Mark Smiddy

Over 100 DOS Scripts

Covers Versions 1.x; 2.x and 3.x

FREE Scripts Disk Offer

Bruce Smith Books

Mastering AmigaDOS
Scripts

Mark Smiddy

Mastering AmigaDOS Scripts

Mastering AmigaDOS Scripts

! © Mark Smiddy 1994

ISBN: 1-873308-36-1 First Edition: December 1994.

Editors: Mark Webb
Typesetting: Bruce Smith Books Ltd

Workbench, Amiga and AmigaDOS are trademarks of Commodore-
Amiga, Inc. UNIX is a trademark of AT&T. MS-DOS is a trademark of
Microsoft Corporation. Designer Mouseware is a trademark of Mark
Smiddy. All other Trademarks and Registered Trademarks used are
hereby acknowledged.

All rights reserved. No part of this publication may be reproduced
or translated in any form, by any means, mechanical, electronic or
otherwise, without the prior written consent of the copyright
holder(s).

Disclaimer: While every effort has been made to ensure that the
information in this publication (and any programs and software) is
correct and accurate, the Publisher can accept no liability for any
consequential loss or damage, however caused, arising as a result
of using the information printed in this book.

E. & O.E

The rights of Mark Smiddy to be identified as the Author of the
Work has been asserted by him in accordance with the Copyright,
Designs and Patents Act 1988.

Bruce Smith Books is an imprint of Bruce Smith Books Limited.
Published by:

Bruce Smith Books Limited. PO Box 382, St. Albans, Herts, AL2 3]D.
Telephone: (01923) 894355, Fax: (01923) 894366

Registered in England No. 2695164.
Registered Office: Worplesdon Chase. Worplesdon, Guildford, Surrey, GU1 3UA.

|
Printed and bound in the UK by Ashford Colour Press, Gosport.

The Authors /
[= e Y

“f.xperts are not born.
They are hewn [rom the bedrock of endeavour,
and the granite of experience.”

The Author

MARK SMIDDY is a founding Consulant Editor on Future
Publishing’s acclaimed Amiga Shopper and the world’s best known
AmigaDOS author. He has worked with and written about, a variety
of computers over the last 12 years and thinks intellectual bores
should be lined up against a wall and shot: not necessarily in that
order. Mark currently lives in a sleepy Cleveland backwater and
remains convinced that life is a fatal disease.

Mastering AmigaDOS Scripts

The Scripts Disk

Mastering AmigaDOS Scripts — The Disk contains a large number
of programs. If you have an aversion to typing these in — or find
that you can't get them to run correctly - then you may be
interested to know that they are available on a companion disk
we have compiled to go along with this book. In addition, the
MAD3 Scripts Disk also contains a good selection of interesting
and useful PD/Shareware software. The disk may also contain
information that has come to light since this book was
published.

The disk is available at a nominal charge of £2.00 to cover the
cost of P&P and to obtain it simply fill in and return the tear-out
form you will find towards the end of this book.

When you get your disk you will find that it contains a ReadMe
file when the disk window is opened. Simply double-click on this
for a full description of the files on the disk.

Contents

PR
Contents
Introduction ... 9
Alarm Clock: Alarmset ... 11
AlarmSnooze...............ooiiiiiii 13
Alarm Clock WB Alarmset...............c.coooiiiiiiiiiiiinenenne. 15
AlarmCIocK ... 17
ASKEM ... 20
AddData ..., 79
AULOHEIP ... 22
AutoStart 1.3 ... 23
AutoStart 2 ... 25
Back (AlAs)cccooiniiiii e 26
BarcloCK. ... 27
BarGraph ..o e, 30
BOORY ..., 40
CALC 1.3 43
Calendar ... 49
Monthprint 2 ... 57
Monthprint ..., 45
Calendar 2 ... 62
CCOPY (AlIAs) ..o 66
Gl OPY Lo 64
Chatter. ..., 67
CHAT Y e 70
CloCK 1.3 e, 71
CloCK 2. 73
CloCK 3., 75
ClOCK 77
Delf (Alias).........coooii 86
Del (AlAS)..... ..o 87
DiskDoc (Script/Alias) ... 111
Doctor (Alias 88
DRS (AlAS) ... 89
DVS (AlI@S) ..o 90

DelBlOCK ... s 81

Mastering AmigaDOS Scripts
L S e e s et]

Database..............cooiiiiii 94
DO O PY . 106
DEL ..o 108
EDS (AlAs) ..o 115
EDU (AlAS) ... 116
ENABLE ... 124
EX (AlI@S)......ooiiiiiii 125
FFIND (Ali@s)ooooiiiiiie e 135
FindData 91
FRED (Ali@s)cooooiiiii e 136
FREUD (AlI@S)......coooiiiie e 137
FTEXT (o e 138
EggTimer ... 117
EMOVE ..., 122
FACTOR ... 126
FancyList ... 130
; FOD .o, 131
| GetEM ... 139
| GEEM 2. ..o 141
| Halt . 143
Host-Chat................... e, 145
HostRead ..., 147
InterDel ... 149
IntelliRes. 152
ListALL ... 158
List D o 161
ListDel ... 163
LD (AlI@S).......ooiiiiiii e 147
Mail-2-Host ... 167
Mail-2-Remote ... 168
MD (AlI@S)......cooiiii 164
MID . 174
MID T 194
MBRUN L 196
MemBar ... 175
MemFreeP...............o i 178

Contents

EE—
MemMG ... 185 :
MemInK 187
MemGB ... 188
D .o 164
NOT o s 199
PathFind ... 203
Pest (AmigaDos 1.3)............coiiiiii 205
Pest (AmMigaDos 2)...............coiiiiiiiii 209
Pest2 (AmigaDos 1.3)..........cccviiiiiiiii 212
Pest3 (AMigaDos2)..............coiiiiiiiii 215
Pest3 (AMigaDos3).............cooiiiiiiii 216
Pest: AddPestEvent ... 220
Pest3 ChangPestMessagecoociiiiiiiinn.. 232
Pest3: DeletePestEvent........................ 235
Pest3: GetArgs............coooiiiiiii 238
Pest3: KillPestEvent ... 240
Pest3: ListPestEvent........................ 244
Pest3: SetPestEvent ... 247
Pest3: SetWaitEvent ... 253
Pest3: StartPest................... 256
PrintData.................. e 99
PFINd (AlI@S) ... 258
QFF (Al@S) ..o 259
QF (AlIas)......coiii 260
RO ... 261
RO DD ... 253
ReCDemoO ... 268
RemMALIAS ... 270
Remt-Chat ... 273 -
RemMOtEREAd ...t 274 i
REN ... 275 |
ReSCalC..........oii 276
SAFE ... 281
SlideshowWB i, 282
Slideshow ... 284
ST O . 286

Mastering AmigaDOS Scripts
I e A = T T e T e e R TeEe NI e e R e

SortData............... 101
SUbDEemMoO ... 287
S 289
TD (AlI@S). ..o 292
TreeStart ... 293
L1 == T PSP 294
UNSAFE (AlIas)ccooiiiiiiiiceeeceec 299
VIeWBIOCK ... 103
VLS (AlI@s)coviiii e 300
VO S . 301
WD (AlI@S). ...t 302
WHO (AlAS ... 303
WX 304
X (AHAS) ... 306
XD ... e 307
Appendix
A: Books foryour Amiga.......................cc 311

Introduction

“Alas poor Yorick, | knew him..."

Poor Shakespeare would turn in
his grave if he knew how many
times people have misquoted that
famous line from Hamlet. The
problem is our brains hear the
first part of the sentence and fill
in the rest - in modern English we
wouldn’t think of ending such a
sentence with "Horatio” (the
listener). It just doesn’t sound
right. That's the thing with
scripts: they're a sequence of
instructions written down for
actors to follow, and a director to
alter at will.

Amiga scripts are like that. No
more than a sequence of
AmigaDOS commands which
define some action or actions.
When starting out with this
fascinating area, you are the
copyist entering the script for the
actors to follow. Later, you will
direct the course of events by
changing the scripts to suit your
needs. Eventually you will be the
scriptwriter creating scripts to
solve your own, distinct
problems.

Looked at from another angle,
scripts are AmigaDOS programs.
No different from the programs
that Charles Babbage first
conceived of when he first
thought up the idea of his
Analytical Engine. Babbage’s idea
was to create a machine that
could follow a set of pre-written
instructions that could be
changed to fit the job at hand. Of
course, in those days, programs
only solved mathematical
problems. Even Babbage, were he
alive today, might find it difficult
to conceive of how much effect
his idea could have had on our
everyday lives.

Mastering AmigaDOS Scripts
e T e ne TR S L R ae AT,

All this talk of computers and computer programs may have you
thinking, “Is all this for me?”

Programming is an art and a science all rolled into one. The
scientific part is being able to think of a problem logically and
break it into easily achievable steps (commands, if you like)
whereas the artistic part is the ability to add flare and polish to a
program.

Nothing in this book is beyond you. Even the fact you have
managed to read the words here proves you are intelligent enough
to learn a language: one of the most complex in the world come to
that. To get the most from this book, you should have a basic
understanding of the workings of AmigaDOS, perhaps by following
on from Mastering AmigaDOS Tutorial; or The AmigaDOS Insider
Guide. In any case a copy of Mastering AmigaDOS 3 Reference
would be very helpful.

Just remember as | have said many times, "Experts are not born.
They are hewn from the bedrock of endeavour and the granite of
experience”. Here then are the three stages to becoming an expert.

1. Your can enter the programs as they appear at first and use
them as described in the text. Copying is the first stage of
learning: very few things we do are instinctive; almost
everything is learnt by copying other people.

2. You follow the flow of the program as described in the
detailed text and modify it to see what happens. Later on you
will be able to predict what effect your actions have.

3. Having had some experience with the first two stages, you will
begin to see places in your everyday use of the Amiga where a
script can streamline work: and where nothing supplied here
can fit the bill. You will become the scriptwriter.

Mastering AmigaDOS Scripts

AlarmClock: AlarmSet

Synopsis: [EXECUTE] <[Time=]time> [[Message=]"Text"]
Template: Time/a,message/f

Path: S

Requires: V3+

See also: AlarmClock, AlarmSnooze

Type: Script

Brief: Alarm setting module for the Alarmclock

Description

This module is used to set the AlarmClock’s Alarm from AmigaDOS.
The script has a built-in message (that you can change) but it is
more normal to supply one. The choice is yours. Typically, you'll
use AlarmSet like this.

1>ALARMSET 15:00
1>ALARMSET 13:22 It’s time for a cuppa!

Line-By-Line

1-3. Defines a simple header. Note the use of a "final” argument to
ensure the whole message is collected by the command line.

4. Sets the default message. You can change this to suit yourself.

Creates the message variable. Multiple calls to this command
will change the message: be wary of this. |

6. Clears the Alarm variable.

7. Starts a new resident process which will continue until the
required time is reached. Note input and output re-direction
to NIL:. This ensures you can close the Shell that called
AlarmSet.

8. When the time is reached and the WAIT times-out, this
activates the alarm.

1. .key time/a,message/f
.bra {

ket }

2

3

4. .def message "You rang, sir?"
5 setenv AlarmMsg "{message}"
6

setenv AlarmOn "ON"

Mastering AmigaDOS Scripts
e e e B TR S e e e e K

7. setenv Alarm
8. run <NIL: >NIL: wait until {time}
9. setenv Alarm "NOW"

Mastering AmigaDOS Scripts
T e T R T e

AlarmSnooze

Synopsis:
Template:

Path:

Requires:

See also:

Type:
Brief:

Description

Internal to AlarmClock

S:

V3+

AlarmClock, AlarmSet
Script

Snooze timer module for the alarm clock

This module uses some clever features of AmigaDOS 2 and 3 to
present a requester and calculate a snooze period for the
AlarmClock. Itis not normally executed on its own.

Snooze for how long?

5 mins |

18 mins | 15 mins | Cancel |

Snooze Request

Alarm Clock Snoozing

Line-By-Line

Alarm Clock

1-3: Construct a standard header.

4. Clears the global alarm variable.

Mastering AmigaDOS Scripts
[T e T R T T e e e T]

5. Sets the Alarm message variable to itself plus “Snooze". This
is to indicate that the clock has already been snoozed from its
original time. On successive runs, the word Snooze is added
again and again, so you can see how many times you have
snoozed!

6. Displays the requester inquiring how long the user wants to
snooze for. Four returns are possible here:

1: 5 minutes.
2: 10 minutes.
3: 15 minutes.
4. Cancel

7. This line does several things in one go.

e Calculates the actual delay time required by multiplying the
return from Step 6 by 3. This is done by expanding the return
variable inside an inserted EVAL command. The result from:
“eval $ret{$3$} *5° is inserted at that point. For a return of 3,
AmigaDOS sees the line as:

run >nil: Wait 15 mins +
e Starts a new process that will wait for the specified time.
e Does nothing until the next line has been added to the
process.

8. Is part of the process started by Step 7. When the WAIT times
out, the Alarm variable is set to NOW and the Alarmclock
triggers.

Listing

1 .key dummy

2 .bra {

3. .ket }

4. setenv Alarm ""

5 setenv AlarmMsg "Snooze: $AlarmMsg"

6 requestchoice >env:ret{$$} "Alarmclock" "Snooze for how
long?" "5 mins" "10 mins" "15 mins" "Cancel"

7. run >nil: Wait "eval $ret{$$} *5 mins +

setenv Alarm "NOW"

Mastering AmigaDOS Scripts

AlarmClock: WBAlarmSet

Synopsis: Only run from Workbench |
Template: Time,message/f

Path: na

Requires: V3+

See also: AlarmClock, AlarmSnooze

Type: Script

Brief: Alarm setting module for the Alarmclock |

Description

This module is used to set the AlarmClock’s Alarm from Workbench ‘
- it's really for weanies who can't be bothered using the AmigaDOS
one which is a lot faster in the long run...

Line-By-Line

1-3. Defines a simple header. Note the use of a “final" argument to
ensure the whole message is collected by the command line.
Also, note that the "time"” argument is not required by the
Workbench version of this script.

4. Sets the default message. You can change this to suit yourself.

Checks if a time has been entered. If not, control continues at |
Step 6; otherwise it jumps to Step 9.

6. Displays the prompt if a time has not being supplied- as will
usually be the case from Workbench.

7. The script now calls itself recursively with interactive mode
triggered. Note that the output is re-directed to NIL: to
prevent the command line options from being shown. If you
change the name of the script you must also change its name
here too.

8. When the script unwinds its recursion this jumps to the bail- ‘
out for speed.

9. Terminates the IF... ENDIF construct from Step 5.

10. Creates the message variable. Multiple calls to this command
will change the message- be wary of this.

11. Sets a variable to indicate the alarm is active.
12. Clears the Alarm variable.

13. Starts a new resident process which will continue until the
required time is reached. Note input and output re-direction ‘

Mastering AmigaDOS Scripts

to NIL:. This ensures you can close the Shell that called
AlarmSet.

14. When the time is reached and the WAIT times-out, this
activates the alarm.

15. Is the bail-out point for the recursive calls.
16. Is some information for WX to use if the script is called from

AmigaDOS.
Listing
1. .key time,message/f
2. .bra {
3. .ket }
4. .def message "You rang, sir?"
5. if "{time}" EQ ""
6. echo "Enter a time (and optional message)"
7. execute >NIL: WBAlarmSet ?
8. skip out
9. endif

10. setenv AlarmMsg "{message}"

11. setenv AlarmOn "ON"

12. setenv Alarm ""

13. run <NIL: >NIL: wait until {time} +
14. setenv alarm "NOW"

15. lab out

16. ;WX:WINDOW=WINDOW=con:0/0/190/60/Memory
Gauge/SMART/NOSIZE

Mastering AmigaDOS Scripts
O D aD ol St ae ene e e a1

AlarmClock

Synopsis: Run from Workbench
Template:
Path: na

Requires: V3+

See also: Snooze, AlarmSet, Clock 2, Clock 3
Type: Script
Brief: Digital alarm clock with snooze facility!

Description

This is a script to amaze your friends with. In the current |
incarnation it requires Workbench 3 (an A1200, for instance)
because it makes use of requesters to provide instant responses.
It's a bit like Pest3 in some respects, but unlike Pest it's a lot
simpler and only supports a single Alarm time. A snooze mode is
provided with a programmable Snooze period from 5...15 minutes.
A status indicator shows if the Alarm is clear, set or asleep.

Alarm Clock Snooziing

[You rang, sir?
Snooze OK |

Clock Alarmed

Line-By-Line
1-2. Makes some essential commands resident.
3-5. Checks for the global variable "AlarmON". AlarmClock needs

this (even if it contains nothing) to work. If the variable does
not exist it is created.

Mastering AmigaDOS Scripts
s e e e P R e e e

6.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

o o
o -

ro
w

)
5

~o
~o

ro
o1

Switches the cursor off and positions the print position at the
top, left hand corner of the window.

Marks the start of a loop.
Displays the day, date and time.

Checks if AlarmON contains anything. If it does, control
continues at Step 10; otherwise it jumps to Step 23.

Tests if ClockRtn (set later in the script) was 1: Snooze mode.
If it was, control continues at Step 11: otherwise it jumps to
Step 12.

Displays the snooze “Zzz" message in a highlight colour and
re-positions the cursor.

If control gets here from Step 11, it jumps to Step 14;
otherwise it continues...

...here where it displays the alarm Set message in a highlight
colour.

Terminates the |F...ELSE...ENDIF construct opened at Step 10.

Tests if the alarm has “timed out” indicated by the variable.
Alarm. If Alarm is set to trigger, control continues at Step 15;:
otherwise it jumps to Step 22.

Displays a requester with the alarm message (determined by
“AlarmSet”). Two possible returns are possible:

0: OK. Cancel the alarm

1: Snooze. Trigger snooze mode.

If the return from the alarm request was "1", control continues
at Step 18: otherwise it branches to Step 19.

Silently creates a new process running the Snooze timer.
Actually, AlarmSnooze will create its own sub-process, as
you'll see described there.

If control reaches here from Step 18, it jumps to Step 21;
otherwise it continues...

...here and re-sets the alarm variable.
Closes the IF.. . ELSE.. ENDIF construct opened at Step 17.
Closes the IF...EL. SE...ENDIF construct opened at Step 15.

If control reaches here from Step 22, it continues at Step 25,
otherwise it carries on. ..

..here, and prints the "Alarm off” message before re-
positioning the cursor ready to display the time.

Closes the IF. . FL.SE.. ENDIF construct opened at Step 9.

Halts the script for about a second. You can increase this
period if you want to give more time over to other processes.

Alarm Clock
j == =) ik ar

27. Re-starts the loop and keeps the clock ticking.
28. Is some information for the WX script.

resident c:wait

—_

2. resident c:date

3. 1if not exists ENV:AlarmON

4. setenv AlarmON ""

5. endif

6. echo "*e[0 p*e[0;0H" noline

7. 1lab start

8. date

9. if "$AlarmOn" NOT EQ ""

10. if $ClockRtn EQ "1"

11. echo "Alarm *e[32mzzz*e([31m*e[0;0H" noline
12. else

13. echo "Alarm *e[32mset*e(31m*e[0;0H" noline
14. endif

15. if "$alarm” EQ "NOW"

16. Requestchoice >env:ClockRtn "Clock" "$AlarmMsg"
"Snooze" "OK"

17. if $ClockRtn EQ "1"

18. run >NIL: execute s:AlarmSnooze
19. else

20. setenv alarmON ""

21, endif

22. endif

23. else

24. echo "Alarm off*e[O0;0H" noline
25, endif

26. wait 1 secs
27. skip start back
28. ;WX:WINDOW=WINDOW=con:0/0/240/30/CLI_Clock

Mastering AmigaDOS Scripts

AskEm

Synopsis: EXECUTE >NIL: Askem <[file=]Answerfile> ?
Template: file/a,a,b,c,d,e.f,g,h,i,j
Path: S:

i Requires: V1.2+

See also: Pest 3: GetArg

Type: Script
Brief: To interactively read input from the user in a
script
Description

A programmer once commented: "ASK is fine for simple questions
but what happens if | need to get a text string inside a program?
There's no way to interactively ask the user a question like ‘what’s
your name? once the script has started. From the outset this looks
a deceptively simple command. However, this is not a stand alone
program - it's a script designed to be executed from another script
- possibly called by ICONX.

Line by line

' 1. This line is the command’s key - which gives some hint as to

| how this script works. Apart from the file argument the rest of

| the options look meaningless. In fact, the less meaningful
these are, the better! They never actually appear on screen
and serve to pick up the user's input. I've provided 10 here
which should suffice for questions such as “What is your
name” and so on.

2-3. Set bra and ket to { and }.

4. This merely echoes the user’s input back to the file defined in
line 1.

This script is not obvious until you see it in use. So here's a very
simple script to show how it works:

1 .key dummy
.bra {
.ket }
echo "What is your name?" noline
execute >nil: AskEm ram:Answer{SS} ?
echo "Nice to 'eat you' " noline

type ram:Answer{SS}

AskEm

Line by line

1. This is a dummy parameter.

2. ECHO is being used here to ask the question. This has to be
done here for reasons which will become clear below.

3. This is the crucial part. AskEm is executed with output re-
direction sunk to NIL:. This makes sure that it can’t generate
any output of its own to the screen. The ? at the end puts the
script's key into interactive mode so it is ready to accept some
input. Remember, nothing actually appears because the
output is going to NIL: although, what you type belongs to the
current console so it does appear.

More important, AskEm has one required argument - the file it
will send its output to. A little known feature of interactive
mode is that you can send partial command lines - in this
case the filename - before the interactive mode starts. When it
does, the user’s input is passed to each argument letter in
turn, thus allowing about ten words for this example.

Listing
1. .key file/a,a,b,c,d,e,f,g,h,i,j
2 .bra {
3. .ket }
4. echo >{file} "{a} {b} {c} {d} {e} {f} {g} {h} {i} {i}"

Mastering AmigaDOS Scripts

AutoHelp

Synopsis: (EXECUTE] AutoHelp
Template: none
Path: S:

Requires: V1.3+

See also:
Type: Script
Brief: Make all disk-loaded commands produce help
templates
Description

Here’s a little script for beginners and experts alike who cannot
remember how each command behaves. It uses LIST to create a
special alias for all commands so they always present their
command line templates:

The first line creates a script file in RAM: called "helpme” formatted
| like this for every file in the C: assignment:

I ;<Path>
ALIAS <command> <path and command> ?

| For instance if C: contained just CD and DIR, "helpme” would look
| like this:
| ;Workbench1.3:C
ALIAS DIR Workbench1.3:C/DIR ?
:Workbench1.3:C
ALIAS CD Workbench1.3:C/CD ?
although, in real terms, the list will be much longer - two lines for
every command in C:! When this file is executed, it is no longer
necessary (or possible) to supply an argument to each command.

Instead you just give the command without parameters and it
presents the list of parameters it requires:

1>DIR

NAME ,OPT/K,ALL/S,DIRS/S,INTER/S,FILES/S:
All you have to do is enter the parameters as usual and press the
<Return> key to activate the command. This is useful if you only
have a single disk drive because transient commands are pre-

loaded so you can swap disks without having the hassle of getting
the wrong directory etc.

Listing
1. LIST >RAM:HELPME C:#? LFORMAT ":%S*nALIAS %S %5%S 2"
2. EXECUTE RAM:HELPME

Mastering AmigaDOS Scripts

AutoStart 1.3

Synopsis: none

Template: none

Path: S:

Requires: V1.3-1.3.3

See also: AutoStart 2

Type: Script

Brief: Auto start multiple application (like WB20+'s
WBStartup)

Description

The most logical way to create a boot disk is to custom build a disk
that will automatically start applications from a special Workbench
drawer. This example applies to all releases of Workbench from 1.3
to 1.3.3 and provides functionality similar to that in Workbench 2.

Installing AutoStart

1. Boot your Workbench disk, make a copy of the Empty drawer
and rename it Auto.

2. Open a Shell and enter:
1>ED S:Startup-sequence

3. Move the cursor to the line where EndCLI >NIL: appears, press
<Return> to open a blank line and move the cursor into it.
Now enter the lines shown in the listing below.

4, Now drag one or more applications (tools) to the Auto drawer
and reboot the machine. Typical examples are Clock and
NotePad (on 1.3). This patch only works on “tools". If you are
unsure what an icon is, select it and choose Info from the
menu. The icon’s type must be a tool otherwise it will not
work. (The Shell’'s icon for instance is a Project.)

Line-By-Line

1. The first line checks for the Auto drawer required by the
patch. If the drawer is missing execution passes to step 6 and
allows the startup to continue as normal. This allows you to
modify one Startup-sequence and copy it to lots of different
disks without having to create an Auto drawer on every one.

2. This creates a script (T:AutoTemp) using LIST's LFORMAT
argument. Typically it will look something like this if the
Clock and NotePad tools were placed in the Auto drawer:

Mastering AmigaDOS Scripts

RUN <NIL: >NIL:
RUN <NIL: >NIL:
RUN <NIL: >NIL:
RUN <NIL: >NIL:
RUN <NIL: >NIL:
3. Creates a macro

.info
Clock.info
NotePad.info
Clock
NotePad

(T:Strip) for the EDIT command. There isn't

room here to describe EDIT in detail, but this macro will force
EDIT to search for and delete, any lines containing the string
“.info”". (See Mastering AmigaDos 3 Reference).

4. Creates the final script (T:Runlt) by removing any lines
containing the substring ".info”. The new script will typically
look something like this:

RUN <NIL:
RUN <NIL:

>NIL:
>NIL:

Clock
NotePad

As you can see, this script only attempts to RUN tools. The original
MakeAuto program tried to run everything, icons and all and this
slowed things down. Redirection to and from NIL: (<NIL: >NIL:) is
used to stop any tools getting a "lock” on the CLI window, thus
allowing it to close.

5. Executes the script. The reason for using RUN might not be
clear, but in some releases EXECUTE complains about the lack
of a .KEY statement. This fixes that problem at the expense of
an extra [CLI 2] message during startup.

6. This is just the tag for the IF statement at step.

Listing

—_

A s W N

IF exists SYS:Auto

LIST >T:AutoTemp SYS:Auto LFORMAT "RUN <NIL: >NIL: %S%S"
ECHO >T:Strip "O(F/.info/;d;)"

EDIT T:AutoTemp TO T:RunIt WITH T:Strip

RUN EXECUTE T:RunIt

EndIF

Mastering AmigaDOS Scripts

AutoStart 2

Synopsis: none

Template: none

Path: S:

Requires: V2+

See also: AutoStart 1.3

Type: Script

Brief: Auto start multiple application (like WBStartup)
Description

The most logical way to create a boot disk is to custom build a disk
that will automatically start applications from a special Workbench
drawer.

This example applies to all releases of Workbench from 1.3
onwards. Although the Workbench already has an auto start drawer
(WBStartup) it does not work correctly for applications that don't
exit quickly. This makes it unsuitable for things like EMacs and
Iconkd for instance.

e It's worth noting, that Workbench does have a ToolType:
DONOTWAIT that accomplishes this task instantly, but you
have to add this manually using Icons...Information.

1. Boot your Workbench disk, and use the New Drawer function
to create a drawer called Auto.

2. Append the listing to the end of User-Startup.

Now drag one or more applications (tools) to the Auto drawer
and reboot the machine. Typical examples are Clock and
NotePad (on 1.3). This patch only works on “tools". If you are
unsure what an icon is, select it and choose Info from the
menu. The icon's type must be a tool otherwise it will not
work. (The Shell's icon for instance is a Project.)

Line-By-Line

It works just like AutoStart 1.3, with the exception that the script is
created without the .info files. This is afforded by the new “~" (NOT)
wildcard modifier which stops the dot-info files being included
here.

Listing
1. IF exists SYS:Auto
2. LIST >T:AutoTemp SYS:Auto/~(#?.info) LFORMAT “RUN <NIL:
>NIL: %S%S"

3. RUN EXECUTE T:AutoTemp
4. EndIF

Mastering AmigaDOS Scripts
= e e e e e el

- BACK

Synopsis: BACK <command>

Requires: V1.3+

See also: :

Type: Alias

Brief: Run a command in the background

Definition: ALIAS BACK RUN <NIL: >NIL:

Description:

because it uses ALIAS and partly because the NIL: device did not
work correctly in earlier versions. The idea for this one came from
Charlie (ARP) Heath's PD utility, RUNBACK: a patch that allows
processes to run completely in the background. RUNBACK is not
required for AmigaDOS 1.3 and above because the facility is already
there. You use BACK like this:

| BACK [command] [options]

|
|
‘ This little tip is for AmigaDOS/ARP versions 1.3 and above. Partly
|
|

For instance, to start the PD file viewer ZAP:
1>BACK ZAP

Beginners are probably wondering what all the fuss is about.
Indeed, if you try to BACK DIR or something similar, nothing seems
to happen. BACK was devised so you can start programs from the
Shell then close it down. If you try this, many programs will
prevent the Shell window from closing until they exit. Of course,
BACK is useless for most AmigaDOS commands, it is only intended
| for Intuition based applications.

Mastering AmigaDOS Scripts
e _]

BarClock

Synopsis: Run from Workbench

Template: none

Path:

Requires: V2.0+

See also:

Type: Script

Brief: Analogue AmigaDOS clock using bar graphics
Description

This script is a demonstration of “"bar” graphics - as a real-time
clock. Three bars are used to represent hours, minutes and seconds
elapsed. It isn't really practical to add an alarm to this script: but it
is possible. Special EDIT macros are used to separate the hours,
minutes and seconds from the date string: and the numbers
produced determine the length of the bars.

Ecs:h
[
Bar Clock
Line-By-Line

1-3. Form a standard header.
4-8. Make some essential commands resident for speed.

9-11. Create the EDIT macros used to extract the time components.
Note these macros are not the most obvious solution to the
problem, but were written this way to avoid a bug in EDIT's
DTA command.

12. Creates the "bar” using spaces.

13. Marks the start of the clock loop.

14. Positions the cursor and switches the cursor off.
15. Sends the date to a file.

16-18.Extract the hours, minutes and seconds to three global
variables.

19. Tests if the current hours variable has increased since the last
loop. If not, control passes to Step 23. This block stops the
bar "flashing” every loop.

20. Positions the cursor at the start of the HOURS line, clears the

Mastering AmigaDOS Scripts
= =1

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.

38.
39.

21.

22.
23.
24.

entire line and sets the new background colour.

Displays the bar in the current background colour and
appends the number of hours at the end for clarity. Note that
the LENgth of the second string “$hrs” is always displayed
correctly, even though its length is trimmed by LEN.

Sets the local HRS to the current value of the global hours#.
Terminates the IF...ENDIF construct opened at Step 19.

Tests if the current minutes variable has increased since the
last loop. If not, control passes to Step 28. This block stops
the bar “flashing” every loop.

Positions the cursor at the start of the MINS line, clears the
entire line and sets the new background colour.

Displays the bar in the current background colour and
appends the number of minutes at the end for clarity. Note
that the length of the second string “$mins” is always
displayed correctly, even though its length is trimmed by LEN.

Sets the local "mins” to the current value of the global
“mins#”.
Terminates the [F...ENDIF construct opened at Step 24.

Tests if the current seconds variable has increased since the
last loop. If not, control passes to Step 32. This block stops
the bar “flashing” every loop.

Positions the cursor at the start of the SECS line, clears the
entire line and sets the new background colour.

Displays the bar in the current background colour. Seconds
are not displayed.

If control reaches here from Step 31, it is transferred to Step
35; otherwise it continues...

...here. Positions the cursor at the start of the SECS line, does
not clear the line and sets the new background colour.

Displays the bar in the current background colour. Seconds
are not displayed.

Terminates the [F...ELSE...ENDIF construct opened at Step 29.
Updates the local secs counter.

Waits a second. This probably isn't necessary given the
average speed of the DOS language, but it gives other
processes a look in!

Re-starts the loop.

Is some information for the WX script.
. key dummy
.bra {
.ket }

o N O O0Os

11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

resident
resident

resident
resident

resident

Cc
Cc
Cc

c:

(o

:avail
twait

:eval

date

redit

echo >t:ed1{$$}
echo >t:ed2{$$}
echo >t:ed3{$$}

echo >env:bar{s} "

lab start

"2pa/:/;sb//*np;d" ; extract SECS
"sa/:/*np;d;2>;3#" ; extract MINS
"2dta/ /*n2>;6#" ; extract HRS

echo "*e[2;0H*e[0 p" noline
date >t:t{$$}
edit t:t{$$} to ENV:secs{$$} with t:ed1{$$}
edit t:t{$$} to ENV:mins{$$} with t:ed2{$$}
edit t:t{$$} to ENV:hrs{$$} with t:ed3{$$}
if $hrs{S$} NOT EQ Shrs
echo "*e[40m*e[2;7H*e[K*e[2;0H HRS:*e[42m" noline
echo "$bar{$$}" "Shrs{$$}" len=$Shrs{$$}
set hrs Shrs{SS}

endif

if $mins{$$} NOT EQ Smins
echo "*e[40m*e[3;7H*e[K*e[3;0HMINS: *e[43m" noline
echo "$bar{$$}" "$mins{$$}" len=$mins{$$}

set mins Smins{SS}

endif

if $secs{$$} NOT GT $secs
echo "*e[40m*e[4;7H*e[K*e[4;0HSECS:*e[41m" noline
echo "$bar{$$}" len=$secs{$$}

else

echo "*e[40m*e[4;7H*e[4;0HSECS: *e[41m" noline
echo "$bar{$$}" len=$secs{$$}

endif

set secs Ssecs{SS}

wait 1 secs

skip start back
;WX:WINDOW=con:0/0/550/60/Bar Clock/SMART/NOSIZE

BarClock
e = =1}

Mastering AmigaDOS Scripts

S AT
- BarGraph

Synopsis: [EXECUTE] Bargraph <[Data]> [Min=<min>]
[Max=<max>] [Xaxis=<xais>] [Header=<text>]
[Sub=<text>]

Template: data/a,min/k,max/k,xaxis/k,header/k,sub/k

Path: S:
Requires: V2+
See also:
Type: Script
| Brief: Use AmigaDOS to create a bar graph
Description

Why would anyone in their right mind want to use a DOS command
language to produce graphics? Back in the days when computers
didn’t have proper graphics, everything was done with fixed width
characters. As a respectful salute to those pioneering machines I
present an AmigaDOS screen-based charting program. The example
given here produces automatically or manually scaled, horizontally
aligned, bar charts for integer data values between -10000 and
+10000.

This might appear something of an esoteric problem, but the
solution addresses some interesting areas: not least how to handle
fixed point arithmetic. FORTH programmers have being doing such
things for years, but most of us take floating point for granted in
| other high-level languages such as BASIC. The theory behind such
| things is quite involved so the discussion is featured elsewhere in
these pages. The program requires AmigaDOS 2 (sorry about that)
since it makes extensive use of the new environment handler.

The BarGraph script reads data (and labels) from a text file.
Typically a data file will look like this:

| D1 200

! L1 Jan
D2 325
L2 Feb

and so on. Data Values are prefixed by Dn and labels by Ln where
“n” is the number of the data item or label (1-11 characters)
attached to it. Every data item must have a label and all the items
must be separated by two spaces. This is slightly more complex
than spreadsheet-based graphics, but is necessary for speed; and
AmigaDOS isn't exactly fast at the best of times. Once the data file

BarGraph

has been created, the script is called like this:

1>Bargraph T:Data

Using the default settings like this, the script determines the
maximum and minimum values for the X axis by taking the highest
and lowest values from the data set. This may produce unwanted
results, so either or both of these can be set at run-time, for
example:

1>Bargraph T:Data Min=50
1>Bargraph T:Data Max=3000
1>Bargraph T:Data Min=-200 Max=200

The number of data items that can be plotted depends on the
height of the current CLI window - although the width of the plot
assumes a full-width, hi-res screen. Using an interlaced screen with
a larger window will afford better results.

Finally, a simple XAxis label, header and sub-header can be defined
like this:

1>Bargraph T:Data Min=0 Max=5000 Header="Accounts"
sub="3/1/93" XAxis="Pounds"

Fixed Point Theory

It is well known that AmigaDOS does not handle numeric data
particularly well. Specifically, even the simplest calculation must be
carried out by a special command: EVAL. But EVAL is only capable of
very simple arithmetic and does not handle decimal fractions at all.
For instance: 7/2 gives 3 remainder 1 and even this must be
performed in two distinct steps.

(The details following apply to any language, not just AmigaDOS
and can get machine code programmers out of some tenuous
situations. Unless shown. most of the results are truncated integers
as would be returned by L[VAL. This should be considered when
checking the arithmetic with a calculator.)

Consider the sum "“7/2". Using traditional methods: “two goes into
seven twice, with one left over (the remainder). Pop the remainder
(1) over the divisor (2) and you are left with the vulgar fraction 1/2.
This is fine for dividing up a cake, but not much use in computer
maths. The decimal fraction version of this is:

Dividend 7
S = R =350
Divisor 2

Of course, most of us can do that in our heads, but AmigaDOS
cannot. Now suppose we change the scale of the figures somewhat
by multiplying just the dividend by 10.

Mastering AmigaDOS Scripts
T R T S e VO PR P TR FUELE TR PR SRt

(Dividend*Scaler) ~ (7*10) 70 _ T
Divisor T2 2 T

The result is to move the (purely imaginary) decimal point one
place to the right. However we have also retained the fractional part
- this is the essence of fixed point arithmetic. To show this in more
detail let’s take a slightly more complex problem: 2/5 for instance.
Using our integer AmigaDOS calculation, we get:

Even thought the answer is 0.4. Now use a constant (K) 1000 to get
something more realistic:

(Dividend*K) (2*1000) _ 2000

- = 400
Divisor (5) 5
Result 400
= — = 04
K 1000

So far so good— but what is the point to all of this? Consider you
have a set of values of between 0 and 1000 which must be scaled
down to fit on an axis with 70 plottable points. The scaling factor
can be calculated thus:

70
Factor = — = 0.07
1000

And any value can be plotted by multiplying it by the scaling factor
0.07. Take a value of 500 which is half-way up the scale:

Data*Factor
= 500*0.07
= 35 points

Since AmigaDOS would lose the fractional part in the original
calculation - 0.07 becomes 0 - the scaled value would be useless.
By using a constant of 5000, we can calculate the scaling factor
thus:

Max Data * K 1000*5000

Factor = = = 71428
Plot Width 70

To arrive at a final result we must now divide the data by the scale
factor and multiply the result by the constant:
_ Data *K 500*5000
Ponts = —mmm = —— = 35
Factor 71428
Since no fractions are involved in this calculation, AmigaDOS can
cope. Provided the scaler is large enough to cope, fairly complex

BarGraph
_

arithmetic can be performed. In some cases, part of what would
have been the decimal fraction is discarded - but this is common in

all maths - so it is nothing to be concerned with. You can see this in
action by dividing 7 by 6 — a calculation which always results in a |
recurring fraction 1.16666666. (or rounded up 1.167):

(7¥10000) _ (70000)
6 - 6

= 11666

As a guideline, the size of the scaler determines the accuracy of the
calculations: a scaler of magnitude 10000 sets an internal accuracy
of one ten thousandth (the last digit is dropped due to rounding
errors). Unfortunately, the size of the scaler is finite: an error will
occur if, in any calculation, the scaler multiplied by the scaled data
exceeds the operational limit of EVAL (in this case).

Line-By-Line

1. Defines the key as described above. Note the data file name is
a required argument, all other parameters are keywords and
must be supplied with the data.

2-4. Re-define the "bra”, "ket" and “dollar” characters.

Copies the data file to the T: assignment (in RAM) with the
filename "DATA".

6-8. Add EVAL, SEARCH and JOIN to the resident list. While you are
entering the program the ADD switch should be omitted to
save memory in case the script terminates abnormally.

9. Sets the constant "K" to 100000. This is the scaler described in
the detailed description of fixed point arithmetic.

10. Sets "width” to 56 - the usable window width. This value is |
used to determine the scaling factor for the data. You may
experiment with this value, but it must be an even number.

11. Sets scan ON. The chart is plotted in two phases, the first
phase scans the data for the upper and lower boundaries - the
second plots the chart.

12-14. These threce local variables are set to the contents of the
axis labels. If any are missing, a single space is set instead.

15-17. These set the default scan values for the lowest, middle
and maximum points on the chart. Global variables are used
because they can be written directly by AmigaDOS commands.

18. Directly writes the global variable “Middle” to half the value of

Width.

19. As 19, hut stores an adjusted value to centre the XAxis — held
in "MidPoint".

20. This line is not usually used, but is provided here as an

Mastering AmigaDOS Scripts
e e e e e)

alternative graph style. Using the listing as shown, the bars
will be black. By replacing line 21 with this one, the bars
appear with a hatched pattern. You can use either of these or
design your own - but do not use asterisks (*) or dollars ($)
since these have a special meaning to AmigaDOS.

21-22. Set the bar and XAxis styles to spaces.
23-24. Concatenate the strings defined at 21 and 22 and stores

them in global variables.

25. The script will have been running for a few seconds now, so
this prints a progress message to indicate the start of the scan
phase. During this time the script is looking for values
outside those determined by Max and Min.

26. Marks the start of the main loop.

27. Sets the global variable "Loop” to 0. This value is used as a
data index as you will see later.

28. Marks the start of the scanning loop.

29. Increments “Loop” by 1.

30. Writes the global variable "Number” prefixing the value with
“D" and suffixing it with a space. On the first loop therefore,
Loop=DI1.

31. As 30 but storing Ln in “Labels".

32. Searches the data file for the current data item (for the
contents of “Number”) and stores it in the global “data”. The
nonum switch suppresses SEARCH’s unwanted line numbering
facility. Using the example data file supplied here, if
“Number=D1" then "Data” receives:

D1 2200
Note the entire line is read from the data file — this is
corrected later on.

33-35. If the numbered data item could not be found this test
forces the script to exit either the scan or display phases.
Under normal circumstances this will only happen when all
the data has been read and displayed.

36. String slices the numeric data from the string generated at

Step 32 and stores the result in the global "NData". Using the
FIRST keyword on its own forces ECHO to retrieve the whole
string starting from position four and moving right. Using the
current example;

D1 2200
-translates to-

2200

BarGraph
s ==

37-39. Tests if the current data value is greater than the current
maximum chart value, and resets maximum to the data value
if it is. Since this test is in a loop, all data points are tested
(the scan phase) so the highest point on the X-Axis is always
at least equal to the highest value in the data.

40-42. As above, but sets the lowest data point. The function
“NOT GE" is IF's version of "less than".

43. If "Scan” is ON (the scan phase) control skips to Step 56
otherwise it continues at Step 44.

44. Prints the right side of the string made up from a lot of space
($XAxis) plus the X-Axis ($Axis) label. This centres it roughly
over the X-Axis.

45. Calculates the scaling value described in the detailed
description of fixed point. Assuming Max is 500 and Min is
-500, the calculation works like this:

46. Calculates the value of the mid-point and it stores in the
global "Mid".

47-50. Print the X-Axis labels. This is completed in several
stages.

47. Prints some blank space characters above where the labels
will appear.

48. Prints the Minimum scale value followed by some padding
space — the amount of which is determined by the value of
Midpoint. This is crude, but it works.

49. Does the same as above with the Middle scale value.
50. ...and this displays the highest scale value, “Max".
51-53. Display the X-Axis graticule. Not posh, but functional.

54. Changes the "scan" variable to "SHOW" so the program will
enter the display phase (at Step 57).

55. Alters the display colours to white text on a black
background. The text foreground colour is changed primarily
to show hatched bars (an option described above) but it also
makes the labels etc stand out.

56. Closes the IF...ENDIF construct opened at Step 43.

57. Tests if the “scan” variable has been set to "SHOW" (the display
phase). It is important to note, since this is an iterative script,
this variable is not changed until the scanning phase is
completed.

58. Extracts the current label (Ln) from the data file and stores it
in the global "Lab".

59. Prints the current label with the correct amount of padding
spaces to position the cursor ready to print the bar. The

Mastering AmigaDOS Scripts
e S i e e

60.

61.

62.
63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

length of the string printed is always 10 characters regardless
of the length of any particular label - longer ones are
truncated.

Calculates the number of characters required to print the bar.
Let's assume “Ndata” is 350 and "Min" is -500, the calculation
works like this

So the length of the bar representing 350 on a scale of 500 to
-500 is 47 characters of 56 possible (as defined in “Width" -
see above). Work that out on a calculator and you will find the
result is out by a fraction - but such things are outside the
limits of the display. Using a proportional font (such as Times)
could improve the resolution ten-fold, but the console device
cannot cope in Release 2.

Changes the background colour to default (slate-grey). This,
like many of the other colour changes must be done
separately otherwise the string slicing will get in the way with
unpredictable consequences.

Prints the current label with one extra padding space.
Changes the background colour to black.

Prints a bar according to the magnitude of the current data.
See Step 60 for details of how the variable “Dlen” is calculated.

Changes the background to slate-grey...

...and prints the actual value of the data displayed. This is an
optional feature but has been included here to help overcome
the deficiencies with the display resolution.

Terminates the IF...ENDIF construct opened at Step 57.

Jumps back to Step 28 and does it all again for the next data
point!

Marks the escape point. Control jumps here from Step 34
when the last data point has been read or charted and the
data table is exhausted.

Checks if the scan phase is still active. If the scan has been
completed control jumps to Step 74 and exits, otherwise...

..."scan” is set to OFF to mark the end of the scan phase and
the start of the charting phase and...

Control jumps right back to the start and does the whole lot
again, this time it’s for real.

Terminates the IF.._ ENDIF block opened at Step 71.

74-76. Puts everything back to normal, prints the header and

sub-headers...

77-80.
resident list.

Listing

N O 0 s W N =

8.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20

21,
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

BarGraph
fa= s e]

...and finally removes SEARCH, JOIN and EVAL from the

.key data/a,min/k,max/k,xaxis/k,header/k,sub/k
.bra {

.ket }

.dollar |

copy {data} T:data

resident c:eval add

resident c:search add

resident c:join add

set K 100000

set Width 56

set scan ON |
set Header {header|" "}

set Subhead {sub|" "}

set Axis {Xaxis|" "}

setenv max {max|1}

setenv min {min|O0}

setenv mid 1

eval $Width/2 to env:Middle

eval $Middle -2 to env:MidPoint

;echo >T:G "/\/\/\/\/\/\/\" noline

echo >T:G “ " noline

echo >T:H " " noline

join T:G T:G T:G T:G T:G T:G T:G T:G T:G as ENV:Bar
join T:H T:H T:H T:H T:H T:H T:H T:H T:H as ENV:XAxis

echo "Scanning...

lab again

setenv loop O

lab Read_loop

eval $loop + 1 to env:loop

eval $loop to env:number 1lformat "D%n "
eval $loop to env:labels 1lformat “L%n "
search >env:data T:data $number nonum

if warn

Mastering AmigaDOS Scripts
[=—==-—== - ——————=

34. skip done

35. endif

36. echo "$data" first=4 to env:ndata

37. if val $ndata GT $Max

38. setenv Max $ndata

39. endif

40. if val $ndata NOT GE $Min

41. setenv Min $ndata

42. endif

43. if $scan EQ OFF

44. echo "$XAxis $XAxis $Axis" len=$Middle

45. eval (($Max-$Min) * $K)/$Width to env:Scale
46. eval (($Max-$Min)/2)+$Min to env:Mid

47. echo " " noline

48. echo "MinXAxis" first=1 len=$MidPoint noline
49. echo "MidXAxis" first=1 len=$MidPoint noline

50. echo "$max"

51. echo ".......... !'" noline
52. echo "..... ittt !'" noline
53. echo "......iiiiiiie ittt annns "

54. set scan SHOW

55. echo "*e[41m*e[32m" noline

56. endif

57. if $scan EQ SHOW

58. search >env:lab T:data "$labels” nonum

59. echo >env:labels "labXAxis" first=4 len=10 noline
60. eval (($ndata - $min) * $K) /$Scale to env:dlen
61. echo "*e[44m" noline

62. echo "$labels " len=10 noline

63. echo "*e[41m" noline

64. echo "$Bar" first=1 len=$dlen noline

65. echo "*e[44m" noline

66. echo "$ndata" len=12

67. endif

68. skip Read_loop back

69. lab done

70. if $scan EQ ON

71. set scan OFF

72. skip again back

73. endif

74. echo "*e[44m*e[31m"
75. echo "*e[I$Header"
76. echo "*e[I$Subhead"
77. resident c:eval add
78. resident c:search add

79. resident c:join add

Listing
Sample data file (only five items shown).
D1 2200
D2 2300
D3 2400
D4 2100
D5 2700
L1 January
L2 February
L3 March
L4 April
L5 May

BarGraph
oz o mapia s i)

Mastering AmigaDOS Scripts
—

Booty
Synopsis: [EXECUTE] Booty <Drive> Name
Template: DRIVE/A ,NAME
Path: S:
Requires: V1.3+
See also:
Type: Script
Brief: Make a boot disk
\ Description

This is a simple script to interactively create boot disks. It is
designed primarily for AmigaDOS 1.3 and 2. Calling the script is a
simple matter of supplying the drive number and (optionally) a
name for the new disk. The disk is formatted, initialised and all
major directories are created and “"stuffed”. Booty works best with
at least two drives or a hard disk. Single drive users especially will
benefit by using IntelliRes (detailed later) on this script.

This script is an example only - you should examine it and modify
it to suit your own wants and requirements. For instance,
Workbench 3 users could use REQUESTCHOICE in place of the ASK
commands. Experienced users can modify the script to select the
correct handlers, devices and so on. It’'s up to you.

Example

1>Booty O Works

| Line-by-Line

[1. Defines the key as having one required argument for the drive
number and one optional argument for the volume name.

If a volume name is not supplied, this sets the default one.

[3. Prints a totally pointless progress message. It's there because
it gives people a sense of achievement.

4. Formats the disk using the normal system command. This line
assumes you have the System directory defined in your path
setting and will produce some interactive output. It is
possible to start the format straight away but that was
considered much too volatile a technique to use. You may

. wish to add DCFS FFS or INTL switches here. See MAD 3
| Reference

5. Installs (adds boot code) to the disk thus making it a blank

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21-

26.

27.

Booty
T

boot disk. You could end the script at this point and copy
your own information to it if you prefer.

Checks to see if you want the fonts copying from your current
system disk. (This test was added because fonts are not
required for all applications and they do take up a lot of
room.) Capital N serves as a reminder that the default action
is NO.

The WARN flag is set at Step 6 if you answer Y. In this case
control continues at Step 8, otherwise it branches to Step 9.

Copies all the fonts from the current boot disk onto the new
boot disk.

Control reaches here if you answered “N" to the question at
Step 7 and continues at Step 10. If you answered "Y" it jumps
to Step 11.

Creates an empty fonts drawer on the new boot disk. This
isn't absolutely necessary but it should be retained for the
sake of keeping things clean.

Terminates the IF...ELSE...ENDIF construct opened at 7.

Tests if you need a complete System directory (FORMAT,
FIXFONTS etc).

If you answer Y at Step 12, the WARN flag is set and execution
continues at Step 14, otherwise it jumps to Step 16.

Copies the entire System directory from the current system
disk onto the new boot disk...

...and this copies that all-important Shell icon.

If execution arrives here from Step 15 it jumps to Step 20,
otherwise it continues at Step 17.

As Step 15.

Creates the system directory and copies the system directory
commands: FastMemFirst and SetMap. These are required by
the Startup-sequence/Note changes for 2.1 and higher.

Closes the IF.. .ELSE...ENDIF construct opened at Step 13.

Makes the Utilities directory (nothing is placed here and no
Workbench icon is created).

Copies the handler library, libraries, Devices, script and
command directories to the new boot disk - generally
speaking these lines should be left as they are.

Copies the Preferences directory over. This line is really only
required for Workbench 2.

Guess what!

