
e aeTinitive reTerenc

book for all Amiga computers

Christian Kuhnert, Stefan Maelger, Johannes Schemmel

Abacus
A Data Becker Book

Amiga
Intern
The definitive reference

book for all Amiga computers

Christian Kuhnert, Stefan Maelger, Johannes Schemmel

Abacu:
A Data Becker Book

Copyright © 1992 Abacus

5370 52nd Street SE

Grand Rapids, MI 49512

Copyright © 1992 Data Becker, GmbH

Merowingerstrasse 30

4000 Duesseldorf, Germany

This book is copyrighted. No part of this book may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording or otherwise without the

prior written permission of Abacus Software or Data Becker, GmbH.

Every effort has been made to ensure complete and accurate information

concerning the material presented in this book. However, Abacus

Software can neither guarantee nor be held legally responsible for any

mistakes in printing or faulty instructions contained in this book. The

authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC and MS-DOS are trademarks or registered trademarks of

Microsoft Corporation. Amiga 500, Amiga 1000, Amiga 2000, Amiga 3000,

and Amiga are trademarks or registered trademarks of Commodore-

Amiga Inc. IBM is a registered trademark of International Business

Machines Corporation.

Library of Congress Cataloging-in-Publication Data

Maelger, Stefan, 1965-

Amiga Intern / Stefan Maelger, Christian Kuhnert, Johannes

Schemmel.

p. cm.

Includes index.

ISBN 1-55755-148-0 : $39.95

1. Amiga (Computer) I. Kuhnert, Christian, 1967- .

II. Schemmel, Johannes, 1958- . III. Title.

QA76.8.A177M34 1992

004.165--dc20 92-8083

CIP

Printed in the U.S.A.
10 987654321

Foreword

The Amiga once widely considered a little more than just a game

machine, has now become a worthy and serious rival to the PC and the

Mac.

Both the professional quality of software and the improvement of the

Amiga's operating system have contributed to its "coming of age". With

the appearance of Kickstart 2.0 (AmigaOS 2.0), the user interface has

attained a professional level. It's natural that this professionalism should

carry over into the quality of software. Much knowledge about

hardware and software is required to master the Amiga. Assuming you're

acquainted with the basics of programming, and the detailed information

about how the system works, this book will provide you with the

necessary professional know-how. The scope of the book alone

indicates the enormous amount of knowledge and effort that have gone

into its preparation. To address as many aspects of the Amiga as possible,

three authors have contributed their knowledge and experience.

Correspondingly, the book is divided into three parts:

Part 1: System Programming (Stefan Maelger)

Part 2: ARexx (Christian Kuhnert)

Part 3: A3000 Intern (Johannes Schemmel)

These sections can be read individually or consecutively; their sequence

is not important. Each one constitutes in itself a useful learning tool and a

guide for later reference.

We wish you many enjoyable and enlightening hours with "Amiga

Intern." Maybe you will soon be publishing professional software for the

Amiga.

We are grateful to Commodore and especially to Dr. Kittel for their kind

support.

Table of Contents

Kickstart 2.04 5
1.1 Inside AmigaOS 2.x 5

1.1.1 Reset Capabilities 6

1.1.2 The Main Units of AmigaOS 2.x 7

1.1.3 Disk Libraries and Devices 9

1.2 AmigaOS 2.x Compatibility 10

Using the Amiga 3000 13
2.1 The Workbench... 13

2.1.1 Starting AmigaOS 2.x 13

2.1.2 The Workbench Menus 14

2.1.3 The Workbench Programs 18

2.2 The Command Line Interpreter 22

2.2.1 AmigaOS 2.x Resident Commands 22

2.2.2 Using the CLI 13ZZ!!22

Programming with AmigaOS 2.x 25
3.1 The Libraries and their Functions 25

3.1.1 The ASL Library IZZZ26
3.1.2 The Commodities Library 36

3.1.3 The Diskfont Library 54

3.1.4 The DOS Library 61

3.1.5 The Exec Library 161

3.1.6 The Expansion Library 225

3.1.7 The GadTools Library 233

3.1.8 The Graphics Library 251

3.1.9 The Icon Library 326

3.1.10 The EFFParse Library 331

3.1.11 The Intuition Library.. 350

3.1.12 The Layers Library 433

3.1.13 The MathFFP, MathlEEESingBas, and MathlEEEDoubBas Libraries 443

3.1.14 The MathTrans, MathlEEESingTrans, and MathlEEEDoubTrans Libraries448

3.1.15 The Translator Library 452

3.1.16 The Utility Library 453

3.1.17 The Workbench Library 461

vii

4. ARexx473
4.1 The ARexx Language 473
4.2. The Functions of ARexx 475

4.3 An Overview of ARexx 476
4.4 ARexx - Rexx on the Amiga479
4.5 A Sample Application 480

5. ARexx Syntax 483
5.1 Using Tokens 483
5.1.1 ARexx Symbols 483
5.1.2 Character Strings in ARexx : 485
5.1.3 The ARexx Operators 485
5.1.4 ARexx Special Characters 486
5.2 Expressions 487
5.2.1 Arithmetic Operators 488
5.2.2 Concatenation Operators in ARexx 490
5.2.3 Comparison Operators in ARexx 490

5.2.4 Using Logical Operators 491
5.3 ARexx Clauses 492
5.3.1 Null Clauses 492
5.3.2 ARexx Label Markers 492
5.3.3 Assignments in ARexx 492
5.3.4 ARexx Commands 493
5.3.5 Commands 493

6. Instructions 495
6.1 I/O Instructions 496
6.2 Structured Instructions 501

6.3 ARexx Control Instructions 507

6.4 Commands 513

7. ARexx Functions 515
7.1 ARexx Internal Functions 516

7.2 Built-in Functions 516

7.3 ARexx External Function Libraries 517

7.4 I/O Functions 520

7.5 ARexx String Functions 524

7.6 Bit Manipulation in ARexx 535

7.7 Numeric Functions 538

7.8 Conversion Functions in ARexx 541

7.9 ARexx System Functions 544

8. Special Features 555
8.1 Parsing Strings with Templates 555

8.1.1 Examples of Parsing 557

viii

8.2 Error Trapping with TRACE 561

8.2.1 Trace Options 561

8.2.2 TRACE Output 562
8.2.3 Command Suppression in ARexx Programs 563

8.2.4 Interactive Tracing . .-564

8.2.5 SIGNAL Interrupts and Error Handling 565

9. ARexx on the Amiga * 569
9.1 Commands - 569

9.2 Exchanging Data with the Clip List 573

9.3 Therexxsupportlibrary.. ..574

9.3.1 EXEC Functions 574

9.3.2 DOS Functions 581

9.4 Creating ARexx Function Libraries 583

10. The ARexx Interface 587
10.1 Essential Data Structures 588

10.2 Requirements for a Command Interface 590

10.2.1 Command Calls 593

10.2.2 Function Calls 594

10.2.3 ARexx Program Search Order 594

10.2.4 Expanded RexxMsg Structure Areas . 595

10.2.5 Result Entries 596

10.3 The Rexx Master Procedure 598

10.3.1 Action Codes 598

10.3.2 Action Code Control Flags 600

10.3.3 Managing the Results 601

10.4 Functions in rexxsyslib.library 602

10.4.1 I/O Functions 604

10.4.2 String Manipulation 609

10.4.3 Conversion Functions in ARexx 611

10.4.4 ARexx Resource Handling 614

10.5 The RexxBase Lists 623

10.6 ARexx Error Messages624

11. The A3000 Hardware 635
11.1 Processor Generations 637

11.2 The 68030 641

11.2.1 ThePMMU , 668

11.2.2 The Floating Point Coprocessor683

11.2.3 Differences Between the MC 68881 and 68882 701

ix

11.2.4 Cache Memory 702

11.3 The CIA 8520 ZZZZZZ!!707
11.4 Custom Chips and the Amiga 721

11.4.1 Basic Structure of the Amiga 722

11.4.2 The Structure of Agnus 726

11.4.3 The Structure of Denise 730

11.4.4 The Structure of Paula 734

11.5 The Amiga Interfaces738

11.5.1 The Audio Outputs 738

11.5.2 The RGB Connector 739

11.5.3 The VGA Connector 741

11.5.4 The Video Slot ZZZ.742
11.5.5 pie Centronics Interface 744

11.5.6 The Serial Interface 746

11.5.7 The External Drive Connector 748

11.5.8 The Game Ports Z^755
11.5.9 TheZorroBus 758

11.6 The Keyboard 764

11.6.1 Data Transfer from the Keyboard 766

11.7 Programming the Hardware 770

11.7.1 The Memory Layout 770

11.7.2 Fundamentals 780

11.7.3 Interrupts 794

11.7.4 The Copper Coprocessor 797

11.7.5 Playfields 807

11.7.6 Sprites 838

11.7.7 ECS Capabilities 860

11.7.8 TheBlitter 865

11.7.9 Sound Output 905

11.7.10 Mouse, Joystick and Paddles 933

11.7.11 The Serial Interfaces 941

11.7.12 The Disk Controller 946

Bibliography 951

Index 953

Parti

System

Programming

Part 1 - Introduction

The Amiga operating system is modular. Multitasking is achieved simply

and with near-optimal memory utilization through the use of libraries and

virtual devices. Only what is needed is saved in memory, and several

programs can share simultaneous access to system resources. The

capability of Intertasking, or interprogram communication over message

ports, is one of the many features of the Amiga's powerful and flexible

operating system that you will read about in this book. At first, learning

all these capabilities won't seem easy. The first part of the book, "System

Programming", should give you the necessary background information

for system programming in the AmigaOS 2.0 environment.

Author: Stefan Maelger

1.1 Inside AmigaOS 2.x

1. Kickstart 2.04

The new AmigaOS (Amiga Operating System) is here. It has taken some

time to reach its present state of development. However, the wait has

been worth it because this operating system is better than any

predecessor. This contains 512K, which makes this system more powerful

than any other system.

1.1 Inside AmigaOS 2.x

AmigaOS 2.x is based on the hardware environment of the Amiga 3000

(i.e., on the 68030 and 68882 processors) and the new ECS (Enhanced

Chip Set) custom chips. It must be distinguished from previous beta

versions based on the Amiga 1000, which are capable of calling only part

of the power that the Amiga 3000 operating system provides. These beta

versions, released to program developers who did not own a 3000, were

intended for compatibility testing only.

Similar to the preceding versions, AmigaOS 2.x is a multitasking

operating system, running several programs simultaneously. By dividing

memory into two distinct types and utilizing the DMA (co-processor)

concept, it is capable of actual simultaneous memory access (i.e., true

hardware multitasking). The Amiga's main program is the Input task. It

manages all input and transfers control to various system routines. For

example, the complex display-controller called Intuition. Commands are

passed from Intuition to the Input task, where, at intervals of l/50th of a

second, they are eligible for execution. Since Intuition tasks are

accomplished almost exclusively by the Input task, and the work of this

program is synchronized by clock pulses, all performance tests using

Intuition are meaningless. But with speed, the availability of static 32 bit

RAM on the non-multiplexed bus (free Fast RAM) will enhance

performance considerably, by enabling the processor to be switched to

burst-mode for top-speed access of the 68030fs data and instruction

cache.

To find out how the operating system is put together, let's try taking it

apart.

1. Kickstart 2.04

1.1.1 Reset Capabilities

Begin with a "cold start" by switching on the 3000. Press both mouse

buttons at once, and you will be moved to the Operating System Menu.

Here you can select the operating system you want to work with and

specify the source from which it should be loaded. For example, an old

version of the operating system can be loaded from the (hard) drive into

a RAM storage area. The 68030's integrated MMU logically shifts this
area to the normal operating system address and protects it against
overwrite.

Now the current operating system's normal reset routine, which can also

be invoked by the sequence <ctrij ,lft-Amiga,rt-Amiga>, is initiated. Under

AmigaOS 2.x, any external or internal expansions are immediately

recognized and incorporated into the system (this was not the case with

earlier versions). The operating system checks hardware and memory and

builds the tables for routines (error handling) and interrupts. All base data

structures containing variable values are then set up.

Pressing both mouse buttons again will take you to the Boot Menu. This

screen allows you to select the logical or physical drive from which

booting will take place. This drive will be referred to as SYS (system

directory). For other Amigas, even before the start of DOS, all logical

drives are recognized and drive names established. The execution of the

Startup sequence can also be disabled. This can be an advantage for CLI

users, since the InitialCLI itself is now a complete shell, providing a

convenient and easy-to-use platform for the Command Line Interface.

Now the Device Operating System (DOS) is started and the work shell

initialized. To save time and avoid problems selecting the right monitor

driver, the windows aren't opened until the Workbench is activated or

output in an InitialCLI window requires it.

1.1 Inside AmigaOS 2x

1.1.2 The Main Units of AmigaOS 2.x

The Amiga Operating system is designed in modules. Considering the

size of the entire system and that the Amiga is a multitasking device, this

is a great advantage. The modular design makes the system more flexible

and easier to change. The main units can be divided into four groups:

Libraries, Devices, Resources and Special. Libraries are simply collections

of routines of a certain type or application. Devices serve as logical

device drivers and may perform one or more tasks. Resources include

base routines which usually manage access to certain resources and

exclude them from or reserve them for other programs.

The modules are initialized according to their priorities.

The following modules are found in AmigaOS 2.4 ROM in the order of

their initialization:

/. Kickstart 2.04

Address Pri

$00f83cc0

$00f800b6

$00f83cda
$00fbb09a
$00faba14

$00f889e0

$00f98dac
$00f8f3bc
$00fab964

$00fbbb50
$00faebd8

$00fb8540
$00f85890

$00faec02

$00f862d0
$00fa6984

$00faec2c
$00fa76c4
$00fae054
$00fb936c

$00fb0298

$00fd3f6c

$00f83ca4

$00f8b358

$00fab5f4

$00f86508

$00fb7620

$00fff46c
$00f864c8

$00fb763a
$00f98f3e

$00fae70c

$00f847f0

$00f90390

$00f9e4d0

$00fa445c

$00fab110

$00fbba7a
$00feccd4

$00f88d8e
$00fb2ed4

$00fabbb8

+110

+105

+105

+103

+100

+80

+80

+70

+70

+65

+60

+50

+45

+45

+44

+40

+40

+31

+25

+20

+10

+10

+5

+5

+0

-35

-40

-45

-50

-60

-81

-100

-120

-120

-120

-120

-120

-120

-120

-121

-122

-123

Library

Library

Special

Library

Resource

Resource

Resource

Resource

Resource

Library

Device

Device

Resource

Device

Resource

Library

Device

Library

Device

Device

Device

Library

Special

Device

Library

Special

Special

Special

Special

Special

Special

Special

Device

Library

Library

Library

Library

Task

Library

Special

Special

Special

Name Vers.

expansion

exec

diag init

utility

potgo

cia

filesysres

disk

misc

graphics

gameport

timer

battclock

keyboard

battmem

keymap

input

layers

ramdrive

trackdisk

scsidisk

intuition

alerthook

console

mathieeesingbas
syscheck

romboot

Magic

bootmenu

strap

fs

ramlib

audio

dos

gadtools

icon

mathffp

Pre-2.0 LoadWB stub

wb

con-handler

shell

ram

37.23

37.52

37.3

37.4

37.4

37.1

37.1

37.1

37.20

37.8

37.57

37.3

37.8

37.3

37.2

37.8

37.7

37.3

37.3

37.4

37.220

37.85

37.2

37.2

37.23

36.7

37.2

37.23

37.11

37.13

37.7

37.22

37.82

37.6

37.1

37.108

37.39

37.37

37.9

Date

(3/15/91)

(3/15/91)

(2/13/91)

(1/28/91)

(3/15/91)

(1/12/91)

(1/9/91)

(1/8/91)

(3/14/91)

(1/28/91)

(3/14/91)

(3/11/91)

(1/28/91)

(3/4/91)

(1/8/91)

(1/28/91)

(3/13/91)

(1/9/91)

(3/13/91)

(2/26/1)

(3/14/91)

(3/13/91)

(2/7/91)

(1/15/91)

(3/15/91)

(3/16/90)

(1/15/91)

(3/15/91)

(3/13/91)

(3/14/91)

(3/13/91)

(3/15/91)

(3/14/91)

(3/2/91)

(1/13/91)

(3/14/91)

(3/13/91)

(3/13/91)

(3/15/91)

Some modules are only included for backward compatibility. For

example, the workbench-task module and the "mathffp.library" are used.

All other modules contained in ROM are used frequently or are required

by other modules.

/./ Inside AmigaOS 2.x

1.1.3 Disk Libraries and Devices

Modules are found in ROM, on the Workbench disk or in the system

directory of the hard drive. These programs are loaded as they are used:

Name

asl.library

commodities.library

diskfont.library

iffparse.library

mathieeedoubbas.library

mathieeedoubtrans.library

mathieeesingtrans.library

mathtrans.library

translator.library

version.library

rexxsyslib. library

rexxsupport.library

clipboard.device

narrator.device

parallel.device

printer.device

serial.device

aux-handler

port-handler

speak-handler

queue-handler

Version

37.25

37.5

36.50

37.1

37.1

37.1

37.1

37.1

37.1

37.33

36.19

34.9

37.4

37.5

37.1

35.603

37.1

Directory

"LIBS"

"DEVS"

"L"

1. Kickstart 2.04

1.2 AmigaOS 2.x Compatibility

The addresses of routines in ROM will vary from version to version. They

should not be called directly, since they are always subject to change. In

short, do not rely on a specific value for anything that Commodore has

not declared a constant. A disadvantage with compatibility is the

memory requirements of programs. The new operating system uses more

memory than earlier versions to accommodate its many new features. The

same is true for program stack requirements. System routines have

become much more complex, with a corresponding increase in their stack
storage needs.

Many values whose contents are made up of flag bits have been

expanded, and failure to handle them accordingly can lead to problems.

Also, this can happen to the 68030's expanded status register.

Unfortunately, some system data not defined as PUBLIC has found its

way into circulation. These values are not to be trusted and changes in

their definitions can most likely happen. The programmer can always rely

on the address $00000004. This is the base address of the "exec.library"

for all versions of the operating system. All other values are uncertain.

The color and proportions of the system font can also change. Processor

speed has increased dramatically. As a rule, a program will have to be

synchronized with clock impulses or the monitor's electron beam.

The main and co-processors' instructions doesn't allow interval storage

of values, bits in addresses or instruction codes.

Many extensions of AmigaOS 1.3 have been removed and integrated

into the base module in a large expanded form. For example, the

"romboot.library" was removed and the boot routine completely

reprogrammed. Autobooting from devices other than the internal disks is

now standard and fully supported by the system. Like the SCSI-devices,

all disks come bootable from the supplier. Drives DF0 through DF3 are

assigned priorities of+5, -10, -20, and -30.

Early in the reset-routine the new operating system's enhancements

become apparent. Calling of the ColdCapture vector is delayed. At any

time the Exception/Interrupt Table can be placed over the Vector Base

Register (VBR).

10

1.2 AmigaOS 2.x Compatibility

There are allowances for changing the size and type of MemHeader

structures, and the use of ResetWindows has been revised.

The base structure of the Expansion-library is declared as PRIVATE and

may not be accessed. Any expansions are incorporated in two passes

accompanied by the sorting of address slots.

The "dos.library" is greatly expanded and, like many other modules,

programmed with the SAS C-compiler Version 5. Its base structure now

conforms to that of the other libraries. However, for compatibility

reasons, some addresses still exist as BCPL-pointers. New types of

DosPackets and new locks have been implemented. The process

structure has grown substantially, so that auto-creation, for example with

the popular "arp.library," results in a system crash.

The Workbench, which has changed in appearance and color, can now

be nearly any desired size, shade and resolution. Window frames and

gadgets adjust automatically to changes in resolution and fonts.

Workbench windows can be transferred to other screens. Screens, which

can consist of up to 16368*16384 pixels, are capable of new display

modes, overscan into the unseen border area, and several styles of

horizontal and vertical scrolling. All data necessary to duplicate a screen

can no longer be determined from the screen structure. Screen handling

is greatly improved and, even with SimpleRefresh windows, a message is

sent only when refresh is necessary. Different color borders indicate

which windows are active and special effects create a 3-dimensional

appearance. There are new IDCMP-flags for this, and both keyboard

flags now transmit raw data for special keys.

The Layer system is improved. SimpleRefresh layers are saved and

refreshed to the fullest possible extent. The routines FattenLayerlnfo,

ThinLayerlnfo, and InitLayers should no longer be used; NewLayerlnfo

accomplishes all these functions.

Computing of Copper lists has been optimized. The video-hardware does

not like programming errors, such as switching off the display mode in

mid-display. GetColorMapO must be used to manipulate ColorMap

structures, which have increased in size. Row/cols values in the GfxBase

no longer relate to the Workbench.

11

Kickstart2.04

Although the font structures have a new format, the old one continues to

be supported. The system-area of "font" files has been changed.

Character set sizes that are not present are now simply calculated. The

topaz font is still in ROM, but now as a sans-serif variant for increased

legibility at high resolutions. Size and proportions of the system font can
be specified as desired.

Many CLI/Shell commands are stored in ROM, and several CLI/Shell

processes can run simultaneously. Windows are now equipped with

close gadgets that, when activated, cause an EOF code to be sent. The

missing cursor error in SuperBitmap Console windows has been
corrected.

The Audio device no longer is initialized until its first use, which can

result in errors because of insufficient memory.

Several serial interfaces (expansion cards) are possible. However, this can

lead to problems with the adjustment of certain parameters through the
Serial device.

Trackdisk device buffers can be released, but a subsequent attempt to

use a buffer may result in an error if insufficient memory is available.

Both CIAB timers are now accessible.

The current maximum for chip RAM is 2 Meg. Fast RAM is configured

down from the upper boundary of memory (in full 32 bit addresses) and

can be as high as 8 Gigabytes. This configuration will make it easier for a

future release to break the 2 Meg chip RAM barrier, probably reaching

as high as 8 Meg.

The ECS has more hardware registers, which reside in between those

familiar to the previous system and can cause problems for programmers

of clockcycle-optimized programs. Some old registers contain important

new bits. The accubuffered truetime clock is not compatible with earlier

clock chips.

12

2.1 The Workbench

2. Using the Amiga 3000

We recommend working through the following exercises step by step.

While providing a quick overview of the use and capabilities of the

3000, a lot of important information is included that everyone will find

useful.

2.1 The Workbench

Since the SCSI hard disk comes factory-installed, a few seconds after

switching on the computer the graphical user interface, called the

Workbench, appears. If you're already familiar with previous versions of

the Amiga, you'll immediately notice some changes. The Workbench

window is no longer just a background screen. It has acquired a border

with which it can be moved around, brought into the foreground or

reduced in size. There is even a close gadget (which should be used

carefully). Professional color selection and the appearance of

3-dimension are impressive enhancements that dress up the Workbench

window.

There is now just a single gadget for superimposing windows: the

back/front gadget. Click on it once and the screen or window is brought

into the foreground. A second click restores the object to the

background. Next to the back/front gadget, a window has a new gadget,

by which it can be toggled between two alternate sizes and positions.

This is referred to as the alternate gadget.

2.1.1 Starting AmigaOS 2.x

At this point some suggestions concerning the startup of the Workbench

may be helpful. Let's begin with the Startup-sequence script file in the S

directory. This file contains all the commands and parameters necessary

to start the system. Configuring the system to one's own wishes used to

require making various changes. Remember if a command results in

output to the InitialCLI window, the Workbench screen is opened and

the CLI window appears on it. This is not desired, since there is the

opening of windows on the Workbench screen before the screen itself is

activated. Here's why.

13

2. Using the Amiga 3000

When the LoadWB command wants to open the Workbench, the

"workbench.library" attempts to use the stored display mode for the

Workbench screen. If the screen is not yet present, there is no problem. If

it is, an attempt is made to close it and open a new one in the desired

mode. This fails when the screen to be closed contains a CLI or user

window.

The result is a system requester requesting that all windows be closed.

Let's assume a user is working with the A2024 monitor, which requires a

special driver. Suddenly nothing can be seen on the screen, and without

an understanding of the system, nothing can be done to solve this

problem.

Several things could be done to prevent this situation from occurring.

First of all, only those commands that must be executed before the

activation of the Workbench should precede the LoadWB command.

Secondly, the "Command >NIL: parameter" format should be used to null

their output.

Another possibility is offered through the directory WbStartup. All

programs (i.e., icons that are located here) are started after activation of

the Workbench, just as if they were selected with a double-click of the

left mouse button. For example, if you will be working for an extended

amount of time with a particular word processing task, you can simply

place the icon of the word processor, or the text itself, in this directory.

Startup-sequence complications with autostarting programs can be

avoided by simply modifying the placement of icons.

2.1.2 The Workbench Menus

Your acquaintance with the Amiga will require you to be familiar with

the Workbench menu functions. Even CLI enthusiasts should make

thorough use of them, since now the CLI can be entirely replaced by the

graphical user interface. Before we proceed with the individual items, we

should mention one more innovation regarding the selection of icons. If

you press the left mouse button and hold it down while moving the

mouse, a rectangular box appears on the Workbench or in a Workbench

window. When the left mouse button is released, all the icons within the

box are selected, a better procedure than multiple selections using the

[shittl

14

2.1 The Workbench

The "Workbench" menu contains items that are independent of file or

directory selections:

Backdrop This item is used to manipulate the Workbench window.

Selecting it removes the border, enlarges the window to

the full screen size and places it behind all other

windows. The former condition is restored when the

item is selected again.

Execute Command

Causes a CLI/Shell command to be executed. A

requester appears in which a command can be entered

the same as in the Shell. A new window is opened for

resulting output and can again be closed with the use of

a close gadget.

Redraw All If programs have cluttered or disrupted the workbench

screen, you can use this item to restore all windows and

icons to their original condition.

Update All If you are working with the Workbench and the Shell,

you can use this item to show changes you have made

to directories with the Shell. It updates Workbench

memory and redraws the screen to reflect the current

status.

Last Message The last message to appear on the title bar is

redisplayed.

About Displays a requester showing the version numbers of

the operating system and Workbench you are using.

This also shows the copyright notice.

Quit This is the same as clicking on the close gadget of the

Workbench. If the Workbench is not blocked by any

program windows, you can close it after confirming

your decision in a requester. This frees up memory for

processes such as graphics programs that may have

large memory requirements.

15

2. Using the Amiga 3000

The "Window" menu contains items that refer to directories and drives.

They affect only the active window:

New Drawer Makes a new directory and provides an icon for it. The

name of the directory can be entered in a requester.

Open Parent When one directory is located within another directory,

which in turn is located within a third, it may be

advisable to close the respective parent directories.

Selecting this item will again open the directory in

which the current window's directory is located.

Close Closes the current window (directory).

Update In earlier versions, directory changes that were not

applied to the Workbench had to be remade with each

close and subsequent reopen of the directory in order to

be reflected on the screen. This item provides a simple

way of keeping a window's information current.

Select Contents If you want to work with all entries of a directory, the

entire contents can be selected with this item.

Clean Up Tidies up a window by reorganizing its icons according

to the window's size.

Snapshot Stores the size and position of the current window

(submenu item "Window") and the order of all the icons

it contains (submenu item "AH").

Show Determines what will be shown in the current window.

The submenu item "Only Icons" is the default. This

shows only those objects that have an icon file (".info"

file). All other entries are also shown when you select

the "All Files" submenu item. For example, this enables

you to display CLI commands and double-click to start

them, whereby a requester appears permitting the input

of parameters.

View By The preset submenu item "Icon" shows the directory

contents by icons and, underneath them, the

16

2.1 The Workbench

corresponding filenames. All other options produce a

scrollable list of entries without icons. The entries that

appear in this list are determined by the "Show" criteria.

Their sequence is determined by the three remaining

"View By" submenu items. Entries can be sorted by

"Name" of file, by "Size", or by "Date" created. Files can

be selected from these lists as they can from the display

of icons.

The "Icon" menu contains functions relating to icons. The upper portion

consists of general activities and the lower portion consists of special

icons only.

Open Opens the selected icon, which is the same as double-

clicking on the icon with the mouse.

Copy Makes a copy of a file, directory or diskette.

Rename Changes the name of an object.

Information Opens a large requester in which all data about an icon

can be displayed and manipulated.

Snapshot Saves the position of the selected icon.

Unsnapshot Deletes position information of icons saved in

"Snapshot".

Leave Out One of the most convenient features of the new

Workbench. Selected icons are saved in the main

Workbench window. This makes it possible to select the

icon again without reopening its directory. The Leave

Out configuration is saved and remains in effect even

after resetting or turning off the computer.

Put Away Removes icons placed in the Workbench window by

Leave Out and displays them again with their respective

directories.

Delete Deletes all selected icons and their files or directories

after confirmation using a requester.

17

2. Using the Amiga 3000

Format Disk Formats a diskette. The disk is initialized and given the

name "Empty". The diskette icon is then displayed.

Empty Trash Deletes the contents of the Trashcan directory.

The "Tools" menu normally contains only the "ResetWB" function,

which returns the entire Workbench to its initial status. This menu was

intended for user-defined items. Unfortunately, no utility for

incorporating programs into menus is supplied, although the public-

domain "ToolManager" (Fish 476) can be used to accomplish this.

2.1.3 The Workbench Programs

Now let's look at the programs that Workbench Version 37 Revision 64

contains. We begin with the "Prefs" directory, since you will find all the

programs needed to tailor the system to your needs:

Input This program establishes all the time constants for

interrogating the keyboard and the mouse. With the

"Mouse Speed" slider, you control how much the mouse

must be moved to cause a corresponding movement of

the mouse pointer. A low value indicates that a small

movement of the mouse will change the position of the

pointer. If this is not adequate, you can click on the

"Acceleration" box. A check mark appears in the box

when Acceleration is selected. Now the slightest

movement of the mouse will cause a large displacement

of the pointer. You may have to go back and adjust the

Mouse Speed after selecting Acceleration.

The "Double-Click" slider sets the maximum time span

that can separate two clicks before they will be

recognized separately rather than as a double-click.

You can try this out with the "Test" button. If a double

click is recognized, this is indicated in the "Show" box.

"Key Repeat Delay" sets the time after which a key that

is struck and not released will be considered struck

again.

18

2.1 The Workbench

"Key Repeat Rate" is the speed at which a letter will

appear on the screen as repeated input once the Key

Repeat Delay is reached and the key continues to be

held down. This can be checked in the Key Repeat Test

field.

IControl IControl establishes keyboard commands that take the

place of complicated mouse operations. "Verify

Timeout" is the timespan that keys must be pressed to

activate the corresponding action. "Command Keys" are

letter keys that are pressed in combination with the left

<Amiga> key to perform certain actions. For example, to

move the Workbench into the foreground and the front

screen into the background, or to substitute for the

"OK" and "Cancel" gadgets of some system requesters.

IControl allows you to specify the letters to be used for

these actions.

"Mouse Screen Drag" keys are used with the mouse to

drag the screen both horizontally and vertically. With

IControl you can specify the keys (1 Shift |. fctril , (Alt)

and/or <Amiga>) that must be held down along with the

left mouse button for this operation. When such keys

are paired on the keyboard, the left one should be used.

"Avoid flicker" provides for flicker-free text in special

display modes. "Preserve colors" ensures stability and

fidelity of color. With "Screen menu snap", menus will

always be shown in the visible area of the screen, and

with "Text gadget filter", control characters are filtered

out of text.

Palette This allows the colors of the Workbench to be changed.

The currently selected color appears in a box to the left

of the palette. Below it the red, green and blue intensity

of the selected color can be adjusted.

WBpattern The main Workbench window and its directory

windows are displayed with a background pattern. The

editor WBpattern lets you choose these patterns from

eight preset selections.

19

2. Using the Amiga 3000

Font

Pointer

ScreenMode

OverScan

Printer

PrinterGfx

Allows selection of the character sets to be used for the

text underneath icons, for that displayed in the title bars

of screens and windows, and for the default text of the

system. You can also specify whether or not the

background field behind text characters should be

colored. Color selections for text and field are made

separately.

With this preference you can change the appearance of

the mouse pointer and adjust the "hot spot" (i.e., the

portion of the pointer capable of activating an object).

Here the resolution and display mode of the Workbench

is established. The Workbench can be made larger than

the visible area of the screen. You can specify whether

or not the screen display should "Autoscroll" when the

selected "Width" and "Height" values exceed the visible

screen dimensions. The number of possible colors can

also be determined according to screen mode.

If you have a monitor on which the border area around

the Workbench is visible, then you can also enlarge the

Workbench. With "Edit Text Overscan" and "Edit

Standard Overscan" you can inform the system of the

normal visible area of your monitor and the desired

overscan display size. A program can then open a

screen that extends beyond the normal text area, so that

no border is visible.

This program allows you to tell the system what type of

printer is connected to your computer, through which

port it is connected, what kind of paper you are using,

and various preferences regarding text output.

Here you can define several specifications for the

output of graphics to the printer. Next to the "Color

Correct" area, you can choose the "Smoothing" option

to round sharp edges and offset or centering options.

Other specifications include "Dithering," "Scaling,"

"Image," "Aspect" and "Shade".

20

2.1 The Workbench

Serial This program sets the data transfer parameters for a

modem connected to the serial port. The maximum rate

supported is 31250 baud.

Time This program establishes the date and time and sets the

accubuffered truetime clock accordingly.

The "System" directory contains programs that are used primarily by the

operating system. The exceptions to this rule are "SetMap," by which

you can change the assigned keyboard layout, "NoFastMem," which

disables the Fast RAM area, and "FixFonts," which should always be run

following changes in the Fonts directory.

In the "Utilities" directory there are a few small programs that perform

helpful tasks:

Clock Displays the time in analog or digital format and has an

alarm function.

More This is a program for reading text files. You can scan

through the text within a window one page or line at a

time.

Display Graphics in IFF format and even slideshows can be

displayed with this program.

Say A simple program to convert typed text into computer-

synthesized speech.

Exchange and Commodities

This is the main program of an assortment of small

utilities. It controls the following programs: "Autopoint"

automatically activates the window over which the

mouse pointer is located, "Blanker" blanks out the

screen when no input has been received for a specified

period of time, "FKey" assigns function keys, "IHelp"

allows keyboard commands to replace many mouse

operations, and "NoCapsLock" forces software

disabling of the leaps Lock 1 key.

21

2. Using the Amiga 3000

2.2 The Command Line Interpreter

The Shell is a window in which you can enter command lines to control

the Amiga. A command line consists of a program name and, in some

cases, additional parameters.

2.2.1 AmigaOS 2.x Resident Commands

Unlike in previous versions of the Amiga operating system, under

AmigaOS 2.x many programs are stored in ROM. This allows faster

processing and trouble-free manipulation of system directories. Some

programs stored in ROM are also kept in the current system directory,

because programs written for earlier versions expect them there and

require them for execution.

The following commands are implemented in ROM:

Alias

Ask

CD

Echo

Else

EndCLI

Endlf

EndShell

EndSkip

Failat

Fault

Get

Getenv

If

Lab

NewCLI

NewShell

Path

Prompt

Quit

Resident

Run

Set

Setenv

Skip

Stack

Unalias

Unset

Unsetenv

Why

.bra

.ket

•key

2.2.2 Using the CLI

The Shell or CLI provides many features to help you edit the current

command line:

The left and right cursor control keys move the cursor one character

position in the indicated direction. When used in conjunction with the

I shift) key, they move the cursor to the beginning or end of the line

respectively.

22

22 The Command Line Interpreter

The [Backspace! key erases the character to the left of the cursor. The (Dei]

key erases the character at the cursor position.

This corresponds to 1 Backspace! [ctrll+fM) to [Enter!, and

fctrTVffjl to Help.

This erases the previous word.

This erases the entire window (works only in

combination with [Enterfl.

This erases the entire command line.

This erases the line from the beginning up to the cursor

position.

This erases the line from the cursor position to the end.

This aborts an executing program, command file, etc.

Previously entered commands are stored. You can scan up or down

through this list with the cursor control keys. There is a search function

for quickly locating a particular command within a list. Simply type the

first few characters of the command you wish to locate. Then press the

up or down cursor control key together with the 1 Shirt 1 key to begin

searching in the desired direction for the first line that begins with the

typed sequence.

In the Shell window, blocks of text can be marked with the mouse and

with <rt-Amiga> +Q as in a word processor. The block can be copied to
another window by pressing <rt-Amiga>+(v) after activating the

window that is to receive the text.

If you enter a command in a Shell window that is too small to hold the

entire output, the initial lines will scroll off the top of the window and

disappear from view. Enlarging the window will cause them to reappear.

23

3.1 The Libraries and their Functions

3. Programming with AmigaOS 2.x

The basic concept of the operating system has been changed

considerably from the old 1.x versions. In just about every area, the

programmer is given opportunities to query, influence, or completely

determine system processes. The operating system has become much

more open, and offers good potential for multi-user systems. Many

system routines were re-programmed with new capabilities. In order to

maintain compatibility with old software, many of the calling

conventions from the 1.x versions were implemented, and sometimes the

function results were partially modified. New libraries, resources, and

devices were added. The familiar system modules were expanded to the

point that they can hardly be recognized anymore. All in all, AmigaOS

2.x is a completely new operating system that is compatible with the old

versions.

Normal versions of AmigaOS 2.x can only work on a machine that has

the same hardware configuration as the Amiga 3000 (68030, FPU,

Commodore clock chip, HR chip set, etc.). This is because the reset

routine starts out with 68030 commands without even querying the CPU

type. Some test versions can also be installed on the 16 bit machines, but

there is a lot less room in the 512K ROM, so many features are only

partially functional or are missing altogether.

3.1 The Libraries and their Functions

A lot of information is required to produce a good program. All the data

on AmigaOS 2.x would fill thousands of pages and extend far beyond

what we could hope to effectively cover in this book. Therefore, we had

to limit ourselves to a selected portion. We chose to focus on the library

functions in this book. Library routines provide the building blocks and

hand tools for creating more complex application programs, such as a

word processor. Because there are so many functions to cover, we also

chose to do without an introductory overview for beginners. For

example, there are many other good books with this kind of information,

such as "The Amiga System Programmers Guide".

A brief glance at the system routines will reveal the existence of two new

structures = Tagltem fields and Hooks. Tagltem fields are variable in size

25

3. Programming with AmigaOS 2.x

and structure. They are primarily used to pass parameters. A Tag field can

belong to several memory blocks. It consists of several Tagltems. A

Tagltem consists of two 32 bit values (Longs). The first value is a code

for interpreting the meaning of the second value, which is the data Long.

Depending on the code, the data can be an address, a BCPL pointer,

Words, Bytes, Flags, or combinations thereof. Tagltems are most often

used to change system routine default settings. This could be for a small

change, such as setting the ECS presentation mode for a new screen, or

for changes to the basic system configuration that require large numbers

of parameters. Tagltem fields are required in order to use certain OS-2.04

features.

Another important new structure is the Hook. Hooks give the

programmer deep access into the system. In general, Hooks are structures

with addresses to routines of their own. These private routines are

associated with certain events or results. When a certain event or result is

encountered, the system jumps to the corresponding routine. Hooks can

be used to expand upon or entirely replace system functions.

And now, the description of each library in alphabetical order.

3.1.1 The ASL Library

The ASL library provides the easiest way for a programmer to create file

requester boxes. Special functions can be applied to customize each

requester box.

This library is found under the name "asl.library". All functions of this

library, expect the base address __AslBase, is a parameter in the A6

register.

Functions of the ASL Library

1. Standard File Requester Box 2. Complex File Requester Boxes

AllocFileRequest AllocAslRequest

FreeFileRequest FreeAslRequest

RequestFile AslRequest

26

3.1 The Libraries and their Functions

Description of Functions

1. Standard File Requester Box

|AllocFileRequest Get FileRequester structure |

Call: request = AllocFileRequest ()

DO -30 (a6)

STRUCT FileRequester *request;

Function: Obtains and initializes all data structures required for a

RequestFile() function call.

Arguments: None. The initialization is automatically executed for the

standard file requester. If you want to use special functions,

you must obtain the data structures with

AllocAslRequest().

Result: Address of a FileRequester structure which is passed to the

RequestFile() function. You can read any data from the

normally accessible parts of the FileRequester structure. In

the case of a system error, such as no memory, the value 0 is

returned.

Warning: FileRequester structures passed to RequestFile() or

AslRequest must be obtained either with

AllocFileRequest() or AllocAslRequest(). Reserving

memory yourself or directly manipulating the entries in the

structure will crash the system.

See also: RequestFile(), FreeFileRequest(), FreeAslRequest(),

AslRequestQ

|FreeFileRequest Free file requester]

Call: FreeFileRequest (request)

-36(a6) A0

STRUCT FileRequester ^request;

27

3. Programming with AmigaOS 2.x

Function: This function is identical to Free AslRequest(). It's used to

free a data structure allocated with AllocFileRequest.

Arguments: request Address of a FileRequester structure that was

obtained with AllocFileRequest().

Result: None.

See also: FreeAslRequest()

[RequestFile Display file requester and evaluate user input|

Call: result = RequestFile (request)

DO -42(a6) AO

BOOL result;

STRUCT FileRequester *request;

Function: A file requester box is displayed, the user's input is

processed, and the requested file is returned.

Arguments: request FileRequester structure with address obtained

via AllocFileRequest().

Result: result 0 means Cancel was selected or a system error

occurred. The exact input data can be read

from the FileRequester structure.

See also: AllocFileRequest(), FreeFileRequest(), AslRequest()

2. Complex Requester Boxes

[AllocAslRequest Obtain structures for a requester box|

Call: request = AllocAslRequest (type, ptags)

DO -48(a6) DO AO

APTR request;

ulong type;

STRUCT Tagltem *ptags;

28

3.1 The Libraries and their Functions

Function: Obtains and initializes the data structures for a requester

• box.

Arguments: type Type of requester box, ASLJFileRequest for a

file requester or ASLTontRequest for a font

requester. The type of requester box is

determined by AllocAslRequest function on

the basis of the following values:

ASL_FileRequest = 0

ASL_FontRequest = 1

ptags Address of a Tagltem field used to pass special

functions and parameters.

Result: Address of an initialized data structure (FileRequester or

FontRequester). A value of 0 is returned in case of an error.

The address of the data structure is passed to the function

AslRequestO and freed with FreeAslRequest().

See also: AslRequestO, FreeAslRequestQ

IFreeAslRequest Free requester box data structures|

Call: FreeAslRequest (request)

-54(a6) AO

APTR request;

Function: Frees the memory occupied by a FileRequester or

FontRequester structure. The address must have been

previously obtained with AllocAslRequestO or

AllocFileRequest().

Arguments: request Address of a data structure obtained via

AllocAslRequestO or AllocFileRequest().

Result: None.

See also: AllocAslRequestO, AslRequestO, AllocFileRequest()

29

3. Programming with AmigaOS 2.x

| AslRequest Display and query requester box|

Call: result = AslRequest (request, ptags

DO -60 (a6) AO Al

BOOL result;

APTR request;

STRUCT Tagltem *ptags;

Function: Displays a requester box and evaluates the input of the

user. The type of box, special functions, and results are

dependent upon the data structure and definitions passed

to the Tagltem field.

Tag Items

ASLJHail (STRPTR)

ASL Window (struct Window *)

ASL LeftEdge (WORD)

ASL TopEdge (WORD)

ASL Width (WORD)

ASL Height (WORD)

ASL HookFunc (APTR)

ASL File (STRPTR)

ASL Dir (STRPTR)

ASL FontName (STRPTR)

ASL FontHeight (UWORD)

ASL FontStyles (UBYTE)

ASL FontFlags (UBYTE)

ASL FrontPen (BYTE)

ASL BackPen (BYTE)

ASL MinHeight (UWORD)

ASL MaxHeight (UWORD)

ASL OKText (STRPTR)

ASL CancelText (STRPTR)

ASL FuncFlags (ULONG)

ASL ExtFlagsi (ULONG)

Title text of the requester.

Window in which the requester will appear.

Left edge of the query window.

Top edge of the query window.

Width of the query window.

Height of the query window.

Address of an implemented function.

Default filename of a FileRequester.

Default path of a FileRequester.

Default font name of a FontRequester.

Default font height.

Default font style.

Special flags for a FontRequester.

Foreground color of a FontRequester.

Background color of a FontRequester.

Minimum height of font.

Maximum height of font.

New text for the OK button (up to 6 char.).

Same for the CANCEL button.

Function Flags for the requester.

Additional Flags.

Arguments: request

ptags

Data structure obtained with AllocAslRequest()

or AllocFileRequest().

Address of a Tagltem field containing changes

to the default values.

Warning: The only valid way to change the data structure entries is

with Tagltems.

30

3.1 The Libraries and their Functions

Result: A result of 0 indicates CANCEL was pressed or a system

error occurred. The exact user input can be taken from the

readable parts of the data structure.

See also: AllocAslRequest(), FreeAslRequest()

Data Structures And Values:

Dec

0

4

8

12

16

17

18

22

24

26

28

30

32

36

40

44

48

52

Hex

$00

$04

$08

$0C

$10

$11

$12

$16

$18

$1A

$1C

$1E

$20

$24

$28

$2C

$30

$34

STRUCTURE FileRequestr,0

CPTR

CPTR

CPTR

CPTR

UBYTE

UBYTE

APTR

WORD

WORD

WORD

WORD

WORD

LONG

APTR

APTR

APTR

APTR

CPTR

rf_Reservedl

rf_File ; *filename (FCHARS+1)

rf_Dir ; *directory (DSIZE+1)

rf_Reserved2

rf_Reserved3

rf_Reserved4

rf_Reserved5

rf_LeftEdge

rf_TopEdge

rf_Width

rf_Height

rf_Reserved6

rf_NumArgs

rf__ArgList

rf_UserData

rf_Reserved7

rf_Reserved8

rf_Pad

Interactive functions associated with a requester must look like this:

rf_Function(Mask, Object ,AslRequester)

4(A7) 8(A7) 12(A7)

ULONG Mask;

CPTR *Object;

CPTR *Request;

The value of Mask is determined by passing a copy of

ASL_FunctionFlags, which is generated for every requester. Object

contains the address of data. The following bits (or Flags) are defined for

a FileRequester:

RFB_DOWILDFUNC = 7 ;call with AnchorPath and a name,

RFF_DOWILDFUNC = $80 ;(FileRequester)

RFB_DOMSGFUNC = 6 /transmit all IDCMP events

31

3. Programming with AmigaOS 2.x

RFF_DOMSGFUNC = $40

RFB_DOCOLOR = 5

RFF_DOCOLOR = $20

RFB_NEWIDCMP = 4

RFF_NEWIDCMP = $10

RFB_MULTISELECT = 3

RFF_MULTISELECT = $8

RFB_PATGAD = 0

RFF_PATGAD = $1

that are not for the FileRequester

bit for SAVE operations

use own IDCMP port

notify of multiple selection

query a Pattern gadget

Dec Hex

0 $00

4 $04

8 $08

12 $0C

14 $0E

15 $0F

16 $10

17 $11

18 $12

19 $13

20 $14

24 $18

26 $1A

28 $1C

30 $1E

STRUCTURE FontRequester,0

CPTR

CPTR

APTR

USHORT

UBYTE

UBYTE

UBYTE

UBYTE

UBYTE

UBYTE

APTR

SHORT

SHORT

SHORT

SHORT

fo_Reservedl

fo_Reserved2

fo_Name

fo_YSize

fo_Style

fo_Flags

fo_FrontPen

fo_BackPen

fo_DrawMode

fo_Reserved3

fo_UserData

fo_LeftEdge

fo_TopEdge

fo_Width

fo_Height

;result string

ASL_FuncFlags for FontRequester:

FONB__FrontColor = 0

FONF_FrontColor = $1

FONB_BackColor = 1

FONF_BackColor = $2

FONB_Styles = 2

FONF_Styles = $4

FONB_DrawMode = 3

FONF_DrawMode = $8

FONB_FixedWidth = 4

FONF_FixedWidth = $10

FONB_NewIDCMP = 5

FONF_NewIDCMP = $20

FONB_DoMsgFunc = 6

FONF_DoMsgFunc = $40

FONB_DoWildFunc = 7

FONF_DoWildFunc = $80

query foreground color

query background color

query font style

query draw mode

allow only fixed width fonts

use own IDCM port

capture only events for the requester

call with every TextAttr structure

32

3.1 The Libraries and their Functions

ASL_Dummy

ASLJHail

ASL_Window

ASL_LeftEdge

ASL_TopEdge

ASL_Width

ASL_Height

ASL_HookFunc

ASL_File

ASL_Dir

ASL_Pattern

ASL_FontName

ASL_FontHeight

ASL_FontStyles

ASL_FontFlags

ASL_FontPen

ASL_BackPen

ASL_MinHeight

ASL_MaxHeight

ASL_OKText

ASL_CancelText

ASL_FuncFlags

ASL_ModeList

Values for the Tagltem field used with AslRequest():

TAG_USER+$80000

ASL_Duirany+1

ASL_Dummy+2

ASL_Duirat\y+3

ASL_Dummy+4

ASL_Duirany+ 5

ASL_Dummy+ 6

ASL_Dummy+7

ASL_Duirat\y+8

ASL_Dummy+9

ASL_Dummy+10

ASL_Dummy+10

ASL_Dummy+ll

ASL_Dummy+12

ASL_Dummy+13

ASL_Duramy+14

ASL_Dummy+15

ASL_Dummy+16

ASL_Duirany+17

ASL_Dummy+18

ASLJDummy+19

ASL_Dummy+2 0

ASL__Duirany+ 21

Example

FileRequester only

FontRequester only

Let's take a look at the creation of a simple FileRequester and how to

query its result. It's rather curious that a simple routine like this does not

already exist as a function:

**

* -k

•k-k

**

• *

**

**

Input:

Output:

File selection

A6=_AslBase

A0=Buffer (FCHARS+DSIZE+1)

D0=Buffer r NULL

A6=_AslBase

A0=Buffer

**

* *

**

**

**

**

**

**

_File selection

clr.b (aO)

movem.l dO/aO/-(a7)

jsr _LVOAllocFileRequest(a6)

move.l dO,(a7)

;0 bytes in buffer

;result+buffer

;get FileRequestr

;save result

33

3. Programming with AmigaOS 2.x

beq.s

movea.1

jsr

movem.1

move.1

move.1

beq. s

move.1

movea.1

CopyDir

move.b

bne.s

subq.1

cmpi.b

beq.s

cmpi.b

beq. s

move.b

Okay

movea.1

movea.1

.Error

dO,aO

_LVORequestFile(a6)

(a7),aO-al

aO,dl

dO,(a7)

.Cancel

al,(a7)

rf_Dir(aO), aO

(aO)+,(al)+

.CopyDir

#l,al

#' : \-l(al)

.Okay

#•/',-l(al)

.Okay

#'/',(al) +

dl,aO

rf_File(aO),aO

CopyFile

move.b

bne. s

Cancel

movea.1

jsr

Error

movem.1

tst.l

rts

(aO)+,(al)+

.CopyFile

dl,aO

_LVOFreeFileRequest(a6)

(a7)+,dO/aO

dO

;on error ->

;move FileRequestr to aO

/display

;FileRequestr+buffer

;save FileRequestr

;test Okay/Cancel

;on error ->

;result=buffer

;directory string

; copy

/return empty byte

;check ending

;if drive ->

;check ending

;if dir ->

;insert separator byte

;FileRequestr

;filename

;append

•

;free FileRequestr

;clear stack

;set CCR

This routine can be easily modified to create requesters to serve your

own needs.

* *_

*•

* • _

* *

* *

* *

**

* *

* *

* *_

File selection with a modified requester

Input: A6=_AslBase

Al=Buffer (FCHARS+DSIZE+1)

AO=TagItems

Output: D0=Buffer or NULL

A6=_AslBase

A0=Buffer

_**

* *

* *

* *

* *

* *

* *

_File selection

34

3.1 The Libraries and their Functions

clr.b

movem.1

moveq

jsr

move.1

beq. s

movea.1

jsr

movem.1

move.1

move.1

beq. s

move.1

movea.1

CopyDir

move.b

bne .s

subq.1

cmpi.b

beq.s

cmpi.b

beq. s

move.b

.Okay

movea.1

movea.1

(al)

dO/al,-(a7)

#ASL_FileRequest,dO

_LVOAllocAslRequest(a6)

dO,(a7)

.Error

dO,aO

_LVORequestFile(a6)

(a7),aO-al

aO,dl

dO,(a7)

.Cancel

al,(a7)

rf_Dir(aO),aO

(aO)+,(al) +

•CopyDir

#l,al

#':',-l(al)

.Okay

#'/',-l(al)

.Okay

#'/',(al)+

dl,aO

rf_File(aO),aO

.CopyFile

move.b

bne .s

.Cancel

movea.1

jsr

.Error

movem.1

tst.l

rts

(aO)+,(al)+

.CopyFile

dl,aO

_LVOFreeFileRequest(a6)

(a7)+,dO/aO

dO

;0 bytes in buffer

;result+buffer

/Tags in aO

;get FileRequestr

;save result

;on error ->

;move FileRequestr to aO

/display

;FileRequestr+buffer

;save FileRequestr

;test Okay/Cancel

;on error ->

;result=buffer

;directory string

; copy

/return empty byte

/check ending

;if drive ->

/check ending

/if dir ->

/else insert separator k

/FileRequestr

;filename

;append

/

/free FileRequestr

/clear stack

/set CCR

The address of a Tagltem field is expected as an additional parameter.

Here is an example of how this can look:

_FileReqTags

del ASL_Hail,_Titletext

dc.1 ASL_Dir,_DirName

del ASL_OKText, _Okay

del ASL_CancelText,_Cancel

del TAG_DONE

;title text for the requester.

/path

/OK button

/CANCEL button.

/end of field

35

3. Programming with AmigaOS 2.x

_Titletext dc.b 'Load file',0

_Okay dc.b 'Load•,0

_Cancel dc.b 'Return',0

_DirName dc.b 'Work:', 0

3.1.2 The Commodities Library

The utilities found in the Commodities directory of the Workbench are

used to manipulate input queries for the A3000. These routines have

been gathered into a library. This allows you to add your own

expansions to the Commodities utilities.

The name "Commodities Library" is often shortened to Cx library. The

base address is expected in register A6 with all function calls.

Functions of the Commodities Library

L Object Functions

CreateCxObj

CxBroker

ActivateCxObj

DeleteCxObj

DeleteCxObjAll

CxObjType

CxObjError

ClearCxObjError

SetCxObjPri

2. Object Linking

AttachCxObj

EnqueueCxObj

InsertCxObj

RemoveCxObj

3. Special Functions

FindBroker

SetTranslate

SetFilter

SetFilterIX

ParselX

4. General Messages

CxMsgType

CxMsgData

CxMsgID

5. Message Paths

DivertCxMsg

RouteCxMsg

DisposeCxMsg

6. InputEvent Processing

InvertKeyMap

AddlEvents

7. Control Program Functions

CopyBrokerList

FreeBrokerList)

BrokerCommand

36

3.1 The Libraries and their Functions

8. Standard Macros CxSignal

CxTranslate

CxFilter CxDebug

CxTypeFilter CxCustom

CxSender

Description of Functions

1. Object Functions

ICreateCxObj Create Commodities object|

Call: co = CreateCxObj (type, argl, arg2)

DO -30(A6) DO A0 Al

STRUCT CxObj *CO

ULONG type

LONG argl

LONG arg2

Function: Creates a Commodities of type 'type1.

Parameters: type Object type

args Object arguments

Result: Address of a CxObj structure, a type of handle for Cx

objects. A result of 0 indicates a system error, such as lack

of memory.

See also: CxObjError(), CxFilter(), CxTypeFilter(), CxSender(),

CxSignal(), CxTranslate(), CxDebugO, CxCustom(),

CxBroker()

| CxBroker Create CxObj of type brokerl

Call: broker = CxBroker (nb, error);

DO -3 6(A6) A0 DO

STRUCT CxObj *broker

STRUCT NewBroker *nb

LONG *error

37

3. Programming with AmigaOS 2jc

Function: Creates a broker according to the information passed in the

NewBroker structure. As opposed to a normal CxObj, a

broker is inactive when created.

Parameters: nb NewBroker structure used to define the broker,

error Address of error code or 0.

Dec Hex STRUCTURE NewBroker,0

0 $0 BYTE nb_Version ;version 5

1 $1 BYTE nb_Pad

2 $2 APTR nb_Name ;Broker name

6 $6 APTR nb_Title ;strings, description of

10 $A APTR nb_Descr ;the application

14 $E SHORT nb_Unique ;what happens with a Broker of

;the same name

16 $10 WORD nb_Flags

18 $12 BYTE nb_Pri ;priority in the object list

19 $13 BYTE nb_Pad2

20 $14 APTR nb_Port ;MsgPort

24 $18 WORD nb_ReservedChannel

Result: Address of a CxObj structure, or 0 in the case of an error.

If you specify an address in error, the following codes will

be used at this address:

CBERR_OK No error, broker was created.

CBERRJSYSERR

System error, such as lack of memory.

CBERR_DUP

Duplicate definition with this name.

CBERR_VERSION

Unknown version number.

See also: Brokers and Application Sub-Trees (in the Reference
Manual).

38

3.1 The Libraries and their Functions

lActivateCxObi Activate object functionsl

Call: previous = ActivateCxObj (co, true);

DO -42(A6) AO DO

STRUCT CxObj *co;

BOOL true;

Function: Every Commodities object can be activated and

deactivated. If it's active, it executes a specific operation

when a Commodities message is received. This function is

used to activate and deactivate objects.

Parameters: co CxObj structure of the object whose activation

you want to control.

true Boolean argument. A value of 0 indicates

inactivation.

Result: previous Previous status

See also: CxBroker()

iDeleteCxObj Delete Commodities object|

Call: DeleteCxObj (co) ;

-48(A6) AO

STRUCT CxObj *co;

Function: Deletes a selected Commodities object. If this object is part

of a list, it's also removed from the list.

If the object has some other underlying substructure(s) in

the system hierarchy, then DeleteCxObjAll() must be used.

Parameters: co CxObj

Result: None. Invalid parameter may cause system crash.

See also: exec.library/Remove(), DeleteCxObjAllQ

39

3. Programming with AmigaOS 2.x

DeleteCxObjAH •

Delete Commodities object and all underlying substructures

Call: DeleteCxObjAll (co) ;

-54(a6) aO

STRUCT CxObj *co;

Function: Deletes a selected Commodities object. If the object is part
of a list, it's also removed from the list.

If the object has some other underlying substructure(s) in
the system hierarchy, they are also deleted.

Parameters: co CxObj structure of any type.

Result: None. Improper use of this function will crash the system.

See also: exec.library/Remove(), DeleteCxObjO

ICxObjType Get object typel

Call: type = CxObj Type (co);

DO -60(A6) AO

ULONG type

STRUCT CxObj *co;

Function: Returns the object type for a selected Commodities object.

The CxObj must be known, but you will normally only

have this information for your own objects. That makes this

function rather meaningless.

Parameters: co CxObj structure

Result: Object type. If you pass the value 0 as the parameter, the

result is type CXJNVALID. This function only reads a data

structure. If you enter the wrong parameter value, the result

will be meaningless.

See also: CreateCxObjQ, CxBrokerQ

40

3.1 The Libraries and their Functions

ICxObiError «* error codel

Call: error = CxObj Error (co);

DO -66(A6) AO

LONG error

STRUCT CxObj *co;

Function: When a function fails, the cause of the error is encoded in

various different bits. CxObjError() gives you access to

read these bits.

Parameters: co CxObj structure

Result: A longword where the set bits have the following

meanings:

COERRJSNULL

A value of 0 was passed for CxObj.

COERR_NULLATTACH

Attempt to enter a non-existent object in a

Commodities list.

COERR3ADFELTER

Bad filter string.

COERR_BADTYPE

A type-specific function was attempted on

an object of the wrong type.

See also: SetFilterO, SetFilterIX(), AttachCxObjO, ActivateCxObjO,

ClearCxObjError()

lClearCxObjError Delete error number of a Cx object|

Call: clearCxObjError (co) ;

-72(A6) AO

STRUCT CxObj *co;

Function: Deletes the error code of a Commodities object.

41

3. Programming with AmigaOS 2.x

Parameters: co CxObj structure

Result: None.

Warning: This routine may not be used with filter objects if the error
bit COERRJBADFILTER is set.

See also: CxObjError()

ISetCxObjPri Change priority of a CT^bjiH]

Call: SetCxObjPri(co, pri)

-78(A6) AO DO

STRUCT CxObj *co;

LONG pri;

Function: This function sets the priority of an object that was entered

in a list with EnqueueCxObj(). The mechanism corresponds
to that of the Exec Lists System.

Parameters: co CxObj structure

pri Priority (127 through -128)

Result: None.

See also: ToolTypes and the Commodities Environment (in the

Reference Manual), EnqueueCxObjO

2. Object Linking

[AttachCxObj Attach object to a head object|

Call: AttachCxObj (headobj , co) ;

-84(A6) AO Al

STRUCT CxObj *headobj

STRUCT CxObj *co

Function: Attaches an object to the end of the list of another object.

42

3.1 The Libraries and their Functions

Parameters: headobj CxObj structure of the head object to which

this object will be attached.

co CxObj structure of the object to be attached as

a sub-object.

Result: If co is 0, then the error is noted in headobj. This can be

queried with CxObjError() and cleared with

ClearCxObjError().

See also: exec.library/AddTail(), Objects and Messages (in the

Reference Manual), CxObjError(), ClearCxObjError()

IEnqueueCxObj Enter object as a sub-object]

Call: EnqueueCxObj (headobj , co) ;

-90(A6) A0 Al

STRUCT CxObj *headobj

STRUCT CxObj *co

Function: Enters an object in the list of another object according to

its priority.

Parameters: headobj CxObj structure of the head object that

possesses the sub-object list.

co CxObj structure of the object to be entered in

the sub-object list.

Result: If co has a value of 0, the error is noted in headobj. This can

be queried with CxObjError() and cleared with

ClearCxObjError().

See also: exec.library/Enqueue(), SetCxObjPri(), Objects and

Messages (in the Reference Manual), CxObjError(),

ClearCxObjError()

llnsertCxObj Insert an object in front of another objectl

Call: insertCxObj (headobj, co, pred) ;

-96(A6) A0 Al A2

43

3. Programming with AmigaOS 2.x

STRUCT CxObj *headobj

STRUCT CxObj *co

STRUCT CxObj *pred

Function: The object co is inserted as a sub-object, in the list of object

headobj, in front of sub-object pred.

Parameters: headobj CxObj structure that possesses the sub-object

list

co Object to be entered in the list.

pred Sub-object in front of which co is inserted.

Result: If co has a value of 0, the error is noted in headobj. This can

be queried with CxObjError() and cleared with

ClearCxObjError().

Warning: Since the Exec function Insert() needs the list header, the

headobj may not be 0 in cases where pred is 0.

See also: exec.library/Insert(), Objects and Messages (in the

Reference Manual), CxObjError(), ClearCxObjError()

| RemoveCxOb j Remove an object from a list|

Call: RemoveCxObj (co) ;

-102(a6) A0

STRUCT CxObj *co

Function: Removes a Commodities object from a selected list. This

function will not crash if you pass it a value of 0 or the

value of an object not found in the list.

Parameters: co CxObj structure of the object to be removed.

Result: None.

Warning: This routine was not intended to remove a broker from the

master list.

44

5.7 The Libraries and their Functions

See also: Objects and Messages (in the Reference Manual)

5. Special Functions

[FindBroker Find the broker with a given name|

Call: broker=FindBroker (name)

DO -108(A6) A0

STRUCT CxObj *broker

APTR name

Function: Returns the address of a broker when you know its name.

Parameters: name Address of the name string.

Result: broker CxObj structure of the broker or 0.

See also: exec.library/Find function

[SetTranslate Replace the translation list|

Call: Error = SetTranslate (translator, ie) ;

DO -114(a6) A0 Al

LONG Error

STRUCT CxObj translator

STRUCT IX *ie

Function: Replaces the translation list of a translator object with the

list at address ie. If a value of 0 is passed for ie, then all

events are taken. The InputEvents are copied to

Commodities messages during the translation.

Parameters: translator CxObj structure of a translator object.

ie InputEvent list

Result: 0 if the function was successfully executed.

See also: InputDevice/InputEvent, CxTranslateQ

45

3. Programming with AmigaOS 2.x

| SetFilter Set pattern matching for a filter object!

Call: SetFilter (filter, text);

-120(A6) A0 Al

STRUCT CxObj *filter

APTR text

Function: Sets the pattern matching according to the pattern string
passed in text.

Parameters: filter CxObj structure of a filter object,

text Pattern string

Result: None. A bad filter error can be queried with CxObjError()
(COERR_BADFILTER).

See also: SetFilterIX(), CxObjError(), Commodities Input Messages

and Filters, Input Expressions and Description Strings (in
the Reference Manual)

I SetFilterIX Set pattern matching of a filter object I

Call: error = SetFilterIX (filter, ix) ;

DO -126(A6) A0 Al

STRUCT CxObj *filter

STRUCT IX *ix

Function: Sets the pattern matching according to the contents of the

Input Expression structure.

Parameters: filter CxObj structure of a filter object.

ix Input Expression structure

Result: error 0 or error number

See also: SetFilter(), CxObjError(), Commodities Input Messages and

Filters, Input Expressions and Description Strings (in the

Reference Manual)

46

3.1 The Libraries and their Functions

IParselX Translate string with IX structure |

Call: failurecode = ParselX(string, ix) ;

DO -132 (A6) AO Al

LONG failurecode

APTR string

STRUCT IX *ix

Function: Translates the parts of a given string to an IX structure.

Parameters: string The string to be processed,

ix Input Expression structure

Result: 0 if no error occurred.

See also: Input Expressions and Description Strings (in the

Reference Manual)

4. General Messages

[CxMsgType Query Commodities message type|

Call: type = CxMsgType (cxm)

DO -138(A6) AO

ULONG type

STRUCT CxMsg *cxm

Function: Returns the Commodities message type.

Parameters: cxm Address of a Commodities message.

Result: Message type, 0 in the case of an invalid message.

See also: CxMsgData(), CxMsgID()

[CxMsgData Obtain the data address for a CxMsgl

Call: contents = CxMsgData (cxm) ;

DO -144(A6) AO

47

3. Programming with AmigaOS 2.x

APTR contents

STRUCT CxMsg *cxm

Function: Most Commodities messages contain data, for example an

InputEvent structure. CxMsgData() can be used to return a

pointer to this data.

Parameters: cxm Address of a CxMsg.

Result: Address of the data; 0 in the case of an invalid message.

Warning: If a message is received from a sender object, the address

cannot be used after the reply is made.

See also: CxSender(), CxCustom()

[CxMsglD Obtain the source identification of a CxMsg |

Call: id = CxMsgiD(cxm) ;

DO -150(A6) A0

LONG id

STRUCT CxMsg *cxm

Function: Returns the source identification code specified by an

application for a message.

Parameters: cxm Address of a CxMsg.

Result: ID of the message; 0 if the message has no ID.

See also: CxSender(), CxCustom()

5. Message Paths

IDivertCxMsg Send a message to a sub-object|

Call: DivertCxMsg(cxm, headobj , returnobj)

-156(A6) A0 Al A2

STRUCT CxMsg *cxm

48

3.1 The Libraries and their Functions

STRUCT CxObj *headobj

STRUCT CxObj *returnobj

Function: Sends a CxMsg to objects in the sub-object list of a

Commodity object. The message is sent on down the list

until the next object is the specified returnobj. For example,

a Filter object (named 'Filter1 for the sake of this example)

would send a message to its sub-objects as follows:

DivertCxMsg(cxm,FilterJ7ilter).

Parameters: cxm CxMsg structure to be sent.

headobj Head object that owns the sub-objects that will

receive the message.

returnobj SUCC object that indicates the last sub-object

in the chain.

Result: None.

See also: The Reference Manual

| RouteCxMsg Set the next destination for a message |

Call: RouteCxMsg (cxm, co)

-162(A6) AO Al

STRUCT CxMsg *cxm

STRUCT CxObj *co

Function: Determines the next object that will receive the message.

Parameters: cxm CxMsg to be sent.

co CxObj that will be the next object to receive

the message.

Result: None.

See also: DivertCxMsgQ

49

3. Programming with AmigaOS 2.x

IDisposeCxMsg Delete a message |

Call: DisposeCxMsg (cxm)

-168(A6) AO

STRUCT CxMsg *cxm

Function: Deletes the specified Commodities message. This is good

for disposing of InputEvents (type CXMJEVENT).

Parameters: cxm Address of the CxMsg.

Result: None.

6. InputEvent Processing

[InvertKeyMap Convert ANSI codes |

Call: retval = InvertKeyMap (ansicode, ie, km)

DO -174(A6) DO AO Al

ULONG retval

ULONG ansicode

STRUCT InputEvent *ie

STRUCT KeyMap *km

Function: The MapANSI() function determines whether an ANSI

code conversion should take place when an InputEvent is

received. The given KeyMap is used. Simple DeadKeys are

converted.

Parameters: ansicode ANSI code to be checked.

ie InputEvent structure to be filled.

km KeyMap, default = 0

Result: 0 No conversion

See also: InvertStringQ

50

3.1 The Libraries and their Functions

I AddlEvents Add a list of InputEvents to the Cx list |

Call: AddlEvents (ie)

-180(A6) A0

STRUCT InputEvent *ie;

Function: Normally, the Commodities Library Input Handler gets its

information directly from the input device. But it would not

be convenient to send messages to the Commodities

Library via this device. Therefore, AddlEvents was

implemented. The InputEvents are copied to the

Commodities messages and sent to the objects in the

internal object list.

Parameters: ie Linked list of InputEvents.

Result: None.

See also: FreeIEvents()

7. Control Program Functions

[CopyBrokerList Copy the broker list j

Call: list = CopyBrokerList (blist)

DO -186 (A6) A0

Warning: FOR CONTROL PROGRAMS ONLY!

[FreeBrokerList Free broker list|

Call: FreeBrokerList (list)

-192(A6) A0

Warning: FOR CONTROL PROGRAMS ONLY!

[BrokerCommand Broker command |

Call: result = BrokerCommand (name, id)

DO -198(A6) A0 DO

51

3. Programming with AmigaOS 2.x

Warning: FOR CONTROL PROGRAMS ONLY!

8. Standard Macros

Creation ofCxObj:

CxFilter(d)

CxTypeFilter(type)

CxSender(port,id)

CxSignal(task,sig)

CxTranslate(ie)

CxDebug(id)

CxCustorn(action,id)

CreateCxObj(CX_FILTER,d,0)

CreateCxObj(CX_TYPEFILTER,type,0)

CreateCxObj(CX_SEND,port,id)

CreateCxObj(CX_SIGNAL,task,sig)

CreateCxObj(CX_TRANSLATE,ie,0)

CreateCxObj(CX_DEBUG,id,0)

CreateCxObj(CX_CUSTOM,action,id)

Buffer size ofBroker:

CBD_NAMELEN = 24

CBDJTITLELEN =40

CBD_DESCRLEN =40

CxBrokerf) error:

CBERR_OK =0 ;no error

CBERR_SYSERR = 1 ;system error

CBERR_DUP = 2 ;duplicate definition

CBERR_VERSION = 3 /unknown version

NB_VERSION

Dec

0

1

2

6

10

14

16

18

19

20

24

Hex

$0

$1

$2

$6

$A

$E

$10

$12

$13

$14

$18

= 5 ;version of NewBroker

STRUCTURE NewBroker,0

BYTE

BYTE

APTR

APTR

APTR

SHORT

WORD

BYTE

BYTE

APTR

WORD

nb_Version

nb_Pad

nb_Name

nb_Title

nb__Descr

nb_Unique

nb_Flags

nb_Pri

nb_Pad2

nb_Port

;version 5

;Broker name

/strings, description of the

;application

;what happens with a Broker of the

;same name

/priority in the Object list

;MsgPort

nb_ReservedChannel

Flags for nbJJnique:

NBUJDUPLICATE = 0 /duplicate definition allowed

NBU_UNIQUE = 1 /duplicate definition not allowed

52

3.1 The Libraries and their Functions

NBU_NOTIFY = 2 ;CxMsg CXM_UNIQUE to existing Broker

Flag for nb_Flags:

COF_SHOW_HIDE

CX_INVALID

CX_FILTER

CX_TYPEFILTER

CX_SEND

CX_SIGNAL

CX_TRANSLATE

CX_BROKER

CX_DEBUG

CX_CUSTOM

CX_ZERO

= 4

= 0

= 1

= 2

= 3

= 4

= 5

= 6

= 7

= 8

= 9

Object types:

;no object

;for InputEvent messages only

/message Type filter

/message sender

/signal sender

/InputEvent translator

/most applications

/sends Debug info to serial port

/custom Function

/last entry

Message Types:

CXM_UNIQUE

CXM_IEVENT

CXM_COMMAND

CXCMD_DISABLE

CXCMD_ENABLE

CXCMD_APPEAR

CXCMD_DISAPPEAR

CXCMD_KILL

CXCMD_UNIQUE

CXCMD LIST CHG

16

32

64

-

=

=

=

=

=

_

/

/

from CxBroker()

InputEvent

from BrokerCommand()

ID Values:

15

17

19

21

23

25

27

/deactivate

/activate

/open window

/close window

/remove

/duplicate definition attempted

.•Broker list chanaed

Results of BrokerCommand():

CMDE_OK = 0

CMDE_NOBROKER = -1

CMDE_NOPORT = -2

CMDE_NOMEM = -3

Error Flags from CxObj (CxObjError()):

COERR_ISNULL = 1

COERR_NULLATTACH = 2

COERR_BADFILTER = 4

/call was CxError(NULL)

/sub-object was 0

/invalid Filter

53

3. Programming with AmigaOS 2.x

COERR_BADTYPE = 8 /invalid object type

Version ofIX Structure:

IX_VERSION

Dec Hex

0

1

2

4

6

8

10

STRUCTURE IX,0

$0 UBYTE ix_Version

$1 UBYTE ix_Class

$2 UWORD ix_Code

;version 2

;Event class

;Event data

$4 UWORD ix_CodeMask ;data mask

$6 UWORD ix_Qualifier;exact description

$8 UWORD ix_QualMask ;QualSame mask

$A UWORD ix_QualSame /Qualifier with the same meaning

IXSYM__SHIFT = 1

IXSYM_CAPS = 2

IXSYM_ALT = 4

Flags for ixjQualSame:

;left and right Shift keys together

;Caps-Lock at the same time

;left and right Alt keys together

Corresponding QualMasks (see InputEvent):

IXSYM_SHIFTMASK = IEQUALIFIER_LSHIFT

IXSYM_CAPSMASK = IXSYM_SHIFTMASK

IXSYM_ALTMASK = IEQUALIFIER_LALT

IEQUALIFIER_RSHIFT

IEQUALIFIER_CAPSLOCK

IEQUALIFIER_RALT

IX_NORMALQUALS = $7FFF /normal QualMask

3.1.3 The Diskfont Library

The Diskfont Library manages fonts and font styles, lists the available

fonts, or loads a font in memory (if it is not already loaded).

This library is opened under the name "diskfont.library". The base

address _DiskfontBase must be supplied in the A6 register with all

function calls.

Functions of the Diskfont Library

OpenDiskFont

AvailFonts

NewFontContents

DisposeFontContents

54

3.1 The Libraries and their Functions

NewScaledDiskFont

Description of the Functions

IQpenDiskFont Load or scale a Diskfont|

Call: font = OpenDiskFont (textAttr)

DO -30(A6) A0

STRUCT TextFont *font

STRUCT TextAttr *textAttr

Function: The font described in the TextAttr structure is loaded in

memory and its address is returned. If desired, the font is

scaled to the requested size.

Parameters: textAttr TextAttr structure or TTextAttr structure that

describes the font.

Result: Address of the font (TextFont structure) or 0 if the font was

not found. If only the desired font size was not found and

the DESIGNED flag in the TextAttr structure is not set,

then the font of the desired size is created from a different

size.

Warning: This routine will only work with font names up to 30

characters long.

See also: AvailFonts(), graphics.library/OpenFont()

1 AvailFonts Retrieve a list of all available fonts|

Call: error = AvailFonts (buffer, bufBytes, flags)

DO -3 6(A6) A0 DO Dl

LONG error

STRUCT AFH *buffer

LONG bufBytes

ULONG flags

55

3. Programming with AmigaOS 2.x

Function: AvailFonts() fills a memory block of the specified size and

address with font data structures. This gives the user a list

of all available fonts. Certain flags can be set to indicate

where to look for fonts, which fonts are stored in this

memory block, and which data structures to use.

Parameters: buffer

Result:

Warning:

See also:

Address of the memory block that will contain

the font list.

bufbytes Size of the memory block.

flags Flags for setting the AvailFonts() options.

AFF_MEMORY Look for fonts in memory.

AFFJDISK

AFFJSCALED

AFFJTAGGED

Look for fonts in current

FONTS directory.

Include constructed fonts

in the list.

Fill memory with TAF

(TaggedAvailFonts)

structures rather than AF

structures.

If the buffer is too small, the number of bytes missing will be

returned in error; otherwise a value of 0 is returned. If 0 is

returned, the buffer is filled with an AFH structure, followed

by AF or TAF structures. Memory resident fonts must be

opened with OpenFont() and Diskfonts must be opened

with OpenDiskFont().

If a certain font is located both in memory as well as on

disk, its name will appear in the list twice.

OpenDiskFont(), graphics.library/OpenFont()

56

3.1 The Libraries and their Functions

INewfrontlontents Recalculate xxx.font file]

Call'. fontContentsHeader = NewFontContents (fontsLock, fontName)

DO -42(A6) AO Al

STRUCT FontContentsHeader *fontContentsHeader

BPTR fontsLock

APTR fontName

Function: Recalculates an array with FontContents. This array begins

with an FCH structure, followed by an FC structure for

each size of the font with the given name. This structure

corresponds to the file 'xxx.font1 in the FONTS directory.

Parameters: fontsLock BPTR to a lock structure of the DOS Library.

This lock must be obtained for the directory

that contains the font (normally the "FONTS:"

directory).

fontName Address of the font name (including the suffix

".font") which points to a FontContents file.

Result: Address of the FCH structure (FontContentsHeader) or 0,

in the case of an error.

See also: DisposeFontContents(), dos.library/Lock()

| DisposeFontContents Free xxx.font buffer |

Call: DisposeFontContents (fontContentsHeader)

-48(A6) Al

STRUCT FontContentsHeader *fontContentsHeader

Function: Frees the buffer returned with the function

NewFontContents().

Parameters: fontContentsHeader

Structure obtained with NewFontContents().

Result: None.

Warning: The system will crash if you pass an address not obtained

with NewFontContentsQ.

57

3. Programming with AmigaOS 2.x

See also: NewFontContentsQ

| NewScaledDiskFont Create scaled (constructed) font|

Call: header = NewScaledDiskFont(srcFont, destTextAttr)

DO -54 (A6) AO Al

STRUCT DiskFontHeader *header

STRUCT TextFont *srcFont

STRUCT TTextAttr *destTextAttr

Function: Calculates a new font size based on an existing size for the

given font.

Parameters: srcFont Font for which the new size will be calculated.

destTextAttr

Attributes of the new font. This can be the

address of a TextAttr structure or the address of

a TTextAttr structure. The new font can be

freed with StripFont() followed by

UnloadSeg(). TextFont and Segment Address

are components of the returned

DiskFontHeader. UnloadSegO frees all memory

blocks.

Result: Address of a DiskFontHeader structure.

Warning: This function can use the blitter. Fonts with characters

drawn completely outside of the normal character region

cannot be processed.

See also: graphics.library/StripFont(), dos.library/UnloadSeg()

MAXFONTPATH = 256 /maximum length of the font path including null byte

Dec Hex

STRUCTURE FC, 0

0 $0 STRUCT fc_FileName,MAXFONTPATH ;font name

256 $100 UWORD fc_YSize ;font height

258 $102 UBYTE fc_Style ;style

259 $103 UBYTE fc_Flags ;font type

260 $104 LABEL fc_SIZEOF

58

3.1 The Libraries and their Functions

STRUCTURE TFC, 0

$0 STRUCT tfc_FileName,MAXFONTPATH-2 ;font name

;if the following Word contains a non-zero value,

;then the Tagltems will be found at the end of tfc_FileName

;that is, at MAXFONTPATH-tfc_TagCount*TagItem_SIZEOF

$FE UWORD tfc_TagCount ;number of tags including TAG_DONE

;font height

;style

;font type

254

256 $100 UWORD

258 $102 UBYTE

259 $103 UBYTE

260 $104 LABEL

tfc_YSize

tfc_Style

tfc_Flags

tfc_SIZEOF

FCH_ID = $fOO /FontContentsHeader, then FontContents

TFCH_ID = $fO2 /FontContentsHeader, then TFontContents

Dec Hex

STRUCTURE FCH,0 /FontContentsHeader

0 $0 UWORD fch_FileID /FCH_ID or TFCH_ID

2 $2 UWORD fch_NumEntries /number of (T)FontContents

4 $4 LABEL fch_FC /starting here, [T]FontContents

DFH_ID = $f80

MAXFONTNAME = 32 /font name including ".font" and null byte

Dec Hex

STRUCTURE DiskFontHeader,0

/the following Longs are not part of the structure,

/but they precede it directly:

0

14

16

18

22

54

-$8 ULONG

-$4 ULONG

$0 STRUCT

$E UWORD

$10 UWORD

$12 LONG

$16 STRUCT

$36 STRUCT

LABEL

dfh_NextSegment

dfh_ReturnCode

dfh_DF,LN_SIZE

dfh_FileID

dfh_Revision

dfh_Segment

dfh_Name, MAXFONTNAME

dfh_TF,tf_SIZEOF

dfh_SIZEOF

;BPTR to the next segment

/actually MOVEQ #0,D0 : RTS

; node

;DFH_ID

/revision number

/segment address

/the name

/TextFont

If the FSBJTAGGED bit is set in dfhJTF.tfJStyle:

dfh_TagList = dfh_Segment /overwritten during loading

Bits and Flags of the AvailFonts structure:

AFB_MEMORY = 0 /memory font

AFF_MEMORY = 1

AFB_DISK = 1 /disk font

AFF_DISK = 2

59

3. Programming with AmigaOS 2.x

AFB_SCALED = 2 constructed font (not DESIGNED!)

AFF_SCALED = 4

Bits and Flags of the TaggedAvailFonts structure:

AFB_TTATTR =15 ;INVALID VALUE IN INCLUDES!!!

AFF_TTATTR = $8000

Dec Hex

STRUCTURE AF, 0 ; AvailFonts

0 $0 UWORD af_Type ; MEMORY, DISK, or SCALED

2 $2 STRUCT af_Attr,ta_SIZEOF ; TextAttr

10 $A LABEL af_SIZEOF

STRUCTURE TAF,0 ; TAvailFonts

0 $0 UWORD taf_Type ; MEMORY, DISK, or SCALED

2 $2 STRUCT taf_Attr,tta_SIZEOF ; TTextAttr

10 $A LABEL taf_SIZEOF

STRUCTURE AFH,0 ; AvailFontsHeader

0 $0 UWORD afh_NumEntries ; number of elements

2 $2 LABEL afh_AF ; starting here, [T]AvailFonts

Example

You can make it difficult on yourself and create a special font for each

application, or you can handle it quite easily. We will now create a font

similar to the Diamond font, but with a character height of only 10 pixels.

movea.1 _DiskfontBase,a6

lea _TextAttr(pc),aO

jsr _LVOOpenDiskFont(a6) ;Font=OpenDiskFont(TextAttr)

move.1 dO,_Diamondl0

beq __Fehler

movea.1 _GfxBase,a6

movea.1 _Diamondl0,al

j sr _LVOCloseFont(a6) ;CloseFont(Font)

_TextAttr del _FontName ;ta_Name

dew 10 ;ta_Size

;ta_Style,ta_Flags

dc.b FS_NORMAL,FPF_PROPORTIONAL!FPF_DISKFONT

_FontName dc.b 'diamond.font',0

60

3.1 The Libraries and their Functions

Simple, isn't it? The change in size takes only a fraction of a second, so it

does not add any appreciable time to the process.

3.1.4 The DOS Library

The DOS Library is completely new and expanded for Kickstart Version

2.0. The DOS Library was written in the compiler language BCPL for the

old 1.x versions. This slow-executing language was replaced with faster

C code, but in order to maintain compatibility, the BCPL variable

management had to be kept for the most part. BCPL manages addresses

in numbers of longwords (32 bits = 4 bytes), so the address 40 would be

assigned the number 10 in BCPL. This is why every address must be
divisible by 4.

An important change came with the transition to C. Starting with OS 2.0,

DOS expects the base address of the DOS Library to be passed in register

A6. This prevents the use of faster code by placing the base address in

A5. Programs that utilize this will crash under Kickstart 2.0.

Functions of the DOS Library

1. DOS Structures UnLockDosList

AllocDosObject 3 Handlers and Filesystems
DupLock

DupLockFromFH AddBuffers

FreeDosEntry DeviceProc

FreeDosObject DoPkt

MakeDosEntry EndNotify

Format

2. Logical Devices FreeDeviceProc

AJJTN ^ GetConsoleTask
AddDosEntry GetDeviceProc
AssignAdd GetFileSysTask
AssignLate Inhibk

AssignLock IsFileSystem
AssignPath Rdabel

AttemptLockDosList ReplyPkt
FindDosEntry Sendpkt

LockDosList SetConsoleTask
NextDosEntry SetFileSysTask
RemDosEntry StartNotify

61

3. Programming with AmigaOS 2.x

WaitPkt

4. Directories

CreateDir

CurrentDir

ExAll

Examine

ExNext

GetProgramDir

Info

MatchEnd

MatchFirst

MatchNext

ParentDir

ParentOfFH

5. Programs

AddSegment

CreateNewProc

CreateProc

Exit

FindSegment

InternalLoadSeg

InternalUnLoadSeg

LoadSeg

NewLoadSeg

RemSegment

RunCommand

UnLoadSeg

6.CU

CheckSignal

di

Execute

FindCliProc

Input

MaxCli

Output

ReadArgs

Readltem

Selectlnput

SelectOutput

SetArgStr

SetCurrentDirName

SetProgramDir

SetProgramName

SetPrompt

SystemTagList

VPrintf

7. Files

ChangeMode

Close

DeleteFile

ExamineFH

FGetC

Rush

FPutC

FRead

FWrite

Islnteractive

Lock

LockRecord

LockRecords

Open

OpenFromLock

Read

Rename

SameLock

Seek

SetComment

SetFileDate

SetFileSize

SetProtection

UnGetC

UnLock

UnLockRecord

UnLockRecords

VFPrintf

62

3.1 The Libraries and their Functions

VFWritef

Write

8. Strings

AddPart

DateToStr

Fault

FGets

FilePart

FindArg

FPuts

GetArgStr

GetCurrentDirName

GetProgramName

GetPrompt

MatchPattern

NameFromFH

NameFromLock

ParsePattern

PathPart

SplitName

Description of Functions

1. DOS Structures

StrToDate

StrToLong

9. Time

CompareDates

DateStamp

Delay

WaitForChar

10. Environment Variables

DeleteVar

FindVar

GetVar

SetVar

11. Errors and Requesters

ErrorReport

IoErr

PrintFault

PutStr

SetloErr

lAllocDosObject Create DOS data structure |

Call: ptr = AllocDosObject (type, tags)

DO -228(A6) Dl D2

APTR ptr

ULONG type

STRUCT Tagltem *tags

Function: Creates one of several possible DOS structures.

Parameters: type Structure type

tags TagList address

63

3. Programming with AmigaOS 2.x

Result: Data structure address or 0.

See also: FreeDosObjectO, dos/dostags.h, dos/dos.h

Example: Creating a control structure for calling the new ExAll()

function:

movea.1 _DosBase,a6

moveq #DOS_EXALLCONTROL,dl

move.l #_Duirany/d2 ;save it

jsr _LVOAllocDosObject(a6)

move.l dO,_ExAHControl

beq _Error

_Dummy del TAG_D0NE /empty TagItern field

IDupLock Copy lock|

Call: newlock = DupLock (lock)

DO -96(A6) Dl

BPTR newlock

BPTR lock

Function: Copy a Filesystem SHAREDJLOCK.

Parameters: lock Lock to be copied.

Result: Copy of the lock or 0.

See also: Lock(), UnLock()

[DupLockFromFH Copy a FileHandle lock|

Call: lock = DupLockFromFH (fh)

DO -372 (A6) Dl

BPTR lock

BPTR fh

Function: Returns a copy of a FileHandle lock. The file must be open

and accessible to other programs.

64

3.1 The Libraries and their Functions

Parameters: fh FileHandle that owns the lock to be copied.

Result: Lock or 0, in the case of an error.

IFreeDosEntry Free a structure created with MakeDosEntryQl

Call: FreeDosEntry (dlist)

-702(A6) Dl

STRUCT DosList *dlist

Function: Frees the result of a MakeDosEntryO call. This routine

should not be used. Instead, use FreeDosObject() with the

corresponding value.

Parameters: dlist DosList structure to be freed.

[FreeDosOb.ject Free a DOS structure |

Call: FreeDosObj ect (type, ptr)

-234(A6) Dl D2

ULONG type

APTR ptr

Function: Frees a structure created with AllocDosObject().

Parameters: type Type as specified with AllocDosObject().

ptr Result of AllocDosObject().

See also: AllocDosObject(), dos/dos.h

Example: Free an ExAH() control structure:

movea.1 _DosBase,a6

moveq #DOS_EXALLCONTROL,dl

move.1 _ExAllControl,d2

jsr _LVOFreeDosObject(a6)

3. Programming with AmigaOS 2.x

IMakeDosEntry Create a DosList structure!

Call: newdlist = MakeDosEntry (name, type)

DO -696(A6) Dl D2

STRUCT DosList *newdlist

APTR name

LONG type

Function: Creates a DosList structure with BSTR dol_Name and

dol__Type. This function should not be used. Instead, use

AllocDosObject().

Parameters: name Name of the device/volume/assign node.

Result:

type Entry type

DosList structure or 0.

Type for AllocDosObject():

DOS_FILEHANDLE

DOS_EXALLCONTROL

DOS_FIB

DOS_STDPKT

DOS_CLI

DOS_RDARGS

ADO_Dummy =

= 0 ;FileHandle

= 1 ;ExAllControl

= 2 ;FileInfoBlock

= 3 ;Standard Packet

= 4 ;CommandLineInterface

=5 ;in case arguments were entered

Tags for AllocDosObject():

TAG_USER+2000

ADO_FH_Mode = ADO_Dummy+l ;for FileHandle only

ADO_DirLen = AD0_Dummy+2 ;size of CurrentDir buffer

ADO_CommNameLen = AD0_Dummy+3 ;size of CommandName buffer

ADO_CommFileLen = AD0_Dummy+4 ;size of BatchFile buffer

ADO_PromptLen = AD0_Dummy+5 ;size of Prompt buffer

2. Logical Devices

[AddDosEntry Add an entry to the list of logical devices I

Call: success = AddDosEntry (dlist)

DO -678(A6) Dl

66

3.1 The Libraries and their Functions

BOOL success

STRUCT DosList *dlist

Function: Adds a device, volume, or assign node to the DOS list of

logical devices. If a logical device of the same name already

exists, the function will fail. Exceptions to this are volumes

nodes with different dates and DeviceNode names. This

function can be called without a lock on the device list.

Parameters: dlist

Result: 0

Entry for the device list.

Error

| AssignAdd Add a path to a directory with many paths!

Call: success = AssignAdd (name, lock)

DO -630(A6) Dl D2

BOOL success

APTR name

BPTR lock

Function: Sets a lock on a directory in an assign list. The assign

structure must be created with AssignLock() or

AssignLate(), and the lock may not be used again after this.

If you need it, you can create another copy with

DupLockQ.

Parameters: name

Result:

See also:

Example:

lock

0

DeviceName without':'

Lock indicated by the name.

Error, then the lock must be freed with

UnLockQ.

AssignLock(), AssignLate(), Lock(), UnLock()

This allows you to define a logical device, such as 'C:1 or

'DEVS:' that consists of several physical directories.

Consider the following two directories:

67

3. Programming with AmigaOS 2.x

Strings: (DIR)

GibsonGuitar.8SVX

RichGuitar.8SVX

WarwickBass.8SVX

WashburnGuitar.8SVX

Drumkit: (DIR)

PaisteCymbal.8SVX

PaisteGong.8SVX

PearlDrum.8SVX

PremierDrum.8SVX

We can assign these two directories to the logical device 'Samples:' as

follows:

_MultiPath

movea.l _DosBase,a6

move.l #_BasePath,dl

#SHARED_LOCK,d2

_LV0Lock(a6)

dO,d2

.Error

#_Samples,dl

_LVOAss ignLock(a6)

dO

.Error2

#_AddPath,dl

#SHARED_LOCK,d2

_LV0Lock(a6)

dO,d2

.Error3

#_Samples,dl

_LV0AssignAdd(a6)

dO

.Error4

#0,dO

moveq

jsr

move.1

beq. s

move.1

jsr

tst.l

beq.s

move.1

moveq

jsr

move.1

beq.s

move.1

jsr

tst.l

beq.s

moveq

rts

.Error4

.Error2

move.1

jsr

.Errorl

moveq

.Error3

rts

;Lock("Strings:",-2)

;AssignLock("Samples",Lock)

;Lock("Drumkit:",-2)

;AssignAdd("Samples",Lock)

d2,dl

_LV0Unlock(a6)

#-l,dO

68

3.1 The Libraries and their Functions

_BasePath dc.b 'Strings:',0

_AddPath dc.b 'Drumkit: ' , 0

_Samples dc.b 'Samples',0

If no errors occurred (result=O), you can access these files as follows:

11 Samples :WarwickBass . 8SVX"

"Samples:PaisteCymbal.8SVX"

If you were to store a file in the logical device 'Samples', it would go to

the physical directory set with AssignLock(). In this case, this is

"Strings:".

1 AssignLate Pre-define an AssignLock |

Call: success = AssignLate (name,path)

DO -618(A6) Dl D2

BOOL success

APTR name

APTR path

Function: Defines an AssignLock that is only created after the first

access on the given path. This is very helpful in cases

where a device hasn't been activated yet.

Parameters: name DeviceNamewithout':'

path Name used to address the device.

Result: 0 Error

See also: AssignLock

1 AssignLock Assign a name to a lock]

Call: success = AssignLock(name,lock)

DO -612(A6) Dl D2

BOOL success

APTR name

BPTR lock

69

3. Programming with AmigaOS 2.x

Function: Assigns a name to a lock. A value of 0 for lock will delete

the entry with the given name. If an entry with the same

name exists, it's replaced with the new lock. After this

function, the lock may not be used again. If necessary,

make a copy with DupLock().

Parameters: name Device name (without':') to which the lock is

assigned.

lock Lock for the name.

Result: 0 Error, lock must then be freed with UnLock().

See also: Lock(), DupLock(), UnLock()

| AssignPath Assign a name to a path |

Call: success = AssignPath (name,path)

DO -624(A6) Dl D2

BOOL success

APTR name

APTR path

Function: Assigns a name to a path. Also works with disks (volumes)

that are not yet known.

Parameters: name Device name without V

path Path name replaced by 'name1.

Result: 0 Error

See also: AssignLock(), AssignLate()

[AttemptLockDosList Lock a directory list|

Call: dlist = AttemptLockDosList (flags)

DO -666(A6) Dl

STRUCT DosList *dlist

ULONG flags

70

3.1 The Libraries and their Functions

Function: Prevents certain access from other programs to the list of

logical devices.

Parameters: flags Flags that indicate the nodes to be locked.

Result: dlist Start of the list or 0 (no node address).

See also: LockDosList(), UnLockDosList()

IFindDosEntry I

Call: newdlist = FindDosEntry (dlist,name, flags)

DO -684(A6) Dl D2 D3

STRUCT DosList *newdlist,*dlist

APTR name

ULONG flags

Function: Returns an entry from the list of logical devices.

Parameters: dlist Starting entry for the search.

name Device name without':'.

flags Flags previously passed to LockDosList().

Result: Address of the entry or 0.

ILockDosList Allow access to list of logical devices |

Call: dlist = LockDosList (flags)

DO -654(A6) Dl

STRUCT DosList *dlist

ULONG flags

Function: This function allows exclusive access to the list of logical

devices. If another task has the access rights, the program

waits until the list is freed with UnLockDosList(). You can

use nested calls of this function.

Parameters: flags Entries to be accessed.

71

3. Programming with AmigaOS 2.x

Result: Pointer to the list header, not an entry.

INextDosEntry Next entry in the logical device list)

Call: newdlist = NextDosEntry (dlist, flags)

DO -690(A6) Dl D2

STRUCT DosList *newdlist,*dlist

ULONG flags

Function: Finds the next entry of the desired type in the logical

device list.

Parameters: dlist Current entry.

flags Type, see FindDosEntry().

Result: Next DosList structure or 0.

| RemDosEntry Remove a DosList structure from the list |

Call: success = RemDosEntry (dlist)

DO -672(A6) Dl

BOOL success

STRUCT DosList *dlist

Function: This function can be used to remove an entry from the

logical device list. LockDosList() must be called first. The

memory block used is not freed with this function.

Parameters: dlist DosList structure.

Result: 0 Error

lUnLockDosList Free logical device listl

Call: UnLockDosList (flags)

-660(A6) Dl

ULONG flags

72

3.1 The Libraries and their Functions

Function: Frees a logical device list that was locked with

LockDosList().

Parameters: flags Flags that were specified with LockDosListQ.

Dec

0

4

8

12

16

16

16

20

20

24

28

28

32

32

36

40

44

Hex

$0

$4

$8

$c

$10

$10

$10

$14

$14

$18

$1C

$1C

$20

$20

$24

$28

$2C

STRUCTURE DosLlst,U

BPTR

LONG

APTR

BPTR

LABEL

LABEL

BSTR

LABEL

LONG

LONG

LABEL

ULONG

LABEL

BPTR

BPTR

BSTR

LABEL

dol_Next

dol_Type

dol_Task

dol_Lock

dol_VolumeDate

dol_Ass ignName

dol_Handler

dol_List

dol_StackSize

dol_Priority

dol_LockList

dol_Startup

dol_DiskType

dol_SegList

dol_GlobVec

dol_Name

DosList_SIZEOF

;next entry

;type (see below)

/Handler task

;Lock

;creation date

;path name

/filename (if SegList=0)

/directory list (Assign)

/stack size for the process

/priority of the process

/available Locks

/FileSysStartupMsg

/•DOS', etc.

/SegList for the process

/BCPL global vector

; name

Values for dlJType:

DLTJDEVICE = 0

DLTJDIRECTORY =

DLT_VOLUME =

DLT_LATE

DLT_NONBINDING =

DLT_PRIVATE

/logical device

1 /Assign Node

2 /diskette

3 /late assignment

4 /free Assign (AssignPath)

-1 /for DOS only

Flags for LockDosListO etc.:

LDB_READ = 0,

LDB_WRITE = 1,

LDB_DEVICES = 2,

LDB_VOLUMES = 3,

LDB_ASSIGNS = 4,

LDB_ENTRY = 5,

LDB DELETE = 6,

LDF_READ

LDF_WRITE

LDF_DEVICES

LDF_VOLUMES

LDF_ASSIGNS

LDF_ENTRY

LDF_DELETE

= 1

= 2

= 4

= 8

= 16

= 32

= 64

/ specify either LDF_READ

/ or LDF_WRITE

/for internal purposes

LDF_ALL = (LDF_DEVICES!LDF_VOLUMES!LDF_ASSIGNS)

73

3. Programming with AmigaOS 2.x

3. Handlers and Filesystems

| AddBuffers Add to the number of buffers for a device|

Call: success = AddBuf fers (filesystem, number)

DO -732(A6) Dl D2

BOOL success

APTR filesystem

LONG number

Function: Adds the given number of buffers to the existing number of

buffers for a filesystem, then sets the number of buffers to

the new number. You may also use negative values. If the

call was successful, you can query the current number of

buffers with IoErr().

Parameters: filesystem *String with the device name, including ':'.

number Number of buffers to add (may be positive or
negative).

Result: 0 Error

See also: IoErr()

| DeviceProc Return the MsgPort for the handler of a"device]

Call: process = DeviceProc (name)

DO -174(A6) Dl

STRUCT MsgPort *process

APTR name

Function: Returns the MessagePort that controls the given device.

This is required for packet routines.

Parameters: name Device name

Result: MsgPort of the handler process or 0.

74

3.1 The Libraries and their Functions

Warning: If you specify something that is only addressable as a

device via ASSIGN, use the IoErr() function to get the lock

associated with this name. You may only work with a copy

of the lock that was created with DupLock().

See also: DoPkt(), IoErr(), DupLock()

| DoPkt Send a DOS packet and wait for the reply |

Call: resultl (/result2) = DoPkt (port, action, argl,arg2,arg3,arg4,arg5)

DO (Dl) -240(A6) Dl D2 D3 D4 D5 D6 D7

LONG resultl,result2

STRUCT MsgPort *port

LONG action,argl,arg2,arg3,arg4,arg5

Function: PutMsgO sends a packet to the ProcessPort of the handler

and waits for the handler to process it. Then resultl and

result2 are taken from the returned packet. Since C

programmers cannot use routines with two results, result2 is

set up as an error code that can be queried with IoErr().

DoPkt() can also be called by an Exec task, but it will be

slower and more prone to error.

Parameters: port pr_MsgPort of the handler.

action Command for the handler or filesystem.

argl, arg2, arg3, arg4,arg5

Arguments for the command.

Result: 0 in DO = error

See also: DeviceProc(), IoErr(), PutMsgO, WaitPort(), GetMsgO

| EndNotify End file notification |

Call: EndNotify (notifystructure)

-894(A6) Dl

STRUCT NotifyRequest *notifystructure

75

3. Programming with AmigaOS 2.x

Function: Ends notification started with StartNotifyO.

Parameters: NotifyRequest that was passed to StartNotifyO.

Result: None

See also: StartNotifyO

IFormat Format a device]

Call: success = Format(filesystem, volumename, dostype)

DO -714(A6) Dl D2 D3

BOOL success

APTR filesystem,volumename

ULONG dostype

Function: Format a device, such as a diskette or a hard disk.

Parameters: filesystem Device name including':'.

volumename

Name, such as the diskette name.

dostype Format type: OFS or FFS

Result: 0 Error

IFreeDeviceProc Free a structure obtained with GetDeviceProcQI

Call: FreeDeviceProc (devproc)

-648(A6) Dl

STRUCT DevProc *devproc

Function: Frees a structure created with GetDeviceProc() and

decrements the process counter.

Parameters: devproc DevProc structure from GetDeviceProc().

76

3.1 The Libraries and their Functions

I GetConsoleTask Get the MsgPort of the console handler]

Call: port = GetConsoleTask ()

DO -510(A6)

STRUCT MsgPort *port

Function: Returns its own console task port (pr_ConsoleTask).

Result: pr_MsgPort of the console handler or 0.

| GetDeviceProc Get the handler for a path |

Call: devproc = GetDeviceProc (name, devproc)

DO -642 (A6) Dl D2

STRUCT DevProc *devproc

APTR name

Function: Returns the handler or filesystem for a path. You must

supply the path name, which may be given relative to the

current path, and a value of 0 as the DevProc structure. The

result is a DevProc structure from which the data can be

read. Kickstart 2.0 supports the division of a directory into

several devices, so more than one handler/filesystem may be

responsible for the path.

To get all of the data for a path, GetDeviceProc() must be

called several times, and the first structure returned must be

passed with each subsequent call. If you receive an

ERRORJ3BJECT_NOT_FOUND and if DVPF_ASSIGN is

set in dvp_Flags, you must still call this function again. You

will receive the DevProc structure with other values or with

the value 0 and an ERROR_NO_MORE_ENTRIES from

IoErr(). The function must continue to be called until 0 is

returned. Then the handler/filesystem will automatically be

locked. The structure returned with the first call can be

freed with FreeDeviceProc. At this point, all of the data

retrieved becomes invalid and must not be used anymore.

Parameters: name Path name to be accessed.

77

Programming with AmigaOS 2.x

devproc DevProc structure from previous call, or 0.

Result: DevProc structure or null

IGetFileSysTask Get MsgPort of own filesysteml

Call: port = GetFileSysTaskO

DO -522(A6)

STRUCT MsgPort *port

Function: Reads the MsgPort of the filesystem from the process

structure responsible for the program (pr_FileSystemTask).

Result: pr_MsgPort of the filesystem or 0.

llnhibit Send the DOS packet ACTION INHIBIT to a handlerl

Call: success = Inhibit (filesystem, flag)

DO -72 6(A6) Dl D2

BOOL success

APTR name

LONG flag

Function: Simultaneous access to a filesystem device must be locked

before direct access is allowed (Workbench: DFx:BUSY).

Programmers who simply jump in and access the trackdisk

device or the hard disk already had many system crashes

and instances of destroyed data. Normally, you would use

DeviceProc() to get the handler port and then turn the

filesystem off with an ACTIONJNHIBIT packet. This

function was implemented to give programmers a way to

accomplish this.

Parameters: filesystem Device name including':'

flag Argument for the StdPacket:

DOSTRUE Inhibit (lock filesystem)

Null Uninhibit (unlock filesystem)

78

3.1 The Libraries and their Functions

Result: 0 Error

lIsFileSystem Determine if a handler is a filesysteml

Call: result = isFileSystern (name)

DO -708(A6) Dl

BOOL Result: APTR name

Function: Returns a boolean argument that indicates whether a

handler is a filesystem.

Parameters: name Device name including':'.

Result: 0 Handler is not a filesystem.

| Relabel Change name of a storage device]

Call: success = Relabel (volumename,name)

DO -720(A6) Dl D2

BOOL success

APTR volumename,name

Function: Changes the name of a storage device, such as a diskette.

Parameters: volumename Device name including':'.

newname New name without':'.

Result: 0 Error

| ReplyPkt Reply to a DosPacket |

Call: ReplyPkt (packet, resultl, result2)

-258(A6) Dl D2 D3

STRUCT DosPacket *packet

LONG resultl,result2

Function: Places results in a packet and returns it to the sender.

79

3. Programming with AmigaOS 2.x

Parameters: packet DosPacket structure.

resultI,result2

Results

I SendPkt Send a DosPacket to a handler I

Call: SendPkt (port, packet, replyport)

-246(A6) Dl D2 D3

STRUCT MsgPort *port, *replyport

STRUCT DosPacket *packet

Function: Sends a packet to a handler without waiting for the reply.

The reply is sent to the specified ReplyPort. This is the

pr_MsgPort of its own process structure.

Parameters: port pr_MsgPort of the handler (see DeviceProc()).

packet DosPacket structure to be sent.

replyport pr_MsgPort of its own process.

| SetConsoleTask Set console handler port |

Call: OldPort = SetConsoleTask (port)

DO -516(A6) Dl

STRUCT MsgPort *port, *OldPort

Function: Sets the port for the standard console tasks of the

processor (pr_ConsoleTask).

Parameters: port prJMsgPort of the console handler.

Result: Pointer to previous console task.

80

3.1 The Libraries and their Functions

[SetFileSysTask Set filesystem port |

Call: OldPort = SetFileSysTask (port)

DO -528(A6) Dl

STRUCT MsgPort *port, *OldPort

Function: Sets the port for the filesystem tasks of the process

(prJFileSystemTask).

Parameters: port pr_MsgPort of the filesystem.

Result: Previous FileSysTask

| StartNotify Start file notification]

Call: success = StartNotify (notifystructure)

DO -888(A6) Dl

BOOL success

STRUCT NotifyRequest *notifystructure

Function: Begin notification for a file or directory. You are then

notified if a change is made, as long as the filesystem

supports this.

Parameters: notifystructure

Initialized NotifyRequest structure.

Result: 0 Error

| WaitPkt Wait for a DosPacket]

Call: packet = WaitPkt ()

DO -252(A6)

STRUCT DosPacket *packet

Function: Waits for a DosPacket to appear in its own pr_MsgPort and

picks up the StdPkt with GetMsgQ.

81

3. Programming with AmigaOS 2.x

Result: packet DosPacket (LN_NAME of the message

structure)

DosPacket Structure:

Dec

0

4

8

8

12

12

16

16

20

20

24

28

32

36

40

44

48

Hex

$0

$4

$8

$8

$c

$c

$10

$10

$14

$14

$18

$1C

$20

$24

$28

$2C

$30

STRUCTURE DosPacket

APTR

APTR

LABEL

LONG

LABEL

LONG

LABEL

LONG

LABEL

LONG

LONG

LONG

LONG

LONG

LONG

LONG

LABEL

dp_Link ;

dp_Port ;

dp_Action ;

dp_Type

dp_Status

dp_Resl ;

dp_Status2 ;

dp_Res2

dp_BufAddr ;

dp_Argl

dp_Arg2

dp_Arg3

dp_Arg4

dp_Arg5

dp_Arg6 ;

dp_Arg7

dp_SIZEOF

,o

Exec message

ReplyPort

s. ACTION_...

1st

1st

2nd

2nd

, 'W

result:

result

result

result

buffer address

1st

2nd

3rd

4th

5th

6th

7th

argument

argument

argument

argument

argument

argument

argument

Structure for sending Packets:

Dec Hex STRUCTURE StandardPacket,0

0 $0 STRUCT sp_Msg,MN_SIZE ;Exec message

20 $14 STRUCT sp_Pkt,dp_SIZEOF ;Packet

68 $44 LABEL sp_SIZEOF

Packet

ACTION_NIL

ACTION_STARTUP

ACTION_GET_BLOCK

ACTION_SET_MAP

ACTION_DIE

ACTION_EVENT

ACTION_CURRENT_VOLUME =

ACTION_LOCATE_OBJECT =

ACTION_RENAME_DISK

ACTION_WRITE = '

ACTION_READ = '

ACTION_FREE__LOCK

ACTION_DELETE_OBJECT =

ACTION_RENAME_OBJECT =

Types:

0

0

2

4

5

6

7

8

9

W

R1

15

16

17

;no message

;Handler startup

;DO NOT USE!

;set map

;end process

;event

;current disk

;find object

;rename disk

;write

; read

;free Lock

;delete object

;rename object

82

3.1 The Libraries and their Functions

ACTION_MORE_CACHE = 18

ACTION_COPY_DIR = 19

ACTION_WAIT_CHAR = 20

ACTION_SET_PROTECT = 21

ACTION_CREATE_DIR = 22

ACTION_EXAMINE_OBJECT = 23

ACTION_EXAMINE_NEXT = 24

ACTION_DISK_INFO = 25

ACTION_INFO = 26

ACTION_FLUSH = 27

ACTION_SET_COMMENT = 28

ACTION_PARENT = 29

ACTIONJTIMER = 30

ACTION_INHIBIT = 31

ACTION_DISK_TYPE = 32

ACTION_DISK_CHANGE = 33

ACTION_SET_DATE = 3 4

ACTION_SAME_LOCK = 40

ACTION_SCREEN_MODE = 994

ACTION_READ_RETURN = 1001

ACTION_WRITE_RETURN = 1002

ACTION_SEEK = 1008

ACTION_FINDUPDATE = 1004

ACTION_FINDINPUT = 1005

ACTION_FINDOUTPUT = 1006

ACTION_END = 1007

ACTION_FORMAT = 1020

ACTION_MAKE_LINK = 1021

ACTION_SET_FILE_SIZE = 1022

ACTION_WRITE_PROTECT =1023

ACTION_READ_LINK =1024

ACTION_FH_FROM_LOCK =1026

ACTION_IS_FILESYSTEM = 1027

ACTION_CHANGE_MODE = 1028

ACTION_COPY_DIR_FH = 1030

ACTION_PARENT_FH = 1031

ACTION_EXAMINE_ALL =1033

ACTION_EXAMINE_FH =1034

ACTION_LOCK_RECORD =2008

ACTION_FREE_RECORD =2009

ACTION_ADD_NOTIFY = 4097

ACTION_REMOVE_NOTIFY = 4098

;add buffer

;copy directory

;wait for a character

;set protection

;create directory

/examine object

/examine next entry

;info on the disk

;information

/invalid buffers

;set comment

/parent directory

/Timer event

/Handler on/off

/diskette type

/diskette change

;set date

;compare Locks

/screen mode

/ read

/write

/position

/ open

/old file

/new file

/end

/format

/create a link

/set file size

/write protect

/read link

/get FileHandle

/get Handler type

/change access mode

/copy directory

/get parent directory

/examine directory tree structure

/examine file

/lock record

;free record

/start notification

/end notification

Packet types from runlnewclilexecutelsystem to the Shell:

RUN_EXECUTE = -1

RUNJ3YSTEM = -2

RUN_SYSTEM_ASYNCH = -3

83

3. Programming with AmigaOS 2.x

Results ofGetDeviceProc():

Dec Hex STRUCTURE DevProc,0

0

4

8

12

16

$0

$4

$8

$c

$10

APTR

BPTR

ULONG

APTR

LABEL

dvp_Port ;MsgPort

dvp_Lock ;Lock

dvp_Flags ;Flags (s.u.)

dvp_DevNode ;DosList (DO NOT USE!)

dvp_SIZEOF

Values for dvp_Flags

DVPB_UNLOCK = 0, DVPF_UNLOCK = 1

DVPB_ASSIGN = 1, DVPF_ASSIGN = 2

Storage device description:

Dec Hex

0 $0

4 $4

8 $8

12 $C

16 $10

20 $14

24 $18

28 $1C

32 $20

36 $24

40 $28

44 $2C

48 $30

52 $34

56 $38

60 $3C

64 $40

68 $44

72 $48

76 $4C

80 $50

STRUCTURE DosEnvec,0

ULONG de_TableSize

ULONG de_SizeBlock

ULONG de_SecOrg

ULONG de_Surfaces

ULONG de_SectorPerBlock

ULONG deJBlocksPerTrack

ULONG de_Reserved

ULONG de_PreAlloc

ULONG de_Interleave

ULONG de_LowCyl

ULONG de_HighCyl

ULONG de_NumBuffers

ULONG de_BufMemType

ULONG de_MaxTransfer

ULONG de_Mask

LONG de_BootPri

ULONG de_DosType

ULONG deJBaud

ULONG de_Control

ULONG de_BootBlocks

LABEL DosEnvec_SIZEOF

;table size

;block size in Longs

;sector organization (0)

;number of heads

;sectors per block (1)

/blocks per track

/reserved blocks at the beginning

/reserved blocks at the end

/interleave mode (0)

/first cylinder (starting with 0)

/last cylinder

/normal buffer count

/memory type of buffer

/maximum speed

/address mask

/boot priority

/DOS type

/baud rate for serial Handlers

/control Word for Handler

/number of boot blocks

Filesystem startup message:

Dec Hex STRUCTURE FileSysStartupMsg,0

0

4

8

12

16

$0

$4

$8

$c

$10

ULONG

BSTR

BPTR

ULONG

LABEL

fssm_Unit /unit number for OpenDevice()

fssm__Device /DeviceName ending in 0

fssm__Environ /structure of data storage device

fssm_Flags /Flags for OpenDevice()

FileSysStartupMsg_SIZEOF

84

3.1 The Libraries and their Functions

NOTIFY_CLASS = $40000000

NOTIFY_CODE = $1234

;this will change.

;this too

Dec Hex STRUCTURE NotifyMessage,0

0 $0 STRUCT nm_ExecMessage,MN_SIZE /message

20 $14 ULONG nm_Class /s.o.

24

26

30

34

38

Dec

0

4

8

12

16

16

20

21

24

40

44

48

$18

$1A

$1E

$22

$26

Hex

$0

$4

$8

$c

$10

$10

$14

$15

$18

$28

$2C

$30

UWORD

APTR

ULONG

ULONG

LABEL

nm_Code

nm_NReq

nm_DoNotTouch

nm_DoNotTouch2

; s . o.

/Notify request (do

NotifyMessage_SIZEOF

STRUCTURE NotifyRequest

CPTR

CPTR

ULONG

ULONG

LABEL

APTR

UBYTE

STRUCT

STRUCT

ULONG

APTR

LABEL

nr_Name

nr_FullName

nr_UserData

nr_Flags

nr_Task

nr_Port

nr_SignalNum

nr_pad,3

nr_Reserved,4*4

nr_MsgCount

nr_Handler

,0

; Name

/complete DOS path

;own data

;Flags

;task for SEND_SIGNAL or

;MsgPort for SEND_MESSAGE

;for SEND_SIGNAL

/number of Msgs sent

/Handler for EndNotifyO

NotifyRequest SIZEOF

Values for nr_Flags:

NRB_SEND_MESSAGE = 0,

NRB_SEND_SIGNAL = 1,

NRB_WAIT_REPLY =3,

NRB_NOTIFY_INITIAL = 4,

NRB_MAGIC =31,

NRF_SEND_MESSAGE

NRF_SEND_SIGNAL

NRF_WAIT_REPLY

NRF_NOTIFY_INITIAL

NRF_MAGIC

NR_HANDLER_FLAGS

1

2

8

16

= $80000000

= $ffff0000

4. Directories

ICreateDir Create a new directory |

Call: lock

DO

BPTR

APTR

= CreateDir(

-120(A6)

lock

name

name

Dl

85

3. Programming with AmigaOS 2.x

Function: Creates a new directory and returns a lock for it.

Parameters: name String containing directory name.

Result: BCPL pointer to a lock or 0.

See also: UnLock()

| CurrentDir Set the current directory |

Call: oldLock = CurrentDir (lock)

DO -126(A6) Dl

BPTR oldLock

BPTR lock

Function: CurrentDir() sets the directory that all path specifications

will use as a starting point. You are required to pass a lock

for the desired directory. As a result, you receive the lock to

the directory that was formerly current.

Parameters: lock BCPL pointer to a lock.

Result: BCPL pointer to the previous current directory. A value of

0 represents the boot directory that is set by a reboot.

See also: Lock(), UnLock()

I ExAH Examine an entire directory |

Call: continue = ExAll(lock/ buffer, size, type, control)

DO -432 (A6) Dl D2 D3 D4 D5

BOOL continue

BPTR lock

APTR buffer

LONG size,type

STRUCT ExAllControl ^control

Function: Examines a directory and fills a buffer with ExAllData

structures.

86

5.7 The Libraries and their Functions

Parameters: lock

buffer

size

type

control

Directory lock

Buffer address

Buffer size

The amount of data that will be stored in each

file (ED_...). Higher values contains smaller

values. The order is name, type, size, protection

bits, date, comment.

ExAllControl structure, must be created with

AllocDosObject(). The LastKey entry must be

deleted before the call. If several calls are

required, this entry may not be changed.

Entries Number of entries in buffer.

LastKey Delete prior to call.

MatchString Optional pattern string.

MatchFunc Hook address of a pattern

matching routine.

Cancel (delete LastKey):

IoErr() ERRORJNTOJV1OREJENTRIES:

ExAll is finished; otherwise

IoEit()=error code. In any other

case* save the buffer contents and

call ExAH() again.

See also: IoErr(), AUocDosObjectO, FreeDosObject

| Examine Examine directory or fllel

Call: success = Examine (lock, infoBlock)

DO -102(A6) Dl D2

BOOL success

Result:

87

3. Programming with AmigaOS 2.x

BPTR lock

STRUCT FilelnfoBlock *infoBlock

Function: ExamineQ fills a FilelnfoBlock with all available

information. This data structure can only be read if it's

passed as a parameter later (e.g., to ExNext()).

Parameters: lock Lock for the file/directory to be examined.

infoBlock Address of FilelnfoBlock structure.

Result: 0 Error

[ExNext Examine next directory entry]

Call: success = ExNext (lock, infoBlock)

DO -108(A6) Dl D2

BOOL success

BPTR lock

STRUCT FilelnfoBlock *infoBlock)

Function: This function examines the next directory entry and fills the

fields of the given FilelnfoBlock with the values that were

obtained. Prior to the first call, the FilelnfoBlock must be

initialized with the ExamineQ function.

Parameters: lock Lock for the directory being examined. This

lock must correspond with the lock from the

Examine() call. File locks do not work.

infoBlock Address of FilelnfoBlock structure that was

initialized by Examine().

Result:

Warning:

0 If IoErr()=ERROR_NO_MORE_ENTRIES,

then no more entries are available. Otherwise,

IoErrQ returns the error number.

Recursive reading of the directory tree structure will only

work if you use a new FilelnfoBlock for each directory

found.

88

3.1 The Libraries and their Functions

IGetProgramDir Get directory lock for the program|

Call: lock = GetProgramDir ()

DO -600(A6)

BPTR lock

Function: Returns a lock for the directory from which the program is

started. You can make a working copy of this lock with

DupLock().

Result: Lock or 0 (for example, in the case of a resident program)

I Info Get information about a disk |

Call: success = info(lock, parameterBlock)

DO -114(A6) Dl D2

BOOL success

BPTR lock

STRUCT InfoData *parameterBlock

Function: Fills the InfoData structure with information on the disk

that corresponds to a given lock.

Parameters: lock A filesystem lock

parameterBlock

InfoData structure

Result: 0 Error

| MatchEnd Free MatchFirstQ/MatchNextQ memory |

Call: MatchEnd (AnchorPath)

-834(A6) Dl

STRUCT AnchorPath *AnchorPath

Function: Free pattern matching memory.

89

3. Programming with AmigaOS 2.x

Parameters: AnchorPath

Structure of MatchFirst()/MatchNext().

| MatchFirst Find a file that matches the pattern |

Call: error = MatchFirst (pat, AnchorPath)

DO -822(A6) Dl D2

BOOL error

APTR pat

STRUCT AnchorPath *AnchorPath

Function: Finds the first file or directory that matches the given

pattern. Initializes the AnchorPath structure. Possible

characters in the pattern string are:

? Individual character

0 or more characters

(alb) Individually check components separated by I

Exclude the following expression

[abc] One of the specified characters

[a-z] Range of characters, such as "[0-9a-zA-Z]"

% No character (useful with "(albl%)")

* Can optionally be used for "#?"

Parameters: pat Pattern string

AnchorPath

Structure for the search.

Result: 0 Okay, otherwise error code.

|MatchNext Find next file that matches the pattern!

Call: error = MatchNext (AnchorPath)

DO -828(A6) Dl

BOOL error

STRUCT AnchorPath *AnchorPath

Function: Finds the next file or directory to match the given pattern

(see MatchFirstQ).

90

3.1 The Libraries and their Functions

Parameters: AnchorPath

MatchFirst() structure

Result: 0 Okay, otherwise error code.

1 ParentDir Get parent directory lock|

Call: newlock = ParentDir (lock)

DO -210(A6) Dl

BPTR newlock,lock

Function: Returns a lock for the parent directory of a file or directory.

Parameters: lock BCPL pointer to a lock structure.

Result: Lock or 0 (= boot directory, parent directory of all root

directories)

IParentOfFH Get lock for a file's parent directory |

Call: lock = ParentOfFH(fh)

DO -384(A6) Dl

BPTR lock,fh

Function: Returns a lock for the parent directory when given a

FileHandle.

Parameters: fh FileHandle

Result: Lock or 0 (error)

Structure ofExamine() and ExNextf):

Dec Hex STRUCTURE FilelnfoBlock,0

0 $0 LONG fib_DiskKey ;block number for operating system

4 $4 LONG fib_DirEntryType ;type of entry (<0:filef >0:directory)

8 $8 STRUCT fib_FileName,108 /filename ending in 0

116 $74 LONG fib_Protection ;protection status

120 $78 LONG fib_EntryType ;for the operating system

124 $7C LONG fib_Size ;file size in bytes

128 $80 LONG fib_NumBlocks ;file size in blocks

91

3. Programming with AmigaOS 2.x

132 $84 STRUCT fib_DateStamp,ds_SIZEOF ;revision date

144 $90 STRUCT fib_Comment,80 /comment ending in 0

224 $E0 STRUCT fib_Reserved,36 /reserved

260 $104 LABEL fib_SIZEOF

Normal values for fibJDirEntryType:

ST_BOOT

ST_ROOT

ST_USERDIR =

ST_SOFTLINK =

ST_LINKDIR =

ST_FILE

ST_LINKFILE =

0

1

2

3

4

-3

-4

;boot directory

;main directory

/directory

;soft link

;HardLink to directory

;file

;HardLink to file

FIBB_SCRIPT

FIBF_SCRIPT

FIBB_PURE

FIBF_PURE

FIBB_ARCHIVE

FIBF_ARCHIVE

FIBB_READ

FIBF_READ

FIBB_WRITE

FIBF_WRITE

FIBB_EXECUTE

FIBF_EXECUTE

FIBBJDELETE

FIBF DELETE

6

64

5

32

4

16

3

8

2

4

1

2

0

1

Protection status bits:

batch file

program code is re-entrable

(=RESIDENT-capable)

deleted when file is changed

disable read access

disable write access

disable program start

disable delete

Values for ExAll():

;name

;name+type

;name+type+length

;name+type+1ength+protection

;name+type+length+protection+date

;name+type+length+protection+date+comment

ExAll() result structure:

Dec Hex STRUCTURE ExAllData,0

0 $0 APTR ed_Next ;next ExAllData structure

4 $4 APTR ed_Name ;narae

8 $8 LONG ed__Type ;typ or end of structure

ED_NAME

ED_TYPE

ED_SIZE

ED_PROTECTION

ED_DATE

ED COMMENT

= 1

= 2

= 3

= 4

= 5

= 6

92

3.1 The Libraries and their Functions

12 $C ULONG

16 $10 ULONG

20 $14 ULONG

24 $18 ULONG

28 $1C ULONG

32 $20 APTR

? ? LABEL

ed_Size

ed_Prot

edJDays

ed_Mins

ed_Ticks

ed_Comment

ed_Strings

;size or end of structure

;protection or end of structure

;date stamp or end of structure

/comment or end of structure

/strings at end of structure

Control structure for ExAH():

Dec Hex STRUCTURE ExAllControl,0

0

4

8

12

16

$0

$4

$8

$c

$10

ULONG

ULONG

APTR

APTR

LABEL

eac_Entries /number of buffer entries

eac_LastKey /disk block (do not change)

eac_MatchString /pattern string or 0

eac_MatchFunc /pattern match Hook or 0

ExAllControl_SIZEOF

Structure oflnfo():

Dec Hex STRUCTURE InfoData,0

0 $0 LONG id_NumSoftErrors

4 $4 LONG id_UnitNumber

8 $8 LONG id_DiskState

12 $C LONG id_NumBlocks

16 $10 LONG id_NumBlocksUsed

20 $14 LONG id_BytesPerBlock

24 $18 LONG id_DiskType

28 $1C BPTR id_VolumeNode

32 $20 LONG id_InUse

36 $24 LABEL id_SIZEOF

/number of errors on disk

/number for OpenDevice

/diskette status (see below)

/number of blocks on disk

/number of blocks used

/bytes per block

/disk type

/BPTR to DosList structure

/Flag, 0=not active

Diskette status:

ID_WRITE_PROTECTED = 80 /write protection on

ID_VALIDATING = 81 /disk being checked

ID_VALIDATED = 82 /disk is okay

ID_NO_DISK_PRESENT

ID_UNREADABLE_DISK

ID_NOT_REALLY_DOS

ID_DOS_DISK

ID_FFS_DISK

ID_KICKSTART_DISK

ID_MSDOS_DISK

Diskette type:

= -l

= 'BAD'«8

= 'NDOS'

= 'DOS'«8

= IDOS'«8!1 /FFS disk

/no disk in drive

/unreadable format or error

/unreadable format

/OFS disk

'KICK' /operating system diskette

•MSD'«8 /MS-DOS diskette

93

3. Programming with AmigaOS 2.x

Pattern matching structure:

4

4

8

12

Dec Hex

0 $0

0 $0

$4

$4

$8

$C

16 $10

16 $10

17 $11

18 $12

20 $14

280 $118

280 $118

STRUCTURE AnchorPath,0

LABEL ap_First

ap_Base

ap_Current

ap_Last

ap_BreakBits

ap_FoundBreak

ap_Length

ap_Flags

ap_Reserved

ap_Strlen

ap_Info, fib_SIZEOF

ap_Buf

ap_SIZEOF

CPTR

LABEL

CPTR

LONG

LONG

LABEL

BYTE

BYTE

WORD

STRUCT

LABEL

LABEL

;first Anchor

;last Anchor

;break bits

;found bits

;Flags

/string length

;FilelnfoBlock

;buffer for path

APB__DOWILD

APF_DOWILD

APB_ITSWILD

APF_ITSWILD

APB_DODIR

APF_DODIR

APB_DIDDIR

APF_DIDDIR

APB_NOMEMERR

APF_NOMEMERR

APB_DODOT

APF__DODOT

APB_DirChanged

APF_DirChanged

= 0 ;OPT ALL

= 1

= 1 ;Flag from MatchFirst() for MatchNext()

= 2

= 2 ;directory must also be checked

= 4

= 3 /directory being checked

= 8

= 4 ;not enough memory

= 16

= 5 /conversion of '.■ in CurrentDir

= 32

= 6 /directory has changed since

= 64 /last MatchNext call

Anchor structure:

Dec Hex STRUCTURE AChain,0

0 $0 CPTR

4 $4 CPTR

8 $8 LONG

12 $C STRUCT

272 $110 BYTE

273 $111 LABEL

273 $111 LABEL

an_Child

an_Parent

an_Lock

an_Info,fib_SIZEOF

an__Flags

an_String

an_SIZEOF

/ FilelnfoBlock

DDB_PatternBit = 0,

DDB_ExaminedBit = 1,

DDB_Completed = 2,

DDB_AllBit = 3,

DDB_SINGLE = 4,

DDF_PatternBit = 1

DDF_ExaminedBit = 2

DDF_Completed = 4

DDF_AllBit = 8

DDF_SINGLE =16

94

3.1 The Libraries and their Functions

Tokens for Token strings:

P_ANY

P_SINGLE

P_ORSTART

P_ORNEXT

P_OREND

P_NOT

P__NOTEND

P_NOTCLASS

P_CLASS

P_REPBEG

P_REPEND

P_STOP

COMPLEX_BIT

EXAMINE_BIT

= $80 ;

= $81 ;

= $82 ;

= $83 ,

= $84 ,

= $85 ,

= $86 ,

= $87 ,

= $88

= $89

= $8A

= $8B

= 1

= 2

Token for '*' or '#?

Token for '?'

Token for '('

Token for 'I'

Token for ')•

Token for '-'

end of expression after

Token for •A'

Token for '[]'

Token for '['

• Token for ']'

• cancel evaluation

Values for anJStatus:

; pattern parsing

? search in directory

5. Programs

[AddSegment Insert program in resident list |

Call: success = Addsegment (name, seglist, type)

DO -774(A6) Dl D2 D3

BOOL success

APTR name

BPTR seglist

LONG type

Function: Inserts a program in the resident list (to hold it in memory).

Parameters: name Program name

seglist BPTR (APTR/4) to program's segment list.

type Call counter for linking, normal value: 0.

Result: 0 Error

95

3. Programming with AmigaOS 2.x

1 CreateNewProc Generate a new process I

Call: process = CreateNewProc (tags)

DO -498(A6) Dl

STRUCT Process *process

STRUCT Tagltem *tags

Function: Generates a new process according to the values in the tag

array. NPJSeglist or NPJEntry must be included.

NP_Seglist passes a BPTR to a segment list and NPJEntry

passes the address of the program. Input and output are

routed to NIL: and the stack is set to 4000 bytes.

CreateNewProc can be called from a simple task, but in this

case the DOS I/O will not work.

Parameters: tags Address of a Tagltems field.

Result: Process or 0

ICreateProc Generate a new process (old)|

Call: process = CreateProc (name, pri, seglist, stackSize)

DO -138(A6) Dl D2 D3 D4

STRUCT MsgPort *process

APTR name

LONG pri

BPTR seglist

LONG stackSize

Function: CreateProc starts a new process with the given name.

Parameters: name Address of the string with the process name,

pri Priority of the process (-128 to 127)

seglist BPTR to a SegList (see LoadSegO)

stackSize Stack size (multiple of 4)

96

3.1 The Libraries and their Functions

Result: Process or 0 (error)

See also: LoadSegQ, CreateNewProcQ

| Exit End BCPL program |

Call: Exit (returnCode)

-144(A6) Dl

LONG returnCode

Function: Exit() is used to properly end BCPL programs only. This

routine must never be called by other programs.

Parameters: returnCode

Return value for CLI.

Result: None.

Warning: C programmers must be careful not to confuse the C

function exit() with the DOS function Exit().

| FindSegment Retrieve a segment from the resident list|

Call: segment = FindSegment (name, start, system)

DO -780(A6) Dl D2 D3

STRUCT Segment *segment,*start

APTR name

LONG system

Function: Finds the segment of the given name in the list of resident

programs. You can also specify the name of the segment

from which to begin the search. If the system flag is set,

then only one system segment is searched.

Parameters: name Segment name

start 0 or starting segment for the search

system 0 or -1 for system segment

97

3. Programming with AmigaOS 2.x

Result: Segment address or 0

Warning: Turn off multitasking before calling.

llnternalLoadSeg Load program from FileHandle |

Call: seglist = InternalLoadSeg(fh,table,functionarray,stack)

DO -756(A6) DO AO Al A2

BPTR seglist,fh,table

APTR functionarray,stack

Function: Loads the program represented by a FileHandle. If no

overlay is loaded, then table must be set to 0. If the stack

size is integrated into the program, then it's written to the

address given in stack. There may already be a value stored

at this address. In this case, it's overwritten by the loaded

value.

Parameters: fh FileHandle of the program,

table Overlay table or 0

functionarray

Field containing addresses of three functions:

Actual ReadFunc(readhandle,buffer,length),DOSBase

DO Dl AO DO A6

> read function, normally Read()

Memory = AllocFunc(size,flags),Execbase

DO DO Dl A6

> allocate memory, normally AllocMem()

FreeFunc(memory,size),Execbase

Al DO A6

> free memory, normally FreeMem()

stack Variable address (LONG) to which the stack

size is written.

Result: SegList or -(SegList) for overlays or 0.

98

3.1 The Libraries and their Functions

UnternalUnLoadSeg Free a SegList|

Call: success = InternalUnLoadSeg(seglist, FreeFunc)

DO -7 62(A6) Dl Al

BOOL success

BPTR seglist

FPTR FreeFunc

Function: Frees the segments of a SegList and closes the program file

for overlays.

Parameters: seglist SegList of a program.

FreeFunc Free function (see InternalLoadSegO)

Result: 0 Error

ILoadSeg Load program]

Call: seglist = LoadSeg(name)

DO -150(A6) Dl

BPTR seglist

APTR name

Function: Loads a file consisting of DOS hunks into memory. The

memory blocks are linked with BPTRs in the first

longword. The size of the memory block precedes the

BPTR.

Parameters: name Filename (including path)

Result: BPTR to the first segment or 0.

INewLoadSeg Expanded LoadSegQ routine]

Call: seglist = NewLoadSeg(file, tags)

DO -768(A6) Dl D2

BPTR seglist

APTR file

99

3. Programming with AmigaOS 2.x

STRUCT Tagltem *tags

Function: Loads a file consisting of hunks, depending on the tags in a

given Tagltem field.

Parameters: file Filename

tags Address of a Tagltem field.

Result: Seglist or 0

| RemSegment Remove a program from the resident list|

Call: success = RemSegment (segment)

DO -786(A6) Dl

BOOL success

STRUCT Segment *segment

Function: Removes a resident segment from the system list and frees

the allocated memory.

Parameters: segment Segment structure

Result: 0 Error (usually because Usecount is not 0)

| RunCommand Start a program with its own process |

Call: re = RunCommand(seglist, stacksize, argptr, argsize)

DO -504 (A6) Dl D2 D3 D4

LONG re

BPTR seglist

ULONG argsize, stacksize

APTR argptr

Function: Starts a program using its own process structure.

Parameters: seglist SegList of the program,

stacksize Stack size

100

3.1 The Libraries and their Functions

argptr Argument string

argsize Length of argument string

Result: Return value of the program or -1 if the stack could not be

loaded.

lUnLoadSeg Free SegList |

Call: success = UnLoadSeg(seglist)

DO -156(A6) Dl

NP_Dummy

NP_Seglist

NP_FreeSeglist

NP_Entry

NP_Input

NP_Output

NP_CloseInput

NP_CloseOutput

NP_Error

NP_CloseError

NP_CurrentDir

NP_StackSize

NP_Name

NP_Priority

NP_ConsoleTask

NP_WindowPtr

NP_HomeDir

NP_CopyVars

NP_Cli

NP_Path

NP_CommandName

NP_Arguments

BOOL success

BPTR seglist

Function: Free the SegList of a file loaded with LoadSeg().

Parameters: seglist BCPL to a SegList

Result: 0 SegList was 0 or an error occurred.

CreateNewProc() Tags:

= TAG_USER+100 0

= NP_Dummy+l /SegList of the program

= NP_Dummy+2 ;free SegList at end?

= NP_Dummy+3 /program address

= NP_Dummy+4 /input handle

= NP_Dummy+5 /output handle

= NP_Dummy+6 /close(Inputhandle) at end?

= NP_Dummy+7 /close(Outputhandle) at end?

= NP_Dummy+8 /error handle

= NP_Dummy+9 /close(Errorhandle) at end?

= NP_Dummy+10 /current directory

= NP_Dummy+ll /stack size in bytes

= NP_Dummy+12 /process name

= NP_Dummy+13 /process priority

= NP_Dummy+14 /Console Handler

= NP_Dummy+15 /window for Requester, etc.

= NP_Dummy+16 /start directory

= NP_Dummy+17 /copy local variables?

= NP_Dummy+18 /create CLI structure?

= NP_Dummy+19 /path for CLI

= NP_Dummy+20 /program name for CLI

= lSJP_Dummy+21 /arguments for CLI

101

3. Programming with AmigaOS 2.x

NP_NotifyOnDeath = NP_Dummy+22 /message at end?

NP_Synchronous = NP_Dummy+23 ;wait until process end?

NP_ExitCode = NP_Dummy+24 ;routine to be ended

NP_ExitData = NP_Dummy+25 ;data for NP_EndCode

Structure of a process (expanded Task structure):

Dec Hex

0 $0

92 $5C

126 $7E

128 $80

132 $84

136 $88

140 $8C

144 $90

148 $94

152 $98

156 $9C

160 $A0

164 $A4

168 $A8

172 $AC

176 $B0

180 $B4

184 $68

188 $BC

192 $C0

196 $C4

200 $C8

204 $CC

208 $D0

220 $DC

224 $E0

228 $E4

STRUCTURE Process,0

STRUCT pr_Task,TC_SIZE

STRUCT pr_MsgPort,MP_SIZE

TT"nrN pr_Pad

pr_SegList

pr_StackSize

pr_GlobVec

pr_TaskNum

pr_StackBase

pr_Result2

pr__CurrentDir

pr_CIS

pr_COS

pr_ConsoleTask

pr_FileSystemTask

pr_CLI

pr_ReturnAddr

pr_PktWait

pr_WindowPtr

pr_HomeDir

pr__Flags

pr_ExitCode

pr_ExitData

pr_Arguments

WORD

BPTR

LONG

APTR

LONG

BPTR

LONG

BPTR

BPTR

BPTR

APTR

APTR

BPTR

APTR

APTR

APTR

BPTR

LONG

APTR

LONG

STRUCT pr_LocalVars,MLH_SIZE

APTR pr_She11Private

BPTR pr_CES

LABEL pr_SIZEOF

;Task structure

/process port

;SegList of the program

;stack size

/global vector (BCPL)

;CLI process number

;end of stack

/return value

/Lock for current directory

/input channel

/output channel

/pr_MsgPort of the window Handler

/pr_MsgPort of the drive

/CLI structure

/old stack

/WaitPkt() function

/Requester window

/start directory

/Flags

/end function

/data for the function

/argument string

/local ENV variables

/for Shell only

/error channel, in case pr_COS=0

pr_Flags flags:

PRB_FREESEGLIST = 0#

PRB_FREECURRDIR = 1,

PRB_FREECLI = 2,

PRB__CLOSEINPUT = 3,

PRB__CLOSEOUTPUT = 4,

PRB_FREEARGS = 5,

PRF_FREESEGLIST = 1

PRF_FREECURRDIR = 2

PRF_FREECLI = 4

PRF_CLOSEINPUT = 8

PRF_CLOSEOUTPUT =16

PRF_FREEARGS =32

102

3.1 The Libraries and their Functions

HUNK_UNIT

HUNKJSFAME

HUNK_CODE

HUNK_DATA

HUNK_BSS

HUNK_RELOC32

HUNK_REL0C16

HUNKJREL0C8

HUNK_EXT

EXT_SYMB

EXT_DEF

EXT_ABS

EXT_REF32

EXT_COMMON

EXT_REF16

EXT_REF8

EXT_DEXT32

EXT_DEXT16

EXT_DEXT8

HUNK_SYMBOL

HUNK_DEBUG

HUNK_END

HUNK_HEADER

HUNK_OVERLAY

HUNK_BREAK

HUNK_DREL32

HUNK_DREL16

HUNKJDREL8

HUNK_LIB

HUNK_INDEX

Hunk types:

999 ;part of an object code file

1000 /segment name

1001 ;program segment

1002 ;data segment

1003 ;memory block (+MEMF_CLEAR)

1004 ;table for absolute addressing

1005 ;offset table

1006 ;offset table

1007 ;linker data

0 ;symbol table

1 ;external label

2 ;absolute value

129 ;32 bit symbol reference

130 ;32 bit reference to global data

131 ;16 bit symbol reference

132 ;8 bit symbol reference

133 ;32 bit relative data reference

134 ;16 bit relative data reference

135 ;8 bit relative data reference

1008 ;name of a Long value

1009 ;special info for a debugger

1010 ;end of main segment

1011 ;info on the following Hunks

: 1013 ;overlay Hunks

: 1014 ;end of Overlay

: 1015 ;relative data 32 bit

= 1016 ;relative data 16 bit

: 1017 ;relative data 8 bit

: 1018 /library

: 1019 ;table

6.CLI

ICheckSignaf Check for Cancel signal |

Call: signals = CheckSignal (mask)

DO -792(a6) Dl

Function:

ULONG signals

ULONG mask

Tests the given signal bits. The signal bits are masked and

passed back. All bits set in the mask are reset in the process

structure.

103

3. Programming with AmigaOS 2.x

Parameters: mask Bit mask for signal bits.

Result: signals Logical AND combination of the mask and the

signal bits.

See also: exec.library/Signal

ICii Get the address of the calling CLI |

Call: cli_ptr = cii()

DO -492(A6)

STRUCT CommandLinelnterface *cli_ptr

Function: Returns the address of the CLI from which the program
was started.

Parameters: None.

Result: Address of the CLI or 0 (Workbench).

Execute CLI command!| Execute"

Call: success = Execute(commandString, input, output)

DO -222 (A6) Dl D2 D3

BOOL success

APTR commandStringExecute

BPTR input,output

Function: Attempts to execute a CLI command. The string that

contains the command and the parameters is constructed

exactly as it would be if entered from the CLI entry line. It

can contain any special characters available to CLI. If an

input channel is specified, then Execute() will read further

instructions from this channel after the execution and

change the process in the case of an interactive channel or

a re-routing to NIL:. The default output is the current

window, but this can be changed by specifying a different
output channel.

Processes are started using the RUN command.

104

3.1 The Libraries and their Functions

Parameters: commandString

Address of a CLI command line.

input FileHandle

output FileHandle

Result: 0 Error

Warning: Programs started from the Workbench normally do not

have a current output window.

IFindCliProc Find a CLI process|

Call: proc = FindCliProc (num)

DO -546(A6) Dl

STRUCT Process *proc

LONG num

Function: Returns the CLI process with the given number.

Parameters: num Task number of the CLI process.

Result: Address of the Process structure or 0 if not found.

Warning: To be safe, this routine should only be called when

multitasking is turned off.

| Input Get the FileHandle for the default input file]

Call: file = Input 0

DO -54(A6)

BPTR file

Function: Returns the FileHandle that was set as the input channel

when the program was started. This FileHandle may not be

closed.

Result: Input FileHandle or 0

105

3. Programming with AmigaOS 2.x

See also:

IMaxCIi

OutputQ

Uet the highest CLI number]

Call: number = MaxCliO

DO -552(A6)

LONG number

Function: Returns the highest process number of all the CLI

processes running.

Result: Highest CLI process number.

Warning: The highest process number does not necessarily equal the

number of processes currently running, since processes

with lower numbers may already have been ended.

| Output Get the FileHandle for the default output file]

Call: file = Output ()

DO -60(A6)

BPTR file

Function: Returns the FileHandle that was set as the output channel

when the program was started. This FileHandle may not be
closed.

Result: Output FileHandle or 0

See also: InputQ

IReadArgT Interpret CLI argument string |

Call: result = ReadArgs (template, array, rdargs)

DO -798(A6) Dl D2 D3

STRUCT RDArgs *result,*rdargs

APTR template,array

106

3.1 The Libraries and their Functions

Function: Interprets an argument string using a pattern string, which

can contain options such as "Q=Quick". Options are

separated by commas in the pattern string. A result for each

option is expected to be passed in the longword field.

Options can be defined with 7:

IS

/K

/N

/r

/A

/F

/M

Switch, BOOL, 0 = not given.

Keyword, this entry is only filled in if the

keyword was found.

Number, a number in decimal format.

Switch, similar to /S.

Required keyword.

Remainder of the line.

Multiple strings (array address with last

string address=0).

The RDArgs structure is required for FreeArgs(). Such a

structure is normally created with ReadArgs() (parameter =

0).

Parameters: template Input format

array Longword array for results

rdargs Optional RDArgs structure

Result: RDArgs structure or 0

| Readltem Read an argument from an argument string |

Call: value = Readltem (buffer, maxchars, input)

DO -810(A6) Dl D2 D3

LONG value,maxchars

APTR buffer

STRUCT CHSource *input

Function: Reads a word or a character string enclosed in quotes from

Input() or a CHSource (if given).

Parameters: buffer Result buffer

107

3. Programming with AmigaOS 2.x

maxchars Buffer size

input CHSource structure or 0 (FGetC(Input()))

Result: See data structures.

I Selectlnput Set FileHandle for default input channel]

Call: old_fh = Selectlnput (fh)

DO -294(A6) Dl

BPTR old_fh,fh

Function: Sets the value that Input() returns for its own CLI process.

Parameters: fh New InputHandle

Result: FileHandle previously returned via Input().

fSeiectOutput Set FileHandle for default output channel I

Call: old_fh = SelectOutput (fh)

DO -300(A6) Dl

BPTR old__fh,fh

Function: Sets the value that Output() returns for its own CLI

process.

Parameters: fh New OutputHandle

Result: FileHandle previously returned by Output().

| SetArgStr Set argument string |

Call: Oldptr = SetArgStr (ptr)

DO -540(A6) Dl

APTR ptr, Oldptr

Function: Sets the argument string for the running process. The old

string must be restored before the program is ended.

108

3.7 The Libraries and their Functions

Parameters: ptr Address of new argument string.

Result: Oldptr Address of old string.

I SetCurrentDirName

Sets name of the current directory in the process

Call: success = SetCurrentDirName (name)

DO -558(A6) Dl

BOOL success

APTR name

Function: Manipulates the name of the current directory within the

CLI structure.

Parameters: name New directory name

Result: 0 Error

ISetProgramDir Sets program directory |

Call: Oldlock = SetProgramDir (lock)

DO -594(A6) Dl

BPTR lock, Oldlock

Function: Sets the value returned by GetProgramDir().

Parameters: lock Directory lock

Result: Oldlock Lock on previous directory.

| SetProgramName Set program name |

Call: success = SetProgramName (name)

DO -570(A6) Dl

BOOL success

APTR name

Function: Changes the program name in the CLI structure.

109

3. Programming with AmigaOS 2.x

Parameters: name Program name

Result: 0 Error

ISetPrompt Set prompt for CLI/ShellI

Call: success = SetPrompt (name)

DO -582(A6) Dl

BOOL success

APTR name

Function: Sets prompt text in the CLI structure.

Parameters: name Prompt string

Result: 0 Error

[SystemTagList Execute command from Shell|

Call: error = SystemTagList (command, tags)

DO -606(A6) Dl D2

LONG error

APTR command

STRUCT Tagltem *tags

Function: Similar to Execute(), but does not read additional

instructions from input FileHandle.

Parameters: command Shell command line

tags Tagltem field for changes.

Result: Return value of command or -1 (error).

I VPrintf Output a formatted string |

Call: count = VPrintf (fmt, argv)

DO -954(A6) Dl D2

LONG count

110

3.1 The Libraries and their Functions

APTR fmt,argv[]

Function: Similar to VFPtrintf, but output occurs after Output().

Parameters: fmt Format string for exec/RawDoFmt().

argv Field containing parameters.

Result: Number of output bytes or -1 (error).

Return values in CLI:

RETURN_OK = 0 /everything okay

RETURN_WARN = 5 /warning

RETURN_ERROR =10 ;error occurred

RETURN_FAIL = 20 /complete failure, nothing accomplished

CU Cancel bits (CONTROL + C/D/E/F)

SIGBREAKB_CTRL_C = 12, SIGBREAKF_CTRL_C = $1000

SIGBREAKB_CTRL_D = 13, SIGBREAKF_CTRL_D = $2000

SIGBREAKB_CTRL_E = 14, SIGBREAKF_CTRL_E = $4000

SIGBREAKB_CTRL_F = 15, SIGBREAKF_CTRL_F = $8000

Readltem() values:

ITEM_EQUAL

ITEM_ERROR

ITEM_NOTHING =

ITEM_UNQUOTED =

ITEM_QUOTED

-2

-1

0

1

2

;" = •• Symbol

;error

;«*N«f M;\ end

;no quotes

;with quotes

Readltem() structure:

Dec Hex STRUCTURE CSource,0

0 $0 APTR CS_Buffer ;buffer

4 $4 LONG CS_Length ;buffer size

8 $8 LONG CS_CurChr /current character

12 $C LABEL CS_SIZEOF

ReadArgs() structure:

Dec Hex STRUCTURE RDArgs,0

0 $0 STRUCT RDA_Source,CS_SIZEOF /source string

12 $C APTR RDA_DAList /PRIVATE

16 $10 APTR RDA_Buffer /buffer (optional)

111

3. Programming with AmigaOS 2.x

20 $14 LONG RDAJBufSiz

24 $18 APTR RDA_ExtHelp

28 $1C LONG RDA_Flags

32 $20 LABEL RDA_SIZEOF

/buffer size

;optional help

;Flags

RDA_Flags values:

RDAB_STDIN = 0, RDAF_STDIN = 1 ;use Stdln

RDAB_NOALLOC = 1, RDAF_NOALLOC =2 ;no extra buffer

RDAB_NOPROMPT = 2, RDAF_NOPROMPT =4 ;no input

MAX_TEMPLATE_ITEMS = 100 ;max. number of arguments (must be divisible by 4!!!)

MAX_MULTIARGS =128 ;max. number of multiple strings

CU structure:

STRUCTURE CommandLinelnterface,0Dec

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

Hex

$0

$4

$8

$c

$10

$14

$18

$1C

$20

$24

$28

$2C

$30

$34

$38

$3C

$40

STRUC

LONG

BSTR

BPTR

LONG

BSTR

LONG

BSTR

BPTR

BPTR

BSTR

LONG

LONG

BPTR

LONG

BPTR

BPTR

LABEL

cli_Result2

cli_SetName

c1i_CommandDir

c1i_ReturnCode

c1i_CommandName

cli_FailLevel

cli_Prompt

c1i_Standardlnput

c1i_CurrentInput

c1i_CommandFi1e

cli_Interactive

c1i_Background

cli_CurrentOutput

cli_DefaultStack

cli_StandardOutput

cli_Module

cli_SIZEOF

System() Tags:

;IoErr() value

;current directory

;command directory

;return value

;program name

;error level

;prompt string

;default input

;current input

;batch filename

;BOOL if terminal

;BOOL if RUN command

;current output

;stack size in Longs

/default output

;program's SegList

SYS_Dummy

SYS_Input

SYS_Output

SYS_Asynch

SYS_UserShell

SYS_CustomShell

SYS Error

TAG_USER+32

SYS_Dummy+1

SYS_Dummy+2

SYS_Dummy+3

SYS_Dummy+4

SYS_Dummy+5

SYS_Dummy+ ?

;set input FileHandle

;set output FileHandle

;close input/output

;not to boot Shell

/specific Shell (name)

/anything else = error

112

3.1 The Libraries and their Functions

7. Files

IChangeMode Change access to lock or FileHandle]

Call: success = ChangeMode (type, object, newmode)

DO -450(A6) Dl D2 D3

BOOL success

ULONG type

BPTR object

ULONG newmode

Function: Changes the access mode for a lock or FileHandle.

Parameters: type Data structure type: CHANGEJFH or

CHANGEJLOCK

object Lock or FileHandle (according to type)

newmode New access mode

Result: 0 Change not allowed

Warning: Invalid values can lead to a system crash.

See also: Lock(), Open()

I Close CloseTiiel

Call: success = Close (file)

DO -3 6(A6) Dl

BOOL success

BPTR file

Function: Close a file opened by the program itself.

Parameters: file BCPL address of the file's FileHandle.

Result: 0 if the file could not be closed, for example, because a

buffered output is still in process.

113

3. Programming with AmigaOS 2.x

See also: OpenQ

IDeleteFile Delete a file|

Call: success = DeleteFile(name)

DO -72(A6) Dl

BOOL success

APTR name

Function: Attempts to delete a file or directory.

Parameters: name String containing file or directory name.

Result: 0 Could not be deleted.

See also: IoErr()

1 ExamineFH Retrieve information on a file)

Call: success = ExamineFH (fh, fib)

DO -390(A6) Dl D2

BOOL success

BPTR fh

STRUCT FilelnfoBlock *fib

Function: Examines a FileHandle and fills out a FilelnfoBlock. Be

careful, because fib_Size can contain invalid values.

Parameters: fh FileHandle

fib Address of a FilelnfoBlock structure.

Result: 0 Error

I FGetC Read characters from a file I

Call: char = FGetC (fh)

DO -306(A6) Dl

LONG char

114

3.1 The Libraries and their Functions

BPTR fh

Function: Reads a byte from the given file (buffered).

Parameters: fh FileHandle

Result: Byte (value 0-255) or -1 if end-of-file or error.

| Flush Clears the buffer used for a buffered I/O |

Call: success = Flush (fh)

DO -360(A6) Dl

BOOL success

BPTR fh

Function: Deletes all buffers for a file. When reading from a file, Seek()

is used to locate the old position.

Parameters: fh FileHandle

Result: 0 Error

| FPutC Output a character |

Call: char = FPutC(fh, char)

DO -312(A6) Dl D2

LONG char

BPTR fh

UBYTE char

Function: Buffered output of an individual character.

Parameters: fh FileHandle

char Output byte

Result: The printed character or EOF in the case of an error.

115

3. Programming with AmigaOS 2.x

[FRead Read data blocks from a file]

Call: count = FRead(fh, buf, blocklen, blocks)

DO -324(A6) Dl D2 D3 D4

LONG count

BPTR fh

APTR buf

ULONG blocklen,blocks

Function: Attempts a buffered read of the given number of blocks

from a file.

Parameters: fh FileHandle to use for buffered I/O.

buf Buffer for writing the blocks that are read.

blocklen Block length

blocks Number of blocks to read.

Result: Number of blocks actually read (EOF or read error aborts

the read operation).

Warning: You must first use SetIoErr() to delete the error code if a

query is necessary.

IFWrite Write data blocks to a file |

Call:

Function:

Parameters:

count = FWrite(fhf buf, blocklen, blocks)

DO -330(A6) Dl D2 D3 D4

LONG count

BPTR fh

APTR buf

ULONG blocklen,blocks

Attempts a buffered write of the given number of data

blocks to a file.

fh FileHandle

116

3.1 The Libraries and their Functions

buf Buffer containing the data to be written.

blocklen Block length

blocks Number of blocks to write.

Result: Number of blocks actually written (aborted in the case of

an error).

Warning: Use SetloErr to delete the error code before using IoErr().

| Islnteractive Is a file a virtual terminal? 1

Call: status = Islnteractive (file)

DO -216(A6) Dl

BOOL status

BPTR file

Function: Checks a file to see if it's a virtual terminal (for example, a

console window).

Parameters: file FileHandle of the file.

Result: 0 Normal file, not a terminal.

I Lock Obtain access to a file or directory |

Call: lock = Lock(name, accessMode)

DO -84(A6) Dl D2

BPTR lock

APTR name

LONG accessMode

Function: Attempts to secure access to a file or directory. This can be

exclusive access (ACCESS_WRITE), which prevents other

programs from accessing the file, or shared access

(ACCESS_READ).

Parameters: name Filename and/or path name

117

3. Programming with AmigaOS 2.x

Result:

accessMode

Access mode

BPTR to a lock structure or 0.

ILockRecord Obtain access to part of a file]

success = LockRecord(fh,offset, length,mode, timeout)

DO -270(A6) Dl D2 D3 D4 D5

ULONG success,offset,length,mode,timeout

BPTR fh

Function: Grants access to part of a file. A specific timeout period can

be set.

Parameters: fh

offset

length

mode

FileHandle for the file.

Start of record

End of record

Access mode:

RECLEXCLUSIVE

Exclusive access

Result:

REC_EXCLUSIVE_IMMED

Exclusive access, ignore

timeout

RECJSHARED Shared access

RECJSHAREDJMMED

Shared access, ignore

timeout

timeout Timeout period in l/50th seconds (0 allowed).

0 Error or access not possible.

ILockKecords Secure access to several parts of a file]

Call: success = LockRecords(record_array, timeout)

DO -276(A6) Dl D2

118

3.1 The Libraries and their Functions

BOOL success

STRUCT RecordLock *record_array

ULONG timeout

Function: This function locks several parts of the file at once. A

specific timeout period can be set.

Parameters: record_array

List of RecordLock structures.

timeout Timeout period (0 allowed)

Result: 0 Error or one or more of the records not free.

| Open Open a file |

Call: file = Open(name, accessMode)

DO -30(A6) Dl D2

BPTR file

APTR name

LONG accessMode

Function: Attempts to open an existing file (MODE_OLDFILE) or

create a new file (MODE_NEWFILE). If

MODE_READWRITE is specified, a file is opened and

created, if it doesn't already exist.

Parameters: name Filename

Result:

accessMode

Access mode

BPTR to a FileHandle structure or 0.

119

3. Programming with AmigaOS 2.x

IQpenFromLock Open file associated with a lock]

Call: fh = OpenFromLock(lock)

DO -378(A6) Dl

BPTR fh,lock

Function: Opens a file associated with a given lock. The access mode

is determined by the lock.

Parameters: lock Lock structure of a file.

Result: FileHandle or 0

| Read Read data from a file |

Call: actualLength = Read (file, buffer, length)

DO -42(A6) Dl D2 D3

LONG actualLength,length

BPTR file

APTR buffer

Function: Read data from a given file to a buffer.

Parameters: file FileHandle

buffer Read buffer

length Number of bytes to read

Result: Number of bytes actually read (0 indicates end-of-file) or -1

(error).

| Rename Rename a file or directory |

Call: success = Rename (oldName, newName)

DO -78(A6) Dl D2

BOOL success

APTR oldName,newName

120

3.1 The Libraries and their Functions

Function: Assigns a new name to a file or directory. If a new path is

also given, the renamed object is moved to the new

directory.

Parameters: oldName Old name

newName New name

Result: 0 Error

| SameLock Compare two locks |

Call: value = SameLock (lockl, Iock2)

DO -420(A6) Dl D2

LONG value

BPTR lockl,lock2

Function: Compare two locks. Returns a value of LOCKJSAME if

the same object is found, LOCKJSAMEJHANDLER for

different objects that belong to the same handler, or

LOCKJDIFFERENT if the handlers are different.

Parameters: lockl,Iock2

The locks to be compared.

Result: See function.

| Seek Change read/write position in a file|

Call: oldPosition = Seek(file, position, mode)

DO -66(A6) Dl D2 D3

LONG oldPosition,position,mode

BPTR file

Function: Seek() sets the read/write position within a file relative to

the start of the file, the current position, or the end of the

file. The old position is returned as the result.

Parameters: file FileHandle for the file.

121

3. Programming with AmigaOS 2.x

position Relative value

mode Start, relative, or end

Result: Old position relative to the start of the file.

I SetComment Set file comments]

Call: success = SetComment (name, comment)

DO -180(A6) Dl D2

BOOL success

APTR name,comment

Function: Sets new comments for the given file.

Parameters: name Filename

comment Comment string (max. 80 characters)

Result: DO 0 in case of error

| SetFileDate Set revision date for a file |

Call: success = SetFileDate (name, date)

DO -396(A6) Dl D2

BOOL success

APTR name

STRUCT Datestamp *date

Function: Sets the revision date for a file or directory, as long as it's

allowed by the filesystem.

Parameters: name Object name

date DateStamp structure with new date.

Result: 0 Error

122

3.1 The Libraries and their Functions

ISetFileSize Set the size of a file |

Call: newsize = SetFileSize(fh, offset, mode)

DO -456(A6) Dl D2 D3

LONG newsize,offset,mode

BPTR fh

Function: Sets the file size for the given file, as long as this is allowed

by the filesystem. The position is specified the same as with

SeekQ.

Parameters: fh FileHandle for the file,

offset Relative value

mode OFFSET_BEGINNING, OFFSET_CURRENT

orOFFSETJEND.

Result: File length or -1 (error).

| SetProtection Set protection status for a file |

Call: success = SetProtection(name, mask)

DO -186 Dl D2

BOOL success

APTR name

LONG mask

Function: Sets the protection status for a file or directory. The status

consists of an OR combination of various flags:

Bit 4: A 1 file unchanged 0 file changed

Bit 3: R 1 read not allowed 0 read allowed

Bit 2: W 1 write not allowed 0 write allowed

Bit 1:El not executable 0 executable

Bit 0: D 1 delete not allowed 0 delete allowed

Parameters: name Filename

mask Protection status

123

3. Programming with AmigaOS 2.x

Result: 0 Error

lUnGetC Returns a byte to the buffer!

Call: value = UnGetC(fhf character)

DO -318(A6) Dl D2

LONG value,character

BPTR fh

Function: Returns a byte to the input buffer. If the value -1 is passed,

the last character read from the buffer is put back.

Parameters: fh FileHandle for buffered I/O.

character Character or -1

Result: Returned character or 0 (error).

|UnLock Remove lock]

Call: unLock(lock)

-90(A6) Dl

BPTR lock

Function: Removes a lock and frees the allocated memory.

Parameters: lock BCPL pointer to a lock structure.

| UnLockRecord Free part of a file|

Call: success = UnLockRecord (fh, of f set, length)

DO -282(A6) Dl D2 D3

BOOL success

BPTR fh

ULONG offset,length

Function: Frees part of a file that was locked with LockRecord().

