Amiga
intern

The definitive reference
book for all Amiga computers

(#3532

Amiga
Intern

The definitive reference
book for all Amiga computers

Christian Kuhnert, Stefan Maelger, Johannes Schemmel

FFFFIINT
T

A Data Becker Book

Copyright © 1992 Abacus
5370 52nd Street SE
Grand Rapids, MI 49512

Copyright © 1992 Data Becker, GmbH
Merowingerstrasse 30
4000 Duesseldorf, Germany

This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of Abacus Software or Data Becker, GmbH.
Every effort has been made to ensure complete and accurate information
concerning the material presented in this book. However, Abacus
Software can neither guarantee nor be held legally responsible for any
mistakes in printing or faulty instructions contained in this book. The
authors always appreciate receiving notice of any errors or misprints.
AmigaBASIC and MS-DOS are trademarks or registered trademarks of
Microsoft Corporation. Amiga 500, Amiga 1000, Amiga 2000, Amiga 3000,
and Amiga are trademarks or registered trademarks of Commodore-
Amiga Inc. IBM is a registered trademark of International Business
Machines Corporation.

Library of Congress Cataloging-in-Publication Data
Maelger, Stefan, 1965-

Amiga Intern / Stefan Maelger, Christian Kuhnert, Johannes

Schemmel.
. cm.

Includes index.

ISBN 1-55755-148-0 : $39.95

1. Amiga (Computer) I. Kuhnert, Christian, 1967- .
II. Schemmel, Johannes, 1958- . III. Title.
QA76.8.A177M34 1992)
004.165--dc20 92-8083

CIP

Printed in the U.S.A.
109 8 7 6 5 4 3 2 1

Foreword

The Amiga once widely considered a little more than just a game
machine, has now become a worthy and serious rival to the PC and the
Mac.

Both the professional quality of software and the improvement of the
Amiga's operating system have contributed to its "coming of age". With
the appearance of Kickstart 2.0 (AmigaOS 2.0), the user interface has
attained a professional level. It's natural that this professionalism should
carry over into the quality of software. Much knowledge about
hardware and software is required to master the Amiga. Assuming you're
acquainted with the basics of programming, and the detailed information
about how the system works, this book will provide you with the
necessary professional know-how. The scope of the book alone
indicates the enormous amount of knowledge and effort that have gone
into its preparation. To address as many aspects of the Amiga as possible,
three authors have contributed their knowledge and experience.
Correspondingly, the book is divided into three parts:

Part 1: System Programming (Stefan Maelger)
Part 2: ARexx (Christian Kuhnert)
Part 3: A3000 Intern (Johannes Schemmel)

These sections can be read individually or consecutively; their sequence
is not important. Each one constitutes in itself a useful learning tool and a
guide for later reference.

We wish you many enjoyable and enlightening hours with "Amiga
Intern.” Maybe you will soon be publishing professional software for the
Amiga.

We are grateful to Commodore and especially to Dr. Kittel for their kind
support.

Table of Contents

1. KiCKStart 2.04....ccoeieiieiiienroreeeseceocccecessecnnennsssd

1.1
1.1.1
1.1.2
1.13
12

2.1

2.1.1
2.12
2.1.3
2.2

221
222

3.1
311
3.12
3.13
3.14
3.15
3.16
3.17
3.1.8
3.19
3.1.10
3.L11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16

Inside AMIZAOS 2.X......cucvvevremrerrrerreinensnsie et ssssssssssssssssssesssssnssssessensssens 5
Reset Capabilities..........coceerevvrrerernmrnenererescereeeeessessesseons 6
The Main Units of AmigaOS 2.Xcceuervevuemrerennnnee cereeesetsasrsesasnes 7
Disk Libraries and DEVICES.........cc.veurruruerienrineinsiesseesessessssssessssessssssssssssesessssnnns 9
Amiga0S 2.X CoOmMPAtiDIlitycc.cecueereerrrnsirrsienrnsresessessses s ssesseneneesenesessees 10
2. Using the Amiga 3000.........cccevvvuierneernnnnnees.. 13
The WOTKDENCR ...ttt sesenssessse s ssssenns 13
Starting AMIZA0S 2.Xccuucvvereennrrsnsiinessses s sesssssssssssesessesessssesssssssssessssesssens 13
The WOrkbench MENUS.........ccocovirueeurneeeeece ettt eeeeesssesessssess s s esan 14
The Workbench PrOZIams...........cc.ecueuueveevceceicnnieeeeeseneeeeesssesssnesessessessessssssesens 18
The Command Line INErPreterovuueuumumemreeeeeeeeeeeeeeeeeeeeesessssssesssessoessens 22
AmigaOS 2.x Resident CommAands..............ooueveeeeeeeseereneeeeeereesesseesssessoessens 22
USING the CLL........coeiiieeeeeeinsiseie et e e sscsssssesesssssasssssessass s 22
3. Programming with AmigaOS 2.X........cccvvveneeee.. 25
The Libraries and their FUNCHONS «............coooervvriveceiecceeeceeeeee e sssneene 25
The ASL LIDIATYcouveeeeeeceentneresiens st scs s sessssssessessssasssssnsessssssesssenns 26
The CommOdities LiDIarycouorueueeveceereeeeeecesecsieessseeeeeeeseseseessessesssessesees 36
The Diskfont Library...........cccvvmnninninsiseceve s sessesesssesess s esssasens 54
The DOS LIDIArY......c.ciiereeciireeesereiestnesss st sse s s sssssessssssssasessenssean 61
The EXEC LIDTATYcourvicerecnciecereieisietsise s sssses s seesessesssssnsssssssssssssnss 161
The EXpansion LIDIaryccenierneininsninssnsissesessessessessessessessessessesees 225
The GadTo0lS LIDIATYccecevirierreneririctses st sessnese e sesseses s sessssesessesesansens 233
The Graphics LIDIaryc..cccoeeeurerceeeeenrseecentrreieeeeeseresssissesssssssesessssssssssssass 251
The Icon LiDraryciiiicccreeeseeeseeseseseeeseneesesessssssesssssssesnes 326
The IFFParse Library.........cmiiiiceenenererensiescssentieeseesasesesssssesssesasesens 331
The Intuition Library.........oviiiniennennsnccenneisesceeeseseseesassensaeas 350
The Layers LIBrary ... 433
The MathFFP, MathIEEESingBas, and MathIEEEDoubBas Libraries........ 443
The MathTrans, MathIEEESingTrans, and MathIEEEDoubTrans Libraries448
The Translator LIDIArycccvcveveeerereneniscrenreeesinenseeseseescscsencscssassessassessesesnsas 452
The Utility LIbrary.........cocvverininineneicnicnneesnenenes . . 453
The Workbench Library........cecceceveeveenenneeenencssnsesisennes 461

3.1.17

vii

viii

AR XX eeeeeeeseosacessscssssscsssssssssscsssssscssscccessd7I

4.1 The AREXX LANZUALEcceveevcurncciiriniinisiisisensssessssssssssssssssssssssssssassssssssssans 473
4.2 The Functions of ARexx........... . ' 475
43 An Overview of AREXX......ccvevcvevinnniisnenenee . ; 476
44 ARexx - Rexx on the Amiga479
4.5 A Sample APPLICALIONuuuiuiririncircisenentrsisisssssiss st sesssssesssssesssssenasnsss 480
AReXx Syntax.'.............'.......‘......‘............Q483
5.1 USING TOKENScovuerrnirinircrrnencsnsssssssessssssssssssnns verersteerensssnsasasnensensasene 483
5.1.1 AREXX SYMDOIS....cciurririiciriiniriencsnnssnstssistssisssssssstsessssessnsessssssusssessasssnssscsses 483
5.1.2 Character Strings in ARexx rererere ettt sttt sa e Rsasa e e e e s e e saeasaete 485
5.1.3 The ARexx Operators 485
5.1.4 ARexx Special CharaCtersccuvuuenmnississsssssnssssssssnsessessssessessnsessessasissessisens 486
5.2 EXPIESSIONS ...cvuvrvreivunicinsrisesmssssisnssssssassasssssssssssssssssssssesssesssesssesssssssesssssssssnssses 487
5.2.1 Arithmetic Operators reetere et st saeaet st e e e e e e e e sb s 488
5.2.2. Concatenation Operators in AREXX.....ccovurivrmneirenniunininenciniectcnseicncisns 490
5.2.3 Comparison Operators in AREXX......cceeuereusersesseusesseusencesenncessasenss 490
5.2.4 Using Logical Operators 491
53 ARexx Clauses... S -

5.3.1 Null Clauses.......cccccocrvururnne

5.3.2 ARexx Label Markerscccovcvimiinernrennnnacienene

5.3.3 Assignments in ARexx

5.3.4 AREXX COMMANAScocvevrrererereencreeencnnecsisisiessaniisissssssessasssssssessssassssssssssssssssnes
5.3.5 COMMANAS.....cvorerererererereerirssesessearesssessonssesssssssssssssesssssssssmsassssssesessssssasssssssasasass
Instructions.......'.........'.....'........‘...l.....’...495
6.1 T/O INSIUCLIONS ...ecveneeeeeecncncncrrnecnissesesesssessnaresessnsnsssesessacns 496
6.2 Structured INSUCLIONScveeceeecerececrreeeeeecercereacseieree st aserssssssssssssssssssasnss 501
6.3 ARexx Control INStructionsccecevevevererernseresnseseseonensaens 507
6.4 COMMANScocrrnrnrrenererreersesesessssarecsesessesesesencsessasssecsssssssessases 513
ARexx Functions ono.ooooooooo"ooooooo-000'000000000590515
7.1 ARexx Internal Functions............cceeeceeevennuenen516
7.2 Built-in FUNCHONS.couevrteeereenreeairecccnetreieneecntsrsesscsesasasessessssassssssssessssnssssrsssans 516
7.3 ARexx External Function Libraries..........c..ccceesunnnerenirenennenesersssesersesssesesessenes 517
7.4 J/O FUNCHONS.......coeeeicnieeienseseneiesseseaeesesstsesssasssessssssssssssssssesssssesssssesnssessesesens 520
7.5 ARexX String FUNCHONS.covciriiinieriireentneeceeneeceeenseessesssiesessseessssessessnseses 524
7.6 Bit Manipulation in AREXXcccoueriivnmenriniecsssnessnssesensesessessesssssssssssssssesseses 535
7.7 Numeric Functions 538
7.8 Conversion Functions in ARexx 541
7.9 ARexx System Functions..........ccc.ceeeceecneerensesennennns 544

Special Featurescccvvvvviiiiiiiiinnnnieeennen... 555

8.1 Parsing Strings with Templates........................ 555
8.1.1 Examples of Parsing 557

8.2 Error Trapping with TRACE........oomeccrninneccsnssiines 561
8.2.1 Trace Options........cceoerene - 561
8.2.2 TRACE Output... - 562
8.2.3 Command Suppression in ARexx Programs reeesestesnsaetnsnereaes 563
8.2.4 Interactive Tracing......... ' ; 564
8.2.5 SIGNAL Interrupts and Error Handling.... 565
9. ARexx on the Amlga.............,.....................569
9.1 Commands 569
9.2 Exchanging Data w1th the Clip List 573
9.3 The rexxsupport.library .. 574
9.3.1 EXEC Functions.... 574
9.3.2 DOS Functions. rerebeaereeeret et h e st et s R e R R e e e e e s s e R e s RS s Re R sb b be 581
9.4 Creating ARexx Function Librariescccovcvverienmevenneseinesenscusnecns reennn 383

10. The ARexX Interface ..ccceeeeeeeeeeeeeceecrcccccccceeee D87

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.3
103.1
10.3.2
10.3.3
10.4
104.1
10.4.2
104.3
104.4
10.5
10.6

11. The
111
112
112.1
1122
1123

Essential Data StrUCUTES...........evruererreseerunenianescaisesusiesssnnsssessssnss 588
Requirements for a Command Interface....................... 590
Command CallS.........cceevererruemreerereeerreenesmeeessrensisisesesssessssssisesssesesesssssssssssressssssnses 593
Function Calls ettt e sh b s s e e e bR ea s ‘ 594
ARexx Program Search OIderiiiiienninincnenineneensssessesssessssens 594
Expanded RexxMsg Structure Areaseveseerecseennns 595
ReSUlt ENLIIES.....covereererenrrerenrerenenneseensenencssasesisssonsens . 596
The Rexx Master Procedure...........oeerininicnnininee 598
ACHON COAES ...overrrrreerenrrnrrsenerseecsesesasnestenesesessasasssssssssssssssesssnanssss 598
Action Code Control Flags........ccociecenicriesisecsissusisenieninsisesmimsesinsessasseses 600
Managing the ResSults..........couirrriniieninnciniieinnesesssesnsseens 601
Functions in rexxsyslib.libraryccocuc...... 602
I/O Functions...... rerererersreerte s e e s s ensae e e ars st e sn st sasee 604
String Manipulation......... 609
Conversion Functions in ARexx 611
ARexx Resource Handling..........coeeevuerceriseecnsnsinsssscssssissessscsennes .614
The RexxBase Lists 623
ARexx Error Messages . reeeee 024

A3000 Hardware........'...0.............0.'.....‘635
Processor Generations .637
The 68030.......cuorvnrerrecicrsercasenens 641
The PMMU... ‘ 668
The Floating Point Coprocessor 683
Differences Between the MC 68881 and 68882 701

ix

1124
11.3
114
11.4.1
11.4.2
114.3
1144
11.5
11.5.1
11.5.2
1153
1154
11.5.5
11.5.6
11.5.7
11.5.8
1159
11.6
11.6.1
1.7
11.7.1
11.7.2
11.7.3
11.74
11.7.5
11.7.6
11.7.7
11.7.8
11.7.9
11.7.10
11.7.11
11.7.12

Cache Memory ...

The CIA 8520...............

Custom Chips and the Amiga...

Basic Structure of the Amiga..

.....

.......

The Structure of Agnus

The Structure of DEniseccovvvveeerererereeerrrernnns
The Structure of Paulacocoeeeeeveeeeeeereeereeerrennnn,

The Amiga Interfaces

...........

.....

..........

.......

.........

............

.........

The Audio OQULPULS.........cceuueeerereernrrnrestnsees st ss s ssssstssessesesessssssssssssseans

The RGB Connector..........

The VGA Connector

.........

The Video Slot................

......

..........

}.’he Centronics INTEITACEoiueieerirenieeeeeeesereneeesessss e e sesssssesesesesssesesesnns
The Serial INEEITACE.cuveeeieceiieieeteeeeeeeeeeeeeteseseseseseseesesesersesss e ese e eeeesenes

Data Transfer from the Keyboard

...
...

...

The Keyboardccevrvnrneneeeneereeerecee e

..........

...

Programming the HardwWarecoocvvcnmruneneesveeseecscessssseeseeseesssssssessssens

The Memory Layout..........ocveerromrronnernrnsrenreensnssneenne

FUNAAMENLALS ...ttt eeesese e sssesses s sssessessesesesesesees e

...

........

Sound OULPUL....ccvvvrcrerrrertee e
Mouse, Joystick and Paddles............ccoeeeurrerrerreecreeeerceniencseineneeesssssssessessenns
The Serial Interfaces....................
The Disk CONIOLIET........ccocrerrrreerererereee e secsenae

soe

......

..........

...............

..........

702
707
721
722
726
730
734
738
738
739
741
742
744
746
748
755
758

. 764

766
770

770

780
794
797
807
838
860
865
905
933
941
946

Bibliography..ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnne.... 951

| 01 1, RIS | 1%

Systermn

Prograrmming

Part 1 - Introduction

The Amiga operating system is modular. Multitasking is achieved simply
and with near-optimal memory utilization through the use of libraries and
virtual devices. Only what is needed is saved in memory, and several
programs can share simultaneous access to system resources. The
capability of Intertasking, or interprogram communication over message
ports, is one of the many features of the Amiga's powerful and flexible
operating system that you will read about in this book. At first, learning
all these capabilities won’t seem easy. The first part of the book, "System
Programming”, should give you the necessary background information
for system programming in the AmigaOS 2.0 environment.

Author: Stefan Maelger

1.1 Inside AmigaOS 2.x

1. Kickstart 2.04

The new AmigaOS (Amiga Operating System) is here. It has taken some
time to reach its present state of development. However, the wait has
been worth it because this operating system is better than any
predecessor. This contains 512K, which makes this system more powerful
than any other system. :

1.1 Inside AmigaOS 2.x

AmigaOS 2.x is based on the hardware environment of the Amiga 3000
(i.e., on the 68030 and 68882 processors) and the new ECS (Enhanced
Chip Set) custom chips. It must be distinguished from previous beta
versions based on the Amiga 1000, which are capable of calling only part
of the power that the Amiga 3000 operating system provides. These beta
versions, released to program developers who did not own a 3000, were
intended for compatibility testing only.

Similar to the preceding versions, AmigaOS 2.x is a multitasking
operating system, running several programs simultaneously. By dividing
memory into two distinct types and utilizing the DMA (co-processor)
concept, it is capable of actual simultaneous memory access (i.e., true
hardware multitasking). The Amiga's main program is the Input task. It
manages all input and transfers control to various system routines. For
example, the complex display-controller called Intuition. Commands are
passed from Intuition to the Input task, where, at intervals of 1/50th of a
second, they are eligible for execution. Since Intuition tasks are
accomplished almost exclusively by the Input task, and the work of this
program is synchronized by clock pulses, all performance tests using
Intuition are meaningless. But with speed, the availability of static 32 bit
RAM on the non-multiplexed bus (free Fast RAM) will enhance
performance considerably, by enabling the processor to be switched to
burst-mode for top-speed access of the 68030's data and instruction
cache.

To find out how the operating system is put together, let's try taking it
apart.

1. Kickstart 2.04

1.1.1

Reset Capabilities

Begin with a “cold start” by switching on the 3000. Press both mouse
buttons at once, and you will be moved to the Operating System Menu.
Here you can select the operating system you want to work with and
specify the source from which it should be loaded. For example, an old
version of the operating system can be loaded from the (hard) drive into
a RAM storage area. The 68030's integrated MMU logically shifts this
area to the normal operating system address and protects it against
overwrite.

Now the current operating system's normal reset routine, which can also
be invoked by the sequence <(Ctr) Ift-Amiga,rt-Amiga>, is initiated. Under
AmigaOS 2.x, any external or internal expansions are immediately
recognized and incorporated into the system (this was not the case with
earlier versions). The operating system checks hardware and memory and
builds the tables for routines (error handling) and interrupts. All base data
structures containing variable values are then set up.

Pressing both mouse buttons again will take you to the Boot Menu. This
screen allows you to select the logical or physical drive from which
booting will take place. This drive will be referred to as SYS (system
directory). For other Amigas, even before the start of DOS, all logical
drives are recognized and drive names established. The execution of the
Startup sequence can also be disabled. This can be an advantage for CLI
users, since the InitialCLI itself is now a complete shell, providing a
convenient and easy-to-use platform for the Command Line Interface.

Now the Device Operating System (DOS) is started and the work shell
initialized. To save time and avoid problems selecting the right monitor
driver, the windows aren’t opened until the Workbench is activated or
output in an Initial CLI window requires it.

1.1 Inside AmigaOS 2.x

1.1.2 The Main Units of AmigaOS 2.x

The Amiga Operating system is designed in modules. Considering the
size of the entire system and that the Amiga is a multitasking device, this
is a great advantage. The modular design makes the system more flexible
and easier to change. The main units can be divided into four groups:
Libraries, Devices, Resources and Special. Libraries are simply collections
of routines of a certain type or application. Devices serve as logical
device drivers and may perform one or more tasks. Resources include
base routines which usually manage access to certain resources and
exclude them from or reserve them for other programs.

The modules are initialized according to their priorities.

The following modules are found in AmigaOS 2.4 ROM in the order of
their initialization:

1. Kickstart 2.04

Address Pri Typ Name Vers. Date
0f83ccO0 | +110 Library expansion 37.23 | (3/15/91)
$00f800b6 | +105 | Library exec 37.52 | (3/15/91)
$00f83cda | +105 | Special | diag init
$00fob09a | +103 | Library utility 37.3 (2/13/91)
$00faba14 | +100 | Resource | potgo 37.4 (1/28/91)
$00f889e0 | +80 Resource | cia 37.4 (3/15/91)
$00f98dac | +80 Resource | filesysres 37.1 (1/12/91)
$00f8f3bc | +70 Resource | disk 37.1 (1/9/91)
$00fab964 | +70 Resource | misc 37.1 (1/8/91)
$00fbbb50 | +65 Library graphics 37.20 | (3/14/91)
$00faebd8 | +60 Device gameport 37.8 (1/28/91)
$00fb8540 | +50 Device timer 37.57 | (3/14/91)
$00f85890 | +45 Resource | battclock 373 (3/11/91)
$00faec02 | +45 Device keyboard 37.8 (1/28/91)
$001862d0 | +44 Resource | battmem 37.3 (3/4/91)
$00fa6984 | +40 Library keymap 37.2 (1/8/91)
$00faec2c | +40 Device input 37.8 (1/28/91)
$00fa76c4 | +31 Library layers 37.7 (8/13/91)
$00fae054 | +25 Device ramdrive 373 (1/9/91)
$00fb936¢c | +20 Device trackdisk 37.3 (3/13/91)
$00fb0298 | +10 Device scsidisk 37.4 (2/26/1)
$00fd3féc | +10 Library intuition 37.220| (3/14/91)
$00f83cad | +5 Special alert.hook
$00f8b358 | +5 Device console 37.85 | (3/13/91)
$00fab5f4 | +0 Library mathieeesingbas 37.2 (2/7/91)
$00f86508 | -35 Special syscheck 37.2 (1/15/91)
$00fb7620 | -40 Special romboot 37.23 | (3/15/91)
$00fff46c -45 Special Magic 36.7 (3/16/90)
$00f864c8 | -50 Special bootmenu 37.2 (1/15/91)
$00fb763a | -60 Special strap 37.23 | (3/15/91)
$00f98f3e | -81 Special fs 37.11 | (3/13/91)
$00fae70c | -100 Special ramlib 37.13 | (3/14/91)
$00f847f0 | -120 Device audio 37.7 (3/13/91)
$00f90390 | -120 Library dos 37.22 | (3/15/91)
$00f9e4d0 | -120 Library gadtools 37.82 | (3/14/91)
$00fadd5¢c | -120 Library icon 37.6 (3/2/91)
$00fab110 | -120 Library mathffp 371 (1/13/91)
$00fbba7a | -120 Task Pre-2.0 LoadWB stub
$00feccdd | -120 Library wb 37.108| (3/14/91)
$00f88d8e | -121 Special con-handler 37.39 | (3/13/91)
$00fb2ed4 | -122 Special shell 37.37 | (3/13/91)
$00fabbb8 | -123 Special ram 37.9 (3/15/91)

Some modules are only included for backward compatibility. For
example, the workbench-task module and the "mathffp.library" are used.
All other modules contained in ROM are used frequently or are required
by other modules.

1.1 Inside AmigaOS 2.x

1.1.3

Disk Libraries and Devices

Modules are found in ROM, on the Workbench disk or in the system
directory of the hard drive. These programs are loaded as they are used:

Name Version Directory
asl.library 37.25 "LIBS"
commodities.library 37.5
diskfont.library 36.50
iffparse.library 37.1
mathieeedoubbas.library 37.1
mathieeedoubtrans.library | 37.1
mathieeesingtrans.library 37.1
mathtrans.library 37.1
translator.library 37.1
version.library 37.33
rexxsyslib.library 36.19
rexxsupport.library 34.9
clipboard.device 37.4 "DEVS"
narrator.device 37.5
parallel.device 37.1

printer.device 35.603
serial.device 37.1

aux-handler "L"
port-handler

speak-handler

queue-handler

1. Kickstart 2.04

1.2 AmigaOS 2.x Compatibility

10

The addresses of routines in ROM will vary from version to version. They
should not be called directly, since they are always subject to change. In
short, do not rely on a specific value for anything that Commodore has
not declared a constant. A disadvantage with compatibility is the
memory requirements of programs. The new operating system uses more
memory than earlier versions to accommodate its many new features. The
same is true for program stack requirements. System routines have
become much more complex, with a corresponding increase in their stack
storage needs.

Many values whose contents are made up of flag bits have been
expanded, and failure to handle them accordingly can lead to problems.
Also, this can happen to the 68030's expanded status register.
Unfortunately, some system data not defined as PUBLIC has found its
way into circulation. These values are not to be trusted and changes in
their definitions can most likely happen. The programmer can always rely
on the address $00000004. This is the base address of the "exec.library"
for all versions of the operating system. All other values are uncertain.
The color and proportions of the system font can also change. Processor
speed has increased dramatically. As a rule, a program will have to be
synchronized with clock impulses or the monitor's electron beam.

The main and co-processors’ instructions doesn’t allow interval storage
of values, bits in addresses or instruction codes.

Many extensions of AmigaOS 1.3 have been removed and integrated
into the base module in a large expanded form. For example, the
“romboot.library” was removed and the boot routine completely
reprogrammed. Autobooting from devices other than the internal disks is
now standard and fully supported by the system. Like the SCSI-devices,
all disks come bootable from the supplier. Drives DFO through DF3 are
assigned priorities of +5, -10, -20, and -30.

Early in the reset-routine the new operating system's enhancements
become apparent. Calling of the ColdCapture vector is delayed. At any
time the Exception/Interrupt Table can be placed over the Vector Base
Register (VBR).

1.2 AmigaOS 2.x Compatibility

There are allowances for changing the size and type of MemHeader
structures, and the use of ResetWindows has been revised.

The base structure of the Expansion-library is declared as PRIVATE and
may not be accessed. Any expansions are incorporated in two passes
accompanied by the sorting of address slots.

The "dos.library" is greatly expanded and, like many other modules,
programmed with the SAS C-compiler Version 5. Its base structure now
conforms to that of the other libraries. However, for compatibility
reasons, some addresses still exist as BCPL-pointers. New types of
DosPackets and new locks have been implemented. The process
structure has grown substantially, so that auto-creation, for example with
the popular "arp.library," results in a system crash.

The Workbench, which has changed in appearance and color, can now
be nearly any desired size, shade and resolution. Window frames and
gadgets adjust automatically to changes in resolution and fonts.
Workbench windows can be transferred to other screens. Screens, which
can consist of up to 16368*16384 pixels, are capable of new display
modes, overscan into the unseen border area, and several styles of
horizontal and vertical scrolling. All data necessary to duplicate a screen
can no longer be determined from the screen structure. Screen handling
is greatly improved and, even with SimpleRefresh windows, a message is
sent only when refresh is necessary. Different color borders indicate
which windows are active and special effects create a 3-dimensional
appearance. There are new IDCMP-flags for this, and both keyboard
flags now transmit raw data for special keys.

The Layer system is improved. SimpleRefresh layers are saved and
refreshed to the fullest possible extent. The routines FattenLayerlInfo,
ThinLayerInfo, and InitLayers should no longer be used; NewLayerInfo
accomplishes all these functions.

Computing of Copper lists has been optimized. The video-hardware does
not like programming errors, such as switching off the display mode in
mid-display. GetColorMap() must be used to manipulate ColorMap
structures, which have increased in size. Row/cols values in the GfxBase
no longer relate to the Workbench.

1. Kickstart 2.04

12

Although the font structures have a new format, the old one continues to
be supported. The system-area of "font" files has been changed.
Character set sizes that are not present are now simply calculated. The
topaz font is still in ROM, but now as a sans-serif variant for increased
legibility at high resolutions. Size and proportions of the system font can
be specified as desired.

Many CLI/Shell commands are stored in ROM, and several CLI/Shell
processes can run simultaneously. Windows are now equipped with
close gadgets that, when activated, cause an EOF code to be sent. The
missing cursor error in SuperBitmap Console windows has been
corrected.

The Audio device no longer is initialized until its first use, which can
result in errors because of insufficient memory. '

Several serial interfaces (expansion cards) are possible. However, this can
lead to problems with the adjustment of certain parameters through the
Serial device.

Trackdisk device buffers can be released, but a subsequent attempt to
use a buffer may result in an error if insufficient memory is available.

Both CIAB timers are now accessible.

The current maximum for chip RAM is 2 Meg. Fast RAM is configured
down from the upper boundary of memory (in full 32 bit addresses) and
can be as high as 8 Gigabytes. This configuration will make it easier for a
future release to break the 2 Meg chip RAM barrier, probably reaching
as high as 8 Meg.

The ECS has more hardware registers, which reside in between those
familiar to the previous system and can cause problems for programmers
of clockcycle-optimized programs. Some old registers contain important
new bits. The accubuffered truetime clock is not compatible with earlier
clock chips.

2.1 The Workbench

2. Using the Amiga 3000

We recommend working through the following exercises step by step.
While providing a quick overview of the use and capabilities of the
3000, a lot of important information is included that everyone will find
useful.

2.1 The Workbench

Since the SCSI hard disk comes factory-installed, a few seconds after
switching on the computer the graphical user interface, called the
Workbench, appears. If you're already familiar with previous versions of
the Amiga, you'll immediately notice some changes. The Workbench
window is no longer just a background screen. It has acquired a border
with which it can be moved around, brought into the foreground or
reduced in size. There is even a close gadget (which should be used
carefully). Professional color selection and the appearance of
3-dimension are impressive enhancements that dress up the Workbench
window.

There is now just a single gadget for superimposing windows: the
back/front gadget. Click on it once and the screen or window is brought
into the foreground. A second click restores the object to the
background. Next to the back/front gadget, a window has a new gadget,
by which it can be toggled between two alternate sizes and positions.
This is referred to as the alternate gadget.

2.1.1 Starting AmigaOS 2.x

At this point some suggestions concerning the startup of the Workbench
may be helpful. Let's begin with the Startup-sequence script file in the S
directory. This file contains all the commands and parameters necessary
to start the system. Configuring the system to one's own wishes used to
require making various changes. Remember if a command results in
output to the Initial CLI window, the Workbench screen is opened and
the CLI window appears on it. This is not desired, since there is the
opening of windows on the Workbench screen before the screen itself is
activated. Here's why.

13

2. Using the Amiga 3000

2.1.2

14

When the LoadWB command wants to open the Workbench, the
"workbench.library" attempts to use the stored display mode for the
Workbench screen. If the screen is not yet present, there is no problem. If
it is, an attempt is made to close it and open a new one in the desired
mode. This fails when the screen to be closed contains a CLI or user
window.

The result is a system requester requesting that all windows be closed.
Let's assume a user is working with the A2024 monitor, which requires a
special driver. Suddenly nothing can be seen on the screen, and without
an understanding of the system, nothing can be done to solve this
problem.

Several things could be done to prevent this situation from occurring.
First of all, only those commands that must be executed before the
activation of the Workbench should precede the LoadWB command.
Secondly, the "Command >NIL: parameter" format should be used to null
their output.

Another possibility is offered through the directory WbStartup. All
programs (i.e., icons that are located here) are started after activation of
the Workbench, just as if they were selected with a double-click of the
left mouse button. For example, if you will be working for an extended
amount of time with a particular word processing task, you can simply
place the icon of the word processor, or the text itself, in this directory.
Startup-sequence complications with autostarting programs can be
avoided by simply modlfymg the placement of icons.

The Workbench Menus

Your acquaintance with the Amiga will require you to be familiar with
the Workbench menu functions. Even CLI enthusiasts should make
thorough use of them, since now the CLI can be entirely replaced by the
graphical user interface. Before we proceed with the individual items, we
should mention one more innovation regarding the selection of icons. If
you press the left mouse button and hold it down while moving the
mouse, a rectangular box appears on the Workbench or in a Workbench
window. When the left mouse button is released, all the icons within the
box are selected, a better procedure than multiple selections using the

(hit) key.

2.1 The Workbench

The "Workbench” menu contains items that are independent of file or
directory selections:

Backdrop

This item is used to manipulate the Workbench window.
Selecting it removes the border, enlarges the window to
the full screen size and places it behind all other
windows. The former condition is restored when the
item is selected again.

Execute Command

Redraw All

Update All

Last Message

About

Quit

Causes a CLI/Shell command to be executed. A
requester appears in which a command can be entered
the same as in the Shell. A new window is opened for
resulting output and can again be closed with the use of
a close gadget.

If programs have cluttered or disrupted the workbench
screen, you can use this item to restore all windows and
icons to their original condition.

If you are working with the Workbench and the Shell,
you can use this item to show changes you have made
to directories with the Shell. It updates Workbench
memory and redraws the screen to reflect the current
status.

The last message to appear on the title bar is
redisplayed.

Displays a requester showing the version numbers of
the operating system and Workbench you are using.
This also shows the copyright notice.

This is the same as clicking on the close gadget of the
Workbench. If the Workbench is not blocked by any
program windows, you can close it after confirming
your decision in a requester. This frees up memory for
processes such as graphics programs that may have
large memory requirements.

15

2. Using the Amiga 3000

16

The "Window" menu contains items that refer to directories and drives.
They affect only the active window:

New Drawer

Open Parent

Close

Update

Select Contents

Clean Up

Snapshot

Show

View By

Makes a new directory and provides an icon for it. The
name of the directory can be entered in a requester.

When one directory is located within another directory,
which in turn is located within a third, it may be
advisable to close the respective parent directories.
Selecting this item will again open the directory in
which the current window's directory is located.

Closes the current window (directory).

In earlier versions, directory changes that were not
applied to the Workbench had to be remade with each
close and subsequent reopen of the directory in order to
be reflected on the screen. This item provides a simple
way of keeping a window's information current.

If you want to work with all entries of a directory, the
entire contents can be selected with this item.

Tidies up a window by reorganizing its icons according
to the window's size.

Stores the size and position of the current window
(submenu item "Window") and the order of all the icons
it contains (submenu item "All").

Determines what will be shown in the current window.
The submenu item "Only Icons" is the default. This
shows only those objects that have an icon file (".info"
file). All other entries are also shown when you select
the "All Files" submenu item. For example, this enables
you to display CLI commands and double-click to start
them, whereby a requester appears permitting the input
of parameters.

The preset submenu item "Icon" shows the directory
contents by icons and, underneath them, the

2.1 The Workbench

corresponding filenames. All other options produce a
scrollable list of entries without icons. The entries that
appear in this list are determined by the "Show" criteria.
Their sequence is determined by the three remaining
"View By" submenu items. Entries can be sorted by
"Name" of file, by "Size", or by "Date" created. Files can
be selected from these lists as they can from the display
of icons.

The "Icon" menu contains functions relating to icons. The upper portion
consists of general activities and the lower portion consists of special

icons only.

Open

Copy
Rename

Information

Snapshot

Unsnapshot

Leave Out

Put Away

Delete

Opens the selected icon, which is the same as double-
clicking on the icon with the mouse.

Makes a copy of a file, directory or diskette.
Changes the name of an object.

Opens a large requester in which all data about an icon
can be displayed and manipulated.

Saves the position of the selected icon.

Deletes position information of icons saved in
"Snapshot”.

One of the most convenient features of the new
Workbench. Selected icons are saved in the main
Workbench window. This makes it possible to select the
icon again without reopening its directory. The Leave
Out configuration is saved and remains in effect even
after resetting or turning off the computer.

Removes icons placed in the Workbench window by
Leave Out and displays them again with their respective
directories.

Deletes all selected icons and their files or directories
after confirmation using a requester.

17

2. Using the Amiga 3000

2.1.3

18

Format Disk Formats a diskette. The disk is initialized and given the
name "Empty". The diskette icon is then displayed.

Empty Trash ~ Deletes the contents of the Trashcan directory.

The "Tools" menu normally contains only the "ResetWB" function,
which returns the entire Workbench to its initial status. This menu was
intended for user-defined items. Unfortunately, no utility for
incorporating programs into menus is supplied, although the public-
domain "ToolManager" (Fish 476) can be used to accomplish this.

The Workbench Programs

Now let's look at the programs that Workbench Version 37 Revision 64
contains. We begin with the "Prefs" directory, since you will find all the
programs needed to tailor the system to your needs:

Input This program establishes all the time constants for
interrogating the keyboard and the mouse. With the
"Mouse Speed" slider, you control how much the mouse
must be moved to cause a corresponding movement of
the mouse pointer. A low value indicates that a small
movement of the mouse will change the position of the
pointer. If this is not adequate, you can click on the
"Acceleration” box. A check mark appears in the box
when Acceleration is selected. Now the slightest
movement of the mouse will cause a large displacement
of the pointer. You may have to go back and adjust the
Mouse Speed after selecting Acceleration.

The "Double-Click" slider sets the maximum time span
that can separate two clicks before they will be
recognized separately rather than as a double-click.
You can try this out with the "Test" button. If a double-
click is recognized, this is indicated in the "Show" box.

"Key Repeat Delay" sets the time after which a key that
is struck and not released will be considered struck
again.

2.1 The Workbench

IControl

Palette

WBpattern

"Key Repeat Rate" is the speed at which a letter will
appear on the screen as repeated input once the Key
Repeat Delay is reached and the key continues to be
held down. This can be checked in the Key Repeat Test
field.

IControl establishes keyboard commands that take the
place of complicated mouse operations. "Verify
Timeout" is the timespan that keys must be pressed to
activate the corresponding action. "Command Keys" are
letter keys that are pressed in combination with the left
<Amiga> key to perform certain actions. For example, to
move the Workbench into the foreground and the front
screen into the background, or to substitute for the
"OK" and "Cancel" gadgets of some system requesters.
IControl allows you to specify the letters to be used for
these actions.

"Mouse Screen Drag" keys are used with the mouse to
drag the screen both horizontally and vertically. With
IControl you can specify the keys ((Shift), ,(Aan)
and/or <Amiga>) that must be held down along with the
left mouse button for this operation. When such keys
are paired on the keyboard, the left one should be used.

"Avoid flicker" provides for flicker-free text in special
display modes. "Preserve colors" ensures stability and
fidelity of color. With "Screen menu snap”, menus will
always be shown in the visible area of the screen, and
with "Text gadget filter", control characters are filtered
out of text.