Mastering AmigaDOS Scripts
e e e e e G AR VTSR W0 =

Listing

1. .KEY DRIVE/A,NAME

2. .DEF NAME Lazy_Bones

3 Echo "Making a simple boot disk - please wait"
4 FORMAT DRIVE DF<DRIVE>: NAME <NAME>

5. INSTALL DF<DRIVE>:

6 Ask "Do you require fonts y/N?"

7

8

IF WARN
COPY Fonts: DF<DRIVE>:Fonts ALL
9. ELSE
10. MAKEDIR DF<DRIVE>:Fonts
11. ENDIF
12. Ask "Do you require a complete system y/N?"
13. IF WARN

14. COPY SYS:System DF<DRIVE>:System ALL
15. COPY SYS:Shell.info DF<DRIVE>:

16. ELSE

17. COPY SYS:Shell.info DF<DRIVE>:

18. COPY SYS:System/(FastMemFirst|SetMap) DF<DRIVE>:System
19. ENDIF

20. MAKEDIR DF<DRIVE>:Utilities

| 21. COPY L: DF<DRIVE>:L ALL

| 22. COPY Libs: DF<DRIVE>:LIBS ALL

23. COPY Devs: DF<DRIVE>:DEVS ALL

24. COPY S: DF<DRIVE>:S ALL

25. COPY C: DF<DRIVE>:C ALL

26. COPY SYS:Prefs DF<DRIVE>:Prefs ALL

27. Echo "Operation complete..."

Mastering AmigaDOS Scripts
s L T o e e]

CALC1.3

Synopsis: [EXECUTE] CALC [[val=]valuel] [[op=]operator]
[[val2=]value?2]

Template: vall,op,val2

Path: S:

Requires: V1.3

See also:

Type: Script

Brief: Attempt to patch one of the bugs in EVAL

Description

AmigaDOS 1.3’s EVAL command has a problem - if you get the
spaces in the wrong place, it doesn't work. This script attempts to
solve the problem by analysing the input line and deciding if it

received enough parameters. This is a highly modified version of

an example to be found in Mastering AmigaDOS Reference which
relies on /a required arguments to generate an error. This version
gives the users some polite help when they stumble...

Line-by-Line

1.

2-3.
4-9.

10.

11.

The argument key has three arguments. These would normally
be required but I'm assuming someone using this is going to
need help. The last thing they're going to need is EXECUTE
screaming "args no good for key..." which is what would
happen if one of those arguments was required.

Set the bra and ket characters to { and }.

If one of the required arguments is missing this code
generates some help. Required arguments could have been
used in the template (at Step 1) but one feature of this script
is to show how interactive help can be used.

If control reaches this point when the correct arguments have
been supplied, it continues at Step 11; otherwise it jumps to
Step 12.

The reason EVAL failed in the first place haunts execute too.
That is: if two (or more) optional arguments run into each
other, they appear just like one argument. And we're going to
use that very feature to catch the bug. Consider a command
line which reads:

CALC 1 +2
What actually happens is this: The “1" is assigned to "Vall”;

Mastering AmigaDOS Scripts
v e Ty ey Ty S T T R T

“+2" is not separated by a space so that gets assigned to “op".
This leaves “val2” empty - so we check for a null value for
“val2" and, if found, give some help. In practice you can give
as much or as little help as you think is required. Be brief: you
can always refer to the documentation files if need be. This is
only mentioned in passing because you may note the use of
“**"in the help string. This is because this example needs to
print a literal “*" (multiply).

| 12 This i_sn’t strictly necessary at the end of a script, butit's good
practice.
Listing

1 .key vali,op,val2

2 .bra {

3 .ket }

4 if {val2} EQ ""

5 echo "Argument missing - help is:"

6 echo "Usage: CALC <valuel> <operator> <value2>"

7 echo "All arguments are required."

8 echo "Valuel and value2 use Ox for hex"

9 echo "Operator is one of - +,-,** / etc..."

10 else

11 eval {vali} {op} {val2}

12 endif

Mastering AmigaDOS Scripts

Monthprint

Synopsis: (EXECUTE] MonthPrint

Template: none

Path: S:

Requires: V2+

See also: Calendar

Type: Script

Brief: Month printing module for the Calendar script
Description

One of the most irritating features with AmigaDOS is its low
speed - and the calendar script is no exception. However, any
operation always seems quicker if you can see something
happening. For instance, when Workbench is busy, it displays a
sprite (clock or Z's bubble) to show it's working; hacks such as
Sleepy 3 go further by animating the sprite.

Long operations should have some form of progress indicator and
this is the method chosen for Calendar’s display module,
Monthprint. The script's progress is shown in the form of a bar
traversing the screen from 0 to 100 per cent completed.

Progress indicators can be implemented in several ways - the
choice of which method to use depends on how the script works. In
linear scripts you update the indicator at strategic points — after a
long copying operation for instance. Looping scripts are easier, you
update once every loop. In such cases it is also much easier to
determine the length of the progress bar because you can usually
determine how many loops will be performed in advance. This is
the method used by Monthprint - the length of the progress
indicator is calculated from the number of days in the month.

Line-by-Line
1. Prints a simple message to let you know what'’s going on.
2. Displays the fixed part of the progress indicator bar using

string slicing. For the sake of illustration, let's imagine the
program was displaying a (purely hypothetical) seven day
month. The variable "DiM" contains eight loops so the printed
result from this step looks like this. (The extra space is picked
out with a period and the cursor position with an asterisk.):

o *

Qe

3. Adds the second part of the progress indicator. Note how this

Mastering AmigaDOS Scripts

line looks a little strange at first glance. It sends a line feed,
adds some spaces and then stops ECHO from printing a line
feed. The screen display now looks like this:

0%. -.100%

*
.

As you can see, the cursor has been moved to the first
position in the progress indicator, just below the first bar.
This explains the strange use of “*n” and NOLINE switch.

4. Defines a loop label “loop” which is accessed by the backward
jump at 20. The loop is defined as early as is practical in the
script to help speed things up. When jumping backwards, the
SKIP command starts at the beginning of the program and
works its way down. If you must jump backwards, keep the
labels early on.

5. In BASIC this line reads:
IF DiM > daynum

This tests if the value in “DiM" (Days in Month) has exceeded
the value in "daynum” and branches accordingly. The variable
daynum is initialised to “1" in the Calendar script.

6. This calculates the value held in the global environment
variable "wrap” which is used later to determine when to wrap
the display. The variable "wrap” is calculated each loop to
contain a value between 0 and 6 - the offset of the current
date in the week. The calculation uses a technique which is
not available in AmigaDOS 1.3 since it writes directly to the
variable being used. In early versions, EVAL opens a file to the
variable and keeps it open until the command has completed.
Since you cannot write to a file which is open for reading this
was not possible. Assuming “wrap” contains 5, AmigaDOS
treats this line thus:

EVAL (5 +1) mod 7 to ENV:wrap
The file containing the variable is opened, read and closed,

while the line is being parsed. When EVAL gets round to
executing it sees the variable just as if it had been typed.

7. In BASIC this line could be written:
IF daynum <= 9
The test determines if the value stored in “daynum” is less

than or equal to 9. If the test is positive, control branches to
Step 9, otherwise it continues...

8. ...here where a single space is added to the print file, “MFile".
(Mfile was created by Calendar.) This handles the character
alignment by making sure all the numbers line up neatly.

11.

12.

13.

14.
15.

16.

17.
18.
19.

Monthprint

Since all the numbers appear a+ regular tab stops
(accomplished with the string *e[l), single digits line up over
the tens column, viz:

This becomes this

1 —_—> 1
8 — 8
15 = |5

You may exclude Steps 7 to 9 if you wish.
Closes the IF...ENDIF construct opened at Step 7.

Tests if the value of “wrap” is less than or equal to 1. (These
values occur when the day is a Saturday or Sunday.) If it is,
control continues at Step 11 otherwise it branches to Step 12.

Control reaches here if the date being displayed falls on a
weekend. This special exception is highlighted by adding
control characters to the output string: “*e(32m" turns the
printed output white and “*e[31m" puts it back to normal. See
Step 13 for more information.

If control reaches here from Step 11 it branches to Step 14
otherwise it continues...

...here, where it prints the next day number. A couple of
things are worth noting here. First the output is sent to file
for later display, but second two separate items are being
printed. There's nothing unusual in that, but look at how this
is achieved:

echo >>T:MFile $daynum "*e[I" noline
ECHO is receiving two print arguments ($daynum and “*e[l")
instead of the more usual one. This is a unique feature of
AmigaDOS 2 and cannot be used in earlier versions. In fact,

you can send as many arguments as you like, switches such as
NOLINE should be added to the end for clarity.

Closes the IF...ELSE...ENDIF construct opened at Step 10.

Increments the variable "daynum” using the direct write
technique described at Step 6.

Checks if the value held in “wrap” is zero. If it is, control
resumes at Step 17 otherwise it jumps to Step 18.

Adds a new line to the print file "MFile".
Closes the IF.. ELSE...ENDIF construct opened at Step 16.

This displays the progress meter block for the current loop.
Note this is echoed directly to the current console screen and
not sent to file.

Mastering AmigaDOS Scripts
I—————————-= = 7 —————— =r=ar——

20. Jumps back to Step 4 for another bite at the cherry.

21. Closes the [F...ELSE...ENDIF construct opened at Step 5.
Control reaches here when the entire month has been sent to
the print file.

22. Appends the bottom “ruler" to the print file...

23. ...which is finally displayed here using MORE. Note that since
MORE is not RUN-launched it uses the current Shell window
for display. This also clears the progress indicator.

24. Prints a black line.

25. Removes EVAL from the resident list since it is no longer
required...

26. ..and closes the Shell process opened by Calendar.

Listing

1 echo "Calendar Working... wait"

2 echo "0% " first=1 len=$DiM noline
3 echo "— 100%*n " noline

4 lab loop

5. if val $DIM GT S$daynum

6 eval ($wrap +1) mod 7 to env:wrap

7 if val $daynum NOT GT 9

8 echo >>T:MFile " " NOLINE

9. endif

10. if val $wrap NOT GT 1

11. echo >>T:MFile "*e[32m$daynum*e[31m" "*e[I" noline
12. else

13. echo >>T:MFile $daynum "*e[I" noline

14. endif

15. eval $daynum + 1 to env:daynum

16. if $wrap eq O

17. echo >>T:Mfile ""

18. endif

19. echo "*e[41m *e[40m" noline

20. skip loop back

21. endif

22. echo >>T:Mfile "*p======================================"
23. more T:Mfile

24, echo ""

25. resident eval remove

26. endcli

Mastering AmigaDOS Scripts

Calendar

Synopsis: [EXECUTE] Calender <[YEAR=] year> [month]

Template: year/a, month

Path: S:

Requires: V2+

See also: MonthPrint

Type: Script

Brief: Main module for the AmigaDOS calendar
Description

Zeller's congruence is something of a mouthful after, say, a few
pints; anything mathematical brings tears to my eyes. Zeller's
congruence is a complex integer-based formula to calculate the day
number of the first day in any year from the start of the Georgian
calendar (1582) to well into the next millennium; including leap
years. It's just as complex to express as a mathematical formula
too. Nevertheless, Zeller's mathematical prediction is widely used
in applications such as perpetual digital calendars.

The first day numbers (there's seven of them from zero to six) are
fixed and it is possible to program say, a watch, with a hundred or
so in packed binary (two values per byte) and use them to fix the
calendar. However, that approach is a bit feeble so here’s how to
program the congruence in AmigaDOS with a complete calendar
program to boot. As you will see the maths are quite easy, the hard
part is making use of the figures!

Calendar |

First though, here is one way to express Zeller's congruence in most
versions of BASIC:

10 INPUT "Year", Year

20 Century=INT((Year-1)/100)

30 Decade=Year-1-100*Century

40 Day=(799+Decade+(Decade/4)+(Century/4)-(2*Century)) MOD 7

Mastering AmigaDOS Scripts
e e T I RIS s

50 PRINT "Day number is: ";Day

Looks pretty hair-raising at first glance doesn’t it — but it breaks
down quite well. Lines 20 and 30 split the year into two parts - the
century number (1800, 1900, 2000 etc) divided by 100; and the
decade number minus one. Therefore, 1992 breaks down thus:

Century=19
Decade = 91

Line 30 uses these values to calculate the number of the first day in
January of any particular year. In 1992 for instance the first day is
Wednesday, so the result is 3 (where Sunday=0 and Saturday=6).
Essentially this is just a piece of simple arithmetic and even
AmigaDOS 2 can handle that without too many problems.

The script programs presented here are not suitable for earlier
versions of AmigaDOS because of the advanced maths and variable
handling, but if enough of you make a fuss, I will attempt to re-
program this example for AmigaDOS 1.3.2. This sort of problem is
not suitable for AmigaDOS 1.3 because the EVAL command did not
support multiple arguments. Enthusiastic owners might like to try
this as an exercise.

Calendar is divided into two separate scripts for speed. The first is
a linear script which does all the necessary calculations, the second
displays an entire month. It is quite possible to write this program
as a single script, but since the printing side performs a lot of
backward loops, it is faster to do it this way. Let's take a close look
at how the main part works.

Line-By-Line

1. Defines the arguments. Calendar only requires a year to work,
but you can supply a month number too. The month
argument could have been a month name, but this just adds
complexity and means you have to type more. .

2-4. Re-defines the bra, ket and dollar symbols. Dollar is changed
here to make the script easier to read - you'll see why later
on.

5. Preloads EVAL into memory for speed. Note the ADD argument
is supplied here so the command can be safely removed
without affecting any other scripts.

6-7. Creates local environmental variables “Y" and "M" containing
the year and month (if any) specified from the command line.

8. Subtracts 1 from the year number and stores the result in the
global environmental variable, “Date”. (You should note here,
the dollar symbol is used to signify an environmental variable
- it is not affected by the .DOLLAR command used earlier.)

10.

11.

12.

13.

14.

Calendar

Subtracts 1 from the month number and stores the result in
the variable, “Month”.

This is a natty little trick to remove the century number from
the date variable. Assuming the value held in Date was 1991,
it works like this:

ECHO "$Date"
is read by AmigaDOS thus:
ECHO "1991"

because the local variable is expanded as the command
executes. This is then affected by the FIRST and LEN keywords
- FIRST=1, tells ECHO to display the leftmost character on the
string. LEN=2, makes ECHO display just two characters - in
other words the century number. In fact, this value is not
displayed, instead it is sent to a new global environmental
variable, “Cent”.

Like step 10, this removes two characters from the “Date”
variable. However, since the FIRST keyword is not supplied,
ECHO reads the rightmost two characters - the Decade in
other words. As before, this value is used to create an
environmental variable (Decade).

This looks a lot worse than it really is! It uses the BASIC
translation of the Zeller's congruence method described above
to calculate the day number of the first day in the required
year. A point worth noting here is there must be a space
before the dollar symbol used to signify an environmental
variable. The result is stored in (yet another) global variable,
“Day”.

It is an interesting fact that you can determine if a year is a
leap year (29 days in February) by performing modulo 4 on it.
Leap years always return a value of 0. This calculation
performs MOD 4 on the year number (supplied at the
command line) and stores the result in the global
environmental variable, “LLeap”. Just to aggravate matters
though, most centuries are not leap years. A century must be
divisible by 4 (1600, 2000, 2400 etc) for it to be leap year.

Tests the value of “Leap” and determines what to do next. If
the year is not a leap year, execution continues at Step 15; if it
is, execution branches to Step 19.

15-16. This two-part step does some string slicing to obtain a

value from an array of numbers. Each of the twelve month'’s
in a year has a particular number of days, you knew that
much of course - but the computer does not. In BASIC for
instance, you would set up an array like this:

FOR N=1 TO 12

Mastering AmigaDOS Scripts

15.

16.

17.

18.

READ DaysInMonth(N)
NEXT N
DATA 31,28,31,30,31,30,31,31,30,31,30,31

and read the array thus:

Days=DaysInMonth(Month)

where the variable "Month” selects the correct element from
the array. AmigaDOS cannot handle arrays in this way - but by
careful use of string slicing (and some careful typing) this can
be achieved quite simply. I'll explain this step in detail
because it occurs several times in this script.

The first job is to construct the array of numbers. This is just
the number of days in each month as demonstrated in the
BASIC example above. To keep the script easy to read (and de-
bug) the list is constructed with full stops between each value
- although this is not strictly necessary. This leaves
something like this:

“.31.28.31.30.31.30.31.31.30.31.30.31"

Each number is three characters long, therefore you can pick
any value by multiplying the offset (the month number) by
three. A feature of AmigaDOS means the first character in the
string is numbered one. Also, since the months start from
zero (determined earlier) we must add two to get the correct
offset. If that makes your brain itch, consider this:

Take June - month number five. In the script, the variable
“Month” will be holding four. Therefore:

Offset = (4*3)+2 = 14

The 14th and 15th characters in from the start of the data are
“31", the fifth number in the data. Taking this offset as a start
value and reading two characters, you can create an
environmental variable. Here's how:

Calculates the starting position using the environmental
variable Month and sending the offset result to global
environemtal variable, “Slice”.

Starting from the position determined by "Slice” this takes two
characters from the data string and saves the result in "DiM"
(Days In Month).

Creates another offset variable, which is used to read the data
at Step 18...

...here. This data is the number of days in the year that have
elapsed at the start of the current month. Note this table is
almost identical to the first one except the numbers are two

Calendar
iy ssss =

or three characters long. To read a data table in this way, it is
vital all strings are the same length. Therefore, if a number is
composed of just two digits, it must be preceded by a
padding space. |

19. If control reaches here from Step 18, it branches to Step 24
otherwise it continues at Step 20.

20-23. These lines are essentially the same as 15-18, however
these data strings are used for leap year exceptions. The
data changes after February which has 29 days in this case.

20. Calculates the offset variable used at Step 21...

21. ...which is used to determine the number of days in the
selected month. This value is then sent to the variable, “DiM".

22. Calculates the offset variable used at Step 23...

23. ...which determines how may days have elapsed up to the
current month. It is important to note when you enter this
program, all but three of the values change in this data set!

24. Closes the IF.. . ELSE...ENDIF construct opened at Step 14.

25. Prepares another string slice offset. This one is used at Step
27 to grab the month name.

26. Creates a text (MFile) file in T: with an initial string. Note here,
the NOLINE switch is used to suppress the extra line feed. At
this stage MFile contains:

Calendar for:
27. Uses ECHO'’s string slicing facilities plus the append to file
operator (>>) to attach the current month name to the

message string, MFile. If month 4 had been requested, MFile
now contains

Calendar for: Apr

28. Next, the year is added. This is taken from the local
environmental variable (Y) created at Step 7. MFile now looks
like this:

Calendar for: Apr 1992

29. This appends a "ruler” to the message file. (Equals signs are
used here, but you can used any convenient character.) Note
the line feed at the start of the line:

Calendar for: Apr 1992

30. This appends the "day names"” heading to the message file.
Note how "*e[l" (TAB) escape sequences are used to tabulate
the text correctly.

Mastering AmigaDOS Scripts
[s e T T T a—]

33.

34.

31.

32.

Like Step 31, this adds rules to the day names. You can use
any characters you prefer here, but you should keep the tab
sequences.

32-34. Calculate the initial print position of the first date under the

day name rules. Since this is quite an involved topic, I'll look
at it in a bit more detail. The idea is quite simple, the day
names appear across the top from Sunday to Saturday like
this:

Sun Mon Tue Wed Thu Fri Sat

Now, let’s take January 1992 (January is the simplest month).
The 1st is a Wednesday (Day=3) so the program has to start
printing 24 characters (1 TAB=8 characters) in from the start,
like this:

Sun Mon Tue Wed Thu Fri Sat

NN

5 6 7 8 9 1

This is quite simple to produce using the formula:

Space = Day * 8

But what happens later in the year? Take May for instance.
The 1st of May 1992 is a Friday so how can we calculate that
from the day number returned from Zeller’'s congruence? This
is where the "Elapsed” variables determined at Steps 21 and
23 come into effect. These determine the number of days
elapsed up to the start of the current month. At the first of
January, no days have elapsed, but by the first of May, 121
days have passed. By adding this to the initial day number
and dividing by seven, the remainder is the offset to the first
day in the week. The formula is therefore:

Space = ((Day+Elapsed) MOD 7) * 8

This is the AmigaDOS version of the above calculation.
“Elapsed” and "Day" are summed first. Then the modulo
(remainder after division) is taken and stored in "Day”. The
calculation is split in two like this because the value of “Day"
is required elsewhere.

The new value of Day is multiplied by 8 and stored in the new
global environmental variable, "Space”.

Uses ECHO's string slicing function to produce an effect
similar to the STRINGS() function found in most modern
BASICs. Note in the listing these are shown as periods (.) but

Calendar

they should be entered as spaces.

35. Sets the global environmental variable, "daynum” to 1.
“Daynum” is used by the display script.

36. Copies the current value of “Day” to a new global
environmental variable, “wrap” (used by the display script). It
is interesting to note, this operation could be accomplished
by COPY. However, EVAL has been used because that
command is made resident for the script.

37. Increments the value held in “DiM" by 1.

38. Starts the display script, MonthPrint although it is important
to note how this has been achieved. In normal circumstances,
the script would be called using either EXECUTE or RUN
EXECUTE; the latter being the closest approximation to the
final solution. Using NEWSHELL allows you to effectively RUN
launch EXECUTE and specify a window size at the same time.

Listing

1. .key year/a, month

2. .bra {

3. .ket }

4. .dollar !

5. resident c:eval add

6. set M {month}

7. set Y {year}

8. eval $Y-1 to env:Date

9. eval $M-1 to env:Month

10. echo "$Date" first=1 len=2 to env:Cent

11. echo "$Date" len=2 to env:Decade

12. eval (799+ $Decade+($Decade/4)+($Cent/4)-(2* $Cent)) mod
7 to env:Day

13. eval (($Cent+1) + $Y) mod 4 to env:leap

14. if val $leap NOT EQ O

15. eval $month * 3 +2 to env:slice

16. echo ".31.28.31.30.31.30.31.31.30.31.30.31" first=$slice
len=2 to env:DiM

17. eval $month * 4 +2 to env:slice

18. echo "..00..31..59..90.120.151.181.212.243.273.304.334"
first=%$slice len=3 to env:Elapsed

19. else

20. eval $month * 3 +2 to env:slice

Mastering AmigaDOS Scripts
e e STl s A il

21.

22.
23.

24.
25.
26.
27.

28.
29.

30.

31.

32.
33.
34.
35.
36.
37.
38.

echo ".31.29.31.30.31.30.31.31.30.31.30.31" first=$slice
len=2 to env:DiM

eval $month * 4 +2 to env:slice

echo "..00..31..60..91.121.152.182.213.244.274.305.335"
first=$slice len=3 to env:Elapsed

endif
eval $month * 4 +2 to env:slice
echo >T:MFile "Calendar for: " noline

echo >>T:MFile " Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec" first=$slice len=3 noline

echo >>T:MFile " $Y"
echo >>T:MFile "*pn======================================"

echo >>T:Mfile
"Sun*e[IMon*e[ITue*e[IWed*e[IThu*e[IFri*e[ISat"

echo >>T:MFile
":::*e[I:::*e[I:::*e[I:::*e[I:::*e[I:::*e[I:::"

eval ($Elapsed + $Day) mod 7 to env:Day

eval $Day * 8 to env:Space

echo >>T:MFile ".............. " first=1 len=$space noline
setenv daynum 1

eval $day to env:wrap

eval $DiM + 1 to env:DiM

newshell from s:MonthPrint con:0/0/480/140/Calendar/Auto

Mastering AmigaDOS Scripts
e e,

Monthprint2 |

Synopsis: (EXECUTE] MonthPrint2

Template: none

Path: S:

Requires: V2+

See also: Calendar2, SuperCal

Type: Script

Brief: Month printing module for the Calendar2 script
Description

Although given here as a complete listing, there are only a few
differences between this module and the one listed elsewhere in
the book. The changes are noted below.

Line-by-Line
The following changes have been made to Monthprint:
1. Cosmetic change to be more informative
11 and 13. Tabs replaced by spaces.
23. Signals to Calendar2 it is safe to continue by breaking the wait
state.
Listing
1. echo "Calendar Working on $MName $Y. Please wait"
2. echo "0% " first=1 len=3$DiM noline
3. echo "— 100%*n " noline
4. lab loop
5. if val $DIM GT $daynum
6. eval ($wrap +1) mod 7 to env:wrap
7. if val $daynum NOT GT 9
8. echo >>T:MFile " " noline
9. endif
10. if val $wrap NOT GT 1
11. echo >>T:MFile "*e[32m$daynum*e[31m" " " noline
12. else
13. echo >>T:MFile $daynum " " noline
14.

endif ‘

Mastering AmigaDOS Scripts
_

15. eval $daynum + 1 to env:daynum

16. if Swrap eq O

17. echo >>T:Mfile ""

18. endif

19. echo "*e[41m *e[40m" noline

20. skip loop back

21. endif

22. echo >>T:Mfile "*pn=================================
. 23. break $BreakMe C

24. endcli

Mastering AmigaDOS Scripts
T e e

SuperCal

Synopsis: (EXECUTE] Supercal <[YEAR=] year> [Month]
Template: Year/A,Month
Path: S:
Requires: V2+
See also: Calendar2, Monthprint2
Type: Script
Brief: Full year version of the AmigaDOS calendar
program
Description

Supercal is the main module for Calendar2, the whole year calendar.
For the sake of speed, it operates as a separate module which calls
modified versions of Calendar and Monthprint.

Line-By-Line

1.

10.

Define the key for this command. You must specify a year for
this script and optionally a starting month. For instance you
might only want the calendar from August 1992. Note
however, both these arguments are numeric.

Just in case you don't supply a month, Supercal assumes you
mean January - this will normally be the case since Supercal is
designed to display whole year calendars.

Checks if the Calendar variable has been set - this is used to
check for certain once only configuration. If Calendar exists
control branches to Step 7, otherwise execution continues...

...here, where the Calendar variable is defined.

Adds the EVAL command to the resident list - this used to be
done in Calendar, but since that is now a subroutine of this
script, it is done here.

Creates the print file and defines its heading with the current
year.

Closes the IF...ENDIF construct opened at Step 3.

Defines a global environmental variable MN and gives it the
value of the current month.

Prints a simple progress message in the current console
window. This is the working window that Supercal was
launched from.

Executes Calendar?2 (listed below) with the correct parameters.

Mastering AmigaDOS Scripts
==— = e e s

11
12

13.

14.
15.
16.

17.
18.

19.

Increments the month number.

Tests if the whole year (up to December has been done). If it
has, execution branches to Step 14 otherwise it continues...

...here, which calls Supercal itself recursively. This has been
done in preference to using RUN because that would cause
more than one occurrence of Calendar2 to execute at once and
that cannot happen. Using EXECUTE on its own does not work
because this script contains a backward loop and the
temporary command file required by the SKIP command is
trashed by the second EXECUTE running from the same
process. (Phew!) Don't worry, it just works that way.

Closes the IF...ENDIF construct opened at 12.
Displays the completed Calendar.

Removes EVAL from the resident list since we've now finished
with it.

Makes a copy of the print file in your S: assignment...

...and lets you know for future reference. This is the print file.
You can make your own calendar by copying this to your
printer thus:

COPY S:Calendar1992 to PRT:

Finally, makes sure no recursive copies of the script are left to
execute.

Listing

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.
15.

.key Year/A,Month

.def Month 1
if *$Calendar EQ $Calendar
setenv Calendar ON

resident c:eval add

echo >T:MFile "Calendar <Year>"
endif

setenv MN <Month>
echo "Working on $MN/<Year>"
execute s:Calendar2 <Year> $MN
eval $MN + 1 to ENV:MN
if val $MN NOT GT 12

execute s:Supercal <Year> $MN
endif

more T:MFile

16.
17.
18.

19.

SupercCal
Ep————

resident eval remove
copy T:MFile to S:Calendar<Year>

echo "Calendar saved to disk as Calendar<Year>.*nSee text
for info on how to print this."

quit

Mastering AmigaDOS Scripts

Calendar2

Synopsis: [EXECUTE] Calendar?
Template: none

Path: S:

Requires: V2+

See also: MonthPrint2, SuperCal
Type: Script

Brief: Improved calendar script

Description

The only changes between this version and the one listed elsewhere
are as follows (line numbers refer to this version):

L g g

Calendar 2

Line-By-Line

25. The month string is now written to a global environmental
variable.

26-29. Tabs removed and other cosmetic improvements.

32. $Day is now multiplied by five to account for new spacing.

37. A new variable has been added here to aid the multi-tasking.
“Breakme” is set to the current process number running
Calendar?.

38. NEWSHELL calls a different file and the window has been made
smaller.

39. An extra line forces the script to wait until the Monthprint2
process is completed. Redirection to NIL: is used to stop the
“***Break” message appearing.

Listing

1 .key year/a,month
2 .bra {

3. .ket}

q .dollar !

- a O O N O wm

- O

12.
13.
14.
15.

16.
17.

18.
19.
20.

21,
22,

23.
24,
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

Calendar 2
feiie = s =l

set M {month}

set Y {year}

eval $Y-1 to env:Date

eval $M-1 to env:month

echo "$Date" first=1 len=2 to env:Cent
echo "$Date" len=2 to env:decade

eval (799+ $decade+($decade/4)+(Scent/4)-(2* $cent)) mod
7 to env:day

eval (($Cent+1)+$Y) mod 4 to env:leap
if val $leap NOT EQ O
eval $month * 3 +2 to env:slice

echo " 31 28 31 30 31 30 31 31 30 31 30 31" first=%$slice
len=2 to env:DIM

eval $month * 4 +2 to env:slice

echo " 00 31 59 90 120 151 181 212 243 273 304 334"
first=$slice len=3 to env:Elapsed

else
eval $month * 3 +2 to env:slice

echo " 31 29 31 30 31 30 31 31 30 31 30 31" first=%$slice
len=2 to env:DIM

eval $month * 4 +2 to env:slice

echo " 00 31 60 91 121 152 182 213 244 274 305 335"
first=$slice len=3 to env:Elapsed

endif
eval $month * 4 +2 to env:slice

echo >ENV:MName " Jan Feb Mar Apr May Jun Jul Aug Sep
Oct Nov Dec' first=$slice len=3 noline

echo >>T:MFile "*p=========== §MName $Y ----—-——-——= "
echo >>T:MFile "=====================zz=z=z=z=z======"
echo >>T:Mfile "Sun Mon Tue Wed Thu Fri Sat"
echo >>T:MFile "=== === === === === === ===
eval $day to env:wrap

eval ($Elapsed + $Day) mod 7 to env:Day

eval $day * 5 to env:space

echo >>T:MFile " " first=1 len=$space noline
setenv daynum 1

eval $DiM + 1 to env:DiM

eval $day to env:wrap

setenv BreakMe $process

newshell from s:MonthPrint2 con:0/0/360/50/Calendar/Auto
wait >NIL: 20 mins

Mastering AmigaDOS Scripts

CCOPY

Synopsis: [EXECUTE]JCCOPY<[FROM]=Source>[TO=]Destination
[BUF=<buffers] [CLONE] [DATES] [NOPRO] [COM]

Template: FROM/A, TO, ALL/S, QUIET/S. BUF/K, CLONE/S,
DATES/S, NOPRO/S, COM/S

Path: S:
Requires: V1.3+
See also: CCOPY Alias
Type: Script
Brief: Intelligently select COPY or COPY "" dependant on
arg chain
Description

The CCOPY Alias is all very well, but you have to remember which
version of COPY to use depending on the situation. To get around
this, it is necessary to write a small script to make COPY intelligent.
If a destination is supplied it works like AmigaDOS; if not it behaves
like MS-DOS.

This script mirrors the original COPY command very closely
although a few embellishments have been added - displaying the
source and destination directories for instance. Also, the
destination is no longer a required argument. To use this, simply
type it into your favourite editor and save it in S:. Now set the "S”
protection flag and it works like the real thing. It relies on an
undocumented feature of AmigaDOS 1.3 in that switch (/s)
arguments are supported.

Example

1>CD RAM:
1>CCOPY S:Startup-sequence

Line-By-Line

1. Defines the argument template to match that of the existing
COPY command.

2-3. Redefine bra and ket to my favourite settings.

4. Sets the default value for “BUF" to 200 (200K in disk buffers
for this script. You may alter this as you see fit (or whatever
fits your machine).

5. Sets the default value for the TO (destination) parameter to
something silly. You could replace this with some white space
or punctuation if you prefer - this value was chosen for
clarity.

CCopy

6. Checks if a value was sent via the TO argument. If an
argument was supplied, control transfers to Step 10;
otherwise it continues at Step 7.

7. Prints the first part of a progress message to keep you
informed as to what's going on - note use of the NOLINE
switch to keep everything on the same line. (You may like to
add another command line opticn to suppress these messages
or incorporate the existing QUIET switch here.) Assuming the
example above, the script will output something like this

Copying from: S:Startup-sequence TO:

8. Displays the current directory setting thus completing the
example above - remember, CD gives the volume name - not
the device name:

Copying from: S:Startup-sequence TO Ram Disk

9. Performs the copy operation using the options specified at the
command line and copying to the current directory.

10. If execution gets here from Step 9 it jumps to Step 13;
otherwise it continues...

11. .. .here and gives out a pretty obvious progress message based
upon the command line arguments.

12. Actually does the copy proper.

13. Terminates the IF...ELSE...ENDIF construct opened at Step 6.

Listing

1. .key FROM/A,TO,ALL/s,QUIET/s,BUF/K,CLONE/s,DATES/s,
NOPRO/s,COM/s

2. .bra {

3. .ket}

4. .def BUF 200

5. .def TO NOTHING

6. IF {TO} EQ "NOTHING"

7. ECHO "Copying from: {FROM} TO " NOLINE

8. CD

9. COPY {FROM} "" {ALL/s} {QUIET/s} {CLONE/s} {DATES/s}
{NOPRO/s} {COM/s} BUF={BUF}

10. ELSE

11. ECHO "Copying from: {FROM} TO {TO}"

12. COPY {FROM} {TO} {ALL/s} {QUIET/s} {CLONE/s} {DATES/s}
{NOPRO/s} {COM/s} BUF={BUF}

13. ENDIF

Mastering AmigaDOS Scripts

CCOPY

Synopsis: <source file> [options]
Template: see text

Path: na

Requires: V1.3+

See also: CCOPY Script

Type: Alias

Brief: Simple version of MS-DOS COPY
Definition: ALIAS CCOPY COPY [] "

Description:

This potboiler started life on CIX late one evening - someone
wanted COPY to act like a PC. That is: if a source directory is not
specified, COPY duplicates the file in the current directory. For
instance:

1>CD RAM:

1>COPY S:SPAT

is not possible in AmigaDOS because COPY requires two arguments.

Either argument can be replaced with “" but this is messy. The
solution therefore is to use an alias. I've called this one CCOPY -
Current Copy; the name is not important. Add this to your Shell-
startup script so it will be available at any time; all the normal
COPY options are available too.

Mastering AmigaDOS Scripts

Chatter

Synopsis: [EXECUTE] Chatter <[NAME1=]Namel>
<[NAME2]Name2>

Template: NAME1/A, NAME2/A

Path: S:

Requires: V1.3

See also: Chatty

Type: Script

Brief: Start the pipe messaging system with names
Description

Although executed from the remote terminal, CHATTER and
CHATTY handle all the communication between the two machines.
Unlike MS-DOS and UNIX, AmigaDOS does not support unnamed
pipes where the output stream of one command can be connected
to the input stream of another. Hence the MS-DOS construct:

TYPE READ.ME | MORE

is not valid in AmigaDOS and has no direct equivalent. (The bar “|"
symbol is used in MS-DOS to signify a pipe.) The nearest alternative
is to do the command in two steps thus:

1>COPY READ.ME PIPE:A
1>MORE PIPE:A

or, alternatively:

1>TYPE >PIPE:A READ.ME
1>MORE <PIPE:A

Note: the ability to use unnamed pipes is documented as part of the
ARP 1.3 release and is claimed to work with the Shareware Shell
replacement, Conman. ARP 1.3 users may want to try this out for
themselves.The MORE program exhibits different behaviour
depending on whether it is launched directly or as a separate
process via RUN. Try this:

1>MORE S:SPAT
1>RUN MORE S:SPAT

Notice in the first instance how MORE uses the current Shell
window, but when RUN it opens a window of its own. This feature
may seem pointless, but it allows MORE to be used over the serial
port. Moreover, it also gives rise to a variation on the CHAT theme.

Mastering AmigaDOS Scripts

—

The “Chat” system is designed to be launched by the remote system
and initialise all the pipes. It cannot set up the CHATTO alias - this
can be done in Shell-startup, by adding the following lines:

ALIAS ChatTo COPY * TO PIPE:[]

ALIAS ChatNow RUN EXECUTE CHATTY

To start the chat system, the remote operator enters (for example):
1>CHATNOW MARK BRUCE

The host terminal then receives a message (via MORE) like this:
Chat system opened as: Host=MARK Remote=BRUCE

Mark (using the host Amiga) can now start chatting to Bruce:

1>CHATTO BRUCE

Hello Bruce!

and send the message by pressing CTRL+\ as described earlier.
Similarly, Bruce can chat back to Mark like this:

1>CHATTO MARK

Hello Mark! wonderful system, huh?

Line-By-Line

1. This defines the script’s argument template. Two inputs are
required from the user: the name of the host and remote
machines. Since the /A template option has been used, both
arguments must be supplied or the script will fail to run.

2. Creates a file in the temporary files assignment T: containing
the startup message which will be displayed on the host
terminal. The arguments surrounded with angle brackets will
be replaced by the user’s input. Therefore if the command line is:

1>RUN CHATTER DAVE PAT

the file will contain the message: Chat system opened as:
Host=DAVE Remote=PAT. The filename is determined by
adding the process number to "QWE". Therefore if CHATTER
was running as process 3, the filename would be "QWE3".

3. This is a trick which relies on the ability of MORE to recognise
when it has been RUN-launched. Normally, MORE would
display T:QWE on the remote terminal, however since
EXECUTE has be RUN-launched, the scriptis also running as a
process and any commands it contains are also running
asychronously. The end result is MORE pops up as a window
on that the HOST machine (much to the surprise of unwary
operators).

Chatter
[rPr—=—x =Fi]

4. Not a lot of people know this, but it is quite legal to RUN-
launch scripts from within scripts - even those which have
been launched with RUN in the first place. That's what
happens here, CHATTY is RUN-launched from CHATTER. It
must be started in this way because, as you will see later, it
never returns. CHATTY is passed one parameter, the name of
the remote terminal. (The parameter was missing in the
original listing.)

5. This label defines the start of a loop which is called endlessly.
Like CHATTER, this script never finishes.

6. Copies the contents of the host pipe (if any) to a temporary
file. This forces the script to pause until some data appears at
the pipe and prevents the script from needlessly looping.

7. Immediately displays the contents of the temporary file. If
more was used like this to display the contents of the pipe
directly the script would not pause correctly.

8. Forces the script to jump back to the label defined at step 5
completing the endless loop. The result is the program waits
until a message appears on the pipe, displays it, and waits for
the next one.

Listing
1. .key NAME1/A,NAME2/A

N

Echo >T:qwe<$$> "Chat system opened as: Host=<NAME1>
Remote=<NAME2>"

More T:qwe<$$>

Run Execute S:Chatty <NAME2>
Lab Start

Copy Pipe:<NAME1> T:msg<$$>
More T:Msg<$$>

Skip Start Back

o N O G b W

Mastering AmigaDOS Scripts

CHATTY

Synopsis: (EXECUTE] Chatty [Name=]

Template: Name

Path: S:

Requires: V1.3+

See also: Chatter

Type: Script

Brief: Read piped messages from either terminal
Description

This script is never executed directly, it works as a support script
that is called by CHATTY. Typically, scripts of this size can be
created by the script that calls them. However, that was not thought
necessary for this program.

Line-By-Line

1.

Defines the argument template for the script. Although the
argument would normally be required, it is not necessary to
do that here since the correct syntax is assured by the calling
script. The argument received by CHATTER is the name
allocated to the remote terminal.

Defines a label which will be jumped to when the script loops.

Waits for data to be sent to the pipe on the remote terminal
and prints it. Like COPY, TYPE waits for information to appear
on the pipe before doing anything.

Loops the script back to Step 1, causing it to execute again.
This script never stops, but because it's attached to an
internal Shell (via RUN) it does not affect the machine’s
operation.

Listing

S W N =

.key NAME
Lab start
Type pipe:<NAME>
Skip start back

Mastering AmigaDOS Scripts
=

Clock 1.3

Synopsis: Run from Workbench
Template: none

Path:

Requires: Vi.3-1.3.3

See also: Clock 2, Clock 3

Type: Script

Brief: Simple AmigaDOS clock

Description

The idea of having a real-time clock from AmigaDOS must seem a
little preposterous: especially if you consider the same thing is
already supplied with Workbench. The difference between this one
and the one you get with Workbench is size: this clock program is
less than 512 bytes long and fits easily on your Workbench disk
even if you're short of space! This version should be run from
Workbench via lconX.

Line-By-Line

1.
2-6.

11.

12.
13.

1.
2.

Sets a dummy key for IconX.

Makes some commands resident for the script. This is
necessary or the clock will spend most of its time loading
commands from disk.

Sends some special control codes to the console to switch the
cursor off (*e[0 p) and position the cursor at the start of the
line (*e[;0H). Note: the punctuation is necessary!

Marks the start of the endless clock loop.
Displays the current date and time.

Re-positions the cursor. This stops the clock wrapping on a
line.

Waits for a second. This controls the speed of update - you
can set this wait for a longer period if you prefer: say five
seconds.

Re-starts the loop again.

Is WX information. Not used by this script.
. key dummy
resident c:wait

resident c:date

Mastering AmigaDOS Scripts
—

resident c:echo

resident c:lab

echo "*e[0 p*e[;OH"
lab start
9. date

10. echo "*e[;O0H" noline

4
5
6. resident c:skip
7
8

' 11. wait 1 secs
12. skip start back
13. ;WX:WINDOW=WINDOW=con:0/0/190/60/Memory_Gauge

Mastering AmigaDOS Scripts
e _ _ _ _ _ _ _ ____|

Clock 2

Synopsis: Run from Workbench
Template: none

Path:

Requires: V2+

See also: Clock 1.3, Clock 2
Type: Script

Brief: Simple AmigaDOS clock

Description

This clock program is less than 512 bytes long and fits easily on
your Workbench disk even if you're short of space! This one is
written for AmigaDOS 2+ and should be run from Workbench via
IconX or placed in WBStartup. The CON: options set for lconX
determine how and where the clock appears. The BACKDROP option
should only be used if the Workbench is normally operated as a
window: with the BACKDROP option OFF.

Clock 2

Line-By-Line

1-2. Make WAIT and DATE resident. These commands are ADDed to
the resident list and never removed, so this script should only
be run once from WBStartup. The ADD option can be removed
but this can cause problems if some other program has
control of the resident list.

Positions and switch the cursor off.
Marks the start of the clock loop.

5. Displays the current date and time and positions the cursor
back at the start of the line; thus avoiding line wrap and
scrolling.

6. Waits for a second. This controls the update time of the loop

(and the clock) and may be increased if preferred.

Mastering AmigaDOS Scripts
| T el T R Ve W S bae F 740 ¥ TRT ALY T TR P TN

Re-starts the loop ready for the next display run.

Is some information for WX to use. You don’t need this for the
script if it's run from Workbench.

Listing

1. resident c:wait add

2. resident c:date add

3 echo “*e[0 p*e[;0H" noline
4 lab start

5. echo ""date *e[;O0H" noline
6 wait 1 secs

7 skip start back

8

;WX:WINDOW=WINDOW=con:0/0/190/60/Memory
Gauge/SMART /NOSIZE

Mastering AmigaDOS Scripts

e S
Clock 3

Synopsis: [EXECUTE] Clock3 [[Ticks=]Seconds]
Template: ticks

Path: S:

Requires: V2+

See also: Clock 1.3, Clock 2

Type: Script

Brief: imple digital clock with auto window

Description

This script was created just to prove a big point in a short space.
That is: you don't have to use Workbench if you want to have a
program working in its own window. This script creates a
completely new script and executes it using NEWSHELL. In this way
it creates its own window and starts the program as a process!

Friday 87-May-93 18:11:46

Clock 3

You rang, sir?

Snooze DK |

Clock Alarmed

Typically you can use this script without arguments, but you can
supply the number of “ticks”; that is the number of seconds it
leaves other processes before re-executing. Examples:

1>Clock3
1>Clock3 ticks=5

Line-By-Line
1-3. Define a simple, standard header.

4. Sets the default for seconds to wait. One second is used here
since this is a simple script, but you could use a longer time
and send a shorter delay from the Shell.

5-6. Make the required external commands resident.

7. Creates the program file in T: as "xIclock#". (Remember that # |
is the current Shell process number.) This line will appear m

Mastering AmigaDOS Scripts
T e e Lt e L e s e L AR SRR

10.

11.

12.
13.

14.

after translation as:
echo "*e[0 p *e[;0H" noline
Adds the second line to “Xclock#". This is simply a label.

Adds the next line to the “Xclock#" file. Note that this is only
the first half of the third line! The reason is we don’t want the
""" couplet expanding the date just yet! The NOLINE switch for
ECHO ensures the line is not fully terminated just yet. At this
stage the second line looks like this:

echo *" date

Writes the second part of the third line completing it thus:
echo *" date *e[;OH"

Adds the third program line: inserting the wait limit directly
into the program. If no arguments were supplied, ticks = 1, so
the line looks like this:

wait 1 secs
Completes the program by adding the loop back.

Starts the clock program by executing the xclock# script with
NEWSHELL. This isn't exactly the same as using IconX but it
will suffice, thank you. The values shown here place the clock
on the Workbench screen. You should remove the NOBORDER
and BACKDROP switches if you want to be able to move the
clock around.

This information is only used by WX - which is really not
suitable for this script.

Listing

© O N O O & W N =

- a = a
W N = O

e
o

.key ticks

.bra {

ket }

.def ticks 1

resident c:wait

resident c:date

echo >T:xclock{$$} "echo *"**e[0O p **e[;O0H*" noline"
echo >>T:xclock{$$} "lab start" noline

echo >>T:xclock{$$} "echo *" date" noline

echo >>T:xclock{$$} " **e[;O0H*" noline"

. echo >>T:xclock{$$} "wait {ticks} secs"”

echo >>T:xclock{$$} "skip start back"

newshell from t:xclock{$$}
window=con:0/5/240/30/Clock/NOBORDER/BACKDROP/SMART

;WX :WINDOW=WINDOW=con:0/0/240/30/CLI_Clock

Mastering AmigaDOS Scripts
= = =]

Clock

Synopsis: Started from Workbench

Template: none

Path:

Requires: V2.0+

See also:

Type: Script

Brief: Simple digital AmigaDOS clock
Description

They don't get much simpler than this one. This script forms the
basis of many of the clock scripts featured here without to0 many
clever tricks. The great thing about this one is it’s short. It must be
run from Workbench via IconX to ensure it runs in its own window
though.

Line-By-Line
1. Gives lconX something to chew on. It isn’t absolutely
necessary for scripts as simple as this one.
-3. Makes some essential commands resident.
Switches the cursor off.
Marks the start of a loop.

2
4
)
6. Displays the current date and time.
7 Moves the cursor up a line.

8 Waits for a second...

9

...and starts the whole thing again!

1 .key dummy
2 resident c:wait
3 resident c:date
4 echo "*e[O0 p"

5. 1lab start

6 date

7 echo "*e[A" noline
8

9

wait 1 secs

skip start back

Mastering AmigaDOS Scripts
T e e

AddData

Synopsis: [EXECUTE] AddData [al...ac] [Data=<data>]
Template: al,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,data/k
Path: S:

Requires: V1.3+

See also: Sortdata, DataBase, PrintData etc

Type: Script

Brief: The add module for the Database
Description

You can add and delete records using the ED command. While this
is fine for the most part, it is a little prone to error. This is the
AddData module which will allow you to add one or more records
directly from the command prompt. AddData works rather like the
FindData module in that you can execute the command followed by
a data string:

Command: A Mark Smiddy, Mastering AmigaDOS 3, BSB

Add another y/N?

or just execute it on its own, like this.
Command: A
Add another y/N? Y
Mark Smiddy, Mastering AmigaDOS 3, BSB
Add another y/N

Note in the second case, AddData asks if you want to add
something before you actually do; this is quite normal.

Line-By-Line

1. Defines a long key with lots of parameters — as you may recall,
this allows for long interactive command lines. In this case, it
allows you to enter 12 "words" without having to resort to

quotes.

2. Collects the contents of <al>...<ac> into a variable called
data.

3. Checks to see if any data has been entered - it can come from

the initial command line or interactively from this segment. If
data has been supplied control jumps to Step 5; otherwise it
continues at Step 4.

10.
11.

12.

13.

14.

15.

16.

AddDatta

Transfers control immediately to the end of the script (Step 20
actually). Since no data has been supplied, the script must be
executed again in order to gather some.

Closes the IF...ENDIF construct opened at Step 3.

Tests for the presence of a temporary file in T: (the temporary
files assignment). It’s called “Temp” in this example, but any
name would do - provided you stick to the same one
throughout the script. If the file exists, control passes to Step
7; otherwise it jumps to Step 8.

The new record (the contents of the variable "Data”) are
appended (added) to the temporary file here. By appending
each new entry, the file contains the new records - before they
are added to the main database. It is important to note, the
temporary file is created by this module and removed by the
main Database script.

If control reaches here from Step 7 it branches to Step 10;
otherwise it continues at Step 9.

Creates the temporary data file “T:temp” and adds the current
record to it. T:Temp is only valid while this program is
running, see the description of Step 7 for more details.

Closes the IF.. .ELSE...ENDIF construct opened at Step 6.

Prints the prompt "Add another y/N" and pauses for user
interaction. (It waits for you to enter something.) Note the ASK
command sets the WARN flag if you enter Y and clears it
otherwise.

Tests for the WARN condition. If you enter, Y at Step 8, control
resumes at Step 13; anything else causes a branch to Step 14.

Transfers control to Step 20 where the script will start again.
You may notice, this label is also used by Step 4 to achieve the
same effect.

Control can only arrive here from Step 12 (Step 13 is an
unconditional branch) and it continues directly at Step 15
because Y was not entered.

Displays a short message (split over two lines by the use of
*n) just to keep the user informed.

Adds the new records to the start of the data file using the
JOIN command. The AS keyword is used here to keep the
syntax clear. Note the new file is also stored in T: because it
isn't legal to write to a file you are reading from. You may
wonder at this stage why the records are kept in a temporary
file. The reason is twofold. First, since T: is in RAM, a
temporary list is faster to update than it would be if the write
went directly to disk every time. Second, this also offers the

Mastering AmigaDOS Scripts
s T s e e P T B P TRl T P

chance to insert a "Get out” clause; such as “Are you sure?".
This is demonstrated in the DelBlock module described below
but not incorporated here.

17. Replaces the existing database with the one just created at
Step 16. This command can fail if the disk is full and in this
case, you should copy the complete database from RAM to a
disk with enough room. As an exercise you might like to
devise a fix for this eventuality.

18. The module completes here and calls the main program again.

19. Closes the IF...ELSE...ENDIF construct opened at Step 12.

20. This marks the restart point called at Steps 4 and 13.

21. Displays the entry prompt without a line feed - to give the
illusion of an interactive prompt.

22. Calls the AddData module recursively in its interactive mode.
Redirection to NIL: (>NIL) is used to suppress the messy
command line.

Listing

1. .key al,a2,a3,ad4,a5,a6,a7,a8,a9,aa,ab,ac,data/k

2. .def data "<al1> <a2> <a3> <a4> <a5> <a6> <a7> <aB8> <a9>
<aa> <ab> <ac>"

3. if "<data>" EQ ""

4. skip AddOne

5. endif

6. if exists T:temp

7. echo >>T:temp "<data>"

8. else

9. echo > T:temp "<data>"

10. endif

11. ask "*nAdd another y/N"

12. if warn

13. skip AddOne

14. else

15. echo "Adding new records*nPlease wait..."

16. join T:Temp S:Data AS T:tempdata

17. copy T:TempData S:Data

18. execute S:database

19. endif

20. LAB AddOne

21. echo "data: " noline

22. execute >NIL: s:AddData ?