Parameters: fh FileHandle given with LockRecordQ.

124

3.1 The Libraries and their Functions

offset Start of record

length Length of record

Result: 0 Error

|UnLockRecords Free several parts of a file!

Call: success = UnLockRecords (record_array)

DO -288(A6) Dl

BOOL success

STRUCT RecordLock *record_array

Function: Frees multiple records locked with LockRecords().

Parameters: record_array

List of records to free

Result: 0 Error

| VFPrintf Write formatted string to a file|

Call: count = VFPrintf (fh, fmt, argv)

DO -354(A6) Dl D2 D3

LONG count

BPTR fh

APTR fmt,argv[]

Function: Formats a string and does a buffered write of the result to a

file.

Parameters: fh FileHandle for the file.

fmt Format string for exec/RawDoFmt().

argv Address of data array.

Result: Number of bytes written or -1 (error).

125

3. Programming with AmigaOS 2.x

IVFWritef VFPrintf for BCPL strings]

Call: count = VFWritef(fh, fitit, argv)

DO -348(A6) Dl D2 D3

LONG count

BPTR fh

APTR fmt,argv[]

Functions, Parameters, and Results:

Same as VFPrintf, except the strings are BSTR or BCPL.

I Write Write to a file |

Call: returnedLength = Write(file, buffer, length)

DO -48 (A6) Dl D2 D3

LONG returnedLength,length

BPTR file

APTR buffer

Function: Writes a specified number of bytes to a file.

Parameters: file FileHandle

buffer Address of the bytes.

length Number of bytes to write.

Result: Number of bytes actually written.

Open() modes:

MODE_OLDFILE = 1005 ;open existing file

MODE_NEWFILE = 1006 ;create new file

MODE_READWRITE = 1004 ;open file (1005 (->1006))

FileHandle structure:

Dec Hex STRUCTURE FileHandle,0

0 $0 APTR fh_Link ;Exec message

4 $4 APTR fh_Port /answer port for Packet

8 $8 APTR fhJType ;port for PutMsgO

126

3.1 The Libraries and their Functions

12

16

20

24

24

28

32

36

36

40

44

$c

$10

$14

$18

$18

$1C

$20

$24

$24

$28

$2C

LONG

LONG

LONG

LABEL

LONG

LONG

LONG

LABEL

LONG

LONG

LABEL

fhJBuf

fh_Pos

fh_End

fh_Funcl

fh_Funcs

fh_Func2

fh_Func3

fh_Argl

fh_Args

fh_Arg2

fh_SIZEOF

Points of reference for Seek():

OFFSET_BEGINNING = -1 ;start of file

OFFSET_CURRENT = 0 ;current position

OFFSET_END = 1 ;end of file

OFFSETJBEGINING = OFFSET_BEGINNING

Structure ofLock()t etc.:

Dec Hex STRUCTURE FileLock,0

0

4

8

12

16

$0

$4

$8

$c

$10

BPTR

LONG

LONG

APTR

BPTR

fl_Link ;next Lock

fl_Key ;block number on disk

fl_Access ;access mode

flJTask /Handler port

fl_Volume ;Volume Node (DosList)

20 $14 LABEL fl_SIZEOF

Lock() modes:

SHARED_LOCK = -2 ;shared access

EXCLUSIVE_LOCK = -1 /exclusive access

ACCESS_READ = SHARED_LOCK

ACCESS_WRITE = EXCLUSIVE_LOCK

SameLock() values:

LOCK_SAME = 0 /objects identical

LOCK_SAME_HANDLER = 1 /objects have same Handler

LOCK_DIFFERENT = -1 /completely different Locks

ChangeMode() types:

CHANGE_LOCK = 0 /Lock structure

CHANGE_FH = 1 /FileHandle structure

3. Programming with AmigaOS 2.x

LINKJHARD = 0

LINK_SOFT = 1

MakeLink() values:

LockRecord()/LockRecords() modes:

REC_EXCLUSIVE = 0 /exclusive access

REC_EXCLUSIVE_IMMED = 1 ;exclusive with no waiting

REC_SHARED = 2 /shared access

REC_SHARED_IMMED = 3 /shared with no waiting

LockRecords()/UnLochRecords() structure:

Dec Hex STRUCTURE RecordLock,0

0 $0 BPTR rec_FH ;FileHandle

4 $4 ULONG rec_Offset /start (offset)

8 $8 ULONG rec_Length /record length

12 $C ULONG rec_Mode /Lock type

16 $10 LABEL RecordLock_SIZEOF

8. Strings

| AddPart Add filename to path string |

Call: success = AddPart (dirname, filename, size)

DO -882(A6) Dl D2 D3

BOOL success

APTR dirname

APTR filename

ULONG size

Function: Adds a filename to a path name according to DOS

conventions. The filename may also contain path

information. If the filename is a complete path, then the old

path is replaced.

Parameters: dirname Path name

filename (path +)filename, V or':' allowed

size Size of buffer that contains dirname.

128

3.1 The Libraries and their Functions

Result: 0 Error (buffer too small)

See also: Filepart(), PathPart()

I DateToStr Generate string from DateStamp]

Call: success = DateToStr (datetime)

DO -744(A6) Dl

BOOL success

STRUCT DateTime *datetime

Function: Generates a string for a DateStamp structure according to

the given DateTime structure.

Parameters: datetime Address of a DateTime structure, which must be

initialized as follows:

dat_Stamp Copy of the DateStamp.

dat_Format String format (FORMAT_DOS

dd-mmm-yy, FORMATJNT yy-

mmm-dd, FORMATJJSA mm-

dd-yy or FORMAT_CDN dd-

mm-yy).

dat_Flags DTF_SUBST generates the day

of the week (Monday, Today...).

dat_StrDay Address of the day buffer or 0 if

not used.

dat_StrDate Address of the date buffer or 0

if not used.

datJStrTime Address of the time buffer or 0 if

not used.

Result: 0 DateStamp error

See also: DateStampO, StrToDateQ

129

3. Programming with AmigaOS 2.x

| Fault Generate error message |

Call: success = Fault (code, header, buffer, len)

DO -468 (A6) Dl D2 D3 D4

BOOL success

LONG code,len

APTR header,buffer

Function: Converts an error code into a string for the console

window, printer, or a text file (with line feed). This is

preceded by the given header text. Error messages should

not be more than 80 characters, and headers should not be

more than 60. If a certain code has no message text, the

string "Error code <number>" is used.

Parameters: code Error code from IoErr().

header Header text

buffer Buffer for the complete error message.

len Buffer length

Result: 0 Buffer too small or some other error.

|FGets Read a line from a file|

Call: buffer = FGets(fh, buf, len)

DO -33 6(A6) Dl D2 D3

APTR buffer,buf

BPTR fh

ULONG len

Function: Reads a line from a file into a buffer. One character less

than the length of the buffer can be read, because the last

character in the buffer must always be set to 0. If the entire

line fits in the buffer, the character before the null byte is an

end-of-line code (LF or CR). The I/O is buffered.

Parameters: fh FileHandle

130

3.1 The Libraries and their Functions

buf

len

Buffer address

Buffer length

Result:

| FilePart

Call:

Function:

Parameters.

Result:

See also:

Address of the buffer or 0 if no characters could be read. If

the end of the file is reached before the call, IoErr()=0. If an

error occurs, IoErr()oO.

Extract the filename from a path specification |

fileptr = FilePart(path)

DO -870(A6) Dl

APTR fileptr,path

Returns the start address for the file in a given path

specification.

• path Path string according to DOS conventions.

Start address for the file.

PathNameQ

IFindArg Find a keyword in an argument string |

Call: index = FindArg(template, keyword)

DO -804(A6) Dl D2

LONG index

APTR keyword,template

Function: Returns the argument number for a given keyword.

Parameters: keyword Keyword to search for.

template Argument string

Result: Argument number of the given keyword or -1 if the

keyword was not found.

131

3. Programming with AmigaOS 2.x

Write a string to afilel

Call: error = FPuts(fh, str)

DO -342(A6) Dl D2

LONG error

BPTR fh

APTR str

Function: Buffered write of a string to a file.

Parameters: fh FileHandle

str String ending in 0.

Result: Negative Error

| GetArgStr Retrieves an argument string from CLI |

Call: ptr = GetArgStrO

DO -534(A6)

APTR ptr

Function: Returns the argument address found in the AO register

when the program is started. This is only useful for high

level languages that do not use an argument parser.

Result: Address of the argument string from CLI or 0.

| GetCurrentDirName Retrieve the name of the current directory |

Call: success = GetCurrentDirName (buf, len)

DO -564(A6) Dl D2

BOOL success

APTR buf

LONG len

Function: Gets the name of the current directory from the CLI

structure of its own process.

132

5.7 The Libraries and their Functions

Parameters: buf Buffer for the name.

len Buffer length

Result: 0 No CLI structure or no directory.

IGetProgramName Returns the program's own name)

Call: success = GetProgramName (buf, len)

DO -576(A6) Dl D2

BOOL success

APTR buf

LONG len

Function: Copies the program name from the CLI structure to a

buffer.

Parameters: buf Buffer address

len Buffer length

Result: 0 Buffer too small or CLI structure not found.

1 GetPrompt Retrieve the prompt string for a process |

Call: success = GetPrompt (buf, len)

DO -588(A6) Dl D2

BOOL success

APTR buf

LONG len

Function: Copies the prompt string from the CLI structure to a buffer.

Parameters: buf Buffer address

len Buffer length

Result: 0 Buffer too small or CLI structure not found.

133

3. Programming with AmigaOS 2.x

I MatchPattern Test a string against a pattern |

Call: match = MatchPattern (pat, str)

DO -846 (A6) Dl D2

BOOL match

APTR pat,str

Function: Checks to see if the given string matches a given pattern.

Parameters: pat Pattern string from ParsePattern().

str String to be checked.

Result: 0 String does not match pattern.

| NameFromFH Get the filename from the FileHandle |

Call: success = NameFromFH(fh, buffer, len)

DO -408(A6) Dl D2 D3

BOOL success

BPTR fh

APTR buffer

LONG len

Function: Writes the file and path name of the given FileHandle to a
buffer.

Parameters: fh FileHandle

buffer Buffer for result string.

len Buffer length

Result: 0 Error or buffer too small.

I NameFromLock Retrieve the name and path of a lock]

Call: success = NameFromLock (lock, buffer, len)

DO -402(A6) Dl D2 D3

134

3.1 The Libraries and their Functions

BOOL success

BPTR lock

APTR buffer

LONG len

Function: Writes the name and path of the given lock to a buffer.

Parameters: lock Lock

buffer Buffer

len Buffer length

Result: 0 Error (IoErr()=ERROR_LINE_TOO_LONG)

| ParsePattern Generate token string for MatchPatternQ |

Call: IsWild = ParsePattern(Source,Dest,DestLength)

dO -840(A6) Dl D2 D3

LONG IsWild,DestLength

APTR Source,Dest

Function: Creates a token string for the MatchPattern() function.

Parameters: source Pattern string

dest Buffer for token string.

DestLength

Buffer length (min. 2*Source+2).

Result: 1 string contains wildcards (#, ? etc.)

0 string contains no wildcards.

-1 buffer too small or error.

1 PathPart Retrieve the end of a path specification]

Call: fileptr = PathPart (path)

DO -876(A6) Dl

APTR fileptr,path

3. Programming with AmigaOS 2.x

Function: Returns the address of the end of a path specification.

Parameters: path Filename (with path) according to DOS

standards.

Result: Address of the part of the path that disappears when

another file is selected in a file selection box.

See also: FilePart()

[SpIitName Retrieve part of a path specification|

Ctf//.* newpos = SpIitName (name, separator, buf, oldpos, size)

DO -414(A6) Dl D2 D3 D4 D5

WORD newpos,oldpos

APTR name,bu f

UBYTE separator

LONG size

Function: Copies the next part of a complete file/path name to a

separate buffer.

Parameters: name Filename with path.

separator ASCII code of the separation character.

buf Buffer

oldpos Old position in string.

size Buffer size in bytes.

Result: New start position for the next call (newpos->oldpos) or -1.

j StrToDate Convert a string to a DateStamp [

Call: success = StrToDate (datetime)

. DO -750(A6) Dl

BOOL success

STRUCT DateTime *datetime

136

3.1 The Libraries and their Functions

Function: Fills in a DateStamp structure using the information from a

string.

Parameters: datetime Initialized (!) DateTime structure.

Result: 0 Error

See also: DateToStr(), libraries/datetime.h

IStrToLong Convert a decimal string to a longwordl

Call: characters = StrToLong(string, value)

DO -816(A6) Dl D2

LONG characters

APTR string,value

Function: Converts a string containing a decimal value into a

longword.

Parameters: string Decimal string

value Address of the resulting longword.

Result: Number of decimal places found or -1 (longword is then set

toO).

StrToDate()/DateToStr() structure:

Dec Hex STRUCTURE DateTime,0

0 $0 STRUCT dat_Stamp,ds_SIZEOF ;DateStamp structure

12 $C UBYTE dat_Format ;dat_StrDate format

13 $D UBYTE dat_Flags ;Flags (see below)

14 $E CPTR dat_StrDay ;day of the week string

18 $12 CPTR dat_StrDate ;date string

22 $16 CPTR dat_StrTime ;time string

26 $1A LABEL dat_SIZEOF

LEN_DATSTRING = 16 ;length of a date string

Flags, Bits:

DTB_SUBST = 0, DTF_SUBST = 1 ;create "Today","Tomorrow"...

DTB_FUTURE= 1, DTF_FUTdRE= 2 ;a future day

137

3. Programming with AmigaOS 2.x

Date formats:

FORMAT_DOS = 0 ;dd-mmm-yy DOS format

FORMAT_INT = 1 ;yy-mm-dd international format

FORMAT_USA = 2 ;mm-dd-yy USA format

FORMAT_CDN = 3 ;dd-mm-yy Canadian format

FORMAT_MAX = FORMAT_CDN

9. Time

| CompareDates Compare two DateStampFl

Call: result = CompareDates (datel,date2)

DO -738(A6) Dl D2

LONG result

STRUCT DateStamp *datel

STRUCT DateStamp *date2

Function: Compares the dates given in two DateStamp structures.

Parameters: datel/date2

DateStamp structures

Result: negative: datel later than date2

0: datel equals date2

positive: date2 later than datel

See also: DateStampO

[DateStamp Retrieves the current time|

Call: DateStamp (ds)

-192(A6) Dl

STRUCT DateStamp *ds

Function: Fills the given DateStamp structure with the current time.

Parameters: ds Address of a DateStamp structure.

138

3.1 The Libraries and their Functions

Result: The structure is filled.

[Delay Suspend own process for a certain time period |

Call: Delay (ticks)

-198(A6) Dl

ULONG ticks

Function: Own process is suspended for the given time period.

Parameters: ticks Time period in l/5Oth second.

[WaitForChar Wait for input]

Call: status = WaitForChar (file, timeout)

DO -204(A6) Dl D2

BOOL status

BPTR file

LONG timeout

Function: Waits a specified number of microseconds (1/1000000) to

see if a character can be successfully read from the given

file. This is very important for working with ports and

terminals.

Parameters: file FileHandle for the file.

timeout Time period in microseconds.

Result: 0 No character received during the wait period.

Dec Hex STRUCTURE DateStamp,0

0 $0 LONG ds_Days ;days since Jan. 1, 1978

4 $4 LONG ds_Minute /minutes since midnight

8 $8 LONG ds_Tick /ticks since last minute

12 $C LABEL ds_SIZEOF

TICKS_PER_SECOND = 50 /number of ticks per second

139

3. Programming with AmigaOS 2.x

10. Environment Variables

[DeleteVar Delete local environment variablel

Call: success = DeleteVar(name, flags)

DO -912(A6) Dl D2

BOOL success

APTR name

ULONG flags

Function: Delete a local ENV variable.

Parameters: name String address with variable name (structured

like a filename).

flags Flags for variable type and function.

GWJLOCAL.ONLY

Local variable (default)

GVF_GLOBAL_ONLY

Global variable

Result: 0 Error.

See also: GetVar(), SetVar()

IFindYar Find local variablel

Call: var = FindVar(name, type)

DO -918(A6) Dl D2

STRUCT LocalVar *var

APTR name

> ULONG type

Function: Retrieves a local variable.

Parameters: name Variable name (structured like a path name)

type Variable type

140

3.1 The Libraries and their Functions

Result: LocalVar structure or 0

See also: GetVar(), SetVarQ, DeleteVar(), dos/var.h

IGetVar Retrieve the value of a variable]

Call: len = GetVar(name, buffer, size, flags)

DO -906 (A6) Dl D2 D3 D4

LONG len,size

APTR name,buffer

ULONG flags

Function: Returns the value of an environment variable. If

GVF_BINARY_VAR is not set, the function is interrupted

when an LF character is encountered.

Parameters: name

buffer

size

flags

Result:

Variable name (AmigaDOS path)

Buffer for the variable contents.

Buffer size

Variable type

GW_GLOBAL_ONLY

Global ENV variable

GVF_LOCAL_ONLY

Process-specific ENV

variable

GWJBENfARY_VAR

With control character

Total length of the variable (may be different from the

buffer contents if the buffer terminates with 0) or -1 in the

case of an error (variable not found).

See also: SetVarQ, DeleteVarQ, dos/var.h

141

3. Programming with AmigaOS 2.x

ISetvar Create or set the value of a variable|

Call: success = SetVar(name, buffer, size, flags)

DO -900 (A6) Dl D2 D3 D4

BOOL success

APTR name,buffer

LONG size

ULONG flags

Function: Sets a local or environment variable. ASCII strings are only

recommended.

Parameters: name Filename of the variable.

buffer Contents of variable.

size Variable size (-1 = string ending in 0)

flags Variable type

Result: 0 Error

See also: GetVar(), DeleteVar(), dos/var.h

Structure ofprJLocalVars list:

Dec Hex STRUCTURE LocalVar,0

0 $0 STRUCT lv_Node,LN_SIZE ;node

14 $E UWORD lv_Flags ;type

16 $10 APTR lv_Value /buffer

20 $14 ULONG lv_Len /buffer length

24 $18 LABEL LocalVar_SIZEOF

LNJYPE bits in Ivjfode:

LV_VAR =0 ;a variable

LV_ALIAS = 1 ;an ALIAS definition

LVB_IGNORE = 7, LVF_IGNORE = $80

142

3.1 The Libraries and their Functions

Values for variable functions:

GVB_GLOBAL_ONLY = 8, GVF_GLOBAL_ONLY = $100

GVB_LOCAL_ONLY = 9, GVF_LOCAL_ONLY = $200

GVB_BINARY_VAR = 10, GVF_BINARY_VAR = $400

11. Errors and Requesters

|ErrorReport Display Retry/Cancel error requester!

Call: status = ErrorReport (code, type, argl, device)

DO -480 (A6) Dl D2 D3 A0

BOOL status

LONG code,type

ULONG argl

STRUCT MsgPort *device

Function: Displays the appropriate error requester.

Parameters: code Error code (ERROR...., ABORT_...)

type Requester type:

REPORT_LOCK argl is a lock (BPTR).

REPORTJH argl is a FileHandle

(BPTR).

REPORT_VOLUME

argl is a volume node

(CPTR).

argl Parameter (according to type)

device (optional) HandlerPort address (only needed

for REPORT_LOCK with argl=0)

Result: DOSJTRUE 'Cancel'or error

0 'Retry' or DISKINSERTED (for certain errors)

143

3. Programming with AmigaOS 2.x

|IoErr Retrieve additional system error information]

Call: error = loErr ()

DO -132(A6)

LONG error

Function: For functions that return a value of 0 when errors occur.

IoErr() is used to retrieve more information on the cause of

the error. Other functions use IoErrO to return a second

result to accommodate programming in C.

Result: Error code or second result.

See also: Open(), DoPkt()

IPrintFault Send error message to the output channel!

Call: success = PrintFault(code, header)

DO -474(A6) Dl D2

BOOL success

LONG code

APTR header

Function: The given header string is combined with the error message

associated with the given error code and sent in a buffered

output to the default output channel.

Parameters: code Error code (see IoErrO)

header Header text to precede the error message text.

Result: 0 Error

|Put$tr Send a string to the default output channel!

Call: error = PutStr(str)

DO -948(A6) Dl

LONG error

APTR str

144

3.1 The Libraries and their Functions

Function: Buffered output of a given string to the default output

channel.

Parameters: str Output string

Result: 0 in the case of an error.

| SetloErr Set error code |

Call: oldcode = SetloErr (code)

DO -462(A6) Dl

LONG code

Function: Sets a new value for the result of the IoErr() function

(pr_Result2).

Parameters: code Error code for IoErr().

Result: oldcode Previous value of pr_Result2.

IoErr() error codes.'

ERROR_NO_FREE_STORE = 103 ;not enough storage space

ERROR_TASK_TABLE_FULL = 105 ;too many Tasks

ERROR_BAD_TEMPLATE = 114 ;command format error

ERROR_BAD_NUMBER = 115 /invalid value

ERROR_REQUIRED_ARG_MISSING = 116 ;missing a required argument

ERROR_KEY_NEEDS_ARG =117 /keyword with no argument

ERROR_TOO_MANY_ARGS = 118 ;too many arguments

ERROR_UNMATCHED_QUOTES = 119 /quotes missing

ERROR_LINE_TOO_LONG = 120 ;line too long

ERROR_FILE_NOT_OBJECT = 121 ;not a normal file

ERROR_INVALID_RESIDENT_LIBRARY= 122 /error in header Hunk

ERROR_NO_DEFAULT_DIR = 201 /no default directory

ERROR_OBJECT_IN_USE = 202 /object being used

ERROR_OBJECT_EXISTS =203 /object already exists

ERROR_DIR_NOT_FOUND =2 04 /unknown directory

ERROR_OBJECT_NOT_FOUND =205 /object could not be found

ERROR_BAD_STREAM_NAME = 20 6 /invalid name

ERROR_OBJECT__TOO_LARGE =207 /object is too big

ERROR_ACTION_NOT_KNOWN = 209 /unknown Packet

ERROR_INVALID_COMPONENT_NAME = 210 /invalid component name

ERROR_INVALID_LOCK = 211 /invalid Lock structure

ERROR_OBJECT_WRONG_TYPE =212 /wrong object type

145

3. Programming with AmigaOS 2.x

ERROR_DISK_NOT_VALIDATED =213

ERROR_DISK_WRITE_PROTECTED =214

ERROR_RENAME_ACROSS_DEVICES = 215

ERROR_DIRECTORY_NOT_EMPTY =216

ERROR_TOO_MANY_LEVELS =217

ERROR_DEVICE_NOT_MOUNTED =218

ERROR_SEEK_ERROR =219

ERROR_COMMENT_TOO_BIG =220

ERROR_DISK_FULL =221

ERROR_DELETE_PROTECTED = 222

ERROR_WRITE_PROTECTED =223

ERROR_READ_PROTECTED =224

ERROR_NOT_A_DOS_DISK =225

ERROR_NO_DISK =226

ERROR_NO_MORE_ENTRIES =232

ERROR_IS_SOFT_LINK =23 3

ERROR_OBJECT_LINKED =234

ERROR_BAD_HUNK =23 5

ERROR_NOT_IMPLEMENTED =23 6

ERROR_RECORD_NOT_LOCKED =240

ERROR_LOCK_COLLISION =241

ERROR_LOCK_TIMEOUT =242

ERROR_UNLOCK_ERROR =243

ERROR_BUFFER_OVERFLOW =3 03

ERROR_BREAK = 3 04

ERROR_NOT_EXECUTABLE = 3 05

;disk is not validated

;disk is write-protected

/rename error

/directory is not empty

;too many levels

/unknown device

/Seek() error

;comment too long

/disk is full

/delete protected

/write protected

/read protected

/not a DOS disk

/no disk found

/end was reached

/software link

/object linked

/invalid Hunk type

/not implemented

/(see LockRecord())

/Lock collision

/Lock timeout period expired

/Unlock error

/buffer too small

/break character

/not executable

FAULT_MAX = 82 /max. length of an error string

Error message structure:

Dec Hex STRUCTURE ErrorString,0

0 $0 APTR estr_Nums

4 $4 APTR estr_Strings

8 $8 LABEL ErrorString_SIZEOF

ErrorReport() types:

REPORT_STREAM

REPORT_TASK

REPORT_LOCK

REPORT_VOLUME

REPORT_INSERT "please insert volume.

146

3.1 The Libraries and their Functions

ErrorReportO error codes:

ABORT_DISK_ERROR = 296 ;read/write error

ABORT_BUSY = 288 ;"You MUST replace..."

DOS boolean values:

DOSTRUE =

DOSFALSE =

-1 ;true

0 ;false

General values:

8 8 bits = 1 byteBITSPERBYTE =

BYTESPERLONG = 4/4 bytes = 1 long

BITSPERLONG = 32 ;32 bits = 1 long

MAXINT = $7FFFFFFF ;maximum LONG value

MININT = $80000000 /minimum LONG value

Basis structure:

Dec

0

34

38

42

46

50

54

58

62

66

Dec

0

4

8

20

24

28

32

44

48

52

56

Hex

$0

$22

$26

$2A

$2E

$32

$36

$3A

$3E

$42

Hex

$0

$4

$8

$14

$18

$1C

$20

$2C

$30

$34

$38

STRUCTURE DosLibrary,0

STRUCT

APTR

APTR

LONG

LONG

LONG

APTR

APTR

APTR

LABEL

dl_lib,LIB_SIZE

dl_Root

dl_GV

dl_A2

dl_A5

dl_A6

dl_Errors

dl_TimeReq

disutilityBase

dl_SIZEOF

STRUCTURE RootNode,0

BPTR

BPTR

STRUCT

LONG

BPTR

BPTR

STRUCT

APTR

BPTR

LONG

LABEL

rn_TaskArray

/Library node

;RootNode

;BCPL global vector

;PRIVATE

;PRIVATE

;PRIVATE

;array with error messages

/PRIVATE: timer request

/PRIVATE: utility library

/CLI Process Array [0]=number

rn_ConsoleSegment ;CLI SegList

rn_Time,ds_SIZEOF /current time

rn_RestartSeg

rn_Info

/D\disk validator SegList

/Info structure

rn_FileHandlerSegment ;FileHandler

rn_CliList,MLH_SIZE ;CLI processes

rn__BootProc

rn_ShellSegment

rn_Flags

rn_SIZEOF

/PRIVATE: pr_MsgPort

/Shell SegList

/Flags

RNB_WILDSTAR = 24, RNF_WILDSTAR = $1000000

147

3. Programming with AmigaOS 2.x

Dec Hex STRUCTURE CliProcList,0

0 $0 STRUCT cpl_Node/MLN_SIZE ;for linking

8 $8 LONG cpl_First ;first CLI number

12 $C APTR cpl_Array ;CLI Process Array

16 $10 LABEL cpl_SIZEOF

Dec

0

4

8

12

16

20

66

112

158

Hex

$0

$4

$8

$c

$10

$14

$42

$70

$9E

STRUCTURE Doslnfo,0

BPTR

BPTR

BPTR

BPTR

APTR

STRUCT

STRUCT

STRUCT

LABEL

di_McName

di_DevInfo

di_Devices

di_Handlers

di_NetHand

di_DevLock, SS

di_EntryLock,

di_DeleteLock,

di_SIZEOF

_SIZE

SS_SIZE

SS_SIZE

;network

;list of

;devices

/Handlers

;current

;PRIVATE!

;PRIVATE!

;PRIVATE!

name of

logical

network

i i

i i

> !

device

devices

Handler

Example

The volume of these new functions is overwhelming. It's difficult to

update existing programs by replacing the old functions with new ones.

Assembler programmers should prepare for some big changes to their

programs, because the query of arguments has been simplified and

automated. This is a completely different approach to programming. As a

result, programming that conforms to the operating system is easier to

achieve in Assembler than in higher level languages.

Since the main routines of all CLI commands are now located in the

operating system, extremely short programs are possible. As an

introduction to OS 2 programming, it is recommended to try a few CLI

commands first, and then gradually work up to larger programs. A

disadvantage with Assembler used to be the complicated argument

queries; this has been eliminated with OS 2. We will use a simple CLI

command to help you through the programming procedure. For this

exercise we want to emphasize the basic structure and argument queries,

so we will construct a command that is executed using a new DOS

function: AddBuffers.

We are not referring to the long, slow CLI command (written in C) of the

same name. Instead, we are creating a completely new command that has

the same function. We will also have to mention some of the dangers of

using your own custom routines.

148

3.1 The Libraries and their Functions

The AddBuffers functions receives a device name and a delta value,

which may also be negative. This number represents the number of

buffers to be added. The function result will be the current number of

available buffers. This command will be able to simply query the number

of available buffers or change it by passing a delta value. The first

parameter is the device name, and this parameter is required with the

function call. If a second parameter is given, it must be a number. This

number will be taken as the delta value. We will call our new command

'Buffer*. The following is the program header:

** CLI command structure under OS 2 (v37) **

** example of a new AddBuffers command **

** •*

** Call: Buffer DRIVE/A,BUFFERS/N **

** DRIVE - drive letter **

** BUFFERS - optional, number of buffers to add (+)**

** or subtract (-) **

**_

** written (w) 1991 by Stefan Maelger **

INCLUDE_VERSION =36

RETURN_OKAY = 0

RETURN_FAIL =20

ERROR_INVALID_RESIDENT_LIBRARY = 122

ThisTask =276

pr_Result2 = 148

_LVOOpenLibrary = -552

_LVOCloseLibrary = -414

_LVOIoErr = -132

_LVOPrintFault = -474

_LVOAddBuffers = -732

_LVOReadArgs = -798

_LVOFreeArgs = -858

_LVOVPrintf = -954

***********************<Part-2>***************************

149

3. Programming with AmigaOS 2x

Here we have defined the purpose of the program. All of the required

system values have been set and the Include files have been linked. Our

program should be re-entrable, meaning it can be kept in memory via

RESIDENT after setting the PURE flag. In order to do this, we must save

all registers from number 2 on up before we use them. The longword at

address 4 contains the address of the operating system base structure.

This can vary, depending on the operating system and the available

memory. This same address is also the base address of the main library

EXEC, which can then be used to get the base address of the DOS

library.

SECTION

_Start

movem. 1

*•

** Open 1

* *

movea.1

lea

moveq

jsr

moveq

move.1

beq.s

Program,CODE

d2-d6/a6,-(a7)

the DOS-Library

$4.w,a6

_DOSName(pc),al

#INCLUDE_VERSION,dO

_LVOOpenLibrary(a6)

#RETURN_FAIL,d4

dO,d5

_NotDOS

;save registers

;load ExecBase

;Library name

;OS 2, v36 and up

;OpenLibrary(al,dO)

;error for DOS

;save DosBase

;=> if DosBase=0

All of the functions required for this command are available, starting with

version 36 (first version of OS 2). This version number must be specified.

The D4 register saves the value returned from CLI, which we immediately

set to an error. This is only changed to 'no error1 after successful

initialization. This saves us a lot of writing. If DOS could not be opened,

which should only occur with older OS versions, then we branch to the

appropriate error handling routine.

Some of you will have noticed that we made no efforts to save the value

returned from CLI (A0=ArgBuf, D0=ArgLen). With OS 2, this is no

longer necessary. We can get the arguments with the DOS function

ReadArgs, which handles all the work of passing arguments from the

user.

150

3.1 The Libraries and their Functions

<Part-3>

** Get CLI arguments

**

exg d5,a6 ;Exec<->Dos

; Store argument field in the stack

clr.l

clr.l

clr.l

clr.l

; Query-

lea

move.1

move.1

moveq

jsr

move.1

bne.s

-(a7)

-(a7)

-(a7)

-(a7)

arguments

..Template (pc) , aO

aO,dl

a7,d2

#0,d3

_LVOReadArgs(a6)

dO,d6

_parseArgs

;Dummy (size divisible by 16!

;Dummy (size divisible by 161

;Arg[2]

;Arg[l]

;argument description

;to dl for call

/argument field to d2

;no RDArgs structure

;ReadArgs(dl, 62,d3)

;save RDArgs structure

;if RDArgsoO (okay)

ReadArgs expects a string ending with a null byte. This string describes

all of the arguments involved. In it, each argument name is given

followed by the argument type. The description of each argument is

separated by a comma. In our case, this string will contain

fDRIVE/A,BUFFERS/Nf. Since we have described two arguments in the

string, we need at least two longwords in the argument field to pass

them. In order to avoid a system crash, you should always make the field

size in bytes divisible by 16. There's no need to get extra memory

because there is sufficient space in the stack for four longwords. A value

of 0 is passed as the last parameter. An RDArgs structure obtained with

ReadArgs would be passed to this location, but is not necessary in our

case.

WARNING: The argument field must be filled with null bytes before the

call.

The returned RDArgs structure is saved because this must be freed later.

We test the result for errors or for user interrupt. If everything is okay, we

continue to evaluate the arguments; otherwise an error handling routine

151

3. Programming with AmigaOS 2.x

is needed. Normally, CLI commands report the cause of an error using a

readable message. This is handled by the PrintFault function, which uses

the result of IoErr as a parameter.

;; ReadArgs error: set return address

7

pea _FreeStack(pc) ;for following routine

**

** Subroutine

** Get DOS error and output cause as message text

_Zerror

jsr

move.1

moveq

jmp

_LV0IoErr(a6)

dO,dl

#0fd2

_LVOPrintFault(a6)

;IoErr()

;error code to dl

;no header text

;->PrintFault(dl,d2)

In the 'Zerror' routine, we assume that the DosBase is stored in A6 and

the D2 register can be changed at any time. Therefore, we don't need to

save any of the registers and can jump to the PrintFault routine with a

JMP command. This corresponds to a JSR followed by an RTS. This part

of the program is structured as a subroutine so that it doesn't have to be

repeated for every error. In the case of a ReadArgs error, we jump

directly into this routine. Therefore, we must first store a return address

on the stack with PEA.

Now we come to the part of the program where the arguments are

evaluated.

WARNING: Freeing RDArgs is forbidden at this point, since this could

cause the entries of the argument field to point to undefined memory

blocks. As long as we are working with the argument field, RDArgs must

not be manipulated.

***********************<Part-5>*****************

**

** Evaluate arguments

**

_parseArgs

moveq #RETURN_0K,d4 ;save return code

152

3.1 The Libraries and their Functions

; test if two arguments were given

move.l 4(a7)fd0

beq.s _AvailBuffer

7

; execute 'Buffers xxx yyy1

movea.1 dO,aO

move.l (a7),dl

move.l (aO),d2

jsr _LVOAddBuffers(a6)

tst.l dO

bne.s _AvailBuffer

; Error handling for RDArgs

7

_OutputError

bsr.s _Zerror

bra.s _RDArgsFree

7get Arg[2] (buffer)

;if Arg[2]=0

command

7Arg[2] is address of value!

;Arg[l] to dl (DRIVE)

7get value from address

7AddBuffers(dl,d2)

7 test result (error=0)

;i f no error

structure

7 output message

7 FreeArgs...

Once the initialization is complete, we can be sure that no serious errors

have occurred. Therefore, the return value (which was stored in D4) can

be set to 'no error'. Next, we check to see if the number of buffers must be

changed before we retrieve the number. The first argument is the address

of the drive name, which can be placed directly to Dl. Since this

argument is required (/A), we don't have to check for its presence.

WARNING: To distinguish between a value of 0 and a missing argument,

numerical values (/N) require the address of a longword in the argument

field rather than the value itself. The longword then contains the actual

parameter value.

This address is moved to a data register (DO). If the parameter is not

present, the Z flag would have been set. Then the address is moved to an

address register (AO) in order to obtain the actual value relative to the

address register (D2).

If all of this is successful or if the buffer count was not asked to be

changed, then the number of buffers are displayed. Otherwise, an error

message is output and we jump to free RDArgs.

153

3. Programming with AmigaOS 2.x

; Output number of available

_AvailBuffer

move.1

moveq

jsr

move.1

bmi.s

beq. s

; Format

7

lea

move.1

move.1

jsr

(a7),dl

#0,d2

_LVOAddBuffers(a6)

dO,4(a7)

_OutputError

_RDArgsFree

and output string

_FormatString(pc), aO

aO,dl

a7,d2

_LVOVPrintf(a6)

6>***************************

buffers

;Arg[l] to dl (DRIVE)

;no change

;AddBuffers(dl,d2)

;Arg[2]=Buffers

;if Buffers=-1

;FreeArgs...

;format string

;to dl for call

;field with arguments

;VPrintf(dl,d2)

We go to 'AvailBuffer' if no change was made to the buffer count or after

the buffer count has been changed. We only need the drive name for

AddBuffers, since the change in indicated by 0. The result is stored as the

second argument in our argument field. In case of an error, a message is

displayed or the program is ended. VPrintf is used to output a string to

CLI. The control codes of this string have been replaced by the entries of

the field we want to pass. This field is simply our argument field; the

second entry of which we have changed to conform to our format string.

Now we still have to restore the system changes that were made when

the program was started. The first thing to do is free RDArgs with

FreeArgs. Then we restore the stack, which contains our longword field,

and close the DOS library.

<Part-7>

** Free RDArgs structure

**

_RDArgsFree

move.l d6,dl ;saved RDArgs

jsr _LVOFreeArgs(a6) ;FreeArgs(dl)

; Restore stack

154

3.1 The Libraries and their Functions

_FreeStack

addq.l #8,a7

addq.l #8,a7

**

** Close DOS library

**

movea.l a6,al

movea.l d5,a6

/restore a7

;(all 16 bytes)

;DosBase to al

;load ExecBase

j sr _LVOCloseLibrary(a6) ;CloseLibrary(al)

bra.s _Programend ;->end program

The error code that describes the error of a program ended with

RETURNJFADL is entered in the process structure for the program. Since

every process begins with a task structure, we can access this structure

via ExecBase, which always has a pointer to the currently running task.

In the following section, which is used in the case of an OpenLibrary

error, the error cause is sent to CLI. Then the program is ended. The

return value is placed in DO and the registers are restored. After this are

the strings; you no longer have to worry about even or odd addresses

since no more code follows.

<Part-8>

** Error opening DOS library:

** Send error cause to DOS

_NotDOS

moveq #ERROR_INVALID_RESIDENT_LIBRARY,dO ;DOS error code

movea.l ThisTask(a6),aO ;Process structure for our program

move.l d0fpr_Result2(a0) ;enter error cause
**

** End of program

**

_Programend

move.1 d4,dO

movem.l (a7)+,d2-d6/a6

rts

*•

** Strings

**

_DOSName

_Template

;return code for CLI

/restore registers

;return

dc.b 'dos.library',0 ;library name

dc.b 'DRIVE/A,BUFFERS/N',0 ;for ReadArgs

155

3. Programming with AmigaOS 2.x

_FormatString dc.b 'Drive %s has %ld buffers',10#0

When you combine the individual pieces of this program, you will see

that things are now much simpler than they once were. Once assembled,

a program such as this is less than a half a block long. Each program

requires at least a FileHeader block in addition to this. So, you could

store up to 439 programs of this type on a normal diskette.

In order to be able to use all mounted devices that may contain files, you

first must obtain information about these 'Drives'. All such devices are

included as DosEntries in the DosList. Since this list is constantly

updated, it used to be necessary to turn off multitasking before searching

for a certain entry. Now, you can obtain access privileges with

LockDosList in order to prevent an update to the list while you are using

it. Let's take a look at how OS 2 retrieves information from this list:

** Retrieve info on all FileSystem devices **

** **

** Input: A6 = ExecBase **

** A5 = DosBase **

** Output: DO = simple linked list of the following **

** structures, which can be freed **

** with exec/FreeVec: **

STRUCTURE FileSysDev,0

APTR fsd_Next ;next structure

STRUCT fsd.InfoData^d^SIZEOF ; InfoData structure

STRUCT fsd.Name^e ;name buffer

LABEL fsd_SIZEOF /structure size

* Register contents in the routine:

*

* a6,a5 ExecBase and DosBase (these are often confused)

* a4 DosList structure

* a3 InfoData structure

* a2 last FileSysDev structure

* aO,al continuously changed

* d3

* d6 arg4 for DosPacket: 0

* d5 arg3 for DosPacket: 0

156

3.1 The Libraries and their Functions

d4 arg2 for DosPacket: 0

d3 argl for DosPacket: BPTR to InfoData structure

dO-d2 continuously changed

GetFSDevs

moveq

movem.

movea.

moveq

moveq

moveq

1

1

#0fd0

dO/d2-d6/a2-a4,

a7,a2

#0,d4

#0,d5

#0,d6

-(a7)

InfoData = AllocVec (id_SIZEOF,MEMF_PUBLIC)

moveq

moveq

jsr

tst.l

beq.s

movea.1

asr.l

move.1

exg

#id_SIZEOF,dO

#MEMF_PUBLIC,dl

_LV0AllocVec(a6)

dO

.Error

dO,a3

#2,dO

dO,d3

a5, a6

; dlist = LockDosList(LDF_DEVICES!LDF_READ)

moveq #LDF_DEVICES!LDF_READ,dl

jsr _LVOLockDosList(a6)

movea.l dO,a4

.Loop

; dlist = NextDosEntry(dlist,LDF_DEVICES!LDF_READ)

move.1 a4, dl

moveq #LDF_DEVICES!LDFJREAD,d2

jsr _LVONextDosEntry(a6)

tst.l dO

beq.s .NoMoreEntries

movea.1 dO,a4

; resl = DoPkt(dolJTask,ACTIONJDISK_INFO,InfoData>>2,0,0,0)

move.1

beq.s

moveq

jsr

tst.l

dol__Task(a4) ,

.Loop

#ACTION_DISK_

_LVODoPkt(a6)

dO

dl

.INFO/d2

157

3. Programming with AmigaOS 2.x

beq.s .Loop

; FileSysDev = AllocVec(fsd_SIZEOF,MEMF_CLEAR!MEMF_PUBLIC)

moveq

move.1

exg

jsr

exg

move.1

beq.s

movea.1

lea

movea.1

moveq

CopyID

move.1

dbra

movea.1

adda.1

adda.1

move.b

moveq

#fsd_SIZEOF,dO

#MEMF_CLEAR!MEMF_PUBLIC,dl

a5, a6

_LV0AllocVec(a6)

a5, a6

dO,(a2)

.NoMoreEntries

dO,a2

fsd_InfoData(a2),al

a3,aO

#8,dO

(aO)+,(al)+

dO,.CopyID

dol_Name(a4), aO

aO, aO

aO,aO

(aO)+,dO

#34,dl

CopyBStr

move.b

subq.b

dble

move.b

bra.s

(aO)+,(al)+

#l,dO

dl,.CopyBStr

#':',(al)

.Loop

.NoMoreEntries

; UnLockDosList(LDF_DEVICES!LDF_READ)

moveq #LDF_DEVICES!LDF_READ,dl

jsr _LVOUnLockDosList(a6)

exg a5,a6

; FreeVec(InfoData)

movea.1 a3,al

jsr _LV0FreeVec(a6)

.Error

move.l (a7)+,dO

movem.l (a7)+,d2-d6/a2-a4

rts

Notice that the drive names are used here without the colon.

158

3.1 The Libraries and their Functions

About the program flow:

1. Get memory for an InfoData structure.

The memory block may not be moved, it must be allocated as

PUBLIC. The length and contents do not matter. The size must

correspond to that of an InfoData structure. We use the new Exec

function AllocVec() here, which stores the amount of memory. If a

value of 0 is returned, the memory could not be allocated and we

jump to step 6.

Note: The error cause can be output with PrintFault(IoErr(),0).

2. Obtain access to DosList (if necessary, include LDFJVOLUMES

and/or LDF_ASSIGNS).

WARNING 1: Don't forget LDFJIEAD.

WARNING 2: The UnLockDosList function must be called with the

same value.

WARNING 3: With a reserved DosList, do not call functions that

must change the DosList.

WARNING 4: The returned value is not a DosList structure that can

be processed.

3. Loop

3a. Get next DosList structure of the desired type. To do this, either the

last DosList structure or the value returned from LockDosList is

passed as the DosList structure. If a value of 0 is returned, then no

more entries of the requested type are available and we jump to step

4.

3b. The dol Task entry contains the address of the MsgPort of the

FileHandler process in question (pr_MsgPort). If a value of 0 is

found, then this is not a data storage device and we jump to step 3.

3c. We can get the desired information from the FileHandler. In order to

do this, we must first create a StandardPacket structure, load it with

the proper information, send it to the MsgPort of the FileHandler,

and wait for an answer. The new DoPkt functions handle this for a

simple StandardPacket. dolJTask, which is the desired action

(ACTIONJDISKJNFO), and a BPTR (address/4) to our InfoData

structure, which is the only packet parameter, are passed to the

DoPkt function. If the handler does not understand our command,

then we are not dealing with a data storage device, so we jump to

step 3.

159

3. Programming with AmigaOS 2.x

3d. We use AllocVec() to reserve enough memory to hold the drive

name, the complete InfoData structure, and pointers for linking the

memory blocks. If this is unsuccessful, we jump to step 4.

3e. This memory block is linked to the last memory block allocated in

this way. We copy the drive name and the InfoData structure. Since

DOS does not use colons with drive names, we add it to complete

the string. Then we jump back to the start of the loop (step 3).

4. The DosList is set free.

WARNING: You must give the same value used with LockDosList.

5. The InfoData structure is set free. The FreeVec() function requires

only the start address of its memory block.

6. End the program and return the list of linked memory blocks, that

must be set free, with FreeVec():

. loop

movea.l dO,al ;first structure

movea.1 (al),a2

jsr _LV0FreeVec(a6)

move.1 a2,dO

bne.s .loop

160

3.1 The Libraries and their Functions

3.1.5 The Exec Library

Exec is the base library of the operating system. It manages all other

libraries, devices, resources, interrupts, programs, and the system memory.

Exec is often called fSys\ so you may find ExecBase and SysBase used

interchangeably. The routines for library management are also integrated

into Exec. The base address of the Exec library is stored in the longword

at $4. This address must be loaded to the A6 register for every function

call.

Exec Library Functions

1. System Module

ColdReboot

FindResident

InitCode

InitResident

InitStruct

MakeFunctions

MakeLibrary

SumKickData

2. Interrupts

AddlntServer

Cause

Disable

Enable

Forbid

GetCC

Permit

RemlntServer

SetlntVector

SetSR

Superstate

Supervisor

UserState

3. Memory Management

AddMemList

AllocAbs

Allocate

AllocEntry

AllocMem

AllocVec

AvailMem

CopyMem

CopyMemQuick

Deallocate

FreeEntry

FreeMem

FreeVec

TypeOfMem

4. Structure Management

AddHead

AddTail

Enqueue

FindName

Insert

RemHead

Remove

RemTail

161

3. Programming with AmigaOS 2.x

5. Programs

AddTask

AllocSignal

AllocTrap

CacheClearE

CacheClearU

CacheControl

FindTask

FreeSignal

FreeTrap

RemTask

SetExcept

SetSignal

SetTaskPri

Signal

Wait

6. Communications

AddPort

Alert

CreateMsgPort

Debug

DeleteMsgPort

FindPort

GetMsg

PutMsg

RawDoFmt

RemPort

ReplyMsg

WaitPort

7. Libraries

AddLibrary

CloseLibrary

OldOpenLibrary

OpenLibrary

RemLibrary

SetFunction

SumLibrary

8. Devices

AbortIO

AddDevice

ChecklO

CloseDevice

CreatelORequest

DeletelORequest

DoIO

OpenDevice

RemDevice

SendIO

WaitIO

9. Resources

AddResource

OpenResource

RemResource

10. Semaphores

AddSemaphore

AttemptSemaphore

FindSemaphore

InitSemaphore

ObtainSemaphore

ObtainSemaphoreList

ObtainSemaphoreShar

Procure

ReleaseSemaphore

ReleaseSemaphoreList

RemSemaphore

Vacate

162

3.1 The Libraries and their Functions

Description of Functions

1. System Module

| ColdReboot Cold system reboot!

Call: ColdReboot ()

-726(A6)

Function: Resets the Amiga and all connected devices. This function

corresponds to pressing the flctnl -Amiga-Amiga) keys

simultaneously.

| FindResident Find a system module |

Call: resident = FindResident (name)

DO -96(A6) Al

STRUCT Resident ^resident

APTR name

Function: Looks for a resident tag for the given name.

Parameters: name Address of the name (RT_NAME).

Result: Address of the resident structure or 0.

|InitCode Initialize resident code module]

Call: initCode(startClass, version)

-72(A6) DO Dl

Function: Initializes all resident modules of the given type.

RTF_AFTERDOS modules should have a priority of less

than -100. Modules without a startClass value should have

apriority of-120.

Parameters: startClass Hags for module type: RTF_COLDSTART,

RTFJSINGLETASK or RTF_AFTERDOS.

version Version number

163

3. Programming with AmigaOS 2.x

llnitResident Initialize resident module |

Call: initResident (resident, segList)

-102(A6) Al Dl

STRUCT Resident ^resident

ULONG segList

Function: Initializes a ROMTag. Normally jumps to the function

stored in RTJNIT (A6=ExecBase, AO=segList, D0=0).

However, if RTF_AUTOINIT is set, then RTJNIT points to

four consecutive longwords for calling MakeLibrary().

These longwords contain the size of the base structure,

table of library functions, table for InitStruct(), and the

RTJNIT function).

[InitStract Initialize a data structure |

Call: InitStruct (initTable, memory, size)

-78(A6) Al A2 DO

STRUCT InitStruct *initTable

APTR memory

ULONG size

Function: Deletes a data structure and initializes it with the values in

the given table. The table can be created with the

MACROs from "exec/initializers.i".

Parameters: initTable Table containing structure data (must end in 0).

memory Address (even) of the data structure.

size Structure size (even count of bytes) (0=do not

delete first)

I Maker unctions Generate library vector table]

tableSize = MakeFunctions (target, functionArray, funcDispBase)

DO -90(A6) A0 Al A2

ULONG tableSize

APTR target,functionArray,funcDispBase

164

3.1 The Libraries and their Functions

Function: Function for MakeLibrary(). Used to create a vector table

(negative base offsets).

Parameters: target Base address of library/device.

functionArray

Table with function addresses (ending in -1) or

a table beginning with the Word -1 containing

relative 16 bit offsets (ending in -1).

funcDispBase

Address to be added to the relative 16 bit

values, or 0.

Result: tableSize Vector table size (for LIB_NEGSIZE)

IMakeLibrary Create a library |

Call: library = MakeLibrary(vectors, structure, init, dSize, segList)

DO -84(A6) A0 Al A2 DO Dl

STRUCT Library *library

APTR vectors,init

STRUCT InitStruct *structure

ULONG dSize

BPTR segList

Function: Initializes a library structure.

Parameters: vectors Function addresses for MakeFunctions().

structure Data for InitStruct() or 0.

init Library RTJNTT routine or 0.

dSize Size of base structure.

segList Segment list (see dos/LoadSeg())

Result: Library base address or 0.

165

3. Programming with AmigaOS 2.x

ISumKickData Calculate check sum across resident modules |

Call: checksum = SumKickData ()

DO -612(A6)

ULONG checksum

Function: Builds a check sum across the linked list of resident

modules (KickTagPtr) and MemEntry structures

(KickMemPtr). The check sum is stored in KickCheckSum,

as long as "reset-proof" changes to the system will allow it.

Result: checksum Value for ExecBase->KickCheckSum

Dec Hex STRUCTURE RT, 0

0 $0 UWORD RT_MATCHWORD

2 $2 APTR RTJ4ATCHTAG

6 $6 APTR RT_ENDSKIP

10 $A UBYTE RT_FLAGS

11 $B UBYTE RT_VERSION

12 $C UBYTE RT_TYPE

13 $D BYTE RT_PRI

14 $E APTR RT_NAME

18 $12 APTR RT_IDSTRING

22 $16 APTR RT_INIT

26 $1A LABEL RT_SIZE

;residentTag/ROMTag

;ILLEGAL command

;start of structure (RT_MATCHWORD)

;RT allowed starting with this address

;Flags

/version

/module type (NT_...)

;initialization priority

;module name

/identification string

/initialization routine/data

RTC_MATCHWORD = $4AFC

RTB_COLDSTART = 0, RTF_COLDSTART = 1 ;Init from reset

RTB_SINGLETASK = 1, RTF_SINGLETASK = 2 ;task

RTB_AFTERDOS = 2, RTF_AFTERDOS = 4 ;Init after DOS

RTB_AUTOINIT = 7, RTF_AUTOINIT = $80 ;RT_INIT = data

RTW_NEVER = 0 ;do not initialize

2. Interrupts

lAddlntServer Insert an interrupt in a server llst|

Call: AddlntServer (intNum, interrupt)

-168(A6) DO Al

ULONG intNum

STRUCT IS *interrupt

166

3.1 The Libraries and their Functions

Function: Links an IS structure in a server list of an interrupt server.

The given interrupt number is the number of an Amiga

interrupt source, not that of a processor interrupt. The

interrupt routines must end with RTS and must set the

processor's Z flag if other interrupt routines are to be

processed. The function is called with IS_DATA in Al.

Parameters: intNum Interrupt source with a server (PORTS, COPER,

VERTB, EXTER or NMI).

interrupt IS structure

Warning: Not suitable for high-level languages. For VERTB, the

value $DFF000 must remain in the A0 register if the

interrupt has a priority of 10 or greater.

See also: RemIntServer(), SetIntVector(), hardware/intbits.i

Example: Linking an interrupt that is executed with every vertical

blank of the monitor.

_Interrupt_link

movea.l $4.w,a6

lea _VertBIS(pc), al

moveq #INTB_VERTB,dO

jsr __LVOAddIntServer(a6)

_Interrupt_remove

movea.l $4.w,a6

lea _VertBIS(pc),al

moveq #INTB_VERTB,dO

jsr _LVORemIntServer(a6)

JVertBIS

dc.1 0,0 ;LN_SUCC,LN_PRED

dc.b NT_INTERRUPT,127 ;LN_TYPE,LN_PRI

dc. 1 _VertBName ;LN_NAME

dc.1 _Data,.Interrupt ;IS_DATA,IS_CODE

167

3. Programming with AmigaOS 2jc

** Interrupt Routine **

** **

** Input: aO = _Custom ($dffOOO) **

** al = _Data (IS_DATA) **

** Output: (30,00 = 0,Z **

_Interrupt

movem.l d2-d6/aO-a6/-(a7)

movem.l (a7)+/d2-d6/a0-a6

moveq #O,dO

rts

_Data ;data block for the interrupt routine

[Cause Calls a software interrupt |

Call: Cause (interrupt)

-180(A6) Al

STRUCT IS *interrupt

Function: Executes a software interrupt.

Parameters: interrupt IS structure of the interrupt.

liable Turn off interrupts I

Call: Disable ()

-120(A6)

Function: Turns off all interrupts along with multitasking. This can be

a nested call.

Warning: Essential operating system functions can be destroyed by

turning the interrupts off for more than 0.00025 seconds.

It's best to let these calls go through other operating system

functions.

Wait() calls within a Disable()/Enable() call turn

multitasking back on until signaled.

168

3.1 The Libraries and their Functions

| Enable Allow interrupts!

Call:

Function:

| Forbid

Enable()

-126(A6)

Reverses the effect of Disable(). Interrupt processing is

restored as long as the number of Enable() calls correspond

to the number of preceding Disable() calls.

Turn off multitasking |

Call: Forbid ()

-132(A6)

Function: Turns off multitasking capabilities. Forbid() calls can be

nested.

Warning: Wait() calls within a Forbid()/Permit() call turn multitasking

back on until signaled.

See also: Permit()

| GetCC Retrieve CCR in CPU-compatible format]

Call: conditions = GetCC 0

DO -528(A6)

UWORD conditions

Function: "MOVE SR,<ea>" is only allowed on the 68000 in user

mode. This function replaces that command so that all

processors can read the status register.

Result: The 680x0 ConditionCodes

| Permit Turn multitasking back on|

Call: Permit()

-138(A6)

169

3. Programming with AmigaOS 2.x

Function: Allows multitasking again. Multitasking is restored as long

as the number of Permit() calls correspond to the number of

preceding Forbid() calls.

See also: Forbid()

I RemlntServer Remove IS from a server list |

Call: RemlntServer (intNum, interrupt)

-174(A6) DO Al

ULONG intNum

STRUCT IS *interrupt

Function: Opposite of AddIntServer().

Parameters: intNum Interrupt source, as with AddIntServer().

interrupt IS structure, as with AddIntServer().

| SetlntVector Set interrupt handler |

Call: oldlnterrupt = SetlntVector(intNumber, interrupt)

DO -162(A6) DO Al

STRUCT IS *oldlnterrupt,*interrupt

ULONG intNumber

Function: Assigns a handler to an interrupt source. The previous

handler for this source is removed and returned to its IS

structure. The routine, which must end with RTS, contains

an AND combination of intenar and intreqr in Dl, the

address of the custom chip in AO, and IS_DATA in Al.

Parameters: intNum Interrupt source with no server.

interrupt IS structure of the handler.

Result: IS structure of the previous handler.

See also: AddIntServer(),exec/interrupts.i,exec/hardware.i

170

3.1 The Libraries and their Functions

| SetSR Read and change status register |

Call: oldSR = SetSR(newSR, mask)

DO -144(A6) DO Dl

ULONG oldSR,newSR,mask

Function: Reads the SR according to the installed processor and sets

the bits in a given bit mask according to the passed values.

Parameters: newSR Condition to which the bits will be changed,

mask Bit mask containing the bits to be changed.

Result: The complete status register prior to the change.

** Read status register **

movea.l $4.w,a6

moveq #0,d0

moveq #0,dl

jsr _LV0SetSR(a6)

move.w dO,...

** Set interrupt level 4 **

movea.l $4.w,a6

move.w #$400,d0

move.w #$700,dl

jsr _LVOSetSR(a6)

move.w dO, . . .

|Superstate Change processor to supervisor model

Call: oldSysStack = Superstate ()

DO -150(A6)

APTR oldSysStack

171

3. Programming with AmigaOS 2.x

Function: Switches the processor to supervisor mode. Keeps the user

stack, which contains all interrupt data.

Result: Address of the system stack or 0 (called from supervisor

mode).

See also: UserState(), Supervisor()

[Supervisor Execute routine in supervisor model

Call: result = Supervisor (userFunc)

Rx -30(A6) A5

Function: Executes an Assembler routine ending with RTE in

supervisor mode. The registers are not changed.

Parameters: userFunc Address of the Assembler routine (RTE).

Result: All register changes during the execution of the routine (up

to 15 changes).

See also: SuperState(), UserState()

Example: Get the location of the exception vector table for higher

processors:

movea.l $4.w,a6

moveq #AFF_68010!AFF_68020!AFF_68030!AFF_68040/d7

and.w AttnFlags(a6),d7

beq.s _TableFound

lea _Exception(pc),a5

jsr _LVOSupervisor(a6)

_TableFound

^Exception

moved vbr,d7 ;VBR nach d7

rte

| UserState Return processor to user mode |

Call: UserState (sysStack)

-156(A6) DO

172

3.1 The Libraries and their Functions

Dec

34

36

38

42

46

50

54

58

62

66

70

74

78

82

84

84

96

108

120

132

144

156

168

180

192

204

216

228

240

252

264

276

280

284

288

290

Hex

$22

$24

$26

$2A

$2E

$32

$36

$3A

$3E

$42

$46

$4A

$4E

$52

$54

$54

$60

$6C

$78

$84

$90

$9C

$A8

$B4

$C0

$CC

$D8

$E4

$F0

$FC

$108

$114

$118

$11C

$120

$122

STRUCTURE ExecBase,LIB_SIZE

UWORD

WORD

ULONG

APTR

APTR

APTR

APTR

APTR

ULONG

APTR

APTR

APTR

APTR

WORD

LABEL

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

APTR

ULONG

ULONG

UWORD

UWORD

SoftVer

LowMemChkSum

ChkBase

ColdCapture

CoolCapture

WarmCapture

SysStkUpper

SysStkLower

MaxLocMem

DebugEntry

DebugData

AlertData

MaxExtMem

ChkSum

IntVects

IVTBE, IV_SIZE

IVDSKBLK,IV_SIZE

IVSOFTINT,IV_SIZE

IVPORTS,IV_SIZE

IVCOPER,IV_SIZE

IWERTB,IV_SIZE

IVBLIT, IVJSIZE

IVAUD0/IV_SIZE

IVAUD1,IV_SIZE

IVAUD2/IV_SIZE

IVAUD3,IV_SIZE

IVRBF,IV_SIZE

IVDSKSYNC,IV_SIZE

IVEXTER,IV_SIZE

IVINTEN,IV_SIZE

IVNMI,IV_SIZE

ThisTask

IdleCount

DispCount

Quantum

Elapsed

APTR sysStack

Function: Switches the processor back to user mode.

Parameters: sysStack Supervisor stack from SuperState().

See also: SuperStateQ, SupervisorQ

;Exec base structure

;Kickstart version

;trap vector check sum

;inverted base address

;cold boot vector

;reset vector

;warm boot vector

;system stack upper limit

;system stack lower limit

;size of chip memory

;global debugger

;debugger data

;alarm data

;FastRAM

;check sum up to this point

;interrupt vectors

;serial output

;DiskDMA finished

/software interrupt

;CIA interrupts

;copper interrupt

;vertical blank

;blitter finished

;start of sound channel 0

;start of sound channel 1

;start of sound channel 2

;start of sound channel 3

;serial input

;DiskDMA synchronized

/external interrupt

/level 6 interrupt

;level 7 interrupt

/currently running program

/wait counter

/dispatch counter

/time period

/elapsed time

173

3. Programming with AmigaOS 2.x

292 $124

294 $126

295 $127

296 $128

298 $12A

300 $12C

304 $130

308 $134

312 $138

316 $13C

320 $140

322 $142

336 $150

350 $15E

364 $16C

378 $17A

392 $188

406 $196

420 $1A4

434 $1B2

514 $202

530 $212

531 $213

532 $214

546 $222

550 $226

554 $22A

558 $22E

560 $230

564 $234

568 $238

572 $23C

576 $240

580 $244

584 $248

588 $24C

596 $254

600 $258

612 $264

AFB_68010

AFB_68020

AFB_68030

AFB_68040

AFB_68881

AFB_68882

UWORD SysFlags

BYTE IDNestCnt

BYTE TDNestCnt

UWORD AttnFlags

UWORD AttnResched

APTR ResModules

APTR TaskTrapCode

APTR TaskExceptCode

APTR TaskExitCode

ULONG TaskSigAlloc

UWORD TaskTrapAlloc

STRUCT MemList,LH_SIZE

STRUCT ResourceList/LH_SIZE

STRUCT DeviceList,LH_SIZE

STRUCT IntrList,LH_SIZE

STRUCT LibList,LH_SIZE

STRUCT PortList,LH_SIZE

STRUCT TaskReady,LH_SIZE

STRUCT TaskWait,LH_SIZE

STRUCT Softints,SH_SIZE*5

STRUCT LastAlert/4*4

UBYTE VBlankFrequency

UBYTE PowerSupplyFrequency

STRUCT SemaphoreList/LH_SIZE

APTR KickMemPtr

APTR KickTagPtr

APTR KickCheckSum

UWORD ex_Pad0

ULONG ex_Reserved0

APTR ex_RamLibPrivate

ULONG ex_EClockFrequency

ULONG ex_CacheControl

ULONG ex_TaskID

ULONG ex_PuddleSize

ULONG ex_PoolThreshold

STRUCT ex_PublicPool,MLN_SIZE

APTR ex_MMULock

STRUCT ex_Reserved,12

LABEL SYSBASESIZE

/internal Flags

/interrupt forbid counter

/multitask forbid counter

/special system Flags

/execution Flags

;ROMTags

/standard trap handler

/standard exception handler

/standard return address

/system signal mask

/system trap task

/free memory PRIVATE!

;Resources PRIVATE!

7Devices PRIVATE!

/Interrupts PRIVATE!

7 Libraries PRIVATE!

/MsgPorts PRIVATE!

7programs PRIVATE!

/waiting tasks PRIVATE!

/Softwarelnts PRIVATE!

7 last system error

/vertical blank frequency

/power supply frequency

/signal Semaphores

;reset-protected memory blocks

;reset-protected user module

/check sum across Mem and Tags

/RAM library PRIVATE!

/CPU E pin frequency

/CACR

/next possible Task

0, AFF_68010

1, AFF_68020

2, AFF_68030

3, AFF_68040

4, AFF_68881

5, AFF_68882

1 /also with 68020

2 /also with 68030

4 /also with 68040

8 /CPU 68040

16 /also with 68882

32 /FPU 68882

174

3.1 The Libraries and their Functions

CACRB_EnableI =

CACRB_FreezeI =

CACRB_ClearI =

CACRB_IBE

CACRB_EnableD =

CACRB_FreezeD =

CACRB_ClearD =

CACRB_DBE

0,

1,

3,

4,

8,

9,

11,

12,

CACRB WriteAllocate

CACRF_EnableI

CACRF__FreezeI

CACRF_ClearI

CACRF_IBE

CACRF_EnableD

CACRF_FreezeD

CACRF_ClearD

CACRF_DBE

1

2

8

= 16

= 256

= 512

=2048

=4096

= 13, CACRF_WriteAllocate

/command cache

;freeze command cache

;clear command cache

;burst mode commands

;data cache

/freeze data cache

;clear data cache

;data burst

8192 ;always

Dec Hex STRUCTURE IS,LN_SIZE /Interrupt Structure

14 $E APTR IS_DATA ;data for IS_CODE

18 $12 APTR IS_CODE /interrupt routine

22 $16 LABEL IS_SIZE

Dec Hex STRUCTURE IV,0 ;Execs Interrupt Vectors

0 $0 APTR IVJDATA ;data for IS_CODE

4 $4 APTR IV_CODE /interrupt Handler/Server

8 $8 APTR IV_NODE ;IS structure/0

12 $C LABEL IV_SIZE

SB_SAR = 15, SF_SAR = $8000 /execution plan

SBJTQE = 14, SF_TQE = $4000 /time exceeded

SB_SINT = 13, SF_SINT = $2000 /Softlnt

Dec Hex STRUCTURE SH,LH_SIZE /Softlnt Header

14 $E UWORD SH_PAD

16 $10 LABEL SH_SIZE

SIH_PRIMASK = $F0 /priority mask

SIH_QUEUES =5 ;5 Softlnt queues

3. Memory Management

[AddMemList Add memory to the free memory list!

Call.' AddMemList (size, attributes, pri, base, name)

-618 (A6) DO Dl D2 A0 Al

ULONG size,attributes

LONG pri

APTR base,name

Function: Adds a memory block to the list of free memory. A

MemHeader structure is created at the beginning of the

block.

175

3. Programming with AmigaOS 2.x

Parameters: size Size of memory block.

attributes Memory type

pri Allocation priority

base Address

name Name for memory or 0

| AllocAbs Attempt to allocate a certain memory block|

Call: memoryBlock = AllocAbs(byteSize, location)

DO -204(A6) DO Al

APTR memoryBlock,location

ULONG byteSize

Function: Allocates a memory block at a set address. Normally, this

routine is only used by reset-protected programs to protect

themselves from being overwritten.

Parameters: byteSize Size

location Address

Result: Address of the memory block (divisible by 8) or 0.

| Allocate Allocate private memory block|

Call: memoryBlock=Allocate (memHeader, byteSize)

DO -186(a6) A0 DO

APTR memoryBlock

STRUCT MemHeader *memHeader

ULONG byteSize

Function: Assign a private MemHeader to a memory block.

Parameters: memHeader

Private MemHeader

176

3.1 The Libraries and their Functions

byteSize Size of the desired block.

Result: Address of the reserved memory block or 0.

See also: Deallocate, exec/memory.h

lAIlocEntry Allocate several memory blocks |

Call: memList = AllocEntry (memList)

DO -222(A6) A0

STRUCT MemList *memList

Function: Allocates all of the blocks stored in a MemList structure.

Parameters: memList Structure containing MemEntry structures.

Result: New MemList structure with the results (not identical to

the structure passed as a parameter). If a block could not be

allocated, then the memory type with a matching bit 31 is

passed back (negative value).

lAllocMem Allocate memory |

Call: memoryBlock = AllocMem(byteSize, attributes)

DO -198(A6) DO Dl

APTR memoryBlock

ULONG byteSize,attributes

Function: Allocates the requested type and amount of memory.

Parameters: byteSize Size of block

attributes Memory type (MEMF_...)

Result: Address of the memory block or 0.

Warning: Memory that cannot be freed must be MEMF_PUBLIC.

See also: FreeMemQ

177

3. Programming with AmigaOS 2.x

lAUocVec Allocate memory and store the size|

Call: memoryBlock = AllocVec(byteSize, attributes)

DO -684(A6) DO Dl

Functions, Parameters, Results:

Same as AllocMem(), except that Exec stores the block size

for FreeVec().

See also: FreeVec(), AllocMem()

| AvailMem Query free memory |

Call: size = AvailMem (attributes)

DO -216(A6) Dl

ULONG size,attributes

Function: Query the amount of free system memory.

Parameters: requirements

Memory type (MEMF_...)

Result: Number of free bytes of the desired type. This number may

not be correct because of multitasking.

| CopyMem Copy a memory block |

Call: CopyMem(source, dest, size)

-624(A6) AO Al DO

APTR source,dest

ULONG size

Function: Super-fast copying of a memory block.

Parameters: source Source address

dest Destination address

size Block size (0 allowed)

178

3.1 The Libraries and their Functions

See also: CopyMemQuickQ

| CopyMemQuick Optimized memory copy|

Call: CopyMemQuick(source, dest, size)

-630(A6) A0 Al DO

Function: Highly optimized memory copying function.

Parameters: source Source address (divisible by 4)

dest Destination address (divisible by 4)

size Block size (divisible by 4,0 allowed)

See also: CopyMem()

|Deallocate Free memory block allocated with AlIocateQI

Call: Deallocate(memHeader, memoryBlock, byteSize)

-192 (A6) A0 Al DO

STRUCT MemHeader *memHeader

APTR memoryBlock

ULONG byteSize

Function: Frees a memory block that was allocated with the

Allocate() command.

Parameters: memHeader

Own MemHeader

memoryBlock

Address of memory block

byteSize Block size, 0 allowed

See also: AllocateQ, exec/memory.h

179

3. Programming with AmigaOS 2.x

IFreeEntry Free several memory blocks]

Call: FreeEntry (memList)

-228(A6) AO

STRUCT MemList *memList

Function: Frees all memory blocks in a MemList structure (result of

AllocEntry).

Parameters: memList MemList structure

See also: AllocEntryO

IFreeMem Free memory block |

Call: FreeMem(memoryBlock, byteSize)

-210(A6) Al DO

APTR memoryBlock

ULONG byteSize

Function: Frees a memory block.

Parameters: memoryBlock

Block address

byteSize Block size

See also: AllocMem(),AllocAbs()

IFreeVec Free memory allocated with AllocVecQI

Call: FreeVec (memoryBlock)

-690(a6) Al

APTR memoryBlock

Function: Frees a memory block allocated with AllocVec().

Parameters: memoryBlock

Result of AllocVec() or 0

180

3.1 The Libraries and their Functions

See also: AllocVecQ

ITypeOfMem Get memory type |

Call: attributes = TypeOfMem(address)

DO -534(A6) Al

ULONG attributes

APTR address

Function: Queries the memory type of the memory block at the given

address (MEMF_...).

Parameters: address Memory address

Result: Memory type or 0 (ROM, not linked, or does not exist).

Dec Hex STRUCTURE ML,LN_SIZE ;MemList

14 $E UWORD ML_NUMENTRIES ;number of ME structures to follow

16 $10 LABEL ML_ME ;start of the ME structures

16 $10 LABEL ML_SIZE = ;size excluding ME structures

Dec Hex STRUCTURE ME,0

0 $0 LABEL ME_REQS =

0 $0 APTR ME_ADDR

4 $4 ULONG ME_LENGTH

8 $8 LABEL ME_SIZE

;MemEntry

; memory type for AllocMemO

/memory address follows

;block size

MEMF_ANY = 0

MEMB_PUBLIC

MEMB_CHIP

MEMB_FAST

MEMB_LOCAL

MEMB_24BITDMA

MEMB_CLEAR

MEMB_LARGEST

MEMB_REVERSE

MEMB_TOTAL

;any

= 0

= 1

= 2

= 8

= 9

= 16

= 17

= 18

= 19

memory type (do

, MEMF_PUBLIC

, MEMF_CHIP

, MEMF_FAST

, MEMF_LOCAL

, MEMF_24BITDMA

, MEMF_CLEAR

, MEMF_LARGEST

, MEMF_REVERSE

, MEMFJTOTAL

not use!)

1 ;

2 /

4 ;

= $100 ;

= $200 ;

= $10000 ;

= $20000 ;

= $40000 ;

= $80000 ;

usable memory

ChipRAM

FastRAM

UserRAM

DMA capable, 24 bit

delete beforehand

largest block

inverted

total size

MEM_BLOCKSIZE = 8 /smallest available memory block

Dec Hex STRUCTURE MH,LN_SIZE ;start of memory

14 $E UWORD MH_ATTRIBUTES /memory type

16 $10 APTR MH_FIRST /first free block

20 $14 APTR MH_LOWER /start of block

181

3. Programming with AmigaOS 2.x

24 $18 APTR MHJUPPER ;end of block

28 $1C ULONG MH_FREE ;free bytes

32 $20 LABEL MH_SIZE

Dec Hex STRUCTURE MC,0 ;start of a free block

0 $0 APTR MC_NEXT ;next free block

4 $4 ULONG MC_BYTES ;block size

8 $8 LABEL MC_SIZE

4. Structure Management

| AddHead Insert a node at the start of a Iist|

Call: AddHeadflist, node)

-240(A6) A0 Al

STRUCT LH *list

STRUCT LN *node

Function: Inserts a node at the start of a double linked list.

Parameters: list LH structure of the double linked list.

node LN structure of the list entry.

| AddTail Insert node at the end of a list |

Call: AddTail (list, node)

-246(A6) A0 Al

STRUCT LH *list

STRUCT LN *node

Function: Like AddHead(), but the node is added to the end of the

double linked list.

Parameters: list LH structure of the double linked list,

node LN structure of the list entry.

182

3.1 The Libraries and their Functions

lEnqueue Adds a node to a Iist|

Call: Enqueue (list, node)

-270(A6) A0 Al

STRUCT LH *list

STRUCT LN *node

Function: Adds an LN structure to a double linked list using the

given priority (LNJPRI).

Parameters: list LH structure of the double linked list.

node LN structure of the list entry.

|FindName Find a node in alstl

Call: node = FindName (start, name)

D0,CC -276(A6) A0 Al

STRUCT LN *node

STRUCT LH *start

APTR name

Function: Finds a node with the given name (LN_NAME) in a double

linked list. In order to find multiple nodes with the same

name, the next call must use the node structure returned

from the previous call instead of the ListHeader structure.

Parameters: start ListHeader or ListNode

name String ending in 0, containing node name.

Result: Node address or 0.

| Insert Insert a node into a list after another node |

Call: Insert (list, node, listNode)

-234(A6) A0 Al A2

STRUCT LH *list

STRUCT LN *node,*listNode

183

3. Programming with AmigaOS 2.x

Function: Inserts a node after another node in a double linked list.

Parameters: list ListHeader (if listNode=0)

node ListNode to be inserted.

listNode Node after which the new node will be inserted

orO.

| RemHead Remove the first node in a list]

Call: node = RemHead (list)

DO -258(A6) AO

STRUCT LN *node

STRUCT LH *list

Function: Gets the address of the first node in a double linked list and

removes the node from the list.

Parameters: list ListHeader structure

Result: Address of the ListNode or 0 (list was empty).

| Remove Remove a node from a list]

Call: Remove (node)

-252(A6) Al

STRUCT LN *node

Function: Takes the given ListNode out of the list.

Parameters: node ListNode to be removed.

| RemTail Remove last node from a list |

Call: node = RemTail (list)

DO -264(A6) AO

STRUCT LN *node

STRUCT LH *list

184

3.1 The Libraries and their Functions

Function: Gets the address of the last node in a double linked list and

removes the node from the list.

Parameters: list ListHeader structure

Result: Address of the ListNode or 0 (list was empty).

Dec Hex STRUCTURE LH, 0 ;list, ListHeader

0 $0 APTR LH_HEAD ;first node

4 $4 APTR LH_TAIL ;0 (end marker)

8 $8 APTR LH_TAILPRED ;last node

12 $C UBYTE LH_TYPE ;list type

13 $D UBYTE LH_pad

14 $E LABEL LH_SIZE

Dec Hex STRUCTURE MLH, 0

0 $0 APTR MLH_HEAD

4 $4 APTR MLH_TAIL ;0

8 $8 APTR MLH_TAILPRED ;last node

12 $C LABEL MLH_SIZE

Dec Hex STRUCTURE LN,0 ;ListNode

;same structure, minimal configuration

/first node

0 $0 APTR LN_SUCC

4 $4 APTR LN_PRED

8 $8 UBYTE LN_TYPE

9 $9 BYTE LN_PRI

10 $A APTR LNJSFAME

14 $E LABEL LN_SIZE

;next node

;previous node

;node type

;node priority

;node name

;data begins here

Dec Hex STRUCTURE MLN, 0 ;same structure, minimal configuration

0 $0 APTR MLN_SUCC ;next node

4 $4 APTR MLN_PRED ;previous node

8 $8 LABEL MLN_SIZE ;data starts here

NT_UNKNOWN = 0 ;not defined

NTJTASK = 1 ;Exec task

NT_INTERRUPT = 2 ;interrupt

NTJDEVICE = 3 ; device

NT_MSGPORT = 4 ;MP structure

NT_MESSAGE = 5 ;message sent

NT__FREEMSG = 6 ; message without ReplyPort

NT_REPLYMSG = 7 ;reply message

NT_RESOURCE = 8 ;resource

NT_LIBRARY = 9 ;library

NT_MEMORY =10 ;memory

NT_SOFTINT = 11 /software interrupt

NT_FONT = 12 ;forit

185

3. Programming with AmigaOS 2.x

NT_PROCESS

NT_SEMAPHORE

NT_SIGNALSEM

NT_BOOTNODE

NT_KICKMEM

NT_GRAPHICS

= 13

= 14

= 15

= 16

= 17

= 18

NT_DEATHMESSAGE =19

NT_USER

NT_EXTENDED

=254

=255

;AmigaDOS process

/message semaphore

;SignalSemaphore

;boot node

;operating system memory

/graphics data

;end message

/maximum user definition

;extended node

5. Programs

lAddTask Start a program!

Call: AddTask(task, initialPC, finalPC)

-282 (A6) Al A2 A3

STRUCT TC *task

APTR initialPC,finalPC

Function: Adds a task to the system, redistributes the processor time,

and starts the task with the highest priority. Most of the

parameters are taken from the initialized Task structure that

is passed to this routine. A stack larger than 256 bytes is

needed for calling Exec functions. The minimum for other

operating system functions is 4096 bytes. The TC_FLAGS

are cleared.

Parameters: task Initialized TC structure

initialPC Program start address

finalPC Return address or 0 (normal)

Warning: Exec tasks cannot use DOS routines, since these require a

greatly expanded Task structure (process).

lAllocSignal Allocate a signal bit|

Call: signalNum = AllocSignal (signalNum)

DO -330(A6) DO

BYTE signalNum

186

3.1 The Libraries and their Functions

Function: Allocates a free signal bit from its own task. You can

specify a certain bit or the value -1 if any bit will do (this is

the normal procedure). Up to 16 different bits can be

reserved per task. The other bits are used by the operating

system, for example, bit 8 signals an incoming DOS packet.

Parameters: signalNum Bit number (0-31) or-1 (any bit)

Result: Bit number or -1 (bit not free or not bit free)

[AllocTrap Allocate a CPU trap vector |

Call: trapNum = AllocTrap (trapNum)

DO -342(A6) DO

LONG trapNum

Function: Gets the number of a free CPU trap vector (TRAP #). A

certain trap vector can be specified, or -1 can be passed to

get the next free vector. Traps are sent to the trap handler

in the following format, which is entered in tcJTrapCode:

the number of the exception vector is on the stack (32-47

correspond to TRAP #1-#15) followed by the 680x0

exception frame.

Parameters: trapNum Trap number (0-15) or -1

Result: trapNum Number of the allocated trap vector (0-15) or -1

(no free vector).

| CachedearE Clear cache memory |

Call: CacheClearE(address, length, caches)

-642(A6) A0 DO Dl

ULONG length, caches

APTR address

Function: Clears the internal command and data cache memory of the

CPU.

Parameters: address Start address

187

3. Programming with AmigaOS 2.x

length Size of block to be cleared, or -1 to clear all

addresses.

caches The following bits are supported at this time:

CACRF_ClearI Clear instruction cache

CACRF__ClearD Clear data cache

ICacheClearU Clear cache memory]

Call: CacheClearU

-636(A6)

Function: Clears all internal command and data cache memory of the

CPU.

ICacheControl Cache control in user model

Call: oldBits = CacheControl (cacheBits,cacheMask)

DO -648(A6) DO Dl

ULONG oldBits,cachBits,cacheMask

Function: Global control via the CACR register of the 68030. All

changes to the cache pertain to the entire system. This

allows the programmer to turn off the caches of programs

not normally executable (self-modifying code, construction

of private vector tables, etc.) and run them with extremely

reduced processor expenditures.

Parameters: cacheBits New bit values for the bits to be changed.

cacheMask

Bit mask for the bits to be changed.

Result: The complete CACR register prior to the manipulation.

| FindTask Find the address of a Task structure |

Call: task = FindTask (name)

DO -294 (A6) Al

188

3.1 The Libraries and their Functions

STRUCT TC *task

APTR name

Function: Gets the Task structure of the program with the given

name. If no name is given, the routine reads ThisTask from

the ExecBase. Since tasks can also remove themselves, it is

usually necessary to turn off multitasking.

Parameters: name String ending in 0 containing the program

name.

Result: Task control block, process, or 0

| FreeSignal Free a signal bit |

Call: FreeSignal (signalNum)

-336(A6) DO

BYTE signalNum

Function: Free a signal bit that was allocated with AllocSignal().

Parameters: signalNum Bit number (0-31) from AllocSignal()

IFreeTrap Free a CPU trap vector!

Call: FreeTrap (trapNum)

-348(A6) DO

ULONG trapNum

Function: Frees a vector allocated with AllocTrap().

Parameters: trapNum Vector number from AllocTrap().

| RemTask Remove a program |

Call: RemTask (task)

-288(A6) Al

STRUCT TC *task

189

3. Programming with AmigaOS 2.x

Function: Remove a task from the system. All linked MemList

structures in TQMEMENTRY are freed (see AUocEntryO,

FreeEntryQ).

Parameters: task Address of a task control block or 0 (task

removes itself).

ISetExcept Define exception signal bits!

Call: oldSignals = SetExcept(newSignals, signalMask)

DO -312(A6) DO Dl

ULONG oldSignals,newSignals,signalMask

Function: Sets the signal bits produced by an exception processed by

the task exception handler in tcJExceptionCode. The

handler is passed the ExecBase in A6, the contents of

tc_ExceptCode in Al, and the signal bits in dO. It returns a

bit mask in which all of the signal bits to be reset are set.

Parameters: newSignals

Result:

New bit values for the bits to be changed.

signalMask

Mask with the bits to be changed.

Status of the signal bits prior to the reset.

ISetSignal Define task signal status |

Call:

Function:

Parameters:

Result:

oldSignals = SetSignal(newSignals, signalMask)

DO -306(A6) DO Dl

ULONG oldSignals,newSignals,signalMask

Queries and resets received signals.

newSignals

New bit values for the bits to be changed.

signalMask

Mask with the bits to be changed.

Signal bits prior to the change.

190

3.1 The Libraries and their Functions

Example:

**.

Read signal bits

movea.l $4.w,a6

moveq #0,d0

moveq #0,dl

jsr _LVOSetSignal(a6)

move.1 dO,...

** Clear signal bits

movea.l $4.w,a6

moveq #0,d0

moveq #-l,dl

jsr _LVOSetSignal(a6)

move.1 dO,...

Clear signal bit for CONTROL-C **

movea.l $4.w,a6

moveq #0,d0

move.1 #SIGBREAKF_CTRL_C,dl

jsr _LVOSetSignal(a6)

move.1 dO, . . .

ISetTaskPri Change priority of a task |

Call: oldPriority = SetTaskPri (task, priority)

DO -300(A6) Al DO

BYTE oldPriority

LONG priority

STRUCT TC *task

Function: Changes the priority of a program and updates the

distribution of processor time throughout the system.

Parameters: task Task control block

191

3. Programming with AmigaOS 2.x

Result:

priority New priority (127 to -128)

Previous priority

I Signal Sends a signal to a program |

Call: Signal (task, signals)

-324(A6) Al DO

STRUCT TC *task

ULONG signals

Function: Sends the signal bits in the given signal mask to a task. If

the task was waiting for one of the signals, it is re-activated

and the processor time distribution is recalculated.

Parameters: task Task control block

signals Signal mask

[Wait Wait for a signal |

Call: signals = Wait (signalSet)

DO -318(A6) DO

ULONG signals,signalSet

Function: Turns off own task and waits for one of the given signal

bits.

Parameters: signalSet Signal bit mask

Result: The received signal.

Dec

14

15

16

17

18

22

26

30

Hex

$E

$F

$10

$11

$12

$16

$1A

$1E

STRUCTURE TC_Struct,LN_SIZE

UBYTE

UBYTE

BYTE

BYTE

ULONG

ULONG

ULONG

ULONG

TC_FLAGS

TC_STATE

TC_IDNESTCNT

TC_TDNESTCNT

TC_SIGALLOC

TC_SIGWAIT

TC_SIGRECVD

TC_SIGEXCEPT

/previously TC

;Flags

/Status

;saved IDNestCnt

;saved TDNestCnt

/allocated Signalbits

/expected Signalbits

/received Signalbits

/signal for Exception Handler

192

3.1 The Libraries and their Functions

34 $22 APTR

38 $26 APTR

42 $2A APTR

46 $2E APTR

50 $32 APTR

54 $36 APTR

58 $3A APTR

62 $3E APTR

66 $42 FPTR

70 $46 FPTR

74 $4A STRUCT

88 $58 APTR

92 $5C LABEL

tc_ETask

TC_EXCEPTDATA

TC_EXCEPTCODE

TC_TRAPDATA

TC_TRAPCODE

TC_SPREG

TC_SPLOWER

TC_SPUPPER

TC_SWITCH

TC_LAUNCH

TC_MEMENTRY,LH_SIZE

TC_Userdata

TC_SIZE

Dec Hex STRUCTURE ETask,MN_SIZE

20 $14 APTR

24 $18 ULONG

28 $1C STRUCT

40 $28 UWORD

42 $2A UWORD

44 $2C ULONG

48 $30 APTR

52 $34 STRUCT

86 $56 LABEL

CHILD_NOTNEW

CHILD_NOTFOUND

CHILD_EXITED

CHILD_ACTIVE

TB_PROCTIME =

TB_ETASK

TB_STACKCHK =

TB_EXCEPT =

TB_SWITCH

TB_LAUNCH

TS_INVALID =

TS_ADDED

TS_RUN

TS_READY

TS_WAIT

TS_EXCEPT

TS_REMOVED =

SIGB_ABORT

SIGB_CHILD

SIGB_BLIT

et_Parent

et_UniqueID

et_Children,MLH_SIZE

et_TRAPALLOC

et_TRAPABLE

et_Resultl

et_Result2

et_TaskMsgPort,MP_SIZE

ETask_SIZEOF

= 1 ;call to old task

/extension structure

;data for Exception Handler

/Exception Handler

;data for Trap Handler

;Trap Handler

;StackPointer

/lower limit of stack

/upper limit of stack

/routine task switch

/routine task start

/memory for task

/data for task

/task extension

/TC_Struct

/task ID

/sub-tasks

/allocated Traps

/possible Traps

/I. result

/result address (AllocVec)

: /TaskPort

/not the true sizei!1

(TC)

= 2 ;sub-task not found

= 3 ;sub-task ended

= 4 ;sub-task active

0, TF_PROCTIME = 1

3, TF_ETASK = 8

4, TF_STACKCHK = $10

5, TF_EXCEPT = $20

6f TF_SWITCH = $40

7, TF_LAUNCH = $80

0

TS_INVALID+1

TS_ADDED+1

TS_RUN+1

TS_READY+1

TS_WAIT+1

TS_EXCEPT+1

= 0, SIGF_ABORT

= 1, SIGF_CHILD

= 4, SIGF_BLIT

1

2

$10

193

3. Programming with AmigaOS 2.x

SIGB_SINGLE = 4, SIGF_SINGLE = $10

SIGB_INTUITION = 5, SIGF_INTUITION = $20

SIGBJDOS = 8, SIGF_DOS = $100

SYS_SIGALLOC = $FFFF /system signal bits

SYS_TRAPALLOC = $8000 /system traps (TRAP #15)

6. Communications

| AddFort Make MsgPort available to other tasks |

Call: AddPort (port)

-354(A6) Al

STRUCT MsgPort *port

Function: Adds the given MsgPort to the system list so that other

programs can access it with FindPort() and address it.

Parameters: port MessagePort structure (LN_NAME <> 0 if the

port must be found with FindPort.).

I Alert Indicates an error |

Call: Alert (alertNum)

-108(A6) D7

ULONG alertNum

Function: Indicates a catastrophic error (Guru Meditation).

Debugging with a second computer attached via the serial

port is usually possible (9600 baud, 8 bits, n parity).

Parameters: alertNum Error code

See also: exec/alerts.h

I CreateMsgPort Create MP structure]

Call: port = CreateMsgPort ()

dO -666(A6)

STRUCT MsgPort *port

194

3.1 The Libraries and their Functions

Function: Allocates the memory required for a MsgPort and initializes

it. The message queue list is created, a signal bit is allocated,

the task is entered, and the port is set to PAJSIGNAL (for

WaitPortO). The port can only be freed with

DeleteMsgPort().

Result: MsgPort or 0

| Debug Starts system debugger |

Call: Debug (f lags)

-114(A6) DO

ULONG flags

Function: Calls the system debugger. Normally, this is the "ROM-

WACK", but you can also patch the DebugO function with

SetFunction().

Parameters: flags 0 at this time

IDeleteMsgPort Free MP created with CreateMsgPortQi

Call: DeleteMsgPort (msgPort)

-672(A6) aO

STRUCT MsgPort *msgPort

Function: Frees a MessagePort created with CreateMsgPort().

Parameters: msgPort MP structure from CreateMsgPort() orO.

IFindPort Find MsgPort|

Call: port = FindPort (name)

DO -390(A6) Al

STRUCT MP *port

APTR name

Function: Finds port in the system list with the given name

(LN.NAME).

195

3. Programming with AmigaOS 2jc

Parameters: name Port name string ending in 0.

Result: MsgPort address or 0

| GetMsg Get next MessageNode from the port |

Call: message = GetMsg (port)

DO -372(A6) A0

STRUCT MN *message

STRUCT MP *port

Function: Gets the next message from the port's queue. WaitPort() or

Wait() are used to wait for messages. Messages must be

answered with ReplyMsg(). A signal does not always

indicate a message has arrived, it may also indicate several

messages have arrived (security prompt).

Parameters: port MessagePort

Result: MessageNode or 0 if no message has arrived at the port.

| PutMsg Send a MessageNode to a port|

Call: PutMsg (port, message)

-366(A6) A0 Al

STRUCT MP *port

STRUCT MN *message

Function: Sends a message to a port. Depending on MP_FLAGS, the

port program is also notified.

Parameters: port MP structure of the destination port.

message MessageNode to be sent.

| RawDoFmt Format a string |

Call: RawDoFmt(FormatString, DataStream, PutChProc, PutChData)

-522(A6) aO al a2 a3

196

3.1 The Libraries and their Functions

APTR FormatString,DataStream, PutChData

FPTR PutChProc

Function: A format string is loaded with the given arguments (this is

the basis of C routines such as PrintF(), etc.). The arguments

are in word or longword widths. The prefix code for an

argument is the % character. To get a % character in the

result string, the format string must contain %%. The output

is sent to the result buffer one character at a time using the

given Assembler routine.

Parameters: FormatString

String with arguments in the following format:

%[flag][width.limit][length]type

flag'-1 Left justify

width Width of argument. If the first

character is '0', the given width to

the left is filled with zeros.

limit Maximum width, if the argument

is a string.

length T Longword, otherwise word (only

with numbers).

type Argument type (in DataStream):

b BSTR(BPTRtoaBCPL

string)

d Decimal number

x Hexadecimal number

(characters 0-F only)

s String address

c Individual character

197

3. Programming with AmigaOS 2.x

DataStream

Memory block containing the values and/or

addresses of the arguments one after another.

PutChProc

Address of an Assembler routine that writes a

character to PutChData. This routine receives

the character in dO and PutChData in a3. This

routine normally looks like this: 'MOVE.B

D0,(A3)+ :RTS\ The last character is a 0 byte.

PutChData

Buffer for storing the result string.

Example: Format text and output to a RastPort:

**

** Example (Result: "reading cyl 1, 7 8 to go")

movea.l _RastPort,a2

lea _Format/a0

lea _Parameter,al

bsr _Print

_Format

dc.b '%s cyl %d, %d to go',0

cnop 0,2

_Parameter

dc.1 _Action

dc .w 1

dew 78

_Action

dc.b 'reading1,0

dc.b 'writing',0

dc.b "ver'ing",0

_Print

movem.l a2-a3/a6,-(a7)

lea .PutChar(pc),a2

move.l a7,-4(a2)

lea -100(a7)fa7

198

3.1 The Libraries and their Functions

movea.1 a7,a3

movea.l $4.w,a6

_LVORawDoFmt(a6)

100(a7),al

a7,aO

jsr

movea.1

movea.1

.Loop

tst.b

bne.s

subq.1

move. 1

sub. 1

movea.]

jsr

lea

movem. 1

rts

.BufferEnd

del 0

.PutChar

cmpa.l .BufferEnd(pc),a3

beq.s .Overflow

move.b dO,(a3)+

rts

.Overflow

clr.b -I(a3)

rts

(a3) +

.Loop

#2,a3

a3,dO

a7,dO

_GfxBase,a6

_LVOText(a6)

100(a7), a7

(a7)+,a2-a3/a6

IRemPort Remove a MessagePort from the system listl

Call: RemPort (port)

-360(A6) Al

STRUCT MP *port

Function: Removes a port added with AddPort() from the list.

Parameters: port MessagePort

IReplyMsg Reply to a message!

Call: ReplyMsg (message)

-378(a6) Al

STRUCT MN *message

199

3. Programming with AmigaOS 2.x

Function: After processing a message, this routine sends a

MessageNode back to the sender or its port

(MNJREPLYPORT).

Parameters: message Address of the MessageNode.

IWaitPort Wait for a message I

Call: message = WaitPort (port)

DO -384(A6) AO

STRUCT MN *message

STRUCT MP *port

Function: Turns off own task and waits for the receipt of one or more

messages at the given port. MP_SIGTASK and

MP_SIGBIT must be initialized and MP_FLAGS must be
settoPA_SIGNAL.

Parameters: port MsgPort

Result: Address of the first MessageNode (not removed from the
port. Use GetMsgQ).

Alarm Types:

AT_DeadEnd = $80000000 ;reset after display

AT_Recovery = $00000000 /recovery possible

Alarm Groups:

AG_NoMemory = $00010000 ;no memory

AG_MakeLib = $00020000 ;create library

AG_OpenLib = $00030000 ;open library

AG_OpenDev = $00040000 ;open device

AG_OpenRes = $00050000 ;open resource

AG_IOError = $00060000 ;I/O error

AG_NoSignal = $00070000 ;no signal

AG_BadParm = $00080000 ;bad parameter

AG_CloseLib = $00090000 ;closed too many times

AG_CloseDev = $000A0000 /closed too many times

AG_ProcCreate = $000B0000 ;create process

200

3.1 The Libraries and their Functions

Alarm Objects:

AO_ExecLib

AO_GraphicsLib

AO_LayersLib

AO_Intuition

AO_MathLib

AO_DOSLib

AO_RAMLib

AO_IconLib

AO_ExpansionLib

AO_DiskfontLib

AO_UtilityLib

AO_AudioDev

AO_ConsoleDev

AO_GamePortDev

AO_KeyboardDev

AO_TrackDiskDev

AO_TimerDev

AO_CIARsrc

AO_DiskRsrc

AO_MiscRsrc

AO_BootStrap

AO_Workbench

AOJDiskCopy

AO_GadTools

AO_Unknown

$00008001

$00008002

$00008003

$00008004

$00008005

$00008007

$00008008

$00008009

$0000800A

$0000800B

$0000800C

$00008010

$00008011

$00008012

$00008013

$00008014

$00008015

$00008020

$00008021

$00008022

$00008030

$00008031

$00008032

: $00008033

; $00008035

;Exec Library

;Gfx Library

;Layers Library

;Intuition Library

;Math Library

/DOS Library

;RAM Library

;Icon Library

;Expansion Library

;Diskfont Library

;Utility Library

;Audio Device

;Console Device

;Gameport Device

;Keyboard Device

;Trackdisk Device

;Timer Device

;CIAx Resource

;Disk Resource

;Misc. Resource

;Strap

/Workbench Library

;Diskcopy

;GadTools Library

;unknown object

Dec Hex STRUCTURE MP,LN_SIZE

14

15

$E UBYTE

$F UBYTE

16 $10 APTR

20 $14 STRUCT

34 $22 LABEL

MP_FLAGS

MP_SIGBIT

MP_SIGTASK

MP_MSGLIST,LH_SIZE

MP_SIZE

;MsgPort

;signal type

;signal bit number

;task or interrupt

/message queue

MP_SOFTINT = MP_SIGTASK ;for PA_SOFTINT

PF_ACTION = 3 ;mask

PA_SIGNAL = 0 /signal to task MP_SIGTASK

PA_SOFTINT = 1 /execute software interrupt MP_SOFTINT

PA_IGNORE = 2 /ignore

Dec Hex STRUCTURE MN,LN_SIZE /message

14 $E APTR MN_REPLYPORT /MsgPort for reply

18 $12 UWORD MN_LENGTH /total structure size

20 $14 LABEL MN_SIZE /data begins here

201

3. Programming with AmigaOS 2.x

Example:

RawKeyMapping:

movea.1 _SysBase,a6

movea.1 _Window,a3

movea.1 wd_UserPort(a3),dl

beq.s _ErrorNoUserPort

movea.1 dl,a3

bra.s _GetMessage

_WaitMsg

moveq #-l,dO

jsr _LVOAllocSignal(a6)

tst.b dO

bmi.s _GetMessage

move.b dl,MP_SIGBIT(a3)

move.l ThisTask(a6),MP_SIGTASK(a3)

clr.b MP_FLAGS(a3)

movea.1 a3,aO

jsr _LVOWaitPort(a6)

addq.b #PA_IGNORE,MP_FLAGS(a3)

move.b MP_J3IGBIT(a3) , dO

jsr _LVOFreeSignal(a6)

_GetMessage

movea.1 a3,aO

jsr _LVOGetMsg(a6)

tst.l dO

beq.s _WaitMsg

movea.1 dO,a4

move.l im_Class(a4),d0

cmpi.l #RAWKEY,dO

beq _RawKey

_ErrorNoUserPort

_RawKey

movea.1 _KeymapBase,a6

202

3.1 The Libraries and their Functions

lea -ie_SIZE0F(a7),a7

movea.l a7,aO

clr.l (aO)

move.b #IECLASS_RAWKEY,ie_Class(aO)

clr.b ie_SubClass(aO)

move.w im_Code(a4), ie_Code(aO)

move.w im_Qualifier(a4), ie_Qualifier(aO)

move.1 im_IAddress(a4), ie_EventAddress(aO)

lea _Buffer(pc),al

moveq #79,dl

lea $0.w,a2

j sr _LVOMapRawKey(a6)

move.l dO,_CharsInBuffer

lea ie_SIZEOF(a7),a7

movea.l a4,al

movea.1 _SysBase,a6

j sr _LVOReplyMsg(a6)

_CharsInBuffer

del 0

.Buffer

ds.b 80

7. Libraries

| AddLibrary Adds a library to the system list |

Call: AddLibrary (library)

-396(A6) Al

STRUCT Library *library

Function: Makes a complete, initialized library available to other

programs. Also, calculates the check sum for the library.

Parameters: library Base address of the library.

203

3. Programming with AmigaOS 2.x

IlloseLibrary Close a library |

Call: CloseLibrary (library)

-414(A6) Al

STRUCT Library *library

Function: Closes a library. This is necessary in order to free the

memory occupied by unused libraries.

Parameters: library Base address of the library or 0.

| OldOpenLibrary For Kickstart 1.0 compatibility |

Call: library = OldOpenLibrary (libName)

DO -408(A6) Al

STRUCT Library *library

APTR libname

Function: This function exists only to maintain compatibility with

operating system Version 1.0. It corresponds to

OpenLibrary(libName,0) and should no longer be used.

IQpenLibrary Open a library |

Call: library = OpenLibrary(libName, version)

DO -552(A6) Al DO

STRUCT Library *library

APTR libName

ULONG version

Function: Opens a library, gets the base address, and prevents the

library from being removed from memory. This function also

checks to make sure that the library has the given minimum

version number. A value of 0 will accept any version, but

this should never be used. Since there is no documentation

on which operating system version contains which library

versions, here is a list:

204

3.1 The Libraries and their Functions

Kick

Kick

Kick

Kick

Kick

Kick

?.? = LibVersion

1.0 = LibVersion

1.1 (NTSC) = V.

1.1 (+PAL) = V.

1.2 = LibVersion

1.3 = LibVersion

0

30

31

32

33

34

(no

(no

(no

(no

longer

longer

longer

longer

supported!1

supported!!

supported!!

supported!!

!.)

!)

!)

!)

Kick 1.3 (+A2024) = 34/35

Kick 2.0 = LibVersion 36 (described in this book)

If the library is not in the list, DOS loads it from disk (the

default directory is LIBS:). Because of this, only DOS

processes can call this function for non-resident libraries. A

complete path can also be given instead of a name.

Parameters: libName Library name (+path if desired). Upper and

lowercase letters are also distinguished in

paths.

version Minimum version number

Result: Base address of the library or 0.

I RemLibrary Attempt to delete a library]

Call: RemLibrary (1 ibrary)

-402(A6) Al

STRUCT Library *library

Function: Calls the LIB_EXPUNGE routine of the given library. This

sets the automatic removal feature for extra libraries. The

library will automatically be removed when it is no longer

needed.

Parameters: library Base address of the library.

Example: Attempt to remove a library from memory:

**

* * Input: a1=LibName

**

movea.l $4.w,a6

addq.b #1,TDNestCnt(a6)

205

3. Programming with AmigaOS 2jc

lea LibList(a6),aO

j sr _LVOFindName(a6)

tst.l dO

beq.s .notfound

movea.l dO,al

j sr _LVORemLibrary(a6)

.notfound

subq.b #l,TDNestCnt(a6)

| Set* unction Divert a library function]

Call' oldFunc = SetFunction(library, funcOffset, funcEntry)

DO -420(A6) Al AO.W DO

APTR oldFunc,funcEntry

STRUCT Library *library

LONG funcOffset

Function: Routine for patching operating system functions.

Parameters: library Base address of the library.

funcOffset Offset of the routine (LVO).

funcEntry Address of the new function.

Result: Address of the old function.

ISumLibrary Calculate check sum for a library |

Call: SumLibrary (1 ibrary)

-426(A6) Al

STRUCT Library *library

Function: Recalculates the check sum of a library. If the results does

not agree with the given check sum and the CHANGED

flag is not set, then the Alert() function is called.

206

3.1 The Libraries and their Functions

Parameters: library Base address of the library.

LIB_

LIB.

LIB_

LIB_

Dec

14

15

16

18

20

22

24

28

32

34

.OPEN

.CLOSE

.EXPUNGE =

.EXTFUNC =

Hex

$E

$F

$10

$12

$14

$16

$18

$1C

$20

$22

-6 ;LVO open library

-12 ;LVO close

-18 ;LVO remove

-24 ;LVO future

STRUCTURE LIB,LN_SIZE

UBYTE

UBYTE

UWORD

UWORD

UWORD

UWORD

APTR

ULONG

UWORD

LABEL

LIB_FLAGS

LIB_pad

LIB_NEGSIZE

LIB_POSSIZE

LIB_VERSION

LIB_REVISION

LIB_IDSTRING

LIB_SUM

LIB_OPENCNT

LIB_SIZE

library

library

extension

/library base structure

;Flags

;vector table size

;size of base structure

;version number

;revision number

;identification string

;check sum

;number of opens

LIBJFlags values:

LIBB_SUMMING = 0, LIBF_SUMMING = 1 ; check sum calculation

LIBB_CHANGED = 1, LIBF_CHANGED = 2 ;library changed

LIBB_SUMUSED = 2, LIBF_SUMUSED = 4 /calculate check sum

LIBB_DELEXP = 3, LIBF_DELEXP = 8 ;self-removal

LIBB_EXP0CNT = 4, LIBF_EXP0CNT =16 ;same for system

5. Devices

lAbortIO Abort I/O process |

Call: Abort10 (iORequest)

-480(A6) Al

STRUCT IORequest *iORequest

Function: Attempts to abort a currently running I/O process.

Regardless of whether or not this is successful, it must use

WaitIO() to wait for the official end of the process.

Parameters: iORequest IO structure of any size (active or complete).

207

3. Programming with AmigaOS 2.x

| AddDevice Make a device available to other programs |

Call: AddDevice (device)

-432(A6) Al

STRUCT Device *device

Function: Enters a fully initialized Device structure into the system

list.

Parameters: device Base address of the device.

1 ChecklO Check to see if an I/O process is completed |

Call: result = ChecklO (iORequest)

DO -468(A6) Al

BOOL result

STRUCT IORequest *iORequest

Function: This function checks to see if an I/O process started with

SendIO() is still running or is finished. Even if the process

has finished, WaitIO() must be used to wait for the official

process end.

Parameters: iORequest 10 structure of any size (active or complete).

Result: 0 if the process is still running; otherwise the address of the

10 structure is returned.

ICloseDevice Close a device]

Call: CloseDevice (iORequest)

-450(A6) Al

STRUCT IORequest *iORequest

Function: Closes access to a device and the sub-objects of the device.

Parameters: iORequest 10 structure from OpenDeviceQ.

208

3.1 The Libraries and their Functions

|CreatelORequest Create IO structure!

Call: ioReq = CreatelORequest (ioReplyPort, size)

DO -654(A6) AO DO

STRUCT IORequest *ioReq

STRUCT MsgPort *ioReplyPort

ULONG size

Function: Creates and initializes an IO structure of any size.

Parameters: ioReplyPort

Address of a fully initialized MsgPort (see

CreateMsgPortO).

size Size of the IO structure.

Result: IO structure or 0 (error).

DeletelORequest

Free an IO structure created with CreatelORequestQl

Call: DeletelORequest (ioReq)

-660(A6) aO

STRUCT IORequest *ioReq

Function: Frees a structure created with CreateIORequest().

Parameters: ioReq Result form CreateIORequest() or 0.

| DoIO Execute I/O process]

Call: error = DoIO (iORequest)

DO -456(A6) Al

BYTE error

STRUCT IORequest *iORequest

Function: Transfers an IO structure containing the required data to a

device which extracts the command and executes it. This

function returns at the end of the process.

209

3. Programming with AmigaOS 2.x

Parameters: iORequest Initialized 10 structure from OpenDevice()

which was manually loaded with device-

specific data.

Result: 0 or a device-specific error code.

I OpenDevice Register access to a device I

Call: error = OpenDevice(devName, unitNumber, iORequest, flags)

DO -444(A6) AO DO Al Dl

BYTE error

APTR devName

ULONG unitNumber,flags

STRUCT IORequest *iORequest

Function: Attempts to obtain access to a device. The passed 10

structure is supplied the necessary data if it's successful. If

the device is not in memory, it attempts to load it from

(hard) disk. Possible to specify a complete path.

Parameters: devName Name of the device (distinguishes uppercase

and lowercase notation).

unitNumber

Number of a subunit (e.g., 1-DF1:) or null.

iORequest I/O structure

flags Special information

Result: Null or error code.

Example: Attempt to remove a device from memory:

** Input: al=DevName

**

movea.l $4.w,a6

addq.b #l,TDNestCnt(a6)

lea DeviceList(a6),aO

j sr _LVOFindName(a6)

210

3.1 The Libraries and their Functions

tst.l dO

beq.s .not found

movea.1 dO,al

jsr _LV0RemDevice(a6)

.notfound

subq.b #1,TDNestCnt(a6)

| RemDevice Remove device |

Call: RemDevice (device)

-438(A6) Al

STRUCT Device *device

Function: Attempts to initiate a device removing itself from memory.

Parameters: device Base address of the device.

ISendIO Start I/O process |

Call: SendlO (iORequest)

-462(A6) Al

STRUCT IORequest *iORequest

Function: Starts an I/O process without waiting for the end.

Parameters: iORequest I/O structure

IWaitIO Wait for the end of an I/O process!

Call: error = Wait 10 (iORequest)

DO -474(A6) Al

BYTE error

STRUCT IORequest *iORequest

Function: Waits for the end of an I/O process started with SendlOQ.

211

3. Programming with AmigaOS 2.x

Parameters: iORequest I/O structure (active or completed)

Result: Null or error code.

Dec Hex STRUCTURE

34 $22 LABEL

DD,LIB_SIZE

DD_SIZE

Dec Hex STRUCTURE UNIT,MP_SIZE

34 $22 UBYTE UNIT_FLAGS

35 $23 UBYTE UNIT_pad

3 6 $24 UWORD UNIT_OPENCNT

38 $26 LABEL UNIT_SIZE

;Device structure

;Unit structure

;Flags

;Number of openings

UNITB_ACTIVE = 0, UNITF_ACTIVE = 1 ;working now

UNITB_INTASK = 1, UNITF_INTASK =2 ;in the device task

IOERR_OPENFAIL = -1

IOERR_ABORTED = -2

IOERR_NOCMD = -3

IOERR_BADLENGTH = -4

IOERR_BADADDRESS = -5

IOERR_UNITBUSY = -6

IOERR_SELFTEST = -7

ERR_OPENDEVICE

;Error opening

? Process aborted

;Unknown command

;Length not okay

;Address not okay

;Unit still working

;Hardware error

= IOERR_OPENFAIL

Dec Hex

20 $14

24 $18

28 $1C

30 $1E

31 $1F

32 $20

32 $20

36 $24

40 $28

44 $2C

48 $30

STRUCTURE 10,MN_SIZE

APTR IO_DEVICE

APTR IO_UNIT

UWORD IO_COMMAND

UBYTE IO_FLAGS

BYTE IO_ERROR

LABEL IO_SIZE

ULONG IO_ACTUAL

ULONG IO_LENGTH

APTR IO_DATA

ULONG IO_OFFSET

LABEL IOSTD_SIZE

?I/O structure

;Device base address

/Unit structure

;Command

;Flags

;Error code

?Moved bytes etc.

;Length

rData address

•Offset for positioning

IOB_QUICK = 0, IOF_QUICK = 1 /execute immediately

CMD_INVALID

CMD_RESET

CMD_READ

CMD_WRITE

CMD_UPDATE

CMD_CLEAR

CMD_STOP

0

1

2

3

4

;No command

;reset device

; Read

;Write

/Write buffer

= 5 /Clear buffer

= 6 ;Stop

212

3.1 The Libraries and their Functions

CMD_START = 7 /Continue

CMD_FLUSH = 8 ;Delete commands

CMD_NONSTD = 9 ;1. Device specific command

9. Resources

| AddResource Make a resource accessible to other programs |

Call: AddResource (resource)

-486(A6) Al

APTR resource

Function: Adds a completely initialized resource to the system list.

Parameters: resource Library node of the resource.

| OpenResource Get the base address of a resource |

Call: resource = OpenResource (resName)

DO -498(A6) Al

APTR resource,resName

Function: Retrieves the base address of a resource.

Parameters: resName Resource name

Result: Base address or 0 (error).

| RemResource Attempt to remove a resource]

Call: RemResource (resource)

-492(A6) Al

APTR resource

Function: Attempts to initiate self-removal of the given resource.

Parameters: resource Base address of the resource.

213

3. Programming with AmigaOS 2.x

10. Semaphores

lAddSemaphore Initialize and link semaphore |

Call: AddSemaphore (signalSemaphore)

-600(A6) Al

STRUCT SS *signalSemaphore

Function: Initializes an SS structure containing a name and priority

and adds it to the system list.

Parameters: signalSemaphore

SS structure

[AttemptSemaphore Attempt to allocate a semaphore|

Call: success = AttemptSemaphore (signalSemaphore)

DO -576(A6) A0

LONG success

STRUCT SS *signalSemaphore

Function: Attempts to allocate a semaphore and returns to the caller if

this is not possible.

Parameters: signalSemaphore

SS structure

Result: 0 SS was not free.

| FindSemaphore Find a semaphore I

Call: signalSemaphore = FindSemaphore (name)
DO -594(A6) Al

STRUCT SS *signalSemaphore

APTR name

Function: Attempts to find a semaphore with the given name.

Parameters: name Semaphore name

Result: SS structure or 0

214

3.1 The Libraries and their Functions

llnitSemaphore Initialize signal semaphore 1

Call: initSemaphore (signalSemaphore)

-558(A6) AO

STRUCT SS *signalSemaphore

Function: Initializes an SS structure.

Parameters: signalSemaphore

Deleted SS structure

IQbtainSemaphore Obtain exclusive access to a semaphore |

Call: ObtainSemaphore (signalSemaphore)
-564(A6) AO

STRUCT SS ^signalSemaphore

Function: Allocates an SS structure. If this is not possible, the task is

turned off until the semaphore is freed.

Parameters: signalSemaphore

SS structure

IQbtainSemaphoreList Allocate semaphores in a listj

Call: ObtainSemaphoreList (list)

-582(A6) AO

STRUCT LH *list

Function: Allocates all semaphores in the list or waits for them to be

freed.

Parameters: list Semaphore list

| ObtainSemaphoreShared Shared semaphore access |

Call: ObtainSemaphoreShared (signalSemaphore)
-678(A6) aO

STRUCT SS *signalSemaphore

215

3. Programming with AmigaOS 2.x

Function: Obtains shared access to a semaphore or waits for it to be

freed.

Parameters: signalSemaphore

SS structure

I Procure Allocate message semaphore |

Call: result = Procure (semaphore, bidMessage)

DO -540(A6) A0 Al

BYTE result

STRUCT Semaphore *semaphore

STRUCT MN *bidMessage

Function: Attempts to allocate a semaphore.

Parameters: semaphore A semaphore MsgPort

Result: 0 Semaphore was not free.

| ReleaseSemaphore Free semaphore]

Call: ReleaseSemaphore (signalSemaphore)

-570(A6) A0

STRUCT SS *signalSemaphore

Function: Frees a given semaphore.

Parameters: signalSemaphore

SS structure

IReleaseSemaphoreList Free a semaphore list]

Call: ReleaseSemaphoreList (list)

-588(A6) A0

STRUCT LH *list

Function: Frees a semaphore list.

Parameters: list Semaphore list

216

3.1 The Libraries and their Functions

I RemSemaphore Remove a semaphore |

Call: RemSemaphore (signalSemaphore)

-606(A6) Al

STRUCT SS *signalSemaphore

Function: Removes a semaphore from its list.

Parameters: signalSemaphore

SS structure

| Vacate Free a message semaphore |

Call: Vacate (semaphore)

-546(A6) A0

STRUCT Semaphore *semaphore

Function: Frees a semaphore.

Parameters: semaphore Semaphore MsgPort

Dec Hex STRUCTURE SSR,MLN_SIZE ;PRIVATE!

8 $8 APTR SSR_WAITER

12 $C LABEL SSR_SIZE

Dec Hex STRUCTURE SS,LN_SIZE /SignalSemaphore

14 $E WORD SS_NESTCOUNT ;number of tasks

16 $10 STRUCT SS_WAITQUEUE,MLH_SIZE ;wait queue

28 $1C STRUCT SS__MULTIPLELINK, SSR_SIZE ;link

40 $28 APTR SS_OWNER ;Task

44 $2C WORD SS_QUEUECOUNT ;queued Tasks

46 $2E LABEL SS_SIZE

Dec Hex STRUCTURE SMfMP_SIZE ;Message semaphore

34 $22 WORD SM_BIDS ;number of bids

36 $24 LABEL SM_SIZE

SM_LOCKMSG = MP_SIGTASK

217

3. Programming with AmigaOS 2.x

Example for Exec Library

Exec has several new functions that make access to devices considerably

easier. As an example, let's take a look at how direct access to a disk

drive can be programmed:

** Direct access to a floppy disk drive **

** **

** Input: A6 = ExecBase **

** A5 = DosBase **

** DO = Drive (0. . .3) **

** Output: DO = IOEXTTD **

_GetAccess movem.l d2-d5,-(a7)

move.l dO,d5 ;drive number

jsr _LVOCreateMsgPort(a6) ;get port

move.l dO,d3 ;save address

beq.s .Error

movea.l d0,a0 ;port to aO

moveq #IOTD_SIZE,dO ;size to dO

jsr _LVOCreateIORequest(a6) ;get IORequest

move.l dO,d4 ;save address

beq.s .DelPort

lea

move.1

movea.1

moveq

jsr

tst.l

bne .s

exg

lsl.l

addi.1

clr .w

move.1

move.1

jsr

addq.1

move.1

bea.s

_TDName(pc),aO

d5,dO

dO,al

#0,dl

__LVOOpenDevice (a6)

dO

.DellOReq

a5, a6

#8,d5

#'DF0:',d5

-(a7)

d5,-(a7)

a7,dl

_LVODeviceProc(a6)

#6,a7

dO,dl

.NoDevProc

;name to aO

;number to dO

;IORequest

;3.5" disks

; open

;error test

;DosBase to a6

/number << 1 byte

;add string

;end of string

;move string

;string to dl

/Handler port

/clear stack

/port to dl

218

3.1 The Libraries and their Functions

moveq

jsr

exg

tst.l

beq.s

move.1

movem.1

rts

#DOSTRUE,d2

_LVOInhibit(a6)

a5, a6

dO

.CloseDev

d4,dO

(a7)+,d2-d5

;set Flag

;inhibit access

;Exec to a6

;error test

;IORequest -> dO

.Exit

.NoDevProc exg a5,a6

.CloseDev movea.l d4,al

jsr _LV0CloseDevice(a6)

♦DellOReq movea.l d4,aO ;IOReq to aO

jsr JLVODeletelORequest(a6) ;delete IOReq

;clean

;end

; Exec

;IOReq

;close

up

to a6

to al

Dev

.DelPort

**

**_ _

**

**

**

**

**

**

_FreeDrive

movea.1

jsr

moveq

bra.s

d3,aO

_LVODeleteMsgPort(a6)

#0,d0

.Exit

Free drive

Input:

Output:

movem.1

move.1

move.1

Dsr

A6 = ExecBase

A5 = DosBase

Al = IORequest

DO = Drive (0. . .3)

DO = Success (0=Error)

d2-d3,-(a7)

dO,d3

al,d2

_LVOCloseDevice(a6)

;port to aO

/delete port

;no result

;end

* *

**

* *

* *

• *

**

;save drive

;save IOReq

;close Dev

movea.l d2,a0 ;IOReq to aO

move.1 MN_REPLYPORT(aO),d2 ;save port

jsr _LVODeleteIORequest(a6) ;delete IOReq

movea.l d2,aO ;port to aO

jsr _LVODeleteMsgPort(a6) /delete port

exg a5,a6 ;DOS to a6

Is1.1 #8,d3 ;number « 1 byte

addi.l #'DF0:\d3 ;add string

219

5. Programming with AmigaOS 2.x

clr .w

move.1

move.1

jsr

addq.l

move.1

beq.s

moveq

jsr

NoDevProc exg

tst.l

movem. 1

rts

TDName dc. b

-(a7)

d3,-(a7)

a7,dl

_LVODeviceProc(a6)

#6,a7

dO,dl

.NoDevProc

#DOSFALSE/d2

_LVOInhibit(a6)

a5,a6

dO

(a7)+,d2-d3

1trackdisk.device' , 0

;end of string

;move string

;string to dl

;Handler port

;clear stack

;port to dl

;code to free

; free

;Exec to a6

;set CC

;clean up

;end

;DeviceName

While we are working with the trackdisk device, here is a program that

turns off the annoying clicking sound made by an empty disk drive. This

program can be started from the CLI/Shell or the Workbench. It is made

possible by a new flag in the Unit structures. We will also see an example

of minimum message handling for Workbench starts, especially at the end

of the program, which is responsible for freeing memory when the

program is segmented:

OPT 0+

INCLUDE IncAll.i

• *

• *

** NoClick

_Startup

movea.l $4.w,a6

movea.l ThisTask(a6),a5

moveq #0,d7

tst.l pr_CLI(a5)

bne.s _CLIstart

lea pr_MsgPort(a5),aO

jsr _LV0WaitPort(a6)

lea pr_MsgPort(a5), aO

jsr _LV0GetMsg(a6)

move.1 dO, d7

;load ExecBase

;get process

;WbStartup to 0

;test CLI

;->if available

;ProcessPort

;wait for message

;ProcessPort

;get message

;save WbStartup

220

3.1 The Libraries and their Functions

_CLIstart

cmpi.w

blt.s

jsr

move.1

beq. s

movea.1

moveq

jsr

move.1

beq. s

moveq

#3 6,LIB_VERSION(a6)

_ReplyStartup

_LVOCreateMsgPort(a6)

dO,d6

_ReplyStartup

dO,aO

#IOSTD_SIZE,dO

_LVOCreateIORequest(a6)

d0#d5

_delport

#3,d4

_NoClickLoop

lea

move.1

movea.1

moveq

jsr

tst.l

bne.s

_tdname(pc), aO

d4,dO

d5,al

#0,dl

_LVOOpenDevice(a6)

dO

next

;test OS 2

;->if not OS 2

;create MsgPort

;and save

;->if error

;MsgPort to aO

/structure size

;get IORequest

;and save

;->if error

;4 drives

;DeviceName

;drive number

;IORequest

;3.5" only

; open

;error test

;->if error

movea.1 d5,al ;IORequest

movea.1 IO_UNIT(al),aO ;get UnitPort

ori.b #TDPF_NOCLICK,TDU_PUBFLAGS(aO) ;save Flag

jsr _LV0CloseDevice(a6) ;close device

_next

dbra d4,_NoClickLoop

_delio

movea.1 d5,aO

jsr _LVODeleteIORequest(a6)

_delport

movea.1 d6,aO

jsr _LVODeleteMsgPort(a6)

_ReplyStartup

move.1 d7, dO

beq.s _fromCLI

movea.1 dO,al

jmp _LVOReplyMsg(a6)

;all drives

;IORequest to aO

;delete IORequest

;port to aO

;delete port

;WbStartup to dO

;->if not there

;WbStartup to al

;reply

221

5. Programming with AmigaOS 2.x

/Return to program would lead to a crash. If necessary, turn

/multitasking off first (it will activate itself again after the

/program ends).

_fromCLI

rts ;end of program

_tdname

dc.b •trackdisk.device1,0 ;DeviceName

Cache Control

The 68030 uses internal memory to store the last command and the last

memory access during the execution of the command. This internal

memory, called a cache, can greatly speed up processing. If the values

that the processor needs are found in a cache, then no more RAM access

is necessary, which with a non-multiplexed bus in a 32 bit architecture is

rather time-consuming. Normally, the processor does not access the

memory block containing the program code when executing a command.

The separation of command and data caches can therefore speed things

up greatly. Self-modifying code must be excluded from this, however,

because the changes would be made in the data cache and not in the

command cache. The Amiga's coprocessors, the DMA chips, are another

problem. If one of these manipulates the memory, the contents of the

caches do not change and the processor will be working with the wrong

values. This could make it necessary to turn off the caches or delete

them. Assembler programmers can use the CACR (CAche Control

Register) and CAAR (CAche Address Register) to delete individual

cache entries, but this is not in conformance with the operating system.

Another way of managing the caches is needed for developing high

speed programs. The 68030 offers the ability to "freeze" the contents of

its caches. The contents of a frozen cache cannot be changed, but they

can be read. This allows you to freeze the cache of a frequently used

subroutine after you have run it. General program processing is a little

slower because of this, but the subroutine will be extremely fast the next

time it is called.

The Exec takes care of managing and storing the contents of the CACR

in our example:

222

3.1 The Libraries and their Functions

* *

**

Turn off caches

movea.l $4.w,a6 ;load ExecBase

moveq #0,(30 ; new cache bits (value=0)

move.l #CACRF_EnableI!CACRF_EnableD,dl ;mask

jsr _LVOCacheControl(a6) ;save caches

* * Activate caches

movea.l $4.w,a6 ;load ExecBase

move.l #CACRF_EnableI!CACRF_EnableD,dO ;new cache bits

move.l dO,dl ;mask

jsr _LVOCacheControl(a6) /activate caches

** Turn off caches

*•

movea.l $4.w,a6 ;load ExecBase

moveq #0,d0 ;new cache bits (value=0)

move.l #CACRF_EnableI!CACRF_EnableD,dl ;mask

jsr _LVOCacheControl(a6) ;lock caches

Delete caches (User mode)

**

• *

movea.l $4.w,a6

moveq #-l,dO

jsr _LVOCacheClearU(a6)

;load ExecBase

;both caches

/delete caches

223

3. Programming with AmigaOS 2jc

** Store subroutine in cache

movea.l $4.w,a6 ;load ExecBase

jsr _VeryWichtigHighTech /subroutine

move.l #CACRF_FreezeI!CACRF_FreezeDfdO ;new cache bits

move.1 dO,dl ; mask

jsr _LVOCacheControl(a6) /freeze caches

** Free caches **

movea.l $4.w,a6 ;load ExecBase

moveq #0,d0 ;new cache bits

move.l #CACRF_FreezeI!CACRF_FreezeD,dl ;mask

jsr _LVOCacheControl(a6) ;free caches

Another problem can arise using Burst mode. If the hardware is properly

designed, the 68030 can move 16 bytes from cache to RAM (or RAM to

cache) in only 5 clock cycles (=2-1-1-1 burst). The data transfer is done

in 16 byte steps and is based on modulo 16 addresses. This is a good

reason for keeping your data well-organized, as the C structures of the

operating system are. The speed in Burst mode is determined to a large

extent by which memory chips are used. Dynamic Nibble mode RAM, as

used in the ChipMem region, will only allow a 4-1-1-1 burst (7 clock

cycles). Also, if the memory chips have added WaitStates during the last

three longword accesses, this can slow down the processor even more,

since each WaitState costs two clock cycles. But regardless of the speed,

problems can still occur because of DMA accesses when the data is

disorganized. The solution here involves CACRF_IBE and

CACRF_DBE, which can be used to turn the Instruction burst and the

Data burst on and off via CacheControl.

224

3.1 The Libraries and their Functions

3.1.6 The Expansion Library

The Expansion library, called "expansion.library" with the OpenLibraryO

function, manages hardware and software expansions and the

configuration of the strap routines (for booting). As always, the base

address must be passed in A6.

Functions of the Expansion Library

AddBootNode

AddConfigDev

AddDosNode

AllocConfigDev

AllocExpansionMem

FindConfigDev

FreeConfigDev

FreeExpansionMem

GetCurrentBinding

MakeDosNode

ObtainConfigBinding

ReleaseConfigBinding

RemConfigDev

SetCurrentBinding

Description of the Routines

I AddBootNode Add a bootable device]

Call'. ok = AddBootNode (bootPri, flags, deviceNode, configDev)

DO -36(A6) DO Dl AO Al

BOOL ok

BYTE bootPri

ULONG flags

STRUCT DeviceNode *deviceNode

STRUCT ConfigDev *configDev

Function: A logical AutoBoot device is added to the DOS list. If DOS

does not exist yet, the data is stored in a buffer.

225

3. Programming with AmigaOS 2.x

Parameters, Results:

See AddDosNode(), the only difference is that an

AutoBoot requires a ConfigDev structure.

| AddConfigDev Add a ConfigDev structure |

Call: AddConfigDev (configDev)

-30(A6) A0

STRUCT ConfigDev *configDev

Function: Adds the given ConfigDev structure to the system list.

Parameters: configDev Initialized ConfigDev structure

See also: RemConfigDev()

| AddDosNode Mounts a data storage device!

Call: ok = AddDosNode (bootPri, flags, deviceNode)

DO -150(A6) DO Dl A0

BOOL ok

BYTE bootPri

ULONG flags

STRUCT DeviceNode *deviceNode

Function: Adds a filesystem device to the system list. If DOS is not

active yet, the information is stored in a buffer. If no

handler is given, the new filesystem automatically takes

over the management.

Parameters: bootPri AutoBoot priority (127 to -128). Only works if

the corresponding ConfigDev structure is in

the system list.

flags ADNFJSTARTPROC (bit 0) start handler

immediately.

deviceNode

Initialized DOS device node.

226

3.1 The Libraries and their Functions

Result:

See also:

Example:

movea.1 _ExpansionBase,a6

lea _Parms(pc),aO

j sr _LVOMakeDosNode(a6)

tst.l dO

beq _Error

movea.1 dO,aO

moveq #0,d0

moveq #ADNF_STARTPROC,d1

j sr _LVOAddDosNode(a6)

0 Error

MakeDosNode(), AddBootNode()

Add a bootable drive to the system and activate a

FileHandler:

_DosNode

del

_Parms

del

del

del

del

del

del

del

del

del

del

del

del

deb

_DOSname

deb

0

_DOSname,_ExecName

1.0

16

128

0,2

1,11

2,0,0

0,79

5,MEMF_CHIP

$7fffffff

$fffffffe

0

1 DOS',0

'dfl',0

;Unit, Flags

;Tablesize

;Longwords per block

;sector location, heads

;sectors per block, blocks per track

;boot blocks, unused, interleave

;first and last cylinders

;number of buffers, memory type

/maximum transfer rate

;mask

;boot priority

;FileSystem type

JSxecName

deb 'trackdisk.device1 , 0

227

3. Programming with AmigaOS 2.x

lAllocConfigDev Allocate a ConfigDev structure!

Call: configDev = AllocConfigDevO

DO -48(A6)

Function: Allocates a deleted ConfigDev structure.

Result: ConfigDev structure or 0.

See also: FreeConfigDev()

|AllocExpansionMem Allocate expansion memory |

Call: startSlot = AllocExpansionMem(numSlots, slotOffset)

DO -54(A6) DO Dl

Function: Allocates the given number of slots.

Parameters: numSlots Number of slots required.

slotOffset Memory location

Result: First slot number or -1.

See also: FreeExpansionMem()

IFindConfigDev Find appropriate ConfigDev |

C<2//.* configDev = FindConfigDev(oldConfigDev, manufacturer, product)

DO -72 (A6) A0 DO Dl

STRUCT ConfigDev *configDev,*oldConfigDev

LONG manufacturer,product

Function: Finds a ConfigDev structure that fits the given description.

In order to be able to test several ConfigDev structures, the

previously retrieved ConfigDev can be specified. Values of

-1 will accept every manufacturer code and every product

ID.

Parameters: oldConfigDev

Last result or 0 (start of list)

228

3.1 The Libraries and their Functions

manufacturer

Manufacturer's code or -1

product Product ID or -1

Result: The next appropriate ConfigDev structure or 0.

| FreeConfigDev Free a ConfigDev structure 1

Call: FreeConfigDev (configDev)

-84(A6) A0

STRUCT ConfigDev *configDev

Function: Frees a structure allocated with AllocConfigDev().

Parameters: configDev ConfigDev structure

See also: AllocConfigDev()

| FreeExpansionMem Free memory]

Call: FreeExpansionMem(startSlot, numSlots)

-90(A6) DO Dl

Function: Frees memory allocated with AllocExpansionMem().

Parameters: Same as with AllocExpansionMem().

See also: AllocExpansionMem()

I GetCurrentBinding Gets a copy of CurrentBinding 1

Call: actual = GetCurrentBinding(CurrentBinding, size)

DO -138(A6) A0 DO:16

Function: Copies the contents of the CurrentBinding structure to the

given buffer.

Parameters: CurrentBinding

CurrentBinding structure

size Structure size

229

3. Programming with AmigaOS 2.x

Result: The true size of the CurrentBinding structure.

See also: SetCurrentBindingQ

IMakeDosNode Create a DosList entry |

Call: deviceNode = MakeDosNode (parameterPkt)

DO -144 (A6) AO

STRUCT DeviceNode *deviceNode

APTR parameterPkt

Function: Creates all of the data structures required to add a device

with AddDosNode().

Parameters: parameterPkt

Longword field with all the required

information:

Device name (DOS, for example "dfl"), device

name (Exec, for example "trackdisk.device"),

unit number, flags for OpenDevice(), number of

following longwords, environment table for the

FileHandler.

Result: Initialized structure or 0.

See also: AddDosNode()

Example: Create a DosNode for a 3.5" drive as "DF1:":

movea.1 _ExpansionBase,a6

lea _Parms(pc),aO

j sr _LVOMakeDosNode(a6)

move.1 dO,_DosNode

_DosNode

del 0

_Parms

dc. 1 __D0Sname, _ExecName

del 1,0 ;Unit, Flags

230

3.1 The Libraries and their Functions

del

del

del

del

del

del

del

del

del

del

deb

_DOSname

deb

16

128

0,2

1,11

2f 0,0

0,79

5,MEMF_CHIP

$7fffffff

$fffffffe

0

1 DOS',0

'dfl',0

;Table size

;Longwords per block

;sector location, heads

;sectors per block, blocks per track

;boot blocks, unused, interleave

;first and last cylinders

;number of buffers, memory type

/maximum transfer rate

;mask

;boot priority

;FileSystem type

_ExecName

deb 'trackdisk.device' , 0

IObtainConfigBinding Enable configuration binding|

Call: ObtainConfigBinding ()

-120(A6)

Function: Obtains the approval to add drivers to ConfigDev

structures.

See also: ReleaseConfigBindingO

IReleaseConfigBinding Release configuration bindingl

Call: ReleaseConfigBinding ()

-126(A6)

Function: Allows access by other programs.

See also: ObtainConfigBindingO

| RemConfigDev Remove a ConfigDev from the system list]

Call: RemConfigDev(configDev)

-108(A6) A0

Function: Removes the given ConfigDev structure from the system

list.

231

3. Programming with AmigaOS 2.x

Parameters: configDev ConfigDev structure

See also: AddConfigDev()

[SetCurrentBinding Set CurrentBinding|

Call: SetCurrentBinding (CurrentBinding, size)

-132(A6) AO D0:16

Function: Copies the contents of the given buffer to the system's

CurrentBinding structure.

Parameters: CurrentBinding

Buffer with the new contents for the

CurrentBinding structure.

size Buffer size

See also: GetCurrentBindingO

ADNB_STARTPROC=0/ ADNF_STARTPROC=1 ;start Handler immediately

Dec Hex STRUCTURE BootNode,LN_SIZE ;boot node

14 $E UWORD bn_Flags ;Flags

16 $10 APTR bn_DeviceNode ;DosList

20 $14 LABEL BootNode_SIZEOF

Dec Hex STRUCTURE ExpansionBase,LIB_SIZE /library

34 $22 UBYTE eb_Flags /readable

35 $23 UBYTE eb_Private01 /private

3 6 $24 ULONG eb_Private02 /private

40 $28 ULONG eb_Private03 /private

44 $2C STRUCT eb_Private04,CurrentBinding_SIZEOF /private

60 $3C STRUCT eb_PrivateO5,LH_SIZE /private

74 $3A STRUCT eb_MountList,LH_SIZE /BootNodes private

... ;more private data...

EE_OK = 0 /no errors

EE_LASTBOARD = 40 /cannot be closed

EE_NOEXPANSION = 41 /not enough memory

EE_NOMEMORY = 42 /no normal memory free

EE_NOBOARD = 43 /no board available

EE_BADMEM =44 /defective memory

232

3.1 The Libraries and their Functions

EBB_CLOGGED = 0, EBF_CLOGGED 1 ;close error

EBB_SHORTMEM = 1, EBF_SHORTMEM = 2 ; less memory

EBB_BADMEM = 2, EBF_BADMEM = 4 ;defective memory

EBB_DOSFLAG = 3, EBF_DOSFLAG = 8 ;for AmigaDOS

EBB_KICKBACK33 = 4, EBF_KICKBACK33 = 16 ;OS change (DOS)

EBB_KICKBACK36 = 5, EBF_KICKBACK36 = 32 ;OS change (DOS)

3.1.7 The GadTools Library

The GadTools library, which uses the name "gadtools.library" for

OpenLibraryO, is used to simplify the programming of gadgets, menus,

and Intuition events. Previous operating system versions required many

data structures to be created by hand. Now, an application can be made

more user-friendly with just a few calls to the functions of the GadTools

library.

GadTools Library Functions

CreateContext

CreateGadgetA

CreateMenusA

DrawBevelBoxA

FreeGadgets

FreeMenus

FreeVisuallnfo

GetVisuallnfoA

GTJBeginRefresh

GT_EndRefresh

GT_FilterIMsg

GT_GetIMsg

GT_PostFilterIMsg

GT_RefreshWindow

GT_ReplyIMsg

GTJSetGadgetAttrsA

LayoutMenuItemsA

LayoutMenusA

233

3. Programming with AmigaOS 2.x

Description of the Functions

ICreateContext Reserve a data block!

Call: gad = CreateContext (glistpointer)

DO -114(A6) AO

STRUCT Gadget *gad,**glistpointer

Function: Reserves room for the context data. This function must be

called before creating gadgets with the GadTools library.

Parameters: glistptr Address of a longword ending in 0 where

GadTools will store the address of the gadget

being generated. The gadget address can then

be given to Intuition later (AddGList() etc.).

Result: Address of a context gadget or 0.

ICreateGadgetA Create a GadTools gadget]

Call: gad = CreateGadgetA(kind/ previous, newgad, taglist)

DO -30(A6) DO AO Al A2

STRUCT Gadget *gad,*previous

ULONG kind

STRUCT NewGadget *newgad

STRUCT Tagltem *taglist

Function: Gets a gadget of the given type, initializes it as indicated by

the tags and the NewGadget structure, and adds it to an
existing gadget.

Parameters: kind Gadget type

previous Gadget to which the new GG will be added.

newgad NewGadget structure that describes the

gadget.

taglist Tagltem field with special instructions.

234

3.1 The Libraries and their Functions

Tags: GTJJnderscore (Char (starting with version 37)) defines

the character for which the following character will be

underlined in the gadget text (for example, to indicate the

"hotkey" that will activate the gadget). If the "_" character

is selected and the gadget text reads "_Color", then the

gadget text will appear on screen with the "C" underlined.

GA_Disabled (BOOL) is used to turn off the gadget

(TRUE). By default, the gadget is active.

GTCB_Checked (BOOL) is used to display a check mark

(TRUE) in a Checkbox gadget. The default is no check

mark.

GTCYJLabels (STRPTR *) sets the O-terminated string

address field for Cycle gadgets.

GTCY_Active (UWORD) sets the number (0...) of the

active text for a Cycle gadget. The default string is 0.

GTINLNumber (ULONG) sets the contents (value) of an

Integer gadget. The default value is 0.

GTINJMaxChars (UWORD) sets the maximum number of

decimal places for an Integer gadget. The default is 10.

STRINGA_ExitHelp (BOOL) (V37 and up) If TRUE, an

Integer gadget can be ended by pressing the Help key.

You will then get a GADGETUP with the RawKey code of

the Help key ($5F).

GAJTabCycle (BOOL) (V37 and up) If TRUE, pressing

(Tab) or I Shift 1-1 Tab 1 will activate the next or the previous

gadget. The default is TRUE.

GTLVJTop (UWORD) sets the number of the first visible

entry in a ListView gadget (scrollable list). The default is

Entry 0.

235

3. Programming with AmigaOS 2.x

GTLV_Labels (STRUCT List *) passes a list whose

LN_NAME entries will appear in the ListView gadget (box

with scrollable list).

GTLV_ReadOnly (BOOL) sets the read-only attribute for a

ListView gadget (TRUE).

GTLV_ScrollWidth (UWORD) sets the width of the scroll

bar. The default is 16 pixels.

GTLVJShowSelected (STRUCT Gadget *) passes a String

gadget, in which the selected entry can be edited, to a

ListView gadget. If the value 0 is passed, the selected item

is displayed below the ListView gadget.

GTLV_Selected (UWORD) sets the number of the pre

selected item in a ListView gadget. The default is -1, which

means no item is pre-selected.

LAYOUTA_Spacing sets the number of lines between two

items in a ListView gadget. The default is 0.

GTMX_Labels (STRPTR *) is a 0-terminated string address

field containing the texts that will be displayed next to the

selection buttons in a mutually exclusive selection table

(MutualXclusive gadget).

GTMX_Active (UWORD) sets the active button number

for an MX gadget. The default button is 0.

GTMX_Spacing (UWORD) sets the distance between two

items in an MX gadget. The default is one line (1).

GTNM_Number (LONG) sets the value to be displayed as a

decimal string in a non-revisable gadget (default: 0).

GTNMJBorder (BOOL) displays a border (TRUE).

GTPAJ)epth (UWORD) sets the number of bit-planes for a

Palette gadget. The default is one bit-plane (2A1 colors).

236

3.1 The Libraries and their Functions

GTPA_Color (UBYTE) sets the default for the selected

color of a Palette gadget (otherwise 1 is used).

GTPA_ColorOffset (UBYTE) determines the number of the

first color to be queried in a Palette gadget. The default is

color 0.

GTPAJndicatorWidth (UWORD) sets the width of the

palette's color indicator if it is used.

GTPAJndicatorHeight (UWORD) is the same for the

height of the color indicator.

GTSCJTop (WORD) sets the start of a ScrollGadget (similar

to the old PropGadget). The default is 0.

GTSCJTotal (WORD) sets the number of available units

(ScrollGadget, default: 0 units).

GTSCJVisible (WORD) sets how many units will be visible

at once (ScrollGadget, default: 2 units from GTSCJTotal).

GTSCLArrows (UWORD) equips the ScrollGadget with

arrow symbols. The value defines the height of the arrow

and ScrollGadget for a horizontal gadget and the width of

the arrow and Scroll Gadget for a vertical gadget.

PGA_Freedom is used to define a vertical ScrollGadget

(LORIENTJVERT). The default is a horizontal

ScrollGadget (LORIENT_HORIZ).

GA_Immediate (BOOL) causes every

IDCMP_GADGETDOWN event to be passed (TRUE).

GA_RelVerify (BOOL) same for IDCMP_GADGETUP

events.

GTSL_Min (WORD) sets the minimum value for a

SliderGadget (default: 0).

237

3. Programming with AmigaOS 2.x

GTSLJMax (WORD) is the same for the maximum value

(default: 15).

GTSL_Level (WORD) sets a SliderGadget to a specified

location (default 0).

GTSL_MaxLevelLen (UWORD) sets the maximum length

of the string containing the location for the SliderGadget.

GTSL_LevelFormat (STRPTR) determines a format string

for the 32 bit value indicating the location for the

SliderGadget. The format string is formatted with the Exec

routine RawDoFmt().

GTSL_LevelPlace determines where the position value will

be output (PLACETEXT_LEFT (default),

PLACETEXT_RIGHT, PLACETEXT_ABOVE, or

PLACETEXT_BELOW).

GTSL_DispFunc (FPTR) associates a function with a

SliderGadget. The function is passed the gadget address

and position value on the stack. The slider position is

calculated from this information and passed back as a

longword in DO.

GTSTJString (STRPTR) sets the string used to initialize the

contents of a StringGadget (default: empty = 0).

GTSTJMaxChars (UWORD) sets the maximum number of

characters in a StringGadget buffer.

GTTXJText (STRPTR) sets the contents of a TextGadget

(default: empty=0).

GTTX_CopyText (BOOL) causes the TextGadget to make

a copy of GTTXJText (TRUE).

GTTX_Border (BOOL) makes a border for the TextGadget

(TRUE).

Result: Address of a new gadget or 0.

238

3.1 The Libraries and their Functions

ICreateMenusA Create a GadTools menu|

Call: menu = CreateMenusA(newmenu, taglist)

DO -48(A6) AO Al

STRUCT Menu *menu

STRUCT NewMenu *newmenu

STRUCT Tagltem *taglist

Function: Creates a complete MenuStrip according to the information

in the NewMenu structure and the tags.

Parameters: newmenu List with initialized NewMenu structure.

taglist Tagltem field

Tags: GTMN_FrontPen (UBYTE) text color (or else 0).

GTMN_FullMenu (BOOL (Version 37 and up)) indicates

that the menu description of the NewMenu structure

pertains to a complete MenuStrip (TRUE).

GTMNJSecondaryError (ULONG * (Version 37 and up))

passes the address of a long initialized to 0, to which an

error code can be written:

GTMENUJNVALID

Invalid NewMenu structure (result 0).

GTMENUJTRIMMED

Too many items (some are trimmed).

GTMENUJsfOMEM

Not enough memory.

Result: MenuStrip address, might not be complete

(GTMENUJTRIMMED) or 0. MenuStrips are created

without locations. Therefore, LayoutMenusA() or

LayoutMenuItemsA() must be called before they are

added.

239

3. Programming with AmigaOS 2.x

IDrawBevelBoxA Draw a box |

Call' DrawBevelBoxA(rport, left, top, width, height, taglist)

-120(A6) A0 DO Dl D2 D3 A3

STRUCT

WORD

STRUCT

Function: Draws

Parameters: rport

left

top

width

height

taglist

RastPort *rport

left,top,width,height

Tagltem *taglist

a box in a RastPort.

RastPort

Left edge of box

Top edge of box

Width of box

Height of box

Tagltem field

Tags: GTBB_Recessed (BOOL) is used to draw a new box;

otherwise the box is removed.

GT_VisualInfo (APTR) must be given with the result of a

GetVisualInfoA() call.

| FreeGadgets Free gadgets|

Call: FreeGadgets (glist)

-36(A6) A0

STRUCT Gadget *glist

Function: Frees all memory for a gadget list whose components were

allocated with CreateGadgetA().

Parameters: glist One or more linked gadget structures.

| FreeMenus Free menus I

Call: FreeMenus (menu)

-54(A6) A0

STRUCT Menu *menu

240

3.1 The Libraries and their Functions

Function: Free all memory for menus created with CreateMenusA().

Parameters: menu Menu or Menultem from CreateMenusA().

1 FreeVisuallnfo Free Visuallnfo|

Call: FreeVisuallnfo (vi)

-132(A6) AO

APTR vi

Function: Frees memory and resources allocated with

GetVisualInfoA(). This function may only be called after

gadgets are used, for example, after a window is closed. It

must be called before closing or unlocking a screen.

Parameters: vi Result from GetVisualInfoA()

1 GetVisuallnfoA Get information on the screen display |

Call: vi = GetVisuallnfoA(screen, taglist)

DO -126(A6) AO Al

APTR vi

STRUCT Screen *screen

STRUCT Tagltem *taglist

Function: Gets the information that the GadTools library needs to

create the best possible gadgets or menus. After a window

is closed for the last time, the result must be freed with

FreeVisualInfo().

Parameters: screen Screen where the window is to be opened.

taglist Tagltems field

Result: Address of a private data field.

|GT BeginRefresh BeginRefresh for GadTools windows 1

Call: GT_BeginRefresh (win)

-90(A6) AO

241

3. Programming with AmigaOS 2.x

STRUCT Window *win

Function: Executes the BeginRefresh() (known from Intuition) for

windows with GadTools structures (GadTools works with

NOCAREREFRESH windows).

Parameters: win Window that receives an

IDCMP_REFRESHWDSfDOW message.

|GT EndRefresh End refresh]

Call: GT_EndRefresh (win, complete)

-96(A6) AO DO

STRUCT Window *win

BOOL complete

Function: Ends a window refresh that was started with

GT_BeginRefresh().

Parameters: win Window structure

complete Flag: TRUE=refresh completed

|GT FilterlMsg Pass Intuition message to GadTools |

Call: modimsg = GT_FilterlMsg(imsg)

DO -102(A6) Al

STRUCT IntuiMessage *modimsg,*imsg

Function: Passes an Intuition message to the GadTools library to

assure proper control of GadTools gadgets.

Parameters: imsg Normal IntuiMessage from a window UserPort.

Result: 0 if GadTools was not interested in the message; otherwise

an IntuiMessage modified with information from GadTools.

242

3.1 The Libraries and their Functions

|GT GetlMsg Get and process an IntuiMessage |

Call: imsg = GT_GetlMsg(intuiport)

DO -72(A6) AO

STRUCT IntuiMessage *imsg

STRUCT MsgPort *intuiport

Functions, Results:

Similar to GTJFilterlMsgO, except that the message is first

retrieved from the given port with GetMsg().

Parameters: intuiport UserPort for a window.

|GT PostFilterlMsg Restore an IntuiMessage |

Call: imsg = GT_PostFilterlMsg (modimsg)

DO -108 (A6) Al

STRUCT IntuiMessage *imsg,*modimsg

Function: Messages modified by GadTools must not be answered

with ReplyMsg(). This function returns the original

message and frees the memory used by the modified

message.

Parameters: modimsg A GadTools message from GT_GetIMsg() or

GT_FilterIMsg().

Result: The original IntuiMessage.

|GT RefreshWindow Refresh all GadTools gadgets |

Call: GT_RefreshWindow(win, req)

-84(A6) AO Al

STRUCT Window *win

STRUCT Requester *req

Function: Calling intuition/RefreshGList() after intuition/AddGList()

is not enough to properly display GadTools gadgets. This

243

3. Programming with AmigaOS 2.x

function must also be called. Afterwards, it is no longer

needed.

Parameters: win Window with GadTools gadgets.

req Requester address (not yet supported: 0)

[GT RepIylMsg Reply to a GadTools message |

Call: GT_ReplyiMsg (imsg)

-78(A6) Al

STRUCT IntuiMessage *imsg

Function: Replies to a message obtained with GT_GetIMsg().

Parameters: imsg A modified IntuiMessage from GT_GetIMsg().

|GT SetGadgetAttrsA Change attributes of a GadTools gadget |

Call: GT_SetGadgetAttrsA(gad, win, req, taglist)

-42 (A6) A0 Al A2 A3

STRUCT Gadget *gad

STRUCT Window *win

STRUCT Requester *req

STRUCT Tagltem *taglist

Function: Changes the attributes of a GadTools gadget according to

the information in a Tagltem field.

Parameters: gad GadTools gadget

win Window containing the gadget.

req Requester for the gadget (not yet supported:

0).

taglist Tagltem field

Tags: BUTTON-Gadget: GAJDisabled.

CHECKBOX-Gadget: GTCB_Checked, GA_Disabled.

244

3.1 The Libraries and their Functions

CYCLE-Gadget: GTCY_Active, GTCYJLabels,

GA_Disabled.

INTEGER-Gadget: GTIN_Number, GA_Disabled.

LISTVIEW-Gadget: GTLVJTop, GTLV_Labels,

GTLV_Selected.

MX-Gadget: GTMX_Active.

NUMBER-Gadget: GTNMJNfumber.

PALETTE-Gadget: GTPA^Color, GA_Disabled.

SCROLLER-Gadget: GTSCJTop, GTSC.Total,

GTSCJVisible, GA_Disabled.

SLIDER-Gadget: GTSL_Min, GTSL_Max,

GTSLJLevel, GA_Disabled.

STRING-Gadget: GTSTJString, GA_Disabled.

TEXT-Gadget: GTTX_Text.

| LayoutMenuItemsA Enter positions for Menultems |

Call' success = LayoutMenuItemsA(menuitem, vi, taglist)

DO -60 (A6) A0 Al A2

BOOL success

STRUCT MenuItem *menuitem

APTR vi

STRUCT TagItem *taglist

Function: Enters the positions of Menultems and Subltems.

Parameters: menuitem First Menultem

vi Result of GetVisualInfoA().

taglist Description of the items.

Tags: GTMNJTextAttr (STRUCT TextAttr *) defines the font for

Menultems and Subltems. The font must be accessible with

graphics/OpenFont().

GTMNJVlenu (STRUCT Menu *) gives GadTools the

address of the Menu structure of the given items (needed

for calculations).

245

3. Programming with AmigaOS 2.x

Result: 0 Error

[LayoutMenusA Enter position in MenuStrip]

Call: success = LayoutMenusA (menu, vi, taglist)

DO -66(A6) AO Al A2

BOOL success

STRUCT Menu *menu

APTR vi

STRUCT Tagltem *taglist

Function: Enters positions for an entire MenuStrip.

Parameters: menu MenuStrip address from CreateMenusA().

vi Result from GetVisualInfoA().

taglist Tagltem field

Tags:

Result:

GTMN_TextAttr (STRUCT TextAttr *) see

LayoutMenuItemsAQ.

0 Error

GENERIC_KIND

BUTTON_KIND

CHECKBOX_KIND

INTEGER_KIND

LISTVIEW_KIND

MX_KIND

NUMBER_KIND

CYCLE_KIND

PALETTE_KIND

SCROLLER_KIND

SLIDER_KIND

STRING_KIND

TEXT_KIND

NUM_KINDS

GADTOOLBIT

GADTOOLMASK

= 0 /standard gadget

= 1

= 2

= 3

= 4

= 5

= 6

= 7

= 8

= 9

= 11

= 12

= 13

= 14 /number of new gadgets

= $8000 ;GadTools gadget

= $7FFF ;user bits

246

3.1 The Libraries and their Functions

Required IDCMP Flags:

ARROWIDCMP

BUTTONIDCMP

CHECKBOXIDCMP

INTEGERIDCMP

LISTVIEWIDCMP

MXIDCMP

NUMBERIDCMP

CYCLEIDCMP

PALETTEIDCMP

SCROLLERIDCMP

SLIDERIDCMP

STRINGIDCMP

TEXTIDCMP

GADGETUP!GADGETDOWN!INTUITICKS!MOUSEBUTTONS

GADGETUP

GADGETUP

GADGETUP

GADGETUP!GADGETDOWN!MOUSEMOVE!ARROWIDCMP

GADGETDOWN

0

GADGETUP

GADGETUP

GADGETUP!GADGETDOWN!MOUSEMOVE /without arrows!

GADGETUP!GADGETDOWN!MOUSEMOVE

GADGETUP

0

Spacing:

INTERWIDTH

INTERHEIGHT

Dec

0

2

4

6

8

12

16

18

22

26

30

Hex

$0

$2

$4

$6

$8

$c

$10

$12

$16

$1A

$1E

= 8

= 4

STRUCTURE NewGadget,0

WORD

WORD

WORD

WORD

APTR

APTR

UWORD

ULONG

APTR

APTR

LABEL

gng_LeftEdge

gng_TopEdge

gng_Width

gng_Height

gng_GadgetText

gng_TextAttr

gng_GadgetID

gng_Flags

gng_VisualInfo

gng_UserData

gng_SIZEOF

/gadget position

;gadget size

;text

;font for the text

;ID

;Flags

;see GetVisualInfo()

/user data

PLACETEXT_LEFT = $0001 ;next to slider, left

PLACETEXT_RIGHT = $0002 ;right next to slider, right

PLACETEXT_ABOVE = $0004 ;above slider

PLACETEXT_BELOW = $0008 ;below slider

PLACETEXT_IN = $0010 ;in the gadget

NG_HIGHLABEL = $0020 /highlight

Dec Hex STRUCTURE NewMenu,0

0

1

2

6

10

12

$0

$1

$2

$6

$A

$c

UBYTE

UBYTE

APTR

APTR

UWORD

LONG

gnm_Type

gnm_Pad

gnm_Label

gnm_Comn\Key

gnm_Flags

gnm_MutualExclude

; type

; text

;character

;structure

/exclude

247

3. Programming with AmigaOS 2.x

16 $10 APTR

20 $14 LABEL

gnm_UserData

gnm_SIZEOF

;user data

UserData always comes after the normal structure, for example, as with

mu_SIZEOF(Menu).

NM_TITLE = 1 ;Menu

NM_ITEM = 2 ;MenuItem

NM_SUB = 3 ;SubItern

NM_END = 0 ;end of field

MENU_IMAGE =128 ;Image flag

IM_ITEM = NM_ITEM!MENU_IMAGE ; item with image

IM_SUB = NM_SUB!MENU_IMAGE ;SubItem with image

NM_BARLABEL = -1 /dividing line

NM_MENUDISABLED = MENUENABLED

NM_ITEMDISABLED = ITEMENABLED

NM_FLAGMASK = -(COMMSEQ!ITEMTEXT!HIGHFLAGS)

GT_TagBase

GTVI_NewWindow

GTVT_NWTags

GT_PrivateO

GTCB_Checked

GTLV_Top

GTLV_Labels

GTLV_ReadOnly

= TAG_USER+$80000

= GT_TagBase+$01

= GT_TagBase+$02

= GT_TagBase+$03

= GT_TagBase+$04

= GT_TagBase+$05

= GT_TagBase+$06

= GT_TagBase+$07

GTLV_ScrollWidth= GT_TagBase+$08

GTMX_Labels = GT_TagBase+$09

GTMX_Active = GT_TagBase+$0A

GTTX_Text = GT_TagBase+$0B

GTTX_CopyText = GT_TagBase+$0C

GTNM_Number = GT__TagBase+$0D

GTCYJLabels = GT_TagBase+$0E

GTCY_Active = GT_TagBase+$0F

GTPA_Depth = GT_TagBase+$10 •

GTPA_Color = GT_TagBase+$ll

GTPA_ColorOffset= GT_TagBase+$12

GTPA_IndicatorWidth =GT_TagBase+$13

GTPA_IndicatorHeight=GT_TagBase+$14

GTSCJTop = GT__TagBase+$15

GTSC_Total = GT__TagBase+$16

GTSC_Visible = GT_TagBase+$17

GTSC_Overlap = GT_TagBase+$18

;first Tag

;NewWindow for VisualInfo

;NewWindow Tags

/private

/checkbox status

;top of ListView

;ListView contents

/ListView type

/ListView scroller width

/MX contents

/MX prefix

/text

/copy text

/number value

/cycle contents

/cycle prefix

/palette bit planes

/palette prefix

/palette start

/palette indicator width

/palette indicator height

/top of scroller

/total contents of scroller

/scroller contents

/not used

248

3.1 The Libraries and their Functions

GTSL_Min

GTSL_Max

GTSL_Level

GTSL_MaxLevelLen=

GTSL_LevelFormat=

GTSL_LevelPlace =

GTSLJDispFunc =

GTST_String =

GTST_MaxChars

GTIN_Number

GTIN_MaxChars

GTMN_TextAttr

GTMNJFrontPen =

GTBB__Recessed =

GT_VisualInfo

GTLV_ShowSelected:

GTLV_Selected

GT_ReservedO =

GT_Reservedl =

GTTX_Border =

GTNM_Border =

GTSC_Arrows =

GTMN_Menu =

GTMX_Spacing =

GT_TagBase+ $2 6

GT_TagBase+$27

GT_TagBase+$28

GT_TagBase+$29

GT_TagBase+$2A

GT_TagBase+$2B

GT_TagBase+$2C

GT_TagBase+$2D

GT_TagBase+$2E

GT_TagBase+$2F

GT_TagBase+$30

GT_TagBase+$31

GT_TagBase+$32

GT_TagBase+$33

GT_TagBase+$34

=GT_TagBase+$35

GT_TagBase+$36

GT_TagBase+$37

GT_TagBase+$38

GT_TagBase+$39

GT_TagBase+$3A

GT_TagBase+$3B

GT_TagBase+$3C

GT_TagBase+ $ 3D

Example

;slider minimum

;slider maximum

;slider position

;slider text length

;slider format string

;slider text position

;slider function

;string contents

;string text length

;integer value

;integer text length

; MenuItern font

;MenuItem text color

;BevelBox recessed

;VisualInfo

;ListView display

;ListView prefix

;reserved

;reserved

;text border

/number border

/scroller arrows

;menu address

;MX spacing

Create gadgets. In some cases, using GadTools can be more difficult than

creating the gadgets yourself. But your efforts will be rewarded with

gadgets that have the new, professional-looking standard appearance.

Also, you won't have to program the query routines for the new gadget

types yourself.

bsr

beq

movea.

movea.

moveq

moveq

lea

1

1

_CreateGadgets

_NoGadgets

_Window,aO

_GadgetListe(pc)

#-lfd0

#-l,dl

£0.w,a2

movea. 1 _IntuiBase,a6

j sr _LVOAddGList(a6)

movea.1 _GadgetListe(pc),aO

movea.1 _Window,al

249

3. Programming with AmigaOS 2.x

moveq #-l,dO

jsr _LVORefreshGList(a6)

movea.l _Window,aO

movea.1 a2,al

movea.1 _GadToo1sBase,a 6

jsr _LVOGT_RefreshWindow(a6)

_CreateGadgets

movea.l _GadToolsBase,a6

movea.1 _MyScreen,aO

lea _DummyTags,al

j sr _LVOGetVisualInfoA(a6)

move.l dO,_VisualInfo

beq _Zerrorl

lea _Gadgetliste(pc),aO

jsr _LVOCreateContext(a6)

tst.l dO

beq _Zerror2

movea.1 dO, aO

moveq #CYCLE_KIND,dO

lea _NewGadget(pc),al

lea _TagList(pc),a2

jsr _LVOCreateGadgetA(a6)

tst.l dO

beq _Zerror3

rts

_Zerror3

movea.l _GadgetListe(pc),aO

jsr _LVOFreeGadgets(a6)

_Zerror2

movea.l _VisualInfo,aO

jsr _FreeVisualInfo(a6)

_Zerrorl

moveq #0,d0

rts

__DummyTags

del TAG_DONE

250

3.1 The Libraries and their Functions

_Gadgetliste

del 0

_NewGadget

dew 10,10,80,12

del 0,_Topaz8

dew 1

del 0

_VisualInfo

del 0,0

_Topaz8

dc.1 _TopazName

dew 8

de b 0,0

_TagList

del GTCY_Labels,_Strings

del TAG_DONE

_Strings

dc.1 _Text 0,_Text1,_Text2,_Text 3,0

_TopazName

deb ' topaz . font', 0

_TextO

deb 'DFO: ■ ,0

_Textl

deb 'DF1: ' ,0

_Text2

de b ' DF2 : ' , 0

_Text3

deb 'DF3: ' ,0

3.1.8 The Graphics Library

Programmers often refer to "graphics.library" (its proper name for the

OpenDeviceO function) as the Gfx library. Gfx is responsible for all

display and graphics operations. This library is used to program the blitter

and the copper which control the video hardware. These routines are

251

3. Programming with AmigaOS 2.x

used for such operations as drawing, text output, and displaying movable

objects. The base address must always be passed in A6.

