
AmigaDOS

Developerfe Manual

AmigaDOS Developer's Manual

Acknowledgements

This manual was originally written by Tim King and then completely revised by Jessica King.

A special thanks to Patria Brown whose editorial suggestions substantially contributed to the quality

ofthe manual.

Also thanks to Bruce Barrett, Keith Stobie, Robert Peck and all the others at Commodore-Amiga who

carefully checked the contents; to Tim King, Paul Floyd, and Alan Cosslett who did the same at

Metacomco; and to Pamela Clare and Liz Laban who spent many hours carefully proof-reading each

version.

COPYRIGHT

This manual Copyright (c) 1985, Commodore-Amiga Inc. All Rights Reserved. This document may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic

medium or machine readable form without prior consent, in writing, from Commodore-Amiga Inc.

AmigaDOS software Copyright (c) 1985, Commodore-Amiga Inc. All Rights Reserved The

distribution and sale of this product are intended for the use of the original purchaser only. Lawful

users of this program are hereby licensed only to read the program, from its medium into memory ofa

computer, solely for the purpose of executing the program. Duplicating, copying, selling, or otherwise

distributing this product is a violation ofthe law.

DISCLAIMER

THIS PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU. SHOULD

THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT THE DEVELOPER OR

COMMODORE-AMIGA, INC. OR ITS PARENT AND AFFILIATED DEALERS) ASSUME THE

ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. FURTHER,

COMMODORE-AMIGA, INC. OR ITS PARENT AND AFFILIATED COMPANIES DO NOT

WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE OF

THE PROGRAM IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS,

OR OTHERWISE; AND YOU RELY ON THE PROGRAM AND RESULTS SOLELY AT YOUR OWN

RISK. IN NO EVENT WILL COMMODORE-AMIGA, INC. OR ITS PARENT COMPANY AND

AFFILIATED COMPANIES BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR

CONSEQUENTAL DAMAGES RESULTING FROM ANY DEFECT IN THE PROGRAM EVEN IF IT

HAS BEEN ADVISED OF THE POSSIBILITY OF IMPLIED WARRANTIES OR LIABILITIES FOR

INCIDENTAL OR CONSEQUENTAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION

MAY NOT APPLY.

Amiga and AmigaDOS are trademarks of Commodore-Amiga, Inc. Unix is a trademark of Bell

Laboratories. MS-DOS is a trademark of Microsoft Corporation. IBM is a registered trademark of

International Business Machines, Inc. Sun Workstation, and the combination of Sun with a numeric

suffix are trademarks ofSun Microsystems, Inc.

This manual refers to Release 1, August 1985.

Printed in the U.S.A.

CBM Product Number 327265-01 rev 1.0 8.27.85

Using Preferences

Ifyou have a working version ofPreferences and you change the text size, for example, from 60 to 80,

then AmigaDOS renders any new windows that you create in 80 columns. However, any old windows

in the system remain with a text size of60. To incorporate text size into the system, you need to create

a new window, select the old window, and finally delete the old window.

Follow these steps:

1. Use the newcli command.

2. Select the old window.

3. Use the endcli command in the old window to delete the old window.

Ifyou alter the CLI selection, the change may not take effect immediately. Ifyou give the new

preferences and re-boot, they take effect.

Table ofContents

1. Programming on the Amiga

2. CallingAmigaDOS

3. The Macro Assembler

4. The Linker

Chapter 1: Programmingon the Amiga

This chapter introduces the reader to programming in C or Assembler under AmigaDOS.

Table ofContents

1.1. Introduction

1.2 Program Development for the Amiga

1.2.1 Getting Started

1.2.2 Calling Resident Libraries

1.2.3 Creating an Executable Program

1.3 RunningaProgram Under the CLJ

1.3.1 Initial Environment in Assembler

1.3.2 Initial Environment in C

1.3.3 Failure ofRoutines

1.3.4 Terminating a Program

1.4 Runninga Program Under the Workbench

1.5 Cross Development

1.5.1 Cross Development on a Sun

1.5.2 Cross Development under MSDOS

1.5.3 Cross Development on Other Computers

Programming on the Amiga

1.1 Introduction

The AmigaDOS programming environment is available on the Amiga, Sun, and IBM PC.

This manual assumes that you have some familiarity with either C or Assembler. It does not attempt

to teach either ofthese languages. An introduction to C can be found in the book The C Programming

Language by Brian W. Kernighan and Dennis M. Ritchie, published by Prentice Hall. There are a

number of books on writing 68000 assembler, including Programming the MC68000 by Tim King

and Brian Knight, published by Addison Wesley.

1.2 Program Development for the Amiga

This section describes how to develop programs for the Amiga. It describes what you need before you

start, how you can call the system routines, and how to create a file that you can execute on the Amiga.

WARNING: Before you do ANYTHING, you should make a backup copy of your system disk. For

instructions, see the section, "Backing Up," at the beginning ofthe AmigaDOS User's Manual.

1.2.1 Getting Started

Before you start writing programs for the Amiga, you need the following items:

1. Documentation on AmigaDOS and other system routines that you can call. For example, you

need the AmigaDOS User's Manual, ROM Kernel Manual, and possibly the AmigaDOS

Technical Reference Manual as well.

2. Documentation on the language you intend to use. Ifyou intend to use Assembler or C, then this

manual tells you how to use these tools although it does not contain any specific information

normally found in a language reference manual.

3. Header files containing the necessary Amiga structure definitions and the values for calling the

system routines that you need. Commodore-Amiga provides these header files as include files

for either C (usually ending in .h) or assembler (ending in .i). To use a particular resident

library, you must include one or more header files containing the relevant definitions. For

example, to use AmigaDOS from C, you must include the file 'dos.h.9

4. An assembler or compiler either running on the Amiga itselfor on one of the cross development

environments.

5. The Amiga linker, again running on the Amiga or on another computer, as well as the standard

Amiga library containing functions, interface routines, and various absolute values.

6. Tools to download programs ifyou are using a cross-development environment.

1-1

Programming on the Amiga AmigaDOS Developers Manual

1.2.2 Calling Resident Libraries

You should note that there are two ways of calling system routines from a user assembly program. C

programmers simply call the function as specified. You usually call a system routine in assembler by

placing the library base pointer for that resident library in register A6 and thenjumping to a suitable

negative offset from that pointer. The offsets are available to you as absolute externals

in the Amiga library, with names of the form LVO_name. So, for instance, a call could be JSR

LV0_name(A6), where you have loaded A6 with a suitable library base pointer. These base pointers

are available to you from the OpenLibrary call to Exec; you can find the base pointer for Exec at

location 4 (the only absolute location used in the Amiga). This location is also known as AbsExecBase

which is defined in amiga.lib. (See the ROM Kernel Manual for further details on Exec.)

You can call certain RAM-based resident libraries and the AmigaDOS library in this way, ifrequired.

Note that the AmigaDOS library is called 'dos.library1. However, you do not need to use A6 to hold a

pointer to the library base; you may use any other register if you need to. In addition, you may call

AmigaDOS using the resident library call feature of the linker. In this case, simply code a JSR to the

entry point and the linker notes the fact that you have used a reference to a resident library. When

your code is loaded into memory, the loader automatically opens the library and closes it for you when

you have unloaded. The loader automatically patches references to AmigaDOS entry points to refer to

the correct offset from the library base pointer.

1.2.3 CreatinganExecutable Program

To produce a file that you can execute on the Amiga, you should follow the four steps below. You can do

each step either on the Amiga itselfor on a suitable cross development computer.

1. Get your program source into the Amiga. To do this, you can type it directly in using an editor,

or you can transfer it from another computer. Note that you can use the READ and

DOWNLOAD programs on the Amiga to transfer character or binary files.

2. Assemble or compile your program.

3. Link your program together, including any startup code you may require at the beginning, and

scan the Amiga library and any others you may need to satisfy any external references.

4. Load your program into the Amiga and watch it run!

1-2

AmigaDOS Developer's Manual Programming on the Amiga

1.3 Running a Program Under the CLI

There are two ways you can run a program. First, you can run your program under a CLI (Command

Line Interface). Second, you can run your program under the Workbench. This section describes the

first ofthe two ways.

Running a program under the CLI is a little like using an old-fashioned line-oriented TTY system

although you might find a CLI useful, for example, to port your program over to your Amiga as a first

step in development. To load and enter your program, you simply type the name of the file that

contains the binary and possibly follow this with a number ofarguments.

1.3.1 Initial Environment inAssembler

When you load a program under a CLI, you type the name ofthe program and a set ofarguments. You

may also specify input or output redirection by means of the •>• and f<' symbols. The CLI

automatically provides all this information for the program when it starts up.

When the CLI starts up a program, it allocates a stack for that program. This stack is initially 4000

bytes, but you may change the stack size with the STACK command. AmigaDOS obtains this stack

from the general free memory heapjust before you run the program; it is not, however, the same as the

stack that the CLI uses. AmigaDOS pushes a suitable return address onto the stack that tells the CLI

to regain control and unload your program. Below this on the stack at 4(SP) is the size of the stack in

bytes, which may be useful ifyou wish to perform stack checking.

Your program starts with register A0 pointing to the arguments you, or anyone else running your

program typed. AmigaDOS stores the argument line in memory within the CLI stack and this pointer

remains valid throughout your program. Register DO indicates the number of characters in the

argument line. You can use these initial values to decode the argument line to find out what the user

requires. Note that all registers may be corrupted by a user program.

To make the initial input and output file handles available, you call the AmigaDOS routines InputO

and OutputO. Remember that you may have to open the AmigaDOS library before you do this. The

calls return file handles that refer to the standard input and output the user requires. This standard

input and output is usually the terminal unless you redirected the I/O by including *>' or v<9 on the

argument line. You should not close these file handles with your program; the CLI opened them for you

and it will close them, ifrequired.

1.3.2 Initial Environment inC

When programming in C, you should always include the startup code as the first element in the linker

input. This means that the linker enters your program at the startup code entry point. This section of

code scans the argument list and makes the arguments available in 'argv', with the number of

arguments in 'argc1 as usual. It also opens the AmigaDOS library and calls InputO and OutputO for

you, placing the resulting file handles into 'stdin' and fstdout\ It then calls the C function 'main.1

1.3.3 Failure ofRoutines

Most AmigaDOS routines return a zero if they fail; the exceptions are the Read and Write calls that

return -1 on finding an error. If you receive an error return, you can call IoErrO to obtain more

information on the failure. IoErrO returns an integer that corresponds to a full error code, and you may

wish to take different actions depending on exactly why the call failed. A complete list of error codes

and messages can be found at the end ofthe AmigaDOS User's Manual.

1-3

Programming on the Amiga AmigaDOS Developer's Manual

1.3.4 TerminatingaProgram

To exit from a program, it is sufficient to give a simple RTS using the initial stack pointer (SP). In this

case, you should provide a return code in register DO. This is zero if your program succeeded;

otherwise, it is a positive number. If you return a non-zero number, then the CLI notices an error.

Depending on the current fail value (set by the command FAILAT), a non-interactive CLI, such as one

running a command sequence set up by the EXECUTE command, terminates. A program written in C

can simply return from 'main' which returns to the startup code; this clears DO and performs an RTS.

Alternatively a program may call the AmigaDOS function Exit, which takes the return code as

argument. This instructs your program to exit no matter what value the stack pointer has.

It is important at this stage to stress that AmigaDOS does not control any resources; this is left

entirely up to the programmer. Any files that a user program opens must be closed before the program

terminates. Likewise, any locks it obtains must be freed, any code it loads must be unloaded, and any

memory it allocates returned. Of course, there may be cases where you do not wish to return all

resources, for example, when you have written a program that loads a code segment into memory for

later use. This is perfectly acceptable, but you must have a mechanism for eventually returning any
memory, file locks, and so on.

1.4 Running a Program under the Workbench

To run a program under the Workbench, you need to appreciate the different ways in which a program

may be run on the Amiga. Under the CLI your program is running as part of the CLI process. It can

inherit I/O streams and other information from the CLI, such as the arguments you provided.

If a program is running under the Workbench, then AmigaDOS starts it as a new process running at

the same time as Workbench. Workbench loads the program and then sends a message to get it

started. You must therefore wait for this initial message before you start to do anything. You must

retain the message and return it back to Workbench when your program has finished, so that

Workbench can unload the code ofyour program.

For C programmers, this is all done by simply using a different startup routine. For assembly

language programmers, this work must be done yourself.

You should also note that a program running as a new process initiated by Workbench has no default

input and output streams. You must ensure that your program opens all the I/O channels that it needs,

and that it closes them all when it has finished.

1-4

AmigaDOS Developer's Manual Programming on the Amiga

1.5 Cross Development

If you are using a cross-development environment, then you need to download your code onto the

Amiga. This section describes the special support Commodore-Amiga gives to Sun and MSDOS

environments. It also describes how to cross-develop in other environments without this special

support.

1.5.1 Cross DevelopmentonaSun

The tools available on the Sun for cross development include the assembler, linker, and two C

compilers. The argument formats of the assembler and linker on the Sun are identical to those on the

Amiga when running under the CLI. The Greenhills C compiler is only available on the Sun and is

described here.

The compiler is called metacc, and it accepts several types offiles. It assumes that filenames ending in

.c represent C source programs. The compiler then compiles these c files and places the resulting

object program in the current directory with the same filename, but ending with .obj. The suffix .obj

denotes an object file. The compiler assumes that files ending in .asm are assembly source programs.

You can use the assembler to assemble these and produce an object file (ending with .obj) in the current

directory.

The compiler metacc takes many options with the following format:

metacc [<optl>[,<opt2>[,..<optn>]]l[<file>[,...<filen>]l

The options available are as follows:

-c -g -go -w -p -pg -O[<optflags>] -fsingle

-S-E-C-X70-O <output> -D <name=def>

-U <name> -I <dir> -B <string> -t[pO12]

The following options instruct metacc to

-c just compile the program, suppressing the loading phase of the compilation,

and forcing an object file to be produced even if it only compiles one program.

-g produce additional symbol table information for the debugger dbx and to pass

the-lg flag to Id.

-go produce additional symbol table information in an older format set by the adb

debugger. Also, pass the -lg flag to Id.

-w suppress all warning messages.

-p produce profiling code to count the number of times each routine is called. If

loading takes place, replace the standard startup routine by one that is

automatically called by the monitor and uses a special profiling library instead

ofthe standard C library.

Use the profprogram to generate an execution profile.

pg produce profiling code like -p, but invokes a run-time recording mechanism

that keeps more extensive statistics and produces a gmon.out file at normal

termination.

1-5

Profframminff on the Amiga Ami&aDOS Develotrer's Manual

Use the gprofprogram to generate an execution profile.

-O [<optflags>] use the object code optimizer to improve the generated code.

-fsingle

If 'optflags' appears, you include <optflags> in the command line to run the

optimizer. You can use -0 to pass option flags.

use single-precision arithmetic in computations involving only flo at numbers -

that is, do not convert everything to double (that is, the default).

Note: Floating-point parameters are still converted to double-precision, and

functions that return values still return double-precision values.

WARNING: Certain programs run much faster using the fsingle option, but beware that

you can lose significance due to lower precision intermediate values.

-S compile the specified C program(s) and leave the assembler-language output

on corresponding files ending with .obj.

-E run only the C preprocessor on the named C program(s) and send the result to

the standard output.

-C prevent the C preprocessor from removing comments.

-X70 generate code using Amiga floating point format. This code is compatible with

the floating point math ROM library provided on the Amiga.

-o <output> name the final output file 'output'. If you use this option, the file a.out is left

undisturbed.

-D<name=def> define 'name' to the preprocessor, as if by #define. If no definition is given,

define the name as '1*.

-U<name> remove any initial definition of'name'.

-Kdir> always look for #include files whose names do not begin with V first in the

directory of the <file> argument, then look in the <dir> specified in the -I

option, and finally look in the /usr/include directory.

-B<string> find substitute compiler passes in the files specified by <string> with the

endings cpp, ccom, and c2. If'string' is empty, use a backup version.

-t[pO12] find only the designated compiler passes in the files whose names are

constructed by a -B option. In the absence of a -B option, assume <string> to

be /usr/new/.

1-6

AmigaDOS Developer's Manual Programming on the Amiga

The letter and number combinations that you can specify for the -t option have

the following meanings:

p cpp - the C preprocessor

0 metacom - both phases ofthe C compiler, but not the optimizer.

1 Ignored in this system - this option would be for the second phase ofa

two-phase compiler but in the Sun system; ccom includes both phases.