Mastering AmigaDOS Scripts

DelBlock

Synopsis: [EXECUTE] DelBlock [Start=] [Number=]

Template: start,number '

Path: S: |

Requires: V1.3+ |

See also: Database, Findata, AddData etc.

Type: Script

Brief: The delete data module for the Database
Description

The DelBlock module is used to remove specific records from the
database and can be accessed from the command line in one of two
ways. For instance, to delete record number three you would enter:

Command: D 3
3 Fred Bloggs, 1 The Marketplace, Newton Abbott

Delete records?

However, you can delete a range of records by specifying the start |
and ending record numbers, viz:

Command: D 2 4

2 Amiga Shopper, Future Publishing, BATH, Avon
3 Fred Bloggs, 1 The Marketplace, Newton Abbott
4 Dave Smith, Behind the Bike Sheds.

Delete records?

If you do not supply either value, DelBlock will prompt you for
them automatically.

Line-By-Line

1. This module only takes two parameters: START, the record
number to be deleted; and NUMBER and optional parameter
which will be the last record to be deleted.

2. This defaults the NUMBER variable to 1 if no value is supplied.

3. Similarly, if a starting record number is not supplied, this
variable is initialised to the string SKIP.

4-5. Redefine <and > as{and }.

6. Test the start variable to see if some number was supplied. (A
test is made for a string supplied as a default value at Step 3

Mastering AmigaDOS Scripts
[e a5

16.

18.

10.

11.
12.

13.

14.

17.

to make the meaning clearer.) If the test passes, control
continues at Step 7; otherwise it jumps to Step 8.

Control arrives here if no values were supplied and is sent
directly to the re-start code, beginning at Step 39.

Close the IF...ENDIF construct opened at 6. (Control arrives
here if a START value was supplied.)

Calculates how many records (lines actually) are going to be
removed from the database and stores the result in the
environmental variable "“ThisMany”. Note a LFORMAT string is
used to suppress the LF character.

Adds 1 to the value ThisMany and stores it in a temporary
variable. Note that interactive mode must be used for this
example because one of the values is being retrieved from a
file. This must be done to retain downward compatibility with
AmigaDOS 1.3

Copies the temporary variable back to the proper variable.

Test if the value "ThisMany" is not less than or equal to zero.
("VAL NOT GT" is akin to BASIC's <=.) If it is less than 1,
control continues at Step 13. Note: Interactive mode is used
again here because the value is being retrieved from a file.

Negative or zero values are not allowed for this value, so this
line resets ThisMany to its lowest possible value.

Closes the IF...ENDIF construct opened at Step 12.

Raises the fail level slightly to prevent minor complaints from
EDIT stopping the scriptin its tracks.

This is where it starts to get a little hirsute - so to make
things a little simpler, let's assume some values. Set START as
5 and THISMANY as 4. Using these values, this line creates a
file containing:

Sn;p;

and saves that as DelMacl

Similarly, this creates DelMac2 which looks like this:
(Z5n5)

STOP

Now the module joins the two macro segments to the
environmental variable and the macro takes shape like this:

5n;p;
4(?;n;)
STOP

DelBlock
—

Translation

5n Go down five lines

p Move back one line

4(?;n;) Display this line then move to the next one (four times)
STOP Quit and return to the caller.

This example also illustrates why it was necessary to suppress the
line feed in “ThisMany". Otherwise, the macro would read: |
5n;p;
4
(25n3)
STOP
which is a subtle error and not easy to trace; pretty hairy stuff too,
as | said.

19. Uses the EDIT macro on the database and creates a temporary
file (T:DelRec) which contains a list of the records about to be
deleted. The story does not end there though...

20. ...because, if the record(s) were not found, EDIT returns with
an ERROR condition - remember Step 15. This is tested for
here, and if found control resumes at Step 21; otherwise it
branches to Step 23.

21. Displays the error message...
22. ...and jumps to the code at Step 37.

23. Control only gets here from Step 20 when the requested
records are found. It continues at Step 24...

24. ...which changes the text colour to the highlight... |
25. ..displays the list of records marked for the chop...
26. ...and switches the highlight off again.

27. Closes the IF...ELSE...ENDIF opened at Step 20.

28. Pauses the script and gives the user a last chance to decide
whether or not to delete the records.
29. Tests for the WARN condition - returned by ASK if “Y" is

entered. If WARN is found control continues at Step 30;
otherwise it jJumps to Step 36.

30. Displays an information message. The start and end numbers
are filled in when the script runs of course.

31. We've already met something like this before — at Step 16. This
creates the same edit macro once more (although the original
would probably do just as well). Assuming the previous
values, DelMacl reads:

Mastering AmigaDOS Scripts
T e A TR e e s PN (T e vy e IR

32.

33.

5n;p;
DelMac?2 is simpler though, this just adds a single letter.
d
Creates a new version of DelMac which now looks like this:
5n;p;
4d

Which finds the first line (records) we are interested in and deletes
thatand the next three...

34.
35.
36.
37.

38.
39.

40.
4].

...here as temporary file...
...which replaces the original database here.
Closes the IF...ENDIF construct opened at Step 29.

Marks the skip point which is used by the error handler. Note,
when EXECUTE is called, the failure level is reset back to 10
(crash on ERROR). This line is ignored if execution reaches
here normally from Step 36.

Calls the main database module.

Marks the skip point called when the user has not entered any
values - see Steps 6-7.

Displays the single line prompt...

...and executes the module in interactive mode so the values
can be retrieved correctly.

Listing

© O N O G b W N =

—
o

1.
12.
13.

.key start,number

.def number 1

.def start SKIP

.bra {

.ket }

if "{start}" EQ "SKIP"

skip restart

endif

eval {number} - {start} to ENV:ThisMany lformat "%n"

eval >NIL: <env:ThisMany op=+ value2=1 to T:Tmp lformat
"en" 2

copy T:Tmp to ENV:ThisMany
if >NIL: <ENV:ThisMany VAL NOT GT 1 ?

setenv ThisMany 1

14.
15.

16.

17.
18.
19.
20.
21,
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

endif

failat 11

echo >T:DelMac1 "{start}n;p;"

echo >T:DelMac2 "(?;n;)*nSTOP"

join T:DelMac1 ENV:ThisMany T:DelMac2 AS T:DelMac
edit s:Data with T:DelMac ver=T:DelRec
if error

echo "Record(s) not found"

SKIP ReRun

else

echo "*e[33m"

type T:DelRec

echo "*e[31m"

endif
Ask "*nDelete record(s) y/N?2"

if warn

echo "Removing Records from: {start} to {number}
*nPlease wait..."

acho >T:DelMac1 "{start}n;p;"

echo >T:DelMac2 "d"

join T:DelMac1 ENV:ThisMany T:DelMac2 AS T:DelMac
edit s:data to T:DelData with T:DelMac

copy T:DelData to S:Data
endif

LAB ReRun
execute s:database
LAB restart

echo "Delete record #: noline

execute >NIL: s:DelBlock ?

DelBlock

—

Mastering AmigaDOS Scripts

DELF
Synopsis: DELF <file|pattern>
Template: As DELETE
Path: na
Requires: V2+
See also: DELQ
Type: Alias
Brief: Short form for DELETE

Definition: ALIAS DEL DELETE >NIL: [] FORCE

Description:

This alias deletes a list of files like DELETE, but does not report
anything back to the console and will also delete protected files.
Use this with extreme caution' Example:

1>DELF #? ALL

DEL

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

This alias is not included for padding (as it might seem to be) it has
a very serious us. DEL is the MS-DOS command for DELETE and MS-
DOS users will feel much more at home with AmigaDOS if the

DEL <name or pattern>
na

na

V1.3+

DELQ, DELF

Alias

Short name for DELETE
ALIAS DEL DELETE

command works like this.

Mastering AmigaDOS Scripts
e e ey

Mastering AmigaDOS Scripts
e e e

DOCTOR

Synopsis: DOCTOR
Requires: V1.3

See also: DISKDOC script
Type: Alias
Brief: Open a new CLI window with DiskDoctor

Definition: NEWCLI WINDOW CON:0/3/500/100/DiskDoc
FROM S:DiskDoc

Description:

This command is listed here for the sake of completeness. It does
nothing on its own apart from launching the DISKDOC script with a
window. The clever bit is this:

NEWCLI WINDOW CON:0/3/500/100/DiskDoc FROM S:DiskDoc
This command performs several functions at once.

e [t opens a new CLI independent of the current Shell so
DISKDOCTOR can be run from here.

e [t defines a new window for the CLI. In practice this is tucked
away in the top left of the screen with enough room for most
messages to be displayed. The idea is to stop it getting in the way -
but you can position it to your own liking. For the sake of beginners
only, here’s a brief explanation of what it means:

WINDOW Device:X/Y/Width/Height/Name

Device: CON: or NEWCON:

X: X position. Range O to 639 (Topaz 80)

Y: Y position. Range 0 to 255 (PAL) or O to 199 (NTSC)
Width: Width of window in pixels - practical range 50 to 639

Height: Height of window in pixels - practical range 50 to
255

e |t starts DISKDOCTOR. The command is run from the script
explained under DISKDOC using the FROM argument.

DRS

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts
T N e e e et]

DRS

V2.0+

VLS, DVS

Alias

Check an assignment without removing it
ALIAS DRS ASSIGN DIRS

DRS is a quick way to list all the current directory assignments.
This alias uses ASSIGN in such a way that the device and volumes
lists are suppressed.

Mastering AmigaDOS Scripts

DVS

Synopsis: DVS

Template: na

Path: na

Requires: V2+

See also: VLS, DLS

Type: Alias

Brief: Check an assignment without removing it

Definition: ALIAS DVS ASSIGN DEVS

Description:

DVS displays the names of the current devices attached to the
system using ASSIGN. The volumes and directory listings are
suppressed.

Mastering AmigaDOS Scripts
=

FindData

Synopsis: [EXECUTE] FindData [al]...[ad] [data=search string]
Template: al,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,ad,data/k
Path: S:

Requires: V1.3+

See also: Database

Type: Script

Brief: Find data module for the Database suite
Line-By-Line
1. This key can collect up to 13 items of data, although it will

usually only pick one or two. The first item found is dumped
in <al>, the next in <a2> and so on.

Collects the data together in a single variable - <data>.

3. Tests for the presence of an argument string. You may wonder
why the collected variable, <data> wasn't used here and true
enough the reason is not immediately apparent. In fact,
<data> is a collection of variables separated by spaces. If no
data was supplied, <data> will still contain spaces, thus
fooling IF into thinking some data has in fact been supplied.
This is not true of <al> because all the excess spaces are
removed by EXECUTE's command line parser. Or in other
words, don't worry, it just works that way.

4. Control reaches here if a blank command line was specified
and immediately jumps to Step 19.

5. Closes the IF...ENDIF construct opened at Step 3. Control only
reaches here when a command line search string was
supplied.

6. This is a bit of extra redundancy. It prevents the script from
crashing if the data file is missing for some reason. In this
case control jumps to Step 11; ordinarily it proceeds to Step 7.

7. Using the search command, this attempts to locate the search
string within the data file. (Note: the search string is
surrounded by quotes to prevent a blank string confusing the
parser.) If matching data is found, it is displayed with a
corresponding record number and the WARN flag is cleared. If
no matches are found, the WARN flag is set, which is tested...

8. ...here. If the search string was found control jumps to Step
10. Otherwise it continues at Step 9 and...

Mastering AmigaDOS Scripts
I e

9. ...prints a short message to the effect the search string could
not be found. The search string is enclosed in escaped quotes
to show the exact contents of the search.

10. Closes the IF...ENDIF construct opened at Step 8.

11. Closes the IF...ENDIF construct opened at Step 6.

12. Is the jump point used when an empty command string is
found at Step 3. If control reaches here from Step 11, the
command is ignored.

13. Inserts a blank line (*n) and waits for the user to enter Y or
press Return. Entering Y <Return> sets the WARN flag; it is
cleared otherwise.

14. If the user entered "Y", control resumes at Step 15, otherwise
it jumps to Step 16.

15. The user wants to execute another search, so control is
passed to Step 19.

16. If control gets here from Step 15, it branches to Step 18;
otherwise it continues at Step 17.

17. Control only reaches here if the user did not enter Y at step
14. In other words, they want to return back to the main
program.

18. Closes the IF...ELSE...ENDIF construct opened at Step 14.

19. Marks the jump from Step 15.

20. Displays the command prompt. This is only displayed when a
search string was not specified OR a successive search has
been requested.

21. Calls the FindData script again recursively and places it in
interactive mode. The command line argument string is sunk
to NIL and not displayed.

Listing

1. .key al,a2,a3,ad4,a5,a6,a7,a8,a9,aa,ab,ac,ad,data/k

2. .def data "<al> <a2> <a3> <ad4> <a5> <a6> <a7> <a8> <a9>
<aa> <ab> <ac> <ad>"

3. if "<at>" EQ ""

4 skip FindOne

5 endif

6. if exists S:Data

7 search S:Data <data>

8 if warn

9 echo "*"<data>*" not found"

10. endif

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

endif

LAB again

ask "*nSearch again y/N"
if warn

skip FindOne

else

execute S:database
endif

LAB FindOne

echo "search string:

noline

execute >NIL: s:FindData ?

FindData
[crpr =y =

Mastering AmigaDOS Scripts

Database

Synopsis: [EXECUTE] Database
Template:
Path: S:
Requires: \Y
‘ See also: Findata, AddData, SortData etc
| Type: Script
| Brief: The main menu module for the Database
‘ Description

In the last few years digital diaries have sold in ever-increasing
numbers (the idea for this script hit me late one night when my
diary’s battery expired). Since you already have a computer you
may as well use it, but “real” database programs are rarely cheap
[and usually too powerful for simple applications — such as a
[telephone book. The flat-file database described here is crude by
commercial standards but boasts the following features:

e Completely menu driven
e Sort records on any record column

e Database can be edited directly with any text editor (or ED)

|

|

e Search and display a record on any sub-string
e Delete any record group

e View any group of records
e View entire database
e Qutputs to printer
‘ e Compatible with AmigaDQOS 2
‘ e Imports and exports to and from Superbase

Quite impressive for a program written entirely in the machine’s
DOS batch language | think you will agree. But even if you have a
database, this application will show you how to control many parts
‘ of AmigaDOS in previously unexplored avenues.

The entire program (actually it's a series of modules) is much too
large to explain in one chunk; instead, I've divided it over the
several scripts as each module is added. All the scripts are
compatible with AmigaDOS 2 and probably AmigaDOS 3, but they
do not take advantage of extra facilities in the new systems: such as
the /f find argument

DataBase
ST,

The Menu System

The main part of AmigaDOS Database is its front-end menu system.
This allows anyone with little or no knowledge of AmigaDOS to
operate the system without fuss. All commands can be operated by
selecting the first (highlighted) letter and pressing return “P" for
print; “S” for sort and so on. However, many commands also take
parameters. View for instance takes one or two parameters as the
starting and finishing numbers. These can be supplied as part of
the command line, for instance:

Command: V 2 5

displays records 2 to 5 inclusive. However if a parameter is not
supplied the module will prompt for it automatically. For instance:

Command V

View record #:

The task of deciding which parameters are required is handled
partly by the main menu module and partly by the view module.

b "8’
]

pasliny

<
£ <
<
<
<
<
%
{

Database Menu

Line-By-Line

1. This is the key to the main menu, although under normal
circumstances you won't even see it. Database is normally
started without parameters so it displays its menu.

Experienced users have the option of giving a command
directly like this:

1>DATABASE P ; print database now

-or-

1>DATABASE S 20 ; Sort database from column 20
The key breaks down into three sections.

Command: The single letter command.

d1..d9: Nine data elements (or arguments)

Option: A reserved variable

2-3. Set the BRA and KET characters to { and } respectively
(because [happen to like them like that).

Mastering AmigaDOS Scripts
==]

4. Sets the Option variable to the contents of d1...d9. This is

reserved for the FindData and AddData modules described
later.

5-7. This is provided as a time saver. Under normal circumstances
when Database is launched, the Command variable will be
empty, that is equal to “" and this causes the program to skip
immediately to the menu starting at Step 41.

8. If the command variable equals “A” (add) control continues at
Step 9, otherwise it continues at Step 11.

9. Control only reaches here if the Add selection has been made.
This line deletes a temporary file created by the AddData
module. Re-direction to NIL: is used to suppress the error
message when the file does not exist. (This could be tested
with IF EXISTS... but that’s just overkill.)

10. Calls the AddData module directly passing any automatic data
entered by the user. (Automatic data is collected in the Option
variable at Step 4).

11. Marks the end of the AddData control block. Control only
reaches here if the test at Step 8 was not successful.

12. Opensthe DelData block and tests for the delete option. If the
key has been pressed, control resumes at Step 13; otherwise it
branches to Step 14.

13. Calls the DelData module passing up to two parameters
collected in D1 and D2.

14. Control only reaches here if the test at Step 12 was
unsuccessful and continues directly at Step 15.

15-17. Open the ViewData block. This works just like DelData
described above.

18-20. Open the FindData block. These work like AddData,
passing any automatic data in the Option variable.
21-23. Open the ED block. The ED screen editor is opened. Note

that ED is called directly within the script unlike most
commands which execute a new script.

24-26. Open the SortData module. One optional automatic
parameter is passed in D1

27. Open the List by number module if “L" was passed as a
command parameter.

28. Copies the entire database to a file in the Ram disk, but adds
line numbers to each record. This is a good way to view and
edit blank records.

29. Displays the temporary data file a screen at a time.

30. Terminates the List block. Control will continue from here
when MORE exits.

Database

Jen it bl e
31-33. Operate the PrintData block. Control does not resume at
Step 33 unless the test at Step 31 is unsuccessful.
34-40. Looks after the Quit section, terminating the program

nicely. The block 35-39 just stops users from accidentally
exiting. If they enter N at the prompt, execution falls off the
end of the program and the script runs itself again.

41-51. Display the menu. Several escape sequences are used

here, viz:
*e[I Tabulate
*e[7m Inverse video
*e[Om Normal video
*e[33mForeground orange (blue in AmigaDOS 2)

*e[31mForeground white

52. Displays the command prompt. Note the use of the NOLINE
switch to suppress the automatic line feed character.

53. More trickery. EXECUTE is used to call the Database module
and display its command line in interactive mode; which is
also suppressed by the re-direction to NIL:. The result is you
can enter commands at an invisible prompt!

Listing

1. .key Command,d1,d2,d3,d4,d5,d6,d7,d8,d9,option/k

2. .bra {

3. .ket }

4. .def option "{d1} {d2} {d3} {d4} {d5} {d6} {d7} {d8}
{d9}"

5. if "{command}" EQ ""

6. SKIP menu

7. Endif

8. if "{command}" EQ "A"

9. delete >NIL: T:Temp

10. execute S:AddData {option}

11. endif

12. if "{command}" EQ "D"

13. execute S:DelBlock {d1} {d2}

14. endif

15. if "{command}" EQ "V"

16. execute S:ViewBlock {d1} {d2}

17. endif

18. if "{command}" EQ "F"

Mastering AmigaDOS Scripts
fr=F s e i e i

19. execute s:FindData {option}
20. endif

21, if “{command}" EQ "E"

22. ED s:Data

23. endif

24, if "{command}" EQ "S"

25. execute S:SortData {di}

26. endif

27. if "{command}" EQ "L"

28. TYPE >RAM:data{$$} S:DATA OPT N
29. MORE RAM:data{$$}

30. endif

31. if “{command}" EQ "P"

32. execute S:PrintData

33. endif

34. if "{command}" EQ "Q"

35. ASK "Are you sure y/N?"

36. if warn

37. egho "Thanks for using AmigaDOS DataBase*nPlease come
again..."

38. QuUIT

39. endif

40. endif

41. LAB Menu

42. echo "*e[33mAmigaD0OS Database*n*e[I(c) 1992 Mark
Smiddy*e[31m*n"

43. echo "*e[7m*e[I(A)*e[Omdd a record"

44. echo "*e[7m*e[I(D)*e[Omelete records [Start @ #][End @
#)1"

45. echo "*e[7m*e[I(V)*e[Omiew records [Start @ #][End @ #]"
46. echo "*e[7m*e[I(F)*e[Omind a record [Search string]"

47. echo "*e[7m*e[I(E)*e[Omdit database directly"

48. echo "*e[7m*e[I(S)*e[Omort database [Column #]"

49, echo "*e[7m*e[I(L)*e[Omist entries by number"

50. echo "*e[7m*e[I(P)*e[Omrint database"

51. echo "*e[7m*e[I(Q)*e[OMUIT"

52. echo "Command: " noline

53. execute >NIL: s:database ?

PrintData

Mastering AmigaDOS Scripts
[e e e

Synopsis: [EXECUTE] PrintData

Template: None

Path: S

Requires: V1.3+

See also: Database, FindData, AddData, SortData etc

Type: Script

Brief: The printing module for the Database
Description

This script supports the main Database engine described under
DATABASE and provides simple print facilities. It should not be
executed directly.

Line-by-line

1.

Pauses the script and waits for you to press return. The
WARN/OK return from ASK is not used at this point, but the
command provides a useful pause.

Gives an opportunity to set the Printer preferences. If “Y" is
entered before pressing <Return> a WARN condition is
returned to AmigaDOS.

Checks the WARN condition set at Step 2. If the user wants to
set the printer preferences, the WARN condition is active and
control continues at Step 4; otherwise it jumps to Step 5.

Calls the System preferences. Note that if you are using
AmigaDOS 2 or above, you should set the path to activate the
PRINTER tool: usually “Prefs/Printer”.

Terminates the IF...ENDIF construct opened at Step 3.

Creates a new file in the Ram disk starting with an opening
line as follows: "AmigaDOS Database on:". Note use of the
NOLINE switch to prevent ECHO sending a newline character.
The filename created depends on the current Shell number:
appended automatically by the use of “{$$}".

Adds the current date and time to the headline string in the
“Title" file.

Creates a new file by joining the contents of the header string
to the data file and copies the whole lot to a new file in RAM,
“Printfile#".

Raises the default failure code to 11. This is support for Step
10 below.

Mastering AmigaDOS Scripts

10.

11.

12.

13.
14.
15.

Copies information to the printer device (PRT:) and prints it
using the default settings. Note that PRT: is used in preference
to PAR: to ensure the correct printer is used. This also ensures
that the correct margins and other preferred modes are used.
If the command fails because the printer is busy (or not
connected) it returns an ERROR condition and error message.
The message is absorbed to NIL: and never appears and the
script is not halted because the failure level has been raised
to11.

Tests if the COPY command (in effect, print) failed. If this is
the case, control continues at Step 12. If everything worked
according to plan, control jumps to Step 13 - lucky for us.

Prints a helpful message. This technique (even though it’s
stating the obvious) is preferable to just ignoring the fact, or
simply crashing the script.

Terminates the IF...ENDIF construct opened at Step 11.
Re-sets the failure level back to its default, 10.
Re-starts the DATABASE main menu program.

Listing

S W N =

o N o O

11.
12.

13.
14.
15.

ASK "Position paper, ready printer and press Return
ASK “Do you want to check/alter your printer setup?"”
if warn

SYS:Prefs/preferences printer ; AmigaD0S 2 use
Prefs/Printer

endif

ECHO >RAM:title{$$} "AmigaDOS Database on:" noline
DATE >>RAM:title{$$}

JOIN RAM:title{$$} S:Data AS RAM:Printfile{$$}
FAILAT 11

COPY >NIL: RAM:PrintFile{$$} to PRT:

if error

echo "Your printer is not responding!*nPlease check
"On-Line" is on; paper loaded; and cable connected"

endif
FAILAT 10

Execute S:DataBase

Mastering AmigaDOS Scripts
e e —————)

SortData

Synopsis: [EXECUTE] SortData [Col = Column]
Template: Col

Path: S:

Requires: V1.3+

See also: Database, AddData, FindData etc

Type: Script

Brief: The sort module for the Database
Description

If this database were a commercial application (which it isn’t) you
would expect to find indexes removing the need to sort data.
However, since this is a database writen purely in AmigaDOS the
need to sort data may arise, and therefore, that’s what this module
is all about.

Line-By-Line

1.

Defines the key for this script. Only one argument is required
- the start column for the sort. This is provided as an option:
those of you setting up fixed width fields will be able to sort
on a field using this.

Re-define bra and ket to { and }.

Sets a default value of 1 to the starting column number. This
is not absolutely necessary, but provided for example.

Displays the progress message - this is necessary to show
something is going on when the module is executed from the
main menu.

Raises the failure level above ERROR (10) in anticipation of the
next command.

Temporarily raises the current stack to 16000 bytes. Re-
direction to NIL: is used to suppress any messages. There are
a couple of things you might want to consider here:

The stack size determines how large a file can be sorted (the
sort function is recursive and requires a lot of stack space).
Stack overflow will result in the machine vanishing into the
land of the Guru and this is unpleasant, although it will not
affect the database’s security.

The amount of stack given should be OK on 512K or 1M
machines, if you find the command fails (see below) reduce
the amount or, if you need more stack, increase it.

m

Mastering AmigaDOS Scripts
e = — s wnaen e o)

* [t is possible to add another option to the command line here:
STACK/K. You might want to do this as an experiment and
optionally define the stack space when the sort option is
selected from the main menu.

8. If the command at Step 7 fails because of low memory
("Insufficient free store” in AmigaSpeke) the ERROR flag is
returned and control continues at Step 9, otherwise it jumps
to Step 10. (This would normally stop the script in its tracks,
but since the FailAt level has been increased to 11 this
command can execute.)

9. Lets you know what's happened and why the sort operation
cannot progress.

10. If execution reaches here from Step 9 it jumps to Step 13;
otherwise it continues below.

11. The sort is carried out by AmigaDOS using the options
' defined by the user. The sorted file is sent to data{$$} in the
‘ Ram disk. This could, just as easily, have been T:data{$$}.

12. Assuming there were no cock-ups in the sort, the sorted file is
copied from RAM to disk. (You may wish to add some extra
safety measures here — such as viewing the sorted file with

| MORE before committing yourself).

| 13. Closes the IF...ELSE...ENDIF construct opened at Step 8.
14. Resets the FailAt level back to its default setting of 10.

15. Resets the stack back to 4000 bytes. (You may want to change
this if you usually work with a larger stack.)

16. Calls the main database module.
Listing

.key Col
.bra {

.ket }

.def col 1

ECHO "Sorting*nPlease wait..."
FAILAT 11

STACK >NIL: 16000

0 N O 0 A W N=

if error
| 9. echo "Out of memory..*nCan’t sort, sorry"
| 10. else
11. SORT S:data RAM:data{$$} COLSTART={col}
12. COPY RAM:data{$$} S:data
[13. endif
‘ 14. FAILAT 10
15. STACK 4000

execute s:database

Mastering AmigaDOS Scripts
e]

ViewBlock

Synopsis: [EXECUTE] ViewBlock [start=] [number=]

Template: start,number

Path: S

Requires: V1.3+

See also: Database, DelBlock, FindData

Type: Script

Brief: The view data module for the Database
Description

This module is an integral part of the AmigaDOS database and is
not usually called from Shell.

Line-by-Line
1. The key for this script takes the two arguments representing

the start record number and the number of records to display.

2. Ensures the module always displays at least one record by
defaulting Number to 1.

3. Makes sure that if the module is called without correct
arguments, the Start number contains something.

4-5: Re-set the bracket characters to { and }.

6. Tests if the Start variable contained something when the
module was called. If it did, control jumps to Step 7:
otherwise it jumps to Step 8.

7. Jumps to Step 30 and terminates the script normally.
Terminates the IF...ENDIF construct opened at Step 6.

Determines how many records will be printed and stores the
result in the global variable "ThisMany".

10. This 1.3 compatible operation increments the value in
ThisMany by 1 and stores the result in T:Temp. AmigaDOS 2
users can replace this calculation and line 11 with the
following:

EVAL $ThisMany + 1 TO ENV:ThisMany
11. Re-sets the value in ThisMany. This line is not required if you
have made the release 2 modification noted at Step 10.

12. In a 1.3 compatible fashion, this checks if the value in
ThisMany is less than 1. Control continues at Step 13 if it is
and Step 14 otherwisc. The release 2 version of this line is as

Mastering AmigaDOS Scripts
be e e e e e w—=]

13.
14.
15.
16.

17.

18.

19.

20.

21.

22.
23.

24.
25.
26.
27.
28.
29.
30.
31.

follows:

if VAL $ThisMany NOT GT 1

Sets the global variable ThisMany to 1.
Terminates the IF...ENDIF construct opened at Step 12.
Raises the failure level to 11.

Creates the first part of an EDIT macro which will step Start
records in. If Start=3, this macro file will read:

3n;p;
Creates the second part of the EDIT macro. This file expands
as:

(25n3)

STOP
Joins the two macro files with the contents of ThisMany
sandwiched in between. The final macro, ViewMac looks like
this:

3n;p;

4(2;n;3)

STOP
Extracts the required records from the data file sending the

result to a file. You could send the result straight to screen if
you prefer.

EDIT produces an ERROR condition if the line numbers -
records in this application - did not exist in the file. ERROR is
trapped by the raised fail level (Step 15). If this test proves
false, control jumps to Step 23; otherwise it continues at 21.

Displays a useful error message. Hopefully, this was because
you entered a dodgy Start or Number value.

Jumps straight to Step 28 and exits back to the main menu.

Control only gets here when the EDIT command has produced
a workable file.

Changes the current console screen colours...

Displays the file. You might prefer to use MORE here.

Re-sets the console colours.

Terminates the IF...ELSE...ENDIF construct opened at Step 20.
Marks an entry point for error handling.

Re-calls the main DATABASE program.

Marks an entry point for special handling.

Displays a prompt for the user to enter a number and...

ViewBlock
e s

32. ...the module calls itself. This allows a number to be entered
interactively.

Listing

.key start,number

.def number 1

.def start SKIP

.bra {

.ket }

if "{start}" EQ "SKIP"
skip restart

endif

eval {number} - {start} to ENV:ThisMany lformat "%n"

0. eval >NIL: <env:ThisMany op=+ value2=1 to T:Tmp lformat
“%sn" ?

- O 0O N O 0O s W N =

11. copy T:Tmp to ENV:ThisMany

12. if >NIL: <ENV:ThisMany VAL NOT GT 1 ?
13. setenv ThisMany 1

14. endif

15. failat 11

16. echo >T:ViewMac1 "{start}n;p;"

17. echo >T:ViewMac2 "(?;n;)*nSTOP"

18. join T:ViewMac1 ENV:ThisMany T:ViewMac2 AS T:ViewMac
19. edit s:Data with T:ViewMac ver=T:ViewRec
20. if error

21. echo "Record(s) not found"

22. SKIP ReRun

23. else

24. echo "*e[33m"

25. type T:ViewRec

26. echo "*e[31m"

27. endif

28. LAB ReRun

29. execute s:DATABASE

30. LAB restart

31. echo "View record #: " noline

32. execute >NIL: s:ViewBlock ?

Mastering AmigaDOS Scripts

1-3.

DCopy

Synopsis: [EXECUTE]DCOPY<[pat=]dir|pattern>

[SINCE=<date>] [UPTO=<date>]

Template: key pat/a,dest/a,optl,since/k,upto/k

Path: S:

Requires: V1.3+

See also: CCOPY

Type: Script

Brief: To copy files (optionally by date) without failing
Description

This is a modified version of the DEL script. It will not overwrite
“delete protected” files in the destination directory, but it will not
stop either. An extra couple of lines have been added to ensure that
the destination directory exists — if not, the directory is created -
then it calls itself recursively. Recursion is not actually required for
this example but this shows simply how the method works.

Line-by-Line

Sets the key and other script parameters. Note that source and
destination parameters are required here.

Sets the default “since” date to the earliest supported by the
Amiga’'s RTC.

Sets the default “upto” date to the current date. This should
be used with care if you don’t have a RTC (or it has not been
programmed correctly). A very late date such as 01-Jan-99
might be a better idea.

This tests to see if the destination directory actually exists for
this invocation. If it does the script carries on as normal, if
not it jumps to Step 10.

Creates a file “copy” using the parameters for date and time
defined by the user. This file is a script which contains the
path of all files listed and a copy command for each one.
Typically, a few lines of the script might look like this:

COPY "Workbench1.3:C/Dir" TO RAM: Clone

COPY "Workbench1.3:C/Copy" TO RAM: Clone
COPY "Workbench1.3:C/List" TO RAM: Clone

Raises the failure level to above that returned by all
AmigaDOS commands. The script is now unstoppable.

[vr———="=1

9. Executes the list of commands and effectively performs the
copy operation. You might like to make COPY resident before
this point and remove it afterwards to speed the operation.

10. If control reached this point from Step 9, it jumps to the end
of the script; otherwise it continues at Step 11. During a
recursive phase this provides the way out.

11. This sets the fail level to WARN. There’s a reason for this...

12. ..because if the destination directory cannot be created the
script must exit. If MAKEDIR cannot create the directory
because “object not found” it returns ERROR (v1.3) or WARN
(v2). This could be tested but it's faster to crash the script.

13. This calls the script a second time recursively with the
original parameters. There are other ways to do this (loops for
instance) but this one best serves the purpose of the
demonstration. (Incidentally, recursion is the only way to
jump backwards in AmigaDOS 1.2!)

14. Closes the IF...ELSE...ENDIF construct opened at Step 6. ENDIF
is required for correct recursion.

Listing

1. .key pat/a,dest/a,opti,since/k,upto/k

2. .bra {

3. .ket }

4. .def since 01-Jan-78

5. .def upto Today

6. if exists {dest}

7. list >T:copy{3} {pat} since={since} upto={upto} FILES
LFORMAT "COPY *"%s%s*" TO {dest} {opt1}"

8. failat 21

9. execute T:copy{$$}

10. else

11. failat 5

12. makedir {dest}

13. execute DCOPY {pat} {dest} {opti1} since={since}
upto={upto}

14. endif

DCopy

107

Mastering AmigaDOS Scripts
T e T W TS S PR S O R I

DEL

Synopsis: (EXECUTE] DEL <([pat=]file|pattern> [QUIET] [ALL]
[FORCE] [SINCE=<date>] [UPTO=<date>]

Template: pat/a,optl,opt2,opt3,upto/k,since/k
Path: S:

Requires: V1.3+

See also:
Type: Script
Brief: Delete files without failing. Optionally window to a
date.
Description

This is a very simple script which gets around one of those
annoying little problems — pattern matched deletes which fail when
they encounter a protected file or a directory. Much the same effect
is possible using SPAT incidentally, but this script is designed for
the job and does it better. Also, this script adds the option of a
“date windowed" delete. Refer to LIST to see how to use the SINCE
and UPTO options.

With little modification this script could be used to copy files by
date in the same wav that they are deleted.

Line by line

l: The key used here is a simple one because this is, in essence,
a simple script. The pattern is required and can be any valid
AmigaDOS wildcard. Of the other three switches, only “optl”
is usable in v1.3 and 1.3.2. This is the QUIET switch. Note:
The order of the arguments is important it could be fixed later
in the script — but this is a simple example. UPTO and SINCE
work just like normal keywords allowing you to window the
delete.

2-3. Re-define <and > to { and }.

Sets the default starting date to 1st January 1978 - no files
can exist before this date. This keyword must have a default
value since it is a keyword in LIST.

5. Sets the other part of the window to Today’s date. Like SINCE,
this is also treated as a keyword by LIST so it must have some
value. It is possible for files to exist in the future (if you don’t
have a real time clock) these should either be deleted
manually or the option removed from the script. Better still,
get a RAM expansion with a clock.

DEL
===

6. This is the crucial part in this script. LIST creates a file in T:
called DELETE<n> where n is the current CLI number, making
it unique to this invocation. The pattern used for this list is
retrieved from the pattern the user entered. SINCE and UPTO
provide a date window for the files. If not supplied, all files
are listed. Note: The files switch prevents LIST from
displaying directories. The escaped quotes surrounding %S%S
allow spaces and other odd characters in filenames and stops
them interfering with the command line. The output from this
command could look something like this:

DELETE "RAM:Temp1"
DELETE "RAM:Test"
DELETE "RAM:Space file"
DELETE "RAM:Work"
e In AmigaDOS 2 and above, the ALL and FORCE switches come

into effect here. These must be used with great care - you
have been warned!

Sets the failure level to 21. Generally a bit risky - but it’s OK.

Executes the newly created script — deleting the files one-by-
one. If the files are protected against deletion the failure level
of 21 prevents the scriptfrom stopping.

With little modification this script could be used to delete
empty directories or copy files by date in the same way that
they are deleted. The copy script needs some extra work -
which we'll see later on, for now, here is the amended line to
delete directories:

Listing
1. .key pat/a,opti,opt2,0pt3,upto/k,since/k
2. .bra {
3. .ket }
4. .def since 01-Jan-78
5. .def upto Today
6. LIST >T:delete{$$} {pat} {opt2} since={since}
upto={upto}files lformat "DELETE *"%s%s*" {opt1} {opt3}"
7. FAILAT 21

EXECUTE T:delete{$$}

Mastering AmigaDOS Scripts

DIRS

Synopsis: (EXECUTE] DIRS

Template: none

Path: S:

Requires: V1.3+

See also: VOLS

Type: Script

Brief: List just the current directory assignments
Line-By-Line
1. Sends the current assignment list to a temporary file. Note the

use of <$$> to prevent multi-tasking clashes.
Prints a heading of what is about to happen...

...and displays (by searching for) all those names with two
spaces. This is only true for the current logical directory
assignments, FONTS:, ENVARC: and so on.

Listing

1. ASSIGN >T:temp<$$>
2. ECHO "Directories:"

3. SEARCH T:temp<$$> " " nonum ; note "two spaces"

Mastering AmigaDOS Scripts
- _— _— _— _— _ _]|

DiskDoc

Synopsis: [EXECUTE)] DISKDOC

Template: none

Path: S:

Requires: V1.3-1.3.3

See also: DOCTOR (Alias)

Type: Script/Alias combined

Brief: Multi-task DISKDOCTOR in the background.
Description

Diskdoctor cannot normally be run in the background, but there is
more than one way to skin a command. This solution uses two
techniques - an alias and a script. The script will do the work of
running DISKDOCTOR and the alias will run the script.

Add this line to the Shell-startup script (using ED S:Shell-startup). A
detailed explanation appears in the definition of this ALIAS proper.

ALIAS DOCTOR NEWCLI WINDOW CON:0/3/500/100/DiskDoc FROM
S:DiskDoc

Now close the Shell and re-open it to ensure the alias is defined and
type DOCTOR to get started.

Line-By-Line

1 Raises the failure level to 21 - beyond anything generated by
AmigaDOS commands. In other words, this script cannot be
stopped by any errors!

2 Executes DISKDOCTOR and starts processing drive O - you can
change this to any drive you require. This script cannot take
parameters because it is executed specially from the alias.

3 Checks if DISKDOCTOR generated a serious error. (For
instance, if there is no disk in the target drive - df0: in this
case.) Normally the script would grind to a halt at this point
and leave you at the CLI prompt but this has already been
prevented at line 1. Since we have turned normal error
handling off, we must deal with this and that's what this does.
If DISKDOCTOR exits normally, control skips to line 6, if not it
passes to 4...

4 ...where the error message is printed. Note the ASK command
is used here: it prints the error message and waits for the user
to react — giving them time to study what has happened.

Mastering AmigaDOS Scripts
T PTTSIa T T P TN T e S TV T

5 This line shuts the CLI down and closes its window. This is
the reason for pausing at line 4 - if an error had occurred you
might not get to see it.

6 Terminates the IF...ENDIF construct opened at 3. This is used
as a marker by the IF command but it must be present for the
script to handle errors correctly. Control only gets here if
DISKDOCTOR terminates normally.

7 This behaves like line 4, giving the user chance to react to any
warnings or messages generated by DISKDOCTOR before the
CLI window is finally closed...

8 ...here.

Listing

FAILAT 21
DISKDOCTOR dfO0:
IF fail

0 N O O s W N =

ASK "A serious error occurred! Press Return to exit"
ENDCLI
ENDIF
ASK "Press Return to exit"
ENDCLI

Mastering AmigaDOS Scripts
=]

DRIVES

Synopsis: (EXECUTE] DRIVES

Template: none

Path: S:

Requires: V1.2+

See also: VOLS

Type: Script

Brief: Show drives with mounted disks
Description

AmigaDOS’s INFO command generates a lot of information. There
are times when much of this is redundant as you just need to know
about the mounted disks and how much space you have left on
them. This script selectively locates the drives with mounted disks
and lists them. Extraneous information on mounted volumes and
empty drives is ignored.

Line-By-Line

1.

This is a dummy key it does not affect the function of the
script from a user’'s point of view. It must be provided
although we are going to use {$$} (the current CLI number) -
this allows the script to multi-task correctly.

When EXECUTE reads a .KEY argument it copies the script into
a temporary directory either :T (T on the current disk) or T:
(the temporary assignment — usually RAM:T). Then it expands
variables enclosed by bra “<" and ket “>" characters. That is, it
replaces the variables with what the user entered. <3> is a
special case - it expands to the calling CLI number.

Change the bracket characters to { and }.

Asks AmigaDOS to give information (see INFO) on all the
current drives. That includes the external disks, hard drive
partitions and mounted disks. The output from this command
is sent to a file: RAM:t{$ $} using output re-direction.

This is the all important line. Used here to give experts a clue
as to what's coming and beginners a reason for the command.
The INFO command spits out a lot of information, but every
drive with a disk present is listed with nn% full. SEARCH
homes in on this and, therefore, only lists the drives with a
disk inserted.

Similar code can be used to list mounted disks. All you have

Mastering AmigaDOS Scripts
e e e e s e

to do is replace “%" with “[". This causes SEARCH to list the disks
showing [Mounted]. Similarly, you could add a line 6 to perform
this function.

If you are using AmigaDOS1.3 or higher, you can add the NONUM
switch to the end of the line. This suppresses the line numbers
and makes the output more usable.

Listing
1 .key dummy
2 .bra {
3 .ket }
4 info >ram:t{$$}
5 search ram:t{s} "%"

EDS

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts
R e T et S e S et et A

EDS

na

na

V1.3+

FRED

Alias

Edit the startup-sequence

ALIAS EDS ED S:Startup-sequence

How many times have you mis-typed ED S:Startup-sequence? This
has to be one of the most difficult sequences of letters to get your
pinkies round yet invented, so here's an ALIAS to get you going

quickly.

Example:

1>EDS ; edit the startup-sequence

Mastering AmigaDOS Scripts

EDU

Synopsis: EDU

Template: na

Path: na

Requires: V2+

See also: FREUD

Type: Alias

Brief: Edit the startup-sequence

Definition: ALIAS EDU ED S:User-Startup

Description:

This little alias is a modification of the EDS and is used to call ED
for the User-startup.

Example:
1>EDU ; edit the user-startup

Mastering AmigaDOS Scripts
[Eicr e e]

EggTimer

Synopsis: (EXECUTE] EggTimer [SOFT | MEDIUM | HARD]

[TIME=<time>]

Template: soft/s,med/s,hard/s,time/k

Path: S:

Requires: V2+

See also: Pest

Type: Script

Brief: Time a hard-boiled egg!
Description

This script was devised as a bit of light-relief in a weak moment. As
it turns out, it demonstrates some interesting problems:
particularly how to use "/S" in scripts. The program forms the basis
for the Pest idea (although the code is very different). No checking
is performed to see if you have entered more than one switch (say
SOFT and HARD) or that the time is some ridiculous value. You
might like to try this for yourself.

Line-By-Line

1.

Defines the argument template. Notice how this looks just like
a template for a real AmigaDOS command - it's processed in a
very similar way too. In the synopsis described above the
switch options: Soft, Med and Hard are shown as a combined
argument — but only one of these should be supplied at any
time. It is important to note the AmigaDOS parser will not
check the presence of too many or too few switches. Such
error checking will usually be performed in the script - it has
not been implemented here to keep the listing simple.

Changes the default opening angle bracket character to “{".
As Step 2 for the closing bracket.

Adds EVAL, WAIT and TYPE to the resident list. This pre-loads
the commands from disk and makes them available in system
RAM where they can be executed faster. This technique is also
handy when a disk-based command is used more than once in
a script.

This checks if the user has entered a time via the time
keyword. The exact position of this conditional test is not
crucial although it should be placed early in the script. The
exact workings of this line are a little complex, so let’'s
examine them. Assume you had entered a command line thus:

Mastering AmigaDOS Scripts
e e TR L e S Y Ty

1>EggTimer Time="3 mins"

The keyword Time absorbs the argument ‘3 mins’ (quotes are
required to ensure all the text is taken in). This process “sets”
the internal script variable, time to ‘3 mins'. This can be
picked up at any time by enclosing the name in special
brackets - set as { and } in this script. AmigaDOS reads this
line as:

IF "3 mins" NOT EQ ""

Similarly, if you do not enter a time keyword, AmigaDOS reads
this:

IF nn NOT EQ nn

This statement checks if the expression on the left does not
match the expression on the right — it seems a little backward
at first, but it will all become clear shortly. If the test passes
(first example - “3 mins" does not equal “") the script
continues at the next line. If the test fails, it jumps to the
closest ENDIF — at Step 9 in this case.

8. Sets a local environmental variable to the value defined by the
keyword. Remember, this line is only called if a keyword and
argument for “time" is supplied. Variables are like temporary
containers. Local variables are held in system memory making
them convenient for private storage. It is not possible to alter
a local variable directly though and this must be borne in
mind when deciding which type to use.

9. Closes the IF...ENDIF construct opened at Step 7. Put simply,
this “command” acts as a place marker to inform AmigaDOS
where to jump to when the "[F" test fails.

10-13. These lines check for the presence of the soft option on
the command line (no pun intended). The position of this test
is crucial in case you supply more than one switch. As
programmed the switches have priority over the keyword and
of those, the hard option is preferred. If soft has been
supplied the variable “time" is set to three minutes — you can
set this lower if you like runnier eggs or higher if you have
oversize ones. An ostrich egg for instance, will take a lot
longer and a much larger pan.

14-17: Sets the time for an average cooked egg. Typically this
should be enough for a nicely done size three egg with a
slightly hardened yolk. Adjust this timing to your own taste.

18-21: Like the previous brace of options, this sets the timing
for a hard boiled egg - probably enough to kill off any trace of
Salmonella. This switch overrides all others if it is supplied.

22. This pauses the script and waits for the <Return> or <Enter>

23.

24.

27.

25.

26.

EggTimer
o=y

key to be pressed. This command is normally used to check
for a yes or no answer, but it does this job just as easily. The
“*n" enclosed in the text forces the Amiga to print a line break
so the text appears split over two lines.

Waits for the time determined by the contents of the variable
time. If, for instance, you had asked for a soft boiled egg,
AmigaDOS reads this as:

WAIT 3 mins

You can insert the contents of any user-defined
(environmental) variable by prefixing its name with a dollar
symbol as shown here. The dollar symbol is a special variable
operator and is not affected by the “.DOLLAR" operator. Note:
if a badly formed command line is used, the WAIT statement
will kill the script dead in its tracks. This can be avoided - but
is too bothersome to warrant inclusion here.

This line is actually simpler than it looks and uses one of
those little tricks of the trade. EVAL is generally thought of as
being a mere calculator, although it is capable of much more
than that. This line splits into two distinct parts:

EVAL >env:bleepz 7

This calls the command and makes it write a global
environmental variable. The variable's name is taken from the
text “bleep” plus the number of the Shell process executing
the script. If the process was say 2, AmigaDOS reads the line
as:

EVAL>env:bleep

In this form, this would usually send a text string to the
variable - just like ECHO. However, the second part of the
command does something special:

1format “Dinner's up... %c"

This defines the output string as a message plus a non-
printing character code — 7. In ASCII this code is called “BELL"
and is used to flash the screen, or more usually, sound the
terminal bell. (The screen flash is a peculiarity of the Amiga:
under Workbench 3 you can change the simple bleep to a
sampled sound.) In other words, when this variable is
displayed the message will appear and the screen will flash.

Sets a global variable “count” to 10. Note how “{$$}" is used to
attach the process number? This makes the name unique so
avoiding clashes if it is executed from several Shells at once.
The actual value determines how many loops will be made
later on.

Marks the current position in the script.

|

Mastering AmigaDOS Scripts

—

27. Prints the message described at Step 24 and flashes the
screen.

28. Decrements the counter variable, count. Expanded this line
might read:

eval 10 -1 to env:count2
therefore, the variable “count2” receives the result of 9.

29. Checks if the value of “count2” is equal to zero. If it is (TRUE)
control continues at Step 30 otherwise it jumps to the next
ENDIF at Step 31.

30. The script reaches this point when the counter has reached
zero and jumps to Step 33.

31. Terminates the IF...ENDIF construct formed at Step 29.

32. Jumps backwards to Step 26 - the label “loop”. Backward
jumps are quite slow because the script starts from the
beginning and works down looking for the label. Generally
these are placed at the start of a script wherever possible, but
it makes little difference here.

33. Marks the bail out point for the SKIP command defined at Step
29.

34-36. Removes the resident commands from the system list
and frees up memory. This must be done otherwise each
successive invocation of the script will add more copies of the
commands and waste memory.

Listings

1. .key soft/s,med/s,hard/s,time/k
2. .bra {

3. .ket }

4. PResident c:Eval add

5. Resident c:Wait add

6. Resident c:Type add

7. if time NOT EQ ""

8. set time "{time}"

9. endif

10. if {soft} EQ "soft"

11. set time "3 mins"

12. echo "Computing for soft boiled egg"
13. endif

14, if {med} EQ "med"

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

EggTimer

set time "4 mins 30 secs”
echo "Computing for medium boiled egg"
endif
if {hard} EQ "hard"
set time "6 mins"
echo "Computing for hard boiled egg"
endif
ask "Place egg in boling water*nThen press <Return>"
wait S$time
eval 7 1lformat "Dinner's up... %c" TO=t:bleep{$$}
setenv count 10
lab loop
type t:bleep{$$}
eval >NIL: $count-1 to env:count
if val $count eq O
skip end
endif
skip loop back
lab end
Resident c:Eval remove
Resident c:Wait remove

Resident c:Type remove

Mastering AmigaDOS Scripts
=== e o e s i e e e

EMove

Synopsis: [EXECUTE]JEMove<|[from=]source>
<[to=]destination>

Template: from/a,to/a

Path: S:

Requires: V1.2+

See also:

Type: Script

Brief: The Eclectic MOVE script
Description

RENAME cannot be used to move files or directories across disks -
but COPY can. However, using copy it is necessary to remove the
source file after copying, so RENAME is better used on the same
disk. This script solves the problems of remembering which
command(s) to use by doing it all for you automatically!

You use EMove as you might use COPY/DELETE or RENAME.
However the script does the hard work of deciding which to use for
you. In fact, it attempts to use RENAME first, then if that doesn't
work goes on to use the more longwinded version for moving
between devices. The PROTECT part is optional in this script, it just
makes doubly sure the source file is removed.

This example moves a file in RAM:C to DF0O:C-Backups
1>EMOVE RAM:C/Myfile.C DFO:C-Backups

Under AmigaDOS 1.3+ you can use pattern matching for this
function - the S bit must be set in the MOVE script for this to work:

1>SPAT EMOVE RAM:#? DFO:RAM-Backups

In AmigaDOS 2 there is no need to use SPAT since all the functions
can use pattern matching anyway. The example above becomes:

1>EMOVE RAM:#? DFO:RAM-Backups

Line-By-Line
1-3. Defines the key and sets bra and ket to { and }. Note that
source and destination arguments are required here.

4. Provides a simple progress message confirming what the
script is up to.

5. Sets the fail level to indestructible.

EMove
[S=—s—usi=a)

6. Attempts to move the object using RENAME. This may or may
not work depending on where the destination is. RENAME
returns FAIL if you attempt a rename across devices; returns
OK otherwise.

7. Tests if RENAME failed. If it did, control continues at Step 8;
otherwise it jumps to Step 12 (and out of the script since the
operation was successful).