This allows the colors of the Workbench to be changed.
The currently selected color appears in a box to the left
of the palette. Below it the red, green and blue intensity
of the selected color can be adjusted.

The main Workbench window and its directory
windows are displayed with a background pattern. The
editor WBpattern lets you choose these patterns from
eight preset selections.

19

2. Using the Amiga 3000

Font

Pointer

ScreenMode

OverScan

Printer

PrinterGfx

20

Allows selection of the character sets to be used for the
text underneath icons, for that displayed in the title bars
of screens and windows, and for the default text of the
system. You can also specify whether or not the
background field behind text characters should be
colored. Color selections for text and field are made
separately.

With this preference you can change the appearance of
the mouse pointer and adjust the "hot spot” (i.e., the
portion of the pointer capable of activating an object).

Here the resolution and display mode of the Workbench
is established. The Workbench can be made larger than
the visible area of the screen. You can specify whether
or not the screen display should "Autoscroll" when the
selected "Width" and "Height" values exceed the visible
screen dimensions. The number of possible colors can
also be determined according to screen mode.

If you have a monitor on which the border area around
the Workbench is visible, then you can also enlarge the
Workbench. With "Edit Text Overscan” and "Edit
Standard Overscan" you can inform the system of the
normal visible area of your monitor and the desired
overscan display size. A program can then open a
screen that extends beyond the normal text area, so that
no border is visible.

This program allows you to tell the system what type of
printer is connected to your computer, through which
port it is connected, what kind of paper you are using,
and various preferences regarding text output.

Here you can define several specifications for the
output of graphics to the printer. Next to the "Color
Correct" area, you can choose the "Smoothing" option
to round sharp edges and offset or centering options.
Other specifications include "Dithering," "Scaling,"
"Image," "Aspect" and "Shade".

2.1 The Workbench

Serial

Time

This program sets the data transfer parameters for a

- modem connected to the serial port. The maximum rate

supported is 31250 baud.

This program establishes the date and time and sets the
accubuffered truetime clock accordingly.

The "System" directory contains programs that are used primarily by the
operating system. The exceptions to this rule are "SetMap,” by which
you can change the assigned keyboard layout, "NoFastMem," which
disables the Fast RAM area, and "FixFonts,” which should always be run
following changes in the Fonts directory.

In the "Utilities" directory there are a few small programs that perform

helpful tasks:

Clock

More

Display

Say

Displays the time in analog or digital format and has an
alarm function.

This is a program for reading text files. You can scan
through the text within a window one page or line at a
time.

Graphics in IFF format and even slideshows can be
displayed with this program.

A simple program to convert typed text into computer-
synthesized speech.

Exchange and Commodities

This is the main program of an assortment of small
utilities. It controls the following programs: "Autopoint”
automatically activates the window over which the
mouse pointer is located, "Blanker" blanks out the
screen when no input has been received for a specified
period of time, "FKey" assigns function keys, "IHelp"
allows keyboard commands to replace many mouse
operations, and "NoCapsLock" forces software
disabling of the key.

21

2. Using the Amiga 3000

2.2 The Command Line Interpreter

2.2.1

2.2.2

22

The Shell is a window in which you can enter command lines to control
the Amiga. A command line consists of a program name and, in some
cases, additional parameters.

AmigaOS 2.x Resident Commands

Unlike in previous versions of the Amiga operating system, under
AmigaOS 2.x many programs are stored in ROM. This allows faster
processing and trouble-free manipulation of system directories. Some
programs stored in ROM are also kept in the current system directory,
because programs written for earlier versions expect them there and
require them for execution.

The following commands are implemented in ROM:

Alias Get Set
Ask Getenv Setenv
CD If Skip
Echo Lab Stack
Else NewCLI Unalias
EndCLI NewShell Unset
EndIf Path Unsetenv
EndShell Prompt Why
EndSkip Quit .bra
Failat Resident ket
Fault Run key

Using the CLI

The Shell or CLI provides many features to help you edit the current
command line:

The left and right cursor control keys move the cursor one character
position in the indicated direction. When used in conjunction with the

key, they move the cursor to the beginning or end of the line
respectively.

2.2 The Command Line Interpreter

The key erases the character to the left of the cursor. The
key erases the character at the cursor position.

(H] This corresponds to (Backspace), (Ctri)+(M) to , and
to Help.

This erases the previous word.

(ctri] This erases the entire window (works only in
combination with (Enter)).

This erases the entire command line.

This erases the line from the beginning up to the cursor
position.

This erases the line from the cursor position to the end.

EROOEE

This aborts an executing program, command file, etc.

Previously entered commands are stored. You can scan up or down
through this list with the cursor control keys. There is a search function
for quickly locating a particular command within a list. Simply type the
first few characters of the command you wish to locate. Then press the
up or down cursor control key together with the (Shit) key to begin
searching in the desired direction for the first line that begins with the
typed sequence.

In the Shell window, blocks of text can be marked with the mouse and
with <rt-Amiga> +(C) as in a word processor. The block can be copied to
another window by pressing <rt-Amiga>+Y) after activating the
window that is to receive the text.

If you enter a command in a Shell window that is too small to hold the

entire output, the initial lines will scroll off the top of the window and
disappear from view. Enlarging the window will cause them to reappear.

23

3.1 The Libraries and their Functions

3. Programming with AmigaOS 2.x

The basic concept of the operating system has been changed
considerably from the old 1.x versions. In just about every area, the
programmer is given opportunities to query, influence, or completely
determine system processes. The operating system has become much
more open, and offers good potential for multi-user systems. Many
system routines were re-programmed with new capabilities. In order to
maintain compatibility with old software, many of the calling
conventions from the 1.x versions were implemented, and sometimes the
function results were partially modified. New libraries, resources, and
devices were added. The familiar system modules were expanded to the
point that they can hardly be recognized anymore. All in all, AmigaOS
2.x is a completely new operating system that is compatible with the old
versions.

Normal versions of AmigaOS 2.x can only work on a machine that has
the same hardware configuration as the Amiga 3000 (68030, FPU,
Commodore clock chip, HR chip set, etc.). This is because the reset
routine starts out with 68030 commands without even querying the CPU
type. Some test versions can also be installed on the 16 bit machines, but
there is a lot less room in the 512K ROM, so many features are only
partially functional or are missing altogether.

3.1 The Libraries and their Functions

A lot of information is required to produce a good program. All the data
on AmigaOS 2.x would fill thousands of pages and extend far beyond
what we could hope to effectively cover in this book. Therefore, we had
to limit ourselves to a selected portion. We chose to focus on the library
functions in this book. Library routines provide the building blocks and
hand tools for creating more complex application programs, such as a
word processor. Because there are so many functions to cover, we also
chose to do without an introductory overview for beginners. For
example, there are many other good books with this kind of information,
such as "The Amiga System Programmers Guide".

A brief glance at the system routines will reveal the existence of two new
structures = Tagltem fields and Hooks. Tagltem fields are variable in size

25

3. Programming with AmigaOS 2.x

3.1.1

26

and structure. They are primarily used to pass parameters. A Tag field can
belong to several memory blocks. It consists of several Tagltems. A
Tagltem consists of two 32 bit values (Longs). The first value is a code
for interpreting the meaning of the second value, which is the data Long.
Depending on the code, the data can be an address, a BCPL pointer,
Words, Bytes, Flags, or combinations thereof. Tagltems are most often
used to change system routine default settings. This could be for a small
change, such as setting the ECS presentation mode for a new screen, or
for changes to the basic system configuration that require large numbers
of parameters. Tagltem fields are required in order to use certain 0S-2.04
features.

Another important new structure is the Hook. Hooks give the
programmer deep access into the system. In general, Hooks are structures
with addresses to routines of their own. These private routines are
associated with certain events or results. When a certain event or result is
encountered, the system jumps to the corresponding routine. Hooks can
be used to expand upon or entirely replace system functions.

And now, the description of each library in alphabetical order.

The ASL Library

The ASL library provides the easiest way for a programmer to create file
requester boxes. Special functions can be applied to customize each
requester box.

This library is found under the name "asl.library". All functions of this
library, expect the base address _AslBase, is a parameter in the A6
register.

Functions of the ASL Library

1. Standard File Requester Box 2. Complex File Requester Boxes
AllocFileRequest AllocAsIRequest
FreeFileRequest FreeAslRequest

RequestFile AslRequest

3.1 The Libraries and their Functions

Description of Functions

1. Standard File Requester Box

[AllocFileRequest Get FileRequester structure]
Call: request = AllocFileRequest ()

Function:

Arguments:

Result:

Warning:

See also:

DO -30(a6)
STRUCT FileRequester *request;

Obtains and initializes all data structures required for a
RequestFile() function call.

None. The initialization is automatically executed for the
standard file requester. If you want to use special functions,
you must obtain the data structures with
AllocAslRequest().

Address of a FileRequester structure which is passed to the
RequestFile() function. You can read any data from the
normally accessible parts of the FileRequester structure. In
the case of a system error, such as no memory, the value 0 is
returned.

FileRequester structures passed to RequestFile() or
AslRequest must be obtained either with
AllocFileRequest() or AllocAslRequest(). Reserving
memory yourself or directly manipulating the entries in the
structure will crash the system.

RequestFile(), FreeFileRequest(), FreeAslRequest(),
AslRequest()

[FreeFileRequest Free file requester]

Call:

FreeFileRequest (request)
-36(ab) A0

STRUCT FileRequester *request;

27

3. Programming with AmigaOS 2.x

Function:

Arguments:

Result:

See also:

This function is identical to Free AslRequest(). It's used to
free a data structure allocated with AllocFileRequest.

request Address of a FileRequester structure that was
obtained with AllocFileRequest().

None.

FreeAslRequest()

[RequestFile

Display file requester and evaluate user input|

Call:

Function:

Arguments:

Result:

See also:

result = RequestFile(request)
DO -42 (ahb) AQ

BOOL result;
STRUCT FileRequester *request;

A file requester box is displayed, the user's input is
processed, and the requested file is returned.

request FileRequester structure with address obtained
via AllocFileRequest().

result 0 means Cancel was selected or a system error
occurred. The exact input data can be read
from the FileRequester structure.

AllocFuleRequést(), FreeFileRequest(), AslRequest()

2. Complex Requester Boxes

|AllocAsIRequest Obtain structures for a requester box|

Call:

28

request = AllocAslRequest(type, ptags)
DO -48(ab) DO A0

APTR request;
ulong type:;
STRUCT Tagltem *ptags;

3.1 The Libraries and their Functions

Function: Obtains and initializes the data structures for a requester

N - box.

Arguments: type Type of requester box, ASL_FileRequest for a
file requester or ASL"FontRequest for a font
requester. The type of requester box is
determined by AllocAslRequest function on
the basis of the following values:
ASL_FileRequest = 0
ASL_FontRequest = 1

ptags Address of a Tagltem field used to pass special
functions and parameters.

Result: Address of an initialized data structure (FileRequester or

FontRequester). A value of 0 is returned in case of an error.
The address of the data structure is passed to the function
AslRequest() and freed with FreeAsIRequest().

See also: AslRequest(), FreeAisequest()

|FreeAslRequest ' Free requester box data structures|

Call: FreeAslRequest (request)

Function:

Arguments:

Result:

See also:

-54(a6) AQ

APTR request;

Frees the memory occupied by a FileRequester or
FontRequester structure. The address must have been

previously obtained with AllocAslRequest() or
AllocFileRequest().

request Address of a data structure obtained via
AllocAslRequest() or AllocFileRequest().

None.

AllocAslIRequest(), AsIRequest(), AllocFileRequest()

29

3. Programming with AmigaOS 2.x

30

|AsIRequest Display and query requester box|
Call: result = AslRequest(reguest, ptags)
DO -60 (ab) AOQ Al

BOOL result;
APTR request;
STRUCT Tagltem *ptags;

Function: Displays a requester box and evaluates the input of the
user. The type of box, special functions, and results are
dependent upon the data structure and definitions passed
to the Tagltem field.

Tagltems

ASL_Hail (STRPTR) Title text of the requester.

ASL_Window (struct Window *} Window in which the requester will appear.
ASL_LeftEdge (WORD) Left edge of the query window.
ASL_TopEdge (WORD) Top edge of the query window.
ASL_Width (WORD) Width of the query window.

ASL_Height (WORD) Height of the query window.
ASL_HookFunc (APTR) Address of an implemented function.
ASL_File (STRPTR) Default filename of a FileRequester.
ASL_Dir (STRPTR) Default path of a FileRequester.

ASL_FontName (STRPTR) Default font name of a FontRequester.
ASL_FontHeight (UWORD) Default font height.

ASL_FontStyles (UBYTE) Default font style.

ASL_FontFlags (UBYTE) Special flags for a FontRequester.
ASL_FrontPen (BYTE) Foreground color of a FontRequester.
ASL_BackPen (BYTE) Background color of a FontRequester.

ASL_MinHeight (UWORD) Minimum height of font.
ASL_MaxHeight (UWORD) Maximum height of font.

ASL_OKText (STRPTR) New text for the OK button (up to 6 char.).
ASL_CancelText (STRPTR) Same for the CANCEL button.
ASL_FuncFlags (ULONG) Function Flags for the requester.
ASL_ExtFlags1 (ULONG) Additional Flags.
Arguments: request Data structure obtained with AllocAslIRequest()
or AllocFileRequest().
ptags Address of a Tagltem field containing changes

Warning:

to the default values.

The only valid way to change the data structure entries is
with Tagltems.

3.1 The Libraries and their Functions

Dec

w0 » O

12
16
17
18
22
24
26
28
30
32
36
40
44
48
52

Hex

$00
$04
508
$0cC
510
$11
$12
$16
$18
$1a
sic
$1E
$20
$24
$28
s2¢
$30
$34

Result:

See also:

A result of 0 indicates CANCEL was pressed or a system
error occurred. The exact user input can be taken from the
readable parts of the data structure.

AllocAslRequest(), FreeAsIRequest()

Data Structures And Values:

STRUCTURE FileRequestr, 0

CPTR
CPTR
CPTR
CPTR
UBYTE
UBYTE
APTR
WORD
WORD
WORD
WORD
WORD
LONG
APTR
APTR
APTR
APTR
CPTR"

rf_ Reservedl
rf_File
rf_Dir
rf_Reserved2
rf_Reserved3
rf_Reserved4
rf_Reserved5
rf_LeftEdge
rf_TopEdge
rf_width
rf_Height
rf_ Reserved6
rf_NumArgs
rf_ArgList
rf_UserData
rf_Reserved?
rf_ Reserved8
rf_Pad

; *filename (FCHARS+1)
; *directory (DSIZE+1l)

Interactive functions associated with a requester must look like this:

rf_Function(Mask, Object ,AslRequester)
4 (A7) 8(Aa7)

ULONG

CPTR
CPTR

RFB_DOWILDFUNC
RFF_DOWILDFUNC

Mask;

RFB_DOMSGFUNC

*Object;

12 (A7)

*Request;

The value of Mask is determined by passing a copy of
ASL_FunctionFlags, which is generated for every requester. Object
contains the address of data. The following bits (or Flags) are defined for
a FileRequester:

= 7 ;call with AnchorPath and a name,
= $80 ; (FileRequester)
= 6 ;transmit all IDCMP events

31

3. Programming with AmigaOS 2 .x

RFF_DOMSGFUNC = $40 ;that are not for the FileRequester
RFB_DOCOLOR = 5 ;bit for SAVE operations
RFF_DOCOLOR = $20 ;
RFB_NEWIDCMP = 4 ;use own IDCMP port
RFF_NEWIDCMP = $10 ;
RFB_MULTISELECT = 3 ;notify of multiple selection
RFF_MULTISELECT = §8 ;
RFB_PATGAD = 0 ;query a Pattern gadget
RFF_PATGAD = $1 ;
Dec Hex
STRUCTURE FontRequester, 0

0 $00 CPTR fo_Reservedl

4 $04 CPTR fo_Reserved2

8 $08 APTR fo_Name ;result string
12 $0C USHORT fo_YSize

14 SOE UBYTE fo_Style

15 $O0F UBYTE fo_Flags

16 $10 UBYTE fo_FrontPen

17 $11 UBYTE fo_BackPen

18 $12 UBYTE fo_DrawMode

19 $13 UBYTE fo_Reserved3

20 $14 APTR fo_UserData

24 $18 SHORT fo_LeftEdge

26 $1A SHORT fo_TopEdge

28 $1C SHORT fo_Width

30 $1E SHORT fo_Height

FONB_FrontColor
FONF_FrontColor
FONB_BackColor
FONF_BackColor
FONB_Styles
FONF_Styles
FONB_DrawMode
FONF_DrawMode
FONB_FixedWidth
FONF_Fixedwidth
FONB_NewIDCMP
FONF_NewIDCMP
FONB_DoMsgFunc
FONF_DoMsgFunc
FONB_DoWildFunc

FONF_DoWildFunc =

32

ASL_FuncFlags for FontRequester:

= 0
= 1
= 82
= 2
= %4
= 3

;query foreground color
;jquery background color
iquery font style

’

;query draw mode

allow only fixed width fonts

use own IDCM port

capture only events for the requester

call with every TextAttr structure

Se Se Ne Ne Ne se N0 s s

3.1 The Libraries and their Functions

ASL_Dummy
ASL_Hail
ASL_Window
ASL_LeftEdge
ASIL_TopEdge
ASL_Width
ASI,_Height
ASL_HookFunc
ASL_File
ASL_Dir
ASL_Pattern
ASL_FontName

ASI,_FontHeight
ASL_FontStyles

ASL_FontFlags
ASL_FontPen
ASL_BackPen
ASI,_MinHeight
ASL_MaxHeight
ASL_OKText

ASI,_CancelText

ASL_FuncFlags
ASL_ModeList

Values for the Tagltem field used with AslRequest():

TAG_USER+$80000

ASL_Dummy+1
ASL_Dummy+2
ASL_Dummy+3
ASL_Dummy+4
ASL_Durmy+5
ASL_Durmmy+6
ASL_Dummy +7
ASL_Dummy+8
ASL_Dummy+9

ASL_Dummy+10 ;FileRequester only
ASL_Dummy+10 ;FontRequester only

ASL_Dummy+11
ASL_Dummy+12
ASL_Dummy+13
ASL_Dummy+14
ASL_Dummy+15
ASL_Dummy+16
ASL_Dummy+17
ASL_Dummy+18
ASL_Dummy+19
ASL_Dummy+20
ASL_Dummy+21

Example

Let's take a look at the creation of a simple FileRequester and how to
query its result. It's rather curious that a simple routine like this does not

already exist as a function:

*k Input A6=_AslBase * ¥
*x AO0=Buffer (FCHARS+DSIZE+1l) *x
** Output: DO=Buffer r NULL **
** A6=_AslBase *x
** AO0=Buffer *x
**—-_-_-“"—'—___—-""'_—_—--:::::::_---__—___——___=========* *

_File selection

clr.b (a0)

movem.l d0/a0, -(a7)

jsr _LVOAllocFileRequest (a6)

move.l do0, (a7)

;0 bytes in buffer
;result+buffer
;get FileRequestr
;save result

33

3. Programming with AmigaOS 2.x

beq.s .Error

movea.l d0,a0

jsr _LVORequestFile(a6)
movem.l (a7),a0-al
move.l a0,dl

move.l do0, (a7)

beq.s .Cancel
move.l al, (a7)
movea.l rf_Dir(a0),al
.CopyDir

move.b (al0)+, (al)+
bne.s .CopyDir
subg.l #1,al

cmpi.b #':',-1(al)
beq.s .Okay

cmpi.b #'/',-1(al)
beq.s .Okay

move.b #'/', (al)+
.Okay

movea.l dl,a0
movea.l rf_File(a0),al

.CopyFile

move.b (al0)+, (al)+
bne.s .CopyFile
.Cancel

movea.l dl,a0

;on error ->

;move FileRequestr to a0
;jdisplay
;FileRequestr+buffer
;save FileRequestr

;test Okay/Cancel

jon error ->
;jresult=buffer
;directory string

i copy

;return empty byte
;check ending

;if drive ->

;check ending

;if dir ->

;insert separator byte

;FileRequestr
;filename

;append

i

jsr _LVOFreeFileRequest (a6) ;free FileRequestr
.Error
movem.l (a7)+,d0/a0 ;clear stack
tst.1l 4o iset CCR
rts
This routine can be easily modified to
own needs.
*¥—-=--==z=z===z=z=====z========z=-=-============z=============z===%%
*x File selection with a modified requester **
KK e e e e e e e e o e e e e e o e o et o e e e e e e e e e * Kk
*x Input A6=_AslBase **
*x Al=Buffer (FCHARS+DSIZE+1) *x
*x A0=Tagltems *x
** Output DO=Buffer or NULL **
** A6=_AslBase **
** AO0=Buffer *
KK e e m———— —

_File selection

34

create requesters to serve your

3.1 The Libraries and their Functions

clr.b (al)

movem.l d0/al, -(a7)

moveq #ASL_FileRequest, d0
jsr _LVOAllocAslReqguest (a6)
move.l d0, (a7)

beq.s .Error

movea.l d0,a0

jsr _LVORequestFile (a6)
movem.l (a7),al0-al

move.l a0,dl

move.l do0, (a7)

beq.s .Cancel

move.l al, (a7)

movea.l rf_Dir(a0),al

.CopyDir

move.b (al0)+, (al)+
bne.s .CopyDir
subg.l #1,al
cmpi.b #':',-1(al)

beq.s .Okay

cpi.b #'/',-1(al)
beq.s .Okay

move.b #'/',(al)+
.Okay

movea.l dl, a0

movea.l rf_File(a0),al
.CopyFile

move.b (al0)+, (al)+
bne.s .CopyFile

;0 bytes in buffer
;result+buffer

;Tags in a0

;get FileRequestr
;save result

;on error ->

;move FileRequestr to a0
;display
;FileRequestr+buffer
;save FileRequestr
;test Okay/Cancel
;on error ->
;result=buffer
;directory string

icopy

;return empty byte

;check ending

;if drive ->

;check ending

;1if dir ->

;else insert separator byte

;FileRequestr
;filename

;append
;free FileRequestr

;clear stack
;set CCR

The address of a Tagltem field is expected as an additional parameter.
Here is an example of how this can look:

.Cancel

movea.l dl,a0

jsr _LVOFreeFileRequest (a6)
.Error

movem.l (a7)+,d0/a0

tst.1l do

rts
_FileReqTags

dc.l ASL_Hail,_Titletext
dc.l ASL_Dir,_DirName

dc.l ASL_OKText, _Okay

dc.l ASL_CancelText,_Cancel
dc.l TAG_DONE

;title text for the requester.
;path

;OK button

;CANCEL button.

;end of field

35

3. Programming with AmigaOS 2 .x

_Titletext dc

_Okay
_Cancel
_DirName

3.1.2

36

de
dc
dc

.b
.b
.b
.b

‘Load file',0
‘Load', 0
‘Return', 0
'Work:',0

The Commodities Library

The utilities found in the Commodities directory of the Workbench are
used to manipulate input queries for the A3000. These routines have
been gathered into a library. This allows you to add your own
expansions to the Commodities utilities.

The name "Commodities Library” is often shortened to Cx library. The
base address is expected in register A6 with all function calls.

Functions of the Commodities Library

1. Object Functions

4. General Messages

CreateCxObj CxMsgType
CxBroker CxMsgData
ActivateCxObj CxMsgID
DeleteCxObj

DeleteCxObjAll 5. Message Paths
CxObjType .

CxObjError DivertCxMsg
ClearCxObjError RouteCxMsg
SethObjPri DlsposerMsg

2. Object Linking

6. InputEvent Processing

AttachCxObj InvertKeyMap

EnqueueCxObj AddIEvents

g:;r:)s:g:ébj 7. Control Program Functions
; . CopyBrokerList

3. Special Functions FreeBrokerList)

FindBroker BrokerCommand

SetTranslate

SetFilter

SetFilterIX

ParseIX

3.1 The Libraries and their Functions

8. Standard Macros CxSignal

) CxTranslate
CxFilter CxDebug
CxTypeFilter CxCustom
CxSender

Description of Functions

1. Object Functions

|CreateCxObj Create Commodities object]

Call:

co = CreateCxObj(type, argl, arg2)
DO -30(A6) DO A0 Al

STRUCT CxObj *co
ULONG type
LONG argl
LONG arg2

Function: Creates a Commodities of type 'type'.

Parameters: type Object type
args Object arguments

Result: Address of a CxObj structure, a type of handle for Cx
objects. A result of O indicates a system error, such as lack
of memory.

See also: CxObjError(), CxFilter(), CxTypeFilter(), CxSender(),
CxSignal(), CxTranslate(), CxDebug(), CxCustom(),
CxBroker()

[CxBroker Create CxObj of type broker|

Call: broker = CxBroker (nb, error);

DO -36(aA6) A0 DO
STRUCT CxObj *broker

STRUCT NewBroker *nb
LONG *error

37

3. Programming with AmigaOS 2.x

Dec Hex
0 S0
1 %1
2 82
6 $6
10 $A
14 S$E

16 $10
18 $12
19 $13
20 514
24 $18

38

STRUCTURE NewBroker, 0

BYTE
BYTE
APTR
APTR
APTR
SHORT

WORD
BYTE
BYTE
APTR
WORD

Function: Creates a broker according to the information passed in the
NewBroker structure. As opposed to a normal CxObj, a
broker is inactive when created.

Parameters: nb NewBroker structure used to define the broker.

error Address of error code or 0.

nb_Version ;version 5

nb_Pad

nb_Name ;Broker name

nb_Title ;strings, description of
nb_Descr ;the application

nb_Unique ;what happens with a Broker of
;the same name

nb_Flags

nb_Pri ;priority in the object list
nb_Pad2

nb_Port ;MsgPort

nb_ReservedChannel

Result:

See also:

Address of a CxObj structure, or 0 in the case of an error.

If you specify an address in error, the following codes will
be used at this address:

CBERR_OK No error, broker was created.

CBERR_SYSERR
System error, such as lack of memory.

CBERR_DUP
Duplicate definition with this name.

CBERR_VERSION
Unknown version number.

Brokers and Application Sub-Trees (in the Reference
Manual).

3.1 The Libraries and their Functions

[ActivateCxObj Activate object functions|
Call: previous = ActivateCxObj(co, true);
DO -42(A6) A0 DO

STRUCT CxObj *co;
BOOL true;

Function: Every Commodities object can be activated and
deactivated. If it's active, it executes a specific operation
when a Commodities message is received. This function is
used to activate and deactivate objects.

Parameters: co CxObj structure of the object whose activation
you want to control.

true Boolean argument. A value of O indicates
inactivation.
Result: previous Previous status

See also: CxBroker()

|DeleteCxObj Delete Commodities object]

Call: DeleteCxObj (co) ;
-48 (A6) A0

STRUCT CxObj *co;

Function: Deletes a selected Commodities object. If this object is part
of alist, it's also removed from the list.

If the object has some other underlying substructure(s) in
the system hierarchy, then DeleteCxObjAll() must be used.

Parameters: co CxObj
Result: None. Invalid parameter may cause system crash.

See also: exec.library/Remove(), DeleteCxObjAll()

39

3. Programming with AmigaOS 2.x

40

DeleteCxObjAll
Delete Commodities object and all underlying substructures

Call: DeleteCxObjAll (co) ;
-54 (ab) a0
STRUCT CxObj *co;

Function: Deletes a selected Commodities object. If the object is part
of a list, it's also removed from the list.

If the object has some other underlying substructure(s) in
the system hierarchy, they are also deleted.

Parameters: co CxObj structure of any type.

Result: None. Improper use of this function will crash the system.

See also: exec.library/Remove(), DeleteCxObj()

|CxObjType Get object type]
Call: type = CxObjType (co);

DO -60(Aa6) A0

ULONG type

STRUCT CxObj *co;

Function: Returns the object type for a selected Commodities object.
The CxObj must be known, but you will normally only
have this information for your own objects. That makes this
function rather meaningless.

Parameters: co CxObj structure

Result: Object type. If you pass the value O as the parameter, the
result is type CX_INVALID. This function only reads a data
structure. If you enter the wrong parameter value, the result
will be meaningless.

See also: CreateCxObj(), CxBroker()

3.1 The Libraries and their Functions

[CxObjError Get error code|

Call:

error = CxObjError (co);
DO -66(A6) X0}

LONG error
STRUCT CxObj *co;

Function: When a function fails, the cause of the error is encoded in
various different bits. CxObjError() gives you access to
read these bits. '

Parameters: co CxObj structure

Result: A longword where the set bits have the following
meanings:

COERR_ISNULL
A value of 0 was passed for CxOb;j.
COERR_NULLATTACH
Attempt to enter a non-existent object in a
Commodities list.
COERR_BADFILTER
Bad filter string.
COERR_BADTYPE
A type-specific function was attempted on
an object of the wrong type.

See also: SetFilter(), SetFilterIX(), AttachCxObj(), ActivateCxObj(),
ClearCxObjError()

[ClearCxObjError Delete error number of a Cx object]

Call: ClearCxObjError (co) ;

-72(A6) A0
STRUCT CxObj *co;
Function: Deletes the error code of a Commodities object.

41

3. Programming with AmigaOS 2.x

42

Parameters:
Result:

Warning:

co CxObj structure
None.
This routine may not be used with filter objects if the error

bit COERR_BADFILTER is set.

See also: CxObjError()
|SetCxObjPri Change priority of a Cx object]
Call: SetCxObjPri(co, pri)

-78 (A6) A0 DO

STRUCT CxObj *co;

LONG pri;

Function: This function sets the priority of an object that was entered
in a list with EnqueueCxObj(). The mechanism corresponds
to that of the Exec Lists System.

Parameters: co CxObj structure
pri Priority (127 through -128)

Result: None.

See also: ToolTypes and the Commodities Environment (in the

2. Object Linking

Reference Manual), EnqueueCxObj()

|AttachCxObj Attach object to a head object]

Call:

Function:

AttachCxObj (headobj, co);
-84 (A6) A0 Al

STRUCT CxObj *headobj
STRUCT CxObj *co

Attaches an object to the end of the list of another object.

3.1 The Libraries and their Functions

Parameters:

Result:

See also:

headobj ~ CxObj structure of the head object to which
this object will be attached.

co CxObj structure of the object to be attached as
a sub-object.

If co is O, then the error is noted in headobj. This can be
queried with CxObjError() and cleared with
ClearCxObjError().

exec.library/AddTail(), Objects and Messages (in the
Reference Manual), CxObjError(), ClearCxObjError()

|EnqueueCxObj Enter object as a sub-object|

Call:

Function:

Parameters:

Result:

See also:

EngueueCxObj (headobj, co);
-90(a6) AOQ Al

STRUCT CxObj *headobj
STRUCT CxObj *co

Enters an object in the list of another object according to
its priority.

headobj CxObj structure of the head object that
possesses the sub-object list.

co CxObj structure of the object to be entered in
the sub-object list.

If co has a value of 0, the error is noted in headobj. This can
be queried with CxObjError() and cleared with
ClearCxObjError().

exec.library/Enqueue(), SetCxObjPri(), Objects and
Messages (in the Reference Manual), CxObjError(),
ClearCxObjError()

|InsertCxObj

Insert an object in front of another object|

Call:

InsertCxObj (headobj, co, pred);
-96 (A6) A0 Al A2

43

3. Programming with AmigaOS 2.x

44

STRUCT CxObj *headobj
STRUCT CxObj *co
STRUCT CxObj *pred

Function: The object co is inserted as a sub-object, in the list of object
headobj, in front of sub-object pred.

Parameters: headobj ~ CxObj structure that possesses the sub-object

list.

co Object to be entered in the list.
pred Sub-object in front of which co is inserted.

Result: If co has a value of 0, the error is noted in headobj. This can
be queried with CxObjError() and cleared with
ClearCxObjError().

Warning: Since the Exec function Insert() needs the list header, the
headobj may not be 0 in cases where pred is 0.

See also: exec.library/Insert(), Objects and Messages (in the
Reference Manual), CxObjError(), ClearCxObjError()

|RemoveCxObj Remove an object from a list]

Call: RemoveCxObj (co) ;
-102(ab) A0
STRUCT CxObj *co

Function: Removes a Commodities object from a selected list. This
function will not crash if you pass it a value of O or the
value of an object not found in the list.

Parameters: co CxObj structure of the object to be removed.

Result: None.

Warning: This routine was not intended to remove a broker from the

master list.

3.1 The Libraries and their Functions

See also:

3. Special Functions

Objects and Messages (in the Reference Manual)

[FindBroker Find the broker with a given name|
Call: broker=FindBroker (name)

DO -108(a6) A0

STRUCT CxObj *broker
APTR name

Function: Returns the address of a broker when you know its name.
Parameters: name Address of the name string.
Result: broker CxObj structure of the broker or 0.
See also: exec.library/Find function
|SetTranslate Replace the translation list]
Call: Error = SetTranslate(translator, ie);
DO -114 (ab6) A0 Al
LONG Error
STRUCT CxObj *translator
STRUCT IX *ie
Function: Replaces the translation list of a translator object with the
list at address ie. If a value of O is passed for ie, then all
events are taken. The InputEvents are copied to
Commodities messages during the translation.
Parameters: translator CxObj structure of a translator object.
ie InputEvent list
Result: 0 if the function was successfully executed.
See also: Input.Device/InputEvent, CxTranslate()

45

3. Programming with AmigaOS 2.x

46

| SetFilter

Set pattern matching for a filter object]

Call:

SetFilter(filter, text);
-120(a6) A0 Al

STRUCT CxObj *filter
APTR text

Function: Sets the pattern matching according to the pattern string
passed in text.

Parameters: filter CxObj structure of a filter object.
text Pattern string

Result: None. A bad filter error can be queried with CxObjError()
(COERR_BADFILTER).

See also: SetFilterIX(), CxObjError(), Commodities Input Messages
and Filters, Input Expressions and Description Strings (in
the Reference Manual)

[SetFilterTX Set pattern matching of a filter object]

Call: error = SetFilterIX(filter, ix);

DO -126(A6) A0 Al
STRUCT CxObj *filter
STRUCT IX *ix

Function: Sets the pattern matching according to the contents of the
Input Expression structure.

Parameters: filter CxObj structure of a filter object.

ix Input Expression structure
Result: error 0 or error number
See also: SetFilter(), CxObjError(), Commodities Input Messages and

Filters, Input Expressions and Description Strings (in the
Reference Manual)

3.1 The Libraries and their Functions

|ParselX Translate string with IX structure|
Call: failurecode = ParseIX(string, ix);
DO -132(A6) AO Al

LONG failurecode
APTR string
STRUCT IX *ix

Function: Translates the parts of a given string to an IX structure.

Parameters: string The string to be processed.
ix Input Expression structure
Result: 0 if no error occurred.

See also: Input Expressions and Description Strings (in the
Reference Manual)

4. General Messages

[CxMsgType Query Commodities message type|
Call: type = CxMsgType (cxm)
DO -138(a6) A0

ULONG type
STRUCT CxMsg *cxm

Function: Returns the Commodities message type.
Parameters: cxm Address of a Commodities message.
Result: Message type, O in the case of an invalid message.

See also: CxMsgData(), CxMsgID()

[CxMsgData Obtain the data address for a CxMsg|
Call: contents = CxMsgData (cxm) ;
DO -144(a6) A0

47

3. Programming with AmigaOS 2.x

Function:

Parameters:
Result:

Warning:

See also:

APTR contents
STRUCT CxMsg *cxm

Most Commodities messages contain data, for example an
InputEvent structure. CxMsgData() can be used to return a
pointer to this data.

cxm Address of a CxMsg.

Address of the data; 0 in the case of an invalid message.

If a message is received from a sender object, the address
cannot be used after the reply is made.

CxSender(), CxCustom()

[CxMsgID

Obtain the source identification of a CxM§g_]

Call:

Function:

Parameters:
Result:

See also:

S. Message Paths

id = CxMsgID(cxm);
DO -150(A6) A0

LONG id
STRUCT CxMsg *cxm

Returns the source identification code specified by an
application for a message.

cxm Address of a CxMsg.
ID of the message; O if the message has no ID.

CxSender(), CxCustom()

[DivertCxMsg Send a message to a sub-object|
Call: DivertCxMsg (cxm, headobj, returnobj)

48

-156 (A6) A0 Al A2

STRUCT CxMsg *cxm

3.1 The Libraries and their Functions

STRUCT CxObj *headobj
STRUCT CxObj *returnobj

Function: Sends a CxMsg to objects in the sub-object list of a
Commodity object. The message is sent on down the list
until the next object is the specified returnobj. For example,
a Filter object (named 'Filter' for the sake of this example)
would send a message to its sub-objects as follows:
DivertCxMsg(cxm,Filter,Filter).

Parameters: cxm CxMsg structure to be sent.
headobj Head object that owns the sub-objects that will

receive the message.
returnobj SUCC object that indicates the last sub-object
in the chain.

Result: None.

See also: The Reference Manual

[RouteCxMsg Set the next destination for a message|

Call: RouteCxMsg (cxm, co)

-162(A6) A0 Al
STRUCT CxMsg *cxm
STRUCT CxObj *co

Function: Determines the next object that will receive the message.

Parameters: cxm CxMsg to be sent.
co CxObj that will be the next object to receive

the message.

Result: None.

See also: DivertCxMsg()

49

3. Programming with AmigaOS 2.x

50

[DisposeCxMsg Delete a message|

Call:

Function:

Parameters:

Result:

DisposeCxMsg (cxm)
-168(A6) A0

STRUCT CxMsg *cxm

Deletes the specified Commodities message. This is good
for disposing of InputEvents (type CXM_IEVENT).

cxm Address of the CxMsg.

None.