2 c2 - the object code optimizer.

The compiler metacc assumes that other arguments are loaded option arguments, object programs, or

libraries ofobject programs. Unless you specify -c, -S, or -E, metacc loads these programs and libraries

together with the results ofany compilations or assemblies specified, (in the order given) to produce an

executable program named a.out. To override the name a.out, you can use the loader's -o<name>

option.

Ifa single C program is compiled and loaded all at once, the intermediate .o file is deleted.

Figure 1-A lists the filenames ofspecial metacc files and their descriptions.

Special Files

File Description

C source code

Assembler source file

Object file

Library ofobject files

Executable output files

Temporary files

Preprocessor

Compiler

Optional optimizer

Runtime startoff

Startofffor profiling

Startofffor gprof-profiling

Standard library

Profiling library

Standard directory (#include.

Files produced for analysis

by prof

File produced for analysis

bygprof

Filename

file.c

file.asm

file.o

file.lib

a.out

/tmp/ctm

/lib/cpp

/lib/ccom

/Iib/c2

/lib/crtO.o

/lib/mcrtO.o

/usr/lib/gcrtO.o

/lib/libc.a

/usr/lib/libc p.a

/usr/include

mon.out

gmon.out

Figure 1.A: Special metacc Filenames

You can download the files you produce from the linker on the Sun to your Amiga in three ways: the

first, and by far the easiest, requires a BillBoard; the second requires a parallel port; and the third

requires a serial line.

If you have the special hardware device called a BillBoard, you can download your linked load file (by

convention this should end with .Id) as follows:

1-7

Programming on the Amiga AmigaDOS Developer's Manual

1. Startup the program 'binload' on the Sun

binload -p &

(this need only be done once)

2. then on the Amiga, type

download <sun filename> <amiga filename>

3. To run the program, type

<amiga filename>

For example:

On the Sun, type

binload -p &

On the Amiga, type

download test.Id test

or type

download /usr/commodore/amiga/V24/examples/DOS/test.ld test

then type

test

Note that DOWNLOAD gains access to files on the Sun relative to the directory where binload started.

If the directory on the Sun was /usr/commodore/amiga/V24/examples/DOS as above, the filename

test.ld is all that is necessary. If you cannot remember the directory where binload started, you must

specify the full name. To stop binload, do a 'ps' and then a 'kill' on its PID. Note that the soft reset ofthe

computer tells binload to write a message to its standard output (the default is the window where it

started). If the transfer hangs, press CTRL-C at the Amiga to kill DOWNLOAD. (See the AmigaDOS

User's Manual for further information on the AmigaDOS control conventions CTRL-C, CTRL-D,

CTRL-E,andCTRL-F.)

If you do not have a BillBoard, you can download files through a parallel port. To do this, follow these

steps:

1. Send the download ASCII files to the Amiga via the parallel port by typing

send demo.Id

Ifyou do not give 'send' any arguments, the standard input is used. The default output device

is /dev/lpO, which is usually correct. To change the default output, use the -o argument.

1-8

AmigaDOS Developer's Manual Programmingon the Amiga

2. On the Amiga, type the following:

READ demo

READ then reads characters from the parallel port and places them in the file named vdemo9.

3. Once READ has finished, type

demo

to run the program demo.

You can also download files serially. To do this, follow these steps:

1 Convert the Binary Load File into an ASCII hex file ending with Qby typing

convert <demo.ld >demo.dl

(where .dl, by convention, stands for DownLoad). The above rule exists in the included
makefile, makeamiga. (See the AmigaDOS Technical Reference Manual for further
details on the Amiga Binary Load files.)

2. Type

tip amiga

3. On the Amiga, type

READ demo serial

4. Within tip, type

~> demo.dl

5. When the READ completes on the Amiga, type the filename fdemof to run it

WARNING: The Sun serial link often hangs for no apparent reason. Reboot the Sun ifthis happens.

Ifthe Sun serial link should happen to hang, reboot the Sun, then type

tip

and within tip, type

Q

1-9

Programmingon the Amiga AmigaDOS Developer's Manual

to get the READ on the Amiga to complete. Once this is done, start a new READ and type the following

symbols on the Sun

1.5.2 Cross Development underMSDOS

To cross develop on a computer running MSDOS for your Amiga, you need various tools that are

supplied in the directory \V25\bin. These include the C compiler, assembler, and linker as well as

commands to assist in downloading. You use the same syntax for the tools running under MSDOS as

under the CLI on the Amiga.

To download via an IBM PC serial port (called AUX), follow these steps:

1. Type on your Amiga:

READ file SERIAL

2. On the PC, type

convert <file.ld >AUX:

3. On your Amiga, you can now type

file

to try the program out.

1.5.3 Cross Development on Other Computers

You'll need to have a suitable cross compiler or assembler, and the include files defining all the entry

points. You'll also need either the Amiga linker ALINK running on your equipment or on the Amiga.

Finally you'll need a way to convert a binary file into a hexadecimal stream terminated with a Q (as

this is the way that READ accepts data), and a way of putting this data out from a serial or parallel

port.

Once you have created a suitable binary file, you must transfer this to the Amiga using the READ

command (as described in Section 1.5.2 of this manual). Ifyou have the Amiga linker running on your

computer, then you can transfer complete binary load files; otherwise, you'll have to transfer binary

object files in the format accepted by ALINK, and then perform the link step on the Amiga.

MO

Chapter 2: CallingAmigaDOS

This chapter describes the functions provided by the AmigaDOS resident library. To help you, it

provides the following: an explanation of the syntax, a full description of each function, and a quick

reference card ofthe available functions.

Table ofContents

2.1 Syntax

2.2 AmigaDOS Functions

QuickReference Card

AmigaDOS Developer's Manual Calling AmigaDOS

2.1 Syntax

The syntax used in this chapter shows the C function call for each AmigaDOS function and the

corresponding register you use when you program in assembler.

1. Register values

The letter/number combinations (DCL.Dn) represent registers. The text to the left of an equals sign

represents the result of a function. A register (that is, DO) appearing under such text indicates the

register value ofthe result. Text to the right ofan equals sign represents a function and its arguments,

where the text enclosed in parentheses is a list of the arguments. A register (for example, D2)

appearing under an argument indicates the register value ofthat argument.

Note that not all functions return a result.

2. Case

The letter case (that is, lower or upper case) IS significant. For example, you must enter the word

'FilelnfoBlock* with the first letter ofeach component word in upper case.

3. Boolean returns

-1 (TRUE or SUCCESS), 0 (FALSE or FAILURE).

4. Values

All values are longwords (that is, 4 byte values or 32 bits). Values referred to as "string" are 32 bit

pointers to NULL terminated series ofcharacters.

5. Format, Argumentand Result

Look at 'Argument:1 and •Result:1 for further details on the syntax used after 'Format:'. Result

describes what is returned by the function (that is, the left ofthe equal sign). Argument describes what

the function expects to work on (that is, the list in parentheses). Figure 2-A should help explain the
syntax.

Format of function result = Functionf argument)

Register Register

Example lock = CreateDirf name)

DO Dl

Figure 2-A: Format ofFunctions and Registers

2-1

Calling AmigaDOS AmigaDOS Developer's Manual

2.2 AmigaDOS Functions

This reference section describes the functions provided by the AmigaDOS resident library. Each

function is arranged alphabetically under the following headings: File Handling, Process Handling,

and Loading Code. These headings indicate the action of the functions they cover. Under each function

name, there is a brief description of the function's purpose, a specification of the format and the

register values, a fuller description of the function, and an explanation of the svntax ofthe arguments

and result. To use any ofthese functions, you must link with amiga.lib.

File Handling

CLOSE

Purpose: To close a file for input or output.

Form: Close(file)

Dl

Argument: file - file handle

Description:

The file handle 'file' indicates the file that Close snould close. You obtain this file handle as a result of

a call to Open. You must remember to close explicitly all the files you open in a program. However, you

should not close inherited file handles opened elsewhere.

CREATEDIR

Purpose:

Form:

Argument:

Result:

Description:

To create a new directory.

lock = CreateDir(name)

DO Dl

name - string

lock - pointer to a lock

CreateDir creates a new directory with the name you specified, ifpossible. It returns an error if it fails.

Remember that AmigaDOS can only create directories on devices which support them, for example,

disks.

2-2

AmigaDOS Developer's Manual Calling AmieaDOS

A return of zero means that AmigaDOS has found an error (such as: disk write protected), you should

then call IoErrO; otherwise, CreateDir returns a shared read lock on the new directory.

CURRENTDIR

Purpose: To make a directory associated with a lock the current working directory.

Form:

Argument:

Result:

Description:

oldLock = CurrentDir(lock)

DO Dl

lock - pointer to a lock

oldLock - pointer to a lock

CurrentDir makes current a directory associated with a lock. (See also LOCK). It returns the old
current directory lock.

A value of zero is a valid result here and indicates that the current directory is the root of the initial
start-up disk.

DELETEFILE

Purpose:

Form:

Argument:

Result:

Description:

To delete a file or directory.

success = DeleteFile(name)

DO Dl

name - string

success-boolean

DeleteFile attempts to delete the file or directory 'name1. It returns an error if the deletion fails. Note

that you must delete all the files within a directory before you can delete the directory itself.

2-3

Calling AmigaDOS AmigaDOS Developer's Manual

DUPLOCK

Purpose:

Form:

Argument:

Result:

Description:

To duplicate a lock.

newLock

DO

DupLock(lock)

Dl

lock - pointer to a lock

newLock - pointer to a lock

DupLock takes a shared filing system read lock and returns another shared read lock to the same

object. It is impossible to create a copy of a write lock. (For more information on locks, see under

LOCK.)

EXAMINE

Purpose:

Form:

Argument:

Result:

Description:

To examine a directory or file associated with a lock.

success = Examine(lock, FilelnfoBlock)

DO Dl D2

lock - pointer to a lock

FilelnfoBlock - pointer to a file info block

success-boolean

Examine fills in information in the FilelnfoBlock concerning the file or directory associated with the

lock. This information includes the name, size, creation date, and whether it is a file or directory.

Note: FilelnfoBlock must be longword aligned. You can ensure this in the language C if you use

Allocmem. (See the ROM Kernel Manual for further details on the exec call Allocmem.)

Examine gives a return code ofzero ifit fails.

2-4

AmigaDOS Developer's Manual Calling AmigaDOS

EXNEXT

Purpose:

Form:

Argument:

Result:

Description:

To examine the next entry in a directory.

success = ExNext(lock, FilelnfoBlock)

DO Dl D2

lock - pointer to a lock

FilelnfoBlock - pointer to a file info block

success - boolean

This routine is passed a lock, usually associated with a directory, and a FilelnfoBlock filled in by a

previous call to Examine. The FilelnfoBlock contains information concerning the first file or directory

stored in the directory associated with the lock. ExNext also modifies the FilelnfoBlock so that

subsequent calls return information about each following entry in the directory.

ExNext gives a return code of zero if it fails for some reason. One reason for failure is reaching the last

entry in the directory. However, IoErrO holds a code that may give more information on the exact

cause of a failure. When ExNext finishes after the last entry, it returns

ERROR_NO_MORE_ENTRIES

So, follow these steps to examine a directory:

1) Use Examine to get a FilelnfoBlock about the directory you wish to examine.

2) Pass ExNext the lock related to the directory and the FilelnfoBlock filled in by the previous

call to Examine.

3) Keep calling ExNext until it fails with the error code held in IoErrO equal to

ERROR_NO_MORE_ENTRIES.

4) Note that if you don't know what you are examining, inspect the type field of the

FilelnfoBlock returned from Examine to find out whether it is a file or a directory which is

worth calling ExNext for.

The type field in the FilelnfoBlock has two values: if it is negative, then the file system object is a file;

ifit is positive, then it is a directory.

2-5

Calling AmigaDOS AmigaDOS Developer's Manual

INFO

Purpose: Returns information about the disk.

Form: success = Info(lockr Info_Data)

DO Dl D2

Argument: lock - pointer to a lock

Info Data - pointer to an Info_Data structure

Result: success - boolean

Description:

Info finds out information about any disk in use. 'lock' refers to the disk, or any file on the disk. Info

returns the Info_Data structure with information about the size ofthe disk, number offree blocks and

any soft errors. Note that Info_Data must be longword aligned.

INPUT

Form:

file = Input()

DO

Result: file - file handle

Description:

To identify the program's initial input file handle, you use Input. (To identify the initial output, see

under OUTPUT.)

2-6

AmigaDOS Developer's Manual Calling AmigaDOS

IOERR

Purpose: To return extra information from the system.

Form: error = IoErr()

DO

Result: error - integer

Description:

I/O routines return zero to indicate an error. When an error occurs, call this routine to find out more

information. Some routines use IoErrO, for example, DeviceProc, to pass back a secondary result.

^INTERACTIVE

Purpose: To discover whether a file is connected to a virtual terminal or not.

Form: bool - Islnteractive (file)

DO Dl

Argument; file - file handle

Result: bool - boolean

Description:

The function Islnteractive gives a boolean return. This indicates whether or not the file associated

with the file handle 'file' is connected to a virtual terminal.

2-7

Calling AmigaDOS AmigaDOS Developer's Manual

LOCK

Purpose: To lock a directory or file.

Form: lock = Lock(name, accessMode)

DO Dl D2

Argument: name - string

accessMode - integer

Result: lock - pointer to a lock

Description:

Lock returns, if possible, a filing system lock on the file or directory 'name'. If the accessMode is

ACCESS_READ, the lock is a shared read lock; if the accessMode is ACCESS_WRITE, then it is an

exclusive write lock. If LOCK fails (that is, if it cannot obtain a filing system lock on the file or

directory) it returns a zero.

Note that the overhead for doing a Lock is less than that for doing an Open, so that, ifyou want to test

to see if a file exists, you should use Lock. Ofcourse, once you've found that it exists, you have to use
Open to open it.

OPEN

Purpose: To open a file for input or output.

Form: file = Open(name, accessMode)

DO Dl D2

Argument; name-string accessMode - integer

Result: file - file handle

Description:

Open opens 'name' and returns a file handle. If the accessMode is MODE_OLDFILE (=1005), OPEN

opens an existing tile for reading or writing. However, Open creates a new file for writing if the value
is MODE_NEWFILE (=1006). The 'name' can be a filename (optionally prefaced by a device name), a

simple device such as NIL:, a window specification such as CON: or RAW: followed by window

parameters, or *, representing the current window.

For further details on the devices NIL:, CON:, and RAW:, see Chapter 1 of the of the AmigaDOS

User's Manual. IfOpen cannot open the file 'name' for some reason, it returns the value zero (0). In

this case, a call to the routine IoErrO supplies a secondary error code.

2-8

AmigaDOS Developer's Manual Calling AmigaDOS

For testing to see ifa file exists, see the entry under LOCK.

OUTPUT

Form:

file = Output()

DO

Result: file - file handle

Description:

To identify the program's initial output file handle, you use Output. (To identify the initial input, see

under INPUT.)

PARENTDIR

Purpose: To obtain the parent ofa directory or file.

Form: Lock = ParentDir(lock)

DO Dl

Argument: lock - pointer to a lock

Result: lock - pointer to a lock

Description:

This function returns a lock associated with the parent directory of a file or directory. That is,

ParentDir takes a lock associated with a file or directory and returns the lock ofits parent directory.

Note: The result ofParentDir may be zero (0) for the root ofthe current filing system.

READ

Purpose: To read bytes ofdata from a file.

Form: actualLength = Read(filef buffer, length)

DO Dl D2 D3

Argument: file - file handle

buffer - pointer to buffer

length - integer

2-9

Calling AmigaDOS AmigaDOS Developer's Manual

Result: actualLength - integer

Description:

You can copy data with a combination of Read and Write. Read reads bytes of information from an

opened file (represented here by the argument 'file1) into the memory buffer indicated. Read attempts
to read as many bytes as fit into the buffer as indicated by the value oflength. You should always make

sure that the value you give as the length really does represent the size ofthe buffer. Read may return

a result indicating that it read less bytes than you requested, for example, when reading a line ofdata
that you typed at the terminal.

The value returned is the length of the information actually read. That is to say, when 'actualLength'

is greater than zero, the value of'actualLength1 is the the number of characters read. A value of zero
means that end-of-file has been reached. Errors are indicated by a value of-1. Read from the console
returns a value when a return is found or the buffer is full.

A call to Read also modifies or changes the value of IoErrO. IoErrO gives more information about an
error (for example, actualLength equals -1) when it is called.