8. Resets the failure level back to its default.

Performs a simple COPY operation. Redirection to NIL: is used
here for the sake of users with 1.2. Later versions can make
use of the QUIET switch instead which is more appropriate, in
case errors are reported:

copy "“{from}" "{to}" QUIET

10. Makes the source object deletable. This isn’'t strictly
necessary, but it might be a good idea.

11. Deletes the source object. From AmigaDOS 2, you can omit
Step 10 and re-write this line as follows:

DELETE "{from}" FORCE
12. Marks the exit point for this script.

Listing
1 .key from/a,to/a
2 .bra {
3 ket }
4 echo "Moving from {from} to {to}"
5 failat 21
6. rename >NIL: {from} TO {to}
7 if fail
8 failat 10
9 copy >NIL: “{from}" "{to}"
10. protect >NIL: {from} +d ; This is optional
11. delete >NIL: "“{from}"
12. endif

Mastering AmigaDOS Scripts

ENABLE

Synopsis: [EXECUTE] ENABLE

Template: none

Path: S:

Requires: V1.3+

See also: ListDel

Type: Script

Brief: Enable access ListDel (a script presented later)
Description

This is just about as short as scripts get - so much so, it could have
been an alias. However, it does have a use — as a support routine for
a script later in this book. The "jammer” variable prevents access to
a potentially dangerous script. Unless this command has been
issued, the script refuses to run...

Line-by-Line
1. Sets the environmental variable “jammer” to the string OFF.
Listing

1. SETENV JAMMER OFF

EX

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts
AT R e e e s T

EX <Directory>
na

na

V1.3+

Alias
Check an assignment without removing it
ALIAS EX ASSIGN []: EXISTS

This short alias is a very useful (and quick way) to check an
assignment. Given the assigned name without the “:" it checks if the
assignment exists and displays it. Example:

1>EX FONTS

FONTS: Workbench3.0:Fonts

Mastering AmigaDOS Scripts

FACTOR

Synopsis: [EXECUTE] FACTOR <[n=]n> [[result=]|private]

Template: n,result

Path: S:

Requires: V1.3.2+

See also:

Type: Script

Brief: To calculate factorials in the range 1..12
Description

This is one of those scripts which you don’t really need. The reason
that it's here is because it introduces some more of those clever
little tricks AmigaDOS is capable of - with a little imagination
almost anything is possible. It’s also an excellent excuse to use
recursion to solve a tricky little problem.

Factorials, for those who didn’t do too well in mathematics, are a
sequence of numbers. The factorial of a number is calculated by
multiplying together all the whole numbers from one up to the
number concerned. Factorials can only be obtained for positive,
whole numbers. The exclamation mark is used by mathematicians
to indicate a factorial — probably because they result in huge
numbers! For instance, factorial 8:

8! = 8*7*6*5*4*3*2*1 = 40320
You can calculate this directly using the EVAL command in v1.3.2+:
1>EVAL B*7*6*5%4*3*2*1
40320
it’'s much easier to type:
1>FACTOR 8
40320

This script has not been designed to multi-task to keep things
clearer: this script uses some tough concepts to get the effect. Once
these are understood, they act as a gateway to some very exciting
script programming. ..

Line-By-Line

1. The key for this script is an unusual one because, although
the user only enters a single parameter, a second parameter is
available. This is used during recursion as an internal

Factor
fii=]

variable; and actually ends being the result when the script
“unwinds”

Guess what, sets the bracket characters to { and }.

This sets the default value of the result to the value entered
by the user. This has two effects: first, if the user requested
factorial 1 (1!) the script exits immediately. Since 1! is 1, this
forces the correct result. More importantly, for values of three
and above the starting value of the result required by this
script is the initial value of the required factorial. You'll see
why at Step 6.

Recursive scripts must have an exit point - otherwise they will
keep on looping until something interrupts them or the
machine crashes. The latter is far more likely! This tests for a
factorial value of N =1 and forces an exit if this condition has
occurred. Unless the user has entered 1, this must be
calculated in the script...

...here. One is subtracted from the current value of N and sent
to the file T:N. A LFORMAT has been used to create a special
format for this file. This is required later on in the script
when the recursion takes place and will be covered in more
detail then. All you need to know now is if the result of the
calculation was five, the output file would read: N=5.

This is where things start to get a little hairy - so we'll break
this line into bite sized chunks. (Or should that be “byte sized
Hunks...")

eval {result} * ({n}-1) to t:fact

Takes the current expanded value of "result” and multiplies it
by "n-1". Imagine - result=60 and n=3. This is equivalent to:

eval 60 * (3-1) to t:fact

The result of this calculation (120 in this case) is directed to
the file T:FACT using the LFORMAT string which follows. ..

1format ".k i*n.bra (*n.ket)*n

At this point you may have noticed what is about to happen -
then again you may not. Don't worry too much if this seems
complex - it is! That's what | mean when | say "Experts are not
born, they are hewn from the bedrock of effort.” This line
writes a standard script header in the form:

ki

.bra (

.ket)

You've already met something like this in an earlier example
(ListDel) so if you don’t remember go back to it now - you'll

127

Mastering AmigaDOS Scripts
e o =]

10.

need to understand that example if you are going to
understand this one! This header is being generated by EVAL,
which is unusual but necessary.

EXECUTE <t:n >nil: factor result=%n ?*n"

This is the second part of the LFORMAT. It generates the script
main part. The header is just for support. To understand how
the resultant script is going to work, it's necessary to examine
a possible case. We'll maintain the assumption that the result
of the calculation was 120. The completed file will look like
this:

ki

.bra (

.ket)

EXECUTE <t:n >nil: factor result=120 ?

The key "i" is just a dummy, but it must be there for the script
to work. The reason for (and) brackets has already been
explained. The clever bit is in the EXECUTE. This calls the
script which generated it — double-recursion.

Adding to the confusion only one value "result" is passed
directly. The other value is retrieved from the file "t:n". That's
the reason why "t:n" was generated with the N=%n format. In
AmigaDOS 2 thisis far easier to achieve, as we’'ll see later.

This executes the file just created by EVAL in 7, and starts the
recursion process.

If the value passed to “n" from the main command line equals
1 control passes here...

...and the final result — also passed through the command line
- is printed. The script unwinds itself after this point.

Changes for AmigaDOS 2

If that lot got your brain waving the white flag don’t worry -
imagine what it was like to write! In fact - it's easier than it looks
once you get a hang of the basics. This script can be made a lot
simpler if you have AmigaDOS 2 because there's no need to use
interactive mode in the EVAL created script. Here are the amended
lines and how they work:

4.

The only changes to this line are the use of a real
environmental variable rather than the T: assignment. Also
the Iformat string has been removed because it is not
required:

eval {n} - 1 to env:n

This line is also far simpler. It still creates a script, but now

FACTOR

the "n"” variable which had to be expanded interactively, is
expanded automatically by AmigaDOS. This removes the need
for mucking around with dummy keys and bracket characters:

eval {result} * ({n}-1) to t:fact lformat "execute factor2
n=%$n result=%n*n"

Listing

.key n,result

.bra {

.ket }

.def result {n}

if val "{n}" not EQ "1"

eval {n} - 1 to t:n 1format "n=%n*n"

eval {result} * ({n}-1) to t:fact 1lformat ".k i*n.bra
(*n.ket)*nEXECUTE <t:n >nil: factor result=%n ?*n"

8. execute t:fact

N O s W N =

9. else
10. echo "{result}"
11. endif

Mastering AmigaDOS Scripts

FancylList

Synopsis: [EXECUTE] FANCYLIST <[dir=]dir> [pat=<pattern>]
Template: dir/a,pat/k

Path: S:
Requires: V1.3+
See also:
Type: Script
Brief: To enhance LIST and ListAll by adding pattern
matching
Description

In essence, this is an upgrade of the ListAll script shown elsewhere
- but this has a far more attractive display. It searches all the
directories on a disk just like the other examples, but adds the
possibility of matching directories and files to different patterns. If
no files match, this script tells you.

This script does not do anything new, so | haven't provided a
description. You may like to discover its workings for yourself -
refer back to the previous examples if you need any guidance. As
an exercise you may like to add some of the extra features
supported by LIST too.

Listing
1. .key dir/a,pat/k
2. .bra {
3. .ket }
4. .def pat #?
5. 1list "{dir}" pat={pat} files to ram:Fancy{$$}
6. echo "*nDirectory:*e[33m{dir}*e[31m" noline
7. search ram:Fancy{$$} ":" nonum
8. if warn
9. echo "No files match pattern {pat}"
10. endif
11. list >T:L{$$} {dir} dirs 1lformat "execute s:Fancylist
"%s%s" pat={pat}"
12. execute T:L{$$}

FCD

Mastering AmigaDOS Scripts
[Er e e ——)

Synopsis: (EXECUTE] FCD [[number=] # | dir | pat]

Template: number

Path: S:

Requires: V2o+

See also: RCD

Type: Script

Brief: Store recent directory changes and make them

menus

Description

This command is very useful if you have a hard disk. It stores a list
of the last ten directory changes to disk and allows you to pick one
by selecting it from a numbered menu. Every path feature available
to CD, including patterns, may be used. The command line is
sensitive to arguments so that the script can completely replace CD
(using an ALIAS) if you prefer. This command is very similar to RCD
and is fully compatible with it. Several modes are available:

e Called without arguments. The script shows the current list and
prompts you to interactively select an existing entry, load or save
the list or enter a new directory. Note: you can enter LOAD or SAVE
at this prompt. Example:

1>FCD

b W N =

5.

"Workbench3.0"
"Workbench3.0:Fonts"
"Apps:"
"Workbench3.0:Fonts"
"Workbench3.0:Devs/Keymaps"

Enter directory or pick a number, any number:

e Called with a new directory path: FCD selects the directory (if
available) and adds its full path to the menu. (The oldest directory
is removed.) Example:

1>FCD SYS:

e Called with a number from the directory menu. The directory is
selected from the list and changed. Example:

1>FCD 3

Mastering AmigaDOS Scripts

ark/mac”

gé —funnark. FOF™

g
g; ' : tb eynaps”

A s g
S UNERRNE

Enter d roc(orv or pick a ber, any ber: W

FCD Menu

Line-by-Line

1-3.

10.

11.
12.

13.
14.
15.

16.

Defines the template as "number” and the angle brackets as
braces. It's important you don't change the template name
since it is used in a recursive call.

Checks if some argument has been supplied. If not, control
continues at Step 5; otherwise it jumps to Step 14.

Checks if the FCD preferences file (CDS) exists in the current
S: assignment. If not, control moves to Step 10; otherwise it
continues at Step 6 where...

The contents of the preferences file is listed with line
numbers: this generates the menu.

Displays the main part of the interactive prompt.

Calls FCD recursively with interactive mode. This finishes the
prompt with “number:”. Note also, if you change the name of
this script, you must also change this call.

Provides an easy exit for the script when it unwinds the
recursion. Control transfers to Step 33.

If control gets here from Step 5, it continues at Step 11:
otherwise it continues to Step 13.

Displays a progress message/warning.

Creates the CDS file by echoing the current directory. Note
that automatic insertion (' command ") is used here so the
directory can be enclosed in quotes. This protects CD against
spaces in the directory name.

Terminates the IF...ELSE.. ENDIF construct opened at Step 5.
Terminates the IF...ENDIF construct opened at Step 4.

Checks if the value of the entry made for number was 0. This
is the case if a text entry - a directory path - was made. If text
was entered, control continues at Step 16; otherwise it jumps
to Step 22.

Attempts to set the new directory. If this command fails
because the directory cannot be found (or more than one
directory matches, for patterns) the script stops. Normally,
the directory is made current.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.
29.

30.
31.
32.

FCD
=

Creates a temporary file with the new current directory name
enclosed in quotes.

Joins the new current directory to the existing list and saves
the resulting file as t:CDO#.

Creates a simple edit macro thus:
9n Move down nine lines (to line 10).
d Delete the current line.

Uses the macro created at Step 19 to hack off the last entry in
the file. Note if there are less than ten entries (directory
paths) in the file, this macro has no effect. This macro
therefore, only trims off the oldest entries. Changing the line
count at Step 19 affects how many lines are stored in history.
More than about 25 is getting silly and less than 3 is
pointless. (If you increase this number, you will have to make
changes later in the script too.)

Replaces the old directory list with the new one.

If control reaches here from Step 21, it branches to Step 32;
otherwise it continues at Step 23.

Subtracts 1 from the menu entry and stores the result in the
global, Usr#.

Tests if the value of Usr# is less than 1 and if it is, control
continues at Step 25; otherwise control jumps to Step 25.

Writes a simple macro to skip the first line of a file (n) and
delete the next 9 lines (9d).

If control gets here from Step 25 if jumps to Step 28;
otherwise it continues at Step 27.

Writes a simple macro to delete the first "Usr#" lines of a file.
Closes the IF...ELSE...ENDIF construct opened at Step 24.

Edits the history file with the macro created at Step 25 or 27
and creates a global, CD# using that information. Note that
the contents of this variable can be 2 or more lines, but only
the first line will be read by $CD#.

Changes to the selected directory.
Terminates the IF...ELSE...ENDIF construct opened at Step 15.
Marks the bail-out point for the recursion.

.key number

.bra {

.ket }

if "{number}" EQ ""

Mastering AmigaDOS Scripts
IR R e R T P e e e U e R T

5. if exists s:cds

6. type s:cds number

7. echo "Enter directory or pick a number, any " noline
8. execute s:fcd ?

9. skip number

10. else

11. echo "No entries in file - I’1ll create one!"
12. echo >s:cds "*"'cd ' *""

13. endif

14. endif

15. if VAL "{number}" EQ O

16. cd "{number}"

17. echo >t:cd{$$} "*"‘cd *""

18. join t:cd{$$} s:cds AS t:cdo{$$}

19. echo >t:ed{$$} "9n;d"

20. edit t:cd0{$$} with t:ed{$$} ver=nil:
21. copy t:cd0{$$} s:cds QUIET

22. else

23. eval >env:usr{$$} {number} -1

24, if val $usr{$$} NOT GE 1

25, echo >t:ed{$$} "n;9d"

26. else
27. echo >t:ed{$$} "Susr{s} d"
28. endif

29. edit S:cds with t:ed{$$} to env:cd{$$} ver=nil:
30. cd $cd{$$}

31. endif

32. lab number

FFIND

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts
i =mi e — T

FFIND <file|pattern> <start directory>

na

na

1.3+

PFIND

Alias

Find a file

ALIAS FFIND SEARCH SEARCH=(] FILE ALL

How often have you found yourself wondering where some file
went? You know you saved it somewhere, but it seems to have
disappeared into the depths of your data disk. This problem is
especially nasty on a hard disk. FFIND is a solution to that problem
and will easily allow you to locate any file on a disk. Typically you'll
use this from the root directory, but the search can start anywhere.

Example:

1>FFIND StartPest SYS: ; search for StartPest
Workbench3.0/WBStartup/StartPest

Mastering AmigaDOS Scripts

FRED

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

<drive number>

na

na

V1.3+

EDS

Alias

Edit the floppy disk startup-sequence on any disk
ALIAS FRED ED DF[]:S/Startup-sequence

FRED is very similar to EDS, but is useful for editing the startup on
other disks. To use it just type FRED and the number of the drive
whose startup you want to edit, viz:

1>FRED 1 ; edit startup on drive one

Mastering AmigaDOS Scripts
e T e i v e ey e

FREUD

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

<drive number>

na

na

V2+

EDU, FRED

Alias

Edit the floppy disk user-startup on any disk
ALIAS FREUD ED DF[]:S/User-Startup

FREUD is very similar to FRED, but this version edits the User-
startup. To use it just type FREUD and the number of the drive
whose user-startup you want to edit, viz:

1>FREUD 1

; edit user-startup on drive one

137

138

FTEXT

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts
O S e S s o T o SR g [S iy T

FTEXT <file|pattern> <start directory> [ALL]

2.0+

FFIND

Alias

Find ASCII text within a file or group

ALIAS FTEXT SEARCH [] SEARCH=[a-z] PATTERN
NONUM

Hands up, this one is a little weird - but | can imagine some folk
will find a use for it. (Looking for passwords in protected files
comes to mind.) This alias will search any file, group of files or
entire tree for some files containing strings of text. No guarantee is
offered for the reliability of this alias, but it actually works better
than you might imagine on things like intermediate object (.0) files
from C compilers and the like!

e Warning: this alias can generate a lot of output!

Mastering AmigaDOS Scripts
—

GetEm

Synopsis: [EXECUTE] GETEM [[pat=]namelpattern]
Template: pat
Path: S:

Requires: v1.3-1.3.3 only

Type: Script
Brief: To list the environmental variables currently
defined
Description

This script is intended for use with the earlier versions of
AmigaDOS because environmental variables were not fully
supported. The only Amiga command to use them is the text viewer
"MORE". The GETENV command can only get an environmental
variable by name. This script remedies that by listing and
displaying the variables by name and value.

As an extra freebie, this approach allows the implementation of
pattern matching. If the script is called without a pattern, it
displays all the variables in use by using “#?". This is what you'd
normally do.

Line-by-Line

1. Sets the simple header for this script. A single argument is
used: and it's optional too.

2-3. Set the bracket characters to { and }.
4, Sets the default pattern to “#?" — everything.

Lists the files in the ENV: assignment by the specified pattern
- and once again the ubiquitous LFORMAT string comes into
play. This script utilises a slightly unusual use of the “%s"
substitution. It's obvious this line creates a simple script, so
let's take a peek at what this script would look like. For the
purposes of example I've only defined one variable — Editor -
the script repeats for every file.

;env:

How? As you may recall, if more than one “%s" expansion is
used in LIST's LFORMAT, the first %s expands to the complete
path minus the filename.

Why? We want to throw this bit away! Who needs to know that
the environment variables are stored in ENV:? You should
already know that - and if you didn't, you should not need to

Mastering AmigaDOS Scripts
e e e e e s s e

worry about it. In this way we can lose the path description
safely and no one is any the wiser!

ECHO "Editor = " noline

This is reasonably obvious. It just prints the name of the
variable... OK, it does a bit more than that. We sneaked in a
little one here. The spaces are generated by | “*e[l" this makes
echo produce a tab — helping the output line up better.

GETENV "Editor"

Displays the current value held by the variable. This is
because the 3rd %s expansion, produces the name of the file.
You could use TYPE by modifying the line end:

TYPE *"%s%s*"

Not as daft as it looks — you're more likely to have TYPE
resident than GETENV after all.

5. Executes the script created at line 5: and displays the
requested variables.
Listing
1. .key pat
2. .bra {
3. .ket }
4. .def pat #?
5. list >t:getem{$$} env:{pat} files lformat ";%s*nECHO *"%s
*e[I=*e[I*" NOLINE*nGETENV *"%s*""
6. execute t:getem{$$}

Mastering AmigaDOS Scripts
= —————}

GetEm 2

Synopsis: [EXECUTE]) GETEM [Pat=name|pattern]
Template: Pat
Path: S:
Requires: v2
See also: GetEm 1.3
Type: Script
Brief: To list the environmental variables currently
defined
Description

The original GetEm script would have worked under AmigaDOS 2 if
it wasn’'t for Commodore fiddling around adding all those new
(private) environmental variables about prefs and so on. Just
kidding, those new variables are very necessary and in the proper
place - the fault was with the original script. There's nothing
actually wrong with the original, apart from it pre-supposing the
presence of SETENV created variables. You may even wonder why
this script is here at all - doesn't SETENV have the same effect?
Actually it doesn’t, but I didn’t want you to feel left out and besides
this has pattern matching!

Line-by-Line

1. Sets the simple header for this script. A single argument is
used: and it's optional too.

2-3. Set the bracket characters to { and }.
Sets the default pattern to “#?" - everything.

This line comes under scrutiny again — but for an extra reason
now. We've used this example to show how to use NOT pattern
matching to great effect — if you haven’t noticed yet, the tilde
(~) symbol introduces a negative pattern. Let’s take a closer
look at the main group:

#? prefs: Ignore all private "preferences" files
#? pat Ignore any "'pattern’ files (Workbench background)
#7 info Ignore all Workbench pictures and other info

Now let’s take a look at the script this file generates using the
same example...

Mastering AmigaDOS Scripts
A T e T T e

Ram Disk:env/EditorRam Disk:env/

This bit is being thrown away. Unlike the previous example
though, we are throwing away three “%s” substitutions...

echo "Editor = $Editor"

...because here we are using %s again to expand the name
twice. This is a new feature of AmigaDOS 2. If %s is used more
than four times, remaining substitutions are the filename.
This also relies on the ability of AmigaDOS 2 to expand an
environmental variable directly in a string using $. The
remainder of the line is the same as the 1.3 implementation of
this script - you should refer back to that example for further
clarification.

5. Executes the script created at line 5: and displays the
requested variables.
Listing
1. .key pat
2. .bra {
3. .ket }
4. .def pat #?
5. 1list >t:getem{$$} env:~(#?.prefs|#?.pat|#?.info) files
1format "; %s%s%s*"*necho *"%s*e[I = $%s*""
6. execute t:getem{$$}

Mastering AmigaDOS Scripts

-
Halt

Synopsis: [EXECUTE] HALT <[command=]Jcommand>

Template: command/a

Path: S:

Requires: V1.3-2.1

See also: Stop

Type: Script

Brief: To stop multiple processes with the same name
Description

This is just a modified version of the STOP script described
elsewhere. The difference is that this script can stop more than one
process of the same name in a single stroke. Once again, a
backwards loop could have been used to get the effect - however
using recursion requires less commands and tends to be more
reliable. This script is meant for emergencies only.

Line-by-Line
1. Sets the argument template. Note that the command name is
required.

2-3. Redefine bra and ket characters to { and }.

Find the first command in the current process list with the
name defined by "Command". Note this will not work with
AmigaDOS 3, because it lists all current processes of the same
name.

5. This is exactly the same as the original Stopper script.
However, under certain circumstances BREAK may fail with a
FAULT code (Return Code=10). You should trap against this by
setting the fail level to 11 with FAILAT - no higher. The script
exits (rather dramatically) when there are no processes to stop
and BREAK fails RC=20. This is deliberate - HALT is only
meant to be used as a last resort. In very early releases of
AmigaDOS 2, BREAK does not fail correctly, and this script will
cause the machine to grind to a halt!

6. This line forces the script to run itself again and again until
BREAK stops it.

Mastering AmigaDOS Scripts

B e e T i
Listing

.key command/a

.bra {

.ket }

status >env:stopper{$$} com={command}
break <env:stopper{$$} >nil: all ?

D 0 b WN =

execute halt {command}

Mastering AmigaDOS Scripts
e ————————}

Host-Chat

Synopsis: [EXECUTE] HOST-CHAT

Template: none

Path: S:

Requires: V1.3+

See also: REMT-CHAT

Type: Script

Brief: Read piped messages from remote terminal
Description

Implementing and experimenting with a dual-user system is fun.
Elsewhere | described some file-based messaging programs and in
this part, I'll take that a step further. You may recall those programs
waited for a specific time and checked for any pending messages.
However, it would be much nicer if messages could be instantly
display - like the chat system found in better BBSs; CIX for instance.
Although this is possible using pipes, there are few minor
limitations which are due to AmigaDOS's scripting language.

Users with one machine can try these examples by running two
shells at once. In these examples, the “host” Shell's prompt is “1>"
and the “remote” Shell’s prompt is “2>". Enter the two scripts HOST-
CHAT and REMT-CHAT and try the following. If you are trying this
on a single machine, you will probably find it easier to open two
Shells before proceeding. Also, make sure you enter the commands
in the correct Shell window.

1>RUN HOST-CHAT

2>RUN REMT-CHAT

1>ALIAS CHAT COPY * TO PIPE:B

2>ALIAS CHAT COPY * TO PIPE:A
The first two lines start the pipe-based chat system as an
asynchronous process. Once activated it cannot be turned off, but
the operation is completely transparent. Note also, both programs
must be run before an inter-shell conversation can take place. The
last two lines might seem a little strange, but rely on a feature of
ALIAS whereby aliases are local to the Shell process in which they

were created. In other words, “CHAT" in Shell 1 will execute the
command:

COPY * TO PIPE:B
and "CHAT" in Shell 2 will execute:
COPY * TO PIPE:A

Mastering AmigaDOS Scripts
S e N T ST T S T S ST,

This version of COPY may seem unfamiliar because the source file
is an asterisk — normally used as a wildcard character in other
systems. Under AmigaDOS, the * used in this way refers to Shell
window; specifically, take input directly from the keyboard and
copy it to the named pipe. When this command is executed, all
keyboard input is directed to the pipe. To return to the Shell, you
must enter the EOF (End of File) sequence by holding down CTRL
and pressing \. This forms the basis of the chat system.

Assuming you have started the chat scripts in two Shells as detailed
above, you can now start chatting. Try this:

1>CHAT

Hello World

Is anyone out there?

[Press CTRL+\ here]

1>
All being well, that message will appear instantly in the other Shell
window:

2>Hello World

Is anyone out there?
The same command can be repeated from the other Shell to reply
or send another message. Note the prompt (2>) will not appear in
the receiving Shell after the message. This is quite normal and does
not affect the Shell’s operation. Pressing return in the receiving
Shell will return a prompt. An interesting feature of AmigaDOS is

once you start typing, the chat system is disabled - it won't
interrupt half-way through entering a command line.

Line-by-Line

1. Defines an arbitrary label for the script to jump to when it
loops.

2. Serves two functions. First, if a message is waiting in the pipe,

it is displayed (typed) immediately. Second, if no messages
are waiting, TYPE halts until one appears. This is an action of
the pipe device — not the command.

3. The script only reaches this point after a message has been
posted to the receiving pipe (above) and displayed. After this
happens the script is sent back (via the label at Step 1) and
waits for the next message at Step 2.

Listing
1. 1lab start

2. type pipe:A
3. skip start back

Mastering AmigaDOS Scripts

HostRead

Synopsis: [EXECUTE] HostRead [time]

Template: time

Path: S:

Requires: \Y

See also: RemoteRead, Mail-2-Host, Mail-2-Remote

Type: Script

Brief: Read mail messages from the host terminal
Description

This system for reading your messages employed by Mail-2-Host
and Mail-2-Remote works - but it would be nicer to get the machine
to read them for you. HostRead and RemoteRead were devised to do
just that. They work in a similar fashion to the others, but take
more advantage of the Amiga's multi-tasking properties.

This script is an unusual one because it is designed to multi-task -
even though it starts its own tasks too. There are two ways of doing
this, the obvious way:

1>RUN EXECUTE HostRead

and the less obvious way:
1>NEWSHELL
1>RUN EXECUTE HostRead

In the second case, you start a new Shell process before starting
HostRead. This allows you to work as normal without the messages
suddenly appearing in the middle of your screen. Note however, the
second technique cannot be used on the remote terminal because
the new Shell window will still appear on the host’s terminal -
phew. Also, once this script has been started, it can only be stopped
by setting the StopltNow environmental variable. You can do this
thus:

1>SETENV StopItNow ON
e AmigaDOS 2 users only should enter:
1>ECHO >ENV:StopItNow "ON"

The actual value is arbitrary, but once this has been done, the
program will halt during its next loop. You may want to write an
alias to perform this function.

Line-by-Line

1. This defines the argument template for this script. Only one
argument can be supplied here, the time delay in minutes.
Unless you have a fast machine and a hard disk do not set this

Mastering AmigaDOS Scripts
e e g T Tt s

below 10 minutes. If no time limit is supplied, the script will
check messages every 30 minutes (defined at Step 4).

Redefine the bracket characters as before.
Sets the variable for the time limit if none is supplied to 30.

This label is supplied so the script has somewhere to return
to during looping. In fact, this script has been designed to
loop continuously until stopped; more of that shortly.

6. This line is identical to the one used in the Mail-2-Remote
program. It displays and removes the current mail messages.

7...9 Check for the existence of the StopltNow environment
variable. Actually, this could have been a temporary file
placed anywhere, but it is more convenient here. Note this
line is identical in both versions of this program - so once the
variable is set, both users will cease to get update messages.

10. Here the script is executed as a new process with the RUN
command. Now this might seem a little strange, but a minor
bug in AmigaDOS EXECUTE causes the SKIP at Step 12 to fail if
this isnot done!

11. This puts the script to sleep for the predetermined time -
default of 30 minutes in this case. You might want to change
this to seconds (by substituting SECS for the MINS switch) but
don't forget to change the default time value. If the delay is
too short the machine tends to get very tied up attempting to
read messages which simply aren’t there.

12. After the WAIT at Stepl1 times out. this forces the script to go
back and do it all again.

Listing

1. .key time

2. .bra {

3. .ket }

4. .def time 30

5. Lab Start

6. 1list >T:ItsForMe{$$} T:#?.rmt 1format "TYPE %s%s*nDELETE
%s%s*n"

7. if exists env:StopItNow

8. quit

9. endif

10. run execute T:ItsForMe{$$}

11. wait {time} mins

12. skip Start BACK

Mastering AmigaDOS Scripts

L]

InterDel

Synopsis: [EXECUTE] InterDEL <[pat=]dir|pattern> [ALL)
Template: pat/a,op

Path: S:

Requires: V1.3+

See also:

Type: Script

Brief: Interactive delete — asks before deleting each file
Description

The idea for this script is borrowed from the *WIPE command on
BBC DFS. (DFS was Acorn’s original Disk Filing System or DOS). It
works in very much the same way: it allows you to get a list of the
files one-by-one according to your pattern and just delete the ones
you want to. It is possible to add date windowing as in DEL but this
tends to clutter line #5 - LIST (which is complex enough as it is).
You might like to add this yourself however.

Line-by-Line

This line gets the user options. Only a pattern is required. If
you're lucky enough to have Workbench, the ALL switch can
be used.

Redefine bra and ket to { and }.

This line is not required for this example but is here because
some possible versions of this script do require it and it’s best
explained sooner rather than later. It is possible that you
might want to use command expansion and/or re-direction in
the script which LIST is about to create. This means you need
a standard .key header, plus .bra and .ket directives. This line
will write the necessary lines for you. In this example the
result looks like this:

.key i

.bra (

.ket)
I've used (and) in this standard header because { and } are
already being used by the main script.

The crux of this script is here. I've already shown how it’s
possible to create a script using LIST. Before explaining the ins
and outs of the line let’s just take a short look at the output
generated by this command:

l

Mastering AmigaDOS Scripts
T O NI A T skt B I T PO TS TR)

ASK "RAM:TempFile - delete y/N"
IF WARN

DELETE "RAM:TempFile"

ECHO "Deleted"

ENDIF

There’s nothing unusual about this script. Unless you consider
these five lines are generated for every single file matching
the pattern! This has the effect of generating a very long
linear (that's top to bottom) script. Also there is another slight
flaw in this - if the file is protected against deletion, the script
still says it was deleted; AmigaDOS will disagree and
complain.** AmigaDOS is right — the file wasn’t removed after
all.

But let's take a look at how the LFORMAT part of this line
works - the remainder is quite standard. This discussion is
quite complex so don't worry if you have to read it a couple of
times.

First, we can break it down by splitting it at every “*N"
| combination; remember this is where LFORMAT will break its
| output on a newline - just like ECHO. Already the script
begins to take shape:

5.1 "ASK *"%s%s - delete y/N*"*n
5.2 IF WARN*n

5.3 DELETE *"%s%s*"*n

5.4 ECHO *"Deleted*"*n

5.5 ENDIF"

5.1. The first quote (*) marks the start of the LFORMAT - this will
be thrown away. Next, the command outputs ASK and a quote
is escaped in with * so it is included in the output; this will
become the opening quote of the ASK statement. Now the
%s%s is expanded to the file and path of the current file. Next,
we add the message " — delete y/N". N is capitalised because
it's default. That is: assumed if you press Return. Finally, the
closing quote for ASK is escaped in with a *" and the linefeed
added with *n. This must be present on every newline in the
script.

5.2 Just adds IF WARN to the output file.

**Note: The way to cure this slight malady is to call another script
which does all this for you correctly. The problem with that
approach is speed - the line could have read:

list >>T:dele{$$} {pat} {op} FILES LFORMAT "EXECUTE IDEL-2

1o a0 " "
*"%s%S *

5.3 First adds DELETE then escapes a quote character so the %s%s

InterDel
j==—=—==—]

will be interpreted as a literal string; just in case someone has
used a space in a filename; also happens with files in Ram
Disk! Now %s%s is expanded again to the complete path and
filename. Finally the closing quote is escaped in with *"

5.4. This uses the techniques already described to add the
“DELETED" message.

5.5. The closing ENDIF. This must be included or the script will not
have anywhere to branch to. The closing quote is only
required by LFORMAT and not included in the output file. This
is fine on a 68030 based machine like the 3000, but it tends to
slow things down quite a bit on the humble 7Mhz A500s.
Why? Because for every file listed, EXECUTE has to expand a
new miniscript (called IDEL-2 in this theoretical example) and
that does take time.

Raises the failure level to the indestructible limit!
Executes the interactive delete script.

Assuming everything has gone according to plan, this
removes the script. You might want to omit this line and read
the example scripts for yourself.

Listing
1 .key pat/a,op
2 .bra {
3 ket }
4 echo >T:dele{$$} ".key i*n.bra (*n.ket)*n"
5 1list >>T:dele{$$} {pat} {op} FILES LFORMAT "ASK *"%s%s -

delete y/N*"*n IF WARN*n DELETE*"%s%s*"*nECHO
"Deleted"*n ENDIF"

6 failat 21
7 execute T:dele{$$}
8 delete T:dele{$$} quiet

Mastering AmigaDOS Scripts
S e e e e s e]

IntelliRes

Synopsis: [Execute] IntelliRes <([Script=]Scriptname>

Template: Script/a

Path: S:
Requires: V1.3+
See also:
Type: Script
Brief: Determine which commands should be made
resident
Description

Even with the latest release, a large number of AmigaDOS
commands are stored on disk. (Workbench 3.1 at the time of
writing). However, the RESIDENT command can be used to store
transient (disk-based) commands in RAM and share them as if they
were ROM based. If you use scripts a lot, making the required
commands resident at the start of a scriptis a real chore, especially
during development. This program takes the hard work out of
RESIDENT by working out which commands we're using and create a
simple script automatically.

It works on all versions from AmigaDOS 1.3 upwards (probably not
ARP though). This script is deceivingly simple because it writes a
script, which itself writes another script; almost like a friendly
virus.

Understanding this program completely requires a good knowledge
of AmigaDOS, so for the sake of those who are more interested in
what it does, here is a short explanation. You can start IntelliRes in
the following manner:

1>Execute IntelliRes S:ScriptName
Searching S:Scriptname

Please wait...

There will now be a long delay and a fair amount of disk thrashing
for 1.3 users (more on that shortly). During its first phase,
IntelliRes creates a script similar to that shown in Listing 2. The
pause will continue as IntelliRes runs Listing 2 and creates Listing 3
- the list of commands you need to make resident. All you have to
do is insert the result of Listing 3 at the head of your script. Strictly
speaking you should also add a set of RESIDENT... REMOVEs at the
end to clean up.

IntelliRes is not perfect and the human angle is required to a

IntelliRes
fm e e e S

certain extent. It is intelligent enough to work out which commands
are present in the C directory so it will work on most disks. But, it
cannot determine the difference between pure commands and dirty
commands (those which cannot be made resident). This much is up
to you.

It will occasionally become confused when it finds a sub-string
which appears to be a command. This is fixed partly by including a
space after the name in Step 7e of Listing 1 (every command must
be followed by a space but it is not perfect. One solution is to write
your scripts so every command starts at the beginning of every line
(I usually use indents). In this case you can modify Line 7 thus:

7. 1list >T:AutoRes c: 1lformat ";%s*nsearch >NIL: T:SearchMe

*"**n%s *" *nif not warn*necho >>T:ResIt *"Resident
%s%s*" *nendif "

Did you spot the difference? Here it is in detail:

search >NIL: T:SearchMe *"**n%s *" *n

The extra part is the “**n” just before %S. This causes SEARCH to
look for a carriage return character just before the command’s
name. Use whatever suits you best.

Line-By-Line

1. Defines a single required command argument which will be
the name of the script to process.

2-3. Change the default AmigaDOS bracket characters from < and >
to { and }. There are two reasons for this: partly because this
saves clashing with re-direction operators and partly because
I like them that way!

4. Copies the script to be processed to the Ram Disk - T: being a
logical assignment which usually resides in RAM. You should
also note the name of the destination file is forced as
“SearchMe". The reason for this will be explained shortly.

5. Creates the first line of Listing 3, overwriting any previously
created files with the same name. This also is necessary to fix
a feature (bug) in the >> (append) operator in the 1.3 Shell.
Note: RESIDENT should be moved for 2.0+ machines - it is
already in ROM.

6. Displays a short progress message to let the user know the
script is operating normally. The message contains the source
script’s full path and filename specified in the command line -
not the copy of it being processed.

7. This is the heart of this program - this one line creates the
program-writing, program Listing 2. Here's how it works. Let’s
assume the command being processed is C:DIR:

7a. LIST >T:AutoRes

Mastering AmigaDOS Scripts
[o = e e)

Calls the LIST command and informs it to send all its output
to a file called AutoRes; Listing 2 in other words.

7b. c:

Is the directory to be LISTed. Every command in the C:
assignment (usually SYS:C) will be listed using the format
string explained below.

7C. LFORMAT

introduces the quoted format string. Every file displayed by
LIST is processed using this string like this:
7d. ";%S*n
The resultant script requires the filename, then the path and
filename, so the first pathname must be discarded and that's
what this does. When %S is used once in LIST's LFORMAT
mode, it is replaced by the name of the file in the final output.
Used, twice the first occurrence displays the path, the second
| displays the filename and so on. The ;" is a comment, which
is ignored by AmigaDOS. Finally the “*n" part creates a new

line. At this stage the program consists of one line:
;C:
7e. search >NIL: T:SearchMe *"%s *" *n
This creates the next line of the program. The command’s
name appears at %S and " is used to force the inclusion of
quotes in the output string without confusing AmigaDOS. You
should notice there is a single space after the %S and this is
very important. "*n” adds a new line and the program now
looks like this:
;C:
| search >NIL: T:SearchMe "DIR "
7f. if not warn*n

Adds a conditional branch to the script which now looks like
this.

HH
search >NIL: T:SearchMe "Dir "
if not warn
7¢ echo >>T:ResIt *"Resident %s%s*"*n

Adds the next line, which is notable for escaped quotes and
the inclusion of the forced "PATH/Filename” combination. This
was the reason for adding ;%S earlier. If this had not been
done %S would be out of step and the line would have
‘ received “filename/PATH". (This fix is for the sake of

AmigaDOS 1.3; it could have been achieved differently in
_ AmigaDOS 2.) The program is now all but complete and looks
| like this:

IntelliRes
R,

H(3H
search>NIL: T: SearchMe "Dir "

if not warn

echo >> T:ResIT " Resident C:Dir"
7h. endif"

Completes the conditional branch and ties the whole thing
together. What you may not have realised yet is this program
is generated for every single command in the C directory! I'll
explain what it does shortly.

8. Runs the script created at Step 8 and creates the final output
ready for inclusion in another program.

9-10.Ties the whole thing together so you know something
happened! This displays a short message and displays the
script fragment created at Step 8.

Line-By-Line: AutoRes

1. Does nothing! This is some detritus from LIST that got thrown
away.
2. Searches the copy of the source script for any occurrences of

the command name - DIR in this case. (See how it works, yet?)
If the command is found, search CLEARS the WARN flag.

3. Tests if the WARN condition is not set. If it was, execution
branches to Step 6. If the search string was successful, the
command is in the script and needs to be made resident,
which is taken care of...

4. ...here. Just refresh your memory and look back to Step S in
Listing 1. That created a file which this command is going to
append (>>) its output to; and its output consists of RESIDENT
and the path/filename combination of the command just
searched for. A complete path is required by RESIDENT, by the
way.

Terminates the IF...ENDIF construct.
This listing repeats for every command in the C: assignment.

Listing 1: IntelliRes

.key script/a

.bra {

.ket }

copy "{script}" T:SearchMe

echo >T:ResIt "Resident c:Resident"”

o O & W N =

echo "Searching {script}*nPlease wait...

156

Mastering AmigaDOS Scripts
I e e e e e e

7. 1list >T:AutoRes c: lformat ";%s*nsearch >NIL: T:SearchMe
*"%s *" *nif not warn*necho >>T:ReslIt *"Resident %s%s
ADD*"*nendif"

execute T:AutoRes
echo "Command file now available in T: as the following:"

10. type T:resit

% d de %k dk de g ok sk de Kk sk sk Kk vk sk sk sk dk sk sk ke dk sk ke dk sk %k ok sk ke ok sk ke ok ok ok ko ok ok ok ok ok ok

Listing 2: AutoRes

i. ;C:

2. search >NIL: T:SearchMe "Dir "
3 if not warn

4. echo >>T:ResIt "Resident C:Dir ADD"
5 endif

6

[etc.]

| Listing 3: ResIt

| 1. Resident C:Resident

' 2. Resident C:Search
3. Resident C:Type

[etc.]

F-Y

Mastering AmigaDOS Scripts
—

LD

Synopsis: LD

Template: na

Path: na

Requires: V1.3+

See also: TD, ListD

Type: Alias

Brief: Select a memorised directory

Definition: ALIAS LD CD DIR_[]: *"

Description:

This command might not seem very flash, but when you consider it
can select from over 90 previously memorised directories... In fact,
its the other part of TD - see later - which memorises the current
directory. Here is a sample of TD in operation:

1>CD SYS: ; change directory to root

1>TD 0 ; mark root as directory O

1>CD Code:LC/Examples/Headers/Include/Devices
1>TD 1 ; mark this as directory 1 |
1>LD 0 ; go back to SYS: |
1>CD

Workbench3.0:

1>LD 1 ; go back to 1

1>CD |
Code:LC/Examples/Headers/Include/Devices
1>CD

Workbench3.0:Fonts

1>LD 1

1>CD
Code:LC/Examples/Headers/Include/Devices

You use this alias to switch back to a directory previously saved by
TD. Neat isn't it. See TD for a full description of how this works.

157

Mastering AmigaDOS Scripts

~ ListAll

i Synopsis: (EXECUTE] LISTALL ([dir=]<directory>]]
|

Template: dir

Path: S:

Requires: V1.3+

See also:

Type: Script

Brief: To provide an ALL switch for LIST (1.3)
Description

This is another of the support scripts that bridges the gap between
AmigaDOS 1.3 and AmigaDOS 2. It's a very apt demonstration of
recursion at work - although only a few lines long, it can examine
every file and every directory on a hard disk. It can be improved of
course, but for this example | wanted to show how much recursion
cando in a few short lines. This apparently simple script undergoes
some very complex looping, so I'll leave the fancy bits for later...

Line by line

1. You've met this many times before - there’s nothing sinister
| about it here. This lists the contents of the current directory
| or the directory specified in “{dir}". That's a clue to how this

works.

2-3. For the record, these set bra and ket to { and }.

4. Lists the current directory: determined by “dir".

5. You've met lines similar to this several times before too. So
what makes this one so special? Let's take a look at what it
does:

First, this creates a new file — let's call it L1 for the sake of
argument. Next, all the directories matching the pattern “{dir}"
are listed and sent to that file. The LFORMAT string is used to
create a recursive script — this could look something like this -
the order is unimportant:

execute ListAll "SYS:DEVS"
execute ListAll "SYS:S"
execute ListAll "SYS:System"
execute ListAll "SYS:C"

6. This calls the script created at Step 4 - forcing ListAll to call
itself. This also acts as an exit (or unwinding) point for the

LiseAll
RS

script because recursion will only occur if the directory listed
at Step 4 contains sub-directories. If not, the script is exited,
and control resumes in the script which called it. This will be
a temporary script held in T.. When control returns to the last
level and there are no more directories left to list, the script
finishes.

All this may seem a bit confusing — but it's very easy once you
get the hang of the idea.

Programmers often refer to the depth of recursion. There's
nothing mysterious about this - it's just the number of times
the routine has called itself in direct succession. We've also
used the term “unwinding”. These two terms mean very much
the same thing: as the depth of recursion increases, the script
is winding up; as the depth decreases, it is unwinding. This is
better illustrated by analogy - here's one you can try for
yourself that's so simple it could have come from the annals
of Blue Peter:

A: Get a piece of string and make five knots in it, each about
two inches apart. Each knot represents a directory
somewhere in the hierarchy.

B: Grasp the first knot (the main directory) between your
thumb and index finger and hold the string tight. This is
what is happening when the program starts - it knows
about the first directory and has a list of the four sub-
directories it contains.

C: Wind the string around your finger once (loosely, this
isn’t worth losing a pinkie over). This is what happens
when the script has called itself once. It has listed the
sub-directories (knots) contained by the first sub-
directory (knot).

D: This is the fiddly bit. Carefully untie the knot you have
just wound up to. In effect this is what the program does
- it knows it has passed this point and can never return
to it. When a subscript is executed, control always returns
to the line after the one calling EXECUTE. It doesn’t matter
to AmigaDOS if the script just happens to call itself!

E: Repeat steps C...D until you run out of knots. This is what |
happens when the program runs out of sub-directories to
list. All it can do is unwind the string until it comes to a
point where it finds more directories or has to stop.

Mastering AmigaDOS Scripts

=t
Listing

1 .key dir

2 .bra {

3. .ket }

4 list "{dir}"
5

list >T:L{$$} "{dir}" dirs lformat "execute ListAll
* "355955* nn

6. execute T:L{$$}

Mastering AmigaDOS Scripts
- _ _ _ _ _ __ _ _ _ _— _}

ListD

Synopsis: (EXECUTE] ListD
Template: dum

Path: S:

Requires: VI1.3+

See also: TD, LD, WD
Type: Script

Brief: List directories memorised by TD

Description

This script is a support routine for the LD/TD alias couplet. TD
uses ASSIGN to take a snapshot of the current directory and since
these are added to a list, you can end up with a large number. This
script just lists the assignments belonging to TD/LD and lists the
labels associated with them. For example:

1>ListD

Label Directory

0 Workbench3.0

1 Code:LC/Examples/Headers/Include/Devices
2 Code:LC/Examples/Headers
c Workbench3:C

1>D 3

1>CD

Workbench3:C

1>LD 1

1>CD

Code:LC/Examples/Headers/Include/Devices
Line-By-Line

1-3. Comprise a simple header. Note that the KEY variable is just a
dummy: but it is required to trigger the pre-parser (so that
things like {$3} are expanded correctly).

4. Sends the current assignment list to a temporary file: we'll call
it “gwe0” here.

5. Searches the assignment list for names starting with “DIR_".
This is a special string created by TD as a prefix to the
assignment label. In other words, this line finds just those

Mastering AmigaDOS Scripts
b e)

assignments we're interested in: for speed, the script could
stop here! The output is sent to “qwel”

Creates a simple EDIT macro and saves it as “ED"

Edits the temporary file created by Step 5 and makes a new
file, “qwe2". The macro used here removes the "DIR_" from the
start of each line: leaving just the label intact. The macro will
cope with up to 99 assignments which should be enough for
the most demanding user.

8. Sorts the label file. This isn’t necessary, but it helps to keep
things in order for quick reference. If this line is omitted, the
labels appear in the order they were created.

9. Displays the header. The extra spaces are required after the
tab (*e[l) to take account of the “DIR_" that was removed.

10. Displays the list of labels.
11. Deletes the temporary files.

Listing

1 .key dum

2 .bra {

3 .ket }

4 assign >t:qwe0{$$}
5 search >t:qwe1{$$} t:qwe0{$$} “DIR_* nonum
6. echo “99(4#;n)” to=ed{$$}
7 edit t:qwe1{$$} t:qwe2{$$} with ed{$$} ver=nil:
8 sort t:qwe2{$$} t:qwel{$$}
9
1
1

echo ‘“Label*e[lI Directory”

- O

. type t:qwel{$$}
. delete >NIL: t:(qwe(0|1|2){$$}) T:ED{$$}

Mastering AmigaDOS Scripts
TR et S R e S e S S e T

ListDel

Synopsis: (EXECUTE] ListDEL <[pat=]dir|pattern> [ALL]
Template: none (v2+ for ALL switch)
Path: S:

Requires: V1.3+
See also: ENABLE

Type: Script
Brief: To remove a list of files in one operation (date
windowed)
Description

The basic idea for this script is borrowed from the *DESTROY
command on the BBC micros Disk Filing System. This allows you to
get a list of the files you are about to delete before the process
starts. You must set a flag to enable this operation because the
script is capable of deleting not-deleteable files listed separately if
some exist. The ENABLE script is used with this script. You must
enable the script every time you wish to use it - this feature
prevents accidents - remove it at your own risk!

Line-by-Line

1-5.

6-8.

9-11.

12.

13.

14.

Form a standard header for this type of script. Note that the
date windowing feature may need to be modified for
machines that lack a battery-backed RTC: a basic 1200 for
instance.

Check for the existence of the global “Jammer” variable. If it
does not exist the script has not been enabled and stops
immediately. This line is not required for AmigaDOS 2 - if the
modifications noted under 7 are implemented.

If one of these lines is encountered the script stops at once,
the operation aborted, and the Jammer flag cleared. Under 1.3
and 1.3.2 this line checks the variable Jammer and makes sure
it is set off — that is, not jammed! For AmigaDOS 2 this line is
simply:

if $JAMMER NOT EQ "“OFF"

This initialises a variable which will be used later on in the
script.

Creates a file which contains the files specified by pattern and
windowed by date.

Searches the file created at 5: for any files which have been

Mastering AmigaDOS Scripts
S S T S e e e =]

protected against deletion. It keys on "-" in REW- 01-Jun-90.
This has been done because it’s possible the file does not have
default flags. For example "RWE-" would work unless the
executable flag was missing too! It is far less likely that any
files have this string as part of their name. This line returns
WARN if no files are protected in this way. If any are found,
they are listed.

15-21. Tests if any protected files are found and continues to
warn the user about them. Any such files will be deleted by
this script!

22-24. If the script gets here, the user has been warned that
some files selected have been protected against deletion and
has agreed to go ahead in any case. This line sets a variable to
let the rest of the script know.

25. Tests to see that some files actually do match the pattern and
displays them. If no matching files are found a WARN
condition appears.

26-29. If no matching files are found (SEARCH returns WARN),
an error message is displayed and the script exits.

30-33. This is the user’s last chance to change his/her mind.
After this point there is no return, no second chance - all files
are going to be removed. Returns a WARN if there is
agreement to go ahead.

34. This tests if there are delete protected files matching the
supplied pattern and the user really did want to delete them.
If so, execution continues at Step 35. In AmigaDOS 2 this can
be written thus:

if $DELS{$$} EQ "ON"

35. This sets up a script which will set the “deleteable” protection
bit on every file before deleting it. For AmigaDOS 2 this line
can be written:

list >T:dele{$$} {pat} {opt} since={since} upto={upto}
files 1format "DELETE *"%s%s*" FORCE"

36-38. This sets up a delete script for all files matching the
pattern (and windowed within the dates if any were specified).

39. Does the dirty bit of running the deletion script just created.

40. If the scriptreaches this pointithas finished normally, so this
makes sure that it jumps out neatly without issuing the
standard error code.

41-42. The bitter end: ensures that, no matter what has
happened, the “Jammer” variable is reset so “"ENABLE" has to
be run again before this script can be re-run.

Listing

o N OO 0 s W N =

- -
O e I

12.
13.

14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

ListDel
FRFERERETIs

.key pat/a,since/k,upto/k,opt
.bra {

.ket }

.def since 01-Jan-78

.def upto Today

if not exists env:jammer

skip end

endif

if <env:JAMMER >NIL: NOT EQ "OFF" ?
skip end

endif

setenv DELS{$$} OFF

list >T:dele{$$} {pat} {opt} since={since} upto={upto}
files nohead

search "T:dele{$$}" "- " nonum
if not warn

echo "*n*e[33mWARNING*e[31m: These files are marked
against deletion!"”

ask "They will be deleted! Do you wish to continue
y/N?u

if not warn

skip end

else

setenv DELS{$$} ON
endif
endif
echo ""

search T:dele{S} ":" nonum

if warn

echo "Hummm - no files seem to match pattern?”
skip end

endif

ask "*nDelete y/N?"

if not warn

skip end

endif

if <env:DELS{$$} >NIL: EQ "ON" ?

