

AmigaDOS

Inside & Out
Ruediger Kerkloh

Manfred Tornsdorf

Bernd Zoller

A Data Becker Book

Published by

Abacus!

Seventh Printing 1991

Printed in U.S.A.

Copyright © 1988, 1989, 1990, 1991 Abacus

5370 52nd Street SE

Grand Rapids, MI 49512

Copyright © 1988, 1989, 1990, 1991 Data Becker GmbH

Merowingerstrasse 30

4000 Dusseldorf, Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of Abacus Software or Data
Becker GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus Software can neither guarantee nor be
held legally responsible for any mistakes in printing or faulty instructions contained in this
book. The authors always appreciate receiving notice of any errors or misprints.

Amiga 500, Amiga 1000, Amiga 2000 and Amiga are trademarks or registered trademarks
of Commodore-Amiga Inc.

ISBN 1-55755-041-7

Table of Contents

Preface vii

1. Introduction 1

1.1 The Task of AmigaDOS 4

1.2 The Woikbench and the Shell 6

1.3 Workbench Backup 7

1.4 Introduction to the Shell 9

1.5 The First Command 10

1.6 Directory Structure 12

1.7 Command Templates 15

1.8 Quitting the Shell 18

2. AmigaDOS Commands 19

2.1 Disk and File Management 22
2.1.1 Format 22

2.1.2 DIR 25

2.1.3 CD 28

2.1.4 MAKEDIR 31

2.1.5 DELETE 32

2.1.6 COPY 33

2.1.7 LIST 36

2.1.8 RENAME 41

2.1.9 DISKCOPY 43

2.1.10 RELABEL 44

2.1.11 INFO 45

2.1.12 INSTALL 46

2.1.13 TYPE 49

2.1.14 JOIN 50

2.1.15 SEARCH 51

2.1.16 SORT 53

2.1.17 PROTECT 54

2.1.18 FILENOTE 57

2.1.19 SETDATE 58

2.1.20 DISKDOCTOR 59

2.1.21 DISKCHANGE 63

2.2 System Commands 64

2.2.1 NEWCLI 64

2.2.2 ENDCLI .67

2.2.3 RUN 68

2.2.4 STATUS 69
2.2.5 CHANGETASKPRI 71

2.2.6 BREAK 72

2.2.7 PATH 73
2.2.8 ASSIGN 75

Hi

2.2.9 ADDBUFFERS 78

2.2.10 WHY 79

2.2.11 FAULT 80

2.2.12 DATE 80

2.2.13 SETCLOCK 81

2.2.14 PROMPT 82

2.2.15 STACK 84

2.2.16 BINDDRIVERS 85

2.2.17 MOUNT 85

2.3 Script File Commands 89

2.3.1 EXECUTE 89

2.3.2 ECHO 92

2.3.3 FAILAT 93

2.3.4 QUIT 94

2.3.5 IF/ELSE/ENDIF 95

2.3.6 ASK 97

2.3.7 SKIP/LAB 98

2.3.8 WATT. 99

2.3.9 VERSION 100

2.4 The Editors 102

2.4.1 Reading text with ED 103

2.4.2 Text handling with EDIT 105

2.4.3 Parameters of EDIT 105

2.4.4 Starting EDIT 107

2.4.5 Editing Text 108

2.4.6 Multiple Files 109

2.4.7 Command Macros 109

2.4.8 Quitting EDIT 110

3. Devices Ill

3.1 Floppy Disk Devices (DFX:) 114

3.2 The RAM-Handler (RAM:) 115

3.3 The Parallel Device (PAR:) 117

3.4 The Serial Device (SER:) 118

3.5 The Printer Device (PRT:) 120

3.6 The Console Device (CON:) 121

3.7 The Raw Device (RAW:) 122

3.8 NEWCON-handler (NEWCON:) 123

3.9 The RAD device (RAD:) 124

3.10 The PIPE Handler (PIPE:) 126

3.11 The SPEAK handler (SPEAK:) 127

3.12 The AUX Handler (AUX:) 128
3.13 The FastFileSystem 129

4. More AmigaDOS Commands 131

4.1 AmigaDOS 1.3 Commands 135
4.1.1 AVAIL 135

4.1.2 FF 136

4.1.3 LOCK 137

4.1.4 NEWSHELL 137

4.1.5 REMRAD 140

IV

4.1.6 RESIDENT 141

4.1.7 SETPATCH 145

4.1.8 SETENV/GETENV 145

4.1.9 ICONX 146

4.2 AmigaDOS 2.0 Commands 147

4.2.1 MAKELINK 147

4.2.2 UNALIAS 147

4.2.3 UNSET/UNSETENV 148

5. AmigaDOS Tricks and Tips 149

5.1 Input and Output in AmigaDOS 152

5.2 Wildcards 153
5.3 Breaking in AmigaDOS 155

5.4 The RAM Disk and AmigaDOS 157

5.5 Printing from AmigaDOS 158

5.5.1 File printout with COPY 158

5.5.2 Redirecting output 159

5.5.3 Printer control characters 160

5.6 Using the Console Device 162

5.7 Using the Serial Device 165

6. Script files 169

6.1 Introduction to Script File Processing 172

6.1.1 What are script files? 172

6.1.2 What script files look like 172

6.1.3 Calling script files 173

6.1.4 A simple example 174

6.2 Modifying the Startup-sequence 176

6.2.1 A Custom Startup-sequence 179

6.2.2 Shell-startup sequence 180

6.3 Practical Script Files 182

6.3.1 A special printer script file 182

6.3.2 Creating your own script files 186

6.3.3 Starting script files with the mouse 188

6.3.4 The Types script file 189

6.3.5 Putting everything into the RAM disk 190

6.4 Using ALIAS 192

7. AmigaDOS and Multitasking 197

7.1 What is Multitasking? 200

7.2 Multitasking with AmigaDOS and Workbench 201

7.3 Multitasking with NEWSHELL 204

7.4 Multitasking using RUN 206

7.5 Using AmigaDOS 209
7.6 CHANGETASKPRI 211

7.7 Multitasking dangers 214

8. Creating AmigaDOS Commands 217

8.1 AmigaDOS Commands in C 221

8.2 REPLACE 225
8.3 Public Domain AmigaDOS Commands 232

9. AREXX 235

9.1 Running ARexx 238

9.2 ARexx Programs 239

9.3 Program Macros 240

9.4 Multitasking 241

9.5 How ARexx Works 242

9.5.1 Data 242
9.5.2 Symbols 243
9.5.3 Operators 244

9.5.4 Programs 245
9.5.5 Commands & Functions 246

9.5.6 Pure Power 247

9.6 ARexx Commands & Functions 248

9.6.1 Flow & Control 248

9.6.2 Strings 250

9.6.3 Numbers 257
9.6.4 Inter-Process Communications 258

9.6.5 Files....... 259

9.6.6 Console I/O 261
9.6.7 Functions & Procedures 262

9.6.8 System 264

9.6.9 Data 268

9.6.10 Bits 270

9.6.11 Memoiy 272

9.7 Example ARexx Programs 274

10 Quick Reference 281

10.1 The ED Program 284

10.1.1 ED 1.14 284

10.1.2 ED 2.00 286

10.2 The Edit Program 287

10.3 The AmigaDOS Commands 290

Appendix 309

Index 315

vi

Preface

The Amiga Workbench, a user-friendly mouse controlled graphic

operating system, makes it easy for the beginner to enter the world of

computers. The windows and icons which appear on the screen after

you start the computer are much more attractive to a new user than a

plain cursor waiting for simple keyboard input.

Sooner or later, either by mistake or out of curiosity, you click the

Shell icon on the Workbench disk. A Shell window appears and

the boring CLI (Command Line Interface) cursor of AmigaDOS makes

its appearance. This user interface, although it doesn't use the mouse,

is more powerful than the Amiga Workbench. In fact, the Workbench

is loaded from AmigaDOS when the Amiga is turned on.

You actually can't get by without using AmigaDOS if you wish to do

any meaningful work with the Amiga. The Workbench is a powerful

graphic interface that makes it easy for the average user to access the

Amiga. You can only do so much with the Workbench, while

AmigaDOS's capabilities are almost unlimited.

This book will be very helpful to you if you keep it by your side as

you work with AmigaDOS. After a simple but necessary introduction,

you'll find a lot of information about AmigaDOS. You'll learn

solutions to common problems, detailed descriptions of all AmigaDOS

commands, programming script files, multitasking, and even an

explanation of the internal workings of AmigaDOS and the Shell.

The last few pages contain a Quick Reference of all the commands.

Workbench One final comment: The Amiga is an ever expanding system and the

1.3 Workbench is constantly being improved. This book covers

2.0 AmigaDOS in Workbench 1.2, 1.3 and 2.0. These new system disks

work much better than the older versions. So, any additions or

differences between the Workbench versions are indicated as they appear

in this book. This book supports Workbench 1.3/Kickstart 1.2,

Workbench 1.3/Kickstart 1.3 and Workbench 2.0/Kickstart 2.0.

R. Kerkloh, M. Tornsdorf, B. Zoller June 1990

vii

1.

Introduction

Abacus 1. Introduction

i. Introduction

Workbench

1.3 and 2.0

users:

The first steps in any area of computing usually seem the hardest. For

this reason, we have kept the theories in this chapter to a minimum.

The following sections are intended to make your first experiences with

the Shell and AmigaDOS as easy as possible. In fact, the only

AmigaDOS commands that appear in the following sections of Chapter

1 are the necessary ones. For those who wish to experiment further, the

later chapters contain more background information on AmigaDOS.

For now, however, we recommend that you read this book in sequence

and work through the examples as they appear. Whether you've just

unpacked your Amiga or are an old hand at the computer, starting from

the beginning is always the best way to learn anything. Good luck!

Workbench 1.3 and 2.0 have two AmigaDOS access programs: The

CLI (contained in the System drawer) and the Shell, which is in the

Workbench window. Please use the Shell for all of your work with

this book. The Shell is an upgraded version of the original Amiga

command line interface or CLI. Once you have become familiar with

the Shell, you will probably use the Shell exclusively, but please

use the Shell for the examples in this book. In Workbench 2.0 the

Shell and the CLI program both operate in the same manner.

1. Introduction AmigaDOS Inside and Out

1.1 The Task of AmigaDOS

What is Before we begin working with AmigaDOS, we must first briefly
DOS? explain the function of AmigaDOS. DOS is the abbreviation for Disk

Operating System. You may already know the definition of an
operating system: The program(s) that controls the computer (tells it

what to do). Don't confuse an operating system with an application

program (e.g., word processors, spreadsheets, etc.). An operating

system only provides the computer with basic instructions from which

a programmer can construct his programs. It takes over such tasks as

memory management, hardware control (keyboard, disk drive, printer,

etc.) and coordinating various functions. It also makes operating system

functions available to a programmer. A system programmer, for
instance, shouldn't worry about which areas of memory in the
computer are occupied and which areas are still available. The operating

system automatically allocates free memory of the desired size, if
enough memory is available.

In AmigaDOS the disk commands that the computer can execute aren't
integrated into the operating system itself. On some home computers,
you can enter certain commands which the operating system recognizes

and immediately executes (such as Load, Save, etc.). AmigaDOS is

based on a different principle: AmigaDOS commands are short
programs that can be loaded from a disk drive (floppy disk, hard disk or

RAM disk) before they execute. Upon execution, AmigaDOS returns to
the routines contained in the operating system. This method has certain
advantages over an operating system with integrated commands:

• Each command occupies memory only when it executes. After

execution, it is removed from memory. AmigaDOS also allows

often used commands to remain resident in memory.

If the authors find that a command contains some kind of bug or
error, it can later be fixed with a corrected version.

An unlimited range of commands exists. New commands can be
added to AmigaDOS as needed.

The biggest disadvantage of separate AmigaDOS commands is disk
switching; exchanging disks takes time. This frequently occurs on
smaller computers with a limited amount of memory space and a single
disk drive. By using a hard disk or multiple floppy disk drives in

conjunction with a RAM disk, this disadvantage can be avoided.

Abacus 1.1 The Task of AmigaDOS

AmigaDOS In AmigaDOS 2.0 all the AmigaDOS commands were rewritten for

2.0 compactness and speed. This allowed many commands to be made

internal commands, thereby allowing them to execute directly, no more

loading from diskette. The Amiga designers recognized the flexibility of

a system that calls commands from diskette so they built in an internal

command override system, keeping the best of both worlds, internal and

external commands. The following are the internal commands of

AmigaDOS 2.0, these commands will be discussed in greater detail

later

Alias

Ask

CD

Echo

Else

EndCLI

Endlf

EndShell

EndSkip

Failat

Fault

Get

Getenv

If

Lab

NewCLI

NewShell

Path

Prompt

Quit

Resident

Run

Set

Setenv

Skip

Stack

Unalias

Unset

Unsetenv

Why

AREXX arexx is a version of the

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

mainframe

language that has been implemented on the Amiga, arexx has been
integrated in the Workbench 2.0 operating system, arexx is an
application programming language that can be used to extend operating
system commands and customize application programs for easy

interaction.

The complete power and possibilities that arexx gives to the Amiga
is beyond the scope of this book, so arexx programming will not be
covered in this volume. To do arexx justice a separate volume would
be necessary to describe all the features of this excellent addition to the

Amiga.

1. Introduction AmigaDOS Inside and Out

1.2 The Workbench and the Shell

The previous section gave a rough description of what AmigaDOS

does. AmigaDOS contains the tools with which the user can perform

functions required for the operation of the computer. For example, how

do you tell the computer that you want to format a disk? The

Workbench can do this: In Workbench 2.0 there is a menu item in the

icon menu named Format disk and in Workbench 1.3 there is a

menu item in the Disk menu named Initialize. You insert the

blank disk, click once on its icon and select the Format disk or

Initialize item from the menu, depending on which version of the

Workbench you are running. This loads the corresponding command

from the Workbench disk and any other commands as needed. The
Workbench is actually nothing more than a program loaded from the

disk when the computer boots up, creating the graphic user interface or
GUI.

Command An alternative to the Workbench is the Shell or Command Line
Line Interface. AmigaDOS commands entered from the keyboard form the
Interface command line interface, instead of icons or pointer. The mouse can

only be used to change the size of any window opened for a Shell
task.

Isn't the Shell a step backward in computer technology, then? It may
seem that way at first glance, since the Workbench simplifies startup
procedures on the Amiga. However, some aspects of the Amiga's
operating system, and even the Workbench itself, cannot be accessed
without AmigaDOS. The Startup-sequence, a file made of commands
instructing the Amiga what to do or load as it starts up, can be edited
and tested from AmigaDOS. This Startup-sequence is located on the
Workbench disk, and the Amiga executes this file every time you turn
the Amiga on.

In Workbench 1.3 some of the filenames on a disk are not visible on
the Workbench (e.g., an invisible file may have no matching info
file). As a result, AmigaDOS provides the best way to really look
behind the scenes in Amiga disks. Workbench 2.0 solved this problem
by allowing the user to view all files on a diskette, but AmigaDOS
still gives more flexibility in the displaying of disk information.

Abacus 13 Workbench Backup

1.3 Workbench Backup

Backup Before you begin working with AmigaDOS and the Shell, make a

copies copy of your original Workbench disk. Use this backup as your

Workbench disk. As time passes, the backup disk may become corrupt

(unreadable), or important files may be erased accidentally. If this

happens, you can make another backup from the original Workbench

disk.

It's easy to make a backup copy of the Workbench disk. If you have

never backed up a disk before, do the following:

• Take the original Workbench disk. Look for the write protect tab

(that sliding piece of plastic set into one corner of the disk. Move

the write protect to the write protect position (you should be able

to see through the disk in a hole created by the write protect). You

cannot overwrite the Workbench disk when the write protect is in

this position.

Workbench • Place the original Workbench disk in the internal disk drive,

Backup sometimes called drive DFO: (drive floppy 0). Turn on your

Amiga. The booting process begins immediately.

After a while the Workbench screen appears. The loaded

Workbench disk is represented by an icon on the screen. Move the

mouse pointer onto this icon. Click on this icon by pressing and

releasing the left mouse button. Press and hold the right mouse

button. Workbench 2.0 users should move the mouse pointer to

the icon menu title and select the Copy item from this menu.

Workbench 1.3 users should move the mouse pointer to the

Workbench menu title and select the Duplicate item from

this menu. Release the right mouse button.

• Now the Amiga asks you to insert the SOURCE disk which you

would like copied (the FROM disk). You already have that disk in

the drive, so click on the Continue gadget.

• Have a blank, unformatted disk ready to become your backup
Workbench disk. This is the disk that the Disk Copy function

refers to as the TO disk. Check the write protect of the TO disk;
you should not be able to see through the corner of the disk, like

you could with the original Workbench disk.

During the copying process, the Amiga may ask you to exchange
the FROM (source) and TO (destination) disks several times,

depending on how much memory is available. Never remove a

disk from a disk drive when the drive light is on!! You

1. Introduction AmigaDOS Inside and Out

could lose data, and even destroy the disk! A window on the screen

tells you when the process is done.

The difference between the original and the backup disk is that the

backup appends the words "Copy of in front of the original name.

Therefore, if the original Workbench disk is named Workbench

x.x, the new disk has the name Copy of Workbench x.x.

Remove this extension using the Rename item from the Icon

menu (the Workbench menu in 1.3). Use the and

<Backspace> keys to delete the "Copy of text and press the

<Return> key. DOS always distinguishes between the two disks

by the date and time of creation assigned to each disk. These details

are always stored on the backup.

Take the original Workbench disk and put it in a safe place.

Anywhere far away from moisture and magnetic objects will work

(a linen closet, an unused desk drawer, etc.). Use the backup you

have made as your Workbench disk.

Abacus 1.4 Introduction to the Shell

1.4 Introduction to the Shell

Starting the

Shell

Remove all disks from any disk drives you have connected to the

Amiga. Press and hold the <Ctrl> key, the <Commodore> (sometimes

called the left <Amiga> key) and the right <Amiga> key to reset the

Amiga. Wait until the icon requesting the Workbench disk appears on

the screen. Insert your backup copy of the Workbench disk. The Amiga

system boots and the Workbench screen appears.

Double-click on the Workbench disk icon, the Workbench disk

window opens. Look for the Shell icon. Double-click on this icon.

The Shell loads, and a window named AmigaShell (NewShell in

1.3) appears on the screen. In our explanations we will refer to both

versions as the Shell window.

The AmigaShell window has some of the attributes of a normal

window on an Amiga. It has a drag bar (which allows you to move it

around the screen); a sizing gadget (which allows you to change the

window's size); a depth gadget (1.3 has a front gadget and a back

gadget) for moving the window into the foreground or background of

the screen. Workbench 2.0 also has a zoom gadget which toggles the

window between full size and last size. Workbench 2.0 AmigaShell

windows also have a close gadget, the Workbench 1.3 NewShell

window has no close gadget: You must use a Shell command to

close the window in Workbench 1.3 (more on this in Section 1.8).

The only thing displayed in the NewShell window is the DOS

prompt. This consists of a process number (1.), the current drive

(SYS:) and a greater-than character (1. SYS: >). This character tells you

that the computer is ready to receive and execute commands from the

keyboard. A cursor waits beside the prompt for your input

1. Introduction AmigaDOS Inside and Out

1.5 The First Command

All inputs in the Shell must be entered by pressing the <Enter> or

<Return> key (some Amigas have <J> embossed on this key). Since

both keys perform the identical function, we refer to the <Return> key
for the duration of this book.

<Backspace> If you press the <Return> key without entering a command, the

and <Return> prompt appears one line down from its previous location.

keys Unfortunately, you cannot use the four cursor keys to move the cursor
to a particular line within the window. All commands must be

completely typed out every time they are used. In the input line itself,

single characters that have been input can be erased from right to left
using the <Backspace> key (some Amigas have «-> embossed on

this key) above the <Return> key. An entire line can be erased by

holding down the <Ctrl> key and pressing the <X> key (this is called

"pressing <CtrlxX>," and will be used throughout this book to

describe key combinations involving the <Ctrl> key).

Only available commands can be executed. Enter the following:

files

Remember to press the <Return> key at the end of the line.
AmigaDOS responds with:

Unknown command

Only commands available as programs in the disk drive can be
executed, AmigaDOS 2.0 can also execute internal commands. This is
the special feature of AmigaDOS. The Shell receives the command
(program name) from the user, searches the disk drive for a file by that
name, loads the file into memory and executes it This means that the
Shell can execute programs as well as AmigaDOS commands.

Move the mouse pointer to the top of the Shell window. Press and
hold the left mouse button and drag the window to the top left of the
screen. Release the left mouse button. Move the pointer to the sizing
gadget at the lower right corner of the AmigaShell window. Press
and hold the left mouse button and drag the sizing gadget to the bottom
right of the screen. Release the left mouse button. Workbench 2.0
owners can simply click on the zoom gadget, next to the depth gadget
to toggle the window full size. '

10

Abacus 1.5 The First Command

DIR We'll begin with a relatively simple but very important command, and

list other commands as you gain experience in AmigaDOS and the

Shell. The name of this first command is DIR (directory). DIR

displays a list of the files contained in the specified disk drive (floppy

disk, hard disk or RAM disk). Enter the following (remember to press

the <Return> key when you're done entering the command):

DIR

It doesn't matter whether you enter uppercase or lowercase characters in

the Shell. Shell commands even accept mixed case letters.

After a while, the Shell displays the contents of the internal disk

drive (drive DFO:). This list is the directory of the Workbench disk.

The names don't appear on the screen very quickly at first Soon the

names start flying by on the screen. Press any key to stop the display,

and press the <Backspace> key to resume the display.

The display should be similar to the following. Your display may

differ—don't worry if it does; remember the Amiga is an ever

expanding system and new features are continually being added.

l.SYS:>dir

Trashcan (dir)

Rexxc (dir)

Expansion (dir)

Libs (dir)

WBStartup (dir)

Prefs (dir)

Fonts (dir)

C (dir)

Devs (dir)

S (dir)

L (dir)

Utilities (dir)

System (dir)

. info

Expansion.info

Shell.info

Trashcan.info

WBStartup.info

1.SYS:>

Disk.info

Prefs.info

System.info

Utilities.info

11

1. Introduction AmigaDOS Inside and Out

1.6 Directory Structure

Data files

Subdirectories

You may recognize some of the filenames displayed by the dir

command; while others may be unfamiliar to you. Info files contain

icon data, date and time information and comments. You cannot see

some files as icons on the Workbench screen because these files don't

have matching .info files. However, you don't need .info files when

you work in AmigaDOS.

Some other file entries, shown from the Workbench as drawer icons,

have extensions of (dir) when you view them using the DIR

command. The directory (or drawer) structure by which AmigaDOS

handles the data files is the same for both the Workbench and

AmigaDOS. You can't see all the data files in the Shell at once,

either. The DIR command only displays the root (main) directory of a

disk for now.

This form of data file management is often referred to as a tree
structure. The main directory serves as the trunk, and the subdirectories

extend from this trunk like the branches of a tree. Each subdirectory can

either contain data files or another subdirectory. There is almost no

limit to the number of subdirectories you can have.

How do you reach other subdirectories? From the Workbench it's no

problem: a subdirectory appears as soon as you double-click on a

drawer. If more drawers appear in this new subdirectory window, you
can access their contents in the same way.

If you want to look at the contents of a particular subdirectory from
AmigaDOS, you must append a path to the dir command. This path
describes the "access route" through directories and subdirectories to get
to a particular file or directory. The simplest path is to simply provide

a directory name. Enter the following (press the <Return> key at the
end of the input):

DIR System

The DIR SYSTEM command displays the directory of the System
drawer on the Workbench disk.

The names shown are actual data files—no (dir) extensions appear.
Since there are no more (dir) names, we cannot go deeper in this
branch of the tree. We can only access files in this directory.

Let's look at a directory (drawer) that we normally can't see from the
Workbench. The Devs directory has no added .info file, which is
why you can't normally see it in the Workbench 1.3 window,

12

Abacus 1.6 Directory Structure

Workbench 2.0 does have an option for viewing all diskette files.

However, we can view the contents of this directory from AmigaDOS.

Enter the following command:

DIR Devs

This command displays the following directories and files (Workbench

1.3 will also contain a ramdrive .device and a clipboard

directory):

l.SYS:>dir devs

Printers (dir)

Keymaps (dir)

clipboard.device

narrator.device

printer.device

system-configuration

1.SYS:>

MountList

parallel.device

serial.device

You'll immediately see that there are two more directories contained

within this directory. You can easily view one of these directories by

adding a slash if) character and the name of the desired directory. You

are still in the main directory; so enter the following to read the

printers directory inside the devs directory:

DIR Devs/Printers

Don't confuse the slash character (/) with the backslash character (N).

The result of this command looks something like this for Workbench

1.2 users (1.3 and 2.0 users will find these printers on the Extras

diskette; they should insert the Extras diskette and enter: dir

"Extras xx: devs/printers" where xx is their version

number):

l.SYS:>dir devs/printers

Alphacom_Alphapro_101

CBM_MPS1000

Diablo_Advantage_D25

Epson

generic

HP_LaserJet_PLUS

Okidata_292

Okimate_20

l.SYS:>

Brother_HR-15XL

Diablo_630

Diablo_C-150

Epson_JX-80

HP_LaserJet

Imagewriterll

Okidata_92

Qume_LetterPro_20

The underscore character (J shown above is located on the keyboard by

pressing <Shift><->.

13

1. Introduction AmigaDOS Inside and Out

The Preferences editors retrieve the data needed to drive different

types of printers from this directory. No further subdirectories are

available from this directory. This directory is one of the deepest

subdirectories on the Workbench disk.

Drive specifier A complete path usually contains the name of the disk or the disk drive

specifier. When you begin, AmigaDOS defaults to DFO: (the internal

disk drive). This part of the path is optional. If you have two or more

disk drives, you can access them with the DIR command as well as

using the drive specifier. The disk drive specifier must begin the path

statement. In the simplest case (no path statement), DIR DF1:, for

example, displays the main directory of a disk in the first external disk

drive. Hard disk users call their device DHO:. Statements referring to

subdirectories always follow the colon:

DIR DHO:TEXT/LETTERT/BILL

Unfortunately, if you have only one disk drive connected to your

Amiga, you can't just load any disk you want and look at the directory.

If you remove the Workbench disk, insert another disk and enter a DIR

command, the Shell requests that you insert the Workbench disk.

We'll explain this problem in more detail in Chapter 3. All you need is

a single disk drive for this chapter to try out the functions.

The System directory you viewed earlier showed some commands that

can be accessed as AmigaDOS commands, but aren't necessarily

AmigaDOS commands themselves. The actual AmigaDOS commands

are in a different directory.

You can view the AmigaDOS commands by looking in directory C: of

the Workbench disk. Enter the following command to view the

commands located on the diskette:

DIR C

AmigaDOS 2.0 users should enter the following command to view the
AmigaDOS internal commands:

RESIDENT

14

Abacus 1.7 Command Templates

1.7 Command Templates

Every AmigaDOS command has a built-in help function called the

command template. Because these commands are so powerful, even an

experienced AmigaDOS user can forget the syntax of a command. If the

syntax is incorrect, AmigaDOS 1.3 responded with one of these

messages:

Bad args (or) Bad arguments

When AmigaDOS 2.0 was completely rewritten the error messages for

many commands were also greatly improved. You could refer to

Chapter 10 of this book to find the correct syntax, but it's often much

faster to call the command template for the command.

Enter the AmigaDOS command, followed by a space and a question

mark, then press the <Return> key. AmigaDOS displays the argument

template for the desired command. Enter the following:

DIR ?

AmigaDOS displays:

DIR,OPT/K,ALL/S,DIR/S,FILES/S,INTER/S:

The command template is easy to read once you learn the coding. DIR

is the keyword (command)—this must appear first in the syntax.

A comma separates arguments from each other in the argument

template. These shouldn't be entered when you type the command

itself. Therefore, DIR has five arguments available: OPT/K, ALL/S,

DIR/S, FILES/S and INTER/S. Arguments can also contain qualifiers

(control characters) preceded by a slash (/) character. The second

argument of the DIR command includes the word OPT. OPT is an

abbreviation for OPTIONAL. This means that OPT is a form of input

which can be included or omitted.

The final section of the second argument is /K. The letter K is an

abbreviation for Keyword. This options keyword must be given in the

command.

The colon (:) at the end of the argument template is important, but it's

not part of the argument template (more on this at die end of this

section).

Possible qualifiers that can appear in an argument template in 1.3 and

2.0:

15

1. Introduction AmigaDOS Inside and Out

/S (Switch)

/N (Numeric)

/A (Argument) This qualifier always requires a certain argument. If you omit the
argument, the command cannot execute.

/K (Key) The qualifier's name must appear as input (e.g., OPT in the DIR
example above), and a keyword must appear as well. The parameters
allowed and the functions executed depend on the respective Shell
command (see Chapter Two for more details).

This qualifier needs no arguments. It acts as a switch (toggle) for a
command. In commands switches operate similar to a light switch--

they turn a command on or off or switch the command to another
mode.

Possible qualifiers that can appear in an argument template only in
AmigaDOS 2.0:

This qualifier indicates that a numeric argument is expected
(AmigaDOS 2.0 only).

/M (Multiple) Multiple arguments can be included. In 1.3 commas were used to
signify multiple arguments. Multiple arguments must be separated by
spaces. This has been updated in AmigaDOS 2.0, also the number of

arguments is unlimited in AmigaDOS 2.0.

/F (Final) The argument is the final argument. This allows using strings without
enclosing them in quotation marks (AmigaDOS 2.0 only).

, (comma) The command takes no arguments (AmigaDOS 2.0 only). In
AmigaDOS 1.3 the comma was used to show multiple inputs.

If none of the qualifiers appear in an argument, then the parameter

accompanying the command (if any) can be identified from its position

within the command line. For example, the command below has no

qualifiers. It tells AmigaDOS to display directory c of drive DF0: on
the screen:

DIR DF0:C

AmigaDOS 1.3 In AmigaDOS 1.3 it's possible that an argument can be unnamed. The
delete command (which we'll discuss in detail later) has a number of

different arguments. Enter the following in the Shell of AmigaDOS
1.3:

DELETE ?

The Shell of AmigaDOS 1.3 responds with:

,,,,,,,,,,ALL/S,Q=QUIET/S:

The ten commas at the beginning of the argument template imply that

you can delete up to ten files at a time.

16

Abacus 1.7 Command Templates

AmigaDOS 2.0 AmigaDOS 2.0 has greatly improved on this method by allowing

unlimited arguments to be separated by spaces in the input line.

The all/S argument means that if you precede the word all with the

name of a directory, the command deletes all the files on the directory

and the directory itself. The following input deletes all files from the

directory in drive DFO: named NORTON, then the NORTON directory

itself:

DELETE DFO:NORTON ALL

If you entered this command and had a set of files inside a directory

named NORTON in DFO:, AmigaDOS would report the status of the

deleted files on the screen. The Q=QUIET/S argument switches on the

display of the file deletion process. The equal sign between the Q and

the quiet means that you can either use the word or the letter as the

argument. The following command deletes all the files from the

NORTON directory in drive DFO:, then deletes the NORTON directory.

This command and the above delete command perform the same

function. However, the command below suppresses the list of deleted

files on the screen:

DELETE DFO: NORTON ALL QUIET

This version of the delete command does the same thing (notice the

use of the letter Q instead of the word QUIET):

DELETE DFO: NORTON ALL Q

Arguments An argument introduced by the user through its name can be placed

anywhere within the input line. For instance, the COPY command

includes the arguments FROM and TO/a, among others. Both of the

following command sequences perform the same function—copying the

letters file from drive DFO: to a file on drive DF1: named text:

COPY FROM DFO:letters TO DFl:text

copy TO DFl:text FROM DFO:letters

It doesn't matter whether the command names and arguments are entered

in uppercase or lowercase letters.

After command parameters are displayed in a command template, the

cursor reappears in the same line as the command template following

the colon. You can now enter an argument or set of arguments without

re-entering the command keyword.

When working in AmigaDOS, if you're not 100% sure which

command uses which arguments, enter the command, a space and a

question mark to see the command template.

17

1. Introduction AmigaDOS Inside and Out

1.8 Quitting the Shell

We mentioned in Section 1.4 that AmigaDOS 1.3 Shell windows

have no close gadget. AmigaDOS uses a command instead of a close

gadget to exit and return you to the Workbench.

ENDSHELL The endshell command closes the Shell window currently active.

Enter the following (again, remember to press the <Return> key at the

end of the input):

ENDSHELL

The Shell window immediately disappears and the Amiga returns you

totheWoikbench.

This introduction to working with the Shell has made you familiar

with its basic operation. The following chapters systematically explain

all the currently available commands.

ENDCLI The ENDCLI command also closes the Shell window currently

active. This command has been retained for compatibility with earlier
versions of AmigaDOS.

AmigaDOS 2.0 AmigaDOS 2.0 users can also click on the close gadget located in the
AmigaShell window.

18

2.

AmigaDOS

Commands

Abacus 2. AmigaDOS Commands

2. AmigaDOS Commands

This chapter lists the AmigaDOS commands in detail. The commands

appear in order of difficulty and importance and not in alphabetical

order. The easier to learn commands appear first, this way you won't

immediately confront the relatively difficult commands, which can

confuse you if you don't have the background information needed for

these commands. The Quick Reference chapter lists the commands in

alphabetical order.

Section 2.1 describes all the commands that fall under the general

heading of disk drive and file management Here you'll find the

commands which access the floppy or hard disk drives, and files stored

on these disk drives.

Section 2.2 describes the commands which access the operating system

in some way or another. A typical member of this group is the Date

command which deals with the system date.

Section 2.3 describes commands used in scriptfiles. These are similar

to batch files on MS-DOS computers. Script files perform multiple

commands, saving the user the effort of repeatedly typing in the same

command sequences. The Startup-sequence is a script file. Script

files are one of the most powerful features of AmigaDOS.

Finally, Section 2.4 explains two comprehensive commands. These

commands, ED and Edit, invoke two different text editors which are

used to create script files.

The following sections contain a great deal of descriptive material. We

recommend that you try out commands (when you can) as much as

possible while you read. This will help you understand the functions of

the commands. Use a backup copy of the Workbench disk, do not use

the original disk. If you don't have a backup, go to Chapter 1 and make

one. You may also want to keep a blank, unformatted disk around for

testing some commands.

Note: AmigaDOS is constantly being improved and updated, the updates

usually contain a number of added arguments and commands, making it

much more versatile than previous versions. To show the history of

AmigaDOS and make this guide usable to all Amiga users we will first

present the 1.2 version of the command, then the 1.3 implementation

and finally the AmigaDOS 2.0 version. Any differences in the

commands will appear after the general description of the command.

Each version of the AmigaDOS command will be preceded by

Workbench 1.2 implementation:, Workbench 1.3

implementation: and Workbench 2.0 implementation:.

21

2. AmigaDOS Commands AmigaDOS Inside and Out

2.1 Disk and File Management

This section lists the commands used for handling files and managing

the Amiga disk drives.

2.1.1 FORMAT

Workbench 1.2 implementation:

Syntax: FORMAT DRIVE <disk> NAME <name> [NOICONS]

A disk must bo formatted or initialized before you can use it on an

Amiga. Formatting prepares a disk so that the Amiga can read data

from and write data to the disk. In Workbench 2.0 the Icons menu

contains an item named Format Disk... (in 1.3 the Workbench

menu contains an item named initialize). AmigaDOS recognizes

unformatted disks immediately and places a DFx:??? name under the

disk icon on the Workbench (1.3 names the disk as bad) .

The AmigaDOS Format command requires more information than the

Workbench's Format Disk. . . item (1.3 Initialize). You

must give arguments specifying the disk drive and the additional details

about the new disk's name. To format a disk in disk drive DFO, you

must input:

FORMAT DRIVE DFO: NAME Example NOICONS

The name argument can be up to 30 characters long. Names that long
can cover up other disk names while in the Workbench, so we

recommend that you use shorter disk names. If you include blank

spaces in the name argument, the argument must be enclosed in

quotation marks. Incidentally, that applies to all work with the

AmigaDOS arguments which cannot contain spaces, or the argument
must be enclosed within quotation marks. AmigaDOS 2.0 also includes

the /F switch to signify a final argument which can contain spaces. For
example:

FORMAT DRIVE DFO: NAME "My Text" NOICONS

22

Abacus 2.1 Disk and File Management

NOICONS The NOICONS argument suppresses the creation of the Trashcan

icon which normally appears in any disk window on the Workbench.

The Trashcan is unnecessary when using AmigaDOS.

The drive and name arguments must be input every time you use

the Format command. If the syntax was enteied correctly, AmigaDOS

loads the Format command and the window displays:

Insert disk to be initialized in drive DFO: and press Return

Now that the Format command has been completely loaded, those

who have only a single disk drive can now remove the Workbench disk,

and insert the disk to be formatted. Before you press the <Return> key,

however, you should know that any data previously stored on this disk

is destroyed when you format the disk. If you wish to cancel the
procedure, press <CtrlxC> (hold down the <Ctrl> key and press the

<C> key) and press the <Return> key. AmigaDOS then responds with
a*** Break.

If you wish to continue, press the <Return> key alone. The Amiga
formats the disk in the drive. AmigaDOS displays which cylinder (track

set) is currently being formatted. Each cylinder consists of two

concentric tracks on the disk, about 0.5 mm wide on opposing sides

(surfaces) of the disk. Each track can then be broken down into 11

sectors, each of which can contain 512 bytes of data. Since the disk

possesses 80 cylinders (or 160 tracks) altogether, the entire disk

capacity amounts to 880K:

(80 11 * 512)/1024 Byte = 880K

You don't need to format a disk if you plan to use the Dl SKCOPY

command. The DISKCOPY command automatically formats the disk if

it has not been formatted.

Workbench 1.3 implementation:

Syntax: FORMAT DRIVE <disk> NAME <name> [NOICONS] [QUICK] [FFS]
[NOFFS] [INHIBIT]

The QUICK, FFS and NOFFS arguments are new additions to Version

1.3. The QUICK argument speeds up the formatting operation so that it

only takes a few seconds on a pre-formatted disk (a disk that has been

formatted once before). Only the tracks that contain the Root block and

the Boot blocks are formatted. A standard disk format (without the

QUICK argument) takes about two minutes.

23

2. AmigaDOS Commands AmigaDOS Inside and Out

Root block

Boot blocks

FFS and

NOFFS

Inhibit

The Root block (found on cylinder 40, side 0, sector 880) is the block

containing the root of the directory structure. The QUICK option writes

an empty directory to the disk. This file must not be erased. Formatting

of the Boot blocks (cylinder 0, side 0, sectors 0 and 1) renews the boot

program so the Amiga can eventually auto boot. This also eliminates

any viruses that may have gotten into the boot blocks.

The FFS and noffs arguments are interconnected. They create the

desired file system for single partitions when formatting a hard disk.

Adding the FFS argument puts the new and faster FastFileSystem

into use. The slower original FileSystemis used if NOFFS is

entered.

A partition must be entered in the MountList if you want to run

under the new FastFileSystem. This MountList is found in the

Devs drawer on the Workbench disk. Each partition of the hard drive

not autoconfigured has an entry here. Before the new FFS partitions can

be used, the following lines must be added to each partition entry:

FileSystem = 1.FastFileSystem

GlobVec = -1

DosType = 0x4444F5301

StackSize = 4000

A requester displays the message Not a DOS Disk... if such a

partition is placed inside the Startup-sequence the first time. It

can be removed by clicking on the Cancel gadget. The partitions

must be re-formatted under the new File system. In case the

FastFileSystem is attached to a partition, all you have to do is

re-format the partition. The entire hard disk must be re-formatted if you

wish to change the size of the partition (LowCyl to HighCyl). Save

the contents of the formatted partitions to floppy disks before

performing this format.

Inhibits disk access while formatting.

Workbench 1.3.2 implementation:

inhibit was made automatic and noffs removed since it was not

very useful. The error messages were also improved.

Workbench 2.0 implementation:

This operation is identical to Workbench 1.3.2, but the command has

been optimized for compactness and speed.

24

Abacus 2.1 Disk and File Management

2.1.2 DIR

Workbench 1.2 implementation:

Syntax: dir dir,opt/k

This command displays the files and directories on a disk, lists
subdirectories and the files within these subdirectories.

You read about this command in Chapter 1 and used it to view

AmigaDOS' file structure. In reality, this command does much more.
The command template of Dir looks like this:

DIR DIR,OPT/K

The dir argument represents the exact path of the desired directory.

This argument initially defaults to the root directory of the Amiga's
drive DFO: (the internal disk drive). Therefore, if you want to read the
directory on another device, you must supply the drive specifier as the

dir argument (e.g., DF1:,RAM:,DHO:, JHO:). The colon (:) at

the end of each drive specifier tells DOS that the name is in fact a
device name. The dir argument may be followed by any path to a
particular directory (drawer).

Example: You want to view the Letters directory. The Text directory in the
disk in drive DF1: contains the Letters directory. The following
sequence accesses that directory:

DIR DF1:Text/Letters

Further subdirectories can be accessed at any time simply by adding

another slash character and directory name to the dir argument.

If you omit arguments and qualifiers, the dir command displays the

current directory. The use of the CD command (change directory)

dictates the current directory (see Section 2.1.3).

The capabilities of the DIR command expand with the use of the opt

argument. Four qualifiers can be used with opt: a, d, i and Al.

A The A (All) qualifier displays all of the files and directories in the

current disk. You can view every directory and every file: AmigaDOS

lists each directory then the directory's contents in indented format.

This option is very helpful if you cannot find a certain file. However,

this option also creates a stream of data which quickly fills, then scrolls

the screen. Pressing any key stops the scrolling; pressing the

<Backspace> key continues the directory display. The following

25

2. AmigaDOS Commands AmigaDOS Inside and Out

command displays all the files on the disk in drive DF1: (the second

disk drive):

DIR DF1: OPT A

The D (DIR) qualifier lists only the directories of the current disk. This
is useful for quick searches for a specific directory, without listing the

root directory files in addition to the directories.

The I (inter) option runs the DIR command in interactive mode.

This mode allows the user complete control of the directory output.

When DIR is invoked in interactive mode, AmigaDOS prompts with a

question mark after it displays each file. The user has the following

options for controlling the display:

<Return> Continues interactive output (displays the next file or

directory) name.

Del<Return> Typing this word and pressing the <Return> key deletes

the file currently displayed on the screen. Notice that

you enter the letters DEL, not press the key

(see Delete). You can only delete empty directories

(i.e., the directory you want to delete contains no files

or subdirectories). If you try to delete an occupied

directory using this command, AmigaDOS responds

with the error message Error code 216 then

displays the error.

<ExReturn> Enters a deeper directory level. The directory output

resumes upon entry to this directory.

<BxReturn> Moves back up to a higher directory level (closer to the

main directory). If you try to move to a level higher

than the main directory, the DIR command ends.

<T><Return> Types (displays) a plain ASCII text file in the Shell

window. If you use the <T> key to display programs or

AmigaDOS commands, you'll only get garbage on the

screen. Pressing <CtrlxC> stops the output and

returns you to interactive mode. If the output still isn't

back to normal, press <Ctrl><0> to restore the

Amiga's normal character set.

<?><Return> Displays the command template of commands available

in interactive mode. The template for directories appears

on the screen as follows:

B=BACK/S,DEL=DELETE/S,E=ENTER/S,Q=QUIT/S:

<QxReturn> Quits interactive mode and returns you to the Shell

prompt.

If you enter an incorrect command in interactive mode, AmigaDOS

responds with the message Invalid response—try again? :

after which you can re-enter the command.

26

Abacus 2.1 Disk and File Management

AI The AI (All Interactive) qualifier displays all directory entries
interactively.

Workbench 1.3 implementation:

Syntax: dir dir, opt/k, all/s, dirs/s, files/f, inter/s

This new implementation of the DIR command adds the three

arguments all, inter and dirs which perform the same functions

as the A, I, D and AI arguments. The FILES argument is new and

allows only files to be displayed, subdirectories will not be displayed.
The opt argument must be left off when using these new arguments.

Displays all directory entries in the current disk.

Displays the names of the directories only in the current disk. This
argument displays the following output of the Workbench 1.3 disk:

ALL

DIRS

FILES

INTER

dir dirs

Trashcan (dir)

c (dir)

Prefs

System (dir)

1 (dir)

devs (dir)

s (dir)

t (dir)

fonts (dir)

libs (dir)

Empty (dir)

Utilities (dir)

Displays the files in the current disk directory, subdirectories will not

be listed.

Displays the current disk directory in interactive mode (identical to I

qualifier). The inter argument adds a new option to the command

list:

C=COM/s,COMMAND

A new option has been added to the interactive mode which allows the

user to execute an AmigaDOS command either directly or through the

RUN command. This function can be useful when you are in the

directory of a data file you want printed. For example, you're in the S:

directory and you want to print out the Startup-sequence file.

Enter <C> or COM and press the <Return> key. Interactive mode

requests the command. Enter the following to print out the Startup-

sequence and continue in interactive mode:

Command ?:run type dfO:s/startup-sequence to prt:

27

2. AmigaDOS Commands AmigaDOS Inside and Out

Do not use the diskette FORMAT command while in interactive mode;

no confirmation will be allowed.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3.2, but the command has been

optimized for compactness and speed.

2.1.3 CD

Workbench 1.2 implementation:

Syntax: cd dir

The CD (Change Directory) command allows you to move to directories

either above or below the current directory. Let's review the idea of a

tree structure used in disks. CD lets you move from your current

directory's location to another branch. Once you use the CD command,

the directory to which you move becomes the current directory.

Examples: The following command (CD without arguments) displays the current

directory:

CD

If you start AmigaDOS immediately after startup, this response is the

disk drive specifier (e.g., Workbenchl.3, Workbench2.0, DFO:).

The following command makes the System directory the current

directory (if the System directory is immediately accessible):

CD System

Entering another CD without arguments displays the new current

directory (e.g., SYS: System, Workbench2. 0: System).

All AmigaDOS commands now refer to the current directory. For

example, if you enter dir AmigaDOS displays the System directory

instead of the main directory.

There are two ways to display the System directory from the main

directory. The first method displays the System directory's contents

and returns you to the main directory:

DIR DFO:system

28

Abacus 2.1 Disk and File Management

The second method changes the current directory to the System

directory and displays the directory's contents:

CD DFO:system

DIR

The main The second method doesn't automatically return you to the main
directory directory. You must use one of CD's single-character arguments to

move up toward the main directory.

/ This character moves you one directory up in the hierarchy of
directories. Multiple slash characters move you up as many directories
as there are slashes. The following command moves you one directory
up (notice the space between the CD command and the /):

CD /

The following sequence moves you up two directory levels toward the
main directory (notice the space between the CD and the first / but no

space between the two slashes):

CD //

Note: If you enter more slash characters than there are directory levels,
AmigaDOS responds with the message Can't find and the number

of slashes you entered.

: This character moves you directly to the main directory when used in

conjunction with CD (notice the space between the CD and the colon):

CD :

There are some minor differences between the two arguments. When

AmigaDOS searches for a pathname using a disk name as the dir

argument instead of a drive specifier (e.g., using CD Workbench:

instead of CD DFO:), AmigaDOS doesn't care which drive the disk is

in, as long as the disk is in one of the drives. If AmigaDOS cannot find

the disk name, it displays a requester asking you to insert the specified

disk in any drive.

Note : AmigaDOS is extremely choosy about the way that it reads and accepts

filenames; it will not accept some characters in directory names or

filenames. For example, if you have a directory named Test Drawer

and you enter cd Test Drawer, the Amiga responds with the too

many arguments (or Bad arguments) error message, even if the

directory is available. AmigaDOS will not accept the space character.

There are three ways to avoid this problem: Rename the file to a single

word filename (e.g., TestDrawer); use the underscore character (J to

separate the two words instead of a space (e.g., Test_Drawer); or

enclose the directory name in quotation marks when calling the CD

command (e.g., cd "Test Drawer"). The easiest method is to use

29

2. AmigaDOS Commands AmigaDOS Inside and Out

one word filenames. The underscore character (<Shifted> minus sign)
allows you to separate words, making filenames more readable.

Often you must specify the drive you want to access. For example, if
the disk in drive DFO: has the name My_data and you want to get to

the main directory of that disk, all you have to do is enter the

following:

CD My_data

The following gives the same result, and is easier to remember than a

disk name:

CD DFO:

The latter example requires that you have the correct disk inserted in
drive DFO:—DOS will not look for a disk name unless you specify
one. Here lies the basic difference in the CD command, because while
CD DFO: automatically returns you to the main directory of the disk in

the internal disk drive, CD : always returns you to the main directory

of the currently active disk.

Example: Drive DFO: contains a Workbench disk and drive DF1: contains a
disk named Work_data which includes a file named Customers.

Entering the following changes to this directory:

CD DF1:Customers

Entering the CD command without arguments displays the following;

Work_Data: Customers. When using the complete pathname the

disk can be put into any drive without further confusion. It is all the

same to the Amiga. Now the difference between CD : and CD DFO :

becomes obvious: a CD : makes the main directory the current

directory, CD DFO : makes drive DFO: the main directory.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3.2, but the command has been

optimized for compactness and speed. The command has also been made

an internal command.

30

Abacus 2.1 Disk and File Management

2.1.4 MAKEDIR

Workbench 1.2 implementation:

Syntax: makedir /a

This command performs the same function as the New Drawer item
in the window menu of Workbench 2.0. There you can make a new
drawer, name the new drawer whatever you want and drag files into the

new drawer. Workbench 1.3 users duplicated the Empty drawer to

create a new directory. An example of this is the Expansion drawer

on the Workbench disk. The greater the capacity a disk drive has, the

more powerful the makedir command becomes: The ability to create

directories on high-capacity hard disks is vital to keeping disks
organized. This command is used to keep a hard disk organized.

The makedir command is very easy to use. It requires only one path

statement, followed by a slash and a name for the new directory:

MAKEDIR DF1:System/Monitor

It is important that all of the paths specified in the command exist.

You cannot create more than one directory at a time.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax: makedir name/m

AmigaDOS 2.0 allows multiple arguments to be passed to the

MAKEDIR command. This allows the easy creation of multiple

(drawers) subdirectories. Multiple arguments must be separated by

spaces. If no arguments are passed to the command an error message,

No name given, is displayed.

31

2. AmigaDOS Commands AmigaDOS Inside and Out

2.1.5 DELETE

Workbench 1.2 implementation:

Syntax: delete ,,,,,,,,, all/s,q=quiet/s

This command removes unnecessary directories or files from a disk or

RAM disk. The following command deletes the Extra_drawer

directory from the C directory on the disk in drive DFO::

DELETE DFO:C/Extra_drawer

AmigaDOS cannot delete a directory which still contains data. If you

try to delete a directory that still had files in it, AmigaDOS displays the

message Not Deleted: directory not empty . You must

move or delete these files before you can delete the directory.

Note: Be very, very careful with the delete command; it's easy to delete

the wrong file. Unlike the Trashcan on the Workbench, once you

delete a file you can't get it back.

Wildcards The Amiga wildcard is very useful with the delete command (see

Chapter 5 for more information). Like a wildcard in poker, the file

wildcard acts as a match for many files. This wildcard is made of two

characters—a number sign (#) and a question mark (?). The following

command deletes all the files beginning with test:

DELETE DFO:test*?

There's a second way of deleting more than one file. The delete

command evaluates a maximum of ten files separated from one another

by a single space:

DELETE DFO:Utilities/Notepad DF1:system/say.info

How can you squeeze ten path specifiers onto one line? You don't have

to. The cursor can move up to three screen lines for one command line.

You press the <Return> key when you're done entering data.

The QUIET argument keeps the file deletion process from appearing on

the screen. The following command deletes all the files and directories

from the Utilities directory in drive DFO:, then deletes the

directory itself without telling the user what it's doing:

DELETE DFO'.Utilities ALL QUIET

32

Abacus 2.1 Disk and File Management

Workbench 1.3 implementation:

Syntax: Version 1.2 and Version 1.3 syntaxes of this command are identical.

The new version of delte doesn't stop when an entry cannot be

found. The following command deletes the file test3 from drive

DFO:, even if AmigaDOS cannot find the file test2 on the disk:

delete dfO:testl dfO:test2 dfO:test3

The old version of the command would have deleted test 1 and then

displayed an error message.

Workbench 2.0 implementation:

Syntax: delete file/m/a,all/s,quiet/s,force/S:

FILE/M allows multiple arguments to be included. In 1.3 commas

were used to signify multiple argument. Multiple arguments must be

separated by spaces. This has been updated in DOS 2.0, also the

number of arguments is unlimited in DOS 2.0.

FORCE /S allows the deletion of a file, even though it's in use; use

this with extreme caution.

