WORKBENCH
1.3&2.0

pe & Out

~ An in-depth guide to
AmigaDOS and the Shell

by Kerkloh, Tornsdorf and Zoller

WORKBE £CH

| e/e———q—s-e -

Includes
ready-to-use
companion diskette

L L\ A\ S
LAV

Abacus/iiii

a Data Becker Book

AmigaDOS
Inside & Out

Ruediger Kerkloh
Manfred Tornsdorf
Bernd Zoller

A Data Becker Book
Published by

Abacus|i

Seventh Printing 1991

Printed in U.S.A.

Copyright © 1988, 1989, 1990, 1991 Abacus
5370 52nd Street SE
Grand Rapids, MI 49512

Copyright © 1988, 1989, 1990, 1991 Data Becker GmbH
Merowingerstrasse 30
4000 Diisseldorf, Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of Abacus Software or Data
Becker GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus Software can neither guarantee nor be
held legally responsible for any mistakes in printing or faulty instructions contained in this
book. The authors always appreciate receiving notice of any errors or misprints.

Amiga 500, Amiga 1000, Amiga 2000 and Amiga are trademarks or registered trademarks
of Commodore-Amiga Inc.

ISBN 1-55755-041-7

Table of Contents

5 (7. RSSO vii
1. INTOAUCHION....ceuvieieeeiieieiecerieeneeeeeeeeeeeenerssssssssesesssnsrenesnnes 1
1.1 The Task of AmigaDOS..........ccuuuveeeeeeeeeeeneeeeeseneseeerennnnes 4
1.2 The Workbench and the Shell.............cccceeevvvnnnnieenenenennnnnn. 6
1.3 Workbench Backup......ccceeereeeeererererirererisresessseeecesrerenseens 7
1.4 Introduction to the Shell..........ccccceeeiiiiiieneneeeiieneenneeenneees 9
1.5 The First Command...........ccocvvrreverreerrrcveereverseressreesanes 10
1.6 Directory StruCtUreueeeeeeeeeeneeseenmesssesssssesesssrenens 12
1.7 Command Templates..........ccevuveeeerereeneneneneeeeceeeeennarenees 15
1.8 Quitting the Shell........ccccciriiriiiiviriiirirrirrrcrreceeeseeeereens 18
2. AmigaDOS Commands...............eeeeerereerennvueneeeeereneseensnees 19
2.1 Disk and File Management..............cccererverueruerneerereruenne 22
21,1 FOMMAL......uuveeeirereeereerivreneeessesessssesseseessrssssssesssnnensseses 22
2.1.2 DIR.iiiiiiiinitieietienncssnnteneesessssssnssenessssesssssssssssnessssans 25
W8 T T 6 b TR 28
2.14 MAKEDIR......ccccitiiiererereriecccrccesesece s e s sesevserenans 31
2.1.5 DELETEccciiiiiiiiiiiiieiiiececieieseensesecssnsnnenssnsesessssonane 32
P28 BT 60 2 OO TN 33
P28 Ty R) 6. U 36
2.1.8 RENAME.........cceiirvrerrerrreeeeeeesserssresssssssneesesssssennssenes 41
P28 BT 0) 1) 1C60) 1 OO 43
2.1.L10 RELABEL........ccceitiitiiieiiiieniiineeieneeeeeeeeeseseeeeesessennneens 44
2.1.11 INFO....couieieieereeeeeenieeeneeeeeieeeeeeeeeseseseeesssenseesesssseseasens 45
2.1.12 INSTALL.....ccoiiiittitiiceeeeereereereneenneseeeseenrnnnsncesessaeens 46
2.1.13 TYPE. ..ccoeieteeeiieeeenereeeneneereneeseeeeeeseeessessesssssesessssssnsnans 49
2.1.14 JOIN....coutueruenrinernnnrereciesseeesesseseneseeseeeeesssssnnnnnsnsonsnnes 50
2.1.15 SEARCH.....ccotiuiuciiiiiiiiitiietieiceeeeeseseessennsnesseseasasennes 51
2.1.16 SORTciiiiiitiiirtcrceeeceeeeeeeettaseneeeeeeesesessnsssssssassssans 53
2.1.17 PROTECT......cciieeiieierecreeeiieeieeeseeseeseeeeseesessesansessssanses 54
2.1.18 FILENOTE......ccccutuuureeeieieierrnrunsseeeseesessssansosssssessesence 57
2.1.19 SETDATE.....ccctuvueeeiieeirnenenrannsscsecsscsensnsssssssssessessenses 58
2.1.20 DISKDOCTORcccceeerrerrrernennersereencnereensessessecsssnannes 59
2.1.21 DISKCHANGEccccoitirurrrnrnnnecsisenstncnrenssseseenearannsnes 63
2.2 System Commands.........ccceeeverrerrerisisiresseerercssencssinanns 64
2.2.1 NEWCLL......ccovvvereriiererireereeranssscessssssesssssssssssersnsnnnenes 64
222 ENDCLI.....cccutieerrereneeneenieeereessmesssssssssssssssssssssssssssssns 67
223 RUN.eiicciiciieieeeeeeecnereeennenssesssssssisssssssseesnssasesssnns 68
2.24 STATUS....ccieiirttteiiereetreeteeennasessesecssssssssesessssensasannes 69
2.2.5 CHANGETASKPRI.........ccotvrrereiniirinnnnrnenniceserennmnanees 71
2.2.6 BREAK.....ccceiieeeeeeieeeereeeeeeceseeeeerenssesessessssssssesssonens 72
227 PATH.....oeeeeeeeeiceeeeeeeteneeentncneeseesssssesssssssssesesnassssnens 73
2.2.8 ASSIGN....cccciitrreeteeeeeeerersrrnennneaeeesscssssssssssssssssssanenas 75

2.2.9 ADDBUFFERS.......cccovvtiteiiiertnnnnneerininnessnneeneenenan 78

22,10 WHY ..coueeiieieiieeeirneereraneeneeesesaeesasesssssssssssssssssssssssssnses 79
2.2.11 FAULT..ccouvreiieeeeeeeneneneneeeereesenesasssssssssssssssssssssesessasses 80
2.2.12 DATE....cciciitrteenincenieeeeeereeeerenssssssssesessssessasssssssssssssan 80
2.2.13 SETCLOCKcceteieiierieeneienierenessesensssssssssessessssnsosnsnns 81
2.2.14 PROMPT.....cciiiiiiiiiiiriiieicricssessesssenssnsnssnsnsesssnnsnmasass 82
2.2.15 STACK....ciiiiiiiereeeereeesesesssssssississsisssesssssnsesssensessess 84
2.2.16 BINDDRIVERS.......ccococrrremmmrrrininensssenesssssssseessssnns 85
2.2.17 MOUNT.....cciiircrenrrnerererecsssssnrssestsssssssssssssssssnaesseses 85
23 Script File Commandscccccevuviiinieniisrerenerinnniieeen 89
2.3.1 EXECUTE.....ciiiiiiirererrererennnnsnectessessssasanatessssessons 89
2.3.2 ECHO....iiiiiiiiieiceeiceeterereeceeereeensessssssesssssssssssssssassases 92
2.3.3 FAILAT.....ccoiiiiiiieencceeeneeneneeecsenneenessssessseenessssssssoseens 93
234 QUIT ... ciceeeeeeeeetcceeeeeeeeeeeesnnnesnsessssesssssensansassossssssne 94
2.3.5 IF/ELSE/ENDIF.......cccccctiiiririririrnriisssnnnnnsnenennsnsnnens 95
236 ASK. ittt e seesesssese s s s s s n e nanes 97
2.3.7 SKIP/LAB.....cootrtrrecieeirneientntnnecssesssessessansessssessssenns 98
2.3.8 WAITccreicice e eeeeteeeeeennneesesseseeseesssssssssssssssssnas 99
2.3.9 VERSIONccottiuieriereenieeerernenencesesnsessesenssnsssssssseees 100
24 The EdIOTSceeevereeereruierennninnieieuiissnsieaiissermsseseeenns 102
2.4.1 Reading text with ED.....cccovirinnninnnniicinnncinnsnnninnnnne 103
242 Texthandling with EDITcccceeevrereriririenecirenreieeennna, 105
2.4.3 Parameters Of EDITccccvvvieriieriiienereneninsnsnenesnsessensnsnns 105
244 Starting EDIT......ouiiiiiiiiiiiiiiieccereneneereeeeesesssenenssnes 107
24,5 Editing TEXt...cccivvrirerrereererereerennnesosserseesenensnsnsessesaeses 108
246 Multiple FileS.......ccoeiveniiiiieneiiriieneeieeeeenneeeeneeenenenns 109
2.4.7 Command MaCIOSccceeeereerererennnceesssersreeenennsnsesesans 109
24.8 Quiting EDIT......cccvvviriiririiiiiirierrerereerecrereneseneneaesennes 110
3. DBVICES ..cieiiiiiieiiieeeriiiesesiereresesssrereneensrnnnnsssnrerannernrennes 111
3.1 Floppy Disk Devices (DFX:)....ccocvcervurerverrcerrsneecrnnens 114
32 The RAM -Handler (RAM:)ccovvueeveerirereneneeennreeeenens 115
33 The Parallel Device (PAR:)....cccueuveeerervirerrenieeennneeeneens 117
34 The Serial Device (SER:)....ccccecvveeverenrunreeeruereecsvescennes 118
3.5 The Printer Device (PRT:)vuuceevreinvnnenenenennennennennns 120
36 The Console Device (CON:).....ooevevevvreeeeneceenncreenennees 121
3.7 The Raw Device (RAW:)....uvvrerrneiieennieirreneeereneesesees 122
3.8 NEWCON-handler (NEWCON:)........ccoevenrverrverrveerueranses 123
3.9 The RAD device (RAD:).....ccovvreevereerecneeneeneerveeerenens 124
3.10 The PIPE Handler (PIPE:).......cccocovvvirvmrurerrernvrrersreenns 126
3.11 The SPEAK handler (SPEAK:).......cccocvvvverrvneeeerneennnns 127
3.12 The AUX Handler (AUX:)...coououeeeemrerereereneenesnensseennns 128
3.13 The FastFileSySteM........ccecorvrrrreeveerirereeresrieeerseneene 129
4. More AmigaDOS Commands...........ccceeevueeerureeernveeeennenne 131
4.1 AmigaDOS 1.3 Commands...........cccevverververeeseerueeeenens 135
411 AVAIL....ieeeeeeeeeeece ettt esteeseessseeeeseeseseean 135
41,2 FFuuiiiiiiiieeececiece e e st e e ee e s e ennaas 136
4.1.3 LOCK...iiiiieriereete et estee e ssteeeesesee s ae s 137
4.14 NEWSHELL.......cccceeoiiurerirrenrreenneissreeseeeesseeensnesens 137
4.1.5 REMRAD.....cootiitieecteeceeceeee et eeeeee e evaeeeseeean 140

423 UNSET/UNSETENV.. i, 148

5. AmigaDOS Tricks and Tips.......cccceeereerrrrnereeresesenserronnens 149
5.1 Input and Output in AmigaDOS.........cccecevreereereerceneraene 152
52 WIIACAISoooveienerrereeienenrneneeeeeeesssssnneeeeesesssssssnnennns 153
53 Breaking in AmigaDOS..........cccceeverererreenceecseeeseereenns 155
54 The RAM Disk and AmigaDOS...... 157
5.5 Printing from AmigaDOS..........cccceocerrueereeereeecreereernes 158
5.5.1 File printout with COPY......ccccoceerrurrruervecvecruerseensanens 158
5.5.2 Redirecting OUPUL........ccoevereeeeereerererrrrnerereessensssnnnenane 159
5.5.3 Printer control Characters...........cceeruerererrenrereerussessaranas 160
5.6 Using the Console DeviCe........ccceceeverreerernnrereeeseennenes 162
5.7 Using the Serial DeviCe.........cccuuuueeeereereeeeneenneerereeenenens 165
6. SCHPL FIlES..ceeeiririeererererererrrerirrirrersrsrssennensesesesesenesesnes 169
6.1 Introduction to Script File Processingcceeevereveneeens 172
6.1.1 What are script files?........ccevreererrerrunrnererrerseereesaessnreees 172
6.1.2 What script files 100k liKe........cocerereererrerrereerrecneceesennens 172
6.1.3 Calling SCript fileS......ccceerreerrerereererererreessereereeresseeenanns 173
6.1.4 Asimple example........ccceeeerrrneneeeeerierenrreneeceeneeereneennes 174
6.2 Modifying the Startup-SEqUENCe........ccccerereuvrssrosnssrassess 176
6.2.1 A Custom Startup-SEqUENCE........ccceerseeceeeseesransosassssseses 179
6.2.2 Shell-Startup SEQUENCEceeeeerrrerererrerrerersrsenesennnnnnsnsens 180
6.3 Practical Script Files.......cccceeerrererecrnseneccsrnneenccssenneenns 182
6.3.1 A special printer SCTIpt file.....cceeeveeerriiiiiicneeccriirnninninnns 182
6.3.2 Creating your own script files.........ccceeeeeerrrveccesreescrsianes 186
6.3.3 Starting script files with the mMOUSecccoveeveeercernnnne 188
6.3.4 The Types script file......ccccevirrrirrereerisiniiniinnmeincecenenns 189
6.3.5 Putting everything into the RAM diskccccevurueenrreenens 190
6.4 Using ALIASooureeriririeintnceitisnessinenerareeseeniessnses 192
7. AmigaDOS and Multitaskingcceeueerciierereenennncineneeens 197
7.1 What is Multitasking?........cccceeveecesnnrisnrensseeescssneenianes 200
7.2 Multitasking with AmigaDOS and Workbench 201
7.3 Multitasking with NEWSHELL.........ccccceevennneeruasennenne 204
7.4 Multitasking using RUN.......ccccooiviiniiiinnnnnnnnncncennnes 206
1.5 Using AmigaDOS.......cccoceinnnuenrreeiieiirorsseneereeessaesisses 209
7.6 CHANGETASKPRI.......cccceerireriiiiiniiiriiiisisessenssenenanns 211
1.7 Multitasking danGErS.......ccocereerseerrenerunnsanssnnesssssscsssesane 214
8. Creating AmigaDOS Commands.........ccceeeeuesesncnescesesuenenn 217
8.1 AmigaDOS Commands in C......ccoovrrinneiiriiieiciiinnnnneees 221
8.2 REPLAGE......cccoiirrrrerersenietssssssnenesssssnanssessssansasssssses 225
8.3 Public Domain AmigaDOS Commands..........ceouervererneas 232

vi

9, AREXX ..cveueiireeeirenreessesssssrensescsssssssnsssssnssssssssnsssssssssnss 235
9.1 RUNNINE AREXX...eeeiiiiirvrunerrecsisissnneeeensenunsnaeeeeessssanns 238
9.2 AREXX Programs.........ccoeeceseerieereeeeeneeneeensnnanesssesssonens 239
9.3 Program MAaCIO0S.......ccovveeeisneieesnieencsnnenssnnesssnnsessannanene 240
9.4 MultitaSKingcceveveeeeierreeireemenniiiieeeenernnmeiieeeneesnananes 241
9.5 HOW AREXX WOIKS ...ceuuvenirreernnceeeceaccanssssscsnsssscssssansens 242
L2575 B b 7.1 7 VO 242
9.5.2 SYMDOIS..cceceeiiriiiiiiiiririrnnenteeeenieseiesisssssssasesnsananses 243
0.5.3 OPETALOIS..cceeeeereereerrererererereeieeeressseresesssesreresssssesnasenee 244
0.5.4 PIOZIAMS....ccccireriiirmnrereeerninsiinrerseneeneenssansanssansnssnsssess 245
9.5.5 Commands & Functions.......cccceceeererevvvarersnsesssesssscisenes 246
L IRT IR 3 1110=0), 1= SN 247
9.6 ARexx Commands & Functionsccceceeeeeceeccencsacsenees 248
9.6.1 Flow & COntrol.......eeeeceeereeceerneccereancisesnscsssessssenseesens 248
0.6.2 SHINES...cccriiererrerrenssssnsirereerresieiesseesesernassssessessesseanns 250
0.6.3 INUMDETIS...ccetuierriereirerereeserereascencenessssstessssssssssosssssenses 257
9.6.4 Inter-Process COmMMUNICALIONS......cccccrvrneererersscnnrecersanns 258
0.6.5 FHIES... .ccueeeiiriuueeerenrereeressnneeesssseseessssssesnnsnsssenssssssnns 259
9.6.6 CONSOIE I/O ..cuuuerereirenirreeeerenieenerennostsnesseososassssennsses 261
0.6.7 TFunctions & Procedures.......cccccereeererecrecsssssosssssssnsssssns 262
0.6.8 SYStEM....cccceuereecieiiriniiiieteeeisiinnneeeerissasnaessssessnnees 264
0.6.9 DaAlA..cceuniieeeniieerreereeiieerenreeessaserrrnsssesssnssssssssssasssssses 268
0.6.10 BilS ..ccuuiirereenuirrruirrrereesnererseeennssesssesssnsesnssssnssssssssans 270
9.6.11 MEMOTY ..cceevrerrereirrerieecieieiriiineieieeeeeeeieiessesenesssesssessns 272
9.7 Example ARexx Programs...........cceeveeenicieeennennniiennennnn 274
10 QuiCk Reference......ccccceeeecrenierennienerrneeiiunerneiennnseenennes 281
10.1 The ED Program.......cccccecuereerriennnsrssnnsessssassssesansssesans 284
10.1.1 ED 114oeeeiirtnirenirtenereenenenneceensereenessnsssesscrannnnnes 284
10.1.2 ED 2.00 ..ccieeueirennerreerenesrersssessessssssersssssssssnsssessonsans 286
10.2 The Edit Program..........c.ccceeeerriruenrierneneccenensseenncaennes 287
10.3 The AmigaDOS Commands...........cccceereerenneeeereenennnnnnes 290
APPENAIX...ciuuniiirinniiriaraeerieteneereeenneeeeeenneeeerannieeernnncesranseseeses 309
INACX..cnniiieeceireeieerttereetrtnceernnereeeerasesersssssesssssessenssesenssssessnes 315

Workbench
1.3
2.0

Preface

The Amiga Workbench, a user-friendly mouse controlled graphic
operating system, makes it easy for the beginner to enter the world of
computers. The windows and icons which appear on the screen after
you start the computer are much more attractive to a new user than a
plain cursor waiting for simple keyboard input.

Sooner or later, either by mistake or out of curiosity, you click the
Shell icon on the Workbench disk. A Shell window appears and
the boring CLI (Command Line Interface) cursor of AmigaDOS makes
its appearance. This user interface, although it doesn’t use the mouse,
is more powerful than the Amiga Workbench. In fact, the Workbench
is loaded from AmigaDOS when the Amiga is turned on.

You actually can’t get by without using AmigaDOS if you wish to do
any meaningful work with the Amiga. The Workbench is a powerful
graphic interface that makes it easy for the average user to access the
Amiga. You can only do so much with the Workbench, while
AmigaDOS’s capabilities are almost unlimited.

This book will be very helpful to you if you keep it by your side as
you work with AmigaDOS. After a simple but necessary introduction,
you'll find a lot of information about AmigaDOS. You’ll learn
solutions to common problems, detailed descriptions of all AmigaDOS
commands, programming script files, multitasking, and even an
explanation of the internal workings of AmigaDOS and the Shell.
The last few pages contain a Quick Reference of all the commands.

One final comment: The Amiga is an ever expanding system and the
Workbench is constantly being improved. This book covers
AmigaDOS in Workbench 1.2, 1.3 and 2.0. These new system disks
work much better than the older versions. So, any additions or
differences between the Workbench versions are indicated as they appear
in this book. This book supports Workbench 1.3/Kickstart 1.2,
Workbench 1.3/Kickstart 1.3 and Workbench 2.0/Kickstart 2.0.

R. Kerkloh, M. Tornsdorf, B. Zoller June 1990

(i

1.
Introduction

ABACUS

1. INTRODUCTION

1.

Workbench
1.3 and 2.0
users:

Introduction

The first steps in any area of computing usually seem the hardest. For
this reason, we have kept the theories in this chapter to a minimum.
The following sections are intended to make your first experiences with
the Shell and AmigaDOS as easy as possible. In fact, the only
AmigaDOS commands that appear in the following sections of Chapter
1 are the necessary ones. For those who wish to experiment further, the
later chapters contain more background information on AmigaDOS.

For now, however, we recommend that you read this book in sequence
and work through the examples as they appear. Whether you’ve just
unpacked your Amiga or are an old hand at the computer, starting from
the beginning is always the best way to learn anything. Good luck!

Workbench 1.3 and 2.0 have two AmigaDOS access programs: The
CLI (contained in the System drawer) and the Shell, which is in the
Workbench window. Please use the Shell for all of your work with
this book. The Shell is an upgraded version of the original Amiga
command line interface or CLI. Once you have become familiar with
the Shell, you will probably use the Shell exclusively, but please
use the Shell for the examples in this book. In Workbench 2.0 the
Shell and the CLI program both operate in the same manner.

1. INTRODUCTION

AMIGADOS INSIDE AND OUT

1.1

What is
DOS?

The Task of AmigaDOS

Before we begin working with AmigaDOS, we must first briefly
explain the function of AmigaDOS. DOS is the abbreviation for Disk
Operating System. You may already know the definition of an
operating system: The program(s) that controls the computer (tells it
what to do). Don’t confuse an operating system with an application
program (e.g., word processors, spreadsheets, etc.). An operating
system only provides the computer with basic instructions from which
a programmer can construct his programs. It takes over such tasks as
memory management, hardware control (keyboard, disk drive, printer,
etc.) and coordinating various functions. It also makes operating system
functions available to a programmer. A system programmer, for
instance, shouldn’t worry about which areas of memory in the
computer are occupied and which areas are still available. The operating
system automatically allocates free memory of the desired size, if
enough memory is available.

In AmigaDOS the disk commands that the computer can execute aren’t
integrated into the operating system itself. On some home computers,
you can enter certain commands which the operating system recognizes
and immediately executes (such as Load, Save, etc.). AmigaDOS is
based on a different principle: AmigaDOS commands are short
programs that can be loaded from a disk drive (floppy disk, hard disk or
RAM disk) before they execute. Upon execution, AmigaDOS returns to
the routines contained in the operating system. This method has certain
advantages over an operating system with integrated commands:

. Each command occupies memory only when it executes. After
execution, it is removed from memory. AmigaDOS also allows
often used commands to remain resident in memory.

. If the authors find that a command contains some kind of bug or
error, it can later be fixed with a corrected version.

. An unlimited range of commands exists. New commands can be
added to AmigaDOS as needed.

The biggest disadvantage of separate AmigaDOS commands is disk
switching; exchanging disks takes time. This frequently occurs on
smaller computers with a limited amount of memory space and a single
disk drive. By using a hard disk or multiple floppy disk drives in
conjunction with a RAM disk, this disadvantage can be avoided.

ABACUS

AmigaDOS
2.0

AREXX

1.1 THE TASK OF AMIGADOS

In AmigaDOS 2.0 all the AmigaDOS commands were rewritten for
compactness and speed. This allowed many commands to be made
internal commands, thereby allowing them to execute directly, no more
loading from diskette. The Amiga designers recognized the flexibility of
a system that calls commands from diskette so they built in an internal
command override system, keeping the best of both worlds, internal and
external commands. The following are the internal commands of
AmigaDOS 2.0, these commands will be discussed in greater detail
later:

Alias INTERNAL
Ask INTERNAL
CD INTERNAL
Echo INTERNAL
Else INTERNAL
EndCLI INTERNAL
EndIf INTERNAL
EndShell INTERNAL
EndSkip INTERNAL
Failat INTERNAL
Fault INTERNAL
Get INTERNAL
Getenv INTERNAL
If INTERNAL
Lab INTERNAL
NewCLI INTERNAL
NewShell INTERNAL
Path INTERNAL
Prompt INTERNAL
Quit INTERNAL
Resident INTERNAL
Run INTERNAL
Set INTERNAL
Setenv INTERNAL
Skip INTERNAL
Stack INTERNAL
Unalias INTERNAL
Unset INTERNAL
Unsetenv INTERNAL
Why INTERNAL

AREXX is a version of the mainframe computer REXX programming
language that has been implemented on the Amiga. AREXX has been
integrated in the Workbench 2.0 operating system. AREXX is an
application programming language that can be used to extend operating
system commands and customize application programs for easy
interaction.

