
I Over 100 DOS Scripts I

Covers Versions 1 .x�- 2.x and 3.x

FREE Scripts Disk Offer

Bruce Smith Books

Mastering AmigaDOS

Scripts

Mark Smiddy

II

Mastering AmigaDOS Scripts

Mastering AmigaDOS Scripts

© Mark Smiddy 1994
ISBN: 1-873308-36-1 First Edition: December 1994.

Editors: Mark Webb
Typesetting: Bruce Smith Books Ltd

Workbench, Amiga and AmigaDOS are trademarks of Commodore
Amiga, Inc. UNIX is a trademark of AT&T. MS-DOS is a trademark of
Microsoft Corporation. Designer Mouseware is a trademark of Mark
Smiddy. All other Trademarks and Registered Trademarks used are
hereby acknowledged.

All rights reserved. No part of this publication may be reproduced
or translated in any form, by any means, mechanical, electronic or
otherwise, without the prior written consent of the copyright
holder(s).

Disclaimer: While every effort has been made to ensure that the
information in this publication (and any programs and software) is
correct and accurate, the Publisher can accept no liability for any
consequential loss or damage, however caused, arising as a result
of using the information printed in this book.
E. & O.E.

The rights of Mark Smiddy to be identified as the Author of the
Work has been asserted by him in accordance with the Copyright.
Designs and Patents Act 1988.

Bruce Smith Books is an imprint of Bruce Smith Books Limited.
Published by:
Bruce Smith Books Limited. PO Box 382, St. Albans, Herts, AL2 3JD.
Telephone: (01923) 894355, Fax: (01923) 894366
Registered in England No. 2695164.
Registered Office Worplesdon Chase. Worplesdon, Guildford, Surrey, GUI 3UA.

Printed and bound in the UK by Ashford Colour Press, Gosport.

The Authors /

"l:."xpcrts arc no/ born.

They are hewn (rom the bedrock of endeavour,

and the granite of experience."

The Author

MARK SMIDDY is a founding Consulant Editor on Future
Publishing's acclaimed Amiga Shopper and the world's best known
AmigaDOS author. He has worked with and written about, a variety
of computers over the last 12 years and thinks intellectual bores
should be lined up against a wall and shot: not necessarily in that
order. Mark currently lives in a sleepy Cleveland backwater and
remains convinced that life is a fatal disease.

Ill

-

Mastering AmigaDOS Scripts

The Scripts Disk

Mastering AmigaDOS Scripts - The Disk contains a large number
of programs. If you have an av rsion to typing th se in - or find
that you can't get them to run correctly - then you may be
interested to know that they are available on a companion disk
we have compiled to go along with this book. In addition, the
MAD3 Scripts Disk also contains a good selection of interesting
and useful PD/Shareware software. The disk may also contain
information that has come to light since this book was
published.

The disk is available at a nominal charge of £2.00 to cover the
cost of P&P and to obtain it simply fill in and return the tear-out
form you will find towards the end of this book.

When you get your disk you will find that it contains a ReadMe
file when the disk window is opened. Simply double-click on this
for a full description of the files on the disk.

Contents

Contents
Introduction .. 9

Alarm Clock: Alarmset .. 11

AlarmSnooze ... 13

Alarm Clock WB Alarm set ... 15

AlarmClock ... 17

AskEm ... 20

AddData .. 79

AutoHelp ... 22

AutoStart 1.3 .. 23

AutoSta rt 2 ... 25

Back {Alias) ... 26

Barclock .. 27

BarGraph .. 30

Booty ... 40

CALC 1.3 ... 43

Calendar ... 49

Month print 2 ... 57

Monthprint .. 45

Calendar 2 .. 62

CCOPY (Alias) ... 66

CCOPY .. 64

Chatter .. 67

CHATTY ... 70

Clock 1.3 ... 71

Clock 2 .. 73

Clock 3 .. 75

Clock ... 77

Delf (Alias) ... 86

Del (Alias) .. 87

DiskDoc (Script/Alias) ... 111

Doctor {Alias ... 88

DRS {Alias) .. 89

DVS (Alias) .. 90

Del Block ... 81

..

Mastering AmigaDOS Scripts

Database ... 94

DCopy ... 106

DEL ... 108

EDS (Alias) .. 115

EDU (Alias) .. 116

ENABLE .. 124

EX (Alias) ... 125

FFIND (Alias) ... 135

FindData ... 91

FRED (Alias) .. 136

FREUD (Alias) .. 137

FTEXT ... 138

EggTimer .. 117

EMove ... 122

FACTOR .. 126

FancyList .. 130

FCD ... 131

GetEm ... 139

GetEm 2 .. 141

Halt ... 143

Host-Chat .. 145

HostRead .. 14 7

lnterDel ... 149

lntelliRes ... 152

ListALL .. 158

List D .. 161

ListDel .. 163

LD (Alias) ... 147

Mail-2-Host ... 167

Mail-2-Remote .. 168

MD (Alias) .. 164

MID ... 174

MID1 ... 194

MRun .. 196

MemBar .. 175

MemFreeP ... 178

..

Contents

MemG ... 185

Memlnk ... 187

Mem6 .. 188

MD .. 164

NOT ... 199

Path Find ... 203

Pest (AmigaDos 1.3) .. 205

Pest (AmigaDos 2) ... 209

Pest2 (AmigaDos 1.3) .. 212

Pest3 (AmigaDos2) .. 215

Pest3 (AmigaDos3) .. 216

Pest: AddPestEvent .. 220

Pest3 ChangPestMessage .. 232

Pest3: DeletePestEvent .. 235

Pest3: GetArgs .. 238

Pest3: KillPestEvent ... 240

Pest3: ListPestEvent ... 244

Pest3: SetPestEvent ... 24 7

Pest3: SetWaitEvent ... 253

Pest3: StartPest .. 256

PrintData ... 99

PFind (Alias) .. 258

QFF (Alias) ... 259

QF (Alias) ... 260

RCD2 ... 261

RCD ... 253

Ree Demo .. 268

RemAlias ... 270

Remt-Chat .. 273

RemoteRead ... 274

REN ... 275

ResCalc ... 276

SAFE ... 281

SlideshowWB .. 282

Slideshow ... 284

STOP ... 286

-

Mastering AmigaDOS Scripts

SortData .. 101

SubDemo .. 287

sx ···289

TD (Alias) ... 292

TreeStart ... 293

Tree ... 294

UNSAFE {Alias) .. 299

ViewBlock ... 103

VLS (Alias) ... 300

VOLS ... 301

WD (Alias) .. 302

WHO (Alias .. 303

wx ··304

X (Alias) ... 306

XCD ... 307

Appendix

A: Books for your Amiga .. 311

-

Introduction

"Alas poor Yori ck, I knew him ... "
Poor Shakespeare would turn in
his grave if he knew how many
times people have misquoted that
famous line from Hamlet. The
problem is our brains hear the
first part of the sentence and fill
in the rest - in modern English we
wouldn't think of ending such a
sentence with "Horatio" (the
listener). It just doesn't sound
right. That's the thing with
scripts: they're a sequence of
instructions written down for
actors to follow, and a director to
alter at will.
Amiga scripts are like that. No
more than a sequence of
AmigaDOS commands which
define some action or actions.
When starting out with this
fascinating area, you are the
copyist entering the script for the
actors to follow. Later, you will
direct the course of events by
changing the scripts to suit your
needs. Eventually you will be the
scriptwriter creating scripts to
solve your own, distinct
problems.
Looked at from another angle.
scripts are AmigaDOS programs.
No different from the programs
that Charles Babbage first
conceived of when he first
thought up the idea of his
Analytical Engine. Babbage's idea
was to create a machine that
could follow a set of pre-written
instructions that could be
changed to fit the job at hand. Of
course, in those days, programs
only solved mathematical
problems. Even Babbage, were he
alive today, might find it difficult
to conceive of how much effect
his idea could have had on our
everyday lives.

Ill

Ill

Mastering AmigaDOS Scripts

All this talk of computers and computer programs may have you
thinking, "Is all this for me?".
Programming is an art and a science all rolled into one. The
scientific part is being able to think of a problem logically and
break it into easily achievable steps (commands, if you like)
whereas the artistic part is the ability to add flare and polish to a
program.
Nothing in this book is beyond you. Even the fact you have
managed to read the words here proves you are intelligent enough
to learn a language: one of the most complex in the world come to
that. To get the most from this book, you should have a basic
understanding of the workings of AmigaDOS, perhaps by following
on from Mastering AmigaDOS Tutorial; or The AmigaDOS Insider
Guide. In any case a copy of Mastering AmigaDOS 3 Reference
would be very helpful.
Just remember as I have said many times, "Experts are not born.
They are hewn from the bedrock of endeavour and the granite of
experience". Here then are the three stages to becoming an expert.

1. Your can enter the programs as they appear at first and use
them as described in the text. Copying is the first stage of
learning: very few things we do are instinctive; almost
everything is learnt by copying other people.

2. You follow the flow of the program as described in the
detailed text and modify it to see what happens. Later on you
will be able to predict what effect your actions have.

3. Having had some experience with the first two stages, you will
begin to see places in your everyday use of the Amiga where a
script can streamline work: and where nothing supplied here
can fit the bill. You will become the scriptwriter.

Mastering AmigaDOS Scripts

AlarmClock: AlarmSet

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) <[Time=)time> [[Message=)''Text")
Time/a,message/f
s

V3+

AlarmClock. AlarmSnooze
Script
Alarm setting module for the Alarmclock

This module is used to set the AlarmClock's Alarm from AmigaDOS.
The script has a built-in message (that you can change) but it is
more normal to supply one. The choice is yours. Typically, you'll
use AlarmSet like this.

1>ALARMSET 15:00

1>ALARMSET 13:22 It's time for a cuppa!

Line-By-Line

1-3. Defines a simple header. Note the use of a "final" argument to
ensure the whole message is collected by the command line.

4. Sets the default message. You can change this to suit yourself.
5. Creates the message variable. Multiple calls to this command

will change the message: be wary of this.
6. Clears the Alarm variable.
7. Starts a new resident process which will continue until the

required time is reached. Note input and output re-direction
to NIL:. This ensures you can close the Shell that called
Alarm Set.

8. When the time is reached and the WA IT times-out, this
activates the alarm .

1 . . key time/a,message/f

2 . .bra {

3. . ket }

4. .def message "You rang, sir?"

5. setenv AlarmMsg "{message}"

6. setenv AlarmOn "ON"

m

m

Mastering AmigaDOS Scripts

7. setenv Alarm ""

8. run <NIL: >NIL: wait until {time}

9. setenv Alarm "NOW"

AlarmSnooze

Synopsis: Internal to AlarmClock
Template:

Path: S:

Requires: V3+

See also: AlarmClock, AlarmSet
Type: Script

Mastering AmigaDOS Scripts

Brief: Snooze timer module for the alarm clock

Description

This module uses some clever features of AmigaDOS 2 and 3 to
present a requester and calculate a snooze period for the
AlarmClock. It is not normally executed on its own.

Snooze Request

Alarm Clock Snoozing

Alarm Clock

Line-By-Line

1-3 Construct a standard header.
4. Clears the global alarm variable.

m

m

Mastering AmigaDOS Scripts

5. Sets the Alarm message variable to itself plus "Snooze". This
is to indicate that the clock has already been snoozed from its
original time. On successive runs, the word Snooze is added
again and again, so you can see how many times you have
snoozed!

6. Displays the requester inquiring how long the user wants to
snooze for. Four returns are possible here:

1: 5 minutes .

2: 10 minutes .

3: 15 minutes .

4. Cancel

7. This line does several things in one go.
• Calculates the actual delay time required by multiplying the
return from Step 6 by 3. This is done by expanding the return
variable inside an inserted EVAL command. The result from:
'eval $ret{$$} *5 - is inserted at that point. For a return of 3,
AmigaDOS sees the line as:

run >nil: Wait 15 mins +

• Starts a new process that will wait for the specified time.
• Does nothing until the next line has been added to the
process.

8. Is part of the process started by Step 7. When the WAIT times
out, the Alarm variable is set to NOW and the Alarmclock
triggers.

Listing

1 . . key dummy

2 . . bra {

3. . ket }

4. setenv Alarm ""

5. setenv AlarmMsg "Snooze: $AlarmMsg"

6. requestchoice >env:ret{$$} "Alarmclock" "Snooze for how
long?" "5 mins" "10 mins" "15 mins" "Cancel"

7. run >nil: Wait 'eval $ret{$$} *5' mins +

8. setenv Alarm "NOW"

Mastering AmigaDOS Scripts

AlarmClock: WBAlarmSet

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Only run from Workbench
Time,message/f
na
V3+
AlarmClock. AlarmSnooze
Script
Alarm setting module for the Alarmclock

This module is used to set the AlarmClock's Alarm from Workbench
- it's really for weanies who can't be bothered using the AmigaDOS
one which is a lot faster in the long run . . .

Line-By-Line

1-3. Defines a simple header. Note the use of a "final" argument to
ensure the whole message is collected by the command line.
Also, note that the ''time" argument is not required by the
Workbench version of this script.

4. Sets the default message. You can change this to suit yourself.
5. C hecks if a time has been entered. If not, control continues at

Step 6: otherwise it jumps to Step 9.
6. Displays the prompt if a time has not being supplied- as will

usually be the case from Workbench .
7 . The script now calls itself recursively with interactive mode

tr iggered . No t e t hat t h e output is re-directed to N I L : to
prevent the command line options from being shown. If you
change the name of the script you must also change its name
here too.

8. When the script unwinds its recursion this jumps to the bail
out for speed.

9. Terminates the IF . . . ENDIF construct from Step 5.
10. Creates the message variable . Multiple calls to this command

will change the message- be wary of this.
11. Sets a variable to indicate the alarm is active .
12 . Clears the Alarm variable.
13 . Starts a new resident process which will continue until the

required time is reached. Note input and output re-direction

Ill

Ill

Mastering AmigaDOS Scripts

to N I L : . T h i s e n s u r e s y o u can c l o s e t h e S h e l l t h a t c a l l e d
AlarmSet .

1 4 . W h e n t h e t i m e i s r eac h e d a n d t h e WA I T t i m e s - o u t , t h i s
ac t ivates the a larm.

1 5 . I s the ba i l -ou t po in t for the recu rs ive ca l l s .

1 6 . I s some i nformat ion for WX to use i f the scr ip t i s cal l ed from
AmigaDOS.

Listing

1 . . key time , message/f

2 . . bra {

3 • • ket }

4 . . def message "You rang , sir?"

5 . if " {time} " EQ

6. echo " Enter a time (and optional message) "

7. execute >NIL: WBAlarmSet ?

8. skip out

9. end if

1 0. setenv AlarmMsg "{message}"

1 1 . setenv AlarmOn "ON"

1 2. setenv Alarm ""

13. run <NIL: >NIL: wait until {time} +

1 4. setenv alarm "NOW"

1 5 . lab out

1 6 . ; WX : WINDOW=WINDOW=con : 0 /0 / 1 90 / 60 /Memory
Gauge/SMART/NOSIZE

AlarmClock

Synopsis: Run from Workbench
Template:

Path: na
Requires: V3+

Mastering AmigaDOS Scripts

See also: Snooze, AlarmSet, Clock 2, Clock 3
Type: Script
Brief: Digital a iarm clock with snooze facility!

Description

This is a script to amaze your friends with. In the current
incarnation it requires Workbench 3 (an A l 200, for instance)
because it makes use of requesters to provide instant responses.
It's a bit like Pest3 in some respects, but unlike Pest it's a lot
simpler and only supports a single Alarm time. A snooze mode is
provided with a programmable Snooze period from 5 . . . 1 5 minutes.
A status indicator shows if the Alarm is clear, set or asleep.

Alarm Clock Snooziing

S n o o z e

Clock Alarmed

Line-By-Line

1 -2. Makes some essential commands resident.

3-5. Checks for the global variable "AlarmON". AlarmClock needs
this (even if it contains nothing) to work. If the variable does
not exist it is created .

m

m

Mastering AmigaDOS Scripts

6. Switc h es the cursor off and positions the pr int position at the
top, left hand corner of the window.

7. Marks the start of a loop.

8. Displays the day, date and time.

9. C h e cks if Ala rmO N conta i ns a n yth i n g. If it does , c o n t rol
conti nues at Step 1 0 ; othe rwise it jumps to Step 2 3 .

1 0. Tests if ClockRtn (set late r i n the script) was 1 : Snooze mode.
If it was, control continues at Step 1 1 ; oth e rwise it j umps to
Step 1 2 .

1 1 . Displays the snooze "Zzz " message i n a h ighlight colour and
re-positions the cursor.

1 2 . I f c o n trol gets h e r e f rom Step 1 1 . it j umps to S t e p 1 4 ;
othe rwise it conti nues . .

1 3. .. .here where it displays the ala rm Set message i n a h ighlight
colour.

1 4 . Te rminates the I F . . . ELSE...ENDIF construct ope n ed at Step 1 0.

1 5 . Tests if the ala rm has "timed out" indi cated by the va r iable .
Ala rm. If Ala rm is set to trigge r, control conti nues at Step 1 5 :
othe rwise it jumps to Step 2 2 .

1 6. Displays a requeste r with the alarm message (dete rmi ned by
"AlarmSet") . Two possi ble returns are possi ble :

0: OK . Cancel the alarm

s 1: Snooze . Trigger snooze mode .

1 7 . If the return from the ala rm re quest was " l " , control conti nues
at Step 1 8 ; oth e rwise it branches to Step 1 9.

1 8. Silently c r eates a n e w p roc ess run n i ng t h e Snooz e time r.
Actually, Ala rmSnoo z e w i ll c re ate i ts own sub - p ro c ess, as
you'll see desc ribed there.

1 9. If control r e a c h es h e re from Step 1 8 , i t jumps to Step 2 1 ;
othe rwise it continues . .

20. . . . here and re-sets the ala rm va riable.

2 1 . Closes the IF . . . ELSE . . . ENDIF construct ope ned at Step 1 7.

2 2 . Closes the IF . . . E LSE . . . ENDIF construct ope ned at Step 1 5 .

23 . If control reac hes here from Step 2 2 , it continues at Step 2 5 ,
othe rwise it carries on . .

2 4 h e r e , a n d p ri n t s t h e " A la rm off" m e ss a g e b e fo r e r e
positionin g the cursor re ady to display the time.

2 2 . Closes the I F . . . ELSE . . ENDIF construct ope ned at Step 9.

2 6. H alts the sc ript for about a se cond. You c a n i n c rease this
period if you want to give more time ove r to oth e r proc esses.

27. Re-starts the loop and keeps the clock ticking.
28. ls some information for the WX script.

1 . resident c : wait

2 . resident c : date

3 . if not exists ENV : AlarmON

4 . setenv AlarmON " "

5 . endif

6 . echo " * e [O p*e [O ; OH " noline

7 . lab start

8 . date

9 . if " $Alarm0 n " NOT EQ

1 0 . if $ClockRtn EQ " 1 "

1 1 . echo "Alarm * e [32mzzz*e [3 1 m*e [O ; OH " noline

1 2 . else

1 3 . echo " Alarm * e [32mset*e [3 1 m *e [O ; OH " noline

1 4 . e ndif

1 5 . if " $alarm " EQ " NOW"

Alarm Clock

1 6 . Requestchoice >env : ClockRtn " Cloc k " " $AlarmMsg "
" Snooze " " OK "

1 7 . if $ClockRtn E Q " 1 "

1 8 . run >NI L : execute s : AlarmSnooze

1 9 . else

20 . setenv alarmON " "

2 1 . endif

22 . end if

23 . else

24 . echo " Alarm off *e [O ; OH " noline

25 . endif

26 . wait sees

27 . skip start back

28 . ; WX : WI NDOW=WINDOW=con : 0 / 0 / 240/30 / CL I_Clock

m

m

Mastering AmigaDOS Scripts

AskEm

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

EXEC UTE > N I L : Askem <[fi l e=]Answe rfi le> 7

fi l e/a . a , b , c , d , e , f, g , h , i ,j

S :

V l . 2 +

Pest 3 : Ge tArg

Scr ip t

To i n teract ive ly read i n p u t fro m the user in a
scr ip t

A programmer once c o m m e n te d : "ASK i s fi ne for s i m p l e q u e s t i o n s
b u t w h a t h a p p e n s i f I n e e d to g e t a t e x t s t r i n g i n s i d e a p ro g ra m?

The re's n o way t o i n te ract ive ly ask the user a ques t ion l i ke ' what 's
your name? once the scr ip t has s tarted . Fro m the o u t s e t t h i s l ooks
a decept ive ly s i m p le c o m m a n d . However, th is i s n o t a s tand a l o n e
p rogram - i t 's a scr i p t d e s i gned to be executed fro m a n o t h e r s c r i p t
- p o s s i b l y c a l l e d b y ICONX.

Line by line

1 . Th is l i n e i s the command 's key - wh ich g ives some h i n t as to
how t h i s scr ipt works . Apart fro m the fi l e argu m e n t t he rest of
t h e o p t i o n s l o o k m e a n i n g l e s s . In fa c t , the l e s s m e a n i n g fu l
these are , t h e b e t t e r ' They never ac tu a l l y a p pe a r o n s c re e n
and serve t o p i c k u p the user's i n p u t . I 've p rovi d e d 1 0 here
w h i c h s h o u l d s u ff i c e for q u e s t i o n s s u c h a s " W h a t i s y o u r
name" a n d s o o n .

2 - 3 . Set bra and ket t o { and } .

4 . Th is mere ly echoes t he u ser's i n p u t back t o the f i l e d e fi ned i n
l i ne 1 .

Th i s scr ip t i s not obvi ous u n t i l you see i t i n use . So here 's a very
s i m p l e scr ip t to show how i t works :

1 .key dummy

.bra {

. ket }

2 echo " What is your name? " noline

3 execute >nil : AskEm ram : Answer{SS} ?

echo " Nice to ' eat you ' " noline

type ram : Answer{SS}

Line by line

1. This is a dummy parameter.

AskEm

2. ECHO is being used here to ask the question. This has to be
done here for reasons which will become clear below.

3. This is the crucial part. AskEm is executed with output re
direction sunk to NIL: . This makes sure that it can't generate
any output of its own to the screen. The ? at the end puts the
script's key into interactive mode so it is ready to accept some
input. Remember, nothing actually appears because the
output is going to NIL: although, what you type belongs to the
current console so it does appear.
More important, AskEm has one required argument - the file it
will send its output to. A little known feature of interactive
mode is that you can send partial command lines - in this
case the filename - before the interactive mode starts. When it
does, the user's input is passed to each argument letter in
turn, thus allowing about ten words for this example.

Listing

1 . . key file/a , a,b , c , d , e , f , g , h , i , j

2 . . bra {

3 . . ket }

4 . echo >{file} " {a} {b} {c} {d} {e} {f} {g} {h} {i} {j } "

ID

Mastering AmigaDOS Scripts

AutoHelp
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXEC UTE] Au toHe lp

none

S :

V l . 3+

Scr i p t

Make a l l d i s k- l oaded command s prod uce h e l p
t emp la t e s

H e re 's a l i t t l e scr i p t fo r beg i n n e rs a n d exper t s a l i ke who c anno t
remember how each c o m m a n d be have s . I t u s e s L I ST t o c r e a t e a
s p e c i a l a l i a s fo r a l l c o m m a n d s s o t h ey a l wa y s p r e s e n t t h e i r
command l i n e t emp l a t e s

The fi rs t l i ne c rea tes a sc ri p t fi l e i n RAM : ca l l ed " he l pme " format t ed
l i ke t h i s fo r every f i l e i n t h e C : ass ign men t :

; <Path>

ALIAS <command> <path and command> ?

For i n stance i f C : con t a i ned j u s t CD and D I R . " h e l pme" wou l d look
l i ke t h i s :

; Workbench1 .3:C

ALIAS DIR Workbench1 . 3 : C / DIR ?

; Workbench1 .3:C

ALIAS CD Workbench1 .3:C / CD ?

a l t hough , i n real t e rms , t he l i s t w i l l be much longer - two l i ne s fo r
every command i n C : 1 When t h i s fi l e i s execu t e d , i t i s no l o nge r
necessary (o r poss i b l e) t o supp l y an a rgu men t t o each command .
I n s t e ad y o u j u s t g i v e t h e c o m m a n d w i t h o u t p a ra m e t e r s a n d i t
p resen t s t he l i s t o f parame t ers i t req u i res

1 >DIR

NAME , OPT / K , AL L / S , DIRS / S , INTER / S , F ILES / S :

A l l y ou have t o do i s e n t e r t h e parame t ers a s u sua l and press the
<Re turn> key t o ac t iva te t he command . Th is i s u sefu l i f you on ly
have a s i n g l e d i s k d r i v e b e c a u s e t ra n s i e n t c om m a n d s are p r e
l oaded s o y o u can S\, ap d i sks w i t h o u t hav i ng t he hass l e of g e t t i n g
t h e wro n g d i re c t o ry e t c .

Listing

1 . LIST >RAM : H E LPME C : #? LFORMAT " ; %S*nAL IAS %S %S%S ? "

m 2 . EXECUTE RAM : HE LPME

AutoStart 1 .3

Synopsis:

Template:

Path:

Requires:

See also:

Type:

none
none
s

Y l .3 - 1.3.3
AutoStart 2
Script

Mastering AmigaDOS Scripts

Brief: Auto start multiple application (like WB20+'s
WBStartup)

Description

The most logical way to create a boot disk is to custom build a disk
that will automatically start applications from a special Workbench
drawer. This example applies to all releases of Workbench from 1.3
to 1.3.3 and provides functionality similar to that in Workbench 2 .

Install ing AutoStart

1. Boot your Workbench disk, make a copy of the Empty drawer
and rename it Auto.

2 . Open a Shell and enter:
1>ED $:Startup- sequence

3. Move the cursor to the line where EndCLI >NIL: appears, press
<Return> to open a blank line and move the cursor into it.
Now enter the lines shown in the listing below.

4. Now drag one or more applications (tools) to the Auto drawer
and reboot the machine. Typical examples are Clock and
NotePad (on 1.3). This patch only works on "tools". If you are
unsure what an icon is, select it and choose Info from the
menu. The icon's type must be a tool otherwise it will not
work. (The Shell's icon for instance is a Project.)

Line-By-Line

1. The first line checks for the Auto drawer required by the
patch. If the drawer is missing execution passes to step 6 and
allows the startup to continue as normal. This allows you to
modify one Startup-sequence and copy it to lots of different
disks without having to create an Auto drawer on every one.

2 . This creates a script (T:AutoTemp) using LIST's LFORMAT
argument. Typically it will look something like this if the
Clock and NotePad tools were placed in the Auto drawer:

m

m

Mastering AmigaDOS Scripts

RUN <NIL: >NIL: .info

RUN <NIL: >NIL: Clock .info

RUN <NIL: >NIL: NotePad . info

RUN <NIL: >NIL: Clock

RUN <NIL: >NIL: NotePad

3 . Creates a macro (T: S t r ip) fo r t h e EDIT command . There i sn ' t
room he re to d e scr ibe ED IT in de ta i l . bu t t h i s macro w i l l fo rce
EDIT to search for and de l e te , any l i ne s conta i n i ng the s t r ing
" . i n fo" . (See Master ing AmigaDos 3 Re ference) .

4 . C re a t e s t h e f i n a l s c r i p t (T : R u n l t l b y r e m o v i n g a n y l i n e s
conta i n i ng t h e subs t r i ng " . i nfo" . The new scr ip t w i l l typ ica l ly
l ook somet h i ng l i ke t h i s :

RUN <NIL: >NIL: Clock

RUN <NIL: >NIL: NotePad

As you can see , t h i s sc r ip t on ly a t t empt s to RUN too l s . The o rig i na l
MakeAu to program tr ied to run every th ing , icons and a l l and t h i s
s lowed t h i ngs d o w n . Red i rec t i on to and fro m N I L : (<N IL : > N I L :) i s
u s ed t o s t op any t o o l s ge t t i ng a " l ock " o n t h e C L I w i n d o w. t h u s
a l lowing i t to c l o se .

5 . Execu t e s t h e sc r i p t . The reason for u s i ng R U N m igh t no t be
c lear, bu t i n some re leases EXECUTE compla i n s about t h e lack
o f a . KEY s ta t emen t . Th is f ixes that prob l em a t the expense of
an ex t ra [CL I 2] me ssage dur i ng s tartu p .

6 . Th i s i s j u s t t h e tag for the I F s ta te ment a t s t ep .

Listing

1 . I F exists SYS:Au to

2 . LIST >T : AutoTemp SYS:Auto LFORMAT "RUN <NIL: >NIL: %5%5"

3 . ECHO >T : Strip "O (F/ . info/ ;d ;) "

4 . EDIT T:AutoTemp TO T:Runit WITH T:Strip

5 . RUN EXECUTE T: Run It

6 . End I F

AutoStart 2
Synopsis:

Template:

Path:

Requires:

See also:

Type:

none
none
S:
V2+
AutoStart 1.3
Script

Mastering AmigaDOS Scripts

Brief: Auto start multiple application (like WBStartup)

Description

The most logical way to create a boot disk is to custom build a disk
that will automatically start applications from a special Workbench
drawer.
Th i s example appli e s to all rele a s e s of Workbench from 1.3
onwards. Although the Workbench already has an auto start drawer
(WBStartup) it does not vvork correctly for applications that don't
exit quickly. This ma kes it unsuitable for things like EMacs and
lconEd for instance.

• It's worth noting, that Workbench doe s h ave a ToolType :
DONOTWAIT that accomplishes this task instantly, but you
have to add this manually using lcons .. . lnformation.

1. Boot your Workbench disk, and use the New Drawer function
to create a drawer called Auto.

2 . Append the listing to the end of User-Startup.
3 . Now drag one or more applications (tools) to the Auto drawer

and reboot the machine. Typical example s are Clock and
NotePad (on 1.3). This patch only works on "tools". If you are
unsure what an icon is, select it and choose Info from the
menu. The icon's type must be a tool otherwise it will not
work. (The Shell's icon for instance is a Proj ect.)

Line-By-Line

It works just like AutoStart 1 .3, with the exception that the script is
created without the .info files. This is afforded by the new "~" (NOT)
wildcard modifier which stops the dot-info file s being included
here.

Listing

1 . I F exists SYS:Auto
2 . LIST >T:AutoTemp SYS:Auto/- (#? .info) LFORMAT "RUN <NIL:

>N I L: %S%S "
3 . RUN EXECUTE T:AutoTemp
4 . End IF m

m

Mastering AmigaDOS Scripts

BACK

Synopsis:

Requires:

See also:

Type:

Brief:

Definition:

Description:

BACK <command>
Y l .3+

Alias
Run a command in the background
ALIAS BACK RUN <NIL: >NIL:

This little tip is for AmigaDOS/ARP versions 1.3 and above. Partly
because it uses ALIAS and partly because the NIL: device did not
work correctly in earlier versions. The idea for this one came from
Charlie (ARP) Heath's PD utility, RUNBACK : a patch that allows
processes to run completely in the background. RUNBACK is not
required for AmigaDOS 1.3 and above because the facility is already
there. You use BACK like this:

BACK [c omman d) [op t i on s)

For instance. to start the PD file viewer ZAP:
1 >BACK ZAP

Beginners are probably wondering what all the fuss is about.
Indeed, if you try to BACK DIR or something similar, nothing seems
to happen. BACK was devised so you can start programs from the
Shell then close it down. If you try this , m any programs will
prevent the Shell window from closing until they exit. Of course,
BACK is useless for most AmigaDOS com mands. it is only intended
for Intuition based applications.

Mastering AmigaDOS Scripts

BarClock
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Run from Workbench

none

V2 .0+

Scr ip t

Ana logue AmigaDOS c lock us ing bar graph ics

Th i s s c r i p t i s a d e m o n s t ra t i o n of "ba r" g raph i c s - as a rea l - t i m e
c l o c k . Three bars a r e u s e d t o represen t hours , m inu tes a n d seconds
e l apsed . I t i s n ' t rea l ly prac t i ca l t o add an a larm t o t h i s sc ri p t : bu t i t
i s po s s i b l e . Spec i a l ED IT macro s a re u sed t o separa te t h e hours ,
m i n u t e s a n d s e c o n d s fro m t h e d a t e s t r i n g : a n d t h e n u m b e r s
p ro duced de t e rm i ne t he l eng th o f t h e bars .

1 8

Line-By-Line

1 - 3 . Form a s tandard header.

Bar Clock

4 -8 . Make some essen t i a l commands res i d en t for speed .

j]

9- 1 1 . C rea te t he EDIT macros used t o ex t rac t t he t i m e componen t s .
N o te these macros a re no t t he mos t obv ious so lu t i on to t he
p rob l em , bu t were wri t t e n t h i s way to avoi d a bug i n EDIT's
OTA command .

1 2 . C rea tes the "bar" u s i ng spaces .

1 3 . M arks t h e s ta r t of the c l ock loop .

1 4 . Pos i t i o n s t h e cursor and swi t ches t h e cursor off.

1 5 . S ends t he da t e t o a fi l e .

1 6 - 1 8 . Ex t ra c t t h e h o u r s , m i n u t e s and s e c o n d s t o t h re e g l o b a l
vari ab l e s .

1 9 . Tes t s i f t he current hours var iab le has i nc reased s i nce t he las t
l oop . I f no t , co n t ro l passes t o S tep 2 3 . Th i s b lock s tops the
bar " fl a sh i ng" every l oop .

20 . Pos i t i ons t h e cu rsor at t h e s t ar t o f t he HOURS l i n e , c l ears the

m

Mastering AmigaDOS Scripts

ent i re l i ne and sets the new background co lour.
2 1 . D i s p l a y s t h e b a r i n t h e c u r r e n t b a c k g ro u n d c o l o u r a n d

appends the number o f hours a t the end for c lar i ty. Note that
the LENgth o f the second s t r i ng " $ hrs " is a l ways d i s p l ayed
correct ly, even though i t s l ength i s t r immed by LEN .

2 2 . Sets the loca l H RS to the current value o f the global hours#.

2 3 . Terminates the I F . . . EN D I F construct opened a t Step 1 9 .

2 4 . Tests i f t h e cu rre nt m inutes var iable h a s inc reased s ince the
las t loop . I f not , contro l passes to Step 2 8 . Th is b lock s tops
the bar "f lashi ng" every loop .

2 5 . Pos i t i ons the cursor a t the start o f the M I NS l i ne , c l ears the
en t i re l ine and sets the new background co lour.

2 6 . D i s p l a y s t h e b a r i n t h e c u r r e n t b a c kg ro u n d c o l o u r a n d
appends the number o f m inutes a t t h e e n d for c lar i ty. Note
t h a t t h e l e n g t h of t h e s e c o n d s t r i n g " $ m i n s " i s a l w a y s
d i sp layed correct ly, even though i ts length i s t r immed b y LEN .

2 7 . S e t s t h e l o c a l " m i n s " to t h e c u r r e n t v a l u e o f t h e g l o b a l
"mins#".

2 8 . Terminates t h e I F . . . E N D I F cons t ruc t opened a t Step 2 4 .

2 9 . Tests i f the cu rrent seconds vari ab le has inc reased s ince the
las t loop . I f not , contro l passes to Step 3 2 . Th is b lock stops
the bar "flash ing" every loop .

3 0 . Pos i t i ons t h e cursor at t h e s tart o f t h e S E C S l i n e , c l ears the
en t i re l ine and sets the new background co lour.

3 1 . D i s p l ays the bar in the cu rrent background co lour. Seconds
are not d i sp layed .

3 2 . I f con trol reaches here from Step 3 1 , i t i s t ransferred t o Step
3 5 ; otherwise i t cont i nues . . .

3 3 here . Pos i t ions the cursor a t the start o f the SECS l i n e , does
not clear the l i ne and sets the new background co lour.

3 4 . D i s p lays the b a r i n t h e current background co lour. Seconds
are not d i sp laye d .

3 5 . Te rminates the I F . . . ELSE . . . EN D I F construc t opened a t Step 2 9 .

3 6 . Updates t h e loca l sees counter.

3 7 . Wa i t s a s e c o n d . T h i s p r o b a b l y i s n ' t n e c e s s a ry g i v e n t h e
a v e r a g e s p e e d o f t h e D O S l a n g u a g e , b u t i t g i v e s o t h e r
processes a look in '

3 8 . Re- starts the loop .

3 9 . I s some i nformation for t h e W X scr ip t .

1 . . key dummy

2 . . b r a {

3 . . ket }

4 . resident c : avail
5 . resident c : wait

6 . resident c : eval

7 . resident c : date

8 . resident c : edit

9 . echo >t : ed 1 {$$} " 2pa / : / ; sb / / * np ; d " extract SECS

1 0 . echo >t : ed2{$$} " sa / : / * np ; d ; 2> ; 3# " extract MINS

1 1 . echo >t : ed3{$$} " 2dta / / * n2> ; 6# " ; extract HRS

1 2 . echo >env : bar{$$} "

1 3 . lab start

1 4 . echo " * e [2 ; 0H *e [O p" noline

1 5 . date >t : t { $$ }

1 6 . edit t : t { $$} to ENV : secs {$$ } with t : ed 1 { $$ }

1 7 . edit t : t { $$} to ENV : mins {$$ } with t : ed2{$$}

1 8 . edit t : t { $$ } to ENV : hrs {$$ } with t : ed3 { $$ }

1 9 . i f $hrs{S$} NOT EQ Shrs

20 . echo " * e [40m* e [2 ; 7H *e [K* e [2 ; 0H HRS : * e [42m" noline

2 1 . echo " $bar{$$} " " $hrs{$$ } " len=$hrs {$$}

22 . set hrs Shrs {SS}

23 . endif

24 . if $mins { $$ } NOT EQ Smins

25 . echo " * e [40m* e [3 ; 7H * e [K* e [3 ; 0HMINS : * e [43m " noline

26 . echo " $bar { $$ } " " $mins { $$ } " len=$mins {$$}

27 . set mins Smins {SS }

28 . endif

29 . if $sees { $$ } NOT GT $sees

30 . echo " * e [40m*e [4 ; 7H * e [K*e [4 ; 0HSECS : *e [4 1 m " noline

3 1 . echo " $bar{$$} " len=$secs { $$ }

32 . else

33 . echo " * e [40m* e [4 ; 7H * e [4 ; 0HSECS : * e [4 1 m " noline

34 . echo " $bar{$$} " len=$secs {$$}

35 . end if

36 . set sees Ssecs {SS}

37 . wait 1 sees

38 . skip start back

39 . ; WX : WINDOW=con : 0 / 0 / 550 / 60 / Bar Clock / SMART / NOSIZE

BarClocl<

m

m

Mastering AmigaDOS Scripts

BarGraph

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Bargraph <[Data]> [Min=<min>]
[Max=<max>] [Xaxis=<xais>] [Header=<text>]
[Sub=<text>]
da ta/a,mi n/k, max/k,xaxi s/k, head er /k, sub/k
S:
V2+

Script
Use AmigaDOS to create a bar graph

Why would anyone in their right mind want to use a DOS command
language to produce graphics7 Back in the days when computers
didn't have proper graphics, everything was done with fixed width
characters. As a respectful salute to those pioneering machines I
present an AmigaDOS screen-based charting program. The example
given here produces automatically or manually scaled, horizontally
aligned, bar charts for integer data values between -10000 and
+ 10000.
This might appear something of an esoteric problem, but the
solution addresses some interesting areas: not least how to handle
fixed point arithmetic. FORTH programmers have being doing such
things for years, but most of us take floating point for granted in
other high-level languages such as BASIC. The theory behind such
things is quite involved so the discussion is featured elsewhere in
these pages. The program requires AmigaDOS 2 (sorry about that)
since it makes extensive use of the new environment handler.
The BarGraph script reads data (and labels) from a text file.
Typically a data file will look like this:

D 1 200

L 1 Jan

D2 325

L2 Feb

and so on. Data Values are prefixed by On and labels by Ln where
"n" is the number of the data item or label (1- 1 1 characters)
attached to it. Every data item must have a label and all the items
must be separated by two spaces. This is slightly more complex
than spreadsheet-based graphics, but is necessary for speed; and
AmigaDOS isn't exactly fast at the best of times. Once the data file

BarGraph

has been created, the script is called like this:
1 >Bargraph T:Data

Using the default settings like th i s, the script determines the
maximum and minimum values for the X axis by taking the highest
and lowest values from the data set. This may produce unwanted
resu lts , so either o r both of these can be set at run-t ime, for
example:

1>Bargraph T:Data Min=50

1>Bargraph T:Data Max=3000

1 >Bargraph T:Data Min= -200 Max=200

The number of data items that can be plotted depends on the
height of the current CLI window - although the width of the plot
assumes a full-width, hi-res screen. Using an interlaced screen with
a larger window will afford better results.
Finally, a simple XAxis label. header and sub-header can be defined
like this

1>Bargraph T : Data Min=O Max=5000 Header= " Accounts"
sub= "3/1/93 " XAxis= " Pounds "

Fixed Point Theory

It is well known that AmigaDOS does not handle numeric data
particularly well. S pecifically, even the simplest calculation must be
carried out by a special command: EVAL. But EVAL is only capable of
very simple arithmetic and does not handle decimal fractions at all.
For instance 7 /2 gives 3 remainder 1 and even this must be
performed in two distinct steps.
(The details following apply to any language, not just AmigaDOS
and can get machine code programmers out of some tenuous
situations. Unless shown. most of the results are truncated integers
as wou ld be re t urned by EVAL. This shou ld be considered when
checking the arithmet ic wit h a calcula tor.)
Consider the sum "7 /2" . Using traditional methods: "two goes into
seven twice, with one left over (the remainder). Pop the remainder
(1) over the divisor (2) and you are le ft with the vulgar fraction 1 /2.
This is fine for dividing up a cake, but not much use in computer
maths. The decimal fract i on version of this is:

Dividend 7 --- = - = 3 50
Divisor 2

O f cou rse, most o f us can do that in our heads, but AmigaDOS
cannot. Now suppose we change the scale of the f igures somewhat
by mult i plying just t he dividend by I 0.

Ill

m

Mastering AmigaDOS Scripts

(Dividend*Scaler)

Divisor
=

(7* 1 0) -- -
2

70

2
= 35.0

The result is to move the (purely imaginary) decimal point one
place to the right. However we have also retained the fractional part
- this is the essence of fixed point arithmetic. To show this in more
detail let's take a slightly more complex problem: 2/5 for instance.
Using our integer AmigaDOS calculation, we get:

- = 0
5

Even thought the answer is 0.4. Now use a constant (K) 1000 to get
something more realistic:

(Dividend*K) (2* 1 000) 2000
= = =

Divisor 5 5

Result

K
=

400 -- -

1 000
04

400

So far so good- but what is the point to all of this7 Consider you
have a set of values of between O and 1000 which must be scaled
down to fit on an axis with 70 plottable points. The scaling factor
can be calculated thus:

70
Factor = = 0 .07

1 000

And any value can be plotted by multiplying it by the scaling factor
0.07. Take a value of 500 which is half-way up the scale:

Data*Factor

= 500*0 07

= 35 points

Since AmigaDOS would lose the fractional part in the original
calculation - 0.07 becomes O - the scaled value would be useless.
By using a constant of 5000, we can calculate the scaling factor
thus:

Factor =
Max Data * K

Plot Width
=

1 000*5000

70
= 7 1 428

To arrive at a final result we must now divide the data by the scale
factor and multiply the result by the constant:

Data * K 500*5000
Points = --- = ---- = 35

Factor 7 1 428

Since no fractions are involved in this calculation, AmigaDOS can
cope. Provided the scaler is large enough to cope, fairly complex

BarGraph

arithmetic can be performed. In some cases, part of what would
have been the decimal fraction is discarded - but this is common in
all maths - so it is nothing to be concerned with. You can see this in
action by dividing 7 by 6 - a calculation which always results in a
recurring fraction 1.16666666. (or rounded up 1.167):

(7* 1 0000)
6

= (70000)
= 1 1 666•

6

As a guideline, the size of the scaler determines the accuracy of the
calculations: a scaler of magnitude 10000 sets an internal accuracy
of one ten thousandth (the last digit is dropped due to rounding
errors). Unfortunately, the size of the scaler is finite: an error will
occur if, in any calculation, the scaler multiplied by the scaled data
exceeds the operational limit of EYAL (in this case).

Line-By-Line

1. Defines the key as described above. Note the data file name is
a required argument, all other parameters are keywords and
must be supplied with the data.

2-4. Re-define the "bra", "ket" and "dollar" characters.
5. Copies the data file to the T: assignment (in RAM) with the

filename "DATA".
6-8. Add EVAL, SEARCH and JOIN to the resident list. While you are

entering the program the ADD switch should be omitted to
save memory in case the script terminates abnormally.

9. Sets the constant "K" to 100000. This is the scaler described in
the detailed description of fixed point arithmetic.

1 0. Sets "width" to 56 - the usable window width. This value is
used to determine the scaling factor for the data. You may
experiment with this value, but it must be an even number.

11. Sets scan ON. The chart i s plotted in two phases, the first
phase scans the data for the upper and lower boundaries - the
second plots the chart.

1 2- 1 4. These three local variables are set to the contents of the
axis labels. If any are missing, a single space is set instead.

1 5- 1 7. These set the default scan values for the lowest, middle
and maximum points on the chart. Global variables are used
because they can be written directly by AmigaDOS commands.

18. Direc tly writes the global variable "Middle" to half the value of
Widt h.

l 9 . /\s l 9 , but st ores an adjusted value to centre the XAxis - held
in " M i cJ l 'o int " .

2 0 . I hi e. l i n e i s n ot usually used, but i s provided here as an

m

m

Mastering AmigaDOS Scripts

alternative graph style. Using the listing as shown, the bars
will be black. By replacing line 2 1 with this one, the bars
appear with a hatched pattern. You can use either of these or
design your own - but do not use asterisks (*) or dollars ($)
since these have a special meaning to AmigaDOS.

2 1 -22. Set the bar and XAxis styles to spaces.
23-24. Concatenate the strings defined at 2 1 and 22 and stores

them in global variables.
25. The script will have been running for a few seconds now, so

this prints a progress message to indicate the start of the scan
phase. During this time the script is looking for values
outside those determined by Max and Min.

26. Marks the start of the main loop.
27. Sets the global variable "Loop" to 0. This value is used as a

data index as you will see later.
28. Marks the start of the scanning loop.
29. Increments "Loop" by 1 .
30. Writes the global variable "Number" prefixing the value with

"D" and suffixing it with a space. On the first loop therefore,
Loop=D l .

3 1 . As 30 but storing Ln in "Labels".
32. Searches the data file for the current data item (fo r the

contents of "Number") and stores it in the global "data". The
nonum switch suppresses SEARCH's unwanted line numbering
facility. Using the example data file supplied here, if
"Number=D l " then "Data" receives:

D 1 2200

Note the entire line is read f rom the data f i le - this is
corrected later on.

33-35. If the numbered data item could not be found this test
forces the script to exit either the scan or display phases.
Under normal circumstances this will only happen when all
the data has been read and displayed.

36. String slices the numeric data from the string generated at
Step 32 and stores the result in the global "NData". Using the
FIRST keyword on its own forces ECHO to retrieve the whole
string starting from position four and moving right. Using the
current example:

D 1 2200

-translates to-
2200

BarGraph

3 7-39. Tests if the current data value is greater than the current
maximum chart value, and resets maximum to the data value
if it is. Since this test is in a loop, all data points are tested
(the scan phase) so the highest point on the X-Axis is always
at least equal to the highest value in the data.

40-42. As above, but sets the lowest data point. The function
"NOT GE" is J F's version of "less than".

43. If "Scan" is ON (the scan phase) control skips to Step 56
otherwise it continues at Step 44.

44. Prints the right side of the string made up from a lot of space
($XAxis) plus the X-Axis ($Axis) label. This centres it roughly
over the X-Axis .

45. Calculate s the s caling value de s cribed in the d e tailed
description of fixed point. Assuming Max i s 500 and Min is
-500, the calculation works like this:

46. Calculate s the value of the mid-point and it stores in the
global "Mid".

47-50. Print the X-Axis labels. This is completed in several
stages.

47. Prints some blank space characters above where the labels
will appear.

48. Prints the Minimum scale value followed by some padding
space - the amount of which is determined by the value of
Midpoint. This is crude, but it works.

49. Does the same as above with the Middle scale value.
50. .. .and this displays the highest scale value, "Max".
5 1-53. Display the X-Axis graticule. Not posh, but functional.
54. Change s the "scan" variable to "SHOW" so the program will

enter the display phase (at Step 57).
55. Alters the d i splay colours to white t ext on a black

background. The text foreground colour is changed primarily
to show hatched bars (an option described above) but it also
makes the labels etc stand out.

56. Closes the IF ... ENDIF construct opened at Step 43.
57. Tests if the "scan" variable has been set to "SHOW" (the display

phase). It is important to note, since this is an iterative script,
this variable i s not changed until the scanning phase i s
completed.

58 . Extracts the current label (Ln) from the data file and stores it
in the global "Lab".

59. Prints the current label with the correct amount of padding
spaces to position the cursor ready to print the bar. The

m

BI

Mtistering AmigtiDOS Scripts

length of the string printed is always 10 characters regardless
of the length of any particular label - longer ones are
truncated.

60. Calculates the number of characters required to print the bar.
Let's assume "Ndata" is 3 50 and "Min" is - 500, the calculation
works like this

So the length of the bar representing 350 on a scale of 500 to
-500 is 47 characters of 56 possible (as defined in "Width" -
see above). Work that out on a calculator and you will find the
result is out by a fraction - but such things are outside the
limits of the display. Using a proportional font (such as Times)
could improve the resolution ten-fold, but the console device
cannot cope in Release 2.

6 1. Changes the background colour to default (slate-grey). This,
l ike many of the other colour changes m u s t be done
separately otherwise the string slicing will get in the way with
unpredictable consequences.

62. Prints the current label with one extra padding space.
63. Changes the background colour to black.
64. Prints a bar according to the magnitude of the current data.

See Step 60 for details of how the variable "Dien" is calculated.
65 . Changes the background to slate-grey . .
66. . . . and prints the actual value of the data displayed. This is an

optional feature but has been included here to help overcome
the deficiencies with the display resolution.

67. Terminates the IF ... ENDIF construct opened at Step 57.
68. Jumps back to Step 28 and does it all again for the next data

point!
69. Marks the escape point. Control jumps here from Step 34

when the last data point has been read or charted and the
data table is exhausted.

70. Checks if the scan phase is still active. If the scan has been
completed control jumps to Step 74 and exits, otherwise ...

71. ... "scan" is set to OFF to mark the end of the scan phase and
the start of the charting phase and .. .

72. Control jumps right back to the start and does the whole lot
again, this time it's for real.

73. Terminates the IF . . . ENDIF block opened at Step 71.
74-76. Puts everything back to normal, prints the header and

sub-headers . . .

BarGraplt

77-80. . . . and finally removes SEARCH, JOIN and EYAL from the
resident list.

Listing

1 . . key data / a , min / k , max / k , xaxis / k , header / k , sub / k

2 . . bra {

3 . . ket }

4 . . dollar

5 . copy { data} T : data

6 . resident c : eval add

7 . resident c : search add

8 . resident c : j oin add

9 . set K 1 00000

1 0 . set Width 56

1 1 . set scan ON

1 2 . set Header { header I "
1 3 . set Subhead { sub I " " }

1 4 . set Axis { Xaxis I " " }

1 5 . setenv max { max l 1 }

1 6 . setenv min {min l O }

17 . setenv mid

" }

1 8 . eval $Widt h / 2 to env : Middle

1 9 . eval $Middle -2 to env : MidPoint

20 . ; echo >T : G " / \ I \ ! \ / \ / \ / \ / \ "

2 1 . echo >T : G

22 . echo >T : H " "

j oin T : G T : G T : G T : G

j oin T : H T : H T : H T : H

23 .

24 .

25 .

26 .

echo " Scanning . . .

lab again

27 . setenv loop 0

28 . lab Read_loop

"

noline

T : G T : G

T : H T : H

29 . eval $loop + 1 t o env : loop

noline

noline

T : G T : G

T : H T : H

T : G

T : H

30 . eval $loop to env : number lformat 1' D%n ''

3 1 . eval $loop to env : labels lformat '' L%n ''

32 . search >env : data T : data $number nonum

33 . if warn

as ENV:Bar

as ENV : XAxis

Ill

m

Mastering AmigaDOS Scripts

34 .

35 .

36 .

37 .

38 .

39 .

40 .

4 1 .

42 .

43 .

44 .

45 .

46 .

47 .

48 .

49 .

so .

5 1 .

52 .

53 .

54 .

55 .

56 .

57 .

58 .

59 .

60 .

61 .

62 .

63 .

64 .

65 .

66 .

67 .

68 .

69 .

70 .

skip done

endif

echo " $dat a " first=4 to env : ndata

if val $ndata GT $Max

setenv Max $ndata

endif

if val $ndata NOT GE $Min

setenv Min $ndata

endif

if $scan EQ OFF

echo " $XAxis $XAxis $Axis " len=$Middle

eval (($Max - $Min) * $K) / $Width to env : Scale

eval (($Max - $Min) /2) +$Min to env : Mid

echo " " noline

echo " MinXAxis " first= 1 len=$MidPoint noline

echo " MidXAxis " first= 1 len=$MidPoint noline

echo " $max "

echo " ! " noline

echo " . ! " noline

echo " . ! "

set scan SHOW

echo " * e (4 1 m *e (32m " noline

endif

if $scan EQ SHOW

search >env : lab T : data " $labels " nonum

echo >env : labels " labXAxis " first=4 len= 1 0 noline

eval (($ndata - $mi n) * $K) / $Scale to env : dlen

echo " * e (44m " noline

echo " $ labels " len= 1 0 noline

echo " * e (4 1 m " noline

echo " $Bar " first= 1 len=$dlen noline

echo " * e (44 m " noline

echo " $ndat a " len= 1 2

endif

skip Read_loop back

lab done

if $scan EQ ON

71 . set scan OFF

72 . skip again back

73 . endif

74 . echo " *e [44m*e [31m"

75 . echo "*e [I$Header "

76 . echo " *e [I$Subhead "

77 . resident c:eval add

78 . resident c : search add

79 . resident c : j oin add

Listing

Sample data file (only five items shown).

D1 2200

D2 2300

D3 2400

D4 2100

D5 2700

L 1 January

L2 February

L3 March

L4 April

LS May

m

m

Mastering AmigaDOS Scripts

Booty

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXEC UTE] Booty <Drive> Name

D R IVE/A . NA M E

S :

Y l . 3 +

Scr ip t

Make a boot d i s k

T h i s i s a s i m p l e s c r i p t t o i n t e ra c t i ve l y c re a t e b o o t d i s k s . I t i s
des igned p r i m a r i ly fo r AmigaDOS 1 . 3 a n d 2 . Cal l i ng the scri p t i s a
s i m p l e m a t t e r o f s u p p l y i n g t h e d r ive n u m b e r a n d (op t i o n a l l y) a
name for t h e n e w d i s k . The d i s k i s form a t t e d , i n i t i a l i se d a n d a l l
m aj o r d i rec tor i es a re c reated a n d "s tuffed " . Booty works best w i t h
a t l e a s t two d rives or a h a r d d i s k . S ing le d r ive u s e rs espec ia l l y w i l l
benefi t by u s i n g I n te l l i Res (de ta i l ed la ter) on t h i s sc r ip t .

T h i s scr i p t i s a n exa m p l e on ly - you shou l d exa m i n e i t and m o d i fy
i t t o s u i t y o u r o w n w a n t s a n d r e q u i r e m e n t s . F o r i n s t a n c e ,
Wo rkbench 3 u se rs cou l d u se R EQU ESTC H O I C E i n p l ace o f t h e ASK
c o m m a n d s . Exper ienced u se rs can m o d i fy the sc r i p t to se lect t he
c o rrect h a n d l e r s , dev ices and so o n . I t 's u p t o you .

Example

1>Booty O Works

Line-by-Line

1 . Defi nes the key as havi ng one re q u i red a rgu m e n t for the d rive
nu mber and one opt iona l argu ment fo r t h e vo l u me name .

2 . I f a vo l u m e name i s not s u p p l i e d , t h i s se ts the d efau l t o n e .

3 . Pr i n t s a to ta l ly p o i n t l e s s p rogress message. I t 's there because
i t g ives people a sense of ach ievement .