Functions of the Gfx Library

1. The Video Hardware

CBump

CloseMonitor

CMove

CWait

FindDisplaylnfo

FreeCopList

FreeCprList

FreeVPortCopLists

GetDisplaylnfoData

GetVPModelD

LoadRGB4

LoadView

MakeVPort

ModeNotAvailable

MrgCop

NextDisplaylnfo

OpenMonitor

ScrollVPort

SetRGB4

VBeamPos

VideoControl

WaitBOVP

WaitTOF

2. General Blitter Control

BitMapScale

BltBitMap

BltBitMapRastPort

BltClear

BltMaskBitMapRast

Port

BltPattern

BltTemplate

ClipBlit

CopySBitMap

DisOwnBlitter

OwnBlitter

QBlit

QBSBlit

ScalerDiv

ScrollRaster

SyncSBitMap

WaitBlit

3. Refresh Functions

AndRectRegion

AndRegionRegion

ClearRectRegion

ClearRegion

DisposeRegion

NewRegion

OrRectRegion

OrRegionRegion

XorRectRegion

XorRegionRegion

4. Data Structures

AllocRaster

AttemptLockLayerRom

FreeColorMap

FreeRaster

GetColorMap

GetRGB4

InitBitMap

InitRastPort

InitTmpRas

InitView

InitVPort

LockLayerRom

252

3.1 The Libraries and their Functions

SetRGB4CM

UnlockLayerRom

5. Draw Functions

AreaDraw

AreaEllipse

AreaEnd

AreaMove

Draw

DrawEllipse

EraseRect

Flood

InitArea

Move

PolyDraw

ReadPixel

ReadPixelArray8

ReadPixelLine8

RectFill

SetAPen

SetBPen

SetDrMd

SetRast

WritePixel

WritePixelArray8

WritePixelLine8

6. Text Output

AddFont

AskFont

AskSoftStyle

ClearEOL

ClearScreen

CloseFont

ExtendFont

FontExtent

OpenFont

RemFont

SetFont

SetSoftStyle

StripFont

Text

TextExtent

TextFit

TextLength

WeighTAMatch

7. Movable Objects

AddAnimOb

AddBob

AddVSprite

Animate

ChangeSprite

DoCollision

DrawGList

FreeGBuffers

FreeSprite

GetGBuffers

GetSprite

InitGels

InitGMasks

InitMasks

MoveSprite

RemlBob

RemVSprite

SetCollision

SortGList

253

3. Programming with AmigaOS 2.x

Description of Functions

L The Video Hardware

ICBump UCopList pointer to the next instruction |

Call: CBump(c)

-366(A6) al

STRUCT UCopList *C

Function: Sets the command pointer of a user Copper list to the next

command.

Parameters: c Address of a UCopList structure.

[CIoseMonitor Close MonitorSpec!

Call: error = CIoseMonitor (monitor_spec)

dO -720(A6) aO

LONG error

STRUCT MonitorSpec *monitor__spec

Function: Closes the given MonitorSpec.

Parameters: monitor_spec

MonitorSpec address from OpenMonitor().

Result: 0 MonitorSpec closed

ICMove Write a Copper move instruction to the UCopListI

Call: CMove(c , a , v)

-372(A6)al dO dl

STRUCT UCopList *C

SHORT a,V

Function: Writes a Copper move command to a user Copper list

without changing the edit pointer.

254

3.1 The Libraries and their Functions

Parameters: c UCopList structure

a Hardware register offset from $DFF000.

v Word to which the register will be written.

ICWait Enter Copper wait in UCopList |

Call: CWait(c , v , h)

-378(A6) al dO dl

STRUCT UCopList *C

SHORT v,h

Function: Writes a Copper wait command to the user Copper list

without changing the edit position.

Parameters: c UCopList structure

v Vertical wait position (end = 10000).

h Horizontal wait position (end = 255).

| FindDisplaylnfo Get info on the display mode 1

Call: handle = FindDisplaylnfo (ID)

dO -726(A6) dO

ULONG ID

LONG handle

Function: Finds the information structure for a given display mode.

Parameters: ID 32 bit display mode (monitor specific

ViewMode).

Result: Handle to DisplaylnfoRecord or 0.

| FreeCopList Free Copper list buffer |

Call: FreeCopList (coplist)

-546(A6) aO

255

3. Programming with AmigaOS 2.x

STRUCT CopList *coplist

Function: Frees the memory used by a Copper list.

Parameters: coplist CopList structure

| FreeCprList Free a hardware Copper list |

Call: FreeCprList (cprlist)

-564(A6) aO

STRUCT cprlist *cprlist

Function: Frees the memory of a hardware Copper list.

Parameters: cprlist cprlist structure

1 FreeVPortCopLists Free ViewPort Copper lists |

Call: FreeVPortCopLists (vp)

-540(A6) aO

STRUCT ViewPort *vp

Function: Frees the memory for all Copper lists of a ViewPort.

Parameters: vp ViewPort

IGetDispIaylnfoData Get data associated with a display model

Call: result = GetDisplaylnfoData (handle, buf, size, tagID, ID)

dO -756(A6) aO al dO dl d2

LONG handle

APTR buf

ULONG size,tagID,ID,result

Function: Fills a buffer with data associated with a display mode.

Parameters: handle Displaylnfo handle of the display mode.

256

3.1 The Libraries and their Functions

buf Buffer to be filled

size Buffer size

tagID Desired data type:

DTAGJDISP Displaylnfo structure

DTAGJDIMS Dimensioning) structure

DTAGJVnNTTR Monitorlnfo structure

DTAGJNAME Display mode name

ID 32 bit display mode (if handle=0).

Result: Number of bytes in buffer, 0 (unknown mode or error).

IGetVPModelD Get a monitor specific display mode]

Call: modeiD = GetVPModelD(vp)

dO -792(A6) aO

STRUCT ViewPort *vp

ULONG modeiD

Function: Retrieves the monitor specific 32 bit display mode of a

ViewPort.

Parameters: vp ViewPort structure

Result: ModeiD or INVALIDJD

|LoadRGB4 Set color table]

Call: LoadRGB4(vp, colors , count)

-192(A6) aO al dO:16

STRUCT ViewPort *vp

APTR colors

SHORT count

Function: Loads the 3x4 bit RGB color values from a table to the

ColorMap of the ViewPort, recalculates the Copper lists,

and controls the video hardware.

257

3. Programming with AmigaOS 2.x

Parameters: vp ViewPort whose colors are to be changed.

colors Word array with color values ($ORGB).

count Number of colors (including 0).

| LoadView Activate a Copper list |

Call: Loadview(View)

-222(A6) Al

STRUCT View *View

Function: Activates the Copper list of a view (available after

MakeView(), MrgCopO) until the next call. Many

programs, handlers (Intuition, Workbench...) and operating

system routines call this function, so a good knowledge of

the system is required for error-free programming.

Parameters: View View structure with Copper lists or 0 (screen

off but DMA still running, as, for example, with

the sprite DMA).

|MakeVPort Assemble the Copper lists of a ViewPort |

Call: MakeVPort(view, viewport)

-216(A6) aO al

STRUCT View *view

STRUCT ViewPort *viewport

Function: Derives the Copper lists of a ViewPort.

Parameters: view View structure of the ViewPorts.

viewport ViewPort structure with Raslnfo.

|ModeNotAvailable Checks on availability of a display model

Call: error = ModeNotAvailable (modelD)

dO -798 (A6) dO

258

3.1 The Libraries and their Functions

ULONG modelD,error

Function: Checks for the availability of a monitor specific 32 bit

display mode.

Parameters: modeK) 32 bit display mode

Result: Error code that describes why the mode is not available, or

0 if the system does not have a reason why this mode can't

be used.

I MrgCop Merge Copper lists |

Call: MrgCop (View)

-210(A6) Al

STRUCT View *View

Function: Merges all partial Copper lists into a proper Copper list.

Parameters: View View structure with partial Copper lists.

INextDispIaylnfo Read through list of display modes]

Call: next_lD = NextDisplaylnfo (last_lD)

dO -732 (A6) dO

ULONG last_ID,next_lD

Function: Gets the next available monitor specific display mode.

Parameters: lastJD Result of the last call or INVALIDJD for the

start of the list.

Result: 32 bit display mode or INVALID_ID (no more modes).

IQpenMonitor Open MonitorSpecl

Call: mspc = OpenMonitor(monitor_name , display_id)

dO -714(A6) al dO

APTR monitor_name

259

3. Programming with AmigaOS 2.x

ULONG display_id

STRUCT MonitorSpec *mspc

Function: Opens a MonitorSpec which is given the monitor name or

the 32 bit ID. If both parameters are 0, then the default
monitor is returned.

Parameters: monitor_name

Monitor name or 0.

displayed 32 bit display mode or 0.

Result: MonitorSpec structure or 0.

I ScrollVPort Scroll ViewPort contents!

Call: ScrollVPort(vp)

-588(A6) aO

STRUCT Viewport *vp

Function: Called after changing the Raslnfo offsets and BitMap

pointer to recalculate the Copper lists. Warning: high level

languages are too slow.

Parameters: vp Visible ViewPort

|SetRGB4 Change colors]

Call: SetRGB4(vp, n, r, g, b)

-288(A6) aO dO dl:4 d2:4 d3:4

STRUCT ViewPort *vp

SHORT n

UBYTE r,g,b

Function: Sets the color intensity of a color register, recalculates the

Copper list, which controls the hardware.

Parameters: vp ViewPort

n Color number (0...31)

260

3.1 The Libraries and their Functions

r Red intensity (0...15)

g Green intensity (0... 15)

b Blue intensity (0...15)

1 VBeamPos Get the vertical beam position]

Call: pos = VBeamPos ()

dO -384(A6)

LONG pos

Function: Gets the position of the monitor's vertical beam.

Result: Vertical beam position (0...511). The uncertainty is

extremely high and is only acceptable for a task with the

highest priority.

I VideoControl Change the color operations of a ViewPort]

Call: error = VideoControl (cm , tags)

dO -708(A6) aO al

LONG error

STRUCT ColorMap *cm

STRUCT Tagltem *tags

Function: Change the operation of a ViewPort's ColorMap according

to the commands in a Tagltem field.

Parameters: cm ColorMap, result of GetColorMap().

tags Tagltem field

Tags: VTAG_ATTACHLCM_,. get the ViewPort of the ColorMap

(..GET), set (..SET).

VTAG_VIEWPORTEXTRA_.. get vp_extra (..GET), set

(..SET).

261

3. Programming with AmigaOS 2.x

VTAG_NORMAL_DISP_.. get DisplaylnfoHandle in

normal mode (..GET), set (..SET).

VTAG_COERCE_DISP_.. same for coerced mode (..GET,

..SET).

VTAG_BORDERBLANK_.. Genlock: set border blanking

(..SET), clear (..CLR), get (..GET).

VTAG_BORDERNOTRANS_.. set no-transparency in the

border region (..SET), clear (..CLR), get (..GET).

VTAG_CHROMAKEY_.. set Chroma mode (..SET), clear

(..CLR), get (..GET).

VTAG_BITPLANEKEY_.. set BitPlane mode (..SET), clear

(..CLR), get (..GET).

VTAG_CHROMAJPEN__.. set Chroma color number

(..SET), clear (..CLR), get (..GET).

VTAG_CHROMAJPLANE_.. set BitPlane number (..SET),

get (..GET).

VTAG_NEXTBUF_CM next command list.

VTAG_END_CM last command.

Result: 0 Okay, followed by adding the next

MakeVPort().

1 WaitBOVP Wait until a ViewPort is scanned 1

Call: WaitBOVP(vp)

-402(A6) aO

STRUCT ViewPort *vp

Function: Waits until the monitor beam has displayed the last visible

line of the given ViewPort.

262

3.1 The Libraries and their Functions

Parameters: vp ViewPort

IWaitTOF Wait for vertical scan interrupts |

Call: waitTOF ()

-270(A6)

Function: Waits for the monitor's next vertical scan and for all VertB

interrupt routines to be processed (turning off tasks, signal

through VertB handler).

COPPER_MOVE = 0

COPPER_WAIT = 1

CPRNXTBUF = 2

CPR_NT_LOF = $8000

CPR_NT_SHT = $4000

Pseudo Opcodes for lists:

;Pseudo Opcode for MOVE #..

;Pseudo Opcode for WAIT ...

;end of buffer

;command for Shortframes

;command for Longframes (2. Interlace)

CPR_NT_SYS = $2000 ;User command

;Copper Pseudo Opcode

;0 = move, 1 = wait

/address of the next buffer

;or wait position

;or destination address

;2. partial wait position

;or value

Dec Hex STRUCTURE cprlist,0 /management of true Copper lists

0 $0 APTR crl_Next /address

4 $4 APTR crl_start /start

8 $8 WORD crl_MaxCount /length

10 $A LABEL crl_SIZEOF

Dec

0

2

2

2

4

4

6

Hex

$0

$2

$2

$2

$4

$4

$6

STRUCTURE Coplns,0

WORD

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

LABEL

ci_OpCode

ci_nxtlist,0

ci_VWaitPos,0

ci_DestAddr,2

ci_HWaitPos,0

ci_DestData,2

ci_SIZEOF

Dec

0

4

8

12

16

20

24

28

30

32

Hex

$0

$4

$8

$c

$10

$14

$18

$1C

$1E

$20

STRUCTURE CopList,0

APTR

APTR

APTR

APTR

APTR

APTR

APTR

WORD

WORD

WORD

cl_Next

cl CopList

cl ViewPort

cl_CopIns

cl_CopPtr

cl_CopLStart

cl_CopSStart

cl_Count

cl_MaxCount

cl_DyOffset

/management of temporary lists

/next structure

/private

/private

/start of block

/command address

/LongFrame address from MrgCopO

/ShortFrame address from MrgCopO

/counter

/block length in Pseudo Opcodes

/vertical start position

263

3. Programming with AmigaOS 2.x

34 $22 LABEL cl_SIZEOF

Dec Hex STRUCTURE UCopList,0 ;User Copper list

0 $0 APTR ucl_Next ;next list

4 $4 APTR ucl_FirstCopList /first node

8 $8 APTR ucl_CopList /current node

12 $C LABEL ucl_SIZEOF

;HiRes

;bplconO bit plane mask

;bplconO bit plane bit

;Playfield 2 priority

/suppress Color Burst

/DualPlayfield mode

/Hold-And-Modify mode

/Interlace mode

PFA_FINE_SCROLL = 15 /Softscrolling planes 0,2,4

PFB_FINE__SCROLL_SHIFT = 4 /bit position for planes 1,3,5

PF_FINE_SCROLL_MASK = 15 /Softscrolling planes 1,3,5

DIW_HORIZ_POS = $7F /horizontal mask

DIW_VRTCL_POS = $1FF /vertical mask

DIW_VRTCL_POS_SHIFT = 7 /bit position

DFTCH_MASK = $FF /data fetching mask

VPOSRLOF =$8000 /LongFrame Flag vpos

DTAG_DISP = $80000000 /Display Tags

DTAG_DIMS = $80001000

DTAG_MNTR = $80002000

DTAG_NAME = $80003000

MODE_640

PLNCNTMSK =

PLNCNTSHFT =

PF2PRI

COLORON

DBLPF

HOLDNMODIFY=

INTERLACE =

$8000

7

12

$40

$200

$400

$800

4

Dec Hex STRUCTURE QueryHeader,0

0 $0 ULONG qh_StructID /Display Tag ID

4 $4 ULONG qh__DisplayID

8 $8 ULONG qh_SkipID

12 $C ULONG qh_Length

16 $10 LABEL qh_SIZEOF

;32 bit mode

/TAG_SKIP

/length in 8 byte segments

Dec Hex STRUCTURE DisplayInfo,qh_SIZEOF

16 $10 UWORD dis_NotAvailable

18 $12 ULONG dis_PropertyFlags

22 $16 STRUCT dis_Resolution,tpt_SIZEOF

26 $1A UWORD dis_PixelSpeed

28 $1C UWORD dis_NumStdSprites

30 $1E UWORD dis_PaletteRange

32 $20 STRUCT dis_SpriteResolution,tpt_SIZEOF

36 $24 STRUCT dis_pad,4

/Flag: 0=available

;characteristics

/pixel resolution X/Y

/nanoseconds per pixel

/number of sprites

/available colors

/sprite resolution

264

3.1 The Libraries and their Functions

40 $28 STRUCT dis_reserved,8

48 $30 LABEL dis_SIZEOF

DI_AVAIL_NOCHIPS = 1

DI_AVAIL_NOMONITOR = 2

DI_AVAIL_NOTWITHGENLOCK = 4

DIPF_IS_LACE = $00000001

DIPF_IS_DUALPF = $00000002

DIPF_IS_PF2PRI = $00000004

DIPF_IS_HAM = $00000008

DIPF_IS_ECS = $00000010

DIPF_IS_PAL = $00000020

DIPF_IS_SPRITES = $00000040

DIPF_IS_GENLOCK = $00000080

DIPF_IS_WB = $00000100

DIPF_IS_DRAGGABLE = $00000200

DIPF__IS_PANELLED = $00000400

DIPF_IS_BEAMSYNC = $00000800

DIPF_IS_EXTRAHALFBRITE = $00001000

Dec Hex

16 $10

18 $12

20 $14

22 $16

24 $18

26 $1A

34 $22

42 $2A

50 $32

58 $3A

66 $42

80 $50

88 $58

Dec Hex

16 $10

20 $14

24 $18

28 $1C

36 $24

38 $26

40 $28

42 $2A

44 $2C

80 $50

88 $58

STRUCTURE Dimensionlnfo,qh_SIZEOF

UWORD dim_MaxDepth

UWORD dim_MinRasterWidth

UWORD dim_MinRasterHeight

UWORD dim_MaxRasterWidth

UWORD dim_MaxRasterHeight

STRUCT dim_Nominal,ra_SIZEOF

STRUCT dim_MaxOScan,ra_SIZEOF

STRUCT dim_VideoOScan,ra_SIZEOF

STRUCT dim_TxtOScan,ra_SIZEOF

STRUCT dim_StdOScan,ra_SIZEOF

STRUCT dim_pad,14

STRUCT dim_reserved,8

LABEL dim_SIZEOF

STRUCTURE Monitorlnfo,qh_SIZEOF

APTR mtr_Mspc

STRUCT mtr_ViewPosition,tpt_SIZEOF

STRUCT mtr_ViewResolution,tpt_SIZEOF

STRUCT mtr_ViewPos it ionRange,ra_SIZEOF

UWORD mtr_TotalRows

UWORD mtr_TotalColorClocks

UWORD mtr_MinRow

WORD mtr_Compatibi1ity

STRUCT mtr_pad,36

STRUCT mtr_reserved,8

LABEL mtr_SIZEOF

;number of bit planes

;minimum width

/minimum height

; maximum width

;maximum height

/standard dimensions

/maximum Overscan

/video Overscan

/text Overscan Prefs

/standard Overscan Prefs

/MonitorSpec

/Prefs

/resolution

/range

/number of rows

/width in l/280ns

/minimum height

/compatibility

265

3. Programming with AmigaOS 2.x

MCOMPAT_MIXED = 0 ;mixed display allowed

MCOMPAT_SELF = 1 ;with this monitor type only

MCOMPAT_NOBODY = -1 ;only on ViewPort allowed

DISPLAYNAMELEN = 32 /length of display name

Dec Hex STRUCTURE NameInfo,qh_SIZEOF

16 $10 STRUCT nif_Name,DISPLAYNAMELEN ;name

48 $30 STRUCT nif_reserved,8

56 $38 LABEL nif_SIZEOF

INVALID_ID = -l

MONITOR_ID_MASK = $FFFF1000

DEFAULT_MONITOR_ID = $00000000

NTSC_MONITOR_ID = $00011000

PAL_MONITOR_ID = $00021000

LORES_KEY = $00000000

HIRES_KEY = $00008000

SUPER_KEY = $00008020

HAM_KEY = $00000800

LORESLACE_KEY = $00000004

HIRESLACE_KEY = $00008004

SUPERLACE_KEY = $00008024

HAMLACE_KEY = $00000804

LORESDPF_KEY = $00000400

HIRESDPF_KEY = $00008400

SUPERDPF_KEY = $00008420

LORESLACEDPF_KEY = $00000404

HIRESLACEDPF_KEY = $00008404

SUPERLACEDPF_KEY = $00008424

LORESDPF2_KEY = $00000440

HIRESDPF2_KEY = $00008440

SUPERDPF2_KEY = $00008460

LORESLACEDPF2_KEY = $00000444

HIRESLACEDPF2_KEY = $00008444

SUPERLACEDPF2_KEY = $00008464

EXTRAHALFBRITE_KEY = $00000080

EXTRAHALFBRITELACE_KEY = $00000084

VGA__MONITOR_ID = $00031000

VGAEXTRALORES_KEY = $00031004

VGALORES_KEY = $00039004

VGAPRODUCT_KEY = $00039024

VGAHAM_KEY = $00031804

VGAEXTRALORESLACE_KEY = $00031005

VGALORESLACE_KEY = $00039005

VGAPRODUCTLACE_KEY = $00039025

VGAHAMLACE_KEY = $00031805

;LoRes

;HiRes

;SuperHiRes

,-HoldAndModify

;Interlace

;HiRes-Interlace

;SuperHiRes-Interlace

;HAM-Interlace

;DualPlayfield

;HiRes-DblPf

;SuperHiRes-DblPf

;Interlace-DblPf

;HiRes-Interlace-DblPf

;SuperHiRes-ILace-DblPf

;DualPlayfield2

;HiRes-DblPf2

;SuperHiRes-DblPf2

;Interlace-DblPf2

;HiRes-Interlace-DblPf2

;SuperHRes-ILace-DblPf2

;ExtraHalfbrite

;ExtraHalfbrite-ILace

;VGA monitor

;ExtraLoRes

;LoRes

;Productivity

;HAM

;ExtraLoRes-ILace

;Interlace

;Productivity-ILace

;HAM-Interlace

266

3.1 The Libraries and their Functions

VGAEXTRALORESDPF_KEY = $00031404

VGALORESDPF_KEY = $00039404

VGAPRODUCTDPF_KEY = $00039424

VGAEXTRALORESLACEDPF_KEY= $00031405

VGALORESLACEDPF__KEY = $00039405

VGAPRODUCTLACEDPF_KEY = $00039425

VGAEXTRALORESDPF2_KEY = $00031444

VGALORESDPF2_KEY = $00039444

VGAPRODUCTDPF2_KEY = $00039464

VGAEXTRALORESLACEDPF2_KEY=$00031445

VGALORESLACEDPF2_KEY = $00039445

VGAPRODUCTLACEDPF2_KEY = $00039465

VGAEXTRAHALFBRITE_KEY = $00031084

VGAEXTRAHALFBRITELACE_KEY=$ 00031085

;ExtraLoRes-DblPf

;DualPlayfield

;Productivity-DblPf

;XLoRes-ILace-DblPf

;Interlace-DblPf

;Prod-ILace-DblPf

;XLoRes-DblPf2

;DualPlayfield2

;Productivity-DblPf2

;XLoRes-ILace-DblPf2

;Interlace-DblPf2

;Prod-ILace-DblPf2

;ExtraHalfbrite

;EHB-Interlace

A2024_MONITOR_ID

A2 0 2 4TENHERTZ_KEY

A2 0 2 4FIFTEENHERTZ_KEY

PROTO_MONITOR_ID

= $00041000 /monochrome monitor

= $00041000 ;10 Hz mode

= $00049000 ;15 Hz mode

= $00051000 ;prototype

Dec Hex STRUCTURE tPoint,0 /resolution per point

0 $0 WORD tpt_x

2 $2 WORD tpt_y

4 $4 LABEL tpt_SIZEOF

Dec Hex STRUCTURE AnalogSignallnterval,0

0 $0 UWORD asi_Start

2 $2 UWORD asi_Stop

4 $4 LABEL asi_SIZEOF

Dec Hex STRUCTURE SpecialMonitor,XLN_SIZE

24 $18 UWORD spm_Flags

26 $1A APTR spm_do_monitor

30 $1E APTR spm_reservedl

34 $22 APTR spm_reserved2

38 $26 APTR spm_reserved3

42 $2A STRUCT spm_hblank, asi_SIZEOF

46 $2E STRUCT spm_vblank,asi_SIZEOF

50 $32 STRUCT spm_hsync,asi_SIZEOF

54 $36 STRUCT spm_vsync,asi_SIZEOF

58 $3A LABEL spm_SIZEOF

Dec Hex STRUCTURE MonitorSpec,XLN_SIZE

24 $18 UWORD ms_Flags

26 $1A LONG ms_ratioh

30 $1E LONG ms_ratiov

34 $22 UWORD ms_total_rows

267

3. Programming with AmigaOS 2.x

36

38

40

42

44

48

50

54

58

62

64

66

74

78

82

84

86

100

146

150

154

$24

$26

$28

$2A

$2C

$30

$32

$36

$3A

$3E

$40

$42

$4A

$4E

$52

$54

$56

$64

$92

$96

$9A

UWORD

UWORD

UWORD

UWORD

APTR

UWORD

APTR

APTR

APTR

UWORD

UWORD

STRUCT

APTR

APTR

UWORD

UWORD

STRUCT

STRUCT

ULONG

ULONG

LABEL

ms_total_colorclocks

ms_DeniseMaxDisplayColumn

ms_BeamCon0

ms_min_row

ms_Special

ms_OpenCount

ms_transform

ms_translate

ms_scale

ms__xof fset

ms_yoffset

ms_LegalView,ra_SIZEOF

ms_maxoscan

ms_videoscan

ms_DeniseMinDisplayColumn

ms_DisplayCompatible

ms_DisplayInfoDataBase,LH_SIZE

ms_DIDBSemaphore,SS_SIZE

ms__reserved0 0

ms_reserved01

ms_SIZEOF

MSB_REQUEST_NTSC = 0, MSF_REQUEST_NTSC = 1

MSB_REQUEST_PAL = 1, MSF_REQUEST_PAL = 2

MSB_REQUEST_SPECIAL = 2, MSF_REQUEST_J3PECIAL = 4

MSB_REQUEST_A2024 = 3, MSF_REQUEST_A2024 = 8

STANDARD_VIEW_X = $81

STANDARD_VIEW_Y $2C

Dec

34

38

42

46

50

54

58

62

66

70

74

96

118

140

154

158

160

Hex

$22

$26

$2A

$2E

$32

$36

$3A

$3E

$42

$46

$4A

$60

$76

$8C

$9A

$9E

$A0

STRUCTURE GfxBase,LIB_SIZE ;

APTR

APTR

APTR

APTR

APTR

APTR

APTR

APTR

APTR

APTR

STRUCT

STRUCT

STRUCT

STRUCT

APTR

UWORD

BYTE

gb__ActiView

gb_copinit ;

gb_cia ;

gb_blitter

gb_LOFlist

gb_SHFlist

gb_blthd

gb__blttl

gb_bsblthd

gb_bsblttl

gb^vbsrv,IS_SIZE

gb.timsrv,IS_SIZE

gb^bltsrv, IS__SIZE

gb_TextFonts,LH_SIZE

gb_Defau11Font

gbjfodes ;bltcon0

gb_VBlank

base structure

active View

Copper start list

CIA

Blitter

current Copper list

current Copper list

bltnode

268

3.1 The Libraries and their Functions

161

162

164

166

167

168

17 0

172

174

188

192

206

208

212

214

216

218

220

222

224

228

232

234

236

237

242

244

276

308

340

342

344

346

350

352

354

355

356

372

376

378

380

384

398

402

406

410

414

$A1

$A2

$A4

$A6

$A7

$A8

$AA

$AC

$AE

$BC

$C0

$CE

$D0

$D4

$D6

$D8

$DA

$DC

$DE

$E0

$E4

$E8

$EA

$EC

$ED

$F2

$F4

$114

$134

$154

$156

$158

$15A

$15E

$160

$162

$163

$164

$174

$178

$17A

$17C

$180

$18E

$192

$196

$19A

$19E

BYTE

UWORD

WORD

BYTE

BYTE

WORD

WORD

WORD

STRUCT

APTR

STRUCT

WORD

APTR

WORD

WORD

WORD

WORD

WORD

WORD

APTR

APTR

WORD

WORD

UBYTE

STRUCT

STRUCT

STRUCT

STRUCT

STRUCT

WORD

WORD

WORD

APTR

UWORD

UWORD

UBYTE

UBYTE

STRUCT

APTR

WORD

WORD

APTR

STRUCT

APTR

APTR

APTR

APTR

APTR

gb_Debug

gb_BeamSync

gb_system_bplconO

gb_SpriteReserved

gb_bytereserved

gb_Flags

gb_BlitLock

gb_BlitNest

gb_BlitWaitQ,LH_SIZE

gb_BlitOwner

gb_TOF_Wa itQ,LH_SIZE

gb_DisplayFlags

gb_SimpleSprites

gb_MaxDisplayRow

gb_MaxDisplayColumn

gb_NormalDisplayRows

gb_NormalDisplayColumns

gb_NormalDPMX

gb_NormalDPMY

gb_LastChanceMemory

gb_LCMptr

gb_MicrosPerLine /microseconds times 256

gb_MinDisplayColumn

gb_ChipRevBitsO ;new Agnus/Denise

gb_crb_reserved,5

gb_monitor_id,2

gb_hedley,4*8

gb_hedley_sprites,4*8

gb_hedley_spritesl,4*8

gb_hedley_count

gb_hedley_flags

gb_hedley_tmp

gb_hash_table

gb_current_tot_rows

gb_current_tot_cclks

gb_hedley_hint

gb_hedley_hint2

gb_nreserved,4*4

gb_a2024_sync_raster

gb_control_delta_pal

gb_control_delta_ntsc

gb_current_monitor

gb_MonitorList,LH_SIZE

gb_default_monitor

gb_MonitorListSemaphore

gb_DisplayInfoDataBase

gb_ActiViewCprSemaphore

gb_UtilityBase

269

3. Programming with AmigaOS 2.x

418 $1A2 APTR

422 $1A6 LABEL

OWNBLITTERn

QBOWNERn

gb_ExecBase

gb_SIZE

0 ;Blitter occupied

1 ;Blitter occupied by queue

GFXB_BIG_BLITS = 0

GFXB_HR_AGNUS = 0

GFXB_HR_DENISE = 1

NTSCn

GENLOCn

PALn

TODA_SAFEn

;ChipRevBitsO

;HiRes Agnus

;HiRes Denise

;display bits

BLITMSG_FAULTn = 2

Dec

0

4

8

9

10

14

15

16

20

24

Hex

$0

$4

$8

$9

$A

$E

$F

$10

$14

$18

STRUCTURE XLN,0 /graphics node

APTR

APTR

UBYTE

BYTE

APTR

UBYTE

UBYTE

LONG

LONG

LABEL

XLN_SUCC

XLN_PRED

XLN_TYPE

XLN_PRI

XLN_NAME

XLN_SUBSYSTEM

XLN_SUBTYPE

XLN_LIBRARY

XLN_INIT

XLN SIZE

SS_GRAPHICS = $02 ;GfxSemaphore

VIEW_EXTRA_TYPE = 1

VIEWPORT_EXTRA_TYPE = 2

SPECIAL_MONITOR_TYPE = 3

MONITOR_SPEC_TYPE = 4

VTAG_END_CM = $00000000

VTAG_CHROMAKEY_CLR = $80000000

VTAG_CHROMAKEY_SET = $80000001

VTAG_BITPLANEKEY_CLR = $80000002

VTAG_BITPLANEKEY_SET = $80000003

VTAG_BORDERBLANK_CLR = $80000004

VTAG_BORDERBLANK_SET = $80000005

VTAG_BORDERNOTRANS_CLR = $80000006

VTAG_BORDERNOTRANS_SET = $80000007

VTAG_CHROMA_PEN_CLR = $80000008

VTAG_CHROMA_PEN_SET = $80000009

VTAG_CHROMA_PLANE_SET = $8000000A

270

3.1 The Libraries and their Functions

VTAG_ATTACH_CM_SET

VTAG_NEXTBUF_CM

VTAG_BATCH_CM_CLR

VTAG_BATCH_CM_SET

VTAG_NORMAL_DISP_GET

VTAG_NORMAL_DISP_SET

VTAG_COERCE_DISP_GET

VTAG_COERCE_DISP_SET

=

=

=

=

=

=

VTAG_VIEWPORTEXTRA_GET =

VTAG_VIEWPORTEXTRA_SET =

VTAG_CHROMAKEY_GET

VTAG_BITPLANEKEY_GET

VTAG_BORDERBLANK_GET

=

=

=

VTAG_BORDERNOTRANS_GET =

VTAG_CHROMA_PEN_GET =

VTAG_CHROMA_PLANE_GET =

VTAG_ATTACH_CM_GET

VTAG_BATCH_CM_GET

VTAG_BATCH_ITEMS_GET

VTAG_BATCH_ITEMS_SET

VTAG_BATCH_ITEMS_ADD

VTAG_VPMODEID_GET

VTAG_VPMODEID_SET

VTAG_VPMODEID_CLR

VTAG_USERCLIP_GET

VTAG_USERCLIP_SET

VTAG_USERCLIP_CLR

GENLOCK_VIDEO

V_LACE

V_SUPERHIRES

V_PFBA

V_EXTRA_HALFBRITE =

GENLOCK_AUDIO

V_DUALPF

V_HAM

V_EXTENDED_MODE

V_VP_HIDE

V_SPRITES

V_HIRES

=

=

=

=

=

=

=

=

=

$2

$4

$20

$40

$80

$100

$400

$800

$1000

$2000

$4000

$8000

$8000000B

$8000000C

$8000000D

$8000000E

$8000000F

$80000010

$80000011

$80000012

$80000013

$80000014

$80000015

$80000016

$80000017

$80000018

$80000019

$8000001A

$8000001B

$800000lC

$8000001D

$8000001E

$8000001F

$80000020

$80000021

$80000022

$80000023

$80000024

$80000025

;composite video signal

;Interlace

;SuperHiRes

;switch Playfields

;Halfbrite

;audio signal

;DualPlayfield

;Hold And Modify

;extended structure

;hide ViewPort

/Sprite DMA activated

;HiRes

EXTEND_VSTRUCT = $1000

VPF_DENISE

VPF_A2024

VPF_AGNUS

VPFJTENHZ

VPF_ILACE

$80

$40

$20

$20

$10

271

3. Programming with AmigaOS 2.x

Dec

0

1

2

4

8

12

16

17

18

20

24

28

32

36

40

Hex

$0

$1

$2

$4

$8

$c

$10

$11

$12

$14

$18

$1C

$20

$24

$28

STRUCTURE ColorMap,0

BYTE

BYTE

WORD

APTR

APTR

APTR

BYTE

BYTE

WORD

APTR

APTR

APTR

APTR

LONG

LABEL

cm_Flags

cm_Type

cm_Count

cm_ColorTable

cm__vpe

cm__TransparencyBits

cm_TransparencyPlane

cm_reservedl

cm__reserved2

cm_vp

cm_NormalDisplayInfo

cm_CoerceDisplayInfo

cm_batch_items

cm_VPModeID

cm_SIZEOF

COLORMAP_TYPE_V1_2 = 0 ;old ColorMap

COLORMAP_TYPE_V36 = 1 ;new ColorMap

COLORMAP_TRANSPARENCY = $01

COLORPLANE_TRANSPARENCY = $02

BORDER_BLANKING = $04

BORDER_NOTRANSPARENCY = $08

VIDEOCONTROL_BATCH = $10

USER_COPPER_CLIP = $20

Dec

0

4

8

12

16

20

24

26

28

30

32

34

35

36

40

Hex

$0

$4

$8

$c

$10

$14

$18

$1A

$1C

$1E

$20

$22

$23

$24

$28

STRUCTURE ViewPort,0

LONG

LONG

LONG

LONG

LONG

LONG

WORD

WORD

WORD

WORD

WORD

BYTE

BYTE

APTR

LABEL

vp_Next

vp_ColorMap

vp_DspIns

vp_SprIns

vp__ClrIns

vp_UCopIns

vp_DWidth

vp_DHeight

vp_DxOffset

vp_DyOffset

vp_Modes

vp_SpritePriorities

vp_ExtendedModes

vp_RasInfo

vp_SIZEOF

Dec Hex STRUCTURE View,0

0 $0 LONG v_ViewPort

4 $4 LONG v_LOFCprList

272

3J The Libraries and their Functions

8 $8 LONG v_SHFCprList

12 $C WORD v_DyOffset

14 $E WORD v_DxOffset

16 $10 WORD v_Modes

18 $12 LABEL v_SIZEOF

Dec Hex STRUCTURE ViewExtra,XLN_SIZE

24 $18 APTR ve_View

28 $1C APTR ve_Monitor

32 $20 LABEL ve_SIZEOF

Dec Hex STRUCTURE ViewPortExtra,XLN_SIZE

24 $18 APTR vpe_ViewPort

28 $1C STRUCT vpe_DisplayClip,ra_SIZEOF

36 $24 LABEL vpe_SIZEOF

Dec Hex STRUCTURE collTable,0

0 $0 LONG cp_collPtrs,16

64 $40 LABEL cp_SIZEOF

Dec Hex STRUCTURE Raslnfo,0

0

4

8

10

12

$0

$4

$8

$A

$c

APTR

LONG

WORD

WORD

LABEL

ri_Next

ri_BitMap

ri_RxOffset

ri_RyOffset

ri SIZEOF

2. General Blitter Control

IBitMapScale Change the size of bit-map contents!

Call: BitMapScale(bitScaleArgs)

-678(A6) aO

STRUCT BitScaleArgs *bitScaleArgs

Function: Copies a portion of a bit-map to another bit-map, changing

the size to correspond to the size of the destination bit

map.

Parameters: bitScaleArgs

Structure with the following parameters:

bsa_srcX, bsa_srcY Upper left corner of the

source bit-map.

273

3. Programming with AmigaOS 2.x

bsa_srcWidth, bsa_srcHeight

Size of source bit-map.

bsa_destX, bsa_destY

Position in the destination bit

map.

bsa_destWidth, bsa_destHeight

New size (result)

bsa_xSrcFactor:bsa_xDestFactor

Scaling factor, corresponds with

bsa_srcWidth:bsa_destWidth;

Range: 1..16383.

bsa_ySrcFactor:bsa_yDestFactor

Same for

bsa_srcHeight:bsa_destHeight.

bsa_srcBitMap

Source bit-map

bsa_destBitMap

Destination bit-map (may not

overlap with srcBitMap).

bsajflags 0 (not yet supported)

Result: destWidth and destHeight are filled with the new size.

Example: Double the size of an image. A LoRes bit-map in 320*256

pixel format is copied to fill a bit-map in 640*512 HiRes

Interlace format. The size change is accomplished as

follows:

bsa_DestWidth=bsa_SrcWidth*bsa_XDestFactor/bsa_XSrcFactor

bsa_DestHeight=bsa__SrcHeight*bsa_YDestFactor/bsa_YSrcFactor

In our example:

bsa_DestWidth = 320 * 2 / 1 = 640

bsa_DestHeight = 256 * 2 / 1 = 512

274

3.1 The Libraries and their Functions

Here is the simple demo routine:

movea. 1 __GfxBase, a6

lea _BitScaleArgs(pc),aO

jsr __BitMapScale(a6)

BitScaleArgs

dc.w

dc.w

dc.w

dc.w

dc.w

dc .w

del

del

del

dc.w

del

0,0

320,256

1,1

0,0

0,0

2,2

_LoResBitMap

_HiResILaceBitMap

0

0,0

0,0

;bsa_SrcX, bsa_SrcY

;bsa_SrcWidth, bsa_SrcHeight

;bsa_XSrcFactor, bsa_YSrcFactor

;bsa_DestX, bsa_DestY

;bsa_DestWidth, bsa_DestHeight

;bsa_XDestFactor,bsa_YDestFactor

;bsa_SrcBitMap

;bsa_DestBitMap

;bsa_Flags

;bsa_XDDA, bsa__YDDA

;bsa_Reservedl, bsa_Reserved2

| BitBitMap Copy a portion of a bit-map |

Call: planecnt = BltBitMap(SrcBitMap, SrcX, SrcY, DstBitMap,

DO -30(A6) A0 DO:16 Dl:16 Al

DstX, DstY, SizeX, SizeY, Minterm, Mask, TempA)

D2:16 D3:16 D4:16 D5:16 D6:8 D7:8 A2

ULONG planecnt

STRUCT BitMap *SrcBitMap,DstBitMap

WORD SrcX,SrcY,DstX,DstY,SizeX,SizeY

UBYTE Minterm,Mask

APTR TempA

Function: Copies part of a bit-map to the given position in another

bit-map. Both bit-maps can be the same and the ranges may

overlap. If a bit-plane address is set to 0, it is handled like

an empty bit-plane. If the bit-plane address is -1, it is

handled like a filled bit-plane.

Parameters: SrcBitMap Source bit-map

DstBitMap

Destination bit-map

275

3. Programming with AmigaOS 2.x

SrcX, SrcY Coordinates in the source bit-map.

DstX,DstY

Coordinates in the destination bit-map.

SizeX,SizeY

Size of the region to be copied.

Minterm Logical combination of source and destination:

Blitter source A is filled within the region.

Blitter source B is the source.

Blitter sources C and D are the destination.

$C0 copies, $30 copies the inverted source,

$50 inverts only the destination, etc.

Mask Bit mask for destination bit-plane.

TempA Buffer for one line (source A) that must be

scrolled horizontally if the regions overlap.

Result: Number of affected bit-planes.

| BltBitMapRastPort Copy a bit-map range to a RastPort |

CulL' BltBitMapRastPort

(srcbm, srcx,srcy, destrp,destX,destY, sizeX,sizeY,minterm)

-606 (A6) aO dO dl al d2 d3 d4 d5 d6

STRUCT BitMap *srcbm

WORD srcx,srcy,destX,destY,sizeX,sizeY

STRUCT RastPort *destrp

UBYTE minterm

Function: Similar to BltBitMapO, except that the destination is the

given RastPort and a mask cannot be used.

Parameters: srcbm Source bit-map

srcx,srcy Position in the source bit-map.

276

3.1 The Libraries and their Functions

destrp Destination RastPort

destX,destY

Position in RastPort

sizeX,sizeY

Size of range

minterm Logical combination

[BltClear Clear memory block (ChipRAM) |

Call: BltClear (memBlock, bytecount:, flags)

-300(A6) al dO dl

APTR memBlock

ULONG bytecount,flags

Function: Clears a memory block in ChipRAM.

Parameters: memBloc Address of block

flags Bit 0:1 Call WaitBlit()

Bit 1:0 bytecount = size of range

1 bytecount = lines

«16+BytesPerLine

Bit 2:1 bytecount = full value«16+size

of range

| BltMaskBitMapRastPort Copy bit-map to a RastPort with a mask |

Call: BltMaskBitMapRastPort

(srcbm,srcx,srcy,destrp,destX,destY, sizeX,sizeY,minterm,bltmask)

-636 (A6) aO dO dl al d2 d3 d4 d5 d6 a2

Functions, Parameters:

Same as BltBitMapRastPort(), with the addition of the

address of a single bit-plane (bltmask) in which the affected

bits are set.

277

3. Programming with AmigaOS 2.x

IBltPattern Blit using a mask j

Cdll'. BltPattern(rp, mask, xl, yl, maxx, maxy, bytecnt)

-312 (A6) al aO dO dl 62 d3 d4

STRUCT RastPort *rp

APTR mask

SHORT xl,yl,maxx,maxy,bytecnt

Function: Blits a rectangular region at a given position via a mask,

using the Drawmode and AreafiU pattern entries from the

RastPort.

Parameters: rp RastPort

mask MaskBitPlane or 0 (rectangle)

xl,yl Position in RastPort

maxx,maxy

Size of range

bytecnt Bytes per line in the mask

IBltTemplate Copy a rectangular region to the RastPortI

\^att: BltTem.plate(SrcTemplate, SrcX, SrcMod, rp, DstX, DstY, SizeX, SizeY)

-36(A6) AO DO Dl Al D2 D3 D4 D5

APTR SrcTemplate

WORD SrcX,SrcMod,DstX,DstY,SizeX,SizeY

STRUCT RastPort *rp

Function: Copies a rectangular portion of a bit-plane with the

selected color and Drawmode to a given position in a
RastPort.

Parameters: SrcTemplate

Address of the first word in the Bitlmage.

SrcX X bit offset from SrcTemplate (0.. 15).

SrcMod Bytes per line in the Bitlmage.

278

3.1 The Libraries and their Functions

rp Destination RastPort.

DstX,DstY

Coordinates in RastPort.

SizeX, SizeY

Size of range.

IClipBht BltBitMapQ, with layers |

Call.' ClipBlit(Src, SrcX, SrcY, Dest, DestX, DestY, XSize, YSize, Minterm)

-552 (A6) aO dO dl al d2 d3 d4 d5 d6

STRUCT RastPort *Src,*Dest

WORD SrcX,SrcY,DestX,DestY,XSize,YSize

UBYTE Minterm

Function: Same as BltBitMapO, except that the ClipRects are

considered here. With windows, this function must be

called instead of BltBitMapO.

Parameters: Src Source RastPort

SrcX,SrcY Position in source RastPort.

Dest Destination RastPort

DestX,DestY

Position in destination RastPort.

XSize,YSize

Size of range

Minterm Logical combination (B=source,

C=destination)

ICopySBitMap Copy SuperBitMap range to a layer |

Call: CopySBitMap(layer)

-450(A6) aO

STRUCT Layer *layer

279

3. Programming with AmigaOS 2.x

Function: Opposite of SyncSBitMapO - copies the current excerpt of

a SuperBitMap to the given SuperBitMap layer.

Parameters: layer SuperBitMap layer (must be allocated with

LockLayerROMO)

| DisownBlitter Free Blitter |

Call: DisownBlitter ()

-462(A6)

Function: Frees the Blitter for use by other programs.

| OwnBlitter Obtain use of Blitter |

Call: OwnBlitter ()

-456(A6)

Function: Prevents other programs from using the Blitter. The Blitter

becomes available only after it finishes its current operation

(seeWaitBlitO).

IQBlit Enter BltNode in the Blitter list|

Call: QBlit(bp)

-276(A6) al

STRUCT bltnode *bp

Function: Enters a BltNode in the wait queue of the Blitter. If the

indicated routine is called, the Blitter stops work and

becomes available, meaning it can be directly programmed.

The routine must be executable in both supervisor and user

modes.

Parameters: bp Initialized BltNode

IQBSBlit QBlit with raster synchronization|

Call: QBSBlit(bsp)

-294(A6) al

280

3.1 The Libraries and their Functions

STRUCT bltnode *bsp

Function: Same as QBlit(), except that the routine is only called when

the monitor beam reaches a certain position. BltNodes

entered with QBSBlit() take priority over QBlit() BltNodes.

Access by several tasks can lead to synchronization errors

or true timing problems.

Parameters: bsp Initialized BltNode

I ScalerDiv Calculate scaling 1

Call: result = ScalerDiv(factor, numerator, denominator)

dO -684 (A6) dO dl d2

UWORD result,factor,numerator,denominator

Function: Calculates factor*numerator/denominator just like

BitMapScale(). For example, the new width can be

calculated as width*XDestFactor/XSrcFactor.

Parameters: factor Width or height from BitMapScale().

numerator ?DestFactor

denominator

?SrcFactor

Result: factor*numerator/denominator

IScrollRaster Scroll a rectangular range|

Call: ScrollRaster(rp, dx, dyf xmin, ymin, xmax, ymax)

-396 (A6) al dO dl d2 d3 d4 d5

STRUCT RastPort *rp

WORD dx#dy/xmin, ymin, xmax, ymax

Function: Moves the contents of a rectangular range by the given

delta value in the direction of coordinates (0,0). The bug

that occurred in Kick 1.x, if the TmpRas structure was

missing, has been fixed.

281

3. Programming with AmigaOS 2jc

Parameters: rp RastPort

dx,dy Delta value (right and down NEGATIVE)

xmin,ymin Upper left corner

xmax,ymax

Lower right corner

ISyncSBitMap Copy layer contents to a SuperBitMapl

Call: SyncSBitMapf layer)

-444(A6) aO

STRUCT Layer *layer

Function: Copies the contents of a SuperBitMap layer to the current

position of the SuperBitMap.

Parameters: layer SuperBitMap layer (locked)

[WaitBlit Wait for the Blitterl

Call: WaitBlit ()

-228(A6)

Function: Waits until the Blitter finished its current work. This

function is normally used after OwnBlitter() and/or before

DisownBlitter().

Dec Hex STRUCTURE BitMap,0 ;BitMap

0 $0 WORD bm_BytesPerRow ;bytes per row

2 $2 WORD bm_Rows ; rows

4 $4 BYTE bm_Flags ;Flags

5 $5 BYTE bm_Depth ;number of BitPlanes

6 $6 WORD bm_Pad

8 $8 STRUCT bm_Planes,8*4 ;PlanePointer

40 $28 LABEL bm_SIZEOF

Dec Hex STRUCTURE BitScaleArgs,0 ;BitMapScale() argument

2 $2 UWORD bsa_SrcX /source position

4 $4 UWORD bsa_J3rcY

6 $6 UWORD bsa_SrcWidth ;source size

8 $8 UWORD bsa_SrcHeight

282

3.1 The Libraries and their Functions

$A

$C

10

12

14 $E,

16 $10

18 $12

20 $14

22 $16

24 $18

26 $1A

30 $1E

34 $22

38 $26

40 $28

42 $2A

46 $2E

50 $32

UWORD bsa_XSrcFactor

UWORD bsa_YSrcFactor

UWORD bsa_DestX

UWORD bsa_DestY

UWORD bsa_DestWidth

UWORD bsa_DestHeight

UWORD bsa_XDestFactor

UWORD bsa_YDestFactor

APTR bsa_SrcBitMap

APTR bsa_DestBitMap

ULONG bsa_Flags

UWORD bsa_XDDA

UWORD bsa_YDDA

LONG bsa_Reservedl

LONG bsa_Reserved2

LABEL bsa_SIZEOF

3. Refresh Functions

| AndRectRegion

denominators

destination position

result

numerators

source BitMap

destination BitMap

0!

Preserve contents of a rectangle |

Call: AndRectRegion (region, rectangle)

-504(A6) aO al

STRUCT Region *region

STRUCT Rectangle *rectangle

Function: Deletes everything in the region outside of the given

rectangle.

Parameters: region Region structure

rectangle Rectangle structure

I AndRegionRegion Trim a regionl

Call: status AndRegionRegion (regionl, region2)

dO -624(A6) aO al

BOOL status

STRUCT Region *regionl,*region2

Function: Cut off surfaces from region2 that are not part of regionl.

283

3. Programming with AmigaOS 2.x

Parameters: region 1 Mask region

region2 Destination region

Result: 0 Error (no memory)

|ClearRectRegion Clear a rectangle within a region!

Call: status = ClearRectRegion (region, rectangle)

dO -522(A6) aO al

BOOL error

STRUCT Region *region

STRUCT Rectangle *rectangle

Function: Cuts a rectangle out of a region.

Parameters: region Region containing the rectangle.

rectangle Rectangle to be deleted.

Result: 0 Error (no memory)

| ClearRegion Clear all rectangles within a region!

Call: ClearRegion (region)

-528(A6) aO

STRUCT Region *region

Function: Clears an entire region.

Parameters: region Region to be cleared

IDisposeRegion Free region!

Call: DisposeRegion (region)

-534(A6) aO

STRUCT Region *region

Function: Frees the memory of a region.

Parameters: region Region structure

284

3.1 The Libraries and their Functions

INewRegion Get a Region structure]

Call: region NewRegion ()

dO -516(A6)

STRUCT Region *region

Function: Allocates memory for a Regions structure and initializes it.

Result: Region structure or 0.

IQrRectRegion Insert rectangle into a region!

Call: status = OrRectRegion (region, rectangle)

dO -510(A6) aO al

BOOL status

STRUCT Region *region

STRUCT Rectangle *rectangle

Function: Inserts the given rectangle (not contained in the region)

into the given region.

Parameters: region Region structure

rectangle Rectangle structure

Result: 0 Error

| OrRegionRegion Join Region structures|

Call: status OrRegionRegion (regionl, region2)

dO -612(A6) aO al

BOOL status

STRUCT Region *regionl,*region2

Function: Adds regionl to region2.

Parameters: regionI,region2

Region structures

285

5. Programming with AmigaOS 2.x

Result: 0 Error

|XorRectRegion Exclusive OR combination of two areas!

Call: status = XorRectRegion (region, rectangle)

dO -558(A6) aO al

BOOL status

STRUCT Region *region

STRUCT Rectangle *rectangle

Function: Adds the given rectangle (not contained in the region) to

the given region, and deletes the part of the region common

to both.

Parameters: region Region structure

rectangle Rectangle structure

Result: 0 Error

| XorRegionRegion Exclusive OR combination of two regions]

Call: status = XorRegionRegion(regionl,region2)

dO -618(A6) aO al

BOOL status

STRUCT Region *regionl,*region2

Function: Adds one region to the other and deletes the overlapping

area.

Parameters: regionI,region2

Regions to be combined

Result: 0 Error

Dec Hex STRUCTURE Rectangle,0 /rectangle

0 $0 WORD ra_MinX /dimensions

2 $2 WORD ra_MinY

4 $4 WORD ra_MaxX

6 $6 WORD ra_MaxY

286

3.1 The Libraries and their Functions

8 $8 LABEL ra_J3IZE0F

Dec Hex STRUCTURE Rect32,0 ;32 bit rectangle

0 $0 LONG r32_MinX /dimensions

4 $4 LONG r32_MinY

8 $8 LONG r32_MaxX

12 $C LONG r32_MaxY

16 $10 LABEL r32_SIZEOF

Dec Hex STRUCTURE Region,0

0 $0 STRUCT rg_bounds,ra_SIZEOF

8 $8 APTR rg_RegionRectangle

12 $C LABEL rg_SIZEOF

Dec Hex STRUCTURE RegionRectangle,0

0 $0 APTR rr_Next

4 $4 APTR rr__Prev

8 $8 STRUCT rr_bounds,ra_SIZEOF

16 $10 LABEL rr_SIZEOF

4. Data Structures

[AllocRaster Allocate memory for a bit-plane |

Call: planeptr = AllocRaster (width, height)

dO -492(A6) dO:16 dl:16

APTR planeptr

USHORT width,height

Function: Allocates the ChipRAM required for a bit-plane of the

given size.

Parameters: width Bit-plane width in pixels,

height Bit-plane height in pixels.

Result: Address of memory block or 0.

| AttemptLockLayerRom Attempt to lock a layer |

Call: gotit = AttemptLockLayerRom(layer)

dO -654(A6) a5

BOOLEAN gotit

287

3. Programming with AmigaOS 2.x

STRUCT Layer *layer

Function: Attempts to lock a layer with exclusive access rights.

Parameters: layer Layer structure

Result: 0 No access to layer.

IFreeColorMap Free a CoIorMapl

Call: FreeColorMap (colormap)

-576(A6) aO

STRUCT ColorMap *colormap

Function: Frees the memory used by a structure allocated with

GetColorMap().

Parameters: colormap Address of the ColorMap.

| FreeRaster Free a bit-plane |

Call: FreeRaster(p, width, height)

-498(A6) aO dO:16 dl:16

APTR p

USHORT width,height

Function: Frees the memory used for a bit-plane.

Parameters: p PlaneAddress

width Width in bits

height Height of bit-plane

IGetColorMap Allocate a CoIorMapl

Call: cm = GetColorMap (entries)

dO -570(A6) dO

STRUCT ColorMap *cm

288

3.1 The Libraries and their Functions

LONG entries

Function: Allocates memory for a ColorMap and initializes the

structure.

Parameters: entries Number of colors

Result: ColorMap or 0.

|GetRGB4 Allocate a 3x4 bit color value!

Call: value = GetRGB4 (colormap, entry)

dO -582 (A6) aO dO

ULONG value

STRUCT ColorMap *colormap

LONG entry

Function: Reads the color value of a color number from the given

ColorMap.

Parameters: colormap ColorMap structure

entry Color number (0...)

Result: red value«8+green value«4+blue value (4 bits each:

0...15) or -1 (entry not available, error)

Example: Get the color values for the background color of a

ViewPort and set them in a second ViewPort (Warning:

doing this by hand could cause problems with the new 24

bit ColorMaps):

movea.

movea.

movea.

moveq

jsr

tst.w

bmi

moveq

and.w

1

1

1

_GfxBase,a6

_ViewPortl,aO

vp_ColorMap(aO), aO

#0,d0

_LVOGetRGB4(a6)

dO

_Zerror

#15,d3 ;mask for blue value

dO,d3 ;blue value

289

3. Programming with AmigaOS 2.x

lsr.w #4,dO

moveq #15,d2 ;green value mask

and.w dO,d2 ;green value

lsr.w #4,dO

moveq #15,dl ;red value mask

and.w dO,dl ;red value

moveq #0,d0 ;color number

movea.1 _ViewPort2, aO ;2nd ViewPort

j sr _LVOSetRGB4(a6)

llmtBitMap Initialize a BitMap structure|

Call: InitBitMap(bm, depth, width, height)

-390(A6) aO dO dl d2

STRUCT BitMap *bm

BYTE depth

UWORD width, height

Function: Initializes a BitMap structure. The bit-plane addresses are

excluded in order to keep the size of the structure variable.

Parameters: bm BitMap structure to be initialized.

depth Number of bit-planes

width Width in bits

height Height of bit-plane

llnitRastPort Initialize a RastPortl

Call: initRastPort (rp)

-198(A6) al

STRUCT RastPort *rp

Function: Initializes a RastPort structure with the standard values

(Mask=-1, FgPen=-1, AOLPen=-1, LinePtrn=-1,

DrawMode=JAM2, Font=Systemfont).

Parameters: rp RastPort structure

290

3.1 The Libraries and their Functions

| InitTmpRas Initialize TmpRas|

Call: InitTmpRas (tmpras, buffer, size)

-468(A6) aO al dO

STRUCT TmpRas *tmpras

APTR buffer

LONG size

Function: Initializes a TmpRas structure with a buffer for intensive

graphics operations (AreaEnd(), Flood(), Text()).

Parameters: tmpras TmpRas structure

buffer ChipRAM buffer

size Buffer size

| InitView Initialize View structure|

Call: InitView(view)

-360(A6) al

STRUCT View *view

Function: Initializes a View structure with the standard values.

Parameters: view View structure

| InitVPort Initialize ViewPort structure|

Call: InitVPort (vp)

-204(A6) aO

STRUCT ViewPort *vp

Function: Initializes a ViewPort structure with the standard values.

Parameters: vp ViewPort structure

291

3. Programming with AmigaOS 2.x

[LockLayerRom Obtain access to a layer |

Call: LockLayerRom (layer)

-432(A6) a5

STRUCT Layer *layer

Function: Obtains exclusive access to a layer. No Intuition functions

may be called during this time, since most of the work is

done by the input Handler Intuition(), which also must use

locking to obtain exclusive access. There is no problem

calling LockLayerRom() with libraries that are not based

on a single task, since this function first checks to see if the

active task already has access to the layer.

Parameters: layer Layer structure

[SetRGB4CM Enter a colorl

Call: SetRGB4CM(cm, n, r, g, b)

-630(A6) aO dO dl:4 d2:4 d3:4

STRUCT ColorMap *cm

SHORT n

UBYTE r,g,b

Function: Enters the intensity values for a color in a ColorMap. This

function is used to create color tables before entering in a

ViewPort.

Parameters: cm ColorMap

n Color number (0...31)

r,g,b 4 bit intensity value (0...15)

[UnlockLayerRom Free a layer|

Call: UnlockLayerRom (layer)

-438(A6) a5

Function: Frees exclusive access rights to a layer.

292

3.1 The Libraries and their Functions

Parameters: layer Locked layer

NEWLOCKS = 1 ;new Layer lock

Dec

0

4

8

12

16

18

20

22

24

28

30

32

36

40

44

46

48

52

56

60

64

68

72

118

122

126

130

134

156

160

Dec

0

4

8

12

16

18

20

22

24

28

Hex

$0

$4

$8

$c

$10

$12

$14

$16

$18

$1C

$1E

$20

$24

$28

$2C

$2E

$30

$34

$38

$3C

$40

$44

$48

$76

$7A

$7E

$82

$86

$9C

$A0

Hex

$0

$4

$8

$c

$10

$12

$14

$16

$18

Sic

STRUCTURE Layer,0

LONG

LONG

LONG

LONG

WORD

WORD

WORD

WORD

STRUCT

WORD

WORD

LONG

LONG

APTR

WORD

WORD

APTR

APTR

APTR

APTR

APTR

APTR

STRUCT

APTR

ULONG

APTR

APTR

STRUCT

APTR

LABEL

lr_front

lr_back

lr_ClipRect

lr_rp

lr_MinX

lr_MinY

lr_MaxX

lr_MaxY

lr_reserved,4

lr_priority

lr_Flags

lr_SuperBitMap

lr_SuperClipRect

lr_Window

lr_Scroll_X

lr_Scroll_Y

lr_cr

Ir_cr2

lr_crnew

;range for clipping

;foreground Layer

;background Layer

;ClipRect

;RastPort

;range

;

;

;

;reserved

;priority

;Flags

;BitMap

;ClipRect

;window

;BitMap offsets

;

;ClipRect

;ClipRect

;ClipRect

lr_SuperSaverClipRects ;ClipRects

lr cliprects

lr_LayerInfo

lr_Lock,SS_SIZE

lr_BackFill

lr_reservedl

lr_ClipRegion

lr_saveClipRects

Ir_reserved2,22

1r_DamageList

lr_SIZEOF

STRUCTURE ClipRect,0

LONG

LONG

LONG

LONG

WORD

WORD

WORD

WORD

APTR

APTR

cr_Next ,

cr_prev

cr_lobs

cr_BitMap

cr_MinX

cr_MinY

cr_MaxX

cr_MaxY

;ClipRects

;LayerInfo

;SignalSemaphore

;backfill Hook

;reserved

/region

;ClipRects

/reserved (SS_SIZE)

/damage list

next ClipRect

previous

BitMap

• range

cr pi

cr p2

ClipRect

293

3. Programming with AmigaOS 2.x

32 $20 LONG cr.reserved

3 6 $24 LONG cr_Flags ;Flags

40 $28 LABEL cr_SIZEOF

CR_NEEDS_NO_CONCEALED_RASTERS = 1 ;internal Flag

CR_NEEDS_NO_LAYERBLIT_DAMAGE = 2

ISLESSX = 1 ;Flags for clipping

ISLESSY = 2

ISGRTRX = 4

ISGRTRY = 8

LAYERSIMPLE = 1

LAYERSMART = 2

LAYERSUPER = 4

LAYERUPDATING = $10

LAYERBACKDROP = $40

LAYERREFRESH = $80

LAYER_CLIPRECTS_LOST = $100

LMN_REGION = -1

Dec Hex STRUCTURE Layer_Info,0

0 $0 APTR li_top_layer ;top Layer

4 $4 APTR li_check_lp

8 $8 APTR li_obs

12 $C STRUCT li_FreeClipRects,MLH_SIZE

24 $18 STRUCT li_Lock,SS_SIZE

70 $46 STRUCT li_gs_Head,LH_SIZE

84 $54 LONG li_long_reserved

88 $58 WORD li_Flags

90 $5A BYTE li_fatten_count

91 $5B BYTE li_LockLayersCount

92 $5C WORD li_LayerInfo_extra_size

94 $5E APTR li_blitbuff

98 $62 APTR li_LayerInfo_extra

102 $66 LABEL li_SIZEOF

NEWLAYERINFO_CALLED = 1

5. Draw Functions

|AreaDraw Define corner point for AreaFilll

Call: error = AreaDraw(rp, x, y)

dO -258(A6) Al D0,Dl

LONG error

294

3.1 The Libraries and their Functions

STRUCT RastPort *rp

SHORT x,y

Function: Inserts a point in the vector list for AreaFill.

Parameters: rp RastPort with Arealnfo

x,y Point coordinates

Result: 0 No error

I AreaEHipse Insert an ellipse for AreaFill in Arealnfo|

Call: error = AreaEHipse(rp, ex, cy, a, b)

dO -186 (A6) al dO dl 62 d3

LONG error

STRUCT RastPort *rp

SHORT cx,cy,a,b

Function: Stores an ellipse in the vector buffer.

Parameters:

Result:

cx,cy

a

b

0

RastPort with Arealnfo

Center of ellipse

Horizontal radius (a>0)

Vertical radius (b>0)

No error

lAreaEnd Execute AreaFill according to vector table contentsl

Call: error = AreaEnd(rp)

dO -264(A6) Al

LONG error

STRUCT RastPort *rp

Function: Processes the vector buffer of the Area routines and fills the

calculated area. Re-initializes for new AreaMove() calls.

295

3. Programming with AmigaOS 2.x

Parameters: rp RastPort

Result: 0 No error

[AreaMove Define starting point for AreaFilll

Call: error = AreaMove (rp, x, y)

dO -252(A6) al dO dl

LONG error

STRUCT RastPort *rp

SHORT x,y

Function: Closes the last polygon and begins a new one.

Parameters: rp RastPort with Arealnfo

x,y Position of the starting point

Result: 0 No error

lDraw

Call: Draw(rp, x, y)

-246(A6) al dO dl

STRUCT RastPort *rp

SHORT x,y

Function: Draws a line from the current position to the given

coordinates.

Parameters: rp RastPort

x,y Destination coordinates

IDrawEHipse Draw an ellipse 1

Call: DrawEllipse(rp, ex, cy, a, b)

-180(A6) al dO dl d2 d3

STRUCT RastPort *rp

296

3.1 The Libraries and their Functions

SHORT cx,cy,a,b

Function: Draws an ellipse in RastPort.

Parameters: rp RastPort

cx,cy Center of ellipse

a Horizontal radius (a>0)

b Vertical radius (b>0)

lEraseRect Fill a rectangle using the BackFill hook|

Call: EraseRect(rp, xmin, ymin, xmax, ymax)

-810(A6) al dO:16 dl:16 d2:16 d3:16

STRUCT RastPort *rp

SHORT xmin,ymin,xmax,ymax

Function: Fills a rectangular area in a RastPort. If the RastPort layer is
showing, then the BackFill hook is used. Otherwise, the

rectangle is deleted.

Parameters: rp RastPort

xmin,ymin Upper left corner of rectangle

xmax,ymax

Lower right corner of rectangle

iFlood an area|

Call: error = Flood(rp, mode, x, y)

dO -330(A6) al d2 dO dl

BOOL error

STRUCT RastPort rp

ULONG mode

SHORT x,y

297

3. Programming with AmigaOS 2.x

Function: Fills an area of any complexity with the color or pattern set
in the current draw mode.

Parameters: rp RastPort with TmpRas

x,y Starting point for fill

mode Fill mode (0: through AOLPen, 1: only points
with the color at x-y)

Result: 0 Okay

llnitArea Initialize Arealnfo vector matrix I

Call: lnitArea(areainfo, buffer, maxvectors)
-282(A6) aO al dO

STRUCT Arealnfo *areainfo

APTR buffer

SHORT maxvectors

Function: Initializes the vector table for Area commands. The given

buffer must have at least five bytes per vector. Remember

that AreaEllipse() needs two vectors, and AreaEnd() needs
one.

Parameters: areainfo Arealnfo structure

buffer Vector buffer (5*maxvectors+5)

maxvectors

Maximum vectors

I Move Set coordinates for graphics output I

Call: Move (rp, x, y)

-240(A6) al dO dl

STRUCT RastPort *rp

SHORT x,y

Function: Sets the coordinates for graphics output in the RastPort.

298

3.1 The Libraries and their Functions

Parameters: rp RastPort

x,y Coordinates

| PolyDraw Draw a line according to coordinates in a table |

Call: PolyDraw(rp, count , array)

-336(A6) al dO aO

STRUCT RastPort *rp

WORD count

APTR array

Function: Draws from point to point according to the values in a

coordinate table. This function is the same as a Move() call

to the first coordinates followed by subsequent Draw()

calls.

Parameters: rp RastPort

count Number of coordinate points.

array Array with two words per entry (x and y).

| ReadPixel Read the color number of a pixel|

Call: penno = ReadPixel (rp, x, y)

dO -318(A6) al dO dl

LONG penno

STRUCT RastPort *rp

SHORT x,y

Function: Gets the color number of the pixel at the given coordinates

in a RastPort.

Parameters: rp RastPort

x,y Coordinates

Result: Color number (0..255) or -1 (coordinates outside of

RastPort)

299

3. Programming with AmigaOS 2.x

I ReadPixelArray8

Call:

Read the color numbers of a rectangle I

count = ReadPixelArray8 (rp,xstart,ystart,xstop,ystop, array, tenprp)

dO -780(A6) aO dO:16 dl:16 62:16 d3:16 a2 al

LONG count

STRUCT RastPort *rp,*temprp

UWORD xstart,ystart,xstop,ystop

APTR array

Function: ReadPixel() for each point within a rectangular area of a

RastPort. The results are written as bytes to the given
buffer.

Parameters: rp RastPort structure

xstart,ystart

Starting point in RastPort.

xstop,ystop

End point in RastPort.

array Results buffer, at least

((((width+15)»4)«4)*(ystop-ystart+l))
bytes.

temprp Temporary RastPort (copy with layer=0 and a

bit-map that can store one row of the

rectangular area).

movea.'.

movea.'.

moveq

moveq

moveq

moveq

lea

lea

jsr

Result: Number of pixels read.

Example: Read a 16*16 pixel area:

L _GfxBase,a6

L _RastPort/

#8,dO

#16,dl

#24fd2

#32,d3

_Array,a2

_JTmpRp,al

aO

_LV0ReadPixelArray8(a6)

300

3.1 The Libraries and their Functions

_Array

ds.b 16*16

_TmpRp ;previously initialized

| ReadPixelLine8 Read color numbers of a horizontal line |

Call.' count = ReadPixelLine8 (rp,xstart,ystart,width,array,temprp)

dO -768(A6) aO dO:16 dl:16 d2 a2 al

LONG count

STRUCT RastPort *rp/*temprp

UWORD xstart,ystart,width

APTR array

Function: Like ReadPixelArray8(), but for only one line.

Parameters: rp RastPort

x,y Starting point

width Line width (in pixels)

array Results buffer, at least (((width+15)»4)«4)

bytes.

temprp Same as with ReadPixelArray8().

Fill a rectangle]

Call: RectFilK rp, xmin, ymin, xmax, ymax)

-306(A6) al dO:16 dl:16 d2:16 d3:16

STRUCT RastPort *rp

SHORT xmin,ymin,xmax,ymax

Function: Fills a rectangle in a RastPort with the set color or pattern.

Parameters: rp RastPort

301

3. Programming with AmigaOS 2.x

xmin,ymin Upper left corner of rectangle

xmax,ymax

Lower right corner of rectangle

| SetAPen Set color for drawing [

Call: SetAPen(rp, pen)

-342(A6) al dO

STRUCT RastPort *rp

UBYTE pen

Function: Sets the foreground color for graphics operations.

Parameters: rp RastPort

pen Color number (0...255)

ISetBPen Set the background colori

Call: SetBPen (rp, pen)

-348(A6) al dO

STRUCT RastPort *rp

UBYTE pen

Function: Sets the second color for graphics operations.

Parameters: rp RastPort

pen Color number (0...255)

ISetDrMd Set draw model

Call: SetDrMd(rp, mode)

-354(A6) al dO:8

STRUCT RastPort *rp

UBYTE mode

302

3.1 The Libraries and their Functions

Function: Sets the draw mode for drawing, text output, and filling

areas.

Parameters: rp RastPort

mode JAM1, JAM2, etc.

Example: Output shaded text:

**=—.-.

**

**

• *

**

**

* *

**

= = = = === _= =

Shadow print

Input: al =

aO =

dO =

dl =

d2 =

d3 =

—

RastPort

Text

Text color

Shadow color

xPos

yPos

**

**

**

* *

* *

* *

* *

* *

* *

**

_ShadowPrint

movem.l dO-d4/aO-al/a6,-(a7)

movea.1 _GfxBase,a6

moveq #RP_JAM1,dO

jsr _LV0SetDrMd(a6) foreground color only

StrLen

moveq

sub.l

#-l,dO

aC^dO

StrLenLoop

tst.b

bne.s

add.l

move.1

move.1

addq.w

addq.w

bsr .s

move. 1

subq.w

subq.w

bsr .s

(aO) +

.StrLenLoop

aO,dO

dO,d4

4(a7),dO

#l,d2

#l,d3

.GiveOut

(a7),dO

#l,d2

#l,d3

.GiveOut

movem.l (a7)+,dO-d4/aO-al/a6

rts

303

3. Programming with AmigaOS 2.x

GiveOut

movea.

jsr

movea.

move.1

move.1

jsr

movem.

move.1

jmp

1

1

1

28(a7),al

_LVOSetAPen(a6)

28(a7),al

d2/d0

d3fdl

_LV0Move(a6)

24(a7)/a0-al

d4,dO

_LVOText(a6)

ISetRast Fill an area with a color|

Call: SetRast (rp, pen)

-234(A6) al dO

STRUCT RastPort *rp

UBYTE pen

Function: Fills the RastPort with the given color.

Parameters: rp RastPort

pen Color number (0...255)

| WritePixel Draw a pixel 1

Call: error = WritePixel (rp, x, y)

dO -324(A6) al DO Dl

LONG error

STRUCT RastPort *rp

SHORT x,y

Function: Places a pixel at the given coordinates in the RastPort

using the foreground color.

Parameters: rp RastPort

x,y Pixel coordinates

Result: 0 Okay, -1 coordinates outside of RastPort.

304

3.1 The Libraries and their Functions

[WritePixelArray8 Draw a multi-colored rectangle!

Call! count = WritePixelArray8(rp,xstart,ystart,xstop,ystop, array, temprp)

dO -786(A6) aO dO:16 dl:16 d2:16 d3:16 a2 al

LONG count

STRUCT RastPort Tp,*temprp

UWORD xstart, ystart, xstop,ystop

APTR *array

Function: Fills a rectangle with pixels. The color numbers are given in

a byte field.

Parameters: See ReadPixelArray8().

Result: Number of pixels drawn.

Example: Write a 16*16 pixel area:

movea.1 _GfxBase,a6

movea.l __RastPort,aO

moveq #8,dO

moveq #16,dl

moveq #24,d2

moveq #32,d3

lea _Array,a2

lea __TmpRp,al

jsr _LV0WritePixelArray8(a6)

_Array

ds.b 16*16 ;previously read, manipulated, etc.

_TmpRp ;already initialized

| WritePixelLine8 Draw a multi-colored horizontal lme|

Call: count = WritePixelLine8(rp,xstart,ystart,width,array,temprp)

dO -774(A6) aO dO:16 dl:16 d2 a2 al

LONG count

STRUCT RastPort *rp/*temprp

305

3. Programming with AmigaOS 2.x

UWORD xstart,ystart,width

APTR array

Function: Draws a horizontal line with the color numbers given in a

byte field.

Parameters: See ReadPixelLine8().

Result: Number of pixels drawn.

Dec Hex STRUCTURE TmpRas,0 ;temporary raster

0 $0 APTR tr_RasPtr ;buffer

4 $4 LONG tr_Size /buffer size

8 $8 LABEL tr_SIZEOF

RPB_FRST_DOT

RPB_ONE_DOT

RPB_DBUFFER

RPB_AREAOUTLINE

RPB_NOCROSSFILL

RP_JAM1

RP_JAM2

RP_COMPLEMENT =

RP_INVERSVID

0, RPF_FRST_DOT

1, RPF_ONE_DOT

2, RPF_DBUFFER

3, RPF_AREAOUTLINE =

1 ;first pixel also

2 ;pixel line

4 ;double buffering

8 /outline mode

= 5, RPF__NOCROSSFILL = 16 ;AreaFill mode

= 0 /without background

= 1 ;with background

= 2 /complement

= 4 ;invert

RPB_TXSCALE = 0, RPF_TXSCALE = 1

Dec

0

4

8

12

16

20

24

25

26

27

28

29

30

31

32

34

36

Hex

$0

$4

$8

$c

$10

$14

$18

$19

$1A

$1B

$1C

$1D

$1E

$1F

$20

$22

$24

STRUCTURE RastPort,

LONG

LONG

LONG

LONG

LONG

LONG

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

WORD

WORD

WORD

rp_Layer

rp_BitMap

rp_AreaPtrn

rp_TmpRas

rp_AreaInfo

rp_GelsInfo

rp_Mask

rp_FgPen

rp_BgPen

rp_AOLPen

rp_DrawMode

rp_AreaPtSz

rp__linpatcnt

rp_Dummy

rp_Flags

rp__LinePtrn

rp_cp_x

306

3.1 The Libraries and their Functions

38

40

48

50

52

56

57

58

60

62

64

66

70

78

92

100

Dec

0

4

8

12

16

18

20

22

24

$26

$28

$30

$32

$34

$38

$39

$3A

$3C

$3E

$40

$42

$46

$4E

$5C

$64

Hex

$0

$4

$8

$c

$10

$12

$14

$16

$18

WORD

STRUCT

WORD

WORD

LONG

BYTE

BYTE

WORD

WORD

WORD

WORD

APTR

STRUCT

STRUCT

STRUCT

LABEL

rp_cp_y

rp_minterms,8

rp_PenWidth

rp_PenHeight

rp_Font

rp_AlgoStyle

rp_TxFlags

rp_TxHeight

rp_TxWidth

rp_TxBaseline

rp_TxSpacing

rp_RP_User

rp_longreserved/8

rp_wordreserved,14

rp_reserved,8

rp_SIZEOF

STRUCTURE Arealnfo,0

LONG

LONG

LONG

LONG

WORD

WORD

WORD

WORD

LABEL

ai_VctrTbl

ai_VctrPtr

ai_FlagTbl

ai_FlagPtr

ai_Count

ai_MaxCount

ai_FirstX

ai_FirstY

ai_SIZEOF

Example:

6. Text Output

A routine could calculate the color values for an apple man

(fractal, Mandelbrot set) and store them in byte arrays,

which can then be output at the end of a line with

WritePixelLine8().

| AddFont Add a font to the system list|

Call: AddFont (textFont)

-480(A6) al

STRUCT TextFont *textFont

Function: Adds the given font to the system list.

Parameters: textFont TextFont structure

307

3. Programming with AmigaOS 2.x

|AskFont Get the attributes of the current fontl

Call: AskFont(rp, textAttr)

-474(A6) al aO

STRUCT RastPort *rp

STRUCT TextAttr *textAttr

Function: Fills the given TextAttr structure with information on the

RastPort font.

Parameters: rp RastPort

textAttr TextAttr structure

I AskSoftStyle Get the current style |

Call: enable = AskSoftStyle (rp)

dO -84(A6) al

ULONG enable

STRUCT RastPort *rp

Function: For the given RastPort, it returns the style currently being

generated by the software.

Parameters: rp RastPort

Result: Style (bit mask, undefined bits are set)

I ClearEOL Delete the rest of the line I

Call: ClearEOL (rp)

-42(A6) al

STRUCT RastPort *rp

Function: Deletes the rest of a text line starting from the current

position.

Parameters: rp RastPort

308

3.1 The Libraries and their Functions

IClearScreen Deletes the RastPort from the current position |

Call: ClearScreen(rp)

-48(A6) al

STRUCT RastPort *rp

Function: Deletes the rest of the RastPort starting from the current

text position (ClearEOL(), then continue down to the

bottom edge).

Parameters: rp RastPort

| CloseFont Free a font |

Call: CloseFont (font)

-78(A6) al

STRUCT TextFont *font

Function: Notifies the system that the given font is no longer being

used.

Parameters: font Result from OpenFont()/OpenDiskFont()

| ExtendFont Create tf Extension |

Call: success = ExtendFont (font, fontTags)

DO -816(A6) AO Al

ULONG success

STRUCT TextFont *font

STRUCT Tagltem *fontTags

Function: Assure that tfJExtension is available.

Parameters: font TextFont structure

fontTags Tagltem field

Result: 0 Error

309

3. Programming with AmigaOS 2.x

I FontExtent Get font attributes |

Call: FontExtent (font, fontExtent)

-762(A6) aO al

STRUCT TextFont *font

STRUCT TextExtent *fontExtent

Function: Fills the given FontExtent structure with information on

the given font.

Parameters: font TextFont

fontExtent FontExtent structure to be filled.

I OpenFont Open a font I

Call: font = OpenFont (textAttr)

dO -72 (A6) aO

STRUCT TextFont *font

STRUCT TextAttr *textAttr

Function: Searches the GfxLibrary list to find the font that most

closely matches the data given in the TextAttr structure,

and opens it.

Parameters: textAttr TextAttr or XTextAttr structure

Result: TextFont address if a font with the given name was found,

or 0. Warning: the attributes of the returned font may not

exactly match the requested attributes (different height,

etc.).

IKemKont Remove a font from the system listj

Call: RemFont (textFont)

-486(A6) al

STRUCT TextFont *textFont

310

3.1 The Libraries and their Functions

Function: Removes a font from the system list (as long as it is no

longer required).

Parameters: textFont TextFont structure for the font.

ISetFont Setfont]

Call: SetFont(rp/ font)

-66(A6) al aO

STRUCT RastPort *rp

STRUCT TextFont *font

Function: Sets the font to be used by a RastPort. If the font does not

conform with the standards, then an attempt is made to

convert it to a usable format.

Parameters: rp RastPort

font Result from OpenFont() or OpenDiskFont().

| SetSoftStyle Set software style |

Call: newStyle = SetSoftStyle (rp, style, enable)

dO -90(A6) al dO dl

ULONG newStyle,style,enable

STRUCT RastPort *rp

Function: Changes the software style of the current font.

Parameters: rp RastPort

style New values for the bits.

enable Bit mask with bits to be changed.

Result: Value with the new style.

311

3. Programming with AmigaOS 2 jc

IStripFont Remove tf Extension!

Call: StripFont (font)

-822(A6) AO

STRUCT TextFont *font

Function: Converts a 2.x font into a 1.x font.

Parameters: font TextFont structure for the font.

| Text Output a string]

Call: Text(rp, string, length)

-60(A6) al aO dO

STRUCT RastPort *rp

APTR string

WORD length

Function: Outputs text to the current position in the RastPort.

Parameters: rp RastPort

string Address of first character of the output string.

length Number of characters.

|TextExtent Calculate dimensions of a text output!

Call: TextExtent (rp, string, count, textExtent)

-690(A6) al aO dO:16 a2

STRUCT RastPort *rp

APTR string

WORD count

STRUCT TextExtent *textExtent

Function: Fills a TextExtent structure with the calculated dimensions

of an output string.

312

3.1 The Libraries and their Functions

Parameters: rp

string

count

RastPort

Address of first character

Number of characters

Result:

textExtent Data structure for result

Filled TextExtent structure

ITextFit Calculate proper text length |

Call: chars = TextFit(rp, s, sL, tE, cE, sD, cBW, cBH)

dO -696 (A6) al aO dO a2 a3 dl d2 d3

ULONG chars

STRUCT RastPort *rp

APTR s

UWORD sL,sD,cBW,cBH

STRUCT TextExtent *tE,cE

Function: Checks how many characters and returns a TextExtent

structure of the proper length.

Parameters: rp

s

sL

tE

cE

sD

cBW

cBH

RastPort

String

String length

TextExtent structure for the result.

Given TextExtent structure of 0.

Offset from one character of the string to the

next.

Bit width (alternative to cE)

Bit height (alternative to cE)

313

3. Programming with AmigaOS 2.x

Result: Number of characters that will fit in the area (0 is possible).

| TextLength Length of a text output in a RastPort |

Call: length = TextLength(rp, string, count)

dO -54(A6) al aO d0:16

WORD length,count

STRUCT RastPort *rp

APTR string

Function: Returns the length of a text output in pixels.

Parameters: rp RastPort

string String address

count String length

Result: Text length in pixels.

| WeighTAMatch Compare fonts |

Call: weight = WeighTAMatch(reqTextAttr, targetTextAttr, targetTags)

dO -804(A6) aO al a2

WORD weight

STRUCT TTextAttr *reqTextAttr

STRUCT TextAttr *targetTextAttr

STRUCT Tagltem *targetTags

Function: Compares two TextAttr structures and returns a value that

describes how well they match. The best result is

MAXFONTMATCHWEIGHT (perfect match), the worst

case is 0. The names are not compared.

Parameters: reqTextAttr

Desired TextAttribute

targetTextAttr

Potential TextAttribute

314

3.1 The Libraries and their Functions

Result:

FS_NORMAL = 0 /normal style

targetTags Extended attributes for targetTextAttr or 0.

Match value (0...MAXFONTMATOEIWEIGHT)

FSB_UNDERLINED =

FSB_BOLD

FSB_ITALIC

FSB_EXTENDED =

FSB_COLORFONT =

FSB_JTAGGED

FPB_ROMFONT

FPB_DISKFONT

FPB_REVPATH

FPB_TALLDOT

FPB_WIDEDOT

FPB_PROPORTIONAL

FPB_DESIGNED

FPB_REMOVED

o,

1,

2,

3,

6,

7,

=

=

=:

=

=

=

=

FSF_UNDERLINED =

FSF_BOLD

FSF_ITALIC

FSF_EXTENDED

FSF_COLORFONT =

FSF_TAGGED

0, FPF_ROMFONT

1, FPF_DISKFONT

2, FPF_REVPATH

3, FPF_TALLDOT

4, FPF_WIDEDOT

1

2

4

8

$40

$80

-

=

=

=

St FPF_PROPORTIONAL =

6, FPF_DESIGNED

7, FPF^REMOVED

=

;underline

;bold

/italics

/extended

;colored

;TTextAttr

1 ;font from ROM

2 ;font from disk

4 /change output direction

8 /HiRes font

$10 /LoRes Interlace font

$20 /proportional font

$40 /designed (not derived)

$80 /not available

Dec Hex STRUCTURE TextAttr,0

0 $0 APTR ta_Name /font name

4 $4 UWORD ta_YSize /height

6 $6 UBYTE ta_Style /style

7 $7 UBYTE ta_Flags /preference Flags

8 $8 LABEL ta_SIZEOF

Dec Hex STRUCTURE TTextAttr,0

0 $0 APTR tta_Name /font name

4 $4 UWORD tta_YSize /height

6 $6 UBYTE tta_J3tyle /style

7 $7 UBYTE tta__Flags /preference Flags

8 $8 APTR tta_Tags /Tagltem field

12 $C LABEL tta_SIZEOF

TA_DeviceDPI = TAG_USER!l /XDPI«16! YDPI

MAXFONTMATCHWEIGHT = 32767 /perfect match

Dec Hex STRUCTURE TextFont,MN_SIZE /font

20 $14 UWORD tf_YSize /height

22 $16 UBYTE tf_Style /style

23 $17 UBYTE tf_Flags /preference Flags

24 $18 UWORD tf_XSize /normal width

26 $1A UWORD tf_Baseline /base line

28 $1C UWORD tf_BoldSmear /bold value

315

3. Programming with AmigaOS 2.x

30

32

33

34

38

40

44

48

52

$1E

$20

$21

$22

$26

$28

$2C

$30

$34

UWORD

UBYTE

UBYTE

APTR

UWORD

APTR

APTR

APTR

LABEL

tf_Accessors

tf_LoChar

tf__HiChar

tf_CharData

tf_Modulo

tf_CharLoc

tf_CharSpace

tf_CharKern

tf_SIZEOF

/number of users

;first character

;last character

;packed BitImages

;bytes per line of CharData

/offsets and character widths

/proportional spaces

/image offsets

tf_Extension = MN_REPLYPORT

TE0B_NOREMFONT = 0, TE0F_NOREMFONT = 1 /not removable

Dec

0

2

3

4

8

12

16

20

24

Hex

$0

$2

$3

$4

$8

$c

$10

$14

$18

STRUCTURE TextFontExtension

UWORD

UBYTE

UBYTE

APTR

APTR

APTR

APTR

APTR

LABEL

tfe_MatchWord

tfeJFlagsO

tfe_Flagsl

tfe_BackPtr

tfe_OrigReplyPort

tfe_Tags

tfe_OFontPatchS

tfe_OFontPatchK

tfe_SIZEOF

,0 /read only!

/ID for compatibility

/system Flags (TE0..)

/

/check address

/old contents of tf_Extension

/Tagltem field

/private

/private

CT_COLORFONT = 1 /color values are set

CT_GREYFONT = 2 /grey scale only (dark to light)

CT_ANTIALIAS = 4 /AntiAliasing

CTB_MAPCOLOR = 0, CTF_MAPCOLOR = 1 /set rp_FgPen first

Dec Hex STRUCTURE ColorFontColors,0

0 $0 UWORD cfc_Reserved ;0l!

2

4

8

Dec

52

54

55

56

57

58

59

60

64

96

$2

$4

$8

Hex

$34

$36

$37

$38

$39

$3A

$3B

$3C

$40

$60

UWORD

APTR

LABEL

cfc_Count j

cfc_ColorTable ;

cfc_SIZEOF

STRUCTURE ColorTextFont,

UWORD

UBYTE

UBYTE

UBYTE

UBYTE

UBYTE

UBYTE

APTR

STRUCT

LABEL

ctf_Flags

ctf_Depth

ctf_FgColor

ctf_Low

ctf_High

ctf_PlanePick

ctf_PlaneOnOff

', number of color values

;color table $xRGB

rtf_SIZEOF

/additional Flags

/number of BitPlanes

;rp_FgPen

/lowest color

/highest color

/ImagePlanes

/BitMap mask

ctf_ColorFontColors /colors

ctf_CharData, 8*4 /BitPlanePointer

ctf SIZEOF

316

3.1 The Libraries and their Functions

Dec Hex STRUCTURE TextExtent,0

0 $0 UWORD te_Width ;TextLength

2 $2 UWORD te_Height ;tf_YSize

4 $4 STRUCT te_Extent,8 ;MinX,MinY,MaxX,MaxY (relative)

12 $C LABEL te_SIZEOF

7. Movable Objects

| AddAnimOb Add AnimOb to RastPort list |

Call: AddAnimOb(anOb, anKey, rp)

-156(A6) aO al a2

STRUCT AnimOb *anOb,**anKey

STRUCT RastPort *rp

Function: Adds an AnimOb structure to the given list and initializes

the Timer values of the structure. Gelslnfo for the RastPort

must be initialized.

Parameters: anOb AnimOb structure

anKey Address of the address of the first AnimOb.

rp RastPort of the AnimOb.

I AddBob Add a bob structure to the GEL list|

Call: AddBob (Bob, rp)

-96(A6) aO al

STRUCT Bob *Bob

STRUCT RastPort *rp

Function: Adds the given Blitter object to the RastPoifs list.

Parameters: Bob Blitter object

rp RastPort of the bob

317

5. Programming with AmigaOS 2jc

I AddVSpnte Add a virtual sprite to the GEL listj

Call: AddVSprite(vs, rp)

-102(A6) aO al

STRUCT VSprite *vs

STRUCT RastPort *rp

Function: Adds a VSprite structure to the RastPort's list.

Parameters: vs VSprite

rp RastPort

| Animate Move AnimObs |

Call: Animate (anKey, rp)

-162 (A6) aO al

STRUCT AnimOb **anKey

STRUCT RastPort *rp

Function: Animates all AminObs and their components.

Parameters: anKey Address of the pointer to the first AnimOb.

rp RastPort of the AnimOb.

| ChangeSprite Change a sprite |

Call: ChangeSprite (vp, s, newdata)

-420(A6) aO al a2

STRUCT ViewPort *vp

STRUCT SimpleSprite *s

APTR newdata

Function: Changes the appearance of a sprite.

Parameters: vp ViewPort of the sprite or 0 (=relative to start of

display).

318

3.1 The Libraries and their Functions

s Address of the SimpleSprite structure.

newdata Address (ChipRAM) of the new hardware

sprite data list.

I DoCollision Check elements of the GEL list for collision's]

Call: DoCollision (rp)

-108(A6) al

STRUCT RastPort *rp

Function: Checks every movable object for border and object

collisions and calls the GEL collision routine if one is

found.

Parameters: rp RastPort with sorted GEL list (see SortGList()).

IDrawGList Display movable objects|

Call: DrawGList (rp, vp)

-114(A6) al aO

STRUCT RastPort *rp

STRUCT Viewport *vp

Function: Calculates a new Copper list for sprites and draws bobs.

Parameters: rp RastPort of the bob.

vp ViewPort of the VSprite.

IFreeGBuffers Free the AminOb component buffers|

Call: FreeGBuffers(anOb, rp, db)

-600(A6) aO al dO

STRUCT AnimOb *anOb

STRUCT RastPort *rp

BOOL db

319

3. Programming with AmigaOS 2.x

Function: Frees all buffers of all AnimOb components (SaveBuffer,

Borderline, CollMask=ImageShadow). If desired, double

buffering memory (DBufPacket, BufBuffer) is also set free.

Parameters: anOb AnimOb

rp RastPort

db Flag for double buffering (TRUE).

IFreeSprite Free hardware sprite I

Call: FreeSprite(pick)

-414(A6) dO

WORD pick

Function: Frees a hardware sprite for use by other programs.

Parameters: pick Sprite number (0...7)

| GetGBuffers Allocate all buffers for an AnimOb I

Call: status = GetGBuffers (anOb, rp, db)

dO -168(A6) aO al dO

BOOL status,db

STRUCT AnimOb *anOb

STRUCT RastPort *rp

Function: Attempts to allocate all memory for the components of an

AnimOb (SaveBuffer, BorderLine,

CollMask=ImageShadow). Memory for double buffering

(DBufPacket, BufBuffer) is also allocated if indicated. If an

error occurs, memory already allocated is not set free.

Parameters: anOb AnimOb structure

rp RastPort of the AnimOb.

db Flag for double buffering (TRUE).

320

3.1 The Libraries and their Functions

Result: 0 Error

IGetSprite Allocate a hardware sprite]

Call: Sprite_Number = GetSprite(sprite, pick)

dO -408(A6) aO dO

SHORT Sprite_Number,pick

STRUCT SimpleSprite *sprite

Function: Attempts to allocate one of the 8 hardware sprites.

Parameters: sprite SimpleSprite structure for the sprite.

pick Sprite number (0...7) or -1 (any Sprite).

Result: Sprite number of the allocated sprite or -1 (already in

use/none free).

I InitGels Initialize GELs]

Call: InitGels (head, tail, Glnfo)

-120(A6) aO al a2

STRUCT VSprite *head,*tail

STRUCT Gelslnfo *GInfo

Function: Links the VSprite structures to the GfxBase.

Parameters: head Start of list

tail End of list

Glnfo Gelslnfo structure to be initialized.

llnitGMasks Initialize AnimOb mask]

Call: initGMasks (anOb)

-174(A6) aO

STRUCT AnimOb *anOb

321

3. Programming with AmigaOS 2.x

Function: Calculate and enter the mask values for an AnimOb.

Parameters: anOb AnimOb

llnitMasks Initialize VSpriteTniSk]

Call: initMasks(vs)

-126(A6) aO

STRUCT VSprite *vs

Function: Calculates BorderLine and CoUMask for a VSprite/bob.

Parameters: vs VSprite structure of the object.

I MoveSprite Move a hardware sprite I

Call: MoveSprite (vp, sprite, x, y)

-426(A6) aO al dO dl

STRUCT Viewport *vp

STRUCT SimpleSprite *sprite

SHORT x,y

Function: Positions a hardware sprite relative to the ViewPort.

Parameters: vp ViewPort of the sprite or 0 (relative to View),

sprite SimpleSprite structure

x,y Position (x-coordinate +1)

[RemlBob Remove a bob from the RastPort list!

Call: RemiBob(bob, rp, vp)

-132(A6) aO al a2

STRUCT Bob *bob

STRUCT RastPort *rp

STRUCT ViewPort *vp

Function: Removes a bob from the RastPort's GEL list.

322

3.1 The Libraries and their Functions

Parameters: bob Blitter object to remove.

rp RastPort

vp ViewPort for raster synchronization.

I RemVSprite Remove a VSprite from the RastPort list]

Call: RemVSprite (vs)

-138(A6) aO

STRUCT VSprite *vs

Function: Removes a VSprite from the GEL list of the RastPort.

Parameters: vs VSprite

| SetCollision Set the collision routine|

Call: SetCollision (num, routine, GInfo)

-144(A6) dO aO al

ULONG num

APTR routine

STRUCT Gelslnfo *GInfo

Function: Sets the collision routine for an entry.

Parameters: num Number of entries

routine Collision routine

GInfo Gelslnfo

| SortGList Sort list of movable objects]

Call: SortGList (rp)

-150(A6) al

Function: Sorts the objects list by y-x coordinates.

Parameters: rp RastPort with Gelslnfo

323

3. Programming with AmigaOS 2.x

SUSERFLAGS = $0(

VSB_VSPRITE

VSB_SAVEBACK

VSB_OVERLAY

VSB_MUSTDRAW

VSB_BACKSAVED =

VSB_BOBUPDATE =

VSB__GELGONE

VSB_VSOVERFLOW =

JFF

o,

1,

2,

3,

8,

9,

10,

11,

BUSERFLAGS = $OOFF

BB_SAVEBOB

BB_BOBISCOMP

BB_BWAITING

BB_BDRAWN

BB_BOBSAWAY

BB_BOBNIX

BB_SAVEPRESERVE=

BB_OUTSTEP

0,

1,

8,

9,

10,

11,

12,

13,

/mask for User

VSF_VSPRITE

VSF_SAVEBACK

VSF_OVERLAY

VSF_MUSTDRAW

VSF_BACKSAVED

VSF_BOBUPDATE

VSF_GELGONE

VSF_VSOVERFLOW

;mask for User

BF_SAVEBOB

BF_BOBISCOMP

BF_BWAITING

BF_BDRAWN

BF_BOBSAWAY

BF_BOBNIX

VSprite

1

2

4

8

= $100

= $200

= $400

= $800

Flags

;VSprite, -BOb

;save background

/mask

; draw

;background

/update BOb

;outside of View

/overflow

BOb Flags

1

2

= $100

= $200

= $400

= $800

BF_SAVEPRESERVE=$1000

BF_OUTSTEP =$2000

/do not delete

/AnimOb component

/BOb waiting

/BOb drawn

/remove BOb

/BOb gone

/background from Dbuf

/clear Dbuf

ANFRACSIZE = 6 /animation Flags

ANIMHALF = $0020

RINGTRIGGER = $0001

Dec

0

4

8

12

16

18

20

22

24

26

28

30

32

34

36

40

44

48

52

56

57

58

58

Hex

$0

$4

$8

$c

$10

$12

$14

$16

$18

$1A

$1C

$1E

$20

$22

$24

$28

$2C

$30

$34

$38

$39

$3A

$3A

STRUCTURE VS,0 /vSpr i te

APTR

APTR

APTR

APTR

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

APTR

APTR

APTR

APTR

APTR

BYTE

BYTE

LABEL

LABEL

vs_NextVSpr i t e

vs_PrevVSpr i t e

vs_DrawPath

vs_ClearPath

vs_Oldy

vs_01dx

vs_VSFlags

vs_Y

vs_X

vs_Height

vs_Width

vs_Depth

vs_MeMask

vs_HitMask

vs_ImageData

vs_BorderLine

vs_CollMask

vs__SprColors

vs_VSBob

vs_PlanePick

vs_PlaneOnOff

vs_SUserExt

vs_SIZEOF

/next structure

/previous structure

/overlay vSprite

/delete vSprite

/old position

/

/vSprite Flags

/position

;

/height

/width in Words

/number of BitPlanes

/collision mask

/collision mask

;image

/mask of all bits

/collision image

/Sprite colors

/ BOb

/BitPlane mask image

/same for other planes

/start of user extension

324

3.1 The Libraries and their Functions

Dec

0

2

6

10

14

18

22

26

30

30

Dec

0

2

4

6

10

14

18

22

26

28

30

34

38

Dec

0

4

8

12

14

16

18

20

22

24

26

28

30

32

36

40

40

Hex

$0

$2

$6

$A

$E

$12

$16

S1A

$1E

$1E

Hex

$0

$2

$4

$6

$A

$E

$12

$16

$1A

$1C

$1E

$22

$26

Hex

$0

$4

$8

$c

$E

$10

$12

$14

$16

$18

$1A

$1C

$1E

$20

$24

$28

$28

STRUCTURE BOB, 0

WORD

APTR

APTR

APTR

APTR

APTR

APTR

APTR

LABEL

LABEL

bob_BobFlags ;

bob_SaveBuffer ;

bob_ImageShadow /

bob_Before ;

bob_After

bob_BobVSprite ;

bob_BobComp

bob_DBuffer ;

bob_BUserExt

bob_SIZEOF

STRUCTURE AC,0

WORD

WORD

WORD

APTR

APTR

APTR

APTR

APTR

WORD

WORD

APTR

APTR

LABEL

ac_CompFlags

ac_Timer ;

ac_TimeSet ;

ac_NextComp ;

ac_PrevComp ;

ac_NextSeq j

ac_PrevSeq ;

ac_AnimCRout ine ;

ac_YTrans ;

ac_XTrans ;

ac_HeadOb

ac_AnimBob

ac_SIZE

STRUCTURE AO, 0

APTR

APTR

LONG

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

APTR

APTR

LABEL

LABEL

ao_NextOb

ao_PrevOb

ao_Clock

ao_AnOldY

ao_AnOldX

ao_AnY

ao_AnX

ao_YVel

ao__XVel

ao_XAccel

ao_YAccel

ao_RingYTrans

ao_RingXTrans

ao_AnimORoutine

ao_HeadComp

ao_AUserExt

ao_SIZEOF

Blitter object

Flags

background buffer

Image mask

previous Bob

next Bob

vSprite structure

AnimComp

dBufPacket

AnimComp

Flags

activation time

start time

:next component

:previous component

rnext sequence

;previous sequence

;animation routine

;y translation

;x translation

?AnimOb

?BOB

;AnimOb

;next AnimOb

/previous AnimOb

;number of Animate()

;old position

#

/position

/velocity

#

/acceleration

/

/ring translation

7

/animation routine

/AnimComp

325

3. Programming with AmigaOS 2.x

Dec Hex STRUCTURE DBP, 0 ;dBufPacket

0

2

4

8

12

16

Dec

0

1

2

6

10

14

18

22

24

26

28

30

34

38

Dec

0

4

6

8

10

12

$0

$2

$4

$8

$c

$10

Hex

$0

$1

$2

$6

$A

$E

$12

$16

$18

$1A

$1C

$1E

$22

$26

Hex

$0

$4

$6

$8

$A

$c

WORD

WORD

APTR

APTR

APTR

LABEL

dbp_BufY

dbp_BufX

dbp_BufPath

dbp__BufBuffer

dbp__BufPlanes

dbp_SIZEOF

STRUCTURE Gelslnfo,0

BYTE

BYTE

APTR

APTR

APTR

APTR

APTR

WORD

WORD

WORD

WORD

APTR

APTR

LABEL

gi_sprRsrvd

gi_Flags

gi_gelHead

gi__gelTail

gi_nextLine

gi__lastColor

gi_collHandler

gi_leftmost

gi_rightmost

gi_topmost

gi_bottommost

;screen position

;vSprite

;buffer

/background PlanePointer

/Sprite numbers

;Flags

;start of list

;end of list

/Sprite lines

/color field

/collision routine

gi_firstBlissObj

gi_lastBlissObj

gi_SIZEOF

STRUCTURE SimpleSprite

APTR

WORD

WORD

WORD

WORD

LABEL

,0

ss_posctldata

ss_height

ss_x

ss_y

ss_num

ss_SIZEOF

3.1.9 The Icon Library

The "icon.library" is used to process \infof files. So, the base address must

be given in A6 with the function calls.

Functions of the Icon Library

AddFreeList

BumpRevision

FindToolType

FreeDiskObject

FreeFreeList

GetDefDiskObject

326

3.1 The Libraries and their Functions

GetDiskObject

GetDiskObjectNew

MatchToolValue

PutDefDiskObject

PutDiskObject

Description of Functions

| AddFreeList Add memory to FreeList|

Call: status = AddFreeList (free, mem, len)

DO -72 (A6) AO Al A2

BOOL status

STRUCT FreeList *free

APTR mem

ULONG len

Function: Adds the given memory block to a FreeList.

Parameters: free FreeList

man Memory address

len Size of block

Result: 0 Error

I BumpRevision Create a filename for a copy |

Call: result = BumpRevision(newbuf, oldname)

DO -108(A6) AO Al

APTR result,newbuf,oldname

Function: Creates a filename with "copy_of_" etc.

Parameters: newbuf New name (copy_of_...), min. 31 bytes

oldname Original filename

Result: Address of the new name or 0.

327

3. Programming with AmigaOS 2.x

IFindToolType Find the value of a ToolType variable!

Call: value = FindToolType (toolTypeArray, typeName)

DO -96(A6) AO Al

APTR value,toolTypeArray,typeName

Function: Finds a ToolType field according to the contents of the

given variable.

Parameters: toolTypeArray

String field (APTRs)

typeName Variable name

Result: Address in ToolType string after the typeName equals sign

orO.

[FreeDiskObject Free an icon's memory |

Call: FreeDiskObject (diskobj)

-90(A6) AO

STRUCT DiskObject *diskobj

Function: Frees the memory used by an icon allocated with

GetDiskObject().

Parameters: diskobj DiskObject structure

| FreeFreeList Free the FreeList]

Call: FreeFreeList (free)

-54(A6) AO

STRUCT FreeList *free

Function: Frees the memory entered in an icon's FreeList, including

the memory for the FreeList structure.

Parameters: free FreeList

328

3.1 The Libraries and their Functions

iGetDefPiskObject Get default DiskObjectl

Call: diskobj = GetDefDiskObject (def_type)

DO -120(A6) DO

STRUCT DiskObject *diskobj

LONG def_type

Function: Reads the default Workbench icon for an object of the

given type.

Parameters: def_type Icon type

Result: DiskObject or 0

IGetDiskObject Get an icon file|

Call: diskobj = GetDiskObject (name)

DO -78(A6) A0

STRUCT DiskObject *diskobj

APTR name

Function: Reads the icon of the given object.

Parameters: name Object name or 0 (empty structure).

Result: DiskObject or 0

1 GetDiskObjectNew Get a new icon file|

Call: diskobj = GetDiskObjectNew (name)

DO -132(A6) A0

STRUCT DiskObject *diskobj

APTR name

Functions, Parameters, Results:

Same as GetDiskObject(), except that if no ".info" file is

available, an attempt is made to get the default settings with

GetDefDiskObjectQ.

329

3. Programming with AmigaOS 2.x

I MatchToolValue Compare ToolType variable!

Call: result = MatchToolValue (typeString, value)

DO -102(A6) A0 Al

BOOL result

APTR typeString,value

Function: Compares a string with a ToolType variable value (may be

several values separated with T).

Parameters: typeString ToolType values as from FindToolType().

value Comparison string

Result: 0 Value was not in typeString.

IPutDetPiskObject Set a Workbench iconl

Call: status = PutDefDiskObject (diskobj)

DO -126(A6) A0

BOOL status

STRUCT DiskObject *diskobj

Function: Changes the standard Workbench icon for the given

DiskObject type.

Parameters: diskobj DiskObject

Result: 0 Error

IPutDiskObject 1

Call: status = PutDiskObject (name, diskobj)

DO -84(A6) A0 Al

BOOL status

APTR name

STRUCT DiskObject *diskobj

Function: Writes an icon file to disk.

330

3.1 The Libraries and their Functions

Parameters: name Filename

diskobj DiskObject

Result: 0 Error

Structures: See Workbench Library.

3.1.10 The IFFParse Library

The IFF file format became an Amiga standard very quickly. Today, all

sound and graphics programs use it. A standard file format makes it

simple to transfer data from one program to another. The "iffjparse.library"

offers you the easiest way to introduce this standard to your own

programs. All functions are called with the base address in A6.

Functions of the IFFParse Library

1. Base Functions FindProp

FindPropContext

AllocIFF ParentChunk
CloseClipboard PopChunk

CLoselFF PushChunk
FreeDFF

GoodID j. Handlers

GoodType

IDtoStr CollectionChunk

InitlFF CollectionChunks

InitlFFasDOS EntryHandler

IniiEFFasClip ExitHandler

OpenClipboard PropChunk

OpenlFF PropChunks

ParselFF StopChunk

ReadChunkBytes StopChunks

ReadChunkRecords StopOnExit

WriteChunkBytes

WriteChunkRecords 4. Local Contextltems

2 Context AllocLocalltem
FindLocalltem

CurrentChunk FreeLocalltem

FindCollection

331

3. Programming with AmigaOS 2.x

LocalltemData StoreltemlnContext

SetLocalltemPurge StoreLocalltem

Description of the Functions

1. Base Functions

I AlIocIFF Allocate an IFFHindle]

Call: iff = aIIociff ()

dO -30(A6)

STRUCT IFFHandle *iff

Function: Allocates and initializes an IFFHandle structure.

Result: IFFHandle or 0

[CloseClipboard Close ClipboardHandlel

Call: CloseClipboard (clip)

-252(A6) aO

STRUCT ClipboardHandle *clip

Function: Closes the "clipboard.device" and frees the
ClipboardHandle structure.

Parameters: clip ClipboardHandle structure from

OpenClipboard().

ICloselFF Close IFFl

Call: closeiFF (iff)

-48(A6) aO

STRUCT IFFHandle *iff

Function: Closes an IFF file, leaving the IFFHandle structure intact for
a new OpenIFF() call.

Parameters: iff IFFHandle structure from OpenIFF().

332

3.1 The Libraries and their Functions

|FreeIFF Free IFFHandle]

Call: FreeiFF (iff)

-54(A6) aO

STRUCT IFFHandle *iff

Function: Frees an IFFHandle that was closed with CloseIFF().

Parameters: iff IFFHandle structure

I GoodID Check IFF ID |

Call: isok = GoodID (id)

dO -258(A6) dO

LONG isok, id

Function: Checks to see if a chunk ID conforms with the Electronic

Arts IFF 85 standard.

Parameters: id 32 bit ChunkID

Result: 0 ID not valid

iGoodType Check FORM type]

Call: isok = GoodType (type)

dO -264(A6) dO

LONG isok, type

Function: Checks to see if the ID is a type of FORM chunk (EA IFF

85).

Parameters: type 32 bit FORMat chunk ID

Result: 0 Not a FORM type

333

3. Programming with AmigaOS 2x

llDtoStr Store ID as a string |

Call: str = iDtoStr (id, buf)

dO -270(A6) dO aO

APTR str,buf

LONG id

Function: Writes the ID (longword) to the given buffer and deletes

the following byte.

Parameters: id Longword

buf 5 byte buffer

Result: Buffer

| InitEFF Initialize IFFHandle as UserStream |

Call: mitlFF (iff, flags, streamhook)

-228(A6) aO dO al

STRUCT IFFHandle *iff

LONG flags

STRUCT Hook *streamhook

Function: Initializes IFFHandle with the user routines for positioning,

reading, and writing. The hook routines are passed to the

Hook, IFFStreamCmd, and IFFHandle structures in registers
A0-A2.

Parameters: iff IFFHandle structure

flags I/O flags

hook Hook with stream routine.

llnitlFFasClip Initialize IFFHandle as ClipboardStreaml

Call: initiFFasClip (iff)

-240(A6) aO

334

3.1 The Libraries and their Functions

STRUCT iFFHandle *iff

Function: Initializes an IFFHandle for the "clipboard.device". Another

ClipboardHandle from OpenClipboard() must be entered in

iff_Stream.

Parameters: iff IFFHandle

| InitlFFasDOS Initialize IFFHandle as DOSStream |

Call: InitlFFasDOS (iff)

-234(A6) aO

STRUCT IFFHandle *iff

Function: Initializes an IFFHandle for DOS. Another FileHandle from

Open() must be entered in iff_Stream (BPTR).

Parameters: iff IFFHandle structure

IQpenCiipboard Get ClipboardHandle|

Call: ch = OpenClipboard (unit)

dO -246(A6) dO

STRUCT ClipboardHandle *ch

LONG unit

Function: Opens the given unit of the "clipboard.device" (normally

PRIMARY_CLIP) and returns a structure for

InitEFFasClipO.

Parameters: unit "clipboard.device" unit

Result: ClipboardHandle or 0

| OpenlFF Prepare IFFHandle for I/O |

Call: error = OpenlFF (iff, rwmode)

dO -36(A6) aO dO

LONG error,rwmode

335

3. Programming with AmigaOS 2.x

STRUCT IFFHandle *iff

Function: Initializes an IFFHandle structure for reading or writing

(IFFF_READ or BFFF_WRITE).

Parameters: iff IFFHandle

rwmode IFFF_READ or IFFF_WRITE

Result: Error code or 0

I ParselFF AnalyzelFFI

Call: error = ParselFF (iff, control)

dO -42(A6) aO dO

LONG error,control

STRUCT IFFHandle *iff

Function: Reads an IFF file, puts the chunks on the context stack,

and retrieves them in the correct order. The corresponding

chunk type handler is called.

Parameters: iff IFFHandle structure

control IFFPARSEJSCAN, IFFPARSEJSTEP, or

DFFPARSE_RAWSTEP

Result: Error code or 0

I ReadChunkBytes Read bytes of the current chunkl

Call: actual = ReadChunkBytes (iff, buf, size)

dO -60(A6) aO al dO

LONG actual,size

STRUCT IFFHandle *iff

APTR buf

Function: Reads the given number of bytes from IFFHandle to the

buffer.

336

3.1 The Libraries and their Functions

Parameters: iff

buf

size

IFFHandle

Read buffer

Number of bytes

Result: Number of bytes read or negative (-error code).

I ReadChunkRecords Read structures of the current chunk |

Call: actual = ReadChunkRecords (iff, buf, recsize, numrec)

dO -72(A6) aO al dO dl

LONG actual,recsize,numrec

STRUCT IFFHandle *iff

APTR buf

Function: Reads numrec structures of length recsize to the buffer.

Parameters: iff IFFHandle

buf Read buffer

recsize Size of structure

numrec Number of structures

Result: Number or negative (-error code)

I WriteChunkBytes Write to the current chunk |

Call: error = WriteChunkBytes (iff, buf, size)

dO -66 (A6) aO al dO

Function: Writes size bytes to the current chunk.

Parameters: iff IFFHandle

buf Write buffer

size Buffer size

337

3. Programming with AmigaOS 2x

Result: Number of written bytes or negative (-error code).

fWriteChunkRecords Write data structures to chunk |

Call: error = WriteChunkRecords (iff, buf, recsize, numrec)

dO -78 (A6) aO al dO dl

LONG error,recsize,numrec

STRUCT IFFHandle *iff

APTR buf

Function: Writes numrec structures of size recsize to the current

chunk.

Parameters: iff IFFHandle

buf Buffer

recsize Structure size

numrec Number of structures

Result: Number or negative (-error code)

Dec Hex STRUCTURE IFFHandle,0

0 $0 ULONG iff_Stream

4 $4 ULONG iff_Flags

8 $8 LONG iff_Depth ;stack depth

12 $C LABEL iff_SIZEOF ;not end of structure!!!

iff_Flags:

IFFF_READ = 0 ;read

IFFF__WRITE = 1 ; write

IFFF_FSEEK = 2 ;forward only

IFFF_RSEEK = 4 ;any direction

IFFF_RESERVED = $FFFF0000 ;important system bits

Dec Hex STRUCTURE ClipboardHandle,iocr_SIZEOF ; cbh_Reg

52 $34 STRUCT cbh__CBport,MP_SIZE

86 $56 STRUCT cbh_SatisfyPort,MP_SIZE

120 $78 LABEL cbh_SIZEOF

IFFERR_EOF = -1 ;end of file

IFFERR_EOC = -2 ;end of context

338

3.1 The Libraries and their Functions

IFFERR__NOSCOPE

IFFERR_NOMEM

IFFERR_READ

IFFERR_WRITE

IFFERR_SEEK

IFFERRJMANGLED

IFFERR_SYNTAX

IFFERR_NOTIFF

IFFERR_NOHOOK

IFF_RETURN2CLIENT =

ID_FORM = 'FORM1

ID_LIST = 'LIST1

ID_CAT = 'CAT '

ID_PROP = 'PROP'

ID_NULL = '

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

;invalid values for PROPs

;no free memory

;read error

;write error

;seek error

;defective data in file

;IFF syntax error

;not an IFF file

;no Hook

;return to program

IFFPARSE_SCAN = 0

IFFPARSE_STEP = 1

IFFPARSE_RAWSTEP = 2

2. Context

ICurrentChunk ContextNode of the current chunk |

Call: top = CurrentChunk (iff)

dO -174(A6) aO

STRUCT ContextNode *top

STRUCT IFFHandle *iff

Function: Returns the current ContextNode of the IFFHandle.

Parameters: iff IFFHandle

Result: ContextNode or 0

| FindCollection Get Collectionltem hst|

Call: ci = FindCollection (iff, type, id)

dO -162(A6) aO dO dl

STRUCT Collectionltem *ci

STRUCT IFFHandle *iff

LONG type, id

339

3. Programming with AmigaOS 2.x

Function: Gets the address of a list of CoUectionltem structures of the

given chunk type.

Parameters: iff IFFHandle

type Type

id ID

Result: Address of the last collection chunk.

| FindProp Find StoredProperty for a context |

Call: sp = FindProp (iff, type, id)

dO -156(A6) aO dO dl

STRUCT StoredProperty *sp

STRUCT IFFHandle *iff

LONG type, id

Function: Finds the StoredProperty structure set with PropChunk() or

PropChunks(), which was automatically created by

ParseIFF().

Parameters: iff IFFHandle

type FORM type (for example "ILBM")

id ChunkID (for example "CMAP")

Result: StoredProperty or 0

| FindPropContext Find ContextNode of the StoredProperty I

Call: en = FindPropContext (iff)

dO -168(A6) aO

STRUCT ContextNode *cn

STRUCT IFFHandle *iff

Function: Retrieves the ContextNode, which is contained as the

highest level of the current position, for example "FORM".

340

3.1 The Libraries and their Functions

Parameters: iff IFFHandle

Result: ContextNode

| ParentChunk Get the ContextNode of the next higher level I

Call: parent = ParentChunk (en)

dO -180(A6) aO

STRUCT ContextNode *parent, *cn

Function: Gets the ContextNode of the next highest level, for

example "FORM", from the ContextNode of a chunk.

Parameters: en ContextNode for which parent node is sought.

Result: ContextNode or 0

| PopChunk Get ContextNode from context stack |

Call: error = PopChunk (iff)

dO -90 (A6) aO

LONG error

STRUCT IFFHandle *iff

Function: Gets the next context chunk from the stack and frees all

Localltems.

Parameters: iff IFFHandle

Result: 0 or error code

| PushChunk Move ContextNode to the context stack |

Call: error = PushChunk (iff, type, id, size)

dO -84 (A6) aO dO dl d2

LONG error

STRUCT IFFHandle *iff

LONG type, id, size

341

3. Programming with AmigaOS 2.x

Function: Places a new ContextNode from DRFStream on the context

stack.

Parameters:

Result:

iff

type

id

size

IFFHandle

Type (e.g. "ILBM")

ID (e.g. "CMAP")

Chunk size or IFFSIZE_UNKNOWN

0 or error code

Dec Hex STRUCTURE ContextNode,MLN_SIZE ;cn_Node

8 $8 LONG cn_ID ;ChunkID

12 $C LONG cn_Type ;FORM type

16 $10 LONG cn_Size ;Chunk size

20 $14 LONG cn_Scan ;byte offset

24 $18 LABEL cn_SIZEOF ;not end of structure!!!

3. Handlers

llollectionlhunk Declare a CollectionChunk |

Call: error = CollectionChunk (iff, type, id)

dO . -138(A6) aO dO dl

LONG error,type,id

STRUCT IFFHandle *iff

Function: Declares a chunk to be a collection chunk and installs a

handler that is activated when the chunk is accessed.

Parameters: iff IFFHandle (must not be open)

type Type (such as "ILBM")

id ID (such as "CRNG")

Result: 0 or error code

342

3.1 The Libraries and their Functions

| CollectlonChunks Declare CollectionChunks)

Call: error = CollectionChunks (iff, list, n)

dO -144(A6) aO al dO

LONG error,n

STRUCT IFFHandle *iff

APTR list

Function: CollectionChunk() for several chunk types. The list is a

field of two longwords: type, ID.

Parameters: iff IFFHandle

list Field with types and IDs

n Number of list entries

Result: 0 or error code

I EntryHandler Link handler to context |

Call: error = EntryHandler (iff, type, id, position, hook, object)

dO -102 (A6) aO dO dl d2 al a2

LONG error,type,id,position

STRUCT IFFHandle *iff

STRUCT Hook *hook

APTR object

Function: Installs hook for a chunk type. The hook routine is called

for every new chunk of the given type.

Parameters: iff IFFHandle

type Typ (such as "ILBM")

id ID (such as "CMAP")

position IFFSLI_...

hook Hook structure with handler routine

343

3. Programming with AmigaOS 2.x

object User data (hook routine: A2)

Result: 0 or error code

|ExitHandler Install chunk exit handler!

Cull'. error = ExitHandler (iff, type, id, position, hook, object)

dO -108 (A6) aO dO dl d2 al a2

Functions, Parameters, Results:

Same as EntryHandler(), except that this routine is called

prior to removing a chunk.

[PropChunk Declare a StoredProperty chunk |

Call: error = PropChunk (iff, type, id)

dO -114(A6) aO dO dl

LONG error,type,id

STRUCT IFFHandle *iff

Function: Installs a handler for chunks of the given type.

Parameters: iff IFFHandle (does not have to be open)

type Type (such as "ILBM")

id ID (such as "CMAP")

Result: 0 or error code

| PropChunks Declare chunks as PropChunks |

Call: error = PropChunks (iff, list, n)

dO -120(A6) aO al dO

LONG error,n

STRUCT IFFHandle *iff

APTR list

Function: PropChunk() for several chunks. The list parameter is a field

with two longwords: type and ID.

344

3.1 The Libraries and their Functions

Parameters: iff IFFHandle

list List with type, ID

n Number of chunks

Result: 0 or error code

I StopChunk Declare StopChunk 1

Call: error = StopChunk (iff, type, id)

dO -126(A6) aO dO dl

LONG error,type,id

STRUCT iFFHandle *iff

Function: Declares a chunk to be a StopChunk, which stops

ParselFFO when encountered (IFFPARSEJSCAN-Modus).

Parameters: iff IFFHandle

type Type (such as "ILBM")

id ID (such as "BODY")

Result: 0 or error code

I StopChunks Declare StopChunks |

Call: error = StopChunks (iff, list, n)

dO -132 (A6) aO al dO

LONG error,n

STRUCT IFFHandle *iff

APTR list

Function: Several StopChunk() calls (like PropChunks() etc.).

Parameters: iff IFFHandle

list Field with type, ID

345

3. Programming with AmigaOS 2.x

n Number of chunks

Result: 0 or error code

IStopOnExit Stop after chunk!

Call: error = StopOnExit (iff, type, id)

dO -150 (A6) aO dO dl

LONG error,type,id

STRUCT IFFHandle *iff

Function: Stops ParseIFF() in scan mode after the given chunk is

processed.

Parameters: iff IFFHandle

type Type (such as "DLBM")

id ID (such as "BODY")

Result: 0 or error code

Dec Hex STRUCTURE IFFStreamCmd,0

0 $0 LONG isc_Command ;IFFCMD_...

4 $4 APTR isc_Buf ;data buffer

8 $8 LONG isc_NBytes ;number of bytes

12 $C LABEL isc_SIZEOF

Dec Hex STRUCTURE StoredProperty,0

0 $0 LONG spr_Size

4 $4 APTR spr_Data

8 $8 LABEL spr_SIZEOF

Dec Hex STRUCTURE Collectionltem,0

0 $0 APTR cit_Next

4 $4 LONG cit_Size

8 $8 APTR cit_Data

12 $C LABEL cit_SIZEOF

IFFCMD_INIT = 0 /initialization

IFFCMD_CLEANUP = 1 ;end

IFFCMD_READ = 2 ;read

IFFCMD_WRITE = 3 ;write

346

3.1 The Libraries and their Functions

IFFCMD_SEEK = 4 ;seek

IFFCMD_ENTRY = 5 ;new Context

IFFCMD_EXIT = 6 ;exit Context

IFFCMD_PURGELCI = 7 ;free LocalContextltem

4. Local Contextltems

lAUocLocalltem Allocate a LocalContextltem I

Call: item = AllocLocalltem (type, id, ident, usize)

dO -186 (A6) dO dl d2 d3

STRUCT LocalContextltem *item

LONG type, id, ident, usize

Function: Allocates and initializes a LocalContextltem structure for

the given amount of user data.

Parameters: type,id Type, ID

ident Contextltem type

usize Size of user data buffer

Result: LocalContextltem or 0

[FindLocalltem Get LocalContextltem from the context stack |

Call: lei = FindLocalltem (iff, type, id, ident)

dO -210(A6) aO dO dl d2

STRUCT LocalContextltem *lci

STRUCT iFFHandle *iff

LONG type, id, ident

Function: Searches the context stack for the given

LocalContextltem.

Parameters: iff IFFHandle

type Type

id ID

347

3. Programming with AmigaOS 2.x

ident Item type (such as "exhd" = ExitHandler)

Result: LocalContextltem or 0

| FreeLocalltem Free a LocalContextlteml

Call: FreeLocalltem (lei)

-204(A6) aO

STRUCT LocalContextltem *lci

Function: Frees the memory of a LocalContextltem allocated with

AllocLocalItem().

Parameters: lei LocalContextltem from AllocLocalItem().

| LocalltemData Get address of the user data |

Call: data = LocalltemData (lei)

dO -192(A6) aO

APTR data

STRUCT LocalContextltem *lci

Function: Returns the address of the user buffer of an LCI.

Parameters: lei LocalContextltem or 0

Result: Data address or 0

| SetLocalltemPurge Install purge handler |

Call: SetLocalltemPurge (item, purgehook)

-198(A6) aO al

STRUCT LocalContextltem *item

STRUCT Hook *purgehook

Function: Installs a purge handler in an LCI (A0=Hook,

A1=*IFFCMD^PURGELCI, A2=LCI).

Parameters: item LocalContextltem

348

3.1 The Libraries and their Functions

purgehook

Hook with purge routine.

| StoreltemlnContext Store LCI in ContextNode |

Call: StoreltemlnContext (iff, item, en)

-222 (A6) aO al a2

STRUCT IFFHandle *iff

STRUCT LocalContextltem *item

STRUCT ContextNode *cn

Function: Adds a LocalContextltem to a ContextNodefs list.

Parameters: iff IFFHandle

item LocalContextltem

en ContextNode

IStoreLocalltem Store LCI on the context stack |

Call: error = StoreLocalltem (iff, item, position)

dO -216(A6) aO al dO

LONG error,position

STRUCT IFFHandle *iff

STRUCT LocalContextltem *item

Function: Add LCI to a ContextNode's list.

Parameters: iff IFFHandle

item LocalContextltem

position IFFSLLROOT, DFFSLIJTOP, or DFFSLI_PROP

Result: 0 or error code

Dec Hex STRUCTURE LocalContextltem,MLN_SIZE ; lci_Node

8 $8 ULONG lci_ID

12 $C ULONG lciJType

349

3. Programming with AmigaOS 2jc

16 $10 ULONG lci_Ident

20 $14 LABEL lci_SIZEOF ;not end of structure!!!

IFFLCI_PROP = 'prop1

IFFLCI_COLLECTION = 'coll1

IFFLCI_ENTRYHANDLER = 'enhd'

IFFLCI_EXITHANDLER = 'exhd'

IFFSLI_ROOT = 1 ;LCI in previously set Context

IFFSLI_TOP = 2 ;LCI in current Context

IFFSLI__PROP = 3 ;LCI in FORM or LIST

IFFSIZE_UNKNOWN = -1

3.1.11 The Intuition Library

The "intuition.library" handles global management of the display and

input from the keyboard and mouse. The base address must be given in

A6.

Functions of the Intuition Library

1. Screens ScreenToFront

„ SetDefaultPubScreen

CloseScreen SetPubScreenModes
CloseWorkBench ShowTitle

FreeScreenDrawInfo UnlockPubScreen

GetDefaultPubScreen UnlockPubScreenList
GetScreenData ViewAddress
GetScreenDrawInfo WBenchToBack

LockPubScreen WBenchToFront
LockPubScreenList

MakeScreen 2. Windows
MoveScreen

NextPubScreen ActivateWindow

OpenScreen BeginRefresh

OpenScreenTagList ChangeWindowBox

OpenWorkBench ClearMenuStrip

PubScreenStatus ClearPointer

QueryOverscan CloseWindow

RemakeDisplay EndRefresh

RethinkDisplay ItemAddress

ScreenToBack ModifylDCMP

350

3.1 The Libraries and their Functions

MoveWindow

MoveWindowInFrontOf

OffMenu

OnMenu

OpenWindow

OpenWindowTagList

RefreshWindowFrame

ResetMenuStrip

SetMenuStrip

SetMouseQueue

SetPointer

SetWindowTitles

SizeWindow

ViewPortAddress

WindowLimits

WindowToBack

WindowToFront

ZipWindow

3. Requesters

AutoRequest

BuildEasyRequestArgs

BuildSysRequest

ClearDMRequest

DisplayAlert

EasyRequestArgs

EndRequest

FreeSysRequest

InitRequester

Request

SetDMRequest

SysReqHandler

4. Gadgets

ActivateGadget

AddGadget

AddGList

GadgetMouse

ModifyProp

NewModifyProp

ObtainGIRPort

OffGadget

OnGadget

RefreshGadgets

RefreshGList

ReleaseGIRPort

RemoveGadget

RemoveGList

ReportMouse

SetEditHook

SetGadgetAttrsA

5. Output Functions

DisplayBeep

DrawBorder

Drawlmage

DrawImageState

Eraselmage

IntuiTextLength

PrintlText

6. Other Functions

AddClass

AllocRemember

CurrentTime

DisposeObject

DoubleClick

FreeClass

FreeRemember

GetAttr

GetDefPrefs

GetPrefs

LocklBase

MakeClass

NewObjectA

NextObject

Pointlnlmage

RemoveClass

SetAttrsA

SetPrefs

UnlocklBase

351

3. Programming with AmigaOS 2.x

Description of the Functions

1. Screens

ICloseScreen Attempt to close a screen |

Call: Success = CloseScreen (Screen)

DO -66(A6) AO

BOOL Success

STRUCT Screen *Screen

Function: Attempts to close a screen. If successful and the screen was

the last screen, then an attempt is made to open the

Workbench.

Parameters: Screen Screen to be closed.

Result: 0 Screen could not be closed because it still

contains windows.

| CloseWorkBench Attempt to close Workbench |

Call: Success = CloseWorkBenchO

DO -78(A6)

BOOL Success

Function: Attempts to close the Workbench.

Result: 0 Workbench still open because there are still

windows from other programs on screen.

IFreeScreenDrawInfo Free Drawlnfo|

Call: FreeScreenDrawlnfo (Screen, Drlnfo)

-696(A6) AO Al

STRUCT Screen *Screen

STRUCT Drawlnfo *DrInfo

352

3.1 The Libraries and their Functions

Function: Frees the screenfs Drawlnfo structure (important for future

operating system versions).

Parameters: Screen Screen with the Drawlnfo structure.

Drlnfo Drawlnfo from GetScreenDrawInfo().

IGetDefaultPubScreen Get default PublicScreenj

Call: GetDefaultPubScreen (Namebuff)

-582(A6) AO

APTR Namebuff

Function: Gets the name of the default PublicScreen.

Parameters: Namebuff Buffer of size MAXPUBSCREENNAME bytes,

orO.

Result: None. Will provide the string "Workbench" in Namebuff if

there is no current default public screen.

I GetScreenData Copy Screen structure |

Call: Success = GetScreenData(Buffer, Size, Type, Screen)

DO -426(A6) AO DO Dl Al

BOOL Success

STRUCT Screen *Screen

UWORD Size,Type

APTR Buffer

Function: With CUSTOMSCREEN, copies the given Screen structure

to a buffer. If you specify a different screen type, the data

structure of the given screen type is copied. This will open

the Workbench if it was closed at the time the call was

made.

Parameters: Buffer Buffer for the Screen structure.

Size Buffer size

353

3. Programming with AmigaOS 2.x

Type Screen type (such as WBENCHSCREEN)

Screen Screen address of a CUSTOMSCREEN.

Result: 0 Error (Type' Screen could not be opened)

| GetScreenDrawInfo Get Drawlnfo for a screen |

Call: Drlnfo = GetScreenDrawInfo (Screen)

DO -690 (A6) A0

STRUCT Drawlnfo *DrInfo

STRUCT Screen *Screen

Function: Gets a Drawlnfo structure for the given screen.

Parameters: Screen Address of a Screen structure.

Result: Drawlnfo structure

ILockPubScreen Lock a PublicScreen |

Call: screen = LockPubScreen(Name)

DO -510(A6) A0

STRUCT Screen *screen

APTR Name

Function: Prevents a PublicScreen from being closed while data is

being read. This is needed to open a window according to

the screen dimensions. If a value of 0 is given, the default

public screen is addressed - usually the Workbench screen.

If this is closed at the time, it is opened again

(OpenWorkBench()).

Parameters: Name Screen name, *"Workbench" or 0

Result: Screen address or 0

354

3.1 The Libraries and their Functions

|LockPubScreenList Lock PublicScreen listj

Call: List = LockPubScreenList ()

DO -522(A6)

STRUCT List *List

Function: Prevents the PublicScreen list from being changed and gets

a user copy of this system list (PubScreenNodes).

Result: Address of the PublicScreen list.

IMakeScreen MakeVPortQ for Intuition screens]

Call: MakeScreen (Screen)

-378(A6) AO

STRUCT Screen *Screen

Function: Allows changes to the screen display in a compatible way.

RethinkDisplayO should be called afterwards.

Parameters: Screen Address of the changed screen.

1 MoveScreen Move screen]

Call: MoveScreen (Screen, DeltaX, DeltaY)

-162(A6) AO DO Dl

STRUCT Screen *Screen

WORD DeltaX, DeltaY

Function: Moves the given screen according to the given delta value.

Starting with AmigaOS2, the screen may also be moved

horizontally and scrolled up to the left and out of the

display (negative positions).

Parameters: Screen Screen to be moved.

DeltaX Horizontal interval in (screen) pixels.

DeltaY Vertical interval in (screen) pixels.

355

3. Programming with AmigaOS 2.x

INextPubScreen Get name of the next PublicScreen]

Call: Name = NextPubscreen (Screen, NameBuff)

DO -534 (A6) AO Al

STRUCT Screen *Screen

APTR NameBuf f, Name

Function: Gets the name of the next PublicScreen.

Parameters: Screen Screen or 0

NameBuff Buffer consisting of MAXPUBSCREENNAME

bytes.

Result: Address of buffer or 0 (not a PublicScreen).

IQpenScreen Open screen!

Call: Screen = OpenScreen (NewScreen)

DO -198(A6) AO

STRUCT Screen *Screen

STRUCT (Ext)NewScreen *NewScreen

Function: Opens a screen that's given the definition of a NewScreen

or ExtNewScreen structure.

Parameters: NewScreen

Initialized NewScreen or ExtNewScreen

structure.

Tags (ExtNS):

Old function (see NS): SA_Left, SAJTop, SA_Width,

SAJHeight, SAJDepth, SA_DetailPen, SA_BlockPen,

SAJTitle, SAJFont, SAJType, SA_BitMap, SA_ShowTitle,

SAJBehind, SA_Quiet.

SA_DisplayID: 32 bit display mode.

SA_Overscan: OSCANJTEXT, OSCAN_STANDARD,

OSCANJMAX or OSCAN_VIDEO.

356

3.1 The Libraries and their Functions

SA_DClip: DisplayClip region, see

QueryOverscan().

SA_AutoScroll: Bool

For oversized screens.

SA_PubName: Screen becomes a PublicScreen.

SA_Pens: Field for DrawInfo.dri_Pens which

allows all OS 2.0 options.

SAJPubTask: Task that is informed of the last "Visitor"

window to leave the PubScreen.

SAJPubSig: Signal bit for SAJPubTask.

SA__Colors: Colors, ending with -1.

SA_FullPalette: Take over all 32 Preferences colors

(BOOL).

SA_ErrorCode: Address for error codes.

SA_SysFont: Use Preferences font (0 = old font,

l=Workbench font)

Result: Address of the Screen structure or 0 (see SA_ErrorCode).

IQpenScreenTagList Open screen]

Call: Screen = OpenScreenTagList(NewScreen, Tagltems)

DO -612 (A6) A0 Al

STRUCT Screen *Screen

STRUCT NewScreen *NewScreen

STRUCT Tagltem *TagItems

Function: Same as OpenScreen() ExtNewScreen data structure, but

the Tagltem field is passed as a parameter in place of the old

ExtNewScreen method (test versions).

357

3. Programming with AmigaOS 2.x

Functions, Tags:

See OpenScreen()

Parameters: NewScreen

Optional NewScreen structure

Tagltems Optional Tagltem field, ending with TAG_END.

Result: Address of the Screen structure or 0.

|OpenWorkBench Get Workbench address |

Call: WBScreen = OpenWorkBench ()

DO -210(A6)

STRUCT Screen *WBScreen

Function: Searches for the Workbench screen and tries to open it if it

is not already open.

Result: Screen structure or 0

| PubScreenStatus Change status of a PublicScreen |

Call: ResultFlags = PubScreenStatus(Screen, StatusFlags)

DO -552(A6) A0 DO

UWORD ResultFlags,StatusFlags

STRUCT Screen *Screen

Function: Change status flags of own PublicScreen.

Parameters: Screen Own PublicScreen

StatusFlags

Current flags

Result: Bit 0 0: Screen was not public or could not be made

private.

358

3.1 The Libraries and their Functions

iQueryOverscan Query overscan area!

Call: QueryOverscan (DisplaylD, Rect, OScanType)

-474(A6) AO Al DO

ULONG DisplaylD

STRUCT Rectangle *Rect

WORD OScanType

Function: Fills a Rectangle structure with the dimensions of an

overscan type corresponding to the 32 bit display mode.

Parameters: DisplaylD 32 bit display mode

Rect Rectangle structure to be filled.

OScanType

OSCANL...

Result: 0 MonitorSpec for the ID does not exist.

I RemakeDisplay Recalculate the display |

Call: RemakeDisplay ()

-384(A6)

Function: Complete recalculation of all screens (ViewPorts) and the

ViewLord (Intuition View). This function should be

avoided (MakeScreen()+RethinkDisplay() will usually do

the job).

IRethinkDisplay Global display reconstructure]

Call: RethinkDisplay ()

-390(A6)

Function: Global reconstruction of the display. MakeVPort() should

be called first.

359

3. Programming with AmigaOS 2.x

| ScreenToBack Move screen to the background I

Call: ScreenToBack (Screen)

-246(A6) AO

STRUCT Screen *Screen

Function: Moves the given screen to the back of the display.

Parameters: Screen Screen structure

|ScreenToFront Move screen to the foreground!

Call: ScreenToFront (Screen)

-252(A6) AO

STRUCT Screen *Screen

Function: Moves the given screen to the foreground.

Parameters: Screen Screen structure

| SetDefaultPubScreen Set standard PublicScreen I

Call: SetDefaultPubScreen (Name)

-540(A6) AO

APTR Name

Function: Sets the default PublicScreen.

Parameters: Name Name of the PubScreen or 0 (=Workbench).

I SetPubScreenModes Set global mode for PublicScreen I

Call: OldModes = SetPubScreenModes (Modes)

DO -546(A6) DO

UWORD OldModes, Modes

Function: Sets the global mode for PublicScreen.

360

3.1 The Libraries and their Functions

Parameters: Modes New flags: SHANGHAI - Workbench windows

are opened with the default PublicScreen;

POPPUBSCREEN - PublicScreen moves to the

foreground when opened.

Result: Old global flags.

IShowTitle Activate (or deactivate) a screen's title bar]

Call: ShowTitle (Screen, Showlt)

-282(A6) AO DO

STRUCT Screen *Screen

BOOL Showlt

Function: Manipulates the SHOWTITLE flag of a screen and

refreshes the display.

Parameters: Screen Screen structure

Showlt Boolean: TRUE (title bar visible) or 0

I UnlockPubScreen Free a PublicScreenl

Call: UnlockPubScreen(Name, Screen)

-516(A6) AO Al

APTR Name

STRUCT Screen *Screen

Function: Undo a LockPubScreen() call.

Parameters: Name Name of PublicScreen or 0.

Screen Screen address if Name=0.

I UnlockPubScreenList Free PublicScreen list|

Call: UnlockPubScreenList ()

-528(A6)

Function: Undo a LockPubScreenList() call.

361

3. Programming with AmigaOS 2.x

[TiewAddress Get the address of the ViewLord |

Call: ViewLord = ViewAddress ()

DO -294(A6)

STRUCT View *ViewLord

Function: Gets the address of the Intuition View structure ViewLord.

Result: View structure

[WBenchToBack Move Workbench to the background |

Call: Success = WBenchToBack ()

DO -336(A6)

BOOL Success

Function: Moves the Workbench screen behind all other screens.

Result: 0 Workbench was not open.

| WBenchToFront Move Workbench to foreground I

Call: Success = WBenchToFront ()

DO -342(A6)

BOOL Success

Function: Move the Workbench screen in front of all other screens.

Result: 0 Workbench was not open.

Dec Hex STRUCTURE IntuitionBase,0

0 $0 STRUCT ib_LibNode,LIB_SIZE

34 $22 STRUCT ib_ViewLord,v_SIZEOF /Intuition View

52 $34 APTR ib_ActiveWindow /active window

56 $38 APTR ib_ActiveScreen /that window's screen

60 $3C APTR ib_FirstScreen ;first screen

64 $40 ULONG ib_Flags /private

68 $44 WORD ib_MouseY /INCOMPATIBLE!

70 $46 WORD ib_MouseX

72 $48 ULONG ib_Seconds /time

362

3.1 The Libraries and their Functions

76 $4C ULONG ib_Micros

DRI_VERSION = 1

Dec Hex

0 $0

2 $2

4 $4

8 $8

12 $C

14 $E

16 $10

18 $12

22 $16

STRUCTURE Drawlnfo,0

UWORD dri_Version

UWORD dri__NumPens

dri_Pens

dri_Font

dri_Depth

APTR

APTR

UWORD

UWORD

UWORD

ULONG

;structure version

;>= numDrlPens

;PenArray

;ScreenDefaultFont

;(initial) BitMap depth

dri_ResolutionX ;I/velocity

dri_ResolutionY ;

dri_Flags

STRUCT dri_longreserved,28

DRIF_NEWLOOK = 1, DRIB_NEWLOOK = 0

PenArray

detailPen

blockPen

textPen

shinePen

shadowPen

hifillPen

Indices

=

=

=

=

hifilltextPen =

backgroundPen =

hilighttextPen =

numDrlPens =

Dec Hex

0 $0

4 $4

8 $8

10 $A

12 $C

14 $E

16 $10

18 $12

20 $14

22 $16

26 $1A

30 $1E

31 $1F

32 $20

33 $21

34 $22

35 $23

36 $24

:

0 ;old draw color

1 ;

2 ;text on background (0)

3 ;bright 3D edges

4 ;dark 3D edges

5 ;fill color for current window

6 ;text in current window border

7 /background color (0)

8 ;highlighted text

9

STRUCTURE Screen,0

APTR

APTR

WORD

WORD

WORD

WORD

WORD

WORD

WORD

APTR

APTR

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

sc_NextScreen ;

sc_FirstWindow ;

sc__LeftEdge ;

scJTopEdge ,

sc_Width

sc_Height

sc_MouseY

sc_MouseX

sc_Flags

sc_Title

sc_DefaultTitle

sc_BarHeight

sc_BarVBorder

sc_BarHBorder

sc_MenuVBorder

sc_MenuHBorder

sc_WBorTop

sc_WBorLeft

next screen

first window

position

size

mouse position

.

•current title

•title

?size of title bar

;size of menu bord

;size of window bo

363

3. Programming with AmigaOS 2.x

37

38

39

40

44

84

184

224

$25

$26

$27

$28

$2C

$54

$B8

$E0

326 $146

330 $14A

331 $14B

332 $14C

334 $14E

338 $152

342 $156

346 $15A

BYTE

BYTE

BYTE

APTR

STRUCT

STRUCT

STRUCT

STRUCT

APTR

BYTE

BYTE

WORD

APTR

APTR

APTR

LABEL

sc_WBorRight

sc_WBorBottom

sc_KludgeFillOO

sc_Font

sc_ViewPort,vp_SIZEOF

sc_RastPort,rp_SIZEOF

sc_BitMap, bm_SIZEOF

sc_LayerInfo,li_SIZEOF

sc_FirstGadget

sc_DetailPen

sc_BlockPen

sc_SaveColorO

sc_BarLayer

sc_ExtData

sc_UserData

sc_SIZEOF

; font

;ViewPort

;RastPort

;BitMap

;LayerInfo

/gadgets

;for gadgets

;for Beeping

;title Layer

/extended data

;not necessarily end of structure!

SCREENTYPE

WBENCHSCREEN

PUBLICSCREEN

CUSTOMSCREEN

SHOWTITLE

BEEPING

CUSTOMBITMAP

SCREENBEHIND

SCREENQUIET

SCREENHIRES

NS_EXTENDED

AUTOSCROLL

STDSCREENHEIGHT

STDSCREENWIDTH

SA_Left

SA_Top

SA_Width

SA_Height

SA_Depth

SA_DetailPen

SA_BlockPen

SAJTitle

SA_Colors

SA_ErrorCode

SA_Font

SA_SysFont

SA_Type

SA_BitMap

SA_PubName

$F ;mask

1 ;Workbench screen

2 ;PublicScreen

$F ;other screens

$10 ;show title bar

$20 ;beep the screen

$40 ;User BitMap

$80 ;open screen behind

$100 ;forbid drawing

$200 ;HiRes gadgets

$1000 /extended screen structure

$4000 ;for oversized screens

-1 ;NewScreen.Height

-1 ; NewScreen. Width

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG.

TAG_

TAG_

.USER+33

.USER+34

.USER+35

.USER+36

.USER+37

.USER+38

.USER+39

.USER+40

.USER+41

USER+42

USER+43

USER+44

USER+45

.USER+46

USER+47

364

3.1 The Libraries and their Functions

SA_PubSig

SA_PubTask

SA_DisplayID

SA_DClip

SA__Overscan =

SA_Obsoletel

SA_ShowTitle

SA_Behind

SA_Quiet

SA_AutoScroll

SA_Pens =

SA_FullPalette =

OSERR_NOMONITOR

OSERR_NOCHIPS

OSERR_NOMEM

OSERR_NOCHIPMEM

TAG_USER+48

TAG_USER+49

TAG_USER+50

TAG_USER+51

TAG_USER+52

TAG_USER+53

TAG_USER+54

TAG_USER+55

TAG_USER+56

TAG_USER+57

TAG_USER+58

TAG_USER+59

= 1 ;monitor not available

= 2 ;old CustomChips

= 3 ;not enough memory

= 4 ;not enough ChipMem

OSERR_PUBNOTUNIQUE = 5 ;PublicScreen already exists

OSERR_UNKNOWNMODE = 6 /unknown display mode

Dec Hex

0 $0

$2

$4

$6

$8

$A

$B

$C

$E

16 $10

20 $14

24 $18

28 $1C

32 $20

32 $20

36 $24

2

4

6

8

10

11

12

14

STRUCTURE NewScreen,0

WORD ns_LeftEdge

WORD ns_TopEdge

WORD ns_Width

WORD ns_Height

WORD ns_Depth

BYTE ns_DetailPen

BYTE ns_BlockPen

WORD ns_ViewModes

WORD ns_Type

APTR ns_Font

APTR ns_DefaultTitle

APTR ns_Gadgets

APTR ns_CustomBitMap

LABEL ns_SIZEOF

STRUCTURE ExtNewScreen,

APTR ens_Extension

LABEL ens_SIZEOF

;position

;preset color

/display mode (old)

/screen type

;font TextAttr

/screen title

;0

/own BitMap

ns_SIZEOF

/Tagltem field

OSCANJTEXT

OSCAN_STANDARD

OSCAN_MAX

OSCAN_VIDEO

= 1 /everything visible

= 2 /right up to the edge of the screen

= 3 /large as possible

= 4 /more than is possible

Dec Hex STRUCTURE PubScreenNode,LN_SIZE

14 $E APTR psn_Screen /screen

18 $12 UWORD psn_Flags /private?

20 $14 WORD £sn_Size /structure size+name

365

5. Programming with AmigaOS 2.x

22 $16 WORD psn__VisitorCount ;number of VisitorWindows

24 $18 APTR psn_SigTask ;control task

28 $1C UBYTE psn_SigBit ;signal bit

29 $1D UBYTE psn_Padl

30 $1E LABEL psn_SIZEOF

PSNF_PRIVATE = 1

MAXPUBSCREENNAME = 139 ;max. name length

SHANGHAI = 1 /Workbench window on PubScreen

POPPUBSCREEN = 2 ;PubScreen to front

2. Windows

| ActivateWindow Activate a window |

Call: success = ActivateWindow (Window)

dO -450(A6) A0

STRUCT Window *Window

Function: Activates a window (for input).

Parameters: Window Window structure

Result: 0 Okay

[BeginRefresh Prepare window for a refresh|

Call: BeginRefresh (Window)

-354(A6) A0

STRUCT Window *Window

Function: The window's layer is locked for other programs (such as

"input.device"->Intuition()). During this time, only

functions that don't handle other tasks may be called

(never Intuition).

Parameters: Window Window to be refreshed

Example: Refresh several regions in a window:

366

3.1 The Libraries and their Functions

move.l im__Class(aO) , dO ;IntuiMessage class

cmpi.l #IDCMP_REFRESHWINDOW,dO ;refresh window?

beq _WindowRefresh

WindowRefresh

movea.1

movea.1

lea

movea.1

movea.1

jsr

movea.1

movea.1

movea.1

jsr

move.1

movea.1

movea.1

jsr

...

movea.1

movea.1

moveq

jsr

movea.1

movea.1

movea.1

movea.1

jsr

movea.1

movea.1

jsr

...

movea.1

movea.1

moveq

isr

im_IDCMPWindow(aO),a2

wd_WScreen(a2),aO

sc__LayerInfo (aO) , aO

aO,a3

_LayersBase,a6

_LVOLockLayerInfo(a6)

a2,aO

wd_WLayer(aO),aO

_Regionl,al

_LVOInstallClipRegion(a6)

dO,d2

__IntuiBase,a6

a2,aO

_LVOBeginRefresh(a6)

__IntuiBase,a6

a2,aO

#0,d0

_LVOEndRefresh(a6)

_LayersBase,a6

a2, aO

wdJWLayer(aO),aO

__Region2,al

_LVOInstallClipRegion(a6)

_IntuiBase,a6

a2,aO

_LVOBeginRefresh(a6)

_IntuiBase,a6

a2,aO

#0,d0

_LVOEndRefresh(a6)

;get window

;screen address

;get LayerInfo

;and save

/Layers library

;lock access

;Window

;Layer

;1. Region

;new Clipping

;save old Region

/Intuition

/Window

/start refresh

/refresh first Region

/Intuition

/Window

/NOT DONE

/end

/LayersBase

/Window

/Layer

/2nd Region

/new Clipping

/Intuition

/Window

/start refresh

/refresh second Region

/Intuition

/Window

/NOT DONE

; end

/refresh additional Regions

movea.1 _LayersBase,a6

movea.1 a2,aO

movea.1 wdJWLayer(aO),aO

movea.1 _RegionN,al

/LayersBase

/Window

/Layer

/nth Region

367

3. Programming with AmigaOS 2.x

_LV0InstallClipRegion(a6) ;new Clippingjsr

movea.1 _IntuiBase,a6

movea.1 a2,aO

jsr _LVOBeginRefresh(a6)

movea.1 _IntuiBase,a6

movea.1 a2, aO

moveq #-l,dO

jsr _LVOEndRefresh(a6)

;Intuition

;Window

;start refresh

/refresh nth Region

/Intuition

/Window

;DONE

/process Damagelist

movea.1 _LayersBase,a6 /LayersBase

movea.1 a2,aO /Window

movea.1 wd_WLayer(aO),aO /Layer

movea.1 d2,al /old Region

jsr _LV0InstallClipRegion(a6) /restore Clipping

movea.1 a3,aO /LayerInfo

jsr _LVOUnlockLayerInfo(a6) /unlock

I ChangeWindowBox Change position and size of a window I

Call: ChangeWindowBox(Window, Left, Top, Width, Height)

-486 (A6) AO DO Dl D2 D3

STRUCT Window *Window

WORD Left,Top,Width,Height

Function: Changes the position and size of a window simultaneously

(MoveWindow() and SizeWindow() combined).

Parameters: Window Window to be changed

Left, Top, Width, Height

New position and size

IClearMenuStrip Remove menus from a window!

Call: ClearMenuStrip (Window)

-54(A6) AO

STRUCT Window *Window

368

3.1 The Libraries and their Functions

Function: Removes the MenuStrip from the given menu (waits if the

menu is active).

Parameters: Window Window with menu

IClearPointer Reset appearance of mouse pointer |

Call: ClearPointer (Window)

-60(A6) A0

STRUCT Window *Window

Function: If you have defined a custom mouse pointer for a window,

this function will reset it to the standard mouse pointer.

Parameters: Window Window

ICloseWindow Close a wmdowl

Call: CloseWindow (Window)

-72(A6) A0

STRUCT Window *Window

Function: Closes a window. If there are messages in the UserPort,

these are also set free. If there is a MenuStrip, it must first be

deleted with ClearMenuStrip(). If it is a "Visitor Window",

the PublicScreen's counter is decremented.

Parameters: Window Window to be closed.

Example: Close a window with a UserPort not created by Intuition.

You can, for example, assign one UserPort to 10 windows,

since the window that is to receive the IntuitionMessage is

visible from the im_IDCMPWindow. When such a window

is opened, a value of 0 must be given as the IDCMPFlag.

After entering the common MsgPort, the desired value can

be set with ModifyIDCMP(). Closing such a window is

somewhat more complicated:

369

3. Programming with AmigaOS 2.x

movea.1

addq.b

movea.1

movea.1

clr.l

move.1

Loop

movea.1

move.1

beq.s

cmpa. 1

bne.s

move.1

jsr

movea.1

jsr

bra.s

_SysBase/a6

#l,TDNestCnt(a6)

_Window,a2

wd_UserPort(a2),aO

wd_UserPort(a2)

MP_MSGLIST+LH_HEAD(aO),d2

d2,al

(al),d2

.StopMsgs

im_IDCMPWindow (al) , a2

.Loop

alfd3

_LVORemove (a6)

d3,al

_LVOReplyMsg(a6)

.Loop

StopMsgs

movea. 1

movea.1

moveq

jsr

movea.1

subq.b

movea.1

jsr

_IntuiBase,a6

a2,aO

#0,d0

_LVOModi fyIDCMP(a6)

_SysBase,aO

#l#TDNestCnt(a6)

a2,aO

_LVOCloseWindow(a6)

;ExecBase

/Multitasking off

;get window

;UserPort

/delete entry

;ListNode

; message

;LN_SUCC

/LHJTAIL reached?

;Msg for this window?

;if not

;save Msg

/remove Msg

;get Msg

;send back

/continue

/Intuition

/window

/no Flags

/prevent further Msgs

/ Exec

/Multitasking on

/window

/close

I kndRefresh End screen refresh |

Call: EndRefresh(Window,

-366(A6) AO

Complete)

DO

STRUCT Window *Window

BOOL Complete

Function: Unlocks a window that was locked by BeginRefresh() (if

Complete=TRUE). If you program a routine that continues

when Complete=0, the system may easily crash.

Parameters: Window Window

370

3.1 The Libraries and their Functions

Complete Boolean, indicates if refresh has ended.

| ItemAddress Get address of a Menultem |

Call: Item = ItemAddress (MenuStrip, MenuNumber)

DO -144 (A6) AO DO

STRUCT Menultem *ItemAddress

STRUCT Menu *MenuStrip

UWORD MenuNumber

Function: Gets the Menultem or Subltem belonging to the given

menu code.

Parameters: MenuStrip Address of the first menu in a MenuStrip.

MenuNumber

Bit-packed menu code

Result: Menultem address or 0 (MenuNumber = MENUNULL)

|ModifylDCMP Change IDCMP flags |

Call: success ModifylDCMP (Window, iDCMPFlags)

DO -150(A6) AO DO

STRUCT Window *Window

ULONG IDCMPFlags

BOOL success

Function: Changes the status of the IDCMP (Intuition Direct

Communication Message Port). Warning: the MsgPort is

freed whenever the flags are set to 0 (FreeMem()).

Parameters: Window Window address

IDCMPFlags = MsgPort status

| MoveWindow Move a window]

Call: MoveWindow (Window, DeltaX, DeltaY)

-168(A6) AO DO Dl

371

3. Programming with AmigaOS 2.x

STRUCT Window *Window

WORD DeltaX, DeltaY

Function: Moves a window within a screen after first checking the

coordinates.

Parameters: Window Window to be moved

DeltaX Horizontal delta value

DeltaY Vertical delta value

| MoveWindowInFrontOf Change order of windows |

Call: MoveWindowInFrontOf (Window, BehindWindow)

-480(A6) A0 Al

STRUCT Window *Window,*BehindWindow

Function: Moves a window in front of the other windows.

Parameters: Window Window to be placed in front of

'BehindWindow'.

BehindWindow

Window that will end up behind 'Window'.

| OffMenu Turn menu off|

Call: OffMenu (Window, MenuNumber)

-180(A6) A0 DO

STRUCT Window *Window

UWORD MenuNumber

Function: Turn off Subltem, Menultem, or an entire menu. Whatever

is turned off may not be selected.

Parameters: Window Window with MenuStrip

MenuNumber

Bit-packed menu code

372

3.1 The Libraries and their Functions

IQnMenu Turn on menu, item, or subitem|

Call: OnMenu (Window, MenuNumber)

-192 (A6) AO DO

STRUCT Window *Window

UWORD MenuNumber

Functions, Parameters:

Opposite of OffMenuQ. Allows selection again.

| OpenWindow Open a window |

Call: Window = OpenWindow (NewWindow)

DO -204(A6) AO

STRUCT Window *Window

STRUCT (Ext)NewWindow *NewWindow

Function: Opens a window given a NewWindow or ExtNewWindow

structure. If WBENCHSCREEN is given as the screen type,

the window is opened on the Workbench screen or a

SHANGHAI screen.

Parameters: NewWindow

NewWindow or ExtNewWindow

New IDCMP flags: IDCMPJDCMPUPDATE

for custom and BoopsiGadgets;

IDCMP_CHANGEWINDOW for changes to

the window (position, size);

IDCMP^MENUHELP for printing menu HELP.

New type: PUBLICSCREEN (preset

PublicScreen)

Tags: Old functions (s. NW): WAJLeft, WA_Top, WA_Width,

WAJHeight, WA_DetailPen, WA_BlockPen, WAJDCMP,

WA_Flags, WAJ3adgets, WA_Checkmark, WAJTitle,

WA_CustomScreen, WA_SuperBitMap, WA_MinWidth,

WAJdinHeight, WA.MaxWidth, WA.MaxHeight.

373

3, Programming with AmigaOS 2.x

Result:

Example:

Bool tags for flags: WA_SizeGadget, WA_DragBar,

WAJDepthGadget, WA_CloseGadget, WA_Backdrop,

WA_ReportMouse.

WAJScreenTitle: screen title.

WA_AutoAdjust: (BOOL) adjust to screen dimensions.

WAJnnerWidth, WAJnnerHeight: dimensions of the

region.

WA_PubScreenName: name of PublicScreens for the

window.

WA_PubScreen: Screen structure of the PublicScreen.

WA_PubScreenFallBack: default PublicScreen if the one

requested is not available (BOOL).

WA_WindowName: not yet implemented.

WA_Colors: palette for the window.

WAJZoom: field with alternative size (ZoomGadget).

WA_MouseQueue, WA_RptQueue: limits for

IntuiMessages of the types IDCMPJMOUSEMOVE and

repeated IDCMPJRAWKEY.

WAJackFiU: LayerHook for backfill.

Window address or 0

Display AmigaDOS requesters in the window entered in the

Process structure of the currently running program. This is

normally a Workbench window. Programs that open a

custom screen should change this pointer to a window that

is in the custom screen. Otherwise, the Workbench screen

will brought to the foreground with every return query.

374

3.1 The Libraries and their Functions

jsr _^LV00penWindow(a6) ;open window

move.l dO,_Window ;save address

beq _Zerror ;in case of error

movea.l $4.w,aO ;ExecBase

movea.l ThisTask(aO),aO ;Process structure

move.l pr_WindowPtr(aO),_SavedWindowPtr ;save old value

move.l dO,pr_WindowPtr(aO) ;enter custom window

... ;Program code

movea.1 $4.w,aO ;ExecBase

movea.l ThisTask(aO),al /Process structure

movea.l pr_WindowPtr(al),aO ;our window

move.l _SavedWindowPtr,pr_WindowPtr(al) /restore old value

movea.l _IntuiBase,a6 /Intuition

jsr _LV0CloseWindow(a6) /close window

Proceed as follows to open a window on a PublicScreen:

LockPubScreen() - lock PubScreen

Get information and modify window

OpenWindowO - open window

UnlockPubScreen() - free PublicScreen

CloseWindow() - close window

[OpenWindowTagList Open window|

Call: Window = OpenWindowTagList(NewWindow, Tagltems)

DO -606 (A6) AO Al

STRUCT Window *Window

STRUCT NewWindow *NewWindow

STRUCT Tagltem *TagItems

Function: Like OpenWindowO with ExtNewWindow, except the

Tagltem field is passed as a parameter.

Parameters: NewWindow

Optional NewWindow structure

375

3. Programming with AmigaOS 2.x

Tagltems Optional Tagltem field

Result: Window address or 0

[RefreshWindowFrame Refresh the window frame |

Call: RefreshWindowFrame (Window)

-456(A6) AO

STRUCT Window *Window

Function: Refreshes the window frame of the given window.

Parameters: Window Window

[ResetMenuStrip Super-fast SetMenuStripQ |

Call: Success = ResetMenuStrip(Window, Menu)

DO -702(A6) AO Al

BOOL Success

STRUCT Window *Window

STRUCT Menu *Menu

Function: If a MenuStrip has been removed from a window and not

changed in the meantime, it can be activated again with this

function without having to recalculate JazzX, JazzY,

BeatX, and BeatY.

Parameters: Window Window

Menu First menu of the MenuStrip.