The complete power and possibilities that AREXX gives to th.e Amiga
is beyond the scope of this book, so AREXX programming will not be
covered in this volume. To do AREXX justice a separate volume would
be necessary to describe all the features of this excellent addition to the
Amiga.

1. INTRODUCTION

AMIGADOS INSIDE AND OUT

1.2

Command
Line
Interface

The Workbench and the Shell

The previous section gave a rough description of what AmigaDOS
does. AmigaDOS contains the tools with which the user can perform
functions required for the operation of the computer. For example, how
do you tell the computer that you want to format a disk? The
Workbench can do this: In Workbench 2.0 there is a menu item in the
Icon menunamed Format disk and in Workbench 1.3 there is a
menu item in the Disk menu named Initialize. You insert the
blank disk, click once on its icon and select the Format disk or
Initialize item from the menu, depending on which version of the
Workbench you are running. This loads the corresponding command
from the Workbench disk and any other commands as needed. The
Workbench is actually nothing more than a program loaded from the
disk when the computer boots up, creating the graphic user interface or
GUL

An alternative to the Workbench is the Shell or Command Line
Interface. AmigaDOS commands entered from the keyboard form the
command line interface, instead of icons or pointer. The mouse can
only be used to change the size of any window opened for a Shell
task.

Isn’t the Shell a step backward in computer technology, then? It may
seem that way at first glance, since the Workbench simplifies startup
procedures on the Amiga. However, some aspects of the Amiga’s
operating system, and even the Workbench itself, cannot be accessed
without AmigaDOS. The Startup-sequence, a file made of commands
instructing the Amiga what to do or load as it starts up, can be edited
and tested from AmigaDOS. This Startup-sequence is located on the
Workbench disk, and the Amiga executes this file every time you turn
the Amiga on.

In Workbench 1.3 some of the filenames on a disk are not visible on
the Workbench (e.g., an invisible file may have no matching info
file). As a result, AmigaDOS provides the best way to really look
behind the scenes in Amiga disks. Workbench 2.0 solved this problem
by allowing the user to view all files on a diskette, but AmigaDOS
still gives more flexibility in the displaying of disk information.

ABACUS

1.3 WORKBENCH BACKUP

1.3

Backup
copies

Workbench
Backup

Workbench Backup

Before you begin working with AmigaDOS and the Shell, make a
copy of your original Workbench disk. Use this backup as your
Workbench disk. As time passes, the backup disk may become corrupt
(unreadable), or important files may be erased accidentally. If this
g?slipens, you can make another backup from the original Workbench

It’s easy to make a backup copy of the Workbench disk. If you have
never backed up a disk before, do the following:

Take the original Workbench disk. Look for the write protect tab
(that sliding piece of plastic set into one comer of the disk. Move
the write protect to the write protect position (you should be able
to see through the disk in a hole created by the write protect). You
cannot overwrite the Workbench disk when the write protect is in
this position.

Place the original Workbench disk in the internal disk drive,
sometimes called drive DF0Q: (drive floppy 0). Turn on your
Amiga. The booting process begins immediately.

After a while the Workbench screen appears. The loaded
Workbench disk is represented by an icon on the screen. Move the
mouse pointer onto this icon. Click on this icon by pressing and
releasing the left mouse button. Press and hold the right mouse
button. Workbench 2.0 users should move the mouse pointer to
the Icon menu title and select the Copy item from this menu.
Workbench 1.3 users should move the mouse pointer to the
Workbench menu title and select the Duplicate item from
this menu. Release the right mouse button.

Now the Amiga asks you to insert the SOURCE disk which you
would like copied (the FROM disk). You already have that disk in
the drive, so click on the Cont inue gadget.

Have a blank, unformatted disk ready to become your backup
Workbench disk. This is the disk that the Disk Copy function
refers to as the TO disk. Check the write protect of the TO disk;
you should not be able to see through the comner of the disk, like
you could with the original Workbench disk.

During the copying process, the Amiga may ask you to exchange
the FROM (source) and TO (destination) disks several times,
depending on how much memory is available. Never remove a
disk from a disk drive when the drive light is on!! You

7

w

1. INTRODUCTION

AMIGADOS INSIDE AND OUT

could lose data, and even destroy the disk! A window on the screen
tells you when the process is done.

The difference between the original and the backup disk is that the
backup appends the words “Copy of” in front of the original name.
Therefore, if the original Workbench disk is named Workbench
x.x, the new disk has the name Copy of Workbench x.x.
Remove this extension using the Rename item from the Icon
menu (the Workbench menu in 1.3). Use the and
<Backspace> keys to delete the “Copy of” text and press the
<Return> key. DOS always distinguishes between the two disks
by the date and time of creation assigned to each disk. These details
are always stored on the backup.

Take the original Workbench disk and put it in a safe place.
Anywhere far away from moisture and magnetic objects will work
(a linen closet, an unused desk drawer, etc.). Use the backup you
have made as your Workbench disk.

ABACUS

1.4 INTRODUCTION TO THE SHELL

1.4

Starting the
Shell

Introduction to the Shell

Remove all disks from any disk drives you have connected to the
Amiga. Press and hold the <Ctrl> key, the <Commodore> (sometimes
called the left <Amiga> key) and the right <Amiga> key to reset the
Amiga. Wait until the icon requesting the Workbench disk appears on
the screen. Insert your backup copy of the Workbench disk. The Amiga
system boots and the Workbench screen appears.

Double-click on the Workbench disk icon, the Workbench disk
window opens. Look for the Shell icon. Double-click on this icon.
The Shell loads, and a window named AmigaShell (NewShell in
1.3) appears on the screen. In our explanations we will refer to both
versions as the Shell window.

The AmigaShell window has some of the attributes of a normal
window on an Amiga. It has a drag bar (which allows you to move it
around the screen); a sizing gadget (which allows you to change the
window’s size); a depth gadget (1.3 has a front gadget and a back
gadget) for moving the window into the foreground or background of
the screen. Workbench 2.0 also has a zoom gadget which toggles the
window between full size and last size. Workbench 2.0 AmigaShell
windows also have a close gadget, the Workbench 1.3 NewShell
window has no close gadget: You must use a Shell command to
close the window in Workbench 1.3 (more on this in Section 1.8).

The only thing displayed in the NewShell window is the DOS
prompt. This consists of a process number (1.), the current drive
(SYS:) and a greater-than character (1. SYS : >). This character tells you
that the computer is ready to receive and execute commands from the
keyboard. A cursor waits beside the prompt for your input.

1. INTRODUCTION

AMIGADOS INSIDE AND OUT

1.5

<Backspace>
and <Return>
keys

10

The First Command

All inputs in the She1l must be entered by pressing the <Enter> or
<Return> key (some Amigas have <.> embossed on this key). Since
both keys perform the identical function, we refer to the <Return> key
for the duration of this book.

If you press the <Return> key without entering a command, the
prompt appears one line down from its previous location.
Unfortunately, you cannot use the four cursor keys to move the cursor
to a particular line within the window. All commands must be
completely typed out every time they are used. In the input line itself,
single characters that have been input can be erased from right to left
using the <Backspace> key (some Amigas have <«> embossed on
this key) above the <Return> key. An entire line can be erased by
holding down the <Ctrl> key and pressing the <X> key (this is called
“pressing <Ctrl><X>,” and will be used throughout this book to
describe key combinations involving the <Ctrl> key).

Only available commands can be executed. Enter the following:
files

Remember to press the <Return> key at the end of the line.
AmigaDOS responds with:

Unknown command

Only commands available as programs in the disk drive can be
executed, AmigaDOS 2.0 can also execute internal commands. This is
the special feature of AmigaDOS. The Shell receives the command
(program name) from the user, searches the disk drive for a file by that
name, loads the file into memory and executes it. This means that the
Shell can execute programs as well as AmigaDOS commands.

Move the mouse pointer to the top of the Shell window. Press and
hold the left mouse button and drag the window to the top left of the
screen. Release the left mouse button. Move the pointer to the sizing
gadget at the lower right comer of the Ami gaShell window. Press
and hold the left mouse button and drag the sizing gadget to the bottom
right of the screen. Release the left mouse button. Workbench 2.0
owners can simply click on the zoom gadget, next to the depth gadget,
to toggle the window full size.

ABACUS

DIR

1.5 THE FIRST COMMAND

We’ll begin with a relatively simple but very important command, and
list other commands as you gain experience in AmigaDOS and the
Shell. The name of this first command is DIR (directory). DIR
displays a list of the files contained in the specified disk drive (floppy
disk, hard disk or RAM disk). Enter the following (remember to press
the <Return> key when you’re done entering the command):

DIR

It doesn’t matter whether you enter uppercase or lowercase characters in
the Shell. Shell commands even accept mixed case letters.

After a while, the Shell displays the contents of the internal disk
drive (drive DFO0:). This list is the directory of the Workbench disk.

The names don’t appear on the screen very quickly at first. Soon the
names start flying by on the screen. Press any key to stop the display,
and press the <Backspace> key to resume the display.

The display should be similar to the following. Your display may
differ—don’t worry if it does; remember the Amiga is an ever
expanding system and new features are continually being added.

1.8YS:>dir
Trashcan (dir)
Rexxc (dir)
Expansion (dir)
Libs (dir)
WBStartup (dir)
Prefs (dir)
Fonts (dir)
C (dir)
Devs (dir)
S (dir)
L (dir)
Utilities (dir)
System (dir)

.info ' Disk.info
Expansion.info Prefs.info
Shell.info System. info
Trashcan. info Utilities.info
WBStartup. info

1.8YS:>

11

1. INTRODUCTION

AMIGADOS INSIDE AND OUT

1.6

Data files

Subdirectories

12

Directory Structure

You may recognize some of the filenames displayed by the DIR
command; while others may be unfamiliar to you. Info files contain
icon data, date and time information and comments. You cannot see
some files as icons on the Workbench screen because these files don’t
have matching .info files. However, you don’t need .info files when
you work in AmigaDOS.

Some other file entries, shown from the Workbench as drawer icons,
have extensions of (dir) when you view them using the DIR
command. The directory (or drawer) structure by which AmigaDOS
handles the data files is the same for both the Workbench and
AmigaDOS. You can’t see all the data files in the Shell at once,
either. The DIR command only displays the root (main) directory of a
disk for now.

This form of data file management is often referred to as a tree
structure. The main directory serves as the trunk, and the subdirectories
extend from: this trunk like the branches of a tree. Each subdirectory can
either contain data files or another subdirectory. There is almost no
limit to the number of subdirectories you can have.

How do you reach other subdirectories? From the Workbench it’s no
problem: a subdirectory appears as soon as you double-click on a
drawer. If more drawers appear in this new subdirectory window, you
can access their contents in the same way.

If you want to look at the contents of a particular subdirectory from
AmigaDOS, you must append a path to the DIR command. This path
describes the “access route” through directories and subdirectories to get
to a particular file or directory. The simplest path is to simply provide
a directory name. Enter the following (press the <Return> key at the
end of the input):

DIR System

The DIR SYSTEM command displays the directory of the System
drawer on the Workbench disk.

T!le names shown are actual data files—no (dir) extensions appear.
Since there are no more (dir) names, we cannot go deeper in this
branch of the tree. We can only access files in this directory.

Let’s look at a directory (drawer) that we normally can’t see from the
Workbench. The Devs directory has no added .info file, which is
why you can’t normally see it in the Workbench 1.3 window,

ABACUS

1.6 DIRECTORY STRUCTURE

Workbench 2.0 does have an option for viewing all diskette files.
However, we can view the contents of this directory from AmigaDOS.
Enter the following command:

DIR Devs

This command displays the following directories and files (Workbench
1:3 will also contain a ramdrive.device and a clipboard

directory):

1.SYS:>dir devs
Printers (dir)
Keymaps (dir)

clipboard.device MountList
narrator.device parallel.device
printer.device serial.device
system-configuration

1.8YS:>

You’ll immediately see that there are two more directories contained
within this directory. You can easily view one of these directories by
adding a slash (/) character and the name of the desired directory. You
are still in the main directory; so enter the following to read the
printers directory inside the devs directory:

DIR Devs/Printers

Don’t confuse the slash character (/) with the backslash character (V).
The result of this command looks something like this for Workbench
1.2 users (1.3 and 2.0 users will find these printers on the Extras
diskette; they should insert the Extras diskette and enter: DIR
"Extras xx:devs/printers" where xx is their version
number):

1.SYS:>dir devs/printers
Alphacom_Alphapro_101 Brother_ HR-15XL
CBM_MPS1000 Diablo_630
Diablo_Advantage D25 Diablo_C-150
Epson Epson_JX-80
generic HP_LaserJet
HP_LaserJet_PLUS ImagewriterII
Okidata_ 292 Okidata_92
Okimate_20 Qume_LetterPro_20

1.85YS:>) '

The underscore character (_) shown above is located on the keyboard by
pressing <Shift><->. :

13

1. INTRODUCTION

Drive specifier

14

AMIGADOS INSIDE AND OUT

The Preferences editors retrieve the data needed to drive different
types of printers from this directory. No further subdirectories are
available from this directory. This directory is one of the deepest
subdirectories on the Workbench disk.

A complete path usually contains the name of the disk or the disk drive
specifier. When you begin, AmigaDOS defaults to DF0: (the internal
disk drive). This part of the path is optional. If you have two or more
disk drives, you can access them with the DIR command as well as
using the drive specifier. The disk drive specifier must begin the path
statement. In the simplest case (no path statement), DIR DF1:, for
example, displays the main directory of a disk in the first external disk
drive. Hard disk users call their device DHO:. Statements referring to
subdirectories always follow the colon:

DIR DHO:TEXT/LETTERT/BILL

Unfortunately, if you have only one disk drive connected to your
Amiga, you can’t just load any disk you want and look at the directory.
If you remove the Workbench disk, insert another disk and enter a DIR
command, the Shell requests that you insert the Workbench disk.
We’ll explain this problem in more detail in Chapter 3. All you need is
a single disk drive for this chapter to try out the functions.

The System directory you viewed earlier showed some commands that
can be accessed as AmigaDOS commands, but aren’t necessarily
AmigaDOS commands themselves. The actual AmigaDOS commands
are in a different directory.

You can view the AmigaDOS commands by looking in directory C: of
the Workbench disk. Enter the following command to view the
commands located on the diskette:

DIR C

AmigaDOS 2.0 users should enter the following command to view the
AmigaDOS internal commands:

RESIDENT

ABACUS

1.7 CoMMAND TEMPLATES

1.7

Command Templates

Every AmigaDOS command has a built-in help function called the
command template. Because these commands are so powerful, even an
experienced AmigaDOS user can forget the syntax of a command. If the
syntax is incorrect, AmigaDOS 1.3 responded with one of these
messages:

Bad args (or) Bad arguments

When AmigaDOS 2.0 was completely rewritten the error messages for
many commands were also greatly improved. You could refer to
Chapter 10 of this book to find the correct syntax, but it’s often much
faster to call the command template for the command.

Enter the AmigaDOS command, followed by a space and a question
mark, then press the <Return> key. AmigaDOS displays the argument
template for the desired command. Enter the following:

DIR ?
AmigaDOS displays:
DIR,OPT/K,ALL/S,DIR/S,FILES/S, INTER/S:

The command template is easy to read once you learn the coding. DIR
is the keyword (command)—this must appear first in the syntax.

A comma separates arguments from each other in the argument
template. These shouldn’t be entered when you type the command
itself. Therefore, DIR has five arguments available: OPT/K, ALL/S,
DIR/S, FILES/S and INTER/S. Arguments can also contain qualifiers
(control characters) preceded by a slash (/) character. The second
argument of the DIR command includes the word OPT. OPT is an
abbreviation for OPTIONAL. This means that OPT is a form of input
which can be included or omitted.

The final section of the second argument is /K. The letter K is an
abbreviation for Keyword. This options keyword must be given in the
command.

The colon (:) at the end of the argument template is important, but it’s
not part of the argument template (more on this at the end of this
section).

Possible qualifiers that can appear in an argument template in 1.3 and
2.0:

15

1. INTRODUCTION

/A (Argument)

/K (Key)

/S (Switch)

IN (Numeric)

/M (Multiple)

/F (Final)

, (comma)

AmigaDOS 1.3

16

AMIGADOS INSIDE AND OUT

This qualifier always requires a certain argument. If you omit the
argument, the command cannot execute.

The qualifier’s name must appear as input (e.g., OPT in the DIR
example above), and a keyword must appear as well. The parameters
allowed and the functions executed depend on the respective Shell
command (see Chapter Two for more details).

This qualifier needs no arguments. It acts as a switch (toggle) for a
command. In commands switches operate similar to a light switch--
they turn a command on or off or switch the command to another
mode.

Possible qualifiers that can appear in an argument template only in
AmigaDOS 2.0:

This qualifier indicates that a numeric argument is expected
(AmigaDOS 2.0 only). ’

Multiple arguments can be included. In 1.3 commas were used to
signify multiple arguments. Multiple arguments must be separated by
spaces. This has been updated in AmigaDOS 2.0, also the number of
arguments is unlimited in AmigaDOS 2.0.

The argument is the final argument. This allows using strings without
enclosing them in quotation marks (AmigaDOS 2.0 only).

The command takes no arguments (AmigaDOS 2.0 only). In
AmigaDOS 1.3 the comma was used to show multiple inputs.

If none of the qualifiers appear in an argument, then the parameter
accompanying the command (if any) can be identified from its position
within the command line. For example, the command below has no
qualifiers. It tells AmigaDOS to display directory C of drive DF0: on
the screen:

DIR DFO0:C
In AmigaDOS 1.3 it’s possible that an argument can be unnamed. The
DELETE command (which we’ll discuss in detail later) has a number of
different arguments. Enter the following in the Shell of AmigaDOS
1.3:
DELETE ?
The Shell of AmigaDOS 1.3 responds with:
reveeeeeerALL/S,Q=QUIET/S:

The ten commas at the beginning of the argument template imply that
you can delete up to ten files at a time.

ABACUS

1.7 CoMMAND TEMPLATES

AmigaDOS 2.0 AmigaDOS 2.0 has greatly improved on this method by allowing

Arguments

unlimited arguments to be separated by spaces in the input line.

The ALL/S argument means that if you precede the word ALL with the
name of a directory, the command deletes all the files on the directory
and the directory itself. The following input deletes all files from the
dire&tory in drive DF0: named NORTON, then the NORTON directory
itself:

DELETE DFO0:NORTON ALL

If you entered this command and had a set of files inside a directory
named NORTON in DF0:, AmigaDOS would report the status of the
deleted files on the screen. The Q=QUIET /S argument switches on the
display of the file deletion process. The equal sign between the Q and
the QUIET means that you can either use the word or the letter as the
argument. The following command deletes all the files from the
NORTON directory in drive DF0:, then deletes the NORTON directory.
This command and the above DELETE command perform the same
function. However, the command below suppresses the list of deleted
files on the screen:

DELETE DFO0: NORTON ALL QUIET

This version of the DELETE command does the same thing (notice the
use of the letter Q instead of the word QUIET):

DELETE DFO0: NORTON ALL Q

An argument introduced by the user through its name can be placed
anywhere within the input line. For instance, the COPY command
includes the arguments FROM and TO/A, among others. Both of the
following command sequences perform the same function—copying the
letters file from drive DFO: to a file on drive DF1: named text:

COPY FROM DF0:letters TO DFl:text
copy TO DFl:text FROM DF0:letters

It doesn’t matter whether the command names and arguments are entered
in uppercase or lowercase letters.

After command parameters are displayed in a command template, the
cursor reappears in the same line as the command template following
the colon. You can now enter an argument or set of arguments without
re-entering the command keyword.

When working in AmigaDOS, if you’re not 100% sure which
command uses which arguments, enter the command, a space and a
question mark to see the command template.

17

1. INTRODUCTION

AMIGADOS INSIDE AND OUT

1.8

ENDSHELL

ENDCLI

AmigaDOS 2.0

18

Quitting the Shell

We mentioned in Section 1.4 that AmigaDOS 1.3 shell windows
have no close gadget. AmigaDOS uses a command instead of a close
gadget to exit and return you to the Workbench.

The ENDSHELL command closes the Shel1 window currently active.

Enter the following (again, remember to press the <Return> key at the
end of the input):

ENDSHELL

The Shell window immediately disappears and the Amiga returns you
to the Workbench.

This introduction to working with the She1l has made you familiar
with its basic operation. The following chapters systematically explain
all the currently available commands.

The ENDCLI command also closes the Shell window currently
active. This command has been retained for compatibility with earlier
versions of AmigaDOS.

AmigaDOS 2.0 users can also click on the close gadget located in the
AmigaShell window.

2.
AmigaDOS
Commands

ABACUS

2. AMIGADOS COMMANDS

2.

Note:

AmigaDOS Commands

This chapter lists the AmigaDOS commands in detail. The commands
appear in order of difficulty and importance and not in alphabetical
order. The easier to learn commands appear first, this way you won’t
immediately confront the relatively difficult commands, which can
confuse you if you don’t have the background information needed for
these commands. The Quick Referencs chapter lists the commands in
alphabetical order.

Section 2.1 describes all the commands that fall under the general
heading of disk drive and file management. Here you’ll find the
commands which access the floppy or hard disk drives, and files stored
on these disk drives.

Section 2.2 describes the commands which access the operating system
in some way or another. A typical member of this group is the Date
command which deals with the system date.

Section 2.3 describes commands used in script files. These are similar
to batch files on MS-DOS computers. Script files perform multiple
commands, saving the user the effort of repeatedly typing in the same
command sequences. The Startup-sequence is a script file. Script
files are one of the most powerful features of AmigaDOS.

Finally, Section 2.4 explains two comprehensive commands. These
commands, ED and Edit, invoke two different text editors which are
used to create script files.

The following sections contain a great deal of descriptive material. We
recommend that you try out commands (when you can) as much as
possible while you read. This will help you understand the functions of
the commands. Use a backup copy of the Workbench disk, do not use
the original disk. If you don’t have a backup, go to Chapter 1 and make
one. You may also want to keep a blank, unformatted disk around for
testing some commands.

AmigaDOS is constantly being improved and updated, the updates
usually contain a number of added arguments and commands, making it
much more versatile than previous versions. To show the history of
AmigaDOS and make this guide usable to all Amiga users we will first
present the 1.2 version of the command, then the 1.3 implementation
and finally the AmigaDOS 2.0 version. Any differences in the
commands will appear after the general description of the command.
Each version of the AmigaDOS command will be preceded by
Workbench 1.2 implementation:, Workbench 1.3
implementation: and Workbench 2.0 implementation:.

21

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

2.1

Disk and File Management

This section lists the commands used for handling files and managing
the Amiga disk drives.

2.1.1

FORMAT

Workbench 1.2 implementation:

Syntax:

22

FORMAT DRIVE <disk> NAME <name> [NOICONS]

A disk must be formatted or initialized before you can use it on an
Amiga. Formatting prepares a disk so that the Amiga can read data
from and write data to the disk. In Workbench 2.0 the Icons menu
contains an item named Format Disk... (in 1.3 the Workbench
menu contains an item named Initialize). AmigaDOS recognizes
unformatted disks immediately and places a DFx:??? name under the
disk icon on the Workbench (1.3 names the disk as BAD) .

The AmigaDOS Format command requires more information than the
Workbench’s Format Disk... item (1.3 Initialize). You
must give arguments specifying the disk drive and the additional details
about the new disk’s name. To format a disk in disk drive DFO0, you
must input:

FORMAT DRIVE DF0: NAME Example NOICONS

The NAME argument can be up to 30 characters long. Names that long
can cover up other disk names while in the Workbench, so we
recommend that you use shorter disk names. If you include blank
spaces in the NAME argument, the argument must be enclosed in
quotation marks. Incidentally, that applies to all work with the
AmigaDOS arguments which cannot contain spaces, or the argument
must be enclosed within quotation marks. AmigaDOS 2.0 also includes
the /F switch to signify a final argument which can contain spaces. For
example:

FORMAT DRIVE DF0: NAME "My Text" NOICONS

ABACUS

NOICONS

2.1 Disk AND FILE MANAGEMENT

The NOICONS argument suppresses the creation of the Trashcan
icon which normally appears in any disk window on the Workbench.
The Trashcan is unnecessary when using AmigaDOS.