4 . Fo rmats the d i s k u s i ng the normal system comman d . Th i s l i ne
assumes you have the Sys tem d i rectory defi n e d i n your pa th
s e t t i n g a n d w i l l p r o d u c e s o m e i n t e r a c t i v e o u t p u t . I t i s
p o s s i b l e t o s t a r t t h e fo r m a t s t r a i g h t a w a y b u t t h a t w a s
c o n s i d e r e d m u c h t o o v o l a t i l e a t e c h n i q u e t o u s e . Yo u may
w i s h t o a d d D C F S FFS or ! N T L s w i t c h e s h e r e . See MAD 3
Reference

5 . I n s t a l l s (a d d s boot code) t o the d i s k t h u s m a k i n g i t a b l a n k

Booty

boot disk. You could end the script at this point and copy
your own information to it if you prefer.

6. Checks to see if you want the fonts copying from your current
system disk. (This test was added because fonts are not
required for all applications and they do take up a lot of
room.) Capital N serves as a reminder that the default action
is NO.

7. The WARN flag is set at Step 6 if you answer Y. In this case
control continues at Step 8, otherwise it branches to Step 9.

8. Copies all the fonts from the current boot disk onto the new
boot disk.

9. Control reaches here if you answered "N" to the question at
Step 7 and continues at Step 10. If you answered "Y" it jumps
to Step 11.

10. Creates an empty fonts drawer on the new boot disk. This
isn't absolutely necessary but it should be retained for the
sake of keeping things clean.

1 1. Terminates the IF ... ELSE ... ENDIF construct opened at 7.
12. Tests if you need a complete System directory (FORMAT,

FIXFONTS etc).
13. If you answer Y at Step 12, the WARN flag is set and execution

continues at Step 14, otherwise it jumps to Step 16.
14. Copies the entire System directory from the current system

disk onto the new boot disk ...
15 and this copies that all-important Shell icon.
16. If execution arrives here from Step 1 5 it jumps to Step 20,

otherwise it continues at Step 17.
17. As Step l 5 .
18. Creates the system directory and copies the system directory

commands: FastMemFirst and SetMap. These are required by
the Startup-sequence/Note changes for 2.1 and higher.

19. Closes the IF . . . ELSE ... ENDIF construct opened at Step 13.
20. Makes the Utilities directory (nothing is placed here and no

Workbench icon is created).
21-25 . Copies the handler library, libraries, Devices, script and

command directories to t h e new boot disk - generally
speaking these lines should be left as they are.

26. Copies the Preferences directory over. This line is really only
required for Workbench 2.

27. Guess what!

m

m

Mastering AmigaDOS Scripts

Listing

1 . . KEY DRIVE / A , NAME

2 . . DEF NAME Lazy_Bones

3 . Echo " Making a simple boot disk - please wait "

4 . FORMAT DRIVE DF<DRIVE> : NAME <NAME>

5 . INSTAL L DF<DR IVE> :

6 . Ask " Do you require fonts y / N ? "

7 . I F WARN

8 . COPY Font s : DF<DRIVE> : Fonts ALL

9 . E LSE

1 0 . MAKEDIR DF<DRIVE> : Fonts

1 1 . ENDIF

1 2 . Ask " Do you require a complete system y / N? "

1 3 . I F WARN

1 4 . COPY SYS : System DF<DRIVE> : System ALL

1 5 . COPY SYS : Shell . info DF<DRIVE> :

1 6 . E LSE

1 7 . COPY SYS : Shell . info DF<DRIVE> :

1 8 . COPY SYS : System / (FastMemFirst l SetMap) DF<DRIVE> : System

1 9 . ENDIF

20 . MAKEDIR DF<DRIVE> : Utilities

21 . COPY L : DF<DRIVE> : L ALL

22 . COPY Libs : DF<DRIVE> : L IBS ALL

23 . COPY Devs : DF<DRIVE> : DEVS ALL

24 . COPY S : DF<DRIVE> : S ALL

25. COPY C : DF<DRIVE> : C ALL

26 . COPY SYS : Prefs DF<DRIVE> : Prefs ALL

27 . Echo " Operation complete . . . "

Mastering AmigaDOS Scripts

CALC 1 .3

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) CALC [[val=]value l) [[op=]operator]
[[val2=]value2]
val l ,op,val2
S :

V l.3

Script
Attempt to patch one of the bugs in EVAL

AmigaDO S l .3's EVAL command has a problem - if you get the
spaces in the wrong place, it doesn't work. This script attempts to
solve the problem by analysing the input line and deciding if it
received enough parameters. This is a highly modified version of
an example to be found in Mastering A m igaDOS Reference which
relies on /a required arguments to generate an error. This version
gives the users some polite help when they stumble . . .

Line-by-Line

1. The argument key has three arguments. These would normally
be required but I'm assuming someone using this is going to
need help. The last thing they're going to need is EXECUTE
screaming "args no good for key . . . " which is what would
happen if one of those arguments was required.

2-3. Set the bra and ket characters to { and }.
4 -9. If one of the required arguments is missing this code

generates some help. Required arguments could have been
used in the template (at Step 1) but one feature of this script
is to show how interactive help can be used.

10. If control reaches this point when the correct arguments have
been supplied, it continues at Step 11; otherwise it jumps to
Step 12.

1 1 . The reason EVAL failed in the first place haunts execute too.
That is if two (or more) optional arguments run into each
other, they appear just like one argument. And we're going to
use that very feature to catch the bug. Consider a command
line which reads:

CALC 1 +2

What actually happens is this: The " l " is assigned to "Val l " ;

m

Ill

Mastering AmigaDOS Scripts

"+2" is not separated by a space so that gets assigned to "op".
This leaves "val2" empty - so we check for a null value for
"val2" and, if found, give some help. In practice you can give
as much or as little help as you think is required. Be brief: you
can always refer to the documentation files if need be. This is
only mentioned in passing because you may note the use of
" * " " in the help string. This is because this example needs to
print a literal .. ,, .. (multiply).

12 This isn't strictly necessary at the end of a script, but it's good
practice.

Listing

. key val1 , op , val2

2 . bra {

3 . ket }

4 if {val2} EQ " "

5 echo " Argument missing - help is:"

6 echo " Usage: CALC <value1> <operator> <value2>"

7 echo "All arguments are required . "

8 echo "Value1 and value2 use Ox for hex "

9 echo " Operator is one of - + , - ,** , / , etc . . . "

10 else

11 eval {val 1} {op} {val2}

12 endif

Mastering AmigaDOS Scripts

Monthprint

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] MonthPrint
none
S:
V2+

Calendar
Script
Month printing module for the Calendar script

One of the most irritating features with AmigaDOS is its low
speed - and the calendar script is no exception. However, any
operation always seems quicker if you can see something
happening. For instance, when Workbench is busy, it displays a
sprite (clock or Z's bubble) to show it's working: hacks such as
Sleepy 3 go further by animating the sprite.
Long operations should have some form of progress indicator and
this is the method chosen for Calendar's display module,
Monthprint. The script's progress is shown in the form of a bar
traversing the screen from O to 100 per cent completed.
Progress indicators can be implemented in several ways - the
choice of which method to use depends on how the script works. In
linear scripts you update the indicator at strategic points - after a
long copying operation for instance. Looping scripts are easier, you
update once every loop. In such cases it is also much easier to
determine the length of the progress bar because you can usually
determine how many loops will be performed in advance. This is
the method used by Monthprint - the length of the progress
indicator is calculated from the number of days in the month.

Line-by-Line

1. Prints a simple message to let you know what's going on.
2. Displays the fixed part of the progress indicator bar using

string slicing. For the sake of illustration, let's imagine the
program was displaying a (purely hypothetical) seven day
month. The variable "DiM" contains eight loops so the printed
result from this step looks like this. (The extra space is picked
out with a period and the cursor position with an asterisk.):

0% . - - *

3. Adds the second part of the progress indicator. Note how this

m

m

Mastering AmigaDOS Scripts

l i n e l o o k s a l i t t l e s t range a t f i rs t g lance . I t s e n d s a l i ne fee d ,
a d d s s o m e s paces a n d t h e n s tops EC HO fro m p ri n t i ng a l i n e
fe e d . T h e screen d i s p l ay n o w l ooks l i ke t h i s :

0% . - - . 1 00%

*

A s y o u c a n s e e , t h e c u r s o r h a s b e e n m o v e d t o t h e f i r s t
p o s i t i o n i n t h e p rogress i n d i ca t o r, j u s t b e l o w t h e fi r s t b a r.
Th i s exp la i n s the s t range u se of " *n" and NOLI N E swi t c h .

4 . Def i nes a loop l a b e l " loop" w h i c h i s accessed by t h e bac kward
j u m p a t 2 0 . The l o o p i s def ined as early as is p ra c t i ca l in the
scri p t t o he lp speed t h i ngs u p . When j u m pi n g bac kwar d s , t he
S K I P c o m m a n d s t a r t s a t t h e b e g i n n i n g o f t h e p ro g ra m a n d
works i t s way d o w n . I f you m u s t j u m p bac kward s , ke e p t h e
l a b e l s e a r l y o n .

5 . I n BAS IC t h i s l i ne read s :

I F DiM > daynum

T h i s t es t s i f the va lue i n " D i M " (Days i n M o n t h) has exceeded
the value in "daynum" a n d b ranches accord i n gly. The var iable
d ay n u m i s i n i t i a l i se d to " l " in the Ca lendar scr i p t .

6 . T h i s c a l c u l a t e s t h e va l u e h e l d i n t h e g l o b a l e n v i r o n m e n t
var iab l e "wrap" wh i c h i s used l a te r t o d e t e rm i ne when t o wrap
t h e d i s p l a y. The v a r i a b l e "wrap" is c a l c u l a t e d e a c h l o o p to
c o n t a i n a va lue b e tween O and 6 - the o ffse t of the c u rrent
d a te in t h e week . The ca lcu la t ion u se s a techn ique w h i c h i s
n o t ava i l ab l e i n AmigaDOS 1 . 3 s i nce i t wr i tes d i re c t l y to the
vari a b l e b e i ng used . I n ear ly vers ions , EVAL o p e n s a f i l e to the
vari a b l e and keeps i t open u n t i l the command has c o m p l e ted .
S ince you cannot wri te to a f i l e wh ich i s o p e n for rea d i ng t h i s
was n o t p o s s i b l e . A s s u m i n g " w r a p " c o n t a i n s 5 , A m i ga D O S
t r e a t s t h i s l i ne t h u s :

EVAL (5 + 1) mod 7 to ENV:wrap

The fi l e c o n t a i n i ng the var iab le i s opene d , read a n d c l osed ,
w h i l e t h e l i n e i s b e i n g p a r s e d . W h e n EVA L ge t s ro u n d t o
exec u t i ng i t sees the va r iab le j u s t as i f i t h a d b e e n typed .

7 . I n BAS I C t h i s l i ne c o u l d b e wri t ten :

I F daynum <= 9

The t e s t d e t e rm i n e s i f the va lue st ored i n " d aynu m " i s less
than o r equa l to 9 . I f the test i s pos i t i ve , co n t ro l b ranc hes t o
S t e p 9 , o t he rwise i t con t inues . .

8 h e re w h e re a s ing le space i s added t o t h e p r i n t fi l e , " M F i l e " .
(M f i l e was c reated b y C a l e n d a r.) T h i s h a n d l e s the c h a racter
a l i g n m e n t by m a k i n g s u re a l l the nu m b e r s l i ne up neat ly .

Montlrprint

S i n c e a l l t h e n u m b e r s a p p e a r a + r e g u l a r t a b s t o p s
(acco mp l i shed w i th the s t r ing ''e [I) , s ing le d ig i t s l i ne u p over
the tens co lumn, v i z :

This

1
8

1 5

becomes

..

..

..

this
1
8

1 5

You may exc lude Steps 7 t o 9 i f you w i sh .

9 . C l oses the I F . . . END I F construct opened a t S tep 7 .

1 0 . Tes t s i f the value of "wrap" i s l ess than or equa l to 1 . (These
va lues occur when the day i s a Saturday or Sunday.) I f i t i s ,
con t ro l con t i nues at Step 1 1 otherwise i t branches to S tep 1 2 .

1 1 . C o n t ro l reaches he re i f the date b e i n g d i sp layed fa l l s o n a
w e e ke n d . Th i s s p e c i a l exc e p t i o n i s h ig h l i gh t e d by a d d i n g
c o n t ro l characters t o t h e ou tpu t s t r i ng : " *e (3 2 m " t u rn s t h e
pr in ted output wh i te and " *e [3 l m" puts i t back to normal . See
S tep 1 3 for more i n format ion .

1 2 . I f co ntro l reac hes here from Step 1 1 i t b ranches to S tep 1 4
o therwise i t con t inues . . .

1 3 h e re , w h e re i t p r i n t s t h e nex t d ay n u m b e r. A c o u p l e o f
t h i ngs are worth no t ing here . F i rst the output i s sen t to fi l e
fo r l a t e r d i sp l ay, bu t s e cond two s e pa rate i t ems a r e b e i n g
pr i n ted . There's noth i ng unusual i n that , b u t look a t h o w t h i s
i s ach ieved :

echo >>T:MFile $daynum "*e [I" noline

ECHO i s rece iv ing two pr in t arguments ($ daynum and "*e [I")
i n s tead o f the mo re u s ua l one . T h i s i s a u n i que fea ture o f
A m igaDOS 2 and cannot b e u sed i n earl i e r vers ions . I n fac t ,
you can send as many arguments as you l i ke , sw i t ches such as
NOL INE should be added to the end for c lar i ty.

1 4 . C l oses the I F . . . ELSE . . . EN D I F construct opened a t Step 1 0 .

1 5 . I n c re m e n t s t h e va r i a b l e " d a y n u m " u s i n g t h e d i re c t w r i t e
t echn ique descr ibed at Step 6 .

1 6 . C h ecks i f the va l u e he l d i n "wrap" i s z e ro . I f i t i s , con t ro l
r e sumes at Step 1 7 otherwise i t j umps to S t ep 1 8 .

1 7 . Adds a new l i ne to the pr in t fi l e "MF i le " .

1 8 . C l oses the I F . . . ELSE . . . END I F con struct opened a t S tep 1 6 .

1 9 . Th i s d i sp lays the progress meter b lock for the current loop .
No te th i s i s echoed d i rect ly to the cu rren t conso le screen and
not s en t to fi l e .

-

m

Mastering AmigaDOS Scripts

20. Jumps back to Step 4 for another bite at the cherry.
2 1. Closes the I F . . . ELSE . . . END I F construct opened at Step 5.

Control reaches here when the entire month has been sent to
the print file.

22. Appends the bottom "ruler" to the print file . . .
23. . .. which is finally displayed here using MORE. Note that since

MORE is not RUN-launched it uses the current Shell window
for display. This also clears the progress indicator.

24. Prints a black line.
25. Removes EVAL from the resident list since it is no longer

required . . .
26. . .. and closes the Shell process opened by Calendar.

Listing

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

1 0 .

1 1 .

1 2 .

1 3 .

1 4 .

1 5 .

1 6 .

17 .

1 8 .

1 9 .

20 .

2 1 .

22 .

23 .

24 .

25 .

26 .

echo " Calendar Working . . . wait "

echo " 0% ------- " first= 1 len=$DiM noline

echo "- 1 00%* n " noline

lab loop

if val $DIM GT $daynum

eval ($wrap + 1) mod 7 to env : wrap

if val $daynum NOT GT 9

echo >>T : MFile " " NOLINE

endif

if val $wrap NOT GT 1

echo >>T : MFile " *e (32m$daynum* e (3 1 m " " * e [I " noline

else

echo >>T : MFile $daynum " * e [I " noline

endif

eval $daynum + 1 to env : daynum

if $wrap eq 0

echo »T : Mfile

endif

echo " * e [4 1 m *e [40m " noline

skip loop back

endif

echo >>T : Mfile " * n====================================== "

more T : Mfile

echo

resident eval remove

endcli

Mastering AmigaDOS Scripts

Calendar

Synopsis:

Template:

[EXECUTE] Calender <[YEAR=] year> [month]
year/a, month

Path:

Requires:

See also:

Type:

S:
V2+
Month Print
Script

Brief: Main module for the AmigaDOS calendar

Description

Zeller's congruence is something of a mouthful after, say, a few
pints; anything mathematical brings tears to my eyes. Zeller's
congruence is a complex integer-based formula to calculate the day
number of the first day in any year from the start of the Georgian
calendar (1582) to well into the next millennium; including leap
years. It's just as complex to express as a mathematical formula
too. Nevertheless, Zeller's mathematical prediction is widely used
in applications suc h as perpetual digital calendars.
The first day numbers (there's seven of them from zero to six) are
fixed and it is possible to program say, a watc h , with a hundred or
so in packed binary (two values per byte) and use them to fix the
calendar. However, that approach is a bit feeble so here's how to
program the congruence in AmigaDOS with a complete calendar
program to boot. As you will see the maths are quite easy, the hard
part is making use of the figures l

1 ea.

Calendar I

First though, here is one way to express Zeller's congruence in most
versions of BASIC

10 INPUT "Year" , Year

20 Century=INT ((Year - 1) /100)

30 Oecade=Year - 1 - 100*Century

40 Oay= (799+0ecade+ (Oecade/4) + (Century/4) - (2*Century)) MOD 7 I
m

m

Mastering AmigaDOS Scripts

so PRINT " Day number is : " ; Day

Looks pretty hair-raising at first glance doesn't it - but it breaks
down quite well. Lines 20 and 30 split the year into two parts - the
century number (1800, 1900, 2000 etc) divided by 100; and the
decade number minus one. Therefore, 1992 breaks down thus:

Century=19

Decade = 91

Line 30 uses these values to calculate the number of the first day in
January of any particular year. In 1992 for instance the first day is
Wednesday, so the result is 3 (where Sunday=0 and Saturday=6).
Essentially this is just a piece of simple arithmetic and even
AmigaDOS 2 can handle that without too many problems.
The sc ript programs presented here are not suitable for earlier
versions of AmigaDOS because of the advanced maths and variable
handling, but if enough of you make a fuss, I will attempt to re
program this example for AmigaDOS 1.3.2. This sort of problem is
not suitable for AmigaDOS 1.3 because the EVAL command did not
support multiple arguments. Enthusiastic owners might like to try
this as an exercise.
Calendar is divided into two separate scripts for speed. The first is
a linear script which does all the necessary calculations, the second
displays an entire month. It is quite possible to write this program
as a single sc ript, but since the printing side performs a lot of
backward loops, it is faster to do it this way. Let's take a close look
at how the main part works.

Line-By-Line

1. Defines the arguments. Calendar only requires a year to work,
but you c an supply a month numbe r too. The month
argument could have been a month name, but this just adds
complexity and means you have to type more . .

2-4. Re-defines the bra, ket and dollar symbols. Dollar is changed
here to make the script easier to read - you'll see why later
on.

5. Preloads EVAL into memory for speed. Note the ADD argument
is supplied here so the command can be safely removed
without affecting any other sc ripts.

6-7. Creates local environmental variables "Y" and "M " containing
the year and month (if any) specified from the command line.

8. Subtracts 1 from the year number and stores the result in the
global environmental variable, "Date". (You should note here,
the dollar symbol is used to signify an environmental variable
- it is not affected by the .DOLLAR command used earlier.)

Calendar

9 . Sub t rac ts 1 fro m the m o n t h nu mber a n d s t o res the resu l t i n
the vari ab le , " M o n t h " .

I 0 . Th is i s a nat ty l i t t l e t r i ck t o remove t h e c e n t u ry nu mber from
the d a te vari ab le . Assu m i ng the va l u e he ld i n Date was 1 9 9 1 ,
i t works l i ke t h i s :

ECHO " $Date"

i s read by AmigaDOS t h u s :

ECHO " 1991"

b e c a u s e t h e l o c a l v a r i a b l e i s e x p a n d e d a s t h e c o m m a n d
executes . Th i s i s then a ffected b y t he F I RST a n d LEN keywords
- F I RST= l , te l l s EC H O to d i sp lay the l e ftmost character o n the
s t r i ng . LEN=2 , makes EC H O d i s p lay j u s t two c haracters - i n
o t h e r w o r d s t h e c e n t u ry n u m b e r. I n fac t , t h i s va l u e i s n o t
d i sp laye d , i n s tead i t i s s e n t t o a n e w g l o b a l e n v i ro n m e n t a l
variab le , "Cent " .

1 1 . L i ke s t e p 1 0 , t h i s r e m o v e s two c h a ra c t e r s fro m t h e " D a t e "
var iab l e . H owever, s i nce t h e F I RST keyword i s n o t s u p p l i e d ,
EC H O re a d s t h e r i g h t m o s t t w o c h a r a c t e r s - t h e D e c a d e i n
o t h e r w o r d s . A s b e fo r e , t h i s v a l u e i s u s e d t o c r e a t e a n
env i ro n me n ta l var iable (Decade) .

1 2 . T h i s l o o k s a l o t w o r s e t h a n i t rea l l y i s ! I t u s e s t h e BAS I C
t ra n s l a t i o n o f the Z e l l e r's congruence method descr ibed above
to ca lcu l ate the day nu mber of the fi rs t day in the requ i red
y e a r. A p o i n t worth n o t i n g h e re i s t h e re must b e a s p a c e
b e fo re t h e d o l l a r s y m b o l u s e d t o s i g n i fy a n e n v i ro n m e n ta l
var ia b l e . The re s u l t i s s tore d i n (yet anoth er) g l obal var iab l e ,
"Day" .

1 3 . I t i s a n i n tere s t i ng fact that you can de termine i f a year i s a
leap year (2 9 d ays i n February) by pe rfo rm i n g m o d u l o 4 on i t .
L e a p y e a r s a l w a y s r e t u r n a v a l u e o f 0 . T h i s c a l c u l a t i o n
p e r f o r m s M O D 4 o n t h e y e a r n u m b e r (s u p p l i e d a t t h e
c o m m a n d l i n e) a n d s t o r e s t h e r e s u l t i n t h e g l o b a l
e n v i ro n m e n t a l var i a b l e , " L e a p " . J u s t t o a g g r a v a t e m a t t e r s
t hough , m o s t centur ies are no t leap years . A century m u s t b e
d iv i s i b l e b y 4 (1 600, 2 0 0 0 , 2 4 00 etc) fo r i t to be l e a p year.

1 4 . Tes t s the va lue of "Leap" a n d de term i n es what t o d o next . I f
t h e year i s not a l e a p year, exec ut ion c o n t i n u e s at Step 1 5 ; i f i t
i s , exec u t i o n branches to S tep 1 9 .

1 5 - 1 6 . T h i s two -par t s t e p d o e s s o m e s t r i n g s l i c i n g t o o b t a i n a
va lue fro m an a rray of numbe rs . Eac h of the twe lve mont h's
i n a year has a par t i cu lar n u m b e r o f days , you knew that
much of cou rse - but the computer d oes not . I n BAS IC fo r
i n stance , you wou l d set up a n array l i ke t h i s

F O R N = 1 T O 1 2

m

m

Mastering AmigaDOS Scripts

READ Daysi nMont h (N)

NEXT N

DATA 3 1 , 28 , 3 1 , 30 , 3 1 , 30 , 3 1 , 3 1 , 30 , 3 1 , 30 , 3 1

and read the array thus:
Days=Daysi nMont h (Month)

where the variable "Month" selects the correct element from
the array. AmigaDOS cannot handle arrays in this way - but by
careful use of string slicing (and some careful typing) this can
be achieved quite simply. I'll explain this step in detail
because it occurs several times in this script.
The first job is to construct the array of numbers. This is just
the number of days in each month as demonstrated in the
BASIC example above. To keep the script easy to read (and de
bug) the list is constructed with full stops between each value
- although this is not strictly necessary. This leaves
something like this:

" . 3 1 . 28 . 3 1 . 30 . 3 1 . 30 . 3 1 . 3 1 . 30 . 3 1 . 30 . 3 1 "

Each number is three characters long, therefore you can pick
any value by multiplying the offset (the month number) by
three. A feature of AmigaDOS means the first character in the
string is numbered one. Also, since the months start from
zero (determined earlier) we must add two to get the correct
offset. If that makes your brain itch, consider this:
Take June - month number five. In the script, the variable
"Month" will be holding four. Therefore:

Offset = (4 *3) +2 = 1 4

The 14th and 15th characters in from the start of the data are
"3 1 ", the fifth number in the data. Taking this offset as a start
value and reading two characters, you can create an
environmental variable. Here's how:

15. Calculates the starting position using the environmental
variable Month and sending the offset result to global
environemtal variable, "Slice".

16. Starting from the position determined by "Slice" this takes two
characters from the data string and saves the result in "DiM"
(Days In Month).

17. Creates another offset variable, which is used to read the data
at Step 18 .. .

18. . . . here. This data is the number of days in the year that have
elapsed at the start of the current month. Note this table is
almost identical to the first one except the numbers are two

Calendar

or three characters long. To read a data table in this way, it is
vital all strings are the same length. Therefore, if a number is
composed of just two digits, it must be preceded by a
padding space.

19. If control reaches here from Step 18, it branches to Step 24
otherwise it continues at Step 20.

20-23. These lines are essentially the same as 15- 18, however
these data strings are used for leap year exceptions. The
data changes after February which has 29 days in this case.

20. Calculates the offset variable used at Step 21...
21. ... which is used to determine the number of days in the

selected month. This value is then sent to the variable, "DiM".
22. Calculates the offset variable used at Step 23 . ..
23. ...which determines how may days have elapsed up to the

current month. It is important to note when you enter this
program, all but three of the values change in this data set!

24. Closes the IF ... ELSE...ENDIF construct opened at Step 14.
25. Prepares another string slice offset. This one is used at Step

27 to grab the month name.
26. Creates a text (MFile) file in T: with an initial string. Note here,

the NOLINE switch is used to suppress the extra line feed. At
this stage MFile contains:

Calendar for:

2 7. Uses ECHO's string slicing facilities plus the append to file
operator (>>) to attach the current month name to the
message string, MFile. If month 4 had been requested, MFile
now contains

Calendar for : Apr

28. Next, the yea r is added. This is taken from the local
environmental variable (Y) created at Step 7. MFile now looks
like this:

Calendar for : Apr 1 992

29. This appends a "ruler" to the message file. (Equals signs are
used here, but you can used any convenient character.) Note
the line feed at the start of the line:
Calendar for: Apr 1992

--

30. This appends the "day names" heading to the message file.
Note how "''e[I" (TAB) escape sequences are used to tabulate
the text correctly.

m

m

Mastering AmigaDOS Scripts

3 1. Like Step 3 1, this adds rules to the day names. You can use
any characters you prefer here, but you should keep the tab
sequences.

32-34. Calculate the initial print position of the first date under the
day name rules. Since this is quite an involved topic, I'll look
at it in a bit more detail. The idea is quite simple, the day
names appear across the top from Sunday to Saturday like
this:

Sun Mon Tue Wed Thu Fri Sat

Now, let's take January 1992 (January is the simplest month).
The 1st is a Wednesday (Day=3) so the program has to start
printing 24 characters (1 TAB=8 characters) in from the start .
like this:

Sun Mon Tue Wed Thu Fri Sat

--- --- --- --- --- --- ---

2 3 4

5 6 7 8 9 1 0 1 1

This is quite simple to produce using the formula:
Space = Day * 8

But what happens later in the year7 Take May for instance.
The 1 st of May 1992 is a Friday so how can we calculate that
from the day number returned from Zeller's congruence7 This
is where the "Elapsed" variables determined at Steps 21 and
23 come into effect. T hese determine the number of days
elapsed up to the start of the current month. At the first of
January, no days have elapsed, but by the first of May, 1 21
days have passed. By adding this to the initial day number
and dividing by seven, the remainder is the offset to the first
day in the week. The formula is therefore:

Space = ((Day+Elapsed) MOD 7) * 8

32. This is the AmigaDOS version of the above calculation.
"Elapsed" and "Day" are summed first . T hen the modulo
(remainder after division) is taken and stored in "Day". The
calculation is split in two like this because the value of "Day"
is required elsewhere.

33. The new value of Day is multiplied by 8 and stored in the new
global environmental variable, "Space . . .

34. Uses ECHO's string slicing function to produce an effect
similar to the STRI N GS () function found in most modern
BASICs. Note in the listing these are sho\rn as periods (.) but

Calendar

they should be entered as spaces.
35 . Sets the global environmental variable, "daynum" to 1 .

"Daynum" is used by the display script.
36. Copies the current value of "Day" to a new global

environmental variable, "wrap" (used by the display script). It
is interesting to note, this operation could be accomplished
by CO P Y. However, EVA L has been used because that
command is made resident for the script.

3 7. Increments the value held in "DiM" by 1.
38. Starts the display script, MonthPrint although 1t 1s important

to note how this has been achieved. In normal circumstances,
the script would be called using either EXECUTE or RUN
EXECUTE ; the latter being the closest approximation to the
final solution. Using NEWSHELL allows you to effectively RUN
launch EXECUTE and specify a window size at the same time.

Listing

1 . . key year / a , month

2 . . bra {

3 . . ket }

4 . . dollar

5 . resident c : eval add

6 . set M { month}

7. set Y { year}

8 . eval $Y - 1 to env : Date

9. eval $M - 1 to env : Month

1 0 . echo " $Date " first= 1 len=2 to env : Cent

1 1 . echo " $Date " len=2 to env : Decade

1 2 . eval (799+ $Decade+ ($Decade /4) + ($Cent/ 4) - (2 * $Cent)) mod
7 to env : Day

1 3 . eval (($Cent+ 1) + $Y) mod 4 to env : leap

1 4 . if val $leap NOT EQ 0

1 5 . eval $month * 3 +2 to env : slice

1 6 . echo " . 3 1 . 28 . 3 1 . 30 . 3 1 . 30 . 3 1 . 3 1 . 30 . 3 1 . 30 . 3 1 " first=$slice
len=2 to env : DiM

1 7. eval $month * 4 +2 to env : slice

1 8. echo " . . 00 . . 31 . . 59 . . 90 . 1 20 . 1 5 1 . 1 81 . 2 1 2 . 243 . 273 . 304 . 334 "
first=$slice len=3 to env : Elapsed

1 9 . else

20 . eval $month * 3 +2 to env : slice

m

m

Mastering AmigaDOS Scripts

2 1 . echo " . 3 1 . 29 . 3 1 . 30 . 3 1 . 30 . 3 1 . 3 1 . 30 . 3 1 . 30 . 3 1 " first=$ s lice
len=2 to env : DiM

22 . eval $month * 4 +2 to env : slice

23 . echo " . . 00 . . 3 1 . . 60 . . 9 1 . 1 2 1 . 1 52 . 1 82 . 2 1 3 . 244 . 274 . 305 . 335 "
first=$slice len=3 to env : Elapsed

24 . endif

25 . eval $month * 4 +2 to env : slice

26 . echo >T : MFile " Calendar for : " noline

27 . echo >>T : MFile " Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec " first=$slice len=3 noline

28 . echo >>T : MFile " $Y "

29 . echo >>T : MFile " * n====================================== "

30 . echo >>T : Mfile
" Sun*e [IMon*e [ITue * e [IWed*e [IThu*e [I Fri*e [ISat "

3 1 . echo >>T : MFile
" ===* e [I===* e [I ===* e [I ===*e [I=== *e [I===*e [I === "

32 . eval ($Elapsed + $Day) mod 7 to env : Day

33 . eval $Day * 8 to env : Space

34 . echo >>T : MFile " " first= 1 len=$space noline

35 . setenv daynum 1

36 . eval $day to env : wrap

37 . eval $DiM + 1 to env : DiM

38 . newshell from s : MonthPrint con : 0 /0 /480 / 1 40 / Calendar /Auto

Monthprint2

Synopsis:

Template:

Path:

Requires:

See also:

Type:

[EXECUTE] MonthPrint2
none
S:
Y2+

Calendar2, SuperCal
Script

Mastering AmigaDOS Scripts

Brief: Month printing module for the Calendar2 script

Description

Although given here as a complete listing, there are only a few
differences between this module and the one listed elsewhere in
the book. The changes are noted below.

Line-by-Line

The following changes have been made to Monthprint:
1. Cosmetic change to be more informative
11 and 13 . Tabs replaced by spaces.
23. Signals to Calendar2 it is safe to continue by breaking the wait

state.

Listing

1 . echo " Calendar Working on $MName $Y . Please wait"

2 . echo "0% -------" first= 1 len=$DiM noline

3 . echo " - 100%*n

4 . lab loop

" noline

5 . if val $DIM GT $daynum

6 . eval ($wrap + 1) mod 7 to env : wrap

7 . if val $daynum NOT GT 9

8 . echo >>T : MFile

9 . endif

noline

1 0 . if val $wrap NOT GT 1

1 1 . echo »T : MFile " * e [32m$daynum*e [3 1 m " " " noline

1 2 . else

1 3 . echo >>T : MFile $daynum " " noline

1 4 . endif

m

Mastering AmigaDOS Scripts

1 5 . eval $daynum + 1 to env : daynum

1 6 . if $wrap eq 0

1 7 . echo >>T : Mfile

1 8 . endif

1 9 . echo " * e [4 1 m * e [40m " noline

20 . skip loop back

2 1 . endif

22 . echo >>T : Mfile " * n================================= "

23 . break $BreakMe C

24 . endcli

Ill

Mastering AmigaDOS Scripts

SuperCal

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Supercal < [YEAR=] year> [Month]

Year/A. Month

S :

V2+

Ca lendar2 , Monthpri n t 2

Scr ipt

Fu l l year vers ion of the AmigaDOS ca lendar
program

Supercal i s the mai n module for Calendar2 , the whole year ca lendar.
For the sake of speed , it operates as a separate module which cal l s
mod i fi ed vers ions of Ca lendar and Monthpr i n t .

Line-By-Line

1 . Defi ne the key for th i s command . You must spec i fy a year for
t h i s scr ipt and opt iona l ly a start ing month . For i nstance you
m i g h t o n l y w a n t t h e c a l e n d a r f ro m Au g u s t 1 9 9 2 . N o t e
however, both these argu ments are numer ic .

2 . Jus t i n case you don ' t supply a month , Superca l assumes you
mean January - th i s w i l l normal ly be the case s i nce Supercal is
des igned to d i sp lay whole year ca lendars .

3 . Checks i f the Ca lendar variab le has been set - th i s i s used to
c heck for cer ta in once on ly configura t ion . I f Ca lendar ex ists
contro l branches to Step 7 , otherwise execut ion cont inues . . .

4 here , where the Ca lendar vari ab le i s d efi ned .

5 . Adds the EVAL command t o the res iden t l i s t - th i s used to be
done i n Ca lendar, but s i nce that i s now a subrout ine of th i s
s c r ip t , i t i s done here .

6 . C reates the pri n t fi le and defines i t s head i ng wi th the cu rre nt
year.

7 . C loses t he I F . . . END I F cons truct opened at S t ep 3 .

8 . Defines a g l obal env i ronmental var iab le M N and g ives i t the
value of the cu rrent month .

9 . P r i n t s a s i m p l e p rog re s s mes sage i n t h e c u r r e n t c o n s o l e
w i n d ow. T h i s i s t h e w o r k i n g w i n d o w t h a t S u p e rc a l w a s
launched from.

1 0 . Execu tes Ca lendar2 (l i s ted be low) w i th the correct parameters .

BI

m

Mastering AmigaDOS Scripts

1 1 . I ncrements the month nu mber.

1 2 . Tests i f the whole year (up to December has been done) . I f i t
ha s , execu t ion branches t o S t ep 14 othe rw i se i t cont inues . . .

1 3 here , wh ich cal l s Supercal i tse l f recursive ly. Th i s has been
done in p refe rence to u s ing RUN because tha t wou l d cause
more than one occu rrence of Ca lendar2 to execute at once and
that cannot happe n . Us ing EXECUTE on i t s own does not work
b e c a u s e t h i s s c r i p t c o n t a i n s a b a c k w a r d l o o p a n d t h e
t em porary command fi l e req u i red by t he SK I P command i s
t r a s h e d b y t h e s e c o n d EX E C U T E ru n n i n g f ro m t h e s a m e
process . (Phew!) Don ' t worry, i t j u s t works that way.

1 4 . C loses the I F . . . END I F construct opened at 1 2 .

1 5 . D i sp lays the completed Ca lendar.

1 6 . Removes EYAL from the res iden t l i s t s ince we've now fin i shed
with i t .

1 7 . Makes a copy of the pr in t fi l e i n your S : ass ignment . . .

1 8 and l e t s you know for fu ture reference . Th i s i s the pr in t fi l e .
You can make your own ca l endar by copy ing t h i s to your
pr in te r thus :

COPY S:Calendar1992 to PRT:

1 9 . F ina l ly, makes su re no recurs ive cop ies of the scr ipt are l e ft to
execute .

Listing

1 . . key Year/A , Month

2 . . def Month 1

3 . if *$Calendar EQ $Calendar

4 . setenv Calendar ON

5 . resident c: eval add

6 . echo >T:MFile " Calendar <Year>"

7 . end if

8 . setenv MN <Month>

9 . echo "Working on $MN/<Year> "

10 . execute s:Calendar2 <Year> $MN

11 . eval $MN + 1 to ENV:MN

12 . if val $MN NOT GT 12

13 . execute s : Supercal <Year> $MN

14 . endif

15 . more T:MFile

SuperCal

16 . resident eval remove

17 . copy T:MFile to S : Calendar<Year>

18 . echo " Calendar saved to disk as Calendar<Year>_*nSee text
for info on how to print this . "

1 9 . quit

m

m

Mastering AmigaDOS Scripts

Calendar2

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Calendar2
none
5:
V2+

MonthPrint2, SuperCal
Script
Improved calendar script

The only changes between this version and the one listed elsewhere
are as follows (line numbers refer to this version):

Calendar 2

Line-By-Line

25 . The month string is now written to a global environmental
variable.

26-29. Tabs removed and other cosmetic improvements.
32. $Day is now multiplied by five to account for new spacing.
3 7. A new variable has been added here to aid the multi-tasking.

"Breakme" is set to the current process number running
Calendar2.

38. NEWSHELL calls a different file and the window has been made
smaller.

39. An extra line forces the script to wait until the Monthprint2
process is completed. Redirection to NIL: is used to stop the
"*'"'Break" message appearing.

Listing

1 . .key year/a , month

2 . . bra {

3 . . ket }

4 . . dollar

5 .

6 .

7 .

8.

9.

set M

set y

eval

eval

echo

{month}

{year}

$Y - 1 to

$M - 1 to

" $Dat e "

1 0 . echo " $Dat e "

Calendar 2

env : Date

env : month

first= 1 len=2 to env : Cent

len=2 to env : decade

1 1 . eval (799+ $decade+ ($decade /4) + ($cent / 4) - (2 * $cent)) mod
7 to env : day

1 2 . eval (($Cent+ 1) +$Y) mod 4 to env : leap

1 3 . if val $leap NOT EQ 0

1 4 . eval $month * 3 +2 to env : slice

1 5 . echo " 3 1 28 3 1 30 3 1 30 31 3 1 30 3 1 30 3 1 " first=$slice
len=2 to env : DIM

1 6 . eval $month * 4 +2 to env : slice

1 7 . echo " 00 3 1 59 90 1 20 1 5 1 181 2 1 2 243 273 304 334 "
first=$slice len=3 to env : Elapsed

1 8 . e lse

1 9 . eval $month * 3 +2 to env : slice

20 . echo " 3 1 29 31 30 3 1 30 3 1 3 1 30 3 1 30 3 1 " first=$slice
len=2 to env : DIM

2 1 . eval $month * 4 +2 to env : slice

22 . echo " 00 3 1 60 9 1 1 2 1 1 52 1 82 2 1 3 244 274 305 335 "
first=$slice len=3 to env : Elapsed

23 . e ndif

24 . eval $month * 4 +2 to env : slice

25 . echo >ENV : MName " Jan Feb Mar Apr May Jun Jul Aug Sep
Oct Nov Dec " first=$slice len=3 noline

26 . echo >>T : MFile " * n----------- $MName $Y ------------ "
27 . echo >>T : MFile " ================================= "

28 . echo >>T : Mfile " Sun Mon Tue Wed Thu Fri Sat "

29 . echo >>T : MFile " === === II

30 . eval $day to env : wrap

3 1 . eval ($E lapsed + $Day) mod 7 to env : Day

32 . eval $day * 5 to env : space

33 . echo >>T : MFile " " first= 1 len=$space noline

34 . setenv daynum

35 . eval $DiM + 1 to env : DiM

36 . eval $day to env : wrap

37 . setenv BreakMe $process

38 . newshell from s : MonthPrint2 con : 0 / 0 / 360 / 50 / Calendar / Auto

39 . wait >N I L : 20 mins
m

m

Mastering AmigaDOS Scripts

CCOPY

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

[EXECUTE]CCOPY<[FROM]=Source>[TO=]Destination
[BUF=<buffers] [CLONE] [DATES] [NOPRO] [COM]
FROM/A, TO, ALL/S, QUIET/S. BUF/K, CLONE/S,
DATES/S, NOPRO/S, CO M/S
S :

Y l .3+
CCOPY Alias
Script
Intell igently select CO PY or COPY "" dependant on
arg chain

Description

The CCOPY Alias is all very well, but you have to remember which
version of COPY to use depending on the situation. To get around
this, it is necessary to write a small script to make COPY intelligent.
If a destination is supplied it works like AmigaDOS: i f not it behaves
l ike MS-DOS.
This script mirrors the original CO PY command very closely
although a few embellishments have been added - displaying the
source and dest i nation d i recto r i es fo r i nstance. Also, t h e
destination is no longer a required argument. To use this, simply
type it into your favourite editor and save it in S . Now set the "S"
protect ion flag and it works like the real thing. It relies on an
undocumented feature of AmigaDOS 1 . 3 i n t h at sw i tc h (/s)
arguments are supported.

Example

1 >CD RAM:

1 >CCOPY S:Startup - sequence

Line-By-Line

1. Defines the argument template to match that of the existing
COPY command.

2-3. Redefine bra and ket to my favourite settings.
4. Sets the default value for "BUF" to 200 (200K in disk buffers

for this script. You may alter this as you see fit (or whatever
fits your mach ine).

5 . Sets the default value for the TO (destination) parameter to
something silly. You could replace this with some white space
or punctuat ion if you prefer - this value was chosen for
clarity.

CCopy

6. Checks if a value was sent via the TO argument. If an
argument was supplied, control transfers to Step 10 ;
otherwise it continues at Step 7.

7. Prints the first part of a progress message to keep you
informed as to what's going on - note use of the NOLINE
switch to keep everything on the same line. (You may like to
add another command line option to suppress these messages
or incorporate the existing QUIET switch here.) Assuming the
example above, the script will output something like this

Copying from : S : Startup - sequence TO :

8. Displays the current directory setting thus completing the
example above - remember, CD gives the volume name - not
the device name:

Copying from : S : Startup- sequence TO Ram Disk

9. Performs the copy operation using the options specified at the
command line and copying to the current directory.

10. If execution gets here from Step 9 it jumps to S tep 13 ;
otherwise it continues . . .

11. . . . here and gives out a pretty obvious progress message based
upon the command line arguments.

12. Actually does the copy proper.
13. Terminates the IF . . . ELSE . . . ENDIF construct opened at Step 6.

Listing

1 . . key FROM /A , TO , ALL / s , QU I ET / s , BUF / K , C LONE / s , DATES / s ,
NOPRO / s , COM / s

2 . . bra {

3 . . ket }

4 . . def BUF 200

5 . . def TO NOTHI NG

6 . I F {TO} EQ " NOTH I N G "

7 . E CHO " Copying from : { FROM} TO " NOLINE

8 . CD

9 . COPY { FROM} " " {ALL / s } {QUIET / s } { C LONE / s } { DATES / s }
{ NOPRO / s } {COM / s } BUF= {BUF}

1 0 . E LSE

1 1 . ECHO " Copying from : { FROM} TO {TO } "

1 2 . COPY { FROM} {TO } {ALL / s } {QU I ET / s } { C LONE / s } { DATE S / s }
{ NOPRO / s } {COM / s } BUF={ BUF}

1 3 . ENDIF

m

-

Mastering AmigaDOS Scripts

CCOPY

Synopsis: <source file> [options]
Template: see text
Path: na
Requires: V l .3+
See also: CCOPY Script
Type: Alias
Brief: Simple version of MS-DOS COPY
Definition: ALIAS CCOPY COPY [] '"'

Description:

This potboiler started life on CIX late one evening - someone
wanted COPY to act like a PC. That is: if a source directory is not
specified, COPY duplicates the file in the current directory. For
instance:

1 >CD RAM:
1 >COPY S:SPAT

is not possible in AmigaDOS because COPY requires two arguments.
Either argument can be replaced with '"' but this is messy. The
solution therefore is to use an alias. I've called this one CCOPY -
Current Copy; the name is not important. Add this to your Shell
startup script so it will be available at any time; all the normal
COPY options are available too.

Mastering AmigaDOS Scripts

Chatter

Synopsis: [EXECUTE] Chatter <[NAME l =]Name l >
<[NAME2]Name2>

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

NAME l /A, NAME2/A
S :

V l . 3

Chatty
Script
Start the pipe messaging system with names

Although executed from the remote terminal, CHATTE R and
CHATTY handle all the communication between the two machines.
Unlike MS-DOS and UNIX, AmigaDOS does not support unnamed
pipes where the output stream of one command can be connected
to the input stream of another. Hence the MS-DOS construct:

TYPE READ . ME I MORE

is not valid in AmigaDOS and has no direct equivalent. (The bar "I "
symbol is used in MS-DOS to signify a pipe.) The nearest alternative
is to do the command in two steps thus:

1 >COPY READ . ME P I PE : A

1 >MORE P I PE : A

or, alternatively:
1 >TYPE > P I PE : A READ . ME

1 >MORE < P I PE : A

Note: the ability to use unnamed pipes is documented as part of the
ARP 1.3 release and is claimed to work with the Shareware Shell
replacement, Conman. ARP 1.3 users may want to try this out for
themselves.The MORE program exhibits different behaviour
depending on whether it is launched directly or as a separate
process via RUN. Try this:

1 >MORE S : SPAT

1 >RUN MORE S : SPAT

Notice in the first instance how MORE uses the current Shell
window, but when RUN it opens a window of its own. This feature
may seem pointless, but it allows MORE to be used over the serial
port. Moreover, it also gives rise to a variation on the CHAT theme.

m

m

Mastering AmigaDOS Scripts

The "Chat" system is designed to be launched by the remote system
and initialise all the pipes. It cannot set up the CHATTO alias - this
can be done in Shell-startup, by adding the following lines:

ALIAS ChatTo COPY * TO P IPE : [)

ALIAS ChatNow RUN EXECUTE CHATTY

To start the chat system, the remote operator enters (for example):
1>CHATNOW MARK BRUCE

The host terminal then receives a message (via MORE) like this:
Chat system opened as: Host=MARK Remote=BRUCE

Mark (using the host Amiga) can now start chatting to Bruce:
1>CHATTO BRUCE

Hello Bruce !

and send the message by pressing CTRL+\ as described earlier.
Similarly, Bruce can chat back to Mark like this:

1>CHATTO MARK

Hello Mark ! wonderful system , huh?

Line-By-Line

1. This defines the script's argument template. Two inputs are
required from the user: the name of the host and remote
machines. Since the /A template option has been used, both
arguments must be supplied or the script will fail to run.

2. Creates a file in the temporary files assignment T: containing
the startup message which will be displayed on the host
terminal. The arguments surrounded with angle brackets will
be replaced by the user's input. Therefore if the command line is:

1>RUN CHATTER DAVE PAT

the file will contain the message: Chat system opened as:
Host=DAVE Remote=PAT. The filename is determined by
adding the process number to "QWE". Therefore if CHATTER
was running as process 3 , the filename would be "QWE3 ".

3 . This is a trick which relies on the ability of MORE to recognise
when it has been RUN-launched. Normally, M O RE would
display T: QWE on the remote termina l, however since
EXECUTE has be RUN-launched, the script is also running as a
process and any commands it contains are a lso running
asychronously. The end result is MORE pops up as a window
on that the HOST machine (much to the surprise of unwary
operators).

Chatter

4. Not a lot of people know this, but it is quite legal to RUN
launch scripts from within scripts - even those which have
been launched with RUN in the first place. That's what
happens here, CHATTY is RUN-launched from CHATTER. It
must be started in this way because, as you will see later, it
never returns. CHATTY is passed one parameter, the name of
the remote terminal . (The parameter was missing in the
original listing.)

5. This label defines the start of a loop which is called endlessly.
Like CHATTER, this script never finishes.

6. Copies the contents of the host pipe (if any) to a temporary
file. This forces the script to pause until some data appears at
the pipe and prevents the script from needlessly looping.

7. Immediately displays the contents of the temporary file. If
more was used like this to display the contents of the pipe
directly the script would not pause correctly.

8. Forces the script to jump back to the label defined at step 5
completing the endless loop. The result is the program waits
until a message appears on the pipe, displays it, and waits for
the next one.

Listing

1 . . key NAME1/A , NAME2/A

2. Echo >T: qwe<$$> " Chat system opened as : Host=<NAME1 >
Remote=<NAME2> "

3 . More T : qwe<$$>

4 . Run Execute S:Chatty <NAME2>

5 . Lab Start

6 . Copy Pipe:<NAME1> T:msg<$$>

7 . More T:Msg<$$>

8. Skip Start Back

m

-

Mastering AmigaDOS Scripts

CHATTY

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Chatty [Name==]
Name
S :

V l .3+
Chatter
Script
Read piped messages from either terminal

This script is never executed directly, it works as a support script
that is called by CHATTY. Typically, scripts of this size can be
created by the script that calls them. However, that was not thought
necessary for this program.

Line-By-Line

1 . Defines the argument template for the script. Although the
argument would normally be required, it is not necessary to
do that here since the correct syntax is assured by the calling
script. The argument received by CHATTE R is the name
allocated to the remote terminal.

2. Defines a label which will be jumped to when the script loops.
3. Waits for data to be sent to the pipe on the remote terminal

and prints it. Like COPY, TYPE waits for information to appear
on the pipe before doing anything.

4. Loops the script back to Step 1, causing it to execute again.
This script never stops, but because it's attached to an
internal Shell (via RUN) it does not affect the machine's
operation.

Listing

1 . . key NAME

2. Lab start

3. Type pipe:<NAME>

4. Skip start back

Clock 1 .3

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Run from Workbench
none

V l .3-1.3.3
Clock 2, Clock 3
Script
Simple AmigaDOS clock

Mastering AmigaDOS Scripts

The idea of having a real-time clock from AmigaDOS must seem a
little preposterous : especially if you consider the same thing is
already supplied with Workbench. The difference between this one
and the one you get with Workbench is size: this clock program is
less than 5 12 bytes long and fits easily on your Workbench disk
even if you're short of space' This version should be run from
Workbench via lconX.

Line-By-Line

1. Sets a dummy key for IconX.
2-6. Makes s ome commands resident for the s cript. Thi s i s

necessary or the clock will spend most of its time loading
commands from disk.

7. Sends some special control codes to the console to switch the
cursor off (*e[0 p) and position the cursor at the start of the
line (*e(;0H). Note: the punctuation is necessary!

8. Marks the start of the endless clock loop.
9. Displays the current date and time.
10. Re-positions the cursor. This stops the clock wrapping on a

line.
11. Waits for a second. This controls the speed of update - you

can set this wait for a longer period if you prefer: say five
seconds.

12. Re-starts the loop again.
13. I s WX information. Not used by this script.

1 . . key dummy

2 . resident c : wait

3 . resident c : date

Ill

m

Mastering AmigaDOS Scripts

4 . resident c : echo

5 . resident c : lab

6 . resident c : skip

7 . echo " *e (O p*e (; OH "

8 . lab start

9 . date

1 0 . echo " * e (; OH " noline

1 1 . wait 1 sees

1 2 . skip start back

1 3 . ; WX : WINDOW=WINDOW=con : 0 / 0 / 1 90 / 60 /Memory_Gauge

Clock 2

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Run from Workbench

none

V2+

C lock 1 . 3 , C lock 2

Scr ipt

S imple AmigaDOS c lock

Mastering AmigaDOS Scripts

This c lock program i s l ess than 5 1 2 bytes long and fi t s eas i ly on
y o u r Wo r kb e n c h d i s k even i f you ' re s h o rt o f space ! Th i s o ne i s
wr i t ten for AmigaDOS 2 + and shou l d be run from Workbench v ia

l c o nX o r p l a c e d in W B S t a r t u p . T h e C O N : o p t i o n s se t fo r l c o n X
d e termine how a n d where t h e c lock appears . The BAC KDROP opt ion
shou ld on ly b e used i f t h e Workbench i s normal ly o p e rated as a
w indow: wi th the BACKDROP opt ion OFF.

Clock 2

Line-By-Line

1 - 2 . Make WAIT and DATE res ident . These commands are ADDed to
the res iden t l i s t and never removed, so th is scr ipt s hou ld on ly
be ru n once from WBStartup . The ADD opt ion can be removed
b u t t h i s c a n c a u s e p r o b l e m s if s o m e o t h e r p ro g ra m h a s
cont rol o f the res ident l i s t .

3 . Pos i t i ons a n d switch the cursor off.

4 . Marks t h e start o f t h e c lock loop .

5 . D i s p lays the curre n t date and t ime and pos 1 t 1ons the cursor
back a t the s t a r t of the l i n e ; t h u s avo i d i n g l i n e w ra p a n d
scro l l i ng .

6 . Wai t s for a second . Th i s contro l s the u pdate t ime of the loop
(and the c loc k) and may be i ncreased i f preferred .

Ill

m

Mastering AmigaDOS Scripts

7. Re-starts the loop ready for the next display run.
8. Is some information for WX to use. You don't need this for the

script if it's run from Workbench.
Listing

1 . resident c : wait add

2 . resident c : date add

3. echo " *e [O p*e [; OH " noline

4 . lab start

5 . echo " ' date ' *e [; OH " noline

6 . wait 1 sees

7. skip start bac k

8 . ; WX:WI NDOW=WINDOW=con : 0/0/190/60/Memory
Gauge/SMART/NOSI ZE

Mastering AmigaDOS Scripts

Clock 3

Synopsis:

Template:

[EXECUTE] Clock3 [[Ticks=]Seconds]
ticks

Path:

Requires:

See also:

Type:

Brief:

Description

S :

V 2 +

Clock 1. 3, Clock 2
Script
imple digital clock with auto window

This script was created just to prove a big point in a short space.
That is: you don't have to use Workbench if you want to have a
program working in its own window. This script creates a
completely new script and executes it using NEWSHELL. In this way
it creates its own window and starts the program as a process!

IF:r i. d a y 0 7 -M a y - 9 3 . 1 8 : 1 1 ;, 4 6

Clock 3

Yo u rang � s i r?

Snooze

Clock Alarmed

Typically you can use this script without arguments, but you can
supply the number of "ticks" : that is the number of seconds it
leaves other processes before re-executing. Examples:

1>Clock3

1>Clock3 ticks=S

Line-By-Line

1-3 . Define a simple, standard header.
4. Sets the default for seconds to wait. One second is used here

since this is a simple script, but you could use a longer time
and send a shorter delay from the Shell.

5 -6. Make the required external commands resident.
7. Creates the program file in T: as "xlclock#". (Remember that #

is the current Shell process number.) This l ine will appear
Ill

BI

Mastering AmigaDOS Scripts

after translation as:
echo " *e [O p * e [; OH " noline

8. Adds the second line to "Xclock#". This is simply a label.
9. Adds the next line to the "Xclock#" file. Note that this is only

the first half of the third line! The reason is we don't want the
" ' " couplet expanding the date just yet! The NOLINE switch for
ECHO ensures the line is not fully terminated just yet. At this
stage the second line looks like this:

echo * " ' date

10. Writes the second part of the third line completing it thus:
echo * " ' date ' * e [; OH "

1 1. Adds the third program line: inserting the wait limit directly
into the program. If no arguments were supplied, ticks = 1, so
the line looks like this:

wait 1 sees

12. Completes the program by adding the loop back.
13. Starts the clock program by executing the xclock# script with

NEWSHELL. This isn't exactly the same as using lconX but it
will suffice, thank you. The values shown here place the clock
on the Workbench screen. You should remove the NOBORDER
and BACKDROP switches if you want to be able to move the
clock around.

14. This information is only used by WX - which is really not
suitable for this script.

Listing

1 .

2 .

3 .

4.

5 .

6 .

7 .

8 .

9 .

1 0 .

. key ticks

. bra {

. ket }

. def ticks 1

resident c :wait

resident c:date

echo >T:xclock{$$}

echo »T:xclock{$$}

echo »T:xclock{$$}

echo »T:xclock{$$}

" echo * " * * e [O p * *e [; OH* " noline "

" lab start " noline

" echo * " ' date " noline

" ' * *e [; OH * " noline "

1 1 . e cho »T : xclock { $$ } " wait { ticks} see s "

1 2 . echo >>T : xclock { $$ } " s kip start bac k "

1 3 . newshell from t : xclock {$$}
window=con:0/5/240/30/Cloc k/NOBORDER/BACKDROP/SMART

1 4 . ; WX : WINDOW=WINDOW=con : 0 / 0 / 240 /30 /CLI_Clock

Clock

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Started from Workbench
none

Y 2 .0+

Script

Mastering AmigaDOS Scripts

Brief: Simple digital AmigaDOS clock

Description

They don't get much simpler than this one. This script forms the
basis of many of the clock scripts featured here without too many
clever tricks. The great thing about this one is it's short. It must be
run from Workbench via IconX to ensure it runs in its own window
though.