6. InputEvent Processing

|InvertKeyMap Convert ANSI codes|

Call:

Function:

Parameters:

Result:

See also:

retval = InvertKeyMap (ansicode, ie, km)
DO -174 (A6) DO A0 Al

ULONG retval

ULONG ansicode
STRUCT InputEvent *ie
STRUCT KeyMap *km

The MapANSI() function determines whether an ANSI
code conversion should take place when an InputEvent is
received. The given KeyMap is used. Simple DeadKeys are
converted.

ansicode ANSI code to be checked.

ie InputEvent structure to be filled.
km KeyMap, default = 0

0 No conversion

InvertString()

3.1 The Libraries and their Functions

[AddIEvents Add a list of InputEvents to the Cx list]

Call: AddIEvents (ie)
-180(Aa6) A0

STRUCT InputEvent *ie;

Function: Normally, the Commodities Library Input Handler gets its
information directly from the input device. But it would not
be convenient to send messages to the Commodities
Library via this device. Therefore, AddIEvents was
implemented. The InputEvents are copied to the
Commodities messages and sent to the objects in the
internal object list.

Parameters: ie Linked list of InputEvents.
Result: None.

See also: FreelEvents()

7. Control Program Functions

|CopyBrokerList Copy the broker list|
Call: list = CopyBrokerList (blist)
DO -186 (A6) a0

Warning: FOR CONTROL PROGRAMS ONLY!

[FreeBrokerList Free broker list]
Call: FreeBrokerList (list)
-192(a6) A0

Warning: FOR CONTROL PROGRAMS ONLY!

| BrokerCommand Broker command|
Call: result = BrokerCommand (name, id)
DO -198 (A6) A0 DO

51

3. Programming with AmigaOS 2.x

Warning: FOR CONTROL PROGRAMS ONLY!
8. Standard Macros
Creation of CxObj:

CxFilter(4) CreateCxObj (CX_FILTER,d,0)
CxTypeFilter (type) CreateCxObj(CX_TYPEFILTER, type, 0)
CxSender (port, id) CreateCxObj (CX_SEND, port, id)
CxSignal (task,sig) CreateCxObj(CX_SIGNAL,task,sig)
CxTranslate(ie) CreateCxObj (CX_TRANSLATE, ie, 0)
CxDebug (id) CreateCxObj (CX_DEBUG, id, 0)
CxCustom(action, id) CreateCxObj (CX_CUSTOM, action, id)

Buffer size of Broker:
CBD_NAMELEN = 24
CBD_TITLELEN = 40
CBD_DESCRLEN = 40

CxBroker() error:
CBERR_OK = 0 ;no error
CBERR_SYSERR = 1 ;system error
CBERR_DUP = 2 ;duplicate definition
CBERR_VERSION = 3 ;unknown version
NB_VERSION = 5 ;version of NewBroker

Dec Hex STRUCTURE NewBroker, 0
0 $0 BYTE nb_Version ;version S
1 $1 BYTE nb_Pad

2 $2 APTR nb_Name ;Broker name
6 $6 APTR nb_Title ;strings, description of the
10 $A APTR nb_Descr ;application

14 S$E SHORT nb_Unique ;what happens with a Broker of the
;same name
16 $10 WORD nb_Flags

18 $12 BYTE nb_Pri ;priority in the Object list
19 $13 BYTE nb_Pad2
20 $14 APTR nb_Port ;MsgPort

24 $18 WORD nb_ReservedChannel
Flags for nb_Unique:

NBU_DUPLICATE
NBU_UNIQUE

;jduplicate definition allowed

0
1 ;duplicate definition not allowed

52

3.1 The Libraries and their Functions

NBU_NOTIFY = 2 ;CxMsg CXM_UNIQUE to existing Broker
Flag for nb_Flags:
COF_SHOW_HIDE = 4
Object types:
CX_INVALID = 0 ;no object
CX_FILTER = 1 ;for InputEvent messages only
CX_TYPEFILTER = 2 ;message Type filter
CX_SEND = 3 ;message sender
CX_SIGNAL = 4 ;signal sender
CX_TRANSLATE = 5 ;InputEvent translator
CX_BROKER = 6 ;most applications
CX_DEBUG = 7 ;sends Debug info to serial port
CX_CUSTOM = 8 ;custom Function
CX_ZERO = 9 ;last entry
Message Types:
CXM_UNIQUE = 16 ;from CxBroker()
CXM_IEVENT = 32 ;InputEvent
CXM_COMMAND = 64 ;from BrokerCommand()
ID Values:
CXCMD_DISABLE = 15 ;deactivate
CXCMD_ENABLE = 17 ;activate
CXCMD_APPEAR = 19 ;open window
CXCMD_DISAPPEAR = 21 ;close window
CXCMD_KILL = 23 ;remove
CXCMD_UNIQUE = 25 ;duplicate definition attempted

CXCMD_LIST CHG = 27 ;Broker list changed

Results of BrokerCommand():

CMDE_OK = 0
CMDE_NOBROKER = -1
CMDE_NOPORT = -2
CMDE_NOMEM = -3
Error Flags from CxObj (CxObjError()):
COERR_ISNULL = 1 ;call was CxError (NULL)

COERR_NULLATTACH 2 ;sub-object was 0
COERR_BADFILTER = 4 ;invalid Filter

53

3. Programming with AmigaOS 2.x

COERR_BADTYPE

IX_VERSION = 2

Dec Hex

= 8 ;invalid object type

Version of IX Structure:

STRUCTURE IX,0

W o N O

$0 UBYTE ix_Version ;version 2
$1 UBYTE ix_Class ;Event class
$2 UWORD ix_Code ;Event data

$4 UWORD ix_CodeMask ;data mask
$6 UWORD ix_Qualifier;exact description
$8 UWORD ix_QualMask ;QualSame mask

10 $A UWORD ix_QualSame ;Qualifier with the same meaning

IXSYM_SHIFT 1
IXSYM _CAPS = 2
IXSYM _ALT =4

IXSYM SHIFTMASK
IXSYM CAPSMASK
IXSYM_ALTMASK

IX_NORMALQUALS

3.1.3

54

Flags for ix_QualSame:

;left and right Shift keys together
;Caps-Lock at the same time
;left and right Alt keys together

Corresponding QualMasks (see InputEvent):
IEQUALIFIER_LSHIFT | IEQUALIFIER_RSHIFT

IXSYM_SHIFTMASK | IEQUALIFIER_CAPSLOCK
IEQUALIFIER_LALT | IEQUALIFIER_RALT

$7FFF ;normal QualMask

The Diskfont Library

The Diskfont Library manages fonts and font styles, lists the available
fonts, or loads a font in memory (if it is not already loaded).

This library is opened under the name "diskfont.library". The base
address _DiskfontBase must be supplied in the A6 register with all
function calls.

Functions of the Diskfont Library

OpenDiskFont
AvailFonts
NewFontContents
DisposeFontContents

3.1 The Libraries and their Functions

NewScaledDiskFont

Description of the Functions

|OpenDiskFont Load or scale a Diskfont|

Call:

Function:

Parameters:

Result:

Warning:

See also:

font = OpenDiskFont (textAttr)
DO -30(a6) AQ

STRUCT TextFont *font
STRUCT TextAttr *textAttr

The font described in the TextAttr structure is loaded in
memory and its address is returned. If desired, the font is
scaled to the requested size.

textAttr TextAttr structure or TTextAttr structure that
describes the font.

Address of the font (TextFont structure) or O if the font was
not found. If only the desired font size was not found and
the DESIGNED flag in the TextAttr structure is not set,
then the font of the desired size is created from a different
size.

This routine will only work with font names up to 30
characters long. '

AvailFonts(), graphics.library/OpenFont()

[AvailFonts

Retrieve a list of all available fonts]|

Call:

error = AvailFonts(buffer, bufBytes, flags);
DO -36(A6) A0 DO D1

LONG error
STRUCT AFH *buffer
LONG bufBytes
ULONG flags

55

3. Programming with AmigaOS 2.x

56

Function:

AvailFonts() fills a memory-block of the specified size and

" address with font data structures. This gives the user a list

Parameters:

Result:

Warning:

See also:

of all available fonts. Certain flags can be set to indicate
where to look for fonts, which fonts are stored in this
memory block, and which data structures to use.

buffer Address of the memory block that will contain
the font list.

bufbytes Size of the memory block.
flags Flags for setting the AvailFonts() options.
AFF_MEMORY Look for fonts in memory.

AFF_DISK Look for fonts in current
FONTS directory.

AFF_SCALED Include constructed fonts
in the list.

AFF_TAGGED Fill memory with TAF
. (TaggedAvailFonts)
structures rather than AF
structures.

If the buffer is too small, the number of bytes missing will be
returned in error; otherwise a value of 0 is returned. If 0 is
returned, the buffer is filled with an AFH structure, followed
by AF or TAF structures. Memory resident fonts must be
opened with OpenFont() and Diskfonts must be opened
with OpenDiskFont().

If a certain font is located both in memory as well as on
disk, its name will appear in the list twice.

OpenDiskFont(), graphics.library/OpenFont()

3.1 The Libraries and their Functions

|NewFontContents Recalculate xxx.font file]

Call:

fontContentsHeader = NewFontContents (fontsLock, fontName)
DO -42(A6) A0 Al

STRUCT FontContentsHeader *fontContentsHeader

BPTR fontsLock

APTR fontName

Function: Recalculates an array with FontContents. This array begins
with an FCH structure, followed by an FC structure for
each size of the font with the given name. This structure
corresponds to the file 'xxx.font' in the FONTS directory.

Parameters: fontsLock BPTR to a lock structure of the DOS Library.

This lock must be obtained for the directory
that contains the font (normally the "FONTS:"
directory).

fontName Address of the font name (including the suffix
".font") which points to a FontContents file.

Result: Address of the FCH structure (FontContentsHeader) or 0,
in the case of an error.

See also: DisposeFontContents(), dos.library/Lock()

|DisposeFontContents Free xxx.font buffer]

Call: DisposeFontContents (fontContentsHeader)
-48(A6) Al
STRUCT FontContentsHeader *fontContentsHeader

Function: Frees the buffer returned with the function
NewFontContents().

Parameters: fontContentsHeader

Structure obtained with NewFontContents().

Result: None.

Warning: The system will crash if you pass an address not obtained

with NewFontContents().

57

3. Programming with AmigaOS§ 2.x

See also: NewFontContents()

|NewScaledDiskFont Create scaled (constructed) font]
Call: header = NewScaledDiskFont (srcFont, destTextAttr)
DO -54 (A6) A0 Al

STRUCT DiskFontHeader *header
STRUCT TextFont *srcFont
STRUCT TTextAttr *destTextAttr

Function: Calculates a new font size based on an existing size for the
given font.

Parameters: srcFont

Font for which the new size will be calculated.

destTextAttr

Attributes of the new font. This can be the
address of a TextAttr structure or the address of
a TTextAttr structure. The new font can be
freed with StripFont() followed by
UnloadSeg(). TextFont and Segment Address
are components of the returned
DiskFontHeader. UnloadSeg() frees all memory
blocks.

Result: Address of a DiskFontHeader structure.

Warning: This function can use the blitter. Fonts with characters
drawn completely outside of the normal character region
cannot be processed.

See also: graphics.library/StripFont(), dos.library/UnloadSeg()

MAXFONTPATH = 256 ;maximum length of the font path including null byte

Dec Hex

0 $0
256 $100
258 $102
259 $103
260 $104

58

STRUCTURE FC,0
fc_FileName,MAXFONTPATH ;font name

STRUCT
UWORD
UBYTE
UBYTE
LABEL

fc_YSize
fc_Style
fc_Flags
fc_SIZEOF

;font height
;style
;font type

3.1 The Libraries and their Functions

STRUCTURE TFC, 0
0 $0 STRUCT tfc_FileName, MAXFONTPATH-2 ;font name
;if the following Word contains a non-zero value,
ithen the TagItems will be found at the end of tfc_FileName
;that is, at MAXFONTPATH-tfc_TagCount*Tagltem_SIZEOF
254 SFE UWORD tfc_TagCount ;number of tags including TAG_DONE

256 $100 UWORD tfc_YSize ;font height
258 $102 UBYTE tfc_Style ;style
259 $103 UBYTE tfc_Flags ;font type

260 $104 LABEL tfc_SIZEOF

FCH_ID = $f00 ;FontContentsHeader, then FontContents
TFCH_ID = $f02 ;FontContentsHeader, then TFontContents
Dec Hex
STRUCTURE FCH, 0 ;FontContentsHeader

0 $0 UWORD fch_FilelID ;FCH_ID or TFCH_ID

2 $2 UWORD fch_NumEntries ;number of (T)FontContents

4 $4 LABEL fch_FC ;starting here, [T]FontContents
DFH_ID = $£f80
MAXFONTNAME = 32 ;font name including ".font" and null byte
Dec Hex

STRUCTURE DiskFontHeader, 0
ithe following Longs are not part of the structure,
;but they precede it directly:

;-8 -$8 ULONG dfh_NextSegment ;BPTR to the next segment

;-4 -$4 ULONG dfh_ReturnCode ;jactually MOVEQ #0,D0 : RTS
0 $0 STRUCT dfh_DF,LN_SIZE ;node

14 $E UWORD dfh_FileID ;DFH_ID

16 $10 UWORD dfh_Revision ;revision number

18 $12 LONG dfh_Segment ;segment address

22 $16 STRUCT dfh_Name, MAXFONTNAME ;the name

54 $36 STRUCT dfh_TF,tf_SIZEOF ; TextFont

LABEL dfh_SIZEOF

If the FSB_TAGGED bit is set in dfh_TF.tf_Style:
dfh_TagList = dfh_Segment ;overwritten during loading

Bits and Flags of the AvailFonts structure:

AFB_MEMORY = 0 ;memory font
AFF_MEMORY = 1

AFB_DISK = 1 ;disk font
AFF_DISK =2

59

3. Programming with AmigaOS 2.x

AFB_SCALED = 2 ;constructed font (not DESIGNED!)
AFF_SCALED = 4

Bits and Flags of the TaggedAvailFonts structure:

AFB_TTATTR = 15 ; INVALID VALUE IN INCLUDES!!!
AFF_TTATTR = $8000
Dec Hex
STRUCTURE AF,0 ; AvailFonts
0 $0 UWORD af_Type ; MEMORY, DISK, or SCALED
2 42 STRUCT af_Attr,ta_SIZEOF ; TextAttr
10 $A LABEL af_SIZEOF
STRUCTURE TAF, 0 ; TAvailFonts

0 $0 UWORD taf_Type MEMORY, DISK, or SCALED
2 $2 STRUCT taf_Attr,tta_SIZEOF ; TTextAttr
10 $A LABEL taf_SIZEOF

~

STRUCTURE AFH, 0
0 $0 UWORD afh_NumEntries
2 $2 LABEL afh_AF

AvailFontsHeader
number of elements
starting here, [T]AvailFonts

e e

Example

You can make it difficult on yourself and create a special font for each
application, or you can handle it quite easily. We will now create a font
similar to the Diamond font, but with a character height of only 10 pixels.

movea.l _DiskfontBase, a6

lea _TextAttr (pc),al

jsr _LVOOpenDiskFont (a6) ;Font=OpenDiskFont (TextAttr)
move.l dO0,_Diamondl0

beq _Fehler

movea.l _GfxBase, a6
movea.l _Diamondl0,al
jsr _LvVOCloseFont (a6) ;CloseFont (Font)

_TextAttr dc.l _FontName ;ta_Name
dc.w 10 ;ta_Size
;ta_Style, ta_Flags
dc.b FS_NORMAL, FPF_PROPORTIONAL ! FPF_DISKFONT

_FontName dc.b 'diamond.font',0

60

3.1 The Libraries and their Functions

Simple, isn't it? The change in size takes only a fraction of a second, so it
does not add any appreciable time to the process.

The DOS Library

The DOS Library is completely new and expanded for Kickstart Version
2.0. The DOS Library was written in the compiler language BCPL for the
old 1.x versions. This slow-executing language was replaced with faster
C code, but in order to maintain compatibility, the BCPL variable
management had to be kept for the most part. BCPL manages addresses
in numbers of longwords (32 bits = 4 bytes), so the address 40 would be
assigned the number 10 in BCPL. This is why every address must be
divisible by 4.

An important change came with the transition to C. Starting with OS 2.0,
DOS expects the base address of the DOS Library to be passed in register
A6. This prevents the use of faster code by placing the base address in
AS. Programs that utilize this will crash under Kickstart 2.0.

Functions of the DOS Library

1. DOS Structures UnLockDosList
AllocDosObject 3. Handlers and Filesystems
DupLock
DupLockFromFH AddBuffers
FreeDosEntry DeviceProc
FreeDosObject DoPkt
MakeDosEntry EndNotify
Format
2. Logical Devices FreeDeviceProc
GetConsoleTask
AddDosEntry GetDeviceProc
AssignAdd GefFileSysTask
AssignLate Inhibit
AssignLock IsFileSystem
AssignPath Relabel
AttemptLockDosList ReplyPkt
FindDosEntry SendPkt
LockDosList SetConsoleTask
NextDosEntry SefFileSysTask
RemDosEntry StartNotify

61

3. Programming with AmigaOS§ 2.x

62

WaitPkt
4. Directories

CreateDir
CurrentDir
ExAll
Examine
ExNext
GetProgramDir
Info
MatchEnd
MatchFirst
MatchNext
ParentDir
ParentOfFH

5. Programs

AddSegment
CreateNewProc
CreateProc

Exit
FindSegment
InternalLoadSeg
InternalUnLoadSeg
LoadSeg
NewLoadSeg
RemSegment
RunCommand
UnLoadSeg

6.CLI

CheckSignal
Cli

Execute
FindCliProc
Input
MaxCli
Output
ReadArgs

Readltem
SelectInput
SelectOutput
SetArgStr
SetCurrentDirName
SetProgramDir
SetProgramName
SetPrompt
SystemTagList
VPrintf

7. Files

ChangeMode
Close
DeleteFile
ExamineFH
FGetC

Flush

FPutC

FRead

FWrite
IsInteractive
Lock
LockRecord
LockRecords
Open
OpenFromLock
Read

Rename
SameLock
Seek
SetComment
SetFileDate
SetFileSize
SetProtection
UnGetC
UnLock
UnLockRecord
UnLockRecords
VFPrintf

3.1 The Libraries and their Functions

VFWritef StrToDate
Write StrToLong
8. Strings 9. Time
AddPart CompareDates
DateToStr DateStamp
Fault Delay
FGets WaitForChar
FilePart
FindArg 10. Environment Variables
FPuts
GetArgStr DeleteVar
GetCurrentDirName FindVar
GetProgramName GetVar
GetPrompt SetVar
%;:;gg;gﬁ 11. Errors and Requesters
NameFromLock ErrorReport
ParsePattern IoErr
PrintFault
PathPart PutStr
SplitName SetIoErr
Deécription of Functions
1. DOS Structures
|AllocDosObject Create DOS data structure|
Call: ptr = AllocDosObject (type, tags)
DO D1 D2
APTR ptr

ULONG type
STRUCT TagItem *tags

Function: Creates one of several possible DOS structures.
Parameters: type Structure type

tags TagList address

63

3. Programming with AmigaOS 2 .x

Result:
See also:

Example:

movea.l _DosBase, a6

moveq
move.l
jsr
move.l
beq
Duramy

64

#DOS_EXALLCONTROL, d1
#_Dumny , d2

_LVOAllocDosObject (a6)

d0,_ExAllControl
Error

dc.1 TAG_DONE

Data structure address or 0.
FreeDosObject(), dos/dostags.h, dos/dos.h

Creating a control structure for calling the new ExAll()
function:

;save it

;jempty TagItem field

[DupLock Copy lock]
Call: newlock = DupLock(lock)
DO -96 (A6) D1
BPTR newlock
BPTR lock
Function: Copy a Filesystem SHARED_LOCK.
Parameters: lock Lock to be copied.
Result: Copy of the lock or 0.
See also: Lock(), UnLock()
[DupLockFromFH ___Copya FileHandle lock]
Call: lock = DupLockFromFH (fh)
DO -372(A6) D1
BPTR lock
BPTR fh
Function: Returns a copy of a FileHandle lock. The file must be open

and accessible to other programs.

3.1 The Libraries and their Functions

Parameters: th FileHandle that owns the lock to be copied.

Result: Lock or 0, in the case of an error.

|FreeDosEntry Free a structure created with MakeDosEntry()|

Call: FreeDosEntry (dlist)
-702 (26) D1

STRUCT DosList *dlist
Function: Frees the result of a MakeDosEntry() call. This routine

should not be used. Instead, use FreeDosObject() with the
corresponding value.

Parameters: dlist DosList structure to be freed.
|FreeDosObject Free a DOS structure|
Call: FreeDosObject (type, ptr)

-234(A6) D1 D2

ULONG type

APTR ptr

Function: Frees a structure created with AllocDosObject().
Parameters: type Type as specified with AllocDosObject().
ptr Result of AllocDosObject().

See also: AllocDosObject(), dos/dos.h
Example: Free an ExAll() control structure:

movea.l _DosBase, a6

moveq #DOS_EXALLCONTROL, d1
move.l _ExAllControl,d2

jsr _LVOFreeDosObject (a6)

65

3. Programming with AmigaOS 2.x

|[MakeDosEntry Create a DosList structure]
Call: newdlist = MakeDosEntry (name, type)
DO -696 (A6) D1 D2

STRUCT DosList *newdlist
APTR name
LONG type

Function: Creates a DosList structure with BSTR dol_Name and
dol_Type. This function should not be used. Instead, use

AllocDosObject().

Parameters: name Name of the device/volume/assign node.
type Entry type

Result: DosList structure or 0.

Type for AllocDosObject():

DOS_FILEHANDLE = 0 ;FileHandle

DOS_EXALLCONTROL = 1 ;ExAllControl

DOS_FIB = 2 ;FileInfoBlock

DOS_STDPKT 3 ;Standard Packet

DOS_CLI = 4 ;CommandLinelInterface

DOS_RDARGS = 5 ;in case arguments were entered
Tags for AllocDosObject():

ADO_Dummy = TAG_USER+2000

ADO_FH_Mode = ADO_Dummy+1 ;for FileHandle only

ADO_DirLen = ADO_Dummy+2 ;size of CurrentDir buffer

ADO_CommNameLen = ADO_Dummy+3 ;size of CommandName buffer
ADO_CommFileLen ADO_Dummy+4 ;size of BatchFile buffer
ADO_PromptLen ADO_Dummy+5 ;size of Prompt buffer

2. Logical Devices

|AddDosEntry Add an entry to the list of logical devices]
Call: success = AddDosEntry (dlist)
DO -678 (A6) D1

66

3.1 The Libraries and their Functions

BOOL success
STRUCT DosList *dlist

Function: Adds a device, volume, or assign node to the DOS list of
logical devices. If a logical device of the same name already
exists, the function will fail. Exceptions to this are volumes
nodes with different dates and DeviceNode names. This
function can be called without a lock on the device list.

Parameters: dlist Entry for the device list.

Result: 0 Error

|AssignAdd Add a path to a directory with many paths|

Call: success = AssignAdd (name, lock)

DO -630(a6) D1 D2
BOOL success

APTR name

BPTR lock

Function: Sets a lock on a directory in an assign list. The assign
structure must be created with AssignLock() or
AssignLate(), and the lock may not be used again after this.
If you need it, you can create another copy with
DupLock().

Parameters: name DeviceName without "'
lock Lock indicated by the name.

Result: 0 Error, then the lock must be freed with

UnLock().
See also: AssignLock(), AssignLate(), Lock(), UnLock()
Example: This allows you to define a logical device, such as 'C:' or

'DEVS:' that consists of several physical directories.
Consider the following two directories:

67

3. Programming with AmigaOS§ 2 .x

Strings: (DIR)

GibsonGuitar.8SvVX
RichGuitar.8SVX
WarwickBass.8SVX
WashburnGuitar.8SVX

Drumkit: (DIR)

PaisteCymbal.8SVX
PaisteGong.8SVX
Pearl1Drum.8SVX
PremierDrum.8SVX

We can assign these two directories to the logical device 'Samples:' as
follows:

_MultiPath

movea.l _DosBase, a6
move.l #_BasePath,dl
moveq #SHARED_LOCK, d2

jsr _LVOLock (a6) ;Lock("Strings:", -2)

move.l do0,d2

beqg.s .Error

move.l #_Samples,dl

jsr _LVOAssignLock(a6) ;AssignLock("Samples",Lock)
tst.1l 4o

beq.s .Error2

move.l #_AddPath,dl
moveq #SHARED_LOCK, d2

jsr _LVOLock (a6) ;Lock ("Drumkit:", -2)
move.l d0,d2

beq.s .Error3

move.l #_Samples,dl

jsr _LVOAssignAdd(a6) ;AssignAdd(“Samples",Lock)
tst.1 4o

beq.s .Error4

moveq #0,d0

rts

.Error4

.Error2

move.l d2,dl

jsr _LVOUnlock(a6)

.Errorl

moveq #-1,4d0

.Error3

rts

68

3.1 The Libraries and their Functions

_BasePath dc.b 'Strings:',0
_AddPath dc.b 'Drumkit:',0
_Samples dc.b ‘'Samples’',0

If no errors occurred (result=0), you can access these files as follows:

"Samples:WarwickBass.8SVX"
"Samples:PaisteCymbal.8SVX"

If you were to store a file in the logical device 'Samples’, it would go to
the physical directory set with AssignLock(). In this case, this is

"Strings:".

|AssignLate

Pre-define an AssignLock]

Call:

Function:

Parameters:

Result:

See also:

success = AssignLate(name,path)
DO -618 (A6) D1 D2

BOOL success
APTR name
APTR path

Defines an AssignLock that is only created after the first
access on the given path. This is very helpful in cases
where a device hasn't been activated yet.

name DeviceName without "'

path Name used to address the device.
0 Error

AssignLock

|AssignLock

Assign a name to a lock]|

Call:

success = AssignLock (name, lock)
DO -612 (A6) D1 D2

BOOL success

APTR name
BPTR lock

69

3. Programming with AmigaOS 2.x

70

Function: Assigns a name to a lock. A value of O for lock will delete
the entry with the given name. If an entry with the same
name exists, it's replaced with the new lock. After this
function, the lock may not be used again. If necessary,
make a copy with DupLock().

Parameters: name Device name (without ":') to which the lock is

assigned.
lock Lock for the name.

Result: 0 Error, lock must then be freed with UnLock().

See also: Lock(), DupLock(), UnLock()

[AssignPath Assign a name to a path|

Call: success = AssignPath(name,path)

DO -624 (A6) D1 D2
BOOL success

APTR name

APTR path

Function: Assigns a name to a path. Also works with disks (volumes)
that are not yet known.

Parameters: name Device name without "'
path Path name replaced by 'name’.

Result: 0 Error

See also: AssignLock(), AssignLate()

|AttemptLockDosList Lock a directory list|

Call: dlist = AttemptLockDosList (flags)

DO -666 (A6) D1

STRUCT DosList *dlist
ULONG flags

3.1 The Libraries and their Functions

Function: Prevents certain access from other programs to the list of
logical devices.

Parameters: flags Flags that indicate the nodes to be locked.
Result: dlist Start of the list or O (no node address).

See also: LockDosList(), UnLockDosList()

[FindDosEntry]
Call: newdlist = FindDosEntry (dlist,name, flags)
DO -684 (A6) D1 D2 D3

STRUCT DosList *newdlist, *dlist
APTR name
ULONG flags

Function: Returns an entry from the list of logical devices.

Parameters: dlist Starting entry for the search.

name Device name without "',

flags Flags previously passed to LockDosList().
Result: Address of the entry or 0.
|LockDosList Allow access to list of logical devices|
Call: dlist = LockDosList (flags)

DO -654(A6) Dl

STRUCT DosList *dlist
ULONG flags

Function: This function allows exclusive access to the list of logical
devices. If another task has the access rights, the program
waits until the list is freed with UnLockDosList(). You can
use nested calls of this function.

Parameters: flags Entries to be accessed.

!

3. Programming with AmigaOS 2 .x

Result: Pointer to the list header, not an entry.
|NextDosEntry Next entry in the logical device list]
Call: newdlist = NextDosEntry (dlist,flags)

DO -690 (a6) D1 D2

STRUCT DosList *newdlist, *dlist
ULONG flags

Function: Finds the next entry of the desired type in the logical
device list.

Parameters: dlist Current entry.
flags Type, see FindDosEntry().
Result: Next DosList structure or 0.
|RemDosEntry Remove a DosList structure from the Tist]
Call: success = RemDosEntry (dlist)
DO -672 (A6) D1

BOOL success
STRUCT DosList *dlist

Function: This function can be used to remove an entry from the
logical device list. LockDosList() must be called first. The
memory block used is not freed with this function.

Parameters: dlist DosList structure.
Result: 0 Error
|UnLockDosList Free logical device list]
Call: UnLockDosList (flags)
-660(26) D1

ULONG flags

72

3.1 The Libraries and their Functions

Function: Frees a logical device list that was locked with
LockDosList().
Parameters: flags Flags that were specified with LockDosList().
Dec Hex STRUCTURE DosList, 0
0 $0 BPTR dol_Next ;next entry
4 $4 LONG dol_Type ;type (see below)
8 §$8 APTR dol_Task ;Handler task
12 $C BPTR dol_Lock ;Lock
16 $10 LABEL dol_VolumeDate ;creation date
16 $10 LABEL dol_AssignName ;path name
16 $10 BSTR dol_Handler ;filename (if SegList=0)
20 $14 LABEL dol_List ;directory list (Assign)
20 $14 LONG dol_StackSize ;stack size for the process
24 $18 LONG dol_Priority ;priority of the process
28 $1C LABEL dol_LockList ;available Locks
28 $1C ULONG dol_startup ;FileSysStartupMsg
32 $20 LABEL dol_DiskType ;'DOS', etc.
32 $20 BPTR dol_SegList ;SegList for the process
36 $24 BPTR dol_GlobVec ;BCPL global vector
40 $28 BSTR dol_Name ;name
44 $2C LABEL DosList_SIZEOF
Values for dl_Type:
DLT_DEVICE = 0 ;logical device
DLT_DIRECTORY = 1 ;Assign Node
DLT_VOLUME = 2 ;diskette
DLT_LATE = 3 ;late assignment
4

DLT_NONBINDING

DLT_PRIVATE

LDB_READ
LDB_WRITE
LDB_DEVICES
LDB_VOLUMES
LDB_ASSIGNS
LDB_ENTRY

1]

]

LDB_DELETE =
LDF_ALL

n
1
fry

;free Assign (AssignPath)
;for DOS only

Flags for LockDosList() etc.:

0, LDF_READ
1, LDF_WRITE
2, LDF_DEVICES
3, LDF_VOLUMES
4, LDF_ASSIGNS
5, LDF_ENTRY
6, LDF_DELETE

n

1 ; specify either LDF_READ
2 ; or LDF_WRITE

4

8

16

32 ;for internal purposes

64

= (LDF_DEVICES!LDF_VOLUMES ! LDF_ASSIGNS)

73

3. Programming with AmigaOS 2.x

74

3. Handlers and Filesystems

|AddBuffers

Add to the number of buffers for a device]

Call: success = AddBuffers(filesystem, number)
DO -732(A6) D1 D2
BOOL success
APTR filesystem
LONG number

Function: Adds the given number of buffers to the existing number of
buffers for a filesystem, then sets the number of buffers to
the new number. You may also use negative values. If the
call was successful, you can query the current number of
buffers with IoErr().

Parameters: filesystem *String with the device name, including ':'.
number Number of buffers to add (may be positive or

negative).

Result: 0 Error

See also: ToErr()

[DeviceProc Return the MsgPort for the handler of a device]

Call: process = DeviceProc(name)
DO -174(26) D1
STRUCT MsgPort *process
APTR name

Function: Returns the MessagePort that controls the given device.
This is required for packet routines.

Parameters: name Device name

Result: MsgPort of the handler process or 0.

3.1 The Libraries and their Functions

Warning: If you specify something that is only addressable as a
device via ASSIGN, use the IoErr() function to get the lock
associated with this name. You may only work with a copy
of the lock that was created with DupLock().

See also: DoPkt(), IoErr(), DupLock()

[DoPkt Send a DOS packet and wait for the reply|

Call: resultl (/result2) = DoPkt(port,action,argl,arg2,arg3,arg4,args)

DO (D1) -240(A6) D1 D2 D3 D4 D5 D6 D7
LONG resultl,result2

STRUCT MsgPort *port

LONG action,argl,arg2,arg3,arg4,args

Function: PutMsg() sends a packet to the ProcessPort of the handler
and waits for the handler to process it. Then resultl and
result2 are taken from the returned packet. Since C
programmers cannot use routines with two results, result2 is
set up as an error code that can be queried with IoErr().
DoPkt() can also be called by an Exec task, but it will be
slower and more prone to error.

Parameters: port pr_MsgPort of the handler.
action Command for the handler or filesystem.
argl, arg2, arg3, argd,arg5

Arguments for the command.
Result: 0 in DO = error
See also: DeviceProc(), IoErm(), PutMsg(), WaitPort(), GetMsg()
[EndNotify End file notification]
Call: EndNotify (notifystructure)

-894(A6) D1

STRUCT NotifyRequest *notifystructure

75

3. Programming with AmigaOS 2.x

Function:
Parameters:
Result:

See also:

Ends notification started with StartNotify().
NotifyRequest that was passed to StartNotify().
None

StartNotify()

|Format

Format a device|

Call:

Function:

Parameters:

Result:

success = Format(filesystem, volumename, dostype)
DO -714(A6) D1 D2 D3

BOOL success

APTR filesystem, volumename

ULONG dostype

Format a device, such as a diskette or a hard disk.

filesystem Device name including ':'.

volumename
Name, such as the diskette name.

dostype Format type: OFS or FFS

0 Error

[FreeDeviceProc Free a structure obtained with GetDeviceProc()]

Call:

Function:

Parameters:

76

FreeDeviceProc (devproc)
-648(A6) D1

STRUCT DevProc *devproc

Frees a structure created with GetDeviceProc() and
decrements the process counter.

devproc DevProc structure from GetDeviceProc().

3.1 The Libraries and their Functions

|GetConsoleTask Get the MsgPort of the console handler|

Call:

Function:

Result:

port = GetConsoleTask()
DO -510(a6)

STRUCT MsgPort *port
Returns its own console task port (pr_ConsoleTask).

pr_MsgPort of the console handler or 0.

|GetDeviceProc Get the handler for a path|

Call:

Function:

devproc = GetDeviceProc (name, devproc)
DO -642(A6) D1 D2

STRUCT DevProc *devproc
APTR name

Returns the handler or filesystem for a path. You must
supply the path name, which may be given relative to the
current path, and a value of 0 as the DevProc structure. The
result is a DevProc structure from which the data can be
read. Kickstart 2.0 supports the division of a directory into
several devices, so more than one handler/filesystem may be
responsible for the path.

To get all of the data for a path, GetDeviceProc() must be
called several times, and the first structure returned must be
passed with each subsequent call. If you receive an
ERROR_OBJECT_NOT_FOUND and if DVPF_ASSIGN is
set in dvp_Flags, you must still call this function again. You
will receive the DevProc structure with other values or with
the value 0 and an ERROR_NO_MORE_ENTRIES from
IoErr(). The function must continue to be called until O is
returned. Then the handler/filesystem will automatically be
locked. The structure returned with the first call can be
freed with FreeDeviceProc. At this point, all of the data
retrieved becomes invalid and must not be used anymore.

Parameters: name Path name to be accessed.

77

3. Programming with AmigaOS 2 .x

78

devproc DevProc structure from previous call, or 0.

Result: DevProc structure or null
[GetFileSysTask Get MsgPort of own filesystem]
Call: port = GetFileSysTask()
DO -522(A6)
STRUCT MsgPort *port
Function: Reads the MsgPort of the filesystem from the process
structure responsible for the program (pr_FileSystemTask).
Result: pr_MsgPort of the filesystem or 0.

[Inhibit Send the DOS packet ACTION INHIBIT to a handler]

Call:

Function:

Parameters:

success = Inhibit(filesystem, £flag)
DO -726 (A6) D1 D2

BOOL success
APTR name
LONG flag

Simultaneous access to a filesystem device must be locked
before direct access is allowed (Workbench: DFx:BUSY).
Programmers who simply jump in and access the trackdisk
device or the hard disk already had many system crashes
and instances of destroyed data. Normally, you would use
DeviceProc() to get the handler port and then turn the
filesystem off with an ACTION_INHIBIT packet. This
function was implemented to give programmers a way to
accomplish this.

filesystem Device name including "'
flag Argument for the StdPacket:

DOSTRUE Inhibit (lock filesystem)
Null Uninhibit (unlock filesystem)

3.1 The Libraries and their Functions

Result: 0 Error

[IsFileSystem Determine if a handler is a filesystem]

Call: result = IsFileSystem(name)
DO -708 (A6) D1
BOOL Result: APTR name

Function: Returns a boolean argument that indicates whether a
handler is a filesystem.

Parameters: name Device name including ':'.

Result: 0 Handler is not a filesystem.

|Relabel Change name of a storage device|

Call: success = Relabel (volumename, name)
DO -720(A6) D1 D2
BOOL success
APTR volumename, name

Function: Changes the name of a storage device, such as a diskette.

Parameters: volumename Device name including "".
newname New name without ":'.

Result: 0 Error

[ReplyPkt Reply to a DosPacket|

Call: ReplyPkt (packet, resultl, result2)
-258(a6) D1 D2 D3
STRUCT DosPacket *packet
LONG resultl,result2

Function: Places results in a packet and returns it to the sender.

79

3. Programming with AmigaOS 2.x

80

Parameters: packet DosPacket structure.
resultl result2
Results
[SendPkt Send a DosPacket to a handler]
Call: SendPkt (port, packet, replyport)
-246(A6) D1 D2 D3
STRUCT MsgPort *port, *replyport
STRUCT DosPacket *packet
Function: Sends a packet to a handler without waiting for the reply.
The reply is sent to the specified ReplyPort. This is the
pr_MsgPort of its own process structure.
Parameters: port pr_MsgPort of the handler (see DeviceProc()).
packet DosPacket structure to be sent.
replyport pr_MsgPort of its own process.
|SetConsoleTask Set console handler port|
Call: OldPort = SetConsoleTask (port)
DO -516 (A6) D1
STRUCT MsgPort *port, *OldPort
Function: Sets the port for the standard console tasks of the
processor (pr_ConsoleTask).
Parameters: port pr_MsgPort of the console handler.
Result: Pointer to previous console task.