2.1.6 COPY

Workbench 1.2 implementation:

Syntax: copy from, to/a, all/s,quiet/s

The COPY command is one of the most important and flexible

commands for manipulating files using AmigaDOS. This command

can copy a single piece of file or a complete directory on any device of

your choice that can receive data. Naturally it can also copy within a

disk drive. The command template reads:

FROM,TO/A,ALL/Sf QUIET/S

The from argument represents a path description for the source data or

source file. Because an /A qualifier doesn't exist, there is no input

obligation. If the FROM description is wrong, then the actual directory

becomes the source file. The to argument represents the destination

path for the copy operation. The description depends on the source data:

33

2. AmigaDOS Commands AmigaDOS Inside and Out

a) FROM refers to a singlefile

In this case the destination path can be any subdirectory you choose

within the device, or a device that you specify. It treats the destination

device as a drive, so the data is put in die desired directory under the

same name. The following example takes the file test from directory

C: of drive DFO: and creates a duplicate of the same name in the C:

directory of the RAM disk:

COPY DF0:C/test RAM:C

The C: directory must already exist in the RAM disk (see the

description of the MAKEDIR command for details on making

directories). If there is already a file in the destination directory named

test, AmigaDOS overwrites the file. AmigaDOS is consistent in

this: It overwrites an existing file without warning.

The following command copies the Startup-sequence script file

to a printer:

COPY DFO:S/Startup-sequence PRT:

If you want the copy to have a name other than the one already stated,

you have to specify that filename.

If a subdirectory with the same name already exists in this drawer, the

copy is placed under the old name, because in the input there isn't a

difference between drawers and data names. Here is an example:

COPY DFO:C/MAKEDIR RAM:MD

This copies the makedir command in the C: directory to the RAM

disk under the name MD. There cannot be an existing subdirectory in the

RAM disk named MD. If such a subdirectory already exists, then the

makedir command is stored under its default name in that directory.

Now we come to the second option of the from argument.

b) FROM refers to an entire drawer

The destination path must point to a directory onto which you want to

copy files. Unfortunately you cannot specify the printer as a destination
device. The COPY command cannot send multiple files to a printer.

Usually only the data in the drawer itself is copied. Subdirectories are

ignored. The command should include the subdirectories you want
copied as well. The following command copies the contents of drive

DFO: onto the hard drive (DHO:) into an existing directory named
Games:

COPY DFO: DHO:Games all

34

Abacus 2.1 Disk and File Management

The diskcopy command copies entire disks more efficiently than the

COPY command. However, using COPY brings a little order to the

disk. When files are edited they may become fragmented on a disk, this

means they are scattered over many different tracks. When copied with

the COPY command they are copied to the destination disk so they are

on tracks that are close to one another. Now the read head of the disk

drive does not have to move as far to access the file.

Workbench 1.3 implementation:

Syntax: copy from, to/a,all/s, quiet/s, buf=buffer/k, clone/s, date/s,
NOPRO/S,COM/S

When you want to copy data to a directory that doesn't exist on the

destination disk, the new version of the command creates a directory of

the same name on the destination disk. The source files are then copied

into this directory.

The new COPY command also allows you to print the contents of a

directory to a printer. This output may be distorted if the directory does

not contain only true ASCII data files.

Now we come to the added arguments mentioned in the command

template above:

The buffer (or buf) argument allows the user to allocate a number

of 512 byte buffers to be used in the copying process.

The clone, date, NOPRO and COM arguments represent additional

information passed to the copy. The additional information that

AmigaDOS prepares for all files and directories state the date in which

the file was created, and the protection bits listed under the description

of the protect command. Up to 80 characters of comments can be

added to a file.

The LIST command allows you to see this information. This is

explained in the next section.

The clone argument copies the original file's creation date, protection

bits and comments to the new file.

The date argument copies the original file's creation date to the new

file.

The COM argument copies the original file's comments to the new file.

The NOPRO argument suppresses the protection bit information when

copying the new file.

35

2. AmigaDOS Commands AmigaDOS Inside and Out

Example: The following command copies a data file named Test to the RAM
disk using the original file's creation date and comments. No protection

bits are passed to the new file:

COPY Test RAM: DATE COM NOPRO

Workbench 2.0 implementation:

Syntax: copy from/a/m/to/a/all/s/quiet/s/buf=buffer/k/n,clone/s/
DATE/S,NOPRO/S,COM/S:

FROM/M allows multiple arguments to be included. Multiple

arguments must be separated by spaces. The number of arguments is

unlimited in AmigaDOS 2.0.

2.1.7 LIST

Workbench 1.2 implementation:

Syntax:

Names

SizelDir

Protection

bits

LIST DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S,TO/K,S/K,

SINCE/K,UPTO/K,QUICK/S

The list command lists important file information that the DIR

command doesn't show.

The list command displays the following information, filename or

directory name, size of file or directory, protection bits, date and time of
creation.

The filenames and directory names appear on the screen in their order on

the disk. LIST makes no distinction in names between files and
directories.

The next entry in the listing distinguishes files from directories.
Filenames list their file sizes in bytes; directories display the word Dir
in the location reserved for file sizes.

The next entry displays the protection bit status of each file. All the
file entries listed above contain four protection bits. Each protection bit
letter represents the following:

r

w

e

d

(read) should allow reading of the file

(write) should allow writing to the file

(execute) should allow execution of the file

(delete) allows entry to be deleted

36

Abacus 2.1 Disk and File Management

Time & date

Bottom line

If one or more of the options is suppressed a dash appears in place of

that option. A file with the combination rwe- therefore cannot be

deleted. The remaining flags (rwe) aren't implemented at the time of

this writing. DOS leaves these flags alone.

The protect command described later lets you change the status of

these flags.

The next two entries list the time and date when the file was first

created. These date entries always appear if you enter the correct date

with the Preferences editor, or if you have an Amiga with a

battery-backup real-time clock.

At the bottom of the list the number of files and the number of

directories on the disk appear, as well as the number of blocks

(1 block=512 bytes=0.5K) free on the disk.

The following command displays a list of files and directories contained

in the current directory of drive DFO: (the internal disk drive):

LIST DFO:

If the Workbench disk is in drive DFO: text similar to the following

appears on the screen.

Trashcan.info

Trashcan

Rexxc

Wbstartup.info

Utilities.info

System.info

Shell.info

Prefs.info

Expansion.info

.info

disk.info

Expansion

Libs

WBStartup

Prefs

Fonts

C

Devs

S

L

Utilities

System

9 files - 13 directories

1144

Dir

Dir

824

824

824

722

1144

824

87

388

Dir

Dir

Dir

Dir

Dir

Dir

Dir

Dir

Dir

Dir

Dir

- 40

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

rwed

20-Jun-90

20-Jun-90

20-Jun-90

20-Jun-90

20-Jun-90

20-Jun-90

20-Jun-90

20-Jun-90

20-Jun-90

22-Mar-78

20-Jun-90

22-Mar-78

20-Jun-90

20-Jun-90

22-Mar-78

20-Jun-90

20-"Jun-90

20-Jun-90

20-Jun-90

20-Jun-90

22-Mar-78

23-Mar-78

blocks used

17:22:48

04:35:07

04:35:18

17:22:47

17:22:46

17:22:47

17:22:47

17:22:46

17:22:46

03:43:47

17:36:37

03:44:36

04:35:53

04:35:57

03:49:29

04:36:45

04:33:37

04:33:54

04:34:01

04:34:07

03:44:59

04:43:38

There's more to LIST than you might think. Invoking the command

template (lis ?) displays the following:

37

2. AmicaDOS Commands AmigaDOS Inside and Out

DIR

PAT

KEYS

DATES

NODATES

TO

SINCE

UPTO

QUICK

DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S,TO/K,

S/K,SINCE/Kf UPTO/K,QUICK/S

Don't panic! Most of the time all you'll ever need is the LIST

command without arguments. Here's an overview of each argument:

The DIR argument lets you specify another directory (e.g., LIST

RASM:C).

The pat argument allows you to use patterns or wildcards. The

wildcard (#?) is extremely useful for finding selected entries (e.g.,

LIST pat A#? displays only the entries beginning with the letter A).

This argument returns the starting blocks of the selected programs on

the disk (only AmigaDOS "power users" will use the KEYS argument).

The DATES argument enables date display in the format DD-MMM-

YY (this output is the default for the List command).

The nodates argument disables date display.

The TO argument specifies the file or device that should receive the

output (e.g., LIST DFO : TO PRT: sends the listing of DFO: to the

printer).

The S (substring) argument enables you to search for entries that are

arranged according to their substring. A substring is part of a name.

Chapter 3 lists details about the input #?subname#? in the Pat
option.

The since argument displays all entries created since the specified
date. The specified date must be in DD-MMM-YY format, or stated as
the words yesterday or today.

The UPTO argument displays all entries created before the specified
date. The specified date must be in DD-MMM-YY format, or stated as
the words Yesterday or Today. The following example of SINCE
and upto includes the yesterday specifier:

LIST SINCE 09-JUN-87 UPTO YESTERDAY

The QUICK argument lists only the entry names, as well as the
number of blocks remaining.

The following command, which would be entered on one line in the
Amiga, searches for the C subdirectory in drive DFO: and looks for all
the commands that begin with c. The command then looks for all
entries created after September 10,1986 and sends all these entries to
the printer (no dates appear on the printout):

38

Abacus 2.1 Disk and File Management

LIST DFO:C PAT C#? NODATES TO PRT:

10-SEP-89 UPTO TODAY

SINCE

Workbench 1.3 implementation:

Syntax: list dir, p=pat/k, keys/s, dates/s,nodates/s, to/k, sub/k,

SINCE/K,UPTO/K,QUICK/S,BLOCK/S,NOHEAD/S,FILES/S,

DIRS/S,LFORMAT/K

There are some very useful arguments added to this version. This

version also displayed any comments attached with the FELENOTE

command

BLOCK The block argument displays file sizes in disk blocks instead of

bytes.

NOHEAD The nohead argument suppresses the display of directory names and

creation date. This argument always appears when the List command

is entered with a directory name (e.g., LIST DFO:). In addition,

nohead disables the display of the closing line (xx files -yy

directories-zz blocks are used).

FILES The FILES argument displays the filenames only.

DIRS The DIRS argument displays the directory names only.

LFORMAT The lformat argument allows the formatting of List text for use as

script files. The output format specification follows the lformat

argument enclosed in quotation marks:

LIST DFO: LFORMAT="..."

Any text can be used in the output format specification. When the

character string %s appears as the output format specification,

AmigaDOS inserts the current filename at that point. The following

example inserts the filenames listed in directory C: in the resulting

output:

Input:

LIST DF0:c LFORMAT="This is the %s command"

Output:

This is the Run command

This is the Fault command

This is the Install command

This is the Stack command

This is the Prompt command

This is the Else command

This is the Status command

This is the Ed command

This is the BindDrivers command

(...)

39

2. AmigaDOS Commands AmigaDOS Inside and Out

The following use of the lformat argument can be used to create a
script file that removes all of the d (delete) protection bits in drive
DF0:'s Text directory:

list >Script_file dfO:Text LFORMAT="protect %s -d"

The result could be something like this:

PROTECT Text_l -d

PROTECT Text_2 -d

PROTECT Text__3 -d

PROTECT Letter_l -d

PROTECT Letter_2 -d

This file can be executed directly using the EXECUTE Scr±pt_file

command (see the description of the EXECUTE command).

The %s string can appear more than once in the output format

specification. If two %s are used the current filename appears in both

locations. When three of these strings are used, the second and third

occurrences display the filename while the first occurrence displays the

path of the specified directory. The following example creates a script

file that will copy a backup of the commands in the C: directory to the
directory named Directory:

Input:

LIST >Script_file c: LFORMAT="COPY %s%s TO

directory/%s.BAK"

Output:

COPY c:RUN to directory/Run.BAK

COPY c:FAULT to directory/Fault.BAK

COPY c:INSTALL to directory/Install.BAK

COPY c:STACK to directory/Stack.BAK

COPY c:PROMPT to directory/Prompt.BAK

COPY c:ELSE to directory/Else.BAK

(...)

When four %s are used, the occurrences alternate between the specified
path description and filename.

The Version 1.3 List command still has more functions. The wildcard
features increased flexibility. It's now possible to use the wildcard with
the path description. The following example lists all the files in the C
directory beginning with the letter m:

LIST DF0:C/m#?

The Version 1.2 list command would display this message:

Can't examine "df0:c/m#?": object not found

40

Abacus 2.1 Disk and File Management

Protection In addition to the existing rwed protection bits, Workbench 1.3 adds

bits three new protection bits: h (not implemented), s (Script), p (Pure) and

a (Archive). See the description of the protect command for details

about these protection bits.

Workbench 2.0 implementation:

Syntax:

ALL

LIST DIR,P=PAT/K/KEYS/S,DATES/S,NODATES/S, TO/K,SUB/K,

SINCE/K,UPTO/K,QUICK/S,BLOCK/S,NOHEAD/S,FILES/S,

DIRS/S,LFORMAT/K,All/S

The ALL argument was added to this version:

The all argument displays all the directories and files on a disk. This

is very useful for creating printed listings of your disks contents.

2.1.8 RENAME

Syntax: rename from/a, to=as/a:

This command assigns new names to a file. The command is useless

without arguments. It must have two paths:

1. the complete path description of the object to be renamed

2. the new pathname

This command appears to be very simple. The following changes the

filename My-text to the name Essay, keeping the file in the same

directory as before:

RENAME text/My-text text/Essay

Actually the rename command is much more flexible. The example

above is only a special case where the path stays the same. You can

also transfer data or directories within the disk data structure. For this

you must make another distinction:

1. The renamed object is a single data object

In this case the destination path out of the directory description must be

followed by a new name for the file. The following example places the

Format command located in the System directory into the C :

directory under the name Formatting:

RENAME DFO:System/Format DFO:c/Formatting

41

2. AmigaDOS Commands AmigaDOS Inside and Out

If there wasn't a C: drawer or if the command could not find the
format command, the following error message would appear:

2.

Can't rename system/Format as c/Formatting

The renamed object is a drawer

If you only want to change a drawer name, use a simple rename. For

example:

RENAME DFO:Expansion DF0:Expan

You can even move a drawer to a different place in the disk data

structure.

Example: Suppose you have a directory on disk named basic which contains
the subdirectory PROGRAMS. In addition, a directory named GAMES

which contains a subdirectory named adventures exists in the main

directory. The following command places the entire games directory

and its contents in the PROGRAMS directory:

RENAME DFO:GAMES to DFO:BASIC/PROGRAMS/GAMES

You must specify the new directory's name as well as the source direc

tory's name. The to argument can be omitted.

Note: You cannot move a file or drawer from one disk drive to another using
rename. The following input is not permitted:

RENAME DF0:C/type RAM:type

Only the COPY command can perform this task.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

There are no changes to the rename command. It is no longer

possible to have two files in the RAM disk with the same name due to

a better RAM handler.

Workbench 2.0 implementation:

Syntax: rename from/a/m, to=as/a, quiet/s :

FROM FROM/M allows multiple arguments to be included. Multiple

arguments must be separated by spaces. The number of arguments is

unlimited in AmigaDOS 2.0.

42

Abacus 2.1 Disk and File Management

QUIET The name of the file being renamed is displayed on the screen, unless
you specify the QUIET option, which can be useful in script files.

2.1.9 DISKCOPY

Workbench 1.2 implementation:

Syntax: diskcopy from/a, to/a, name

The DISKCOPY command is the AmigaDOS equivalent of the Copy
item in the icons pulldown menu (in 1.3 the Duplicate item in
the Workbench pulldown menu).

Unlike the COPY command, this produces a complete copy of the entire

disk. The following example copies a disk using only one drive:

DISKCOPY FROM DFO: TO DFO:

The to argument is required; the from argument may be omitted.

If you are certain that the data on the destination disk is no longer

needed, press the <Return> key to begin the copy operation. You can

abort the copying process by pressing <Ctrl><(>:

*** BREAK

Disk Copy Abandoned.

Remember to insert original disk

Disk Copy Terminated

If you press <CtrlxC> while the Amiga is writing to the destination

disk, not all of the information will be contained on the disk.

Remember to put the original disk in the drive after aborting.

In the Workbench a message may appear telling you the number of disk

changes you'll have to make during the copy process. It looks like this:

The Disk Copy will take 4 swaps. .

An Amiga 500 with 512K could copy a disk with just three disk

changes. The waiting time between disk changes can be bothersome.

This problem doesn't exist if you own an Amiga with two disk drives.

43

2. AmigaDOS Commands AmigaDOS Inside and Out

There are two differences between the Workbench Copy (1.3

Duplicate) item and the diskcopy command. First, the name

argument isn't always needed. This argument lets you assign a different

name to the destination disk from that of the source disk. The

following example copies the contents of drive DFO: into drive DF1:

then assigns the name Work 1.2 to the new disk (note the use of

quotation marks around the name because of the space between Work

and 1.2):

DISKCOPY DRIVE DFO : TO DRIVE DF1: NAME "Work 1.2"

Second, DOS can tell the copy from the original every time from the

date and time of the copy operation.

Workbench 1.3 implementation:

Version 1.3 added the Multi option to make multiple copies if

enough memory is available. NoVerify option was added since verify

is now automatically on. It also does single disk copies on 1MEG chip

ram Amigas. The error messages have been improved.

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the

new version has been optimized to operate faster.

2.1.10 RELABEL

Workbench 1.2 implementation:

Syntax: relabel drive/a, name/a

This command assigns a new name to a disk. The following line
changes the name of the disk in drive DF1: to Games:

RELABEL DF1: Games

There must be a space after the drive specifier. If the filename itself
contains a space (e.g., Test disk), you must enclose the filename
within quotation marks. The following example renames the disk in
drive DF2: to Test disk:

RELABEL DF2: "Test disk"

44

Abacus 2.1 Disk and File Management

The maximum length allowed for disk names is 30 characters. Longer

names can pose problems for the Workbench.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the

new version has been optimized for compactness and the error message

has been improved.

2.1.11 INFO

Workbench L2 implementation:

Syntax: info

The info command appears twice in this book: here and in Section

2.2. This version of the INFO command displays disk drive

information.

Entering this command without arguments displays information about

the currently connected drives. An example of this output follows:

Mounted disks:

Unit Size Used

RAM: 30K 30

DFO: 880K 1645

DF1: 880K 534

Free Full Errs Status Name

0 100% 0 Read/Write Ram Disk

113 93% 0 Read Workbench 2.0

224 30% 0 Read/Write TextPro

Volumes Available:

Ram Disk [Mounted]

Workbench 2.0 [Mounted]

TextPro [Mounted]

The first section contains information about all the mounted

(connected) disk drives. The Unit category lists the drive specifier. The

Size category lists the disk capacity as specified in the Format

command. The Used and Free categories display the number of

blocks (1 block=0.5K; 2 blocks=lK) used and the number of blocks

still available. The Full category lists the percentage of the disk used.

A zero under the Err category means that no defective blocks (errors)

exist.

45

2. AmigaDOS Commands AmigaDOS Inside and Out

The Status category gives the position of the write protect on the

disk. The disk in drive 0 can only be read. The last category (Name)

displays the names of the respective disks.

The second section (Volumes Available) lists the names of the

disks so that you can check disk names without removing the disks

from the drives.

Workbench 1.3 implementation:

Syntax: info device

The new info command includes the device argument. You can

receive information about the specified device only. The info

command automatically reformats data for easily reading longer names

using a Tab function.

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the

new version has been optimized for compactness and speed.

2.1.12

Syntax:

Note:

INSTALL

INSTALL DRIVE/A

The install command converts Amiga format disks to bootable

disks (i.e., an installed disk can be used to boot up when you turn the

Amiga on). The Workbench disk is an installed disk.

The following example makes the formatted disk in drive DFO: into a
bootable disk by placing the boot block onto the disk:

INSTALL DFO:

You cannot make a hard disk drive into a bootable disk. KickStart 1.3

and KickStart 2.0, located in ROM on the Amiga 500 and 2000, lets
you boot from a hard disk without using an install command on

the hard disk (never use the install command on a hard disk).

If you install a newly formatted disk then reset the Amiga immediately,
the system resets, stops and enters the CLi. There are a number of
reasons for this. A bootable disk looks for AmigaDOS commands—it

needs these commands to function. The trouble is, it doesn't know

where to search for these commands. You have to copy the essential

46

Abacus 2.1 Disk and File Management

directories on the Workbench disk onto the new disk. These directories

arc:

c

L

System

Devs

S

Pref

Fonts

Libs

In addition, you would have to write a Startup^sequence (see Chapter 6

for detailed information about the Startup-sequence and script

files) to assign system directories within the disk.

The simplest solution to having a bootable disk is to copy the

Workbench disk using the diskcopy command. This copies the boot

block and all the necessary directories to the new disk. Then if you need

memory for other applications, delete the directories and files not needed

by the booting procedure.

Workbench 1.3 implementation:

Syntax: install drive/a,noboot/s,check/s

The added arguments are noboot and check.

NOBOOT The noboot argument makes a bootable disk non-bootable.

CHECK The CHECK argument examines the boot block and tells the user

whether the boot block has been damaged. This damage may have been

done by a computer virus. This virus is a program that loads into the

computer when the disk is accessed and copies itself onto any disks

placed in that drive while the computer is turned on. The virus can

cause extensive damage if the disk is used further.

A boot block virus cannot do anything to a non-system disk because it

has nothing to do with controlling the computer. The CHECK argument

displays the following message for non-bootable disks:

No bootblock installed

When the CHECK argument examines a boot disk with an intact boot

block, the message reads:

Appears to be normal V1.2/V1.3 bootblock

The CHECK argument displays the following message if the boot block

is corrupt or abnormal:

47

2. AmigaDOS Commands AmigaDOS Inside and Out

May not be standard V1.2/V1.3 bootblock

There is a good possibility your computer has been infected by a virus

if the disk is one that you formatted. The results of viruses vary from a

message on the screen, to a Guru Meditation, to completely formatting

the hard disk. There are as many remedies as there are viruses.

We'll briefly describe one method to remove a virus from an infected

disk. Turn off the computer for at least five seconds using the main

power switch. Boot it with a disk that you know is not infected with a

virus. Because most users make a backup copy the first time they use

the new Workbench disk, the original disk will almost always work.

Start the Amiga with this disk and open a Shell window. Enter the

following command:

DIR >NIL: RAM:

COPY C:INSTALL RAM:

PATH RAM: ADD

Put the Workbench disk back in a safe place. Now check out all of your

disks for viruses, even if you only have one drive, using the INSTALL

DFO : CHECK command. The boot block can be installed by using

installdfO:, DONT use this command on any commercial

software. When you have done this to all of your disks, you should

again have control of the boot blocks. Unfortunately this only takes

care of the simple viruses hiding in the boot blocks. Smart viruses

infect other parts of the disk (such as t rackdisk.device). If you

think you have a smart virus or any of your commercial software disks

are infected contact your local dealer or a user's group as quickly as

possible—they may be able to help you.

Workbench 2.0 implementation:

Syntax: install drive/a, noboot/s,check/s,ffs/s

NOBOOT

The added argument is FFS/S. The AmigaDOS version has also been

optimized for compactness and speed.

The FFS/S option is used when you want to use the disk with the

FastFileSystem.

48

Abacus 2.1 Disk and File Management

2.1.13 TYPE

Workbench 1.2 implementation:

Syntax: type from/a,to.opt/k

The type command displays ASCII files on the screen, to a device or

to a file. The following command displays the Startup-sequence

script file in the S subdirectory of the Workbench disk on the screen:

TYPE DFO:S/Startup-sequence

The output can be stopped temporarily by pressing any key. Pressing

the <Backspace> key continues the display. Pressing the <Ctrl> and

<c> keys aborts the display and returns to the DOS prompt (>1).

Adding to PRT: sends the output to the printer. The following

example performs the same function as above except it sends the output

to a printer:

TYPE DFO:S/Startup-sequence TO PRT:

The data can also be redirected to other output devices. The following

example sends the Startup-sequence file to the T directory and

stores it under the name mytext:

TYPE :S/Startup-sequence T/mytext

Adding the OPT N argument displays text with line numbers. This is

useful for viewing a BASIC program stored in ASCII format

The OPT H argument displays each word of the file being typed as a

hexadecimal number, opt h is intended mainly for the true hacker. The

type command is perfect for text output when the data doesn't contain

any control characters. If you try to type a DOS command (e.g.,

type c/type) you'll get garbage on the screen. However, the type

C/type OPT H command organizes the screen into a table like this:

0000: 000003F3 00000000 00000002 00000000

0010: 00000001 0000004F 000001C4 000003E9 o

0020: 0000004F 286A0164 700C4E95 2401223C ...o(j.dp.N.$.n<

0030: 00000095 49FAFFEE 286CFFFC 2F0C2F02 I...(|.././.

On the far right we have our text displayed in ASCII. Each period

stands for a non-displayable character that AmigaDOS handles by

displaying a period.

49

2. AmigaDOS Commands AmigaDOS Inside and Out

The first column lists the hexadecimal line numbers. The middle

column displays the contents of the file using four long words. Each

long word is made up of four bytes, and each byte represents one

character, so each byte corresponds to a character on the right margin.

The I in the last line stands at the 52nd byte position (=3*16 44). The

ASCII code that is associated with the text for an I reads: $49

($=hexadecimal) or 73 decimal (4*16 +9).

Workbench 1.3 implementation:

Syntax: type from/a, to, opt/k,hex/s,number/s

The options OPT H and OPT N arguments can also be accessed using

the hex and number arguments without the opt argument. For

example:

Version 1.2: TYPE S: Startup-sequence OPT N

Version 1.3: TYPE S: Startup-sequence NUMBER

Workbench 2.0 implementation:

Version 2.0 and Version 1.3 of this command operate identically, the

new version has been optimized for compactness and speed.

2.1.14 JOIN

Syntax: JOIN ,,,,,,,,,,,,,,,AS/A/K

The JOIN command lets you concatenate (join) up to fifteen files to
create one new file.

The fifteen commas in the command template represent the maximum

fifteen source files. The as argument must follow. Then follows the

path description for the concatenated file (/A). The simplest form of the

JOIN command can simulate the basic function of the Type

command. By placing an asterisk behind the command you specify the

source data and join displays it on the screen. The following

demonstration displays the text of the startup sequence on the screen:

JOIN DFO:S/Startup-sequence AS *

There is no argument available to let us print multiple files at one
time. The COPY command accepts the wildcard, but that really doesn't

allow more data to be accessed. The JOIN command makes it possible

50

Abacus 2.1 Disk and File Management

to print out IS data files right after each other. The following prints

text files textl through text5:

JOIN textl text2 text3 text4 as prt:

The join command also has something to offer the compiled language

programmer. If you run out of room using your editor, this command

allows you to concatenate separate files into one file before compiling.

Workbench 1.3 implementation:

Syntax: join ,,,,,,,,,,,,,,, as=to/k

The join command now understands the to argument as well as the

AS argument

Workbench 2.0 implementation:

Syntax: join file/m,as=to/k/a

FELE/M allows multiple arguments to be included. Multiple arguments

must be separated by spaces. The number of arguments is unlimited in

AmigaDOS 2.0. The new version has been optimized for compactness

and speed.

2.1.15 SEARCH

Workbench 1.2 implementation:

Syntax: search from, search/a, all/s

The search command lets you look for data using a character string.

If AmigaDOS finds the character string it displays the name of the file

in which the string is located, followed by the line number and the line

that contains the string.

FROM The from argument represents the complete path specification of a

directory and a single data item. If the from argument is omitted, the

command looks in the current directory.

SEARCH The search argument must precede the search string:

SEARCH SEARCH "Goodness gracious"

51

2. AmigaDOS Commands AmigaDOS Inside and Out

The SEARCH command searches the current directory for the words

"Goodness gracious". Quotation marks must surround any string

containing a space, search makes no distinction between uppercase

letters and lowercase letters. If you want to search all subdirectories you

can direct the search command to do so.

Wildcards Like the list command, this command allows you to complete the

pathname using wildcards. The following command searches for all

files in a subdirectory starting with three letters:

SEARCH DF0:C?/#? SEARCH window

This would find all the files starting with C in any directories

containing one letter names, containing the word "window."

Like all of the AmigaDOS commands, the SEARCH command can be

stopped by pressing <Ctrl><G>. When searching all the directories,

pressing <CtrlxD> moves AmigaDOS to the next file.

When AmigaDOS returns the message Line x truncated, the lines

in the file being searched are too long (this happens often).

The SEARCH command is very helpful to the C programmer. The

command can quickly find the desired include directories.

Workbench 1.3 implementation:

Syntax: search from, search/a,all/s,nonum/s,quiet/s,quick/s,file/s

The 1.3 search command replaces the message Linexx

truncated with Warning: line xx too long. In case the

search operation comes up empty (null), AmigaDOS returns error code

5. The error code can be analyzed in a script file (see Chapter 6).

There are four new arguments:

NONUM The nonum argument suppresses line number output when the search

finds multiple items. The text found appears at the left margin of the

screen for easy readability.

QUIET The QUIET argument searches files without output.

QUICK The QUICK argument displays the filenames being searched next to one
another instead of under one another. A new directory begins a new
line.

FILE The FiLE searches for a specific filename instead of a string.

52

Abacus 2.1 Disk and File Management

Workbench 2.0 implementation:

Syntax:

FILE

SEARCH FROM/M/A,SEARCH/A,ALL/S,NONUM/S,QUIET/S,

QUICK/S,FILE/S,PATTERN/S

The new version has been optimized for compactness and speed. Two

new arguments have been added, FILE/M and PATTERN/S

FUJE/M allows multiple arguments to be included. Multiple arguments

must be separated by spaces. The number of arguments is unlimited in

AmigaDOS 2.0.

PATTERN PATTERN/S allows pattern matching to be used in searches.

2.1.16 SORT

Workbench 1.2 implementation:

Syntax: sort from/a, to/a/colstart/k

The SORT command sorts (alphabetizes) text files.

The arguments are as follows:

FROM

TO

COLSTART

The from argument specifies the pathname of the file to be sorted.

Because this cannot be a directory, an additional input is necessary

(/A).

The to argument specifies the destination of the sorted data. Here a

pathname or device name must be given. The FROM data isn't really

changed. If you want output on the screen, for example, you must enter

the * character. Using the PRT: device directs the sorted output to the

printer.

The COLSTART argument specifies the column at which the sorted

output should start. For example, if you reserve 10 places for first

names and a certain number of places for last names the following sorts

the last names starting at the tenth column:

SORT FROM fred TO ned COLSTART 11

If you omit the COLSTART argument the sorting begins at the first

column.

53

2. AmigaDOS Commands AmigaDOS Inside and Out

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax: sort from/a, to/a, colstart/k, case/s, numeric/s:

The new version has been optimized for compactness and speed. Two

new arguments have been added, CASE/S and numeric/S .

CASE When CASE/s is specified the sort is case sensitive.

NUMERIC NUMERIC/S allows numeric sorts.

2.1.17 PROTECT

Workbench 1.2 implementation:

Syntax: PROTECT FILE/A,FLAGS:

The protect command lets you set a single protection bit (see

Section 2.1.8 for a detailed description of the four protection bits).

r Read-the file can be read

w Write-the file can be written to

e Execute-an 'execute1 is allowed

d Delete-an entry can be deleted

The delete bit can be activated from DOS. This bit acts like the write

protect on disks, except the delete bit guards an individual file from

deletion instead of the entire disk. The following command sets the

delete bit on the Letters directory in drive DF1::

PROTECT DF1:Letters

Files inside directories can be protected by activating their own delete

bits. The following example sets the delete bit in the Invitations

file contained in the Letters directory:

PROTECT DF1:Letters/Invitations rwe

If you view a protected file using the LIST command, the protection

bits appear as four hyphens. These hyphens indicate that the file can no

longer be accessed. Any attempt to erase the file returns an error code.

The protection can be removed using the FLAGS argument. The

54

Abacus 2.1 Disk and File Management

following command enables all four protection bits in the Invitations

file:

PROTECT DF1:Letters/Invitations rwed

Workbench 1.3 implementation:

Syntax: protect file/a, flags, add/s,sub/s

Workbench 1.3 adds four new protection bits to the PROTECT

command:

h (Hidden)—controls visibility of certain file entries

s (Script)—controls starting script files w/o Execute

p (Pure)—controls program loading using Resident

a (Archived)—controls file copying (Kickstart 1.3)

When using Workbench 1.3/Kickstart 1.2 to start your Amiga you

must pay particular attention to the p and s flags.

h(idden) The hidden protection bit suppresses the entry of the respective files

in the directory. For example, the .info files responsible for the icon

on the Workbench disk can be made invisible in the directory list.

Larger directories can be made more readable using this method.

s (cript) The script protection bit deals with script files. When the script flag

is positive (set), the script file can be started from a shell. It is not

necessary to enter the Execute command to invoke a script file

anymore. A set script flag automatically calls an Execute

command.

p (ure) The pure protection bit allows the associated program to be loaded

using the Resident command. By doing this it is always ready for

the user and it also doesn't have to be loaded from the drive anymore.

The pure protection bit is necessary because not every program has

the qualities needed for using the Resident command. More

information about the Resident command can be found in Chapter

4.

a (rchive) The archive protection bit controls the option of copying files under

Kickstart 1.3. The Copy command only copies files that have negative

(unset) archive protection bits. A file with a positive (set)

archive protection bit is said to be archived. The archive

protection bit changes to negative when you write to the file. A new

archive protection bit must be set

One practical application: When you work with the RAM disk, you can

activate a script file as a background process that can save all modified

data on a disk. When you place the commands Copy, Wait and

Execute in working memory, the disk drive eventually performs a

save operation. The following file acts as a script file to do just this:

55

2. AmigaDOS Commands AmigaDOS Inside and Out

wait 5 min

copy ram:#? to dfO:

execute BACKUP_SCRIPT

This script file also functions under Kickstart 1.2. The complete

contents are saved whether the RAM disk has been written to in the last

five minutes or not

The ADD and SUB arguments make individual protection bits positive

or negative. These are the equivalents of adding + and - to change

protection bit status. The following examples show how add and SUB

woik:

SUB

Status before rwed

Input protect file d sub

Status after rwe-

ADD

Status before rwe-

Input protect file d add

Status after rwed

The ADD and SUB options can be replaced by plus and minus signs.

The input is simplified this way:

Status before rwed

Input protect file -w

Status after r-ed

Status before r-ed

Input protect file +w

Status after rwed

Workbench 2.0 implementation:

Syntax: protect file,flags,add/s,sub/s,all/s,quiet/s

The new version has been optimized for compactness and speed. Two

new arguments have been added, all/s and QUIET/S.

ALL When Al1 /S is used all protection bits can be cleared.

QUIET The quiet argument does not display the filename of the files being

accessed. This can be useful in script files.

56

Abacus 2.1 Disk and File Management

2.1.18 FILENOTE

Syntax: filenote file/a, comment/a

The filenote command allows you to place up to 79 characters of

comments in a file or place a comment about the version number in a

program. You can read the comments later using the LIST command.

The text appears on a separate line. A colon at the beginning of the line

indicates that it is a comment. For example:

FILENOTE C/FILENOTE MThis command lets you add 80 characters to files!"

The quotation marks must surround any text containing spaces. If the

list command is used on the C/filenote file, this is the result:

c/filenote 700 rwed 20-Jun-90 23:30:19

: This command lets you add 80 characters to files!

Two final observations about the filenote command: Comments

inserted using filenote don't copy using the COPY command. In

addition, if the destination file already exists, the comments in the

destination file remain intact.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax: filenote file/a,comment/a,aii/s,quite/s

The new version has been optimized for compactness and speed. Two

new arguments have been added, ALL/S and QUIET/S.

ALL When All/s is used all comments can be cleared.

QUIET The QUIet argument does not display the filename of the files being

accessed. This can be useful in script files.

57

2. AmigaDOS Commands AmigaDOS Inside and Out

2.1.19 SETDATE

Syntax:

FILE

DATE

TIME

Note:

SETDATE FILE/A,DATE,TIME

This command makes it possible to store the correct date entry of files.

This is useful for Amiga users who have battery-powered real-time

clocks in their Amigas; the time is set without using the

Preferences editor.

The file argument represents the path description of the directory/file.

The specified file must be found and in the same format as it appears in

the list command.

The date argument represents the current date. If the old date is only

within a week of the current date, then you can enter the current day's

name for the date argument, as shown in the following example:

SETDATE text/Letter Saturday

The command sets the date correctly by itself. The correct date can even

be set by using the word yesterday as the DATE argument. These

words appear in the listing executed by the list command. If you

want to pre-date something (assign a future date), the list command

shows the word future for any future datings.

The time argument sets the current time. When the time setting is

correct, then the entire date description appears. If you do not set the

time, the time automatically sets to 00:00.

Date settings before January 2,1978 are usually not shown. When this

occurs, two empty spaces appear in the list display.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax: setdate file/a, date, time, aii/s:

ALL

The new version has been optimized for compactness and speed. A new
argument has been added, ALL/ s.

When all/ s is used all dates can be set to TODAY.

58

Abacus 2.1 Disk and File Management

2.1.20 DISKDOCTOR

Workbench 1.2 implementation:

Syntax: diskdoctor drive/a

The diskdoctor attempts to save data on disks that have read/write

errors or possible data corruption in general.

The drive argument represents the disk drive specifier (e.g., DFO:,

DF1:, etc.). The following example invokes the DISKDOCTOR and

examines the disk in DF1: (the first external disk drive on an Amiga

1000 or 500):

DISKDOCTOR DF1:

Error The following messages that are displayed by diskdoctor during
hiessages execution are documented in the following section.

DiskDoctor cannot run in the background

This is displayed when you try starting DISKDOCTOR as a background

process using the Run command. DISKDOCTOR can only be executed

directly (without Run).

Unknown device xxx

This occurs when the description of a device name that DOS doesn't

know is entered (xxx stands for the device name).

Not enough memory

diskdoctor needs more memory than the system can allocate. Hint:

Close all unnecessary windows and/or end all other running programs.

This message also appears when you try to use DISKDOCTOR on a

device other than a disk drive (printer, serial device, etc.).

Device xxx not found

DiskDoctor cannot find the desired device. This error almost never

occurs with normal 3.5" drives because of the trackdisk. device

found in ROM (in WOM for the Amiga 1000). This error is usually a

result of a device name entry error in the Mount list for unusual drives

(e.g., 5.25"). By using a special disk drive the error message appears

when the device is not found in the Mount list.

59

2. AmigaDOS Commands AmigaDOS Inside and Out

Unable to open disk device

The disk device was foundf but it cannot be opened

Unexpected end of file

DOS handles the file with a great amount of redundancy. The advantage

of this redundancy is that it's easier to reconstruct this file if the file

somehow becomes damaged. This error message occurs when the file is

shorter than is declared in the file header.

Error: Unable to access disk

This occurs when the drive is unable to respond (e.g., no disk in the

drive).

Disk must be write enabled

Write protects prevent writing to the disk. Because diskdoctor

wants to write to the disk, write protects must be set to write enable

(no hole in the write protect area).

Unable to read disk type - formatting track zero

DISKDOCTOR cannot read the disk type from track zero, sector zero. It

reformats that track and sector.

Track zero failed to format - Sorry!

There is a good chance of a defect on track zero of the disk when this

message appears. There may be a problem with the drive itself (read/

write head is incorrectly positioned) if this happens frequently with

other disks.

Unable to write to root - formatting root track

diskdoctor cannot rewrite the track on which the root block

appears. This root block acts as the reference point of all the disk

directories, diskdoctor tries to format the track (track 40, side 0)

and install the disk. Because the name of the disk is found on this track,

DiskDoctor assigns the name Lazarus to the disk.

Root track failed to format - Sorry!

The root track cannot be formatted. The disk cannot be rescued.

Cannot write root block - Sorry!

The root block cannot be written. DISKDOCTOR can't do anything

about it.

60

Abacus 2.1 Disk and File Management

Warning: File xxx contains unreadable data

The specified file (xxx) cannot be reconstructed fully and doesn't

contain any readable data. You may be able to salvage some of this data

using a disk monitor. In most cases, the file must be erased by

answering Yes to the "Delete corrupt files in directory

yyy?" prompt.

Attention: Some file in directory xx is unreadable and has

been deleted

diskdoctor has taken the initiative and erased a file because too

much information was missing for reconstruction.

Failed to read key

A block cannot be read

Failed to rewrite key

A block cannot be rewritten

Warning: Loop detected at file xx

Normally, a file stands at a single block together with a block pointer

that connects it to the rest. This error message means that the given file

has a loop in the connection. A file block loops back to a block that

has already been read. The read operation of the file may never have

ended because the same data was being read all the time.

Parent of key xx is yy which is invalid

A block exists which is not connected to the list because the operating

block is useless.

Hard error Track xx

Track number xx cannot be read either because it was incorrectly

formatted or because of mechanical failure. The problem may be caused

by the reconstruction of some files or directories.

Key xx now unreadable

The block with the number xx is no longer readable.

Replacing dir xx

The given directory can be reconstructed and is now being integrated

into the directory structure of the disk.

Inserting dir xx

The given directory can be reconstructed and is now being entered in the

main directory of the disk.

61

2. AmigaDOS Commands AmigaDOS Inside and Out

Replacing file xx

The given file can be reconstructed and is now being entered into the

original directory.

Inserting file xx

The given file can be reconstructed and is now being entered into the

main directory of the disk.

Now copy files to a new disk and reformat this disk

This is the closing message of DISKDOCTOR. All rescued files and

directories can now be copied to a new disk. Then the defective disk

should be reformatted.

Workbench 1.3 implementation:

diskdoctor can also be used for reconstructing the recoverable

RAM disk.

The use of the Version 1.2 and 1.3 DISKDOCTOR are identical. The

1.3 program has been enhanced and updated.

Workbench 1.3.2 implementation:

Diskdoctor Vl.3.4 corrected the out of memory error message and now

uses BufMemType so it will woik with large hard drives.

Workbench 2.0 implementation:

Syntax: diskdoctor drive/a

The new version has been optimized for compactness and speed. You

can use diskdoctor on standard and FastFileSystem diskettes. The

DosType keyword in the MountList must be set to 0x444f5301 to use

diskdoctor on FastFileSystem diskette! Never use DISKDOCTOR

on a FastFileSystem diskette if the DosType keyword is not set

correctly.

62

Abacus 2.1 Disk and File Management

2.1.21 DISKCHANGE

Workbench 1.2 implementation:

Syntax: diskchange dev/a

This command deals only with material for Amiga owners who use

5 1/4" disk drives or removable media drives. These drives, unlike the

3.5" drives, don't come with DOS already on them. In this case, the

diskchange command is given, followed by the name of the given

device (the dev argument). After that the new disk can be selected.

This command can also be used to inform WorkBench of a name

change to a floppy diskette using the RELABEL command.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax: diskchange drive/a

Version 2.0 and Version 1.3 of this command are identical. The new

version has been optimized for compactness and speed.

63

2. AmigaDOS Commands AmigaDOS Inside and Out

2.2 System Commands

The following section describes system commands, including the

commands that are related to the AmigaDOS Shell itself.

2.2.1 NEWCLI

Workbench 1.2 implementation:

Syntax: NEWCLI WINDOW, FROM

Multitasking The newcli command gives the Amiga user access to multitasking.
CLI stands for Command Line Interface. Multitasking allows different

programs to run at almost the same time. For example, you can print a

letter while formatting a new disk.

The command runs alternating tasks, not parallel tasks (that's why the

word almost). This is something like the digital readout on a clock

radio. The numerals on a clock light up one after another, not all at

once. The rapid rate at which they change fools the eye into thinking

the numbers are lit simultaneously.

The NEWCLI command makes it possible to add a running task. After

entering the command, another AmigaDOS window appears. In 1.2 it

is named after the current task (e.g., newcli task 2), in 2.0 it is

named AmigaShell. The Amiga can have more than one CLI window

open at a time.

However, work can only be done in one window at a time. You can, for

example, enter format drive DFO: name Empty in the original

CLI window, then click on the new window and enter DIR DF1: to

see the contents of the disk in the external drive.

There is a disadvantage to multitasking: Each additional task increases

the risk of errors. See the chapter on AmigaDOS and Multitasking for

more information about multitasking.

Finally, we'll describe the parameters allowed in the NEWCLI

command. First, NEWCLI can open a window in the size and title

specified by the user. The following command creates a window named

Amiga with a width of 250 pixels and height of 100 pixels, with the

64

Abacus 22 System Commands

FROM

upper left corner of the window starting at X-coordinate 50 and

Y-cooidinate 70:

NEW CON:50/70/250/100/Amiga

This option works best when using the command in conjunction with a

Startup-sequence script file.

If the size input is missing, the CLI creates a window the full width

and half the height of the normal screen or one quarter of an interlaced

screen.

With the addition of the from argument and the name of a script file,

the newcli command can automatically call a new CLI and execute a

script file. If the script file is in a drawer the complete pathname must

be specified. An example:

NEWCLI FROM S/Copies

In this example the script file named Copies in the S: directory

executes, before you can work with the new CLI.

Workbench 1.3 implementation:

Every time the newcli command is called it executes a script file

named CLI-startup, which is in s: directory on the Workbench

disk. The only command contained in this file is the PROMPT

command, which creates the DOS prompt for the new CLI.

NEWSHELL The newcli command has become obsolete with AmigaDOS 1.3. In

the C: directory on the new Workbench disk there is a new command

called newshell. This command creates a window port to

AmigaDOS that has many advantages over the CLI.

Many of these additions can only be used when the shell segment is

resident in Amiga RAM before calling the newshell command. The

command reads:

RESIDENT CLI 1:SHELL-SEG SYSTEM pure

This command is automatically executed when the computer is first

turned on so that you don't have to bother with it. The Shell window

has the following advantages:

Resident AmigaDOS now contains a resident command that can load most

commands of the commands into working memory so they do not have to be

supported loaded from disk. These commands are then ready for use by the user. It

is covered in detail in the More AmigaDOS Commands chapter.

Calling resident commands is only possible through the Shell. In a

typical AmigaDOS window such a command is loaded from the disk.

65

2. AmigaDOS Commands AmigaDOS Inside and Out

Command It's often a good idea to give your AmigaDOS commands shorter
synonyms names using Rename. There are disadvantages to this. Rename the

allowed Fault command, which is found in the C directory, to FT (rename

C: fault AS C: FT). The fault command can be used to view the

text of an error message. For example, if ft 10 3 is entered, Fault

103 : insufficient free store is displayed (in 2.0 Fault

103: not enough memory available is displayed).

Try to erase your AmigaDOS command directory using delete c.

This can't be done because the directory is not empty. The error

message Not Deleted—directory not empty is displayed,

which is FAULT 216. AmigaDOS also makes use of the AmigaDOS

commands.

newshell allows you to call any command by another name. The

syntax for this reads:

ALIAS Newname originalname

Newname stands for any character string without spaces that can be

used to call that command, originalname is the name of the

command that should be executed by using the new name. When

AmigaDOS finds a name at the beginning of a line for which such a

relationship exists, this name is replaced by the related command. All

other input remains unchanged. For example:

ALIAS D DIR

The dir command can be called by entering a D followed by a

<Return>. The relationship between the shortened version and the

normal command is not stored on disk but in a table that is controlled

from AmigaDOS.

The description of the original command is not limited to a single

word. You can build your own command using ALIAS if you use the

same options with a command all of the time:

ALIAS S-UP RUN ED S:Startup-sequence

Now you can load the Startup-sequence into ED for editing by entering
S-UP.

Unfortunately the relationships are lost when the computer is turned

off. For this reason a script file can be created so that any number of

alias relationships can automatically be established. This file is

found in directory s : of the Workbench disk and is called

Shell-Startup. All entered relationships are valid in each new

AmigaDOS window.

A list of the current relationships can be obtained by entering just the
word ALIAS.

66

Abacus 2.2 System Commands

Output of In the AmigaDOS Shell, the prompt represents the actual directory
current path path. This indicates at which branch of the directory tree you stand. The

current path can be read by entering CD. Making your own prompt is

discussed under the description of the prompt command.

Direct Usually only object programs can be started directly from AmigaDOS.

calling of For example, if you try to start a script file by entering its name, the

script files en*or message Unable to load xxx: file is not an object

module (xxx stands for the filename) appears. Script files can be

started using the execute command.

Script flags allow access to a script file without the execute

command. DOS recognizes the flag, knows it's dealing with a script

file and automatically calls execute. The command for setting the

flags reads: PROTECT Filename +s (see PROTECT).

When script files are started in this manner a script file with the name

Shell-Startup is called by NEWSHELL. This file is found in the

S: directory of the Workbench disk.

Workbench 2.0 implementation:

The NEWSHELL windows of AmigaDOS 2.0 now contains a close

gadget. The NEWCLI command is now the same as the NEWSHELL

command; a Shell window will be opened, not a simple CLI window.

The command was also optimized for compactness and speed. It was

also made an internal command.

Further information on the NEWSHELL command can be found in the

More AmigaDOS Commands chapter.

2.2.2 ENDCLI

Workbench 1.2 implementation:

Syntax: endcli

This command closes the current CLI window task started from the

Workbench or with newcli. A second CLI cannot be closed from the

first CLI window. If a CLI which was started by using run ends, the

CLI ends before the process is ended; the window remains open for

output from the currently running task. When the last task ends; the

window closes.

67

2. AmigaDOS Commands AmigaDOS Inside and Out

Note: If the Workbench is not already loaded and you enter endcli, the
Workbench screen appears without icons or a menu bar (you won't
have access to the Workbench). Enter the loadwb command, then
enter endcli to exit to the Workbench.

Workbench 1.3 implementation:

There is no such command as endshell; Shell can be ended using
ENDCLI. Some versions of the Shell-Startup script file contain
the statement ALIASENDCLI so that Shell will accept the
endshell command.

Workbench 2.0 implementation:

ENDCLI is synonymous with ENDSHELL; this was done to keep
compatibility with earlier versions of AmigaDOS.

2.2.3 RUN

Workbench 1.2 implementation:

Syntax: run program_name

This command executes a program or AmigaDOS command while
allowing access to a program running in the background and the current
AmigaDOS task. Any output from the RUN command appears in the
AmigaDOS window which started the task. The example below prints
three files named letterl, Ietter2 and Ietter3 and then
displays the RAM disk directory:

RUN C/JOIN Letterl Letter2 Letter3 TO PRT:
DIR RAM:

The join command sends the multiple letters to the printer. The run
command starts the first task and immediately frees up the computer to
display the RAM disk contents.

There is an alternative to using join to print the three letters
AmigaDOS accepts the plus sign (+) character followed by the
<Return> key as a specifier for multiple commands. The following
example performs the same task as the example listed above:

RUN TYPE Letterl to PRT: +

TYPR Letter2 to PRT: +

TYPE Letter3 to PRT:

68

Abacus 22 System Commands

The entire command group executes as a background process as soon as

you press the <Return> key following the last line (the line without

Workbench 1.3 implementation:

It should be possible to leave the AmigaDOS Shell used to start a

task by using endcli, but also without closing the window

eventually used for output.

The following command creates a background process that writes the

entire contents of the disk in drive DFO: to a file named List:

RUN >List DIR DFO: OPT A

It should be theoretically possible to leave the Shell using endcli

and close the window while the DIR command continues to work. It

doesn't work that way; the device receives an EOF (end of file)

command character. The number of the task (e.g., CLI [2]) is given

to the device.

To allow the closing of the Shell while the running process

continues, redirect the output to NIL: using the > redirection symbol.

Our sample file displays the task number instead of the disk directory,

if the command TYPE List is used.

Workbench 2.0 implementation:

The RUN command was optimized for compactness and speed. It was

also made an internal AmigaDOS command.

2.2.4 STATUS

Workbench 1.2 implementation:

Syntax: status process, full/s,tcb/s,cli=all/s

This command displays all the information available about the

AmigaDOS tasks running at that particular time. If you enter STATUS

without parameters, or if you enter STATUS all, AmigaDOS displays

the names of the individual tasks. The following example is a response

to status all:

69

2. AmigaDOS Commands AmigaDOS Inside and Out

Task 1: Loaded as command: status

Task 2: Loaded as command: beckertext

In this case, because the BeckerText program was started from

AmigaDOS using run, it is assigned task number two.

PROCESS The PROCESS argument specifies the correct task number for
additional information about the task. Entering Status 2 would only

show the second line of the above output.

TCB The TCB argument produces more information about the individual
Tasks Control Block. Entering Status TCB for the above data would
return the following:

Task 1: stk 1600, gv 150, pri 0

Task 2: stk 3200, gv 150, pri 0

The information following the task number has the following meaning:

stk Processor stack size of this task

gv Global vector table width

pri Specified task's priority (values range from -128 to +127)

FULL The full argument displays complete information about tasks.
Status full displays the following for the above example:

Task 1: stk 1600, gv 150, pri 0 Loaded as command: status

Task 2: stk 3200, gv 150, pri 0 Loaded as command: textpro

Workbench 1.3 implementation:

Syntax: process, full/s,tcb/s,cli=all/s,com=command/k

The 1.3 STATUS command gives negative priorities correctly. In
addition, the new STATUS includes the COM=COMMAND/K argument.
This argument helps the user determine if a specific program exists in
the current task. The user must enter status COM and the name of the
task. The following example searches for a task named TextPro and
displays the corresponding process number:

STATUS COM TEXTPRO

No other output occurs. If the process doesn't exist, the condition flag
is set to 5 (=WARN). If the task is found, the shell number is output
and the condition flag is set to 0. This argument is especially helpful in
script files for seeing if a background task is running.