Line-By-Line

1. Gives lconX something to chew on. It isn't a bsolutely
necessary for scripts as simple as this one.

2-3 . Makes some essential commands resident.
4. Switches the cursor off.
S . Marks the start of a loop.
6. Displays the current date and time.
7. Moves the cursor up a line.
8. Waits for a second . . .
9 . . . and starts the whole thing again!

Listing

1 . .key dummy

2 . resident c: wait

3. resident c:date

4. echo " *e [O p "

5 . lab start

6 . date

7 . echo "*e [A " no line

8 . wait 1 sees

9 . skip start back

Ill

-

Mastering AmigaDOS Scripts

Add Data

Synopsis:

Template:

Path:

Requires:

See also:

'Type:

Brief:

Description

[EXECUTE] Add Data [al .. .ac] [Data=<data>]
a 1,a2 ,a3 ,a4,a5 ,a6,a 7,a8,a9,aa,ab,ac, data/k
S:
V l .3+
Sortdata, DataBase, PrintData etc
Script
The add module for the Database

You can add and delete records using the ED command. While this
is fine for t he most part, it is a little prone to error. This is the
AddData module which will allow you to add one or more records
directly from the command prompt. AddData works rather like the
FindData module in that you can execute the command followed by
a data string:

Command : A Mark Smiddy , Mastering AmigaDOS 3 , BSB

Add another y/N?

or just execute it on its own, like this.
Command : A

Add another y/N? Y

Mark Smiddy , Mastering AmigaDOS 3 , BSB

Add another y/N

Note in t he second case, AddData asks if you want to add
something before you actually do; this is quite normal.

Line-By-Line

1. Defines a long key with lots of parameters - as you may recall,
this allows for long interactive command lines. In this case, it
allows you to enter 12 "words" without having to resort to
quotes.

2. Collects t he contents of <a l > . . . <ac> into a variable called
data.

3. Checks to see if any data has been entered - it can come from
the initial command line or interactively from this segment. If
data has been supplied control jumps to Step 5; otherwise it
continues at Step 4.

AddDatta

4. Transfers control immediately to the end of the script (Step 20
actually). Since no data has been supplied, the script must be
executed again in order to gather some.

5. Closes the IF . .. ENDIF construct opened at Step 3.
6. Tests for the presence of a temporary file in T: (the temporary

files assignment). It's called "Temp" in this example, but any
name would do - provided you stick to the same one
throughout the script. If the file exists, control passes to Step
7; otherwise it jumps to Step 8.

7. The new record (the contents of the variable "Data") are
appended (added) to the temporary file here. By appending
each new entry, the file contains the new records - before they
are added to the main database. It is important to note, the
temporary file is created by this module and removed by the
main Database script.

8. I f control reaches here from Step 7 it branches to Step 10;
otherwise it continues at Step 9.

9. Creates the temporary data file 'T:temp" and adds the current
record to it. T: Temp is only valid while this program is
running, see the description of Step 7 for more details.

10. Closes the IF . . . ELSE . . . ENDIF construct opened at Step 6.
1 1. Prints the prompt "Add another y/N" and pauses for user

interaction. (It waits for you to enter something.) Note the ASK
command sets the WARN flag if you enter Y and clears it
otherwise.

12. Tests for the WARN condition. If you enter, Y at Step 8, control
resumes at Step 13 : anything else causes a branch to Step 14.

13. Transfers control to Step 20 where the script will start again.
You may notice, this label is also used by Step 4 to achieve the
same effect.

14. Control can only arrive here from Step 12 (Step 13 is an
unconditional branch) and it continues directly at Step 15
because Y was not entered.

15. Displays a short message (split over two lines by the use of
''n) just to keep the user informed.

16. Adds the new records to the start of the data file using the
JOIN command. The AS keyword is used here to keep the
syntax clear. Note the new file is also stored in T: because it
isn't legal to write to a file you are reading from. You may
wonder at this stage why the records are kept in a temporary
file. The reason is twofold. First, since T: is in RAM , a
temporary list is faster to update than it would be if the write
went directly to disk every time. Second, this also offers the

m

m

Mastering AmigaDOS Scripts

chance to insert a "Get out" clause; such as "Are you sure?".
This is demonstrated in the DelBlock module described below
but not incorporated here.

17. Replaces the existing database with the one just created at
Step 16. This command can fail if the disk is full and in this
case, you should copy the complete database from RAM to a
disk with enough room. As an exercise you might like to
devise a fix for this eventuality.

18. The module completes here and calls the main program again.
19. Closes the IF ... ELSE ... ENDIF construct opened at Step 12.
20. This marks the restart point called at Steps 4 and 13.
21. Displays the entry prompt without a line feed - to give the

illusion of an interactive prompt.
22. Calls the AddData module recursively in its interactive mode.

Redirection to N IL: (>N IL) is used to suppress the messy
command line.

Listing

1 . . key a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , aa , ab , ac , data/k

2. . def data " <a1> <a2> <a3> <a4> <a5> <a6> <a7> <a8> <a9>
<aa> <ab> <ac>"

3. if " <data>" EQ

4. skip Add0ne

5. endif

6. if exists T : temp

7. echo >>T : temp " <data> "

8. else

9. echo > T : temp " <data> "

1 0 . endif

1 1 . ask " *nAdd another y/N "

1 2 . if warn

13 . skip Add0ne

1 4 . else

1 5. echo " Adding new records*nPlease wait . .. "

1 6. j oin T : Temp S : Data AS T : tempdata

1 7 . copy T : TempData S : Data

1 8 . execute S : database

1 9 . endif

20 . LAB Add0ne

21 . echo " data : " noline

22 . execute >NI L : s : AddData ?

Mastering AmigaDOS Scripts

DelBlock

Synopsis:

Template:

[EXECUTE] DelBlock [Start=] [Number=]
start.number

Path:

Requires:

See also:

Type:

Brief:

Description

S:
Y l . 3+

Database, Findata, AddData etc.
Script
The delete data module for the Database

The DelBlock module is used to remove specific records from the
database and can be accessed from the command line in one of two
ways. For instance, to delete record number three you would enter:

Command : D 3

3 Fred Blogg s , 1 The Marketplace , Newton Abbott

Delete records?

However, you can delete a range of records by specifying the start
and ending record numbers, viz:

Command : D 2 4

2 Amiga Shopper , F uture Publishing , BATH , Avon

3 Fred Bloggs , 1 The Marketplace , Newton Abbott

4 Dave Smit h , Behind the Bike Sheds .

Delete records?

If you do not supply either value, De!Block will prompt you for
them automatically.

Line-By-Line

1. This module only takes two parameters: START, the record
number to be deleted; and NUMBER and optional parameter
which will be the last record to be deleted.

2. This defaults the NUMBER variable to 1 if no value is supplied.
3. Similarly, if a starting record number is not supplied, this

variable is initialised to the string SKIP.
4-5. Redefine < and > as { and }.
6. Test the start variable to see if some number was supplied. (A

test is made for a string supplied as a default value at Step 3

m

m

Mastering AmigaDOS Scripts

to make the meaning clearer.) If the test passes, control
continues at Step 7; otherwise it jumps to Step 8.

7. Control arrives here if no values were supplied a11d is sent
directly to the re-start code, beginning at Step 39.

8. Close the IF . . . ENDIF construct opened at 6. (Control arrives
here if a START value was supplied.)

9. Calculates how many records (lines actually) are going to be
removed from the database and stores the resul t in the
environmental variable 'ThisMany" . Note a LFORMAT string is
used to suppress the LF character.

10. Adds 1 to the value ThisMany and stores it in a temporary
variable. Note that interactive mode must be used for this
example because one of the values is being retrieved from a
file. This must be done to retain downward compatibility with
AmigaDOS 1.3

11. Copies the temporary variable back to the proper variable.
12. Test if the value 'ThisMany" is not less than or equal to zero.

("VAL NOT GT" is akin to BASIC's <=.) If it is less than 1,
control continues at Step 13. Note: Interactive mode is used
again here because the value is being retrieved from a file.

13. Negative or zero values are not allowed for this value, so this
line resets ThisMany to its lowest possible value.

14. Closes the IF . . . ENDIF construct opened at Step 12.
15. Raises the fail level slightly to prevent minor complaints from

EDIT stopping the script in its tracks.
16. This is where it starts to get a little hirsute - so to make

things a little simpler, let's assume some values. Set START as
5 and THISMANY as 4. Using these values, this line creates a
file containing:

Sn ; p ;

and saves that as Del Mac 1
17. Similarly, this creates De1 Mac2 which looks like this:

(? ; n ;)
STOP

18. Now the module joins the two macro seg ments to the
environmental variable and the macro takes shape like this:

Sn ; p ;

4 (? ; n ;)

STOP

Translation

Sn Go down five lines
p Move back one line

DelBlocl<

4 (? ; n ;) Display this line then move to the next one (four times)
STOP Quit and return to the caller.
This example also illustrates why it was necessary to suppress the
line feed in "ThisMany". Otherwise, the macro would read:

Sn ; p ;

4

(? ; n ;)

STOP

which is a subtle error and not easy to trace; pretty hairy stuff too,
as I said.
19. Uses the EDIT macro on the database and creates a temporary

file (T:DelRec) which contains a list of the records about to be
deleted. The story does not end there though .. .

20. . . . because, if the record(s) were not found, EDIT returns with
an E RROR condition - remember Step 15 . This is tested for
here, and if found control resumes at Step 2 1 ; otherwise it
branches to Step 23.

2 1. Displays the error message . .
22. . . . and jumps to the code at Step 37.
23. Control only gets here from Step 20 when the requested

records are found. It continues at Step 24 . ..
24. . .. which changes the text colour to the highlight . . .
25 displays the list of records marked for the chop . . .
26. . .. and switches the highlight off again.
27. Closes the I F . . . ELSE .. . ENDIF opened at Step 20.
28. Pauses the script and gives the user a last chance to decide

whether or not to delete the records.
29. Tests for the WARN condition - returned by ASK if "Y" is

entered. If WARN is found control continues at Step 30;
otherwise it jumps to Step 36.

30. Displays an information message. The start and end numbers
are filled in when the script runs of course.

3 1. We've already met something like this before - at Step 16. This
creates the same edit macro once more (although the original
would probably do just as well). Assuming the previous
values, DelMacl reads:

m

m

Mastering AmigaDOS Scripts

Sn ; p ;

32. De1Mac2 is simpler though, this just adds a single letter.
d

33. Creates a new version of DelMac which now looks like this:
Sn ; p ;

4d

Which finds the first line (records) we are interested in and deletes
that and the next three . . .
34. ...here as temporary file .. .
35. . .. which replaces the original database here.
36. Closes the IF ... ENDIF construct opened at Step 29.
37. Marks the skip point which is used by the error handler. Note,

when EXECUTE is called, the failure level is reset back to 10
(crash on ERROR). This line is ignored if execution reaches
here normally from Step 36.

38. Calls the main database module.
39. Marks the skip point called when the user has not entered any

values - see Steps 6-7.
40. Displays the single line prompt ...
41. .. . and executes the module in interactive mode so the values

can be retrieved correctly.

Listing

1 . . key start , number

2 . . def number 1

3. . def start SKIP

4. . bra {

5. . ket }

6 . if " {start} " EQ " SKIP "

7 . skip restart

8. endif

9. eval {number} - {start} to ENV:ThisMany !format " %n "

10. eval >NIL: <env:ThisMany op=+ value2= 1 to T:Tmp !format
"%n" ?

11. copy T:Tmp to ENV:ThisMany

12 . if >NIL: <ENV:ThisMany VAL NOT GT 1 ?

13 . setenv ThisMany 1

1 4 . endif

1 5 . failat 1 1

1 6 . echo >T : De1Mac1 " { start} n ; p ; "

1 7 . echo >T : De1Mac2 " (? ; n ;) * nST0P "

1 8 . j oin T : De1Mac 1 ENV : ThisMany T : De1Mac2 AS T : DelMac

1 9 . edit s : Data with T : DelMac ver=T : DelRec

20 . if error

2 1 . echo " Record (s) not found "

22 . SKIP ReRun

23 . else

24 . echo " * e [33m"

25 . type T : DelRec

26 . echo " *e [3 1 m "

27 . endif

28 . Ask " * nDelete record (s) y / N ? "

29 . if warn

30 . echo " Removing Records from : { start} to { number}
*nPlease wait . . . "

3 1 . acho >T : De1Mac1 " { start } n ; p ; "

32 . echo >T : De1Mac2 " d "

33 . j oin T : De1Mac 1 ENV : ThisMany T : De1Mac2 AS T : DelMac

34 . edit s : data to T : DelData with T : DelMac

35 . copy T : DelData to S : Data

36 . endif

37 . LAB ReRun

38 . execute s : database

39 . LAB restart

40 . echo " Delete record # : " noline

4 1 . execute >N I L : s : DelBlock ?

DelBlock

m

Mastering AmigaDOS Scripts

-

DELF
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

DELF <fi l e l pattern>

As DELETE

na

V2+

DELQ

Al ias

Short form for DELETE

ALIAS DEL DELETE >N I L : [] FORCE

This a l ias de l e tes a l i s t of fi l e s l i k e DELETE, bu t does no t report
anyth i ng back to the conso le and wi l l a l so de le te protected f i l e s .
U s e th i s w i th extreme caut ion ' Examp le :

1 >DELF #? ALL

DEL

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

DEL <name or pattern>
na
na
V l .3+
DELQ, DELF
Alias
Short name for DELETE
ALIAS DEL DELETE

Mastering AmigaDOS Scripts

This alias is not included for padding (as it might seem to be) it has
a very serious us. DEL is the MS-DOS command for DELETE and MS
DOS users will feel much more at home with AmigaDOS if the
command works like this.

m

Mastering AmigaDOS Scripts

m .

DOCTOR

Synopsis:

Requires:

See also:

Type:

Brief:

Definition:

Description:

DOCTOR
V l .3
DISKDOC script
Alias
Open a new CLI window with DiskDoctor
N EWCL I W INDOW CON: 0/3 /500/100/DiskDoc
FROM S:DiskDoc

This command is listed here for the sake of completeness. It does
nothing on its own apart from launching the DISKDOC script with a
window. The clever bit is this:

NEWCLI WI NDOW CON:0/3/500/100/DiskDoc FROM S:DiskDoc

This command performs several functions at once.
• It opens a new CLI independent of the current Shell so
DISKDOCTOR can be run from here.
• It defines a new window for the CLI. In practice this is tucked
away in the top left of the screen with enough room for most
messages to be displayed. The idea is to stop it getting in the way -
but you can position it to your own liking. For the sake of beginners
only, here's a brief explanation of what it means:

WINDOW Device:X/Y/Width/Height/Name

Device: CON: or NEWCON:

X: X position . Range O to 639 (Topaz 80)

Y: Y position . Range O to 255 (PAL) or O to 1 99 (NTSC)

Width: Width of window in pixels - practical range 50 to 639

Height: Height of window in pixels - practical range 50 to
255

• It starts DISKDOCTOR. The command is run from the script
explained under DISKDOC using the FROM argument.

DRS
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

D RS

V2 .0+

VLS. DYS

Al ias

Mastering AmigaDOS Scripts

Check an ass ignment without removing i t

ALIAS DRS ASSIGN D I RS

D R S i s a q u i c k way to l i s t a l l the cu rren t d i rec tory ass ignments .
Th is a l ias u ses ASS IGN i n such a way tha t the dev ice and volumes
l i s ts a re suppressed .

m

m

Mastering AmigaDOS Scripts

DVS

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

DYS
na
na
Y2+
YLS, DLS
Alias
Check an assignment without removing it
ALIAS DYS ASSIGN DEYS

DYS displays the names of the current devices attached to the
system using ASSIGN. The volumes and directory l istings are
suppressed.

Mastering AmigaDOS Scripts

FindData

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Line-By-Line

[EXEC UTE) F i nd Da ta [a l) . . . [ad) [d ata=search s tr ing)

a l , a2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a9 ,aa ,ab ,ac ,ad , d a ta/k

S :

V l . 3+

Database

Scr ip t

F ind data module for t h e Database su i te

1 . T h i s key can c o l l e c t u p t o 1 3 i t e m s o f data , a l though i t w i l l
u s u a l l y o n l y p i c k one o r t w o . T h e fi rs t i te m fou nd i s d u mped
in <a l > , t h e next in <a 2 > a n d so o n .

2 . C o l l e c t s the d ata together i n a s i ng le variab le - <data> .

3 . Tes t s fo r t he p resence o f a n a rgu m e n t s t r ing . You m ay wonder
why the c o l l ec ted variab le , <data> wasn ' t used h e re a n d t ru e
e n o u g h t h e re a s o n i s n o t i m m e d i a t e l y a p p a re n t . I n fa c t ,
<d a ta> i s a c o l l e c t i o n o f variab les separa ted b y s paces . I f n o
d a t a w a s s u p p l i e d , < d a t a > w i l l s t i l l c o n t a i n s p a c e s , t h u s
foo l i n g I F i n t o t h i n k i ng some data has i n fac t been supp l i ed .
T h i s i s n o t t r u e o f <a l > b e c a u s e a l l t h e e x c e s s s p a c e s are
r e m o v e d by EXEC U TE's c o m m a n d l i n e p a r s e r. Or in o t h e r
word s , don ' t wo rry, i t j u s t works t ha t way.

4 . C o n tro l reac h e s h e re i f a b l a n k c o m m a n d l i n e was s pec i fi e d
a n d i m med iate ly j u m p s t o S tep 1 9 .

5 . C l oses the I F . . . E N D I F con s t ru c t o p e ne d a t S tep 3 . C o ntro l on ly
r e a c h e s h e r e w h e n a c o m m a n d l i n e s e a r c h s t r i n g w a s
s u p p l i e d .

6 . T h i s i s a b i t o f extra re d u nd a ncy. I t p reve n t s the scr ip t fro m
c r a s h i n g i f t h e d a ta fi l e i s m i s s i n g fo r s o m e rea s o n . I n t h i s
case c o n t ro l j u m p s to S t e p 1 1 : ordi nari ly i t proceeds t o Step 7 .

7 . U s i n g t h e search c o m m a n d , t h i s a t t e m p t s to locate t he search
s t r i n g w i t h i n t h e d a t a f i l e . (N o t e : t h e s e a r c h s t r i n g i s
surro u n d e d by q u o t e s t o p revent a b l a n k s t r ing c o n fu sing the
p a r s e r.) I f m a t c h i n g d a t a i s fou n d , i t i s d i s p l a y e d w i t h a
c o rrespond i n g record nu mber and t h e WAR N flag i s c l ea re d . I f
n o matches are fou n d . the WARN flag i s se t , wh ich i s tes ted . . .

8 here . I f t h e searc h s t r ing was fou n d c o n t ro l j u m ps t o S tep
1 0 . O t h e rwise i t c o n t i n u e s a t S t e p 9 a n d . . .

m

m

Mastering AmigaDOS Scripts

9. . . . prints a short message to the effect the search string could
not be found. The search string is enclosed in escaped quotes
to show the exact contents of the search.

10. Closes the IF . . . ENDIF construct opened at Step 8.
1 1. Closes the IF ... ENDIF construct opened at Step 6.
12. Is the jump point used when an empty command string is

found at Step 3. If control reaches here from Step 1 1, the
command is ignored.

13. Inserts a blank line (*n) and waits for the user to enter Y or
press Return. Entering Y <Return> sets the WARN flag; it is
cleared otherwise.

14. If the user entered "Y", control resumes at Step 15, otherwise
it jumps to Step 16.

15. The user wants to execute another search, so control is
passed to Step 19.

16. If control gets here from Step 15, it branches to Step 18;
otherwise it continues at Step 17.

17. Control only reaches here if the user did not enter Y at step
14. In other words, they want to return back to the main
program.

18. Closes the IF ... ELSE ... ENDIF construct opened at Step 14.
19. Marks the jump from Step 15.
20. Displays the command prompt. This is only displayed when a

search string was not specified OR a successive search has
been requested.

21. Calls the FindData script again recursively and places it in
interactive mode. The command line argument string is sunk
to N IL and not displayed.

Listing

1 . . key a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad,data/k

2 . .def data "<a1> <a2> <a3> <a4> <a5> <a6> <a7> <a8> <a9>
<aa> <ab> <ac> <ad> "

3 . i f " <a 1 > " EQ

4 . s kip F i n dOne

5 . end if

6 . if e x i s t s S : Data

7 . search S : Data <data>

8 . if warn

9 . echo " * " < data> * " not f o un d "

1 0 . endif

FindData

1 1 . endif

1 2 . LAB again

1 3 . ask " * nSearch again y / N "

1 4 . i f warn

1 5 . s kip FindOne

1 6 . else

1 7 . execute S : database

1 8 . endif

1 9 . LAB FindOne

20 . echo " search string : " noline

2 1 . execute >NI L : s : FindData ?

m

m

Mastering AmigaDOS Scripts

Database

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Database

S :

V

Findata, AddData, SortData etc
Script
The main menu module for the Database

In the last few years digital diaries have sold in ever-increasing
numbers (the idea for this script hit me late one night when my
diary's battery expired). Since you already have a computer you
may as well use it, but "real" database programs are rarely cheap
and usually too powerful for simple applications - such as a
telephone book. The flat-file database described here is crude by
commercial standards but boasts the following features:

• Completely menu driven
• Sort records on any record column
• Search and display a record on any sub-string
• Database can be edited directly with any text editor (or ED)
• Delete any record group
• View any group of records
• View entire database
• Outputs to printer
• Compatible with AmigaDOS 2
• Imports and exports to and from Superbase

Quite impressive for a program written entirely in the machine's
DOS batch language I think you will agree. But even if you have a
database, this application will show you how to control many parts
of AmigaDOS in previously unexplored avenues.
The entire program (actually it's a series of modules) is much too
large to explain in one chunk; instead, I 've divided it over the
several scripts as each module is added. All the scripts are
compatible with AmigaDOS 2 and probably AmigaDOS 3, but they
do not take advantage of extra facilities in the new systems: such as
the /f find argument

DataBase

The Menu System

The ma in part of AmigaDOS Database i s i t s front -end menu system.
Th i s a l l ows anyone w i th l i t t l e o r no knowledge of AmigaDOS to
ope rate the system without fuss . Al l commands can be operated by
se l e c t i ng the fi r s t (h i gh l i gh ted) l e t t e r and press ing return " P" for
p r i n t : "S" for sort and so on . However, many commands a lso take
parameters . View for i nstance takes one or two parameters as the
s ta rt i ng and fin i sh i ng numbers . These can be supp l i ed as part of
the command l ine , for i n s tance :

Command: V 2 5

d i sp l ays records 2 to 5 i nc l u s ive . However i f a parameter i s no t
supp l i ed the modu le w i l l p rompt for i t automat ica l ly. For i n s tance :

Command V

View record #:

The t a s k o f d e c i d i ng w h i c h parame te rs are req u i re d i s h a n d l e d
part ly b y the m a i n m e n u module and part ly by t h e v i e w modu le .

Database Menu

Line-By-Line

l . T h i s i s t h e key to t he ma i n m e n u , a l t h ou g h u n d e r normal
c i rc u m s tances you won ' t even see i t . Database is normal ly
s t a r t e d w i t h o u t p a r a m e t e r s so i t d i s p l a y s i t s m e n u .
E x p e r i e nc e d u s e r s have t h e o p t i o n o f g i v i n g a c o m m a n d
d i rect ly l i ke t h i s :

1>DATABASE P ; print database now

- or-

1>DATABASE S 20 ; Sort database from column 20

The key b reaks down in to t h ree sec t ions .

Command: The single letter command .

d 1-d9: Nine data elements (or arguments)

Option: A reserved variable

2 - 3 . S e t t h e B RA a n d K ET c h a ra c t e r s t o { a n d l r e s p e c t i v e l y
(becau se I happen t o l i ke them l i ke that) .

m

-

Mastering AmigaDOS Scripts

4. Sets the Option variable to the contents of d l . . .d9. This is
reserved for the FindData and AddData modules described
later.

5-7. This is provided as a time saver. Under normal circumstances
when Database is launched, the Command variable will be
empty, that is equal to '"' and this causes the program to skip
immediately to the menu starting at Step 4 1.

8. I f the command variable equals "A" (add) control continues at
Step 9, otherwise it continues at Step 11.

9. Control only reaches here if the Add selection has been made.
This line deletes a temporary file created by the AddData
module. Re-direction to N IL: is used to suppress the error
message when the file does not exist. (This could be tested
with I F EXISTS .. . but that's just overkill.)

1 0. Calls the AddData module directly passing any automatic data
entered by the user. (Automatic data is collected in the Option
variable at Step 4).

1 1. Marks the end of the AddData control block. Control only
reaches here if the test at Step 8 was not successful.

12. Opens the DelData block and tests for the delete option. If the
key has been pressed, control resumes at Step 13 : otherwise it
branches to Step 1 4.

1 3. Calls the DelData module passing up to two parameters
collected in D l and D2.

14. Control only reaches here if the test at Step 1 2 was
unsuccessful and continues directly at Step 1 5.

15- 17. Open the ViewData block. This works just like DelData
described above.

18-20. Open the FindData block. These work like AddData,
passing any automatic data in the Option variable.

2 1-23 . Open the ED block. The ED screen editor is opened. Note
that E D is called directly within the script unlike most
commands which execute a new script.

24-26. Open the SortData module. One optional automatic
parameter is passed in D l

27. Open the List by number module if "L" was passed as a
command parameter.

28. Copies the entire database to a file in the Ram disk, but adds
line numbers to each record. This is a good way to view and
edit blank records.

29. Displays the temporary data file a screen at a time.
30. Terminates the List block. Control will continue from here

when MORE exits.

Database

3 1-33. Operate the PrintData block. Control does not resume at
Step 33 unless the test at Step 3 1 is unsuccessful.

34-40. Looks after the Quit section, terminating the program
nicely. The block 3 5-39 just stops users from accidentally
exiting. If they enter N at the prompt, execution falls off the
end of the program and the script runs itself again.

4 1-5 1. D isplay the menu. Several escape sequences are used
here, viz:

*e (I Tabulate

*e (7m Inverse video

*e (Om Normal video

*e (33m Foreground orange (blue in AmigaDOS 2)

*e (3 1m Foreground white

52. D isplays the command prompt. Note the use of the NOLINE
switch to suppress the automatic line feed character.

53. More trickery. EXECUTE is used to call the Database module
and display its command line in interactive mode; which is
also suppressed by the re-direction to NIL:. The result is you
can enter commands at an invisible prompt!

Listing

1 . . key Command , d1 , d2 , d3 , d4 , d5 , d6 , d7 , d8 , d9 , option/k

2. . bra {

3 . . ket }

4 . . def option " {d1} {d2} {d3} {d4} {d5} {d6} {d7} {dB}
{d9 } "

5 . if " {command } " EQ " "

6 . SKI P menu

7 . Endif

8 . if " {command} " EQ "A"

9 . delete >NIL: T:Temp

10. execute S:AddData {option}

11. endif

12 . if "{command } " EQ " D "

13 . execute S:DelBlock {d 1} {d2}

14 . endif

15 . if "{command } " EQ " V "

16 . execute S : ViewBlock {d 1} {d2}

17 . endif

18. if " {command } " EQ " F "

m

m

Mastering AmigaDOS Scripts

1 9 . execute s : FindData { option }

20 . endif

2 1 . if " { command} " EQ " E "

22 . ED s : Data

23 . endif

24 . if " { command } " EQ " S "

25 . execute S : SortData { d 1 }

26 . endif

27 . if " { command} " EQ " L "

28 . TYPE >RAM : data{$$} S : DATA OPT N

29 . MORE RAM : data{$$}

30 . endif

3 1 . if " { command} " EQ " P "

32 . execute S : PrintData

33 . endif

34 . if " { command} " EQ " Q "

35 . ASK "Are you sure y / N? "

36 . if warn

37 . echo " Thanks for using AmigaDOS DataBase*nPlease come
again . . . "

38 . QUIT

39 . endif

40 . endif

41 . LAB Menu

42 . echo " * e (33mAmigaDOS Database* n*e (I (c) 1 992 Mark
Smiddy *e (3 1 m* n "

43 . echo " * e (7m*e (I (A) * e (Omdd a record "

44 . echo " * e (7m*e (I (D) *e (Omelete records [Start @ #) [End
#)] "

45 . echo " * e [7m*e [I (V) *e [Omiew records [Start @ #] [End @

46 . echo " * e (7m*e [I (F) *e [Omind a record [Search string) "

47 . echo " * e (7m*e [I (E) *e [Omdit database directly "

48 . echo " *e [7m*e [I (S) *e [Omort database [Column #] "

49 . echo " * e [7m*e [I (L) *e [Omist entries by number "

50 . echo " * e [7m*e [I (P) *e [Omrint database "

5 1 . echo " * e [7m*e [I (Q) *e [OmUI T "

52 . echo " C ommand : " noline

53 . execute >NI L : s : database ?

@

) "

Mastering AmigaDOS Scripts

PrintData

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] PrintData
None
S :

V l . 3+

Database, FindData, AddData, SortData etc
Script
The printing module for the Database

This script supports the main Database engine described under
DATABASE and provides simple print facilities. It should not be
executed directly.

Line-by-line

1. Pauses the script and waits for you to press return. The
WARN/OK return from ASK is not used at this point, but the
command provides a useful pause.

2. Gives an opportunity to set the Printer preferences. I f "Y" is
entered before pressing <Return> a WARN condition is
returned to AmigaDOS.

3. Checks the WARN condition set at Step 2. I f the user wants to
set the printer preferences, the WARN condition is active and
control continues at Step 4 ; otherwise it jumps to Step 5.

4. Calls the System preferences . Note that if you are using
AmigaDOS 2 or above, you should set the path to activate the
PRINTER tool: usually "Prefs/Printer".

5. Terminates the IF ... ENDIF construct opened at Step 3.
6. Creates a new file in the Ram disk starting with an opening

line as follows: "AmigaDOS Database on:". Note use of the
NOLINE switch to prevent ECHO sending a newline character.
The filename created depends on the current Shell number:
appended automatically by the use of "{$$}".

7. Adds the current date and time to the headline string in the
"Title" file.

8. Creates a new file by joining the contents of the header string
to the data file and copies the whole lot to a new file in RAM,
"Printfile#".

9. Raises the default failure code to 1 1. This is support for Step
10 below.

m

Mastering AmigaDOS Scripts

10. Copies information to the printer device (PRT:) and prints it
using the default settings. Note that PRT: i s used in preference
to PAR: to ensure the correct printer i s used. Thi s also ensures
that the correct margins and other preferred modes are used.
If the command fails because the printer is busy (or not
connected) it returns an ERROR condition and error message.
The message i s absorbed to NIL: and never appears and the
script i s not halted because the failure level has been rai sed
to 1 1.

1 1. Tests i f the COPY command (in effect, print) failed. If thi s is
the case, control continues at Step 12. If everything worked
according to plan, control jumps to Step 13 - lucky for us.

12. Prints a helpful mes sage. Thi s technique (even though i t's
stating the obvious) i s preferable to just ignoring the fact, or
s imply crashing the script.

13. Terminates the IF . . . ENDIF construct opened at Step 1 1.
14. Re-sets the failure level back to its default, 10.
15. Re-starts the DATABASE main menu program.

Listing

1 . ASK " Position paper , ready printer and press Return "

2. ASK " Do you want to check/alter your printer setup? "

3. if warn

4. SYS : Prefs/preferences printer
Prefs/Printer

5. endif

AmigaDOS 2 use

6. ECHO >RAM:title{$$} " AmigaDOS Database on : " noline

7 . DATE >>RAM : title{$$}

8 . JOIN RAM : title{$$} S:Data AS RAM:Printfile{$$}

9 . FAILAT 11

10 . COPY >NIL: RAM:PrintFile{$$} to PRT:

11 . if error

12. echo " Your printer is not responding ! *nPlease check
* " On- Line* " is on ; paper loaded ; and cable connected "

13 . endif

14 . FAILAT 10

15. Execute S : DataBase

Mastering AmigaDOS Scripts

SortData

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) SortData [Col = Column)
Col
S :

V l . 3+

Database, AddData, FindData etc
Script
The sort module for the Database

If this database were a commercial application (which it isn't) you
would expect to find indexes removing the need to sort data.
However, since this is a database writen purely in AmigaDOS the
need to sort data may arise, and therefore, that's what this module
is all about.

Line-By-Line

1. Defines the key for this script. Only one argument is required
- the start column for the sort. This is provided as an option:
those of you setting up fixed width fields will be able to sort
on a field using this.

2-3. Re-define bra and ket to { and }.
4. Sets a default value of 1 to the starting column number. This

is not absolutely necessary, but provided for example.
5 . Displays the progress message - this is necessary to show

something is going on when the module is executed from the
main menu.

6. Raises the failure level above ERROR (10) in anticipation of the
next command.

7. Temporarily raises the current stack to 16000 bytes. Re
direction to NIL: is used to suppress any messages. There are
a couple of things you might want to consider here:

• The stack size determines how large a file can be sorted (the
sort function is recursive and requires a lot of stack space).
Stack overflow will result in the machine vanishing into the
land of the Guru and this is unpleasant, although it will not
affect the database's security.

• The amount of stack given should be O K on 5 12K or l M
machines, if you find the command fails (see below) reduce
the amount or, if you need more stack, increase it.

m

Mastering AmigaDOS Scripts

• It is possible to add another option to the command line here:
STACK/K. You might want to do this as an experiment and
optionally define the stack space when the sort option is
selected from the main menu.

8. If the command at Step 7 fail s because of low memory
("Insufficient free store" in AmigaSpeke) the ERROR flag is
returned and control continues at Step 9, otherwise it jumps
to Step 1 0. (This would normally stop the script in its tracks,
but since the Fai !At level has been increased to 1 1 this
command can execute.)

9. Lets you know what's happened and why the sort operation
cannot progress.

10. If execution reaches here from Step 9 it jumps to Step 1 3 ;
otherwise it continues below.

1 1 . The sort i s carried out by AmigaDOS using the options
defined by the user. The sorted file is sent to data{$$} in the
Ram disk. This could. just as easily, have been T:data{$$}.

12. Assuming there were no cock-ups in the sort, the sorted file is
copied from RAM to disk. (You may wish to add some extra
safety measures here - such as viewing the sorted file with
MORE before committing yourself).

1 3. Closes the IF . . . ELSE. . .ENDIF construct opened at Step 8.
14. Resets the Fai!At level back to its default setting of 1 0.
15. Resets the stack back to 4000 bytes. (You may want to change

this if you usually work with a larger stack.)
1 6. Calls the main database module.

Listing

1 .
2 .

3 .

4 .

5 .

6.

7.

8.

9 .

. key Col

. bra {

. ket }

. def col

ECHO " Sorting* nPlease wait . . . •

FAI LAT 1 1

STACK >NI L : 1 6000

if error

echo " Out of memory._*nCan ' t sort , sorry "

1 0 . else

1 1 . SORT S : data RAM : data{$$} COLSTART= {col }

1 2 . COPY RAM : data{ $$ } S : data

1 3 . endif

1 4 . FAI LAT 1 0

1 5 . STACK 4000

1 6 . execute s : database

Mastering AmigaDOS Scripts

ViewBlock

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] ViewBlock [start=] [number=]
start,number
S :

V l . 3+

Database, DelBlock, FindData
Script
The view data module for the Database

This module is an integral part of the AmigaDOS database and is
not usually called from Shell.

Line-by-Line

1. The key for this script takes the two arguments representing
the start record number and the number of records to display.

2. Ensures the module always displays at least one record by
defaulting Number to 1.

3. Makes sure that if the module is called without correct
arguments, the Start number contains something.

4-5 : Re-set the bracket characters to { and }.
6. Tests if the Start variable contained something when the

module was called. If it did, control jumps to Step 7 ;
otherwise it jumps to Step 8.

7. Jumps to Step 30 and terminates the script normally.
8. Terminates the IF . . . END IF construct opened at Step 6.
9. Determines how many records will be printed and stores the

result in the global variable "ThisMany".
10. This 1 . 3 compatible operation increments the value in

ThisMany by 1 and stores the result in T:Temp. AmigaDOS 2
users can replace this calculation and line 1 1 with the
following:

EVAL $ThisMany + 1 TO ENV : ThisMany

11. Re-sets the value in ThisMany. This line is not required if you
have made the release 2 modification noted at Step 10.

12. In a 1. 3 compatible fa shion, this checks if the value in
ThisMany is less than I . Control continues at Step 13 if it is
and Step 14 otherwise. The release 2 version of this line is as

1111

Mastering AmigaDOS Scripts

follows:
if VAL $ThisMany NOT GT 1

1 3. Sets the global variable ThisMany to 1 .
14 . Terminates the I F . . . ENDIF construct opened at Step 12.
15. Raises the failure level to 1 1 .
16. Creates the first part of an EDIT macro which will step Start

records in. I f Start=3, this macro file will read:
3n ; p ;

17. Creates the second part of the EDIT macro. This file expands
as:

(? ; n ;)

STOP

18. Joins the two macro files with the contents of ThisMany
sandwiched in between. The final macro, ViewMac looks like
this:

3n ; p ;

4 (? ; n ;)

STOP

19. Extracts the required records from the data file sending the
result to a file. You could send the result straight to screen if
you prefer.

20. ED IT produces an ERRO R condition if the line numbers -
records in this application - did not exist in the file. ERROR is
trapped by the raised fail level (Step 15). If this test proves
false, control jumps to Step 23: otherwise it continues at 2 1 .

2 1 .

22.
23.

24.
25.
26.
27.
28.
29.
30.
31.

Displays a useful error message. Hopefully, this was because
you entered a dodgy Start or Number value.
Jumps straight to Step 28 and exits back to the main menu.
Control only gets here when the EDIT command has produced
a workable file.
Changes the current console screen colours . . .
Displays the file. You might prefer to use MORE here.
Re-sets the console colours.
Terminates the IF . . . ELSE . . . ENDIF construct opened at Step 20.
Marks an entry point for error handling.
Re-calls the main DATABASE program.
Marks an entry point for special handling.
Displays a prompt for the user to enter a number and . . .

ViewBloclc

32. ...the module calls itself. This allows a number to be entered
interactively.

Listing

1 . . key start , number

2 . . def number 1

3 . . def start SKI P

4 . . bra {

5 . . ket }

6 . if " { st art } " EQ " SKIP "

7 . s kip restart

a . end if

9 . eval { number} - { start} to ENV : ThisMany !format "%n "

1 0 . eval >N I L : <env : ThisMany op=+ value2= 1 t o T : Tmp !format
"%n il ?

1 1 . copy T : Tmp t o ENV : ThisMany

1 2 . if >NI L : < ENV : ThisMany VAL NOT GT 1 ?

1 3 . s etenv ThisMany 1

1 4 . endif

1 5 . fai lat 1 1

1 6 . echo >T : V iewMac1 " { start } n ; p ; "

1 7 . echo >T : ViewMac2 " (? ; n ;) *nSTOP "

1 8 . j oin T : ViewMac 1 ENV : ThisMany T : ViewMac2 AS T : ViewMac

1 9 . edit s : Data with T : ViewMac ver=T : ViewRec

20 . if error

2 1 . echo " Record (s) not found "

22 . SKIP ReRun

23 . else

24 . echo " *e [33 m "

25 . type T : V iewRec

26 . echo " * e [3 1 m "

27 . endif

28 . LAB ReRun

29 . execute s : DATABASE

30 . LAB restart

3 1 . echo " View record # : " noline

32 . execute >N I L : s : ViewBlock ?

Mastering AmigaDOS Scripts

DCopy

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE]DCOPY<[pat=]dirlpattern>
[SINCE=<date>] [UPTO=<date>]
.key pat/a ,dest/a,opt l ,since/k,upto/k
S :
V l .3+
CCOPY
Script
To copy files (optionally by date) without failing

This is a modified version of the DEL script. It will not overwrite
"delete protected" files in the destination directory, but it will not
stop either. An extra couple of lines have been added to ensure that
the destination directory exists - if not, the directory is created -
then it calls itself recursively. Recursion is not actually required for
this example but this shows simply how the method works.

Line-by-Line

1-3. Sets the key and other script parameters. Note that source and
destination parameters are required here.

4. Sets the default "since" date to the earliest supported by the
Amiga's RTC.

5. Sets the default "upto" date to the current date. This should
be used with care if you don't have a RTC (or it has not been
programmed correctly). A very late date such as O 1-Jan-99
might be a better idea.

6. This tests to see if the destination directory actually exists for
this invocation. If it does the script carries on as normal, if
not it jumps to Step 10.

7. Creates a file "copy" using the parameters for date and time
defined by the user. This file is a script which contains the
path of all files listed and a copy command for each one.
Typically, a few lines of the script might look like this:

COPY " Workbench 1 . 3 : C / Dir " TO RAM : Clone

COPY " Workbench1 . 3 : C / Copy " TO RAM : Clone

COPY " Workbench 1 . 3 : C / List " TO RAM : Clone

8. R a ises the fa ilure level to above that returned by a ll
AmigaDOS commands. The script is now unstoppable.

DCopy

9. Executes the list of commands and effectively performs the
copy operation. You might like to make COPY resident before
this point and remove it afterwards to speed the operation.

10. If control reached this point from Step 9, it jumps to the end
of the script : otherwise it continues at Step 1 1. During a
recursive phase this provides the way out.

11. This sets the fail level to WARN. There's a reason for this ...
12. . . . because if the destination directory cannot be created the

script must exit. If MAKEDIR cannot create the directory
because "object not found" it returns ERROR (v l .3) or WARN
(v2). This could be tested but it's faster to crash the script.

13. This calls the script a second time recursively with the
original parameters. There are other ways to do this (loops for
instance) but this one best serves the purpose of the
demonstration. (Incidentally, recursion is the only way to
jump backwards in AmigaDOS 1.2')

1 4. Closes the IF ... ELSE . . . ENDIF construct opened at Step 6. ENDIF
is required for correct recursion.

Listing

1 . . key pat/a ,dest/a , opt1 , since/k , upto/k

2 . . bra {

3 . • ket }

4 . . def since 01 - Jan - 78

5 . . def upto Today

6 . if exists {dest}

7 . list >T:copy{$$} {pat} since={since} upto={upto} F ILES
LFORMAT " COPY *" %s%s* " TO {dest} {opt1} "

a . failat 21

9 . execute T : copy{$$}

10 . else

1 1 . failat 5

1 2 . makedir {dest}

1 3 . execute DCOPY {pat} {dest} {opt1} since={since}
upto={upto}

14 . endif

m

Mastering AmigaDOS Scripts

DEL

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] DEL <[pat=]filelpattern> (QUIET] [ALL]
[FORCE] [SINCE=<date>] [UPTO=<date>]
pat/a.opt l ,opt2 ,opt3, upto/k,since/k
S:
V l . 3 +

Script
Delete files without failing. Optionally window to a
date.

This is a very simple script which gets around one of those
annoying little problems - pattern matched deletes which fa i l when
they encounter a protected file or a directory. Much the same effect
is possible using SPAT incidentally, but this script is designed for
the job and does it better. Also, this script adds the option of a
"date windowed" delete. Refer to LIST to see how to use the SINCE
and UPTO options.
With little modification this script could be used to copy files by
date in the same way that they are deleted.

Line by line

1 : The key used here is a simple one because this is, in essence,
a simple script. The pattern is required and can be any valid
AmigaDOS wildcard. Of the other three switches, only "optl "
is usable in v l .3 and 1 .3.2. This is the QUIET switch. Note:
The order of the arguments is important it could be fixed later
in the script - but this is a simple example. UPTO and SINCE
work just like normal keywords allowing you to window the
delete.

2-3. Re-define < and > to { and }.
4. Sets the default starting date to 1 st January 1978 - no files

can exist before this date. This keyword must have a default
value since it is a keyword in LIST.

5. Sets the other part of the window to Today's date. Like SINCE,
this is also treated as a keyword by LIST so it must have some
value. It is possible for files to exist in the future (if you don't
have a real time clock) these should either be deleted
manually or the option removed from the script. Better still,
get a RAM expansion with a clock.

DEL

6. This is the crucial part in this script. LIST creates a file in T:
called DELETE<n> where n is the current CLI number, making
it unique to this invocation. The pattern used for this list is
retrieved from the pattern the user entered. SINCE and UPTO
provide a date window for the files. If not supplied, all files
are listed. Note: The files switch prevents L I ST from
displaying directories. The escaped quotes surrounding %S%S
allow spaces and other odd characters in filenames and stops
them interfering with the command line. The output from this
command could look something like this:

DELETE " RAM : Temp1 "

DELETE " RAM : Test"

DELETE " RAM:Space file"

DELETE " RAM : Work "

• In AmigaDOS 2 and above, the ALL and FORCE switches come
into effect here. These must be used with great care - you
have been warned!

7. Sets the failure level to 21. Generally a bit risky - but it's OK.
8. Executes the newly created script - deleting the files one-by

one. If the files are protected against deletion the failure level
of 21 prevents the script from stopping.
With little modification this script could be used to delete
empty directories or copy files by date in the same way that
they are deleted. The copy script needs some extra work -
which we'll see later on, for now, here is the amended line to
delete directories:

Listing

1 . . key pat/a , opt1 , opt2 , opt3 , upto/k , since/k

2 . . bra {

3. . ket }

4 . . def since 01- Jan- 78

5 . . def upto Today

6 . LIST >T : delete{$$} {pat} {opt2} since={since}
upto={upto }files !format " DELETE * " %s%s*" {opt1 } {opt3}"

7 . FAILAT 21

8. EXECUTE T: delete{$$}

am

Mastering AmigaDOS Scripts

DIRS

Synopsis:

Template:

Path:

Requires:

See also:

Type:

[EXECUTE) DIRS
none
S:
V l .3+
VOLS
Script

Brief: List just the current directory assignments

Line-By-Line

1. Sends the current assignment list to a temporary file. Note the
use of <$$> to prevent multi-tasking clashes.

2. Prints a heading of what is about to happen ...
3. . . .and displays (by searching for) all those names with two

spaces. This is only true for the current logical directory
assignments, FONTS: , ENVARC: and so on.

Listing

1. ASSIGN >T : temp<$$>

2. ECHO " Directories : "

3. SEARCH T : temp<$$> " " nonum note " two spaces"

Mastering AmigaDOS Scripts

DiskDoc

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] DISKDOC
none
S:
V l .3 - 1 .3.3
DOCTOR (Alias)
Script/Alias combined
Multi-task DISKDOCTOR in the background.

Diskdoctor cannot normally be run in the background, but there is
more than one way to skin a command. This solution uses two
techniques - an alias and a script. The script will do the work of
running DISKDOCTOR and the alias will run the script.
Add this line to the Shell-startup script (using ED S:Shell-startup) . A
detailed explanation appears in the definition of this ALIAS proper.

ALIAS DOCTOR NEWCLI WI NDOW CON : O / 3 /5OO / 1 OO / DiskDoc FROM
S : DiskDoc

Now close the Shell and re-open it to ensure the alias is defined and
type DOCTOR to get started.

Line-By-Line

1 Raises the failure level to 2 1 - beyond anything generated by
AmigaDOS commands. In other words, this script cannot be
stopped by any errors!

2 Executes D ISKDOCTOR and starts processing drive O - you can
change this to any drive you require. This script cannot take
parameters because it is executed specially from the alias.

3 Checks if D IS KDO CTO R generated a serious error. (For
instance, if there is no disk in the target drive - dfO: in this
case.) Normally the script would grind to a halt at this point
and leave you at the CLI prompt but this has already been
prevented at line 1. Since we have turned normal error
handling off, we must deal with this and that's what this does.
If DISKDOCTOR exits normally, control skips to line 6, if not it
passes to 4 . . .

4 .. . where the error message is printed. Note the ASK command
is used here : it prints the error message and waits for the user
to react - giving them time to study what has happened.

Ill

Mastering AmigaDOS Scripts

5 This line shuts the CLI down and closes its window. This is
the reason for pausing at line 4 - if an error had occurred you
might not get to see it.

6 Terminates the IF . . . ENDIF construct opened at 3. This is used
as a marker by the IF command but it must be present for the
script to handle errors correctly. Control only gets here if
D ISKDOCTOR terminates normally.

7 This behaves like line 4, giving the user chance to react to any
warnings or messages generated by D ISKDOCTOR before the
CLI window is finally closed . . .

8 . . . here.

Listing

1 FAI LAT 2 1

2 D ISKDOCTOR dfO :

3 I F fail

4 ASK " A serious error occurred ! Press Return t o exit "

5 ENDCLI

6 ENDIF

7 ASK " Press Return to exit "

8 ENDCLI

Mastering AmigaDOS Scripts

DRIVES

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) DRIVES
none
S:
Y l .2+
VOLS
Script
Show drives with mounted disks

AmigaDOS's INFO command generates a lot of information. There
are times when much of this is redundant as you just need to know
about the mounted disks and how much space you have left on
them. This script selectively locates the drives with mounted disks
and lists them. Extraneous information on mounted volumes and
empty drives is ignored.

Line-By-Line

1 . This is a dummy key it does not affect the function of the
script from a user's point of view. It must be provided
although we are going to use {$$} (the current CLI number) -
this allows the script to multi-task correctly.
When EXECUTE reads a .KEY argument it copies the script into
a temporary directory either :T (T on the current disk) or T:
(the temporary assignment - usually RAM:T). Then it expands
variables enclosed by bra "<" and ket ">" characters. That is, it
replaces the variables with what the user entered. <$$> is a
special case - it expands to the cal ling CLI number.

2-3. Change the bracket characters to { and }.
4. Asks AmigaDOS to give information (see INFO) on all the

current drives. That includes the external disks. hard drive
partitions and mounted disks. The output from this command
is sent to a file: RAM:t{$$} using output re-direction.

5: This is the all important line. Used here to give experts a clue
as to what's coming and beginners a reason for the command.
The INFO command spits out a lot of information, but every
drive with a disk present is listed with nn% full. SEARCH
homes in on this and, therefore, only lists the drives with a
disk inserted.
Similar code can be used to list mounted disks. All you have

1111

ml

Mastering AmigaDOS Scripts

to do is replace "%" with "[". This causes SEARCH to list the disks
showing [Mounted]. Similarly, you could add a line 6 to perform
this function.
If you are using AmigaDOS l .3 or higher, you can add the NONUM
switch to the end of the line. This suppresses the line numbers
and makes the output more usable.

Listing

. key dummy

2 . bra {

3 . ket }

4 info >ram:t{$$}

5 search ram:t{$$} " % 11

EDS

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

EDS
na
na
V l .3+
FRED
Alias
Edit the startup-sequence

Mastering AmigaDOS Scripts

ALIAS EDS ED S:Startup-sequence

How many times have you mis-typed ED S:Startup-sequence? This
has to be one of the most difficult sequences of letters to get your
pinkies round yet invented, so here's an ALIAS to get you going
quickly.
Example:

1>EDS ; edit the startup-sequence

Mastering AmigaDOS Scripts

EDU
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

EDU

na

na

V2+

FREUD

Al ias

Ed i t the startu p- sequence

ALIAS EDU ED S : User-Startup

This l i t t le a l ias i s a mod if icat ion of the EDS and i s u sed to ca l l ED
for the User- s tartup .

Example:
1>EDU ; edit the user- startup

Mastering AmigaDOS Scripts

EggTimer

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] EggTimer [SOFT I MEDIUM I HARD]
[TIME=<time>]
soft/s, med/s,hard/s, time/k
S:
V2+

Pest
Script
Time a hard-boiled egg!

This script was devised as a bit of light-relief in a weak moment. As
it turns out, it demonstrates some interesting problems:
particularly how to use "/S" in scripts. The program forms the basis
for the Pest idea (although the code is very different) . No checking
is performed to see if you have entered more than one switch (say
SOFT and HARD) or that the time is some ridiculous value. You
might like to try this for yourself.

Line-By-Line

1. Defines the argument template. Notice how this looks just like
a template for a real AmigaDOS command - it's processed in a
very similar way too. In the synopsis described above the
switch options: Soft, Med and Hard are shown as a combined
argument - but only one of these should be supplied at any
time. I t is important to note the AmigaDOS parser will not
check the presence of too many or too few switches. Such
error checking will usually be performed in the script - it has
not been implemented here to keep the listing simple.

2 . Changes the default opening angle bracket character to "{".
3. As Step 2 for the closing bracket.
4-6. Adds EVAL, WAIT and TYPE to the resident list. This pre-loads

the commands from disk and makes them available in system
RAM where they can be executed faster. This technique is also
handy when a disk-based command is used more than once in
a script.

7. This checks if the user has entered a time via the time
keyword. The exact position of this conditional test is not
crucial although it should be placed early in the script. The
exact workings of this line are a little complex, so let's
examine them. Assume you had entered a command line thus:

1111

Mastering AmigaDOS Scripts

1 >EggTimer Time= " 3 mins "

The keyword Time absorbs the argument '3 mins' (quotes are
required to ensure all the text is taken in). This process "sets"
the internal script variable, time to '3 mins' . This can be
picked up at any time by enclosing the name in special
brackets - set as { and } in this script. AmigaDOS reads this
line as:

I F " 3 mins " NOT EQ " "

Similarly, if you do not enter a time keyword, AmigaDOS reads
this:

I F " " NOT EQ " "

This statement checks if the expression on the left does not
match the expression on the right - it seems a little backward
at first , but it will all become clear shortly. If the test passes
(f i r s t ex a m p I e - " 3 m i n s" d o e s n o t e q u a I '"') t he s c r i p t
continues at the next line. If the test fails. it jumps to the
closest ENDIF - at Step 9 in this case.

8. Sets a local environmental variable to the value defined by the
keyword. Remember, this line is only called if a keyword and
argument for "time" is supplied. Variables are like temporary
containers. Local variables are held in system memory making
them convenient for private storage. It is not possible to alter
a local variable directly though and this must be borne in
mind when deciding which type to use.

9. Closes the IF . .. ENDIF construct opened at Step 7. Put simply,
this "command" acts as a place marker to inform AmigaDOS
where to jump to when the "IF" test fails.

10- 1 3. These lines check for the presence of the soft option on
the command line (no pun intended). The position of this test
is crucial in case you supply more than one switch. As
programmed the switches have priority over the keyword and
of those, the hard option is preferred. If soft has been
supplied the variable "time" is set to three minutes - you can
set this lower if you like runnier eggs or higher if you have
oversize ones. An ostrich egg for instance, will take a lot
longer and a much larger pan.

14- 17: Sets the time for an average cooked egg. Typically this
should be enough for a nicely done size three egg with a
slightly hardened yolk. Adjust this timing to your own taste.

18-21: Like the previous brace of options, this sets the timing
for a hard boiled egg - probably enough to kill off any trace of
Salmonella. This switch overrides all others if it is supplied.

2 2 . This pauses the script and waits for the <Return> or <Enter>

EggTimer

key to be pressed. This command is normally used to check
for a yes or no answer, but it does this job just as easily. The
"*n " enclosed in the text forces the Amiga to print a line break
so the text appears split over two lines.

23. Waits for the time determined by the contents of the variable
time. If, for instance, you had asked for a soft boiled egg,
AmigaDOS reads this as:

WAIT 3 mins

You can i nsert the contents of a n y user-def i ned
(environmental) variable by prefixing its name with a dollar
symbol as shown here. The dollar symbol is a special variable
operator and is not affected by the ".DOLLAR" operator. Note:
if a badly formed command line is used, the WAIT statement
will kill the script dead in its tracks. This can be avoided - but
is too bothersome to warrant inclusion here.

24. This line is actually simpler than it looks and uses one of
those little tricks of the trade. EVAL is generally thought of as
being a mere calculator, although it is capable of much more
than that. This line splits into two distinct parts:

EVAL >env:bleepz 7

This calls the comm a n d a n d makes i t write a global
environmental variable. The variable's name is taken from the
text "bleep" plus the number of the Shell process executing
the script. If the process was say 2, AmigaDOS reads the line
as:

EVAL>env : bleep

27. In this form, this would usually send a text string to the
variable - just like ECHO. However, the second part of the
command does something special:

!format " Dinner ' s up . .. %c"

This defines the output string as a message plus a non
printing character code - 7. In ASCII this code is called "BELL"
and is used to flash the screen, or more usually, sound the
terminal bell. (The screen flash is a peculiarity of the Amiga:
under Workbench 3 you can change the simple bleep to a
sampled sound .) In other words, when this variable is
displayed the message will appear and the screen will flash.

