
o

A valuable collection of software

tools and programming hints

A Data Becker

Amiga Tricks & Tips

Bleek Maelger Weltner

Abacus it
A Data Becker Book

First Printing, May 1988

Printed in U.S.A.

Copyright © 1987, 1988 Data Becker, GmbH

Merowingerstrafie 30

4000 Diisseldorf, West Germany

Copyright © 1988 Abacus

5370 52nd Street SE

Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise without the prior written permission of Abacus Software or Data

Becker, GmbH.

Every effort has been made to ensure complete and accurate information concerning the

material presented in this book. However, Abacus Software can neither guarantee nor be

held legally responsible for any mistakes in printing or faulty instructions contained in this

book. The authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC and MS-DOS are trademarks or registered trademarks of Microsoft

Corporation. Amiga 500, Amiga 1000, Amiga 2000 Amiga, Graphicraft, Musicraft,

Sidecar and Textcraft are trademarks or registered trademarks ofCommodore-Amiga Inc.

ISBN 0-916349-88-7

Table of Contents

1 Introduction 1

2 The CLI 5

2.1 CLI questions and answers 8

2.2 New CLI commands 22

2.3 New startup sequences 25

2.3.1 Printer spooler 26

2.3.2 CLI programming (batch files) 28
2.3.3 Resident CLI 28

2.3.4 Resi (partial resident) 29

2.3.5 ToDisk 29

2.3.6 CLlCopy 30

2.3.7 Data management 31

3 AmigaBASIC 35

3.1 Kernel commands 38

3.2 AmigaBASIC graphics 40

3.2.1 Changing drawing modes 40

3.2.2 Changing typestyles 43

3.2.3 Move - cursor control 45

3.2.4 Faster IFF transfer 46

3.2.5 IFF brushes as objects 56

3.2.6 Another floodfill 62

3.2.7 Window manipulation 63

3.2.7.1 Borderless BASIC windows 63

3.2.7.2 Gadgets on, gadgets off 64

3.2.7.3 DrawBorier 65

3.2.7.4 ChangeBorderColor 67

3.2.7.5 MonocolOT Workbench 68

3.2.7.6 PlaneCreatorandHAM-Halfbrite 68

3.2.7.7 The coordinate problem 71

3.3 Fade-in and fade-out 72

3.3.1 Basic fading 72

3.3.2 Fade-over 74

3.3.3 Fading RGB color scales 76

3.4 Fast vector graphics 79

3.4.1 Modelgrids 79

3.4.2 Moving grid models 84

3.4.3 Moving with operating system routines 84

3.4.4 3-D graphics for 3-D glasses 88

3.5 The Amiga fonts 97

3.6 Fast and easy PRINT 100

3.7 Multitasking INPUT 105

4 User-Friendliness Ill

4.1 Other input 114

4.1.1 Sliders 114

i

Table of Contents Amiga Tricks and Tips

4.1.2 Table selection 121

4.1.3 Scrolling tables 128

4.2 Rubberbanding 133

4.2.1 Rectangles in rubberbanding 133

4.2.2 Creating shapes 135

4.2.3 Object positioning 136

4.3 Status lines & animation 139

5 DOS Routines 147

5.1 Program comments 150

5.2 CheckFile 152

5.3 Protecting data 154

5.4 Renaming files 157

5.5 Directory access 158

5.6 GetTree 162

5.7 Reading DOS files 168

5.8 CU from AmigaBASIC 173

6 AmigaBASIC internals ; 179

6.1 File analyzer 180

6.2 AmigaBASIC file structure 184

6.2.1 Determining filetype 184

6.2.1.1 Checking for a BASIC file 185

6.2.1.2 Checking the program header 187

6.2.2 ASCII files 189

6.2.3 Binary files 190

6.3 Utility programs 201

6.3.1 DATA generator 201

6.3.2 Cross-reference list 205

6.3.3 Blank line killer 212

6.3.4 REM killer 217

6.3.5 Listing variables 222

6.3.6 Removing "extra" variables 227

6.3.7 Self-modifying programs 228

7. The Workbench 235

7.

7.

7.

7.

7.

7.

7.

7.