70

Abacus 2.2 System Commands

Workbench 2.0 implementation:

Syntax: process/n, full/s, tcb/s, cli-all/s, com=command/k

Operation is identical to Workbench 1.3, but the PROCESS argument

is specified as numeric. The command has also been optimized for

compactness and speed.

2.2.5 CHAN6ETASKPRI

Syntax: CHANGETASKPRI PRI/A

This command changes the current CLI task's priority. Each task in

the Amiga has a given priority. This value can range from -128 to

+127. The following example sets the priority of the current task to 5:

CHANGETASKPRI 5

Entering status full after the above CHANGETASKPRI command

will display a message similar to the following, depending on which

tasks are running your computer:

Task 1: stk 1600, gv 150, pri 5 Loaded as command: status

Task 2: stk 3200, gv 150, pri 0 Loaded as command: textpro

If the input is out of the allowed range, the following appears:

Priority out of range (-128 to +127)

Workbench 1.3 implementation:

Syntax: changetaskpri pri/a,process/k

The PROCESS/K argument allows the user to change the priority of

any process. You must enter the process number following the

PROCESS argument The following example changes process number

4 to a priority of -5:

changetaskpri Pri -5 Process 4

This option is very useful in case you have started a printing operation

as a background process and want to slow down this task so your other
tasks are done more quickly, changetaskpri lets you lower the
priority of the printing task, freeing up time for other tasks to execute.

71

2. AmigaDOS Commands AmigaDOS Inside and Out

Workbench 2.0 implementation:

Syntax: changetaskpri pri=priority/a/n, process/k/n

Operation is identical to Workbench 1.3, but the PRIORITY and

PROCESS arguments are specified as numeric. The command has also

been optimized for compactness and speed.

2.2.6 BREAK

Workbench 1.2 implementation:

Syntax: break process/a, all/s,c/s,d/s,e/s,f/s

This command halts execution of a DOS command from any
AmigaDOS window. For example, if the first task window contains the
dir opt A command, the complete output of this command can be

stopped by entering break 1 from a second window.

You can achieve the same result by activating the first window and
pressing the <Ctrl> and <C> keys. But there is another use for this

command. In the description of the RUN command we mentioned a way

to print out more than one letter when it's started. What would you do

if you wanted to stop the printing process? Turning the printer off is
not the correct way. Pressing <CtrlxC> in the window from which

the process was started doesn't work because the process is running
without a window. However, the break command will stop output to
the printer.

PROCES S The PROCESS argument tells the system which task to interrupt.

C ,D ,E ,F The break command without arguments defaults to <CtrlxC>. The
C, D, E, F arguments allow you to change the control character to

<CtrlxC>, <CtrlxD>, <CtrlxE> or <CtrlxF>. The following
example transmits a <CtrlxD> to task number 3:

BREAK 3 d

A multiple file operation will stop at the beginning of the next file
when break is sent. The operating system's response to <CtrlxC>
varies from case to case and depends on the respective AmigaDOS
command. In most cases, nothing happens.

72

Abacus 2.2 System Commands

ALL The all argument sets all four <Ctrl> codes simultaneously. The

following example sends all the <Ctrl> codes to task 3:

BREAK 3 ALL

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed.

2.2.7 PATH

Workbench 1.2 implementation:

Syntax: path ,,,,,,,,,add/s,show/s,reset/s

This command displays the current directory and disk path. If the path

command is entered without parameters or is followed by SHOW, a disk

path appears on the screen. Here's an example of the output of the path

command:

Current directory

RAM:c

A500 WB 1.2 D:System

C:

This list shows the order and directories used when searching for a file.

If the name of a program is entered (e.g., an AmigaDOS command),

DOS first searches the current directory for the file. The current

directory can be specified using the CD command.

If DOS doesn't find the file in the current directory, it searches RAM: C

and the System drawer on the Workbench disk. If the file is not in any

of these places, DOS finally looks in a virtual (i.e., it exists only

within the computer) device named C:. This pseudo device ensures that

the AmigaDOS command searches for the correct directory. See the

description of the ASSIGN command for more information about

virtualdeviceC:.

The path command allows the user to add or remove paths. For

example, if you use the calculator in the Utilities drawer of the

73

2. AmigaDOS Commands AmigaDOS Inside and Out

ADD

RESET

Workbench disk often, the following command to load the program is

entered:

Utilities/Calculator.

However, if you enter the command Path SYS: Utilities add

beforehand, the path list will have the following added:

A500 WB 1.2 D:Utilities

Now AmigaDOS automatically looks in the Utilities drawer.

The path command is especially useful when used in conjunction

with the RAM disk and Workbench 1.2. Because additional paths in the

list are always searched before the C: device, several DOS commands

can be placed in the RAM disk. This saves the floppy disk user quite a

bit of work because the operating system looks in the RAM disk first

for the desired command. Next it calls for the Workbench disk to be

inserted because the command was not found (see Chapter 3 for more

information on this subject). The Workbench 1.3 and 2.0 RESIDENT

command is a much better solution.

The add argument must appear at the end of the list to add up to ten

new path specifications.

The reset argument removes all of the paths up to a maximum of 10

paths. All paths except the current directory and the C: are deleted.

Workbench 1.3 implementation:

The path command's function remains unchanged but the search order

is different in the 1.3 version. When you omit a specific path for a

command, AmigaDOS first searches the resident commands. If it

cannot find the command in residence, the search operation continues as
described above.

Workbench 2.0 implementation:

Syntax:

PATH

REMOVE

PATH PATH/M,ADD/S,SHOW/S,RESET/S,REMOVE/S

AmigaDOS 2.0 allows multiple arguments to be passed to the PATH

command. Multiple arguments must be separated by spaces; this
replaces the multiple comma method used in 1.3.

The remove/s argument allows you to remove a segment of the path
without resetting the entire path.

The PATH command has improved its compactness and speed; it has
also been made an internal AmigaDOS command.

74

Abacus 22 System Commands

2.2.8 ASSIGN

Workbench 1.2 implementation:

Syntax:

NAME

ASSIGN NAME,DIR,LIST/S

Before we describe this command in detail, look at the Amiga's

response when you enter ASSIGN list:

Volumes:

RAM disk [Mounted]

A500 WB 1.2 D [Mounted]

Directories:

S

L

C

FONTS

DEVS

LIBS

SYS

Devices:

DFO DF1

RAW CON

A500

A500

A500

A500

A500

A500

A500

WB

WB

WB

WB

WB

WB

WB

PRT PAR SER

RAM

1.2

1.2

1.2

1.2

1.2

1.2

1.2

D:s

D:l

D:c

D:fonts

D:devs

D:libs

D:

Volumes lists the names of the disks currently recognized by

AmigaDOS. The word [Mounted] means that the disk is currently in

the drive (this doesn't literally apply to the RAM disk).

Look at the entries beneath the Directories category. The left

margin lists the known devices. You read some information about the

C: virtual device under the description of the path command. Each

virtual device is a real path related to a currently existing directory. A

device name can also be labeled for the path on the right. The C:

device is related to the C: drawer on the Workbench disk. The C :

drawer contains all the AmigaDOS commands. The device name doesn't

have to be the same name as the drawer name, in some cases. A

program in the device named Fonts: can be assigned a drawer named

Character__sets:. Naturally, the ASSIGN command allows these

assignments to be changed.

ASSIGN NAME,DIR,LIST/S

The name argument represents a device name (AmigaDOS recognizes

this from the ending colon).

75

2. AmigaDOS Commands AmigaDOS Inside and Out

DIR

LIST

The dir argument represents a complete pathname. Entries under dir
can be assigned to this path. If this argument is omitted, the command
deletes the specified device from the list

The list argument changes the display format of the current list. If
no changes are desired, the list argument may be omitted from the
assign command.

The end of the output lists the devices that can be accessed from
AmigaDOS. These devices are described in detail in Chapter 3. Devices
are separated from one another in the list by spaces. Device names more

than three characters in length are not yet implemented.

Workbench 1.3 implementation:

Syntax:

EXISTS

REMOVE

ASSIGN NAME,DIR,LIST/S,EXISTS/S,REMOVE/S

The command must include the device name and the exists
argument. ASSIGN will search the assign list for the device and display

the directory and device assigned. The following occurs when you use
ASSIGN in conjunction with the Devs: directory:

Input:

Output:

ASSIGN DEVS: EXISTS

Devs: SYSrDevs

The ASSIGN command sets the condition flag to WARN if the device
is not found. This error status can be used in a script file (see the
chapter on Script Files for more information). The following script file
tests for the existence of the Ext ras disk. The user is asked to insert
the Extras disk if it isn't in the drive:

ASSIGN >NIL: Extras: exists

IF WARN

ECHO "Please insert the Extras disk in a disk drive"

ENDIF

The >nil command directs all output to the nil : device. This device
acts as a trash can—the redirected data doesn't come out. Unwanted

output can easily be suppressed this way. Error status can be read using

the if warn command. The script file executes the if warn
command if the Extras disk isn't found (warn = 5) and displays the
specified text

A volume or device can be removed from the mount list with the
REMOVE option. This option should only be used by software

developers since it does not free up resources, it only removes the name
from the list.

76

Abacus 2.2 System Commands

Workbench 2.0 implementation:

Syntax: assign name, target/m, list/s, exists/s, dismount/s,
DEFER/S,PATH/S,ADD/S,REMOVE/S,VOLS/S,DIRS/S,DEVICES/S:

The ASSIGN command has eight new arguments and two new versions

of ASSIGN have been added to 2.0: non-binding and late-binding. The

command has also been optimized for size and speed.

TARGET The target/m argument allows you to make multiple assignments

to a single device. This could be used to store your own custom fonts

in a separate directory from the Fonts directory. For example, the

following command will allow two Fonts directories: the standard

Fonts directory and your Custom_Fonts directory located on the

RAM: disk.

ASSIGN FONTS: SYS:FONTS RAM:Custom_Fonts

The standard Fonts directory will be search first and then your

Custom_Fonts directory. Once the assignment has been made the

ASSIGN command will display the following:

Volumes:Ram Disk [Mounted]

Workbench2.0 [Mounted]

Directories:

CLIPS

ENV

T

ENVARC

SYS

C

S

LIBS

DEVS

FONTS

Ram Disk:clipboards

Ram Disk:env

Ram Disk:t

Workbench2

Workbench2

Workbench2

Workbench2

Workbench^

Workbench2

0:Prefs/Env-Archive

0:

0:C

0:S

0:Libs

0:Devs

Workbench2.0:Font s

+ Ram Disk:Custom_Fonts

Workbench2.0:L

Devices:

PIPE AUX SPEAK RAM CON

RAW SER PAR PRT DFO

DF2

DISMOUNT The DISMOUNT/S argument allows devices and directories to be

removed from the assignment list. This option should only be used by

software developers since it does not free up resources, it only removes

the name from the list.

DEFER The DEFER/S argument creates a late-binding assignment. This

assignment only takes effect when the assigned object is accessed. This

can be used to avoid constantly having to switch disks, since the

77

2. AmigaDOS Commands AmigaDOS Inside and Out

PATH

VOL

DIRS

DEVICES

assigned object is only required when it is actually needed. The

assignment remains in effect until explicitly changed.

The path/S argument creates a non-binding assignment. It does not

take effect until it's referenced and only remains in effect while it's

needed. This can be very useful to avoid unwanted disk swapping if the

disk in the drive contains the necessary directories.

The VOL/S argument will only display information on the current

volume assignments.

The dirs/S argument will only display information on the current

directory assignments.

The DEVICES/S argument will only display information on the

current device assignments.

2.2.9 ADDBUFFERS

Workbench 1.2 implementation:

Syntax: addbuffers drive/a, buffers/a

This command assigns a large buffer to a specified disk drive. When

working with AmigaDOS, sometimes a command can be loaded from

the drive before it's used for the first time, and then the command

remains in memory for subsequent command calls. The reason for this

is found in the disk drive buffer memory. The operating system loads

all data into the disk buffer before it can be used elsewhere. If a program

is small enough to fit in the buffer, it doesn't need to be recalled from
the disk or hard disk again. This speeds up execution time.

DRIVE The drive argument is the drive specifier to which the buffer should
be assigned.

BUFFERS The buffers argument specifies the number of blocks allocated for
the additional buffer (1 block = 512 bytes).

The following example assigns 11 blocks of RAM to drive DFO:

ADDBUFFERS DFO: 11

Drive DFO is given an additional 11 blocks for working memory (1
block = 512 bytes). Through this addition one of the 160 tracks of a
disk can be loaded into memory.

78

Abacus 22 System Commands

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the addbuffers

command has been optimized for compactness and speed

2.2.10 WHY

Syntax: why

This command displays a response from the Amiga describing the

reason a command could not be executed. In most cases AmigaDOS can

be asked why the function did not work.

For example, you would like to read the startup sequence. You enter:

TYPE S/Startup-sequenze

The computer responds:

Can't open S/Startup-sequenze

You enter:

WHY

The computer responds:

Last command failed because Error code 205

Entering the command Fault 205 explains the error: Object not

found. We purposely misspelled startup-sequence above.

Workbench 1.3 implementation:

Version 1.3 of this command improved the error messages by passing

the error number to the FAULT command and then displaying the

message. If you rename the FAULT command the error number and not

the message will be displayed.

2. AmigaDOS Commands AmigaDOS Inside and Out

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The why command was also

made an internal command.

2.2.11 FAULT

Workbench 1.2 implementation:

Syntax: fault ,,,,,,,,,

This command converts error numbers into descriptive text. Only some

errors have texts. If a specific text doesn't exist, the word Error

appears, followed by the error number. Two examples:

Input: fault 10

Output: Fault 10: Error 10

Input: fault 120

Output: Fault 120: argument line invalid or too long

Workbench 1.3 implementation:

Version 1.3 of this command improved the error messages.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The fault command was also
made an internal command.

2.2.12 DATE

Workbench 1.2 implementation:

Syntax: date time, date, to=ver/k

This command sets and reads the current time and date on the Amiga,
independent of the Preferences editor.

80

Abacus 2.2 System Commands

TIME The time argument represents the clock time in HH:MM:SS format

(H = hours, M = minutes, S = seconds) or just HH:MM format.

DATE The date argument must have the format DD-MMM-YY (D = day, M

= month, Y = year). If the old date is less than a week old, you can

enter the day of the week itself instead of the date format Even if the

old date is within a day of the present date, you can enter Yesterday.

Either case installs the correct date.

TO=VER The to=ver argument directs the date setting to a file. The following

example sends the current date to the file DOUG:

DATE TO DOUG

Entering date without parameters displays the current day of the

week, date and time:

Thursday 19-Jul-90 10:17:48

The calendar begins at January 2,1978. The first of January is shown

as unset Time periods before that time are invalid.

Workbench 1.3 implementation:

The new date command now accepts one digit date input as well as

two digit input. For example, in addition to the input date Ol-Jul-90,

you can also enter l-Jul-90.

Workbench 2.0 implementation:

The new date command now accepts digit month input as well as

month name abbreviation. For example, in addition to the input date

Ol-Jul-90, you can also enter 1-7-90.

The date command has been optimized for compactness and speed.

2.2.13 SETCLOCK

Workbench 1.2 implementation:

Syntax: setclock opt load i save

This command places the time and date set by date into the Amiga

battery-powered real-time clock (this is an option for early Amigas).

81

2. AmigaDOS Commands AmigaDOS Inside and Out

The real-time clock and the data entered in Date are independent of one

another.

OPT LOAD The OPT load argument transfers the real-time clock date and time to

the system.

OPT SAVE The OPT SAVE argument transfers the system date and time to the

real-time clock.

In most cases the command is used in the startup sequence of the boot

disk to set the time. The command sequence SETCLOCK >nil : opt

LOAD can be found on the Startup-sequence. The command

sends a message to the nil : device. This virtual device ensures that

the output does not appear on the screen.

If you enter SETCLOCK without parameters and no real-time clock

exists, the computer replies:

Internal clock not functioning

You will receive this message if you don't have a real-time clock in

your Amiga. The entire procedure takes about six seconds to load. The

command can also be erased from the Startup-sequence.

Workbench 1.3 implementation:

Syntax: setclock load i save i reset

Version 1.3 of this command added the RESET argument. This

command also had a minor bug in that the argument template was not

displayed with the input of a"?". Instead the error message showing the

correct usage was displayed.

Workbench 2.0 implementation:

Syntax: setclock load i save i reset

Version 2.0 of this command has been optimized for compactness and

speed. The 2.0 version of this command displays the argument template

correctly with the input of a"?".

2.2.14 PROMPT

Syntax: PROMPT TEXT

82

Abacus 2.2 System Commands

This command changes the appearance of the DOS prompt When the

prompt appears, the computer is ready to receive input. The Amiga

default prompt is the AmigaDOS task number followed by a greater-

than character (1 >). This can confuse the new user.

The prompt command lets you change the prompt display. If the text

contains spaces, it should be placed in quotation marks. Example:

PROMPT "What do you want?"

If you enter prompt without any parameters, the prompt defaults to a

greater-than character. If you want the number of the respective

AmigaDOS task displayed, the combination %n must be entered.

Example:

Input: PROMPT "I am number %n !"

Output: I am number 1 !

The old AmigaDOS 1.2 prompt can be restored by entering:

PROMPT %n>

Workbench 1.3 implementation:

Syntax: prompt prompt:

The new prompt command allows you to display the current drive and

directory path as part of the prompt text. In addition to the command

string %n, which shows the number of the actual AmigaDOS task, the

command characters %s lets you display the last position of the CD

command. For example:

prompt "%n.%s> "

The new prompt could look like the following:

3.Workbench 1.3:System>

You are in the third AmigaDOS task. The actual directory is the

System: directory of the Workbench 1.3 disk.

Workbench 2.0 implementation:

Syntax: prompt prompt:

Version 2.0 of this command has been optimized for compactness and

speed. The 2.0 version of this command has been made an internal

command.

83

2. AmigaDOS Commands AmigaDOS Inside and Out

2.2.15 STACK

Workbench 1.2 implementation:

Syntax: stack size

This command specifies the amount of memory allocated for the stack.

Each AmigaDOS task places DOS commands in a special memory

location accessible from a machine language stack. Normally the size

of the location is 4000 bytes per CLI. The amount of stack memory

can be specified from 1600 bytes on up. However, if a large amount of

memory is needed, the memory given to the Shell could be

overwritten and a system crash could occur. The dir command is

especially susceptible to crashing. Try this on the Workbench disk

when there is nothing important in working memory (this will usually

crash the computer in AmigaDOS 1.2 and 1.3; in AmigaDOS 2.0 use

list all in place of dir opt a):

stack 1600

dir opt a

The SORT command is also fussy about stack memory. This depends

on the starting point of the data to be sorted. Unfortunately, there are

no given values to avoid. Only trial and error help here.

Another interesting fact is that a new task always receives as much

memory allocation as the CLI from which it was started. Remember

this, or else memory can be used up very quickly.

If you are uncertain about the size of the stack, use the STACK

command without any parameters.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Syntax: stack stack/n:

Version 2.0 of this command has been optimized for compactness and

speed. The STACK/N argument is now specified as numeric. The 2.0

version of this command has also been made an internal command.

84

Abacus 22 System Commands

2.2.16 BINDDRIVERS

Syntax: binddrivers

This command integrates the device drivers (hard disk, plotter, etc.)

found in the Expansion drawer into the system. You'll find this

command used primarily in the startup-sequence of a boot disk. You

must have the driver to operate the hardware. If you don't need the

drivers, then you can delete this command from the startup-sequence,

and the Expansion drawer from the Workbench. By doing this the

system booting time shortens by a couple of seconds.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Version 2.0 of this command has been optimized for compactness and

speed.

2.2.17 MOUNT

Workbench 1.2 implementation:

Syntax: mount device/a

This command can add new devices to AmigaDOS. The basic

configuration of the Amiga recognizes the following devices:

DF0: Internal disk drive

PRT: Printer

PAR: Parallel port

SER: Serial port

RAW: RAW: window

CON: CON: window

RAM: RAM disk

These devices can be addressed immediately. New devices (e.g., hard

disk partitions) can be installed using the Mount command. Mount

waits for the name of the new device as a parameter. Information about

85

2. AmigaDOS Commands AmigaDOS Inside and Out

Other

devices:

this device can be found in the text file MountList, contained in the

Devs directory (Mi the Workbench disk.

Here's some sample information about the 5-1/4" floppy disk drive

device (installed as DF2: on some systems):

DF2: Device = trackdisk.device

Unit = 2

Flags = 1

Surfaces = 2

BlocksPerTrack = 11

Reserved « 2

PreAlloc = 11

Interleave = 0

LowCyl = 0

HighCyl =39

Buffers = 5

BufMemType = 3

#

Any device can be entered in the MountList. Each entry must begin

with the device name (in this case, DF2:) and must end with a number

sign (#). The data between these strings specifies the device's

characteristics. Mount accepts the following keywords:

Disk drives: Keyword Function

Device

Unit

FileSystem

Priority

Flags

Surfaces

Name of the device driver

Device number (e.g., 0 for dfO:)

Label of a special FileSystem

Task priority (mostly 10)

Parameter for Open device (usually 0)

Number of sides of drive (for disks: 2)

BlocksPerTrack Number of blocks per track

Reserved

PreAlloc

InterLeave

LowCyl

HighCyl

Buffers

BufMemType

Mount

Number of boot blocks (usually 2)

(no function)

Device-specific (usually 0)

Number of small tracks

Number of large tracks

Size of buffer memory in blocks

Type of memory:

0,1 = Chip or Fast RAM

2,3 = Only Chip RAM

4,5 = Only Fast RAM

1 = Device connected

-1 = Device connected on first access

Kevword Function

Handler Path description of the device driver

Stack Size of the processor stacks for the task

Mount See above

86

Abacus 12 System Commands

Workbench 1.3 implementation:

Syntax: mount device/a, from/k

AUX:

PIPE:

RAD:

NEWCON:

SPEAK:

The MountList can receive any name that follows the FROM

argument:

MOUNT DF2: FROM Devs:Devicelist_l

The mount command searches in the Devs directory for the file

MountList if you omit the from argument.

Workbench 1.3 allows you to install new devices. A few of these new

devices are briefly described here (see Chapter 3 for detailed

information).

A serial port connection that doesn't store the data in a buffer. The

important entries are already in the MountList, so the connection can

be installed using the command sequence mount aux:.

The device enables different tasks to exchange information. For

example, if you want to send information from one CLI to another,

this sequence allows you to make the exchange easily:

Input tO 1st CLI: COPY S/Startup-sequence TO PIPE:

This information can be read in the second CLI from the pipe:

Input to 2nd CLI:

Output:

TYPE PIPE:

The Startup-sequence is listed

The statement for installing the pipe: is already in the MountList.

A recoverable RAM disk. Unlike the device ram:, data remains in

memory even after the computer is reset. Not even a Guru Meditation

can reset the RAD: device. Unfortunately, memory management is not

dynamic, so RAD: takes up all of its allotted memory even when it is

empty. The capacity of RAD: is included in the MountList.

A new window port that expands on the usual CON: window. The

NEWCON: device manages a 2K buffer for temporary storage of the last

input. The old input can be recalled and edited with the help of the

cursor keys. The NEWCON: device can be used in conjunction with the

newcli command.

Controls Amiga speech output.

The new mount command reads the keywords described above in

addition to the following statements:

87

2. AmigaDOS Commands AmigaDOS Inside and Out

Keyword Function

MaxTransfer Maximum number of blocks that can be transferred

Mask Address area that can be addressed by the DMA

Handler Path description of the device driver

GlobVec Global vector for the process, 0 sets up a private

global vector, -1 is no global vector and if the

keyword is absent the shared global vector is used.

Startup A string passed to the filesystem, handler or device

on startup as a BPTR to a BSTR (see Chapter 8).

BootP ri Sets boot priority of a device, used with the

recoverable RAM disk.

DOSType Indicates the filesystem. For the FastFileSystem it

should be 0x44F5301 otherwise 0x44F5300.

These statements are only evaluated in conjunction with the

FastFileSystem.

Workbench 2.0 implementation:

Version 1.3 and Version 2.0 of the MOUNT command are identical.

88

Abacus 23 Script File Commands

2.3 Script File Commands

This section contains information about the commands used in

conjunction with script files. Script files (called batch files in the
MS-DOS world) are simple text files containing any number of
AmigaDOS commands, written using ED or a word processor. The
execute command runs these commands in sequence. The Script

Files chapter contains detailed explanations and several practical uses
for script files.

2.3.1 EXECUTE

Workbench 1.2 implementation:

Syntax: EXECUTE NAME

This command executes script files. Because script files are text files,
They cannot be directly accessed like programs. If this is attempted, the
computer responds with the Error code 121: file is not an

object module error message.

The execute command needs the name of the file to be executed. For
example, a script file named printer might contain the following
line:

TYPE Text/Letter TO PRT:

DATE TO PRT:

The execute printer command works the same as if both of the

above lines had been typed in from the AmigaDOS Shell. The script

file prints the letter, followed by the current date and time.

As with most AmigaDOS commands, the filename and additional

parameters may be added—these are transferred to the script file. The

script file, in this case, must have a predetermined variable to which the

parameters can be assigned

The above script file should serve as an example of this. Instead of

printing out the given text (Text/Letter), a variable can now be

inserted, which can be assigned any name. The variable is declared in

the example below using the .KEY directive:

89

2. AmigaDOS Commands AmigaDOS Inside and Out

.KEY name

TYPE <name> to PRT:

DATE TO PRT:

The Printer script file is now called using:

EXECUTE Printer Text/Letter

There are a few rules about using variables. They are as follows:

1. The .key directive, with which the variables are declared, must

always be at the beginning of the script file.

2. If the assignment allows multiple parameters, they must be

separated by a comma. The .key directive can only be used

once, otherwise the error message Execute: More than one

K directive is displayed. Example of correct usage:

KEY dataname, destinationdevice

COPY <dataname> TO <destinationdevice)

3. Replace the text between the greater-than and less-than characters

with your own contents. There should be nothing about the

variable name in their place, but instead the statement of what

was assigned by the EXECUTE command.

Normally, these three points are all you need to know when working

with variables in conjunction with script files. There are a few

additional functions that should not be overlooked.

In addition to .KEYS, there are a number of directives beginning with a

period that can be put in a script file:

. def This directive assigns given contents to a variable. This

instruction can emerge anywhere in the text. A use for this

is to give a firm name to a variable in case the Execute

command is not given a definite name (default name). Such

a script file can look like the following:

.KEY datafile,devicename

.DEF devicename PRT:

TYPE <datafile> TO <devicename>

When the devicename parameter is omitted, EXECUTE

defaults to the printer.

For this use there is a special but very simple procedure.

The variable name in the greater-than and less-than

characters must be expanded by adding a dollar sign and the

text that is to take the place of the variable, on the chance

that the EXECUTE command isn't given any parameters.

The above example would then look like this:

90

Abacus 23 Script File Commands

.KEY datafile,devicename

TYPE datafile TO <devicename$prt:>

In case a filename is entered but not a device name, the

output automatically goes to the printer (PRT:).

.dollar This directive changes the dollar sign ($) placed at the

beginning of a text to any other character. For example:

.DOLLAR #

The corresponding line under .DEF would now have to read:

TYPE datafile TO <devicename#prt:>

.bra This directive has a task similar to .dol. This allows the

less-than character (<) to be replaced by another character.

.KET This directive is similar to .bra, except it changes the

greater-than (>) sign.

A period followed by at least a space allows the user to

insert a comment line. BASIC programmers use a REM

statement for this.

.dot This directive changes the period preceding each instruction

to another character.

Script files should be used without any other control characters,

otherwise it becomes too confusing.

Workbench 1.3 implementation:

Script files are still called through execute. By adding the S (Script)

flag, it's now possible to start script files by entering their names. The

Script flag must be set first using the PROTECT command. The

following sequence sets the flags for a script file named Test_Batch:

PROTECT Test Batch +s

Workbench 2.0 implementation:

The current shell number can now be accessed with <$$>. A blank

comment line can be inserted with ./ in the script file. Version 2.0 of

the protect command has been optimized for compactness and speed.

91

2. AmigaDOS Commands AmigaDOS Inside and Out

2.3.2 ECHO

Workbench 1.2 implementation:

Syntax: echo text

This command makes it possible to direct a character string to any

output device. The default device is the screen:

ECHO "Hello, Doug!"

You must add a greater-than character and another output device name to

send the output to another device:

ECHO >PRT: "One more beer and I'll go home."

The text must be enclosed in quotation marks if any spaces exist in the

text.

The echo command features an optional parameter of the *n character

combination. This combination forces a linefeed in the text output:

ECHO "Careful*n Stairs!"

The output on the screen looks like this:

Careful

Stairs!

In the rare instance that you wanted to use *n as an actual entry in the

text, use the character string **n.

Workbench 1.3 implementation:

Syntax: echo ,noline/s,first/s,len/s

Three arguments were added, one for line suppression and two that

allow the echoing of a substring.

NOLINE The NOLINE/S argument suppresses the linefeed that usually follows

after the output.

FIRST The FIRST/ S indicates the beginning position in the string to echo.

LEN The len/ S indicates the length of the string, beginning at the FIRST

position, to echo.

92

Abacus 23 Script File Commands

Workbench 2.0 implementation:

Syntax: echo ,noline/s,first/k/n,len/k/n

The FIRST and LEN arguments are specified as numeric keywords.

Operation is identical to Workbench 1.3.2, but the command has been

optimized for compactness and speed. The ECHO command has also
been made an internal command.

2.3.3 FAILAT

Workbench 1.2 implementation:

Syntax: failat rclim

This command halts a command sequence if the Amiga reaches a

specified error return code limit. Each AmigaDOS command and many

other programs return an error number if an error occurs during

execution. In AmigaDOS most numbers are assigned a related error text

so that by using fault, followed by the respective number, the

explanation can be read. For example, the number 216 means that you

tried to delete a drawer that still contained entries.

If the error number for an AmigaDOS command inside of a script file is

greater than or equal to ten, the script file stops working and returns

control to the main program (for example, back to the Amiga Shell).

This error limit can be read by using failat. This is very useful

because the limit could be anywhere. In some cases it's desirable when

a script file reports a warning (an error number less than 10).

An example: When compiling, the difference between warnings and

errors is most obvious. Warnings can usually be ignored because they

are caused by a poor programming style. If the error limit is set in a

script file of a compiler, the work is stopped as soon as it encounters

incorrect data. This prevents the calling of other work operations

(assembling, linking).

To set a new error limit in a script file, failat requires an argument

of the new error number at which the operation should be stopped. This

new limit is valid only while work is being done in the script file.

After that it is automatically reset to 10.

If a new error limit is given directly from the Shell, the limit is also

valid in the script file called from the Shell. If the limit is undefined,

then the error limit returns to 10. If the failat command does not

emerge in the data file the given error limit remains unchanged.

93

2. AmigaDOS Commands AmigaDOS Inside and Out

Each new Shell called automatically supersedes the error limit of the

Shell that it was called from. After it is called the limits can be

changed independent of one another.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The failat command has also

been made an internal command.

2.3.4 QUIT

Workbench 1.2 implementation:

Syntax: QUIT RC

This command exits a script file at any point. The QUIT command is

unnecessary at the end of a script file. If you want the script file to tell

you what went wrong, QUIT can display the desired error number.

Control returns to the calling script file and the following text appears

if the error number is greater than or equal to 10:

Quit failed returncode xx

The xx represents the error number.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The Quit command has also

been made an internal command.

94

Abacus 23 Script File Commands

2.3.5 IF/ELSE/ENDIF

These commands execute certain parts of a script file if specific

conditions are met. These three commands must be handled as one:

else and endif are only allowed to be used in conjunction with IF.

IF /ENDIF The simplest case only requires IF and endif:

IF EXISTS Text/Letter

TYPE Text/Letter TO PRT:

ENDIF

ECHO "Have I printed the letter yet or not ?"

In this example the type command executes because the data file

Letter really existed in the subdirectory Text. In this case it doesn't

matter about the rest of the script file directly under the endif.

It can be determined whether data files are contained in a disk drive or

on the RAM disk. Another set of codes that are allowed to follow the

if:

E Q eq compares two texts for the same contents:

IF "That is the text" EQ "That is the text"

ECHO "Yes, the two texts are equal"

ENDIF

Some inquiries naturally do nothing because the interrogation can also

be omitted. With just the EQ command, the text remains unchanged.

Using EQ in conjunction with batch variables is interesting (see the

description of the execute command). Two examples:

.KEY input

IF <input> EQ Letter

ECHO "You entered the word "letter1 !"

ENDIF

.KEY input

IF <input> EQ ""

ECHO "You didn't enter anything !!!"

ENDIF

Here you must differentiate between the variable input, the contents

of input and the text letter. It is important to note that when

comparing text, it does not matter whether it is in capital letters or not

If letter EQ letter returns the same result.

95

2. AmigaDOS Commands AmigaDOS Inside and Out

IF FAIL

ERROR

IF WARN

NOT

ELSE

Using if fail determines whether the last command had an error

number greater than or equal to 20. This evaluation is useful when,

before the use of the command, the error limit has been changed from

10 to a larger value than 20. If not, the execution of the script file is

interrupted.

IF error is the same as IF fail. In this case, however, the error

limit stays at 10.

The error limit for IF warn is set at five. It is not necessary to set the

error limit higher than 10 with failat.

The labels IF warn and ERROR should not be confused: If IF warn

traps error number 225, for example, this is a fail error instead of a

warning. It recommends that a higher error limit be set with failat.

If not is added before any of the above conditions, the opposite of the

declaration is done. For example:

.KEY text

IF NOT EXISTS <text>

ECHO "I don't have any such data file"

ENDIF

IF EXISTS <text>

ECHO "Here it goes !"

TYPE <text> TO PRT:

ENDIF

The script file needs the name of a text file contained in the variable

text. In the first section it tests to see if the data file doesn't exist. If

it does not, the first echo message appears.

After that, IF EXISTS is used again to see if the file actually exists. If

it does, the script file prints it on the printer (this only works with true

text files).

The ELSE command can easily be built into a script file as an

alternative to the IF NOT statement. The above example looks like the

following when you're done using the ELSE command:

.KEY text

IF NOT EXISTS <text>

ECHO "I don't have that data !"

ELSE

ECHO "Here it is !"

TYPE <text> to PRT:

ENDIF

This example delivers the same result as before, except faster and easier.

Finally, a few comments about the three commands. Each IF/ELSE/

ENDIF block is allowed to have any number of lines. The block must

96

Abacus 23 Script File Commands

end with either an else or an end if. A block can also have any

number of interlocking IF commands. An ELSE or endIF must

always be associated with the last if in a block. The example below

evaluates how many parameters the execute command is given (a

maximum of three). It becomes easier to see the function of the

program through the structured indenting of the program:

.KEY textl,text2,text3

IF NOT <textl> EQ ""

IF NOT <text2> EQ ""

IF NOT <text3> EQ ""

ECHO "All three inputs exist"

ELSE

ECHO "The three inputs are missing"

ENDIF

ELSE

ECHO "The second and third inputs are missing"

ENDIF

ELSE

ECHO "No input has been made"

ENDIF

Workbench 1.3 implementation:

GT

6E

VAL

EXISTS

GT is for greater than comparisons. GE is for greater than or equal to

comparisons. The val option may be specified to compare numbers.

exists checks for the existence of a file.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The if/else/end if

commands have also been made internal commands.

2.3.6 ASK

Workbench 1.2 implementation:

Syntax: ask prompt/a

This command has the computer wait for a response from the user

before continuing with the script file.

97

2. AmigaDOS Commands AmigaDOS Inside and Out

The ASK command can either be given without arguments or with text

that displays a question. The computer waits for an answer, either Yes

or No (Y or N), followed by the <Return> key. If something else is

entered, the ask command waits until a correct answer is given. The

evaluation occurs through error code number five so the command can

confirm the input. The following example demonstrates the first

reaction to different input:

FAILAT 5

ASK "Should I stop? (y/n)"

ECHO "Good, then I'll go further"

Because the error limit is usually set at 10 for stopping script file

execution, it must be set to five here so that entering Yes would return

you to the AmigaShell.

This solution hardly satisfies everyone. It would be better for the user if

two different program lines could work at once. What you qm do is use

the IF warn command from Section 2.3.5. That adds the nuisance of

lowering the error limit to a value smaller than six. Example:

ASK "Do you know the ask command ? (y/n)"

IF WARN

ECHO "Very good, go on !"

ELSE

ECHO "Set at six !"

ENDIF

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The Ask command has also been
made an internal command.

2.3.7 skip/lab

Syntax:

Skip

SKIP LAB

The skip command is the script file equivalent of the BASIC/C goto
command, or assembly language's jmp instruction.

98

Abacus 23 Script File Commands

Lab If a script file encounters a SKIP command, the text file is searched for

the lab (label) command. The file executes at the routine specified by

the label. If you add a name to the SKIP command, the script file

jumps to the label of the same name. For example:

ASK "Can you go around with Skip and Lab ? (y/h)"

IF WARN

SKIP mark

ENDIF

ECHO "Not too bad"

QUIT

LAB mark

ECHO "Use only in moderation"

The program text cannot be re-entered with the SKIP command. As

with other programming languages that use a jump command, skip

should be reserved for cases where there is no alternative, since it

detracts from structured programming. In the above example it makes

for a sloppy program because it exits an IF/endif construction. That

should be prevented whenever using the SKIP command. In almost all

cases an if/else/endif construction is the best solution.

Workbench 1.3 implementation:

The back option was added; this allows you to skip back to the

beginning of a script file before searching for a label.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The skip /lab commands have

also been made internal commands.

2.3.8 WAIT

Workbench 1.2 implementation:

Syntax: wait sec=secs/s,min=mins/s,until/k

This command delays script file execution for a specified amount of
time. A typical example of a needed pause is the execution of two tasks
that access the same disk drive at the same time (excepting the RAM
disk). If the directory of the disk in drive DFO: is listed in one
AmigaDOS window using the DIR command, andtheLlSTDFO:

command lists the directory of the same disk in another AmigaDOS

99

2. AmigaDOS Commands AmigaDOS Inside and Out

window, the two commands are executed parallel to each other. The net

effect is that it takes longer for the commands than if they had been

entered one after the other. Because both processes must access the disk,

each command can only access a few tracks during execution time. A

lot of time must be allotted because the drive head must always be

changing its position.

If you wish to load two programs with the Startup-sequence, we

recommend that you wait for the first program to load using the WAI T

command. The time needed to wait is entered as the argument The time

can be entered in seconds, minutes or in system time format, wait

without any parameters waits one second. Some examples:

WAIT

WAIT

WAIT

WAIT

WAIT

WAIT

5

5 sec

min

5 min

UNTIL 14:30

waits

waits

(same

waits

waits

waits

1 second

5 seconds

as 2)

1 minute

5 minutes

until 14:30 (2:30 pm)

You can interrupt the wait command by pressing <Ctrl> <C>. In

Chapter 5 we'll show you how wait can be used to make an

AmigaDOS alarm clock.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed.

2.3.9 VERSION

Syntax: VERSION [<library name>] [version] [revision]

This command returns the version and revision number of the
Workbench from a device or library. When the VERSION command is

entered without arguments, you receive statements about the Kickstart
and Workbench versions. For example:

Kickstart version 33.180. Workbench version 34.4

VERSION can have a special library of device names attached:

100

Abacus 23 Script File Commands

Input: VERSION trackdisk. device

Output: trackdisk.device version 33.127

It is possible to test the version number. Error code 5 is returned if the

given version number is greater than the one tested. The error status can

be evaluated from within a script file with the help ofalF/ELSE

construction. The following script file calls the Math program if the

fast math library Version 34.44 or less is present. Otherwise it returns

an appropriate message.

VERSION >NIL: mathieeedoubbas.library 33.44

IF WARN

ECHO "the fast Math library is not there !M

ELSE

RUN Math

ENDIF

Workbench 1.3 implementation:

Syntax: VERSION [<library name>] [version] [revision] [unit]

Hie [Unit] option allows you to specify a unit number other than 0,

used when accessing multi-unit devices. This command also had a

minor bug in which the argument template was not displayed with the

input of a "?". Instead the error message showing correct usage was

displayed.

Workbench 2.0 implementation:

Syntax: version name,version,revision,unit:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed. The 2.0 version of this command

displays the argument template correctly with the input of a"?".

101

2. AmigaDOS Commands AmigaDOS Inside and Out

2.4 The Editors

The ED and Edit programs are two large programs that make it
possible to edit text files. MEMACS (MicroEmacs), which is available
with Workbench 1.3 and 2.0, is a screen-orientated editor with drop
down menus. It can be started from AmigaDOS and is an excellent
editor. Since it has drop-down menus and this book is about
AmigaDOS, we will not discuss this editor in this book.

E D ED is afull screen editor. It can load the entire text into the working
memory of the Amiga and display an entire screen of that file. With the
help of the four cursor keys the cursor can be placed at any position
inside the window. You can then edit the text at that position. You can
scroll the text to see data above and below the screen window. If the
text to be edited has more columns than the ED window shows, the
window scrolls left and right when the cursor moves beyond either
margin. Anyone that has worked with AmigaBASIC is at least familiar
with the principle of screen editors.

ED 2.0 ED 2 .0 has been updated by John Toebes HI, and the improved
version is excellent. The new 2.0 operating system allows
programmers to add menus to their programs. The menus for the latest

version of ED are contained in the ED-startup script file in the S:
directory. They allow you to use the mouse when using ED to access
often used commands. The normal ED commands are still available.
The new version includes menus and the new standard Amiga file
selector.

EDIT The EDit program is a line editor. The basic difference from ED is that
you edit text line-by-line through different commands. You cannot
manipulate text within a window, similar to the CLI.

There are many reasons for using two editors. These two editors allow
the user to edit script files or enter source codes for compiled languages.
In most cases ED is much easier to use, and gives a better overview of
the text (very important when programming).

edit needs relatively smaller amounts of memory than ED, because

the entire text does not need to be loaded into memory. In cases
involving large files that ED cannot load, edit can help, edit also
lets the user open more than one source file at a time. Overall, edit
has more flexibility than ED.

It would take an entire book to describe edit's capabilities. Only its
basic functions are supplied in this section.

102

Abacus 2.4 The Editors

2.4.1 Reading text with ED

ED is usually accessed through the ED command and a file/path:

ED Text/Prog

The Text/Prog argument is the pathname of the text file you want

edited. Two different conditions can exist when invoking ED in this

way.

Existing This case loads the text file into the working memory. If this is

filename successful, the ed window appears, displaying all or part of the text

file (depending on the file's size). If the loading operation is interrupted,

the Amiga displays the message Unable to open window... on the

screen. This error could occur if the filename given is in fact a

directory, or if the file doesn't contain text characters. These are

indicated by the messages x is a directory and cannot be

edited or File contains binary.

Nonexistent If the file doesn't exist, an empty ed window appears. When starting

filename ed, you can specify the size argument, which sets the working

memory size in bytes. The following allocates 60,000 bytes to the

test file in the text directory:

ED Text/Test SIZE 60000

If the SIZE is missing, ED defaults to a size of 40,000 bytes. The

SIZE should be increased if you want to load a larger text file. Now

work can continue with ED. After the size and position of the window

has been set, it is possible to move all over the screen and manipulate

data and even add new text. The <Backspace> and keys function

as usual: <Backspace> erases the character immediately to the left of

the cursor, and erases the character that the cursor is on. The

mouse cannot be used with ed.

There are two different ways to control ED (ed 2.0 has been updated

to include menu control):

1. Direct mode by pressing the <Ctrl> key and another key. The

respective command is executed.

2. In the command line. Pressing the <Esc> key displays an

asterisk at the bottom left of the screen. As long as the asterisk

is visible, you are in command mode (i.e., you can't edit the

text). Entering and executing a command, or by pressing

<Return>, you can exit this mode.

103

2. AmigaDOS Commands AmigaDOS Inside and Out

Basic ED The end of this book shows a complete listing of the commands that
commands can be executed from ed. Here we are only presenting the most

important commands, but they are sufficient in most cases.

Direct mode <Ctrl><A> Insert line.

<Ctrl> Delete line.

<CtrlxG> Displays the last <Esc> command

(important for searching and replacing).

<CtrlxY> Delete from cursor to end of line.

<Esc> mode <EscxX>

<EscxQ>

<EscxSA>

Note:

<EscxJ>

<EscxBS>

<EscxBE>

<EscxIB>

<EscxDB>

(eXit) Saves text to disk and exits ED. A copy of the

file named ed-backup is placed in subdirectory t of
the disk.

(Quit) Exits ED without saving the text. If you have

entered any data, the program will ask for confirmation

from you before quitting.

(SaveAs) Saves the text without exiting ED. If you

want the text saved under a different name, the name can

be changed to a new name or an already existing name.

The old contents of a previously existing file are lost

forever.

It is possible to send the data directly to a peripheral

device: <EscxSA> "PRT:" sends the text to the
printer.

(Join) Combines two lines into one. This is very useful

when a line has been accidentally separated by the user

by pressing the <Return> key in the middle of a line.

The cursor must be placed at the end of the top line.

(BlockStart) Marks the beginning of a block of text for

different block operations. The line in which the cursor

currently stands is the top line of the block.

(BlockEnd) Marks the end of a block of text for different
block operations.

(InsertBlock) Places a copy of the block marked out by

<BS> and <BE> at the current cursor position.

(DeleteBlock) Deletes the block marked by <BS> and

<BE>. The line is removed from the text.

104

Abacus 2.4 The Editors

2.4.2 Text handling with EDIT

Forget everything that we just talked about regarding ED. edit works

on a completely different principle:

The working memory buffer of EDIT can only hold a few lines of text

at a time. Under normal circumstances, the user edits these one after

another. When editing is complete for the last line of the buffer, edit

automatically loads the next line from the data file and writes the

previous lines to a destination file, edit requires both files (this is a

major difference from ED).

The user can only edit the lines currently in the buffer. It is also

possible to scroll up a limited number of text lines. If a line has left

the buffer and been written to the destination file, it is no longer

accessible by edit.

When the session with edit ends, the complete contents of the buffer

are saved to the destination file. The rest of the source file must

eventually be saved so that data isn't lost. You can exit edit without

read or write operations taking place.

edit also lets you open and read different data files while editing. Each

new data file is superimposed over the beginning of the original source

data file. When you return to the original file, it reopens and assumes

the original position.

Finally, edit has another feature: It can read edit commands from

any properly configured data file as well as from the keyboard.

2.4.3 Parameters of edit

Workbench 1.2 & 1.3 implementation:

Syntax: edit from/a,to,with/k,ver/k,opt/k

The edit command itself is started with edit. The arguments are as

follows:

FROM The from argument specifies the name of the file to be edited. This

data file must already exist (completely new text cannot be created

using edit).

105

2. AmigaDOS Commands AmigaDOS Inside and Out

TO

WITH

VER

OPT P

OPT W

OPT PxWy

The TO argument specifies the name of the destination file to which the
data are written. If this name is missing, edit creates a work file in
the t subdirectory and places file data in it. When you quit edit, this
work file receives the complete pathname of the source file as given in

the from argument. The original source file is placed in the t
subdirectory under the name edit-backup until it's overwritten by
further work with EDIT.

The with argument loads a file which specifies commands. This file
can give commands just as the user can give commands from the
keyboard.

The ver argument directs edit's output to a device other than the
screen, ver Data_File would put the input into a file named

Data_File. Using VER con:10/10/300/100/VerWindow
places the contents of such a file in a window.

The opt p argument specifies the number of lines allowed in the
buffer. Example: OPT PI 0 0 configures the buffer to hold 100 lines (40
lines is the default). This is very practical when more system memory
is needed.

The OPT w argument changes the maximum line length to a value
other than 120. Example: Opt W81 sets line length to 81 characters.

The OPT PxWy argument is a combination of OPT P and OPT w. The
x and y arguments are the values for these arguments.

Workbench 2.0 implementation:

Syntax: edit from/a, to, with/k, ver/k, opt/k, width/n, previous/n :

Two new arguments have been added to the Version 2.0 of edit.

EDIT determines the amount of memory required by multiplying the
width and previous values.

WIDTH The width argument specifies the maximum line width. The default
value is 120.

P REVIOUS The previous argument specifies the maximum number of previous
lines. The default value is 40.

106

Abacus 2.4 The Editors

2.4.4 Starting EDIT

In most cases, you enter the name of the file to be edited when you

start edit. As was explained above, the edited lines are placed in a

help file named edit-backup.

The edit prompt (a colon) appears after you invoke EDIT. It waits

for user commands, much like AmigaDOS. Because of the line

orientation, you must search for the next line to edit, edit

automatically numbers all the lines of the source file internally.

Immediately after you start edit, line 1 of the source file is the first

line to be edited. Unfortunately the contents are not automatically

displayed. To reach another line, there are different methods:

a) Entering <N> (Next) places the user at the next line.

b) Entering <P> (Previous) places the user at the previous line.

c) Entering <mxx> (Move) places the user at line number x.

To display the contents of line 1, for example, it is sufficient to enter

<N> followed by <P>. Multiple commands can be entered at once, but

as in ED, they must be separated by semicolons, edit does not

distinguish between lowercase and uppercase letters.

The <P> and <M> commands let you return to the line of the buffer not

written to the destination file. As soon as a line with a number greater

than 40 is reached, many of the previous lines are placed in the

destination file. If the user tries to go back to line number 1, for

example, the error message Line nuinber 1 too small appears.

Preceding the <P> and <N> commands with a number executes the

command multiple times. For example, ION advances edit 10 lines

in text.

The <F> (Find) command lets you find a specific string within the data

file. The command must be followed by the search text enclosed by any

characters. For example:

F ?Key?

edit searches for the current line number containing the word "Key."

If you omit input following <F>, the command searches for the last

text string searched for. This is very practical when looking for more

text that contains a certain search string. You must advance to the next

line after a successful search using <N>, so that the same line doesn't

get returned constantly.

107

2. AmigaDOS Commands AmigaDOS Inside and Out

2.4.5 Editing Text

After finding the designated text, you can make changes to it. These

changes cannot be made directly to the line (as opposed to ED), but

must be made by using certain commands. The important commands in

edit are:

e (exchange) Substitutes one character string with another. Example:

The line reads: <cEdit is difficult to use."

Input: e/difficult/easy

Result: Edit is easy to use.

or:

Input: e/difficult//

Result: Edit is to use.

a (after) Inserts a given text behind a certain character string.

Example: The line reads "Edit is a program."

Input: a/a/flexible /

Result: Edit is a flexible program.

b (before) This command inserts a given text before a certain
character string. Example: The line reads "Edit can do

more!"

Input: b/more/much /

Result: Edit can do much more !

d (delete) Deletes the current line. The line number disappears;

the text is not re-numbered. A line can be deleted by

entering the line number in the command line. Entire

text passages can be removed if the start and end line

numbers are given. For example:

"d 10 100"

Lines 10 to 100 are erased.

i (insert) Inserts the following lines preceding the current line.
Entering a <Z> in a separate line ends insert mode. The

buffer contents are renumbered starting with the first

newly entered line. For example: The texts read:

20. "The input mode"

21. "makes everything too complicated."

108

Abacus 2.4 The Editors

Line 21 is the current line, and the following input is

made:

i

and working reasonably

with Edit are possible.

It should not be thought impossible.

The result looks like this:

20. "The input mode"

21. "and working reasonably"

22. "with Edit are possible."

23. "It should not be thought impossible"

24. "makes everything too complicated."

2.4.6 Multiple Files

It's possible to open more than one source file from edit. The

command for this reads:

FROM .datafile

After this command new lines are called only from the data file with the

name datafile. As with the original source file, input in the new

file begins with the first line of the text.

Using from without parameters returns to the start of the original

source file. The program basically leaves all channels open, and marks

how many lines of each data file have been read already. If after closing

a data file using the command CF .datafile (CloseFile) the file is

opened again with from .datafile, the lines that were already read

can be called into the buffer one more time.

2.4.7 Command Macros

Edit can receive command macros (program information) from a data

file that contains all of the normal Edit commands. The name of this

file is given either at the start of the program after the addition of the

with argument or the C command can be used when working with

edit. A macro file can look like the following:

109

2. AmigaDOS Commands AmigaDOS Inside and Out

i

**

* Program : *

* Author : *

* Date : *

* Language : "C" *

* Assembler : Aztec c68/am-c v3.4 *
**

If this introduction is inserted before the active line in edit, entering

C followed by the filename between two periods is all that is needed.
Example:

C .introduction.