25. Sets a global variable "count" to 10. Note how "{$$}" is used to
attach the process number? This makes the name unique so
avoiding clashes if it is executed from several Shells at once.
The actual value determines how many loops will be made
later on.

26. Marks the current position in the script.

Mastering AmigaDOS Scripts

2 7. Prints t h e messag e d e scrib e d at Step 2 4 and fla s h es t h e
screen.

2 8. D ecrements the counte r variable , count. Expand e d this line
might read :

eval 10 - 1 to env : count2

the refore , the variable "count2" receives the result of 9.

2 9. C hecks if the value of "count2" is equa l to zero. If it is (TRUE)
control continu es at Step 30 othe rwise it j umps to the next
E N D I F at Step 3 1 .

30. The script reaches this point when the counte r has reached
z e ro and j umps to Step 33.

3 1 . Te rminates the IF . . . E N D I F construct forme d at Step 2 9.

3 2 . J umps backwards to Step 2 6 - t h e label " loop". B ackwa rd
j umps a re q uite s l ow because the script sta rts f rom t h e
be ginning and works down looking for the l abel. Gene rally
these are placed at the start of a script wherever possible , but
it makes litt le diffe rence h e re.

33. Marks the bail out point for the SKIP command d efined at Step
2 9.

34-3 6. Removes the resident commands f rom the system list
and f r e e s u p memory. This must be d one oth e rwise e a c h
successive invocation of t h e script will add more copies of t h e
commands and waste memory.

Listings

1 . . key soft/s , med/s , hard/s,time/k

2 . . bra {

3 . . ket }

4 . Resident c: Eval add

5 . Resident c: Wait add

6 . Resident c: Type add

7 . if time NOT Ea ""

8 . set time "{time}"

9 . endif

1 0 . if { s o f t } Ea " s oft "

1 1 . set time " 3 min s "

1 2 . echo " Comput ing f o r soft boiled e g g "

1 3 . endif

1 4 . if {med} Ea " me d "

1 5 . set t ime " 4 mins 30 see s "

1 6 . echo " Computing for medium boiled egg "

1 7 . endif

1 8 . if { hard} EQ " hard "

1 9 . set t ime " 6 mins "

20 . echo " Computing for hard boiled egg "

2 1 . endif

EggTimer

22 . ask " P lace egg in boling water*nThen press <Return> "

23 . wait $time

24 . eval 7 !format " Dinner ' s up . . . %c " TO=t : bleep{$$}

25 . setenv count 1 0

26 . lab loop

27 . type t : bleep{ $$}

28 . eval > N I L : $count - 1 to env : count

29 . if val $count eq O

30 . s kip end

3 1 . endif

32 . skip loop back

33 . lab end

34 . Resident c : Eval remove

35 . Resident c : Wait remove

36 . Resident c : Type remove

Mastering AmigaDOS Scripts

EMove

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE]EMove<[from=]source>
<[to=]destination>
from/a, to/a
S:
V l . 2 +

Script
The Eclectic MOVE script

RENAME cannot be used to move files or directories across disks -
but COPY can. However, using copy it is necessary to remove the
source file after copying, so RENAME is better used on the same
dis k. This script solves the problems of remembering which
command(s) to use by doing it all for you automatically!
You use E Move as you might u s e CO PY /DE LETE or RENAME.
However the script does the hard work of deciding which to use for
you. In fact, it attempts to use RENAME first, then if that doesn't
work goes on to use the more longwinded version for moving
between devices . The PROTECT part is optional in this script, it just
makes doubly sure the source file is removed.
This example moves a file in RAM:C to DFO :C-Backups

1 >EMOVE RAM : C / Myfile . C DFO : C - Backups

Under AmigaDOS 1.3+ you can use pattern matching for this
function - the S bit must be set in the MOVE script for this to work:

1 >SPAT EMOVE RAM : #? DFO : RAM - Backups

In AmigaDOS 2 there is no need to use SPAT since all the functions
can use pattern matching anyway. The example above becomes:

1 >EMOVE RAM : #? DFO : RAM - Backups

Line-By-Line

1-3. Defines the key and sets bra and ket to { and }. Note that
source and destination arguments are required here.

4 . Provides a simple progres s mes sage confirming what the
script is up to.

5. Sets the fail level to indestructible.

EMove

6. Attempts to move the object using RENAME. This may or may
not work depending on where the destination is. RENAME
returns FAIL if you attempt a rename across devices: returns
OK otherwise.

7. Tests if RENAME failed. If it did, control continues at Step 8:
otherwise it jumps to Step 12 (and out of the script since the
operation was successful).

8. Resets the failure level back to its default.
9. Performs a simple COPY operation. Redirection to NIL: is used

here for the sake of users with 1 .2. Later versions can make
use of the QUIET switch instead which is more appropriate, in
case errors are reported:

copy " {from} " " {to } " QUIET

10. Makes the source object deletable. This isn 't strictly
necessary, but it might be a good idea.

11. Deletes the source object. From AmigaDOS 2, you can omit
Step 10 and re-write this line as follows:

DELETE " {from} " FORCE

12. Marks the exit point for this script.

Listing

1 . .key from/a , to/a

2 . .bra {

3 . . ket }

4 . echo "Moving from {from} to {to} "

5 . failat 2 1

6 . rename >NIL: {from} TO {to}

7 . if fail

8 . failat 1 0

9 . copy >N I L: " {from} " " {to } "

1 0 . protect >NIL: {from} +d This

1 1 . delete >NIL: " {from} "

1 2 . endif

is optional

Mastering AmigaDOS Scripts

ENABLE

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) ENABLE
none
S :

V l .3+
ListDel
Script
Enable access ListDel (a script presented later)

This is just about as short as scripts get - so much so, it could have
been an alias. However, it does have a use - as a support routine for
a script later in this book. The "jammer" variable prevents access to
a potentially dangerous script. Unless this command has been
issued, the script refuses to run . . .

Line-by-Line

1. Sets the environmental variable "jammer" to the string OFF.

Listing

1 . SETENV JAMMER OFF

EX
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

EX <Directory>
na
na
V l . 3+

Alias

Mastering AmigaDOS Scripts

Check an assignment without removing it
ALIAS EX ASSIGN [] : EXISTS

This short alias is a very useful (and quick way) to check an
assignment. Given the assigned name without the ": " it checks if the
assignment exists and displays it. Example:

1>EX FONTS

FONTS: Workbench3. O:Fonts

Mastering AmigaDOS Scripts

FACTOR

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EX EC UTE] FACTO R < [n=] n> [[res u l t=] pr ivate]

n , re s u l t

S:
Y l . 3 . 2 +

Scr ip t

To ca l cu l ate fac tor ia l s i n the range 1 . . 1 2

Th is i s one o f t h o se scr i p t s wh ich you d o n' t rea l l y need . The reason
that i t 's h e re i s because i t i nt ro d u ce s s o m e m o re o f those c l ev e r
l i t t l e t r i c k s A m i g a D O S i s c a p a b l e o f - w i t h a l i t t l e i m a g i n a t i o n
a l m o s t a n y t h i n g i s p o s s i b l e . I t 's a l so a n exce l l e n t excu s e t o u s e
recu rs ion to so lve a t r i cky l i t t l e p rob lem.

Factor ia l s , for those w h o d i d n' t d o too wel l i n mathemat ic s , are a
sequence o f n u m b e r s . The fac tor ia l o f a n u m b e r i s c a l c u l a te d by
m u l t i p l y i n g t o g e t h e r a l l the w h o l e n u m b e r s from o n e u p t o t h e
n u m b e r c o n c e r n e d . Fac t o r i a l s can o n l y be o b t a i n e d fo r p o s i t i ve ,
whole numbers . The exc lamat ion mark i s u sed by mathe m a t i c i a ns
t o i n d i c a t e a fac t o r i a l - p r o b a b l y b e c a u s e t h e y r e s u l t i n h u ge
numbers 1 For i n stance , factor ia l 8 :

8 ! = 8*7*6*5*4*3*2 * 1 = 40320

You can ca lcu l ate t h i s d i rect ly u s i n g t he EYAL command in v l . 3 . 2 + :

1 >EVAL 8*7*6*5*4*3*2* 1

40320

i t 's much eas ier to type :

1 >FACTOR 8

40320

T h i s s c r i p t h a s n o t b e e n d e s i g n e d to m u l t i - t a s k to k e e p t h i n g s
c l earer : t h i s scr i p t u se s some tough concepts t o g e t t h e e ffe c t . O nce
these are u n d e rs tood , they act as a gateway to some very e xc i t i n g
scri p t progra m m i n g . .

Line-By-Line

1 . The key fo r t h i s s c r i p t i s a n unusua l one because , a l t h o u g h
t h e user on ly e n t e r s a s i ng le parameter, a seco n d para m e t e r i s
a v a i l a b l e . T h i s i s u s e d d u r i n g r e c u r s i o n a s a n i n t e r n a l

Factor

variable; and actually ends being the result when the script
"unwinds"t

2-3. Guess what , sets the bracket characters to { and }.
4. This sets the default value of the result to the value entered

by the user. This has two effects: first, if the user requested
factorial 1 (1! } the script exits immediately. Since l ! is 1, this
forces the correct result. More importantly, for values of three
and above the starting value of the result required by this
script is the initial value of the required factorial. You'll see
why at Step 6.

5. Recursive scripts must have an exit point - otherwise they will
keep on looping until something interrupts them or the
machine crashes. The latter is far more likely! This tests for a
factorial value of N = 1 and forces an exit if this condition has
occurred. Unless the user has entered 1, this must be
calculated in the script..

6. ...here. One is subtracted from the current value of N and sent
to the file T:N. A LFORMAT has been used to create a special
format for this file. This is required later on in the script
when the recursion takes place and will be covered in more
detail then. All you need to know now is if the result of the
calculation was five, the output file would read: N=S.

7. This is where things start to get a little hairy - so we'll break
this line into bite sized chunks. (Or should that be "byte sized
Hunks .. . ")

eval {result} * ({n} - 1) to t:fact

Takes the current expanded value of "result" and multiplies it
by "n- 1 ". Imagine - result=60 and n=3. This is equivalent to:

eval 60 * (3- 1) to t:fact

The result of this calculation (120 in this case) is directed to
the file T: FACT using the LFORMAT string which follows . . .

lformat " . k i*n . bra (*n . ket) *n

At this point you may have noticed what is about to happen -
then again you may not. Don't worry too much if this seems
complex - it is! That's what I mean when I say "Experts are not
born, they are hewn from the bedrock of effort." This line
writes a standard script header in the form:

. k i

. bra

. ket

You've already met something like this in an earlier example
(ListDel) so if you don't remember go back to it now - you'll

Ill

Mastering AmigaDOS Scripts

need to unde rstand that example if you are going to
understand this one' This header is being generated by EVAL,
which is unusual but necessary.

EXECUTE <t : n >nil: factor result=%n ?*n "

This is the second part of the LFORMAT. It generates the script
main part. The header is just for support. To understand how
the resultant script is going to work, it's necessary to examine
a possible case. We'll maintain the assumption that the result
of the calculation was 120. The completed file will look like
this:

. k i

.bra

. ket

EXECUTE <t : n >nil : factor result= 120 ?

The key "i" is just a dummy, but it must be there for the script
to work. The reason for (and) brackets has already been
explained. The clever bit is in the EXECUTE. This calls the
script which generated it - double-recursion.
Adding to the confusion only one value "result " is passed
directly. The other value is retrieved from the file "t:n". That's
the reason why "t:n" was generated with the N=%n format. In
AmigaDOS 2 this is far easier to achieve, as we'll see later.

8. This executes the file just created by EVAL in 7, and starts the
recursion process.

9. If the value passed to "n" from the main command line equals
1 control passes here ...

10. .. .and the final result - also passed through the command line
- is printed. The script unwinds itself after this point.

Changes for AmigaDOS 2

If that lot got you r brain waving the white flag don't worry -
imagine what it was like to write' In fact - it 's easier than it looks
once you get a hang of the basics. This script can be made a lot
simpler if you have AmigaDOS 2 because there's no need to use
interactive mode in the EVAL created script. Here are the amended
lines and how they work:
4. The only changes t o this line are the use of a real

environmental variable rather than the T: assignment. Also
the ! fo rmat st ring has been removed because it is not
required

eval {n} - 1 to env:n

5 . This line i s also far simpler. I t still creates a script, but now

FACTOR

the "n" variable which had to be expanded interactively, is
expanded automatically by AmigaDOS. This removes the need
for mucking around with dummy keys and bracket characters:
eval {result} * ({n} - 1) to t : fact lformat " execute factor2
n=$n result=%n*n"

Listing

1 . . key n , result

2 . . bra {

3 . . ket }

4 . . def result {n}

5 . if val " {n} " not EQ " 1 "

6 . eval {n} - 1 to t : n lformat " n=%n*n "

7 . eval {result} * ({n} - 1) to t : fact lformat " . k i*n . bra
(*n . ket) *nEXECUTE <t : n >nil : factor result=%n ? *n "

8 . execute t: fact

9 . else

1 0 . echo " {result} "

1 1 . endif

Mastering AmigaDOS Scripts

Fancylist

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] FANCYLIST <[dir=]dir> [pat=<pattern>]
dir/a,pat/k
S:
V l . 3+

Script
To enhance LIST and ListAll by adding pattern
matching

In essence, this is an upgrade of the ListAI I script shown elsewhere
- but this has a far more attractive display. It searches all the
directories on a disk just like the other examples, but adds the
possibility of matching directories and files to different patterns. If
no files match, this script tells you.
This script does not do anything new, so I haven't provided a
description. You may like to discover its workings for yourself -
refer back to the previous examples if you need any guidance. As
an exercise you may like to add some of the extra features
supported by LIST too.

Listing

1 . . key dir/a , pat/k

2 . . bra {

3. . ket }

4 . . def pat #?

5 . list "{dir}" pat={pat} files to ram : Fancy{$$}

6. echo "*nDirectory:*e (33m{dir} *e (31m" noline

7 . search ram : Fancy{$$} ":" nonum

8 . if warn

9 . echo "No files match pattern {pat}"

10 . endif

11 . list >T : L{$$} {dir} dirs !format "execute s:Fancy list
"%s%s" pat={pat}"

12 . execute T : L{$$}

Mastering AmigaDOS Scripts

FCD

Synopsis:

Template:

[EXECUTE] FCD [[number=] # I dir I pat]
number

Path:

Requires:

See also:

Type:

Brief:

Description

S :

Y2+
RCD
Script
Store recent directory changes and make them
menus

This command is very useful if you have a hard disk. It stores a list
of the last ten directory changes to disk and allows you to pick one
by selecting it from a numbered menu. Every path feature available
to CD, including patterns, may be used. The command line is
sensitive to arguments so that the script can completely replace CD
(using an ALIAS) if you prefer. This command is very similar to RCD
and is fully compatible with it. Several modes are available:

• Called without arguments. The script shows the current list and
prompts you to interactively select an existing entry, load or save
the list or enter a new directory. Note: you can enter LOAD or SAYE
at this prompt. Example:

1>FCD

1. "Workbench3 . 0 "

2. " Workbench3 . 0:Fonts "

3 . " Apps: "

4 . " Workbench3 .0:Fonts "

5. "Workbench3 .0:Devs/Keymaps "

Enter directory or pick a number , any number:

• Called with a new directory path: FCD selects the directory (if
available) and adds its full path to the menu. (The oldest directory
is removed.) Example:

1>FCD SYS:

• Called with a number from the directory menu. The directory is
selected from the list and changed. Example:

1>FCD 3

1111

Mastering AmigaDOS Scripts

FCO Men u

Line-by-Line

1 - 3 . Def i nes the t emp late as "number" and the ang le b rackets as
b races . I t 's i m por tan t you don ' t c ha nge t h e t emp la te n a me
s ince i t i s used i n a recurs ive ca l l .

4 . C hecks i f s o m e argumen t h a s been supp l i e d . I f n o t , con tro l
con t i nues at Step 5 ; o therwise i t j u mps to Step 1 4 .

5 . Checks i f the FCD p references fi l e (CDS) ex is ts i n the curren t
S : a ss ignment . I f no t , contro l moves to S tep 1 0 : o therwi se i t
con t i nues at S t ep 6 where . . .

6 . T h e c o n t e n t s of t h e p r e fe r e n c e s f i l e i s l i s t e d w i t h l i n e
num bers : t h i s generates the menu .

7 . D i sp l ays t h e m a i n part of t h e i nteract ive prompt .

8 . Ca l l s FCD recu rs ive l y w i th i n t e ract ive mode . Th i s fi n i shes the
p romp t wi th "number : " . Note a l so , i f you change the name of
t h i s scr ip t , you must a l so c hange th i s ca l l .

9 . P rov i d e s a n e a s y e x i t for t h e s c r i p t w h e n i t u n w i n d s t h e
recurs ion . Contro l t ransfers t o Step 3 3 .

1 0 . I f c o n t ro l g e t s h e re fro m S t ep 5 , i t c o n t i n u e s a t S t ep 1 1 :
o the rwise i t con t i nues to Step 1 3 .

1 1 . D i sp l ays a progress message/warn i ng.

1 2 . C rea tes the CDS fi l e by e cho i ng the cur ren t d i rec to ry. No te
tha t au tomat i c i n s e r t i on (· c ommand ·) i s u se d h e re so the
d i rectory can be enc losed i n quotes . Th i s protects CD aga i nst
spaces i n the d i rec tory name .

1 3 . Te rmi nates the I F . . . ELSE . . . END IF con struct opened at Step 5 .

1 4 . Term inates the I F . . . END I F cons t ruc t opened at Step 4 .

1 5 . Checks i f the va lue of the en try made for nu mber was 0 . Th i s
i s t he case i f a text en t ry - a d i rectory path - was made . I f text

was en te red , contro l cont inues at Step 1 6 ; o therwise it j u mps
to S tep 2 2 .

1 6 . A t t e m p t s t o s e t t h e n ew d i r e c to ry. I f t h i s c o m m a n d fa i l s
b e cause t h e d i re c t o ry c anno t b e fo u n d (o r more t h a n one

d i re c to ry matche s , fo r pat terns) the s c r i p t s t op s . Norma l ly,

t he d i rectory i s made cu rrent .

FCD

17. Creates a temporary file with the new current directory name
enclosed in quotes.

18. Joins the new current directory to the existing list and saves
the resulting file as t: CD0#.

19. Creates a simple edit macro thus:
9n Move down nine lines (to line 10).
d Delete the current line.

20. Uses the macro created at Step 19 to hack off the last entry in
the file. Note if there are less than ten entries (directory
paths) in the file, this macro has no effect . This macro
therefore, only trims off the oldest entries. Changing the line
count at Step 19 affects how many lines are stored in history.
More than a bout 25 is getting silly and less than 3 is
pointless. (If you increase this number, you will have to make
changes later in the script too.)

2 1. Replaces the old directory list with the new one.
22. If control reaches here from Step 21, it branches to Step 32;

otherwise it continues at Step 23.
23. Subtracts 1 from the menu entry and stores the result in the

global, Usr#.
24. Tests if the value of Usr# is less than 1 and if it is, control

continues at Step 25; otherwise control jumps to Step 25.
25. Writes a simple macro to skip the first line of a file (n) and

delete the next 9 lines (9d).
26. If control gets here from Step 25 i f jumps to Step 28;

otherwise it continues at Step 2 7.
27. Writes a simple macro to delete the first "Usr#" lines of a file.
28. Closes the IF ... ELSE . . . END IF construct opened at Step 24.
29. Edits the history file with the macro created at Step 25 or 27

and creates a global, CD# using that information. Note that
the contents of this variable can be 2 or more lines, but only
the first line will be read by $ CD#.

30. Changes to the selected directory.
3 1. Terminates the IF ... ELSE . .. ENDIF construct opened at Step 15.
32. Marks the bail-out point for the recursion .

1 . . key number

2 . . bra {

3 . . ket }

4 . if " {number} " EQ I I I I

Ill

Mastering AmigaDOS Scripts

5 . if exists s : cds

6 . type s : eds number

7 . echo " Enter directory o r pick a number , any " noline

8 . execute s : f ed ?

9 . skip number

1 0 . else

1 1 . echo " No entries in file - I ' 11 create one ! "

1 2 . echo >s : cds " * " ' cd ' * " "

1 3 . endif

1 4 . endif

1 5 . if VAL " { number} " EQ O

1 6 . cd " { number} "

1 7 . echo >t : cd { $$ } " * " ' cd ' * " "

1 8 . j oin t : cd{$$} s : cds AS t : cd0{$$}

1 9 .

20 .

2 1 .

22 .

echo

edit

copy

else

>t : ed{$$} " 9n ; d "

t : cd0{$$} with t : ed {$$}

t : cd0{$$} s : cds QUIET

23 . eval >env : usr{$$} { number} - 1

24 . if val $usr { $$ } NOT GE 1

25 . echo >t : e d { $$ } " n ; 9d "

26 . else

27 . echo >t : e d { $$ } " $usr{$$} d "

28 . endif

ver=nil :

29 . edit S : cds with t : ed {$$} to env : cd {$$} ver=nil :

30 . cd $cd{$$}

3 1 . endif

32 . lab number

FFIND
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

Mastering AmigaDOS Scripts

FFIND <filelpattern> <start directory>
na
na
1 . 3 +

PFIND
Alias
Find a file
ALIAS FFIND SEARCH SEARCH=[] FILE ALL

How often have you found yourself wondering where some file
went7 You know you saved it somewhere, but it seems to have
disappeared into the depths of your data disk. This problem is
especially nasty on a hard disk. FFIND is a solution to that problem
and will easily allow you to locate any file on a disk. Typically you'll
use this from the root directory, but the search can start anywhere.
Example:

1>FF I N D StartPest SYS: ; search for StartPest

Workbench3. 0/WBStartup/StartPest

IEI

Mastering AmigaDOS Scripts

FRED

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

<drive number>
na
na
V l . 3+

EDS
Alias
Edit the floppy disk startup-sequence on any disk
ALIAS FRED ED DF[] :S/Startup-sequence

FRED is very similar to EDS, but is useful for editing the startup on
other disks. To use it just type FRED and the number of the drive
whose startup you want to edit, viz:

1>FRED 1 ; edit startup on drive one

FREUD

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

<drive number>
na
na
V2+

EDU, FRED
Alias

Mastering AmigaDOS Scripts

Edit the floppy disk user-startup on any disk
ALIAS FREUD ED DF[] :S/User-Startup

FREUD is very similar to FRED, but this version edits the User
startup. To use it just type FREUD and the number of the drive
whose user-startup you want to edit, viz:

1>FREUD 1 ; edit user - startup on drive one

Mastering AmigaDOS Scripts

FTEXT

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

FTEXT <filelpattern> <start directory> [ALL]

2.0+
FFIND
Alias
Find ASCII text within a file or group
ALIAS FTEXT SEARCH [] SEARCH=[a-z] PATTERN
NONUM

Hands up, this one is a little weird - but I can imagine some folk
will find a use for it. (Looking for passwords in protected files
comes to mind.) This alias will search any file, group of files or
entire tree for some files containing strings of text. No guarantee is
offered for the reliability of this alias, but it actually works better
than you might imagine on things like intermediate object (.o) files
from C compilers and the like!
• Warning: this alias can generate a lot of output!

GetEm

Synopsis:

Template:

Path:

Requires:

Type:

Brief:

Description

Mastering AmigaDOS Scripts

[EXECUTE] GETEM [[pat=]nameJpattern]
pat
S:
v l .3- 1.3 .3 only
Script
To list the environmental variables currently
defined

This script is intended for use with the earlier versions o f
AmigaDOS because environmental variables were n o t fully
supported. The only Amiga command to use them is the text viewer
" MORE" . The GETENV command can only get an environmental
variable by name . This script remedies that by listing and
displaying the variables by name and value.
As an extra freebie, this approach allows the implementation of
pattern matching. I f the script is called without a pattern, it
displays all the variables in use by using "#?". This is what you'd
normally do.

Line-by-Line

1. Sets the simple header for this script. A single argument is
used: and it's optional too.

2-3. Set the bracket characters to { and } .
4 . Sets the default pattern to "#?" - everything.
5 . Lists the files in the ENV: assignment by the specified pattern

- and once again the ubiquitous LFORMAT string comes into
play. This script utilises a slightly unusual use of the "%s"
substitution. It's obvious this line creates a simple script, so
let's take a peek at what this script would look like. For the
purposes of example I've only defined one variable - Editor -
the script repeats for every file.

; env :

How? As you may recall, if more than one "%s" expansion is
used in LIST's LFORMAT, the first %s expands to the complete
path minus the filename.
Why? We want to throw this bit away! Who needs to know that
the environment variables are stored in ENV: ? You should
already know that - and if you didn't, you should not need to

Mastering AmigaDOS Scripts

worry about it. In this way we can lose the path description
safely and no one is any the wiser'

ECHO " Editor = " noline

This is reasonably obvious. It just prints the name of the
variable . . . OK, it does a bit more than that. We sneaked in a
little one here. The spaces are generated by I "*e[I" this makes
echo produce a tab - helping the output line up better.

GETENV " Editor "

Displays the current value held by the variable. This is
because the 3rd %s expansion, produces the name of the file.
You could use TYPE by modifying the line end:

TYPE * "%s%s*"

Not as daft as it looks - you're more likely to have TYPE
resident than GETENV after all.

5. Executes the script created at line 5: and displays the
requested variables.

Listing

1 . . key pat

2 . . bra {

3 . . ket }

4 . . def pat #?

5 . list >t : getem{$$} env : {pat} files !format " ; %s*nECHO * " %s
*e [l= *e [I*" NOLINE*nGETENV * " %s* " "

6 . execute t:getem{$$}

Mastering AmigaDOS Scripts

GetEm 2

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) GETEM [Pat=namelpattern)
Pat
S :

v2

GetEm 1.3
Script
To list the environmental variables currently
defined

The original GetEm script would have worked under AmigaDOS 2 if
it wasn't for Commodore fiddling around adding all those new
(private) environmental variables about prefs and so on. Just
kidding, those new variables are very necessary and in the proper
place - the fault was with the original script. There's nothing
actually wrong with the original, apart from it pre-supposing the
presence of SETENV created variables. You may even wonder why
this script is here at all - doesn't SETENV have the same effect?
Actually it doesn't, but I didn't want you to feel left out and besides
this has pattern matching'

Line-by-Line

1. Sets the simple header for this script. A single argument is
used: and it's optional too.

2-3. Set the bracket characters to { and }.
4. Sets the default pattern to "#?" - everything.
5. This line comes under scrutiny again - but for an extra reason

now. We've used this example to show how to use NOT pattern
matching to great effect - if you haven't noticed yet, the tilde
(~) symbol introduces a negative pattern. Let's take a closer
look at the main group:

#?.prefs:

#?.pat

#?.info

Ignore all private "preferences" files

Ignore any "pattern" files (Workbench background)

Ignore all Workbench pictures and other info

Now let's take a look at the script this file generates using the
same example ..

1111

Mastering AmigaDOS Scripts

Ram Dis k : env/EditorRam Disk:env/

This bit is being thrown away. Unlike the previous example
though , we are throwing away three "%s" substitutions . . .

echo " Editor = $Editor "

. . . because here we are using %s again to expand the name
twice. This is a new feature of AmigaDOS 2. If %s is used more
than four t imes, remaining substitutions are the filename.
This also relies on the ability of AmigaDOS 2 to expand an
environmental variable directly in a string using $. T he
remainder of the line is the same as the 1.3 implementation of
this script - you should refer back to that example for further
clarification.

5. E xecutes t h e script created at line 5: and displays t h e
requested variables.

Listing

1 . . key pat

2 . . bra {

3. . ket }

4 . . def pat #?

5. list >t:getem{$$} env:- (#? .prefs l #? . pat j #?. info) files
!format " ; %s%s%s * " *necho *"%s*e [I = $%s * " "

6 . execute t : getem{$$}

Halt

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Mastering AmigaDOS Scripts

[EXECUTE) HALT <[command=)command>
command/a
S :

V l . 3-2. 1
Stop
Script
To stop multiple processes with the same name

This is just a modified version of the STOP script described
elsewhere. The difference is that this script can stop more than one
process of the same name in a single stroke. Once again, a
backwards loop could have been used to get the effect - however
using recursion requires less commands and tends to be more
reliable. This script is meant for emergencies only.

Line-by-Line

1. Sets the argument template. Note that the command name is
required.

2-3 . Redefine bra and ket characters to { and }.
4. Find the first command in the current process list with the

name defined by "Command". Note this will not work with
AmigaDOS 3, because it lists all current processes of the same
name.

5. This is exactly the same as the original Stopper script.
However, under certain circumstances BREAK may fail with a
FAULT code (Return Code=l 0). You should trap against this by
setting the fail level to 1 1 with FAI LAT - no higher. The script
exits (rather dramatically) when there are no processes to stop
and B R EA K fails RC=20. This is deliberate - HALT is only
meant to be used as a last resort. In very early releases of
AmigaDOS 2 , BREAK does not fail correctly, and this script will
cause the machine to grind to a halt!

6. This line forces the script to run itself again and again until
BREAK stops it.

Ill

Mastering AmigaDOS Scripts

Listing

1 . . key command / a

2 . . bra {

3 . . ket }

4 . status >env : stopper{$$} com= {command}

5 . break <env : stopper{$$} >nil : all ?

6 . execute halt { command}

Ill

Host-Chat

Synopsis:

Template:

Path:

Requires:

See also:

Type:

[EXECUTE) HOST-CHAT
none
S:
Y l .3+
REMT-CHAT
Script

Mastering AmigaDOS Scripts

Brief: Read piped messages from remote terminal

Description

Implementing and experimenting with a dual-user system is fun.
Elsewhere I described some file-based messaging programs and in
this part, I 'll take that a step further. You may recall those programs
waited for a specific time and checked for any pending messages.
However, it would be much nicer if messages could be instantly
display - like the chat system found in better BBSs; CIX for instance.
Although this is possible using pipes, there are few minor
limitations which are due to AmigaDOS's scripting language.
Users with one machine can try these examples by running two
shells at once. In these examples, the "host" Shell's prompt is " l >"
and the "remote" Shell's prompt is "2>". Enter the two scripts HOST
CHAT and REMT-CHAT and try the following. If you are trying this
on a single machine, you will probably find it easier to open two
Shells before proceeding. Also, make sure you enter the commands
in the correct Shell window.

1 >RUN HOST - CHAT

2>RUN REMT- CHAT

1 >ALIAS CHAT COPY * TO P I PE : B

2>ALIAS CHAT COPY * TO P IPE : A

The f irst t w o lines start the pipe-based chat system a s a n
asynchronous process. Once activated it cannot be turned off, but
the operation is completely transparent. Note also, both programs
must be run before an inter-shell conversation can take place. The
last two lines might seem a little strange, but rely on a feature of
ALIAS whereby aliases are local to the Shell process in which they
were created. In other words, "CHAT" in Shell 1 will execute the
command:

COPY * TO P I P E : B

and "CHAT' in Shell 2 will execute:
COPY * TO P I P E : A

Mastering AmigaDOS Scripts

This version of COPY may seem unfamiliar because the source file
is an asterisk - normally used as a wildcard character in other
systems. Under AmigaDOS, the * used in this way refers to Shell
window; specifically, take input directly from the keyboard and
copy it to the named pipe. When this command is executed, all
keyboard input is directed to the pipe. To return to the Shell , you
must enter the EOF (End of File) sequence by holding down CTRL
and pressing \ . This forms the basis of the chat system.
Assuming you have started the chat scripts in two Shells as detailed
above, you can now start chatting. Try this:

1>CHAT

Hello World

Is anyone out there?

[Press CTRL+ \ here]

1>

All being well, that message will appear instantly in the other Shell
window:

2>Hello World

Is anyone out there?

The same command can be repeated from the other Shell to reply
or send another message. Note the prompt (2>) will not appear in
the receiving Shell after the message. This is quite normal and does
not affect the Shell's operation. Pressing return in the receiving
Shell will return a prompt. An interesting feature of AmigaDOS is
once you start typing, the chat system is disabled - it won't
interrupt half-way through entering a command line.

Line-by-Line

1. Defines an arbitrary label for the script to jump to when it
loops.

2. Serves two functions . First, if a message is waiting in the pipe,
it is displayed (typed) immediately. Second, if no messages
are waiting, TYPE halts until one appears. This is an action of
the pipe device - not the command.

3. The script only reaches this point after a message has been
posted to the receiving pipe (above) and displayed. After this
happens the script is sent back (via the label at Step 1) and
waits for the next message at Step 2.

Listing

1 . lab start

2 . type pipe:A

3 . skip start back

Mastering AmigaDOS Scripts

HostRead

Synopsis:

Template:

[EXECUTE] HostRead [time]
time

Path:

Requires:

See also:

Type:

Brief:

Description

S :

V

RemoteRead, Mail-2-Host, Mail-2-Remote
Script
Read mail messages from the host terminal

This system for reading your messages employed by Mail-2-Host
and Mail-2-Remote works - but it would be nicer to get the machine
to read them for you. HostRead and RemoteRead were devised to do
just that. They work in a similar fashion to the others, but take
more advantage of the Amiga's multi-tasking properties.
This script is an unusual one because it is designed to multi-task -
even though it starts its own tasks too. There are two ways of doing
this, the obvious way:

1>RUN EXECUTE HostRead

and the less obvious way:
1>N EWSHELL

1>RUN EXECUTE HostRead

In the second case, you start a new Shell process before starting
HostRead. This allows you to work as normal without the messages
suddenly appearing in the middle of your screen. Note however, the
second technique cannot be used on the remote terminal because
the new Shell window will still appear on the host's terminal -
phew. Also, once this script has been started, it can only be stopped
by setting the StopltNow environmental variable. You can do this
thus:

1>SETENV StopitNow ON

• AmigaDOS 2 users only should enter :
1>ECHO >ENV:StopitNow " ON "

The actual value is arbitrary, but once this has been done, the
program will halt during its next loop. You may want to write an
alias to perform this function.

Line-by-Line

1 . This defines the argument template for this script. Only one
argument can be supplied here, the time delay in minutes.
Unless you have a fast machine and a hard disk do not set this

ml

Mastering AmigaDOS Scripts

below 10 minutes. If no time limit is supplied, the script will
check messages every 30 minutes (defined at Step 4).

2 . . . 3 Redefine the bracket characters as before.
4. Sets the variable for the time limit if none is supplied to 30.
5. This label is supplied so the script has somewhere to return

to during looping. In fact, this script has been designed to
loop continuously until stopped; more of that shortly.

6. This line is identical to the one used in the Mail-2- Remote
program. It displays and removes the current mail messages.

7 . . . 9 Check for the existence of the Stop i tNow environment
variable. Actually, this could have been a temporary file
placed anywhere, but it is more convenient here. Note this
line is identical in both versions of this program - so once the
variable is set, both users will cease to get update messages.

10. Here the script is executed as a new process with the RUN
command. Now this might seem a little strange, but a minor
bug in AmigaDOS EXECUTE causes the SKIP at Step 12 to fail if
this is not done!

1 1. This puts the script to sleep for the predetermined time -
default of 30 minutes in this case. You might want to change
this to seconds (by substituting SECS for the MINS switch) but
don't forget to change the default time value. If the delay is
too short the machine tends to get very tied up attempting to
read messages which simply aren't there.

12. After the WAIT at Step l 1 times out. this forces the script to go
back and do it all again.

Listing

1 .

2 .

3 .

4 .

5 .

. key time

.bra {

.ket }

. def time 30

Lab Start

6 . list >T : ItsForMe{$$} T:#? . rmt !format "TYPE %s%s*nDELETE
%s%s * n 11

7. if exists env : StopitNow

8. quit

9. endif

1 0 . run execute T : ItsForMe{ $$}

1 1 . wait {time} mins

1 2 . skip Start BACK

lnterDel

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] InterDEL <[pat=]dirlpattern> [ALL]
pat/a,op
S :
V l . 3 +

Script
Interactive delete - asks before deleting each file

The idea for this script is borrowed from the *WIPE command on
BBC DFS. (DFS was Acorn's original Disk Filing System or DOS). It
works in very much the same way: it allows you to get a list of the
files one-by-one according to your pattern and just delete the ones
you want to. It is possible to add date windowing as in DEL but this
tends to clutter line #5 - LIST (which is complex enough as it is).
You might like to add this yourself however.

Line-by-Line

1. This line gets the user options. Only a pattern is required. If
you're lucky enough to have Workbench, the ALL switch can
be used.

2-3. Redefine bra and ket to { and }.
4. This line is not required for this example but is here because

some possible versions of this script do require it and it's best
explained sooner rather than later. It is possible that you
might want to use command expansion and/or re-direction in
the script which LIST is about to create. This means you need
a standard .key header, plus .bra and .ket directives. This line
will write the necessary lines for you. In this example the
result looks like this:

. key i

. bra (

.ket)

I've used (and) in this standard header because { and } are
already being used by the main script.

5. The crux of this script is here. I've already shown how it's
possible to create a script using LIST. Before explaining the ins
and outs of the line let's just take a short look at the output
generated by this command:

Mastering AmigaDOS Scripts

ASK " RAM : TempFile - delete y / N "

I F WARN

DELETE " RAM : TempFile "

ECHO " Deleted "

ENDIF

There's nothing unusual about this script. Unless you consider
these five lines are generated for every single file matching
the pat tern' This has the effect of generating a very long
linear (that's top to bottom) script. Also there is another slight
flaw in this - if the file is protected against deletion, the script
s t i ll says it was dele ted ; AmigaDOS will disag ree and
complain.** AmigaDOS is right - the file wasn't removed after
all.
But let's take a look at how the LFORMAT part of this line
works - the remainder is quite standard. This discussion is
quite complex so don't worry if you have to read it a couple of
times.
First , we can b reak it down by spli t t ing it at every "*N"
combination; remember this is where LFORMAT will break its
output on a newline - just like ECHO. Already the script
begins to take shape:

5 . 1 " ASK * " %s%s - delete y / N * " * n

5 . 2 I F WARN * n

5 . 3 DE LETE * " %s%s * " *n

5 . 4 ECHO * " Deleted* " *n

5 . 5 ENDI F "

5.1. The first quote (") marks the start of the LFORMAT - this will
be thrown away. Next, the command outputs ASK and a quote
is escaped in with '' so it is included in the output ; this will
become the opening quote of the ASK statement. Now the
%s%s is expanded to the file and path of the current file. Next,
we add the message " - delete y/N". N is capitalised because
it's default. That is: assumed if you press Return. Finally, the
closing quote for ASK is escaped in with a ,, .. and the linefeed
added with ''n. This must be present on every newline in the
script.

5.2 Just adds IF WARN to the output file.
**Note: The way to cure this slight malady is to call another script
which does all this for you cor rectly. The problem with that
approach is speed - the line could have read:

list >>T : dele{$$} { pat } {op } FI LES LFORMAT " EXECUTE I D E L - 2
* " %s%s * u "

5.3 First adds DELETE then escapes a quote character so the %s%s

InterDel

will be interpreted as a literal string; just in case someone has
used a space in a filename; also happens with files in Ram
Disk! Now %s%s is expanded again to the complete path and
filename. Finally the closing quote is escaped in with *"

5.4. This uses the techniques already described to add the
"DELETED" message.

5.5. The closing ENDI F. This must be included or the script will not
have anywhere to branch to. The closing quote is only
required by LFORMAT and not included in the output file. This
is fine on a 68030 based machine like the 3000, but it tends to
slow things down quite a bit on the humble 7 Mhz AS00s.
Why? Because for every file listed, EXECUTE has to expand a
new miniscript (called IDEL-2 in this theoretical example) and
that does take time.

6. Raises the failure level to the indestructible limit!
7. Executes the interactive delete script.
8. Assu m ing everything has gone according to plan, this

removes the script. You might want to omit this line and read
the example scripts for yourself.

Listing

1 . key pat/a , op

2 . bra {

3 . ket }

4 echo >T : dele{$$} " . key i*n . bra (*n. ket) *n "

5 list >>T : dele{$$} {pat } { op} F I LES LFORMAT " ASK * "%s%s -
delete y/N* " *n I F WARN *n DELETE*"%s%s*" *nECHO
* " Deleted* " *n END I F "

6 failat 21

7 execute T : dele{$$}

8 delete T : dele{ $$} quiet

Mastering AmigaDOS Scripts

lntelliRes

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[Execute) IntelliRes <[Script=)Scriptname>
Script/a
S:
V l . 3 +

Script
Determine which commands should be made
resident

Even with the lates t releas e, a large number o f AmigaDOS
commands are s tored on disk. (Workbench 3 . 1 at the time of
writing) . However, the RESIDENT command can be used to store
transient (disk-based) commands in RAM and share them as if they
were ROM based. If you use scripts a lot, making the required
commands resident at the start of a script is a real chore, especially
during development. This program takes the hard work out of
RESIDENT by working out which commands we're using and create a
simple script automatically.
It works on all versions from AmigaDOS 1.3 upwards (probably not
ARP though). This script is deceivingly simple because it writes a
script, which itself writes another script; almost like a friendly
virus.
Understanding this program completely requires a good knowledge
of AmigaDOS, so for the sake of those who are more interested in
what it does, here is a short explanation. You can start IntelliRes in
the following manner:

1>Execute IntelliRes S:ScriptName

Searching S:Scriptname

Please wait . . .

There will now be a long delay and a fair amount of disk thrashing
for 1 . 3 users (more on that shortly). During it s fir st phase ,
IntelliRes creates a script similar to that shown in Listing 2. The
pause will continue as IntelliRes runs Listing 2 and creates Listing 3
- the list of commands you need to make resident. All you have to
do is insert the result of Listing 3 at the head of your script. Strictly
speaking you should also add a set of RESIDENT... REMOVEs at the
end to clean up.
IntelliRes is not perfect and the human angle is required to a

IntelliRes

certain extent. It is intelligent enough to work out which commands
are present in the C directory so it will work on most disks. But, it
cannot determine the difference between pure commands and dirty
commands (those which cannot be made resident). This much is up
to you.
It will occasionally become confused when it finds a sub-string
which appears to be a command. This is fixed partly by including a
space after the name in Step ?e of Listing 1 (every command must
be followed by a space but it is not perfect. One solution is to write
your scripts so every command starts at the beginning of every line
(I usually use indents). In this case you can modify Line 7 thus:

7 . list >T : AutoRes c : !format " ; %s*nsearch >NI L : T : SearchMe
* " * * n%s * " *nif not warn*necho >>T : Resit * " Resident
%s%s * " * nendif "

Did you spot the difference? Here it is in detail :
search >N I L : T : SearchMe * " * * n%s * " * n

The extra part is the "**n" just before %S. This causes SEARCH to
look for a carriage return character just before the command's
name. Use whatever suits you best.

Line-By-Line

1. Defines a single required command argument which will be
the name of the script to process.

2-3. Change the default AmigaDOS bracket characters from < and >
to { and }. There are two reasons for this: partly because this
saves clashing with re-direction operators and partly because
I like them that way'

4. Copies the script to be processed to the Ram Disk - T: being a
logical assignment which usually resides in RAM. You should
also n ote the name of the destination file is forced as
"SearchMe". The reason for this wil l be explained shortly.

5. Creates the first line of Listing 3, overwriting any previously
created files with the same name. This also is necessary to fix
a feature (bug) in the >> (append) operator in the 1.3 Shell.
Note : RESIDENT should be moved for 2.0+ machines - it is
already in ROM.

6. Displays a short progress message to let the user know the
script is operating normally. The message contains the source
script's full path and filename specified in the command line -
not the copy of it being processed.

7. This is the heart of this program - this one line creates the
program-writing, program Listing 2. Here's how it works. Let's
assume the command being processed is C:DIR:

?a. LIST >T : AutoRes

Mastering AmigaDOS Scripts

Calls the LIST command and informs it to send all its output
to a file called AutoRes: Listing 2 in other words.

7b. C :
Is the directory to be L ISTed. Every command in the C :
assignment (usually SYS :C) will be listed using the format
string explained below.

7c . LFORMAT

introduces the quoted format string. Every file displayed by
LIST is processed using this string like this:

7 d . " ; %S*n

The resultant script requires the filename, then the path and
filename, so the first pathname must be discarded and that's
what this does. When %S is used once in L IST's LFORMAT
mode, it is replaced by the name of the file in the final output.
Used, twice the first occurrence displays the path. the second
displays the filename and so on. The " : " is a comment, which
is ignored by AmigaDOS. Finally the "*n" part creates a new
line. At this stage the program consists of one line:

; C :

7e. search >NIL: T : SearchMe * " %s * " *n

This creates the next line of the program. The command's
name appears at %S and ,, .. is used to force the inclusion of
quotes in the output string without confusing AmigaDOS. You
should notice there is a single space after the %S and this is
very important. " ''n" adds a new line and the program now
looks like this:

; C :

search >NIL : T : SearchMe " DIR

7f . if not warn•n

Adds a conditional branch to the script which now looks like
this

; C :

search >NIL : T : SearchMe " Dir "

if not warn

lg echo >>T:Resit *" Resident %s%s* " *n

Adds the next line, which is notable for escaped quotes and
the inclusion of the forced "PATH/Filename" combination. This
was the reason for adding ;%S earlier. If this had not been
done %S would be out of step and the line would have
received " filename/ PATH". (This fix is for the sake of
AmigaDOS 1 . 3 ; it could have been achieved differently in
AmigaDOS 2.) The program is now all but complete and looks
like this:

; c :

search>N IL : T : SearchMe " Dir "

if not warn

echo >> T:ResIT " Resident C : Dir"

7h . endif "

IntelliRes

Comp l e t e s the cond i t i ona l b ranch and t i e s the who le th ing
together. What you may not have rea l i s ed ye t i s th i s program
is generated for every s ing le command in the C d i rectory! I ' l l
exp la in what i t d oes short ly.

8 . R u n s t h e scr ip t created a t S tep 8 a n d creates t h e f inal output
ready for inc lus ion i n another program.

9 - 1 0 . T i e s t h e w h o l e t h i n g t o g e t h e r s o y o u k n o w s o m e t h i n g
h a p pened ' Th i s d i s p l ays a shor t mes sage and d i s p l ays the
scri p t fragment c reated a t S tep 8 .

Line-By-Line: AutoRes

1 . Does noth ing ! Th is i s some detr i tus fro m L IST that got thrown
away.

2 . Searches t h e copy of the source scr ipt for any occurrences of
the command name - DIR i n th is case . (See how i t works, yet?)
If the command is found , search CLEARS the WARN flag.

3 . Tes t s i f t h e WAR N cond i t i on i s n o t s e t . I f i t was , execut ion
b ranches to S tep 6 . I f the search s tr ing was successfu l , the
c o m ma n d is i n the s c ri p t and need s t o be made r e s i d en t ,
wh i ch i s taken care of . . .

4 here . Jus t refresh your memory and look back to S t ep 5 in
L is t ing 1 . That created a fi l e wh ich th is command i s go ing to
append (>>) i t s output to : and i t s output cons is ts of RES IDENT
a n d t h e p a t h/fi l e n a m e c o m b i n a t i o n of t h e c o m m a n d j u s t
s earched for. A complete path i s requ i red b y RES IDENT, b y the
way.

6. Terminates the IF . . . END IF construct .

7 . Th is l i s t ing repeats for every command in the C : ass ignment .

Listing 1 : lntell iRes

1 . . key script/a

2 . . bra {

3 . . ket }

4 . copy " {script} " T : SearchMe

5 . echo >T:Resit " Resident c:Resident"

6 . echo " Searching {script} *nPlease wait . . . "

Mastering AmigaDOS Scripts

7 . list >T : AutoRes c : lformat " ; %s*nsearch >N I L : T : SearchMe
* " %s * " * nif not warn*necho >>T : Res lt * " Resident %s%s
ADD* " *nendif "

8 . execute T : AutoRes

9 . echo " Command file now available i n T : a s the following : "

1 O . type T : resit

*

Listing 2 : AutoRes

1 . ; C :

2 . search >NI L : T : SearchMe " Dir "

3 . if not warn

4 . echo >>T : Res lt " Resident C : Dir ADD "

5 . endif

6 . [etc .]

*

Listing 3 : Resit

1 . Resident C : Resident

2 . Resident C : Search

3 . Resident C : Type

4 . [etc .]

LD

Synopsis:

Template:

Path:

Requires:

See also:

Type:

LO

na

na

V l . 3+

TD , L is tD

A l ias

Mastering AmigaDOS Scripts

Brief:

Definition:

Se lect a memor ised d i rectory

ALIAS LO CD D IR_[] : " "

Description:

This command might not seem very flash , but when you cons ider i t
can se l ec t from over 90 p revious ly memor i sed d i rector ies . . . I n fact ,
i ts the o ther part of TD - see la ter - wh ich memor ises the current
d i rectory. He re i s a sample of TD in operat ion :

1>CD SYS: ; change directory to root

1>TD O ; mark root as directory O

1>CD Code : LC/Examples/Headers/Include/Devices

1>TD 1 mark this as directory 1

1 > LD 0 go back to SYS:

1 >CD

Workbench3 . 0 :

1>LD ; go back to 1

1>CD

Code:LC/Examples/Headers/Include/Devices

1>CD

Workbench3. 0:Fonts

1>LD

1>CD

Code:LC/Examples/Headers/Include/Devices

You use t h i s a l ias to switch back to a d i rec tory previou s ly saved by
TD. Neat i s n 't i t . See TD for a fu l l descr ip t ion of how this works.

Mastering AmigaDOS Scripts

ListAI I

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] LI STALL [[d i r=]<d i rec tory>]]

d i r

S :

V l . 3 +

Scr ip t

To prov ide an ALL swi tch for L IST (1 . 3)

Th i s i s another o f the support scr ip ts that b r i dges the gap be tween
AmigaDOS 1 . 3 a n d AmigaDOS 2 . I t 's a very a p t demons t ra t i on o f
recu rs ion a t work - a l t hough on ly a few l i nes l ong , i t can exam i n e
every fi l e a n d every d i rectory on a hard d i sk . I t c a n b e i mproved o f
course , bu t for t h i s examp le I wanted to show how much recurs ion
can do i n a few short l i nes . Th i s apparen t ly s imp le scr ip t u n de rgoes
some very comp lex loop i ng , so I ' l l leave the fancy b i ts for l a ter . . .

Line by line

1 . You 've met t h i s many t i mes befo re - t he re's no th ing s i n i s t e r
abou t i t he re . Th i s l i s ts the con ten t s of the curre n t d i rec tory
or the d i rec tory spec i fi ed i n "{d i r} " . That 's a c l u e to how t h i s
works .

2 - 3 . F o r the reco rd , these set bra a n d ket t o { a n d } .

4 . L i s t s t h e cu rrent d i rectory : de termined b y " d i r" .

5 . You 've met l i nes s i m i l ar to t h i s severa l t imes before too . So
what makes th i s one so spec ia l ? Let 's t ake a look a t what i t
does :

F i r s t , t h i s crea t e s a new fi l e - l e t ' s ca l l i t L l for the sake o f
a rgu men t . Nex t , a l l t h e d i rec tor ies match i ng the pat tern " {d i r } "
a re l i s ted and sent to t hat fi l e . The LFORMAT s t r ing is used to
create a recurs ive scr ipt - t h i s cou l d look someth i ng l i ke t h i s -
the o rd e r i s u n i m portant

execute List All " SYS : DEVS "

execute ListAll " SYS : S "

execute ListAll " SYS : System "

execute ListAll " SYS : C "

6 . Th i s ca l l s t h e scr i p t c rea ted a t S tep 4 - fo rc ing Li stAl l t o c a l l
i t s e l f . Th i s a l so a c t s a s an ex i t (o r u nwi n d i ng) po in t for t h e

ListAII

script because recursion will only occur if the directory listed
at Step 4 contains sub-directories. If not, the script is exited,
and control resumes in the script which called it. This will be
a temporary script held in T: . When control returns to the last
level and there are no more directories left to list, the script
finishes.
All this may seem a bit confusing - but it's very easy once you
get the hang of the idea.
Programmers often refer to the depth of recursion. There's
nothing mysterious about this - it's just the number of times
the routine has called itself in direct succession. We've also
used the term "unwinding" . These two terms mean very much
the same thing: as the depth of recursion increases, the script
is winding up; as the depth decreases, it is unwinding. This is
better illustrated by analogy - here's one you can try for
yourself that's so simple it could have come from the annals
of Blue Peter:
A: Get a piece of string and make five knots in it, each about

two inches apart. Each knot represents a directory
somewhere in the hierarchy.

B: Grasp the first knot (the main directory) between your
thumb and index finger and hold the string tight. This is
what is happening when the program starts - it knows
about the first directory and has a list of the four sub
directories it contains.

C: Wind the string around your finger once (loosely, this
isn't worth losing a pinkie over). This is what happens
when the script has called itself once. It has listed the
sub-directories (knots) contained by the first sub
directory (knot).

D: This is the fiddly bit. Carefully untie the knot you have
just wound up to. In effect this is what the program does
- it knows it has passed this point and can never return
to it. When a subscript is executed, control always returns
to the line after the one calling EXECUTE. It doesn't matter
to AmigaDOS if the script just happens to call itself1

E: Repeat steps C . . . D until you run out of knots. This is what
happens when the program runs out of sub-directories to
list. All it can do is unwind the string until it comes to a
point where it finds more directories or has to stop.

Mastering AmigaDOS Scripts

Listing

1 . . k ey dir

2 . . bra {

3 . . ket }

4 . list " { dir} "

5 . list >T : L{$$} " { dir} " dirs !format " execute ListAll
*

11

%s%s *

6 . execute T : L { $$ }

Ill

ListD

Synopsis:

Template:

Path:

Requires:

See also:

Type:

[EXECUTE] ListD

dum

S :

V l . 3+

TD, LD, WD

Scr ipt

Mastering AmigaDOS Scripts

Brief: List di rectories memorised by TD

Description

This scr ipt is a support routine for the LD/TD alias couplet. TD
uses ASS IGN to take a snapshot of the cu r rent d i rectory and since
these a re added to a l ist, you can end up with a large numbe r. This
scr ipt j ust lists the assignments b elonging to TD/LD and l ists the
labels associ ated with them. For example :

1>ListD

Label Directory

o Workbench3 . 0

Code:LC/Examples/Headers/I nclude/Devices

2 Code:LC/Examples/Headers

C Workbench3:C

1>LD 3

1>CD

Workbench3:C

1>LD 1

1>CD

Code:LC/Examples/Headers/I nclude/Devices

Line-By-Line

1 -3 . Comprise a simple h eade r. Note that t h e KEY var iable i s j ust a
dummy: but it is re q u i red to tr igge r the pre-pa rse r (so that
th ings l ike { $ $) a re expanded correctly).

4 . Sends the cu rrent assignment l ist to a temporary file : we'll call
it "qweO" h e re .

5 . Searches the assignment list for names starting with "DI R_".
T h i s is a spe c i al str i ng created by TD as a p r e f i x to t h e
assignment label . I n oth e r words, t h i s l ine f inds j ust those

Im

Mastering AmigaDOS Scripts

assignments we're interested in: for speed, the script could
stop heret The output is sent to "qwe l "

6. Creates a simple EDIT macro and saves it as "ED"
7. Edits the temporary file created by Step 5 and makes a new

file, "qwe2". The macro used here removes the "DIR_" from the
start of each line: leaving j ust the label intact. The macro will
cope with up to 99 assignments which should be enough for
the most demanding user.

8. Sorts the label file. This isn't necessary, but it helps to keep
things in order for quick reference. If this line is omitted, the
labels appear in the order they were created.

9. Displays the header. The extra spaces are required after the
tab (*e[I) to take account of the "DIR_" that was removed.

10. Displays the list of labels.
1 1. Deletes the temporary files.

Listing

1 . . key dum

2 . . b r a {

3 . . ket }

4 . a s s ig n >t : qwe0 { $$ }

5 . search >t : qwe1 {$$} t : qwe0{$$} "DIR_" nonum

6 . echo "99 (4# ; n) " to=ed { $$}

7 . edit t : qwe 1 { $$} t : qwe2 {$$} with e d { $$ } ver = nil :

8 . sort t : qwe2 { $$ } t : qwe1 { $$ }

9 . echo "Label* e [I Directory"

1 0 . type t : qwe 1 { $$}

1 1 . delete >N I L : t : (qwe (O l 1 1 2) { $$}) T : ED{$$}

ListDel

Synopsis:

Template:

Path:

Requires:

See a lso:

Type:

Brief:

Description

Mastering AmigaDOS Scripts

[EXECUTE] ListDEL <[pat=]dirlpattern> [ALL]
none (v2+ for ALL switch)
S:

V l .3+
ENABLE
Script
To remove a list of files in one operation (date
windowed)

The basic idea for this script is borrowed from the *DESTROY
command on the BBC micros Disk Filing System. This allows you to
get a list of the files you are about to delete before the process
starts. You must set a flag to enable this operation because the
script is capable of deleting not-deleteable files listed separately if
some exist. The ENABLE script is used with this script. You must
enable the script every time you wish to use it - this featu re
prevents accidents - remove it at your own risk!