Mastering AmigaDOS Scripts

35.

36.
37.

38.
39.
40.
41.
42.
43.
44.
45.

list >T:dele{$$} {pat} {opt} since={since} upto={upto}
files 1format "PROTECT *"%s%s*" +d*nDELETE *"%s%s*""

else

list >T:dele{$$} {pat} {opt} since={since} upto={upto}
files 1format "DELETE *"%s%s*""

endif

execute T:dele{$$}

echo "All gone now..."

skip fini

lab end

echo "Jammed... access denied"
lab fini

setenv Jammer ON

Mail-2-Host

Synopsis: [EXECUTE] Mail-2-Host [message=<Message>]

Template: message,name/k

Path: S:

Requires: V1.3+

See also: Mail-2-Remote

Type: Script

Brief: Send a message to the host AmigaDOS terminal
Description

This script is broadly similar to its companion script, Mail-2-
Remote. See that command for a full description of the techniques

involved.
Listing
1. .key message,name/k
2. .bra {
3. .ket }
4. .def name ItsForYou.rmts
5. list >T:ItsForMe{$$} T:#?.hst 1lformat "TYPE %s%s*nDELETE

)]

8. quit

10.
11.
12.
13.
14.
15.
16.
17.
18.

Mastering AmigaDOS Scripts
L - _— _— — — _ _ _ _ _}

[Name=<name>]

%s%s*n"
execute T:ItsForMe{$$}

echo >>T:{name}.rmt "{message}"
if "message" EQ ""

endif

if exists T:{name}.rmt

ask "Message pending. Delete y/N?"
if not warn

quit

endif

endif

echo >T:{name}.rmt "“Posted on: noline
date >>T:{name}.rmt

echo >>T:{name}.rmt “{message}"

Mastering AmigaDOS Scripts

Mail-2-Remote

Synopsis: (EXECUTE] Mail-2-Remote <[message=]Message>
[Name=<name>]

Template: Message,name/K
Path: S:
Requires: V1.3+
See also: Mail-2-Host
Type: Script
Brief: Send a mail message to a remote AmigaDOS
terminal
Description

While Bruce Smith and | were compiling the original Mastering
AmigaDOS 2, we often found we needed to use the same machine at
once. The simplest method would have been to buy another A3000,
but at the time Amiga 3000s were in short supply and very
expensive. The machine has since been replaced by the even more
expensive A4000/40: such is progress.

For the sake of speed, the only solution was to connect two
machines back to back using AmigaDOS 2 on both. Impossible? Well
it might seem like that - especially when you realise the second
machine need not be an Amiiga at all! In fact, just about any small
computer system you happen to have lying around can be pressed
into service - you will need the following items.

Remote (parasite) machine

* A small computer with monitor and serial interface
* A null modem cable with connections for the Amiga (see note)
* A simple terminal package for the second micro

e An assistant

Host (fileserver) machine

e Any Amiga
e Either: AmigaDOS 1.3 or better
* or: AmigaDOS 1.2 and AUX from the Fish PD collection

Note: The Amiga 1000 and A2000 models have a non-standard
serial interface. Although it will be possible to use these, you must
get the correct lead as a standard cable fits the printer port. This

Mail-2-Remote
T EChr g BT

does not affect the B2000 machine.

Typically you can use: other Amigas, Atari STs, Amstrad PCW with
serial option, MTX 500, Acorn BBC B, and most cheap PC clones. If
you do not have any of these, you may find a cheap CP/M machine
at amateur (HAM) radio rallies. HAMs use these for packet radio but
a suitable second-hand setup can be had for as little as 30 quid.

Whatever you do, try not to spend too much money and read this
chapter in its entirety before parting with any cash. Using the
Amiga in this way is simple but raises some interesting problems.

Important! Never, ever, plug or unplug a serial lead without
first switching both computers off. Failure to comply with this
caution can cause serious damage to your hardware and bank
account. The authors and publisher cannot accept claims for
damage or injury however caused, arising from following the
instructions detailed here.

Getting Started

Interfacing two machines in this way is relatively easy, but once the
two machines are connected, you must decide on a serial protocol.
That is the way the machines will talk to each other. It's no use
having the Amiga speaking Serbo-Croat at the remote and the
remote trying to answer back in ancient Greek. The result will look
something like this:

Toaxke e T0 youp Aeadep

Ao oot ponv?
Protocols in serial communications are just like language - so long
as the two speakers agree to speak the same tongue there is no

problem. There are four main parameters to consider here which
are:

Baud rate The transmission speed. 300, 1200. 2400. 4800
Word length The number of bits in each data byte. 7 or 8

Parity Error checking. YES or NO

Stop bits The number of bits to send after each data byte 1, 1.5 or 2

Errors in these are what give rise to garbage.

For the purposes of this type of communication, a fairly fast data
rate is required. In practise some setups refuse to work at speeds
exceeding 4800 baud, the best speed can be achieved through trial
and error. The other parameters should be set to 8 data bits, no
parity and 1 stop bit. (Comms nuts refer to this as 4800-8N1.) You
should set these at the Amiga end with the Preferences tool.

Mastering AmigaDOS Scripts
ACEamnseTen s e e T TR]

However, if your remote computer’'s terminal software does not
support this (for instance a Prestel™ emulator) you can try 7 data
bits and even parity.

Testing 1-2-3

Once the computers are configured correctly you can perform the
initial test. Open a Shell on the Amiga and enter the following
(remember not to type the 1> part this just shows where each new
line starts):

1>ECHO >T:msg "Hello World"
1>COPY T:msg to AUX:

alternatively you can enter:

1>ECHO >AUX: “Hello World"

However, the latter method has been found to lock the AUX device
thus preventing two way communication. The remote computer will
echo the message "Hello World". You are now ready to enter the
world of the multi-user Amiga. Note, if at any time the Amiga or the
remote terminals freeze you may have to reset the machine.

Now enter:

1>NEWSHELL AUX:

1>

Nothing should happen at the host machine (your Amiga) instead
the new shell will start on the remote terminal. Its screen will look
something like this:

New shell process 2

1>

Now ask your assistant to enter LIST on the terminal. This will
provide them with a listing of your Workbench disk or the
currently selected volume (disk). The LIST command is usually left
resident in the 1.3 Startup-sequence and this avoids troublesome
disk swapping if you only have one drive. This is a nuisance in any
case, but when two people are sharing one machine it can become a
nightmare of Orwellian proportions.

Problems, problems...

Before going any further, it is worth noting this technique is
anything but perfect: at least it's cheap. The main problem is it only
works with commands that only affect the CLI or Shell window. In
other words, programs which rely on the Intuition (and that
includes the ED editor) will not work. Any Intuition programs
launched on the terminal appear on the host machine - usually
when the operator is in the middle of something!

Mail-2-Remote
[T e e s ST

Actually, it can be quite amusing to install a beginner on the Amiga,
launch a Workbench hack such as Viacom from the remote and
watch them squirm! This is because the remote terminal is purely
operating as a keyboard and screen - not as a separate computer.
Because of this it is not strictly correct to call the host Amiga a
network fileserver. Nevertheless, there is a vast range of CLI-based
commands - not just AmigaDOS ones - which do work correctly.

What next?

At this point you should be able to control many aspects of your
machine remotely from your old hardware, so that's alright. But
what about sending messages between the two machines? In a real
situation the two terminals could be rooms apart - so chatting is
out of the question - or is it? I've already mentioned the remote
terminal is, in reality, just an extension of the existing machine, so
provided you can send messages between two Shells, you can send
messages between the two machines.

The AmigaDOS 1.3 release saw the inclusion of FIFO pipes written
by Matt Dillon and these provide one method of communication
between Shells. For now though, I'll concentrate on a different
method. Each has pros and cons but this serves as an interesting
introduction into the use of files as they compare to pipes. Listings
1 and 2 are the command scripts used to communicate using a form
of Email, that is: you leave messages for the other party which can
be collected later. The two programs are almost identical so I'll just
describe Mail-2-Remote here.

Line-by-line

1. This firstline is very important because it determines how the
script will react to command lines. In this case, the script is
given two parameters - a message and a filename. As you will
see, the script usually determines its own filenames but you
can override this feature by entering a name here. You must
enclose the message body text in quotes (speech marks) or the

script will fail. Typical examples might look like this:
1>mail-2-remote "Hi Bruce! Nice weather huh?"
1>mail-2-remote "01' man river" name=river
2...3 Set the bracket characters to { and } respectively. You may

remember these default to < and > which conflicts with the
redirection operators used extensively in this program.

4. This line comes into effect if no value is supplied to the name
(filename) parameter. The default name is "[tsForYou.hsts".

5. This line (which makes use of my favourite command) is used
to read and delete any new mail messages from the remote
terminal. It's very complex so we'll break it down into its

172

Mastering AmigaDOS Scripts

component parts:

5.1 list

The LIST command itself

10.

11.

12.

5.2 >T:ItsForMe{$$}

Names the destination script file which is created at 5.4. The
file will be place in the T: assignment (usually RAM:T) and
called ItsForMe[XX], where XX is the process number of the
current Shell; this allows the script to create a unique name

for itself in the multi-tasking environment.
5.3 T:#2.rmt

Selects any mail messages in T:. which have been sent from the
remote. This is done using the AmigaDOS “"everything"”
wildcard #? with the extension .RMT. The .RMT extension is
added to every message written by Mail-2-Host. This program

does much the same thing at step 10 using the extension .HST.
5.4 1format "TYPE %s%S*nDELETE %s%s*n"

Creates a temporary script program to read and remove the
current messages. Assuming the remote's operator has used
the name option to create a message called hello, the
resulting program would look like this:

TYPE T:hello.rmt
DELETE T:hello.rmt
This runs the script created at Step 5, reading any pending

messages and deleting them afterwards. This is done to
prevent a lot of useless files jamming up the T: assignment.

. These steps are used to determine if you have actually

entered a message - if not, the program stops. This allows you
to check for mail periodically. (Thanks to the nature of the
Amiga, it is possible to design a special version of the Mail-2-
system which will periodically check for incoming mail after a
short time - more of which later.)

This determines if a message file already exists with the same
name. This means the other terminal has not yet read the

message so you are given the option to leave or update it...

...here. Note the default operation (if you just press Return at
the prompt) is to leave the message untouched. As an aide-
memoire, the y/N? prompt indicates this with a capital N.

This determines what happen at the ASK statement (Step 11).
ASK sets the WARN condition if Y was pressed and clears it
otherwise. By negating the action of IF, with the NOT switch,

Mail-2-Remote
ey e = 157

the script branches to 14 when you enter Y.

13. If control reaches this point the script terminates
immediately.

14...15 Close the two IF...ENDIF constructs opened at Steps 10
and 12 respectively.

16...18 These lines create a compound message using the
current time to show when the message was posted. This
allows the receiving party to determine when the message was
posted. Note the use of the append redirection operator ">>".
Under AmigaDOS 1.3 and above, this tacks the output of any
command onto the end of an existing file.

Listing
1. .key message,name/k
2. .bra {
3. .ket }
4. .def name ItsForYou.hsts
5. list >T:ItsForMe{$$} T:#?.rmt 1lformat "TYPE %s%s*nDELETE

%s%s*n"

6. execute T:ItsForMe{$$}
7. if "message" EQ ""

8. quit

9. endif

10. if exists T:{name}.hst
11. ask "Message pending. Delete y/N?"

12. if not warn

13. quit
14, endif
15. endif

16. echo >T:{name}.hst "Posted on: " noline
17. date >>T:{name}.hst

18. echo >>T:{name}.hst "{message}"

173

Mastering AmigaDOS Scripts

MD

Synopsis: MD <name>

Template: na

Path: na

Requires: V1.3+

See also: DEL

Type: Alias

Brief: Short name for MAKEDIR

Definition: ALIAS MD MAKEDIR

Description:

This alias is not included for padding (as it might seem to be) but it
has a very serious us. MD is the MS-DOS command for MAKEDIR and
MS-DOS users will feel much more at home with AmigaDOS if the
command works like this.

Mastering AmigaDOS Scripts
s e e e)

MemBar

Synopsis:

Template:

Path:

Requires:

See also:

Type:
Brief:

Description

Called from Workbench

V2+
FreeMemP, UsedMemP, MemBar
Script

Show available memory as a bar graph

This program is similar to BarClock and uses many of the same

procedures.

Line-by-Line

MemBar

1-3. Comprise a standard IconX script header.

4-6. Makes some essential commands resident.

7. Sends the complete available output to a file, T#.
8. Writes the EDIT macro to extract the total amount of CHIP
memory fitted to the machine. It translates thus:
d Delete the title line
25# Delete the first 25 characters
10> Skip over 10 characters (total CHIP)
20# Delete to end of line
n Next line
2d Delete the FAST and Total lines

9. Writes the EDIT macro to extract the total amount of FAST
memory fitted to the machine. It translates thus:

2d

25#
10>
20#

Delete the title and chip lines
Delete the up to the total Fast fitted
Skip over the total fast

Delete to end of line

176

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.

23.

Mastering AmigaDOS Scripts
T T e Py e e

n Move to the total line...

d ...and delete it
Writes the EDIT macro to extract the total amount of memory
fitted to the machine.

3d Delete up to the total line

25# Delete up to the total amount of RAM

10> Skip over it and...

20# ...delete the remainder of the line

Creates a global CHIP# with the total amount of CHIP memory
fitted. (Macro from Step 8.)

Creates a global FAST# with the total amount of FAST RAM
fitted. (Macro from Step 9.)

Creates a global TOTAL# with the total amount of memory
fitted. (Macro from Step 10.)

Multiplies the total amount of CHIP by 10 and stores the
result in CHIP#.

Multiplies the total amount of FAST by 10. Result is stored in
FAST#.

Displays the "Percentage” axis.

Creates the editable bar of spaces. This will be used to create
the bar graphics.

Marks the start of the repeating loop.

Positions the cursor at the top-left of the window and makes it
invisible.

Gets the amount of CHIP memory free using a snapshot
(TAVAIL CHIP") and multiplies the effective result by 1000 by
adding 000. This value is divided by the amount of CHIP fitted
(to get the percentage) and halved (for graphing purposes).
The result is sent to the global, C#.

Gets the amount of FAST memory free using a snapshot
("AVAIL FAST ") and multiplies the effective result by 1000 by
adding 000. This value is divided by the amount of FAST
fitted (to get the percentage) and halved (for graphing
purposes). The result is sent to the global, F#.

Gets the amount of memory free using a snapshot ("AVAIL
TOTAL ") and multiplies the effective result by 100 by adding
00. This value is divided by the total memory fitted (to get the
percentage) and halved (for graphing purposes). The result is
sent to the global, T#.

Checks if the global C# is the same as the local, C. If not,
control passes to Step 24; otherwise it jumps to Step 27. This

MemBar

T
function prevents the bars “flashing” on every run.

24. Positions the cursor ready to print the amount of CHIP free,
clears the line and displays: CHIP:.

25. Uses ECHO's string slicing feature to output a bar proportional
to the percentage of CHIP Ram in use. (A value of 50 is the full
length of the scale, or 100%. Fifty characters is quite enough
for an accurate(ish) display and is why the percentage ratings
were halved above.)

26. Copies the current setting of C# to C, memorising it for future
runs.

27. Terminates the IF...ENDIF construct from Step 23.

28. Checks if the global F# is the same as the local, F. If not,
control passes to Step 29; otherwise it jumps to Step 32. This
function prevents the bars “flashing” on every run.

24. Positions the cursor ready to print the amount of FAST free,
clears the line and displays: FAST:.

25. Uses ECHO's string slicing feature to output a bar proportional
to the percentage of FAST RAM in use.

26. Copies the current setting of F# to F, for future runs.

27. Terminates the IF...ENDIF construct from Step 28.

33. Checks if the global T# is the same as the local, T. If not,
control passes to Step 34; otherwise it jumps to Step 37.

34. Positions the cursor ready to print the amount of CHIP free,
clears the line and displays: CHIP:.

35. Uses ECHO's string slicing feature to output a bar proportional
to the total amount of RAM in use.

36. Copies the current setting of T# to T for future runs.

37. Terminates the IF...ENDIF construct from Step 33.

38. Waits for a second. You might want to increase this on slower
machines.

39. Re-starts the loop from scratch.

40. Is some information only used by WX.

Listing

1. .key dummy

2. .bra {

3. .ket }

4. resident c:avail

5. resident c:wait

6. resident c:eval |

177

178

10.
11.
12.
13.
14.
15.
16.

17.

18.
19.
20.

21.

22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

Mastering AmigaDOS Scripts
i e e e e e T e)

avail >t:t{$$}

echo >t:ed1{$$} "d;25#;10>;20#;n;2d" ; extract CHIP
echo >t:ed2{$$} "2d;25#;10>;20#;n;d" ; extract FAST
echo >t:ed3({$$} "3d;25#;10>;20#" ; extract TOTAL
edit t:t{$$} to env:CHIP{$$} with t:ed1{$$}

edit t:t{$$} to env:FAST{$$} with t:ed2{$$}

edit t:t{$$} to env:TOTAL{$$} with t:ed3{$$}

eval $chip{$$} *10 to env:chip{$$}

eval $fast{$$} *10 to env:fast{$$}

echo " (V560600000 Q0 0000060 Ak 50

echo >env:bar{$$} "

lab start
echo "*e[2;0H*e[0 p" noline

eval (“avail chip 000/$chip{$$})/2 1format "%n" to
env:c{$$}

eval ("avail fast 000/$fast{$$})/2 1lformat "%n" to
env:f{$$}

eval ("avail total 00/$total{$$})/2 lformat "%n" to
env:t{$$}

if $c{$$} NOT EQ $c

echo "*e[40m*e[2;0H CHIP:*e[K*e[41m" noline

echo "$bar{$$}" first 1 len=$c{$$} noline

set c $c{$$}
endif

if $F{$$} NOT EQ $f

echo "*e[40m*e[3;7H*e[K*e[3;0H FAST:*e[42m" noline
echo "$bar{$s$}" first 1 len=$f{3}

set f $f{$$}

endif

if $t{$$} NOT EQ St

echo "*e[40m*e[4;7H*e[K*e[4;0HTOTAL:*e[43m" noline
echo "$bar{$$}" first 1 len=$t{$$}

set t $t{$$}

endif

wait 1 secs

skip start back

s WX:WINDOW=WINDOW=con:0/0/190/60/Memory
Gauge/SMART/NOSIZE

Mastering AmigaDOS Scripts
faaaae— s S==- = ———x}

MemFreeP

Synopsis: Called from Workbench

Template:

Path:

Requires: V2+

See also: MemlInK, MemUsedP, MemBar

Type: Script

Brief: Show available memory as a percentage of total

Description

This script is a development of some of the others presented
earlier, but it's a fair bit more complex. The reason is that while
AVAIL can show the total amount of memory FREE as a single result,
it cannot show the total amount fitted: except in tabulated form
thus:

1>AVAIL

Type Available In-Use Maximum Largest
chip 1974040 122088 2096128 1960864
fast 1561392 1060048 2621440 1555064
total 3535432 1182136 4717568 1960864

Of course, your machine will probably look completely different to
this: but the effect is the same. To get a percentage of memory free
we have to divide the total free by the maximum available and
multiply by 100. For example, for CHIP in this example:

1974040/2096128*100 = 94.2%

From AmigaDOS, this calculation is:
1>EVAL 1974040/2096128*100

Umm... The reason is AmigaDOS does some internal rounding and
the fractional part of “1974040/2096128" is thrown away before the
result is multiplied by 100. In fact, we can cheat and just add a
couple of zeros on the top of the fraction and come up with this:

1>EVAL 197404000/2096128

94
Much better. The other problem is how do you get the values out of
the tabulated output from AVAIL. This is neatly solved with some
edit macros described below.

179

Mastering AmigaDOS Scripts
—

MemFree

Line-By-Line
1-3. Comprise a standard IconX script header.
4-6. Makes some essential commands resident.
7. Sends the complete avail output to a file, T#.
8. Writes the EDIT macro to extract the total amouit of CHIP
memory fitted to the machine. It translates thus:
d Delete the title line.
25# Delete the first 25 characters.
10> Skip over 10 characters (total CHIP).
20# Delete to end of line.
n Next line.
2d Delete the FAST and Total lines.
9. Writes the EDIT macro to extract the total amout of FAST
memory fitted to the machine. It translates thus:
2d Delete the title and chip lines.
25# Delete the up to the total Fast fitted.
10> Skip over the total fast.
20# Delete to end of line.
n Move to the total line...
d ...and delete it.
10. Writes the EDIT macro to extract the total amount f memory
fitted to the machine.
3d Delete up to the total line.
25# Delete up to the total amount of RAM.
10> Skip over it and...
20# ...delete the remainder of the line.
11. Creates a global CHIP# with the total amount of CHP memory
fitted. (Macro from Step 8).
12. Creates a global FAST# with the total amount of FAST RAM
fitted. (Macro from Step 9).
13. Creates a global TOTAL# with the total amount «f memory

MemFree P

fitted. (Macro from Step 10).

14. Multiplies the total amount of CHIP by 10 and stores the
result in CHIP#.

15. Multiplies the total amount of FAST by 10. Result is stored in
FAST#.

16. Marks the start of the repeating loop.

17. Positions the cursor at the top-left of the window and makes it
invisible.

18. Gets the amount of CHIP memory free using a snapshot
("AVAIL CHIP) and multiplies the effective result by 1000 by
adding 000. This value is divided by the amount of CHIP fitted
and the result displayed as a percentage. AmigaDOS sees the

line like this after expansion (assuming Shell #5):
eval 1974040000/$chip5 lformat “CHIP %n percent free *n”

Note you can't use the “%" symbol because this confuses EVAL's
LFORMAT parser.

19. As 18 for FAST memory.

20. As 18 for the total amount of memory fitted. Note this value is
expanded by a factor of 100, not 1000 as used for the other
two calculations in order to avoid overflow.

21. Waits a short time...
22. ..before re-starting the loop and doing it all again.

23. Is some private information used by WX.

Listing

.key dummy

.bra {

.ket }

resident c:avail

resident c:wait

resident c:eval

avail >t:t{$$}

echo >t:ed1{$$} "d;25#;10>;20#;n;2d" ; extract CHIP
echo >t:ed2{$$} '2d;25#;10>;20#;n;d" ; extract FAST

© 0O N O 0O s W N =

10. echo >t:ed3{$$} "3d;25#;10>;20#" ; extract TOTAL
11. edit t:t{$$} to env:CHIP{$$} with t:ed1{$$}
12. edit t:t{$$} to env:FAST{$$} with t:ed2{$$}
13. edit t:t{$$} to env:TOTAL{$$} with t:ed3{$$}

Mastering AmigaDOS Scripts
Ji i e = e e =]

14.
15.
16.
17.
18.

19.

20.

21.
22,
23.

eval $chip{$$} *10 to env:chip{$$}
eval $fast{$$} *10 to env:fast{$$}
lab start

echo "*e[0;0H*e[0 p" noline

eval “avail chip'000/$chip{$$} lformat "CHIP %n percent
free *n"

eval ‘avail fast 000/$fast{$$} lformat "FAST %n percent
free*n"

eval ‘avail total 00/$total{$$} 1lformat "TOTAL %n percent
free*n"

wait 1 secs
skip start back

sWX:WINDOW=WINDOW=con:0/0/190/60/Memory
Gauge /SMART /NOSIZE

Mastering AmigaDOS Scripts
e e

MemG (DOS 2)

Synopsis:

Template:

Path:

Requires:

See also:

Type:
Brief:

Description

Called from Workbench

V2+
MemlInK, FreeMemP, MEM6
Script

Show available memory by type

This version really shows the true power of AmigaDOS 2 and above.
This minimal version performs exactly the same function as MEM
for 1.3, but is even more succinct. You can start this script from
AmigaDOS with WX thus:

1>WX MEM4

Line-by-Line

Mem in Byte

1-2. Makes some essential commands resident.

3. Marks the start of the repeating loop.

4. Positions the cursor at the top left of the window, makes it
invisible, displays the memory free message, goes to the next
line, displays the CHIP:. message and finally inserts the
amount of CHIP currently free. The "*e[K" string clears
everything to the end of the line - for cases when the current
amount of memory is lower than the last time.

5. Displays the current amount of FAST mem and clears to the
end of the line.

Mastering AmigaDOS Scripts
AT e Fl o T T Ve e L S T i FITERS,

6.

O O N O O & W N =

Displays the total amount of free memory and clears to the
end of the line.

Waits a short time before the next update...
...jumps back to Step 3 and starts the whole process off again.

Is the window description for WX. It is not used by the script.

resident c:avail

resident c:wait

lab start

echo "*e[0;0H*e[0 pMemory free*nCHIP: ‘avail chip *e[K"
echo "FAST: ‘avail fast *e[K"

echo "TOTAL: “avail total *e[K" noline

wait 5 secs

skip start back

sWX:WINDOW=WINDOW=con:0/0/190/40/Memory
Gauge/SMART /NOSIZE

Mastering AmigaDOS Scripts
R e e o e o Srarem B e it}

MemG

Synopsis: Called from Workbench
Template: ...

Path: ...

Requires: V1.3+

See also: MemG2

Type: Script

Brief: Show available memory by type

This script is the basis and the simplest memory gauge devised for
this book and shows the basic idea. It's also the fastest. The idea is
to open a window with the currently available memory shown and
update it on a regular basis.

MemCGCauge

Line-by-Line

1. Provides a dummy key for IconX to use.

2-6. Make some essential commands resident. These commands
are particularly relevant to the early versions of AmigaDOS
and dramatically improves the performance of this script.

Marks the start of the repeating loop.

Switches the cursor off, positions the cursor at the start of the
first line on the window and echoes CHIP:. The extra line-feed
is suppressed so the output from AVAIL...

9. ...here, gets tacked onto it.

10-11. Display the FAST memory on one line.

12-13. Display the total amount of free memory currently
available.

14. Waits a few seconds. You can change this value if you like, but
five seconds is fast enough to catch large changes in memory

Mastering AmigaDOS Scripts
JRCE = E e e TR e e C I B e e T T |

allocation. Very small fast changes will be too quick for such a
simple configuration.

15. Re-starts the loop again by jumping to Step 7.
16. Is some information for WX to use. It is not required by the
script.
Listing
1. .key dummy
2. resident c:echo
3. resident c:Lab
4 resident c:skip
5. resident c:avail
6 resident c:wait
7 lab start
8. echo "*e[0;0H*e[0 pCHIP: " noline
9. avail chip
10. echo "FAST: " noline
11. avail fast
12. echo "TOTAL: " noline
13. avail total
14. wait 5 secs
15. skip start back
16. ;WX:WINDOW=WINDOW=con:0/0/190/60/Memory_Gauge

Mastering AmigaDOS Scripts
TS e e e LS e]

Memink

Synopsis: Called from Workbench
Template: ...

Path: ...

Requires: V1.3-1.3.3

See also: MemG

Type: Script

Brief: Show available memory (in K) by type

Description

This memory gauge is similar to Mem, but this time it shows the
amount of memory available in kilobytes. Surprisingly, this is more
complex than you might imagine.

Line-by-Line

1-3. Comprise a standard script header for lconX.
4-8. Make some essential commands resident.
9. Marks the start of a loop.

10. Positions the cursor at the top-left of the window and makes it
invisible.

11. Displays the headline.

12. Gets the total amount of CHIP currently free and sends the
result to T:CM#.

13. Uses EVAL in its interactive moede to divide the result from
Step 12 by 1024 (1K). The LFORMATed result is sent to
Tmem#...

14. ...and displayed here.

15-17. As 12-14 for FAST memory.

18-20. As 12-14 for the total amount of memory fitted.
21. Re-starts the loop.

22. Is some information for WX: not used by this script. This
information is the WINDOW= tooltype for IconX.

Listing
1. .key dummy
2. .bra {

188

Mastering AmigaDOS Scripts

3
4
5
6.
7
8

14.
15.
16.

17.
18.
19.

20.
21.
22.

ket }

resident
resident
resident
resident
resident
lab start

echo "*e[0;0H*e(0 p"

:echo
:Lab
:skip
ravail

:wait

echo "Memory available"

avail >T:cm{3} chip

eval <T:cm{$$} >nil:
mat "CHIP: %nK bytes

type T:mem{$$}

avail >T:fm{3} fast

eval <T:fm{$$} >nil:
mat "FAST: %nK bytes

type T:mem{$$}

avail >T:tm{3} total

op=/

value2=1024 to=T:mem{$$} 1lfor-
?

value2=1024 to=T:mem{$$} 1lfor-
?

eval <T:tm{$$} >nil: op=/ value2=1024 to=T:mem{$$} 1lfor-

mat "TOTAL: %nK bytes

type T:mem{$$}
skip start back
;WX :WINDOW=WINDOW=con:0/0/190/60/Memory_Gauge

i

Mastering AmigaDOS Scripts

MEMG6

Synopsis:

Template:

Path:

Requires:

See also:

Type:
Brief:

Description

Called from Workbench

V2+
MEM3, MEM4, MEM5
Script

Show memory in use as a percentage

This script is a development of MEM5 and this one provides a
percentage of memory in use. Much better. The problem of how to
get the required values out of the tabulated output from AVAIL is
neatly solved with some edit macros described below.

Line-by-Line

Mem Used Percentage

1-3. Comprise a standard IconX script header.

4-7. Makes some essential commands resident.

8. Sends the complete avail output to a file, T#.

9. Writes the EDIT macro to extract the total amount of CHIP
memory fitted to the machine. It translates thus:

d
25#
10>
20#
n
2d

Delete the title line

Delete the first 25 characters.

Skip over 10 characters (total CHIP).
Delete to end of line.

Next line.

Delete the FAST and Total lines.

10. Writes the EDIT macro to extract the total amount of FAST
memory fitted to the machine. It translates thus:

Mastering AmigaDOS Scripts
=T T T e = T T e

[11.

15.

12.

13.

14.

16.

2d Delete the title and chip lines.

25# Delete the up to the total Fast fitted.
10> Skip over the total fast.

20# Delete to end of line.

n Move to the total line...

d ...and delete it.

Writes the EDIT macro to extract the total amount of memory
fitted to the machine.

3d Delete up to the total line.

25# Delete up to the total amount of RAM.
10> Skip over it and...

20# ...delete the remainder of the line.

Writes the EDIT macro to extract the amount of CHIP memory
fitted in use now:

d Deletes the header line.
15# Deletes everything up to CHIP...In Use...

10> ...and skips over that value.

254 Deletes to the end of the line.

n Moves to the nextline and...

2d ...deletes the remainder of the table.

Writes the EDIT macro to extract the total amount of FAST
memory currently in use:

2d Deletes the header and CHIP lines.
15# Deletes everything up to FAST in use...

10> ...and skips over it.

25# Deletes everything up to the end of the line.
n Moves to the next line and...

d ...deletes it.

Writes the EDIT macro to extract the total amount of memory
currently in use:

3d Deletes the first three lines.

15# Deletes up to the start of the total in use...
10> and skips over it.

25# Deletes the remainder of the line.

Creates a global CHIP# with the total amount of CHIP memory
fitted. (Macro from Step 9.)

Creates a global FAST# with the total amount of FAST RAM
fitted. (Macro from Step 10.)

17.

18.
19.

20.

21.

22.

23.

24.

25.
26.

27.
28.

- = © O N O 0 & W N =

12.
13.
14.
15.
16.
17.
18.

- O

MEMG6
P

Creates a global TOTAL# with the total amount of memory
fitted. (Macro from Step 11.)

Marks the start of the repeating loop.

Positions the cursor at the top-left of the window and makes it
invisible.

Creates a global NCHIP# with the total amount of CHIP
memory currently in use. (Macro from Step 12.)

Creates a global NFAST# with the total amount of FAST RAM
currently in use. (Macro from Step 13.)

Creates a global NTOTAL# with the total amount of memory
currently in use. (Macro from Step 14.)

Displays the current amount of CHIP memory used as a
percentage.

Displays the current amount of FAST memory used as a
percentage.

Displays the total amount of memory used as a percentage.

Waits for a second - you can increase this delay if you prefer -
but this script takes a long time to run in any case.

Re-starts the whole calculation/display phase again.

Is some private window information for WX.
.key dummy
.bra {
.ket }
resident c:avail
resident c:wait
resident c:eval
resident c:edit
avail >t:t{$$}
echo >t:ed1{$$} "d;25#;10>;20#;n;2d" ; extract CHIP avail
echo >t:ed2{$$} "2d;25#;10>;20#;n;d" ; extract FAST avail
echo >t:ed3{$$} "3d;25#;10>;20#" ; extract TOTAL avail
echo >t:edd4{$$} "d;15#;10>;25#;n;2d" ; extract CHIP now
echo >t:ed5{$$} "2d;15#;10>;25#;n;d" ; extract FAST now
echo >t:ed6{$$} "3d;15#;10>;25#" ; extract TOTAL now
edit t:t{$$} to env:CHIP{$$} with t:ed1{$$}
edit t:t{$$} to env:FAST{$$} with t:ed2{$$}
edit t:t{$$} to env:TOTAL{$$} with t:ed3{$$}
lab start

Mastering AmigaDOS Scripts
BT = e s v T

19.
20.
21.
22.
23.

24.

25.

26.
27.
28.

echo "*e[0;0H*e[0 p" noline

edit t:t{$$} to env:NCHIP{$$} with t:eda{$$}
edit t:t{$$} to env:NFAST{$$} with t:ed5{$$}
edit t:t{$$} to env:NTOTAL{$$} with t:ed6{$$}

eval (SNchip{$$} *100)/$chip{$$} lformat "CHIP %n percent
used *n"

eval ($Nfast{$S$} *100)/$fast{$$} lformat "FAST %n percent
used*n"

eval ($Ntotal{$$} *100)/$total{$$} 1lformat "TOTAL %n per-
cent used*n”

wait 1 secs
skip start back

;WX :WINDOW=WINDOW=con:0/0/190/60/Memory
Gauge /SMART /NOSIZE

Mastering AmigaDOS Scripts
e e s e e e]

MID

Synopsis: [EXECUTE]MID<[name=]name>

Template: name/a

Path: S:

Requires: 1.3-1.3.3

See also:

Type: Script

Brief: Make a directory with an icon
Description

If you create a new directory from AmigaDOS, it does not receive a
Workbench icon. This short script - MID for Make Iconified
Directory - will rectify that. Note however, because the Drawer icon
is copied using AmigaDOS, you will need to use the Workbench
Clean-up and Snapshot functions before using it. Note also, this
script is only suitable for machines fitted with AmigaDOS 1.2, 1.3
or 1.3.2.

Use your favourite text editor to create the script and save it as
S:MID (no pun intended). AmigaDOS 1.3 and 1.3.2 users should set
the "S" protection flag to get the best from this command.

Use: MID <name of new directory>
Example: MID DF1:Toolkit

Listing
1. .key name/a
2. .bra {
3. .ket }
4. MakeDir {name}
5. Copy SYS:Empty.info TO {name}.info

Mastering AmigaDOS Scripts

MID1

Synopsis: (EXECUTE] MID1 <[name=]Directory>
Template: name/a
Path: S:

Requires: V1.2 -1.3.3.

See also: MID

Type: Script

Brief: Make a directory with an icon
Description

This is a better version of MID, but the extra work it has to do
makes it slower. This version looks for a suitable icon in the current
directory and copies that rather than requiring the boot disk.

Example

1>MID1 DF1:Toolkit

Line-By-Line

1.

Sets the key for this command which is similar to the existing
MAKEDIR. Note that the name of the directory is required for
this command (as it should be).

2-3 Re-set the bracket characters to { and } respectively.
Creates the new directory using the supplied name.

5. Discovers if an "Empty” icon exists in the current directory. If
one is found, control resumes at Step 6; if not, control jumps
to Step 7.

6. Creates a new drawer icon in the required directory by
copying the existing “Empty"” icon file.

7. If control reaches this point from Step 6, it jumps to Step 9,
otherwise it continues at Step 8.

8. Copies the “Empty” icon from the boot disk to the destination
directory.

9. Terminates the IF...ELSE...ENDIF construct opened at 5 and
terminates the script.

Listing

1.

.key name/a

.bra {

.ket }

MakeDir {name}

if exists empty.info

Copy Empty.info TO {name}.info
else

Copy SYS:Empty.info TO {name}.info
endif

MID 1

Mastering AmigaDOS Scripts

Synopsis: [EXECUTE] MRUN <[Com=]command>

[parameters...] [pri=nn] [stack=nn]

Template: Com/a,x1,x2,x3,x4,x5,x6,x7,x8,x9,pri/K,stack/K

Path: S:

Requires: V1.3+

See also:

Type: Script

Brief: An improved version of RUN
Description

This script implements some ideas borrowed from ARP DOS’s ARun
command. The idea is to “run launch” a command with its own
stack and priority. This saves having to use CHANGETASKPRI and
STACK twice - once to set the required parameters for the sibling
process; and again to put things back to normal. This allows you to
put the multi-tasking ability of the Amiga to good use. It also
demonstrates the use of EDIT in automatic mode.

Line-by-Line

1.

4-7.

This command key forces a command to be loaded as a
required argument. The command’s parameters are passed in
x1...x9. The new values of STACK and PRIORITY are passed as
keywords. While this does make both options, there would be
little point executing this script without supplying at least
one! You can use re-direction operators like this:

MRUN dir >prt: all stack=12000 pri=-5

Quotes, such as might be used in LIST's LFORMAT, should
themselves be escaped with *". Very long command lines
should be enclosed in quotes. In practice this script can
usually be used without resorting to such methods - but
they're there if you need them. If you're using output re-
direction “>" and the command has a TO option (LIST for
example) use that instead.

Construct a macro which will be used by the line editor, EDIT,
to write a new script. This macro takes the output from
STATUS and uses it to create a script to restore the original
process priority and stack values after the sibling command
has been launched. The starting point looks something like
this:

Process 1: stk 4000, gv 150, pri O Loaded as command: status

MRun

and we need to end up with a script which reads:

10.

11.

12.

13.

STACK 4000
CHANGETASKPRI O
dtb /stk/;
removes “Process 1:"
e /stk/STACK

exchanges "stk" with STACK so the line now reads:
STACK 4000, gv 150, pri O Loaded as command: status
sb/,/

won “on

Splits the line at “,”" Note the cursor moves with “,” so the line
now becomes two lines:

STACK 4000
y gv 150, pri 0 Loaded as command: status
dtb /pri/
Deletes ", gv 150, "
e /pri/CHANGETASKPRI
Exchanges "pri* for CHANGETASKPRI and the lines now read:
STACK 4000
CHANGETASKPRI O Loaded as command: status
Finally, dtb /L/
Deletes "Loaded as command: status"

The original line has now become the required script, which
has adopted the priority and stack from the current process.

This line gets the status of the current command. The second
{$$} expansion ensures that MRUN only receives the status of
the process which launched it.

Actually does the work of creating the recovery script. A bug
(ok, a feature) in EDIT means an output file has to be created.
The output file is the script executed at Step 13.

Sets the priority of the current process to either the user
supplied value or a default value of 0.

Sets the stack of the current process to either the user
supplied value or a default value of 4000 bytes.

RUN launches the new process passing the current values of
stack and priority to the sibling. See note below.

The recovery script is executed here, restoring the stack and
process priority back to what they were previously.

You might have noticed by this point, something curious
about this script. There's nothing unusual about it except

197

Mastering AmigaDOS Scripts
SR D T AR S e R T T

there is no reason why it should read: RUN... In fact, RUN
could be removed and the new script called something like
LAUNCH. With little extra alteration, this script can start a
synchronous (as opposed to asynchronous) process with its
own stack and priority. You should also insert the following
before line 10:

FAILAT 21

just to make sure that, if the command fails, the old priority
and stack values are restored correctly. The format of this
command could read:

Listing
1. .key Com/a,x1,x2,x3,x4,x5,x6,x7,x8,x9,pri/K,stack/K
2. .bra {
3. .ket}
4. echo >T:mrun-0-{$$} "dtb /stk/;e /stk/STACK"
5. echo >>T:mrun-0-{$$} "sb /,/"
6. echo >>T:mrun-0-{$$} "dtb /pri/;e /pri/CHANGETASKPRI"
7. echo >>T:mrun-0-{$$} "dfb /L/"
8. status >T:mrun-2-{$$} {$$} FULL
9. edit T:mrun-2-{$$} T:mrun-3-{$$} with T:mrun-0-{$$}
10. CHANGETASKPRI {pri$o}
11. STACK. {stack$4000}
12. RUN {com} {x1} {x2} {x3} {x4} {x5} {x6} {x7} {x8} {x9}
13. EXECUTE T:mrun-3-{$$}

Mastering AmigaDOS Scripts
EapE e e e S T e e

NOT

Synopsis: [EXECUTE] NOT <[com=]command> <[pat=]pattern>
[options...] [only=files|dirs] [include=file|pattern]

Template: com/a,pat/a,optl,opt2,opt3,opt4,opt5,0only/Kk,

include/k

Path: S:

Requires: V1.3-1.3.3

Type: Script

Brief: To simulate NOT pattern matching for AmigaDOS
1.3

Description

This script was developed in a similar vein to SPAT and DPAT and
works in very much the same way. This particular script is very
complex to implement and relies heavily on EDIT. It involves
producing two lists: one matching the NOT pattern and another
taking in everything. The two lists are then compared and the
duplicated lines removed... Rather like using a sledgehammer to
crack an Amiga - but it works.

Line-by-Line
1-3. Define the template described above and re-define bra dnd

ket as {and}.

4. This creates the first EDIT macro - this one will do the job of
removing the unwanted flotsam from output listing:

o(f/! /;p;2d;)

It breaks down as follows:

0(
Repeats everything enclosed in brackets until input is
exhausted.

T/t
Finds the next occurrence of a line with the string ! ". The

meaning of this will become clear shortly.
p;2d;)

Moves back one line, then deletes the currentline and the one
below it. The closing bracket tells this command to repeat
until input is exhausted. This is the end of the macro.

5. The second EDIT macro - this one just inserts a command at

Mastering AmigaDOS Scripts
= a e e e s T

7-9.

10.

the start of each line:
O(b/ /{com}/;n)

You may wonder why I didn’t just do this in the LIST
commands - there is a reason which I'll cover shortly. The
macro breaks down as follows:

o(

As in the first macro, this starts at the top of the file and
works down until it runs out of lines.

b/ /{com}/

Searches for two spaces from the start of the current line and
inserts the user’s command {com} before those. After inserting
the command moves to the next line and continues until input
is exhausted. In other words, until the whole file has been
processed.

Creates a file which is a list of files matching the user’s
directory specification plus any other supplementary files. In
fact, it is the supplementary files which will form the final
output. LFORMAT is used here, inserting two spaces at the
start of each line before the complete path and name of each
file.

This block is only processed if the user has entered an
optional “include” pattern at the command line - forcing NOT
to include some extra files. It does this by appending a second
copy of each file matching the “include” pattern to the file list.
In effect, this will override the NOT pattern already specified.

This appends the original list of files to be excluded to the
current list. Using a special LFORMAT, these files which
uniquely match the NOT pattern are marked with a “ !" string
before the filename.

This line is vital — without it the script just wouldn't work. At
this point, the script has built a file list which might look
something like this:

“Startup-sequence"
"DPAT"

"Startup2"

"SPAT"

“NOT"

"PCD"

"SPAT"
!"Startup-sequence"
!"Startup2”

11.

12.

13.

14.

15.

Not

! "SPAT"
Files matching the NOT pattern (S#?) are listed twice. First
with a double space and next with a “ !". Files matching the
include pattern are listed three times - once with “!". In this

case only SPAT was specifically included. Now if we sort the
file we end up with a file list which could look like this:

"DPAT"

"SPAT"

"SPAT"

! "SPAT"

"Startup-sequence"

!"Startup-sequence”

"Startup2"

!"Startup2"”

"NOT"

“PCD"
The files are sorted in alphabetical order by name - this is
forced using “colstart=3". This also explains why it is not
possible to include the command at this stage. If it were, the

value of colstart would be variable making the list difficult, if
not impossible, to sort into the right order.

Fail level is adjusted here because the EDIT macros actually
cause a failure with Return Code 10. This is quite normal
under these circumstances.

This uses the first EDIT macro to remove all the lines starting
with “ " including the previous line. The result of this
operation using the previous example looks like this:

“DPAT"
"SPAT"
“NOT"
“PCD"

Note that SPAT has been included because it appeared in the
file list three times and the EDIT macro only removes two
lines. This is what was required of course.

This appends a blank line to the file just generated. Under
normal circumstances this will not be required. It is here in
case the user specified a pattern which causes the input file to
become empty. A blank line gives the EDIT macro at 10
something to chew on.

Using the second EDIT macro, this inserts the user command

201

Mastering AmigaDOS Scripts
S e e e e e e

at the start of every line. This can give rise to some very
interesting effects if the LIST command is combined with the
DIRS option.

16. At long last, the script is executed.

NOT is a very predictable script once you get used to it; but being
powerful implies that it's also prone to users’ mistakes! Most of this
is "bread and butter” script programming which you should be
capable of. If you are at all unsure about your abilities with
patterns, leave it for now.

Listing
1. .key
com/a,pat/a,opti,opt2,o0pt3,optd,opt5,only/k,include/k
2. .bra {
3. .ket }
4. echo >t:auto{$$} "O(f/! /;p;2d;)"
5. echo >t:aut1{$$} "O(b/ /{com}/;n)"
6. list >t:temp{$$} {pat}|#? {only} lformat " *"%s%s*"

{opt1} {opt2} {opt3} {opt4d} {opt5}"
if "{include}" NOT EQ ""

list >>t:temp{$$} {include} {only} lformat="*"%s%s*"
{opt1} {opt2} {opt3} {optd} {optS}”

9. endif

10. list >>t:temp{$$} {pat} {only} 1lformat "! *"%s%s*" {optil}
{opt2} {opt3} {optd} {opt5}"

11. sort t:temp{$$} t:sort{$$} colstart=3

12. failat 11

13. edit t:sort{$$} t:edit{$$} with t:auto{$$} ver=NIL:
14. echo >>t:edit{$$} "*n"

15. edit t:edit{$$} t:edi1{$$} with t:aut1{$$} ver=nil:
16. execute t:edit1{$$}

Mastering AmigaDOS Scripts
T e e C e s T |

Pathfind

Synopsis: ([EXECUTE] PATHFIND <PathName> [QUIET]

Template:

Path: S:

Requires: V1.3+

See also:

Type: Script

Brief: List the current paths (by letter)
Description

With Workbench 2 itis possible to get a list of the current devices,
volumes or directories simply by adding an option to the ASSIGN
command. Pathfinder uses a similar method to that described for
DIRS and VOLS to check on the setting of any particular path. As
always, if you are going to use these scripts much you should save
these in the S: directory and set their S (script) protection bit. See
SETS.

This little goody first appeared in Volume 2 of Mastering AmigaDOS
2, and while nothing earth shattering, it's still quite useful. The idea
of this one is to allow you to view a single path, if it exits. Also, a
feature of the search command means you only have to type the
first few letters to get info on the required path. For instance:

1>PATHFIND S
Workbench 1.3:System
Workbench 1.3:S
or
1>PATHFIND SY
Workbench 1.3:System
It works like this:
1. Determines the command’s argument template:

PAT/A,Opt. Pat is a substring of the pathname you’'re
interested in; Opt is passed directly to PATH and
will normally be the QUIET option.

2. Sends the current path settings to a temporary file. If the
QUIET option has been specified as part of the command line,
PATH will not put up any “Please insert volume..." requesters.

3. Searches and displays any paths matching the substring. Note
a colon is inserted prior to the search string. This forces the
search to start immediately after the volume name. This

Mastering AmigaDOS Scripts
T U e S LI S T g iy B o Tl s SR (R T [T

should be omitted if you want to search for partial strings
anywhere in names.

Directory paths are always searched from top to bottom, so
you may wish to omit the NONUM option in line 3. This will
show the priority of the particular path in the search, for
instance:

1>PATHFIND S
4Workbench 1.3:System
SWorkbench 1.3:S

In other words, "System" will be searched fourth, and "S” fifth.

Listing

1.

.KEY PAT/A,opt

.BRA {

.KET }

PATH >T:ptemp{$$} SHOW {opt}
SEARCH T:ptemp{$$} ":{PAT}" NONUM

Mastering AmigaDOS Scripts

Pest (AmigaDOS 1.3)

Synopsis: none

Template: none

Path: S:

Requires: V1.3-1.3.3 only
See also: Pest (AmigaDQOS 2)

Type: Startup script supplemental
Brief: Appointment/reminder program
Description

I can understand folks still using the 1.3 ROM to retain downward
compatibility, but still being stuck with AmigaDOS 1.3 must be a
comparative nightmare. Like all classics, AmigaDOS 1.3 is still the
weapon of choice for many of you. The compatibility problem with
the AmigaDOS 2 Pest is this: in AmigaDOS 2 an environmental
variable can be read directly by a command by preceding its name
with a dollar symbol. For instance, say the you gave the arbitrary
variable, NAME a value of “Mark". the following would be true:

1>ECHO "Hello $NAME"
Hello Mark

In "The Pest” the current date is sent to a file and processed into a
global environmental variable (NOW) using EDIT. Typically, a date
such as:

Monday 2-Mar-92 12:30:04
becomes: i

2-Mar-92 |
Pest2 creates a print file using NOW which will contain a string like
this:

== Reminders for: 2-Mar-92 ==
The same thing can be achieved in AmigaDOS 1.3 by joining files
together:

echo >T:pf1 "== Reminders for: " noline

echo >T:pf2 " ==*n"

join T:pf1 ENV:now T:pf2 AS T:pf

an alternative method which achieves the same effect looks like
this:

echo >T:pf1 "== Reminders for: " noline
join T:pf1 ENV:now AS T:pf

Mastering AmigaDOS Scripts

echo >>T:pf " ==*n"

Of course, both those methods assume you want to exactly mirror
the original function provided by the AmigaDOS 2 version. In
practice, it would be better to just use a simpler string:

echo >T:pf "== Reminders for today ==*n"

A more subtle problem arises where the reminders file is being
searched for specific dates, because the search string is read
directly by AmigaDOS from the NOW variable. The solution is to
trick AmigaDOS 1.3 into reading the variable from a file, and this
can be accomplished using interactive mode, like this:

search <ENV:now s:Reminders ?

Here, I've reduced the command to its lowest required format. The
file “S:Reminders” is being searched for the string contained in
“ENV:now". Interactive mode is an important, misunderstood and
very under used concept. You are probably already aware if you
supply a question mark as part of a command line, AmigaDOS spits
out a command’s template and waits for you to enter something.

This technique was quite widely used in older versions (1.2 and
earlier) to pre-load commands such as DIR. The arrival of RESIDENT
in 1.3 and ROM-based AmigaDOS at 2.x means this technique has
been almost forgotten however.

The key thing to remember is this: when a command enters
interactive mode, it can read input from anywhere - including files.
This effect can be achieved by supplying a command’s argument in
a file and preceding the filename with “<” (redirect input from file).
Here for example, the search string is read from the contents of the
file “"ENV:now":

search <ENV:now s:Reminders ?

Interestingly enough, it is also possible to supply further
parameters on the command line too. Therefore, since The Pest
uses the NONUM switch we can add that too:

search <ENV:now s:Reminders NONUM ?

You might like to try executing the following illustration for
yourself - but take a note of what happens:

LIST >T:Temp SYS:

ECHO >T:Search ".info"

SEARCH <T:Search T:Temp NONUM ?
The first two lines create a dummy file to search and something to
search for respectively. This just ensures the SEARCH command will
do something. Execute the search a couple of times and watch what

happens. Notice how the command’s template appears? If this
output were being sent to a file, that template would also appear

Pest (AmigaDos 1.3)
== e e e =S

and it looks messy. This technique is usually used with output
redirected to the NIL: device and the condition codes (WARN, ERROR
etc) tested, but The Pest creates a file based on SEARCH's output.