The insertion is not ordered by the C command, which just calls the

file. The I command emerges here, through which the following text,

up until the Z, is inserted before the active line. As soon as the end of

this file is reached, or a line with the Q command occurs, edit returns

to command level. This does not necessarily have to be the keyboard

again because a command file is also allowed. In such cases a C

command is contained in the command data file.

A macro file can be constructed for any imaginable case. If you know

the situation well, working with edit can be much faster than ED.

2.4.8 Quitting Edit

Normally, the <w> (windup) command exits edit. The contents of

the buffer and the rest of the source data file are copied to the
destination file in subdirectory t with the name edit__backup. If a

name for the destination file wasn't specified at the beginning of the

work with edit, the work file in subdirectory t receives the name of
the source file. After that all the channels close and the program ends.

edit can also be exited using the stop command (copy procedures

are not executed). This leaves the destination file incomplete. If a

destination file isn't given at the start of the editing session, no

renaming is done on the work file. The source data file is also
unchanged and remains under the same name.

See the Appendix for complete descriptions of EDIT's commands.

110

3.

Devices

Abacus 3. Devices

3. Devices

A device is simply a piece of hardware with which the computer can

exchange information. The disk drive is a typical device.

This data exchange between computer and device doesn't always have to

go in both directions. A printer only accepts data, while a mouse only

conveys information to the computer.

The description of the ASSIGN command includes a list of devices that

can be accessed from AmigaDOS. The standard devices of the Amiga

are listed below:

PIPE AUX SPEAK CON RAW

SER PAR PRT DFO

A colon (:) must always follow the device name, so that AmigaDOS

can tell devices apart from directories or filenames.

This chapter describes the individual device names and what you can do

with these devices.

Handlers Handlers are found in the L: directory. Handers are treated as if they are

actual physical devices even though no hardware is required for their

operation. The SPEAK:, PIPE: and AUX: devices are handlers.

Handlers must be MOUNTed before they can be used. This is usually

done in the Startup-sequence or the StartuplI script file.

They must also be described in the MountList located in the DEVS:

directory.

113

3. Devices AmigaDOS Inside and Out

3.1 Floppy Disk Devices (DFx:)

All devices beginning with the letters DF are Amiga floppy disk

drives. A total of four disk drives can be connected at one time (DFO:-

DF3:). The drive specifier DFO: represents the internal disk drive on

any Amiga; DF1: represents the first external disk drive (Amiga 500

and 1000) or the second internal disk drive (Amiga 2000); and so on.

The Devices section of the ASSIGN list contains many references to

the letters DF.

All AmigaDOS commands default to drive DFO: in the basic Amiga

configuration (with only one disk drive). If you enter an AmigaDOS

command without a disk drive specifier, AmigaDOS automatically

accesses drive DFO:. The following command accesses the directory in

drive DFO:

DIR

The following command accesses the directory in drive DF2: (the

second external disk drive in some units, the second internal disk drive

on the Amiga 2000):

DIR DF2:

See the descriptions of the LIST and CD commands in Chapter 2 for

the problems that can occur in disk directory handling.

Workbench 2.0 implementation:

The device driver has been optimized for compactness and speed in

AmigaDOS 2.0.

114

Abacus 3.2 The RAM-Handler (RAM:)

3.2 The RAM-Handler (RAM:)

The RAM-handler simulates a disk drive device (ram :) with the

Amiga's working memory. Handlers are treated as if they are physical

devices. The word RAM is short for Random Access Memory, a type

of memory that allows free access (both reading and writing). With few

exceptions the RAM disk can be used like any other disk drive. The

RAM disk's biggest advantage over floppy disk drives is high speed

data exchange.

There is a disadvantage to using a RAM disk for storage: The contents

of the RAM disk are temporary; they vanish when you turn the

computer off, or when it crashes. Because of this, important data should

be saved from the RAM disk to a "real" disk drive from time to time.

Another disadvantage is the memory requirement of the RAM disk. The

memory capacity for the RAM disk is dynamic. The more data you

store in the RAM disk, the less memory you have available for

applications and user memory. The more system memory you have

available, the more data you can store on the RAM disk. The RAM

disk doesn't give useful information about its capacity (it's always

100% full according to the disk gauge on the left border of the RAM

Disk window). This makes sense because the system only supplies

the memory it needs and no more.

You must create a RAM disk before you can work with it. The

following command opens a RAM disk:

DIR RAM:

You'll find the command in the Startup-sequence of 1.3, so that

the RAM disk is immediately accessible. If the Startup-sequence

installs a RAM disk and the user didn't want it present, he's out of

luck—there is no DeleteRamDisk command. Section 5.3 explains

how to use the RAM disk to decrease disk swaps when using only one

drive.

Note: The following disk commands do uqL work with the RAM disk.

Chapter 2 supplies detailed information about each command.

ADDBUFFERS This command produces the error message:

Warning: Insufficient memory for buffers

It would be a waste of memory to assign both a RAM disk and buffer

memory to RAM, if the operating system did let you do this.

115

3. Devices AmigaDOS Inside and Out

d ISKCOPY The data files or directories of a RAM disk can only be copied one at a

time using the COPY command. Copying the entire disk using the

DlSKCOPY command is impossible.

FORMAT The RAM disk doesn't need to be formatted before using it for the first

time. If you click on the RAM DISK icon and select the Format

disk.. item in the icon menu (in Workbench 1.3 you would select

the initialize item from the Disk menu) the Amiga lets you get

as far as the OK to format... requester. If you click on the OK

gadget, the Amiga displays the following requester

Format failed - (1.3 Initialization failed)

cannot find handler

If you try to format the RAM disk using AmigaDOS Format

command, AmigaDOS displays:

Format failed - (1.3 Initialization failed)

cannot find handler

RELABEL You shouldn't assign another name to the RAM DISK in AmigaDOS

1.3. If you do you will not be able to access the RAM disk from the

Workbench. Version 2.0 has solved this problem. Version 1.2 would

not allow you to rename the ram di SK.

install This command turns normal disks into boot disks. The Amiga can be

started using these disks. The RAM DISK cannot be used as a boot

disk.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the handler has been made

an internal handler and is not located in the L: directory.

116

Abacus 33 The Parallel Device (par:)

3.3 The Parallel Device (PAR:)

This device allows the Amiga to access Centronics interfaced hardware.

The device works through the parallel port on the case of the Amiga

and must first be connected before you access it. The PAR: device is

parallel because all eight bits of a byte are transferred at once. It is also

possible to transfer information one byte after another or bit for bit (see

the next section for a description of serial transfer).

The connection can be used for more than one device. For example, an

analog/digital video converter can be connected, and the video and audio

signals will be converted to a format that can be understood by the

computer. In this case the data from outside is sent to the computer

through the connection. Other data flow directions are possible. A

typical application for PAR: is a printer connected to the Amiga. The

actual information runs through the connection to the printer. The

reason for using a printer with a parallel connection is found in the

handling of this device.

The speed at which the transfer of data takes place depends on how fast

the data from the device can be processed. In addition to the eight lines

used for transferring the data, there is an additional line used for

handshaking. Over this line the data receiving device (printer) informs

the transmitting device (Amiga) that it is ready to receive new data.

This maintains optimal data transfer speed.

Workbench 2.0 implementation:

The device driver has been optimized for compactness and speed in

AmigaDOS 2.0.

117

3. Devices AmigaDOS Inside and Out

3.4 The Serial Device (SER:)

The serial device is also known as the RS-232C interface. The

connection point on the Amiga is called the serial port and can be used

for a wide variety of functions (modem, MIDI, etc.). The serial port

transfers individual bits one after another, and not at die same time like
the par : device. Each data direction also requires one signal. Parity is

chosen before using the connection (even, odd or none). This eighth bit

is automatically set so that either all set bits are always even or all set

bits make an odd number. The receiver must be set at the same parity.

In a few cases, parity can discover transfer errors. Only the bottom

seven bits of the byte can be transferred when the parity bit is active.

The remaining bit is sent as the parity bit (transfer control bit).

Each transfer is synchronized by one start bit and two stop bits. The

speed at which the single bits are transferred must be identical at both

the sending and receiving devices. This speed is traditionally measured

in Baud (after the French inventor Baudot). One baud is equal to the

transfer rate of about one bit per second.

The RS-232 connection also has handshake protocols. There are three

ways to achieve correct data transfer

Using This method is usually called xON/xOFF protocol. This method
command assumes that the connection is bidirectional. As soon as a device cannot

bytes receive any more data, it sends a special message (xOFF) through its

return line. The sending device stops data transfer until it receives the

xON message from the receiving device. The advantage of this method

is that only three lines are needed, and that's why a three-wire

handshake is frequently used in telecommunications. The operating

system automatically looks in the active program for correct utilization

of the command characters.

Using This method is similar to the handshake used with the PAR: device. It

control lines requires additional wires, Ready TO Send/Clear To Send and Data Set

Ready/Data Terminal Ready (RTS/CTS and DSR/DTR), over which

additional information can be exchanged. A data channel used only for

return messages can be established. The advantage of this method is the

faster transfer speed because the control codes don't go through the

relatively slow data channel.

No If the user is 100% certain that the data-receiving device can process the

Handshaking incoming bytes faster than the sender is sending them, then you can

conceivably do without the handshaking. This method is most useful

when a fast transfer of data from one computer to another is desired,

with the least amount of expense (2 lines). As a permanent solution

this method is ineffective because it takes too much time to configure.

118

Abacus 3.4 The Serial Device (ser:)

All parameters must be set with the Preferences editor before

using the serial port. In addition, there is a gadget called Buffer

Size that can be used to change the size of the transfer memory for the

receiving data. This buffer holds the receiving data in case the receiving

program is not ready. If it takes too long to read the data and no

handshake takes place, this buffer can be overwritten. Data that was in

the buffer are lost

Null modem cables are ready made cables that have the correct wiring to

allow two computers to easily exchange data thru the serial ports. The

software used is the same software used with a modem, only the cable

without a modem connects the two computers together. Hence the

name null modem cable. Most computer dealers carry null modem

cables, in case you need to transfer data from a laptop into your Amiga.

Workbench 2.0 implementation:

The device driver has been optimized for compactness and speed in

AmigaDOS 2.0.

119

3. Devices AmigaDOS Inside and Out

3.5 The Printer Device (PRT:)

The printer device is intended specifically for output on the printer. If

the PRT: device is addressed, it uses the printer driver and selections set

by the Preferences editor. By using printer drivers Commodore has

attempted to standardized printer output In this manner all programs

use the same printer functions and command characters. When new

printers become available, only the printer driver and not the program

will have to be re-written. Different printers require different drivers

because different printers use different codes for activating the same

function. Despite the many printer drivers on the Workbench disk, there

are always difficulties with a few printers.

We believe that these methods are easy to use with completed printer

drivers. However, it would be much better if there were a program that

made it possible to put together custom drivers for any available

printer. Please see the Abacus book Amiga Printers - Inside and Out for

a description of an excellent shareware program that does just that.

Workbench 2.0 implementation:

The device driver has been optimized for compactness and speed in

AmigaDOS 2.0.

120

Abacus 3.6 The Console Device (con:)

3.6 The Console Device (CON:)

The CON: device refers to both the keyboard and monitor of the Amiga

(i.e., the console). Because the keyboard and monitor screen of the

Amiga are normal input and output devices, they can be addressed like

any other device. Both input and output can take place in any window.

The CON: device is accessed as follows:

CON:X/Y/WIDTH/HEIGHT/NAME

The arguments following CON: have the following meaning:

x/Y Coordinates of upper left screen corner

width Screen width in pixels

HEIGHT Screen height in pixels

name Window's name

Example 1: DIR >CON:10/10/300/100/Testwindow

The directory output appears in a window with the given dimensions.

As soon as the output ends, the window disappears again.

Example 2: COPY CON:10/10/300/75/input CON:10/100/300/75/output

This displays two CON: windows on the screen at the same time. The
input entered in the input window appears in the output window after
pressing the <Return> key. Pressing <CtrlxBackslash> (<Ctrl><\>)
removes both windows.

Workbench 2.0 implementation:

The device driver now includes the NEWCON device which allows the
enhanced Shell operations in AmigaDOS 2.0.

121

3. Devices AmigaDOS Inside and Out

3.7 The RAW Device (RAW:)

This device is closely associated with the CON: device. At first glance

it looks exactly the same. The first difference between the two is

established when entering input. The RAW: device doesn't display any

characters. The following example is a good demonstration of the

function:

COPY RAW:10/10/300/75/input CON:10/100/300/75/output

Enter any characters in the top RAW: window. All of the characters are

transferred to the CON: window without waiting for the <Return> key

to be pressed. If it is pressed, the cursor appears at the beginning of the

line.

Another nice feature of RAW: is that control characters for cursor

movement, <Delete> and <Backspace> can be transferred. The receiving

device (CON:) removes these characters when executing them. In our

example only the cursor keys function as usual. Pressing <CtrlxC>

ends the entire process.

If the output doesn't function, there is a possibility that input was first

entered in the bottom window. As in the AmigaDOS window, the

output can be suppressed by other data. In this case, the <Return> key

should be pressed in the bottom window.

Workbench 2.0 implementation:

The device driver has been optimized for compactness and speed in

AmigaDOS 2.0.

122

Abacus 3.8 NEWCON-handler (NEWCON:)

3.8 NEWCON-handler (NEWCON:)

Workbench 1.3 implementation:

The Shell uses this new window interface for output and input in

1.3. The newcon: device is similar to the old CON: device from the

original CLI. Before it can be used it must be mounted, like all other

handler devices, using the MOUNT command:

MOUNT NEWCOM:

The important entry in the MountList file found in the Devs

directory on the Workbench disk should look like the following:

NEWCON: Handler = L: Newcon Handler

Priority = 5

StackSize = 1000

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the device has been made

the internal CON: device and does not have to be mounted.

123

3. Devices AmigaDOS Inside and Out

3.9 The RAD device (RAD:)

Workbench 1.3 implementation:

The abbreviation RAD stands for Recoverable rAm Disk. This is a

reset-resistant RAM disk for the Amiga. The RAM disk device named

ram: loses all of its information after a reset A normal reset does not

affect the rad: device. In most cases the data can even survive a Guru

Meditation. The ramdrive. device is located in the Devs :

directory.

The rad: device has at least one disadvantage. RAD doesn't have a

dynamic memory system. RAD uses the same amount of memory

whether it contains any data in it or not. A typical entry for the RAD:

device in the MountList looks like the following:

RAD: Device = ramdrive.device

Unit = 0

Flags = 0

Surfaces = 2

BlocksPerTrack = 11

Reserved = 2

Interleave = 0

LowCyl = 0

HighCyl =21

Buffers = 5

BufMemType = 1

#

You must specify RAD's capacity in the HighCyl parameter before

you can mount RAD with mount rad:. Each cylinder has a capacity

of 1 IK. RAD would have a capacity of (21+1) * 1 IK = 242K if it were

mounted using the above entry. In 1.3 RAD must be formatted before

it can be used with the FastFileSystem.

After a reset, all you have to do is enter mount rad: and the contents

of RAD are restored. If you discover that some data is lost, use the

diskdoctor to restore RAD.

When RAD is no longer needed, the largest section of its memory can

be freed by using the remrad command. It can be removed by using

the ASSIGN command:

ASSIGN RAD: REMOVE

The entire memory area that was occupied by RAD is then free after the

next boot operation.

124

Abacus 3.13 The FastFxlbSystem

3.13 The FastFileSystem

Workbench 1.3 implementation:

You'll find this new handler in directory l : of the Workbench 1.3 disk.

Generally, a file system can be viewed as an enlarged handler. It handles

the organization of data on the disk differently. A file system also does

not access the device directly, but deals with device handlers.

So like the SPEAK handler uses the speak.device, a file system

can address the trackdisk.device to read data from a disk drive. A

file system is not fixed to any special device. To address a hard disk,

make an entry in the MountList and the file system accesses the hard

drive.

Until now communication with the connected drives (floppy or hard

drive) took place over the file system found in the Kickstart operating

system. The new FastFileSystem (abbreviated FFS) was invented

for drives whose memory medium does not change (RAD, hard disk).

The name reflects the improvement over FileSystem: It is faster

than the old file system.

Because a disk change is not allowed, the FFS functions only with a

hard drive or the new RAM disk RAD:. Only partitions that are not

automatically mounted on the hard drive work with FFS.

To take advantage of the new FFS, the following lines must be entered

for the device and partition in the MountList:

Globvec = -1

FileSystem = L:FastFileSystem

DosType = 0x444F5301

These changes can be made easily using ED. The call for ED looks like

this:

ed devs: mount 1 i st

Then the device can be connected using mount <Devicename>.

This command should be entered in the startup sequence following the

binddrivers command.

Before the first access the hard drive or RAD disk must be formatted for

the FastFileSystem. The Format command must have the added

argument FFS. For example:

129

3. Devices AmigaDOS Inside and Out

ADDBUFFERS

FORMAT DRIVE DZH1: name PartJL FFS

You only have to format the partitions if the hard drive is already

divided into partitions. The entire hard disk must be reformatted if a

partition in the MountList changes the statement after the LowCyl

or HighCyl parameter.

Special attention should be given to the addbuffers command (see

Chapter 2) when using the FFS. In opposition to the old file system,

increasing the buffer memory using addbuffers also increases the

speed. This increase is especially evident in the output of the directory

when using the dir command.

Workbench 2.0 implementation:

The new ROM filing system of 2.0 is based on the FastFileSystem,

but has been expanded to support the original filing system for

compatibility reasons. Since the new file system is incorporated into

ROM, the handler is no longer necessary in the L: directory. For

floppy diskettes the new FastFileSystem can be created using the FFS

option of the format command. Floppy diskettes formatted in the

FastFileSystem format will not be accessible to AmigaDOS 1.3 users,

the Not A DOS disk error message will be displayed and the

diskette icon will be labeled DOSA:.

130

4.

More

AmigaDOS

Commands

Abacus 4. More AmigaDOS Commands

4. More AmigaDOS

Commands

Version 1.3

RAD:

So far we have covered the AmigaDOS commands common to

Workbench 1.2, 1.3 and 2.0. The Amiga is a very flexible computer

system and its operating system is constantly being improved. This

chapter will cover the AmigaDOS commands added to Version 1.3 and

2.0. Any differences in the commands will appear after the general

description of the command. Each version of the AmigaDOS command

will be preceded by Workbench 1.3 implementation: or

Workbench 2.0 implementation:.

Version 1.3 of the Workbench and Kickstart, featured many added

improvements over 1.2. A few of the improvements are:

• New and improved AmigaDOS commands

• A comfortable Shell in addition to the CLI

AmigaDOS commands can be loaded and remain resident

commands

• A FastFileSystem for disk drives without changing storage

media (hard disks, RAM disk)

• A faster math library

New device handlers (aux:, speak:, pipe:, newcon:)

Reset-resistant RAM disk that boots with Kickstart 1.3

• Booting from special devices (Kickstart 1.3 only)

Much of this list functions with Kickstart 1.2. This is good news

especially for Amiga 500 and Amiga 2000 users, because these

computers have Kickstart resident in ROM (Read Only Memory).

Workbench 1.3 in conjunction with Kickstart 1.2 can boot from special

devices. The new RAM disk rad: belongs to these devices from

which the Amiga can be booted in seconds using Kickstart 1.3.

Kickstart 1.2 users can only boot from drive DF: (the internal disk

drive). There is greater value in the compatibility of the old Workbench

and Kickstart versions. If you switch from 1.2 to 1.3 there could be

problems with the existing software. You should go back to the old
Woikbench if you encounter difficulties (for example, we had problems

with the debugger db of the Aztec compiler).

133

4. More AmigaDOS Commands AmigaDOS Inside and Out

Version 2.0

AREXX

Version 2.0 of the Workbench and Kickstart, featured many

improvements over 1.3. The main improvements to AmigaDOS were
that every AmigaDOS command was rewritten in the C programming

language. This optimized each command for compactness and speed.

Many of the AmigaDOS commands were made internal commands and

no longer have to be loaded from the C: directory, greatly improving

the Amiga's already astounding performance.

The Amiga designers recognized the flexibility of a system that calls

commands from diskette so they built in an internal command override

system, keeping the best of both worlds, internal and external

commands. Here are the internal commands of AmigaDOS 2.0:

Alias

CD

Else

Endlf

EndSkip

Fault

Getenv

Lab

NewShell

Prompt

Resident

Set

Skip

Unalias

Unsetenv

Ask

Echo

EndCLI

EndShell

Failat

Get

If

NewCLI

Path

Quit

Run

Setenv

Stack

Unset

Why

The Shell window also has the new Workbench 2.0 improvements. It

now contains a close gadget, a zoom gadget and a depth gadget It also

automatically displays as much data as will fit in the window when the
window is resized.

arexx is a version of the mainframe computer rexx programming

language that has been implemented on the Amiga, arexx has been
integrated in the Workbench 2.0 operating system, arexx is an

application programming language that can be used to extend operating
system commands and customize applications program for easy
interaction.

134

Abacus 4.1 AmigaDOS 13 Commands

4.1 AmigaDOS 1.3 Commands

Some new, very useful commands exist in the C: directory on the

Workbench 1.3 disk and internally in AmigaDOS 2.0. We want to

examine these new commands more closely. Each version of the

AmigaDOS command will be preceded by Workbench 1.3

implementation: and Workbench 2.0 implementation:.

4.1.1 AVAIL

Workbench 1.3 implementation:

Syntax: avail [chip i fasti total]

This command displays the amount and types of memory available.

The Workbench screen title bar displays the amount of free working

memory, avail displays much more, as the following example

illustrates:

Available In-Use Maximum Largest

chip

fast

total

77472

226200

303672

445760

290688

736448

523232

516888

1040120

42712

219008

219008

Descriptions for the chip memory, fast memory (only present in

memory expansions) and for the entire memory region (chip memory+

fast memory) appear in each column. The amount of memory not in

use is displayed under Available and the size of the memory being

used is shown under In-Use. Both values add up to the value found

under Maximum.

A program can be loaded into small memory sections but these

memory sections must be the smallest allowable size. When a program

won't load anymore, even though there is still enough memory, there

is a good possibility that the program segments are larger than the

largest segment of available memory.

135

4. More AmigaDOS Commands AmigaDOS Inside and Out

Workbench 2.0 implementation:

Syntax: avail chip/s,fast/s,total/s,flush/s

The argument template now displays correctly when a"?" is input. The

FLUSH/S argument attempts to flush available memory as much as

possible to recover as much memory as possible.

4.1.2 FF

Workbench 1.3 implementation:

Syntax: ff -o/s,-n/s, fontname

This command activates a program named FastFonts, developed by
Microsmiths®. FastFonts accelerates text output on the Amiga
screen. The output increases in speed by a maximum of 20 percent

The user enters FF -0 to enable FastFonts (this command can

usually be found in the Startup-sequence of many boot disks). The
following message appears on the screen:

FastFonts Vl.l Copyright—1987 by C.Heath of Microsmiths, Inc

Turning on FastText

The message can be suppressed by redirecting it to the nil: device
with:

FF >NIL: -0.

The -N argument can be entered if the normal output mode is required.
The starting message will then appear with the Turning off
FastText message.

FONTNAME can be used to replace the system font with an 8X8 pixel
font.

Workbench 2.0 implementation:

The command has been optimized for compactness and speed and made
and internal part of AmigaDOS.

136

Abacus 4.1 AmigaDOS 13 Commands

4.1.3 LOCK

Workbench 1.3 implementation:

Syntax: lock drive/a, on/s,off/s, passkey

This command write protects a diskette or any partitions of a hard disk

drive. The diskette or hard disk partitions must function under

FastFileSystem (FFS) from Workbench 1.3. A LOCKed partition

behaves exactly like a disk on which the write protect clip is in the

write protect position.

The LOCK command can also secure the write protect condition using a

4 character password. You can then only remove the write protection

when you know the password. The following command sequence

protects drive DH1: until you unlock the drive using the password

open:

LOCK DH1: ON open

Any attempt at writing to partition DH1: is greeted with the message

Volume xxx is write protected (xxx represents the name of

partition DH1:).

The following command restores write access to the partition protected

by the above LOCK command:

LOCK DH1: OFF open

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3, but the command has been

optimized for compactness and speed.

4.1.4 NEWSHELL

Workbench 1.3 implementation:

Syntax: newshell window, from

This command allows you to open another Shell window for DOS

command entry. The newcli command also performs this function.

137

4. More AmigaDOS Commands AmigaDOS Inside and Out

NEWSHELL can open a window in the size and title specified by the

user. The following command creates a window named Amiga with a

width of 250 pixels and height of 100 pixels, with the upper left corner

of the window starting at X-coordinate 50 and Y-coordinate 70:

NEWSHELL:50/70/250/100/Amiga

This option works best when using the command in conjunction with a

Startup-sequence script file.

If the size input is missing, AmigaDOS creates a window the full

width and half the height of the normal screen or one quarter of an
interlaced screen.

FROM With the addition of the from argument and the name of a script file,

the newshell command can automatically execute a script file. If the
script file is in a drawer the complete pathname must be specified. An
example:

NEWSHELL FROM S/Copies

In this example the script file named Copies in the S directory

executes, before you can work with the new AmigaDOS window.

A Shell has the following advantages over the CLl:

The input line can be edited by using the cursor keys. The cursor

can be placed anywhere on the input line by using the <Cursor

left> and <Cursor right> keys.

The Shell uses the newcon : device for input and output.
This new window interface is responsible for many of the new
Shell features. The and <Backspace> keys function as

usual. Additional text is entered from the current cursor position.
When the <Return> key is pressed, the Shell accepts the
entered line.

The following key combinations can be used to edit a command line:

<CtrlxA> Places the cursor at the beginning of the line (also
<Shift><Cursor left>)

<Ctrl><Z> Places the cursor at the end of the line (also <Shift>
<Cursor right>)

<CtrlxK> Erases the text from the cursor to the end of the line

<CtrlxU> Erases the text to the left of the cursor

<CtrlxW> Moves the cursor to the next Tab position

<CtrlxX> Erases the entire line

138

Abacus 4.1 AmigaDOS 13 Commands

Recalling This new feature also comes from the NEWCON: device. Every

previously command entered is stored in a 2K buffer. Pressing the <Cursor up>

entered kev restores the last command. This function is very useful when a

commands command is not executed due to a typographical error. With a keypress

the command line re-appears; you can quickly correct it with the cursor

keys.

If you're looking for a certain command that was entered a short time

ago, the NEWCON: device can help. Enter the first letter of the

command and press <Shift><Cursor up>. The command that starts

with that letter reappears.

Pressing <Shift><Cursor down> moves you to the end of the buffer.

Control When a control code is entered in the Shell (for example: <Ctrl>
code <L>), the code is displayed in inverse video. However, the control code

handling operates normally.

Startup Every time the newshell command is called, a script file with the

script file name Shell-Startup automatically executes. This file is found in

the S directory of the Workbench disk. Here the appearance of the

Shell prompt can be stored. The following Shell functions are only

useful when the Shell segment is integrated into the operating

system before the Shell is called. The command needed here reads:

RESIDENT CLI l:Shell-Seg System

These commands are usually found in the startup sequence of the

workbench 1.3 disk so that you don't have to enter them manually.

Resident Programs can remain in the working memory of the Amiga for use by

commands the Shell with the help of the resident command. These

commands are immediately accessible to the user and do not have to be

loaded from the disk drive. More information on this subject can be

found under the handling of the RESIDENT command.

Shorter You can give the AmigaDOS commands, found in the C directory of

program the Workbench disk, other names. Many programs use AmigaDOS

names commands and they should not be renamed.

The AmigaShell features a function that makes it possible to call a

command under any name, or multiple names. This name is specified

with the help of the alias command. An example:

ALIAS EX EXECUTE

After entering this line the execute command can be called using the

name ES. The alias command assigns the first character string the

same text as the rest of the line. In this case the rest of the line only
consists of the word execute. The following use of the alias

command lets you call the startup sequence into ED by typing St-up:

139

4. More AmigaDOS Commands AmigaDOS Inside and Out

ALIAS St-up ED S:Startup-sequence

If you don't want to enter the alias command every time you open a

Shell, you can place the ALIAS commands in the S directory in the

script file Shell-Start up. As already said, this script file
automatically executes with each newshell.

The alias command without the additional statements lists the
existing name assignments.

Workbench 2.0 implementation:

The command has been optimized for compactness and speed. It has

also been made an internal command of AmigaDOS. The 2.0

NEWSHELL window also contains a close box, so it can be closed

using the mouse. The 2.0 AmigaShell window also dynamically

adjusts the contents of the window when it is resized, displaying as

much information as possible in the window. The new AmigaDOS

windows also have the new Workbench 1.2 zoom gadget and depth

gadgets, in place of the front and back gadgets.

4.1.5 REMRAD

Workbench 1.3 implementation:

Syntax: remrad

Abbreviation for Remove Recoverable RAM Disk. This command
erases the contents of the recoverable ramdrivcdevice called RAD:. The
RAM disk then takes up a relatively small section of memory. When
the computer reboots, this memory is returned to the system.

Workbench 2.0 implementation:

Syntax: remrad device,force:

The command has been optimized for compactness and speed, but is
larger than the 1.3 version since it contains more options.

DEVICE

FORCE

140

When you have installed multiple ramdrive.devices, the device
argument allows you to specify which ramdrive.device to remove.

If the ramdrive.device is in use when you attempt to remove it, a
drive in use message will be displayed. The FORCE argument
can be used to remove a ramdrive.device currently in use.

Abacus 4.1 AmigaDOS 13 Commands

4.1.6 RESIDENT

Syntax: RESIDENT NAME,FILE,REMOVE/S,ADD/S,REPLACE/S,PURE/S,SYSTEM/S

This command loads the user's favorite AmigaDOS commands into

working memory. AmigaDOS commands or programs previously had

to be loaded from disk before they could be used. Because of this you

had to leave the Workbench disk in the drive even though the

commands would often involve other disks (for example: the DIR

command), resident makes it possible for die user to load his most

frequently used commands into working memory. Then the command is

in memory and immediately accessible.

Before the resident command existed, important commands could

be copied into the RAM disk and DOS was informed by means of the

path command to look in the RAM disk before it accessed the

Workbench. This method functioned very well except for one large

disadvantage: When a command in the RAM disk was called, it still had

to be loaded just like from the disk drive. This is a very inefficient use

of memory because the command is then present in two memory

locations. Each new call of the program copied another command into

RAM.

Commands loaded using resident are loaded into working memory

once. When it is called a second time from a second AmigaDOS

window, the program is executed from the location in RAM.

An AmigaDOS command must meet some requirements before

resident can properly function:

• The command must be re-executable. This means that you must

be able to use it from more than one AmigaDOS window.

Example: The first AmigaDOS window lists the directory of

drive DFO: while the DIR command is being used in the second

AmigaDOS window for drive DF1:. Most AmigaDOS

commands, with very few exceptions, are "re-executable" on the

Amiga.

The commands must be re-entrant. As described above, the

program code of a RESIDENT command can only be found in

one location when the command is executed in several places at

the same time. The feature that makes a re-entrant command so

good is the use of local variables that must be replaced with

every call of the program.

To understand this problem we'll describe an example. Suppose you

execute a drawing program that contains the color code for the current

141

4. More AmigaDOS Commands AmigaDOS Inside and Out

PURE

text color in a memory location. This memory location gives the code

for the color white directly after loading the program. Change this color

to red and restart the program. The second program now has the color

red as the default instead of white because they use the same memory

location. This is a harmless example. The Amiga does not differentiate

between the two and when the second is called, AmigaDOS 1.3

responded with a system crash (Guru meditation).

A crash could have been prevented if the P (Pure) status flag had been

set using the PURE argument. This flag, with the help of the

protect command, can be set or erased for each file. A Pure flag tells

AmigaDOS that the program can be made resident using the

resident command list the AmigaDOS commands and you'll see

that it makes sense to have the Pure flag set for many commands.

Now we come to the use of the resident command. When the

command is entered without arguments, a list of the present

resident commands appear. When the command is entered with the

SYSTEM argument the resident system segments are also shown. For

example:

>1 RESIDENT

Name

Cd

List

Resident

Execute

CLI

Filehandler

Restart

CLI

SYSTEM

UseCount

0

0

1

0

System

System

System

System

UseCount supplies information about how active the respective

command is at the time. This statement usually returns a 0. A 1 means

that the command is being used at the time. System segments are listed

as System.

NAME/FILE The name and file arguments specify the exact path of the command
or segment that should become resident. The following example places

the dir command in the Shell:

RESIDENTR C:DIR

When you use the resident command in a file where the Pure flag

is unset, the following error message appears:

Pure bit not set

Cannot load xxx

(xxx stands for the filename)

142

Abacus 4.1 AmigaDOS 13 Commands

When Pure is unset, a file can still be loaded using resident by

adding Pure. The message Pure bit not set is displayed in this

case. The PURE argument should be used with caution because

programs where the Pure flag is not set are not usually re-entrant.

REMOVE The remove argument eliminates an entry from the list of resident

files. The following example removes the execute command from

the list:

RESIDENT EXECUTE REMOVE

The UseCount value of a system segment is set at -1. Because an entry

can only be removed when UseCount is at zero, a segment cannot be

erased using REMOVE.

ADD The ADD argument makes it possible to make more commands or

segments resident*

REPLACE The replace argument replaces any command (or segment) with a

command (or segment) already in the list Because an entry can only be

removed when UseCount is at zero, an active command cannot be

replaced. For example, if the execute command was resident,

entering the following would replace it with the date command:

RESIDENT EXECUTE DATE REPLACE

Workbench 2.0 implementation:

Syntax: resident name,file,remove/s,add/s,replace/s,pure=force/s,

SYSTEM/S

AmigaDOS Version 2.0 was rewritten for compactness and speed, and

many of the commands have been made internal commands. Entering

resident SYSTEM will display a list of resident commands,

internal commands and system segments.

To keep the AmigaDOS system as flexible as possible the internal

commands can be controlled with the remove argument. You can

remove internal commands using the remove argument and add your

own commands. The AmigaDOS internal commands can be activated

again with the REPLACE argument

The PURE argument can now also be called with FORCE.

143

4. More AmigaDOS Commands AmigaDOS Inside and Out

The foUowing is a list of the AmigaDOS 2.0 internal commands:

1. SYS:> RESIDENT

NAME

Assign

List

Execute

Alias

Ask

CD

Echo

Else

EndCLI

Endlf

EndShell

EndSkip

Failat

Fault

Get

Getenv

If

Lab

NewCLI

NewShell

Path

Prompt

Quit

Resident

Run

Set

Setenv

Skip

Stack

Unalias

Unset

Unsetenv

Why

FileHandler

Restart

Shell

CLI

1. SYS:>

SYSTEM

USE COUNT .

0

0

0

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

SYSTEM

SYSTEM

SYSTEM

SYSTEM

144

Abacus 4.1 AmigaDOS 13 Commands

4.1,7 SETPATCH

Workbench 1.3 implementation:

Syntax: setpatch r

This command is found in the startup sequence on Workbench

diskettes, setpatch is used to patch or add updates to die operating

system. New versions of setpatch will be made available as the

AmigaDOS system is improved.

In Workbench 1.3 it modified the Kernal so that a Guru Meditation

does not follow a Recoverable Alert. The R argument in 1.3 allows the

recoverable ramdrive.device to work with the new 1 MEG chip ram

machines, the 68010 and allow RUN to be used from the resident list.

Workbench 2.0 implementation:

Syntax: SETPATCH

The new ROMS have been corrected so the R option is no longer

necessary. New versions of setpatch will be made available as the

AmigaDOS system is improved.

4.1.8 setenv/getenv

Syntax: SETENV NAME/A, String

GETENV NAME/A

These commands allow the use of environment variables. Environment

variable are stored in the ENV:, which in 1.3 is the RAM: disk. To

remove a definition use SETENV NAME, the variable will remain in

ENV:, but it will be empty.

Workbench 2.0 implementation:

Syntax: SETENV NAME/A, String
GETENV NAME/A

Entering SETENV without parameters will display the current

environment variables. The SETENV and GETENV commands have

been optimized for compactness and speed. The commands are now also

145

4. More AmigaDOS Commands AmigaDOS Inside and Out

internal AmigaDOS commands. LOCAL and GLOBAL environmental

variable may be implemented in the next release of AmigaDOS.

4.1.9 ICONX

Workbench 1.3 implementation:

This command allows you to call a script file from the Workbench by
double clicking on it with the mouse. The following must be done
beforehand

Create a Project icon for the script file with the help of the icon

editor on the Extras disk. The SHELL icon is loaded into the

editor from the Workbench, modified and then saved under the
name of the script file.

• Open the disk drawer with the new icon, click on the icon and

choose the Information item from the Icon menu (in 1.3

the Info menu item from the Workbench menu.) The

SYS: C: ICONX command must be entered in the Default

Tool gadget. Save the Information window. The script file

can now be called by double clicking on the icon. Descriptions

about the window size for the output of the script files can be

made in the Tool Types string gadget in the Information
window. For example:

TOOL TYPE WINDOW=CON:0/0/400/100/Script window

The window can stay open after processing the script file by entering
the following:

TOOL TYPE DELAY=1000

Delay time must be given in 1/60 seconds.

You can use the extended selection capabilities of the Workbench to

pass the Workbench file to the script file. The selected files appear to

the script file as keywords, therefore the . key keyword must be on the
first line of the script file.

Workbench 2.0 implementation:

Operation is identical to Workbench 1.3 but the command has been

optimized for compactness and speed.

146

Abacus 4.1 AmigaDOS 2.0 Commands

4.2 AmigaDOS 2.0 Commands

Some new, very useful commands have been added to AmigaDOS 2.0

internally. This section will explain these new commands.

4.2.1 MAKELINK

Syntax: MAKELINK [FROM] <name> TO <name2> [HARD]

Creates a file that points to another file. When the first file is specified,

the linked file is called. The default is "soft-linked11 files, which means

the linked file can be on another diskette.

FROM <name> The name of the original file.

TO <name2> The name of the linked file.

HARD Files will not be linked across volumes.

4.2.2 UNALIAS

Syntax: unalias name

Removes an alias from the alias list.

NAME The name of the alias to remove.

V2 . 0 AmigaDOS 2.0 internal command.

147

4. More AmigaDOS Commands AmigaDOS Inside and Out

4.2.3 UNSET/UNSETENV

Syntax: unset name
UNSETENV NAME

Unset an environmental variable.

NAME The name of the variable to unset.

V2 . 0 AmigaDOS 2.0 internal command.

148

5.

AmigaDOS

Tricks

and

Tips

Abacus 5. AmigaDOS Tricks and Tips

5. AmigaDOS

Tricks and Tips

The purpose of this chapter is to solve some of the problems that you

may sooner or later encounter while you work with AmigaDOS. Some

of these items have been known in the Amiga community for a long

time; others are "hot off the press."

In addition to these tricks and tips, you'll also find plenty of additional

information and advice about AmigaDOS.

151

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

5.1 Input and Output in AmigaDOS

You have probably wished that you could just press a key in

AmigaDOS and have the output go the printer. What exactly starts the

output? If you said, <cPressing the <Return> or <Enter> key", you'd be

half right. There's more to it than pressing a key. You can also execute

the printout by pressing the <Backspace> (<-) key.

Running output in the background can almost act as a completely

different task. It's possible to enter a new command,while an old

command is still working. Not all output can be carried on

simultaneously, so the new command waits until the old command is

finished executing. This has nothing to do with the multitasking

capability of the Amiga, since DOS commands are always executed one

after another. In spite of this, work can be done somewhat faster

because DOS is active through all of this. An example:

COPY text TO duplicate

DELETE text

If for some reason the copy operation is uncompleted (e.g., the disk is

full), the data file text is lost. Now there is neither a copy nor the

original. A tip: The DiskDoctor can sometimes help in such a

situation. It's assumed that no writing has taken place to the blocks of

the data file. This should be checked out in any case.

152

Abacus 5.2 Wildcards

5.2 Wildcards

MS-DOS users who upgraded to an Amiga miss the old * and ?

wildcard characters. These characters made it possible to enter a shorter

filename on the older generation computers (e.g., IBM, VIC20, C64).

If the user wanted to erase the files named test (testl, test2,

test3, etc.) from a disk, the DEL command used in conjunction with

the name test* deleted all these files, and any other files beginning

with the letters "test". If the user wanted to deal only with those data

files whose names are five letters long, the question mark could be used

(e.g., DEL "test?"). A file named testlversion in this case

would remain untouched. The two wildcards can be combined. For

example:

"????version*"

In this case all the files with the word "version" in them starting at the

fifth position and having any letters after that are addressed. The

following data filenames would fulfill the requirements of this example:

TestVersionl

LastVersionOfToday

FourVersion

Those new to computers can get the idea of wildcards from these

examples.

The number sign (#) can be used in place of the asterisk on the Amiga.

The question mark looks for an exact character position in the filename.

The # sign is as flexible as the asterisk. As you may know, a number

sign at the beginning of a filename sometimes means nothing more

than a word or number. Sometimes a numeric value is also expected

behind it. For example, the dir command can be enlarged by adding

Test*3a so that it searches only for those filenames that start with

Test and end in three A's. This function is not patterned after the

asterisk. If, instead of the number, you entered a question mark, the

characters following the question mark would be ignored. The number

sign combined with the question mark becomes the equivalent of the

asterisk wildcard. For example, the following input displays all files in

the directory ending with .info:

DIR #?.info

A few examples follow. Their purpose is to show the use of the

wildcard options.

153

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

Filenames: Cat.l l.Dog

Cat.2 2.Dog

Catnip Doggy

Pussycat WienerJOog

DIR 1. Cat.?

versions: 2. C#?
3.??????????

4.#?

5. Dog?????

6.#?Dog

7. ??#2s#?

The following would be the results if each of the above DIR commands

were entered*

1: Cat.l, Cat.2

2: Cat. 1, Cat.2, Catnip

3: Wiener_Dog

4: all files

5: no files

6: l.Dog,2.Dog,Wiener_Dog

7: Pussycat

The last example clearly shows that many combinations are possible as

long as they make sense.

154

Abacus 53 breaking in AmigaDOS

5.3 Breaking in AmigaDOS

Keyboard The Amiga doesn't have a <Run/Stop> key like the C64 or a <Break>
breaks key like an IBM. But it's possible to stop the execution of an

AmigaDOS command by pressing <CtrlxC>. All AmigaDOS
commands react by returning to the program from which they were

called (in most cases, AmigaDOS itself). As a reminder of ending

before the command was finished, the message *** Break appears.

The three asterisks indicate an interruption of type C. From this type of

interruption comes <CtrlxD> through <CtrlxF>. Each <Ctrl>

break has its own advantages. <CtrlxD> works only in conjunction

with the search and execute commands.

The SEARCH command, which can search entire directories for a given

character string, reacts to <CtrlxC> like every other command: The

command stops. If <CtrlxD> is used, the file being searched at the

time is dropped and the next file searched. The <CtrlxD> command is

a less suitable break command than <CtrlxC>.

It is somewhat more difficult with the EXECUTE command. <Ctrl>

<D> stops execution of script files made up of AmigaDOS commands

(see Chapter 6 for more details on script files).

Basically, <CtrlxC> has a higher priority than <CtrlxD> for the

execution of a AmigaDOS command within a script file. The

AmigaDOS command that is currently running ends, and control

returns to the DOS level. When it leaves the command, it leaves an

error code (error number >= 10) when it returns to execute, so that

the script file is left under the output of the message (example:

<CtrlxC> for carrying out the search command). If the command

returns to the DOS level without a message, the script file works as

normal (Example: <CtrlxC> for carrying out the Dir command).

<CtrlxD> has a special function for the execute command. By

entering this key combination, the active AmigaDOS command of

the script file finishes its work and then execution of the text file is

stopped. This can cause problems when the AmigaDOS command itself

reacts to <CtrlxD>:

The SEARCH command responds to <CtrlxD>. If <CtrlxD> is used

while this command is working through a script file, the SEARCH

command reacts and not execute. After the SEARCH operation ends,

the script file isn't left unless there are no more commands.

155

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

Command If you start a command using run, an independent task starts. No more

breaks input can be sent to it from the original AmigaDOS window. This is
treated as a "non-interactive process". Only the output is shown on the

screen. A sample:

RUN DIR DFO:

After the input of the new number that is given for this process (for
example [2]), the main directory of the disk is displayed in the

AmigaDOS window. The command no longer reacts to <Ctrl><C>.

There is a way to exit a non-interactive process. The AmigaDOS

break command acts like the <Ctrl> key. The command waits for the

number to be stopped and the associated letter of the branch interrupted

(c-f). If all of the interrupt calls should be used, the all argument can

be used to do this.

For interrupting the directory output of the above example the

command must read:

BREAK 2 C

The break command can stop operation of a command that was

entered in a different AmigaDOS window than the one that is presently

active. The number of the process that corresponds to AmigaDOS

window must simply be entered.

156

Abacus 5.4 The RAM Disk and AmigaDOS

5.4 The RAM Disk and AmigaDOS

This section is for the user who has only one disk drive. Difficulties

frequently arise with this minimal configuration. These can be eased

with the help of the RAM disk. The fortunate user can buy more

floppy drives but the addition of a RAM disk can be much more

rewarding.

Single drive Copying a single data file or an entire drawer using two disk drives is
copies no problem. The Copy command can read:

COPY DFO:Utilities/Notepad DFl:Helpprogram

How do you copy with only one drive? One option is to give the name

of the disk instead of the drive number. For example:

COPY FROM BeckerText:Letters/Peter TO Text:Letters

DOS automatically alternates between these disks and ignores the drive

number. This method has two disadvantages:

1. The name of the two disks must always be known

2. Many disk swaps must be made, even for a short file

The best method uses the RAM disk for storing the file before it goes

to the destination disk. First the disk that contains the file to be copied

is placed in the drive. The desired file is copied to the RAM disk using

the copy command. Then the destination disk is placed in the drive and

the desired file is copied onto it from the RAM disk. The following

process copies the entire C: directory to another disk:

1. (insert source disk)

2. copy dfo:c ram: (copy the directory contents to RAM disk)

3. (insert destination disk)

4. makedir dfo:c (create directory named "c")

5. copy ram: dfo:c (copy directory contents to destination disk)

The operation can only function when the COPY and makedir

commands have been made resident with the RESIDENT command or

have been copied to the RAM disk and the system was informed using

Assign or Path. The two commands must be available when the

system disk is not in the drive.

After the copy operation, the data in the RAM disk should be erased so

the memory can be returned to the system. The following command

erases the entire C directory that was placed in the RAM disk.

DELETE RAM:C ALL

157

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

5.5 Printing from AmigaDOS

Those of you that do a lot of printing from the Workbench should get

your money's worth from this section. This section deals with the

basics of printing from AmigaDOS, the problems that can occur and

some solutions.

5.5.1 File printout with COPY

COPY enables the duplication of an entire directory or a single data file.

The argument template reads:

COPY FROM,TO/A,ALL/S,QUIET/S

A quick recap: The FROM and TO arguments specify the source and

destination of the operation; the all argument copies all files from the

from directory, quiet performs a "quiet" execution of the command

(it suppresses the output of the command).

COPY can access any connected device—it isn't limited to the floppy or

hard disk. The possible data flow directions depend on each device. For

example, the printer cannot be used as a data source; it can only be used

as a destination device. A disk drive can be used for reading and writing.

Enter the ASSIGN command without arguments, and look under the

Devices heading:

DFO DF1 PRT PAR SER RAW CON RAM

We are only interested in the printer (PRT:) device to now.

The following command gives you a printout of a text file:

COPY name_of__file TO PRT:

Which output format should you use? That depends on the parameters

set in the Preferences editors. Also, if a serial data transfer is

desired, Preferences handles the printer as a serial device instead of

a parallel device.

158

Abacus 5.5 Printing from AmigaDOS

The printer device is easy to setup using Preferences. A program

that sends data to the printer needs no more provisions than an interface

type, printing width and paper length. The command characters for the

printer are inserted so the data can be interpreted. For special uses this

can be avoided by using the rough drivers par : and SER:. Data goes

directly to the peripheral.

5.5.2 Redirecting output

Output can be sent to any device using DOS commands. The screen is

usually the default device. There's no reason why you couldn't change

that output device. The following example would send the directory of

the current disk out the serial port (you could transmit your directory

through a modem if you want):

DIR > SER:

All devices that can receive data can be replaced by the prt : (printer)

device. Simply enter the command, a space, a greater than sign, a space

and the device name (PRT:). The following example prints the current

main directory:

DIR > PRT:

The following example prints all the directories on the current disk:

DIR > PRT: opt a

The following example prints all the directories on the RAM disk:

DIR > PRT: ram: opt a

The following example prints the text Hello:

ECHO > PRT: "Hello"

The following example prints the startup sequence:

TYOE >PRT: DFO:S/Startup-sequence

159

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

5.5.3 Printer control characters

The printer drivers in Preferences have a few things missing. You

can't easily use foreign character sets or double-strike mode. You can

get around this in AmigaBASIC using the CHR$ command (see your

AmigaBASIC manual or Abacus9 AmigaBASIC Inside and Out).

AmigaDOS has no equivalent of CHR$, so another way must be found.

The basic problem with control codes is that they can't be accessed

directly from the keyboard. A few can be accessed by pressing <Ctrl>

and another key. For example, control code IS enables condensed mode

on most Epson printers. The user can access this by pressing <Ctrl>

<O>. Every control character has a corresponding letter. But be careful:

The O is really an uppercase O and not a lowercase o (remember to

press the <Shift> key). You cannot see control codes on the screen

when they are entered, but that doesn't matter. The important thing is

that the printer understands them. The user must direct die output to the

printer.

The use of the ECHO command is applied here. It is used for special

output of text. The following example shows how ECHO is used in

conjunction with a control code (note the brackets):

ECHO > PRT: [Ctrl and O]

The brackets mean that you should enter the key combination, not the

text. The space before <CtrlxO> is required.

After the following command is input all text that is sent to the printer

will be printed in condensed mode.

ECHO > PRT: [Ctrl and T]

It's difficult to interrupt an AmigaDOS command by pressing

<CtrlxC>. A trick here is helpful. Using BASIC, create a file on the

disk that contains the command <CtrlxC> in the form CHR$(3)

(A=l, B=2, C=3). The following program shows you how:

OPEN "DF0:CTRL-C" FOR OUTPUT AS #1

PRINT#1, CHR$(3);

CLOSE#1

Run the BASIC program and return to AmigaDOS. Now <CtrlxC>

can be sent by using one of these two commands:

COPY FROM DF0:CTRL-C TO PRT:

TYPE >PRT: DF0:CTRL-C

160

Abacus 5.5 Printing from AmigaDOS

Next is a multiple-number escape sequence. This covers all of the

printer control codes that can be accessed through the <Esc> character.

At least one <Ctrl> character follows each <Esc> command. The

<Esc> key can be found in the upper left hand corner of the keyboard.

A typical Epson command entered in BASIC serves as an example. The

CHR$ (9) enables the Amiga's Norwegian character set:

PRINT#1,CHR$(27);"R";CHR$(9);

The AmigaDOS equivalent looks like this:

ECHO >PRT: [ESC]R[Ctrl I]

A space must follow the colon, but there cannot be one before or after

theR.

Of course some difficulty can arise when you work with other

languages. C programmers use brackets [] and braces {}. They can be

accessed by using the American character set if you enter a letter in the

alphabet before "A": CHR$ (0) is used. Again, a BASIC program that

has the desired sequence in a file is of some help:

OPEN "DFO:USA-Set" FOR OUTPUT AS #1

PRINT#1,CHR$<27);"R";CHR$(0) ;

CLOSE #1

Run it and copy the file to your AmigaDOS work disk. The following

line activates the new character set:

COPY USA-Set PRT:

161

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

5.6 Using the Console Device

The Console device permits a few added features in AmigaDOS. The

following section should give a few experiments with this device.

Basically, all output created from AmigaDOS commands from the

current window can be directed to any device. It is sometimes useful to

direct output to a specified window. For example, if you want to see

the main directory of a disk then return to AmigaDOS, you don't have

to open a new window using the newshell command. The following

command displays the main directory of the disk in drive zero in a
specified window:

RUN DIR > CON:10/10/400/100/main DFO:

You can stop the display at any time by clicking on the window and

pressing any key. The output continues if the <Return> key is pressed.

The window automatically disappears after the command finishes
executing.

Printer! Nothing is easier from AmigaDOS than turning a connected printer
typewriter into a typewriter. The following command is all it takes:

COPY * TO PRT:

The asterisk, which represents the current AmigaDOS window, causes

all input to be sent to the printer after the <Return> key is pressed. An

advantage over a normal typewriter is that you can correct the line of

text before pressing the <Return> key. The entire line can be erased by

pressing <CtrlxX>. Pressing <Ctrl><\> returns the user to

AmigaDOS prompt.