Result: TRUE

Example: Turn off MenuStrip while a program is executing:

movea.l _IntuiBase,a6 ;must happen first

movea.1 _Window,aO

lea _MenuStrip/al

jsr _LVOSetMenuStrip(a6)

376

3.1 The Libraries and their Functions

/jumps to '..Routine1 possible from here

movea.l _IntuiBase,a6 /Intuition

movea. 1 __Window, a0 ; window

jsr _LV0ClearMenuStrip(a6) ;turn off menu

_Routine

... ;save registers, etc.

movea.l _IntuiBase,a6 /Intuition

movea.l _Window,aO /window

jsr _LV0ClearMenuStrip(a6) /turn off menu

/now Flags such as

/CHECKED or ITEMENABLED can be changed

/Routine

movea.l _IntuiBase,a6 /Intuition

movea.1 _Window,aO /window

lea _MenuStrip/al /old menu

jsr _LV0ResetMenuStrip(a6) /reactivate

... /restore registers, etc.

rts

ISetMenuStrip Set MenuStrip in a window]

Call: Success = SetMenuStrip(Window, Menu)

DO -2 64(A6) AO Al

BOOL Success

STRUCT Window *Window

STRUCT Menu *Menu

Function: Installs a MenuStrip in a window and calculates the menu

boxes (JazzX/.Y, BeatX/.Y).

Parameters: Window Window

Menu First Menu structure

Result: TRUE

377

3. Programming with AmigaOS 2.x

SetMouseQueue

Set maximum number of mouse movement messages

Call: old = SetMouseQueue (Window, QueueLength)

DO -498(A6) AO DO

STRUCT Window *Window

UWORD QueueLength

LONG old

Function: Sets the maximum number of mouse movement messages

that may lie unanswered in the window's MessagePort

(only meaningful with slow languages such as C, BASIC,

etc.).

Parameters: Window Window

QueueLength

Number of MouseMove messages.

Result: Old queue length or -1 (unknown window).

I SetPointer Set the mouse pointer]

Call: SetPointer(Window, Pointer, Height, Width, XOffset, YOffset)

-270(A6) AO Al DO Dl D2 D3

STRUCT Window *Window

APTR Pointer

WORD Height, Width, XOffset, YOffset

Function: Sets the mouse pointer for a window.

Parameters: Window Window

Pointer Sprite data

Height Sprite height

Width Width (1...16)

378

3.7 The Libraries and their Functions

XOffset,YOffset

Offset from selection point.

| SetWindowTitles Set title bar text|

Call: SetWindowTitles(Window, WindowTitle, ScreenTitle)

-276(A6) AO Al A2

STRUCT Window *Window

APTR WindowTitle,ScreenTitle

Function: Defines the text displayed in the title bar of the active

window and screen.

Parameters: Window Window

WindowTitle

Window title, 0 (empty), or -1 (do not change)

ScreenTitle

Screen title, 0 (empty) or -1 (do not change)

| SizeWindow Change window size I

Call: SizeWindow (Window, DeltaX, DeltaY)

-288(A6) AO DO Dl

STRUCT Window *Window

WORD DeltaX, DeltaY

Function: Change the size of a window (only within the limits of

MinWidth-MinHeight, MaxWidth-MaxHeight, and if the

window has a Size gadget).

Parameters: Window Window

DeltaX Delta value for width

DeltaY Delta value for height

379

3. Programming with AmigaOS 2.x

IViewPortAddress Get a ViewPortl

Call: ViewPort = ViewPortAddress (Window)

DO -300(A6) A0

STRUCT Window *Window

STRUCT Viewport *ViewPort

Function: Returns the address of the ViewPort containing the given

window.

Parameters: Window Window

Result: Screen ViewPort of the window.

| WindowLimits Define limits for window size]

Call: Success = WindowLimits (Window, MinWidth, MinHeight, MaxWidth, MaxHeight)

DO -318 <A6) A0 DO Dl D2 D3

BOOL Success

STRUCT Window ^Window

WORD MinWidth, MinHeight

UWORD MaxWidth, MaxHeight

Function: Sets minimum and maximum values for window size.

Parameters: Window Window

MinWidth, MinHeight, MaxWidth, MaxHeight

New size limits, 0 (do not change) or -1 (full

screen)

Result: 0 Error

| WindowToBack Move window behind all other windows|

Call: WindowToBack (Window)

-306(A6) A0

STRUCT Window *Window

380

3.1 The Libraries and their Functions

Function: Moves a window to the back.

Parameters: Window Window

IWindowToFront Moves a window in front of all others!

Call: WindowToFront (Window)

-312(A6) AO

STRUCT Window *Window

Function: Move window to the front.

Parameters: Window Window

| ZipWindow

Call:

Activate alternative window size and position|

ZipWindow(Window)

-504(A6) AO

STRUCT Window *Window

Function: Like ZoomGadget: the window is moved to the alternative

position with the alternative size.

Parameters: Window Window

Dec

0

4

6

8

10

12

14

16

18

20

22

24

28

32

36

40

Hex

$0

$4

$6

$8

$A

$c

$E

$10

$12

$14

$16

$18

$1C

$20

$24

$28

STRUCTURE Window,0

APTR

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

LONG

APTR

APTR

APTR

APTR

wd_NextWindow

wd__LeftEdge

wd_TopEdge

wd_Width

wd_Height

wd_MouseY

wd_MouseX

wd_MinWidth

wd_MinHeight

wd_MaxWidth

wd_MaxHeight

wd_Flags

wd_MenuStrip

wdJTitle

wd_FirstRequest

wd_DMRequest

;next window

/position

;

;size

;

/relative mouse position

;

/minimum size

;

/maximum size

/

/Flags see below

/first menu

/title string

/active Requester

/double-menu Requester

381

3. Programming with AmigaOS 2.x

44

46

50

54

55

56

57

58

62

66

70

74

78

79

80

81

82

86

90

94

98

99

100

104

108

110

112

114

116

120

124

128

132

136

136

$2C

$2E

$32

$36

$37

$38

$39

$3A

$3E

$42

$46

$4A

$4E

$4F

$50

$51

$52

$56

$5A

$5E

$62

$63

$64

$68

$6C

$6E

$70

$72

$74

$78

$7C

$80

$84

$88

$88

WORD

APTR

APTR

BYTE

BYTE

BYTE

BYTE

APTR

APTR

APTR

APTR

APTR

BYTE

BYTE

BYTE

BYTE

ULONG

APTR

APTR

APTR

BYTE

BYTE

APTR

APTR

WORD

WORD

WORD

WORD

APTR

APTR

APTR

APTR

ULONG

LABEL

LABEL

WINDOWSIZING

WINDOWDRAG

WINDOWDEPTH

WINDOWCLOSE

SIZEBRIGHT

SIZEBBOTTOM

REFRESHBITS

SMART_REFRESH

SIMPLE_REFRESH

SUPER_BITMAP

OTHER_REFRESH

BACKDROP

wd_ReqCount

wd_WScreen

wd_RPort

wd_BorderLe ft

wd_BorderTop

;number of Requesters

;Screen

;RastPort

;border size

;

wd_BorderRight ;

wd_BorderBottom ;

wd_BorderRPort /border RastPort

wd_FirstGadget ;first Gadget

wd_Parent

wd_Descendant

wd_Pointer

wd_PtrHeight

wd_PtrWidth

wd__XOffset

wd_YOffset

wd_IDCMPFlags

wd_UserPort

wd_WindowPort

wd_MessageKey

wd_DetailPen

wd_BlockPen

wd_CheckMark

;window (activation)

;

;mouse data

;

;

;

7

;IDCMP Flags

; IDCMP

;ReplyPort (Intuition)

;Msg

;no longer meaningful

;

;Image with new check mark

wd_ScreenTitle ;screen title

wd_GZZMouseX

wd_GZZMouseY

wd_GZZWidth

wd_GZZHeight

wd_ExtData

wd_UserData

wd_WLayer

wd_IFont

wd_MoreFlags

wd_Size

wd_SIZEOF

1 ;

2 ;

4 ;

8 ;

$10 ;

$20 ;

$C0 ;

0 ;

[= $40 ;

$80 ;

$C0 ;

$100 ;

;mouse position within screen

7

;size of region

7

;extension structure

7NOT available

;Layer

;TextFont

;new system Flags

;size definition

7not necessarily end of structure!

Size gadget available

movable window

window overlapping gadget

close gadget

Size gadget on the right

bottom Size gadget

refresh type

incremental save

manual refresh

buffer everything

other methods

background window

382

3.1 The Libraries and their Functions

REPORTOOUSE

GIMMEZEROZERO

BORDERLESS

ACTIVATE

WINDOWACTIVE

INREQUEST

MENUSTATE

RMBTRAP

NOCAREREFRESH

NW_EXTENDED

WINDOWREFRESH

WBENCHWINDOW

WINDOWTICKED

VISITOR

ZOOMED

HASZOOM

SUPER_UNUSED

$200

$400

$800

$1000

$2000

$4000

$8000

$10000

$20000

$40000

= $1000000

= $2000000

= $4000000

= $8000000

= $10000000

= $20000000

= $C0F80000

DEFAULTMOUSEQUEUE

;report mouse movements

;window with border

;window without border

/activate upon opening

/currently active window

;Requesters available

;menus displayed

;no menu with right mouse button

;no refresh messages

/extended NewWindow structure

/window being refreshed

/Workbench window

/window received time impulse

/Visitor window

;zoomed window

/window with Zoom gadget

/unused bits

/number of unanswered Msgs

Dec

0

2

4

6

8

9

10

14

18

22

26

30

34

38

40

42

44

46

48

48

48

52

Hex

$0

$2

$4

$6

$8

$9

$A

$E

$12

$16

$1A

$1E

$22

$26

$28

$2A

$2C

$2E

$30

$30

$30

$34

Tags:

WA_Left

WAJTop

STRUCTURE NewWindow,0

WORD

WORD

WORD

WORD

BYTE

BYTE

LONG

LONG

APTR

APTR

APTR

APTR

APTR

WORD

WORD

WORD

WORD

WORD

LABEL

LABEL

nw_LeftEdge

nw_TopEdge

nw_Width

nw_Height

nw_DetailPen

nw_BlockPen

nw_IDCMPFlags

nw_Flags

nw_FirstGadget

nw_CheckMark

nw_Title

nw_Screen

nw_BitMap

nw_MinWidth

nw_MinHeight

nw_MaxWidth

nw__MaxHeight

nw_Type

nw_SIZE

nw_SIZEOF

STRUCTURE ExtNewWindow

APTR

LABEL

enw_Extension

enw_SIZEOF

/position

;

/size

/

/meaningless

;

/IDCMP Flags

/Flags (see window)

/Gadgets

/menu check mark

/title

/screen

;SuperBitMap

/min. size

/

/max. size

/screen type

r,nw_SIZE

/Tagltem field

= TAG_USER + 100

= TAG_USER + 101

383

3. Programming with AmigaOS 2.x

WA_Width

WA_Height

WA_DetailPen

WA_BlockPen

WA_IDCMP

WA_Flags

WA_Gadgets

WA_Checkmark

WA_Title

WA_ScreenTitle

WA_CustomScreen

WA_SuperBitMap

WA_MinWidth

WA_MinHeight

WA_MaxWidth

WA_MaxHeight

WA_InnerWidth

WA_InnerHeight

WA_PubScreenName

WA_PubScreen

WA_PubScreenFallBack

WA_WindowName

WA_Colors

WA_Zoom

WA_MouseQueue

WA_BackFill

WA_RptQueue

WA_SizeGadget

WA_DragBar

WA_DepthGadget

WA_CloseGadget

WA_Backdrop

WA_ReportMouse

WA_NoCareRefresh

WA_Borderless

WA_Activate

WA_RMBTrap

WA_WBenchWindow

WA_SimpleRefresh

WA_SmartRefresh

WA_SizeBRight

WA_SizeBBottom

WA_AutoAdj ust

WA_GiiraneZeroZero

= TAG_USER +

= TAG_USER +

= TAGJJSER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAGJJSER +

= TAG_USER +

= TAGJJSER +

= TAG_USER +

= TAGJJSER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAG_USER +

= TAGJJSER +

= TAG_USER +

= TAG_USER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAGJJSER +

= TAG USER +

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Dec Hex STRUCTURE ColorSpec,0 ;18 bit color value (2.0)

0 $0 WORD cs_ColorIndex ;index or -1

2 $2 UWORD cs_Red

384

3.1 The Libraries and their Functions

4 $4 UWORD cs.Green

6 $6 UWORD cs_Blue

8 $8 LABEL cs_SIZEOF

Dec

0

4

6

8

10

12

14

18

22

24

26

28

30

Hex

$0

$4

$6

$8

$A

$c

$E

$12

$16

$18

$1A

$1C

$1E

STRUCTURE Menu,0

APTR

WORD

WORD

WORD

WORD

WORD

APTR

APTR

WORD

WORD

WORD

WORD

LABEL

mu_NextMenu

mu_LeftEdge

mu_TopEdge

mu_Width

mu_Height

mu_Flags

mu_MenuName

mu_FirstItem

mu_JazzX

mu__JazzY

mu_BeatX

mu_BeatY

mu_SIZEOF

menu

next menu

position

•box size

•see below

■menu text

•first Menultem

•box with all Menultems

MENUENABLED = 1

MIDRAWN = $100

;menu can be selected

;Items are drawn

Dec Hex STRUCTURE Menultem,0

0 $0 APTR mi_NextItem

4 $4 WORD mi_LeftEdge

6 $6 WORD miJTopEdge

8 $8 WORD mi_Width

10 $A WORD miJHeight

12 $C WORD mi_Flags

14 $E LONG mi_MutualExclude

18 $12 APTR mi_ItemFill

22 $16 APTR mi_SelectFill

26 $1A BYTE mi_Command

27 $1B BYTE mi_KludgeFill00

28 $1C APTR mi_SubItem

32 $20 WORD mi_NextSelect

34 $22

;Menultem, Subltem

;next Menultem

/position

;size

;see below

;exclude

;Image, IntuiText or 0

;Image, IntuiText or 0

;key code

;Subltem (only with Menultems)

;when selected

LABEL mi_SIZEOF

CHECKIT = 1 ;check when selected

ITEMTEXT = 2 ;...Fill points to IntuiText

COMMSEQ = 4 ;with Amiga key code

MENUTOGGLE = 8 ;toggle when selected

ITEMENABLED = $10 ;selection possible

HIGHFLAGS = $C0 ;display mode for Flags

HIGHIMAGE = 0 ;mi_SelectFill when activated

HIGHCOMP = $40 ;compliment Item region

HIGHBOX = $80 ;draw border around item

HIGHNONE = $C0 ;do not react

385

3. Programming with AmigaOS 2.x

CHECKED = $100 ;if CHECKIT: Item is checked

ISDRAWN = $1000 ;SubItems are drawn

HIGHITEM = $2000 ;Item is activated

MENUTOGGLED = $4000 ;Item has been toggled

NOMENU = $1F

NOITEM = $3F

NOSUB = $1F

MENUNULL = $FFFF

CHECKWIDTH = 19

COMMWIDTH = 27

LOWCHECKWIDTH =13

LOWCOMMWIDTH =16

Dec Hex STRUCTURE IntuiMessage,0

0 $0 STRUCT im_ExecMessage,MN_SIZE

20 $14 LONG im_Class ;IDCMP event

24 $18 WORD im_Code

26 $1A WORD im_Qualifier

28 $1C APTR im_IAddress

32 $20 WORD im_MouseX

34 $22 WORD im_MouseY

36 $24 LONG im_Seconds

40 $28 LONG im_Micros

44 $2C APTR im_IDCMPWindow ;window

48 $30 APTR im_SpecialLink /internal link

52 $34 LABEL im_SIZEOF

/associated data (key code, etc.)

;copy of InputEvent

/object address

/mouse coordinates

/time

SIZEVERIFY

NEWSIZE

REFRESHWINDOW

MOUSEBUTTONS

MOUSEMOVE

GADGETDOWN

GADGETUP

REQSET

MENUPICK

CLOSEWINDOW

RAWKEY

REQVERIFY

REQCLEAR

MENUVERIFY

NEWPREFS

DISKINSERTED

DISKREMOVED

WBENCHMESSAGE

ACTIVEWINDOW

1 /before change in size

2 /new window size

4 /refresh window

8 /mouse buttons

$10 /mouse movements

$20 /gadget selected

$40 /gadget released

$80 /Requester appeared

$100 /menu selection

$200 /close window

$400 /raw key code

$800 /before Requester

$1000 /Requester cleared

$2000 /prior to menu display

$4000 /preferences changed

$8000 /disk inserted

$10000 /disk removed

$20000 /for Open/CloseWorkbench

$40000 /active window

386

3.1 The Libraries and their Functions

INACTIVEWINDOW

DELTAMOVE

VANILLAKEY

INTUITICKS

IDCMPUPDATE

MENUHELP

CHANGEWINDOW

LONELYMESSAGE

$80000 /window deactivated

$100000 /relative mouse movement

$200000 ;ASCII characters and strings

$400000 ;l/50 second impulse

$800000 ;for BOOPSI Gadgets

$1000000 ;HELP with menu selection

$2000000 /window position/size changed

$80000000 /invalid message (internal)

MENUHOT = 1 /check MENUCANCEL (MENUVERIFY)

MENUCANCEL = 2 /cancel menu operation? (MENUVERIFY)

MENUWAITING = 3 /waiting for ReplyMsgO

OKOK = MENUHOT /does not matter

OKABORT = 4 /aha, draw the window

OKCANCEL = MENUCANCEL /aha, cancel

WBENCHOPEN = 1 /for WBENCHMESSAGE

WBENCHCLOSE = 2

SELECTUP = (IECODE_LBUTTON+IECODE_UP_PREFIX)

SELECTDOWN = (IECODE_LBUTTON)

MENUUP = (IECODE_RBUTTON+IECODE_UP_PREFIX)

MENUDOWN = (IECODE_RBUTTON)

ALTLEFT = (IEQUALIFIER_LALT)

ALTRIGHT = (IEQUALIFIER_RALT)

AMIGALEFT = (IEQUALIFIER_LCOMMAND)

AMIGARIGHT = (IEQUALIFIER_RCOMMAND)

AMIGAKEYS = (AMIGALEFT+AMIGARIGHT)

CURSORUP = $4C

CURSORLEFT = $4F

CURSORRIGHT = $4E

CURSORDOWN = $4D

KEYCODE_Q = $10

KEYCODE_X = $32

KEYCODE_N = $36

KEYCODE_M = $37

KEYCODE_V = $34

KEYCODE_B = $35

KEYCODE_LESS = $38

KEYCODE_GREATER = $39

387

3. Programming with AmigaOS 2.x

3. Requesters

lAutoRequest Display and query requester |

Cfl//." Response = AutoRequest (Window, BodyText, PosText, NegText, PosFlags, NegFlags)

DO -348 (A6) AO Al A2 A3 DO Dl

BOOL Response

STRUCT Window *Window

STRUCT IntuiText *BodyText, *PosText, *NegText

ULONG PosFlags, NegFlags

Function: Opens a window and displays the Okay-Cancel requester.

Both gadgets can be activated by clicking or by incoming

IDCMP events. Warning: prior to AmigaOS 2.0, the size of

the requester window must be given - WORD width (D2),

height (D3).

Parameters: Window Window structure of the window to be locked.

BodyText IntuiText structure(s) of the requester.

PosText IntuiText structure for 'Okay1 or 0.

NegText IntuiText structure for 'Cancel1.

PosFlags IDCMP flags for 'Okay*.

NegFlags IDCMP flags for 'Cancel'.

Result: 0 'Cancel'

| BuildEasyRequestArgs Create system requester|

Reqwindow BuildEasyRequestArgs(RefWindow, easyStruct, IDCMP, Args)

DO -594 (A6) AO Al DO A3

STRUCT Window *ReqWindow, *RefWindow

STRUCT EasyStruct *easyStruct

ULONG IDCMP

APTR Args

388

3.1 The Libraries and their Functions

Function: Displays a requester in a new window.

Parameters: Window Window locked by the requester.

easyStruct EasyStruct of the requesters.

IDCMP Flags of the requester window.

Args See EasyRequest()

Result: The address of the requester window or 0 (error, cancel) or

1 (error, continue).

| BuildSysRequest Create system requester (old) |

Call: Reqwindow = BuildSysRequest (Window, BodyText, PosText, NegText, IDCMPFlags)

DO -360 (A6) A0 Al A2 A3 DO

STRUCT Window *ReqWindow, --Window

STRUCT IntuiText *BodyText,*PosText,*NegText

ULONG IDCMPFlags

Function: Displays a system requester. Warning: prior to AmigaOS 2.0

the window size must be given (WORD Width,Height

D2/D3).

Parameters: Window Window to be locked

BodyText Requester text

PosText Positive gadget text

NegText Negative gadget text

IDCMPFlags

Flags for the requester window.

Result: Window of the requesters or 0 (error) or 1 (pre-OS 2.0).

389

3. Programming with AmigaOS 2.x

IClearDMRequest Clear double menu requester]

Call: Response = ClearDMRequest (Window)

DO -48(A6) AO

BOOL Response

STRUCT Window *Window

Function: Attempts to remove the requester that appears when the

right mouse button is double-clicked.

Parameters: Window Window with DMRequest

Result: 0 Requester is active and could not be removed.

| DisplayAlert Display and query alert message |

Call: Response = DisplayAlert(AlertNumber, String, Height)

DO -90 (A6) DO AO Dl

BOOL Response

ULONG AlertNumber

APTR String

WORD Height

Function: Displays the text defined in the alarm string on a black

display using the Topaz/8 font. DeadEnds are in red and

Recoverables are in amber. The alarm string is constructed

as follows:

• 16 bit X coordinate

• 8 bit Y coordinate

• String ending with 0

• Byte flag for another string (1 or 0 (=end))

Parameters: AlertNumber

Exec alert code (only bit 31 is important)

String Alarm string address

Height Required display height

390

3.1 The Libraries and their Functions

Result: 0 DeadEnd or right mouse button, TRUE = left

mouse button.

Example: Display a multi-line alarm message:

movea.l _IntuiBase,a6

moveq #0,d0 ;Recoverable Alert

lea

moveq

jsr

tst.l

bne

_Meldung

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

_Meldung(pc)

#38,dl

,aO ;special string

/height

_LVODisplayAlert(a6) /display

dO

_Okay

1,40

7+10

•Hallo!',0

1

0,20

7+20

•Links

1

1,248

7+20

•Rechts

0

;x coordinate: 1*256+40

;y coordinate

;text

;not ended yet

HALLO!',0

?# !$ ' ,0

;end

lEasyRequestArgs Query with requester]

Call: GGNum = EasyRequestArgs(Window, easyStruct, IDCMP_ptr, ArgList)

DO -588 (A6) A0 Al A2 A3

STRUCT Window *Window

APTR IDCMP_ptr,Args

STRUCT EasyStruct *easyStruct

LONG QGNum

Function: Display system requester with desired gadgets and

formattable text in such a way that the requester is

optimized with respect to the screen resolution and the font

size.

391

3. Programming with AmigaOS 2jc

Parameters: Window Parent window or 0 (default PublicScreen,

usually Workbench)

IDCMP_ptr

Address of IDCMP flags for ending.

easyStruct EasyStruct structure:

esJStructSize: EasyStructJSIZEOF

es_Flags: 0

esJTitle: Window title or 0 (title of

AO)

esJTextFormat: RawDoFmt() format for

query (also V)

es_GadgetFormat: Format string for gadgets;

gadgets are separated by

T.

Args Arguments for TextFormat, then for
GadgetFormat.

Result: Selected gadget number (numbering: l,2,...,x,0) or -1
(IDCMP: event in *IDCMP_ptr).

Example: Security prompt for a word processor when the ' LOAD
TEXT menu item is selected:

;load file?tst.b _FileName

beq _LoadIt

movea.l _IntuiBase,a6

movea.l _Window,aO

lea _EasyStruct(pc),al

lea _IDCMP(pc),a2

lea ^FileName^

j sr _LVOEasyRequestArgs(a6)
tst.l dO

bne _LoadIt

392

3.1 The Libraries and their Functions

Loadlt

_IDCMP

del 0

_EasyStruct

del es_SIZEOF,0,_Title,_Fmtf_Buttons

JTitle

dc.b 'load text1,0

_Fmt

dc.b 'the file %s has not yet been saved.',0

_Buttons

dc.b 'Load I Return',0

_FileName

ds.b 256 /contains current file name

I EndRequest Remove requester]

Call: EndRequest (Requester, Window)

-120(A6) A0 Al

STRUCT Requester *Requester

STRUCT Window *Window

Function: Removes the currently active requester (makes it inactive).

Parameters: Requester Requester to be removed

Window Locked window

iFreeSysRequest Free a system requester!

Call: FreeSysRequest (Window)

-372(A6) A0

STRUCT Window *Window

Function: Frees a system requester that was created with

BuildSysRequestO or BuildEasyRequestQ.

393

3. Programming with AmigaOS 2.x

Parameters: Window Window of the requester (result of the

Build...Request() functions). The values 0 and 1

have no effect.

llnitRequester Initialize requester structurel

Call: initRequester (Requester)

-138(A6) AO

STRUCT Requester *Requester

Function: Initializes a requester structure. After the call, the structure

must be loaded with user data. This is a C routine, which is

seldom or never used because of the speed of execution.

Parameters: Requester Requester structure

I Request Display requester]

Call: Success = Request (Requester, window)

DO -240(A6) AO Al

BOOL Success

STRUCT Requester *Requester

STRUCT Window *Window

Function: Displays a requester in a window (POINTREL now works).

Parameters: Requester Requester to be displayed

Window Window

Result: 0 Error

I SetDMRequest Define double menu requester |

Call: success = SetDMRequest (Window, DMRequester)

DO -258(A6) AO Al

BOOL success

STRUCT Window *Window

STRUCT Requester *DMRequester

394

3A The Libraries and their Functions

Function: Attempts to define the DMRequester. This will not work if

another DMRequester is active. POINTREL works.

Parameters: Window Window

DMRequester

Requester for menu key double-click.

Result: 0 Error, DMRequest now active.

[SysReqHandler Query system requester]

Call: num SysReqHandler(Window, IDCMPFlagsPtr, Waitlnput)

DO -600 A0 Al DO

STRUCT Window *Window

CPTR IDCMPFlagsPtr

BOOL Waitlnput

Function: Queries a system requester.

Parameters: Window Result from Build...Request().

IDCMPFlagsPtr

Address of the IDCMP flags.

Waitlnput Boolean: wait for input.

Result: Like EasyRequest(), -2 also possible (no input).

Dec Hex STRUCTURE EasyStruct,0

0 $0 ULONG es_StructSize ;es__SIZEOF

4 $4 ULONG es_Flags ;0

8 $8 APTR esJTitle Requester title

12 $C APTR es_TextFormat ;format string for BodyText

16 $10 APTR es_GadgetFormat ;format string for Gadgets

20 $14 LABEL es_SIZEOF ;size of structure

Dec Hex STRUCTURE Requester,0

0 $0 APTR rq_plderRequest ;older Requester

4 $4 WORD rq_LeftEdge /position

395

3. Programming with AmigaOS 2.x

6

8

10

12

14

$6

$8

$A

$C

$E

16 $10

20 $14

24 $18

28 $1C

30 $1E

31 $1F

32 $20

36 $24

68 $44

72 $48

76 $4C

80 $50

112 $70

WORD

WORD

WORD

WORD

WORD

APTR

APTR

APTR

WORD

UBYTE

BYTE

APTR

STRUCT

APTR

APTR

APTR

STRUCT

LABEL

rq__TopEdge

rq_Width

rq_Height

rq_RelLeft

rq_RelTop

rq_ReqGadget

rqJReqBorder

rq_ReqText

rq_Flags

rq_BackFill

rq_KludgeFill00

rq__ReqLayer

rq__ReqPadl, 32

rq_ImageBMap

rq_RWindow

rq__ReqImage

rq_ReqPad2,3 2

rq_SIZEOF

/position relative to mouse

;Gadgets

;border

;IntuiTexts

;see below

/Requester color

;Layer

;BitMap with complete Requester

;window

;v2.0: Images after Backfill

POINTREL

PREDRAWN

NOISYREQ

SIMPLEREQ

USEREQIMAGE

NOREQBACKFILL

REQOFFWINDOW

REQACTIVE

SYSREQUEST

DEFERREFRESH

1 ;display relative to mouse or center of window

2 /graphic from ImageBMap

4 ;do not filter input

$10 ;with SIMPLEREFRESH Layer (2.0)

$20 ;with Images after Backfill, before GGs

$40 ;do not fill background

$1000 /Gadget component outside Requester

$2000 /Requester is active

$4000 /Requester generated by system

$8000 /Requester stops Refresh

ALERTJTYPE = $80000000 /mask

RECOVERY_ALERT = 0

DEADEND_ALERT = $80000000 /crash

Example: Display and query EasyRequest. The requester that follows

indicates insufficient ChipMem until enough can be

reserved after a 'Retry1 or 'Cancel' is selected. The result is

the memory block allocated with AUocVecQ:

_AskForHelp

movem.l a2-a4/a6,-(a7)

movea.l __IntuiBase,a6

movea.l _Window,a0

lea _EasyRequest(pc),al

lea _IDCMP(pc),a2

lea __NeededMem(pc) , a3

396

3.1 The Libraries and their Functions

jsr _LV0BuildEasyRequestArgs(a6)

subq.l #l,dO

ble.s _Failure

addq.l #l,dO

movea.1 dO,a4

Loop

movea

lea

moveq

jsr

tst.l

beq.s

bpl.s

addq.

beq.s

bra. s

.1

1

a4, aO

_IDCMP(pc),al

#-l,dO

_LVOSysReqHandler(a6)

dO

_Break

JRetry

#2,dO

_Loop

Break

_Retry

movea.1 _SysBase,a6

move.l (a3),dO

move.1 #MEMF_CLEAR!MEMF_CHIP,dl

jsr _LVOAllocVec(a6)

movea.1 _IntuiBase,a6

tst.l dO

beq. s _Loop

_Break

movea.1 dO,a3

movea.1 a4,aO

jsr _LVOFreeSysRequest(a6)

move.1 a3, dO

bra.s _Exit

_Failure

moveq #0,d0

_Exit

movem.l (a7)+,a2-a4/a6

rts

_NeededMem

del 256000

_IDCMP

del 0

_EasyRequest

397

3. Programming with AmigaOS 2.x

del es_SIZEOF, 0,_Title,_Fmt,__Buttons

_Title

dc.b 'Not enough memory•,0

_Fmt

dc.b 'I need %ld byte chipmeml',0

_Buttons

dc.b 'Retry I Cancel•,0

4. Gadgets

| ActivateGadget Activate string or OadTooIsjadget]

Call: Success = ActivateGadget(Gadget, Window, Request)

DO -462 (A6) AO Al A2

BOOL Success

STRUCT Gadget *Gadget

STRUCT Window *Window

STRUCT Requester *Request

Function: Activates a string or CustomGadget.

Parameters: Gadget String or CustomGadget

Window Active window with the gadget

Requester Requester if GTYP_REQGADGET

Result: 0 Gadget not activated

I Addliadget Add gadget to the window ifitl

Call: RealPosition = AddGadget(Window, Gadget, Position)

DO -42 (A6) AO Al DO

UWORD RealPosition,Position

STRUCT Window *Window

STRUCT Gadget *Gadget

Function: Adds a gadget to a window list.

Parameters: Window Window structure of the window.

398

3.1 The Libraries and their Functions

Gadget Gadget structure

Position Position in the list (0...65535).

Result: Position at which the gadget was inserted in the list

(0...65535).

| AddGList Add gadgets to the window list]

Call: RealPosition = AddGList (Window, Gadget, Position, Numgad, Requester)

DO -438 (A6) AO Al DO Dl A2

UWORD RealPosition,Position,Numgad

STRUCT Window *Window

STRUCT Gadget *Gadget

STRUCT Requester ^Requester

Function: Adds liked gadgets to a window list.

Parameters: Window Window structure of the window.

Gadget First gadget to insert.

Position Position in the list (0...65536 NumGads).

Numgad Number of gadgets or -1 (all).

Requester Requester, if GTYP_REQGADGET.

Result: Position at which the gadgets were inserted in the list

(0...65535).

I GadgetMouse Gadget-relative mouse position |

Call: GadgetMouse(Gadget, Glnfo, MousePoint)

-570(A6) AO Al A2

STRUCT Gadget *Gadget

STRUCT Gadgetlnfo *GInfo

STRUCT Point *MousePoint

399

3. Programming with AmigaOS 2.x

Function: Calculates the gadget-relative mouse position (completely

meaningless, since this information is always available).

Parameters: GInfo Gadgetlnfo structure for the hook routine.

MousePoint

Address of two words for the position.

Gadget Desired gadget

| ModifyProp Modify proportional gadget!

Call: ModifyProp(Gadget, Window, Requester, Flags, HorizPot, VertPot,

HorizBody, VertBody)

-156 (A6) AO Al A2 DO Dl D2 D3

D4

STRUCT Gadget *Gadget

STRUCT Window *Window

STRUCT Requester *Requester

UWORD Flags,HorizPot,VertPot,HorizBody, VertBody

Function: Changes the contents of a PropGadget and executes a

complete refresh of the gadget and all following gadgets.

Parameters: Gadget PropGadget

Window Window of the gadgets

Requester Requester or 0

Flags,...Pot,...Body

Values for Proplnfo

INewModifyProp Change proportional gadget|

NewModifyProp(Gadget, Window, Requester, Flags, HorizPot, VertPot, HorizBody,

VertBody, NumGad)

-468 (A6) AO Al A2 DO Dl D2 D3

D4 D5

STRUCT Gadget *Gadget

400

3.1 The Libraries and their Functions

STRUCT Window *Window

STRUCT Requester ^Requester

UWORD F1ags,Hori zPot,VertPot,HorizBody,VertBody

WORD NumGad

Function: Like ModifyPropO, but this function allows you to specify

how many gadgets should be refreshed. A value of 1 will

cause only the knob to be refreshed.

Parameters: NumGad Number of gadgets to refresh, -1 (all), or 1 (knob

only).

See ModifyPropO

IQbtainGIRPort Allocate RastPort for a CustomGadgetl

Call: RPort = ObtainGlRPort (Glnfo)

DO -558 (A6) AO

STRUCT RastPort *RPort

STRUCT Gadgetlnfo *GInfo

Function: Allocates the RastPort of a CustomGadget and initializes it

for a hook routine.

Parameters: GInfo Gadgetlnfo structure of the CustomGadget.

Result: RastPort or 0

| OffGadget Turn gadget off]

Call: OffGadget (Gadget, Window, Requester)

-174(A6) AO Al A2

STRUCT Gadget *Gadget

STRUCT Window *Window

STRUCT Requester *Requester

Function: Turns a gadget off. The gadget is displayed as a ghost and

cannot be selected. Also refreshes all gadgets.

Parameters: Gadget Gadget to turn off

401

3, Programming with AmigaOS 2.x

Window Gadget window

Requester Requester if GTYP_REQGADGET

lUniiadget Turn gadget on |

Call: OnGadget (Gadget, Window, Requester)

-186(A6) AO Al A2

STRUCT Gadget *Gadget

STRUCT Window *Window

STRUCT Requester *Requester

Functions, Parameters:

Opposite of OffGadget(). Allows selection of the gadget

again.

IRefreshGadgets Refresh gadgets |

Call: RefreshGadgets (Gadgets, Window, Requester)

-222 (A6) AO Al A2

STRUCT Gadget ^Gadgets

STRUCT Window *Window

STRUCT Requester *Requester

Function: Refreshes all GGs starting with the given gadget.

Parameters: Gadgets Address of the first gadget.

Window Gadget window

Requester Requester or 0

| RefreshGList RefreshGList I

Call: RefreshGList(Gadgets, Window, Requester, NumGad)

-432 (A6) AO Al A2 DO

STRUCT Gadget *Gadgets

STRUCT Window *Window

STRUCT Requester *Requester

402

3.1 The Libraries and their Functions

WORD NumGad

Function: Similar to RefreshGadgets(), but only allows you to specify

the number of gadgets to refresh.

Parameters: NumGad Number of gadgets, -1 (all) or -2 (all requester

gadgets).

See RefreshGadgetsO

I ReleaseGIRPort Free CustomGadget RastPort |

Call: ReleaseGIRPort (RPort)

-564(A6) AO

STRUCT RastPort *RPort

Function: Free a RastPort allocated with ObtainGIRPort().

Parameters: RPort Result of ObtainGIRPort() or 0.

| RemoveGadget Remove a gadget from the window list]

Call: Position = RemoveGadget (Window, Gadget)

DO -228(A6) AO Al

UWORD Position

STRUCT Window *Window

STRUCT Gadget *Gadget

Function: Removes a gadget from the window list. If it's active, it is

first deactivated.

Parameters: Window Gadget window

Gadget Gadget to be removed

Result: Position of the gadget or -1 if it was not in the list (or

gadget #65535).

403

3. Programming with AmigaOS 2.x

IRemoveGList Remove gadgets from the window list|

Call.' Position = RemoveGList (Window, Gadget, Numgad)

DO -444 (A6) AO Al DO

UWORD Position

STRUCT Window *Window

STRUCT Gadget *Gadget

WORD Numgad

Function: Removes several gadgets from the window list and clears

gg_NextGadget for the last gadget removed. If the active

gadget is included, it is first deactivated.

Parameters, Result:

Numgad Number of gadgets or -1 (all)

See RemoveGadget()

| ReportMouse Change ReportMouse flag |

Call: ReportMouse (Window, Boolean)

-234(A6) AO DO

BOOL Boolean

STRUCT Window *Window

Function: Changes the ReportMouse flag of the window and the

FoUowMouse flag of the active gadget. If a gadget is active

when the call is made, the change is only good at the time

of gadget activation. C compilers often make errors with

this function because the order of the two parameters is

often switched.

Parameters: Window Window

Boolean TRUE or 0 (bit status)

I SetEditHook Set StringGadget hook |

Call: OldHook = SetEditHook (Hook)

DO -492(A6) AO

404

3,1 The Libraries and their Functions

STRUCT Hook *OldHook,*Hook

Function: Defines the global editor hook for StringGadgets. This does

not just include its own gadgets; this should be used only

in highly optimized Assembler code.

Parameters: Hook Hook with editor routine for ALL

StringGadgets.

Result: Hook of the previous editor routine.

Warning: Since this routine has not been tested by Commodore yet,

you should not use it.

ISetGadgetAttrsA Set gadget attributes of a BoopsiGadget]

Call: Result = SetGadgetAttrsA(Gadget, Window, Requester, TagList)

DO -660(A6) A0 Al A2 A3

STRUCT Gadget *Gadget

STRUCT Window *Window

STRUCT Requester *Requester

STRUCT TagItem *TagList

LONG Result

Function: Like SetAttrs(), with context information for

CustomGadgets.

Parameters: Gadget Boopsi object

Window Object's window

Requester For REQGADGETs

TagList Tagltem field

Result: Not 0: Gadget must be refreshed to display the new

attributes.

405

3. Programming with AmigaOS 2.x

Dec Hex STRUCTURE Gadgetlnfo,0

0 $0 APTR ggi_Screen

4 $4 APTR ggi_Window

8 $8 APTR ggi_Requester

12 $C APTR ggi_RastPort

16 $10 APTR ggi_Layer

20 $14 STRUCT ggi_Domain,ibox_SIZEOF

28 $1C STRUCT ggi_Pens,2

3 0 $20 APTR ggi_Dr!nfo

Dec Hex STRUCTURE IBox,0

0 $0 WORD ibox_Left

2 $2 WORD iboxJTop

4 $4 WORD ibox_Width

6 $6 WORD ibox_Height

8 $8 LABEL ibox_SIZEOF

Dec Hex STRUCTURE Gadget,0

0 $0 APTR gg_NextGadget

4 $4 WORD gg_LeftEdge

6 $6 WORD gg_TopEdge

8 $8 WORD gg_Width

10 $A WORD gg_Height

12 $C WORD gg_Flags

14 $E WORD gg_Activation

16 $10 WORD gg_GadgetType

18 $12 APTR gg_GadgetRender

22 $16 APTR gg_SelectRender

26 $1A APTR gg_GadgetText

30 $1E LONG gg_MutualExclude

34 $22 APTR gg_SpecialInfo

38 $26 WORD gg_GadgetID

40 $28 APTR gg_UserData

44 $2C LABEL gg_SIZEOF

;next Gadget

;position

;size

;see below

;see below

;see below

/Border, Image or Null

/Border, Image or Null

;IntuiText or Null

;CustomGadget Hook

/according to GadgetType

;User ID

;User data

GADGHIGHBITS

GADGHCOMP

GADGHBOX

GADGHIMAGE

GADGHNONE

GADGIMAGE

GRELBOTTOM

GRELRIGHT

GRELWIDTH

GRELHEIGHT

SELECTED

GADGDISABLED

LABELMASK

8

$10

$20

$40

$80

$100

3 /selection Flags

0 /complement

1 /box

2 /use SelectRender

3 /no reaction

4 /...Render is Image structure

/coordinates relative to bottom

/coordinates relative to right edge

/width relative to window width

/height relative to window height

/Gadget is in selected mode

/Gadget is disabled

= $3000 /meaning of gg_GadgetText

406

3.1 The Libraries and their Functions

LABELITEXT = 0 ;GadgetText is IntuiText

LABELSTRING = $10 00 /GadgetText is string

LABELIMAGE = $2000 ;GadgetText is BoopsiImage

RELVERIFY = 1 /activation: only within Box

GADGIMMEDIATE = 2 ;activate immediately

ENDGADGET = 4 ;ends Requester

FOLLOWMOUSE = 8 ;ReportMouse during selection

RIGHTBORDER = $10 /right border

LEFTBORDER = $20 /left border

TOPBORDER = $40 ;title bar

BOTTOMBORDER = $80 /bottom border

BORDERSNIFF = $8000 /private

TOGGLESELECT = $100 /toggle when selected

BOOLEXTEND = $2000 /Boollnfo in gg_SpecialInfo

STRINGCENTER = $200 /center StringGG contents

STRINGRIGHT = $400 /right justify StringGG contents

LONGINT = $800 /StringGadget for integer values

ALTKEYMAP = $1000 /StringGadget with another KeyMap

STRINGEXTEND = $2000 /StringGadget extended

ACTIVEGADGET = $4000 /Gadget is active

GADGETTYPE = $FC00

SYSGADGET = $8000

SCRGADGET = $4000

GZZGADGET = $2000

REQGADGET = $1000

SIZING = $10

WDRAGGING = $20

SDRAGGING = $3 0

WUPFRONT = $40

SUPFRONT = $50

WDOWNBACK = $60

SDOWNBACK = $7 0

CLOSE = $80

BOOLGADGET = 1

GADGET0002 = 2

PROPGADGET = 3

STRGADGET = 4

CUSTOMGADGET = 5

/global GadgetTypes

/operating system Gadget

/screen Gadget

/Gadget for window borders

/Requester Gadget

/sizing Gadget

/movable title bar

;same for Screens

/window to front

/screen to front

;close Gadget

;BoolGadget

;PropGadget

; StringGadget

;CustomGadget

Dec Hex STRUCTURE Boollnfo,0

0 $0 WORD bi_Flags /BOOLMASK

2 $2 APTR bi_Mask /bit mask, image

6 $6 LONG bi_Reserved ;0

10 $A LABEL bi_SIZEOF

BOOLMASK 1 /mask

407

3. Programming with AmigaOS 2.x

Dec Hex

0 $0

$2

$4

$6

$8

10

12

14

$A

$C

$E

16 $10

18 $12

20 $14

22 $16

STRUCTURE Proplnfo,0

WORD pi_Flags

WORD pi_HorizPot

WORD pi_VertPot

WORD pi_HorizBody

WORD pi_VertBody

WORD pi_CWidth

WORD pi_CHeight

WORD pi_HPotRes

WORD pi_VPotRes

WORD pi_LeftBorder

WORD pi_TopBorder

LABEL pi_SIZEOF

Flags s.u.

position

slider size

container size

slider resolution

border size

AUTOKNOB

FREEHORIZ

FREEVERT

PROPBORDERLESS

KNOBHIT

= 1 ;old AutoKnob

= 2 /horizontally movable

= 4 ;vertically movable

= 8 ;no border

= $100 /selected Knob

KNOBHMIN

KNOBVMIN

MAXBODY

MAXPOT

6 /minimal horizontal size

4 /minimal vertical size

$FFFF /maximum Knob size

$FFFF /maximum position

Dec Hex

0 $0

$4

$8

STRUCTURE Stringlnfo,0

4

8

10

12

14

$A

$C

$E

16 $10

18 $12

20 $14

22 $16

24 $18

28 $1C

32 $20

36 $22

APTR

APTR

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

APTR

LONG

APTR

LABEL

si_Buffer

si_UndoBuffer

si_BufferPos

si_MaxChars

si_DispPos

si_UndoPos

si_NumChars

si_DispCount

si_CLeft

s i_CTop

si_Extension

si_LongInt

si_AltKeyMap

si SIZEOF

/buffer for the contents

/buffer for the Undo function

/character position in buffer

/buffer size including 0 byte

/offset of the first displayed character

/position in Undo buffer

/length of string in buffer

/number of visible characters

/offset in Gadget

/extension structure (2.0)

/value for integer Gadgets

/custom key map

Dec Hex STRUCTURE StringExtend,0

0 $0 APTR sex_Font

4 $4 STRUCT sex_Pens,2

6 $6 STRUCT sex_ActivePens,2

8 $8 ULONG sex__InitialModes

12 $C APTR sex_EditHook

/TextFont (open)

/colors: text, background

/colors when activated

;Flags

/edit Hook

408

3.1 The Libraries and their Functions

16 $10 APTR sex_WorkBuffer

20 $14 STRUCT sex_Reserved,16

36 $24 LABEL sex_SIZEOF

;StringInfo.buffer length

;0

Dec Hex STRUCTURE SGWork,0

0 $0 APTR sgw_Gadget

4 $4 APTR sgw_StringInfo

8 $8 APTR sgw_WorkBuffer

12 $C APTR sgw_PrevBuffer

16 $10 ULONG sgw_Modes

20 $14 APTR sgw_IEvent

24 $18 UWORD sgw_Code

26 $1A WORD sgw_BufferPos

28 $1C WORD sgw_NumChars

30 $1E ULONG sgw__Actions

34 $22 LONG sgw_LongInt

38 $26 APTR sgw_GadgetInfo

42 $2A UWORD sgw_EditOp

44 $2C LABEL sgw_SIZEOF

/Gadget

;StringInfo

;Intuit ion's result

/previous contents

/current Flags

;InputEvent

;character

/CursorPosition

/number of characters

/what Intuition wants to do

/value for integer Gadget

/GadgetInfo

/editor operation

/current structure size

EditOps:

EO_NOOP = 1

EO_DELBACKWARD = 2

EO_DELFORWARD = 3

EO_MOVECURSOR = 4

EO_ENTER = 5

EO_RESET = 6

EO_REPLACECHAR = 7

EO_INSERTCHAR = 8

EO_BADFORMAT = 9

EO_BIGCHANGE =10

EO_UNDO =11

EO_CLEAR = 12

EO SPECIAL = 13

SGMJREPLACE

SGMB_REPLACE

SGMF_REPLACE

/nothing

/number of characters to delete (0 allowed)

/number of characters under/before cursor to delete

/move cursor

/ENTER or LF

; undo

/replace character

/insert character

/bad input (IntegerGadget)

/text completely changed

/other Undo operations

/clear string

/special functions

1 /modes

0

1

SGM_FIXEDFIELD = 2

SGMB__FIXEDFIELD = 1

SGMF_FIXEDFIELD = 2

SGM_NOFILTER

SGMB_NOFILTER

SGMF_NOFILTER

= 4

= 2

= 4

/do not filter control

409

3. Programming with AmigaOS 2.x

SGA_USE = 1 ;take contents from SGWork

SGAB_USE = 0

SGAFJJSE = 1

SGA_END = 2 ;end

SGAB_END = 1

SGAF_END = 2

SGA_BEEP = 4 ;DisplayBeep()

SGAB_BEEP = 2

SGAF_BEEP = 4

SGA_REUSE = 8 ;reuse InputEvent

SGAB_REUSE = 3

SGAF_REUSE = 8

SGA_REDISPLAY = $10 ;Gadget appearance changed

SGAB_REDISPLAY = 4

SGAF_REDISPLAY = $10

SGH_KEY = 1 /process keystroke

SGH_CLICK = 2 ;process mouse click

5. Output Functions

| DisplayBeep Cause display to blink |

Call: DisplayBeep (Screen)

-96(A6) A0

STRUCT Screen *Screen

Function: Causes the entire display or a given screen to blink. This

function may be patched.

Parameters: Screen Screen to blink or 0

| DrawBorder Draw a border |

Call: DrawBorder(RastPort, Border, LeftOffset, TopOffset)

-108 (A6) A0 Al DO Dl

STRUCT RastPort *RastPort

STRUCT Border *Border

WORD LeftOffset, TopOffset

410

3.1 The Libraries and their Functions

Function: Draws the border(s) defined in the given Border

structure(s).

Parameters: RastPort RastPort

Border Border structure

...Offset Position added to the border vectors.

IDS_NORMAL

IDS_SELECTED

IDS_DISABLED

IDrawImage Draw an image |

Call: Drawlmage(RastPort, Image, LeftOffset, TopOffset)

-114 (A6) AO Al DO Dl

STRUCT RastPort *RastPort

STRUCT Image *Image

WORD LeftOffset, TopOffset

Function: Copies one or more bit Bitlmages to the given RastPort.

Parameters: RastPort RastPort

Image Image structure

...Offset Position added to the image position.

I DrawImageState Draw extended image |

Call: DrawImageState(RPort, Image, LeftOffset, TopOffset, State, Drawlnfo)

-618 (A6) AO Al DO Dl D2 A2

STRUCT RastPort *RPort

STRUCT Image ♦Image

WORD LeftOffset,TopOffset

ULONG State

STRUCT Drawlnfo *Drawlnfo

Function: Draws a bit image of the desired type:

= as with Drawlmage()

= as in the selected Gadget

= as with disabled Gadgets

411

3. Programming withAmigaOS 2jc

IDS_BUSY = not yet supported

IDS_INDETERMINANT = not yet supported

IDS_INACTIVENORMAL = for Gadgets in window borders

IDS_INACTIVESELECTED = for Gadgets in window borders

IDS_INACTIVEDISABLED = for Gadgets in window borders

Parameters: RPort RastPort

Image Image, Customlmage, etc.

...Offset Position (offset)

State IDS_...

Drawlnfo Information on how to display the image.

[Eraselmage Erase an image]

Call: Eraselmage(RPort, Image, LeftOffset, TopOffset)

-630(A6) A0 Al DO Dl

STRUCT RastPort *RPort

STRUCT Image *Image

WORD LeftOffset, TopOffset

Function: Removes an image, usually using graphics/EraseRect(). For

custom images, it depends on the image type.

Parameters: RPort RastPort

Image Image or Customlmage

LeftOffset,RightOffset

Image position offset

I IntuiTextLength TextLength for IntuiText structure I

Call: length = IntuiTextLength (IText)

DO -330(A6) A0

LONG length

STRUCT IntuiText *IText

412

3.1 The Libraries and their Functions

Function: Gets the output width of an IntuiText structure in pixels.

Parameters: IText IntuiText structure

Result: Output width

IPrintlText Output IntuiText |

Call: PrintlText(RastPort, IText, LeftOffset, TopOffset)

-216(A6) AO Al DO Dl

STRUCT RastPort *RastPort

STRUCT IntuiText *IText

WORD LeftOffset..,,. TopOffset

Function: Outputs the text(s) defined in the given IntuiText

structure(s) at the given position (offset).

Parameters: RastPort RastPort structure

IText IntuiText structure(s)

Dec Hex STRUCTURE IntuiText,0

0 $0 BYTE

1 $1 BYTE

2 $2 BYTE

3 $3 BYTE

4 $4 WORD

6 $6 WORD

8 $8 APTR

12 $C APTR

16 $10 APTR

20 $14 LABEL

AUTOFRONTPEN

AUTOBACKPEN

AUTODRAWMODE

AUTOLEFTEDGE

AUTOTOPEDGE

AUTOITEXTFONT

AUTONEXTTEXT

it_FrontPen

it_BackPen

it_DrawMode

it_KludgeFillOO

it_LeftEdge

it_TopEdge

it_ITextFont

it_IText

it_NextText

it_SIZEOF

= 0

= 1

= RP_JAM2

= 6

= 3

= 0

= 0

LeftOffset, TopOffset

Position

;foreground color

;background color

;draw mode

;relative position

;

;TextAttr structure

/string

;next IntuiText structure

413

3. Programming with AmigaOS 2.x

Dec

0

2

4

5

6

7

8

12

16

Dec

0

2

4

6

8

10

14

15

16

20

Hex

$0

$2

$4

$5

$6

$7

$8

$c

$10

Hex

$0

$2

$4

$6

$8

$A

$E

$F

$10

$14

STRUCTURE Border,0

WORD

WORD

BYTE

BYTE

BYTE

BYTE

APTR

APTR

LABEL

bd_LeftEdge

bd_TopEdge

bd_FrontPen

bd_BackPen

bd_DrawMode

bd_Count

bd_XY

bd_NextBorder

bd_SIZEOF

STRUCTURE Image,0

WORD

WORD

WORD

WORD

WORD

APTR

BYTE

BYTE

APTR

LABEL

ig_LeftEdge

ig_TopEdge

ig_Width

ig_Height

ig_Depth

ig_ImageData

ig_PlanePick

ig_PlaneOnOff

ig_NextImage

ig_SIZEOF

/relative position

;foreground color

;background color

;draw mode

/number of vectors

/vector table (2 Words each)

;next Border structure

/relative position

/Bitplanes

/destination plane to be used

/what happens with the others

/next Image structure

6. Other Functions

| AddClass Add IClass I

Call: AddClass(Class)

-684(A6) A0

STRUCT IClass *Class

Function: Adds an IClass from MakeClass() to the system list.

Parameters: Class Result from MakeClassQ

[AIIocRemember Allocate and remember memory block]

Call: MemBlock = AIIocRemember(RememberKey, Size, Flags)

DO -396(A6) A0 DO Dl

APTR MemBlock

STRUCT Remember **RememberKey

ULONG Size,Flags

414

3.1 The Libraries and their Functions

Function: Uses AllocMem() to allocate a memory block. The position

and size of the reserved block is held in a RememberNode

which is added to a list so that all blocks can be freed with

FreeRemember() later.

Parameters: RememberKey

Address of a longword that contains the

address of the first RememberNode. The first

time the function is called, this longword must

be initialized with the value 0.

Size,Flags Arguments for exec/AllocMem(SizeJRags).

Result: Address of the allocated memory block or 0.

Example: Allocate and free memory block(s):

raovea.l __IntuiBase,a6

clr.l -(a7) ;RememberKey=Null

movea. 1

moveq

move.1

jsr

tst.l

beq

movea. 1

moveq

move. 1

jsr

tst.l

beq

Zerror

movea.1

moveq

jsr

addq.l

a7,aO

#rp_SIZEOF,d0

#MEMF_CLEAR! MEMF_PUBLIC

_LVOA1locRemember(a6)

dO

_Zerror

a7,aO

#bm_J3IZEOF,dO

#MEMF_CLEAR!MEMF_PUBLIC

_LVOA1locRemember(a6)

dO

_Zerror

a7,aO

#-l,dO

_LVOFreeRemember(a6)

#4,a7

; RememberKey

/buffer size

/memory type

/allocate

;test

;if error

;use the memory

;RememberKey

;buffer size

/memory type

/allocate

;test

;if error

;use memory

; RememberKey

;clear all

; free

;restore stack

415

3. Programming with AmigaOS 2.x

ICurrentTime Get the current time |

Call: CurrentTime(Seconds, Micros)

-84(A6) AO Al

APTR Seconds,Micros

Function: Writes the current time to the longword at the given

address. The microsecond value is not exact.

Parameters: Seconds Address of longword for seconds.

Micros Address of longword for microseconds.

IDisposeObject Delete an object|

Call: DisposeObject (Object)

-642(A6) AO

APTR Object

Function: Deletes the given object including its data and subobjects.

Parameters: Object Result of NewObject()

| DoubleCIick Compare two mouse clicks to the double click period |

L^all: IsDouble = Doubled ick(StartSecs, StartMicros, CurrentSecs, CurrentMicros)

DO -102 (A6) DO Dl D2 D3

BOOL IsDouble

ULONG StartSecs, StartMicros, CurrentSecs, CurrentMicros

Function: Compares the time difference between two mouse clicks to

the length of the double-click period.

Parameters: Start... Time of the first mouse click.

Current... Time point of the second mouse click.

Result: 0 Time points too far apart for a double-click.

416

3.1 The Libraries and their Functions

Example: Evaluate mouse click for IDCMP messages of type

MOUSEBUTTONS:

** IntuiMessage in al

**

** Result: dO >< 0 for double-click

_MouseButtons

movem.1

movea.1

movem. 1

lea

movem.1

movem. 1

jsr

tst.l

movem. 1

d2-d3/al/a6,-(a7)

_IntuiBase,a6

im_Seconds(al), d2 -d3

_01dValues(pc),aO

(aO),dO-dl

d2-d3,(aO)

_LVODoubleClick(a6)

dO

(a7)+/d2-d3/al/a6

_01dValues

ds.l 2

IFreeClass Free IClass |

Call: success = FreeClass (ClassPtr)

DO -714(A6) AO

STRUCT IClass *ClassPtr

Function: Attempts to free the result of a MakeClass() call.

Parameters: ClassPtr IClass structure

Result: 0 IClass could not be freed.

| FreeRemember Free memory and/or Remember structures |

Call: FreeRemember (RememberKey, ReallyForget)

-408 (A6) AO DO

STRUCT Remember **RememberKey

417

3. Programming with AmigaOS 2.x

BOOL ReallyForget

Function: Frees only the Remember structures (ReallyForget = 0) or

the associated memory blocks.

Parameters: RememberKey

Address of the longword containing the

address of the first Remember structure.

ReallyForget

Flag that indicates whether memory blocks

should also be set free.

Example: Allocate several memory blocks that can only be used if no

errors occur, bit-planes are not much good without bit

maps, and bit-maps canft be used without RastPorts:

movea.1 _IntuiBase,a6

clr.l -(a7)

moveq #-l,d2

;RememberKey = 0

;error, free everything

movea.1 a7,aO ;RememberKey

moveq #rp_SIZEOF,dO ;RastPort size

move.l #MEMF_CLEAR!MEMF_PUBLIC,dl ;memory type

jsr _LVOAllocRemember(a6) ;allocate

move.l dO,d3 ;save result

beq.s .Zerror ;if error

movea.1 a7,aO ;RememberKey

moveq #bm_SIZEOF,dO ;BitMap size

move.l #MEMF_CLEARlMEMF_PUBLIC,dl ;memory type

jsr _LVOAllocRemember(a6) ;allocate

move.l dO,d4 ;save result

beq.s .Zerror ;if error

moveq #0,d2 ;no errors, just free Remember structures

.Zerror

movea.1 a7, aO

move.1 d2,dO

jsr

move.1

__LVOFreeRemember(a6)

d2,dO

;RememberKey

/Remember structures or everything

; free

;return error code

418

3.1 The Libraries and their Functions

IGetAttr Get object attributes |

Call: GetAttr(AttrlD, Object, StoragePtr)

-654(A6) DO AO Al

ULONG result,AttrlD

APTR Obj ect,StoragePtr

Function: Returns the attribute values for the given object.

Parameters: AttrlD Attribute ID

Object Object address

StoragePtr Address of longword for result.

| GetDefPrefs Get default Preferences |

Call: Prefs = GetDefPrefs (PrefBuffer, Size)

DO -126(A6) AO DO

STRUCT Preferences *Prefs,*PrefBuffer

WORD Size

Function: Copies the default Preferences structure to a buffer.

Parameters: PrefBuffer Buffer for the Preferences structure.

Size Buffer size

Result: Buffer address

I GetPrefs Get the current Preferences]

Call: Prefs = GetPrefs (PrefBuffer, Size)

DO -132 (A6) AO DO

STRUCT Preferences *Prefs,*PrefBuffer

WORD Size

Function: Copies the current Preferences structure to a buffer.

419

3. Programming with AmigaOS 2.x

Parameters: PrefBuffer Buffer for the Preferences structure.

Size Buffer size

Result: Buffer address

| LocklBase Lock IntuitionBase|

Call: Lock = LocklBase (LockNumber)

DO -414(A6) DO

ULONG Lock,LockNumber

Function: Locks one or more Intuition functions. This is required for

operations such as dynamic entries in the IntuiBase

structure.

Parameters: LockNumber

Number of the internal SignalSemaphore or 0

(almost all SSs).

Result: Number of the allocated SignalSemaphore or 0 (almost all).

| MakeClass Define object class |

y^all: IClass = MakeClass(ClassID, SuperclassID, SuperClassPtr, InstanceSize, Flags)

DO -678 (A6) AO Al A2 DO Dl

STRUCT IClass *IClass,*SuperClassPtr

APTR ClassID,SuperClassID

UWORD InstanceSize

ULONG Flags

Function: Defines a new object class. The object class must be

registered with Commodore.

Parameters: ClassID PublicClass name or 0 (PrivateClass)

SuperClassID

Superclass name or 0 (PrivateClass)

420

3.1 The Libraries and their Functions

SuperClassPtr

Private Superclass address

InstanceSize

Object data structure size

Flags 0

Result: IClass or 0

INewObjectA Create a new object!

CalL' Object = NewObjectA(class, classID, tagList)

DO -636(A6) AO Al A2

APTR Object,classID

STRUCT IClass *class

STRUCT Tagltem *tagList

Function: Create a Boopsi class object (Boopsi = Basic object-

oriented Programming System for Intuition).

Parameters: class BoopsiClass from MakeClass()

classID Name if class=0

tagList Tagltems for the object

Result: Object that may be used, for example, as a gadget or image.

INextObject Get the next objectl

Call: Object = NextObject (objectPtrPtr)

DO -666(A6) AO

APTR Object,objectPtrPtr

Function: Gets the next object entered in a list by

OM_ADDMEMBER.

Parameters: objectPtrPtr Address of the list or an object.

421

3. Programming with AmigaOS 2.x

Result: Object or 0

IPointlnlmage Checks to see if a point is in an Image |

Call: DoesContain = Pointlnlmage(Point, Image)

DO -624(A6) DO AO

BOOL DoesContain

STRUCT Point Point (LONG)

STRUCT Image *Image

Function: Checks to see if a point at the given coordinates in the

Image is set (for BOOLMASK, etc.).

Parameters: Point X«16!Y (packed coordinates)

Image Image or Customlmage

Result: 0 Point not set

IRemoveClass Remove Boopsi class from system list)

Call: RemoveClass(classPtr)

-708(A6) AO

STRUCT IClass *classPtr

Function: Removes an IClass from the system list.

Parameters: ClassPtr Result from MakeClass()

I SetAttrsA Set object attributes]

Call: result = SetAttrsA(Object, TagList)

DO -648 (A6) AO Al

APTR Object

STRUCT Tagltem *TagList

ULONG result

Function: Defines a set of attributes for a Boopsi object.

422

3.1 The Libraries and their Functions

Parameters: Object Object

TagList Tagltem field

Result: Not 0 if the object is a gadget and should be refreshed in

order for the new attributes to be displayed.

|SetPrefs Change the Preferences settings|

Call: Prefs = SetPrefs (PrefBuf fer, Size, Inform)

DO -324(A6) AO DO Dl

STRUCT Preferences *Prefsf *PrefBuffer

LONG Size

BOOL Inform

Function: Changes the default Preference settings and informs

(optional) all windows. The Preferences structure no longer

contains all the defaults. This routine should never be used.

Parameters: PrefBuffer Custom settings

Size Size of custom structure

Inform Boolean - Inform windows

Result: PrefBuffer

[UnJocklBase Free IntuitionBasel

Call: UniocklBase (Lock)

-420(A6) AO

ULONG Lock

Function: Frees the SignalSemaphore(s) locked with LockIBase().

Parameters: Lock SignalSemaphore number or 0 (almost all).

Dec Hex STRUCTURE Remember,0

0 $0 APTR rm_NextRemember

4 $4 LONG rm_RememberSize

423

3. Programming with AmigaOS 2.x

8 $8 APTR rm_Memory

12 $C LABEL rm_SIZEOF

FILENAME_SIZE =30 ;file name size

POINTERSIZE = (1+16+1)*2 ;mouse pointer size

TOPAZ_EIGHTY = 8

TOPAZ_SIXTY = 9

Dec Hex STRUCTURE Preferences,0 ;Anachronism!

0 $0 BYTE pf_FontHeight

1 $1 BYTE pf_PrinterPort

2 $2 WORD pf_BaudRate

4 $4 STRUCT pf_KeyRptSpeed/TV_SIZE

12 $C STRUCT pf_KeyRptDelay,TV_SIZE

20 $14 STRUCT pf_DoubleClick,TV_SIZE

28 $1C STRUCT pf_PointerMatrix,POINTERSIZE*2

64 $40 BYTE pf_XOffset

65 $41 BYTE pf_YOffset

66 $42 WORD pf_colorl7

68 $44 WORD pf_colorl8

7 0 $46 WORD pf_colorl9

72 $48 WORD pf_PointerTicks

74 $4A WORD pf_color0

76 $4C WORD pf_colorl

78 $4E WORD pf_color2

80 $50 WORD pf_color3

82 $52 BYTE pf_ViewXOffset

83 $53 BYTE pf_ViewYOffset

84 $54 WORD pf_ViewInitX

86 $56 WORD pf_ViewInitY

88 $58 BOOL EnableCLI

90 $5A WORD pf_PrinterType

92 $5C STRUCT pf_PrinterFilename,FILENAME_SIZE

122 $7A WORD pf_PrintPitch

124 $7C WORD pf_PrintQuality

126 $7E WORD pf_PrintSpacing

128 $80 WORD pf_PrintLeftMargin

130 $82 WORD pf_PrintRightMargin

132 $84 WORD pf_PrintImage

134 $86 WORD pf_PrintAspect

136 $88 WORD pf_PrintShade

138 $8A WORD pf_PrintThreshold

140 $8C WORD pf_PaperSize

142 $8E WORD pf_PaperLength

144 $90 WORD pf_PaperType

146 $92 BYTE pf_SerRWBits

147 $93 BYTE pf_SerStopBuf

148 $94 BYTE pf_SerParShk

424

3.1 The Libraries and their Functions

149

150

180

181

182

184

186

188

189

190

192

194

195

196

$95

$96

$B4

$B5

$B6

$B8

$BA

$BC

$BD

$BE

$C0

$C2

$C3

$C4

LACEWB

BYTE

STRUCT

BYTE

BYTE

UWORD

WORD

UWORD

UBYTE

UBYTE

UWORD

UWORD

UBYTE

UBYTE

LABEL

pf_LaceWB

pf_WorkName,FILENAME_SIZE

pf_RowSizeChange

pf_ColumnSizeChange

pf_PrintFlags

pf_PrintMaxWidth

pf_PrintMaxHeight

pf_PrintDens ity

pf_PrintXOffset

pf_wb_Width

pf_wb_Height

pf_wb_Depth

pf_ext_size

pf_SIZEOF

1

PARALLEL_PRINTER

SERIAL_PRINTER

BAUD_110

BAUD_300

BAUD_1200

BAUD_2400

BAUD_4800

BAUD_9600

BAUD_19200

BAUD_MIDI

FANFOLD

SINGLE

PICA

ELITE

FINE

DRAFT

LETTER

SIX_LPI

EIGHT_LPI

IMAGE_POSITIVE

IMAGE_NEGATIVE

ASPECT_HORIZ

ASPECT_VERT

SHADE_BW

SHADE_GREYSCALE

SHADE_COLOR

US_LETTER

US_LEGAL

N TRACTOR

0

1

0

1

2

3

4

5

6

7

0

= $80

0

= $400

= $800

0

= $100

0

= $200

0

1

0

1

0

1

2

0

= $10

= $20

425

3. Programming with AmigaOS 2.x

W_TRACTOR

CUSTOM

CUSTOM_NAME

ALPHA_P_101

BROTHER_15XL

CBM_MPS1000

DIAB_630

DIAB_ADV_D25

DIAB_C_150

EPSON

EPSON_JX_80

OKIMATE_20

QUME_LP_20

HP_LASERJET

HP_LASERJET_PLUS

SBUF_512

SBUF_1024

SBUF_2048

SBUF_4096

SBUF_8000

SBUF_16000

SREAD_BITS

SWRITE_BITS

SSTOP_BITS

SBUFSIZE_BITS =

SPARITY_BITS =

SHSHAKE_BITS =

SPARITY_NONE

SPARITY_EVEN

SPARITY_ODD

SHSHAKE_XON

SHSHAKE_RTS

SHSHAKE_NONE

CORRECT_RED

CORRECT_GREEN

CORRECT_BLUE

CENTER_IMAGE

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

$F0

$F

$F0

$F

$F0

$F

=

=

=

=

=

=

=

=

=

-

$30

$40

0

1

2

3

4

5

6

7

8

9

$A

$B

$c

0

1

2

3

4

5

; pf_SerRWBits

; pf_SerStopBu

; pf_SerParShk

0

1

2

0

1

2

1

2

4

8

IGNORE_DIMENSIONS = 0

BOUNDED_DIMENSIONS = $10

ABSOLUTE_DIMENSIONS = $20

426

3.1 The Libraries and their Functions

PIXEL_DIMENSIONS = $40

MULTIPLY_DIMENSIONS = $80

INTEGER_SCALING $100

ORDEREDJDITHERING = 0

HALFTONE_DITHERING = $200

FLOYD_DITHERING = $400

ANTI_ALIAS

GREY_SCALE2

= $800

=$1000 ;for A2024 monitor

= (CORRECT_RED+CORRECT_GREEN+CORRECT_BLUE)CORRECT_RGB_MASK

DIMENSIONS_MASK

(BOUNDED_DIMENSIONS+ABSOLUTE_DIMENSIONS+PIXELJDIMENSIONS+MULTIPLY_DIMENSIONS)

DITHERING_MASK = (HALFTONE_DITHERING+FLOYD_DITHERING)

Dec Hex

0 $0

20 $14

24 $18

28 $1C

32 $20

34 $22

36 $24

40 $28

44 $2C

48 $30

STRUCTURE ICLASS,0

STRUCT cl_Dispatcher/h_SIZEOF ;Hook

ULONG cl_Reserved

APTR cl_Super

APTR cl_ID

UWORD cl_InstOffset

UWORD cl_InstSize

ULONG cl_UserData

ULONG cl_SubclassCount

ULONG cl_Obj ectCount

ULONG cl_Flags

;0

/string

;User data for the Class

;number of subclasses

;number of objects

CLB_INLIST = 0, CLF_INLIST = 1 ;Class in PublicClassList

Dec Hex STRUCTURE _Object,0

0 $0 STRUCT o_Node,MLN_SIZE

8 $8 APTR o_Class

12 $C LABEL _object_SIZEOF

Dec Hex STRUCTURE Msg,0

0 $0 ULONG msg_MethodID ;data to follow

4 $4 ... /according to ID (see below)

0M_NEW = $101 ;parameter is really a Class

OM_DISPOSE = $102 ;self-deleting (no parameters)

OM_SET = $103 ;set attributes (list)

OM_GET = $104 ;read attributes

OM_ADDTAIL = $105 ;add self to list

OM__REMOVE = $106 ;remove self from list (no parameters)

OM_NOTIFY = $107 ;notify self

OM_UPDATE = $108 ;NotifyMsg

427

3. Programming with AmigaOS 2.x

OM_ADDMEMBER = $109 ;

OM_REMMEMBER = $10A ;

Dec Hex STRUCTURE opSet,4 ;OM_NEW, OM_SET

4 $4 APTR ops_AttrList ;new attributes

8 $8 APTR ops_GInfo ;0 for OM_NEW

Dec Hex STRUCTURE opUpdate,4 ;OM_UPDATE

4 $4 APTR opu_AttrList /attributes

8 $8 APTR opu_GInfo

12 $C ULONG opu_Flags

OPUB_INTERIM = 0, OPUF_INTERIM = 1

Dec Hex STRUCTURE opGet,4 ;OM_GET

4 $4 ULONG opg_AttrID

8 $8 APTR opg_Storage

Dec Hex STRUCTURE opAddTail,4 ;OM_ADDTAIL

4 $4 APTR opat_List

Dec Hex STRUCTURE opMember,4 ;OM_...MEMBER

4 $4 APTR opam_Object

GA_Dummy = TAG_USER+$3 0000 ;Gadget attributes

GA_LEFT = TAG_USER+$3 0001

GA_RELRIGHT = TAG_USER+$3 0002

GA_TOP = TAG__USER+$30003

GA_RELBOTTOM = TAG_USER+$30004

GA_WIDTH = TAG_USER+$30005

GA_RELWIDTH = TAG_USER+$30006

GA_HEIGHT = TAG_USER+$30007

GA_RELHEIGHT = TAG_USER+$30008

GA_TEXT = TAG_USER+$30009

GA_IMAGE = TAG_USER+$3 000A

GA_BORDER = TAG_USER+$3000B

GA_SELECTRENDER = TAG_USER+$3 000C

GA_HIGHLIGHT = TAG__USER+$3000D

GA_DISABLED = TAG__USER+$3 000E

GA_GZZGADGET = TAG__USER+$3 000F

GA_ID = TAG_USER+$30010

GA_USERDATA = TAG_USER+$30011

GA_SPECIALINFO = TAG_USER+$3 0012

428

3.1 The Libraries and their Functions

GA_SELECTED

G7L.ENDGADGET

GA_IMMEDIATE

GA_RELVERIFY

GA_FOLLOWMOUSE

GA__RIGHTBORDER

GA_LEFTBORDER

GAJTOPBORDER

GA_BOTTOMBORDER

GAJTOGGLESELECT

GA.J3YSGADGET

GA_SYSGTYPE

GA_PREVIOUS

GA_NEXT

GA_DRAWINFO

GA_INTUITEXT

GA_LABELIMAGE

PGA__Durnmy

PGA_FREEDOM

PGA_BORDERLESS

PGA_HORIZPOT

PGA_HORIZBODY

PGA_VERTPOT

PGA_VERTBODY

PGAJTOTAL

PGA_VISIBLE

PGA_TOP

= TAG_USER+$30013

= TAG_USER+$30014

= TAG_USER+$30015

= TAG_USER+$30016

= TAG_USER+$30017

= TAG_USER+$30018

= TAG_USER+$30019

= TAG_USER+$3001A

= TAG_USER+$3001B

= TAG_USER+$3001C

= TAG_USER+$3001D

= TAG_USER+$3001E

= TAG_USER+$3001F

= TAG_USER+$30020

= TAG_USER+$30021

= TAG_USER+$30022

= TAG_USER+$30023

= TAG_USER+$31000

= TAG_USER+$31001

= TAG__USER+$31002

= TAG__USER+$31003

= TAG_USER+$31004

= TAG_USER+$31005

= TAG_USER+$31006

= TAG_USER+$31007

= TAG_USER+$31008

= TAG_USER+$31009

;PropGadget attributes

STRINGA_Dummy

STRINGA_MaxChars

STRINGA_Buffer

STRINGA_UndoBuffer

STRINGA_WorkBuffer

STRINGA_BufferPos

STRINGA_DispPos

STRINGA_AltKeyMap

STRINGA^Font

STRINGA_Pens

STRINGA__ActivePens

STRINGA_EditHook

STRINGA_EditModes

STRINGA__ReplaceMode

STRINGA_FixedFieldMode

STRINGA_NoFilterMode

STRINGA_Justi ficat ion

STRINGA_LongVal

STRINGA_TextVal

TAG_USER+$32000

TAG__USER+$32001

TAG_USER+$32002

TAG_USER+$32003

TAG_USER+$32004

TAG_USER+$32005

TAG_USER+$32006

TAG_USER+$32007

TAG_USER+$32008

TAG_USER+$32009

TAG_USER+$3200A

TAG_USER+$3200B

TAG_USER+$3200C

TAG_USER+$3200D

TAG_USER+$3200E

TAG_USER+$3200F

TAG_USER+$32010

TAG__USER+$32011

TAG__USER+$32012

;StringGadget attributes

429

3. Programming with AmigaOS 2.x

SG_DEFAULTMAXCHARS = 128 /default buffer length

LAYOUTA_Dummy = TAG_USER+$38000 /Layout

LAYOUTA_LAYOUTOBJ = $38001

LAYOUTA_SPACING = $38002

LAYOUTA_ORIENTATION = $38003

LORIENT_NONE = 0 /orientation

LORIENT_HORIZ = 1

LORIENT_VERT = 2

GM_HITTEST = 0 /send Hook commands to GMR_GADGETHIT

GM_RENDER = 1 /draw self

GM_GOACTIVE = 2 /Gadget activated

GM_HANDLEINPUT = 3 /process input

GM_GOINACTIVE = 4 /Gadget inactivated

Dec Hex STRUCTURE MsgHeader,0 /again for structures

4 $4 ULONG MethodID

8 $8 LABEL methodid_SIZEOF

Dec Hex STRUCTURE gpHitTest,methodid_SIZEOF

4 $4 APTR gpht_GInfo

8 $8 WORD gpht_MouseX

10 $A WORD gpht_MouseY

GMR_GADGETHIT = 4 /not hit = 0

Dec Hex STRUCTURE gpRender,methodid_SIZEOF

4 $4 APTR gpr_GInfo /GadgetContext

8 $8 APTR gpr_RPort

12 $C LONG gpr_Redraw

GREDRAW__UPDATE = 2 /update with new attributes

GREDRAW_REDRAW = 1 /refresh

GREDRAW_TOGGLE = 0 /toggle

Dec Hex STRUCTURE gplnput/methodid_SIZEOF /also GM__GOACTIVE

4 $4 APTR gpi_GInfo

8 $8 APTR gpi_IEvent

12 $C APTR gpi_Termination

16 $10 WORD gpi__MouseX

18 $12 WORD gpi_MouseY

Dec Hex STRUCTURE gpGoInactive/methodid_SIZEOF

4 $4 APTR gpgi_GInfo

8 $8 ULONG gpgi_Abort /V37 and up!

430

3.1 The Libraries and their Functions

GMR_MEACTIVE

GMRJNOREUSE

GMR_REUSE

GMR_VERIFY

GMRB_NOREUSE

GMRB_REUSE

GMRB_VERIFY

= 0

= 2

= 4

= 8

= 1/

= 2,

= 3,

GMRF_NOREUSE = 2

GMRF_REUSE = 4

GMRF VERIFY = 8

ICM_SETLOOP = $402

ICM_CLEARLOOP = $403

ICM_CHECKLOOP = $404

ICA_Dummy $40000

ICA_TARGET = ICA_Duirany+l

ICA_MAP = ICA_Duirany+2

ICSPECIAL_CODE = ICA_Dummy+3

ICTARGET_IDCMP = -1 ;$ffffffff

CUSTOMIMAGEDEPTH = -1 ;depth for CustomGadgets

IMAGE_ATTRIBUTES

IA_LEFT

IAJTOP

IA_WIDTH

IA_HEIGHT

IA_FGPEN

IA_BGPEN

IA_DATA

IAJLINEWIDTH

IA_PENS

IA_RESOLUTION

IA_APATTERN

IA_APATSIZE

IA_MODE

IA_FONT

IA_OUTLINE

IA_RECESSED

IA_DOUBLEEMBOSS

IA_EDGESONLY

TAG_USER+$20000

IMAGE_ATTRIBUTES+$ 01

IMAGE_ATTRIBUTES+$02

IMAGE_ATTRIBUTES+ $ 0 3

IMAGE_ATTRIBUTES+$ 0 4

IMAGE_ATTRIBUTES+$05

IMAGE_ATTRIBUTES+ $ 0 6

IMAGE_ATTRIBUTES+ $ 0 7

IMAGE_ATTRIBUTES+$ 0 8

IMAGE_ATTRIBUTES+$ 0 E

IMAGE_ATTRIBUTES+ $ 0 F

IMAGE_ATTRIBUTES+ $ 010

IMAGE_ATTRIBUTES+ $ 011

IMAGE_ATTRIBUTES+ $ 012

IMAGE_ATTRIBUTES+$013

IMAGE_ATTRIBUTES+$014

IMAGE_ATTRIBUTES+ $ 015

IMAGE_ATTRIBUTES+$016

IMAGE_ATTRIBUTES+ $ 017

SYSIA_Size = IMAGE_ATTRIBUTES+$0B ;system IClass

SYSIA_Depth = IMAGE_ATTRIBUTES+$0C

SYSIA_Which = IMAGE_ATTRIBUTES+$0D

SYSIA_DrawInfo = IMAGE_ATTRIBUTES+$018

431

3. Programming with AmigaOS 2.x

SYSIA_Pens = IA_PENS

IA_SHADOWPEN = IMAGE_ATTRIBUTES+$09

IA_HIGHLIGHTPEN = IMAGE_ATTRIBUTES+$OA

SYSISIZE_MEDRES = 0

SYSISIZE_LOWRES = 1

SYSISIZE_HIRES = 2

DEPTHIMAGE = 0 ;SYSIA_Witch values

ZOOMIMAGE = 1

SIZEIMAGE = 2

CLOSEIMAGE = 3

SDEPTHIMAGE = 5

LEFTIMAGE = $A

UPIMAGE = $B

RIGHTIMAGE = $C

DOWNIMAGE = $D

CHECKIMAGE = $E

MXIMAGE = $F

IM_DRAW = $202 ;draw self

IMJHITTEST = $203 ;TRUE=hit

IM_ERASE = $204 ;delete self

IM_MOVE = $205 ;redraw

IM_DRAWFRAME = $206 ;draw within Box

IM_FRAMEBOX = $207

IM_HITFRAME = $208

IM_ERASEFRAME = $209

IDS_NORMAL = 0

IDS_SELECTED = 1 ;active

IDS_DISABLED = 2 ;cannot be selected

IDS_BUSY = 3

IDS_INDETERMINATE = 4

IDS_INACTIVENORMAL = 5 ;within window border

IDS_INACTIVESELECTED = 6 ;

IDS_INACTIVEDISABLED = 7 ;

IDS_INDETERMINANT = IDS_INDETERMINATE

Dec Hex STRUCTURE impFrameBox,4

4 $4 APTR impf_ContentsBox

8 $8 APTR impf_FrameBox

12 $C APTR impf_DrInfo

16 $10 LONG impf_FrameFlags

FRAMEB__SPECIFY = 0, FRAMEF_SPECIFY = 1

Dec Hex STRUCTURE impDraw,4

432

3.1 The Libraries and their Functions

4

8

10

12

16

20

22

ec

4

8

10

12

14

$4

$8

$A

$c

$10

$14

$16

Hex

$4

$8

$A

$c

$E

APTR

WORD

WORD

ULONG

APTR

WORD

WORD

impd_RPort

impd_OffsetX

impd_OffsetY

impd_State

impd_DrInfo

impd_Dimens ionsWidth

impd_DimensionsHeight

STRUCTURE impErase,4

APTR

WORD

WORD

WORD

WORD

impe_RPort

impe_OffsetX

impe_OffsetY

impe_JDimensionsWidth

impe_DimensionsHeight

Dec Hex STRUCTURE impHitTest,4

4 $4 WORD imph_PointX

6 $6 WORD imph_PointY

8 $8 WORD imph_DimensionsWidth

10 $A WORD imph_DimensionsHeight

3.1.12 The Layers Library

The "layers.library" is responsible for the complex Clipping and Refresh

of overlapping software levels. The base address of the function is

expected in A6.

Functions of the Layers Library

BeginUpdate

BehindLayer

CreateBehindHookLayer

CreateBehindLayer

CreateUpfrontHookLayer

CreateUpfrontLayer

DeleteLayer

DisposeLayerlnfo

EndUpdate

InstallClipRegion

InstallLayerHook

LockLayer

LockLayerlnfo

LockLayers

MoveLayer

MoveLayerlnFrontOf

MoveSizeLayer

NewLayerlnfo

ScrollLayer

SizeLayer

SwapBitsRastPortClipRect

UnlockLayer

UnlockLayerlnfo

UnlockLayers

UpfrontLayer

433

3. Programming with AmigaOS 2.x

Description of the routines

I BeginUpdate Begin layer update |

Call: result = BeginUpdate(1)

dO -78(A6) aO

LONG result

STRUCT Layer *1

Function: Converts the DamageList to a ClipRectList and adds it to

the layer.

Parameters: 1 Layer

Result: 0 Error (EndUpdate(l,O) call)

| BehindLayer Put layer in the background|

Call: result = BehindLayer (1)

dO -54(A6) al

LONG result

STRUCT Layer *1

Function: Moves the given layer behind all other layers.

Parameters: 1 Layer

Result: 0 Error

ICreateBehindHookLayer Create layer with backfill hook]

result = CreateBehindHookLayer(li,bm,xO,yO,xl,yl,flags,hook/bm2)

dO -192 (A6) aO al dO dl d2 d3 d4 a3 a2

STRUCT Layer *Result: STRUCT Layer_Info *li

STRUCT BitMap *bm,*bm2

LONG xO,yO,xl,yl,flags

STRUCT Hook *hook

434

3.1 The Libraries and their Functions

Function: Creates a new layer in the background and installs a

backfill hook.

Parameters: H

bm

xO,yO

xl,yl

flags

hook

bm2

Result: Layer or 0

Layerlnfo

Screen bit-map

Upper left corner

Lower right corner

Layer type

BackFill hook

SuperBitMap or 0

I CreateBehindLayer Create layer in background!

Call: result = CreateBehindLayer(li,bm,xO,yO,xl,yl, flags,bm2)

dO -42(A6) aO al dO dl d2 d3 d4 a2

STRUCT Layer *result

STRUCT Layer_Info *li

STRUCT BitMap *bm/*bm2

LONG xO,yO,xl,yl, flags

Function: Creates a new layer behind all other layers.

Parameters: li

bm

xO,yO

xl,yl

flags

Layerlnfo

Screen bit-map

Upper left corner

Lower right corner

Layer type

435

3. Programming with AmigaOS 2.x

bm2 SuperBitMap or 0

Result: Layer or 0

[CreateUpfrontHookLayer Create foreground layer with hook|

result = CreateUpfrontHookLayer(li,bm,xO,yO,xl,yl, flags,hook,bm2)

dO -186 (A6) aO al dO dl d2 d3 d4 a3 a2

STRUCT Layer *result

STRUCT Layer_lnfo *li

STRUCT BitMap *bm,*bm2

LONG xO,yO,xl,yl,flags

STRUCT Hook *hook

Function: Creates a new layer in the foreground and installs a backfill

hook.

Parameters: i

bm

xO,yO

xl,yl

flags

hook

bm2

Result: Layer or 0

Layerlnfo

Screen bit-map

Upper left corner

Lower right corner

Layer type

BackFill hook

SuperBitMap or 0

ICreateupfrontLayer Create a foreground layer|

Call: result = CreateUpfrontLayer(li/bm,x0/y0/xl/yl/flags,bm2)
dO -36(A6) aO al dO dl d2 d3 d4 a2

STRUCT Layer *result

STRUCT Layer_Info *li

STRUCT BitMap *bm/*bm2

LONG xO,yO,xl,yl,flags

436

3.1 The Libraries and their Functions

Function: Creates a new layer in the foreground.

Parameters: M

bm

xO,yO

xl,yl

flags

bm2

Result: Layer or 0

Layerlnfo

Screen bit-map

Upper left corner

Lower right corner

Layer type

SuperBitMap or 0

IDeleteLayer Free a layer|

Call: result = DeleteLayer(1)

dO -90(A6) al

LONG result

STRUCT Layer *1

Function: Frees the given layer and its memory blocks.

Parameters: 1 Layer

Result: 0 Error

IDisposeLayerlnfo Free the Layerlnfo]

Call: DisposeLayerlnfo(li)

-150(A6) aO

STRUCT Layer_Info *li

Function: Free Layerlnfo and its memory.

Parameters: H Layerlnfo

437

3. Programming with AmigaOS 2.x

I Endupdate End update and normalize clipping 1

Call: EndUpdate(1, flag)

-84(A6) aO dO

STRUCT Layer *1

UWORD flag

Function: Return normal ClipRects to the layer.

Parameters: 1 Layer

flag TRUE: Update completely ended.

llnstallClipRegion Install clipping|

Call: oldclipregion = InstallClipRegion(1, region)

dO -174(A6) aO al

STRUCT Region *oldclipregion,*region

STRUCT Layer *1

Function: Installs a new clipping region in layer.

Parameters: 1 Layer

region New ClipRegion

Result: Previous ClipRegion or 0

| InstallLayerHook Install backfill hook|

Call: oldhook = InstallLayerHook(layer, hook)

dO -198(A6) aO al

STRUCT Hook *oldhook,*hook

STRUCT Layer *layer

Function: Installs a new backfill hook in a layer.

Parameters: layer Layer

438

3.1 The Libraries and their Functions

Result:

hook New backfill hook

Previous backfill hook

|LockLayer Lock layer!

Call: LockLayer(1)

-96(A6) al

STRUCT Layer *1

Function: Lock a layer from other programs.

Parameters: 1 Layer

I LockLayerlnfo Lock Layerlnfo |

Call: LockLayerlnfo (li)

-120(A6) aO

STRUCT Layerlnfo *li

Function: Lock Layerlnfo from other programs.

Parameters: M Layerlnfo

[LockLayers Lock all layers of a Layerlnfo |

Call: LockLayers (li)

-108(A6) aO

STRUCT Layerlnfo *li

Function: Locks an entire layer system from other programs.

Parameters: H Layerlnfo

IMoveLayer Move a layer |

Call: result = MoveLayer(1, dx, dy)

dO -60(A6) al dO dl

439

3. Programming with AmigaOS 2jc

LONG result,dx,dy

STRUCT Layer *1

Function: Move a layer relative to its current position.

Parameters: 1 Layer

dx Relative X position

dy Relative Y position

Result: 0 Error

IMoveLayerlnFrontOf Move layer in front of another layer]

Call: result = MoveLayerlnFrontOf(layertomove, targetlayer)

dO -168(A6) aO al

LONG result

STRUCT Layer *layertomove,*targetlayer

Function: Moves one layer in front of another.

Parameters: layertomove

Layer to move in front of targetlayer.

targetlayer Layer that layertomove will overlay.

Result: 0 Error

IMoveSizeLayer Change layer size and position 1

Call: result = MovesizeLayer(layer, dx, dy, dw, dh)

dO -180 (A6) aO dO dl d2 d3

LONG result,dx,dy,dw,dh

STRUCT Layer *layer

Function: Move upper left and lower right corners.

Parameters: layer Layer

440

3.1 The Libraries and their Functions

dx,dy Relative position

dw,dy Relative size

Result: 0 Error

I NewLayerlnfo (jet Layeringo\

Call: result = NewLayerlnfo ()

dO -144(A6)

STRUCT Layerlnfo *result

Function: Creates a new Layerlnfo structure.

Result: Layerlnfo or 0

IScroIILayer Scroll layer contents 1

Call: ScrollLayer(1, dx, dy)

-72(A6) al dO dl

STRUCT Layer *1

LONG dx,dy

Function: Scrolls the contents of a layer.

Parameters: 1 Layer

dx Delta value X

dy Delta value Y

I SizeLayer Change layer size I

Call: result = SizeLayer (1, dx, dy)

dO -66(A6) al dO dl

LONG result,dx,dy

STRUCT Layer *1

Function: Changes the size of a layer relative to its current size.

441

3. Programming with AmigaOS 2jc

Parameters: 1 Layer

dx,dy Relative size change

Result: 0 Error

SwapBitsRastPortClipRect

Switch contents of a bit-map and ClipRect

Call: SwapBitsRastPortClipRect (rp, cr)

-126(A6) aO al

STRUCT RastPort *rp

STRUCT ClipRect *cr

Function: Switches the contents of a ClipRect with the regions of a

bit-map.

Parameters: rp RastPort

cr ClipRect

lUnlockLayer Undo a LockLayerQ cafil

Call: UnlockLayer (1)

-102(A6) aO

STRUCT Layer *1

Function: Frees the layer for other programs to use again.

Parameters: 1 Layer

lUnlockLayerInfo Undo LockLayerlnfoQ calf]

Call: UnlockLayerInfo (li)

-138(A6) aO

STRUCT Layerlnfo *li

Function: Frees the Layerlnfo structure for other programs.

442

3.1 The Libraries and their Functions

Parameters: H Layerlnfo

ILnlockLayers Undo LockLayersQ call|

Call: UnlockLayers (li)

-114(A6) aO

STRUCT Layerlnfo *li

Function: Frees the entire layer system in the given Layerlnfo list.

Parameters: li Layerlnfo

I UpfrontLayer Move a layer to the frontl

Call: result = UpfrontLayer (1)

dO -48(A6) al

LONG result

STRUCT Layer *1

Function: Moves a layer in front of all other layers.

Parameters: 1 Layer

Result: 0 Error

3.1.13 The MathFFP, MathlEEESingBas, and
MathlEEEDoubBas Libraries

The Amiga supports three different floating point formats: the

international IEEE formats for 32 and 64 bit floating point numbers

(which can be directly processed by the FPU 68882), and the

FastFloatingPoint format.

The FFP format is the fastest 32 bit floating point format as long as you

donft have an FPU, which will process the IEEE formats faster than any

CPU.

443

3. Programming with AmigaOS 2.x

Two libraries exist for each format. First, we will discuss the library for

basic mathematical functions. The functions and their function offsets are

the same for all three libraries.

MathFFP functions begin with fSF and expect 32 bit FFP values.

MathlEEESingBas functions begin with 'IEEESP and expect 32 bit

IEEE values. MathlEEEDoubBas functions begin with 'IEEEEDP' and

expect 64 bit ffiEEs.

The 64 bit numbers are always distributed across two registers (upper 32

bits/lower 32 bits).

Functions of the Base Libraries

Abs

Add

Ceil

Cmp

Div

Fix

Floor

Fit

Mul

Neg

Sub

Tst

Description of the functions

I SPAbs/IEEESPAbs/IEEEDPAbs Absolute value |

Call:

Function:

x =

dO

dO

dO/dl

Returns t

...Abs (

-54(A6)

SPAbs

IEEESPAbs

IEEEDPAbs

he positive value

y)

dO

dO

dO/dl

ofV.

444

3.1 The Libraries and their Functions

I SPAdd/IEEESPAdd/IEEEDPAdd Add two values]

Call: X

dO

dO

...Add (

-66(A6)

SPAdd

IEEESPAdd

y »

dO

dO

z

dl

dl

dO/dl IEEEDPAdd dO/dl d2/d3

Function: x = y + z

| SPCeil/IEEESPCeil/IEEEDPCeil

Call: x = ...ceil

-96(A6)

dO SPCeil

dO IEEESPCeil

dO/dl IEEEDPCeil

(y)

dO

dO

dO/dl

Function: Rounds y to the next whole number

| SPCmp/IEEESPCmp/IEEEDPCmp

Round up |

•>=y'.

Compare values |

Call: c = ... cmp (y , z)

-42(A6)

dO,cc SPCmp dl dO

dO,cc IEEESPCmp dl dO

dO,cc IEEEDPCmp dO/dl d2/d3

Function: Compare two values.

Result: c= l,cc = gt:y>z

c= 0, cc = eq:y = z

c = -l,cc = lt:y<z

| SPDiv/IEEESPDiv/IEEEDPDiv Division |

Call: X

dO

dO

...Div (

-84 (A6)

SPDiv

IEEESPDiv

y /

dO

dO

z

dl

dl

445

3. Programming with AmigaOS 2jc

dO/dl IEEEDPDiv dO/dl d2/d3

Function: x = y / z

| SPFix/IEEESPFix/IEEEDPFix Convert float to 32 bit integer |

Call: X =

dO

dO

dO

. ..Fix(

-30(A6)

SPFix

IEEESPFix

IEEEDPFix

y)

dO

dO

dO/dl

Function: Converts floating point number into a 32 bit integer value.

1 SPFloor/IEEESPFloor/IEEEDPFloor Round down]

Call: x = ... Floor (y)

-90(A6)

dO SPFloor dO

dO IEEESPFloor dO

dO/dl IEEEDPFloor dO/dl

Function: Rounds fy' to the next whole number '<=y\

| SPFlt/IEEESPFlt/IEEEDPFlt Convert long to float]

Call: x = ...Flt(y)

-36(A6)

dO SPFlt dO

dO IEEESPFlt dO

dO/dl IEEEDPFlt dO

Function: Converts a 32 bit integer to a floating point number.

| SPMul/IEEESPMul/IEEEDPMul Multiplication]

Call: x = .. .mum y , z)

-78(A6)

dO SPMul dO dl

dO IEEESPMul dO dl

dO/dl IEEEDPMul dO/dl d2/d3

446

3.1 The Libraries and their Functions

Function: x = y * z

| SPNeg/IEEESPNeg/IEEEDPNeg

Call: x = .. .Neg(y)

-60(A6)

dO SPNeg dO

dO IEEESPNeg dO

dO/dl IEEEDPNeg dO/dl

Function: x = -y

| SPSub/IEEESPSub/IEEEDPSub

Call: X = z)...Sub(y ,

-72(A6)

dO SPSub dO dl

dO IEEESPSub dO dl

dO/dl IEEEDPSub dO/dl d2/d3

Function: x = y - z

I SPTst/IEEESPTst/IEEEDPTst

Call: c = ...Tst(y)

-48(A6)

dO,cc SPTst dO

dO,cc IEEESPTst dO

dO,CC IEEEDPTst dO/dl

Function: Compares a value with 0.

Result: c= l,cc = gt:y>0.0

c = 0, cc = eq: y = 0.0

c = -l,cc = lt:y<0.0

Negation!

Subtraction!

Test a value |

447

3. Programming with AmigaOS 2.x

3.1.14 The MathTrans, MathlEEESingTrans, and

MathlEEEDoubTrans Libraries

Now we will look at the libraries for trigonometrical functions. What is

true for the basic mathematical functions also applies to these functions.

Trigonometrical functions

Acos

Asin

Atan

Cos

Cosh

Exp

Fieee

Log

LoglO

Pow

Sin

Sincos

Sinh

Sqrt

Tan

Tanh

Tieee

Description of the functions

ISPAcos/IEEESPAcos/IEEEDPAcos arc cosini

Call: x = ... Acos (y)

-120(A6)

dO SPAcos dO

dO IEEESPAcos dO

dO/dl IEEEDPAcos dO/dl

Function: Returns the arc cos of !y\

fSPAsin/IEEESPAsin/IEEEDPAsin arc sin |

Call: x = .. .Asin(y)

-114(A6)

448

3.1 The Libraries and their Functions

dO SPAsin dO

dO IEEESPAsin dO

dO/dl IEEEDPAsin dO/dl

Function: Returns the arc sin of y.

ISPAtan/IEEESPAtan/IEEEDPAtan

Call: x = . . .Atan(y)

-30(A6)

dO SPAtan dO

dO IEEESPAtan dO

dO/dl IEEEDPAtan dO/dl

Function: Returns the arc tan of V.

| SPCos/IEEESPCos/IEEEDPCos

Call: x = ... Cos (y)

-42(A6)

dO SPCos dO

dO IEEESPCos dO

dO/dl IEEEDPCos dO/dl

Function: Returns the cos of y.

| SPCosh/IEEESPCosh/IEEEDPCosh

Call: x = ... cosh (y)

-66(A6)

dO SPCosh dO

dO IEEESPCosh dO

dO/dl IEEEDPCosh dO/dl

Function: Returns the hyperbolic cos of y.

arc tangent!

cosin|

hyperbolic cosin |

| SPExp/IEEESPExp/IEEEDPExp Exponential function, base e |

Call: X =

dO

dO

...Exp(

-78(A6)

SPExp

IEEESPExp

y)

dO

dO

449

3. Programming with AmigaOS 2.x

dO/dl IEEEDPExp dO/dl

Function: x = eAy

| SPFieee/IEEESPFieee/IEEEDPFieee Convert IEEE single |

Call: x = ...Fieee(y)

-108(A6)

dO SPFieee dO

(dO IEEESPFieee dO)

dO/dl IEEEDPFieee dO

Function: Converts a 32 bit IEEE value to the format of the current

library.

I SPLog/IEEESPLog/IEEEDPLog Natural logarithm!

Call: x = ...Log(y)

-84(A6)

dO SPLog dO

dO IEEESPLog dO

dO/dl IEEEDPLog dO/dl

Function: Returns the natural log of 'y'.

| SPLoglO/IEEESPLoglO/IEEEDPLoglO

Call: x = . . .LoglO(y)

-126(A6)

dO SPLoglO dO

dO IEEESPLoglO dO

dO/dl IEEEDPLoglO dO/dl

Function: Returns the base 10 log of y.

Logarithm, base 101

I SPPow/IEEESPPow/IEEEDPPow

Call:

Exponential function |

z =

dO

dO

.. . Pow (

-90(A6)

SPPow

IEEESPPOW

x ,

dO

dO

y

dl

dl

dO/dl IEEEDPPow dO/dl d2/d3

450

3.1 The Libraries and their Functions

Function: z = xAy

| SPSin/IEEESPSin/IEEEDPSin sin]

Call: x = .. .sin(y)

-36(A6)

dO SPSin dO

dO IEEESPSin dO

dO/dl IEEEDPSin dO/dl

Function: Returns the sin of fy\

I SPSincos/IEEESPSincos/IEEEDPSincos Sin and Cosini

Call: x = ...Sincos(y, z)

-54(A6)

dO SPSincos dO dl-

dO IEEESPSincos dO aO

dO/dl IEEEDPSincos dO/dl aO

Function: x = ...Sin(y) AND (z)=Cos(y). 'z' is the address of the cos

result.

| SPSinh/IEEESPSinh/IEEEDPSinh

Call: x =

dO

dO

dO/dl

Function: Returns

...Sinh(y)

-60(A6)

SPSinh dO

IEEESPSinh dO

IEEEDPSinh dO/dl

; the hyperbolic sin of y.

| SPSprt/IEEESPSqrt/IEEEDPSqrt

Call: x =

dO

dO

...Sqrt(y)

-96(A6)

SPSqrt dO

IEEESPSqrt dO

Hyperbolic sin|

Square root|

dO/dl IEEEDPSqrt dO/dl

Function: Returns the square root of fyf.

451

3. Programming with AmigaOS 2.x

| SPTan/IEEESPTan/IEEEDPTan tangent |

Call: X = ...Tan(y)

-48(A6)

dO SPTan dO

dO IEEESPTan dO

dO/dl IEEEDPTan dO/dl

Function: Returns the tangent of y.

rSIHTanh/lEEESPTanhflEEEDPTanh Hyperbolic tangent!

Call: x = ... Tanh (y)

-72 (A6)

dO SPTanh dO

dO IEEESPTanh dO

dO/dl IEEEDPTanh dO/dl

Function: Returns the hyperbolic tangent of y.

ISPTieee/IEEESPTieee/IEEEDPTieee

Call:

Create an IEEE single]

X =

dO

(dO

dO

...Tieee(

-102(A6)

SPTieee

IEEESPTieee

IEEEDPTieee

y)

dO

dO)

dO/dl

Function: Converts a value from the library format to a 32 bit IEEE

value.

3.1.15 The Translator Library

The "translator.library" consists of only one routine. It is used to translate

text into Phoneme codes for the Narrator device.

Description of function

| translate Generate Phoneme |

Call: rtnCode = Translate(inString, inLength, outBuffer, outLength)

DO -30(A6) A0 DO Al Dl

452

3,1 The Libraries and their Functions

LONG rtnCode,inLength,outLength

APTR inString,outBuffer

Function: Translates text into Phoneme codes.

Parameters: inString Text

inLength Text length

outBuffer Buffer for Phonemes

outLength Buffer length

Result: 0 Okay, otherwise negative cancel offset from

start of text.

3.1.16 The Utility Library

The "utility.library" contains helpful routines designed to make

programming easier. One of the most important things you can do with

these routines is construct Tagltem fields from high level languages.

Functions of the Utility Library

AllocateTagltems

CloneTagltems

FilterTagChanges

FilterTagltems

FindTagltem

FreeTagltems

GetTagData

MapTags

NextTagltem

PackBoolTags

RefreshTagltemClones

TaglnArray

453

3. Programming with AmigaOS 2.x

Description of the functions

[AllocateTagltems Allocate a Tagltem field |

Call: TagList = AllocateTagltems (Numltems)

DO -66(A6) DO

STRUCT Tagltem *TagList

ULONG Numltems

Function: Allocates a Tagltem field for storing size, etc. Access to the

tags is only available via NextTagItem().

Parameters: Numltems Number of usable slots.

Result: TagList or 0

| CloneTagltems Copy a Tagltem field |

Call: NewTagList = CloneTagltems (TagList)

DO -72(A6) AO

STRUCT Tagltem *NewTagList,*TagList

Function: Copies a complete Tagltem list.

Parameters: TagList Tagltem list to be copied.

Result: Tagltem list or 0

| FilterTagChanges Filter out changes to a Tagltem field |

Call: FilterTagChanges(ChangeList, OldValues, Apply)

-54 (A6) AO Al DO

STRUCT Tagltem *ChangeList,*01dValues

LONG Apply

Function: Replaces all unchanged Tagltems in a change list with

TAGJGNORE.

454

3.1 The Libraries and their Functions

Parameters: ChangeList

New Tagltems

OldValues Old Tagltem list

Apply Boolean, indicates whether the old list should

be used.

I FilterTagltems Remove certain Tagltems |

Call: nvalid FilterTagltems(TagList, TagArray, Logic)

DO -96(A6) AO Al DO

STRUCT Tagltem *TagList

APTR TagArray

LONG Logic

ULONG nvalid

Function: Replaces with TAGJGNORE the Tagltems whose ti_Tag

entry is in the given field.

Parameters: TagList Tagltem field

TagArray Field with the tags to be deleted, ends with

TAG_END.

Logic TAGFILTER_AND (delete items not given in

the field) or TAGFILTER_NOT (delete items

given in the field).

Result: Number of valid items remaining in the list.

IFindTagltem Find a Taglteml

Call: Tagltem = FindTagltem(TagVal, TagList)

DO -30(A6) DO AO

STRUCT Tagltem *TagItem,*TagList

LONG TagVal

Function: Finds an item in a Tagltem list with the given tag value.

455

3. Programming with AmigaOS 2.x

Parameters: TagVal Tag to be found

TagList Tagltem list

Result: Tagltem or 0

IFreeTagltems Free a Tagltem fieidl

Call: FreeTagltems (TagList)

-78(A6) AO

STRUCT Tagltem *TagList

Function: Frees a Tagltem field allocated with AllocateTagItems() or

CloneTagItems().

Parameters: TagList Field to be set free.

| GetTagData Get data on a Tagltem |

Call: TagData = GetTagData(TagVal, Default, TagList)

DO -36(A6) DO Dl AO

ULONG TagData,TagVal,Default

STRUCT Tagltem *TagList

Function: Returns the tiJData entry of the given tag or the default

value if no Tagltem of this type could be found.

Parameters: TagVal Tag to be found

Default Default value

TagList List to be searched

Result: tLData or 'Default*

IMapTags Change tags]

Call: MapTags (TagList, MapList, includeMiss)

-60(A6) AO Al DO

456

3.1 The Libraries and their Functions

STRUCT Tagltem *TagList,*MapList

BOOL includeMiss

Function: Tags that are to be replaced by the tLTag of the given list

are given in a 'MapList1 as ti_Data entries.

Parameters: TagList List with tags to be changed.

MapList List with changes

IncludeMiss

Boolean, whether items not in the MapList

should remain unchanged (otherwise they are

replaced with TAGJGNORE).

| NextTagltem Find the next normal Tagltem |

Call: Tagltem = NextTagltem (TagltemPtr)

DO -48(A6) AO

STRUCT Tagltem *TagItem,**TagItemPtr

Function: Returns the next Tagltem, skipping over all system tags.

Parameters: TagltemPtr Address of a longword with the address of the

first Tagltem.

Result: Tagltem or 0

I PackBoolTags Combine BoolTags into a flag longword |

Call: Flags = PackBoolTags(InitialFlags, TagList, BoolMap)

DO -42 (A6) DO AO Al

ULONG Flags,InitialFlags

STRUCT Tagltem *TagList,*BoolMap

Function: BoolTags are entered as bit flags in a longword. The tag

flags are given as ti_Data in a Tagltem field.

Parameters: InitialFlags Default result

457

3. Programming with AmigaOS 2.x

TagList Tagltem field with BoolTags

BoolMap Tagltem field with flag longwords

Result: Changed flag longword

Example: Assume that we are managing the IDCMP Flags in a

complex program using Tagltems, and now we want to

assemble the IDCMPFlag longword:

** Definition of the

**

TAG_NEWSIZE

TAG__REFRESHWINDOW =

TAG_MOUSEBUTTONS

TAG_MOUSEMOVE

TAG_GADGETDOWN

TAG_GADGETUP

TAG_REQSET

TAG_MENUPICK

TAG_CLOSEWINDOW

TAG_RAWKEY

TAG_REQCLEAR

TAG_NEWPREFS

TAG_DISKINSERTED

TAG_DISKREMOVED

TAG_ACTIVEWINDOW

TAG_INACTIVEWINDOW =

TAG_DELTAMOVE

TAG_VANILLAKEY

TAG_INTUITICKS

TAG_MENUHELP

TAG_CHANGEWINDOW

**

** Example

**

movea.l _MainWindow,

1ea _Changes(pc)

bsr _SetIDCMP

Tags

TAG__USER+1

TAG_USER+2

TAG_USER+3

TAG_USER+4

TAG__USER+5

TAG_USER+6

TAG_USER+7

TAG_USER+8

TAG_USER+9

TAG_USER+10

TAG_USER+11

TAG_USER+12

TAG_USER+13

TAG__USER+14

TAG_USER+15

TAG_USER+16

TAG_USER+17

TAG_USER+18

TAG_USER+19

TAG_USER+20

TAG_USER+21

al

,aO

..Changes

del TAG_MOUSEMOVE,0 ;turn off

del TAG_GADGETDOWN, 0 ;turn off

458

3.1 The Libraries and their Functions

del TAG_DELTAMOVE, 0 ;turn off

dc.1 TAG_VANILLAKEY,-1 ;turn on

del TAG_USER+40,-l ;no meaning

dc.1 TAG_RAWKEY,0 ;turn off

del TAG_MOUSEBUTTONS, -1 ;turn on

dc.1 TAG_USER+3 5,0 ;no meaning

dc.1 TAG_DONE

** Change IDCMPFlags

*•

** Input: al=Window, aO=TagItems

**

_SetIDCMP

movera.l al/a6,-(a7)

movea.l _UtilityBase,a6

move.1 wd_IDCMPFlags(al),dO

lea _BoolMap(pc),al

jsr _LVOPackBoolTags(a6)

movea.l (a7)+,aO

movea.l _IntuiBase,a6

jsr _LVOModifyIDCMP(a6)

movea.l (a7)+,a6

rts

_BoolMap

del TAG_NEWSIZE,2

dc.1 TAG_REFRESHWINDOW,4

del TAG_MOUSEBUTTONS,8

dc.1 TAG_MOUSEMOVE,$10

del TAG_GADGETDOWN,$20

dc.1 TAG_GADGETUP,$40

del TAG_REQSET,$80

del TAG_MENUPICK,$100

dc . 1 TAG_CLOSEWINDOW, $200

del TAG_RAWKEY/$400

dc.1 TAG_REQCLEAR,$1000

dc.1 TAG_NEWPREFS,$4000

dc.1 TAG_DISKINSERTED,$8000

dc.1 TAG_DISKREMOVED,$10000

dc.1 TAG_ACTIVEWINDOW,$40000

dc.1 TAG_INACTIVEWINDOW,$80000

del TAG_DELTAMOVE, $100000

del TAG_VANILLAKEY, $200000

del TAG_INTUITICKS, $400000

del TAG_MENUHELP, $1000000

dc.1 TAG_CHANGEWINDOW,$2000000

del TAG_DONE

459

3. Programming with AmigaOS 2jc

I Ketresh I agltemClones Reset a copied Tagltem field I

RefreshTagltemClones(CloneTagltems, OriginalTagItems)

-84(A6) AO Al

STRUCT Tagltem *CloneTagItems,*OriginalTagItems

Function: Restores a list obtained with CloneTagItems() to the values
of the original list.

Parameters: CloneTagltems

Result from CloneTagltems (original Tagltems).

OriginalTagltems

Unchanged original list

11 aglnArray Check if a tag is present I

Call: Bool = TaglnArray(Tag, TagArray)

DO -90 (A6) DO AO

ULONG Tag

APTR TagArray

Function: Checks for a certain value in a tag value field ending with
TAG_END.

Parameters: Tag Tag value to search for.

TagArray Field with tag values, ends with TAGJEND.

Result: 0 Value not found.

Dec Hex STRUCTURE Tagltem, 0

0 $0 ULONG ti_Tag ;ID (TAG_...)

4 $4 ULONG ti_Data ;ID-specific data

8 $8 LABEL ti_SIZEOF

TAG_DONE = 0 ;end of a Tagltem field

TAG_IGNORE = 1 ;skip Tagltem

TAG_MORE = 2 ;next Tagltem field

TAG_USER = $80000000

460

3.1 The Libraries and their Functions

3.1.17 The Workbench Library

The Workbench used to be a task module. Starting with AmigaOS 2.0, it

is now a library. The functions of the "workbench.library" allow you to

create menus and icons in the Workbench window.

Functions of the Workbench Library

AddAppIconA

AddAppMenuItemA

AddAppWindowA

RemoveAppIcon

RemoveAppMenuItem

RemoveAppWindow

Description of the functions

| AddAppIconA Add custom icons to the Workbench |

Call* Applcon = AddAppIconA (id, userdata, text, msgport, lock, diskobj, taglist)

DO -60 (A6) DO Dl A0 Al A2 A3 A4

STRUCT Applcon *AppIcon

ULONG id, userdata

APTR text

STRUCT MsgPort *msgport

BPTR lock

STRUCT DiskObject Miskobj

STRUCT Tagltem *taglist

Function: Creates a custom icon and adds it to the Workbench. Two

types of events are generated by the icon: a double-click

on the icon (am_NumArgs=0) and dragging another icon

across it (like WbStartup message).

Parameters: id Custom ID value

userdata Custom data

text Icon name

lock File lock or 0

461

3. Programming with AmigaOS 2.x

msgport MsgPort for AppMessages of type

MTYPE_APPICON.

diskobj Address of a DiskObject structure.

taglist Tagltem field or 0

Result: Applcon structure or 0

I AddAppMenuItemA Add a Menuitem to the Tools menu]

Cfl/l." AppMenuItem = AddAppMenuItemA(id, userdata, text, msgport, taglist)

DO -72(A6) DO Dl AO Al A2

STRUCT AppMenuItem *AppMenuItem

ULONG id,userdata

APTR text

STRUCT MsgPort *msgport

STRUCT Tagltem *taglist

Function: Adds a menu item to the Tools menu of the Workbench.

Parameters: id Custom ID value

userdata Custom data

text Item text

msgport MsgPort for AppMessages of type

MTYPE_APPMENUITEM.

taglist Tagltem field or 0

Result: AppMenuItem structure or 0

Example: Add a menu item to the Workbench Tools menu:

movea.l $4.w,a6 ;ExecBase

jsr _LVOCreateMsgPort(a6) ;get MsgPort

move.l dO,_MsgPort ;and save

beq _Zerror

462

3.1 The Libraries and their Functions

movea.1 _WbenchBase,a6 ;-workbench.library"

moveq #l,dO ;ID

moveq

lea

movea.1

suba.1

jsr

move. 1

beq

movea.1

movea.1

jsr

tst.l

beq

movea.1

cmpi.w

bne

moveq

cmp.l

bne

jsr

#0,dl

_ItemText(pc),aO

_MsgPort,al

a2,a2

_LVOAddAppMenuItemA(a6)

dO,_AppMenuItem

_Zerror2

$4.w,a6

_MsgPort,aO

_LVOGetMsg(a6)

dO

_NoMessage

dO,al

#MTYPE_APPMENUITEM,am_Type(al)

_NextMessage

#l,dO

am_ID(al),dO

__NextMenu

_LVOReplyMsg(a6)

;User data

;menu item

;MsgPort

;no Tags

;add

;save result:

;ExecBase

; Port

;get message

;and test

;menu selects

;our ID?

_MenuChoice

movea. 1 _WbenchBase,a6

movea. 1 _AppMenu11em, a0

jsr _LVORemoveAppMenuItem(a6)

movea.1 $4.w,a6

_Loop

movea.1 _MsgPort,aO

jsr _LVOGetMsg(a6)

tst.l dO

beq.s _De1Port

movea.1 dO,al

j sr JLVOReplyMsg(a6)

bra.s _Loop

_DelPort

movea.1 _MsgPort,aO

jsr _LVODeleteMsgPort(a6)

_ItemText

dc.b 'My Menu1,0

463

3. Programming with AmigaOS 2.x

_MsgPort

ds.l 1

_AppMenuItem

ds.l 1

| AdaAppWindowA Add a window to the Workbench I

AppWindow = AddAppWindowA(id, userdata, window, msgport, taglist)

DO -48 (A6) DO Dl AO Al A2

STRUCT AppWindow *AppWindow

ULONG id,userdata

STRUCT Window *window

STRUCT MsgPort *msgport

STRUCT Tagltem *taglist

Function: Adds a window to the Workbench list and sends

notification of all objects placed in the window.

Parameters: id Custom ID value

userdata Custom data

window Window

msgport MsgPort for AppMessages of type

MTYPE_APPWINDOW.

taglist Tagltem field or 0

Result: AppWindow structure or 0

Remove icon from the Workbench]| RemoveApplcon

Call: error = RemoveApplcon (Applcon)

DO -66(A6) AO

BOOL error

STRUCT Applcon *AppIcon

464

3.1 The Libraries and their Functions

Function: Undo AddAppIconA().

Parameters: Applcon Result from AddAppIconA().

Result: 0 Error

| RemoveAppMenultem Remove item from the Tools menu |

Call: error = RemoveAppMenultem (AppMenuItem)

DO -78(A6) AO

BOOL error

STRUCT AppMenuItem *AppMenuItem

Function: Undo AddAppMenuItemA().

Parameters: AppMenuItem

Result from AddAppMenuItemA().

Result: 0 Error

| RemoveAppWindow Remove window from Workbench]

Call: error = RemoveAppWindow(AppWindow)

DO -54 (A6) AO

BOOL error

STRUCT AppWindow *AppWindow

Function: Undo AddAppWindowA().

Parameters: AppWindow

Result from AddAppWindowA().

Error

WBDISK

WBDRAWER

WBTOOL

WBPROJECT

WBGARBAGE

WBDEVICE

WBKICK

= 1

= 2

= 3

= 4

= 5

= 6

= 7

Result:

•object types:

0

diskette

directory

program

file

trash can

device driver

OS disk

465

3. Programming with AmigaOS 2.x

WBAPPICON = 8 user icon

Dec Hex STRUCTURE DrawerData,0

0 $0 STRUCT dd_NewWindow,nw_SIZE ;for OpenWindowO

48 $30 LONG dd_CurrentX ;position

52 $34 LONG dd_CurrentY

56 $38 LABEL OldDrawerData__SIZEOF /previous structure size

56 $38 ULONG dd_Flags ;Flags

60 $3C UWORD dd_ViewModes ;view mode

62 $3E LABEL DrawerData_SIZEOF ;size of structure starting with v36

DRAWERDATAFILESIZE = DrawerData_SIZEOF

Dec

0

2

4

48

49

50

54

58

62

66

70

74

78

Hex

$0

$2

$4

$30

$31

$32

$36

$3A

$3E

$42

$46

$4A

$4E

STRUCTURE DiskObject,0

UWORD

UWORD

STRUCT

UBYTE

UBYTE

APTR

APTR

LONG

LONG

APTR

APTR

LONG

LABEL

do_Magic

do_Version

do_Gadget, gg_SIZEOF

do_Type

do_PAD_Byte

do_Defau11Too1

do_ToolTypes

do_CurrentX

do_CurrentY

do_DrawerData

do_ToolWindow

do_StackSize

do_SIZEOF

/start ID: $e310

/version number o

/Gadget structure

/only with Tools

/only with Tools

the structure

WB_DISKMAGIC = $e310

WB_DISKVERSION = 1

WB_DISKREVISION = 1

WB_DISKREVISIONMASK = $ff

GADGBACKFILL = 1

NO_ICON_POSITION = $80000000

ID

version

revision: lower 8 bits gg_Userdata

Dec Hex STRUCTURE FreeList,0

0 $0 WORD fl_NumFree

2 $2 STRUCT fl_MemList,LH_SIZE

16 $10 LABEL FreeList_SIZEOF

MTYPE_PSTD

MTYPE_TOOLEXIT

MTYPE_DISKCHANGE

MTYPE_TIMER

MTYPE_CLOSEDOWN

MTYPE_IOPROC

MTYPE_APPWINDOW

1 /standard message

2 /ExitMessage from Tools

3 /disk change

4 /timer tick

5 /not implemented

6 /not implemented

7 /Msg for application window

466

3.1 The Libraries and their Functions

MTYPE_APPICON

MTYPE_APPMENUITEM

MTYPE_COPYEXIT

MTYPE_ICONPUT

= 8 ;Msg for application icon

= 9 ;Msg for application menu

=10 ;end of a copy process

=11 ;Msg from icon.library/PutDiskObject()

AM_VERSION = 1 ;version of following structure

Dec

0

20

22

26

30

34

38

40

42

44

46

50

54

62

Hex

$0

$14

$16

$1A

$1E

$22

$26

$28

$2A

$2C

$2E

$32

$36

$3E

STRUCTURE AppMessage,0

STRUCT

UWORD

ULONG

ULONG

LONG

APTR

UWORD

UWORD

WORD

WORD

ULONG

ULONG

STRUCT

LABEL

am_Message,MN_SIZE

am__Type

am_UserData

am__ID

am_NumArgs

am_ArgList

am_Version

am_Class

am_MouseX

am_MouseY

am_Seconds

am_Micros

am_Reserved,8

AppMessage_SIZEOF

;StandardMessage

/message type

;user data

;

/number of argument

/arguments

;AM_VERSION

/message class

/mouse position

7

;even t ime

;

STRUCTURE AppWindow,0 /PRIVATE

STRUCTURE Applcon,0 /PRIVATE!

STRUCTURE AppMenuItem,0 /PRIVATE!

Dec Hex STRUCTURE WBStartup,0

0 $0 STRUCT sm_Message,MN_SIZE

20 $14 APTR

24 $18 BPTR

28 $1C LONG

32 $20 APTR

36 $24 APTR

40 $28 LABEL

sm_Process

sm_Segment

sm_NumArgs

sm_Too1Window

sm_ArgList

sm_SIZEOF

/Process

/SegList

/number of arguments

/window

/argument field

Dec Hex STRUCTURE WBArg,0

0 $0 BPTR wa_Lock /directory lock

4 $4 APTR wa_Name /file name

8 $8 LABEL wa_SIZEOF

467

Part2

ARexx

Part 2 - Introduction

Part 2 - Introduction

ARexx - by now it's a buzzword in the Amiga community. ARexx is a

logical evolution of CLI and CLI commands. As a command language, it

controls external applications. You can use ARexx to tell a word

processor to format text and then tell the desktop publishing program

(using ARexx) to import and print the text. ARexx was conceived as a

commercial product. Starting with the AmigaOS 2.0, it is a component of

the Amiga operating system. Compared to simple CLI commands,

variable manipulation is easier, and because variable manipulation is

simple, ARexx is at least as powerful as BASIC. But can BASIC

indirectly control application programs?

Author: Christian Kuhnert

471

4.1 The ARexx Language

4. ARexx

ARexx is not new. Since 1987, the Amiga version of Rexx by William S.

Hawes has been commercially available. Since then, ARexx has become

the de-facto standard for external program control on the Amiga. No

serious commercial program can afford not to access the ARexx-Port as

part of the Amiga multitasking operating system.

Including ARexx in the Amiga 2.0, as a component of the operating

system, was the next logical step for Commodore. This decision can also

be interpreted as a decision against other models of processor

communication, like the IPC project in the PD field, an approach that is

not as complex, but also not as flexible.

This book is not intended to be a complete guide to programming in

ARexx; our focus is how an interrupt directed to ARexx can make

application programs configurable, expandable and sometimes enable

connection to other programs.

An experienced user of structured programming languages like C,

Modula, or Pascal (or any BASIC dialect with structured form) will

understand ARexx immediately.

4.1 The ARexx Language

Rexx is the name of a programming language that was developed at two

IBM research sites in England and the USA between 1979 and 1982. Its

main characteristics are:

• Universal applicability: Rexx is not dedicated to a certain

application (or application type). Many programming languages

make this claim and ARexx is actually better suited to applications

that value higher running speed over programming speed.

• "Type-less" data: all data are treated as character strings at first. No

type classification takes place until a specific operation is

performed. Defined data types such as integers, floating decimals,

bytes and words are not natural limits, but machine terms. These are

limitations Rexx developers intended to avoid.

473

4. ARexx

No declarations: variables must not, as in many programming

languages, be declared before use; in this sense, Rexx is like BASIC

or APL. Even very large data fields do not have to be previously

dimensioned.

Only a few basic commands: about 10 commands are sufficiently

powerful to create complex programs. There are a total of about 30

commands.

Easy string manipulation: the scope of the language includes many

functions that perform string manipulation, which makes this aspect

more developed than in other languages.

Easy error trapping: the Rexx interpreter has a powerful TRACE

function. The trace function also enables interruptions during

program execution.

"Human" Logic: instead of following firm syntax formalities, Rexx

normally does what is intuitively right. This means that if you just

think about the problem, you will usually come to the correct result

without looking anything up.

474

4.2 The Functions ofARexx

4.2 The Functions of ARexx

Because it transmits input to the processor, Rexx is especially well-suited

as a script or batch language for automatic control of an operating

system or as a macro language. These operations are the same thing, but

in the latter case, Rexx controls an application program.

Almost every operating system has a shell or batch language; each has its

specific features and special functions. The same holds true for macro

languages that are specially designed to configure and control an

individual program, such as an editor or a database manager.

Rexx was developed with an eye toward becoming a universal command

language. Rexx can pass commands to an external environment (or an

operating system) and receive an answer in return.

Rexx is also capable of acting as a universal programming language,

because it enables the creation of function libraries. These effectively

expand the scope of the language itself. Specifically, Rexx makes

program development and testing quick and easy.

475

4. ARexx

4.3 An Overview of ARexx

All Rexx programs begin with a C-style comment. "/*" is expected at the

beginning of the program by the interpreter. This convention encourages

the programmer to document the purpose of the program with a short

comment. A complete Rexx program would appear as follows:

/* A simple example program */

SAY "I am.11

SAY is a Rexx command. It displays the following expression, which is a

character string. You do not have to type commands in capital letters; the

interpreter only differentiates between large and small letters within

character strings. Double quotation marks (") or simple quotations (')

define a character string.

The simplest counterpart to "say" is "pull":

/* Calculate body weight in engl. stones */

say "Please enter your body weight in Kg!"

pull weight

say "That equals" weight/6.348 "stones."

PULL waits for a user entry and assigns it to the variable ("weight"). As

you can see, the variable name did not need to be specified. Even an

error in user entry (like typing a letter) would have no consequences in

the "Pull" line, since variables always contain character strings. Once the

string is divided in the last line, the input must be interpreted as a number

with a floating decimal. An error message does not appear until the

division in the last line is impossible; then the program stops. Numbers

can be written with a decimal point or in exponential notation. By using

the NUMERIC setting, the number of decimal places can be set.

Although it doesn't appear to mean anything, the space character

between the two expressions is also an operator for the SAY command.

The space indicates that it should concatenate with a space inserted in

the program.

The empty space can also be inserted within the two strings. Then the

individual expressions are directly concatenated; this too forces

concatenation, but without additional empty spaces.

476

4.3 An Overview ofARexx

An explicit concatenation operator also exists: "H" - it directly connects

the contents of two variables, without an empty space.

Rexx has all the usual commands for program control. The most

important and complex of these is the DO ...END group, which (like

BEGIN...END in Pascal, or {...} in C) is a simple command grouping. It's

used to control the formation of program loops: a sub-keyword

FOREVER sets up unlimited repetition, a run-time variable can increment

to a maximum value, or a BY can issue a step width. A FOR sets a

maximum number of loops. Program termination conditions are WHILE

or UNTIL. These commands can be combined in a meaningful manner

with other commands that iterate and leave, go to the next step, or exit

from loops.

There is also an IF...THEN...ELSE construction and a process like

"switch" in C, called SELECT...WHEN...OTHERWISE...END. There is no

"Goto" command. The SIGNAL command jumps to labels within a

calculation, but not within command groups or loops. These always

terminate with the SIGNAL command. Together, all of these lead to

clearly structured programming.

/* Calculate factor */

ARG number /* read in argument */

result=l /* result(-ing) variable initialized */

if number<0 /* For negative entry */

then return /* cancel */

do n=l to number /* Loop with run-time variable n */

result=result*n

end n /* the entry 'n1 is optional */

say number"1 =" result

Along with the use of a "do" loop, this example shows another possible

method of data entry: ARG reads arguments listed after the Rexx

command into variables.

If this program is started by entering RX FACULTY 7, the "number"

receives the value "7". If the "if" query receives a negative number, it

cancels the program with the RETURN command.

If the input is over 171, the result is not correct. 1.79769314E+308 is the

upper limit for the program. An error message "Arithmetic overflow" is

not implemented in ARexx 1.14.

477

4. ARexx

ARexx requires a certain amount of care when dealing with very large or

very small numbers, since false results do occur. The reason for such

limitations may be ARexx's use of the mathieeedoubbas.library for all

arithmetic calculations. Perhaps this will be changed in future versions.

In the next example, the program is defined as an internal function. For

Rexx, functions are a part of the language, defined in programs or

externally accessed in libraries.

/* example for function definition and call */

do n=l to 9

say n11! =H fak(n) /* call fak */

end n

return /* program end */

fak: procedure /* function name; local variable */

ARG number /* read argument */

result=l

if number<0

then return "Error!"

do n=l to number

result=result*n

end n

return result /* end the function with value output*/

The function "fak" is defined in the lines after the label "fak:". The key

word PROCEDURE is necessary because the main program uses the

same run-time variable (W) as this function. A separate variable

environment is defined for the function, so the program works with local

variables.

ARG reads arguments (given in the parentheses) at the function call and

ends the function with a return. It outputs the background expression

and replaces the call with that value.

478

4.4 ARexx - Rexx on the Amiga

4.4 ARexx - Rexx on the Amiga

ARexx is a version of Rexx that's used on the Amiga as a command and

macro language. Rexx's rather unusual mathematic capabilities are

considered less important than its program control features. ARexx is

easy to use and many operating tasks can be automatically handled by

the interpreter. Compared to the standard version, this version is slightly

expanded. Unfortunately, because of changes in file operations, porting

data is more difficult.

However, the expansions are used to adapt the Rexx language to the

qualities of the Amiga. Although this makes the language easier to use, it

also decreases its speed. Amiga BASIC is about six times faster than

ARexx (Version 1.12). Although the running speed can be increased

slightly, ARexx isn't suitable for large-scale programming.

Because all data are handled as strings, which require frequent internal

conversions, and functions are called by runtime linking, this language

offers limited programming possibilities. In the future, a compiler for

ARexx may be available. If this happens, further applications may be

possible. However, even compiled code would barely reach the speeds of

C-compiled applications.

The core of the ARexx system is the Rexx master procedure, which

manages function libraries and common data structures. This procedure

waits in the background for the start of an ARexx program, which is

often performed using the CLI program "rx". Any program can use the

Rexx port to call a Rexx program. Rexx searches the current directory

and then a logical device named Rexx: (if it is installed) for the desired

program.

Every ARexx program starts a separate task that reads and executes the

source code with the Rexxsyslib.library, which contains the actual

interpreter. In this way, an unlimited number of ARexx programs can be

run simultaneously, even with limited storage capacity.

479

4. ARexx

4.5 A Sample Application

The following program can be used to experiment with the Rexx

language. A simple line interpreter can be used to execute ARexx

commands directly and interactively. It can also be expanded to become

a complete and easy-to-use shell, fully replacing the CLI.

A Rexx program can be created using any editor. If you want to run it

from CLI, give it the tag .Rexx and store it in the "Rexx:" directory. Call

it from CLI by typing "rx program_name". If the Rexx master procedure

is not already running, "rx" starts it and then executes the Rexx program.

/* interactive Rexx interface */

address command /*

options prompt "Rexx> " /*

start: /*

signal on syntax /*

signal on error /*

do forever /*

parse pull input /*

interpret input /*

end /*

syntax:

say "Error" re

signal start

'in line11 sigl"

/

k command destination is the CLI */

k A prompt for pull */

k entry point at error */

* At error moves to the equivalent */

k label branching instead cancel */

* endless loop */

* Wait for entry */

* execute entry as an ARexx line */

k next loop */

k at syntax error output message */

errortext(re)

k ...and so forth*/

error:

say "Returncode:" re

signal start

/* at command error ...*/

/* ...output Returncode */

/* ...and so forth*/

The ADDRESS sets the destination for the external command. Rexx

views all free-standing expressions (those that are not used by a Rexx

command) as expressions that are to be transmitted to an external

environment.

To specify DOS as the recipient, use the COMMAND address; otherwise

the name of the Rexx Message Port would be the called program.

The OPTIONS prompt is a specific command for Rexx that results in an

output of the strings defined as a user entry prompt when PULL is

executed.

480

4.5 A Sample Application

SIGNAL ON indicates that the error condition listed after it should not

lead to a program stop, but to an equivalent label in the program. By

doing this, errors can be trapped. When this is executed, all running "do"

groups end and the corresponding Signal flag is turned off, as they are in

the direct jump command using "SIGNAL Label". After error handling

you are unable to continue the program, instead you must address a

defined entry point. Special system variables contain the line number

(SIGL) after interrupt conditions, or in this case the error code or the

return code. The use of these variables becomes clear in the two blocks

at the end of the program. ERRORTEXT() is a built-in Rexx function

that outputs an appropriate (English) text for a given Rexx error number.

PARSE transmits character strings to variables. It also offers a powerful

and simple procedure for string manipulation and cutting.

Although PARSE PULL waits for an entry from the console, there is no

capitalization of the entry, as in the PULL command.

INTERPRET is a very simple but powerful command. The expression that

follows is simply executed as a Rexx command.

Experiment with this program; it quickly gives you an understanding of

how Rexx works.

481

5.7 Using Tokens

5. ARexx Syntax

ARexx programs can contain all ASCII symbols. Either uppercase or

lowercase letters can be used, since all symbols are automatically

converted to capital letters.

An ARexx program must begin with a comment. The interpreter then

searches for a clause, usually a single line, that is delimited by a semicolon

(;), keywords or a colon (after an individual character). The tokens

contained in the clause are then evaluated from left to right.

5.1 Using Tokens

Tokens are the smallest, self-contained units in the language, such as

words in a sentence. They are separated by empty spaces (or, for

operators, by their parameters). The interpreter differentiates among

comments, symbols, strings, operators, and special characters.

5.1.1 ARexx Symbols

Symbols are characters (A..Z, a..z, 0..9), .!?$#@ and _ (Underscore).

Alphabetical characters that appear in a symbol are converted to capital

letters. There are four types of symbols:

• Constants begin with a number or a decimal point.

• Simple variables do not begin with a number and do not contain a

period.

• Stem are like simple variables, but have a period at the end.

• Compound variables begin with a stem, followed by one or several

constants or simple variables, each delimited by a period. The value

of a constant symbol (that is not necessarily a number) is the name

of the symbol, in capital letters. Other symbols are variables. They

can be assigned a value during the program run. If a variable has

not been given a value, it is an uninitialized variable and acts as a

constant; its value is then its capitalized name. For example:

483

5. ARexx Syntax

47.11 /* a constant */

7NewYorkers /* a constant, but not a number.

=> 7NEWY0RKERS */

Field. /* a stem symbol */

Field.3.Where?/* a compound variable */

Stems and compound variables have special qualities that enable unusual

programming techniques. The structure of a compound variable is

"stem.nl.n2....ni". The name before the first period is the stem symbol and

every other element, from "nl" to "ni", is either a constant or a simple

variable. Whenever the interpreter finds a compound variable, the

elements in it are evaluated. These strings can contain any characters,

even spaces, and are not converted to capital letters. A new variable

name is created and its contents are then calculated. For example, if "X"

has the value 5 and "Y" has the value 2, then "a.x.y" creates the new

name "A.5.2". By using the stem you can call or initialize an entire group

of variables. If a stem is assigned a value, all combined variables that

contain the stem also receive the same value.

Compound variables can also be used as addressable arrays or stacks.

For example, if you wanted to show the area code of a city with the city

name, you could create two fields "CITY" and "AREACODE". Paired

values would be stored with the same index. The field "CITY" would be

searched for the desired entry and "San Francisco" would be found with

the index "415". In this case, "AREACODE.415" would contain the

appropriate area code. In Rexx you can take another approach: the

variable "CITY" could contain the name of the desired place and

"AREACODE.CITY" would evaluate into "AREACODE.SanFrancisco",

which would lead directly to the desired number. Although this process

offers faster access to the data, it's not reversible. You cannot use the

same field to look for the city name by area code, which is possible with

the first method.

484

5.7 Using Tokens

5.1.2 Character Strings in ARexx

Strings are character strings that begin and end with quotation marks (").

The quotation mark itself can be included by typing it twice (""). Single

quotes can be used instead of quotation marks. Strings must be written

on one line only. Empty character strings are called "null strings". A

string followed by an open parenthesis "(" is assumed to be a function

name. An "x" or "b" immediately following indicate hexadecimal or

binary evaluation of the string. In this case, only the characters (0..9 and

a..f for "x" and 0 or 1 for "b") can be contained in the string. (Empty

spaces can be used to make the program readable.) Such character

strings are immediately converted into strings with the equivalent ASCII

symbols. Enter control codes or memory addresses in this way. For

example:

1 Is there a grammar'

"Is it possible...11

»»

"Say ""It is true""!"

"49 42 4d"x

tt00110000"b

/*

/*

/*

/*

/*

/*

simple example */

=> Is it possible.

Null-String*/

=> Say "It is true

big blue in hex*/

binary for ASCII 0

5.1.3 The ARexx Operators

Operators are the characters ~+-*/=x&lA. Empty spaces (even between

them) make no difference to the ARexx interpreter. The space character

itself, placed between symbols or strings, is an operator. The execution of

operators has a set order. Operators with equal priority are executed from

left to right.

485

5. ARexx Syntax

Operator

+

-

*

/
%

II
+

-

II

(space)

==

>

<

&

1

Priority

8

8

8

7

6

6

6

6

5

5

4

4

3

3

3

3

3

3

3

3

2

1

1

Meaning

logical negation

prefix: conversion

prefix: negation

exponentiation

multiplication

division

integer division

remainder

addition

subtraction

concatenation

concatenation with empty space

exact equality

exact inequality

normal equality

normal inequality

greater than

greater than or equal

less than

less than or equal

logical AND

logical OR

logical exclusive OR

5.1.4 ARexx Special Characters

The special characters ";,:()" also have meaning. For example:

semicolon(;) A semicolon separates individual clauses. Normally, this

is indicated by a line feed. Semicolons are used to put

several clauses on one line.

commaQ A comma prevents the automatic semicolon, if a clause

extends over several lines. (Commas also separate the

arguments of a function call from one another.)

colon(:) If there is a symbol in front of a colon, a branching

(Label) is defined. A colon also implies a semicolon.

parentheses(O) A single open parenthesis, directly following a symbol,

forces interpretation of the clause as a function name.

Closed parentheses also form expression groups. This is

used to alter the regular operator priority.

486

52 Expressions

5.2 Expressions

Expressions consist of one or several terms, with or without operators.

They can be strings, symbols, or function calls, perhaps grouped with

parentheses. Between a pair of terms, there is always a dyadic element.

There can be one or several prefix operators affecting the term. Strings

are always interpreted as character strings, as are constant symbols

(converted into capital letters). Variable symbols are replaced with their

contents, or regarded as constant symbols. Function calls are recognized

by an open parenthesis, followed by a symbol.

Arguments contained in parentheses are evaluated and passed to the

function in place of the arguments. The calculated value is returned.

The value of an expression is determined in order by parentheses and

operator priority. First the symbols that are contained in it are replaced.

For example:

fak(n) Mis the factorial of" n

This expression consists of the function call "fak(" with the argument

expression "n", a concatenation operator (concatenation with empty

spaces), the string "is a factorial of", a further chain, and the variable

symbol "n".

First, the interpreter determines the function argument and then calls the

function. The function, if it's not defined as a procedure, can assign a new

value to the variable "n". At the second occurrence of "n", another

content is calculated. The order of evaluation does not affect the

calculation here, only its position. In short, symbols are always evaluated

from left to right and replaced by the resulting value. If there is a function

call, it's executed first, then the symbol value replacement process

resumes. After this, the expression is evaluated under the priority rules. If

the operator priority ranking is equal, an evaluation order is not defined.

So, the analysis moves from left to right, as the Rexx language definition

implies (and algebraic rules state and programmers expect). Exceptions to

the rule have not been observed.

Both sides of logical operators are always evaluated, even if the result is

already clear:

487

5. ARexx Syntax

(2=2) | (120 = fak(5)

For example, "fak(" is always fully executed, even if analysis has already

determined that the result of the procedure is 1.

Operators can be divided into four groups: arithmetic, concatenation,
comparison, and logical operators.

5.2.1 Arithmetic Operators

Prefix conversion (+)

This operator acts as a prefix. The given number is

converted to internal notation, rounded, and formatted

according to the NUMERIC settings.

11 12.34 " ==> '12.34'

"2.0009 ==> '2.001' (with DIGITS=3)

Prefix negation (-)

The single negation prefix changes the sign of the

operand. It also has the same effects as the prefix for

conversion (+).

-- 7.23 - ==> '-7.23'

-3E3 ==> '-3000'

Exponentiation (**)

The left operand (base) is evaluated as the exponent of

the right operand (exponent). The exponent must be an

integer. The number of decimal places (for positive

exponents) is the product of the exponent and the

number of places given after the decimal point in the

base number.

2**8 ==> 256

4**-l ==> 0.25

0.1**3 ==> 0.001

Multiplication (*)

Calculates the product of the terms to the left and right

of the operand. The number of decimal places is

488

5.2 Expressions

determined by the sum of the decimal places in the two

terms.

4*7

0.5*1.50

==> 49

==> 0.750

Division (/) Determines the quotient of the two numbers. The

number of decimal places is as large as necessary, and

can be limited by the setting of NUMERIC DIGITS.

8/4

8/3

==> 2

==> 2.667 (with DIGITS=3)

8%3

Integer division (%)

Calculates the quotient of two numbers. The integer

portion of the result is returned.

Remainder (//) Returns the remainder of an integer division of the

dividend terms. To determine the remainder of "a//b",

"a-(a%b)*b" is calculated.

8//5

-7//3

3.7//0 .2

==> 3

==> -1

==> 1

Addition (+) Calculates the sum of two terms. The number of decimal

places in the result is determined by the higher number

of decimal places in one of the terms.

3 + 15

2.7+2 .04

==> 18

==> 4.74

Subtraction (-) Calculates the difference between two terms. As in

addition, the number of decimal places is determined by

the higher number of places in one of the two.

489

5. ARexx Syntax

5.2.2 Concatenation Operators in ARexx

These operators combine two strings into a new string. There are three
such operators:

• The explicit concatenation operator (II) connects two strings

without an empty space.

"BE11 | | "TA" ==> BETA

• The direct concatenation operator, for example, a symbol and a

string, specified right after one another. This results in a chain

without an empty space.

beMTAM ==> BETA

• The null concatenation operator is when two strings are specified

with one or more spaces between them; an empty space is inserted

between them in the concatenation.

"with11 "empty" "space" ==> with empty space

5.2.3 Comparison Operators in ARexx

The are three different comparison modes:

Exact includes empty spaces; strings of different length are never

equal in exact comparison.

• String comparison disregards leading spaces and adds trailing

spaces to fill a shorter string to equivalent length.

• Numeric transforms the operands to numeric notation, using the

setting of NUMERIC DIGITS to determine the number of decimal

places. Then an arithmetic comparison is made and NUMERIC

FUZZ sets the specificity of that calculation.

With the exception of the exact equality and inequality operators, all

comparison operators automatically differentiate between numeric and

string comparisons.

If both terms are valid numbers, a numeric comparison is made; otherwise

it is assumed to be a string comparison.

490

5.2 Expressions

All comparison operators output a Boolean truth value: 0 for false or 1

for true. The comparisons ">", "<", ">=" and "<=" are used for strings, as

defined in the ASCII code. This means:

"A"<"B" ==> 1

5.2.4 Using Logical Operators

All four logical operators require two Boolean operators (a 0 or 1) and

return a Boolean result. These operators cannot be used for bit-level

logical combinations. (For such purposes, use the built-in BITxxx()

functions.)

Logical NOT (~)

Inversion: 0 becomes 1 and 1 becomes 0.

Logical AND (&)

Returns a 1 if both operators are true.

Logical inclusive OR (I)

Returns a 1 if one of the operators is true.

Logical exclusive OR (A or &&)

Returns a 1 if one of the operators (not both) is true.

491

5. ARexx Syntax

5.3 ARexx Clauses

Clauses are the smallest executable units of the Rexx language. They can

be divided into five groups:

5.3.1 Null Clauses

Lines that consist of empty space or comments are null clauses. They are

also formed if two semicolons follow one another. These clauses are

ignored by Rexx.

Comments are character strings of one or more lines that are contained in

"/*" and "*/"; they can be set inside one another, but must appear in pairs

(which, in ARexx, do not have to appear on one line). They hardly affect

execution speed and can be used liberally. A first run through the

interpreter removes them and their function is taken by an empty space.

5.3.2 ARexx Label Markers

A symbol immediately followed by a colon is a label marker. (The colon

also implies a semicolon here.) Such markers serve as targets for CALL

and SIGNAL commands and internal function calls. Several markers can
follow one another.

If the same label marker appears twice in a program, only the first is
located.

5.3.3 Assignments in ARexx

A variable symbol followed by an equal sign (=) is an assignment clause.

In this case, the operator does not have its normal comparison function,

instead it becomes an assignment operator. The terms to the right of the

equal sign are analyzed as an expression and the result becomes the
content of the variable symbol on the left.

492

5.3 ARexx Clauses

5.3.4 ARexx Commands

A clause that starts with a command keyword is a command clause. Often

a single command represents an executable action, or several commands

(for example, SELECT groups) are combined to form clauses. They are

not syntactically complete until all necessary commands are available.

5.3.5 Commands

An expression that cannot be assigned to any other type of clause is

assumed to be external commands. The expression is then analyzed and

the result is passed to the specified external environment. The address

can be an external application (for example, an editor) or DOS

("COMMAND").

493

6. Instructions

6. Instructions

Instructions consist of one or more words that are recognized as a key

word. The keyword must appear as the first token in the clause. It cannot

be preceded by a colon (:), it would then be a label, or an equal sign (=),

which indicates a variable. Some key words call for further parameters of

sub-keywords. We don't recommend that you define a variable "SAY" or

a function "NUMERIC" because the readability of your program can

suffer.

I/O Instructions Control Instructions

ARG ADDRESS

ECHO CALL

PARSE DROP

PULL INTERPRET

PUSH NUMERIC

QUEUE OPTIONS

SAY PROCEDURE

SHELL

Structural trace

Instructions upper

BREAK

DO

ELSE

END

EXIT

IF

ITERATE

LEAVE

NOP

OTHERWISE

RETURN

SELECT

SIGNAL

THEN

WHEN

495

6. Instructions

6.1 I/O Instructions

|ARG

Represents "PARSE UPPER ARG". For more information, see that
section.

IECHO 1

An ARexx synonym for SAY. For more information, see that section.

| PARSE |

Syntax: PARSE [upper] source [template][,template...]

Function: In Rexx, PARSE is the main input instruction. It takes data

from various sources and passes it on to one or several

variables, efficiently parsing character strings. The effect of

the input character string can be selected using the

following sub-keywords:

ARG Character strings passed to the program at the call or

function are parsed. Each program usually receives one

string; functions are capable of receiving up to 15,

separated by commas, that are then parsed out according to

templates.

EXTERNAL An entry is read into the function from "stderr". If "stderr" is

not defined, the function returns the null string.

NUMERIC Current settings of NUMERIC are received as a string in

the following order: DIGITS, FUZZ and FORM, each

separated by an empty space.

PULL Reads a string from "stdin", that is usually input from the

keyboard. If nothing is found in "stdin", program execution

halts until something is entered. The function QUEUED can

query how many lines have been saved in "stdin".

SOURCE Returns a string of data on how the program was called, in

the form "{COMMANDIFUNCTION} {011} Type Result

496

6.1 I/O Instructions

Called Resolved Ext Host". The first word signals whether

the call is a program or a function. Then a Boolean value

indicates whether a result string has been requested.

"Called" is the name with which the program was invoked,

"resolved" is the full path and file extension of the program

(usually ".rexx"). "Host" is the initial host address for

external commands.

VALUE expression WITH

An expression that calls for the sub-keyword WITH. An

expression is evaluated and the result is used as the parse

input string. The keyword "WITH" is used to separate the

expression and the template.

VAR Variable

The values of the given variables are used as the parse

input sting. If several templates are entered, the current

value of the variable is taken each time. (It can also change

if the same variable appears in the template.)

VERSION Returns a string in the form "ARexx Version CPU MPU

Video Freq". The value of "Version" is the interpreter

revision (i.e. "VI.21"), "CPU" is the processor type

("680x0"), and "MPU" is the math-coprocessor ("6888x", if

present, otherwise "NONE"). "Video" returns to video

system ("PAL" or "NTSC") and "Freq" returns the network

frequency ("50HZ" or "60HZ").

The UPPER keyword forces a translation of the source data into capital

letters and it's used before the keyword, which indicates the source.

Templates can be assembled from symbols, strings, operators or

parentheses. The function parses source strings into sub-strings that are

assigned to the symbols in the template. The process ends when all

variables have been assigned values. If a source string is completely

evaluated, before all listed variables obtain a new value, the remaining

variables are assigned the null string. There are three important template

functions:

497

6. Instructions

Parsing by words

If the variable names follow directly after one another delimited only by

an empty space, the source string is parsed (using the spaces) into words,

each of which is assigned to the next available variable. The last variable

receives the remainder of the string. A period (.) can be used as a "place

holder" in a template, acting like a variable, but not actually receiving the

corresponding part of the string. For example:

/* VERSION returned:"ARexx VI.15 68030 68882 PAL 50HZ" */

parse version . Revision CPU MPU .

say Revision CPU MPU

In this example the first word "ARexx" is not informative; it is to be

deleted and so a period appears. After the parse is executed, the variable

"Revision" contains " VI. 15", CPU the value "68030" and MPU is

"68882". The rest of the source string is uninteresting; it is absorbed by

the second period, same as the first word.

Parsing by position

Absolute or relative positions of individual elements of the source strings

can be specified using numeric values, between the symbols. Relative

positions are differentiated from absolute positions by their prefixes

(monadic"+" or"-" operators). For example:

Test = "1234567890"

parse var Test 3 a 5 b +3 4 c

say a b c /* => 34 567 4567890 */

Parsing by pattern

If elements of the source string are separated by keywords or other

specific characters, these can be searched and the parsing will follow the

"pattern markers." The function also removes markers it finds from the

source string; this means the string is changed during a pattern parse. An

example:

/* The program was called with the argument "DRIVE dhO: name Bingo".*/

parse arg "DRIVE" Drive "NAME" Name

say Drive name

/* => dhO: Bingo*/

498

6.1 110 Instructions

See also: ARG, PULL, UPPER

| PULL J

PULL is short for "PARSE UPPER PULL". For further information, see

that section.

[PUSH J

Syntax: push [expression]

Function: PUSH prepares input lines for another program that expects

entry from "stdin". During the function, a "Return" (ASCII

13) is attached to "expression" and the result is stored in

the "stdin" channel along the "LIFO principle" (Last In First

Out). The last line stored with PUSH is the first read from

"stdin". The number of lines waiting in "stdin" can be

queried with the function QUEUED.

Caution: This instruction should only be used with interactive DOS

devices that are driven by a DOS handler that supports the

"ACTION_STACK" instruction (or CON:, PIPE:, and similar

input). This is especially important if you are attempting

data redirection.

See also: QUEUE, QUEUED()

IQUEUE |

Syntax: queue [expression]

Function: QUEUE prepares input lines for another program that

expects entry from "stdin". The value of "expression" is a

single "Return" (ASCII 13); the result is stored in the "stdin"

channel along the "FIFO principle" (First In First Out). The

first line stored with QUEUE is also the first read from

"stdin". The number of previously stored lines in "stdin" can

be queried with the function QUEUED.

Caution: This instruction should only be used with interactive DOS

devices that are driven by a DOS handler with an

"ACnON_QUEUE" instruction (or CON:, PIPE:, and others

499

6. Instructions

like them). This is important for scripts involving input

redirection.

See also: PUSH, QUEUEDQ

Syntax: SAY [expression]

Function: The value of "expression" receives a single "Return" (ASCII

13) and is written to "stdout", which is usually the monitor,

and displayed there.

500

6.2 Structured Instructions

6.2 Structured Instructions

IBREAK

BREAK is only

that section.

|DO

allowed within DO instructions. For more information

1

see

I

Syntax: DO [Iteration] [Condition]

[Instructions]

END [Symbol]

DO is used to group instructions together and possibly execute them

again. The iteration takes the form:

[Symbol=ExprI] [TO ExprT] [BY ExprB]] [FOR ExprF]

or: ExprR

or: forever

AH expressions that appear in the instruction must result in a number.

ExprR and ExprF must be positive integers. The key words BY, TO, and

FOR can appear with a matched expression (that is analyzed once at the

beginning) in any order.

• The formal element "Symbol=ExprI" defines a run-time variable and

supplies an initial value to it. It must follow the key word DO.

• BY ExprB: Determines the increment added to running variables

with each iteration. If BY is not specified, it is assumed to be 1.

TO ExprT: Sets the upper limit (or lower limit, depending on the

increment) of the run-time variable. If this limit is overstepped

during an iteration, the loop terminates and the program continues

at the corresponding END.

• FOR ExprF: Specifies the maximum number of repetitions. When

this value is reached, the DO loop terminates, regardless of the value

of a run-time variable. If all you need is to specify the number of

repetitions, you can use the ExprR form.

• FOREVER: If you do not need an index variable, this key word

ensures repetition. This kind of loop ends with a LEAVE or

BREAK. For example, the condition can read:

501

6. Instructions

WHILE ExprW

or: UNTIL ExprU

ExprW and ExprU must return "0" or "1".

• WHILE ExprW: This expression is evaluated at the beginning of

each iteration. If it returns a "1", the loop continues; a "0" terminates

it.

UNTIL ExprU: Has the same function as WHILE, but with reverse

logic. If it's a "0", the loop is terminated; if it's a "1", the loop

continues.

The DO group is closed with the END instruction, after which a counting

variable can be specified. This is helpful for debugging, since nesting

errors during DO loops can be recognized by the interpreter. It also

improves program readability.

Structural instructions in DO groups

BREAK, LEAVE [Symbol], ITERATE [Symbol].

BREAK terminates the inside DO group. Program execution continues

after moving to the corresponding END. This is also the action an

INTERPRET instruction forces in implicit DO groups.

In contrast, LEAVE is only allowed in DO loops. LEAVE terminates the

inside DO group and execution continues after the corresponding END.

A variable can be set here to terminate several embedded DO loops

simultaneously, if your run-time variable is controlled in one of the outer

loops.

ITERATE does not terminate the DO loop, but rather jumps back to the

top of it. The value determined with BY is added to the run-time variable,

all conditions are evaluated and, if appropriate, the next iteration starts.

The variable specified after ITERATE acts analogously to the variable

function in LEAVE.

|ELSE |

ELSE is only valid within an IF instruction. For further information, see

that instruction.

502

6.2 Structured Instructions

| END J

END is an element of DO and SELECT groups. For more information, see

that section.

I EXIT J

Syntax: exit [expression]

Function: This instruction terminates the program where it is read and

passes (if indicated) a return value to the calling program. If

a return string is requested, the result of "expression", a

character string, is stored in the allocated storage block and

a pointer to that block is set to RESULT_2. If no string was

requested and the program was running as an instruction,

EXIT tries to evaluate the result of "expression" with INT

and report it as the return code. The EXIT instruction

(without a return value) is also implied by the end of a

program.

See also: RETURN

Syntax: if expression

THEN command

[ELSE command]

Function: The IF instruction conditionally executes instructions. The

expression after IF must return a Boolean result, a "0" or

"1". If it's a "1", the instruction (or DO group) named after it

is executed. If the expression is "0", the instruction behind

ELSE is executed, if ELSE was specified.

An ELSE clause always refers to the last IF. Nested IF instructions make

it impossible to use one of these branches. In this case, a dummy

instruction (NOP) restores access to the next higher IF instruction. Just

indicating an empty clause by typing two semicolons is not enough in

Rexx, as it is for other programming languages. For example:

if 1+1=2 then

if 2+2=4 then

/* outer IF */

/* inner IF */

503

6. Instructions

say "The world is still alright.11

else NOP

else say "Nothing is happening anymore!1

See also: NOP

/* belongs to the inner IF */

/* belongs to the outer IF */

J

ITERATE is only applicable within DO loops. For more information, see

that description.

[LEAVE J

LEAVE is only applicable within DO loops. For more information, see

that section.

INOP J

Syntax: nop

Function: Basically, "No OPeration" is a dummy instruction that does

nothing. The instruction takes on meaning during IF

instructions; it has no other function.

[OTHERWISE J

OTHERWISE is part of the SELECT instruction. For more information,

see that section.

I RETURN J

Syntax: RETURN [expression]

Function: Used to end one function and continue program execution

where it was called. "Expression" is analyzed and the result

is the returned value of the function. Functions called from

within an expression must return a result, or an error

message appears. Placing a RETURN in the main program is

not an error, it is equivalent to EXIT.

See also: EXIT

504

6.2 Structured Instructions

| SELECT

Syntax: select

I SIGNAL

WHEN expression [;] then [;] command

[OTHERWISE [;]

END

[Instructions]]

Function: The SELECT instruction is used to make a choice among

several different possibilities. After it, a series of WHEN

constructions can follow, each of which must contain an

expression that returns a Boolean result, and a instruction

(or DO group) that is to be executed if the result of the

expression is "1". But only the first WHEN group whose

Boolean expression returns a 1 is executed. If none of the

expressions are true, instructions behind the key word

OTHERWISE are executed. This can comprise an entire list

of instructions. OTHERWISE and END shape a simple DO

group in this respect.

The OTHERWISE construction is not required in a

SELECT instruction. If no WHEN construction is executed,

it's either called or an error message appears.

J

Syntax: SIGNAL {on I off} Condition

or: SIGNAL { [VALUE] expression I Label }

Function: There are two basic forms of the SIGNAL instruction. The

first is used to switch error trapping flags on and off. The

second is an expression used to transfer control; this one is

evaluated. A control transfer should be used sparingly. It is

primarily useful for resuming the program at a defined

location after an error condition.

Error interrupts make it possible to recognize error

conditions that would otherwise lead to program

termination, and perhaps to catch them before they do. If

"SIGNAL ON condition" is used to activate a specific error

interruption, the program is not stopped, instead it branches

505

6. Instructions

to a label indicated by the key word of the corresponding

condition. The following key words are available:

BREAK_C Ictnhfcl: Break has occurred.

BREAK_D I Ctrl 1+fiH: Break has occurred.

BREAK_E ictrH+TEl: Break has occurred.

BREAKJF ictnt+fF): Break has occurred.

ERRORS The return code passed by an external

program was not "0".

FAILURE The return code was greater than the

FADLAT setting.

HALT A HALT was encountered (after "hi", for

example).

IOERR DOS has reported an I/O operation error.

NOVALUE An undefined variable was called.

SYNTAX There have been syntax or execution errors.

ITHEN I

This is only used within IF and SELECT instructions. For more

information, see that section.

I WHEN I

WHEN is also only used within a SELECT instruction. For more

information, see that section.

506

6.3 ARexx Control Instructions

6.3 ARexx Control Instructions

|ADDRESS |

Syntax: ADDRESS {Symbol I String} expression

ADDRESS {Symbol I String}

ADDRESS [VALUE] expression

ADDRESS

Function: ADDRESS defines the target of an external command. Its

argument must provide the name of an ARexx message

port, listed in the Public Port List of "exec". The first form

shown does not change the current setting, it only sends a

command to a certain ARexx port. The name of the port is

specified as a symbol (that can be variable) or a string. Then

the command character string to be passed to the external

message port follows. The next two forms of ADDRESS set

a new target command host. In the third form, the name of

the target is an expression that must first be analyzed.

VALUE is only necessary if the expression starts with a

symbol or character string. The interpreter also stores the

indicated target; the last form of the examples shown

(without parameters) toggles between two addresses.

The default setting is "REXX". The "COMMANDS" host is

a special target address (it represents DOS). To query the

current setting, use the internal function ADDRESS(). Any

clause that only contains a single expression that the

interpreter cannot manipulate in any way, is assumed to be

an external command and passed to the appropriate port.

See also: SHELL, ADDRESS()

fCALL |

Syntax: CALL {Symbol I String} [Exp.] [, Exp., ...]

Function: Calls an internal, built-in, or external function. The function

name (as a string) can be a symbol that in turn can be a

variable or a character string. Entering a character string

507

6. Instructions

[DROP

bypasses the internal function search of the program. This

instruction controls functions internal to the interpreter, or

external functions, which are protected from re-definition in

the running program. Following CALL, if necessary, one or

several expressions, separated by commas, can present

arguments for the function (for external functions, the

maximum number is 15) that can then be accessed with

ARG.

In contrast to the usage of the direct function call "Symbol

(Arg,Arg,...)", which is analyzed to return a value

immediately, CALL returns its result to the system variable

RESULT. If no value results, RESULT remains un

initialized after the call.

J

Syntax: drop symbol [Symbol . . .]

Function: Variables are deleted with DROP. They are placed in an un

initialized state, in which the value of the variable is the

variable name itself. It is not a mistake to use DROP on a

previously un-initialized variable. If a stem (a symbol

ending with a period) is specified as the variable to be

dropped, all variables that use this stem are re-set.

I INTERPRET J

Syntax: interpret expression

Function: The result of "expression" is interpreted as an ARexx

program. By using this instruction, entire sections of the

program can be evaluated only when the program is

actually run. The result of "Expression" is executed as if it

were surrounded by an implied DO ...; END" group.

LEAVE or ITERATE instructions can only refer to DO

loops also defined here. BREAK makes it possible to leave

the INTERPRET instruction and continue the program.