The solution therefore is to create another EDIT macro which will
hack out the extraneous information and make the output look
better. As it turns out, this is quite simple to do. The file consists of
a header, one blank line, then the unwanted template. Therefore the
EDIT macro is constructed to skip 2 lines and delete the next one
like this:

2n;d

A complete script based on this idea is Pestl.3 and should be
inserted just before the LOADWB command in the Startup-sequence.
Alternatively, you can execute the script in its own right - but this
should be done late on in the Startup-sequence.

Line-By-Line

1. Creates the first EDIT macro as “Autol”. Note this name does
not require special multi-tasking treatment since it is always
created by the startup-sequence. The macro reads as follows:

DTA/ /*n
DFA/ /
2. Creates the second EDIT macro as follows:
2n;d
3. Makes the display file “PF" in a simple format as described
above.

4. Gets the current time and date from the RTC and sends it to
the file “Today".

5. Edits the date part from the time/date output from DATE
leaving the result in a global variable, “now".

6. Uses SEARCH as described above in interactive mode to check
for any dates in the current day and appends the list to the
display file "PF" . If no dates are found for that day, SEARCH
fails and sets the WARN condition.

7. If the WARN condition is set, control continues at Step 11,
otherwise it jumps to Step 9.

8. Prints a simple message in the startup-sequence to let you
know Pest is active and working.

9. If control reaches here from Step 8, it jumps to Step 12;
otherwise it continues at Step 10.

10. Trims the “fluff” off “pf” using an EDIT macro and creates the
final display message as "pfl”.

Mastering AmigaDOS Scripts
o s T ey S T P ey ey ey

11. Launches MORE as a process and displays the reminder diary
in its own window. The startup script continues normally at
Step 12...

12. ..closes the IF...ELSE...ENDIF construct opened at Step 7 and
leaves the startup to continue as normal.

Listing
1. echo >T:Auto1 "DTA/ /*nDFA/ /"
2. echo >T:Auto2 "2n;d"
3. echo >T:pf "== Reminders for today ==*n"
4. date >T:today
5. edit T:today to ENV:now with T:Auto1
6. search >>T:pf <ENV:now s:Reminders nonum ?
7. if warn
8. echo "Nothing in reminder diary today..."

else

10. edit T:pf to T:pf1 with T:Auto2
11. run more T:pf1

12. endif

[T<]

Mastering AmigaDOS Scripts
E]

Pest (AmigaDOS 2)

Synopsis: [EXECUTE] Pest

Template: none

Path: S:

Requires: V2+

See also: Pest 1.3

Type: Startup-script additional

Brief: Appointment scheduler, reminder
Description

When was the last time you forgot an important appointment?
Moreover, if you keep a diary do you remember to check it every
day? Isn't it just too easy to get engrossed in a computing session
and forget you had to nip to the dentist for a filling... This little
AmigaDOS 2 specific program will check your appointments every
time you start or reset your machine. In a few seconds it will
calculate the current date and check your schedule for any due
appointments. Although it would be possible to construct a similar
script for AmigaDOS 1.3, it would slow down the Startup-sequence
too much due to the extra complexity required. Also, your machine
must be fitted with a real-time clock.

All you have to do is construct a file of appointments in the S:
directory under the name: “Reminders”. The format is as follows.
Each reminder must fit on one line and must contain the date in
AmigaDOS format, for example DD-MMM-YY.

The following are acceptable:
01-Mar-95 - Go to Mr Andrews for inspection at 10:00
Buy flowers for P.’s birthday: 02-apr-95
whereas these are not:
Monday: Dentist
3-2-1995 Take car to Bob for o0il change
Go to show: 15/5/95

Mastering AmigaDOS Scripts
T T e e T T e e T

BT T DB
¥

et

. _Forget It |

PR

Pest Add Check

Line-By-Line

1.

Create an auto-executing macro for EDIT using DTA and DFA.
This will be used to extract just the date portion from the
DATE's output. More of that later.

Get the current day, time and date and send it to the file:
“T:Today"

Use the macro created at Step 1 to create a new file "ENV:Now"
which contains the date string in the correct format. Here's
how it works:

DATE's output file contains a string which might look like this:
Monday 2-Mar-94 12:30:04

The EDIT macro removes just the day’s name and the time like
this:

DTA/ / or Delete Start After the next space. Removes the
day’s name including the trailing space. Our example date
now looks like this

2-Mar-94 12:30:04

DFA/ / or Delete From After the next space. Removes the
time starting with the space after the date to the end of the
line. This produces the final output to file, viz:

2-Mar-94

Now for another little bit of AmigaDOS 2 trickery. This line
creates a file in T: containing the reminder title and the date.
For instance:

== Reminders for: 2-Mar-94 ==

But hang on, where does the date come from? Look at the line
more closely. Notice how the date appears at the position
$now. In other words "$now" is replaced by the contents of
the global environmental variable, “now". This variable was
created right under AmigaDOS's nose in Step 3. EDIT’s output
file is called ENV:now.

The same kind of trickery is used here. The reminder file
(S:Reminders) is searched for any lines containing the current
date. Any lines containing that date are appended to the print

Pest (AmigaDos 2)
=S e g i

file T:pf created at Step 4. The actual date is retrieved at run-
time from “$Now". (This is possible in AmigaDOS 1.3 but is
much more complex to achieve.)

6. This line opens a conditional test. The WARN flag willbe set if
the date doesn’t match any dates in the schedule file. If this is
the case, control continues at Step 7; if not (a date was found)
control passes to Step 8.

7. Displays a short confirmation to let you know your day is free
from appointments.

8. If control reaches here directly from Step 7, it passes to Step
10, does not pass go and does not collect £200. If control
came from Step 7 (a date was found) it continues at Step 9.

9N Opens MORE and displays all the appointments/reminders for
that day. RUN is used to start more so the Startup-sequence
can continue and launch Workbench while you study your
calendar.

10. Closes the script.
Listing
echo >T:Auto1 "DTA/ /*nDFA/ /"
date to T:today
edit T:today to ENV:now with T:Auto1l
echo >T:pf "== Reminders for: $now ==*n"

search >>T:pf s:Reminders "$now" nonum

1

2

3

4

5

6. if warn
7 echo "Nothing in reminder diary today..."
8 else

9 run more T:pf

1

0. endif

Mastering AmigaDOS Scripts

e b S
Pest2 (AmigaDOS 1.3)

Synopsis: [EXECUTE] Pest

Template: none

Path: S:

Requires: V1.3-1.3.3 only

See also: The Pest 1.3 version

Type: Startup script supplemental

Brief: Alternative version of Pest
Description

Pest usually uses the SEARCH command but the AmigaDOS line
editor also has a search feature and with a little cajoling it can be
pressed into useful service. The basic idea is this: get EDIT to
search for any lines containing the required string — a date in this
case — and display them. In fact, this is more complex than it
appears. Because EDIT is a line editor, it stops when a matching
string is found on a line; initiate another search from the same
position and EDIT finds the same occurrence. In other words it get
locked in a loop - always assuming you can get it to loop in the first
case that is.

The solution is a macro which looks like this:
o(f/"string"/;?;n)

Briefly, here's what it all does. The “;" semi-colon character is used
as a command separator.

0() the commands contained in brackets are executed in a
loop until the input is exhausted.

f/"string"/ Locate the string “String” anywhere in the current line,
or search the text until any occurrence is found. (The
string in the final script is assembled as part of the
macro.) This function is case-sensitive so UPPER and
lower case are different.

? Display the current line. Strictly speaking this is the
verify function which sends output to EDIT’s own
verify display port. This is usually the current console
and the relevance of this will become clear later on. Go
to the next line, or stop if there is no input left to
search.

Unfortunately, that is not the complete answer. EDIT normally
outputs every line it scans to the console or the TO file. It also
generates a separate “verify” output and this is the one we will use
here. The main scan output will be sent to oblivion down the NIL:

Pest2 (AmigaDOS 1.3)
- _ __ __]

device, and only the lines displayed with the ? command will be
shown.

The complete EDIT-based Pest is longer, but the exercise gives rise
to some interesting examples in its own right. You should note a lot
of commands are grouped together, and thanks to the disk caching
system, this reduces the amount of disk access. The Pest was only
intended for AmigaDOS 2 because it takes advantage of the ROM-
based (internal) commands but this script was provided as an
alternative that will only work in AmigaDOS 1.3.

Line-By-Line

1. Creates an EDIT macro that will be used to extract the date
component from the day/date/time format provided by DATE
at Step 2.

2. Reads the current system time and date and sends it to a file

called Today. Of course, your system must have a real time
clock for this to be of any benefit.

3. Edits the date in the Today file as described at Step 1. The
edited version is sent to the file, “now".

4. Looks in your reminder file to see if any dates match the
current date read from the system clock. If no match is found,
the WARN flag is set; it is cleared otherwise.

5. Tests the WARN condition from Step 4. If no matches were
found (WARN=TRUE) execution continues at Step 6; otherwise
it branches to Step 7.

6. Clears the screen and displays a short message. The screen is
cleared using the short escape sequence: *e[0;0H*e[]. (This is
available from Shell using the alias, CLEAR.)

7. If execution gets here from Step 6 it branches directly to Step
16; otherwise it continues at 8.

8. Clears the screen and displays a two line message. (See Step
6.)

9. Creates the EDIT macro, Auto2. This command tells EDIT to
concatenate (join together) three consecutive lines. Literally,
two lines, twice.

10. This is the first part of an EDIT macro which will form the
search. The line ends at the first delimiting “/"; a line-feed will
automatically be appended.

11. This is the third (not second) part of the EDIT macro
mentioned above. Note how it begins with the closing "/"
delimiter?

12. The three files are now married together to form something
which (assuming the date was 12-Jun-94) would look like this:

Mastering AmigaDOS Scripts
—

13.

14.

15.
16.
17.

0(f/
12-Jun-92
/325n)

Of course, that doesn’'t make a macro, but it is necessary to
include a variable in a complex string such as this one. Next
the string has to be assembled...

..which is what this does. Look back at that macro, Auto2. It
joins the three lines together as one and presto - a macro is
created and ready to run.

In effect this just runs the macro, Auto3. The reminders file is
scanned for the current date and any matches are displayed
on the current console. The TO file is directed to NIL: so
spurious rubbish produced by this command is not displayed.

Forces a short delay so you can examine the list of jobs to do.
Closes the IF...ELSE...ENDIF construct opened at Step 5.

Close the current Shell. It's important to note here. this
command can be the last one in the normal Startup-sequence
if you include either version as part of your usual startup. It
must be included if you start Pest using the NEWSHELL
command:

NEWSHELL FROM S:Pest

® N O 0N b WN

11.
12.
13.
14.
15.
16.
17.

echo >T:Autol "DTA/ /*nDFA/ /"

date >T:today

edit T:today to ENV:now with T:Autoil

search >NIL: <env:now S:reminders ?

if warn

echo "*e[0;0H*e[JNothing in reminder diary today..."
else

echo "*e[0;0H*e[J== The Pest (1.3) ==*nOne moment
please..."

echo >T:Auto2 "2CL"

echo >T:a "O(f/"

echo >T:b "/;?;n)"

join T:a ENV:now T:b AS T:c

edit T:c TO T:Auto3 with T:Auto2

edit S:Reminders with T:Auto3 VER=* TO=NIL:
ask "Press <Return> to exit"

endif

endcli

Pest 3 (AmigaDOS 2)

Synopsis: (EXECUTE] Pest3 <[Time=]time>

Template: time/a,Message

Path: S:

Requires: V3+

See also: Pest 3 (AmigaDOS 2 Version)
Type: Script

Brief: Bigger, better Pest scheduler

Line-By-Line

1.

3-4.

Listing

N OO g s WN =

Mastering AmigaDOS Scripts
e — — — —— —— ——

[([Message=]Message]

Defines the argument template. This will force the user into|
entering a time, but the message to display is optional.

Sets the default message string - you can enter any default:
message here. |

Re-define the bra and ket characters from the default < and >
to {and }.

This is a special syntax of the RUN command - little used but
very useful ideal for Pest. Two re-direction operators < and >
send input and output to the NIL: device. This stops the sub-
process started by RUN from getting hold of the current
console handles. If this were allowed to happen, the CLI
window would stay open until the command is completed -
and this is very messy. At the end of the string a "+" is used.
This tells RUN to halt and wait for further command lines.
Many commands can be chained in this way - when the last
command line is encountered (the first one without the +)

RUN actually starts.

Adds the command line to the RUN list — the process is NOT
started here. When WAIT times out, the message is sent to a
named pipe which is processed...

...here. This starts the RUN process opened at Step 5 and
allows the script to complete. When execution arrives here
(after WAIT is complete) the current contents of the pipe are
displayed using more.

.key time/a,Message

.def Message "Wake up - time to die"
.bra {

.ket }

run <NIL: >NIL: wait until {time} +
echo >pipe:A{$$} "{Message}" +

more pipe:A{$$} m

Mastering AmigaDOS Scripts

Pest 3 (AmigaDOS 3)

Synopsis: [EXECUTE]) Pest3 <[Time=]time>
[[Message=]Message]

Template: time/a,Message
Path: S:
Requires: V3+

See also: Pest 3 (AmigaDQS 3 Version)

Type: Script
Brief: Bigger, better Pest scheduler
Description

Time... Have you ever noticed how life’s full of it, but these days
there never seems to be enough to go around. Now, just when you
thought it was safe to go back to your computer, the ghost in your
Startup-sequence is back with a vengeance. Pest 3 can be
programmed to pop up and remind you of any appointment at any
specified time (accurate to within a minute or so depending on
processor load) and it won't even run down your battery. Pest 3 will
run on any Amiga with AmigaDOS 2 (or above) and a real-time
clock. A very powerful Workbench 3 specific version has been
included for those lucky enough to have such luxuries.

Before launching headlong into a discussion of this Pest, it's
worthwhile recounting how the original worked. Pest relies on
reading the date from the internal BB-RTC and comparing it with a
known date held in a file. Pest 3, in its most basic form, works in a
different fashion - more like an event clock: you set a timed event,
some time in the future, and Pest will "wake up” on (or slightly
after) that event. The basic function is all based on a little used
feature of the AmigaDOS WAIT command: here is the command’s
complete template:

WAIT /N, SEC=SECS/S, MIN=MINS/S, UNTIL/K:
The part we are interested in here is the keyword UNTIL. This
forces WAIT to halt any CLI process until a specified time rather

than FOR a specified time interval. Times are entered in 24 hour
clock using the following format:

HH: MM
so, examples of valid times are 9:00; 12:00; 15:04 and so on.

(Using the DATE command reveals that AmigaDOS counts time in
seconds too, but an exact seconds count cannot be guaranteed
because of constraints imposed by the multi-tasking environment.

Pest 3 (AmigaDOS 3)
R i e e R |

It is possible to write a program which will get very close — but this
is unlikely to be of any real benefit and in itself would hog too
much processor time.)

So much for the theory then: what happens in practice? Try
entering an example like this (the exact time entered depends on
what time you are trying this):

1>WAIT UNTIL 4:24

This example sets a time when most sane folk are tucked up in bed
and computer freaks are excitedly bashing at keyboards. However,
it is most likely your Shell has just frozen and gone to sleep. You
could reset the machine now, or even wait until half-four in the
morning. But a much more sensible approach would be to stop the
command. Press CTRL and C together to “break” WAIT's effect.

Now let's put some more theory into practice. Start a new Shell
(either from the existing one or Workbench, it doesn’t matter for
this). In the second Shell, which I'll call CLI 2 here, enter this:

2>WAIT UNTIL 5:00

now click back in the first Shell and enter this:
1>STATUS COMMAND WAIT
2

Notice how AmigaDOS responds with the number of the CLI (Shell)
process which is running WAIT?

Experienced AmigaDOS users already know how to start a new
command in its own sub-Shell like this:

1>RUN WAIT UNTIL 5:00

[CLI 3]

While this system is perfect for many commands, it has no real
practical purpose when used directly with WAIT. Several problems
occur however:

e When RUN spawns the sub-process there is no way to signal
back to the main process the WAIT command has completed.

e The WAIT state cannot be broken directly from the keyboard
with CTRL+C - try it.

Taking this one step further by removing the “[CLI #]" message
causes its own problems. Try this:

1>RUN >NIL: WAIT UNTIL 5-00-00

Everything seems to go according to plan but the error in the
command line is not reported and WAIT does not start. Now to add
insult to injury, here's the final fly in the ointment. Start a new Shell
and enter this (for the sake of clarity, Shell's output has been
shown):

Mastering AmigaDOS Scripts
e Ee T I TR AT Sl Pl U o SUALETT Pl

1>RUN WAIT UNTIL 3:00
[CLI 4]
1>ENDCLI

Cli Process 4 ending

No matter what you do, Shell 4 will not go away! In fact, this Shell
window will stay open until the WAIT command has completed or is
forcibly stopped. All this discussion may seem far removed from
Pest — but in truth it is all inextricably intertwined. The last two
examples illustrate the events possible if Pest were started from the
initial Shell window: therefore some kind of error checking will be
required.

Frldav e?—nay—sa 18 09 49‘

Dos Clock

Boing... AmigaDODS Pest calling!

DKI

Pest Calling

Your Basic Pest

The most basic version of Pest 3 forms a simple, message-based,
alarm clock and may be sufficient for many needs. It could be run
from a Startup-sequence because a special technique has been used
to allow the machine to start normally - more of that in a moment.
Two versions are supplied here: one for AmigaDOS 3 and a less
elegant version for AmigaDOS 2. The AmigaDOS 3 version in
particular can be run several times from the User-startup to warn of
regular timed events: lunch, Star Trek or Coronation Street for
instance... None of the simple scripts listed here do any error
checking on the time format so it is up to you to get it right.
Nevertheless they will not interfere with the machine’'s normal
running: | have several Pest 3.0 alerts running while I'm writing this
text in Transwrite.

The one constructed for AmigaDOS 3 is the simplest Pest and shows
the most important techniques without the extra fuss required for
other versions. You can call Pest from User-startup like this:

Pest 16:47 "Close all files - Star Trek is about to start on
Sky 1"

Pest3 (AmigaDos 3)
O e |

Note that the quotes around the message are required. You can set
one or more time events from any Shell like this:

1>Pest 18:00 "Looks like you missed Star Trek then.."

Line By Line

1. Defines the argument template. Only the event's time is
actually required: Pest will generate its own message if you
don't supply one.

2. Sets the default message if one is not supplied. You can enter
any default message you want here.

3-4. Change bra (<) and ket (>) to { and }.

5. Initialises, but does not start a two command process. The
command line is added to a list but the sub-Shell is not
launched. When started, this line will time out and continue at
Step 6 when the supplied time is reached.

6. Adds the second line to the process opened at Step 5. This
line triggers the RUN...WAIT part and exits the script. The line
will not actually execute until WAIT times out (that is, reaches
the UNTIL time).

Listing
1. .key time/a,Message

2. .def Message "Wake up - time to die"

3. .bra {

4. .ket }

5. run <NIL: >NIL: wait until {time} +

6. RequestChoice >NIL: "Pest" "{Message}" "“OK"

Mastering AmigaDOS Scripts

Pest 3: AddPestEvent

Synopsis: Only used from Workbench

Template: Time/K,Day/K,Wait/K,Go/K,Message/F
Path: SYS:Pest3

Requires: V3+ (as part of Pest 3)

See also: DeletePestEvent, KillPestEvent, StartPest, GetArgs,
DeletePestEvent, ChangeMessage, SetPestEvent,
SetWaitEvent

Type: lconX script
Brief: The main module for Pest 3
Description

Pest is probably the most powerful and comprehensive time
scheduling utility yet devised — but what makes it special and what
will make other computer users pale, is the fact the whole thing is
written in AmigaDOS. There are no clever assembly-language
cheats, no hidden utilities: everything is handled by the Amiga’s
| own DOS language. It's also a lot smaller and cheaper than anything
you could reasonably buy off-the-shelf. It even has a help facility to
get you started!

e gll mnessage?s n
e Mmessa

e
er Scripts 3ith this anaziag book!

gnter minutes to wait

, n
Event scheduled for daily use. e
Enter fag or davs using flrﬁt three l?gt'ers.”‘r
Specia ormats are accepted — see help]
onilediSath

Pest Adding

Date formats are full or partial dates +‘or+ days

| Ep Saturday, Mon, 12-0ct-93, 14-Feb-, -Mar-93 etc.
| Patterns may be used, le: MonllediSat

Mon-Fril is Monday to Friday

CLI Times | Dates | Delays oK |

Pest Date Help

Pest can handle an almost unlimited number of “events” and is
accurate to within a couple of seconds of the computer’s own clock

Pest3: AddPestEvent
feim e e e e S

- depending on processor load. It is fully multi-tasking and works
quietly in the background until it's needed. Memory requirements
are frugal - each running event takes only a couple of K. Once
active it will flash a message on the Workbench even if other
applications (DPaint, Wordworth and so on) are running. Being disk-
based, it is totally reset protected since the events are set every
time the machine is started.

You may set an event (reminder) to trigger on any day, days, date,
or dates: at a specified time or a set time after the last reboot. For
example, you can set any event to happen at specific times on days
of the week; on weekends only; every day in a specific month and
so on. Typical uses include: birthdays, regular appointments, TV
programs and so on. The list of possibilities is quite vast and will
be seen by experiment.

Pest 3 will work on any Amiga with Kickstart/Workbench 3 and a
real-time clock. Amazingly, Commodore did not supply a RTC with
the A1200 so unless you have bought one separately, Pest will be of
limited use. (It still works, but only the instant and delayed events
are workable. Pest is so good though, it's just the excuse you need
to go out and buy a RTC board.) The nature of the program means a
hard disk is recommended but not required.

I can imagine a lot of readers spitting teeth and demanding to know
why this all-time best Pest is AmigaDOS 3 only. The reason is
simple: AmigaDOS 3 has a new command which suits Pest to a tee
and implementing it in AmigaDOS 2 is technically quite tricky. It is
possible to write such a utility (RequestChoice) in assembler or C
but that rather defeats the object. Demand arising, | will fix this -
but for now, here stands the Pest 3: batteries not required.

Starting Pest

The entire Pest3 drawer should be copied to your Workbench disk.
Pest is activated by dragging the “StartPest” icon to your WBStartup
drawer and re-booting the machine. After that, you can just forget it
and let Pest do the rest. The program is like an alarm clock and as
such you must remember a couple of things:

e [t does nothing unless you tell it to.
* You have to be around to hear it.

The second point cannot be stressed strongly enough. Pest is
intelligent enough to spot when you miss an appointment time on a
specified day - but the machine must be used on that date. This is
just like an alarm clock - if you're fast asleep (or not there) when it
goes off, you'll be late for work just the same.

Just double click on the AddPestEvent icon and select “Start”. Pest
will ask you what it needs to know - the sequence of prompts is
defined by exactly what the event will do. The most important, and

Mastering AmigaDOS Scripts

the only required input from you is the message Pest will display
when the event occurs. You will then be given a choice of days,
dates, times or delays. Note that in this version CLI options are not
supported.

The message can be any string of text, although about 60
characters is about the maximum. There’s no reason why you
shouldn’t use the message to remind you to view a longer note
about that particular event. Times and dates need more
explanation. Pest can accept times in 12 or 24-hour format and
recognises the difference by the presence of AM/PM in the string.
For example:

1:00 and 1:00am

are the same thing, just as are:
1:00pm and 13:00

The 24-hour method is less characters to type - it's entirely up to
you. Dates and days are more complex — although you only have to
use them if you want to specify an event for some particular day.
Basic dates are simple, for example let's assume you have a dental
checkup on 23rd July 1993, you would set an instant event (no
time) dated as 23-Jul-93.

More regular occurrences (such as birthdays and anniversaries) are
entered similarly — but without the year: the pest just registers the
date and the month, viz.: 23-Jul would define a single dated event
every 23rd July regardless of the year: birthdays and so on are a
good candidate for this event. This technique can be extended to
cover every day in a month such as Jan. Months and dates can be
grouped using the bar (|) character - this is explained for days
below.

Now let’s imagine you have to pick the kids up at 3:00 every
weekday and it takes you ten minutes to get to school, you might
set the event day as: Mon-Fri. Pest recognises this special string and
enters the string: Mon|Tue|Wed|ThulFri. Specific days should be
entered as three letter strings, separated by bars if necessary,
otherwise the entire week is taken as default.

Timed Events vs Delayed Events

Most Pest events are constructed from a time + day and/or date
plus a message. You can opt for a reminder to occur as you boot the
machine or for something to appear after a short delay - say 60
minutes. The timed delays are useful to remind you to take a break
although a reset is required to re-trigger them.

Pest3: AddPestEvent
1]

How Pest Works

Pest stores its events in the S: assignment in a script titled “Pestfile”
where every event takes a single line in the file. You can
permanently remove an event by deleting the line or disable it by
placing a “;" at the beginning of the line. You can edit this file
directly and call the relevant Pest commands as you see fit, there is
no requirement to use AddPestEvent or DeletePestEvent - that
software is provided for beginners.

The system is constructed from a hideously complex set of
AmigaDOS algorithms - but just four simple commands are central
to the operation of the entire system; and only one of those is
specific to AmigaDOS 3. Pest keys on dates, days and times shown
by the DATE command like this:

1>date Monday 19-Apr-93 10:57:03
Provided your machine has a battery backed, real-time clock this
date will be correct every time you switch on or reboot. By
comparing the date portion to a known date, Pest can determine
whether to set an event. The burning question is how can any day,
date or combination be tested for? The entire test is performed in a

single line command based on SEARCH: and this is what makes the
system so powerful.

SEARCH can test for the presence of a sub-string within a file and
report on its findings. Let’s see this in action:

1>SEARCH S:SPAT FAILAT
8 FailAt 21
18 FailAt 10

The command displays the lines the string was found on and their
line numbers. You don’t have to specify a full word of course:

1>SEARCH S:SPAT FAIL

8 FailAt 21

12 IF NOT FAIL

18 FailAt 10
As you can see an extra line also containing the string “FAIL"
appears. This is fine when used from a Shell, but useless when used
in a script. Someone thought of that: and SEARCH returns an

indication, in the system variable “RC", to say whether the string
was found or not. Here is an example run:

1>SEARCH >NIL: S:SPAT FAIL
1>GET RC

0

1>SEARCH >NIL: S:SPAT FUDGE
1>GET RC

224

Mastering AmigaDOS Scripts

5

In the second instance, the string “"FUDGE" could not be found in the
file, so SEARCH sets the variable RC to 5. (This variable can be
easily tested and acted upon with IF.)

Now how about our dates? The date itself can be easily written to
disk like this:

1>DATE >DateFile

The “>" is a re-direction operator — it takes everything that would
normally be displayed on screen and writes it to a named file -
“DateFile". Ordinarily this file would be written in the Ram Disk (T:
assignment) but to avoid confusion just take that for granted at this
stage.

We can now use SEARCH to quickly test if the requested date is
present in the date file like this:

1>SEARCH DateFile "2-Jun-93"

If the date is the 2nd June, SEARCH returns RC=0 (OK) otherwise it
returns RC=5 (WARN). Simple enough, but remember how SEARCH
does not differentiate between words and parts of words - what
would happen in this case?

1>SEARCH DateFile "Jun"

The search is true if any part of the date contains the word “Jun”,
or, as Pest sees it, the date is any day in June of any year. Exactly
the same method can be applied to days of the week too:

1>SEARCH DateFile "Monday"

This search will be true (OK, RC=0) whenever the day name is
Monday and false (WARN, RC=5) at any other time.

Now for the 65-million dollar question: what happens when an
event should be scheduled for more than one day or date? The
immediately obvious solution is to set an event for each day
required — but this is wasteful. SEARCH offers a less obvious, but
far more elegant answer: pattern matching. The special bar
character "|" pronounced "OR" solves this. In longhand if you want
and event to activate on a Monday, Wednesday and Friday this
would reduce to: "Mon OR Wed OR Fri" and further sublimate to its
AmigaDOS equivalent, “Mon|Wed|Fri" thus:

1>SEARCH DateFile "Mon|Wed|Fri" PATTERN

Note the PATTERN switch used on the command line in this example
tells SEARCH to interpret the string as a pattern (group) rather than
a literal string.

All of this translates into a few lines of code which introduce the
SetPestEvent and SetWaitEvent scripts and quickly determine
whether or not to bother with a specific event. With the dates taken
care of there is something else that can affect a Pest event: time.

Pest3: AddPestEvent
f=ae———— ==]

Most events are set to appear at a specific time, but it is possible
the time has already passed when the machine is booted, this is
also taken care of and you have the option to view the event or
even wait until the next day!

Line-By-Line

Pest is the largest suite of related scripts in the book: and
AddPestEvent is the largest of those by a long way. To keep things
to a reasonable size, the line breakdown of this script is necessarily
succinct. You don't have to understand how it works to use it!
AddPestEvent uses a great number of conditional tests to ensure it
runs at a reasonable speed.

1-3. Define the key and reset bra and ket. Note that AddPestEvent
does not have any required arguments. That's simply because
it is meant to be run by IconX from Workbench — more of that
shortly.

4-6. Determine if the script has already been run once (has already
intilialised) and if so, skip to Step 43.

7-10. Initialise some local variables according to the user’s input.

11. If the user has entered some message, control jumps to Step
42, otherwise it continues at Step 12.

12-42. Form the interactive help system based around |
RequestChoice. The flow of this part is not critical. RQ |
always contains 0 if OK is pressed; a number otherwise. |

43, Marks the jump point for Step 5. |

44-46. Looks for the special string “Mon-Fri” and converts it into a
Pest (SEARCH) readable format. The result is held in the
local "Day".

47-51. If no day has been supplied, the day is converted to every
day of the week and stored in "Day". If a special string has
been supplied, this is copied directly into “Day".

52-55. Determines if the event is timed or not. If not, an Instant
event is set and control jumps to Step 104.

56-60. Checks for a “:" in the time string. If the colon is not found,
control resumes at Step 23 (Help).

61-63. Tests if the time has been entered in 12 hour or 24 hour ‘
format. If 24 hour format is being used, control resumes at
Step 64, otherwise it jumps to Step 70. ‘

64-69. Parse the hours and minutes from the 24-hour time string,
places them in the locals "hrs” and "mns” and jumps to Step
94.

70-78. Parses the hours, minutes and am/pm information from

Mastering AmigaDOS Scripts
e e e e e]

79-82.

83-93.

94-98.

the time string.

Validates the correct number of hours (no more than 12 for
am/pm format) and exits the script on error.

Converts the hour part of 12-hour format into 24-hour
format by adding 12 to the hours value. Note that the
intermediate result is stored in a global variable.

Validates 24-hour (hours) format and exists if an error is
found.

99-102. Validates no more than 59 minutes in either 12 or 24-hour

103.

formats and exits if an error is found.

Concatenates the hours and minutes in a format suitable
for use with WAIT and saves the result in the local
“EventTime".

104-117. Confirm and check the event settings. If the user is

happy, these lines append the event to the PestFile script.
A new one iIs created automatically.

118-132. Bail out and say goodbye!

133-172. Form the interactive response part of the program. Flow

173.

Listing
1
2
3
a4
5.
6
7
8

9.

10.
11.
12.

13.
14.
15.

here is determined by user responses and variables are
recalled by Pest's "GetArgs" support script.

Calls the program recursively - telling it the preamble
(initialisation) is complete.

.key Time/K,Day/K,Wait/K,Go/K,Message/F
.bra {
.ket }
if "{go}" EQ "Now"
skip DoItNow
endif
set msg {Message$"Boing... AmigaDOS Pest calling!"}
set ArgTime {Time}
set ArgDay {Day}
set ArgWait {Wait}
if "{Message}" EQ ""

RequestChoice >ENV:RQ{$$} "Pest" "The Pest V3*nDesigned
by Mark Smiddy" "Start" "Help" "Quit"

if VAL $RQ{$$} EQ O
echo "When I grow up, I want to be a 555"

skip out

16.
17.
18.
19.
20.
21,
22.
23.
24.

25.
26.
27.
28.
29.
30.

31.
32.
33.

34.
35.
36.

37.
38.
39.

40.
41.
42.

Pest3: AddPestEvent
T e

endif

if VAL $RQ{$$} EQ 1
skip Interactive
endif

if VAL $RQ{$$} EQ 2
skip help

endif

lab help

RequestChoice >ENV:RQ{$$} "Pest Help" "Give a time or
delay*nDay/Dates are optional*nSelect a button for more
help..." "CLI" "Times" "Dates" "Delays" "OK"

lab again

if VAL $RQ{$$} EQ O
skip out

endif

if VAL SRQ{$S} EQ 1

RequestChoice >ENV:RQ{$$} "Pest CLI" "Message=*"Message
to display*"*n*nTime=Time to activate (none=at
reboot)*n*nWait=a number of
minutes*n*nDate=Date(s)/Day(s) to activate on" "CLI"
"Times" "Dates" "Delays" "OK"

endif
if VAL $RQ{$S$} EQ 2

RequestChoice >ENV:RQ{$$} "Pest Time" "Time formats are
12 or 24Hour*n*neg 13:00, 09:00, 9:12am, 12:51pm" "CLI"
"Times" "Dates" "Delays" "OK"

endif
if VAL $RQ{$$} EQ 3

RequestChoice >ENV:RQ{$$} "Pest Dates" "Date formats are
full or partial dates +or+ days*n*nEg Saturday, Mon, 12-
0ct-93, 14-Feb-, -Mar-93 etc.*n*nPatterns may be used,
ie: Mon|Wed|Sat *n*nMon-Fri is Monday to Friday" “CLI"
"Times" "Dates" "Delays" "OK"

endif
if VAL $RQ{$$} EQ 4

RequestChoice >ENV:RQ{$$} "Pest Delay" "NB: Times and
Delays don‘'t mix*n*nSpecify a delay in minutes
only*n*nEvent occurs in minutes after most recent
reset*n*n(Dates/Days can be specified)" "CLI" "Times"
"Dates" "Delays" "OK"

endif
skip again back

endif

227

Mastering AmigaDOS Scripts
= N T e e e e S T

43. lab DoItNow

44. if "$ArgDay" EQ "Mon-Fri"

45. Set Day "Mon|Tue|Wed|Thu|Fri"

46. endif

47. if "$ArgDay" EQ ""

48. Set Day "Sun|Mon|Tue|Wed|Thu|Fri|Sat"

49. else

50. Set Day $ArgDay

51. endif

52. if "$ArgTime" EQ ""

53. Set EventTime "<Instant>"

54. Skip NoTime

55. endif

56. setenv edt{$$} "SArgTime"

57. search >NIL: env:edt{$$} ":"

58. if warn

59. skip help back

60. endif

61. setenv edt{$$} "$ArgTime"

62. search >NIL: env:edt{$$} (am|pm) pattern

63. if warn

64. echo >env:edt{$$} "O$ArgTime" len=5

65. echo >env:hrs{$$} "Sedt{$$} " first=1 len 2
66. echo >env:mns{$$} "Sedt{$$} " first=4 len 2
67. set hrs $hrs{$$}

68. set mns $mns{$$}

69. skip 24Hour

70. else

71. echo >env:edt{S} " SArgTime" len=7

72. echo >env:hrs{$$} "Sedt{$$} " first=1 len 2
73. echo >env:mns{$$} "S$edt{$$} " first=4 len 2
74. echo >env:apm{$$} "Sedt{$$} " first=6 len 2
75. set hrs $Shrs{$$}

76. set mns $mns{$$}

77. set apm Sapm{$$}

78. endif

79. if val $hrs GT 12

80.

81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.

97.
98.
99.

100.

101.
102.
103.

104
105

107.
108.

109.
110.
111.

.Lab NoTime
.if "$ArgWait" EQ ""
106.

Pest3: AddPestEvent
[l ihiee o= pamt == i =l)

RequestChoice >NIL: "Pest" "Only 12 hours in Am/Pm for-
I1‘atll n OKII

skip out
endif

if "$Sapm" EQ "pm"

if val $hrs NOT GT 11
eval ($hrs + 12) mod 24 to env:hrs{$$}
set hrs $hrs{$$}
endif
endif
if “"Sapm" EQ "am"

if val S$hrs EQ 12
set hrs 0
endif
endif
lab 24Hour
if val $hrs GT 24

RequestChoice >NIL: "Pest" "Only 24 hours in 24-hour
clock" "OK"

skip out
endif
if val $mns GT 59

RequestChoice >NIL: "Pest" "Error: there are only 60
minutes in an hour!" "OK"

skip out
endif

set EventTime $hrs:$mns

requestchoice >ENV:RQ{$$} "Pest" "Confirming:
"$ArgMsg"*n*nAt $EventTime*n*non/during/every $Day"
"OK" "Forget It"

else

requestchoice >ENV:RQ{$$} "Pest" "Confirming:
"$ArgMsg " *n*n$ArgWait mins from
startup*n*non/during/every $Day" "OK" “Forget It"

endif
if VAL $RQ{$$} EQ O

skip out

Mastering AmigaDOS Scripts
S et pe e e T T

112.endif
113.if "$ArgWait" EQ ""

114. echo >>S:PestFile "PEST3:SetPestEvent
Time=*"$EventTime*" day=*"$Day*" Message=*"$ArgMsg*""

115. else

116. echo >>S:PestFile "PEST3:SetWaitEvent Wait=*"$ArgWait*"
day=*"$Day*" Message=*"$ArgMsg*""

117.endif

118. lab out

119.unset EventTime

120.unset Day

121.unset ArgDay

122.unset ArgWait

123.unset ArgTime

124.unset hrs

125.unsetenv hrs{$$}

126. unset mns

127.unsetenv mns{$$}

128.unset apm

129.unsetenv apm{$$}
130.unsetenv RQ{$$}

131.echo "TTFN - from the Pest!"
132.quit

133.1lab interactive

134.set ArgWait ""

135. set ArgTime ""

136.set ArgDay ""

137.Ask "Use default message?"
138.if warn

139. echo "Using default message..."
140. Set ArgMsg $Msg

141.else

142. echo "Enter the message"
143. PEST3:GetArgs Msg

144. endif

145.Ask "*e[32mDo you require a timed event?*e[31m"
146.if warn

147. echo "Enter time (format HH:MM)"

148. PEST3:GetArgs Time

149.else

150. Ask "*e[32mIs this a delay event?*e[31m"

151. if warn

152. echo "Enter minutes to wait"

153. PEST3:GetArgs Wait

154. set ArgTime ""

155. else

156. echo "Event will occur upon restart."”

157. endif

158.endif

159.Ask "*e[32mIs this event for a specific date?*e[31m"

160.if warn

161. echo "Enter date (format DD-MMM-YY) partial dates
accepted (see Help)"

162. PEST3:GetArgs Day

163.else

164. echo "Event scheduled for daily use."

165. Ask "*e[32mDo you wish to specify a day or days?*e[(31m"

166. if warn

167. echo "Enter day or days using first three
letters.*nSpecial formats are accepted - see help"

168. PEST3:GetArgs Day

169. else

170. echo "Event scheduled for every day."

171. endif

172. endif

173.PEST3:AddPestEvent Go=Now

Pest3: AddPestEvent
- — — — — — —]

232

Mastering AmigaDOS Scripts

Pest 3: ChangePestMessage

Synopsis: [(Event=]Event #] [[Message=]"Text"]

Template: Event,message

Path: SYS:Pest3
Requires: V3+
See also: AddPestEvent, DeletePestEvent, KillPestEvent,

StartPest, GetArgs, DeletePestEvent, SetPestEvent,
SetWaitEvent, ListPestEvents

Type: IconX script
Brief: Changes the message attached to a pest event
Description

ChangePestMessage: was provided because the problem was there.
Although | have found little use for it, | suspect someone will like it.
Essentially you are provided with a list of all the current events
(those already running) and are given the opportunity to change the
message attached to any one.

TEIT]

Re1R"fremtascos e

;%ntoerv-nt number to change:2
iEnter new message for event 2:This is a new Messagel

Pest Change Message

The script will usually be called from Workbench (using lconX) but
it doesn’t have to be. If called from Shell without arguments, it
behaves like the Workbench version, otherwise you can supply an
event number and a new message, viz:

1>ChangePestMessage 3 "I've changed this message!"

Important: ChangePestMessage does not alter "PestFile” it only
affects a current event.

Line-By-Line

1. Defines a simple template for the script. Note that neither of
the arguments are required. This makes it possible for the
script to be executed from lconX safely.

2-3. Change the default < and > markers to{ and }.

Checks if an event number has been supplied. If not, control
continues at Step 5; otherwise it is transfers to Step 12. This
provides the interactive feature for the event number.

10.

11.
12.
13.

14.

15.

16.

17.

18.
19.
20.
21.

22.

23.

24.

Pest 3: ChangePestMessage
- _ _ _ _ _ __ _ _ _ _]

Calls ListPestEvents to show the current events with their
attached event number. This can be handy from Shell if you
don’t know which event number is attached to a particular
event.

Provides a simple message. Note that the newline character is
suppressed.

Sets the local ArgEvt to some arbitrary value. This prevents
any blobs if the user doesn’t supply some value at Step 8.

Calls GetArgs asking it to return a value in ArgEvt. See the
description of GetArgs to see how this is done.

This calls ChangePestMessage recursively. Note the event
number is set by ArgEvt on this call.

When the recursion unwinds, this line clears the value in
ArgEvt.

Jumps to the end of the script (Step 27) and exits cleanly.
Terminates the IF...ENDIF construct opened at Step 4.

Tests if a message has been supplied. If the message is empty,
control continues at Step 14; otherwise it jumps to Step 20.

Displays a newline plus a message asking for the new
message. Note the final newline is suppressed to keep the
inputlooking logical.

Sets a dummy value for ArgMsg (the message string). This

prevents any blobs if the user doesn't supply some value at
Step 16.

Gets a new message from the user and returns the result in
ArgMsg. Note that if no value is supplied, the message
defaults to “+++".

Calls ChangePestMessage recursively with all the required
information.

When the script unwinds, this clears the ArgMsg variable...
...and exits this level cleanly by jumping to Step 27.
Terminates the IF...ENDIF construct opened at Step 13.

Tests for an event running using the supplied Pest event
number. This will be a resident copy of WAIT numbered
according to its event number. See SetPestEvent and
SetWaitEvent to see how this is achieved.

STATUS sets the WARN condition if it could not find the
requested command. This checks the return and branches to
Step 23 if the event was present or Step 24 if it wasn't.

Changes the indirection variable "PM+Event #" to the new
message. See SetPestEvent to see how this is used.

If control reaches here from Step 23 it jumps to Step 26;

Mastering AmigaDOS Scripts
e PN n e e T B TR e

25.

26.
27.

otherwise it continues at Step 25.

This gives a puzzled error message if the event number could
not be found. Typically this means you have not supplied a
correct event number, either interactively or at the command
line. (This applies if you don't supply something to GetArgs
too.)

Terminates the IF...ELSE...ENDIF construct opened at Step 22.
Marks the end of the script: primarily for the recursive jumps.

Listing

—_
.

o N o s W N

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

.key Event,message
.bra {

.ket }

if "{Event}" EQ ""
PEST3:ListPestEvents

echo "*nEnter event number to change:" noline
set Argévt “<Non Existant>"

PEST3:GetArgs Evt

ChangePestMessage Event=$ArgEvt

unset Argevt

skip end

endif

if "{Message}" EQ ""

echo "*nEnter new message for event {Event}:

noline
Set ArgMsg "+++"
PEST3:GetArgs Msg
ChangePestMessage Event=$Argevt Message="$ArgMsg"
unset ArgMsg
skip end
endif
status >NIL: command=Wait{Event}
if not warn
setenv PM{Event} "{Message}"
else
Echo "Error: That event does not seem to exist?"
endif
lab end

Mastering AmigaDOS Scripts

Pest 3: DeletePestEvent

Synopsis: Usually executed from Workbench
Template: exits)

Path: SYS:Pest3

Requires: V3+

See also: AddPestEvent, KillPestEvent, StartPest, GetArgs,
ListPestEvents, ChangeMessage, SetPestEvent,
SetWaitEvent

Type: IconX script
Brief: Removes a Pest 3 event: permanently
Description

DeletePestEvent permanently removes any pest event from the
system and should be used with care. It works along similar lines to
KillPestEvent but this one actually lists the main "Event” script
(Pestfile). Enter the number of the line to remove or “0" to escape. If
executed from the Shell, this program is best used without
arguments to prevent any errors.

elag o > dsv= HonlTuelHedl T Hessage="

z .it- 2 day"ﬁunlnonltuclllo‘dl‘r_!‘\u!f'r’ll.ptf,kl!&.t
:zfn-.bogzrni. aif2ls- day="HoniHediSat” Hessage="Haster Scr =
nter event number to remove (8 exlits): B

R

;l'éﬂ .

Pest Delete Event

Line-By-Line

1. DeletePestEvent uses a interactive, recursive technique to get
its command line option. Part of the prompt text is “(0 exits)"
which is why the strange bracket “exits)” appears here.

2-3. Define the angle brackets as braces.

If the user enters 0 at the command line, control continues at
Step 5; otherwise it jumps to Step 6.

5. Stops the script and returns back to AmigaDOS. (Quit cannot
be called from a nested script by the way.)

Terminates the IF...ENDIF construct opened at Step 4.

Checks that some input has been made. If not, control
continues at Step 8.

8. Types the current event program with line numbers.

Mastering AmigaDOS Scripts
ST sse e e R T PO [CUN RS ey

9. Displays the main part of the interactive prompt: note there’s
an extra space before the final closing quote — this ensures the
message is constructed correctly.

10. Calls DeletePestEvent recursively with interactive mode (?).
This displays the last part of the prompt and waits for the
user to enter something.

11. When the recursion unwinds to this point, it jumps to the end
and exits cleanly.

12. Closes the IF...ENDIF construct at opened at Step 12.

13. Decrements the value of the input and stores the result in the
global, “Line".

14. Tests if the value of “Line” is less than 1. If it is, control
resumes at Step 15; otherwise it jumps to Step 16.

15. Creates a simple EDIT macro to delete the first line EDIT
encounters.

16. If control reaches here from Step 15, it jumps to Step 18;
otherwise it continues at Step 17.

17. Creates a simple EDIT macro to jump forward “Line” number
of lines then delete the next one.

18. Closes the IF...ELSE...ENDIF construct opened at Step 14.

19. Deletes the requested line by editing the current PestFile
(event program) with the macro created by Step 15 or 17.
Note, this number is not range checked and if a large number
is used, EDIT will stop and complain. You might like to
experiment with some error checking here. Hint: See the
DataBase program for more information.

20. Marks the “out” point for bailout.

21. Clears the global variable, Line.

22. Removes the EDIT macro created above. All scripts should do
this, but very few people ever bother (including me) because
this takes time and is rarely necessary.

Listing

1. .key exits)

2. .bra {

3. .ket}

4. if "{exits)}" EQ "0"
5. quit

6. endif

7. if “"{exits)}" EQ ""

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21,
22.

Pest 3: DeletePestMessage
=== e e — e, s Fe e

type s:pestfile number
echo "*nEnter event number to remove (0 " noline
PEST3:DeletePestEvent ?
skip out
endif
eval {exits)} - 1 to=env:lLine
if VAL $Line NOT GE 1
echo >T:AE{$$} "d"

else

echo >T:AE{$$} "SLine(n);d;"
endif
edit s:PestFile with t:AE{$$}
lab out

unsetenv Line
delete >NIL: T:AE{$$}

237

Mastering AmigaDOS Scripts
IS e e e

Pest 3: GetArgs

Synopsis: [EXECUTE] GetArgs <[Argnum=]#> [lc=private]

([Arg=]->]
Template: ArgNum/a,lc/K,Arg/F
Path: SYS:Pest3

Requires: V3+ (for Pest 3)

See also: AddPestevent, DeletePestEvent, KillPestEvent,
StartPest, DeletePestEvent, ChangeMessage,
SetPestEvent, SetWaitEvent, ListPestEvents

Type: Script
Brief: Argument retrieval for the Pest v3
Description

A central part of Pest 3 is its ability to interactively read a line of
text from the user and return the result to another script. A
deceptively short script achieves this with a minimum of fuss,
GetArgs works like this. You send it a variable name (or number)
and it returns a local variable (Arg<Name>) containing the result. It
is similar to the BASIC command:

LINE INPUT A$

For instance, the command “GetArgs Time" returns its result in
"ArgTime”. The word "Arg" is appended to ensure there are no
clashes with existing variables. The script operates with a recursive
algorithm which is enough to make your brain itch until you get the
hang of the idea. Here’s how it works — don’t panic if you don’t get
the idea right away:

Line-By-Line

1. Defines the argument template with ArgNum required and two
optional arguments: note ARG is Final (/F). We'll see their
function shortly — but you might like to consider, this script
will work equally well if “LC" was a switch (/S) by changing
Line 5 slightly. Before you read the rest of this, try to predict
why.

2-3. Redefines BRA and KET to my favourite versions.

Opens an IF...ENDIF construct to check if an argument has
been supplied or the scriptis being run for the second time. If
either is true, execution jumps to Step 6; otherwise it
continues at Step 5.

5. This line recursively calls GetArgs again - the argument

Pest 3: Get Args

number is passed back (it's required) and LC (last chance) is
turned on. LC could be a switch in the template in which case
the "=ON" would not be required, either way works as well.
More importantly, this command places the argument parser
into interactive mode and sinks the argument template to
NIL:. The result of this is to give the user somewhere to type
without printing a useless message. Whatever they type is
passed directly back to "ARG" in the second recursive
invocation of GetArgs. Since this argument is Final, everything
including any spaces is passed into the argument.

6. Terminates the IF...ENDIF construct opened at Step 4. This line
is only reached when the script has done one complete
recursive loop.

7. Defines a local environmental variable ARG<ArgNum> with
the value held by Arg. The script then terminates unless the
script was called from within itself (Step 5) in which case
execution resumes effectively at Step 6 in the original.

Listing

1. .key ArgNum/a,lc/K,Arg/F

2. .bra {

3. .ket }

4. if "{Arg}{lc}" EQ ""

5. PEST3:getargs >NIL: ArgNum={ArgNum} LC=ON ?
6. endif

7. Set Arg{Argnum} {Arg}

Mastering AmigaDOS Scripts

Pest 3: KillPestEvent

Synopsis: [EXECUTE] KillPestEvent <[Event=]#>
[[Message=]Text] [[Sys=]private]

Template: Event/a,message,sys
Path: SYS:Pest3
Requires: V3+ (as part of Pest 3)

See also: AddPestevent, DeletePestEvent, KillPestEvent,
StartPest, GetArgs, DeletePestEvent,
ChangeMessage, SetPestEvent, SetWaitEvent,
ListPestEvents

Type: Script
Brief: List the current events tracked by the Pest
Description

Removes a current running event from the list. This command is
designed to be used from Workbench and may be used without
arguments to trigger its interactive mode. The Message argument is
reserved for use by the Pest system although you can supply one if
you wish. When an event is removed, the “"++Active++" string is
replaced by the contents of the message argument. In any case,
when KillPestEvent terminates an event, it echoes the process slot

used (check STATUS). Examples:
1>KillPestEvent 1
Running as process:10
Bang! Event 1 bites the dust
1>KillPestEvent
Pest active Monday 27-Apr-93 11:30:23
Event Time Status Message
0. 12:59 ++Active++ Time for lunch!!
1. 14:47 +Deceased+

Enter event number to delete:

Line-By-Line

1-3. Define the argument template and re-define the bra and ket

characters.

4. Sets the default message parameter. This occurs when
KillPestEvent is called by a user — SetPestMessage sends its

own message.

5. Tests if an event number has been supplied. If not, control

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Pest 3: KillPestEvent
_

continues at Step 6, otherwise it jumps to Step 12. This is
primarily to keep things interactive from Workbench.

Calls ListPestEvents to display the current events. Note that
ListPestEvents shows “"dead” or completed events too. You
can't kill these since they have already been removed from the
system.

Prints the prompt for GetArgs to use. The NOLINE option is
used to suppress the extra linefeed.

Gets the number of the event to delete from the user and
returns the result in the local, ArgEvt.

Calls KillPestEvent (itself) recursively but this time with the
correct event number inserted at the command line.

Clears the ArgEvt variable.

Skips to the end of the script and exits when the recursion
unwinds.

Terminates the IF...ENDIF construct opened at Step 5.