Line-by-Line

1- 5 . Form a standard header for this type of script. Note that the
date windowing featu re may need to be modified for
machines that lack a battery-backed RTC: a basic 1200 for
instance.

6-8. Check for the existence of the global "Jammer" variable. If it
does not exist the script has not been enabled and stops
immediately. This line is not required for AmigaDOS 2 - if the
modifications noted under 7 are implemented.

9- 1 1. If one of these lines is encountered the script stops at once,
the operation aborted, and the Jammer flag cleared. Under 1.3
and 1.3.2 this line checks the variable Jammer and makes sure
it is set off - that is, not jammed! For AmigaDOS 2 this line is
simply:

if $JAMMER NOT EQ " OFF "

12. This initialises a variable which will be used later on in the
script.

13. Creates a file which contains the files specified by pattern and
windowed by date.

1 4. Searches the file created at 5 : for any files which have been

Ill

Mastering AmigaDOS Scripts

protected against deletion. It keys on "-" in REW- 0 1-Jun-90.
This has been done because it's possible the file does not have
default flags. For example "RWE-" would work unless the
executable flag was missing too! It is far less likely that any
files have this string as part of their name. This line returns
WARN if no files are protected in this way. If any are found,
they are listed.

15-21. Tests if any protected files are found and continues to
warn the user about them. Any such files will be deleted by
this script!

22-24. If the script gets here, the user has been warned that
some files selected have been protected against deletion and
has agreed to go ahead in any case. This line sets a variable to
let the rest of the script know.

25. Tests to see that some files actually do match the pattern and
displays them. I f no matching files are found a WARN
condition appears.

26-29. If no matching files are found (SEARCH returns WARN) ,
an error message is displayed and the script exits.

30-33. This is the user's last chance to change his/her mind.
After this point there is no return, no second chance - all files
a r e going to be removed. Retu rns a WA RN i f there is
agreement to go ahead.

34. This tests if there are delete protected files matching the
supplied pattern and the user really did want to delete them.
If so, execution continues at Step 35. In AmigaDOS 2 this can
be written thus:

if $DELS{$$} EQ "ON"

35. This sets up a script which will set the "deleteable" protection
bit on every file before deleting it. For AmigaDOS 2 this line
can be written:

list >T : dele{$$} {pat} {opt} since={since} upto={upto }
files !format "DELETE *"%s%s*" FORCE"

36-38. This sets up a delete script for all files matching the
pattern (and windowed within the dates if any were specified).

39. Does the dirty bit of running the deletion script just created.
40. If the script reaches this point it has finished normally, so this

makes sure that it jumps out neatly without issuing the
standard error code.

41-4 2. The bitter end: ensures that , no matter what has
happened, the "Jammer" variable is reset so "ENABLE" has to
be run again before this script can be re-run.

Listing

1 . . key pat / a , since / k , upto / k , opt

2 . . bra {

3 . . ket }

4 . . def since 0 1 - Jan - 78

5 . . def upto Today

6 . if not exists env : j ammer

7 . s kip end

8 . endif

9 . if <env : JAMMER >NI L : NOT EQ " OFF " ?

1 0 . skip end

1 1 . endif

1 2 . setenv DELS{$$ } OFF

LisWel

1 3 . list >T : dele{$$} { pat } { opt} since= { since} upto= { upto}
files nohead

1 4 . search " T : dele { $$ } " " - " nonum

1 5 . if not warn

1 6 . echo " * n *e (33mWARNING*e (3 1 m : These files are marked
against deletion ! "

1 7 . ask " They will be deleted ! Do you wish to continue
y / N ? "

1 8 . if not warn

1 9 . skip end

20 . else

2 1 . setenv DELS{$$} ON

22 . endif

23 . endif

24 . echo " "

25 . search T : dele {$$} II • II nonum

26 . if warn

27 . echo " H ummm - no files seem to match pattern? "

28 . skip end

29 . endif

30 . ask " * nDelete y / N? "

3 1 . if n o t warn

32 . skip end

33 . endif

34 . if <env : DELS{$$} >NI L : EQ "ON " ?

Mastering AmigaDOS Scripts

35 . list >T : dele{$$} { pat} {opt} since= { since} upto= { upto}
files !format " PROTECT * "%s%s* " +d*nDELETE * " %s%s * " "

36 . else

37 . list >T : dele{$$} {pat} {opt} since= { since} upto= { upto}
files !format " DELETE * " %s%s * " "

38 . endif

39 . execute T : dele{$$}

40 . echo "All gone now . . . •

4 1 . skip fini

42 . lab end

43 . echo " Jammed . . . access denied "

44 . lab fini

45 . setenv Jammer ON

Mastering AmigaDOS Scripts

Mail-2-Host

Synopsis: [EXECUTE] Mail-2-Host [message=<Message>]
[Name=<name>]

Template:

Path:

Requires:

See also:

'Type:

Brief:

Description

message,name/k
S:
V l .3+
Mail-2-Remote
Script
Send a message to the host AmigaDOS terminal

This script is broadly similar to its companion script, M ail -2-
Remote. See that command for a full description of the techniques
involved.

Listing

1 . . key message , name/ k

2. . bra {

3. . ket }

4 . . def name ItsForYou. rmts

5 . list >T : ItsForMe{$$} T:#? . hst lformat "TYPE %s%s*nDELETE
%s%s*n"

6 . execute T : I tsForMe {$$ }

7 . e cho »T : { name } . rmt " { message} "
if " message " EQ " "

8. quit

9 . e ndif

1 0 . if exists T : { name} . rmt

1 1 . ask " Message pending . Delete y / N ? "

1 2 . i f not warn

1 3 . quit

1 4 . endif

1 5 . e ndif

1 6 . echo >T : { name} . rmt " Posted on : " noline

1 7 . date >>T : { n ame } . rmt

1 8 . echo >>T : { name } . rmt " {message } "

Ill

Mastering AmigaDOS Scripts

Mail-2-Remote

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Mail-2-Remote <[message=] Message>
[Name=<name>]
Message,name/K
S:
V l .3+
Mail-2-Host
Script
Send a mail message to a remote AmigaDOS
terminal

While Bruce Smith and I were compiling the original Mastering
AmigaDOS 2, we often found we needed to use the same machine at
once. The simplest method would have been to buy another A3000,
but at the time Amiga 3000s were in short supply and very
expensive. The machine has since been replaced by the even more
expensive A4000/40: such is progress.
For the sake of speed, the only solution was to connect two
machines back to back using AmigaDOS 2 on both. Impossible? Well
it might seem like that - especially when you realise the second
machine need not be an Amiga at all' In fact , just about any small
computer system you happen to have lying around can be pressed
into service - you will need the following items.

Remote (parasite) machine

• A small computer with monitor and serial interface
• A null modem cable with connections for the Amiga (see note)
• A simple terminal package for the second micro
• An assistant

Host (fileserver) machine

• Any Amiga
• Either: AmigaDOS 1 .3 or better
• or: AmigaDOS 1.2 and AUX from the Fish PD collection

Note: The Amiga 1 000 and A2000 models have a non-standard
serial interface. Although it will be possible to use these, you must
get the correct lead as a standard cable fits the printer port. This

Mail-Z-Remote

does not affect the B2000 mach ine .

Typical ly you can use : o ther Amigas , Atari STs , Amstrad PCW wi th
ser ia l opt ion , MTX 500 , Acorn B BC B , and mos t c heap PC c lones . I f
you do not have any of these , you may find a cheap CP/M mach ine
at amateur (HAM) rad io ra l l i es . HAMs use these for packet rad io but
a su i table second-hand se tup can be had for as l i t t l e as 30 qu i d .

Whatever you do , t ry n o t t o spend too much money a n d read t h i s
c hap t e r i n i t s e n t i re ty b efo re par t i ng w i t h any c a s h . U s i ng t he
Amiga i n th i s way i s s imp l e bu t ra i ses some i nterest ing problems .

Important! Never, ever, plug or u nplug a ser ia l l ead without
f i rs t switch i ng both computers off. Fai lure to comply wi th th i s
caut ion can cause ser ious damage to your hardware and bank
accou nt . The authors and publ isher cannot accept c la ims for
damage or i nju ry however caused , ar is ing from fol lowing the
ins truc t ions d eta i l ed here .

Getting Started

I n terfac ing two mach ines i n th i s way i s relat ively easy, but once the
two mac h ines a re connected , you mus t dec ide on a ser ia l p rotoco l .
That i s t h e way t h e mach i n e s wi l l ta l k to each o ther. I t 's no u s e
h av i n g t h e A m i ga s p e a k i n g S e rbo -C roat a t t h e r emo te a n d t h e
remote trying t o answer back i n anc ient Greek. The resu l t w i l l look
someth ing l ike th i s :

TCXKE µE 'TO \j/O'Up AECXbEp

60 W'Jl CX't (j)O'JlV?

Protoco ls in ser ia l communicat ions are just l i ke language - so long
as the two s peakers agree to s peak the same tongue there is no
prob lem . There are four main parameters to cons ider here wh i ch
are :

Baud rate

Word length

Parity

Stop bits

The transmission speed. 300, 1 200. 2400. 4800

The number of bits in each data byte. 7 or 8

Error checking. YES or NO

The number of bits to send after each data byte. ! , 1 .5 or 2

Errors in these are what give r ise to garbage.

For the purposes of th i s type of communicat ion , a fa i r ly fas t data

rate i s requ i re d . In pract i se some setups refuse to work at speeds
exceed ing 4800 baud , the best speed can be ach ieved through tr ia l
and error. The other parameters shou ld be set to 8 data b i t s , no
parity and 1 s top b i t . (Comms nuts refer to th i s as 4800-8N l .) You
s h o u l d s e t t h e s e a t t h e Am iga e n d w i t h t h e P r e fe r e n c e s t o o l .

Ill

Mastering AmigaDOS Scripts

However, if your remote compu ter's terminal software does not
support this (for instance a Prestel™ emulator) you can try 7 data
bits and even parity.

Testing 1 -2-3

Once the computers are configured correctly you can perform the
initial test. Open a Shell on t he Amiga and enter the following
(remember not to type t he l > part this just shows where each new
line starts):

1 >ECHO >T : msg " Hello World "

1 >COPY T : msg to AUX :

alternatively you can enter:
1 >ECHO >AUX : " Hello World "

However, t he latter method has been found to lock the AUX device
thus preventing two way communication. The remote computer will
echo t he message "Hello World". You are now ready to enter t he
world of t he multi-user Amiga. Note, if at any time the Amiga or the
remote terminals freeze you may have to reset the machine.
Now enter:

1 >N EWSHELL AUX :

1 >

Nothing should happen a t the host machine (your Amiga) instead
the new shell will start on the remote terminal. I ts screen will look
something like this:

New shell process 2

1>

Now ask your assistant to enter LIST on t he terminal. This will
provide t hem wit h a lis t ing of your Workbench disk o r t he
currently selected volume (disk). The LIST command is usually left
resident in the 1.3 Startup-sequence and this avoids troublesome
disk swapping if you only have one drive. This is a nuisance in any
case, but when two people are sharing one machine it can become a
nightmare of Orwellian proportions.

Problems, problems . . .

Before going any furt her, it is wort h noting t his technique is
anything but perfect : at least it's cheap. The main problem is it only
works with commands that only affect t he CLI or Shell window. In
ot her words, programs w hich re ly on the In tu it ion (and t hat
inclu des the ED editor) will not work. Any Intuition programs
launched on the terminal appear on the host machine - usually
when the operator is in the middle of something!

Mail-2-Remote

Actually, it can be quite amusing to install a beginner on the Amiga,
launch a Workbench hack such as Viacom from the remote and
watch them squirm! This is because the remote terminal is purely
operating as a keyboard and screen - not as a separate computer.
Because of this it is not strictly correct to call the host Amiga a
network fileserver. Nevertheless, there is a vast range of CU-based
commands - not just AmigaDOS ones - which do work correctly.

What next?

At this point you should be able to control many aspects of your
machine remotely from your old hardware, so that's alright. But
what about sending messages between the two machines? In a real
situation the two terminals could be rooms apart - so chatting is
out of the question - or is it? I've already mentioned the remote
terminal is, in reality, just an extension of the existing machine, so
provided you can send messages between two Shells, you can send
messages between the two machines.
The AmigaDOS 1.3 release saw the inclusion of F IFO pipes written
by Matt Dillon and these provide one method of com munication
between Shells. For now though, I 'll concentrate on a different
method. Each has pros and cons but this serves as an interesting
introduction into the use of files as they compare to pipes. Listings
1 and 2 are the com mand scripts used to communicate using a form
of Email, that is: you leave messages for the other party which can
be collected later. The two programs are almost identical so I'll just
describe Mail-2-Remote here.

Line-by-line

1. This first line is very important because it determines how the
script will react to command lines. In this case, the script is
given two parameters - a message and a filename. As you will
see, the script usually determines its own filenames but you
can override this feature by entering a name here. You must
enclose the message body text in quotes (speech marks) or the
script will fail. Typical examples might look like this:

1>mail - 2 - remote " Hi Bruce! Nice weather huh ? "

1>mail - 2 - remote " 01 ' man river " name=river

2 . . . 3 Set the bracket characters to { and } respectively. You may
remember these default to < and > which conflicts with the
redirection operators used extensively in this program.

4. This line comes into effect if no value is supplied to the name
(filename) parameter. The default name is "JtsForYou.hsts".

5. This line (which makes use of my favourite command) is used
to read and delete any new mail messages from the remote
terminal. I t's very complex so we'll break it down into its

1111

Mastering AmigaDOS Scripts

component parts:
5 . 1 list

The LIST command itself
5. 2 >T:ItsForMe{$$}

Names the destination script file which is created at 5.4. The
file will be place in the T: assignment (usually RAM:T) and
called ItsForMe[XX], where XX is the process number of the
current Shell; this allows the script to create a unique name
for itself in the multi-tasking environment.

5. 3 T: #?. rmt

Selects any mail messages in T: which have been sent from the
remote. This is done using the AmigaDO S "everything"
wildcard #? with the extension .RMT. The .RMT extension is
added to every message written by Mail-2-Host. This program
does much the same thing at step 10 using the extension .HST.

5. 4 !format " TYPE %s%s*nDELETE %s%s*n"

Creates a temporary script program to read and remove the
current messages. Assuming the remote's operator has used
the name option to create a message called hello , the
resulting program would look like this:

TYPE T:hello. rmt

DELETE T:hello. rmt

6. This runs the script created at Step 5, reading any pending
messages and deleting them afterwards. This is done to
prevent a lot of useless files jamming up the T: assignment.

7 .. . 9. These steps are used to determine if you have actually
entered a message - if not, the program stops. This allows you
to check for mail periodically. (Thanks to the nature of the
Amiga, it is possible to design a special version of the Mail-2-
system which will periodically check for incoming mail after a
short time - more of which later.)

10. This determines if a message file already exists with the same
name. This means the other terminal has not yet read the
message so you are given the option to leave or update it . .

11. . .. here. Note the default operation (if you just press Return at
the prompt) is to leave the message untouched. As an aide
memoire, the y/N? prompt indicates this with a capital N.

12. This determines what happen at the ASK statement (Step 1 1).
ASK sets the WARN condition if Y was pressed and clears it
otherwise. By negating the action of IF, with the NOT switch,

Mail-2-Remote

the script branches to 14 when you enter Y.
13. If control reaches this point the script terminates

immediately.
14 .. . 1 5 Close the two IF . . . END IF constructs opened at Steps 10

and 12 respectively.
16 ... 1 8 These lines create a compound message using the

current time to show when the message was posted. This
allows the receiving party to determine when the message was
posted. Note the use of the append redirection operator ">>".
Under AmigaDOS 1.3 and above, this tacks the output of any
command onto the end of an existing file.

Listing

1 . . key message , name / k

2 . . bra {

3 . . ket }

4 . . def name ItsForYou . hsts

5 . list >T : ItsForMe {$$} T : #? . rmt !format " TYPE %s%s* nDELETE
%s%s * n "

6 . execute T : ItsForMe{$$}

7 . if " message " EQ " "

8 . quit

9 . e ndif

1 0 . if exists T : { name} . hst

1 1 . ask " Message pending . Delete y / N? "

1 2 . i f not warn

1 3 . quit

1 4 . endif

1 5 . endif

1 6 . echo >T : { name } . hst " Posted on : " noline

1 7 . date >>T : { name } . hst

1 8 . echo >>T : { name} . hst " {message } "

Ill

Mastering AmigaDOS Scripts

MD

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

MD <name>
na
na
V l . 3 +

DEL
Alias
Short name for MAKEDIR
ALIAS MD MAKEDI R

This alias is not included for padding (as it might seem to be) but it
has a very serious us. MD is the MS-DOS command for MAKEDI R and
MS-DOS u sers will feel much more at home with AmigaDOS if the
command works like this.

Mastering AmigaDOS Scripts

MemBar

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Called from Workbench

Y2+

FreeMemP, UsedMemP, MemBar
Script

Brief: Show available memory as a bar graph

Description

This program is similar to BarClock and uses many of the same
procedures.

MemBar

Line-by-Line

1 -3. Comprise a standard IconX script header.
4-6. Makes some essential commands resident.

- • • • • • • •,:f .. ,.

7. Sends the complete available output to a file, T#.
8 . Wri tes the EDIT macro to extract the total amount of CH IP

memory fitted to the machine. It translates thus:
d Delete the title line
25# Delete the first 2 5 characters
1 O> Skip over 1 0 characters (total CHI P)
20# Delete to end of line
n Next line
2d Delete the FAST and Total lines

9. Writes the EDIT macro to extract the total amount of FAST
memory fitted to the machine. It translates thus:

2d Delete the title and chip lines
25# Delete the up to the total Fast fitted
1 0> Skip over the total fast
20# Delete to end of line

Ill

Mastering AmigaDOS Scripts

n Move to the total line . .
d ... and delete it

10. Writes the EDIT macro to extract the total amount of memory
fitted to the machine.

3d Delete up to the total line
25# Delete up to the total amount of RAM
1 0> Skip over it and . .
20# . . . delete the remainder of the line

11. Creates a global CHIP# with the total amount of CHIP memory
fitted. (Macro from Step 8.)

12. Creates a global FAST# with the total amount of FAST RAM
fitted. (Macro from Step 9.)

13. Creates a global TOTAL# with the total amount of memory
fitted. (Macro from Step 10.)

14. Multiplies the total amount of CHIP by 10 and stores the
result in CHIP#.

15. Multiplies the total amount of FAST by 10. Result is stored in
FAST#.

16. Displays the "Percentage" axis.
17. Creates the editable bar of spaces. This will be used to create

the bar graphics.
18. Marks the start of the repeating loop.
19. Positions the cursor at the top-left of the window and makes it

invisible.
20. Gets the amount of CHIP memory free using a snapshot

(· AVAIL CHIP ·) and multiplies the effective result by 1000 by
adding 000. This value is divided by the amount of CHIP fitted
(to get the percentage) and halved (for graphing purposes).
The result is sent to the global, C#.

21. Gets the amount of FAST memory free using a snapshot
(· AVAIL FAST ·) and multiplies the effective result by 1000 by
adding 000. This value is divided by the amount of FAST
fitted (to get the percentage) and halved (for graphing
purposes). The result is sent to the global, F#.

22. Gets the amount of memory free using a snapshot (· AVAIL
TOTAL ·) and multiplies the effective result by 100 by adding
00. This value is divided by the total memory fitted (to get the
percentage) and halved (for graphing purposes). The result is
sent to the global, T#.

23. Checks if the global C# is the same as the local, C. If not ,
control passes to Step 24 ; otherwise it jumps to Step 27. This

MemBar

function prevents the bars "flashing" on every run.
24. Positions the cursor ready to print the amount of CHIP free,

clears the line and displays: CHIP:.
25. Uses ECHO's string slicing feature to output a bar proportional

to the percentage of CHIP Ram in use. (A value of 50 is the full
length of the scale, or 100%. Fifty characters is quite enough
for an accurate(ish) display and is why the percentage ratings
were halved above.)

26. Copies the current setting of C# to C, memorising it for future
runs.

27. Terminates the IF . . . ENDIF construct from Step 23.
28. Checks if the global F# is the same as the local. F. If not,

control passes to Step 29: otherwise it jumps to Step 32. This
function prevents the bars "flashing" on every run.

24. Positions the cursor ready to print the amount of FAST free,
clears the line and displays: FAST: .

25. Uses ECHO's string slicing feature to output a bar proportional
to the percentage of FAST RAM in use.

26. Copies the current setting of F# to F, for future runs.
27. Terminates the IF . . . ENDIF construct from Step 28.
33. Checks if the global T# is the same as the local, T. If not,

control passes to Step 34 ; otherwise it jumps to Step 37.
34. Positions the cursor ready to print the amount of CHIP free,

clears the line and displays: CHIP: .
35. Uses ECHO's string slicing feature to output a bar proportional

to the total amount of RAM in use.
36. Copies the current setting of T# to T for future runs.
3 7. Terminates the IF . . . ENDIF construct from Step 33.
38. Waits for a second. You might want to increase this on slower

machines.
39. Re-starts the loop from scratch.
40. Is some information only used by WX.

Listing

1 . . key dummy

2 . .bra {

3 . . ket }

4 . resident c:avail

5 . resident c :wait

6 . resident c:eval

Mastering AmigaDOS Scripts

7 . avail >t : t {$$}

8. echo >t : ed 1 { $$} " d ; 25# ; 1 0> ; 20# ; n ; 2 d " ; extract CHIP

9 . echo >t : ed2{ $$} " 2d ; 25# ; 1 0> ; 20# ; n ; d " ; extract FAST

1 0 . echo >t : ed3{ $$} " 3d ; 25# ; 1 0> ; 20# " ; extract TOTAL

1 1 . edit t : t { $$} to env : CHIP {$$} with t : ed 1 {$$}

1 2 . edit t : t { $$} to env : FAST{$$} with t : ed2{$$}

1 3 . edit t : t { $$} to env : TOTAL{ $$} with t : ed3{$$}

1 4 . eval $chip{$$} * 1 0 to env : chip{$$}

1 5 . eval $fast {$$} * 1 0 to env : fast {$$}

1 6 . echo " O . 50
. 1 00 "

1 7 . !cho >en v : bar{$$} "

1 8 . lab start

1 9 . echo " * e [2 ; 0H*e [O p " noline

20 . eval (· avail chip ' 000 / $chip {$$}) / 2 !format
env : c {$$}

2 1 . eval (' avail fast ' OOO / $fast {$$}) / 2 !format
env : f {$$}

22 . eval (' avail tota l ' OO/ $total{$$}) / 2 !format
env : t {$$}

23 . if $c {$$} NOT EQ $c

" %n "

" %n "

" %n "

24 . echo " *e [40m* e [2 ; 0H CHIP : *e [K* e (41 m " noline

25 . echo " $bar{$$} " first 1 len=$c{$$} no line

26 . set c Sc { $$ }

27 . endif

28 . if $f {$$} NOT EQ $f

to

to

to

29 . echo " * e [40m*e [3 ; 7H*e (K*e (3 ; 0H FAST : *e (42m " noline

30 . echo " $bar{$$} " first 1 len =$f {$$}

3 1 . set f Sf{$$}

32 . endif

33 . if St {$$} NOT EQ St

34 . echo " * e [40m*e [4 ; 7H*e (K*e (4 ; 0HTOTAL : *e [43m " noline

35 . echo " $bar{$$} " first 1 len=$t{$$}

36 . set t St{$$}

37 . endif

38 . wait sees

39 . skip start back

40 . ; WX : WINDOW=WI NDOW=con : 0 / 0 / 1 90 / 60 / Memory
Gaug e / SMART / NOSIZE

Mastering AmigaDOS Scripts

MemFreeP

Synopsis: Called from Workbench
Template:

Path:

Requires: V2+

See also:

Type:

MemlnK, MemUsedP, MemBar
Script

Brief: Show available memory as a percentage of total

Description

This script is a development of some of the others presented
earlier, but it's a fair bit more complex. The reason is that while
AVAI L can show the total amount of memory FREE as a single result,
it cannot show the total amount fitted: except in tabulated form
thus:

1 >AVAIL

Type Available I n - Use Maximum Largest

chip 1 974040 1 22088 2096 1 28 1 960864

f ast 1 56 1 392 1 060048 2621 440 1 555064

t otal 3535432 1 1 82 1 36 471 7568 1 960864

Of course, your machine will probably look completely different to
this: but the effect is the same. To get a percentage of memory free
we have to divide the total free by the maximum available and
multiply by 100. For example, for CHIP in this example:

1 974040/ 2096 1 28* 1 00 = 94 . 2%

From AmigaDOS, this calculation is:
1 >EVAL 1 974040 / 2096 1 28* 1 00

Umm . . . The reason is AmigaDOS does some internal rounding and
the fractional part of " 1974040/2096128" is thrown away before the
result is multiplied by 100. In fact, we can cheat and just add a
couple of zeros on the top of the fraction and come up with this:

1 >EVAL 1 97404000 / 2096 1 28

94

Much better. The other problem is how do you get the values out of
the tabulated output from AVAIL. This is neatly solved with some
edit macros described below.

Mastering AmigaDOS Scripts

MemFree

Line-By-Line

1-3. Comprise a standard lconX script header.
4-6. Makes some essential commands resident.
7. Sends the complete avail output to a file , T#.
8. Writes the EDIT macro to extract the total amou1t of CHIP

memory fitted to the machine. It translates thus:
d Delete the title l ine.
25# Delete the first 2 5 characters.
1 0> Skip over 1 0 characters (total CHIP).
20# Delete to end of line.
n Next l ine.
2d Delete the FAST and Total l ines.

9. Writes the EDIT macro to extract the total amomt of FAST
memory fitted to the machine. It translates thus:

2 d Delete the title and chip lines.
25# Delete the up to the total Fast fitted.
1 0> Skip over the total fast.
20# Delete to end of line.
n Move to the total line . . .
d . .. and de lete it.

10. Writes the EDIT macro to extract the total amount)f memory
fitted to the machine.

3d De lete up to the total line.
25# Delete up to the total amount of RAM.
1 0> Skip over it and . . .
20# . .. de l ete the remainder of the line.

11. Creates a global CHIP# with the total amount of C H P memory
fitted. (Macro from Step 8).

12. Creates a global FAST# with the total amount of FAST RAM
fitted. (Macro from Step 9).

13. Creates a global TOTAL# with the total amount , f memory

MemFree P

fitted. (Macro from Step 10).
14. Multiplies t he total amount of CHIP by 10 and stores the

result in CHIP#.
15. Multiplies the total amount of FAST by 10. Result is stored in

FAST#.
16. Marks the start of the repeating loop.
17. Positions the cursor at the top-left of t he window and makes it

invisible.
18. Gets t he amount of CHIP memory free using a snapshot

(· AVAIL CHIP ·) and multiplies t he effective result by 1000 by
adding 000. This value is divided by the amount of CHIP fitted
and the result displayed as a percentage. AmigaDOS sees the
line like this after expansion (assuming Shell #5) :

eval 1974040000/$chip5 !format "CHI P %n percent free *n"

Note you can't use the "%" symbol because t his confuses EVAL's
LFORMAT parser.

19. As 18 for FAST memory.
20. As 18 for the total amount of memory fitted. Note this value is

expanded by a factor of 100, not 1000 as used for t he other
two calculations in order to avoid overflow.

2 1. Waits a short time . . .
22. . .. before re-starting the loop and doing it all again.
23. Is some private information used by WX.

Listing

1.

2.

3 .

4 .

5 .

6 .

7 .

8 .

9 .

10 .

11 .

12 .

13 .

. key dummy

. bra {

. ket }

resident c : avail

resident c : wait

resident c : eval

avail >t : t{$$}

echo >t : ed1{$$}

echo >t : ed2{$$}

echo >t : ed3{$$}

edit t : t{$$} to

edit t : t{$$} to

edit t : t{$$} to

" d ; 25# ; 10> ; 20# ; n ; 2d " ; extract CHI P

' 2d ; 25# ; 10> ; 20# ; n ; d " ; extract FAST

"3d ; 25# ; 10> ; 20# " ; extract TOTAL

env : CH I P{$$} with t : ed1{$$}

env : FAST{$$} with t : ed2{$$}

env :TOTAL{$$} with t : ed3{$$ }

Mastering AmigaDOS Scripts

1 4 . eval $chip{$$} * 1 0 to env : chip{$$}

1 5 . eval $fast {$$} * 1 0 to env : fast {$$}

1 6 . lab s tart

1 7 . echo " *e [O ; OH * e [O p" noline

1 8 . eval · avail chip ' OOO / $chip{$$} lformat " CH IP %n percent
free * n "

1 9 . eval · avail fast ' OOO / $fast {$$} lformat " FAST %n percent
free * n "

20 . eval · avail total ' OO / $total{$$} lformat " TOTAL %n percent
free * n "

2 1 . wait 1 sees

22 . skip start back

23 . ; WX : WINDOW=WINDOW=con : 0 / 0 / 1 90 /60 /Memory
Gauge /SMART/ NOSIZE

MemG (DOS 2)

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Called from Workbench

V2+

MemlnK, FreeMemP, MEM6
Script

Mastering AmigaDOS Scripts

Brief: Show available memory by type

Description

This version really shows the true power of AmigaDOS 2 and above.
This minimal version performs exactly the same function as MEM
for 1 .3, but is even more succinct. You can start this script from
AmigaDOS with WX thus:

1 >WX MEM4

Mem in Byte

Line-by-Line

1-2. Makes some essential commands resident.
3. Marks the start of the repeating loop.
4. Positions the cursor at the top left of the window, makes it

invisible, displays the memory free message, goes to the next
line, displays the CHI P : message and finally inserts the
amount of CHIP currently free. The " *e [K " string clears
everything to the end of the line - for cases when the current
amount of memory is lower than the last time.

5. Displays the current amount of FAST mem and clears to the
end of the line.

Mastering AmigaDOS Scripts

6 .

7 .

8.

9.

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

Ill

Displays the total amount of free memory and clears to the
end of the line.
Waits a short time before the next update ...
. . . jumps back to Step 3 and starts the whole process off again.
Is the window description for WX. I t is not used by the script.

resident c : avail

resident c : wait

lab start

echo " *e [O ; OH*e [O pMemory free*nCHI P : · avail chip ' *e [K "

echo " FAST : · avail fast ' *e [K "

echo " TOTAL : · avail total ' * e [K " noline

wait 5 sees

skip start back

; WX : WINDOW=WINDOW=con : 0 / 0 / 1 90 /40/Memory
Gauge / SMART / NOSIZE

MemG

Synopsis: C a l l e d from Wo rkbench

Template: . . .

Path: . . .

Requires: Y l . 3 +

See also: M e m G 2

Type: Scri p t

Brief: Show avai l ab l e memory b y type

Mastering AmlgaDOS Scripts

This s c r i p t i s the bas i s a n d the s i m p l e s t memory gauge dev ised for
t h i s book a n d shows the bas ic i d e a . I t 's a l so the fas tes t . The i dea i s
t o o p e n a w i n d o w w i t h t h e c u rre n t l y avai l ab le memory shown a n d
update i t o n a regu l a r bas i s .

MernGauge

Line-by-Line

1 . Provi d e s a d u m my key fo r l conX to use .

2 - 6 . M a ke some e s s e n t i a l c o m m a n d s res i d e n t . These c o m m a n d s
a re par t i cu lar ly re levant t o t h e e a r l y vers i o n s of A m i gaDOS
and d ra ma t i ca l ly i m p roves the p erformance of t h i s scr i p t .

7 . M a rks the start of t h e repeat ing loop .

8 . Swi tches the c u rsor off, p o s i t i o n s the cursor a t the start of the
fi rst l i ne o n the w i n d ow a n d echoes C H I P : . The extra l i ne -fee d
i s s u p p ressed so t h e o u t p u t fro m AVAIL . . .

9 he re , g e t s tacked o n t o i t .

1 0 - 1 1 . D i s p l ay the FAST me mory o n one l i n e .

1 2 - 1 3 . D i s p l a y t h e t o t a l a m o u n t o f free m e m o ry c u r r e n t l y
ava i la b l e .

1 4 . Wai ts a few sec o n d s . You can c h a nge t h i s va lue i f you l i ke , b u t
five seco n d s i s fas t e n o u g h to c a t c h l a rge c h a n g e s i n m e m o ry

Ill

Mastering AmigaDOS Scripts

allocation. Very small fast changes will be too quick for such a
simple configuration.

15. Re-starts the loop again by jumping to Step 7.
16. Is some information for WX to use. It is not required by the

script.

Listing

1 . . key dummy

2 . resident c : echo

3. resident c : Lab

4. resident c : skip

5 . resident c : avail

6 . resident c : wait

7 . lab start

8 . echo "*e [0 ; 0H * e [0 pCHIP: " noline

9 . avail chip

1 0 . echo " FAST : " noline

1 1 . avail fast

1 2 . echo " TOTAL : " noline

1 3 . avail total

1 4 . wait 5 sees

1 5 . skip start back

1 6 . ; WX : WINDOW=WINDOW=con : 0 / 0 / 1 90 / 60 / Memory_Gauge

Memlnk

Synopsis: Called from Workbench
Template: . . .

Path: . . .

Requires: V l .3-1.3.3
See also: MemG
Type: Script

Mastering AmigaDOS Scripts

Brief: Show available memory (in K) by type

Description

This memory gauge is similar to Mem, but this time it shows the
amount of memory available in kilobytes. Surprisingly, this is more
complex than you might imagine.

Line-by-Line

1-3. Comprise a standard script header for lconX.
4-8. Make some essential commands resident.
9. Marks the start of a loop.
10. Positions the cursor at the top-left of the window and makes it

invisible.
11. Displays the headline.
12. Gets the total amount of CHI P currently free and sends the

result to T:CM#.
13. Uses EVAL in its interactive mode to divide the result from

Step 1 2 by 1024 (1 K). The L FO RMATed resul t is sent to
T:mem# . . .

14. . . . and displayed here.
15- 17. As 12- 14 for FAST memory.
18-20. As 12- 14 for the total amount of memory fitted.
21. Re-starts the loop.
22. Is some information for WX: not used by this script. This

information is the WINDOW= tooltype for IconX.

Listing

1 . . key dummy

2 . . bra {

11D

Mastering AmigaDOS Scripts

3.

4 .

5.

6.

7.

8.

9 .

. ket }

resident

resident

resident

resident

resident

lab start

c : echo

c : Lab

c : skip

c : avail

c : wait

1 0 . echo " * e [O ; OH*e [O p "

1 1 . echo " Memory availab le "

1 2 . avail >T : cm{S$} chip

1 3 . eval <T : cm{SS} >nil : op= / value2= 1 024 to=T : mem{ $$} !for -
mat " CHIP : %nK bytes " ?

1 4 . type T : mem{SS}

1 5 . avail >T : fm{ SS} fast

1 6 . eval <T : fm{SS} >nil : op= / value2= 1 024 to=T : mem{SS} !for -
mat " FAST : %nK bytes " ?

1 7 . type T : mem{SS}

1 8 . avail >T : tm{SS} total

1 9 . eval <T : tm{SS} >nil : op= / value2= 1 024 to=T : mem{SS} !for -
mat " TOTAL : %nK bytes " ?

20 . type T : mem{SS}

2 1 . skip start back

22 . ; WX : WINDOW=WINDOW=con : 0 / 0 / 1 90 / 60 / Memory_Gauge

MEM6

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Called from Workbench

V2+
MEM3, MEM4, MEMS
Script

Mastering AmigaDOS Scripts

Brief: Show memory in use as a percentage

Description

This script is a development of MEM 5 and this one provides a
percentage of memory in use. Much better. The problem of how to
get the required values out of the tabulated output from AVAIL is
neatly solved with some edit macros described below.

Mern Used Percentage

Line-by-Line

1-3. Comprise a standard lconX script header.
4-7. Makes some essential commands resident.
8. Sends the complete avail output to a file, T#.
9. Writes the EDIT macro to extract the total amount of CHIP

memory fitted to the machine. It translates thus:
d Delete the title line
25# Delete the first 25 characters.
1 0> Skip over 10 characters (total CHIP) .
20# Delete to end of line.
n Next line.
2d Delete the FAST and Total lines.

1 0. Writes the EDIT macro to extract the total amount of FAST
memory fitted to the machine. It translates thus:

M11stering Amig11DOS Scripts

2d Delete the title and chip lines.
25# Delete the up to the total Fast fitted.
1 0> Skip over the total fast.
20# Delete to end of line.
n Move to the total line . . .
d ... and delete it.

11. Writes the EDIT macro to extract the total amount of memory
fitted to the machin,e.

3 d Delete up to the total line.
25# Delete up to the total amount of RAM.
1 0> Skip over it and . . .
20# . . . delete the remainder of the line.

12. Writes the EDIT macro to extract the amount of CHIP memory
fitted in use now:

d Deletes the header line.
1 5# Deletes everything up to CHIP . . . In Use . . .
1 0> . . . and skips over that value.
25# Deletes to the end of the line.
n Moves to the next line and . . .
2d . . . deletes the remainder of the table.

13. Writes the EDIT macro to extract the total amount of FAST
memory currently in use:

2d Deletes the header and CHIP lines .
1 5# Deletes everything up to FAST in use . .
1 0> . . . and skips over it.
25# Deletes everything up to the end of the line.
n Moves to the next line and .. .
d . . . deletes it.

14. Writes the EDIT macro to extract the total amount of memory
currently in use:

3d Deletes the first three lines.
1 5# Deletes up to the start of the total in use . . .
1 0> and skips over it.
25# Deletes the remainder of the line.

15. Creates a global CHIP# with the total amount of CHIP memory
fitted. (Macro from Step 9.)

16. Creates a global FAST# with the total amount of FAST RAM
fitted. (Macro from Step 10.)

MEM6

17. Creates a global TOTAL# with the total amount of memory
fitted. (Macro from Step 1 1.)

18. Marks the start of the repeating loop.
19. Positions the cursor at the top-left of the window and makes it

invisible.
20. Creates a global NCHIP# with the total amount of CHIP

memory currently in use. (Macro from Step 1 2.)
21. Creates a global NFAST# with the total amount of FAST RAM

currently in use. (Macro from Step 13.)
22. Creates a global NTOTAL# with the total amount of memory

currently in use. (Macro from Step 14.)
23. Displays the current amount of CHIP memory used as a

percentage.
24 . Displays the current amount of FAST memory used as a

percentage.
25. Displays the total amount of memory used as a percentage.
26. Waits for a second - you can increase this delay if you prefer -

but this script takes a long time to run in any case.
27. Re-starts the whole calculation/display phase again.
28. Is some private window information for WX.

1. . key dummy

2.

3 .

4 .

5.

6.

7 .

8 .

9 .

10 .

1 1 .

1 2 .

13 .

1 4 .

15 .

16 .

1 7 .

1 8 .

. bra {

. ket }

resident c:avail

resident c : wait

resident c:eval

resident c : edit

avail >t : t{$$}

echo >t : ed1{$$}

echo >t:ed2{$$ }

echo >t : ed3{$$ }

echo >t : ed4{$$}

echo >t : ed5{$$}

echo >t:ed6{$$}

edit t : t{$$ } to

edit t:t{$$} to

edit t:t{$$} to

lab start

" d ; 25# ; 1 0> ; 20# ; n ; 2d " ; extract CHIP avail

" 2d ; 25# ; 1 0> ; 20# ; n ; d " ; extract FAST avail

" 3d ; 25# ; 1 0> ; 20# " ; extract TOTAL avail

" d ; 1 5# ; 1 0> ; 25# ; n ; 2d " ; extract CHIP now

" 2d ; 1 5# ; 1 0> ; 25# ; n ; d " ; extract FAST now

" 3d ; 1 5# ; 1 0> ; 25# " ; extract TOTAL now

env : CHIP{$$} with t : ed 1 {$$}

env : FAST{ $$ } with t : ed2 { $$ }

env : TOTAL{ $$ } with t : ed3{$$}

..

Mastering AmigaDOS Scripts

1 9 . echo " *e [O ; OH* e [O p " noline

20 . edit t : t { $$ } to env : NCH I P {$$} with t : ed4{$$}

2 1 . edit t : t { $$ } to env : NFAST{$$} with t : ed5{$$}

22 . edit t : t { $$ } to env : NTOTAL{$$} with t : ed6{$$}

23 . eval ($Nchip { $$ } * 1 00) / $chip{$$ } !format " CHIP %n percent
used * n "

24 . eval ($Nfast { $$ } * 1 00) / $fast { $$ } !format " FAST %n percent
used * n "

25 . eval ($Ntotal{ $$} * 1 00) / $total{$$} !format " TOTAL %n per -
cent used * n "

26 . wait 1 sees

27 . skip start back

28 . ; WX : WINDOW=WINDOW=con : 0 / 0 / 1 90 / 60 / Memory
Gauge / SMART / NOSIZE

Mastering AmigaDOS Scripts

MID

Synopsis:

Template:

[EXECUTE] MID<[name=]name>
name/a

Path: S:
Requires: 1. 3 - 1. 3 . 3
See also:

Type: Script
Brief: Make a directory with an icon

Description

If you create a new directory from AmigaDOS, it does not receive a
Workbench icon. This short script - M ID for Make l conified
Directory - will rectify that. Note however, because the Drawer icon
is copied using AmigaDOS, you will need to use the Workbench
Clean-up and Snapshot functions before using it. Note also, this
script is only suitable for machines fitted with AmigaDOS 1. 2, 1. 3
or 1. 3 .2.
Use your favourite text editor to create the script and save it as
S : MID (no pun intended). AmigaDOS 1. 3 and 1. 3 .2 users should set
the "S" protection flag to get the best from this command.
Use:

Example:

Listing

MID <name of new directory>
MID DFl :Tool kit

1 . . key name/ a

2 . . bra {

3 . . ket }

4 . MakeDir {name}

5 . Copy SYS:Empty. info TO {name} . info

Ill

Mastering AmigaDOS Scripts

ml

MID1

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) M I D I < [name=] D i rectory>

name/a

S :

V l . 2 - 1 . 3 . 3 .

M I D

Scr ipt

Make a d i rectory w i th an icon

This i s a be t t e r vers i o n of M I D , but the ex t ra work i t has to do
makes i t s lower. Th i s vers ion looks for a su i tab le i con i n the curren t
d i rectory and cop ies that rather than requ i r ing the boot d i sk .

Example

1>MID1 DF1 : Toolkit

Line-By-Line

1 . Sets the key for t h i s command wh ich i s s im i lar to the ex is t ing
MAKED I R . Note that the name of the d i rectory i s requ i red for
t h i s command (as it shou ld be) .

2 - 3 Re - se t the bracket characters t o { a n d } respect ive ly.

4 . C reates the n e w d i rectory us i ng t h e supp l i ed name .

5 . D i scovers i f a n "Empty" icon ex is ts i n the current d i rectory. I f
one i s found , contro l resumes at Step 6 : i f not , cont ro l jumps
to S tep 7 .

6 . C re a t e s a n e w d ra w e r i c o n i n t h e r e q u i re d d i r e c t o ry by
copy ing the ex i s t ing "Empty" icon fi l e .

7 . I f con trol reaches th i s po i n t from S t ep 6 , i t j u m ps to S t ep 9 ,
o the rwise i t cont inues at S t ep 8 .

8 . Cop i es t h e " Empty" icon from t h e boot d i s k t o t h e d est inat ion
d i rectory.

9 . Te r m i na tes t h e I F . . . ELS E . . . EN D I F cons t ruct opened a t 5 and

term i nates the scr ip t .

Listing

1 . . key name / a

2 . . bra {

3 . . ket }

4 . MakeDir { name}

5 . if exists empty . info

6 . Copy Empty . info TO { name} . info

7 . else

8 . Copy SYS : Empty . info TO { name} . info

9 . end if

MID l

Mastering AmigaDOS Scripts

M Run

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXEC UTE] M R U N < [Com=] co m mand>
[p a rameters . . .] [p ri=nn] [s tack=nn]

C o m/a , x l , x2 , x 3 ,x4 ,x 5 , x6 ,x7 ,x8 ,x9 ,p r i/K , s tack/K

S:

V l . 3+

Scr ip t

An i m p roved vers ion o f RUN

Th is s c r i p t i m p l e m e n t s some i deas borrowed fro m ARP D OS's ARun
c o m m a n d . T h e idea i s t o " ru n l a u n c h " a c o m m a n d w i t h i t s own
s tack and p rior i t y. T h i s saves hav ing t o u se C HANGETAS K P R l and
STAC K tw ice - o nce t o se t t h e req u i re d para meters for t h e s i b l ing
proce s s ; a n d a ga i n t o p u t t h i ng s back to n o rmal . Th i s a l l ows you to
p u t t h e m u l t i - t a s k i n g a b i l i t y of t h e A m i ga to g o o d u s e . I t a l s o
d e m o n s t ra t e s t h e u s e o f EDIT i n au tomat i c mode .

Line-by-Line

1 . T h i s c o m m a n d k e y f o r c e s a c o m m a n d t o b e l o a d e d a s a
req u i re d argu m e n t . The c o mm a n d 's parameters are passed i n
x l . . .x 9 . The new v a l u e s o f STACK a n d PR IOR ITY a re p a s s e d as
keywor d s . W h i l e th is d o e s m a ke both o p t i o n s , t h e re wou l d be
l i t t l e p o i n t exe c u t i ng t h i s s c r i p t w i t h o u t s u p p l y i n g a t l e a s t
one ! You can u s e re- d i re c t i o n o perators l i ke t h i s :

MRUN dir >prt : all stack= 1 2000 pri= - 5

Qu o t e s , s u c h a s m i g h t b e u s e d i n L I ST's L F O R M AT, s h o u l d
t h e m s e l v e s b e e s c a p e d w i t h * " . Ve ry l o n g c o m m a n d l i n e s
s h o u l d b e e n c l o s e d i n q u o t e s . I n p ra c t i c e t h i s s c r i p t c a n
u s u a l l y b e u s e d w i t h o u t r e s o rt i n g t o s u c h m e t h o d s - b u t
t h ey ' re t h e re i f y o u n e e d t h e m . I f y o u ' re u s i n g o u t p u t r e
d i r e c t i o n " > " a n d t h e c o m m a n d h a s a T O o p t i o n (L I ST fo r
exa m p le) u s e t h a t i ns tea d .

4 - 7 . C o n struct a macro w h i c h wi l l be u sed b y the l i ne e d i tor, EDIT,
t o w r i t e a n e w s c r i p t . T h i s m a c r o t a k e s t h e o u t p u t f r o m
STATUS a n d u se s i t t o c reate a s c r i p t to res tore the o r i g i n a l
p ro c e s s p r ior i ty a n d s tack va lues a fter t h e s i b l i ng command
h a s b e e n l au n c h e d . The s t a r t i n g po in t l o o k s s o m e t h i ng l i ke
t h i s :

Process 1 : stk 4000 , g v 1 50 , pri 0 Loaded a s command : status

and we need to end up with a script which reads:
STACK 4000

CHANGETASKPRI 0

4 . dtb /stk/ ;

removes " Process 1 : "
e /stk/STACK

exchanges II stk II with STACK so the line now reads:
STACK 4000 , gv 150 , pri 0 Loaded as command : status

5 . sb/ , /

MRun

Splits the line at "," Note the cursor moves with "," so the line
now becomes two lines:

6 . dtb /pri/

Deletes

STACK 4000

, gv 150 , pri 0 Loaded as command : status

" l QV 150 l "

e /pri/CHANGETASKPRI

Exchanges " pri " for CHANGETASKPRI and the lines now read:
STACK 4000

CHANGETASKPRI 0 Loaded as command : status

7. Finally, dtb /L/

Deletes " Loaded as command : status"

The original line has now become the required script, which
has adopted the priority and stack from the current process.

8. This line gets the status of the current command. The second
{$$} expansion ensures that MRUN only receives the status of
the process which launched it.

9. Actually does the work of creating the recovery script. A bug
(ok, a feature) in EDIT means an output file has to be created.
The output file is the script executed at Step 13 .

10. Sets the priority of the current process to either the user
supplied value or a default value of 0.

11. Sets the stack of the current process to either the user
supplied value or a default value of 4000 bytes.

12. RUN launches the new process passing the current values of
stack and priority to the sibling. See note below.

13. The recovery script is executed here, restoring the stack and
process priority back to what they were previously.
You might have noticed by this point, something curious
about this script. There's nothing unusual about it except

Ill

Mastering AmigaDOS Scripts

there is no reason why it should read: RUN ... In fact, RUN
could be removed and the new script cal led something like
LAUNCH. With little extra alteration, this script can start a
synchronous (as opposed to asynchronous) process with its
own stack and priority. You should also insert the fol lowing
before line 1 0:

FAI LAT 2 1

just to make sure that, if the command fails, the old priority
and stack values are restored correctly. The format of this
command could read:

Listing

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

1 0 .

1 1 .

1 2 .

1 3 .

. key Com/a,x 1,x2 ,x3 ,x4 , x 5 ,x6 ,x 7 ,x8 ,x9, pri/K,stack/K
. bra {
. ket }
echo >T : mrun - 0 - {$$} " dtb / s tk / ; e / st k / STACK "

echo >>T : mrun - 0 - {$$} " sb ! , / "

echo >>T : mrun - 0 - {$$} " dtb / pri / ; e / pri / CHANGETASKPRI "

echo >>T : mrun - 0 - {$$} " dfb / L / "
status >T : mrun - 2 - {$$} {$$} FULL
edit T : mrun - 2 - {$$} T : mrun - 3 - {$$} with T : mrun - 0 - {$$}
CHANGETASKPRI { pri$0}
STACK. { stack$4000}
RUN { com} { x 1 } { x2 } { x3} { x4} { xS} { x6} { x7} {xB } {x9}
EXECUTE T : mrun - 3 - {$$}

NOT

Synopsis:

Template:

Path:

Requires:

Type:

Brief:

Description

Mastering AmigaDOS Scripts

[EXECUTE] NOT <[com=]command> <[pat=]pattern>
[options . . .] [only=filesldirs] [include=filelpattern]
com/a,pat/a,opt 1,opt2 ,opt3 ,opt4 ,opt5,only /k,
include/k
S:
V l .3- 1.3.3
Script
To simulate NOT pattern matching for AmigaDOS
1.3

This script was developed in a similar vein to SPAT and DPAT and
works in very much the same way. This particular script is very
complex to implement and relies heavily on EDIT. It involves
producing two lists: one matching the NOT pattern and another
taking in everything. The two lists are then compared and the
duplicated lines removed ... Rather like using a sledgehammer to
crack an Amiga - but it works.

Line-by-Line

1-3. Define the template described above and re-define bra dnd
ket as { and }.

4. This creates the first EDIT macro - this one will do the job of
removing the unwanted flotsam from output listing:

O (f / ! / ; p ; 2d ;)

It breaks down as follows :

0 (

Repeats everything enclosed in brackets unt i l input is
exhausted.

f / ! /

Finds the next occurrence of a line with the string "1 " The
meaning of this will become clear shortly.

p ; 2d ;)

Moves back one line, then deletes the current line and the one
below it. The closing bracket tells this command to repeat
until input is exhausted. This is the end of the macro.

5. The second EDIT macro - this one just inserts a command at

-

Mastering AmigaDOS Scripts

the start of each line:
O (b/ /{com}/ ; n)

You may wonder why I didn't just do this in the L IST
commands - there is a reason which I'll cover shortly. The
macro breaks down as follows:

0 (

As in the first macro, this starts at the top of the file and
works down until it runs out of lines.

b/ /{corn}/

Searches for two spaces from the start of the current line and
inserts the user's command {corn} before those. After inserting
the command moves to the next line and continues until input
is exhausted. In other words, until the whole file has been
processed.

6. Creates a file which is a list of files matching the user's
directory specification plus any other supplementary files. In
fact, it is the supplementary files which will form the final
output. LFO RMAT is used here, inserting two spaces at the
start of each line before the complete path and name of each
file.

7-9. This block is only p rocessed if the user has entered an
optional "include" pattern at the command line - forcing NOT
to include some extra files. It does this by appending a second
copy of each file matching the "include" pattern to the file list.
In effect, this will override the NOT pattern already specified.

8. This appends the original list of files to be excluded to the
current list. Using a special LFORMAT, these files which
uniquely match the NOT pattern are marked with a " ! " string
before the filename.

1 0. This line is vital - without it the script just wouldn't work. At
this point, the script has built a file list which might look
something like this:

" Startup- sequence"

" DPAT "

" Startup2 "

" SPAT "

"NOT"

" PCD "

" SPAT "

! " Startup- sequence"

! " Startup2 "

Not

! " SPAT "

Files matching the NOT pattern (S#?) are listed twice. First
with a double space and next with a " ! " . Files matching the
include pattern are listed three times - once with " ! " . In this
case only SPAT was specifically included. Now if we sort the
file we end up with a file list which could look like this:

" DPAT "

" SPAT "

" SPAT "

! " SPAT "

" Start u p - sequence "

! " Startup- sequence"

" Startup2 "

! " Start up2 "

" NOT "

" PCD "

1 1. The files are sorted in alphabetical order by name - this is
forced using "colstart=3" . This also explains why it is not
possible to include the command at this stage. If it were, the
value of colstart would be variable making the list difficult, if
not impossible, to sort into the right order.

12. Fail level is adjusted here because the EDIT macros actually
cause a failure with Return Code 10. This is quite normal
under these circumstances.

13. This uses the first EDIT macro to remove all the lines starting
with " ! " including the previous line. The result of this
operation using the previous example looks like this:

" DPAT "

" SPAT "

" NOT "

" PCD "

Note that SPAT has been included because it appeared in the
file list three times and the EDIT macro only removes two
lines. This is what was required of course.

14. This appends a blank line to the file just generated. Under
normal circumstances this will not be required. It is here in
case the user specified a pattern which causes the input file to
become empty. A blank line gives the ED IT macro at 10
something to chew on.

15. Using the second EDIT macro, this inserts the user command

Mastering AmigaDOS Scripts

at the start of every line. This can give rise to some very
interesting effects if the LIST command is combined with the
DIRS option.

16. At long last, the script is executed.

NOT is a very predictable script once you get used to it; but being
powerful implies that it's also prone to users' mistakes! Most of this
is "bread and butter" script p rogramming which you should be
capable of. If you are at all unsure about your abilities with
patterns, leave it for now.

Listing

1. . key
com / a , pat/a , opt1 , opt2 , opt3 , opt4 , opt5 , only / k , include/ k

2. . bra {

3. . ket }

4 . echo >t : auto{$$} " O (f/ ! / ; p ; 2d ;) "

5. echo >t : aut1{$$} " O (b / / {com} / ; n) "

6 . list >t:temp{$$} {pat} I #? {only} !format " * " %s%s* "
{opt 1 } {opt2} {opt3} {opt4} {optS } "

7 . if " {include} " NOT EQ " "

B . list >>t : temp{$$} {include} {only} lformat= " * "%s%s* "
{ opt1 } {opt2} {opt3} {opt4} {optS } "

9. endif

10. list >>t : temp{$$} {pat} {only} !format " ! * "%s%s* " {opt1 }
{opt2} {opt3} {opt4} {optS } "

1 1. sort t : temp{$$} t : sort{$$} colstart=3

12. failat 1 1

13. edit t:sort{$$} t : edit{$$} with t : auto{$$} ver=N I L:

14 . echo »t: edit{$$} " *n "

15 . edit t:edit{$$} t : edi1{$$} with t:aut1{$$} ver=nil:

16. execute t : edi1{$$}

Mastering AmigaDOS Scripts

Pathfind

Synopsis: [EXECUTE] PATHFIND <PathName> [QUIET]
Template:

Path: S:
Requires: V l . 3+

See also:

Type: Script
Brief: List the current paths (by letter)

Description

With Workbench 2 it is possible to get a list of the current devices,
volumes or directories simply by adding an option to the ASSIGN
command. Pathfinder uses a similar method to that described for
DIRS and VOLS to check on the setting of any particular path. As
always, if you are going to use these scripts much you should save
these in the S: directory and set their S (script) protection bit. See
SETS.
This little goody first appeared in Volume 2 of Mastering AmigaDOS
2, and while nothing earth shattering, it's still quite useful. The idea
of this one is to allow you to view a single path, if it exits. Also, a
feature of the search command means you only have to type the
first few letters to get info on the required path. For instance:

or

1>PATHFIND S

Workbench 1.3:System

Workbench 1.3:S

1>PATHFIND SY

Workbench 1.3:System

It works like this:
1. Determines the command's argument template:

PAT/A.Opt. Pat is a substring of the pathname you're
interested in; Opt is passed directly to PATH and
will normally be the QUIET option.