- The DRIVE and NAME arguments must be input every time you use

the Format command. If the syntax was entered correctly, AmigaDOS
loads the Format command and the window displays:

Insert disk to be initialized in drive DF0: and press Return

Now that the Format command has been completely loaded, those
who have only a single disk drive can now remove the Workbench disk,
and insert the disk to be formatted. Before you press the <Return> key,
however, you should know that any data previously stored on this disk
is destroyed when you format the disk. If you wish to cancel the
procedure, press <Ctrl><C> (hold down the <Ctrl> key and press the
<C> key) and press the <Return> key. AmigaDOS then responds with
a*** Break.

If you wish to continue, press the <Return> key alone. The Amiga
formats the disk in the drive. AmigaDOS displays which cylinder (track
set) is currently being formatted. Each cylinder consists of two
concentric tracks on the disk, about 0.5 mm wide on opposing sides
(surfaces) of the disk. Each track can then be broken down into 11
sectors, each of which can contain 512 bytes of data. Since the disk
possesses 80 cylinders (or 160 tracks) altogether, the entire disk
capacity amounts to 880K:

(80 * 2 * 11 * 512)/1024 Byte = 880K

You don’t need to format a disk if you plan to use the DISKCOPY
command. The DISKCOPY command automatically formats the disk if
it has not been formatted.

Workbench 1.3 implementation:

Syntax:

FORMAT DRIVE <disk> NAME <name> [NOICONS] [QUICK] [FFS]
[NOFFS] [INHIBIT]

The QUICK, FFS and NOFF'S arguments are new additions to Version
1.3. The QUICK argument speeds up the formatting operation so that it
only takes a few seconds on a pre-formatted disk (a disk that has been
formatted once before). Only the tracks that contain the Root block and
the Boot blocks are formatted. A standard disk format (without the
QUICK argument) takes about two minutes.

23

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Root block The Root block (found on cylinder 40, side 0, sector 880) is the block

Boot blocks containing the root of the directory structure. The QUICK option writes
an empty directory to the disk. This file must not be erased. Formatting
of the Boot blocks (cylinder 0, side 0, sectors 0 and 1) renews the boot
program so the Amiga can eventually auto boot. This also eliminates
any viruses that may have gotten into the boot blocks.

FFS and The FFS and NOFF S arguments are interconnected. They create the

NOFFS desired file system for single partitions when formatting a hard disk.
Adding the FFS argument puts the new and faster FastFileSystem
into use. The slower original FileSystem is used if NOFFS is
entered.

A partition must be entered in the MountList if you want to run
under the new FastFileSystem. This MountList is found in the
Devs drawer on the Workbench disk. Each partition of the hard drive
not autoconfigured has an entry here. Before the new FFS partitions can
be used, the following lines must be added to each partition entry:

FileSystem = 1l.FastFileSystem
Globvec = -1

DosType = 0x4444F5301
StackSize = 4000

A requester displays the message Not a DOS Disk.. if such a
partition is placed inside the Startup-sequence the first time. It
can be removed by clicking on the Cancel gadget. The partitions
must be re-formatted under the new File system. In case the
FastFileSystem is attached to a partition, all you have to do is
re-format the partition. The entire hard disk must be re-formatted if you
wish to change the size of the partition (LowCy1l to HighCy1l). Save
the contents of the formatted partitions to floppy disks before
performing this format.

Inhibit Inhibits disk access while formatting.

Workbench 1.3.2 implementation:

INHIBIT was made automatic and NOFFS removed since it was not
very useful. The error messages were also improved.

Workbench 2.0 implementation:

This operation is identical to Workbench 1.3.2, but the command has
been optimized for compactness and speed.

24

ABACUS

2.1 Disk AND FILE MANAGEMENT

2.1.2

DIR

Workbench 1.2 implementation:

Syntax:

Example:

DIR DIR,OPT/K

This command displays the files and directories on a disk, lists
subdirectories and the files within these subdirectories.

You read about this command in Chapter 1 and used it to view
AmigaDOS’ file structure. In reality, this command does much more.
The command template of Di r looks like this:

DIR DIR,OPT/K

The DIR argument represents the exact path of the desired directory.
This argument initially defaults to the root directory of the Amiga’s
drive DF0: (the internal disk drive). Therefore, if you want to read the
directory on another device, you must supply the drive specifier as the
DIR argument (e.g., DF1:, RAM:, DHO:, JHO:). The colon (:) at
the end of each drive specifier tells DOS that the name is in fact a
device name. The DIR argument may be followed by any path to a
particular directory (drawer).

You want to view the Letters directory. The Text directory in the
disk in drive DF1: contains the Letters directory. The following
sequence accesses that directory:

DIR DFl:Text/Letters

Further subdirectories can be accessed at any time simply by adding
another slash character and directory name to the DIR argument.

If you omit arguments and qualifiers, the DIR command displays the
current directory. The use of the CD command (change directory)
dictates the current directory (see Section 2.1.3).

The capabilities of the DIR command expand with the use of the OPT
argument. Four qualifiers can be used with OPT: A, D, I and AI.

The A (A11) qualifier displays all of the files and directories in the
current disk. You can view every directory and every file: AmigaDOS
lists each directory then the directory’s contents in indented format.
This option is very helpful if you cannot find a certain file. However,
this option also creates a stream of data which quickly fills, then scrolls
the screen. Pressing any key stops the scrolling; pressing _the
<Backspace> key continues the directory display. The following

25

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

26

command displays all the files on the disk in drive DF1: (the second
disk drive):

DIR DF1l: OPT A

The D (DIR) qualifier lists only the directories of the current disk. This
is useful for quick searches for a specific directory, without listing the
root directory files in addition to the directories.

The I (INTER) option runs the DIR command in interactive mode.
This mode allows the user complete control of the directory output.
When DIR is invoked in interactive mode, AmigaDOS prompts with a
question mark after it displays each file. The user has the following
options for controlling the display:

<Return> Continues interactive output (displays the next file or
directory) name.

Del<Return> Typing this word and pressing the <Return> key deletes
the file currently displayed on the screen. Notice that
you enter the letters D E L, not press the key
(see Delete). You can only delete empty directories
(i.e., the directory you want to delete contains no files
or subdirectories). If you try to delete an occupied
directory using this command, AmigaDOS responds
with the error message Error code 216 then
displays the error.

<E><Return> Enters a deeper directory level. The directory output
resumes upon entry to this directory.

<Return> Moves back up to a higher directory level (closer to the
main directory). If you try to move to a level higher
than the main directory, the DIR command ends.

<T><Return> Types (displays) a plain ASCII text file in the Shell
window. If you use the <T> key to display programs or
AmigaDOS commands, you’ll only get garbage on the
screen. Pressing <Ctrl><C> stops the output and
returns you to interactive mode. If the output still isn’t
back to normal, press <Ctrl><O> to restore the
Amiga’s normal character set.

<?><Return> Displays the command template of commands available
in interactive mode. The template for directories appears
on the screen as follows:

B=BACK/S, DEL=DELETE/S, E=ENTER/S, Q=QUIT/S:
<Q><Return> Quits interactive mode and returns you to the Shell
prompt.

If you enter an incorrect command in interactive mode, AmigaDOS
respond§ with the message Invalid response—try again?:
after which you can re-enter the command.

ABACUS 2.1 Disk AND FILE MANAGEMENT

Al The A1 (All Interactive) qualifier displays all directory entries
interactively.

Workbench 1.3 implementation:
Sylltax.’ DIR DIR,OPT/K,ALL/S,DIRS/S,FILES/F, INTER/S

This new implementation of the DIR command adds the three
arguments ALL, INTER and DIRS which perform the same functions
as the A, I, D and AT arguments. The FILES argument is new and
allows only files to be displayed, subdirectories will not be displayed.
The OPT argument must be left off when using these new arguments.

ALL Displays all directory entries in the current disk.

DIRS Displays the names of the directories only in the current disk. This
argument displays the following output of the Workbench 1.3 disk:

1> dir dirs
Trashcan (dir)
c (dir)
Prefs
System (dir)
1 (dir)
devs (dir)
s (dir)
t (dir)
fonts (dir)
libs (dir)
Empty (dir)
Utilities (dir)
1>

FILES Displays the files in the current disk directory, subdirectories will not
be listed.

INTER Displays the current disk directory in interactive mode (identical to I
qualifier). The INTER argument adds a new option to the command
list:

C=COM/s, COMMAND

A new option has been added to the interactive mode which allows the
user to execute an AmigaDOS command either directly or through the
RUN command. This function can be useful when you are in the
directory of a data file you want printed. For example, you’re in the S :
directory and you want to print out the Startup-sequence file.
Enter <C> or COM and press the <Return> key. Interactive mode
requests the command. Enter the following to print out the Startup-
sequence and continue in interactive mode:

Command ?:run type df0O:s/startup-sequence to prt:

27

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Do not use the diskette FORMAT command while in interactive mode;
no confirmation will be allowed.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3.2, but the command has been
optimized for compactness and speed.

2.1.3

CD

Workbench 1.2 implementation:

Syntax:

Examples:

28

CD DIR

The CD (Change Directory) command allows yon to move to directories
either above or below the current directory. Let’s review the idea of a
tree structure used in disks. CD lets you move from your current
directory’s location to another branch. Once you use the CD command,
the directory to which you move becomes the current directory.

The following command (CD without arguments) displays the current
directory:

Cb

If you start AmigaDOS immediately after startup, this response is the
disk drive specifier (e.g., Workbench1.3, Workbench2.0, DFO0 ;).

The following command makes the System directory the current
directory (if the Sy st em directory is immediately accessible):

CD System

E.ntering another CD without arguments displays the new current
directory (e.g., SYS: System, Workbench2.0:System).

All AmigaDOS commands now refer to the current directory. For
example, if you enter DIR AmigaDOS displays the System directory
instead of the main directory.

Tpere are two ways to display the Sy stem directory from the main
directory. The first method displays the System directory’s contents
and returns you to the main directory:

DIR DF0:system

ABACUS

The main
directory

/

Note:

Note:

2.1 DisKk AND FILE MANAGEMENT

The second method changes the current directory to the System
directory and displays the directory’s contents:

CD DF0:system
DIR

The second method doesn’t automatically return you to the main
directory. You must use one of CD’s single-character arguments to
move up toward the main directory.

This character moves you one directory up in the hierarchy of
directories. Multiple slash characters move you up as many directories
as there are slashes. The following command moves you one directory
up (notice the space between the CD command and the /):

cD /

The following sequence moves you up two directory levels toward the
main directory (notice the space between the CD and the first / but no
space between the two slashes):

cD //

If you enter more slash characters than there are directory levels,
AmigaDOS responds with the message Can’t £ind and the number
of slashes you entered.

This character moves you directly to the main directory when used in
conjunction with CD (notice the space between the CD and the colon):

CD:

There are some minor differences between the two arguments. When
AmigaDOS searches for a pathname using a disk name as the DIR
argument instead of a drive specifier (e.g., using CD Workbench:
instead of CD DF0:), AmigaDOS doesn’t care which drive the disk is
in, as long as the disk is in one of the drives. If AmigaDOS cannot find
the disk name, it displays a requester asking you to insert the specified
disk in any drive.

AmigaDOS is extremely choosy about the way that it reads and accepts
filenames; it will not accept some characters in directory names or
filenames. For example, if you have a directory named Test Drawer
and you enter cd Test Drawer, the Amiga responds with the too
many arguments (or Bad arguments) error message, even if the
directory is available. AmigaDOS will not accept the space character.
There are three ways to avoid this problem: Rename the file to a single
word filename (e.g., TestDrawer); use the underscore character () to
separate the two words instead of a space (e.g., Test_Drawer); or
enclose the directory name in quotation marks when calling the CD
command (e.g., cd “Test Drawer”). The easiest method is to use

29

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Example:

one word filenames. The underscore character (<Shifted> minus sign)
allows you to separate words, making filenames more readable.

Often you must specify the drive you want to access. For example, if
the disk in drive DFO0: has the name My_data and you want to get to
the main directory of that disk, all you have to do is enter the
following:

CD My data

The following gives the same result, and is easier to remember than a
disk name:

CD DFO:

The latter example requires that you have the correct disk inserted in
drive DF0:—DOS will not look for a disk name unless you specify
one. Here lies the basic difference in the CD command, because while
CD DFO0: automatically returns you to the main directory of the disk in
the internal disk drive, CD : always returns you to the main directory
of the currently active disk.

Drive DF0: contains a Workbench disk and drive DF1: contains a
disk named Work_data which includes a file named Customers.
Entering the following changes to this directory:

CD DF1l:Customers

Entering the CD command without arguments displays the following;
Work_Data:Customers. When using the complete pathname the
disk can be put into any drive without further confusion. It is all the
same to the Amiga. Now the difference between CD : and CD DF 0 :
becomes obvious: a CD : makes the main directory the current
directory, CD DF0 : makes drive DFQ: the main directory.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

30

Operation is identical to Workbench 1.3.2, but the command has been

optmwed for compactness and speed. The command has also been made
an internal command.

ABACUS

2.1 Disk AND FILE MANAGEMENT

2.1.4

MAKEDIR

Workbench 1.2 implementation:

Syntax:

MAKEDIR /A

This command performs the same function as the New Drawer item
in the Window menu of Workbench 2.0. There you can make a new
drawer, name the new drawer whatever you want and drag files into the
new drawer. Workbench 1.3 users duplicated the Empty drawer to
create a new directory. An example of this is the Expansion drawer
on the Workbench disk. The greater the capacity a disk drive has, the
more powerful the MAKEDIR command becomes: The ability to create
directories on high-capacity hard disks is vital to keeping disks
organized. This command is used to keep a hard disk organized.

The MAKEDIR command is very easy to use. It requires only one path
statement, followed by a slash and a name for the new directory:

MAKEDIR DF1l:System/Monitor

It is important that all of the paths specified in the command exist.
You cannot create more than one directory at a time.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax:

MAKEDIR NAME/M

AmigaDOS 2.0 allows multiple arguments to be passed to the
MAKEDIR command. This allows the easy creation of multiple
(drawers) subdirectories. Multiple arguments must be separated by
spaces. If no arguments are passed to the command an error message,
No name given, is displayed.

31

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

2.1.5

DELETE

Workbench 1.2 implementation:

Syntax:

Note:

Wildcards

32

DELETE ,,,,,,+,, ALL/S,Q=QUIET/S

This command removes unnecessary directories or files from a disk or
RAM disk. The following command deletes the Extra_drawer
directory from the C directory on the disk in drive DF0::

DELETE DF0:C/Extra_drawer

AmigaDOS cannot delete a directory which still contains data. If you
try to delete a directory that still had files in it, AmigaDOS displays the
message Not Deleted: directory not empty . You must
move or delete these files before you can delete the directory.

Be very, very careful with the DELETE command; it’s easy to delete
the wrong file. Unlike the Trashcan on the Workbench, once you
delete a file you can’t get it back.

The Amiga wildcard is very useful with the DELETE command (see
Chapter 5 for more information). Like a wildcard in poker, the file
wildcard acts as a match for many files. This wildcard is made of two
characters—a number sign (#) and a question mark (?). The following
command deletes all the files beginning with test:

DELETE DFO:test#?

There’s a second way of deleting more than one file. The DELETE
command evaluates a maximum of ten files separated from one another
by a single space:

DELETE DFO:Utilities/Notepad DFl:system/say.info

How can you squeeze ten path specifiers onto one line? You don’t have
to. The cursor can move up to three screen lines for one command line.
You press the <Return> key when you’re done entering data.

The QUIET argument keeps the file deletion process from appearing on
the screen. The following command deletes all the files and directories
from the Utilities directory in drive DF0:, then deletes the
directory itself without telling the user what it's doing:

DELETE DFO0:Utilities ALL QUIET

ABACUS

2.1 Disk AND FILE MANAGEMENT

Workbench 1.3 implementation:

Syntax:

Version 1.2 and Version 1.3 syntaxes of this command are identical.

The new version of DELTE doesn’t stop when an entry cannot be

found. The following command deletes the file test3 from drive

DFO:, even if AmigaDOS cannot find the file test2 on the disk:
delete df0O:testl dfO:test2 dfO:test3

The old version of the command would have deleted test1 and then
displayed an error message.

Workbench 2.0 implementation:

Syntax:

DELETE FILE/M/A,ALL/S,QUIET/S,FORCE/S:

FILE/M allows multiple arguments to be included. In 1.3 commas
were used to signify multiple argument. Multiple arguments must be
separated by spaces. This has been updated in DOS 2.0, also the
number of arguments is unlimited in DOS 2.0.

FORCE /S allows the deletion of a file, even though it's in use; use
this with extreme caution.

2.1.6

COPY

Workbench 1.2 implementation:

Syntax:

COPY FROM, TO/A,ALL/S,QUIET/S

The coPY command is one of the most important and flexible
commands for manipulating files using AmigaDOS. This command
can copy a single piece of file or a complete directory on any device of
your choice that can receive data. Naturally it can also copy within a
disk drive. The command template reads:

FROM, TO/A,ALL/S,QUIET/S

The FROM argument represents a path description for the source data or
source file. Because an /A qualifier doesn’t exist, there is no input
obligation. If the FROM description is wrong, then the actual directory
becomes the source file. The TO argument represents the destination
path for the copy operation. The description depends on the source data:

33

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

34

a FROM refers to a single file

In this case the destination path can be any subdirectory you choose
within the device, or a device that you specify. It treats the destination
device as a drive, so the data is put in the desired directory under the
same name. The following example takes the file test from directory
C: of drive DF0: and creates a duplicate of the same name in the C:
directory of the RAM disk:

COPY DF0:C/test RAM:C

The C: directory must already exist in the RAM disk (see the
description of the MAKEDIR command for details on making
directories). If there is already a file in the destination directory named
test, AmigaDOS overwrites the file. AmigaDOS is consistent in
this: It overwrites an existing file without warning.

The following command copies the St artup-sequence script file
to a printer:

COPY DF0:S/Startup-sequence PRT:

If you want the copy to have a name other than the one already stated,
you have to specify that filename.

If a subdirectory with the same name already exists in this drawer, the
copy is placed under the old name, because in the input there isn’t a
difference between drawers and data names. Here is an example:

COPY DF0:C/MAKEDIR RAM:MD

This copies the MAKEDIR command in the C: directory to the RAM
disk under the name MD. There cannot be an existing subdirectory in the
RAM disk named MD. If such a subdirectory already exists, then the
MAKEDIR command is stored under its default name in that directory.

Now we come to the second option of the FROM argument.
b) FROM refers to an entire drawer

The destination path must point to a directory onto which you want to
copy files. Unfortunately you cannot specify the printer as a destination
device. The COPY command cannot send multiple files to a printer.

Usually only the data in the drawer itself is copied. Subdirectories are
ignored. The command should include the subdirectories you want
copied as well. The following command copies the contents of drive
DFO: onto the hard drive (DHO:) into an existing directory named
Games:

COPY DF0: DHO:Games all

ABAcCUS

2.1 DisK AND FILE MANAGEMENT

The DISKCOPY command copies entire disks more efficiently than the
coprpyYy command. However, using COPY brings a little order to the
disk. When files are edited they may become fragmented on a disk, this
means they are scattered over many different tracks. When copied with
the COPY command they are copied to the destination disk so they are
on tracks that are close to one another. Now the read head of the disk
drive does not have to move as far to access the file.

Workbench 1.3 implementation:

Syntax:

COPY FROM, TO/A,ALL/S,QUIET/S, BUF=BUFFER/K,CLONE/S,DATE/S,
NOPRO/S, COM/S

When you want to copy data to a directory that doesn’t exist on the
destination disk, the new version of the command creates a directory of
the same name on the destination disk. The source files are then copied
into this directory.

The new COPY command also allows you to print the contents of a
directory to a printer. This output may be distorted if the directory does
not contain only true ASCII data files.

Now we come to the added arguments mentioned in the command
template above:

The BUFFER (or BUF) argument allows the user to allocate a number
of 512 byte buffers to be used in the copying process.

The CLONE, DATE, NOPRO and COM arguments represent additional
information passed to the copy. The additional information that
AmigaDOS prepares for all files and directories state the date in which
the file was created, and the protection bits listed under the description
of the PROTECT command. Up to 80 characters of comments can be
added to a file.

The LIST command allows you to see this information. This is
explained in the next section.

The CLONE argument copies the original file’s creation date, protection
bits and comments to the new file.

The DATE argument copies the original file’s creation date to the new
file.

The COM argument copies the original file’s comments to the new file.

The NOPRO argument suppresses the protection bit information when
copying the new file.

35

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Example: The following command copies a data file named Test to the RAM
disk using the original file’s creation date and comments. No protection
bits are passed to the new file:

COPY Test RAM: DATE COM NOPRO

Workbench 2.0 implementation:

Syntax,’ COPY FROM/A/M, TO/A,ALL/S,QUIET/S, BUF=BUFFER/K/N, CLONE/S,
DATE/S, NOPRO/S,COM/S:

FROM/M allows multiple arguments to be included. Multip!e
arguments must be separated by spaces. The number of arguments is
unlimited in AmigaDOS 2.0.

2.1.7 LIST

Workbench 1.2 implementation:

Syntax.’ LIST DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S, TO/K, S/K,
SINCE/K, UPTO/K, QUICK/S

The LIST command lists important file information that the DIR
command doesn’t show.

The LIST command displays the following information, filename or
directory name, size of file or directory, protection bits, date and time of

creation.
Names The filenames and directory names appear on the screen in their order on
the disk. LIST makes no distinction in names between files and
Size/Dir The next entry in the listing distinguishes files from directories.

Filenames list their file sizes in bytes directories display the word Dir
in the location reserved for file sizes.

Protection The next entry displays the protection bit status of each file. All the
bits file entries listed above contain four protecuon bits. Each protection bit
letter represents the following:

(read) should allow reading of the file
(write) should allow writing to the file
(execute) should allow execution of the file
(delete) allows entry to be deleted

Q0 =R

36

ABACUS

Time & date

Bottom line

2.1 DisK AND FILE MANAGEMENT

If one or more of the options is suppressed a dash appears in place of
that option. A file with the combination rwe- therefore cannot be
deleted. The remaining flags (rwe) aren’t implemented at the time of
this writing. DOS leaves these flags alone.

The PROTECT command described later lets you change the status of
these flags.

The next two entries list the time and date when the file was first
created. These date entries always appear if you enter the correct date
with the Preferences editor, or if you have an Amiga with a
battery-backup real-time clock.

At the bottom of the list the number of files and the number of
directories on the disk appear, as well as the number of blocks
(1 block=512 bytes=0.5K) free on the disk.

The following command displays a list of files and directories contained
in the current directory of drive DFO: (the internal disk drive):

LIST DFO:

If the Workbench disk is in drive DF0: text similar to the following
appears on the screen.

Trashcan.info 1144 ----rwed 20-Jun-90 17:22:48
Trashcan Dir ----rwed 20-Jun-90 04:35:07
Rexxc Dir ----rwed 20-Jun-90 04:35:18
Wbstartup.info 824 ----rwed 20-Jun-90 17:22:47
Utilities.info 824 ----rwed 20-Jun-90 17:22:46
System.info 824 ----rwed 20-Jun-90 17:22:47
Shell.info 722 ----rwed 20-Jun-90 17:22:47
Prefs.info 1144 ----rwed 20-Jun-90 17:22:46
Expansion.info 824 ~----rwed 20-Jun-90 17:22:46
.info 87 ----rwed 22-Mar-78 03:43:47
disk.info 388 ----rwed 20-Jun-90 17:36:37
Expansion Dir ----rwed 22-Mar-78 03:44:36
Libs Dir ----rwed 20-Jun-90 04:35:53
WBStartup Dir ----rwed 20-Jun-90 04:35:57
Prefs Dir ----rwed 22-Mar-78 03:49:29
Fonts Dir ----rwed 20-Jun-90 04:36:45
(o} Dir ----rwed 20-Jun-90 04:33:37
Devs Dir ----rwed 20-Jun-90 04:33:54
S Dir ----rwed 20-Jun-90 04:34:01
L Dir ----rwed 20-Jun-90 04:34:07
Utilities Dir ----rwed 22-Mar-78 03:44:59
System Dir ----rwed 23-Mar-78 04:43:38

9 files - 13 directories - 40 blocks used

There’s more to LIST than you might think. Invoking the command
template (LIS ?) displays the following:

37

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

DIR

PAT

KEYS

DATES

NODATES

TO

SINCE

UPTO

QUICK

38

DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S, TO/K,
S/K,SINCE/K,UPTO/K,QUICK/S

Don’t panic! Most of the time all you’ll ever need is the LIST
command without arguments. Here’s an overview of each argument:

The DIR argument lets you specify another directory (e.g., LIST
RASM:C).