Branching instructions in the expression are ignored by the

interpreter and you cannot define a function using

INTERPRET.

508

6.3 ARexx Control Instructions

I NUMERIC

Syntax: numeric {DIGITS I fuzz} [Expression]

NUMERIC FORM {SCIENTIFIC I ENGINEERING}

Function: NUMERIC sets the form of number representation and the

precision of numeric operations.

DIGIT [Expression]

Sets significant places in arithmetic operations.

"Expression" must be an integer between 1 and 14, larger

than the current NUMERIC FUZZ setting. Small

adjustments here should be made with care, since all

operations, including run-time variables, are affected. If

"Expression" is not included in the clause, the default

setting is 9. The current setting can be queried with the

function DIGITS().

NUMERIC FUZZ [Expression]

Returns the number of places (from the right) to be

disregarded during numeric comparison and rounding

operations. "Expression" must evaluate to an integer from 0

to 13 that is smaller than the current NUMERIC DIGITS

setting. If it's omitted, 0 is the default setting. The current

setting can be queried with the function FUZZ().

NUMERIC FORM {SCIENTIFIC I ENGINEERING}

Determines the type of display for results in exponential

notation. Choices are the academic style (with numbers

between 1 and 10 in front of the decimal point), the

SCIENTIFIC (default) setting, or engineer's display in

which the exponent is always a multiple of 3. The current

setting can be called with the function FORMQ. These

NUMERIC settings are protected during a call to a

function and set back after completing it.

See also: PARSE NUMERIC, OPTIONS

509

6. Instructions

| OPTIONS

Syntax: options failat expression

OPTIONS PROMPT expression

OPTIONS [NO]CACHE

OPTIONS [NO]RESULTS

OPTIONS

Function: OPTIONS is the general instruction to set various default

settings in the interpreter.

FAILAT Expression: Sets the limit after which return codes lead to a

FAILURE report. The default setting is the FAILAT setting

in the calling program (normally 10). "Expression" must

return a positive integer value.

PROMPT Expression

Sets a character string to be used with PARSE PULL or

PULL instructions as a user entry prompt. Normally, there is

no prompt.

[NOJCACHE

Switches the internal instruction cache (in the interpreter)

on or off. This switch, which increases function speed, is

normally on.

[NO]RESULTS

Tells the interpreter whether or not it should request a

result string when it executes an external instruction.

Use OPTIONS without any parameters to reset the default

settings. The settings you make with OPTIONS are (such as

NUMERIC settings) secured for the duration of function

calls.

| PROCEDURE I

Syntax: procedure [expose vsymbol [vsymbol ...]]

Function: Used within an internal function to define its variables (up

to RETURN) as local variables. The function then has no

access to the main program variables unless indicated with

510

6.3 ARexx Control Instructions

the (optional) key word EXPOSE. In the list that's placed

after the EXPOSE variable stems or concatenated variables

indicate variables that remain accessible. In this case, the

order of exposure is important. For example, the variable Q

has the value 45 in the main program. After "PROCEDURE

expose Q RS.Q", the variables Q and RS.45 are still

available to the function. If the instruction had been given

as "PROCEDURE EXPOSE RS.Q Q", then RS.Q and Q

would be exposed. Concatenated variables are evaluated

from left to right.

| SHELL

SHELL is an ARexx

that section.

|TRACE

synonym for ADDRESS. For more information,

1

see

1

Syntax: TRACE [Symbol I String I [VALUE] Expression]

Function: The TRACE instruction controls running ARexx programs

and is most often used for error analysis.

Since you usually have to enter this instruction by hand,

the syntax is kept short (the first letter suffices to name the

key words). They are ALL, BACKGROUND,

COMMANDS, ERRORS, INTERMEDIATES, LABELS,

NORMAL, RESULTS, SCAN and OFF. If the result of the

expression you enter does not display one of these sub-key

words, the interpreter attempts to convert it into an integer

value. If this is not possible, an error message occurs.

Two special characters precede the key words: "?" controls

interactive tracing and "!" toggles execution of external

commands.

Positive numeric entry forces a certain number of lines in

the TRACE to elapse before the next display. Negative

values indicate the number of lines to be skipped by the

trace function. Negative values are only considered during

interactive tracing.

511

6. Instructions

See also: TRACE()

| UPPER

Syntax: upper vsymbol [vsyrabol ...]

Function: The content of the variables following UPPER are

converted to capital letters. If a stem is specified, all

variables with this stem are affected. Entering an undefined

variable is not an error, instead it leads (if active) to a

NOVALUE interrupt. Although you can use the built-in

functions TRANSLATE() or UPPER(), the UPPER

instruction is faster and easier, especially if several variables

are to be converted.

See also: TRANSLATEQ, UPPERQ

512

6.4 Commands

6.4 Commands

The special quality of the Rexx language is that there is an entire class of

syntactic units that are not evaluated by the interpreter. Instead, they are

passed to an external environment. Each clause that contains an

expression unknown to the interpreter is seen as a command meant for

an external environment and passed on. These instructions are directed

with ADDRESS. You can send a DOS (COMMAND) or an application

program call using the ARexx interface. The expression is analyzed and

passed on to the external environment as a character string. Then the

external program executes your entry and passes back a return code that

indicates whether or not the execution was successful.

The result can also be a character string. The advantage to this

characteristic is that macro programs can easily be created to control and

expand application programs. As indicated, a command is any expression

that has no meaning for the interpreter. The command structure you type

is entirely dependent on the external program for which it is intended.

Often that is an alphanumeric name, followed by parameters. Commands

can be written as strings or symbols. If you do not intend to pass the

name as a variable parameter, it is safer to enter it as a literal (string), since

then it will not be mistakenly read as an ARexx key word or redefined in

a variable assignment. For example:

jumpto L+3 C

"select disk font" "ruby.font" 12

"end of file"

are all valid commands for "CygnusEd Professional 2". They can be

executed by CygnusEd if "ADDRESS rexx_ced" indicates that the

CygnusEd ARexx port is the target for the commands.

513

7. ARexx Functions

7. ARexx Functions

The basic idea of function definition is to indicate a program or a group

of directions should always be carried out when the function name

appears in an expression. In ARexx, a function can be part of a program

(internal function), a built-in interpreter function, in an external function

library, or a stand-alone program. The interpreter recognizes function

calls when a symbol or string is followed directly by a left open

parenthesis "("• The symbol or string indicates the function name and a

list of arguments begins after the open parenthesis. There can be several

expressions (that can contain functions) separated by commas to form

arguments or none at all. The expression is analyzed from left to right and

passed to the function. The following are valid function calls:

DIGITS()

"XRANGE11 ("A", MZ")

showdir("dhO:fonts")

There is no limitation on the number of arguments passed to internal

functions; the maximum arguments that can be passed to external

functions is 15. The result is a string that's used in place of the function

call. Functions are also retrieved with CALL (see Chapter 6). Use CALL

when no result string is needed.

During a function ARexx searches for the function in a specific function

order:

1. Internally: If the function name appears as a label in the script, the

current state of interpretation is secured (including status

information such as TRACE and NUMERIC settings). At the

location where the function is found, execution continues. When it

ends, with a RETURN clause, there must be a final argument. In

other words, a function must return a value. If the function name

was specified as a string, this step of the search is omitted.

2. Built-in: The built-in function library is searched for the given

function. All names in the library are spelled with capital letters;

they are described in the following sub-sections of this book.

3. External function libraries and environments: All available function

libraries are stored in a list that simultaneously sets priorities for the

search order. Each function library is searched with a separate offset

515

7. ARexx Functions

"QUERY" to check whether or not the given name is in the library.

External function environments are called using a message protocol

similar to a command syntax.

4. External ARexx programs: Finally, the interpreter tries to start an

ARexx program with this name. The current directory is searched

first, then the logical device "REXX:". Upper or lowercase spelling

do not matter.

Internal and built-in functions do apply capitalization. For external

functions it depends on the comparison algorithm being used in the

QUERY routine. If you must use lowercase letters in a function name, the

call to the function must be a written as a string, since symbols are always

converted to uppercase and the lowercase distinctions are lost.

7.1 ARexx Internal Functions

During a call to an internal function, the interpreter creates a new storage

environment for various internal status data. The following settings are

saved:

the NUMERIC setting

the TRACE setting

the SIGNAL setting

• the current and previous environment address

the current prompt string, defined with the OPTIONS prompt

Although all previous variables remain accessible, this can be set to your

needs with a procedure call. If a RETURN appears during the execution

of the function, the function ends, all changes are discarded and the old

settings are restored.

7.2 Built-in Functions

ARexx contains a sizable library of functions that contribute to the

scope of the language. They have been optimized and should be

preferred in most situations, over an interpreted function.

516

7.3 ARexx External Function Llibraries

7.3 ARexx External Function Libraries

External function libraries can be used to expand the scope of the

ARexx language. A function library contains one or several functions

and a special "QUERY" access point with which you determine whether

the function is in a library. Libraries have the same structure as normal

Amiga libraries (with the exception of their significance for ARexx).

Before an external function can be used, the corresponding library must

be placed in the list of available function libraries in the Rexx master

process, with the built-in function ADDLIB(...).

You can also set a search priority order in the function call; if priority

ratings are equal, the order of mention determines the search order.

During a search procedure, the Rexx master procedure opens and loads

each listed library, unless the library has already been called. The query

function is called with the desired function names as arguments.

Normally, the entry point for this function is offset -30; other values can

be set with ADDLIB(...). (CAUTION: false values here lead to a system

crash.) If the function is not found, an error code is returned, the library is

closed and the next library is searched. The offset of the function is

returned if the search is successful. Then the function is accessed by the

interpreter with the given arguments. It must return an error code (if

successful, this is 0) and a result string.

The "rexxsupport.library" is included in ARexx and offers several

Amiga-specific functions. There are also several Public Domain libraries,

such as a math library, that makes more functions available.

External function environments are accessed by directing a function

message to the appropriate Public Message Port. The program can do

whatever is internally necessary with the function call; it must only

answer the message at some time, sending back a return code and a result

string.

The resident ARexx process itself is an example of a function

environment; it's always available via its message port "REXX", to which

program calls can be sent. It's located in the library list of the Rexx master

tasks and it takes a priority of -60. If it receives a function call, it looks for

a file with the appropriate name, the search path is the same as for Rexx

sub-programs: the current directory, then the REXX: device. Each

517

7. ARexx Functions

directory is searched first with the current extension (see PARSE

SOURCE) and following that without the extension. By explicitly

entering the search path within the function name, this process can be

avoided. External programs are always started as separate processes. The

calling program waits until its message is answered.

Built-in functions are internally set to DIGITS()=9 and FUZZ()=O and are

usually not influenced by settings in effect within the calling program.

Lengths must be entered as positive integers (including 0) and positions

cannot be 0.

Many functions process both necessary and optional arguments.

Optional arguments are printed in square parentheses in the syntax

descriptions following. If you leave these arguments out, a default setting

is usually assumed.

If a function option can be selected with a single key word, usually the

first letter will suffice. (Upper or lowercase characters don't matter.) If an

empty string appears in that place, a default setting is used.

Some functions create and manipulate external DOS files. These files are

called with a logical filename that was determined when the file was

opened. This name is sensitive to upper and lowercase spelling. An

unlimited number of files can be open simultaneously. Luckily, they don't

all have to be individually closed; the interpreter handles the

"housekeeping" at the end of each program.

I/O functions String functions

CLOSE() ABBREV()

EOF() CENTER()

EXISTS() CENTRE()

LINES() COMPRESS()

OPEN() COMPARE()

READCH() COPIES()

READLN() DATATYPE()

SEEK() DELSTR()

WRITECH() DELWORD()

WRITELNO FINDO

INDEX ()

INSERT()

LASTPOS()

518

7.3 ARexx External Function Libraries

LEFT()

LENGTH()

OVERLAY()

POSO

REVERSE()

RIGHT()

SPACE()

STRIP()

SUBSTR()

SUBWORD()

TRANSLATE()

TRIM ()

UPPER()

VERIFY()

WORD()

WORDINDEX()

WORDLENGTH()

WORDS()

XRANGE()

Bit manipulation

BITAND()

BITCHG()

BITCLR()

BITCOMP()

BITOR()

BITSET()

BITTST()

BITXOR()

Numeric functions

ABSO

DIGITS()

FORMO

FUZZ()

MAX()

MINO

RANDOM ()

RANDUO

SIGNO

TRUNC()

Conversions

B2CO

C2BO

C2D()

C2X()

D2CO

D2XO

X2CO

X2D()

System functions

ADDLIB()

ADDRESS()

ARGO

DATE()

ERRORTEXT()

EXPORT()

FREESPACE()

GETCLIP()

GETSPACE()

HASHO

IMPORT()

PRAGMA()

REMLIB()

SETCLIP()

SHOW()

SOURCELINE()

STORAGE()

SYMBOL()

TIME()

TRACE()

VALUE()

519

7. ARexx Functions

7.4 I/O Functions

ICLOSEQ

Syntax: CLOSE (name)

See also:

Example:

Closes the file with the given logical filename. The function

returns 1 if the file close was successful; otherwise (if the

file was not open) a 0 is returned.

OPENO

SAY CLOSE("Datadump") ==> 1

Syntax: EOF (name)

Example:

IEXISTSQ

Returns a 1 if the end of the given logical file has been

reached; otherwise a 0 is returned.

i f EOF("Datadump") then CLOSE("Datadump")

Syntax: EXISTS (DOSfilename)

Determines if a file with the given name exists. If successful,

the function returns a 1; otherwise a 0 is returned. Path

names can precede the filename.

Example: if EXISTS("dhO:Trashcan/LoadWB") then say,

"Look at the new Workbench 1.3, before you

empty the trash."

ILINESQ]

Syntax: LINES ([name])

Returns the number of lines listed in the entry buffer of the

logical file "name" that must belong to an interactive device

520

7A 110 Functions

Example:

IQPENQ

like CON: or SER:. If "name" is omitted, the number of lines

"stdin" is returned.

say LINES("Pipeline")

say LINES()

==> 3 (for example)

==> 1 (for example)

j

Syntax: OPEN(name,DOS-filename[, "Append" I "Read" I "Write11])

Opens a file for the given operation and gives it a logical

filename ("name") that can later be called. "DOSfilename" is

the name of the file to be opened and this can include

device and directory names.

APPEND Opens an existing file and sets the current

position to the end of the file in order to add

data.

READ Opens an existing file and sets the current

position to the beginning of the file.

WRITE Opens a new file; if a file of the same name

exists, it is erased.

To call these keywords, simply type the first letter. If

nothing is entered, READ is assumed to be the function

you are calling. When calling devices that do not support a

"seek" function, such as CON: or SER:, the method of file

access does not matter. The result of the function is

Boolean. An unlimited number of files can be open

simultaneously and they are all automatically closed when

you leave the program.

See also: CLOSE(), READxx(), WRITExx(), SEEK()

Example: Success = OPEN("Datastack'\"RAM:T/TestdataH,BW11)

Success = OPEN("Window","CON:200/100/200/100/RexxConsole")

521

7. ARexx Functions

IREADCHQT

Syntax: READCH (name, number)

Reads the "number" of characters in the open logical file

"name". This function returns the characters it reads as the

result string, or fewer than requested if the end of file is

reached. If you are reading from an interactive device like

CON: or SER:, the function does not return anything until

the necessary number of characters are in the buffer;

execution halts until then. Reading from non-interactive

devices is useless and leads to a false result.

Example: data = readch ("Dataheap", 5)

IREADLNQ 1

Syntax: READLN (Name)

See also:

Example:

ISEEKQ

Reads characters from the logical file "name" until a line

feed (Hex OA) or the end of the file is encountered. The line

feed itself is removed and the entire line is returned as the

result. If you are reading an interactive device like CON: or

SER: the function does not return until a complete line is in

the buffer; execution halts until then.

READCH()

Entryline = READLN("Window")

Syntax: SEEK(name, offset[,"Begin"I"Current"I"End"])

Sets the current position for calls to the open logical file

"name". "Offset" determines the distance in characters from

the current position. Whole numbers (including negative

numbers) are allowed. By entering the keyword "Begin"

the "offset" is set to the file beginning; "End" sets it to file

end. You can overstep the limits of the file, but this is not

recommended, since it can lead to some confusion and

sometimes to errors. The result of SEEK is the current

522

7.4 110 Functions

position in reference to the beginning of the open file.

Using SEEK with interactive devices is senseless and has

no effect.

Example: say SEEK ("Datahaystack", 5, "B") ==> 5

filelength = SEEK("Datahaystack",0,HE")

IWRITECHQ H

Syntax: WRITECH (name, string)

Writes "string" to the logical file "name" and returns the

number of characters written.

Example: say WRITECH("Datahaystack","needle") ==> 6

IWRITELNQ I

Syntax: WRITELN(name, string)

Writes "string" to the logical file "name" and adds a line

feed (Hex 0A). Returns the number of characters written,

including the added line feed.

Example: say WRITELN("Window", "The rose is red.") ==> 17

523

7. ARexx Functions

7.5 ARexx String Functions

IABBREVQ |

Syntax: ABBREV (stringl, string2 [, length])

Returns a 1 if Mstring2" is a permitted shorthand of "stringl"

and is not shorter than "length". The default for "length" is

the length of "string2". An empty character string is a valid

shorthand if nothing is specified in "length".

Example: say ABBREVC'Rosegarden", "Rose") ==> 1

say ABBREVC'Rosegarden11, "R", 4) ==> 0

say ABBREVC'Rosegarden11,"") ==> l

| CENTERQ or CENTREQ 1

CENTER(string,length[,pad])

CENTRE(string,length[,pad])

Returns a character string of given length, in which the

"string" is centered. Empty spaces to the left and right are

replaced with spaces or pad (one character). If the "string"

is too long, each side is cut. To avoid errors, both American

and English spelling is permitted.

Syntax:

or:

Example: say CENTER("Hello",10)

say CENTRE{-0123456789", 5)

say CENTER("TEST", 10, " >d)

=> ' Hello

=> '23456'

=> ' >»TEST>»'

ICOMPRESSQ"

Syntax: COMPRESS (string[, list])

If the second argument is omitted, this function removes all

empty space from "string". In "list" one or several characters

can be specified that are then removed instead of the
spaces.

Example: say COMPRESS (" Hey you! ") ==> 'Heyyou!1

say COMPRESS(M##AM++I#G+A++W,"#+-) ==> 'AMIGA'

524

7.5 ARexx String Functions

I COMPARED"

Syntax: COMPARE (stringl, string2 [,pad])

Returns the position of the first character of the two strings

found not to be equivalent. If they agree, the result is 0. If

necessary, a shorter string is filled with empty space to the

right or an end of file marker, if that's found in the other

string.

Example: say compare ("Rose", "Ross") ==> 4

say COMPARE("abc",Habc+-","+") ==> 5

ICOPIESQ I

Syntax: COPIES (string,number)

Returns the "number" of repetitions of the "string".

"Number" must be a whole number or zero.

Example: say COPIES("Rose",3)

say COPIES("Rose",0)

==>

==>

•RoseRoseRose1

IDATATYPEQ

Syntax: DATATYPE (string [, type])

If only one parameter is specified, the function tests

whether the argument is a valid ARexx number and returns

"NUM". Otherwise, the result is "CHAR". If one of the

following keywords is entered for "type", a test is executed

and 1 is returned if "string" is that type; otherwise a 0 is

returned. A null string only returns a 1 when tested for

hexadecimal (X).

525

7. ARexx Functions

Available key words are:

Alphanumeric

Binary

Lowercase

Mixed

Numeric

Symbol

Upper

Whole

X

A-Z, a-z and 0-9

valid binary string

a-z

A-Z and a-z

valid ARexx numbers

valid ARexx symbols

A-Z

whole numbers

valid hexadecimal string

Example: say datatype ("4711") ==> num

say DATATYPE("Rose","L") ==> 0

say DATATYPE("52 6F 73 69"x,"X") ==> 1

IDELSTRQ |

Syntax: DELSTR(string, n[, length])

Returns the "string", after "length" characters from position

"n" have been removed. If "length" is omitted, the rest of

the character string is removed.

Example: say DELSTR("The Rose is red",5,5) ==> The is red

IDELWORDQ |

Syntax: DELWORD(strings[, length])

Returns the "string", after "length" words have been

removed from and including word number "n". If "length" is

omitted, the rest of the string is removed. Empty space in

front of the first word that is not deleted remains.

Example: say DELWORD(dThe Rose is red,3,1) ==> The Rose red

526

7.5 ARexx String Functions

IFINDQ

Syntax: FIND (string, words)

Searches for "words" in "string" and returns the word

number of the first such agreement within "string". If

"words" is not in "string", the function returns a 0.

Example: say FIND("The Rose is red","Rose is"! ==> 2

IINDEXQ

Syntax: INDEX (string,pattern [, start])

Searches for the first appearance of "pattern" in "string"

from the beginning of the string or from the optional

position "start". The function returns either the position

number or 0, if "pattern" does not appear.

Example: say INDEX(MThe Rose is a Rose", "Rose") ==> 5

say INDEX(HThe Rose is a Rose","Rose",10) ==> 15

say INDEX("The Rose is a Rose", "Carnation11) ==> 0

Caution: This function is unique to ARexx and does not follow the

typical order of arguments in Rexx syntax.

See also: LASTPOS() is similar to POS(), except it has reversed

arguments.

IINSERTQ J

Syntax: INSERT(source,destin[,[start][,[length][,pad]]])

Adds "source" after the "start" position to the "destin"

string. "Source" is expanded with the character "pad" to

the given "length". The default value for "start" is 0, for

"length" the length of the "source", and the "pad" default is

a space.

Example: say INSERT("123 \ "abcde") ==> 123abcde

say INSERT(M123","abcdeM,6,5," .") ==> abcde.123..

527

7. ARexx Functions

ILASTPOSQ

Syntax: LASTPOS (pattern, string[, start])

Searches "string" backward for the first appearance of

"pattern" and returns the equivalent index (or 0, if no

agreement occurs). Normally, the search begins at the last

character. If you want the process to start somewhere else,

"start" indicates a position counted from the beginning.

Example: say LASTPOS ("Rose", "The Rose is a Rose") ==> 15

say LASTPOS ("Rose11, "The Rose is a Rose",15) ==> 5

say LASTPOS("Carnation","The Rose is a Rose") ==> 0

ILEFTQ J

Syntax: LEFT (string, length[,pad])

Returns a character string of the indicated "length", taken

from the left side of the argument "string". If necessary,

"string" is cut off at the right end or lengthened with "pad".

Default for "pad" is a space character.

Example: say LEFT ("The Rose is red", 8) ==> The Rose

say LEFT("The Rose",10,":") ==> The Rose::

ILENGTHQ |

Syntax: LENGTH (string)

Returns the length of "string".

Example: say LENGTH ("The Rose")

say LENGTHC1")

==> 8

==> 0

lUVEKLAYQ J

Syntax: overlay(new,old[,[start][,[length][,pad]]])

Overlays the character string "old" with "new", beginning

at the position "start". During the operation, "new" is cut to

"length" or lengthened with the "pad" character. The

528

7.5 ARexx String Functions

default value of "start" is 1, if the value is greater than the

length of "old", the extra space is filled with "pad". The

default setting for "length" is the length of "new". The

standard pad character is a space.

Example: say OVERLAY("xx","The Rose")

say OVERLAY("Rose","The",7,6,'

==> xxe Rose

==> The***Rose**

IPOSQ

Syntax: POS (pattern, string[, start])

Searches for the first appearance of "pattern" in "string"

from the optional position "start". If no "start" is specified, it

searches from the beginning of the file. It returns either the

position at which the pattern is found or 0, if "pattern" does

not occur at all.

Example: say POS ("Rose", -The Rose is a Rose11) ==> 5

say POS("Rose","The Rose is a Rose",10) ==> 15

say POS("Carnation","The Rose is a Rose") ==> 0

IREVERSEQ J

Syntax: REVERSE (string)

Reverses the order of characters in "string".

Example: say reverse ("esoR") ==> Rose

IRIGHTQ 1

Syntax: RIGHT (string, length[,pad])

Returns a character string of "length" containing "string",

starting from the right. "String" is cut off at the left side if

necessary, or lengthened with the "pad" character. The

default character for "pad" is a space.

Example: say RIGHT ("The Rose is red", 3) ==> red

say RIGHT("The Rose",10,":") ==> ::The Rose

529

7. ARexx Functions

ISPACEQ

Syntax: SPACE (string,n[,pad])

If "string" contains words separated by spaces, SPACE

returns a character string with "n" spaces between the

words. Empty spaces on the left and right are removed. The

"pad" character can define another character to use instead

of the space character.

Example:

Caution:

say SPACE("The Rose is red",!)

say SPACE(" The Rose is red",2)

say SPACE(" The Rose is red",!,"!")

==> The Rose is red

==> The Rose is red

==> The I Rose I is I red

This function does not work correctly if the second

argument is omitted. The default value for "n" is 0 (it should

be 1). Omitting the second argument of this feature has not

been documented; it cannot be recommended. Eventually

this error will be corrected.

ISTKIPQ J

Syntax: strip(string[,[{"B"I"L"I"T"}][,character]])

If an argument is given, the function removes preceding

and trailing spaces from "string". If "L" (for "leading") or T

(for trailing) is indicated, only one or the other is removed.

The third argument is used to specify the character to be

removed.

Example: say STRIP (■ The Rose M)

say STRIP (" The Rose ••, "T11)

say STRIP("--The-Rose—N,,M-H)

==> 'The Rose'

==> ' The Rose1

==> 'The-Rose'

ISUBSTRQ

Syntax: SUBSTR (string, start [, [length] [,pad]])

Returns a sub-string of "string", from the position "start", for

"length" and filled at the right side with the character

"pad". Default for "length" is the remaining length of

"string", the default pad character is a space.

530

7.5 ARexx String Functions

Example: say SUBSTR (" abcde", 3)

say SUBSTR("12345",3,2)

say SUBSTR("abcde", 3, 5, " #")

==> cde

==> 34

==> cde##

ISUBWORDQ

Syntax: SUBWORD(string, start [, length])

Returns a sub-string of "string", starting with the word at

"start" and containing the number of words set in "length".

The default setting is the remainder of "string". The result

contains no leading or trailing spaces, only the space

between the selected words is preserved.

Example: say SUBWORD("The Rose is red", 3) => is red

say SUBWORD("The Rose is red",2,2) => Rose is

ITRANSLATEQ I

Syntax: TRANSLATE (string [, [output] [, [input] [, pad]]])

Replaces the characters in one string with the characters in

the other and returns the new character string.

TRANSLATE() has the same effect as UPPER() with a

single argument. Default for "input" is a string with all

characters from "00"x to "FF"x. Every character that occurs

in "input" is replaced with the corresponding character in

"output". If there is no such character in "output" (if

"output" is shorter than "input"), an empty space or the

"pad" character is returned. Characters that do not occur in

"input" remain the same; the length of the "string" does not

change. The tables can be as long as you want, but longer

than 256 characters hardly makes sense, since within

"input" only the first appearance of a character is noted.

The final example shows the use of TRANSLATE() to

rearrange a character string in any order. "String"

determines the order and the second argument gives the

specific working character string.

Example: say TRANSLATE ("The Rose") ==> THE ROSE

say TRANSLATE("xyz","wvuH M,"zyx") ==> uvw

say TRANSLATE.(M12345", Mab", ■ 123" f ■ -") ==> ab-45

531

7. ARexx Functions

say TRANSLATE("312",HabcM,M123M) ==> cab

[TRIMQ

Syntax: TRIM (string)

Removes trailing spaces from "string". Equivalent to the

STRIP(string,"T") function.

Example: say TRIM(" Rose ") ==> " Rose"

IUPPERQ

Syntax: UPPER (string)

Converts "string" to capital letters. Equivalent to the

TRANSLATE(string) function but a little bit faster with

short character strings.

Example: say UPPER ("Rose") ==> ROSE

IVERIFYQ J

Syntax: VERIFY (string, table [, [{M|N}] [.start]])

Checks if "string" only contains characters in "table". If so a

0 is returned; otherwise the position of the first character

that does not appear in "table" is returned. The third

argument can be "match" (default is "nomatch") to reverse

the logic of the verification. The VERIFY() function in

"match" mode returns the position of the first character that

is contained in "table". Normally the search begins at the

first character, but "start" can be used to define another

entry point. If "string" is empty, or "start" is greater than the

length of "string", the function always returns 0, regardless

of the third argument.

Example: say VERIFY("427", "0123456789") ==> 0

say VERIFY("4p7ql","0123456789") ==> 2

say VERIFY("xx731","0123456789","M") ==> 3

say VERIFY("4p7ql","0123456789",,3) ==> 4

532

7.5 ARexx String Functions

[WORDO

Syntax: WORD (string, n)

Returns the "n"-th word in "string", or an empty string if

"string" does not contain sufficient words. Equivalent to

the SUBWORD(string,n,l) function.

Example: say WORD ("The Rose is red", 2) ==> Rose

IWORDINDEXQ I

Syntax: WORDINDEX (string, n)

Returns the position of the first character of the "n"-th

word in the "string", or 0 if there are insufficient words.

Example: say WORDINDEX("The Rose is red",2) ==> 5

IWORDLENGTHQ I

Syntax: WORDLENGTH (string, n)

Returns the length of the "n"-th word in "string", or 0 if

there are insufficient words in "string".

Example: say WORDLENGTHC'The Rose is red",2) ==> 4

IWORDSQ I

Syntax: WORDS (string)

Returns the number of words in "string".

Example: say WORDS("The Rose is red") ==> 4

IXRANGEQ I

Syntax: XRANGE ([start] [, end])

Returns a character string containing all characters with

ASCII codes ranging from the "start" to the "end"

533

7. ARexx Functions

character. Default for "start" is "00"x and for "end" it is

"FF"x. The order is always from high to low; if "start" is

higher than "end", the order begins again after "FF"x at

"00"x and continues until the "end" value.

Example: say C2x (xrange ()) ==> 000102 ... fdfeff

say XRANGE("A","F") ==> ABCDEF

say C2X(XRANGE(,"05"x)) ==> 000102030405

534

7.6 Bit Manipulation in ARexx

7.6 Bit Manipulation in ARexx

[BITANDO

Syntax: BITAND(stringl [, [string2] [,pad]])

A logical AND function is performed with the two strings.

The result has the length of the longer operand. Instead of

breaking off the operation at the end of the shorter

operand and appending the rest of the longer operand

unchanged, the shorter operand is filled up to the right with

"20"x (the space character) and the concatenation AND

performed on the entire length of the string. The behavior

described in the documentation can only be guaranteed if

"pad" is always specified as "FF"x. The shorter operand is

then filled with this value before the operation begins. If

the second operand is omitted, "20"x is always filled in or

the end of file marker is added.

Example: say C2B(BITAND("OOOOllll-b,H01010101Mb))==> 00000101

say C2x(BITAND(MFFllx/ nFFFFllx) ==> FF20

say C2x(BITAND(M00"x,"AAAA"x,MFFNx) ==> 00AA

say BITAND(MRoseM,,"11011111Mb) ==> ROSE

IBITCHGQ |

Syntax: BITCHG(string, bit)

Inverts the given bit in "string". Bit 0 is the lowest value bit

of the characters on the right side of "string".

Example: say C2B(BITCHG("00001111"b,5)) ==> 00101111

IBITCLKQ J

Syntax: BITCLR(string, bit)

Deletes the given bit in "string". Bit 0 is the lowest value bit

on the right side of "string".

Example: say C2B(BlTCLR(II00001111"b,2)) ==> 00001101

535

7. ARexx Functions

IBITCOMPQ

Syntax: BITCOMP(stringl, string2 [,pad])

Compares the bit patterns of the two strings, from bit

number 0 going from right to left. The result is the number

of first bits in which the strings are different, or -1 if they are

equal. The shorter string is filled, before the operation at the

left side with the "pad" character (the default "pad" is a

space).

Example: say bitcomp("FF",nFFFF"x) ==> 8

say BITCOMPC'FF" , "20FF"x) ==> -1

IBITORQ |

Syntax: BITOR(stringl [, [string2] [,pad]])

A logical OR operation is performed on the two strings. The

result is the length of the longer operand. Instead of

breaking off the operation at the end of the shorter

operand and adding the rest of the longer operand

unchanged, the shorter operand is filled with "20"x (the

space character) and the OR connection is carried out over

the entire length of the string. The behavior that is

described in the documentation is only possible if the "pad"

is always specified as "00"x. The shorter operand is then

filled up with this value before the logical operation takes

place. If the second operand is omitted, it's filled with "20"x

or the end of file marker.

Example: say C2B(BITOR(t100001111Mb, "OlOlOlOl-b)) ==> 01011111

say C2x(BITOR(MFFMx,w0000Mx) ==> FF20

say C2x(BITOR(M00l)x,IIAAAABx, "FF"x) ==> AAFF

say BITOR(MRose°,,"OOlOOOOO-b) ==> rose

IBITSETQ |

Syntax: BITSET (string, bit)

Sets a marker for the given bit in "string". Bit 0 is the lowest

value bit of the characters from the right end of the "string".

536

7.6 Bit Manipulation in ARexx

Example: say C2B(BITSET("00001111"b,5)) ==> 00101111

IBITTSTQ J

Syntax: BITTST (string, bit)

Returns the given bit of "string". Bit 0 is the lowest value

bit of the characters from the right end of the "string".

Example: say BITTSTC 00001111 "b, 5) ==> 0

IBiTXORQ

Syntax: BITXOR(stringl [, [string2] [,pad]])

Performs a logical exclusive OR operation on the two

strings. The result is the length of the longer operand.

Instead of breaking off the operation at the end of the

shorter operand and adding the rest of the longer operand

unchanged, the shorter operand is filled with "20"x (the

space character) on the right side, and the XOR operation is

performed on the entire length. The documented behavior

can only be achieved if the "pad" is always "00"x. The

shorter operand is then filled with this value before the

operation starts. If the second operand is omitted, it is

always filled with "20"x or the end of file marker.

Example: say C2B(BITXOR(M00001111Mb,"01010101Mb))==> 01011010

say C2x(BITXOR(MFFMx,"0000Mx) ==> FF20

say C2x(BITXOR("FFMx/"0000"x,M00Mx) ==> FF00

say BITXOR(NRoseM,,"001Q0000"b) ==> rOSE

537

7. ARexx Functions

7.7 Numeric Functions

1ABSQ

Syntax: ABS (number)

Returns the absolute value of "number".

Example: say ABS (-345) ==> 345

say ABS(4.32) ==> 4.32

IDIGITSQ

Syntax: DIGITS ()

Returns the current NUMERIC DIGITS setting.

Example: say digits 0 ==> 9

IFORMQ

Syntax: FORM ()

Returns the current NUMERIC FORM setting.

Example: say form() ==> scientific

IFUZZQ

Syntax: FUZZ ()

Returns the current NUMERIC FUZZ setting.

Example: say fuzz() ==> 0

|MAXQ

Syntax: MAX (number,number [,number] . . .)

Returns the largest of the given numbers.

538

7.7 Numeric Functions

Example: say max(3,2,7, 5)

say MAX(-3,-l,-8,-1)

==> 7

==> -1

IMINQ

Syntax: MIN (number,number [,number] . . .)

Returns the smallest of the given numbers.

Example: say MIN(3,2,7,5)

say MIN(-3,-1,-8,-1)

==> 2

==> -8

IRANDOMQ

Syntax: RANDOM([min] [, [max] [, [startvalue]]])

Returns pseudo-random integer values between "min" and

"max". Default values are 0 and 999. The interval between

"min" and "max" cannot be larger than 1000. The third

value can be a different start value, in order to achieve a

repetitive sequence. This start value should be specified at

the first call and can be any number. The results of later

calls to RAND0M() (without a start value) are repeated, if

the random number generator is initialized to the same start

value again. If no start value is specified, the random

number generator is initialized with the system time at the

first call. The start value is not secured for all routine calls,

but rather globally, for an entire program.

Example: say random(1,49)

say RANDOM(,,4711)

==> 17 ?

==> 365 ?

IRANDUQ

Syntax: RANDU([startvalue])

Returns evenly distributed pseudo-random numbers

between 0 and 1. The number of places after the decimal

point depends on the current NUMERIC DIGITS setting.

Normally, the random number generator is initialized with

the system time at the first call. By entering the optional

"start value", the random number generator can be moved

539

7. ARexx Functions

ISIGNQ

Example:

Caution:

to a defined starting condition, in order to achieve

repetitive pseudo-random sequences.

Example: say randuO ==> 0.018327461 ?

Syntax: SIGN (number)

Resembles the mathematic "sign" function. If "number" is

negative, SIGN returns a -1, if the number is a 0, it returns a

0, and if "number" is positive, it returns a 1.

say SIGN(O.l)

say SIGN(0.0)

say SIGN(-5)

==> 1

==> 0

==> -

The SIGN() function should round the number according to

the evaluation of the NUMERIC DIGITS setting. This is not

implemented, so insignificant fractions are never reported as

"0".

ITRUNCQ |

Syntax: TRUNC (number [, places])

Returns the whole number portion of "number", followed

by the desired number of places after the decimal, which is

usually none. It does not round to the whole number. If

needed, the number is filled with zeros. The result is never

an exponential notation, so that "number" cannot require

more places than are set in NUMERIC DIGITS. If

necessary, the number is rounded according to the number

of decimal places first

Example: say TRUNC(564.73294)

say TRUNC(564.73294,3)

say TRUNC(564.7,3)

==> 564

==> 564.732

==> 564.700

540

7.8 Conversion Functions in ARexx

7.8 Conversion Functions in ARexx

IB2CQ "I

Syntax: B2C (string)

Converts a string of binary symbols (0 and l's) to the

corresponding ASCII character string. Empty spaces are

allowed in "string" but only at the byte limits, every 8th

digit.

Example: say B2C ("01000001")

IC2BQ

==> A

Syntax: C2B (string)

Converts an ASCII symbol string to an equivalent binary

string.

Example: say C2B(ttRoseM==>01010010011011110111001101100101

IC2DQ 1

Syntax: C2D(string [,n])

Converts "string" from a symbolic representation to the

corresponding decimal number. The maximum "string"

length is 4 bytes (32 bits). If "n" is given, the binary value

of "string" is treated as a pair of length "n" bytes and

transformed into a corresponding whole number (with a

prefix if necessary). The "string" is cut off at the left side or

filled with zeros if it's not the right length. No prefix

evaluation takes place.

Example: say C2D("0A"x)

say C2D("Rose")

say C2D("FFFFMx,2)

==> 10

==> 1383035749

==> -1

541

7. ARexx Functions

IC2XQ

Syntax:

Example:

IP2CQ

C2X(string)

Converts "string" from symbolic representation to the

corresponding hexadecimal number. The result contains

capital letters for the numbers A-F and no empty spaces.

say C2X("Rose")

say C2X(n0A"x)

==> 526F7365

==> OA

Syntax: D2C (numberl [,bytes])

Converts decimal numbers into equivalent ASCII

characters. If "bytes" is specified, the result takes that

length; it's cut off at the left side or filled with "00"x on the

right if necessary. Negative values, not otherwise permitted,

can be expressed as a pair.

Example: say D2C (65)

say C2X(D2C(-1,4))

==> A

==> FFFFFFFF

Syntax: D2X (numberl [, nibbles])

Converts whole decimal numbers to the corresponding

hexadecimal notation. If "nibbles" is specified, negative

numbers are converted into a number pair. The result has

the corresponding number of places and, if necessary, is cut

off at the left side or filled in with O's at the right. For the

numbers A-F it uses capital letters and no empty space is

added.

Example: say

say

say

D2XC10)

D2X(10,

D2X(-1,

2)

5)

==>

==>

==>

A

OA

FFFFF

542

7.8 Conversion Functions in ARexx

[X2CQ

Syntax: X2C (Xstring)

[X2DQ

Converts a string from hexadecimal notation to equivalent

ASCII string. If necessary, a 0 is added to the left, in order

to arrive at an even number of nibbles. At the byte limits,

empty spaces can be added to improve readability. They

are ignored by the program.

Example: say X2C("4D 4EM) ==> MN

Syntax: X2D (Xstring [,nibbles])

Converts a string from hexadecimal notation to the

corresponding decimal number. If necessary, a single 0 is

added on the left side, in order to arrive at an even number

of nibbles. Empty spaces can be added at the byte limits to

improve readability. They are ignored by the program. A

maximum of 4 bytes (8 nibbles) are allowed. The

NUMERIC DIGITS setting has no influence on this

function.

Normally, X2D() returns positive numbers. If any value is

entered for "nibbles", "Xstring" is assumed to be a pair and

numbers with prefix signs are returned. If the number of

nibbles in "Xstring" is not correct, it is simply filled with

"0"x to the left or cut off, so that no prefix expansion takes

place.

Example: say X2D("OD")

say X2D("FFFF")

say X2D("FFFF",4)

say X2D("FFFF",6)

==> 13

==> 65535

==> -1

==> 65535

543

7. ARexx Functions

7.9 ARexx System Functions

IADDLIBQ

Syntax: ADDLIB (name,priority [, of f set, version])

Adds a function library or an external function

environment to the library list that is managed by the Rexx

Master process. "Name" is either the full name of a function

library that is located on the logical device LIBS:, or the

name of a Public Message Port that belongs to a function

environment. "Priority" determines the search order for

called functions and must be an integer between -100 and

100. Usually 0 is useful.

The arguments "offset" and "version" refer only to libraries

and are necessary to open one. "Offset" indicates the entry

point for the query function of the library (usually -30) and

"version" takes a certain version number the library must

minimally achieve (usually 0).

The function returns a Boolean result if everything is in

order. This does not mean that the library is available and

the program does not try to load it until the first command

occurs. An equivalent Message Port is also not located

until later.

Example: if ADDLIB("rexxsupport.library",0,-30,0) then
say "OK!"

lADDRESSQ 1

Syntax: ADDRESS ()

Returns the name of the message port to which external

commands can be sent. The function SHOW() can test if the
port is available.

Example: say address () ==> rexx

544

7.9 ARexx System Functions

[ARGQ

Syntax: ARG ([number [, {" E" I "O"}]])

Without arguments, ARG() returns the number of

arguments that were passed to a program or a sub-routine.

If a "number" is entered, the argument string is returned or,

if that is not available, a null string.

If one of the options for "Exists" or "Omitted" is left out, the

argument is tested for the other and a Boolean result is

returned.

Example: /* Arguments given: ("Rose",,-5) */

==> 3

==> -5

==> 0

IDATEQ

say ARG()

say ARG(3)

say ARG(2,"E")

Syntax: DATE (option [, date [, {11 S}]])

Returns the current system date in the desired form. (A

"normal" format is used if the function is called without an

argument.) Supported options are:

Base date:

Century:

Days:

European:

Internal:

Julian:

Month:

Normal:

Ordered:

Sorted:

USA:

Weekday:

Days since January 1,0001

Days since the beginning of the century

Days since the beginning of the year

Date in the form DD/MM/YY

System days (since January 1,1978)

Date in the form YYDDD

Month in English (upper and lowercase letters)

Date in the form DD MMMYYYY

Date in the form YY/MM/DD

Date in the form YYYYMMDD

Date in the form MM/DD/YY

The weekday in English (upper and lowercase)

A specific date can be requested. To do this, the argument

"date" is given as system days or as a "sorted date" in the

545

7. ARexx Functions

form YYYYMMDD; in the latter case a third argument "S"

(for "sorted") must be supplied.

Example: say DATE()

say DATEC'W")

say DATE ("W" , DATE (" I") +3)

say DATE("J",19800517,"S")

==> 22 Jan 1991

==> Tuesday

==> Friday

Caution: In VI.14 no date before system date 0, January 1 1978 can

be entered in this manner.

lERRORTEXTQ J

Syntax: ERRORTEXT (number)

Returns an error message for the given ARexx error

number. If "number" is not a valid error number, the

message "Undiagnosed internal error" is returned.

Unfortunately, ARexx doesn't maintain the Rexx standard

for error messages, but uses its own numbers.

Example: say ERRORTEXT(15) ==> Function not found

lEXPORTQ J

Syntax: EXPORT(address[,[string][,[length][,padpattern]]])

Copies the given data from "string" to the 4-byte "address"

in the storage space that must have previously been

reserved with GETSPACE(). "Length" determines the

maximum number of characters to be copied, "padpattern"

(one byte) is used to fill up the string if it isn't long enough.

The default value is "00"x. You can use this function to

enter an address and length in order to delete from the

storage area, or to initialize with "padpattern". The returned

value is the number of characters actually copied.

Caution: This function can be used to overwrite any storage areas,

which can lead to fatal error. Never use EXPORT() with a

reserved stack unless you know exactly what you are

doing. Secure your program scripts against the common

error of overstepping reserved space. Also, during copy

546

7.9 ARexx System Functions

Example:

operations, task-switching is interrupted. With large

amounts of data (if possible) copy several sub-strings, so

multitasking operations aren't interrupted for too long.

say EXPORT("0024 DDB0Mx, "The Rose is red11) ==> 15

say EXPORT("0006 0000nx, , 640, "FFwx) ==> 640

IFREESPACEQ J

Syntax: FREESPACE ([address, length])

Returns the storage area of the Rexx master procedure. If

you specify the 4-byte address with which the block was

designated using GETSPACE() earlier, its length (a multiple

of 16) is returned. The function FREESPACE() with false

entries (and sometimes, in VI. 14, even correct ones) quickly

allows the computer to get caught on the problem or run

through endless loops. The returned value is not a Boolean

result, as the documentation states, instead it's the size of

the free space under the control of the Rexx master

procedure (and that result often contains errors). A call

without arguments returns the true size of the storage

space being managed by the Rexx master procedure. Since

the storage area is automatically returned after the program

ends, calling FREESPACE() is only necessary when you

may run out of space.

Example: say FREESPACE("0002fa44"x,32) ==> 848 ?

IGETCLIPQ I

Syntax: GETCLIP (name)

Searches the Clip list for "name" and returns the

corresponding character string. Upper and lowercase

spelling are differentiated. If there is no entry, an empty

string is returned.

See also: SETCLIP()

Example: /* "DaData11 contains "The Rose is flighty" */

say GETCLIP("DaData") ==> The Rose is flighty

547

7. ARexx Functions

|(il!/rSPACE()

Syntax: GETSPACE (length)

IHASHQ

Example:

Reserves a stack of "length", managed by the Rexx master

procedure. It returns a 4-byte address, indicating the

beginning of the reserved storage area, which is not

deleted. "Length" is rounded up to the next multiple of 16.

Stacks reserved with GETSPACE() are automatically

returned to the Rexx master procedure at the end of the

program, so external programs should not access this

storage area. In the "rexxsupportlibrary", a function called

ALLOCMEMO requests storage space directly from the

system; it can be necessary in such cases.

Example: say C2X (getspace (64)) ==> 002937F8 ?

Syntax: HASH (string)

Returns the hash value of "string" as a decimal number. The

hash value is the lowest byte of the sum of all ASCII values

contained in the string.

say HASH ("A")

say HASHC'AAAA")

==> 65

==> 4

IIMPORTQ"

Syntax: IMPORT (address [, length])

Reads data from the given 4-byte storage address. If no

length is specified, the process ends at the first "00"x,

which is practical for reading C strings.

Example: say import("00FC0038"x,9) ==> Amiga ROM

548

7.9 ARexx System Functions

IPRAGMAQ

Syntax: PRAGMA (option [, value])

Various system-specific parameters of your own program

can be determined. The options are:

Directory: A new current directory can be set for the running

procedure. The function returns the full path name of the

previously current directory; it can be saved in order to

restore the old settings later. "Value" must be a valid Amiga

DOS path name or be omitted. In the latter case, only the

current setting is returned. If the path is not valid or not

given, a null string is returned.

Id: Returns the 4-byte pointer to the Task Control Block

structure of the current program as an 8-byte hexadecimal

string. Using this address, you can create independent file

or port names specific to the appropriate program call.

Priority: A new task priority can be given to the procedure with this

option. The function then returns the previous priority

setting. Its "value" must be a whole number between -128

and 127; no ARexx program should run with a higher

priority than the ARexx main program, which is usually set

at 4. "Value" must always be specified, which means that a

priority cannot be queried without possibly changing it. If

no area check is taking place, the lowest byte of the given

number is used.

Window: This option changes the window pointer of the task control

block in the running program. For "value", valid keywords

are "Work Bench" and "Null". By entering "null", you can

prevent requests from being sent the Workbench by DOS

calls (such as Insert Volume ... etc.). At this point, only

"null" is recognized; all others (including an omitted second

argument) lead to the default setting "WorkBench". The

function also always returns a 1 to indicate successful

completion.

549

7. ARexx Functions

Defines the given logical name "value" as the current ("*")

console handler. This means you can open two data strings

in one window. The result is a Boolean result.

Example: say PRAGMA (" P", -2)

say PRAGMA("D")

say PRAGMA("D", Mdf0:c)

say PRAGMA (" I")

say PRAGMA (" W" , "Null")

say PRAGMA (»*«,» STDIN")

==> 0

==> Boot_2.X: ?

==> ARexxl.14: ?

==> 0028FE08 ?

==> 1

==> 1

IKEMLIBQ

Syntax: REMLIB (name)

Removes an entry with the given name from the library list

managed by the ARexx master procedure. The function

returns a 1 if the name is found and removed; otherwise it

returns a 0. It does not differentiate between libraries and

external function environments.

See also: ADDLIB()

Example: REMLIB ("rexxsupport. library") ==> 1

ISETCLIPQ 1

Syntax: SETCLIP (name [, value])

Adds a "value" (any string) "name" to the Clip list being

managed by the ARexx master procedure. If an entry

already exists under that name, the contents are updated to

the new value or, if no "value" is given, the entire entry is

deleted. The result is a Boolean result.

Example: say SETCLIP("Textl", "No, no roses") ==> l

say SETCLIP("Textl") ==> i

550

7.9 ARexx System Functions

ISHOWO

Syntax: SHOW(option[, [name] [.divider]])

Returns the contents of various lists being managed or

used by the ARexx master procedure. "Option" refers to

one of the following key words:

Clip:

Files:

Internal:

Libraries:

Ports:

Names in the Clip list.

List of open logical filenames.

Internal port list.

External library and function environment list.

List of Public Message Ports, managed by EXEC. An

unnamed port is indicated by a question mark.

If no "name" is specified, the function returns a string with

entries in the given list, separated by a space or the optional

"divider". If "name" is specified, the corresponding list is

searched for the entry and a Boolean result shows if it was

found.

Example: say SHOWC'P", , ";")

say SHOWC'C11, "TextI11)

==>REXX;DMouse;Workbench

==> 1

ISOURCELINEQ"

Syntax: SOURCELINE ([1 ine])

Returns a string representing the given line of the current

program. If "line" is omitted, the number of lines in the

program is returned. The function can be used to display

comment line^ used as a help feature.

Example: say sourceline () ==> 3 5 ?

say SOURCELINE(1) ==> /* A test program */ ?

551

7. ARexx Functions

ISTORAGEQ 1

Syntax: STORAGE([address][,[string][,length[,pad]]])

Writes "string", starting at the given address, directly to the

main storage area. If "length" is specified, the actual length

of the string is disregarded and only that number of bytes

written; in this case the "string" is either shortened on the

right or padded with empty space (or the given "pad"). The

result string is the previous contents of the affected stack

that can be saved and restored later.

If the function is entered without arguments, it returns the

total available storage space.

Example: say STORAGEO ==>1846536 ?

before = STORAGE("00040000"x,after)

ISYMBOLQ 1

Syntax: SYMBOL (name)

Checks if the argument is a valid ARexx symbol. If not, it

returns the string "BAD". If it is a valid but un-initialized

symbol, the result is "LIT", and if the symbol has already

been assigned a value, the answer is "VAR".

Example: say symbol ("$%&") ==> bad

say SYMBOL ("before") ==> VAR

say SYMBOL ("when") ==> LIT

IT1MK0 1

Syntax: TIME ([option])

Without an optional keyword, TIME returns the current

system time in 24-hour format, in the form "hh:mm:ss".

Possible options are:

Civil: American 12-hour format in the form"[h]h:mmxx", where
"xx" is either "am" or "pm". The hour does not receive a

552

7.9 ARexx System Functions

Elapsed:

Hours:

Minutes:

Normal:

Reset:

Seconds:

Example:

leading zero, and the minute is the current minute, not (as is

usually the case) the next minute.

The number of seconds and hundredths of a second that

have passed since an initial call to the internal timer with

"Elapsed" or "Reset".

The number of hours since midnight without a leading zero.

The number of minutes since midnight without a leading

zero.

Returns the default setting (the same result as calling the

function without an argument).

Returns the number of seconds and hundredths of a

second since an initial query to the internal timer using

"Elapsed" or the last "Reset", and simultaneously resets the

timer.

The number of seconds since midnight without leading

zeros.

say TIMEO

say TIMEC'R")

say TIMEC'E")

==> 18:35:22 ?

==> 0 ?

==> 2.12 ?

ITRACEQ

Syntax: TRACE (option)

With no argument, this function returns the current TRACE

setting. All valid TRACE keywords can be specified as

options (numbers are not allowed, but"?" and "!" are). The

TRACE() function changes the TRACE mode, even during

interactive tracings, when all other TRACE commands are

ignored. The result is always the last setting that can

thereby be saved and restored later.

Example: say trace () ==> N

553

7. ARexx Functions

IVALUEQ

Syntax: VALUE (name)

Returns the contents of the given ARexx symbol, which

must be a valid symbol. This function is used when the

variable name itself is a variable, as a whole or partially.

Example: /* Situation: DROP q5, 155=8; n=5; Rose="n"*/

say VALUE("Rose") ==> n

say VALUE(Rose) ==> 5

say VALUE("q"n) ==> Q5

say VALUE("l"n|In) ==> 8

554

5.7 Parsing Strings with Templates

8. Special Features

Rexx contains several powerful special features that may be unfamiliar to

users of other programming languages. The most important ones, parsing

data and tracing programs, are discussed here.

8.1 Parsing Strings with Templates

The ARexx instruction PARSE (and its two abbreviations ARG and

PULL) split an entry according to a "template" and direct the results to

variables. This feature is especially useful when you are using ARexx as

a script language on the Amiga, since many commands that were not

conceived for automatic processing deliver cryptic return values that do

not conform to any formatting standards. The CLI script language offers

some help in parsing argument lines (with ".") and some command line

syntheses (using "CLIs LFORMAT"), but both of them fail difficult

parsing tasks.

The previous description of PARSE is a short explanation of its most

important capabilities. The following is a complete process description:

A template consists of two elements, symbols which are assigned values

during the operation, and markers to indicate a position within the source

string. Valid markers are: strings, operators such as "+","-" and "=", closed

parentheses, and commas. Using the template, a beginning and end

position is determined within the source string for every target symbol.

The corresponding portion of the string is then assigned to the symbol.

There are three types of markers: "absolute", which indicate an exact

position in the source string, "relative", which indicate a positive or

negative offset from the present position, and "pattern" which indicates a

position by comparing the given pattern to the source string. In a

template, the target of the sub-string is a variable symbol or a specific

goal (or a period); the corresponding value is not assigned to the target.

Variables in a template always receive a new value, even if the source

data do not contain enough words. Any remaining variables are set to 0.

555

8. Special Features

Valid template elements

symbols: A symbol may be a target or a marker. If it immediately

follows one of the valid operators ("+","-" Or "="), its

value (which in this case must be an integer) is

interpreted as a relative or an absolute position. If a

symbol appears in parentheses, its value is a comparison

pattern. If neither condition is true, it must be a variable,

to which a value is assigned.

strings: A string is always a comparison pattern.

parentheses: If a symbol appears in parentheses, it is a comparison

pattern. Normally, a variable symbol is used; a constant

value is easier to display within a string.

operators: The characters "+","-" and "=", followed by a symbol

(which must represent an integer), indicate index

positions in the source string. "+" and "-" indicate

relative positions, "=" indicates an absolute position.

A comma separates multiple templates. If several

templates follow one another, the interpreter looks for a

new source string. In some source options, it's identical

to the last. With the options ARG, EXTERNAL and

PULL, a new string is created; the same is true for the

option VAR, if the contents of the variables has
changed.

periods: A period serves as a dummy value and operates as a

target for a sub-string which is to be discarded.

Each character in the source string has an index number, from 1, for the

first character, to the length of the string plus 1 (the end of the string). If

the limit is exceeded, the current position is set at the limit. A sub-string,
defined by two indices, always contains the character of the first index
and continues up to the second. The indices 3 and 8 would define a sub
string of the characters 3 to 7. If both indices are equal, or the second is

smaller, the remainder of the source string is defined by the pair. The
command:

PARSE value "bla bla bla" WITH 1 all 1 Wordl Word2 Word3

commas:

556

8.1 Parsing Strings with Templates

assigns the entire string to the variable "all", after which each word is

parsed into equivalent variables. When a pattern is compared to the

source string, the position of the first character matching the pattern is

the new index and the pattern is removed from the source string. This

means that the source string is altered in the process of this operation.

The evaluation goes from left to right in the template. At the beginning,

the source string index is set to 1. Whenever a marker appears in the

template, its position becomes the current one. Whenever a target is

found, the program searches for the next object in order to determine the

length of the sub-string the target expects. If the next object is a target,

the source string is divided into words. The process does not end until

the template has been completely evaluated. If the source string is fully

parsed, remaining targets receive null strings.

8.1.1 Examples of Parsing

All of the following examples were given the source string.

"One believes, one knows, but know: one believes.11

Please notice the double space after the first comma and after "but".

Comparison patterns

If there is a string in the template, the source string is scanned from left to

right (after the first appearance of the sequence of characters). If it's

found, it's removed from the source, and the index is placed on the first

character after the sequence. If there is no matching string, the index is

placed behind the last character of the source. Given the following

template:

Tl "," T2 ",H REST

the source string would be parsed as follows:

Tl = "One believes"

T2 = " one knows"

REST = " but know: one believes."

The following template shows what happens if there is no agreement:

557

8. Special Features

Tl "," T2 "," T3 M," REST

because no third comma is found, T3 receives the rest of the string and

REST receives nothing.

Tl = "One believes"

T2 = " one knows"

T3 = n but know: one believes."

REST = "•

If REST previously contained another value, it's now lost, since the

variable received an empty string. Comparison patterns may be variable.

In this case, the corresponding symbol must be indicated with closed

parentheses. (In ARexx, this method always forces an analysis of a

symbol, which makes the key word "VALUE" unnecessary in some

situations, but not with the PARSE command). The corresponding

variable can be previously defined (further to the left) in the same

template. This is a possible application:

command = "\SEARCH\Typignmistake\CW"

parse var command divid 2 instruction (divid) string (divid) option

In this case, the first character of "command" is the separator used to

parse the rest of the string.

Parsing into words

If several targets follow, the source string is parsed into words. (Or it

could be a sub-string of the source, if it appears before or after the target

patterns have been specified). Each target from left to right is assigned a

word. Empty space between words is dropped. If several words are left

over, the last target receives the remainder, including the empty space

contained in it. For example:

Wl W2 W3 REST ":"

leads to the result:

Wl = -One"

W2 = "believes,"

W3 = "one"

REST = " knows, but know"

558

8.1 Parsing Strings with Templates

As you can see, the remainder of the string contains the leading space in

the source. (ARexx does not behave entirely according to Rexx

specifications here: the space should be removed.) Please note that a

template of the form:

Wl " " W2 " " W3 M " REST

which refers to the empty space as a comparison pattern, leads to a

different result:

Wl = MOneM

W2 = "believes,"

W3 = ""

REST = "one knows, but know"

As expected, Wl received the first word, W2 the second word, between

the first two spaces, but what about W3? In this example, it's assigned

the entire string between the second and third empty spaces. A null

string was correctly assigned, since they immediately follow one another.

Since the comparison removes the empty space in front of "one", "REST"

no longer contains a leading space.

A period has special meaning in parsing words: it works as a target, just

as a variable symbol, but the value assigned to it is discarded. The period

is used to ignore unnecessary words in the source string. The template:

. W4 .

would extract only the fourth word from the source string, in this case,

"knows," and assign it to the variable W4.

Parsing by position

In this process, the source string is cut up at certain character positions.

The appropriate index values are entered as whole numbers:

Tl 10 T2 20 T3

returns from the original example string:

559

8. Special Features

Tl = "One believ"

T2 = "es, one "

T3 = "knows, but know: one believes.1

The target Tl receives the characters 1 to 9, T2 the characters from 10 to

19 and T3 is assigned the rest.

This example used absolute positions. Use prefix operators, ("+" or"-") to

move the index position relative to the last position. For example:

numbers = "1234567890"

parse var numbers 2 Zl +4 -1 Z2 -2 Z3 +5

leads to the following result:

Zl = "2345"

Z2 = -56789011

Z3 = "34567n

First, Zl receives four characters of input, starting from the second place.
Then, the index is moved back by one character ("-1"), and the digit "5"
reappears in Z2. From "-2", the absolute position 3 is calculated. The
second index for Z2 is smaller than the first. This means that the rest of
the source string is assigned to Z2. Finally, the Z3 target receives five
characters ("+5") starting from the last position (3).

Using numeric position indicators, whether they are relative or absolute,
you can read parts of the source string several times, if necessary. The
following command string is also possible:

parse var numbers Zl 1 Z2 1 Z3

This command assigns the full contents of "numbers" to each of the three
different variables.

A numeric position indicator can be a variable: for a relative position, add
a "+" or "-" in front of the variable symbol. To indicate an absolute
position place an equal sign "=" in the same place; this differentiates them
from target symbols.

Combined parsing methods

If a comparison pattern is directly followed by a relative position
indicator, you achieve a special effect. The pattern, if found, is not
removed from the source string. The current position remains set at the
first character of the pattern string.

560

8.2 Error Trapping with TRACE

8.2 Error Trapping with TRACE

What would be the advantage of using an interpreted language if there

were no TRACE? A programmer can investigate the events during

program execution; it makes the often difficult search for errors much

easier, since even well-hidden, minor, logical, program errors become

apparent. Rexx offers substantial support for this function. During

TRACE, the interpreter displays certain program parts during their

execution. A line number, the source text and additional information is

displayed. Interpreter behavior is set with trace options, that determine

which program parts should be displayed. Two flags control command

suppression (!) and interactive tracing (?).

Because it uses "signals", the ARexx program can recognize certain

synchronic events (i.e., a "syntax error") or asynchronic events (such as a

"halt" request). Using these features, most error conditions can be

handled by the program and program aborts can often be prevented.

8.2.1 Trace Options

The following modes are available:

ALL Displays all clauses before execution.

BACKGROUND

Similar to OFF, except the tracing cannot be externally

enabled with the "TS" command.

COMMANDS Displays all command clauses before they are passed to

the external environment. Also, displays return codes

not equal to 0.

ERRORS Displays commands that pass a return code not equal to

0 after execution.

INTERMEDIATES

Displays all clauses, sub-totals (including variable

contents), a final form of concatenated symbols, and

results of function calls.

561

8. Special Features

LABELS

NORMAL

OFF

RESULTS

SCAN

Displays all jump markers.

Displays commands with return codes that exceed the

current failure level after their execution, and presents

an error message. This is the default setting.

Switches all tracing off.

Displays all clauses before their execution and presents

the result of every expression. Values assigned to

variables with ARG, PARSE or PULL are also

displayed.

Displays all clauses and checks them for errors, but does

not actually execute them. This mode can be set on with

the TRACE command or the internal function TRACE().

It can be engaged at appropriate spots in the program,

so that previously tested parts are not re-tested. The

RESULT option is usually effective for most error

trapping situations.

8.2.2 TRACE Output

Each line is indented on the screen to represent the level of nesting

applicable to the clause. At the beginning, there is the line number in

which the clause appears in the program and then a three character

marker, which shows the meaning of the displayed line. Sub-totals or

expressions appear in quotation marks so prefixes and spaces are easily

recognized.

Code Meaning of code

program text of a clause

command or syntax error

expanded form of a compound symbol

result of a function call

jump marker (literal or constant value)

result of a dyadic operation

result of a prefix operation

uninitialized variable

value of a variable

result of an expression

value of the place holder

562

8.2 Error Trapping with TRACE

If the data stream is defined, TRACE output is directed by the interpreter

to "STDERR"; otherwise it goes to STDOUT, in addition to the display

and normal program output.

In some cases "STDOUT" is not defined, for example, if a macro program

is started without opening an I/O window. To enable tracing for such

programs, a global trace window can be opened in the Rexx master

procedure. For every program in which the "STDERR" is not defined,

this window becomes the output target for "STDERR".

With the commands TCO and TCC, a global tracing window is opened

and closed. Before it's closed, all output of all programs must be returned

to its beginning status. The tracing window can also be directed with

messages from application programs. During interactive tracing, this

window is used for keyboard entry. Since all active programs share one

window for trace output, following more than one simultaneous

executing program is not recommended, since the result might be

confusing.

8.2.3 Command Suppression in ARexx

Programs

Suppressing commands is useful when an ARexx program should not

pass commands to external environments without prior testing. If one

uncontrolled program starts sending unnecessary commands to DOS (for

example, to delete files), there may be disastrous results.

ARexx includes a trace mode in which these commands are only

displayed. The return code is zero (which would usually be returned if

the command was successful) and the program continues. Commands

entered during interactive tracing are always executed, but they do not

affect the value of the return code.

Command suppression is controlled using exclamation marks, either

alone or in front of a trace option, to toggle these functions on and off. If

the trace option "OFF" or "BACKGROUND" has been selected, then

command suppression is disabled.

563

8. Special Features

8.2.4 Interactive Tracing

During interactive tracing you may enter single clauses during program

execution in order to test variable contents, to change them to enter

commands or to direct branching and loops. You can enter as many

commands as you want with the same limitations as interpreter

commands, for example, DO-END constructions must appear in one line.

Any trace mode can be used interactively. The interpreter waits after

each displayed clause and requests information with the message ">+>".

As a programmer you have three options:

• Press [EnterL entering an empty line, and the program proceeds to

the next trace output. The "ALL" mode executes the program step

by step by pressing the I Enter! key.

• Enter an equal sign (=) and the last clause is repeated. This is only

useful if a change has been made, a correction of variables;

otherwise the result will always remain the same.

• Another command, which will be immediately executed if it's ARexx

code. Where the program is interrupted depends on the trace mode

you have chosen; the interpreter only stops after the clauses it's

asked to display. There are some commands that cannot be

executed a second time, at which the interpreter will not stop. They

are: CALL, DO, ELSE, IF, THEN and OTHERWISE. Also, the

interpreter will not stop after a clause that causes an error.

Interactive tracing is controlled with the question mark, which can occur

alone or in front of a trace option. Each appearance of the question mark

toggles interactive tracing on or off. For example, the command "TRACE

?I", to activate interactive tracing and set "INTERMEDIATES" tracing

on, begins a sub-total display. During interactive tracing further

instructions that call trace are ignored, so you cannot accidentally exit

trace mode.

Errors in the execution of lines entered interactively are displayed but do

not lead to a program stop. Also, during interactive tracing, SIGNAL

interrupts are blocked. This is to avoid a command error or prevent

another SIGNAL condition from immediately branching out to an

equivalent label. Such a jump cannot be un-done and would normally

prevent a programmer from taking interactive measures when an error

564

8.2 Error Trapping with TRACE

occurs, thus creating an uninterruptable infinite loop. If a command with

the form "SIGNAL Label" is interactively entered, the jump is executed,

and further interactive entries are discarded.

Individual interrupt flags can still be set using the SIGNAL command, or

they can be deleted; they will not work until normal program execution

resumes.

The trace mode you enter last is retained through sub-routines that you

are unable to see. At the beginning of an uninteresting sub-routine

tracing with "RESULTS", enter "TRACE OFF". When the sub-routine

ends, the old setting is automatically restored. The Rexx master

procedure manages the "external" trace flag, with which running

programs can be externally set to interactive tracing.

This flag is set with the CLI command "TS". All running programs not set

to interactive tracing immediately start to trace, even programs that start

after the command. The trace option defaults to "RESULTS" if the modes

"INTERMEDIATES" or "SCAN" were not previously set; otherwise they

remain unchanged. This flag can control programs that have run out of

control, are caught in endless loops, or will not accept any entry. Set the

display to interactive mode from the outside and perhaps you can

recognize the problem and fix it more quickly. The disadvantage to this

arrangement is that this flag influences all ARexx programs. If other

programs do not have their own 10 channels, and the global tracing

window is used to do the trace, the output to this window is hard to

interpret. The tracing flag is set off with the CLI command TE. When

individual programs notice that the trace mode is no longer on, they also

change the trace mode to "OFF". Programs whose trace mode has been

set to "BACKGROUND" do not respond to the global tracing flag at all.

8.2.5 SIGNAL Interrupts and Error Handling

ARexx offers a mechanism which makes it easy to recognize errors and

special program situations during execution, and to react to them without

halting the program. If an interrupt is enabled and the condition occurs,

program execution continues at the appropriate label. Deciding factors

can be synchronic (for example, syntax errors) or asynchronic (for

example, pressing ictrtl+fc)). These are called "interrupts" and are

handled by ARexx; they have nothing to do with microprocessor

"interrupt" channels.

565

8. Special Features

The following events are handled by ARexx: the description of the event

is the name of the label to which the program branches if the event

occurs. A "BREAK_C" interrupt branches to a label of the form

"BREAK_C:". An interrupt can be toggled on or off with the command

SIGNAL. If the corresponding label is not defined and the condition that

has been enabled occurs, the program will still interrupt and display an

error message.

BREAK_C fctrTWcl break detected by DOS. If the interrupt is off,

the program immediately ends, with the message

"Execution halted" and a return code of 2.

BREAKJD fctrH+fDl break detected by DOS. This is ignored if the

appropriate interrupt is switched off.

BREAK_E (ctrQ+d) break detected by DOS. This is ignored if the

appropriate interrupt is switched off.

BREAK_F (ctrJME) break detected by DOS. This is ignored if the

appropriate interrupt is switched off.

ERROR The return code of an external program is not "0".

FAILURE The return code is greater than the FAITAT setting.

HALT A HALT command appeared (for example, after "hi"). If

the interrupt is switched off, the program ends

immediately displaying the message "Execution halted"

and a return code of 2.

IOERR DOS has detected an error in an I/O operation.

NOVALUE An attempt was made to access an un-initialized

variable.

SYNTAX A syntax or execution error has been encountered. Not

all such errors can be caught. Certain errors, occurring

before a program begins to execute commands, and

errors that are not recognized by the external ARexx

interface, belong to this group.

566

8.2 Error Trapping with TRACE

When the corresponding jump occurs as a result of the interrupt

condition, all active command areas, (DO groups, loops etc.) are

dissolved, and the corresponding interrupt is switched off again. This is

necessary to avoid endless interrupt loops. Interrupts within a function

or a sub-program do not effect the main program.

The interpreter also sets special variables when an interrupt appears. The

variable SIGL contains the current line number at the moment the

interrupt appeared. The variable RC is set to the appropriate error code

during an "ERROR" or "SYNTAX" interrupt.

On an "ERROR", a command code is returned, which can usually be read

as an error level. For "SYNTAX", the appropriate ARexx error code

appears, which the internal function ERRORTEXT() translates into

English.

The main purpose of interrupts is to make error handling easier. After an

error, you can branch, to give more information, or get to the root of the

condition. Error handling is often very important with the INTERPRET

command.

567

9,1 Commands

9. ARexx on the Amiga

ARexx runs on any Amiga running Kickstart VI. 1 or higher. It uses the

IEEE math library on the Amiga and for double precision the

"mathieeedoubbas.library", which must be on the logical device "LIBS:".

The interpreter itself is in a library named "rexxsyslib.library", which must

also be available there. ARexx programs can be named any way you

want, but there are some rules meant to ensure a clear overview of library

contents. It is customary for ARexx programs that are started directly

from the CLI with "rx" to end with the characters ".rexx". Macro

programs that are to be started from certain application programs should

end with a set of characters specific to the application. For example,

ARexx programs that control CygnusEd normally end with "xed".

ARexx uses its own logical device: the ARexx directory. ARexx

searches for programs first in the current directory, then in the REXX:

directory, if that was defined with the CLI command "ASSIGN".

After V2.X, ARexx is part of the Amiga operating system and the Rexx

master procedure is started in the normal startup sequence; it runs in the

background.

9.1 Commands

Several CLI commands belong to ARexx and must be located in the c:

directory or in the Arexxc: directory that is in the command path. There

are various available control functions, all of which depend on sending

the corresponding message to the Rexx master procedure. Equivalent

functions could be provided by an application program that works with

ARexx.

I HI (Haltlnterpretation) I

Syntax: HI

Sets the global "Halt" flag, so that all active ARexx

programs receive an external "Halt" request. All

programs are immediately interrupted, unless caught

with SIGNAL ON HALT. Then a subroutine branch

would also eventually interrupt (possibly after some

569

9. ARexx on the Amiga

|RX

IRXSET

clean-up work). When all running programs have

received the "Halt" command, the flag is reset.

(RexxeXecute)]

Syntax: RX name [arguments]

RX string [arguments]

Starts an ARexx program. If "name" includes a path

name, ARexx only looks for the program there;

otherwise it searches the current directory and then the

REXX: directory. If the Rexx master procedure is not

running, it's started first. Arguments are passed to the

program and can be queried with ARG. The second

form previously listed allows you to enter a complete

argument as a string. Observe correct usage of string

delimiters. If you want to define a string with this

program, you must use the appropriate other string

delimiter, or enter the same delimiter twice.

RX can also be started with a tool or project icon from

the workbench. A project icon for an ARexx program

can be defined as the default tool. If you are using RX

in a tool icon you can enter an argument line under tool

types with the flag "CMD=". In both cases

"CONSOLE=" can specify a window.

J

Syntax: RXSET name [value]

Adds a name and a corresponding string "value" to the

clip list. If "name" already exists, the old contents is

discarded and "value" becomes the new contents. If

there is no second argument the corresponding entry on

the clip list is deleted.

570

[RXC

[TCC

fTCO

[TE.

Syntax:

[TS.

9.1 Commands

(RexxCIose)!

Syntax: RXC

Ends the Rexx master procedure. The "REXX" port is

immediately deleted from the list of active public

message ports and the task is complete as soon as the

last active program ends.

(TracingConsoIeClose) |

Syntax: TCC

Closes the global tracing window as soon as no active

program is using it.

(TracingConsoleOpen) |

Syntax: TCO

Opens the global tracing window. All trace output is

automatically routed to this window. It can be closed

with TCC. Only one program should be in a trace mode,

since the output is otherwise very confusing.

(TraceEnd)l

TE

Cancels the global "Trace" flag; all active ARexx

programs are switched to the trace mode "OFF".

(TraceStart)]

Syntax: TS

Sets the global external "Trace" flag, putting all active

ARexx programs into interactive trace mode. The

programs then produce trace output and wait after the

next clause. The command is useful if an ARexx

program is out of control and needs to be brought back

into line. The "Trace" flag remains set until it is deleted

571

9. ARexx on the Amiga

with the "TE" command, so programs that are called

later also go into trace mode.

| WAITFORPORT I

Syntax: WAITFORPORT [-immediate] Portname

This command waits up to 10 seconds for a message

port with the given name to appear. (Caution: Upper

and lowercase spelling is observed here.)

WAITFORPORT returns a 0 if the port is available,

otherwise a 5 (WARN). This is the best way to check

for a port to become available for use by an application

you just started or by the Rexx master. The option

"-immediate" overrides the waiting interval and simply

searches for the port once.

572

9.2 Exchanging Data with the Clip List

9.2 Exchanging Data with the Clip List

The "clip list" contains character strings and a corresponding name for

each. This is useful for data exchange between different ARexx

programs with the functions SETCLIP() and GETCLIP(). To avoid name

conflicts, clip names should be specific to a certain program, perhaps by

using a specific name that is related to the program name. There is no limit

to the number of clips that can be saved, except for system storage

capacity. Beyond data exchange, clips can also be used in other ways.

Since ARexx does not support Includes, as other high level languages

do, the clip list can be used to emulate this feature, for more flexibly and

can be applied simultaneously to several programs. For example, flags

that control several running programs could be filed in the clip list. A line

named "Presets" with the following contents, for example:

quiet=1; speed=5; prompt="Hi >M

could with the command:

INTERPRET GETCLIP("Presets")

be called by each program and used as a series of commands, simple

assignments in this example.

The Rexx master procedure manages the clip list and makes sure that a

name only appears once in it. In searching for an entry, upper and

lowercase letters are distinguished; the name must always be spelled

exactly the same way. Entries remain available until a SETCLIP() without

the second argument deletes them. When the Rexx master procedure

ends, the clip list is discarded.

573

9. ARexx on the Amiga

9.3 The rexxsupport.library

An external function library named "rexxsupport.library", contains

several functions specifically intended for the Amiga. It has the same

format as the EXEC function libraries, but contains additional code that

is used by the interpreter to determine whether a function is in the library

and then its offset. This is the QUERY function. If you want to access

one of these functions, you must first add the library to the list of

libraries. The function ADDLIB("rexxsupport.library",0,-30,34) performs

this task; the corresponding file must be in the LIBS: directory. The

priority can be set to another value, but this does not make sense unless

there are several external libraries. -30 is the customary offset for the

query function and a version number (not the revision number, only the

whole number portion) must also be specified in order to make sure that

the function is in the library. The following documentation refers to

Version 34.9.

EXEC Functions PERMIT()

REPLY()
ALLOCMEM() SHOWLIST()
CLOSEPORTQ TYPEPKTO

DELAY() WAITPKTO
FORBID()

FORWARD() DOS Functions
FREEMEM()

GETARGO BADDR()

GETPKTO DELEIE()

NEXTO MAKEDIR()

NULLO RENAME()

OFFSETO SHOWDIRO

OPENPORTO

9.3.1 EXEC Functions

fALLOCMEMQ I

Syntax: ALLOCMEM (Length [, Flags])

Reserves a memory area of the indicated length from the

list of free blocks managed by EXEC and returns the

beginning address as a four byte string. "Length" is

574

9.3 The rexxsupport.library

rounded up to the next multiple of 8. In addition, a 4

byte string can specify attributes of the memory area as

follows:

ANY

PUBLIC

CHIP

FAST

CLEAR

"00000000"x

"ooooooorx

"00000002"x

"00000004"x

"00010000"x

any memory area

hard disk, freely accessible

ChipRAM

FastRAM

deleted memory

See also:

Example:

If necessary, several flags can be combined by adding

the values, for example, "00010003"x for PUBLIC,

CHIP and CLEAR. The default is "PUBLIC". If the call

fails (e.g., if there is no space) an error message is

generated.

FREEMEMQ

say C2X(ALLOCMEM(256,"00000003")) ==> 0001DE48

ICLOSEPORTQ

Syntax: CLOSEPORT(Name)

Closes the message port of the given name. The port

must have been initialized with a call to OPENPORT()

by the same ARexx program before CLOSEPORT has

effect. If result messages have arrived and have not

been handled yet, they are automatically answered with

a return code 10. The result is boolean.

See also:

Example:

OPENPORT()

say CLOSEPORT("Delaware") ==> 1

IDELAYQ

Syntax: DELAY (Ticks)

Waits the given number of 50ths of a second (ticks) and

then returns. You should always use this function when

an ARexx program should wait a specific length of time.

575

9. ARexx on the Amiga

Until the length of time is passed, the procedure is

moved to a status of "waiting" and does not use the

processor. Timed loops are generally not seen as useful

for this purpose.

Example: say DELAY(200) ==> 1 (4 seconds later)

IFORBIDQ

Syntax: FORBID ()

Toggles task switching off and returns the current

nesting level in the previous call to FORBID() -1 (0 after

the first FORBID(), 1 after the second, etc).

Since FORBID() only refers to the running task, it

doesn't matter if a program ends before task switching is

enabled with the PERMIT() function. Before manually

calling STORAGEO, EXPORT() and IMPORT() to the

EXEC list or to data areas of other programs from

ARexx programs, you should always execute

FORBID(), especially if you access the task several

times. Following these operations, immediately execute

PERMIT().

See also: PERMIT()

Example: say forbid () ==> 0

IFORWARDQ

Syntax: FORWARD (Addres s, n)

Not documented.

|rKLEIVlLlVI()

Syntax: FREEMEM (Address, Length)

Releases a storage area previously reserved with

ALLOCMEM(). "Address" is normally the 4 byte string

passed by the equivalent call. "Length" determines the

576

9.3 The rexxsupport.library

Caution:

Example:

1GETARGQ

size of the released area. The command FREEMEM()

cannot be used to release memory space that was

reserved with the internal function GETSPACE()

through the Rexx master procedure. The function

returns a boolean result.

False arguments immediately lead to program crash.

say FREEMEM("000lDE48llx/256) ==> 1

Syntax: GETARG (Me s sage [, Ent ry])

Reads a command or function name from a message at a

4 byte address located with GETPKT(), given as

"Message". The optional "Entry" can be used with a

function message to read individual argument strings

(max. 15).

Example: command = GETARG(Packet)

function = GETARG(Packet,0)

Argl = GETARG(Packet,1)

IGETPKTQ I

Syntax: GETPKT (PortName)

Checks if the message port with the given PortName

has received a report and returns the address of the

oldest message or "0000 0000"x, if nothing has arrived.

The port must first have been opened by the same

program with OPENPORT().

The function immediately returns a value, even if there is

no report. If a program doesn't have anything to do, itfs

not good to keep "running to the mailbox", which

keeps the processor working overtime. Use WAITPKT()

and let the program sleep until EXEC hears the mailbox

opening.

Example: Packet = getpkt("Delaware")

577

9. ARexx on the Amiga

INEXTQ

Syntax: NEXT (Address [.Offset])

Returns the 4 byte value, found at the given address,

after adding "Offset" (a positive integer). Use

NEXT(Address) to move forward though a chained

EXEC list, or NEXT(Address,4) to move in the opposite

direction.

Example: ExecBase = NEXT (" 00000004 "x)

WaitingList = NEXT(ExecBase,420)

INULLQ |

Syntax:

Example:

NULLO

Returns a 4 byte Amiga pointer with the value "0000

0000"x.

say C2X (NULL ()) ==> 00000000

Syntax: OFFSET (Address, Amount)

Calculates, from a 4 byte Address and a (prefixed)

whole number Amount, a new address.

A convenient method of calculating the address of a

particular entry in a structure; this function avoids

doing various type conversions.

Example: WaitListPtr = OFFSET(ExecBase,420)

IQPENPORTQ |

Syntax: OPENPORT (Name)

Creates a public message port with the given name. The

result is boolean. The function fails (except in the case

of immediate lack of disk space) if a port of the same

578

93 The rexxsupport.library

See also:

Example:

IPERMITQ

Syntax:

Example:

IkEPLYQ

Syntax:

Example:

name has already been named or no further signal bit

could be reserved. (16 are available, one is for

communication with the master procedure.) The port

created is bound to the global data structure of the

program. When a program ends, all open ports are

automatically closed and outstanding messages are

answered with a return code of 10.

CLOSEPORTQ

say OPENPORT("Delaware") ==> 1

PERMIT()

Toggles task switching back on. The result code is the

current nesting level of the previous FORBID() call -1,

after executing the function. It returns -1, if task

switching is actually permitted again.

say PERMIT () ==> -1

REPLY(Mes sage,Returncode)

Answers a message at a 4 byte address with

"Returncode", an integer error code as Result1. Result2

(the result value) is deleted. The result is boolean.

say REPLY(Packet,10) ==> 1

ISHOWLISTQ

Syntax: SHOWLIST(Option [, [Name] [, [Pad] [, "Address11]]])

Shows entries in various system lists selected by

options. Options are:

579

9. ARexx on the Amiga

Example:

Assign:

Devices:

Handlers:

Interrupts:

Libraries:

Memory:

Ports:

TaskReady:

Resources:

Semaphores:

Waiting:

Volumes:

DOS list of logical devices

EXEC list of physical devices

DOS list of device drivers

EXEC list of interrupts

EXEC list of open libraries

EXEC list of free storage areas

EXEC list of public message ports

TaskReady list in EXEC

EXEC list of resources

EXEC list of semaphores

TaskWait list in EXEC

DOS list of storage media

If the first argument is given, the names of the nodes of

that list are calculated and returned in a string delimited

by an empty space. If the second argument specifies a

name, the function returns a boolean result, showing

whether the name is in the list. Upper and lowercase

writing are distinguished in this search. The "Pad"

argument can specify another character, instead of a

space, to separate the entries in the result string. The

key word "Address", in combination with a name,

causes the address of the specific node to be returned,

as a 4 byte pointer. If the name is not found, the pointer

reads "0000 0000"x. The addresses of DOS nodes are

calculated in machine addresses (APTR's), so you do not

have to deal with BCPL pointers here.

say SHOWLISTC'P")

say SHOWLIST("P","REXX")

say C2X(SHOWLIST(BP","REXX",,"A"))

say SHOWLIST("P",,"*")

==> rexx ARexx IDCMP

==> 1

==> 0023485A

==> REXX*AREXX*IDCMP

|iYrEFKTQ

Syntax: TYPEPKT (Message)

Returns the 4 byte address of the pointer of a message

sender to the global task structure. "Message" is the

address of the message, calculated with GETPKT().

580

93 The rexxsupport.library

9.3.2

Example: say C2X(TYPEPKT(Packet)) ==> 0026542E

IWAITPKTQ

Syntax: WAITPKT (Name)

Waits for a message to arrive at the given message port

name. The port itself must first have been created in the

same program with the command OPENPORT().

The boolean result shows whether a report was actually

received; normally the result is 1, since the function does

not return otherwise. The message must then be

retrieved with GETPKT() and should be answered with

REPLY(), so that the sender can resume control over

the storage area.

Example: call waitpkt "Delaware"

DOS Functions

IBAPPRO I

Syntax: BADDR (BPTR)

Re-calculates the BCPL pointer "BPTR" from a normal

4 byte machine address (APTR) by multiplying it with 4.

Example: say C2X(BADDR("0000 0002"x)) ==> 00000008

IPELETEQ I

Syntax: DELETE(Filename)

Deletes a file or directory. "Filename" is a complete DOS

path. The boolean result shows if the entry was found

and deleted. Only one file at a time and only empty

directories are deleted; wildcard characters (* or &) are

not permitted.

Example: say DELETE("T:Rose.bak") ==> 1 ?

581

9. ARexx on the Amiga

IMAKEDIRQ

Syntax: MAKEDIR (DirName)

Creates a directory. "DirName" is a complete DOS path.

A boolean result shows whether the processor was able

to create the directory.

Example:

IRENAMEQ

say MAKEDIR("RAMrRosegarden") ==> 1

Syntax:

Example:

ISHOWDIRQ

RENAME(AlterName,NewName)

Renames a file or directory and/or moves it within the

same medium and returns a boolean result.

say RENAME("DFO:Rose","DFO:Tulip") ==> 1

Syntax:

Example:

SHOWDIR(DirName[,[{"All"I"File"|"Dir"}][,Pad]])

Returns a string with the entries contained in the

directory "DirName", delimited by an empty space. The

second argument is the keyword, used to show all

entries, only files, or only directories. The "Pad" can be

used to put a different character between the entries.

say SHOWDIR("DFO:c") ==> rx ts te

582

9.4 Creating ARexx Function Libraries

9.4 Creating ARexx Function Libraries

You can always enlarge the scope of ARexx with supplementary

function libraries. There are several good reasons to do this. In the

simplest case, you could have a desire to take advantage of the

mathematical or Amiga-specific options in ARexx with new functions

you put together in a library. A function library created for this purpose

could contain all the necessary code, or open other Amiga libraries to

perform functions. Or you could write a library that works closely with a

specific application program, enabling certain program operations to

avoid reference to commands and work only with functions. This has its

advantages, because the application program doesn't have to interpret

commands or receive and answer messages. A library can contain more

than entry points for entire and specific operations; it can contain code

that is used directly by the application program.

As indicated, function libraries can act as bridges to other system libraries

or application libraries. If an ARexx program controls "Intuition", a

corresponding function library could recognize appropriate function

names, calculate the needed offset, if necessary, convert individual

parameters, and then call the corresponding function in the

intuition.library. Also, ARexx can be applied as a test platform for new

functions; it's easier to manage than a C program, which must be re

compiled after each change and offers no tracing functions.

Whatever the task, function libraries all have the same structure. They

contain a portion of the normal EXEC system library with the basic

functions OPEN, CLOSE and EXPUNGE as well as a reserved vector.

There must also be a QUERY function that can compare the name

delivered by ARexx with the names of the functions it contains and then

call the correct one. Normally this is the first function after the system

functions and has an offset of -30. Function libraries should be fully re

enterable, since many ARexx programs can run simultaneously and use

the same functions. If this is not possible because of other constraints, the

query function must contain a mechanism that prevents the function

from being called more than once.

583

9. ARexx on the Amiga

Function calls

The QUERY function is accessed by the interpreter with the address of a

message in AO and a LIBRARYBASE in A6. The message has the same

structure as all Rexx messages, and is not passed by a message port yet.

In ARGO, a pointer indicates the function name it's searching for in the

table. If this name is not found, an error code of 1 ("program not found")

must be returned in DO. The library is then closed and the search

continues. The message itself should not be changed, since it must be

passed from one library to the next until the function is found.

Parameter conversion

If the called function is found, sometimes the hierarchically higher

parameters must be converted to the form the function is expecting.

Depending on the structure of the functions, it could be enough to move

the pointer; but sometimes parameters or pointers must be supplied in

specific registers. Arguments are always passed as ARG strings that can

be treated as normal strings supplied with O's. Other attributes of strings

have a negative pointer offset that can be useful.

Numeric values are passed as strings of ASCII symbols and must be

converted into integers or variable decimal format in order to perform

arithmetic calculations. The ARexx system library contains several
functions that are useful for these purposes.

The number of arguments can be determined with the lowest value bytes

of the action code. The function name in ARGO is not counted here, but

it's counted for arguments that are set to zero and are used as default
values.

The parameter block of the message (with ARGO to ARG15) is structured

just like the argument array (argc,argv) function of a C program. This

makes it easy to incorporate a C program into a function library: the

query function simply calculates the address of the function you want,

the address of the parameter block and the number of arguments that

must be placed on the program stack before the function is started.

5«4

9.4 Creating ARexx Function Libraries

Returned values

Each function in a library must return an error code and a result string.

The error code must be located in DO; if it's 0, Al must contain an ARG

string pointer. The routine that creates the correct returned values can be

part of the query function, so that all functions return via this path.

585

10, The ARexx Interface

10. The ARexx Interface

Using ARexx, there are two methods of communication with

independent external programs:

The command interface

With message system commands, sent to the address of an initialized

message port corresponding to an application program, from which

answering messages are in turn expected.

The external function environment

Messages are exchanged with another task; a call to a function name still

follows, accessed from a specified library list and function environments.

Both argument and returned values must conform to ARexx

conventions.

The Rexx master procedure is the common communications carrier for

ARexx and external applications. It opens the public message port

"REXX" and handles many administrative tasks, and also acts as a "host".

As a host, it starts ARexx programs and manages global resources. The

task structures of all running ARexx programs are maintained in a list, the

contents of this list is available to external programs.

The interpreter is located in an operating system library and offers many

entry points that are useful for the implementation of ARexx interfaces in

other programs. It contains functions that are able to create ARexx

structures, such as a RexxMessage or arg string, to manipulate and delete

them. These functions should always be used, since future expansions

can cause problems. Available functions are documented in more detail

later.

587

10. The ARexx Interface

10.1 Essential Data Structures

In most applications, the programmer uses two structures with ARexx.

The ARexx "arg structure" is used for all strings handled by the

interpreter. Normally, they are passed as arg strings, with pointers that

indicate the string. The Rexx "msg structure" is used for all

communication with external programs and is structurally an expansion

of the EXEC message form.

Arg strings: all strings in ARexx are stored as Rexx arg structures,

created for each string in an equivalent length. Strings are passed as arg

strings (i.e., a pointer to the area where data is located in the Rexx arg

structure). The data always ends with a zero in order to allow treatment

as normal C strings in other programs. Additional data such as length,

hash value etc. can then be accessed with negative offset of the arg

string pointer.

struct RexxArg {

LONG ra_J3ize;

UWORD ra_Length;

UBYTE ra_Flags;

UBYTE ra_Hash;

BYTE ra_Buff[8];

/* reserved total length of the structure */

/* length of the string */

/* attribute of a string */

/* hash value */

/* data area (where the arg string points) */

/* minimum size: 16 bytes*/

There are library functions used to create arg strings (CreateArgstringO)

and to delete them (DeleteArgstringO), as well as converting from whole

numbers into this format.

Message Packets

All communication between ARexx and external programs takes place

with RexxMsg structures. There is a function in the ARexx system

library that lets you create them (CreateRexxMsgO) and one to delete

them (DeleteRexxMsgO).

Messages sent by ARexx, for example, to pass a command to an

application program, have the same form as those that move in another

direction to start a macro program. You can distinguish one from the

other because all messages that are sent by ARexx contain a pointer to

the string "REXX" in the name slot of the node. This can be useful in

distinguishing messages when a port receives them from several sources.

588

70.7 Essential Data Structures

struct RexxMsg {

STRUCT Message rm_Node; /* and EXEC message structure */

APTR rm_TaskBlock; /* pointer to the sender's task structure */

APTR rm_LibBase; /* pointer to RexxSysBase */

LONG rm_Action; /* action codes */

LONG rm_Resultl; /* primary result (Returncode) */

LONG rm_Result2; /* secondary result */

STRPTR rm_Args[16]; /* pointers to arguments 0-15*/

/* the expanded area */

STRUCT MsgPort *rm_PassPort;/* pointer to the next port*/

STRPTR rm_CommAddr; /* name of its own port */

STRPTR rm_FileExt; /* file name extension */

LONG rm_Stdin; /* file handle of the input data-flow*/

LONG rm_Stdout; /* file handle of the output data-flow */

LONG rm_avail; /* for future expansion */

} /* size: 128 bytes*/

Resource Nodes

A further useful structure is often used by ARexx to set up resource lists:

the Rexx "rsrc structure". It has a variable length, that is entered in the

structure, along with the address of the function used to remove the

structure. This means that heterogeneous lists can be set free by calling

RemRsrcListQ.

589

10. The ARexx Interface

10.2 Requirements for a Command

Interface

An application program that wants to communicate with ARexx only

needs a public message port and a program input that can process the

commands received there. Usually this isnft too much to manage, since

many programs often already have several message ports receiving

keyboard and menu operations. For a program thatfs directed by

commands, it processes the incoming commands easily and reacts

accordingly. With menu-driven programs, more work is necessary once

commands do more than just activate individual menu options. Which

commands are recognized, and the syntactic form of each, depends on

the programmer.

An application program sends a command call message to the Rexx

master procedure, usually in direct response to user entry. As soon as the

report is received, a new DOS procedure starts, that examines the

command line, takes the first word, and searches for an equivalent macro

program file (possibly with an application-specific extension that was

passed with the filename). When a file of the same name is found, the

program is executed. Usually the program sends back one or more

commands to the public port of the calling program. While one is being

executed, the macro program waits until it receives a return code from the

command. If an error is encountered, it should be able to handle it

logically. Finally, the macro program should end and pass the command

call message back to the application program with an appropriate return

code.

Error trapping in macro programs is an important feature of

communication. Macro programs must be able to recognize whether a

command was executed correctly, or if something went wrong in the

process in order to react intelligently to whatever happens.

Normally, a command call message is not answered if the error status that

followed the command is known. Programs that receive commands from

a message port, from user input and handle both with the same routines,

must be able to differentiate between the two input modes. A flag

indicates what happens in case of an error. In the first case, an

appropriate error code can be returned and in the second case, with

direct input, an error message should also display on the screen.

590

10.2 Requirements for a Command Interface

Return codes that appear in the result slot of the message should also

report the severity of the error. Small whole numbers would indicate

relatively harmless errors, and large numbers would appear with major

errors. This enables a programmer to set a "failure level" in order to ignore

small errors and report those that exceed it. Other than this convention, a

programmer has free choice of error codes.

Every program meant to support the command interface must open a

public message port. If a command is to be sent to the program, it receives

a Rexx message with the rm_Action entry "RXCOMM" and an arg string

pointer to the command line in ARGO, at this port. The other ARG entries

are not used with commands. There are two pointer entries that could be

interesting for the program: rmJTaskBlock points to the sender's task

structure and rmJLibBase points to the base address of the ARexx

system library. With the exception of the result code in rm_Resultl and

possibly also rm_Result2, the program should not change the message.

These appear when the corresponding command has been completed.

rm_Resultl receives an error code, 0 if the command was carried out with

no errors. This long word is later assigned to the variable RC in the macro

program.

If the macro program expects a result string (indicated with the

RXFB_RESULT bit in the command code), the corresponding arg string

pointer in rm_Result2 should be returned. A result string should only be

returned when it's requested and if rm_Resultl is zero; otherwise a zero

must be entered in rm_Result2. If this convention is not followed, a loss

of memory capacity results. An unexpected result string can lead to a

program crash if memory areas become free without being assigned (or at

least not with an arg string).

Many application programs support simultaneous work on several data

files: most word processors let users open windows with separate files in

them. If an ARexx macro program is called by the editor, it must be clear

to which file the returned commands apply.

ARexx supports this distinction with the entry rm_CommAddr, in which

the opening ADDRESS setting for a (new) macro can be entered. The

word processor can then assign a separate message port (for example,

"xyEditl", f'xyEdit2", etc.) for each file, and report the appropriate name

when macro calls are encountered.

591

10. The ARexx Interface

Application programs can open several ARexx ports that can also be

used to differentiate command classes, each of which is then sent to the

correct port with the ADDRESS command.

ARexx program calls are made by sending a corresponding report to the

Rexx master procedure. Programs can be called as commands or as

functions; the command mode is generally easier and more free, since

only a few fields of the message must be completed.

When an ARexx message structure is created, all entries are first set to 0.

Entries that are filled by the sending program are never changed by

ARexx so that this structure can be re-used after the initial message is

answered. For this reason, only one structure is necessary, which must

then only be partially changed for new calls.

In the rm__Action slot of the message, the mode of the call is determined.

For command mode, RXCOMM is entered; for function mode, RXFUNC.

In addition, certain flags can be set, to enable options that are described

later.

Command strings, function names, and arguments must be entered as arg

strings. Normal strings can be comfortably created with the

CreateArgstringO function. Returned arg strings can usually be treated

as normal strings, since the pointer refers to the data area (a string that

ends with a 0). Because the corresponding strings are not changed in the

course of an ARexx program, a program may have to build up many of

these structures. The pointer that is returned by CreateArgstringO is

placed in the equivalent slot of the message: ARGO for the command

string or function name, ARG1 to ARG15 for function arguments. When

the message is answered, extra arg strings can be deleted with

DeleteArgstring().

When all the necessary fields are filled, the report is sent to the public

Port "REXX" using the EXEC function, PutMsg(). Its address must first

be determined with the function FindPort(), but this value should not be

saved by the program because the port can be closed at any time. To

ensure against program crash, you must bracket the calls to FindPort()

and PutMsgQ with ForbidQ and Permit().

592

10.2 Requirements for a Command Interface

After sending the message, the application program can resume its own

tasks and the macro program runs as a separate task. It's often useful to

prevent further user input for the duration of the ARexx macro so that

data accessed by the macro is not changed by the user.

10.2.1 Command Calls

Command mode returns a command string to the calling program. The

string consists of a macro name, an empty space and arguments in

whatever form necessary. ARexx takes the name, usually the name of the

executing program, and tries to start it. Normally the rest of the command

string is a single argument the program uses. The RXFBJTOKEN flag can

adjust behavior: if it's set, then the rest of the string is parsed into several

arguments. In this process, words are separated as they would be with

PARSE. The number of arguments is not limited in this case, since they

don't have to fit into the 15 available message slots. In order to prevent

spaces that represent arguments from being divided, they can be

enclosed in quotation marks [" "]. If such a section contains quotation

marks, use single quotes; the two types of quotation symbols can be used

alternately. Double entry of one of the symbols doesn't work here. At the

end of the string, no quotation mark is necessary.

For example, the call:

test.rexx "The first argument11 second "'one more1

would mean that the command:

parse arg A1,A2,A3; say Al; say A2; say A3

would output as follows:

The first argument

second

'one more1

If the first element of a command string is already in quotation marks, it's

assumed not to be a program name, but rather as a single word. This is an

easy method for starting very short ARexx programs (its length is not

limited in any way). If RXFBJTOKEN wasn't specified, only the first

section that appears in quotation marks is examined, and the rest is

discarded. The rxfb_string flag defines the entire command string as an

593

10. The ARexx Interface

ARexx program text. In this case, no parsing takes place and the program

is immediately executed. Calls usually don't expect a result string. The

flag RXFB_RESULT can request it. The calling program must delete the

string, which is hierarchically higher than itself, when it's no longer

necessary.

10.2.2 Function Calls

Function calls pass a function name and up to 15 arguments as strings to

the application program. The function name is used for access. The actual

number of arguments (not counting the name) must be written to the

lowest value byte of the command code.

This form is normally used when a result is expected (but this does not

require the use of a function call) or when several argument strings are

already available. A result is again requested with the RXFBJRESULT

flag. After the function is completed, if no error took place, and Resultl is

zero, the pointer in Result2 should be set to the equivalent string.

10.2.3 ARexx Program Search Order

Again, ARGO can contain a complete program instead of a filename. It's

signaled with the rxfb_string flag.

Searching for program files is a two-step process, in which the current

name extension (".rexx", if nothing else is specified in the message) is

attached to the filename, if not previously specified. If the search is

unsuccessful, the un-expanded name is used for a new search.

If the name contains a path, the program only looks there; otherwise the

current directory is searched first (possible with both name variations)

and then the REXX: directory. A command call with "RAM:t/examples"

would be searched for in RAM:t under the names "examples.rexx" and

then "examples". Without the path name, the search order would be

"examples.rexx", "examples", "REXXrexamples.rexx" and

"REXXrexamples".

If a program is still not found, one more possibility exists: If the message

path rm_PassPort was filled in, the message is simply passed to the port

specified there. This means that one command can be passed to several

594

10.2 Requirements for a Command Interface

programs, until one of them can do something with it. If there is a 0 the

message is answered with an error code 1 ("program not found").

10.2.4 Expanded RexxMsg Structure Areas

Entries in this area of the message can adjust various default settings. If

no settings are being changed, these can be left at zero.

Application programs should enter values for the appropriate name

extension and the name of their own ports. The name extension is useful

to identify macro programs for specific applications from other program

files and should be specific to each program. Entering the port for the

program is done so the addressed port is already set at the beginning of

the macro. Since one program can have several ports and the macro must

know where it should direct its commands, this is very important. Use the

application program name or an abbreviation of it.

PassPort

In the rm_PassPort slot, a further message port address can be entered.

The report is sent to this port if no corresponding program file is found.

This port should be a secured resource so that it cannot be removed until

the message has been passed. It does not have to be a public port; for

this reason it's not possible to make sure it's available before the message

is passed on.

Host address

An entry in the rm_CommAddr slot can indicate the ADDRESS setting

for an ARexx program that is to be started. The entry includes a pointer

to a string that closes with a zero and contains the name of the public

message port to which commands are to be directed. This option is very

important for application programs that allow work on several files

simultaneously and open a separate message port for each file. The name

of the correct ports are then passed to a macro when it's called. If such an

entry is not found, "REXX" is the default setting.

595

10. The ARexx Interface

File Extension

The entry for rm_FileExt changes the default value of \rexx" for file

name extensions. Application programs should enter a specific extension

here, common to all its macro programs. If it is a pointer to a string it is

terminated with a zero.

Input and output data flow

Default values for data input and output of an ARexx program are

directly taken from the procedure structure of the calling application

program, as it's a DOS procedure. One or both data streams can be

diverted by entering corresponding DOS file handles in the rmJStdin and

rm_JStdout slots. The data flow cannot be closed as long as the program

is running. Both values are entered directly in the procedure structure of

the calling program.

The output stream is simultaneously the pre-set target for trace output by

the program. If interactive tracing is used, the output stream should

always be defined to an interactive device like CON:, since user entry is

also expected.

If an ARexx program is called by an EXEC task, these entries are the

only way to control input and output.

10.2.5 Result Entries

A message that is started by an ARexx program is answered as soon as

it's completed. Two result entries then contain either error codes or a

possible result string.

If the primary result in rm_Resultl is zero, the program ran without errors

and the pointer in rm_Result2 indicates a result string, if requested. If the

primary result is not zero, two things may have happened: either the

secondary result is zero, meaning that the return code was passed with

"EXIT re", or it's "RETURN re". This can be an error code or a result; how

this return code is handled depends on the calling program. If the

secondary result is not zero, then the primary result is an error level

indicating the severity of the error and Result2 is an ARexx error code.

This should be reported to the user. In order to translate the error code to

an equivalent text, the function ErrorMsgO is provided.

596

70.2 Requirements for a Command Interface

Result strings are the responsibility of the calling program and must be

deleted with the DeleteArgstringO function when they are no longer

needed.

597

10. The ARexx Interface

10.3 The Rexx Master Procedure

All communication with the Rexx master procedure takes place using the

message structure previously described. It contains a command entry that

indicates which operation is to be carried out and entries for the

appropriate or necessary parameters. Messages received are immediately

handled, either being answered or, in the case of program calls, passed

on. The structure contains two result entries with which error codes or

result strings are transmitted. In the parameter portion of the structure,

either whole numbers of the "long" type or pointers to arg strings can be

entered.

10.3.1 Action Codes

Valid command codes are described here. The commands are listed in

order of their mnemonics, followed by the permitted flags. The resulting

code is formed by a logical OR of the action code and all necessary flags.

This code is entered in the rm_Action slot.

[RXADDCON [RXFB NONRET] |

Adds an entry to the cliplist. ARGO points to the name, ARG1 points to

the data and ARG2 contains the length of the data. This is not required

to be an arg string. The name should be a string that closes with a zero,

but the data itself can contain null bytes; its length is explicitly indicated.

IRXADDFH [RXFB NONRET] |

Adds a function environment to the library list. The first argument, ARGO,

points to a name string closed with a zero along with a port. The

argument ARG1 contains the search priority. A priority can be specified

as an integer ranging from -100 to 100. If a previous entry of the same

value exists, the message is returned with a warning and the appropriate

error code. No check is made to verify existence of the port.

598

103 The Rexx Master Procedure

IRXADDLIB [RXFB NONRET]

Adds an entry to the library list. The argument ARGO points to a name

string that ends with a zero, with the name of the function library or of

the function environment port. The search priority is set with ARG1, a

whole number between -100 and 100; the remaining area is reserved for

later expansion. The offset fof the "query" function, specified in ARG2

and ARG3, contains the version humber. If a previous entry of the same

name exists, the message is returned with a warning and the error code.

Otherwise, the new entry is accepted and the library or function

environment is available to ARexx programs. There is no check for actual

availability of the library, nor whether it can be opened.

RXCOMM [RXFBTOKEN] [RXFBJSTRINGJ [RXFB_RESULTJ

[RXFB NOIO]

Calls an ARexx program in command mode. ARGO must contain an arg

string pointer to the command string. The flag RXFBJTOKEN specifies

how the command string is to be parsed into several arguments. Or

RXFBJSTRING indicates that the command string itself contains the

program. This call usually does not deliver a result string;

RXFB_RESULT can be used to request one, but the calling program

must then make sure this string is deleted after use. The argument

RXFB_NOIO prevents the input and output of the called program from

being used by the caller.

RXFUNC [RXFB_RESULT] [RXFBJSTRING] [RXFB_NOIO]

Number args

Calls to a function. A pointer in ARGO refers to the function name. ARG1

to ARG15 point to arguments. All of them must be arg strings. The lowest

value byte of the action code is the number of arguments (not counting

the function name). For function calls, RXFB_RESULT is used to request

a result string, but this is not required. RXFBJSTRING shows whether

the entire command string contains the program. Finally, RXFB_NOIO

prevents the input and output of the called program from being used by

the caller.

599

10. The ARexx Interface

|RXREMCON[RXFB NONRET]

Removes an entry from the cliplist. ARGO is a string that closes with a

zero and points to the name to be removed. The cliplist is searched for an

entry with the desired name. If it's found, the entry is removed from the

list and the storage area it occupied is released. If the name is not found,

the message is returned with an error code.

[RXREMLIB [RXFB NONRET] |

Removes an entry from the library list. ARGO is a string that closes with a

zero and points to the name to be removed. The library list is searched for

an entry with the desired name, whether it's a function environment or a

system library. If it's found, the entry is removed from the list and the

storage area it occupied is released. If the name is not found, the message

is returned with an error code. The entry is not removed if an ARexx

program is in the process of calling it.

|RXTCCLS[RXFB NONRET] |

Closes the global Trace window. If no ARexx program is waiting for

entry from the Trace window, it's immediately closed; otherwise the

program waits until the active programs are no longer using it.

1RXTCOPN [RXFB NONRET] |

Opens the global Trace window. After this instruction, the Trace output

from all active ARexx programs is redirected to the Trace window. User

entry, for interactive tracing, is also expected there. There can only be

one open Trace window at a time; if it's already open, the message is

returned with a warning.

10.3.2 Action Code Control Flags

In addition to the command codes, individual bits can be inserted in the

action code to activate special functions. In the individual commands,

only certain flags are accepted, all others are ignored.

RXFB_NOIO With the command code RXCOMM or RXFUNC, this

flag prevents automatic transfer of input and output

data to the calling program.

600

103 The Rexx Master Procedure

RXFB_NONRET

Determines that the recipient will not respond to the

report. This also means that it doesn't matter to the

sender whether or not the operation was successful,

since there is no other way to inform it about success or

failure. The message is transferred of the receiver and

must be released by it with DeleteRexxMsg().

RXFBJRESULT

With RXCOMM or RXFUNC, this flag controls the

transfer of a result string. If the program or the function

ends with EXIT (or RETURN) and passes on an

expression, the calling program receives this expression

as an arg string. If this result is no longer needed, the

calling program must remove it with DeleteArgstring().

RXFBJSTRING

With RXCOMM or RXFUNC, this flag indicates that

ARGO does not contain a filename, but that a complete

ARexx program was passed (which then does not have

to be within a set of quotation marks).

RXFBJTOKEN

Demands, in connection with the command code

RXCOMM, that the data following the program name

not be passed as a complete argument, but instead

parsed into words and transformed into several

arguments. Areas enclosed in quotation marks are not

parsed, so that spaces are possible. At the end of the

command strings, no additional quotation marks are

necessary.

10.3.3 Managing the Results

The Rexx master procedure conforms to Amiga code conventions for the

result that's passed in rm_Resultl. This is an error level set for "warning"

at 5 (WARN) and, for more serious errors, reads as 10 (ERROR) or 20

(FAIL). The value in rm_Result2 is then either zero or an ARexx error

number, if an appropriate one is available.

601

10. The ARexx Interface

10.4 Functions in rexxsyslib.library

The ARexx interpreter is part of the Amiga operating system library

"rexxsyslib.library". Many of the functions in it are only used by the

interpreter and are not documented. Others can be of use to other

programs that use ARexx.

System library functions are meant to be called from assembly language

programs and generally only affect registers A0 and Al, as well as DO

and Dl. Many functions return values in several registers in order to

reduce code. In addition, the functions control the status register CCR, if

appropriate. Usually CCR refers to the value returned in DO.

The function offsets are defined in the file rexx/rxslib.i, included after

Kickstart 2.0 and should be linked in matching assembler source code. It

can also be called from C programs, if appropriate code is included in the

link.

Overview of available functions

I/O Functions

There are two groups of I/O functions: the low level uses DOS file

handles directly, while the higher level works with lists of I/O buffer

structures and supports logical filenames.

CloseF()

CreateDOSPkt()

DeleteDOSPktO

DOSRead()

DOSWriteO

ExistF()

FindDevice()

OpenF()

QueueF()

ReadF()

ReadStr()

SeekF()

StackF()

WriteFQ

close file buffer

create a DOS standard packet structure and

initialize it

delete a DOS standard packet structure

read from a DOS file

write to a DOS file

test whether a file exists

test whether a DOS device exists

open a file buffer

queue a line in a file buffer

read a character from a file buffer

read a string from a file buffer

moves the access pointer to a specific position

adds a line to the file buffer

writes characters to a file buffer

602

10A Functions in rexxsyslib.library

String Manipulation

ARexx treats all data as strings. These functions perform common string

operations.

CmpStringO

LengthArgstringO

StcToken()

StrcmpNO

StrcpyA()

StrcpyN()

StrcpyU()

StrflipN()

StrlenO

compare string structures

calculate the length of an argument string

select a token

compare strings

copy a string and convert to ASCII

copy a string

copy a string, converted to capital letters

transpose a string

determine the length of a string

Conversions

CVa2i()

CVc2x()

CVi2a()

CVi2arg()

CVi2az()

CVs2i()

CVx2c()

ErrorMsgO

ToUpperQ

convert ASCII to INT

convert CHAR to HEX or BIN

convert INT to ASCII

convert INT to an ASCII arg string

convert INT to ASCII with leading zeros

convert string structure to INT

convert HEX or BIN to CHAR

calculate error number from an error message

convert ASCII to capital letters

ARexx Resource Handling

AddClipNode()

AddRsrcNode()

ClearMem()

ClearRexxMsgO

ClosePublicPortO

CreateArgString()

CreateRexxMessage()

CurrentEnv()

DeleteArgstringO

DeleteRexxMsgO

FillRexxMsgO

FindRsrcNodeO

FreePortQ

FreeSpace()

GetSpace()

InitListQ

assign a clip node

assign a resource node

delete a storage area

delete arg strings from a message

release a port resource node

create an arg string structure

create an ARexx message structure

determine pointer position in the current

storage environment

release an arg string structure

release an ARexx message structure

fill arg strings in a Rexx message

find a resource node

close a message port

release internal storage

reserve internal storage

initialize a list header structure

603

10. The ARexx Interface

10.4.1

InitPort()

IsRexxMsgO

LengthArgstringO

ListNames()

LockRexxBase()

OpenPublicPort()

RemClipNode()

RemRsrcListO

RemRsrcNodeO

UnlockRexxBaseO

initialize a message port

check a message

calculate the length of an arg string

list node names in an arg string

protect a global resource from data write

Cdllo

create a port resource node

release a clip node

release a resource list

remove a resource node

release a resource

I/O Functions

[CloseFQ Closes file buffer!

Syntax: success = CloseFdoBuff)

DO A0

Releases the IoBuff structure and closes the matching

DOS file. An entire list of IoBuff structures can be

deleted with a single call to RemRsrcListO; each

individual structure is then processed with an automatic

CloseF().

CreateDOSPkt 0 Creates and initializes a DOS standard

packet structure

Syntax: packet = CreateDOSPkt()

DO A0

(CCR)

Reserves a storage area for a DOS standard packet

structure and initializes it by linking it to the EXEC

message and DOS packet sub-structures. A ReplyPort is

not automatically added, since entries are normally filled

in immediately before sending the message.

See also: DeleteDOSPktQ

604

10.4 Functions in rexxsyslib.library

IDeleteDOSPktQ

Syntax:

Releases a DOS standard packet structure |

See also:

DeleteDOSPkt(message)

AO

Releases a DOS standard packet structure, that has

normally been created earlier with a call to

CreateDOSPkt().

CreateDOSPktQ

IDOSReadQ Reads from a DOS file]

Syntax: count = DOSRead(filehandle,buffer,length)

DO AO Al DO

(CCR)

Reads characters from the DOS "filehandle" into the

"buffer". "Length" is the maximum number of characters

to be read, "count" returns the actual number of

characters read after the call, or -1, if an error was

encountered.

IDOSWriteQ Writes to a DOS file |

Syntax: count = DOSWrite(filehandle,buffer,length)

DO AO Al DO

(CCR)

Writes characters from "buffer" to the given DOS

filehandle. "Length" is the maximum number of

characters to be written, "count" returns the number of

characters actually written, or -1 if an error was

encountered.

| ExistFQ Tests whether a file exists |

Syntax: success = ExistF(filename)

DO AO

(CCR)

605

10. The ARexx Interface

IFindDeviceQ

Verifies whether a file exists by trying to receive a

Read-Lock for the file. The result determines whether

the operation was successful and the lock is released.

Tests whether a DOS device exists!

Syntax: device = FindDevice(devicename,type)

DO AO DO

AO

(CCR)

Searches in the DOS DeviceList for a device node of

equivalent type, whose name equals "devicename".

Available "types" are the constants DLT_DEVICE,

DLTJMRECTORY or DLT.VOLUME, that are defined

in DOS includes. The name is converted to capital letters

before the comparison. The argument "device" is a

pointer to the device node, or 0 if nothing was found.

IQpenFQ Opens a file buffer!

Syntax: loBuff = OpenF(list,filename,mode,logical)

DO AO Al DO Dl

AO

(CCR)

Attempts to open a DOS file. The parameter "mode" is

one of the constants RXIO_READ, RXIO_WRITE or

RXIO_APPEND, that are defined in ARexx Includes. If

it's successful, an IoBuff structure is created and added

to the "list". The "list" must be a pointer to a regular

EXEC list header. The argument "logical" is a pointer to

the logical filename, or 0 if such a value is not needed.

See also: CloseFQ

606

10.4 Functions in rexxsyslib.library

IQueueFQ

IReadFQ

[ReadStrQ

Adds a line to a tile butter |

Syntax: count = QueueFdOBuff,buffer, length)

DO AO Al DO

Adds a line to a data stream that belongs to the given

IoBuff structure. This data stream must be directed by a

driver that recognizes the ACTION_QUEUE command.

The parameter "buffer" is a pointer to the data to be

added and "length" indicates the number of bytes to be

added. The "count" indicates how many characters

were actually transferred, or shows -1 if an error was

encountered.

See also: StackFQ

Reads characters from a file buffer |

Syntax: count = ReadFdoBuf f, buffer, length)

DO AO Al DO

(CCR)

Reads characters from a file that belongs to the IoBuff

structure. The value in "buffer" is a pointer to the target

for the data to be read and "length" indicates the

number of characters to be read. The "count" reports

how many characters were actually transferred.

Reads a string from a file buffer!

Syntax: (count,pointer) = ReadStr(IoBuff,buffer,length)

DO Al AO Al DO

Reads characters from a file that belongs to the IoBuff

structure until a line-feed (ASCII 10) occurs. The line

feed characters are discarded. "Buffer" is a pointer to

the target of the data read and "length" is the maximum

number of data to be read. The "count" relays how

many characters are actually taken, or -1 if an error was

encountered.

607

10. The ARexx Interface

Moves the access pointer to a specific location |

Syntax: position = SeekFdoBuff, offset, anchor)

DO AO DO DO

Moves the access pointer to a specific location,

indicated by "offset", a relative byte position, given in

reference to the "anchor" point. It can be set using

"anchor" to the beginning (-1), the current position (0)

or to the end of the file (1). The "position" returned is

the new position in reference to the beginning of the

file.

IStackFQ

I Writer ()

Adds a line to the file buffer]

Syntax: count = stackF(IoBuff,buffer,length)

DO AO Al DO

Adds a line to the data stream belonging to the given

IoBuff structure. This data stream must be controlled by

a driver that can process an ACTIONLSTACK

command. The "buffer" points to the data location, and

"length" is the number of bytes to be added. "Count"

reports how many characters were actually transferred

or appears as -1 if an error was encountered.

Writes characters into a file bufferl

Syntax: count = WriteF(IoBuff,buffer,length)

DO AO Al DO

(CCR)

Writes characters to the file that belongs to the IoBuff

structure. "Buffer" is a pointer to the source for the data

to be written and "length" is the number of data. The

"count" indicates how many characters were actually

transferred or reads as -1 in the case of an error.

608

10.4 Functions in rexxsyslib.library

10.4.2 String Manipulation

ARexx treats all data as strings. These functions fulfill the more common

string operations.

ICmpStringQ Compares string structures!

Syntax: test = CmpString(ssl,ss2)

DO AO Al

(CCR)

Compares two ARexx string structures whose pointers

form the arguments. The structures also contain the

length and hash value of the strings; if there is no

agreement in these, the comparison ends. The function

returns -1 (TRUE) if they agree or otherwise a 0

(FALSE).

lengthargstringO Calculates the length of an

ARexx arg string!

Syntax: length = LengthArgstring(argptr)

DO AO

Determines the length of the argument string at the

given address.

IStcTokenQ Pulls out one token |

Syntax: (quote,length,scan,token) = StcToken(string)

DO Dl AO Al AO

Searches a string for the next token, delimited by an

empty space, and returns a pointer to the first character

of this token. The value "quote" contains the quotation

mark character (" or ') or 0; spaces found within

quotation marks are not located with this function.

"Length" is the length of the token found, including

quotation marks, if applicable. "Scan" is a pointer to the

position after the token that was found, which prepares

the following call.

609

10. The ARexx Interface

IMrcmpNQ

IMrcpyAQ

IStrcpyNQ

Compares strings |

Syntax: test = StrcmpN(stringl,string2, length)

DO AO Al DO

(CCR)

The strings at addresses "string 1" and "string2" are

compared character by character, until "length" is

reached or a deviation is recognized. "Test" is -1 if the

first string was shorter, 1 if it was larger, or 0 if the two

strings were exactly equal.

Copies a string and converts to ASCII |

Syntax: hash = StrcpyA(destination,source,length)

DO AO Al DO

Copies the string at the location "source" to

"destination". In the process, the data's MSB is deleted

and projected onto the lower 128 characters in the

ASCII table. The string can contain "00"x, which is why

"length" is necessary (USHORT). The result is the hash

byte of the copied string.

Copies a string!

Syntax: hash = StrcpyN(destination,source,length)

DO AO Al DO

Copies the string found at "source" to "destination".

The string can contain zeros "00"x, so "length" is

necessary (USHORT). The result is the hash byte of the

copied string.

610

IStrflipNQ

IStrlenQ

10.4 Functions in rexxsyslib.library

IStrcpyUQ Copies a string and converts to capital letters!

Syntax: hash = StrcpyU(destination,source,length)

DO AO Al DO

Copies the string found at "source" to "destination".

The string can contain zeros "00"x, so "length" is

necessary (USHORT). The result is the hash byte of the

copied string.

Reverses a string!

Syntax: StrflipN(string,length)

AO DO

Transposes the order of characters in a string at the

given storage location.

Determines the length of a string!

Syntax: length = Strlen(string)

DO AO

(CCR)

Determines the number the characters in the string

(closed with "00"x) at the given storage location.

10.4.3 Conversion Functions in ARexx

!CVa2iQ Converts ASCII to IN 11

Syntax: (digits, value)

Dl DO

CVa2i(buffer)

AO

Converts from ASCII symbols at the given storage

location to an equivalent 4-byte integer value (LONG).

The function reads ASCII characters until a character

appears that is not a number or until an overflow

occurs. The function returns the integer value and the

number of ASCII characters read.

611

10. The ARexx Interface

|CVc2x()

|CVi2a()

|CVi2arg()

Converts CHAR to HEX or BIN|

Syntax: error = CVc2x(outbuff,string,length,mode)

DO AO Al Dl DO

Changes "length" number of bytes from the storage

location "string" to a string of equivalent hexadecimal

or binary characters. The "mode" is either -1 for hex

conversion or 0 for binary conversion.

Converts INT to ASCII |

Syntax: (length,pointer) = CVi2a(buffer,value,digits)

DO AO AO DO Dl

Changes the prefixed integer value in DO to the

corresponding decimal number. The "buffer" is the

target for the resulting string and "digits" is the

maximum number of characters to be written. The

function returns "length", the actual number of

characters copied, and "pointer" the new "buffer"

pointer.

Converts INT to ASCII arg string |

Syntax: argstring = CVi2arg(value)

DO DO

AO

(CCR)

Changes the "LONG" value in DO to a string and

creates a Rexx arg structure. The return value is a

pointer to the arg string structure; or 0 if an error

occurred. The structure created with this manipulation

can be released with DeleteArgstringO.

612

10A Functions in rexxsyslib.library

|CVi2az()

|CVs2i()

|CVx2c()

Converts INT with leading zeros to ASCII]

Syntax: (length,pointer) = CVi2az(buffer,value,digits)

DO AO AO DO Dl

Changes the prefixed integer value in DO to the

corresponding decimal number. The "buffer" is the

target for the resulting string and "digits" is the

maximum number of characters to be written. If

necessary, zeros are added to the left in order to reach

the number of characters to be written. The function

returns "length", the actual number of characters copied,

and "pointer" the new "buffer" pointer.

Converts string structure to IN 11

Syntax: (error,value) = CVs2i(ss)

DO Dl AO

"ss" is a pointer to a string structure. The function

returns the value of the string as "LONG" in Dl. "Error"

is 47 if an error occurs; this is the code for "arithmetic

conversion error".

Converts HEX or BIN to CHAR|

Syntax: error = CVx2c(outbuff,string,length,mode)

DO AO Al DO Dl

Changes "string", which must be a valid hexadecimal or

binary number to the corresponding character. If

"mode" is -1, hex is to be expected; or, if it's 0, binary

numbers. There can be spaces, but only at the byte

limits. "Length" indicates the number of bytes to be

written to "outbuff. "Error" is 47 if an error occurs; this

is the error code for "arithmetic conversion error".

|ErrorMsg() Calculates the error message from

the error number

Syntax: (bool,ss)

DO AO

ErrorMsg(code)

DO

613

10. The ARexx Interface

Returns an English error message for the given error

code as a pointer to a string structure. "Bool" is -1 if

"code" is not a valid ARexx error code; otherwise it's a

0. Undefined error codes return the ominous

"undiagnosed internal error".

[ToUpperQ Converts ASCII to capital letters |

Syntax: upper = ToUpper(char)

DO DO

Converts ASCII symbols to capital letters, working only with DO.

10.4.4 ARexx Resource Handling

I AddClipNodeQ Sets up a clip node]

Syntax: node = AddClipNode(list,name,length,value)

DO A0 Al DO Dl

AO

(CCR)

Creates a clip node and binds it to the list specified with

the header "list". "Name" is a pointer to a name string

that ends with zero; "value" is a pointer to the storage

area. The result is a pointer to the newly created node,

or zero if something went wrong.

The RemClipNode() function deletes a node created

with this function. Clip nodes can be held in a resource

list, mixed with other nodes that are all dissolved with

RemRsrcList().

lAddRsrcNodeQ Adds a resource nodel

Syntax: node = AddRsrcNode (list, name, length)

AO AO Al DO

AO

(CCR)

Creates an ARexxRsrc structure and binds it to the list

indicated by the header "list". "Name" is a pointer to a

614

10.4 Functions in rexxsyslib.library

string closed with a zero, which is set up as a copy of

the NodeName slot in the structure. The "length" is the

size of the entire node entered into the structure so that

it can be removed later with RemRsrcNode(). The result

is a pointer to the newly created node, or zero if an error

occurred.

IClearMemQ Deletes a storage area]

Syntax: clearMem(address,length)

AO DO

Deletes a storage area from "address" and "length" is

number of bytes. The value for "address" must be even

and "length" must be a multiple of four. AO is preserved.

IClearRexxMsgQ Deletes arg strings from a messagel

Syntax: clearRexxMsg (msgptr, count)

AO DO

Releases one or several arg strings from a Rexx message

and deletes their entries. "Count" is the number of

entries to be released and can be set to values smaller

than 16 in order to save some entries for your own use.

IClosePublicPortQ Releases a port resource node|

Syntax: closePublicPort(node)

AO

Closes a message port and releases its resource node

that must have been created with OpenPublicPort().

ICreateArgStringQ Creates an arg string structure!

Syntax: argstring = CreateArgString(string,length)

DO AO DO

AO

(CCR)

615

10. The ARexx Interface

Generates an ARexx arg structure and copies the given

string into it The "argstring" is a pointer to the string

buffer of the structure and can be treated like a normal

string pointer, since it also contains information about

string length, structure length, and the hash value with

negative offsets in front of the string.

I CreateRexxMessageQ Creates an ARexx message structure]

msgptr = CreateRexxMessage(replyport, extension,host)

DO AO Al DO

AO

(CCR)

Generates an ARexx message structure that is a normal

EXEC message structure with additional entries for

function arguments and return values. The "replyport" is

a pointer to a public or private message port and must

be specified so the message can be answered. The

"extension" and "host" are pointers to strings, values for

file recognition and the address of the external
environment.

Additional entries in the structure can be inserted later.

The interpreter only alters the entries for resultl and
result2.

CurrentEnv() Calculates a pointer to the current

active environment

Syntax: envptr = CurrentEnv(rxtptr)

DO AO

Returns a pointer to the current storage environment

that belongs to the given ARexx program. The value

"rxptr" is a pointer to the Rexx task structure of the

corresponding program and can, for example, be

calculated from a message that was sent by this
program.

616

10.4 Functions in rexxsyslib.library

IDeleteArgstringQ Releases an arg string structure |

Syntax: DeleteArgstring(argstring)

AO

Deletes an ARexx arg structure. The structure contains

its own length with a negative offset arg string pointer.

| DeleteRexxMsgQ Deletes an ARexx message structure |

Syntax: DeleteRexxMsg(packet)

AO

Releases an ARexx message structure. The value

contained in the structure is used to determine its size.

All arg strings in it must already have been released

before the call to this function.

IFillRexxMsgQ Fills in arg strings in a Rexx message|

Syntax: bool = FillRexxMsg(msgptr, count, mask)

DO AO DO Dl

(CCR)

Converts up to 16 arguments and fills them into the

Rexx message "msgptr". The structure must already be

initialized and the argument slots must either be pointers

to strings closed with zeros or integer values. The

"count" indicates the number of argument slots to be

converted (usually all of them, except special purpose

slots); the bits, 0-15, in "mask" determine if a pointer (0)

or an integer (1) is in the slot. The result is -1 if all

arguments were successfully converted. If an error

occurred, all previously installed arg strings are released

and 0 is returned.

iFindRsrcNodeQ Finds a resource nodel

Syntax: node = FindRsrcNode(list,name,type)

DO AO Al DO

AO

(CCR)

617

10, The ARexx Interface

|rreerort(J

Searches in the given "list" for the first node with the

desired "name". The value of "list" must be a pointer to

an EXEC list header and "name" must be a string that

ends with a zero. If "type" is 0, not all nodes are

examined, only those of the given type. The result is a

pointer to the node, or 0 if the name was not found.

Closes a message port]

Syntax: FreePort(port)

A0

Releases all signal bits that belong to a port and closes

it. A port must be closed by the same task that opened

it, since the arrangement of signal bits is task specific

and only available in the task control block. The storage

area that belongs to the port is not released.

|FreeSpace() Releases internal storage area|

Syntax: FreeSpace(envptr,block,length)

A0 Al DO

Returns storage areas reserved with GetSpace() to the

interpreter. The "envptr" points to the current disk

storage environment and can be queried with

CurrentEnv().

IGetSpaceQ Reserves internal storage area]

Syntax: block = GetSpace(envptr,length)

DO A0 DO

A0

(CCR)

Reserves a storage area of the interpreter. This storage

area is managed by the interpreter and returned to the

operating system at the end of the program. "Envptr"

points to the current disk storage environment for the
program.

618

10A Functions in rexxsyslib.library

llnitListQ

llnitPortQ

This function is also used by the interpreter to obtain

small storage areas for string contents; it's always useful

for small storage areas that are only needed until the

end of the program. The programmer does not have to

worry about releasing these storage areas until they get

too large.

Builds a list header structure!

Syntax: initList(list)

AO

Initializes an EXEC list header structure.

Initializes a message port|

Syntax: (signal,port) = InitPort(port,name)

DO Al AO Al

Initializes a message port structure that was previously

created. The task ID of the calling program is used in the

MPJSIGTASK slot and a signal bit is used. "Signal" is

the used bit, or -1 if none were free. The "port" is a

pointer to the message port structure and "name" is a

pointer to a string that is to be used in the MP_NAME

slot. The port address is after the call to Al, which is

practical if you want to execute the EXEC function

AddPort() in order to make the port public.

See also: FreePortQ

lIsRexxMsgQ Tests a message!

Syntax: bool = isRexxMsg(msgptr)

DO AO

Determines if the message that "msgptr" is pointing to is

actually a Rexx message. This is determined by its name:

Rexxmessages have a pointer to a hard-coded string

containing "REXX" in the LN_NAME slot. The

returned value is -1 if it's a Rexx message, otherwise 0.

619

10. The ARexx Interface

|lsSymbol() Is the string a valid symbol? |

Syntax: (code,length) = IsSymbol(string)

DO Dl AO

Investigates the given string. If it's a valid ARexx

symbol, the corresponding code is returned in DO, or 0 is

returned if the string began with an invalid character.

The value "length" returns the length of the symbols

found.

| LengthArgstnngQ Calculates the length of an arg string]

Syntax: length = LengthArgstring(argptr)

DO AO

This is the recommended method to determine the

length of an arg string. "Argptr" points to the arg string

structure; "length" is the length of the strings in it.

IListNamesQ Lists node names in an arg string]

Syntax: argstring = ListNames(list,separator)

DO AO DO

AO

(GCR)

Goes through the given list and copies all nodes in it to

an arg string structure. The "list" must point to an EXEC

list header. The "separator" is an ASCII character

inserted between the individual names. While the list is

investigated, task switching is shut off with Forbid().

This ensures control of the structures, even for global

and system lists. Arg string structures can be released

with DeleteArgstringO.

LockRexxBaseQ Protects a global resource from

data write calls

Syntax: LockRexxBase(resource)

DO

620

10A Functions in rexxsyslib.library

Protects the given resource from any data write access.

"Resource" is a constant that shows what lock is

requested:

RRT ANY

RRT LIB

RRT.PORT

RRT FILE

RRT HOST

RRT CLIP

0

1

2

3

4

5

All

Function libraries

Public ports

File 10 Buffer (IOBuff)

External function environment

The Clip list

See also:

Writing access to global resources are normally handled

via the Rexx master procedure which runs with higher

priority in order to ensure complete control. This is

another reason not to run ARexx programs with higher

priority than the Rexx master procedure.

UnlockRexxBase()

IQpenPublicPortQ Creates a port resource node!

Syntax: node = OpenPublicPort(list,name)

DO AO Al

Al

(CCR)

Opens a public message port with the name given in

"name" and binds it to the list shown by the header in

"list". The message port is also added to the system list

of ports. See also: ClosePublicPortQ.

IRemClipNodeO Releases a clip nodej

Syntax: RemClipNode(node)

AO

Cuts the given clip node from the clip list and releases

the storage area assigned to it. This function is

automatically carried out by RemRsrcNode() and

RemRsrcListO for a clip node.

See also: AddClipNodeQ, RemRsrcNodeQ, RemRsrcListO

621

10. The ARexx Interface

IKemKsrcListU Releases a resource list!

Syntax: RemRsrcList(list)

AO

Releases all nodes in the given list, all of which must be

RexxRsrc structures. For each node, the "auto-delete"

function is called.

IRemRsrcNodeQ Removes a resource node |

Syntax: RemRsrcNode(node)

AO

Removes the given node from its list. If an "auto-delete"

function is specified, it's executed first. The name string

in it is also released.

lUnlockRexxbaseQ Releases a global resourcel

Syntax: UnlockRexxBase(resource)

DO

Releases the given resource. Each call to

LockRexxBase() should be followed by this

counterpart. The definition of the resource constants is

explained in the section on LockRexxBaseQ.

622

70.5 The RexxBase Lists

10.5 The RexxBase Lists

All structures managed by the Rexx master procedure are noted in the

basic structure of the ARexx system library and can be found by other

programs. The task list in RexxBase contains a pointer to the global

structures for all currently running ARexx programs. Individual task

structures are linked by the message ports in them.

The Rexx task structure is the global data structure for an ARexx

program and its initial storage environment. All other storage areas are

added to the lists contained here. By doing this, the internal data of each

ARexx program can be reached using the RexxBase pointer.

There are two functions of the ARexx system library, LockRexxBase()

and UnlockRexxBase(). The base structure should always be protected

from access with a lock before looking at a list and reading data.

Usually, it's not necessary to access these structures directly, since there

are corresponding functions in the ARexx system library for all necessary

operations which should be used for that purpose. Direct control is not

recommended.

623

10, The ARexx Interface

10.6 ARexx Error Messages

If the ARexx interpreter discovers a program error, an error code is

returned indicating the nature of the problem. Normally an error code

displays the program line in which it was encountered, and a short

descriptive error message. If the SYNTAX interrupt was not enabled, the

program ends. The SYNTAX interrupt can catch most errors so that the

program itself can take counter-measures. Some errors still develop in

areas outside of the ARexx jurisdiction and cannot be caught.

There is a value attached to each error code showing the error level that's

returned as the primary result. The error code itself appears as the

secondary result.

Error code: 1 Error level: 5 Message: Program not

found

The given program could not be found or is not an ARexx program.

ARexx programs must always start with "/*". This cannot be trapped

with the SYNTAX interrupt.

Error code: 2 Error level: 10 Message: Execution

halted

The program ended because a [Ctrl) +(£) break or an external HALT

request was given. This error can be caught with the HALT interrupt.

Error code: 3 Error level: 20 Message: Insufficient

memory

The interpreter was unable to receive enough memory space for an

operation. Since all operations of the interpreter usually need some

storage access, this error cannot usually be caught with the SYNTAX

interrupt.

624

70.6 ARexx Error Messages

I Error code: 4 Error level: 10 Message: Invalid I

character!

Invalid characters were located in the source code. Control codes and

other special characters can only be used in hexadecimal or binary

strings within a program. This error cannot be caught with the SYNTAX

interrupt.

I Error code: 5 Error level: 10 Message: Unmatched I

I quote!

A string delimiter (' or") is omitted. Each string must be enclosed with the

same character with which it began. This error cannot be caught with the

SYNTAX interrupt.

[Error code: 6 Error level: 10 Message: UnterminatedI

| comment!

The characters ("*/") that indicate the end of a comment, were not found.

Please note that comments can be nested, so every "/*" must be followed

by a "*/". This error cannot be caught with the SYNTAX interrupt.

I Error code: 7 Error level: 10 Message: Clause tool

| long!

A clause was too long to be written to the interpreter's internal interim

storage area. The maximum length (without multiple spaces and

commentaries) is 800 characters. The questionable clause should be

divided into two or more parts. This error cannot be caught with the

SYNTAX interrupt.

| Error code: 8 Error level: 10 Message: Invalid token]

An invalid token was encountered or a clause could not be classified.

This error cannot be caught with the SYNTAX interrupt.

Error code: 9 Error level: 10 Message: Symbol orl
string too long!

An attempt was made to generate a string with more than 65,535

characters.

625

10. The ARexx Interface

626

Error code: 10 Error level: 10 Message: Invalid message

packet

In a message received by the Rexx master procedure, an invalid action

code was encountered. It was returned with no changes. This error is

externally created and cannot be caught with the SYNTAX interrupt.

Error code: 11 Error level: 10 Message: Command

string error

A command string was incorrect. This error is externally created and

cannot be caught with the SYNTAX interrupt.

Error code: 12 Error level: 10 Message: Error return

from function

An external function returned an error code not equal to zero. It's

possible that the parameters were not correctly passed.

Error code: 13 Error level: 10 Message: Host

environment not found

The message port indicated by an address was not found. If the name is

correctly written (including capitalization), is the desired function

environment active?

Error code: 14 Error level: 10 Message: Requested

library not found

The program was not able to open a library entered in the library list. If

ADDLIB() was called with the correct name, was the correct version

number called? Is the library in the LIBS: directory?

Error code: 15 Error level: 10 Message: Function not

found

A function was called that was not in any of the libraries added with

ADDLIB() and also not found as an external program. Is the spelling

correct? Was the library bound with ADDLIBQ to the list?

10.6 ARexx Error Messages

Error code: 16 Error level: 10 Message: Function did]

not return value

A function was completed without delivering a result string and without

encountering an error. Was the function correctly programmed? If it was

accessed with CALL this can be avoided.

I Error code: 17 Error level: 10 Message: Wrong number I

I of arguments I

A function expecting more or fewer arguments was called. This error also

occurs if a built-in or an external function is called with more arguments

than the message can contain (max. 15).

Error code: 18 Error level: 10 Message: Invalid

argument to function

An argument that does not agree with the function was passed, or a

necessary argument was omitted.

Error code: 19 Error level: 10 Message: Invalid I

procedure

A procedure call occurred at the wrong location. Either it was not in an

internal function, or it occurred twice in a function.

Error code: 20 Error level: 10 Message: Unexpected

THEN or WHEN

A THEN or WHEN command occurred at the wrong location. The

WHEN command is only valid within the area of a SELECT command

and THEN must directly follow an IF or WHEN.

IError code: 21 Error level: 10 Message: Unexpected!

ELSE or OTHERWISE!

An ELSE or OTHERWISE command occurred at the wrong location. An

OTHERWISE command is only valid within the area of a SELECT

command. ELSE is only available after a THEN branch of an IF

command.

627

10. The ARexx Interface

IError code: 22 Error level: 10 Message: Unexpected!

BREAK, LEAVE, or ITERATE!

The BREAK command is only valid in a DO group or in commands that

are executed with INTERPRET. Commands to LEAVE or ITERATE are

only valid in a DO loop.

628

Error code: 23 Error level: 10 Message: Invalid I

statement in SELECT

In the area of a SELECT command, an illegal construction was

encountered. Only WHEN-THEN and OTHERWISE constructions are

valid.

Error code: 24 Error level: 10 Message: Missing or I

multiple THEN I

A THEN clause was expected, but not found, or a THEN appeared

without IF or WHEN.

[Error code: 25 Error level: 10 Message: Missing

OTHERWISE

No WHEN clause in the area of a SELECT command was successful and

no OTHERWISE was found.

Error code: 26 Error level: 10 Message: Missing or I

unexpected END

The source text ended without closing a DO or SELECT group with

END, or an END clause was found outside such a group.

I Error code: 27 Error level: 10 Message: Symbol I

I mismatch!

The symbol specified with an END, ITERATE, or LEAVE command did

not agree with the index variable of the appropriate DO group.

10.6 ARexx Error Messages

Error code: 28 Error level: 10 Message: Invalid DO I

syntax!

The interpreter found an error in a DO command: If TO or BY are

specified, the index variable must be initialized and the expression after

FOR must evaluate to a positive integer.

I Error code: 29 Error level: 10 Message: Incomplete IF I

or SELECTl

An IF or SELECT group ended before all of the necessary constructions

were encountered. Perhaps a THEN, ELSE, or OTHERWISE construction

is omitted.

Error code: 30 Error level: 10 Message: Label not I

found

A jump marker specified in a SIGNAL command or searched for with a

SIGNAL interrupt, could not be found in the source code. Interactive

commands or marks established in an interpreter command are usually

not found.

Error code: 31 Error level: 10 Message: Symbol

expected

At a location where only a symbol is appropriate, an invalid token was

found. The commands DROP, END, LEAVE, ITERATE and UPPER can

only be followed by symbols and create this message if anything but a

symbol is found or a necessary symbol is omitted.

I Error code: 32 Error level: 10 Message: Symbol or I

string expected |

At a location where only a symbol or string is permitted, an invalid token

was found.

Error code: 33 Error level: 10 Message: Invalid I

keyword)

A symbol in a command was recognized as a key word but is not valid at

this location.

629

70. The ARexx Interface

I Error code: 34 Error level: 10 Message: Required I

keyword missing |

A certain keyword was expected by a command and was not found. This

message occurs if none of the keywords for the individual interrupts

(such as SYNTAX) follows a SIGNAL ON command.

Error code: 35 Error level: 10 Message: Extraneous I

characters

A seemingly correct command was executed but further characters were

found following it.

I Error code: 36 Error level: 10 Message: Keyword I

conflict |

Two mutually exclusive keywords occurred in the same command or a

key word was encountered twice.

Error code: 37 Error level: 10 Message: Invalid

template

The template specified in an ARG, PARSE, or PULL command was

invalid.

IError code: 38 Error level: 10 Message: Invalid TRACE I

request!

The keyword for a TRACE command or an argument for the TRACE()

function was not valid.

I Error code: 39 Error level: 10 Message: Uninitialized!

variable |

An attempt was made to read an uninitialized variable. This message

appears only when the NOVALUE interrupt is enabled.

IError code: 40 Error level: 10 Message: Invalid I

variable name)

An attempt was made to assign a value to a constant.

630

70.6 ARexx Error Messages

Error code: 41 Error level: 10 Message: Invalid

expression

During an evaluation of an expression, an error occurred. Possibly an

operator was not used correctly or invalid characters appeared. This error

only appears when an expression is analyzed; expressions that are

jumped over are not checked.

I" Error code: 42 Error level: 10 Message: Unbalanced I

parentheses!

An expression was encountered that did not have the same number of

open and close parentheses marks.

I Error code: 43 Error level: 10 Message: Nesting limit]

I exceeded!

The number of nested sub-expressions was higher than 32. The

expression should be divided into several partial expressions.

I Error code: 44 Error level: 10 Message: Invalid I

| expression result!

The result of an expression was not valid. This error is created if an

expression in a DO command does not lead to a numeric result.

I Error code: 45 Error level: 10 Message: Expression I

required!

An expression is omitted in a necessary location. An example is that after

SIGNAL an expression must follow, unless ON or OFF was specified.

I" Error code: 46 Error level: 10 Message: Boolean value I

notOorll

The result of an expression should be a Boolean result, but a value that is

not 0 or 1 occurred.

631

10. The ARexx Interface

Error code: 47 Error level: 10 Message: Arithmetic I

conversion error

During an operation that requires numeric operands, a non-numeric

operand was encountered. A hex or binary string with errors also leads

to this error message.

I Error code: 48 Error level: 10 Message: Invalid!

operand |

An operation was attempted with an invalid operand. This error occurs

when dividing by 0 or when trying to display fractional Exponents (that

are not supported by ARexx).

632

Part3

A3000 Intern

11. The A3000 Hardware

11. The A3000 Hardware

The Amiga 3000 is the first completely new model Commodore has

introduced since the Amiga 1000. Unlike the A500 and A2000, which

hardly differed from their predecessor technologically, the A3000 is a

truly new development, capable of holding its own against the Intel

80386-based IBM-compatible personal computers; in some areas it even

surpasses them.

The most important innovation is the departure from the 68000 as central

processor. Powerful as this chip was in comparison to its counterpart,

Intel's 80286, a databus width of 32 bits has since become the standard.

In fact, the first 64-bit microprocessor has already appeared — the 80860

introduced in 1989 by Intel.

By its decision to base the new Amiga on the 68030 processor,

Commodore has achieved the best possible compromise between price,

performance and, perhaps most importantly, compatibility. Commodore's

software developers don't have to worry about compatibility problems

between the 68000 and the 68030.

It is safe to assume that the majority of existing software will run on the

new machine. Any problems are more likely to be related to the new

Kickstart 2.0 operating system than to the new hardware, and

fortunately the A3000 will also run Kickstart 1.3.

"Dirty" programs unable to cope with the 6- to 8-fold increase in

computing speed can always turn to the GURU generator. This same

problem presented itself earlier, however, with the widespread use of

68020 and 68030 cards in the A2000. So programmers had enough time,

before the A3000 was introduced, to correct bad programming habits

learned on the C64 and adapt their software to the new generation of

computers.

Linked with the new processor are the FPU 68881 and 68882 (in the 16

and 25 MHz models, respectively). These floating point processors speed

mathematical routines and give the A3000 a "computing" power (in the

truest sense of the word) that's suitable for a scientific workstation.

635

11. The A3000 Hardware

Another important improvement over the A2000 is the built-in hard disk

and its SCSI bus, which also enables the addition of CD-ROM or tape

drives. The 32-bit SCSI chip, developed by Commodore specifically for

this purpose, offers adequate speed required for the operation of modern

storage media.

The hard disk itself comes from Quantum. This company has succeeded

in producing a drive that is not only fast and reliable, but also quiet. Any

user who has dealt with the grinding, screeching or whistling of less

adeptly engineered examples of mass storage technology will certainly

appreciate this. (Unfortunately, the A3000 still has the old vacuum

cleaner noise, although it does run at a whisper compared to the A2000.)

Technically speaking, little has changed in the area of graphics. However,

there is one exception so crucial that it could be considered the A3000's

single most important innovation. This is the flicker fixer, which alleviates

the flickering that may occur when a screen is displayed in interlace

mode by temporarily storing the individual half-pictures (frames). Many

A2000 owners have purchased such a flicker fixer because it

significantly improves the display quality.

Moreover, integration of the Enhanced Chip Set (ECS), which consists

of a substantially improved Agnus chip and a new Denise, produces,

even without the flicker fixer, a 640 * 480 screen with a refresh rate of

60 Hz, although this is with a maximum of only four colors.

All the new features mentioned above are explained in detail in the

following sections, both from a hardware standpoint and from the

programmers point of view. The familiar A2000 features that have not

changed in the A3000 are also discussed in detail.

636

11.1 Processor Generations

11.1 Processor Generations

The heart of the A3000, the 68030 microprocessor, is the product of a

continuing development process that began with the 68000 in 1979. So

far this process has culminated in the 68040 and further advances are

sure to come. Motorola has succeeded (or nearly so, at least) in

maintaining software compatibility across this entire line of processors.

The performance of the new models isn't significantly affected when

running old programs. This is definitely a worthwhile accomplishment.

Motorola's competitor, Intel, hasn't been able to do the same with the 86

processor series for the PC.

The Forefather: MC 68000

When it was introduced, the MC 68000 was a pioneering product. With

astounding foresight, its developers gave it attributes that would make it

the forefather of an entire processor family. Specifically, these attributes

are:

A universal register structure

The entire 68000 family has eight data registers and eight address

registers, all with a width of 32 bits. Except for the distinction between

address and data registers, there is no connection between a register and

the functions for which it may be used. This differs many other

processors, where, for example, an accumulator is designated specifically

for computation results, or an index register specifically for table

addressing. With such a design, moving data from one register to another

is largely eliminated. The greater register size also makes it unnecessary,

in computations with integers, to divide a value over more than one

register. Almost all computations can be executed in a single instruction.

This structure was retained with the 68020, since it is fully adequate for a

true 32-bit processor also.

Large linear address space

Although the address space of the 68000 is only 16 Megabytes, all its

address registers are 32 bits wide. There is no addressing limitation, so

that accommodating the 68020's address space of four Gigabytes (an

amount still generous by today's standards) was a simple matter of

bringing in eight more address lines. A data field can be quickly accessed

637

11. The A3000 Hardware

by loading any address register with the desired base address and

referencing the data by means of a 16-bit displacement value added to

the base. This saves time because only 16 bits, not 32, must be loaded

from memory. This scheme combines the advantages of a large linear

(non-segmented) address space and quick access to contiguous data.

Many types of addressing

Besides the "normal" types of addressing, such as absolute, indirect or

immediate, handled by almost all processors, the 68000 is capable of

indirect addressing with displacement as well as PC-relative addressing,

in which data is referenced relative to an instruction address. This also

saves time, since again not all 32 address bits are required. Another type

of addressing that distinguishes the 68000 from its competitors is

postincrement/predecrement addressing. In this method, automatic

increasing or decreasing of addresses with each data access allows any

address register to function as a stack. When processing sequential data

fields with postincrement or predecrement addressing, you save an

instruction by not having to compute the next address.

Other types of addressing were also introduced with the 68020. These

are primarily capable of speeding up programs written, for example, in C,

with its improved compilers. A list of all the types of addressing is located

in Section 11.2.

Team performance: 68020, FPU & MMU

Besides the widening of the address and data buses to their current 32

bits, another improvement in the 68020 was the addition of a universal

coprocessor interface and the accompanying coprocessor, the FPU

(Floating Point Unit) 68881. The 68020 completely takes over the

addressing of instructions and data for its coprocessor. Machine-

language instructions for the FPU are simply mixed with those of the

main processor. From a software standpoint, the 68020 forms a closed

unit with its coprocessor. The exact design and programming of this chip

are described in more detail later in this chapter. The 68020/30 + FPU

team is adept at screen processing and other computation-intensive

tasks.

The 68020 system has another coprocessor in the form of the Paged

Memory Management Unit (PMMU). This unit is responsible for

controlling memory access of the various processes by creating a virtual

638

11.1 Processor Generations

address space for each one. You're probably already familiar with the

GURU. Your experiences should help demonstrate the usefulness of this

concept. Taking C as an example, suppose an uninitialized pointer is

used to assign a value to a variable. It will erroneously point to an

address in memory determined by the value in the stack where it was

initially set by the compiler. If this is an area of memory being used by the

operating system, the GURU will come to call.

The only protection the 68000 offers against such encroachment is the

differentiation between supervisor and user mode. Memory can be

divided by hardware means into two parts, one of which can be accessed

only in supervisor mode. This technique, though, has two serious

disadvantages. First, while the operating system is now safe, user

programs can still be clobbered, which makes a multitasking, and

obviously a multiuser system, impossible.

Secondly, such a technique requires a fixed and permanent dividing of

memory, in which expensive RAM cannot be used to its fullest

advantage. The maximum amount needed by the operating system must

always be reserved for it in the supervisor area. Though part of this is

used only occasionally, it is never available to user programs. In short,

flexible memory management adapted to changing requirements is not

possible.

For these reasons, little use has been made of this capability of the

68000. Even in the Amiga, supervisor and user memory are identical,

with the disadvantage that any task can crash the system.

In the 68020 and 68030, this problem is solved by the PMMU.

Switching between processor and memory, it checks every access,

providing protection to all areas from even the most ill-mannered task.

Actual computing functions are also faster in the 68020. A barrel shifter

was integrated for shift operations, making them equally fast, whether a

register is shifted by a single bit or by 15 bits.

Since the 68020 functions at a clock frequency of 20 MHz and is

internally faster, it processes significantly more data and instructions from

main memory than the 68000. RAM must be very fast in order for the

processor to work at maximum speed. You would also like RAM to be as

large as possible. Unfortunately these two requirements can add up to

639

11. The A3000 Hardware

considerable expense. For this reason, the 68020 includes a cache

memory. This is a small, fast storage area (64 long words or 256 bytes) in

which the most recently used instruction is saved. With a second

reference to this instruction, for example another execution of a loop, the

68020 can fetch the instruction directly from the cache without having

to access memory. This caching enables the processor to utilize less

expensive memory chips with almost the same speed as would be

attained with fast RAM.

640

11.2 The 68030

11.2 The 68030

Because of the advances in semiconductor technology, more function

blocks can be included on a single chip. The MMU, which was a

coprocessor for the 68020, is now integrated into the 68030.

Furthermore, the 256-byte instruction cache is accompanied in the

68030 by a data cache of the same size.

The bus controller, which manages communication between memory and

the CPU, is also improved. It can now move data into the cache

independent of the processor and, with sufficiently fast RAM, transfer

data over the bus at a rate almost double that of the 68020 running at

the same clock frequency.

This concept of parallel processing is actually what distinguishes the

68030 from its predecessor. Because of the separation of the address and

data buses between the caches and the processing unit (Harvard

Architecture), instructions can be processed partially in parallel. While

the last operation's data is still being processed, the next instruction is

decoded and prepared. The bus controller loads the data from RAM and

the MMU translates and validates the addresses.

The following sections describe the various function blocks and their

programming. However, since the subject of this book is the Amiga

instead of the 68030, we won't provide detailed information. We will

discuss primarily the differences and improvements that distinguish the

68030 from the 68000.

If you're not familiar with machine language, refer to one of the many

books on programming the 68000. This should help you understand the

instructions and addressing types that are new to the 68030.

641

11. The A3000 Hardware

T/ie Architecture of the 68030

642

11.2 The 68030

The Program Model

LU

Q

O

CC
LU
CO

jiPiifjjpii

_^

p

i

m
'MM

I

I

^ -. -

1 16 15 0

» * • ' /

DATA
REGISTERS

ADDRESS
REGISTERS

J A7 <USP)

] PC

JS. 7 0

I 0 I _^ A.w- I

"1 PROGRAM
h COUNTER

CCR

A7' (ISP)

^?^^^ ^ ^'^'jA^'^^'t'* '>' »'»*&> V VH | T

I TT1

j MMUSR

CONDITION
CODE REGISTER

INTERRUPT
STACK POINTER

MASTER
STACK POINTER

STATUS
REGISTER

VECTOR BASE
REGISTER

ALTERNATE
FUNCTION

CODE REGISTERS

CACHE CONTROL
REGISTER

CACHE ADDRESS
■ REGISTER

CPU ROOT
-POINTER
REGISTER

TRANSLATION
CONTROL REGISTER

TRANSPARENT
-TRANSLATION
REGISTER 0

TRANSPARENT
-TRANSLATION
REGISTER 1

.MMU STATUS
REGISTER

Program Model

643

11. The A3000 Hardware

The illustration shows all the registers of the 68030. Those under the

heading 'User Mode Program Model' are identical to those of the 68000:

eight each of the universal data and address registers (A7 is the stack

pointer), the Program Counter and the Condition Code Register. These

are the only registers that can be referenced in user mode.

Some new registers have been added for supervisor mode. The 68000

had two stack pointers, the User Stack Pointer (USP, A7) and the

Supervisor Stack Pointer (SSP, A7f). In the 68030 the latter has been

further divided into an Interrupt Stack Pointer (ISP, A7') and a Master

Stack Pointer (MSP, A").

The following registers are new in the 68030:

VBR

SFC

DFC

CACR

CAAR

Vector Base Register: With this register the base address

of the Exception Vector Table can be set to any desired

value (in the 68000 this was always 0).

Alternate Function Code Registers

SFC and DFC stand for Source and Destination Func

tion Code, respectively. These registers permit explicit

selection of the address region to be accessed by a

MOVE instruction.

Five address regions are distinguished: User Program,

Supervisor Program, User Data, Supervisor Data and

Processor (the Processor address region is used for

communication with the coprocessor and hardware, for

example in fetching interrupt vectors, etc.).

Data can be easily copied between the various address

regions by means of MOVE instructions using the

Alternate Function Code Registers.

Cache Control Register

Cache Address Register

The previous two registers control the functioning of

the integrated data and address caches.

644

112 The 68030

CRP CPU Root Pointer

SRP Supervisor Root Pointer

TC Translation Control Register

TIT) Transparent Translation Register 0

Til Transparent Translation Register 1

MMUSR MMU Status Register

The previous six registers belong to the MMU.

SR Status Register

USER BYTE

SYSTEM BYTE (CONDITION CODE
REGISTER)

15 14 13 12 1110 9 8765432 10

|T1|TO|S

TRACE If
CNARI P 1 1ENABLE

SUPERVISOR/USER
STATE

MASTER/INTERRUPT

STATE

0 |0 |0 | X |N IZ | V| C

INTERRUPT

PRIORITY MASK

CARRY

OVERFLOW

ZERO

NEGATIVE

EXTEND

The Status Register

The lower byte of this register contains the condition code and is

therefore referred to as the Condition Code Register (CCR). The CCR

can be referenced in user as well as supervisor mode. The upper half of

the Status Register, the System Byte, contains important system flags:

Interrupt Priority Mask

Like the 68000, the 68030 distinguishes even interrupt levels by priority,

from a lowest priority of 1 to a highest of 7.

By means of the three bits in the Interrupt Priority Mask, all interrupts up

to and including a certain priority can be disabled. Only interrupts of

priority higher than the number in the mask will be executed. Level 7 is

645

11. The A3000 Hardware

an exception. An interrupt of this priority is referred to as a Non-

Maskable-Interrupt (NMI) and cannot be disabled.

Trace Enable

These two bits control the processor's trace mode (see Exceptions).

Supervisor Bit

When this bit is set, the 68030 is in supervisor as opposed to user mode.

From within user mode this bit can be set only by an exception, since

direct access to the Status Register's System Byte is not permitted in user

mode.

Master Bit

The Master Bit distinguishes between the two supervisor stack pointers.

If this bit is NULL, the CPU uses the Interrupt Stack Pointer. If it is set,

the CPU uses the Master Stack Pointer for all operations, provided that

the Supervisor Bit is also set, and switches to the ISP only with an

interrupt.

CCR The Condition Code Byte is the lower half of the Status

Register. It contains the following five flag bits:

0

V

Z

N

X

Carry

Overflow

Zero

Negative

Extend

Carry from the MSB (most significant, or last, bit)

Carry from the next to last bit

Result equals zero

Result is negative (MSB = 1)

Like Carry, but only set in arithmetic operations

Every instruction that alters data sets these flags according to the result.

These bits can be used as decision criteria for instructions that control

program flow, as in the Bcc (Branch on condition code) instruction.

646

112 The 68030

Bit (0<Modulo (Offset)<31, Offset of O=MSB)

31 30 29

16-Bit Word

31

Long Word

31

16 15

Quad Word

63 62

31

Bit Field (0<Offset<32,0<Width<32)

31 I Width

LSB

Unpacked BCB (a=MSB)

31

32

87654321 0

Packed BCB (a= MSB First Digit, e= MSB Second Digit)

8 7 6 5 4 321 0

mm b ificsi d \ga® f li§ hj_

The fundamental data type of the 680xx is the integer number. It can

have a size of 8 bits (one byte), 16 bits (one word) or 32 bits (one long

word). When placed in a data register (32 bits), an 8- or 16-bit operand is

loaded into the lower half or quarter of the register.

Address registers can contain only word or longword data types. A 16-

bit value written to an address register is expanded to 32 bits based on

647

11. The A3000 Hardware

Unlike the 68000, the 68030 can reference all data types on byte

addresses. It is no longer necessary to align a word or longword operand

to an address that corresponds to a multiple of its size. Nevertheless, it is

always faster to align data fields by the number of bytes they occupy. In

a hardware sense, the 68030 always reads one long word at a time (a

transfer of 32 bits per bus cycle over the 32-bit data bus). The data bus is

aligned, however, according to longword addresses. Two bus cycles are

thus required to read a long word that begins on an odd word address

(an address that is not a multiple of four).

Aligned:

■a™ford0 ford2

LongwordO

Word6
*.Byte4 . Byte5

Longword4

Misaligned:

ByteO Bytel Byte2 Byte3 Byte4 Byte5 Byte6 Bvte7
— tut i* I mi ■« 1—* 1 ..I. _,... rrr? .^ i * 1—L

Word3

Longwordi Longword5

Therefore, although it is possible to work with misaligned data on the

68030, a trade-off in terms of reduced speed will likely result.

In addition to the integral data type there is also the bit. A bit can be

read, set or cleared. An individual bit is referenced either by its byte

address and bit number (0 through 7) or, when it is in a register rather

than in memory, by the register name and bit number (here 0 through 31).

The least significant bit is numbered 0.

As an extension of the bit data type, the bit field was introduced with the

68030. The bit field is a sequence of up to 32 bits, that don't have to

begin on a byte boundary. Besides a memory address or register name, an

offset is required to reference such a field. It indicates the beginning of

the bit field relative to the most significant bit of the address or register.

The offset is a signed quantity, meaning that the field can also begin

before the base address.