Creating There are times when you may need a text file in a hurry. To quickly
text files create a small text file, the following will suffice:

COPY * to DFO:text

The difference between this command and the one in the previous

section is that this command sends the characters to the disk drive

instead of the printer. There they are placed in a data file under the name

text. You can edit these files later using ED or Edit. This function

can also be ended by entering <Ctrlxvo.

Appending If you want to append one text file to another, use the following

text files command sequence:

JOIN CON:10/10/400/100/Input DFOrtextdatafile AS DFOmewdata

162

Abacus 5.6 Using the Console Device

AmigaDOS

alarm clock

Keyboard/

ASCII

conversion

The JOIN command merges data files together. In this case, the first

data file is in a CON window and the second file is a text file that

already exists on the disk. The result is stored under the name

Newdata on drive DFO:.

After entering the command, a window of the given dimensions appear.

The entry that is going to start the text file can be entered here.

Pressing <Ctrl><\> concludes the input and stores the resulting file on

the disk under the given name.

Naturally the input can be added to the end of the text file. The first two

parameters after the join command must be exchanged:

JOIN DFOrtextdatafile con:10/10/400/100/Input AS DFOrnewdata

You may find yourself losing track of time during these AmigaDOS

sessions. There's the clock on the Workbench disk that can be

programmed to sound an alarm. But it has a few disadvantages. First, it

takes a long time to load. Second, it requires too much memory. Third,

only absolute alarm times can be programmed. Finally, an alarm time

must be preset

The following lines create a low-budget alarm clock, donft forget the

plus (+) sign in the first line:

RUN WAIT 10 MIN + (Return)

ECHO "Hey, the coffee's done !" (Return)

Unfortunately the output always appears in the window from which the

process was started. To see the clock you should remember that this

AmigaDOS window can never cover another window.

You can make the screen flash when your time is up. To do this, the

command code must be enlarged by adding <Ctrlxg>. The revised

code looks like this:

RUN WAIT 10 min + (Return)

ECHO [Ctrl g]"Hey, the coffee's done !" (Return)

The wait command makes the alarm go off at an actual clock time

(see Chapter 3 for details of Wait). You may wish to create a text file

with the alarm message and then type the text file to the speak:

device for an audible alarm!

Because AmigaDOS clock is a separate task, you can set more than one

alarm clock at a time. If you open the maximum number of tasks (20),

AmigaDOS slows down.

Knowing the ASCII codes of all of the keyboard characters on the

Amiga can be helpful when programming. Before you buy a book to

look this up, enter the following line from AmigaDOS:

163

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

TYPE CON:300/10/150/50/Converter YO * OPT H

A small window appears in the upper right hand corner of the screen,

into which you enter the characters for which you need to know the hex

ASCII codes. The input must always be 16 characters. For example, if
you want to find the hex ASCII code for the letters S and J, enter the

two characters and press the <Return> key 14 times. The result appears

in AmigaDOS window. The letters have the hex ASCII codes $73 and
$6A, respectively. The rest of the places are occupied by the characters
representing the <Return> key ($0A). The statements are always in

hexadecimal format This function can be stopped using Cl^

164

Abacus 5-7 Using the Serial Device

5.7 Using the Serial Device

Everyone knows about the multitasking capabilities of the Amiga. It is
known as a true multi-user system. This enables multiple terminals to

be connected to one central unit Such a terminal can be any screen and
keyboard that sends the entered characters to the central unit, and
receives the information that the central unit gives. The task of the
central unit is, in the case of the Amiga, to work on more than one

program at a time.

The function of a terminal can theoretically be taken over by any small
computer (e.g., Model 100, C64, Atari ST, etc.) interfaced to the

central unit with the correct connection (null modem cable). Because
the standard unexpanded Amiga can only address one serial connection,

additional terminals can only be added by using extensive hardware and

software.

We've tried this. Our configuration used a IBM 386 PC compatible as
the terminal, and an Amiga 2000 with a hard drive and two floppy disk

drives as the central unit. We used a null modem cable; you could make

the connecting cable yourself. Each end had a DB-25 connector, joined
to a 7-wire cable. The length of the cable is relatively unimportant

because a serial transfer is not very susceptible to trouble. The

connection looked like the following:

Pin with Pin Function: _

2 3 TXD->RXD (sender - receiver)

3 2 RXD<-TXD (receiver - sender)

4 5 RTS->CTS (handshake one direction)

5 4 CTS<-RTS (handshake other direction)

6 20 DTR->DSR (function control)

20 6 DSR<-DTR (function control)

7 7 GND (ground)

Notice the completely symmetrical pinout. It doesn't make any

difference which end is connected to which computer. When buying the

DB-25 you should pay attention to the case: Some of the gray DB

plugs fit poorly in the Amiga. The connectors that bolt into the Amiga

connector are better yet (and naturally a little more expensive). These

can be used to connect an Atari ST computer as a terminal as well.

Many inexpensive display terminals are readily available. Any of these

could be hooked up to your Amiga for all your AmigaDOS needs,

freeing up your Amiga keyboard and Workbench for serious Amiga

graphics work.

Our cable supported 3 wire handshake (xON, xOFF) and also the RTS/

CTS handshake.

165

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

Attention: Make sure both computers are turned off before connecting the two.
The 8520 chip and the RS-232 system will continue to work as long as
you follow this rule.

For our first try in AmigaDOS we entered and saved the following
parameters in the Amiga computer with the help of the

Preferences programs. The communication program running on
the PC was also set to these parameters:

Baud rate

Buffo-Size

Read Bits

Write Bits

Stop Bits

Parity

Handshaking

9600

512

8

8

2

None

RTS/CTS

After making sure the AUX: device was mounted (ASSIGN
DEVICES), we then entered the following command to activate the
remote terminal:

NEWSHELL AUX:

We now had a true multi-user system for almost no cost

Note: The following only works on Amigafs running Workbench/KickStart
1.3, Workbench 2.0 added other more powerful methods of
programming debugging. We have one more use for the cable. Change
the command used to load the Workbench to read:

loadwb -debug

After starting the Workbench everything looks normal. Press the right
mouse button and move the pointer around on the menu bar. Suddenly

an untitled menu appears, containing two items: Debug and
Flushlibs.

It's now possible to display a debugging message on a second computer
through the ROM-Wack (a kind of diagnosis program), in case a Task
Held or Guru Meditation occurs.

If the computer hangs up and the right mouse button is pressed (press
the right button to cancel/debug), the memory of the Amiga computer
can be examined with a terminal program on another connected
computer. The Debug item enables the ROM-Wack if no interruption

takes place. The Flushlibs item normally doesn't do anything
visible (we couldn't figure out the purpose of this item). Now for an
example:

The Amiga is connected to another computer by an RS-232 null
modem cable. The following lines create a Task Held condition in an
Amiga running Workbench 1.3:

166

Abacus 5.7 Using the Serial Device

mount resO:

DIR > resO:

The resO: device is found in the data file MountList of the devs

directory. If this device is integrated into the Amiga and output is sent

to it, the Task Held condition usually appears.

If the right mouse key is pressed, a Guru Meditation appears. Pressing

the right mouse button again causes the following output on the

computer connected as a terminal:

rom-track

PC: FE66E8 SR: 0015 USP: 022B32 SSP: 07FFF2 XCPT: 0003 TASK: 0221A0

DR: 0000FFFF 0000FFFF 0001C815 00000001 00000000 00022394 OOO221FC 00000019

AR: 000231B5 ABABABAB 00023090 00022394 00FF4834 00005D4A 000045B8

SF: 2271 ABAB ABDD 2269 0015 OOFE 66E8 0000 0000 0000 0676 00FC 07DC 00FC 07DE

Assembler experts can analyze this statement and can send command

via ROM-Wack to the interrupted computer. Pressing a question mark

on the computer connected as a terminal shows a list of the commands

that the ROM-Wack recognizes:

alter boot clear fill find go is limit list regs reset resume set show user

Here are their important commands:

Alter changes the contents of the memory

Boot the interrupted computer is re-booted

Clear memory area is cleared

Fill memory area is filled

Find memory area searches for a certain hex value

Go starts program

Regs shows the contents of the register

Reset (behaves like "boot")

Resume If Debug was chosen from the Workbench, the Workbench

is activated again

The address area is changed so that a new address can simply be entered

(without each command).

We dealt with the Task structure that begins at $0221A0 in the

example (see register notices under Task). The command simply reads:

"0221a0"

This gave the following message:

0221A0 0000 0810 0000 080C 0D0A 0002 2BB6 0002 *H~P *H*L*M~J..AB + AB

With the help of the Abacus Amiga System Programmer's

Guide, we pushed the address where the pointer for the name of the

interrupt task was contained. It is the address <4022BB6" from the above

line. Here it reads:

022BB6 5245 5330 0000 0000 0000 0002 3338 0000 RESO 3 8

167

5. AmigaDOS Tricks and Tips AmigaDOS Inside and Out

It was really the task ResO that caused the Amiga to hang up. It is

nice to know why a program causes a Guru Meditation. In a Task Held
condition, the memory of the Amiga can be examined by a monitor
program that was started from a second CLI process.

The interesting ROM-Wack function clearly shows that the RS-232
connection can function exactly as it is expected. Data transfer at 9600
baud functions flawlessly.

168

6.

Script Files

Abacus 6. Script Files

6. Script Files

All computers that have forms of DOS (Disk Operating Systems) have

some form of script file processing capability. AmigaDOS is no

exception. Script files are similar to batch files on MS-DOS

computers.

This chapter shows you what can be done with this technique and how

it is done on the Amiga. In addition, you'll find a number of practical

uses for script files that you might not have thought of before.

171

6. Script Files AmigaDOS Inside and Out

6.1 Introduction to Script File

Processing

The following sections will acquaint you with script file processing on

the Amiga. We'll see at the end of this introduction if you understand
more or less about this subject

6.1.1 What are script files ?

Basically, AmigaDOS commands make up their own small

programming language. For example, the ECHO command can be

compared to the AmigaBASIC PRINT statement. The only problem is

that AmigaDOS commands can only be entered in direct mode;

AmigaDOS has no program mode like BASIC. The command executes

after pressing the <Return> key. The most important feature of a

programming language is missing: The commands cannot be stored.

Script files are text files that can be created in a word processing

program or text editor. These files consist of a succession of

AmigaDOS commands. It doesn't matter whether you create a script

file using ED, BeckerText, the Notepad or whatever, just as long as the

text is saved in ASCII format. The file can be saved under any name.

6.1.2 What script files look like

The simplest script files consist entirely of AmigaDOS commands,

like the ones that you enter in the Shell. Each line can only contain

one command. Comments are allowed; they must be separated from the

command by a semicolon, and the length is limited to the length of the

respective line.

A very simple script file can look like this:

COPY testt? testprogram ; copies all test versions into

DELETE testt? ; a special drawer and erases

; them from the main directory

172

Abacus 6.1 Introduction to Script File Processing

Besides the "normal" AmigaDOS commands allowed in script files, a

list of special commands exist, whose use in AmigaDOS windows

wouldn't really make sense. They are the commands:

ECHO

FAILAT

QUIT

IF/ELSE/ENDIF

SKIP/LAB

ASK

WAIT

If the commands IF, else and end IF did not exist, a script file

would have to be executed from top to bottom, without any potential

for blanching. The additional commands make it possible to change the

program flow. A detailed description of these commands can be found

in Section 2.3.

6.1.3 Calling script files

The execute command runs the script files (see Section 2.3 for

details of this command). In the simplest case, you would enter

execute then the name of the script file you want to run. The

following example runs the Myscript file on drive DFO:, if the file

is available:

EXECUTE DFO:myscript

After Myscript executes AmigaDOS is ready to execute new
commands.

It's very practical to use a background task for running script files. For

this, the script file can be called using the RUN command:

RUN EEXECUTE DFO:Myscript

The operating system separates execute command sequences so that

while the script file is running, further work can be done in the current

AmigaDOS window. Eventually, output appears in the AmigaDOS

window because a background task that is not interactive does not have
its own output window.

173

6. Script Files AmigaDOS Inside and Out

6.1.4 A simple example

To close this short introduction, we want to go through a simple

example step by step to show how a script file is created and

configured.

In most cases, a script file is built using ED. This program uses the

normal AmigaDOS commands and makes it easy to work on short

texts. This is the perfect tool for script files. It is also possible to work

with TextPro, BeckerText, Notepad or any other word processor that

saves its text as ASCII data.

Assignment: Write a script file that lists many of the typical AmigaDOS script file
commands on the screen. The file should contain the names of the

commands.

Solution: You must open an AmigaDOS window. ED must be called using the
following syntax:

ED Commands

After a while the empty input window of ED appears. Because no file

with this name exists, the message Creating new file appears in

the lower left corner of the screen. Now the required commands can be

entered:

/Commands

ECHO "EXECUTE"

ECHO "ECHO"

ECHO "FAILAT"

ECHO "QUIT"

ECHO "IF/ELSE/ENDIF"

ECHO "SKIP/LAB"

ECHO "ASK"

ECHO "WAIT"

Press the <Esc> key then the <x> key to save the file under the given

name in the actual directory and exit ED.

Now you can execute this script file using the EXECUTE command.

Enter the following:

EXECUTE Commands

The result that appears in the CLI window looks like this:

EXECUTE

ECHO

FAILAT

174

Abacus 6.1 Introduction to Script File Processing

QUIT

IF/ELSE/ENDIF

SKIP/LAB

ASK

WAIT

See Section 2.4.1 for detailed information about using ED.

175

6. Script Files AmigaDOS Inside and Out

6.2 Modifying the Startup-sequence

You now know what a script file is and how to use it. For many who

heard about the concept for the first time in Section 6.1, you may not

have known that your Amiga executes a script file every time you turn
it on.

Before we explain this, we would like you to make a copy of your

original Workbench disk. When the Workbench disk is mentioned in

later sections, you should be using your backup copy, not the original.

Store the original copy in a safe place.

Open an AmigaDOS window and place the Workbench disk in drive

DFO:. Enter the DIR DFO : S command. A file named Startup-

sequence is found in this directory. Before this file is displayed it is

a good idea to make the AmigaDOS window as large as possible. Now
enter:

TYPEDFO:S/Startup-sequence

After the drive runs for a short time, the contents of the file is displayed

on the screen. We recommend that you have your mouse in hand right

after you press the <Return> key. Press and hold the right mouse

button to stop the scrolling of the screen; release the right mouse

button to continue the scrolling. The Workbench Startup-sequence

appears on the screen (an Amiga 500 Startup-sequence is given here;

the Amiga 200 Startup-sequence is longer).

If you take a good look at this file, you may notice that only

AmigaDOS commands are used. The commands of this file

automatically EXECUTE after you start the Amiga.

This file tells the computer what conditions should exist when it starts

(memory configuration, etc.). When you make changes to the Startup-

sequence, remember that they should only be made to the copy of the

Workbench disk. It's important that you have an unmodified

Workbench in reserve, in case you make a typing error.

Your Startup-sequence may vary since the Amiga system is

always expanding and improving.

c:SetPatch >NIL: r /patch system functions

Addbuffers dfO: 10

cd c:

echo "Amiga Workbench Disk. Release 1.3.2 version 34.32"

Sys:System/FastMemFirst ; C00000 memory to last in list

BindDrivers

SetClock load /load system time from real time clock

176

Abacus 6.2 Modifying the Startup-sequence

FF >NIL: -0 /speed up Text

resident CLI L:Shell-Seg SYSTEM pure add; activate Shell

resident c:Execute pure

mount newcon:

failat 11

run execute s:StartupII /This lets resident be used for

; /rest of script

wait >NIL: 5 mins /wait for StartupII to complete

; ;(will signal when done)

/

SYS:System/SetMap usal /Activate the ()/* on keypad

path ram: c: sys:utilities sys:system s: sys:prefs add

/ /set path for Workbench

LoadWB -debug /wait for inhibit to end before continuing

endcli >NIL:

A line here or there could be removed. We'll discuss each line in

succession, starting with the first. This line should not be deleted under

anv circumstances because this is where the system is "patched", or

modified a bit. It should be mentioned that the SETPATCH command

should only be entered once. This command should not be entered in

the AmigaDOS Shell.

Now we come to the second line. The value of the addbuffers

command could be changed from 10 to another value, but don't do it. It

should also be retained.

The next line changes to the AmigaDOS command directory, CD C:.

The ECHO command displays the startup message and lists the current

release and version number. The next command, fastmemfirst,

organizes the memory area and should stay. The BindDrivers

command should be eliminated if you don't have any memory or

hardware expansion in your computer.

Whether or not you keep the SETCLOCK line depends on if you have a

battery-powered realtime clock in your computer.

To obtain faster text output, the FF command must be used. This isn't

absolutely necessary. This means that the command can be removed.

The following resident command absolutely must be there,

otherwise the new Shell will not function. You can decide for

yourself whether the execute command and other commands should

be in the RESIDENT list. The new Shell needs the new Console

handler newcon:. Next the NEWCON: is mounted.

The failat command allows the following script file to be executed

even if it encounters errors. The StartupII script file is then

executed. Here is the StartupII script file:

177

6. Script Files AmigaDOS Inside and Out

Making

changes:

resident c:Resident pure

resident c:List pure /pre-load LIST and CD

resident c:CD pure

resident c:Mount pure /the next 3 are loaded for speed

during startup

resident c:Assign pure

resident c:Makedir pure

/make IF, ENDIF, ELSE, SKIP, ENDSKIP, and ECHO resident

/if you use scripts much, and can afford the ram.

/also make Failat, WAIT, and ENDCLI resident if you use

/IconX a lot

makedir ram:t

assign T: ram:t /set up T: directory for scripts

makedir ramienv / set up ENV: directory

assign ENV: ram:env

makedir ram:clipboards /set up CLIPS: assign

assign CLIPS: ramclipboards

mount speak: /just mounting doesn't take much ram at all

mount aux:

mount pipe:

resident Mount remove /if you have enough ram, keep these

resident

resident Assign remove /by removing these lines

resident Makedir remove

/

break 1 C /signal to other process its ok to finish

The first few commands make often used AmigaDOS commands

resident for faster processing of the script file. Next important system

directories are created and their paths assigned so that the Amiga can

locate these directories. The devices are then mounted into the Amiga

system. Finally commands are removed from the resident list

The BREAK command signals the Startup-sequence that the

Startupll sequence is finished. The Startup-sequence then

continues from the wait command.

The next two lines adding the path and setting the correct key map

should not be deleted. The following line loading the Workbench

should be left alone. This line should always be kept. The last line

closes the AmigaShell window. Whatever you want to add is up to

you. Remember that every line you add increases the duration of the

startup sequence.

You don't have to create a new sequence from scratch; just change the

old sequence. The easiest way to change the old one is to use the ED

editor from the Workbench disk.

Place the copy of the Workbench disk in drive DFO:. Enter the

following command sequence from the AmigaShell:

ED DFO:S/Startup-sequence

178

Abacus 6.2 Modifying the Startup-sequence

The drive runs for a short time. The editor starts and the original

Startup-sequence appears on the screen. The only thing that you

must do now is position the cursor, with the help of the cursor keys,

so that it stands in a line that isn't needed in your new startup sequence.

It doesn't matter where the cursor is in the line. To erase this line,

simply press <CtrlxB>. All of the lines that need to be erased can be

disposed of in the same manner. When all of the lines that don't belong

in the new startup sequence are erased, the text must be saved. Press the

<Esc> key, the <X> key and the <Return> key to save the edited texL

Now you have a faster Startup-sequence. Read the next section

to see how you can make further modifications to make your own

custom Startup-sequence.

6.2.1 A Custom Startup-sequence

In the previous section you discovered that it is possible to change the

Startup-sequence. The Startup-sequence can be made

more user-friendly. That means that the Startup-sequence has to

be lengthened by a few lines. In the end you'll have to decide which is

more important: speed or user-friendliness.

Because we want to modify the Startup-sequence again, we need

a basic setup. We took the shortened version from Section 6.2 and

edited it. The startup sequence of the Amiga 2000 can be edited in the

same manner.

Before we change the sequence make sure you are familiar with the ASK

command. In case you aren't, you should look back at Section 2.3.6.

Now back to the custom Startup-sequence. Have you ever been

annoyed that you had to click on an icon after startup before you could

have an AmigaDOS window? You can get around this problem by

deleting the line:

EndCLI > NIL:

The problem can be handled more elegantly by adding the ASK

command to the Startup-sequence. We would like to make a

suggestion as to how this would work. Insert the following lines in

your startup sequence before the last line.

ask "Would you like to open an AmigaDOS window ? (y/n) "

if warn

ask "A large (y) or small (n) AmigaDOS window?"

if warn

newcli "con:0/0/550/200/Startup AmigaDOS "

else

newcli "con:0/0/160/30/Startup AmigaDOS "

179

6. Script Files AmigaDOS Inside and Out

endif

endif

When you have finished adding this to your Startup-sequence,

you can see the results by pressing the <C=> key, right <Amiga> key

and the <Ctrl> key at the same time. Make sure to save the

Startup-sequence before you reset your Amiga.

The Startup-sequence re-EXECUTEs. Before it is completely

done, a question is asked:

Would you like to open an AmigaDOS window ? (Y/N)

You need to press the <Y> key or the <N> key, depending on whether

you want a window or not. <N> closes the window and you're back to

the Workbench. <Y> prompts another question: The program asks if

you want a large or small window. Regardless of what you enter, an

AmigaDOS window with the name Startup AmigaDOS opens.

<Y> opens a large window. Pressing <N> opens a very small window.

We only wanted to show that something like that is possible. This

principle of using ASK can be applied to other things as well. For

example, you could ask if the Workbench should be loaded or not.

When you are working with AmigaDOS, the icons aren't needed. This

can be accomplished easily by using the ASK command:

ask "Should the Workbench be loaded? (y/n)M

if warn

loadwb

endif

The LOADWB line in the Startup-sequence must be replaced by

the above four lines.

The two examples above are only a small portion of what can be done

to customize the Startup-sequence. You can arrange the sequence

to fulfill your wishes and needs.

6.2.2 Shell-startup sequence

There are more startup files in the S : directory. One is called the

Shell-Startup file. The Shell-Startup file is EXECUTEd

every time a Shell window is opened. AmigaDOS 1.3 has both a

CLI-Startup and a Shell-Startup file, Version 2.0 only has

the Shell-startup. In the CLI this is only the command Prompt "%N".

In the Shell the following command is used:

180

Abacus 6.2 Modifying the Startup-sequence

alias xcopy copy [] clone

alias endshell endcli

c:Prompt "%N.%S> "

The Shell-Startup file may contain more ALIAS commands.

What the alias command (toes and how it can be used is discussed at

the end of this chapter. There are also more examples for using the

ALIAS command. These examples can be integrated into the Shell-

Startup file. The Shell-Startup can be edited with an editor or

a word processor. The CLI-Startup can be edited in the same

manner, but the alias command is not allowed in the AmigaDOS

1.3 CLI only with the Shell.

The S: directory is a good place for storing your custom script files.

181

6. Script Files AmigaDOS Inside and Out

6.3 Practical Script Files

Using script files can save you a lot of typing and time. We have put

together some script files for you to examine. Even if you don't use

these files you should look at them for examples of what is possible.

You may want to create your own script files.

This book has an companion disk available for it. On this disk there is

a directory named Scripts. All script files in this chapter are found

in this directory. The names of each are found in a comment line at the

beginning of each program.

6.3.1 A special printer script file

Have you ever printed a file out on your printer? You may have noticed

that the text always has the same style. This section shows you how to

change this situation. To do this, a little knowledge about printers is

necessary.

Different control characters can be transmitted to the printer. These

control characters control the appearance of the printed text The Amiga

uses printer escape sequences that send commands to the printer. We

can send the printer escape codes with the help of the command:

COPY * TO PRT:

After entering this command and pressing the <Return> key, all

AmigaDOS input goes directly to the printer. You only have to enter

the desired command sequence on the keyboard. Since it's difficult to

place these escape sequences, which are generated from the keyboard,

inside a script file so that they can be sent to the printer, you must send

the data in an indirect way.

We put these printer escape codes in different files for that reason. We

would like to show an example of how this is done. In our example

we'll deal with the command sequence for the NLQ (near letter quality)

type style. Enter the following line in the ,,AmigaDOS window:

COPY * TO NLQ

182

Abacus 63 Practical Script Files

The drive runs a short time after you press the <Return> key. It creates

the file NLQ. All keyboard input that follows is sent directly to this

file. That means that no input is shown on the screen. You will be

typing "blind". When you enter the command sequence for the type

style NLQ, it can't contain any errors or it will not work. Pay special

attention when entering the following characters (Esc refers to the

<Esc> key):

ESC[2"z

After you press the <Return> key the drive runs for a short time. The

command sequence mentioned above goes to the file.

To return to normal mode, press <Ctrl x\>.

The procedure is the same for accessing Bold, Italic and Reset printer

type styles (just use the filenames Bold, Italics and Reset instead of

NLQ). The following printer escape sequences are translated using the

printer drivers included in the Preferences editors.

Printer

Escape sequence Meaning

<Esc>c Initialize (reset) printer

<Esc>#l Disable all other modes

<Esc>D Linefeed

<Esc>E Line feed+carriage return

<Esc>M One line up

Normal characters

Bold on

<Esc>[0m

<Esc>[lm

<Esc>[22m Bold off

<Esc>[3m Italics on

<Esc>[23m Italics off

<Esc>[4m Underlining on

<Esc>[24m Underlining off

<Esc>[xm Colors (x=30 - 39 [foreground] or 40 - 49 [background])

<Esc>[0w

<Esc>[2w

<Esc>[lw

<Esc>[4w

<Esc>[3w

<Esc>[6w

<Esc>[5w

<Esc>[2"z

<Esc>[lnz

<Esc>[4"z

<Esc>[3"z

<Esc>[6"z

<Esc>[5Mz

Normal text size

Elite on

Elite off

Condensed type on

Condensed type off

Enlarged type cm

Enlarged type off

NLQ on

NLQ off

Double strike on

Double strike off

Shadow type on

Shadow type off

183

6. Script Files

Printer

AmigaDOS Inside and oui

Escape sequence Meanins

<Esc>[2v

<Eso[lv

<Eso[4v

<Eso[3v

<Eso[0v

<Esc>[2p

<Eso[lp

<Eso[Op

<Esc>[xE

<Esc>[5F

<Esc>[7F

<Esc>[6F

<Esc>[OF

<Esc>[3F

<Esc>[lF

<Esc>[Oz

<Esc>[lz

<Esc>[xt

<Esc>[xq

<Esc>[Oq

<Esc>(B

<Esc>(R

<Esc>(K

<Esc>(A

<Esc>(E

<Esc>(H

<Esc>(Y

<Esc>(Z

<Esc>(J

<Esc>(6

<Esc>(C

<Esc>#9

<Esc>#0

<Esc>#8

<Esc>#2

<Esc>#3

<Esc>[xyr

<Esc>[xys

Superscript on

Superscript off

Subscript on

Subscript off

Back to normal type

Proportional type on

Proportional type off

Delete proportional spacing

Proportional spacing = x

Left justify

Right justify

Set block

Set block off

Justify letter width

Center justify

Line dimension 1/8 inch

Line dimension 1/6 inch

Page length set at x lines

Perforation jumps to x lines

Perforation jumping off

American character set

French character set

German character set

English character set

Danish character set (Nr.l)

Swedish character set

Italian character set

Spanish character set

Japanese character set

Norwegian character set

Danish character set (Nr.2)

Set left margin

Set right margin

Set header

Set footer

Delete margins

Header x lines from top; footer y lines from bottom

Set left margin (x) and right margin (y)

184

Abacus 63 Practical Script Files

Printer

Escape rewire Meaning
<Esc>H Set horizontal tab

<EsoJ Set vertical tab

<Eso[0g Delete horizontal tab

<Eso[3g Delete all horizontal tabs

<Eso[lg Delete vertical tab

<Eso[4g Delete all vertical tabs

<Esc>#4 Delete all tabs

<Esc>#5 Set standard tabs

The type face on the screen may change when you access the printer

type style. For example, when you EXECUTE the command sequence

for italics, the output on the screen appears in italics. This can be

solved by sending the command sequence for reset (<Escxc>) as the
last code you transmit. This resets all styles to normal.

The following script file uses the four script files NLQ, Bold,

italics and Reset contained on the companion diskette. The files

contain the appropriate printer escape sequences. The optional disk for

this book, named "AmigaDOS Opt Disk" contains these files in a

directory named Printer__routines. Copy or create these files and

place the four files in a directory with this name or alter the script file
so it can find them.

This is the script file referred to by the title of this section. Enter this

file using an editor and save it under the name Printer. You may

wish to change the disk name and path name to match your system.

.key Filename

/Printer

if "<Filename>" eq ""

ECHO "*nYou must enter a filename.*n"

quit

endif

if "<Filename>" eq "??"

ECHO "*n*nCall: EXECUTE Printer Filename*n"

ECHO "Don't forget to enter the path.*n"

quit

endif

if exists <Filename>

ask "Print the file in NLQ? (y/n) "

if warn

copy AMIGADOS_OPTDISK:Printer_routines/Nlq to prt:

else

ECHO "Ok, draft mode, then."

endif

ask "Print the file in bold type? (y/n)"

if warn

copy AMIGADOS_OPTDISK:Printer_routines/Bold to prt:

else

ECHO "Ok, no bold text, then."

endif

185

6. Script Files AmigaDOS Inside and Out

ask "Print the file in italics? (y/n)"

if warn

copy AMIGADOS_OPTDISK:Printer_routines/Italic to

prt:

else

ECHO "Ok, no italics, then."

endif

copy <Filename> to prt:

copy AMIGADOS_OPTDISK:Printer_routines/Reset to prt:

ECHO "Ready."

else

ECHO "Sorry...I can't find the file <Filename>."

endif

To print the Startup-sequence with this script file using the

companion diskette, enter the following on one line:

EXECUTE AMIGADOS_OPTDISK:SCRIPT_FILES/PRINTER

SYS:S/STARTUP-SEQUENCE

You may have to alter the above command depending on where you

stored the Printer script file. You can call it using EXECUTE, the

script filename and a filename to print. The questions are asked one

after another. Be sure that your printer is capable of each printer option

before answering each question.

When the questions have been answered, the Startup-sequence

file starts to print out in the selected type style. A different filename

can be substituted instead of the Startup-sequence. The

pathname must also be given if the file is stored in a subdirectory.

We used only three type styles. You can add more styles to the file if

you desire. Before doing this, the respective escape sequence must be

written to the file as described above.

6.3.2 Creating your own script files

Here are two more examples of creating your own script files. You

could consider these new commands, even though they are accessed

through the EXECUTE command.

BACKUP The first example copies any file on a diskette to a backup copy. The

newly created file is different from the original in name only (copies

have file extensions of .bak). Enter the following lines in an editor and
save them under the name Backup.

186

Abacus 63 Practical Script Files

.key Filename

;Backup

if "<Filename>" eq ""

ECHO "*nYou must enter a filename.*n"

quit

endif

if "<Filename>fI eq "??"

ECHO "*n*nCall: EXECUTE Backup Filename*n"

ECHO "Don't forget to enter a path.*nM

quit

endif

if exists <Filename>

copy <Filename> to <Filename>.bak

else

ECHO "*nSorry, I can't find the file <Filename>.*n"

endif

You can call it using EXECUTE, the script file and a filename. A

complete command line looks like the following:

EXECUTE BACKUP Filename

This creates a file that has the label Filename. bak.

WINDOW The second script file lets you open up to six AmigaDOS windows

with one common command line. Enter the following lines in an editor

and save the file under the name window.

.key number

/Window

if "<number>" eq "??"

ECHO "*n*nCall: EXECUTE Window number*n"

ECHO "Number must be between 1 and 6 inclusive.*n"

quit

endif

if "<number>" eq ""

ECHO "*nYou must enter the number of the window.*n"

quit

else

skip <number>

lab 6

newshell "con:0/0/319/59/A_CLI"

lab 5

newshell "con:320/0/319/59/A_CLI"

lab 4

newshell "con:0/60/319/59/A_CLI"

lab 3

newshell "con:320/60/319/59/A_CLI"

lab 2

newshell "con:0/120/319/59/A_CLI"

lab 1

newshell "con:320/120/319/59/A_CLI"

endif

187

6. Script Files AmigaDOS Inside and Out

The command can be called by entering the following, with the variable

n representing a number between 1 and 6 (be sure you are in the correct

directory):

EXECUTE WINDOW n

The Amiga may respond with an error message. This can be caused by

insufficient memory, or by the user entering a number outside the

allowable numeric range.

Note: Before we end this section, we want to give you a piece of advice
dealing with the t directory, the directory used for temporary storage. It

stores different files here after an execute command has been run.

These are used internally by the computer. When a script file is called

and the message Disk is write protected appears, don't panic.

The computer can only grab things from the T directory.

When working with a RAM disk, this message does not appear. The

Startup-sequence usually creates a t directory in the RAM disk.

6.3.3 Starting script files with the mouse

Have you noticed that you must do a lot of preparation with a script

file before you can start it? First you must double-click on the disk

icon, then open an AmigaDOS window. A script file can also be started

with a mouse click. AmigaDOS supplies a command that enables you

to avoid some of this work. This command is called iconx and is

found in the C: directory. Here's an example. Enter the following line

in the Shell:

ECHO >ram:Batch "dir dfO:*ncd ram:*ntype Batch"

With DIR RAM: you can check if the script file exists in the RAM

disk. The file can be EXECUTEd by entering EXECUTE ram : Batch

in the AmigaDOS Shell. This displays the contents of drive DFO:

on the screen followed by three command lines that display the contents

of the script file. What must be done so that this file can be started

with the mouse? First, we need an icon. This icon must be a project

icon like the AmigaDOS Shell icon. We will use this icon in our

example.

Exit to the Workbench. Open whatever drawers you need to get to the

Shell icon. Click once on the icon. Press and hold the right mouse

button. A menu bar appears in the first line of the screen. Workbench

2.0 users should select the Information item in the Icon menu,

1.3 users select the info item from the Workbench menu. An

information window appears. In 2.0 the name of the program is

listed and the type is listed (Project), in parentheses. In 1.3 the

188

Abacus 63 Practical Script Files

word type appears in the upper left hand corner. Right next to it is the

word Project. When the program is of type Project or TOOL,

this icon can be used for our purposes.

Open Shell again. Enter the following to copy the Shell icon

information to the Batch script file in the RAM disk:

Copy SYS:Shell.info RAM:Batch.info

When you have entered the command and pressed the <Return> key,

return to the Workbench. Double-click on the RAM disk icon. In the

window that appears you should recognize an icon possessing the name

of the script file. Click once on this icon. Then select the

Information item from the Icon menu (info from the

Workbench menu in 1.3). This displays the Information

window. Inside of this window is a string gadget containing the

default TOOL status. Click on this string gadget. Edit the text so

that it reads SYS: C/ iconX instead of SYS: System/CLI. This text

gives the path where the IconX command is found. After you have

entered the new text, click on the Save gadget The window disappears

from the screen. The Batch icon appears in the RAM disk window.

Double-click on it. This opens an IconX window. The same output

appears in this window as was displayed when the script file was started

with execute. After all of the output is given in the window, the

window remains open for a short time before it automatically closes.

The time that the window remains open can be increased by adding the

Wait 30 command to the script file. The window then remains open

for 30 seconds longer.

That was an example of how a script file can be started from the

Workbench. All script files can be started this way, with a few

exceptions. IconX executable script files can only contain commands

that can be entered directly in AmigaDOS. Commands like Skip,

Lab, if, etc. are not allowed. You can access disk drives other than

the RAM disk. You can edit the icon's appearance if you wish.

6,3.4 The Types script file

Hopefully you saved your work in the S: subdirectory on the

Workbench if you've created script files while working through this

book. That is where the Amiga looks for a script file if it is not found

in the current directory. The following script file displays the contents

of each file in a directory. You should be sure that the files in the given

directory are script files or text files; programs will print garbage when

they are displayed on the screen.

189

6. Script Files AmigaDOS Inside and Out

.key Directory

/Types

if "<Directory>" eq "??"

ECHO "*n*nCall: EXECUTE Types Directory*n"

ECHO "Don't forget to enter the path name.*n"

quit

endif

if "<Directory>" eq ""

ECHO "*n*nYou must enter a directory.*n"

quit

endif

if exists "<Directory>"

cd "<Directory>"

else

ECHO "I can't find the directory <Directory>.*n"

quit

endif

list >ram:Type.bat #? lformat="type %s"

EXECUTE ramrType.bat

delete ramiType.bat

cd sys:

You can start this file with EXECUTE or set die S bit of this file. The

drive and directory must be given. The file is called Types on the

companion disk available for this book, for the companion disk the call

would be the following (your call may differ depending on where you

saved the file):

EXECUTE AMIGADOS_OPTDISK:Script_files/Types sys:s

The output can be stopped by pressing the right mouse key. The output

can also go to a printer. For this, the lformat option must be

changed to Iformat="type >prt: %s".

6.3.5 Putting everything into the RAM disk

The program in this section should only be used when the user has a

memory expansion. This program copies the entire Workbench disk

onto the RAM disk and directs all access that would normally go to the

Workbench to the RAM disk. You can use the rad: device, the

recoverable RAM disk for this which will give you super fast resets.

You must change the HighCyl parameter in the MountList to

provide enough memory in the RAD disk. Using this file can take up

so much memory that the other tasks may not have enough room. The

first script file uses the normal RAM disk, the second uses the reset-

resistant RAM disk.

190

Abacus 63 Practical Script Files

;Ramcontrol script file one

ECHO "*nCopying directories..*n"

copy sys: ram: all

cd ram:

ECHO "*nTurning control over to the RAM disk.*n"

assign sys: ram:

assign c: sys:c

assign 1: sys:l

assign fonts: sys:fonts

assign s: sys:s

assign devs: sys:devs

assign libs: sys:libs

assign t: sys:t

assign utilities: sys:utilities

assign prefs: sys:prefs

assign system: sys:system

assign empty: sys:empty

ECHO "*nDone.*n"

;Radcontrol script file two

;Remember to MOUNT RAD: before executing this file

if exists rad:Flag

skip LI

else

ECHO "*Copying directories..*n"

copy sys: rad: all

endif

ECHO >rad:Flag "Flag set."

lab LI

cd rad:

ECHO "*Giving control to reset-resistant RAM disk.*n"

assign sys: rad:

assign c: sys:c

assign 1: sys:l

assign fonts: sys:fonts

assign s: sys:s

assign devs: sys:devs

assign libs: sys:libs

assign t: sys:t

assign utilities: sys:utilities

assign prefs: sys:prefs

assign system: sys:system

assign empty: sys:empty

ECHO "*nDone.*n"

The second file is somewhat longer than the first. This is because the

reset-resistant RAM disk is always present and may be remounted using

mount rad: after a warm start. Therefore, the Woikbench files don't
need to be copied again. The additional lines take care of this.

191

6. Script Files AmigaDOS Inside and Out

6.4 Using ALIAS

The Shell has many advantages over the Amiga's original CLI. One

advantage is that the command lines can be edited and that the entered

command lines can be stored in sequence in a buffer.

The alias command is very useful. This command makes it possible

to use AmigaDOS commands in a different manner. You may ask why

we discuss it in the scripts chapter. The ALIAS command can function

as a script file, except it only takes up one text line. The line begins

with the command word ALIAS, followed by a character string which

is the label of the new command, followed by a list of commands or

commands that EXECUTE a script file. That sounds difficult, but it

really isn't. Before we give you any examples, a bit of advice. We

created a script file called Alias.bat on the companion disk available

for this book. This is found in the Script_files subdirectory.

When you open a Shell window, you must enter the following to use

theAlias.bat file:

EXECUTE AMIGADOS_OPTDISK:Script_files/Alias.bat

Back to our example. Enter the following line in the Shell:

Alias Ramdir Dir Ram:

Now you have access to the new command ramdir. Here's what you

did: First the command word (Alias), then the label of the new

command (Ramdir) and then the command's function (Dir Ram:).

The example isn't very useful, but it serves its purpose. Which alias

commands are in use and how they are built can be determined by

entering ALIAS without arguments and pressing the <Return> key.

When a Shell window is opened, the Shell-Startup script file is

EXECUTEd. Placing your ALIAS command in the Shell-Startup

file enables these commands whenever any Shell window is opened.

Or you could write them in a script file that must be called so that you

can use the commands.

The next few pages contain examples of what can be done with the

alias command.

192

Abacus 6.4 Using ALIAS

1. If you would like to change the disk drive without much typing.

Use the following lines:

alias 0 cd dfO:

alias 1 cd dfl:

alias 2 cd df2:

alias r cd ram:

After entering these lines you can change the drive by entering 0,1,

2 or r. You can do so with other drives as well (example: DHO:).

You can also change the directory in a given drive. To change the C

directory to drive DF1:, you must enter the command 1 c.

2. Delete the contents of a Shell window.

Alias CLS ECHO "*ec"

Enter the line in the Shell. Then enter CLS. The contents of the

AmigaDOS window are erased and the prompt appears in the top of

the window. This is accomplished with the ECHO command and an

escape sequence. The sequence is inside the quotation marks. The

first two characters tell the computer that an escape sequence

follows. The c erases the screen. You'll find more escape sequences

in Appendix A. The prompt stands in the second line, not the first.

To get it to appear in the first line after the screen is erased we need

to use a little trick. First, we must change the prompt character a

little with the following line:

Prompt "*e[lly*e[33m*e[lm*e[3m%s*e[Om*n*e[t"

After you enter the line and press the <Return> key you can see the

result. The directory is displayed in italics and is in a different color.

In addition, the input takes place in the next line. These appearances

are a result of the different escape sequences in the prompt

command.

Now enter the new CLS command.

Alias CLSC ECHO "*ec*e[2y*e[2t"

When you enter CLSC to clear the screen, the directory description

appears in the top line of the window.

3. Here are some more uses for the escape sequences. The first example

doesn't use the alias command but is still rather interesting.

ECHO "*e[lm*e[3mThis is bold and italic.*e[0m"

ECHO "*e[32m*e[43mBlack text on an orange background.*e[0m"

ECHO "*e[7m*e[4mThis is inverted and underlined.*e[0m"

193

6. Script Files AmigaDOS Inside and Out

As you can see the changes affect more than the output. The alias
command can produce many other changes.

Alias Proml Prompt "*e[32m*e[43m%s> "

Alias Prom2 Prompt "*e[42m*e[31m%s> "

Alias Prom3 Prompt "*e[41m*e[33m%s> "

Alias Prom4 Prompt "%Enter Task*n%s*n- "

Enter echo "*ec" to return to the normal colors.

4. Print a file on the printer. At the same time the computer should
still be available for use. The file should print in the background.

Alias Print run copy to prt: [] clone

The brackets act as placeholders for the parameters entered with
print. The new command must be given the name of the file it
should print out. For example:

Print sys:s/startup-sequence

5. Here is a command that makes a file "invisible" so that it isn't
displayed when aDlRorLlST command is EXECUTEd. The
hide command hides the specified file from these commands:

Alias Hide protect [] +h

The PROTECT command sets the h status bit of the file. The

computer must have at least Kickstart 1.3 to use this command.

This h bit is ignored when Kickstart 1.2 is used.

6. As in example 5, the status bit s can be set. The following line
must be entered:

Alias SBit protect [] +s

When the s bit is set you can EXECUTE a script file without

invoking the Execute command.

7. There is already an alias command in your Shell-Startup

file. It is the xCopy command. The same principle can be used for
deleting:

Alias xDelete delete [] all

After entering this line a directory can be deleted. Enter xDelete

and a directory in the Shell.

8. The AmigaDOS commands can be shortened with the alias
command:

194

Abacus 6.4 Using ALIAS

Alias c copy

Alias p path

Alias d dir

Alias ex EXECUTE

Alias dl delete

Alias t type

Alias r rename

Alias e ECHO

The individual commands can be used after entering the lines with the

iespective abbreviations.

195

7.

AmigaDOS and

Multitasking

Abacus 7. AmigaDOS and Multitasking

7. AmigaDOS and

Multitasking

The blitter What fascinated us most about the Amiga was the efficiency of the
hardware and software. While other computer manufacturers delivered

the blitter (the special chip for super fast memory operations) months
after the announced date, the Amiga system was supplied with it from

the start. While many other systems are limited to 64 colors, the

Amiga can display 4096 colors at the same time.

Even more efficient than the Amiga hardware is the software supplied
with the Amiga. Other computers use windows, but are severely

limited in the number of open windows and the number of programs

they can run at once. The Amiga operating system allows true

multitasking (the topic of this chapter), with a few limitations. The

software is not yet capable to take full advantage of the hardware.

Amiga AmigaDOS makes it possible to do multitasking on a home computer

software without restrictions. This section of the operating system is laid out so

that the hardware can do many different functions and is easily

expanded. The principle of device drivers play an important part in this

flexibility. AmigaDOS supports devices that can be addressed with the

same routines, printing to the screen or the printer can be handled by

the same routine. The direction of input and output for different devices

is an essential condition for multitasking.

AmigaDOS AmigaDOS has one drawback. This super operating system that was

delivered with the computer does not fully utilize all of its amazing

possibilities. Multitasking on an Amiga 500 with 512K memory and

one disk drive is like driving a Porsche in heavy traffic—exciting, but

limited. Also, the 68000 processor is very good, but AmigaDOS is

much more efficient with a 68020 processor and lightning fast with a

68030. We can only hope that these possibilities will soon become

standard for all Amiga users.

199

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

7.1 What is Multitasking?

Some of our readers may quietly laugh at this question and say that is
an old subject. Multitasking is when a computer does many things at
once. The question is not that dumb, however. Many of you work with
AmigaDOS and wait for the disk to finish formatting or for the C
compiler to finish compiling before going on to other work. You aren't
using the full capabilities of AmigaDOS.

Multitasking Multitasking is something completely natural. Many people rarely use
the computer to do more than one thing at a time. They wait for it to
finish its work before going further. As an example, we will take a
typical human task that points out a few problems of multitasking:

Let's make lunch; roast beef with mushrooms and onions, potatoes and
asparagus. It should be on the table at 12 noon. You couldn't get it
done if you did each task one after another. You could prepare the
potatoes and asparagus at 8:00 a.m. then at 11:30 a.m. finish the gravy
and set the table. But by then, the potatoes and asparagus would be
cold. You have to think about which task takes the longest and then
plan your time accordingly. Preheat your oven starting at 9:45 a.m. Put
the roast beef in the oven at 10 o'clock because you know that it takes
two hours to cook. After that, place the water for the potatoes on the
stove and slice the potatoes while that heats up. While the potatoes are
cooking in the water, you have 20 minutes to prepare the asparagus.

Let's get back to the subject of multitasking. This was a very simple
example of everyday multitasking, and many other examples can be
thought of—from lighting a cigarette while driving to reading the
newspaper while watching TV. These examples have the same
problems: While multitasking you can scald your finger in the water
while the roast beef burns, or you can crash into another car after your
cigarette falls in your lap. It is exactly the same for the computer. You
can try to save a file on a disk that needs to be formatted and you could
write text to a file that should first be printed. These are conflicts that
should be avoided, and the following sections show you how to avoid
them.

Computer multitasking is implemented so that many tasks appear to
work at the same time. Or to put it another way, each task operates for
a very short time so that no task has to wait for another task to finish.
Fewer problems arise using this method, so it's better for users.
Luckily, AmigaDOS was written so well that collisions and burnt
fingers never occur while multitasking.

200

Abacus 72 Multitasking with AmigaDOS and Workbench

7.2 Multitasking with AmigaDOS

and Workbench

Maybe you have been shown by enthusiastic friends and acquaintances

how the Amiga can do many things at once. Especially interesting are

the multiple programs that can be started one after another. The

multitasking ability of the Amiga is limited by memory; the more

memory you install, the more you can do. You can hardly show

someone BeckerText, DataRetrieve and AmigaBASIC at the same time

if you have an Amiga 500 with 512K. In spite of this there are many

uses for multitasking, such as using AmigaDOS and Workbench

simultaneously.

Before we show you the many possibilities for multitasking with the

Workbench and AmigaDOS, we must mention that the Workbench

does have "multitasking capabilities." To see this, format a disk with

Format Disk (1.3 initialize) and try to do something else while

the disk is being formatted. It works.

It is important to have the correct commands resident if you are

using an Amiga 500 with one disk drive. When Intuition loads a

program from the disk and AmigaDOS looks for the desired command

from the same disk this process takes a long time. If you have two disk

drives, the system disk with AmigaDOS commands should be in one

drive and the program should be started from the Workbench in the

other drive.

You should make a copy of the original Workbench disk because we

will change the Startup-sequence on it. The normal Workbench

Startup-sequence ends AmigaDOS with:

ENDCLI >NIL:

The AmigaDOS window disappears. Place a copy of the Workbench

disk in drive DFO: and load the Startup-sequence into ED with:

ED DFO:S/Startup-sequence

and erase the last line (endcli >nil:). Save the file by pressing

<EscxX> and continue with your work on the Amiga. How can you

work with the Workbench and AmigaDOS at the same time?

201

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

An example: Suppose that you have some important data in the RAM disk and that
you start a program from the Workbench. This program locks up

during loading because it doesn't have 1 megabyte available. Now you
can't do anything more with the Workbench. Only the wait pointer
appears—you can't open AmigaDOS. You can get out of this by

resetting the computer, but then you lose the data in the RAM disk.

Had you placed an AmigaDOS window behind all of the other
windows, you could simply click on it and copy the important data
from the RAM disk with the command:

COPY RAM DFO: ALL

before resetting the computer. AmigaDOS 1.3 doesn't help against the
large red Guru Meditation message. When the requester

"Task held-finish all disk activities "

appears, most of the time you are without an AmigaDOS window.

Remember a tiny AmigaDOS window in the background doesn't use
that much memory and can save a lot of frustration. AmigaDOS 2.0
has all but eliminated the Gum message.

Another use for the combination of the Workbench and AmigaDOS is
the copying process of more data. Say you are working with
BeckerText and a friend comes by and asks you to copy your text onto
his/her disk. You could make the BeckerText window very small
and place all data files to his/her disk using the Workbench. It is
simpler to click on the AmigaDOS window and use the COPY
command to give your friend a copy of your files. And if his/her disk

isn't formatted, you can save even more time and interruptions when
working with programs started from the Workbench. For example,
enter:

FORMAT DFO:

in AmigaDOS. When the cursor is in the next line you can enter the
next command:

COPY DFl:text/#? DFO:

You don't have to wait until the disk is done formatting to continue
your work. Your friends disk will be filled with your data while you
show him/her the newest game.

202

Abacus 12 Multitasking with AmigaDOS and Workbench

Deleting This can apply to deleting files also. Using the COPY command you
files have placed a backup copy of your text in a special directory named

Security. Now the space on your disk is getting tight and you don't
need the backup copy anymore. You could use the Workbench to open

the desired drawer, mark all the text and then erase it with Delete (1.3
Discard). While the files are being erased you cannot work with the
Workbench. It's much easier and faster to click on the AmigaDOS

window and enter

DELETE DFO:Security/*?

and erase everything in the directory, and you can continue to work

with the Workbench while this is happening.

The size and position of the AmigaDOS window might get in your

way when you work with the Workbench and AmigaDOS. It must first
be made smaller and pushed aside before you can really work with the

Workbench. Unfortunately, the size can't be changed without using the

mouse. There is an easier way to get the desired AmigaDOS window.

Open a new AmigaDOS window with the desired dimensions and close

the old AmigaDOS window. This section of an improved Startup-

sequence can look like this:

newshell "con:10/10/60/60/MyShell"

endshell >nil:

203

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

7.3 Multitasking with NEWSHELL

You don't have to use AmigaDOS for everything. Executing important
tasks through AmigaDOS can save time and make you much more
efficient. We'll take a simple example that has nothing to do with
multitasking: You have written five new letters today and placed them
in directory DFO: Letters. There are 40 letters there already and you
want to print out the five new ones on the printer. Before printing them
out, you want to take a look at them without loading the word

processor. You know that this can be done simply with:

TYPE DFOrLetters/textname

and printing the text is done with:

COPY DFO:Letters/textname TO PRT:

The first problem now emerges: You don't remember the name of each
letter. So you enter CD DFO: Letters and by using dir look at the
first text name. Aha! The name was Peterl.10.87. Now you can
quickly look at the text with:

TYPE Peterl.10.87

and then print the file to the printer. The print process is done quickly,
but where are the other filenames, type removed the filenames from
the screen; you must re-enter dir to get the next name. Now you can
call up the next filename using dir and repeat the entire process.

There's an easier way. Open a new AmigaDOS window with
newshell. Position the second AmigaDOS window so that it

occupies the top half of the screen. Enter dir, so that the text names

are displayed in the window (the output on the screen can be stopped by
pressing any key). You can now read the text names in the first

AmigaDOS window, change to the second AmigaDOS window, look at
the files using type and print them. This method is also valuable for
deleting or copying multiple files. Display the files in one AmigaDOS

window and execute the command in another AmigaDOS window.
When you don't need the other window anymore, you can get rid of it
by entering endshell.