3.1 The Libraries and their Functions

[SetFileSysTask Set filesystem port]
Call: 0ldpPort = SetFileSysTask (port)

DO -528(A6) Dl

STRUCT MsgPort *port, *OldPort

Function: Sets the port for the filesystem tasks of the process
(pr_FileSystemTask).
Parameters: port pr_MsgPort of the filesystem.
Result: Previous FileSysTask
[StartNotify Start file notification]
Call: success = StartNotify (notifystructure)
DO -888 (A6) D1
BOOL success
STRUCT NotifyRequest *notifystructure
Function: Begin notification for a file or directory. You are then
notified if a change is made, as long as the filesystem
supports this.
Parameters: notifystructure
Initialized NotifyRequest structure.
Result: 0 Error
[WaitPkt Wait for a DosPacket|
Call: packet = WaitPkt ()
DO -252(A6)
STRUCT DosPacket *packet
Function: Waits for a DosPacket to appear in its own pr_MsgPort and

picks up the StdPkt with GetMsg().

81

3. Programming with AmigaOS 2.x

Result: packet DosPacket (LN_NAME of the message

structure)

DosPacket Structure:

Dec Hex STRUCTURE DosPacket, 0

0 $0 APTR dp_Link ;Exec message
4 $4 APTR dp_Port iReplyPort
8 $8 LABEL dp_Action ;s. ACTION_...
8 $8 LONG dp_Type i'R', WY
12 $C LABEL dp_Status ;1lst result:
12 $C LONG dp_Resl ;1st result
16 $10 LABEL dp_Status2 ;2nd result
16 $10 LONG dp_Res2 ;2nd result
20 $14 LABEL dp_BufAddr ;buffer address
20 $14 LONG dp_Argl ;1st argument
24 $18 LONG dp_Arg2 ;2nd argument
28 $1C LONG dp_Arg3 ;3rd argument
32 $20 LONG dp_Arg4 ;4th argument
36 $24 LONG dp_ArgS5 ;5th argument
40 $28 LONG dp_Argé6 ;6th argument
44 $2C LONG dp_Arg7 ;7th argument
48 $30 LABEL dp_SIZEOF

Structure for sending Packets:

Dec Hex STRUCTURE StandardPacket, 0
0 $0 STRUCT sp_Msg,MN_SIZE ;Exec message
20 $14 STRUCT sp_Pkt,dp_SIZEOF ;Packet
68 $44 LABEL sp_SIZEOF
Packet Types:

ACTION_NIL = 0 ;no message
ACTION_STARTUP = 0 ;Handler startup
ACTION_GET_BLOCK = 2 ;DO NOT USE!
ACTION_SET_MAP = 4 ;set map
ACTION_DIE = 5 ;end process
ACTION_EVENT = 6 ;event
ACTION_CURRENT_VOLUME = 7 ;current disk
ACTION_LOCATE_OBJECT = 8 ;find object
ACTION_RENAME_DISK = 9 ;rename disk
ACTION_WRITE = 'W' ;write
ACTION_READ = 'R' ;read
ACTION_FREE_LOCK = 15 ;free Lock
ACTION_DELETE_OBJECT = 16 ;delete object
ACTION_RENAME_OBJECT = 17 ;rename object

82

3.1 The Libraries and their Functions

ACTION_MORE_CACHE

18 ;add buffer

ACTION_COPY_DIR = 19 ;copy directory
ACTION_WAIT_CHAR = 20 ;wait for a character
ACTION_SET PROTECT = 21 ;set protection

ACTION_CREATE_DIR = 22 ;create directory
ACTION_EXAMINE_OBJECT 23 ;examine object
ACTION_EXAMINE_NEXT 24 ;examine next entry

ACTION_DISK_INFO = 25 ;info on the disk
ACTION_INFO = 26 ;information
ACTION_FLUSH = 27 ;invalid buffers
ACTION_SET_COMMENT = 28 ;set comment
ACTION_PARENT = 29 ;parent directory
ACTION_TIMER = 30 ;Timer event
ACTION_INHIBIT = 31 ;Handler on/off
ACTION_DISK_TYPE = 32 ;diskette type
ACTION_DISK_CHANGE = 33 ;diskette change
ACTION_SET_DATE = 34 ;set date
ACTION_SAME_LOCK = 40 ;compare Locks
ACTION_SCREEN_MODE = 994 ;screen mode
ACTION_READ_RETURN = 1001 ;read
ACTION_WRITE_RETURN = 1002 ;write
ACTION_SEEK = 1008 ;position
ACTION_FINDUPDATE = 1004 ;open
ACTION_FINDINPUT = 1005 ;old file
ACTION_FINDOUTPUT = 1006 ;new file
ACTION_END = 1007 ;end
ACTION_FORMAT = 1020 ;format
ACTION_MAKE_LINK = 1021 ;create a link

ACTION_SET FILE_SIZE = 1022 ;set file size
ACTION_WRITE_PROTECT = 1023 ;write protect

ACTION_READ_LINK = 1024 ;read link
ACTION_FH_FROM_LOCK = 1026 ;get FileHandle
ACTION_IS_FILESYSTEM = 1027 ;get Handler type
ACTION_CHANGE_MODE = 1028 ;change access mode
ACTION_COPY_DIR_FH = 1030 ;copy directory
ACTION_PARENT FH = 1031 ;get parent directory
ACTION_EXAMINE_ALL = 1033 ;examine directory tree structure
ACTION_EXAMINE_FH = 1034 ;examine file
ACTION_LOCK_RECORD = 2008 ;lock record
ACTION_FREE_RECORD = 2009 ;free record
ACTION_ADD_NOTIFY = 4097 ;start notification
ACTION_REMOVE_NOTIFY = 4098 ;end notification

Packet types from run/newclilexecute/system to the Shell:
RUN_EXECUTE = -1

RUN_SYSTEM = -2
RUN_SYSTEM_ASYNCH = -3

83

3. Programming with AmigaOS 2 .x

Dec
0

4

8
12
16

Hex
$0
$4
$8
$sc

$10

Results of GetDeviceProc():

STRUCTURE DevProc, 0

APTR
BPTR
ULONG
APTR
LABEL

DVPB_UNLOCK =

DVPB_ASSIGN =

Dec

>

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80

Hex
$0
$4
$8
$c

$10

$14
$18
$1c
$20
$24
$28
$2¢c
$30
$34
$38
$3c
$40
$44
$48
$4cC
$50

dvp_Port ;MsgPort

dvp_Lock ;Lock

dvp_Flags ;Flags (s.u.)
dvp_DevNode ;DosList (DO NOT USE!)
dvp_SIZEOF

Values for dvp_Flags

0, DVPF_UNLOCK 1
1, DVPF_ASSIGN = 2

Storage device description:

STRUCTURE DosEnvec, 0

ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
LONG

ULONG
ULONG
ULONG
ULONG
LABEL

de_TableSize ;table size
de_SizeBlock iblock size in Longs
de_SecOrg ;jsector organization (0)
de_Surfaces ;number of heads

de_SectorPerBlock ;sectors per block (1)
de_BlocksPerTrack ;blocks per track

de_Reserved ;reserved blocks at the beginning
de_PreAlloc jreserved blocks at the end
de_Interleave ;interleave mode (0)

de_LowCyl ;first cylinder (starting with 0)
de_HighCyl ;last cylinder

de_NumBuffers ;normal buffer count
de_BufMemType ;memory type of buffer
de_MaxTransfer ;maximum speed

de_Mask ;address mask

de_BootPri ;boot priority

de_DosType ;DOS type

de_Baud ;baud rate for serial Handlers
de_Control ;control Word for Handler
de_BootBlocks ;number of boot blocks

DosEnvec_SIZEOF

Filesystem startup message:

Dec Hex STRUCTURE FileSysStartupMsg, 0

0
4
8
12
16

84

$0
$4
$8
$C
$10

ULONG
BSTR
BPTR
ULONG
LABEL

fssm_Unit ;junit number for OpenDevice()
fssm_Device ;DeviceName ending in 0
fssm_Environ ;structure of data storage device
fssm_Flags ;Flags for OpenDevice()
FileSysStartupMsg_SIZEOF

3.1 The Libraries and their Functions

NOTIFY_CLASS = $40000000 ;this will change...
NOTIFY_CODE $1234 ;this too

Dec Hex STRUCTURE NotifyMessage, 0
0 $0 STRUCT nm_ExecMessage,MN_SIZE ;message

20 $14 ULONG nm_Class ;s.o.
24 $18 UWORD nm_Code ;s.0.
26 $1A APTR nm_NReq ;Notify request (do not change)

30 $1E ULONG nm_DoNotTouch
34 $22 ULONG nm_DoNotTouch2
38 $26 LABEL NotifyMessage_SIZEOF

Dec Hex STRUCTURE NotifyRequest,0

0 $0 CPTR nr_Name ; Name

4 $4 CPTR nr_FullName ;complete DOS path

8 $8 ULONG nr_UserData ;own data

12 $C ULONG nr_Flags ;Flags

16 $10 LABEL nr_Task ;task for SEND_SIGNAL or
16 $10 APTR nr_Port ;MsgPort for SEND_MESSAGE
20 $14 UBYTE nr_SignalNum ; for SEND_SIGNAL

21 $15 STRUCT nr_pad,3

24 $18 STRUCT nr_Reserved, 4*4

40 $28 ULONG nr_MsgCount ;number of Msgs sent

44 $2C APTR nr_Handler ;Handler for EndNotify ()
48 $30 LABEL NotifyRequest_SIZEOF

Values for nr_Flags:

NRB_SEND_MESSAGE = 0, NRF_SEND_MESSAGE = 1
NRB_SEND_SIGNAL = 1, NRF_SEND_SIGNAL = 2
NRB_WAIT_REPLY = 3, NRF_WAIT_REPLY = 8
NRB_NOTIFY_INITIAL = 4, NRF_NOTIFY_INITIAL = 16
NRB_MAGIC = 31, NRF_MAGIC = $80000000
NR_HANDLER_FLAGS = $E££££0000
4. Directories
| CreateDir Create a new directory|
Call: lock = CreateDir(name)
DO -120(A6) D1
BPTR lock
APTR name

85

3. Programming with AmigaOS 2.x

Function:
Parameters:
Result:

See also:

Creates a new directory and returns a lock for it.
name String containing directory name.
BCPL pointer to a lock or 0.

UnLock()

| CurrentDir

Set the current directory]

Call:

Function:

Parameters:

Result:

See also:

oldLock = CurrentDir(lock)
DO -126 (A6) D1

BPTR oldLock
BPTR lock

CurrentDir() sets the directory that all path specifications
will use as a starting point. You are required to pass a lock
for the desired directory. As a result, you receive the lock to
the directory that was formerly current.

lock BCPL pointer to a lock.

BCPL pointer to the previous current directory. A value of
0 represents the boot directory that is set by a reboot.

Lock(), UnLock()

|[ExAll

Examine an entire directory]|

Call:

Function:

86

continue = ExAll(lock, buffer, size, type, control)
DO -432(A6) D1 D2 D3 D4 D5

BOOL continue

BPTR lock

APTR buffer

LONG size, type

STRUCT ExAllControl *control

Examines a directory and fills a buffer with ExAllData
structures.

3.1 The Libraries and their Functions

Parameters:

Result:

See also:

lock
buffer
size

type

control

Directory lock
Buffer address
Buffer size

The amount of data that will be stored in each
file (ED_...). Higher values contains smaller
values. The order is name, type, size, protection
bits, date, comment.

ExAllControl structure, must be created with
AllocDosObject(). The LastKey entry must be
deleted before the call. If several calls are
required, this entry may not be changed.

Entries Number of entries in buffer.
LastKey Delete prior to call.
MatchString Optional pattern string.

MatchFunc Hook address of a pattern
matching routine.

Cancel (delete LastKey):

IoErr() ERROR_NO_MORE_ENTRIES:
ExAll is finished; otherwise
IoErr()=error code. In any other
case; save the buffer contents and
call ExAll() again.

IoEmr(), AllocDosObject(), FreeDosObject

|Examine

Examine directory or file]

Call:

success

DO

= Examine(lock, infoBlock)

-102(a6) D1 D2

BOOL success

87

3. Programming with AmigaOS 2.x

88

Function:

Parameters:

Result:

BPTR lock
STRUCT FileInfoBlock *infoBlock

Examine() fills a FileInfoBlock with all available
information. This data structure can only be read if it's
passed as a parameter later (e.g., to ExNext()).

lock Lock for the file/directory to be examined.
infoBlock Address of FileInfoBlock structure.

0 Error

|ExNext

Examine next directory entry|

Call:

Function:

Parameters:

Result:

Warning:

success = ExNext(lock, infoBlock)
DO -108(a6) D1 D2

BOOL success
BPTR lock
STRUCT FileInfoBlock *infoBlock)

This function examines the next directory entry and fills the
fields of the given FileInfoBlock with the values that were
obtained. Prior to the first call, the FileInfoBlock must be
initialized with the Examine() function.

lock Lock for the directory being examined. This
lock must correspond with the lock from the
Examine() call. File locks do not work.

infoBlock Address of FileInfoBlock structure that was
initialized by Examine().

0 If IoErr()=ERROR_NO_MORE_ENTRIES,
then no more entries are available. Otherwise,
IoErr() returns the error number.

Recursive reading of the directory tree structure will only
work if you use a new FileInfoBlock for each directory
found.

3.1 The Libraries and their Functions

{GetProgramDir Get directory lock for the program|
Call: lock = GetProgramDir ()
DO -600 (A6)
BPTR lock
Function: Returns a lock for the directory from which the program is
started. You can make a working copy of this lock with
DupLock().
Result: Lock or O (for example, in the case of a resident program)
|Info Get information about a disk]
Call: success = Info(lock, parameterBlock)
DO -114(a6) D1 D2
BOOL success
BPTR lock
STRUCT InfoData *parameterBlock
Function: Fills the InfoData structure with information on the disk
that corresponds to a given lock.
Parameters: lock A filesystem lock
parameterBlock
InfoData structure
Result: 0 Error
[MatchEnd Free MatchFirst()/MatchNext() memory]
Call: MatchEnd (AnchorPath)
-834(A6) D1
STRUCT AnchorPath *AnchorPath
Function: Free pattern matching memory.

89

3. Programming with AmigaOS 2 .x

Parameters: AnchorPath

Structure of MatchFirst()/MatchNext().
[MatchFirst Find a file that matches the pattern]
Call: error = MatchFirst (pat, AnchorPath)

Function:

Parameters:

Result:

DO -822 (A6) D1 D2

BOOL error
APTR pat
STRUCT AnchorPath *AnchorPath

Finds the first file or directory that matches the given
pattern. Initializes the AnchorPath structure. Possible
characters in the pattern string are:

? Individual character
0 or more characters

(alb) Individually check components separated by |
~ Exclude the following expression

[abc] One of the specified characters

[a-z] Range of characters, such as "[0-9a-zA-Z]"

% No character (useful with "(albl%)")

* Can optionally be used for "#?"
pat Pattern string
AnchorPath

Structure for the search.

0 Okay, otherwise error code.

|MatchNext

Find next file that matches the pattern]

Call:

Function:

90

error = MatchNext (AnchorPath)
DO -828(a6) D1

BOOL error
STRUCT AnchorPath *AnchorPath

Finds the next file or directory to match the given pattern
(see MatchFirst()).

3.1 The Libraries and their Functions

Dec

116
120
124
128

Hex
$0
$4
$8

$74

$78
$7¢C
$80

STRUCTURE FileInfoBlock, 0

LONG
LONG
STRUCT
LONG
LONG
LONG
LONG

Parameters: AnchorPath

MatchFirst() structure

Result: 0 Okay, otherwise error code.
|ParentDir Get parent directory lock]
Call: newlock = ParentDir(lock)

DO -210(Aa6) D1

BPTR newlock, lock

Function: Returns a lock for the parent directory of a file or directory.

Parameters: lock

BCPL pointer to a lock structure.

Result: Lock or 0 (= boot directory, parent directory of all root
directories)
[ParentOfFH Get lock for a file's parent directory]
Call: lock = ParentOfFH(fh)
DO -384(a6) D1

BPTR lock, fh

Function: Returns a lock for the parent directory when given a

FileHandle.
Parameters: fh FileHandle
Result: Lock or O (error)

Structure of Examine() and ExNext():

fib_DiskKey
fib_DirEntryType
fib_FileName, 108
fib_Protection
fib_EntryType
fib_Size
fib_NumBlocks

;block number for operating system
itype of entry (<0:file, >0:directory)
;filename ending in 0

iprotection status

;for the operating system

;file size in bytes

;file size in blocks

91

3. Programming with AmigaOS 2.x

132 $84 STRUCT fib_DateStamp,ds_SIZEOF ;revision date

144 $90 STRUCT fib_Comment, 80 ;comment ending in 0
224 SEO STRUCT fib_Reserved, 36 ;reserved

260 $104 LABEL fib_SIZEOF

Normal values for fib_DirEntryType:

ST_BOOT = 0 ;boot directory
ST_ROOT = 1 ;main directory
ST_USERDIR = 2 ;directory
ST_SOFTLINK = 3 ;soft link

ST_LINKDIR = 4 ;HardLink to directory
ST_FILE = -3 ;file

ST_LINKFILE = -4 ;HardLink to file

Protection status bits:

FIBB_SCRIPT = 6 ;batch file
FIBF_SCRIPT = 64 ;
FIBB_PURE = 5 ;program code is re-entrable
FIBF_PURE = 32 ; (=RESIDENT-capable)
FIBB_ARCHIVE = 4 ;deleted when file is changed
FIBF_ARCHIVE = 16 ;
FIBB_READ = 3 ;disable read access
FIBF_READ = 8 ;
FIBB_WRITE = 2 ;disable write access
FIBF_WRITE = 4 ;
FIBB_EXECUTE = 1 ;disable program start
FIBF_EXECUTE = 2 ;
FIBB_DELETE = 0 ;disable delete
FIBF_DELETE = 1 ;

Values for ExAll():
ED_NAME = 1 ;name
ED_TYPE = 2 ;name+type
ED_SIZE = 3 ;name+type+length
ED_PROTECTION = 4 ;name+type+length+protection
ED_DATE = 5 ;name+type+length+protection+date
ED_COMMENT = 6 ;name+type+length+protection+date+comment

ExAll() result structure:

Dec Hex STRUCTURE ExAllData,0

0 $0 APTR ed_Next ;next ExAllData structure
4 $4 APTR ed_Name ;hame
8 $8 LONG ed_Type ;typ or end of structure

92

3.1 The Libraries and their Functions

12
16
20
24
28
32

Dec

[~y

12
le

Dec

[~

12
16
20
24
28
32
36

ID_WRITE_PROTECTED

sc
$10
$14
$18
$s1c
$20

Hex
$0
$4
$8
e

$10

Hex
$0
$4
$8
sc

$10

$14
$18
$1c
$20
$24

ULONG
ULONG
ULONG
ULONG
ULONG
APTR

LABEL

ed_Size ;size or end of structure
ed_Prot ;protection or end of structure
ed_Days ;date stamp or end of structure
ed_Mins

ed_Ticks

ed_Comment ;comment or end of structure
ed_Strings ;strings at end of structure

Control structure for ExAll():

STRUCTURE ExAllControl, 0

ULONG
ULONG
APTR
APTR
LABEL

eac_Entries ;number of buffer entries
eac_LastKey ;disk block (do not change)
eac_MatchString ;pattern string or 0
eac_MatchFunc ;pattern match Hook or 0

ExAllControl_SIZEOF

Structure of Info():

STRUCTURE InfoData,0

LONG
LONG
LONG
LONG
LONG
LONG
LONG
BPTR
LONG

id_NumSoftErrors ;number of errors on disk

id_UnitNumber ;jnumber for OpenDevice
id_DiskState ;diskette status (see below)
id_NumBlocks ;number of blocks on disk
id_NumBlocksUsed ;number of blocks used

id_BytesPerBlock ;bytes per block

id_DiskType ;disk type
id_vVolumeNode ;BPTR to DosList structure
id_InUse ;Flag, O=not active

LABEL id_SIZEOF

ID_VALIDATING
ID_VALIDATED

ID_NO_DISK_PRESENT

Diskette status:

80 ;write protection on
81 ;disk being checked
= 82 ;disk is okay

Diskette type:

-1 ;no disk in drive

ID_UNREADABLE_DISK = 'BAD'<<8 ;junreadable format or error

ID_NOT_REALLY_DOS

ID_DOS_DISK
ID_FFS_DISK
ID_KICKSTART _DISK = 'KICK' ;joperating system diskette
ID_MSDOS_DISK

'NDOS* ;junreadable format
= 'DOS'<<8 ;OFS disk
= 'DOS'<<8!1 ;FFS disk

= 'MSD'<<8 ;MS-DOS diskette

93

3. Programming with AmigaOS 2.x

Dec Hex
0 $0 LABEL
0 $0 CPTR
4 $4 LABEL
4 $4 CPTR
8 $8 LONG
12 $C LONG
16 $10 LABEL
16 $10 BYTE
17 $11 BYTE
18 $12 WORD
20 $14 STRUCT
280 $118 LABEL
280 $118 LABEL
APB_DOWILD
APF_DOWILD

APB_ITSWILD
APF_ITSWILD
APB_DODIR
APF_DODIR
APB_DIDDIR
APF_DIDDIR
APB_NOMEMERR
APF_NOMEMERR
APB_DODOT
APF_DODOT

APB_DirChanged
APF_DirChanged

Pattern matching structure:

STRUCTURE AnchorPath, 0

ap_First

ap_Base

;first Anchor

ap_Current

ap_Last ;last Anchor
ap_BreakBits ;break bits
ap_FoundBreak ; found bits
ap_Length

ap_Flags ;Flags

ap_Reserved

ap_Strlen ;string length
ap_Info, fib_SIZEOF ;FileInfoBlock
ap_Buf ;buffer for path
ap_SIZEOF

0 ;OPT ALL

1

1 ;Flag from MatchFirst() for MatchNext ()
2

2 ;directory must also be checked

4

3 ;directory being checked

8

4 ;not enough memory

16

5 ;conversion of '.' in CurrentDir
32

6 ;directory has changed since

64 ;last MatchNext call

Anchor structure:

Dec Hex STRUCTURE AChain, 0
0 $0 CPTR an_Child
4 $4 CPTR an_Parent
8 $8 LONG an_Lock
12 $§C STRUCT an_Info,fib_SIZEOF ; FileInfoBlock
272 $110 BYTE an_Flags
273 $111 LABEL an_String
273 $111 LABEL an_SIZEOF
DDB_PatternBit = 0, DDF_PatternBit = 1
DDB_ExaminedBit = 1, DDF_ExaminedBit = 2
DDB_Completed = 2, DDF_Completed = 4
DDB_Al1lBit = 3, DDF_AllBit 8
DDB_SINGLE = 4, DDF_SINGLE = 16

94

3.1 The Libraries and their Functions

P_ANY
P_SINGLE
P_ORSTART
P_ORNEXT
P_OREND
P_NOT
P_NOTEND
P_NOTCLASS
P_CLASS
P_REPBEG
P_REPEND
P_STOP

COMPLEX_BIT
EXAMINE_BIT

Tokens for Token strings:

Function:

Parameters:

Result:

$80 ; Token for '*' or '#?

$81 ; Token for '?'

$82 ; Token for '('

$83 ; Token for '|'

$84 ; Token for ')

$85 ; Token for '~'

$86 ; end of expression after '-~'

$87 ; Token for '"'

$88 ; Token for '[]'

$89 ; Token for '['

$8A ; Token for ']’

$8B ; cancel evaluation
Values for an_Status:

1 ; pattern parsing

2 ; search in directory

. Programs
|AddSegment Insert program in resident list|
Call: success = AddSegment (name, seglist, type)

DO -774 (A6) D1 D2 D3

BOOL success

APTR name

BPTR seglist

LONG type

Inserts a program in the resident list (to hold it in memory).
name Program name

seglist BPTR (APTR/4) to program's segment list.
type Call counter for linking, normal value: 0.

0 Error

95

3. Programming with AmigaOS 2.x

96

|CreateNewProc Generate a new process]

Call:

Function:

Parameters:

Result:

process = CreateNewProc (tags)
DO -498(A6) D1

STRUCT Process *process
STRUCT TagItem *tags

Generates a new process according to the values in the tag
array. NP_Seglist or NP_Entry must be included.
NP_Seglist passes a BPTR to a segment list and NP_Entry
passes the address of the program. Input and output are
routed to NIL: and the stack is set to 4000 bytes.

CreateNewProc can be called from a simple task, but in this
case the DOS I/0O will not work.

tags Address of a Tagltems field.

Process or 0

|CreateProc

Generate a new process (old)]

Call:

Function:

Parameters:

process = CreateProc(name, pri, seglist, stackSize)

DO -138(A6) D1 D2 D3 D4

STRUCT MsgPort *process

APTR name

LONG pri

BPTR seglist

LONG stackSize

CreateProc starts a new process with the given name.
name Address of the string with the process name.
pri Priority of the process (-128 to 127)

seglist BPTR to a SegList (see LoadSeg())

stackSize Stack size (multiple of 4)

3.1 The Libraries and their Functions

Result: Process or 0 (error)
See also: LoadSeg(), CreateNewProc()
|Exit End BCPL program|
Call: Exit (returnCode)
-144(a6) D1
LONG returnCode
Function: Exit() is used to properly end BCPL programs only. This
routine must never be called by other programs.
Parameters: returnCode
Return value for CLI.
Result: None.
Warning: C programmers must be careful not to confuse the C
function exit() with the DOS function Exit().
[FindSegment Retrieve a segment from the resident list|
Call: segment = FindSegment (name, start, system)
DO -780(A6) D1 D2 D3
STRUCT Segment *segment, *start
APTR name
LONG system
Function: Finds the segment of the given name in the list of resident
programs. You can also specify the name of the segment
from which to begin the search. If the system flag is set,
then only one system segment is searched.
Parameters: name Segment name
start 0 or starting segment for the search

system 0 or -1 for system segment

97

3. Programming with AmigaOS 2.x

98

Actual
DO

Result: Segment address or 0

Warning: Tumn off multitasking before calling.

{InternalLoadSeg Load program from FileHandle]
(?all: seglist = InternalLoadSeg (fh, table, functionarray, stack)
DO -756 (A6) DO A0 Al A2

BPTR seglist, fh,table

APTR functionarray,stack

Function: Loads the program represented by a FileHandle. If no
overlay is loaded, then table must be set to 0. If the stack
size is integrated into the program, then it's written to the
address given in stack. There may already be a value stored
at this address. In this case, it's overwritten by the loaded

value.

Parameters: fh FileHandle of the program.
table Overlay table or 0
functionarray

Field containing addresses of three functions:

ReadFunc (readhandle, buffer, length),DOSBase
D1 A0 DO A6
> read function, normally Read()
= AllocFunc(size, flags), Execbase
DO D1 A6

> allocate memory, normally AllocMem()
FreeFunc (memory, size) , Execbase
Al DO A6
> free memory, normally FreeMem()

stack Variable address (LONG) to which the stack
size is written.

Result: SegList or -(SegList) for overlays or 0.

3.1 The Libraries and their Functions

|InternalUnLoadSeg Free a SegList|
Call: success = InternalUnLoadSeg(seglist,FreeFunc)

DO -762(A6) D1 Al

BOOL success
BPTR seglist
FPTR FreeFunc

Function: Frees the segments of a SegList and closes the program file
for overlays.
Parameters: seglist SegList of a program.
FreeFunc Free function (see Internall.oadSeg())
Result: 0 Error
|LoadSeg Load program|
Call: seglist = LoadSeg(name)
DO -150(a6) D1
BPTR seglist
APTR name
Function: Loads a file consisting of DOS hunks into memory. The
memory blocks are linked with BPTRs in the first
longword. The size of the memory block precedes the
BPTR.
Parameters: name Filename (including path)
Result: BPTR to the first segment or 0.
(NewLoadSeg Expanded LoadSeg() routine}
Call: seglist = NewLoadSeg(file, tags)

DO -768 (A6) D1 D2

BPTR seglist
APTR file

99

3. Programming with AmigaOS 2.x

STRUCT TagItem *tags

Function: Loads a file consisting of hunks, depending on the tags in a

given Tagltem field.
Parameters: file Filename
tags Address of a Tagltem field.
Result: Seglist or 0
[RemSegment Remove a program from the resident list]
Call: success = RemSegment (segment)
DO -786 (A6) D1

BOOL success
STRUCT Segment *segment

Function: Removes a resident segment from the system list and frees
the allocated memory.

Parameters: segment Segment structure

Result: 0 Error (usually because Usecount is not 0)
|RunCommand Start a program with its own process]
Call: rc = RunCommand(seglist, stacksize, argptr, argsize)
DO -504(A6) D1 D2 D3 D4
LONG rc

BPTR seglist
ULONG argsize, stacksize
APTR argptr
Function: Starts a program using its own process structure.

Parameters: seglist SegList of the program.

stacksize Stack size

100

3.1 The Libraries and their Functions

NP_Dummy
NP_Seglist
NP_FreeSeglist
NP_Entry
NP_Input
NP_Output
NP_CloseInput
NP_CloseOutput
NP_Error
NP_CloseError
NP_CurrentDir
NP_StackSize
NP_Name
NP_Priority
NP_ConsoleTask
NP_WindowPtr
NP_HomeDir
NP_CopyVars
NP_C1li

NP_Path
NP_CommandName
NP_Arguments

argptr Argument string
argsize Length of argument string
Result: Return value of the program or -1 if the stack could not be
loaded.
[UnLoadSeg Free SegList|
Call: success = UnLoadSeg(seglist)
DO -156 (A6) D1
BOOL success
BPTR seglist
Function: Free the SegList of a file loaded with LoadSeg().
Parameters: seglist BCPL to a SegList
Result: 0 SegList was O or an error occurred.

CreateNewProc() Tags:

TAG_USER+1000

NP_Dummy+1
NP_Dummny +2
NP_Dummy +3
NP_Dummy+4
NP_Dummy +5
NP_Dumny +6
NP_Dumny +7
NP_Dummy +8
NP_Dummy+9
NP_Dummy+10
NP_Dummy+11
NP_Dummy+12
NP_Dummy+13
NP_Dummy+14
NP_Dummy+15
NP_Dummny+16
NP_Dummy+17
NP_Dummy+18
NP_Dummy+19
NP_Durmmy+20
NP_Dummy+21

;SegList of the program
;free SegList at end?
;program address

;input handle

;output handle
;close(Inputhandle) at end?
;close (Outputhandle) at end?
;error handle

;close (Errorhandle) at end?
;ourrent directory
;stack size in bytes
;process name

;process priority
;Console Handler
;window for Requester,
;start directory

;copy local variables?
;create CLI structure?
;path for CLI

;program name for CLI
;arguments for CLI

etc.

101

3. Programming with AmigaOS 2.x

NP_NotifyOnDeath = NP_Dummy+22 ;message at end?
NP_Synchronous
NP_ExitCode
NP_ExitData

Dec

92
126
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200
204
208
220
224
228

PRB_FREESEGLIST
PRB_FREECURRDIR

Hex

$0
$5C
S7E
$80
$84
$88
$8C
$90
$94
$98
$9C
SAO0
SA4
SAS8
$AC
$BO
$B4
$B8
$BC
$CO
sc4
scs
scc
$DO
$DC
$EO
$SE4

NP_Dummy+23 ;wait until process end?
NP_Dummy+24 ;routine to be ended

= NP_Dummy+25 ;data for NP_EndCode

Structure of a process (expanded Task structure):

STRUCTURE Process, 0

STRUCT
STRUCT
WORD
BPTR
LONG
APTR
LONG
BPTR
LONG
BPTR
BPTR
BPTR
APTR
APTR
BPTR
APTR
APTR
APTR
BPTR
LONG
APTR
LONG
APTR
STRUCT
APTR
BPTR
LABEL

PRB_FREECLI
PRB_CLOSEINPUT

PRB_CLOSEOUTPUT

PRB_FREEARGS

102

pr_Task, TC_SIZE

pr_MsgPort,MP_SIZE

pr_Pad
pr_SegList
pr_StackSize
pr_GlobVec
pr_TaskNum
pr_StackBase
pr_Result2
pr_CurrentDir
pr_CIS

pr_Cos
pr_ConsoleTask
pr_FileSystemTask
pr_CLI
pr_ReturnAddr
pr_PktWait
pr_WindowPtr
pr_HomeDir
pr_Flags
pr_ExitCode
pr_ExitData
pr_Arguments

pr_LocalVars,MLH_SIZE

pr_ShellPrivate
pr_CES
pr_SIZEOF

pr_Flags flags:

PRF_FREECLI

[l
d W R o

~

. PRF_FREEARGS

., PRF_FREESEGLIST
. PRF_FREECURRDIR

, PRF_CLOSEINPUT
PRF_CLOSEOUTPUT

;Task structure
;process port

;SegList of the program
;stack size

;global vector (BCPL)

;CLI process number

;end of stack

;return value

;Lock for current directory
;input channel

;output channel

;pr_MsgPort of the window Handler
;pr_MsgPort of the drive
;CLI structure

;o0ld stack

;WaitPkt () function
iRequester window

;jstart directory

;Flags

;end function

;data for the function
;argument string

;local ENV variables

;for Shell only

;jerror channel, in case pr_C0S=0

© & NP

16
32

3.1 The Libraries and their Functions

HUNK_UNIT =
HUNK_NAME =
HUNK_CODE =
HUNK_DATA =
HUNK_BSS
HUNK_RELOC32
HUNK_RELOC16
HUNK_RELOCS =
HUNK_EXT
EXT_SYMB
EXT_DEF
EXT_ABS
EXT_REF32
EXT_COMMON =
EXT_REF16
EXT_REFS8
EXT_DEXT32
EXT_DEXT16
EXT_DEXTS8
HUNK_SYMBOL =
HUNK_DEBUG
HUNK_END =
HUNK_HEADER =
HUNK_OVERLAY
HUNK_BREAK
HUNK_DREL32
HUNK_DREL16
HUNK_DRELS =
HUNK_LIB =
HUNK_INDEX =

1]

n

]

6. CLI

Hunk types:
999 ;part of an object code file
1000 ;segment name
1001 ;program segment
1002 ;data segment
1003 ;memory block (+MEMF_CLEAR)
1004 ;table for absolute addressing
1005 ;offset table
1006 ;offset table
1007 ;linker data
0 ;symbol table
1 ;external label
2 ;absolute value
129 ;32 bit symbol reference
130 ;32 bit reference to global data
131 ;16 bit symbol reference
132 ;8 bit symbol reference
133 ;32 bit relative data reference
134 ;16 bit relative data reference
135 ;8 bit relative data reference
1008 ;name of a Long value
1009 ;special info for a debugger
1010 ;end of main segment
1011 ;info on the following Hunks
1013 ;overlay Hunks
1014 ;end of Overlay
= 1015 ;relative data 32 bit
1016 ;relative data 16 bit
1017 ;relative data 8 bit
1018 ;library
1019 ;table
[CheckSignal Check for Cancel signal
Call: signals = CheckSignal (mask)
DO -792 (a6) D1

ULONG signals
ULONG mask

Function: Tests the given signal bits. The signal bits are masked and

passed back. All bits set in the mask are reset in the process
structure.

103

3. Programming with AmigaOS 2.x

104

Parameters: mask Bit mask for signal bits.
Result: signals Logical AND combination of the mask and the
signal bits.
See also: exec.library/Signal
[Chi Get the address of the calling CLI|
Call: cli_ptr = Cli()
DO -492 (a6)
STRUCT CommandLineInterface *cli_ptr
Function: Returns the address of the CLI from which the program
was started.
Parameters: None.
Result: Address of the CLI or 0 (Workbench).
|Execute Execute CLI command]
Call: success = Execute(commandString, input, output)
DO -222(A6) D1 D2 D3
BOOL success
APTR commandStringExecute
BPTR input, output
Function: Attempts to execute a CLI command. The string that

contains the command and the parameters is constructed
exactly as it would be if entered from the CLI entry line. It
can contain any special characters available to CLI. If an
input channel is specified, then Execute() will read further
instructions from this channel after the execution and
change the process in the case of an interactive channel or
a re-routing to NIL:. The default output is the current
window, but this can be changed by specifying a different
output channel.

Processes are started using the RUN command.

3.1 The Libraries and their Functions

Parameters:

commandString
Address of a CLI command line.

input FileHandle

output FileHandle

Result: 0 Error
Warning: Programs started from the Workbench normally do not
have a current output window.
[FindCliProc Find a CLI process]
Call: proc = FindCliProc (num)
DO -546 (A6) D1
STRUCT Process *proc
LONG num
Function: Returns the CLI process with the given number.
Parameters: num Task number of the CLI process.
Result: Address of the Process structure or O if not found.
‘ Warning: To be safe, this routine should only be called when
multitasking is turned off.
[Input Get the FileHandle for the default input file]
Call: file = Input()
DO -54 (76)
BPTR file
Function: Returns the FileHandle that was set as the input channel
when the program was started. This FileHandle may not be
closed.
Result: Input FileHandle or O

105

3. Programming with AmigaOS 2.x

See also:

Output()

[MaxChi

Get the highest CLI number]

Call:

Function:

Result:

Warning:

number = MaxCli ()
DO -552(a6)

LONG number

Returns the highest process number of all the CLI
processes running.

Highest CLI process number.
The highest process number does not necessarily equal the

number of processes currently running, since processes
with lower numbers may already have been ended.

|Output

Get the FileHandle for the default output file|

Call:

Function:

Result:

See also:

file = Output{()
DO -60(A6)

BPTR file

Returns the FileHandle that was set as the output channel
when the program was started. This FileHandle may not be
closed.