Using the Workbench 236

.1 Keyboard tricks 236

.2 TheTrashcan 237

.3 Extended selection 238

.4 Reading and setting Preferences 239

.4.1 Info 242

.4.2 The Info screen 242

.4.3 A closer look at the Info screen 243

8. Icons 247

8.1 Icon types 248

8.2 Icon design 249

8.2.1 DiskObject structure 249

8.2.2 Drawer structure 251

8.2.3 Image structure 252

ii

Abacus Table of Contents

8.2.4 DefaultTool text 253
8.2.5 ToolTypes text ^™!!""1™3™'""253
8.2.6 Icon analyzer !!!....!!!.!!!.!!!.!!!!!...254
8.3 Making your own icons ...!259
8.3.1 Two graphics, one icon .Z....\."/^..259
8.3.2 Text in graphics259
8.3.3 The icon editor "l"7.7.""."!!!
8.3.4 Color changes .V.""l"l"!".".".

9 Error trapping 269
9.1 Errors—and why 270

9.1.1 Disk access errors !!.!!.!!.!!!!!!!!!!.27O
9.1.2 User input errors!.!.!...!!!!!..!..271
9.1.3 Menu errors !!^"1V.V^.".".".".".".".!!]271
9.2 Trapping errors ''*'!""1!""1'"3"'"""!272
9.2.1 User-friendly programming 272
9.2.2 Trapping user input errors .,278
9.3 Errors and corrections2SI
9.3.2 Blocking out menu items !"".".".V.""!!".V.V.V.1I!^

1(K Effective programming 287
10.1 Benchmarks!!!288
10.1.1 Benchmark: variable types288
10.1.2 Benchmark peculiarities '['290
10.1.3 Benchmark: DEF for variable declaration291
10.1.4 Benchmark: variable definition time 293
10.1.5 Benchmark: Variable name lengths 294
10.1.6 Benchmark: single-line loops 295
10.1.7 Benchmark: subroutine positioning 297
10.2 Short libraries 299

11 Machine language calls 307

11.1 Loading and running machine language 308
11.2 LED shocker 309

11.3 Passing values 310

12 Input and output 317
12.1 Direct disk access 317

12.1.1 The trackdisk.device commands 324
12.1.2 Multiple disk drive access 325
12.1.3 Sector design 325

12.2 Memory handling 328

12.2.1 Reserving memory through variables 328

12.2.2 Allocating memory 328

Appendices 231

A. AmigaBASIC tokens 333

B. Other tokens 338

Index 339

iii

Introduction

Abacus 1. Introduction

1. Introduction

Think back to the first time you sat down at your Amiga. You

probably experienced the following reactions: excitement, astonish

ment, surprise and confusion—probably in that order. Yes, the Amiga

really is a super personal computer. But there's so much you can do

with an Amiga that you often don't know where to begin. How should

you begin to apply the Amiga to your tastes? How do you make the

most of the Amiga's many capabilities?

If you are new to the Amiga, you probably have dozens of questions by

now. To start you off, Chapter Two of this book describes work with

the Command Line Interface (CLI).

Part of this book explains methods and programming techniques for

getting the most out of Microsoft's AmigaBASIC, with special empha

sis on using existing system modules from the software supplied with

your Amiga. You'll find handy AmigaBASIC program routines in this

book that let you use the various fonts and type styles, use

rubberbanding, create borderless windows, and even a disk monitor for

exploring the machine language code of the disk drive.

Chapter Five describes the handling of AmigaDOS. It shows how to

use the commands in the CLI, and how these commands can be useful

to you.

Other subjects covered in Amiga Tricks and Tips include the handling

and changing of the Workbench. This includes manipulation and editing

of icons for your own purposes.

2

The CLI

Abacus 2. The CLI

2. TheCLI

CLI stands for Command Line Interface. This user interface is con

trolled from the keyboard. Neither the icons nor the mouse can be used
in the CLI. The CLI included in Workbench Version 1.2 recognizes

about SO commands.

The CLI works closely with AmigaDOS, the disk operating system.

Many special CLI commands make working with diskettes faster and

more convenient than performing the same functions from the

Workbench screen. Some disk commands must be called from the CLI,

since they cannot be directly accessed by Intuition. Intuition is

the part of the Amiga's operating system that acts as an interface
between the user and the window-and-mouse technique of handling

diskettes, programs and files.

You usually access CLI from Intuition. However, you can also

call CLI commands from BASIC and C programs.

2. The CLI Amiga Tricks and Tips

2.1 CLI questions and
answers

Many new Amiga users ask questions about the CLI. Below are 20 of
the most often asked CLI questions, and their answers.

Question 1: How do I get into the CLI?

Answer The CLI is contained on every Workbench diskette. Here's how you can
access it*

a) Accessing CLI with Intuition (the usual method):

Boot your system with the Workbench diskette in the drive.
Youll see the deep blue Workbench screen displayed.