Let's suppose that the texts are rather long and take a minute to print.

Then in our example you would have to wait a minute before you could

continue work with your text files. In such a case you could open

another AmigaDOS window. In one window you could read the text

names, in the second window you could view the texts with type and

in the third window you could print them. One thing is missing: The

204

Abacus 73 Multitasking with NEWSHELL

coffee break that you always took while the computer was busy

working. This coffee break is no longer necessary with AmigaDOS,

unless of course you would like one.

We hope that you have had a small idea of the many possibilities that

exist with AmigaDOS and multitasking. This is only a small

appetizer. We want to show you how to finish your work in the

shortest time. You should always work with a second AmigaDOS

window open. It's the same thing with the Workbench: If the main

AmigaDOS window is being used or is hung up by a program, you can

continue to work with the second AmigaDOS window. If you

innocently enter COPYtext TOPRT: when working with one

AmigaDOS window you have to wait until the text file is printed or

else open a second AmigaDOS window through the Workbench. It's

much better to have a second AmigaDOS window open and simply be

able to continue.

AmigaDOS can affect new AmigaDOS windows. Say you have chosen

DFO: Texts/Private as the current directory, then opened another

AmigaDOS window with newshell. New input is automatically sent

to the directory of the previous AmigaDOS window. In our case, the

current directory of the second AmigaDOS window is

DFO: Texts/Private, you don't need to state the new directory.

It is just as easy to enter the dimensions and position of the new

AmigaDOS window. A small AmigaDOS window can be created in the

upper left hand corner with:

NEWSHELL CON:10/10/60/60/MySHELL

It is best to enter this long line only once using ED and save it on the

disk under the name NS (for newshell). Then the new AmigaDOS

window can be called by entering:

EXECUTE DF0:NS

Then if you have renamed the EXECUTE command to E and DFO: is

the actual directory, the line that has to be entered for the second

AmigaDOS window to appear is:

E NS

You could also save the NC script file in your S: directory and set the

script file bit with PROTECT NS +S so you could simply enter NS

when you wanted a new AmigaDOS window.

205

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

7.4 Multitasking using RUN

The possibility of using NEWSHELL to work on many different tasks

at once is certainly a great help and time saver. We did run into a few
problems after opening four windows:

• Although the Amiga can manage more screens at once, it's limited
by the size of the monitor because all AmigaDOS commands work

with windows on the Workbench screen. They quickly take over the

entire screen. It isn't acceptable to constantly click windows into the

foreground or background.

• Each screen requires a good portion of memory, especially on an

Amiga 500 with 512K of memory, and as more screens are added,
there is hardly any memory left to do useful work.

The RUN command was created to execute many tasks at once without
needing a window for each task. With this command an AmigaDOS

window is executed without its own window. Let's see how this works.

Place the Workbench disk with AmigaDOS commands in DFO. Then
enter the following two lines:

RUN COPY DF0:C/DISKDOCTOR RAM:

DIR DFO:

Immediately after you press the <Return> key a new line appears:

[CLI 2]

and then the 1SYS : > (when more AmigaDOS processes have been

started, this is a higher number). Then you entered the second line

(hopefully quick enough that the drive was still working) and

AmigaDOS displayed the contents of the directory. This example

doesn't make too much sense, but it shows the basic use for the RUN

command: all tasks that may possibly have a long duration and don't

place output on the screen are allowed to be called with run.

While the first restriction is relatively evident—the process lasted only

a second so you can hardly type the next line fast enough—the second

restriction is not so obvious. Now a small example of two tasks that

are running at the same time, one is started with run. Enter the

following two lines one after another:

RUN DIR DFO:

TYPE DFO:S/Startup-sequence

At first glance everything appears to be running normally, but suddenly

the directory of DFO: appears in the list of Startup-sequence

206

Abacus 7.4 Multitasking using RUN

commands. That is because an AmigaDOS command started with run

doesn't have a window to use for its output It puts all of its output in

AmigaDOS window.

In spite of this restriction, there are many uses for multitasking using

RUN. These include all of AmigaDOS commands that don't generate

any screen output and require relatively little time. So, for example, a

text can be printed using:

RUN COPY Text PRT:

and then further work can be done. Amiga users that have a disk drive

should be aware that while text is printing, the disk that the text is

being read from cannot be removed from the drive. The text should be

copied into the RAM disk if you want to work with another disk while

it is printing.

The RUN command has a very important job when you want to start a

program from AmigaDOS and would like to continue to work during

the time required for the program to load. One option would be to start

a new AmigaDOS window with newshell and call the program from

the second AmigaDOS window with:

Program

Then you have a useless window that not only takes up space but also

memory. It is easier to start the desired program from the first

AmigaDOS window with:

RUN Program

A typical example uses the editor. For example, you have written a C

program and have to enter corrections in the program. If you are using

only one AmigaDOS window, you must leave the editor, call the

compiler and then start the editor again. Starting the editor from a new

AmigaDOS window requires more screen space and memory. Call the

editor simply with:

RUN ED Program.c

After saving with <Eso+<SA> you can call the editor again and after

the first error message, you can edit the line in the editor once more.

This saves a lot of time.

There is another restriction to RUN that can have unpleasant results.

Remember, a program that is started with run is missing its own

input and output windows. The output can go to already existing

windows, but where can the input be entered? You've probably noticed

that input is done in windows. Every program that needs input from the

keyboard needs a window. Input for two independent programs through

one window isn't possible. How would the Amiga know which

program the input belongs to?

207

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

Maybe we should say "That AmigaDOS commands don't need any

more input". But that is not completely true. The AmigaDOS

commands allow <Ctrl><C> or another <Ctrl> function to be input.

When a program or AmigaDOS command is started with run,

<CtrlxC> doesn't go to the command, but instead to AmigaDOS. To
put it another way, you have 30K text you want to display it with:

RUN TYPE text

The output can be paused by pressing a key, but stopping the output

by pressing <CtrlxC> doesn't work. The inventors of AmigaDOS

saw this problem and built in a solution. This solution is the break

command. Using break, a <CtrlxO can be sent to commands that

were started with run. Start the text output from the first AmigaDOS
window with:

RUN TYPE text

you can enter

BREAK 2

to stop the text output from the second AmigaDOS window, CLI 2.

The complete command is discussed in Chapter 3. It's enough for us to
show how to stop commands started with run.

208

Abacus js Using AmigaDOS

7.5 Using AmigaDOS

You probably got an impression of how much time and work could be

saved by using the full range of AmigaDOS options in the AmigaDOS

Tricks and Tips chapter. It is important that you know the different

options and their effects. You begin to learn these by working with the

Workbench. By doing this you can comfortably resolve many tasks,

but you must use AmigaDOS to avoid long pauses when copying and

formatting disks. In addition, AmigaDOS, used in combination with

the Workbench, can make many things possible that aren't possible

from the Workbench. Not only can you see all the data files with

AmigaDOS, but you can also look in drawers without icons. That is

important when you have a disk that doesn't show anything on the
Woikbench.

As you work more with AmigaDOS, you should plan your use of

AmigaDOS processes. You shouldn't use the RUN command when

using commands that produce output to a window. It is extremely

important to have a second AmigaDOS window in the background at

all times for security.

An effective way to use multitasking with AmigaDOS is to correctly

plan the devices. That can cause drastic results if you only own one

disk drive and have only 512K. Then you must live with a few

limitations. Here you should decide which AmigaDOS commands are

most frequently used and make these RES ident.

It isn't possible to print text from two different disks. You must plan

ahead and have the text saved on one disk or use the RAM disk.

Users of the 1 megabyte Amiga computers have it easier. They can put

important programs in RAM and a generous amount of commands as

RESIDENT, and they can also copy important files into RAM. Adding

an additional disk drive to an Amiga is very advantageous. Then the

Workbench disk can remain in DFO: and the data can be in DF1:.

That way a large amount of memory can be saved for programs.

It is not possible to print two data files on the printer at the same time

and make it readable. While this may be possible on the screen (start

one TYPE with RUN and a second type from the original AmigaDOS

window) AmigaDOS prevents the output of more than one task or

process through a port (printer, RS-232).

Most good word processors can print text to a file. When a text file,

which contains all of the printer command codes, is printed, it can be

sent to the printer from AmigaDOS. Meanwhile, the word processor

prints the next text to a another file.

209

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

Long directories with many files take a long time to be displayed using

dir. The output can be directed to a file and this file displayed on the

screen using TYPE. This is much quicker than waiting for the result.

Simply enter:

RUN DIR >RAM:Contents DF0:c

and later, using:

TYPE RAM:Contents

you can display the contents of the large C: directory very quickly.

run is very important if we don't want to wait for the dir command.

A very efficient use of multitasking can be achieved by skilled use of

script files. Workbench 1.3 has a very long Startup-sequence

that sets up the Amiga. The Startup-sequence we use lasts two

minutes. Why should we wait this long? Simply insert this line at the

beginning of your Startup-sequence:

NEWSHELL

and you will have an AmigaDOS window in which to work. You can

begin work before the complete Startup-sequence is finished.

210

Abacus 7.6 CHANGETASKPRI

7.6 CHANGETASKPRI

In the last section we learned about the different ways to complete tasks

at the same time. A lot of waiting time can be spared that way. Still, a

few problems arise that prevent the full multitasking capacity from

being used. Take an example:

The ED editor is not very fast. When you want to do work with many

tasks, you are better off using ED. Everything is done in brief time

intervals, one task after another. For important tasks, this can be very

disturbing. The Amiga operating system can order each task according

to a priority. Tasks with high priority are handled first, tasks with

lower priority are handled last

Suppose you entered text with ED and want to print it and continue to

edit it at the same time. In this case it is certainly not that important if

the text is printed after one or two minutes. It's more important that

you don't have to wait to continue editing until the editor finally comes

up with the next line. To make sure it's done in the right order,

different priorities are assigned. The CHANGETASKPRI command

changes the priority of AmigaDOS processes. This command sets the

priority for AmigaDOS tasks at a number between -128 and +127. You

can see this with:

STATUS FULL

and the actual information about AmigaDOS processes appears. The

display for an AmigaDOS window looks like the following:

task 1: stk 4000, gv 150, pri 0 loaded as command: status

The pri 0 is important to us. That is the priority of our process and

also the standard value at which all AmigaDOS windows are

automatically started. Now we'll change this value to a 3:

CHANGETASKPRI 3

When we display the information about the process again, we get the

following notice:

task 1: stk 4000, gv 150, pri 3 loaded as command: status

We see that something has changed, the pri 3. Our AmigaDOS

window has a priority of 3. Now you may think that you will wait

forever to access AmigaDOS. This isn't the case. This is because the

Amiga has a multitasking operating system and does not wait for one

task to finish before moving on to the next. Now a task with a lower

211

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

priority comes along and also a task with a higher priority. We can

investigate this quickly with an example. Create a second AmigaDOS

window with NEWSHELL and arrange the windows so that the first

window occupies the bottom half of the screen and the second window

takes the top half. Now we want to observe the difference in processing

when they have different priorities.

Enter changetaskpri -12 7 in the bottom window and

CHANGETASKPRI 127 in the top window. Now it comes down to

exact stopping and starting of the execution. Write the following

command line in both windows (don't press the <Return> key):

LIST DF0:c

Now you must enter both commands as quickly as possible. Click the

mouse in the lower window, put the mouse in the top window, press

the <Return> key, click above and press the <Return> key again.

You can follow the different speeds that the contents of DFO : C are

displayed. Notice that the speed difference is not much. That is not

possible because of the way the operating system is programmed. As

soon as a task requires an action from the operating system and the task

waits for that action, it is placed in a waiting list and doesn't require

anymore computing time. Then the tasks with a much lower priority

have the chance to get in line. This is the case, for example, when a

task reads a track on a disk. It stays in the waiting list until the track is

completely read.

Despite this apparently small difference, for which we have the

programmers of the Amiga operating system to thank, the difference

can be put to good use. Enter changetaskpri 0 in AmigaDOS

window 1 and create a second process with:

RUN ED RAMrdifference

Press the <Return> key 20 times in the empty window of the editor so

that the cursor is inside the ED window. Then move the AmigaDOS

window so that you can input next to the editor. Display the directory

of DFO : C in this window with:

DIR DF0:C

and try to produce the cursor inside the ED window simultaneously.

You'll notice that this is difficult and it always stops. Now we want

the work in the editor to be more important so we must change the

priorities accordingly. Leave the editor using <EscxX> and change the

priority of AmigaDOS to 99 (CHANGETASKPRI 99). Restart the

editor (RUN ED RAM: Difference) and set its priority to -99. Look

at the distribution of the priorities with STATUS full. It will look

something like this in AmigaDOS 1.2:

212

Abacus 7.6 CHANGETASKPRI

task 1: stk 1600, gv 150, pri 157 loaded as command: status

task 2: stk 3200, gv 150, pri 99 loaded as command: ed

There is a bug in the AmigaDOS 1.2 Status command. This was

corrected in Workbench 1.3. The pri 157 should really be -99. The

AmigaDOS 1.2 status command can only show numbers from 0-2SS

and the priorities have numbers from -128 to +127. So a -99 is shown

as +157. Now we want to go through the same test with the changed

values. Start the output of the long directory in AmigaDOS and try to

produce the cursor in the editor.

You'll soon determine that the work with ED is no longer hindered.

The output of the filenames is stopped completely when a key is

pressed in the ED window. ED doesn't wait for pauses in the directory,

but CLI1 waits for pauses in ED.

Now let's put this information together:

• To work with many tasks without problems, a correct distribution

of priorities is necessary. When the less important tasks require less

time, the more important tasks are not hindered.

• The priority can be changed with CHANGETASKPRI. Values

between -128 to +127 can be used. Although we used values from

+99 to -99 in our example, normally values should be set from +5

to -5. We'll show you exactly why in the next section. In our

example the large numbers were not a problem.

• The use of CHANGETASKPRI should be done correctly. Only the

priority of AmigaDOS processes, that were called from the

command, can be changed. This AmigaDOS process gives its

priority to all "daughter processes" (like standard input and output

and current directories). The priorities of processes started with run

can also be set to the desired value.

• The priorities can be examined using STATUS FULL. Negative

values are displayed incorrectly in Workbench 1.2. The correct value

can be obtained by subtracting 256 from the number displayed on

the screen. If 2SS is displayed, the difference is -1, the correct value.

This was corrected in Workbench 1.3.

• Only AmigaDOS processes can be influenced with

CHANGETASKPRI. It's not possible to change the priority of a

program started from the Workbench.

213

7. AmigaDOS and Multitasking AmigaDOS Inside and Out

7.7 Multitasking dangers

We mentioned at the beginning of this chapter that multitasking not

only has important advantages but also needs to be used correctly. In

this section we want to point out a few limitations and dangers. We

want to show, with an example, where problems are possible. Enter:

CD DFO:

RUN DIR

RUN LIST

A surprising result occurs, especially when you have an Amiga SOO, if

you enter these last two lines quickly and press the <Return> key. It

behaves like the Amiga is tearing the disk in half, and each command

can only use one half of the disk. The problem lies in the fact that each

process can read a little portion of the disk. Because the regions that

have been read are far from each other, the read head of the disk drive

must travel large distances. In the most extreme case it must go from

track 79 for one process and then go back to track 0 for the other

process. This not only wears out the machinery and your ears, but it

also wastes time. Many times the processing of two commands can

take much longer than it would take to execute them one after another.

Our example is not useful if the output occurs in one window. It

should only make the basic phenomena clearer. This problem

constantly comes up when a process is reading information from a disk

and must load the next AmigaDOS command from the same disk. That

happens in the following example:

RUN COPY DFO:text TO PRT:

DIR DFO:

While COPY is reading from the disk to print the Text, AmigaDOS

must read the next command (dir) from the disk. In this case the

movement of the drive head does not last very long. The use of a

second drive or the RESIDENT command are helpful. An external drive

or RAM disk will do the trick. It is important that different processes

do not access the same drive. In our case we need AmigaDOS

commands in DFO: and the text in DF1:.

Another problem occurs when multiple processes must access one file

at the same time. Reading a file at the same time is not a problem.

This can be seen by opening a second AmigaDOS window and

displaying the data file in both windows. AmigaDOS refuses to let

another process access a file if a program or process has opened that file

for writing. That is important because otherwise invalid data could be

read. We'll examine this in the following example:

214

Abacus 7.7 Multitasking dangers

COPY DFO:s/Startup-sequence RAM:Datafile

CD RAM:

COPY Datafile Datafilel

Now try to create a new file, Datafilel, and at the same time read

Datafilel. Simply enter:

RUN TYPE > Datafilel Datafile

TYPE Datafilel

After a short time the message Can't open Datafilel is

displayed. When why is used to ask the reason for the error,
AmigaDOS replies:

Last command failed because object in use

While the first type command writes in Datafilel, the second

type command cannot read from it An error message also appears if a

process reads a file and then another process tries to open that file for

writing. This causes the error message, CLI error: Unable to

open redirection file, when the output is directed to

Datafilel while another AmigaDOS window reads from it:

TYPE > Datafilel Datafile

This problem doesn't occur very frequently, but it has a special

meaning for those that write their own programs and commands. For

example, you write a BASIC program that opens an already existing

file for reading, and then interrupt the program without closing this

file. Then no other process can access this file. Luckily, AmigaBASIC

closes all open data files when you are done working with it. A self-

written C program should not end under any circumstances without

closing all open data files.

Now we come to the last and most important point about working with

multiple processes. When you change priorities, if possible, you

should not choose a value less than -5 or greater than 44. A value

greater than +5 has a higher priority than the trackdisk.device

which is used for controlling disk access. Programs that are not written

well, in regard to priorities, can interrupt the entire system. A program

in a multitasking system waiting list cannot be reached through loops

or commands. There are operating system routines for this that make

such waiting lists possible. Other processes occur through these

routines.

215

8.

Creating

AmigaDOS

Commands

Abacus 8. Creating AmigaDQS Commands

8. Creating AmigaDOS

Commands

The C: The Amiga operating system has so many possibilities that it's
directory impossible to mention all of them. New libraries can be created and by

adding additional devices, new hardware can be added. Instead of being

integrated into the operating system, AmigaDOS commands are small

programs on the Workbench disk. So you can easily add new

commands. As an AmigaDOS expert, you have to look in the C:

directory on the Workbench disk for the AmigaDOS commands.

AmigaDOS searches for commands in the current directory and, as a

last resort, it looks in the C: directory. When the computer is turned

on, this directory is assigned to drawer C: of the Workbench disk. Each

AmigaDOS command can be found this way.

The number of commands is not limited or set. You can copy your

favorite AmigaDOS command under as many different names as you

want until the disk full requester appears. A somewhat limited use for

this capability is to store frequently used commands under a different,

shorter name. Example: x for execute, fc for filecopy, etc. It's

also possible to put user-defined commands into the C: drawer. Since a

command is basically nothing more than a short program, the clock can

be copied here. When the output from the LIST command is viewed

for the C: directory, the clock program stands out because of its high

memory requirements. The most frequently used AmigaDOS commands

have one thing in common: They are relatively short and can be loaded

into memory rather quickly. Such compact code, like that of a true

AmigaDOS command, can usually only be created by using an

assembler. The language, in which the commands were written in

AmigaDOS 1.3, is BCPL, which most people don't have for their

Amiga. The C language is an alternative. AmigaDOS 2.0 commands

were completely rewritten in C, which greatly reduced their size yet

increased their execution speed. When creating new commands you

should stick to a particular programming style. You should at least pay

attention to the following items:

1. Most AmigaDOS commands are "non-interactive". This means

that they don't require information from the user once they are

started. The command must be called with all of the correct

parameters in a list after the command.

2. The commands normally output their information in the same

AmigaDOS window from which they were called. A command

should not open its own window for output.

219

8. Creating AmigaDOS Commands AmigaDOS Inside and Out

3. True AmigaDOS commands contain an argument template that can

be activated by entering the command, a space and a question mark.

Should the user enter a false parameter, it responds with a proper

argument template. Example:

a) Argument template

Input date ?

Output: TIME, DATE, TO=VER/K:

b) Bad arguments

Input: DATE birthday

Output:

*** Badargs

use DD-MMM-YY or <dayname> or yesterday

etc. to set date

HH:MM:SS orHH:MMto set time

220

Abacus 8.1 AmigaDOS Commands in C

8.1 AmigaDOS Commands in C

If the programming is done correctly, a command written in C and an

AmigaDOS command cannot be differentiated. It's also possible to pass

the parameters directly in the C programming language. The greater-

than character allows redirection of the output

The input line should be read over to make sure that the user entered the

correct parameters. When a user enters just any parameters, this shows

his/her unfamiliarity with the purpose of the command. In this case the

Bad args message should appear.

The input line evaluation is programmed in C as follows:

The first main function receives the input data in the form of two

parameters: The first parameter, which is called ArgC (from Argument

Counter), is of type int and contains the number of assigned

arguments. The name of the program becomes one of these arguments.

The second parameter usually has the name ArgV (for Argument

Vector). It must be declared as a field of type Char. The elements of

this field contain pointers for the character strings of the input line,

which is ended with a null.

This task is not completed from AmigaDOS Shell as you might think.

The first line of the main function might look like this:

main(argc/ argv)

int argc;

char *argv[];

Because ArgC and ArgV were assigned outside the main function,

you must declare them as parameters of the desired type before the

function bracket

A brief example should familiarize yourself with this programming

technique. We compiled all C programs with an Aztec C® compiler.
Using other compilers should not present a problem, if you pay
attention to the instruction in the compiler manual.

/* Program: Evaluation */

main(argc, argv)

int argc;

char *argv[];

int i;

221

8. Creating AmigaDOS Commands AmigaDOS Inside and Out

printf (" Quantity: %d \n",i, argc);

for (i = 0; i < argc; i++)

{

printf (" Nr.: %d, Argument: %s \n",i , argv[i])/

}

This program is called from AmigaDOS using:

Evaluation one and another parameter

The following output is received:

Quantity: 5

Nr.: 0 , Argument: Evaluation

Nr.: 1 , Argument: one

Nr.: 2 , Argument: and

Nr.: 3 , Argument: another

Nr.: 4 , Argument: Parameter

A space in the input is interpreted as a separator. How can you assign

parameters to a C program from AmigaDOS if the text contains

spaces? The simplest method is used very often: The text must be in

quotation marks to obtain the desired result. Call our example program

with the following:

EVALUATION "one and another parameter"

Which has the result*

Quantity: 2

Nr.: 0 , Argument: EVALUATION

Nr.: 1 , Argument: one and another parameter

Until now that's all that the parameter assignment had to do with CLI

commands. Now you could ask the question, are the > and < characters

interpreted as completely normal characters in our program, or couldn't

the input or output be directed to any device? A test:

Enter the command:

EVALUATION >DF0:Datafile parameter

the output is written (directed) to the desired file (Datafile). The file

contains:

Quantity: 2

Nr.: 0 , Argument: EVALUATION

Nr.: 1 , Argument: parameter

222

Abacus 8.1 AmigaDOS Commands in C

Trying to redirect the output using the < character fails. The computer

doesn't pay attention to which input device is active, but reads the line

from the keyboard. In spite of this it's still possible to receive data

from other devices. The following example program shows how to do

this:

/* Redirectinput.c test program */

#include <stdio.h>

FILE * Input()/ /* Declaration of an external function */

main(argc, argv)

int argc;

char *argv[];

{

int i;

char Reader;

FILE *Infile; /* Pointer for Structure-Type FILE */

char buffer[100];

long Length;

printf (" Number of Parameters: %d \n", argc);

for (i = 0; i < argc; i++)

printf (" Argument: %s \n", argv[i]);

Infile = Input();

Reader = Read (Infile, &buffer[0], 30L);

buffer [Length] = 0;

printf (" Read: %s\n", &buffer[0]);

A small input data file can be created using:

echo >datafile "one two three"

and the above program named redirectinput is started by using:

Redirectinput: <datafile hello there

will output:

Number of Parameters: 3

Argument: redirectinput

Argument: hello

Argument: there

Read: one two three

The function from ArgC to Argv remains unchanged. The <datafile is

completely ignored and that's why ArgC confirms the presence of only

three arguments.

After the output of the normal parameters, the input () function,

which is found in the DOS library, prepares the standard input devices

of the called program (also those of AmigaDOS) for our program. The

tasks of the variables are:

223

8. Creating AmigaDOS Commands AmigaDOS Inside and Out

Infile: Pointer for standard input

Buffer: Contains the characters that are read

Length: Actual number of characters read

Using the < command in AmigaDOS command line switches the

standard input device to the given device.

224

Abacus 8.2 REPLACE

8.2 REPLACE

You probably would like a command that could replace characters or

strings in a file. Every good word processor has such a function. There

is AmigaDOS Search command that searches for characters strings in

files, but you can't replace anything with this command. We have

created a new AmigaDOS command to do this called REPLACE.

A big advantage of this command is that the result is placed in a new

file. Should an error occur, the original file is unchanged. This

command also allows any characters to be searched for and replaced by

any characters. For example, you could replace a carriage return with a

space or every space with 100 periods. To allow any characters to be

entered, they must be entered in ASCII form. A space is a 32 and a

carriage return is a 13. Because it is unusual to enter characters as

numbers, you can also enter the character strings, replace examines

the first character of the input It takes all of the following characters as

ASCII values if the first character is a numeral. Otherwise it takes them

as character strings.

Now we come to the call of the new command. It reads:

Filenameold Filenamenew String

Filenameold is the name of the file that should be read. The

complete path can be entered.

Filenamenew is the name of the new file that should be written.

Note : REPLACE does not check if the file exists and also overwrites existing

files like all other AmigaDOS commands.

St ring is the string that is searched for and should be replaced. Search

and replace strings are separated by a colon and cannot contain spaces.

An example of a call could be:

Replace Oldfile Newfile Meier:Mayer

In the file Newfile all Meiers would be replaced with Mayers. In

this case character strings would be entered, replace recognizes that

neither Meier nor Mayer starts with a numeral (0-9). Now lets take

another example that involves ASCII values. The call:

REPLACE Oldfile Newfile 13:32

replaces every CR (13) with a space (32). Combining both input

possibilities is allowed. The following:

225

8. Creating AmigaDOS Commands AmigaDOS Inside and Out

REPLACE Oldfile Newfile 32:

replaces every space (32) with 5 periods. To replace a string of ASCII

values, separate the individual numbers with commas. So

REPLACE Oldfile Newfile 32,32,32:32

replaces three spaces (32,32,32) with one (32).

The length of the search strings is limited to 127 characters, which is

enough for normal use. You can create a test file by doing the

following:

First build a file with the same characters using:

ECHO >RAM:TEST "aaaaaaaaaaaaaaaaaaaa"

Now replace each a with many new a's using:

Replace RAM:TEST RAM:TEST1 a:aaaaaaaaaaaaaaaaaaaaaaaaaaaa

When you want to remove a character string out of the file, you must

not enter anything after the colon. For example:

Replace Oldfile Newfile 32:

removes all spaces from the file.

The first character differentiates between numeral and character input

So Replace would not accept the following input:

Replace Oldfile Newfile 3Days:4Hours

In this case we should explain the exact operation of the program

because this has nothing to do with AmigaDOS. It is structured and
documented for all programmers. Our program uses a circular buffer for

characters it has read, but not yet analyzed. They are stored in this
circular buffer until it can be determined whether the string has been
found. Such a string can be utilized in C using the Modulo command.

We use a more complicated yet faster method. The sub-function for
reading new characters checks to see if the end of the buffer is reached
and places the valid input at the beginning of the buffer.

/* Replace.c This program replaces strings in files */

/* For 100 K on the RAMDisk it took 27 Seconds */
/* ic/

/* *************** Copyright Manfred Tornsdorf ***** */

/* v

#include <stdio.h>

#define FALSE 0 /* Constants, make reading */

#define TRUE 1 /* the program easier */

#define byte unsigned char

226

Abacus 8.2 REPLACE

#define Maxbuffer 512 /* Size of the Read buffer */

void Shift();

char SearchString[127]; /* Search string */

char ReplaceString[127]; /* replacement string */

char Bufferin[Maxbuffer]/ /* read buffer */

int Pwrite; /* Place in buffer for writing */

int Pread; /* Place in buffer for reading */

unsigned long Num; /* Num for characters */

unsigned int Fromlen;

unsigned int Tolen;

unsigned int NumRepl; /* Num for : how often replaced */

FILE *Rin, *Rout;

/* Get Parameters */

void GetPara(Para, First, Next)

char *Para;

char *First;

char *Next;

{

int Number;

int Length; /* Number for length, 0 not counted */

*First = 0;

*Next = 0;

Length = 0; /* Length set to 0 */

Number = atoi(Para); /* check String or ASCII value */

if (Number != 0) /* ASCII-value for Stringl */

{

while ((*Para != 0)&&(*Para != ■:•))

/* still more Stringl */

{

Number = atoi(Para);

if (Number > 255) /* number not allowed */

{

printf("Number is not ASCII-value\n");

exit();

}

(First++) = (char) Number; / take char */

Length++;

while ((*Para != 0)&&(*Para != ',')&&(*Para != •:■))

Para++; /* separate search */

if (*Para == ',') Para++; /* skip , */

} /* End While */

First = 0; / end Stringl with 0 */

Fromlen = Length; /* save length of Stringl */

} /* End if(ASCII) */

else /* Stringl is a String */

{

for(Length = 0; (*Para!=0)&&(*Para!=f:f); Para++)

227

8. Creating AmigaDOS Commands AmigaDOS Inside and Out

* (First++) = *Para;

Length*+;

}

First = 0; / end search string with 0 */

Fromlen = Length; /* save length of string */

} /* End else */

if (Fromlen == 0)

{

printf("Search string must be given!\n");

exit();

if (*Para != ■:')

{

printf("Colon missing!\n");

exit();

Para++; /* Set Para after colon */

Length =0; /* Length set to 0 */

Number = atoi(Para); /* Check if String or ASCII-value */

if (Number != 0) /* ASCII-value for String2 */

{

while (*Para != 0) /* Parameters for String2 */

{

Number = atoi(Para);

if (Number > 255) /* number not allowed */

{

printf("Number is not ASCII-value\n");

exit() ;

}

(Next++) = (char) Number; / take characters */

Length++; /* increase length */

while ((*Para != 0)&&(*Para != ',')i4(*Para != ':'))

Para++; /* separate search */

if (*Para == ',') Para++; /* skip */

} /* End While */

Next - 0; / end String2 with 0 */

Tolen = Length; /* save length of String2 */

} /* End if(ASCII)

else /* String2 is a String */

{

for(Length = 0; (*Para!=0); Para++)

{

*(Next++) = *Para;

Length++;

}

Next = 0; / end replace string with 0 */

Tolen = Length; /* save length of string */

} /* End else */

int Reader(Amount)

228

Abacus 8.2 REPLACE

int Amount;

{

register char Charsin;

register int numread;

numread =0;

for(numread = 0; numread < Amount; numread++)

{

Charsin = fgetc(Rin);

if (Charsin == EOF)

return(numread); /* no more chars in file */

Num++; /* increase num chars */

Bufferin[Pread++] = Charsin;

if (Pread >= Maxbuffer) /* Buffer at end, overflow */

Shift(); /* shift to beginning */

}

return(numread);

}

void Shift() /* contents in buffer shifted */

{

register int howmany;

register int i;

howmany = Pread - Pwrite;

for (i = 0; i< howmany; i++)

Bufferin[i] = Bufferin[Pwrite+i];

Pwrite = 0; /* set new Indices */

Pread = i;

}

int Checkbuffer() /* compare search string with buffer */

{

register char *string;

register int i;

i = Pwrite;

for (string = &SearchString[0]; *string != 0; string++)

{

if (*string != Buffering])

return(FALSE);

return(TRUE);

}

void WritecharacterO /* Write Char in buffer to file */

{

register char Charsin;

Charsin = Bufferin[Pwrite];

fputc(Charsin, Rout);

Pwrite++; /* reset write pointer */

229

8. Creating AmigaDOS Commands AmigaDOS Inside and Out

void Replace() /* write replace string, off buffer */

{

int i;

char *string;

register char Charsin;

i = 1;

for (string = &ReplaceString[O]; *string != 0; string++)

{

Charsin = *string;

fputc(Charsin, Rout);

Pwrite = Pread; /* write=read pointer -> clear buffer */

void WriterestO /* no more char in file, write buffer */

{

register char Charsin;

int i;

i = 0;

for(i = Pwrite; i < Pread;

{

Charsin = Bufferinfi];

putc(Charsin, Rout);

main (Amount, Argument)

int Amount;

char *Argument[];

{

int Numtoread;

int Totalread;

int Error;

if (Amount != 4)

{

printf("This program replaces char strings \n");

printf("Copyright Manfred Tornsdorf\n");

printf("Call: Filenameold Filenamenew String\n");

/* next line should be entered on one line in Amiga*/

printf("either :String =

Number,Number,Number...:Number,Number,Number..An");

printf("or :String = string:string\n\n");

/* next line should be entered on one line in Amiga */

printf("Example :Replace t.txt tt.txt

Mytext:32,33,32\n");

printf("gives :<Mytext> -> < ! >\n");

printf("No replace string, so it is deleted\n");
exit();

GetPara(Argument[3], SSearchString, SReplaceString);

230

Abacus 8.2 REPLACE

/* build search and replace string */

Fromlen = strlen(SearchString)/

Tolen = strlen(ReplaceString);

Rin = fopen(Argument[1], "r");

Rout = fopen(Argument[2], "w");

if (Rin — 0)

{

puts ("Input file not found!");

exit <);

}

if (Rout == 0)

{

puts ("Cannot open the output file!");

exit ();

}

Num =0;

Pwrite = 0; /* Write pointer to start of buffer */

Pread = 0; /* read pointer to start of buffer */

Numtoread = Fromlen; /* Search string chars to read */

NumRepl = 0; /* Default: not found */

Totalread =1; /* Default, the TC to count */

while(Totalread != 0)

{

Totalread = Reader(Numtoread);

/* read amount for file */

Error = Checkbuffer();

if(Error == FALSE) /* not found */

{

WritecharacterO; /* 1. write chars */

Numtoread = 1; /* read one char */

}

else /* found */

{

ReplaceO; /* write replace string, off buffer */

NumRepl++; /* increase number replaced */

Numtoread = Fromlen;

}

} /* End while(), File empty */

WriterestO; /* Write last char from buffer */

printf("\nString replaced %d times!\n", NumRepl);

fclose(Rin);

fclose(Rout);

exit ();

231

8. Creating AmigaDOS Commands AmigaDOS Inside and Out

8.3 Public Domain and shareware
AmigaDOS Commands

If the programming is done correctly, a command written in C and an

AmigaDOS command cannot be differentiated. The advantage in this is
that a good programmer can add his own commands, and the Amiga
community has many excellent programmers. Many of these
programmers have written replacement commands for many

AmigaDOS commands. Like a new DIR command that displays
multiple columns, a command that displays the calendar on the screen
and more.

Many of these programmers have placed their creations in the public

domain so other Amiga users can enhance their AmigaDOS system.
The Amiga is truly and ever expanding and improving system. Public

domain program authors choose not to seek formal rights for their
programming work and distribute their work free of charge.

Check with your dealer, local user group or public domain software
vendor for more information on Amiga Public Domain software. An

excellent source is the public domain library of the Champaign-Urbana

Commodore Users Group, Inc., P.O. Box 716, Champaign, IL 61824-
0716. Their CUCUG CUSTOM WORKBENCH disk is one of the best
collections of AmigaDOS utilities. The CUCUG Custom Workbench

is an enhanced AmigaDOS environment that makes you more
productive when working with your Amiga. This disk contains the best

"tricks of the trade" and some excellent PD and shareware WB

enhancements. Contact CUCUG directly for more information on
ordering this excellent disk.

The following public domain programs are among the favorites of the
Abacus editing staff. These public domain programs can be found on

many of the telecommunication networks and from many Amiga user
groups.

Command Description

CAL Displays calendar of specified month and year.

C-SHOW IFF files viewer for script files.

DD Multiple column directory display.

IFFICON Converts IFFs to icons and icons to IFF
format

232

Abacus 8.3 Public Domain AmigaDOS Commands

Command

INFORM

LS

PRFONT

PRINT

SUB

WHENCE

ZIPPY

Description

Expanded INFO command.

Excellent LIST replacement.

Prints out and displays all the fonts in your

FONTS: directory.

Excellent file printer.

Subliminal messages on your Amiga.

Shows where a program is located.

Fast little directory program.

Shareware programs

This type of program is slightly different than the public domain

program. These programs are sold directly by the authors, on a "try it,

then buy it" basis. You can legally obtain a copy from a friend or make

copies for others. This is how the programs are distributed. However, if

you end up using the program regularly you should register it with the

program developer by paying the registration fee. Registered users may

receive documentation, updates and technical support from the author.

Many of these programs can be found on the companion diskette

available for this book in the Shareware-PD directory. See the

README file in the Shareware-PD directory for a complete list.

Command

dcCLOCK

FBLETYPE

FILEDFIND

LISTCOM

PRINT

SOUND

UDATE

XICON

Description

Excellent clock and calendar program.

Show file type.

Finds file on disks.

Lists files by comments.

Prints files easily.

Plays and AMiga IFF sound file.

Check file updates.

Adds icon execution to script files.

233

9.

ARexx

Abacus 9. ARexx

ARexx

This chapter contains information about ARexx for the Amiga. The

three sections of this chapter explain ARexx, all ARexx commands and

present some very usable ARexx application programs.

If you think about it, it's almost silly. Your Amiga word processor is

up and running and, thanks to the magic of Amiga multitasking, right

there on the same screen is a database program displaying an address.

You'd like to insert that address into the header of the letter you're

typing. So why should you have to read the address and type it in by

hand? Why can't the word processor just get the address directly from

the database program and insert it into your document automatically?

Isn't your Amiga even aware of its own processes? Can't it find data

that's displayed on its own screen? Truth is, though the Amiga can run

a multitude of programs simultaneously, until recently the only

"official" means built into the Amiga's operating system for one

program to communicate with another program has been the usually

misunderstood and vastly underused Clipboard Device.

What's required is inter-process communication, a standard that defines

how one program (or process) can talk to another. On the Amiga, this

capability is provided by a language called ARexx. Though it has been

available as a third-party product since 1987, ARexx can now be

considered an official standard because it comes installed on version 2.0

of the Amiga's Workbench operating system.

Developed by William S. Hawes, ARexx is an Amiga implementation

of the REXX language previously available on IBM systems. ARexx is

a full-fledged programming language, similar in many ways to BASIC.

But more than that, ARexx also supplies the Amiga with a new

system-level communications protocol that works similar to a

telephone exchange, detecting and directing calls and passing

information and commands from one program to another. ARexx also

serves as a standardized macro language for all Amiga programs that are

equipped to take advantage of it. So ARexx actually serves three very

useful functions.

237

9. ARexx AmigaDOS Inside and Out

9.1 RUNNING AREXX

Just as you must open a CLI window or load the Amiga's Workbench

operating system before you can use them, ARexx must first be loaded

into the Amiga environment before it can be used. This is a simple

process accomplished by adding the command "rexxmast" to your

startup-sequence, typing it from the CLI, or clicking on its icon.

Provided the proper commands and libraries have been copied to your

system's LIBS: and C: directories (there is an "install" icon that will do

this for you for vl.3, and it comes pre-installed on v2.0 system disks),

the ARexx system is quickly and transparently installed in the

background, taking up about 40K of RAM. Once invoked, it simply

waits in the background for one program or process to try to

communicate with another, or to be invoked directly to run a stand

alone ARexx program.

ARexx works through invisible communications "ports" that are

opened by ARexx-compatible programs. ARexx cannot simply open its

lines of communication with all Amiga programs automatically; the

programmer must add some special code which interfaces with the

ARexx system. It's similar to having to installing a telephone before

you can call someone. The extra code involved is simple (most of the

work is done by ARexx itself), and adds only about one to two

kilobytes of code to an average program. Once a programmer has added

an ARexx interface to an application, that program has the capability to

communicate with any other ARexx-capable program running on the

Amiga, or with ARexx itself. There are already hundreds of Amiga

programs that support ARexx, and now that Commodore is officially

supporting ARexx, most new Amiga programs are sure to include
ARexx interfaces.

The ARexx system comes with several helpful support programs. HI

sends a halt request to all running ARexx applications. This is useful if

you've accidently written a program that gets stuck in an infinite loop.

RX runs stand-alone ARexx programs. RXSET adds or changes entries

in ARexx's 'Clip List', which is used to hold and pass values. RXC

closes down ARexx completely after the last ARexx program is

finished running. WaitForPort is used to check and see if a particular

program's ARexx communications port is available. TCC, TCO, TE,

and TS control ARexx's powerful TRACE debugging tools.

238

Abacus 9.2 AREXX PROGRAMS

9.2 AREXX PROGRAMS

ARexx is an interpreted programming language, providing the same

type of immediate feedback and instant gratification as BASIC. ARexx

can even be accessed from the CLI in an "immediate mode" similar to

the Commodore 64fs built-in BASIC interpreter. For example, you can

type:

rx M do 5;say 'Hi■;endM

from the CLI, and ARexx will print the word "Hi" five times. The

initial "rx" is always required; it invokes the ARexx interpreter. The

rest of the line is an actual ARexx program consisting of ARexx

commands surrounded by quotes and separated by semicolons. This

particular example is the ARexx equivalent of the BASIC program:

FOR X=l TO 5:PRINT "Hi":NEXT

It sets up a loop which prints the word "Hi" in the CLI window five

times, then quits. More complex programs can be created by using a

text editor and saving them as text files, just as you would create an

AmigaDOS script file. Entering:

rx dhO:Sample

from the CLI will run an ARexx program named "Sample" (or

"Sample.rexx" if "Sample" is not found) on drive dhO:. The pathname

is not required if your program is located in the current directory, or in a

directory that has been assigned the virtual device name REXX:.

Since ARexx is an interpreted language, it is not as fast as a compiled

language like C or Modula-2. Most people will not want to write large

application programs in ARexx. However, the current version of

ARexx is as much as three times faster than the original release, and

should be more than adequate for simple programming tasks, such as

text formatting and file maintenance. ARexx is, of course, capable of

more complex tasks; there is even a public domain "Star Trek" game

written completely in ARexx.

239

9. ARE xx AmigaDOS Inside and Out

9.3 PROGRAM MACROS

Although ARexx can function quite well as a stand-alone programming

language, it really shines when you invoke its ability to communicate

with an application program.

ARexx can act as a versatile macro language for any program that is

ARexx capable. ARexx macro programs can be specifically written to

perform complex tasks such as automatically inserting formatting codes

into a word processor document, or sending control scripts to a

telecommunications program for automated on-line sessions. ARexx

can pass commands to running programs, making menu selections,

typing in filenames, and making choices based on changing conditions.

ARexx macros can be quite complex, automating hundreds of

operations if necessary.

An ARexx macro is usually a combination of actual ARexx commands

and specialized instructions for the program involved. For example, an

ARexx macro for a graphics file conversion program like ASDG's Art

Department Professional might use ARexx commands to determine

whether or not a file exists on disk, then use the program's specialized

instructions to instruct the program to convert that file from a HAM to

a 32-color image, saving the result to disk. Then ARexx commands

might take over and rename or move the file to a different drawer, while
deleting the original file.

ARexx macros can be very simple (e.g., inserting a single control

character at the cursor position in a word processing document) or quite

complex (e.g., perhaps opening an application program, making

multiple changes to a disk full of files, printing them out, then closing
the program).

240

Abacus 9.4 MULTITASKING

9.4 MULTITASKING

By far the most powerful feature of ARexx is its ability to function as

a communications link between two or more running applications. For

example, you might want your word processor to output information to

an ARexx program where it is sorted and formatted, then inserted

automatically into a database manager. Or you might ask your

telecommunications program to download stock quote information and

transfer it directly to a spreadsheet. You can even link multiple

programs, passing information back and forth among a database, a word

processor, a spreadsheet, and a telecommunications program

simultaneously. With the proper ARexx programs as "glue" between

your applications, there is really no limit to what you can accomplish.

Best of all, ARexx can even make decisions based on parameters, such

as data values, time and date, disk space available, or system

configuration, so that it can pass commands and process data

selectively. It can even run programs or execute necessary AmigaDOS

commands under program control. It is possible to automate an entire

computing session with the right ARexx program, launching

programs, handling errors, and making decisions based on pertinent data

in an almost human manner. Your imagination is really the only limit.

All that is required is this: each program with which you want to

communicate must open its own ARexx communications port

241

9. ARexx AmigaDOS Inside and Out

9.5 HOW AREXX WORKS

9.5.1 DATA

ARexx is similar to other computer programming languages, such as

BASIC, C, and Modula-2. But there are also some differences. One

major difference is that ARexx variables are typeless. This means that a

variable may contain a text string or a numeric value without first

being declared as one or the other. You can then use the contents of the

variable in any way that is legal. For example, an ARexx program

might make this declaration:

number = • 1234567'

Because of the quotes surrounding the assignment string, most

languages would consider the variable number to contain a string of

characters, as does ARexx. But since the string is also a valid numeric

value, ARexx will also consider number a valid operator for numeric

calculations. If you type in this line:

say number +2

ARexx will respond with the correct answer, '1234569*. But you can

also perform string functions. For example:

say left(number,4)

will result in the response, '1234'. It is very unusual for a

programming language to treat its variables in such a nonchalant

manner, but this capability gives ARexx a great deal of power in the

manipulation of numbers and strings.

Numeric operators in ARexx are always expressed as decimals. Binary

numbers can be expressed as a string of ones and zeroes enclosed in

quotes and followed by a *b\ as follows: '10101100'b. Hexadecimal

numbers can be expressed as a string of digits 0-9 and letters A-F,

enclosed in quotes and followed by an 'x', as follows: 'CDlO'x.

Hexadecimal and binary strings can be converted to decimal numbers

using the ARexx conversion function C2D(). X=C2D ('lOllOll'b

will return a value of decimal 91 for X. X=C2D (■ CD10'x) returns a

value of decimal 52496 for X.

242

Abacus 9.5 HOW AREXX WORKS

9.5.2 SYMBOLS

ARexx works with four different types of data, which it calls symbols.

In other languages, they would be called constants and variables.

The first is a fixed symbol, which is comprised of the digits 0-9, a

decimal point, an exponential symbol TB', and/or a leading V or '-'

sign. These all make up constant values, such as 9, 3.60, .123, -74, or

1.43E+5.

The second is a simple symbol, which would be called a simple

variable in most languages. Simple symbol names cannot begin with a

number and cannot include a period. Hello, number, and x are all

examples of simple symbols. However, if a simple symbol has not

been assigned a value, it is assigned a string value equivalent to its

name that appears in uppercase characters. (If the variable hello has

not been assigned a value, Say he 1 lo responds with 'HELLO'.)

say hello /* ==> 'HELLO1 */

hello = 123 /* declare variable value */

say 'hello' /* ==> 'hello' */

say hello /* ==> '123' */

This example also illustrates how ARexx defines a literal string: any

collection of characters (including the keyboard's international character

set) that is enclosed in single ('Hi') or double ("Hi") quotes is

interpreted as a literal string.

The third type of symbol is a stem, which would be called an array or a

subscripted variable in most other languages. A stem symbol has a

name like number, with a single period at the end of its name. The

name before the period is the stem name of what will be extended to

become the fourth type of ARexx symbol, the compound symbol. One

or more extension names are added after the period, which act as indexes

to the stem. Here's an example:

number. = 10 */ initialize all values at '10' */

do i = 1 to 5 */ do loop five times */

number.i = i */ assign value equal to index */

end */ end loop */

This program assigns the value T to the variable 'number.l' the first

time through the loop. On subsequent passes, it assigns '2' to

fnumber.2', '3' to 'number.3', and so on up to five. If we then ask

ARexx to say number. 4, it will respond with '4', the value stored

in the symbol fnumber.4'. However, the first program line initialized

all incidences of the stem 'number.' with the value '10'. So if you ask

ARexx to say number. 7, it will answer back '10'.

243

9. ARExx AmigaDOS Inside and Out

A compound symbol can also include multiple extensions (e.g.,

'number.ind.mark1). Both 'ind' and 'mark' can represent simple symbols

which index into the compound data structure. This example also

illustrates the fact that extensions don't have to be numeric.

9.5.3 OPERATORS

ARexx uses four different types of data operators.

Arithmetic operators include the familiar 'four-banger' calculator

functions of addition V, subtraction '-', multiplication '*', and division

'/'. As in most languages, multiplication and division are performed

first in a calculation, then addition and subtraction. Parentheses '0* can

be used to force a particular calculation order. For example, say

3*2 + 10/5 will return the result '8' because 3*2 and 10/5 will be

calculated first and then added together. However, say

(3*(2+10))/5 will return 7.2*. Exponentiation is performed with a

double asterisk '**'; 3**2 is interpreted as 'three squared'. Exponents

must be integers, even though they may be negative. Exponentiation

takes precedence over all other operators. The final two arithmetic

operators are closely related. Integer division '%' returns the integer

portion of a division operation; say 22%5 returns '4' because 5 goes

into 22 only four times, with a remainder of 2. Remainder, or 'modulo',

division '// performs the same operation, but returns the remainder
portion of the answer; say 221 IS returns '2'.

Concatenation operators join two or more strings. The only explicit

concatenation operator in ARexx is the double vertical bar 'II'. say

1 hello • | | 'world' returns the result 'helloworld', with no space

between the strings. Simply typing the command say 'hello1

• world' with one or more spaces between the strings results in the

output 'hello world', with a single space separating the strings. Typing

say "hello' ' world' without an intervening space causes ARexx

to interpret the doubled quote as meaning "I want to print a quote mark

here", so it responds with Tiello'world'. However, if a variable name is

first defined and included, one or more strings can be 'jammed together',

as in this example: x = 'world' ;say ' hello'x. This

command returns the response 'helloworld', just as though the explicit

concatenation operator had been used.

Comparison operators compare two numbers or strings. Exact

comparisons look for complete equivalence. The two exact comparisons

are '=', exactly equal, and '-==', exactly unequal. String comparisons

ignore leading blanks, and pad the shorter string with trailing blanks if

necessary. Numeric comparisons convert operators to numeric form,

using ARexx's current NUMERIC DIGITS setting. The numeric and

string comparisons are equal '=', not equal '-=', greater than '>', greater

than or equal to '>=' or '-<', less than '<', and less than or equal to '<='

244

Abacus 9.5 HOW AREXX WORKS

or '~>\ Note that the tilde '-' is used to negate a comparison. For

example, '<=' is 'less than or equal to1, while '->' is technically 'not

greater than', which is logically equivalent.

Logical, or 'boolean', operators always return a value of TRUE '1' or

FALSE '0'. The four logical operators are NOT '-', AND '&', OR T,

and XOR (exclusive OR) 'A' or '&&'. You should remember that the

caret or up-arrow sign 'A' is used by ARexx not for exponentiation, but

as the XOR logical operator.

9.5.4 PROGRAMS

A short ARexx program can be entered from the CLI as a single line,

as we illustrated previously:

rx "do 5;say 'Hi1;end11

This simple program actually consists of three ARexx commands

separated by semicolons. Semicolons can always be used to allow

multiple commands on a single line. Longer ARexx programs must be

entered using a text editor or word processor. ARexx programs entered

in this way must begin with a comment line. The comment line is

ARexx's signal that what follows is, in fact, an ARexx program, and

not just a text file. A comment is any line preceded by the characters

'/*' and followed by **A A comment may take up more than one line,

or may follow a command statement on its line. The following are

examples of legitimate ARexx comments:

/* This is the opening comment line which is REQUIRED*/

/* by ARexx This comment spans several lines, but

doesn't require new opening and closing slash,

asterisk marks. ARexx considers everything

following the opening comment marks a comment

until it encounters the closing mark: */

say 'Hi There' /* This comment follows an executable

command */

Beyond the opening comment line, it is good programming practice to

use comments liberally throughout your programs. They improve

readability, and will help you debug or modify your programs later, if

needed.

245

9. ARexx AmigaDOS Inside and Out

9.5.5 COMMANDS & FUNCTIONS

Since the main purpose of ARexx is to serve as a utility language, it is

especially adept at handling text and numbers. ARexx includes specific

text-handling functions to perform such esoteric tasks as centering a

line, stripping out substrings, deleting words, and even reversing a

string of characters. ARexx number-handling functions have the ability

to convert among decimal, hexadecimal, and binary, find the maximum

or minimum in a list, and even set the number of digits of precision in

ARexx math operations. (This function is called "FUZZ".)

Of course, ARexx is also equipped with a full complement of program

control functions. Our little one-line example demonstrated an

elementary DO loop; SELECT-WHEN-OTHERWISE and DF-THEN-

ELSE conditionals are also supported, in addition to others.