The size of the bit field can be from one to 32 bits. Within the field, bits

are numbered in the opposite direction from that of integral numbers. Bit

number 0, whose position is determined by the offset, is the most

significant bit of the field.

648

11.2 The 68030

A new integer data type called the quad word has been added. This is

simply a double long word (64 bits). Since registers are 32 bits, two of

them are required for a quad word.

The quad word is used only in multiplication and division. It cannot be

simply used in place of the other integer types. By means of the MOVEM

instruction, however, it is possible to move a quad word between

registers and memory. (Naturally, this is done in two normal MOVE.L

instructions.)

One last data type exists, the binary coded decimal (BCD) numbers. A

BCD number is stored in the base-ten system, using only values between

0 and 9. The 68030 distinguishes between packed and unpacked BCD

values. In unpacked format, one byte contains one digit; the upper four

bits are always null. In packed format, both half-bytes (nibbles) are used.

Types of Addressing

Addressing capabilities are greatly expanded in the 68030 as compared

to the 68000, although the traditional types of addressing are still the

most frequently used.

Register Direct

The desired operand is the register itself.

Syntax: Rn

Absolute:

(Rn is any address or data register number)

The operand address is given immediately after the

instruction.

Syntax: Address.W or Address.L

Immediate;

(With the Address.W (Address.Word) format, the address is

expanded to 32 bits based on the sign of the 16-bit word

value, thus referencing only the first or last 32K of

memory.)

The byte, word or long word following the instruction is

the operand.

649

11. The A3000 Hardware

Syntax: #Operand

Address Register Indirect:

The value in the given register contains the address of the
operand in memory.

Syntax: (An)

(An is any address register number)

Address Register Indirect with Postincrement or Predecrement:

In postincrement addressing, the address of the operand in

the corresponding register is incremented by the size of the

operand in bytes. This takes place AFTER the operand has

been processed.

In predecrement addressing, the address is decremented by

the size of the operand BEFORE the instruction is

executed. Thus the address is incremented or decremented

by one for byte, two for word and four for longword

operands. (When this type of addressing is used for

coprocessor data types, this value depends on their size.)

Syntax: (An)+ (Postincrement)

-(An) (Predecrement)

Address Register Indirect with Displacement:

A value specified with the instruction (the displacement) is

added to the memory address from the address register. The

result is the operand address in memory.

Since the displacement is a signed 16-bit number, this

addressing method spans an area of 32K before and after

the address contained in the register.

Syntax: (di6,An)

- 16-bit displacement)

Address Register Indirect with Index and 8-bit Displacement:

This method is slightly more complicated. First the

displacement is added to the value in the address register.

650

11.2 The 68030

Then the CPU multiplies the index, which may be in any

address or data register, by a factor of 1, 2, 4 or 8, and

finally adds the two results.

Value from Address Register

Displacement

Value from Index Register (.W,.L) * 1,2,4 or 8

Address of Operand

Syntax: (ds,An,Rn.SIZE * SCALE)

(Rn.SIZE * SCALE - any register number with SIZE of 16

or 32 bits, multiplied by SCALE value of 1,2,4 or 8.)

Address Register Indirect with Index and Base Displacement:

This method of addressing closely resembles the previous

one, except that the displacement may be 16 or 32 bits.

Also, some elements may be left out. Address register, base

displacement and index register are optional. If the address

register and displacement are omitted, for example, and a

data register is used as the index register, the result is data

register indirect addressing, which is normally not available.

Syntax: (Bd,An,Rn.SIZE * SCALE)

(Bd - base displacement)

Memory Indirect with Postindex:

Also new with the 68030 are the memory indirect modes.

These methods first compute an address in memory, from

which an operand address is then read. In this case there

are two displacements: the base displacement and the outer

displacement. The former is added to the address register in

computing the memory address, the latter is added to the

operand address. The index register is likewise added to the

operand address after multiplication by a scaling value as

described earlier. This is why the term postindex is used.

This method can also omit certain elements, and the CPU

will assume them to be zeros.

651

11. The A3000 Hardware

Value from Address Register

Base Displacement

Memory Address

Value from above Memory Address

Value from Index Register (.W,.L) * 1,2,4 or 8
Outer Displacement
Operand Address

Syntax: ([Bd,An],Rn.SIZE*SCALE,Od)

(Bd - base displacement, Od - outer displacement)

The square brackets indicate the memory address from

which the operand address is read.

Memory Indirect with Preindex:

This method is identical to the above, except that the index

is added to the address register instead of the operand

address.

Value from Address Register

Value from Index Register (.W,.L) * 1,2,4 or 8

Base Displacement

Memory Address

Value from above Memory Address

Outer Displacement

Operand Address

Syntax: ([Bd,An,Rn.SIZE*SCALE],Od)

PC-relative Addressing:

The following addressing methods can use the Program

Counter (PC) instead of an address register as a base value:

• indirect with displacement

• indirect with index and 8-bit displacement

• indirect with index and base-displacement

• memory indirect with postindex

• memory indirect with preindex

652

112 The 68030

All access then takes place not in the User or Supervisor

Data region but in the corresponding Program region.

These addressing methods are thus suited mainly for quick

reference to nonvariable data, for example constants, which

reside with the program in the code segment (see Operating

System). PC-relative memory access always refers to data

that resides a certain distance from the current instruction,

independent of the instruction's memory address.

Instructions

The majority of instructions for the 68030 are those that applied to the

68000, with some enhancement of addressing capabilities or additional

data types. For example, two long words can be multiplied to produce a

quad word as the result.

New instructions are the bit field operations, some system control

instructions, multiprocessor instructions and, of course, the cache,

coprocessor and MMU commands.

«53

11. The A3000 Hardware

Data Transfer Instructions

Instruction

EXG

LEA

LINK

MOVE

MOVEA

MOVEM

MOVEP

MOVEQ

PEA

UNLK

Syntax

Rn,Rn

<ea>,An

An,<d>

<ea>,<ea>

<ea>,An

list,<ea>

<ea>,list

Dn,(d16,An)

(d16,An),Dn

#<data>,Dn

<ea>

An

Size

32

32

16,32

8,16,32

16,32-> 32

16,32

16,32 -> 32

16,32

8->32

32

32

Comments

Rn <- ->Rn

<ea> -> An

Sp - 4 -> Sp: An -> (SP):

SP ->atw12 An, SP + D -> SP

source -> dest

Register list -> dest

source -> Register list

Dn(31:24)->(An + d):

Dn(23:16)->An + d+2:

Dn(15:8)->(An + d + 4):

Dn(7:0) -> (An + d + 6)

(An+d)->Dn(31:24):

(An+d+2)->Dn(23:16):

(An + d + 4)->Dn(15:8):

(An + d + 6) -> Dn(7:0)

direct data -> dest

SP-4 -> SP: <ea> -> (SP)

An -> SP: (SP) -> An:

SP + 4 -> SP

Remarks:

The MOVEP instruction (Move Peripheral) transfers data between

the processor and peripheral components having only an 8-bit data

bus. Although it isn't needed on the 68030, this instruction is

retained for compatibility with the 68000.

In the 68000 with its 16-bit bus width, two consecutive byte

registers occupy consecutive word, not byte, addresses. This means

that alternate bytes are unused. Four MOVE.B instructions are

required to move a long word into as many consecutive registers.

MOVEP increments the address to the next word with each byte

and skips over the gaps. Thus a word or long word can be written

to consecutive registers with a single instruction.

The 68030's bus width is dynamic. With every bus cycle it

determines whether the address it is about to access is 8, 16, or 32

bits long. Thus even 8-bit chip registers have consecutive addresses
in memory.

<data> in MOVEQ (Move Quick) represents an 8-bit value; this is

expanded to 32 bits.

654

112 The 68030

Arithmetic Operations

All arithmetic operations work with signed integers. ADDX, SUBX and

NEGX computations include the X-Flag. By multiple executions of these

instructions, computations can be performed on numbers larger than one

long word.

Instruction

ADD

ADDA

ADDI

ADDQ

ADDX

CLR

CMP

CMPA

CMPI

CMPM

CMP2

DIVS/DIVU

DIVSLVDIVUL

EXT

EXTB

MULS/MULU

NEG

NEGX

SUB

SUBA

SUBI

SUBQ

SUBX

Syntax

Dn,<ea>

<ea>,Dn

<ea>,Dn

#<data>,<ea>

#<data>,<ea>

Dn,Dn

■(An).-(An)

<ea>

<ea>,Dn

<ea>,An

#<data>,<ea>

(An)+,(An)+

<ea>,Rn

<ea>,Dn

<ea>,Dr:Dq

<ea>,Dq

<ea>,Dr:Dq

Dn

Dn

Dn

<ea>,Dn

<ea>,DI

<ea>,Dh:DI

<ea>

<ea>

<ea>,Dn

Dn,<ea>

<ea>,An

#<data>,<ea>

#<data>,<ea>

Dn,Dn

-(An).-(An)

Size

8,16,32

8,16,32

16,32

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

16,32

8,16,32

8,16,32

8,16,32

32/16-> 16:16

64/32 -> 32:32

32/32 -> 32

32/32 -> 32:32

8-> 16

16->32

8->32

16 x 16->32

32 x 32 -> 32

32 x 32 -> 64

8,16,32

8,16,32

8,16,32

8,16,32

16,32

8,16,32

8,16,32

8,16,32

8,16,32

Comments

source+dest -> dest

direct data + dest -> dest

source + dest + X -> dest

0 -> dest

dest - source

dest - direct data

dest - source

dest/source -> dest (with or

without sign)

with sign extended dest ->

dest

source x dest -> dest (with

or without sign)

0 - dest -> dest

0 - dest - X -> dest

dest - source -> dest

dest - direct data -> dest

dest - source - X -> dest

Remarks:

<data> in SUBQ and ADDQ must be 0 through 7.

655

11. The A3000 Hardware

• In multiplication and division (MUL, DIV) quad words can also be

used (64 bits). In this case, two data registers are declared instead of

one.

Logical Operations

These instructions perform the logical linking functions (And, Or,

Exclusive-or and Negation).

The TST instruction subtracts 0 from an operand and sets the appropriate

condition codes in the Status Register. This can be used to test a value in

memory for zero.

Instruction

AND

ANDI

EOR

EORI

NOT

OR

ORI

TST

Syntax

<ea>,Dn

Dn,<ea>

#<data>,<ea>

Dn,<data> <ea>

#<data>,<ea>

<ea>

<ea>,Dn

Dn,<ea>

#<data>,<ea>

<ea>

Size

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

8,16,32

Comments

source / dest -> dest

Data / dest -> dest

source EOR dest -> dest

Data EOR dest -> dest

dest -> dest

source OR dest -> dest

Data OR dest -> dest

source - 0 to set cond.codes

Shift and Rotation Instructions

Shift and rotation instructions differ in whether or not bits displaced from

one end of the operand are brought around to the other. ROXR and

ROXL also include the X-Bit of the Status Register in the rotation.

Shift instructions differ with regard to the MSB. In the arithmetic shift

instruction it is interpreted as a sign and retained when shifting right,

while in the logical variant it is replaced by zero.

When shifting left there is no difference between the arithmetic (ASL)

and the logical (LSL) version of the instruction.

With all these instructions one declares the number of bits to be shifted,

followed by a data register. Permissible values are 1 through 8 with

immediate addressing and 1 through 63 when using a data register.

A memory location can also be shifted directly, but only as a word and

only by one bit at a time.

656

112 The 68030

The swap instruction switches the two words in a data register.

ASR

LSL

Operand Syntax

On, Dn

(data), Dn

(ea)

Dn, Dn

#(data),Dn
(ea)

Dn, Dn

(data), Dn
(ea)

Dn, Dn
(data), Dn

(ea)

Dn, Dn

(data), Dn

(ea)

Dn, Dn
(data), Dn

(ea)

Dn, Dn

(data), Dn
()

Dn, Dn

(data), Dn
(ea)

Operand Size

8.16, 32

B, 16, 32

16

8, 16. 32

8, 16, 32

16

8, 16. 32
8, 16, 32

16

8, 16. 32

8, 16, 32
16

8, 16. 32

8, 16. 32
16

8. 16. 32

8, 16. 32

16

I. 16. 32

I. 16. 32

I, 16. 32
I. 16. 32

16

Operation

-► \-+>\ x/c

Shift and Rotation Instructions

Bit Data Type Instructions

All bit manipulation instructions set the Zero-Flag according to the

condition of the selected bit. Then the bit is either cleared (BCLR), set

(BSET) or inverted (BCHG). The bit number can be declared immediately

or in a data register.

657

//. The A3000 Hardware

Instruction

BCHG

BCLR

BSET

BTST

Operand

Syntax

Dn,<ea>

#<data>,<ea>

Dn,<ea>

#<data>f<6a>

Dn,<ea>

#<data>,<ea>

Dn,<ea>

#<data>,<ea>

Operand

Format/Size

8,32

8,32

8,32

8,32

8,32

8,32

8,32

8,32

Operation

- <bit number> from dest->Z-

>bit of dest

- <bit number> from dest ->Z;

0->bit of dest

- <bit number> from dest ->Z;

1->bitofdest

- <bit number> from dest ->Z

Bitfield Instructions

The bitfield commands transfer the MSB of the field to the N flag and set

the Zero flag if all bits of the field are null. Then the corresponding

operation is performed.

Instruction Syntax Size Comments

BFCHG

BFCLR

BFEXTS

BFEXTU

BFFFO

BFINS

BFSET

BFTST

<ea> (offsetlength)

<ea> (offset:length)

<ea> (offset:length),Dn

<ea> (offset:length),Dn

<ea> (offset:length),Dn

Dn,<ea> (offset:length)

<ea> (offset:length)

<ea> (offsetilength)

1-32

1-32

1-32

1-32

1-32

1-32

1-32

1-32

Field -> Field

0 -> Field

Field -> Dn jextend sign

Field -> Dn ;extend unsign

(zero)

Searches for first set bit in

field; offset -> Dn

Dn -> Field

1 -> Field

MSB -> N (OR all)-> Z

Binary Coded Decimal (BCD) Instructions

ABCD, SBCD and NBCD execute the corresponding arithmetic

operations with packed BCD numbers. Converting between packed and

unpacked format of BCD numbers is accomplished by using the PACK

and UNPACK instructions.

658

11.2 The 68030

Instruction

ABCD

NBCD

PACK

SBCD

UNPK

Operand Syntax

Dn,Dn

-(An),-(An)

<ea>

(An),-(An)

#<data>

Dn,Dn#<data>

Dn,Dn

-(An),(An)

(An)f-(An)

#<data>

Dn,Dn,#<data> 8->16

Operand

Size

8

8

8

16->8

16->8

8

8

8->16

Operation

source10+dest10+X-
sHoet>U6Sl

0-dest10-X->dest

Unpacked source+Data-

>packed dest

desti 0-source10-X->dest

packed source-

>unpacked source

unpacked source+data-

>unpacked source

Program Flow Control

Instruction Operand Syntax Operand Operation

Size

ABCD

NBCD

PACK

SBCD

UNPK

Dn,Dn

-(An).-(An)

<ea>

(An).-(An)

#<data>

Dn,Dn#<data>

Dn,Dn

-(An),(An)

(An)f-(An)

#<data>

Dn,Dn,#<data> 8->16

8

8

16->8

16->8

8

8

8->16

sourcel 0+dest10+X-

>dest

0-dest10-X->dest

unpacked source+data-

>packed dest

desti 0-source10-X->dest

packed source-

>unpacked source

unpacked source+data-

>unpacked source

Remarks:

The variable fcc' can be replaced by any of the following condition

codes:

659

11. The A3000 Hardware

Code

T

F

HI

LS

CC(HS)

CS(LO)

NE

EQ

VC

VS

PL

Ml

QE

LT

GT

LE

Condition

true (not used with Bcc)

false (not used with Bcc)

higher, logically

lower or same, logically

C(arry) flag cleared, logically higher or same

C(arry) flag set, logically lower

not equal, Z(ero) flag cleared

equal, Z(ero) flag set

Overflow clear, V flag cleared

Overflow set, V flag set

Plus, N(egative) flag cleared

Minus, N(egative) flag set

greater or equal, arithmetically

lower than, arithmetically

greater than, arithmetically

lower or equal, arithmetically

By testing the flags after a CMP or SUB operation (see arithmetic

instructions), the relationship between the two operands can be

determined. If, for example, the second number is greater than the first,

the condition GT will be true.

Again there is a difference between logical and arithmetic operations in

terms of the sign. Since, for example, the byte $FF can stand for either -1

or +255, comparing it with 0 will return $FF > 0 as a logical condition

(without sign) and $FF < 0 as an arithmetic condition (with sign).

In other instructions, relational statements, such as greater than, are not

definitive. Here the condition codes are used to test the condition of an

individual bit. For example, after a bitfield instruction, BEQ checks

whether the Zero flag was set, meaning that all bits in the field were

cleared, instead of checking for equality.

Therefore both meanings are given in the above table.

• RTD fetches a return address from the stack and sets the stack

pointer to the value of <data>.

• RTR fetches another word from the stack before the return address

and writes it to the CCR.

660

11.2 The 68030

System Control Instructions

This instruction set is comprised of the privileged instructions

(executable only in supervisor mode), instructions that generate Trap

Exceptions and those that write to the Condition Code Register (CCR).

Instruction

ANDI

EORI

MOVE

MOVE

MOVEC

MOVES

ORI

RESET

RTE

STOP

BKPT

CHK

CHK2

ILLEGAL

TRAP

TRAPcc

TRAPV

ANDI

Syntax

Privileged

#<data>,SR

#<data>,SR

<ea>,SR

SR,<ea>

USP.An

An,USP

Rc,Rn

Rn,Rc

Rn,<ea>

<ea>,Rn

#<data>,SR

none

none

#<data>

TRAP Generating

#<data>

<ea>,Dn

<ea>,Rn

none

#<data>

none

#<data>

none

Condition Code Register

#<data>,CCR

Size

16

16

16

16

32

32

32

32

8,16,32

16

none

none

16

none

16,32

8,16,32

none

none

none

16,32

none

8

Comments

direct data AND SR ->

SR

direct data EOR SR ->

SR

source -> SR

SR -> dest

USP -> An

An -> USP

Re -> Rn

Rn -> Re

Rn -> dest with DFC

source with SFC -> Rn

direct data V SR -> SR

(SP) -> SR; SP + 2; (SP)

-> PC; SP + 4 -> SP;

direct data -> SR

if Dn < 0 or Dn > (ea),

CHK is called

SSP - 2 -> SSP; vector

offset -> (SSP)

SSP - 4 -> SSP; PC ->

(SSP);

SSP - 2 -> SSP; SR ->

(SSP);

vector address of illegal

instruction -> PC

SSP - 2 -> SSP;

SSP - 4 -> SSP; PC ->

(SSP); SSP - 2 -> SSP;

SR -> (SSP); vector

address -> PC

executes TRAP ifecis

true

direct data AND CCR ->

CCR

11. The A3000 Hardware

Instruction

EORI

MOVE

ORI

Syntax

#<data>,CCR

<ea>,CCR

CCR,<ea>

#<data>,CCR

Size

8

16

16

8

Comments

direct data EOR CCR ->

CCR

source -> CCR

CCR -> dest

direct data V CCR ->

CCR

Multiprocessor Instructions

Multiprocessor instructions are all those that carry out a Read-Modify-

Write bus cycle. What does this mean?

In a multiprocessor system (e.g., the Amiga with a PC/AT expansion

card), CPUs running in parallel can access the same memory region. Let's

assume there is a common data structure in which only one processor is

allowed to work at any given time. Each CPU has a place in memory

where it signals its activity to the other. This is done by means of the IBD

bit (Ich bin dran, German for 'I am here'). In preparing to access the data

structure in question, CPU A has just read CPU B's IBD bit and, seeing

that it is free, is about to set its own bit on. At this time, CPU B makes the

same check and also concludes that the data structure is available for

access. The result is conflicting access by both CPUs.

There are software solutions for the mutual access exclusion problem,

but the 68030 offers a faster and simpler one in its hardware. During a

Read-Modify-Write cycle, it signals the hardware that controls RAM that

this process may not be interrupted. Thus CPU A can complete its setting

of the IBD bit before CPU B is allowed to check it.

Instruction

CAS

CAS2

TAS

cpBcc

cpDBcc

cpGEN

cpRESTORE

Operand Syntax

Read-Modify-Write

Dc,Du,<ea>

Dc1:Dc2

,Du1 :Du2

,(Rn):(Rn)

<ea>

<Label>

<Label>,Dn

user def.

<ea>

Operand

Size

8,16,32

8,16,32

8

16,32

16

user def.

none

Operation

dest-Dc->CC;

If Z is set, then Du->dest

else dest->Dc

two operands CAS

dest-O, set cond.codes;

1->dest(7) Coprocessor

If cpcc true, then pc+D->PC

If cpcc false, then Dn-1->Dn

lfDn<>1,thenPC+d->PC

operand->coprocessor

Restore coprocessor status

from <ea>

662

11.2 The 68030

Instruction

cpSAVE

cpScc

cpTRAPcc

Operand Syntax

Read-Modify-Write

<ea>

<ea>

none

#<data>

Operand

Size

none

8

none

16,32

Operation

Save coprocessor status

to<ea>

If cpcc true, then 1's->dest,

else O's->dest

If cpcc true, then generate

TRAPcc Exception

Exceptions

With an exception the processor interrupts the currently executing

program and jumps to a routine that handles the error or carries out the

desired action. An exception on the 68030, then, includes anything that

interrupts normal program execution: reset, interrupts, software errors,

bus errors, etc.

Exception handling takes place in several steps:

1. First the CPU makes an internal copy of the Status Register. Then

the Supervisor Bit is set, the Trace Bits cleared and, if the exception

was an interrupt, the Interrupt Priority Mask adjusted.

2. Now the vector number is ascertained, which depending on the

exception type, is either already provided or must be read over the

bus (interrupts, coprocessor).

3. With a Reset (which also is considered an exception), the processor

saves its current internal position on the stack, so that the

interrupted program can resume after exception processing. With an

interrupt, if the Master bit is set, the CPU clears it and rewrites the

information to the stack. However, this time it's written to the

Interrupt Stack (ISP) rather than the Master Stack (MSP).

The exact format of the stack data varies greatly among the various

exception types. Always present are the vector offset, the old value

of the Program Counter, and the Status Register (saved initially).

4. In the final step, the processor reads the exception routine address

from the vector table and begins its execution. The remainder of the

exception handling is then accomplished by the software.

663

11. The A3000 Hardware

Vector Number(n)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

through

23

24

25

26

27

28

29

30

31

32

through

47

48

49

50

51

52

53

54

55

56

57

58

59

through

63

Vector Offset Hex

000

004

008

OOC

010

014

018

01C

020

024

028

02C

030

034

038

03C

040

Reserved

05C

060

064

068

06C

070

074

078

07C

080

TRAP 0-15

Instruction vectors

0BC

OCO

0C4

0C8

OCC

0D0

0D4

0D8

0DC

0E0

0E4

0E8

0EC

Reserved

OFC

Meaning

Interrupt Stack Pointer after Reset

Program Counter (PC) after Reset

Bus error

Address error

Illegal instruction

Division by zero

CHK-, CHK2-instruction

cpTRAPcc-, TRAPcc-, TRAPV-

instruction

Privilege violation

Single step (Trace)

Line 1010 emulation

Line 1111 emulation

Reserved (not used)

Coprocessor protocol violation

Format error

Uninitialized interrupt

Spurious interrupt

Level 1 interrupt autovector

Level 2 interrupt autovector

Level 3 interrupt autovector

Level 4 interrupt autovector

Level 5 interrupt autovector

Level 6 interrupt autovector

Level 7 interrupt autovector

FPCP-branching or Set by

unregulated condition

FPCP Inexact result

FPCP Division by zero

FPCP Underflow

FPCP Operations error

FPCP Overflow

FPCP Signaled NAN

Reserved

MMU setting error

Provided for MC68851 (not used

in MC68030)

Provided for MC68851 (not used

in MC68030)

664

11.2 The 68030

Vector Number(n)

64

through

255

Vector Offset Hex Meaning

100

User-defined

vectors

3FC

Every exception is assigned a specific vector, except for interrupts,

whose vectors are generated as required by the appropriate hardware.

All vectors consist of a long word with the address of the appropriate

exception handler. The Exception Vector Table has 256 entries, thus a

size of IK. Its address in memory can be determined by the Vector Base

Register. After a reset it will be at address 0, the beginning of system

memory.

Exception Types

Reset, Vectors 0 & 1

Reset is the only exception that does not permit resumption of the old

program. The processor clears all internal registers without saving

anything on the stack, and the caches and MMU are shut off. In the

Status Register, the Supervisor Bit is set and the Interrupt Mask set to 7.

It then begins program execution at the address in Vector 1. Vector 0 is

written to the ISP as initialization value.

Bus Error, Vector 2

If a bus access cannot proceed because of error, for example, when an

attempt is made to write to ROM, the hardware can inform the CPU by

signaling a bus error. All processors of the 680x0 family have the /BERR

line for this purpose.

In the Amiga, a bus error is caused only by expansion cards claiming the

same or illegal addresses.

Address Error, Vector 3

An address error results when an instruction that must be at an even

address is read at an odd address. This occurs much more frequently on

the 68000, since there access of words and long words is also forbidden

at odd addresses.

665

11. The A3000 Hardware

Illegal Instruction, Vector 4

Line-A- and Line-F-emulator, Vectors 10 & 11

These exceptions are assigned to the various bit patterns that do not

represent a valid instruction (words with hexadecimal A ($Axxx) in the

upper four bits, those with F ($Fxxx), and other illegal bit patterns.

Line-A-emulation can be used to implement proprietary instructions,

which can then be executed over the exception handler. Distinguishing

among various functions is done by means of the lower 12 bits.

Line F distinguishes whether bits 9 through 11 of the instruction word

are unequal to zero. This indicates a coprocessor instruction. Only when

this is not the case, that is, the hardware signals a bus error in accessing

the instruction, does an F-line exception occur. Otherwise the

coprocessor executes the instruction.

With this mechanism it is possible to emulate entire coprocessor functions

via software in the exception handler, as if it were actually present. If the

FPU is present, the software can be reused without change. In the

A3000, since the coprocessor is completely integrated, there is no need

to worry about its emulation.

If bits 9 through 11 equal zero, then, depending on the bit pattern in the

lower half of the instruction word, either it is a valid MMU instruction or

the F-line exception occurs. But since MMU instructions are permitted

only in supervisor mode, an instruction word in the form $F0xx in user

mode always results in a privilege violation.

Privilege Violation, Vector 8

A privilege violation occurs when one of the following instructions is

executed in user mode:

ANDI to SR, EOR to SR, FRESTORE, FSAVE, MOVE from SR, MOVE to

SR, MOVE USP, MOVEC, MOVES, ORI to SR, PFLUSH, PMOVE,

PLOAD, PTEST, RESET, RTE, STOP

These instructions apply only in supervisor mode. Note: The instruction

'MOVE from SR' was permitted in user mode on the 68000. On the

68030 it is permitted only in supervisor mode.

666

112 The 68030

Zero Divide, Vector 5

CHK and TRAP Instructions, Vectors 6 & 7

Instruction Trap Exceptions occur with the corresponding condition in

an instruction. They are intentional and signal an arithmetic or logical

error condition in the program:

• Division by zero

• TRAPcc instruction with valid condition

CHK or CHK2 detect a partition overwrite

Trace Exception, Vector 9

The 68030 has two trace modes to facilitate debugging. They are

selected using the Trace Bits in the Status Register:

T1 TO Trace mode

Trace disabled

Trace every transfer of control (BRA, JMP etc.)

Trace every instruction

not implemented

Depending on the selected mode, a trace exception follows every

instruction or only those that transfer program flow. Within the

exception handling routines the trace bits are set to zero to inhibit

subsequent trace exceptions.

Trace mode makes it possible to follow the execution of a program step

by step.

Independent of the mode selected, an instruction that writes to the Status

Register generates a trace exception.

Format Error, Vector 14

The 68030 places varying numbers of words on the stack depending on

the type of exception. These are returned from the stack by the RTE

instruction (Return from Exception) so that the interrupted program can

continue processing. A format error exception occurs when the

processor detects an illegal stack format and cannot restore the previous

state.

667

11. The A3000 Hardware

This error is caused by programs that overwrite stack data.

Interrupts

A number of vectors are assigned to interrupts: the spurious interrupt

vector, 24, the seven autovectors, 25 - 31, all user-defined vectors, 64 -

255, and the uninitialized interrupt vector, 15.

As was previously mentioned in the discussion of the Status Register, an

interrupt exception is called only when the interrupt level in the SR is

lower than that of the signal in the interrupt entry. If this is the case, the

68030 attempts to read the appropriate interrupt vector over the data

bus. It executes for this purpose an Interrupt Acknowledge Cycle, by

which the hardware detects that its interrupt request has been

acknowledged and that it can make a vector available.

Now there are three possibilities:

• The hardware delivers a vector (in the range of 64 - 255).

• It signals an autovector interrupt with one of the seven autovectors

(25 - 31), according to the interrupt level. This is the case with the

Amiga.

• It responds with a bus error and the spurious interrupt (24) occurs.

The Uninitialized Interrupt (15) occurs when a peripheral chip tries to

deliver a vector that has not yet been initialized by the processor. This

vector is therefore not generated by the processor, but rather is read by

the Interrupt Acknowledge Cycle when, due to a software error, the

corresponding vector register in the chip that produced the interrupt has

not been set.

11.2.1 The PMMU

With the Paged Memory Management Unit, the 68030 provides

hardware-controlled memory management and protection for the

operating system. The PMMU supports two mechanisms to implement

this control:

1. The generation of a virtual address space for each task.

2. The validation of authorization for every memory access.

668

11.2 The 68030

Virtual Memory

Formerly, any reference to address locations or memory in the Amiga

referred to the physical memory, that is, the actual RAM chips. In earlier

models than the A3000, every address transmitted over the address bus

selects one precise memory location in the corresponding component.

This fixed assignment of addresses from the processor to the various

registers and memory locations is inherent in the hardware and normally

cannot be changed. Although there are some exceptions to this rule (e.g.,

bank switching), they don't apply to the Amiga. So, for every address,

there is only one memory location.

In a multitasking operating system, where two or more tasks can run

concurrently, the tasks must utilize different addresses for their data.

When a task occupies memory, it reduces the amount available to all

other tasks. Eventually memory becomes so fragmented from continuos

allocation and de-allocation, that sufficient contiguous memory for even

a simple function is no longer available.

Without the PMMU, logical memory (the memory addresses used by the

machine-language instructions of the various tasks) is identical to

physical memory.

In a system with virtual memory management, every task is assigned its

own logical address partition. The maximum size of each partition is

theoretically the entire address space, or 4 Gigabytes with the 68030.

This logical address partition does not exist physically. Each task has 4

Gigabytes of memory, but only in a "virtual" sense. A specific correlation

must be established between physical memory (usually only 1 Megabyte

in 68030-based computers) and the logical addresses of all the tasks. The

PMMU does just that. For every memory access, it translates the logical

address to the appropriate physical address and also validates the access

authority of the task for the area in question.

The fundamental unit of memory on which these mechanisms operate is

called a page. The entire logical address space is divided into equal-size

pages (page size may be as small as 256 bytes or as large 32K). A logical

page can be mapped to a physical page of the same size. Physical pages

in memory are sometimes referred to as frames. Of course not all logical

pages can map cumulatively to main memory frames, since the virtual

address space far exceeds the physical. This fact is transparent, though,

669

11. The A3000 Hardware

to executing tasks, which share memory without even "knowing" it. If a

task requests a page that is not currently in memory, the MMU detects

this condition, called a page fault, and generates a bus error. The

operating system can now load the desired page to an available frame in

RAM. If none is available, a page can be swapped to disk and

temporarily saved to make room for the new logical page, and the fault

can be satisfied.

Besides managing the transparent sharing of memory among tasks, the

PMMU also solves the problem of memory fragmentation. Physically

noncontiguous available fragments can be allocated by the PMMU in

such a way as to logically satisfy a task's request for contiguous address

space.

These capabilities are not implemented in the current version of the

Amiga operating system. However, it is worthwhile to study the

functions and programming of the processes previously described, since

the PMMU is a fixed part of the Amiga 3000 hardware. Also, virtual

addressing is used by the UNIX operating system, which Commodore

also offers for the 3000. Finally, a knowledge of the PMMU will allow

you to experiment with your own applications.

To perform the translation of logical into physical addresses, the PMMU

naturally needs information about the allocation of pages requested by

the operating system. A multi-level structure called a translation tree is

constructed in main memory for this purpose. The translation tree

indicates whether the desired logical page is contained in a physical page k

frame and if so, which one.

If the tree were to be scanned for every memory access, however, the

CPU would have to sacrifice most of its processing power for this task

alone. In reality the PMMU slows program execution by only 1 to 2%.

The solution lies again in a cache: the ATC (Address Translation Cache).

Every time a valid allocation is read from the translation tree, the PMMU

transfers it to the ATC. The ATC has room for up to 22 entries. Upon

subsequent request for any of these pages, the cache signals their

availability to the PMMU. As long as a time-consuming table search is

avoided, memory access with PMMU address translation is just as fast as

without it.

670

11.2 The 68030

Only when a program references a page for the first time or when more

than 22 pages are needed will the search be performed. Since this rarely

happens, as mentioned earlier, the processing time is barely affected.

The program model of the PMMU consists of six registers:

CPU (or User) Root pointer (CRP)

Supervisor Root pointer (SRP)

Translation Control Register (TC)

• Transparent Translation Register 1 (TTO)

Transparent Translation Register 2 (TT1)

MMU Status Register (MMUSR)

The root pointer registers hold translation tree starting addresses. You

can choose between separate trees for user and supervisor programs or a

single common tree. If only one tree is used, its address must be in the

CPU root pointer.

The transparent translation registers make it possible to reference any

two address regions without address translation. Their logical addresses

then are the same as the physical, as though the MMU were disabled.

This function is useful for larger areas which require quick access, for

example screen memory. Since such an area consists of many pages that

are accessed in no particular sequence, the 22 ATC entries are not

sufficient to avoid frequent searching of the translation tree tables. It is

more efficient to reference these areas without the MMU.

671

11. The A3000 Hardware

MMU Transparent Translation Registers TTO and TT1:

BitNr.:

31-24

23-16

15

14-11

10

9

8

7

6-4

3

2-0

Function:

Address bits 31 through 24 of the transparent region

Mask for above address bits

E - Enable bit for transparent region

Unused

Cl - Cache inhibit

R/W - Read/write

RWM - Read/write mask

Unused

Function code base of region

Unused

Function code mask

Address bits and mask

The transparent window has a minimum size of 16 Meg. The eight

address bits in the TTx register specify its address. The masking bits can

be used to define larger windows. When one of these is set, its

corresponding address bit is ignored.

Enable bit (E)

Setting the E bit to 1 enables the transparent region defined by the TTx

register.

Cache inhibit (Cl)

The Cl bit allows you to choose whether or not values from the

transparent region should be placed in the data and instruction caches

(1 = no caching).

R/W and RWM

The R/W bit specifies the type of access that should be transparent:

R/W = 0 Write access

R/W = 1 Read access

To grant both types, the RWM bit must be set:

RWM = 0 Access according to R/W bit

RWM=1 Ignore R/W bit

672

11.2 The 68030

Function code base and function code mask

The base field determines the region's function code. If you want it to be

transparent for more than one specific function code, you can use the

mask to choose which bits of the base field should be ignored (mask = 1).

Translation Control Register (TC)

The TC register controls the construction of the translation tree. The root

of this tree is found in the CPU root pointer register. That address points

to the first table, or level, of the tree. Each entry in this highest table

(level A) points to a table at the next level (level B). The tree continues to

branch until the lowest level, which contains the actual page addresses, is

reached.

Page Pointer Tables

The logical address consists of up to six fields, which are used to move
through the various levels of tables. The fields (with the exception of the

first one) represent indexes for successive branches of the translation

tree.

Here is how the individual fields look in relation to the logical address:

673

11. The A3000 Hardware

Bits 31

Bits 31-IS

Bits 31-IS-TIA

Bits31-IS-TIA-TIB

Bits 31-IS-TIA-TIB-TIC

Bits 31-IS-TIA-TIB-TIC-TID

Shown another way:

Logical address:

to 31-IS

to 31-IS-TIA

to31-IS-TIA-TIB

to 31-IS-TIA-TIB-TIC

to 31-IS-TIA-TIB-TIC-TID
to bit 0

Ignored

Table A index

Table B index

Table C index

Table D index

Page offset

31 BitNr 0

IS|TIA|TIB|TIC|TID|Pageoffset

The IS (initial shift) field is a series of up to 15 bits, starting with bit 31,

which are to be ignored by the MMU. Because the IS bits are not

considered, the same physical address is allocated by the MMU

regardless of their value, so the effect of the shift is to reduce the logical

address space accordingly. Where IS = the number of bits in the initial

shift field, the shift reflects a reduction of address space by a factor of
2lS. J

TIA through TID are table indexes A through B. Each index can be from

0 to 15 bits long, except for TIA, which must be at least 1 bit. With a TIA

length of five bits, for example, the five most significant bits of the logical

address (after the IS) are used as an index to the highest level of the

translation tree. This table must then have 25, or 32 entries. Each entry
points to a table at level B. The size of the TIB field (again as a power of

2) indicates the number of entries in the level B tables. This pattern

continues down to level D. The remaining bits of the logical address form

the page offset, the relative position of the desired memory location
within the page.

It is not necessary to use all four levels of tables. The translation tree

terminates when a null TIx field is reached. If TIC = 0, the tree is limited

to levels A andB.

Even a fifth level can be used by setting the FCL (function code lookup)

enable bit in the TC register. As the name suggests, the function code bits

then become part of the table lookup algorithm. This is implemented with

another table, consisting of eight entries, preceding the A level. The root

pointer points to this table. The function code bits are used to select from

the eight entries, which in turn point to tables of level A.

674

11.2 The 68030

Translation Control Register Layout

BitNr.

31

30-26

25

24

23-20

19-16

15-12

11-8

7-4

3-0

Name

E
_

SRE

FCL

PS

IS

TIA

TIB

TIC

TID

Function

Enables the MMU

Unused

Enables supervisor root pointer (separate translation

trees for user and supervisor mode)

Function code lookup enable

Pagesize:

1000-256 Bytes

1001 -512 Bytes

1010-1 KByte

1011 -2 KByte

1100-4 KByte

1101-8 KByte

1110- 16 KByte

1111 - 32 KByte

Initial Shift (0 to 15)

Table Index A (1 to 15)

Table Index B (0 to 15)

Table Index C (0 to 15)

Table Index D (0 to 15)

PS, IS, TIA - TID must clearly establish the use of the individual bits of the

logical address. Their sum must always be 32. Otherwise the MMU

generates an MMU configuration exception.

Elements of the Translation Tree

The various tables of the translation tree can contain different types of

entries called descriptors. A descriptor consists of a pointer to a memory

page or to the next level of tables, as well as control information about

the subsequent structure of the tables or about the memory that the

descriptor addresses. Not every descriptor type contains all the following

fields:

DT Descriptor type

This 2-bit field can contain the following:

Invalid, DT=0

If the MMU encounters an invalid descriptor, it terminates its search

and reports a bus error to the CPU. Invalid descriptors allow the

translation tree to start out in skeleton form (in which these

descriptors point to as yet undefined locations), and to be

completed only as needed (when bus errors occur).

675

11. The A3000 Hardware

Page descriptor, DT=1

A page descriptor also terminates the MMU's search, but signals a

successful completion because it contains the address of the desired
memory page.

Valid 4 bytes, DT=2

This designates a valid pointer to a table of the next lower level. All
entries in this table must be 4 bytes long.

Valid 8 bytes, DT=3

Same as above, but the table being addressed must contain 8 byte
entries.

U Used

This bit is automatically set when the MMU reads the descriptor. It

can be used, for example, to determine whether a certain memory

page has been accessed.

M Modified

This bit indicates a write access to the allocated memory page.

WP Write protect

If this bit is set in one of the descriptors read during a table search, a

corresponding page may not be written. This is useful, for example,

to prohibit subsequent changes after modifying Kickstart in RAM.

S Supervisor only

This bit designates a table or memory page that may be referenced

by supervisor programs only. Reference by user programs results in

a bus error.

(3 Cache inhibit

Many addresses may not be cached. This is true primarily for the

various peripheral chip registers or for areas of memory that can be

changed independently of the CPU (the dual-ported RAM on the

PC/AT plug-in board and chip memory).

676

112 The 68030

Caching can be turned off for the corresponding memory pages

using the CI bit. When the CI bit is set, the CPU does not transfer

these pages to the cache as they are read.

LIMIT and L/U bit

The 15-bit limit field can be used to limit the index to the next table.

The MMU checks to see if the index value contained in the logical

address is higher than the limit when the L/U bit = 0, or lower than

the limit when L/U = 1. The L/U (lower/upper) bit determines

whether the index has a lower or an upper limit.

Page address

This 24-bit field contains the physical page address that

corresponds to the requested logical address. Depending on the

page size (see Translation Control Register), some of the bits are

unused. With 4K pages, 12 bits are needed to address a location

within the page. These are taken directly from the logical address

(the page offset). Then only the upper 20 bits of the page address

field are used to establish the address of the page.

Table address

This 28-bit field contains the base address of the descriptor table of

the next lower level.

Descriptor address

This is a 30-bit pointer to another descriptor. It is used only by

indirect descriptors (see the following).

The Various Descriptor Types

Bits labeled "unused" can be used to store values as needed (e.g.,

additional status information for memory management).

677

77. The A3000 Hardware

Root pointer (either CPU or Supervisor Root Pointer Register)

LV\T
0

0

0

0

1

1

BitNr.

31

30-16

15-2

1-0

31-4

3-0

Function

L7U bit for limit

Limit value

Must be zero

DT (descriptor type) of root pointer

Table address
Unused

Short Format Table Descriptor (4 bytes)

BitNr. Function

Table address

U (Used)

WP (Write protect)

DT (Descriptor type) = 2

Long Format Table Descriptor (8 bytes)

LW

0

0

0

0

0

0

0

0

0

1

1

BitNr.

31

30-16

15-10

9

8

7-4

3

2

1-0

31-4

3-0

Function

L/U bit for limit

Limit value

Must be 1's

Must be zero

S (Supervisor only)

Must be zero

U (Used)

WP (Write protect)

DT (Descriptor type) = 3

Table address

Unused

Short Format Page Descriptor (4 bytes)

BitNr.

31-8

7

6

5

4

3

2

1-0

Function

Page address

Must be zero

Cl (Cache inhibit)

Must be zero

M (Modified)

U (Used)

WP (Write protect)

DT (Descriptor type) = 1

678

11.2 The 68030

Long Format Page Descriptor (8 bytes)

LW

0

0

0

0

0

0

0

0

0

0

0

0

1

1

BitNr.

31

30-16

15-10

9

8

7

6

5

4

3

2

1-0

31-8

7-0

Function

L/U bit for limit

Limit value

Must be Vs

Must be zero

S (Supervisor only)

Must be zero

Cl (Cache inhibit)

Must be zero

M (Modified)

U (Used)

WP (Write protect)

DT (Descriptor type) = 1

Page address

Unused

Short Invalid Descriptor (4 bytes)

BitNr. Function

1-0

Unused

DT (Descriptor type) = 0

Long Invalid Descriptor (8 bytes)

LW BitNr. Function

0

0

1

31-2

1-0

31-0

Unused

DT (Descriptor type)

Unused

= 0

Short Format Indirect Descriptor (4 bytes)

BitNr. Function

31-2 I Descriptor address

1-0 DT (Descriptor type) = 2 or 3

Long Format Indirect Descriptor (8 bytes)

LW BitNr. Function

31-2

1-0

31-2

1-0

Unused

DT (Descriptor type) = 2 or 3

Descriptor address

Unused

679

11. The A3000 Hardware

Early Termination and Memory Blocks

Normally page descriptors are in the lowest level of the tree and table
descriptors in the upper level. A page descriptor that occurs at a higher
level is called an "Early Termination (ET)" page descriptor. It can be
used to allocate a consecutive area of physical addresses to all logical
addresses belonging to a table entry.

Assume that an ET page descriptor exists at the next-to-last table level,
the last level contains 4096 entries, and the page size is 8K. A 32 Meg
block (4096 x 8K) is then referenced by this ET descriptor. The
descriptor's page address field contains the physical base address of the
block. The logical base address is any bit combination that references the
ET descriptor in the translation tree. The bits of the logical address that
normally would select one of the 4096 entries of the lowest level table
now select the referenced page directly within the 32 Meg block. The
lowest level table can be eliminated.

Here is how the various bits in the logical address are used relative to the
previous example:

Values in the Translation Control Register:

IS = 0, TIA = 7, TIB = 12, TIC & TID = 0, PS =

Logical address

BitNr. 31 ...

Pointer to Table A

Logical address

BitNr. 31 ...

Pointer to Table A

without ET descriptor:

24...

Pointer to Table B

with ET descriptor in Table

24...

Page number In 32 Meg

8 KByte

12... o

Address within the

memory page

A:

12... 0

Address within the

memory page block

An ET descriptor can also replace more than one level of tables if it

occurs at a higher (previous) level of the translation tree. You can

imagine this as a tree, where the root pointer is the trunk, the tables of the

intermediate levels are the limbs and branches, and the page descriptors

at the lowest (last) level are the leaves. An ET descriptor replaces, a

branch or limb with a single "hyper-dimensional" leaf, which represents

all the leaves this branch or limb carries.

680

11.2 The68030

Indirect Descriptors

Another special feature of the translation tree, whose structure has

already been described, is the indirect descriptor. This descriptor occurs

in place of a page descriptor at the lowest level of the translation tree and

must point to a page descriptor in some other branch of the tree. It allows

two different logical addresses to be assigned to the same physical page.

This would apply to global data structures or when the tree is divided

into supervisor and user sections.

The same effect is achieved simply by placing the same page address into

two page descriptors at different parts of the tree. But in this case, the

Used and Modified bits of both descriptors must always be checked to

determine whether the page has been accessed. Indirect descriptors can

provide significant time savings in the case of global data structures,

where not just two, but a multiplicity of descriptors may point to the

same physical address, since these structures can be accessed by every

task.

The MMU Instructions

The MMU, like every coprocessor in a 68030 system, adds its own

commands to the instruction set of the CPU.

The MMU recognizes the following instructions:

IPMOVE 1

The PMOVE instruction accesses the registers of the MMU: TC, SRP,

CRP,TT0orTTl.

Syntax: PMOVE <effective address (ea)>, MMU-register

PMOVE MMU-register,<ea>

PMOVEFD Since changing the contents of an MMU-

register usually invalidates the current values in the

ATC (Address Translation Cache), the ATC is cleared

with every PMOVE instruction that writes to one of

these registers. This can be prevented with PMOVEFD

(Flush Disable).

Syntax: PMOVEFD <ea>, MMU-register

681

11. The A3000 Hardware

IPFLUSH

Clears an entry in the ATC.

Syntax: PFLUSH(An)

IPFLUSHA

Clears all entries in the ATC.

Syntax: PFLUSHA

| PLOAD

Performs a table search for the given logical address and function code

and writes the physical address to the ATC. The search can be performed
in advance for routines where time is critical.

The PLOAD instruction has two variants: PLOADR (read) and PLOADW

(write). In PLOADW, the MMU sets the Modified bit in the page

desciptor, as though a write access to this logical address had occurred.

The Used bit is always set in PLOAD instructions.

Syntax: PLOADR <function code>,<ea>

PLOADW <function code>,<ea>

[PTEST 1

The PTEST instruction can be used to find the cause of a bus error in the

exception handler. The MMU performs a table search for the logical

address (this can be fetched from the stack after a bus error), and sets the

bits in the Status Register (see the following) to indicate whether an

invalid descriptor was found, a LIMIT exceeded, etc.

Syntax: PTEST <function code>,<ea>,level,An

"level" is the maximum number of table levels which

are to be searched.

level=0 - look only in ATC

level=7 - search all table levels

682

11.2 The 68030

PTEST also has two variants, PTESTR and PTESTW.

The distinction is pertinent only when PTEST level = 0,

and one of the two transparent addresses (TTx registers)

is referenced.

The MMU Status Register (MMUSR)

BitNr.

15

14

13

12

11

10

9

8&7

6

5-3

2-0

Name

B - Hardware bus error in table search

L - LIMIT error (invalid for PTEST level 0)
S - Supervisor only (invalid for PTEST level 0)

Must be zero

W - Write protected

I - Invalid

M - Modified

Must be zero

T - Transparent region (only for PTEST level 0)

Must be zero

Number of table levels searched (0 with PTEST level 0)

For PTEST with level = 0, the I bit signals that the desired logical address

has no ATC entry (in which case, a level 7 PTEST will return additional

information), or that a hardware bus error has occurred in searching the

table (in which case the B bit also is set).

For PTEST with level > 0, the I bit indicates that an invalid descriptor was

found, a LIMIT was exceeded (L bit = 1), or a bus error occurred (B bit =

1).

11.2.2 The Floating Point Coprocessor

The microprocessor in a desktop computer like the A3000 is normally

responsible for the execution of all program instructions. But even the

68030, one of the most powerful processors, has its limits, namely in the

processing of data types that are not directly supported in its hardware

design.

Attempts must be made, then, to construct these from other available data

types and handle their processing by using software. The data types that

the 68030 supports directly were listed in the previous chapter. An

example of one that is not directly supported, but which nevertheless can

be effectively handled with the existing types, is. the character string.

This usually consists of a variable-length sequence of bytes terminated

by a zero. Using a small loop and the "byte" data type, it is possible to

683

77. The A3000 Hardware

perform all the elementary character string operations, such as copying,
comparing and clearing.

Another data type not directly supported, and even more essential in the
Amiga than the character string, is the bit-map graphic. Bit-map graphics

are used to build a representation in memory of the visible contents of a

screen. Elementary bit-map operations, such as drawing lines or filling

surfaces, require multiple operations with individual memory bits.

Unfortunately, the bit-by-bit manipulation of data is not very effective in
a processor optimized for 32 bit integers.

For this reason, Commodore has equipped the Amiga with an integrated

circuit called the Blitter. While not an actual coprocessor in Motorola's

sense of the word, it can perform independent bit-map operations much
faster than the 68000.

Functions

The FPU now places data types unknown to the 68030 but

indispensable for a variety of computer applications. These are the
floating-point numbers.

The 68030 recognizes only a limited range of integer numbers, which can

be expressed in mathematical set notation as follows: Z = {X I -231 <= X

< 231 } xhis set of numbers may suffice for the normal tasks of an
operating system and many application programs, but for the solution of

mathematical problems it must be expanded.

The drawing of a circle presents a simple example. The formula for a point

on the circumference is:

X-coordinate = sin angle * radius

Y-coordinate = cos angle * radius

The final result, the point's "x:" and "y" coordinates, must be whole

numbers, since there is no such thing as half a pixel position in graphic

memory. But computations with the trigonometric sine and cosine

functions require a greater universe than whole numbers, since these

functions return values from the set of real numbers. The real numbers,

when expressed in decimal form, have a fractional component that either

terminates, repeats periodically or repeats at random.

684

112 The 68030

A binary format, that can represent the greatest possible subset of these

numbers, must be found. We are at best limited to a subset, because any

machine format is finite (i.e., limited to a certain number of places). The

limitations imposed on our available universe are twofold, affecting both

range and precision. First, there is a minimum and a maximum number that

the format can represent. Secondly, the fractional digits of repeating

decimal numbers (e.g., pi) must eventually (as justified by considerations

of memory and computing time) be truncated.

Over time, the floating-point representation has gained general

acceptance, since it is applied relatively simply to computers and it is

adequate for almost all mathematical computations.

Floating-point format corresponds to exponential notation in

mathematics, where a number greater than or equal to 1 and less than 10,

called the mantissa (the decimal part of a logarithm), is multiplied by a

power of 10, the exponent. Some examples are:

Normal notation

27

1,500,000

0.5

0.0000042

Exponential

->2.7 x

->1.5 x

->5 x

->4.2 x

A

Mantissa

notation

101
106

10-1
10-6

A

Exponent

The exponent in floating-point machine format always refers to base 2.

This notation permits the representation of both very large and very small

numbers without long strings of zeros. The FPU 68881/68882 can

perform computations on these numbers directly, just as the 68030 does

with integers.

Internal Design - The Program Model

From the programmer's point of view, the FPU has 11 registers (see the

following illustration). Eight of them are universal floating-point data

registers, designated FP0 - FP7. Each is 80 bits wide and can accept one

number. In addition to these are the Control Register (FPCR), which

controls the FPU's mode of operation, the Status Register (FPSR), which

holds flag bits like its counterpart in the 68030, and the Instruction

685

11. The A3000 Hardware

Address Register (FPIAR). This last register stores the address of the

current FPU instruction, for reasons that will be seen later.

79 63

31

i

1 Condrtto

1 Code

1

23

0

1 | Quotient

0

15 7

I Enable | Control

I t5EH fiSS.

FPO

FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR

FPSR

FPIAR

Floating Point
Data Registers

Control
Register

Status
Register

Instruction Address
Register

Floating-point Data Format

Floating-point Data Formats

Internally the FPU operates exclusively on a single data type called

extended real. This is the only data type that can be placed in one of the

FPU data registers. It is, however, only one of seven types with which we

may actually work. All others are automatically converted by the FPU to

extended real format before being used. When a value is transferred from

one of the eight FPU data registers to main memory, the corresponding

conversion again takes place.

The byte, word, and longword integer formats are identical to those of

the 68030, but are also handled internally as extended.

Single real and double real formats differ only in size, with one long word

for single and two for double. Extended real format consists of three long

words, but 16 bits are not used, since the FPU data registers are only 80

bits wide.

Packed decimal real format differs from the other six formats in that it

represents numbers by the base-ten (decimal) rather than base-two

(binary) system.

686

112 The 68030

The mantissa undergoes special handling in single and double real

formats. Basically all floating-point numbers are stored in normalized

form. This means that the exponent is chose to produce a mantissa in the

range 10^ <= mantissa < 10* (1 <= mantissa < 10). One writes not 35 *
103 but 3.5 * 104, and 5 * 10"4 instead of 0.5 * 10"3. There is exactly
one place before the decimal point, whose position is established in all

formats.

FRACTION SINGLE REAL

SIGN OF FRACTION

0

11-BIT 52-BIT
EXP. FRACTION

DOUBLE REAL

- SIGN OF FRACTION

80 63

I—SIGN OF MANTISSA I— IMPLICIT BINARY POINT

| j I I j I^SaI j j M j j I ■*<**>decimalreai-

1-2 BITS,
I—IMPLICIT DECIMAL POINT

USED ONLY FOR ± INFINITY OR NANS, ZERO OTHERWISE

IGN OF EXPONENT

IGN OF MANTISSA

UNLESS A BINARY-TO-DECIMAL CONVERSION OVERFLOW OCCURS

Real Formats

Similarly, a mantissa in the binary system would be governed as follows:

20 <= mantissa < 2* (1 <= mantissa < 2). The bit before the "decimal"
point must always be 1. To save space, it is simply dropped in single and

double format. The first bit of the mantissa represents the first place after

the "decimal" point, with a leading 1 always implied.

In extended format this bit still exists and can be set to zero. The same is

true of packed decimal format. Such a number is said to be unnormalized.

It is normalized by the FPU before any operation on it is begun. The

result of an FPU instruction is never an unnormalized number.

The exponent (except in packed decimal format) is constructed as an

unsigned binary number, from which the sign is then reclaimed by

subtracting an offset. Depending on the format, the offset is 127, 1023 or

16383. For a number in double real format, for example, the value 1023 in

687

11. The A3000 Hardware

the exponent field signifies an actual exponent value of 0, 1022 is -1, and
so on.

The reason for this lies in the 68030. By virtue of this special

representation of the exponent and the fact that the mantissa sign

appears in the MSB of the long word, two floating-point numbers can be

compared by the CMP instruction, without having to call upon the FPU.

For this purpose they behave just like normal integers.

Status and Control Registers

The Status Register is subdivided into four function groups of one byte
each:

• Condition Code Byte

Quotient Byte

• Exception Byte

• Accrued Exception Byte

Condition Code Byte (FPCC - Floating Point Condition Code)

BitNr.: 31 30 29 28 27 26 25 24

Function: 0 0 0 0 N Z I NAN

N Negative result

Z Result is 0

I Result is + or - infinity

NAN Result is not a number

These four bits fulfill the same purposes as the N, C, Z and X bits in the

Status Register of the 68030. They are set according to the data type of

the result following every computation operation. With the aid of these

bits, you can use the FBcc instruction to build conditional jumps into a

program, making program flow dependent upon FPU computation

results.

Quotient Byte

BitNr.: 23 22 21 20 19 18 17 16

Function: S MSB Quotient LSB

688

11.2 The 68030

This byte is set after only two instructions: modulo and IEEE-REST.

Both compute the remainder of a division. Instead of throwing away the

inner of a computed quotient, it is placed in this byte. If it is greater than

seven bits, the higher order ones are dropped. The sign of the quotient

appears in the S bit.

Exception

BitNr.:

Func:

BSUN

SNAN

OPERR

OVFL

UNFL

DZ

INEX2

INEX1

Byte

15 14 13 12 11 10 9 8

BSUN SNAN OPERR OVFL UNFL DZ INEX1 INEX2

Branch / Set On Unordered

Signaling Not A Number

OPerand ERRor

OVerFLow

UNderFLow

Divide by Zero

INEXact Operation

INEXact decimal input

Just as the 68030 calls an exception routine in case of error, for example,

a supervisor instruction executed in user mode, the same can be done by

the coprocessor. In fact, computations with floating-point numbers can

cause several types of errors.

These errors are reflected in the Exception byte.

Whether an exception routine will actually be called depends on the

upper byte of the Control Register, the Exception Enable byte. It has

exactly the same layout as the Exception byte in the Status Register. If a

bit in the Enable byte is set and the corresponding exception occurs, the

68030 calls the assigned exception routine. If an exception is disabled

by clearing the corresponding bit, checking the Exception byte will

reveal whether an error has occurred, but the exception procedure will

not be called.

689

11. The A3000 Hardware

Accrued Exception Byte

BitNr.: 7 6 5 4 3

Function: IOP OVFL UVFL DZ INEX

IOP

OVFL

UNFL

DZ

INEX

Invalid OPeration (BSUN or SNAN or OPERR)

OVerFLow (OVFL)

UNderFLow (UNFL and INEX2)

Divide by Zero (DZ)

INEXact Operation (INEX1 or INEX2 or OVFL)

Sometimes you may prefer simply not to permit any exceptions, if for no

other reason than to avoid having to program the exception handlers. In

this case the Exception byte would have to be checked after every

floating-point computation, since any bits set are cleared for each new

operation.

Here the Accrued Exception byte is useful. If the FPU changes a bit in

the Exception byte, the bits in the Accrued byte are set as previously

shown. Thus IOP is activated when BSUN, SNAN or OPERR = 1.

Unlike in the Exception byte, the bits in the Accrued byte retain their

status. Once set, they are cleared only by the explicit writing of a 0 in the

Status Register.

This allows you to perform a series of computations and wait until their

completion to determine whether any errors occurred.

Control Register - Mode Control Byte

BitNr.:

Function:

PREC

7 6 5 4 3

PREC RND 0

Rounding Precision

00

01

10

Extended

Single

Double

RND - Rounding Mode

00

01

1 0

1 1

round to nearest - RN

round toward zero - RZ

round toward minus infinity

round toward plus infinity -

2 1 0

0 0 0

-RM

RP

690

11.2 The 68030

Precision bits are used to adjust the precision to which a result should be

rounded. Normally these bits are set to Extended (both 0), since internal

processing takes place on extended numbers. A result stored in single or

double precision is rounded automatically, regardless of the PREC bits.

The rounding mode determines what the coprocessor will do when a

number cannot be represented exactly with the available precision.

Internally it computes with three additional bits for the mantissa. If these

are not all zero as the result of a computation, rounding is required. The

actual value lies between two choices, which are numbers that can be

represented with the available number of bits in the mantissa. One of

these must be chosen as the result. How the FPU proceeds in this choice

is determined by the two RND bits:

Mode RN always rounds to the nearer of the two possibilities previously

described. If they are equidistant, the FPU chooses the even one (LSB =

0).

Mode RZ rounds to the one with the smaller absolute value (i.e., the one

closer to zero).

Mode RM always chooses the smaller number, RP chooses the larger.

The FPU Instruction Set

As we mentioned earlier, all FPU assembler instructions are simply

considered extensions of the 68030 instruction set and can be mixed

with 68030 instructions as desired. Processing occurs in parallel. A main

processor instruction that follows an FPU instruction can begin

executing as soon as the 68030 has given the FPU the data it needs.

Only upon encountering another FPU instruction must the CPU wait for

the first one to be completed.

The only exceptions are those FPU instructions that transfer data from

the FPU to main memory. Here the 68030 must wait until the 68881 has

finished making the data available.

The syntax of the instructions follows the same rules already familiar to

the 68000 series processors. By now most assemblers on the Amiga can

process 68030 and 68881 instructions.

691

11. The A3000 Hardware

All FPU instructions begin with the letter "F" (as all PMMU instructions

begin with "P"), to distinguish them from those of the main processor.

The registers are designated as follows:

• FPO - FP7 for the eight floating-point data registers

FPCR, FPSR and FPIAR for the control registers (in general FPcr)

The following abbreviations are valid for the various data types:

.B, .W, .L

for byte, word or long word integer

.S, .D

for single or double precision real

X for extended precision real

.P for packed decimal

All the same addressing modes can be used as for the 68030, except in

the few instructions that permit only certain kinds of addressing. The

syntax is also the same.

Data Transfer Instructions

Instruction Syntax

FMOVE

FMOVECR

FMOVEM

Operand Format

FPmm,FPn

<ea>,FPn

FPm,<ea>

FPm,<ea>(#k)

FPm,<ea>(Dn)

<ea>,FPcr

FPcr,<ea>

#ccc,FPn

<ea>,<list>

<ea>,Dn

<list>,<ea>

Dn,<ea>

Operand

X

B,W,L,S,D,X,P

B,W,L,S,D,X

P

P

L

L

X

L,X

X

L,X

X

Operation

Source->dest

ROM constant -> FPn

Register list -> dest

Source -> register list

Remarks:

The FMOVE instruction with .P (packed decimal) as the destination

format can automatically round to a desired number of places. The

rounding value, which can be supplied immediately or in a data register,

is specified as follows:

692

11.2 The 68030

-64 <= k <= 0 Rounded to Ikl places after the decimal point

0 < k <= 17 Mantissa is rounded to k places independent of the

exponent

In the FMOVECR instruction, "ccc" is the number of a numerical

constant from the ROM of the FPU:

Number

$00
$0B

$0C
$0D

$0E

$0F

$30

$31

$32

to

$3F

Constant

PI

Log! 0(2)

e

Log2(e)

Log-io(e)

0.0

ln(2)

ln(10)

100
1O1,1O2,1O4,... 102048
104096

MOVEM transfers any combination of the eight data registers or one of

the three control registers between memory and the FPU. If the list is in a

processor data register, only a data register transfer is possible. The

following format applies:

Type of addressing

Predecrement -(An)

All others

Bit 7

FP7

FPO

--

BitO

FPO

FP7

Dyadic Operations

Dyadic operations are functions performed on two operands, for example,

multiplication or addition. The first operand can be addressed with any

addressing method, the second must always be one of the FPU data

registers. The result of the function will be placed in this data register.

Instruction

FADD

FCMP

FDIV

FMOD

FMUL

FREM

FSCALE

FSGLDIV

FSGLMUL

FSUB

Function

Add

Compare

Divide

Modulo

Multiply

IEEE remainder

Exponent scaling

Divide (single precision)

Multiply (single precision)

Subtract

693

11. The A3000 Hardware

Remarks:

FSCALE adds the first value (whose fractional places are truncated) to

the exponent of the second.

FREM delivers the remainder of a division according to the IEEE-

definition:

in i (uperanod / uperancn) rounded with round-to-nearest!

Operand2 - (Operandi * X)

Monadic Operations

A monadic operation is a function performed on a single operand. The

operand can be referenced with any addressing method. The result is

always placed in an FPU data register.

Instruction

FABS

FACOS

FASIN

FATAN

FATANH

FCOS

FCOSH

FETOX

FETOXM1

FGETEXP

FGETMAN

FINT

FINTRZ

FLOGN

FLOGNP1

FLOG10

FLOG2

FNEG

FSIN

FSINH

FSQRT

FTAN

FTANH

FTENTOX

FTWOTOX

Function

Absolute value

Arccosine

Arcsine

Arctangent

Hyperbolic arctangent

Cosine

Hyperbolic cosine

e to the x

e to the x-1

Get exponent

Get mantissa

Integer

Integer round to zero

Logarithm of (x)

Logarithm of (x+1)

Log base 10 of x

Log base 2 of x

Negate

Sine

Hyperbolic sine

Square root

Tangent

Hyperbolic tangent

10Ax

2Ax

Instruction Syntax Format Instruction

FSINCOS <ea>,FPc:FPs

FPm,FPc:FPs

B,W,L,S,D,X,P

X

SIN(source) -> FPs;

COS(source) -> FPc

694

112 The 68030

Remarks:

FSINCOS produces two results, which are placed in separate data

registers.

The unit of measurement of angles in trigonometric functions is the

radian.

Program Control Instructions

This group of instructions allows control of program flow by using

condition codes generated by the FPU. Their functions correspond to the

68030 instructions of the same name.

Instruction

FBcc

FDBcc

FNOP

FScc

FTST

Operand Syntax

<Label>

Dn,<Label>

None

<ea>

<ea>

FPn

Operand Format/Size

VV,t_

w

None

B

B,W,L,S,D,X,P

X

Operation

If true, then PC+d->PC

If true, then no

operation, else Dn-1-

>Dn; If Dn o -1 then

PC+d->PC

No operation

If true, then 1's->dest

else O's-xtest

FPSR Set cond.codes

The following mnemonics can be given for "cc":

With Exception (NAN bit set in Status Register):

GE

GL

GLE

GT

LE

LT

NGE

NGL

NGLE

NGT

NLE

NLT

SEQ

SNE

SF

ST

greater or equal

greater or less

greater, less or equal

greater

less or equal

less

not (greater or equal)

not (greater or less)

not (greater, less or equal)

not (greater)

not (less or equal)

not less

equal

unequal

always false

always true

695

//. The A3000 Hardware

Without Exception:

OGE

OGL

OR

OGT

OLE

OLT

UGE

UEQ

UN

UGT

ULE

ULT

EQ

NE

F

T

ordered and greater or equal

ordered and greater or less

ordered

ordered and greater

ordered and less or equal

ordered less

unordered or greater or equal

unordered or equal

unordered

unordered or greater

unordered or less or equal

unordered or less

equal

unequal

always false

always true

This list may seem confusing if you're used to the 68030 condition codes.

What does ordered mean? Why is there a distinction between "greater or

less" and "unequal"?

The reason is that a floating-point number can represent two special

conditions that a normal number cannot:

1. + or - infinity

2. not-a-number (NAN)

or

A number with all l's in the exponent and all 0fs in the mantissa

represents an infinity. The sign bit remains valid, so there are both plus

and minus infinities.

An infinity is produced when the exponent of a result is greater than

equal to the greatest possible exponent that can be represented.

An invalid number (not-a-number) occurs when the exponent is all l's

and the mantissa is not all 0fs. This can arise through a number of invalid

operations, such as applying the square root function to a negative

number or dividing two infinities.

A NAN can also be used to signal user-defined exception conditions.

This is the purpose of the SNAN exception (signaling Not-A-Number),

which occurs when a function is called with a "signaling" NAN as an

operand. This intentionally supplied NAN is identified by a zero bit in the

696

11.2 The 68030

first fractional position of the mantissa. If the FPU produces a NAN as the

result of a computation, it sets this bit, even if it was called with a

signaling NAN (assuming the SNAN exception has been disabled).

The NAN presents a few problems in the handling of condition codes.

Whereas plus infinity can be said to be greater than any natural number,

this concept of comparison is not possible with a NAN. Is the number 1

greater or less than a NAN? There is no answer to this question. For this

reason, in addition to greater, less and equal, the conditions ordered and

unordered have been introduced. The unordered condition applies when

the NAN bit in the Condition Code Register is set. All comparisons

testing for greater or less check the NAN bit. If it is set, the first number is

neither greater nor less than the second. Moreover, the numbers are not

equal, either. Rather, they are unordered, and this is the only condition

that will test true in such a case.

Only the conditions equal and not equal (EQ and NE) function the same

as they do for integers in the 68030.

So that an additional branch instruction is not required to intercept the

NAN condition, the 68881 has a built-in BSUN exception. If you use one

of the instructions from the previous first list and allow this exception,

the 68030 executes the exception procedure as soon as the NAN bit is

set at the branch.

An important reminder: "not less" doesn't always mean "greater"; it

could mean "unordered".

System Control Instructions

This group consists of only three instructions:

FSAVE and FRESTORE cause the operating system to save and restore

the internal state of the FPU and are mainly used when switching

between two tasks, both of which want FPU access.

An FSAVE and subsequent MOVEM for all 11 registers preserves the

momentary state of the FPU entirely, even if it was interrupted in the

middle of a computation. (In this case the FSAVE transfers 184 bytes.)

Any other FPU operation can now be allowed to execute, until, by means

of the reverse MOVEM and FRESTORE, the FPU is restored to its earlier

state and can resume the interrupted computation.

697

11. The A3000 Hardware

With FTRAPcc an exception can be generated regardless of condition

code. A word or long word given with the FTRAPcc instruction is

considered to be surrendered to the trap handler and will not be handled

by the processor.

Instruction Operand Syntax Operand Size Operation

FRESTORE

FSAVE

FTRAPcc

<ea>

<ea>

None

#xxx

None

None

None

W,L

State frame -> internal

register

Internal register -> state

frame

If condition true, then

exception

The FPU Exceptions

As previously mentioned, there are eight exception types that can be

generated by the FPU:

BSUN

SNAN

OPERR

OVFL

UNFL

DZ

INEX2

INEX1

Branch / Set On Unordered

Signaling Not A Number

OPerand ERRor

OVerFLow

UNderFLow

Divide by Zero

INEXact Operation

INEXact decimal input

BSUN has the highest priority and INEX2/1 the lowest priority. If

multiple exceptions occur simultaneously, the 68030 executes the one

with the highest priority, and the trap handler must worry about whether

lower priority bits are also set.

The individual FPU exceptions are assigned to the following TRAP

vectors on the 68030:

698

11.2 The 68030

Vector Number

7

11

13

48

49

50

51

52

53

54

Vector Offset

$01C

$02C

$034
$0C0

$0C4

$0C8

$0CC
$0D0

$0D4

$0D8

Assignment

FTRAPcc instruction

F-LJne emulator

Protocol violation

BSUN

Inexact result

Divide by zero

Underflow

Operand error

Overflow

SNAN

FTRAPcc This exception is called if condition cc is valid on an

FTRAP instruction.

F-Line This exception indicates that an invalid FPU instruction

was detected. The bit pattern of the current instruction

does not match any known instruction.

Cop.Prot. A protocol violation in the communication between

main and coprocessor generates this exception. The

cause is usually a hardware defect.

BSUN As described in the last section, this exception occurs

on certain branch conditions (also FTRAPcc, etc.), when

the NAN bit in the Condition Code Register is set. The

NAN bit must be reset within the trap routine, because

at the conclusion of exception handling the FPU calls

the instruction again.

INEX There are two potential generators of an Inexact Result

Exception: INEX1 is produced when a packed decimal

number is converted internally to extended precision

format.

INEX2 Indicates the need for rounding in all other

circumstances. All operations resulting in periodic or

nonterminating binary numbers produce this exception.

DZ A Divide-by-zero occurs upon dividing a number by

zero or calling a transcendental function that has a

perpendicular asymptote at this position, so that F(X)

goes to infinity (e.g., tan(PI/2)).

699

11. The A3000 Hardware

UNFL

OPERR

OVFL

SNAN

If this exception is disabled, the FPU returns an infinity

result.

The Underflow exception is called when the result of a

computation is too small to be represented internally,

meaning the exponent is less than or equal to the least

possible value.

It also occurs when a MOVE instruction converts an

operand from extended precision to single or double,

and the exponent is less than or equal to the least

possible value.

Conversion to .B, .W or .L format does not cause an

Underflow exception, but simply returns a zero value.

Despite the trap, in all Underflows, either the least

possible result or zero is returned, depending on

rounding mode.

Operand Error refers to a variety of possible error

conditions arising from the use of mathematical

functions with inappropriate input or in a context that

does not have a valid mathematical interpretation.

Square root of a negative number is an example of such

a condition.

The same conditions apply to the Overflow exception

as to Underflow, except that it is activated by the

greatest possible exponent, and returns infinity or the

greatest possible result, again depending on the

rounding mode.

This exception is called when an operand of a monadic

or dyadic function is a signaling NAN.

Because the main processor and the math coprocessor work in parallel,

the FPU exceptions are not recognized by the 68030 until it has already

processed subsequent instructions and arrived at the next FPU

command. A trap handler whose job is to redress an FPU error would like

to know which instruction caused it. But the 68030 has already gone

700

112 The 68030

ahead in the program, and the last address it has placed on the stack is

the next FPU instruction. Between this and the one that caused the

exception is an unknown number of normal processor instructions.

The FPIAR Register (Floating Point Instruction Address Register) is

designed to take care of this problem. It holds the address of the FPU

instruction that the coprocessor is currently processing. If an exception

occurs, the trap handler only needs to read the address from the FPIAR

Register to find the offending instruction in main memory.

11.2.3 Differences Between the MC 68881 and

68882

The essential difference between the two floating-point coprocessors is

in the manufacturing technology. Whereas the maximum cycle rate for

the 68881 was 20 MHz, the fastest version of the 68882 manages 50

MHz. But the 68882fs advantage in speed results not only from a higher

cycle frequency. Even at the same frequency it runs 25% faster than the

'881. This effect is linked to the improved facility for parallel processing.

Both coprocessors have only a single APU, and can perform only one

floating-point computation at a time. The fetching of new operands and

conversion of numeric formats runs parallel to the work of the APU.

Here's an example of programming that maximizes the efficiency of the

68882:

When the following loop:

FMOVE.X (AO),FP1

FADD.X (A1),FP1

FMOVE.X FP1, (A2)

FMOVE.X (AO),FP1

FMOVE.X (A3),FP2

FADD.X (A1),FP1

FADD.X (A4),FP2

FADD.X FP1,(A2)

FMOVE.X FP2, (A3)

; Fetch next entry

; Add

; Store

is optimized for the

; Fetch next

; Fetch next

; First add

; Add next +

68882 it

entry

+ 1

1

; Store first result

; Store next +1

This simple example shows how the placement of instructions within a

loop can help alleviate register conflict.

701

11. The A3000 Hardware

To do this, try to combine the fastest FMOVE's with the fastest arithmetic

instructions, and the slowest FMOVE's with the slowest arithmetic

instructions.

11.2.4 Cache Memory

The 68030 has two internal caches: 256 bytes each for instructions and

data. Their function is to store frequently used values and make them

available to the CPU without wait time on subsequent references.

This solves the problem of designing a main memory that is both large

and fast. Because of caching, sufficient speed is attained with less

expensive dynamic RAM, so you don't have to skimp on memory size.

RAM access requires wait cycles, which inevitably results in wasting

some of the maximum processor speed. But wait time can be significantly

reduced by reading a large part of the data and instructions from main

memory only the first time they are referenced and then reading them

from cache memory. Depending on the program, efficiency increases of

up to 100% are possible.

The caching concept exploits the fact that, during program processing,

the CPU spends most of its time in loops of no more than 10 to 30

instructions. Once such a loop has executed the first time, it is fully

contained in the instruction cache and need not be read again from main

memory.

This principle also applies to data. The most frequently referenced

addresses tend to be localized. For example, if you look at a typical C

program, you'll see that within a function, most data accesses refer to the

local variables, which are placed on the stack in a single block.

Instruction Cache Design

Each cache in the 68030 consists of 16 rows, each of which contains

four long words. Each row is assigned a tag-entry, in which the address

(bits 8-31) and the FC2 bit of the function code (for distinguishing

between supervisor and user mode) is placed. The tag-entry also contains

four Valid bits, for the four long words.

702

112 The 68030

Address bits 4 - 7 select the cache row, and bits 2 and 3 select one of the

long words. When the CPU accesses main memory, a row is selected by

the appropriate address bits and the row's tag-entry is compared with

address bits 8-31 and the FC2 bit. If they agree, and if the Valid bit for

the desired long word is set, the condition is called a cache-hit. In this

case, the value can be read from the cache and RAM is not accessed.

A cache-miss occurs when the tag and address do not agree or the Valid

bit is zero.

If just the Valid bit is missing, the CPU reads the value from main memory,

transfers it to the cache and sets the Valid bit. If there was no tag-entry

agreement, the CPU tries not only to retrieve the desired long word from

RAM, but also to fill the entire row. A burst-fill is started for this purpose.

The burst-fill takes advantage of the fact that the four long words

occupy consecutive addresses in memory. A special access method of

dynamic RAM enables extremely fast referencing of sequential data. A

burst-fill for four long words barely takes longer than two normal

accesses.

After a successful burst, the address is entered to the tag-field and all four

Valid bits are set. Accessing this data again results in a cache-hit.

Function ofAddress bits in Cache:

Address

A0&A1

A2&A3

A4-A7

A8 - A31

&FC2

Function

Byte within long word

Long word within row

Row number

Address of data in corresponding row

(stored in tag-entry of row)

Cache Row Layout:

| Tag (FC2,A31 - A8)|Longword 0|Longword 1 |Longword 2|Lw 3 |

The data Cache

The data cache differs from the instruction cache in its additional

requirement for write access. Write access is not relevant to instruction

caching, since instructions are not altered. Also, data cache tag-entries

contain all three function code bits because the data and program

regions must be distinguished.

703

11. The A3000 Hardware

Basically the data cache is designed as a write-through cache. This

means that all data is written to main memory, regardless of whether or

not it is present in the cache. Thus values in RAM are always valid.

Two modes are available for transferring written data to the cache: with

or without Write Allocation (WA). Without Write Allocation, a value is

transferred to the cache only when it was already found there (i.e., when

a cache-hit occurred). The new value replaces the old, without any

change to the tag-entry or Valid bits. In this mode, values with new tag-

addresses are written to the cache only on read accesses.

With Write Allocation, all data is transferred, regardless of whether a

cache-hit or a cache-miss occurred. A miss clears the Valid bits of the

remaining three long words. WA mode is necessary if both supervisor

and user access are permitted at the same address, as is the case in the

Amiga. The following example should help illustrate the problem without

Write Allocation:

The supervisor reads Value A at Location X, and A is loaded to the

cache.

• The user program writes Value B to Location X. Since the cache

distinguishes user from supervisor access, no hit occurs despite the

same address. B is not transferred to the cache, but remains at

Location X.

• The supervisor reads Location X again, but getting a hit, it reads it

from the cache. It reads the wrong value (A instead of B).

The Cache Control Registers (CACR and CAAR)

Two registers control the functioning of both caches. The Cache Control

Register (CACR) contains several control bits, while the Cache Address

Register (CAAR) specifies the address of a long word in the cache. This

address is necessary for clearing individual entries in the cache. The

CAAR layout corresponds to the addressing of the individual cache

entries in normal operation:

704

11.2 The 68030

Cache Address Register (CAAR)

BitNr.: 31 ...8 7... 4 3 and 2

Function: | Unused | Cache row | Long word

1 and 0

Unused

Cache Control Register (CACR)

BitNr.:

31 -14

13

12

11

10

9

8

7-5

4

3

2

1

0

Name:

-.

WA

DBE

CD

CED

FD

ED
--

IBE

Cl

CEI

Fl

El

Function:

Unused

Write Allocate

Data Burst Enable

Clear Data Cache

Clear Entry in Data Cache

Freeze Data Cache

Enable Data Cache

Unused

Instruction Burst Enable

Clear Instruction Cache

Clear Entry in Instruction Cache

Freeze Instruction Cache

Enable Instruction Cache

WA Write Allocation mode is turned on if this bit is set.

DBE Enables burst on cache-miss with wrong tag-entry.

CD All entries in the data cache are cleared when a 1 is written to

this bit. This only happens once; the CD bit is not stored.

CED Clears only the cache-entry whose address is in the CAAR.

FD Freezes the data cache. Subsequent read accesses without

cache-hits do not overwrite old values. Cache contents are

modified by write accesses only.

The FD bit is useful for optimizing program speed. It prevents

one-time accesses (for which the cache provides no speed

advantage) from destroying useful values in the cache.

ED The processor ignores a cache-hit if the Enable bit is cleared.

All data is retrieved from main memory. The cache contents

continue to be updated and can be used as soon as caching

is enabled.

IBE Enables burst access for instruction cache.

705

11. The A3000 Hardware

CI Clears all instruction cache entries.

CEC Clears the entry whose address is in the CAAR.

FI If the FI bit is set, the contents of the instruction cache cease

to be updated.

El If the El bit is zero, a cache-hit is ignored and all instructions

are fetched from main memory.

706

11.3 The CIA 8520

11.3 The CIA 8520

The 8520

PA1«_IZI

PA2«-*|ZI

PA3*-*CZZ

PA4*"*C^
PA5**C=

PB1»4l

PB2*-»GZ

PB5*-*CZ

PC *-cz

TOD—*^Z
vri—»r—*

i

2

3

4

5

6

7

g

9

10

11

12

13

14

15

16

17

18

19

20

o
CM

00

CIA

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

IZJ«-A0

mi*—ai
—i^-ft?

-—I*—A3

^j^*DOS

ZD««-*D3

—l«-»pg

IZ3»-»2 (Phi 2)

^1*—R/W

Note: The arrows show the direction of the signal.
A line above a signal names means the
signal is active when low (0 a active).

C/A S520

The 8520 is a peripheral component of the Complex Interface Adapter

(CIA) class, which basically means that its developers tried to support as

many functions as possible on a single chip. A close inspection of the

8520 reveals great similarity to its old counterpart in the C64, namely the

6526. Only the functioning of registers 8 through 11 has changed

slightly. This is certainly good news for anyone familiar with

programming the 6526.

The 8520 has the following features: two freely programmable 8-bit

parallel ports (PA and PB), two 16-bit timers (A and B), a bi-directional

serial port (SP) and a 24-bit counter (event counter) with an alarm

function upon reaching a programmed value. All functions can generate

interrupts.

The functions of the 8520 are organized into 16 registers. To the

processor they look like ordinary memory locations, since all peripheral

components in a 68 x 0 system are memory mapped and can be read and

written with the usual MOVEs and other processor instructions.

707

11. The A3000 Hardware

The 16 internal registers are selected with the four address-inputs, A0-A3.

Details about the integration of the CIA into the Amiga system are found

at the end of this section.

The following are the functions of the 16 registers (actually 15, since

register 11 ($B) is unused):

The 8520 registers

Register

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

Name

PRA

PRB

DDRA

DDRB

TALO

TAHI

TBLO

TBHI

Event low

Event mid

Event high
—

SP

ICR

CRA

CRB

Function

Port A data register

Port B data register

Port A data direction register

Port B data direction register

Timer A lower 8 bits

Timer A upper 8 bits

Timer B lower 8 bits

Timer B upper 8 bits

Counter bits 0-7

Counter bits 8-15

Counter bits 16-23

Unused

Serial port data register

Interrupt control register

Control register A

Control register B

The parallel ports

Register Name D7 D6 D5 D4 D3 D2 D1 DO
u

1

2

3

rriM

PRB

DDRA

DDRB

PB7

DPA7

DPB7

rtto

PB6

DPA6
DPB6

rtto

PB5

DPA5
DPB5

rm

B4

DPA4

DPB4

PB3

DPA3
DPB3

rfK£

PB2

DPA2

DPB2

KAl

PB1

DPA1

DPB1

KAO

PBO

DPAO

DPBO

The 8520 has two 8-bit parallel ports, PA and PB, each of which is

assigned a data register, PRA (Port Register A) and PRB (Port Register

B). Associated with these registers are the chip's 16 port lines, PA0-PA7

and PB0-PB7. The 8520 allows the data direction of each port line to be

individually controlled. This means that each port line can be used as

input as well as output. For this purpose, each port has a data direction

register, DDRA and DDRB. If a bit in a data direction register is 0, its

corresponding line behaves as input, so that the level of the signal on this

line can be interrogated by reading the appropriate bit of the data

register.

708

113 The CIA 8520

If the bit is set to 1, the line becomes an output. Now the signal on the

line is actually determined by the value of the corresponding bit in the

data register.

In general, writing to a data register always stores the value in it, while

reading always returns the states of the port lines. The bits in the data

direction register determine whether the value of the data register is

placed on the port lines. Therefore when reading a port that is configured

as an output, the contents of the data register are returned, while when

writing to an input port, the value is stored in the data register, but does

not appear on the port lines until the port is configured as output.

709

11. The A3000 Hardware

8520 - block diagram

D0-D7

SP

CNT

TOD

<4-»j SP buffer^-»[serlal port

CNT buffer

TOD buffer

fEag—►! FLAG buffer

IRQ «*—■\ IRQ buffer

Event/

Alarm

INT/mask

PRA

DDRA

PRB

DDRB

PA buffer

PC buffer

PB buffer

Timer B

CRA

Timer A

CRA

"-PA7

PBO

-PB7

8520 access control

R/W $2 CS* A3 A2 Al A0 RES

Key:

= 8-bit line

= 1-bit line

Block Diagram of the 8520 CIA

To simplify data transfer through the parallel ports, the 8520 has two

handshake lines, PC and FLAG.

The PC output goes low for one clock cycle on each access to data

register B (PRB, reg. 1). The FLAG input responds to such downward

transitions. Every time the state of the FLAG line changes from 1 to 0, the

FLAG bit is set in the Interrupt Control Register (ICR, reg. $D). These

710

113 The CIA 8520

two lines allow a simple form of handshaking in which the FLAG and PC

lines of two CIAs are cross-connected.

The sender need only write its data to the port register and then wait for

a FLAG signal before sending each additional byte. Since FLAG can

generate an interrupt, the sender can even perform other tasks while it is

waiting. The same applies to the receiver, except that it reads the data

from the port instead of writing it.

The timers:

Read access:

Register

4
5

6

7 .

Name

TALO

TAHI

TBLO
TBHI

D7

TAL7

TAH7

TBL7

TBH7

D6

TAL6

TAH6

TBL6

TBH6

D5

TAL5

TAH5

TBL5

TBH5

D4

TAL4

TAH4

TBL4

TBH4

D3

TAL3

TAH3

TBL3

TBH3

D2

TAL2

TAH2

TBL2

TBH2

D1

TAL1

TAH1

TBL1

TBH1

DO

TALO

TAHO
TBLO

TBHO

Write access:

Register

4
5

6

7

Name

PALO

PAHI

PBLO

PBHI

D7

PAL7

PAH7

PBL7

PBH7

D6

PAL6

PAH6

PBL6

PBH6

D5

PAL5

PAH5

PBL5

PBH5

D4

PAL4

PAH4

PBL4

PBH4

D3

PAL3

PAH3

PBL3

PBH3

D2

PAL2

PAH2

PBL2

PBH2

D1

PAL1

PAH1

PBL1

PBH1

DO

PALO

PAHO

PBLO

PBHO

The 8520 has two 16-bit timers. These timers can count from a preset

value down to zero. A number of modes are possible and can be selected

through a control register, one for each timer (CRA and CRB).

Each timer consists internally of four registers (timer A: TALO+TAHI and

PALO+PAHI), or two register pairs, since each low and high register pair

forms the 16-bit timer value. Both register pairs have the same address,

but one can only be read and the other only written. On a write access to

one of the timer registers the value is first saved in a latch, then loaded

into the timer register and decremented until the timer reaches zero.

When this happens, the value is loaded from the latch into the timer

register again.

Reading a timer register returns the current state of the timer. To get a

correct value, though, the timer must be stopped.

The following example shows why:

711

11. The A3000 Hardware

Timer state: $0100.

• A read access to register 5 returns the high byte of the current state:

$01.

• Before the low byte (reg. 4) can be read, the timer is decremented

again and the timer state is now $00FF.

The low byte is read: $FF.

Resulting timer state: $01FF.

• Instead of stopping the timer, which also causes problems since now

timer pulses are ignored, a better method can be used: Read the high

byte, then the low byte and then the high byte again. If the two

high byte values match, then the value read is correct. If not, the

process must be repeated.

Which signals decrement the timers is determined for timer A by bit

5 and for timer B by bits 5 and 6 of the respective control registers.

Only two sources are possible for timer A:

1. Timer A is decremented with each clock cycle. The cycle frequency

of the CIAs in the Amiga is 716 KHz (INMODE = 0).

2. Timer A is decremented with each high impulse on the CNT line

(INMODE =1).

Timer B has four input modes:

1. Clock cycles (INMODE bits = 00) (binary - the first digit stands for

bit 6, the second for bit 5).

2. CNT impulse (INMODE bits = 01).

3. Timer A timeouts (allows two timers to form a 32-bit timer)

(INMODE bits = 10).

4. Timer A timeouts when the CNT line is high (allows the length of a

pulse on the CNT line to be measured) (INMODE bits = 11).

The timeouts of a timer are registered in the Interrupt Control Register

(ICR). When timer A times out, the TA bit (no. 0) is set, while when timer

B times out, the TB bit (no. 1) is set. These bits, like all of the bits in the

ICR, remain set until the ICR is read.

712

11.3 The CIA 8520

In addition, it is also possible to output the timeouts to parallel port B. If

the PBon bit is set in the control register for the given tinier (CRA or

CRB), then each timeout appears on the appropriate port line (PB6 for

timer A and PB7 for timer B).

Two output modes can be selected with the OUTMODE bit:

OUTMODE = 0 Pulse mode

Each timeout appears as a positive pulse one clock period long on the

corresponding port line.

OUTMODE = 1 Toggle mode

Each timeout causes the corresponding port line to change value from

high to low or low to high. Each time the timer is started the output starts

at high.

The timers are started and stopped with the START bit in the control

registers. START = 0 stops the timer, START = 1 starts it.

The RUNMODE bit selects between one-shot mode and continuous

mode. In one-shot mode the timer stops after each timeout and sets the

START bit back to 0. In continuous mode the timer restarts after each

timeout.

As mentioned before, writing to a timer register doesn't write the value

directly to the register but to a latch (also called a prescaler, since the

number of timeouts per second is equal to the clock frequency divided

by the value in the prescaler). There are several ways to transfer the

value from the latch to the timer:

1. Set the LOAD bit in the control register. This causes a forced load,

that is, the value in the latch is transferred to the timer registers

regardless of the timer state. The LOAD bit is called a strobe bit,

which means that the bit is not stored but simply triggers a one-time

operation. To cause another forced load, a 1 must be written to the

LOAD bit again.

2. Each time the timer runs out, it is automatically reloaded with the

value in the latch.

713

11. The A3000 Hardware

3. After a write access to the high register of a timer that is stopped

(START = 0), the timer is automatically loaded with the value in the

latch. Therefore the low byte of the timer should always be

initialized first.

Assignment of the bits in control register A:

Hegister no. 14/$l Name: oka

07 D6 D5 D4 D3 D2 D1 DO
noi

used

brMUUfc

O=input

1 =output

0=clock

1=CNT
1=force
load

(strobe)

HUINIVIUUL

O=cont.

1=one-

shot

UUTMODc

0=pulse
1=t(■

PBon

0=PB6off
1=PB6on

START

O=0ff

1=on

Assignment of the bits in control register B:

Register Nc

D7

ALARM

0=TOD
1=alarm

>. 15/$F Name: CRB

D6+D5 D4

INMODE
00=clock

01=CNT

10=timerA

11=timerA+
CNT

LOAD

1=force

load
(strobe)

D3

RUNMODE

O=cont.
1=one-
shot

D2

OUTMODE

0=pulse

1=toggle

D1

PBon

0=PB7off
1=PB7on

DO

START

O=0ff

1=on

The event counter:

Name

lsb event

Event 8-15
MSB event

U/ D5 D5 D4 D3 D2 UT

E15

E23

"E5"
E14

"ET
E13
E21

E12

E20

E11

E19

"E2"
E10

E18
E9

E17

T3DT

E8
E16

As we mentioned earlier, there are only minor differences between the

8520 and the 6526. AH of these differences concern the function of

registers 8-11. The 6526 has a real-time clock which returns the time of

day in hours, minutes and seconds in the individual registers. On the

8520 this clock is replaced by a simple 24-bit counter, called an event

counter. This can lead to some confusion, because Commodore often

uses the old designation TOD (Time-Of-Day) when referring to the 8520.

The operation of the event counter is simple. It is a 24-bit counter,

meaning that it can count from 0 to 16777215 ($FFFFFF). With each

rising edge (transition from low to high) on the TOD line, the counter

value is incremented by one. When the counter has reached $FFFFFF, it

starts over at 0 on the next count pulse. The counter can be set to a

defined state by writing the desired value into the counter registers.

714

113 The CIA 8520

Register 8 contains bits 0-7 of the counter, the least significant byte

(LSB), in register 9 are bits 8-15, and in register 10 are bits 16-23, the

most significant byte (MSB) of the counter.

The counter stops on each write access so that no errors result from a

sudden carry from one register to another (as described in the timer

discussion). The counter starts running again when a value is written into

the LSB (reg. 8). Normally the counter is written in the order: register 10

(MSB), then register 9, and finally register 8 (LSB).

To prevent carry errors when the counter is read, the counter value is

written into a latch when the MSB (reg. 10) is read. Each additional

access to a count register now returns the value of the latch, which can

be read in peace while the counter continues to run internally. The latch

is turned off again when the LSB is read. The counter should be read in

the same order as it is written (see previous paragraph).

An alarm function is also built into the event counter. If the alarm bit (bit

7) is set to 1 in control register B, an alarm value can be set by writing

registers 8-10. As soon as the value of the counter matches this alarm

value, the alarm bit in the interrupt control register is set. The alarm value

can only be set - a read access to registers 8-10 always returns the

current counter state, regardless of whether or not the alarm bit is set in

control register B.

The serial port

Register

12 $C

Name

| SDR

D7

I y/
D6

| S6

D5

| S5

D4

I 54

D3

| S3

D2

[S2

D1

1 51

DO

| SO

The serial port consists of the serial data register and an 8-bit shift register

that cannot be accessed directly. The port can be configured as input

(SPMODE=0) or output (SPMODE=1) with the SPMODE bit in control

register A. In the input mode the serial data on the SP line are shifted into

the shift register on each rising edge on the CNT line. After eight CNT

pulses the shift register is full and its contents are transferred to the serial

data register. At the same time, the SP bit in the interrupt control register

is set. If more CNT pulses occur, the data continues to shift into the shift

register until it is full again. If the user has read the serial data register

(SDR) in the meantime, the new value is copied into the SDR and the

transfer continues in this manner.

715

11. The A3000 Hardware

To use the serial port as output, set SPMODE to 1. The timeout rate of

timer A, which must be operated in continuous mode, determines the

baud rate (number of bits per second). The data are always shifted out of

the shift register at half the timeout rate of timer A, so the maximum

output rate is one quarter of the clock frequency of the 8520.

Transfer begins after the first data byte is written to the SDR. The CIA

transfers the data byte into the shift register. The individual data bits now

appear on the SP line at half the timeout rate of timer A, as the clock

signal from timer A is reflected in the CNT line. (CNT changes value on

each timeout; on every falling edge, that is, high to low transition on the

CNT line, the next bit appears on the SP line.)

The transfer begins with the MSB of the data byte. Once all eight bits

have been output, CNT remains high and the SP line retains the value of

the last bit sent. In addition, the SP bit in the interrupt control register is

set to show that the shift register can be supplied with new data. If the

next data byte was loaded into the data register before the output of the

last bit, the data output continues without interruption.

To keep the transfer continuous, the serial data register must be supplied

with new data at the proper time. The SP and CNT lines are open-

collector outputs so that CNT and SP lines of multiple 8520s can be

connected together.

The Interrupt Control Register (ICR):

Read access = data register

Heigister

$D

Name

| ICR 1
bi
IR

D6

1 ° 1
US
0

D4 I

| FLAG | 5

)3 D2

>P | Alarm

D1

I TB

DO
I TA

Write access = mask register

I Register Name D7 D5 D5 —D3 D3 D2 m BOH
|13 $U I ICH | S/C I x | x | FLAG | SP | Alarm | IB | TAH

The ICR consists of a data register and a mask register. Each of the five

interrupt sources can set its corresponding bit in the data register. Here

again are all five possible interrupt sources:

1. Timeout of timer A (TA, bit 0).

2. Timeout of timer B (TB, bit 1).

716

113 The CIA 8520

3. Match of event counter value and alarm value (Alarm, bit 2).

4. The shift register of the serial port is full (input) or empty (output)

(SP,bit3).

5. Negative transition on the FLAG input (FLAG, bit 4).

If the ICR register is read, what is returned is always the value of the data

register, which is subsequently cleared (all set bits, including the IR bit

are cleared). If the value of the data register is still needed, it must be

stored in RAM after the read.

The mask register can only be written. Its value determines whether a set

bit in the data register can generate an interrupt. To make an interrupt

possible, the corresponding bit in the mask register must be set to 1. The

8520 pulls the IRQ line low (it is active low) whenever a bit is set in both

the data register and the mask register and sets the IR bit (bit 7) in the

data register so that an interrupt is also signaled in software. The IRQ line

does not return to 1 until the ICR is read and thus cleared.

The mask register cannot be written like an ordinary memory location. To

set a bit in the mask register, the desired bit must be set and the S/C bit

(Set/Clear, bit 7) must also be set. All other bits remain unchanged. To

clear a bit, the desired bit must again be set, but this time the S/C bit is

cleared. The S/C bit determines whether the set bits will set (S/C=l) or

clear (S/C=0) the corresponding bits in the mask register. All cleared bits

in the byte written to the mask register have no effect on it.

Here is an example: We want to allow an interrupt through the FLAG

line. The current value of the mask register is 00000011 binary, meaning

that both timer interrupts are allowed.

The following value must be written into the mask register: 10010000

binary (S/C =1). The mask register then has the following contents:

00010011.

If you now want to turn the two timer interrupts off, write the following

value: 00000011 (S/C=0). Now the mask register contains 00010000,

and only the FLAG interrupt is allowed.

717

11. The A3000 Hardware

Integration of the CIAs into the Amiga system

As previously mentioned, the Amiga has two CIAs of the type 8520. The

base address of the first 8520, which we call 8520-A, is $BFE001. The

registers are not at contiguous memory addresses, however. Instead they

are at 256 byte intervals.

This means that all of the 8520-A registers are at odd addresses because

the 8520-A is connected to the lower 8 lines of the processor data bus

(DO-7). Between the 68030 and the CIAs is a bus adapter. This forms the

68000-style synchronous bus interface. Originally this transfer protocol

from the 8-bit (6800) era was implemented in the 68000 for compatibility

with the peripheral ICs that existed at that time. As the dramatic success

of the 68000 became apparent, special ICs for its asynchronous bus were

made available, and the synchronous bus was dropped from the later

processors (68020, 30 and 40). The special logic of the bus adapter

allows the CIAs from older Amigas, which were also retained for

compatibility, to be connected to the 68030 bus.

The following table lists the addresses of the individual registers with

their uses in the Amiga (refer to the section on interfaces for more

information on the individual port bits):

CIA-A: Register addresses

Address

$BFE001

$BFE101
$BFE201
$BFE301
$BFE401

$BFE501
$BFE601
$BFE701
$BFE801
$BFE901
$BFEA01

$BFEC01
$BFED01

$BFEE01
$BFEF01

Name

PRA

PRB

DDRA

DDRB

TALO
TAHI

TBLO
TBHI

E. LSB

E.8-15
E. MSB

SP
ICR

CRA
CRB

D7 D6 D5 D4 D3 D2 D1 DO

/FIR1 /FIR0 /RDY /TK0 /WPRO /CHNG /LED OVL

Centronics parallel port
0 0 0 0 0 0 11
Input or output depending on the application
Timer A is used by the operating system for communication
with the keyboard

Timer B is used by the OS for various tasks

The event counter in CIA-A counts 50 Hz
pulses from the power supply (called ticks), which
are taken from the power-line frequency
Input for key codes from the keyboard
Interrupt control register
Control register A
Control register B

The second CIA, CIA-B, is referenced at address $BFD000. Its registers

lie at even addresses because the data bus of CIA-B is connected to the

upper half of the processor data bus.

718

11.3 The CIA 8520

C1A-B: Register addresses

Address

$BFDOOO

$BFD100
$BFD200
$BFD300
$BFD400
$BFD500
$BFD600
$BFD700
$BFD800
$BFD900
$BFDAOO
$BFDCOO
$BFDDOO
$BFDEOO
$BFDFOO

Name

PRA

PRB

DDRA

DDRB

TALO

TAHI

TBLO
TBHI

E. LSB

E.8-15
E. MSB

SP
ICR

CRA

CRB

D/ D6 D5 D4

/DTR /RTS /CD /CTS

/MTR /SEL3 /SEL2 /SEL1

110 0

1111

D3

/DSR

/SELO
0

1

Timer A is used only for serial data transfer

otherwise it is free

Timer B is used to synchronize the blitter with the

otherwise it is free

The event counter in CIA-B counts the

horizontal sync pulses

15625 per second (PAL standard)

Unused
Interrupt control register

Control register A

Control register B

D2

SEL

/SIDE

0

1

screen

D1

POUT

DIR

0

1

DO

bUSY

/STEP

0

1

The following list shows the various signal lines of the Amiga's CIAs:

C1A-A

/IRQ

/RES

D0-D7

A0-A3

Phi2

R/W

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PAO

SP

CNT

PB0-PB7

PC

FLAG

/INT2 input from Paula

System reset line

Processor data bus bits 0-7

Processor address bus bits 8-11

CIA clock input (716 kHz)

Processor R/W

Game port 1 pin 6 (fire button)

Game port 0 pin 6 (fire button)

/RDY "disk ready" signal from disk drive

/TKO "disk track 00" signal from disk drive

/WPRO "write protect" signal from disk drive

/CHNG "disk change" signal from disk drive

LED Control over the power LED (0 = on, 1 = off)

OVL Memory overlay bit (do not change!)

KDAT Serial keyboard data

KCLK Clock for keyboard data

Centronics port data lines

/DRDY Centronics handshake signal: data ready

/ACK Centronics handshake signal: data acknowledge

719

11. The A3000 Hardware

CIA-B

/IRQ

/RES

D0-D7

A0-A3

Phi2

R/W

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PAO

SP

CNT

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PBO

FLAG

PC

/INT6 input from Paula

System reset line

Processor data bus bits 8-15

Processor address bus bits 8-11

CIA clock input (716

Processor R/W

/DTR

/RTS

/CD

/CTS

/DSR

SEL

POUT

BUSY

BUSY

POUT

/MTR

/SEL3

/SEL2

/SEL1

/SELO

/SIDE

DIR

/STEP

/INDEX

Not used

kHz)

Serial interface, /DTR signal

Serial interface, /RTS signal

Serial interface, /CD signal

Serial interface, /CTS signal

Serial interface, /DSR signal

"select" signal for Centronics interface

"paper out" signal from Centronics interface

"busy" signal from Centronics interface

connected directly to PAO

connected directly to PA1

"motor" signal to disk drive

"drive select" for drive 3

"drive select" for drive 2

"drive select" for drive 1

"drive select" for drive 0 (internal)

"side select" signal to disk drive

"direction" signal to disk drive

"step" signal to disk drive

"index" signal from disk drive

720

11A Custom Chips and the Amiga

11.4 Custom Chips and the Amiga

The key component of every Amiga system, besides the processor, is the

unit formed by Commodore's own specially developed custom chips,

Agnus, Denise and Paula. In the course of the Amiga's development,

Agnus and Denise have undergone several revisions. The versions used

& in the Amiga 3000 are called 8372B, 8373 and 8364. These custom chips

handle sound generation, screen display, processor-independent diskette

access and much more. These tasks are not strictly divided up among the

chips so that one is in charge of sound generation, one of graphics and

another of diskette operation, which is usually the case with such

devices. Instead most tasks are shared among the chips, so that graphics

display, for example, is accomplished by two chips working together.

Although the three chips could have been combined into one, it would

be more expensive to produce such a complex circuit than the three

separate chips.

Other special components are also needed to control a system as complex

as the Amiga 3000. These include a revised Buster chip for controlling

the expansion slots, a revised Gary as system controller, a newly

developed 32-bit DMA controller for the SCSI interface (needed by the

hard disk), a Western Digital SCSI interface chip, a controller chip for the

FastRAM and a component named Amber as core of the built-in flicker

fixer. Before we explain how Agnus, Denise, Paula, and the other special

components work, first we'll discuss the structure of the Amiga 3000.

721

11. The A3000 Hardware

11.4.1 Basic Structure of the Amiga

-ines to and from Interfaces

Chip RAM

The structure of the 68030

A simple computer system normally consists of a processor, the ROM

with the operating system, a certain amount of RAM, and at least one

peripheral component for data input and output. All components are

connected to the address and data bus. The processor controls the

system and only it can place addresses on the bus and thus read or write

data to and from various system components, such as RAM. It also

controls bus control signals like the R/W line. Every system also contains

control circuits like an address decoder, which activates certain

components based on values on the address bus.

Now let's discuss the Amiga. As you can see from the above diagram, the

structure of the Amiga deviates somewhat from what we described. On

the left side you see the 68030 microprocessor, whose data and address

lines are connected directly to the two 8520 CIAs, the Kickstart ROM,

the real-time clock and the DMA controller. The Gary chip manages the

control lines so that the 68030 can access all these different components.

It informs the 68030, for example, whether it must perform a 16- or a 32-

bit access to a particular address.

A new chip called Ramsey takes over the management of RAM

(configured with full 32-bit addresses, of course), with the capability of

handling up to 16 Megabytes of fast RAM. This RAM can be accessed

722

11.4 Custom Chips and the Amiga

by the DMA controller or DMA-capable expansion cards as well as by

the processor.

The four expansion slots are connected to the processor address and

data lines with a set of drivers. These drivers are controlled by the

A3000's Fat Buster chip, an enhanced version of the A2000's Buster.

This chip also controls bus allocation on DMA access. When the SCSI

controller or an expansion card wants to access RAM directly, first it

must get permission to use the processor's bus lines. Buster manages

these requests and communicates with the CPU, granting the appropriate

DMA controller permission to use the bus as soon as the CPU frees it.

On the right side of the diagram we find the three custom chips Agnus,

Denise and Paula, and the chip RAM, which are all connected to a

common data bus. However, this data bus is separated from the processor

data bus by a buffer, which can either connect the processor data bus to

the chip data bus or can separate the two. The three custom chips are

connected to each other through the address register bus, which is

directed by Agnus. Since the chip RAM has a much larger address range

than the custom chips and also requires multiplexed addresses, there is a

separate chip RAM address bus. Multiplexed addresses implies that the

RAM chips used in the Amiga have an address range of 2*8 addresses
(256K) and in order to access all the addresses of a chip, 18 address lines

are needed. But the actual chips are very small, and such a large number

of address lines would require a very large enclosure. To get around this

problem, something called multiplexed addressing was introduced. The

package has only nine address lines; first the upper nine bits of the

address and then the lower nine are applied to these lines. The chip

stores the upper nine and then, when the lower nine are applied to the

address lines, it has the 18 address bits that it needs.

Why are these two buses separated? The reason is that the various

input/output devices need a constant supply of data. For example, the

data for individual dots on the screen must be read from the RAM fifty

times per second, since a television picture according to the PAL

standard is refreshed at the rate of fifty times per second.

A high-resolution graphic on the Amiga can require more than 64K of

screen memory. This means that per second 50 x 64K access must be

applied to memory. This is nearly 2 million memory accesses per second.

If the processor had to perform this task, it would be hopelessly

723

11. The A3000 Hardware

overloaded. Such a high data rate would leave even the 68030 little time

for anything else. Furthermore, the Amiga can perform digital sound

output and diskette accesses in addition to the graphics, all without

using the CPU. The solution lies in the use of another processor that

performs all these memory accesses itself. Such a processor is also called a

DMA (Direct Memory Access) controller, and the A3000 has two of

them, the SCSI-DMA chip and Agnus.

While the SCSI chip is needed only to speed up data transfer between

RAM and the SCSI interface, Agnus has more numerous and varied

capabilities. However, Agnus can access only the chip RAM. Agnus

contains not only the DMA controller, but also the RAM controller for

the chip RAM. This is why Agnus is also connected to the chip RAM

address bus. The processor can access chip RAM only by using Agnus.

The other chips, Denise and Paula, and also the remainder of Agnus, are

constructed like standard peripheral chips. They have a certain number

of registers which can be read or written by the processor (or the DMA

controller). The individual registers are selected through the register

address bus. It has eight lines, so 256 different states are possible. There

is no special chip selection. If the address bus has the value 255 or $FF,

so that all lines are high, no register is selected. If a valid register number

is on these lines, then the chip containing the selected register recognizes

this and activates it. This task is performed in the individual chips by the

register address decoders. The fact that the selection of a register

depends only on its register address and not on the chip in which it is

located means that two registers in two different chips can be written

with the same value if they have the same register address. This

capability is used for some of the registers that contain data needed by

more than one chip.

Each chip register can be either a read register or a write register.

Switching between read and write by means of a special R/W line, like in

the 8520, is not possible. The register address alone determines whether a

read or write address is taking place. Registers that can be both read and

written are realized by having write access go to one register address and

read access to another. This property is more clearly shown in the list of

chip registers.

Since Agnus contains the DMA controller, it can also access the custom

chip registers itself by outputting an address on the register address bus.

724

11A Custom Chips and the Amiga

One obvious problem is still unresolved. There is only one data bus and

one address bus, which both the processor and the DMA controller want

to access. A bus can be controlled by only one bus controller at a time. If

two chips tried to place an address on the bus simultaneously, there

would be a problem known as bus contention, leading to a system crash.

Therefore the chips must share access to the bus by taking turns.

Naturally each would like to have the bus for itself as often as possible.

This problem is solved by the Amiga on three levels:

First, both normally continuous buses are divided on the Amiga into two

parts. One (on the left in the diagram) connects all the components that

are usually accessed only by the processor. (Although the SCSI

controller and expansion cards can also access RAM on the processor's

behalf, these DMA accesses usually take place only when needed, for

example, when accessing a SCSI hard disk, which reduces processor

speed.) When the 68030 accesses one of these components, Gary uses

the buffers to break the connections of the processor address and data

buses to the chip address and data buses. This way both the processor

and Agnus, each on its own side, can access the bus undisturbed. This

gives the processor quick access to the operating system and to its RAM.

This RAM connected directly to the processor data and address bus is

called fast RAM, since the processor can always access it without

slowing down, if it has the bus at that moment.

Secondly, bus accesses from Agnus and from the processor are nested, so

that normally even on accesses to chip RAM or chip registers, a 68000

does not have to be delayed. For such an access the buffers connect the

two systems again.

As a third and final solution, the processor can wait until Agnus has

finished its DMA accesses and the bus is free again. This occurs only

when very high graphics resolutions have been selected or the Blitter is

being used. Agnus, Denise and Paula were originally drafted for an

Amiga with a 68000 processor. Despite certain revisions for the A3000,

they have some problems working with the 68030. Nesting the accesses

to chip RAM on an Amiga with the 68000 enables alternating access; so

the processor does not have to wait. The A3000's 68030, however,

accesses memory with substantially higher speed, while Agnus's clock

frequency remains unchanged. The result is that the A3000's CPU must

insert wait cycles when it wants to access chip RAM.

725

11. The A3000 Hardware

Another disadvantage of the custom chips is their limitation to a 16-bit

wide data bus. While the A3000 manages chip RAM as true 32-bit RAM,

special buffers are required for RAM access by Agnus to ensure that

access proceeds to the correct half of the chip RAM data bus.

11.4.2 The Structure of Agnus

The 2 Meg version of Agnus in the A3000 is also called Super Agnus.

All clock generation for the custom chips is integrated in Fat Agnus.

Only the 28 MHz base clock must be supplied. Agnus also assumes the

management of chip RAM, generating the necessary RAS and CAS

signals together with the multiplexed RAM addresses. Agnus can

manage chip RAM on its own. But since the A3000's developers wanted

to endow it with true 32-bit chip RAM access, a conversion process was

necessary to utilize the 16-bit wide data bus. Since Agnus is still used in

the older Amiga models, other chips were connected to Agnus for this

purpose, instead of being integrated into it.

Agnus's main responsibility is all of the DMA control. Each of the six

possible DMA sources has its own control logic. They are all connected

to the chip RAM address generator as well as the register address

generator. These address generators create the RAM address of the

desired chip RAM location and the register address of the destination

register. In this manner the DMA logic units supply the appropriate chip

registers with data from the RAM or write the contents of a given

register into RAM.

Also connected to the chip RAM address generator is the refresh

counter, which creates the refresh signals necessary for the operation of

the dynamic RAM chips.

Agnus controls the synchronization of the individual DMA accesses. The

fundamental reference for this is a screen line. In each screen line, 255

memory accesses take place, which Agnus allocates among the individual

DMA channels and the 68030. Since it always needs the current row

and column positions for this, Agnus also contains the raster and column

counters. These counters for the beam position also create the horizontal

and vertical synchronization signals, which signal to the monitor the start

of a new line (H-sync) and a new picture (V-sync). The horizontal and

vertical synchronization signals can also be fed in from outside Agnus

726

11A Custom Chips and the Amiga

and then control the internal raster line and column counters. This allows

the video picture of the Amiga to be synchronized to that of another

source, such as a video recorder. Called a genlock, this is easily

accomplished on the Amiga. (Simply stated, synchronizing two video

pictures means that the individual raster lines and the individual pictures

of the two signals start at the same time.)

Two other important elements in Agnus are the Blitter and the Copper

coprocessor. The Blitter is a special circuit that can manipulate or move

areas of memory. It can be used to relieve the 68030 of some work, since

it can perform these operations faster than the processor can. In addition,

the Blitter is capable of drawing lines and filling surfaces. The Copper is a

simple coprocessor. Its programs, called Copper lists, contain only three

different commands. The Copper can change various chip registers at

predetermined points in time.

The following are the functions of the individual pins:

Data bus: D0-D15

The 16 data lines are connected directly to the chip RAM data bus.

Internally all of the chip registers are connected through a buffer to the

bus.

Processor address bus: A1-A20

These inputs are connected with the address lines of the 68030 and are

used by Agnus when the CPU accesses chip RAM or one of the chip

registers.

CPU bus signals: _LDS,JJDS,_R/Wand_AS

These signals inform Agnus about, among other things, the validity of

processor addresses.

Register address bus: RGA1-RGA8 (ReGisterAddress)

On a DMA access Agnus selects the appropriate chip register over the

register address bus. If the _REGEN line is low, meaning the processor is

accessing a chip register, Agnus transfers the CPU-referenced register

address to the register address bus. With a value of $FF on the register

address bus (all lines high), this is inactive.

727

11. The A3000 Hardware

The address lines for the dynamic RAM: DRA0-DRA9 (Dynamic RAM

Address)

Agnus always generates the multiplexed addresses for the chip RAM. On

a DMA access these originate from one of the internal address counters,

the processor signals access to RAM (JRAMEN low), and Agnus simply

switches the addresses through to chip RAM. Agnus can address 2 Meg

of chip RAM (2x10 address lines for 20 address bits, 220 gives an area
of roughly 1 million addresses, but since the chip RAM for Agnus has a

width of 16 bits, the memory available to Agnus is 2 Meg).

The chip RAM control lines: _RAS,_CASU,jCASL,_WE

The _RAS and _CAS signals activate the dynamic RAM chips. The _WE

line determines whether Agnus is writing data to chip RAM or reading

from it.

The bus control signals: JtAMEN, JIEGEN, _BLITS, _BUT

These four lines are connected to Gary. With the _BLIT line Agnus tells

Gary that it will take over the bus on the next bus cycle. This line always

takes precedence over a processor bus request. If Agnus requires the bus

for several consecutive bus cycles, the 68030 must wait.

The _RAMEN (RAM ENable) and _REGEN (REGister ENable) inform

Agnus that the processor wants to access chip RAM or a chip register.

The BLITS signal (BLITter Slow down) signals Agnus that the processor

is waiting for access. Depending on the internal status, Agnus gives up

the bus to the processor for a cycle.

The control signals: RES, INT3, DMAL

The RES signal (RESet) is connected directly to the system reset line and

returns Agnus to a predefined start-up state.

The INT3 line (INTerrupt at level 3) is an output and is connected

directly to the Paula line with the same name. Agnus uses this line to

inform the interrupt logic in Paula that a component in Agnus has

generated an interrupt.

728

11.4 Custom Chips and the Amiga

The DMAL line (DMA Request Line) also connects Agnus to Paula; only

this time the connection occurs in the opposite direction. Paula uses this

line to tell Agnus to perform a DMA transfer.

The synchronization signals: HSY, VSY, CSY andLP

Normally the synchronization signals for the monitor appear on the HSY

(Horizontal SYnc) and VSY (Vertical SYnc) lines. The signal on the CSY

(Composite SYnc) line is the sum of HSY and VSY and is used to

connect to monitors that need a combined signal, as well as the circuit

that creates the video signal, the video mixer.

The LP line (Light Pen) is an input line for connecting a light pen. The

content of the raster counter register is stored when a negative transition

occurs on this pin.

The HSY and VSY lines can also be used as inputs and thus allow Agnus

to be externally synchronized (genlock).

The clock lines: 28 MHz, 7 MHz, CCK, CCKQ, CDAC

The 28 MHz signal forms the base clock for Agnus. The two 7-MHz

signals, 7 MHz and _CDAC, and the two 3.5-MHz signals, CCK and

CCKQ, are produced from it. These four serve as clock signals for Denise,

Paula and a few other chips.

729

11. The A3000 Hardware

11.4.3 The Structure of Denise

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

IZ

c

c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

y,)
^—s

CM

00

<D

c

Q

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

3

3

3

3

3

H

3

3

3

3

3

3

3

3

3

3

3

3

3
uuu

3

3

Note: The arrows show the direction of the signal.

A line above a signal means the signal is

active when low (Osactive).

Denise

In general, the function of Denise can be described as graph generation.

The first part of this task is already accomplished by Agnus. Agnus

fetches the current graphic data from the chip RAM and writes them to

the registers responsible for the bit level manipulations in Denise. It does

the same for the sprite data. Denise always contains all graphic and sprite

730

11.4 Custom Chips and the Amiga

data for 16 pixels, since a bit always corresponds to one pixel on the

screen and the data registers all have a width of one word, or 16 bits.

These data must be converted into the appropriate RGB representation

by Denise. First, the graphic data are converted from a parallel 16-bit

representation to a serial data stream by means of the bit-level sequencer.

Since a maximum of six bit levels are possible, this function block is

repeated six times. The serial data streams from the individual bit-level

sequencers are now combined into a maximum 6-bit wide data stream.

Block circuit diagram ofDenise

The priority control logic selects the valid data for the current pixel based

on its priority from among the graphic data from the bit-level sequencers

and the sprite data from the sprite sequencers. According to this data the

color decoder selects one of the 32 color registers. The value of this

register is then output as a digital RGB signal. If the Hold-And-Modify

(HAM) or the Extra-Half-Bright (EHB) mode is selected, the data from

the color register is modified accordingly before it leaves the chip.

The data from the sequencers is also fed into the collision-control logic.

As its name implies, this checks the data for a collision between the bit

levels and the sprites and places the results of this test into the collision

register.

731

11. The A3000 Hardware

The last function of Denise has nothing to do with the screen display.

Denise also contains the mouse counter, which contains the current X

and Y positions of the mice.

Here is a functional description of Denise's pins:

The data bus: D0-D15

The 16 data bus lines are, like those of Agnus, connected to the chip data

bus.

Register address bus: RGA1-RGA8

The register address bus is a pure input on Denise. The register address

decoder selects the appropriate internal register with the help of the

value on the register address bus.

The clock inputs: CCK and 7M

Denisefs timing is regulated by the CCK signal. The CCK pin is

connected to the CCK pin on Agnus. The clock signal on the 7M line (7

Megahertz) has a frequency of 7.15909 MHz. The Denise chip needs this

additional frequency to output the individual pixels because the pixel

frequency is greater than the 3.58 MHz of the CCK signal. A pixel at the

lowest resolution (320 pixels/line) has exactly the duration of a 7M clock

signal. In high-resolution mode (640 pixels/line) two pixels are output

per 7M cycle, one on each edge of its signal. The output signals: R0-3,

G0-3, B0-3, ZD and BURST.

The lines R0-3, G0-3 and B0-3 represent the RGB outputs of Denise.

Denise outputs the corresponding values digitally. Each of the three

color components is represented by four bits. This allows 16 values per

component and 16x16x16 (4096) total colors. After they leave Denise,

the three color signals run through a buffer and then through three

digital-to-analog converters to transform them into an analog RGB

signal, which is then fed to the RGB port.

The last output signal of Denise is the ZD signal (Zero Detect or

background indicator). It is always low when a pixel is being displayed

in the background color (i.e., when its color comes from color register

number 0). This signal is used in the genlock adapter for switching

732

11.4 Custom Chips and the Amiga

between the external video signal (ZD=0) and the Amiga's video signal

(ZD=1). The ZD signal is also available on the RGB port.

The mouse/joystick inputs: MOH, MM, MOV, M1V

These four inputs correspond directly to the mouse inputs of the two

game ports (or joystick connectors). Since the Amiga has two game ports,

it must actually have eight inputs. Apparently only four pins were free on

Denise so Commodore used the following method to read all the inputs:

The eight input lines of the two game ports go to a switch, which

connects the four lines of either the front or the back port to the four

inputs on Denise. This switching is performed in synchronization with

Denise's clock, so that Denise can internally distribute the four lines to

two registers, one for each game port. The section on interfaces contains

more information about the game ports.

733

//. The A3000 Hardware

11.4.4 The Structure of Paula

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

V J
V y

00

O
■■■■

3

O

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

COCMCOCO

31

30

29

28

27

26

25

NOTE: The arrows show the direction of the signal.

A line above a signal means the signal is active when low (0=active).

Paula

Paula's tasks fall mainly in the I/O area, namely the diskette I/O, the serial

I/O, the sound output and reading the analog inputs. In addition, Paula

handles all interrupt control. All the interrupts that occur in the system

run through this chip. From the fourteen possible interrupt sources, Paula

creates the interrupt signals for the 68030. Interrupts on levels 1-6 are

734

11.4 Custom Chips and the Amiga

generated on the 68030fs IPL lines. Paula gives the programmer the

possibility to allow or prohibit each of the fourteen interrupt sources.

The disk data transfer and the sound output are performed using DMA.

Since, in these two functions, Agnus does not know when the next data

word is ready for a DMA transfer, Paula has a DMAL line, which it can

use to tell Agnus when a DMA access is needed.

The serial communication is handled by a UART (Universal

Asynchronous Receive Transmit) component inside Paula.

The function of the UART, the four audio channels and the analog ports

are described later in the section on programming the custom chips. The

following is a description of the pin functions:

DKRD

DMAL

1NT3

r

IPL1 <+-

IPL2 «*-

CCK —#

CCKQ —•
RET—•

RGA1-8

DO-15

DMA

status

register

DMA

register

logic

Interrupt

status

mask

Interrupt

control

logic

Chip

control

<

Analog

port

data

register

Analog

port

control

register

►

Data bus buffer

Block circuit diagram of Paula

Data bus: DO-15

As with the other chips, connected to the chip data bus.

735

11. The A3000 Hardware

Register address bus: RGA 1-8

As with Denise.

The clock signals and reset: CCK, CCKQ and RES

Paula contains the same clock signals as Agnus. The reset line RES

returns the chip to a defined start-up state.

DMA request: DUAL

With this line Paula signals Agnus that a DMA transfer is needed.

Audio outputs: AUDL andAUDR

The outputs AUDL and AUDR (AUDio Left and AUDio Right) are

analog outputs on which Paula places the sound signals it generates.

AUDL carries the internal sound channels 0 and 3, and AUDR the

channels 1 and 2.

The serial interface lines: TXD andRXD

RXD (Receive Data) is the serial input to the UART, and TXD (Transmit

Data) is the serial output. These lines have TIL levels, which means that

their input/output voltages range from 0 to 5 volts. An additional level

converter subsequently creates the +12/-5 volts for the Amiga's serial

RS232 interface.

The analog inputs: POTOX, POTOY, P0T1X, POT1Y

The inputs POTOX and POTOY are connected to the corresponding lines

from game port 0, and POT1X and POT1Y are connected to port 1.

Paddles or analog joysticks can be connected to these inputs. These

input devices contain variable resistors, called potentiometers, which lie

between +5 volts and the POT inputs. Paula can read the values of these

resistors and place them in internal registers. The POT inputs can also be

configured as outputs through software. Unfortunately the sampling rate

is only 50 Hz (the screen repeat frequency). Therefore it is not possible,

for example, to use a VCR (Voltage Controlled Resistor) to digitize music

and speech.

736

11A Custom Chips and the Amiga

The disk lines: DKRD, DRWD, DKWE

Through the DKRD lines (DisK ReaD) Paula receives the read data from

the diskette. The DKWD line (DisK Write) is the output for data to the

disk drive. The DKWE line (DisK Write Enable) serves to switch the

drive from read to write.

The interrupt lines: INT2, INT3, INT6 and 1PL0, IPL1, IPL2

Paula receives instructions through the three INT lines to create an

interrupt on the appropriate level. The INT2 line is normally the one

connected to the CIA-A 8520. This line is also connected to the

expansion port and the serial interface. If it is low, Paula creates an

interrupt on level 2, provided that an interrupt at this level is allowed.

The INT3 line is connected to the corresponding output from Agnus and

the INT6 line to CIA-B and the expansion port. All other interrupts occur

within the I/O components in Paula.

The IPL0-IPL2 lines (Interrupt Pending Level) are connected directly to

the corresponding processor lines. Paula uses these to create a processor

interrupt at a given level.

737

11. The A3000 Hardware

11.5 The Amiga Interfaces

Every computer needs contact with the outside world. Because of

various connections and interfaces, it's possible to connect the Amiga to

virtually any external device.

11.5.1 The Audio Outputs

TV modulator
1

2 GND

3 Left audio channel
4 Composite video output

5 GND

6 -

7 +12V

8 Right audio channel

Yellow jack

Composite video signal

Red jack

Left audio channel

White jack

Left audio channel

The audio outputs

The audio signal is available through two phono connectors on the rear

of the case. The right stereo channel is the red connector and the left is

the white. A standard stereo phono cable can be used to connect these

jacks to a stereo (AUX, TAPE or CD input). The output resistance of each

channel is 1 KOhm (1000 Ohms).

The outputs are protected against short circuit and have 360 Ohms

impedance.

738

11.5 The Amiga Interfaces

11.5.2 The RGB Connector

/©©©©©®©©©®©©N>

\®<3
INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

IN/OUT

IN/OUT

OUTPUT

OUTPUT

)C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

>©©(3>®©(D®/
XCLK External clock frequency

XCLKEN Switch for external clock

R

G

B

DI

DB

DG

PR
QCSY

HSY

VSY

nND

.zp

C1U

GND

GND

GND

GND

GND

Analog red signal

Analog green signal

Analog blue signal

Digital brightness signal

Digital blue signal

Digital green signal

Digital red signal

Buffered composite sync signal

Horizontal synchronization signal

Vertical synchronization signal

Background indicator signal

Amiga C1U timer (3.58 MHz)

-5 volts

+12 volts

+5 volts

The RGB connector

The RGB connector allows various RGB monitors as well as special

expansions, such as a genlock adapter, to be connected to the Amiga. To

connect an analog RGB monitor like the standard Amiga monitor, the

three analog RGB outputs and the CompositeSync output are used. The

RGB signal on these three lines comes from the conversion of the

buffered RGB digital signals from Denise into suitable analog signals by

means of three 4-bit digital-to-analog converters. The Composite Sync

signal comes from Agnus and is formed by mixing the horizontal and

vertical sync signals. All of these four lines are provided with transistor

buffers and 75 Ohm series resistances.

739

77. The A3000 Hardware

The lines DI, DB, DG and DR are provided for connecting a digital RGB

monitor. The source of the digital RGB signals is the digital RGB output

from Denise. Each of the three color lines is connected to the most

significant (highest) respective color line from Denise (e.g., DB to B3

from Denise). Interestingly, the intensity or brightness line DI is

connected to the BO line. The four lines have 47 Ohm output resistances

and TTL levels.

The HSY and VSY connections on the RGB connector are provided for

monitors that require separate synchronization signals. Use these lines

carefully, since they are connected through 47 Ohm resistors directly to

the HSY and VSY pins of Agnus. They also have TTL levels.

If the genlock bit in Agnus is set (see the section on programming the

hardware), these two lines become inputs. The Amiga then synchronizes

its own video signal to the synchronization signals on the HSY and VSY

lines. These lines also require TTL levels as input. As usual, the

synchronization signals are active low, which means that the lines are

normally at 5 volts. Only during the active synchronization pulse is the

line at 0 volts.

Using certain control bits from Agnus, it is also possible to reverse the

polarity of the synchronization signals (refer to Section 11.7).

Kickstart Versions 1.2 and later automatically recognize on reset whether

signals are present on the two Sync lines. If so, the Amiga switches to

external synchronization.

Another signal, related to genlock, is the ZD signal (Zero Detect). The

Amiga places this signal low whenever the pixel currently being

displayed comes from a specified color register or bit-plane.

During the vertical blanking gaps, when VSY=0, the function of the ZD

line changes. Then it reflects the state of the GAUD (Genlock AUDio

enable) bit from Agnus register $100 (BPLCON0). This signal is used by

the genlock interface to switch the sound signal.

The ZD line is usually of no interest to the normal user, since it is required

only by the genlock interface. The ZD signal from Denise pin 33 is

buffered with a 74HC244 driver, so that the signal has TTL levels.

740

77.5 The Amiga Interfaces

The remaining lines of the RGB connector have nothing to do with the

RGB signal. The C1U line is a 3.58 MHz clock line and corresponds to

the inverted CLK signal of the custom chips.

The XCLK (external CLocK) and XCLKEN (external CLocKENable)

lines are used to feed an external clock frequency into the Amiga. All

clock signals in the Amiga are derived from a single 28MHz clock. This

28MHz master clock can be replaced by another clock frequency on the

XCLK input by pulling the XCLKEN low. The ground pin 13 should be

used when using the XCLK and XCLKEN lines. It is connected directly

with the ground line of the clock generation circuit. The fed-in clock

should not differ greatly from the master clock (28 MHz).

11.5-3 The VGA Connector

1 Red

2 Green

3 Blue

4-8 Ground

10-12 Ground

13 H-Sync

14 V-Sync

The VGA connector

The VGA connector is used for connecting IBM-VGA-compatible or

multisync monitors. It carries an analog RGB signal with separate H and

V Sync lines. Internally it is connected to the flicker fixer output. A

switch on the rear panel of the A3000 can be set so that the flicker fixer

passes the RGB signal unchanged to the VGA connector.

Since the synchronization signal on the VGA connector is output only, it

is not possible to connect a genlock adapter.

741

11. The A3000 Hardware

11.5.4 The Video Slot

The A3000 video slot is closely tied to the signals on the RGB port. It

consists of two 36-pin slot connectors, identical to those of the

expanded IBM bus, which are arranged in line with a Zorro expansion

slot. The slots have the following pin configurations:

Rear slot (relative to rear of chassis):

Pin

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

Function

Reserved

Left audio output

Reserved

Analog red

Ground

Analog green

Ground

Analog blue

Ground

/C4 sync signal

Ground

BO

B3

G3

R3

-5 volts

XCLK

+5 volts

Pin

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

Function

Reserved

Right audio output

+5 volts

+5 volts

+12 volts

Ground

Composite sync, direct

/XCLKEN

BURST

Ground

Horizontal sync

Ground

Vertical sync

Composite sync, buffered

/ZD (also called /PIXELSW)

Ground

/C1 sync signal

Pstrobe

742

77.5 The Amiga Interfaces

Front slot:

Pin

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

Function

Ground

R1

Ground

G1

Ground

B2

Composite video

CDAC sync signal

/C3 sync signal

/LPEN

SEL (Select)

PDO

PD2

PD4

PD6

/LED

Left audio unfiltered

Right audio unfiltered

Pin

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

Function

RO

R2

GO

G2

B1

Ground

TBASE

POUT (Paper out)

BUSY

/ACK (Acknowledge)

Ground

PD1

PD3

PD5

PD7

Ground

Audio ground

Audio ground

Almost all these signals are carried either by the RGB port or the

Centronics port. The rest of the signals have the following meanings:

Left and right audio outputs:

These two pins are connected directly to the audio sockets.

Audio left/right unfiltered:

The audio signals on these lines have not yet gone through the low pass

filter.

RO to R3, BO to B3 and GO to G3:

These are the digital RGB signals from Denise, buffered through

74HCT244.

ILPEN:

This is the Agnus lightpen input.

/LED:

This indicates the status of the power LED control line. It tells the

genlock card whether the audio filter is on or off.

743

11. The A3000 Hardware

Composite video:

In the A3000, this signal occurs at this slot only (unlike the older Amiga

models, which also had a audio jack for it). It is a video-compatible black-

and-white signal that can be used, for example, to connect the Amiga to a

TV with video input.

TBASE:

TBASE is the time base for the CIA-A event counter, which Kickstart

uses as a system clock. A jumper can be used to determine the source of

TBASE. This jumper, called J350, connects the TBASE line either with

the ticks from the AC electrical source (50 Hz) or with the VSync line

from Agnus. Since its frequency is also 50 Hz, the jumper position is

normally the same. Preferably the jumper is on the source frequency (pins

1 and 2), which is generally more constant, causing the clock to run more

accurately.

11.5.5 The Centronics Interface

The Centronics interface of the Amiga is a computer enthusiast's dream.

Any one of a tremendous array of IBM-compatible printers can be

connected directly to it.

Output

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Input

I/O

I/O

I/O

Output

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17-25

/Strobe - data ready

PDO, Data bit 0

PD1, Data bit 1

PD2, Data bit 2

PD3, Data bit 3

PD4, Data bit 4

PD5, Data bit 5

PD6, Data bit 6

PD7, Data bit 7

/Acknowledge - Data received

BUSY - printer busy

Paper out

Select-printer ON-LINE

+5 volts

Unused

Reset/buffered reset line from Amiga

GND

Internally all of the Centronics port lines (except 5 volts and Reset) are

connected directly to the port lines of the individual CIAs. The exact

assignment is as follows:

744

77.5 The Amiga Interfaces

Pin no.

1

2

3

4

5

6

7

8

9

10

11

12

13

Function

Strobe

Data bit 0

Data bit 1

Data bit 2

Data bit 3

Data bit 4

Data bit 5

Data bit 6

Data bit 7

Acknowledge

Busy

and

Paper out

and

Select

CIA

A

A

A

A

A

A

A

A

A

A

B

B

B

Pin

18

10

11

12

13

14

15

16

17

24

2

39

3

40

4

Designation

PC

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

FLAG

PAO

SP

PA1

CNT

PA2

The Centronics interface is a parallel interface. The eight data lines carry

one data byte. When the computer has placed a valid data byte on the

data lines, it clears the STROBE line to 0 for 1.4 microseconds, signaling

the printer that a valid byte is ready for it. The printer must then

acknowledge this by pulling the Acknowledge line low for at least one

microsecond. Once the printer has indicated receipt of the data byte, the

computer can place the next one on the bus.

The printer uses the BUSY line to indicate that it is occupied and cannot

accept any more data at the moment.

This occurs when the printer buffer is full, for example. The computer

then waits until BUSY goes high again before it continues sending data.

With the Paper Out line the printer tells the computer that it is out of

paper. The Select line is also controlled by the printer and indicates

whether it is ONLINE (selected, SEL high) or OFFLINE (unselected, SEL

low). The Centronics port is well suited as a universal interface for

connecting home-built expansions like an audio digitizer or an EPROM

burner, since almost all of its lines can be programmed to be either inputs

or outputs.

745

11. The A3000 Hardware

11-5.6 The Serial Interface

Amiga 500/Amiga 2000

12 3 4 5 6 7 8 9 10 11 12 HI

14 15 16 17 18 19 20 21 22 23 24 25

DB-25 male

Amiga 1000

13 12 Mil 10 9 87654

25 24 23 22 21 20 19 16 17 1611151 ri4

DB-25 female

The serial interface

The serial interface has all of the usual RS-232 signal lines. In addition,

there are many signals on this connector that have nothing to do with

serial communications. The lines TXD, RXD, DSR, CTS, DTR, RTS and

CD belong to the RS-232 interface. The TXD and RXD lines are the

actual serial data lines.

The TXD line is the serial output from the Amiga and RXD is the input.

They are connected to the corresponding lines of Paula. The DTR line

tells the peripheral device that the Amiga's serial interface is in operation.

Conversely, with the DSR line the peripheral device signals the Amiga

that its interface is ready for operation.

The RTS line tells the peripheral that the Amiga wants to send serial data

over the RS-232. The peripheral uses the CTS line to tell the Amiga that

it is ready to receive it. The CD signal is usually used only with a modem

746

77.5 The Amiga Interfaces

and indicates that a carrier frequency is being received. These five RS-

232 control lines are connected to CIA-B, PA3-PA7 as follows: DSR-

PA3; CTS-PA4; CD-PA5; RTS-PA6; DTR-PA7. The RI line is connected

through a transistor to the SEL line of the Centronics interface.

Output

Input

Output

Input

Input

Input

Output

Input

Output

Input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

GND

TXD

RXD

RTS

CTS

DSR
GND

CD

+12 volts

-12 volts

AUDOUT

AUDIN

DTR

RI

Frame Ground

Transmit Data

Receive Data

Request To Send

Clear To Send

Data Set Ready

Signal Ground

Carrier Detect

left sound channel output

Unused

Unused

Unused

Unused

Unused

Unused

right sound channel input

Unused

Data Terminal Ready

Unused

Ring Indicator

Unused

Unused

Unused

Fortunately, the RS-232 lines are routed through RS-232 drivers instead

of being connected directly to the chips. Thus with the appropriate cable,

this interface can be connected to almost all the common terminals and

modems. Type 1488 inverting RS-232 signal-converters are used as the

output drivers. They operate on current supply in the range of +12 to -12

volts. This is the range of the output signals as well. As input buffers,

type 1489A chips are used. These accept an input range of -12 to +0.5

volts as low and a range of +3 to +25 volts as high.

According to RS-232 interface conventions, the control lines must be

active high, whereas the data lines RXD and TXD are active low (logic 1

is represented by a low signal). Since the drivers invert, the CIA-B port

bits that correspond to the control lines are also active low. This means

that a bit with the value 0 in CIA-B sets the corresponding RS-232

control line to high. This also applies to the inputs.

747

11. The A3000 Hardware

The remaining lines on the RS-232 connector have nothing to do with

RS-232. The AUDOUT line is connected to the left audio channel and

has its own 1 KOhm output resistance. The AUDIN line is connected

directly to the AUDR pin of Paula through a 47 Ohm resistor. Audio

signals fed into the Amiga on the AUDIN line are sent along with the

right sound channel from Paula over the low-pass filter to the right audio

output. Nothing else is done to the signal.

The INT2 line is connected directly to the INT2 input of Paula and can

generate a level 2 processor interrupt if the corresponding mask bit is set

in Paula (see the section on interrupts). The E line is connected via a

buffer to the processor E clock (see 11.2.1). A frequency of 3.58 MHz is

available on the MCLK line, but this is neither in phase with the RGB

interface clock nor with the two 3.58 MHz clocks of the custom chips.

Finally, the reset signal is also available on this connector. As you might

expect, it too is buffered.

11.5-7 The External Drive Connector

\ [23] [22] [21] [2cT| Q7] [j7| QZ1 El] [H] QZ] PT|/

DB-23 female

The external drive connector

748

77.5 The Amiga Interfaces

Input

Input

Output

Output

Output

Input

Output

Input

Input

Output

Output

Output

Output

Output

Input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

/RDY

/DKRD

GND

GND

GND

GND

GND

/MTRX

/SEL3

/DRES

/CHNG

+5 volts

/SIDE

/WPRO

/TKO

/DKWE

/DKWD

/STEP

/DIR

/SEL2

/INDEX

+12 volts

Disk ready signal

Read data from disk

Motor on/off

Select drive 3

Disk reset (tum motors off)

Disk change

Side selection

Write protect

Track 0 indicator

Switch to write

Write data to disk

Move read/write head

Direction of head movement

unused

Select drive 2

Index signal from drive

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

/CHNG

/INUSE1

/INUSE0

/INDEX

/SEL0

/SEL1

Unused

/MTR0

DIR

/STEP

/DKWD

/DKWE

/TKO

/WPRO

/DKRD

/SIDE

/RDY

All odd pins are grounded.

749

11. The A3000 Hardware

Power connector for the internal drive:

+5 volts

GND

GND

+12 volts

The disk drive connection on the Amiga is compatible with the Shugart

bus. It allows up to four Shugart-compatible disk drives to be connected.

The four drives are selected with the four drive selection SELx signals,

where x is the number of the drive to be selected. Two of the drives are

intended for internal installation in the A3000, so only the lines SEL2

and SEL3 are available on the external drive connector. The SELO and

SEL1 lines are connected to the internal drives using the internal

connector. The following is a description of the Shugart bus signals on

the Amiga:

SELX

The Amiga uses the SELX line to select one of the four drives. Except for

the MTRX and DRES lines, all other signals are active only after a drive

has been activated with the corresponding SELX line.

MTRX

Normally this line turns on all the drive motors. Since this is not practical

in a system that can have up to four drives, each drive has its own flip-

flop to allow the motors to be controlled separately. A flip-flop is an

electronic component that can store a data bit. When a given drive's SEL

line goes low, the flip-flop for this drive takes on the value of the MTRX

line. The output of the flip-flop is connected to the drive's MTR line. So,

for example, if the SELO line is pulled low while the MTRX line is at 0,

the motor of the first internal disk drive turns on.

For the internal drives these flip-flops are located right on the

motherboard. Their outputs are routed via an OR gate to the MTR line of

the internal floppy connector. There are separate lines for the LEDs:

INUSEO and INUSE1. An additional flip-flop is required for each external

drive.

750

11.5 The Amiga Interfaces

RDY

When a drive's MTR line is at 0, the RDY (ReaDY) line is used to signal

the Amiga that the drive motor has reached its optimum speed and the

drive is now ready for read or write accesses. If the MTR line is at 1,

meaning the drive motor is turned off, the RDY line is used for a special

identification mode (see the following).

DRES

The DRES (Drive RESet) line is connected to the standard Amiga reset

and is used only to reset the motor flip-flops so that all drive motors are

turned off.

DKRD

The data from the drive selected by SELX travels over the DKRD (DisK

Read Data) line to the DKRD pin on Paula.

DKWD

The DKWD (DisK Write Data) line carries data from Paulafs DKWD pin to

the current drive, where it is then written to the diskette.

DKWE

The DKWE (DisK Write Enable) line switches the drive from read to

write. If the line is high, data is read from the diskette. If it is low, data can

be written.

SIDE

The SIDE line determines which side of a diskette will be selected for

reading or writing. If it is high, side 0 (the lower read/write head) is

active. If it is low, side 1 is active.

WPRO

The WPRO (Write PROtect) line tells the Amiga whether the inserted

diskette is write-protected. If a write-protected diskette is in the drive, the

WPRO line is 0.

751

11. The A3000 Hardware

STEP

A rising edge on the STEP line (transition from low to high) moves the

read/write head of the drive one track in or out, depending on the state

of the DIR line. The STEP signal should be at 1 when the SEL line of the

activated drive is set back to high or there may be problems with the

diskette-change detection.

DIR

The DIR (DIRection) line sets the direction in which the head moves

when a pulse is sent on the STEP line. Low means that the head moves in

toward the center of the disk and high indicates movement out toward

the edge of the disk. Track 0 is the outermost track on the disk.

TKO

The TKO (TracK 0) line is low whenever the read/write head of the

selected drive is on track 0. This allows the head to be brought to a

defined position.

INDEX

The INDEX signal is a short pulse which the drive delivers once per

revolution of the diskette, between the start and end of a track.

CHNG

With the CHNG (CHaNGe) line, the drive notifies the Amiga of a diskette

change. As soon as the diskette is removed from the drive, the CHNG line

goes to 0. It remains at 0 until the computer issues a STEP pulse. If there

is a diskette in the drive again by this time, CHNG jumps back to 1.

Otherwise it remains at 0, and the computer must issue STEP pulses at

regular intervals to detect when a diskette has again been inserted in the

drive. These regular STEP pulses are the cause of the clicking noise the

Amiga drive makes when no diskette is inserted.

1NUSE0JNUSE1

The INUSE lines exist only on the internal floppy connector. If INUSEO

is pulled low, drive DFO turns its LED on. INUSE1 serves the same

purpose for drive DF1.

752

77.5 The Amiga Interfaces

To recognize whether a drive is connected to the bus, there is a special

drive identification mode. This involves reading a serial 32-bit data word

from the drive. To start the identification, the MTR line of the drive in

question must be turned on briefly and then off again (the description of

the MTRX line explains how this is done). This resets the serial shift

register in the drive. The individual data bits can then be read by 32

iterations of the following procedure: pull the SELX line low, read the

value of the RDY line as a data bit, then return the SELX line to high.

The first bit received is the MSB (Most Significant Bit) of the data word.

Since the RDY line is active low, the data bits must be inverted.

The following are the standard definitions for external drives:

$0000

$FFFF

$5555

0000

FFFF

5555

No drive

Standard

Amiga 5

connected

Amiga 3 1/2

1/4" drive,

- drive

2x40 tracks

(00)

(11)

(01)

As you can see, there are currently so few different identifications that

only the first two bits must be read. The values in parentheses are the

combinations of these two bits.

As mentioned before, all the lines except DRES affect only the drive

selected by SELX. Originally the MTRX line was also independent of

SELX, but the Amiga developers changed this by adding the motor flip-

flops.

All lines on the Shugart bus are active low, since the outputs in the

Amiga as well as in the drives themselves are provided with open-

collector drivers. In the Amiga these are type 7407 drivers.

The four inputs CHNG, WPRO, TKO and RDY are connected in this order

directly to PA4-PA7 of CIA-A. The eight outputs STEP, DIR, SIDE,

SELO, SEL1, SEL2, SEL3 and MTR are connected through the

previously mentioned drivers to the internal and external drive

connectors. Since these drivers are non-inverting, the bits from the CIAs

are inverted. The DKRD, DKW and DKWE lines come from Paula.

Except for the MTRX line and the SEL signals, the connections to the

internal and external floppies are the same.

753

11. The A3000 Hardware

Installing a second internal drive

As mentioned earlier, a second internal drive can be installed in the

A3000. If you examine the connecting cable for the built-in floppy, you

will discover a second plug as well as an additional power supply

connector.

On the built-in drive, usually next to the plug for the connecting cable,

there is a switch or jumper for selecting the SELX signal to which the

drive should react. This switch should be set to SEL1, since SELO is

already assigned to the first built-in floppy. The drive can then be

installed and the cable connected.

As a final step, the Amiga must be told that an additional drive is present.

This happens using the RDY line in the special identification procedure

described earlier. The circuit in the A3000 that initiates this recognition

procedure for the two internal drives is connected to the RDY line by

means of the J351 jumper. This jumper is located on the left, next to the

rear slot for the perpendicular bus board, directly behind Denise. Simply

switch it over from pins 2-3 to 1-2.

754

77.5 The Amiga Interfaces

11.5.8 The Game Ports

Use as:

Input 1

Input 2

Input 3

Input 4

I/O 5

I/O 6

7

8

I/O 9

Mouse port

V-pulse

H-pulse

VQ-pulse

HQ-pulse

(Button 3)

Button 1

+5 volts

GND

Button 2

Joystick

Up

Down

Left

Right

Unused

Firebutton

+5 volts

GND

Unused

Paddle

Unused

Unused

Left button

Right button

Right port

Unused

+5 volts

GND

Left port

Lightpen

Unused

Unused

Unused

Unused

Button

LP signal

+5 volts

GND

Unused

Game port pin configuration

The game ports Game-Ports are inputs for input devices other than the

keyboard, such as a mouse, joystick, trackball, paddle or lightpen. There

are two game ports, the left one being designated as game port 0 and the

right as game port 1. The pin assignment of both ports is identical, except

that the LP line is present only on game port 0. Internally the game ports

are connected to CIA-A, Agnus, Denise and Paula. The individual pins

are wired as follows:

755

11. The A3000 Hardware

Game port 1:

No.

1

2

3

4

5

6

and

9

Chip

Denise

Denise

Denise

Denise

Paula

CIA-A

Agnus

Paula

Pin

MOV (via multiplexer)

MOH (via multiplexer)

M1V (via multiplexer)

M1H (via multiplexer)

POY

PA6

POX

Game port 2:

No.

1

2

3

4

5

6

and

9

Chip

Denise

Denise

Denise

Denise

Paula

CIA-A

Agnus

Paula

Pin

MOV (via multiplexer)

MOH (via multiplexer)

M1V (via multiplexer)

M1H (via multiplexer)

P1Y

PA7

LP

P1X

The function of the multiplexers was explained previously. The pin

assignments for the various input devices were chosen so that almost all

standard joysticks, mice, paddles and lightpens can be used. The button

line is usually connected to a switch that is pressed when the lightpen

touches the screen.

The LP line is the actual lightpen signal, which is generated by the

electronics in the pen when the electron beam passes its tip. On the

A1000, the lightpen line was connected to game port 0. This meant that

you had to use a different mouse connection or disconnect the mouse

entirely in order to use a lightpen. Because of this disadvantage, the

lightpen on the A3000 is normally connected to port 1. Jumper J352 is

used to select where the lightpen will go. Use the jumper to connect pins

2 and 3, and the lightpen will go to game port 1.

All the lines labeled button and the four directions for the joystick are

active low. The various input devices contain switches that connect their

inputs to ground (GND). A high signal on the input means an open

switch, while a closed switch generates a low.

756

77.5 The Amiga Interfaces

Variable resistors (potentiometers) can be connected to the POX, POY,

PIX and PlY analog inputs. Their value should be 470 KOhms and they

should be connected between the corresponding inputs and +5 volts.

The two fire-button lines connected to CIA-A can naturally also be

programmed as outputs. Don't overwrite the lowest bit of the port

register; otherwise the system crashes (PA0:OVL). The section on

programming the custom chips explains how the game port lines are read.

The +5 volt line on the two game ports is not connected directly to the

Amiga power supply. A current-protection circuit is inserted in these

lines which limits the short-term peak current to 700 mA and the

operating current to 400 mA.

757

11. The A3000 Hardware

11.5.9 The Zorro Bus

Configuration of the 100-pin expansion slot: Zorro II

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75
77

79

81

83

85

87

89

91

93

95

97

99

GND

GND

+5 volts

/OWN

/SLAVEn

/CFGOUTn

GND

CDAC
/OVR

/INT2

A5

A6

GND

A2

A1

FCO

FC1

FC2

GND

A13

A14

A15

A16

A17

GND

/VMA

/RES

/HLT

A22

A23

GND

PD15

PD14

PD13

PD12

PD11

GND

PDO

PD1

PD2

PD3

PD4

GND

GND

GND

GND

DOE

/GBG

reserved

GND

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80
82

84

86

88

90

92

94

96

98

100

C3ND

GND

+5 volts

-5 volts

+12 volts

CFGINn

/C3
/C1
XRDY

-12 volts

/INT6
A4

A3

A7

A8

A9

A10

A11

A12

/EINT7

/EINT5

/EINT4

/BERR

A/PA

E

A18

A19

A20

A21

/BRn

/BGACK

/BGn

/DTACK

/R/W

/LDS

/UDS

/AS

PD10

PD9

PD8
PD7

PD6

PD5

GND

GND

7MHz

/BUSRST

/EINT1

reserved

GND

758

77.5 The Amiga Interfaces

In the previous chart "n" equals the number of expansion slots (1-4).

The set of four 100-pin expansion slots, called the Zorro bus, is located

on the upright-mounted board in the center of the A3000. The slots can

accept all types of expansion cards. On the A2000 this usually refers to

hard disk controllers and RAM expansions, but on the A3000 is more

likely to mean networks, high-resolution graphic cards, etc.

For this reason the bus specifications have been thoroughly revised.

Expansion slots in the A3000 can now operate in two distinct modes:

Zorro II compatible (as in the A2000) or the new Zorro III standard.

The Zorro II mode is based mainly on the signals of the 68000:

A0-A23

PD0-PD15

IPLO - IPL2

FCO - FC2

/AS, /UDS, /LDS, /R/W,

/DTACK, /VMA, /VPA

/RES, /HLT, /BERR, /BG,

/BGACK, /BR, E

Address bus (24 bits, i.e., 16 Megabyte

address space)

Processor data bus

Processor interrupt lines

Function code lines from the 68000

Bus control lines

Miscellaneous control lines from the 68000

The remaining signals have the following functions:

INT2 andINT6:

These two lines are connected to the Paula pins with the same names.

They are used to generate a level 2 or level 6 interrupt.

CDAC, IC3, IC1, 7M and 28M:

These are the various Amiga clock signals. The clock signals CCK and

CCKQ are generated by Agnus and serve as base clock signals for

Agnus, Denise, Paula and the chip RAM.

759

11. The A3000 Hardware

1

^s
2

3 5 7 •••

4 6 8 -

... 79 81 83

.rni—i i—inr—i

'" 80 82 84

86-pin printed circuit connector
(Amiga 500/Amiga 1000)

85

86

Pin configuration of the expansion port

/OVR

With /OVR low the DTACK signal produced by Gary can be disabled for

the memory range from $200000 to $9FFFFF.

/XRDY

This signal serves a similar purpose to /OVR. If /XRDY is pulled low less

than 60 nanoseconds after /AS, Gary delays the /DTACK signal until

/XRDY again goes high. This allows the use of slow expansion cards that

cannot respond without wait states.

/BUSRES

This is a buffered reset signal. While the Amiga can also be reset from an

expansion card with the RES circuit, the /BUSRES line is intended only

for resetting the card itself. Normally you would not want to reset the

Amiga from a card, and should therefore only use the /BUSRES line.

ISLAVEn

Every slot has its own /SLAVE line. An expansion card must set /SLAVE

to low as soon as it recognizes an address that is valid for it, so that the

data and address buffers can be correctly switched. If more than one card

sets /SLAVE to low, Gary generates a bus error. The same holds true if a

card outside the ranges $200000-$B7FFFF and $E80000-$EFFFFF has

/SLAVE set to low.

760

77.5 The Amiga Interfaces

ICFGIN and ICFGOUT

The /CFGOUT (ConFiG-OUT) line of one slot is always connected to the

/CFGIN (ConFiG-IN) line of the next. Each card is configured as soon as

the /CFGIN line of its slot is low. When the autoconfiguration of a card is

complete, it sets its /CFGOUT output to low to allow configuration of the

card in the next slot to proceed.

DOE

This signal comes from Buster and tells the active expansion card that it

may activate its data drivers. This prevents data collisions.

IBRn, IBGn and /BGACK

With these lines a card can take over the bus, in effect becoming the

DMA controller. The ability to do this is required, for example, by a fast

network card. Bus control is assumed as follows: the card pulls /BR low

->, the processor responds with /BG ->, the card pulls /BGACK low and

returns /BR to high. It now owns the bus until it returns /BGACK to

high.

What happens, though, if two cards pull /BR low at the same instant? To

avoid problems, each slot has its own /BR and /BG signals. If more than

one slot activates its /BR signal, Buster sees the slot with the lowest

number (the one nearest the coprocessor slot) first, and passes the /BR on

to the 68030. The /BG response is returned by Buster to this same slot,

which becomes bus master and pulls /BGACK low. The other slots that

have their /BR lines low must wait until the one currently active has

finished its DMA.

/OWN

A card must pull this line low when it has assumed the role of bus master

as previously described. This is necessary to reverse the direction of the

data or address buffer, since the bus master generating the addresses is

now on the other side of the buffer.

IGBG

This is the original /BG from the processor.

761

11. The A3000 Hardware

The interrupt lines /EINT1, /EINT4, IEINT5 and IEINT7

These lines generate the corresponding level interrupts. Unlike the /INT2

and /INT6 lines of the expansion port, they cannot be disabled using

Paula.

Also on the Zorro bus are the different operating voltages of the A3000:

+/- 5 and 12 volts.

The previous description of the pin configuration and functions refers to

operation of the expansion bus in Zorro II mode. The A3000 also

recognizes a different type of bus protocol, the new Zorro III standard.

When you insert an expansion card into the A3000, the expansion

library contained in Kickstart, using the autoconfiguration information

on the expansion, checks to see whether it is a Zorro II or a Zorro III

card. If the library recognizes a Zorro II card, for example, one developed

also for the A2000 circuitry, the bus behaves as previously described,

that is, compatible to the A2000 expansion slots.

If the card is determined to be a Zorro III card, the Amiga operating

system assigns it an address outside the Amiga's former 16-Megabyte

address space. The bus controller treats processor accesses to addresses

within the first 16 Meg as Zorro II, and beyond that as Zorro III.

How does the Zorro III standard differ from Zorro II?

Zorro III is a completely new concept. Although the same 100-pin slots

are used, the assignments of many of the lines have changed. The

essential features of Zorro in are as follows:

• A full 32 bits for data and address bus

The Zorro III bus is a 32-bit bus system, fully supporting the

capabilities of the 68030. Since a slot's 100 pins are not sufficient

for both data and address lines (2 x 32), these lines are multiplexed.

To initiate an access, the Amiga places the 32 address bits on the

bus. Then, using a specific control signal, it tells the Zorro III

expansion card to store this address. After that the address lines

serve as data lines. Address bits 0-7 are not multiplexed, but rather

remain stable throughout the access process.

762

77.5 The Amiga Interfaces

Asynchronous bus control

The speed of the old Zorro II bus was limited by the timing of the

68000. Bus transfer could not execute faster than a 68000 memory

access at a clock frequency of 7.14 MHz. The Zorro III timing is

asynchronous, so the speed does not depend on how fast the

Amiga or card hardware may be (of course there are models with far

higher clock frequencies than previously thought possible).

Enhanced interrupt capabilities

In the Zorro III bus, expansions can finally fully utilize the interrupt

capabilities of the 68030, meaning that a card can use its own

interrupt vectors (see the section on 68030).

763

11. The A3000 Hardware

11.6 The Keyboard

The Amiga keyboard is an intelligent keyboard. It has its own

microprocessor, which handles the time-consuming job of reading the

keys and returning complete key codes to the Amiga. The following

figure shows the layout of the keys and their codes for the German and

American versions of the keyboard. As you can see, the codes do not

correspond to the ASCII standard. The keyboard only returns raw key

codes, which the operating system converts to ASCII using a translation

table called the key map. There is, however, a system to the raw key code

assignments:

$00-$3F Codes for the letters, digits and punctuation characters.

Their assignments correspond to the arrangement on the

keyboard.

$40-$4F Codes for the standard special keys like [spacebar!,(Inter),

nib) etc.

$50-$5F Function keys and HELP.

$60-$67 Keys for selecting keyboard control levels (1 Shift L Amiga,

fAitlandfctrnV

764

11.6 The Keyboard

American keyboard

izX
l I

51 | 52 | 53
IrP P P

55 | 56 | 57 | 58 | 59 j 46

p 01 |* 02 I3 03 * 04 f OS I6 06 f 07 |8 08 f 09 |° OA |7 Ob]1 PC j' OP
tab p f p pp p p p lo p ni>

42 I 10 | 11 I 12 | 13 I 14 | 15 | 16 I 17 I 18 | 191' 1A |' IB |

P I 20 I 21 [22[23 I 24 j 25 [26 | 27 | 28 [29 |'2A | '

I 32 T33 134 r35 I 36 J37 138 | 39 1/

1

3D

2D

ID

0

-4A

3E

2E

IE

OF

3F

2F

IF

3C

43

German keyboard

51 I 52 j 53 I 54 I 55 I 56 I 57 I 58 [59

I 01 f 02 I 03 j 04 I 05 I 06 I 07 I 08 I 09 I OA I OB I

j 11 j 12 I 13 I 14 | 15 j 16 j 17 I 18 I 19 I

[20 [21 I 22 [23 I 24 I 25 I 26 I 27 [28 J 29

I 32 I 33 I 34 I 35 I 36 I 37 I 38 t 39 F 61 I 4F I 4E I

3D

2D

10

3E

2E

IE

OF

.A

3F

2F

IF

3C

43

The keyboard *

The keyboard processor can do more than read the keys. It can

distinguish between when a key is pressed and when it is released. As

you can see, all keyboard codes are only 7 bits (values range from $00-

$7f). The eighth bit is the KEYup/down flag. It is used by the keyboard

to tell the computer whether the key was just pressed or released. If the

eighth bit is 0, this means that the key was just pressed (KEYdown). If it

is 1, then the key was just released (KEYup). This way the Amiga always

knows which keys are currently pressed.

The keyboard can thus be used for other purposes that require various

keys to be held simultaneously. This includes music programs, for

example, which use the keyboard for playing polyphonically.

765

11. The A3000 Hardware

One exception is the leaps Lock 1 key. The keyboard simulates a toggle

switch with this key. The first time it is pressed, it engages and the LED

goes on. It does not disengage until it is pressed again. The LED then

turns off. This behavior is also reflected in the KEYup/down flag. If

leaps Lock 1 is pressed, the LED turns on, and the key code for leaps Lock 1

is sent to the computer along with a cleared eighth bit to show that a key

was just pressed. When the key is released, no KEYup code is sent, and

the LED stays on. Not until leaps Lock 1 is pressed again is a KEYup code

sent (with a set eighth bit), and the LED turns off.

11.6.1 Data Transfer from the Keyboard

Handshake

signal

Data transfer from the keyboard

The keyboard is connected to the Amiga by a four-line coiled cable. Two

of the lines are used to supply power to the keyboard electronics (5

volts). The entire data transfer takes place over the remaining two lines.

One of these lines is used for data (KDAT), and the other is the clock line

(KCLK). Inside the Amiga, KDAT is connected to the serial input SP, and

KCLK is connected to the CNT pin of CIA-A. The data transfer is

unidirectional. It always runs from the keyboard to the computer. The

processor in the keyboard places the individual data bits on the data line

(KDAT), accompanied by 20 microsecond-long low pulses on the clock

line (KCLK). Between the individual clock pulses are 40 microsecond-

long pauses. This amounts to a transfer time of 60 microseconds for each

bit, or 480 microseconds per 8-bit byte. The resulting data transfer rate is

16666 baud (bits/second).