The PAT argument allows you to use patterns or wildcards. The
wildcard (#?) is extremely useful for finding selected entries (e.g.,
LIST PAT A#? displays only the entries beginning with the letter A).

This argument returns the starting blocks of the selected programs on
the disk (only AmigaDOS “power users” will use the KEYS argument).

The DATES argument enables date display in the format DD-MMM-
YY (this output is the default for the List command).

The NODATES argument disables date display.

The TO argument specifies the file or device that should receive the
output (¢.g., LIST DF0: TO PRT: sends the listing of DF0: to the

printer).

The S (substring) argument enables you to search for entries that are
arranged according to their substring. A substring is part of a name.
Chapter 3 lists details about the input # ?subname#? in the Pat
option.

The SINCE argument displays all entries created since the specified
date. The specified date must be in DD-MMM-YY format, or stated as
the words YESTERDAY or TODAY.

The UPTO argument displays all entries created before the specified
date. The specified date must be in DD-MMM-YY format, or stated as
the words Yesterday or Today. The following example of SINCE
and UPTO includes the YESTERDAY specifier:

LIST SINCE 09-JUN-87 UPTO YESTERDAY

The QUICK argument lists only the entry names, as well as the
number of blocks remaining.

The following command, which would be entered on one line in the
Amiga, searches for the C subdirectory in drive DF0: and looks for all
the commands that begin with C. The command then looks for all
entries created after September 10, 1986 and sends all these entries to
the printer (no dates appear on the printout):

ABACUS

2.1 Disk AND FILE MANAGEMENT

LIST DF0:C PAT C#? NODATES TO PRT: SINCE
10-SEP-89 UPTO TODAY

Workbench 1.3 implementation:

Syntax:

BLOCK

NOHEAD

FILES
DIRS
LFORMAT

LIST DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S, TO/K, SUB/K,
SINCE/K, UPTO/K, QUICK/S, BLOCK/S,NOHEAD/S,FILES/S,
DIRS/S, LFORMAT/K

There are some very useful arguments added to this version. This
version also displayed any comments attached with the FILENOTE
command.

The BLOCK argument displays file sizes in disk blocks instead of
bytes.

The NOHEAD argument suppresses the display of directory names and
creation date. This argument always appears when the List command
is entered with a directory name (e.g., LIST DFO0:). In addition,
NOHEAD disables the display of the closing line (xx files -yy
directories-zz blocks are used).

The FILES argument displays the filenames only.
The DIRS argument displays the directory names only.

The LFORMAT argument allows the formatting of List text for use as
script files. The output format specification follows the LFORMAT
argument enclosed in quotation marks:

LIST DFO: LFORMAT="..."

Any text can be used in the output format specification. When the
character string %s appears as the output format specification,
AmigaDOS inserts the current filename at that point. The following
example inserts the filenames listed in directory C: in the resulting
output:

Input:

LIST DFO:c LFORMAT="This is the %s command"
Output:

This is the Run command

This is the Fault command

This is the Install command
This is the Stack command

This is the Prompt command

This is the Else command

This is the Status command

This is the Ed command

This is the BindDrivers command
(eod)

39

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

40

The following use of the LFORMAT argument can be used to create a
script file that removes all of the d (delete) protection bits in drive
DFO0:’s Text directory:

list >Script_file df0:Text LFORMAT="protect %s -d"
The result could be something like this:

PROTECT Text_ 1 -d
PROTECT Text_2 -d
PROTECT Text_3 -d
PROTECT Letter_1 -d
PROTECT Letter_2 -d

This file can be executed directly using the EXECUTE Script_file
command (see the description of the EXECUTE command).

The %s string can appear more than once in the output format
specification. If two % s are used the current filename appears in both
locations. When three of these strings are used, the second and third
occurrences display the filename while the first occurrence displays the
path of the specified directory. The following example creates a script
file that will copy a backup of the commands in the C: directory to the
directory named Directory:

Input:

LIST >Script_file c: LFORMAT="COPY %s%s TO
directory/%s.BAK"

Output:

COPY c:RUN to directory/Run.BAK

COPY c:FAULT to directory/Fault.BAK
COPY c:INSTALL to directory/Install.BAK
COPY c:STACK to directory/Stack.BAK
COPY c:PROMPT to directory/Prompt.BAK
COPY c:ELSE to directory/Else.BAK

(o)

When four %s are used, the occurrences alternate between the specified
path description and filename.

The Version 1.3 List command still has more functions. The wildcard
features increased flexibility. It’s now possible to use the wildcard with
the path description. The following example lists all the files in the C
directory beginning with the letter m:

LIST DFO:C/m#?
The Version 1.2 LIST command would display this message:

Can't examine "df0:c/m#?": object not found

ABACUS

Protection
bits

2.1 Di1sK AND FILE MANAGEMENT

In addition to the existing rwed protection bits, Workbench 1.3 adds
three new protection bits: h (not implemented), s (Script), p (Pure) and
a (Archive). See the description of the PROTECT command for details
about these protection bits.

Workbench 2.0 implementation:

Syntax: LIST DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S, TO/K, SUB/K,
SINCE/K, UPTO/K, QUICK/S, BLOCK/S,NOHEAD/S, FILES/S,
DIRS/S, LFORMAT/K,Al1l/S
The ALL argument was added to this version:
ALL The ALL argument displays all the directories and files on a disk. This
is very useful for creating printed listings of your disks contents.
2.1.8 RENAME
Syntax: RENAME FROM/A, TO=AS/A:

This command assigns new names to a file. The command is useless
without arguments. It must have two paths:

1. the complete path description of the object to be renamed
2. the new pathname
This command appears to be very simple. The following changes the
filename My-text to the name Essay, keeping the file in the same
directory as before:

RENAME text/My-text text/Essay
Actually the RENAME command is much more flexible. The example
above is only a special case where the path stays the same. You can
also transfer data or directories within the disk data structure. For this
you must make another distinction:
1. The renamed object is a single data object

In this case the destination path out of the directory description must be
followed by a new name for the file. The following example places the
Format command located in the System directory into the C:
directory under the name Formatting:

RENAME DF0:System/Format DF0:c/Formatting

41

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Example:

Note:

If there wasn’t a C: drawer or if the command could not find the
FORMAT command, the following error message would appear:

Can't rename system/Format as c/Formatting
2. The renamed object is a drawer

If you only want to change a drawer name, use a simple RENAME. For
example:

RENAME DFO0:Expansion DF0:Expan

You can even move a drawer to a different place in the disk data
structure.

Suppose you have a directory on disk named BASIC which contains
the subdirectory PROGRAMS. In addition, a directory named GAMES
which contains a subdirectory named ADVENTURES exists in the main
directory. The following command places the entire GAMES directory
and its contents in the PROGRAMS directory:

RENAME DFO:GAMES to DFO0:BASIC/PROGRAMS/GAMES

You must specify the new directory’s name as well as the source direc-
tory’s name. The TO argument can be omitted.

You cannot move a file or drawer from one disk drive to another using
RENAME. The following input is not permitted:

RENAME DF0:C/type RAM:type

Only the COPY command can perform this task.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

There are no changes to the RENAME command. It is no longer
possible to have two files in the RAM disk with the same name due to
a better RAM handler.

Workbench 2.0 implementation:

Syntax:
FROM

42

RENAME FROM/A/M, TO=AS/A,QUIET/S:

FROM/M allows multiple arguments to be included. Multiple
arguments must be separated by spaces. The number of arguments is
unlimited in AmigaDOS 2.0.

ABACUS

QUIET

2.1 DisK AND FILE MANAGEMENT

The name of the file being renamed is displayed on the screen, unless
you specify the QUIET option, which can be useful in script files.

2.1.9

DISKCOPY

Workbench 1.2 implementation:

Syntax:

DISKCOPY FROM/A,TO/A, NAME
The DISKCOPY command is the AmigaDOS equivalent of the Copy

item in the Icons pulldown menu (in 1.3 the Duplicate item in
the Workbench pulldown menu).

Unlike the COPY command, this produces a complete copy of the entire
disk. The following example copies a disk using only one drive:

DISKCOPY FROM DF0: TO DFO:
The TO argument is required; the FROM argument may be omitted.

If you are certain that the data on the destination disk is no longer
needed, press the <Return> key to begin the copy operation. You can
abort the copying process by pressing <Ctrl><C>:

**%* BREAK

Disk Copy Abandoned.

Remember to insert original disk
Disk Copy Terminated

If you press <Ctrl><C> while the Amiga is writing to the destination
disk, not all of the information will be contained on the disk.
Remember to put the original disk in the drive after aborting.

In the Workbench a message may appear telling you the number of disk
changes you’ll have to make during the copy process. It looks like this:

The Disk Copy will take 4 swaps. .

An Amiga 500 with 512K could copy a disk with just three disk
changes. The waiting time between disk changes can be bothersome.

This problem doesn’t exist if you own an Amiga with two disk drives.

43

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

There are two differences between the Workbench Copy (1.3
Duplicate) item and the DISKCOPY command. First, the NAME
argument isn’t always needed. This argument lets you assign a different
name to the destination disk from that of the source disk. The
following example copies the contents of drive DF0: into drive DF1:
then assigns the name Work 1.2 to the new disk (note the use of
quotation marks around the name because of the space between Work
and 1.2);

DISKCOPY DRIVE DF0: TODRIVE DF1: NAME "Work 1.2"

Second, DOS can tell the copy from the original every time from the
date and time of the copy operation.

Workbench 1.3 implementation:

Version 1.3 added the Multi option to make multiple copies if
enough memory is available. Noveri fy option was added since verify
is now automatically on. It also does single disk copies on 1IMEG chip
ram Amigas. The error messages have been improved.

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the
new version has been optimized to operate faster.

2.1.10

RELABEL

Workbench 1.2 implementation:

Syntax:

44

RELABEL DRIVE/A,NAME/A

This command assigns a new name to a disk. The following line
changes the name of the disk in drive DF1: to Games:

RELABEL DFl: Games

Therq must be a space after the drive specifier. If the filename itself
contains a space (e.g., Test disk), you must enclose the filename
within quotation marks. The following example renames the disk in
drive DF2: to Test disk:

RELABEL DF2: "Test disk"

ABACUS

2.1 DiSK AND FILE MANAGEMENT

The maximum length allowed for disk names is 30 characters. Longer
names can pose problems for the Workbench.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the
new version has been optimized for compactness and the error message
has been improved.

2.1.11

INFO

Workbench 1.2 implementation:

Syntax:

INFO

The INFO command appears twice in this book: here and in Section
2.2. This version of the INFO command displays disk drive
information.

Entering this command without arguments displays information about
the currently connected drives. An example of this output follows:

Mounted disks:

Unit Size Used Free Full Errs Status Name
RAM: 30K 30 0 1008 O Read/Write Ram Disk
DFO: 880K 1645 113 93% 0 Read Workbench 2.0

DF1l: 880K 534 224 30% 0 Read/Write TextPro

Volumes Available:
Ram Disk [Mounted]
Workbench 2.0 [Mounted]
TextPro [Mounted]

The first section contains information about all the mounted
(connected) disk drives. The Unit category lists the drive specifier. The
Size category lists the disk capacity as specified in the Format
command. The Used and Free categories display the number of
blocks (1 block=0.5K; 2 blocks=1K) used and the number of blocks
still available. The Full category lists the percentage of the disk used.
A zero under the Exrr category means that no defective blocks (errors)
exist.

45

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

The status category gives the position of the write protect on the
disk. The disk in drive O can only be read. The last category (Name)
displays the names of the respective disks.

The second section (Volumes Available) lists the names of the
disks so that you can check disk names without removing the disks
from the drives.

Workbench 1.3 implementation:

Syntax:

INFO DEVICE

The new INFO command includes the DEVICE argument. You can
receive information about the specified device only. The Info
command automatically reformats data for easily reading longer names
using a Tab function.

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the
new version has been optimized for compactness and speed.

2.1.12

Syntax:

Note:

46

INSTALL

INSTALL DRIVE/A

The INSTALL command converts Amiga format disks to bootable
disks (i.e., an installed disk can be used to boot up when you turn the
Amiga on). The Workbench disk is an installed disk.

The following example makes the formatted disk in drive DFO: into a
bootable disk by placing the boot block onto the disk:

INSTALL DFO:

You cannot make a hard disk drive into a bootable disk. KickStart 1.3
and KickStart 2.0, located in ROM on the Amiga 500 and 2000, lets
you boot from a hard disk without using an INSTALL command on
the hard disk (never use the INSTALL command on a hard disk).

If you install a newly formatted disk then reset the Amiga immediately,
the system resets, stops and enters the CLI. There are a number of
reasons for this. A bootable disk looks for AmigaDOS commands—it
needs these commands to function. The trouble is, it doesn’t know
where to search for these commands. You have to copy the essential

ABACUS

2.1 DisK AND FILE MANAGEMENT

directories on the Workbench disk onto the new disk. These directories
are:

C

L
System
Devs

S

Pref
Fonts
Libs

In addition, you would have to write a Startup_sequence (see Chapter 6
for detailed information about the Startup-sequence and script
files) to assign system directories within the disk.

The simplest solution to having a bootable disk is to copy the
Workbench disk using the DISKCOPY command. This copies the boot
block and all the necessary directories to the new disk. Then if you need
memory for other applications, delete the directories and files not needed
by the booting procedure.

Workbench 1.3 implementation:

Syntax:

NOBOOT

CHECK

INSTALL DRIVE/A, NOBOOT/S,CHECK/S
The added arguments are NOBOOT and CHECK.
The NOBOOT argument makes a bootable disk non-bootable.

The CHECK argument examines the boot block and tells the user
whether the boot block has been damaged. This damage may have been
done by a computer virus. This virus is a program that loads into the
computer when the disk is accessed and copies itself onto any disks
placed in that drive while the computer is turned on. The virus can
cause extensive damage if the disk is used further.

A boot block virus cannot do anything to a non-system disk because it
has nothing to do with controlling the computer. The CHECK argument
displays the following message for non-bootable disks:

No bootblock installed

When the CHECK argument examines a boot disk with an intact boot
block, the message reads:

Appears to be normal V1.2/V1.3 bootblock

The CHECK argument displays the following message if the boot block
is corrupt or abnormal:

47

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

May not be standard Vv1.2/v1.3 bootblock

There is a good possibility your computer has been infected by a virus
if the disk is one that you formatted. The results of viruses vary from a
message on the screen, to a Guru Meditation, to completely formatting
the hard disk. There are as many remedies as there are viruses.

We’ll briefly describe one method to remove a virus from an infected
disk. Turn off the computer for at least five seconds using the main
power switch. Boot it with a disk that you know is not infected with a
virus. Because most users make a backup copy the first time they use
the new Workbench disk, the original disk will almost always work.
Start the Amiga with this disk and open a Shell window. Enter the
following command:

DIR >NIL: RAM:
COPY C:INSTALL RAM:
PATH RAM: ADD

Put the Workbench disk back in a safe place. Now check out all of your
disks for viruses, even if you only have one drive, using the INSTALL
DF0: CHECK command. The boot block can be installed by using
INSTALL DF0:, DON'T use this command on any commercial
software. When you have done this to all of your disks, you should
again have control of the boot blocks. Unfortunately this only takes
care of the simple viruses hiding in the boot blocks. Smart viruses
infect other parts of the disk (such as t rackdisk.device). If you
think you have a smart virus or any of your commercial software disks
are infected contact your local dealer or a user’s group as quickly as
possible—they may be able to help you.

Workbench 2.0 implementation:

Syntax:

NOBOOT

48

INSTALL DRIVE/A, NOBOOT/S,CHECK/S,FFS/S

The added argument is FFS/S. The AmigaDOS version has also been
optimized for compactness and speed.

The FFS/S option is used when you want to use the disk with the
FastFileSystem.

ABACUS

2.1 DisKk AND FILE MANAGEMENT

2.1.13

TYPE

Workbench 1.2 implementation:

Syntax:

TYPE FROM/A,TO.OPT/K

The TYPE command displays ASCII files on the screen, to a device or
to a file. The following command displays the Startup-sequence
script file in the S subdirectory of the Workbench disk on the screen:

TYPE DF0:S/Startup-sequence

The output can be stopped temporarily by pressing any key. Pressing
the <Backspace> key continues the display. Pressing the <Ctrl> and
<c> keys aborts the display and returns to the DOS prompt (>1).

Adding to PRT: sends the output to the printer. The following
example performs the same function as above except it sends the output
to a printer:

TYPE DF0:S/Startup-sequence TO PRT:

The data can also be redirected to other output devices. The following
example sends the Startup-sequence file to the T directory and
stores it under the name mytext:

TYPE :S/Startup-sequence T/mytext

Adding the OPT N argument displays text with line numbers. This is
useful for viewing a BASIC program stored in ASCII format.

The OPT H argument displays each word of the file being typed as a
hexadecimal number. OPT H is intended mainly for the true hacker. The
TYPE command is perfect for text output when the data doesn’t contain
any control characters. If you try to TYPE a DOS command (e.g.,
TYPE C/TYPE) you’ll get garbage on the screen. However, the TYPE
C/TYPE OPT H command organizes the screen into a table like this:

0000: 000003F3 00000000 00000002 00000000 ...cecuvccceases

0010: 00000001 0000004F 000001C4 000003ES [JR
0020: 0000004F 286A0164 700C4E95 2401223C ...0(j.dp.N.$."<
0030: 00000095 49FAFFEE 286CFFFC 2F0C2F02 S A AT

On the far right we have our text displayed in ASCII. Each period
stands for a non-displayable character that AmigaDOS handles by
displaying a period.

49

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

The first column lists the hexadecimal line numbers. The middle
column displays the contents of the file using four long words. Each
long word is made up of four bytes, and each byte represents one
character, so each byte corresponds to a character on the right margin.

The I in the last line stands at the 52nd byte position (=3*16 +4). The
ASCII code that is associated with the text for an I reads: $49
($=hexadecimal) or 73 decimal (4*16 +9).

Workbench 1.3 implementation:

Syntax:

Version 1.2:
Version 1.3:

TYPE FROM/A,TO,OPT/K,HEX/S, NUMBER/S

The options OPT H and OPT N arguments can also be accessed using
the HEX and NUMBER arguments without the opt argument. For
example:

TYPE S:Startup-sequence OPT N

TYPE S:Startup-sequence NUMBER

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the
new version has been optimized for compactness and speed.

2.1.14

50

JOIN

Syntax: JOIN ,,,,ssssssssss s AS/A/K

The JOIN command lets you concatenate (join) up to fifteen files to
create one new file.

The fifteen commas in the command template represent the maximum
fifteen source files. The AS argument must follow. Then follows the
path description for the concatenated file (/a). The simplest form of the
JOIN command can simulate the basic function of the Type
command. By placing an asterisk behind the command you specify the
source data and JOIN displays it on the screen. The following
demonstration displays the text of the startup sequence on the screen:

JOIN DF0:S/Startup-sequence AS *
There is no argument available to let us print multiple files at one

time. The COPY command accepts the wildcard, but that really doesn’t
allow more data to be accessed. The JOIN command makes it possible

ABACUS

2.1 Disk AND FILE MANAGEMENT

to print out 15 data files right after each other. The following prints
text files text1 through text5:

JOIN textl text2 text3 text4 as prt:
The JOIN command also has something to offer the compiled language

programmer. If you run out of room using your editor, this command
allows you to concatenate separate files into one file before compiling.

Workbench 1.3 implementation:

Syntax:

JOIN ,,sssrvrvssrvrs,AS=TO/K

The JOIN command now understands the TO argument as well as the
AS argument.

Workbench 2.0 implementation:

Syntax:

JOIN FILE/M,AS=TO/K/A

FILE/M allows multiple arguments to be included. Multiple arguments
must be separated by spaces. The number of arguments is unlimited in
AmigaDOS 2.0. The new version has been optimized for compactness

and speed. :

2.1.15

SEARCH

Workbench 1.2 implementation:

Syntax:

FROM

SEARCH

SEARCH FROM, SEARCH/A,ALL/S

The SEARCH command lets you look for data using a character string.
If AmigaDOS finds the character string it displays the name of the file
in which the string is located, followed by the line number and the line
that contains the string.

The FROM argument represents the complete path specification of a
directory and a single data item. If the FROM argument is omitted, the
command looks in the current directory.

The SEARCH argument must precede the search string:

SEARCH SEARCH "Goodness gracious"

51

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Wildcards

The SEARCH command searches the current directory for the words
“Goodness gracious”. Quotation marks must surround any string
containing a space. SEARCH makes no distinction between uppercase
letters and lowercase letters. If you want to search all subdirectories you
can direct the SEARCH command to do so.

Like the LIST command, this command allows you to complete the

pathname using wildcards. The following command searches for all
files in a subdirectory starting with three letters:

SEARCH DF0:C?/#? SEARCH window

This would find all the files starting with C in any directories
containing one letter names, containing the word “window.”

Like all of the AmigaDOS commands, the SEARCH command can be
stopped by pressing <Ctrl><C>. When searching all the directories,
pressing <Ctrl><D> moves AmigaDOS to the next file.

When AmigaDOS returns the message Line x t runcated, the lines
in the file being searched are too long (this happens often).

The SEARCH command is very helpful to the C programmer. The
command can quickly find the desired include directories.

Workbench 1.3 implementation:

Syntax:

NONUM

QUIET
QUICK

FILE

52

SEARCH FROM, SEARCH/A,ALL/S,NONUM/S, QUIET/S, QUICK/S,FILE/S

The 1.3 SEARCH command replaces the message Line xx
truncated with Warning: line xx too long. In case the
search operation comes up empty (null), AmigaDOS returns error code
5. The error code can be analyzed in a script file (see Chapter 6).

There are four new arguments:

The NONUM argument suppresses line number output when the search
finds multiple items. The text found appears at the left margin of the
screen for easy readability.

The QUIET argument searches files without output.

The QUICK argument displays the filenames being searched next to one
another instead of under one another. A new directory begins a new
line.

The FILE searches for a specific filename instead of a string.

ABACUS

2.1 DisK AND FILE MANAGEMENT

Workbench 2.0 implementation:

Syntax:

FILE

PATTERN

SEARCH FROM/M/A,SEARCH/A,ALL/S,NONUM/S,QUIET/S,
QUICK/S,FILE/S,PATTERN/S

The new version has been optimized for compactness and speed. Two
new arguments have been added, FILE/M and PATTERN/S

FILE/M allows multiple arguments to be included. Multiple arguments
must be separated by spaces. The number of arguments is unlimited in
AmigaDOS 2.0.

PATTERNY/S allows pattern matching to be used in searches.

2.1.16

SORT

Workbench 1.2 implementation:

Syntax:

FROM

TO

COLSTART

SORT FROM/A,TO/A,COLSTART/K
The SORT command sorts (alphabetizes) text files.
The arguments are as follows:

The FROM argument specifies the pathname of the file to be sorted.
Because this cannot be a directory, an additional input is necessary
(/n).

The TO argument specifies the destination of the sorted data. Here a
pathname or device name must be given. The FROM data isn’t really
changed. If you want output on the screen, for example, you must enter
the * character. Using the PRT : device directs the sorted output to the
printer.

The COLSTART argument specifies the column at which the sorted
output should start. For example, if you reserve 10 places for first
names and a certain number of places for last names the following sorts
the last names starting at the tenth column:

SORT FROM fred TO ned COLSTART 11

If you omit the COLSTART argument the sorting begins at the first
column.

53

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax: SORT FROM/A, TO/A,COLSTART/K, CASE/S, NUMERIC/S:
The new version has been optimized for compactness and speed. Two
new arguments have been added, CASE/ S and NUMERIC/S.

CASE When CASE/S is specified the sort is case sensitive.

NUMERIC NUMERIC/S allows numeric sorts.