Checks the status of a WAIT command numbered by the event
number. If this exists it is sent to the file “T:Kill", if not the
WARN condition is set.

Checks if the WARN flag was clear (if the WAIT exists). If it is,
execution continues at Step 15, otherwise it jumps to Step 19.

Displays the first part of a progress message with the newline
character suppressed so...

...the process number appears correctly. This feature is not
strictly necessary but it makes things look professional.

Uses an interactive break to stop the WAIT event checked at
Step 5. Re-direction to NIL: prevents BREAKS argument
template appearing and messing up the display.

This confirms the event has been deleted.

Execution arrives here if the WAIT event was not found and
continues...

...here, where it prints an error. (This error is not displayed by
SetPestEvent, even though it occurs.)

Checks if the script was called by the Pest system (SYS<>"")
and if so, execution jumps to Step 23. Otherwise it continues
at Step 22.

Forces execution to jump to the label at Step 29.
Terminates the IF...ENDIF construct opened at Step 21.
Closes the IF...ELSE...ENDIF construct opened at Step 14
Writes an EDIT script - here it is in longhand:

Mastering AmigaDOS Scripts
eI e T e S R T

1. F/{Event}./
2. PA /:/
3. PA /[I/
4. 15#
5. B//{Message}/
or
1. Find the line starting with the event number.
2. Move the cursor after the “:” in the event time.
3. Move the cursor after the next TAB.
4. Delete 15 characters
5. 1Insert the message at the current position plus a
tab.

26. Checks to make sure the Event global is available.

27. Replaces the “++Active++" message in the global with the
message defined at the command line. SetPestEvent sends
“Completed” by default.

28. Clears the message attached to the requested event number.

29. Terminates the IF...ENDIF construct opened at Step 26.

30. This marks an exit point if something has gone wrong earlier
in the script. It isignored otherwise.

31. Deletes the temporary file and frees up some memory.

Listing

1. .key Event,message,sys

2. .bra {

3. .ket }

4. .def Message "+Deceased+"

5. if "{Event}" EQ ""

6. PEST3:ListPestEvents

7. echo "*nEnter event number to delete:" noline
8. PEST3:getargs Evt

9. PEST3:KillPestEvent $Argevt

10. unset ArgeEvt

11. skip end

12. endif

13. status >T:Kill{$$} command=Wait{Event}
14. if not warn

15. echo "Running as process:*e[32m" noline

16.
17.
18.
19.
20.
21,
22.
23.
24,
25.

26.
27.
28.
29.
30.
31.

Pest 3: KillPestEvent
[

type T:Kill{$$)}
break <T:kill{$$} >NIL: all ?
echo "*e[31mBang! Event: {Event} bites the dust"
else
echo "Error: That event has not been set?"
if "{sys}" EQ ""
skip end
endif
endif

echo >T:Kill{$$} "F/{Event}./;pa/:/; pa/[1/;15#;
B//{Message}/;"

if exists env:PV{Event}

edit env:PV{Event} with T:Kill{$$}
unsetenv PM{Event}

endif

lab end

delete >NIL: T:kill{$$} quiet

Mastering AmigaDOS Scripts

Pest 3: ListPestEvents

Synopsis: Usually used from Workbench

Template: QUICK/S

Path: SYS:Pest3

Requires: V3+

See also: AddPestevent, DeletePestEvent, KillPestEvent,

StartPest, GetArgs, DeletePestEvent,
ChangeMessage, SetPestEvent, SetWaitEvent

Type: lconX script
Brief: List the current events tracked by the Pest
Description

This function is provided to list information on all the current
events. The QUICK switch is available from the Shell only and is
used to suppress the date heading and message output.

Horkbench Screen

Pest List Events

ListPestEvents is used to list the current events and their status.
Note: this utility only affects *running* events scheduled for that
day. They can be reset by re-booting the machine - see
DeletePestEvent for a more permanent solution. Three general
states are possible:

e Active: event is running and waiting to execute.

e Deceased: event has been removed by the user (with
KillPestEvent) before completion.

e Complete: event has already timed out normally.
An event may be removed by calling KillPestEvent with a special
message. In this case the "Status” code will reflect that.
Line-By-Line
1-3. Defines the argument template as described above and sets
the angle brackets to braces.

an Tests if the QUICK option was supplied. If it was control
jumps to Step 6; otherwise it continues at Step 5.

11.
12.

13.
14.
15.
16.

17.

18.
19.

20.

21.

22.

23.

24.
25.

26.

Pest 3: ListPestEvents

Prints the “QUICK" header for ListPestEvents.

If control reaches here from Step 5 it jumps to Step 9;
otherwise it continues at Step 7.

Displays the current date and time as a part of the header
message.

Displays the full “message-included” event header.
Terminates the IF...ELSE...ENDIF construct opened at Step 4.

Creates a global variable called “Count#" and sets it to zero.
({$%} shown as # here is the current process number.)

Marks the start of a loop.

Attempts to get the value of the Pest internal variable,
suffixed by the loop counter, Count#. Events start at O and
count up from there. The actual value of the variable is sent
to NIL: at this point, we want to test for the presence of the
variable. For example, if three events were (or had been) set,
there would be three PVs: PVO, PV1 and PV2. When the number
of current events is exceeded, GETENV returns WARN.

Tests if the WARN flag was present and...
...jumps out of the loop and the script (to Step 30).
Closes the IF...ENDIF construct opened at Step 13.

Uses “ " (expand command) to display the current value of
PVn: where n is the number held in “Count”. (It has to be done
this way: PVCount{3} will confuse the dollar parser.)

Tests if the QUICK switch was used at the command line. If it
was, control continues at Step 18; otherwise it jumps to Step
19.

Displays a blank line.

If control reaches here from Step 18 it jumps to Step 26:
otherwise it continues at Step 20.

Tests for the presence of a message variable using the
technique described at Step 12. Completed messages do not
have a message attached to them. (The message is removed by
KillPestEvent.)

Tests if the variable was valid. If it was control jumps to Step
24; otherwise it continues at Step 22...

...and displays another blank line (finishing off the event
details).

Jumps directly to Step 27, does not pass GO and does not
collect £200.

Terminates the IF...ENDIF construct opened at Step 21.

Retrieves the message from the appropriate variable (see
Step16) and displays the first 20 characters of it. This stops
long messages from wrapping on lines and messing up the
display.

Terminates the IF...ELSE...ENDIF construct opened at Step 17.

Mastering AmigaDOS Scripts

27. Marks the entry point for the next loop of the script...

| 28. ..where the counter is incremented by 1.

29, Jumps back to the start of the loop (at Step 11) and goe

through the whole process again.
30. Whenthe script needs to bail-out, it jumps to this point.
Listing
1 .key QUICK/S
2 .bra {
3 .ket }
4. if "{quick}" NOT EQ ""
5. echo "Event*e[ITime*e[IStatus"
6 else
7 echo "Pest active: 'date’"
8 echo "Event*e[ITime*e[IStatus *e[IMessage"
9. endif
10. setenv count{$$} O
11. lab loop
‘ 12. getenv >NIL: PV$Count{$$}

13. if warn

14. skip all_done

15. endif

16. echo "'getenv PV$Count{$$} " noline
17. if "{QUICK}" NOT EQ ""

18. echo ""

19. else

20. getenv >NIL: PM$Count{$$}

21. if warn

22, echo ""
23. skip next
I 24. endif
25. echo "'getenv PM$Count{$$} " first=1 len=20

| 26. endif

I 27. lab next
28. eval $Count{$$} +1 to ENV:Count{$$}
29. skip loop back
30. lab all_done

Mastering AmigaDOS Scripts
e ———————————

Pest 3: SetPestEvent

Synopsis:

Template:
Path:
Requires:

See also:

Type:
Brief:

Description

[EXECUTE] [[Time=]time|date] [[Message=]"Msg"]
[Day=Dayname] [QUIET]

time/a,Message,day/k,QUIET/S
SYS:Pest3
V3+

AddPestEvent, DeletePestEvent, KillPestEvent,
StartPest, GetArgs, DeletePestEvent,
ChangeMessage, SetWaitEvent, ListPestEvents

Pest support script

Sets timed events for Pest v3

This command sets the normal time/date events and is normally
executed by StartPest (via the PestFile). You can call it directly to set
an immediate event which does not require a re-boot however. This
command is stripped down for speed and times should be entered
in 24-hour clock only! If the message contains spaces it should be
enclosed by quotes. You can use this command with care to add
events directly to S:PestFile if you wish. Example:

1>SetPestEvent Time=13:00 Message="Time for a break"

The QUIET switch is used from the Shell or PestFile directly to
suppress “override” messages when an event has been missed.

cLr |

Date fornats are full or partlal dates +¢or+ davs
Eg Saturday, Mon, 12-0ct-93, 14-Feb-, -Mar-93 etc.
Patterns may be used, le: MoniNedliSat :
Mon-Frl s Monday to Frilday '

Tines | Dates | Delays | oK |

Pest Date Help

Time formats are 12 or 24Hour
eg 13:00, 09:008, 9:12am, 12:51pPn

CLI

Times | Dates | Delays | oK |

PestTime Help

247

Mastering AmigaDOS Scripts

Line-By-Line

1-3.

10.

Sets the input key and set the bracket characters to { and }.
Day Fragment (4-10)

{Day}is an optional argument supplied by the user as defined
above which carries the day(s) or date(s). This test determines
if an argument has been supplied by checking if “{day}’ and "
are not the same. (AmigaDOS pre-parses the script by
replacing every argument name with any values supplied for
it.) Two possible ways this line can be expanded are:

A. 1if not eq
or
B. if Mon|Wed|Fri not eq ""

When such a test evaluates TRUE, execution continues at Step
5. If, on the other hand, the test returns FALSE, execution
jumps to the matching ENDIF (Step 10). In this first case,
things are slightly more complex because the test is reversed
by “NOT". The unknown string on the left is compared for
inequality to the empty string on the right: Test A evaluates
FALSE; B evaluates TRUE.

This sends the current time and date to a temporary file. The
name is arbitrary, but use of the “T:" assignment ensures the
file is written to RAM for speed.

Here is the practical version of the search described in
AddPestEvent. Although this line looks complex, all that has
been added is the day/date argument collected from the
command line. When AmigaDOS expands this it might look
like this:

search >NIL: t:TPToday "(Mon|Wed|Fri)" pattern

(Brackets and quotes are added here to prevent the command
becoming confused if the date argument contains spaces.) If
the date file, TPToday, contains one of the sub-strings: Mon,
Wed or Fri, SEARCH returns OK; otherwise it returns WARN.

Checks if the SEARCH set the WARN flag - the date/day sub-
string was not located in today’s date. If WARN was found,
execution continues at Step 8, otherwise it jumps to Step 9.

Immediately transfers control to the end of the script and
exits to save time.

Marks the closing point for the IF...ENDIF construct at Step 7.
Execution continues at Step 10.

Closes the IF...ENDIF construct from Step 4 and allows
execution to continue with the remainder of the script.

Pest 3: SetPestEvents
o it e = s o= L= e

Instant Fragment (11-14)

11. Checks if the variable “time" is equal to the special string
“<Instant>". This is a private string usually set by
AddPestEvent.

12. If an instant event has been selected, this presents a requester
titled “Pest” with the message string and a single “OK" button.
The return from RequestChoice is sent to the global, RQ
although it is never actually used in this context. NIL: could
be used here if preferred.

13. Jumps to the end of the script and exits quickly.

14. Terminates the IF...ENDIF construct from Step 11. Control only
arrives here if a non-instant event is being set.

Time Fragment (15-31)

15. Writes the date and time to a global environmental variable.

16. Constructs an EDIT macro to extract the time from the current
date. This is quite involved, so let’'s examine it in more detail.
The actual macro file can be split into separate commands
like this:

2(dta/ /)
pa/:/
pb/:/

3#

Recall how the date is actually written:
Monday 19-Apr-93 10:57:03

The first part of the macro deletes everything up to the time
by searching and deleting everything up to the second space
inclusive. This leaves us with:

10:57:03

Next the edit "pointer” is placed after the colon in hours and
before the colon separating the minutes and seconds. If this
seems odd, it's just the way EDIT works. Finally the second
colon and the last two digits are deleted leaving us with:

10:57

17. Edits the variable TimeNow{$$} directly using the macro just
described.

18. Compares the requested event time to the actual time. This
test returns TRUE if the event time is less than the actual
time; in other words the time has already passed.

19. Tests for the QUIET switch. This is an extra not supported by
AddPestEvent and determines if a warning for a missed

Mastering AmigaDOS Scripts
jEaS e T s =t e e i L —— FEA e AT e e B

(timed) event should be shown. If the QUIET switch is active
control skips to Step 30.

20. If the test at Step 18 is true, this presents at requester
indicating what has happened and provides some options as
what to do. The user’s response is sent to the global "RQ"
acted later in the script. Results are as follows.

Yes=1; Show=2; Cancel=0.

21-23. If the user presses Cancel after a "Missed event”
warning, this code causes the script to exit immediately.
24-29. If the user replies "Show" to the request at Step 20, this

code displays the message and exits the script.
30. Closes the IF...ELSE...ENDIF construct opened at Step 19.
31. Closes the IF...ELSE...ENDIF construct opened at Step 18.

Event Creation (32-36)

32. Creates or increments the global variable, PestEvent. This
variable is used internally to track the process numbers
attached to any given event.

33. Loads a resident version of WAIT with the name determined
by WAIT + the current Pest event number. Note: this is an
internal name and has no bearing on the actual process
number running the event. Each WAIT is ADDed to the
resident list to allow multiple WAIT processes and to ensure
the correct one is unloaded when the event completes.

34. Displays a confirmation that the event has been set. The event
number shown 1s Pest's internal event number, and is not
related to the process: which at this stage remains to be
launched. Strictly, speaking this confirmation should not
appear until after the task has been started but a
programming consideration prevents this.

35. Creates a variable (PV + the event number) with details of the
event. This information is used by ListPestEvents.

36. Creates a variable (PM + the event number) containing the
entire event message.

Event Starting (37-38)

Most of the remaining script, up to Step 41, looks like a single
command and forms the complete event process. This part
sets up the new process, presents the completion message,
removes the WAIT command and clears the event. [t’s
important to note that these lines form an “asynchronous
process” and do not have to complete in order for the script
to finish. These lines launch the resident part of the event and

Pest 3: SetPestEvents
Sasten = e smsume s s e == o)

leaving it hanging around in memory. Because of this,
SetPestEvent can be called many times in very rapid
succession.

37. Creates the new process which will wait until the requested
time is reached. Note that a specific resident copy of WAIT is
called - the one numbered by this event. The “+" symbol at the
end of this line ties it to step 38.

38. When the WAIT started at Step 37 “times out” the request
appears. The time is inserted in the title string using
command expansion and the message is inserted using
manual expansion of GETENV. This allows the message to be
changed at any time via indirection. See the discussion of
RESCALC for a simpler example using this technique. The "+"
ties this step to step 39.

Event Removal (39-41)

39. Kills (removes) the event and marks it complete. This
information is used by ListPestEvents. The “+" ties this step to
step 40.

40. Removes the WAIT command from the resident list and
discards it from memory. The “+" ties this line to step 41.

41. This is the last line in the "RUN +" group and actually starts
the process running. When control reaches here at some
future time (determined at Step 37) this removes the Pest
message.

42. Marks the bail-out point for the script.

43-44. Clear some variables that we don’t want to leave hanging
around.

Listing

.key time/a,Message,day/k,QUIET/S

.bra {

.ket }

if {day} not eq ""

date >T:TPToday

search >NIL: t:TPToday "({day})" pattern
if warn

skip out

endif
endif
if "{time}" EQ "<Instant>"

a4 O O N O NS WN =

- ©

Mastering AmigaDOS Scripts
[——reae e e e e]

12.
13.
14,
15.
| 16.
17.
18.
19.
20.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.

39.
40.
41,
42.
43.
44 .

21.

23.
24.
25.

RequestChoice >env:RQ{$$} "Pest" "{Message}" "OK"
skip out
endif
date >env:TimeNow{$$}
echo to T:EdTime "2(dta/ /);pa/:/;pb/:/;3#"
edit env:TimeNow{$$} with T:EdTime
if $TimeNow{$$} GT "{Time}"
if "{QUIET}" EQ ""

RequestChoice >env:RQ{$$} "Pest" "Requested event time:
{time} has already passed.*nShould I wait until tomor-
row?" "Yes" "Show" "Cancel"

if $RQ{$$} EQ "O"
skip out

endif

if $RQ{$S$} EQ "2"

RequestChoice >NIL: "“Pest Override Message"
"{Message}" "OK"

skip out

endif

else

skip out

endif
endif
eval $PestEvent+1 to env:PestEvent
resident name=wait$PestEvent file=c:wait add
echo "Event $PestEvent set at {time}"

echo <NIL: >ENV:PV$PestEvent
"$PestEvent.*e[I{time}*e[I*e[32m++Active++*e[31m*e[I"
noline

echo <NIL: >ENV:PM$PestEvent "{Message}"
run <NIL: >NIL: wait$PestEvent until {time} +

RequestChoice >NIL: "Pest (active "date’)"
PM$PestEvent " "OK" +

PEST3:KillPestEvent SPestEvent "+Complete+" sys=QUIT +

‘getenv

Resident Wait$PestEvent remove +
unsetenv PM$PestEvent

lab out

unsetenv RQ{$$}

unsetenv TimeNow{$$}

Mastering AmigaDOS Scripts

Pest 3: SetWaitEvent

Synopsis: [EXECUTE] SetWaitEvent [[Wait=]time]

[[Message=]"event message"] [Day=Dayname]

Template: wait,Message,day/k

Path: SYS:Pest3
Requires: V3+
See also: AddPestevent, DeletePestEvent, KillPestEvent,

StartPest, GetArgs, DeletePestEvent,
ChangeMessage, SetPestEvent, ListPestEvents

Type: Pest support script
Brief: Sets the delayed events for Pest v3
Description

SetWaitEvent is the similar to SetPestEvent, except that the time is a
delay in minutes. Example:

1>SetWaitEvent Time=5 Message="Five minutes have elapsed..."

Event 3 set in 5 minutes

Note that a QUIET switch has not been supplied with this command;
you might like to add one for yourself - see SetPestEvent for more
details.

 (Dates/Days can be specified)
cLI | Times | Dates | Delavs | oK |

NB: Times and Delays don’t nix

SPecva a delay in minutes only
Event occurs in minutes after nost recent reset

Pest Delay Help

Line-By-Line

1-3.

Defines a simple argument template and set up the brace
characters.

Tests if some day names (see AddPestEvent) have been
supplied. If not, control jumps to Step 10; otherwise it
continues at Step 5.

Creates a file containing the current time and date as a string.

Checks the day name supplied matches "today": if not a WARN
condition is returned. (See SetPestEvent for more
information.)

Checks for a WARN condition from Step 6 and. ..

|

Mastering AmigaDOS Scripts

| 8. Leaves the script immediately. This speeds things up
i considerably.

9. Closes the IF...ENDIF construct opened at Step 7.
[10. Closes the IF...ENDIF construct opened at Step 4.

11. Increases the current Pest “event’ number and stores the
result in PestEvent.

| 12. Adds a resident copy of WAIT to the resident list and names it
as WAIT + the current event number. This is used to track the
process attached to individual events.

13. Confirms the event and event number.
14. Creates the main event variable (used by ListPestEvents).

15. Creates the event message variable. This is stored separately
, from the event so that the message can be changed later using
| variable indirection.

[16. Creates the event by RUN-launching WAIT to wait for a specific
| time. This line is attached by “+" to Step 17 and is part of the
same process. (Note: WAIT events are controlled by the most
recent reset.)

17. Sets the time-out requester using REQUESTCHOICE. The
message is retrieved when this command is actually activated
using 'GETENV PMS$PestEvent . If a simple “$" was used, the
message would be inserted when the script was interpreted
and could not be changed. This line is attached to Step 18 by
e

18. Removes the event from the active list using KillPestEvent.
This line is attached to Step 20 by “+".

19. Removes WAIT from the resident list returning the memory it
used to the system. This line is attached to Step 20 by “+".

20. Removes the event message from the system. The event
proper is left hanging around so that ListPestEvents knows
that it has completed. This line actually triggers the RUN
process and physically starts the event.

21. Marks the bail-out point for non-starting events.
22. Removes the excess date file from the system.

Listing
1. .key wait,Message,day/k
2. .bra {
3. .ket}
| 4. 1if {day} not eq ""
5. date >T:TPToday{$$}

Pest 3: SetWaitEvents
e T e T e e Tl e e |

6. search >NIL: t:TPToday{$$} "({day})" pattern

7. if warn

8. skip out .
9. endif

10. endif

11. eval $PestEvent+1 to env:PestEvent
12. resident name=wait$PestEvent file=c:wait add
13. echo "Event $PestEvent set in {Wait} mins"

14. echo <NIL: >ENV:PV$PestEvent
"$PestEvent.*e[I{wait}:M*e[I*e[32m++Active++*e[31m*e[I"
noline

15. echo <NIL: >ENV:PM$PestEvent "{Message}"
16. run <NIL: >NIL: wait$PestEvent {wait} mins +

17. RequestChoice >NIL: "Pest (active ‘'date’)" "'getenv
PM$PestEvent " “OK" +

18. PEST3:KillPestEvent $PestEvent "+Complete+" sys=QUIT +
19. Resident Wait$PestEvent remove +

20. unsetenv PM$PestEvent

21. lab out

22. delete >NIL: T:TPToday{$$}

Mastering AmigaDOS Scripts

Pest 3: StartPest

Synopsis: Workbench only

Template: none
Path: SYS:WBStartup
Requires: V3+ (as part of Pest 3)

See also: AddPestevent, DeletePestEvent, KillPestEvent,
GetArgs, DeletePestEvent, ChangeMessage,
SetPestEvent, SetWaitEvent. ListPestEvents

Type: Startup script
Brief: Starts Pest from Workbench’s WBStartup drawer
Description

See "Pest 3: AddPestEvent” for a full description of The Pest. This is
the only part of Pest to live in the WBStartup drawer and allows
users to enable or disable the entire system by simply dragging the
icon in and out of the drawer.

Tl'n—"'l’_t_'s—-?"'@“‘

lf g??hts resg rue
Even N 9 Mmuins

Pest Starting

' Boing... AmigaD0S Pest calling!

_OK |

Pest Calling

Line-By-Line

1-10. Make various Pest system commands resident. This makes
Pest operate faster under most conditions and prevents
having to swap back to the Workbench disk when an event
times-out.

11. Copies the entire contents of the Pest3 system directory to a
new directory in the Ram Disk. This allows Pest to execute its
internal system commands without having to fiddle with
paths, and worse, swapping disks.

12. Announces the Pest. This is version 3.01 some of the bugs
present in the original have now been fixed and it is casicr to
use on a floppy-based system.

13.

14.

=
[7/]
wmwmcn::-wm-n.:_
L =

- b ek e
S W N =+ O

Pest 3 StartPest
= T T B T =]

Creates the PEST3: assignment. This directory is used to
reference the special Pest scripts.

Executes the Pest event program, PestFile. This always lives in
the S: assignment and can be edited directly if you prefer.

«Q

resident
resident
resident
resident
resident
resident
resident
resident
resident

resident

c:

c:

c:

:Break add
:Date add
:Delete add
:Edit add
:Eval add
:Execute add

:RequestChoice add

Search add
Status add
Type add

copy Sys:Pest3/-(#?.info) ram:Pest3 quiet
echo "The Pest 3.01 by Mark Smiddy*nAll rights reserved"
assign PEST3: RAM:Pest3

execute S:PestFile

257

Mastering AmigaDOS Scripts

E—
PFIND

| Synopsis: PFIND <file> <start directory>

Template: na

Path: na

Requires: 1.3+

See also: FFIND

Type: Alias

Brief: Find a file with automatic patterns

Definition: ALIAS PFIND SEARCH SEARCH=#?(]#? FILE ALL

Description:

This alias is almost identical to FFIND described earlier, but this
version automatically includes a pattern. You might not always
[want to do this because the results can sometimes be
| unpredictable. Note that the directory always comes after the file
| you're looking for. This is the reverse of the natural settings for
|
|
|

SEARCH and is necessary to get the required effect.
1>PFIND Pest SYS:
Workbench3:WBStartup/StartPest

‘ Workbench3:WBStartup/StartPest.info

| Workbench3:Pest3/DeletePestEvent.info
Workbench3:Pest3/ChangePestMessage.info

. Workbench3:Pest3/AddPestEvent.info

i Workbench3:Pest3/KillPestEvent.info
Workbench3:Pest3/ListPestEvents.info
Workbench3:Pest3/DeletePestEvent
Workbench3:Pest3/ChangePestMessage
Workbench3:Pest3/AddPestEvent

| Workbench3:Pest3/KillPestEvent

i Workbench3:Pest3/ListPestEvents

: Workbench3:Pest3/SetPestEvent

QFF

Synopsis:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts

QFF <DRIVE #> [NOICONS] [FFS] [QUICK]
V1.3+

QF

Alias

Quick format any floppy disk device

ALIAS QF FORMAT DRIVE DF[]: NAME Empty

This is a variation on the QF theme for those who despise the long
winded format of the FORMAT command. Called QF - Quick Format
- it takes a single parameter (the drive number) and formats a disk
called Empty. The trashcan can be suppressed by adding NOICONS.

Examples:
1>QFF O

1>QFF O NOICONS

Mastering AmigaDOS Scripts

Mastering Alpapos Serles
QF

Synopsis: QF <DRIVE> [NOICONS] [FFS] [QUICK]

Requires: V1.3+
| See also: QFF
| Type: Alias
' Brief: Quick format any floppy disk device

Definition: ALIAS QF FORMAT DRIVE [] NAME Empty

Description:

Quick Format takes a single parameter (the drive number name) and
formats a disk called Empty. The trashcan can be suppressed by
adding NOICONS. Be careful when using this with hard disks!

Example:
1>QF DFO:
1>QF DH1: NOICONS

Mastering AmigaDOS Scripts
e e = ==

RCD2

Synopsis: [EXECUTE] RCD2 [[number=] # | dir | pat]
[SAVE | LOAD]
Template: number,SAVE/S,LOAD/S

Path: S:

Requires: V2+

See also: FCD, RCD

Type: Script

Brief: Store recent directory changes in RAM as a menu
Description

RCD2 is the same as RCD with one important change: the directory
list is global. It is compatible with RCD and FCD but will create a
gobal directory list that can be accessed from within any Shell.

H ggﬂark/hac“

£
ewsxg
&

H

rectory, pick a

aking default file
> re9

-

i_gun{nark JFOF”
£f§: eynaps”

arererers

s any ber, SAVE/S,LOAD/S: W

o

RCD Working

Line-By-Line

The listing here is the same as RCD with the following changes:

Lines: 6, 11, 15, 16, 23, 25, 32, 33, 35, 43; the direc-
tory list T:CDS{$$} has been replaced with a global list
T:CDS. This ensures the list is available to all Shells.

Line: 18 the recursive call is changed to call RCD2. You
MUST change this if you change the name of the script.

1. .key number,SAVE/S,LOAD/S

2. .bra {

3. .ket }

5. if "{LOAD}" EQ "LOAD"

6. copy >nil: s:cds t:cds

7. endif

8. if "{SAVE}" EQ "SAVE"

9. ask "This will replace your current file*nAre you sure

N/y?2"

Mastering AmigaDOS Scripts
e e e T L R ST T s

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.

if warn
copy >nil: t:cds s:cds
endif
endif
if "{number}" EQ ""
if exists t:cds
type t:cds number
echo "Enter directory, pick a number, any "
execute s:rcd2 ?
skip out
else
echo "Loading/making default file"
if exists s:cds
copy >nil: s:cds t:cds
else
echo >t:cds "*"'cd *""
skip out
endif
endif
endif
if VAL "{number}" EQ O
cd "{number}"
echo >t:cd "*""cd *""
join t:cd{$$} t:cds AS t:cdO{$$}
echo >t:ed{$$} "9n;d"

noline

edit t:cdo{$$} with t:ed{$$} to t:cds ver=nil:

else
eval >env:usr{$$} {number} -1
if val Susr{$$} NOT GE 1
echo >t:ed{$$} "n;9d"
else
echo >t:ed{$$} "Susr{$$} d"
endif
copy >nil: t:cds env:cd{$$}
edit env:cd{$$} with t:ed{$$} ver=nil:
cd $cd{$$}
endif

lab out

Mastering AmigaDOS Scripts
—

RCD

Synopsis: [EXECUTE] RCD [[number=] # | dir | pat] [SAVE |
LOAD]

Template: number,SAVE/S,LOAD/S

Path: S:

Requires: V2+

See also: FCD

Type: Script

Brief: Store recent directory changes in RAM as a menu

Description

This command is very useful if you have a hard disk. It stores a list
of the last ten directory changes in RAM and allows you to pick one
by selecting it from a numbered menu. You can choose to save your
current list at any time, or load a pre-built one from disk. Every
path feature available to CD, including patterns, may be used. The
command line is sensitive to arguments so that the script can
completely replace CD (using an ALIAS) if you prefer. Several modes
are available:

e Called without arguments. The script shows the current list and
prompts you to interactively select an existing entry, load or save
the list or enter a new directory. Note: you can enter LOAD or SAVE
at this prompt. Example:

1>RCD
1. "Workbench3.0"
2. "Workbench3.0:Fonts"
3. "Apps:"
4. "Workbench3.0:Fonts"

5. "Workbench3.0:Devs/Keymaps"
Enter directory, pick a number, any number,SAVE/S,LOAD/S:

e Called with a new directory path: FCD selects the directory (if
available) and adds its full path to the menu. (The oldest directory
is removed.) Example:

1>RCD SYS:

e Called with a number from the directory menu. The directory is
selected from the list and changed. Example:

1>RCD 4
e Asked to save the FCD/RCD preferences to disk.

Mastering AmigaDOS Scripts
e)

1>RCD SAVE

This will replace your current file

Are you sure N/y?"

Line-By-Line

1-4. Comprise a standard header. Note that there are no required
arguments for this script.

5. If the LOAD switch was specified, control continues at Step 6,
otherwise it skips to Step 7.

6. Loads the default FCD/RCD file from disk to the private Shell
RCD file, CDS#.

Terminates the IF...ENDIF construct opened at Step 5.

If the SAVE switch was specified, control continues at Step 9,
otherwise it jumps to Step 13. Note: the arrangement of this
sequence LOAD->SAVE ensures that even if both switches are
supplied, the script does not overwrite a working file: it is
simply loaded then saved again.

9. Displays a warning that you are about to write a CDS file to
disk. A WARN condition is set if “Y" or "Yes" is entered at the
prompt and cleared otherwise.

10. If Y was entered at Step 9, control continues at Step 11;
otherwise it jumps to Step 12.

11. Saves the current CDS preferences file to disk.

12. Terminates the IF.._.ENDIF construct opened at Step 10.

13. Terminates the IF...ENDIF construct opened at Step 8.

14. If a number was entered at the command line (or from
interactive mode) control is transferred to Step 29: otherwise
it continues at Step 15.

15. Checks if a CDS# file exists. If found, control continues at Step
16; otherwise it's transferred to Step 20.

16. Displays the menu of currently saved directories with menu
numbers. (The numbers are supplied by TYPE.)

17. Displays the first part of the prompt...

18. ...and calls RCD recursively to put it into interactive mode.

19. When the recursive call returns, this jumps to the bail-out
point.

20. If control reaches this point from Step 19, it jumps to Step 28;
otherwise it continues at 21

21. Control reaches here if a private history (CDS#) file could not

be found. This displays a progress message to confirm this.

22.
23.
24.

25.

26.

27.
28.
29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

RCD
== =iy

Checks if a RCD/FCD history file is already present on disk...
...and loads it if it was found.

If control reaches here from Step 23, it jumps to Step 27;
otherwise it continues at Step 25.

Creates a default private history file with the first entry being
the current directory. Note that the directory is enclosed in
quotes to avoid confusing CD with spaces.

Jumps to the bail-out point. You'll have to run the command
again in this case.

Terminates the IF.. . ELSE.. _.ENDIF construct from Step 22.
Terminates the IF.. .ELSE...ENDIF construct from Step 15.
Terminates the [F...ELSE...ENDIF construct from Step 14.

Checks if the value of the entry made for number was 0. This
is the case if a text entry — a directory path — was made. If text
was entered, control continues at Step 31; otherwise it jumps
to Step 36.

Attempts to set the new directory. If this command fails
because the directory cannot be found (or more than one
directory matches, for patterns) the script stops. Normally,
the directory is made current.

Creates a temporary file with the new current directory name
enclosed in quotes.

Joins the new current directory to the existing list and saves
the resulting file as t:CDO#.

Creates a simple edit macro thus:
9n Move down nine lines (to line 10).
d Delete the current line.

Uses the macro created at Step 34 to hack off the last entry in
the file. Note if there are less than ten entries (directory
paths) in the file, this macro has no effect. This macro
therefore, only trims off the oldest entries. Changing the line
count at Step 34 affects how many lines are stored in history.
More than about 25 is getting silly and less than 3 is
pointless. (If you increase this number, you will have to make
changes later in the script too.)

If control reaches here from Step 30, it branches to Step 46;
otherwise it continues at Step 37.

Subtracts 1 from the menu entry and stores the result in the
global, Usr#.

Tests if the value of Usr# is less than 1 and if it is, control
continues at Step 39: otherwise control jumps to Step 40.

Mastering AmigaDOS Scripts
T T e e e]

39.

40.

41.
42.
43.

44.

45.
46.
47.

© O N O O A W N =

Writes a simple macro to skip the first line of a file (n) and
delete the next 9 lines (9d).

If control gets here from Step 38 if jumps to Step 42;
otherwise it continues at Step 41.

Writes a simple macro to delete the first "Usr#" lines of a file.
Closes the IF.. .ELSE...ENDIF construct opened at Step 38.

Creates the new directory variable from the saved directory
list.

Edits the history file with the macro created at Step 39 or 41
and creates a global, CD# using that information. Note that
the contents of this variable can be 2 or more lines, but only
the first line will be read by $CD#.

Changes to the selected directory.
Terminates the [F...ELSE...ENDIF construct opened at Step 30.
Marks the bail-out point for the recursion.

.key number,SAVE/S,LOAD/S
.bra {

.ket }

;

if "{LOAD}" EQ "LOAD"

copy >nil: s:cds t:cds{$$}
endif

if "{SAVE}" EQ "SAVE"

ask "This will replace your current file*nAre you sure
N/y?2"

if warn

copy >nil: t:cds{$$} s:cds
endif

endif

if "{number}" EQ ""

if exists t:cds{$$}

type t:cds{$$} number

echo "Enter directory, pick a number, any noline
execute s:rcd ?

skip out

else

echo "Loading/making default file"

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

if exists s:cds

copy >nil: s:cds t:cds{$$}

else

echo >t:cds{$$} "*" 'cd *""

skip out

endif

endif

endif

if VAL "{number}" EQ O

cd "{number}"

echo >t:cd{$$} "*"'cd *""

join t:cd{$$} t:cds{$$} AS t:cdOo{$$}
echo >t:ed{$$} "9n;d"

edit t:cdO{$$} with t:ed{$$} to t:cds{$$} ver=nil:
else

eval >env:usr{$$} {number} -1

if val Susr{$$} NOT GE 1

echo >t:ed{$$} "n;9d"

else

echo >t:ed{$$} "Susr{$s} d"
endif

copy >nil: t:cds{$$} env:cd{$$}

edit env:cd{$$} with t:ed{$$} ver=nil:
cd $cd{$$}

endif

lab out

RCD

267

Mastering AmigaDOS Scripts

RecDemo

Synopsis: [EXECUTE] RECDEMO [[dir=]dir|pattern] [d=private]
Template: dird

Path: S:

Requires: V1.3+

See also: Tree

Type: Script

Brief: To demonstrate recursion
Description

You may be finding the concept of recursion is a beggar to grasp.
Don't worry, this is an area many “real” programmers avoid at any
cost! As a more practical example here’s a script modified to tell
you where it is in the directory hierarchy, how deep the recursion is
and when it starts to wind and unwind. Important: This script must
not be multi-tasked!

Line-By-Line

1.

5-6.

7-8.

The argument template shown here has two variables, but
only one of them is for direct use. The other is passed back to
the program during recursion. An environmental variable
could be used here on later versions. See if you can figure out
how.

The compulsory re-setting of the brackets to braces.

Sets the current directory private variable "d” to the current
directory.

You've already met this kind of calculation. It uses EVAL's
interactive mode to calculate the depth of the recursion. For
the purposes of this demonstration only, the variable "depth”
must be set before the script starts. It could be tested with IF
EXISTS... but this is wasteful — at most this test would fail once
on the first run. A better solution would be to call the
recursive script from another (main) script. In AmigaDOS 2
and higher, this calculation can be written:

eval $depth + 1 to env:depth
Gives a progress message. The recursion depth will be printed
on the same line, so the NOLINE switch is used on ECHO and

ther variable TYPEd at Step 8. In AmigaDOS 2+. this couplet
may be written thus:

echo "*nEntering: {d} ({dir}) - depth now: $depth"”

RecDemo
[= — — — |

9. This creates a list of directories in the current directory. We
mention it because this causes the script to act slightly
differently on the second and successive runs. This returns
two arguments to the script — the parent path (%s%s) and the
sibling directory name (%s). In this way the sibling name can
be displayed without the extra complications of the path.

10. Heavens to betsy! This is where the script calls a script to call
itself. If the LISTed script (called L here) is empty - that is
there are no more sub-directories to search - execution
continues at 5 and the script unwinds.

11-12. Again nothing new here. This just calculates the new
nesting depth as the script unwinds. In AmigaDOS 2 this pair
can be replaced by:

eval $depth - 1 to env:Depth

13-14. ...and this prints the sub-directory the script is leaving
and the new depth. You'll notice that this number will tend to
alternate between values when the script is searching sub-
directories of directories like FONTS: this is quite normal. By
the time you've run this script a few times you should be
starting to get to grips with the idea. This couplet can also be
re-written for AmigaDOS 2 thus:

echo " Leaving: {d} - depth now: $Depth"
Listing
.key dir,d
.bra {
.ket }
.def d {dir}
eval <env:depth >nil: op=+ value2=1 to env:tmp ?
copy env:tmp env:depth
echo "*nEntering: {d} ({dir}) - depth now: " noline

type env:depth

© O N O A W N =

list >T:L "{dir}" dirs lformat "execute recdemo
X g gk A R N

10. execute T:L

11. eval <env:depth >nil: op=- value2=1 to env:itmp ?
12. copy env:tmp env:depth

13. echo " Leaving: {d} - depth now: " noline

14. type env:Depth

Mastering AmigaDOS Scripts

RemAlias

Synopsis: [EXECUTE] <[name=]Alias name>
<[string=]"command"> [comment="remarks"]

Template: name/a,string/a,comment/k

Path: S:
Requires: V2
See also:
Type: Script
Brief: Add remarks to or fix aliases against extra
parameters
Description

This is an unusual use of 1/0 re-direction to force the comment
character (;) as part of a command line - ; is read as a comment and
normally ignored by the command parser. Why? ALIAS allows the
user to type the alias and add additional parameters. The first is
substituted at the ‘[]', the rest are tacked onto the end. However,
there are times when it is useful to protect an alias against these
additional parameters. Also, you might want to comment some of
your aliases for future reference. In a multi-user setup you might
want to prevent someone typing NEWCLI. This ALIAS seems to work:

1>ALIAS NEWCLI ECHO "Access denied"

In practice, although this works, if the user adds any additional
parameters such as a window description ECHO fails. Here's what
happens:

1>NEWCLI AUX:

Argument line invalid or too long

The error changes with different versions of AmigaDOS but this is
confusing. The alias is interpreted thus:

ECHO "Access denied"AUX:

What's needed is a comment to stop the extra parameters having
any effect. In other words, we want to make AmigaDOS interpret the
alias like this:

ECHO "Access denied" ; AUX:

Because this works, it is not possible to add the semi-colon (;) to
the alias definition directly like this:

ALIAS NEWCLI ECHO "Access denied";

RemAlias
iy e e

because everything beyond the quote is truncated!

This script solves the problem. It forces ALIAS to pick up the
comment and anything after it. By doing this you can add
comments to aliases in a way no one ever thought possible.
Provided the aliases only require one argument each, you can add
comments to them which will appear in the alias list. For instance,
how about this:

1>ALIAS
NEWCLI ECHO Access denied ; Prevent use of NEWCLI

Sharp eyed readers will be thinking: “That’s not possible, he hasn't
got quotes around the echoed string!" Quite right, there’s a nice
little trick involved here which makes this possible.

ECHO understands white space to mean either a tab or a space
character. It doesn’'t know about ALT+Spacebar which also generates
white space (strictly speaking it's a non-break space)! The example
above was generated using this command line - the caret symbol
(A) shows where to type ALT+Spacebar:

1>RemAlias NEWCLI "ECHO Access“denied" COMMENT "Prevent
use of NEWCLI"

Line-By-Line

l: The argument key consists of two required arguments and a
keyword. The name is going to become the alias name and the
string will be the alias itself. This mirrors the normal ALIAS
command with one difference - the string is a required
argument. Also, as noted above, it should be surrounded by
quotes. There is a way around this which we’ll show later - it's
a bit long winded to include here. The comment keyword
allows you to optionally supply a comment to add to the end
of the alias. This will appear in the alias list.

2-3: Re-define the bracket characters to {and }.

This is where the clever bit is done. ALIAS won'’t pick up a
semi-colon on a command line but it will include it from
interactive mode. This line uses ECHO to create a file which
contains just such a simulated command line...

5: ...and this line picks it up using ALIAS’s interactive mode.
Once again re-direction to NIL: is used to make sure
interactive output (the help template) is sent to oblivion.

Note: ALIAS in 1.3 doesn’t have interactive input, so this technique
can’t be used. In fact, there’'s no need to either! You can just
type the alias with a comment tacked on the end. AmigaDOS
reads everything to the end of the line - directly equivalent to
the /F argument in release 2.

Mastering AmigaDOS Scripts
= T e

Listing
1 .key name/a,string/a,comment/k
2 .bra {
3 .ket }
4 echo >env:Alias{$$} "{string}; {comment}"
5 alias <env:Alias{$$} >nil: {name} ?

Mastering AmigaDOS Scripts
e =]

Remt-Chat

Synopsis:
Template:
Path:
Requires:
See also:
Type:

Brief:
Description
This script is a
there.

Listing
1. 1lab start
2. type pipe

[EXECUTE] Remt-Chat
none

S:

V1.3

Script

Read piped message from host terminal

companion to HOST-CHAT and is fully described

3. skip start back

273

Mastering AmigaDOS Scripts

RemoteRead

Synopsis: [EXECUTE] RemoteRead [time]

Template: time

Path: S:

Requires: V1.3+

See also: HostRead, Mail-2-Host, Mail-2-Remote

Type: Script

Brief: Read messages for the host machine
Description

This command is a part of matched pair of scripts. See HostRead
for a full description.

Listing
1. .key time
.bra {
.ket }
.def time 30

Lab Start
list >T:ItsForMe{$$} T:#2.hst 1lformat "TYPE %s%s*nDELETE

%s%s*n"

a0 s W N

7. if exists env:StopItNow

8. quit

9. endif

10. run execute T:ItsForMe{S$S}
11. wait {time} mins

12. skip Start BACK

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts
=5 ———————————

REN <name or pattern> [AS|TO] <destination>
na

na

V1.3+

DEL

Alias

Short name for RENAME

ALIAS REN RENAME

This alias is not included for padding (as it might seem to be) it has
a very serious us. REN is the MS-DOS command for RENAME and
such users will feel much more at home if the command works like
this. It's also shorter to type.

275

Mastering AmigaDOS Scripts

ResCalc

Synopsis: [EXECUTE] ResCalc <[First=]colour 1>
<[Second=]colour 2> <[Multiplier=]Jmultiplier>
[[Tolerance=]Tolerance]

Template: First/a,Second/a,Multiplier/a,Tolerance

Path: S:
Requires: V2+
See also:
Type: Script
Brief: Calculate the value of a resistor using a standard
colour code
Description

If you're not an electronics hobbyist, this script is really for fun
although the unusual use of ECHO and global variables are quite
notable. On a cleverness factor, this script is one of the most
ingenious in the book. See if you can figure out how it works before
reading the Line-By-Line description.

For as long as | can remember, carbon resistors (a type of electronic
component) have used a standard colour code to indicate value.
Experienced users memorise this code very early on and can spot a
value just by practise; some resort to resistor code calculators and
that’s what this script does. Given an unknown resistor, you enter
the colours and this script calculates its value. Note: the script is
not very intelligent and will not check against a list of preferred
values. It will generate an error if a colour code is not recognised
though.

The tolerance band 1s optional and you don’t have to enter the
complete colour names. ResCalc uses the conventions to represent
the ohms symbol as “R" and replaces the decimal point with the
value indicator. For example:

1>rescalc yellow violet yellow
Resistor is: 4K7 (%227?2?%)
1>rescalc brow red brow
Resistor is: 120R (*?227?%)
1>ResCalc red red yel gol
Resistor is: 220K (* 5%)

This script is unlike most of the others in the book in that it
requires an extra data file. This must be entered with line numbers

ResCalc
frm— =]

exactly as shown or the program will not work. Electronics fans
might like to expand this program to work with Polyester “"candy-
striped” capacitors which use a similar code.

The standard resistor colour code.
Colour Number Multiplier Tolerance
Black 0 x1 -
Brown 1 x 10 1%
Red 2 x 100 2%
Orange 3 x 1000 -
Yellow 4 x 10,000 -
Green 5 x 100,000 5%
Blue 6 x 1,000,000 25%
Violet 7 - 1%
Crey 8 - -
White 9 - -
Gold - - 5%
Silver - - 10%
None - - 20%

Line-By-Line ‘

1. Defines the command template. Note that the main three ‘
arguments are required: if one was missing the result would
be undefined.

2-3. Redefine <and > to { and }.
4. Set the default value of Tolerance to x. '

5-6. Makes SEARCH and EVAL resident. Note use of the ADD switch |
to allow more than one copy of these commands. This must
be used to ensure the script can remove them safely later
without affecting anything.

Sets the value of the global variable "OK" to 0.

Searches the “colourcodes” file for the a string matching the
value entered for FIRST and places the entire line in the
global, "F". If FIRST=RE, then F would read:

2 S$A**K$B Red 2%

9. Takes the result code from SEARCH, adds it to the global OK
and stores it back in OK. This value will be used to check for
any errors later on. If the colour code is not found, SEARCH
returns 5, so a non-zero result in OK at the end of the script

Mastering AmigaDOS Scripts

will flag an error. (The result is not checked at this stage for
speed and simplicity.)

10-11: As 8 and 9 for the second colour code. The result is
stored in the global, “S". If SECOND=Vio. then F would read:

7 AB**00MViolet 0.1%

12-13: As 8 and 9 for the multiplier. The result is stored in the
global, "M". If the multiplier was "Red” then M reads:

2 3$A**K$B Red 2%

14. As 8 for the tolerance. The result (if there was one) is stored
in the global, "T". No error checking is applied to this optional
value.

15. The variable "F" is expanded, the first character extracted and
stored in the global, "A".

16. The variable "S" is expanded, the first character extracted and
stored in the global, "B".

17. The variable "M" is expanded, a special string extracted and
stored in the global, “C". This string is the key to how ResCalc
works. You'll see it in operation shortly. At this stage, the
extracted string is (assuming Red): "SA**K$B".

18. The variable "T" is expanded and the tolerance string stored in
the global, "D".

19-21. Check if the first number was 0 and (Black) and if this is
the case, blanks the value to prevent a leading zero being
included in the output. So, for example, Black-Brown-Black
reads "1R" rather than "01R" which looks messy.

22-24. Provides simple error checking by testing the
cumulative value in "OK" is still zero. If not, one or more of
the colours entered was not found in the data table and the
code (or data) must be wrong.

25. This is the really smart bit. The variable “$D" is expanded to
the tolerance value directly, but the variable “$C" is expanded
by an ECHO statement embedded in the same printed string.
This is a process called “indirection” where the contents of the
variable "$C" is determined by the contents of the variables
contained within it. Confused?

Well imagine that "$C" contains "$A**K$B". When ECHO is
called it expands the variables “"$A” and "$B": the positions of
which are determined by the multiplier’s colour (Steps 12-13).
If "A" and "B" contained "2" and “7" respectively, ECHO
expands this to the string: "2K7". (The asterisks are there to
separate the variables and prevent the parser from getting
confused.) This string is inserted in the output of the main

26-28

ECHO statement and presto, the value appears like magic.

Clever, isn't it!

. Clean up the script and exit. SEARCH and EVAL are

removed from the resident list to save memory.

ResCalc

—_
.

2. .bra {

3. .ket }

4. .def tolerance "x"

5. resident c:search add

6. resident c:eval add

7. setenv 0K O

8. search >ENV:F s:colourcodes {first} nonum

9. eval $RC+$0K TO ENV:0K

10. search >ENV:S s:colourcodes {second} nonum

11. eval $RC+$0K TO ENV:0K

12. search >ENV:M s:colourcodes {multiplier} nonum
13. eval $RC+$0K TO ENV:0K

14. search >ENV:T s:colourcodes {tolerance} nonum
15. echo to env:A "$F" first=1 len=1

16. echo to env:B "$S" first=1 len=1

17. echo to env:C "$M" first=3 len=9

18. echo to env:D "S$T" first=19 len=4

19. if val $A EQ O

20. setenv A "'

21. endif

22. if VAL $0K NOT EQ O

23. Echo "unknown code {First} {Second} {Multipler}"
24. else

25. echo "Resistor is: ‘echo $c’ (%$D%)" ; * is ALT+Z
26. endif

27. resident search remove

28. resident eval remove

.key First/a,Second/a,Multiplier/a,Tolerance

ResCalc
SR

Mastering AmigaDOS Scripts
s i ah st bk R e SR B e e L R

0

N W 0N OO AW N =

LV

AB**R Black
AB**0OR Brown
$A**K$B Red
AB**K Orange
AB**0K Yellow
$A**M$B Green
AB**OM Blue
AB**00MViolet
$ASB Grey
$ASB White
$A**R$B Gold
ORSASB Silver
ey None

S:Colourcodes - numbers must be entered

Ltk
1%

2%
2227%
22277%
0.5%
0.25%
0.1%
Heftith
2222%
5%

10
20%

o°

Mastering AmigaDOS Scripts
S T e T T T

SAFE

Synopsis: SAFE [File|Pattern]

Template:

Path: s

Requires: V1.3+

See also: UnSafe

Type: Alias

Brief: Protect files against deletion

Definition: ALIAS Safe SPAT PROTECT (] -d

Description:

This simple alias makes files "safe” by clearing the deleteable flag.
SPAT is used to allow patterns, examples:

1>Safe C:LIST

1>Safe DEVS:#?

Mastering AmigaDOS Scripts

SlideshowWB

Synopsis: SlideshowWB

Template: none (uses lconX

Path: Depends on Icon
Requires: V1.3+ (+ VILBM) or Workbench 3
See also: SlideShowWB

Type: Script
Brief: Show a list of pictures as a slideshow
Description

SlideshowWB uses VILBM (or Multiview if you have Workbench 3) to
display pictures from the root directory of a disk as a slideshow.
Like the Shell version, this script only works with dual drive
systems and VILBM must be on the Workbench disk. More
information on this script will be found under the description of
SlideShow.

Line-By-Line

1:

This is a dummy “key" variable which is not used by IconX -
but it must be supplied for BRA and KET to work.

”"

Change the brackets character from "<" and ">" to "{" and "}

This prints a welcome message, waits for you to insert a disk
and press Return.