A list of the ARexx commands can be found at the end of this chapter.

You should refer to this list as you encounter various commands in the

examples.

ARexx programs can even issue AmigaDOS commands or launch other

programs, so they are really limited only by the imagination of the

programmer. Advanced programmers can make use of a full range of

highly sophisticated ARexx commands that control interrupts, alter the

system configuration, and even access machine addresses. They can also

call support libraries that allow opening screens and windows and

creating gadgets.

246

Abacus 9.5 HOW AREXX WORKS

9.5.6 PURE POWER

It should be obvious by now that ARexx enhances the Amiga's already

impressive multitasking capabilities. It allows programs to actually

control each other, passing data and commands back and forth with a

minimum of human input. ARexx is even perfectly capable of running

an Amiga entirely by itself if a properly constructed control program is

provided.

Since ARexx is now an official standard, Amiga developers are more

likely to take advantage of the new capabilities ARexx provides. If

nothing else, it makes a standard macro language available to every

ARexx-capable program. And as programmers experiment, they are

bound to come up with new and innovative ways for programs to share

important data easily, and even to control each other. The coming years

should see the development of many multitasking innovations brought

about by the existence of the ARexx standard.

ARexx vl.15 is shipped on the v2.0 Workbench release from

Commodore. It is also available for $49.95 from: William S. Hawes,

PO Box 308, Maynard MA 01754, 508-568-8695, BIX: whawes, CIS:

72230,267, PLINK: whawes

247

9. ARE xx AmigaDOS Inside and Out

9.6 AREXX COMMANDS &

FUNCTIONS

9.6.1 FLOW & CONTROL

DO

Defines a group of instructions to be performed as a block. DO

incorporates many control structures. Any combination of controls may

be used, with the exception that WHILE and UNTIL are mutually

exclusive.

Example:

DO

instructions...

END

DO i

instructions...

END

DO i = lo TO hi BY index

instructions...

END

DO i = lo TO hi FOR limit

instructions...

IF j=k THEN ITERATE

IF k>0 THEN LEAVE

instructions...

END

DO WHILE i < limit

instructions...

END

DO UNTIL i > limit

instructions...

END

DO FOREVER

if i>6 then BREAK

END

/* Execute block of instructions once. */

/* Often used with IF...THEN...ELSE. */

/* All DO loops end with END. */

/* Does loop 'i' number of times. */

/* Iterative loop. Advances 'i' from */

/* 'lo' to 'hi' values by increment */

/* 'index1. BY is optional, default = 1 */

/* and index may be negative or decimal.*/

/* Same as above, but will not exceed */

/* value of 'limit'. */

/* Skips rest of loop, increments i. */

/* Exit iterative loop if condition=TRUE*/

/* Performs loop until value of 'i' */

/* equals or exceeds value of 'limit'. */

/* Evaluated at start of loop, so loop */

/* may not be executed at all. */

/* Like WHILE, but condition is checked */

/* at the END of a loop, so the loop is */

/* always executed at least once. */

/* Execute forever. */

/* Exit loop if condition is met. */

248

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

EXIT

Halts execution of an ARexx program, optionally returning a value.

Example:

IF x>6 THEN EXIT /* Halts execution. */

IF x>6 THEN EXIT 12 /* Halts execution & returns value '12' */

IF-THEN-ELSE

Conditionally controls program statement execution. An IF-THEN

statement may consist of a single program line, or multiple lines

through inclusion of a DO loop.

Example:

IF x>5 THEN SAY x /* If condition is true, print x. */

IF x>5 THEN /* Multi-line loop is executed only if */

DO /* condition is met. */

SAY x

x = x+1

END /* ELSE is performed only if condition */

ELSE SAY 'Done1 /* is NOT met. May be multi-line with DO*/

IF x>6 THEN /* In the case of double IF statements */

IF y<4 THEN /* it may be necessary to bind an ELSE */

SAY x /* to an inner loop using NOP, or 'No */

ELSE NOP /* Operation1. This allows the real ELSE*/

ELSE SAY y /* to work as it's supposed to. */

SELECT

Allows multiple-choice type program execution.

Example:

SELECT

WHEN i=l THEN

WHEN j<3 THEN

DO

J=J+6

SAY j

END

OTHERWISE SAY

END

SAY i

•Sorry!■

/*

/*

/*

/*

/*

/*

Begin block.

If condition is met,

If condition is met,

of instructions.

If no conditions are

say value of i.

then DO block

met, give a

response. End with an END statement.

V

*/

*/

*/

*/

*/

SIGNAL

Essentially a special-purpose GOTO statement, SIGNAL passes control

to label points in a program depending on various conditions. Valid
options for SIGNAL are BREAK_C, BREAK_D, BREAK_E,
BREAK_F, ERROR, FAILURE, HALT, IOERR, NOVALUE, and

249

9. ARExx AmigaDOS Inside and Out

SYNTAX. If a SIGNAL condition is met, a special variable called

SIGL is set to the line number which was executing when the

condition was met.

Example:

SIGNAL ON BREAK_C /* If a 'CTRL-C is detected from the */

/* keyboard, control passes to the point*/

/* in the program labeled 'BREAK_C:' */

SIGNAL OFF BREAK_C /* Disable check for 'CTRL-C1. */

SIGNAL 'start' /* The program jumps to the label START: */

9.6.2 STRINGS

ABBREV()

Returns a boolean value indicating whether one string is an

abbreviation of another, with an optional specified minimum length.

Example:

say ABBREV('abcde1,'abc') ==> 1 /* True */

say ABBREV('abcde', 'abc',4) ==> 0 /* False, because 'abc'<4 chars */

CENTER()

Centers a string in a string of the specified length, trimming it to size

or padding it with blanks or a specified pad character if needed. May

also be expressed as the British CENTREO.

Example:

x=CENTER('abc',6) ==> ' abc ' /* Extra spaces go to right. */

x=CENTER('abc',6,'+') ==> '+abc++'

x=CENTRE('abcdef*,3) ==> 'bed'

COMPRESS()

Removes leading, trailing, and imbedded spaces from a string. Can also

remove specified characters from a string.

Example:

x=COMPRESSC a be ') ==> 'abc' /* Removes blanks. */

x=COMPRESS('=+/a/bc=\ '/=') ==> '+abc' /* Removes • = • and '/'. */

250

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

COMPARE()

Compares two strings and returns the position of the first character

which doesn't match, or 0 if they're identical. Pads the shorter string

with spaces, or a pad character if specified.

Example:

x=COMPARE('abcde\ 'abcce1) ==> 4 /* 4th char doesn't match */

z=COMPARE(labc+-\ 'abc\ ' + ') ==> 5 /* Short string is padded */

/* with • + ', so 5th char is */

/* first 'no match1. */

COPIES()

Returns a string composed of the specified number of copies of the

supplied string.

Example:

x=COPIES('abc•,4) ==> •abcabcabcabc•

DELSTRO

Deletes a substring from the specified position to the end of the string,

or for a specified number of characters.

Example:

x=DELSTR('abcdefg\4) ==> 'abc1 /* Begins at 4 */

x=DELSTR(labcdefg\4,2) ==> 'abcfg' /* Begins at 4 for 2 chars */

DELWORD()

Similar to DELSTR(), but deletes a specified number of words

beginning at the indicated word number. If no length is specified, it
deletes the rest of the string.

Example:

z=DELWORD('I am a nun1,3) ==> 'I am1 /* Start at word 3 */

z=DELWORD('I am a nun1,3,1) ==> "I am nun1 /* 1 word, start at 3 */

FINDO

Finds a phrase of words in a larger string, and returns the word number
of the matched position. Returns 0 if not found.

251

9. ARe xx AmigaDOS Inside and Out

Example:

z=FIND('He is the chanp'^'is the1) ==> 2

INDEX()

Searches for the first occurrence of the specified pattern in a string,

optionally starting at a specified position. Returns the position first

matched, or 0 if not found.

Example:

z=INDEXCabccaabcdef', 'cd') ==> 3 /* First position found. */

z=INDEX(labcdabcdefl,'cd\5) ==> 7 /* Started at position 5. */

INSERT()

Inserts the first string into the second string. Begins at position 0, or

after a specified starting position. Either string may be padded to a

specified length if required, and the first string may be truncated if

necessary.

Example:

z=INSERT('ab1, 'abcdef ,4) ==> 'abcdabef /* Insert at position 4 */

z=INSERT('abed', 'abedef \4,3) ==> 'abedabeef /* Insert after 4, */

/* truncate inserted string to */

/* 3 characters. */

z=INSERT('ab\ 'abede1^^, ■ + ') ==> 1abcde+abf+l /* Pad string to 6 */

/* chars using ' + ', then insert */

/* first string, padding it to 4 */

LASTP0S()

Search backwards for the first occurrence of the first string in the

second, beginning at the optional start position. Similar to INDEX().

Example:

z=LASTPOS('cd\'abedabedef') ==> 7 /* Last position found. */

z=LASTPOS('cd','abedabedef',5) ==> 2 /* Started at position 5. */

LEFT()

Returns the specified number of leftmost characters of a string. Pads

with an optional pad character if necessary.

Example:

z=LEFT('abcdef1,4) ==> 'abed'

252

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

z=LEFT('abc' ,6, ■ + •) ==> 'abc+++'

LENGTH()

Returns the length of the string.

Example:

z=LENGTH('123456') ==> 6

OVERLAY()

Overlay the first string on the second, beginning at an optional starting

position (default is the first character) for an optional length (default is

the length of the first string). If necessary, pad with blanks or an

optional pad character.

Example:

z=OVERLAY(•abc','123def•) ==> 'abcdef•

z=OVERLAY('abcdef,'123456',4,7,' + ') ==> '123abcdef+' */ Begin at */

/* position 4, for 7 chars, pad '+' */

poso

Searches for the first occurrence of the specified pattern in a string,

optionally starting at a specified position. Returns the position first

matched, or 0 if not found. Identical to INDEXO except for the order of

the arguments, so be careful.

Example:

z=POS('cd\ 'abcdabcdef') ==> 3 /* First position found. */

z=POS('cd\ 'abcdabcdef \5) ==> 7 /* Started at position 5. */

REVERSE()

Reverses the sequence of characters in a string.

Example:

SAY REVERSE('abcdefg•) ==> 'gfedcba'

RIGHT()

Returns the rightmost specified number of characters from a string. If

the requested length is longer than the length of the string, RIGHT()

will pad it on the left with blanks or a specified pad character.

253

9. ARExx AmigaDOS Inside and Out

Example:

z=RIGHT(labcdef',3) ==> 'def

z=RIGHT('abc',7, '+') ==> '++++abc'

SPACE()

Reformats a string so there are the specified number of spaces (or

optionally specified pad characters) between each pair of words.

Example:

z=SPACE('Hi there buddy1,3) ==> 'Hi there buddy"

z=SPACE('Hi there buddy1,0) ==> 'Hitherebuddy'

z=SPACE('Hi there buddy1,2, ' + ') ==> •Hi++there++buddy'

STRIP()

Removes extraneous leading or trailing spaces, or both (default), using

the options TAT, or fB\

Example:

z=STRIP(' abc ','T') ==> ' abc1

SUBSTR()

Returns a substring of the supplied string, starting at the specified

position, for the rest of the string or for an optional specified length,

padding with blanks or an optional pad character.

Example:

z=SUBS>TR('123456',3,3) ==> '345'

Z=SUBSTR('123456',5,4,•+•) ==> '56++'

SUBWORD()

Returns a substring of the supplied string, beginning at the specified

word and continuing on to the end of the string or for an optional

specified length in words. Leading and trailing blanks will be stripped.

Example:

z=SUBW0RD('Hi there good ole buddy',3,2) ==> 'good ole'

/* Begin at word 3 for a length of 2 words */

254

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

TRANSLATE()

Translates selected characters in a string to certain other selected

characters, according to an output and an input table. If no output and

input tables are given, TRANSLATE() simply makes the string all

uppercase.

Example:

z=TRANSLATE('abcdef', '123', 'abc1) ==> '123def /* 'a' is replaced */

/* by 'I1, «b' by '2\ and 'c' by '3' */

TRIM()

Removes trailing blanks from the supplied string.

Example:

z=TRIM(labcdef •) ==> 'abcdef

UPPER

Translates a string to uppercase. There is also an UPPERO function.

Example:

SAY UPPER "Hi There" ==> "HI THERE"

z=UPPER("Hi There")

VERIFY()

Compares a string against a list of characters, returning the index of the

first character in the string argument which is not in the list, or 0 if all

characters are in the list. If the optional keyword MATCH is included,

VERIFYO returns the index of the first character in the string which is

in the list.

Example:

z=VERIFY('hello1,'leh') ==> 5 /* 'o\ in position 5, is the first */

/* unmatched character. */

z=VERIFY('hello1,'leh','M') ==> 1 /* 'h\ in position 1, is the */

/* first matched character. */

WORD()

Returns the specified number word in the string, or a null string if there

aren't that many words in the string.

255

9. ARExx AmigaDOS Inside and Out

Example:

z=WORD('Hi there old man1,3) ==> 'old1

WORDINDEXO

Returns the starting position of the specified number word in the

string, or 0 if there are fewer words than the number specified.

Example:

z=WORDINDEX(lHi there old man1,3) ==> 10 /* Word 3 starts at pos. 10

*/

WORDLENGTH()

Returns the length of the specified number word in the string.

Example:

z=WORDLENGTH('Hi there old man1,3) ==> 3 /* Word 3 is 3 chars, long

*/

WORDS()

Returns the number of words in the string.

Example:

z=WORDS('Hi there old man1) ==> 4

XRAN6E()

Creates a string composed of all the characters numerically between the

specified start and end values. If no start and end are specified,

XRANGEO creates a string of all values from decimal 0 to 255 (hex

•00'x to TFx).

Example:

z=XRANGE('a\ 'f) ==> 'abcdef / * Try SAY XRANGE (• ','z1) */

256

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

9.6.3 NUMBERS

ABS()

Returns the absolute value of a numeric argument.

Example:

x = ABS(y) /* If y=-5.6; then x=5.6 */

MAX()

Returns the maximum of a list of arguments. See also: MIN().

Example:

z=6;x=MAX(l,5.4,z,3+2) ==> 6

MIN()

Returns the minimum of a list of arguments. See also: MAX()

Example:

z=6;x=MIN(l,5.4,z,3+2) ==> 1

RANDOM()

Returns a pseudo random positive integer between a minimum and a

maximum value, up to 999. May be supplied with a seed if desired.

Example:

z=RANDOM(l/99,TIMERS1)) /* Seed from 'seconds' timer. */

RANDU()

Like RANDOM(), but always generates a number between 0 and 1.

May be given an optional seed value.

Example:

z=RANEU(TIME('s')) /* Seed from 'seconds' timer. */

SIGNO

Returns 1 if the argument is >=0, -1 if the argument is <0.

257

9. ARE xx AmigaDOS Inside and Out

Example:

SAY SIGN(-5) ==> -1

TRUNC()

Returns the integer part of the argument followed by the specified

number of decimal places (default 0), padded with zeroes if necessary.

Example:

z=TRUNC(123.456,1) ==> 123.4

9.6.4 INTER-PROCESS COMMUNICATION

ADDRESS

ARexx keeps track of two host addresses to which it can send

commands, the 'current1 and 'previous1 address. ADDRESS is used to

swap the two, or to specify a different address permanently or

temporarily. (In ARexx host names, case is significant, so EDIT and

'edit1, for example, identify two different hosts.)

Example:

ADDRESS /* Swaps 'current1 and 'previous'. */

ADDRESS 'host1 'com' /* Issues the command 'com' to the */

/* ARexx host named 'host' without */

/* changing 'current' or 'previous'. */

ADDRESS 'host' /* Makes 'host' the 'current' host */

/* and swaps 'current' to 'previous'; */

/* the former 'previous' is lost. */

ADDRESS VALUE a b c... /* Same as above, but evaluates the */

/* host name from the terms. */

ADDRESS COMMAND 'dir' /* A special address; passes a command */

/* to AmigaDOS. */

ADDRESS()

Returns the current host address string. Tells you where commands will

be sent.

Example:

x=ADDRESS() /* If the current host is 'TxEd', then */

/* x="TxEd' */

258

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

PUSH

Prepares a stream of data fOT the standard input stream, which can then

be read by any program which looks for keyboard input. Stacked

commands are read out in a "last-in, first-out" format.

Example:

PUSH 'dir' /* Push 'dir',' list', and 'cd' to SIDIN */

PUSH 'list1 /* stream. Coircnands will be read out in */

PUSH 'cd' /* reverse order: 'cd','list'f 'dir' */

QUEUE

Same as PUSH, but commands are stacked in "first-in, first-out" order.

SHELL

Synonymous to ADDRESS.

9.6.5 FILES

CLOSE()

Closes the file specified by the given logical name. All files are closed

automatically when an ARexx program exits.

Example:

CLOSE ('output')

EOF()

Checks the specified logical file and returns a boolean TRUE T if the

end of file has been reached. Otherwise returns FALSE f0\

Example:

DO UNTIL EOF('infile') /* Perform loop until end of file. */

s = READLN('infile')

END

EXISTS()

Returns a boolean value (1 or 0) indicating whether a given AmigaDOS

file exists.

259

9. ARE xx AmigaDOS Inside and Out

Example:

SAY EXISTSCdfO:ReadMe.txt') ==> 1 or 0

OPEN()

Opens an AmigaDOS file for READing, WRITEing, or APPENDing,

giving it an ARexx logical filename to which it will be referred by all

other ARexx file operations. READ, WRITE, and APPEND may be

abbreviated by their first letters. Also may be used to open a custom

console window. Returns a boolean value indicating whether the file

opened successfully. Though open files are closed automatically when

an ARexx program ends, you can close them with the CLOSE()
function.

Example:

z=OPEN('infile1,'dfO:ReadMe.txt',R) /* Open 'infile1 for READ */

OPEN('Window','CON:160/50/320/100/Window/cds') /* Open custom CLI */

READCHO

Reads the requested number of characters from the named logical file.

Example:

z=READCH('infile',32)

READLN()

Similar to READCHO, but reads a complete line from the logical file
up to the next newline character.

Example:

z=READLN('infile')

SEEK()

Moves to a new position in the named logical file. The position can be

relative to the file's BEGIN, CURRENT, or END. The returned value

is the actual position relative to the start of the file.

Example:

z=SEEK('infile',43) /* Move ahead 43 characters from CURRENT. */

z=SEEK('infile',35,'B') /* Move to 35th character from BEGIN. */

SAY SEEKCinfile',0, 'E') /* Returns length of file to END. */

260

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

WRITECH()

Writes the string to the specified logical file. Returns the actual number

of characters written. Does not write a newline character.

Example:

z=WRITECH(loutfilel,'Hi there") ==> 8 /* Wrote 8 characters. */

WRITELNO

Same as WRITECHO, but adds a newline character to the end of the

line.

Example:

z=WRITELN('outfile\"Hi there") ==> 8 /* Wrote 8 characters. */

9.6.6 CONSOLE I/O

ARG

Shorthand for PARSE UPPER ARG. Gets input from the console.

Example:

ARG a b c . /* If program was run as */

/* rx program 12 15 howdy */

/* then a=12, b=15, c='HOWDY' */

ECHO

Synonymous to SAY.

PARSE

Extracts substrings from a string (or the console input) and assigns
them to variables. PARSE has many more options than it is possible

to illustrate here. (For example, the options NUMERIC, SOURCE,

and VERSION can be used to check various bits of system

information). Check your Amiga or ARexx manual for complete

information.

Example:

PARSE UPPER ARG x y z /* Synonymous to ARG. Optional */

/* keyword UPPER converts to uppercase*/

PARSE UPPER PULL x y z /* Synonymous to PULL. */

261

9. ARE XX AmigaDOS Inside and Out

PARSE VAR variable x y z /* If variable = '12 45 hello dear1,*/

/* x=12, y=45, z='hello'. The final */

'.' is a 'placeholder1 used to */

force z to be equal to only */

'hello1 and not the entire */

remainder of the variable. A */

placeholder may be used anywhere */

to 'eat up' an unwanted word. */

PARSE VAR variable x /* If variable = '12,45' then */

/* x=12, y=45. The delimiter may be */

/* any valid character. */

PARSE VALUE 'Hi' I |x WITH z /* If x='de\ then z='Hide'

PARSE VAR r 1 x 4 y +3 z /* If r='1234567890 \ then x='123',

/* y='456'/ and z='789O'. That is,

/* x equals the characters from

/* position 1 up to but not incl.

/* position 4, y equals the chars

/* from position 4 up to but not

/* including position 4 plus 3, and

/* z equals the rest of the string

/* beginning at position 4 plus 3.

PULL

Synonymous to PARSE UPPER PULL. Pulls input from the console,

first printing a prompt if a prompt string has been set with OPTIONS.

Example:

OPTIONS PROMPT 'Input a,b:• /* Set an input prompt string. */

PULL a b . /* Pull values from console for a,b */

SAY

Sends output to the console window. Synonymous to ECHO.

Example:

SAY 'Howdy' 3+7 ==> Howdy 10

9.6.7 FUNCTIONS & PROCEDURES

AR6

Example:

sqr:

Shorthand for PARSE UPPER ARC Gets arguments for a function.

262

ABACUS 9.6 AREXX COMMANDS & FUNCTIONS

ARG a,b,c /* If function was called as */

/* x = sqr(1,2,'howdy') */
/* then a=l, b=2, c='HOWDY' */

ARG()

In a function, tells you how many arguments were supplied to the

current function, what they were, or whether or not they exist,
depending on options. ARG() may also be used to report the number of
arguments passed on the command line when a program is run, but it

will always report T argument with a value equal to a string

containing all the arguments supplied.

Example:

say ARG() /* If the function was called as */

/* func: (12,23,34) */

/* ARG() returns '31, the number of */

/* arguments in the function call. */

say ARG(3) /* Following above example, returns */

/* '34', the third argument. */

say ARG(2) EXISTS /* Following above example, returns */
/* 'I1 or TRUE, because there IS a */

/* second argument. Also may use */

/* OMITTED, and abbr. to 1st letter */

CALL

Invokes an internal or external function, and passes arguments to it, if

any. Also allows you to call a function without returning a value.

Example:

CALL print x y z /* Executes a function called 'print' */

/* and passes it the values in x,y,z */

CALL OPEN 'infile1, 'dfO:ReadMe.txt', 'R' */ Does not return a value */

PROCEDURE

This command is used within an internal function to protect the

symbols used by making them local.

Example:

a=10;b=5 /* Define symbols in main program. */

fact: PROCEDURE EXPOSE b /* Create a function called fact:. */

say a ==> A /* The symbol 'a' is undefined, because */

say b ==> 5 /* 'PROCEDURE' has made all symbols */

/* local except 'b\ which the EXPOSE */

/* option has made global. */

263

9. ARExx AmigaDOS Inside and Out

RETURN

This command ends a function call and returns the value indicated.
Functions that have been called with the CALL command do not return
a value.

Example:

fact: /* Define a function called fact:. */

ARG i /* Get value from calling operation. */
IF i <=1 /* Test value. */

THEN RETURN 1 /* Return a value of 1 if true. */

ELSE RETURN i*fact(i-l) /* Calculate and return value if false. */

9.6.8 SYSTEM

ADDLIBO

Adds a function library or function host to the Library List ADDLIBO
is most often used to invoke ARexx's rexxsuppoitlibrary. After an
ADDLIBO command, the functions contained in the library may be
used by ARexx in the same manner as the ARexx resident functions.

Example:

q=ADDLIB('rexxsupport.library',0,-30,0)

/* The numbers are accurate for */

/* 'rexxsupport.library, but may be */

/* different for other libraries. */

DATE()

Returns the date in the specified format. Valid options are BASEDATE

(days since 1/1/10, CENTURY (days since 1/1/1900), DAYS (days
since 1/1 current year), EUROPEAN (DD/MM/YY), INTERNAL (days

since 1/1/78 ("Amiga Time11)), JULIAN (YYDDD), MONTH (current
month), NORMAL (DD MMM YYYY), ORDERED (YY/MM/DD),

SORTED (YYYYMMDD), USA (MM/DD/YY), and WEEKDAY
(current day of the week). These options can be shortened to just the
first character. The DATE0 function also accepts optional second and
third arguments to supply the date either in the form of internal system

days or in the 'sorted1 form YYYYMMDD. The second argument is an
integer specifying either system days (the default) or a sorted date. The
third argument specifies the form of the date and can be either T or'S1.

Example:

SAY DATE() ==> 20 Jul 1991

SAY DATECM1) ==> April

264

ABACUS 9.6 AREXX COMMANDS & FUNCTIONS

SAY DATECs', dated')+21) ==> 19910609

SAY DATE ('W, 19910609, 'S') ==> Sunday

DIGITS()

Returns the current numeric digits setting.

Example:

NUMERIC DIGITS 6; SAY DIGITS() ==> 6

ERRORTEXTO

Returns the error message associated with the error number.

Example:

SAY ERRORTEXT(15) ==> 'Function not found'

FORM()

Returns the current numeric form setting.

Example:

NUMERIC FORM SCIENTIFIC; SAY FORM() ==> SCIENTIFIC

FUZZO

Returns the current numeric fuzz setting.

Example:

NUMERIC FUZZ 3;SAY FUZZ() ==> 3

GETCLIPO

Returns the value associated with the supplied name from the ARexx

Clip List, which is used as a common repository by all running ARexx

applications. The name used is case-sensitive. See SETCLIPO.

Example:

q=SETCLIP(Hello, 123) ==> 1 /* Store a value in the Clip List. */

z=GETCLIP(Hello) ==> '123' /* Retrieve the value. */

HASH()

Returns the hash attribute of a string as a decimal number, and updates

the internal hash value of the string. Useful for checking data integrity.

265

9. ARe xx AmigaDOS Inside and Out

Example:

SAY HASH('ijk') ==> '62'

INTERPRET

Interprets a string or symbol as an ARexx command block. This
command allows you to input or build command strings to be executed.

Example:

greetings = 'say "Howdy-1

INTERPRET greetings ==> 'Howdy'

NUMERIC

This command allows you to set certain attributes that affect how
ARexx does math and comparisons.

Example:

NUMERIC DIGITS 5 /* sets number of digits of precision */

NUMERIC FUZZ 3 /* Specifies number of digits to be */

/* ignored when making comparisons. */

NUMERIC FORM SCIENTIFIC /* Sets output to scientific notation. */

NUMERIC FORM ENGINEERING /* Sets output to engineering notation. */

OPTIONS

A command to set various system attributes. Keyword NO will reset
the requested attribute to its default setting.

Example:

OPTIONS

OPTIONS

OPTIONS

FAILAT

PROMPT

RESULTS

10

1 Input:'

NO

/*

/*

/*

/*

/*

Sets minimum error signal at 10

Sets input prompt for PULL as

1 Input:•

Tells ARexx not to request results

when issuing commands to ext. host

*/

*/

*/

*/

*/

PRAGMA()

Can be used to get or change the current directory, and modify or poll

certain other system parameters.

Example:

CALL PRAGMA 'directory1,'dfO:Text■ /* Sets new current directory */

z=PRAGMA('D') /* Gets current directory */

266

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

REMLIB()

Removes the named library from the Library List. Returns a boolean

value indicating whether the operation was successful. See ADDLIB().

Example:

SAY REMLIB (' rexxsupport. library')

SETCLIP ()

Adds a name-value pair to the ARexx Clip List. Returns a boolean

value. See GETCLIPO.

Example:

q=SETCLIP(Hello,123) ==> 1 /* Store a value in the Clip List. */

z=GETCLIP(Hello) ==> '123' /* Retrieve the value. */

SHOW()

Returns the names in the resource list specified, or searches for a named

entry, in which case it returns a boolean value. Lists supported are

CLIP, FILES, INTERNAL, LIBRARIES, and PORTS. The name

entries are case-sensitive.

Example:

SAY SHOWClibraries') /* Lists all available libraries */

SAY SHOW('O1,Hello) /* Checks for clip named 'Hello' */

SOURCELINE()

Returns the text for the specified line of the ARexx program. If the line

argument is omitted, returns the total number of lines in the file. Often

used to embed "help" information in a program.

Example:

/* A sample program */

SAY SOURCELINEO ==> 3

SAY SOURCELINE(l) ==> /* A sample program */

SYMBOL()

Tests whether the supplied name is a valid ARexx symbol. Returns the

string BAD if it's not, LIT if it is valid but unused, and VAR if it is

valid and assigned.

267

9. ARexx AmigaDOS Inside and Out

Example:

zed='Hi'; SAY SYMBOL('zed') ==> VAR */ zed is valid and assigned. */

TIME()

Resets or reads the system time clock. Valid options may be

abbreviated to their first letter. Options are ELAPSED program time in

seconds, HOURS since midnight, MINUTES since midnight,
SECONDS since midnight, or RESET the elapsed time clock. If called
without an option, TIME() returns the system time in the form
HH:MM:SS.

Example:

SAY TIME() ==> HH:MM:SS

zsTIMECR1) /* Resets timer */

TRACE

ARexx supports a very powerful TRACE debugging option. Its many

features are beyond the scope of this chapter. Refer to the Amiga or

ARexx manual for complete information on using TRACE. Valid

TRACE options are ALL, BACKGROUND, COMMANDS,

ERRORS, INTERMEDIATES, RESULTS, LABELS, RESULTS, and
SCAN. A preceding "?" toggles interactive mode, and a "!" toggles
command inhibition. There is also a TRACE() function, which can be

used to set or read the current tracing option.

9.6.9 DATA

B2C

Converts a string of binary digits to its character equivalent.

Example:

SAY B2CC01100001') ==>

C2B()

Translates a string into a string that is its binary equivalent

Example:

x=C2B('abc') ==> •OllOOOOlOllOOOlOOllOOOll1

268

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

C2D()

Translates a string into a number expressed in ASCII digits 0-9.

Example:

x=C2DCCDEF'x) ==> 52719

C2X()

Translates a string into a string that is its hexadecimal equivalent

Example:

x=C2X('abc') ==> '616263'

D2C()

Translates a decimal number into its packed binary representation.

Opposite of C2D().

Example:

x=D2C(31) ==> 'lF'x

D2X()

Translates a decimal number into its hexadecimal representation.

Example:

D2X(32) ==> '20'x

DATATYPE()

Tells you which data type a string conforms to, either NUM if a valid

number, or CHAR. If a data type is specified, returns a boolean value

(1 or 0) indicating whether the string is of that data type. Valid data

types are ALPHANUMERIC, BINARY, LOWERCASE, MIXED

(upper and lowercase), NUMERIC, SYMBOL (valid ARexx symbol

name), UPPERCASE, WHOLE, and X (hex digits string). Each may

be shortened to its first letter.

Example:

say DATATYPE('abcl') ==> 'CHAR'

X=DATATYPE('AbCDE', 'UPPERCASE■) ==> 0 (FALSE)

269

9. ARe xx AmigaDOS Inside and Out

DROP

Drops the value of a symbol, resetting it to its uninitialized state,

which is the same as its name. DROPping the value of a stem resets
all compound variables created from the stem.

Example:

a =l;b=2;c=3

SAY a b c ==> 12 3

DROP a b c

SAY a b c ==> ABC

VALUE()

Returns the contents of the supplied symbol.

Example:

v=12;SAY VALUE(v) ==> 12

X2C()

Converts a string of hex digits into its packed character representation.

Example:

Z=X2C('10FDl) ==> 'lOFD'X

X2D()

Converts a hexadecimal number to decimal.

Example:

Z=X2D('1FI) ==> 31

9.6.10 BITS

BITANDO

Logically ANDs the two argument strings together.

Example:

'X, TFFO'X) ==>'0310"x

270

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

BITCHGO

Toggles the state of the specified bit in a string. Bits are numbered

from right to left, with the rightmost bit referred to as bit f0\

Example:

BITCHGC0313'x,4) ==> '0303 'x

BITCLRO

Similar to BITCHGO, but clears the specified bit to 0.

Example:

BITCLR(l0313'xl4) ==> l0303'x

BITCOMP()

Compares two strings bit by bit, and returns the position of the first

bit in which they differ. Returns -1 if the strings are identical. Bits are

numbered from the rightmost bit to the left, starting at 0.

Example:

BITCOMPC1010101'b,'1011101'b) ==> 3

BITOR()

Logically ORs the two argument strings together.

Example:

BITORCOSO'x,'FFFO'x) ==> 'FFF3'x

BITSET()

Similar to BITCHGO, but sets the specified bit to 1.

Example:

BITSET('0313lx;5) ==> '0333'x

BITTST()

Returns the boolean state of the specified bit in the argument string.

Example:

BIrTVST(t0313tx,A) ==> 1

271

9. ARexx AmigaDOS Inside and Out

BITXORO

Logically XORs the two argument strings together.

Example:

'x, 'FFFO'x) ==> 'FCE3'x

9.6.11 MEMORY

EXPORT()

Copies data from a string into a previously allocated memory buffer

area, which must be specified as a 4-byte address. A maximum length

may be specified; the default is the entire length of the string, and if the

length specified is greater than the length of the string supplied, it will

be padded with blanks or a specified pad character. This function returns

the number of characters actually copied to memory. It is imperative

that the actual address used be obtained with the ARexx GETSPACE()

function; otherwise memory may be ruined. See also: FREESPACE().

Example:

count=EXPORT('0004 0000'x,'Valuable data1) /* The value of count */

/* is 13. */

count=EXPORT('0004 0000'x,'Data',8,•+•) /* The value of count is 8, */

/* the maximum specified. */

/* The data actually in the */

/* buffer is: 'Data++++'. */

FREESPACE()

Returns a block of memory of the indicated size back to the available

ARexx pool. This command is used to free memory used by the

EXPORT() command, but no longer needed. This function returns a

boolean value indicating whether or not the process was successful. See

also: GETSPACEO.

Example:

SAY FREESPACE('0004 0000'x, 32) ==> 1

6ETSPACE()

Allocates a block of memory of the specified length from ARexx's

internal pool. Returns the four-byte address of the block returned.

GETSPACEO is the only safe way to allocate memory for the

EXPORT() command. See also: FREESPACE().

272

Abacus 9.6 AREXX COMMANDS & FUNCTIONS

Example:

say C2X(GETSPACE(32)) ==> '00242D181

IMPORT()

Pulls data from memory and inserts it in a string. If a length is not

specified, IMPORTO quits when a null byte is found. See also:

EXPORTO.

Example:

z=IMPORT('0004 0000'x, 32)

STORAGE()

Returns amount of free system memory, or can be used with a syntax

identical to EXPORTO to store strings to memory. Use with caution.

Example:

z=ST0RAGE() /* z = amount of free system RAM */

z=STORAGE('0004 0000'x, 'Data',8,' + ') /* The value of z is 8, */

/* the maximum specified. */

/* The data actually in the */

/* buffer is: 'Data++++'. */

273

9. ARexx AmigaDOS Inside and Out

9.7 Example ARexx Programs

Test

The following ARexx programs are included on the companion diskette
included with this book. The programs show you a small fraction of
the capabilities of the ARexx language.

This program determines whether a file exists in a directory on diskette.

/*

/*

/*

/*

/*

/*

/*

/*

Program name: Test

This ARexx program determines if a file exists in the directory
■dhO:text".

To run this program, type:

rx test filename

PARSE ARG x

x = 'dhO:text/' | | x

IF EXISTS(x) THEN SAY x 'exists'

ELSE SAY 'No such file as1 x

/* Get filename from input stream. */

/* Add pathname to filename. */

/* Tell the user the file exists. */

/* Tell the user there is no file. */

Substitute

This program substitutes the number 1 to 9 for the letters 'a* to T in a

string, printing the reverse of the resulting string at each iteration of

the loop.

Program name: Substitute

This example frivolously substitutes the numbers 1 to 9

for the letters 'a1 to 'i1 in a string, printing the reverse

of the resulting string at each iteration of the loop.

To run this program, type:

rx substitute

a = XRANGE('a\ 'i')

DO z = 1 TO 9

a = OVERLAY(z,a,z)

ECHO a 'backwards is:'

END

REVERSE(a)

/* Make a string of nine letters.

/* Set up a loop.

/* Substitute number for letter.

/* Print the string and reverse.

/* End the loop.

274

Abacus 9.7 Example ARexx Programs

Printfile

This program inputs lines from a file and outputs them to the CLI

preceded by a line number and caret, such as *66>\ It's very useful for

listing ARexx programs to find line numbers.

/* Program name: Printfile */

/* */

/* This program inputs lines from a file and outputs them to the CLI */

/* preceded by a line number and caret, like this: '66>' */■

/* It's very handy for listing ARexx programs to find line numbers. */

/* */

/* To run this program, type: */

/* rx printfile dxn:pathname/filename */

/* */

ARG filename /* Get input filename from CLI. */

IF -EXISTS(filename) THEN DO /* Check to see if file exists. */

SAY filename 'does not exist1 /* Inform user if no file exists*/

EXIT /* and end program. */

END /* End DO loop. */

CALL OPEN(• readme", filename, "R") /* Open file to read on disk. */

n = 0 /* Zero line counter. */

DO UNTIL EOF("readme") /* Do until end of file. */

n = n+1 /* Increment line counter. */

line = READLNCreadme") /* Get a line from disk. */

SAY n •>' line /* Output line to CLI window. */

END /* End do loop. */

CALL CLOSE("readme") /* Optional 'close' statement. */

RollDice

This program simulates the roll of two dice and displays the results in

the CLI window.

/* Program name: RollDice */

/* */

/* This program simulates the roll of two dice, and displays the */

/* results in the CLI window. */

/* */

/* To run this program, type: */

/* rx rolldice */

/* */

d.1.1 = ■ /* Define dice shapes */

d.2.1 = ' * ' /* using 'stem' variables. */

d.3.1 = ' /* */

d.1.2 = ' *' /* There are actually only */

d.2.2 = • ' /* five patterns here: */

d.3.2 = •* • /* ■ ■'* *■' *'' * ''* ' */

275

9. ARexx AmigaDOS Inside and Out

d.2.3

d.3.3

d.1.4

d.2.4

d.3.4

d.1.5

d.2.5

d.3.5

d.1.6

d.2.6

d.3.6

diel

die2

total

SAY ■

EXIT

roll:

ARG

die

SAY

SAY

SAY

SAY

SAY

SAY

_ • • i

_ • * •

_ i * * i

= • '

_ • * * i

_ •• *.

= ' * ■

_ i • * i

_ • * * i

_ i * * •

_ i • • i

= roll(6)

= roll(6)

= diel + die2

Total rolled is:1 total

n

= RANDOM(l,n,TIME<

• •

1' II d.l.die

I'll d.2.die

1' II d.3.die
• 1

RETURN die

['S'))

II ' 1 '

1 1 ' 1 '

1 1 ' 1 '

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Can you come up with a

more economical way of

defining the dice shapes?

Call roll function.

Call roll function again.

Calculate total.

Print total to CLI.

All done.

Define the 'roll' function.

Get high value for die.

Generate number from 1 to n.

Print die face.

Return the value rolled.

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

LoadLibrary

This example shows a proper way to open the Support Library included

with ARexx. The rexxsuppoitlibrary should be in your LIBS: directory

before running this program. If it isn't, the program will report that the

library is not available.

Program name: LoadLibrary

This example shows a proper way to open the Support Library

included with ARexx. The rexxsupport.library should be in your LIBS:

directory before running this program. If it isn't, the program

will report that the library is not available.

To run this program, type:

rx LoadLibrary

IF ~SHOW('L1, "rexxsupport.library11) THEN DO /'

IF ADDLIB('rexxsupport.library1,0,-30,0) THEN /'

SAY 'added rexxsupport.library1

ELSE DO

SAY 'Support Library not available.'

EXIT

END

END

Is the lib mounted? */

Try to add it if not,*/

and say if successful*/

Otherwise, */

say it's not there */

and quit the program.*/

End 'ELSE DO1 loop. */

End 'IF DO1 loop. */

SAY 'Pausing for five seconds...' /* Put up a warning...

276

Abacus 9.7 Example ARexx Programs

CALL DELAY 250 /* DELAY() is a function contained */

/* in the rexxsupport.library. */

CALL REMLIBC rexxsupport. library1) /* Remove the library, free memory. */

FindWord

This program takes a word as an argument and sees how many words

can be made from recombinations of its letters. It tests the words

formed against a master list contained in a file in the current directory

called "Words.dat". This file is not contained on the companion

diskette, you must create the Words.dat file. You can create such a list

using a word processor or use a pre-existing word list from a spelling

checker. (Words should be separated by a carriage return.) This program

outputs to the CLI and to a file in the current directory named the same

as your input word. This program does not test to make sure files can

be opened. It will simply quit unceremoniously with an error message

if an error occurs.

/* Program name: FindWords */

/* */

/* This program takes a word as an argument and sees how many words */

/* can be made from recombinations of its letters. It tests the */

/* words formed against a master list contained in a file in the */

/* current directory called "Words.dat". You can create such a list */

/* using a word processor or use a pre-existing word list from a */

/* spelling checker. (Words should be separated by a carriage return.) */

/* This program outputs to the CLI and to a file in the current */

/* directory named the same as your input word. */

/* This program does not test to make sure files can be opened. It will */

/* simply quit unceremoniously with an error message if an error occurs.*/

/* */

/* To run this program, type: */

/* rx FindWords inputword */

/* */

ARG instring /* Get input word from CLI. */

q = OPEN("wordlist", "Words.dat\ "R") /* Open the word list on disk. */

q = OPEN("outlisf, instring, •W") /* Open output file. */

DO UNTIL EOF("wordlist") /* Test until end of file. */

teststring = instring /* Copy the input word. */

testword = READLN("wordlist") /* Read a word from the file. */

testlength = LENGTH(testword) /* Find the word's length. */

DO i = 1 TO testlength /* Test each character. */

letter = SUBSTR(testword,i,1) /* Get a letter from the word. */

p = POS(letter, teststring) /* Is it in the test word? */

IF p = 0 THEN BREAK /* If not, leave the loop. */

teststring = OVERLAY("-",teststring,p) /* If so, mark the place. */

IF i = testlength THEN DO /* If all letters match, then */

ECHO testword /* print to CLI */

CALL WRITELN("outlist\ testword) /* and to file. */

END /* End inner DO loop. */

END /* End middle DO loop. */

END /* End outer DO loop. */

277

9. ARE xx AmigaDOS Inside and Out

RandNum

Creates a given number of unique random numbers between 1 and a

limit, and outputs those numbers to a custom CLI window.

Program name: RandNums

Creates a given number of unique random numbers between 1 and a

limit, and outputs those numbers to a custom CLI window.

To run this program, type:

rx RandNums

OPTIONS PROMPT 'Input Maximum number? 10-999: • /* Prompt for input.

PULL high /* Get the highest number to generate.

OPTIONS PROMPT 'Input How Many numbers? 5-498: ' /* Prompt for input.

PULL howmany /* Get the number of numbers to make.

IF high <10 THEN high = 10 /* Make the high number at least 10,

IF high >999 THEN high = 999 /* but no more than 999.

IF (howmany<5) I (howmany>TRUNC(high/2)) THEN howmany=TRUNC(high/2)

/* Set a reasonable value for howmany.

SAY 'Generating' howmany 'unique random numbers from 1 to' high

OPEN('Random','CON:160/50/345/100/Random') /* Open custom CLI.

q. = 0

CALL TIME 'R1

DO howmany

DO UNTIL q.z ~= z

Z=RANDOM(l,high,TIME('sl))

END

q.z = z

CALL WRITECH('Random' ,RIGHT(z,

END

t = TIME('E')

SAY 'Elapsed Time:' t 'Seconds'

CALL CLOSE('Random')

/* Set all the test values to zero.

/* Reset system timer.

/* Do until howmany numbers are made.

/* Test for uniqueness.

/* Generate a random number in range.

/* End inner DO loop.

/* Set the value to say it's used.

3,'0') '') /* Output to the window.

/* End the outer DO loop.

/* Get elapsed time.

/* Report elapsed time.

/* Close the output window.

278

Abacus 9.7 Example ARexx Programs

Guessname

This program generates a number between 1 and a high limit chosen by

the user. It then prompts for guesses until you guess the number or

give up.

/* Program name: GuessNum */

/* This program generates a number between 1 and a high limit chosen */

/* by the user. It then prompts for guesses until you guess the number */

/* or give up. */

/* */

/* To run this program, type: */

/* rx GuessNum */

/* */

DO i = 2 to 5 /* DO loop for instruct. */

SAY SOURCELINE(i) /* SAY lines 2-5 above. */

END /* End DO loop. */

OPTIONS PROMPT 'High Number (10-999)? :' /* Set prompt for input. */

PULL highnum /* Take input. */

IF (highnum>999) I (highnum<10) THEN DO /* Is highnum in range? */

SAY "You didn't follow directions!" /* If not, tell the user, */

SAY "I'll pick a High Number for you!" /* and do it for him. */

highnum = RANDOM(10/999/TIME('S')) /* Pick a valid highnum. */

END /* End DO loop. */

SAY 'Generating a random number between 1 and1 highnum /* Feedback. */

randnum = RANDOM(1, highnum, TIME (• S')) /* Generate random number. */

count =0 /* Zero counter. */

OPTIONS PROMPT 'Guess a number (0 to quit) :' /* Prompt for guess. */

DO forever /* Infinite loop. */

DO until (guess<=highnum) & (guess>-l) /* Is guess in range? */

PULL guess /* Get guess from user. */

END /* End input loop. */

count = count +1 /* Increment counter. */

SELECT /* Make some comparisons. */

WHEN guess = 0 THEN DO /* Did user quit? */

SAY 'Giving up after only' count 'guesses?' /* Chastise user. */

SAY 'The number was:1 randnum /* Give the answer. */

EXIT /* Quit the program. */

END /* End inner DO loop. */

WHEN guess = randnum THEN DO /* If user got it right, */

SAY 'You guessed the number in' count 'guesses!1 /* tell him so, */

EXIT /* and quit the program. */

END /* End inner DO loop. */

WHEN guess > randnum THEN SAY 'Lower' /* If high, say 'Lower'. */

OTHERWISE SAY 'Higher' /* Otherwise, say 'Higher'*/

END /* End SELECT structure. */

END /* End 'infinite1 DO loop.*/

279

10.

Quick Reference

Abacus 10. Quick Reference

10. Quick Reference

This chapter contains all the information you have seen so far about

AmigaDOS commands, as well as commands for controlling ED and

Edit. The three sections of this chapter show these commands in

abbreviated form to help you find them easily.

Sections 10.1 and 10.2 present an overview of the key combinations

and their effects in the ED and Edit editors. These are listed in table

format.

Section 10.3 lists the AmigaDOS Shell commands in a similar

format. Hopefully this format will help you find commands much

faster.

283

10. Quick Reference AmigaDOS Inside and Out

10.1 The ED Program

10.1.1 ED 1.14

The ED editor uses two types of commands. One type executes

immediately after the corresponding key combination is pressed; the

second type requires entry of the first command in command mode.

First we will present the direct commands that always consist of two

key combinations. These key combinations always begin with the

<Ctrl> (control) key. You press another key to implement the

command.

The command mode commands will be presented next. You enter

command mode by pressing the <Esc> (Escape) key. You can tell if

you are in the command mode by a small star (asterisk) in the lower

left corner of the editor screen. You only need to enter the command and

press the <Return> key to start the command.

There are commands in both sections that have the same effect, so you

must decide which type of command works better for you.

Direct commands (without <Ctrl>)

Tab Moves the cursor to the next tab mark.

Del Erases the character under the cursor.

Backspace Erases the character to the left of the cursor.

Return Text between the cursor position and the end of the line are

moved to the next line.

Direct commands (with <Ctrl>)

<CtrlxI> Moves the cursor to the next tab mark.

<CtrlxU> Moves the cursor up 12 lines.

<CtrlxD> Moves the cursor down 12 lines.

<CtrlxR> Moves the cursor to the end of the word to its left.

<CtrlxT> Moves the cursor to the start of the next line.

<CtrlxJ> Moves the cursor to the start or end of the line.

<CtrlxE> Moves the cursor to the start or end of the window.

<CtrlxH> Erases the character to the left of the cursor.

<Ctrl><0> Erases a word or all spaces up until the next word.

<CtrlxY> Erases everything from the cursor position to end of line.

<CtrlxB> Erases the entire line.

<CtrlxM> Text between the cursor and end of line is moved to next

line.

284

Abacus 10.1 The ED Program

<CtrlxA> Inserts a line.

<Ctrl><G> The last command mode command is repeated.

<Ctrl><[> Enter command mode same as pressing <Esc>.

<CtrlxF> Toggles between upper/lowercase.

Command mode commands (with <Esc>)

Mn

CL

CR

CS

CE

P

N

T

B

BS

BE

SB

WB"data"

IB

DB

DC

D

S

J

I Text-

A'Text"

IF Data

E'Textl'TextT

EQ'Textl'TextT

F'Text"

BF'Text"

LC

UC

X

Q
SA

RP

SH

U

SLn

SRn

EX

Moves the cursor to the nth line.

Moves the cursor one position to the left.

Moves the cursor one position to the right.

Moves the cursor to the start of the line.

Moves the cursor to the end of the line.

Moves the cursor to the start of the previous line.

Moves the cursor to the start of the next line.

Moves the cursor to the start of the text.

Moves the cursor to the end of the text.

Marks the cursor position as the start of a block.

Marks the cursor position as the end of a block.

Shows the marked block in a window.

Saves marked block to "data".

Inserts marked block at the cursor position.

Deletes marked block.

Deletes character at cursor.

Deletes entire line.

Moves text between cursor position and end of line

to next line.

Combines current line with next line.

Inserts "Text" before current line.

Inserts'Text" after current line.

Inserts Data at cursor position.

Exchanges 'Textl" for 'TextT.

Exchanges "Textl" for 4Text2" after prompt.

Begins search for 'Text" at cursor position.

Searches for "Text" up to the cursor position.

Enables case sensitivity during a text search.

Disables case sensitivity during a text search.

Exits ED and saves text.

Exits ED without saving text.

Saves text.

Repeats command until an error occurs.

Displays current editor settings.

Changes to the current line are canceled.

Sets left margin to n.

Sets right margin to n.

Ignores right margin on current cursor line.

285

10. Quick Reference AmigaDOS Inside and Out

10.1.2 ED 2.00

ED has been updated by John Toebes III, and the improved version is

excellent. The new 2.0 operating system allows programmers to add

customizable menus to their programs. The customizable menus for the

latest version of ED are contained in the ED-Startup script file in

the S: directory. They allow you to use the mouse when using ED to

access often used commands. The normal ED commands are still

available. The new version includes menus and the new standard Amiga

file selector. All commands may still be accessed using the keyboard

commands. The following are the new standard ED 2.0 menus (no ED-

Startup file):

Proj ect

New

Open...

Insert file

Write Block...

Save

Save As...

Save and Exit

About

Quit

Edit

Undo Line

Start Block

End Block

Show Block

Insert Block

Delete Block

Delete Line

Movement

Top

Bottom

Goto Line...

Next Page

Previous Page

Search

Find...

Find Next

Reverse Find...

Reverse Find Next

Replace...

Global Replace...

Query Replace

Global Q-Replace

Settings

Set KN key...

Show FN key...

Reset Keys

Right Margin...

Left Margin...

Ignore Case

Case Sensitive

Commands

Extended

Commands

Repeat Last

Run File...

AREXX Command...

Redisplay

286

Abacus 10.2 The Edit Program

10.2 The Edit Program

Besides the ED editor, described in the previous section, there is another

editor on the Workbench disk. It's the Edit editor. The following list

of Edit commands is intended as a reference only, not as detailed

instructions. More detailed information about the operation of the editor

can be found in Section 2.4.2.

Partial arguments are passed together with the command words. The

slash / serves as a separator between strings. Arguments that have

alternate input possibilities are placed in parentheses (). So that the

command text doesn't become too long we use the following

abbreviations:

a,b = line number {or . or *)

bg = command group

m,n = numbers

q = qualifier

sk = search criteria

sw = change value (+ or -)

zl,z2 = string

and now to the commands:

< Moves the character pointer one character to the left.

> Moves the character pointer one character to the right.

Deletes the character at the character pointer position.

$ Changes the character at the character pointer position.

% Changes the character at the character pointer position

to uppercase.

PA(q)lzll Moves the character pointer to the position after the

specified string zl.

PB(q)lzll Moves the character pointer to the position before the

specified string zl.

PR Moves the character pointer to the start of the line.

M n Moves the character pointer to line n.

M + Moves the character pointer to the last line of source

data.

M - Moves the character pointer to the first available line in

the buffer.

N Moves the character pointer to the next line.

P Moves the character pointer to the previous line.

Rewind "Rewinds" the source file.

F((q)/skl) Searches line that contains the string sk (forward

search).

BF((q)/sk/) Searches line that contains the string sk (reverse

search).

287

10. Quick Reference AmigaDOS Inside and Out

DF((q)/sk/) Searches line containing the string sk (forward search),

deletes all skipped lines.