2.1.17 PROTECT

Workbench 1.2 implementation:

Syntax:

54

PROTECT FILE/A,FLAGS:

The PROTECT command lets you set a single protection bit (see
Section 2.1.8 for a detailed description of the four protection bits).

r Read—-the file can be read

w Write—the file can be written to
e Execute—an ‘'execute' is allowed
d Delete—an entry can be deleted

The delete bit can be activated from DOS. This bit acts like the write
protect on disks, except the delete bit guards an individual file from
deletion instead of the entire disk. The following command sets the
delete bit on the Let ters directory in drive DF1::

PROTECT DFl:Letters

Files inside directories can be protected by activating their own delete
bits. The following example sets the delete bit in the Invitations
file contained in the Let ters directory:

PROTECT DFl:Letters/Invitations rwe

If you view a protected file using the LIST command, the protection
bits appear as four hyphens. These hyphens indicate that the file can no
longer be accessed. Any attempt to erase the file returns an error code.
The protection can be removed using the FLAGS argument. The

ABACUS

2.1 Disk AND FILE MANAGEMENT

following command enables all four protection bits in the Invitations
file:

PROTECT DFl:Letters/Invitations rwed

Workbench 1.3 implementation:

Syntax:

h (idden)

s (cript)

P(ure)

a(rchive)

PROTECT FILE/A,FLAGS,ADD/S,SUB/S

Workbench 1.3 adds four new protection bits to the PROTECT
command:

h (Hidden)—controls visibility of certain file entries
s (Script)—controls starting script files w/o Execute
P (Pure)—controls program loading using Resident

a (Archived)—controls file copying (Kickstart 1.3)

When using Workbench 1.3/Kickstart 1.2 to start your Amiga you
must pay particular attention to the p and s flags.

The hidden protection bit suppresses the entry of the respective files
in the directory. For example, the .inf o files responsible for the icon
on the Workbench disk can be made invisible in the directory list.
Larger directories can be made more readable using this method.

The script protection bit deals with script files. When the script flag
is positive (set), the script file can be started from a shell. It is not
necessary to enter the Execute command to invoke a script file
anymore. A set script flag automatically calls an Execute
command.

The pure protection bit allows the associated program to be loaded
using the Resident command. By doing this it is always ready for
the user and it also doesn’t have to be loaded from the drive anymore.

The pure protection bit is necessary because not every program has
the qualities needed for using the Resident command. More
information about the Resident command can be found in Chapter
4,

The archive protection bit controls the option of copying files under
Kickstart 1.3. The Copy command only copies files that have negative
(unset) archive protection bits. A file with a posifive (set)
archive protection bit is said to be archived. The archive
protection bit changes to negative when you write to the file. A new
archive protection bit must be set.

One practical application: When you work with the RAM disk, you can
activate a script file as a background process that can save all modified
data on a disk. When you place the commands Copy, Wait and
Execute in working memory, the disk drive eventually performs a
save operation. The following file acts as a script file to do just this:

55

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

wait 5 min
copy ram:#? to dfO0:
execute BACKUP_SCRIPT

This script file also functions under Kickstart 1.2. The complete
contents are saved whether the RAM disk has been written to in the last
five minutes or not.

The ADD and SUB arguments make individual protection bits positive
or negative. These are the equivalents of adding + and - to change
protection bit status. The following examples show how ADD and SUB
work:

SUB

Status before -—--rwed
Input protect file d sub
Status after -—---rwe-
ADD

Status before ————-rwe-
Input protect file d add
Status after —----rwed

The ADD and SUB options can be replaced by plus and minus signs.
The input is simplified this way:

Status before --—-rwed
Input protect file -w
Status after ----r-ed
+

Status before ----r-ed
Input protect file +w
Status after ----rwed

Workbench 2.0 implementation:

Syntax:

ALL
QUIET

56

PROTECT FILE,FLAGS,ADD/S,SUB/S,ALL/S,QUIET/S

The new version has been optimized for compactness and speed. Two
new arguments have been added, ALL/S and QUIET/S.

When A11/S is used all protection bits can be cleared.

The QUIET argument does not display the filename of the files being
accessed. This can be useful in script files.

ABACUS 2.1 DisK AND FILE MANAGEMENT
2.1.18 FILENOTE
Syntax: FILENOTE FILE/A,COMMENT/A

The FILENOTE command allows you to place up to 79 characters of
comments in a file or place a comment about the version number in a
program. You can read the comments later using the LIST command.
The text appears on a separate line. A colon at the beginning of the line
indicates that it is a comment. For example:

FILENOTE C/FILENOTE “This command lets you add 80 characters to files!"®

The quotation marks must surround any text containing spaces. If the
LIST command is used on the C/FILENOTE file, this is the result:

c/filenote 700 rwed 20-Jun-90 23:30:19
¢ This command lets you add 80 characters to files!

Two final observations about the FILENOTE command: Comments
inserted using FILENOTE don’t copy using the COPY command. In
addition, if the destination file already exists, the comments in the
destination file remain intact.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax:

ALL
QUIET

FILENOTE FILE/A,COMMENT/A,All1/S,QUITE/S

The new version has been optimized for compactness and speed. Two
new arguments have been added, ALL/S and QUIET/S.

When 211 /5 is used all comments can be cleared.

The QUIET argument does not display the filename of the files being
accessed. This can be useful in script files.

57

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

2.1.19

Syntax:

FILE

DATE

TIME

Note:

SETDATE

SETDATE FILE/A,DATE,TIME

This command makes it possible to store the correct date entry of files.
This is useful for Amiga users who have battery-powered real-time
clocks in their Amigas; the time is set without using the
Preferences editor.

The FILE argument represents the path description of the directory/file.
The specified file must be found and in the same format as it appears in
the LIST command.

The DATE argument represents the current date. If the old date is only
within a week of the current date, then you can enter the current day’s
name for the DATE argument, as shown in the following example:

SETDATE text/Letter Saturday

The command sets the date correctly by itself. The correct date can even
be set by using the word yesterday as the DATE argument. These
words appear in the listing executed by the LIST command. If you
want to pre-date something (assign a future date), the LIST command
shows the word future for any future datings.

The TIME argument sets the current time. When the time setting is
correct, then the entire date description appears. If you do not set the
time, the time automatically sets to 00:00.

Date settings before January 2, 1978 are usually not shown. When this
occurs, two empty spaces appear in the LIST display.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax:

ALL

58

SETDATE FILE/A,DATE, TIME,All/S:

The new version has been optimized for compactness and speed. A new
argument has been added, ALL/S.

When ALL/ S is used all dates can be set to TODAY.

ABACUS 2.1 Disk AND FILE MANAGEMENT

2.1.20 DISKDOCTOR

Workbench 1.2 implementation:
Syntax: DISKDOCTOR DRIVE/A

The DISKDOCTOR attempts to save data on disks that have read/write
errors or possible data corruption in general.

The DRIVE argument represents the disk drive specifier (e.g., DFO0:,
DF1:, etc.). The following example invokes the DISKDOCTOR and
examines the disk in DF1: (the first external disk drive on an Amiga

1000 or 500):
DISKDOCTOR DF1:
Error The following messages that are displayed by DISKDOCTOR during
messages execution are documented in the following section.

DiskDoctor cannot run in the background

This is displayed when you try starting DI SKDOCTOR as a background
process using the Run command. DI SKDOCTOR can only be executed
directly (without Run).

Unknown device xxx

This occurs when the description of a device name that DOS doesn’t
know is entered (xxx stands for the device name).

Not enough memory

DISKDOCTOR needs more memory than the system can allocate. Hint:
Close all unnecessary windows and/or end all other running programs.
This message also appears when you try to use DISKDOCTOR on a
device other than a disk drive (printer, serial device, etc.).

Device xxx not found

DiskDoctor cannot find the desired device. This error almost never
occurs with normal 3.5" drives because of the trackdisk.device
found in ROM (in WOM for the Amiga 1000). This error is usually a
result of a device name entry error in the Mount list for unusual drives
(e.g., 5.25"). By using a special disk drive the error message appears
when the device is not found in the Mount list.

59

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Unable to open disk device
The disk device was found, but it cannot be opened
Unexpected end of file

DOS handles the file with a great amount of redundancy. The advantage
of this redundancy is that it’s easier to reconstruct this file if the file
somehow becomes damaged. This error message occurs when the file is
shorter than is declared in the file header.

Error: Unable-to access disk

This occurs when the drive is unable to respond (e.g., no disk in the
drive).

Disk must be write enabled
Write protects prevent writing to the disk. Because DI SKDOCTOR
wants to write to the disk, write protects must be set to write enable
(no hole in the write protect area).

Unable to read disk type - formatting track zero

DISKDOCTOR cannot read the disk type from track zero, sector zero. It
reformats that track and sector.

Track zero failed to format - Sorry!

There is a good chance of a defect on track zero of the disk when this
message appears. There may be a problem with the drive itself (read/
write head is incorrectly positioned) if this happens frequently with
other disks.

Unable to write to root - formatting root track

DISKDOCTOR cannot rewrite the track on which the root block
appears. This root block acts as the reference point of all the disk
directories. DI SKDOCTOR tries to format the track (track 40, side 0)
and install the disk. Because the name of the disk is found on this track,
DiskDoctor assigns the name Lazarus to the disk.

Root track failed to format - Sorry!
The root track cannot be formatted. The disk cannot be rescued.
Cannot write root block - Sorry!

The root block cannot be written. DISKDOCTOR can’t do anything
about it.

60

ABACUS 2.1 DisK AND FILE MANAGEMENT

Warning: File xxx contains unreadable data

The specified file (xxx) cannot be reconstructed fully and doesn’t
contain any readable data. You may be able to salvage some of this data
using a disk monitor. In most cases, the file must be erased by
answering Yes to the “Delete corrupt files in directory

yyy?” prompt.

Attention: Some file in directory xx is unreadable and has
been deleted

DISKDOCTOR has taken the initiative and erased a file because too
much information was missing for reconstruction.

Failed to read key

A block cannot be read

Failed to rewrite key

A block cannot be rewritten
Warning: Loop detected at file xx

Normally, a file stands at a single block together with a block pointer
that connects it to the rest. This error message means that the given file
has a loop in the connection. A file block loops back to a block that

has already been read. The read operation of the file may never have
ended because the same data was being read all the time.

Parent of key xx is yy which is invalid

A block exists which is not connected to the list because the operating
block is useless.

Hard error Track xx
Track number xx cannot be read either because it was incorrectly
formatted or because of mechanical failure. The problem may be caused
by the reconstruction of some files or directories.

Key xx now unreadable
The block with the number xx is no longer readable.

Replacing dir =xx

The given directory can be reconstructed and is now being integrated
into the directory structure of the disk.

Inserting dir xx

The given directory can be reconstructed and is now being entered in the
main directory of the disk.

61

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Replacing file xx
The given file can be reconstructed and is now being entered into the
original directory.

Inserting file xx

The given file can be reconstructed and is now being entered into the
main directory of the disk.

Now copy files to a new disk and reformat this disk

This is the closing message of DI SKDOCTOR. All rescued files and
directories can now be copied to a new disk. Then the defective disk
should be reformatted.

Workbench 1.3 implementation:

DISKDOCTOR can also be used for reconstructing the recoverable
RAM disk.

The use of the Version 1.2 and 1.3 DISKDOCTOR are identical. The
1.3 program has been enhanced and updated.

Workbench 1.3.2 implementation:

Diskdoctor V1.3.4 corrected the out of memory error message and now
uses BufMemType so it will work with large hard drives.

Workbench 2.0 implementation:
Syntax: DISKDOCTOR DRIVE/A

The new version has been optimized for compactness and speed. You
can use DISKDOCTOR on standard and FastFileSystem diskettes. The
DosType keyword in the MountList must be set to 0x444£5301 to use
DISKDOCTOR on FastFileSystem diskette! Never use DISKDOCTOR
on a FastFileSystem diskette if the DosType keyword is not set
correctly.

62

ABACUS

2.1 Disk AND FILE MANAGEMENT

2.1.21

DISKCHANGE

Workbench 1.2 implementation:

Syntax:

DISKCHANGE DEV/A

This command deals only with material for Amiga owners who use
5 1/4" disk drives or removable media drives. These drives, unlike the
3.5" drives, don’t come with DOS already on them. In this case, the
DISKCHANGE command is given, followed by the name of the given
device (the DEV argument). After that the new disk can be selected.

This command can also be used to inform WorkBench of a name
change to a floppy diskette using the RELABEL command.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax:

DISKCHANGE DRIVE/A

Version 2.0 and Version 1.3 of this command are identical. The new
version has been optimized for compactness and speed.

63

2. AMIGADOS COMMANDS AmMi1GADOS INsiDE AND OuT

2.2

System Commands

The following section describes system commands, including the
commands that are related to the AmigaDOS Shell itself.

2.2.1

NEWCLI

Workbench 1.2 implementation:

Syntax:

NEWCLI WINDOW, FROM

Multitasking The NEWCLI command gives the Amiga user access to multitasking.

64

CLI stands for Command Line Interface. Multitasking allows different
programs to run at almost the same time. For example, you can print a
letter while formatting a new disk.

The command runs alternating tasks, not parallel tasks (that’s why the
word almost). This is something like the digital readout on a clock
radio. The numerals on a clock light up one after another, not all at
once. The rapid rate at which they change fools the eye into thinking
the numbers are lit simultaneously.

The NEWCLI command makes it possible to add a running task. After
entering the command, another AmigaDOS window appears. In 1.2 it
is named after the current task (e.g., NEWCLI task 2), in 2.0 it is
named AmigaShell. The Amiga can have more than one CLI window
open at a time.

However, work can only be done in one window at a time. You can, for
example, enter FORMAT DRIVE DF0: NAME Empty in the original
CLI window, then click on the new window and enter DIR DF1: to
see the contents of the disk in the external drive.

There is a disadvantage to multitasking: Each additional task increases
the risk of errors. See the chapter on AmigaDOS and Multitasking for
more information about multitasking.

Finally, we'll describe the parameters allowed in the NEWCLI
command. First, NEWCLI can open a window in the size and title
specified by the user. The following command creates a window named
Amiga with a width of 250 pixels and height of 100 pixels, with the

ABACUS

FROM

2.2 SYSTEM COMMANDS

upper left corner of the window starting at X-coordinate 50 and
Y-coordinate 70:

NEW CON:50/70/250/100/Amiga

This option works best when using the command in conjunction with a
Startup-sequence script file.

If the size input is missing, the CLI creates a window the full width
and half the height of the normal screen or one quarter of an interlaced
screen.

With the addition of the FROM argument and the name of a script file,
the NEWCLI command can automatically call a new CLI and execute a
script file. If the script file is in a drawer the complete pathname must
be specified. An example:

NEWCLI FROM S/Copies

In this example the script file named Copies in the S: directory
executes, before you can work with the new CLI.

Workbench 1.3 implementation:

NEWSHELL

Resident
commands
supported

Every time the NEWCLI command is called it executes a script file
named CLI-Startup, whichisin S: directory on the Workbench
disk. The only command contained in this file is the PROMPT
command, which creates the DOS prompt for the new CLI.

The NEWCLI command has become obsolete with AmigaDOS 1.3. In
the C: directory on the new Workbench disk there is a new command
called NEWSHELL. This command creates a window port to
AmigaDOS that has many advantages over the CLI.

Many of these additions can only be used when the shell segment is
resident in Amiga RAM before calling the NEWSHELL command. The
command reads:

RESIDENT CLI 1:SHELL-SEG SYSTEM pure

This command is automatically executed when the computer is first
turned on so that you don’t have to bother with it. The Shell window
has the following advantages:

AmigaDOS now contains a RESIDENT command that can load most
of the commands into working memory so they do not have to be
loaded from disk. These commands are then ready for use by the user. It
is covered in detail in the More AmigaDOS Commands chapter.
Calling resident commands is only possible through the Shell.Ina
typical AmigaDOS window such a command is loaded from the disk.

65

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Command
synonyms
allowed

66

It’s often a good idea to give your AmigaDOS commands shorter
names using Rename. There are disadvantages to this. Rename the
Fault command, which is found in the C directory, to FT (RENAME
C:FAULT AS C:FT). The FAULT command can be used to view the
text of an error message. For example, if FT 103 is entered, Fault
103: insufficient free store is displayed (in 2.0 Fault
103: not enough memory available is displayed).

Try to erase your AmigaDOS command directory using DELETE C.
This can’t be done because the directory is not empty. The error
message Not Deleted—directory not empty is displayed,
which is FAULT 216. AmigaDOS also makes use of the AmigaDOS
commands.

NEWSHELL allows you to call any command by another name. The
syntax for this reads:

ALIAS Newname originalname

Newname stands for any character string without spaces that can be
used to call that command. originalname is the name of the
command that should be executed by using the new name. When
AmigaDOS finds a name at the beginning of a line for which such a
relationship exists, this name is replaced by the related command. All
other input remains unchanged. For example:

ALIAS D DIR

The DIR command can be called by entering a D followed by a
<Return>. The relationship between the shortened version and the
normal command is not stored on disk but in a table that is controlled
from AmigaDOS.

The description of the original command is not limited to a single
word. You can build your own command using ALIAS if you use the
same options with a command all of the time:

ALIAS S-UP RUN ED S:Startup-sequence

Now you can load the Startup-sequence into ED for editing by entering
S-UP.

Unfortunately the relationships are lost when the computer is turned
off. For this reason a script file can be created so that any number of
ALIAS relationships can automatically be established. This file is
found in directory S: of the Workbench disk and is called
Shell-Startup. All entered relationships are valid in each new
AmigaDOS window.

A list of the current relationships can be obtained by entering just the
word ALIAS.

ABACUS

Output of
current path

Direct
calling of
script files

2.2 SYSTEM COMMANDS

In the AmigaDOS Shell, the prompt represents the actual directory
path. This indicates at which branch of the directory tree you stand. The
current path can be read by entering CD. Making your own prompt is
discussed under the description of the PROMPT command.

Usually only object programs can be started directly from AmigaDOS.
For example, if you try to start a script file by entering its name, the
error message Unable to load xxx: file is not an object
module (xxx stands for the filename) appears. Script files can be
started using the EXECUTE command.

Script flags allow access to a script file without the EXECUTE
command. DOS recognizes the flag, knows it’s dealing with a script
file and automatically calls EXECUTE. The command for setting the
flags reads: PROTECT Filename +s (see PROTECT).

When script files are started in this manner a script file with the name
Shell-Startup is called by NEWSHELL. This file is found in the
S: directory of the Workbench disk.

Workbench 2.0 implementation:

The NEWSHELL windows of AmigaDOS 2.0 now contains a close
gadget. The NEWCLI command is now the same as the NEWSHELL
command; a Shell window will be opened, not a simple CLI window.
The command was also optimized for compactness and speed. It was
also made an internal command.

Further information on the NEWSHELL command can be found in the
More AmigaDOS Commands chapter.

2.2.2

ENDCLI

Workbench 1.2 implementation:

Syntax:

ENDCLI

This command closes the current CLI window task started from the
Workbench or with NEWCLI. A second CLI cannot be closed from the
first CL.I window. If a CLI which was started by using RUN ends, the
CLI ends before the process is ended; the window remains open for
output from the currently running task. When the last task ends; the
window closes.

67

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Note:

If the Workbench is not already loaded and you enter ENDCLI, the
Workbench screen appears without icons or a menu bar (you won’t
have access to the Workbench). Enter the LOADWB command, then
enter ENDCLI to exit to the Workbench.

Workbench 1.3 implementation:

There is no such command as ENDSHELL; Shell can be ended using
ENDCLI. Some versions of the Shell-Startup script file contain
the statement ALIAS ENDCLI so that Shell will accept the
ENDSHELL command.

Workbench 2.0 implementation:

ENDCLI is synonymous with ENDSHELL; this was done to keep
compatibility with earlier versions of AmigaDOS.

2.2.3

RUN

Workbench 1.2 implementation:

Syntax:

68

RUN PROGRAM_NAME

This command executes a program or AmigaDOS command while
allowing access to a program running in the background and the current
AmigaDOS task. Any output from the RUN command appears in the
AmigaDOS window which started the task. The example below prints
three files named letterl, letter2 and letter3 and then
displays the RAM disk directory:

RUN C/JOIN Letterl Letter2 Letter3 TO PRT:
DIR RAM:

The JOIN command sends the multiple letters to the printer. The RUN
command starts the first task and immediately frees up the computer to
display the RAM disk contents.

There is an alternative to using JOIN to print the three letters.
AmigaDOS accepts the plus sign (+) character followed by the
<Return> key as a specifier for multiple commands. The following
example performs the same task as the example listed above:

RUN TYPE Letterl to PRT: +
TYPR Letter2 to PRT: +
TYPE Letter3 to PRT:

ABACUS

2.2 SYSTEM COMMANDS

The entire command group executes as a background process as soon as
you press the <Return> key following the last line (the line without
“47).

Workbench 1.3 implementation:

It should be possible to leave the AmigaDOS Shell used to start a
task by using ENDCLI, but also without closing the window
eventually used for output.

The following command creates a background process that writes the
entire contents of the disk in drive DFO: to a file named List:

RUN >List DIR DFO: OPT A

It should be theoretically possible to leave the Shell using ENDCLI
and close the window while the DIR command continues to work. It
doesn’t work that way; the device receives an EOF (end of file)
command character. The number of the task (e.g., CLI [2]) is given
to the device.

To allow the closing of the Shell while the running process
continues, redirect the output to NIL: using the > redirection symbol.

Our sample file displays the task number instead of the disk directory,
if the command TYPE List is used.

Workbench 2.0 implementation:

The RUN command was optimized for compactness and speed. It was
also made an internal AmigaDOS command.

2.2.4

STATUS

Workbench 1.2 implementation:

Syntax:

STATUS PROCESS, FULL/S, TCB/S,CLI=ALL/S

This command displays all the information available about the
AmigaDOS tasks running at that particular time. If you enter STATUS
without parameters, or if you enter STATUS all, AmigaDOS displays
the names of the individual tasks. The following example is a response
to STATUS ALL:

69

2. AMIGADOS CoMMANDS AMIGADOS INSIDE AND OUT

PROCESS

TCB

FULL

Task 1: Loaded as command: status
Task 2: Loaded as command: beckertext

In this case, because the BeckerText program was started from
AmigaDOS using RUN, it is assigned task number two.

The PROCESS argument specifies the correct task number for
additional information about the task. Entering Status 2 would only
show the second line of the above output.

The TCB argument produces more information about the individual
Tasks Control Block. Entering Status TCB for the above data would
return the following:

Task 1: stk 1600, gv 150, pri 0
Task 2: stk 3200, gv 150, pri O

The information following the task number has the following meaning:
stk Processor stack size of this task

gv Global vector table width

pri Specified task’s priority (values range from -128 to +127)

The FULL argument displays complete information about tasks.
Status full displays the following for the above example:

Task 1: stk 1600, gv 150, pri 0 Loaded as command: status
Task 2: stk 3200, gv 150, pri 0 Loaded as command: textpro

Workbench 1.3 implementation:

Syntax:

70

PROCESS, FULL/S, TCB/S, CLI=ALL/S, COM=COMMAND/K

The 1.3 STATUS command gives negative priorities correctly. In
addition, the new STATUS includes the COM=COMMAND /K argument.
This argument helps the user determine if a specific program exists in
the current task. The user must enter STATUS COM and the name of the
task. The following example searches for a task named TextPro and
displays the corresponding process number:

STATUS COM TEXTPRO

No other output occurs. If the process doesn’t exist, the condition flag
is set to 5 (=WARN). If the task is found, the shell number is output
and the condition flag is set to 0. This argument is especially helpful in
script files for seeing if a background task is running.

ABACUS

2.2 SYSTEM COMMANDS

Workbench 2.0 implementation:

Syntax: PROCESS/N, FULL/S, TCB/S, CLI=ALL/S, COM=COMMAND/K
Operation is identical to Workbench 1.3, but the PROCESS argument
is specified as numeric. The command has also been optimized for
compactness and speed.