This is the guts of the script - the meat in the sandwich. It
uses the list command to create another script in T: (on the
Ram Disk) called PIXn — where “n" is an arbitrary process
number. It looks for files in the root directory of the disk in
DF1: with the extension .PIC and creates a program something
like this:

echo "Now showing Picture1.PIC"

VILBM "Pictures:Picture1.PIC"

echo "Now showing Picture2.PIC"

VILBM "Pictures:Picture2.PIC"

I'll be looking at how this sort of thing works later in the
series, for now you might like to experiment with it and see
for yourself. This is a script which actually writes new scripts.
If you have Workbench 3, this line can be changed like this:

list >T:Pix{SS} df1:#?.PIC lformat "echo *"Now showing

%s%s* ' *nVILBM *"%s%s SCREEN *""

SlideshowWB
SR LT

6: If you want to use this script from Workbench, you'll have to
create a project icon for it and set the default tool to IconX. I'll
leave that creativity to you.

Slideshow (IconX) version

1 . key dummy
2 .bra {

3. .ket }
4

ask "Slideshow*nPut the pictures disk in DF1: and press
<Return>"

5. 1list >T:Pix{$$} df1:#2.PIC 1lformat “echo *"Now showing
%8%S*"*nNVILBM *"%s%s*""

6. execute T:Pix{$$}

Mastering AmigaDOS Scripts
| e e e =R L e T R]

Slideshow

Synopsis: [EXECUTE] Slideshow <[Drive=]drive number>
[[ext=])extension]

Template: Drive/a, ext

Path: S:

Requires: V1.3+ (+ VILBM) or Workbench 3
See also: SlideShowWB

Type: Script
Brief: Show a list of pictures as a slideshow
Description

This uses VILBM to display pictures from the root directory of a
| disk as a slideshow. (VILBM, written by Sculpt 3D designer Eric
| Graham, is in the public domain and widely available.) Much the
. same idea could be used to play music tracks as a jukebox and so

on. To keep Slideshow simple, this only works with dual drive

systems and VILBM must be on the Workbench disk.

This version of Slideshow is essentially exactly the same as the
Workbench version but with improvements to take account of
command line options. Therefore, to use this program you would
enter the drive number 0, 1, 2 or 3 and optionally supply the
extensions used on the picture files — say PIC or IFF. You do not
have to enter the full name, say DFO: or .IFF. the script adds those
bits for you. If you have a hard disk, the drive description in line 6
should be changed to reflect this. (I use an assignment called
SHOTS: for all my screen dumps - that keeps them all in one place.)
Typical examples:

1>SlideShow 1
1>SlideShow 1 PIX

1 The command .KEY used here defines the command line as
having one required argument (drive) and one optional
argument (ext). These will ensure the drive number is always
supplied and the extension is picked up when required.

2-3. Define the left and right-hand bracket characters as { and }
respectively.

4. This defines the extension as .PIC in case one is not supplied.
Extensions are not vital, but they are a good way of organising
disks. In any case, this allows the script to separate picture
files from, say dot-info files.

5: Like the Workbench version of the program, this defines the

Slideshow
e i]

startup message which prompts you to insert a disk. Note how |

the drive argument is included as part of the printed |

statement. '

6: This line creates the program in the same way as the previous
example, only this time some of the arguments sent to list are
determined by the user options set at the command line.
Users with Workbench 3 can change thisline to read:

list >T:Pix{$$} df{drive}:#?{ext} 1lformat "echo *"Now
showing %s%s*"*nMutliview *"%s%s*" SCREEN"

7: And finally, run the program.

Listing [
1. .key drive/a,ext |
2. .bra {
3. .ket }
4. .def ext .PIC
5. ask "Slideshow by Mark Smiddy*nPut the pictures disk in

DF{drive}: and press <Return>"

6. list >T:Pix{$$} df{drive}:#?{ext} 1lformat "echo *"Now
showing %s%s*"*nVILBM *"%s%s*""

7. execute T:Pix{$$}

Mastering AmigaDOS Scripts

e
STOP

Synopsis: [EXECUTE] STOP <[command=]process name>

Template: command/a

Path: S:

Requires: V1.3+

See also: Halt

Type: Script

Brief: To stop an asynchronous (RUN launched) process
Description

This script is relatively simple - it serves to show just what can be
done in a few short lines. The idea is to stop a command once it has
been started. You can do this either from the current CLI (if you
used RUN) or from another CLI if you started the process directly.

Line-By-Line

1-3.

This gets the command name from the user and re-sets the
brackets to braces. The use of COMMAND/A makes certain
that the script gets its argument.

The meat starts here. STATUS locates the process running as
“command” and sends the process number to a file. An
environmental variable is used to keep things neat and tidy.
The actual file name is “stopper” with the calling CLI's number
tacked on the end. For instance, if you started this from CLI
#1, the filename would be "stopperl”. The "“{$$}" script
variable does this. Note however, this only works if a .KEY is
specified.

Uses BREAK's “interactive” BREAK to get the process number
which will receive the stop code. The process number is
retrieved from the environmental variable "stopper”. The
command would normally send its "help template” to the
screen — >NIL: prevents this. The "?" at the end of the line is
the crucial part. This 1s what puts the command into
interactive mode, allowing it to read its input from the
“stopper” file. We've used interactive mode extensively in
these examples, so you should make sure that you understand
it.

Listing

1
2
3
4
5

.key command/a

.bra {

.ket }

status >env:stopper{$$} com={command}
break <env:stopper{$$} >nil: all ?

Mastering AmigaDOS Scripts
= el T

SubDemo

Synopsis: [EXECUTE] SubDemo

Template: none

Path: S:

Requires: V1.3+

See also:

Type: Script

Brief: To demonstrate the implementation of simple

subroutines

Description

As batch languages go. AmigaDOS has one of the best. However, it
lacks the ability to jump to subroutines. Subroutines are used
extensively by programmers to perform simple tasks because, in
theory, a good program should be just a set of small subroutines.

Each subroutine can be called from anywhere in the program any |
number of times. A subroutine saves repeating the same section of |
code many times in the same program. By passing one or more |
parameters, a subroutine can be adjusted slightly at run time - |
subroutines of this type are more usually called procedures. These |
can be implemented using support scripts - the AskEm example is a
good demonstration of this.

To a limited degree, AmigaDOS is capable of jumping to
subroutines. Although the technique is not widely known and very
rarely used. They are not quite as easy to implement as in other
languages - but possible if you really need them. The advantage of |
a subroutine is it's faster than executing a completely separate
script. We should stress that this is a contrived example meant
purely for the purposes of demonstration - there are other means
of achieving the same effect — but the script’s output is not on trial
here. The script's nature has necessitated a slight deviation from
the usual analysis, however.

Line-By-Line

1. These points set up a return “"address” as a variable. The
variable and address names are arbitrary — however, the
address name should be the same as that used at point 3. If it
isn't, the script will not return to the correct point.
Unfortunately there is no (easy) way to force the label name.

2. The script jumps to the subroutine at these points. Due to the
nature of the implementation, the subroutine(s) must come
after the main body of the script.

288

Mastering AmigaDOS Scripts
T S TP T T P PRIl * A L LTRSS

This marks the "return address”. When the subroutine
finishes, it will come directly back to this point. As we've
already said, the label name must be the same as the return
address defined at point 1.

This marks the start of the subroutine. The nature of
AmigaDOS means that you call subroutines by name rather
than line numbers. This forces you to write structured code.

This is the clever bit. It uses SKIP’s interactive mode to
retrieve the return address from the variable and jump back
to the main body of the script. This leaves the technique open
to errors because the return address can be altered at almost
any point!

Advanced programmers can use this to their advantage however;
gaining full control over the script's unconditional branch
instructions. If the label does not exist, SKIP fails with an Return
Code of 10 which can be tested with [F.

Listing

.key dummy

.bra {

.ket }

echo >T:return{s} "“1"
skip DatePrint

lab 1

wait 10 secs

echo >T:return{$$} "2"
skip DatePrint

lab 2

wait 15 secs

echo >T:return{$$} "3"
skip DatePrint

lab 3

echo "I am here"

quit

; This is the subroutine
lab DatePrint

echo "The time is:" noline
date

skip <T:return{3} >nil: back ?

Mastering AmigaDOS Scripts

SX

Synopsis: [EXECUTE] SX <[File=]scriptname>
Template: file/a

Path: S:

Requires: V2+

See also: WX

Type: Script
Brief: Execute an IconX file from Shell

Description

The idea for this script came late one night while I was driving
home from a friend’s house. | make this distinction for two reasons.

l: In spite of what people might think, writers do have time for
things other than computers.

2: I was quite fatigued. Which is, more to the point, why the
following happened.

My addled brain formulated the idea that not everyone was going to
get the disk accompanying this book. (At this stage [have no way of
knowing if the disk will be extra or be bound in with the cover at
extra cost to you). This got me thinking, since some of the featured
scripts need icons to run, a lot of people are going to be left
wondering what do. Aha!, | thought, all | have to do is extract the
“WINDOW="tooltype information from the respective icons and run
the script using that information.

So | did, and here, some 45 minutes later is the result. Of course, it
does exactly what | predicted. It runs lconX configured project
icons from the Shell: but (in case you haven't got it yet) you still
need the icon! This does not defeat the object of what turns out to
be a useful script, however, but it also gave rise to WX to be found
later, which actually does run an IconX script without an Icon!

Using SX is simple, you just give it the name of the IconX icon you
want to run (without the dot-info part) and let it do the rest. For
example, to run AlarmClock from Shell you would enter:

1>SX AlarmClock

Since a new shell is opened by this script it has to be closed when
the script exits (or is stopped) so this script also adds a close box to
the window description. The DELAY= tooltype is not supported but
the script issues a warning if this is found.

Mastering AmigaDOS Scripts
[Er=ras T i R e r)

Line-By-Line

1-3. Comprise a standard header. Note that the file (a script) is
required.

4. Creates a simple edit macro which just the deletes the first 8
characters of any file it is applied to.

5. Searches the "dot-info" file attached to the requested script
for a WINDOW= description. This string should be present
(although IconX does not require it) if the file is going to be
processed by SX. The result is sent to global variable, WIN#.
Early versions of SEARCH cannot search binary files, so this
script is limited to AmigaDOS 2+.

6. If the WINDOW string could not be located the WARN
condition is set and tested here. If found control resumes at
Step 7: otherwise it jumps to Step 9.

Displays an error message.
Leaves the script by the back door.

9. Terminates the IF...ENDIF construct opened at Step 6.

10. Searches for the DELAY tooltype in the attached script and
clears the WARN flag if it's found.

11. If the DELAY tooltype is present, control continues at Step 12,
otherwise it branches to Step 13.

12. This error is probably not serious: and will not affect the vast
majority of lconX scripts, so it is reported as a warning and
the script is allowed to proceed.

13. Terminates the IF...ENDIF construct opened at Step 12.

14. Uses an edit macro to massage the unwanted "gunk” from the
window description found by SEARCH at Step 5.

15. Places quotes and the extra “/CLOSE" tool around the window
description. Quotes are necessary to avoid confusing
NEWSHELL if the window'’s title includes spaces.

16. Creates a simple two line script which, assuming a script
called AlarmRun, will end up looking something like this:

echo “*e[0;0H*e[J” noline

execute AlarmRun
When this script is called it clears the current console window
and positions the cursor at the start of the first line. (Unlike
the CLEAR alias supplied by Commodore.)

17. Opens a new Shell executing the script at created at Step 16

and using a window defined by Steps 5, 14 and15. It has to be
done like this because the NEWSHELL execute (FROM=) does
not work the same way s a normal execute.

.key file/a
.bra {
.ket }
echo >t:ed1{$$} "8#"
search >env:win{$$} {file}.info "WINDOW" NONUM
if warn
echo "Error: No window description?”
quit
endif
search {file}.info "DELAY" NONUM QUIET
if not warn
echo "Warning: delay option not supported!”
endif
edit env:win{$$} with t:ed1{S}
setenv win{$$} "*"S$win{$$}/CLOSE*""

echo >t:ax{$$} "echo *"**e[0;0H**e[J*" noline*nexecute

{file}"
newshell from=t:ax{$$} window=$win{$$}

SX

Mastering AmigaDOS Scripts

TD

Synopsis: TD <marker>

Template: na

Path: na

Requires: 1.3+

See also: LD

Type: Alias

Brief: Mark the current directory for LD

Definition: ALIAS TD ASSIGN DIR_[]: "

Description:

This is one of those clever little tricks that you will use once and
wonder forever how you ever managed without it! TD (This
Directory) memorises the current directory path and assigns it a
simple name - it could be a number as suggested here. Later. you
use LD to get back to this directory. It's a bit like PCD (supplied by
Commodore) but a lot more versatile. There is no restriction on the
number of directory changes you can store with this command and
you can freely move around volumes too!

When you call this alias it expands thus:
1>TD 1
1>ASSIGN DIR_1: ""

In other words, it creates a directory assignment pointing to the
current directory. Since the assignments are stored in a list there is
no limit to the number you can have! The "ListD" script can be usec
to list the current assignments made with this alias.

Examples:
1>CD SYS: ; change directory to root
1>TD 0 ; mark root as directory O
1>CD Code:LC/Examples/Headers/Include/Devices
1>TD 1 ; mark this as directory 1
1>LD 0 ; go back to SYS:
1>CD

Workbench3.0:

1>LD 1 ; go back to 1

1>CD
Code:LC/Examples/Headers/Include/Devices
1>CD

Workbench3.0:Fonts

1>LD 1

1>CD
Code:LC/Examples/Headers/Include/Devices

Mastering AmigaDOS Scripts
=== = = ——]

TreeStart

Synopsis: [EXECUTE] TreeStart <[pat=]directory]
Template: pat

Path: S:

Requires: V2+

See also: Tree

Type: Script

Brief: Start the directory tree drawing program. Tree
Description

This script is only used to initialise the variables used by Tree.
Something of a sledgehammer approach really, but the Tree script
is complex enough itself without complicating things further. This
intialisation speeds the main script by performing the once only
intialisation that would otherwise have to be skipped in the script.

Listing

1 .key pat

2 setenv Depth 1
3. setenv LastDepth 1
4

execute Tree "<pat>"

293

Mastering AmigaDOS Scripts
== s L e e

- Tree

Synopsis: None (called by TreeStart)
Template: dir,d

Path: S:

Requires: V2+

See also: TreeStart

Type: Script

Brief: To draw the directory hierarchy
Description

Take heart, AmigaDOS 2+ owner, this is just for you. It's conceivable
that this script could be written in AmigaDOS 1.3 but the extra work
involved does not bear thinking about - it's large enough as it
stands, and even on 25Mhz 68030 machines it isn't outstandingly
fast.

| Much the same effect can be gained from using DIR with the ALL
and DIRS switches. Nevertheless, the output from this program is
far more attractive and it serves to illustrate the techniques behind
this type of programming. The backward links drawn by this script
do not reflect the real structure of the disk - serving instead as a
visual aid.

There are two scripts - the first just sets up a couple of variables
and calls the meaty bit: TREE. Just to show how powerful AmigaDOS
2 is, this script doesn’t pull any punches and uses every new
facility it can.

Line-By-Line

1-3. Define the standard header. Note that “d" is a private variable
| only used for the recursive part of the algorithm.

Sets the default for the internal variable, d.

5. This acts as a safety-net for the edit macros defined below. All
| the actions undertaken by EDIT in these macros must execute
' at least once - 0 can cause some queer effects. The value of
“Depth” must be at least one or control jumps to Step 27.

! 6. This test determines if “Depth” and "LastDepth” are the same.
These values are affected later in the script (or by previous
runs). If Depth=LastDepth this means that the directory level
has not changed. Or, put another way, the directory about to
be displayed is at the same level in the hierarchy as the
previous directory. If "Depth"” <> “LastDepth”, control jumps to

7-11.

10.

11.

12.

13.

14.

Tree

Step 12 and continues from there.

Control arrives here when “Depth” equals “LastDepth”. This
means that the nesting level has not changed. These lines
construct an edit macro to output a vertical bar (|]) above the
directory name - both indented to the current directory level
(depth):

I
System

"b/ /]

Inserts the “|" character at the start of the first line. (b// =
before the first character)

“$Depth b/|/ "

Inserts Depth * 3 spaces before the | symbol. Remember,
Depth is expanded as the string is appended to the macro file.
The number is used by EDIT to repeat the action of the “B”
command.

“n; $Depth b// "

Moves to the next line in the file (expanded to the directory
name) and indents it by Depth * 3 spaces.

Creates a file consisting of a 1 blank line, the directory name
highlighted by changing the print colour, and finally the
current values of Depth and LastDepth in brackets.

Produces the output file ready to be printed by editing the
string created at 10 with the macro created at 7-9 Note: errors
are re-directed to NIL:.

Marks the jump point from 6. If control arrives here from 11 it
continues at Step 30.

When Control arrives here if:
a: Depth > LastDepth — control continues at 14.
b: Depth = LastDepth — control branches to 20.

Control gets here if “Depth” did not equal “"LastDepth”. It
determines if “Depth” is greater than “LastDepth". These
values are affected later in the script (or by previous runs). If
Depth > LastDepth the directory level has increased. Put
another way, the directory about to be displayed is a child of
the last one displayed. Since control has reached this point,
we need an edit macro to indent the directory and draw a line
from where it was to where it is now using the current depth.
On screen this looks something like this:

1 Garnet

l

Mastering AmigaDOS Scripts

—

[14. Just like Step 7, this inserts a string at the beginning of the
; first line in the file. Incidentally, lower case “L" was used
' because it gives the best effect on the Amiga's screen in Topaz
i 8. You may like to experiment with different (fixed width)

fonts.
15. Indents “I_" by Lastdepth * 3 spaces. At this point LastDepth
equals Depth-1 so this makes “I_" line up with the bottom of

the this directory’s parent.

16. Moves to the next line of the file. Then inserts Depth * 3
spaces before the “|" character.

17. Moves to the next line in the file (expanded to the directory
name) and indents that by Depth * 3 spaces.

18. This creates a file consisting of two blank lines and the
expanded directory name highlighted in a different colour.
The Depth and LastDepth variables are printed also.

19. Produces a file ready to be printed by editing the string
created at 18 with the macro created at 14-17. Note: Errors are
redirected to NIL:.

20: When control arrives here if:

a: Depth <= LastDepth — control continues at 21
b: Depth > LastDepth — control branches to 30

21. If control arrives at this point, there is only one possibility

left: the program has unwound one or more directory levels.

This calculation works out how many levels were unwound

i (the difference between "Depth” and “LastDepth”) and stores

. the result in the environmental variable “Back”. This will be
| used later to determine the length of the joining line.

22-27. These lines create the edit macro for the most complex
job of all. That is, the one where the directory hierarchy drops
back to a previous level. The catch is, because of the way
recursion works, this drop might be 2, 3, or more levels in one
jump! The resultlooks something like this on screen:

I
Utilities

22. As in the previous cases, this inserts the “|" character at the
start of the first line.

23. Indents “|" by LastDepth * 3 spaces.

24. This is the crucial part of this macro. The first command just
moves to the next line in the file. Then inserts Back * 3
overscore characters AFTER the “[". On UK keyboards this is
the SHIFT + ALT + N key combination.

Tree
fr=—

25. This indents the whole line just defined by Depth * 3 spaces.

26. Finally this moves to the next line in the file, then indents it
too by Depth * 3 spaces.

27. Creates the temporary file to be edited using the macro just
defined.

28. Produces a file ready to be printed by editing the string
created at 27 with the macro created at 22-26. Note: errors are
re-directed to NIL:

29. Marks the end of the IF construct opened at 13.
30. Marks the end of the IF construct opened at 6.
31. Marks the end of the IF construct opened at 5.

32. Sets the variable LastDepth to the current value of Depth. This
will be used on the next run.

33. Calculates the new value of Depth. Depth increases by one
every time a new directory is entered. ie, when the script calls
itself recursively.

34. Displays the file created at 11, 19 or 28 - drawing the next
part of the directory tree.

35-36. Perform the file-based recursion.

37. Reduces the value of Depth by one. This happens each time
the script unwinds one level of recursion.

Listing
1. .key dir,d
2. .bra {
3. .ket }
4. .def d {dir}
5. if $Depth GT O
6. if $Depth EQ S$SLastDepth
7. echo >t:ed0 "b//|"
8. echo >>t:ed0 "$Depth b/|/ "
9. echo >>t:ed0 "n; $Depth b// "
10. echo >t:ed2 "*n*e[32m{d}*e[31m($Depth,$LastDepth)"
11. edit t:ed2 t:ed3 with t:ed0 ver=nil:
12. else
13. if $Depth GT $LastDepth
14. echo >t:ed1 "b//1__ "
15. echo >>t:ed1 "$LastDepth b/1l/ *
16. echo >>t:ed1 “n; $Depth b/|/ "

Mastering AmigaDOS Scripts
s e L SR e e e e e e

17. echo >>t:ed1 "n; $Depth b// "

18. echo >t:ed2 "*n|*n*e[32m{d}*e[31m($Depth,$LastDepth)"
19. edit t:ed2 t:ed3 with t:ed1 ver=nil:

20. else

21, eval $LastDepth - $Depth to env:back

22. echo >t:ed2 "b//|"

23. echo >>t:ed2 "S$LastDepth b// "

24. echo >>t:ed2 "n; $Back a/|"/___"

25. echo >>t:ed2 "$Depth b// "
26. echo >>t:ed2 "n; $Depth b//

27. echo >t:ed4 "*n|*n*e[32m{d}*e[31m($Depth,$LastDepth)"
28. edit t:ed4 t:ed3 with t:ed2 ver=nil:

29. endif

30. endif

31. endif

32. setenv LastDepth $Depth
33. eval $Depth +1 to env:Depth
34. type t:ed

35. list >T:L "{dir}" dirs lformat "execute Tree *"%s%s*"
wng g n

36. execute T:L
37. eval $Depth -1 to env:depth

Mastering AmigaDOS Scripts
= e o = e

UNSAFE

Synopsis: UNSAFE [FilelPattern]

Template:

Path:

Requires: V1.3+

See also: Safe

Type: Alias

Brief: Enable deletion for a file or files

Definition: ALIAS UnSafe SPAT PROTECT [] +d

Description:

This simple script is a direct compliment to SAFE and sets the
deleteable flag on the file (or files) specified. SPAT is used to allow
patterns. Example:

1>UnSafe C:WAIT
1>UnSafe C:#

Mastering AmigaDOS Scripts

VLS

Synopsis: VLS

Template: na
Path: na
Requires: V2.0+
See also: VOLS, DLS, DVS
Type: Alias
. Brief: Check an assignment without removing it

Definition: ALIAS VLS ASSIGN VOLS

Description:

This short alias performs a similar function to the VOLS script,
although it displays both mounted and available volumes. Example:
1>VLS
Ram Disk [Mounted]
Wordworth
Workbench3.0 [Mounted]

VOLS

Synopsis: [EXECUTE] VOLS

Template: none

Path: S:

Requires: V1.3

See also: DEVS

Type: Script

Brief: List all mounted volumes using ASSIGN
Line-By-Line
1. Gets the assignment list and sends it to a file in the T

directory. Note the use of <$$> to allow multi-tasking.
Displays a simple message to show what’s going on...

...and searches the output from ASSIGN for the “]" character.
This only appears on mounted volumes, so that's what is
displayed.

Listing

1. ASSIGN >T:temp<$$>
2. ECHO "Mounted volumes:"
3. SEARCH T:temp<$$> "]" nonum

Mastering AmigaDOS Scripts
Eaaa e e e e S]

Mastering AmigaDOS Scripts

WD

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

1>wWD 1

1>WD 5

LD

na

na

V1.3+

TD, LD, ListD
Alias

Show a memorised directory
ALIAS WD ASSIGN DIR_[]: *" EXISTS

WD is the ALIAS compliment of ListD. It simply checks which
directory a particular label is assigned to and displays it. The label
is not cleared by this action.

1>CD Code:LC/Examples/Headers/Include/Devices

1>TD 1 ; mark this as directory 1

Code:LC/Examples/Headers/Include/Devices

Code:LC/Examples

Who

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

Mastering AmigaDOS Scripts
L _— — — — — —]

Who <Command name>
na

na

V1.3+

Alias
Search the process list for a command
ALIAS WHO STATUS COM=(]

This might seem a strange alias, but making the best use of
commands is just what ALIAS is all about. This little program makes
it possible to discover the process number currently running a
named command. If more than one process is running the
command, the first is listed (all commands from 3.0). NOTE: The
WARN flag is set if the process is not found.

Example:
1>WHO WAIT
3

Mastering AmigaDOS Scripts
T R N s e S

WX

Synopsis: [EXECUTE] WX <[file=]scriptname>
Template: file/a
Path: S:

Requires: V2+

See also: SX
Type: Script
Brief: Execute a script in its own window (like lconX)

Description

This script is what SX should have been! If | hadn’t been so tired at
the time, then it might just have been this! This script is a very
handy way of creating scripts that can run in their own windows on
a Workbench without all the fiddling around with Icons, IconX and
NEWSHELL. It does it all for you - all you have to supply is a special
window description somewhere in the file! Typically, you can call
WX like this:

1>WX AlarmClock

1>WX Clock

Sorry, Clock is not configured for WX

In the second example, the script had not been prepared for WX. All
you have to do is supply a console (RAW, CON: etc.) description as
you would to IconX: but preceed it with a special string:
““'WX:WINDOW=". The use of a comment character is quite
deliberate: this allows you to incorporate the line anywhere in the
script — even straight after the header. For example:

key dummy

.bra {

.ket }

;WX:WINDOW=con:0/0/500/40/Script window/CLOSE
| echo >t:ed1{$$} "11#"
This line is completely ignored by AmigaDOS, but interpreted by

WX; so its simple to incorporate and easy to use. If you include
more than one window description only the first one is used.

Irﬂﬁ [mmr———————————riL L

o] AnlgaShell — — £ ai . z
HpPPsS . —Fun> wx HemBar
+Apps: ZFun> m ﬁ.\j

‘ WX Starting Membar

wX

—
Line-By-Line
1-3. Comprise a standard header.
4. Creates a simple EDIT macro to remove the special WX

window identifier from the window description. It just deletes
the first 11 characters of any file its applied to.

5. Attempts to locate the WX window description marker in the
specified file. If found, the result is sent to a global variable,
WIN#; the WARN flag is set if it could not be found.

6. If the WARN flag is not set (the marker was found) control
continues at Step 7; otherwise it jumps to Step 11.

7. Trims the excess grunge from the window description (held in
"WIN#") using the edit maro defined at Step 4.

8. Places quotes around the window description and adds the
CLOSE option to make the window easier to get rid of.

9. Creates a simple script, “ax#" which will be used to clear the
new window and execute the required script proper.

10. Starts the new Shell process using a the supplied window |
parameters and special script. '

11. If control reaches here from Step 10, it jumps to Step 13; ‘
otherwise it proceeds...

12. .._here and informs the user that the script does not have a |
proper window description or the marker is badly formed. |

|

|

13. Closes the IF...ELSE...ENDIF construct opened at Step 6.

Listing
1 .key file/a
2 .bra {
3 .ket }
4 echo >t:ed1{S} "11#"
5. search >env:win{$$} {file} ";WX:WINDOW=" NONUM
6 if not warn
7 edit env:win{$$} with t:ed1{$$}
8 setenv win{$$} "*"S$win{$$}/CLOSE*""
9 echo >t:ax{$$} “"echo *"**e[0;O0H**e[J*" noline*nexecute

{file}
10. newshell from=t:ax{$$} window=$win{$$}
11. else

12. echo "Sorry, {file} is not configured for WX"
13. endif

Mastering AmigaDOS Scripts

X

Synopsis:
Template:
Path:
Requires:
See also:
Type:
Brief:
Definition:

Description:

X <script> [options]

V1.3+

Alias
Short name for EXECUTE
ALIAS X EXECUTE

This must be the simplest alias in the book (and probably the one |
use the most). | use X all the time when I'm developing scripts
because it saves typing EXECUTE. You could give this alias a longer
name, but why bother!

Mastering AmigaDOS Scripts

e
XCD

Synopsis: [EXECUTE] XCD [[pat=]pattern]
Template: pat

Path: S: r

Requires: vl.3-1.3.3

See also: SubDemo

Type: Script

Brief: To add pattern matching and history to CD
Description

The introduction of AmigaDOS 2 sees some remarkable changes and
upgrades to commands like CD and LIST and the pattern matching
algorithms. Both have been extensively revamped and enhanced.
There's no longer any need to use CD to move between assignments
or directories, because the Shell implies them. CD is only used
when pattern matching of the directory specification is required. |
Implementing the same thing in AmigaDOS 1.3 is not easy - but |
something similar is possible.

Let's face it, if you want the features of AmigaDOS 2, you'll just |
have to upgrade. XCD works like Commodore’s PCD but doesn't fall
over when it encounters spaces in directory names. Unlike PCD, it
adds single pattern matching. Multiple patterns are not possible in |
release 1.3 - a limitation of LIST.

Line-By-Line
1-3. Sets the key and, wait for it, resets bra and key to something

else.

4. If a pattern has been supplied, control jumps to Step 15;
otherwise it continues at Step 5.

5-6. Prints the current directory on a single line.
Saves the current directory setting to a file...

...and this retrieves the new directory specification from
another file.

9-11. These are support lines for the “subroutine” call. Each one
defines the return address for the subroutine to branch back
to when it exits. In most languages this part is automatic and
invisible - in AmigaDOS the simulation of subroutines
requires us to do some of the work.

12. Copies the history to the history variable. The source file in
this case is created by the QUOTES subroutine.

307

Mastering AmigaDOS Scripts
i e =]

15.

13-14. Show the current directory.

Control usually gets here if a pattern was supplied, if not it
jumps to Step 27.

16. Forms the list of directories on the specified path in the
format. All pathnames are enclosed in quotes to stop CD
complaining about invalid command lines.

17-26. It is known - and highly likely — that one or more

29.

30.
31.

directories will match the same pattern. If "#?" is used. all
directories in that path will be listed. SEARCH is used here to
produce two effects:

Ensures at least one directory is found and generates a WARN
if not. It does this by scanning for a quote character which is
inserted during the list phase.

Displays all the directories found during the list phase. This is
default for this command but it lets the user know which
directories were located. The first in this list is entered and
this can help to debug the pattern.

Here CD uses another curious and very useful feature of
interactive mode which is this: The command only receives
input from the source file up to the first carriage return. This
is usually taken for granted since interactive files are usually
only one line long. However, it means you can drag a single
argument from the top of a list of many possible arguments.
It's a bit like getting a pack of cards and using the one from
the top of the pile.

29-33. Are the QUOTES subroutine. In brief, this short routine

takes a single line file and surrounds it with quotes. A slightly
more complex approach would be required for multi-line files
- which are not passed to this subroutine. This is important,
never use 20 lines to do something you can do just as well in
two. Use whatever you need to make it great — but keep it
simple too. In this case a facility to quote an entire multi-line
file is overkill. The main script body handles that part during
the list phase.

This marks the start of the QUOTES "subroutine”. It's a good
idea to leave at least one blank line between the end of the
script and the start of any subroutines.

Labels the subroutine for AmigaDOS’s SKIP command.
Creates a two line EDIT auto which expands as follows:
cl/"/
Appends a quote to the end of the line by concatenating

(joining together) the end of the current line, a quote and the
next line. Note: the next line is empty because of the carriage

32. This creates the previous directory history variable
“LastDir{$$}" using the edit macro just defined...

33. ...and this leaves the subroutine returning to the calling point.
Listing

1. .key pat

2. .bra {

3. .ket}

4. if “"{pat}" EQ ""

5. echo "0ld directory: " noline

6. cd

7. cd >T:Last{$$}

8. cd <T:lastDir{$$} >nil: ?

9. setenv Return 1

10. skip QUOTES

11 lab 1

12. copy T:LastDir{$$} T:Last{$$}

13. echo "New directory: " noline

14. cd

15. else

16. 1list >T:cdt{3} {pat} dirs lformat "*"%s%s*""

17. search T:cdt{$$} "*""

18. if not warn

19. cd >T:Last{$$}

20. cd <T:cdt{$$} >nil: ?

21 setenv Return 2

22. skip QUOTES

XcD

return present at the end of the original file. The truth is, I'm
foxing EDIT to make it do something it shouldn’t - it just
works that way.

b//"

This appends a quote to the start of the line. The end result
could look something like this:

"RAM DISK:clipboards”

Remember, these quotes must be present or CD will fail. This
is because it will interpret the space between “RAM" and
“DISK" as a delimiter - thinking that the new directory is RAM
and the rest of the command line is a user error.

Mastering AmigaDOS Scripts

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

lab 2
else
echo "No files appear to match: {pat}"
endif
endif
quit
; The subroutine starts here...
lab QUOTES
echo >T:cdt{$$} "cl/*"/*nb//*""
edit T:Last{$$} T:LastDir{$$} with T:cdt{$$}

Skip <env:Return >nil: back ?

Mastering Amiga Guides

Mastering Amiga Guides

Bruce Smith Books are dedicated to producing quality Amiga
publications which are both comprehensive and easy to read. Our
Amiga titles are being written by some of the best known names in
the marvellous world of Amiga computing. Below you will find
details of all our currently available books for the Amiga owner.

Titles Currently Available

Brief details of the titles currently available along with review
segments are given below. New publications and their contents are
subject to change without notice. If you would like a free copy of
our catalogue and to be placed on our mailing list then phone or
write to the address below.

Our mailing list is used exclusively to inform readers of
forthcoming Bruce Smith Books publications along with special
introductory offers which normally take the form of a free software
disk when ordering the publication direct from us.

Bruce Smith Books,
PO Box 382,
St. Albans, Herts, AL2 3]JD
Telephone: (01923) 894355
Fax: (01923) 894366

Note that we offer a 24-hour telephone answer system so that you
can place your order direct by 'phone at a time to suit yourself.
When ordering by 'phone please:

e Speak clearly and slowly

e Leave your name and full address and contact phone number
e Give your credit card number and expiry date

e Spell out any unusual names

Note that we do not charge for P&P in the UK and endeavour to
dispatch all books within 24-hours.

Buying at your Bookshop

All our books can be obtained via your local bookshops - this
includes WH Smiths which will be keeping a stock of some of our
titles, just enquire at their counter. If you wish to order via your
local High Street bookshop you will need to supply the book name,
author, publisher, price and ISBN number.

Mastering AmigaDOS Scripts
e e et

Overseas Orders

Please add £3 per book (Europe) or £6 per book (outside Europe) to
cover postage and packing. Pay by sterling cheque or by Access,
Visa or Mastercard. Post, Fax or Phone your order to us.

Dealer Enquiries

Our distributor is Computer Bookshops Ltd who keep a good stock
of all our titles. Call their Customer Services Department for best
terms on 021-706-1188.

Compatibility

We endeavour to ensure that all general Mastering Amiga books are
fully compatible with all Amiga models and all releases of
AmigaDOS and Workbench.

Mastering AmigaDOS 3 Volume One - Tutorial by Mark Smiddy
ISBN: 1-873308-20-5, Price £21.95, 384 pages.

The place to begin if you want to learn about and effectively use
AmigaDOS. Covering both AmigaDOS 2 and 3, the tutorial guide
assumes no previous knowledge of AmigaDOS. From formatting a
disk to pipes and multitasking, even multi-user, this volume will
turn the novice into an expert with its practical approach and many
fascinating examples. The disk which accompanies the book
contains all the examples and many other useful AmigaDOS tools.

Mastering AmigaDOS 3 Volume Two - Reference by Mark Smiddy
ISBN: 1-873308-18-3, Price £21.95, 416 pages.

Following on from the best selling Mastering AmigaDOS 2 volumes,
Mastering Amiga DOS 3, Volume Two is a complete A to Z reference
to DOS commands covering versions 2.04, 2.1 and 3. The action of
each command is explained and examples to try are provided.
Chapters on AmigaDOS error codes, viruses, the Interchange File
Format (IFF), the Mountlist and the new hypertext system,
AmigaGuide, complete this valuable guide.

Also:

Mastering AmigaDOS 2 Volume One (Tutorial)
by Mark Smiddy and Bruce Smith
ISBN: 1-873308-10-8, price £21.95, 416 pages.

Mastering AmigaDOS 2 Volume Two (Reference)
by Mark Smiddy and Bruce Smith

ISBN: 1-873308-09-4, price £19.95, 368 pages.

Mastering Amiga Guides

These two volumes follow the same great layout and
comprehensive content as this Mastering AmigaDOS 3 book, but
cover the older versions of DOS, namely 1.3, 2.04 and 2.1.

AmigaDOS Insider Guide by Mark Smiddy
ISBN: 1-873308-37-X, Price £14.95, 256 pages.

If you've worn out your Workbench and are excited by the
possibilities offered by AmigaDOS itself, then this Insider Guide is
for you! It introduces all aspects of AmigaDOS from beginners level
with plenty of examples in the now famous Insider Guide format.
This is the guide to the practical use of AmigaDOS without any
technical sidetracks or jargon. Take control of your Amiga.

Mastering Amiga Workbench 2
ISBN: 1-873308-08-6, Price £19.95, 320 pages.

The most comprehensive guide to Workbench 2 available. Every
aspect of Workbench 2 is explained through tutorials and step by
step guides. If you need a guide to Workbench 2 then this is the
way to master it first time! No stone is left unturned.

Mastering Amiga Workbench 3
ISBN: 1-873308-31-0, Price £19.95, TBA pages.

The most comprehensive guide to Workbench 3 available, it follows
the popular and easy to understand format of the best-selling
Workbench 2 book. Every aspect of Workbench 3 - including 3.1 - is
explained through tutorials and step by step guides. If you need a
guide to Workbench 3 then this is the way to master it first time!

Workbench 3 A to Z Insider Guide by Bruce Smith
ISBN: 1-873308-28-0, Price £14.95, 256 pages.

Every aspect of the Amiga Workbench is documented with screen
shots and examples of usage. Once you've become familiar with
Workbench techniques, this alphabetical reference proves
invaluable when you need to find a file, remember a menu
operation or...how do you run that Commodity? Owners of A500
Plus and A2000/3000 upgrading to Workbench 3 will find this an
essential add-on to their manuals.

Mastering AmigaDOS Scripts
T s e T e D T T T

Amiga A1200 Insider Guide by Bruce Smith
ISBN: 1-873308-15-9, price £14.95, 256 pages.

Assuming no prior knowledge, it shows you how to get the very
best from your A1200 in a friendly manner and using its unique
Insider Guide steps. Configuring your system for printer, keyboard,
Workbench colours, use of Commodities and much much more has
made this the best-selling book for the A1200.

As well as easy to read explanations of how to get to grips with the
Amiga, the book features 55 of the unique Insider Guides, each of
which displays graphically a set of step by step instructions. Each
Insider Guide concentrates on a especially important or common
task which the user has to carry out on the Amiga. By following an
Insider Guide the user learns how to control the Amiga by example.
Beginners to the A1200 will particularly appreciate this approach to
a complex computer.

The disks which come with the A1200 contain a wealth of utilities
and resources which allow you to configure the computer for your
own way of working. The step by step tutorials take you through
using these point by point, anticipating any problems as they go.
There are also fully fledged programs such as MultiView and ED
which can seem impenetrable for the new user but which become
clear when observed in use over the shoulder of author Bruce
Smith.

Great new features such as the colour wheel, Intellifonts, using
MSDOS disks with CrossDos and configuring sound are dealt with in
detail. A useful appendix acts as a file locater so that any of the
many files on the Amiga disks can be quickly found.

Amiga A1200 Next Steps by Peter Fitzpatrick
ISBN: 1-873308-24-8, Price £14.95, 256 pages.

For those who have mastered the very basics of the A1200 this
book is the ideal companion to our Amiga A1200 Insider Guide.
Leaving the basics of the Workbench and AmigaDOS behind this
book takes you the next step and shows you how to get the very
most out of your A1200, using both the software supplied and
other material readily available.

For example, learn how to use MultiView to write your own
adventure game and edit a picture! Create your own fully
recoverable Ram disk, get better results when you print out,
recover deleted files. We even show you how to add your own hard
disk and copy software onto it! This is only the tip of the iceberg.
Amiga A1200 Next Steps is worth its weight in gold!

Mastering Amiga Guides
L=]

Amiga Assembler Insider Guide by Paul Overaa
ISBN: 1-873308-27-2, Price £14.95, 256 pages.

The Amiga Assembler Insider Guide has been written for the new
user who wishes to learn to write programs in the native code of
the Amiga computer — assembly language. The approach taken to
this often daunting subject is designed to achieve practical results
with short examples which demonstrate different programming
skills. Each program in the book can be assembled and run in under
one minute so the beginner need have no fear of long impenetrable
listings. This is programming for the novice, made all the easier
though the mini Insider Guides which summarise important
operations and fundamental concepts.

Possible stumbling blocks and areas which regularly cause
beginners problems are taken head on. No extra software is
required to run the examples provided. After reading the book, the
user will be able to confidently type in and edit source code,
assemble it, debug it and and run it.

The book is compatible with all the main assemblers on the market.
A support disk is available from the publisher which contains the
A68K assembler, all the listings in the book, additional utilities and
examples (cost £2.00 P&P). With the Amiga Assembler Insider Guide
learning assembler on the Amiga has never been easier.

Amiga Disks and Drives by Paul Overaa
ISBN: 1-873308-34-5, Price £14.95, 256 pages. FREE Utilities disk.

Just what do you do when all your valuable data is locked in your
computer? How do you copy files and install software? What do you
do when vou can't find a file on the Workbench screen? This book
has all the answers!

Paul Overaa teaches you how to use and care for all types of disk
drives in order to minimise the risk of problems, to get a better
understanding of how they work and what you can do if things go
wrong. Packed with practical topics, it's step by step guides are
invaluable to novice and advanced users alike. Applicable to all
Amigas.

Amiga A1200 Beginners Pack

ISBN: 1-873308-30-2, Price £39.95 plus £3 p&p, one-hour
Workbench basics video and two books (A1200 Insider Guide and
Amiga Next Steps) plus 4 disk of essential software.

Combining the Amiga A1200 Video. the Amiga Next Steps Insider
Guide and the Amiga A1200 Insider Guide this bumper pack is the
perfect gift for somebody you know taking their first tentative
steps along the wonderful road of Amiga computing.

Mastering AmigaDOS Scripts
O T e R T R T T TR

The disks of software contain the most sought after programs every
beginner should have, including a database, a wordprocessor, a clip
art selection, the OctaMed music sampler, a virus checker, a file
recovery package and a disk compression utility.

If you already have one part of the pack then telephone us for an
upgrade price.

| Amiga Workbench 3.1 Booster Pack

‘ ISBN: 1-873308-41-8, Price £39.95 plus £3 p&p, one and a half hour
Workbench video, two books (Workbench 3 A to Z and Amiga Disks
& Drives) a Quick Reference Card and a disk of essential software.

Already over 400,000 A1200 and CD?* owners enjoy the power and
versatility of Workbench 3. Now the million plus owners of A500,

‘ A2000 and other recent machines can enjoy the same power with a
simple chip upgrade.

The Amiga Workbench 3 Booster Pack provides the most

comprehensive support for such new users. The Workbench 3 Ato Z
| book and the 90 minute Amiga A1200 - A Deeper Look video
‘ provide the complete guide in both tutorial and reference material

to Workbench 3. The Amiga Disks and Drives Insider Guide goes on

to take the new user to intermediate levels, showing how to

optimise the use of their machines in both speed, capacity and

security. All this, a disk of essential software and the Quick
| Reference card make it an essential purchase.

If you already have one part of the pack then telephone us for an
upgrade price.

| Introduction to the Amiga A1200 Video by Wall Street Video/BSB
BSBVIDAMIOO1, Price £14.99, one-hour Workbench basics video.

New from Bruce Smith Books in association with Wall Street Video -
Australia’s leading Amiga training company - the perfect video
introduction to using your Amiga A1200 and a perfect companion
for the world's best selling A1200 book, Bruce Smith’s classic Amiga
A1200 Insider Guide. This one hour video provides a basic tutorial
on how to set up and run your Amiga A1200 by using great
animations and split screens to increase your understanding or the
concepts being explained. Re-examine those tricky grey areas by
instantly rewinding the video.

Applicable to both hard and floppy disk users the Amiga A1200
| Video may also by used to understand the Amiga A4000 and at
| £14.99 represents outstanding value.

Mastering Amiga Guides

Introduction to the Amiga A1200 - A Deeper Look Video by Wall
Street Video/BSB

BSBVIDAMIOO02, Price £24.99, 90 minutes video.

The follow-up to the best-selling Introduction to the A1200 from
Australia's Wall Street Video. Applicable to any Workbench 3 Amiga,
this video goes beyond the first steps of using your machine to
comprehensively tackle all the features of Workbench 3.

Mastering Amiga Beginners by Bruce Smith and Mark Webb
ISBN: 1-873308-17-5, Price £19.95, 320 pages. FREE Games disk.

Mastering Amiga Beginners is the book for the growing number of
novice computer users who turn to the Amiga as the natural
computer for home entertainment and self-education.

The authors have built up a wide experience of beginners’
requirements and the problems they encounter and now this vast
knowledge of the subject has been distilled into 320 pages of
sensible advice and exciting ideas for using the Amiga.

Mastering Amiga System by Paul Overaa
ISBN: 1-873308-06-X, Price £29.95, 398 pages. FREE disk.

Serious Amiga programmers need to use the Amiga's operating
system to write legal, portable and efficient programs. But it's not
easy! Paul Overaa shares his experience in this introduction to
system programming in the C language. The author keeps it
specific and presents skeleton programs which are fully
documented so that they can be followed by the newcomer to
Amiga programming. The larger programs are fully-fledged
examples which can serve as templates for the reader’s own ideas
as confidence is gained.

Mastering Amiga Printers by Robin Burton
ISBN: 1-873308-05-1, Price £19.95, 336 pages. FREE Programs disk

After reading Mastering Amiga Printers, any Amiga owner will be
able to choose effectively the ideal printer for his or her
requirements. The Amiga's own printer control software is pulled
apart and explained from all points of view, from the Workbench to
the operating system routines. Individual printer drivers are
assessed and screen-dumping techniques explained.

Mastering AmigaDOS Scripts

Mastering Amiga AMOS by Phil South
ISBN: 1-873308-12-4, Price £19.95, 320 pages.

AMOS has very quickly developed into one of the most exciting and
accessible programming languages on the Amiga. Its easy to use
interface and familiar BASIC structure are augmented by powerful
libraries for games and graphics programming. Mastering Amiga
AMOS is ideal for anyone investing in AMOS, EasyAMOS or AMOS
Professional. Full of hints, tips and shortcuts to effective and
spectacular AMOS programming, this book also contains many
useful routines and program design ideas.

Mastering Amiga Assembler by Paul Overaa
| ISBN: 1-873308-11-6, Price £24.95, 416 pages. FREE disk.

The big brother to the Amiga Assembler Insider Guide, this book
explains the use of assembly language to write efficient code within
the unique environment of the Amiga, doing so without duplicating
standard 68000 material in over 400 pages. Instruction is achieved
| by short code examples amidst discussion of the issues involved in
| using machine code for various purposes. Subjects covered include
cooperation with the System software, custom chips and the C
language. All the popular Amiga assemblers are supported by the
many code examples in this book.

Mastering Amiga C by Paul Overaa
ISBN: 1-873308-04-6, Price £19.95, 320 pages.

FREE Programs Disk and NorthC Public Domain compiler.

C is one of the most powerful programming languages ever created

with much of the Amiga’'s operating system written using C. The
| introductory text assumes no prior knowledge of C and covers all of
| the major compilers, including the charityware NorthC compiler
| supplied with this book when ordered direct from BSB. It is ideal for
| anyone using their Amiga to catch up on computer studies!

Mastering Amiga ARexx by Paul Overaa
ISBN: 1-873308-13-2, Price £21.95, 336 pages. FREE disk.

Now a standard part of Commodore’s software strategy and readily

' available to Workbench 2 and 3 users, ARexx has been much
admired by the programming community and is now available to all
as a third party product. This book is an ideal companion to the
ARexx documentation, explaining ARexx's main features, how it
controls other programs, its built-in functions and support
libraries, methods for creating well structured ARexx programs and
much. much more.

Mastering Amiga Guides
e e)

Mastering Amiga Programming Secrets by Paul Overaa
ISBN: 1-873308-33-7, Price £TBA, TBA pages. FREE Programs Disk.

All the tricks and tips for programming your Amiga for graphics,
animation and sound. Programs in assembler and C are provided
with full documentation together with step by step tutorials to
teach you how to program. Paul Overaa has saved up his best
routines for what proves to be a dazzling guided tour around the
best in Amiga programming techniques.

Amiga BASIC - A Dabhand Guide by Paul Fellows
ISBN: 1-873308-87-9, Price £17.95, 560 pages.
FREE Disk with ACE Freeware BASIC compiler.

BASIC is the computer programming language devised for beginners
and now a standard on most computers. The Amiga doesn’t usually
come with a BASIC as standard but we provide one with the book so
you have a head start. A number of commercial BASICs are available
including HiSoft BASIC 2, True Basic and FBASIC. AMOS is also
BASIC-like in its structures and keywords. This book is a substantial
introduction to the language and is peppered with some of the
cleverest routines around. Paul Fellows is a leading software author
in his own right and his programming experience shines through in
this easy to read guide. If you want to learn about programming in
BASIC then this is the place to start.

Amiga Gamer’'s Guide by Dan Slingsby
ISBN: 1-873308-16-7, Price £14.95, 368 pages.

The latest book for the discerning Amiga owner is this highly
illustrated guide to your favourite games. From sports sims to
arcade adventures, Amiga Gamer’'s Guide author - and CU Amiga
magazine editor — Dan Slingsby gives you the hints and tips, hidden
screens and puzzle solutions you are looking for. Completed by a
massive A to Z of tips and tricks for over 300 games, this is the
most masterful of Amiga games guides yet published.

Secrets of Frontier Elite by Tony Dillon
ISBN: 1-873308-39-6, Price £9.95, 128 pages.

If you want to become Elite, or just incredibly rich, then get this
book. This is the ultimate guide to the ultimate space trading game.
Learn how to move up the ranks of the military, how to choose the
best ships and weapons, how to trade and mine to the top. Games
editor Tony Dillon has researched the game and included many of
the hints and tips which have come his way. Find out how to gain
control of the secret Mirage ship and how to become Elite, by the
back door.

Mastering AmigaDOS Scripts

Disk Order Form
Please rush me a copy of Mastering AmigaDOS Scripts Disk.
I enclose a Cheque/Postal Order* for £2.00.

V= ¢ 0 (< U

0 [B o T

Contact phone NUMDET.couuiiii e e e e e

*Cheques payable to Bruce Smith Books Ltd.

Send your order to:

MAD Disk, Bruce Smith Books Ltd, PO Box 382,
St. Albans, Herts, AL2 3JD

Please note that unless otherwise requested we will add you to our
mailing list. This mailing list is currently only used to mail out to
our readers details of new and forthcoming books. This includes
our catalogue Mastering Amiga News.

Please take the time to answer the following questions:
How did you find out about Mastering AmigaDOS Scripts?

Where did you purchase your copy?

What other titles would you like to see in the Mastering Amiga
range of books?

Mark Smiddy

Mastering AmigaDOS - Script Programs

AmigaDOS is the software built into your Commodore Amiga. It lets
you write and run programs called scripts. Mastering AmigaDOS
Scripts contains over one hundred ready-to-run script programs.
There are script programs for AmigaDOS versions 3.x, 2.x and 1.x
so this book is applicable to all Amigas, including the Amiga A1200,
A600, A500 Plus, A500, A4000, A3000 and A2000 microcomputers.

The script programs are fully documented line by line so that you
can learn from them, picking up the new techniques and
programming twists which AmigaDOS guru Mark Smiddy has
devised. Beginners will find the scripts easy to load and run,
providing handy off-the-shelf utilities and full programs such as
database and diary.

This is the third volume in the Mastering AmigaDOS series, which provides
complete coverage of the Commodore Amiga’s built-in software. Volume One -
Mastering AmigaDOS Tutorial - is for Beginners, Volume Two — Mastering
AmigaDOS A-Z Reference — documents every command with examples.

- Bruce Smith Books -
Publishers of the World’s Best Selling Amiga Books

ISBN 1-873308-36-1

78

£19.95

1873"308363

This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International (CC-BY-SA) License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866,

Mountain View, CA 940942, USA

Copyright:
Mark Smiddy 1994

Released under Creative Commons 2018