RENAME

Purpose: To rename a directory or file.

Form: success = Rename(oldName, newName)

DO Dl D2

Argument; oldName - string

newName - string

Result: success - boolean

Description:

Rename attempts to rename the file or directory specified as 'oldName' with the name 'newName'. If

the file or directory 'newName' exists, Rename fails and Rename returns an error.

Both the 'oldName' and the 'newName* can be complex filenames containing a directory specification.

In this case, the file will be moved from one directory to another. However, the destination directory
must exist before you do this.

Note: It is impossible to rename a file from one volume to another.

2-10

AmiffaDOS Devekroer's Manual Calling AmigaDOS

SEEK

Purpose:

Form:

Argument:

Result:

Description:

To move to a logical position in a file.

oldPosition = Seek(file, position, mode)

DO Dl D2 D3

file-file handle

position - integer

mode - integer

oldPosition - integer

Seek sets the read/write cursor for the file 'file1 to the position 'position1. Both Read and Write use this

position as a place to start reading or writing. If all goes well, the result is the previous position in the

file. Ifan error occurs, the result is -1. You can then use IoErrO to find out more information about the

error.

•mode1 can be OFFSET_BEGINNING (=-1), OFFSET_CURRENT (=0) or OFFSET_END (=1).

You use it to specify the relative start position. For example, 20 from current is a position twenty bytes

forward from current, -20 from end is 20 bytes before the end ofthe current file.

To find out the current file position without altering it, you call to Seek specifying an offset ofzero from

the current position.

To move to the end of a file, Seek to end-of-file offset with zero position. Note that you can append

information to a file by moving to the end ofa file with Seek and then writing. You cannot Seek beyond

the end ofa file.

SETCOMMENT

Purpose: To set a comment.

Form: Success = SetComment(name, comment)

DO Dl D2

Argument: name - file name

comment - pointer to a string

Result: success - boolean

Description:

SetComment sets a comment on a file or directory. The comment is a pointer to a null-terminated

string ofup to 80 characters.

2-11

Calling AmigaDOS AmigaDOS DeveloDerfs Manual

SETPROTECTION

Purpose: To set file, or directory, protection.

Form:

Argument:

Result:

Description:

Success = SetProtection(name, mask)

DO Dl D2

name-file name

mask - the protection mask required

success - boolean

SetProtection sets the protection attributes on a file or directory. The lower four bits ofthe mask are as

follows:

bit 3: if 1 then reads not allowed, else reads allowed,

bit 2: if 1 then writes not allowed, else writes allowed,

bit 1: if 1 then execution not allowed, else execution allowed,

bit 0: if 1 then deletion not allowed, else deletion allowed.

Bits 31-4 Reserved.

Only delete is checked for in the current release of AmigaDOS. Rather than referring to bits by

number you should use the definitions in "include/libraries/dos.h".

UNLOCK

Purpose:

Form:

To unlock a directory or file.

UnLock(lock)

Dl

lock - pointer to a lockArgument;

Description:

UnLock removes a filing system lock obtained from Lock, DupLock, or CreateDir.

2-12

AmisraDOS Develoner's Manual Calling AmigaDOS

WATTFORCHAR

Purpose:

Form:

Argument:

Result:

Description:

To indicate whether characters arrive within a time limit or not.

bool = WaitForChar(file, timeout)

DO Dl D2

file-file handle

timeout - integer

bool-boolean

Ifa character is available to be read from the file associated with the handle file' within a certain time,

indicated by 'timeout1, WaitForChar returns -1 (TRUE); otherwise, it returns 0 (FALSE). If a
character is available, you can use Read to read it. Note that WaitForChar is only valid when the I/O

streams are connected to a virtual terminal device, 'timeout' is specified in microseconds.

WRITE

Purpose:

Form:

Argument:

Result:

Description:

To write bytes ofdata to a file.

returnedLength

DO

Write(file, buffer, length)

Dl D2 D3

file-file handle

buffer - pointer to buffer

length-integer

returnedLength - integer

You can copy data with a combination ofRead and Write. Write writes bytes ofdata to the opened file

file', length' refers to the actual length ofdata to be transferred; 'buffer' refers to the buffer size.

Write returns a value that indicates the length of information actually written. That is to say, when

length' is greater than zero, the value of 'length' is the number of characters written. A value of-1

indicates an error. The user ofthis call must always check for an error return which may, for example,

indicate that the disk is full.

2-13

Calling AmigaDOS AmigaDOS DeveloDerfs Manual

Process Handling

CREATEPROC

Purpose: To create a new process.

Form:

Argument:

Result:

Description:

process = CreateProc(name, prif segment, stackSize)

DO Dl D2 D3 D4

name - string

pri - integer

segment - pointer to a segment

stackSize - integer

process - process identifier

CreateProc creates a process with the name 'name1. That is to say, CreateProc allocates a process

control structure from the free memory area and then initializes it.

CreateProc takes a segment list as the argument 'segment1. (See also under LOADSEG and

UNLOADSEG.) This segment list represents the section of code that you intend to run as a new

process. CreateProc enters the code at the first segment in the segment list, which should contain

suitable initialization code or ajump to such.

•stackSize1 represents the size of the root stack in bytes when CreateProc activates the process. fprif

specifies the required priority of the new process. The result is the process identifier of the new

process, or zero ifthe routine failed.

The argument 'name' specifies the process name.

A zero return code implies an error ofsome kind.

2-14

AmigaDOS Developer's Manual Calling AmigaDOS

DATESTAMP

Purpose: To obtain the date and time in internal format.

Form: v:= DateStamp(v)

Argument: v - pointer

Description:

DateStamp takes a vector of three longwords that is set to the current time. The first element in the

vector is a count of the number of days. The second element is the number of minutes elapsed in the

day. The third is the number of ticks elapsed in the current minute. A tick happens 50 times a second.

DateStamp ensures that the day and minute are consistent. All three elements are zero if the date is

unset. DateStamp currently only returns even multiples of 50 ticks. Therefore the time you get is

always an even number ofticks.

DELAY

Purpose: To delay a process for a specified time.

Form: Delay(timeout)

Dl

Argument: timeout - integer

Description:

The function Delay takes an argument 'timeout1, 'timeout1 allows you to specify how long the process

should wait in ticks (50 per second).

DEVICEPROC

Purpose: To return the process identifier ofthe process handling that I/O.

Form: process = DeviceProc(name)

DO Dl

Argument: name - string

Result: process - process identifier

Description:

DeviceProc returns the process identifier of the process that handles the device associated with the

specified name. If DeviceProc cannot find a process handler, the result is zero. If'name' refers to a file

on a mounted device, then IoErrO returns a pointer to a directory lock.

2-15

Calling AmigaDOS AmigaDOS Developer's Manual

You can use this function to determine the process identification of the handler process where the

system should send its messages.

EXIT

Purpose: To exit from a program.

Form: Exit(returnCode)

Dl

Argument: returnCode - integer

Description:

Exit acts differently depending on whether you are running a program under a CLI or not. Ifyou run,

as a command under a CLI, a program that calls Exit, the command finishes and control reverts to the

CLI. Exit then interprets the argument VeturnCode' as the return code from the program.

Ifyou run the program as a distinct process, Exit deletes the process and releases the space associated

with the stack, segment list, and process structure.

Loading Code

EXECUTE

Purpose: To execute a CLI command.

Form: Success = Execute(commandString, input, output)

DO Dl D2 D3

Argument: commandString - string

input-file handle

output - file handle

Result •• Success - boolean

Description:

This function takes a string (commandString) that specifies a CLI command and arguments, and

attempts to execute it. The CLI string can contain any valid input that you could type directly at a CLI,

including input and output indirection using > and <.

The input file handle will normally be zero, and in this case the EXECUTE command will perform

whatever was requested in the commandString and then return. Ifthe input file handle is nonzero then

after the (possibly null) commandString is performed subsequent input is read from the specified input

file handle until end offile is reached.

2-16

AmigaDOS Developerys Manual Calling AmigaDOS

In most cases the output file handle must be provided, and will be used by the CLI commands as their

output stream unless redirection was specified. If the output file handle is set to zero then the current

window, normally specified as *, is used. Note that programs running under the Workbench do not

normally have a current window.

The Execute function may also be used to create a new interactive CLI process just like those created

with the NEWCLI function. In order to do this you should call Execute with an empty commandString,

and pass a file handle relating to a new window as the input file handle. The output file handle should

be set to zero. The CLI will read commands from the new window, and will use the same window for

output. This new CLI window can only be terminated by using the ENDCLI command. For this

command to work the program C.RUN must be present in C:.

LOADSEG

Purpose: To load a load module into memory.

Form: segment = LoadSeg(name)

DO Dl

Argument: name - string

Result: segment - pointer to a segment

Description:

The file 'name* is a load module produced by the linker. LoadSeg takes this and scatter loads the code

segments into memory, chaining the segments together on their first words. It recognizes a zero as

indicating the end ofthe chain.

Ifan error occurs, Loadseg unloads any loaded blocks and returns a false (zero) result.

If all goes well (that is, LoadSeg has loaded the module correctly), then Loadseg returns a pointer to

the beginning of the list ofblocks. Once you have finished with the loaded code, you can unload it with

a call to UnLoadSeg. (For using the loaded code, see under CREATEPROC.)

2-17

Calling AmigaDOS AmigaDOS Developer's Manual

UNLOADSEG

Purpose: To unload a segment previously loaded by LOADSEG.

Form: UnLoadSeg(segment)

Dl

Argument: segment - pointer to a segment

Description:

UnLoadSeg unloads the segment identifier that was returned by LoadSeg. 'segment' may be zero.

2-18

AmigaDOS Developer's Manual Calling AmigaDOS

Quick Reference Card

File Handling

Close

CreateDir

CurrentDir

DeleteFile

DupLock

Examine

ExNext

Info

Input

IoErr

Islnteractive

Lock

Open

Output

ParentDir

Read

Rename

Seek

SetComment

SetProtection

Unlock

WaitForChar

Write

to close a file for input or output.

to create a new directory.

to make a directory associated with a lock the current working directory.

to delete a file or directory.

to duplicate a lock.

to examine a directory or file associated with a lock.

to examine the next entry in a directory.

to return information about the disk.

to identify the initial input file handle.

to return extra information from the system.

to discover whether a file is connected to a virtual terminal or not.

to lock a file or directory.

to open a file for input or output.

to identify the initial output file handle.

to obtain the parent ofa directory or file.

to read bytes ofdata from a file.

to rename a file or directory.

to move to a logical position in a file.

to set a comment.

to set file, or directory, protection.

to unlock a file or directory.

to indicate whether characters arrive within a time limit or not.

to write bytes ofdata to a file.

219

Calling AmieraDOS AmicraDOS Develnner'q Manual

Process Handling

CreateProc

DateStamp

Delay

DeviceProc

Exit

to create a new process.

to obtain the date and time in internal format.

to delay a process for a specified time.

to return the process identifier ofthe process handling that I/O.

to exit from a program.

Loading Code

Execute

LoadSeg

UnloadSeg

to execute a CLI command.

to load a load module into memory

to unload a segment previously loaded by LOADSEG.

2-20

Chapter 3: The Macro Assembler

This chapter describes the AmigaDOS Macro Assembler. It gives a brief introduction to the 68000

microchip. This chapter is intended for the reader who is acquainted with an assembly language on

another computer.

Table ofContents

3.1 Introduction to the 68000 Microchip

3.2 Calling the Assembler

3.3 Program Encoding

3.3.1 Comments

3.3.2 Executable Instructions

3.3.2.1 Label Field

3.3.2.2 Local Labels

3.3.2.3 Opcode Field

3.3.2.4 Operand Field

3.3.2.5 Comment Field

3.4 Expressions

3.4.1 Operators

3.4.2 Operand Types for Operators

3.4.3 Symbols

3.4.4 Numbers

3.5 Addressing Modes

3.6 Variants on Instruction Types

3.7 Directives

AmigaDOS Developer's Manual Macro Assembler

3.1 Introduction to the 68000 Microchip

This section gives a brief introduction to the 68000 microchip. It should help you to understand the

concepts introduced later in the chapter. It assumes that you have already had experience with

assembly language on another computer.

The memory available to the 68000 consists of

o the internal registers (on the chip), and

o the external main memory.

There are 17 registers, but only 16 are available at any given moment. Eight ofthem are data registers

named DO to D7, and the others are address registers called A0 to A7. Each register contains 32 bits. In

many contexts, you may use either kind of register, but others demand a specific kind. For instance,

you may use any register for operations on word (16-bit) and long word (32-bit) quantities or for

indexed addressing of main memory. Although, for operations on byte (8-bit) operands, you may only

use data registers, and for addressing main memory, you may only use address registers as stack

pointers or base registers. Register A7 is the stack pointer, this is in fact two distinct registers; the

system stack pointer available in supervisor mode and the user stack pointer available in user mode.

The main memory consists of a number of bytes of memory. Each byte has an identifying number

called its address. Memory is usually (but not always) arranged so that its bytes have addresses 0,1,2,

..., N-2, N-l where there are N bytes of memory in total. The size of memory that you can directly

access is very large - up to 16 million bytes. The 68000 can perform operations on bytes, words, or long

words ofmemory. A word is two consecutive bytes. In a word, the first byte has an even address. A long

word is four consecutive bytes also starting at an even address. The address ofa long word is the even

address ofits lowest numbered first byte.

As well as holding items of data being manipulated by the computer, the main memory also holds the

instructions that tell the computer what to do. Each instruction occupies from one to 5 words,

consisting of an operation word between zero and four operand words. The operation word specifies

what action is to be performed (and implicitly how many words there are in the whole instruction). The

operand words indicate where in the registers or main memory are the items to be manipulated, and

where the result should be placed.

The assembler usually executes instructions one at a time in the order that they occur in memory, like

the way you follow the steps in a recipe or play the notes in a piece ofwritten music. There is a special

register called the program counter (PC) which you use to hold the address ofthe instruction you want

the assembler to execute next. Some instructions, calledjumps or branches, upset the usual order, and

force the assembler to continue executing the instruction at a specific address. This lets the computer

perform an action repeatedly, or do different things depending on the values ofdata items.

To remember particular things about the state of the computer, you can use one other special register

called the status register (SR).

3-1

Macro Assembler AmigaDOS Developer's Manual

3.2 Calling the Assembler

The command template for assem is

Alternatively, the format ofthe command line can be described as

assem <source file> [-0 <object file >]

[-1 <listingfile>]

[-v < verification file >]

[-h <headerfile>]

[-c <options>]

[-i <include dirlist>]

The assembler does not produce an object file or a listing file unless you request them explicitly.

As the assembler is running, it generates diagnostic messages (errors, warnings, and assembly

statistics) and sends them to the screen unless you specify a verification file.

To force the inclusion of the named file in the assembly at the head of the source file, you use

-h <filename> on the command line. This has the same effect as using

INCLUDE M<filename>M

on line 1 ofthe source file.

To set up the list ofdirectories that the assembler should search for any INCLUDEd files, you use the

-i keyword. You should specify as many directories as you require after the -i, separating the directory

names by a comma (,), a plus sign (+), or a space. Note that if you use a space, you must enclose the

entire directory list in double quotes ("). Unix users, however, must escape any double quotes with a

backslash (V1).

The order of the list determines the order of the directories where the assembler should search for

INCLUDEd files. The assembler^ initially searches the current directory before any others. Thus any

file that you INCLUDE in a program must be in the current directory, or in one ofthe directories listed

in the -i list. For instance, if the program Tred1 INCLUDES, apart from files in the current directory, a

file from the directory 'intrnl/incl1, a file from the directory 'include/asm1, and a file from the directory

•extrnl/incl1, you can give the -i directory list in these three ways:

assem fred -i intrnl/inclfinclude/asm,extrnl/incl

assem fred -i intrnl/incl+include/asm+extrnl/incl

assem fred -i "intrnl/incl include/asm extrnl/incl11

or, by using the space separator on the Sun under Unix, like this

assem fred -i \"intrnl/incl include/asm extrnl/incl\fl

The -c keyword allows you to pass certain options to the assembler. Each option consists of a single

character (in either upper or lower case), possibly followed immediately by a number. Valid options
follow here:

3-2

AmigaDOS Developer's Manual Macro Assembler

S produces a symbol dump as a part ofthe object file.

D inhibits the dumping of local labels as part of a symbol dump. (For C programmers, any

label beginning with a period is considered as a local label).

C ignores the distinction between upper and lower case in labels.