• Click the Workbench disk icon. This opens a window named
Workbench, which contains a number of icons.

• Click the System drawer. This opens a window called
System, again filled with a number of other icons. We are

interested in an icon named CLI, which either displays 1>
(Version 1.1), or an icon of a little window with 1> displayed in
it (Version 1.2).

If you don't see a CLI icon, then the CLI gadget in the
Preferences program is switched to Off. Click on the
Preferences icon in the Workbench window. When the

Preferences screen appears, click the On gadget next to the
word CLI. Save the result by clicking Save. Now close and
reopen the System window. A CLI icon should appear this
time.

Click on the CLI icon. This opens a window named New
CLI. You can enlarge or reduce the size of this window, but
you canft close it, since there is no close gadget You now have
your own CLI.

b) Accessing CLI through AmigaDOS:

AmigaDOS has a command called execute which executes
CLI commands in a batch file.

Abacus 2.1 CLI QUESTIONS AND ANSWERS

You can also access AmigaDOS through the system libraries,
which is how AmigaBASIC and the C programming language

communicate with the CLI.

c) Interrupting the booting process (the easiest method of calling

the CLI):

Boot your system as usual. When the Kickstart diskette (Amiga

1000) or Kickstart in ROM (Amiga 500 and 2000) has success

fully loaded, the icon of a hand holding a Workbench diskette

appears on the screen.

Insert the Workbench diskette in the drive. The hand disappears

and the system boots up.

• As soon as the AmigaDOS window (the blue screen) appears,

hold down the <CTRL> key and press the <D> key. The follow

ing message appears:

** BREAK -CLI

You are now in the CLI. Enter:

1> loadwb

• You can now access all functions of the CLI.

Question 2: How do I get out of the CLI?

Answer. The CLI window doesn't have a close gadget. You exit the CLI by
typing in the following:

1> endcli

If you have started programs from CLI, the CLI window remains open

while the programs run.

Question 3: I don't have a typewriter, but I have a printer connected
to my Amiga. Can I use my Amiga to type?

Answer Yes. Type in the following CLI command:

1> copy * to prt:

The asterisk (*) represents the open CLI window. After this input the
CLI prompt 1> disappears, but the cursor stays on the screen. Now
everything you type goes to the printer when you press the
<RETURN> key, like a typewriter with one-line correction capability.

2. The CLI
Amiga Tricks and Tips

Question 4:

Answer

Hold down the <CTRL> key and press the <\> (backslash) key to exit
typewriter mode.

You can also copy text from the CLI window to another window.
Type this and press the <RETURN> key to display your text in another
window:

1> copy * to CON:10/10/300/100/copy_text

Re-activate the CLI window by clicking on it. Press and hold the
<CTRL> key and press the <\> key to stop this command.

I only have one disk drive. Every time I call a CLI
command, the Amiga wants the Workbench diskette. Can
the Workbench be stored in memory?

Each CLI command is a program stored in directory c: of the Work
bench diskette. When you call a CLI command, the Amiga loads this
program from the Workbench diskette. This saves system memory
because the CLI commands aren't taking up any of that memory. On
the other hand, if you only have one disk drive, you spend a lot of your
time swapping diskettes.

Buying a second disk drive is one solution to the problem. Or, if you
have enough system memory, you can copy some or all of the CLI
commands into a RAM disk. Here's the sequence for copying these
commands:

1> makedir ram:c

1> copy sys:c to ram:c

1> assign c: ram:c

The Amiga creates a subdirectory on the RAM disk named c:. Next,
the CLI command set is copied to this directory. The last command
assigns the command directory c: to the RAM disk.

If your Amiga doesn't have enough memory available, copy only the
CLI commands you need most. For example:

1> makedir ram: c

1> copy sys:c/copy to ram:c

1> copy sys:c/dir to ram: c

1> copy sys:c/list to ram:c
(..any other commands you want copied..)
1> assign c: ram:c

10

Abacus
2.1 CLI QUESTIONS AND ANSWERS

Type in the following to make the CLI accessible from the Workbench

diskette:

l>dfO:c/assignc: dfO:c

Once you change to the Workbench-accessed CLI, you should delete the
RAM-based CLI to release the memory it occupies:

1> delete ram:c#?

1> delete ram:c

Question 5: Are there wildcard characters on the Amiga like the * and
? found on the older Commodore computers?