Output FileHandle or 0

Input()

[ReadArgs

Call:

106

Interpret CLI argument string |

result = ReadArgs(template, array, rdargs)
DO -798(A6) D1 D2 D3

STRUCT RDArgs *result, *rdargs
APTR template, array

3.1 The Libraries and their Functions

Function: Interprets an argument string using a pattern string, which
can contain options such as "Q=Quick". Options are
separated by commas in the pattern string. A result for each
option is expected to be passed in the longword field.
Options can be defined with '/

/S Switch, BOOL, 0 = not given.

K Keyword, this entry is only filled in if the
keyword was found.

N Number, a number in decimal format.

T Switch, similar to /S.

/A Required keyword.

F Remainder of the line.

™M Multiple strings (array address with last
string address=0).

The RDArgs structure is required for FreeArgs(). Such a

structure is normally created with ReadArgs() (parameter =

0).

Parameters: template Input format
array Longword array for results
rdargs Optional RDArgs structure

Result: RDArgs structure or 0

[ReadItem Read an argument from an argument string|

Call: value = ReadItem(buffer, maxchars, input)

DO -810(A6) D1 D2 D3
LONG value, maxchars

APTR buffer

STRUCT CHSource *input

Function: Reads a word or a character string enclosed in quotes from
Input() or a CHSource (if given).

Parameters: buffer Result buffer

107

3. Programming with AmigaOS 2.x

108

maxchars Buffer size

input CHSource structure or 0 (FGetC(Input()))

Result: See data structures.
[SelectInput Set FileHandle for default input channel]
Call: 0ld_fh = SelectInput (fh)
DO -294 (a6) D1
BPTR old_fh, fh
Function: Sets the value that Input() returns for its own CLI process.
Parameters: th New InputHandle
Result: FileHandle previously returned via Input().
[SelectOutput Set FileHandle for default output channel]
Call: old_fh = SelectOutput (fh)
DO -300(a6) D1
BPTR old_fh, th
Function: Sets the value that Output() returns for its own CLI
process.
Parameters: th New OutputHandle
Result: FileHandle previously returned by Output().
[SetArgStr Set argument string|
Call: Oldptr = SetArgStr (ptr)
DO -540(a6) D1
APTR ptr, Oldptr
Function: Sets the argument string for the running process. The old

string must be restored before the program is ended.

3.1 The Libraries and their Functions

Parameters:

Result:

ptr Address of new argument string.

Oldptr Address of old string.

SetCurrentDirName

Sets name of the current directory in the process

Call: success = SetCurrentDirName (name)
DO -558 (a6) D1
BOOL success
APTR name
Function: Manipulates the name of the current directory within the
CLI structure.
Parameters: name New directory name
Result: 0 Error
[SetProgramDir Sets program directory|
Call: Oldlock = SetProgramDir (lock)
DO -594 (26) D1
BPTR lock, Oldlock
Function: Sets the value returned by GetProgramDir().
Parameters: lock Directory lock
Result: Oldlock Lock on previous directory.
[SetProgramName Set program name|
Call: success = SetProgramName (name)
DO -570(A6) D1
BOOL success
APTR name
Function: Changes the program name in the CLI structure.

109

3. Programming with AmigaOS 2.x

110

Parameters: name Program name
Result: 0 Error
|SetPrompt Set prompt for CLI/Shell]
Call: success = SetPrompt (name)
DO -582(a6) D1
BOOL success
APTR name
Function: Sets prompt text in the CLI structure.
Parameters: name Prompt string
Result: 0 Error
[SystemTagList Execute command from Shell]
Call: error = SystemTagList (command, tags)
DO -606 (A6) D1 D2
LONG error
APTR command
STRUCT TagItem *tags
Function: Similar to Execute(), but does not read additional
instructions from input FileHandle.
Parameters: command Shell command line
tags Tagltem field for changes.
Result: Return value of command or -1 (error).
| VPrintf Output a formatted string]
Call: count = VPrintf(fmt, argv)

DO -954(a6) D1 D2

LONG count

3.1 The Libraries and their Functions

RETURN_OK
RETURN_WARN
RETURN_ERROR

APTR fmt,argvl]

Function: Similar to VFPtrintf, but output occurs after Output().

Parameters: fmt Format string for exec/RawDoFmt().
argv Field containing parameters.
Result: Number of output bytes or -1 (error).

Return values in CLI:

n
o

;everything okay
;warning
10 ;error occurred

L
(4]

RETURN_FAIL = 20 ;complete failure, nothing accomplished

CLI Cancel bits (CONTROL + CID/EIF)

SIGBREAKB_CTRL_C = 12, SIGBREAKF_CTRL_C = $1000
SIGBREAKB_CTRL_D = 13, SIGBREAKF_CTRL_D = $2000
SIGBREAKB_CTRL_E = 14, SIGBREAKF_CTRL_E = $4000

SIGBREAKB_CTRL_F = 15, SIGBREAKF_CTRL_F = $8000

Readltem() values:

ITEM_EQUAL = -2 ;"=" Symbol
ITEM_ERROR = -1 ;error
ITEM_NOTHING = 0 ;"*N", ";*, end

ITEM_UNQUOTED

1 ;no quotes

ITEM_QUOTED = 2 ;with quotes

Dec Hex
0 $o
4 $4
8 $8
12 $cC

Dec Hex
0 $0
12 $cC
16 $10

Readltem() structure:

STRUCTURE CSource, 0

APTR CS_Buffer ;buffer

LONG CS_Length ;buffer size

LONG CS_CurChr ;current character
LABEL CS_SIZEOF

ReadArgs() structure:

STRUCTURE RDArgs, 0

STRUCT RDA_Source,CS_SIZEOF ;source string
APTR RDA_DAList ; PRIVATE

APTR RDA_Buffer ;buffer (optional)

m

3. Programming with AmigaOS 2.x

20 $14 LONG RDA_BufsSiz ;buffer size
24 $18 APTR RDA_ExtHelp ;optional help
28 $1C LONG RDA_Flags ;Flags

32 $20 LABEL RDA_SIZEOF -
RDA_Flags values:
RDAB_STDIN

RDAB_NOALLOC
RDAB_NOPROMPT

0, RDAF_STDIN 1 ;use StdIn
1, RDAF_NOALLOC 2 ;no extra buffer
2, RDAF_NOPROMPT = 4 ;no input

MAX_TEMPLATE_ITEMS = 100 ;max. number of arguments (must be divisible by 4!!!)

MAX_MULTIARGS = 128 ;max. number of multiple strings
CLI structure:
Dec Hex STRUCTURE CommandLineInterface, 0
0 $0 LONG cli_Result2 ;IoErr() value
4 $4 BSTR cli_SetName ;current directory
8 $8 BPTR cli_CommandDir ;command directory
12 §$C LONG cli_ReturnCode ;return value
16 $10 BSTR cli_CommandName ;program name
20 $14 LONG cli_FailLevel ;error level
24 $18 BSTR cli_Prompt ;prompt string
28 $1C BPTR cli_StandardInput ;default input
32 $20 BPTR cli_CurrentInput ;current input
36 $24 BSTR cli_CommandFile ;batch filename
40 $28 LONG cli_Interactive ;BOOL if terminal
44 $2C LONG cli_Background ;BOOL if RUN command

48 $30 BPTR cli_CurrentOutput ;current output

52 $34 LONG cli_DefaultStack ;stack size in Longs
56 $38 BPTR cli_StandardoOutput ;default output

60 $3C BPTR cli_Module iprogram's SegList
64 $40 LABEL c¢li_SIZEOF

System() Tags:

SYS_Dummy = TAG_USER+32

SYS_Input = SYS_Dummy+1l ;set input FileHandle
SYS_Output = SYS_Dummy+2 ;set output FileHandle
SYS_Asynch = SYS_Dummy+3 ;close input/output
SYS_UserShell = SYS_Dummy+4 ;not to boot Shell
SYS_CustomShell = SYS_Dummy+5 ;specific Shell (name)
SYS_Error = SYS_Dummy+? ;anything else = error

112

3.1 The Libraries and their Functions

7. Files

[ChangeMode Change access to lock or FileHandle]

Call: success = ChangeMode (type, object, newmode)
DO -450(A6) D1 D2 D3
BOOL success
ULONG type
BPTR object
ULONG newmode

Function: Changes the access mode for a lock or FileHandle.

Parameters: type Data structure type: CHANGE_FH or

CHANGE_LOCK

object Lock or FileHandle (according to type)
newmode New access mode

Result: 0 Change not allowed

Warning: Invalid values can lead to a system crash.

See also: Lock(), Open()

[Close Close file]

Call: success = Close(file)
DO -36(A6) D1
BOOL success
BPIR file

Function: Close a file opened by the program itself.

Parameters: file BCPL address of the file's FileHandle.

Result: 0 if the file could not be closed, for example, because a

buffered output is still in process.

113

3. Programming with AmigaOS 2.x

See also: Open()
[DeleteFile Delete a file|
Call: success = DeleteFile(name)
DO -72(A6) D1
BOOL success
APTR name
Function: Attempts to delete a file or directory.
Parameters: name String containing file or directory name.
Result: 0 Could not be deleted.
See also: IoErr()
[ExamineFH Retrieve information on a file|
Call: success = ExamineFH(fh, fib)
DO -390(aA6) D1 D2
BOOL success
BPTR fh
STRUCT FileInfoBlock *fib
Function: Examines a FileHandle and fills out a FileInfoBlock. Be
careful, because fib_Size can contain invalid values.
Parameters: fh FileHandle
fib Address of a FileInfoBlock structure.
Result: 0 Error
|FGetC Read characters from a file]
Call: char = FGetcC (fh)

114

DO -306(a6) D1

LONG char

3.1 The Libraries and their Functions

BPTR fh
Function: Reads a byte from the given file (buffered).
Parameters: fh FileHandle
Result: Byte (value 0-255) or -1 if end-of-file or error.
[Flush Clears the buffer used for a buffered 1/O]
Call: success = Flush(fh)
DO -360(A6) D1
BOOL success
BPTR fh
Function: Deletes all buffers for a file. When reading from a file, Seek()
is used to locate the old position.
Parameters: fh FileHandle
Result: 0 Error
[FPutC Output a character]
Call: char = FPutC(fh, char)
D0 -312(a6) D1 D2
LONG char
BPTR fh
UBYTE char
Function: Buffered output of an individual character.
Parameters: fh FileHandle
char Output byte
Result: The printed character or EOF in the case of an error.

115

3. Programming with AmigaOS 2.x

|FRead

Read data blocks from a file]

Call:

Function:

Parameters:

Result:

Warning:

count = FRead(fh, buf, blocklen, blocks)
DO -324(A6) D1 D2 D3 D4
LONG count

BPTR fh

APTR Dbuf

ULONG blocklen, blocks

Attempts a buffered read of the given number of blocks
from a file.

fh FileHandle to use for buffered 1/O.

buf Buffer for writing the blocks that are read.
blocklen Block length

blocks Number of blocks to read.

Number of blocks actually read (EOF or read error aborts
the read operation).

You must first use SetloErr() to delete the error code if a
query is necessary.

|FWrite

Write data blocks to a file]

Call:

Function:

Parameters:

116

count = FWrite(fh, buf, blocklen, blocks)
DO -330(A6) D1 D2 D3 D4
LONG count

BPTR fh

APTR buf

ULONG blocklen, blocks

Attempts a buffered write of the given number of data
blocks to a file.

fh FileHandle

3.1 The Libraries and their Functions

buf Buffer containing the data to be written.

blocklen Block length

blocks Number of blocks to write.

Result: Number of blocks actually written (aborted in the case of
an error).

Warning: Use SetloErr to delete the error code before using IoErr().

|IsInteractive Is a file a virtual terminal?]

Call: status = IsInteractive(file)
DO -216(26) D1
BOOL status
BPTR file

Function: Checks a file to see if it's a virtual terminal (for example, a
console window).

Parameters: file FileHandle of the file.

Result: 0 Normal file, not a terminal.

|Lock Obtain access to a file or directory|

Call: lock = Lock(name, accessMode)
DO -84(A6) D1 D2
BPTR lock
APTR name
LONG accessMode

Function: Attempts to secure access to a file or directory. This can be
exclusive access (ACCESS_WRITE), which prevents other
programs from accessing the file, or shared access
(ACCESS_READ).

Parameters: name Filename and/or path name

117

3. Programming with AmigaOS 2.x

accessMode
Access mode

Result: BPTR to a lock structure or 0.

|LockRecord Obtain access to part of a file|

Call: success = LockRecord(fh,offset, length, mode, timeout)
DO -270(A6) D1 D2 D3 D4 D5

ULONG success,offset, length, mode, timeout
BPTR fh

Function: Grants access to part of a file. A specific timeout period can

be set.
Parameters: fh FileHandle for the file.
offset Start of record
length End of record
mode Access mode:

REC_EXCLUSIVE
Exclusive access

REC_EXCLUSIVE_IMMED
Exclusive access, ignore
timeout

REC_SHARED Shared access
REC_SHARED_IMMED
Shared access, ignore

timeout

timeout Timeout period in 1/50th seconds (0 allowed).

Result: 0 Error or access not possible.
|LockRecords Secure access to several parts of a file]
Call: success = LockRecords (record_array, timeout)
DO -276 (A6) D1 D2

118

3.1 The Libraries and their Functions

BOOL success
STRUCT RecordLock *record_array
ULONG timeout

Function: This function locks several parts of the file at once. A
specific timeout period can be set.
Parameters: record_array
List of RecordLock structures.
timeout Timeout period (0 allowed)
Result: 0 Error or one or more of the records not free.
[Open Open a file]
Call: file = Open(name, accessMode)
DO -30(a6) D1 D2
BPTR file
APTR name
LONG accessMode
Function: Attempts to open an existing file (MODE_OLDFILE) or
create a new file (MODE_NEWFILE). If
MODE_READWRITE is specified, a file is opened and
created, if it doesn't already exist.
Parameters: name Filename
accessMode
Access mode
Result: BPTR to a FileHandle structure or 0.

119

3. Programming with AmigaOS 2.x

|OpenFromLock Open file associated with a lock]

Call:

fh = OpenFromLock (lock)
DO -378(A6) D1

BPTR fh, lock

Function: Opens a file associated with a given lock. The access mode
is determined by the lock.

Parameters: lock Lock structure of a file.

Result: FileHandle or O

[Read Read data from a file]

Call: actualLength = Read(file, buffer, length)
DO -42(A6) D1 D2 D3
LONG actualLength, length
BPTR file
APTR buffer

Function: Read data from a given file to a buffer.

Parameters: file FileHandle
buffer Read buffer
length Number of bytes to read

Result: Number of bytes actually read (0 indicates end-of-file) or -1
(error).

|Rename Rename a file or directory]
success = Rename(oldName, newName)

Call:

120

DO -78(A6) D1 D2

BOOL success
APTR oldName, newName

3.1 The Libraries and their Functions

Function: Assigns a new name to a file or directory. If a new path is
also given, the renamed object is moved to the new
directory.

Parameters: oldName Old name
newName New name

Result: 0 Error

|SameLock Compare two locks|
Call: value = SameLock(lockl, lock2)

DO -420(A6) D1 D2

LONG value

BPTR lockl, lock2

Function: Compare two locks. Returns a value of LOCK_SAME if
the same object is found, LOCK_SAME_HANDLER for
different objects that belong to the same handler, or
LOCK_DIFFERENT if the handlers are different.

Parameters: lockl,lock2

The locks to be compared.

Result: See function.

[Seek Change read/write position in a file]

Call: oldpPosition = Seek(file, position, mode)

DO -66(A6) D1 D2 D3
LONG oldPosition,position,mode
BPTR file

Function: Seek() sets the read/write position within a file relative to
the start of the file, the current position, or the end of the
file. The old position is returned as the result.

Parameters: file FileHandle for the file.

121

3. Programming with AmigaOS 2.x

122

position Relative value

mode Start, relative, or end
Result: Old position relative to the start of the file.
[SetComment Set file comments]
Call: success = SetComment (name, comment)
DO -180(a6) D1 D2
BOOL success
APTR name, comment
Function: Sets new comments for the given file.
Parameters: name Filename
comment Comment string (max. 80 characters)
Result: DO 0 in case of error
[SetFileDate Set revision date for a file]
Call: success = SetFileDate(name, date)
DO -396 (A6) Dl D2
BOOL success
APTR name
STRUCT DateStamp *date
Function: Sets the revision date for a file or directory, as long as it's
allowed by the filesystem.
Parameters: name Object name
date DateStamp structure with new date.
Result: 0 Error

3.1 The Libraries and their Functions

[SetFileSize Set the size of a file]

Call: newsize = SetFileSize(fh, offset, mode)
DO -456 (A6) D1 D2 D3
LONG newsize,offset,mode
BPTR fh

Function: Sets the file size for the given file, as long as this is allowed
by the filesystem. The position is specified the same as with
Seek().

Parameters: th FileHandle for the file.
offset Relative value
mode OFFSET_BEGINNING, OFFSET_CURRENT

or OFFSET_END.

Result: File length or -1 (error).

[SetProtection Set protection status for a file|

Call: success = SetProtection(name, mask)
DO -186 D1 D2
BOOL success
APTR name
LONG mask

Function: Sets the protection status for a file or directory. The status
consists of an OR combination of various flags:
Bit4: A1 file unchanged 0 file changed
Bit3:R1 read not allowed 0 read allowed
Bit2: W1 write notallowed O write allowed
Bit1:E1 not executable 0 executable
Bit0:D1 delete not allowed O delete allowed

Parameters: name Filename
mask Protection status

123

3. Programming with AmigaOS§ 2.x |

Result: 0 Error
|UnGetC Returns a byte to the buffer]
Call: value = UnGetC(fh, character)

DO -318(A6) D1 D2

LONG value,character
BPTR fh

Function: Returns a byte to the input buffer. If the value -1 is passed,
the last character read from the buffer is put back.

Parameters: fh FileHandle for buffered I/O.

character Character or -1

Result: Returned character or O (error).
|UnLock Remove lock]
Call: UnLock(lock)

-90(a6) D1

BPTR lock

Function: Removes a lock and frees the allocated memory.

Parameters: lock BCPL pointer to a lock structure.
[OnLockRecord Free part of a file|
Call: success = UnLockRecord(fh,offset, length)

DO -282(a6) D1 D2 D3

BOOL success
BPTR fh
ULONG offset, length
Function: Frees part of a file that was locked with LockRecord().

Parameters: fh FileHandle given with LockRecord().

124

3.1 The Libraries and their Functions

offset Start of record
length Length of record
Result: 0 Error
[OnLockRecords Free several parts of a file]
Call: success = UnLockRecords (record_array)
DO -288 (A6) D1
BOOL success
STRUCT RecordLock *record_array
Function: Frees multiple records locked with LockRecords().
Parameters: record_array
List of records to free
Result: 0 Error
[VFPrintf Write formatted string to a file]
Call: count = VFPrintf (fh, fmt, argv)
DO -354(A6) D1 D2 D3
LONG count
BPTR fh
APTR fmt,argv(]
Function: Formats a string and does a buffered write of the result to a
file.
Parameters: fh FileHandle for the file.
fmt Format string for exec/RawDoFmit().
argv Address of data array.
Result: Number of bytes written or -1 (error).

125

3. Programming with AmigaOS 2.x

| VFWritef VFPrintf for BCPL strings]
Call: count = VFWritef(fh, fmt, argv)

DO -348(A6) D1 D2 D3

LONG count

BPTR fh

APTR fmt,argvl]

Functions, Parameters, and Results:
Same as VFPrintf, except the strings are BSTR or BCPL.

|Write Write to a file]
Call: returnedLength = Write(file, buffer, length)
DO -48(A6) D1 D2 D3

LONG returnedLength, length

BPTR file

APTR buffer
Function: Writes a specified number of bytes to a file.
Parameters: file FileHandle

buffer Address of the bytes.

length Number of bytes to write.

Result: Number of bytes actually written.

Open() modes:

1005 ;open existing file
1006 ;create new file
1004 ;open file (1005 (->1006))

MODE_OLDFILE
MODE_NEWFILE
MODE_READWRITE

nown

FileHandle structure:

Dec Hex STRUCTURE FileHandle, 0

0 $0 APTR fh_Link ;Exec message
4 $4 APTR fh_Port ;answer port for Packet
8 $8 APTR fh_Type ;port for PutMsg()

126

3.1 The Libraries and their Functions

12 $C LONG - fh_Buf
16 $10 LONG fh_Pos
20 $14 LONG fh_End
24 $18 LABEL fh_Funcl
24 $18 LONG fh_Funcs
28 $1C LONG fh_Func2
32 $20 LONG fh_Func3
36 $24 LABEL fh_Argl
36 $24 LONG fh_Args
40 $28 LONG fh_Arg2
44 $2C LABEL fh_SIZEOF

OFFSET_BEGINNING
OFFSET_CURRENT
OFFSET_END
OFFSET_BEGINING

Dec Hex STRUCTURE
0 $0 BPTR f

4 $4 LONG f

8 $8 LONG f
12 $C APTR £
16 $10 BPTR £
20 $14 LABEL f

SHARED_LOCK =
EXCLUSIVE_LOCK =
ACCESS_READ =
ACCESS_WRITE =

LOCK_SAME
LOCK_SAME_HANDLER
LOCK_DIFFERENT

CHANGE_LOCK
CHANGE_FH

n
o

i

I
[y

.
7

Points of reference for Seek():

"

-1 ;start of file

0 ;current position
= 1 ;end of file

= OFFSET_BEGINNING

Structure of Lock(), etc.:

FileLock, 0

1_Link ;next Lock

1_Key ;block number on disk
1_Access ;access mode

1_Task ;Handler port
1_Volume ;Volume Node (DosList)
1_SIZEOF

Lock() modes:

-2 ;shared access

-1 ;exclusive access
SHARED_LOCK
EXCLUSIVE_LOCK

SameLock() values:

0 ;objects identical
1 ;objects have same Handler
= -1 ;completely different Locks

ChangeMode() types:

Lock structure
FileHandle structure

137

3. Programming with AmigaOS 2.x

LINK_HARD

MakeLink() values:

n
o

LINK_SOFT = 1

REC_EXCLUSIVE

REC_EXCLUSIVE_IMMED
REC_SHARED =
REC_SHARED_TIMMED =

Dec Hex
0 $o0
4 $4
8 $8
12 $cC
16 $10

128

LockRecord()/LockRecords() modes:

;exclusive access
;exclusive with no waiting
;shared access

;ishared with no waiting

w NN = o

LockRecords()/UnLockRecords() structure:

STRUCTURE RecordLock, 0

BPTR rec_FH ;iFileHandle
ULONG rec_Offset ;start (offset)
ULONG rec_Length ;record length

ULONG rec_Mode ;Lock type
LABEL RecordLock_SIZEOF
8. Strings
[AddPart Add filename to path string]
Call: success = AddPart(dirname, filename, size)

DO -882(a6) D1 D2 D3

BOOL success
APTR dirname
APTR filename
ULONG size

Function: Adds a filename to a path name according to DOS
conventions. The filename may also contain path
information. If the filename is a complete path, then the old
path is replaced.

Parameters: dimame Path name

filename (path +)filename, '/ or ;' allowed

size Size of buffer that contains dirname.

3.1 The Libraries and their Functions

Result: 0 Error (buffer too small)
See also: Filepart(), PathPart()
|DateToStr Generate string from DateStamp|
Call: success = DateToStr(datetime)
DO -744 (A6) D1
BOOL success
STRUCT DateTime *datetime
Function: Generates a string for a DateStamp structure according to

the given DateTime structure.

Parameters: datetime Address of a DateTime structure, which must be

Result:

See also:

initialized as follows:
dat_Stamp Copy of the DateStamp.

dat_Format String format (FORMAT_DOS
dd-mmm-yy, FORMAT_INT yy-
mmm-dd, FORMAT_USA mm-
dd-yy or FORMAT_CDN dd-

mm-yy).

dat_Flags DTF_SUBST generates the day
of the week (Monday, Today...).

dat_StrDay Address of the day buffer or O if
not used.

dat_StrDate Address of the date buffer or 0
if not used.

dat_Str'Time Address of the time buffer or 0 if
not used.

0 DateStamp error

DateStamp(), StrToDate()

129

3. Programming with AmigaOS 2.x

130

|Fault

Generate error message|

Call:

Function:

Parameters:

Result:

success = Fault(code, header, buffer, len)
DO -468(A6) D1 D2 D3 D4

BOOL success

LONG code, len

APTR header,buffer

Converts an error code into a string for the console
window, printer, or a text file (with line feed). This is
preceded by the given header text. Error messages should
not be more than 80 characters, and headers should not be
more than 60. If a certain code has no message text, the
string "Error code <number>" is used.

code Error code from IoErr().

header Header text

buffer Buffer for the complete error message.

len Buffer length

0 Buffer too small or some other error.

|FGets

Read a line from a file]

Call:

Function:

Parameters:

buffer = FGets(fh, buf, len)
DO -336(A6) D1 D2 D3

APTR buffer,buf
BPTR f£fh
ULONG len

Reads a line from a file into a buffer. One character less
than the length of the buffer can be read, because the last
character in the buffer must always be set to 0. If the entire
line fits in the buffer, the character before the null byte is an
end-of-line code (LF or CR). The I/O is buffered.

fh FileHandle

3.1 The Libraries and their Functions

buf Buffer address
len Buffer length
Result: Address of the buffer or 0 if no characters could be read. If
the end of the file is reached before the call, IoErr()=0. If an
error occurs, IoEmr()<>0.
[FilePart Extract the filename from a path specification|
Call: fileptr = FilePart(path)
DO -870(a6) D1
APTR fileptr,path
Function: Returns the start address for the file in a given path
specification.
Parameters: path Path string according to DOS conventions.
Result: Start address for the file.
See also: PathName()
[FindArg Find a keyword in an argument string]
Call: index = FindArg(template, keyword)
DO -804 (A6) D1 D2
LONG index
APTR keyword, template
Function: Returns the argument number for a given keyword.
Parameters: keyword Keyword to search for.
template Argument string
Result: Argument number of the given keyword or -1 if the

keyword was not found.

131

3. Programming with AmigaOS§ 2.x

132

[FPuts Write a string to a file]
Call: error = FPuts(fh, str)
DO -342(a6) D1 D2
LONG error
BPTR fh
APTR str
Function: Buffered write of a string to a file.
Parameters: fth FileHandle
str String ending in 0.
Result: Negative Error
[GetArgStr Retrieves an argument string from CLI]
Call: ptr = GetArgStr ()
DO -534(A6)
APTR ptr
Function: Returns the argument address found in the AOQ register
when the program is started. This is only useful for high
level languages that do not use an argument parser.
Result: Address of the argument string from CLI or 0.

|GetCurrentDirName Retrieve the name of the current directory]

Call:

Function:

success = GetCurrentDirName (buf, len)
DO -564(a6) D1 D2

BOOL success
APTR buf
LONG len

Gets the name of the current directory from the CLI
structure of its own process.

3.1 The Libraries and their Functions

Parameters: buf Buffer for the name.

len Buffer length
Result: 0 No CLI structure or no directory.
|GetProgramName Returns the program's own name|
Call: success = GetProgramName (buf, len)

DO -576 (A6) D1 D2

BOOL success

APTR buf

LONG len
Function: Copies the program name from the CLI structure to a

buffer.
Parameters: buf Buffer address

len Buffer length
Result: 0 Buffer too small or CLI structure not found.
|GetPrompt Retrieve the prompt string for a process|
Call: success = GetPrompt (buf, len)

DO -588(A6) D1 D2

BOOL success

APTR buf

LONG len
Function: Copies the prompt string from the CLI structure to a buffer.
Parameters: buf Buffer address

len Buffer length
Result: 0 Buffer too small or CLI structure not found.

133

3. Programming with AmigaOS 2.x

[MatchPattern Test a string against a pattern]
Call: match = MatchPattern(pat, str)

DO -846 (A6) D1 D2

BOOL match

APTR pat,str

Function: Checks to see if the given string matches a given pattern.

Parameters: pat Pattern string from ParsePattern().

str String to be checked.
Result: 0 String does not match pattern.
[NameFromFH Get the filename from the FileHandle]
Call: success = NameFromFH(fh, buffer, len)

DO -408 (Aa6) D1 D2 D3

BOOL success
BPTR fh
APTR buffer
LONG len

Function: Writes the file and path name of the given FileHandle to a
buffer.

Parameters: fh FileHandle

buffer Buffer for result string.

len Buffer length
Result: 0 Error or buffer too small.
[NameFromLock Retrieve the name and path of a lock]
Call: success = NameFromLock (lock, buffer, len)

DO -402 (A6) D1 D2 D3

134

3.1 The Libraries and their Functions

BOOL success

BPTR lock
APTR buffer
LONG len
Function: Writes the name and path of the given lock to a buffer.
Parameters: lock Lock
buffer Buffer
len Buffer length
Result: 0o Error (IoErrf)=ERROR_LINE_TOO_LONG)
[ParsePattern Generate token string for MatchPattern()|
Call: IsWild = ParsePattern(Source,Dest,DestLength)
40 -840 (a6) Dl D2 D3
LONG IsWild,DestLength
APTR Source,Dest
Function: Creates a token string for the MatchPattern() function.
Parameters: source Pattern string
dest Buffer for token string.
DestLength
Buffer length (min. 2*Source+2).
Result: 1 string contains wildcards (#, ? etc.)
0 string contains no wildcards.
-1 buffer too small or error.
|PathPart Retrieve the end of a path specification|
Call: fileptr = PathPart(path)

DO -876(a6) D1

APTR fileptr,path

135

3. Programming with AmigaOS 2.x

136

Function: Returns the address of the end of a path specification.
Parameters: path Filename (with path) according to DOS
standards.
Result: Address of the part of the path that disappears when
another file is selected in a file selection box.
See also: FilePart()
‘[SplitName Retrieve part of a path specification|
Call: newpos = SplitName(name, separator, buf, oldpos, size)
DO -414(A6) D1 D2 D3 D4 D5
WORD newpos,oldpos
APTR name,buf
UBYTE separator
LONG size
Function: Copies the next part of a complete file/path name to a
separate buffer.
Parameters: name Filename with path.
separator ASCII code of the separation character.
buf Buffer
oldpos Old position in string.
size Buffer size in bytes.
Result: New start position for the next call (newpos->oldpos) or -1.
[StrToDate Convert a string to a DateStamp]
Call: success = StrToDate(datetime)

DO -750(a6) D1

BOOL success

STRUCT DateTime *datetime

3.1 The Libraries and their Functions

Function: Fills in a DateStamp structure using the information from a
string.

Parameters: datetime Initialized (!) DateTime structure.
Result: 0 Error

See also: DateToStx(), libraries/datetime.h

{StrToLong — Convert a decimal string to a longword]|
Call: characters = StrToLong (string,value)
DO -816(a6) D1 D2

LONG characters
APTR string,value

Function: Converts a string containing a decimal value into a

longword.

Parameters: string Decimal string
value Address of the resulting longword.

Result: Nu(;l)\ber of decimal places found or -1 (longword is then set
to 0).

StrToDate()/DateToStr() structure:

Dec Hex STRUCTURE DateTime, 0
0 %0 STRUCT dat_sStamp,ds_SIZEOF ;DateStamp structure

12 $C UBYTE dat_Format ;dat_StrDate format

13 $D UBYTE dat_Flags ;Flags (see below)

14 S$E CPTR dat_StrDay ;day of the week string
18 $12 CPTR dat_sStrDate ;date string

22 $16 CPTR dat_strTime ;time string

26 $1A LABEL dat_SIZEOF
LEN_DATSTRING = 16 ;length of a date string
Flags, Bits:
DTB_SUBST = 0, DTF_SUBST = 1 ;create "Today", "Tomorrow"...

DTB_FUTURE= 1, DTF_FUTURE= 2 ;a future day

137

3. Programming with AmigaOS 2.x

FORMAT_DOS
FORMAT_INT
FORMAT_USA
FORMAT_CDN
FORMAT_MAX

138

o noauon

Date formats:

0 ;dd-mmm-yy DOS format

1 ;yy-mm-dd international format
2 ;mm-dd-yy USA format

3 ;dd-mm-yy Canadian format

FORMAT_CDN
9. Time

|CompareDates Compare two DateStamps]
Call: result = CompareDates(datel,date2)

DO -738(A6) D1 D2

LONG result

STRUCT DateStamp *datel

STRUCT DateStamp *date2
Function: Compares the dates given in two DateStamp structures.
Parameters: datel/date2

DateStamp structures

Result: negative: datel later than date2

0: datel equals date2

positive: date2 later than datel
See also: DateStamp()
|DateStamp Retrieves the current time|
Call: DateStamp(ds)

-192 (A6) D1

STRUCT DateStamp *ds
Function: Fills the given DateStamp structure with the current time.
Parameters: ds Address of a DateStamp structure.

3.1 The Libraries and their Functions

Result: The structure is filled.
|Delay Suspend own process for a certain time period|
Call: Delay(ticks)
-198(A6) D1
ULONG ticks
Function: Own process is suspended for the given time period.
Parameters: ticks Time period in 1/50th second.
|WaitForChar Wait for input|
Call: status = WaitForChar(file, timeout)
DO -204 (A6) D1 D2
BOOL status
BPTR file
LONG timeout
Function: Waits a specified number of microseconds (1/1000000) to
see if a character can be successfully read from the given
file. This is very important for working with ports and
terminals.
Parameters: file FileHandle for the file.
timeout Time period in microseconds.
Result: 0 No character received during the wait period.

Dec Hex STRUCTURE DateStamp, 0

0 $0 LONG ds_Days ;days since Jan. 1, 1978
4 $4 LONG ds_Minute ;minutes since midnight

8 68 LONG ds_Tick ;ticks
12 $C LABEL ds_SIZEOF

since last minute

TICKS_PER_SECOND = 50 ;number of ticks per second

139

3. Programming with AmigaOS 2 .x

10. Environment Variables

|DeleteVar

Delete local environment variable]

Call:

Function:

Parameters:

Result:

See also:

success = DeletevVar(name, flags)
DO -912(Aa6) D1 D2
BOOL success
APTR name
ULONG flags
Delete a local ENV variable.
name String address with variable name (structured
like a filename).
flags Flags for variable type and function.
GVF_LOCAL_ONLY
Local variable (default)
GVF_GLOBAL_ONLY
Global variable
0 Error.