X produces a cross-reference table at the end ofthe listing file.

assem fred.asm -o fred.o

assembles the file fred.asm and produces an object module in the file fred.o.

assem fred.asm -o fred.o -1 fred.lst

assembles the file fred.asm, produces an object module in the file fred.o, and produces a listing file in

fred.lst.

3.3 Program Encoding

A program acceptable to the assembler takes the form ofa series of input lines that can include any of

the following:

o Comment or Blank lines

o Executable Instructions

o Assembler Directives

3.3.1 Comments

To introduce comments into the program, you can use three different methods:

1. Type a semicolon (;) anywhere on a line and follow it with the text of the comment.

For example,

CMPA.L A1,A2 ? Are the pointers equal?

2. Type an asterisk (*) in column one of a line and follow it with the text of the

comment. For example,

* This entire line is a comment

3. Follow any complete instruction or directive with a least one space and some text.

For example,

MOVEQ #10,DO place initial value in DO

In addition, note that all blank lines are treated by the assembler as comment lines.

3-3

Macro Assembler AmigaDOS Developers Manual

3.3.2 Executable Instructions

The source statements have the general overall format:

<opcode> [<operand>[,<operand>]...][<comment>l

To separate each field from the next, press the SPACEBAR or TAB key. This produces a separator

character. You may use more than one space to separate fields.

3.3.2.1 Label Field

A label is a user symbol, or programmer-defined name, that either

a) Starts in the first column and is separated from the next field by at least one space, or

b) Starts in any column, and is followed immediately with a colon (:).

If a label is present, then it must be the first non-blank item on the line. The assembler assigns the

value and type of the program counter, that is, the memory address ofthe first byte ofthe instruction

or data being referenced, to the label. Labels are allowed on all instructions, and on some directives, or

they may stand alone on a line. See the specifications ofindividual directives in Section 3.7 for whether

a label field is allowed.

Note: You must not give multiple definitions to labels. Also, you must not use instruction names,

directives, or register names as labels.

3.3.2.2 Local Labels

Local labels are provided as an extension to the MOTOROLA specification. They take the form nnn$

and are only valid between any proper (named) labels. Thus, in this example code segment

Labels Opcodes Operands

FOO:

1$:

BAA:

MOVE.L

MOVE.B

DBRA

MOVEQ

TRAP

D6,D0

(A0)+f

D0,l$

#20,DO

#4

the label 1$ is only available from the line following the one labelled FOO to the line before the one

labelled BAA. In this case, you could then use the label 1$ in a different scope elsewhere in the

program.

3-4

AmigaDOS Developer's Manual Macro Assembler

3.3.2.3 Opcode Field

The Opcode field follows the Label field and is separated from it by at least one space. Entries in this

field are ofthree types.

1. The MC68000 operation codes, as defined in the MC68000 User Manual.

2. Assembler Directives.

3. Macro invocations.

To enter instructions and directives that can operate on more than one data size, you use an optional

Size-Specifier subfield, which is separated from the opcode by the period (.) character. Possible size

specifiers are as follows:

B - Byte-sized data (8 bits)

W- Word-sized data (16 bits)

L - Long Word-sized data (32 bits)

or Long Branch specifier

S - Short Branch specifier

The size specifier must match with the instruction or directive type that you use.

3.3.2.4 Operand Field

If present, the operand field contains one or more operands to the instruction or directive, and must be

separated from it by at least one space. When you have two or more operands in the field, you must

separate them with a comma (,). The operand field terminates with a space or newline character (a

newline character is what the assembler receives when you press RETURN), so you must not use

spaces between operands.

3.3.2.5 Comment Field

Anything after the terminating space of the operand field is ignored. So the assembler treats any

characters you insert after a space as a comment.

3-5

Macro Assembler AmigaDOS Developer's Manual

3.4 Expressions

An expression is a combination of symbols, constants, algebraic operators, and parentheses that you

can use to specify the operand field to instructions or directives. You may include relative symbols in

expressions, but they can only be operated on by a subset ofthe operators.

3.4.1 Operators

The available operators are listed below in order ofprecedence.

1. Monadic Minus, Logical NOT (- and ")

2. Lshift,Rshift(<<and>>)

3. Logical AND, Logical OR (& and!)

4. Multiply, Divide(*and/)

5. Add, Subtract (+and-)

To override the precedence of the operators, enclose sub-expressions in parentheses. The assembler

evaluates operators of equal precedence from left to right. Note that, normally, you should not have

any spaces in an expression, as a space is regarded as a delimiter between one field and another.

3.4.2 OperandTypes for Operators

In the following table, fAf represents absolute symbols, and R represents relative symbols. The table

shows all the possible operator/operand combinations, with the type of the resulting value. V

indicates an error. The Monadic minus and the Logical not operators are only valid with an absolute

operand.

Operators

+

-

/

&

!

»

«

Operands

A Op A

A

A

A

A

A

A

A

A

R op R

X

A

X

X

X

X

X

X

A op R

R

X

X

X

X

X

X

X

R op A

R

R

X

X

X

X

X

X

Table 3-A: OperandTypes for Operators

3.4.3 Symbols

A symbol is a string ofup to 30 characters. The first character ofa symbol must be one offollowing:

o An alphabetic charcter, that is, a through z, or A through Z.

o An underscore ().

o A period (.).

3-6

AmigaDOS Developer's Manual Macro Assembler

The rest ofthe characters in the string can be any ofthese characters or also numeric (0 through 9). In

all symbols, the lower case characters (a-z) are not treated as synonyms with their upper case

equivalents (unless you use the option C when you invoke the assembler). So ffredf is different from

TRED9 and TRedV However, the assembler recognizes instruction optcodes, directives, and register

names in either upper or lower case. A label equated to a register name with EQUR is also recognized

by the assembler in either upper or lower case. Symbols can be up to 30 characters in length, all of

which are significant. The assembler takes symbols longer than this and truncates them to 30

characters, giving a warning that it has done so. The Instruction names, Directive names, Register

names, and special symbols CCR, SR, SP and USP cannot be used as user symbols. A symbol can be

one ofthree types:

Absolute

a) The symbol was SET or EQUated to an Absolute value

Relative

a) The symbol was SET or EQUated to a Relative value

b) The symbol was used as a label

Register

a) The symbol was set to a register name using EQUR (This is an extension from the

MOTOROLA specification).

There is a special symbol *, which has the value and type of the current program counter, that is, the

address ofthe current instruction or directive that the assembler is acting on.

3.4.4 Numbers

You may use a number as a term of an expression, or as a single value. Numbers ALWAYS have

absolute values andcan take one ofthe following formats:

Decimal

(a string ofdecimal digits)

Example: 1234

Hexadecimal

($ followed by a string ofhex digits)

Example: $89AB

Octal

(@ followed by a string ofoctal digits)

Example: @743

3-7

Macro Assembler AmigaDOS Developer's Manual

Binary

(% followed by zeros and ones)

Example: %10110111

ASCn Literal

(Up to 4 ASCII characters within quotes)

Examples: fABCDf '*'

Strings ofless than 4 characters arejustified to the right, using NUL as the packing character.

To obtain a quote character in the string, you must use two quotes. An example ofthis is

•Ifs1

3.5 Addressing Modes

The effective address modes define the operands to instructions and directives, and you can find a

detailed description of them in any good reference book on the 68000. Addresses refer to individual

bytes, but instructions, Word and Long Word references, access more than one byte, and the address

for these must be word aligned.

In the following table, Dn represents one of the data registers (D0-D7), 'An1 represents one of the

address registers (A0-A7, SP and PC), 'a1 represents an absolute expression, Y represents a relative

expression, and fXn' represents An or Dn, with an optional \W or \L' size specifier. The syntax for each

ofthe modes is as follows:

3-8

AmigaDOS Developer's Manual Macro Assembler

AddressMode

Dn

Table 3-B: MacroAssembler Address Modesand Registers

Description andExamples

Data Register Direct

Example: MOVE DO,D1

An Address Register Direct

Example: MOVEA AO,A1

(An) Address Register Indirect

Example: MOVE DO,(A1)

(An)+ Address Register Indirect Post Increment

Example: MOVE (A7)+,D0

-(An) Address Register Indirect Pre Decrement

Example: MOVE D0,-(A7)

a(An) Address Register Indirect with Displacement

Example: MOVE 20(A0),Dl

a(An,Xn) Address Register Indirect with Index

Example: MOVE 0(A0,D0),Dl

MOVE 12(A1,AO.L),D2

MOVE 120(A0,D6.W),D4

3-9

Macro Assembler AmigaDOS Developer's Manual

(continuation of3-B)

Address Mode Description andExamples

a Short absolute (16 bits)

Example: MOVE $1000,D0

a Long absolute (32 bits)

Example: MOVE $10000,D0

r Program Counter Relative with Displacement

Example: MOVE ABC,D0

(ABC is relative)

r(Xn) Program Counter Relative with Index

Example: MOVE ABC(DO.L),D1

(ABC is relative)

#a Immediate data

Example: MOVE #1234,D0

USP)

CCR) Special addressing modes

SR)

Example: MOVE A0,USP

MOVE D0,CCR

MOVE D1,SR

3.6 Variants on Instruction Types

Certain instructions (for example, ADD, CMP) have an address variant (that refers to address

registers as destinations), immediate and quick forms (when immediate data possibly within a

restricted size range appears as an operand), and a memory variant (where both operands must be a

postincrement address).

To force a particular variant to be used, you may append A, Q, I or M to the instruction mnemonic. In

this case, the assembler uses the specified form of the instruction, if it exists, or gives an error

message.

If, however, you specify no particular variant, the assembler automatically converts to the T, 'A1 or TVT

forms where appropriate. However, it does not convert to the 'Q' form. For example, the assembler
converts the following:

ADD.L A2,A1

to

ADDA.L A2,A1

3-10

AmieraDOS Developer's Manual Macro Assembler

3.7 Directives

All assembler directives (with the exception of DC and DCB) are instructions to the assembler, rather

than instructions to be translated into object code. At the beginning of this section, there is a list of all

the directives (Table 3-C), arranged by function; at the end there is an individual decription for each

directive, arranged by function.

Note that the assembler only allows labels on directives where specified. For example, EQU is allowed

a label. It is optional for RORG, but not allowed for LLEN or TTL.

The following table lists the directives by function:

Table 3-C: Directives

Assembly Control

Directive Description

SECTION

RORG

OFFSET

END

Symbol Definition

Directive

EQU

EQUR

REG

SET

Data Definition

Directive

DC

DCB

DS

Program section

Relocatable origin

Define offsets

Program end

Description

Assign permanent value

Assign permanent register value

Assign permanent value

Assign temporary value

Description

Define constants

Define Constant Block

Define storage

3-11

Macro Assembler

ListingControl

Directive

PAGE

LIST

NOLIST(NOL)

SPCn

NOPAGE

LLENn

PLENn

TTL

NOOBJ

FAIL

FORMAT

NOFORMAT

ConditionalAssembly

Directive

CNOP

IFEQ

IFNE

IFGT

IFGE

IFLT

IFLE

IFC

IFNC

IFD

IFND

ENDC

Macro Directives

Directive

MACRO

NARG

ENDM

MEXIT

External Symbols

Directive

XDEF

XREF

AmigaDi

(continuation of3-O

Description

Page-throw to listing

Turn on listing

Turn offlisting

Skip n blank lines

Turn offpaging

Set line length (60 < = n < = 132)

Set page length (24 < = n < = 100)

Set program title (max 80 chars)

Disable object code output

Generate an assembly error

No action

No action

Description

Conditional NOP for alignment

Assemble ifexpression is 0

Assemble ifexpression is not 0

Assemble ifexpression > 0

Assemble ifexpression > = 0

Assemble ifexpression < 0

Assemble ifexpression < = 0

Assemble ifstrings are identical

Assemble ifstrings are not identical

Assemble ifsymbol is defined

Assemble ifsymbols is not defined

End ofconditional assembly

Description

Define a macro name

Special symbol

End ofmacro definition

Exit the macro expansion

Description

Define external name

Reference external name

3-12

AmigaDOS Developer's Manual Macro Assembler

General Directives

Directive

INCLUDE

MASK2

IDNT

(continuationof3-C)

Description

Insert file in the source

No action

Name program unit

Assembly Control Directives

SECTION Program Section

Format: [<label>] SECTION <name>[,<type>J

This directive tells the assembler to restore the counter to the last location allocated in the named
section (or to zero ifused for the first time).

<name> is a character string optionally enclosed in double quotes.

<type> ifincluded, must be one ofthe following keywords:

CODE indicates that the section contains relocatable code. This is the default.

DATA indicates that the section contains initialized data (only).

BSS indicates that the section contains uninitialized data

The assembler can maintain up to 255 sections. Initially, the assembler begins with an unnamed

CODE section. The assembler assigns the optional symbol <labels> to the value of the program

counter after it has executed the SECTION directive. In addition, where a section is unnamed, the

shorthand for that section is the keyword CODE.

RORG Set Relative Origin

Format: [<label>l RORG <absexp>

The RORG directive changes the program counter to be <absexp> bytes from the start of the current

relocatable section. The assembler assigns relocatable memory locations to subsequent statements,

starting with the value assigned to the program counter. To do addressing in relocatable sections, you

use the 'program counter relative with displacement* addressing mode. The label value assignment is

the same as for SECTION.

3-13

Macro Assembler AmigaDOS Developer's Manual

OFFSET Define offsets

Format: OFFSET <absexp>

To define a table of offsets via the DS directive beginning at the address <absexp>, you use the

OFFSET directive. Symbols defined in an OFFSET table are kept internally, but no code-producing

inductions or directives may appear. To terminate an OFFSET section, you use a RORG, OFFSET,

SECTION, or END directive.

END End ofprogram

Format: [<label>] END

The END directive tells the assembler that the source is finished, and the assembler ignores

subsequent source statements. When the assembler encounters the END directive during the first

pass, it begins the second pass. If, however, it detects an end-of-file before an END directive, it gives a

warning message. If the label field is present, then the assembler assigns the value of the current

program counter to the label before it executes the END directive.

Symbol Definition Directives

EQU Equate symbol value

Format: <label> EQU <exp>

The EQU directive assigns the value of the expression in the operand field to the symbol in the label

field. The value assigned is permanent, so you may not define the label anywhere else in the program.

Note: Do not insert forward references within the expression.

EQUR Equate register value

Format: <label> EQUR <register>

This directive lets you equate one of the processor registers with a user symbol. Only the Address and

Data registers are valid, so special symbols like SR, CCR, and USP are illegal here. The register is

permanent, so you cannot define the label anywhere else in the program. The register must not be a

forward reference to another EQUR statement. The assembler matches labels defined in this way

without distinguishing upper and lower case.

3-14

AmigaDOS Developer's Manual Macro Assembler

REG Define register list

Format: <label> REG <register list>

The REG directive assigns a value to label that the assembler can translate into the register list mask

format used in the MOVEM instruction. <register list> is ofthe form

Rl[-R2][/R3[-R411...

SET Set symbol value

Format: <label> SET <exp>

The SET directive assigns the value of the expression in the operand field to the symbol in the label

field. SET is identical to EQU, apart from the fact that the assignment is temporary. You can always

change SET later on in the program.

Note: You should not insert forward references within the expression or refer forward to symbols that

you defined with SET.

Data Definition Directives

DC Define Constant

Format: [<label >] DC[.<size>] <list>

The DC directive defines a constant value in memory. It may have any number ofoperands, separated

by commas (,). The values in the list must be capable of being held in the data location whose size is

given by the size specifier on the directive. Ifyou do not give a size specifier, DC assumes it is .W. Ifthe

size is .B, then there is one other data type that can be used: that of the ASCII string. This is an

arbitrarily long series ofASCII characters, contained within quotation marks. As with ASCII literals,

ifyou require a quotation mark in the string, then you must enter two. If the size is .W or .L, then the

assembler aligns the data onto a word boundary.

DCB Define Constant Block

Format: [<label>l DCB[.<size>] <absexp>,<exp>

You use the DCB directive to set a number (given by <absexp>) ofbytes, words, or longwords to the

value ofthe expression <exp>. DCB. <size> n,exp is equivalent to repeating n times the statement

DC.<size>exp.