Answer. The Amiga uses the character combination #? as a wildcard. The
asterisk * represents the current CLI window, so it isn't used as a
wildcard on the Amiga. You can delete the entire RAM disk by typing

in:

1) delete ram:#?

Try this command:

1) runamig*?

The Amiga can't execute this command because it doesn't know which
program to execute. There may be several programs with names which

start with the letters Mamig".

Question 6: How can I print all the CLI commands on my printer?

Answer Type in this command sequence to print the complete CLI command

list:

1> list quick sys: c to prt:

The quick option prints the command names only. The file creation
date, the time, the protection status and the file size aren't printed. The
CLI commands themselves are in the c: subdirectory, or in the system
directory sys :. The list prints out even faster if you use the multi
tasking capabilities of the Amiga:

1> run list quick sys: c to prt:

This line opens another task for handling printer output. The Amiga
prints the command words in the background, leaving you free to work

on other things.

11

2. The CLI
Amiga Tricks and Tips

Question 7:

Answer

Question 8:

Answer

Question 9:

Answer

SLhi dete™in? th« ***** * « certain CLI com
mand while working in the CLI?

Almost all CLI commands have some help messages. If you don't
remember the exact syntax of a command, enter the command name

The Amiga displays:

DIR,P=PATH/K,KEYS/SJDATES/S,NODATES/S,TO/K,S/K
SINCE/K,UPTO/K,QUICK/S:

DIR stands for a directory. The current directory is listed if dir is
omitted. All other options have a condition, or argument, added to the
name of the option:

/A: This requires a specific argument
/K: This argument requires a parameter
/ S: This argument has no parameters

This command prints the programs in df0 : with the various starting
memory blocks, but without dates:

1> list df0 : keys nodates

Type in this command sequence to print the programs in df 0- which
were written between October 4th, 1986 and today

1> list df 0 : since 04-Oct-86 upto today

How can I stop a CLI command as it executes?

Pressing <CTRLxC> stops any command. <CTRL><D> sends an
execute command to stop the program as soon as possible.

How can I copy a program using one disk drive?

There are two methods of copying programs with one disk drive,

a) Using the RAM disk:

Copy the program you want copied, as well as the copy pro
gram, from the source diskette into the RAM disk:

1> copy program to ram:

1> copy c/copy to ram:

12

Abacus 2.1 CLI questions and answers

• The copy program was copied by the second command se
quence. This means that you won't have to insert the Workbench

diskette during the copying procedure.

Remove the source diskette and put the destination diskette in the

drive.

• Type in the following to copy the program onto the destination

diskette:

1> ram:copy ram:program to df0 :

Remove the destination diskette from the drive and insert the

Workbench diskette.

Enter this line to delete the RAM disk:

1> delete ram: #?

b) Using the Intuition icons:

Insert the source diskette and click the source diskette's icon.

As soon as the desired program's icon appears, remove the origi

nal diskette and insert the destination diskette.

Open the destination diskette by clicking its icon. Now you can

drag the program icon from the source diskette to the destination

diskette's window.

Requesters tell you when to exchange diskettes (remember not to

remove a diskette from a drive until the disk light turns off).

There are programs on your Workbench diskette which aren't listed in
Note: Intuition windows. This is because they have no icons assigned to

them. Here's how you can assign icons to these programs.

Insert the Workbench diskette. Type in the following lines:

1> copy df0 : clock.info to ram:

1> rename ram: clock.info as ram:program.info

1> copy c/copy to ram:

Insert the diskette which contains the original program. Enter:

1> ram:copy ram:program.info to df 0 :

• Now your program (here just called program) has an icon.

Insert the Workbench diskette and delete the RAM disk:

1> delete ram:#?

13

2. The CLI
Amiga Tricks and Tips

Question 10:

Answer

Note:

Question 11:

Answer:

Note:

How can I copy a program using two disk drives?

Enter this line in the CLI to copy the program:

1> copy df0 : originalprogram to df1:

originalprogram is the name of your program. It must be in
directory df 0 : of the diskette in drive 0 for this command to work
coirectly.

You can also copy a program by moving the program icon from one
disk window to another (see b) in Question 9 above).

Workbench diskettes with version numbers of 1.2 and above automati
cally copy info files when programs are copied. Info files contain the
icon design of the program and other information. If your Workbench is
earlier than Version 1.2, you must copy the info file and the program,
if you want the program to have an icon:

1> copy df0 :originalprogram.info to df 1 :

How can I copy an entire diskette?

Use the diskcopy command.

a) If you have one disk drive:

Insert the Workbench diskette.