2.2.5 CHANGETASKPRI

Syntax: CHANGETASKPRI PRI/A

This command changes the current CLI task’s priority. Each task in
the Amiga has a given priority. This value can range from -128 to
+127. The following example sets the priority of the current task to 5:

CHANGETASKPRI 5

Entering STATUS FULL after the above CHANGETASKPRI command
will display a message similar to the following, depending on which
tasks are running your computer:

Task 1: stk 1600, gv 150, pri 5 Loaded as command: status
Task 2: stk 3200, gv 150, pri 0 Loaded as command: textpro

If the input is out of the allowed range, the following appears:

Priority out of range (-128 to +127)

Workbench 1.3 implementation:

Syntax:

CHANGETASKPRI PRI/A,PROCESS/K

The PROCESS /K argument allows the user to change the priority of
any process. You must enter the process number following the
PROCESS argument. The following example changes process number
4 to a priority of -5:

changetaskpri Pri -5 Process 4

This option is very useful in case you have started a printing operation
as a background process and want to slow down this task so your other
tasks are done more quickly. CHANGETASKPRI lets you lower the
priority of the printing task, freeing up time for other tasks to execute.

71

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Workbench 2.0 implementation:

Syntax: CHANGETASKPRI PRI=PRIORITY/A/N, PROCESS/K/N
Operation is identical to Workbench 1.3, but the PRIORITY and
PROCESS arguments are specified as numeric. The command has also
been optimized for compactness and speed.

2.2.6 BREAK

Workbench 1.2 implementation:

Syntax:

PROCESS
C,D,E,F

72

BREAK PROCESS/A,ALL/S,C/S,D/S,E/S,F/S

This command halts execution of a DOS command from any
AmigaDOS window. For example, if the first task window contains the
DIR OPT A command, the complete output of this command can be
stopped by entering BREAK 1 from a second window.

You can achieve the same result by activating the first window and
pressing the <Ctrl> and <C> keys. But there is another use for this
command. In the description of the RUN command we mentioned a way
to print out more than one letter when it’s started. What would you do
if you wanted to stop the printing process? Turning the printer off is
not the correct way. Pressing <Ctrl><C> in the window from which
the process was started doesn’t work because the process is running
without a window. However, the BREAK command will stop output to
the printer.

The PROCESS argument tells the system which task to interrupt.

The BREAK command without arguments defaults to <Ctrl><C>. The
C,D, E, F arguments allow you to change the control character to
<Ctrl><C>, <Ctrl><D>, <Ctrl><E> or <Ctrl><F>. The following
example transmits a <Ctrl><D> to task number 3:

BREAK 3 d

A multiple file operation will stop at the beginning of the next file
when BREAK is sent. The operating system’s response to <Ctrl><C>
varies from case to case and depends on the respective AmigaDOS
command. In most cases, nothing happens.

ABACUS

ALL

2.2 SYSTEM COMMANDS

The ALL argument sets all four <Ctrl> codes simultaneously. The
following example sends all the <Ctrl> codes to task 3:

BREAK 3 ALL

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed.

2.2.7

PATH

Workbench 1.2 implementation:

Syntax:

PATH ,,,,,,,,,ADD/S,SHOW/S,RESET/S

This command displays the current directory and disk path. If the PATH
command is entered without parameters or is followed by SHOW, a disk
path appears on the screen. Here’s an example of the output of the path
command:

Current directory
RAM:c

A500 WB 1.2 D:System
C:

This list shows the order and directories used when searching for a file.
If the name of a program is entered (e.g., an AmigaDOS command),
DOS first searches the current directory for the file. The current
directory can be specified using the CD command.

If DOS doesn’t find the file in the current directory, it searches RAM: C
and the System drawer on the Workbench disk. If the file is not in any
of these places, DOS finally looks in a virtual (i.e., it exists only
within the computer) device named C: . This pseudo device ensures that
the AmigaDOS command searches for the correct directory. See the
description of the ASSIGN command for more information about
virtual device C:.

The PATH command allows the user to add or remove paths. For
example, if you use the calculator in the Utilities drawer of the

73

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

ADD

RESET

Workbench disk often, the following command to load the program is
entered:

Utilities/Calculator.

However, if you enter the command Path SYS:Utilities ADD
beforehand, the path list will have the following added:

A500 WB 1.2 D:Utilities
Now AmigaDOS automatically looks in the Ut ilities drawer.

The PATH command is especially useful when used in conjunction
with the RAM disk and Workbench 1.2. Because additional paths in the
list are always searched before the C: device, several DOS commands
can be placed in the RAM disk. This saves the floppy disk user quite a
bit of work because the operating system looks in the RAM disk first
for the desired command. Next it calls for the Workbench disk to be
inserted because the command was not found (see Chapter 3 for more
information on this subject). The Workbench 1.3 and 2.0 RESIDENT
command is a much better solution.

The ADD argument must appear at the end of the list to add up to ten
new path specifications.

The RESET argument removes all of the paths up to a maximum of 10
paths. All paths except the current directory and the C: are deleted.

Workbench 1.3 implementation:

The PATH command’s function remains unchanged but the search order
is different in the 1.3 version. When you omit a specific path for a
command, AmigaDOS first searches the resident commands. If it
cannot find the command in residence, the search operation continues as
described above.

Workbench 2.0 implementation:

Syntax:
PATH

REMOVE

74

PATH PATH/M,ADD/S, SHOW/S,RESET/S, REMOVE/S

AmigaDOS 2.0 allows multiple arguments to be passed to the PATH
command. Multiple arguments must be separated by spaces; this
replaces the multiple comma method used in 1.3.

The REMOVE/S argument allows you to remove a segment of the path
without resetting the entire path.

The PATH command has improved its compactness and speed; it has
also been made an internal AmigaDOS command.

ABACUS

2.2 SYSTEM COMMANDS

2.2.8

ASSIGN

Workbench 1.2 implementation:

Syntax:

NAME

ASSIGN NAME,DIR,LIST/S

Before we describe this command in detail, look at the Amiga’s
response when you enter ASSIGN LIST:

Volumes:
RAM disk [Mounted]
A500 WB 1.2 D [Mounted]

Directories:

s A500 WB 1.2 D:s

L A500 WB 1.2 D:1

C A500 WB 1.2 D:c
FONTS A500 WB 1.2 D:fonts
DEVS A500 WB 1.2 D:devs
LIBS A500 WB 1.2 D:libs
SYS A500 WB 1.2 D:
Devices:

DFO DF1 PRT PAR SER

RAW CON RAM

Volumes lists the names of the disks currently recognized by
AmigaDOS. The word [Mounted] means that the disk is currently in
the drive (this doesn’t literally apply to the RAM disk).

Look at the entries beneath the Directories category. The left
margin lists the known devices. You read some information about the
C: virtual device under the description of the PATH command. Each
virtual device is a real path related to a currently existing directory. A
device name can also be labeled for the path on the right. The C:
device is related to the C: drawer on the Workbench disk. The C :
drawer contains all the AmigaDOS commands. The device name doesn’t
have to be the same name as the drawer name, in some cases. A
program in the device named Font s : can be assigned a drawer named
Character_sets:. Naturally, the ASSIGN command allows these
assignments to be changed.

ASSIGN NAME,DIR, LIST/S

The NAME argument represents a device name (AmigaDOS recognizes
this from the ending colon).

75

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

DIR

LIST

The DIR argument represents a complete pathname. Entries under DIR
can be assigned to this path. If this argument is omitted, the command
deletes the specified device from the list.

The LIST argument changes the display format of the current list. If
no changes are desired, the LIST argument may be omitted from the
ASSIGN command.

The end of the output lists the devices that can be accessed from
AmigaDOS. These devices are described in detail in Chapter 3. Devices
are separated from one another in the list by spaces. Device names more
than three characters in length are not yet implemented.

Workbench 1.3 implementation:

Syntax:
EXISTS

REMOVE

76

ASSIGN NAME,DIR,LIST/S,EXISTS/S,REMOVE/S

The command must include the device name and the EXISTS
argument. ASSIGN will search the assign list for the device and display
the directory and device assigned. The following occurs when you use
ASSIGN in conjunction with the Devs: directory:

Input: ASSIGN DEVS: EXISTS
Output: Devs: SYS:Devs

The ASSIGN command sets the condition flag to WARN if the device
is not found. This error status can be used in a script file (see the
chapter on Script Files for more information). The following script file
tests for the existence of the Ext ras disk. The user is asked to insert
the Extras disk if it isn’t in the drive:

ASSIGN >NIL: Extras: exists

IF WARN

ECHO "Please insert the Extras disk in a disk drive"
ENDIF

The >NIL command directs all output to the NIL: device. This device
acts as a trash can—the redirected data doesn’t come out. Unwanted
output can easily be suppressed this way. Error status can be read using
the IF WARN command. The script file executes the IF WARN
command if the Extras disk isn’t found (warn = 5) and displays the
specified text.

A volume or device can be removed from the mount list with the
REMOVE option. This option should only be used by software
developers since it does not free up resources, it only removes the name
from the list.

ABACUS

2.2 SYSTEM COMMANDS

Workbench 2.0 implementation:

Syntax:

TARGET

DISMOUNT

DEFER

ASSIGN NAME, TARGET/M, LIST/S,EXISTS/S,DISMOUNT/S,
DEFER/S, PATH/S,ADD/S, REMOVE/S, VOLS/S,DIRS/S,DEVICES/S:

The ASSIGN command has eight new arguments and two new versions
of ASSIGN have been added to 2.0: non-binding and late-binding. The
command has also been optimized for size and speed.

The TARGET /M argument allows you to make multiple assignments
to a single device. This could be used to store your own custom fonts
in a separate directory from the Font s directory. For example, the
following command will allow two Fonts directories: the standard
Fonts directory and your Custom_Fonts directory located on the
RAM: disk.

ASSIGN FONTS: SYS:FONTS RAM:Custom_Fonts

The standard Fonts directory will be search first and then your
Custom_Fonts directory. Once the assignment has been made the
ASSIGN command will display the following:

Volumes:Ram Disk [Mounted]
Workbench2.0 [Mounted]

Directories:
CLIPS Ram Disk:clipboards
ENV Ram Disk:env
T Ram Disk:t
ENVARC Workbench2.0:Prefs/Env-Archive
SYS Workbench2.0:
C Workbench2.0:C
S Workbench2.0:S
LIBS Workbench2.0:Libs
DEVS Workbench2,0:Devs
FONTS Workbench2.0:Fonts

+ Ram Disk:Custom Fonts
L Workbench2.0:L
Devices:

PIPE AUX SPEAK RAM CON
RAW SER PAR PRT DFO
DF2

The DISMOUNT/S argument allows devices and directories to be
removed from the assignment list. This option should only be used by
software developers since it does not free up resources, it only removes
the name from the list.

The DEFER/S argument creates a late-binding assignment. This

assignment only takes effect when the assigned object is accessed. This
can be used to avoid constantly having to switch disks, since the

77

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

PATH

VOL

DIRS

DEVICES

assigned object is only required when it is actually needed. The
assignment remains in effect until explicitly changed.

The PATH/ S argument creates a non-binding assignment. It does not
take effect until it's referenced and only remains in effect while it's
needed. This can be very useful to avoid unwanted disk swapping if the
disk in the drive contains the necessary directories.

The VOL/S argument will only display information on the current
volume assignments.

The DIRS/S argument will only display information on the current
directory assignments.

The DEVICES/S argument will only display information on the
current device assignments.

2.2.9

ADDBUFFERS

Workbench 1.2 implementation:

Syntax:

DRIVE

BUFFERS

78

ADDBUFFERS DRIVE/A, BUFFERS/A

This command assigns a large buffer to a specified disk drive. When
working with AmigaDOS, sometimes a command can be loaded from
the drive before it's used for the first time, and then the command
remains in memory for subsequent command calls. The reason for this
is found in the disk drive buffer memory. The operating system loads
all data into the disk buffer before it can be used elsewhere. If a program
is small enough to fit in the buffer, it doesn’t need to be recalled from
the disk or hard disk again. This speeds up execution time.

The DRIVE argument is the drive specifier to which the buffer should
be assigned.

The BUFFERS argument specifies the number of blocks allocated for
the additional buffer (1 block = 512 bytes).

The following example assigns 11 blocks of RAM to drive DF0:
ADDBUFFERS DFO: 11
Drive DF0 is given an additional 11 blocks for working memory (1

block = 512 bytes). Through this addition one of the 160 tracks of a
disk can be loaded into memory.

ABACUS 2.2 SYSTEM COMMANDS

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the ADDBUFFERS
command has been optimized for compactness and speed.

2.2.10 WHY

Syntax: WHY
This command displays a response from the Amiga describing the
reason a command could not be executed. In most cases AmigaDOS can
be asked WHY the function did not work.
For example, you would like to read the startup sequence. You enter:
TYPE S/Startup-sequenze
The computer responds:
Can't open S/Startup-sequenze
You enter:
WHY
The computer responds:

Last command failed because Error code 205

Entering the command Fault 205 explains the error: Object not
found. We purposely misspelled startup-sequence above.

Workbench 1.3 implementation:

Version 1.3 of this command improved the error messages by passing
the error number to the FAULT command and then displaying the
message. If you rename the FAULT command the error number and not
the message will be displayed.

79

2. AMIGADOS CoMMANDS AMIGADOS INSIDE AND OUT

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The WHY command was also
made an internal command.

2.2.11 FAULT

Workbench 1.2 implementation:

Syntax: FAULT ,,,/,0004,

This command converts error numbers into descriptive text. Only some
errors have texts. If a specific text doesn’t exist, the word Exrror
appears, followed by the error number. Two examples:

Input: fault 10

Output: Fault 10: Error 10

Input: fault 120

Olllpllt: Fault 120: argument line invalid or too long

Workbench 1.3 implementation:

Version 1.3 of this command improved the error messages.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The FAULT command was also
made an internal command.

2.2.12 DATE

Workbench 1.2 implementation:
Syntax: DATE TIME, DATE, TO=VER/K

This command sets and reads the current time and date on the Amiga,
independent of the Preferences editor.

80

ABACUS

TIME

DATE

TO=VER

2.2 SYSTEM COMMANDS

The TIME argument represents the clock time in HH:MM:SS format
(H = hours, M = minutes, S = seconds) or just HH:MM format.

The DATE argument must have the format DD-MMM-YY (D = day, M
= month, Y = year). If the old date is less than a week old, you can
enter the day of the week itself instead of the date format. Even if the
old date is within a day of the present date, you can enter Yesterday.
Either case installs the correct date.

The TO=VER argument directs the date setting to a file. The following
example sends the current date to the file DOUG:

DATE TO DOUG

Entering DATE without parameters displays the current day of the
week, date and time:

Thursday 19-Jul-90 10:17:48

The calendar begins at January 2, 1978. The first of January is shown
as unset. Time periods before that time are invalid.

Workbench 1.3 implementation:

The new DATE command now accepts one digit date input as well as
two digit input. For example, in addition to the input date 01-Jul-90,
you can also enter 1-Jul-90.

Workbench 2.0 implementation:

The new DATE command now accepts digit month input as well as
month name abbreviation. For example, in addition to the input date
01-Jul-90, you can also enter 1-7-90.

The DATE command has been optimized for compactness and speed.

2.2.13

SETCLOCK

Workbench 1.2 implementation:

Syntax:

SETCLOCK OPT LOAD |SAVE

This command places the time and date set by DATE into the Amiga
battery-powered real-time clock (this is an option for early Amigas).

81

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

OPT LOAD

OPT SAVE

The real-time clock and the data entered in Date are independent of one
another.

The OPT LOAD argument transfers the real-time clock date and time to
the system.

The OPT SAVE argument transfers the system date and time to the
real-time clock.

In most cases the command is used in the startup sequence of the boot
disk to set the time. The command sequence SETCLOCK >NIL: OPT
LOAD can be found on the Startup-sequence. The command
sends a message to the NIL: device. This virtual device ensures that
the output does not appear on the screen.

If you enter SETCLOCK without parameters and no real-time clock
exists, the computer replies:

Internal clock not functioning

You will receive this message if you don’t have a real-time clock in
your Amiga. The entire procedure takes about six seconds to load. The
command can also be erased from the Startup-sequence.

Workbench 1.3 implementation:

Syntax:

SETCLOCK LOAD | SAVE|RESET

Version 1.3 of this command added the RESET argument. This
command also had a minor bug in that the argument template was not
displayed with the input of a "?". Instead the error message showing the
correct usage was displayed.

Workbench 2.0 implementation:

Syntax: SETCLOCK LOAD | SAVE|RESET
Version 2.0 of this command has been optimized for compactness and
speed. The 2.0 version of this command displays the argument template
correctly with the input of a "?".

2.2.14 PROMPT

Syntax: PROMPT TEXT

82

ABACUS

2.2 SYSTEM COMMANDS

This command changes the appearance of the DOS prompt. When the
prompt appears, the computer is ready to receive input. The Amiga
default prompt is the AmigaDOS task number followed by a greater-
than character (1>). This can confuse the new user.

The PROMPT command lets you change the prompt display. If the text
contains spaces, it should be placed in quotation marks. Example:

PROMPT "What do you want?"™

If you enter PROMPT without any parameters, the prompt defaults to a
greater-than character. If you want the number of the respective
AmigaDOS task displayed, the combination $n must be entered.
Example:

Input: PROMPT "I am number %n !
Output: I am number 1 !

The old AmigaDOS 1.2 prompt can be restored by entering:

PROMPT %n>

Workbench 1.3 implementation:

Syntax:

PROMPT PROMPT:

The new PROMPT command allows you to display the current drive and
directory path as part of the prompt text. In addition to the command
string $n, which shows the number of the actual AmigaDOS task, the
command characters s lets you display the last position of the CD
command. For example:

prompt "%n.%s> "
The new prompt could look like the following:
3.Workbench 1.3:System>

You are in the third AmigaDOS task. The actual directory is the
System: directory of the Workbench 1.3 disk.

Workbench 2.0 implementation:

Syntax:

PROMPT PROMPT:

Version 2.0 of this command has been optimized for compactness and
speed. The 2.0 version of this command has been made an internal
command.

83

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

2.2.15

STACK

Workbench 1.2 implementation:

Syntax:

STACK SIZE

This command specifies the amount of memory allocated for the stack.
Each AmigaDOS task places DOS commands in a special memory
location accessible from a machine language stack. Normally the size
of the location is 4000 bytes per CLI. The amount of stack memory
can be specified from 1600 bytes on up. However, if a large amount of
memory is needed, the memory given to the Shell could be
overwritten and a system crash could occur. The DIR command is
especially susceptible to crashing. Try this on the Workbench disk
when there is nothing important in working memory (this will usually
crash the computer in AmigaDOS 1.2 and 1.3; in AmigaDOS 2.0 use
LIST ALLinplace of DIR OPT A):

stack 1600
dir opt a

The SORT command is also fussy about stack memory. This depends
on the starting point of the data to be sorted. Unfortunately, there are
no given values to avoid. Only trial and error help here.

Another interesting fact is that a new task always receives as much
memory allocation as the CLI from which it was started. Remember
this, or else memory can be used up very quickly.

If you are uncertain about the size of the stack, use the STACK
command without any parameters.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax:

84

STACK STACK/N:

Version 2.0 of this command has been optimized for compactness and
speed. The STACK/N argument is now specified as numeric. The 2.0
version of this command has also been made an internal command.

ABACUS 2.2 SYSTEM COMMANDS

2.2.16 BINDDRIVERS

Syntax: BINDDRIVERS

This command integrates the device drivers (hard disk, plotter, etc.)
found in the Expansion drawer into the system. You’ll find this
command used primarily in the startup-sequence of a boot disk. You
must have the driver to operate the hardware. If you don’t need the
drivers, then you can delete this command from the startup-sequence,
and the Expansion drawer from the Workbench. By doing this the
system booting time shortens by a couple of seconds.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Version 2.0 of this command has been optimized for compactness and
speed.

2.2.17 MOUNT

Workbench 1.2 implementation:
Syntax: MOUNT DEVICE/A

This command can add new devices to AmigaDOS. The basic
configuration of the Amiga recognizes the following devices:

DFO0: Internal disk drive
PRT: Printer

PAR: Parallel port
SER: Serial port

RAW: RAW: window
CON: CON: window
RAM: RAM disk

These devices can be addressed immediately. New devices (e.g., hard

disk partitions) can be installed using the Mount command. Mount
waits for the name of the new device as a parameter. Information about

85

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

this device can be found in the text file Mount List, contained in the
Devs directory on the Workbench disk.

Here’s some sample information about the 5-1/4" floppy disk drive
device (installed as DF2: on some systems):

DF2: Device =
Unit = 2
Flags = 1
Surfaces = 2
BlocksPerTrack = 11
Reserved = 2
PreAlloc = 11
Interleave = 0
LowCyl = 0
HighCyl =
Buffers =
BufMemType = 3

trackdisk.device

39
5

#

Any device can be entered in the Mount List. Each entry must begin
with the device name (in this case, DF2:) and must end with a number
sign (#). The data between these strings specifies the device’s
characteristics. Mount accepts the following keywords:

Disk drives: XKeyword Function
Device Name of the device driver
Unit Device number (e.g., O for df0:)
FileSystem Label of a special FileSystem
Priority Task priority (mostly 10)
Flags Parameter for Open device (usually 0)
Surfaces Number of sides of drive (for disks: 2)
BlocksPerTrack Number of blocks per track
Reserved Number of boot blocks (usually 2)
PreAlloc (no function)
InterLeave Device-specific (usually 0)
LowCyl Number of small tracks
HighCyl Number of large tracks
Buffers Size of buffer memory in blocks
BufMemType Type of memory:

0,1 = Chip or Fast RAM
2,3 = Only Chip RAM
4.5 = Only Fast RAM

Mount 1 = Device connected
-1 = Device connected on first access
Other Keyword Function
devices: Handler Path description of the device driver
Stack Size of the processor stacks for the task
Mount See above

86

ABACUS

2.2 SYSTEM COMMANDS

Workbench 1.3 implementation:

Syntax:

AUX:

PIPE:

RAD:

NEWCON:

SPEAK:

MOUNT DEVICE/A, FROM/K

The MountList can receive any name that follows the FROM
argument:

MOUNT DF2: FROM Devs:Devicelist_1

The MOUNT command searches in the Devs directory for the file
MountList if you omit the FROM argument.

Workbench 1.3 allows you to install new devices. A few of these new
devices are briefly described here (see Chapter 3 for detailed
information).

A serial port connection that doesn’t store the data in a buffer. The
important entries are already in the Mount List, so the connection can
be installed using the command sequence mount aux:.

The device enables different tasks to exchange information. For
example, if you want to send information from one CLI to another,
this sequence allows you to make the exchange easily:

Input to 1st CLI: COPY S/Startup-sequence TO PIPE:
This information can be read in the second CLI from the pipe:

Input to 2nd CLI: TYPE PIPE:
Output: The Startup-sequence is listed

The statement for installing the pipe: is already in the MountList.

A recoverable RAM disk. Unlike the device ram:, data remains in
memory even after the computer is reset. Not even a Guru Meditation
can reset the RAD : device. Unfortunately, memory management is not
dynamic, so RAD: takes up all of its allotted memory even when it is
empty. The capacity of RAD: is included in the MountList.

A new window port that expands on the usual CON: window. The
NEWCON : device manages a 2K buffer for temporary storage of the last
input. The old input can be recalled and edited with the help of the
cursor keys. The NEWCON : device can be used in conjunction with the
NEWCLI command.

Controls Amiga speech output.

The new MOUNT command reads the keywords described above in
addition to the following statements:

87

2. AMIGADOS COMMANDS

AMIGADOS INSIDE AND OUT

Keyword Function

MaxTransfer Maximum number of blocks that can be transferred

Mask Address area that can be addressed by the DMA

Handler Path description of the device driver

GlobVec Global vector for the process, O sets up a private
global vector, -1 is no global vector and if the
keyword is absent the shared global vector is used.

StartUp A string passed to the filesystem, handler or device
on startup as a BPTR to a BSTR (see Chapter 8).

BootPri Sets boot priority of a device, used with the
recoverable RAM disk.

DOSType Indicates the filesystem. For the FastFileSystem it

should be 0x44F5301 otherwise 0x44F5300.

These statements are only evaluated in conjunction with the

FastFileSystem.

Workbench 2.0 implementation:

88

Version 1.3 and Version 2.0 of the MOUNT command are identical.

ABACUS

23 Script FILE COMMANDS

2.3

Script File Commands

This section contains information about the commands used in
conjunction with script files. Script files (called batch files in the
MS-DOS world) are simple text files containing any number of
AmigaDOS commands, written using ED or a word processor. The
EXECUTE command runs these commands in sequence. The Script
Files chapter contains detailed explanations and several practical uses
for script files.