After the last bit has been sent, the keyboard waits for a handshake pulse

from the computer. The Amiga sends this signal by pulling the KDAT line

low for at least 75 microseconds. The exact process can be seen in above

the diagram. The bits are not sent in the usual order 7-6-5-4-3-2-1-0, but

766

11.6 The Keyboard

rotated one bit position to the left: 6-5-4-3-2-1-0-7. For example, the key

code for "J" with the eighth bit set is 10100110, and after rotation it is

01001101. The KEYup/down flag is always the last bit sent.

The data line is active low. This means that a 0 is represented by a high

signal and a 1 by a low.

The CIA shift register in the Amiga reads the current bit on the SP line at

each clock pulse. After eight clock pulses the CIA has received a

complete data byte. The CIA then normally generates a level 2 interrupt,

which causes the operating system to do the following:

• Read the serial data register in the CIA.

• Invert and right-rotate the byte to get the original key code back.

• Output the handshake pulse.

• Process the received code.

Synchronization

In order to have an error-free data transfer, the timing of the sender and

receiver must match. The bit position for the serial transfer must be

identical for both. Otherwise the keyboard may have sent all eight bits,

while the serial port of the CIA is still somewhere in the middle of the

byte. Such a loss of synchronization occurs whenever the Amiga is

turned on or the keyboard is plugged into a running Amiga. The

computer has no way of recognizing improper synchronization. This task

is handled by the keyboard.

After each byte is sent, the keyboard waits a maximum of 145

milliseconds for the handshake signal. If it does not occur in this time, the

keyboard processor assumes that a transfer error has occurred and enters

a special mode in which it tries to restore the lost synchronization. It

sends a 1 on the KDAT line together with a clock pulse and waits

another 145ms for the synchronization signal. It repeats this until it

receives a handshake signal from the Amiga. Synchronization is now

restored.

The data byte received by the Amiga is incorrect, however. The state of

the first seven bits is uncertain. Only the last bit received is definitely a 1,

because the keyboard processor only outputs lfs during the procedure

described above. Since this last bit is the KEYup/down flag, the incorrect

767

11. The A3000 Hardware

code is always a KEYup code, or a released key. This causes less program

disturbances than if an incorrect KEYdown code had been sent. This is

why each byte is rotated one bit to the left before it is sent, so that the

KEYup/down flag is always the last bit sent.

Special codes

There are some other special cases in transmission, which the keyboard

tells the Amiga through special key codes.

The following table contains all possible special codes:

Code

$F9

$FA

$FC

$FD

$FE

Meaning

Last key code was incorrect

Keyboard buffer is full

Error in keyboard self-test

Start of keys held on power up

End of keys held on power up

$F9

The $F9 code is always sent by the keyboard after a loss of

synchronization and subsequent resynchronization. This is how the

Amiga knows that the last key code was incorrect. After this code the

keyboard retransmits the lost key code.

$FA

The keyboard has an internal buffer of 10 characters. When this buffer is

full, it sends a $FA to the computer to signal that it must empty the buffer

or lose characters.

$FC

After it is turned on, the keyboard processor performs a self-test. This is

indicated by the brief lighting of the leaps Lock I LED. If it discovers an

error, it sends a $FC to the Amiga and then goes into an endless loop in

which it flashes the LED.

$FD & $FE

If the self-test was successful, the keyboard transmits all the keys that

were held when the computer was powered up. To tell the computer this,

it starts the transmission with the $FD code.

768

11.6 The Keyboard

Then follow the codes of the keys pressed on power up, terminated by

the code $FE. After that normal transmission begins.

If no keys were pressed, $FD and $FE are sent in immediate succession.

Reset through the keyboard

The keyboard can also generate a reset on the Amiga. If the two Amiga

keys and the Ictnl key are pressed simultaneously, the keyboard

processor pulls the KCLK line low for about 0.5 seconds. This causes the

reset circuit in the Amiga to generate a processor reset. After at least one

of these keys has been released, the keyboard also resets itself. This can

be seen by the flashing of the [caps Lock I LED.

769

11. The A3000 Hardware

11.7 Programming the Hardware

The previous sections involved closer looks at the hardware structure of

the Amiga. The following pages show how the three custom chips are

programmed. Now we'll begin an introduction to software, especially

concerning the creation of graphics and sound.

To successfully program the Amiga at the machine level, you must know

the memory layout and the addresses of the individual hardware

registers.

11.7.1 The Memory Layout

The first figure shows the normal memory configuration of the Amiga as

it appears after booting. The entire address range of the 68030 comprises

4 gigabytes (addresses from 0 to $FFFFFFFF). However, this huge

address space is not uniformly allocated. In the lower 16 megabytes,

space is at a premium because this is where all the system components

that existed in the A2000 are located. The remainder is used for the

internal fast RAM, the new chips, including the SCSI DMA controller,

and the Zorro III expansions area.

RAM

In the Amiga there is a distinction between chip RAM and fast RAM.

The chip RAM is used by the custom chips, Agnus, Denise and Paula, to

store graphics and sound data. One megabyte of this RAM comes

factory-installed, and sockets for adding a second megabyte are

included.

The internal fast RAM is available only to the processor, the SCSI DMA

chip and any expansion cards. Agnus cannot access it.

Using the new 4-megabit RAM chips, the Amiga can be upgraded to a

maximum of 16 megabytes of internal RAM.

When equipping the A3000 with RAM, first you must decide whether to

use 1-Mbit or 4-Mbit RAM chips. The two types cannot be mixed. The

jumper J852 selects the chip capacity:

770

11.7 Programming the Hardware

J852 connecting pins 2 and 3: 1 Mbit, organized as 256 K x 4

J852 connecting pins 1 and 2: 4 Mbit, organized as 1 M x 4

If you are upgrading with 4-Mbit RAM chips, the eight factory-installed

chips must be removed. However, they can be used to expand the chip

RAM.

The RAM is organized in four banks of eight chips each. The socket

assignments of the banks are as follows:

Bank

Bank

Bank

Bank

0:

1:

2:

3:

U850 - U857

U858 - U865

U866 - U873

U874 - U881

orU850D- U857D

$01000000

$00F00000

$00E80000

$oocooooo

$00B80000

$00A00000

$00200000

$00000000

ROM

Area For

Autoconfiguration

Custom chips

CIAs

Zorro II

Area For Expansion

Zorro II

Area for
Memory Expansion

Chip-RAM

Zorro III
Expansion area

Fast RAM

Amiga 3000

Register area

$80000000

$10000000

$08000000

$01000000

$00000000

RAM/ROM allocation in the Amiga

The following types ofRAM chips can be used:

xx4256-80 (1 Mbit) or xx4400-80 (4 Mbit) ZIP-mounted (these are the

upright as opposed to the flush-mounted DIL chips).

771

11. The A3000 Hardware

For greater speed, static-column RAM chips can also be used: xx4258-

80 or xx4402-80.

These enable the 68030 CPU to operate in burst mode, supplying the

internal cache with new data at a rate faster than that of normal data

access (this mode is turned on by the SETCPU command in the CLI).

The base address of fast RAM with a 1 megabyte configuration is

$07F00000. As memory is added, the base address shifts down

accordingly (e.g., $07D00000 with 4 megabytes).

The CIAs

Details about the CIAs can be found in Section 11.3. The following are

the addresses of the individual registers:

CIA-A

$BFE001

$BFE101
$BFE201

$BFE301

$BFE401

$BFE501

$BFE601

$BFE701
$BFE801

$BFE901

$BFEA01
$BFEB01

$BFEC01
$BFED01
$BFEE01

$BFEF01

CIA-B

$BFD000

$BFD100
$BFD200

$BFD300

$BFD400
$BFD500

$BFD600

$BFD700
$BFD800

$BFD900

$BFDA00

$BFDB00

$BFDC00
$BFDD00
$BFDE00
$BFDF00

Name

PA

PB

DDRA

DDRB

TALO

TAHI

TBLO

TBHI

E. LSB

E.MID

E. MSB
—

SP

ICR

CRA

CRB

Function

Port register A

Port register B

Data direction register A

Data direction register B

Timer A low byte

Timer A high byte

Timer B low byte

Timer B high byte

Event counter bits 0-7

Event counter bits 8-15

Event counter bits 16-24

Unused

Serial port register

Interrupt control register

Control register A

Control register B

The custom chips

The various custom chip registers occupy a 510-byte area. Each register

is 2 bytes (one word) wide. All registers are on even addresses.

The base address of the register area is at $DFF000. The effective address

of a register is then $DFF0OO + register address. The following list shows

the names and functions of the individual chip registers. Most of the

register descriptions are unfamiliar now since we haven't discussed the

functions of the registers, but this list will give you an overview and will

later serve as a reference.

772

11.7 Programming the Hardware

There are four types of registers:

r (Read)

This register can only be read.

w (Write)

This register can only be written.

s (Strobe)

An access to a register of this type causes a one-time action to occur in

the chip. The value of the data bus (i.e., the word to be written to the

register) is irrelevant. These registers are usually accessed only by Agnus.

er (Early Read)

A register designated as early read is a DMA output register. It contains

the data to be written into the chip RAM through DMA. There are two

such registers (DSKDATR and BLTDDAT - output registers for the disk

and the Blitter). They are accessed only by the DMA controller in Agnus,

when their contents are written into the chip RAM. The processor

cannot access these registers.

A,D,P

These three letters represent the three chips Agnus, Denise and Paula.

They indicate in which chip the given register is found. It is also possible

for a register to be located in more than one chip. On such a write access,

the value is then written into two or even all three chips. This is the case

when the contents of a given register are needed by more than one chip.

For the programmer it is unimportant where the registers are located. The

entire area can be treated as one custom chip. The programmer needs to

know only the address and function of the desired register.

P,d

A lowercase "d" means that this register is accessible only by the DMA

controller. Registers preceded by a lowercase "p" are used only by the

processor or the Copper. If both letters precede a register, it means that it

773

11. The A3000 Hardware

is usually accessed by the DMA, but also by the processor from time to

time.

Number of registers: 227

Registers are normally accessed only by the DMA controller: 54

Base address of the register area: $DFF000

Name

BLTDDAT

DMACONR

VPOSR

VHPOSR

DSKDATR

JOYODAT

JOY1 DAT

CLXDAT

ADKCONR

POTODAT

POT1 DAT

POTGOR

SERDATR

DSKBYTR

INTENAR

INTREQR

DSKPTH

DSKPTL

DSKLEN

DSKDAT

REFPTR

VPOSW

VHPOSW

COPCON

SERDAT

SERPER

POTGO

JOYTEST

STREQU

STRVBL

STRHOR

STRLONG

Reg.addr.

000

002

004

006

008

00A

OOC

00E

010

012

014

016

018

01A

01C

01E

020

022

024

026

028

02A

02C

02E

030

032

034

036

038

03A

03C

03E

Chip

A

AP

A

A

P

D

D

D

P

P

P

P

P

P

P

P

A

A

P

P

A

A

A

A

P

P

P

D

D

D

DP

D

R/W

er

r

r

r

er

r

r

r

r

r

r

r

r

r

r

r

w

w

w

w

w

w

w

w

w

w

w

w

s

s

s

s

p/d

d

P

P

P
d

P

P

P

P

P

P

P

P

P

P

P

p

P

P
d

d

P

P

P

P

P

P

P

d

d

d

d

Function

Blitter output data (from Blitter to RAM)

Read DMA control register

MSB of vertical position

Vertical and horizontal beam position

Disk read data (from disk to RAM)

Joystick/mouse position game port 0

Joystick/mouse position game port 1

Collision register

Read audio/disk control register

Read potentiometer game port 0

Read potentiometer game port 1

Read pot. port data

Read serial port and status

Read disk data byte and status

Read interrupt enable

Read interrupt request

Disk DMA address bits 16-20

Disk DMA address bits 1-15

Disk DMA block length

Disk write data (from RAM to disk)

Refresh counter

Write MSB of vertical beam position

Write vertical and horizontal beam position
Copper control register

Write serial data and stop bits

Serial port control register and baud rate
Write pot. port data and start bit

Write in both mouse counters

Horizontal sync with VB and equal frame

Horizontal sync with vertical blank

Horizontal synchronization signal
Long horizontal line marker

774

11.7 Programming the Hardware

The following registers can be accessed by Copper when COPCON = 1.

Name Reg.addr. Chip R/W p/d Function

BLTCONO

BLTCON1

BLTAFWM

BLTALWM

BLTCPTH

BLTCPTL

BLTBPTH

BLTBPTL

BLTAPTH

BLTAPTL

BLTDPTH

BLTDPTL

BLTSIZE

BLTCONOL

BLTSIZEV

BLTSIZEH

BLTCMOD

BLTBMOD

BLTAMOD

BLTDMOD

BLTCDAT

BLTBDAT

BLTADAT

DENISEID

DSKSYNC

040

042

044

046

048

04A

04C

04E

050

052

054

056

058

05A

05C

05E

060

062

064

066

068

06A

06C

06E

070

072

074

076

078

07A

07C

07E

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

P

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

r

w

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

d

d

d

p

P

Butter control register 0

Blitter control register 1

Mask for first data word from A

Mask for last data word from A

Address of source data C bits 16-20

Address of source data C bits 1-15

Address of source data B bits 16-20

Address of source data B bits 1-15

Address of source data A bits 16-20

Address of source data A bits 1 -15

Address of destination data D bits 16-20

Address of destination data D bits 1-15

Start bit and size of Blitter window

Like BLTCONO, bits 0-7

Width of Blitter window

Height ,of Blitter window

Blitter modulo for source data C

Blitter modulo for source data B

Blitter modulo for source data A

Blitter modulo for destination data D

Unused

Unused

Unused

Unused

Blitter source data register C

Blitter source data register B

Blitter source data register A

Unused

Unused

Unused

Chip identification from Denise

Disk sync pattern

The following registers can always be written by the Copper.

Name

COP1LCH

COP1LCL

COP2LCH

COP2LCL

COPJMP1

COPJMP2

COPINS

DIWSTRT

DIWSTOP

DDFSTRT

DDFSTOP

Reg.addr.

080

082

084

086

088

08A

08C

08E

090

092

094

Chip

A

A

A

A

A

A

A

A

A

A

A

R/W

w

w

w

w

s

s

w

w

w

w

w

p/d

p

P

P

p

P

P
d

P

P

P

P

Function

Address of 1st Copper list bits 16-20

Address of 1st Copper list bits 1-15

Address of 2nd Copper list bits 16-20

Address of 2nd Copper list bits 1-15

Jump to start of 1st Copper list

Jump to start of 2nd Copper list

Copper command register

Upper left corner of display window

Lower right corner of display window

Start of bit-plane DMA (horiz. pos.)

End of bit-plane DMA (horiz. pos.)

775

11. The A3000 Hardware

Name

DMACON

CLXCON

INTENA

INTREQ

ADKCON

AUDOLCH

AUDOLCL

AUDOLEN

AUDOPER

AUDOVOL

AUDODAT

—

AUD1LCH

AUD1LCL

AUD1LEN

AUDIPER

AUD1VOL

AUDI DAT

AUD2LCH

AUD2LCL

AUD2LEN

AUD2PER

AUD2VOL

AUD2DAT
—

—

AUD3LCH

AUD3LCL

AUD3LEN

AUD3PER

AUD3VOL

AUD3DAT
—

—

BPL1PTH

BPL1PTL

BPL2PTH

BPL2PTL

BPL3PTH

BPL3PTL

BPL4PTH

BPL4PTL

BPL5PTH

BPL5PTL

BPL6PTH

BPL6PTL
—

Reg.addr.

096

098

09A

09C

09E

0A0

0A2

0A4

0A6

0A8

OAA

OAC

OAE

0B0

0B2

0B4

0B6

0B8

OBA

OBE

OCO

0C2

0C4

0C6

0C8

OCA

OCC

OCE

ODO

0D2

0D4

0D6

0D8

ODA

ODC

ODE

OEO

0E2

0E4

0E6

0E8

OEA

OEC

OEE

OFO

0F2

0F4

0F6

0F8

Chip

ADP

D

P

P

P

A

A

P

P

P

P

A

A

P

P

P

P

A

A

P

P

P

P

A

A

P

P

P

P

A

A

A

A

A

A

A

A

A

A

A

A

R/W

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

p/d

p

p

p

p

p

p

p

p

p

p

d

p

p

p

p

p

d

p

p

p

p

p

d

P

P

P

P

p

d

P

P

P

P

P

P

P

P

P

P

P

P

Function

Write DMA control register

Write collision control register

Write interrupt enable

Write interrupt request

Audio, disk and UART control register

Address of audio data bits 16-20

On sound channel 0, bits 1-15

Channel 0 length of audio data

Channel 0 period duration

Channel 0 volume

Channel 0 audio data (to D/A converter)
Unused

Unused

Address of audio data bits 16-20

On sound channel 1, bits 1-15

Channel 1 length of audio data

Channel 1 period duration

Channel 1 volume

Channel 1 audio data (to D/A converter)
1 Ini icorJ
UllUSBQ

Unused

Address of audio data bits 16-20

On sound channel 2, bits 1-15

Channel 2 length of audio data

Channel 2 period duration

Channel 2 volume

Channel 2 audio data (to D/A converter)
Unused

Unused

Address of audio data bits 16-20

On sound channel 3, bits 1-15

Channel 3 length of audio data

Channel 3 period duration

Channel 3 volume

Channel 3 audio data (to D/A converter)
Unused

Unused

Address of bit-plane 1, bits 16-20

Address of bit-plane 1, bits 1-15

Address of bit-plane 2, bits 16-20

Address of bit-plane 2, bits 1-15

Address of bit-plane 3, bits 16-20

Address of bit-plane 3, bits 1-15

Address of bit-plane 4, bits 16-20

Address of bit-plane 4, bits 1-15

Address of bit-plane 5, bits 16-20

Address of bit-plane 5, bits 1-15

Address of bit-plane 6, bits 16-20

Address of bit-plane 6, bits 1-15

Unused

776

11.7 Programming the Hardware

Name

BPLCONO

BPLCON1

BPLCON2

BPLCON3

BPL1MOD

BPL2MOD
—

BPL1DAT

BPL2DAT

BPL3DAT

BPL4DAT

BPL5DAT

BPL6DAT
—

SPROPTH

SPROPTL

SPR1PTH

SPR1PTL

SPR2PTH

SPR2PTL

SPR3PTH

SPR3PTL

SPR4PTH

SPR4PTL

SPR5PTH

SPR5PTL

SPR6PTH

SPR6PTL

SPR7PTH

SPR7PTL

SPROPOS

SPROCTL

SPRODATA

SPRODATB

SPR1POS

SPR1CTL

SPR1DATA

SPR1DATB

SPR2POS

SPR2CTL

SPR2DATA

SPR2DATB

SPR3POS

SPR3CTL

SPR3DATA

Reg.addr.

OFA

OFC

OFE

100

102

104

106

108

10A

10C

10E

110

112

114

116

118

11A

11C

11E

120

122

124

126

128

12A

12C

12E

130

132

134

136

138

13A

13C

13E

140

142

144

146

148

14A

14C

14E

150

152

154

156

158

15A

15C

Chip

AD

D

D

D

A

A

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AD

AD

D

D

AD

AD

D

D

AD

AD

D

D

AD

AD

D

R/W

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

p/d

p

p

p

p

p

p

d

d

d

d

d

d

P

p

p

P

P

P

P

P

P

P

P

P

p

P

P

P
dp

dp

dp
dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

Function

Unused

Unused

Unused

Bit-plane control register 0

Control register 1 (scroll values)

Control register 2 (priority control)

Control register 3

Bit-plane modulo for uneven planes

Bit-plane modulo for even planes

Unused

Unused

Bit-plane 1 data (to RGB output)

Bit-plane 2 data (to RGB output)

Bit-plane 3 data (to RGB output)

Bit-plane 4 data (to RGB output)

Bit-plane 5 data (to RGB output)

Bit-plane 6 data (to RGB output)

Unused

Unused

Sprite data 0, bits 16-18

Sprite data 0, bits 1-15

Sprite data 1, bits 16-18

Sprite data 1, bits 1-15

Sprite data 2, bits 16-18

Sprite data 2, bits 1-15

Sprite data 3, bits 16-18

Sprite data 3, bits 1-15

Sprite data 4, bits 16-18

Sprite data 4, bits 1-15

Sprite data 5, bits 16-18

Sprite data 5, bits 1-15

Sprite data 6, bits 16-18

Sprite data 6, bits 1-15

Sprite data 7, bits 16-18

Sprite data 7, bits 1-15

Sprite 0 start position (vert, and horiz.)

Sprite 0 control reg. and vertical stop

Sprite 0 data register A (to RGB output)

Sprite 0 data register B (to RGB output)

Sprite 1 start position (vert, and horiz.)

Sprite 1 control reg. and vertical stop

Sprite 1 data register A (to RGB output)

Sprite 1 data register B (to RGB output)

Sprite 2 start position (vert, and horiz.)

Sprite 2 control reg. and vertical stop

Sprite 2 data register A (to RGB output)

Sprite 2 data register B (to RGB output)

Sprite 3 start position (vert, and horiz.)

Sprite 3 control reg. and vertical stop

Sprite 3 data register A (to RGB output)

777

11. The A3000 Hardware

Name

SPR3DATB

SPR4P0S

SPR4CTL

SPR4DATA

SPR4DATB

SPR5P0S

SPR5CTL

SPR5DATA

SPR5DATB

SPR6P0S

SPR6CTL

SPR6DATA

SPR6DATB

SPR7P0S

SPR7CTL

SPR7DATA

SPR7DATB

COLOROO

COLOR01

COLOR02

COLOR03

COLOR04

COLOR05

COLOR06

COLOR07

COLOR08

COLOR09

COLOR10

COLOR11

COLOR12

COLOR13

COLOR14

COLOR15

COLOR16

COLOR17

COLOR18

COLOR19

COLOR20

COLOR21

COLOR22

COLOR23

COLOR24

COLOR25

COLOR26

COLOR27

COLOR28

COLOR29

COLOR30

COLOR31

HTOTAL

Reg.addr.

15E

160

162

164

166

168

16A

16C

16E

170

172

174

176

178

17A

17C

17E

180

182

184

186

188

18A

18C

18E

190

192

194

196

198

19A

19C

19E

1A0

1A2

1A4

1A6

1A8

1AA

1AC

1AE

1B0

1B2

1B4

1B6

1B8

1BA

1BC

1BE

1C0

Chip

D

AD

AD

D

D

AD

AD

D

D

AD

AD

D

D

AD

AD

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

R/W

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

p/d

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

dp

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

Function

Sprite 3 data register B (to RGB output)

Sprite 4 start position (vert, and horiz.)

Sprite 4 control reg. and vertical stop

Sprite 4 data register A (to RGB output)

Sprite 4 data register B (to RGB output)

Sprite 5 start position (vert, and horiz.)

Sprite 5 control reg. and vertical stop

Sprite 5 data register A (to RGB output)

Sprite 5 data register B (to RGB output)

Sprite 6 start position (vert, and horiz.)

Sprite 6 control reg. and vertical stop

Sprite 6 data register A (z. RGB output.)

Sprite 6 data register B (to RGB output)

Sprite 7 start position (vert, and horiz.)

Sprite 7 control reg. and vertical stop

Sprite 7 data register A (to RGB output)

Sprite 7 data register B (to RGB output)

Color palette register 0 (color table)

Color palette register 1 (color table)

Color palette register 2 (color table)

Color palette register 3 (color table)

Color palette register 4 (color table)

Color palette register 5 (color table)

Color palette register 6 (color table)

Color palette register 7 (color table)

Color palette register 8 (color table)

Color palette register 9 (color table)

Color palette register 10 (color table)

Color palette register 11 (color table)

Color palette register 12 (color table)

Color palette register 13 (color table)

Color palette register 14 (color table)

Color palette register 15 (color table)

Color palette register 16 (color table)
Color palette register 17 (color table)

Color palette register 18 (color table)

Color palette register 19 (color table)

Color palette register 20 (color table)

Color palette register 21 (color table)
Color palette register 22 (color table)

Color palette register 23 (color table)

Color palette register 24 (color table)
Color palette register 25 (color table)

Color palette register 26 (color table)
Color palette register 27 (color table)
Color palette register 28 (color table)

Color palette register 29 (color table)
Color palette register 30 (color table)
Color palette register 31 (color table)
Clock count per line (VARBEAM=1)

778

11.7 Programming the Hardware

Name

HSSTOP

HBSTRT

HBSTOP

VTOTAL

VSSTOP

VBSTRT

VBSTOP

SPRHSTRT

SPRHSTOP

BPLHSTRT

BPLHSTOP

HHPOSW

HHPOSR

BEAMCONO

HSSTRT

VSSTRT

HCENTER

DIWHIGH

BPLHMOD

SPRHPTH

SPRHPTL

BPLHPTH

BPLHPTL

Reg.addr.

1C2

1C4

1C6

1C8

1CA

1CC

1CE

1D0

1D2

1D4

1D6

1D8

1DA

1DC

1DE

1E0

1E2

1E4

1E6

1E8

1EA

1EC

1EE

Chip

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A,D

A

A

A

A

A

R/W

w

w

w

w

w

w

w

w

w

w

w

w

r

w

w

w

w

w

w

w

w

w

w

p/d

P

P

P

P

P

P

P

P

P

P

P

p

P

P

P

P

P

p

p

P

P

P

P

Function

H-sync stop position

H-blank start position

H-blank stop position

Number of lines per picture

V-sync stop line

V-blank start line

V-blank stop line

UHRES sprite start line

UHRES sprite stop line

UHRES bit-plane start line

UHRES bit-plane stop line

Write DUAL-mode column counter

Read DUAL-mode column counter

Raster beam control register

H-sync start position

V-sync start position

H-pos. of V-sync in interlace mode

Screen window, upper bits for start/stop

UHRES bit-plane modulo

UHRES sprite pointer (bits 16-20)

UHRES sprite pointer (bits 0-15)

UHRES bit-plane pointer (bits 16-20)

UHRES bit-plane pointer (bits 0-15)

The registers 1F0 to 1FC are unoccupied

ROM

The figure on page 771 shows the ROM area as it appears after booting.

The 512K of ROM at $00F80000 contains the Amiga Kickstart. This

configuration can change. After a reset, the 68030 fetches the address of

the first instruction from memory location 4, called the reset vector. If the

memory configuration could not be changed, the 68000 would fetch the

reset vector from chip RAM, which is at address 4. Since the contents of

this location are undefined at start-up, the processor would jump to some

random address and the system would crash. The solution to this is as

follows: The chip that is responsible for the memory configuration has an

input that is connected to the lowest port line of CIA-A (PA0). This OVL

(Memory Overlay) line is normally at 0, and the memory configuration

corresponds to the figure. After a reset, the port line automatically goes

high, causing the ROM area at $00F80000 to $00FFFFFF to be mapped

into the range from 0 to $7FFFF. This means that address 4 (the reset

vector) then corresponds to address $F80004. Here the 68030 finds a

valid reset address, which tells it to jump to the Kickstart program. In the

course of the reset routine the OVL line is set to 0 and the normal

memory configuration returns.

779

11. The A3000 Hardware

You must be very careful when experimenting with this line. If the

program that tries to set the OVL line is running in chip RAM, the result

can be catastrophic, because the program more or less switches itself out

of the memory range and the processor lands somewhere in the Kickstart,

which takes the place of the chip RAM after the switch.

Since the final version of the operating system was not yet ready when

the first A3000fs were manufactured, the Kickstart had to be booted from

the hard disk. In place of the Kickstart, a boot program was placed in

ROM. After the Kickstart was loaded to fast RAM, it would be

transferred to $0OF8OOOO with the 68030fs PMMU.

11.7.2 Fundamentals

As mentioned in the previous section, there are some registers that are

accessed by the processor and some that are read and written via DMA.

Well begin by discussing the former.

Programming the chip registers

The chip registers can be addressed directly (e.g., changing the value of

the background color register). The register has the name COLOR00.

Looking in the register table, you see that it has a register address of

$180.

So, we must add the base address of the register area (i.e., the address of

the first register in the address range that the 68030 accesses). This is

SDFFOOO. Also, the register address of COLOR00 yields $DFF180. A

simple MOVE.W command can be used to initialize the register:

MOVE.W #value,$DFF180 ;value in COLOR00

If more than one register is accessed, it is a good idea to store the base

address in an address register and use indirect addressing with an offset.

Here is an example:

LEA $DFF000,A5 ;store base address in A5

MOVE.W #valuel,$180(A5) ;valuel in COLOR00

MOVE.W #value2,$182(A5) ;value2 in COLOR01

MOVE.W ... etc.

780

11.7 Programming the Hardware

Normally the chip registers are accessed as previously shown. However,

the registers can also be accessed as a long word. In this case two

registers are always written at once. This makes sense for the address

registers, which consist of a pair of registers holding a single 21-bit

address, with which the entire 2048K chip RAM area can be accessed.

All data for the custom chips must be in the chip RAM. Since the chips

always address the memory word-wise, the lowest bit (bit 0) is irrelevant.

The address register points only to even addresses. Since a chip register

is only one word (16 bits) wide, two successive registers are used to store

the 21-bit memory address. The first register contains the upper 5 bits

(bits 16-20) and the second contains the lower 16 (bits 0-15). This makes

it possible to initialize both registers with a single long-word access.

Example: Setting the pointer for the first bit-plane to address $40000.

BPL1PTH is the name of the first register (bits 16-20) and BPL1PTL (bits

0-15) is the name of the second. Register address of BPL1PTH: $0E0,

BPL1PTL = $0E2.

A5 contains the base address $DFF000.

MOVE.L #$40000,$0E0(A5) initializes BPL1PTH and BPL1PTL with the correct values.

Any given register address can never be both read from and written to.

Most registers are write-only registers and cannot be read. This also

includes the registers previously mentioned. Others can only be read.

Only a few can be read and written, but these have two different register

addresses, one for reading and one for writing. The DMA control register,

which will be discussed in detail later, is such a register. It can be written

through the register address $096 (DMACON), while address $002 is

used for reading (DMACONR).

DMA access

DMA involves the direct access of a special component, called the DMA

controller, to the system memory. In the case of the Amiga, the DMA

controller is housed in Agnus. It represents the connection between the

various input/output components of the custom chips and the chip

RAM. The DMA process follows the same pattern regardless of whether

diskette, screen or audio data is involved. A given I/O component, such

as the disk controller, needs new data or has data that it wants to store in

memory. The DMA controller waits until the memory for this channel is

free (not being accessed by another DMA channel or the processor) and

then transfers the data to or from RAM itself. For the sake of simplicity

781

11. The A3000 Hardware

there is no special transfer of the data from the I/O device to the DMA

controller. It always takes place through registers. Each of these I/O

components has two different types of registers. One type is the normal

registers which are accessed by the processor and in which the various

operating parameters are stored. The second is the data registers that

contain the data for the DMA controller. For a DMA transfer this

involves simply the corresponding data register and a RAM location.

Depending on the direction of the transfer, either a read register is

selected and the chip RAM is set for write, or a write register is used and

the chip RAM is set for read. Since the two can be connected through

the data bus, the data are automatically routed to their destination. Data

are not stored in any temporary registers.

The DMA transfer adds a third type of register: the DMA address register

which holds the address or addresses of the data in RAM, depending on

the needs of the I/O device.

There are many central control registers that are not assigned to a special

I/O device, but have higher-level control functions. The DMACON

register belongs in this category.

The data registers can also be written by the processor, since they are

realized in the form of normal registers. However, this is not generally

useful, since the DMA controller can accomplish this more quickly and

efficiently.

Some I/O components do not have DMA channels. The 68030 must read

and write their data itself. This group includes only those devices which

by their nature do not deal with large quantities of data, so that DMA is

not needed, such as the joystick and mouse inputs.

The following DMA channels are present:

Bit-plane DMA Through this DMA channel the screen data are read

from memory and written into the data registers of the

individual bit-planes. From there they go to the bit-

plane sequencers, which convert the data for output to

the screen.

Sprite DMA Transfers the sprite data from the RAM to the sprite

data registers.

782

11.7 Programming the Hardware

Disk DMA Transfers data from disk to RAM or from RAM to disk.

Audio DMA Reads digital sound data from RAM and writes it to the

appropriate audio data registers.

Copper DMA The coprocessor (Copper) receives its command words

through this channel.

Blitter DMA Transfers data from and to the Blitter.

There are a total of six DMA channels which all want to access the

memory, and the processor, which naturally also wants to have the chip

RAM for itself as often as possible. To solve the problems that result from

this, a complex system of time multiplexing was devised in which the

individual channels have defined positions. Since this is oriented to the

video picture, first we must briefly discuss its construction. This section

has been kept as simple as possible, since we are discussing the

programming of the custom chips and not the hardware.

783

11. The A3000 Hardware

Construction of the video picture

Complete screen

First half

screen's

lines (all

odd-numbered

lines are in

long frame)

Second half

screen's

lines (all

even-numbered

lines are in

short frame)

Construction of the picture

The timing of the Amiga screen output corresponds exactly to the

standard of the country where the Amiga is sold, PAL for Europe and

NTSC for the US. The 8361 Agnus chip is available in an NTSC US

version and a PAL version for Europe. A PAL video picture consists of

625 horizontal lines, an NTSC picture of 525 horizontal lines. Each of

these lines is constructed from left to right. A pause follows every line,

called the horizontal blanking gap, in which the electron beam that

draws the picture has time to go back from right to left. During this

blanking gap the electron beam is dark so that it cannot be seen tracing

back to the left side. Then the process starts over again and the next line

appears.

784

11.7 Programming the Hardware

To keep the picture free of flickering, it must be continually redrawn.

Since our eyes cannot discern changes above a certain frequency, the

number of pictures per second is placed above this limit. With the PAL

standard, the number of individual pictures is set to 50 per second (30

per second for NTSC). But now we encounter a problem. If all 625 lines

were drawn 50 times per second, the result would be 31250 lines per

second. If monitors and televisions were built to these specifications,

they would not be affordably priced, so a trick is used. On one hand, the

number of pictures should not be less than 50 per second or the screen

begins to flicker, while on the other hand there must be enough lines per

picture. The solution is as follows: 50 pictures are displayed per second,

but the 625 lines are divided into two pictures. The first picture contains

all the odd lines (1,3,5...625), while the second contains all the even lines

(2,4,6...624). Two of these half-pictures (called frames) are combined to

form the entire picture, which contains 625 lines. Naturally, the number

of complete pictures per second is only half as large as the number of

half-pictures, or 25 per second. The line frequency for this technique is

only 15625 Hz (25x625 or 50x312.5).

In spite of the high resolution of 625 lines, flickering occurs when a

contour is restricted to only one line. Then it is displayed only every 25th

of a second, which is perceived by the eye as a visible flickering. This

effect can be seen on televisions (especially on the horizontal edges of

surfaces), since these consist of only a single horizontal line.

The term for this technique of alternating display of even and odd lines is

interlacing. Two additional terms are used to distinguish the difference

between the two types of half-pictures. A long frame is the one in which

the odd lines are displayed, and the other is called a short frame. They are

called long and short frames because there is one more odd line than

even and it takes slightly longer to display the frame containing the extra

line (from 1 to 625 there are 313 odd and 312 even numbers).

After each frame there is a pause before the next frame begins. This blank

space between frames is called the vertical blanking gap. The picture

created by the Amiga also follows this scheme, although with some

deviations.

Normally the second half-picture (short frame) is somewhat delayed so

that the even lines appear exactly between the odd lines.

785

11. The A3000 Hardware

On the Amiga both frames are identical so that the frequency is actually

50 Hz. As a result, the number of lines is limited to 313. This can be

clearly seen by the vertical distance between two lines on the screen,

since the frames are no longer displaced, but drawn on top of each other.

To increase the number of lines, the Amiga can also create its picture in

interlace mode. Then a full 625 lines are possible on PAL systems, but the

disadvantages of interlace operation must be considered. More about

this later.

Construction of the Amiga screen output

Bit-planes

The Amiga always displays its picture in a type of graphic mode (i.e.,

each point on the screen has a corresponding representation in memory).

The simplest way to build a screen image in memory is to define a

contiguous block of RAM in which a set bit corresponds to a point

(pixel) displayed on the monitor. This basic construction is called a

bit-plane and is the fundamental element of all screen display in the

Amiga. A single line on the screen will consist of a certain number of

words determined by the width of the picture. Since each bit represents

one pixel, a word comprises 16 pixels. For a screen display of 320 pixels

per line, 20 (320/16) words per line are needed.

In a single bit-plane, only one of two possible conditions can exist for a

given bit position. The bit is either set or cleared. However, by combining

several bit-planes, the possibilities are greatly expanded. The planes can

be logically superimposed so that those bits having the same position

within their respective planes are considered as a unit. The first pixel on

the screen is the result of combining the first bit of the first word of all the

bit-planes. The value of the bit combination determines the color of the

pixel on the screen. There are various ways of deriving colors from bit

combinations, and we'll discuss these in more detail later.

786

11.7 Programming the Hardware

Bit-plane structure : 320x200 pixels : restarting

Column o 16 3 2 • •

Row n + O n + 2 n + 4

0 | 1st word |

n + 40

1 | 21st word |

• •

• •

• •

n+7960

199 I 3980th word I

|i5|i4(l3Ji2|i1

| 2nd word | | 3rd word | • •

n+42 n+44

| 22nd word | | 23rd word | • •

• • • •

• • • •

• • • •

n+7962 n+7964

| 3981st word | 13982nd word | • •

|1O|9|8|7|6|S|4|3|2|1|O

//

address

• 304

n+38

•| 20th word

n+78

• | 40th word

• •

• •

• •

n+7998

• | 4000th word

Representation of bit-plane's first word in the upper-left

corner of the visible screen

1

1

1

Bit-plane construction

Different graphic resolutions

The Amiga recognizes three different horizontal resolutions. The high

resolution mode normally has 640 pixels per line, the low resolution has

320. The A3000's new Denise even permits a 1280 pixel-per-line display

called super hi-res mode. The word "normally" means that this value can

change. It is better to define the different resolutions in terms of time per

pixel. A pixel in super hi-res mode is displayed for 35 nanoseconds, in

normal hi-res mode for 70 nanoseconds and in low-resolution mode for

140 nanoseconds. Comparing lo-res to hi-res, the electron beam traces

across the screen for twice the time to produce a single pixel. In this time

it covers twice the distance, producing a pixel that appears twice as wide

in low as in high resolution.

What is more important for the programmer to know, however, is that in

high-resolution mode only four bit-planes can be active at a time, while in

787

11. The A3000 Hardware

low-resolution mode up to six planes are allowed. In super hi-res mode

only two bit-planes may be used. Furthermore, a limitation of 64 colors is

imposed on the color palette. This is a consequence not of higher pixel

frequency, but of certain limitations in the chip design.

Construction of a horizontal raster line

A raster line is a complete horizontal line, including both the horizontal

blanking gap and the visible region. This raster line serves as a timing

measure for all DMA processes, particularly for screen-associated DMAs.

To understand the division of the raster line, you must know how

memory access to chip RAM and the custom chip registers is distributed

between the DMA controller and the processor. Accesses to these two

storage areas must conform to what are called bus cycles. The bus cycles

determine the timing of the chip RAM. One memory access can take

place in each bus cycle. It doesn't matter whether the data is read or

written.

For example, if the processor wants to access the bus it gets control of

the bus for one bus cycle. The DMA controller cannot access RAM

again until the following cycle. A bus cycle lasts 280 nanoseconds.

Almost four memory accesses are possible in one microsecond.

For compatibility reasons, processor accesses to chip memory are

executed according to the same scheme as in 68000-based Amiga

models. This requires the 68030 to constantly insert wait states, so that

the result is a maximum of one access every 560 nanoseconds. During

this time two bus cycles elapse. The 68030 can use every other bus

cycle. These cycles are called even cycles. The remaining cycles, the odd

cycles, are reserved exclusively for the DMA controller.

788

11.7 Programming the Hardware

$20

Refresh Disk DMA Audio DMA Earliest possible starting

time for bit-plane DMAs

$28 $30

Data fetch start

$38 $40 $48

I
ILL

351

LLL

62

16 low-res

pixels

$C4 $C8

ILL]

46

I

46

LL

UN
2 1

LL

35

35

LL

46

LL

r-HhHr-l"

21 43

LL

LLL

6

16hi-res

pixels

Data fetch stop

$D0 $D8 $DF

Bus cycle up to

$D8 is the same

as $40-$47

HH HH

LL

46

LL

46

HHHH

LL

35

LL

35

H

21

46

46

HH

LL

HHH

LL]

51

LL

62

LL

35

Latest possible end of

bit-plane DMAs

Legend:

R = Refresh cycles

D = Disk DMA cycles

Ax=Audio DMA cycles, x=channel number

Sx=Sprite DMA cycles, x=sprite number

Lx=Low-res bit-plane DMA cycles, x=bit-plane number

Hx=High-res bit-plane DMA cycles, x=bit-plane number

=Even bus cycles (processor or DMA) I =Odd bus cycles (DMA only)

LJ til

Raster timing

The figure shows the development of a raster line over time. It takes 63.5

microseconds. This yields 227.5 bus cycles per line. Of these the first 225

can be taken by the DMA controller. The figure shows how this is done:

The letters within the individual cycles represent the corresponding

789

11. The A3000 Hardware

DMA channels. While the DMA controller has exclusive use of the odd

cycles, it must share the even ones with the processor. Still, DMA access

always takes priority. Blitter DMA and Copper DMA always take place

during even cycles. There is no defined time for these two, but once

Copper DMA access begins, it takes all the even cycles until it has

finished its task. It has precedence over the Blitter. When the Blitter

gains access, it also takes all the even cycles until it is finished. Some

cycles can still be left free for the 68030.

As you can see, disk, audio and sprite DMA accesses take only odd bus

cycles and do not affect the speed of the processor. The four cycles

designated "R" are refresh cycles. They are used to refresh the contents

of the chip RAM (see the end of this section).

The distribution of the bit-plane DMA is more complicated. For the first

16 pixels to be displayed on the screen, all the bit-planes must be read.

While these 16 pixels are appearing on the screen, the bit-planes for the

next 16 pixels must be read. If the lowest resolution is enabled, two

pixels are output during each bus cycle. This means that the bit-planes

must be read every eight bus cycles. As long as no more than four bit-

planes are active, the odd cycles suffice. If five or six planes are used, two

even cycles must also be used so that all the data can be read within the

eight bus cycles. It's even tighter in high-resolution mode. Here four

pixels are displayed per bus cycle. If only odd cycles are to be taken, no

more than two hi-res planes can be active. With the maximum allowable

number of four hi-res planes, all bus cycles are taken. As a

result, the processor loses more than half of its free bus cycles. Its speed

also decreases by the same amount, assuming that the

current program is in the chip RAM, since the processor still has full-

speed access to any fast RAM and to the Kickstart ROM.

The times labeled as data fetch start and data fetch stop designate the

start and stop of the DMA accesses for the bit-planes. They

determine the width and horizontal position of the visible picture. If the

bit-plane DMA starts early and ends late, more data words

are read and more pixels are displayed. The normal resolution of 320 or

640 pixels per line can be varied by changing these values. If

the data fetch start is set below $30, the bit-plane DMA channel uses

cycles normally reserved for sprite DMA. Depending on the

exact value of data fetch start, up to seven sprites may be lost this way.

Only sprite 0, which is generally used for the mouse pointer,

cannot be turned off in this manner.

790

11.7 Programming the Hardware

The top line in the figure represents the division of the DMA cycles for a

low-resolution screen with the normal width of 320 pixels. The start of

the bit-plane DMA, data fetch start, is at $38, and the end, data fetch

stop, is at $D0. The data from bit-plane number 1 is read in the cycles

designated LI, the bit-plane 2 data in L2, and so on. If the corresponding

bit-planes are not enabled, their DMA cycles are also omitted.

The second line represents the course of a raster line in which the data

fetch points are moved outward. Up to the data fetch start everything is

the same as the top line, but here the DMA starts at $28. As a result,

sprites 5 to 7 are lost. The data fetch stop position is moved to the right

to the maximum value of $D8.

The third line shows the distribution of the DMA cycles in a high-

resolution screen where the data fetch values match those of the first

line.

No bit-plane DMA accesses occur during the vertical blanking gap.

The DMA control register

The individual DMA channels are enabled and disabled through a central

DMA control register, DMACON.

The DMACON register addresses are $096 (write) and $02 (read)

Bit

15

14

13

12 and 11

10

9

8

7

6

5

4

3-0

Name

SET/CLR

BBUSY

BZERO

BLTPRI

DMAEN

BPLEN

COPEN

BLTEN

SPREN

DSKEN

AUDxEN

Function (when set)

Set/clear bits

Blitter busy (read only)

Result of all Blitter operations is 0 (read only)

Unused

Blitter DMA has priority over processor

Enable all DMA (for bits 0 to 8)

Enable bit-plane DMA

Enable Copper DMA

Enable Blitter DMA

Enable sprite DMA

Enable disk DMA

Enable audio DMA for sound channel x (bit

number corresponds to number of sound

channel)

The DMACON register is not written like a normal register. You can only

set or clear bits. This is determined by bit 15 of the data word written to

the DMACON register. If this bit is 1, all the bits that are set in the data

791

11. The A3000 Hardware

word are also set in the DMACON register. If bit 15 is 0, all the bits that

are set in the data word are cleared in the DMACON register. The

remaining bits in DMACON remain unaffected.

Bit 9, designated DMAEN, is something of a main switch. If it is 0, all

DMA channels are inactive, regardless of bits 0 to 8. To enable DMA you

must set both the appropriate DMA channel bit and the DMAEN bit.

Here is an example:

Only the bit-plane DMA is enabled (BPLEN =1), but without the

DMAEN bit. The value of the DMACON register is $0100. Now you

want to enable the disk DMA. DSKEN and DMAEN must be set and

BPLEN cleared.

MOVE.W #$0100/$DFF096 ;Clears the BPLEN bit (SET/CLR = 0)

MOVE.W #$8210,$DFF096 ;Sets DSKEN and DMAEN (SET/CLR = 1)

The DMACON register now contains the desired value of $0210. Bits 13

and 14 can only be read. They supply information about the status of the

Blitter, which is discussed in more detail in the Blitter section.

Bit 10 controls the priority of the Blitter over the processor. If it is set, the

Blitter has absolute priority over the 68030. This may go so far as to

deny the processor all access to the chip registers and chip RAM

throughout the entire Blitter operation. When it is cleared, the processor

gets every fourth even bus cycle from the Blitter. This prevents the

processor from being held up when an operating system routine or a

program in fast RAM, both of which execute at full speed, must access

chip RAM, for example, to get an operating system data structure or a

68030 exception vector.

Reading the current electron beam position

Since all DMA timing is oriented according to the position within a raster

line, it is sometimes useful to know where on the line the electron beam is

currently located. Agnus has an internal counter for this, which contains

both the horizontal and vertical screen position. Two registers allow the

processor access to this counter:

792

11.7 Programming the Hardware

Bit no.:

Function:

Bit no.:

Function:

15

V7

15

LOF

14

V6

14

VHPOS $006 (read, VHPOSR) and $02C (write, VHPOSW)

13 12 11 10 9 8 7 6 5

V5 V4 V3 V2 V1 VO H8 H7 H6

VPOS $004 (read, VPOSR) and $02A (write

13 12 11 10 9 8 7 6 5

4 3

H5 H4

, VPOSW)

4 3

2

H3

1

H2

2 1

V10 V9

0

H1

0

V8

The bits designated HI to H8 represent the horizontal beam position and

correspond directly to the numbers for the individual bus cycles in the

figure. They have a precision of two low or four high-resolution pixels.

The value for the horizontal position can vary between $0 and $E3 (0 to

227). The horizontal blanking gap falls in the range from $F to $35.

The bits for the vertical position, the current screen line, span both

registers. The lower bits, V0-V7, are in VHPOS, and the upper bits, V8-

V10, are in VPOS. Together they yield the number of the current screen

line.

Lines from 0 to 312 are possible. The vertical blanking gap (the screen is

always dark in this range) runs from line 0 to line 25. The LOF (LOng

Frame) bit indicates whether the image currently being displayed is a

long (odd lines) or short (even lines) frame. This bit is needed only in

interlace mode. Normally it is 1.

The beam position can also be set, but this capability is rarely needed.

The POS registers have another function in connection with a light pen.

When the lightpen input of Agnus is activated and the lightpen is held

against the screen, they store its position. This means that their contents

are frozen as soon as the lightpen detects the electron beam moving past

its tip. The counters are released again at the end of the vertical blanking

gap, line 26. To read the lightpen position, you must proceed as follows:

• Wait for line 0 (start of the vertical blanking gap). This is most easily

done by means of the vertical blanking interrupt (see next section).

• Read the two counter registers.

793

11. The A3000 Hardware

If the vertical position is between 0 and 25 (within the vertical blanking

gap), no lightpen signal was received. If the value is outside this range, it

represents the position of the lightpen.

To conclude this section, here are some more details about the refresh

cycles:

Agnus possesses an integrated 9-bit refresh counter. It can be written

through register address $28 (be careful because the memory contents

can be lost this way). At the start of each raster line, Agnus places four

refresh addresses on the chip RAM address bus. This means the contents

of each memory row are refreshed every four milliseconds.

While the row address is being output on the chip RAM address bus,

Agnus places the addresses of certain strobe registers on the register

address bus. These strobe signals serve to inform the other chips, Denise

and Paula, of the start of a raster line or a picture. This is necessary

because the counter for the screen position is inside Agnus and there are

no lines for transmitting the synchronization signals to the other chips.

There are four strobe addresses:

Addr.

$38

$3A

$3C

$3E

Chip

D

D

DP

D

Function

Vertical blanking gap of a short frame

Vertical blanking gap

This strobe address is created in every raster line

outside the vertical blanking gap

Marker for a long raster line (228 cycles)

During the first refresh cycle, one of the first three strobe addresses is

always referenced. Normally this is $3C, and within the vertical blanking

gap $38 or $3A, depending on whether it is a short or long frame.

With the fourth address the situation is as follows: A raster line has a

purely computational length of 227.5 bus cycles. But since there are no

half-cycles, lines alternate between 227 and 228 bus cycles. The strobe

address $3E signals the 228-cycle lines and is created during the second

refresh cycle.

11.7.3 Interrupts

Almost all the I/O components of the custom chips and the two CIAs can

generate an interrupt. A special circuit inside Paula manages the interrupt

794

11.7 Programming the Hardware

sources and creates the interrupt signals for the 68030. The processor's

autovector interrupts, levels 0 to 6, are used for this. No provision is made

for the non-maskable interrupt (NMI), level 7. The two registers involved

are the interrupt request register (INTREQ) and the interrupt mask

(enable) register (INTENA). The assignment of the bits in the two

registers is identical.

Interrupt enable and interrupt request register layout

INTREQ

INTREQR

INTENA

INTENAR

= $09C

= $01E

= $09A

= $01C

(write)

(read)

(write)

(read)

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Name

SET/CLR

INTEN

EXTER

DSKSYN

RBF

AUD3

AUD2

AUDI

AUDO

BUT

VERTB

COPER

PORTS

SOFT

DSKBLK

TBE

IE

(6)
6

5

5

4

4

4

4

3

3

3

2

1

1

1

Function

Write/read (see DMACON register)

Enable interrupts

Interrupt from CIA-B or expansion port

Disk sync value recognized

Serial port receive buffer full

Output audio data channel 3

Output audio data channel 2

Output audio data channel 1

Output audio data channel 0

Blitter ready

Start of vertical blanking gap reached

Reserved for Copper interrupts

Interrupt from CIA-A or expansion port

Reserved for software interrupts

Disk DMA transfer ended

Serial transmit buffer empty

The lower 13 bits represent the individual interrupt sources. The CIA

interrupts are combined into a single interrupt. The bits in the DMAREQ

register indicate which interrupts have occurred. A bit is set if the

corresponding interrupt has occurred. In order to generate a processor

interrupt, the corresponding bit must be set in the DMAENA register and

the INTEN bit must also be set. The INTEN bit acts as the main switch for

the remaining 14 interrupt sources, which can be turned on and off with

the individual bits of the INTENA register. Only when INTEN is 1 can

any interrupts be generated.

If both the INTEN bit and the two corresponding bits in the INTENA and

INTREQ registers are set, a processor interrupt is generated.

795

11. The A3000 Hardware

The corresponding autovector numbers are listed in the IL (Interrupt

Level) column in the table. Here are the addresses of the seven interrupt

autovectors:

Vector no.

25

26

27

28

29

30

(31

Address

100/$64+(VBR)

104/$68+(VBR)

108/$6C+(VBR)

112/$70+(VBR)

116/$74+(VBR)

120/$78+(VBR)

124/$7C+(VBR)

Autovector level

Autovector level 1

Autovector level 2

Autovector level 3

Autovector level 4

Autovector level 5

Autovector level 6

Autovector level 7)

VBR = Vector Base Register (see section on 68030)

As you can see, the interrupts that require faster processing are given

higher interrupt levels. To change the bits in these two registers, you

must work with a SET/CLR bit using the same procedure described for

the DMACON register.

After processing an interrupt, the processor must reset the INTREQ

register bit that generated it. In contrast to the interrupt control registers

of the CIAs, the bits in the INTREQ register are not automatically cleared

on reading.

Setting a bit in the INTREQ register with a MOVE command has the

same effect as if the corresponding interrupt had occurred. This is how a

software interrupt is created, for example (SOFT, bit 2). The Copper can

also create its own interrupt by writing into INTREQ.

One peculiarity is bit 14 in the INTREQ register, which has no specific

function there as it does in INTENA. But when it is set by writing to

INTREQ, and INTEN in the INTENA register is high, a level 6 interrupt is

generated.

On each interrupt from CIA-A, bit 3 in the DMAREQ register is set. For

CIA-B this is bit 13. The interrupt source in the corresponding CIA must

be determined by reading the interrupt control register of the CIA.

Interrupts 3 and 13 can also be generated by expansion cards on the

expansion port.

Interrupt bit 5 indicates the vertical blanking interrupt. This occurs at the

start of each video frame at the start of the vertical blanking gap (line 0),

796

11.7 Programming the Hardware

and 50 times per second. The remaining interrupts are discussed in the

appropriate sections.

11.7.4 The Copper Coprocessor

The Copper is a simple coprocessor. It writes certain values into the

various registers of the custom chips automatically at defined points in

time. More accurately, the Copper can change the contents of some

registers at any screen position. By doing so, it can divide the screen into

different regions, which can then have different colors and resolutions.

For example, this capability is used to implement multiple screens.

The Copper is designated a coprocessor because, like a real processor, it

has a program stored in memory that executes command by command.

The Copper recognizes only three different commands, but they are quite

versatile:

MOVE

The MOVE command writes an immediate value into a custom chip

register.

WAIT

The WAIT command waits until the electron beam reaches a certain

screen position.

SKIP

The SKIP command skips the next command if the electron beam has

already reached a certain screen position. This allows conditional

branches to be built into the program.

A Copper program is called a Copper list. It is a series of consecutive

instructions, each consisting of two words. For example:

Wait (XI,Yl) ;waits until screen position XI,Yl is reached

Move #0,$180 ;writes the value 0 to the background color register

Move #9,$181 ;writes the value 1 to color register 1

Wait (X2,Y2) ;waits until screen position X2,Y2 is reached

etc.

797

11. The A3000 Hardware

The Copper list alone is not sufficient to operate the Copper. Other

registers are required which contain parameters needed by the Copper.

The Copper register

Reg.

$080

$082

$084

$086

$088

$08A

$02E

Name

COP1LCH

COP1LCL

COP2LCH

COP2LCL

COPJMP1

COPJMP2

COPCON

Function

These two registers together contain the

20-bit address of the first Copper list.

These two registers together contain the

20-bit address of the second Copper list.

Loads the address of the first Copper list into

the Copper program counter.

Loads the address of the second Copper list

into the Copper program counter.

This register contains only a single bit (bit 0). If it is

set, the Copper can also access the registers from

$040 to $7E. (These belong to the Blitter.)

All the Copper registers are write-only registers.

The COPxLC registers contain addresses of Copper lists. Since such an

address is 19 bits long, two registers are needed per address. Both

registers of a pair can be written with one MOVE.L command to the first

register. The Copper lists, like all other data for the custom chips, must lie

within the 2 Meg chip RAM.

The Copper uses an internal counter as a pointer to the current

command. It is incremented by two each time a command is processed.

To start the Copper at a given address, the start address of the Copper list

must be transferred to the program counter. The COPJMPx registers are

used for this. They are strobe registers, meaning that a write access to one

of them simply activates a particular action — they are not used to store

actual values. The values written to them are completely irrelevant.

In the Copper these two registers cause the contents of the

corresponding COPxLC registers to be copied into the program counter.

If a write access is made to COPJMP1, the address in COP1LC is copied

into the program counter, which causes the Copper to execute the

program at that address. This also applies to COPJMP2 and COP2LC.

At the start of the vertical blanking gap, line 0, the program counter is

automatically loaded with the value from COP1LC. This causes the

Copper to execute the same program for every picture.

798

11.7 Programming the Hardware

The command structure

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

MOVE

BW1

X

X

X

X

X

X

X

RA8

RA7

RA6

RA5

RA4

RA3

RA2

RA1

0

BW2

DW15

DW14

DW13

DW12

DW11

DW10

DW9

DW8

DW7

DW6

DW5

DW4

DW3

DW2

DW1

DWO

BW1

VP7

VP6

VP5

VP4

VP3

VP2

VP1

VPO

HP8

HP7

HP6

HP5

HP4

HP3

HP2

1

WAIT

BW2

BFD

VM6

VM5

VM4

VM3

VM2

VM1

VMO

HM8

HM7

HM6

HM5

HM4

HM3

HM2

0

BW1

VP7

VP6

VP5

VP4

VP3

VP2

VP1

VPO

HP8

HP7

HP6

HP5

HP4

HP3

HP2

1

SKIP

BW2

BFD

VM6

VM5

VM4

VM3

VM2

VM1

VMO

HM8

HM7

HM6

HM5

HM4

HM3

HM2

1

Legend:

x

RA

DW

VP

VM

HP

HM

BFD

This bit is unused. It should be initialized to 0.

Register address

Data word

Vertical beam position

Vertical mask bits

Horizontal beam position

Horizontal mask bits

Blitter finish disable

The MOVE command

The MOVE command is indicated by a 0 in bit 0 of the first command

word. With this command it is possible to write an immediate value to a

custom chip register. The register address of the desired register comes

from the lower 9 bits of the first data word. Bit 0 must always remain 0 (it

is already 0 for the register addresses because the registers lie only on

even addresses). The second command word contains the data byte to be

written to the register.

There are some limitations regarding the register address. Normally the

Blitter cannot affect the registers in the range from $000 to $07F. If the

lowest (and only) bit in the COPCON register is set, then the Copper can

write to the registers in the range from $040 to $07F. This allows the

799

11. The A3000 Hardware

Copper to use the Blitter. Access to the lowest registers ($000 to $03F)
is never allowed.

The WAIT command

The WAIT command is indicated by a 1 in bit 0 of the first word and a 0

in bit 0 of the second word. It instructs the Copper to hold further

execution until the desired beam position is reached. If the position is

already greater than that specified by the WAIT command at the time the

command is executed (the beam is already past the specified position),

the Copper continues with the next instruction immediately.

This position can be set separately for the vertical lines and horizontal

rows. Vertically the resolution is one raster line. But since there are only

eight bits for the vertical position and there are 313 lines, the WAIT

command cannot distinguish between the first 256 and the remaining 57
lines.

For example, the lowest eight bits are the same for both line 0 and line

256. To wait for a line in the lower range, two wait commands must be
used.

1. WAIT for line 255 column 224 ($FFE1).

2. WAIT for the desired line, ignoring the ninth bit.

Horizontally there are 112 possible positions, since the two lower bits of

the horizontal position, HPO and HP1, cannot be specified. The command

word of the WAIT command holds only bits HP2 to HP8. This means that

the horizontal coordinate of a WAIT command can only be specified in

steps of four low-resolution pixels.

The second command word contains mask bits. These can be used to

determine which bits of the horizontal and vertical position are actually

considered in the comparison with the current beam position. Only the

position bits whose mask bits are set are considered. This opens up many

possibilities. For example:

Wait for vertical position $0F and vertical mask $0F

causes the WAIT condition to be fulfilled every 16 lines (whenever the

lower four bits are all 1), since bits 4 to 6 are not considered (mask bits 4

800

11.7 Programming the Hardware

to 6 are at 0). The seventh bit of the vertical position cannot be masked.

The previous example works only in the range of lines 0 to 127 and 256

to 313.

The BFD (Blitter Finish Disable) bit has the following function: If the

Copper is used to start a Blitter operation, it must know when the Blitter

is finished with the previous operation. If the BFD bit is cleared, the

Copper waits at every WAIT command until the Blitter has finished its

operation. Only then is the WAIT condition checked. This can be

prevented by setting the BFD bit, causing the Copper to ignore the

current Blitter status. If the Copper shouldn't affect any of the Blitter

registers, this bit is set to 1.

The SKIP command

The SKIP command is identical to the WAIT command, except that bit 0

in the second command word is set to distinguish it from the WAIT

command. The SKIP command checks to see if the actual beam position

is greater than or equal to that given in the command word. If this

comparison is positive, the Copper skips the next command. Otherwise it

continues program processing by executing the next command. The

SKIP command allows conditional branches to be constructed. The

command following SKIP can be a MOVE into one of the COPJMP

registers, causing a jump to be made based on the beam position.

Construction of a Copper list

A simple Copper list consists of a sequence of WAIT and MOVE

commands, and a few SKIP commands. Its start address is found in

COPLC1. A trick must be used to end the Copper list. After the last

instruction comes a WAIT command with an impossible beam position.

This effectively ends the processing of the Copper list until, at the start of

a new picture, the COPLC1 address is loaded into the program counter

again to restart processing. WAIT ($0,$FE) fulfills this condition, because

a horizontal position greater than $E4 is not possible.

The Copper interrupt

As you know, there is a special bit in the interrupt registers for the

Copper interrupt, this interrupt can be generated with a MOVE

command to the INTREQ register:

801

11. The A3000 Hardware

MOVE #$8010/INTREQ ;set SET/CLR and COPER

Any other bit in this register can be affected the same way, but bit 4 is

provided especially for the Copper.

A Copper interrupt can be used to tell the processor that a certain screen

position has been reached. This allows what are called raster interrupts to

be programmed (i.e., the interruption of the processor in a certain screen
line (and column)).

The Copper DMA

The Copper fetches its commands from memory through its own DMA

channel. It uses the even bus cycles and has precedence over the Blitter

and the 68030. Each command requires two cycles, since two command

words must be read. The WAIT command requires an additional cycle

when the desired beam position is reached. The Copper leaves the bus

free during the wait phase of a WAIT command.

The COPEN bit in the DMACON register is used to turn the Copper

DMA on and off. If this bit is cleared, the Copper releases the bus and

does not execute any more commands. If it is set, it starts its program

execution at the address in its program counter. Therefore, it is absolutely

necessary to supply this with a valid address before starting the Copper

DMA. A Copper running in an unknown area of memory can crash the

system. The usual initialization sequence for the Copper looks like this:

LEA $DFF000/A5 ;Base address of registers to A5

MOVE.W #$0080/DMACON(A5) ;Copper DMA off

MOVE.L #Copperlist,COPlLCH(A5) ;Set address of Copper list

COPJMP1(A5) /Transfer this address to Copper program

;counter

MOVE.W #$8080,DMACON(A5) /enable Copper DMA

Sample program

Finally, here is a sample program. It uses two WAIT commands and three

MOVE commands to display black, red and yellow bars on the screen. It

can be created with a simple Copper list and offers a good example.

Enter the program with a standard assembler for the Amiga (such as
AssemPro):

802

11.7 Programming the Hardware

;*** Example for a simple Copper list ***

;CustomChip-Register

INTENA = $9A ;Interrupt-Enable register (write)

DMACON = $96 ;DMA-Control register (write)

COLOR00 = $180 ;Color palette register 0

;Copper-Register

COP1LC = $80 ;Address of 1st Copper list

COP2LC = $84 ;Address of 2nd Copper list

COPJMP1 = $88 ;Jump to Copper list 1

COPJMP2 = $8a ;Jump to Copper list 2

;CIA-A Port register A (Mouse key)

CIAAPRA = $BFE001

;Exec Library Base Offsets

OpenLibrary = -30-522 ;LibName,Version/al,dO

Forbid = -30-102

Permit = -30-108

AllocMem = -30-168 ;ByteSize,Requirements/d0,dl

FreeMem = -30-180 ;MemoryBlock,ByteSize/al,dO

;graphics base

StartList = 38

;Other Labels

Execbase = 4

Chip = 2 /Request Chip-RAM

.*** initialize program ***

/Request memory for Copper list

Start:

move.1 Execbase,a6

moveq #Clsize,d0 ;Set parameters for AllocMem

moveq #chip,dl ;ask for Chip-RAM

jsr AllocMem(a6) /request memory

803

11. The A3000 Hardware

move.1 dO,CLadr

beq. s Ende

;Copy Copper list to CLadr

lea CLstart,aO

move.l CLadr,al

moveq #CLsize-l,dO

CLcopy:

move.b (aO)+,(al)+

dbf dO,CLcopy

;*** Main program ***

jsr forbid(a6)

lea $dffOOO,a5

move.w #$03aO,dmacon(a5)

move.l CLadr,copllc(a5)

clr.w copjmpl(a5)

;Turn on Copper-DMA

move.w #$8280/dmacon(a5)

;Wait for left mouse key

Wait: btst #6,ciaapra

bne.s Wait

;*** End program ***

/Reactivate old Copper list

move.l #GRname,al

clr.l dO

jsr OpenLibrary(a6)

move.1 dO,a4

move.l StartList(a4),copllc(a5)

clr.w copjmpl(a5)

move.w #$83eOfdmacon(a5)

jsr permit(a6)

;Free memory of Copper list

move.l CLadr,al

moveq #CLsize,dO

;Store address of RAM area

;Error! -> End

;Set loop counter

;Copy Copper list byte by byte

;Task-switching off

/Base address of registers to A5

/DMA off

/Address of Copper list to COP1LC

/Load address to Copper program counter

/Test bit

/Set? Then wait.

/Set parameters for OpenLibrary

/Open Graphics Library

/Address of GraphicsBase to a4

/Load address of Startlist

/All necessary DMA channels on

/Task-switching on

/Set parameters for FreeMem

804

11.7 Programming the Hardware

jsr FreeMem(a6)

Ende:

clr.l dO

rts

;Free memory

;Clear error-flag

;End program

;Variables

CLadr: del 0

;Constants

GRname: dc.b wgraphics.1ibrary",0

even

;Copper-List

CLstart:

dew colorOO,$0000

dew $780f,$fffe

dew color00# $0f00

dew $d70f,$fffe

dew colorOO, $0fb0

dew $ffff,$fffe

CLend:

;align

;Background color black

;Wait for line 120

;Switch to red

;Line 215

;Gold

/Impossible position: End Copper-List

CLsize = CLend - CLstart

;End of program

This program installs the Copper list and then waits until the left mouse

button is pressed. Unfortunately, this isn't as easy as it sounds.

First, you need memory in which to store the Copper list. Like all data for

the custom chips, it must be in the chip RAM. Since you can't be sure

whether the program is actually in the chip RAM, it is necessary to copy

the Copper list into the chip RAM. In a multitasking operating system

like that of the Amiga, you can't just write something into memory; you

must request the memory. This is done in the program with the AllocMem

routine. This returns the address of the requested chip RAM in DO. The

Copper list is then copied into memory at this address.

Next, the task switching is disabled by a call to Forbid so that the Amiga

processes only your program. This prevents your program from being

disturbed by another.

805

11. The A3000 Hardware

Finally, the Copper is initialized and started. After this, the program tests

for the left mouse button by reading the appropriate port bit of CIA-A. If

the mouse button is pressed, the processor exits the wait loop.

To get back to the old display, a special Copper list is loaded into the

Copper and started. This Copper list is called the startup Copper list and

it initializes the screen. Its address is found in the variable area for the

part of the operating system responsible for the graphics functions. At

the end, task switching is re-enabled with Permit and the occupied

memory is released again with FreeMem.

This program contains a number of operating system functions, which

you are probably not familiar with yet. Unfortunately, this cannot be

avoided if you want to make the program work correctly. But it doesn't

matter if you don't understand everything yet. We are discussing the

Copper in this section, and this part of the program should be

understandable. In the later sections of this book you'll discover the

secrets of the operating system and its routines. Enter this example and

experiment with the Copper list. Change the WAIT command or add new

ones. You can also experiment with a SKIP command.

Address Command

Copper list

Copper active

n MOVE #black, COLOR00 1^
n+2 WAIT 0,100 T-

n+6 MOVE #red,COLOR00

n=6 WAIT 0,190

n+8 MOVE #gold,COLOROO

n+10 WAIT 254,255

Line

u

120

215

///////y
VBlack //

Ked —

Gold

The Copper list

One more thing about the Copper list: The two WAIT commands contain

$E as the horizontal position. This is the start of the horizontal blanking

gap. This way the Copper performs the color switch outside the visible

806

11.7 Programming the Hardware

area. If 0 is used as the horizontal position, the color switching can be

seen at the extreme right edge of the screen.

11.7.5 Playfields

The screen output of the Amiga consists of two basic elements: sprites

and playfields. In this section we'll discuss the structure and

programming of all types of playfields. The playfield is the basis of the

normal screen display. It consists of one to six bit-planes. A playfield is a

graphic screen that is built up from a variable number of individual

memory areas (the bit-planes). The Amiga provides various ways to

display playfields:

• Between 2 and 4096 colors simultaneously in one picture.

Resolutions of 16 by 1 to 736 by 568 pixels.

• Two completely independent playfields are possible.

• Smooth scrolling in both directions.

All these capabilities can be divided into two groups.

1. Combining the bit-planes to achieve the colors of the individual

pixels (displaying the bit pattern from the bit-planes).

2. Determining the form, size and position of the playfields(s).

The various display options

By using from 1 to 6 bit-planes, you are using the corresponding number

of bits to represent each pixel. This value must then be converted into

one of 4096 colors, since each pixel can naturally have only one color.

The Amiga creates its colors by mixing the component colors, red, green

and blue. Each of these three components can have 16 different intensity

levels. This results in 4096 color shades (16*16*16 = 4096). Storing a

color value requires four bits per component, or 12 bits per color.

If you wanted to allow one of 4096 colors for each pixel, you would

need 12 bits per pixel. But a maximum of six bits is possible. Therefore,

the six bits must be converted into one of the 4096 possible colors for

the visible point.

807

11. The A3000 Hardware

The color palette

A color palette or color table is used to do this. On the Amiga this

contains 32 entries, each of which can hold a 12-bit color value. The

value of the first color register COLOROO is used for the background

color and the border color.

1st color choice from color table

5-bit number from bit-plane=

pointer to color table

Color table

0| II IT I I I Bit-plane 5

COLOR 00

COLOR 01

COLOR 02

COLOR 03

COLOR 04

COLOR 05

COLOR 06

COLOR 07

0| I 11 I 11 I Bi«.nian«

fi^kQR 08

I 11 ITTI Bh-plane 3

01 I I 11 11 1 m.-P,an«

1| I III I I I Bit-plane 1

Pixel appears

in COLOR 05

Visible

screen

Color selection

Color palette registers 0-31 (COLOROO to COLOR31) are write-only:

Register addr.

$180

$182

...

$1BE

Color palette register

COLOROO

COLOR01

etc.

COLOR31

808

11.7 Programming the Hardware

Structure of a table element:

Bit:

COLORxx:

R0-R3

G0-G3

B0-B3

15 14 13 12 11 10 9

x x x x R3 R2 R1

4-bit value for the red component

4-bit value for the green component

4-bit value for the blue component

8

RO

7

G3

6

G2

5

G1

4

GO

3

B3

2

B2

1

B1

0

BO

The four bits labeled "x" are not used.

The value obtained from the bit-planes is used as a pointer to a table

element. Since there are only 32 of these color table registers, a maximum

of five bit-planes can be combined in this mode. The bit from the lowest-

numbered bit-plane supplies the LSB of the table entry. The bit from the

highest-numbered bit-plane supplies the MSB.

This method of obtaining the color from a table allows a maximum of 32

colors in a picture, but these colors can be selected from a total of 4096.

In high-resolution mode only four planes can be active at one time (16

colors is the limit). In this display mode it doesn't matter how many planes

are combined. Some registers may simply remain unused:

Number of bit-planes Colors Color registers used

1

2

3

4

5

2

4

8

16

32

COLOR00

COLOR00

COLOR00

COLOR00

COLOR00

COLOR01

COLOR03

COLOR07

COLOR15

COLOR31

The extra half-bright mode

In low-resolution mode a maximum of six bit-planes can be used. This

yields a range of values of 2^ or 0 to 63. However, there are only 32
color registers available. The extra half-bright mode uses a special

technique to get around this. The lower five bits (bits 0 to 4 from planes 1

to 5) are used as the pointer to a color register. The contents of this color

register is output directly to the screen if bit 5 (from bit-plane 6) is 0. If

this bit is 1, each component of the color value is divided by 2 before

being sent to the screen.

Dividing by 2 means that the bits of the three color components are

shifted one bit to the right, which amounts to a binary halving. The

intensity of each component is then only half as great, but the

809

11. The A3000 Hardware

proportions of the three components remains constant. The same color

will be displayed on the screen, but only half as bright.

Example:

Bit no.:

Value from bit-plane:

543210

100100

Yields table entry no. 8 (binary 01000 is 8), COLOR08 contains the

following value (color: orange):

R3

1

R3

0

R2

1

Since

R2

1

Rl

1

bit 5

Rl

1

R0

0

= 1, the

R0

1

G3

0

values

G3

0

G2

1

are

G2

0

Gl

1

shifted

Gl

1

GO

0

by 1 bit:

GO

1

B3

0

B3

0

B2

0

B2

0

Bl

0

Bl

0

BO

1

BO

0

This value still corresponds to orange, but now it's only half as bright. By

selecting appropriate color values for the 32 registers, it is possible for

each pixel to take on one of 64 possible colors in the extra half-bright

mode. The color registers store the bright colors, which can then be

dimmed by setting bit 5.

The hold-and-modify mode

This mode allows the display of all 4096 colors in one picture. Like the

extra half-bright mode, it is possible only at low-resolution, since all six

bit-planes are required. In this mode the colors in a normal picture seldom

make extreme changes from pixel to pixel. Usually smooth transitions

from bright to dark or dark to bright are needed.

In the hold-and-modify mode, called HAM for short, the color of the

previous pixel is modified by the one that follows it. This is responsible

for the fine gradations of shading that can be achieved (e.g., by

incrementing the blue component by one step with each successive

pixel). The limitation is that only one component can change at a time

(i.e., only the red, blue or green intensity can be affected from one pixel

to the next). To get a smooth transition from dark to light, all three color

components must change for many color mixes. In the HAM mode this

can be accomplished only by setting one of the components to the

810

11.7 Programming the Hardware

desired value at each pixel. This requires three pixels. By comparison, the

color of a pixel can also be changed directly by fetching one of 16 colors

from the color table. How is the value from the bit-planes interpreted in

HAM mode?

The upper two bits (bits 4 and 5 from bit-planes 5 and 6) determine the

use of the lower four bits (bit-planes 1 to 4). If bits 4 and 5 are 0, the

remaining four bits are used as a pointer to one of the color palette

registers as usual. This allows 16 colors to be selected directly. With a

non-zero combination of bits 4 and 5, the color of the last pixel (to the

left of the current one) is taken, two of the three color components are

held constant, while the third is replaced by the lower four bits of the

current pixel. The top two bits select the component to be changed. This

sounds more complicated than it is. The following table explains the use

of the various bit combinations:

Bit no.:

5

0

0

1

1

4

0

1

0

1

3

C3

B3

R3

G3

2

C2

B2

R2

G2

1

C1

B1

R1

G1

0

CO

BO

RO

GO

Function

Bits CO to C3 are used as a pointer to one of the color

registers in the range of COLOROO to COLOR15. This

is identical to normal color selection.

The red and green values of the last (left) pixel are used

for the current pixel. The old blue value is replaced by

the value in BO to B3.

The blue and green values of the last pixel are used for

the current pixel. The old red value is replaced by the

value in RO to R3.

The blue and red values of the last pixel are used for the

current pixel The old green value is replaced by the

value in GO to G3.

The border color (COLOROO) is used as the color of the previous pixel

for the first pixel on a line.

The dual playfield mode

The previously described modes use only one playfield. The dual

playfield mode allows two completely independent playfields to be

displayed simultaneously. It's as though there are two screens

superimposed on each other on the same monitor. They can (almost) be

used completely independently of each other.

This is especially interesting for games. For example, a telescope effect

can be produced very easily. The front playfield is filled with black

811

11. The A3000 Hardware

pixels; all except for a hole in the middle through a section of the second

playfield can be seen.

Each of the two playfields gets half the active bit-planes for its display.

Playfield 1 is formed from the odd planes, playfield 2 from the even ones.

If an odd number of bit-planes is being used, playfield 1 has one more

available to it than playfield 2.

2nd color choice In Dual Playfield mode

Value from odd bit-plane Colortable
Playfield 1 color
from COLOR 01

Playfield 2
color from

COLOR 11
Value from even bit-plane

ColoFbffset ' V
even bit-plane

Ml II I II IBit-plane4

1"! I I I II Bit-plane 1

Priority switch: If

no transparent
playfield exists,

the color with
the highest

priority is
displayed

II MM II

The dual playfield principle

The color selection in dual playfield mode is performed as usual: The

value belonging to a pixel from all the odd bit-planes (playfield 1) or all

the even planes (playfield 2) is used as a pointer to an entry in the color

table. Since each playfield can consist of a maximum of three planes, a

maximum of eight colors are possible. For playfield 1, the lower eight

entries of the color table are used (COLOR00 to COLOR07). For

playfield 2, an offset of 8 is added to the value from the bit-planes, which

puts its colors in positions 8 to 15 (COLOR08 to COLOR15).

If a pixel has a value of 0, it is made transparent. This means that screen

elements lying behind it can be seen. This can be the other playfield,
sprites or simply the background (COLOR00).

The dual playfield mode can also be used in the high-resolution mode.

Each playfield has only four colors in this mode. The division of the color

812

11.7 Programming the Hardware

registers doesn't change, but the upper four registers of each playfield are

unused (playfield 1: COLOR04 to 07, playfield 2: C0L0R12 to 15).

Division of the bit-planes in dual playfield mode:

Bit-planes

1

2

3

4

5

6

Planes in playfield 1

Plane 1

Plane 1

Planes 1 and 3

Planes 1 and 3

Planes 1,3 and 5

Planes 1,3 and 5

Planes in playfield 2

none

Plane 2

Plane 2

Planes 2 and 4

Planes 2 and 4

Planes 2,4 and 6

Color selection in dual playfield mode:

Planes

000

001

01 0

01 1

1 00

101

1 1 0

1 1 1

Playfield 1

5,3,1 Color reg.

Transparent

COLOR01

COLOR02

COLOR03

COLOR04

COLOR05

COLOR06

COLOR07

Planes 6,

000

001

01 0

01 1

too

1 01

1 1 0

1 1 1

Playfield 2

4,2 Color reg.

Transparent

COLOR09

COLOR10

COLOR11

COLOR12

COLOR13

COLOR14

COLOR15

Construction of the playfields

As previously mentioned, a playfield consists of a given number of

bit-planes. What do these bit-planes look like? We said earlier that they

were conceived as continuous areas of memory, in which a screen line

was represented by a number of words depending on the screen width.

In the normal case this is 20 words for low resolution (320 pixels divided

by 16 pixels per word) and 40 (640/16) for high resolution.

The following steps are needed to determine the exact construction of

the playfield:

• Define the desired screen size

• Set the bit-plane size

Select the number of bit-planes

• Initialize the color table

• Set the desired mode (hi-res, lo-res, HAM, etc.)

813

11. The A3000 Hardware

• Construct the Copper list

• Initialize the Copper

Activate the Copper and bit-plane DMA

Setting the screen size

The Amiga allows the upper left corner and the lower right corner of the

visible area of the playfields to be set anywhere. This allows the picture

position and size to be varied. The resolution is one raster line vertically

and one low-resolution pixel horizontally. Two registers contain the

values. DIWSTRT (Display Window STaRT) sets the horizontal and

vertical start positions of the screen window (i.e., the line and column

where the display of the playfield begins).

DIWSTOP (Display Window STOP) contains the end position + 1. This

refers to the first line/column after the playfield. If the playfield extends

up to 250 lines, 251 must be given as the DIWSTOP value.

The border color is displayed outside the visible area (this corresponds to

the background color and comes from the COLOR00 register).

DIWSTRT $08E (write-only)

Bit

Bit

no.:

no.:

15

V7

15

V7

14

V6

14

V6

13

V5

12

V4

11

V3

10

V2

9

V1

8

VO

DIWSTOP $90 (write-only)

13

V5

12

V4

11

V3

10

V2

9

V1

8

VO

7

H7

7

H7

6

H6

6

H6

5

H5

5

H5

4

H4

4

H4

3

H3

3

H3

2

H2

2

H2

1

H1

1

H1

0

HO

0

HO

The start position stored in DIWSTRT is limited to the upper left quadrant

of the screen, lines and columns 0 to 255, since the missing MSB's, V8

and H8, are assumed to be 0. The same applies to the horizontal end

position, only here H8 is assumed to be 1, which places it in the range of

column 256 to 458. A different method is used for the vertical end

position. Positions less and greater than row 256 should be possible. The

MSB of the vertical end position, V8, is created by inverting the V7 bit.

This makes an end position in the range of lines 128 to 312 possible. For

end positions from 256 to 312, you set V7 to 0 and V8 to 1. If V7 is 1, V8

will be 0, indicating a position between 128 and 255.

814

11.7 Programming the Hardware

The normal screen window has an upper left corner position of

horizontal 129 and vertical 41 (129,41) and a lower right corner position

of 448,296. DIWSTOP must be set at 449,297. The corresponding

hexadecimal values for DIWSTRT and DIWSTOP are $2981 and $29C1.

With these values the normal Amiga screen of 640 by 256 pixels (or 320

by 256) is centered in the middle of the monitor.

Why isnft the whole screen area used? There are several reasons for this.

First, a normal monitor does not display the entire picture. Its visible

range normally begins a few columns or lines after the blanking gap. In

addition, a picture tube is not rectangular. If the screen window was set

as high and wide as the monitor tube, the corners of the tube would hide

part of the picture.

Another limitation on the DIWSTRT and DIWSTOP values is imposed by

the blanking gaps. The vertical gap is in the range of lines 0 to 25. This

limits the visible vertical area to lines 26 to 312 ($1A to $138). The

horizontal blanking gap lies between columns 30 to 106 ($1E to $6A).

Visible horizontal positions begin at column 107 ($6B).

After the position of the screen window has been set, the start and end of

the bit-plane DMA must be set as well. Proper timing of the reading of

data from the bit-planes is required to ensure that the pixels will appear at

the desired time on the screen. Vertically, this isn't a problem. Screen

DMA begins and ends in the lines established by DIWSTRT and

DIWSTOP as the boundaries of the screen window.

Horizontally, it is somewhat more complicated. In order for a pixel to be

displayed on the screen, the current words of all bit-planes are required

by the electronics. For six bit-planes in low resolution, this takes eight

bus cycles. For high resolution, four cycles are required. (Remember: In

one bus cycle, two low-resolution or four high-resolution pixels are

displayed.)

In addition, the hardware needs a half bus cycle before the data can

appear on the screen. Therefore, the bit-plane DMA must begin exactly

8.5 cycles (17 pixels) before the start of the screen window (4.5 cycles or

9 pixels in high resolution).

815

11. The A3000 Hardware

The bus cycle of the first bit-plane DMA in the line is stored in the

DDFSTRT (Display Data Fetch STaRT) register, and that of the last in

DFFSTOP (Display Data Fetch STOP):

DDFSTRT $092 (write-only), DDFSTOP $094 (write-only)

Bitno.: 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: x x x x x x x H8 H7 H6 H5 H4 H3 x x

The resolution is eight bus cycles in lo-res mode (with H3 always 0) and

four in hi-res mode. H3 serves as the lowest bit. The reason for the limited

resolution lies in the division of the bit-plane DMA. In lo-res mode, each

bit-plane is read once every eight bus cycles, so the DDFSTRT value

must be an integral multiple of eight (HI to H3 = 0). The same applies to

hi-res mode, except that the bit-planes are read every four bus cycles (HI

and H2 = 0). Regardless of the resolution, the difference between

DIWSTRT and DIWSTOP must always be divisible by eight, since the

hardware always divides the lines into sections of eight bus cycles. Even

in hi-res mode the bit-plane DMA is performed for eight bus cycles

beyond DIWSTOP, so that 32 points are always read.

The correct values for DIWSTRT and DIWSTOP are calculated as

follows:

Calculation of DDFSTRT and DDFSTOP in lo-res mode:

HStart = Horizontal start of screen window

DDFSTRT = (HStart/2 - 8.5) AND $FFF8

DDFSTOP = DDFSTRT + (pixels per line/2 - 8)

For HStart = $81 and 320 pixels per line this gives:

DDFSTRT = ($81/2 - 8.5) AND $FFF8 = $38

DDFSTOP = $38 + (320/2 - 8) = $D0

Calculation of DDFSTRT and DDFSTOP in hi-res mode:

DDFSTRT = (HStart/2 - 4.5) AND $FFFC

DDFSTOP = DDFSTRT + (pixels per line/4 - 8)

816

11.7 Programming the Hardware

For HStart = $81 and 640 pixels per line this gives:

DDFSTRT = ($81/2 - 4.5) AND $FFFC = $3C

DDFSTOP = $3C + (640/4 - 8) = $D4

DDFSTRT may not be less than $18 and DDFSTOP may not be greater

than $D8. A DDFSTRT value less than $28 does not make sense, since

pixels would then have to be displayed during the horizontal blanking

gap, which is not possible (except in scrolling). Since the DMA cycles of

bit-planes and sprites overlap with DDFSTRT positions less than $34,

some sprites may not be visible, depending on the value of DDFSTRT.

Moving the screen window

If you want to move the screen window horizontally by using DIWSTRT

and STOP, it may occur that the difference between DIWSTRT and

DDFSTRT is not exactly 8.5 bus cycles (17 pixels), since DFFSTRT can

only be set in steps of eight bus cycles. In such a case, a part of the first

data word would disappear into the invisible area to the left of the screen

window. To prevent this, it is possible to shift the data to the right before

sending it to the screen, so that it matches the start of the screen window.

The section on scrolling explains how this is done.

Setting bit-map addresses

The values in DDFSTRT and DDFSTOP determine how many data words

are displayed per line. The start address must now be set for each bit-map

so that the DMA controller can find pixel data. Twelve registers contain

these addresses. A pair of registers, BPLxPTH and BPLxPTL, is used for

each bit-plane. Together they are referred to as simply BPLxPT (Bit-

plane x Pointer).

817

11. The A3000 Hardware

Addr.

$0E0

$0E2

$0E4

$0E6

$0E8

$OEA

$OEC

$OEE

$0F0

$0F2

$0F4

$0F6

Name

BPL1PTH

BPL1PTL

BPL2PTH

BPL2PTL

BPL3PTH

BPL3PTL

BPL4PTH

BPL4PTL

BPL5PTH

BPL5PTL

BPL6PTH

BPL6PTL

Function

Start address

bit-plane 1

Start address

bit-plane 2

Start address

bit-plane 3

Start address

bit-plane 4

Start address

bit-plane 5

Start address

bit-plane 6

of

of

of

of

of

of

Bits

Bits

Bits

Bits

Bits

Bits

Bits

Bits

Bits

Bits

Bits

Bits

16-20

0-15

16-20

0-15

16-20

0-15

16-20

0-15

16-20

0-15

16-20

0-15

The DMA controller does the following when displaying a bit-plane: The

bit-plane DMA remains inactive until the first line of the screen window

is reached (DIWSTRT). Now it gets the data words from the various bit-

planes at the column stored in DFFSTRT. It uses BPLxPT as a pointer to

the data in the chip RAM. After each data word is read, BPLxPT is

incremented by one word. The words read go to the BPLxDAT registers.

These registers are used only by the DMA channel. When all six

BPLxDAT registers have been provided with the corresponding data

words from the bit-planes, the data goes bit by bit to the video logic in

Denise, which selects one of the 4096 colors, depending on the color

mode chosen, and then outputs this to the screen.

When DFFSTOP is reached, the bit-plane DMA pauses until DFFSTRT

for the next line, then the process is repeated until the last line of the

screen window (DIWSTOP) is displayed.

The BPLxPT now points to the first word after the bit-plane. But since

the BPLxPT should point to the first word in the bit-plane by the next

picture, it must be set back to this value. The Copper takes care of this

quickly and easily. A simple Copper list for a playfield with four bit-

planes looks like this:

AddrPlanexH = Address of bitplane x, bits 16-20

AddrPlanexL = Address of bitplane x, bits 0-15

MOVE #AddrPlanelH,BPLlPTH

MOVE #AddrPlanelL,BPLlPTL

MOVE #AddrPlane2H,BPL2PTH

MOVE #AddrPlane2L,BPL2PTL

MOVE #AddrPlane3H,BPL3PTH

MOVE #AddrPlane3L,BPL3PTL

initialize pointer to bitplane 1

initialize pointer to bitplane 2

initialize pointer to bitplane 3

818

11.7 Programming the Hardware

MOVE #AddrPlane4H/BPL4PTH

MOVE #AddrPlane4L/BPL4PTL

WAIT ($FF,$FE)

;initialize pointer to bitplane 4

;End of Copper list (wait for

;impossible screen position)

Resetting the BPLxPT is absolutely necessary. If you don't use a Copper

list, this must be done by the processor in the vertical blanking interrupt.

Scrolling and extra-large playfields

The previous playfields were always the same size as the screen.

However, it would often be useful to have a large playfield in memory,

not all of which is visible on the screen at one time, but which can be

smoothly scrolled in all directions. This is easily done on the Amiga. The

following sections illustrate this in both the X and Y directions.

Bit-plane - Width:40 words; height: 400 lines

n+80

n+160

n+2

n+82

n+162

n+16080|n+16082

n+4

n+84

n+164 n+166

BPL*PT=n+164

Modulo=40 bytes (20 words)

Visible screen area:

Width:20 words; height: 200 lines

n+16084|

n+78

n+158

n+238

BPL*PT+80

moves the

visible screen

area 1 line

down

A scroll value from 0 to 15 moves the

visible screen area 0 to 15 pixels to the left

■ BPL*PT+2 moves the visible screen area 1 word to the right

n+31920| — ■► ln+31998

n=Starting address of the bit-plane Total size of bit-plane: 32,000 bytes

Scrolling

Extra-tall playfields and vertical scrolling

Vertical scrolling is very easy to do. The necessary bit-planes are placed

in memory as usual, but this time they contain more lines than the screen.

With a standard window height of 256 lines, for example, a double-

height playfield is simply 512 lines in memory. In order to move the

819

11. The A3000 Hardware

screen window smoothly over this extra-tall playfield, you change the

values of BPLxPT. If you want the screen window to show lines 100 to

356, the BPLxPT pointer must be set to the first word of the 100th line.

With a screen width of 320 pixels, each line occupies 20 words (40

bytes) in memory. Multiplying by 100 lines gives an address of 4000.

Add this to the starting address of the playfield, and you have the desired

value for BPLxPT. To scroll the playfield in the screen window, simply

change this value by one or more lines with each picture, depending on

the scroll speed desired. Since the BPLxPT can only be changed outside

the visible area, a Copper list is used. You can change the values in the

Copper list, and the Copper automatically writes them to the BPLxPT

registers at the right time. You just have to be careful not to change the

Copper list while the Copper is accessing its commands. Otherwise the

processor might change one word of the address while the Copper is

reading it and the Copper gets the wrong address.

Extra-wide playfields and horizontal scrolling

Special registers exist for horizontal scrolling and extra-wide playfields

(all write-only):

$108 BPL1 MOD Modulo value for the odd bit-planes

$10A BPL2MOD Modulo value for the even bit-planes

BPLCON1 $102

Bit no:

Function:

P1H0-P1H3

P2H0 - P2H3

15-8

Unused

Position

Position

7

P2H3

6 5

P2H2 P2H1

of the even planes (four bits)

of the odd planes (four bits)

4

P2H0

3

P1H3

2

P1H2

1

P1H1

0

P1H0

The modulo values from the BPLxMOD registers allow (so to speak)

rectangular memory areas. This principle is used often in the Amiga

hardware. Inside a large memory area, which is divided into rows and

columns, a smaller area of specified height and width can be defined.

Let's say that the large memory area, in this case our playfield, is 640

pixels wide and 256 high. This gives us 256 lines of 40 words (80 bytes)

each. The smaller area corresponds to the screen window and has the

normal size of 320 x 200 pixels, or only 20 words per line. The problem is

that when a line is output, BPLxPT is incremented by 20 words. But in

order to get the next line of your playfield, it must be incremented by 40

words. After each line, another 20 words must be added to BPLxPT. The

820

11.7 Programming the Hardware

Amiga can take care of this automatically. The difference between the

two different line lengths is written into the modulo-register. After a line

is output, this value is automatically added to the BPLxPT.

Width of playfield: 80 bytes (40 words).

• Width of screen window: 40 bytes (20 words).

• Modulo value needed: 40 bytes (The modulo value must always be

an even number of bytes).

• Start = start address of the first line of the playfield.

Output of the 1st line:

Word: 0 1 2 3 ... 19

BPLxPT: Start Start+2 Start+4 Start+6 ... Start+38

BPLxPT = Start+40

After the last word is output, BPLxPT is incremented by 1 word:

After the end of the line, the modulo value is added to BPLxPT:

BPLxPT = BPLxPT + modulo BPLxPT = Start+40 + 40

Output of the 2nd line:

Start+80

Word: 0 1 2 3 ~W

I BPLxPT: Start+80 Start+82 Start+84 Start+86 ... Start+118 I

This example shows the left half of the large bit-map being displayed in

the screen window. To start at a different horizontal position, simply add

the desired number of words to the start value of BPLxPT and keep the

modulo value the same.

The initial values are as previously shown. The only difference is that

BPLxPT is not at Start, but at Start+40, so the right half of the large

playfield is displayed.

821

11. The A3000 Hardware

Output of the 1st line:

Word: 0 I 2 3 ... 19

BPLxPT: Start+4O Start+42 Start+44 Start+46 ... Start+78

After the last word is output:

BPLxPT = Start+80

Now the modulo value is added to BPLxPT:

BPLxPT = BPLxPT+modulo BPLxPT = Start+80 + 40 = Start+120

Output of the 2nd line:

word: 0 1 2 3 ... 19

BPLxPT: Start+120 Start+122 Start+124 Start+126 ... Start+158

Separate modulo values can be set for the odd and even bit-planes. This

allows two different sized playfields in the dual-playfield mode.

If this mode is not being used, set both BPLxMOD registers to the same

modulo value.

The screen can be moved horizontally in steps of 16 pixels with the

BPLxPT and BPLxMOD registers. Fine scrolling in single pixel steps is

possible with the BPLCON1 register. The lower four bits contain the

scroll value for the even planes, bits 4 to 7 for the odd planes. This scroll

value delays the output of the pixel data read for the corresponding

planes. If it is zero, the data is output exactly 8.5 (in hi-res, 4.5) bus

cycles after the DDFSTRT position; otherwise it appears up to 15 pixels

later, depending on the scroll value. So, the picture is shifted to the right

within the screen window by the value in BPLCON1.

Smooth scrolling of the screen contents to the right can be accomplished

by incrementing the value of BPLCON1 from 0 to 15 and then setting it

back to 0 while decrementing the BPLxPT by one word as previously

described.

Left scrolling can be accomplished by decrementing the scroll value from

15 to 0 and then incrementing BPLxPT by one word. BPLCON1 should

be changed only outside the visible area. This can be done during the

822

11.7 Programming the Hardware

vertical blanking interrupt or the Copper can be used. The value in the

Copper list can be changed at any time and will be written to the

BPLCON1 register during the vertical blanking gap.

When the BPLCON1 value is used to shift the picture to the right, excess

pixels on the left are correctly eliminated from view, but no new ones can

appear on the right until new pixel data has been read. To do this, the

DDFSTRT value must be set ahead of its normal start by 8 bus cycles (4

cycles in hi-res). The DDFSTRT value is calculated as usual from the

desired screen window and then decremented by 8 (or 4). From the

normal DDFSTRT value of $38 we get $30 (sprite 7 is lost). The extra

word read is normally not visible. But when the scroll value is other than

zero, its pixels appear in the free positions at the left edge of the screen

window. If the window is 320 pixels wide, 21, instead of the usual 20,

data words are now read per line. This must be considered when

calculating the bit-planes and modulo values.

The screen window can also be placed at any desired horizontal position

by using the scroll value. If the difference between DIWSTRT and

DFFSTRT is more than 17 pixels, you simply shift the read data to the

right by the amount over 17.

The interlace mode

Although the interlace mode doubles the number of displayable lines, its

programming technique differs from that of the normal display mode only

by a different modulo value and a new Copper list. As explained earlier,

in interlace mode the odd and even lines are displayed in alternate

pictures. To allow an interlace playfield to be represented normally in

memory, the modulo value is set equal to the number of words per line.

After a line is output, the length of a line is added again to BPLxPT,

which amounts to skipping over the next line. In each picture only every

other line is displayed. Now the BPLxPT only needs to be set to the first

or second line of the playfield, depending on the frame type, so that only

the even or the odd lines will be shown. In a long frame BPLxPT is set to

line 1 (odd lines only); in a short frame it is set to line 2 (even lines only).

The Copper list for an interlace playfield is somewhat more complicated,

because two lists are needed. There is one for each frame type, so for

each picture, we alternate between them:

823

11. The A3000 Hardware

Copper list for an interlaced playfield:

Linel = address of first line of bitplane.

Line2 = address of second line of bitplane.

Copperl:

MOVE #LinelHi,BPLxPTH ;set pointer for BPLxPT to the

MOVE #LinelLo,BPLxPTL /address of the first line

;other Copper commands

MOVE #Copper2Hi,C0PlLCH ;set address of Copper list

MOVE #Copper2Lo/C0PlLCL ;to Copper2

WAIT ($FF/$FE) ;end of 1st Copper list

Copper2:

MOVE #Line2Hi/BPLxPTH ;set pointer for BPLxPT to the

MOVE #Line2Lo,BPLxPTL ;address of the second line

;other Copper commands

MOVE #CopperlHi,COPlLCH ;set address of Copper list

MOVE #CopperlLo,COPlLCL ;to Copperl

WAIT ($FF/$FE) ;end of 2nd Copper list

The Copper alternates its Copper list after each frame by loading the

address of the other list into COP1LC at the end of a command list. This

address is automatically loaded into the program counter of the Copper

at the start of the next frame. The interlace mode should be initialized

carefully so that the Copper list for odd lines is actually processed within

a long frame:

Set COP1LC to Copperl.

Set the LOF-bit (bit 15) in the VPOS register ($2A) to 0. This

ensures that the first frame, after interlace mode is enabled, is a long

frame and therefore suited to Copperl. The LOF bit is inverted with

each frame in interlace mode. If it is set to 0, it changes to 1 at the

start of the next frame. The first frame is sure to be a long frame.

• Interlace mode on.

• Wait for first line of next picture (line 0).

• Copper DMA on.

All other register functions remain unchanged in interlace mode. All line

specifications (such as in DIWSTRT) always refer to the line number

824

11.7 Programming the Hardware

within the current frame (0 - 311 for a short frame and 0 - 312 for a long

frame). If the interlace mode is enabled without changing other registers,

a faint flickering is noticeable because the lines of the frames are now

displaced from each other, even though both frames contain the same

graphics data. When doubly-large bit-planes and the appropriate modulo

values are set up with suitable Copper lists so that different data is

displayed in each frame, then the desired doubling in the number of lines

is noticed.

The interlace mode now results in a stronger flickering since each line is

displayed only once every two frames, thus being refreshed 25 times per

second. This flickering can be reduced to a minimum by selecting the

lowest possible contrast (intensity difference) between colors displayed.

It is more difficult for the human eye to distinguish changes at low

contrast.

The control registers

There are three control registers for activating the various modes:

BPLCON0 to BPLCON2. BPLCON1 contains the scroll value. The other

two are constructed as follows:

BPLCON0 $100

Bit no.

15

14

13

12

11

10

9

8

7

6

5-4

3

2

1

0

Name

HIRES

BPU2

BPU1

BPUO

HOMOD

DBPLF

COLOR

GAUD
—

SHRES
—

LPEN

LACE

ERSY

BPLCON3ON

Function

High-resolution mode on (HIRES = 1)

The three BPUx bits comprise a 3-bit number

which contains the number

of bit-planes used (0 to 6).

Hold-and-modify on (HOMOD = 1)

Dual playfield on (DBPLF = 1)

Video output color (COLOR = 1)

Genlock audio on (GAUD = 1)

Unused

Super hi-res on

Unused

Activate lightpen input (LPEN = 1)

Interlace mode on (LACE = 1)

External synchronization on (ERSY = 1)

Bit-plane control register 3 on

HIRES

The HIRES bit enables the high-resolution display mode (hi-res, 640

pixels/line).

825

11. The A3000 Hardware

BPL0-BPL2

These three bits form a 3-bit number which selects the number of active

bit-planes. Only values between 0 and 6 are allowed.

HOMOD andDBPLF

These two bits select the corresponding modes. They cannot both be

active at the same time. The extra-half-bright mode is automatically

activated when all six bit-planes are enabled and neither HOMOD nor

DBPLF is selected.

LACE

When the LACE bit is set, the LOF-frame bit in the VPOS register is

inverted at the start of each new frame, causing the desired alternation

between long and short frames.

SHRES

Super-hi-res mode is enabled with this bit. This mode was introduced

with the new ECS custom chips of the A3000.

COLOR

The COLOR bit turns the color burst output of Agnus on. Only when

Agnus delivers this color burst signal can the video mixer create a color

video signal. Otherwise it is black and white. The RGB output is not

affected by this.

ERSY

The ERSY bit switches the connections for the vertical and horizontal

synchronization signals from output to input. This allows the Amiga

picture to be synchronized by external signals. The genlock interface

uses this bit to be able to mix the Amiga's picture with another video

image. The GAUD bit is also provided for the genlock interface.

BPLC0N30N

This activates the new ECS chip's BPLCON3 register.

826

117 Programming the Hardware

BPLC0N2 $104

Bit no.: 15-7 6 5 4 3 2 1 0

Function: Gen. PF2PRI PF2P2 PF2P1 PF2P0 PF1P2 PF1P1 PF1P0

PF2P0-PF2P2 and PF1P0-PF1P2 determine the priority of the sprites in

relation to the playfields (see the next section).

PF2PRI: If this bit is set, the even planes have priority over (appear

before) the odd planes. It has a visible effect only in dual playfield mode.

Activating the screen display

The upper bits of the BPLCON2 register contain more control bits for

genlock use.

After alfthe registers have been loaded with the desired values, the DMA

channel for the bit-planes must be enabled and, if the Copper is used

(which is normally the case), its DMA channel must also be enabled. The

following MOVE command accomplishes this by setting the DMAEN,

BPLEN and COPEN bits in the DMA control register DMACON:

MOVE.W #$8310/$DFF096

Sample programs

Program 1: Extra-half-bright demo

This program creates a playfield with the standard dimensions 320 by

256 pixels in lo-res mode. Six bit-planes are used so the extra-half-bright

mode is activated automatically. At the beginning the program allocates

the memory needed.

Since the addresses of the individual bit-planes are not known until this

time, the Copper list is not copied from the program, but created directly

in the chip RAM. It contains only the commands for setting the BPLxPT

registers.

To show you something of the 64 possible colors, the program draws

16x16-pixel blocks in all colors at random positions. The VHPOS register

is used as a random-number generator.

827

11. The A3000 Hardware

;*** Demo for the Extra-HaIfbright-Mode ***

;CustomChip-Register

INTENA = $9A ;Interrupt-Enable-Register (write)

DMACON = $96 ;DMA-Control register (write)

COLOR00 = $180 ;Color palette register 0

VHPOSR = $6 ;Ray position (read)

/Copper Register

COP1LC = $80 ;Address of 1. Copperlist

COP2LC = $84 ;Address of 2. Copperlist

COPJMP1 = $88 ;Jump to Copperlist 1

COPJMP2 = $8a ;Jump to Copperlist 2

;Bitplane Register

BPLCON0 = $100 ;Bitplane Control register 0

BPLCON1 = $102 ;1 (Scrollw value)

BPLCON2 = $104 ;2 (SpriteoPlayfield Priority)

BPL1PTH = $0E0 ;Number of 1. Bitplane

BPL1PTL = $0E2 ;

BPL1MOD = $108 ;Modulo-Value for odd Bit-Planes

BPL2MOD = $10A ;Modul0-Value for even Bit-Planes

DIWSTRT = $08E /Start of the screen windows

DIWSTOP = $090 ;End of the screen windows

DDFSTRT = $092 ;Bit-Plane DMA Start

DDFSTOP = $094 ;Bit-Plane DMA Stop

;CIA-A Port register A (Mouse key)

CIAAPRA = $bfe001

;Exec Library Base Offsets

OpenLibrary = -30-522 ;LibName,Version/al,d0

Forbid = -30-102

Permit = -30-108

AllocMem = -30-168 ;ByteSize,Requirements/d0,dl

FreeMem = -30-180 ;MemoryBlock,ByteSize/al,d0

/graphics base

StartList = 38

;other Labels

828

77.7 Programming the Hardware

Execbase

Planesize

CLsize

Chip

Clear

= 4

= 40*200

= 13*4

= 2

= Chip+$10000

;Size of Bitplane: 40 Bytes by 200 lines

;The Copperlist with 13 commands

;Chip-RAM request

;clear previous Chip-RAM

;*** Initialize programm ***

Start:

/Request memory for the Bitplanes

move.l Execbase,a6

move.l #Planesize*6,dO

move.l #clear,dl

jsr AllocMem(a6)

move.1 dO,Planeadr

beq Ende

/Memory size of all Planes

/Memory to be with filled with nulls

/Request memory

/Address of the first memory Plane

/Error! -> Ende

/Request memory for Copperlist

moveq #Clsize,d0

moveq #chip,dl

jsr AllocMem(a6)

move.1 dO,CLadr

beq FreePlane

/Build Copperlist

moveq #5,d4

move.1 dO,aO

move.l Planeadr,dl

move.w #bpllpth,d3

MakeCL: move.w d3,(a0)+

addq.w #2,d3

swap dl

move.w dl, (a0) +

move.w d3, (a0) +

addq.w #2,d3

swap dl

move.w dl,(a0)+

add.l #planesize,dl

dbf d4,MakeCL

move.l #$fffffffe,(aO)

/Size of the Copperlist

/Error! -> Free RAM for Bitplanes

;6 Planes = 6 loops to run through

/Address of the Copperlist to aO

/first Register to d3

/BPLxPTH ins RAM

/next Register

/Hi-word of the Plane address in RAM

/BPLxPTL ins RAM

/next Register

/Lo-word of the Plane address in RAM

/Address of the next Plane calculated

/End of Copperlist

829

11. The A3000 Hardware

.*** Main programm ***

;DMA and Task switching off

jsr forbid(a6)

lea $dff000/a5

move.w #$03eO,dmacon(a5)

/Copper initialization

move.l CLadr,copllc(a5)

clr.w copjmpl(a5)

;Color table with different color fills

moveq #31,dO ;Value for color register

lea colorOO(a5),al

moveq #l,dl ;first color

SetTab:

move.w dl, (al)+ ;Color in color register

mulu #3,dl /calculate next color

dbf dO,SetTab

;Playfield initialization

move.w #$3081,diwstrt(a5) /Standard value for

move.w #$3 0cl,diwstop(a5) /screen window

move.w #$0038,ddfstrt(a5) /and BitplaneDMA

move.w #$00d0,ddfstop(a5)

move.w #%0110001000000000,bplconO(a5) ;6 Bitplanes

clr.w bplconl(a5) /no Scrolling

clr.w bplcon2(a5) /Priority makes no difference

clr.w bpllmod(a5) /Modulo for all Planes equals Null

clr.w bpl2mod(a5)

/DMA on

move.w #$8380/dmacon(a5)

/Bitplane modification

moveq #40,d5 /Bytes per line

clr.l d2 /Begin with color 0

Loop: clr.l dO

move.w vhposr(a5),dO /Random value to dO

and.w #$3ffe/d0 /Unnecessary Bits masked out

cmp.w #$2580,d0 /Large as Plane?

bcs Continue /When not , then continue

830

11.7 Programming the Hardware

and.w #$lffe,dO ;else erase upper bit

Continue: move.1 Planeadr,a4 ;Address of the l.Bitplane to a4

add.l dO,a4

moveq #5,d4

move.1 62,62

Block:

clr.l dl

lsr #l,d3

negx.w dl

moveq #15,dO

move.1 a4,a3

Fill:

move.w dl,(a3)

add.l d5#a3

dbf dO,Fill

add.l #Planesize,a4

dbf d4,Block

addq.b #l,d2

btst #6,ciaapra

bne Loop

;*** End programm ***

/Activate old Copperlist

move.1 #GRname,a1

clr.l dO

jsr OpenLibrary(a6)

move.l dO,a4

move.l StartList(a4),copllc(a5) /Address of Startlist

clr.w copjmpl(a5)

;reenable DMA

;Task-Switching on

/Calculate address of the Blocks

/Number for Bitplanes

/Color in work register

/one Bit of color number in X-Flag

/use dl to adjust X-Flag

;16 lines per Block

/Block address in working register

/Word in Bitplane

/compute next line

/next Bitplane

/next color

/mouse key pressed?

/no -> then continue

/Set parameter for OpenLibrary

/Graphics Library open

move.w #$8060,dmacon(a5)

jsr permit(a6)

/Free memory for Copperlist

move.1 CLadr,a1

moveq #CLsize,dO

jsr FreeMem(a6)

/Free memory for Bitplanes

FreePlane:

move.1 Planeadr,al

move.l #Planesize*6,dO

/Set parameter for FreeMem

/Free memory

831

11. The A3000 Hardware

3sr FreeMem(a6)

Ende:

clr.l dO

rts

;Variables

CLadr: dc.

Planeadr: dc.

/Constants

GRname: dc.b

;Program end

end

/Program end

.1 0

.1 0

"graphics.library",0

Program 2: Dual playfield & smooth scrolling

This program uses several effects at once. First it creates a dual-playfield

screen with one low-resolution bit-plane per playfield. Then it enlarges

the screen window so that no borders can be seen. Finally, it scrolls

playfield 1 horizontally and playfield 2 vertically.

The usual routines for memory allocation and release, etc. are used at the

start and end, as in the previous example.

Both playfields are filled with a checkerboard pattern of 16x16 pixel

blocks.

The main loop of the program, which performs the scrolling, first waits for

a line within the vertical blanking gap, in which the operating system has

already processed any interrupt routines and the Copper has set the

BPLxPT's. Then it increments the vertical scroll counter, calculates the

new BPLxPT for playfield 2, and writes it to the Copper list.

The horizontal scroll position results from separating the lower four bits

of the scroll counter from the rest. The lower four bits are written into the

BPLCON1 register as the scroll value for playfield 1, and the 5th bit is

used to calculate the new BPLxPT, which is copied to the Copper list.

832

117 Programming the Hardware

Both the horizontal and vertical scroll counters are incremented from 0 to

31 and then reset to 0. This is sufficient for a smooth scrolling effect,

since the pattern used for the playfields repeats every 32 pixels.

*** Dual-Playfield & Scroll Demo ***

;CustomChip-Register

INTENA = $9A

INTREQR = $le

DMACON = $96

COLOR00 = $180

VPOSR = $4

;Interrupt-Enable-Register (write)

;Interrupt-Request-Register (read)

;DMA-Control register (write)

;Color palette register 0

;half line position (read)

;Copper Register

COP1LC = $80 ;Address of 1. Copperlist

COP2LC = $84 ;Address of 2. Copperlist

COPJMP1 = $88 ;Jump to Copperlist 1

COPJMP2 = $8a ;Jump to Copperlist 2

;Bitplane Register

BPLCON0 = $100 ;Bitplane control register 0

BPLCON1 = $102 ;1 (Scroll value)

BPLCON2 = $104 ;2 (SpriteoPlayfield Priority)

BPL1PTH = $0E0 /Pointer to 1. Bitplane

BPL1PTL = $0E2 ;

BPL1MOD = $108 ;Modulo-Value for odd Bit-Planes

BPL2MOD = $10A /Module-value for even Bit-Planes

DIWSTRT = $08E ;Start of screen windows

DIWSTOP = $090 ;End of screen windows

DDFSTRT = $092 ;Bit-Plane DMA Start

DDFSTOP = $094 ;Bit-Plane DMA Stop

;CIA-A Port register A (Mouse key)

CIAAPRA = $bfe001

;Exec Library Base Offsets

OpenLibrary = -30-522 ;LibName,Version/al,dO

Forbid = -30-102

Permit = -30-108

AllocMem = -30-168 ;ByteSize,Requirements/d0,dl

FreeMem = -30-180 ;MemoryBlock,ByteSize/al,d0

833

11. The A3000 Hardware

;graphics base

StartList = 38

;Misc Labels

Execbase = 4

Planesize = 52*345

Planewidth = 52

CLsize = 5*4

Chip = 2

Clear = Chip+$10000

;*** Pre-programm ***

Start:

/Request memory for Bitplanes

;Size of the Bitplane

;The Copperlist contains 5 commands

;request Chip-RAM

;clear previous Chip-RAM

move.1 Execbase,a6

move.l #Planesize*2,dO

move.l #clear,dl

jsr AllocMem(a6)

move.1 dO,Planeadr

beq Ende

;memory size of the Planes

/Request memory

/Error! -> End

/Request memory for the Copperlist

moveq #Clsize,dO

moveq #chip,dl

jsr AllocMem(a6)

move.1 dO,CLadr

beq FreePlane

/Build Copperlist

moveq #1,d4

move.1 dO,aO

move.1 Planeadr,dl

move.w #bpllpth,d3

MakeCL: move.w d3,(aO)+

addq.w #2,d3

swap dl

move.w dl,(aO) +

move.w d3,(aO)+

addq.w #2,d3

swap dl

834

/Error! -> Free memory for the Planes

/two Bitplanes

11.7 Programming the Hardware

move.w dl,(aO)+

add.l #planesize,dl ;Address of the next Plane

dbf d4,MakeCL

move.l #$fffffffe,(aO) ;End of the Copperlist

;*** Main prograiran ***

;DMA and Task switching off

jsr forbid(a6)

lea $dff000,a5

move.w #$01e0,dmacon(a5)

;Copper initialization

move.l CLadr,copllc(a5)

clr.w copjmpl(a5)

;Playfield initialization

move.w #0,colorOO (a5)

move.w #$0f00,color00+2(a5)

move.w #$000f,colorOO+18(a5)

move.w #$la64/diwstrt(a5) ;26,100

move.w #$39dl/diwstop(a5) ;313,465

move.w #$0020,ddfstrt(a5) ;read one extra word

move.w #$00d8/ddfstop(a5)

move.w #%0010011000000000,bplconO(a5) ;Dual-Playfield and

clr.w bplconl(a5) ;Scroll to start on 0

clr.w bplcon2(a5) ;Playfield 1 or Playfield 2

move.w #4,bpllmod(a5) ;Modulo on 2 Words

move.w #4/bpl2mod(a5)

;DMA on

move.w #$8180,dmacon(a5)

;Bitplanes filled with checker pattern

move.1 planeadr,aO

move.w #planesize/2-l,dO ;loop value

move.w #13*16,dl ;Height = 16 Lines

move.l #$ffff0000,d2 /checker pattern

move.w dl,d3

fill: move.l 62, (a0)+

subq.w #l,d3

835

11. The A3000 Hardware

bne.s continue

swap d2 ;pattern change

move.w dl,d3

continue: dbf dO,fill

;Playfields scroll

clr.l dO ;vertical Scroll position

clr.l dl /horizontal Scroll position

move.l CLadr,al ;Address of the Copperlist

move.l Planeadr,aO /Address of the first Bitplane

/Wait on Raster line 16 (for the Exec-Interrupts)

wait: move.l vposr(a5),d2 ;read Position

and.l #$0001FF00/d2 /horizontal Bits masked

cmp.l #$00001000,d2 ;wait on line 16

bne.s wait

;Playfield 1 vertical scroll

addq.b

cmp.w

bne.S

clr.l

novover

move.1

lsr .w

mulu

add.l

add.l

move.w

swap

move.w

#2,dO

#$80,dO

novover

dO

:

d0,d2

#2,d2

#52,d2

a0,d2

#Planesize/d2

d2,14(al)

d2

d2/10(al)

/raise vertical Scroll value

/already 128 (4*32)?

/Then back to 0

/copy scroll value

/copy divided by 4 s

/Number Bytes per line * Scroll position

/plus Address of first Plane

/plus Plane size

/give End address for Copperlist

/Playfield 2 horizontal scroll

addq.b #l,dl /raise horizontal Scroll value

cmp.w #$80,dl /already 128 (4*32)

bne.S nohover

clr.l dl /then back to 0

nohover:

move.l dl,d2 /copy scroll value

lsr.w #2,d2 /copy divided by 4

move.l d2,d3 /copy Scroll position

and.w #$FFF0,d2 /lower 4 Bit masked

sub.w d2,d3 /lower 4 Bit in d3 isolated

836

11.7 Programming the Hardware

move.w d4,bplconl(a5) ;last Value in BPLCON1

move.w d3,d4 ;new scroll value to d4

lsr.w #3,d2 ;new Address for Copperlist

add.l a0/d2 /calculate

move.w d2,6(al) ;and write in Copperlist

swap d2

move.w d2,2(al)

btst #6#ciaapra ;Mouse key pressed?

bne.s wait ;N0 -> continue

;*** Check programm ***

;Activate old Copperlist

move.l #GRname,al ;Set parameter for OpenLibrary

clr.l dO

jsr OpenLibrary(a6) /Graphics Library open

move.1 dO,a4

move.l StartList(a4),copllc(a5)

clr.w copjmpl(a5)

move.w #$83eO,dmacon(a5)

jsr permit(a6) ;Task-Switching permitted

;Free memory used by Copperlist

move.l CLadr,al ;Set parameter for FreeMem

moveq #CLsize,dO

jsr FreeMem(a6) ;Free memory

;Free memory used by Bitplanes

FreePlane:

move.1 Planeadr,al

move.l #Planesize*2,dO

jsr FreeMem (a6)

/Program ends

Ende:

clr.l dO

rts

/Variables

CLadr:

Planeadr:

test:

dc

dc

dc

.1

.1

.1

0

0

0

,-Constants

837

11. The A3000 Hardware

GRname: dc.b "graphics.library",0

end

/Program end

11.7.6 Sprites

Sprites are small graphic elements that can be used completely

independently of the playfields. Each sprite is 16 pixels wide and can

have a maximum height of the entire screen window. It can be displayed

anywhere on the screen.

Normally a sprite is in front of the playfield(s) and its pixels hide the

graphic behind it. The mouse pointer, for example, is implemented as a

sprite. Up to eight sprites are possible on the Amiga. A sprite normally

has three colors, but two sprites can be combined into one to give a

fifteen-color sprite.

Construction of the sprites

Color selection

The color selection for sprites is very similar to that of a dual-playfield

screen. A sprite has a width of 16 pixels, which are represented by two

data words. The words act like "mini bit-planes," since the color of a pixel

is formed by combining corresponding bits of both the words.

The color of the first (leftmost) pixel of the sprite is selected by the high-

value bits (bit 15) of the two words. The two low-value bits (bit 0)

determine the color of the last pixel. Each pixel is represented by two

bits, which means it can have one of four different colors. The color table

is used to determine the actual color from this value.

There are no special color registers for the sprites. The sprite colors are

obtained from the latter half of the table, color registers 16-31. This means

that sprite and playfield colors do not come into conflict unless playfields
with more than 16 colors are created.

The following table shows the assignment of color registers and sprites:

838

11.7 Programming the Hardware

Sprite no.

0&1

2&3

4&5

6&7

Sprite data

00

01

10

1 1

00

01

10

1 1

00

01

10

1 1

00

01

1 0

1 0

Color register

transparent

COLOR17

COLOR18

COLOR19

transparent

COLOR21

COLOR22

COLOR23

transparent

COLOR25

COLOR26

COLOR27

transparent

COLOR29

COLOR30

COLOR31

Each two successive sprites have the same color registers.

As in dual-playfield mode, the bit combination of two zeros does not

represent a color, but causes the pixel to be transparent. The color of

anything behind this pixel is visible in its place, whether this is another

sprite, a playfield, or just the background.

If three colors are not enough, two sprites can be combined with each

other. The two-bit combinations of the sprites then make up a four-bit

number. Sprites can only be combined in successive even-odd pairs (i.e.,

no. 0 with no. 1, no. 2 with no. 3, etc.). The two data words of the higher-

numbered sprite contribute the two high-order bits of the total 4-bit

value. This value then serves as a pointer to one of fifteen color registers,

with the value zero meaning transparent. The color registers are the same

for all four sprite pairs: COLOR16 to COLOR31.

Sprite data

0000

0001

0010

001 1

01 00

0101

01 10

01 1 1

Color register

transparent

COLOR17

COLOR18

COLOR19

COLOR20

COLOR21

COLOR22

COLOR23

Sprite data

1 000

1001

1010

101 1

1 1 00

1 101

1110

1111

Color register

COLOR24

COLOR25

COLOR26

COLOR27

COLOR28

COLOR29

COLOR30

COLOR31

839

11. The A3000 Hardware

The sprite DMA

The Amiga sprites can be programmed very easily. Almost all the work is

handled by the sprite DMA channels. The only thing needed to display a

sprite on the screen is a special sprite data list in memory. It contains

almost all the data needed for the sprite. The DMA controller only needs

to be told the address of this list in order for the sprite to appear.

The DMA controller has a DMA channel for each sprite. This can read

only two data words in each raster line. This is why a normal sprite is

limited to a 16-pixel width and four colors. Since these two data words

can be read in every line, the height of a sprite is limited only by that of

the screen window.

Construction of a sprite data list

A sprite data list consists of individual lines, each containing two data

words. For each raster line, one of these list lines is read via DMA. It can

contain either two control words to initialize the sprite, or two data

words with the pixel data.

The control words determine the horizontal column and the first and last

line of the sprite.

After the DMA controller has read these words and placed them in the

appropriate registers, it waits until the electron beam reaches the starting

line of the sprite. Then two words are read for each raster line and are

output by Denise at the appropriate horizontal position on the screen

until the last line of the sprite has been processed. The next two words in

the sprite data list are again treated as control words.

If both words are zero, the DMA channel ends its activity. However, it's

also possible to specify a new sprite position. The DMA controller then

waits for the start line, and the process is repeated until two control

words with the value zero are found as the end marker of the list.

840

11.7 Programming the Hardware

Construction of a sprite data list (Start = starting address of the list in

chip RAM):

Address

Start+4

Start+8

Start+12

Start+4*n

Start+4*(n+1)

Contents

1st and 2nd data words of the 1st line of the sprite

1st and 2nd data words of the 2nd line of the sprite

1 st and 2nd data words of the 3rd line of the sprite

1st and 2nd data words of the nth line of the sprite

0,0 End of the sprite data list

Construction of the first control word:

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: E7 E6 E5 E4 E3 E2 E1 E0 H8 H7 H6 H5 H4 H3 H2 H1

Construction of the second control word:

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: L7 L6 L5 L4 L3 L2 LI LO AT 0 0 SHSH1 0 E8 L8 HO

HO to H8 Horizontal position of the sprite (HSTART)

EO to E8 First line of the sprite (VSTART)

LO to L8 Last line of the sprite+1 (VSTOP)

SHSH1 Extra bit for the horizontal position

AT Attach control bit

The (starting) horizontal position and the starting and ending vertical

positions of the sprite are expressed with nine bits each. These bits are

divided somewhat impractically between the two control registers.

The resolution in the horizontal direction is one low-resolution pixel,

while in the vertical direction it is one raster line. These values are

independent of the mode of the playfield(s) and cannot be changed.

The sprites are limited to the screen window (set by DIWSTRT and

DIWSTOP). If the coordinates set by the control words are outside this

area, the sprites are only partially visible, if at all, since all points that are

not within the screen window are cut off.

The horizontal and vertical start positions refer to the upper left corner of

the sprite. The vertical stop position defines the first line after the sprite

(i.e., the last line of the sprite + 1). The number of lines in the sprite is

VSTOP-VSTART.

841

11. The A3000 Hardware

The following example list displays a sprite at the coordinates 180,160,

approximately in the center of the screen. It has a height of eight lines.

The last line (VSTOP) is 168. If you combine both data words within a

line, you get numbers between 0 and 3, which represent one of the three

sprite colors or the transparent pixels. This makes the sprite easier to

visualize:

0000002222000000

0000220000220000

0002200330022000

0022003113002200

0022003113002200

0002200330022000

0000220000220000

0000002222000000

In the data list the two words must be given separately:

Start:

dew $A05A,$A800 ;HSTART = $B4, VSTART = $A0, VSTOP = $A8

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew 0,0 ;End of the sprite data list

The AT bit in the 2nd control word determines whether two sprites are

combined. It effects only those sprites with odd numbers (sprites 1, 3, 5,

7). For example, if it is set in sprite 1, its data bits are combined with those

of sprite 0 to make four-bit pointers to the color table. The order of the

bits is then as follows:

Sprite

Sprite

Sprite

Sprite

1

1,
0

0,

(odd number), second data word:

first data word:

(even number), second data word:

first data word:

Bit 3

Bit 2

Bit 1

BitO

(MSB)

(LSB)

If two sprites are to be combined in this manner, their positions must also

match. If this is not the case, the old three-color representation is

automatically re-enabled. The simplest thing to do is to write the same

control words in the two sprite data lists. We'll now give an example of a

842

11.7 Programming the Hardware

sprite data list for a fifteen-color sprite. For the sake of simplicity our

sprite consists of only four lines. Again, we first visualize the sprite by

superimposing the data words. The digits represent the colors of the

corresponding pixels. In order to display all fifteen colors and

transparent, the hexadecimal digits "A" to "F" are used.

0011111111111100

1123456789ABCD11

11EFEFEFEFEFEF11

0011111111111100

The structure of the data words can be seen from line 2:

Colors of the sprite:

Sprite 1, data word 2:

Sprite 1, data word 1:

Sprite 0, data word 2:

Sprite 0, data word 1:

1123456789ABCD11

0000000011111100

0000111100001100

0011001100110000

1101010101010111

Horizontal position (HSTART) is 180. The first line of the sprite

(VSTART) is 160, and the last line (VSTOP) is 164.

The data list for the entire sprite looks as follows:

VSTOP=$A4, AT=0

StartSpriteO:

dew $A05A/$A400 ;HSTART=$B4, VSTART=$A0,

dew %0011 1111 1111 1100,%0000 0000 0000 0000

dew %1101 0101 0101 0111,%0011 0011 0011 0000

dew %1101 0101 0101 0111,%0011 1111 1111 1100

dew %0011 1111 1111 1100,%0000 0000 0000 0000

dew 0,0

StartSpritel:

dew $A05A,$A480 ;HSTART=$B4f VSTART=$A0, VSTOP=$A4, AT=l

dew %0000 0000 0000 0000,%0000 0000 0000 0000

dew %0000 1111 0000 1100,%0000 0000 1111 1100

dew %0011 1111 1111 1100,%0011 1111 1111 1100

dew %0000 0000 0000 0000,%0000 0000 0000 0000

dew 0,0

Multiple sprites through one DMA channel

After a sprite has been displayed, the DMA channel is free. In the

previous example, the last sprite data was read in line 163. After that the

sprite DMA channel is turned off with the two zeros at the end of the

843

11. The A3000 Hardware

data list. But as we mentioned before, it is also possible to continue using

the DMA channel. To do this, simply put two new control words in place

of the two zeros in the data list. The only condition is that there must be

at least one line free between the first line of the new sprite and the last

line of the previous one. For example, if the previous sprite extends

through line 163, then the next cannot start before line 165. The reason

for this is that the two control words must be read in the line in between

(164). The sprite DMA then proceeds as follows:

une Data through the DMA channel

"162 I Second-last line of the 1st sprite through this channel

164

165

166

Last line of the 1st sprite

Control words of the 2nd sprite
First line of the 2nd sprite

Second line of the 2nd sprite

The following example displays the three-color sprite from our first

example in two different positions on the screen:

Start:

;First sprite through this DMA channel at line 160 ($A0)

;Horizontal position: 180 ($B4)

dew $A05A,$A800 ;HSTART = $B4, VSTART = $A0, VSTOP = $A8

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0000 0000 0000,%0000 0011 1100 0000

;Now comes the second sprite over this DMA channel

;at line 176 ($B0), horizontal position 300 ($12C)

dew $B096/$B800 ;HSTART = $12C, VSTART = $B0, VSTOP = $B8

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew 0,0 ;End of the sprite data list

844

11.7 Programming the Hardware

Activating the sprites

After a correct data list has been constructed in the chip RAM and the

desired colors have been written into the color table, the DMA controller

must be told at what address the list is stored before the sprite DMA can

be enabled. Each DMA channel has a register pair in which the starting

address of the data list must be written:

SPRxPT register (SPRite x PoinTer, points to data list for sprite DMA

channel x):

Reg. Name Function

$120

$122

$124

$126

$128

$12A

$12C
$12E

$130

$132

$134

$136

$138

$13A

$13C

$13E

SPROPTH

SPROPTL

SPR1PTH

SPR1PTL

SPR2PTH

SPR2PTL

SPR3PTH

SPR3PTL

SPR4PTH

SPR4PTL

SPR5PTH

SPR5PTL

SPR6PTH

SPR6PTL

SPR7PTH

SPR7PTL

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 0 Bits 0-15

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 1 Bits 0-15

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 2 Bits 0-15

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 3 Bits 0-15

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 4 Bits 0-15

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 5 Bits 0-15

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 6 Bits 0-15

Pointer to the sprite data list Bits 16-20

for sprite DMA channel 7 Bits 0-15

All SPRxPT registers are write-only

The DMA controller uses these registers as pointers to the current

address in the sprite data lists. At the start of each picture they contain

the address of the first control word. With each data word read they are

incremented by one word so that at the end of the picture they point to

the first word after the data list. For the same sprites to be displayed in

each frame, these pointers must be set back to the start of the sprite data

list before each frame. As with the bit-plane pointers BPLxPT, this is most

easily done by the Copper in the vertical blanking gap. The pertinent

section of the Copper list might look like this:

StartSpritexH = starting address of sprite data list for sprite x, bits 16-19

StartSpritexL = bits 0-15

CopperlistStart

MOVE #StartSpriteOH,SPROPTH initialize sprite DMA

MOVE #StartSpriteOL,SPROPTL /channel 0

845

11. The A3000 Hardware

MOVE #StartSpritelHfSPRlPTH /Initialize sprite DMA

MOVE #StartSpritelL,SPRlPTL /channel 1

MOVE #StartSprite2H/SPR2PTH ;Initialize sprite DMA

MOVE #StartSprite2L,SPR2PTL /channel 2

;Same for channels 3 to 6

MOVE #StartSprite7H,SPR4PTH /Initialize sprite DMA

MOVE #StartSprite7L,SPR4PTL /channel 7

/Other Copper tasks

WAIT $FFFE /End of Copper list

There is no way to turn the sprite DMA channels on and off individually.

The SPREN bit (bit 5) in the DMACON register turns the sprite DMA on

for all eight sprite channels. If you don't want to use all of them, the

unused channels must process empty data lists. To do this, their SPRxPTs

are set to two memory words with contents of zeros. The two zeros at

the end of an existing data list can be used for this.

All eight SPRxPT's must always be initialized within the vertical blanking

gap. Even if the data list is nothing but the two zeros, the DMA channel's

SPRxPT points to the first word after them at the end of a frame.

Naturally, the SPRxPT can also be initialized by the processor in the

vertical blanking interrupt.

As the last step, the sprite DMA must be enabled. As previously

mentioned, this is done for all eight sprite DMA channels by using the

SPREN bit in the DMACON register. The following MOVE command

accomplishes this:

MOVE.W #$8220/$DFF096 /Set SPREN and DMAEN in DMACON register

Moving sprites

The values of the two control words in the sprite data list determine the

position of a sprite. To move a sprite, these values must be changed step

by step.

This can be done directly by the processor when using the appropriate

MOVE commands. The control words must be modified at the right time.

Otherwise, the following problem can occur:

The processor modifies the first control word. Before it can change the

second control word, the DMA controller reads both words. Since they

846

117 Programming the Hardware

no longer belong together, what appears on the screen may not make

any sense.

The easiest way to avoid this is to change the control words only during

the vertical blanking interrupt, after the Copper has initialized the

SPRxPT).

The sprite/playfield priority

The priority of a playfield or sprite determines whether it appears in front

of, behind, or between the other screen elements. The sprite with the

highest priority appears in front of all other elements. Nothing can cover

it. The priority of a sprite is determined by its number. The lower the

number, the higher the priority. Also, sprite 0 has priority over all other

sprites.

For the playfields, a control bit determines whether number 1 or 2

appears in front. But what is the priority of the sprites in reference to the

playfields?

On the Amiga it is possible to position the playfields almost anywhere

between the sprites. The sprites are always handled in pairs when it

comes to setting the priority of playfield vs. sprites. The pair

combinations are the same as those used for fifteen-color sprites, always

an even-numbered sprite with its odd successor:

sprites 0 & 1, sprites 2 & 3, sprites 4 & 5, sprites 6 & 7

The four sprite pairs can be viewed as a stack of four elements. If you

look at the stack from above, the underlying elements can only be seen

through holes in the overlying ones. The holes correspond to the

transparent points in the bit-planes or sprites and the parts of the screen

that a sprite cannot cover because of its size. The order of elements in the

stack cannot be changed.

But two of the elements, namely the playfields, can be placed anywhere

between the four sprite pairs. Five positions are possible for each

playfield:

847

11. The A3000 Hardware

Position

0

1

2

3

4

Order from front to back

PLF

SPR0&1

SPR0&1

SPR0&1

SPR0&1

SPR0&1

PLF

SPR2&3

SPR2&3

SPR2&3

SPR2&3

SPR2&3

PLF

SPR4&5

SPR4&5

SPR4&5

SPR4&5

SPR4&5
PLF

SPR6&7

SPR6&7

SPR6&7

SPR6&7

SPR6&7

PLF

The BPLC0N2 register contains the priority of the playfields with

respect to the sprites:

BLPC0N2 $104 (write-only)

bit no.: 10-7

Function: Gen.

6 5 4 3 2 1

PF2PRI PF2P2 PF2P1 PF2P0 PF1P2 PF1P1
0

PF1P0

BPLC0N2 = $0003

PF2PRI

If this bit is set, playfield 2 appears in front of playfield 1.

PF1P0 toPFlP2

These three bits form a 3-bit number that determines the position of

playfield 1 (all odd bit-planes) between the four sprite pairs. Values from

0 to 4 are allowed (see previous table).

PF2P0 to PF2P2

These three bits have the same function as bits PF1P0 to PF1P2, but for

playfield 2 (all even bit-planes).

Example:

This means that playfield 1 appears before playfield 2, PF2P0-2 = 0,

PF1P0-2 = 3. This yields the following order, from front to back:

PLF2 SPR0&1 SPR2&3 SPR4&5 PLF1 SPR6&7

If we look closely, we see a paradox. The PF2PRI bit is 0, so playfield 1

should appear in front of playfield 2. The order previously shown

contradicts this. The possible consequences of such a situation depend

on which of the various elements are present at a given pixel location.

848

11,7 Programming the Hardware

When one of the sprites 0 to 5 is present between playfields 1 and 2, its

priority causes it to appear in front of playfield 1.

Since playfield 1 is in front of playfield 2, the sprite is visible at this point,

even though it is actually behind playfield 2. In contrast, if only playfield

2 and the sprite are at a given position, playfield 2 covers the sprite.

This is because the playfield/playfield priority has precedence over the

sprite/playfield priority.

If the dual-playfield mode is not used, there is only one playfield, which is

formed from both the even and odd bit-planes. The PF2PRI and PL2P0-

PL2P2 bits then have no function.

Collisions between graphic elements

It is often very useful to know whether two sprites have collided with

each other or with the background. For example, in a game program this

might indicate that a player had scored a hit.

When the pixels of two sprites overlap at a certain screen position (i.e.,

both have a non-transparent pixel at the same coordinates), this is treated

as a collision between the two sprites. A collision of the playfields with

each other or with a sprite is also possible.

Each recognized collision is noted in the collision data register,

CLXDAT:

849

11. The A3000 Hardware

CLXDAT $00E (read-only)

Bit no. Collision between

Unused

Sprite 4 (or 5) and sprite 6 (or 7)

Sprite 2 (or 3) and sprite 6 (or 7)

Sprite 2 (or 3) and sprite 4 (or 5)

Sprite 0 (or 1) and sprite 6 (or 7)

Sprite 0 (or 1) and sprite 4 (or 5)

Sprite 0 (or 1) and sprite 2 (or 3)

Playfield 2 (even bit-planes) and sprite 6 (or 7)

Playfield 2 (even bit-planes) and sprite 4 (or 5)

Playfield 2 (even bit-planes) and sprite 2 (or 3)

Playfield 2 (even bit-planes) and sprite 0 (or 1)

Playfield 1 (odd bit-planes) and sprite 6 (or 7)

Playfield 1 (odd bit-planes) and sprite 4 (or 5)

Playfield 1 (odd bit-planes) and sprite 2 (or 3)

Playfield 1 (odd bit-planes) and sprite 0 (or 1)

Playfield 1 and playfield 2

While on a sprite, any non-transparent pixel can cause a collision; we can

specify which colors of the playfields are to be considered in collision

detection. Moreover, it is possible to include or exclude any odd-

numbered sprite from collision detection. All this can be set with the bits

in the collision control register, CLXCON.

CLXCON $098 (write-only)

Bit no.

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Name

ENSP7

ENSP5

ENSP3

ENSP1

ENBP6

ENBP5

ENBP4

ENBP3

ENBP2

ENBP1

MVBP6

MVBP5

MVBP4

MVBP3

MVBP2

MVBP1

Function

Enable collision detection for sprite 7

Enable collision detection for sprite 5

Enable collision detection for sprite 3

Enable collision detection for sprite 1

Compare bit-plane 6 with MVBP6

Compare bit-plane 5 with MVBP5

Compare bit-plane 4 with MVBP4

Compare bit-plane 3 with MVBP3

Compare bit-plane 2 with MVBP2

Compare bit-plane 1 with MVBP1

Value for collision with bit-plane 6

Value for collision with bit-plane 5

Value for collision with bit-plane 4

Value for collision with bit-plane 3

Value for collision with bit-plane 2

Value for collision with bit-plane 1

The ENSPx bits (ENable SPrite x) determine whether the corresponding

odd-numbered sprite is regarded in collision detection. For example, if the

ENSP1 bit is set, a collision between sprite 1 and another sprite or a

850

11.7 Programming the Hardware

playfield is registered. Such a collision sets the same bit in the collision

data register as for sprite 0. Therefore, it is not possible to tell by looking

at the register contents whether sprite 0 or sprite 1 caused the collision.

Furthermore, collisions between sprites 0 and 1 are not detected. These

facts should be kept in mind when selecting and using sprites.

If two sprites have been combined into one fifteen-color sprite, the

appropriate ENSPx bit must be set in order to have correct collision

detection.

For the playfields, the programmer can set which combinations of the bit-

planes generate a collision and which do not. The ENBPx bits (ENable

Bitplane x) determine which bit-planes are considered in collision

detection. If all ENBPx bits of a playfield are set, a collision is possible at

every pixel whose bit combination matches that of the MVBPx bits

(Match Value Bitplane x).

The ENBPx bits determine whether the bits from plane x are compared

with the value of MVBPx. If the bits of all planes for which ENBPx is set

match the corresponding MVBPx bits for a given pixel, then this pixel

can generate a collision.

Complicated? An example makes it clearer:

The ENBPx bits are set, as are all of the MVBPx bits. Now only those

playfield pixels whose bit combinations are binary 111111 can generate a

collision. If only the lower three MVBPx bits are set, then a collision is

possible only if the pixel in the playfield has the combination 000111.

If a collision is to be allowed for all pixels with the bit combinations

000111,000110,000100 or 000101, the MVBP bits must be 000100. The

lower two bits should always satisfy the collision condition, so the

corresponding ENBPx bits are cleared. The ENBP value is 111100.

Examples for possible bit combinations:

851

11. The A3000 Hardware

ENBPx

111111

111111

111100

011111

000000

MVBPx

111111

111000

1111XX

xOOOOO

xxxxxx

Collision possible with bit pattern

111111

111000

111100,111101,111110,111111

000000,100000

Collision possible with any bit pattern

The values of bits marked with an x are irrelevant. If not all six bit-planes

are active, the ENBPx bits of the unused planes must be set to 0.

The various combinations of the ENBPx and MVBPx bits allow a variety

of different collision detection strategies. For example, the CLXCON

register can be set so that sprites can collide only with the red and green

pixels of the playfield, but not with other colors. Or a collision may be

possible only at the transparent pixels of playfield 1 if the underlying

pixels of playfield 2 are black, etc.

Other sprite registers

Besides the SPRxPT registers, each sprite has four additional registers.

They are normally supplied with data automatically by the DMA

controller. However, it is also possible to access them through the

processor.

SPRxPOS

SPRxCTL

SPRxDATA

SPRxDATB

First control word

Second control word

First data word of a line (low word)

Second data word of a line (high word)

Again, x stands for a sprite number from 0 to 7. The addresses of these

registers can be found in the register overview.

The DMA controller writes the two control words of a sprite directly into

the two registers SPRxPOS and SPRxCTL. When a value is written into

the SPRxCTL register, whether by DMA or the 68030, Denise turns the

sprite output off. The sprite will no longer be output to the screen.

The DMA controller now waits for the line specified in VSTART. Then it

writes the first two data words into the SPRxDATA and SPRxDATB

registers.

Now the sprite will be displayed, because writing to the SPRxDATA

register causes Denise to enable the sprite output again. The desired

horizontal position from the SPRxCTL and SPRxPOS registers is

852

11.7 Programming the Hardware

compared with the actual screen column, and the sprite is displayed at

the correct location on the monitor.

The DMA controller writes two new data words in SPRxDATA/B in each

line until the last line of the sprite (VSTOP) is past. Then it fetches the

next control words and places them in SPRxPOS and SPRxCTL. This

turns the sprite off again until the next VSTART position is reached. If

both control words were zero, the DMA controller ends the sprite DMA

for the corresponding channel until the start of the next frame. At the

end of the vertical blanking gap, it starts again at the current address in

SPRxPT.

Displaying sprites without DMA

A sprite can also be easily displayed without the DMA channel. You

simply write the desired control words directly into the SPRxPOS and

SPRxCTL registers.

Only the HSTART position and the AT bit have to contain valid values.

VSTART and VSTOP are used only by the DMA channel.

You can begin the sprite output in any line by writing the two data

words into the SPRxDATA and SPRxDATB registers. Since writing to

SPRxDATA enables the sprite output, it is better to write to SPRxDATB

first. If the contents of the two registers are not changed, they are

displayed again in each line. The result is a vertical column.

To turn the sprite off again, simply write some value to SPRxPOS.

;*** Sprite Demo ***

;Customchip registers

INTENA = $9A

INTREQR = $le ;Interrupt request register (read)

DMACON = $96 ;DMA control register (write)

COLOR00 = $180;Color palette register 0

VPOSR = $4 ;Beam position (read)

JOY0DAT = $A ;Mouse position for port 0

;Copper registers

COP1LC = $80 /Address of 1st Copperlist

COP2LC = $84 /Address of 2nd Copperlist

853

11. The A3000 Hardware

COPJMPl = $88 ;Jump to Copperlist 1

C0PJMP2 = $8a /Jump to Copperlist 2

;Bitplane registers

BPLCONO = $100 ;Bitplane control register 0

BPLCON1 = $102 ;1 (Scroll values)

BPLCON2 = $104 ;2 (Spriteoplayfield priority)

BPL1PTH = $0E0 /Pointer to 1st bitplane

BPL1PTL = $0E2 ;

BPL1MOD = $108 ;Modulo value for odd bitplanes

BPL2MOD = $10A /Module value for even bitplanes

DIWSTRT = $08E ;Start of screen window

DIWSTOP = $090 ;End of screen window

DDFSTRT = $092 ;Bitplane DMA start

DDFSTOP = $094 ;Bitplane DMA stop

/Sprite registers

SPR0PTH = $120 /Pointer to sprite data list for sprite 1

SPR0PTL = $122

SPR1PTH = $124

SPR1PTL = $126

/CIA-A port register A (Mouse button)

CIAAPRA = $bfe001

/Exec Library Base Offsets

OpenLibrary = -30-522 /LibName,Version/al,d0

Forbid = -30-102

Permit = -30-108

AllocMem = -30-168 ;ByteSize,Requirements/d0,dl

FreeMem = -30-180 /MemoryBlock,ByteSize/al, dO

/graphics base

StartList =38

/Other labels

Execbase = 4

Planesize = 52*345 /Size of bitplane

Planewidth = 52

CLsize = 19*4 /Size of Copperlist in bytes

Chip = 2 /Request chip RAM

854

11.7 Programming the Hardware

move.1

move.1

move.1

jsr

move.1

beq

Execbase,a6

#Planesize,dO

#clear,dl

AllocMem(a6)

dO, Planeadr

Ende

Clear = Chip+$10000 ;Clear previous chip RAM

;*** Start program ***

Start:

;Request memory for bitplanes

/Memory requirement of planes

/Request memory

;Error! -> End

;Request memory for Copperlist

moveq #Clsize/dO

moveq #chip/dl

jsr AllocMem(a6)

move.l dO/CLadr

beq FreePlane ;Error! -> FreePlane

;Request memory for sprite data list

moveq #Sprsize/dO

moveq #chip/dl

jsr AllocMem(a6)

move.1 dO/Spradr

beq FreeCL

;Set up Copperlist in chip RAM

;Bitplanepointer

move.1 CLadr,aO

move.w #bpllptl/d2

move.1 Planeadr,dl

bsr setadr

/Pointer to 1st sprite

move.w #spr0ptl,d2

move.1 Spradr,dl

bsr setadr

/•Remaining (unused) sprite pointers

moveq #6,dO

move.w #sprlptl,d3

spr_set:

move.l Spradr+Sprsize-4,dl

move.w d3/d2

bsr setadr

addq.w #4,d3

855

11. The A3000 Hardware

dbf dO,spr_set

move.l #$fffffffe,(aO)

;Copy sprite data list

move.w #Sprsize/4-l,dO

lea Sprstart,aO

move.1 Spradr,al

spr_copy:

move.l (aO)+,(al)+

dbf dO,spr_copy

;*** Main program ***

;Disable DMA and task-switching

jsr forbid(a6)

lea $dff000/a5

move.w #$0300,dmacon(a5)

/Initialize Copper

move.l CLadr,copllc(a5)

clr.w copjmpl(a5)

;Initialize playfield

move.w #0,color00(a5)

move.w #$0f00/color00+2(a5)

move.w #$000f,colorOO+34(a5)

move.w #$OOff,colorOO+36(a5)

move.w #$00f0,color00+38(a5)

move.w #$la64,diwstrt(a5) ,-26,100

move.w #$39dl,diwstop(a5) ;313#465

move.w #$0028,ddfstrt(a5)

move.w #$00d8,ddfstop(a5)

move.w #%0001001000000000,bplcon0(a5)

clr.w bplconl(a5)

move.w #8,bplcon2(a5)

move.w #2,bpllmod(a5)

;DMA on-

move.w #$83aO,dmacon(a5) ;Bitplane & sprite DMA on

;Fill bitplanes with checkerboard pattern

move.1 planeadr,aO

856

;Playfield colors

;Sprite colors

11.7 Programming the Hardware

move.w #planesize/4-l/d0 ;Loop counter

move.w #13*16,(51

move.l #$ffffOOOO,d2 /Checkerboard pattern

move.w dl,d3

fill: move.l d2,(aO)+

subq.w #l,d3

bne.s continue

swap d2 /Change pattern

move.w dl,d3

continue: dbf dO,fill «

;Wait for raster line 16 (after Exec-interrupts)

wait: btst #6,ciaapra /Mouse button pressed?

beq.s endit

move.l vposr(a5),d2

and.l #$0001FF00,d2

cmp.l #$00001000,d2

bne.S wait

/Move sprite

move.w joyOdat(a5),dO /Mouse position

move.w d0,dl

and.w #$ff,dO

lsr.w #8,dl

add.w #150,d0 /Add offset for null position, so

add.w #30,dl /sprite always remains visible

jsr setcor /Display sprite at position in d0,dl

bra.S wait /No -> continue

/*** End program ***

/Reactivate old Copperlist

endit: move.l #GRname,al /Set parameters for OpenLibrary

clr.l dO

jsr OpenLibrary(a6) /Open Graphics library

move.1 dO,a4

move.l StartList(a4),copllc(a5)

clr.w copjmpl(a5)

move.w #$83aO,dmacon(a5)

jsr permit(a6)

/Release memory for sprite data

857

11. The A3000 Hardware

move.1 Spradr,al

moveq #Sprsize,dO

jsr FreeMem(a6)

;Release memory for Copperlist

FreeCL:

move.l CLadr,al ;Set parameters for FreeMem

moveq #CLsize,dO

jsr FreeMem(a6)

/Release memory for bitplanes

FreePlane:

move.1 Planeadr,al

move.l #Planesize,dO

jsr FreeMem(a6)

Ende:

clr.l dO

rts ;End program

;Subprograms

;setadr writes the Copper commands for initializing a DMA address counter

;in the Copperlist

;aO - pointer to Copperlist (incremented by setadr)

;dl - to written address (e.g. bitplane)

;d2 - address of pointer register, low (e.g. bpllptl)

setadr:

move.w d2,(aO)+ ;move ptl

move.w dl,(aO)+ ;addr bits 1-15

swap dl

subq.w #2,d2 /switch to pth

move.w d2,(aO)+ ;move pth

move.w dl,(aO)+ ;addr bits 16-18

rts

;setcor writes the X,Y coordinates of the sprite to the sprite data list

;in the chip RAM

;dO,dl - X,Y coordinates

/Address of sprite data list: Spradr

/Height of sprite in lines: Sprhigh

/a0/d2,d3 are used internally

setcor:

movem.l dO-d3/aO,-(sp)

move.w dO,d3 /HO bit to second control word

and.w #l,d3 /Clear rest

858

11.7 Programming the Hardware

lsr.w #l,dO ;H1-H8 to position

move.w dO,d2 ;in first controlword

and.w #$ff#d2 ;Clear E0-E7

move.w dl,dO

add.l #Sprhigh,dO ;Last line of sprite to dO

asl.w #8,dl

bcc noE8

bset #2,d3 ;Set E8 in second word

noE8: or.w dl,d2 ;E0-E7 to first word

asl.w #8,dO

bcc noL8 ;Set L8

bset #l#d3

noL8: or.w dO,d3 ;L0-L7 to second word

move.l Spradr,aO /Transfer new value to memory

move.w d2,(aO)+

move.w d3,(aO)

movem.l (sp)+,dO-d3/aO

rts

;Variables

CLadr: dc.1 0

Planeadr: dc.1 0

Spradr: dc.1 0

test: del 0

;Constants

GRname: dc.b "graphics.1ibrary",0

;Sprite data list

align ;even

Sprstart:

dew $aO5a, $a800

dew %0000000000000000,

dew %0000000000000000,

dew %0000000110000000,

dew %0000001111000000<

dew %0000001111000000<

dew %0000000110000000,

dew %0000000000000000<

dew %0000000000000000,

dew 0,0

%00000001111000000

%00000110000110000

%00001000110001000

%00011001001001100

%00011001001001100

%00001000110001000

%00000110000110000

%00000001111000000

Sproff:

Sprend:

Sprsize = Sprend-Sprstart

859

11. The A3000 Hardware

Sprhigh = 9

end

11.7.7 ECS Capabilities

The features previously described (with the exception of the 2 Meg chip

RAM) were already present in the custom chips of the A1000. But in the

course of the A3000's development, an improved chip set, called the

Enhanced Chip Set (ECS), was also developed. To ensure software-

compatibility, the developers did not change anything in the

programming of previously existing modes. However, some new registers

have been added for utilizing the additional capabilities of the new chips:

Super-HiRes mode

In this mode the horizontal resolution is doubled from 640 to 1280

pixels/line.

Freely programmable screen display

The geometry of the generated video image can be freely programmed by

selecting, not only the number of pixels per line, but also the number of

lines and the video frequency. With Super-HiRes mode, a flicker-free

picture can be produced even at a resolution of 640 x 512 pixels.

Larger bit-planes

The Blitter now supports bit-planes up to 32768 x 32768 pixels in size.

Expanded genlock capabilities

Through a modified "chromakey" scheme, every video register can

control the video overlay.

Super-HiRes mode

Previously there were two possibilities for horizontal resolution: HiRes

(high resolution) and LoRes (low resolution). In LoRes mode a pixel had

a duration of 140 nanoseconds (ns), in HiRes mode 70 ns. The new

Super-HiRes mode gives double the resolution of HiRes mode, with a

duration of 35 ns per pixel. To achieve this, Agnus must read twice as

much data per bit-plane from the chip RAM. The maximum possible

860

77.7 Programming the Hardware

number of bit-planes has been halved to only two, representing a

maximum of four colors in the Super-HiRes mode.

Unfortunately, the entire palette of 4096 colors is not accessible in the

Super-HiRes mode. Only 64 colors are possible, with two bit each for the

red, green and blue components. The programming of the color registers

for this mode follows a rather complicated scheme, which is illustrated

below.

Bit-plane (color 0):

Bit-plane (color 1):

Bit-plane (color 2):

Bit-plane (color 3):

R

ab-

gh-

mn-

st-

G

cd-

ii—

op~

uv—

B

ef-

kl-

qr-

wx—

C

0

L

0

R

R

E

G

I

S

T

E

R

BIT

00

01

02

03

04

05

06

07

08

09

0A

0B

OC

0D

0E

OF

15 14 13 12 11

A

G

M

S

A

G

M

S

A

. . . . G

M

. • . . . S

A

G

M

S

10

B

H

N

T

B

H

N

T

B

H

N

T

B

H

N

T

09

A

A

A

A

G

G

G

G

M

M

M

M

S

S

S

S

08

B

B

B

B

H

H

H

H

N

N

N

N

T

T

T

T

07

C

I

0

u

c

I

o

u

c

I

0

u

c

I

o

u

06

D

J

P

V

D

J

P

V

D

J

P

V

D

J

P

V

05

C

C

C

C

I

I

I

I

0

o

0

0

u

u

u

u

04

D

D

D

D

J

J

J

J

P

P

P

P

V

V

V

V

03

E

K

Q

W

E

K

Q
W

E

K

Q

W

E

K

Q

W

02

F

L

R

X

F

L

R

X

F

L

R

X

F

L

R

X

01

E

E

E

E

K

K

K

K

Q

Q

Q

Q

W

W

W

W

00

F

F

F

F

L

L

L

L

R

R

R

R

X

X

X

X

The following shows the color selection scheme for sprites, which are

subject to the same limitations as the playfields in Super-HiRes mode.

861

11. The A3000 Hardware

Color selection for Super-HiRes sprites

Sprite (color 16):

Sprite (color 17):

Sprite (color 18):

Sprite (color 19):

R

AB--

GH--

MN-

ST-

G

CD--

IJ-

OP-

UV--

B

EF-

KL--

QR--

WX--

C

0

L

0

R

R

E

G

I

S

T

E

R

BIT

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

15 14 13 12 11

A

G

M

S

A

G

M

S

A

G

M

S

A

G

M

S

10

B

H

N

T

B

H

N

T

B

H

N

T

B

H

N

T

09

A

A

A

A

G

G

G

G

M

M

M

M

S

S

S

S

08

B

B

B

B

H

H

H

H

N

N

N

N

T

T

T

T

07

C

I

O

U

C

I

O

U

c

I

o

u

c

I

o

u

06

D

J

P

V

D

J

P

V

D

J

P

V

D

J

P

V

05

C

C

C

C

I

I

I

I

o

0

o

o

u

u

u

u

04

D

D

D

D

J

J

J

J

P

P

P

P

V

V

V

V

03

E

K

Q

W

E

K

Q

W

E

K

Q

W

E

K

Q
W

02

F

L

R

X

F

L

R

X

LJL
L

R

X

F

L

R

X

01

E

E

E

E

K

K

K

K

Q

Q

Q

Q
W

W

W

W

00

F

F

F

F

L

L

L

L

R

R

R

R

X

X

X

X

Although the Super-HiRes mode allows fewer colors than lower

resolutions, it does enable a more precise positioning of sprites. An

additional bit for the horizontal position in the second control word of

the sprite data list (bit 4) allows positioning of sprites at a resolution of

70 nanoseconds (i.e., two Super-HiRes pixels).

The Super-HiRes mode is enabled with bit 6 of the first bit-plane control

register, BPLCON0. The bit for normal HiRes mode (bit 15) must also be

cleared.

Programmable geometry of the video image

Previously, a computer conformed to either the PAL or the NTSC video

standard, and the geometry of the computer's video image (i.e., the

number of lines on a screen and the number of pixels in a line) was fixed

accordingly. With the Agnus chip of the A3000 the geometry of the

image can be freely programmed. You can switch between the two

standards or, with the new Super-HiRes mode, even create new formats.

For example, under Kickstart 2.0, there is a productivity mode capable of

862

77.7 Programming the Hardware

producing a non-interlaced display of 640 x 480 pixels (computed

without overscan).

Some new registers were introduced to achieve this flexibility:

HTOTAL $1CO (write-only) Number of cycles per line

[Bit
Function

5 14 13 12 11 10 9 8 7 6 5 4
h8 h7 h6 h5 h4 h3 h2 hi

The duration of each line is the number of clock cycles in HTOTAL + 1,

the clock being the color clock CCK (3.54 MHz, with a 280 ns period).

For a normal Pal image, this number would be 227.5, for the productivity

mode 114.

The number of lines is placed in the VTOTAL register.

VTOTAL $1C8 (write-only) Highest line displayed

There are a total of VTOTAL + 1 lines displayed per image.

The previous two registers are used to establish the geometry of the

video image. The following new registers determine the exact timing of

the creation of the horizontal and vertical synchronization signals and of

the blanking signals:

$1E0

$1CA

$1DE

$1C2

$1E2

$1C4

$1C6

$1CC

$1CE

VSSTART

VSSTOP

HSSTART

HSSTOP

HCENTER

HBSTART

HBSTOP

VBSTART

VBSTOP

Starting line of vertical sync signal

Ending line of vertical sync signal

Starting column of horizontal sync signal

Ending column of horizontal sync signal

Starting column of vertical sync in interlace mode

Starting column of horizontal blanking signal (HBLANK)

Ending column of horizontal blanking signal (HBLANK)

Starting line of vertical blanking signal (VBLANK)

Ending line of vertical blanking signal (VBLANK)

In connection with all the new registers, there is an additional register,

BEAMCON0, which indicates how they are to be used:

863

11. The A3000 Hardware

BEAMCONO $1DC (write-only)

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Name

HARDDIS

LPENDIS

VARVBEN

LOLDIS

CSCBEN

VARVSYEN

VARHSYEN

VARBEAM

DUAL

PAL

VARCSYNC
BLANKEN

CSYTRUE

VSYTRUE

HSYTRUE

Function

Disable normal blanking signal

Disable lightpen

Activate VBSTART/STOP registers

Disable 227/228 cycle/line switching

Enable composite-sync bypass

Enable variable V-sync

Enable variable H-sync

Activate HTOTAL/VTOTAL registers

Special Ultra-HiRes mode (not implemented)

Switch Agnus to PAL

Enable variable composite-sync

Output blanking signal <!to/on?!> composite-sync pin

Composite sync active-high

Vertical sync active-high

Horizontal sync active-high

A further change in the ECS chip set affects the definition of the screen

window. With the new DIWHIGH register, the window can now be

changed. The DIWHIGH register is activated by setting it after writing

the desired values to the old DIWSTRT and DIWSTOP registers:

DIWHIGH $1E4 (write only)

Bit Name Function

15

14

13

12

11

10

9

8

7

6

5

4

3

2

19

0

H8

V10

V9

V8

H8

V10

V9

V8

Horizontal stop, high-value bit

Vertical stop, three high-value bits

Horizontal start, high-value bit

Vertical start, three high-value bits

864

11.7 Programming the Hardware

11.7.8 The Blitter

What is a Blitter? The name Blitter stands for "block image transferor."

This is the main task of the Blitter: moving and copying data blocks in

memory; this usually involves graphics data. The Blitter can also perform

logical operations on multiple memory areas and write the result back

into memory. It accomplishes these tasks very quickly. Simple data

moves proceed at speeds of up to 16 million pixels per second.

In addition, the Blitter can fill surfaces and draw lines. The combination

of these two capabilities enables the drawing of any type of filled

polygon.

The operating system uses the Blitter for almost all graphic operations. It

handles the text output, draws gadgets, moves windows, etc. In addition,

it is used to decode data from the diskette, which shows that the many-

faceted capabilities of the Blitter are not limited to graphics.

Using the Blitter to copy data

The Blitter always follows the same procedure when copying data: One

to three memory areas and the data sources are combined together using

the selected logical operation and the result is written back into memory.

The spectrum ranges from simple copying to complex combinations of

multiple data areas. The addresses of the source data areas, named A, B

and C, and the destination area D can be anywhere in the chip RAM

(fromOto$lFFFFF).

The Blitter supports "rectangular memory areas." The memory, like a

bit-map, is divided into columns and rows. It is also possible to process

small areas inside a large bit-map by using what are called modulo values.

You may recall that such modulo values are also used in playfields, to

define bit-planes that are wider than the screen window.

The following steps are necessary to start a Blitter operation:

• Select the Blitter mode: Copy data.

• Select the source data areas (not all three sources have to be used)

and the destination area.

• Select the logical operation.

865

11. The A3000 Hardware

• Define other operating parameters (scrolling, masking, address

direction).

Define the window in which the Blitter operation is to take place

and start the Blitter.

Defining the Blitter window

You may wonder why we're starting with a discussion of the last step.

Actually, the definition of the desired window is the basis of all the other

settings. But when the Blitter is programmed, this value is not written to

the appropriate register until the end, because that is what starts the

Blitter. For that reason, this point also appears last in the previous list.

However, you must understand the Blitter window concept in order to

understand the other values.