2. Sends the current path settings to a temporary file. If the
QUIET option has been specified as part of the command line,
PATH will not put up any "Please insert volume . . . " requesters.

3. Searches and displays any paths matching the substring. Note
a colon is inserted prior to the search string. This forces the
search to start immediately after the volume name. This

Mastering AmigaDOS Scripts

should be omitted if you want to search for partial strings
anywhere in names.
Directory paths are always searched from top to bottom, so
you may wish to omit the NONUM option in line 3. This will
show the priority of the particular path in the search, for
instance:

1 >PATHFIND S

4 Workbench 1 . 3 : System

5 Workbench 1 . 3 : S

In other words, "System" will be searched fourth, and "S" fifth.

Listing

1 . . KEY PAT / A , opt

. BRA {

. KET }

2 . PATH >T : ptemp{$$} SHOW { opt }

3 . SEARCH T : ptemp{$$} " : { PAT} " NONUM

Mastering AmigaDOS Scripts

Pest (AmigaDOS 1 .3)

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

none
none
S:
V l .3- 1 .3.3 only
Pest (AmigaDOS 2)
Startup script supplemental
Appointment/reminder program

I can understand folks still using the 1 .3 ROM to retain downward
compatibility, but still being stuck with AmigaDOS 1.3 must be a
comparative nightmare. Like all classics, AmigaDOS 1.3 is still the
weapon of choice for many of you. The compatibility problem with
the AmigaDOS 2 Pest is this : in AmigaDOS 2 an environmental
variable can be read directly by a command by preceding its name
with a dollar symbol. For instance, say the you gave the arbitrary
variable, NAME a value of "Mark" , the following would be true:

1>ECHO " Hello $NAME "

Hello Mark

In "The Pest" the current date is sent to a file and processed into a
global environmental variable (NOW) using EDIT. Typically, a date
such as:

Monday 2 - Mar - 92 12:30 : 04

becomes :
2 - Mar - 92

Pest2 creates a print file using NOW which will contain a string like
thi s :

= = Reminders for: 2 - Mar - 92 ==

The same thing can be achieved in AmigaDOS 1.3 by joining files
together:

echo >T : pf1 " == Reminders for : " noline

echo >T : pf2 " ==*n "

j oin T : pf1 ENV : now T : pf2 AS T : pf

an alternative method which achieves the same effect looks like
this:

echo >T : pf1 " == Reminders for : " noline

j oin T : pf1 ENV : now AS T : pf

Mastering AmigaDOS Scripts

echo >>T : pf " ==* n "

Of course, both those methods assume you want to exactly mirror
the original function provided by the AmigaDOS 2 version. In
practice, it would be better to just use a simpler string:

echo >T : pf " == Reminders for today ==* n "

A more subtle problem arises where the reminders file is being
searched for specific dates, because the search string is read
directly by AmigaDOS from the NOW variable. The solution is to
trick AmigaDOS 1.3 into reading the variable from a file, and this
can be accomplished using interactive mode, like this:

search <ENV : now s : Reminders ?

Here, I've reduced the command to its lowest required format. The
file "S: Reminders" is being searched for the string contained in
"ENV:now". Interactive mode is an important, misunderstood and
very under used concept. You are probably already aware if you
supply a question mark as part of a command line, AmigaDOS spits
out a command's template and waits for you to enter something.
This technique was quite widely used in older versions (1.2 and
earlier) to pre-load commands such as D IR. The arrival of RESIDENT
in 1.3 and ROM-based AmigaDOS at 2.x means this technique has
been almost forgotten however.
The key thing to remember is this: when a command enters
interactive mode, it can read input from anywhere - including files.
This effect can be achieved by supplying a command's argument in
a file and preceding the filename with "<" (redirect input from file).
Here for example, the search string is read from the contents of the
file "ENV:now":

search <ENV : now s : Reminders ?

In terestingly enough, i t is also possible to s upply fur ther
parameters on the command line too. Therefore, since The Pest
uses the NONUM switch we can add that too:

search <ENV : now s : Reminders NONUM ?

You might like to try executing the following illustration for
yourself - but take a note of what happens:

LIST >T : Temp SYS :

ECHO >T : Search " . info "

SEARCH <T : Search T : Temp NONUM ?

The first two lines create a dummy file to search and something to
search for respectively. This just ensures the SEARCH command will
do something. Execute the search a couple of times and watch what
happens. Notice how the command's template appears? If this
output were being sent to a file, that template would also appear

Pest (AmigaDos 1.3)

and it looks messy. This technique is usually used with output
redirected to the NIL: device and the condition codes (WARN, E RROR
etc) tested, but The Pest creates a file based on SEARCH's output.
The solution therefore is to create another EDIT macro which will
hack out the extraneous information and make the output look
better. As it turns out, this is quite simple to do. The file consists of
a header, one blank line, then the unwanted template. Therefore the
EDIT macro is constructed to skip 2 lines and delete the next one
like this:

2 n ; d

A complete script based on this idea is Pest l .3 and should be
inserted just before the LOADWB command in the Startup-sequence.
Alternatively, you can execute the script in its own right - but this
should be done late on in the Startup-sequence.

Line-By-Line

1. Creates the first EDIT macro as "Auto l ". Note this name does
not require special multi-tasking treatment since it is always
created by the Startup-sequence. The macro reads as follows:

DTA / / * n

DFA/ /

2. Creates the second EDIT macro as follows:
2 n ; d

3. Makes the display file "PF" in a simple format as described
above.

4. Gets the current time and date from the RTC and sends it to
the file ·'Today".

5. Edits the date part from the time/date output from DATE
leaving the result in a global variable, "now".

6. Uses SEARCH as described above in interactive mode to check
for any dates in the current day and appends the list to the
display file "PF" . If no dates are found for that day, SEARCH
fails and sets the WARN condition.

7. If the WARN condition is set, control continues at Step 1 1,
otherwise it jumps to Step 9.

8. Prints a simple message in the startup-sequence to let you
know Pest is active and working.

9. If control reaches here from Step 8, it jumps to Step 12 ;
otherwise it continues at Step 10.

10. Trims the "fluff" off "pf" using an EDIT macro and creates the
final display message as "pf l ".

-

Mastering AmigaDOS Scripts

1 1 . Launches MORE as a process and displays the reminder diary
in its own window. The startup script continues normally at
Step 1 2 . . .

1 2 closes the I F . . . ELSE . . . ENDIF construct opened at Step 7 and
leaves the startup to continue as normal.

Listing

1 . echo >T : Auto1 " OTA/ / * nDFA/ / "

2 . echo >T : Auto2 " 2n ; d "

3 . echo >T : pf " == Reminders for today == * n "

4 . date >T : today

5 . edit T : today to ENV : now with T : Auto1

6 . search >>T : pf <ENV : now s : Reminders nonum ?

7 . if warn

8 . echo " Nothing in reminder diary today . . . "

9 . else

1 0 . edit T : pf t o T : pf 1 with T : Auto2

1 1 . run more T : pf 1

1 2 . endif

Mastering AmigaDOS Scripts

Pest (AmigaDOS 2)

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Pest
none
S :

V2+

Pest 1.3
Startup-script additional
Appointment scheduler, reminder

When was the last time you forgot an important appointment?
Moreover, if you keep a diary do you remember to check it every
day? Isn't it just too easy to get engrossed in a computing session
and forget you had to nip to the dentist for a filling . . . This little
AmigaDOS 2 specific program will check your appointments every
time you start or reset your machine. In a few seconds it will
calculate the current date and check your schedule for any due
appointments. Although it would be possible to construct a similar
script for AmigaDOS 1.3, it would slow down the Startup-sequence
too much due to the extra complexity required. Also, your machine
must be fitted with a real-time clock.
All you have to do is construct a file of appointments in the S:
directory under the name: "Reminders". The format is as follows.
Each reminder must fit on one line and must contain the date in
AmigaDOS format, for example 00-MMM-YY.
The following are acceptable:

0 1 - Mar- 95 - Go to Mr Andrews for inspection at 1 0 : 00

Buy flowers for P. 's birthday : 02- apr - 95

whereas these are not:
Monday: Dentist

3 - 2 - 1995 Take car to Bob for oil change

Go to show : 15/5/95

-

Mastering AmlgaDOS Scripts

-•z ing book ! "

Pest Add Check

Line-By-Line

1. Create an auto-executing macro for EDIT using OTA and DFA.
This will be used to extract just the date portion from the
DATE's output. More of that later.

2. Get the current day, time and date and send it to the file:
"T:Today"

3. Use the macro created at Step 1 to create a new file "ENV:Now"
which contains the date str ing in the correct format. Here's
how it works:
DATE's output file contains a string which might look like this:

Monday 2 - Mar- 94 12:30:04

The EDIT macro removes just the day's name and the time like
this:

DTA/ I or Delete Start After the next space. Removes the
day's name including the trailing space. Our example date
now looks like this:
2 - Mar - 94 12:30:04

DFA/ / or Delete From After the next space. Removes the
time starting with the space after the date to the end of the
line. This produces the final output to file, viz:
2-Mar- 94

4. Now for another little bit of AmigaDOS 2 trickery. This line
creates a file in T: containing the reminder title and the date.
For instance:

== Reminders for: 2 - Mar- 94 ==

But hang on, where does the date come from7 Look at the line
more closely. Notice how the date appears at the position
$now. In other words "$now" is replaced by the contents of
the global environmental variable, "now". This variable was
created right under AmigaDOS's nose in Step 3. EDIT's output
file is called ENV:now.

5. The same kind of trickery is used here. The reminder file
(S : Reminders) is searched for any lines containing the current
date. Any lines containing that date are appended to the print

Pest (AmigaDos Z)

file T:pf created at Step 4 . The actual date is retrieved at run
time from "$Now". (This is possible in AmigaDOS 1 .3 but is
much more complex to achieve.)

6. This line opens a conditional test. The WARN flag will be set if
the date doesn't match any dates in the schedule file. I f this is
the case, control continues at Step 7; if not (a date was found)
control passes to Step 8.

7. Displays a short confirmation to let you know your day is free
from appointments.

8. If control reaches here directly from Step 7, it passes to Step
10, does not pass go and does not collect £ 200. I f rnntrol
came from Step 7 (a date was found) it continues at Step 9.

9. Opens MORE and displays all the appointments/reminders for
that day. RUN is used to start more so the Startup-sequence
can continue and launch Workbench while you study your
calendar.

10. Closes the script.

Listing

1. echo >T : Auto1 " OTA/ / *nDFA/ / "

2. date to T : today

3. edit T : today to ENV : now with T : Auto1

4 . echo >T : pf " == Reminders for : Snow ==*n"

5 . search >>T : pf s : Reminders " $now " nonum

6. if warn

7. echo " Nothing in reminder diary today . . . "

8. else

9 . run more T : pf

10. endif

Mastering AmigaDOS Scripts

Pest2 (AmigaDOS 1 .3)

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Pest
none
S:
Y l .3- 1.3.3 only
The Pest 1.3 version
Startup script supplemental
Alternative version of Pest

Pest usually uses the SEARCH command but the AmigaDOS line
editor also has a search feature and with a little cajoling it can be
pressed into useful service. The basic idea is this: get EDIT to
search for any lines containing the required string - a date in this
case - and display them. In fact, this is more complex than it
appears. Because EDIT is a line editor, it stops when a matching
string is found on a line; initiate another search from the same
position and EDIT finds the same occurrence. In other words it get
locked in a loop - always assuming you can get it to loop in the first
case that is.
The solution is a macro which looks like this:

O (f/ " string " / ; ? ; n)

Briefly, here's what it all does. The " ; " semi-colon character is used
as a command separator.
0() the commands contained in brackets are executed in a

loop until the input is exhausted.
f/"string"/ Locate the string "String" anywhere in the current line,

or search the text until any occurrence is found. (The
string in the final script is assembled as part of the
macro.) This function is case-sensitive so UPPER and
lower case are different.

7 Display the current line. Strictly speaking this is the
verify function which sends output to EDIT's own
verify display port. This is usually the current console
and the relevance of this will become clear later on. Go
to the next line, or stop if there is no input left to
search.

Unfortunately, that is not the complete answer. EDIT normally
outputs every line it scans to the console or the TO file. It also
generates a separate "verify" output and this is the one we will use
here. The main scan output will be sent to oblivion down the NIL

PestZ (AmigaDOS 1.3)

device, and only the lines displayed with the ? command will be
shown.
The complete EDIT-based Pest is longer, but the exercise gives rise
to some interesting examples in its own right. You should note a lot
of commands are grouped together, and thanks to the disk caching
system, this reduces the amount of disk access. The Pest was only
intended for AmigaDOS 2 because it takes advantage of the ROM
based (internal) commands but this script was provided as an
alternative that will only work in AmigaDOS 1.3.

Line-By-Line

1. Creates an EDIT macro that will be used to extract the date
component from the day/date/time format provided by DATE
at Step 2.

2. Reads the current system time and date and sends it to a file
called Today. Of course, your system must have a real time
clock for this to be of any benefit.

3. Edits the date in the Today file as described at Step 1. The
edited version is sent to the file, "now".

4. Looks in your reminder file to see if any dates match the
current date read from the system clock. If no match is found,
the WARN flag is set ; it is cleared otherwise.

5. Tests the WARN condition from Step 4. If no matches were
found (WARN=TRUE) execution continues at Step 6; otherwise
it branches to Step 7.

6. Clears the screen and displays a short message. The screen is
cleared using the short escape sequence: *e[0 ; 0H*e[J. (This is
available from Shell using the alias. CLEAR.)

7 . I f execution gets here from Step 6 i t branches directly to Step
16; otherwise it continues at 8.

8. Clears the screen and displays a two line message. (See Step
6.)

9. Creates the EDIT macro, Auto2. This command tells EDIT to
concatenate Uoin together) three consecutive lines. Literally,
two lines, twice.

10. This is the first part of an EDIT macro which will form the
search. The line ends at the first delimiting "/" ; a line-feed will
automatically be appended.

11. This is the third (not second) par t of the EDIT macro
mentioned above. Note how it begins with the closing "/"
delimiter?

12. The three files are now married together to form something
which (assuming the date was l 2-Jun-94) would look like this:

Mastering AmigaDOS Scripts

O (f /

12- Jun-92

/ ; ? ; n)

O f course, that doesn't make a macro, but it is necessary to
include a variable in a complex string such as this one. Next
the string has to be assembled . . .

13. . .. which is what this does. Look back at that macro, Auto2. It
joins the three lines together as one and presto - a macro is
created and ready to run.

14. In effect this just runs the macro, Auto3. The reminders file is
scanned for the current date and any matches are displayed
on the current console. The TO file is directed to NIL: so
spurious rubbish produced by this command is not displayed.

15. Forces a short delay so you can examine the list of jobs to do.
16. Closes the IF . . . ELSE . . . ENDIF construct opened at Step 5.
17. Close the current Shell. It's ·important to note here . this

command can be the last one in the normal Startup-sequence
if you include either version as part of your usual startup. It
must be included if you start Pest using the NEWSHEL L
command:

NEWSHELL FROM S:Pest

1. echo >T:Auto1 " OTA/ / *nDFA/ / "

2 . date >T:today

3 . edit T:today to ENV:now with T:Auto 1

4 . search >NIL: <env:now S:reminders ?

5 . if warn

6 . echo " *e [O ; OH *e [JNothing in reminder diary today . . . "
7 . else

8 . echo " *e [� ; OH*e [J== The Pest (1 .3) == *nOne moment
please . . .

9 . echo >T:Auto2 " 2CL"

1 0 . echo >T:a " O (f / "

1 1 . echo >T:b " / ; ? ; n) "

12 . j oin T:a ENV:now T:b AS T:c

13 . edit T:c TO T:Auto3 with T:Auto2

14 . edit S:Reminders with T:Auto3 VER= * TO=NIL:

1 5 . ask " Press <Return> to exit"

1 6 . endif

1 7 . endcli

Mastering AmigaDOS Scripts

Pest 3 {AmigaDOS 2)
Synopsis:

Tem plate:

Path:

Requires:

See also:

Type:

Brief:

[EXECUTE] Pest3 <[Time=]time>
[[Message=] Message]
time/a. Message
S:
Y3+

Pest 3 (AmigaDOS 2 Version)
Script
Bigger, better Pest scheduler

Line-By-Line

1 .

2 .

Defines the argument template. This will force the user into
entering a time, but the message to display is optional.
Sets the default message string - you can enter any default
message here.

3-4. Re-define the bra and ket characters from the default < and >
to { and }.

5 .

6.

7 .

This is a special syntax of the RUN command - little used but
very useful ideal for Pest. Two re-direction operators < and >
send input and output to the NIL: device. This stops the sub
process started by RUN from getting hold of the current
console handles. If this were allowed to happen, the CLI
window would stay open until the command is completed -
and this is very messy. At the end of the string a "+" is used.
This tells RUN to halt and wait for further command lines.
Many commands can be chained in this way - when the last
command line is encountered (the first one without the +)I
RUN actually starts.
Adds the command line to the RUN list - the process is NOT! started here. When WAIT times out, the message is sent to a
named pipe which is processed . . .
. . . here. This starts the RUN process opened a t Step 5 and
allows the script to complete. When execution arrives here
(after WAIT is complete) the current contents of the pipe are
displayed using more.

Listing

1 . . key time/a , Message

2 . . def Message " Wake up - time to die"

3 . . bra {

4 . . ket }

5. run <NIL: >N IL : wait until {time} +

6 . echo >pipe : A{$$} "{Message} " +

7. more pipe : A{$$}

Mastering AmlgaDOS Scripts

Pest 3 (AmigaDOS 3)

Synopsis:

Template:

Path:

Requires:

See also:

�pe:

Brief:

Description

[EXECUTE] Pest3 <[Time=]time>
[[Message=]Message]
time/a.Message
S :
V3+
Pest 3 (AmigaDOS 3 Version)
Script
Bigger, better Pest scheduler

Time . . . Have you ever noticed how life's full of it, but these days
there never seems to be enough to go around. Now, just when you
thought it was safe to go back to your computer, the ghost in your
Startup -sequence is back with a vengeance. Pest 3 can be
programmed to pop up and remind you of any appointment at any
specified time (accurate to within a minute or so depending on
processor load) and it won't even run down your battery. Pest 3 will
run on any Amiga with AmigaDOS 2 (or above) and a real-time
clock. A very powerful Workbench 3 specific version has been
included for those lucky enough to have such luxuries.
Before launching headlong into a discussion of this Pest, it's
worthwhile recounting how the original worked. Pest relies on
reading the date from the internal BB -RTC and comparing it with a
known date held in a file. Pest 3, in its most basic form, works in a
different fashion - more like an event clock: you set a timed event,
some time in the future, and Pest will "wake up" on (or slightly
after) that event. The basic function is all based on a little used
feature of the AmigaDOS WAIT command: here is the command's
complete template:

WAIT / N , SEC=SECS / 5 , MIN=MINS / 5 , UNTI L / K :

The part we are interested in here is the keyword UNTIL. This
forces WAIT to halt any CLI process until a specified time rather
than FOR a specified time interval. Times are entered in 24 hour
clock using the following format:

HH : MM

so, examples of valid times are 9 :00: 12 :00; 15 :04 and so on.
(Using the DATE command reveals that AmigaDOS counts time in
seconds too, but an exact seconds count cannot be guaranteed
because of constraints imposed by the multi-tasking environment.

Pest 3 (AmlgaDOS 3)

It is possible to write a program which will get very close - but this
is unlikely to be of any real benefit and in itself would hog too
much processor time.)
So much for the theory then : what happens in practice? Try
entering an example like this (the exact time entered depends on
what time you are trying this) :

1 >WAIT UNT I L 4:24

This example sets a time when most sane folk are tucked up in bed
and computer freaks are excitedly bashing at keyboards. However,
it is most likely your Shell has just frozen and gone to sleep. You
could reset the machine now, or even wait until half-four in the
morning. But a much more sensible approach would be to stop the
command. Press CTRL and C together to "break" WAIT's effect.
Now let's put some more theory into practice. Start a new Shell
(either from the existing one or Workbench, it doesn't matter for
this). In the second Shell, which I ' l l call CLI 2 here, enter this:

2>WAIT UNTIL 5:00

now click back in the first Shell and enter this:
1>STATUS COMMAND WAIT

2

Notice how AmigaDOS responds with the number of the CLI (Shell)
process which is running WAIT?
Experienced AmigaDOS users already know how to start a new
command in its own sub-Shell like this:

1>RUN WAIT UNTIL 5:00

[CLI 3]

While this system is perfect for many commands, it has no real
practical purpose when used directly with WAIT. Several problems
occur however:

• When RUN spawns the sub-process there is no way to signal
back to the main process the WAIT command has completed.

• The WAIT state cannot be broken directly from the keyboard
with CTRL+C - try it.

Taking this one step further by removing the "[CU #]" message
causes its own problems. Try this:

1 >RUN >NIL: WAIT UNTIL 5 - 00-00

Everything seems to go according to plan but the error in the
command line is not reported and WAIT does not start. Now to add
insult to injury, here's the final fly in the ointment. Start a new Shell
and enter this (for the sake of clarity, Shell's output has been
shown) :

Mastering AmigaDOS Scripts

1 >RUN WAIT UNTIL 3 : 00

(CLI 4]

1 >ENDCLI

Cli P rocess 4 ending

No matter what you do, Shell 4 will not go away 1 In fact, this Shell
window will stay open until the WAIT command has completed or is
forcibly stopped. All this discussion may seem far removed from
Pest - but in truth it is all inextricably intertwined. The last two
examples illustrate the events possible if Pest were started from the
initial Shell window: therefore some kind of error checking will be
required.

F. r l d a y

Dos Clock

Bo l ng . . . A" l gaDOS Pest c a l l l n� !
----- -----

0 K

Pest Calling

Your Basic Pest

The most basic version of Pest 3 forms a simple, message-based,
alarm clock and may be sufficient for many needs. It could be run
from a Startup-sequence because a special technique has been used
to allow the machine to start normally - more of that in a moment.
Two versions are supplied here: one for AmigaDOS 3 and a less
elegant version for AmigaDOS 2. The AmigaDOS 3 version in
particular can be run several times from the User-startup to warn of
regular timed events: lunch. Star Trek or Coronation Street for
instance . . . None of the simple scripts listed here do any error
checking on the time format so it is up to you to get it right.
Nevertheless they will not interfere with the machine's normal
running: I have several Pest 3.0 alerts running while I'm writing this
text in Transwrite.
The one constructed for AmigaDOS 3 is the simplest Pest and shows
the most important techniques without the extra fuss required for
other versions. You can call Pest from User-startup like this:

Pest 16:47 "Close all files - Star Trek is about to start on
Sky 1 "

Pest3 (AmigaDos 3)

Note that the quotes around the message are required. You can set
one or more time events from any Shell like this :

1 >Pest 1 8 : 00 "Looks like you missed Star Trek then ... "

Line By Line

1. Defines the argument template. Only the event's t ime is
actually required: Pest will generate its own message if you
don't supply one.

2. Sets the default message if one is not supplied. You can enter
any default message you want here.

3-4. Change bra (<) and ket (>) to { and }.
5. Initialises, but does not start a two command process. The

command line is added to a lis t but the sub-Shell is not
launched. When s tarted, this line will time out and continue at
Step 6 when the supplied time is reached.

6. Adds the second line to the proces s opened at Step 5. This
line triggers the RUN . . . WAIT part and exits the script. The line
will not actually execute until WAIT times out (that is, reaches
the UNTIL time).

Listing

1 . . key time / a , Message

2 . . def Message "Wake up - time to die "

3 • . bra {

4 . . ket }

5 . run <NIL: >NIL: wait until {time} +

6 . RequestChoice >NIL: "Pest" " {Message} " " OK"

Mastering AmigaDOS Scripts

Pest 3: AddPestEvent

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Only used from Workbench
Time/K,Day /K, Wai t/K,Go/K, Message/F
SYS: Pest3
V3+ (as part of Pest 3)
DeletePestEvent, KillPestEvent, StartPest, GetArgs,
DeletePestEvent, ChangeMessage, SetPestEvent,
SetWai tEven t
lconX script
The main module for Pest 3

Pest is probably the most powerful and comprehensive time
scheduling utility yet devised - but what makes it special and what
will make other computer users pale, is the fact the whole thing is
written in AmigaDOS. There are no clever assembly-language
cheats, no hidden utilities: everything is handled by the Amiga's
own DOS language. It's also a lot smaller and cheaper than anything
you could reasonably buy off-the-shelf. It even has a help facility to
get you started!

Pesr Adding

�-t-� r o�i.ats · .,.r,�•f u l l . or part l a l dat•• +or+ days
Ev _ Sat urday , Non , 1 2-0c t -93, 1 4 -F"•b-, -Nar-93 • t c ,
Pat t •rn� ftay b• ��•d• l e : Non l Wed l Sat
Non-F"r l i s'· Nonday_ t o Fr l d.ay

C L I T i.ftes Dates I De l ays

Pesr Dare Help

Pest can handle an almost unlimited number of "events" and is
accurate to within a couple of seconds of the computer's own clock

Pest3: AddPestEvent

- depending on processor load. It is fully multi-tasking and works
quietly in the background until it's needed. Memory requirements
are frugal - each running event takes only a couple of K. Once
active it will flash a message on the Workbench even if other
applications (DPaint, Wordworth and so on) are running. Being disk
based, it is totally reset protected since the events are set every
time the machine is started.
You may set an event (reminder) to trigger on any day, days, date,
or dates: at a specified time or a set time after the last reboot. For
example, you can set any event to happen at specific times on days
of the week; on weekends only; every day in a specific month and
so on. Typical uses include: birthdays, regular appointments, TV
programs and so on. The list of possibilities is quite vast and will
be seen by experiment.
Pest 3 will work on any Amiga with Kickstart/Workbench 3 and a
real-time clock. Amazingly, Commodore did not supply a RTC with
the A l 200 so unless you have bought one separately, Pest will be of
limited use. (It still works, but only the instant and delayed events
are workable. Pest is so good though, it's just the excuse you need
to go out and buy a RTC board.) The nature of the program means a
hard disk is recommended but not required.
I can imagine a lot of readers spitting teeth and demanding to know
why this all- time best Pest is AmigaDOS 3 only. The reason is
simple: AmigaDOS 3 has a new command which suits Pest to a tee
and implementing it in AmigaDOS 2 is technically quite tricky. It is
possible to write such a utility (RequestChoice) in assembler or C
but that rather defeats the object. Demand arising, I will fix this -
but for now, here stands the Pest 3: batteries not required.

Starting Pest

The entire Pest3 drawer should be copied to your Workbench disk.
Pest is activated by dragging the "StartPest" icon to your WBStartup
drawer and re-booting the machine. After that, you can just forget it
and let Pest do the rest. The program is like an alarm clock and as
such you must remember a couple of things:

• It does nothing unless you tell it to.
• You have to be around to hear it.

The second point cannot be stressed strongly enough. Pest is
intelligent enough to spot when you miss an appointment time on a
specified day - but the machine must be used on that date. This is
j ust like an alarm clock - if you're fast asleep (or not there) when it
goes off, you'll be late for work just the same.
Just double click on the AddPestEvent icon and select "Start". Pest
will ask you what it needs to know - the sequence of prompts is
defined by exactly what the event will do. The most important, and

Mastering AmigaDOS Scripts

the only required input from you is the message Pest will display
when the event occurs. You will then be given a choice of days,
dates, times or delays. Note that in this version CLI options are not
supported.
The message can be any string of text, although about 60
characters is about the maximum. There's no reason why you
shouldn't use the message to remind you to view a longer note
about that particular event. Times and dates need more
explanation. Pest can accept times in 12 or 24 -hour format and
recognises the difference by the presence of AM/PM in the string.
For example:

1:00 and 1 :00am

are the same thing, just as are:
1:00pm and 13:00

The 24 -hour method is less characters to type - it's entirely up to
you. Dates and days are more complex - although you only have to
use them if you want to specify an event for some particular day.
Basic dates are simple, for example let's assume you have a dental
checkup on 23rd July 1993, you would set an instant event (no
time) dated as 23-Jul-93.
More regular occurrences (such as birthdays and anniversaries) are
entered similarly - but without the year: the pest just registers the
date and the month. viz.: 23-Jul would define a single dated event
every 23rd July regardless of the year: birthdays and so on are a
good candidate for this event. This technique can be extended to
cover every day in a month such as Jan. Months and dates can be
grouped using the bar (I) character - this is explained for days
below.
Now let's imagine you have to pick the kids up at 3:00 every
weekday and it takes you ten minutes to get to school. you might
set the event day as: Mon-Fri. Pest recognises this special string and
enters the string: MonlTuel WedlThul Fri. Specific days should be
entered as three letter strings, separated by bars if necessary,
otherwise the entire week is taken as default.

Timed Events vs Delayed Events

Most Pest events are constructed from a time + day and/or date
plus a message. You can opt for a reminder to occur as you boot the
machine or for something to appear after a short delay - say 60
minutes. The timed delays are useful to remind you to take a break
although a reset is required to re-trigger them.

Pest3: AddPestEvent

How Pest Works

Pest stores its events in the S: assignment in a script titled " Pestfile"
where every event takes a single line in the file. You can
permanently remove an event by deleting the line or disable it by
placing a ": " at the beginning of the line. You can edit this file
directly and call the relevant Pest commands as you see fit, there is
no requirement to use AddPestEvent or DeletePestEvent - that
software is provided for beginners.
The system is constructed from a hideously complex set of
AmigaDOS algorithms - but just four simple commands are central
to the operation of the entire system: and only one of those is
specific to AmigaDOS 3. Pest keys on dates, days and times shown
by the DATE command like this:

1>date Monday 19 - Apr- 93 10 : 57 : 03

Provided your machine has a battery backed, real-time clock this
date will be correct every time you switch on or reboot. By
comparing the date portion to a known date, Pest can determine
whether to set an event. The burning question is how can any day,
date or combination be tested for? The entire test is performed in a
single line command based on SEARCH: and this is what makes the
system so powerful.
SEARCH can test for the presence of a sub-string within a file and
report on its findings. Let's see this in action:

1>SEARCH S : SPAT FAI LAT

8 FailAt 21

18 FailAt 10

The command displays the lines the string was found on and their
line numbers. You don't have to specify a full word of course:

1>SEARCH S : SPAT FAIL

8 FailAt 21

12 IF NOT FAIL

18 FailAt 10

As you can see an extra line also containing the string " FAI L"
appears. This is fine when used from a Shel l, but useless when used
in a script. Someone thought of that: and SEARCH returns an
indication, in the system variable "RC" , to say whether the string
was found or not. Here is an example run:

1>SEARCH >NIL : $: SPAT FAIL

1>GET RC

0

1>SEARCH >NI L : S : SPAT FUDGE

1>GET RC

Mastering AmigaDOS Scripts

5

In the second instance, the string "FUDGE" could not be found in the
file, so SEARCH sets the variable RC to 5. (This variable can be
easily tested and acted upon with IF.)
Now how about our dates? The date itself can be easily written to
disk like this:

1 >DATE >DateFile

The ">" is a re-direction operator - it takes everything that would
normally be displayed on screen and writes it to a named file -
"DateFile". Ordinarily this file would be written in the Ram Disk (T:
assignment) but to avoid confusion just take that for granted at this
stage.
We can now use SEARCH to quickly test if the requested date is
present in the date file like this:

1 >SEARCH DateFile " 2 - J un - 93 "

If the date is the 2nd June, SEARCH returns RC=0 (OK) otherwise it
returns RC=S (WARN). Simple enough, but remember how SEARCH
does not differentiate between words and parts of words - what
would happen in this case?

1 >SEARCH DateFile " Jun "

The search is t rue if any part of the date contains the word "Jun",
or, as Pest sees it , the date is any day in June of any year. Exactly
the same method can be applied to days of the week too:

1 >SEARCH DateFile " Monday "

This search will be t rue (OK, RC=0) whenever the day name is
Monday and false (WARN, RC=S) at any other time.
Now for the 65-million dollar question : what happens when an
even t should be scheduled for more than one day or date? The
immediately obvious solution is to set an event for each day
required - but this is wasteful. SEARCH offers a less obvious, but
far m ore elegan t answer: pat tern matching. The special bar
character " I " pronounced "OR" solves this. In longhand if you want
and event to activate on a Monday, Wednesday and Friday this
would reduce to: "Mon OR Wed OR Fri" and further sublimate to its
AmigaDOS equivalent, "MonlWedl Fri" thus:

1 >SEARCH DateFile " Mon l Wed ! Fri " PATTERN

Note the PATTERN switch used on the command line in this example
tells SEARCH to in terpret the string as a pattern (group) rather than
a literal st ring.
All of this t ranslates into a few lines of code which introduce the
Set PestEvent and SetWaitEve n t scripts and quickly dete r m i ne
whether or not to bother with a specific event. With the dates taken
care of there is something else that can affect a Pest event: time.

Pest3: AddPestEvent

Most events are set to appear at a specific time, but it is possible
the time has already passed when the machine is booted, this is
also taken care of and you have the option to view the event or
even wait until the next day'

Line-By-Line

Pest is t h e largest suite of related scripts in t h e book: and
AddPestEvent is the largest of those by a long way. To keep things
to a reasonable size, the line breakdown of this script is necessarily
succinct. You don't have to understand how it works to use it!
AddPestEvent uses a great number of conditional tests to ensure it
runs at a reasonable speed.
1- 3 . Define the key and reset bra and ket. Note that AddPestEvent

does not have any required arguments. That's simply because
it is meant to be run by lconX from Workbench - more of that
shortly.

4-6. Determine if the script has already been run once (has already
intilialised) and if so, skip to Step 43 .

7-10. Initialise some local variables according to the user's input.
1 1. If the user has entered some message, control jumps to Step

42, otherwise it continues at Step 12.
12-42. Form t h e interactive help system based aroun d

RequestChoice. T h e flow o f this part is not critical. R Q
always contains 0 if O K is pressed: a number otherwise.

43 . Marks the jump point for Step 5.
44-46. Looks for the special string "Mon-Fri" and converts it into a

Pest (SEARCH) readable format. The result is held in the
local "Day".

47-5 1. If no day has been supplied, the day is converted to every
day of the week and stored in "Day". If a special string has
been supplied, this is copied directly into "Day".

52-55. Determines if the event is timed or not. If not, an Instant
event is set and control jumps to Step 104.

56-60. Checks for a ": " in the time string. If the colon is not found,
control resumes at Step 23 (Help).

6 1-63. Tests if the time has been entered in 12 hour or 24 hour
format. If 24 hour format is being used, control resumes at
Step 64, otherwise it jumps to Step 70.

64-69. Parse the hours and minutes from the 24-hour time string,
places them in the locals "hrs" and "mns" and jumps to Step
94.

70-78. Parses the hours, minutes and am/pm information from

Mastering AmigaDOS Scripts

the time string.
79-82. Validates the correct number of hours (no more than 12 for

am/pm format) and exits the script on error.
83-93. Converts the hour part of 12-hour format into 24-hour

format by adding 12 to the hours value. Note that the
intermediate result is stored in a global variable.

94-98. Validates 24-hour (hours) format and exists if an error is
found.

99- 102. Validates no more than 59 minutes in either 12 or 24-hour
formats and exits if an error is found.

103. Concatenates the hours and minutes in a format suitable
for use with WA IT and saves t h e result in t h e local
"EventTime".

104- 117. Confirm and check the event settings. If the user is
happy, these lines append the event to the PestFile script.
A new one is created automatically.

1 18- 132. Bail out and say goodbye!
133- 172. Form the interactive response part of the program. Flow

here is determined by user responses and variables are
recalled by Pest's "GetArgs" support script.

173. Calls the program recursively - telling it the preamble
(initialisation) is complete.

Listing

1 . . key Time/K , Day/K , Wait/K , Go/K , Message/F

2 . . bra {

3 . • ket }

4 . if "{go } " EQ "Now"

5 . skip D o It Now

6 . endif

7 . set msg {Message$" Boing . . . AmigaDOS Pest calling! "}

8. set ArgTime {Time}

9 . set ArgDay {Day }

1 0 . set ArgWait {Wait}

1 1 . if "{Message}" EQ ""

1 2 . RequestChoice >ENV : R0{$$} "Pest" "The Pest V3*nDesigned
by Mark Smiddy " " Start" " Help" " Quit"

13 . if VAL $RO{$$} EQ 0

14. echo "When I grow up , I want to be a 555"

15. skip out

1 6 . endif

1 7 . if VAL $RQ{ $$} EQ 1

1 8 . skip I nteractive

1 9 . endif

20 . if VAL $RQ{$$} EQ 2

2 1 . skip help

22 . endif

23 . lab help

Pest3: AddPestEvent

24 . RequestChoice >ENV : RQ{$$} " Pest Help " " Give a time or
delay*nDay / Dates are optional*nSelect a button for more
help . . . " " CL I " " Time s " " Date s " " Delays " " OK "

25 . l a b again

26 . if VAL $RQ{$$} EQ 0

27 . s kip out

28 . endif

29 . if VAL $RQ{$$} EQ 1

30 . RequestChoice >ENV : RQ{$$} " Pest C L I " " Message=* " Message
to display * " *n*nTime=Time to activate (none=at
reboot) *n *nWait=a number of
minutes*n*nDate=Dat e (s) / Day (s) to activate on " " CL I "
" Times " " Date s " " Delays " " OK "

3 1 . endif

32 . if VAL $RQ{$$} EQ 2

33 . RequestChoice >ENV : RQ{$$} " Pest Time " " Time formats are
12 or 24Hour*n*neg 1 3 : 00 , 09 : 00 , 9 : 1 2am , 1 2 : 5 1 pm " " CL I "
" Time s " " Date s " " Delay s " " OK "

34 . endif

35 . if VAL $RQ{$$} EQ 3

36 . RequestChoice >ENV : RQ{$$} " Pest Dates " " Date formats are
full or partial dates +or+ days *n*nEg Saturday , Mon , 1 2 -
0ct - 93 , 1 4 - Feb - , - Mar - 93 etc . *n *nPatterns may b e used ,
ie : Mon l Wed l Sat *n*nMon - Fri is Monday to Frida y " " CL I "
" T imes " " Date s " " Delays " " OK "

37 . endif

38 . if VAL $RQ{$$} EQ 4

39 . RequestChoice >ENV : RQ{$$} " Pest Delay " " NB : Times and
Delays don ' t mix*n*nSpecify a delay in minutes
only*n*nEvent occurs in minutes after most recent
reset*n* n (Dates / Days can be specified) " " CL I " " Time s "
" Dates " " Delays " " OK"

40 . endif

41 . s kip again back

42 . endif

Mastering AmigaDOS Scripts

43 . lab DoitNow

44 . if " $ArgDay " EQ " Mon - Fri "

45 . Set Day " Mon ! Tue l Wed l Thu l Fri "

46 . endif

47 . if " $ArgDay " EQ " "

48 . Set Day " Sun ! Mon ! Tue ! Wed l Thu l Fri l Sat "

49 . else

50 . Set Day $ArgDay

5 1 . endif

52 . if " $ArgTime " EQ " "

53 . Set EventTime " < Instant> "

54 . Skip NoTime

55 . end if

56 . setenv edt {$$} " $ArgTime "

57 . search >NI L : env : edt {$$} II
•

II

58 . if warn

59 . skip help back

60 . endif

6 1 . setenv edt {$$} " $ArgTime "

62 . search >N I L : env : edt {$$} (am l pm) pattern

63 . if warn

64 . echo >env : edt { $$ } " 0$ArgTime" len=5

65 . echo >env : hrs { $$ } " $edt { $$ } " first= 1 len 2

66 . echo >env : mns { $$} " $edt { $$ } " first=4 len 2

67 . set hrs $hrs{$$}

68 . set mns $mns {$$}

69 . skip 24Hour

70 . else

7 1 . echo >env : edt {$$} " $ArgTime " len=7

72 .

73 .

74 .

75 .

echo

echo

echo

set

>env : hrs { $$ }

>env : mn s { $$ }

>env : apm{ $$ }

hrs $hrs{$$}

76 . set mns $mns { $$}

77 . set apm $apm { $$ }

78 . endif

79 . if val $hrs GT 1 2

" $edt { $$ } " first= 1

" $edt { $$ } " first=4

" $edt { $$ } " first=6

len

len

len

2

2

2

Pest3: AddPestEvent

80 . RequestChoice > N I L : " Pest " " Only 1 2 hours in Am / Pm for -
mat " " OK "

8 1 . skip out

82 . endif

83 . if " $apm " EQ " pm "

84 . if val $hrs NOT GT 1 1

85 . eval ($hrs + 1 2) mod 24 to env : hrs{$$}

86 . set hrs $hrs { $$ }

87 . endif

88 . endif

89 . if " $apm" EQ " am "

90 . if val $hrs EQ 1 2

91 . set hrs O

92 . endif

93 . endif

94 . lab 24Hour

95 . if val $hrs GT 24

96 . RequestChoice >N I L : " Pest " " Only 24 hours i n 24 - hour
clock " "OK "

97 . skip out

98 . endif

99 . if val Smn s GT 59

1 00 . RequestChoice >N I L : " Pest " " E rror : there are only 60
minutes in an hour ! " " OK "

1 01 . skip out

1 02 . end if

1 03 . set EventTime $hrs : $mns

1 04 . Lab NoTime

1 05 . if " $ArgWait " EQ " "

1 06 . requestchoice >ENV : RQ{$$} "Pest" " Confirming :
* " $ArgMsg * " * n * nAt $EventTime*n *non / during / every $Day"
"OK" " Forget I t "

1 07 . else

1 08 . requestchoice >ENV:RQ{$$} "Pest" " Confirming :
* " $ArgMsg * " *n*n$ArgWait mins from
startup*n * n o n / during / every $Day " " OK " " Forget I t "

1 09 . endif

1 1 0 . if VAL $RQ{$$} EQ 0

1 1 1 . skip out

Mastering AmigaDOS Scripts

1 1 2 . endif

1 1 3 . if " $ArgWait " EQ " "

1 1 4 . echo >>S : PestFile " PEST3 : SetPestEvent
Time= * " $EventTime* " day=* " $Day* " Message=* " $ArgMsg* " "

1 1 5 . else

1 1 6 . echo >>S : PestFile " PEST3 : SetWaitEvent Wait=* " $ArgWait * "
day= * " $Day* " Message=* " $ArgMsg* " "

1 1 7 . endif

1 1 8 . lab out

1 1 9 . unset EventTime

1 20 . unset Day

1 2 1 . unset ArgDay

1 22 . unset ArgWait

1 23 . unset ArgTime

1 24 . unset hrs

1 25 . unsetenv hrs {$$ }

1 2 6 . unset mns

1 27 . unsetenv mns { $$ }

1 28 . unset apm

1 29 . unsetenv apm{$$}

1 30 . unsetenv RQ {$$}

1 3 1 . echo " TTFN . from

1 32 . quit

1 33 . lab interactive

1 34 . set ArgWait

1 35 . set ArgTime

1 36 . set ArgDay II I I

the Pest ! "

1 37 . Ask " Use default message? "

1 38 . if warn

1 39 . echo " Using default message . . . "

1 40 . Set ArgMsg $Msg

1 4 1 . else

1 42 . echo " Enter the messag e "

1 43 . PEST3 : GetArgs Msg

1 44 . endif

1 45 . Ask " * e [32mDo you require a timed event?*e [3 1 m "

1 46 . if warn

1 47 . echo " Enter t ime (format HH : MM) "

1 48 . PEST3 : GetArgs Time

1 49 . else

1 50 . Ask " * e [32mls this a delay event?* e [3 1 m "

1 5 1 . if warn

1 52 . echo " Enter minutes t o wait "

1 53 . PEST3 : GetArgs Wait

1 54 . set ArgTime " "

1 55 . else

1 56 . echo " Event will occur upon restart . "

1 57 . endif

1 58 . endif

Pest3: AddPestEvent

1 59 . Ask " * e [32mls this event for a specific date?*e [3 1 m "

1 60 . if warn

1 6 1 . echo " Enter date (format DD -MMM -YY) partial dates
accepted (see Help) "

1 62 . PEST3 : GetArgs Day

1 63 . else

1 64 . echo " Event scheduled for daily use . "

1 65 . Ask " *e [32mDo you wish to specify a day o r days?* e [3 1 m "

1 66 . if warn

1 67 . echo " Enter day or days using first three
letters . * nSpecial format s are accepted - see help "

1 68 . PEST3 : GetArgs Day

1 69 . else

1 70 . echo " Event scheduled for every day . "

1 7 1 . endif

1 72 . end if

1 73 . PEST3 : AddPestEvent Go=Now

Mastering AmigaDOS Scripts

Pest 3: ChangePestMessage

Synopsis:

Tem plate:

Path:

Requires:

See also:

Type:

Brief:

Description

[[Event=)Event #) [[Message=) ''Text"]

Even t .message

SYS : Pes t 3

V 3 +

Ad d PestEvent , De le tePestEven t . K i l l Pe st Even t ,
StartPest , GetArgs, De letePestEvent , SetPestEvent .
SetWa i tEvent , L i s tPestEvents

l conX scr ip t

C hanges the message at tached to a pest even t

C hangePes tMessage: was prov ided because t h e p rob l e m was t here .
A l t hough I have fou n d l i t t l e use for i t , I suspect someone wi l l l i ke i t .
E s sen t i a l l y you a re provi d e d w i th a l i s t of a l l the cu rren t events
(those a l ready runn ing) and are g iven the opportun i ty to change the
message a t tached to any one .

Pest Change Message

The scr ip t w i l l usua l ly be ca l l ed from Workbench (us ing lconX) bu t
i t doesn ' t have to b e . I f ca l l ed f rom She l l w i t hou t a rgu m e n t s . i t
behaves l i ke the Workbench vers ion , otherwise you can supp ly a n
event number and a new message, v i z :

1>ChangePestMessage 3 " I ' ve changed this message! "

I m p o r t a n t : C ha n g e Pe s t M e s sage d o e s no t a l t e r " Pe s t F i l e " i t o n l y
affec ts a cu rren t event .

Line-By-Line

1 . Defines a s imp l e template for the scr i p t . Note that ne i t he r of
t he a rgu men t s are re q u i re d . Th is make s i t pos s i b l e fo r the
scri pt to be executed fro m l conX safe ly.

2 - 3 . C hange t h e defau l t < and > markers t o { and } .

4 . C hecks i f a n event number has been supp l i ed . I f not , con tro l
cont inues a t S tep 5 ; o therwise i t i s t rans fers to S tep 1 2 . Th i s
p rovi de s the in te ract ive feature for the event number.

Pest 3: CllangePestMessage

5. Calls ListPestEvents to show the current events with their
attached event number. This can be handy from Shell if you
don't know which event number is attached to a particular
event.

6. Provides a simple message. Note that the newline character is
suppressed.

7. Sets the local ArgEvt to some arbitrary value. This prevents
any blobs if the user doesn't supply some value at Step 8.

8. Calls GetArgs asking it to return a value in ArgEvt. See the
description of GetArgs to see how this is done.

9. This calls ChangePestMessage recursively. Note the event
number is set by ArgEvt on this cal l .

10. When the recursion unwinds, this line clears the value in
ArgEvt.

11. Jumps to the end of the script (Step 27) and exits cleanly.
12. Terminates the IF ... ENDIF construct opened at Step 4.
13. Tests if a message has been supplied. If the message is empty,

control continues at Step 14; otherwise it jumps to Step 20.
14. Displays a newline plus a message asking for the new

message. Note the final newline is suppressed to keep the
input looking logical.

15. Sets a dummy value for ArgMsg (the message string). This
prevents any blobs if the user doesn't supply some value at
Step 16.

16. Gets a new message from the user and returns the result in
ArgMsg. Note that if no value is supplied. the message
defaults to "+++" .

17. Calls ChangePestMessage recursively with all the required
information.

18. When the script unwinds, this clears the ArgMsg variable . . .
19. . . and exits this level c leanly by jumping to Step 27.
20. Terminates the IF . . . ENDIF construct opened at Step 13.
21. Tests for an event running using the supplied Pest event

number. This wil l be a resident copy of WAIT numbered
a c c ording to its event number. See Set PestEvent and
SetWaitEvent to see how this is achieved.

22. STATUS sets the WARN condition if it could not find the
requested command. This checks the return and branches to
Step 23 if the event was present or Step 24 if it wasn't.

23. Changes the indirection variable "PM+Event #" to the new
message. See SetPestEvent to see how this is used.

24. If control reaches here from Step 23 it jumps to Step 26 ;

Mastering AmigaDOS Scripts

otherwise it continues at Step 25.
25. This gives a puzzled error message if the event number could

not be found. Typically this means you have not supplied a
correct event number, either interactively or at the command
line. (This applies if you don't supply something to GetArgs
too.)

26. Terminates the IF .. . ELSE .. . ENDIF construct opened at Step 22.
27. Marks the end of the script: primarily for the recursive jumps.

Listing

1 . . key Event , message

2. . bra {

3. . ket }

4. if " {Event} " EQ " "

5. PEST3 : ListPestEvents

6. echo "*nEnter event number to change : " noline

7. set ArgEvt " <Non Existant>"

8. PEST3 : GetArgs Evt

9 . ChangePestMessage Event=$ArgEvt

10. unset ArgEvt

11. skip end

12. endif

1 3 . if " {Message} " EQ " "

14. echo " *nEnter new message for event {Event} : " noline

1 5 . Set ArgMsg " +++ "

16. PEST3 : GetArgs Msg

1 7 . ChangePestMessage Event=$ArgEvt Message= " $ArgMsg "

18 . unset ArgMsg

1 9 . skip end

20. endif

21. status >N IL : command=Wait{Event}

22. if not warn

23. setenv PM{Event} " {Message} "

24. else

25. Echo " Error: That event does not seem to exist? "

26. endif

27. lab end

Mastering AmigaDOS Scripts

Pest 3: DeletePestEvent

Synopsis:

Tem plate:

Path:

Requires:

See also:

Type:

Brief:

Description

Usually executed from Workbench
exits)
SYS: Pest3

V3+
AddPestEvent, KillPestEvent, StartPest, GetArgs,
ListPestEvents, ChangeMessage, SetPestEvent,
SetWaitEvent
lconX script
Removes a Pest 3 event: permanently

DeletePestEvent permanently removes any pest event from the
system and should be used with care. It works along similar lines to
KillPestEvent but this one actually lists the mai n "Event" script
(Pestfile). Enter the number of the line to remove or "O" to escape. I f
executed from the Shell, this program is best used without
arguments to prevent any errors.

nter event nUMber t o reftov• <• -,c l t a) : ■

Pest Delete Event

Line-By-Line

1. DeletePestEvent uses a interactive, recursive technique to get
its command line option. Part of the prompt text is "(O exits)"
which is why the strange bracket "exits)" appears here.

2-3. Define the angle brackets as braces.
4. If the user enters O at the command line, control continues at

Step 5; otherwise it jumps to Step 6.
5. Stops the script and returns back to AmigaDOS. (Quit cannot

be called from a nested script by the way.)
6. Terminates the I F ... ENDIF construct opened at Step 4.
7. Checks that some input has been made. I f n ot, control

continues at Step 8.
8. Types the current event program with line numbers.

Mastering AmigaDOS Scripts

9. Displays the main part of the interactive prompt: note there's
an extra space before the final closing quote - this ensures the
message is constructed correctly.

10. Calls DeletePestEvent recursively with interactive mode (7).
This displays the last part of the prompt and waits for the
user to enter something.

11. When the recursion unwinds to this point, it jumps to the end
and exits cleanly.

12. Closes the IF . . . ENDIF construct at opened at Step 12.
13. Decrements the value of the input and stores the result in the

global, "Line".
14. Tests if the value of " Line" is less than 1. If it is, control

resumes at Step 15; otherwise it jumps to Step 16.
15. Creates a simple EDIT macro to delete the first line EDIT

encounters.
16. If control reaches here from Step 15, it jumps to Step 18;

otherwise it continues at Step 17.
17. Creates a simple EDIT macro to jump forward "Line" number

of lines then delete the next one.
18. Closes the IF . . . ELSE . . . ENDIF construct opened at Step 14.
19. Deletes the requested line by editing the current PestFile

(event program) with the macro created by Step 15 or 17.
Note, this number is not range checked and if a large number
is used, EDIT will stop and complain. You might like to
experiment with some error checking here. Hint: See the
DataBase program for more information.

20. Marks the "out" point for bailout.
21. Clears the global variable. Line.
22. Removes the EDIT macro created above. All scripts should do

this, but very few people ever bother (including me) because
this takes time and is rarely necessary.

Listing

1 . . key e x it s)

2 . . bra {

3 . . ket }

4 . if " { exit s) } " EQ " O ..

5 . quit

6 . endif

7 . if " { e x it s) } " EQ
I I II

8 . type s : pestfile number

Pest 3: DeletePestMessage

9 . echo " * nEnter event number t o remove (0 " noline

1 0 . P EST3 : DeletePestEvent ?

1 1 . skip out

1 2 . endi f

1 3 . eval {exit s) } - 1 to=env : Line

1 4 . if VAL $Line NOT GE

1 5 . echo >T : AE { $$ } " d "

1 6 . else

1 7 . echo >T : AE { $$ } " $Line (n) ; d ; "

1 8 . endif

1 9 . edit s : PestFile with t : AE { $$ }

20 . lab o u t

2 1 . unsetenv Line

22 . delete >N I L : T : AE { $$ }

Mastering AmigaDOS Scripts

Pest 3: GetArgs

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE) GetArgs <[Argnum=]#> [lc=private]
[[Arg=]->]
ArgNum/a,lc/K,Arg/F
SYS: Pest3

Y3+ (for Pest 3)
AddPestevent, DeletePestEvent, KillPestEvent,
StartPest, DeletePestEvent, ChangeMessage,
SetPestEvent, SetWaitEvent, ListPestEvents
Script
Argument retrieval for the Pest v3

A central part of Pest 3 is its ability to interactively read a line of
text from the user and return the result to another script. A
deceptively short script achieves this with a minimum of fuss,
GetArgs works like this. You send it a variable name (or number)
and it returns a local variable (Arg<Name>) containing the result. It
is similar to the BASIC command:

L I N E I N PUT A$

For instance, the command "GetArgs Time" returns its result in
"ArgTime". The word "Arg" is appended to ensure there are no
clashes with existing variables. The script operates with a recursive
algorithm which is enough to make your brain itch until you get the
hang of the idea. Here's how it works - don't panic if you don't get
the idea right away:

Line-By-Line

1. Defines the argument template with ArgNum required and two
optional arguments: note ARG is Final (IF). We'll see their
function shortly - but you might like to consider, this script
will work equally well if "LC" was a switch (/S) by changing
Line 5 slightly. Before you read the rest of this, try to predict
why.

2-3. Redefines BRA and KET to my favourite versions.
4. Opens an IF . . . ENDIF construct to check if an argument has

been supplied or the script is being run for the second time. If
either is true, execution j umps to Step 6 ; otherwise i t
continues at Step 5.

5. This line recursively ca lls GetArgs again - the argument

Pest 3: Get Args

number is passed back (it's required) and LC (last chance) is
turned on. LC could be a switch in the template in which case
the "=ON" would not be required, either way works as well.
More importantly, this command places the argument parser
into interactive mode and sinks the argument template to
NIL : . The result of this is to give the user somewhere to type
without printing a useless message. Whatever they type is
passed directly back to "ARG" in the second recursive
invocation of GetArgs. Since this argument is Final, everything
including any spaces is passed into the argument.

6. Terminates the I F . . . ENDI F construct opened at Step 4. This line
is only reached when the script has done one compl ete
recursive loop.

7. Defines a local environmental variable ARG<ArgNum> with
the value held by Arg. The script then terminates unless the
script was called from within itself (Step 5) in which case
execution resumes effectively at Step 6 in the original.

Listing

1 . . key ArgNum / a , lc / K , Arg / F

2 . . b r a {

3 . . ket }

4 . if 11 {Arg } { lc } 11 EQ 11 11

5 . P EST3 : getargs >NI L : ArgNum={ArgNum} LC=ON ?