2.3.1

EXECUTE

Workbench 1.2 implementation:

Syntax:

EXECUTE NAME

This command executes script files. Because script files are text files,
They cannot be directly accessed like programs. If this is attempted, the
computer responds with the Error code 121: file is not an
object module error message.

The EXECUTE command needs the name of the file to be executed. For
example, a script file named printer might contain the following
line:

TYPE Text/Letter TO PRT:
DATE TO PRT:

The EXECUTE printer command works the same as if both of the
above lines had been typed in from the AmigaDOS Shell. The script
file prints the letter, followed by the current date and time.

As with most AmigaDOS commands, the filename and additional
parameters may be added—these are transferred to the script file. The
script file, in this case, must have a predetermined variable to which the
parameters can be assigned.

The above script file should serve as an example of this. Instead of
printing out the given text (Text /Letter), a variable can now be
inserted, which can be assigned any name. The variable is declared in
the example below using the .KEY directive:

89

2. AMIGADOS COMMANDS

90

AMIGADOS INSIDE AND OUT

.KEY name
TYPE <name> to PRT:
DATE TO PRT:

The Printer script file is now called using:

EXECUTE Printer Text/Letter

There are a few rules about using variables. They are as follows:

1.

The .KEY directive, with which the variables are declared, must
always be at the beginning of the script file.

If the assignment allows multiple parameters, they must be
separated by a comma. The .KEY directive can only be used
once, otherwise the error message Execute: More than one
K directive is displayed. Example of correct usage:

KEY dataname, destinationdevice
COPY <dataname> TO <destinationdevice)

Replace the text between the greater-than and less-than characters
with your own contents. There should be nothing about the
variable name in their place, but instead the statement of what
was assigned by the EXECUTE command.

Normally, these three points are all you need to know when working
with variables in conjunction with script files. There are a few
additional functions that should not be overlooked.

In addition to .KEYS, there are a number of directives beginning with a
period that can be put in a script file:

.DEF

This directive assigns given contents to a variable. This
instruction can emerge anywhere in the text. A use for this
is to give a firm name to a variable in case the Execute
command is not given a definite name (default name). Such
a script file can look like the following:

.KEY datafile,devicename
.DEF devicename PRT:
TYPE <datafile> TO <devicename>

When the devicename parameter is omitted, EXECUTE
defaults to the printer.

For this use there is a special but very simple procedure.
The variable name in the greater-than and less-than
characters must be expanded by adding a dollar sign and the
text that is to take the place of the variable, on the chance
that the EXECUTE command isn’t given any parameters.
The above example would then look like this:

ABACUS 23 Script FILE COMMANDS

.KEY datafile,devicename
TYPE datafile TO <devicename$prt:>

In case a filename is entered but not a device name, the
output automatically goes to the printer (PRT:).

JDOLLAR This directive changes the dollar sign ($) placed at the
beginning of a text to any other character. For example:

.DOLLAR #
The corresponding line under .DEF would now have to read:
TYPE datafile TO <devicename#prt:>

.BRA This directive has a task similar to .dol. This allows the
less-than character (<) to be replaced by another character.

KET This directive is similar to .BRA, except it changes the
greater-than (>) sign.

A period followed by at least a space allows the user to
insert a comment line. BASIC programmers use a REM
statement for this.

.DOT This directive changes the period preceding each instruction
to another character.

Script files should be used without any other control characters,
otherwise it becomes too confusing.

Workbench 1.3 implementation:

Script files are still called through EXECUTE. By adding the S (Script)
flag, it’s now possible to start script files by entering their names. The
Script flag must be set first using the PROTECT command. The
following sequence sets the flags for a script file named Test_Batch:

PROTECT Test_Batch +s

Workbench 2.0 implementation:
The current shell number can now be accessed with <$$>. A blank

comment line can be inserted with ./ in the script file. Version 2.0 of
the PROTECT command has been optimized for compactness and speed.

91

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

2.3.2

ECHO

Workbench 1.2 implementation:

Syntax:

ECHO TEXT

This command makes it possible to direct a character string to any
output device. The default device is the screen:

ECHO "Hello, Doug!"™

You must add a greater-than character and another output device name to
send the output to another device:

ECHO >PRT: "One more beer and I'll go home."

The text must be enclosed in quotation marks if any spaces exist in the
text. .

The ECHO command features an optional parameter of the *n character
combination. This combination forces a linefeed in the text output:

ECHO "Careful*n Stairs!"
The output on the screen looks like this:

Careful
Stairs!

In the rare instance that you wanted to use *n as an actual entry in the
text, use the character string **n.

Workbench 1.3 implementation:

Syntax:

NOLINE

FIRST
LEN

92

ECHO ,NOLINE/S,FIRST/S,LEN/S

Three arguments were added, one for line suppression and two that
allow the echoing of a substring.

The NOLINE/ S argument suppresses the linefeed that usually follows
after the output.

The FIRST/ S indicates the beginning position in the string to echo.

The LEN/S indicates the length of the string, beginning at the FIRST
position, to echo.

ABAcCUS

23 Scriet FILE COMMANDS

Workbench 2.0 implementation:

Syntax:

ECHO ,NOLINE/S,FIRST/K/N,LEN/K/N

The FIRST and LEN arguments are specified as numeric keywords.
Operation is identical to Workbench 1.3.2, but the command has been
optimized for compactness and speed. The ECHO command has also
been made an internal command.

2.3.3

FAILAT

Workbench 1.2 implementation:

Syntax:

FAILAT RCLIM

This command halts a command sequence if the Amiga reaches a
specified error return code limit. Each AmigaDOS command and many
other programs return an error number if an error occurs during
execution. In AmigaDOS most numbers are assigned a related error text
so that by using FAULT, followed by the respective number, the
explanation can be read. For example, the number 216 means that you
tried to delete a drawer that still contained entries.

If the error number for an AmigaDOS command inside of a script file is
greater than or equal to ten, the script file stops working and returns
control to the main program (for example, back to the Amiga Shell).
This error limit can be read by using FAILAT. This is very useful
because the limit could be anywhere. In some cases it’s desirable when
a script file reports a wamning (an error number less than 10).

An example: When compiling, the difference between warnings and
errors is most obvious. Warnings can usually be ignored because they
are caused by a poor programming style. If the error limit is set in a
scnpt file of a compiler, the work is stopped as soon as it encounters
incorrect data. This prevents the calling of other work operations
(assembling, linking).

To set a new error limit in a script file, FAILAT requires an argument
of the new error number at which the operation should be stopped. This
new limit is valid only while work is being done in the script file.
After that it is automatically reset to 10.

If a new error limit is given directly from the Shell, the limit is also
valid in the script file called from the Shell. If the limit is undefined,
then the error limit returns to 10. If the FAILAT command does not
emerge in the data file the given error limit remains unchanged.

93

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

Each new Shell called automatically supersedes the error limit of the
Shell that it was called from. After it is called the limits can be
changed independent of one another.

i

"2~

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The FAILAT command has also
been made an internal command.

2.34 QUIT

Workbench 1.2 implementation:

Syntax: QUIT RC

This command exits a script file at any point. The QUIT command is
unnecessary at the end of a script file. If you want the script file to tell
you what went wrong, QUIT can display the desired error number.
Control returns to the calling script file and the following text appears
if the error number is greater than or equal to 10:

Quit failed returncode xx

The xx represents the error number.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The Quit command has also
been made an internal command.

94

ABACUS

23 Script FILE COMMANDS

2.3.5

IF/ENDIF

EQ

IF/ELSE/ENDIF

These commands execute certain parts of a script file if specific
conditions are met. These three commands must be handled as one:
ELSE and ENDIF are only allowed to be used in conjunction with IF.

The simplest case only requires IF and ENDIF:

IF EXISTS Text/Letter

TYPE Text/Letter TO PRT:

ENDIF

ECHO "Have I printed the letter yet or not 2"

In this example the TYPE command executes because the data file
Letter really existed in the subdirectory Text. In this case it doesn’t
matter about the rest of the script file directly under the ENDIF.

It can be determined whether data files are contained in a disk drive or
on the RAM disk. Another set of codes that are allowed to follow the
IF:

EQ compares two texts for the same contents:

IF "That is the text"™ EQ "That is the text"™
ECHO "Yes, the two texts are equal"
ENDIF

Some inquiries naturally do nothing because the interrogation can also
be omitted. With just the EQ command, the text remains unchanged.
Using EQ in conjunction with batch variables is interesting (see the
description of the EXECUTE command). Two examples:

.KEY input

IF <input> EQ Letter

ECHO "You entered the word 'letter®' !"™
ENDIF

.KEY input

IF <input> EQ ""

ECHO "You didn't enter anything !!t"
ENDIF

Here you must differentiate between the variable input, the contents
of input and the text letter. It is important to note that when
comparing text, it does not matter whether it is in capital letters or not.
If letter EQ LETTER returns the same result.

95

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

IF FAIL

ERROR

IF WARN

NOT

ELSE

96

Using IF FAIL determines whether the last command had an error
number greater than or equal to 20. This evaluation is useful when,
before the use of the command, the error limit has been changed from
10 to a larger value than 20. If not, the execution of the script file is
interrupted.

IF ERROR is the same as IF FAIL. In this case, however, the error
limit stays at 10.

The error limit for IF WARN is set at five. It is not necessary to set the
error limit higher than 10 with FATLAT.

The labels IF WARN and ERROR should not be confused: If IF WARN
traps error number 225, for example, this is a fail error instead of a
warning. It recommends that a higher error limit be set with FAILAT.

If NOT is added before any of the above conditions, the opposite of the
declaration is done. For example:

.KEY text

IF NOT EXISTS <text>

ECHO "I don't have any such data file"
ENDIF

IF EXISTS <text>

ECHO "Here it goes !"

TYPE <text> TO PRT:

ENDIF

The script file needs the name of a text file contained in the variable
text. In the first section it tests to see if the data file doesn’t exist. If
it does not, the first ECHO message appears.

After that, IF EXISTS is used again to see if the file actually exists. If
it does, the script file prints it on the printer (this only works with true
text files).

The ELSE command can easily be built into a script file as an
alternative to the IF NOT statement. The above example looks like the
following when you’re done using the ELSE command:

.KEY text

IF NOT EXISTS <text>

ECHO "I don't have that data !"
ELSE

ECHO "Here it is !

TYPE <text> to PRT:

ENDIF

This example delivers the same result as before, except faster and easier.

Finally, a few comments about the three commands. Each IF/ELSE/
ENDIF block is allowed to have any number of lines. The block must

ABACUS 23 ScripT FILE COMMANDS

end with either an ELSE or an ENDIF. A block can also have any
number of interlocking IF commands. An ELSE or ENDIF must
always be associated with the last IF in a block. The example below
evaluates how many parameters the EXECUTE command is given (a
maximum of three). It becomes easier to see the function of the
program through the structured indenting of the program:

.KEY textl,text2,text3

IF NOT <textl> EQ "™
IF NOT <text2> EQ ""
IF NOT <text3> EQ ""
ECHO "All three inputs exist™
ELSE
ECHO "The three inputs are missing"
ENDIF
ELSE
ECHO "The second and third inputs are missing"
ENDIF
ELSE
ECHO "No input has been made"
ENDIF

Workbench 1.3 implementation:

GT GT is for greater than comparisons. GE is for greater than or equal to
GE comparisons. The VAL option may be specified to compare numbers.
VAL EXISTS checks for the existence of a file.

EXISTS

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The IF/ELSE/ENDIF
commands have also been made internal commands.

2.3.6 ASK

Workbench 1.2 implementation:
Syntax: ASK PROMPT/A

This command has the computer wait for a response from the user
before continuing with the script file.

97

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND CUT

The ASK command can either be given without arguments or with text
that displays a question. The computer waits for an answer, either Yes
or No (Y or N), followed by the <Return> key. If something else is
entered, the ASK command waits until a correct answer is given. The
evaluation occurs through error code number five so the command can
confirm the input. The following example demonstrates the first
reaction to different input:

FAILAT 5
ASK "Should I stop? (y/n)"
ECHO "Good, then I'll go further™

Because the error limit is usually set at 10 for stopping script file
execution, it must be set to five here so that entering Yes would return
you to the AmigaShell.

This solution hardly satisfies everyone. It would be better for the user if
two different program lines could work at once. What you ¢an do is use
the IF WARN command from Section 2.3.5. That adds the nuisance of
lowering the error limit to a value smaller than six. Example:

ASK "Do you know the ask command ? (y/n)"“
IF WARN
ECHO "Very good, go on !
ELSE
ECHO "Set at six !
ENDIF

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The Ask command has also been
made an internal command.

2.3.7

Syntax:
Skip

98

SKIP/LAB

SKIP LAB

The SKIP command is the script file equivalent of the BASIC/C GOTO
command, or assembly language’s jmp instruction.

ABACUS

Lab

23 Script FILE COMMANDS

If a script file encounters a SKIP command, the text file is searched for
the LAB (label) command. The file executes at the routine specified by
the label. If you add a name to the SKIP command, the script file
jumps to the label of the same name. For example:

ASK “"Can you go around with Skip and Lab ? (y/h)"
IF WARN
SKIP mark
ENDIF
ECHO "Not too bad"
QUIT

LAB mark
ECHO "Use only in moderation"

The program text cannot be re-entered with the SKIP command. As
with other programming languages that use a jump command, SKIP
should be reserved for cases where there is no alternative, since it
detracts from structured programming. In the above example it makes
for a sloppy program because it exits an IF/ENDIF construction. That
should be prevented whenever using the SKIP command. In almost all
cases an IF/ELSE/ENDIF construction is the best solution.

Workbench 1.3 implementation:

The BACK option was added; this allows you to skip back to the
beginning of a script file before searching for a label.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The SKIP/LAB commands have
also been made internal commands.

2.3.8

WAIT

Workbench 1.2 implementation:

Syntax:

WAIT SEC=SECS/S,MIN=MINS/S,UNTIL/K

This command delays script file execution for a specified amount of
time. A typical example of a needed pause is the execution of two tasks
that access the same disk drive at the same time (excepting the RAM
disk). If the directory of the disk in drive DFO: is listed in one
AmigaDOS$ window using the DIR command, and the LIST DFO0:
command lists the directory of the same disk in another AmigaDOS

99

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

window, the two commands are executed parallel to each other. The net
effect is that it takes longer for the commands than if they had been
entered one after the other. Because both processes must access the disk,
each command can only access a few tracks during execution time. A
lot of time must be allotted because the drive head must always be
changing its position.

If you wish to load two programs with the Startup-sequence, we
recommend that you wait for the first program to load using the WAIT
command. The time needed to wait is entered as the argument. The time
can be entered in seconds, minutes or in system time format. WAIT |
without any parameters waits one second. Some examples:

WAIT waits 1 second

WAIT 5 waits 5 seconds

WAIT 5 sec (same as 2)

WAIT min waits 1 minute

WAIT 5 min waits 5 minutes

WAIT UNTIL 14:30 waits until 14:30 (2:30 pm)

You can interrupt the WAIT command by pressing <Ctrl> <C>. In
Chapter 5 we'll show you how WAIT can be used to make an
AmigaDOS alarm clock.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed.

2.3.9

Syntax:

100

VERSION

VERSION [<library name>] [version] [revision)

This command returns the version and revision number of the
Workbench from a device or library. When the VERSTION command is
entered without arguments, you receive statements about the Kickstart
and Workbench versions. For example:

Kickstart version 33.180. Workbench version 34.4

VERSION can have a special library of device names attached:

ABACUS

23 ScripT FILE COMMANDS

Input: VERSION trackdisk.device
Output: trackdisk.device version 33.127

It is possible to test the version number. Error code 5 is returned if the
given version number is greater than the one tested. The error status can
be evaluated from within a script file with the help of a IF/ELSE
construction. The following script file calls the Math program if the
fast math library Version 34.44 or less is present. Otherwise it returns

an appropriate message.

VERSION >NIL: mathieeedoubbas.library 33.44
IF WARN
ECHO "the fast Math library is not there !"
ELSE
RUN Math
ENDIF

Workbench 1.3 implementation:

Syntax:

VERSION [<library name>] {[version] [revision] [unit]

The [Unit] option allows you to specify a unit number other than 0,
used when accessing multi-unit devices. This command also had a
minor bug in which the argument template was not displayed with the
input of a "?". Instead the error message showing correct usage was
displayed.

Workbench 2.0 implementation:

Syntax:

VERSION NAME, VERSION,REVISION,UNIT:

Operation is identical to Workbench 1.3, but the command has been
optimized for compactness and speed. The 2.0 version of this command
displays the argument template correctly with the input of a "?".

101

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

2.4

ED

ED 2.0

EDIT

102

The Editors

The ED and Edit programs are two large programs that make it
possible to edit text files. MEMACS (MicroEmacs), which is available
with Workbench 1.3 and 2.0, is a screen-orientated editor with drop-
down menus. It can be started from AmigaDOS and is an excellent
editor. Since it has drop-down menus and this book is about
AmigaDOS, we will not discuss this editor in this book.

ED is a full screen editor. It can load the entire text into the working
memory of the Amiga and display an entire screen of that file. With the
help of the four cursor keys the cursor can be placed at any position
inside the window. You can then edit the text at that position. You can
scroll the text to see data above and below the screen window. If the
text to be edited has more columns than the ED window shows, the
window scrolls left and right when the cursor moves beyond either
margin. Anyone that has worked with AmigaBASIC is at least familiar
with the principle of screen editors.

ED 2.0 has been updated by John Toebes III, and the improved
version is excellent. The new 2.0 operating system allows
programmers to add menus to their programs. The menus for the latest
version of ED are contained in the ED-Startup script file in the S :
directory. They allow you to use the mouse when using ED to access
often used commands. The normal ED commands are still available.
The new version includes menus and the new standard Amiga file
selector.

The EDIT program is a line editor. The basic difference from ED is that
you edit text line-by-line through different commands. You cannot
manipulate text within a window, similar to the CLI.

There are many reasons for using two editors. These two editors allow
the user to edit script files or enter source codes for compiled languages.
In most cases ED is much easier to use, and gives a better overview of
the text (very important when programming).

EDIT needs relatively smaller amounts of memory than ED, because
the entire text does not need to be loaded into memory. In cases
involving large files that ED cannot load, EDIT can help. EDIT also
lets the user open more than one source file at a time. Overall, EDIT
has more flexibility than ED.

It would take an entire book to describe EDIT’s capabilities. Only its
basic functions are supplied in this section.

ABACUS

2.4 THE EDITORS

2.4.1

Existing
filename

Nonexistent
filename

Reading text with ED

ED is usually accessed through the ED command and a file/path:
ED Text/Prog

The Text /Prog argument is the pathname of the text file you want
edited. Two different conditions can exist when invoking ED in this
way.

This case loads the text file into the working memory. If this is
successful, the ED window appears, displaying all or part of the text
file (depending on the file’s size). If the loading operation is interrupted,
the Amiga displays the message Unable to open window... on the
screen. This error could occur if the filename given is in fact a
directory, or if the file doesn’t contain text characters. These are
indicated by the messages x is a directory and cannot be
editedorFile contains binary.

If the file doesn’t exist, an empty ED window appears. When starting
ED, you can specify the SIZE argument, which sets the working
memory size in bytes. The following allocates 60,000 bytes to the
test file in the text directory:

ED Text/Test SIZE 60000

If the SIZE is missing, ED defaults to a size of 40,000 bytes. The
SIZE should be increased if you want to load a larger text file. Now
work can continue with ED. After the size and position of the window
has been set, it is possible to move all over the screen and manipulate
data and even add new text. The <Backspace> and keys function
as usual: <Backspace> erases the character immediately to the left of
the cursor, and erases the character that the cursor is on. The
mouse cannot be used with ED.

There are two different ways to control ED (ED 2.0 has been updated
to include menu control):

1. Direct mode by pressing the <Ctrl> key and another key. The
respective command is executed.

2. In the command line. Pressing the <Esc> key displays an
asterisk at the bottom left of the screen. As long as the asterisk
is visible, you are in command mode (i.e., you can’t edit the
text). Entering and executing a command, or by pressing
<Return>, you can exit this mode.

103

2. AMIGADOS COMMANDS

Basic ED
commands

Direct mode

<Esc> mode

104

AMIGADOS INSIDE AND OUT

The end of this book shows a complete listing of the commands that
can be executed from ED. Here we are only presenting the most
important commands, but they are sufficient in most cases.

<Ctrl><A>
<Ctrl>
<Ctrl><G>

<Crl><Y>

<Esc><X>

<Esc><Q>

<Esc><SA>

Note:

<Esc><J>

<Esc><BS>

<Esc><BE>

<Esc><IB>

<Esc><DB>

Insert line.

Delete line.

Displays the last <Esc> command
(important for searching and replacing).
Delete from cursor to end of line.

(eXit) Saves text to disk and exits ED. A copy of the
file named ed-backup is placed in subdirectory t of
the disk.

(Quit) Exits ED without saving the text. If you have
entered any data, the program will ask for confirmation
from you before quitting.

(SaveAs) Saves the text without exiting ED. If you
want the text saved under a different name, the name can
be changed to a new name or an already existing name.

The old contents of a previously existing file are lost
forever.

It is possible to send the data directly to a peripheral
device: <Esc><SA> “PRT:” sends the text to the
printer.

(Join) Combines two lines into one. This is very useful
when a line has been accidentally separated by the user
by pressing the <Return> key in the middle of a line.
The cursor must be placed at the end of the top line.

(BlockStart) Marks the beginning of a block of text for
different block operations. The line in which the cursor
currently stands is the top line of the block.

(BlockEnd) Marks the end of a block of text for different
block operations.

(InsertBlock) Places a copy of the block marked out by
<BS> and <BE> at the current cursor position.

(DeleteBlock) Deletes the block marked by <BS> and
<BE>. The line is removed from the text.

ABACUS

2.4 THE EDITORS

2.4.2

Text handling with EDIT

Forget everything that we just talked about regarding ED. EDIT works
on a completely different principle:

The working memory buffer of EDIT can only hold a few lines of text
at a time. Under normal circumstances, the user edits these one after
another. When editing is complete for the last line of the buffer, EDIT
automatically loads the next line from the data file and writes the
previous lines to a destination file. EDIT requires both files (this is a
major difference from ED).

The user can only edit the lines currently in the buffer. It is also
possible to scroll up a limited number of text lines. If a line has left
the buffer and been written to the destination file, it is no longer
accessible by EDIT.

When the session with EDIT ends, the complete contents of the buffer
are saved to the destination file. The rest of the source file must
eventually be saved so that data isn’t lost. You can exit EDIT without
read or write operations taking place.

EDIT also lets you open and read different data files while editing. Each
new data file is superimposed over the beginning of the original source
data file. When you return to the original file, it reopens and assumes
the original position.

Finally, EDIT has another feature: It can read EDIT commands from
any properly configured data file as well as from the keyboard.

2.4.3

Parameters of EDIT

Workbench 1.2 & 1.3 implementation:

Syntax:

FROM

EDIT FROM/A,TO,WITH/K,VER/K,OPT/K

The EDIT command itself is started with EDIT. The arguments are as
follows:

The FROM argument specifies the name of the file to be edited. This

data file must already exist (completely new text cannot be created
using EDIT).

105

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

TO

WITH

VER

OPTP

OPTW

OPT PxWy

The TO argument specifies the name of the destination file to which the
data are written. If this name is missing, EDIT creates a work file in
the t subdirectory and places file data in it. When you quit EDIT, this
work file receives the complete pathname of the source file as given in
the FROM argument. The original source file is placed in the t
subdirectory under the name EDIT-BACKUP until it’s overwritten by
further work with EDIT.

The WITH argument loads a file which specifies commands. This file
can give commands just as the user can give commands from the
keyboard.

The VER argument directs EDIT’s output to a device other than the
screen. VER Data_File would put the input into a file named
Data_File. Using VER con:10/10/300/100/VerWindow
places the contents of such a file in a window.

The OPT P argument specifies the number of lines allowed in the
buffer. Example: OPT P100 configures the buffer to hold 100 lines (40
lines is the default). This is very practical when more system memory
is needed.

The OPT W argument changes the maximum line length to a value
other than 120. Example: Opt W81 sets line length to 81 characters.