GetVar(), SetVar()

[FindVar

Find local variable]

Call:

Function:

Parameters:

140

var = Findvar(name, type)
DO -918(a6) D1 D2
STRUCT Localvar *var

APTR name
ULONG type

Retrieves a local variable.
name Variable name (structured like a path name)

type Variable type

3.1 The Libraries and their Functions

Result: LocalVar structure or 0
See also: GetVar(), SetVar(), DeleteVar(), dos/var.h
|GetVar Retrieve the value of a variable|
Call: len = GetvVar(name, buffer, size, flags)
DO -906 (A6) D1 D2 D3 D4
LONG len,size
APTR name,buffer
ULONG flags
Function: Returns the value of an environment variable. If
GVF_BINARY_VAR is not set, the function is interrupted
when an LF character is encountered.
Parameters: name Variable name (AmigaDOS path)
buffer Buffer for the variable contents.
size Buffer size
flags Variable type
GVF_GLOBAL_ONLY
Global ENV variable
GVF_LOCAL_ONLY
Process-specific ENV
variable
GVF_BINARY_VAR
With control character
Result: Total length of the variable (may be different from the
buffer contents if the buffer terminates with 0) or -1 in the
case of an error (variable not found).
See also: SetVar(), DeleteVar(), dos/var.h

141

3. Programming with AmigaOS 2.x

|SetVar Create or set the value of a variable]
Call: success = SetVar(name, buffer, size, flags)
DO -900(a6) D1 D2 D3 D4
BOOL success
APTR name,buffer
LONG size
ULONG flags
Function: Sets a local or environment variable. ASCII strings are only
recommended.
Parameters: name Filename of the variable.
buffer Contents of variable.
size Variable size (-1 = string ending in 0)
flags Variable type
Result: 0 Error
See also: GetVar(), DeleteVar(), dos/var.h

Structure of pr_LocaIVars list:

Dec Hex STRUCTURE LocalVar, 0
0 $0 STRUCT
14 $E UWORD

16 $10 APTR

20 $14 ULONG
24 $18 LABEL

LV_VAR
LV_ALIAS
LVB_IGNORE

142

0
1

1v_Node,LN_SIZE
1lv_Flags
1lv_Value

lv_Len
LocalVar_SIZEOF

;node

itype

;buffer
;buffer length

LN_TYPE bits in Iv_Node:

;a variable

;an ALIAS
7, LVF_IGNORE

definition
= $80

3.1 The Libraries and their Functions

Values for variable functions:

GVB_GLOBAL_ONLY
GVB_LOCAL_ONLY
GVB_BINARY_VAR

8, GVF_GLOBAL_ONLY
9, GVF_LOCAL_ONLY
10, GVF_BINARY_VAR

11. Errors and Requesters

$100
$200
$400

|ErrorReport

Display Retry/Cancel error requester|

Call:

status
DO

BOOL
LONG
ULONG

ErrorReport (code, type, argl, device)
-480(A6) D1 D2 D3 A0

status
code, type
argl

STRUCT MsgPort *device

Function: Displays the appropriate error requester.
Parameters: code Error code (ERROR _..., ABORT._...)
type - Requester type:
REPORT_LOCK argl is a lock (BPTR).
REPORT_FH argl is a FileHandle
(BPTR).
REPORT_VOLUME .
argl is a volume node
(CPTR).
argl Parameter (according to type)
device (optional) HandlerPort address (only needed
for REPORT_LOCK with arg1=0)
Result: DOS_TRUE 'Cancel’ or error
0 'Retry’ or DISKINSERTED (for certain errors)

‘T43

3. Programming with AmigaOS 2.x

144

|[IoErr Retrieve additional system error information|
Call: error = IOErr()
DO -132(a6)
LONG error
Function: For functions that return a value of 0 when errors occur.
IoErr() is used to retrieve more information on the cause of
the error. Other functions use IoErr() to return a second
result to accommodate programming in C.
Result: Error code or second result.
See also: Open(), DoPkt()
[PrintFault Send error message to the output channel]
Call: success = PrintFault (code, header)
DO -474 (A6) Dl D2
BOOL success
LONG code
APTR header
Function: The given header string is combined with the error message
associated with the given error code and sent in a buffered
output to the default output channel.
Parameters: code Error code (see IoErr())
header Header text to precede the error message text.
Result: 0 Error
|PutStr Send a string to the default output channel]
Call: error = PutStr(str)

DO -948(A6) D1

LONG error
APTR str

3.1 The Libraries and their Functions

Function: Buffered output of a given string to the default output

channel.
Parameters: str Output string
Result: 0 in the case of an error.
|SetloErr Set error code|
Call: oldcode = SetIoErr (code)
DO -462(A6) D1
LONG code

Function: Sets a new value for the result of the IoErr() function

(pr_Result2).
Parameters: code Error code for IoErr().
Result: oldcode Previous value of pr_Result2.

loErr() error codes:

ERROR_NO_FREE_STORE = 103 ;not enough storage space
ERROR_TASK_TABLE_FULL = 105 ;too many Tasks
ERROR_BAD_TEMPLATE = 114 ;command format error
ERROR_BAD_NUMBER = 115 ;invalid value
ERROR_REQUIRED_ARG_MISSING = 116 ;missing a required argument
ERROR_KEY_NEEDS_ARG = 117 ;keyword with no argument
ERROR_TOO_MANY_ARGS = 118 ;too many arguments
ERROR_UNMATCHED_QUOTES = 119 ;quotes missing
ERROR_LINE_TOO_LONG = 120 ;line too long
ERROR_FILE_NOT_OBJECT = 121 ;not a normal file
ERROR_INVALID_RESIDENT_LIBRARY= 122 ;error in header Hunk
ERROR_NO_DEFAULT_DIR = 201 ;no default directory
ERROR_OBJECT_IN_USE = 202 ;object being used
ERROR_OBJECT_EXISTS = 203 ;object already exists
ERROR_DIR_NOT_FOUND = 204 ;unknown directory
ERROR_OBJECT_NOT_FOUND = 205 ;object could not be found
ERROR_BAD_STREAM_NAME = 206 ;invalid name
ERROR_OBJECT_TOO_LARGE = 207 ;object is too big
ERROR_ACTION_NOT_KNOWN = 209 ;unknown Packet
ERROR_INVALID_COMPONENT_NAME = 210 ;invalid component name
ERROR_INVALID_LOCK = 211 ;invalid Lock structure
ERROR_OBJECT_WRONG_TYPE = 212 ;wrong object type

145

3. Programming with AmigaOS 2.x

ERROR_DISK_NOT_VALIDATED = 213 ;disk is not validated
ERROR_DISK_WRITE_PROTECTED = 214 ;disk is write-protected
ERROR_RENAME_ACROSS_DEVICES = 215 ;rename error
ERROR_DIRECTORY_NOT_EMPTY = 216 ;directory is not empty
ERROR_TOO_MANY_LEVELS = 217 ;too many levels
ERROR_DEVICE_NOT_MOUNTED = 218 ;unknown device
ERROR_SEEK_ERROR = 219 ;Seek() error
ERROR_COMMENT_TOO_BIG = 220 ;comment too long
ERROR_DISK_FULL = 221 ;disk is full
ERROR_DELETE_PROTECTED = 222 ;delete protected
ERROR_WRITE_PROTECTED = 223 ;write protected
ERROR_READ_PROTECTED = 224 ;read protected
ERROR_NOT_A_DOS_DISK = 225 ;not a DOS disk
ERROR_NO_DISK = 226 ;no disk found
ERROR_NO_MORE_ENTRIES = 232 ;end was reached
ERROR_IS_SOFT_LINK = 233 ;software link
ERROR_OBJECT_LINKED = 234 ;object linked
ERROR_BAD_HUNK = 235 ;invalid Hunk type
ERROR_NOT_IMPLEMENTED = 236 ;not implemented
ERROR_RECORD_NOT_LOCKED = 240 ; (see LockRecord())
ERROR_LOCK_COLLISION = 241 ;Lock collision
ERROR_LOCK_TIMEOUT = 242 ;Lock timeout period expired
ERROR_UNLOCK_ERROR = 243 ;Unlock error
ERROR_BUFFER_OVERFLOW = 303 ;buffer too small
ERROR_BREAK = 304 ;break character
ERROR_NOT_EXECUTABLE = 305 ;not executable
FAULT_MAX = 82 ;max. length of an error string

Error message structure:

Dec Hex STRUCTURE ErrorString, 0
0 $0 APTR estr_Nums
4 $4 APTR estr_Strings
8 $8 LABEL ErrorString_SIZEOF

ErrorReport() types:

REPORT_STREAM
REPORT_TASK
REPORT_LOCK
REPORT_VOLUME
REPORT_INSERT =

w u n
WD o

i"please insert volume..."

146

3.1 The Libraries and their Functions

ErrorReport() error codes:

ABORT_DISK_ERROR = 296 ;read/write error

ABORT_BUSY = 288 ;"You MUST replace..."
DOS boolean values:

DOSTRUE = -1 ;true

DOSFALSE = 0 ;false

General values:

BITSPERBYTE = 8 ; 8 bits = 1 byte
BYTESPERLONG = 4 ;4 bytes = 1 long
BITSPERLONG = 32 ;32 bits = 1 long
MAXINT = $7FFFFFFF ;maximum LONG value
MININT = $80000000 ;minimum LONG value
Basis structure:
Dec Hex STRUCTURE DosLibrary, 0
0 $0 STRUCT dl_lib,LIB_SIZE ;Library node
34 $22 APTR dl_Root ;RootNode
38 $26 APTR dl_Gv ;BCPL global vector
42 $2A LONG dl_a2 ; PRIVATE
46 $2E LONG dl_AS ; PRIVATE
50 $32 LONG dl_A6 ; PRIVATE
54 $36 APTR dl_Errors ;array with error messages
58 $3A APTR dl_TimeReq ;PRIVATE: timer request
62 $3E APTR dl_UtilityBase ;PRIVATE: utility library
66 $42 LABEL dl_SIZEOF
Dec Hex STRUCTURE RootNode, 0
0 $0 BPTR rn_TaskArray ;CLI Process Array [0]=number
4 $4 BPTR rn_ConsoleSegment ;CLI SegList
8 &8 STRUCT rn_Time,ds_SIZEOF ;jcurrent time
20 $14 LONG rn_RestartSeg ;D\disk validator SegList
24 $18 BPTR rn_Info ;Info structure
28 $1C BPTR rn_FileHandlerSegment ;FileHandler
32 $20 STRUCT rn_CliList,MLH_SIZE ;CLI processes
44 $2C APTR rn_BootProc ;PRIVATE: pr_MsgPort
48 $30 BPTR rn_ShellSegment ;Shell SegList
52 $34 LONG rn_Flags ;Flags
56 $38 LABEL rn_SIZEOF
RNB_WILDSTAR = 24, RNF_WILDSTAR = $1000000

147

3. Programming with AmigaOS 2.x

Dec

12
16

Dec

[

12
16
20
66
112
158

148

Hex
$0
$8
sc

$10

Hex
$0
$4
$8
sc

$10

$14

542

$70

$9E

STRUCTURE CliProcList,0

STRUCT
LONG
APTR
LABEL

cpl_Node,MLN_SIZE ;for linking

cpl_First ;first CLI number
cpl_Array ;CLI Process Array
cpl_SIZEOF

STRUCTURE DosInfo, 0

BPTR
BPTR
BPTR
BPTR
APTR
STRUCT
STRUCT

di_McName ;network name of device
di_DeviInfo ;1list of logical devices
di_Devices ;devices
di_Handlers ;Handlers
di_NetHand ;current network Handler

di_DevLock, SS_SIZE ;PRIVATE! | !
di_EntryLock,SS_SIZE ;PRIVATE!!!

STRUCT di_DeleteLock,SS_SIZE ; PRIVATE!!!

LABEL

di_SIZEOF

Example

The volume of these new functions is overwhelming. It's difficult to
update existing programs by replacing the old functions with new ones.
Assembler programmers should prepare for some big changes to their
programs, because the query of arguments has been simplified and
automated. This is a completely different approach to programming. As a
result, programming that conforms to the operating system is easier to
achieve in Assembler than in higher level languages.

Since the main routines of all CLI commands are now located in the
operating system, extremely short programs are possible. As an
introduction to OS 2 programming, it is recommended to try a few CLI
commands first, and then gradually work up to larger programs. A
disadvantage with Assembler used to be the complicated argument
queries; this has been eliminated with OS 2. We will use a simple CLI
command to help you through the programming procedure. For this
exercise we want to emphasize the basic structure and argument queries,
so we will construct a command that is executed using a new DOS
function: AddBuffers.

We are not referring to the long, slow CLI command (written in C) of the
same name. Instead, we are creating a completely new command that has
the same function. We will also have to mention some of the dangers of
using your own custom routines.

3.1 The Libraries and their Functions

The AddBuffers functions receives a device name and a delta value,
which may also be negative. This number represents the number of
buffers to be added. The function result will be the current number of
available buffers. This command will be able to simply query the number
of available buffers or change it by passing a delta value. The first
parameter is the device name, and this parameter is required with the
function call. If a second parameter is given, it must be a number. This
number will be taken as the delta value. We will call our new command
'‘Buffer'. The following is the program header:

*****************'k*******<Part_1>*************************

K eem e ==== -

** CLI command structure under 0S 2 (v37) *%
*x example of a new AddBuffers command *x
K K e e e o e o o o = - —— - ————— T — —— = —— — * %
*x Call: Buffer DRIVE/A, BUFFERS/N **
** DRIVE - drive letter *x
*x BUFFERS - optional, number of buffers to add (+)**
** or subtract (-) **
TH e e e . = . — ————— — —— ———— * *
*x written (w) 1991 by Stefan Maelger *x
**zzzzzzz======z==%¥%
INCLUDE_VERSION = 36
RETURN_OKAY = 0
RETURN_FAIL = 20
ERROR_INVALID_RESIDENT LIBRARY = 122
ThisTask = 276
pr_Result2 = 148
_LVOOpenLibrary = -552
_LVOCloseLibrary = -414
_LVOIoErr = -132
_LVOPrintFault = -474
_LvoAaddBuffers = =732
_LVOReadArgs = -798
_LVOFreeArgs = -858
_LVOVPrintf = -954

khkkhkkkkkkhhhhhhkhkhkhhkd Part-2o rkkkhhhhhhhhhhkhhhhhhhhhdr

149

3. Programming with AmigaOS 2 .x

Here we have defined the purpose of the program. All of the required
system values have been set and the Include files have been linked. Qur
program should be re-entrable, meaning it can be kept in memory via
RESIDENT after setting the PURE flag. In order to do this, we must save
all registers from number 2 on up before we use them. The longword at
address 4 contains the address of the operating system base structure.
This can vary, depending on the operating system and the available
memory. This same address is also the base address of the main library
EXEC, which can then be used to get the base address of the DOS

library.

***********************<Part_2>***************************

SECTION Program, CODE

_Start

movem.l d2-d6/a6,-(a7) ;save registers

* %k

** Open the DOS-Library

* %

movea.l $4.w,aé
_DOSName (pc) ,al ;Library name
#INCLUDE_VERSION,d0 ;0S 2, v36 and up
_LVOOpenLibrary(a6) ;OpenLibrary(al,do0)
#RETURN_FAIL,d4 ;error for DOS

lea
moveq
jsr
moveq
move.l
beq.s

;i load ExecBase

;save DosBase
;=> if DosBase=0

***********************<Part_3>***************************

150

All of the functions required for this command are available, starting with
version 36 (first version of OS 2). This version number must be specified.
The D4 register saves the value returned from CLI, which we immediately
set to an error. This is only changed to 'no error' after successful
initialization. This saves us a lot of writing. If DOS could not be opened,
which should only occur with older OS versions, then we branch to the
appropriate error handling routine.

Some of you will have noticed that we made no efforts to save the value
returned from CLI (AO=ArgBuf, DO=ArgLen). With OS 2, this is no
longer necessary. We can get the arguments with the DOS function
ReadArgs, which handles all the work of passing arguments from the
user.

3.1 The Libraries and their Functions

***********************<Part-3>***************************

* %

** Get CLI arguments

* %
exg ds5, a6

’

; Exec<->Dos

; Store argument field in the stack

'

clr.1l -(a7) ;Dummy (size divisible by 16!)
clr.l -(a7) ;Dummy (size divisible by 161!)
clr.1l -(a7) ;Arg([2]

clr.l -(a7) ;Arg[1]

; Query arguments

H

lea _Template(pc),al ;jargument description

move.l a0,dl
move.l a7,d2
moveq #0,d3

;to dl for call
;argument field to d2
;no RDArgs structure

jsr _LVOReadArgs (a6) ;ReadArgs (dl,d2,4d3)

move.l do0,dé

bne.s _parseArgs

;save RDArgs structure
;1f RDArgs<>0 (okay)

***********************<part_4>***************************

ReadArgs expects a string ending with a null byte. This string describes
all of the arguments involved. In it, each argument name is given
followed by the argument type. The description of each argument is
separated by a comma. In our case, this string will contain
'DRIVE/A,BUFFERS/N'. Since we have described two arguments in the
string, we need at least two longwords in the argument field to pass
them. In order to avoid a system crash, you should always make the field
size in bytes divisible by 16. There's no need to get extra memory
because there is sufficient space in the stack for four longwords. A value
of 0 is passed as the last parameter. An RDArgs structure obtained with
ReadArgs would be passed to this location, but is not necessary in our
case.

WARNING: The argument field must be filled with null bytes before the
call.

The returned RDArgs structure is saved because this must be freed later.
We test the result for errors or for user interrupt. If everything is okay, we
continue to evaluate the arguments; otherwise an error handling routine

151

3. Programming with AmigaOS 2.x

is needed. Normally, CLI commands report the cause of an error using a
readable message. This is handled by the PrintFault function, which uses
the result of IoErr as a parameter.

***********************<Part_4>***************************
;; ReadArgs error: set return address

i

pea _FreeStack(pc) ;for following routine

* %

** Subroutine

** Get DOS error and output cause as message text
* %

_Zerror

jsr _LVOIoErr (a6) ; IoExrr()

move.l do0,d1 ;error code to dl
moveq #0,d2 ;no header text

jmp _LVOPrintFault (a6) ;->PrintFault (dl,d2)

***********************<Part_5>***************************

In the 'Zerror' routine, we assume that the DosBase is stored in A6 and
the D2 register can be changed at any time. Therefore, we don't need to
save any of the registers and can jump to the PrintFault routine with a
JMP command. This corresponds to a JSR followed by an RTS. This part
of the program is structured as a subroutine so that it doesn't have to be
repeated for every error. In the case of a ReadArgs error, we jump
directly into this routine. Therefore, we must first store a return address
on the stack with PEA.

Now we come to the part of the program where the arguments are
evaluated.

WARNING: Freeing RDArgs is forbidden at this point, since this could
cause the entries of the argument field to point to undefined memory

blocks. As long as we are working with the argument field, RDArgs must
not be manipulated.

khkhkhhhkhhhkhhkhhhhhhhhkhkk Part-Sokkhhkhkhdhhhhhhhhhhhkhrhhkhhkhk
* %

** Evaluate arguments
* %

_parseArgs
moveq #RETURN_OK, d4 ;save return code

‘

152

3.1 The Libraries and their Functions

; test if two arguments were given

i

move.l 4(a7),do0

beq.s

’

;get Arg[2] (buffer)

_AvailBuffer ;if Arg[2]=0

; execute 'Buffers xxx yyy' command

’
movea.l
move.l
move.l
jsr
tst.l
bne.s

’

do, a0
(a7),d1l
(a0),d2

;Arg[2] is address of value!
;Arg[1l] to d1 (DRIVE)
;get value from address

_LvOAddBuffers(aé6) ;AddBuffers(dl, d2)

do

;jtest result (error=0)

_AvailBuffer ;if no error

; Error handling for RDArgs structure

i

_OutputError
bsr.s _Zerror ;output message
bra.s _RDArgsFree ;FreeArgs...

***********************<Part_6>***************************

Once the initialization is complete, we can be sure that no serious errors
have occurred. Therefore, the return value (which was stored in D4) can
be set to 'no error'. Next, we check to see if the number of buffers must be
changed before we retrieve the number. The first argument is the address
of the drive name, which can be placed directly to D1. Since this
argument is required (/A), we don't have to check for its presence.

WARNING: To distinguish between a value of 0 and a missing argument,
numerical values (/N) require the address of a longword in the argument
field rather than the value itself. The longword then contains the actual
parameter value.

This address is moved to a data register (D0). If the parameter is not
present, the Z flag would have been set. Then the address is moved to an
address register (A0) in order to obtain the actual value relative to the
address register (D2).

If all of this is successful or if the buffer count was not asked to be
changed, then the number of buffers are displayed. Otherwise, an error
message is output and we jump to free RDArgs.

153

3. Programming with AmigaOS 2.x

*******'k***************<Part_6>***************************
H
; Output number of available buffers

’

_AvailBuffer

move.l (a7),dl ;Arg[1l] to dl (DRIVE)
moveq #0,d2 ;no change

jsr _LVOAddBuffers(ab6) ;AddBuffers(dl,d2)
move.l do0,4(a7) ;Arg[2]=Buffers
bmi.s _OutputError ;if Buffers=-1

beq.s _RDArgsFree ;FreeArgs...

; Format and output string

i

lea _FormatString(pc),al0 ;format string
move.l a0,dl ;to dl for call
move.l a7,d2 ;field with arguments
jsr _LVOVPrintf (a6) ;VPrintf (dl,d2)

kkkkkkkhhkkhhkhkhhkhhkhdkhoPart-7To>k¥rdkhkhhhhhkhhhhhhhhhhhhhkhk

We go to 'AvailBuffer' if no change was made to the buffer count or after
the buffer count has been changed. We only need the drive name for
AddBuffers, since the change in indicated by 0. The result is stored as the
second argument in our argument field. In case of an error, a message is
displayed or the program is ended. VPrintf is used to output a string to
CLI. The control codes of this string have been replaced by the entries of
the field we want to pass. This field is simply our argument field; the
second entry of which we have changed to conform to our format string.

Now we still have to restore the system changes that were made when
the program was started. The first thing to do is free RDArgs with
FreeArgs. Then we restore the stack, which contains our longword field,
and close the DOS library. '

***********************<Part_7>***************************

* k

** Free RDArgs structure
**

_RDArgsFree
move.l d6,dl ;saved RDArgs
jsr _LVOFreeArgs (a6) ;FreeArgs (dl)

i
; Restore stack

154

3.1 The Libraries and their Functions

‘

_FreeStack
addq.1l #8,a7 ;jrestore a7
addg.l #8,a7 ; (all 16 bytes)

* *

** Close DOS library

* *

movea.l a6,al
movea.l d5,aé

;DosBase to al
;load ExecBase

jsr _LVOCloseLibrary(a6) ;CloseLibrary(al)

bra.s _Programend

;->end program

***********************<Part_8>***************************

The error code that describes the error of a program ended with
RETURN_FAIL is entered in the process structure for the program. Since
every process begins with a task structure, we can access this structure
via ExecBase, which always has a pointer to the currently running task.
In the following section, which is used in the case of an OpenLibrary
error, the error cause is sent to CLI. Then the program is ended. The
return value is placed in DO and the registers are restored. After this are
the strings; you no longer have to worry about even or odd addresses
since no more code follows.

***********************<Part_8>***************************

** Error opening DOS library:
** Send error cause to DOS

* %

_NotDOs
moveq
movea.l ThisTask(a6),a0
move.l d0,pr_Result2(a0l)

**

** End of program

* %

_Programend

move.l d4,d0

movem.l (a7)+,d2-d6/a6
rts

* %

** Strings

* %

_DOSName dc.b ‘dos.library',0

_Template dc.b 'DRIVE/A,BUFFERS/N',0

#ERROR_INVALID_RESIDENT_LIBRARY, d0

;DOS error code
iProcess structure for our program
;enter error cause

;return code for CLI
ijrestore registers
;jreturn

;library name
; for ReadArgs

155

3. Programming with AmigaOS§ 2.x

_PFormatString dc.b 'Drive %s has %1d buffers',10,0

Khkhkhhkhkhkhhhkhhkhkhkhkh kA A ENDS**hhhhhhkhkhhkhkhhhhhkhkkhhr

When you combine the individual pieces of this program, you will see
that things are now much simpler than they once were. Once assembled,
a program such as this is less than a half a block long. Each program
requires at least a FileHeader block in addition to this. So, you could
store up to 439 programs of this type on a normal diskette.

In order to be able to use all mounted devices that may contain files, you
first must obtain information about these 'Drives’. All such devices are
included as DosEntries in the DosList. Since this list is constantly
updated, it used to be necessary to turn off multitasking before searching
for a certain entry. Now, you can obtain access privileges with
LockDosList in order to prevent an update to the list while you are using
it. Let's take a look at how OS 2 retrieves information from this list:

* Kk

* %

* Kk

ExecBase * %
DosBase * %
simple linked list of the following **
structures, which can be freed *x
with exec/FreeVec: *k

STRUCTURE FileSysDev, 0

APTR
STRUCT
STRUCT
LABEL

a4
a3
a2
al0,al
das
de
ds

* % ok * ok o 0 ok H F *

156

fsd_Next ;next structure
fsd_InfoData,id_SIZEOF ;InfoData structure
fsd_Name, 36 ;name buffer
fsd_SIZEOF ;structure size

Register contents in the routine:

a6,a5 ExecBase and DosBase (these are often confused)

DosList structure
InfoData structure

last FileSysDev structure
continuously changed

arg4 for DosPacket: 0
arg3 for DosPacket: 0

3.1 The Libraries and their Functions

* ko *

_GetFSDevs
moveq #0,d0

d4 arg2 for DosPacket:
d3 argl for DosPacket:
d0-d2 continuously changed

0
BPTR to InfoData structure

movem.l d0/d2-d6/a2-a4,-(a7)

movea.l a7,a2
moveq #0,d4
moveq #0,dS
moveq #0,d6

’

; InfoData = AllocVec (id_SIZEOF,MEMF_PUBLIC)

’

moveq #id_SIZEOF, d0
moveq #MEMF_PUBLIC, d1
jsr _LVOAllocVec (aéb)

tst.1l do
beq.s .Error

movea.l d40,a3
asr.1l #2,d0
move.l do0,d3
exg a5, a6

i

; dlist = LockDosList (LDF_DEVICES!LDF_READ)

'

moveq #LDF_DEVICES!LDF_READ, d1

jsr _LVOLockDosList (a6)

movea.l d0,ad
.Loop

i

; dlist = NextDosEntry(dlist, LDF_DEVICES!LDF_READ)

’

move.l a4,dl

moveq #LDF_DEVICES!LDF_READ, d2
jsr _LVONextDosEntry (a6)

tst.1l do

beq.s .NoMoreEntries

movea.l d0,ad

~e we o~

move.l dol_Task(a4),dl

beq.s .Loop

resl = DoPkt (dol_Task, ACTION_DISK_INFO, InfoData>>2,0,0,0)

moveq #ACTION_DISK_INFO, d2

jsr _LVODoPkt (a6)

tst.1l do

157

3. Programming with AmigaOS 2 .x

beq.s .Loop

; FileSysDev = AllocVec(fsd_SIZEOF, MEMF_CLEAR!MEMF_PUBLIC)
movedq #fsd_SIZEOF,do

move.l #MEMF_CLEAR!MEMF_PUBLIC,dl

exg a5, a6

jsr _LVOAllocVec (a6)
exg a5, a6

move.l 4o, (a2)

beq.s .NoMoreEntries
movea.l d0,a2

lea fsd_InfoData(a2),al

movea.l a3, a0

moveq #8,d0
.CopyID

move.l (a0)+, (al)+
dbra do0, .CopyID
movea.l dol_Name (a4),a0
adda.l a0,al

adda.l a0,a0

move.b (a0)+,d0
movedq #34,d1
.CopyBStr

move.b (al0)+, (al)+
subg.b #1,d0

dble dl, .CopyBStr

move.b #':',6 (al)
bra.s .Loop
.NoMoreEntries

; UnLockDosList (LDF_DEVICES!LDF_READ)
moveq #LDF_DEVICES!LDF_READ, dl
jsr _LVOUnLockDosList (a6)
exg a5, a6

; FreeVec(InfoData)

movea.l a3,al

jsr _LVOFreeVec (ab)

.Error

move.l (a7)+,d0

movem.l (a7)+,d2-d6/a2-a4

rts

Notice that the drive names are used here without the colon.

158

3.1 The Libraries and their Functions

About the program flow:

L

3a.

i 3b.

Get memory for an InfoData structure.

The memory block may not be moved, it must be allocated as
PUBLIC. The length and contents do not matter. The size must
correspond to that of an InfoData structure. We use the new Exec
function AllocVec() here, which stores the amount of memory. If a
value of 0 is returned, the memory could not be allocated and we
jump to step 6.

Note: The error cause can be output with PrintFault(IoErr(),0).

Obtain access to DosList (if necessary, include LDF_VOLUMES
and/or LDF_ASSIGNS).

WARNING 1: Don't forget LDF_READ.

WARNING 2: The UnLockDosList function must be called with the
same value.

WARNING 3: With a reserved DosList, do not call functions that
must change the DosList.

WARNING 4: The returned value is not a DosList structure that can
be processed.

Loop

Get next DosList structure of the desired type. To do this, either the
last DosList structure or the value returned from LockDosList is
passed as the DosList structure. If a value of O is returned, then no

more entries of the requested type are available and we jump to step
4.

The dol__Task entry contains the address of the MsgPort of the
FileHandler process in question (pr_MsgPort). If a value of O is
found, then this is not a data storage device and we jump to step 3.

We can get the desired information from the FileHandler. In order to
do this, we must first create a StandardPacket structure, load it with
the proper information, send it to the MsgPort of the FileHandler,
and wait for an answer. The new DoPkt functions handle this for a
simple StandardPacket. dol_Task, which is the desired action
(ACTION_DISK_INFO), and a BPTR (address/4) to our InfoData
structure, which is the only packet parameter, are passed to the
DoPkt function. If the handler does not understand our command,
then we are not dealing with a data storage device, so we jump to
step 3.

159

3. Programming with AmigaOS 2.x

.loop

movea.l d0,al

movea.l (al),a2

jsr

bne.s

160

3d.

3e.

We use AllocVec() to reserve enough memory to hold the drive
name, the complete InfoData structure, and pointers for linking the
memory blocks. If this is unsuccessful, we jump to step 4.

This memory block is linked to the last memory block allocated in
this way. We copy the drive name and the InfoData structure. Since
DOS does not use colons with drive names, we add it to complete
the string. Then we jump back to the start of the loop (step 3).

The DosList is set free.
WARNING: You must give the same value used with LockDosList.

The InfoData structure is set free. The FreeVec() function requires
only the start address of its memory block.

End the program and return the list of linked memory blocks, that
must be set free, with FreeVec():

;first structure

_LVOFreeVec (aé6)
move.l a2,do0

. loop

3.1 The Libraries and their Functions

The Exec Library

Exec is the base library of the operating system. It manages all other
libraries, devices, resources, interrupts, programs, and the system memory.
Exec is often called 'Sys', so you may find ExecBase and SysBase used
interchangeably. The routines for library management are also integrated
into Exec. The base address of the Exec library is stored in the longword
at $4. This address must be loaded to the A6 register for every function

call.

Exec Library Functions

1. System Module

ColdReboot
FindResident
InitCode
InitResident
InitStruct
MakeFunctions
MakeLibrary
SumKickData

2. Interrupts

AddIntServer
Cause
Disable
Enable
Forbid
GetCC
Permit
RemlIntServer
SetIntVector
SetSR
SuperState
Supervisor
UserState

3. Memory Management

AddMemlList
AllocAbs
Allocate
AllocEntry
AllocMem
AllocVec
AvailMem
CopyMem
CopyMemQuick
Deallocate
FreeEntry
FreeMem
FreeVec
TypeOfMem

4. Structure Management

AddHead
AddTail
Enqueue
FindName
Insert
RemHead
Remove
RemTail

161

3. Programming with AmigaOS 2 .x

5. Programs

AddTask
AllocSignal
AllocTrap
CacheClearE
CacheClearU
CacheControl
FindTask
FreeSignal
FreeTrap
RemTask
SetExcept
SetSignal
SetTaskPri
Signal

Wait

6. Communications

8. Devices

AbortIO
AddDevice
CheckIO
CloseDevice
CreateIORequest
DeleteIORequest
DolO
OpenDevice
RemDevice
SendIO

WaitlO

9. Resources

AddResource
OpenResource
RemResource

AddPort 10. Semaphores

Alert

CreateMsgPort AddSemaphore

Debug A}temptSemaphore

DeleteMsgPort FindSemaphore

FindPort InitSemaphore

GetMsg ObtainSemaphore

PutMsg ObtainSemaphoreList

RawDoFmt ObtainSemaphoreShared

RemPort Procure

ReplyMsg ReleaseSemaphore

WaitPort ReleaseSemaphoreList
RemSemaphore

7. Libraries Vacate

AddLibrary

CloseLibrary

OldOpenLibrary

OpenLibrary

RemLibrary

SetFunction

SumLibrary

162

3.1 The Libraries and their Functions

Description of Functions

1. System Module

|ColdReboot Cold system reboot|
Call: Coldreboot ()
~726 (A6)
Function: Resets the Amiga and all connected devices. This function

corresponds to pressing the ((Ctn) -Amiga-Amiga) keys
simultaneously.

[FindResident Find a system module]
Call: resident = FindResident (name)

DO -96(A6) Al

STRUCT Resident *resident
APTR name

Function: Looks for a resident tag for the given name.

Parameters: name Address of the name (RT_NAME).

Result: Address of the resident structure or 0.

|InitCode Initialize resident code module]

Call: InitCode(startClass, version)
-72(a6) DO D1

Function: Initializes all resident modules of the given type.
RTF_AFTERDOS modules should have a priority of less
than -100. Modules without a startClass value should have
a priority of -120.

Parameters: startClass Flags for module type: RTF_COLDSTART,

RTF_SINGLETASK or RTF_AFTERDOS.

version Version number

163

3. Programming with AmigaOS 2.x

|InitResident

Initialize resident module]

Call:

Function:

InitResident (resident, segList)
-102(a6) Al D1

STRUCT Resident *resident
ULONG segList

Initializes a ROMTag. Normally jumps to the function
stored in RT_INIT (A6=ExecBase, AO=segList, D0=0).
However, if RTF_AUTOINIT is set, then RT_INIT points to
four consecutive longwords for calling MakeLibrary().
These longwords contain the size of the base structure,
table of library functions, table for InitStruct(), and the
RT_INIT function).

|InitStruct

Initialize a data structure|

Call:

Function:

Parameters:

InitStruct (initTable, memory, size)
-78(A6) Al A2 DO

STRUCT InitStruct *initTable

APTR memory

ULONG size

Deletes a data structure and initializes it with the values in
the given table. The table can be created with the
MACRO:s from "exec/initializers.i".

initTable Table containing structure data (must end in 0).

memory Address (even) of the data structure.

size Structure size (even count of bytes) (O=do not
delete first)

|MakeFunctions Generate library vector table]

Call:

164

tableSize = MakeFunctions(target, functionArray, funcDispBase)
DO -90(A6) A0 Al A2

ULONG tableSize
APTR target, functionArray, funcDispBase

3.1 The Libraries and their Functions

Function: Function for MakeLibrary(). Used to create a vector table
(negative base offsets).

Parameters: target Base address of library/device.

functionArray
Table with function addresses (ending in -1) or
a table beginning with the Word -1 containing
relative 16 bit offsets (ending in -1).

funcDispBase
Address to be added to the relative 16 bit
values, or 0.
Result: tableSize Vector table size (for LIB_NEGSIZE)
|MakeLibrary Create a library|
Call: library = MakeLibrary(vectors, structure, init, dSize, segList)
DO -84 (A6) A0 Al A2 DO D1

STRUCT Library *library
APTR vectors, init
STRUCT InitStruct *structure
ULONG dSize
BPTR seglList
Function: Initializes a library structure.
Parameters: vectors Function addresses for MakeFunctions().
structure Data for InitStruct() or 0.
init Library RT_INIT routine or 0.
dSize Size of base structure.

segList Segment list (see dos/LoadSeg())

Result: Library base address or 0.

165

3. Programming with AmigaOS§ 2.x

Dec
0
2
6

10
11
12
13
14
18
22
26

Hex
$0
$2
$6
SA
SB
$c
$D
$E

$12

$16
$1Aa

STRUCTURE RT, 0
UWORD RT_MATCHWORD
RT_MATCHTAG

APTR
APTR
UBYTE
UBYTE
UBYTE
BYTE
APTR
APTR
APTR
LABEL

RTC_MATCHWORD

RTB_COLDSTART

RTB_SINGLETASK

RTB_AFTERDOS
RTB_AUTOINIT

RTW_NEVER

166

|SumKickData

Calculate check sum across resident modules]

Call:

Function:

Result:

checksum = SumKickData ()
DO -612(Aa6)

ULONG checksum
Builds a check sum across the linked list of resident
modules (KickTagPtr) and MemEntry structures

(KickMemPtr). The check sum is stored in KickCheckSum,
as long as "reset-proof” changes to the system will allow it.

checksum Value for ExecBase->KickCheckSum

;jresidentTag/ROMTag
; ILLEGAL command
;start of structure (RT_MATCHWORD)

RT_ENDSKIP ;RT allowed starting with this address
RT_FLAGS ;Flags

RT_VERSION ;version

RT_TYPE ;module type (NT_...)

RT_PRI ;initialization priority

RT_NAME ;module name

RT_IDSTRING ;identification string

RT_INIT ;initialization routine/data

RT_SIZE

= $4AFC

0, RTF_COLDSTART
1, RTF_SINGLETASK
2, RTF_AFTERDOS
7, RTF_AUTOINIT

n
[y

;Init from reset
;task

;Init after DOS
$80 ;RT_INIT = data

0o
[)

0 ;do not initialize

2. Interrupts

|AddIntServer

Insert an interrupt in a server list}

Call:

AddIntServer (intNum, interrupt)
-168(A6) DO Al

ULONG intNum
STRUCT IS *interrupt

3.1 The Libraries and their Functions

Function:

Parameters:

Warning:

See also:

Example:

_Interrupt_link

movea.l $4.w,a6

lea _VertBIS(pc),al
moveq #INTB_VERTB, d0

jsr _LvOoAddIntServer (ab6)

_Interrupt_remove
movea.l $4.w,aé
lea _VertBIS(pc),al

moveq #INTB_VERTB, d0

jsr _LVORemIntServer (a6)
_VertBIS

dec.1l 0,0

dec.b NT_INTERRUPT, 127
de.1l _VertBName

dec.1l _Data,_Interrupt

Links an IS structure in a server list of an interrupt server.
The given interrupt number is the number of an Amiga
interrupt source, not that of a processor interrupt. The
interrupt routines must end with RTS and must set the
processor's Z flag if other interrupt routines are to be
processed. The function is called with IS_DATA in Al.

intNum

Interrupt source with a server (PORTS, COPER,
VERTB, EXTER or NMI).
interrupt IS structure

Not suitable for high-level languages. For VERTB, the
value $DFF000 must remain in the AO register if the
interrupt has a priority of 10 or greater.

RemlntServer(), SetIntVector(), hardware/intbits.i

Linking an interrupt that is executed with every vertical
blank of the monitor.

; LN_SUCC, LN_PRED
; LN_TYPE, LN_PRI
; LN_NAME

; IS_DATA, IS_CODE

167

3. Programming with AmigaOS 2.x

ko =========c=¥%%
** Interrupt Routine **
F K e e e e e e * %
*k Input: a0 = _Custom ($df£f000) *x
*x al = _Data (IS_DATA) *x
i Output:d0,cc = 0,2 *x
ko =======S===ss==z=========-=====z=====%%
_Interrupt

movem.l d2-d6/a0-a6,-(a7)

movem.l (a7)+,d2-d6/a0-a6
moveq #0,4d0

rts
_Data - idata block for the interrupt routine
|Cause Calls a software interrupt]
Call: Cause (interrupt)
-180(a6) Al

STRUCT IS *interrupt
Function: Executes a software interrupt.

Parameters: interrupt IS structure of the interrupt.

[Disable Turn off interrupts]

Call: Disable()
-120(A6)

Function: Turns off all interrupts along with multitasking. This can be
a nested call.

Warning: Essential operating system functions can be destroyed by
turning the interrupts off for more than 0.00025 seconds.
It's best to let these calls go through other operating system
functions.

Wait() calls within a Disable()/Enable() call turn
multitasking back on until signaled.

168

3.1 The Libraries and their Functions

|Enable Allow interrupts|
Call: Enable ()
-126 (A6)

Function: Reverses the effect of Disable(). Interrupt processing is
restored as long as the number of Enable() calls correspond
to the number of preceding Disable() calls.

[Forbid Turn off multitasking]

Call: Forbid()

-132 (A6)

Function: Turns off multitasking capabilities. Forbid() calls can be
nested.

Warning: Wait() calls within a Forbid()/Permit() call turn multitasking
back on until signaled.

See also: Permit()

[GetCC Retrieve CCR in CPU-compatible format]

Call: conditions = GetCC()

DO -528 (A6)
UWORD conditions

Function: "MOVE SR,<ea>" is only allowed on the 68000 in user
mode. This function replaces that command so that all
processors can read the status register.