6 . endif

7 . Set Arg {Argnum } {Arg}

Mastering AmigaDOS Scripts

Pest 3: KillPestEvent

Synopsis:

Tem plate:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] KillPestEvent <[Event=]#>
[[Message=]Text] [[Sys=]private]
Event/a,message,sys
SYS: Pest3
V3+ (as part of Pest 3)
AddPestevent, DeletePestEvent, KillPestEvent,
StartPest, GetArgs, DeletePestEvent,
ChangeMessage, SetPestEvent, SetWaitEvent,
ListPestEvents
Script
List the current events tracked by the Pest

Removes a current running event from the list. This command is
designed to be used from Workbench and may be used without
arguments to trigger its interactive mode. The Message argument is
reserved for use by the Pest system although you can supply one if
you wish. When an event is removed, the "++Active++" string is
replaced by the contents of the message argument. In any case,
when KillPestEvent terminates an event, it echoes the process slot
used (check STATUS). Examples:

1>KillPestEvent 1

Running as process:10

Bang! Event 1 bites the dust

1>KillPestEvent

Pest active Monday 27- Apr- 93 11:30:23

Event Time Status Message

o . 12:59 ++Active++ Time for lunch! !

1 . 14:47 +Deceased+

Enter event number to delete:

Line-By-Line

1-3. Define the argument template and re-define the bra and ket
characters.

4. Sets the default message parameter. This occurs when
KillPestEvent is called by a user - SetPestMessage sends its
own message.

5. Tests if an event number has been supplied. If not, control

Pest 3: KillPestEvent

continues at Step 6, otherwise it jumps to Step 12. This is
primarily to keep things interactive from Workbench.

6. Calls ListPestEvents to display the current events. Note that
ListPestEvents shows "dead" or completed events too. You
can't kil l these since they have already been removed from the
system.

7. Prints the prompt for GetArgs to use. The NOLINE option is
used to suppress the extra linefeed.

8. Gets the number of the event to delete from the user and
returns the result in the local, ArgEvt.

9. Cal ls Kil l PestEvent (itsel f) recursively but this time with the
correct event number inserted at the command line.

1 0. Clears the ArgEvt variable.
1 1 . Skips to the end of the script and exits when the recursion

unwinds.
12. Terminates the I F . . . ENDI F construct opened at Step 5.
13. Checks the status of a WAIT command numbered by the event

number. If this exists it is sent to the file ''T: Ki l l ", if not the
WARN condition is set.

14 . Checks if the WARN flag was clear (if the WAIT exists). I f it is,
execution continues at Step 15, otherwise it jumps to Step 19.

15. Displays the first part of a progress message with the newline
character suppressed so . . .

16. . .. the process number appears correctly. This feature is not
strictly necessary but it makes things look professional.

17. Uses an interactive break to stop the WAIT event checked at
Step 5. Re-direct ion to N I L : prevents B R EAKS argument
template appearing and messing up the display.

18. This confirms the event has been deleted.
19. Execution arrives here if the WAIT event was not found and

continues . . .
20. . . . here, where it prints an error. (This error is not displayed by

SetPestEvent, even though it occurs.)
2 1 . Checks if the script was cal led by the Pest system (SYS<>'"')

and if so, execution jumps to Step 23. Otherwise it continues
at Step 22.

22. Forces execution to jump to the label at Step 29.
2 3. Terminates the IF ... ENDIF construct opened at Step 2 1 .
24. Closes the I F . . . ELSE . .. ENDIF construct opened at Step 14
25. Writes an EDIT script - here it is in longhand:

Em

Mastering AmigaDOS Scripts

1 . F / { Event } . /

2 . PA / : /

3 . PA / [I /

4 . 1 5#

5 . B / / {Message} /

or
1 . Find the line starting with the event numbe r .

2 . Move the cursor after the " : " in the event time .

3 . Move the cursor after the next TAB .

4 . Delete 15 characters

5 . Insert the message at the current position plus a
tab .

26. Checks to make sure the Event global is available.
27. Replaces the "++Active++" message in the global with the

message defined at the command line. SetPestEvent sends
"Completed" by default.

28. Clears the message attached to the requested event number.
29. Terminates the IF . . . ENDIF construct opened at Step 26.
30. This marks an exit point if something has gone wrong earlier

in the script. It is ignored otherwise.
3 1. Deletes the temporary file and frees up some memory.

Listing

1 . . key Event , message , sys

2 . . bra {

3 . . ket }

4 . .def Message "+Deceased+"

5 . if " {Event} " EQ ""

6 . PEST3:ListPestEvents

7 . echo "*nEnter event number to delete:" noline

8 . PEST3 : getargs Evt

9 . PEST3:KillPestEvent $ArgEvt

1 O . unset ArgEvt

11 . skip end

12 . endif

13 . status >T:Kill{$$} command=Wait{Event}

1 4 . if not warn

1 5 . echo "Running as process:*e [32m" noline

1 6 . type T : Kill{$$}

1 7 . break <T : kill{$$} >NI L : all ?

Pest 3: KillPestEvent

1 8 . echo " * e [3 1 mBang ! Event : { Event} bites the dust "

1 9 . else

20 . echo " Error : That event has not been set ? "

2 1 . i f " { sys } " E Q " "

22 . skip end

23 . endif

24 . endif

25 . echo >T : Kill{ $$} " F / { Event} . / ; pa / : / ; pa / [I / ; 1 5# ;
8 / / {Message } / ; "

26 . if exists env : PV{ Event }

27 . edit env : PV{ Event } with T : Kill{$$}

28 . unsetenv PM{ Event }

29 . end if

30 . lab end

3 1 . delete >N I L : T : kill{$$} quiet

ml

Mastering AmigaDOS Scripts

Pest 3: ListPestEvents

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Usually used from Workbench

QU IC K/S

SYS :Pest3

Y3+

AddPestevent, DeletePest Event, K illPestEvent ,
StartPest, GetArgs, DeletePestEvent,
ChangeMessage, SetPestEvent. SetWaitEvent

lconX scr ipt

List t he current events tracked by the Pest

Thi s functio n is provided to list i nformat ion on all the current
events. The QU ICK switch is available from the Shell only and is
used to suppress the date heading and message output.

Pest List Events

ListPestEven ts is used to list the current events and thei r status.
Note: this utility only affects * runn ing'' events scheduled for that
d a y. They ca n be r es e t by re-boo ting t h e mach i ne - see
DeletePestEvent for a more permanent solut i on. Three gen eral
states are possible

• Act ive: event is running and waiting to execute.

• Deceas ed : eve n t has been removed by t h e user (w i th
KillPestEvent) before completion.

• Complete event has already timed out normally.

An event may be removed by calling Kil !PestEvent with a special
message. In this case the "Status" code will reflect t hat.

Line-By-Line

1 -3 . Defines the argument template as descr ibed above and sets
the angle brackets to braces.

4 . Tests if the QU I C K option was supplied. If i t was control
j umps to Ste p 6 ; otherwise it continues at Step 5.

5. Prints the "QUICK" header for ListPestEvents.

Pest 3: ListPestEvents

6. I f control reaches here from Step 5 it jumps to Step 9 ;
otherwise i t continues at Step 7.

7. Displays the current date and time as a part of the header
message.

8. Displays the full "message-included" event header.
9. Terminates the I F . . . ELSE . .. ENDIF construct opened at Step 4.
10. Creates a global variable called "Count#" and sets it to zero.

({$$} shown as # here is the current process number.)
1 1 . Marks the start of a loop.
1 2. Attempts to get the value of the Pest internal variable,

suffixed by the loop counter, Count#. Events start at 0 and
count up from there. The actual value of the variable is sent
to NIL : at this point, we want to test for the presence of the
variable. For example, if three events were (or had been) set,
there would be three PVs: PYO , PV l and PV2. When the number
of current events is exceeded, GETENV returns WARN.

13. Tests if the WARN flag was present and . . .
1 4. . .. jumps out of the loop and the script (to Step 30).
15. Closes the I F .. . ENDIF construct opened at Step 1 3.
16. Uses " - " (expand command) to display the current value of

PVn: where n is the number held in "Count". (It has to be done
this way: PVCount{$$} will confuse the dollar parser.)

17. Tests if the QUICK switch was used at the command line. If it
was, control continues at Step 1 8; otherwise it jumps to Step
1 9.

1 8. Displays a blank line.
19. I f control reaches here from Step 1 8 it jumps to Step 26 :

otherwise it continues at Step 20.
20. Tests for the presence of a message variable using the

technique described at Step 1 2. Completed messages do not
have a message attached to them. (The message is removed by
KillPestEvent.)

2 1 . Tests if the variable was valid. I f it was control jumps to Step
24 ; otherwise it continues at Step 22 . . .

22. . .. and displays another blank line (finishing off the event
details).

23. Jumps directly to Step 27, does not pass GO and does not
collect £200.

24. Terminates the IF . .. ENDlF construct opened at Step 2 1 .
25. Retrieves the message from the appropriate variable (see

Step l 6) and displays the first 20 characters of it. This stops
long messages from wrapping on lines and messing up the
display.

26. Terminates the If ... ELSE . . . ENDlF construct opened at Step 1 7.

Mastering AmigaDOS Scripts

27. Marks the entry point for the next loop of the script.. .
28. . .. where the counter is incremented by 1.
29. Jumps back to the start of the loop (at Step 1 1) and goe

through the whole process again.
30. When the script needs to bail-out, it jumps to this point.

Listing

1 . . k ey QUICK / $

2 . . b r a {

3 . . ket }

4 . if " { quic k } " NOT EQ " "

5 . echo " Event * e [ITime*e [IStatus "

6 . else

7 . echo " Pest active : ' date ' "

8 . echo " Event*e [ITime*e [IStatus

9 . endif

1 0 . setenv count {$$} O

1 1 . lab loop

1 2 . getenv >NI L : PV$Count {$$}

1 3 . if warn

1 4 . skip all_done

1 5 . endif

* e [IMessage "

1 6 . echo • ' getenv PV$Count { $$ } ' " noline

1 7 . if " {QUICK} " NOT EQ " "

1 8 . echo

1 9 . else

20 . getenv >NI L : PM$Count { $$}

2 1 . if warn

22 . echo

23 . skip next

24 . endif

25 . echo • ' getenv PM$Count{$$} ' " first= 1 len=20

26 . endif

27 . lab next

28 . eval $Count { $$} + 1 to ENV : Count {$$}

29 . skip loop back

30 . lab all done

Mastering AmigaDOS Scripts

Pest 3: SetPestEvent

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

[EXECUTE) [[Time=) timeldate) [[Message=)"Msg")
[Day=Dayname) [QU I ET)

time/a,Mes sage,day /k, QU I ET /S

SYS: Pest3

V3+

AddPestEvent , DeletePestEvent , K i llPestEvent,
Star tPest , GetArgs , DeletePest Event,
C hangeMessage. SetWaitEvent, L i s tPestEvents

Pest support script

Set s timed events for Pest v3

Description

T h i s command sets the normal t ime/date events and i s normally
executed by StartPest (via the PestF i le). You can call i t d i rectly to set
an immedi ate event wh ich does not requ i re a re-boot however. Th is
command i s s t ripped down for speed and t imes s hould be entered
i n 2 4-hour clock only! If the message contains spaces i t should be
enclosed b y quotes. You can use t h i s command w i t h care to add
events directly to S : PestF i le i f you w i s h . Example:

1>SetPestEvent Time=13 : 00 Message= "Time for a break "

The QU I ET swi tch i s used f rom t h e Shell o r Pes t F ile d i rectly to
suppress "overr ide" messages when an event has been mi ssed.

D•t e f oN"•t• •re f u l l or p•rt l • l d•tes +or+ d•v•

Ee ••t urd•v• Mon , 1 2-Qc t-93, 14-Feb- , -tt•r-93 et c .

P•t t erns ft•V be used, l e : Mon 1Wed l 8•t

Mon-Fr l ls Mond•v to Fr l d•v

Pest Date Help

T lft• f orftats ar• 1 2 or 24Hour

eg 1 3 : 88 , 89 : ea . 9 : 1 2aft , 1 2 : 51 pft

CL I T lftes Dates I De l a'l,'s OK

PestTime Help

Mastering AmigaDOS Scripts

Line-By-Line

1-3. Sets the input key and set the bracket characters to { and }.
Day Fragment (4 - 10)

4. {Day} is an optional argument supplied by the user as defined
above which carries the day(s) or date(s) . This test determines
if an argument has been supplied by checking if "{day}" and '"'
are n o t the same. (AmigaDOS pre-parses the script by
replacing every argument name with any values supplied for
it.) Two possible ways this line can be expanded are:

A . if not eq " "

or
B. if Mon l Wed l Fri not eq " "

When such a test evaluates TRUE, execution continues at Step
5 . I f, on the other hand, the test returns FALSE, execution
jumps to the matching ENDIF (Step 10). In this first case,
things are slightly more complex because the test is reversed
by "NOT'. The unknown string on the left is compared for
inequality to the empty string on the right: Test A evaluates
FALSE; B evaluates TRUE.

5 . This sends the current time and date to a temporary file. The
name is arbitrary, but use of the 'T:" assignment ensures the
file is written to RAM for speed.

6. Here is the practical version of the search described in
AddPestEvent. Although this line looks complex, all that has
been added is the day/date argument collected from the
command line. When AmigaDOS expands this it might look
like this:

search >N IL: t:TPToday " (Mon l Wed l Fri) " pattern

(Brackets and quotes are added here to prevent the command
becoming confused if the date argument contains spaces.) If
the date file, TPToday, contains one of the sub-strings: Mon,
Wed or Fri, SEARCH returns OK : otherwise it returns WARN.

7. Checks if the SEARCH set the WARN flag - the date/day sub
string was not located in today's date. If WARN was found,
execution continues at Step 8, otherwise it jumps to Step 9.

8. Immediately transfers control to the end of the script and
exits to save time.

9. Marks the closing point for the IF . . . ENDIF construct at Step 7.
Execution continues at Step 10.

10. Closes the IF . . . END I F construct from Step 4 and allows
execution to continue with the remainder of the script.

Pest 3: SetPestEvents

Instant Fragment (1 1 -1 4)

1 1 . C he c ks i f t h e var i ab l e " t i m e " i s equa l to t he spec i a l s t r i ng
" < I n s t a n t > " . T h i s i s a p r i v a t e s t r i n g u s u a l l y s e t by
AddPes tEven t .

1 2 . I f an i n stant event has been se lec ted , t h i s presents a requester
t i t led "Pest " with the message str ing and a s i ng le "OK" but ton .
The r e t u r n f rom R e q u e s t C h o i ce i s s e n t t o the g l o b a l , R Q
a l though i t i s never actua l ly u sed i n t h i s context . N I L : cou ld
be used he re i f prefe rre d .

1 3 . Jumps to the end of the scr ipt and ex i ts qu i ckly.

1 4 . Te rminates the I F . . . E N D I F cons t ruct from Step 1 1 . Contro l on ly
arr ives here i f a non - instant event i s be ing se t .

Time Fragment (1 5-3 1)

1 5 . Wri t e s the d ate and t ime to a g lobal env i ronmenta l variabl e .

1 6 . Constructs an ED IT macro to extract the t ime from the current
date . This is qui te i nvolved , so le t's exami n e i t in more deta i l .
The ac tua l macro f i le can be s p l i t i n to separate commands
l i ke t h i s :

2 (d t a 1 /)

p a / : /

pb / : /

3#

Recal l how the date is actua l ly wr i t ten :

Monday 1 9 - Apr - 93 1 0 : 57 : 03

The f i rs t part of the macro de l etes everyth ing u p to the t ime
by searc h i ng and de l e t i ng everyth ing up to the second space
i nc lus ive . Th i s l eaves us wi t h :

1 0 : 57 : 03

Next the ed i t "po in ter" i s p laced after the co lon i n hours and
before the co lon separat i ng the mi nutes and seconds . I f th is
seems o d d , i t 's just the way ED IT works . F ina l ly the second
co lon and the las t two d ig i ts are de leted leav ing us w i th :

1 0 : 57

1 7 . Ed i t s the var iable Ti meNow{ $ $ } d i rect ly u s i ng the macro jus t
descr ibed .

1 8 . Compares the requested even t t ime to the actual t i me . Th i s
t e s t r e tu rn s TRUE i f t he eve n t t ime i s l ess t h an the ac tua l
t ime ; i n o ther word s the t ime has a l ready passed .

1 9 . Tes ts for the QU I ET swi tch . Th i s i s an extra not supported by
A d d Pe s t E v e n t a n d d e t e rm i n e s i f a wa r n i n g fo r a m i s s e d

Mastering AmigaDOS Scripts

(timed) event should be shown. If the QUIET switch is active
control skips to Step 30.

20. If the test at Step 18 is true, this presents at requester
indicating what has happened and provides some options as
what to do. The user's response is sent to the global " RQ"
acted later in the script. Results are as follows.

Yes=1 ; Show=2 ; Cancel=O .

21-23. If the user presses Cance l after a " Missed event"
warning, this code causes the script to exit immediately.

24-29. If the user replies "Show" to the request at Step 20, this
code displays the message and exits the script.

30. Closes the IF ... ELSE.. .ENDIF construct opened at Step 19.
31. Closes the IF . .. ELSE.. .ENDIF construct opened at Step 18.

Event Creation (32-36)

3 2. Creates or increments the global variab le, PestEvent. This
variable is used internally to track the process numbers
attached to any given event.

3 3 . Loads a resident version of WAIT with the name determined
by WAIT + the current Pest event number. Note : this is an
internal name and has no bearing on the actual process
number running the event. Each WAIT is ADDed to the
resident list to a l low multiple WAIT processes and to ensure
the correct one is unloaded when the event completes.

34. Displays a confirmation that the event has been set. The event
number shown is Pest's internal event number, and is not
re lated to the process: which at this stage remains to be
launched. Strictly, speaking this confirmation should not
appear unti l after the task has been started but a
programming consideration prevents this.

3 5. Creates a variable (PY + the event number) with detai ls of the
event . This information is used by ListPestEvents.

36. Creates a variable (PM + the event number) containing the
entire event message.

Event Starting (37-38)

Mos t of the remaining script, up to Step 41, looks like a single
command and forms the complete event process. This part
sets up the new process, presents the completion message,
removes the WA IT command and c l ears the event . It 's
important to note that these l ines form an "asynchronous
process" and do not have to complete in order for the script
to finish. These lines launch the resident part of the event and

Pest 3: SetPestEvents

leaving it hanging around in memory. Because of this ,
Set PestEvent can be called many times in very rapid
succession.

37. Creates the new process which will wait until the requested
time is reached. Note that a specific resident copy of WAIT is
called - the one numbered by this event. The "+" symbol at the
end of this line ties it to step 38.

38. When the WAIT started at Step 3 7 "times out" the request
appears . The time is inserted in the title string using
command expansion and the message is inserted using
manual expansion of GETENV. This allows the message to be
changed at any time via indirection. See the discussion of
RESCALC for a simpler example using this technique. The "+"
ties this step to step 39.

Event Removal (39-41)

39. Kills (removes) the event and marks it complete. This
information is used by ListPestEvents. The "+" ties this step to
step 40.

40. Removes the WAI T command from the resident list and
discards it from memory. The "+" ties this line to step 4 1.

41. This is the last line in the "RUN +" group and actually starts
the process running. When control reaches here at some
future time (determined at Step 37) this removes the Pest
message.

42. Marks the bail-out point for the script.
43-44. Clear some variables that we don't want to leave hanging

around.

L isti ng

1 . . key time/a , Message , day/k , QUIET/S

2 . . bra {

3 . . ket }

4. if {day} not eq " "

5 . date >T:TPToday

6 . search >NIL: t:TPToday " ({day }) " pattern

7 . if warn

8. skip out

9. end if

10 . endif

11 . if " {time} " EQ " < Instant> "

I

ml

Mastering AmigaDOS Scripts

1 2 . RequestChoice >env : RQ{$$} "Pest" " {Message} " "OK"

1 3 . skip out

1 4 . endif

1 5 . date >env : TimeNow{$$}

1 6 . echo to T : EdTime " 2 (dt a / /) ; pa / : / ; pb / : / ; 3# "

1 7 . edit env : TimeNow{$$} with T : EdTime

1 8 . if $TimeNow{$$} GT " {Time} "

1 9 . if " {QUIET} " EQ " "

20 . RequestChoice >en v : RQ{$$} " Pest " " R equested e vent t ime :
{time} has already passed . *nShould I wait until tomor
row? " " Yes " " Show" " Cancel "

2 1 . if $RO{$$} EQ " O "

22 . skip out

23 . endif

24 . if $RO{$$} EQ " 2 "

25 . RequestChoice >NI L : " Pest Override Messag e "
" {Message} " " OK "

26 . skip out

27 . endif

28 . else

29 . skip out

30 . endif

3 1 . endif

32 . eval $PestEvent+ 1 to env : PestEvent

33 . resident name=wait$PestEvent file=c : wait add

34 . echo " E vent $PestEvent set at { time} "

35 . echo <N I L : >ENV : PV$PestEvent
" $PestE vent . *e [I { time } * e [I * e [32m++Act ive++ * e [3 1 m *e [I "
noline

36 . echo <NI L : >ENV : PM$PestEvent " {Message} "

37 . run <NI L : >NI L : wait$PestEvent until { time} +

38 . RequestChoice >NI L : " Pest (active , date ') " " ' getenv
PM$PestEvent ' " "OK" +

39 . PEST3 : KillPestEvent SPestEvent " +Complete+ " sys=QUIT +

40 . Resident Wait$PestEvent remove +

4 1 . unsetenv PM$PestEvent

42 . lab out

43 . unsetenv RQ{$$}

44 . unsetenv TimeNow{$$}

Mastering AmigaDOS Scripts

Pest 3: SetWaitEvent

Synopsis:

Template:

Path:

Requ i res:

See also:

Type:

Brief:

Description

[EXECUTE] SetWaitEvent [[Wait=]time]
[[Message=]"event message"] [Day=Dayname]
wait, Message,day /k
SYS: Pest3

V3+
AddPestevent, DeletePestEvent. KillPestEvent,
StartPest, GetArgs, DeletePestEvent.
ChangeMessage, SetPestEvent, ListPestEvents
Pest support script
Sets the delayed events for Pest v3

SetWaitEvent is the similar to SetPestEvent, except that the time is a
delay in minutes. Example:

1>SetWaitEvent Time=S Message= " Five minutes have elapsed . . . •

Event 3 set in 5 minutes

Note that a QUIET switch has not been supplied with this command:
you might like to add one for yourself - see SetPestEvent for more
details.

CL I T i.,n�s Dates I

Pest Delay Help

Line-By-Line

1-3. Defines a simple argument template and set up the brace
characters.

4. Tests if some day names (see Add PestEvent) have been
supplied. If not, control jumps to Step 10: otherwise it
continues at Step 5.

5. Creates a file containing the current time and date as a string.
6. Checks the day name supplied matches "today" : if not a WARN

condi tion is returned. (See Set Pest Event for more
information.)

7. Checks for a WARN condition from Step 6 and . .

Mastering AmigaDOS Scripts

8. Leaves the script immediately. This speeds things up
considerably.

9. Closes the IF . . . ENDIF construct opened at Step 7.
10. Closes the IF . . . ENDIF construct opened at Step 4.
1 1. Increases the current Pest "event" number and stores the

result in PestEvent.
12. Adds a resident copy of WAIT to the resident list and names it

as WAIT + the current event number. This is used to track the
process attached to individual events.

13. Confirms the event and event number.
14. Creates the main event variable (used by ListPestEvents).
15. Creates the event message variable. This is stored separately

from the event so that the message can be changed later using
variable indirection.

16. Creates the event by RUN-launching WAIT to wait for a specific
time. This line is attached by "+" to Step 1 7 and is part of the
same process. (Note: WAIT events are controlled by the most
recent reset.)

17. Sets the time-out requester using REQUESTCHOICE. The
message is retrieved when this command is actually activated
using · GETENV PM$PestEvent · . If a simple "$" was used, the
message would be inserted when the script was interpreted
and could not be changed. This line is attached to Step 18 by
"+" .

18. Removes the event from the active list using Kil! PestEvent.
This line is attached to Step 20 by "+".

19. Removes WAIT from the resident list returning the memory it
used to the system. This line is attached to Step 20 by "+".

20. Removes the event message from the system. The event
proper is left hanging around so that ListPestEvents knows
that it has completed. This line actually triggers the RUN
process and physically starts the event.

2 1. Marks the bail-out point for non-starting events.
22. Removes the excess date file from the system.

Listing

1 . . key wait, Message , day/k

2 . . b r a {

3 . . ket }

4 . if {day } not eq " "

5 . date >T:TPToday{$$}

Pest 3: SetWaitEvents

6 . search >N I L : t : TPToday{$$} " ({day}) " pattern

7 . if warn

8 . skip out

9 . end if

1 0 . endif

1 1 . eval $PestEvent+1 to env : PestEvent

1 2 . resident name=wait$PestEvent file=c : wait add

1 3 . echo " Event $PestEvent set in {Wait} min s "

1 4 . echo <N I L : >ENV : PV$PestEvent
" $PestEvent . *e [I {wait } : M* e [I * e [32m++Active++*e [3 1 m*e [I "
no line

1 5 . echo <N I L : >ENV : PM$PestEvent " {Message} "

1 6 . run <NI L : >N I L : wait$PestEvent {wait} mins +

1 7 . RequestChoice >N I L : " Pest (active ' date ') " • · getenv
PM$PestEvent · • "OK" +

1 8 . PEST3 : KillPestEvent $PestEvent " +Complete+ " sys=QUIT +

1 9 . Resident Wait$PestEvent remove +

20 . unsetenv PM$PestEvent

2 1 . lab out

22 . delete >N I L : T : TPToday{$$}

Mastering AmigaDOS Scripts

Pest 3: StartPest

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Workbench only
none
SYS:WBStartup
Y3+ (as part of Pest 3)
AddPestevent, DeletePestEvent, KillPestEvent,
GetArgs, DeletePestEvent, ChangeMessage,
SetPestEvent, SetWaitEvent. ListPestEvents
Startup script
Starts Pest from Workbench's WBStartup drawer

See "Pest 3 : AddPestEvent" for a full description of The Pest. This is
the only part of Pest to live in the WBStartup drawer and allows
users to enable or disable the entire system by simply dragging the
icon in and out of the drawer.

Pest Starting

Pest Calling

Line-By-Line

1-10. Make various Pest system commands resident. This makes
Pest operate faster under most conditions and p revents
having to swap back to the Workbench disk when an event
times-out.

11. Copies t he entire contents of the Pest3 system directory to a
new directory in the Ram Disk. This allows Pest to execute its
inte rnal system commands without having to fiddle with
paths, and worse, swapping disks.

12. Announces the Pest. This is version 3 .01 some o f t h e b u g s
present in the original have now been fixed and i t i s e a s i er t o
use on a floppy-based system.

Pest 3 StartPest

1 3. Creates the PEST3: assignment. This directory is used to
reference the special Pest scripts.

1 4. Executes the Pest event program, PestFile. This always lives in
the S: assignment and can be edited directly if you prefer.

Listing

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

resident

resident

resident

resident

resident

resident

resident

resident

resident

c : Break add

c : Date add

c : Delete add

c : Edit add

c : Eval add

c : Execute add

c : RequestChoice

c : Search add

c : Status add

1 0 . resident c : Type add

add

1 1 . copy Sys : Pest3 / - (#? . inf o) ram : Pest3 quiet

1 2 . echo " The Pest 3 . 0 1 by Mark Smiddy*nAll rights reserve d "

1 3 . as sign PEST3 : RAM : Pest3

1 4 . execute S : PestFile

Mastering AmigaDOS Scripts

PFIND

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

PFIND <file> <start directory>
na
na
1 . 3+

FFIND
Alias
Find a file with automatic patterns
ALIAS PFIND SEARCH SEARCH=#?[]#? F ILE ALL

This alias is almost identical to FF IND described earlier, but this
version automatically includes a pattern. You might not always
want to do this because the results can sometimes be
unpredictable. Note that the directory always comes after the file
you're looking for. This is the reverse of the natural settings for
SEARCH and is necessary to get the required effect.

1 >PFIND Pest SYS :

Workbench3 : WBStartu p / StartPest

Workbench3 : WBStartup / StartPest . info

Workbench3 : Pest3 / DeletePestEvent . info

Workbench3 : Pest3 / ChangePestMessage . info

Workbench3 : Pest3 /AddPestEvent . info

Workbench3 : Pest3 / KillPestEvent . info

Workbench3 : Pest3 / ListPestEvents . info

Workbench3 : Pest3 / DeletePestEvent

Workbench3 : Pest3 / ChangePestMessage

Workbench3 : Pest3 /AddPestEvent

Workbench3 : Pest3 / KillPestEvent

Workbench3 : Pest3 / ListPestEvents

Workbench3 : Pest 3 / SetPestEvent

QFF
Synopsis:

Requires:

See also:

Type:

Brief:

Definition:

Description:

Mastering AmigaDOS Scripts

QFF <DRIVE #> [NOICONS] [FFS] (QUICK]
V l .3+
QF
Alias
Quick format any floppy disk device
ALIAS QF FORMAT DRIVE OF [] : NAME Empty

This is a variation on the QF theme for those who despise the long
winded format of the FORMAT command. Called QF - Quick Format
- it takes a single parameter (the drive number) and formats a disk
called Empty. The trashcan can be suppressed by adding NOICONS.
Examples:

1>QFF 0

1>QFF O NOICONS

Mastering AmigaDOS Scripts

QF

Synopsis:

Requires:

See also:

Type:

Brief:

Definition:

Description:

QF <DRIVE> [NOICONS] [FFS] (QU ICK]

V l . 3 +

QFF

A l ias

Qu i c k format any floppy d isk dev ice

ALIAS QF FORMAT DRIVE [] NAME Em pty

Qu ick Format takes a s ing l e parameter (the d rive number name) and
formats a d i s k ca l l ed Emp ty. The t rashcan can be suppressed by
add i ng NO ICONS . Be carefu l when us ing t h i s wi t h hard d i s ks !

Examp le :

1>QF DFO:

1>QF DH1: NOICONS

Mastering AmigaDOS Scripts

RCD2

Synopsis: [EXECUTE] RCD2 [[number=] # I dir I pat]
[SAVE I LOAD]

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

number,SAVE/S, LOAD/S
S:
V2+
FCD, RCD
Script
Store recent directory changes in RAM as a menu

RCD2 is the same as RCD with one important change: the directory
list is global. It is compatible with RCD and FCD but will create a
gobal directory list that can be accessed from within any Shell.

RCD Working

Line-By-Line

The listing here is the same as RCD with the following changes:
Lines: 6, 1 1 , 1 5 , 1 6, 23 , 25 , 32 , 33 , 35 , 43 ; the direc
tory list T:CDS{$$} has been replaced with a global list
T:CDS. This ensures the list is available to all Shells.

Line : 18 the recursive call is changed to call RCD2 . You
MUST change this if you change the name of the script.

1 . .key number , SAVE/S , LOAD/S

2 . . bra {

3 • . ket }

5 . if " {LOAD}" EQ " LOAD "

6 . c opy >nil : s : cds t : cds

7 . endif

8 . if "{SAVE}" EQ "SAVE "

9 . ask "This will replace your current file*nAre you sure
N / y ? "

M11stering Amig11DOS Scripts

1 0 . if warn

1 1 . copy >nil : t : cds s : cds

1 2 . endif

1 3 . endif

1 4 . if " { number } " EQ

1 5 . if exists t : cds

1 6 . type t : cds number

1 7 . echo " Enter directory , pick a number , any " noline

1 8 . execute s : rcd2 ?

1 9 . skip out

20 . else

2 1 . echo " Loading / making default fil e "

22 . if exists s : cds

23 . copy >nil : s : cds t : cds

24 . else

25 . echo >t : cds " * " ' cd ' * " "

26 . skip out

27 . endif

28 . endif

29 . endif

30 . if VAL " { number } " EQ o

3 1 . cd " { number } "

32 . echo >t : cd " * " ' cd ' * " "

33 . j oin t : c d {$$ } t : cds AS t : cd0{$$}

34 . echo >t : ed {$$ } " 9n ; d "

35 . edit t : cd0{$$} with t : ed {$$} t o t : cd s ver= nil :

36 . else

37 . eval >env : u s r {$$ } { n umber} - 1

38 . if val $usr{$$} NOT GE 1

39 . echo >t : ed{$$} " n ; 9d "

40 . else

4 1 . echo >t : ed { $$ } " $u sr {$$ } d "

42 . endif

43 . copy >nil : t : cds env : cd {$$ }

44 . edit env : cd {$$} with t : ed { $$} ver=nil :

45 . cd $cd{ $$}

46 . endif

47 . lab out

Mastering AmigaDOS Scripts

RCD

Synopsis: [EXECUTE] RCD [[number=] # I dir I pat] [SAV E I
LOAD]

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

number,SAVE/S, LOAD/S
S :

V2+
FCD
Script
Store recent directory changes in RAM as a menu

This command is very useful if you have a hard disk. It stores a list
of the last ten directory changes in RAM and allows you to pick one
by selecting it from a numbered menu. You can choose to save your
current list at any time, or load a pre-built one from disk. Every
path feature available to CD, including patterns, may be used. The
command line is sensitive to arguments so that the script can
completely replace CD (using an ALIAS) if you prefer. Several modes
are available:
• Called without arguments. The script shows the current list and
prompts you to interactively select an existing entry, load or save
the list or enter a new directory. Note: you can enter LOAD or SAVE
at this prompt. Example:

1>RCD

1 . "Workbench3 . 0 "

2 . " Workbench3 . 0:Fonts"

3 . " Apps: "

4 . " Workbench3 .0 : Fonts "

5 . " Workbench3 . 0 : Devs/Keymaps "

Enter directory , pick a number , any number , SAVE/S , LOAD/S :

• Called with a new directory path: FCD selects the directory (if
available) and adds its full path to the menu. (The oldest directory
is removed.) Example:

1>RCD SYS:

• Called with a number from the directory menu. The directory is
selected from the list and changed. Example:

1>RCD 4

• Asked to save the FCD/RCD preferences to disk.

-

Mastering AmigaDOS Scripts

1>RCD SAVE

This will replace your current file
Are you sure N/y?"

Line-By-Line

1-4. Comprise a standard header. Note that there are no required
arguments for this script.

5 . If the LOAD switch was specified, control continues at Step 6,
otherwise it skips to Step 7.

6. Loads the default FCD/RCD file from disk to the private Shell
RCD file, CDS#.

7. Terminates the IF . .. ENDIF construct opened at Step 5 .
8. If the SAVE switch was specified, control continues at Step 9,

otherwise it jumps to Step 13. Note: the arrangement of this
sequence LOAD->SAVE ensures that even if both switches are
supplied, the script does not overwrite a working file: it is
simply loaded then saved again.

9. Displays a warning that you are about to write a CDS file to
disk. A WARN condition is set if "Y" or "Yes" is entered at the
prompt and cleared otherwise.

10. If Y was entered at Step 9, control continues at Step 1 1 :
otherwise it jumps to Step 12.

1 1. Saves the current CDS preferences file to disk.
12. Terminates the IF . . . ENDIF construct opened at Step 10.
13. Terminates the IF ... ENDIF construct opened at Step 8.
14. If a nu mber was entered at the command line (or from

interactive mode) control is transferred to Step 29: otherwise
it continues at Step 15 .

15 . Checks if a CDS# file exists. If found, control continues at Step
16; otherwise it's transferred to Step 20.

16. Displays the menu of currently saved directories with menu
numbers. (The numbers are supplied by TYPE.)

17. Displays the first part of the prompt . . .
18. . . .and calls RCD recursively to put it into interactive mode.
19. When the recursive call returns, this jumps to the bail-out

point.
20. If control reaches this point from Step 19. it jumps to Step 28;

otherwise it continues at 21
21. Control reaches here if a private history (CDS#) file could not

be found. This displays a progress message to confirm this.

22. Checks if a RCD/FCD history file is already present on disk . . .
23. . . . and loads it if it was found.

RCD

24. I f control reaches here from Step 23, it jumps to Step 27;
otherwise it continues at Step 25.

25. Creates a default private history file with the first entry being
the current directory. Note that the directory is enclosed in
quotes to avoid confusing CD with spaces.

26. Jumps to the bail-out point. You'll have to run the command
again in this case.

27. Terminates the IF ... ELSE . .. ENDI F construct from Step 22.
28. Terminates the IF . .. ELSE . . . ENDI F construct from Step 15.
29. Terminates the I F ... ELSE ... ENDI F construct from Step 1 4.
30. Checks if the value of the entry made for number was 0. This

is the case if a text entry - a directory path - was made. I f text
was entered, control continues at Step 3 1; otherwise it jumps
to Step 36.

3 1 . Attempts to set the new directory. I f this command fails
because the directory cannot be found (or more than one
directory matches, for patterns) the script stops. Normally,
the directory is made current.

32. Creates a temporary file with the new current directory name
enclosed in quotes.

33. Joins the new current directory to the existing list and saves
the resulting file as t :CD0#.

34. Creates a simple edit macro thus:
9n Move down nine lines (to line 1 0).
d Delete the current line.

35 . Uses the macro created at Step 34 to hack off the last entry in
the file. Note if there are less than ten entries (directory
paths) in the file, this macro has no effect. This macro
therefore, only trims off the oldest entries. Changing the line
count at Step 34 affects how many lines are stored in history.
More than about 25 is getting silly and less than 3 is
pointless. (If you increase this number, you will have to make
changes later in the script too.)

36. If control reaches here from Step 30, it branches to Step 46;
otherwise it continues at Step 3 7.

37. Subtracts l from the menu entry and stores the result in the
global, Usr#.

38. Tests if the value of Usr# is less than 1 and if it is, control
continues at Step 39: otherwise control jumps to Step 40.

Mastering AmigaDOS Scripts

39. Writes a simple macro to skip the first line of a file (n) and
delete the next 9 lines (9d).

40. If control gets here from Step 38 if j umps to Step 4 2 :
otherwise it continues at Step 4 1.

41. Writes a simple macro to delete the first "Usr#" lines of a file.
42. Closes the IF . . . ELSE . . . ENDIF construct opened at Step 38.
43. Creates the new directory variable from the saved directory

list.
44. Edits the history file with the macro created at Step 39 or 4 1

and creates a global, CD# using that information. Note that
the contents of this variable can be 2 or more lines. but only
the first line will be read by $CD#.

45. Changes to the selected directory.
46. Terminates the IF . . . ELSE . . . ENDIF construct opened at Step 30.
47. Marks the bail-out point for the recursion.

1 . . key number , SAVE/S , LOAD/S

2 . . bra {

3 . . ket }

4 .

5 . i f " {LOAD} " EQ " LOAD "

6 . copy >nil: s:cds t:cds{$$}

7 . endif

8. if " {SAVE} " EQ "SAVE "

9 . ask "This will replace your current file*nAre you sure
N/y ? "

10 . if warn

11 . copy >nil: t:cds{$$} s:cds

12 . endif

13 . endif

14 . if " {number} " Ea " "

15 . if exists t:cds{$$}

16 . type t:cds{$$} number

17 . echo "Enter directory , pick a number , any " noline

18 . execute s:rcd ?

19 . skip out

20 . else

21 . echo " Loading/making default file "

RCD

22 . if exists s:cds

23 . copy >nil: s:cds t:cds{$$}

24 . else

25 . echo >t:cds{$$} " * " , c d , * " "

26 . skip out

27 . endif

28 . endif

29 . endif

30 . if VAL "{number}" EQ 0

3 1 . cd "{number}"

32 . echo >t:cd{$$} " *" ' cd ' *""

33. j oin t:cd{$$} t:cds{$$} AS t:cd0{$$}

34 . echo >t : ed{$$} "9n ; d"

35. edit t : cd0{$$} with t:ed{$$} to t:cds{$$} ver=nil:

36 . else

37 . eval >env:usr{$$} {number} - 1

38 . if val $usr{$$} NOT GE

39 . echo >t:ed{$$} "n ; 9d"

40 . else

41 . echo >t:ed{$$} "$usr{$$} d"

42 . endif

43 . copy >nil: t:cds{$$} env:cd{$$}

44 . edit env:cd{$$} with t:ed{$$} ver=nil :

45 . cd $cd{$$}

46 . endif

47 . lab out

Mastering AmigaDOS Scripts

RecDemo

Synopsis:

Tem plate:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] RECDEMO [[dir=]dirlpattern] [d=private]
dir,d
S :

Vl .3+
Tree
Script
To demonstrate recursion

You may be finding the concept of recursion is a beggar to grasp.
Don't worry, this is an area many "real" programmers avoid at any
cost! As a more practical example here's a script modified to tell
you where it is in the directory hierarchy, how deep the recursion is
and when it starts to wind and unwind. Important: This script must
not be multi-taskedl

Line-By-Line

1. The argument template shown here has two variables, but
only one of them is for direct use. The other is passed back to
the program during recursion. An environmental variable
could be used here on later versions. See if you can figure out
how.

2-3. The compulsory re-setting of the brackets to braces.
4. Sets the current directory private variable "d" to the current

directory.
5-6. You've already met this kind of calculation. It uses EVAL's

interactive mode to calculate the depth of the recursion. For
the purposes of this demonstration only, the variable "depth"
must be set before the script starts. It could be tested with IF
EXISTS . . . but this is wasteful - at most this test would fail once
on the first run. A better solution would be to call the
recursive script from another (main) script. In AmigaDOS 2
and higher, this calculation can be written:

eval $depth + 1 t o env : depth

7-8. Gives a progress message. The recursion depth will be printed
on the same line, so the NOLINE switch is used on ECHO and
ther variable TYPEd at Step 8. In AmigaDOS 2+. this couplet
may be written thus:

e c h o " * n E n t e r ing : { d } ({ d i r }) - depth now : $dept h "

RecDemo

9. This creates a list of directories in the current directory. We
mention it because this causes the script to act slightly
differently on the second and successive runs. This returns
two arguments to the script - the parent path (%s%s) and the
sibling directory name (%s). In this way the sibling name can
be displayed without the extra complications of the path.

10. Heavens to betsyi This is where the script calls a script to call
itself. If the LISTed script (called L here) is empty - that is
there are no more sub-directories to search - execution
continues at 5 and the script unwinds.

1 1-12. Again nothing new here. This just calculates the new
nesting depth as the script unwinds. In AmigaDOS 2 this pair
can be replaced by:

eval $depth - 1 to env:Depth

13-14. . . . and this prints the sub-directory the script is leaving
and the new depth. You'll notice that this number will tend to
alternate between values when the script is searching sub
directories of directories like FONTS : this is quite normal. By
the time you've run this script a few times you should be
starting to get to grips with the idea. This couplet can also be
re-written for AmigaDOS 2 thus:

echo " Leaving: {d} - depth now: $Depth"

Listing

1 . .key dir , d

2 . . bra {

3 . . ket }

4 . .def d {dir}

5 . eval <env:depth >nil: op=+ value2= 1 to env : tmp ?

6 . copy env : tmp env :depth

7 . echo "*nEntering : {d} ({dir }) - depth now: " noline

B . type env:depth

9 . list >T:L "{dir}" dirs lformat "execute recdemo
* ll %s%s* II * "%s* II II

1 0 . execute T : L

1 1 . eval <env : depth >nil : op= - value2= 1 to env : tmp ?

1 2 . copy env : tmp env : depth

1 3 . echo " Leaving : {d} - depth now : " noline

1 4 . type env : Depth

m

Mastering AmigaDOS Scripts

RemAlias

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] <[name=]Alias name>
<[string=] "command"> [comment="remarks"]
name/a,string/a,comment/k
S :

V2

Script
Add remarks to or fix aliases against extra
parameters

This is an unusual use of 1/0 re-direction to force the comment
character (;) as part of a command line - : is read as a comment and
normally ignored by the command parser. Why? ALIAS allows the
user to type the alias and add additional parameters. The first is
substituted at the ' [] ', the rest are tacked onto the end. However,
there are times when it is useful to protect an alias against these
additional parameters. Also, you might want to comment some of
your aliases for future reference. In a multi-user setup you might
want to prevent someone typing NEWCLI. This ALIAS seems to work:

1>ALIAS NEWCLI ECHO "Access denied"

In practice, although this works, if the user adds any additional
parameters such as a window description ECHO fails. Here's what
happens:

1 >NEWCLI AUX:

Argument line invalid or too long

The error changes with different versions of AmigaDOS but this is
confusing. The alias is interpreted thus

ECHO "Access denied "AUX:

What's needed is a comment to stop the extra parameters having
any effect. In other words, we want to make AmigaDOS interpret the
alias like this:

ECHO "Access denied" ; AUX :

Because this works, it is not possible to add the semi-colon (;) to
the alias definition directly like this:

ALIAS NEWCLI ECHO "Access denied" ;

RemAlias

because everything beyond the quote is truncated '
This script solves the problem. It forces ALIAS to pick up the
co m m ent an d anything after it. By d oing this you can a d d
co m ments to aliases in a way no one ever thought possible.
Provided the aliases only require one argument each, you can add
com ments to them which will appear in the alias list. For instance,
how about this:

1>ALIAS

N EWCLI ECHO Access denied ; Prevent use of NEWCLI

Sharp eyed readers will be thinking: "That's not possible, he hasn't
got quotes around the echoed string! " Quite right, there's a nice
little trick involved here which makes this possible.
ECHO understands white space to mean either a tab or a space
character. It doesn't know about ALT +Spacebar which also generates
white space (strictly speaking it's a non-break space)! The example
above was generated using this com mand line - the caret symbol
(/\) shows where to type ALT +Spacebar :

1>RemAlias NEWCLI "ECHO Access· denied " COMMENT " Prevent

use of NEWCL I"

Line-By-Line

1 : The argument key consists of two required arguments and a
keyword. The name is going to become the alias name and the
string will be the alias itself. This mirrors the normal ALIAS
com mand with one d ifference - the string is a required
argument. Also, as noted above. it should be surrounded by
quotes. There is a way around this which we'll show later - it's
a bit long winded to include here. The com ment keyword
allows you to optionally supply a comment to add to the end
of the alias. This will appear in the alias list.

2-3: Re-define the bracket characters to { and }.
4: This is where the clever bit is done. ALIAS won't pick up a

semi-colon on a com mand line but it will include it from
interactive mode. This line uses ECHO to create a file which
contains just such a simulated com mand line . . .

5: . . . and this line picks it up using ALIAS's interactive mode.
Once again re- d irection to NIL: is use d to m ake sure
interactive output (the help template) is sent to oblivion.

Note ALIAS in 1.3 doesn't have interactive input, so this technique
can't be used. In fact. there's no need to either! You can just
type the alias with a com ment tacked on the end . AmigaDOS
reads everything to the end of the line - directly equivalent to
the /F argument in release 2.

Mastering AmigaDOS Scripts

Listing

. key name / a , string / a , c ommen t / k

2 . bra {

3 . ket }

4 echo >env : Alias {$$} " { string} ; { c omment} "

5 alias <env : Alias { $$ } >nil : { name} ?

Remt-Chat

Synopsis:

Template:

Path:

Requires:

See also:

Type:

[EXEC UTE] Remt -Chat

none

S :

V l . 3

S c r i p t

Mastering AmigaDOS Scripts

Brief: Read p i p e d m e ssage fro m host te rmi na l

Description

T h i s scr i p t i s a c o m pa n i o n t o H O ST-C H AT a n d i s fu l l y d e s c r i b e d
there .

Listing

1 . lab start

2 . type pipe : B

3 . skip start back

Mastering AmigaDOS Scripts

RemoteRead

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Remote Read [time]

t ime

S:
V l .3 +

HostRead, Mail-2 - Host, Ma il-2 -Remote

Script

Read messages for the host machine

This command is a part of matched pa ir of scripts. See HostRead
for a full description.

Listing

1 . . key time

2 . . bra {

3 . . ket }

4 . . def time 30

5 . Lab Start

6 . list >T:ItsForMe{$$} T:#?.hst !format "TYPE %s%s*nDELETE
%s%s*n"

7 . if e x i s t s env : Stop I t Now

8 . quit

9 . endif

1 0 . run execute T : I t s F o rMe { $$ }

1 1 . wait { t i m e } m i n s

1 2 . s k ip Start BACK

REN

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

Mastering AmigaDOS Scripts

REN <name or pa t tern> [ASITO) <des t ina t i on>

na

na

V l . 3+
DEL

Al ias

Short name fo r R ENAME

ALIAS R E N RENA M E

Thi s a l i as i s n o t i n c l u d e d for pad d i n g (as i t m i g h t seem t o be) i t has
a v e ry s e r i o u s u s . R E N i s the M S - DOS c o m m a n d fo r R E N A M E and
such u sers w i l l fe e l m u c h m o re a t home i f the command works l i ke
t h i s . I t 's a l so s h o rter t o type .

Mastering AmigaDOS Scripts

Rescale

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] Rescale <[First=]colour l >
<[Second=]colour 2 > <[Multiplier=]multiplier>
[[Tolerance=]Tolerance)
First/a, Second/a, Mu I tip I ier /a, Tolerance
S:
V2+

Script
Calculate t he value of a resistor using a standard
colour code

If you're not an electronics hobbyist, t his script is really for fun
although the unusual use of ECHO and global variables are quite
notable. On a cleverness factor, t his script is one of t he most
ingenious in the book. See if you can figure out how it works before
reading t he Line-By-Line description.
For as long as I can remember, carbon resistors (a type of electronic
component) have used a standard colour code to indicate value.
Experienced users memorise t his code very early on and can spot a
value just by practise: some resort to resistor code calculators and
that's what this script does. Given an unknown resistor. you enter
the colours and this script calculates its value. Note: the script is
not very intelligent and will not check against a list of preferred
values. It will generate an error if a colour code is not recognised
though.
The tolerance band is optional and you don't have to enter t he
complete colour names. Rescale uses the conventions to represent
the ohms symbol as "R" and replaces the decimal point with the
value indicator. For example

1>rescalc yellow violet yellow

Resistor is : 4K7 (±????%)

1>rescalc brow red brow

Resistor is: 120R (±????%)

1 >ResCalc red red yel gol

Resistor is : 220K (± 5%)

This script is unlike most of t he o thers in the book in t hat it
requires an extra data file. This must be entered with line numbers

Rescale

exactly as shown or the program will not work. Electronics fans
might like to expand this program to work with Polyester "candy
striped" capacitors which use a similar code.

The standard resistor colour code .

Colour Number Multiplier

Black 0 X 1

Brown x l 0

Red 2 X 1 00

Orange 3 X 1 000

Yellow 4 X 1 0,000

Green 5 X 1 00,000

Blue 6 X 1 ,000,000

Violet 7

Grey 8

White 9

Gold

Silver

None

Line-By-Line

Tolerance

1 %

2%

.5%

.25%

. 1 %

5%

1 0%

20%

1. Defines the command template. Note that the main three
arguments are required: if one was missing the result would
be undefined.

2-3. Redefine < and > to { and }.
4. Set the default value of Tolerance to x.
5-6. Makes SEARCH and EVAL resident. Note use of the ADD switch

to allow more than one copy of these commands. This must
be used to ensure the script can remove them safely later
without affecting anything.

7. Sets the value of the global variable "OK" to 0.
8. Searches the "colourcodes" file for the a string matching the

value entered for F IRST and places the entire line in the
global, ' 'F". If FIRST =RE, then F would read:

2 $A* *K$B Red 2%

9. Takes the result code from SEARCH, adds it to the global OK
and stores it back in OK. This value will be used to check for
any errors later on. If the colour code is not found, SEARCH
returns 5, so a non-zero result in OK at the end of the script

Mastering AmigaDOS Scripts

ml

will flag an error. (The result is not checked at this stage for
speed and simplicity.)

10-11: As 8 and 9 for the second colour code. The result is
stored in the global, "S". If SECOND=Vio, then F would read:

7 AB**OOMViolet 0 . 1%

12-13: As 8 and 9 for the multiplier. The result is stored in the
global, "M". If the multiplier was "Red" then M reads:

2 $A**K$B Red 2%

14. As 8 for the tolerance. The result (if there was one) is stored
in the global, "T' . No error checking is applied to this optional
value.

15. The variable "F" is expanded, the first character extracted and
stored in the global, "A" .

16. The variable "S" is expanded, the first character extracted and
stored in the global, "B".

17. The variable "M" is expanded, a special string extracted and
stored in the global, "C". This string is the key to how Rescale
works. You'll see it in operation shortly. At this stage, the
extracted string is (assuming Red): "$A'' *K$8 ''.

18. The variable 'T' is expanded and the tolerance string stored in
the global, "D".

19-2 1. Check if the first number was O and (Black) and if this is
the case, blanks the value to prevent a leading zero being
included in the output. So, for example. Black-Brown-Black
reads " 1 R" rather than "O 1 R" which looks messy.

22-24. Provides simple error checking by testing the
cumulative value in "OK" is still zero. If not, one or more of
the colours entered was not found in the data table and the
code (or data) must be wrong.

25. This is the really smart bit. The variable "$D" is expanded to
the tolerance value directly, but the variable "$(" is expanded
by an ECHO statement embedded in the same printed string.
This is a process called "indirection" where the contents of the
variable "$(" is determined by the contents of the variables
contained within it. Confused7
Well imagine that " $ C contains "$A '"' K$8". When ECHO is
called it expands the variables "$A" and "$ 8" : the positions of
which are determined by the multiplier's colour (Steps 12- 13).
If "A" and "B" contained "2 " and "7" respectively, ECHO
expands this to the string "2K7" . (The asterisks are there to
separate the variables and prevent the parser from getting
confused .) This string is inserted in the output of the main

Rescale

EC H O s ta t e m e n t a n d p re s t o , t h e v a l u e a p p e a r s l i ke m a g i c .
C l ever, i s n ' t i t '

2 6 - 2 8 . C l e a n u p t h e s c r i p t a n d e x i t . S EA R C H a n d EVAL a r e
removed from the re s i d e n t l i s t to save m e m o ry.

ResCalc

1 . . k ey First / a , Second / a , Multiplier / a , Tolerance

2 . . bra {

3 . . ket }

4 . . def tolerance • x •

5 . resident c : search add

6 . resident c : eval add

7 . setenv O K O

8 . search >ENV : F s : colourcodes {first} nonum

9 . eval $RC+$0K TO ENV : OK

1 0 . search >ENV : S s : colourcodes { second} nonum

1 1 . eval $RC+$0K TO ENV : OK

1 2 . search >ENV : M s : colourcodes {multiplier} nonum

1 3 . eval $RC+$0K TO ENV : OK

1 4 . search >ENV : T s : colourcodes {tolerance} nonum

1 5 . echo to env : A " $ F " first= 1 len= 1

1 6 . echo to env : B " $S " first= 1 len= 1

1 7 . echo t o env : C " $M " first=3 len=9

1 8 . echo t o env : D " $T " first= 1 9 len=4

1 9 . if val $A EQ 0

20 . setenv A

2 1 . endif

22 . if VAL $OK NOT EQ 0

23 . Echo " un known code { First} {Second} {Multipler } "

24 . else

25 . echo " Resistor is : ' echo $c ' (±$D%) " ± is ALT+Z

26 . endif

27 . resident search remove

28 . resident eval remove

Mastering AmigaDOS Scripts

S:Colourcodes - numbers must be e n te re d

0 AB**R Black ????%

AB**OR Brown 1 %

2 $A* * K$B Red 2%

3 AB**K Orange ????%

4 AB* *OK Yellow ????%

5 $A* *M$B Green 0 . 5%

6 AB* *OM Blue 0 . 25%

7 AB* *OOMViolet 0 . 1 %

8 AB Grey ????%

9 AB White ????%

? $A* * R$B Gold 5%

? ORAB Silver 1 0%

? ?????? None 20%

SAFE
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

SAFE [Filel Pattern]

V l .3+
Unsafe
Alias

Mastering AmigaDOS Scripts

Protect files against deletion
ALIAS Safe SPAT PROTECT I] -d

Thi s simple alias makes f iles "safe" by clearing the deleteable flag.
SPAT is used to allow patterns , examples:

1 >Safe C: LIST
1>Safe DEVS:#?

I
Em

Mastering AmigaDOS Scripts

Sl ideshowWB

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

SlideshowWB
none (uses lconX
Depends on Icon
V l .3+ (+ VILBM) or Workbench 3
SlideShowWB
Script
Show a list of pictures as a slideshow

SlideshowWB uses VILBM (or Multiview if you have Workbench 3) to
display pictures from the root directory of a disk as a slideshow.
Like the Shell version, this script only works with dual drive
systems and V I LB M must be on t h e Workbenc h disk. More
information on this script will be found under the description of
SlideShow.

Line-By-Line

1: This is a dummy "key" variable which is not used by lconX
but it must be supplied for BRA and KET to work.