? Verifies the current line.

/ Verifies the current line with all non-printable
characters.

T Displays the source file up to the end of the file.

T n Displays the next n lines of the source file.

TL n Displays the next n lines of the source file with line
numbers.

TN Displays as many lines as will fit in the text buffer.

TP Displays all lines of the text buffer and sets the pointer
to the beginning of the text buffer.

V sw Enables (+) or disables (-) verification.

A (q)lzllz2l Inserts string z2 after siring zl.

AP(q)lzllz2l Inserts string z2 after string zl, then sets the character

pointer behind zl.

B(q)lzllz2l Inserts string z2 before string zl.

BP(q)zllz2l Inserts string z2 before string zl, then sets the character

pointer behind zl.

CL(lzll) Combines the current line, zl and the next line.

D Deletes the current line.

DFA(q)lzll Deletes the current line after string zl.

DFB(q)lzll Deletes the current line from the beginning of string zl.

DTA(q)lzll Deletes the current line from the beginning of the line

to the end of string zl.

DTB(q)lzll Deletes the current line up to, but not including, string
zl.

E(q)lzllz2l Replaces string zl with string z2.

EP Replaces string zl with string z2, then positions the
character pointer following z2.

I(o) Inserts text in front of the current line or before a line

from the keyboard until z is entered.

/ zl Inserts entire contents of the file zl before the current
line.

R(a(b)) Deletes lines a through b and allows text entry from the

keyboard.

(a(b))zl Deletes lines a through b and inserts the text contained
in file zl.

SA(q)lzll Separates the current line after string zl when it occurs.

SB(q)lzll Separates the current line before string zl when it

occurs.

GA(q)lzllz2l Inserts string z2 after string zl in the current line.

GB(q)lzllz2l Inserts string z2 before string zl in the current line.

GE(q)lzllz2l Replaces string zl with string z2 in all current lines.

CG(n) Disables global operation n or all global operations.

DG(n) Temporarily disables global operation n or all global

operations.

EG(n) Enables global operation n or all global operations.

SHG Displays information about all global operations that
have been active until now.

From Makes original From file the current source file.

288

Abacus 10.2 The Edit Program

From .zl Makes file zl the current source file.

To Makes original To file the current destination file.

To .zl Makes file zl the current destination file.

CF .zl Closes file zl.

=n Assigns the current line number n.

C .zl. Reads additional Edit commands from file zl.

H n Sets the next breakpoint to line n. (n=* erases all break

points).

Q Exits command mode; if you exit the highest command

level, the rest of the source file is transferred.

SHD Displays saved command information.

Stop Exits Edit.

77? sw Enables (+) or disables (-) sensitivity to leading spaces.

W Carries the rest of the source file to the destination file.

Z zl Changes the end character for the insert command zl.

289

10. Quick Reference AmigaDOS Inside and Out

10.3 The AmigaDOS Commands

This section briefly covers the AmigaDOS commands. First the correct

1.3 syntax of the command appears, then a short description of the

command, followed by a description of the arguments. If the command

supports additional arguments in Version 2.0 they are described. The

AmigaDOS commands added to Version 1.3 are marked with the

identifier (AmigaDOS 1.3). Version 2.0 improvements are also

marked. All AmigaDOS 2.0 commands have been rewritten in C,

which has greatly reduced their size and enhanced their execution speed.

Many of the commands were made internal AmigaDOS commands in
Version 2.0.

The following qualifiers are used in the command descriptions:

/A (Argument) This qualifier always requires a certain argument. If you omit the

argument, the command cannot execute.

/K (Key)

/S (Switch)

/N (Numeric)

/M (Multiple)

/F (Final)

, (comma)

The qualifier's name must appear as input and a keyword must appear

as well. The parameters allowed and the functions executed depend on

the respective Shel 1 command (see Chapter 2 for more details).

This qualifier needs no arguments. It acts as a switch (toggle) for a

command. Switches in commands do just what a wall switch does—

they turn a command on or off, or switch the command to another

mode.

The following are possible qualifiers that can appear in an argument

template only in AmigaDOS 2.0:

This qualifier indicates that a numeric argument is expected (DOS 2.0

only).

Multiple arguments can be included. In 1.3 commas were used to

signify multiple arguments. Multiple arguments must be separated by

spaces. This has been updated in DOS 2.0, also the number of

arguments is unlimited in DOS 2.0 (DOS 2.0 only).

The argument is the final argument. This allows using strings without

enclosing them in quotation marks (DOS 2.0 only).

The command takes no arguments (DOS 2.0 only).

290

Abacus 10.3 The AmigaDOS Commands

ADDBUFFERS DRIVE/A, BUFFERS/S

Reserves a buffer on a drive with a certain amount of memory.

DRIVE

BUFFERS

ALIAS NAME STRING/F

The drive assigned the buffer.

The size of the buffer to be allocated.

(Shell only)

This command can only be used in conjunction with the Shell. The

command assigns a string to a word (See Chapter 6).

NAME The new command word.

STRING Contains the command that is called with NAME.

VI. 3

V2. 0

Ask PROMPT/A

Command available in AmigaDOS 1.3 Shell.

Command made an AmigaDOS internal command and correct argument

template added.

Asks a question answered with only (Y)es or (N)o: y returns an error

code of 5 and n returns no error code.

PROMPT Contains text displayed on the screen, usually in the

form of a question.

V2 . 0 Command made an AmigaDOS internal command.

ASSIGN NAME,DIR,LIST/S,EXISTS/S,REMOVE/S

Assigns a logical device to a directory.

NAME The logical device.

DIR The directory assigned the logical device.

LIST Lists the assignments of the logical devices.

EXISTS Searches for NAME in the ASSIGN list. ITie error code

5 is returned if NAME is not present.

REMOVE Removes Name from the ASSIGN list, used for

development only.

291

10. Quick Reference AmigaDOS Inside and Out

V2 . 0 TARGET/M,DISMOUNT/S,DEFER/S,PATH/S,ADD/S,
VOL/S,DIRS/S,DEVICES/S

TARGET The TARGET/M argument allows you to make

multiple assignments to a single device.

DISMOUNT The DISMOUNT/S argument allows devices and

directories to be removed from the assignment list.

DEFER The DEFER/s argument creates a late-binding

assignment. This assignment only takes effect when the

assigned object is accessed.

PATH The PATH/s argument creates a non-binding

assignment. It does not take effect until it is referenced

and only remains in effect while it is needed.

ADD Adds assignment.

VOL The VOL/S argument will only display information on

the current volume assignments.

DIRS The DIRS/S argument will only display information

on the current directory assignments.

DEVICES The DEVICES/s argument will only display

information on the current device assignments.

AVAIL CHIP,PAST,TOTAL (AmigaDOS 1.3)

Displays an overview of the present available memory configuration.

CHIP Optional, displays total chip memory.

FAST Optional, displays total fast memory.

TOTAL Optional, displays total available memory.

V2.0 FLUSH/S

FLUSH Hushes memory areas.

BINDDRIVERS

Binds additional device drivers to the system.

BREAK PROCESS/A,ALL/S,C/S,D/S,E/S,F/S:

Stops a task in process.

PROCESS Process to be broken off.

All Sets the break level at C, D, E and F.

C,D,E,F Sets break level.

V2.0 PROCESS

PROCESS/A/N Specified as numeric.

292

Abacus 10.3 The AmigaDOS Commands

CD DIR:

Changes the directory or displays the current directory.

DIR: The drive or the directory which should be accessed.

V2 . 0 Command made an AmigaDOS internal command.

CHANGETASKPRI PRI/A,PROCESS/K

Changes the priority of a process started from the CLI.

PRI Priority, shown by Status command. Contains the

new priority (-128 to 127).

PROCESS The new priority is assigned to PROCESS number. See

the Status command.

V2 . 0 PRI=PRIORITY/A/N, PROCESS/K/N

PRIORITY Specified as numeric and same as PRI.

PROCESS Specified as numeric.

COPY FROM,TO/A,ALL/S,QUIET/S, BUF=BUFFER/K,

CLONE/S,DATES/S,NOPRO/S,COM/S:

Creates a copy of files or a directory.

FROM The source file.

TO The target file.

ALL Copies the entire directory.

QUIET Displays no output to the screen.

BUF-BUFFER

Uses BUF 512K buffers for copying.

CLONE Date, Status bits and comments are also copied.

DATES Date is also copied.

NOPRO The Status bits are reset when copied.

COM The comments are also copied.

V2 . 0 COPY FROM/A/M,TO/A,ALL/S,QUIET/S,

BUF=BUFFER/K/N, CLONE/S,DATES/S,

NOPRO/S,COM/S,NOREQ/S:

FROM Multiple files may be copied.

BUF Specified as numeric.

NOREQ No requesters will be displayed if an error is

encountered.

293

10. Quick Reference AmigaDOS Inside and Out

DATE DATE,TIME,TO=VER/K

Input or output of date and/or time.

V2 .0

DATE

TIME

To=VER

DAY

DAY

The date to be input

The time to be input.

The name of the file into which the date or the time is

written.

Advances date to next day input. Version 2.0 also

allows numeric input into the month field.

DELETE ,,..,,,,,, A11/S,Q =QUIET/S:

Erases files and/or directories.

„, „ Ten files or directory names to be deleted.

ALL The entire directory is deleted.

Q=QUIET There is no message output to the screen.

V2 . 0 FILE/M/A,ALL/S,QUIET/S,FORCE/S:

FILE Multiple files or directory names to be deleted.

FORCE Forces deletion, even if file is in use.

DIR DIR,OPT/K,ALL/S,DIRS/S,FILES/S,INTER/S:

Displays the directory of a disk.

DIR Name of the disk drive or the directory (pathname).

OPT Allows input of abbreviations, A=ALL, D=DIRS,

F=FILES, and I=INTER.

ALL Shows all files in the directory including its

subdirectories and their contents.

DIRS Displays only directories.

FILES Displays only files.

INTER The contents are interactively output. After each file or

directory the following inputs can be made:

? Displays the possible commands.

B Back up the directory (directory only).

E Enter the displayed directory (directory only).

T Type the file (files only).

Del The file is deleted.

Q Quit the Dir command.

Note: When using these arguments (ALL, DIRS, FILES,

INTER) do not include the OPT argument

294

Abacus 10.3 The AmigaDOS Commands

DISKCHANGEDEVICE/A

Tells AmigaDOS that a disk has been changed.

DEVICE Which drive has experienced a disk change.

DISKCOPY [PROM] <disk> TO <disk> [NOVERIFY] [MULTI]

[NAME <namo>]

Creates a copy of a disk.

FROM <disk>

The source drive.

TO <disk> The destination drive.

NOVERIFY No verification performed during the copy.

MULTI Multiple copies on a single master may be made.

NAME Name Names the copy Name.

DISKDOCTOR DRIVE/A

Repairs errors on a disk. Damaged files may or may not be removed.

DRIVE The drive the program will attempt to recover.

ECHO ,NOLINE/S,FIRST/K,LEN/K:

Sends a text to the current output path, usually the screen.

Text that is output to the current output path.

NoLines After the output of the given strings, the output doesn't

jump to a new line.

First n The starting position of the text to be output

Len n The length of the text to be output.

V 2 . 0 Command made an AmigaDOS internal command and FIRST and LEN

were specified as numeric.

ED/EDIT

Used to edit text files. See Section 2.4 for details and Sections 10.1 and

10.2 for the ED and EDIT quick reference sections.

ELSE

Allows alternative conditions in script files (see IF).

V2 . 0 Command made an AmigaDOS internal command.

295

10. Quick Reference AmigaDOS Inside and Out

ENDCLI/ENDSHELL

Exits CLI or Shell window.

V2 . 0 Command made an AmigaDOS internal command.

ENDIF

V2. 0

ENDSKIP

Ends an IF/end if construct in a script file (see IF).

Command made an AmigaDOS internal command.

Script file resumes execution at line following this command during a
Skip.

V2 . 0 Command made an AmigaDOS internal command.

EVAL VALUE1/A,OP,VALUE2,TO,LFORMAT/K:

Evaluates simple expressions.

Valuel Decimal, hex or octal value

OP math operator: +, -, *, /, mod, &, I, ~,«, »,xor,eqv

Value2 Decimal, hex or octal value

TO Optional

LFORMAT Specifies output format:

%Xn hex (n is number of digits)

%On octal (n is number of digits)

decimal

character

%N

%C

EXECUTE NAME TEXT

Executes a script file.

NAME

TEXT

FAILAT RCKLIM/N

The name of the script file to execute.

The arguments passed to the file.

V2. 0

Sets the return error code limit or returns the current return error code

limit.

RCLIM Contains the size of the new Return error Code LIMit.

Command made an AmigaDOS internal command.

296

10.3 The AmigaDOS Commands

FAULT /N,/N,/N,/N,/N,/N,/N,/N,/N,/N: (AmigaDOS 2.0)

Prints information about a specific error.

N The valid error number.

V2 . 0 Command made an AmigaDOS internal command.

FF -0f -N (AmigaDOS 1.3)

This command accelerates the text output on the screen. FF was written

by C. Heath, used by permission of Microsmiths, Inc®.

-0 FastFont text output is turned on.

-N FastFont text output is turned off (Note: you
should enter -n, not a number for N).

V2 . 0 Implemented internally in AmigaDOS 2.0.

FILENOTE FILE/A COMMENT/A

Inserts a comment into a file.

FILE Which file will receive the comment.

COMMENT The comment of the file.

V2.0 ALL/S,QUIET/S: .

ALL All files will receive the comment.

QUIET No text is displayed during command operation.

Format DRIVE <disk> NAME <Name> [FFS][NOICONS] [QUICK]

Formats a disk and gives it a name.

DRIVE Required to specify drive.

<disk> Location of the drive containing the disk to format.

NAME Required to specify Name.

<name> The formatted disk receives the name "Name."

FFS The FastFileSystem is used to format.

NOICONS Optional (the disk will not have an icon if this option

is used).

QUICK Only formats root and boot blocks.

GET/GETENV NAME (AmigaDOS 1.3)

This command reads the contents of an environment variable.

NAME The label of the variable whose contents should be read.

V2 . 0 Command made an AmigaDOS internal command.

297

10. Quick Reference AmigaDOS Inside and Out

ICONX (AmigaDOS 1.3)

Assigns icon and data to a script file. This lets you access the script file

from the Workbench using the mouse (see Chapter 6).

IF NOT/S,WARN/S,ERROR/S,FAIL/S,EQ/K,GT/K,GE/K,

VAL/S,EXISTS/K!

This allows choices to be made in script files, based upon conditions.

NOT Logical reversal of a condition.

WARN Condition is fulfilled when error code is larger than or

equal to 5.

ERROR Condition is fulfilled when error code is larger than or

equal to 10.

FAIL Condition is fulfilled when error code is larger than or

equal to 20.

Textl EQ Text2

Condition fulfilled when Textl equals Text2.

GT/GT Val Greater than and greater than or equal to. Val used for

numeric calculations.

Exists Name Condition fulfilled when file Name is accessible.

V2 . 0 Command made an AmigaDOS internal command.

INFO DEVICE

Displays information on the screen about connected disk drives.

Device Specifies a device.

INSTALL DRIVE/A,NOBOOT/S,CHECK/S

Converts a blank formatted disk into a boot disk.

DRIVE The drive which contains the disk to be installed.

NOBOOT Makes the disk a non-bootable DOS disk.

CHECK Checks to see if the disk is bootable and if the standard

Amiga boot code is present.

V2.0 FFS/S

FFS Use the FastFileSystem.

/ r t , , f i t ,AS=TO/K

Joins two or more files together.

, „ First of the two files to be joined together.

„,,,,,,,, Second of the two files to be joined together.

A S The file to which the joined files are written.

JOIN

298

Abacus 10.3 The AmigaDOS Commands

V2.0 FILES/M

FILES Multiple files may be specified.

LAB Text

Defines a string as the branch label for a script file.

Text The string to be defined as a label.

V2 . 0 Command made an AmigaDOS internal command.

LIST DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S,

TO/K,SUB/K,SINCE/K,UPTO/K,QUICK/S,

BLOCK/S,NOHEAD/S,FILES/S,DIRS/S,
LFORMAT/K:

Lists data about files.

DIR Displays only information about the file in DIR.
P=PAT Displays only the files specified in Pattern.

KEYS Displays the number of header blocks of the file or
directory.

DATES Displays the date.

NODATES Suppresses the date.

TO Sends the output to the file Name.

SUB Displays information about file whose name is
contained in Text.

SINCE Displays only the files created since Date.

UPTO Displays only the files created before Date.
QUICK Displays the filename only.

BLOCK The file size is given in blocks.

NOHEAD The information is suppressed.

FILES Lists only the files.

DIRS Lists only the directories.

LFORMATt="Text"

The option causes the text in Text to be displayed.

Entering %s serves as a place holder for the actual file

name. Entering a second % s causes the filename to be

displayed a second time. Entering three %s causes the

first one to display the path description of the current

file. The next two contain the filename. Entering four

%s produces the path description for the first and third

ones and the filename for the second and fourth.

V2.0 ALL/S

All Lists ALL files.

299

10. Quick Reference AmigaDOS Inside and Out

LoadWB -Debug

Loads the Workbench from the CLI or the Shell.

- Debug AmigaDOS 1.3 adds a hidden menu with the debugging

commands Debug and FlushLibs.

V2 . 0 Delay

DELAY The DELAY option waits three seconds before

continuing.

-Debug was removed as an option.

LOCK DRIVE/A,ON/S,OFF/S,PASSKEY:

Prevents or allows access to a hard drive partition.

DRIVE Contains the protected hard disk partition.

ON Prevents access to the hard drive partition. Access is

restored after entering the password (max. 4 characters).

OFF Removes an existing password. This command

functions only with Kickstart 1.3.

PASSKEY Four character password required for access.

MAKEDIRDIR/A

Creates a new directory with the name Name.

DIR The name of the new directory.

V2.0 DIR/M

DIR Multiple directories can be created.

MAKELINK FROM/A, TO/A, HARD/S : (AmigaDOS 2.0)

Creates a file that points to another file. When the first file is specified,

the linked file is called.

FROM The name of the original file.

TO The name of the linked file.

HARD Files will not be linked across volumes.

MOUNT DEVICE/A, FROM/K

Mounts a device.

Device A new device name.

From Name Removes parameters from the file Name instead of the

Devs/Mount-list file.

300

10.3 The AmigaDOS Commands

NEWCLI WINDOW FROM:

NEWSHELL WINDOW FROM:

Opens a new cli.

WINDOW (Con:x/y/Width/Height(/Text))

x The X-position of the upper left comer of the new
window.

y The Y-position of the upper left corner of the new

window.

Width Window width in pixels.

Height Window height in pixels.
Text Title of the new window.

FROM Name Accesses the script file Name after the new SHELL

window opens; if no filename is given the default file is

S:Shell-startup.

V2 . 0 Command made an AmigaDOS internal command.

PATH ,, ,, , ,, ,, ,ADD/S,SHOW/S,RESET/S,QUITE/S

Displays or changes the pathname.

ADD Adds a path to the directory Name.

SHOW Shows the current path.

RESET Deletes all paths up to the C: directory and the path
Name.

QUIET Suppresses output from the current output channel.

V2 . 0 PATH/M, REMOVE/S

PATH Multiple paths may now be added.

REMOVE Individual paths may be removed.

Command made an AmigaDOS internal command.

PROMPT PROMPT:

Changes the Shell prompt string. The Shell in VI.3 can use %s to
display the current directory.

PROMPT Formats the prompt's appearance; %n displays the
process number.

V2 . 0 Command made an AmigaDOS internal command.

301

10. Quick Reference AmigaDOS Inside and Out

PROTECT FILE/A,FLAGS,ADD/S,SUB/S

Determines the protection bits a file should have.

FILE The name of the file to protect.

FLAGS Sets the protection status.

R The file can be read.

W The file can be written to.

D The file is deletable.

E The file is executable.

In V1.3 the Hidden (H), Script (S), Pure (P) and

Archive (A) bits can be set or reset.

H Hidden file.

S The file can be started without execute

(script files only).

P The file can be placed in the Res ident list.

A The file is archived.

The H and A bits function only with Kickstart 1.3.

+, ADD Sets the status of the given status bit.

-. SUB Removes the status of the status bit.

V2 . 0 ALL/S,QUITE/S

ALL Multiple files may now be protected.

QUIET No messages are displayed.

QUIT RC

Stops execution of a script file and returns an error code.

RC Return error Code.

V 2 . 0 Command made an AmigaDOS internal command and RC specified as

numeric.

RELABEL DRIVE/A,NAME/A

Changes the name of a disk.

DRIVE The drive containing the disk to be renamed.

NAME The new name of the disk.

REMRAD (AmigaDOS 1.3)

This command erases all files from the reset-resistant RAM disk. The

ramdrive. device is also removed after the next boot.

302

Abacus 10.3 The AmigaDOS Commands

RENAME FROM/A,TO=AS/A

Renames files.

FROM Name of the data which is to be renamed.

TO=AS The new name.

V2 . 0 FROM/A/M,QUIET/S

FROM Multiple files may now be protected.

QUIET No messages are displayed.

RESIDENT NAME,FILE,REMOVE/S,ADD/S,REPLACE/S,

PURE/S, SYSTEM/S: (AmigaDOS 1.3)

This command erases, replaces or includes a new command in the list

of resident commands.

NAME The resident name.

FILE Contains the command that should be activated in the

Resident list.

REMOVE Deletes the command from the list.

ADD The command is included in the list.

REPLACE Replaces an existing command of the same name in the

list with the new version of the command.

PURE Checks Pure bit of the command to see if it is set.

SYSTEM Files added to the system portion of the resident list

cannot be removed.

V2 . 0 Command made an AmigaDOS internal command and FORCE can be

used instead of PURE.

RUN COMMAND

Runs a program as a background process.

COMMAND

An AmigaDOS command to run as a background process.

V2 . 0 Command made an AmigaDOS internal command.

SEARCH FROM/A,SEARCH,ALL/S,NONUM/S,QUIET/S,

QUICK/S,FILE/S:

Searches data for a string.

FROM The file to be searched.

SEARCH Text

The string to be searched for.

ALL Searches all directories and subdirectories.

NONUM Displays no line numbers if string is found.

QUIET No output is displayed.

303

10. Quick Reference AmigaDOS Inside and Out

QUICK The output format is more compact.

FILE Searches for the specified file then the character string.

V2.0 FILE/A/M,QUIET/S

FILE Multiple files may now be searched.

QUIET No messages are displayed.

SETCLOCK LOAD/S,SAVE/S,RESET/S

Transfer the system date and time to and from the clock.

Load Loads date and time from the internal clock.

Save Saves system date and time to the internal clock.

V2 . 0 RESET/S

RESET Resets clock completely.

SETDATE FILE/A,DATE/A,TIME:

Inserts a date or time into data.

FILE File into which the date and time are inserted.

DATE The date assigned to the file.

TIME The time assigned to the file.

V2.0 ALL/S

ALL Multiple files can have their dates set.

SET/SETENV NAME, STRIN6/F: (AmigaDOS 1.3)

Assigns a string to an environment variable.

NAME The label of the variable.

STRING The character string to be assigned to the variable.

V2.0 SET

SET Command also accessed by SET.

Command made an AmigaDOS internal command.

SETPATCH

Patches ROM in Kickstart, enhancing system software.

304

Abacus 10.3 The AmigaDOS Commands

SKIP LABEL,BACK/S:

Jumps within a script file to a defined label.

LABEL Contains the string defined as a label.

BACK Jumps to the start of the script file before searching for

the label.

V2 . 0 Command made an AmigaDOS internal command.

SORT FROM/A,TO/A,COLSTART/K:

Alphabetically sorts a file and saves it to another file.

FROM The source filename.

TO The new file the sorted data is written to.

COLSTART The line after which the text is sorted.

V2.0 CASE/S,NUMERIC/S

CASE The sort is case sensitive, uppercase first.

NUMERIC The sort is numeric sensitive, letters first.

STACK SIZE:

Changes the stack size or returns the current size.

SIZE The stack size in bytes.

V2 . 0 Command made an AmigaDOS internal command and SIZE parameter

specified as numeric.

STATUS PROCESS,FULL/S,TCB/S,CLI=ALL/S,COM=COMMAND/K:

Outputs information about CLI processes.

PROCESS Selects the task number which should be displayed.

FULL Combines the TCB and CLI options.

TCB Displays priority, stack size and global vector size.

CLF=ALL Displays the status of the current command process.

Com=COMAND

Searches for the CLI command COMMAND.

V2 . 0 Command made an AmigaDOS internal command and PROCESS

parameter specified as numeric.

305

10. Quick Reference AmigaDOS Inside and Out

TYPE FROM/A,TO/S,OPT/K,HEX/S,NUMBER/S:

Displays the contents of a file.

The source file.

TO The destination file to which Namel is copied. If a

name isn't given the file appears on the screen.

OPT Allows using H an N abbreviation for Hex and

Number.

NUMBER The lines are displayed with line numbers.

HEX The characters are displayed in hex and ASCII

characters.

V2 . 0 Multiple files may be input.

UNALIAS NAME (AmigaDOS 2.0)

Removes an alias from the alias list.

NAME The name of the alias to remove.

V2 . 0 AmigaDOS 2.0 internal command.

UNSET/UNSETENV NAME: (AmigaDOS 2.0)

Unsets an environmental variable.

NAME The name of the variable to remove.

V2 . 0 AmigaDOS 2.0 internal command.

VERSION NAME, VERSION, REVISION, UNIT:

Displays the version and revision number of a device, library or

Workbench diskette.

NAME Library name.

VERSION Set condition flag based on version number.

REVISION Set condition flag based on revision number.

UNIT Specify unit, for multi-unit devices.

WAIT /N,SEC=SECS/S,MIN=MINS/S,UNTIL/K:

Shifts the system to a pause mode.

N Waiting time in n units.

SEC=SECS Specifies the unit as seconds.

MIN=MINS Specifies the unit as minutes.

UNTIL Waits until the input time.

306

Abacus 10.3 The AmigaDOS Commands

WHICH FILE/A,NORES/S,RES/S: (AmigaDOS 1.3)

This command searches for and displays the path of a command (helps

locate the command's location on disk).

FILE Name of the command to search for.

NORES Suppress search in resident list.

RES Limits the search to the resident list

V2.0 ALL/S

ALL You can look for multiple files.

WHY

Returns information about the last error that occurred.

V2 . 0 Command made an AmigaDOS internal command.

307

Appendix

Abacus Appendix

Appendix

Command and editor sequences in the Shell

Using the <Ctrl> and <Esc> keys, sequences can be entered directly in

the CL I/She 11 or by using the Echo command inside a batch file

that can effect the output. When the Echo command is used, the

<Esc> key can be set using the character combination *e.

Escape

sequences

Control

sequences

<Esc>c The contents of the CLI /She 11 window are erased and

all other modes are turned off.

<Eso[0m All other modes are turned off.

<Eso[lm Bold text is turned on.

<Esc>[2m Color number 2 becomes the text color (black).

<Esc>[3m Italic text is turned on.

<Eso[30m Color number 0 becomes the text color (blue).

<Esc>[3 lm Color number 1 becomes the text color (white).

<Eso[32m Color number 2 becomes the text color (black).

<Esc>[33m Color number 3 becomes the text color (orange).

<Eso[4m The text is underlined.

<Esc>[40m Color number 0 becomes the background color (blue).

<Eso[41m Color number 1 becomes the background color (white).

<Eso[42m Color number 2 becomes the background color (black).

<Esc>[43m Color number 3 becomes the background color (orange).

<Eso[7m The text becomes inverted.

<Esc>[8m The text becomes invisible (blue).

<Eso[nu The CLI /She11 window becomes n characters wide.

<Esc>[nt Number of lines in the CLI / Shel 1 window is set to n.

<Esc>[nx The left border is set at n pixels.

<Esc>[ny The distance from the top is set at n pixels.

When entering control sequences you must press the <Ctrl> key and

the corresponding letter key.

<Ctrlxh> Deletes last character entered.

<Ctrlxi> Moves cursor one tab position to the right.

<Ctrlxj> Linefeed.

<Ctrlxk> Moves cursor up one line.

<Ctrlxl> Clears CLI/Shell window.

<Ctrlxm> Same as <Return>.

<Ctrlxn> Enables Alt character set.

<Ctrlxo> Enables normal character set

<Ctrlxx> Deletes current line.

<Ctrlx\> Marks the end of a file.

311

Appendix AmigaDOS Inside and Out

Printer Escape Sequences

The following printer escape sequences are translated using the printer

drivers included in the Preferences editors.

Printer

EscaDe seauence Meaning

<Esc>c

<Esc>#l

<Esc>D

<Esc>E

<Esc>M

<Esc>[0m

<Esc>[lm

<Esc>[22m

<Esc>[3m

<Esc>[23m

<Esc>[4m

<Esc>[24m

<Esc>[xm

<Esc>[0w

<Esc>[2w

<Esc>[lw

<Eso[4w

<Eso[3w

<Esc>[6w

<Esc>[5w

<Esc>[2"z

<Esc>[l"z

<Esc>[4"z

<Esc>[3ftz

<Esc>[6Mz

<Esc>[5"z

<Eso[2v

<Eso[lv

<Eso[4v

<Eso[3v

<Esc>[0v

<Eso[2p

<Esc>[lp

<Esc>[(^)
<Esc>[xE

Initialize (reset) printer

Disable all other modes

Linefeed

Line feed + carriage return

One line up

Normal characters

Bold on

Bold off

Italics on

Italics off

Underlining on

Underlining off

Colors (x=30 - 39 [foreground] or 40 - 49 [background])

Normal text size

Elite on

Elite off

Condensed type on

Condensed type off

Enlarged type on

Enlarged type off

NLQon

NLQoff

Double strike on

Double strike off

Shadow type on

Shadow type off

Superscript on

Superscript off

Subscript on

Subscript off

Back to normal type

Proportional type on

Proportional type off

Delete proportional spacing

Proportional spacing = x

312

Abacus Appendix

Printer

Escape sequence Meanine

<Esc>[5F

<Esc>[7F

<Esc>[6F

<Esc>[OF

<Esc>[3F

<Esc>[lF

<Esc>[Oz

<Esc>[lz

<Esc>[xt

<Esc>[xq

<Esc>[Oq

<Eso(B

<Esc>(R

<Esc>(K

<Esc>(A

<Esc>(E

<Esc>(H

<Esc>(Y

<Eso(Z

<Esc>(J

<Esc>(6

<Esc>(C

<Esc>#9

<Esc>#0

<Esc>#8

<Esc>#2

<Esc>#3

<Esc>[xyr

<Esc>[xys

<Esc>H

<Esc>J

<Esc>[Og

<Eso[3g

<Eso[lg

<Esc>[4g

<Esc>#4

<Esc>#5

Left justify

Right justify

Set block

Set block off

Justify letter width

Center justify

Line dimension 1/8 inch

Line dimension 1/6 inch

Page length set at x lines

Perforation jumps to x lines

Perforation jumping off

American character set

French character set

German character set

English character set

Danish character set (Nr.l)

Swedish character set

Italian character set

Spanish character set

Japanese character set

Norwegian character set

Danish character set (Nr.2)

Set left margin

Set right margin

Set header

Set footer

Delete margins

Header x lines from top; footer y lines from bottom

Set left margin (x) and right margin (y)

Set horizontal tab

Set vertical tab

Delete horizontal tab

Delete all horizontal tabs

Delete vertical tab

Delete all vertical tabs

Delete all tabs

Set standard tabs

313

Index

AddBuffers

Alias

ALL

AmigaDOS

ARexx

ARexx Commands

ABBREVO
ABSO
ADDLffiO
ADDRESS

ADDRESSO
ARG

ARGO
B2C

BITANDO

BITCHGO

BITCLRO
BITCOMPO

BITORO
BITSETO

BITTSTO

BUXORO
C2B0

C2D0
C2X()

CALL

CENTERO

CLOSEO

COMPAREO
COMPRESS()

COPIESO

D2C0
D2X0

DATATYPEO

DATEO

DELSTRO

DELWORDO

DIG1TS0
DO

DROP

ECHO

EOFO

ERRORTEXTO

EXISTSO
EXIT

EXPORTO

FORMA

115,130,291

291

27

4,199

237, 240

250

257

264

258

258

261, 262

263

268

270

271

271

271

271

271

271

272

268

269

269

263

250

259

251

250

251

269

269

269

264

251

251

265

248

270

261

259

265

259 -

249

272

265

ARexx Commands

FREESPACE()

FUZZO

GETCLIPO
GETSPACEO

HASHO
IF-THEN-ELSE

IMPORTO

INDEX0

INSERTO
INTERPRET

LASTPOSO

LEFTO
LENGTHO

MAX0

MIN0
NUMERIC

OPENO
OPTIONS

OVERLAYO
PARSE

POSO
PRAGMA0
PROCEDURE

PULL

PUSH

QUEUE

RANDOMO

RANDU0
READCHO

READLNO

REMLIBO
RETURN

REVERSEO

RIGHTO
SAY

SEEKO
SELECT

SETCLIPO
SHELL

SHOW0

SIGNO
SIGNAL

SOURCELINEO
SPACE()

STORAGEO
STRIP()

272

265

265

272

265

249

273

252

252

266

252

252

253

257

257

266

260

266

253

261

253

266

263

262

259

259

257

257

260

260

267

264

253

253

262

260

249

267

259

267

257

249

267

254

273

254

315

Index AmigaDOS Inside and out

ARexx Commands

SUBSTRO
SUBWORDO
SYMBOLO

TTMEO
TRACE

TRANSLATEO
TRIMO

TRUNCO
UPPER

VALUEO

VERIFYO

WORDO
WORDINDEXO

WORDLENGTHO
WORDSO
WRTTECHO
WRTTELNO

X2C0

X2D0
XRANGEO

ARexx comments

ARexx communications port

ARexx program

Argument

Argument Counter(ArgC)

Argument Vector(ArgV)

Arithmetic operators

array

Ask

Assign

Aux device (aux)

Avail

Backspace<Backspace> key

Binary numbers

BindDrivers

blitter

boolean

Boot blocks

Break

Breaking

C

CD

ChangeTaskPri 71,

Clip List

Clipboard

Command Macros

254

254

267

268

268

255

255

258

255

270

255

255

256

256

256

261

261

270

270

256

245

238

245

16, 290

221

221

244

243

97, 291

75, 291

128

135, 246

10

242

85,246

199

245

24

292

155

221, 232

293

211,247

238

237

109

comment

Comparison operator

compound symbol

Concatenation operators

Console Device (con)

constants

Control sequences

control characters

Copy 33

cylinder

data

Data files

Date

Delete

245

244

244

244

121,162

243

265

182

, 158,203, 247

23

243

12

80, 294

32, 294

Dir 11, 25, 28, 294

directory

DIRS

disk capacity

disk drive specifer

DiskChange

DiskCopy

DiskDoctor

division

DOS

DOS prompt

drawer name

Drive specifier

Echo

ED 103,

Edit 105,

Else

EndCLI

Endlf

Ending the Shell

EndShell

EndSkip

environment

Eval

Execute

Exponentiation

Failat

FastFileSystem

Fault

FF

Filenote

28

27

23

14

63, 295

43,116,295

59, 295

244

4

9

42

14

92, 295

211,283,284

283, 287, 295

295

67, 295

296

18

67, 296

296

238

296

89, 296

244

93, 296

129

80, 297

24, 297

57, 297

316

Abacus Index

Files

fixed symbol 243

Format

Get/Getenv

27

23,116,297

145, 297

halt request

Help function

Hexadecimal numbers

HI

IconX

If

If/Else/Endlf

Info

Initialize

input line

InputO
Install

238

15

242

238

298

298

95

42,298

22

221

223

46, 116, 298

inter-process communication 237

Join 50,298

Keyboard/ASCII conversion 163

LAB

List

LoadWB300

Lock

macro language 240

main directory

MakeDir

MAKELINK

Mount

multiplication

multitasking

Names

NewCLI

NewCon device (newcon)

NewShell

NOFFS

NOICONS

299

36, 299

137, 300

29

31,300

147, 300

85,300

244

199, 237

36

64,301

123

137, 201

24

23

non-interactive

Numeric comparison

Numeric operators

operating system

operators

parameter

Path

Pipe device (pipe)

ports

Preferences

Printer Device (prt)

printer script file

process

Prompt

Protect

Protection bits

219

244

242

199, 219

244

16

14, 73, 301

87, 126

238

159

120

182

237

82, 301

54, 142, 302

36

Quit 94, 302

RAD device (rad)

RAM disk

Raw Device (raw)

ReLabel

Remrad

Rename

Replace

Resident

44,

Resident system segments

REXX language

rexxmast

Root block

Run

RX

RXC

RXSET

Script file processing

Script files

Search

Sectors

Serial Device (ser)

Set

SetClock

SetDate

SetEnv

SetPatch

68,

171,

51

87,

116,

140,

41,

141,

206,

172,

,55,

81,

58,

145,

145,

124

209

122

302

302

303

225

303

142

237

238

24

303

238

238

238

172

186

303

23

118

304

304

304

304

304

317

lNDEX AmigaDOS Inside and out

Shell

simple symbol

Skip

Skip/Lab

Sort

Speak device (speak)

Stack

Startup Sequence

Status

stem

String comparisons

strings

subscripted variable

Subdirectories

Switch

symbols

text files

Type

typeless242

Unalias

Unset

Unsetenv

variables

Version

Wait 99

Which

Why

Wildcaids

6

243

305

98

53, 305

87, 127

84,305

176, 238

69,211,305

243

244

244

243

12,25

16,290

243

162

49,306

147, 306

148, 306

148, 306

242,243

100,306

, 163, 306

307

79,307

32

318

Abacus
AmigaCatalog

OrderToll Free 1 -800-451-4319

Amiga for Beginners Revised for 2a

A perfect introductory book if you're a new or prospective Amiga owner. Amiga for Beginners introduces

you to Intuition (the Amiga's graphic interface), the mouse, windows, the versatile CLI. This first volume

in our Amiga series explains every practical aspect of the Amiga in plain English. Clear, step-by-step

instructions for common Amiga tasks. Amiga for Beginners is all the info you need to get up and running.

Topics include:

•Unpacking and connecting the Amiga components

•Starting up your Amiga

•Customizing the Workbench

• Exploring the Extras disk

•Taking your first step in AmigaBASIC programming language

•AmigaDOS functions

• Using the CLI to perform "housekeeping" chores

•First Aid, Keyword, Technical appendixes

•Glossary

Item #B021 ISBN 1 -55755-021 -2. Suggested retail price: $16.95

Companion Diskette not available for this book.

Amiga BASIC: Inside and Out

Amiga BASIC: Inside and Out is the definitive step-by-step guide to programming the Amiga in BASIC.

This huge volume should be within every Amiga user's reach. Every Amiga BASIC command is fully

described and detailed. In addition, Amiga BASIC: Inside and Out is loaded with real working programs.

Topics include:

Video titling for high quality object animation

Bar and pie charts

Windows

Pull down menus

Mouse commands

Statistics

Sequential and relative files

Speech and sound synthesis

Item #B87 ISBN 0-916439-87-9. Suggested retail price: $24.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing in

program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga 3D Graphic Programming in BASIC

Amiga 3D Graphic Programming in BASIC- shows you how to use the powerful graphics capabilities

of the Amiga. Details the techniques and algorithm for writing three dimensional graphics programs: ray

tracing in all resolutions, light sources and shading, saving graphics in IFF format and more.

Topics include:

Basics of ray tracing

Using an object editor to enter three-dimensional objects

Material editor for creating parameters of color, shading

and mirroring of objects

Automatic computation in different resolutions

Using any Amiga resolution (low-res, high-res, interlace, HAM)

Different light sources and any active pixel

Save graphics in IFF format for later recall into any

IFF compatible drawing program

• Mathematical basics for the non-mathematician

Item #B044 ISBN 1-55755-044-1. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing in

program listings. Available only from Abacus. $14.95

Amiga Machine Language

Amiga Machine Language introduces you to 68000 machine language programming presented in clear,

easy to understand terms. If you're a beginner, the introduction eases you into programming right away.

If you're an advanced programmer, you'll discover the hidden powers of your Amiga. Learn how to access

the hardware registers, use the Amiga libraries, create gadgets, work with Intuition and more.

68000 microprocessor architecture

68000 address modes and instruction set

Accessing RAM, operating system and multitasking capabilities

Details the powerful Amiga libraries for access to AmigaDOS

Simple number base conversions

Text input and output - Checking for special keys

Opening CON: RAW: SER: and PRT: devices

Menu programming explained

Speech utility for remarkable human voice synthesis

Complete Intuition demonstration program including

Proportional, Boolean and String gadgets

Item #B025 ISBN 1-55755-025-5. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing in

program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Amiga C for Beginners

Amiga C for Beginners is an introduction to learning the popular C language. Explains the language

elements using examples specifically geared to the Amiga. Describes C library routines, how the compiler

works and more.

Topics include:

Beginner's overview of C

Particulars of C

Writing your first program

The scope of the language (loops, conditions, functions,

structures)

Special features of the C language

Input/Output using C

Tricks and Tips for finding errors

Introduction to direct programming of the operating system

(windows, screens, direct text output, DOS functions)

Using the LATTICE and AZTEC C compilers

Item #B045 ISBN 1 -55755-045-X. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing in

program listings. Available only from Abacus. $14.95

Amiga C for Advanced Programmers

Amiga C for Advanced Programmers contains a wealth of information from the C programming pros:

how compilers, assemblers and linkers work, designing and programming userfriendly interfaces utilizing

the Amiga's built-in user interface Intuition, managing large C programming projects, using jump tables

and dynamic arrays, combining assembly language and C codes, using MAKE correctly. Includes the

complete source code for a text editor.

Topics include:

• Using INCLUDE, DEFINE and CAST

• Debugging and optimizing assembler sources

• All about programming Intuition including windows, screens,

pulldown menus, requesters, gadgets and more

• Programming the console device

• A professional editor's view of problems with developing

larger programs

• Debugging C programs with different utilities

Item #B046 ISBN 1 -55755-046-8. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

AmigaDOS: Inside & Out Revised

AmigaDOS: Inside & Out covers the insides of AmigaDOS, everything from the internal design to

practical applications. AmigaDOS Inside & Out will show you how to manage Amiga's multitasking

capabilities more effectively. There is also a detailed reference section which helps you find information

in a flash, both alphabetically and in command groups. Topics include getting the most from the

AmigaDOS Shell (wildcards and command abbreviations) script (batch) files - what they are and how to

write them.

More topics include:

• AmigaDOS - Tasks and handling

• Detailed explanations of CLI commands and their functions

• In-depth guide to ED and EDIT

• Amiga devices and how the AmigaDOS Shell uses them

• Customizing your own startup-sequence

• AmigaDOS and multitasking

• Writing your own AmigaDOS Shell commands in C

• Reference for 1.2,1.3 and 2.0 commands

• Companion diskette included

Item #B125 ISBN 1-55755-125-1. Suggested retail price: $24.95
*

a. •■•-—■"-„ ■:...::.■ workbench h
Jam*. 1.3 a 2.0

0SST
An in-depth guide to

AmigaDOS and the Shell

Ahaousll

Using ARexx on the Amiga

Using ARexx on the Amiga is the most authoritative guide to using the popular ARexx programming

language on the Amiga. It's filled with tutorials, examples, programming code and a complete

reference section that you will use over and over again. Using ARexx on the Amiga is written for

new users and advanced programmers of ARexx by noted Amiga experts Chris Zamara

and Nick Sullivan.

Topics include:

• What is Rexx/ARexx - a short history

• Thorough overview of all ARexx commands - with examples

• Useful ARexx macros for controlling software and devices

• How to access other Amiga applications with ARexx

• Detailed ARexx programming examples for beginners and

advanced users

• Multi-tasking and inter-program communications

• Companion diskette included

• And much, much more!

Item #B114 ISBN 1-55755-114-6. Suggested retail price: $34.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

r

Amiga Printers: Inside & Out

Your printer is probably the most used peripheral on your Amiga system and probably the most confusing.

Today's printers come equipped with many built-in features that are rarely used because of this confusion.

This book shows you quickly and easily how to harness your printer's built-in functions and special

features.

Topics include:

• How printers work, and why they do

what they do

Basic printer configuration using the DIP switches

AmigaDOS commands for simple printer control

Printing tricks and tips from the experts

Recognizing and fixing errors

WORKBENCH Printer drivers explained in detail

Amiga fonts as printer fonts and much more!

Item #B087ISBN 1 -55755-087-5. Suggested retail price: $34.95

Companion Diskette Included at no additional cost: Contains

every program listed in the book- complete, error free and ready

to run! Saves you hours of typing in program listings.

Making Music on the Amiga

The Amiga has an orchestrs deep within it, just waiting for you to give the downbeat. Making Music on

the Amiga takes you through all the aspects of music development on this great computer. Whether you

need the fundamentals of music notation, the elements of sound synthesis or special circuitry to interface

your Amiga to external musical instruments, you'll find it in this book.

Topics include:

• Basics of sound generation

• Music programming in AmigaBASIC

• Hardware programming in GFA BASIC

• IFF formats (8SVX and SMUS)

• MIDI fundamentals: Concept, function, parameters,

schematics and applications

• Digitization: Capture and edit sound, schematics, applications

• Applications: Using Perfect Sound, Aegis Sonix, Deluxe

Music Construction Set, Deluxe Sound Digitizer, Audio

Master and Dynamic Drums

Item #B094 ISBN 1 -55755-094-8. Suggested retail price: $34.95

Companion Diskette Included at no additional cost: Contains

public domain sound sources in AmigaBASIC, C, GFA BASIC

and assembly language.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga Graphics: Inside & Out

Amiga Graphics: Inside & Out will show you the super graphic features and functions of the Amiga in

detail. Learn the graphic features that can be accessed from AmigaBASIC or C. The advanced user will

learn how to call the graphic routines from the Amiga's built-in graphic libraries. Learn graphic

programming in C with examples of points, lines, rectangles, polygons, colors and more. Complete

description of the Amiga graphic system- View, ViewPort, RastPort, bitmap mapping, screens, and

windows.

Topics include:

• Accessing fonts and type styles in AmigaBASIC

• Loading and saving IFF graphics

• CAD on a 1024 x 1024 super bitmap, using graphic

library routines

• Access libraries and chips from BASIC- 4096 colors at once,

color patterns, screen and window dumps to printer

• Amiga animation explained including sprites, bobs

and AnimObs, Copper and blitter programming

Item #B052 ISBN 1-55755-052-2. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Amiga Desktop Video Power

Amiga desktop Video Power is the most complete and useful guide to desktop video on the Amiga.

Amiga Desktop Video Power covers all the basics- defining video terms, selecting genlocks, digitizers,

scanners, VCRs, camera and connecting them to the Amiga.

Just a few of the topics described in this excellent book:

• Now includes DCTV, Video Toaster info

• The basics of video

• Genlocks

• Digitizers and scanners

• Frame Grabbers/ Frame Buffers

• How to connect VCRs, VTRs, and cameras to the Amiga

• Animation

• Video Titling

• Music and videos

• Home videos

• Advanced techniques

• Using the Amiga to add or incorporate Special Effects to a video

• Paint, Ray Tracing, and 3D rendering in commercial applications

• Companion diskette included

Item #B057 ISBN 1-55755-122-7. Suggested retail price: $29.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

TheBestAmiga Tricks & Tips

The Best Amiga Tricks & Tips

is a great collection of Workbench,

CLI and BASIC programming

"quick-hitters", hints and application

programs. You'll be able to make

your programs more user-friendly

with pull-down menus, sliders and

tables. BASIC programmers will

learn all about gadgets, windows,

graphic fades, HAM mode, 3D

graphics and more.

The Best Amiga Tricks & Tips

includes a complete list of BASIC

tokens and multitasking input and

a fast and easy print routine. If

you're an advanced programmer,

you'll discover the hidden powers

of your Amiga.

Using the new AmigaDOS, Workbench and Preferences 1.3 and Release 20

Tips on using the new utilities on Extras 1.3

Customizing Kickstart for Amiga 1000 users

Enhancing BASIC using ColorCycle and mouse sleeper

Disabling FastRAM and disk drives

Using the mount command

Writing an Amiga virus killer program

Changing type-styles

Learn kernal commands

BASIC benchmarks

Disk drive operations and disk commands

Learn machine language calls.

The Best Amiga Tricks & Tips includes companion disk. 410 pp.

Item # B107 ISBN 1-55755-107-3. Suggested retail price $29.95

Authors: Wolf-Gideon Bleek, Tobias Weltner, and Stefan Maelger.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

AmigaDOS Quick Reference

AmigaDOS Quick Reference is an easy-to-use reference tool for beginners and advanced programmers

alike. You can quickly find commands for your Amiga by using the three handy indexes designed with the

user in mind. All commands are in alphabetical order for easy reference. The most useful information you

need fast can be found including:

• All AmigaDOS commands described with examples including

Workbench 1.3

Command syntax and arguments described with examples

CLI shortcuts

CTRL sequences

ESCape sequences

Amiga ASCII table

Guru Meditation Codes

Error messages with their corresponding numbers

Three indexes for instant information at your fingertips! The

AmigaDOS Quick Reference is an indispensable tool you'll want

to keep close to your Amiga.

Item #B049 ISBN 1-55755-049-2. Suggested retail price: $9.95

Companion Diskette not available for this book.

Abacus Amiga Book Summary

Amiga for Beginners ltem#B021 1-55755-021-2 $16.95

AmigaBASIC: Inside and Out Item #B87 0-916439-87-9 $24.95

Amiga 3D Graphic Programming in BASIC Item #B044 1-55755-044-1 $19.95

Amiga Machine Language Item #B025 1-55755-025-5 $19.95

AmigaDOS: Inside and Out ltem#B041 1-55755-041-7 $19.95

Amiga Disk Drives: Inside and Out Item #B042 1-55755-042-5 $29.95

'C for Beginners Item #B045 1 -55755-045-X $19.95

'C for Advanced Programmers Item #B046 1 -55755-046-8 $34.95

Amiga Graphics: Inside & Out Item #B052 1-55755-052-2 $34.95

Amiga Desktop Video Guide Item #B057 1-55755-057-3 $19.95

Amiga Printers: Inside & Out w/ disk Item #B087 1 -55755-087-5 $34.95

Making Music on the Amiga w/disk Item #B094 1 -55755-094-8 $34.95

The Best Amiga Tricks & Tips w/ disk Item #B107 1-55755-107-3 $29.95

AmigaDOS Quick Reference Item #B049 1-55755-049-2 $9.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

DataRetrieve
A Powerful Database Manager for the Amiga

Imagine a powerful database for your Amiga: one that's fast, has a huge data capacity, yet is easy to work with.

Now think DataRetrieve. It works the same way as your Amiga- graphic and intuitive, with no obscure commands.

Quickly set up your data files using convenient on-screen templates called masks. Select commands from the

pulldown menus or time-saving shortcut keys. Customize the masks with different text fonts, styles, colors, sizes and

graphics. If you have any questions, Help screens are available at the touch of a button. DataRetrieve is the perfect

database for your Amiga.

Features inclde:

• Enter data into convenient screenmasks

• Work with 8 databases concurrently

• Define different field types: text, date, time, numeric and

selection

• Customize 20 function keys to store macro commands and text

• Specify up to 80 index fields for superfast access to your data

• Perform simple or complex data searches

• Create subsets of a larger database for even faster oper-ation

• Exchange data with other packages: form letters, mailing lists

• Produce custom printer forms: index cards, labels, Rolodex-

cards, etc. Adapts to most dot-matrix and letter-quality printers

• Protect your data with passwords

• Get Help from online screens

• Not copy protected

Item #S028 ISBN 1-55755-028-X. Suggested retail price: $79.95

AssemPro
Assembly Language Development System for the Amiga

AssemPro also has the professional features that advanced programmers look for. Lots of "extras" eliminate the most

tedious, repetitious and time-consuming machine language programming tasks. Like syntax error search/replace

functions to speed program alterations and debugging. And you can compile to memory for lightning speed. The

comprehensive tutorial and manual have the detailed informatior, you need for fast, effective programming.

Features inclde:

Integrated editor, debugger, disassembler and reassembler

Large operating system library

Runs under CLI and Workbench

Produces either PC-relocatable or absolute code

Create custom macros for nearly any parameter

Error search and replace functions

Menu-controlled conditional and repeated assembly

Full 32-bit arithmetic

Advanced debugger with 68020 single-step emulation

Fast assembly to either memory or disk

Written entirely in machine language

Runs on any Amiga with 512K or more

Item #S030 ISBN 1-55755-030-1. Suggested retail price: $99.95

Machine language programming requires a solid understanding of

the Amiga's hardware and operating system. We do not recommend

this package to beginning Amiga programmers.

AssemPro

Amiga

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Cut carefully along this line

Companion Diskette Enclosed

Abacus