3-15

Macro Assembler AmigaDOS Developer's Manual

DS Define Storage

Format: [<label>] DS[.<size>] <absexp>

To reserve memory locations, you use the DS directive. DS, however, does no initialization. The

amount of space the assembler allocates depends on the data size (that you give with the size specifier

on the directive), and the value of the expression in the operand field. The assembler interprets this as

the number ofdata items of that size to allocate. As with DC, if the size specifier is .W or .L, DS aligns

the space onto a word boundary. So, DS.W 0 has the effect ofaligning to a word boundary only. Ifyou do

not give a size specifier, DS assumes a default of.W. See CNOP for a more general way of handling

alignment.

listing Control Directives

PAGE Page Throw

Format: PAGE

Unless paging has been inhibited, PAGE advances the assembly listing to the top ofthe next page. The

PAGE directive does not appear on the output listing.

LIST Turn on Listing

Format: LIST

The LIST directive tells the assembler to produce the assembly listing file. Listing continues until it

encounters either an END or a NOLIST directive. This directive is only active when the assembler is

producing a listing file. The LIST directive does not appear on the output listing.

NOLIST Turn off Listing

Format: NOLIST

NOL

The NOLIST or NOL directive turns offthe production ofthe assembly listing file. Listing ceases until

the assembler encounters either an END or a LIST directive. The NOLIST directive does not appear on

the program listing.

3-16

AmigaDOS Developer's Manual Macro Assembler

SPC Space Blank Lines

Format: SPC <number>

The SPC directive outputs the number of blank lines given by the operand field, to the assembly

listing. The SPC directive does not appear on the program listing.

NOPAGE Turn offPaging

Format NOPAGE

The NOPAGE directive turns offthe printing ofpage throws and title headers on the assembly listing.

LLEN Set Line Length

Format: LLEN <number>

The LLEN directive sets the line length of the assembly listing file to the value you specified in the

operand field. The value must lie between 60 and 132, and can only be set once in the program. The

LLEN directive does not appear on the assembly listing. The default is 132 characters.

PLEN Set Page Length

Format: PLEN <number>

The PLEN directive sets the page length of the assembly listing file to the value you specified in the

operand field. The value must lie between 24 and 100, and you can only set it once in the program. The

default is 60 lines.

TTL Set Program Title

Format: TTL <title string>

The TTL directive sets the title of the program to the string you gave in the operand field. This string

appears as the page heading in the assembly listing. The string starts at the first non-blank character

after the TTL, and continues until the end of line. It must not be longer than 40 characters in length.

The TTL directive does not appear on the program listing.

3-17

Macro Assembler AmigaDOS Developer's Manual

NOOBJ Disable Object Code Generation

Format: NOOBJ

The NOOBJ directive disables the production of the object code file at the end of assembly. This

directive disables the production of the code file, even if you specified a file name when you called the

assembler.

FAIL Generate a user error

Format: FAIL

The FAIL directive tells the assembler to flag an error for this input line.

FORMAT No action

Format: FORMAT

The assembler accepts this directive but takes no action on receiving it. FORMAT is included for

compatibility with other assemblers.

NOFORMAT No action

Format: NOFORMAT

The assembler accepts this directive but takes no action on receiving it. NOFORMAT is included for

compatibility with other assemblers.

Conditional Assembly Directives

CNOP Conditional NOP

Format: [<label>] CNOP <number>,<number>

This directive is an extension from the Motorola standard and allows a section ofcode to be aligned on

any boundary. In particular, it allows any data structure or entry point to be aligned to a long word

boundary.

The first expression represents an offset, while the second expression represents the alignment

required for the base. The code is aligned to the specified offset from the nearest required alignment

boundary. Thus

3-18

AmigaDOS Developer's Manual Macro Assembler

CNOP 0,4

aligns code to the next long wordboundary while

CNOP 2,4

aligns code to the word boundary 2 bytes beyond the nearest long word aligned boundary.

IFEQ Assemble ifexpresion = 0

IFNE Assemble ifexpression <> 0

IFGT Assemble ifexpression > 0

IFGE Assemble ifexpression > = 0

IFLT Assemble ifexpression < 0

IFLE Assemble ifexpression < = 0

Format: IFxx <absexp>

You use the IFxx range of directives to enable or disable assembly, depending on the value of the

expression in the operand field. If the condition is not TRUE (for example, IFEQ 2+1), assembly

ceases (that is, it is disabled). The conditional assembly switch remains active until the assembler

finds a matching ENDC statement. You can nest conditional assembly switches arbitrarily,

terminating each level ofnesting with a matching ENDC.

IFC Assemble ifstrings are identical

IFNC Assemble ifstrings are not identical

Format: IFC <string>,<string>

IFNC <string>,<string>

The strings must be a series ofASCII characters enclosed in single quotes, for example, TOO1 orfl (the

empty string). If the condition is not TRUE, assembly ceases (that is, it is disabled). Again the

conditional assembly switch remains active until the assembler finds a matching ENDC statement.

IFD Assemble ifsymbol defined

IFND Assemble ifsymbol not defined

Format: IFD <symbol name>

IFND <symbol name>

Depending on whether or not you have already defined the symbol, the assembler enables or disables

assembly until it finds a matching ENDC.

3-19

Macro Assembler AmigaDOS Developer's Manual

ENDC End conditional assembly

Format: ENDC

To terminate a conditional assembly, you use the ENDC directive, set up with any of the 8 IFxx

directives above. ENDC matches the most recently encountered condition directive.

Macro Directives

MACRO Start a macro definition

Format: <label> MACRO

MACRO introduces a macro definition. ENDM terminates a macro definition. You must provide a

label, which the assembler uses as the name of the macro; subsequent uses ofthat label as an operand

expand the contents of the macro and insert them into the source code. A macro can contain any

opcode, most assembler directives, or any previously defined macro. A plus sign (+) in the listing,

marks any code generated by macro expansion. When you use a macro name, you may append a

number of arguments, separated by commas. If the argument contains a space (for example, a string

containing a space) then you must enclose the entire argument within < (less than) and > (greater

than) symbols.

The assembler stores up and saves the source code that you enter (after a MACRO directive and before

an ENDM directive) as the contents of the macro. The code can contain any normal source code. In

addition, the symbol \ (backslash) has a special meaning. Backslash followed by a number n indicates

that the value of the nth argument is to be inserted into the code. If the nth argument is omitted then

nothing is inserted. Backslash followed by the symbol v@* tells the assembler to generate the text

\nnn\ where nnn is the number oftimes the \@ combination it has encountered. This is normally used

to generate unique labels within a macro.

You may not nest macro definitions, that is, you cannot define a macro within a macro, although you

can call a macro you previously defined. There is a limit to the level of nesting of macro calls. This

limit is currently set at ten.

Macro expansion stops when the assembler encounters the end of the stored macro text, or when it

finds a MEXIT directive.

NARG Special symbol

Format: NARG

The symbol NARG is a special reserved symbol and the assembler assigns it the index of the last

argument passed to the macro in the parameter list (even nulls). Outside ofa macro expansion, NARG

has the value 0.

3-20

AmigaDOS Developer's Manual Macro Assembler

ENDM Terminate a macro definition

Format: ENDM

This terminates a macro definition introduced by a MACRO directive.

MEXTT Exit from macro expansion

Format: MEXIT

You use this directive to exit from macro expansion mode, usually in conjunction with the IFEQ and

IFNE directives. It allows conditional expansion of macros. Once it has executed the directive, the

assembler stops expanding the current macro as though there were no more stored text to include.

External Symbols

XDEF Define an internal label as an external entry

point

Format: XDEF <label> [,<label>...]

One or more absolute or relocatable labels may follow the XDEF directive. Each label defined here

generates an external symbol definition. You can make references to the symbol in other modules

(possibly from a high-level language) and satisfy the references with a linker. If you use this directive

or XREF, then you cannot directly execute the code produced by the assembler.

3-21

Macro Assembler AmigaDOS Developer's Manual

XREF Define an external name

Format: XREF <label> [,<label>...l

One or more labels that must not have been defined elsewhere in the program follow the XREF

directive. Subsequent uses of the label tell the assembler to generate an external reference for that

label. You use the label as if it referred to an absolute or relocatable value depending on whether the

matching XDEF referred to an absolute or relocatable symbol.

The actual value used is filled in from another module by the linker. The linker also generates any

relocation information that may be required in order for the resulting code to be relocatable.

External symbols are normally used as follows. To specify a routine in one program segment as an

external definition, you place a label at the start of the routine and quote the label after an XDEF

directive. Another program may call that routine if it declares a label via the XREF directive and then

jumps to the label so declared.

General Directives

INCLUDE Insert an external file

Format: INCLUDE ff <file name >"

The INCLUDE directive allows the inclusion of external files into the program source. You set up the

file that INCLUDE inserts with the string descriptor in the operand field. You can nest INCLUDE

directives up to a depth of three, enclosing the file names in quotes as shown. INCLUDE is especially

useful when you require a standard set ofmacro definitions or EQUs in several programs.

You can place the definitions in a single file and then refer to them from other programs with a

suitable INCLUDE. It is often convenient to place NOLIST and LIST directives at the head and tail of

files you intend to include via INCLUDE. AmigaDOS searches for the file specification first in the

current directory, then in each subsequent directory in the list you gave in the -i option.

MASK2 No action

Format: MASK2

The assembler accepts the MASK2 directive, but it takes no action on receiving it.

3-22

AmigaDOS Developer's Manual Macro Assembler

IDNT Name program unit

Format: IDNT <string>

A program unit, which consists ofone or more sections, must have a name. Using the IDNT directive,

you can define a name consisting of a string optionally enclosed in double quotes. Ifthe assembler does

not find a IDNT directive, it outputs a program unit name that is a null string.

3-23

Chapter 4: The Linker

This chapter describes the AmigaDOS Linker. The AmigaDOS Linker produces a single binary load

file from one or more input files. It can also produce overlaid programs.

Table ofContents

4.1 Introduction

4.2 Usingthe Linker

4.2.1 Command Line Syntax

4.2.2 WITH Files

4.2.3 Errors and Other Exceptions

4.2.4 MAP and XREF Output

4.3 Overlaying

4.3.1 OVERLAY Directive

4.3.2 References To Symbols

4.3.3 Cautionary Points

4.4 Error Codes andMessages

Ami&aDOS Develcroer's Manual The Linker

4.1 Introduction

ALINK produces a single binary output file from one or more input files. These input files, known as

object files, may contain external symbol information. To produce object files, you use your assembler

or language translator. Before producing the output, or load file, the linker resolves all references to

symbols.

The linker can also produce a link map and symbol cross reference table.

Associated with the linker is an overlay supervisor. You can use the overlay supervisor to overlay

programs written in a variety of languages. The linker produces load files suitable for overlaying in

this way.

You can drive the linker in two ways:

1. as a Command line. You can specify most ofthe information necessary for running the linker in

the command parameters.

2. as a Parameter file. As an alternative, if a program is being linked repetitively, you can use a

parameter file to specify all the data for the linker.

These two methods can take three types ofinput files:

1. Primary binary input. This refers to one or more object files that form the initial binary input to

the linker. These files are always output to the load file, and the primary input must not be

empty.

2. Overlay files. Ifoverlaying, the primary input forms the root ofthe overlay tree, and the overlay

files form the rest ofthe structure.

3. Libraries. This refers to specified code that the linker incorporates automatically. Libraries

may be resident or scanned. A resident library is a load file which may be resident in memory,

or loaded as part ofthe 'library open9 call in the operating system. A scanned library is an object

file within an archive format file. The linker only loads the file if there are any outstanding

external references to the library.

The linker works in two passes.

1. In the first pass, the linker reads all the primary, library and overlay files, and records the code

segments and external symbol information. At the end of the first pass, the linker outputs the

map and cross reference table, ifrequired.

2. Ifyou specify an output file, then the linker makes second pass through the input. First it copies

the primary input files to the output, resolving symbol references in the process, and then it

copies out the required library code segments in the same way. Note that the library code

segments form part ofthe root ofthe overlay tree. Next, the linker produces data for the overlay

supervisor, and finally outputs the overlay files.

In the first pass, after reading the primary and overlay input files, the linker inspects its table of

symbols, and if there are any remaining unresolved references, it reads the files, if any, that you

specified as the library input. The linker then marks any code segments containing external

definitions for these unresolved references for subsequent inclusion in the load file. The linker only

4-1

The Linker AmigaDOS Developer's Manual

includes those library code segments that you have referenced.

4.2 Using the Linker

To use the linker, you must know the command syntax, the type of input and output that the linker

uses, and the possible errors that may occur. This section attempts to explain these things.

4.2.1 Command Line Syntax.

The ALINK command has the following parameters:

ALINK [FROM | ROOT] files [TO file] [WITH file]

[VER file] [LIBRARY | LIB files] [MAP file]

[XREF file] [WIDTH n]

The keyword template is

tfFROM=ROOT,TO/K,WITH/K,VER^,LIBRARY=LIB/K,

MAP/K,XREF/K,WIDTH/Klf

In the above, file means a single file name, 'files1 means zero or more file names, separated by a

comma or plus sign, and vnv is an integer.

The following are examples ofvalid uses ofthe ALINK command:

ALINK a

ALINK ROOT a+b+c+d MAP map-file WIDTH 120

ALINK a,b,c TO output LIBRARY :flib/1ib,obj/newlib

When you give a list offiles, the linker reads them in the order you specify.

The parameters have the following meanings:

FROM: specifies the object files that you want as the primary binary input. The linker always

copies the contents ofthese files to the load file to form part ofthe overlay root. At least

one primary binary input file must be specified. ROOT is a synonym for FROM.

TO: specifies the destination for the load file. Ifthis parameter is not given, the linker omits

the second pass.

WITH: specifies files containing the linker parameters, for example, normal command lines.

Usually you only use one file here, but, for completeness, you can give a list offiles. Note

that parameters on the command line override those in WITH files. You can find a full

description ofthe syntax ofthese files in section 4.2.2 ofthis manual.

VER: specifies the destination of messages from the linker. If you do not specify VER, the

linker sends all messages to the standard output (usually the terminal).

LIBRARY: specifies the files that you want to be scanned as the library. The linker includes only

referenced code segments. LIB is a valid alternative for LIBRARY.

MAP: specifies the destination ofthe link map.

4-2

AmigaDOS Developer's Manual The Linker

XREF: specifies the destination ofthe cross reference output.

WIDTH: specifies the output width that the linker can use when producing the link map and cross

reference table. For example, if you send output to a printer, you may need this

parameter.

4.2.2WITH Files

WITH files contain parameters for the linker. You use them to save typing a long and complex ALINK

command line many times.

A WITH file consists of a series of parameters, one per line, each consisting of a keyword followed by

data. You can terminate lines with a semicolon (;), where the linker ignores the rest of the line. You

can then use the rest of the line after the semicolon to include a comment. The linker ignores blank

lines.

The keywords available are as follows:

FROM (or ROOT) files

TO file

LIBRARY files

MAP [file]

XREF [file]

OVERLAY

tree specification

#

WIDTH n

where 'file* is a single filename, 'files' is one or more filenames, '[file]' is an optional filename, and 'nf is

an integer. You may use an asterisk symbol (*) to split long lines; placing one at the end ofa line tells

the printer to read the next line as a continuation line. If the filename after MAP or XREF is omitted,

the output goes to the VER file (the terminal by default).

Parameters on the command line override those in a WITH file, so that you can make small variations

on standard links by combining command line parameters and WITH files. Similarly, ifyou specify a

parameter more than once in WITH files, the linker uses the first occurrence.

Note: In the second example below, this is true even ifthe first value given to a parameter is null.

Examples ofWITH files and the corresponding ALINK calls:

ALINK WITH link-file

where link-file9 contains

FROM obj/main,obj/s

TO bin/test

LIBRARY obj/lib

MAP

XREF XO

is the same as specifying

4-3

The Linker AmigaDOS Developer's Manual

ALINK FROM obj/main,obj/s TO bin/test

LIBRARY obj/lib XREP xo

The command

ALINK WITH Ik in LIBRARY llfl

where Ikin* contains

FROM bin/prog/bin/subs

LIBRARY nag/fortlib

TO linklib/prog

is the same as the command line

ALINK FROM bin/prog,bin/subs TO linklib.prog

Note: In the example above, the null parameter for LIBRARY on the command line overrides the value

'nag/fortlib1 in the WITH file, and so the linker does not read any libraries.

4.2.3 ErrorsandOtherExceptions

Various errors can occur while the linker is running. Most of the messages are self-explanatory and

refer to the failure to open files, or to errors in command or binary file format. After an error, the

linker terminates at once.

There are a few messages that are warnings only. The most important ones refer to undefined or

multiply-defined symbols. The linker should not terminate after receiving a warning.

If any undefined symbols remain at the end of the first pass, the linker produces a warning, and

outputs a table ofsuch symbols. During the second pass, references to these symbols become references

to location zero.