2-3: Change the brackets character from "<" and ">" to "{" and "}".
4 This prints a welcome message, waits for you to insert a disk

and press Return.
5 This is the guts of the script - the meat in the sandwich . It

uses the list command to create another script in T: (on the
Ram Disk) called P IXn - where "n" is an arbitrary process
number. It looks for files in the root directory of the disk in
DF l : with the extension .PIC and creates a program something
like this

echo "Now showing Picture1 . P IC"

V ILBM "Pictures:Picture1 . P IC "

ec ho " Now showing Picture2 . P IC"

VILBM " Pictures:Picture2 . P IC "

I ' ll b e l o oking at how this sort of thing works later in the
serie s , f o r now you might like to experiment with it and see
fo r y o u r self . This is a script which actually writes new scripts.
I f you have Workbench 3, this line can be changed like this:

li s t >T : P i x { SS} df 1:#? . P IC !format "echo * " Now showing
%s%s • " • nV I LBM *"%s%s SCREEN * '"'

SlideshowWB

6: If you want to use this script from Workbench, you'll have to
create a project icon for it and set the default tool to IconX. I'll
leave that creativity to you.

Slideshow (lconX) version

1 . . key dummy

2 . . bra {

3 . . ket }

4 . ask " S lideshow*nPut the pictures disk in DF1 : and press
<Return> "

5 . list >T : Pix{$$} df1 : # ? . P I C lformat " echo * " Now showing
%s%s* '' *nVILBM * '' %s%s*'' ''

6 . execute T : Pix{$$}

Mastering AmigaDOS Scripts

Sl ides how

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXEC UTE) Slideshow < [Drive=]drive number>
[[ext=]extension)

Drive/a , ext

S :

Y l .3 + (+ VI L BM) or Workbench 3

SlideShowWB

Script

Show a list of pictures as a slideshow

This uses VILBM to display pictures f rom the root directory of a
disk as a slideshow. (Y I L BM , written by Sculpt 3 0 designer E ric
Graham, is in the public domain and widely available.) Much the
same idea could be used to play music tracks as a jukebox and so
on. To keep Slideshow simple, this only works with dual d rive
systems and VILBM must be on the Workbench disk.

This version of Slideshow is essentially exactly the same as the
Wor kbench version but with improvements to take account of
command line options. Therefore, to use this program you would
enter the drive number 0 , 1 , 2 or 3 and optionally supply the
extensions used on the picture files - say PIC or ! F F. You do not
have to enter the full name, say DFO: or . ! F F. the script adds those
bits for you. If you have a hard disk , the drive description in line 6
should be changed to reflect this. (I use an assignment called
SHOTS : for all my screen dumps - that keeps them all in one place.)
Typical examples

1 >S lid e5how 1

1 >Slid e5how P I X

1 • The command . K EY used here defines the command line as
ha vin g one requi red a rgument (d rive) and one optional
arg ument (ex t) . These will ensure the drive number is always
sup p lied and t he extension is picked up when required.

2 - 3 Def i ne t h e lef t and right- hand bracket cha racters as { and)
res pec t i vely.

4 : This def ines t he extension as .PIC in case one is not supplied.
Extens ions are not vital, but they are a good way of organising
disks. In any case, this allows the script to separate picture
files from. say dot-info files.

5 Like the Wor kbench version of the program, this defines the

Slidesltow

startup message which prompts you to insert a disk. Note how
the drive argument is included as part of the printed
statement.

6: This line creates the program in the same way as the previous
example, only this time some of the arguments sent to list are
determined by the user options set at the command line.
Users with Workbench 3 can change this line to read:

list >T:Pix{$$} df{drive}:#?{ext} !format " echo * " Now
showing %s%s*" *nMutliview * " %s%s*" SCREEN "

7: And finally, run the program.

Listing

1 . . key drive/a , ext

2 . . bra {

3 . . ket }

4 . .def ext . P IC

5 . ask "Slideshow by Mark Smiddy*nPut the pictures disk in
DF{drive}: and press <Return>"

6 . list >T:Pix{$$} df{drive} : #?{ext} !format " echo * " Now
showing %s%s*"*nVILBM * " %s%s* " "

7 . execute T: Pix { $$}

-

Mastering AmigaDOS Scripts

STOP

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] STOP <[command=]process name>
command/a
S :

V l .3+
Halt
Script
To stop an asynchronous (RUN launched) process

This script is relatively simple - it serves to show just what can be
done in a few short lines. The idea is to stop a command once it has
been started. You can do this either from the current CLI (if you
used RUN) or from another CLI if you started the process directly.

Line-By-Line

1 -3. This gets the command name from the user and re-sets the
brackets to braces. The use of CO MMAND/ A makes certain
that the script gets its argument.

4. The meat starts here. STATUS locates the process running as
"command" and sends the process number to a f i le. An
environmental variable is used to keep things neat and tidy.
The actual file name is "stopper" with the calling CLI 's number
tacked on the end. For instance, if you started this from CLI
1 , the f i I e n am e w o u I d be "s top p e r 1 " . The ·· { $ $ }" s c r i pt
variable does this. Note however, this only works if a . KEY is
specified.

5. Uses BREAK's " interactive" BREAK to get the process number
wh ich wi ll receive the stop code. The process number is
retr ieved from the envi ronmental var iable "stopper". The
command would normally send i ts "help template" to the
screen - >NIL: prevents this. The "7" at the end of the line is
the cruc ial part . Th is is what puts the command i nto
interact i ve mode , allow ing it to read i ts input from the
"stopper" f i le. We've used interactive mode extensively in
these examples, so you should make sure that you understand
it.

Listing

1 . key comman d / a

2 . bra {

3 . ket }

4

5

status >env : stopper{$$ } com= { command}

break <env : stopper {$$} >nil : all ?

Mastering AmigaDOS Scripts

SubDemo

Synopsis:

Tem plate:

Path:

Requires:

See also:

Type:

Brief:

Description

[EXECUTE] SubDemo
none
S :

V l .3+

Script
To demonstrate the implementation of simple
subroutines

As batch languages go. AmigaDOS has one of the best. However, it
lacks the abi l ity to jump to subroutines. Subroutines are used
extensively by programmers to perform simple tasks because, in
theory, a good program should be just a set of small subroutines .
Each subroutine can be cal led from anywhere in the program any
number of times. A subroutine saves repeating the same section of
code many times in the same program. By passing one or more
parameters , a subroutine can be adjusted slightly at run time -
subroutines of this type are more usually called procedures. These
can be implemented using support scripts - the AskEm example is a
good demonstration of this.
To a l i mited degree, AmigaDOS i s capable of jumping to
subroutines . Although the technique is not widely known and very
rarely used. They are not quite as easy to implement as in other
languages - but possible if you really need them. The advantage of
a subroutine is it's faster than executing a completely separate
script. We should stress that this is a contrived example meant
purely for the purposes of demonstration - there are other means
of achieving the same effect - but the script's output is not on trial
here. The script's nature has necessitated a slight deviation from
the usual analysis, however.

Line-By-Line

1. These points set up a return "address " as a variable. The
variable and addres s names are arbitrary - however. the
address name should be the same as that used at point 3. If it
i sn ' t , the s cript wi l l not return to the correct point.
Unfortunately there is no (easy) way to force the label name.

2. The script jumps to the subroutine at these points. Due to the
nature of the implementation, the subroutine(s) must come
after the main body of the script.

!!P-P-1
....

Mastering AmigaDOS Scripts

3 . T h i s m a r k s t h e " r e t u r n a d d r e s s " . W h e n t h e s u b r o u t i n e
fi n i s h e s , i t w i l l c o m e d i re c t l y b a c k t o t h i s p o i n t . As we 've
a l ready sa id , t h e labe l name must be the same as the return
a d d ress def ined a t p o i n t 1 .

4 . T h i s m a r k s t h e s t a r t o f t h e s u b r o u t i n e . T h e n a t u r e o f
AmigaDOS m e a n s t h a t y o u c a l l s u b ro u t i n e s by n a m e rat h e r
t h a n l i n e numb ers . T h i s forces you to wri te s t ruc t u re d code .

5 . T h i s i s t h e c l e v e r b i t . I t u s e s S K I P 's i n t e r a c t i v e m o d e t o
retr ieve the return address from the var iab le a n d j u m p back
t o t h e m a i n body o f the scr ip t . Th is l eaves the techn ique open
to e rrors because the ret u rn a d d ress can b e a l tered a t a l m o s t
a n y p o i n t '

Advanced p rogra m mers c a n u s e t h i s to t h e i r adva n tage however :
g a i n i n g fu l l c o n t r o l o v e r t h e s c r i p t ' s u n c o n d i t i o n a l b r a n c h
i n s t ru c t i o n s . I f t h e l ab e l does n o t ex i s t , S K I P fa i l s wi t h a n Return
Code o f 1 0 wh ich can be tes ted w i t h I F.

Listing

1

2

3

1

2

3

2

3

.key

.bra

.ket

echo

skip

lab 1

wait

echo

skip

lab 2

wait

echo

skip

lab 3

echo

quit

dummy

{

}

>T:return{$$} II 1 11

DatePrint

1 0 sees

>T:return{$$} 11 2 11

DatePrint

1 5 sees

>T:return{$$} " 3 "

DatePrint

" I am here"

; This is the subroutine

4 lab DatePrint

echo "The time is:" noline

date

5 skip <T:return{$$} >nil: bac k ?

Mastering AmigaDOS Scripts

sx

Synopsis: [EXECUTE] SX <[File=]scriptname>
Template: file/a
Path: S:
Requires: Y2+
See also: WX
Type: Script
Brief: Execute an lconX file from Shell

Description

The idea for this script came late one night while I was driving
home from a friend's house. I make this distinction for two reasons.
1: In spite of what people might think, writers do have time for

things other than computers.
2: I was quite fatigued. Which is, more to the point, why the

following happened.
My addled brain formulated the idea that not everyone was going to
get the disk accompanying this book. (At this stage I have no way of
knowing if the disk will be extra or be bound in with the cover at
extra cost to you). This got me thinking, since some of the featured
scripts need icons to run, a lot of people are going to be left
wondering what do. Aha!, I thought, all I have to do is extract the
"WINDOW=" tooltype information from the respective icons and run
the script using that information.
So I did, and here, some 45 minutes later is the result. Of course, it
does exactly what I predicted. It runs lconX configured project
icons from the Shell : but (in case you haven't got it yet) you still
need the icon! This does not defeat the object of what turns out to
be a useful script, however, but it also gave rise to WX to be found
later. which actually does run an IconX script without an Icon!
Using SX is simple, you just give it the name of the lconX icon you
want to run (wi thout the dot-info part) and let it do the rest. For
example. to run AlarmClock from Shell you would enter:

1>SX AlarmClock

Since a new shell is opened by this script it has to be closed when
the script exits (or is stopped) so this script also adds a close box to
the window description. The DELAY= tooltype is not supported but
the script issues a warning if this is found.

-

Mastering AmigaDOS Scripts

Line-By-Line

1-3. Comprise a standard header. Note that the file (a script) is
required.

4 . Creates a simple edit macro which just the deletes the first 8
characters of any file it is applied to.

5 . Searches the "dot-info" file attached to the requested script
for a WINDOW= description. This string should be present
(although lconX does not require it) if the file is going to be
processed by SX. The result is sent to global variable, WIN#.
Early versions of SEARCH cannot search binary files, so this
script is limited to AmigaDOS 2+.

6. If the W INDO W string could not be located the WA R N
condition is set and tested here. If found control resumes at
Step 7: otherwise it jumps to Step 9.

7. Displays an error message.
8. Leaves the script by the back door.
9 . Terminates the IF .. . ENDIF construct opened at Step 6.
10. Searches for the DELAY tool type in the attached script and

clears the WARN flag if it's found.
1 1. If the DELAY tooltype is present, control continues at Step 12,

otherwise it branches to Step 13.
12. This error is probably not serious: and will not affect the vast

majority of lconX scripts, so it is reported as a warning and
the script is allowed to proceed.

13. Terminates the IF . . . ENDIF construct opened at Step 12.
14. Uses an edit macro to massage the unwanted "gunk" from the

window description found by SEARCH at Step 5.
15. Places quotes and the extra "/CLOSE" tool around the window

description . Quotes are necessary to avoid confusing
NEWSHELL if the window's title includes spaces.

16. Creates a simple two line script which, assuming a script
called AlarmRun, will end up looking something like this:

echo " *e [O ; OH *e [J" noline

execute AlarmRun

When this script is called it clears the current console window
and positions the cursor at the start of the first line. (Unlike
the CLEAR alias supplied by Commodore.)

17. Opens a new Shell executing the script at created at Step 16
and using a window defined by Steps 5, 14 and 15. It has to be
done like this because the NEWSHELL execute (FROM=) does
not work the same way ,s a normal execute.

1 . . k ey file / a

2 . . bra {

3 . • ket }

4 . echo >t : ed 1 {$$} " 8# "

5 . search >env : win{$$} {file} . info "WINDOW " NONUM

6 . if warn

7 . echo " Error : No window desc ription? "

8 . quit

9 . endif

1 0 . search { file} . info " DE LAY " NONUM QUIET

1 1 . if not warn

1 2 . echo " Warning : delay option not supported ! "

1 3 . endif

1 4 . edit env : win {$$} with t : ed 1 { $$ }

1 5 . setenv win { $$ } " * " $win { $$ } / C LOSE * " "

1 6 . echo >t : ax{$$} " echo * " * *e [O ; OH * * e [J * " noline*nexecute
{file} "

1 7 . newshell from=t : ax {$$} window=$win { $$ }

sx

rm

Mastering AmigaDOS Scripts

TD

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

TD <ma rker>

na

na

1 . 3 +

L D

A l ias

Mark the curre n t d i rectory for LD

AL IAS TD ASS IGN D I R_[] : '"'

T h i s is o n e of those c l ever l i t t l e t r i cks t h a t you wi l l u s e o n c e a n d
w o n d e r fo r e v e r h o w y o u e v e r m a n a g e d w i t h o u t i t l T D (T h i s
D i re c t o ry) m e m o r i s e s t h e curren t d i re c t o ry p a t h a n d ass i g n s i t a
s i m p l e n a m e - i t c o u l d be a n u mber as suggested here . Lat e r. you
u s e LD to ge t back to th is d i rec tory. I t 's a b i t l i ke PC D (sup p l ie d by
C o m mo d ore) b u t a lo t more versat i l e . There i s n o res tr i c t i o n o n t h e
n u m b e r of d i rec tory c h a n g e s y o u can s tore w i t h t h i s c o m m a n d a n d
y o u c a n fre e l y move around v o l u m e s too 1

W h e n you c a l l t h i s a l i a s i t expa n d s t h u s :

1>TD 1

1 >ASSIGN DIR 1 : ""

I n o t h e r w o rd s , i t c rea tes a d i re c t o ry a s s i g n m e n t p o i n t i n g t o t h e
c u rre n t d i rec tory. S i n c e t h e a s s i g n m e n t s a r e s tore d i n a l i s t t h e re i s
n o l i m i t t o t h e number you can h ave ' The "L i s tD" scr i p t can be use
t o l i s t the c u rrent ass ignments made w i t h th i s a l i a s .

Exa m p l e s :

1>CD SYS: ; change directory to root
1>TD O mark root as directory o
1>CD Code:LC /Examples / Headers/ Include/ Devices
1>TD 1 mark this as directory 1
1>LD O ; go back to SYS:
1>CD
Workbench3 . 0:
1>LD 1 ; go back to 1
1>CD
Code:LC /Examples/ Headers / Include/ Devices
1>CD
Workbench3 . 0:Fonts
1>LD 1
1>CD
Code:LC /Examples / Headers/ Include/ Devices

Mastering AmigaDOS Scripts

TreeStart

Synopsis:

Template:

[EXECUTE) TreeStart <[pat=)directory]
pat

Path:

Requires:

See also:

Type:

Brief:

Description

S:
V2+
Tree
Script
Start the directory tree drawing program, Tree

This script is only used to initialise the variables used by Tree.
Something of a sledgehammer approach really, but the Tree script
is complex enough itself without complicating things further. This
intialisation speeds the main script by performing the once only
intialisation that would otherwise have to be skipped in the script.

Listing

1 . . key pat

2 . setenv Depth

3 . setenv Last Depth

4 . execute Tree " <pat > "

Mastering AmigaDOS Scripts

Tree

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

None (ca l l ed by TreeStart)

d i r, d

S :

V2+

Tree Start

Scr ipt

To draw the d i rectory h i erarchy

Take heart , AmigaDOS 2+ owner, th is is j u s t for you. I t 's conce ivable
that this sc r ip t cou ld be written in AmigaDOS 1 . 3 but the extra work
i nvo lved d o e s n o t bear t h i n k i ng a b o u t - i t 's l a rge e nough as i t
stand s , and even o n 2 S M h z 680 3 0 mach ines i t i sn ' t outs tan d i ngly
fast .

Much the same effec t can be ga ined from u s i ng D IR wi th the ALL
and D I RS swi tches . Neverthe less , the output from this p rogram is
far more attract ive and i t serves to i l l u s trate the techn iques beh ind
th is type o f programmi ng. The backward l i nks d rawn by th is scr ipt
do not refl ec t the rea l s t ruc ture of the d isk - serv ing i nstead as a
v isua l a id .

There are two sc r ip t s - the fi rs t j u s t se ts u p a couple of var iab les
and cal l s the meaty b i t : TREE. Jus t to show how powerfu l AmigaDOS
2 i s , t h i s s c r i p t d o e s n ' t pu l l any p u n c h e s and u s e s e v e ry n e w
fac i l i ty i t c a n .

Line-By-Line

1 - 3 . Defi ne the s tandard header. Note that "d" i s a private var iable
on ly used for the recurs ive part o f the a lgori thm.

4 . Se ts the d efau l t for the i nternal variab le , d .

5 . This acts a s a safe ty- net for the e d i t macros defined be low. Al l
the act ions undertaken by EDIT in these macros must execute
at l eas t once - 0 can cause some queer effec t s . The value of
"Depth" must be a t least one or contro l j u m ps to Step 2 7 .

6 . This t e s t determi nes i f "Depth" a n d "LastDepth" a re t h e same.
These val u e s are affected later in the scr ipt (or by previous
ru ns) . I f Depth=Las tDepth th is means that the d i rectory level
has not change d . Or, put another way, the d i rec tory about to
be d i s p l ay e d i s at t h e s a m e l e v e l in t h e h i e r a r c h y as t h e
prev ious d i rec tory. I f "Depth" <> "LastDepth" , con t ro l j u m ps to

Tree

Step 12 and continues from there.
7- 1 1. Control arrives here when "Depth" equals "LastDepth". This

means that the nesting level has not changed. These lines
construct an edit macro to output a vertical bar (I) above the
directory name - both indented to the current directory level
(depth):

I
System

7 . "b/ / I "

Inserts the "I" character at the start of the first line. (b// =
before the first character)

8 . " $Depth b/ l / "

Inserts Depth * 3 spaces before the I symbol. Remember,
Depth is expanded as the string is appended to the macro file.
The number is used by EDIT to repeat the action of the "B"
command.

9 . " n ; $Depth b// "

Moves to the next line in the file (expanded to the directory
name) and indents it by Depth '' 3 spaces.

10. Creates a file consisting of a 1 blank line, the directory name
highlighted by changing the print colour, and finally the
current values of Depth and LastDepth in brackets.

1 1. Produces the output file ready to be printed by editing the
string created at 10 with the macro created at 7-9 Note: errors
are re-directed to N IL: .

12. Marks the jump point from 6. If control arrives here from 1 1 it
continues at Step 30.

13. When Control arrives here if:
a: Depth > LastDepth - control continues at 14 .

b: Depth = LastDepth - control branches to 20 .

1 4. Control gets here if "Depth" did not equal "LastDepth". It
determines if "Depth" is greater than "LastDepth". These
values are affected later in the script (or by previous runs). If
Depth > LastDepth the directory level has increased . Put
another way, the directory about to be displayed is a child of
the last one displayed. Since control has reached this point,
we need an edit macro to indent the directory and draw a line
from where it was to where it is now using the current depth.
On screen this looks something like this:

1 Garnet

-

Mastering AmigaDOS Scripts

14. Just like Step 7, this inserts a string at the beginning of the
first line in the file. Incidentally, lower case "L" was used
because it gives the best effect on the Amiga's screen in Topaz
8. You may like to experiment with different (fixed width)
fonts.

15. Indents "l_" by Lastdepth * 3 spaces. At this point LastDepth
equals Depth-1 so this makes "l_" line up with the bottom of
the this d i rectory's parent.

16. Moves to the next line of the file. Then inserts Depth * 3
spaces before the "I " character.

17. Moves to the next line in the file (expanded to the directory
name) and indents that by Depth * 3 spaces.

18. This c reates a file consisting of two blank lines and the
expanded directory name highlighted in a different colour.
The Depth and LastDepth variables are printed also.

19. P roduces a file ready to be printed by editing the string
created at 18 with the macro created at 14- 17. Note: Errors are
redirected to NIL : .

20: When control arrives here if:
a: Depth <= LastDepth - control continues at 2 1

b : Depth > LastDepth - control branches t o 30

2 1. If control arrives at this point, there is only one possibility
left: the program has unwound one or more directory levels.
This calculation works out how many levels were unwound
(the difference between "Depth" and "LastDepth") and stores
the result in the environmental variable "Back". This will be
used later to determine the length of the joining line.

22-27. These lines create the edit macro for the most complex
job of all. That is, the one where the directory hierarchy drops
back to a previous level. The catch is, because of the way
recursion works, this drop might be 2, 3, or more levels in one
jump' The result looks something like this on screen:

Utilities

22. As in the previous cases, this inserts the " I " character at the
start of the first line.

23. Indents " I " by LastDepth '' 3 spaces.
24. This is the crucial part of this macro. The first command just

moves to the next line in the file. Then inserts Back * 3
overscore characters AFTER the "I ". On UK keyboards this is
the SHIFT + ALT + N key combination.

25. This indents the whole line just defined by Depth * 3 spaces.

Tree

26. Finally this moves to the next line in the file, then indents it
too by Depth * 3 spaces.

27. Creates the temporary file to be edited using the macro just
defined.

28. Produces a fi l e ready to be printed by editing the string
created at 27 with the macro created at 22-26. Note: errors are
re-directed to NI L:

29. Marks the end of the I F construct opened at 13.
30. Marks the end of the I F construct opened at 6.
3 1. Marks the end of the IF construct opened at 5.
32. Sets the variable LastDepth to the current value of Depth. This

will be used on the next run.
33. Calculates the new value of Depth. Depth increases by one

every time a new directory is entered. ie, when the script calls
itself recursively.

34. Displays the file created at 1 1, 1 9 or 28 - drawing the next
part of the directory tree.

35-36. Perform the file-based recursion.
3 7. Reduces the value of Depth by one. This happens each time

the script unwinds one level of recursion.

Listing

1 • . key dir , d

2 . . bra {

3 • . ket }

4 . .def d {dir}

5 . if $Depth GT 0

6. if $Depth EQ $LastDepth

7 . echo >t: edO " b / / I "
8 . echo >>t : edO " $Depth b/ l / "

9 . echo >>t:edO " n ; $Depth b / / "

10 . echo >t:ed2 " *n *e [32m{d} *e [31 m ($Depth , $LastDepth) "

1 1 . edit t:ed2 t:ed3 with t:edO ver=nil :

12 . else

13 . if $Depth GT $LastDepth

1 4 . echo >t:ed 1 "b / / 1_

15 . echo »t : ed 1 " $LastDepth b / 1 / "

16 . echo »t:ed1 " n ; $Depth b/ l / "

Mastering AmigaDOS Scripts

1 7 . echo >>t : ed 1 " n ; $Depth b / / "

1 8 . echo >t : ed2 " * n l * n *e [32m{d } * e [3 1 m ($Depth , $LastDepth) "

1 9 . edit t : ed2 t : ed3 with t : ed 1 ver=nil :

20 . else

2 1 . eval $ LastDepth - $Depth t o env : back

22 . echo >t : ed2 " b / / l "

echo >>t : ed2 " $ LastDepth b i / " 23 .

24 .

25 .

26 .

echo >>t : ed2 ll n ; $Back a/ I " /_"

echo >>t : ed2 " $Depth b i / "

echo >>t : ed2 ll n ; $Depth b / / "

27 . echo >t : ed4 " *n l * n *e [32m{ d } * e [3 1 m ($Depth , $LastDepth) "

28 . edit t : ed4 t : ed3 with t : ed2 ver=nil :

29 . endif

3 0 . endif

3 1 . endif

32 . setenv LastDepth $Depth

33 . eval $Depth + 1 to env : Depth

34 . type t : ed

35 . list >T : L " { dir } " dirs !format " execute Tree * "%s%s* "
* " %s * II II

36 . execute T : L

37 . eval $Depth - 1 t o env : depth

UNSAFE

Synopsis:

Template:

Path:

Requires:

See also:

Type:

UNSAFE [Filel Pattern)

V l .3+
Safe
Alias

Mastering AmigaDOS Scripts

Brief:

Defin ition:

Enable deletion for a file or files
ALIAS UnSafe SPAT PROTECT [) +d

Description:

This simple script is a direct compliment to SAFE and sets the
deleteable flag on the file (or files) specified. SPAT is used to allow
patterns. Example:

1>UnSafe C:WAIT

1 >UnSafe C : #

-

Mastering AmigaDOS Scripts

VLS
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

VLS

na

na

V2 .0+

VOLS, DLS , DVS

A l i a s

Check an a s s i gnment w i thout remov ing i t

ALIAS VLS ASS IGN VOLS

T h i s s h o r t a l i a s p e rfo r m s a s i m i l a r fu n c t i o n to t h e VOLS s c r i p t ,
a l t hough i t d i s p lays bo th moun t ed and ava i l ab l e vo lumes . Examp l e :

1 >V LS

Ram Disk [Mounted)
Wordworth
Workbench3 . 0 [Mounted)

VOLS

Synopsis:

Template:

Path:

Requires:

See also:

Type:

[EXEC UTE) YOLS

none

S :

V l . 3

D EVS

Scr ip t

Mastering AmigaDOS Scripts

Brief: L i s t a l l mounted vo lumes u s i ng ASS IGN

Line-By-Line

1 . G e t s t h e a s s i g n m e n t l i s t a n d s e n d s i t t o a f i l e i n t h e T
d i rec tory. N o te the use o f < $ $> t o a l l o w m u l t i - task i n g .

2 . D i s p l ays a s i m p l e mes sage t o s h ow what's g o i n g o n . . .

3 a n d searches the ou tput from ASSI G N for t h e "] " charac ter.
T h i s o n l y a p p e a r s o n m o u n t e d v o l u m e s , s o t h a t 's w h a t i s
d i s p l aye d .

Listing

1 . ASSIGN >T : temp<$$>

2 . ECHO " Mounted volumes : "

3 . SEARCH T : temp<$$> ") " nonum

Mastering AmigaDOS Scripts

WD
Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

LD

na

na

V l . 3 +

T D , L D , L i s tD

Al ias

Show a memor ised d i rectory

ALIAS W D ASS IGN D I R_[] : '"' EXI STS

W D i s t h e A L I A S c o m p l i m e n t of L i s t D . I t s i m p l y c h e c ks w h i c h
d i rectory a part icu lar labe l i s ass igned t o a n d d i sp l ays i t . The label
i s not c l eared by this ac t ion .

1>CD Code:LC/Examples/Headers/Include/Devices
1>TD 1 ; mark this as directory 1
1>WD 1
Code:LC/Examples/Headers/Include/Devices
1>WD 5
Code:LC/Examples

Who

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

Who <Command name>
na
na
V l . 3 +

Alias

Mastering AmigaDOS Scripts

Search the proces s list for a command
ALIAS WHO STATUS COM=[]

This might seem a s trange alia s , but making the best use of
commands is just what ALIAS is all about. This little program makes
it possible to discover the proces s number currently running a
named command. If more than one proces s i s running t h e
command, the first i s listed (all commands from 3.0). NOTE: The
WARN flag is set if the process is not found.
Example:

1 >WHO WAIT
3

ml

Mastering AmigaDOS Scripts

wx

Synopsis: [EXECUTE] WX <[file=] scriptname>
Template: file/a
Path: S:
Requires: V2+
See also: SX
Type: Script
Brief: Execute a script in its own window (like lconX)

Description

This script is what SX should have been! If I hadn't been so tired at
the time, then it might just have been this ! This script is a very
handy way of creating scripts that can run in their own windows on
a Workbench without all the fiddling around with Icons, lconX and
NEWSHELL. It does it all for you - all you have to supply is a special
window description somewhere in the file! Typically, you can call
WX like this :

1>WX AlarmClock

1>WX Clock

Sorry , Clock is not configured for WX

In the second example, the script had not been prepared for WX. All
you have to do is supply a console (RAW, CON: etc.) description as
you would to lconX: but preceed it with a s pec i al string :
" ; WX : WINDOW=" . The u s e o f a comment character i s quite
deliberate: this allows you to incorporate the line anywhere in the
script - even straight after the header. For example:

key dummy

. bra {

. ket }

; WX:WINDOW=con:0/0/500/40/Script window/CLOSE

echo >t:ed1{$$} " 1 1# "

This line is completely ignored by AmigaDOS, but interpreted by
WX; so its simple to incorporate and easy to use. If you include
more than one window description only the first one is used.

WX Starting Membar

Line-By-Line

1-3. Comprise a standard header.

wx

4. Creates a simple EDIT macro to remove the special WX
window identifier from the window description. It just deletes
the first 1 1 characters of any file its applied to.

5 . Attempts to locate the WX window description marker in the
specified file. If found, the result is sent to a global variable,
WIN#; the WARN flag is set if it could not be found.

6 . I f the WARN flag is not set (the marker was found) control
continues at Step 7; otherwise it jumps to Step 1 1.

7. Trims the excess grunge from the window description (held in
"WIN#") using the edit maro defined at Step 4.

8. Places quotes around the window description and adds the
CLOSE option to make the window easier to get rid of.

9. Creates a simple script, "ax#" which will be used to clear the
new window and execute the required script proper.

10. Starts the new Shell process using a the supplied window
parameters and special script.

11. If control reaches here from Step 10, it jumps to Step 13;
otherwise it proceeds . . .

12. . . . here and informs the user that the script does not have a
proper window description or the marker is badly formed.

13. Closes the IF . . . ELSE . . . ENDIF construct opened at Step 6.

Listing

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

1 0 .

. key file / a

. bra {

. ket }
echo >t : ed 1 {$$} " 1 1 # "

search >env : win{$$} {file} " ; WX : WINDOW= " NONUM

if not warn

edit env : win{$$ } with t : ed 1 { $$ }

setenv win{ $$ } " * " $win { $$ } / CLOSE * " "

echo >t : ax {$$ } " echo * " * * e [O · OH * * e [J * " noline*nexecute
{file } "

'

newshell from=t : ax { $$ } window=$win{$$}

1 1 . else

1 2 . echo " Sorry , { file} is not configured for WX "

1 3 . endif

-

Mastering AmigaDOS Scripts

X

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Definition:

Description:

X <script> [options]

Y l . 3+

Alias
Short name for EXECUTE
ALIAS X EXECUTE

This must be the s implest alias in the book (and probably the one I
use the most). I use X all the time when I'm developing scripts
because it saves typing EXECUTE. You could give this alias a longer
name, but why bother'

XCD

Synopsis:

Template:

Path:

Requires:

See also:

Type:

Brief:

Description

Mastering AmigaDOS Scripts

[EXECUTE] XCD [[pat=]pattern]
pat
S:
v l .3 - 1.3.3
SubDemo
Script
To add pattern matching and history to CD

The introduction of AmigaDOS 2 sees some remarkable changes and
upgrades to commands like CD and LIST and the pattern matching
algorithms. Both have been extensively revamped and enhanced.
There's no longer any need to use CD to move between assignments
or directories , because the Shell implies them. CD is only used
when pattern matching of the directory specification is required.
Implementing the same thing in AmigaDOS 1.3 is not easy - but
something similar is possible.
Let's face it, if you want the features of AmigaDOS 2, you'll just
have to upgrade. XCD works like Commodore's PCD but doesn't fall
over when it encounters spaces in directory names. Unlike PCD, it
adds single pattern matching. Multiple patterns are not possible in
release 1.3 - a limitation of LIST.

Line-By-Line

1-3. Sets the key and, wait for it, resets bra and key to something
else.

4. If a pattern has been supplied , control jumps to Step 1 5 ;
otherwise it continues at Step 5.

5-6. Prints the current directory on a single line.
7. Saves the current directory setting to a file . . .
8. . .. and this retrieves the new directory specification from

another file.
9-1 1. These are support lines for the "subroutine" call. Each one

defines the return address for the subroutine to branch back
to when it exits. In most languages this part is automatic and
invi sible - in AmigaDOS the simulation of subroutines
requires us to do some of the work.

12. Copies the history to the history variable. The source file in
this case is created by the QUOTES subroutine.

-

Mastering AmigaDOS Scripts

13-14. Show the current directory.
15. Control usually gets here if a pattern was supplied, if not it

jumps to Step 27.
16. Forms the list of directories on the specified path in the

format. All pathnames are enclosed in quotes to stop CD
complaining about invalid command lines.

17-26. It is known - and highly likely - that one or more
directories will match the same pattern. If "#? " is used, all
directories in that path will be listed. SEARCH is used here to
produce two effects:

• Ensures at least one directory is found and generates a WARN
if not. It does this by scanning for a quote character which is
inserted during the list phase.

• Displays all the directories found during the list phase. This is
default for this command but it lets the user know which
directories were located. The first in this list is entered and
this can help to debug the pattern.

20. Here CD uses another curious and very useful feature of
interactive mode which is this: The command only receives
input from the source file up to the first carriage return. This
is usually taken for granted since interactive files are usually
only one line long. However, it means you can drag a single
argument from the top of a list of many possible arguments.
It's a bit like getting a pack of cards and using the one from
the top of the pile.

29 -33. Are the QUOTES subroutine. In brief, this short routine
takes a single line file and surrounds it with quotes. A slightly
more complex approach would be required for multi-line files
- which are not passed to this subroutine. This is important,
never use 20 lines to do something you can do just as well in
two. Use whatever you need to make it great - but keep it
simple too. In this case a facility to quote an entire multi-line
file is overkill. The main script body handles that part during
the list phase.

29. This marks the start of the QUOTES "subroutine" . It's a good
idea to leave at least one blank line between the end of the
script and the start of any subroutines.

30. Labels the subroutine for AmigaDOS's SKIP command.
31. Creates a two line EDIT auto which expands as follows:

c l / " /

Appends a quote to the end of the line by concatenating
(joining together) the end of the current line, a quote and the
next line. Note the next line is empty because of the carriage

XCD

re t u rn present a t t he e n d of t he o ri g i na l fi l e . The t ru th i s , I ' m
fox i n g E D I T to make i t d o s o m e t h i n g i t s h o u l d n ' t - i t j u s t
works t h a t way.

b / / "

T h i s a p p e n d s a quote t o the s tart of t h e l i ne . The e n d resu l t
c o u l d l o o k someth ing l i ke t h i s :

" RAM DISK:clipboards"

R e m e m b e r, these quote s must be present or C D w i l l fa i l . Th is
i s b e c a u s e i t w i l l i n t e r p r e t t h e s p a c e b e t w e e n " RA M " a n d
" D I S K" as a d e l i m i te r - t h i n ki n g tha t t h e new d i rec tory i s RAM
a n d the rest of the c o m m a n d l i ne is a user e r ro r.

3 2 . T h i s c r e a t e s t h e p r e v i o u s d i r e c t o r y h i s t o ry v a r i a b l e
" La s t D i r{ $ $ }" u s i ng the e d i t macro j u s t def ined . . .

3 3 a n d t h i s leaves t he subrout ine re turn ing t o the cal l i ng p o i n t .

Listing

1 . . key pat

2 . . bra {

3 . . ket }

4 . if " {pat} " EQ 11 11

5 . echo " Old directory: " no line

6 . c d

7 . cd >T:Last{$$}

8 . cd <T:lastDir{$$} >nil: ?

9 . setenv Return 1

1 0 . skip QUOTES

1 1 . lab 1

1 2 . copy T:LastDir{$$} T:Last{$$}

1 3 . echo " New directory: " no line

1 4 . cd

1 5 . else

1 6 . list >T : cdt{$$} {pat } dirs !format " * " %s%s* " "

17 . search T : cdt{$$}

1 8 . if not warn

1 9 . cd >T : Last{$$}

II * I I II

20 . cd <T : cdt {$$ } >nil : ?

2 1 . setenv Return 2

22 . skip QUOTES

Em

Mastering AmigaDOS Scripts

23 . lab 2

24 . else

25 . echo " No files appear to match : { pat } "

26 . endif

27 . endif

28 . quit

29 . ; The subroutine starts here . . .

30 . lab QUOTES

3 1 . echo >T : cdt { $$ } " cl / * " / * n b / / * " "

32 . edit T : Last { $$ } T : LastDir{$$} with T : cdt {$$}

33 . Skip <env : Return >nil : back ?

Mastering Amiga Guides

Mastering Am iga Guides

Bru ce Smith Books are dedicated to producing quality Amiga
publications which are both comprehensive and easy to read. Our
Amiga titles are being writ ten by some of the best known names in
the marvellous world of Amiga compu ting. Below you will find
details of all our currently available books for the Amiga owner.

Titles Currently Available

Brief details of the titles currently available along with review
segments are given below. New publications and their contents are
subject to change without notice. If you would like a free copy of
our catalogue and to be placed on our mailing list then phone or
write to the address below.
O u r mailing lis t is u sed exclu sively to inform readers of
forthcoming Bruce Smith Books publications along with special
introductory offers which normally take the form of a free software
disk when ordering the publication direct from us.

Bruce Smith Books,
PO Box 382,

St . Albans, Herts, AL2 3JD

Telephone: (0 1 923) 8943 5 5
Fax: (0 1 923) 894366

Note that we offer a 24-hour telephone answer system so that you
can place your order direct by 'phone at a time to suit yourself.
When ordering by 'phone please:

• Speak clearly and slowly
• Leave your name and full address and contact phone number
• Give your credit card number and expiry date
• Spell out any unusual names

Note that we do not charge for P&P in the UK and endeavour to
dispatch all books within 24-hours.

Buying at your Bookshop

All our books can be obtained via your local bookshops - this
includes WH Smiths which will be keeping a stock of some of our
titles, j ust enquire at their counter. If you wish to order via your
local High Street bookshop you will need to supply the book name,
author, publisher, price and ISBN number.

DII

Mastering AmigaDOS Scripts

Overseas Orders

Please add £3 per book (Europe) or £6 per book (outside Europe) to
cover postage and packing. Pay by sterling cheque or by Access,
Visa or Mastercard. Post, Fax or Phone your order to us.

Dealer Enquiries

Our distributor is Computer Bookshops Ltd who keep a good stock
of all our titles. Call their Customer Services Department for best
terms on 021-706-1188.

Compatibility

We endeavour to ensure that all general Mastering Amiga books are
fully compatible with all Amiga models and all releases of
AmigaDOS and Workbench.

Mastering AmigaDOS 3 Volume One - Tutorial by Mark Smiddy

ISBN: 1-873308-20-5, Price £ 21.95, 384 pages.
The place to begin if you want to learn about and effectively use
AmigaDOS. Covering both AmigaDOS 2 and 3, the tutorial guide
assumes no previous knowledge of AmigaDOS. From formatting a
disk to pipes and multitasking, even multi-user, this volume will
turn the novice into an expert with its practical approach and many
fascinating examples. The disk which accompanies the book
contains all the examples and many other useful AmigaDOS tools.

Mastering AmigaDOS 3 Volume Two - Reference by Mark Smiddy

ISBN: 1-873308-18-3, Price £ 21.95, 416 pages.
Following on from the best selling Mastering AmigaDOS 2 volumes,
Mastering Amiga DOS 3, Volume Two is a complete A to Z reference
to DOS commands covering versions 2.04, 2.1 and 3. The action of
each command is explained and examples to try are provided.
Chapters on AmigaDOS error codes, viruses, the Interchange File
Format (! F F) , the Mou ntlist and the new hypertext system,
AmigaGuide, complete this valuable guide.

Also:

Mastering AmigaDOS 2 Volume One (Tutorial)

by Mark Smiddy and Bruce Smith
ISBN: 1-873308-10-8, price £ 21. 95, 416 pages.

Mastering AmigaDOS 2 Volume Two (Reference)

by Mark Smiddy and Bruce Smith
ISBN: 1-873308-09-4 , price £19 . 95. 368 pages.

Mastering Amiga Guides

These two volumes follow the same great layout and
comprehensive content as this Mastering AmigaDOS 3 book, but
cover the older versions of DOS, namely 1.3, 2.04 and 2. 1.

AmigaDOS Insider Guide by Mark Smiddy

ISBN: 1-873308-37-X, Price £ 14.9S, 2S6 pages.
If you've worn out your Workbench and are excited by the
possibilities offered by AmigaDOS itself, then this Insider Guide is
for you! It introduces all aspects of AmigaDOS from beginners level
with plenty of examples in the now famous Insider Guide format.
This is the guide to the practical use of AmigaDOS without any
technical sidetracks or jargon. Take control of your Amiga.

Mastering Amiga Workbench 2

ISBN: 1-873308-08-6, Price £ 19.9S, 320 pages.
The most comprehensive guide to Workbench 2 available. Every
aspect of Workbench 2 is explained through tutorials and step by
step guides. If you need a guide to Workbench 2 then this is the
way to master it first time' No stone is left unturned.

Mastering Amiga Workbench 3

I SBN: 1-873308-3 1-0, Price £ 19.95, TBA pages.
The most comprehensive guide to Workbench 3 available, it follows
the popular and easy to understand format of the best-selling
Workbench 2 book. Every aspect of Workbench 3 - including 3. 1 - is
explained through tutorials and step by step guides. If you need a
guide to Workbench 3 then this is the way to master it first time!

Workbench 3 A to Z Insider Guide by Bruce Smith

ISBN J -873308-28-0 , Price £14.95, 256 pages.
Every aspect of the Amiga Workbench is documented with screen
shots and examples of usage. Once you've become familiar with
Workbench techniques, this alphabetical reference proves
invaluable when you need to find a file, remember a menu
operation or . . . how do you run that Commodity? Owners of A500
Plus and A2000/3000 upgrading to Workbench 3 will find this an
essential add-on to their manuals.

Mastering AmigaDOS Scripts

Amiga A 1 200 Insider Guide by Bruce Smith

ISBN: 1-873308-15-9, price £ 14.95, 256 pages.

Assuming no prior knowledge, it shows you how to get the very
best from your A l 200 in a friendly manner and using its unique
Insider Guide steps. Configuring your system for printer , keyboard,
Workbench colours, use of Commodities and much much more has
made this the best-selling book for the A l 200.
As well as easy to read explanations of how to get to grips with the
Amiga, the book features 55 of the unique Insider Guides, each of
which displays graphically a set of step by step instructions. Each
Insider Guide concentrates on a especially important or common
task which the user has to carry out on the Amiga. By following an
Insider Guide the user learns how to control the Amiga by example.
Beginners to the A l 200 will particularly appreciate this approach to
a complex computer.
The disks which come with the A l 200 contain a wealth of utilities
and resources which allow you to configure the computer for your
own way of working. The step by step tutorials take you through
using these point by point, anticipating any problems as they go.
There are also fully fledged programs such as MultiView and ED
which can seem impenetrable for the new user but which become
clea r when observed in use over the shoulder of author Bruce
Smith.
G reat new features such as the colour wheel, Intellifonts, using
MSDOS disks with CrossDos and configuring sound are dealt with in
detail. A useful appendix acts as a file locater so that any of the
many files on the Amiga disks can be quickly found.

Amiga A 1 200 Next Steps by Peter Fitzpatrick

ISBN: 1-8733 08-24-8, Price £14.95, 256 pages.
For those who have mastered the very basics of the A l 200 this
book is the ideal companion to our Amiga A l 200 Insider Guide.
Leaving the basics of the Workbench and AmigaDOS behind this
book takes you the next step and shows you how to get the very
most out of your A l 200, using both the software supplied and
other material readily available.
F o r example, lea rn how to use MultiView to w rite your own
adventure game and edit a pictu re ' C reate your own fully
recoverable R am d isk, get better results when you p rint out,
recover deleted fi les. We even show you how to add your own hard
disk and copy softwa re onto it 1 This is only the tip of the iceberg.
Amiga A I 200 Nex t S t e p s i s worth its weight in gold!

Amiga Assembler Insider Guide by Paul Overaa

ISBN: 1-873308-27-2, Price £ 14.9 5, 256 pages.

M11stering Amig11 Guides

The Amiga Assembler Insider Guide has been written for the new
user who wishes to learn to write programs in the native code of
the Amiga computer - assembly language. The approach taken to
this often daunting subject is designed to achieve practical results
with short examples which demonstrate different programming
skills. Each program in the book can be assembled and run in under
one minute so the beginner need have no fear of long impenetrable
list ings. This is programming for the novice, made all the easier
though the mini Insider Guides which summarise important
operations and fundamental concepts.
Possible stumbling blocks and areas which regular l y cause
beginners problems are taken head on. No extra software is
required to run the examples provided. After reading the book, the
user will be able to confidently type in and edit source code,
assemble it, debug it and and run it.
The book is compatible with all the main assemblers on the market.
A support disk is available from the publisher which contains the
A68K assembler, all the listings in the book, additional utilities and
examples (cost £2.00 P&P). With the Amiga Assembler Insider Guide
learning assembler on the Amiga has never been easier.

Amiga Disks and Drives by Paul Overaa

ISBN: 1 -873308-34- 5, Price £ 1 4. 9 5 , 256 pages. FREE Utilities disk.
Just what do you do when all your valuable data is locked in your
computer'7 How do you copy files and install software? What do you
do when you can't find a file on the Workbench screen? This book
has all the answers'
Paul Overaa teaches you how to use and care for all types of disk
drives i n order to minimise the risk of problems, to get a better
understanding of how they work and what you can do if things go
wrong. Packed with practical topics, it's step by step guides are
invaluable to novice and advanced users alike. Applicable to all
Amigas.

Amiga A1 200 Beginners Pack

ISBN: 1-873308-3 0 - 2, Price £ 3 9 . 9 5 plus £ 3 p&p, one-hour
Workbench basics video and two books (A l 200 Insider Guide and
Amiga Next Steps) plus 4 disk of essential software.
Combi ning the Amiga A l 200 Video. the Amiga Next Steps Insider
Guide and the Amiga A l 200 Insider Guide this bumper pack is the
perfect gift for somebody you know taking their first tentative
steps along the wonderful road of Amiga computing.

Em

Mastering AmigaDOS Scripts

The disks of software contain the most sought after programs every
beginner should have, including a database, a wordprocessor, a clip
art selection, the OctaMed music sampler, a virus checker, a file
recovery package and a disk compression utility.
If you already have one part of the pack then telephone us for an
upgrade price.

Amiga Workbench 3.1 Booster Pack

ISBN : 1-873308-41-8, Price £39.95 plus £3 p&p, one and a half hour
Workbench video, two books (Workbench 3 A to Z and Amiga Disks
& Drives) a Quick Reference Card and a disk of essential software.
Already over 400,000 A l 200 and CD 32 owners enjoy the power and
versatility of Workbench 3. Now the million plus owners of AS00,
A2000 and other recent machines can enjoy the same power with a
simple chip upgrade.
The A m iga Work b e n c h 3 B o o s t e r Pa c k provide s the most
comprehens ive support for such new users. The Workbench 3 A to Z
book and the 90 minute A m iga A 1 20 0 - A Deeper Look video
provide the complete guide in both tutorial and reference material
to Workbench 3. The Amiga Disks and Drives Insider Guide goes on
to take the new user to intermediate levels, showing how to
optimise the use of their machines in both speed, capacity and
security. All this, a di sk of es sential software a n d the Quick
Reference card make it an essential purchase.
If you already have one part of the pack then telephone us for an
upgrade price.

Introduction to the Amiga A 1 200 Video by Wall Street Video/BSB

BSBVIDAM I00 l , Price £14.99, one-hour Workbench basics video.
New from Bruce Smith Books in association with Wall Street Video -
Australia' s lead ing Ami ga training company - the perfect video
introduction to using your Amiga A l 200 and a perfect companion
for the world's best selling A l 200 book, Bruce Smith's classic Amiga
A l 200 Insider Guide. Thi s one hour video provides a basic tutorial
on how to set up and run your Amiga A l 200 by using great
animations and split screens to increase your understanding or the
concepts being explained. Re-examine those tricky grey areas by
instant ly rewinding the video.
Applicable to both hard and floppy disk users the Amiga A l 200
Video may also by used to understand the Amiga A4000 and at
£14.99 represents outstanding value.

Mastering Amiga Guides

Introduction to the Amiga A 1 200 - A Deeper Look Video by Wall
Street Video/BSB

BSBVIDAMI002 , Price £ 24.9 9 , 90 minutes video.
The follow-up to the best-selling Introduction to the A l 200 from
Australia's Wall Street Video. Applicable to any Workbench 3 Amiga,
this video goes beyond the first steps of using your machine to
comprehensively tackle all the features of Workbench 3.

Mastering Amiga Beginners by Bruce Smith and Mark Webb

ISBN : 1-873308- 1 7- 5 . Price £ 19.9 5 , 320 pages. FREE Games disk.
Mastering Amiga Beginners is the book for the growing number of
novice computer users who turn to the Amiga as the natural
computer for home entertainment and self-education.
The au thors have built up a wide experience of beginners'
requirements and the problems they encounter and now this vast
knowledge of the subject has been distilled into 320 pages of
sensible advice and exciting ideas for using the Amiga.

Mastering Amiga System by Paul Overaa

ISBN: 1-873308-06-X, Price £ 2 9. 9 5 , 398 pages. FREE d i sk .

Serious Amiga pro grammers need to use the Amiga's operating
system to write legal, portable and efficient programs. But it's not
easy 1 Paul Overaa shares his experience in this introduction to
system programming in the C language. The author keeps it
specific and presents skeleton programs which are fully
docu mented so that they can be followed by the newcomer to
Amiga programming. The larger programs are fully-fledged
examples which can serve as templates for the reader's own ideas
as confidence is gained.

Mastering Amiga Printers by Robin Burton

ISBN 1 -873308-05- 1, Price £19. 9 5 . 336 pages. FREE Programs disk
After reading Mastering Amiga Printers . any Amiga owner will be
able to cho ose effectively the ideal printer for his or her
requirements. The Amiga's own printer control software is pulled
apart and explained from all points of view. from the Workbench to
the operating system ro utines. Individual printer drivers are
assessed and screen-dumping techniques explained.

I
I
ma

Mastering AmigaDOS Scripts

Mastering Amiga AMOS by Phil South

ISBN: 1-873 308-12-4, Price £ 19.95, 320 pages.
AMOS has very quickly developed into one of the most exciting and
accessible programming languages on the Amiga. Its easy to use
interface and familiar BASIC structure are augmented by powerful
libraries for games and graphics programming. Mastering Amiga
AMOS is ideal for anyone investing in AMOS, EasyAMOS or AMOS
Profes sional. Full of hints , tips and shortcuts to effective and
spectacular AMOS programming, this book also contains many
useful routines and program design ideas.

Mastering Amiga Assembler by Paul Overaa

ISBN: 1 -873 308- 1 1-6, Price £24.95, 4 16 pages. FREE disk.
The big brother to the Amiga Assembler Insider Guide, this book
explains the use of assembly language to write efficient code within
the unique environment of the Amiga, doing so without duplicating
standard 68000 material in over 400 pages. Instruction is achieved
by short code examples amidst discussion of the issues involved in
using machine code for various purposes. Subjects covered include
cooperation with the System software, custom chips and the C
language. All the popular Amiga assemblers are supported by the
many code examples in this book.

Mastering Amiga C by Paul Overaa

ISBN: 1-87 3 308-04-6, Price £19.95, 320 pages.
FREE Programs Disk and NorthC Public Domain compiler.
C is one of the most powerful programming languages ever created
with much of the Amiga' s operating system written using C. The
introductory text assumes no prior knowledge of C and covers all of
the major compilers, including the charityware NorthC compiler
supplied with this book when ordered direct from BSB. It is ideal for
anyone using their Amiga to catch up on computer studies !

Mastering Amiga ARexx by Paul Overaa

I S BN 1 -8 7 3 308 -13 - 2 , Price £2 1.95, 3 36 pages. FREE disk.
Now a s tandard part of Commodore's software strategy and readily
available to Workbench 2 and 3 users, ARexx has been much
admired by the programming community and is now available to all
as a third party product. This book is an ideal companion to the
ARexx docume n t a tion, explaining ARexx ' s main features, how it
controls ot her program s, its built-in functions and support
libraries, methods for creating well structured ARexx programs and
much. much more .

Mastering Amiga Guides

Mastering Amiga Programming Secrets by Paul Overaa

ISBN: 1-873308-33-7, Price £TBA, TBA pages. FREE Programs Disk.
All the tricks and tips for programming your Amiga for graphics,
animation and sound. Programs in assembler and C are provided
with full documentation together with step by step tutorials to
teach you how to program. Paul Overaa has saved up his best
routines for what proves to be a dazzling guided tour around the
best in Amiga programming techniques.

Amiga BASIC - A Dabhand Guide by Paul Fellows

ISBN : 1-873308-87-9, Price £ 17.95, 560 pages.
FREE Disk with ACE Freeware BASIC compiler.
BASIC is the computer programming language devised for beginners
and now a standard on most computers. The Amiga doesn't usually
come with a BASIC as standard but we provide one with the book so
you have a head start. A number of commercial BASICS are available
including HiSoft BASIC 2, True Basic and FBASI C. AMOS is also
BASIC-like in its structures and keywords. This book is a substantial
introduction to the language and is peppered with some of the
cleverest routines around. Paul Fellows is a leading software author
in his own right and his programming experience shines through in
this easy to read guide. If you want to learn about programming in
BASIC then this is the place to start.

Amiga Gamer's Guide by Dan Slingsby

ISBN : 1-873308- 16-7, Price £ 14.95, 368 pages.
The latest book for the discerning Amiga owner is this highly
illustrated guide to your favourite games. From sports sims to
arcade adventures, Amiga Gamer's Guide author - and CU Amiga
magazine editor - Dan Slingsby gives you the hints and tips, hidden
screens and puzzle solutions you are looking for. Completed by a
massive A to Z of tips and tricks for over 300 games, this is the
most masterful of Amiga games guides yet published.

Secrets of Frontier Elite by Tony Dillon

ISBN 1-873308-39-6, Price £9.95, 128 pages.
If you want to become Elite, or just incredibly rich, then get this
book. This is the ultimate guide to the ultimate space trading game.
Learn how to move up the ranks of the military, how to choose the
best ships and weapons, how to trade and mine to the top. Games
editor Tony Dillon has researched the game and included many of
the hints and tips which have come his way. Find out how to gain
control of the secret Mirage ship and how to become Elite, by the
back door.

I
am

Mastering AmigaDOS Scripts

Disk Order Form

Please rush me a copy of Mastering AmigaDOS Scripts Disk.

I enclose a Cheque/Postal Order* for £2 .00.

Name . .

Address . .

. Post Code . .

Contact phone number . .

*Cheques payable to Bruce Smith Books Ltd.

Send your order to:

MAD Disk, Bruce Smith Books Ltd, PO Box 382,
St. Albans, Herts, AL2 3JD

Please note that unless otherwise requested we wil l add you to our
mailing list . This mail ing l ist is currently only used to mail out to
our readers detai ls of new and forthcoming books. This inc ludes
our catalogue Mastering

,
Amiga News.

Please take the time to answer the fol lowing questions:

How did you find out about Mastering AmigaDOS Scripts?

Where did you purchase y_our copy?

What other t i t les wou ld you l ike to see in the Masrer ing Amiga
range of books?

, I

j
i
J

' �

t

j

Mastering AmigaDOS - Script Programs
AmigaDOS is the software built into your Commodore Amiga. It lets

you write and run programs cal led scripts. Mastering AmigaDOS

Scripts contains over one hundred ready-to-run script programs.

There are script programs for AmigaDOS versions 3.x, 2.x and 1 .x

so this book is applicable to all Amigas, including the Amiga A 1 200,

A600, A500 Plus, A500, A4000, A3000 and A2000 microcomputers.

The script programs are fully documented l ine by l ine so that you

can l earn from t h e m , p i c k i n g u p t h e n ew tec h n i q u es a n d

programming twists w h i c h AmigaDOS g u ru Mark Smiddy has

devised . Beg inners wi l l f ind the scripts easy to load and ru n ,

provid ing handy off-the-shelf uti l ities and fu l l programs such as

database and diary.

This is the third volume in the Mastering AmigaDOS series, which provides
complete coverage of the Commodore Amiga's built-in software. Volume One -

Mastering AmigaDOS Tutorial .:. is for Beginners, Volume Two - Mastering
AmigaDOS A-Z Reference - documents every command with examples.

- Bruce Smith Books -

Publishers of the World's Best Selling Amiga Books

ISBN 1 -873308-36-1

£1 9.95

This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International (CC-BY-SA) License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866,
Mountain View, CA 940942, USA

Copyright:
Mark Smiddy 1994

Released under Creative Commons 2018