The Blitter window is the area of memory that is to be processed by the

Blitter operation. It is constructed like a bit-plane (i.e., divided into rows

(lines) and columns) where a column corresponds to one word (two

bytes). The number of words in the window is equal to the product of

the rows and columns: R*C.

Since the desired memory area is divided into rows and columns, the

Blitter is very well suited for processing bit-planes.

However, linear memory areas can also be accessed. The division into

rows and columns simply makes the programming easier. Actually, the

individual lines reside at contiguous addresses in memory. For small data

fields that are not divided into rows and columns, it is also possible to set

the window width or height to 1.

The Blitter processes the Blitter window line by line. The Blitter

operation begins with the first word of the first line and ends with the

last word of the last line. The BLTSIZE register contains the window

size:

BLTSIZE $058 (write-only)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0—
Function: H9 H8 H7 H6 H5 H4 H3 H2 H1 HO W5 W4 W3 W2 W1 WO

H0-H9 These ten bits represent the height of the Blitter window in

lines. The window can have a height between 1 and 1024

866

11.7 Programming the Hardware

lines (210 = 1024). A height of 1024 lines is selected by
setting the height value to 0. For all other values the height

corresponds directly to the number of lines. A height of 0

lines is not possible.

WO These six bits represent the width of the window. The

width can vary between 1 and

-W5 64 words (2*> = 64). In terms of graphic pixels, this can be
up to 1024 pixels. As with the height, the maximum width

is set by making the width value = 0.

The following formula is applied to the height and width to derive the

necessary BLTSIZE value: BLTSIZE = Height*64 + Width.

It must be modified somewhat when using the two extremes (Height =

1024 and Width = 64):

BLTSIZE = (Height AND $3FF)*64 + (Width AND $3F)

The BLTSIZE register should always be the last register initialized. The

Blitter is automatically started when a value is written to BLTSIZE.

The Blitter can also process larger windows with the built-in ECS chips

of the A3000. For this, the two new registers BLITSIZV and BLITSIZH

are used:

BLITSIZV

BLITSIZH

$5C

$5E

Number of lines in Blitter window (15 bits)

Number of words per line (11 bits), start Blitter

Since BLITSIZH starts the Blitter, BLITSIZV must be written first.

Source and destination data areas

During a Blitter operation, data are combined together from completely

different areas of memory. Even though the Blitter window defines the

number and organization of data words to be processed, the positioning

of this window within the three source areas and the destination area

must still be specified.

For example, suppose that you want the Blitter to copy a small

rectangular graphic, stored somewhere in chip RAM, into the screen

867

11. The A3000 Hardware

memory. For this simple task there is only one source area. The selection

of the Blitter window is easy. The entire graphic is to be copied, so the

width and height of the Blitter window correspond to that of the graphic

in memory.

So that the Blitter also knows where this graphic can be found, you write

the address of the first word of the top line into the appropriate register.

But how is the destination area defined? The graphic is to be copied into

the screen memory, which means that it must be transferred into the

current bit-plane. (For the sake of simplicity, the graphic and the screen

memory are each assumed to consist of a single bit-plane.) But the bit-

plane is wider than the small graphic. If the Blitter were to copy the

graphic directly into the bit-plane, the result would not appear as desired.

In addition to the address of the destination area, the Blitter must also

know its width. This information is communicated by a modulo value.

The modulo value is added to the address pointer after each line of the

Blitter window is processed. The words that are not affected are skipped

and the pointer indicates the start of the next line. The source and

destination areas have independent modulo registers so that they can

have different widths.

The following figure illustrates our example. The graphic consists of five

lines, each ten words wide. The numbers represent the corresponding

word addresses relative to the initial address of the graphic. The bit-plane

has dimensions of ten lines by twenty words. How do we choose the

Blitter window, starting addresses and modulo values?

The Blitter window must correspond to the graphic, since the latter is to

be copied completely. The height of the window is five lines and the

width is ten words. The value that must be written to the BLTSIZE

register is 330 (5*64 + 10) or hexadecimal $014A.

The starting address of the source data is equal to the address of the first

word of the graphic. Since the line width of the graphic is equal to the

line width of the Blitter window, the modulo value for the source is 0.

868

11.7 Programming the Hardware

Graphic

00 02 04 06 08

1012141618

20 22 24 26 28

30 32 3436 38

40 42 4446 48

\
\
\
\

00

20

40

60

80

100

120

140

160

180

02

22

42

62

82

102

122

142

162

182

04

24

44

64

84

104

124

144

164

184

06

26

46

66

86

106

126

146

166

186.

Bit-plane

08

28

48

68

88

108

128

148

168

188

10

30

50

70

90

110

130

150

170

190

12

32

52

72

92

112

132

152

172

192

14

34

54

74

94

114

134

154

174

194

16

36

56

76

96

116

136

156

176

196

18

38

58

78

98

118

138

158

178

198

Graphic copied

into bit-plane

00

20

40

60

80

100

120

140

160

180

02

22

42

62

82

102

122

142

162

182

04

24

00
44
10
64

20
84

30
L04

40
124

144

164

184

06

26

02
46
12
66

22
86

32
106

42
126

146

166

186

08

28

04
48

14
68

24
88

34
108

44
128

148

168

188

10

30

06
50
16
70

26
90

36
110

46
130

150

170

190

12

32
08
52

18
72

28
92

38
112

48
132

152

172

192

14

34

54

74

94

114

134

154

174

194

16

36

56

76

96

116

136

156

176

196

18

38

58

78

98

118

138

158

178

198

Plane copy principle

The modulo value must now be calculated for the destination area. To do

this, simply take the difference between the actual line width and that of

the Blitter window.

In our example, this is 20 words minus 10 words: The modulo value for

the destination area is 10 words. Modulo values must be specified in

bytes in the Blitter modulo registers. Modulo value = modulo in words *

2.

Finally, the Blitter needs the starting address of the destination data. This

determines the bit-plane position to which the graphic is copied, and is

equal to the starting address of the bit-plane, and the address of the word

at which the upper left corner of the graphic is to be placed. In our figure

this is the address of the bit-plane and 24.

869

11. The A3000 Hardware

How does the Blitter operation proceed?

After the addresses and modulo values have been defined and the

BLTSIZE initialized, the Blitter begins copying the data. It fetches the

word at the starting address of the source data and stores it at the

destination address. Then it adds one word to both addresses and copies

the next word.

This is repeated until the number of words per line set in BLTSIZE have

been processed. Before the Blitter continues with the next line, it adds

the modulo values to the address pointers so that the next line starts at

the right address.

After all lines have been copied, the Blitter turns off and waits for its next

job. After a Blitter operation, the address registers contain the address of

the last word, 2, and the modulo value.

The address registers are called BLTxPT, where x represents one of the

three sources A, B, C or the destination area D. Like other address

registers, they occur in pairs, with one for bits 0-15 and one for bits 16-

20:

Reg.

048

04A

04C

04E

050

052

054

056

Name

BLTCPTH

BLTCPTL

BLTBPTH

BLTBPTL

BLTAPTH

BLTAPTL

BLTDPTH

BLTDPTL

Function

Starting address of Bits 16-20

source data area C Bits 0-15

Starting address of Bits 16-20

source data area B Bits 0-15

Starting address of Bits 16-20

source data area A Bits 0-15

Starting address of Bits 16-20

destination data area D Bits 0-15

Each of the four areas has its own modulo register:

060

062

064

066

BLTCMOD

BLTBMOD

BLTAMOD

BLTDMOD

Modulo value for source C

Modulo value for source B

Modulo value for source A

Modulo value for destination D

Copying with ascending or descending addresses

In our example the Blitter worked with ascending addresses (i.e., it

started at the starting address and incremented until reaching the ending

address). The ending address is logically higher than the starting address.

870

11.7 Programming the Hardware

However, there is a case in which such addressing leads to errors: the

copying of a memory area to a higher address, where the source and

destination areas partially overlap. Here is an example:

Result:

Address

0

2

4

6

8

10

12

14

Source data

Sourcel

Source2

Source3

Source4

Source5

Destination data

Desti

Dest2

Dest3

Dest4

Dest5

Desired

Sourcel

Source2

Source3

Source4

Source5

Actual

Sourcel

Source2

Source3

!Source1!

!Source2!

The five source data words are to be written to the address of the

destination data. If the Blitter begins by copying Sourcel to the desired

destination address (Destl), it overwrites Source4 before the data there

can be copied. This is because Source4 and Destl have the same address

(the two areas overlap). The same thing happens with Source5 and

Dest2.

When the Blitter reaches the address of Source4, it finds Sourcel instead.

Sourcel (not Source4) ends up in Dest4, and Source2 (not Source5) ends

up in Dest5. Source4 and Source5 are lost.

To solve this problem, the Blitter has a descending address mode and the

ascending mode.

In this mode it starts at the addresses in BLTxPT and decrements these

values by 2 bytes after each word is copied. Also, the modulo value is

subtracted instead of added. The ending address lies before the starting

address.

This must naturally be considered when initializing the BLTxPTs.

Normally these are set to the upper left corner of the Blitter window in

the given data area (A, B, C or D). In descending mode the addressing is

backwards. Correspondingly, BPLxPT must point to the lower right

corner.

The modulo and BLTSIZE values are identical to those for the ascending

mode.

871

11. The A3000 Hardware

In general, the following statements can be made regarding mode
selection:

1. No overlap between source and destination areas:

Either ascending or descending mode; both work correctly in this
case.

2. Source and destination areas overlap partially, and the destination is
before the source:

Only ascending mode works correctly.

3. Source and destination areas overlap partially, and the destination is
after the source (see example):

Only descending mode works correctly.

Selecting the logical operations

As previously mentioned, there are three source data areas associated

with the destination area. The logical operations are always performed on

a bit basis so that the destination bit D must be obtained from the data
bits A, B and C.

The Blitter recognizes 256 different operations. These take place in two
steps:

1. Eight different boolean equations are applied to the three source

data bits. Each of these yields a 1 from a different combination of A
B and C.

2. The eight results of the previous equations are selectively combined
with a logical OR. The result is the destination bit D.

The term "boolean equation" refers to a mathematical expression

representing a combination of logical operations. This type of

computation is called boolean algebra, after the English mathematician

George Boole (1815 to 1864). The explanations of the logical functions
of the Blitter can be understood without a knowledge of boolean

algebra, but the boolean equations are nevertheless included.

There are eight possible combinations of three bits. Each of the eight
equations is true for one of them (its result is 1). By using the eight

control bits LFO to LF7 you can select whether the result of the equation

has any effect on the formation of D. All result bits whose corresponding

872

11.7 Programming the Hardware

LFx bit is 1 are combined with a logical OR function. An OR function

means that the result will be 1 if at least one of the input bits is 1. In other

words, a logical OR returns a 0 only if all inputs are 0.

With the eight LFx bits you can choose which combinations of the three

input bits A, B and C will cause the output bit D to be 1. The term for the

eight boolean input equations is "minterm." The following table gives an

overview of the input combinations for each LFx bit.

In the Minterm row, a lowercase letter represents a logical inversion of

the corresponding input bit. Normally this is indicated with a bar over the

letter.

The Input bits row contains the bit combination for which the

corresponding equation is true. The order of the bits is A B C.

Minterm:

Input bits:

LF7

ABC

111

LF6

ABc

110

LF5

AbC

101

LF4

Abe

100

LF3

aBC

011

LF2

aBc

010

LF1

abC

001

LFO

abc

000

Selecting the individual minterms is easy. For each input combination for

which the output bit D should be 1, set the corresponding LFx bit.

In our first example we simply copy the source data from A directly to D.

The B and C sources are not used. Which minterms must be selected for

this?

D can be 1 only when A = 1. Only the upper four terms LF4 to LF7 come

into play, since A = 1 only for these terms. Since B does not play a role,

we choose a term in which B is 1 and a term in which B is 0, but which

are otherwise identical.

Now B has no effect on D because the remainder of the equation is

unchanged for both values of B and its result depends only on this

remainder. The same holds true for C. If we look at the table of input

combinations, we see that LF4 to LF7 must be activated. Then the result

depends only on A, since for any combination of B and C, one of these

four equations is always true for A = 1, and D is 1. If A = 0, all four are

false and D = 0.

If you're familiar with boolean algebra, you can obtain the appropriate

minterms yourself. The required expression is A = D. Since B and C are

873

11. The A3000 Hardware

always present in the Blitter, they must be integrated into the equation as
well:

lA*(b+B)*(c+C)=D|

The term x+X is always true (equal to 1) and is used when the result D is

independent of the value of X. To get the required minterms simply
multiply it out:

1. A*(b+B)*(c+C)=D

2. (A*b+A*B)*(c+C)=D

3. A*b*c+A*B*c+A*b*C+A*B*C=D

or without the AND operators:

|Abc+ABc+AbC+ABC=15H

Now we only need to set the LFx bits of the corresponding minterms.

Boolean algebra has helped us to arrive at our goal. Here are some

examples of common Blitter operations and the corresponding LFx bit
settings:

• Invert a data area: a = £>.

Required LFx combination: 00001 111.

Boolean algebra: a = D

a*(b+B)*(c+C) = D

(ab+aB)*(c+C) = D

abc+aBc+abC+aBC = D

• Copy a graphic to a bit-plane without changing the bit-plane's

contents. This corresponds to logically ORing the graphic A and

the bit-planeB: A +B = D.

Required LFx combination: 11111100.

Boolean algebra: A + B = D

A(b+B)(c+C)+B(a+A)(c+C) = D

(Ab+AB)(c+Q+(Ba+BA)(c+C) = D

Abc+ABc+AbC+ABC+Bac+BAc+BaC+BAC = D

874

11.7 Programming the Hardware

Abc+ABc+AbC+ABC+aBc+aBC = D

Here are the rules for determining the LFx bits needed:

1. Determine which of the eight ABC combinations should cause D to

bel.

2. Set the LFx bits for these combinations.

3. If all three sources aren't needed, you must select all combinations in

which the unused bits occur and in which the desired bits have the

proper value.

Shifting the input values

For some tasks the Blitter's limitation to word boundaries can cause

trouble. For example, you may want to shift a certain area within a bit

map by a few bits (i.e., by only a portion of a word). Or perhaps you

want the Blitter to write a graphic at specific screen coordinates that

don't match a word boundary.

In order to handle this problem, the Blitter has the capability to shift the

data words from sources A and B to the right by up to 15 bits. This

allows it to move the data to any desired bit position. All bits that are

pushed out to the right by the shift operation move into the free bits in

the next word. The entire line is shifted bit by bit. A device called a barrel

shifter is used inside the Blitter to shift the words.

It requires no additional time for the shift operation, regardless of how

many bits are moved. Adding a shift of the data does not limit the Blitter's

speed in any way.

Example for shifting data by three bits:

875

1L The A3000 Hardware

Before:

Data word 1 Data word 2 Data word 3
00011111 10011100 00010101 01111111 11100001 11100101

After:

uata word l Data word 2 Data word 3

xxx00011 11110011 1000001010101111 11111100 00111100

The three xxx bits depend on the previous data word, from which they

are shifted out.

Masking

It is possible to use the Blitter to copy a graphic whose borders are not

on word boundaries from screen memory. Data that is to the left of the

graphic but within the first data word should not be copied along with

the graphic itself. To make this possible, the Blitter can apply a mask to

the first and last data words of a line. This means that you can choose

which bits of these words should be copied. Undesired data can be

erased from the edges of the line.

Only source A can be masked in this manner. Two registers contain the

masks for the two edges. A bit is copied in the Blitter operation only if it

is set in the mask register. All others are cleared.

$044 BLTAFWM BLiTter source A First Word Mask

Mask for the first data word in the line.

$046 BLTALWM BLiTter source A Last Word Mask

Mask for the last data word in the line.

Bits 0-15 contain the corresponding mask bits. For example, "1"

represents a set bit,"." for a cleared bit:

876

11.7 Programming the Hardware

Column 1

11111111

111111 1111

11 11

11 1

11 1

11 11

111111 1111

11111111

Graphic data in the bit-plane:

Column 2

1111111111111111

11 1111

1111 Ill

11111 11

11111 11

1111 Ill

11 1111

1111111111111111

Column 3

1 11

1111 .1111

11111 1111111

1111111111111111

1111111111111111

11111 1111111

1111 1111

1 11

FirstWordMask:

0000000011111111

Column 1

11111111

1111

11

1

1

11

1111

11111111

LastWordMask:

1111110000000000

Result:

Column 2

1111111111111111

11. 1111

1111 Ill

11111 11

11111 11

1111 Ill

11 1111

1111111111111111

Column 3

1

1111

11111

111111...

111111...

11111

1111

1

By masking out the unwanted picture elements at the edges, you get the

desired graphic.

Note: When the width of the Blitter window is only one word

(BLTSIZE width = 1) both masks come together. They

both operate on the same input word. Only the input bits

whose mask bits are set in both masks are allowed through.

The Blitter control registers

The Blitter has two control registers, BLTCON0 and BLITCON1. The

following Blitter control bits are found in these two registers:

877

11. The A3000 Hardware

BLTCONO $040

Bit no. Name

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

ASH3

ASH2

ASH1

ASHO

USEA

USEB

USEC

USED

LF7

LF6

LF5

LF4

LF3

LF2

LF1

LFO

Function "

ASHO-3 contain the shift distance

for the input data from source A

ASHO-3 = 0 means no shift

Enables the DMA channel for source A
Enables the DMA channel for source B
Enables the DMA channel for source C

Enables the DMA channel for destination D
Selects minterm ABC (bit comb, of ABC: 111)
Selects minterm ABc (bit comb, of ABC: 110)
Selects minterm AbC (bit comb, of ABC: 101)
Selects minterm Abe (bit comb, of ABC: 100)
Selects minterm aBC (bit comb, of ABC: 011)
Selects minterm aBc (bit comb, of ABC: 010)
Selects minterm abC (bit comb, of ABC: 001)
Selects minterm abc (bit comb, of ABC: 000)

BLTCON1 $042

Bit no.

15

14

13

12

1-5

4

3

2

1

0

Name

BSH3

BSH2

BSH1

BSH0

EFE

IFE

FCI

DESC

LINE

Function

BSHO-3 contain the shift distance

for the input data from source B

BSHO-3 = 0 means no shift

Unused

Exclusive Fill Enable

Inclusive Fill Enable

Fill Carry In

DESC = 1 switches to descending mode

LINE = 1 activates the line mode

The LINE bit switches the Blitter into its line-drawing mode. If you want

to copy data with the Blitter, LINE must be 0.

Ascending or descending addresses can be selected with the DESC bit. If

DESC = 0, the Blitter works in ascending mode; if DESC = 1, it works in

descending mode.

The EFE and IFE bits activate the surface-filling mode of the Blitter.

They must both be 0 for the Blitter to operate in the normal mode. The

FCI bit is used only in the fill mode.

878

11.7 Programming the Hardware

The Blitter DMA

The data from the source areas A, B and C and the output data D are read

from or written to memory through four DMA channels. This Blitter

DMA can be enabled for all channels with the BLTEN bit (bit 6) of the

DMACON register. The Blitter has four data registers for its DMA

transfers:

Addr.

000

070

072

074

Name

BLTDDAT

BLTCDAT

BLTBDAT

BLTADAT

Function

Output data D

Data register for source C

Data register for source B

Data register for source A

The DMA controller reads the needed input values from memory and

writes them to the data registers. When the Blitter has processed the

input data, BLTDDAT contains the result. The DMA controller then

transfers the contents of BLTDDAT to the chip RAM.

The DMA transfer through these four registers can be enabled and

disabled by using the four USEx bits. For example, USEA = 0 disables

the DMA channel for data register A. The Blitter continues to access the

value in BLTADAT, so with each new word from the active sources the

same word is fetched from source A. For this reason unused sources must

have USEx set to 0 and must be prevented from affecting the result by

the appropriate selection of minterms. However, the same word is always

read when the DMA channel is disabled. For example, you can fill the

memory with a repeating pattern that has been written directly into

BLTxDAT.

In addition to BLTEN, three other bits in the DMACON register pertain

to the Blitter:

BitlOBLTPRI

This bit was already explained in the Fundamentals section (11.7.2). If it

is 1, the Blitter has absolute priority over the processor.

Bit 14 BBUSY (read-only)

BBUSY signals the status of the Blitter. If it is 1, it is currently performing

an operation.

879

11. The A3000 Hardware

After the Blitter window is set in BLTSIZE the Blitter begins its DMA

and sets BBUSY until the last word of the Blitter window has been

processed and written back into memory. It then ends its DMA and

clears BBUSY.

At the same time BBUSY is cleared, the Blitter-finished bit in the

interrupt request register is also set.

Bit 13 BZERO

The BZERO bit indicates whether all the result bits of a Blitter operation

were 0. In other words, BZERO is set when none of the operations

performed on any of the data words resulted in a 1. One use of this bit is

to perform collision detection.

The minterms are set so that D is 1 only if the two sources are also 1. If

the graphics in both sources intersect at least one point, the result is 1

and BZERO is cleared. At the end of the Blitter operation you can

determine whether or not a collision occurred. USED is set to 0 in this

application so that the output data arenft written to memory.

Using the Blitter to fill surfaces

What does it mean to "fill a surface"? The Blitter understands a surface to

be a two-dimensional area of memory to be filled with points. Normally

this surface belongs to a graphic or a bit-plane.

In order to fill a surface, the Blitter must recognize its boundaries. You

need a definition of a boundary line that the Blitter can understand.

Many fill functions exist in most drawing programs and also in Amiga-

BASIC with the PAINT command.

These functions cause an area of the screen to be filled, starting with

some initial point, until the program encounters a boundary line. This

allows the painting of completely arbitrary surfaces, assuming that they

are enclosed by a continuous line. The Blitter is not able to perform such

a complex fill operation. It only works line by line and fills the free space

between two set bits which mark the boundaries of the desired surface.

The following examples show how the Blitter fill operation works:

880

77.7 Programming the Hardware

Correct fill operation:

Before: After:

1.1 Ill

1 1 111111111

. .1 1 1111111111111..

.1 1...1 1 111111... 111111.

.1 1...1 1 111111... 111111.

. .1 1 1111111111111. .

1 1 111111111

. .1 1 1111111111111. .

Incorrect operation due to improper border bits:

Before: After:

Ill 11111111111111

111. . .111 111111111

..11...111...11 11111111111111...11..

.1 1...1 1 111111. . .111111.

.1 1...1 1 111111... 111111.

. .11. . .111...11 11111111111111...11..

1 1 111111111

..1111111111111 1111111111111111111..

In the first example, the surface is bounded properly for the Blitter and

filled correctly. However, in example 2, a closed boundary line is drawn

around the figure. If you try to fill such a graphic with the Blitter, chaos

results.

The reason for this is the algorithm that the Blitter uses. It is extremely

simple. The Blitter starts at the right side of the line. As it proceeds to the

left, it uses the Fill Carry bit (FC) to determine whether an output bit must

be set. The output bit corresponds to the value of the FC bit, which

normally (as in our example) starts out as 0.

When the Blitter encounters an input bit that is set, the value of the FC

bit changes (from 0 to 1 in our example). This causes subsequent output

bits to have the new value (now 1), until another set bit is encountered in

the input. Then the FC bit will be switched again (back to 0).

In this way the area between two set bits is always filled. As you can see

from the second example, the fill logic gets confused by an odd number

of set bits.

881

11, The A3000 Hardware

The FCI bit (Fill Carry In) in BLTCONl determines the initial value of the

FC bit. If FCI is cleared, everything proceeds as previously described.

But if FCI = 1, the Blitter starts to fill from the edge until it encounters the

first set input bit. The fill procedure is then reversed.

Example of the effect of the FCI bit:

Output graphic

1 1

. . .1 1. .

..1 1.1 1.,

..1 1.1 1.,

. ..1 1. . .

1 1

FCI=0

1111111

. .11111111111...

.111111.111111..

.111111.111111..

. .11111111111...

1111111

FCI=1

1111111 111111

11111 1111

1111 111 111

1111 111 111

11111 1111

1111111 111111

In the examples up to now, the input bits (the boundaries of the surface)

have been retained in the filled graphic. This is always the case when the

fill mode is activated by setting the ICE bit (Inclusive fill Enable) in the

BLTCONl register.

In contrast to this is the ECE mode (Exclusive fill Enable), which is

enabled by setting the bit with this name in BLTCONl. In this mode the

boundary bits at the left edge of a filled surface (whenever the fill carry

bit changes from 1 to 0) are not retained in the output picture.

This causes all surfaces to be one pixel narrower. Only in the ECE mode

is it possible to get surfaces with a width of only one bit. It is impossible

in the ICE mode because the definition of a surface, however narrow,

requires at least two boundary bits, both of which will appear in the

output.

Difference between ICE and ECE modes:

Output graphic

11 11

1. ..1 1.1

. ..1...11..1..1..1

1 11.. .11. ..1

. .1 1

1 1.

1. ..1...11..

ICE

11 11

11111 111

...111111111..1111

111111111111111111

..1111111111111111

1111111111111.

11111...11..

ECE

1 1

1111.....11

1111.111...Ill

.1111111.1111.1111

...111111111111111

111111111111.

1111 1. .

Bit wise operation of the different fill operations:

882

11.7 Programming the Hardware

Input pattern: 11010010

Bit no.

_

0

1

2

3

4

5

6

7

Input bit

11010010

0

1

0

0

1

0

1

1

FC

FCI =

ICE

FC=FCI

0

1

1

1

0

0

1

0

0

10

110

1110

11110

011110

1011110

11011110

: 0

ECE

0

10

110

1110

01110

001110

1001110

01001110

FC

FCI =

ICE

FC=FCI

1

0

0

0

1

1

0

1 1

1

11

011

0011

10011

110011

1110011

1110011

1

ECE

1

01

001

0001

10001

110001

0110001

10110001

FC=FCI means that the FC bit assumes the value of the FCI bit from

BLTCON1 at the start of the fill operation.

How is a Blitter fill operation started? The Blitter can perform this fill

operation in addition to an ordinary copy procedure. It is enabled by

setting either the ICE bit or the ECE bit in BLTCON1 depending on the

desired mode. The Blitter forms the output data D from the three sources

A, B and C and the selected minterms as usual. If neither of the two fill

modes is active, the Blitter writes this data directly to its output data

register (BLTDDAT, $000). From there the data is written to memory via

DMA if USED = 1.

In the fill mode, the output data D is used as input data for the fill circuit.

The result of the fill operation is then written into the output data register

BLTDDAT.

The following steps are needed to perform a fill operation:

Select the BLTxPT, BLTxMOD and minterms so that the output

data D contains the correct boundary bits for the surface to be

filled.

• Select descending mode (the Blitter fills from right to left and this

works only when the words are referenced with descending

addresses).

Select the desired fill mode: set ICE or ECE; set or clear FCI as

desired.

LINE = 0 (Line mode off).

883

11. The A3000 Hardware

Set BLTSIZE to the size of the graphic to be filled.

The Blitter now begins the fill procedure. When it is done, it sets

BLTBUSY to 0 as usual. The speed of the Blitter is not limited by

activating the fill mode.

The Blitter can fill surfaces at a maximum speed of 16 million pixels per

second. The major application of the fill mode is in drawing filled

polygons. The desired polygon is drawn in an empty memory area using

line mode and then filled very rapidly by the Blitter.

Using the Blitter to draw lines

The Blitter is an extremely versatile tool. In addition to its excellent

capabilities for copying data and filling surfaces, it has a powerful mode

for drawing lines. Like the other Blitter modes, the line mode is extremely

fast: up to a million pixels per second.

What exactly is "drawing lines"? When a line is drawn, two points are

connected to each other by a continuous series of points. Since the

resolution of a computer graphic is limited, the optimal points cannot

always be chosen. The actual pixels may lie slightly above or below the

intended ideal line. Such a line usually resembles a staircase. The higher

the resolution, the smaller the steps, but they can never be completely

eliminated.

Example of a line in a computer graphic:

The two points are connected by a line

1. . . 111. . .

Ill

1111

Ill

1 Ill

The Blitter can draw lines up to a length of 1024 pixels. Unfortunately,

you cannot specify the coordinates of the two endpoints. Like solid

surfaces, lines must be defined in a style recognizable to the Blitter.

884

77.7 Programming the Hardware

First, the Blitter needs to know the octants in which the line is located.

The coordinate system is divided into eight parts; you'll find that the

octants are found in many graphic processors.

= number of octants

o- values of SUD/SUL/AUL bits

Blitter octants

The figure shows this division. The starting point of the line is located at

the origin of the coordinate system (the intersection of the X and Y

axes). The end point is located in one of the eight octants, according to

its coordinates. The number of this octant can be determined with three

logical comparisons. XI and Yl are the coordinates of the start point and

X2 and Y2 are those of the end point:

885

77. The A3000 Hardware

If XI is less than X2, the end point is in octant 0,1, 6 or 7, while if XI is

greater than X2, it is in 2, 3, 4 or 5. If XI and X2 are equal, it is on the Y

axis. Then all eight octants are possible.

Similarly: If Yl is less than Y2, possible octants of the end point are 0,1,2

and 3, and if Yl is greater than Y2, the octants are 4, 5, 6 and 7. If Yl =

Yl, all are possible.

For the last comparison we need the X and Y differences: DeltaX = 1X2-

XII, DeltaY = IY2-Y1I. If DeltaX is greater than DeltaY, the end point can

be located in octant 0, 3, 4 or 7. If DeltaX is less than DeltaY, it is in

octant 1,2,5 or 6. For DeltaX = DeltaY, all octants.

Ending point

B(xvy 2)

Starting point

A(x v y 2)

Selection of start and end points

The end point is located in the octant that occurred in all three

comparisons. If a point is on the border between two octants, it doesn't

matter which is chosen.

886

11.7 Programming the Hardware

The digits in the "Code" column correspond to the circled numbers in the

figure. The Blitter needs a combination of three bits, depending on the

octant in which the end point of the line is located. The bits are called

SUD (Sometimes Up or Down), SUL (Sometimes Up or Left) and AUL

(Always Up or Left).

"Code" is the 3-bit number formed by these bits (SUD = MSB and AUL

= LSB).

When programming the line you must first determine the octant of the

end point and then write the corresponding code value into the Blitter.

Selecting the correct octant:

Point coordinates

Y1 <= Y2

X1<2X2

DeltaX >= DeltaY

Y1 <= Y2

X1 <= X2

DeltaX <= DeltaY

Y1 <= Y2

X1 >= X2

DeltaX <= DeltaY

Y1<=Y2

X1 >= X2

DeltaX >= DeltaY

Octant

0

1

3

Code

6

1

3

7

Point coordinates

Y1 >= Y2

X1 >= X2

DeltaX >= DeltaY

Y1 >= Y2

X1 >= X2

DeltaX <= DeltaY

Y1 >= Y2

X1 <= X2

DeltaX <= DeltaY

Y1 >= Y2

X1 <= X2

DeltaX >= DeltaY

Octant

4

5

6

7

Code

5

2

0

4

Lines with patterns

When drawing a line, the Blitter uses a mask to determine whether the

points of the line should be set, cleared, or given a pattern. The mask is 16

bits wide, so the pattern repeats every 16 points. The relationship

between the pattern and the appearance of the line can best be

understood with a couple of examples:

("." = 0, "1" = 1, A = start point and B = end point)

Output picture: Mask = "1111111111111111":

887

11. The A3000 Hardware

11111111 B. 11111111 11B.

Ill Ill Ill 11111

11 11 11 11.11

11 11... 11 Ill 11...

11 11. .. 11 111 11...

11 11 11111 11

Ill Ill 11111 Ill

. .A 11111111 . .All. .. .11111111

Zero bits in the mask cause line points to be cleared:

Output picture: Mask = "0000000000000000":

11111111111111111..B. 11111111111111111..B.

11111111111111111 11111111111111

11111111111111111....111111111111..111....

11111111111111111 111111111...11111....

11111111111111111 111111...11111111

11111111111111111 1111..11111111111

11111111111111111 1...1111111111111

..A.11111111111111111 ..A..1111111111111111

If we combine ones and zeros in the mask, the line takes on a pattern:

Mask = "1111111000111000

.Allllll

.111...1

111111

111. . .11. . . .

11111

111. . .111

1111. . .B

Drawing boundary lines

In the section on filling surfaces with the Blitter, we explained that the

boundary lines of these surfaces can only be one pixel wide.

If these lines are drawn with the Blitter, it's possible that several line

points lie on the same horizontal line. To prevent this, the Blitter can be

made to draw lines with only one point per raster line:

888

11.7 Programming the Hardware

Normal line: Line with one point/raster line:

1111 1...

1111 1

............1111.. _.....< v... .;.._ .^...a...^^..^;-.,.,::,;,, -r.

mi i

The definition of slope

So the Blitter knows where to draw the line, it needs a Blitter-style

definition of the slope of the line. This slope is formed from the results of

three terms, all based on the DeltaX and DeltaY values, as explained in

the section on octants (DeltaY and DeltaX represent the width and

height of the rectangle for which the line forms a diagonal).

First the two values must be compared with each other to find the

larger/smaller of the two. The smaller delta is called Sdelta and the larger

one is called Ldelta. Then the three expressions required by the Blitter
are as follows:

1. 2*Sdelta

2. 2*Sdelta - Ldelta

3. 2*Sdelta - 2*Ldelta

Also, the Blitter has a SIGN flag which must be set to 1 if 2*Sdelta <

Ldelta.

Register functions in line mode

The Blitter uses the same registers when drawing lines as it does when

copying data (it doesn't have any more), but the functions change:

BLTAPTL The value of the expression "2*Sdelta-Ldelta" must be

written into BLTAPTL.

BLTCPT&BLTDPT

These two register pairs (BLTCPTH and BLTCPTL,

BLTDPTH and BLTDPTL) must be initialized with the

start address of the line. This is the address of the word

in which the start point of the line is located.

889

11. The A3000 Hardware

BLTAMOD The value of the expression "2*Sdelta-2*Ldelta" must

be stored in BLTAMOD.

BLTBMOD "2*Sdelta"

BLTCMOD & BLTDMOD

The width of the entire picture in which the line is to be

drawn must be stored in these two modulo registers. As

usual, this takes the form of an even number of bytes.

With a normal bit-plane of 320 pixels (40 bytes) in the

X direction, the value for BLTCMOD or BLTDMOD

= 40.

BLTSIZE The width (bits 0 to 5) must be set to 2. The height (bits

6 to 15) contains the length of the line in pixels. A

height of 0 indicates a line length of 1024 pixels. The

correct line length is always the value of Ldelta.

Drawing a line is started by writing to the BLTSIZE

register. Therefore, it should be the last register

initialized.

BLTADAT This register must be initialized to $8000.

BLTBDAT BLTBDAT contains the mask with which the line is

drawn.

BLTAFWM $FFFF is stored in this mask register.

BLTCON0

Bit no. Name Function

15

14

13

12

11

10

9

8

7

toO

START3

START2

START1

START0

USEA = 1

USEB = 0

USEC = 1

USED = 1

LF7

LFO

The 4-bit value STARTO-3 contains the position of

the start point

of the line within the word

at the start address of the line (BLTCPT/BLTDPT)

The four lower bits of the X coordinate of the start

point

This combination of the USEx bits is necessary

for the line mode

The LFx bits must be initialized with $CA

(D = aC + AB)

890

11.7 Programming the Hardware

BLTC0N1

Bit no.

15

14

13

12

11-7 = 0

6

5

4

3

2

1

0

Name

Texture3

Texture2

Texturei

TextureO

SIGN
—

SUL

SUD

AUL

SING = 1

LINE = 1

Function

This is the value for shifting the mask.

Normally TextureO-3 is set to StartO-3.

The pattern in the mask register BLTBDAT

then starts with the first point of the line.

Unused, always set to 0.

If 2*Sdelta<Ldelta, set SIGN to 1.

Unused, always set to 0.

These three bits must be initialized

with the SUL/SUD/AUL code

of the corresponding octant.

Draw lines with only one point per raster line.

Put the Blitter in line drawing mode.

A numerical example:

You want to draw a line in a bit-plane. The bit-plane is 320 by 200 pixels

large and lies at address $40000. The starting point of the line has the

coordinates X=20 and Y=185. The end point lies at X=210 and Y=35.

(The coordinates are in relation to the upper left corner of the bit-plane.)

DeltaX = 190, DeltaY = 150.

1st step: Find the octant of the end point

To do this, the three comparisons discussed earlier are performed; the

result: XI < X2, Yl > Y2 and DeltaX > DeltaY. This yields octant number

7 and a value for the SUD/SUL/AUL code of 4.

2nd step: Address of the starting point

This is calculated as follows:

starting address of bitplane + (number of lines - Yl - 1) * bytes per line +

2*(X1/16)

The fractional portion of the division is ignored. After inserting the

values:

$40000 + (200-185-l)*40 + 2 = $40232

this value is placed in BLTCPT and BLTDPT. The number of bytes per

line is also written to the BLTCMOD and BLTDMOD registers.

891

11. The A3000 Hardware

3rd step: Starting point of the line in STARTO-3

Required calculation: XI AND $F. Numerically:

STARTO-3 = 20 AND $F = 4

4th step: Valuesfor BLTAPTL, BLTAMOD andBLTBMOD

DeltaY < DeltaX, meaning that Sdelta = DeltaY and Ldelta = DeltaX.

BLTAPTL = 2*Sdelta-Ldelta = 2*150-190 = 110

BLTAMOD = 2*Sdelta-2*Ldelta = 2*150-2*190 = -80

BLTBMOD = 2*Sdelta = 300

2*Sdelta>Ldelta

Therefore SIGN = 0.

5th step: Length of the line for BLTS1ZE

Length = Ldelta = DeltaX = 190.

The value of the BLTSIZE register is calculated from the usual formula:

Length*64 + Width. Width must always be set to 2 when drawing lines.

BLTSIZE = DeltaX*64+2 = 12162 or $2F82.

6th step: Combining the values for the two BLTCONx registers

The START value must be stored in the correct position in BLTCONO, in

addition to $CA for the LFx bits and 1011 for USEx. In our example, this

results in $ABCA.

BLTCON1 contains the code for the octant and the control bits. We

want to draw our line normally, so SING = 0. LINE must naturally be 1.

SIGN was already calculated and is 0 in this example. Together this

makes $0011.

In assembly language the initialization of the registers might look like

this:

LEA $DFF000,A5 ;Base address of the custom chips to A5

MOVE.L #$40232, BLTCPTH(A5) ;Start address to BLTCPT

MOVE.L #$40232, BLTDPTH(A5) ;and BLTDPT

MOVE.W #40, BLTCMOD(A5) ;Width of bitplane to BLTCMOD

MOVE.W #40, BLTDMOD(A5) ;and BLTDMOD

MOVE.W #110, BLTAPTL(A5)

892

117 Programming the Hardware

MOVE.W #-80, BLTAMOD(A5)

MOVE.W #300, BLTBMOD(A5)

MOVE.W #$ABCA, BLTCON0(A5)

MOVE.W #$11, BLTCONKA5)

MOVE.W #12162, BLTSIZE(A5) ;Now the blitter starts

/drawing the line

Other drawing modes

Up to now we always used $CA as the value for the LFx bits. This

causes the points on the line to be set or cleared according to the mask,

while the other points remain unchanged.

But other combinations of LFx are also useful. To understand this, you

must know how the LFx bits are interpreted in the line mode:

The Blitter can only address memory by words. In line mode the input

data enters the Blitter through source channel C. The mask is stored in

the B register. The A register determines which point in the word read is

the line point. It always contains exactly one set bit, which is shifted by

the Blitter to the correct position. The normal LFx value of $CA causes

all bits, for which the A bit is 0, to be taken directly from source C.

However, if A is 1, the destination bit is taken from the corresponding

mask bit.

If you know how the LFx bits are used, you can choose other drawing

modes. For example, $4A causes all the line points to be inverted.

The Blitter DMA cycles

As we explained in the section on fundamentals, the Blitter uses only

even bus cycles. Since it has priority over the 68030, it is interesting to

know how many cycles are left for the processor. This depends on the

number of active Blitter DMA channels (A, B, C and D). The following

table shows the course of a Blitter operation for all fifteen possible

combinations of active and inactive Blitter DMA channels. The letters A,

B, C and D represent the corresponding DMA channels. Behind them,

the digit 1 represents the first data word of the Blitter operation, the digit

3 for the last word, and the digit 2 for all words in between. A dashed

line (-) indicates that this bus cycle is not used by the Blitter.

Usage of even bus cycles by the Blitter:

893

11, The A3000 Hardware

Comments:

The table is only valid if the following conditions are fulfilled:

1. The Blitter is not disturbed by Copper or bit-plane DMA accesses.

2. The Blitter is running in normal mode (neither drawing lines nor

filling surfaces).

3. The BLITPRI bit in the DMACON register is set and the Blitter has

absolute priority over the 68030.

Active

None

B

B

B

A

A

A

A

A

A

A

A

B

B

B

B

B

DMA channels

c

c

c

c

c

c

D

C

c

D

D

D

D

D

D

D

DO

CO

CO

BO

BO

BO

BO

AO

AO

AO

AO

AO

AO

AO

AO

Usage of even

—

--

CO

CO

--

—

CO

CO

BO

BO

BO

BO

ni

—

--

--

—

Al

Al

Al

--

--

—

CO

CO

Cl

T51

Bl

Bl

--

—

DO

Cl

Al

Al

Al

Al

—

no

CO

DO

DO

Cl

Bl

A2

A2

A2

Cl

Bl

Bl

Bl

Al

bus cycles

—

—

—

Cl

—

Dl

C2

DO

--

DO

Cl

Bl

C2

no

B2

B2

DO

--

A2

A2

A2

A2

Cl

Dl

Dl

C2

—

--

r»o

C2

B2

B2

B2

DO

--

—

—

B2

—

Dl

--

Dl

C3

A2

D2

D2

—

C2

--

—

--

—

B2

— — —

— — __

__ __ __

Dl — D2

— — —

D2

__ __ __

D2

B3 Dl D2

Explanations:

As you can see, the output data DO doesn't get to RAM until the Al, Bl

and Cl data have been read. This results from the pipelining in the

Blitter. Pipelining means that the data is processed in multiple stages in

the Blitter. Each stage is connected to the output of the preceding one

and the input of the next. The first stage gets the input data (for example,

AO, BO and CO), processes it and passes it on to the second stage. While

it is being further processed in that stage, the next input data is fed into

the input stage (Al, Bl and Cl). When the first data reaches the output

stage, the Blitter has long since read the next data. Two data pairs are

always at different processing stages in the Blitter at any given time

during a Blitter operation.

The table also allows the processing time of a Blitter operation to be

calculated. Every microsecond the Blitter has two bus cycles available. If

894

77.7 Programming the Hardware

it's moving a 64K block (32768 words) from A to D, it needs 2*32768

cycles. But if the same block is combined with source C, a total of

3*32768 cycles are needed, because two input words must be read for

each output word produced.

The table also shows that the Blitter is not capable of using every bus

cycle even if only one DMA channel is active.

Sample programs

Program 1: Drawing lines with the Blitter

This program can be used as a universal routine for drawing lines with

the Blitter. It shows how the necessary values can be calculated. The

program is quite simple:

At the start of the program the memory is requested and the Copper list is

constructed. The only new part is the OwnBlitter routine. As its name

indicates, it can be used to gain control of the Blitter. Correspondingly,

there is a call to DisownBlitter at the end of the program so that the

Blitter returns to the control of the operating system.

The program uses only one hi-res bit-plane, with standard dimensions of

640 x 256 pixels. In the main loop, the program draws lines that go from

one side of the screen through the center of the screen to the other side.

When a screen has been filled in this manner, the program shifts the mask

used to draw the lines and starts over again.

Comments:

The coordinate specifications in the program start from point 0,0 in the

upper left corner of the screen and are not mathematical coordinates, as

were used in the previous discussions. This means that when comparing

the Y values, the greater/less than sign is reversed.

;*** Lines with the Blitter

;Custom chip register

INTENA = $9A ;Interrupt enable register (write)

DMACON = $96 ;DMA-Control register (write)

DMACONR = $2 ;DMA-Control register (read)

COLOR00 = $180 ;Color palette register

895

11. The A3000 Hardware

VHPOSR = $6

/Copper Register

COP1LC = $80

COP2LC = $84

COPJMP1 = $88

COPJMP2 = $8a

/Position (read)

/Address of 1st. Copper-List

;Adderss of 2nd. Copper-List

;Jump to Copper-List 1

;Jump to Copper-List 2

;Bitplane Register

BPLCON0 = $100 ;Bitplane control register 0

BPLCON1 = $102 ;1 (Scroll value)

BPLCON2 = $104 ;2 (SpriteoPlayfield Priority)

BPL1PTH = $0E0 /Pointer to 1st. bitplane

BPL1PTL = $0E2 /

BPL1MOD = $108 /Modulo value for odd Bit-Planes

BPL2MOD = $10A /Modulo value for even Bit-Planes

DIWSTRT = $08E /Start of screen window

DIWSTOP = $090 /End of screen window

DDFSTRT = $092 /Bit-Plane DMA Start

DDFSTOP = $094 /Bit-Plane DMA Stop

/Blitter Register

BLTCON0 = $40

BLTCON1 = $42

BLTCPTH = $48

BLTCPTL = $4a

/Blitter control register 0 (ShiftA,Usex,LFx)

/Blitter control register 1 (ShiftB,misc. Bits)

/Pointer to source C

BLTBPTH

BLTBPTL

BLTAPTH

BLTAPTL

BLTDPTH

BLTDPTL

BLTCMOD

BLTBMOD

BLTAMOD

BLTDMOD

BLTSIZE

BLTCDAT

BLTBDAT

BLTADAT

BLTAFWM

$4c

$4e

$50

$52

$54

$56

$60

$62

$64

$66

$58

$70

$72

$74

$44

/Pointer to source B

/Pointer to source A

/Pointer to target data D

/Modulo value for source C

/Modulo value for source B

/Modulo value for source A

/Modulo value for target D

/HBlitter window width/height

/Source C data register

/Source B data register

/Source A data register

/Mask for first data word from source A

896

117 Programming the Hardware

BLTALWM = $46 ;Mask for first data word from source B

;CIA-A Port register A (Mouse key)

CIAAPRA = $bfe001

;Exec Library Base Offsets

OpenLibrary = -30-522 /LibName,Version/al,dO

Forbid = -30-102

Permit = -30-108

AllocMem = -30-168 ;ByteSize,Requirements/d0,dl

FreeMem = -30-180 ;MemoryBlock,ByteSize/al,dO

/Graphics Library Base Offsets

OwnBlitter = -30-426

DisownBlitter = -30-432

/graphics base

StartList = 38

;other Labels

Execbase = 4

Planesize = 80*200 ;Bitplane size: 80 Bytes by 200 lines

Planewidth = 80

CLsize = 3*4 ;The Copper-List contains 3 commands

Chip = 2 /allocate Chip-RAM

Clear = Chip+$10000 /Clear Chip-RAM first

/*** Initialization ***

Start:

/A/llocate memory for bit plane

move.l Execbase,a6

move.l #Planesize,d0 /Memory requirement for bit plane

move.l #clear,dl

jsr AllocMem(a6) /Allocate memory

move.1 dO,Planeadr

beq Ende /Error! -> End

897

11. The A3000 Hardware

/Allocate memory for Copper-List

moveq #Clsize#d0

moveq #chip,dl

jsr AllocMem(a6)

move.1 dO,CLadr

beq FreePlane

/Create Copper-List

move.l dO,aO

move.1 Planeadr,dO

;Error! -> FreePlane

/Address of Copper-List from aO

/Address of Bitplane

move.w #bpllpth,(aO)+ /First Copper command in RAM

swap dO

move.w dO,(aO)+ /Hi-Word of Bit plane address in RAM

move.w #bpllptl,(aO)+ /second command in RAM

swap dO

move.w dO,(aO)+ /Lo-Word of Bitplane address in RAM

move.l #$fffffffe,(aO) /End of Copper-List

/Allocate Blitter

move.1 #GRname,al

clr.l dO

jsr OpenLibrary(a6)

move.l a6,-(sp)

move.1 dO,a6

move.l a6,-(sp)

jsr 0wnBlitter(a6)

/ExecBase from the Stack

/GraphicsBase from a6

/and from the Stack

/Take over Blitter

/*** Main program ***

/DMA and Task-Switching off

/ExecBase to a6

/Task-Switching off

move.l 4(sp),a6

jsr forbid(a6)

lea $dff000,a5

move.w #$03eO,dmacon(a5)

/Copper initialization

move.l CLadr,copllc(a5)

clr.w copjmpl(a5)

/Set color

move.w #$0000,colorOO(a5) /Black background

898

11.7 Programming the Hardware

move.w #$0fa0,color00+2(a5) ;Yellow line

;Playfield initialization

move.w #$2081,diwstrt(a5) ,-20,129

move.w #$20cl,diwstop(a5) ;20,449

move.w #$003c/ddfstrt(a5) ;Normal

move.w #$00d4,ddfstop(a5)

move.w #%1001001000000000,bplconO(a5)

clr.w bplconl(a5)

clr.w bplcon2(a5)

clr.w bpllmod(a5)

clr.w bpl2mod(a5)

;DMA on

move.w #$83C0/dmacon(a5)

;Draw lines

Hires Screen

/Determine start values:

move.1 Planeadr,aO

move.w #Planewidth,al

move.w #255,a3

move.w #639,a4

move.w #$0303,d7

Loop: rol

move.w

clr.w

LoopX:

clr.w

move.w

move.w

move.w

sub.w

d7

d6

dl

a3

d6

a4

d6

.w #2,d7

,a2

,d3

,d0

,d2

,d2

bsr DrawLine

addq.w

cmp.w

ble.s

clr.w

LoopY:

#4

a4

,d6

,d6

LoopX

d6

;Constant parameter for DrawLine

;into correct register

;Size of Bitplane in Register

;Start pattern

;Shift pattern

/Pattern in register for DrawLine

;Clear loop variable

;Y1 = 0

;Y2 = 255

;X1 = Loop variable

;X2 = 639-Loop variable

;Increment loop variable

;Test if greater than 639

;i f not. cont inue loop

;Clear loop variable

899

11. The A3000 Hardware

move.w a4,dO ;X1 = 639

clr.w d2 ;X2 = 0

move.w d6,dl ;Y1 = loop variable

move.w a3,d3

sub.w d6,d3 ;Y2 = 255-loop variable

bsr DrawLine ;Draw line

addq.w #2,d6 /Increment loop variable

cmp.w a3,d6 ;Is loop variable greater than 255?

ble.s LoopY ;if not, continue loop

btst #6,ciaapra ;Mouse key pressed?

bne Loop ;No, continue

;*** End program ***

;Wait till blitter is ready

Wait: btst #14,dmaconr(a5)

bne Wait

;Activate old Copper-List

move.l (sp)+,a6 ;Get GraphicsBase from Stack

move.l StartList(a6),copllc(a5)

clr.w copjmpl(a5) /Activate Startup-Copper-List

move.w #$8020,dmacon(a5)

jsr DisownBlitter(a6) /Release blitter

move.l (sp)+,a6 ;ExecBase from Stack

jsr Permit(a6) ;Task Switching on

/Release memory for Copper-List

move.l CLadr,al /Set parameter for FreeMem

moveq #CLsize,dO

jsr FreeMem(a6) /Release memory

/Release Bitplane memory

FreePlane:

move.1 Planeadr,al

move.l #Planesize,dO

jsr FreeMem(a6)

Ende:

900

11.7 Programming the Hardware

clr.l dO

rts /Program end

/Variables

CLadr: del 0 /Address of Copper-List

Planeadr: del 0 /Address of Bitplane

/Constants

GRname: dc.b "graphics.library",0

align /even

;* * * DrawLine Rout ine * * *

/DrawLine draws a line with the Blitter.

/The following parameters are used:

/dO = XI X-coordinate of Start points

;dl = Yl Y-coordinate of Start points

/d2 = X2 X-coordinate of End points

/d3 = Y2 Y-coordinate of End points

/aO must point to the first word of the bitplane

;al contains bitplane width in bytes

/a2 word written directly to mask register

/d4 to d6 are used as work registers

DrawLine:

/Compute the lines starting address

/Width in work register

/Yl * Bytes per line

/No leading characters: $f0

/Bottom four bits masked from XI

/Remainder divided by 8

/Yl * Bytes per line + Xl/8

/plus starting address of the Bitplane

/d4 now contains the starting address

/of the line

/Compute octants and deltas

clr.l d5 /Clear work register

sub.w dl,d3 /Y2-Y1 DeltaY from D3

roxl.b #l,d5 /shift leading char from DeltaY in d5

tst.w d3 /Restore N-Flag

bge.s y2gyl /When DeltaY positive, goto y2gyl

901

move.1

mulu

moveq

and.w

lsr .w

add.w

add.l

al,d4

dl,d4

#-$10,d5

dO,d5

#3,d5

d5,d4

aO,d4

11. The A3000 Hardware

neg.w d3 ;DeltaY invert (if not positive)

y2gyl:

sub.w dO,d2 ;X2-X1 DeltaX to D2

roxl.b #l,d5 ;Move leading char in DeltaX to d5

tst.w d2 /Restore N-Flag

bge.s x2gxl ;When DeltaX positive, goto x2gxl

neg.w d2 ;DeltaX invert (if not positive)

x2gxl:

move.w d3,dl ;DeltaY to dl

sub.w d2,dl ;DeltaY-DeltaX

bge.s dygdx ;When DeltaY > DeltaX, goto dygdx

exg d2,d3 /Smaller Delta goto d2

dygdx: roxl.b #l,d5 ;d5 contains results of 3 comparisons

move.b Octant_table(pc,d5),d5 ;get matching octants

add.w d2,d2 ;Smaller Delta * 2

;Test, for end of last blitter operation

WBlit: btst #14,dmaconr(a5);BBUSY-Bit test

bne.s WBlit ;Wait until equal to 0

move.w d2,bltbmod(a5) ;2* smaller Delta to BLTBMOD

sub.w d3,d2 ;2* smaller Delta - larger Delta

bge.s signnl ;When 2* small delta > large delta to signal

or.b #$40,d5 ;Sign flag set

signnl: move.w d2,bltaptl(a5) ;2*small delta-large delta in BLTAPTL

sub.w d3,d2 ;2* smaller Delta - 2* larger Delta

move.w d2,bltamod(a5) ;to BLTAMOD

/Initialization other info

move.w #$8000,bltadat(a5)

move.w a2,bltbdat(a5) /Mask from a2 in BLTBDAT

move.w #$ffff,bltafwm(a5)

and.w #$000f,d0 /bottom 4 Bits from XI

ror.w #4,dO /to STARTO-3

or.w #$0bca,d0 /USEx and LFx set

move.w dO,bltconO(a5)

move.w d5,bltconl(a5) /Octant in Blitter

move.l d4,bltcpth(a5) /Start address of line to

move.l d4,bltdpth(a5) ,-BLTCPT and BLTDPT

move.w al,bltcmod(a5) /Width of Bitplane in both

move.w al,bltdmod(a5) /Modulo Registers

/BLTSIZE initialization and Blitter start

lsl.w #6,d3 /LENGTH * 64

902

77.7 Programming the Hardware

addq.w #2,d3 ;plus (Width = 2)

move.w d3/bltsize(a5)

rts

;Octant table with LINE =1:

;The octant table contains code values

;for each octant, shifted to the correct position

Octant__table:

dc.b 0 *4+l ;yl<y2, xl<x2, dx<dy = Okt6

dc.b 4 *4+l ;yl<y2, xl<x2, dx>dy = Okt7

dc.b 2 *4+l ;yl<y2, xl>x2, dx<dy = Okt5

dc.b 5 *4+l ;yl<y2, xl>x2, dx>dy = Okt4

dc.b 1 *4+l ;yl>y2, xl<x2, dx<dy = Oktl

dc.b 6 *4+l ;yl>y2, xl<x2, dx>dy = OktO

dc.b 3 *4+l ;yl>y2, xl>x2, dx<dy = Okt2

dc.b 7 *4+l ;yl>y2, xl>x2, dx>dy = Okt3

end

Program 2: Filling surfaces with the Blitter

This program is very similar to the first program. It shows how you can

create colored polygons by drawing border lines and filling them with

the Blitter. Since most of it is identical to the first program, we've only

printed the parts that must be changed in program 1 to create program 2.

The first part that must be changed starts at the comment "Draw lines

" and ends at the comment " End program ***." This area must

be replaced by the section in the following listing labeled "Part 1."

Also, the old octant table at the end of the program must be replaced

with the new one following the heading "Part 2." The new octant table is

required because, when filling surfaces, the Blitter needs boundary lines

with only one pixel per line. In the new octant table, the LINE bit and

the SING bit are set.

The program labeled "Part 1" draws two lines and then fills the area

between them with the Blitter. Then it waits for the mouse button to be

clicked.

903

11. The A3000 Hardware

;*** Filling surfaces with the blitter ***

;Part 1:

;Draw filled triangle

;Set starting value

move.1 Planeadr,aO

move.w #Planewidth,al

move.w #$ffff,a2

;* Draw border lines *

;Line from 320,10 to 600,200

move.w #320,dO

move.w #10,dl

move.w #600,d2

move.w #200,d3

bsr.L drawline

;Line from 319,10 to 40,200

move.w #319#d0

move.w #10,dl

move.w #40,d2

move.w #200,d3

bsr.L drawline

;* Fill surface *

;Set constant parameters for

;the LineDraw routine

;Mask to $FFFF -> no pattern

;Draw line

;Draw line

;Wait until blitter has drawn last line

;Test BBUSYWline: btst #14,dmaconr(a5)

bne.S Wline

add.l #Planesize-2,aO

move.w #$09f0,bltconO(a5)

move.w #$000a,bltconl(a5)

move.w #$ffff,bltafwm(a5)

move.w #$ffff,bltalwm(a5)

move.l aO,bltapth(a5)

move.l a0,bltdpth(a5)

move.w #0,bltamod(a5)

move.w #0,bltdmod(a5)

move.w #$ff*64+40,bltsize(a5)

;Wait for mouse button

;Address of last word

;USEA and D, LFx: D = A

;Inclusive Fill plus Descending

;Set first and last word mask

/Address of last word of bit-

;plane to address register

;No modulo

;Start blitter

904

11.7 Programming the Hardware

;Mouse button pressed?

;No -> continue

end: btst #6,ciaapra

bne.S end

;End of Part 1.

;Part 2:

;Octant table with SING =1 and LINE =1:

Octant__table:

dc.b 0 *4+3 ;yl<y2, xl<x2, dx<dy = 0ct6

dc.b 4 *4+3 ;yl<y2, xl<x2, dx>dy = 0ct7

dc.b 2 *4+3 ;yl<y2, xl>x2, dx<dy = 0ct5

dc.b 5 *4+3 ;yl<y2, xl>x2, dx>dy = 0ct4

dc.b 1 *4+3 ;yl>y2, xl<x2, dx<dy = Octl

dc.b 6 *4+3 ;yl>y2, xl<x2, dx>dy = OctO

dc.b 3 *4+3 ;yl>y2/ xl>x2, dx<dy = Oct2

dc.b 7 *4+3 ;yl>y2, xl>x2, dx>dy = Oct3

11.7.9 Sound Output

Fundamentals of electronic music

All sounds, whether music, noise or speech, occur in the form of

oscillations in the air; these are the sound waves that reach our ears. A

normal musical instrument creates these oscillations either directly, in

which the air blown through it is made to oscillate (e.g., a flute) or

indirectly, where part of the instrument creates the tone (oscillation) and

then the air picks it up (e.g., string instruments).

An electronic instrument creates oscillations in its circuits that

correspond to the desired sound. These oscillations aren't audible until

they are converted to sound waves by a loud-speaker. On the Amiga the

speaker built into the monitor is normally used. Unfortunately, because of

its size and quality, it is not capable of high-fidelity translation of the

electrical oscillations into sound waves. Therefore, you should connect

your Amiga to a good amplifier/speaker system to get the full effect of its

musical capabilities. What parameters determine the sound that comes

from the computer?

905

11. The A3000 Hardware

Frequency

The first is the frequency of a sound. It determines whether the pitch

sounds high or low. The frequency is actually the number of oscillations

per second, measured in Hertz (Hz). One oscillation per second is 1 Hz,

and a kilohertz is 1000 Hz. The human ear can discern sounds between

16 and 16000 Hz. Those who know something about music know that

the standard A has a frequency of 440 Hz. The connection between

frequency and pitch is as follows: With each octave the frequency

doubles. The next higher A has a frequency of 880 Hz, while the A on

the octave below the standard has a frequency of 220 Hz.

The frequency of a tone does not have to be constant. For example, it

can periodically vary around the actual pitch by a few Hz, creating an

effect called vibrato.

Volume

The second parameter of a sound is its volume. By volume we mean the

amplitude of the oscillation. The volume of a sound is measured in

deciBels (dB). The range of human hearing is about ldB to 120 dB. Each

increase of about 10 dB doubles the audible volume. The volume of

sound is also called sound pressure or intensity.

The volume can be influenced by many parameters. The simplest is

naturally the volume control on the monitor or amplifier. This simply

changes the amplitude of the electrical oscillations. But the distance

between the listener and the speaker also has an effect on the volume.

The farther you are from the speaker, the softer the sound becomes.

Also, the furnishings in the room, open or closed doors, etc. can also

affect the amplitude of sound waves. Therefore, the absolute volume is

not that important. More interesting is the relative volume of sounds

between each other, such as whether a sound is louder or softer then its

predecessor.

There is a relationship between the volume of a sound and its frequency.

The cause of this is the sensitivity of the human ear. High and low

sounds are perceived as being softer than those in the middle range, even

if they physically have the same sound pressure in deciBels. This middle

pitch range runs from about 1000 to 3000 Hz. The oscillations of human

906

11.7 Programming the Hardware

speech fall within this frequency range, which is probably the reason for

the higher sensitivity.

The volume of a sound can also change periodically within a given

range. This effect is called tremolo. However, there is the variation in

volume from the start to the end of a sound. A sound can start out loud

and then slowly die out. It can also start out loud, then drop a certain

amount and stop abruptly. Or it starts softly and then slowly becomes

louder. There are almost no limits to the possible combinations here.

Tone color or timbre

The third and last parameter of a sound is somewhat more complicated.

This is the timbre or tone color, and it plays an important role. There are

hundreds of different instruments which can all play a sound with the

same frequency and volume, but still they sound different from one

another. The reason for this lies in the shape of the oscillation. The

following figure shows four common waveforms. Why do they sound

different?

Each waveform, regardless of what it looks like, can be represented as a

mix of sine waves of different frequencies having a fixed relationship to

each other. For a square wave, the first wave (or harmonic) has the

fundamental frequency of the sound, the second harmonic has three

times the fundamental frequency but only a third of the amplitude. The

third harmonic has five times the frequency but a fifth of the amplitude,

and so on.

907

11. The A3000 Hardware

Sine Square

Triangle Sawtooth

Noise

Waveforms

The next figure shows this for a square wave and a sawtooth wave. For

the sake of simplicity only the first three harmonics of each waveform are

shown.

As we said, all periodic waveforms can be represented as sums of sine

waves. This is called the harmonic series of a sound. The pure sine wave

consists only of the fundamental frequency. A square wave consists of

an infinite number of harmonics. The number of harmonics and their

frequency and amplitude relationship determine the timbre of a sound.

The harmonic series is important because the human ear reacts only to

sine waves. A sound whose waveform deviates from a pure sine wave is

divided into its harmonics by the ear. You should keep these facts in

mind when reading the following discussion.

908

11.7 Programming the Hardware

3 combined sine waves make a square wave

y=sin x+ ^

...or a sawtooth wave

y=sin x+ , sin3x

3

Waveforms

Noise

In addition to pitched tones there are also noises. While you can define a

tone very precisely and also create it electronically, this is much more

difficult for noises. They have neither a given frequency nor a defined

amplitude variation and no actual waveform. They represent an arbitrary

combination of sound events. The basis of many noises is called white

noise, which is a mix of an infinite number of sounds whose frequencies

and phases have no definite relationship to each other. The wind

produces this sound, for example, because millions of air molecules are

put into oscillation as they collide with one another or with objects on

the earth's surface. These random oscillations make up an undefinable

mixture of sounds we know as the rustling of wind.

909

11. The A3000 Hardware

Sound creation on the Amiga

Digitizing a waveform

127 +

-128- ►

Digital waveforms

The main criterion for judging the acoustical capabilities of a computer is

its versatility. All three parameters of a sound (i.e., frequency, volume and

timbre) should be able to be adjusted independently.

The Amiga's developers tried to achieve this goal as nearly as possible.

Not to be limited to predefined waveforms, the digital equivalent of the

desired waveform is stored in memory and then converted to the

corresponding electrical oscillation by a digital-to-analog converter. In

other words, the oscillation is digitized and stored in the computer.

During output, the digitized data is converted back to analog form and

sent to the amplifier.

In order to convert the waveforms to a form understandable to the

computer, their patterns must be represented by numbers. To do this,

divide one cycle of the desired waveform into an even number of equal-

sized sections. Begin as close as possible to a point where the wave

intersects the X axis. For each of the sections, put the corresponding Y

910

117 Programming the Hardware

value into memory. This produces a sequence of numbers whose

elements represent snapshots of the wave at given points in time. These

digitized values are called samples.

On output, the Amiga converts the number values from memory back

into the corresponding output voltages. But since the wave is divided

into a limited number of samples by the digitization, the output curve can

be reconstructed only with this number of voltages. This results in the

staircase form of the wave shown in the previous figure.

The quality of sounds reproduced in this way as opposed to their original

waveforms depends essentially on two quantities:

One is the resolution of the digitized signals. This is the value range of

the samples. On the Amiga this is eight bits, or from -128 to +127. Each

input value can take one of 256 possible values in memory. Since the

resolution of analog signals is theoretically unlimited, but that of the

individual samples is limited, conversion errors result. These are called

quantization or rounding errors. When the input value lies somewhere

between two numbers (it doesn't correspond exactly to one of the 256

digital steps), it is rounded up or down. The maximum possible

quantization error is 1/256 of the digitized value (also called an error of 1

LSB).

A factor called the quantization noise is tied to the quantization error. As

the name indicates, this reveals itself as noise matching the magnitude of

the quantization error.

A value range of eight bits allows moderately good reproduction of the

original wave. However, higher resolution is needed for high-fidelity

reproduction. For example, a CD player works with 16 bits.

The second parameter for the quality of digitized sound is the sampling

rate. This is the number of samples per second. Naturally, a higher number

of samples results in better reproduction. The sampling rate can be set

within certain bounds on the Amiga. First you must consider how many

samples are used per digitized cycle of the waveform. In our example this

is 16 values. There is little audible difference between the resulting

staircase waveform and a normal sine signal.

911

11. The A3000 Hardware

The output of the digitized sound

Once the desired waveform has been converted to the corresponding

numbers and written into memory, you naturally want to hear it. The

Amiga has four sound channels, which all work according to the

following principle:

A digitized wave is read from memory through DMA and output through

a digital/analog converter. This process is repeated continually so that

the single cycle of the waveform creates a continuous tone. Channels 0

and 3 are sent to the left stereo channel, while 1 and 2 are sent to the

right.

Each audio channel has its own DMA channel. Since the DMA on the

Amiga is performed on words, two samples are combined into one data

word. For this reason you always need an even number of samples. The

upper half of the word (bits 8-15) is always output before the lower half

(bits 0-7).

The data list for our digitized sound wave (where "Start" is the starting

address of the list in chip RAM) looks as follows in memory:

;lst data word, samples 1 and 2

;2nd data word, samples 3 and 4

;3rd data word, samples 5 and 6

;4th data word, samples 7 and 8

;5th data word, samples 9 and 10

;6th data word, samples 11 and 12

;7th data word, samples 13 and 14

;8th data word, samples 15 and 16

The digital/analog converter requires the samples to be stored as signed

8-bit numbers. In digital technology, they must appear in two's

complement form. The assembler accomplishes this conversion for us, so

the negative values can be written directly in the data list.

Now you must select one of the four channels over which to output the

tone. The corresponding DMA channel must then be initialized. Five

registers per channel set the operating parameters. The first two form an

address register pair, which you should recognize from the other DMA

Start

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

End:

:

0,49

90,117

127,117

90,49

0,-49

-90,-117

-127,-117

-90,-49

912

11.7 Programming the Hardware

channels. They are called AUDxLCH and AUDxLCL, or together

AUDxLC, where x is the number of the DMA channel:

Reg.

$0A0

$0A2
$0B0

$0B2

$0C0
$0C2
$0D0

$0D2

Name

AUDOLCH

AUDOLCL

AUD1LCH

AUD1LCL

AUD2LCH

AUD2LCL

AUD3LCH

AUD3LCL

Function

Pointer to the audio data

for channel 0

Pointer to the audio data

for channel 1

Pointer to the audio data

for channel 2

Pointer to the audio data

for channel 3

Bits 16-20

Bits 0-15

Bits 16-20

Bits 0-15

Bits 16-20

Bits 0-15

Bits 16-20

Bits 0-15

The initialization of these address pointers can be accomplished with a

M0VE.L command:

LEA $DFF000, A5

MOVE.L #Start, AUDOLCH(A5)

;Base address of custom chips to A5

;Write "Start" in AUDOLC

Next, the DMA controller must be told the length of the digitized cycle

(i.e., how many samples it comprises). The appropriate registers are the

AUDxLEN registers:

Name Function

$0B4

$0C4

$0D4

AUD0LEN

AUD1LEN

AUD2LEN

AUD3LEN

Number of audio data words for channel 0

Number of audio data words for channel 1

Number of audio data words for channel 2

Number of audio data words for channel 3

The length is specified in words, not bytes. The number of bytes must be

divided by two before being written to the AUDxLEN register.

The AUDxLEN register can be initialized with the following MOVE

command. To avoid having to count all the words, two labels are defined:

"Start" is the starting address of the data list, "End" the end address+1

(see the previous example data list). The base address of the custom chips

($DFF000) is stored in A5:

MOVE.W #(End-Start)/2, AUD0LEN(A5)

Now comes the volume of the sound. On the Amiga the volume for each

channel can be set separately. A total of 65 levels are available, ranging

from 0 (inaudible) to 64 (full volume). The corresponding registers are

called AUDxVOL:

913

11. The A3000 Hardware

Name Function

$0B8

$0C8

$0D8

AUDOVOL

AUDIVOL

AUD2VOL

AUD3VOL

Volume of audio channel 0

Volume of audio channel 1

Volume of audio channel 2

Volume of audio channel 3

Let's set our audio channel to half volume:

MOVE.W #32, AUDOVOL (A5)

The last parameter is the sampling rate. This determines how often a data

byte (sample) is sent to the digital/analog converter. The sampling rate

determines the frequency of the sound. As explained initially, the

frequency equals the number of oscillations (cycles) per second. An

oscillation consists of an arbitrary number of samples. In our example it is

16. If the sampling rate represents the number of samples read per second,

the frequency of the sound corresponds to the sampling rate divided by

the number of samples per cycle:

Frequency:

Sampling rate

Samples per cycle

Unfortunately the sampling rate cannot be specified directly in Hertz.

Instead, the DMA controller wants to know the number of bus cycles

desired between the output of two samples. A bus cycle takes exactly

279.365 nanoseconds (billionths of a second) or 2.79365 * 10-7

seconds.

To get from the sampling rate to the number of bus cycles, first take the

inverse of the sampling rate. This gives you the duration of the sample.

Dividing this value by the duration of a bus cycle in seconds yields the

number of bus cycles between two samples, called the sample period:

Sample period ■■

Sampling rate * 2.79365 * 10-7

Let's assume that we want to play our sample tone with a frequency of

440 Hz, the standard A. The sampling rate is computed as follows:

914

11.7 Programming the Hardware

Sampling rate = Frequency * Samples per cycle

Sampling rate = 440 Hz * 16 = 7040 Hz

We quickly obtain the required sample period by inserting the

appropriate values:

Sample period =

7040*2.79365*10-7

= 508.4583

Since only integral values can be specified for the sample period, we

round the result to 508. As a result, the output frequency is not exactly

440 Hz, but the deviation is minimal, namely 0.4 Hz.

The sample period can theoretically be anything between 0 and 65535.

However, the actual range has an upper limit. As can be gathered from

the figure in the "Fundamentals" section, each audio channel has one

DMA slot per raster line (i.e., one data word (two samples) can be read

from memory in each raster line). The smallest possible value for the

sample period is 124. The sample frequency for this value is 28867 Hz. If

the sample period is made shorter than 124, a data word can be output

twice because the next one cannot be read in time.

The sample period registers are called AUDxPER:

Name Function

$0B6

$0C6

$0D6

AUDOPER

AUDIPER

AUD2PER

AUD3PER

Sample period for audio channel 0

Sample period for audio channel 1

Sample period for audio channel 2

Sample period for audio channel 3

MOVE.W #508,AUR0PER(A5) puts the sampling rate we calculated into

the AUDOPER register. Now all the registers for audio channel 0 have

been supplied with the proper values for our sound. To make it audible,

we still have to enable the DMA access for audio channel 0. Four bits in

the DMACON register are responsible for the audio DMA channels:

915

11, The A3000 Hardware

DMACON bit no. Name Audio DMA channel no.

3

2

1

0

AUD3EN

AUD2EN

AUDI EN

AUDOEN

3

2

1

0

To enable the audio DMA for channel 0, we set the AUDOEN bit to 1. To

be on the safe side, the DMAEN bit should be set along with it (see

"Fundamentals"):

MOVE.W #$8201, DMACON(A5) ;Set AUDOEN and DMAEN

Now the DMA starts to fetch the audio data from memory and output it

through the digital/analog converter. The sound can be heard through

the speaker. To turn it off again, simply set AUDOEN = 0.

Whenever AUDxEN is set to 1, the DMA starts at the address in

AUDxLC. There is one exception: If the DMA channel was on

(AUDxEN = 1) and the bit is briefly cleared and then set back to 1

without the DMA channel reading a new data word in the meantime, the

DMA controller continues with the old address.

Audio interrupts

The audio DMA always starts with the data byte at the address in

AUDxLC. Once the number of data words specified in AUDxLEN have

been read from memory and output, the DMA starts over at the AUDxLC

address. In contrast to the address registers for the Blitter or the

bit-planes, the content of the AUDxLC register is not changed during the

audio DMA. There is an additional address register for each audio

channel. Before the DMA controller gets the first data byte from memory,

it copies the value from the AUDxLC register to this internal address

register.

It also transfers the AUDxLEN register value into an internal counter.

When this happens, an interrupt is generated. As you may recall from the

section on interrupts, there is a separate interrupt bit for each of the four

audio channels. The level 4 processor interrupt is reserved exclusively for

these bits.

While the DMA controller now reads data words from memory, the

processor can supply AUDxLC and AUDxLEN with new data, since the

values of both registers are stored internally. Not until the counter that

916

11.7 Programming the Hardware

was initially loaded with the value from AUDxLEN reaches 0 will the

data from AUDxLC and AUDxLEN be read again.

The processor then has enough time to change the values of the two

registers, if necessary. This allows uninterrupted sound output.

An interrupt is generated after each complete cycle. This means that for

high frequency sounds interrupts occur very often. The interrupt enable

bits (INTEN) for the audio interrupts should be set only when they are

actually needed, or the processor may not be able to save itself from all

the interrupt requests.

Modulation of volume and frequency

To create certain sound effects, it is possible to modulate the frequency

and/or volume. One of the DMA channels acts as a modulator which

changes the corresponding parameters of another channel. This can be

done very simply: The modulation oscillator fetches its data from memory

as usual, but instead of sending it to the digital/analog converter, it writes

it to the volume or frequency register of the oscillator that it modulates

(AUDxVOL or AUDxLEN). It can also affect both registers at once. In

this case the data words read from its data list are written alternately to

the AUDxVOL and AUDxLEN registers. The data words have the same

format as their destination registers:

Volume:

Frequency:

Bits 7-15 Unused

Bits 0-6 Volume value between 0 and 64

Bits 0-15 Sample period

The following shows the use of data words of the modulation oscillator

for all three possible cases:

Data word Oscillator modulates:

No. Frequency Volume

1

2

3

4

Period 1

Period 2

Period 3

Period 4

Volume 1

Volume 2

Volume 3

Volume 4

Volume 1

Period 1

Volume 2

Period 2

Frequency & volume

To activate an audio channel as a modulator, you must set the

corresponding bit or bits in the audio disk control register (ADKCON).

Each channel can modulate only its successor: channel 0 modulates

channel 1, channel 1 modulates channel 2, and channel 2 modulates

917

11. The A3000 Hardware

channel 3. Channel 3 can also be set as a modulator, but its data words

are not used to modulate another channel and are lost. If an audio

channel is used as a modulator, its audio output is disabled.

The ADKCON register contains, as its name suggests, control bits for the

disk controller in addition to the audio circuitry. The disk controller bits

are explained in more detail in another section.

ADKCON register $09E (write) $010 (read)

Bit no.

15

14-8

7

6

5

4

3

2

1

0

Name

SET/CLR

USE3PN

USE2P3

USE1P2

USE0P1

USE3VN

USE2V3

USE1V2

USE0V1

Function

Bits are set (SET/CLR=1) or cleared

Used by the disk controller

Audio channel 3 modulates nothing

Audio channel 2 modulates period of channel 3

Audio channel 1 modulates period of channel 2

Audio channel 0 modulates period of channel 1

Audio channel 3 modulates nothing

Audio channel 2 modulates volume of channel 3

Audio channel 1 modulates volume of channel 2

Audio channel 0 modulates volume of channel 1

To recap: If a channel is used for modulation, its data words are simply

written into the corresponding register of the modulated channel. In

other respects the two operate completely independently of each other.

Problems of digital sound generation on the Amiga

In our example we defined a cycle with 16 samples. The maximum

sampling rate is 28867 Hz. This yields a maximum frequency of 28867 /

16 = 1460.4 Hz. This is close to a third-octave F sharp (1480 Hz).

If you want to go higher, you must decrease the number of samples per

cycle. If we define our sine with half the samples, the maximum

frequency increases to 3020.8 Hz. However, eight data bytes aren't

enough for a good sine wave. For yet higher pitches, the number of

samples decreases even more. For 6041.6 Hz there are only four.

Waveforms can barely be recognized with just four samples.

918

117 Programming the Hardware

Digitizing multiple waves for improving

tone quality

S1 S2 S3 S4 S5 S6 S7 S8

S = sample

Cycles

However, this isn't very noticeable when heard. The ear reacts practically

the same. The higher the frequency, the more difficult it is to identify

sounds. Despite this, it can improve the sound quality to use multiple

cycles to define the desired waveform at high frequencies.

The maximum frequency of the Amiga sound output is limited by another

factor. When converting the digital sound data back to analog, two

undesired interference frequencies occur due to interactions between the

sampling rate and the desired sound frequency. One of these is the sum

of the sampling rate and frequency and the other is their difference. This

phenomenon is called "aliasing distortion."

For example, with a 3 kHz sound and a 12 kHz sampling rate, the

difference is 9 kHz and the sum 15 kHz.

919

11. The A3000 Hardware

Volume (db)

0-

Low-pass filter

Frequency drop

123456789 10111213141516171819

Frequency (kHz)

Volume (db)

0-

Ton<

freq

-30

Aliasing distortion

ency

Sampling rate

Difference
Sum

i i I i i# ■ i i t i i . i i i i i i i
1 234?6789 10111213141516171819

Audible aliasing distortion Frequency (kHz)

The low-pass filter

In order to eliminate the alias frequencies, a device called a low-pass filter

has been placed between the output of the digital/analog converter and

the audio connectors. All frequencies up to 4 kHz pass through

undisturbed. Between 4 and 7 kHz the signal is weakened, until above 7

kHz nothing is allowed to pass. For example, the 3 kHz tone is not

affected by the low-pass filter, but both the sum and the difference

frequencies of 9 and 15 kHz lie above the filter's cut-off frequency of 7

kHz and cannot pass through. Also, they are not heard through the

speaker. If you try to output the same 3 kHz tone with a sampling rate of

9 kHz, the difference frequency of 6 kHz (9 kHz - 3 kHz) is diminished

by the filter but still passes through it.

To be sure that the difference frequency always lies above the cut-off

frequency of the filter, we must observe the following rule:

Sampling rate > highest frequency component + 7 kHz

920

11.7 Programming the Hardware

It is not enough to ensure that the difference between the sampling

frequency and the desired output frequency is greater than 7 kHz. If a

waveform with many harmonics is used, each of the harmonics produces

its own difference frequency with the sampling rate. This is why the

highest frequency of the waveform must be used in the previous

expression.

Not only does the low-pass filter hold back the aliasing distortion, it also

limits the frequency range of the Amiga. To be sure, tones with a

fundamental frequency between 4 and 7 kHz rarely occur in a musical

piece, but the harmonics of much lower fundamentals for certain

waveforms lie within this range. This is especially clear for a square wave.

The square waveform, as we saw earlier, consists of the combination of

several sine waves having a set frequency relationship to each other. In

the figure the square wave is shown to consist of just two harmonics and

the fundamental tone. However, an actual square wave has an infinite

number of harmonics. If the higher-order harmonics are limited or

removed by the filter, a somewhat deformed square wave results. In the

extreme case where the fundamental frequency of the square wave

approaches the cut-off frequency of the filter, only the fundamental

remains. This turns the original square wave into a sine wave.

Amplitude envelope of a sound

In addition to the waveform, the sound of an instrument is also

influenced by its amplitude envelope. The Amiga can do almost anything

in the area of waveforms. How are specific envelopes programmed?

The envelope of a sound can be divided into three sections: The attack,

sustain, and decay phases.

As soon as the sound is played, the attack phase begins. It determines

how quickly the volume rises from zero to the sustain value. During the

sustain phase the sound remains at this volume. As the sound ends, it

enters the decay phase, where the volume drops from the sustain value

back to zero.

The amplitude curve that this process represents is generally called an

envelope. How do you program such an envelope on the Amiga?

There are three possibilities:

921

11. The A3000 Hardware

Volume modulation

A second sound channel is used to modulate the volume of the sound.

For example, channel 0 can be used to modulate channel 1. Channel 1

can continually output the desired sound with its volume set to 0.

The desired amplitude curve is divided into two parts: attack phase and

decay phase. It is digitized (just like a waveform) and placed in memory

in two data lists. When the sound is to be played, channel 0 is set to the

address of the attack data and started. Since it modulates the volume of

channel 1, the volume of the sound follows the desired attack phase

exactly. When the attack phase reaches the sustain value, the data list for

channel 0 has been processed. It then generates an interrupt, and the

data list would normally be processed again from the beginning. The

processor must react to the interrupt and turn off channel 0 by means of

the AUDOEN bit in the DMACON register. Channel 1 remains at the

desired sustain volume.

When the tone is to be turned off, you set channel 0 to the start of the

decay data and start it again. Wait again for the interrupt, which signals

that the decay phase is done, and turn channel 0 off.

The registers for channel 0 must be initialized as follows for this

procedure:

USE0V1 This bit in the ADKCON register should be set to 1 so

that channel 0 modulates the volume of channel 1.

AUDOLC First set to the data list for the attack phase and then to

that of the decay phase.

AUDOLEN Contains, depending on the address in AUDOLC, the

length of either the attack or decay data.

AUD0VOL Has no function here, since the audio output of channel

0 is turned off.

AUDOPER The content of the AUDOPER register determines the

speed at which the volume data is read from memory.

This can be used to set the length of the attack/decay

phase.

922

11.7 Programming the Hardware

This method allows the desired envelope to be constructed perfectly.

Unfortunately, it also has a big disadvantage: Two audio channels are

required for one sound. If you want four different sound channels, you

have to use an alternate method:

Controlling volume with the processor

The desired envelope is placed in memory as previously described.

However, this time the processor changes the volume. It fetches the

current volume from memory at regular intervals and writes it to the

volume register of the corresponding sound channel.

The program must be run as an interrupt routine. This can be done in the

vertical blanking interrupt or one of the timer interrupts from CIA-B can

be used.

The disadvantage of this method is the amount of processor time that it

requires, since the volume control is not performed by DMA. Since the

amount of time needed is reasonably limited, this is usually the best

method for most applications.

Constructing the envelope in the sample data

This method is best for short sounds or sound effects. Instead of

digitizing just one cycle of the desired waveform, write the entire sound

into memory. A program can calculate it, or you can use an audio

digitizer, which performs hardware digitizing of sound with a

microphone and analog/digital converter.

Several companies offer such devices for use with the Amiga. Once the

data is in the Amiga, it can be played back at any pitch or speed. This

allows complex effects, such as laughter or screams, to be reproduced by

the Amiga with considerable accuracy.

This method also has its disadvantages: It involves either difficult

calculations or additional hardware to put the complete sound in

digitized form into memory. In addition, this method requires large

amounts of memory. For example, if the sound is 1 second long with a

sampling rate of 20 kHz, the sound data takes up 20K.

923

11. The A3000 Hardware

Tips, tricks and more

Sound quality

The value range of the digital data is from -128 to 127. This range should

be used as fully as possible. It is best when the amplitude of the digital

waveform equals 256.

Otherwise the sound quality deteriorates audibly, since a decrease in the

range means relatively greater quantization error and noise that can

quickly reach distortional proportions.

For this reason you should avoid using the amplitude of the digitized

sound to control the volume. Each channel has its own AUDxVOL

register for volume control. If the volume is reduced with this register, the

relationship between the desired sound and the distortion remains the

same and the Amiga's high sound quality is preserved.

Changing waveforms smoothly

To avoid annoying crackling or jumps in volume when changing

waveforms, remember the following rules:

Each cycle should be digitized from zero-point to zero-point (i.e., it

should start and end at a point where the waveform crosses the X axis).

If you follow this rule, all waveforms in memory have the same starting

and ending value, namely zero. In transitions between consecutive

waveforms of different shapes, there are no sudden level jumps which

would be heard as noise.

Secondly, you should make sure that the total volumes of the two cycles

are approximately equal. Volume refers to the effective value of the

waveform. The effective value is equal to the amplitude of a square wave

signal whose surface under the curve is exactly as large as that of the

waveform.

This effective value determines the volume of an oscillation. Only for a

square wave does it equal the amplitude. If you change from one

waveform to another with a higher effective value, the second sounds

louder than its predecessor.

924

11.7 Programming the Hardware

The effective value of a cycle can be easily calculated from its digitized

data:

You add up the values of all the data bytes and divide the result by the

number of data bytes.

If you want to fully utilize the 8-bit value range of the digital/analog

converter for all waveforms, the effective values will not always match.

The volume must be adjusted accordingly with the AUDxVOL register

when changing waveforms.

Playing notes

Normally a piece of music is written out in the form of notes. If you want

to play it on the Amiga, yoii must convert the notes to the appropriate

sample periods. To minimize the amount of calculation, it is generally best

to use a table containing the sample period values for all the half-tones in

an octave:

Table of sample period values for musical notes (for AUDxLEN = 16):

Note

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

Frequency [Hz]

261.7

277.2

293.7

311.2

329.7

349.3

370.0

392.0

415.3

440.0

466.2

493.9

523.3

Sample period

427 (262.0)

404 (276.9)

381 (293.6)

359 (311.6)

339 (330.0)

320 (349.6)

302 (370.4)

285 (392.5)

269 (415.8)

254 (440.4)

240 (466.0)

226 (495.0)

214 (522.7)

A value in parentheses represents the actual frequency for the

corresponding sampling period. The frequency of a half-tone is always

greater than its predecessor by the factor "twelfth root of 2." Thus 440

(A) * 2(1/12) = 466.2 (A#), 466.2 (A#) * 2(1/12) = 493.9 (B), etc.

An octave always corresponds to a doubling of frequency.

925

11. The A3000 Hardware

If you want to play a note from an octave that is not in the table, there

are two options:

1. Change the sampling period. For each octave up the value must be

halved. An octave lower means doubling the sampling period. This

is simple, but one soon runs into certain limits. With a data field of

32 bytes (AUDxLEN = 16), as in our table, the smallest possible

sampling period (124) is reached with the second A. The data list

must be reduced in size.

In this case you get problems with lower tones since the aliasing

distortion then becomes audible.

A better solution is procedure 2:

2. Create a separate data list for each octave. The sampling period

value remains the same for every octave. It is used only to select the

half-tone. If a tone from an octave above that in the table is

required, you use a data list that is only half as long.

Correspondingly, a list twice as long is used for the next lower

octave.

The normal musical range comprises eight octaves, meaning that

you need eight data lists per waveform.

In return for the extra work this method involves, you always get the

optimal sound regardless of pitch.

Creating higher frequencies

The minimal sampling period is normally 124. The reason for this is that

the audio DMA is not able to read the data words fast enough to support

a shorter sampling period. The old data word is then output more than

once. This effect can be used to our advantage. Since the data word read

contains two samples, a high frequency square wave can be created with

it. With a sampling period of 1 you get a sampling frequency of 3.58

MHz and an output frequency of 1.74 MHz. To be able to use this high

frequency output signal, you must intercept it before it reaches the low-

pass filter. The AUDIN input (pin 16) of the serial connector (RS232)

allows you to do this. It is connected directly to the right audio output of

Paula (see the section on interfaces).

926

77.7 Programming the Hardware

In order to create such high frequencies, AUDxVOL must be set to the

maximum volume (AUDxVOL = 64).

Playing polyphonic music

Since the Amiga has four independent audio channels, four different

sounds can be created at once. This allows any four-voice musical pieces

to be played directly.

But there can be more. Just because there are four audio channels

doesn't mean that four voices is the maximum. As we mentioned, each

waveform is actually a combination of sine signals. Just as these

harmonics together make up the waveform, you can also combine

multiple waveforms into a multi-voiced sound. The output signals for

audio channels 0 and 3 are mixed together into one stereo channel inside

Paula. The waveforms of both channels are combined into a single two-

voiced channel.

The same thing that's done electronically with analog signals can be

done by computation with digital data. Simply add the digital data of

two completely different waveforms and output the new data to the

audio channel as usual. Now you have two voices per audio channel.

Theoretically, any number of voices can be played over a sound channel

in this manner.

In practice the number of voices is limited by the speed of computation,

but 16 voices are certainly possible.

Calculating the summed signal from the components is very simple. At

each point in time the current values of all the sounds are added and the

result is divided by the number of voices. This is how a square signal

results from combining sine waves with the right relative frequencies.

Audio output without DMA

Like all DMA channels, the audio DMA channels have registers to which

they write data and where data can also be written by the processor:

927

11. The A3000 Hardware

The audio data registers

Reg.

$0AA

$0BA

$0CA

$0DA

Name

AUDODAT

AUDIDAT

AUD2DAT

AUD3DAT

Function

These four registers always contain the current

audio data word, consisting of two samples.

The sample in the upper byte (bits 8-15)

is always output first.

For the processor to be able to write to the audio data registers, the DMA

must be turned off with AUDxEN = 0. This also changes the creation of

audio interrupts. They will now always occur after the output of the two

samples in the AUDxDAT register instead of at the start of each audio

data list.

If a new data word is not loaded into AUDxDAT in time, the last two

samples are not repeated as they are for DMA operation, but the output

remains at the value of the last data byte (the lower half of the word in

AUDxDAT).

The direct programming of the audio data registers costs a great deal of

processing time. The audio DMA should be used except in special cases.

A few facts

AUDxVOL values in deciBels (0 dB = full volume):

AUDxVOL

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

dB

0.0

-0.1

-0.3

-0.4

-0.6

-0.7

-0.9

-1.0

-1.2

-1.3

-1.5

-1.6

-1.8

-2.0

-2.1

-2.3

AUDxVOL

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

dB

-2.5

-2.7

-2.9

-3.1

-3.3

-3.5

-3.7

-3.9

-4.1

-4.3

-4.5

-4.8

-5.0

-5.2

-5.5

-5.8

AUDxVOL

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

dB

-6.0

-6.3

-6.6

-6.9

-7.2

-7.5

-7.8

-8.2

-8.5

-8.9

-9.3

-9.7

-10.1

-10.5

-11.0

-11.5

AUDxVOL

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

dB

-12.0

-12.6

-13.2

-13.8

-14.5

-15.3

-16.1

-17.0

-18.1

-19.2

-20.6

-22.1

-24.1

-26.6

-30.1

-36.1

AUDxVOL = 0 corresponds to a dB value of minus infinity. If AUDxVOL

= 64, then a digital value of 127 corresponds to an output voltage of

928

11.7 Programming the Hardware

about 400 millivolts, and -128 corresponds to -400 millivolts. A change

of 1 LSB causes about a 3 millivolt variation in the output voltage.

Example programs

Program 1: Creating a simple sine wave

This program creates a sine wave tone with a frequency of 440 Hz. The

sample table presented in the text is used. The largest portion of the

program is used to allocate chip RAM for the audio data list. The sound

is produced over channel 0 until the mouse button is pressed. The

program then releases the occupied memory.

;*** Create a simple sinewave ***

/Custom chip registers

intena = $9A ;Interrupt enable register (write)

dmacon = $96 ;DMA control register (write)

;Audio-Register

audOlc = $A0 /Address of audio data list

audOlen = $A4 /Length of audio data list

audOper = $A6 /Sampling period

audOvol = $A8 /Volume

adkcon = $9E /Control register for modulation

/CIA-A Port register A (mouse button)

ciaapra = $bfe001

/Exec Library Base Offsets

AllocMem = -30-168 /ByteSize, Requirements/d0,dl

FreeMem = -30-180 /MemoryBlock,ByteSize/al,dO

/Other labels

ALsize = ALend - ALstart /Length of audio data list

Execbase = 4

chip = 2 /Allocate chip RAM

;*** Initialization ***

start:

/Allocate memory for audio data list

move.1 Execbase,a6

moveq #ALsize,dO /Size of audio data list

moveq #chip,dl

jsr AllocMem(a6) /Allocate memory

929

11. The A3000 Hardware

beq Ende ;Error -> End program

;Copy audio data list in chip RAM

move.l dO,aO ;Address in chip RAM

move.l #ALstart,al ;Address in program

moveq #ALsize-l,dl ;Loop counter

Loop: move.b (al)+/(a0)+ ;Data list in chip RAM

dbf dl,Loop

.*** Main program

/Initialize audio registers

lea $DFF000,a5

move.w #$000f,dmacon(a5) ;Audio DMA off

move.l d0,aud01c(a5) ;Set address of data list

move.w #ALsize/2,aud01en(a5) ;Length in words

move.w #32,audOvol(a5) ;Half volume

move.w #508,aud0per(a5) ;Frequency: 440 Hz

move.w #$00ff,adkcon(a5) /Disable modulation

/Enable audio DMA

move.w #$8201,dmacon(a5) /Channel 0 on

/Wait for a mouse button

wait: btst #6,ciaapra

bne wait

/Disable audio DMA

move.w #$0001/dmacon(a5) /Channel 0 off

/*** End

move.1

moveq

jsr

of program **

dO,al

#ALsize,dO

FreeMem(a6)

Ende: clr.l dO

rts

/Audio data list

ALstart:

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

0,49

90,117

127,117

90,49

0,-49

-90,-117

-127,-117

-90,-49

/Address of data list

/Length

/Release assigned memory

930

11.7 Programming the Hardware

ALend:

;Program end

end

Program 2: Sine wave tone with vibrato

This program is an extension of the previous one. The same sine wave

tone is output, but this time over channel 1. Channel 0 modulates the

frequency of channel 1 and creates the vibrato effect. The data for the

vibrato represents a digitized sine wave whose zero point has the value

of the sampling period of a standard A (i.e., 508).

;*** Creating a vibrato ***

/Custom chip register

INTENA = $9A /Interrupt enable register (write)

DMACON = $96 ;DMA control register (write)

;Audio registers

AUDOLC = $A0 /Address of audio data list

AUDOLEN = $A4 /Length of audio data list

AUDOPER = $A6 /Sampling period

AUDOVOL = $A8 /Volume

AUD1LC = $B0

AUD1LEN = $B4

AUD1PER = $B6

AUD1VOL = $B8

ADKCON = $9E /Control register for modulation

/CIA-A Port register A (mouse button)

CIAAPRA = $bfe001

/Exec Library Base Offsets

AllocMem = -30-168 /ByteSize,Requirements/dO,dl

FreeMem = -30-180 /MemoryBlock,ByteSize/al,dO

/Other labels

Execbase = 4

chip = 2 /Allocate chip RAM

Vibsize = Vibend - Vibstart /Length of vibrato table

931

11. The A3000 Hardware

ALsize = ALend - ALstart ;Length of audio data list

Size = ALsize + Vibsize ;Total length of both lists

;*** Initialization ***

start:

;Allocate memory for data lists

move.1 Execbase,a6

move.l #Size,dO ;Length of both lists

moveq #chip,dl

jsr AllocMem(a6) /Allocate memory

beq Ende

;Copy audio data list in chip RAM

;Address in chip RAM

;Address in program

;Loop counter

move

move

move

Loop:

dbf

. **•

.1

.1

.1

Main

dO,aO

#ALstart,al

#Size-l,dl

move.b (al)

dl,Loop

program

;Initialize audio registers

move.l dO,dl ;Audio data list address

add.l #ALsize,dl ;Address of vibrato table

lea $DFF000,a5

move.w #$000f/dmacon(a5) ;Audio DMA off

move.l dl,aud01c(a5) ;Set to vibrato table

move.w #Vibsize,aud01en(a5) ;Length of vibrato table

move.w #8961,aud0per(a5) ;Vibrato frequency

move.l dO,audllc(a5) /Channel 1 from audio data list

move.w #ALsize,audllen(a5) /Length of audio data list

move.w #32,audlvol(a5) ;Half volume

move.w #$00FF,adkcon(a5) /Disable other modulation

move.w #$8010/adkcon(a5) /Channel 0 modulates period from

/channel 1

/Audio DMA on

move.w #$8203/dmacon(a5) /Channels 0 and 1 on

/Wait for a mouse button

932

11.7 Programming the Hardware

wait: btst #6,ciaapra

bne wait

;Audio DMA off

move.w #$0003,dmacon(a5) ;Channels 0 and 1 off

;* * * End program * * *

move.1

move.1

jsr

dO,al

#Size,dO

FreeMem(a6)

Ende: clr.l dO

rts

;Audio data list

ALstart:

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

ALend:

;Vibrato

0,49

90,117

127,117

90,49

0,-49

-90,-117

-127,-117

-90,-49

table

;Address of lists

;Length

;Release memory

Vibstart:

dew 508, 513, 518, 522, 524, 525, 524, 522, 518, 513

dew 508,503,498,494,492,491,492,494,498,503

Vibend:

/Program end

end

11.7.10 Mouse, Joystick and Paddles

Mouse, joystick and paddles - all of these can be connected to the

Amiga. We'll go through them in order, together with the corresponding

registers. The pin assignment of the game ports, to which all of these

input devices are connected, can be found in the section on interfaces.

Let's start with the mouse:

933

11. The A3000 Hardware

The mouse

The mouse is the most-often used input device. It's an important device

for using the user-friendly interfaces of the Amiga. But how does it work

and how is the mouse pointer on the screen created and moved?

If you turn over the mouse, you'll see a rubber-coated metal ball that

turns when the mouse is moved. These rotations of the ball are

transferred to two shafts, situated at right angles to each other so that

one turns when the mouse is moved along the X axis and the other when

the mouse is moved along the Y axis. If the mouse is moved diagonally,

both shafts rotate corresponding to the X and Y components of the

mouse movement. Unfortunately, rotating shafts don't help the Amiga

when it wants to determine the position of the mouse. The mechanical

movement must be converted into electrical signals.

A wheel with holes around its circumference is attached to the end of

each shaft for this purpose. When it rotates it repeatedly breaks a beam

of light in an optical coupler. The signal that results from this is amplified

and sent out over the mouse cable to the computer. Now the Amiga can

tell when and at what speed the mouse is moved. But it still doesn't

know in what direction (i.e., left or right, forward or backward).

A little trick solves this problem. Two optical couplers are placed on each

wheel, set opposite each other and offset by half a hole. If the disk

rotates in a given direction, one light beam is always broken before the

other. If the direction is reversed, the order of the two signals from the

optical coupler changes accordingly. This allows the Amiga to determine

the direction of the movement.

Therefore, the mouse returns four signals, two per shaft. They are called

Vertical Pulse, Vertical Quadrature Pulse, Horizontal Pulse and Horizontal

Quadrature Pulse.

The next figure shows the phase relationship of the horizontal pulse (H)

and horizontal quadrature pulse (HQ) signals, but it also holds for the

vertical signals. It's easy to see how H and HQ differ from each other

depending on the direction of movement. The Amiga performs logical

operations on these two signals to obtain two new signals, XO and XI.

XI is an inverted HQ, and XO arises from an exclusive OR of H and HQ

(i.e., XO is 1 whenever H and HQ are at different levels).

934

11.7 Programming the Hardware

With these two signals the Amiga controls a 6-bit counter which counts

up or down on XI depending on the direction. Together with XO and XI

an 8-bit value is formed which represents the current mouse position.

If the mouse is moved right or down, the counter is incremented. If the

mouse is moved left or up, it is decremented.

Denise contains four such counters, two per game port, since a mouse

can be connected to each one. They are called JOYDATO and JOYDATI:

JOY0DATS00A - JOY1DAT$OOC

(mouse on game port 0) - (mouse on game port 1)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 XO

Both registers are read-only.

YO-7 Counter for vertical mouse movements (Y direction)

HO-7 Counter for horizontal mouse movements (X direction)

The mouse creates two hundred count pulses per inch, or about 79 per

centimeter, which means that the limit of the mouse counter is soon

reached. Eight bits yield a count range from 0 to 255. Moving the mouse

over four centimeters overflows the counters. This can occur when

counting up (the counter jumps from 255 to 0) as well as counting down

(the counter jumps from 0 to 255). Therefore, the count registers must be

read at given intervals to see if an overflow or underflow has occurred.

935

11. The A3000 Hardware

1. Right movement

H

Truth tables for XO and X1: H

0

0

1

1

H<2
0

1

0

1

XO

0

1

1

0

olT
i o

The mouse signals

The operating system usually does this during the vertical blanking

interrupt. This is based on the assumption that the mouse is not moved

more than 127 count steps between two successive reads. The new

counter state is compared with the last value read. If the difference is

greater than 127, then the counter overflowed and the mouse was moved

right or down. If it's less than -127, an underflow occurred corresponding

to a mouse movement left or up.

oid —
counter state

100

200

50

200

New

counter state

200

100

200

50

Difference = old counter state -

Difference

-100

+100

-150

+150

Actual

mouse movement

+100

-100

-105

+105

new counter state

Under-/

Overflow

No

No

Underflow

Overflow

If an underflow occurred, the actual mouse movement is calculated as
follows:

936

11.7 Programming the Hardware

1-255 - difference, or in numbers: -255 - (50-200) = -105 1

For an overflow:

1255 - difference, or in numbers: 255 - (200-50) = +105 1

A positive mouse movement corresponds to a movement right or up, a

negative value to left or down.

The mouse counters can also be set through software. A value can be

written to the counter through the JOYTEST register. JOYTEST operates

on both game ports simultaneously, meaning that the horizontal and

vertical counters of both mouse counters are initialized with the same

value (JOY0DAT = JOY1DAT).

JOYTEST $036 (write-only)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: Y7 Y6 Y5 Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx

As you can see, only the high-order six bits of the counters can be

affected. This makes sense when you remember that the lower two bits

are taken directly from the mouse signals and aren't in an internal memory

location that can be changed.

The joysticks

When you look at the pin-out of the game ports, you see that the four

direction lines for the joysticks occupy the same lines as those for the

mouse. Therefore, it seems reasonable that they can also be read with the

same registers. In fact, the joystick lines are processed exactly like the

mouse signals (i.e., each pair of lines is combined into the X0 and XI or

Y0 and Yl bits).

The joystick position can be determined from these four bits:

Joystick right

Joystick left

Joystick backward

Joystick forward

X1

Y1

XO

Y0

= 1

= 1

EOR

EOR

X1

Y1

= 1

= 1

(bit 1 JOYxDAT)

(bit 9 JOYxDAT)

(bits 0 and 1 JOYxDAT)

(bits 8 and 9 JOYxDAT)

In order to detect whether the joystick has been moved backward or

forward, you must take the exclusive OR of X0 and XI or Y0 and Yl,

937

11. The A3000 Hardware

respectively. If the result is 1, the joystick is in the position. The following

assembly language routine reads the joystick on game port 1:

TestJoystick:

MOVE.W $DFF00C, DO

BTST #1, DO

BNE RIGHT

BTST #9, DO

BNE LEFT

MOVE.W DO,D1

LSR.W #1,D1

EOR.W DOfDl

BTST #0, Dl

BNE BACK

BTST #8, Dl

BNE FORWARD

BRA MIDDLE

;Move JOY1DAT to DO

;Test bit no. 1

;Set? If so, joystick right

;Test bit no. 9

;Set? If so, joystick left

;Copy DO to Dl

;Move Yl and XI to position of Y0 and XO

/Exclusive OR: Yl EOR Y0 and XI EOR XO

;Test result of XI EOR XO

;Equal 1? If so, joystick backward

;Test result of Yl EOR Y0

;Equal 1? If so, joystick forward

;Joystick is in middle position

The exclusive OR operation is performed as follows in this program:

A copy of the JOY1DAT register (previously moved to DO) is placed in

Dl and is shifted one bit to the right. Now XI in Dl and XO in DO have

the same bit position, as do Yl and Y0. An EOR between DO and Dl

exclusive ORs YO with Yl and XO with XI. Then all you have to do is

test the result in Dl with the appropriate BTST commands.

This program does not support diagonal joystick positions.

The paddles

The Amiga has two analog inputs per game port, to which variable

resistors called potentiometers can be connected. These have in each

position a given resistance, which can be determined by the hardware in

Paula. A paddle contains such a potentiometer which can be set with a

knob. Analog joysticks also work this way. One potentiometer for the X
and one for the Y direction determine the joystick position exactly.

Two registers contain the four 8-bit values of the analog inputs,

POT0DAT for game port 0 and POT1DAT for game port 1:

938

11.7 Programming the Hardware

POT0DAT$012 POT1DAT$014

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0

Both registers are read-only.

How is the resistance measured? Since a computer can process only

digital signals, it needs a special circuit to convert any analog signals it

wants to work with. On the Amiga the value of external resistance is

determined as follows:

The potentiometers have a maximum resistance of 470 kilo Ohms

(±10%). One side is connected to the +5-volt output and the other to

one of the four paddle inputs of the game ports. These lead internally to

the corresponding inputs of Paula and to one of four capacitors

connected between the input and ground.

The measurement is started by means of a special start bit. Paula pulls all

paddle inputs briefly to ground, discharging the capacitors. At this time

the counters in the POTxDAT registers are also cleared. After this the

counters increment by one with each screen line, while the capacitors are

slowly recharged through the resistors. When the capacitor voltage

exceeds a given value, the corresponding counter is stopped. The

counter state corresponds exactly to the size of the resistance. Small

resistances yield low counter values, greater ones yield higher values.

The start bit is located in the POTGO register:

POTGO $034 (write-only) - POTGOR $016 (read-only)

Bit no.

15

14

13

12

11

10

9

8

7-1

0

Name

OUTRY

DATRY

OUTRX

DATRX

OUTLY

DATLY

OUTLX

DATLX

START

Function

Switch game port 1 POTY to output

Game port 1 POTY data bit

Switch game port 1 POTX to output

Game port 1 POTX data bit

Switch game port 0 POTY to output

Game port 0 POTY data bit

Switch game port 0 POTX to output

Game port 0 POTX data bit

Unused

Discharge capacitors, begin measurement

A write access to POTGO clears both POTxDAT registers.

939

11. The A3000 Hardware

Normally you set the START bit to 1 in the vertical blanking gap. Then

while the picture is being displayed, the capacitors charge up, reach the

set value and stop the counters. The valid potentiometer readings can

then be taken from the POTxDAT registers in the next vertical blanking

gap.

The four analog inputs can also be programmed as normal digital

input/output lines. The corresponding control and data bits are found

together with the START bit in the POTGO register. Each line can be

individually set to an output with the OUTxx bits (OUTxx = 1).

This separates them from the control circuit of the capacitors and causes

the value in the DATxx bit of POTGO to be output over them. Reading a

DATxx bit in POTGOR always returns the current state of the line. The

following must be noted if the analog ports are used as outputs:

Since the four analog ports are internally connected to the capacitors for

resistance measurement (47 nF), it can take up to 300 microseconds for

the line to assume the desired level due to the charging/discharging of

the capacitor required.

The input device buttons

Each of the three input devices mentioned so far has one or more

buttons. The following table shows which registers contain the status of

the mouse, paddle and joystick buttons:

940

11.7 Programming the Hardware

Game port 0:

Left mouse button

Right mouse button

(Third mouse button

Joystick fire button

Left paddle button

Right paddle button

CIA-A, parallel port A, port bit 6

POTGOR, DATLY

POTGOR, DATLX)

CIA-A, parallel port A, port bit 6

JOYODAT, bit 9 (1 = button pressed)

JOYODAT, bit 1 (1 = button pressed)

Game port 1:

Left mouse button

Right mouse button

(Third mouse button

Joystick fire button

Left paddle button

Right paddle button

CIA-A, parallel port A, port bit 7

POTGOR, DATRY

POTGOR, DATRX)

CIA-A, parallel port A, port bit 7

JOY1DAT, bit 9 (1 = button pressed)

JOY1DAT, bit 1 (1 = button pressed)

Unless otherwise indicated, all bits are active-zero, meaning 0 = button

pressed.

11.7.11 The Serial Interfaces

As we discussed earlier, the Amiga has a standard RS-232 interface. The

various lines of this connector can be divided into two signal groups:

1. The serial data lines

2. The handshake lines

First about number 2: The RS-232 interface has a number of handshake

lines. Normally they are not all used. However, the behavior of these

signals is not always the same from one RS-232 device to another.

Now to number 1:

All data transfer takes place over the two data lines. The RXD line

receives the data and it's sent out over TXD. RS-232 communication can

take place in two directions at once when two devices are connected

together through RXD and TXD. The RXD of one device is connected to

the TXD of the other, and vice versa.

941

11. The A3000 Hardware

Principle of serial RS-232 data transfer

Principle of serial RS-232 data transfer

+1 cV

ov

-12V —

0 1 1 0 1

Start Data

bit bits

0 0 1 0

Earliest possible

time for start of

next character

f «
'0

0

Stop

bit

i

The RS-232 data transfer

Since only one line is available for the data transfer in each direction, the

data words must be converted into a serial data stream which can then be

transmitted bit by bit. No clock lines are provided in the RS-232

standard. So that the receiver knows when it can read the next bit, the

time per bit must be constant (i.e., the speed at which the data is sent and

received must be defined). This speed is called the baud rate, and it

determines the number of bits transferred per second. For example,

common baud rates are 300, 1200, 2400, 4800 and 9600 baud. You're

not limited to these baud rates, but when using strange baud rates,

remember that the sender and receiver must actually match.

One more thing required for successful transfer is that the receiver must

know when a byte starts and ends. The above figure shows the timing of

the transmission of a data byte on one of the data lines. Each byte begins

with a start bit, which is no different from the normal data bits but always

has a value of 0. Following this are the data bits in the order LSB to

MSB. At the end are one or two stop bits, which have the value 1. The

receiver recognizes the transition from one byte to the next by the level

change from 1 to 0 that occurs when a start bit follows a stop bit.

The component that performs this serial transfer is called a Universal

Asynchronous Receiver/Transmitter, or UART. In the Amiga it is

contained in Paula, and its registers are in the custom chip register area:

942

11.7 Programming the Hardware

The UART registers

SERPER $032 (write-only)

Bit no. Name Function

15

0-14

LONG

RATE

Set length of receive data to 9 bits

This 15-bit number contains the baud rate

SERDAT $030 (write-only)

SERDAT contains the send data.

SERDATR $018 (read-only)

Bit no.

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Name

OVRUN

RBF

TBE

TSRE

RXD
_.-

STP

STP or DB8

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DBO

Function

Overrun of receive shift register

Receive buffer full

Transmit buffer empty

Transmit shift register empty

Corresponds to level on RXD line

Unused

Stop bit

Depends on data length

Receive data buffer bit 7

Receive data buffer bit 6

Receive data buffer bit 5

Receive data buffer bit 4

Receive data buffer bit 3

Receive data buffer bit 2

Receive data buffer bit 1

Receive data buffer bit 0

One bit in the ADKCON register belongs to UART control:

ADKCON $09E (write) ADKCONR $010 (read) SERIELL

Bit no. 11: UARTBRK - interrupts the serial output and sets TXD

toO.

Data transfer with the Amiga UART

Receiving

The reception of the serial data takes place in two stages. The bits

arriving on the RXD pin are received into the shift register at the baud

rate and are combined there into a parallel data word. When the shift

register is full, its contents are written into the receiver data buffer. It is

943

11. The A3000 Hardware

then free for the next data. The processor can read only the receiver data

buffer, not the shift register. The corresponding data bits in the

SERDATR register are DBO to DB7 or DB8.

The Amiga can receive both eight and nine-bit data words. The UART

can be set to 9-bit words with the LONG bit (=1) in the SERPER register.

The data length determines the format in the SERDATR register. With 9

bits, bit 8 of SERDATR contains the ninth data bit, while the stop bit is

found in bit 9. With eight data bits, bit 8 contains the stop bit. If two stop

bits are present, the second lands in bit 9.

The state of the receiver shift register and the data buffer is given by two

signal bits in SERDATR:

RBF stands for Receive Buffer Full. As soon as a data word is transferred

from the shift register to the buffer, this bit changes to 1 and thereby

signals the processor that it should read the data out of SERDATR.

This bit also exists in the interrupt registers (RBF, INTREQ/INTEN bit 11).

After the processor has read the data, it must reset RBF in INTREQ. The

bit then returns to 0 in SERDATR and in INTREQR.

MOVE.W #$0800#$DFF000+INTREQ /Clears RBF in INTREQ and SERDATR

If this is not done and the shift register has received another complete

data word, the UART sets the OVRUN bit. This signals that no more data

can be received because both the buffer (RBF = 1) and the shift register

(OVRUN = 1) are full. OVRUN returns to 0 when RBF is reset. RBF then

jumps back to 1 becauise the contents of the shift register are immediately

transferred to DBO through DB8 to free the shift register for more data.

Transmitting

The sending process also takes place in two stages. The transmit data

buffer is found in the SERDAT register. As soon as a data word is written

into this register it is transferred to the output shift register. This is

signaled by the TBE bit. TBE stands for Transmit Buffer Empty and

indicates that SERDAT is ready to take more data. TBE is also present in

the interrupt registers (TBE, INTREQ/INTEN bit 0). Like RBF, TBF must

also be reset in the INTREQ register.

944

11.7 Programming the Hardware

Once the shift register has sent the data word, the next one is

automatically loaded from the transmitter data buffer. If this is empty, the

UART sets the TSRE bit (Transmit Shift Register Empty) to 1. This bit is

reset when TBE is cleared.

The length of the data word and the number of stop bits are set by the

format of the data in SERDAT. You simply write the desired data word to

the lower eight or nine bits of SERDAT with one or two stop bits (lfs) in

front of it. An eight-bit data word with two stop bits would look like this,

for example:

Bit no.: 15 14 13 12 11 9 8 7 6 5 4 3 2 1 0

Function: 0 0 0 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 DO

DO to D7 are the eight data bits.

The two ones represent the desired two stop bits. With a nine-bit data

word and one stop bit the following data must be written into SERDAT:

Bit no.:

Function:

Bit no.:

Function:

15

0

15

0

14

0

14

0

13 12

0 0

Eight

13 12

0 0

11 9

0 1

bits plus

11 9

0 0

8

D8

one stop

8

1

7

D7

bit:

7

D7

6

D6

6

D6

5

D5

5

D5

4

D4

4

D4

3

D3

3

D3

2

D2

2

D2

1

D1

1

D1

0

DO

0

DO

The LONG bit in the SERPER register affects only the length of the data

received. The format of the transmitted data is determined only by the

value in the SERDAT register.

Setting the baud rate

The baud rate for sending and receiving data must be written to the

lower 15 bits of the SERPER register. Unfortunately, the baud rate

cannot be set directly. You must select the number of bus cycles

between two bits (1 bus cycle takes 2.79365 * 10-7 seconds). If a bit is

to be output every n bus cycles, the value n-1 must be written to the

SERPER register. The following formula can be used to calculate the

necessary SERPER value from the baud rate:

945

11. The A3000 Hardware

SERPER =

Baud rate

1

* 2.79365 * 10-7

-1

For example, for a baud rate of 4800 baud:

|SERPER= 1/(4800*2.79365*10-7)-!= 1/0.00134-1= 744,74 |

The calculated value is rounded and written to SERPER:

MOVE.W #745/$DFF000+SERPER ;Set SERPER, LONG = 0

or

MOVE.W #$8000+745,$DFF000+SERPER ;LONG = I

11.7.12 The Disk Controller

The hardware control of the disk drives is divided into two parts. First

there are the control lines which activate the desired drive, turn the motor

on, move the read/write head, etc. They all lead to various port lines of

the CIAs.

Excluded from these are the data lines. These carry the data from the

read/write head to the Amiga and, when writing, in the opposite direction

from the Amiga to the diskette. A special component in Paula, the disk

controller, handles the processing of the data.

It has its own DMA channel and writes or reads data by itself to or from

the disk.

Programming the disk DMA

Before you start the disk DMA you must be sure that the previous disk

DMA is finished. If one interrupts a write access in piogress, the data on

the corresponding track can be destroyed. Let's assume that the last disk

DMA is done.

First we must define the memory address of the data buffer. The disk

DMA uses one of the usual address register pairs as a pointer to the chip

RAM. The registers are called DSKPTH and DKSPTL:

946

11.7 Programming the Hardware

$20 DSKPTH Pointer to data from/to disk Bits 16-20

$22 DSKPTL Pointer to data from/to disk Bits 0-15.

Next the DSKLEN register must be initialized. It is constructed as

follows:

DSKLEN $024 (write-only)

Bit no. Name Function

15

14

0-13

DMAEN

WRITE

LENGTH

Enable disk DMA

Write data to disk

Number of data words to be transferred

LENGTH The lower 14 bits of the DSKLEN register contain the

number of data words to be transferred.

WRITE WRITE = 1 switches the disk controller from read to

write.

DMAEN When DMAEN is set to 1 the data transfer begins.

A few things must be noted:

1. The Disk DMA Enable bit in the DMACON register (DSKEN, bit 4)

must also be set.

2. To make it more difficult to write to the disk accidentally, the

DMAEN bit must be set twice in succession. Only then does the

disk DMA begin. Furthermore, for safety's sake the WRITE bit

should only be 1 during a write operation.

An orderly initialization sequence for disk DMA appears as follows:

1. Write a 0 to DSKLEN to turn DMAEN off.

2. If DSKEN in DMACON is not yet set, do so now.

3. Store the desired address in DSKPTH and DSKPTL.

4. Write the correct value for LENGTH and WRITE along with a set

DMAEN bit to DSKLEN.

5. Write the same value into DSKLEN again.

6. Wait until the disk DMA is done.

7. For safety's sake, set DSKLEN back to zero.

947

11. The A3000 Hardware

The DSKBLK interrupt (disk block finished, bit 1 in INTREQ/INTEN) is

provided so that the processor knows when the disk controller has

transferred the number of words defined in LENGTH. It is generated

when the last data word is read or written. The current status of the disk

controller can be read in the DSKBYTR register:

DSKBYTR $01A (read-only)

Bit no.

15

14

13

12

11-8

7-0

Name

BYTEREADY

DMAON

DSKWRITE

WORDEQUAL

DATA

Function

Signals that the data byte in the lower eight bits
ic x/alirl
IS Valid.

Indicates whether the disk DMA is enabled. To

make DMAON = 1, both DMAEN in DSKLEN

and DSKEN in DMACON must also be set.

Indicates the status of WRITE in DSKLEN.

Disk data equals DSKSYNC

Unused

Current data byte from the disk

With the eight DATA bits and the BYTEREADY flag you can read the

data from the disk with the processor rather than through DMA. Each

time a complete byte is received the disk controller sets the

BYTEREADY bit. The processor then knows that the data byte in the

eight DATA bits is valid. After the DSKBYTER register is read the

BYTEREADY flag is automatically reset.

Sometimes we don't want to read an entire track into memory at once. In

this case the DMA transfer can be made to start at a given position. To

do this, write the data word at which you want the disk controller to start

into the DSKSYNC register:

DSKSYNC $07E (write-only)

DSKSYNC contains the data word at which the transfer is to begin. The

disk controller then starts as usual after the disk DMA is enabled and

reads the data from the disk, but it doesn't write it into memory. Instead, it

continually compares each data word with the word in DSKSYNC.

When the two match it starts the data transfer, which then continues as

usual. The disk controller can be programmed to wait for the

synchronization mark at the start of a data block.

The WORDEQUAL bit in the DSKBYTER register becomes 1 as soon as

the data read matches DSKSYNC. Since this match only lasts two (or

948

11.7 Programming the Hardware

four) microseconds, WORDEQUAL is also set only during this time span.

An interrupt is also generated at the same time WORDEQUAL goes to 1:

Bit 12 in the INTREQ and INTEN registers is the DSKSYN interrupt bit.

It is set when the data from the disk matches DSKSYNC.

Setting the operating parameters

The data cannot be written to the disk in the same format as found in

memory. It must be specially coded. Normally the Amiga works with

MFM coding. However, it is also possible to use GCR coding. Two steps

are necessary for selecting the desired coding:

1. An appropriate routine must encode the data before it is written to

disk and decode the data as it is read from disk.

2. The disk controller must be set for the appropriate coding. This is

done with certain bits in the ADKCON register.

ADKCON $09E (write) ADKCONR $010 (read) DISK

Bit no.

15

14-13

12

11

10

9

8

7-0

Name

SET/CLR

PRECOMP

MFMPREC

UARTBRK

WORDSYNC

MSBSYNC

FAST

AUDIO

Function

Set (SET/CLR=1) or clear bits

These bits contain the precompensation value:

Bit 14 Bit 13 PRECOMP time

0 0 Zero

0 1 140 ns

1 0 280 ns

1 560 ns

0 = GCR, 1 = MFM

Not a disk controller bit, see UART

WORDSYNC = 1 turns on synchronization of the

disk controller according to the word in the

DSKSYNC register.

MSBSYNC = 1 enables GCR synchronization

Disk controller clock rate:

FAST=1:2 microseconds/bit (MFM)

FAST=0:4 microseconds/bit (GCR)

These bits do not belong to the disk controller.

The disk controller data registers

As usual the DMA controller transfers data in memory to and from the

appropriate data registers. The disk controller has one data register for

data read from the disk and one for data that is to be written to the disk.

949

11. The A3000 Hardware

DSKDAT$026 (write-only)

Contains the data to be written to the disk.

DSKDAT $008 (read-only)

Contains the data read from the disk. This is an early-read register and

cannot be read by the processor.

950

Bibliography

Bibliography

O'Hara, R.P. and Gomberg, D.R.: Modern Programming Using REXX,

Prentice-Hall London, 1985

Hawes, William S.: ARexx User's Reference Manual, Maynard MA, 1987

The design of the REXX language, IBM Systems Journal, Volume 23,

No.4,1984

Motorola: Motorola MC68030 Users Manual, Prentice-Hall London,

1990

Commodore: AMIGA Reference Manuals (Series), Addison-Wesley, 1990

951

Index

Index

A

$00000004 10

SimpleReftesh 11

ABBREV() 524

AbortIO 207

ABS() 538

Acceleration 18

Accrued Exception Byte 690

accubuffered truetime clock 12

ActivateCxObj 39

ActivateGadget 398

ActivateWindow 366

AddAnimOb 317

AddAppIconA 461

AddAppMenuItemA 462

AddAppWindowA 464

AddBob 317

AddBootNode 225

AddBuffers 74

AddClass 414

AddClipNode() 614

AddConfigDev 226

AddDevice 208

AddDosEntry 66

AddDosNode 226

AddFont 307

AddFreeList 327

AddGadget 398

AddGList 399

AddHead 182

AddlEvents 51

AddlntServer 166

Addition (+) 489

ADDLffi() 544

AddLibrary 203

AddMemList 175

AddPart 128

AddPort 194

AddResource 213

ADDRESS 480, 507

Address bits and mask 672

ADDRESS0 544

AddRsrcNode() 614

AddSegment 95

AddSemaphore 214

AddTail 182

AddTask 186

AddVSprite 318

Alert 194

aliasing distortion ..919

All Files 16

AllocAbs 176

AllocAslRequest 28

Allocate 176

AllocateTagltems 454

AllocConfigDev 228

AllocDosObject 63

AllocEntry 177

AllocExpansionMem 228

AllocFileRequest 27

AllocIFF 332

AllocLocalltem 347

AllocMem 177

ALLOCMEM() 574
AllocRaster 287

AllocRemember 414

AUocSignal 186

AUocTrap 187

AllocVec 178

alternate gadget 13

Amiga Operating System 5

AmigaOS 5

AndRectRegion 283

AndRegionRegion 283

Animate 318

AreaDraw 294

953

Index

AreaEllipse 295

AreaEnd 295

AreaMove 296

ARexx:

Function calls 584

Parameter conversion 584

ARG 477, 496

ARG() 545

arp.library 11

AskFont 308

AskSoftStyle 308

ASL library 26

AslRequest 30

Aspect 20

AssignAdd 67

AssignLate 69

AssignLock 69

assignment clause 492

AssignPath 70

ATC (Address Translation Cache) 670

AttachCxObj ..42

AttemptLockDosList 70

AttemptLockLayerRom 287

AttemptSemaphore .214

Audio device .. 12

Audio interrupts 916

AUL 887

Autopoint 21

AutoRequest 388

AvailFonts 55

AvailMem 178

B

B2C() 541

back/front gadget 13

BADDR() .581

barrel shifter 875

baud rate 942

BCPL-pointers 11

BEGIN...END 477

BeginRefresh ...366

BeginUpdate 434

BehindLayer 434

BFD (Blitter Finish Disable) 801

bit-plane 786

bit-map graphic 684

BITAND() 535

BITCHG() 535

BITCLR() 535
BITCOMP() 536

BitMapScale 273

BITOR0 536

BITSET0 536

BITTST0 537

BITXOR() 537
Blanker 21

Blitter ..684,865

Blitter control registers 877

Blitter DMA 879

Blitter DMA cycles 893

BltBitMap 275

BltBitMapRastPort 276

BltClear 277

BltMaskBitMapRastPort 277

BltPattern 278

BltTemplate 278

boolean algebra 872

boolean equation .872

Boot Menu 6

BREAK 501

BrokerCommand 51

BuildEasyRequestArgs 388

BuildSysRequest 389

BumpRevision 327

burst-fill 703

bus cycles 788

BY 477

c
C2B() 541

C2D() 541

C2X() 542

954

Index

Cache Address Register (CAAR) 704

Cache Control Register (CACR) 704

Cache inhibit (CI) 672

Cache Row Layout .703

cache-hit 703

cache-miss 703

CacheClearE 187

CacheClearU .188

CacheControl 188

CALL 507

Cause 168

CBump 254

CENTER() 524

CENTRE() 524

ChangeMode 113

ChangeSprite 318

ChangeWindowBox 368

ChecfcIO 208

CheckSignal 103

chip RAM 770

CIAs 772

Clauses 492

ClearCxObjError 41

ClearDMRequest 390

ClearEOL .:. 308

ClearMem() 615

ClearMenuStrip 368

ClearPointer ...369

ClearRectRegion 284

ClearRegion 284

ClearRexxMsgO 615

ClearScreen 309

CLI 22,104

ClipBlit .279

clockcycle-optimized programs 12

CloneTagltems 454

dose 113

GLOSEO • 520
CloseClipboard 332

CloseDevice 208

QoseFQ 604

CloseFont 309

CloselFF 332

CloseLibrary 204

CloseMonitor 254

CLOSEPORT() 575

ClosePublicPortO 615

CloseScreen 352

CloseWindow 369

CloseWorkBench352

CMove 254

CmpStringO 609

ColdCapture 10

ColdReboot 163

CollectionChunk 342

Color Correct 20

color palette 808

ColorMap 11

COMMAND 480

Command >NIL parameter 14

command clause 493

Command Keys 19

Command Line Interface 6

command lines .'.22

Comments 492

Commodities Library 36

COMPARE() 525

CompareDates 138

COMPRESS0 524

Condition Code Byte 688

Control Register (FPCR) 685

Control Registers 688, 825

COPIESO 525

Copper 797

Copper DMA 802

Copper interrupt 801

Copper list 11,797

CopyBrokerList 51

CopyMem 178

CopyMemQuick 179

CopySBitMap 279

CreateArgStringQ 615

955

Index

CreateBehindHookLayer 434

CreateBehindLayer 435

CreateContext 234

CreateCxObj 37

CreateDir 85

CreateDOSPkt () 604

CreateGadgetA 234

CreatelORequest 209

CreateMenusA 239

CreateMsgPort 194

CreateNewProc 96

CreateProc 96

CreateRexxMessage() 616

CreateUpfrontHookLayer 436

CreateUpfrontLayer 436

CurrentChunk 339

CurrentDir 86

CurrentEnv() 616

Cun-entTime 416

custom chips 772

CVa2i() 611

CVc2x() 612

CVi2a() 612

CVi2arg() 612

CVi2az() 613

CVs2i() 613

CVx2c() 613

CWait 255

Cx library 36

CxBroker 37

CxMsgData 47

CxMsgID 48

CxMsgType 47

CxObjError 41

CxObjType 40

D

D2C() 542

D2X() 542

data fetch start 790

data fetch stop 790

DATATYPE() 525

DATE0 545

DateStamp 138

DateToStr 129

DDFSTRT 816

Deallocate 179

Debug 195

deciBels 906

Delay 139

DELAY0 575

DELETE0 581

DeleteArgstring() 617

DeleteCxObj 3 9

DeleteCxObjAll 40

DeleteDOSPktO 605

DeleteFile 114

DeletelORequest 209

DeleteLayer 437

DeleteMsgPort 195

DeleteRexxMsgO 617

DeleteVar 140

DELSTR() 526

DELWORD() 526

descriptors , 675

DeviceProc 74

Devices 7

DFFSTOP 816

DIGITS0 538

Disable 168

DisownBlitter 280

DisplayAlert 390

DisplayBeep 410

DisposeCxMsg 50

DisposeFontContents 57

DisposeLayerlnfo 437

DisposeObject 416

DisposeRegion 284

Dithering 20

DivertCxMsg 48

Division (/) 489

DIWSTOP 814

956

Index

DIWSTRT 814

DMA access 781

DMA controller 781

DO 501

DO ...END 477

DoCollision 319

DoIO 209

DoPkt 75

dos.library 11

DOSRead() 605

DOSWriteO 605
double real 686

Double-Click 18,416

Draw 296

DrawBevelBoxA 240

DrawBorder 410

DrawEllipse 296

DrawGList 319

Drawlmage 411

DrawImageState 411

DROP 508

dual playfield mode 811

DupLock 64

DupLockFromFH 64

Dyadic Operations 693

E

Early Termination (ET) 680

Easy error trapping 474

Easy string manipulation 474

EasyRequestArgs 391

ECHO 496

ECS 5

Edit Standard Overscan 20

Edit Text Overscan 20

Elementary bit-map 684

ELSE 502

Enable 169

Enable bit (E) 672

END 503

EndNotify 75

EndRefresh 370

EndRequest 393

EndUpdate 438

Enhanced Chip Set 5

Enhanced Chip Set (ECS) 860

Enqueue 183

EnqueueCxObj .43

EntryHandler 343

EOF() 520

Eraselmage 412

EraseRect 297

ErrorMsgO 613

ErrorReport 143

ERRORTEXT() 546

even cycles 788

ExAll 86

Examine 87

ExamineFH 114

Exception Byte ...689

Exception Enable 689

Exception/Interrupt Table 10

exec.library 10

Execute 104

ExistF() 605

EXISTS0 520

Exit 97,503

ExitHandler 344

ExNext 88

expansion cards 12

Expansion-library 11

Exponentiation (**) 488

EXPORT() 546

Expressions 487

extended real 686

ExtendFont 309

external commands 493

extra half-bright mode 809

F

fast RAM 770

FattenLayerlnfo 11

957

Index

Fault 130

FGetC 114

FGets 130

File Extension 596

FilePart 131

FillRexxMsgO 617

FilterTagChanges 454

FilterTagltems 455

FIND() 527

FindArg 131

FindBroker 45

FindCliProc 105

FindCollection 339

FindConfigDev 228

FindDevice() 606

FindDisplaylnfo 255

FindDosEntry 71

FindLocalltem 347

FindName 183

FindPort 195

FindProp 340

FindPropContext 340

FindResident 163

FindRsrcNodeO 617

FindSegment 97

FindSemaphore 214

FindTagltem 455

FindTask 188

FindToolType 328

FindVar 140

FKey 21

flickering 785

Floating-point format 685

floating-point numbers 684

floating-point representation 685

Flood 297

Flush 115

FontExtent 310

FOR 477

Forbid 169

FORBIDQ 576

FOREVER 477

FORM() ...538

Format 76

FORWARD() 576

FPIAR Register 701

FPU exceptions:

BSUN 699

Cop.Prot 699

DZ 699

F-Line 699

FTRAPcc 699

INEX 699

INEX2 699

OPERR 700

OVFL 700

SNAN 700

UNFL 700

FPutC 115

FPuts 132

frames 785

FRead 116

FreeAslRequest 29

FreeBrokerList 51

FreeClass 417

FreeColorMap 288

FreeConfigDev 229

FreeCopList 255

FreeCprList 256

FreeDeviceProc 76

FreeDiskObject 328

FreeDosEntry 65

FreeDosObject 65

FreeEntry 180

FreeExpansionMem 229

FreeFileRequest 27

FreeFreeList 328

FreeGadgets 240

FreeGBuffers 319

FreelFF 333

FreeLocalltem 348

FreeMem 180

958

Index

FREEMEM() 576

FreeMenus 240

FreePort() 618

FreeRaster 288

FreeRemember 417

FreeScreenDrawInfo 352

FreeSignal 189

FREESPACE() 547, 618

FreeSprite 320

FreeSysRequest 393

FreeTagltems 456

FreeTrap 189

FreeVec 180

FreeVisuallnfo 241

FreeVPortCopLists 256

frequency 906

FRESTORE 697

FSAVE 697

FUZZO 538

FWrite 116

G
GadgetMouse 399

gadgets 11

GETARGO 577

GetArgStr 132

GetAttr 419

GetCC 169

GETCLIP() 547

GetColorMap 288

GetColorMapO 11

GetConsoleTask 77

GetCurrentBinding 229

GetCurrentDirName 132

GetDefaultPubScreen 353

GetDefDiskObject 329

GetDefPrefs 419

GetDeviceProc 77

GetDiskObject 329

GetDiskObjectNew 329

GetDisplaylnfoData 256

GetFileSysTask 78

GetGBuffers 320

GetMsg 196

GETPKTO 577

GetPrefs 419

GetProgramDir 89

GetProgramName 133

GetPrompt 133

GetRGB4 289

GetScreenData 353

GetScreenDrawInfo 354

GETSPACE() 548,618

GetSprite 321

GetTagData 456

GetVar 141

GetVisuallnfoA 241

GetVPModelD 257

GfxBase:

Row/cols 11

GoodID 333

GoodType 333

GT_BeginRefresh 241

GT_EndRefresh 242

GT_GetIMsg 243

GTJPostFilterlMsg 243

GT_RefreshWindow 243

GTJleplylMsg 244

GTJSetGadgetAttrsA 244

H
HAM 810

handshake lines 941

harmonic 907

HASH() 548

Hertz 906

HI 569

hold-and-modify mode 810

Hook 25-26

horizontal blanking gap 784

Horizontal Pulse 934

Horizontal Quadrature Pulse 934

959

Index

Host address 595

Human Logic 474

I
I/O Functions 602

Icon 16,17

Copy 17

Delete 17

Empty Trash 18

Format Disk 18

Information 17

Leave Out 17

Open 17

Put Away 17

Rename 17

Snapshot 17

Unsnapshot 17

IDtoStr 334

IF 503

IF...THEN..£LSE 477

IFF file format 331

iffparse.library 331

IHelp 21

Image 20

IMPORT() 548

INDEX() 527

Indirect Descriptors 681

Info 89

Inhibit 78

InitArea 298

InitBitMap 290

InitCode 163

InitGels 321

InitGMasks 321

InitJFF 334

InitDFFasClip 334

InitlFFasDOS 335

InitLayers 11

InitListO 619

InitMasks322

InitPortO 619

InitRastPort 290

InitRequester 394

InitResident 164

InitSemaphore 215

InitStruct 164

InitTmpRas 291

InitView 291

InitVPort 291

Input 105

Input and output data flow 596

input device buttons 940

Input task 5

Insert 183

INSERT() 527

InsertCxObj 43

InstallClipRegion 438

InstallLayerHook 438

Instruction Address Register (FPIAR) ... 685

Instruction Cache Design 702

Instructions 495

INT2, INT3, INT6 737

Integer division (%) 489

intensity 906

interlace mode 823

interlacing 785

InternalLoadSeg 98

InternalUnLoadSeg 99

INTERPRET 481, 508

interrupt mask register 795

interrupt request register 795

IntuiTextLength 412

Intuition tasks 5

InvertKeyMap 50

IoErr 144

IsFileSystem 79

Islnteractive 117

IsRexxMsgO 619

IsSymbolO 620

ItemAddress 371

ITERATE 504

960

Index

J-L
joysticks 937
Key Repeat Delay 18,19

Key Repeat Rate 19

Key Repeat Test 19

kilohertz 906

label marker 492

LASTPOS0 528

Layer 11

LayoutMenuItemsA 245

LayoutMenusA 246

LEAVE 504

LEFT() 528

LENGTHO 528
lengthargstring() 609, 620

Libraries 7

LINES() 520

ListNamesO 620

LoadRGB4 257

LoadSeg 99

LoadView 258

LoadWB 14

LocalltemData 348

Lock 117

LockDosList 71

LocklBase 420

LockLayer 439

LockLayerlnfo 439

LockLayerRom 292

LockLayers 439

LockPubScreen 354

LockPubScreenList 355

LockRecord 118

LockRexxBase() 620

Logical AND (&) .491

Logical exclusive OR (A or &&) 491

Logical inclusive OR (I) 491

Logical NOT (~) 491

long frame 785

low-pass filter 920

M
MakeClass 420

MAKEDIR() 582

MakeDosEntry 66

MakeDosNode 230

MakeFunctions 164

MakeLibrary 165

MakeScreen 355

MakeVPort 258

mantissa 685

MapTags 456

Masking ...876

MatchEnd 89

MatchFirst .90

MatchNext 90

MatchPattern 134

MatchToolValue 330

mathffp.library 8

MAX0 538
MaxCli 106

MemHeader 11

Message Packets 588

MNO 539
minterm 873

Mode RM 691

Mode RN 691

Mode RZ 691

ModeNotAvailable 258

ModifylDCMP 371

ModifyProp 400

modules 7

modulo values 865

Monadic Operations 694

mouse 934

Mouse Screen Drag keys 19

Mouse Speed slider 18

Move 298, 797, 799

MoveLayer 439

MoveLayerlnFrontOf 440

MoveScreen 355

MoveSizeLayer 440

961

Index

MoveSprite 322

MoveWindow371

MoveWindowInFrontOf 372

MrgCop 259

Multiplication (*) 488

N

NameFromFH 134

NameFromLock 134

NewFontContents 57

NewLayerlnfo 11,441

NewLoadSeg 99

NewModifyProp 400

NewObjectA 421

NewRegion 285

NewScaledDiskFont 58

NEXT() 578

NextDisplaylnfo .259

NextDosEntry 72

NextObject 421

NextPubScreen 356

NextTagltem 457

No declarations 474

NoCapsLock 21

NOP 504

null clauses 492

NULL() 578

NUMERIC 476, 509

NUMERIC DIGITS 490

NUMERIC FUZZ 490

o
ObtainConfigBinding 231

ObtainGIRPort 401

ObtainSemaphore 215

ObtainSemaphoreList ;?. 215

ObtainSemaphoreShared 215

odd cycles 788

OffGadget 401

OffMenu 372

OFFSETO 578

OldOpenLibrary 204

OnGadget 402

Only Icons , 16

OnMenu 373

Open 119

OPEN0 521

OpenClipboard .335

OpenDevice 210

OpenDiskFont 5 5

OpenF() 606

OpenFont 310

OpenFromLock 120

OpenlFF 335

OpenLibrary 204

OpenMonitor 259

OPENPORT0 578
OpenPublicPort() 621

OpenResource ...213

OpenScreen 356

OpenScreenTagList 357

OpenWindow 373

OpenWindowTagList 375

OpenWorkBench 358

Operating System Menu 6

Operators 485

OPTIONS 480, 510

OrRectRegion 285

OrRegionRegion 285

OTHERWISE 504

Output 106

OVERLAY0 528

OwnBlitter 280

P
PackBoolTags 457

Packed decimal real 686

paddles 938

Paged Memory Management Unit 668

ParentChunk 341

ParentDir 91

ParentOfFH 91

962

Index

PARSE 481, 496

ParselFF 336

ParselX 47
PARSEPULL 481

ParsePattem 135

parsing data 555

PassPort 595

PathPart .135

Permit 169

PERMITO 579

Pipelining 894

playfields 807

Pointlnlmage 422

PolyDraw 299

PopChunk 341

POS() 529

potentiometers 938

PRAGMA() 549

Prefix conversion (+) 488

Prefix negation (-) 488

Prefs 18

Font 20

IControl 19

Input 18

Overscan 20

Palette 19

Pointer 20

Printer 20

PrinterGfx 20

ScreenMode 20

Serial 21

Time 21

WBpattern 19

Preserve colors 19

PrintFault 144

PrinflText 413

PROCEDURE 478, 510

Procure 216

Program Control Instructions 695

PropChunk 344

PubScreenStatus 358

PULL 476, 499

PUSH 499

PushChunk 341

PutDefDiskObject 330

PutDiskObject 330

PutMsg 196

PutStr 144

Q-R

QBlit 280

QBSBlit 280

quantization 911

QueryOverscan 359

QUEUE 499

QueueFO 607

Quotient Byte 688

R/W and RWM 672

RAM 770

RANDOM0 539

RANDU() 539

RawDoFmt 196

Read 120

ReadArgs 106

READCH0 522

ReadChunkBytes 336

ReadChunkRecords 337

ReadF() 607

Readltem 107

READLN0 522

ReadPixel 299

ReadPixelArray8 300

ReadPixelLine8 301

ReadStr() 607

RectFill 301

refresh cycles 790

RefreshGadgets 402

RefreshGList 402

RefreshTagltemClones 460

RefreshWindowFrame 376

Relabel79

ReleaseConfigBinding 231

963

Index

ReleaseGIRPort 403

ReleaseSemaphore 216

ReleaseSemaphoreList 216

Remainder (/f) 489

RemakeDisplay 359

RemClipNode() 621

RemConfigDev 231

RemDevice 211

RemDosEntry 72

RemFont 310

RemHead 184

Remffiob 322

RemlntServer 170

REMLIB() 550

RemLibrary 205

Remove 184

RemoveAppIcon 464

RemoveAppMenuItem 465

RemoveAppWindow 465

RemoveClass 422

RemoveCxObj 44

RemoveGadget 403

RemoveGList 404

RemPort 199

RemResource 213

RemRsrcListO 622

RemRsrcNodeO 622

RemSegment 100

RemSemaphore 217

RemTail 184

RemTask 189

RemVSprite 323

Rename 120

RENAME() 582

REPLY() 579

ReplyMsg 199

ReplyPkt 79

ReportMouse 404

Request 394

RequestFile 28

reset vector 779

ResetMenuStrip 376

ResetWindows 11

Resource Nodes 589

Resources 7

RethinkDisplay 359

RETURN 504

REVERSE() 529

RIGHTO 529

ROM .779

rombootlibrary 10

rounding errors 911

RouteCxMsg 49

RunCommand 100

RX 570

RXADDCON [RXFB_NONRET] 598

RXADDFH [RXFBJNTONRET] 598

RXADDLIB [RXFB_NONRET] 599

RXC 571

RXCOMM [RXFB.TOKEN]

[RXFB_STRING] [RXFB_RESULT]

[RXFBJMOIO] 599

RXFBJsfOIO 600

RXFB_NONRET 601

RXFB__RESULT 601

RXFBJSTRING 601

RXFBJTOKEN 601

RXFUNC [RXFB.RESULT]

[RXFB_STRING] [RXFBJNOIO] 599

RXREMCON [RXFB_NONRET] 600

RXREMLIB [RXFB_NONRET] 600

RXSET 570

RXTCCLS [RXFB_NONRET] 600

RXTCOPN [RXFB_NONRET] 600

S
SameLock 121

sample period 914

samples 911

sampling rate 914

SAS C-compiler 11

SAY 476,500

964

Index

ScalerDiv 281

Scaling 20

Screen menu snap 19

Screens 11

ScreenToBack 360

ScreenToFront 360

ScrollLayer 441

ScrollRaster 281

ScrollVPort 260

Seek 121

SEEK() 522

SeekF() 608

SELECT 505

SELECT...WHEN...OTHERWISE...END

477

Selectlnput 108

SelectOutput 108

SendIO 211

SendPkt 80

serial data lines 941

serial interface 12

SetAPen 302

SetArgStr 108

SetAttrsA 422

SetBPen 302

SETCLIP0 550

SetCollision 323

SetComment 122

SetConsoleTask 80

SetCurrentBinding 232

SetCun-entDirName 109

SetCxObjPri 42

SetDefaultPubScreen 360

SetDMRequest 394

SetDrMd 302

SetEditHook 404

SetExcept 190

SetFileDate 122

SetFileSize 123

SetFileSysTask 81

SetFilter 46

SetFilterIX 46

SetFont 311

SetFunction 206

SetGadgetAttrsA 405

SetlntVector 170

SetloErr 145

SetLocalltemPurge 348

SetMenuStrip 377

SetMouseQueue 378

SetPointer 378

SetPrefs... 423

SetProgramDir 109

SetProgramName 109

SetPrompt 110

SetProtection 123

SetPubScreenModes 360

SetRast 304

SetRGB4 260

SetRGB4CM 292

SetSignal 190

SetSoftStyle 311

SetSR 171

SetTaskPri 191

SetTranslate 45

SetVar 142

SetWindowTitles 379

Shade 20

SHELL 511

short frame 785

Show 17,18

SH0W() 551

SHOWDIR() 582

SHOWLIST0 579
ShowTitle 361

SIGN() 540

Signal 192,477,505

SIGNAL ON 481

Single real 686

SizeLayer 441

SizeWindow 379

SKIP , 797, 801

965

Index

Smoothing 20

SortGList 323

sound pressure 906

SOURCELINE() 551

SPAbs/IEEESPAbs/IEEEDPAbs 444

SPACE() 530

SPAcos/IEEESPAcos/ffiEEDPAcos 448

SPAdd/IEEESPAdd/ffiEEDPAdd 445

SPAsin/IEEESPAsin/IEEEDPAsin 448

SPAtan/IEEESPAtan/IEEEDPAtan 449

SPCeil/IEEESPCeil/IEEEDPCea 445

SPCmp/EEESPCmp/EEEEDPCmp 445

SPCos/BEEESPCos/ffiEEDPCos 449

SPCosh/ffiEESPCosh/ffiEEDPCosh 449

SPDiv/IEEESPDiv/IEEEDPDiv 445

Special 7

SPExp/IEEESPExp/ffiEEDPExp 449

SPFieee/DEEESPFieee/IEEEDPFieee 450

SPFix/IEEESPFix/IEEEDPFix 446

SPHoor/ffiEESPFloor/IEEEDPFloor 446

SPHt/IEEESPFlt/IEEEDPFlt 446

SplitName 136

SPLog/IEEESPLog/IEEEDPLog 450

SPLoglO/EEEESPLoglO/IEEEDPLoglO

450

SPMul/IEEESPMul/IEEEDPMul 446

SPNeg/EEESPNeg/DEEEDPNeg 447

SPPow/ffiEESPPow/ffiEEDPPow 450

sprite data list 840

sprite DMA 840

sprites 807, 838

SPSin/EEEESPSin/DEEEDPSin 451

SPSincos/DEEESPSincos/IEEEDPSincos

451

SPSinh/IEEESPSinh/ffiEEDPSinh 451

SPSprt/ffiEESPSqrt/IEEEDPSqrt 451

SPSub/IEEESPSub/IEEEDPSub 447

SPTan/ffiEESPTan/ffiEEDPTan 452

SPTanh/IEEESPTanh/IEEEDPTanh 452

SPTieee/EEESPTieee/IEEEDPTieee 452

SPTst/IEEESPTst/ffiEEDPTst 447

StackF() 608

StartNotify 81

startup Copper list 806

Status Register 688

Accrued Exception Byte 688

Condition Code Byte 688

Exception Byte 688

Quotient Byte 688

Status Register (FPSR) 685

StcToken() 609

StopChunk 345

StopOnExit 346

STORAGE0 552

StoreltemlnContext 349

StoreLocalltem 349

StrcmpNO 610

StrcpyA() 610

StrcpyN() 610

StrcpyUO 611

StrflipNO 611

Strings 485

STRIP() 530

StripFont 312

Strlen() 611

StrToDate 136

StrToLong 137

SUBSTR() 530

Subtraction (-) 489

SUBWORD() 531

SUD 887

SUL 887

SumKickData 166

SumLibrary 206

Super-HiRes mode 860

SuperBitmap Console 12

Superstate 171

Supervisor 172

SwapBitsRastPortClipRect 442

SYMBOL() 552

Symbols 483

SYS 6

966

Index

SysReqHandler 395

System 21

FixFonts 21

NoFastMem 21

SetMap 21

system directory 6

SystemTagList 110

T
tag-entry 702

tag-field 703

TaglnArray 460

Tagltem fields 25

Tagltems... 26

TCC 571

TCO 571

TE 571

template 555

Test 18

Text 312

Text gadget filter 19

TextExtent 312

TextFit 313

TextLength 314

THEN 506

ThinLayerlnfo 11

timbre 907

T1ME0 552

Tokens 483

tone color 907

ToolManager 18

Tools 18

ResetWB 18

ToUpper() 614

TRACE 474,511

TRACE() 553

tracing programs 555

Trackdisk 12

Translate 452

TRANSLATE() 531

Translation Control Register (TC) 673

translation tree 670

tremolo 907

TRIM() 532

TRUNC() 540

TS 571

Type-less data 473

TypeOfMem 181

TYPEPKTQ 5 80

u
UART 942

UnGetC 124

Universal applicability 473

Universal Asynchronous Receiver/

Transmitter 942

UnLoadSeg 101

UnLock 124

UnLockDosList 72

UnlocklBase 423

UnlockLayer 442

UnlockLayerlnfo 442

UnlockLayerRom 292

UnlockLayers 443

UnlockPubScreen 361

UnlockPubScreenList 361

UnLockRecord ...124

UnLockRecords 125

UnlockRexxbaseO 622

UNTIL 477

UpfrontLayer 443

UPPER 512

UPPER() 532

UserState 172

Utilities 21

Clock 21

Display 21

Exchange and Commodities 21

More 21

Say 21

967

Index

v-z

Vacate 217

VALUEO 554

VBeamPos 261

Vector Base Register (VBR) 10

Verify Timeout 19

VERIFYO 532

vertical blanking gap 785

Vertical Pulse 934

Vertical Quadrature Pulse 934

VFPrintf 125

VFWritef , 126

vibrato 906

VideoControl 261

ViewAddress 362

ViewPortAddress 3 80

volume 906

Volume modulation 922

VPrintf 110

Wait 192, 797, 800

WaitBOVP 262

WaitForChar 139

WATTFORPORT 572

WaitIO 211

WaitPkt 81

WAITPKT0 581

WaitPort 200

WaitTOF 263

WBenchToBack 362

WBenchToFront 362

WeighTAMatch 314

WHEN 506

WHILE , 477

white noise 909

Window 16

Clean Up 16

Close 16

New Drawer 16

Open Parent 16

Select Contents 16

Show 16

Snapshot 16

Update 16

View By 16

Window frames 11

WindowLimits 380

WindowToBack 3 80

WindowToFront 381

WORD() 533

WORDINDEX() 533

WORDLENGTH0 533

WORDS() 533

Workbench H, 13,15

About 15

Backdrop 15

Execute Command 15

Last Message 15

Quit 15

Redraw All 15

Update All 15

workbench-task 8

workbench.library 14

Write 126

write-through cache 704

WRITECH0 523
WriteChunkBytes 337

WriteChunkRecords 338

WriteF() ^608
WRITELN0 523
WritePixel 304

WritePixelArray8 305

WritePixelLine8 305

X2C() ZZ543
X2D() 543

XorRectRegion 286

XorRegionRegion 286

XRANGE() 533
ZipWindow 38I

968

Abacus

Amiga

OrderToll Free 1 -800-451-4319

Amiga Desktop Video Power

Amiga desktop Video Power is the most complete and useful guide to
desktop video on the Amiga.

Amiga Desktop Video Power

covers all the basics- defining

video terms, selecting genlocks,

digitizers, scanners, VCRs,

camera and connecting them to

the Amiga.

Justafewofthetopics described
in this excellent book:

• Now includes DCTV, Video

Toaster info

• The basics of video

• Genlocks

• Digitizers and scanners

• Frame Grabbers/

Frame Buffers

• How to connect VCRs,

VTRs, and cameras to the Amiga

• Using the Amiga to add or incorporate Special Effects to a video

• Paint, Ray Tracing, and 3D rendering in commercial applications

• Animation

• Video Titling

• Music and videos

• Home videos

• Advanced techniques

Item #B122 ISBN 1-55755-122-7

Suggested retail price: $29.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada \

AmigaDOS: Inside & Out Revised

AmigaDOS: Inside & Out covers the insides of AmigaDOS, everything

from the internal design to

practical applications.

AmigaDOS Inside & Out will

show you how to manage

Amiga's multitasking cap

abilities more effectively. There

is also a detailed reference

section which helps you find

information in a flash, both

alphabetically and in command

groups. Topics include getting

the most from the AmigaDOS

Shell (wildcards and command

abbreviations) script (batch)

files - what they are and how to

write them.

More topics include:

AmigaDOS - Tasks and handling

Detailed explanations of CLI commands and their functions

In-depth guide to ED and EDIT

Amiga devices and how the AmigaDOS Shell uses them

Customizing your own startup-sequence

AmigaDOS and multitasking

Writing your own AmigaDOS Shell

commands in C

Reference for 1.2,1.3 and 2.0 commands

Companion diskette included

Item #B125 ISBN 1-55755-125-1.

Suggested retail price: $24.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Using ARexx on the Amiga

Using ARexx on the Amiga is the most authoritative guide to using the
popular ARexx programming

language on theAmiga. It's filled

with tutorials, examples,

programming code and a

complete reference section that

you will use overand overagain.

Using ARexx on the Amiga is

written for new users and

advanced programmers of

ARexx by noted Amiga experts

ChrisZamaraand NickSullivan.

Topics include:

• What is Rexx/ARexx -

a short history

• Thorough overview of all

ARexx commands -

with examples

• Useful ARexx macros for controlling software and devices

• How to access other Amiga applications with ARexx

• Detailed ARexx programming examples for beginners and

advanced users

• Multitasking and inter-program communications

• Companion diskette included

• And much, much more!

Item #B114 ISBN 1-55755-114-6.

Suggested retail price: $34.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada \

Amiga Machine Language

Amiga Machine Language introduces you to 68000 machine language

programming presented in

clear, easy to understand terms.

If you're a beginner, the

introduction eases you into

programming right away. If

you're an advanced

programmer, you'll discover the

hidden powers of your Amiga.

Learn how to access the

hardware registers, use the

Amiga libraries, create gadgets,

work with Intuition and more.

• 68000 microprocessor

architecture

• 68000 address modes and

instruction set

• Accessing RAM, operating

system and multitasking

capabilities

• Details the powerful Amiga libraries for access to AmigaDOS

• Simple number base conversions

• Menu programming explained

• Speech utility for remarkable human voice synthesis

• Complete Intuition demonstration program including

Proportional, Boolean and String gadgets

Item #B025 ISBN 1-55755-025-5. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to runI Saves you hours of typing in

program listings. Available only from Abacus. Item #S025. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga C for Beginners

Amiga C for Beginners is an introduction to learning the popular C

language. Explainsthe language

elements using examples

specificallygeared to theAmiga.

DescribesC library routines, how

the compiler works and more.

Topics include:

• Beginner's overview of C

• Particulars of C

• Writing your first program

• The scope of the language

(loops, conditions, functions,

structures)

• Special features of the

C language

• Input/Output using C

• Tricks and Tips for

finding errors

• Introduction to direct

programming of the operating system (windows,

screens, direct text output, DOS functions)

• Using the LATTICE and AZTEC C compilers

Item #B045 ISBN 1-55755-045-X. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing in

program listings. Available only from Abacus. Item #S045. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada |

Amiga Graphics: Inside & Out

Amiga Graphics: Inside & Out will show you the super graphic features

and functions of the Amiga in

detail. Learnthegraphicfeatures

that can be accessed from

AmigaBASIC or C. The

advanced user will learn how to

call the graphic routines from

the Amiga's built-in graphic

libraries. Learn graphic

programming in Cwith examples

of points, lines, rectangles,

polygons, colors and more.

Complete description of the

Amiga graphic system- View,

ViewPort, RastPort, bitmap

mapping, screensandwindows.

Topics include:

• Accessing fonts and type

styles in AmigaBASIC

• Loading and saving IFF graphics

• CAD on a 1024 x 1024 super bitmap, using graphic

library routines

• Access libraries and chips from BASIC- 4096 colors at once,

color patterns, screen and window dumps to printer

• Amiga animation explained including sprites, bobs

and AnimObs, Copper and blitter programming

Item #B052 ISBN 1-55755-052-2. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to runI Saves you hours of typing in

program listings. Available only from Abacus. Item #S052. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

The Best Amiga Tricks & Tips

The Best Amiga Tricks & Tips is a great collection of Workbench, CLI

and BASIC programming

"quick-hitters", hints and

application programs. You'll be

able to make your programs

more user-friendly with pull

down menus, sliders and tables.

BASIC programmers will learn

all about gadgets, windows,

graphic fades, HAM mode, 3D

graphics and more.

The BestAmiga Tricks & Tips

includesacomplete list of BASIC

tokens and multitasking input

and afastand easy print routine.

If you're an advanced

programmer, you'll discover the

hidden powers of your Amiga.

• Using the new AmigaDOS, Workbench and Preferences 1.3

and Release 2.0

• Tips on using the new utilities on Extras 1.3

• Customizing Kickstart for Amiga 1000 users

• Enhancing BASIC using ColorCycle and mouse sleeper

• Disabling FastRAM and disk drives

• Using the mount command

• Writing an Amiga virus killer program

• Disk drive operations and disk commands

• Learn machine language calls.

Item # B107 ISBN 1-55755-107-3.

Suggested retail price $29.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada |

Amiga BASIC: Inside and Out

Amiga BASIC: Inside and Out is the definitive step-by-step guide to

programming the Amiga in

BASIC. This huge volume

should be within every Amiga

user's reach. Every Amiga

BASIC command is fully

described and detailed. In

addition, Amiga BASIC: Inside

and Out is loaded with real

working programs.

Topics include:

Video titling for high quality

object animation

Bar and pie charts

Windows

Pull down menus

Mouse commands

Statistics

Sequential and relative files

Speech and sound synthesis

Item #B87X ISBN 0-916439-87-9. Suggested retail price: $24.95

Companion Diskette available: Contains every program listed in the

book complete, error free and ready to run! Saves you hours of typing in

program listings. Available only from Abacus. Item #S87X. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Amiga for Beginners

A perfect introductory book if you're a new or prospective Amiga owner.

Amiga for Beginners

introduces you to Intuition (the

Amiga's graphic interface), the

mouse, windows and the

versatile CLI. This first volume

in our Amiga series explains

every practical aspect of the

Amiga in plain English with

clear, step-by-step instructions

for common Amiga tasks.

Amiga for Beginners is all the

info you need to get up and

running.

Topics include:

• Unpacking and connecting

the Amiga components

• Starting up your Amiga

• Exploring the Extras disk

• Taking your first step in AmigaBASIC programming language

• AmigaDOS functions

• Customizing the Workbench

• Using the CLI to perform "housekeeping" chores

• First Aid, Keyword, Technical appendixes

• Glossary

Item #B021 ISBN 1-55755-021-2. Suggested retail price: $16.95

Companion Diskette not available for this book.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada |

AssemPro

AssemPro

Amiga

Assembly Language Development System for the Amiga

AssemPro has the professional features that advanced programmers

lookfor. Like syntax errorsearch/

replace functions to speed

program alterations and de

bugging. And you can compile

to memory for lightning speed.

The comprehensive tutorial and

manual have the detailed

information you need for fast,

effective programming.

Features include:

• Integrated editor, debugger,

disassembler

and reassembler

• Runs under CLI

and Workbench

• Produces either PC-

relocatable or absolute code

• Create custom macros for nearly any parameter

• Error search and replace functions

• Menu-controlled conditional and repeated assembly

• Full 32-bit arithmetic

• Advanced debugger with 68020 single-step emulation

• Fast assembly to either memory or disk

• Written entirely in machine language

• Runs on any Amiga with 512K or more

Item #S030 ISBN 1-55755-030-1. Suggested retail price: $99.95

Machine language programming requires a solid understanding ofthe Amiga's hardware and

operating system. We do not recommend this package to beginning Amiga programmers.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

reference library in one guide for all

Amiga 500, 1000, 2000, 2500 and

3000 users. Amiga Intern will explain

the internals of the Amiga 3000,

Release 2.0 (Workbench 2.0) of the

operating system and Kickstart 2.0.

Amiga Intern teaches you important

information about the ARexx

programming language that is

bundled with all Amiga 3000s.

Amiga Intern is divided into three

easy-to-use sections for hardware,

operating system and ARexx

programming. If you are interested

in the Amiga hardware you'll learn all

the essentials of the 68030

processor and its environment.

Amiga Intern also contains an

extensive reference section on

Kickstart 2.0 and much more.

US $39.95/ CDN $49.95

ISBN 1-55755-148-0

9 781557 55K81

he definitive

reference book for

all Amiga computers

A short overview of the contents:

Hardware:

68030 and 68881/82 specifications

MMU, FPU and ECS

Zorro II bus system

SCSII controller

FlickerFixer

System Software:

Kickstart 2.0 innovations

Workbench 2.0 innovations

Overview of library functions

Program samples

ARexx:

' History of development

Syntax oriented command lists

Basic elements

Special language elements

Function libraries

Program samples

Computer Book Category

Computer: Amiga

Level: Intermediate/Advanced

Abacus
5370 52nd Street SE • Grand Rapids, Ml 49512