Ifthe linker finds more than one definition ofa symbol during the first pass, it puts out a warning, and

ignores the later definition. The linker does not produce this message ifthe second definition occurs in

a library file, so that you can replace library routines without it producing spurious messages. A

serious error follows if the linker finds inconsistent symbol references, and linking then terminates at

once.

Since the linker only uses the first definition of any symbol, it is important that you understand the

following order in which files are read.

1. Primary (FROM or ROOT) input.

2. Overlay files.

3. LIBRARY files.

Within each group, the linker reads the files in the order that you specify in the file list. Thus

definitions in the primary input override those in the overlay files, and those in the libraries have

lowest priority.

4-4

AmigaDOS Developer's Manual The Linker

4.2.4MAPandXREFOutput

The link map, which the linker produces after the first pass, lists all the code segments that the linker

output to the load file in the second pass, in the order that they must be written.

For each code segment, the linker outputs a header, starting with the name of the file (truncated to

eight letters), the code segment reference number, the type (that is, data, code, bss, or COMMON), and

size. If the code segment was in an overlay file, the linker also gives the overlay level and overlay

ordinate.

After the header, the linker prints each symbol defined in the code segment, together with its value. It

prints the symbols in ascending order oftheir values, appending an asterisk (*) to absolute values.

The value of the WIDTH parameter determines the number of symbols printed per line. If this is too

small, then the linker prints one symbol on each line.

The cross reference output also lists each code segment, with the same header as in the map.

The header is followed by a list ofthe symbols with their references. Each reference consists ofa pair of

integers, giving the offset of the reference and the number of the code segment in which it occurs. The

code segment number refers to the number given in each header.

4.3 Overlaying

The automatic overlay system provided by the linker and the overlay supervisor allows programs to

occupy less memory when running, without any alterations to the program structure.

When using overlaying, you should consider the program as a tree structure. That is, with the root of

the tree as the primary binary input, together with library code segments and COMMON blocks. This

root is always resident in memory. The overlay files then form the other nodes ofthe tree, according to

specifications in the OVERLAY directive.

The output from the linker when overlaying, as in the usual case, is a single binary file, which consists

of all the code segments, together with information giving the location within the file of each node of

the overlay tree. When you load the program only the root is brought into memory. An overlaj

supervisor takes care of loading and unloading the overlay segments automatically. The linker

includes this overlay supervisor in the output file produced from an link using overlays. The overlay
supervisor is invisible to the program running.

4.3.1 OVERLAY Directive

To specify the tree structure of a program to the linker, you use the OVERLAY directive. This
directive is exceptional in that you can only use it in WITH files. As with other parameters, the linker
uses the first OVERLAY directive you give it.

4-5

The Linker AmieaDOS Develoner's Manual

The format ofthe directive is

OVERLAY

Xfiles

Note: The overlay directive can span many lines. The linker recognizes a hash sign (#) or the
end-of-file as a terminator for the directive.

Each line after OVERLAY specifies one node ofthe tree, and consists ofa count X and a file list.

The level of a node specifies its 'depth' in the tree, starting at zero, which is the level of the root. The

count, X, given in the directive, consists of zero or more asterisks, and the overlay level of the node is
given by X+l.

As well as the level, each node other than the root has an ordinate value. This refers to the order in

which the linker should read the descendents of each node, and starts at 1, for the first 'offspring' of a

parent node.

Note: There may be nodes with the same level and ordinate, but with different parents.

While reading the OVERLAY directive, the linker remembers the current level, and, for each new

node, compares the level specified with this value. If less, then the new node is a descendent of a

previous one. Ifequal, the new node has the same parent as the current one. If greater, the new node is

a direct descendant ofthe current one, and so the new level must be one greater than the current value.

A number ofexamples may help to clarify this:

Directive Level Ordinate Tree

OVERLAY

a

b

c

OVERLAY

a

b

*c

*d

#

1

1

1

1

1

2

2

1

2

3

1

2

1

2

ROOT

/l\
a b c

ROOT

A
a b

/I
c d

Figure 4-A

4-6

AmigaDOS Developer's Manual The Linker

OVERLAY

a

b

*c

*d

e

f

*g

*h

**i

**j

*k

1

1

1

2

2

1

1

2

2

3

3

2

1

1

2

1

2

3

4

1

2

1

2

3

5

-ROOT-

/ /l\ \
/ / 1 \ \

a b e £ 1

/I /l\
c d ghk

/I
i j

(continuationofFigure 4-A)

The level and ordinate values given above refer to ttie node specified on the same line. Note that all the

files given in the examples above could have been file lists. Single letters are for clarity. For example,

Figure 4-B

ROOT bin/mainaaa

OVERLAY

bin/mainbbb,bin/mainccc,bin/mainddd

*bin/makereal

bin/trbblock,bin/transint,bin/transr

bin/transri

bin/outcode

#

Figure 4-B

specifies the tree in the following figure:

4-7

The Linker n AmigaDOS Developer's Manual

bin/mainaaa

A

/ \
/ \

/ \
/ \
/ \

bin/mainbbb bin/outcode

bin/mainccc

bin/mainddd

A

/ \

/ \

/ \

/ \

/ \
bin/tnakereal bin/trbblock

bin/transint

bin/transr •

bin/transri

Figure 4-C

During linking, the linker reads the overlay files in the order you specified in the directive, line by

line. The linker preserves this order in the map and cross reference output, and so you can deduce the

exact tree structure from the overlay level and ordinate the linker prints with each code segment.

4.3.2 ReferencesTo Symbols

While linking an overlaid program, the linker checks each symbol reference for validity.

Suppose that the reference is in a tree node R, and the symbol in a node S. Then the reference is legal if

one ofthe following is true.

(a) R and S are the same node.

(b) R is a descendent ofS.

(c) R is the parent ofS.

References of the third type above are known as overlay references. In this case, the linker enters the

overlay supervisor when the program is run. The overlay supervisor then checks to see if the code

segment containing the symbol is already in memory. If not, first the code segment, if any, at this

level, and all its descendents are unloaded, and then the node containing the symbol is brought into

memory. An overlaid code segment returns directly to its caller, and so is not unloaded from memory

until another node is loaded on top ofit.

For example, suppose that the tree is:

4-8

AmigaDOS Developer's Manual The Linker

A

/I
/ I
B C

l
/ I \
D E F

When the linker first loads the program, onlyA is in memory. When the linker finds a reference inA to

a symbol in B, it loads and enters B. If B in turn calls D then again a new node is loaded. When B
returns to A, both B and D are left in memory, and the linker does not reload them if the program

requires them later. Now suppose that A calls C. First the linker unloads the code segments that it

does not require, and which it may overwrite. In this case, these are B and D. Once it has reclaimed the

memoryfor these, the linker can load C.

Thus, when the linker executes a given node, all the node's 'ancestors9, up to the root are in memory,

and possibly some ofits descendents.

4.3.3 Cautionary Points

The linker assumes that all overlay references are jumps or subroutine calls, and routes them through

the overlay supervisor. Thus, you should not use overlay symbols as data labels.

Try to avoid impure code when overlaying because the linker does not always load a node that is fresh

from the load file.

The linker gives each symbol that has an overlay reference an overlay number. It uses this value,

which is zero or more, to construct the overlay supervisor entry label associated with that symbol. This

label is of the form 'OVLYnnnn1, where nnnn is the overlay number. You should not use symbols with

this format elsewhere.

The linker gathers together all program sections with the same section name. It does this so that it can

then load them continuously in memory.

4-9

The Linker AmieaDOS Develoaer's Manual

4.4 Error Codes and Messages

These errors should be rare. If they do occur, the error is probably in the compiler and not in your

program. However, you should first check to see that you sent the linker a proper program (for

example, an input program must have an introductory program unit that tells the linker to expect a
program).

Invalid Object Modules

2 Invalid use ofoverlay symbol.

3 Invalid use ofsymbol

4 Invalid use ofcommon

5 Invalid use ofoverlay reference

6 Non-zero overlay reference

7 Invalid external block relocation

8 Invalid bss relocation

9 Invalid program unit relocation

10 Bad offset during 32 bit relocation

11 Bad offset during 6/8 bit relocation

12 Bad offset with 32 bit reference

13 Bad offset with 6/8 bit reference

14 Unexpected end offile

15 Hunk.end missing

16 Invalid termination offile

17 Premature termination offile

18 Premature termination offile

Internal Errors

19 Invalid type in hunk list

20 Internal error during library scan

21 Invalid argument freevector

22 Symbol not defined in second pass

4-10

AmieraDOS Developer's Manual Appendix A

Appendix A: Console Input and Output on the Amiga

Note: Throughout this appendix, the characters fl<CSI>fl represent the "Control Sequence

Introducer. For output, you may either use the two character sequence Esc-[or the one

byte value $9B (hex). For input, you receive $9B's.

Introduction

This appendix describes several ways to do console (keyboard and screen) input and output on the

Amiga. You can open the console as you would any other AmigaDOS file (with fl*ff, "CON:11, "RAW:")

or do direct calls to console.library. The advantages ofusing each are listed below:

♦ "Star" does not open any windows; itjust uses the existing CLI window. You do not

receive any complex character sequences. You do receive lowercase letters a-z,

uppercase letters A-Z, numbers, ASCII special symbols, and control characters.

Basically, if a teletype can generate the character with a single keystroke, you can

receive it. In addition to these characters, you can receive each of them with the

high-order bit set ($80-$FF). Line editing is also performed for you. This means

AmighaDOS accepts <Backspace> and CRTL-X for character and line deletions.

You do not have to deal with these. Any <CSI> sequence is swallowed for you as

well as control characters: C, D, E, F, H, and X. Any <CR> or CTRL-M

characters are converted to CTRL-J (new-line).

CON: Isjust like "*" except that you also get to define a new window.

RAW: The simple case: With RAW: (as compared to CON:) you lose the line editing

functions and you gain access to the function and arrow keys. These are sent as

sequences ofcharacters which you must parse in an intelligent manner.

The "complex" cases: By issuing additional commands to the console processor (by

doing writes to RAW:), you can get even more detailed information. For example,

you can request key press and release information or data on mouse events. See

"Selection ofRAW Input Events" below for details on requesting this information.

console.library:

With this method, you have full control over the console device. You may change

the KeyMap to one ofyour own design and completely "redesign" your keyboard.

A-l

Appendix A AmigaDOS Developer's Manual

Helpful AmigaDOSCommands

Two very helpful AmigaDOS commands let you play with these functions. The first:

TYPE RAW:10/10/100/30/ opt h

accepts input from a RAW: window and displays the results in hex and ASCII. Ifyou want to know for

sure what characters the keyboard is sending, this command provides a very simple way.

The second:

COPY "RAW:10/10/100/30/RAW Input11 "RAW:100/10/200/100/RAW Output11

lets you type sequences into the input window and watch the cursor movement in the output window.

COPY cannot detect end of file on RAW: input, so you have to reboot when you are finished with this

command.

CON Keyboard Input

Ifyou read from the CON: device, the keyboard inputs are preprocessed for you.

You get the ASCII characters like "B". Most normal text gathering programs read from the CON:

device. Special programs like word processors and music keyboard programs use RAW:.

To generate the international and special characters at the keyboard, you can press either ALT key.

This sets the high bit of the ASCII code returned for the key pressed.

Generating $FF (umlaut y) is a special case. If it followed the standard convention, it would be

generated by ALT-DEL. But since the ASCII code (hex 7F) is not generally a printable

character and it is our philosophy that Alt-non-printing character should not generate a printing

character, we have substituted ALT-numeric pad "-".

Table A-l lists the characters you can display on the Amiga. The characters NBSP (non-break space)

and SHY (soft hyphen) are used to render a space and hyphen in text processing with additional

meaning about the properties ofthe character.

A-2

AmicaDOS Developer's Manual Appendix A

Table A-1: International Character Code

a

0
Mi

0
MM

0
MM

0
MM

0
MM

0
MM

0
■Ml

0

1

1

1
Ml

1

1

1
■M

1

1
MM

0
MM

0
MM!

0
MM

0
MM

1
Hi

1
MB

1
BBl

1

0

0

0

0

1
MM

1

1

1
MMl

0
MM

0
Mi

1

Mi

1
Mi

0

0
Mi

1
Mi

1

0

0

1

1

0

0
MMJ

1
■M

1
Mi

0
MM

1
MM

0
Ml

1
MMl

0

1

0
MM

1

0

1

0

1

0

1
MM

0
MM

1
MM

B
i
EIS:

o""l o
n 1 n

mmmYHmmmmEI

wl

00 01

ooH5
01

02

03

04

05

06

07

08

09

'#X#X

;&$■

II
HI

m

10 ■
11

12

13

14

115

m

II

li

•X*Xv>

9

U
i&Sx

m

H

Hi

—o

02
■Ml

SP I

1

II

#

$

#M

&

1

(

)

*

+

-

•

T"
MMMMMH

03
■■

ol
mmmmm

1

2

3

4

5

6

7

8

9

:

;

<

s

>

1

rrn

-V

04
■■

a
MM

A

B

C

D

E

F

G

H

I

J

K

L

M.

N

0

t

0

—T

05
■Mj

Q

R

S

T

U

V

w

X

Y

Z

C

\

3

-

[U
061

% 1

a

b

c
■MM

d

e
MHMMM

f

g

h

i

J

k

L

m

n

0

Lmh

0 11

it

!m
■MMMMl

P

q

r
PMMHM

s .
■MM

t j
MMH

u .
MHMMM

V

w

X
MM

y

z

•C

1

MMMMl

±

1

0

1

0309
MMMMMMMMMMMM

m

m

II

HI

m

■
x*x#x#

m

1.

1

0

10

i

MMMMl

£
MMMMM

S

MMMMM

■MMMM

1
1

MMMMM

§
ft

»

MM

MMMMH

SHY

®

M

1

1

1

11
■MMMM

1

2

MMMMMB

3

MMMMMB

MMMMMB

|i
■■■^

m

1

2

MMMBM

■■MMl

6

MMBf

1

0

0

12

AI

A

A
■MMMMl

A
MMMM

K
MM

a
MBBBM

MMMMl

?

E
MMMHM

t

E
■MMMM

i

t

I

it

HMMMBH

0

1

13
m

2.
N

MMBBM

6
0
MM

6
MMMMl

6
MMMM

0

Wx

0
MBBMB

0

u
■MMMM

0
U

MBMM

MMl

a

mmmmm

1

0

14
■M

a
MM

a
MMMM

a
MMMBM

a
MMMM

M

MM

§
MMMM

s
■BBBBM

5

HMMM

§
mmmm

§

MMMMM

1
MMMMM

M

1

BMMMB

1

1

1

15

SI

Tl
6
MMM

6
MMMB

5
MMMMM

5

0
MMMM

u

0
■BBBBB

Q

u
MMMMM

9
BMMBBB

Tj

A-3

Appendix A AmigaDOS Developer's Manual

Note: AmigaDOS uses CON: input for the CLI and most other commands. When it does this, it filters

out ALL of the function key and cursor key inputs. Programs that run under AmigaDOS can (and

some do) still open the RAW: console handler and process function key input.

CON Screen Output

CON: screen output is just like RAW: screen output except that <LF> (hex OA) is translated into a

new-line character. The net effect is that the cursor moves to the first column of the next line

whenever a <LF> is displayed.

RAWScreen Output

ANSI x3.64 CODES SUPPORTED For writing text to the display:

Independent Control Functions (no introducer):

Ctrl Hex Name Definition

H

I

J

K

L

M

N

0

r

08

09

OA

OB

OC

OD

OE

OF

IB

BS

TAB

LF

VT

FF

CR

SO

SI

ESC

BACKSPACE

TAB

LINE FEED

VERTICAL TAB

FORM FEED

CARRIAGE RETURN

SHIFT OUT

SHIFT IN

ESCAPE

Move the cursor left

1 column

Move right 1 column

Move cursor up 1,

scroll

if necessary

Clear the screen

Move to first column

Set MSB of each

character before

displaying

Undo SHIFT OUT

See below

Precede the following characters with <ESC> to perform the indicated actions.

Chr Name Definition

C RIS RESET TO INITIAL STATE

Precede the following characters with <Esc> or press CTRL-ALT and the letter to perform the

indicated actions.