Result: The 680x0 ConditionCodes

| Permit Turn multitasking back on|

Call: Permit ()

-138(A6)

169

3. Programming with AmigaOS 2.x

170

Function: Allows multitasking again. Multitasking is restored as long
as the number of Permit() calls correspond to the number of
preceding Forbid() calls.

See also: Forbid()

|RemIntServer Remove IS from a server list]
Call: RemIntServer (intNum, interrupt)

-174(A6) DO Al

ULONG intNum

STRUCT IS *interrupt

Function: Opposite of AddIntServer().

Parameters: intNum Interrupt source, as with AddIntServer().
interrupt IS structure, as with AddIntServer().

|SetIntVector Set interrupt handler|

Call: oldInterrupt = SetIntVector (intNumber, interrupt)

DO -162(A6) DO Al
STRUCT IS *oldInterrupt, *interrupt
ULONG intNumber

Function: Assigns a handler to an interrupt source. The previous
handler for this source is removed and returned to its IS
structure. The routine, which must end with RTS, contains
an AND combination of intenar and intreqr in D1, the
address of the custom chip in A0, and IS_DATA in Al.

Parameters: intNum Interrupt source with no server.
interrupt IS structure of the handler.

Result: IS structure of the previous handler.

See also: AddIntServer(),exec/interrupts.i,exec/hardware.i

3.1 The Libraries and their Functions

|SetSR Read and change status register|
Call: 01dSR = SetSR(newSR, mask)
DO -144(aA6) DO D1
ULONG 01dSR, newSR,mask
Function: Reads the SR according to the installed processor and sets
the bits in a given bit mask according to the passed values.
Parameters: newSR Condition to which the bits will be changed.
mask Bit mask containing the bits to be changed.
Result: The complete status register prior to the change.

* %

* ok~

Read status register

movea.l
moveq
moveq
jsr
move.w

* %

$4.w,ab
#0,d0

#0,d1
_LVOSetSR(a6)
40, ...

* *

* %

Set interrupt level 4

* %

movea.l
move.w
move .w
jsr

move .w

$4.w,ab

#5400,d0

#$700,d1

_LVOSetSR (a6)

40, ...
|SuperState Change processor to supervisor mode|
Call: oldsysStack = SuperState()

DO -150(a6)

APTR oldSysStack

171

3. Programming with AmigaOS 2 x

Function:

Result:

See also:

Switches the processor to supervisor mode. Keeps the user
stack, which contains all interrupt data.

Address of the system stack or O (called from supervisor
mode).

UserState(), Supervisor()

|Supervisor

Execute routine in supervisor mode]

Call:

Function:

Parameters:

Result:

See also:

Example:

movea.l $4.w,aé

result = Supervisor (userFunc)
Rx -30(A6) A5

Executes an Assembler routine ending with RTE in
supervisor mode. The registers are not changed.

userFunc Address of the Assembler routine (RTE).

All register changes during the execution of the routine (up
to 15 changes).

SuperState(), UserState()

Get the location of the exception vector table for higher
processors:

moveq #AFF_68010!AFF_68020!AFF_68030!AFF_68040,d7

and.w AttnFlags (a6),d7
beq.s _TableFound

lea _Exception(pc),ab
jsr _LVOSupervisor (a6)
_TableFound

_Exception
movec.l vbr,d7 ;VBR nach d7
rte

|UserState

Return processor to user mode]

Call:

172

UserState(sysStack)
-156 (A6) DO

3.1 The Libraries and their Functions

Dec
34
36
38
42
46
50
54
58
62
66
70
74
78
82
84
84
96

108

120

132

144

156

168

180

192

204

216

228

240

252

264

276

280

284

288

290

Hex
$22
524
$26
$2a
$2E
$32
$36
$3A
$3E
$42
$46
$4A
S4E
$52
$54
$54
$60
$6C
$78
$84
$90
$9c
$A8
$B4
$CO
$cc
$D8
$E4
$FO
$FC
$108
$114
$118
$11c
$120
$122

APTR sysStack

Function:

Switches the processor back to user mode.

Parameters: sysStack Supervisor stack from SuperState().

See also:

STRUCTURE ExecBase,LIB_SIZE
UWORD SoftVer

WORD LowMemChkSum
ULONG ChkBase

APTR ColdCapture

APTR CoolCapture

APTR WarmCapture

APTR SysStkUpper

APTR SysStkLower
ULONG MaxLocMem

APTR DebugEntry

APTR Debugbata

APTR AlertData

APTR MaxExtMem

WORD ChkSum

LABEL IntVects

STRUCT IVTBE, IV_SIZE
STRUCT IVDSKBLK, IV_SIZE
STRUCT IVSOFTINT, IV_SIZE
STRUCT IVPORTS, IV_SIZE
STRUCT IVCOPER, IV_SIZE
STRUCT IVVERTB, IV_SIZE
STRUCT IVBLIT, IV_SIZE
STRUCT IVAUDO, IV_SIZE
STRUCT IVAUD1, IV_SIZE
STRUCT IVAUD2, IV_SIZE
STRUCT IVAUD3, IV_SIZE
STRUCT IVRBF, IV_SIZE
STRUCT IVDSKSYNC, IV_SIZE
STRUCT IVEXTER, IV_SIZE
STRUCT IVINTEN, IV_SIZE
STRUCT IVNMI, IV_SIZE
APTR ThisTask

ULONG IdleCount

ULONG DispCount

UWORD Quantum

UWORD Elapsed

SuperState(), Supervisor()

;Exec base structure
;Kickstart version

;trap vector check sum
;inverted base address
;cold boot vector

;reset vector

;warm boot vector

;system stack upper limit
;system stack lower limit
;size of chip memory
;global debugger
;debugger data

;alarm data

; FastRAM

;check sum up to this point
;interrupt vectors
;serial output

;DiskDMA finished
;software interrupt

;CIA interrupts

;copper interrupt
;vertical blank

;blitter finished

;start of sound channel 0
;start of sound channel 1
;start of sound channel 2
;start of sound channel 3
;serial input

;DiskDMA synchronized
;external interrupt
;level 6 interrupt

;level 7 interrupt
;currently running program
;wait counter

;dispatch counter

;time period

;elapsed time

173

3. Programming with AmigaOS 2.x

292
294
295
296
298
300
304
308
312
316
320
322
336
350
364
378
392
406
420
434
514
530
531
532
546
550
554
558
560
564
568
572
576
580
584
588
596
600
612

$124
$126
$127
$128
$12A
$12C
$130
$134
$138
$13C
$140
$142
$150
$15E
$16C
$17A
5188
$196
$1n4
$1B2
$202
$212
$213
$214
$222
$226
$22A
$22E
$230
$234
$238
$23C
$240
$244
$248
$24cC
$254
$258
$264

AFB_68010
AFB_68020
AFB_68030
AFB_68040
AFB_68881
AFB_68882

174

UWORD SysFlags ;internal Flags

BYTE IDNestCnt ;interrupt forbid counter
BYTE TDNestCnt ;multitask forbid counter
UWORD AttnFlags ispecial system Flags
UWORD AttnResched ;execution Flags
APTR ResModules ;i ROMTags
APTR TaskTrapCode ;standard trap handler
APTR TaskExceptCode ;standard exception handler
APTR TaskExitCode ;standard return address
ULONG TaskSigAlloc isystem signal mask
UWORD TaskTrapAlloc ;system trap task

STRUCT MemList,LH_SIZE ;free memory PRIVATE!
STRUCT ResourceList,LH_SIZE ;Resources PRIVATE!
STRUCT DeviceList,LH_SIZE ;Devices PRIVATE!
STRUCT IntrList,LH_SIZE ;Interrupts PRIVATE!
STRUCT LibList,LH_SIZE ;Libraries PRIVATE!
STRUCT PortList,LH_SIZE ;MsgPorts PRIVATE!
STRUCT TaskReady, LH_SIZE ;programs PRIVATE!
STRUCT TaskWait,LH_SIZE ;waiting tasks PRIVATE!
STRUCT SoftInts, SH_SIZE*5 ;SoftwareInts PRIVATE!
STRUCT LastAlert,4*4 ;last system error
UBYTE VBlankFrequency ;vertical blank frequency
UBYTE PowerSupplyFrequency ;power supply frequency
STRUCT SemaphoreList,LH_SIZE ;signal Semaphores
APTR KickMemPtr ;reset-protected memory blocks
APTR KickTagPtr ;reset-protected user module
APTR KickCheckSum icheck sum across Mem and Tags
UWORD ex_Pado0
ULONG ex_Reserved0
APTR ex_RamLibPrivate ;RAM library PRIVATE!
ULONG ex_EClockFrequency ;CPU E pin frequency
ULONG ex_CacheControl ;CACR
ULONG ex_TaskID inext possible Task
ULONG ex_PuddleSize
ULONG ex_PoolThreshold
STRUCT ex_PublicPool,MLN_SIZE
APTR ex_MMULock

STRUCT ex_Reserved, 12
LABEL SYSBASESIZE

= 0, AFF_68010 = 1 ;also with 68020

= 1, AFF_68020 = 2 ;also with 68030

= 2, AFF_68030 = 4 ;also with 68040

= 3, AFF_68040 = 8 ;CPU 68040

= 4, AFF_68881 = 16 ;also with 68882

= 5, AFF_68882 = 32 ;FPU 68882

3.1 The Libraries and their Functions

CACRB_EnablelI
CACRB_Freezel
CACRB_Clearl
CACRB_IBE

CACRB_EnableD
CACRB_FreezeD
CACRB_ClearD
CACRB_DBE

CACRB_WriteAllocate = 13, CACRF_WriteAllocate =

Dec Hex
14 S$E
18 $12
22 $1e6

Dec Hex

0 S0
$4
8 $8
12 $cC

-

SB_SAR
SB_TQE
SB_SINT

Dec Hex
14 SE
16 $10

SIH_PRIMASK
SIH_QUEUES

4, CACRF_IBE

"

= 12, CACRF_DBE

0, CACRF_Enablel
1, CACRF_Freezel
3, CACRF_Clearl

8, CACRF_EnableD
9, CACRF_FreezeD
11, CACRF_ClearD =2048

won
® N =

16
256
512

=4096

;command cache
;freeze command cache
;clear command cache
;burst mode commands
;jdata cache

;ifreeze data cache
;clear data cache
;data burst

8192 ;always

STRUCTURE 1IS,LN_SIZE ;Interrupt Structure

APTR
APTR
LABEL

STRUCTURE 1IV,0

APTR
APTR
APTR
LABEL

= 15,
= 14,
= 13,

IS_DATA
IS_CODE
IS_SIZE

;data for IS_CODE
;interrupt routine

;Execs Interrupt Vectors

IV_DATA ;data for IS_CODE

IV_CODE ;interrupt Handler/Server

IV_NODE ;IS structure/0

IV_SIZE
SF_SAR = $8000
SF_TQE = $4000
SF_SINT = $2000

STRUCTURE SH,LH_SIZE

UWORD
LABEL

SH_PAD
SH_SIZE

;execution plan
;time exceeded
;SoftInt

;SoftInt Header

$F0 ;priority mask
5 ;5 SoftInt queues

3. Memory Management
{AddMemList

Add memory to the free memory list]

Call:

Function:

AddMemList (size, attributes, pri, base, name)

-618(A6) DO

D1 D2 a0 Al

ULONG size,attributes

LONG pri
APTR base,name

Adds a memory block to the list of free memory. A
MemHeader structure is created at the beginning of the

block.

175

3. Programming with AmigaOS 2.x

176

Parameters:

size Size of memory block.

attributes Memory type

pri Allocation priority
base Address
name Name for memory or 0
|AllocAbs Attempt to allocate a certain memory block]
Call: memoryBlock = AllocAbs (byteSize, location)
DO -204 (a6) DO Al
APTR memoryBlock, location
ULONG byteSize
Function: Allocates a memory block at a set address. Normally, this
routine is only used by reset-protected programs to protect
themselves from being overwritten.
Parameters: byteSize Size
location Address
Result: Address of the memory block (divisible by 8) or 0.
|Allocate Allocate private memory block]
Call: memoryBlock=Allocate (memHeader, byteSize)
DO -186 (a6) A0 DO
APTR memoryBlock
STRUCT MemHeader *memHeader
ULONG byteSize
Function: Assign a private MemHeader to a memory block.
Parameters: memHeader
' Private MemHeader

3.1 The Libraries and their Functions

N

byteSize Size of the desired block.

Result: Address of the reserved memory block or 0.
See also: Deallocate, exec/memory.h
|AllocEntry Allocate several memory blocks]
Call: memList = AllocEntry (memList)
DO ~222 (26) A0
STRUCT MemList *memList
Function: Allocates all of the blocks stored in a MemList structure.
Parameters: memList Structure containing MemEntry structures.
Result: New MemList structure with the results (not identical to
the structure passed as a parameter). If a block could not be
allocated, then the memory type with a matching bit 31 is
passed back (negative value).
|AllocMem Allocate memory|
Call: memoryBlock = AllocMem(byteSize, attributes)
DO -198 (A6) DO D1
APTR memoryBlock
ULONG byteSize,attributes
Function: Allocates the requested type and amount of memory.
Parameters: byteSize Size of block
attributes Memory type (MEMF_...)
Result: Address of the memory block or 0.
Warning: Memory that cannot be freed must be MEMF_PUBLIC.
See also: FreeMem()

177

3. Programming with AmigaOS 2.x

|AllocVec

Allocate memory and store the size|

Call:

memoryBlock = AllocVec(byteSize, attributes)
DO -684 (A6) DO D1l

Functions, Parameters, Results:

See also:

Same as AllocMem(), except that Exec stores the block size
for FreeVec().

FreeVec(), AllocMem()

|AvailMem

Query free memory|

Call:

Function:

Parameters:

Result:

size = AvailMem(attributes)
DO -216(a6) D1

ULONG size,attributes
Query the amount of free system memory.

requirements
Memory type (MEMF_...)

Number of free bytes of the desired type. This number may
not be correct because of multitasking.

|CopyMem

Copy a memory block]

Call:

Function:

Parameters:

178

CopyMem(source, dest, size)
-624(a6) AQ Al DO

APTR source,dest
ULONG size

Super-fast copying of a memory block.
source Source address
dest Destination address

size Block size (0 allowed)

3.1 The Libraries and their Functions

See also: CopyMemQuick()
|CopyMemQuick Optimized memory copy|
Call: CopyMemQuick(source, dest, size)
-630(A6) AQ Al DO
Function: Highly optimized memory copying function.
Parameters: source Source address (divisible by 4)
dest Destination address (divisible by 4)
size Block size (divisible by 4, 0 allowed)
See also: CopyMem()
|Deallocate Free memory block allocated with Allocate()]
Call: Deallocate (memHeader, memoryBlock, byteSize)
-192(a6) A0 Al DO
STRUCT MemHeader *memHeader
APTR memoryBlock
ULONG byteSize
Function: Frees a memory block that was allocated with the
Allocate() command.
Parameters: memHeader
Own MemHeader
memoryBlock
Address of memory block
byteSize Block size, 0 allowed
See also: Allocate(), exec/memory.h

179

3. Programming with AmigaOS 2 .x

|FreeEntry

Free several memory blocks|

Call:

Function:

Parameters:

See also:

FreeEntry (memList)
-228(a6) A0

STRUCT MemList *memList

Frees all memory blocks in a MemList structure (result of
AllocEntry).

memList MembList structure

AllocEntry()

|FreeMem

Free memory block|

Call:

Function:

Parameters:

See also:

FreeMem (memoryBlock, byteSize)
-210(a6) Al DO

APTR memoryBlock
ULONG byteSize

Frees a memory block.

memoryBlock
Block address

byteSize Block size

AllocMem(),AllocAbs()

|FreeVec

Free memory allocated with AllocVec()|

Call:

Function:

Parameters:

180

FreeVec (memoryBlock)
-690(ab) Al

APTR memoryBlock
Frees a memory block allocated with AllocVec().

memoryBlock
Result of AllocVec() or 0

3.1 The Libraries and their Functions

Dec
14
16
16

Dec
0
0
4
8

Hex

SE
$10
$10

Hex
$0
$0
$4
$8

See also: AllocVec()
[TypeOfMem Get memory type|
Call: attributes = TypeOfMem(address)
DO -534(a6) Al
ULONG attributes
APTR address
Function: Queries the memory type of the memory block at the given

address (MEMF _...).

Parameters: address ~ Memory address

Result:

STRUCTURE ML, LN_SIZE

UWORD
LABEL
LABEL

STRUCTURE ME, 0

LABEL
APTR

ULONG
LABEL

ML_NUMENTRIES
ML_ME
ML_SIZE

ME_REQS

Memory type or 0 (ROM, not linked, or does not exist).

;MemList

;jnumber of ME structures to follow
;start of the ME structures

;size excluding ME structures

;MemEntry
;jmemory type for AllocMem()

ME_ADDR ;memory address follows
ME_LENGTH ;block size

ME_SIZE

MEMF_ANY = 0 ;any memory type (do not use!)

MEMB_PUBLIC
MEMB_CHIP
MEMB_FAST
MEMB_LOCAL
MEMB_24BITDMA
MEMB_CLEAR
MEMB_LARGEST
MEMB_REVERSE
MEMB_TOTAL

MEM_BLOCKSIZE

MEMF_PUBLIC = 1 ;usable memory

0!

1, MEMF_CHIP
2, MEMF_FAST
8, MEMF_LOCAL
9,

6,

MEMF_24BITDMA

1 MEMF_CLEAR

17, MEMF_LARGEST
18, MEMF_REVERSE

19, MEMF_TOTAL

= 2 H ChlpRAM

= 4 ;FastRAM

= $100 ;UserRAM

$200 ;DMA capable, 24 bit
= $10000 ;delete beforehand
$20000 ;largest block
$40000 ;inverted

= $80000 ;total size

8 ;smallest available memory block

Dec Hex STRUCTURE MH,LN_SIZE ;start of memory
14 $E UWORD MH_ATTRIBUTES
16 $10 APTR
20 $14 APTR

MH_FIRST
MH_LOWER

;memory type
;first free block
;start of block

181

3. Programming with AmigaOS§ 2.x

24 $18 APTR MH_UPPER ;jend of block
28 $1C ULONG MH_FREE ifree bytes

32 $20 LABEL MH_SIZE

Dec Hex STRUCTURE MC,0 ;start of a free block
0 $0 APTR MC_NEXT ;next free block
4 $4 ULONG MC_BYTES ;block size

8 $8 LABEL MC_SIZE

4. Structure Management

|AddHead

Insert a node at the start of a list|

Call:

Function:

Parameters:

AddHead (list, node)
-240(a6) A0 Al

STRUCT LH *list
STRUCT LN *node

Inserts a node at the start of a double linked list.
list LH structure of the double linked list.

node LN structure of the list entry.

|AddTail

Insert node at the end of a list|

Call:

Function:

Parameters:

182

AddTail (list, node)
-246 (A6) A0 Al

STRUCT LH *list
STRUCT LN *node

Like AddHead(), but' the node is added to the end of the
double linked list.

list LH structure of the double linked list.

node LN structure of the list entry.

3.1 The Libraries and their Functions

|Enqueue Adds a node to a list|
Call: Enqueue (list, node)
-270(a6) A0 Al
STRUCT LH *list
STRUCT LN *node
Function: Adds an LN structure to a double linked list using the
given priority (LN_PRI).
Parameters: list LH structure of the double linked list.
node LN structure of the list entry.
[FindName Find a node in a list]
Call: node = FindName (start, name)
DO,CcC -276(A6) AD Al
STRUCT LN *node
STRUCT LH *start
APTR name
Function: Finds a node with the given name (LN_NAME) in a double
linked list. In order to find multiple nodes with the same
name, the next call must use the node structure returned
from the previous call instead of the ListHeader structure.
Parameters: start ListHeader or ListNode
name String ending in 0, containing node name.
Result: Node address or 0.
|Insert Insert a node into a list after another node]
Call: Insert(list, node, listNode)

-234(a6) A0 Al A2

STRUCT LH *list
STRUCT LN *node, *listNode

183

3. Programming with AmigaOS§ 2.x

Function:

Parameters:

Inserts a node after another node in a double linked list.
list ListHeader (if listNode=0)
node ListNode to be inserted.

listNode Node after which the new node will be inserted
or 0.

|RemHead

Remove the first node in a list]

Call:

Function:

Parameters:

Result:

node = RemHead(list)
DO -258(a6) a0

STRUCT LN *node
STRUCT LH *list

Gets the address of the first node in a double linked list and
removes the node from the list.

list ListHeader structure

Address of the ListNode or O (list was empty).

|Remove

Remove a node from a list|

Call:

Function:

Parameters:

Remove (node)
-252(A6) Al

STRUCT LN *node
Takes the given ListNode out of the list.

node ListNode to be removed.

|RemTail

Remove last node from a list|

Call:

184

node = RemTail (list)
DO -264 (A6) A0

STRUCT LN *node
STRUCT LH *list

3.1 The Libraries and their Functions

Function:

Parameters: list

Result:

Dec Hex STRUCTURE LH, 0

0 $0 APTR LH_HEAD
4 $4 APTR LH_TAIL
8 $8 APTR
12 $C UBYTE LH_TYPE
13 $D UBYTE LH_pad
14 S$E LABEL LH_SIZE
Dec Hex STRUCTURE MLH, 0
0 $0 APTR MLH_HEAD
4 $4 APTR MLH_TAIL
8 $8 APTR
12 $C LABEL MLH_SIZE
Dec Hex STRUCTURE LN, 0
0 $0 APTR LN_SUCC
4 $4 APTR LN_PRED
8 $8 UBYTE LN_TYPE
9 $9 BYTE LN_PRI
10 $A APTR LN_NAME
14 $E LABEL LN_SIZE

Dec Hex STRUCTURE MLN, 0

Gets the address of the last node in a double linked list and
removes the node from the list.

ListHeader structure
Address of the ListNode or 0 (list was empty).

;1list, ListHeader
;first node
;0 (end marker)

LH_TAILPRED ;last node

;1list type

isame structure, minimal configuration
;first node
;0

MLH_TAILPRED ;last node

;ListNode

;next node
;iprevious node
;jnode type

;node priority
;node name

;jdata begins here

isame structure, minimal configuration

0 $0 APTR MLN_SUCC ;next node

4 $4 APTR MLN_PRED ;previous node

8 $8 LABEL MLN_SIZE ;data starts here
NT_UNKNOWN = 0 ;not defined
NT_TASK = 1 ;Exec task
NT_INTERRUPT = 2 ;interrupt
NT_DEVICE = 3 ;device
NT_MSGPORT = 4 ;MP structure
NT_MESSAGE = 5 ;message sent
NT_FREEMSG = 6 ;message without ReplyPort
NT_REPLYMSG = 7 ;reply message
NT_RESOURCE = 8 ;resource
NT_LIBRARY = 9 ;library
NT_MEMORY = 10 ;memory
NT_SOFTINT = 11 ;software interrupt
NT_FONT = 12 ;font

185

3. Programming with AmigaOS 2.x

NT_PROCESS
NT_SEMAPHORE
NT_SIGNALSEM
NT_BOOTNODE
NT_KICKMEM
NT_GRAPHICS
NT_DEATHMESSAGE

nw ow o nonounn

13 ;AmigaDOS process

14 ;message semaphore

15 ;SignalSemaphore

16 ;boot node

17 ;operating system memory
18 ;graphics data

19 ;end message

NT_USER =254 ;maximum user definition
NT_EXTENDED =255 ;extended node
5. Programs
[AddTask Start a program]
Call: AddTask (task, initialPC, finalPC)

Function:

Parameters:

Warning:

-282(A6) Al A2 A3

STRUCT TC *task
APTR initialPC, finalPC

Adds a task to the system, redistributes the processor time,
and starts the task with the highest priority. Most of the
parameters are taken from the initialized Task structure that
is passed to this routine. A stack larger than 256 bytes is
needed for calling Exec functions. The minimum for other
operating system functions is 4096 bytes. The TC_FLAGS
are cleared.

task Initialized TC structure
initialPC Program start address
finalPC Return address or O (normal)

Exec tasks cannot use DOS routines, since these require a
greatly expanded Task structure (process).

|AllocSignal

Allocate a signal bit]

Call:

186

signalNum = AllocSignal (signalNum)
DO -330(A6) DO

BYTE signalNum

3.1 The Libraries and their Functions

Function: Allocates a free signal bit from its own task. You can
specify a certain bit or the value -1 if any bit will do (this is
the normal procedure). Up to 16 different bits can be
reserved per task. The other bits are used by the operating
system, for example, bit 8 signals an incoming DOS packet.

Parameters: signalNum Bit number (0-31) or -1 (any bit)

Result: Bit number or -1 (bit not free or not bit free)

|AllocTrap Allocate a CPU trap vector]

Call: trapNum = AllocTrap (trapNum)

DO -342(A6) DO
LONG trapNum

Function: Gets the number of a free CPU trap vector (TRAP #). A
certain trap vector can be specified, or -1 can be passed to
get the next free vector. Traps are sent to the trap handler
in the following format, which is entered in tc_TrapCode:
the number of the exception vector is on the stack (32-47
correspond to TRAP #1-#15) followed by the 680x0
exception frame.

Parameters: trapNum Trap number (0-15) or -1

Result: trapNum Number of the allocated trap vector (0-15) or -1

(no free vector).
|CacheClearE Clear cache memory|
Call: CacheClearE(address, length, caches)
-642 (A6) A0 DO D1
ULONG length, caches
APTR address

Function: Clears the internal command and data cache memory of the
CPU.

Parameters: address Start address

187

3. Programming with AmigaOS 2.x

188

length Size of block to be cleared, or -1 to clear all
addresses.

caches The following bits are supported at this time:

CACRF_Clearl Clear instruction cache
CACRF_ClearD Clear data cache

|CacheClearU ‘ Clear cache memory|
Call: CacheClearU

-636(A6)
Function: Clears all internal command and data cache memory of the

CPU.

|CacheControl Cache control in user mode|

Call:

Function:

Parameters:

Result:

0ldBits = CacheControl (cacheBits, cacheMask)
DO -648 (A6) DO D1

ULONG oldBits,cachBits, cacheMask

Global control via the CACR register of the 68030. All
changes to the cache pertain to the entire system. This
allows the programmer to turn off the caches of programs
not normally executable (self-modifying code, construction
of private vector tables, etc.) and run them with extremely
reduced processor expenditures.

cacheBits New bit values for the bits to be changed.

cacheMask
Bit mask for the bits to be changed.

The complete CACR register prior to the manipulation.

| FindTask

Find the address of a Task structure|

Call:

task = FindTask (name)
DO -294(a6) Al

3.1 The Libraries and their Functions

STRUCT TC *task
APTR name

Function: Gets the Task structure of the program with the given
name. If no name is given, the routine reads ThisTask from
the ExecBase. Since tasks can also remove themselves, it is
usually necessary to turn off multitasking.

Parameters: name String ending in O 'containing the program

name.

Result: Task control block, process, or 0

|FreeSignal Free a signal bit|

Call: FreeSignal (signalNum)

-336(A6) DO
BYTE signalNum

Function: Free a signal bit that was allocated with AllocSignal().

Parameters: signalNum Bit number (0-31) from AllocSignal()

[FreeTrap Free a CPU trap vector]

Call: FreeTrap (trapNum)

-348(A6) DO
ULONG trapNum

Function: Frees a vector allocated with AllocTrap().

Parameters: trapNum Vector number from AllocTrap().

|RemTask Remove a program|

Call: RemTask (task)

-288(A6) Al

STRUCT TC *task

189

3. Programming with AmigaOS 2.x

190

Function: Remove a task from the system. All linked MemList
structures in TC)MEMENTRY are freed (see AllocEntry(),
FreeEntry()).
Parameters: task Address of a task control block or 0 (task
removes itself).
|SetExcept Define exception signal bits|
Call: oldSignals = SetExcept(newSignals, signalMask)
DO -312(a6) DO D1
ULONG oldSignals,newSignals, signalMask
Function: Sets the signal bits produced by an exception processed by
the task exception handler in tc_ExceptionCode. The
handler is passed the ExecBase in A6, the contents of
tc_ExceptCode in Al, and the signal bits in dO. It returns a
bit mask in which all of the signal bits to be reset are set.
Parameters: newSignals
New bit values for the bits to be changed.
signalMask
Mask with the bits to be changed.
Result: Status of the signal bits prior to the reset.
[SetSignal Define task signal status]
Call: oldSignals = SetSignal (newSignals, signalMask)
DO -306(A6) DO D1
ULONG oldSignals,newSignals, signalMask
Function: Queries and resets received signals.
Parameters: newSignals
New bit values for the bits to be changed.
signalMask
Mask with the bits to be changed.
Result: Signal bits prior to the change.

3.1 The Libraries and their Functions

Example:
** Read signal bits *
** === S S S CS S ESS S EEEEE=E=E= == *

movea.l $4.w,aé

moveq #0,d0

moveq #0,d1

jsr _LVOSetSignal (a6)
move.l do0,...

**_—____===_—_-—__================_—_—-—-—_-—==== _______ * *
** Clear signal bits *x
*k = === ss==SEs=CSCSESTSESESSSSS=S=T======== **

movea.l $4.w,abé

moveq #0,d0

moveq #-1,d1

jsr _LVOSetSignal(a6)
move.l 4do0,...

* ok —_____—____-=======================**
** Clear signal bit for CONTROL-C *x
L ——=========== —— —k%

movea.l $4.w, a6

moveq #0,d0

move.l #SIGBREAKF_CTRL_C,dl
jsr _LVOSetSignal (a6)
move.l d0,...

|SetTaskPri Change priority of a task|
Call: oldPriority = SetTaskPri (task, priority)
DO -300(a6) Al DO

BYTE oldPriority
LONG priority
STRUCT TC *task

Function: Changes the priority of a program and updates the
distribution of processor time throughout the system.

Parameters: task Task control block

191

3. Programming with AmigaOS 2.x

Dec
14
15
16
17
18
22
26
30

192

Hex
SE
SF

$10

$11
$12
$16
$1a
$S1E

priority New priority (127 to -128)

Result: Previous priority
|Signal Sends a signal to a program|
Call: Signal (task, signals)
-324(a6) A1l DO
STRUCT TC *task
ULONG signals
Function: Sends the signal bits in the given signal mask to a task. If
the task was waiting for one of the signals, it is re-activated
and the processor time distribution is recalculated.
Parameters: task Task control block
signals Signal mask
|Wait Wait for a signal|
Call: signals = Wait (signalSet)
DO -318(a6) DO
ULONG signals,signalSet
Function: Turns off own task and waits for one of the given signal
bits.
Parameters: signalSet Signal bit mask
Result: The received signal.

STRUCTURE TC_Struct,LN_SIZE ;previously TC

UBYTE
UBYTE
BYTE

BYTE

ULONG
ULONG
ULONG
ULONG

TC_FLAGS
TC_STATE
TC_IDNESTCNT
TC_TDNESTCNT
TC_SIGALLOC
TC_SIGWAIT
TC_SIGRECVD
TC_SIGEXCEPT

;Flags

;Status

;saved IDNestCnt

;saved TDNestCnt

;allocated Signalbits
;expected Signalbits
;jreceived Signalbits

;signal for Exception Handler

3.1 The Libraries and their Functions

34 $22 APTR tc_ETask ;extension structure
38 $26 APTR TC_EXCEPTDATA ;data for Exception Handler
42 $2A APTR TC_EXCEPTCODE ;Exception Handler
46 $2E APTR TC_TRAPDATA ;data for Trap Handler
50 $32 APTR TC_TRAPCODE ;Trap Handler
54 $36 APTR TC_SPREG ;StackPointer
58 $3A APTR TC_SPLOWER ;lower limit of stack
62 $3E APTR TC_SPUPPER ;upper limit of stack
66 $42 FPTR TC_SWITCH ;routine task switch
70 $46 FPTR TC_LAUNCH ;routine task start
74 $4A STRUCT TC_MEMENTRY,LH_SIZE ;memory for task
88 $58 APTR TC_Userdata ;data for task
92 $5C LABEL TC_SIZE

Dec Hex STRUCTURE ETask,MN_SIZE ;task extension
20 $14 APTR et_Parent ;TC_Struct
24 $18 ULONG et_UniquelID ;task ID
28 $1C STRUCT et_Children,MLH_SIZE ;sub-tasks
40 $28 UWORD et_TRAPALLOC ;allocated Traps
42 $2A UWORD et_TRAPABLE ;possible Traps
44 $2C ULONG et_Resultl ;1. result
48 $30 APTR et_Result2 ;result address (AllocVec)
52 $34 STRUCT et_TaskMsgPort,MP_SIZE ;TaskPort
86 $56 LABEL ETask_SIZEOF ;not the true size!!!

CHILD_NOTNEW = 1 ;call to old task (TC)

CHILD_NOTFOUND = 2 ;sub-task not found

CHILD_EXITED = 3 ;sub-task ended

CHILD_ACTIVE 4 ;sub-task active

TB_PROCTIME = 0, TF_PROCTIME = 1

TB_ETASK = 3, TF_ETASK = 8

TB_STACKCHK = 4, TF_STACKCHK = $10

TB_EXCEPT = 5, TF_EXCEPT = $20

TB_SWITCH = 6, TF_SWITCH = $§40

TB_LAUNCH = 7, TF_LAUNCH = $80

TS_INVALID = 0

TS_ADDED = TS_INVALID+1

TS_RUN = TS_ADDED+1

TS_READY = TS_RUN+1

TS_WAIT = TS_READY+1

TS_EXCEPT = TS_WAIT+1

TS_REMOVED = TS_EXCEPT+1

SIGB_ABORT = 0, SIGF_ABORT = 1

SIGB_CHILD = 1, SIGF_CHILD = 2

SIGB_BLIT = 4, SIGF_BLIT = $10

193

3. Programming with AmigaOS 2 .x

SIGB_SINGLE
SIGB_INTUITION
SIGB_DOS

SYS_SIGALLOC =
SYS_TRAPALLOC =

4, SIGF_SINGLE

5, SIGF_INTUITION

8, SIGF_DOS

$10
$20
$100

nw o on

SFFFF ;system signal bits
$8000 ;system traps (TRAP #15)

6. Communications

194

[AddPort Make MsgPort available to other tasks|
Call: AddPport (port)
-354(a6) Al
STRUCT MsgPort *port
Function: Adds the given MsgPort to the system list so that other
programs can access it with FindPort() and address it.
Parameters: port MessagePort structure (LN_NAME <> (if the
port must be found with FindPort.).
|Alert Indicates an error|
Call: Alert (alertNum)
-108 (A6) D7
ULONG alertNum
Function: Indicates a catastrophic error (Guru Meditation).
Debugging with a second computer attached via the serial
port is usually possible (9600 baud, 8 bits, n parity).
Parameters: alertNum Error code
See also: exec/alerts.h
[CreateMsgPort Create MP structure]
Call: port = CreateMsgPort ()

40 -666 (A6)

STRUCT MsgPort *port

3.1 The Libraries and their Functions

Function: Allocates the memory required for a MsgPort and initializes
it. The message queue list is created, a signal bit is allocated,
the task is entered, and the port is set to PA_SIGNAL (for
WaitPort()). The port can only be freed with
DeleteMsgPort().

Result: MsgPort or 0

{Debug Starts system debugger|

Call: Debug (flags)

-114 (A6) DO
ULONG flags

Function: Calls the system debugger. Normally, this is the "ROM-
WACK", but you can also patch the Debug() function with
SetFunction().

Parameters: flags 0 at this time

|DeleteMsgPort Free MP created with CreateMsgPort()|

Call: DeleteMsgPort (msgPort)

-672(A6) a0
STRUCT MsgPort *msgPort

Function: Frees a MessagePort created with CreateMsgPort().

Parameters: msgPort MP structure from CreateMsgPort() or0.

[FindPort Find MsgPort]

Call: port = FindPort (name)

DO -390(a6) Al
STRUCT MP *port
APTR name
Function: Finds port in the system list with the given name

(LN_NAME).

195

3. Programming with AmigaOS 2.x

Parameters:

Result:

name Port name string ending in 0.

MsgPort address or 0

|GetMsg

Get next MessageNode from the port]

Call:

Function:

Parameters:

Result:

message = GetMsg (port)
DO -372(a6) A0

STRUCT MN *message
STRUCT MP *port

Gets the next message from the port's queue. WaitPort() or
Wait() are used to wait for messages. Messages must be
answered with ReplyMsg(). A signal does not always
indicate a message has arrived, it may also indicate several
messages have arrived (security prompt).

port MessagePort

MessageNode or 0 if no message has arrived at the port.

[PutMsg

Send a MessageNode to a port]

Call:

Function:

Parameters:

PutMsg (port, message)
-366(A6) A0 Al

STRUCT MP *port
STRUCT MN *message

Sends a message to a port. Depending on MP_FLAGS, the
port program is also notified.

port MP structure of the destination port.

message MessageNode to be sent.

|RawDoFmt

Format a string|

Call:

196

RawDoFmt (FormatString, DataStream, PutChProc, PutChData)
-522(A6) a0 al a2 a3

3.1 The Libraries and their Functions

Function:

Parameters:

APTR FormatString,DataStream,PutChData

FPTR PutChProc

A format string is loaded with the given arguments (this is
the basis of C routines such as PrintF(), etc.). The arguments
are in word or longword widths. The prefix code for an
argument is the % character. To get a % character in the
result string, the format string must contain %%. The output
is sent to the result buffer one character at a time using the

given Assembler routine.

FormatString

String with arguments in the following format:

$[flag] [width.limit] [1length] type

ﬂag '

width

limit

length 'T

type

Left justify

Width of argument. If the first
character is '0', the given width to
the left is filled with zeros.

Maximum width, if the argument
is a string.

Longword, otherwise word (only
with numbers).

Argument type (in DataStream):

b BSTR (BPTR to a BCPL
string)

d Decimal number

X Hexadecimal number
(characters O-F only)

] String address

c Individual character

197

3. Programming with AmigaOS 2 x

* *

** Example (Result:

* *

DataStream

Memory block containing the values and/or
addresses of the arguments one after another.