The OPT PxWy argument is a combination of OPT P and OPT W. The
x and y arguments are the values for these arguments.

Workbench 2.0 implementation:

Syntax:

WIDTH

PREVIOUS

106

EDIT FROM/A,TO,WITH/K,VER/K,OPT/K,WIDTH/N, PREVIOUS/N:

Two new arguments have been added to the Version 2.0 of EDIT.
EDIT determines the amount of memory required by multiplying the
WIDTH and PREVIOUS values.

The WIDTH argument specifies the maximum line width. The default
value is 120.

The PREVIOUS argument specifies the maximum number of previous
lines. The default value is 40.

ABACUS

2.4 THE EDITORS

2.4.4

Starting EDIT

In most cases, you enter the name of the file to be edited when you
start EDIT. As was explained above, the edited lines are placed in a
help file named EDIT-BACKUP.

The EDIT prompt (a colon) appears after you invoke EDIT. It waits
for user commands, much like AmigaDOS. Because of the line
orientation, you must search for the next line to edit. EDIT
automatically numbers all the lines of the source file internally.
Immediately after you start EDIT, line 1 of the source file is the first
line to be edited. Unfortunately the contents are not automatically
displayed. To reach another line, there are different methods:

a) Entering <N> (Next) places the user at the next line.
b) Entering <P> (Previous) places the user at the previous line.
¢) Entering <M><x> (Move) places the user at line number x.

To display the contents of line 1, for example, it is sufficient to enter
<N> followed by <P>. Multiple commands can be entered at once, but
as in ED, they must be separated by semicolons. EDIT does not
distinguish between lowercase and uppercase letters.

The <P> and <M> commands let you return to the line of the buffer not
written to the destination file. As soon as a line with a number greater
than 40 is reached, many of the previous lines are placed in the
destination file. If the user tries to go back to line number 1, for
example, the error message Line number 1 too small appears.

Preceding the <P> and <N> commands with a number executes the
command multiple times. For example, 10N advances EDIT 10 lines
in text.

The <F> (Find) command lets you find a specific string within the data
file. The command must be followed by the search text enclosed by any
characters. For example:

F ?Key?
EDIT searches for the current line number containing the word “Key.”

If you omit input following <F>, the command searches for the last
text string searched for. This is very practical when looking for more
text that contains a certain search string. You must advance to the next
line after a successful search using <N>, so that the same line doesn’t
get returned constantly.

107

2. AMIGADOS COMMANDS

AMIGADOS INSIDE AND OUT

2.4.5

108

Editing Text

After finding the designated text, you can make changes to it. These
changes cannot be made directly to the line (as opposed to ED), but
must be made by using certain commands. The important commands in

EDIT are:

¢ (exchange)
Input:
Result:

or:

Input:
Resulit:

a (after)
Input:
Result:

b (before)

Input:
Result:

d (delete)

i (insert)

Substitutes one character string with another. Example:
The line reads: “Edit is difficult to use.”

e/difficult/easy
Edit is easy to use.

e/difficult//
Edit is to use.

Inserts a given text behind a certain character string.
Example: The line reads “Edit is a program.”

a/a/flexible /
Edit is a flexible program.

This command inserts a given text before a certain
character string. Example: The line reads “Edit can do
more !”

b/more/much /
Edit can do much more !

Deletes the current line. The line number disappears;
the text is not re-numbered. A line can be deleted by
entering the line number in the command line. Entire
text passages can be removed if the start and end line
numbers are given. For example:

"d 10 100"
Lines 10 to 100 are erased.

Inserts the following lines preceding the current line.
Entering a <Z> in a separate line ends insert mode. The
buffer contents are renumbered starting with the first
newly entered line. For example: The texts read:

20. "The input mode"
21. "makes everything too complicated."

ABACUS

2.4 THE EDITORS

Line 21 is the current line, and the following input is
made:

i

and working reasonably

with Edit are possible.

It should not be thought impossible.

The result looks like this:

20. "The input mode™

21. “and working reasonably"

22, "with Edit are possible."

23. "It should not be thought impossible"™
24, "makes everything too complicated."

2.4.6

Multiple Files

It’s possible to open more than one source file from EDIT. The
command for this reads:

FROM .datafile

After this command new lines are called only from the data file with the
name datafile. As with the original source file, input in the new
file begins with the first line of the text.

Using FROM without parameters returns to the start of the original
source file. The program basically leaves all channels open, and marks
how many lines of each data file have been read already. If after closing
a data file using the command CF .datafile (CloseFile) the file is
opened again with FROM .datafile, the lines that were already read
can be called into the buffer one more time.

2.4.7

Command Macros

Edit can receive command macros (program information) from a data
file that contains all of the normal Edit commands. The name of this
file is given either at the start of the program after the addition of the
WITH argument or the C command can be used when working with
EDIT. A macro file can look like the following:

109

2. AMIGADOS COMMANDS AMIGADOS INSIDE AND OUT

i

% J Jde e J d e J K de de de de de ke de Kk g Kk de K e e ok de g ok de %k ok kK ok Kk Kk
* Program H *
* Author : *
* Date : *
* Language s "ce *
* Assembler : Aztec c68/am-c v3.4 *

kkkkkhkkhkkkkkkkkkkkkkkkokdkdkkkkkhkdkhkhkkhkkkkk

z

If this introduction is inserted before the active line in EDIT, entering
C followed by the filename between two periods is all that is needed.
Example:

C .introduction.

The insertion is not ordered by the C command, which just calls the
file. The I command emerges here, through which the following text,
up until the Z, is inserted before the active line. As soon as the end of
this file is reached, or a line with the Q command occurs, EDIT returns
to command level. This does not necessarily have to be the keyboard
again because a command file is also allowed. In such cases a C
command is contained in the command data file.

A macro file can be constructed for any imaginable case. If you know
the situation well, working with EDIT can be much faster than ED.

2.4.8

110

Quitting Edit

Normally, the <w> (windup) command exits EDIT. The contents of
the buffer and the rest of the source data file are copied to the
destination file in subdirectory t with the name EDIT BACKUP. Ifa
name for the destination file wasn’t specified at the beginning of the
work with EDIT, the work file in subdirectory t receives the name of
the source file. After that all the channels close and the program ends.

EDIT can also be exited using the STOP command (copy procedures
are not executed). This leaves the destination file incomplete. If a
destination file isn’t given at the start of the editing session, no
renaming is done on the work file. The source data file is also
unchanged and remains under the same name.

See the Appendix for complete descriptions of EDIT’s commands.

3.
Devices

ABACUS

3. DEVICES

3.

Handlers

Devices

A device is simply a piece of hardware with which the computer can
exchange information. The disk drive is a typical device.

This data exchange between computer and device doesn’t always have to
go in both directions. A printer only accepts data, while a mouse only
conveys information to the computer.

The description of the ASSIGN command includes a list of devices that
can be accessed from AmigaDOS. The standard devices of the Amiga
are listed below:

PIPE AUX SPEAK CON RAW
SER PAR PRT DFO

A colon (:) must always follow the device name, so that AmigaDOS
can tell devices apart from directories or filenames.

This chapter describes the individual device names and what you can do
with these devices.

Handlers are found in the L: directory. Handers are treated as if they are
actual physical devices even though no hardware is required for their
operation. The SPEAK:, PIPE: and AUX: devices are handlers.
Handlers must be MOUNTed before they can be used. This is usually
done in the Startup-sequence or the StartupII script file.
They must also be described in the Mount Li st located in the DEVS:
directory.

113

3. DEVICES

AMIGADOS INSIDE AND OUT

3.1

Floppy Disk Devices (DFx:)

All devices beginning with the letters DF are Amiga floppy disk
drives. A total of four disk drives can be connected at one time (DF0:-
DF3:). The drive specifier DF0: represents the internal disk drive on
any Amiga; DF1: represents the first external disk drive (Amiga 500
and 1000) or the second internal disk drive (Amiga 2000); and so on.
The Devices section of the ASSIGN list contains many references to
the letters DF.,

All AmigaDOS commands default to drive DFO0: in the basic Amiga
configuration (with only one disk drive). If you enter an AmigaDOS
command without a disk drive specifier, AmigaDOS automatically
accesses drive DF0:. The following command accesses the directory in
drive DF0:

DIR

The following command accesses the directory in drive DF2: (the
second external disk drive in some units, the second internal disk drive
on the Amiga 2000):

DIR DF2:

See the descriptions of the LIST and CD commands in Chapter 2 for
the problems that can occur in disk directory handling.

Workbench 2.0 implementation:

114

The device driver has been optimized for compactness and speed in
AmigaDOS 2.0.

ABACUS

3.2 THE RAM-HANDLER (RAM:)

3.2

Note:

ADDBUFFERS

The RAM-Handler (RAM:)

The RAM-handler simulates a disk drive device (RAM:) with the
Amiga’s working memory. Handlers are treated as if they are physical
devices. The word RAM is short for Random Access Memory, a type
of memory that allows free access (both reading and writing). With few
exceptions the RAM disk can be used like any other disk drive. The
RAM disk’s biggest advantage over floppy disk drives is high speed
data exchange.

There is a disadvantage to using a RAM disk for storage: The contents
of the RAM disk are temporary; they vanish when you turn the
computer off, or when it crashes. Because of this, important data should
be saved from the RAM disk to a “real” disk drive from time to time.

Another disadvantage is the memory requirement of the RAM disk. The
memory capacity for the RAM disk is dynamic. The more data you
store in the RAM disk, the less memory you have available for
applications and user memory. The more system memory you have
available, the more data you can store on the RAM disk. The RAM
disk doesn’t give useful information about its capacity (it’s always
100% full according to the disk gauge on the left border of the RAM
Disk window). This makes sense because the system only supplies
the memory it needs and no more.

You must create a RAM disk before you can work with it. The
following command opens a RAM disk:

DIR RAM:

You’ll find the command in the St artup-sequence of 1.3, so that
the RAM disk is immediately accessible. If the Startup-sequence
installs a RAM disk and the user didn’t want it present, he’s out of
luck—there is no DeleteRamDisk command. Section 5.3 explains
how to use the RAM disk to decrease disk swaps when using only one
drive.

The following disk commands do not work with the RAM disk.
Chapter 2 supplies detailed information about each command.

This command produces the error message:
Warning: Insufficient memory for buffers

1t would be a waste of memory to assign both a RAM disk and buffer
memory to RAM, if the operating system did let you do this.

115

3. DEVICES

DISKCOPY

FORMAT

RELABEL

INSTALL

AMIGADOS INSIDE AND OUT

The data files or directories of a RAM disk can only be copied one at a
time using the COPY command. Copying the entire disk using the
DISKCOPY command is impossible.

The RAM disk doesn’t need to be formatted before using it for the first
time. If you click on the RAM DISK icon and select the Format
disk.. item in the Icon menu (in Workbench 1.3 you would select
the Initialize item from the Disk menu) the Amiga lets you get
as far as the OK to format... requester. If you click on the OK
gadget, the Amiga displays the following requester:

Format failed - (1.3 Initialization failed)
cannot find handler

If you try to format the RAM disk using AmigaDOS Format
command, AmigaDOS displays:

Format failed - (1.3 Initialization failed)
cannot find handler

You shouldn't assign another name to the RAM DISK in AmigaDOS
1.3. If you do you will not be able to access the RAM DISK from the
Workbench. Version 2.0 has solved this problem. Version 1.2 would
not allow you to rename the RAM DISK.

This command turns normal disks into boot disks. The Amiga can be
started using these disks. The RAM DISK cannot be used as a boot
disk.

Workbench 2.0 implementation:

116

Operation is identical to Workbench 1.3, but the handler has been made
an internal handler and is not located in the L: directory.

ABACUS

3.3 THE PARALLEL DEVICE (PAR:)

3.3

The Parallel Device (PAR:)

This device allows the Amiga to access Centronics interfaced hardware.
The device works through the parallel port on the case of the Amiga
and must first be connected before you access it. The PAR: device is
parallel because all eight bits of a byte are transferred at once. It is also
possible to transfer information one byte after another or bit for bit (see
the next section for a description of serial transfer).

The connection can be used for more than one device. For example, an
analog/digital video converter can be connected, and the video and audio
signals will be converted to a format that can be understood by the
computer. In this case the data from outside is sent to the computer
through the connection. Other data flow directions are possible. A
typical application for PAR: is a printer connected to the Amiga. The
actual information runs through the connection to the printer. The
reason for using a printer with a parallel connection is found in the
handling of this device.

The speed at which the transfer of data takes place depends on how fast
the data from the device can be processed. In addition to the eight lines
used for transferring the data, there is an additional line used for
handshaking. Over this line the data receiving device (printer) informs
the transmitting device (Amiga) that it is ready to receive new data.
This maintains optimal data transfer speed.

Workbench 2.0 implementation:

The device driver has been optimized for compactness and speed in
AmigaDOS 2.0.

117

3. DEVICES

AMIGADOS INSIDE AND OUT

3.4

Using
command
bytes

Using
control lines

No
Handshaking

118

The Serial Device (SER:)

The serial device is also known as the RS-232C interface. The
connection point on the Amiga is called the serial port and can be used
for a wide variety of functions (modem, MIDI, etc.). The serial port
transfers individual bits one after another, and not at the same time like
the PAR: device. Each data direction also requires one signal. Parity is
chosen before using the connection (even, odd or none). This eighth bit
is automatically set so that either all set bits are always even or all set
bits make an odd number. The receiver must be set at the same parity.
In a few cases, parity can discover transfer errors. Only the bottom
seven bits of the byte can be transferred when the parity bit is active.
The remaining bit is sent as the parity bit (transfer control bit).

Each transfer is synchronized by one start bit and two stop bits. The
speed at which the single bits are transferred must be identical at both
the sending and receiving devices. This speed is traditionally measured
in Baud (after the French inventor Baudot). One baud is equal to the
transfer rate of about one bit per second.

The RS-232 connection also has handshake protocols. There are three
ways to achieve correct data transfer:

This method is usually called xON/xOFF protocol. This method
assumes that the connection is bidirectional. As soon as a device cannot
receive any more data, it sends a special message (xOFF) through its
return line. The sending device stops data transfer until it receives the
xON message from the receiving device. The advantage of this method
is that only three lines are needed, and that’s why a three-wire
handshake is frequently used in telecommunications. The operating
system automatically looks in the active program for correct utilization
of the command characters.

This method is similar to the handshake used with the PAR: device. It
requires additional wires, Ready TO Send/Clear To Send and Data Set
Ready/Data Terminal Ready (RTS/CTS and DSR/DTR), over which
additional information can be exchanged. A data channel used only for
return messages can be established. The advantage of this method is the
faster transfer speed because the control codes don’t go through the
relatively slow data channel.

If the user is 100% certain that the data-receiving device can process the
incoming bytes faster than the sender is sending them, then you can
conceivably do without the handshaking. This method is most useful
when a fast transfer of data from one computer to another is desired,
with the least amount of expense (2 lines). As a permanent solution
this method is ineffective because it takes too much time to configure.

ABACUS

3.4 THE SERIAL DEVICE (SER:)

All parameters must be set with the Preferences editor before
using the serial port. In addition, there is a gadget called Buffer
Size that can be used to change the size of the transfer memory for the
receiving data. This buffer holds the receiving data in case the receiving
program is not ready. If it takes too long to read the data and no
handshake takes place, this buffer can be overwritten. Data that was in
the buffer are lost.

Null modem cables are ready made cables that have the correct wiring to
allow two computers to easily exchange data thru the serial ports. The
software used is the same software used with a modem, only the cable
without a modem connects the two computers together. Hence the
name null modem cable. Most computer dealers carry null modem
cables, in case you need to transfer data from a laptop into your Amiga.

Workbench 2.0 implementation:

The device driver has been optimized for compactness and speed in
AmigaDOS 2.0.

119

3. DEVICES

AMIGADOS INSIDE AND OUT

3.5

The Printer Device (PRT:)

The printer device is intended specifically for output on the printer. If
the PRT : device is addressed, it uses the printer driver and selections set
by the Preferences editor. By using printer drivers Commodore has
attempted to standardized printer output. In this manner all programs
use the same printer functions and command characters. When new
printers become available, only the printer driver and not the program
will have to be re-written. Different printers require different drivers
because different printers use different codes for activating the same
function. Despite the many printer drivers on the Workbench disk, there
are always difficulties with a few printers.

We believe that these methods are easy to use with completed printer
drivers. However, it would be much better if there were a program that
made it possible to put together custom drivers for any available
printer. Please see the Abacus book Amiga Printers - Inside and Out for
a description of an excellent shareware program that does just that.

Workbench 2.0 implementation:

120

The device driver has been optimized for compactness and speed in
AmigaDOS 2.0.

ABACUS

3.6 THE CONSOLE DEVICE (CON:)

3.6

Example 1:

Example 2:

The Console Device (CON:)

The CON: device refers to both the keyboard and monitor of the Amiga
(i.e., the console). Because the keyboard and monitor screen of the
Amiga are normal input and output devices, they can be addressed like
any other device. Both input and output can take place in any window.
The CON: device is accessed as follows:

CON:X/Y/WIDTH/HEIGHT/NAME

The arguments following CON: have the following meaning:

X/Y Coordinates of upper left screen corner
WIDTH Screen width in pixels

HEIGHT Screen height in pixels

NAME Window’s name

DIR >CON:10/10/300/100/Testwindow

The directory output appears in a window with the given dimensions.
As soon as the output ends, the window disappears again.

COPY CON:10/10/300/75/input CON:10/100/300/75/output

This displays two CON: windows on the screen at the same time. The
input entered in the input window appears in the output window after
pressing the <Return> key. Pressing <Ctrl><Backslash> (<Ctrl><\>)
removes both windows.

Workbench 2.0 implementation:

The device driver now includes the NEWCON device which allows the
enhanced Shell operations in AmigaDOS 2.0.

121

3. DEVICES

AMIGADOS INSIDE AND OUT

3.7

The RAW Device (RAW:)

This device is closely associated with the CON: device. At first glance
it looks exactly the same. The first difference between the two is
established when entering input. The RAW: device doesn’t display any
characters. The following example is a good demonstration of the
function:

COPY RAW:10/10/300/75/input CON:10/100/300/75/output

Enter any characters in the top RAW: window. All of the characters are
transferred to the CON: window without waiting for the <Return> key
to be pressed. If it is pressed, the cursor appears at the beginning of the
line.

Another nice feature of RAW: is that control characters for cursor
movement, <Delete> and <Backspace> can be transferred. The receiving
device (CON:) removes these characters when executing them. In our
example only the cursor keys function as usual. Pressing <Ctrl><C>
ends the entire process.

If the output doesn’t function, there is a possibility that input was first
entered in the bottom window. As in the AmigaDOS window, the
output can be suppressed by other data. In this case, the <Return> key
should be pressed in the bottom window.

Workbench 2.0 implementation:

122

The device driver has been optimized for compactness and speed in
AmigaDOS 2.0.

ABACUS 3.8 NEWCON-HANDLER (NEWCON:)

3.8 NEWCON-handler (NEWCON:?)

Workbench 1.3 implementation:

The Shell uses this new window interface for output and input in
1.3. The NEWCON: device is similar to the old CON: device from the
original CLI. Before it can be used it must be mounted, like all other
handler devices, using the MOUNT command:

MOUNT NEWCOM:

The important entry in the MountList file found in the Devs
directory on the Workbench disk should look like the following:

NEWCON Handler = L:Newcon Handler
Priority =5
StackSize=1000

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the device has been made
the internal CON: device and does not have to be mounted.

123

3. DEVICES

AMIGADOS INSIDE AND OUT

3.9

The RAD device (RAD:)

Workbench 1.3 implementation:

124

The abbreviation RAD stands for Recoverable rAm Disk. This is a
reset-resistant RAM disk for the Amiga. The RAM disk device named
ram: loses all of its information after a reset. A normal reset does not
affect the RAD: device. In most cases the data can even survive a Guru
Meditation. The ramdrive.device is located in the Devs:
directory.

The RAD: device has at least one disadvantage. RAD doesn’t have a
dynamic memory system. RAD uses the same amount of memory
whether it contains any data in it or not. A typical entry for the RAD:
device in the Mount Li st looks like the following:

RAD: Device =
Unit = 0
Flags = 0
Surfaces = 2
BlocksPerTrack = 11
Reserved = 2
Interleave = 0
LowCyl =
HighCyl = 2
Buffers = 5
BufMemType = 1

ramdrive.device

1

#

You must specify RAD’s capacity in the HighCy1l parameter before
you can mount RAD with MOUNT RAD:. Each cylinder has a capacity
of 11K. RAD would have a capacity of (21+1) * 11K = 242K if it were
mounted using the above entry. In 1.3 RAD must be formatted before
it can be used with the FastFileSystem

After a reset, all you have to do is enter MOUNT RAD: and the contents
of RAD are restored. If you discover that some data is lost, use the
DISKDOCTOR to restore RAD.

When RAD is no longer needed, the largest section of its memory can
be freed by using the REMRAD command. It can be removed by using
the ASSIGN command:

ASSIGN RAD: REMOVE

The entire memory area that was occupied by RAD is then free after the
next boot operation.

ABACUS 3.9 THE RAD bpEvVICE (RAD:)

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the device has been made
an internal device and is not located in the DEVS: directory.

125

3. DEVICES

AMIGADOS INSIDE AND OUT

3.10

The PIPE Handler (PIPE:)

This device opens a communication channel for data exchange between
different tasks. This communication channel consists of a 4K data
buffer that can be written to and read at the same time by a task.

Before a PIPE: device can be used, the device must be mounted using
the following command:

MOUNT PIPE:

Any number of communication channels can theoretically be open at
once. For this reason the PIPE: device name has a channel name added
to it. In the following example the actual contents of the directory are
loaded into ED with PIPE: “test™

DIR >PIPE:test
ED PIPE:test

This was only possible through an intermediate file in Workbench 1.2:

DIR >DFO:helpfile
ED DFO:helpfile

The output process waits until another process is finished if the channel
capacity is not large enough. For example, if the output of the entire
directory contents is directed to the Workbench disk using a pipe:
device (DIR >PIPE: test opt a), the process waits a while because
the buffer cannot take any more characters. In this situation a second
Shell can help read out of the PIPE.

Workbench 2.0 implementation:

126

Operation is identical to Workbench 1.3, but the device driver has been
optimized.

ABACUS 3.11 THE SPEAK HANDLER (SPEAK:)

3.11 The SPEAK handler (SPEAK:)

Workbench 1.3 implementation:

This device controls the Amiga’s speech output. The SPEAK: device
must be mounted using the MOUNT command, this is usually done in

the Startup-sequence.

MOUNT SPEAK:

Example for speech output:

ECHO > SPEAK: "nice to see you"
DIR > SPEAK DF: opt a
TYPE S:Startup-sequence TO SPEAK:

It is possible to choose different output modes using OPT. The options
must be separated by a slash(/) with no spaces between them or the
colon. The following options are available:

Pitch (### is 65-320)

Speed (333 is 30-400)

Male voice

Female voice

Robot voice

Natural voice

No option in input stream

options allowed input stream

turn off direct phoneme mode

turn on direct phoneme mode

break sentences on punctuation alone
break sentences on punctuation, RETURN and LINEFEED

EaE®R@=" ™8 %%

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3.2, but the device driver has
been optimized.

127

3. DEVICES

AMIGADOS INSIDE AND OUT

3.12

The AUX Handier (AUX:)

This handler supports the serial interface of the Amiga. The data is no
longer stored in a temporary buffer. The AUX: device must be mounted
using the MOUNT command, which is usually done in the

Startup-sequence:

MOUNT AUX:

Multi-user operation can be easily realized with the Amiga (see Chapter
5) by using this device. With a simple NEWSHELL AUX: command
an inexpensive used terminal can be attached to the Amiga for all your
AmigaDOS work. This frees up the Amiga keyboard and Workbench
screen and gives you a true multi-user computer very inexpensively.
The transfer parameters are set from the Preferences programs.

Workbench 2.0 implementation:

128

Operation is identical to Workbench 1.3.2, but the device has been
optimized.

ABACUS

3.13 THE FASTFILESYSTEM

3.13

The FastFileSystem

Workbench 1.3 implementation:

You’ll find this new handler in directory L: of the Workbench 1.3 disk.

Generally, a file system can be viewed as an enlarged handler. It handles
the organization of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>