AmigaDOS Developer's Manual Appendix A

Hex Chr Name Definition

845tD IND INDEX: move the active position down one line

85 E NEL NEXT LINE:

8D M RI REVERSE INDEX:

9B [CSI CONTROL SEQUENCE INTRODUCER:

see next list

Control Sequences (introduced by <CSI>) with parameters. The first character in the following table

(under the <CSI> column) represents the number ofallowable parameters, as follows:

fl0fl0" indicates no parameters allowed.

fTf indicates 0 or 1 numeric parameters.

"2" indicates 2 numeric parameters. (I14;94f)

3" indicates any number ofnumeric parameters, separated by semicolons.

4" indicates exactly 4 numeric parameters.

8M indicates exactly 8 numeric parameters.

"3"
"4"

lion

A-5

Appendix A AmigaDOS Developer's Manual

<CSI> Name Definition

ICH INSERT CHARACTER

1 P

2 R

1 S

1 T

3 h

3 1

3 m

1 n

DCH

CPR

SU

SD

SM

RM

SGR

DSR

Inserts 1 or more spaces, shifting

the remainder of the line to the

right.

1

1

1

1

1

1

2

1

1

1

1

A

B

C

D

E

F

H

J

R

L

M

CUU

CUD

CUP

CUB

CNL

CPL

CUP

ED

EL

IL

DL

CURSOR

CURSOR

CURSOR

CURSOR

CURSOR

CURSOR

CURSOR

ERASE

ERASE

INSERT

DELETE

UP

DOWN

FORWARD

BACKWARD

NEXT LINE

PRECEDING LINE

POSITION

IN DISPLAY

IN LINE

LINE

LINE

Down n lines to column 1

Up n lines to column 1

"<CSI>row; columnH11

(only to end of display)

(only to eol)

Inserts a blank line

BEFORE the line

containing the cursor.

Removes the current

line. Moves all

lines below up by

one. Blanks the

bottom line.

DELETE CHARACTER

CURSOR POSITION REPORT (in Read stream only)

Format of report:

M<CSI>row;columnRM

Removes line from top of screen.

Moves all other lines up one.

Blanks last line.

Removes line from bottom of screen*

Moves all other lines down one.

Blanks top line.

<CSI>20h causes RAW:

to convert <LF> to

<new-line> on output.

RESET MODE <CSI>201 undoes SET MODE 20

SELECT GRAPHIC RENDITION

DEVICE STATUS REPORT

SCROLL UP

SCROLL DOWN

SET MODE

A-6

AmigaDOS Developer's Manual Appendix A

The following are not ANSI standard sequences; rather, they are private Amiga sequences.

1 t aSLPP SET PAGE LENGTH

1 u aSLL SET LINE LENGTH

1 x aSLO SET LEFT OFFSET

1 y aSTO SET TOP OFFSET

3 { aSRE SET RAW EVENTS

8 | alER INPUT EVENT REPORT (read)

3 } aRRE RESET RAW EVENTS

1 " aSKR SPECIAL KEY REPORT (read)

1 p aSCR SET CURSOR RENDITION

<Esc> p turns the cursor off

0 q aWSR WINDOW STATUS REQUEST

4 r aWBR WINDOW BOUNDS REPORT (read)

Examples:

Move cursor right by 1:

<CSI>C or <Tab> or <CSI>1C

Move cursor right by 20:

<CSI>20C

Move cursor to upper left corner (home):

<CSI>H or <CSI>1;1H or <CSI>;1H or <CSI>1;H

Move cursor to the forth column ofthe first line of the window:

<CSI>1;4H or <CSI>;4H

Clear the screen:

<FF> or CTRL-L {clear screen character} or

<CSI>H<CSI>J {home and clear to end of screen} or

<CSI>H<CSI>23M {home and delete 23 lines} or

<CSI>1;1H<CSI>23L {home and insert 23 lines}

A-7

Appendix A AmigaDOS Developer's Manual

RAW Keyboard Input

Reading input from the RAW: console device returns an ANSI x3.64 standard byte stream. This

stream may contain normal characters and/or RAW input event information. You may also request

other RAW input events using the SET RAW EVENTS (aSRE) and RESET RAW EVENTS (aRRE)

control sequences discussed below. See "Selection ofRAW input events" for details.

If you issue a RAW input request and there is no pending input, the read command waits until some

input is received. You can test for characters pending by doing "WaitforChar" requests.

In the default state, the function and arrow keys cause the following sequences to be sent to your

process:

Key Unshifted Sends Shifted Sends

<CSI>1(TFl

F2

F3

F4

F5

F6

F7

F8

F9

F10

HELP

Arrow keys:

Up

Down

Left

Right

<CSI>0

<CSI>1

<CSI>2

<CSI>3

<CSI>4

<CSI>5

<CSI>6

<CSI>7

<CSI>8

<CSI>9

<CSI>?

<CSI>A

<CSI>B

<CSI>C

<CSI>D

<CSI>12~

<CSI>13~

<CSI>14~

<CSI>15~

<CSI>16~

<CSI>17~

<CSI>18~

<CSI>19~

<CSI>?~ (same)

<CSI>S~

<CSI> A* (note space)

<CSI> @~ (note space)

Selection ofRAW Input Events:

Ifyou are using RAW by default, you get the ANSI data and control sequences mentioned above. Ifthis
does not give you enough information about input events, you can request additional information from

the console driver.

If, for example, you need to know when each key is pressed and released, you would request "RAW
keyboard input.11 This is done by writing "<CSI>1{" to the console. The following is a list of valid

RAW input requests:

A-8

AmigaDOS Developer's Manual Appendix A

RAWInput Event Types

Request

Number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Description

nop

RAW keyboard input

RAW mouse input

Event

Pointer position

(unused)

Timer

Gadget pressed

Gadget released

Requester activity

Menu numbers

Close Gadget

Window resized

Window refreshed

Preferences changed

implemented)

Disk removed

Disk inserted

Used internally

Sent whenever your

window is

made active

(not yet

Ifyou select any ofthese events, you start to get information about the events in the following form:

<CSlxclass>;<subclass>;<keycode>;<qualifiers>;<x>;<y>;

<seconds>;<microseconds>|

<CSI> is a one byte field. It is the Control Sequence Introducer, 9B hex.

<class> is the RAW input event type, from the above table.

<subclass> is not currently used and is always zero (0).

<keycode> indicates which key number was pressed (see Figure A-l and Table A-2). This field can

also be used for mouse information.

The <qualifiers> field indicates the state of the keyboard and system. The qualifiers are defined as
follows:

A-9

Appendix A

Bit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Mask

0001

0002

0004

0008

0010

0020

0040

0080

0100

0200

0400

0800

1000

2000

4000

Kev

left shift

right shift

capslock

control

left alt

right alt

left Amiga key pressed

right Amiga key pressed

numeric pad

repeat

interrupt

multi broadcast

left mouse button

right mouse button

middle mouse button

AmisaOOS Developer's Manual

* special, see below

Not currently used

This (active) or all

windows

(not available on std mouse)

15 8000 relative mouse Indicates mouse coordinates

are relative, not absolute

The CAPS LOCK key is handled in a special manner. It only generates a keycode when it is pressed,

not when it is released. However, the up and down bit (80 hex) is still used and reported If pressing

the CAPS LOCK key turns on the LED, then key code 62 (CAPS LOCK pressed) is sent. Ifpressing the

caps lock key extinguishes the LED, then key code 190 (CAPS LOCK released) is sent. In effect, the

keyboard reports this key being held down until it is struck again.

The <seconds> and <microseconds> fields are system time stamp taken at the time the event

occurred. These values are stored as long-words by the system and as such could (theoretically) reach

4 billion.

With RAW: keyboard input, selected keys no longer return a simple 1 character "A" to flZfl but rather

return raw keycode reports with the following form:

<CSI>1;0;<keycode>;<qualifiers>;0 ? 0;<secs>;<microsecs>|

For example, if the user pressed and released the "B" key with the left SHIFT and right Amiga keys

also pressed, you might receive the following data:

<CSI>l;0;35?129;0;0;23987;99|
<CSI>l;0;163;129;0;0;24003;18|

The ff0;0;lf fields are for not used for keyboard input but are, rather used ifyou select mouse input. For

mouse input, these fields would indicate the X and Y coordinates ofthe mouse.

The <keycode> field is an ASCII decimal value representing the key pressed or released. Adding 128

to the pressed key code results in the released keycode. Figure A-l lets you convert quickly from a key

to its keycode. Table A-l lets you convert quickly from a keycode to a key.

A-10

AmigaDOS Developer's Manual Appendix A

ESC

45

00
TAB

50

01

42

63

F2

51

02

52

03

LOCK

62
SHIFT

60

10 11

20

30

64

04

12

53

05

13
S D

21 22

31

66

32

F5 |F6

54 55

06

14

23

33

07 08

24

34

15 16

25

35

56

09

17

26

36

OA

18

27

37

57 58

OB

19

28

38

59 46

OC

1A

29

39

40

ODl 41

' IB 1 44
IftETURN

3A

67

G2A| 2B

61

5F
i

4C

4F 4E

7

3D
4

2D
1

1D

8

3E
5

2E
2

IE
0

OF

9

3F
6

2F
3

1F

3C
ENTER

43

Figure A-l, reduced copy ofkeyboard template

Table A-2: Convertingfrom Keycodes to Keys

The default values given in the following table correspond to:

1) The values the CON: device returns when these keys are pressed, and

2) The keycaps as shipped with the standard American keyboard.

A-ll

Appendix A

Raw

Key

Number

00

01

02

03

04

05

06

07

08

09

0A

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

Unshifted

Default

Value

Amiga

Table A-2

Shifted

Default

Value

% (Accent grave) ~ (tilde)

1

2

3

4

5

6

7

8

9

0

- (Hyphen)

=

\
(undefined)

0

Q

W

E

R

T

Y

U

I

0

P

{
}
(undefined)

1

2

3

A

S

D

F

G

H

J

K

L

!

@

#

$

%

&

*

(

)

_ (Underscore)

+

i

0 (Numeric pad)

q

w

e

r

t

y

u

i

o

P

[

]

1 (Numeric pad)

2 (Numeric pad)

3 (Numeric pad)

a

s

d

f

g

h

j
k

1

AmigaDOS Developer's Manual

A-12

AmigaDOS Developer's Manual Appendix A

Raw

Key

Number

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

Unshifted

Default

Value

•
•

tl

(RESERVED)

(undefined)

4

5

6

(RESERVED)

Z

X

c

V

B

N

M

<

>

?

(undefined)

•

7

8

9

Space

BACKSPACE

TAB

ENTER

RETURN

Escape

DEL

(undefined)

(undefined)

(undefined)

-

(undefined)

Cursor Up

Cursor Down

Cursor Forward

Cursor Backward

Fl

F2

F3

F4

Shifted

Default

Value

•

r

• (single quote)

(RESERVED)

4 (Numeric pad)

5 (Numeric pad)

6 (Numeric pad)

(RESERVED)

z

X

c

V

b

n

m

, (comma)

• (period)

/

• (Numeric pad)

7 (Numeric pad)

8 (Numeric pad)

9 (Numeric pad)

ENTER (Numeric

pad)

(Esc)

- (Numeric Pad)

Scroll down

Scroll up

Scroll left

Scroll right

<CSI>1(T

<CSI>11~

<CSI>12~

<CSI>13"

A-13

Appendix A

Raw

Key

Number

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

Unshifted

Default

Value

F5

F6

F7

F8

F9

F10

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

Help

Ami

Shifted

Default

Value

<CSI>14~

<CSI>15~

<CSI>16~

<CSI>17~

<CSI>18~

<CSI>19~

SHIFT (left of space bar)

SHIFT (right of space bar)

Caps Lock

Control

Left Alt

Right Alt

"Amiga" (left of space bar)

"Amiga" (right of space bar)

Left Mouse Button

(not converted)

Right Mouse Button

(not converted)

Middle Mouse Button

(not converted)

Inputs are only

for the

mouse connected

to Intuition,

currently

AmigaDOS Developer's Manual

"gameport" one.

6B (undefined)

6C (undefined)

6D (undefined)

6E (undefined)

6F (undefined)

70-7F (undefined)

80-F8 Up transition (release or unpress

key) of one of the above keys.

80 for 00, F8 for 7F.

F9 Last keycode was bad (was sent in

order to resync)

FA Keyboard buffer overflow.

FB (undefined, reserved for keyboard

processor catastrophe)

FC Keyboard self-test failed.

A-14

AmigaDOS Developer's Manual Appendix A

Raw

Key

Number

Unshifted

Default

Value

FD Power-up key stream start. Keys

pressed or stuck at power-up are

sent between FD and FE.

FE Power-up key stream end.

FF (undefined, reserved)

FF Mouse event, movement onlyr No

button change, (not converted)

Notes about the preceding table:

1) "(undefined)" indicates that the current keyboard design should not generate this

number. If you are using "SetKeyMap" to change the key map, the entries for these

numbers must still be included.

2) The "(not converted)" refers to mouse button events. You must use the sequence

"<CSI>2{" to inform the console driver that you wish to receive mouse events;

otherwise, these are not transmitted.

3) "(RESERVED)" indicates that these keycodes have been reserved for non-US keyboards.

The "2B" code key is between the double quote and return keys. The "30" code key is

between the SHIFT and Z keys.

A-15

AmisaDOS Developer's Manual Index

11 (double quote) 3.2,3.13

\ (backslash) 3.2,3.20

(underscore) 3.6

-Logical NOT 3.6

(hash, or sharp sign) 4.6

& AND 3.6

•3.8,3.19

* 2.8,3.3,3.6,3.7,4.3,4.5

+ 3.2,3.6,3.20

,3.2,3.5,3.15,3.20

- Monadic minus 3.6

- Subtract 3.6

-c3.2

-h3.2

43.2,3.22

-13.2

-01.8,3.2

-v3.2

.(period) 3.5,3.6

.L (longword) 3.8,3.15,3.16

.W (word) 3.8,3.15,3.16

/3.6

68000 assembler 1.1,3.1

: (colon) 3.4

; (semicolon) 3.3

< 1.3,3.20

<< Left shift 3.6

> 1.3,3.20

>> Right shift 3.6

@3.20

AAbsolute symbols 3.6

A0-A71.2,1.3,3.1,3.8

Absolute expression 3.8

Absolute origin 3.11

Absolute symbols 3.6,3.7,3.22

Add(+)3.6

Address mode 3.8,3.9

Address registers 3.1,3.8,3.10,3.14

Address variant 3.10

Address, byte 3.1

Addressing, indexed 3.1

Alignment 3.15,3.16,3.18,3.19

ALINK 1.10,4.1-10

Allocated memory, return 1.4

Amiga structure definitions 1.1

AmigaDOS library 1.2,1.3

Argument list 1.3

Arguments 2.1,3.20

ASCII characters 3.19

ASCII files 1.8,1.9

ASCII hex file 1.9

ASCII literal 3.8

ASCII string 3.15

ASSEM 3.2,3.1-23

Assemble if <condition> 3.12,3.19

Assemble program 1.2

Assembler 1.1,1.2,1.3,1.4,1.5,

1.10,3.1-23

Assembler command line 3.2

Assembler directives 3.3,3.5,3.11-23

Assembler, options 3.2,3.3

Assembly control 3.11,3.13

Assembly listing 3.17,3.16

Assembly statistics 3.2

Assign permanent register value 3.11

Assign permanent value 3.11

Assign temporary value 3.11

Automatic overlaying 4.5

B Byte size (8-bits) 3.5

Backing up 1.1

BillBoardl.7

Binary 3.8

Binary code file 1.3

Binary files, transfer 1.2

Binary load file 1.9

Binary to hex, converting 1.10

Binloadl.7,1.8

Boolean returns 2.1

Branches 3.1

BSS3.13

Byte identification in memory 3.1

Byte operations 3.1

C 1.1,1.2,1.3,1.4,1.5,1.10

C compiler 1.5,1.10

C option (assem) 3.3

C programming language - see C

Case (Upper/lower) 2.1

Case distinction (assem option) 3.3,

3.7,3.14

CCR 3.7,3.14

Character files, transfer 1.2

Characters, return 2.13

CLI 1.3,1.4,1.5,1.10,2.16

Close 2.2

Close file for I/O 1.4,2.2

CNOP 3.12,3.16,3.18

CODE 3.13

Code segment 4.1,4.2,4.5,4.8,4.9

Code, load/unload 1.4

Comma-see,

Command line input (ALINK) 4.1

Command Line Interface - see CLI

Command line, assembler 3.2

Comment field 3.5

Comment or blank lines 3.3

Comment, set file or directory 2.11

COMMON blocks 4.5

Compile program 1.2

Compiler 1.1,1.5,1.10

-l-

Index AmigaDOS Developer's Manual

Compiling C - see C compiler

CON: 2.8

Conditional assembly 3.12,3.18,3.19,

3.20

Conditional directive 3.20

Conditional expansion ofmacros 3.21

Conditional NOP 3.12,3.18

Constant value assignment 3.15

Constants, define 3.11

Control codes 1.8

Control oflisting 3.12

Convert 1.9,1.10

Converting binary to hex 1.9,1.10

Create a new directory 2.2

Create a new process 2.14

CreateDir2.2

CreateProc2.14

Cross compilation 1.10

Cross development 1.1,1.2,1.5,1.10

Cross reference output 4.3,4.8

Cross reference table 3.3,4.1,4.3

CTRL-C1.8

CTRL-D1.8

CTRL-E 1.8

CTRL-F 1.8

Current directory 3.2

Current program counter 3.7

Current window 2.8

CurrentDir2.3

D option 3.3

D0-D71.3,1.4,3.1,3.8

DATA 3.13

Data definition 3.11,3.15

Data labels 4.9

Data registers 3.1,3.8,3.14

Data size 3.5,3.16

Data type 3.15

Date, internal format 2.15

DateStamp2.15

DC 3.11,3.15

DCB 3.11,3.15

Decimal 3.7

Default line length 3.17

Default output, change 1.8

Default page length 3.17

Define constant block 3.11,3.15

Define external name 3.12,3.22

Define internal label as external

entry point 3.21

Define macro name 3.12

Define offsets 3.11,3.14

Define register list 3.15

Define storage 3.11,3.16

Delay 2.15

DeleteFile 2.3

Device names 2.8

DeviceProc 2.7,2.15

Diagnostic messages 3.2

Direct access ofmemory 3.1

Directive names 3.4,3.7

Directives 3.11-23

Directory entry, examine next 2.5

Directory list (for file inclusion)

