-11, 2-14, 2-16,

2-20, 2-22, 2-23, 2-24, 3-10, 3-11, 3-12, 3-18,
3-21,3-24,3-27,3-29,3-31,3-32

strings, 3-17, 3-27
Subtract, 3-9
Sun, 1-1, 1-8, 1-12, 1-13, 1-14, 1-15, 1-16, 3-4
supervisor, 3-2, 4-2, 4-3, 4-9, 4-13, 4-14
symbol, 1-9, 3-5, 3-7, 3-10, 3-11, 3-17, 3-18, 3-20,

3-21, 3-28, 3-29, 3-30, 3-31, 4-1, 4-2, 4-3,
4-6, 4-8, 4-9, 4-13, 4-14, 4-15

symbols, 1-5, 1-16, 3-9, 3-10, 3-11, 3-17, 3-20, 3-21,
3-29, 3-31, 4-1, 4-3, 4-7, 4-8, 4-9, 4-14,
A-2

syntax, 1-16, 2-1, 2-3, 3-13, 4-3, 4-5
system, 1-2, 1-3, 1-4, 1-12, 2-6, 2-8, 2-10, 2-11,

2-13, 2-18, 2-22, 2-26, 3-2, 4-2, 4-9, A-14,
A-15

temporary, 3-16, 3-21
terminate, 3-19, 3-28, 4-5, 4-7
ticks, 2-21
time, 1-7, 2-18. 2-21, 2-27. 3-3, 3-18, A-14
timeout, 2-18, 2-21

Index 1-9

Timer, A-13
title, 3-16, 3-24
TO, 4-4, 4-6, 4-7, A-7
transfer, 1-4, 1-14, 1-17
transferred, 2-19
transition, A-21
translate, 3-20
translated, 3-15, A-6
transmitted, A-21
TRAP, 3-7
treated, 3-6, 3-11
treats, 3-9
tree, 4-2, 4-3, 4-6, 4-9, 4-10, 4-12, 4-13
TTL, 3-15, 3-16, 3-24, 3-25
Type, 1-15, 1-16, 3-6

uninitialized, 3-18
unique, 3-29
Unix, 3-4
unload, 1-5, 1-7, 2-25, 2-27
UnLoadSeg, 2-25
UnLock, 2-18
unlock, 2-18, 2-27
unnamed, 3-18
uppercase, A-2
user, 1-3, 1-5, 1-7, 2-19, 3-2, 3-7, 3-11, 3-20,
3-25, A-15
using, 1-3, 1-4, 1-6, 1-8, 1-10, 1-11, 1-17, 2-23,

2-24,2-25, 3-4, 3-11, 3-12, 4-9, A-2, A-11,
A-12, A-21

USP, 3-11, 3-14, 3-20

values, 1-2, 1-3, 1-5, 1-10, 2-2, 2-3, 2-8, 3-3,
3-12, 3-21, 4-8, 4-11, A-14, A-17

Variants, 3-14
verification, 3-3
virtual, 2-10, 2-18, 2-26
volume, 2-15

WaitForChar, 2-18, 2-27
warning, 1-9, 3-11, 3-19, 4-7, 4-8
warnings, 3-3, 4-7
word, 2-2, 3-2, 3-13, 3-21, 3-22, 3-26, A-3
Word-sized, 3-8
words, 2-24, 3-2, 3-22
Workbench, 1-4, 1-7, 1-8, 2-24
Write, 1-14, 2-5, 2-6, 2-11, 2-15, 2-19, 2-27

XDEF, 3-17, 3-30, 3-31
XREF, 3-17, 3-30, 3-31, 4-4, 4-5, 4-6, 4-7, 4-8

1-10 Index