PutChProc
Address of an Assembler routine that writes a
character to PutChData. This routine receives
the character in dO and PutChData in a3. This
routine normally looks like this: 'MOVE.B
DO,(A3)+ :RTS'. The last character is a O byte.

PutChData
Buffer for storing the result string.

Example: Format text and output to a RastPort:

"reading cyl 1, 78 to go")

movea.l _RastPort,a2

lea _Format, a0
lea _Parameter,
bsr _Print
_Format
dc.b '%s cyl %d,
cnop 0,2
_Parameter
dc.1 _Action
dc.w 1
dc.w 78
_Action
dc.b 'reading’', 0
dc.b ‘writing', 0
dc.b "ver'ing", 0
_Print
movem.l a2-a3/a6, - (
lea .PutChar (pc
move.l a7,-4(a2)
lea -100(a7),a7

198

al

%d to go',0

a7)
), a2

3.1 The Libraries and their Functions

movea.l a7,a3

movea.l $4.w,a6

jsr _LVORawDoFmt (a6)
movea.l 100(a7),al
movea.l a7,a0

.Loop
tst.b (a3)+
bne.s .Loop

subg.l #2,a3

move.l a3,do0

sub.1l a7,do

movea.l _GfxBase, a6
jsr _LVOText (ab)
lea 100(a7),a7
movem.l (a7)+,a2-a3/a6
rts

Remove a MessagePort from the system list|

RemPort (port)
-360(a6) Al

STRUCT MP *port
Removes a port added with AddPort() from the list.

port MessagePort

Reply to a message|

.BufferEnd

dc.l 0

.PutChar

cmpa.l .BufferEnd(pc),a3

beq.s .Overflow

move.b do0, (a3)+

rts

.Overflow

clr.b -1(a3)

rts
|[RemPort
Call:
Function:
Parameters:
|ReplyMsg
Call:

ReplyMsg (message)
-378(a6) Al

STRUCT MN *message

199

3. Programming with AmigaOS 2.x

AT_DeadEnd
AT_Recovery

AG_NoMemory
AG_MakeLib
AG_OpenLib
AG_OpenDev
AG_OpenRes
AG_IOError
AG_NoSignal
AG_BadParm
AG_CloseLib
AG_CloseDev
AG_ProcCreate

200

Function: After processing a message, this routine sends a
MessageNode back to the sender or its port
(MN_REPLYPORT).

Parameters: message Address of the MessageNode.

[WaitPort Wait for a message|

Call: nessage = WaitPort (port)

DO -384(a6) A0
STRUCT MN *message
STRUCT MP *port

Function: Turns off own task and waits for the receipt of one or more
messages at the given port. MP_SIGTASK and
MP_SIGBIT must be initialized and MP_FLAGS must be
set to PA_SIGNAL.

Parameters: port MsgPort

Result: Address of the first MessageNode (not removed from the
port. Use GetMsg()).

Alarm Types:

$80000000 ;reset after display
$00000000 ;recovery possible

Alarm Groups:

$00010000 ;no

memory

$00020000 ;create library
$00030000 ;open library
$00040000 ;open device
$00050000 ;open resource
$00060000 ;I/O error

$00070000 ;no

signal

$00080000 ;bad parameter
$00090000 ;closed too many times
$000A0000 ;closed too many times
= $000B0000 ;create process

3.1 The Libraries and their Functions

AO_ExecLib
AO_GraphicsLib
AO_LayersLib
AO_Intuition
AO_MathLib
AO_DOSLib
AO_RAMLib
AO_IconLib

AO_ExpansionLib

AO_DiskfontLib
AO_UtilityLib
AO_AudioDev
AO_ConsoleDev
AO_GamePortDev

Alarm Objects:

$00008001
$00008002
$00008003
$00008004
$00008005
$00008007
$00008008
500008009
$0000800A
$0000800B
$0000800C
$00008010
$00008011
$00008012

;Exec Library

;Gfx Library
;Layers Library
;Intuition Library
;Math Library

;DOS Library

;RAM Library

;Icon Library
;Expansion Library
;Diskfont Library
;Utility Library
;Audio Device
;Console Device
;Gameport Device
;Keyboard Device
;Trackdisk Device
;Timer Device
;CIAx Resource
;Disk Resource
;Misc. Resource

;Workbench Library

;GadTools Library
;unknown object

;MsgPort
;signal type

;signal bit number
;task or interrupt

;for PA_SOFTINT

;message queue

;execute software interrupt MP_SOFTINT

AO_KeyboardDev = $00008013
AO_TrackDiskDev = $00008014
AO_TimerDev = $00008015
AO_CIARsxcC = $00008020
AO_DiskRsrc = $00008021
AO_MiscRsrc = $00008022
AO_BootStrap = $00008030 ;Strap
AO_Workbench = $00008031
AO_DiskCopy = $00008032 ;Diskcopy
AO_GadTools = $00008033
AO_Unknown = $00008035
Dec Hex STRUCTURE MP,LN_SIZE

14 S$E UBYTE MP_FLAGS

15 §SF UBYTE MP_SIGBIT

16 $10 APTR MP_SIGTASK

20 $14 STRUCT MP_MSGLIST,LH_SIZE

34 $22 LABEL MP_SIZE
MP_SOFTINT = MP_SIGTASK
PF_ACTION = 3 ;mask
PA_SIGNAL = 0 ;signal to task MP_SIGTASK
PA_SOFTINT = 1
PA_IGNORE = 2 ;ignore

Dec Hex STRUCTURE
14 SE APTR
18 $12 UWORD
20 $14 LABEL

MN_REPLYPORT

MN,LN_SIZE ;message

MN_LENGTH
MN_SIZE

iMsgPort for reply

;total structure size

;data begins here

201

3. Programming with AmigaOS 2.x

Example:
RawKeyMapping:
movea.l _SysBase, a6

movea.l _Window, a3
movea.l wd_UserPort (a3),dl

beq.s _ErrorNoUserPort
movea.l dl,a3

bra.s _GetMessage
_WaitMsg

moveq #-1,d0

jsr _LVOAllocSignal (aé6)
tst.b do

bmi.s _GetMessage

move.b dl,MP_SIGBIT(a3)
move.l ThisTask(a6),MP_SIGTASK(a3)
clr.b MP_FLAGS (a3)

movea.l a3,al
jsr _LVOWaitPort (a6)

addg.b #PA_IGNORE,MP_FLAGS (a3)

move.b MP_SIGBIT(a3),d0
jsr _LVOFreeSignal (a6)

_GetMessage

movea.l a3,al

jsr _LVOGetMsg (ab)
tst.1l do

beq.s _WaitMsg

movea.l d0,a4d
move.l im_Class(a4),do0
cmpi.l #RAWKEY, do

beq _RawKey
_ErrorNoUserPort
_RawKey

movea.l _KeymapBase, a6

202

3.1 The Libraries and their Functions

lea -ie_SIZEOF(a7),a’7
movea.l a7,a0
clr.l (a0)

move.b #IECLASS_RAWKEY,ie_Class(a0)

clr.b ie_SubClass (a0)

move.w im_Code(ad),ie_Code(al)

move.w im_Qualifier(a4d),ie_Qualifier(a0)
move.l im_IAddress(ad), ie_EventAddress(a0)

lea _Buffer(pc),al
moveq #79,d1

lea $0.w,a2

jsr _LVOMapRawKey (a6)
move.l d0,_CharsInBuffer
lea ie_SIZEOF (a7),a7

movea.l a4,al
movea.l _SysBase, a6

jsr _LVOReplyMsg(a6)
_CharsInBuffer

dc.1l 0
_Buffer

ds.b 80

7. Libraries

|AddLibrary

Adds a library to the system list|

Call: AddLibrary (library)

-396(n6)

STRUCT Library *library

Function:

Makes a complete, initialized library available to other

programs. Also, calculates the check sum for the library.

Parameters: library

Base address of the library.

203

3. Programming with AmigaOS 2.x

[CloseLibrary Close a library|

Call:

Function:

CloseLibrary (library)
-414 (A6) Al

STRUCT Library *library

Closes a library. This is necessary in order to free the
memory occupied by unused libraries.

Parameters: library Base address of the library or 0.

|OldOpenLibrary For Kickstart 1.0 compatibility]

Call:

library = OldOpenLibrary (libName)
DO -408 (A6) Al

STRUCT Library *library
APTR libname

Function: This function exists only to maintain compatibility with
operating system Version 1.0. It corresponds to
OpenLibrary(libName,0) and should no longer be used.

|OpenLibrary Open a library|

Call: library = OpenLibrary (libName, version)

DO -552(A6) Al DO
STRUCT Library *library
APTR libName
ULONG version
Function: Opens a library, gets the base address, and prevents the

204

library from being removed from memory. This function also
checks to make sure that the library has the given minimum
version number. A value of O will accept any version, but
this should never be used. Since there is no documentation
on which operating system version contains which library
versions, here is a list:

3.1 The Libraries and their Functions

Kick
Kick
Kick
Kick
Kick
Kick
Kick
Kick

* %

(SR S N S)
P
CWWNRREOW

LibVersion 0 (no longer supported!!!)
LibVersion 30 (no longer supported!!!)

(NTSC) = V. 31 (no longer supported!!!)
(+PAL) = V. 32 (no longer supported!!!)

= LibVersion 33
= LibVersion 34
(+A2024) = 34/35

= LibVersion 36 (described in this book)

If the library is not in the list, DOS loads it from disk (the
default directory is LIBS:). Because of this, only DOS
processes can call this function for non-resident libraries. A
complete path can also be given instead of a name.

Parameters: libName Library name (+path if desired). Upper and
lowercase letters are also distinguished in
paths.

version Minimum version number
Result: Base address of the library or 0.
|RemLibrary Attempt to delete a library|
Call: RemLibrary (library)
-402 (A6) Al
STRUCT Library *library

Function: Calls the LIB_EXPUNGE routine of the given library. This
sets the automatic removal feature for extra libraries. The
library will automatically be removed when it is no longer
needed.

Parameters: library Base address of the library.

Example: Attempt to remove a library from memory:

** Input: al=LibName

**

movea.l $4.w,a6
addq.b #1,TDNestCnt(a6)

205

3. Programming with AmigaOS 2.x

lea LibList (a6),a0
jsr _LVOFindName (a6)
tst.1l do

beq.s .notfound

movea.l d0,al
jsr _LVORemLibrary (a6)

.notfound
subg.b #1,TDNestCnt (a6)

|SetFunction

Divert a library function|

Call:

Function:

Parameters:

Result:

oldFunc = SetFunction(library, funcOffset, funcEntry)

DO -420(A6) Al A0.W DO

APTR
STRUCT Library *library
LONG

oldFunc, funcEntry

funcoffset

Routine for patching operating system functions.
library Base address of the library.
funcOffset Offset of the routine (LVO).

funcEntry Address of the new function.

Address of the old function.

|SumLibrary

Calculate check sum for a library]

Call:

Function:

206

SumLibrary (library)
-426 (A6) Al

STRUCT Library *library
Recalculates the check sum of a library. If the results does

not agree with the given check sum and the CHANGED
flag is not set, then the Alert() function is called.

3.1 The Libraries and their Functions

Parameters: library Base address of the library.

LIB_OPEN = -6 ;LVO open library
LIB_CLOSE = =12 ;LVO close library
LIB_EXPUNGE = -18 ;LVO remove library
LIB_EXTFUNC = -24 ;LVO future extension
Dec Hex STRUCTURE LIB,LN_SIZE ;library base structure
14 $E UBYTE LIB_FLAGS ;Flags
15 §$F UBYTE LIB_pad
16 $10 UWORD LIB_NEGSIZE ;vector table size
18 $12 UWORD LIB_POSSIZE ;size of base structure
20 $14 UWORD LIB_VERSION ;version number
22 $16 UWORD LIB_REVISION ;revision number
24 $18 APTR LIB_IDSTRING ;identification string
28 $1C ULONG LIB_SUM ;check sum
32 $20 UWORD LIB_OPENCNT ;number of opens
34 $22 LABEL LIB_SIZE

LIBB_SUMMING
LIBB_CHANGED
LIBB_SUMUSED
LIBB_DELEXP

LIBB_EXPOCNT

LIB Flags values:

= 0, LIBF_SUMMING = 1 ;check sum calculation
= 1, LIBF_CHANGED = 2 ;library changed
= 2, LIBF_SUMUSED = 4 ;calculate check sum
= 3, LIBF_DELEXP = 8 ;self-removal
= 4, LIBF_EXPOCNT = 16 ;same for system
8. Devices
|AbortlO Abort I/O process|
Call: AbortIO (iORequest)
-480(a6) Al
STRUCT IORequest *iORequest
Function: Attempts to abort a currently running I/O process.

Regardless of whether or not this is successful, it must use
WaitIO() to wait for the official end of the process.

Parameters: iORequest IO structure of any size (active or complete).

207

3. Programming with AmigaOS 2.x

|AddDevice

Make a device available to other programs|

Call:

Function:

Parameters:

Addpevice (device)
-432(A6) Al

STRUCT Device *device

Enters a fully initialized Device structure into the system
list.

device Base address of the device.

[CheckIO

Check to see if an 1/O process is completed]

Call:

Function:

Parameters:

Result:

result = CheckIO(iORequest)
DO -468(A6) Al

BOOL result
STRUCT IORequest *iORequest

This function checks to see if an I/O process started with
SendIO() is still running or is finished. Even if the process
has finished, WaitIO() must be used to wait for the official
process end.

iORequest IO structure of any size (active or complete).

0 if the process is still running; otherwise the address of the
10 structure is returned.

|CloseDevice

Close a device|

Call:

Function:

Parameters:

208

CloseDevice (10Request)
-450(A6) Al

STRUCT IORequest *iORequest
Closes access to a device and the sub-objects of the device.

iORequest IO structure from OpenDevice().

3.1 The Libraries and their Functions

|CreatelORequest Create IO structure|

Call:

ioReq = CreatelIORequest(ioReplyPort, size)
DO -654 (A6) A0 DO

STRUCT IORequest *ioReq
STRUCT MsgPort *ioReplyPort
ULONG size

Function: Creates and initializes an IO structure of any size.
Parameters: ioReplyPort
Address of a fully initialized MsgPort (see
CreateMsgPort()).
size Size of the IO structure.
Result: 10 structure or O (error).
DeletelORequest
Free an 10 structure created with CreatelORequest()
Call: DeleteIORequest (ioReq)
-660 (A6) a0
STRUCT IORequest *ioReq
Function: Frees a structure created with CreateIORequest().
Parameters: ioReq Result form CreateIORequest() or 0.
|DolIO Execute I/O process|
Call: error = DoIO (iORequest)
DO -456 (A6) Al
BYTE error
STRUCT IORequest *iORequest
Function: Transfers an IO structure containing the required data to a

device which extracts the command and executes it. This
function returns at the end of the process.

209

3. Programming with AmigaOS 2.x

Parameters: iORequest Initialized IO structure from OpenDevice()

Result:

which was manually loaded with device-
specific data.

0 or a device-specific error code.

|OpenDevice

Register access to a device]

Call:

Function:

Parameters:

Result:

Example:

* %

** Input: al=DevName
* %

movea.l $4.w,a6

addg.b #1,TDNestCnt (a6)
lea DeviceList (a6),a0
jsr _LVOFindName (a6)

210

error = OpenDevice(devName, unitNumber, iORequest, flags)

DO -444 (A6) A0 DO Al D1
BYTE error

APTR devName

ULONG unitNumber, flags

STRUCT IORequest *iORequest

Attempts to obtain access to a device. The passed IO
structure is supplied the necessary data if it's successful. If
the device is not in memory, it attempts to load it from
(hard) disk. Possible to specify a complete path.

devName Name of the device (distinguishes uppercase
and lowercase notation).

unitNumber
Number of a subunit (e.g., 1-DF1:) or null.

iORequest 1/O structure
flags Special information

Null or error code.

Attempt to remove a device from memory:

3.1 The Libraries and their Functions

tst.1l do
beq.s .notfound

movea.l d0,al
jsr _LVORemDevice (a6)

.notfound
subg.b #1,TDNestCnt (a6)

|RemDevice

Remove device|

Call:

RemDevice (device)
-438(A6) Al

STRUCT Device *device

Function: Attempts to initiate a device removing itself from memory.
Parameters: device Base address of the device.
|SendIO Start I/O process|
Call: SendIO (iORequest)
-462(Aa6) Al
STRUCT IORequest *iORequest
Function: Starts an I/O process without waiting for the end.
Parameters: iORequest 1/O structure
|WaitlO Wait for the end of an I/O process|
Call: error = WaitIO(iORequest)
DO -474 (A6) Al
BYTE error
STRUCT IORequest *iORequest
Function: Waits for the end of an I/O process started with SendIO().

211

3. Programming with AmigaOS 2.x

Parameters: iORequest I/O structure (active or completed)

Result: Null or error code.
Dec Hex STRUCTURE DD,LIB_SIZE ;Device structure
34 $22 LABEL DD_SIZE
Dec Hex STRUCTURE UNIT,MP_SIZE ;Unit structure
34 $22 UBYTE UNIT_FLAGS ;Flags
35 $23 UBYTE UNIT_pad
36 $24 UWORD UNIT_OPENCNT ;Number of openings
38 $26 LABEL UNIT_SIZE

UNITB_ACTIVE
UNITB_INTASK

IOERR_OPENFAIL
IOERR_ABORTED

IOERR_NOCMD

IOERR_BADLENGTH

IOERR_BADADDRESS

IOERR_UNITBUSY
IOERR_SELFTEST
ERR_OPENDEVICE

0, UNITF_ACTIVE = 1 ;working now
1, UNITF_INTASK = 2 ;in the device task

-1 ;Error opening
;Process aborted

= -3 ;Unknown command
;Length not okay
;Address not okay
;Unit still working
;Hardware error

= IOERR_OPENFAIL

1
|
(8]

nw o non
[I T |
N oo

Dec Hex STRUCTURE 1IO,MN_SIZE ;I/O structure
20 $14 APTR
24 $18 APTR
28 $1C UWORD
30 $1E UBYTE
31 $1F BYTE
32 $20 LABEL
32 $20 ULONG
36 $24 ULONG

40 $28 APTR

44 $2C ULONG
48 $30 LABEL

IOB_QUICK =

CMD_INVALID
CMD_RESET
CMD_READ
CMD_WRITE
CMD_UPDATE
CMD_CLEAR
CMD_STOP

212

0

nm uw n u n

OV WK O

’

IO_DEVICE ;Device base address
IO_UNIT ;Unit structure
I0_COMMAND ; Command

IO_FLAGS ;Flags

IO_ERROR ;Error code

IO_SIZE

IO_ACTUAL iMoved bytes etc.
IO_LENGTH iLength

IO_DATA ;Data address
IO_OFFSET ;O0ffset for positioning
IOSTD_SIZE

IOF_QUICK = 1 ;execute immediately

;No command
;reset device
;Read

;Write

;Write buffer
;Clear buffer
;iStop

3.1 The Libraries and their Functions

CMD_START = 7 ;Continue
CMD_FLUSH 8 ;Delete commands
CMD_NONSTD 9 ;1. Device specific command

9. Resources

|AddResource Make a resource accessible to other programs|
Call: AddResource (resource)
-486 (A6) Al

APTR resource
Function: Adds a completely initialized resource to the system list.

Parameters: resource Library node of the resource.

|OpenResource Get the base address of a resource|
Call: resource = OpenResource (resName)
DO -498 (A6) Al

APTR resource, resName
Function: Retrieves the base address of a resource.

Parameters: resName Resource name

Result: Base address or O (error).
|[RemResource Attempt to remove a resource|
Call: RemResource (resource)

-492 (Aa6) Al
APTR resource

Function: Attempts to initiate self-removal of the given resource.

Parameters: resource Base address of the resource.

213

3. Programming with AmigaOS 2.x

10. Semaphores

|AddSemaphore Initialize and link semaphore|
Call: AddSemaphore (signalSemaphore)
-600(A6) Al

STRUCT SS *signalSemaphore

Function: Initializes an SS structure containing a name and priority
and adds it to the system list.

Parameters: signalSemaphore

SS structure
|AttemptSemaphore Attempt to allocate a semaphore|
Call: success = AttemptSemaphore (signalSemaphore)
DO -576 (A6) A0

LONG success
STRUCT SS *signalSemaphore

Function: Attempts to allocate a semaphore and returns to the caller if
this is not possible.

Parameters: signalSemaphore

SS structure
Result: 0 SS was not free.
[FindSemaphore Find a semaphore]
Call: signalSemaphore = FindSemaphore (name)
DO -594 (a6) Al

STRUCT SS *signalSemaphore
APTR name

Function: Attempts to find a semaphore with the given name.
Parameters: name Semaphore name

Result: SS structure or 0

214

3.1 The Libraries and their Functions

|InitSemaphore Initialize signal semaphore]
Call: InitSemaphore (signalSemaphore)
-558(a6) A0

STRUCT SS *signalSemaphore
Function: Initializes an SS structure.

Parameters: signalSemaphore
Deleted SS structure

|ObtainSemaphore Obtain exclusive access to a semaphore]
Call: ObtainSemaphore (signalSemaphore)
-564(A6) A0

STRUCT SS *signalSemaphore

Function: Allocates an SS structure. If this is not possible, the task is
turned off until the semaphore is freed.

Parameters: signalSemaphore

SS structure
|ObtainSemaphoreList Allocate semaphores in a list]
Call: ObtainSemaphoreList (list)
-582(A6) A0

STRUCT LH *list

Function: Allocates all semaphores in the list or waits for them to be

freed.
Parameters: list Semaphore list
|ObtainSemaphoreShared Shared semaphore access]
Call: ObtainSemaphoreShared (signalSemaphore)
-678 (A6) a0

STRUCT SS *signalSemaphore

215

3. Programming with AmigaOS 2.x

Function: Obtains shared access to a semaphore or waits for it to be

freed.
Parameters: signalSemaphore

SS structure

|Procure Allocate message semaphore|
Call: result = Procure (semaphore, bidMessage)

DO -540(a6) A0 Al

BYTE result

STRUCT Semaphore *semaphore

STRUCT MN *bidMessage
Function: Attempts to allocate a semaphore.
Parameters: semaphore A semaphore MsgPort
Result: 0 Semaphore was not free.
|ReleaseSemaphore Free semaphore|
Call: ReleaseSemaphore (signalSemaphore)

-570 (A6) A0

STRUCT SS *signalSemaphore
Function: Frees a given semaphore.
Parameters: signalSemaphore

SS structure

|ReleaseSemaphoreList Free a semaphore list|
Call: ReleaseSemaphoreList (list)

-588 (A6) AD

STRUCT LH *list
Function: Frees a semaphore list.
Parameters: list Semaphore list

216

3.1 The Libraries and their Functions

|RemSemaphore

Remove a semaphore|

Call:

RemSemaphore (signalSemaphore)
-606 (A6)

Al

STRUCT SS *signalSemaphore

Function: Removes a semaphore from its list.
Parameters: signalSemaphore
SS structure
|Vacate Free a message semaphore]
Call: Vacate (semaphore)
-546 (A6) A0
STRUCT Semaphore *semaphore
Function: Frees a semaphore.
Parameters: semaphore Semaphore MsgPort
Dec Hex STRUCTURE SSR,MLN_SIZE ; PRIVATE!
8 $8 APTR SSR_WAITER
12 $C LABEL SSR_SIZE
Dec Hex STRUCTURE SS,LN_SIZE ;SignalSemaphore
14 SE WORD SS_NESTCOUNT ;number of tasks
16 $10 STRUCT SS_WAITQUEUE,MLH_SIZE ;wait queue
28 $1C STRUCT SS_MULTIPLELINK,SSR_SIZE ;link
40 $28 APTR SS_OWNER ;Task
44 $2C WORD SS_QUEUECOUNT ;queued Tasks
46 $2E LABEL SS_SIZE
Dec Hex STRUCTURE SM,MP_SIZE ;iMessage semaphore
34 $22 WORD SM_BIDS ;number of bids
36 $24 LABEL SM_SIZE
SM_LOCKMSG = MP_SIGTASK

217

3. Programming with AmigaOS 2.x

Example for Exec Library

Exec has several new functions that make access to devices considerably
easier. As an example, let's take a look at how direct access to a disk

drive can be programmed:

** Input A6 = ExecBase
*x AS5 = DosBase
i DO = Drive (0...3)
** Output DO = IOEXTTD

_GetAccess movem.l d2-d5, -(a7)

move.l d0,d5S

jsr _LVOCreateMsgPort (a6)
move.l d0,d3

beq.s .Error

movea.l d0,a0

moveq #I0OTD_SIZE,do

jsr _LVOCreateIORequest (a6)
move.l d0,d4

beqg.s .DelPort

lea _TDName (pc) , a0
move.l d5,d0

movea.l d0,al

moveq #0,d1

jsr _LVOOpenDevice (a6)
tst.1 do

bne.s .DelIOReq

exg a5, a6

1sl.1 #8,d5

addi.l #'DFO0:',dS

clr.w -(a7)

move.l d5,-(a7)

move.l a7,dl

jsr _LVODeviceProc(a6)
addgq.1l #6,a7

move.l do0,dl

beq.s .NoDevProc

218

**
_____________ * ok
* %
* Kk
* %k

* %

;drive number

;get port
;save address

;port to al
;size to doO
;get IORequest
;save address

;name to a0
;number to doO
; IORequest
;3.5" disks
;open

;error test

;DosBase to a6
;number << 1 byte
;add string

;end of string
;move string
;string to dl
;Handler port
;clear stack
;port to dl

3.1 The Libraries and their Functions

.Exit

.NoDevProc
.CloseDev

.DelIOReq

.DelPort

moveq
jsr
exg
tst.1
beq.s
move.l

movem. 1
rts

exg
movea.l
jsr

movea.l
jsr

movea.l
jsr
moveq
bra.s

#DOSTRUE, d2
_LVOInhibit(a6)
a5, a6

do

.CloseDev
d4,do

(a7)+,d2-d5

a5, a6
d4,al
_LVOCloseDevice(a6)

d4,a0
_LVODeleteIORequest (a6)

d3, a0
_LVODeleteMsgPort (a6)
#0,d0
LExit

;set Flag
;inhibit access
;Exec to a6
;error test

; IORequest -> 40

iclean up
;end

;Exec to a6
;IOReq to al
;close Dev

;IOReq to a0
;delete IOReq

;port to a0
;delete port
;no result
;end

** Input A6 = ExecBase *x
*x A5 = DosBase *x
**x Al = IORequest **
** DO = Drive (0...3) * %k
*x Output: DO = Success (0=Error) **
==
_FreeDrive movem.l d2-d3, -(a7)

move.l d0,d3 ;save drive

move.l al,d2 ;save IOReq

jsr _LVOCloseDevice (a6) ;jclose Dev

movea.l d2,a0 ;IOReqg to al

move.l MN_REPLYPORT(a0),d2 ;save port

jsr _LVODeleteIORequest (a6) ;delete IOReq

movea.l d2,a0 ;port to a0

jsr _LVODeleteMsgPort (a6) ;delete port

exg a5, a6 ;DOS to a6

1sl.1 #8,d3 ;number << 1 byte

addi.l #'DFO0:*',d3 ;add string

219

3. Programming with AmigaOS§ 2.x

clr.w -(a7) ;end of string

move.l d3,-(a7) ;move string

move.l a7,dl ;string to dl

jsr _LVODeviceProc(a6) ;Handler port

addg.l #6,a7 ;jclear stack

move.l d0,dl ;port to dl

beq.s .NoDevProc

moveq #DOSFALSE, d2 ;code to free

jsr _LVOInhibit (a6) ; free

.NoDevProc exg a5,a6 ;Exec to a6

tst.1l do ;set CC

movem.l (a7)+,d2-d3 ;clean up

rts ;end

_TDName dc.b ‘trackdisk.device', 0 ;DeviceName
While we are working with the trackdisk device, here is a program that
turns off the annoying clicking sound made by an empty disk drive. This
program can be started from the CLI/Shell or the Workbench. It is made
possible by a new flag in the Unit structures. We will also see an example
of minimum message handling for Workbench starts, especially at the end
of the program, which is responsible for freeing memory when the
program is segmented:
OPT O+

INCLUDE IncAll.i

* %k

* %k

** NoClick
* %
**
_Startup
movea.l $4.w,a6 ;load ExecBase
movea.l ThisTask(a6),a5 ;get process
moveq #0,d7 ;WbStartup to 0
tst.1l pr_CLI (a5) ;test CLI
bne.s _CLIstart ;->if available
lea pr_MsgPort (a5) ,a0 ; ProcessPort
jsr _LVOWaitPort (a6) ;wait for message
lea pr_MsgPort (a5),a0 ; ProcessPort
jsr _LVOGetMsg (ab) ;get message
move.l do0,d7 ;save WbStartup

220

3.1 The Libraries and their Functions

_CLIstart
cmpi.w #36,LIB_VERSION(a6)
blt.s _ReplyStartup

jsr _LVOCreateMsgPort (aé)
move.l do0,dé
beq.s _ReplyStartup

movea.l 40, a0

moveq #I0STD_SIZE, d0

jsr _LVOCreateIORequest (a6)
move.l d0,d5

beq.s _delport

moveq #3,d4
_NoClickLoop

lea _tdname (pc), a0

move.l d4,do0

movea.l d5,al

moveq #0,d1l

jsr _LVOOpenDevice (a6)
tst.1l do

bne.s _next

movea.l d5,al

movea.l IO_UNIT(al),al

ori.b #TDPF_NOCLICK, TDU_PUBFLAGS (a0)
jsr _LVOCloseDevice (a6)
_next

dbra d4, _NoClickLoop
_delio

movea.l d5,a0
jsr _LVODeleteIORequest (a6)

_delport
movea.l d6,a0

jsr _LVODeleteMsgPort (a6)
_ReplyStartup

move.l d7,d0

beq.s _fromCLI

movea.l d0,al
jmp _LVOReplyMsg(a6)

;test 0S 2
;->if not 0S 2

;create MsgPort
;and save
;->if error

;MsgPort to a0
;structure size
;get IORequest
;and save

;->if error

;4 drives

;DeviceName
;drive number
; IORequest
;3.5" only
;jopen

;error test
;->if error

; IORequest
;get UnitPort

isave Flag
;close device

;all drives

; IORequest to a0
;delete IORequest

;port to a0
;delete port

;WbStartup to doO
;=->1f not there

;WbStartup to al
ireply

221

3. Programming with AmigaOS 2.x

;Return to program would lead to a crash. If necessary, turn
;multitasking off first (it will activate itself again after the

;program ends) .

_fromCLI

rts ;end of program
_tdname

dc.b ‘trackdisk.device', 0 ;DeviceName

222

Cache Control

The 68030 uses internal memory to store the last command and the last
memory access during the execution of the command. This internal
memory, called a cache, can greatly speed up processing. If the values
that the processor needs are found in a cache, then no more RAM access
is necessary, which with a non-multiplexed bus in a 32 bit architecture is
rather time-consuming. Normally, the processor does not access the
memory block containing the program code when executing a command.
The separation of command and data caches can therefore speed things
up greatly. Self-modifying code must be excluded from this, however,
because the changes would be made in the data cache and not in the
command cache. The Amiga's coprocessors, the DMA chips, are another
problem. If one of these manipulates the memory, the contents of the
caches do not change and the processor will be working with the wrong
values. This could make it necessary to turn off the caches or delete
them. Assembler programmers can use the CACR (CAche Control
Register) and CAAR (CAche Address Register) to delete individual
cache entries, but this is not in conformance with the operating system.

Another way of managing the caches is needed for developing high
speed programs. The 68030 offers the ability to "freeze" the contents of
its caches. The contents of a frozen cache cannot be changed, but they
can be read. This allows you to freeze the cache of a frequently used
subroutine after you have run it. General program processing is a little
slower because of this, but the subroutine will be extremely fast the next
time it is called.

The Exec takes care of managing and storing the contents of the CACR
in our example:

3.1 The Libraries and their Functions

==
** Turn off caches **
==
movea.l $4.w,aé ;load ExecBase
movedq #0,d0 inew cache bits (value=0)
move.l #CACRF_EnableI!CACRF_EnableD,dl ;mask

jsr _LVOCacheControl (a6) ;save caches
==
** Activate caches *x
==
movea.l $4.w,aé ;load ExecBase
move.l #CACRF_EnableI!CACRF_EnableD,d0 ;new cache bits
move.l d0,dl ;mask

jsr _LVOCacheControl (a6) ;activate caches
==
*x Turn off caches *x
:==============================:======================
movea.l $4.w,aé ;load ExecBase
moveq #0,d0 ;new cache bits (value=0)
move.l #CACRF_Enablel!CACRF_EnableD,dl ;mask

jsr _LVOCacheControl (a6) ;lock caches
:===
*x Delete caches (User mode) **
==:=====
movea.l $4.w,aé ;load ExecBase

moveq #-1,d0 ;both caches

jsr _LvOCacheClearU(a6) ;delete caches

223

3. Programming with AmigaOS 2.x

* %k Store subroutine in cache **

movea.l $4.w,a6

;load ExecBase

jsr _VeryWichtigHighTech ;subroutine
move.l #CACRF_Freezel!CACRF_FreezeD,d0 ;new cache bits
move.l do0,d1 ;mask

jsr _LvOoCacheControl (a6) ;freeze caches

| P —— == * %
** Free caches i

movea.l $4.w,a6
moveq #0,d0

;load ExecBase
;new cache bits

move.l #CACRF_Freezel!CACRF_FreezeD,dl ;mask
jsr _LvVoCacheControl (a6) ;free caches

224

Another problem can arise using Burst mode. If the hardware is properly
designed, the 68030 can move 16 bytes from cache to RAM (or RAM to
cache) in only 5 clock cycles (= 2-1-1-1 burst). The data transfer is done
in 16 byte steps and is based on modulo 16 addresses. This is a good
reason for keeping your data well-organized, as the C structures of the
operating system are. The speed in Burst mode is determined to a large
extent by which memory chips are used. Dynamic Nibble mode RAM, as
used in the ChipMem region, will only allow a 4-1-1-1 burst (7 clock
cycles). Also, if the memory chips have added WaitStates during the last
three longword accesses, this can slow down the processor even more,
since each WaitState costs two clock cycles. But regardless of the speed,
problems can still occur because of DMA accesses when the data is
disorganized. The solution here involves CACRF_IBE and
CACRF_DBE, which can be used to turn the Instruction burst and the
Data burst on and off via CacheControl.

3.1 The Libraries and their Functions

3.1.6 The Expansion Library

The Expansion library, called "expansion.library" with the OpenLibrary()
function, manages hardware and software expansions and the
configuration of the strap routines (for booting). As always, the base
address must be passed in A6.

Functions of the Expansion Library

AddBootNode
AddConfigDev
AddDosNode
AllocConfigDev
AllocExpansionMem
FindConfigDev
FreeConfigDev
FreeExpansionMem
GetCurrentBinding
MakeDosNode
ObtainConfigBinding
ReleaseConfigBinding
RemConfigDev
SetCurrentBinding

Description of the Routines

|AddBootNode Add a bootable device|
Call: ok = AddBootNode(bootPri, flags, deviceNode, configDev)

DO -36 (A6) DO Dl A0 Al

BOOL ok

BYTE bootPri

ULONG flags

STRUCT DeviceNode *deviceNode
STRUCT ConfigDev *configDev

Function: A logical AutoBoot device is added to the DOS list. If DOS
does not exist yet, the data is stored in a buffer.

225

3. Programming with AmigaOS 2.x

Parameters, Results:
See AddDosNode(), the only difference is that an
AutoBoot requires a ConfigDev structure.

[AddConfigDev Add a ConfigDev structure]
Call: AddConfigDev(configDev)
-30(a6) AO

STRUCT ConfigDev *configDev
Function: Adds the given ConfigDev structure to the system list.
Parameters: configDev Initialized ConfigDev structure

See also: RemConfigDev()

[AddDosNode Mounts a data storage device|
Call: ok = AddDosNode(bootPri, flags, deviceNode)
DO -150(a6) DO D1 Al

BOOL ok

BYTE bootPri
ULONG flags
STRUCT DeviceNode *deviceNode

Function: Adds a filesystem device to the system list. If DOS is not
active yet, the information is stored in a buffer. If no
handler is given, the new filesystem automatically takes
over the management.

Parameters: bootPri AutoBoot priority (127 to -128). Only works if
the corresponding ConfigDev structure is in

the system list.

flags ADNF_STARTPROC (bit 0) start handler
immediately.

deviceNode

Initialized DOS device node.

226

3.1 The Libraries and their Functions

Result: 0 Error

See also:

Example:

FileHandler:

movea.l _ExpansionBase, a6
_Parms (pc),a0
_LVOMakeDosNode (a6)

lea
jsr
tst.1
begq

movea.l
moveq
moveq
jsr

_DosNode
dc.1l

_Parms
dc.1
dec.l
dc.1l
dc.1l
de.1
de.1l
dc.1
dec.1
dec.1l
de.l
de.1
de.1l
dc.b

_DOSname
dc.b

_ExecName
dec.b

do
_Error

do, a0
#0,d0

#ADNF_STARTPROC, d1
_LvoOAddDosNode (a6)

_DOSname, _ExecName

1,0

16

128

0,2

1,11
2,0,0
0,79
5,MEMF_CHIP
STEEEEEESE
SEffffffe
0

'‘DOS', 0

‘df1l',0

;Unit, Flags

;Tablesize

;Longwords per block

;sector location, heads

;sectors per block, blocks per track
;boot blocks, unused, interleave
;first and last cylinders
;number of buffers, memory type
;maximum transfer rate

;mask

;boot priority

;FileSystem type

'trackdisk.device',0

MakeDosNode(), AddBootNode()

Add a bootable drive to the system and activate a

227

3. Programming with AmigaOS 2.x

228

[AllocConﬁgDev Allocate a ConfigDev structure]
Call: configbev = AllocConfigDev ()
DO -48(2a6)
Funct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>