3.2,3.22

Directory lock 2.2,2.3,2.8,2.15

Directory, create a new 2.2

Directory, delete 2.3

Directory, examine 2.4,2.5

Directory, make current 2.3

Directory, parent 2.9

Directory, rename 2.10

Directory, unlock 2.12

Disable assembly 3.19

Disable object code generation 3.18

Disable object code output 3.12

Disk information, return 2.6

Divide/3.6

Documentation, required 1.1

Download 1.2,1.8,1.9

Downloading 1.1,1.2,1.8,1.9,1.10

DS3.11,3.14,3.16

Dumping local labels 3.3

Duplicate lock 2.4

DupLock2.4

Empty string 3.19

Enable assembly 3.19

Encoding programs (Assembler) 3.3

END 3.11,3.14,3.16

End conditional assembly - see ENDC

End macro definition - see ENDM

End ofprogram - see END

ENDC 3.12,3.19,3.20

ENDCLI2.17

ENDM 3.12,3.20,3.21

Entry, program 1.2

EQU 3.7,3.11,3.14,3.15,3.22

Equate register value - see EQUR

Equate symbol value - see EQU

EQUR 3.7,3.11,3.14

Error code 1.3

Error information 2.7

Error messages 3.2,4.4

Error return 1.3

Error, user 3.18

Examine 2.4,2.5

Examine directory or file 2.4,2.5

Examine next directory entry 2.5

Example ofOVERLAY 4.6

Example ofvalid uses ofALINK 4.2

Exceptions 4.4

-ii-

AmigaDOS Developer's Manual Index

Exclusive write lock 2.8

Executable instructions 3.3,3.4

Executable program, creating an 1.2

EXECUTE 1.4,

Execute 2.16,2.17

Exit 1.4,2.16

Exit from a macro expansion 3.12,3.21

Exit from a program 1.4,2.16

ExNext2.5

Expressions 3.6

External file, insertion 3.22

External main memory 3.1

External name, definition 3.22

External references 1.2,3.22

External symbols 3.12,3.21,3.22,4.1

FAIL 3.12,3.18

FAILAT1.4

Failure ofroutines 1.3

File handle, initial output 2.9

File handles, closing 1.3

File handles, opening 1.3

File handling calls 2.2,2.19

File lock 2.8

File order (ALINK) 4.4

File position, find 2.11

File, close for I/O 1.4,2.2

File, delete 2.3

File, examine 2.4,2.5

File, find length of 2.11

File, open for I/O 2.8

File, read bytes from 2.9

File, rename 2.10

File, unlock 2.12

File, write bytes to 2.13

FileInfoBlock2.4

Files, special metacc 1.7

Filing system locks 2.8

Find and point at logical position in

file 2.11

Find current position in file 2.11

Find length ofopen file 2.11

Flag an error 3.18

Format 2.1

FORMAT 3.12,3.18

Forward reference 3.14,3.15

Free locks 1.4

FROM (ALINK) 4.2,4.3

Functions 2.1

General directives 3.13,3.22

Generate a user error 3.18

Generate an assembly error 3.12

Greenhills C compiler 1.5

Header (ALINK) 4.5

Headerfilesl.1,3.2

Hexadecimal 3.7

1/01.3,1.4,2.2,2.15

I/O handling 2.15

I/O redirection (> <) 1.3

I/O streams 1.4

I/O, closing files for 2.2

IBM PC serial port (AUX) 1.10

IDNT 3.13,3.23

IFC 3.12,3.19

IFD 3.12,3.19

IFEQ 3.12,3.19,3.21

IFGE 3.12,3.19

IFGT 3.12,3.19

IFLE 3.12,3.19

IFLT 3.12,3.19

IFNC 3.12,3.19

IFND 3.12,3.19

IFNE 3.12,3.19,3.21

Immediate data 3.10

INCLUDE 3.13,3.22

INCLUDE directive nesting 3.22

Include dirlist 3.2

Include files 1.1

Including 3.2

Including files 3.2

Indexed addressing 3.1

Info 2.6

Initial I/O file handles 1.3,2.6,2.9

Initialized data 3.13

Input 1.3,2.6

Input file handle 2.6

Input to linker 4.1

Insert an external file 3.13,3.22

Instruction destinations 3.10

Instruction names 3.4,3.7

Instruction types 3.10

Instructions 3.1,3.4,3.7,3.10

Interface, quick cross-reference 2.19

Internal format ofdate and time 2.15

Internal registers 3.1

IoErr()1.3,2.7

Islnteractive 2.7

JSRGJumpSubRoutine) 1.2

Jumps 3.1

Keyword template for ALINK 4.2

Keywords (ALINK) 4.2,4.3

L Long Branch specifier 3.5

L Long Word-sized data (32-bits) 3.5

Label field 3.4,3.14,3.15

Labels 3.4,3.11,3.20,3.22

Length of title 3.17

-iii-

Index AmieraDOS Develoner's Manual

Level ofa node 4.6

Libraries (Linker) 4.1

LIBRARY 4.2,4.3,4.4

Library base pointer 1.2

Library code segments 4.5

Line length 3.12,3.17

Link map 4.1,4.2,4.3,4.5,4.8

Link program 1.2

Linker 1.1,1.3,1.5,1.7,1.10,4.1-10

Linker output 4.5

LIST 3.12,3.16,3.22

Listing 3.12,3.16

Listing control 3.12,3.16

Listingfile3.2,3.3

Listing, turn on/off 3.12,3.16

LLEN 3.12,3.17

Load code 1.2,1.3,1.4,2.16,2.20

Load file 1.7,4.1,4.2,4.5

Load file destination 4.2

Load module into memory 2.17

Loader 1.2

Loading programs 1.2,1.3,1.4

LoadSeg2.17

Local labels 3.3,3.4

Lock 2.8

Lock, duplicate 2.4

Locks 1.4,2.2,2.3,2.4,2.5,2.8,

2.12,2.15

Locks, free 1.4

Logical AND (&) 3.6

Logical NOTO 3.6

Logical NOT 3.6

Logical OR (!) 3.6

Logical position in file, find and

point at 2.11

Long word alignment 2.4,2.6,3.18

Long word operations 3.1

Long word size 3.8,3.15

Lower case, use of2.1

Lshift«<)3.6

MACRO 3.12,3.20

Macro definition, start 3.20

Macro definition, terminate 3.21

Macro directives 3.12,3.20

Macro expansion 3.20,3.21

Macro invocations 3.5

Macro, contents ofa 3.20

Main memory 3.1

Makeamiga 1.9

Makefile 1.9

MAP (ALINK) 4.1,4.2,4.3,4.5

MASK2 3.13,3.22

Memory 1.4,2.17,3.1,3.4

Memory address 3.4

Memory size 3.1

Memory variant 3.10

Memory, direct access of 3.1

Memory, load module into 2.17

Memory, return 1.4

Message destination (ALINK) 4.2

Metacc 1.5

MEXIT 3.12,3.20,3.21

Monadic minus (-) 3.6

Motorola specification, extensions to

3 4 3 7

MS-DOS 1.5,1.10

Multiple definitions oflabels 3.4

Multiply 3.6

NARG 3.12,3.20

Nesting macro calls 3.20

NEWCLI2.17

NIL: 2.8

Node level 4.6,4.7

Node ordinate value 4.6

Nodes ofthe overlay tree 4.5

NOFORMAT3.12

NOL-seeNOLIST

NOLIST 3.12,3.16,3.22

NOOBJ 3.12,3.18

NOPAGE 3.12,3.17

Null string 3.19,3.23

Numbers 3.7

Object code 3.11,3.12

Object file 1.5,3.2,3.3,3.18,4.1,

4.2

Object module 3.18

Octal 3.7

OFFSET 3.11,3.14

Offset definition 3.11

Offset from alignment boundary 3.18

Offset termination 3.14

Opcode field 3.4,3.5

Open 2.8

Open file for I/O 2.8

Open file, find length of2.11

Operand field 3.5,3.6,3.14,3.15,

3.16,3.17,3.19,3.22

Operand types for operators 3.6

Operand word 3.1

Operands 3.6

Operation codes 3.5

Operation word 3.1

Operator precedence 3.6

Operators 3.6

Options to the assembler, passing 3.2

Order ofoverlay files 4.8

Ordinate value ofa node 4.6,4.7

Origin, absolute 3.11

Origin, relocatable - see RORG

IV

Ami&aDOS Developer's Manual Index

Output 1.3,2.9

Output file handle 2.9

Output, change 1.8

OVERLAY 4.3,4.5,4.6

Overlay file order 4.8

Overlay files 4.1,4.4,4.8

Overlay number 4.9

Overlay references 4.8,4.9

Overlay supervisor 4.1,4.5,4.8,4.9

Overlay symbols 4.9

Overlay terminator 4.6

Overlay tree 4.1

Overlaying 4.1,4.5,4.4,4.5,4.8,

4.9

Overriding operator precedence 3.6

PAGE 3.12,3.16

Page heading 3.17

Page length 3.12,3.17

Page throw 3.12,3.16,3.17

Parallel port 1.7,1.8,1.9

Parameter files 4.1,4.2,4.3

ParentDir 2.9

Permanent register value, assign -

see EQUR

Permanent value, assign - see EQU or

REG

PLEN 3.12,3.17

Postincrement address 3.10

Precedence ofoperators 3.6

Primary input 4.1,4.4

Priority, process 2.14

Process handling calls 2.14,2.20

Process identifier 2.15

Process, create a new 2.14

Process, delay 2.15

Program assembly 1.2

Program compilation 1.2

Program counter (PC) 3.1,3.4,3.13,

3.14

Program encoding (Assembler) 3.3

Program end 3.11

Program entry 1.2

Program loading 1.2,1.3

Program section 3.11,3.13

Program source 3.22

Program termination 1.4

Program title 3.12,3.17

Program transfer 1.2

Program, exit from 2.16

Program, link 1.2

Protection, set file or directory 2.12

R Relative symbols 3.6

RAM-based resident library 1.2

RAW: 2.8

READ 1.2,1.3,1.9,1.10,2.9

Read bytes from file 2.9

Reference external name 3.12

Reference to symbols 4.8

Refering to a standard set of

definitions 3.22

REG 3.11,3.15

Register 3.7

Register corruption 1.3

Register list, define 3.15

Register names 3.4,3.7

Register values 2.1

Registers, address 3.1

Registers, data 3.1

Registers, internal 3.1

Relative expression 3.8

Relative origin, set 3.13

Relative symbol value 3.7

Relative symbols R 3.6

Relocatable code 3.13

Relocatable memory locations,

assigning 3.13

Relocatable origin 3.11

Relocatable symbol 3.22

Relocation information, generation of

3.22

Rename 2.10

Repetitive linking 4.1

Reserve memory locations 3.16

Reserved symbol 3.20

Resident library 1.1,1.2,2.2

Results 2.1

Return allocated memory 1.4

ROOT (ALINK) 4.3

Root stack 2.14

RORG 3.11,3.13,3.14

Routines, failure of 1.3

Rshift(>»3.6

RTS1.4

Running a program under Workbench 1.4

S option 3.3

S Short Branch specifier 3.5

Scanned library 4.2

SECTION 3.11,3.13,3.14

Seek 2.11

Segment identifier 2.18

Segment list 2.14

Segment, unload 2.18

Send 1.8

Separation character 3.2,3.4,3.5

Serial line 1.7,1.9

SET 3.7,3.11,3.15

Set line length 3.12,3.17

Set page length 3.12,3.17

Set program title 3.12,3.17

-v-

Index AmigaDOS Developer's Manual

Set relative origin 3.13

Set symbol value 3.15

SetComment2.11

SetProtection2.12

Shared read lock 2.8

Size specifier 3.5,3.8,3.15,3.16

Skip lines 3.12

Source code 3.20

Source files 1.5

Source statement syntax 3.4

Source termination 3.14

Sources ofinput to linker 4.1

SP3.7

Space 3.2,3.17,3.20

Space at the start ofa line 3.3

SPC 3.12,3.17

Special metacc files 1.7

Special register 3.1

Special symbol (NARG) 3.12

SR 3.7,3.14

Stack 1.3

Stack allocation 1.3

Stack checking 1.3

Stack pointer (SP) 1.4,3.1

Stack size 1.3

Stack, size ofroot 2.14

Standard I/O 1.3

Standard macro definitions, include

3.22

Start a macro definition 3.20

Startup code 1.2,1.3

Status register (SR) 3.1

Storage, define 3.11

String descriptor 3.22

Strings 3.6,3.8,3.19,3.22

Subtract (-) 3.6

Sun, cross development under a 1.5,

1.7,1.8,1.9

Supervisor mode 3.1

Symbol cross reference table 4.1

Symbol defined, assemble if3.19

Symbol definition 3.11,3.14

Symbol dump 3.3

Symbol not defined, assemble if 3.19

Symbol reference 4.8

Symbol value, set 3.15

Symbols 3.6

Syntax 2.1

Syntax for address mode 3.9

System information, return 2.7

System stack pointer - see

stack pointer

Temporary value assignment - see SET

Terminate a macro definition 3.21

Ticks 2.15

Time, internal format 2.15

Timeout character arrival 2.13

Title header 3.17

Title length 3.17

Title ofprogram 3.12

Title ofprogram, set 3.17

TO 4.2,4.3

Transfer, program 1.2

Tree nodes 4.5

Tree specification 4.3

Tree structure 4.5,4.8

TTL 3.12,3.17

Uninitialized data 3.13

Unique label generation 3.20

Unix 3.2

Unload code 1.4

Unload segment 2.18

UnLoadSeg2.18

UnLock2.12

Unlock a directory 2.12

Unlock a file 2.12

Unnamed sections 3.13

Upper case, use of2.1

User error 3.18

User mode 3.1

User stack pointer - see stack pointer

User symbol 3.4,3.14

Using less memory 4.5

Using the Linker 4.2

USP 3.7,3.14

Values 2.1

Variants 3.10

VER(ALINK)4.2

Verification file 3.2

Virtual terminal, connection to a 2.7,

2.13

Volume 2.10

W Word-sized data (16-bits) 3.5

WaitForChar2.13

Warning messages 3.2,4.4

WIDTH 4.3

WITH 4.2,4.3,4.5

Word boundary, alignment on 3.15

Word operations 3.1

Word size 3.8,3.15

Workbench 1.3,1.4

Write 1.3,2.13

X option 3.3

XDEF 3.12,3.21

XREF 3.12,3.22,4.3,4.5

-vi-

Commodore Business Machines, Inc.

1200 Wilson Drive, West Chester, PA 19380

Commodore Business Machines, Limited

3370 Pharmacy Avenue. Agincourt, Ontario, M1W 2K4

Copyright 1985 © Commodore-Amiga. Inc.