Enter the following CLI command:

1> diskcopy from df 0 : to df0: name "copy"

Requesters tell you to exchange the source and destination disk
ettes as needed.

b) If you have two disk drives:

Insert the Workbench diskette.

Enter the following CLI command:

1> diskcopy from df 0 : to df1: name "copy"

Insert the source diskette in drive 0 and the target diskette in drive
1. No diskette swapping is required.

Always write-protect the source diskette before you begin copying, so
you won't accidentally overwrite the source diskette.

14

Abacus 2.1 CLI QUESTIONS AND ANSWERS

Question 12: What is a startup sequence, and what can I do with it?

Answer Hie startup sequence is a list of CLI commands executed when the
system is first booted up. You can also run the startup sequence while

in the CLI:

1> execute s/startup-sequence

Type this command to see what the startup sequence contains:

1> type s/startup-sequence

You can write your own startup sequences with the CLI editor Ed.

Type this to access Ed, and the startup sequence:

1> ed s/startup-sequence

The startup sequence for Workbench Version 1.2 looks like this:

echo "Workbench Diskette (Version 1.2/33.43) "

echo " "

echo fl (Date and time can be set with • Preferencesf) "

if EXISTS sys: system

path sys: system add

endif

BindDrivers

Loadwb

endcli>nil:

Move the cursor to the line you want to change with the cursor keys.

Pressing the <ESC> key puts you into extended command mode. Pres
sing <ESC> <D> <RETURN> deletes the current line. Delete the line:

endcli >nil:

Move the cursor to the line that says loadwb. Press <RETURN> to

move that line down. Move the cursor to that blank line. Enter this:

echo"**** This is my startup sequence. ****"

Press the <ESC> key, <X> key and <RETURN> key to save your

startup sequence.

Try out the new sequence:

1> execute s/startup-sequence

As the sequence executes, your message appears on the screen, and the

Amiga drops right into the CLI.

The loadwb command must be present at the end of the startup

Note: sequence to enable Intuition. If you exit the startup sequence

without loadwb, you'll get a blank blue screen without icons.

15

2. The CLI
Amiga Tricks and Tips

Question 13:

Answer:

Question 14:

Answer

Can the Amiga speak while in the CLI?

Yes. The CLI command for speech is say. say works similar to a
print command in BASIC, except that the text is read through the
Amiga's sound system, and no quotation marks are needed for say.
Type this in to hear say in action:

1> say tobi is a real nice guy!

The default speech parameters can be changed by including a modifier in
the text you want spoken. These modifiers are: -f (female), -m (male),
-r (robot), -n (natural), -s # (speed; # is a number ranging from 40 to
400) and -p# (pitch; # is a number ranging from 65 to 320). say can
speak the contents of a file when you add the modifier -x filename
to the command. The following example recites the startup sequence in
a woman's voice with a pitch of 180 and a speed of 180:

l>say -f -pl80 -sl80 -x s/startup-sequence

You can also use say within the startup sequence (see Question 12 for
editing instructions). Imagine having your Amiga say hello to you
every time you turn it on!

How can I send a C listing to a printer?

Use the CLI type command. Say you have a C listing called test.c
in drive df1:. Enter the following:

1> run type df 1: test.c to prt: opt n

run uses the multitasking capabilities of the Amiga here—while the
printer runs, you can work with another program. The opt n option
inserts line numbers in the C listing. These are helpful when tracking
down errors.

Question 15:

Answer:

How do I use the multitasking capabilities of the Amiga
in everyday work with the CLI?

Normally the CLI processes one command after the other; there is no
option for multitasking. Remember that the CLI itself can't perform
more than one task at a time. However, the multitasking operating
system of the Amiga allows you to run several single task CLls at
once.

For example, if you want to print the directory of the system diskette,
edit a document, and have the Amiga speak a sentence, all at once, the
usual command sequence would look like this:

16

Abacus 2.1 CLI questions and answers

1> list sys: to prt:

1> ed text

1> say hello user

This sequence executes faster if you use multiple CLI commands:

1> run list sys: to prt:

1> run ed text

1> say hello user

The run command passes the command sequence which follows it to a
new CLI. The original CLI then has nothing to do, and goes on to the

next task without waiting for the first one to finish.

There is a limitation: Two CLls shouldn't access the same drive (or a
drive and the printer) at the same time. In the case of the disk drives, the

two CLls share computing time, which takes the entire operation

longer than if the two CLls were executed one after the other.

Another way to initiate several tasks at once is by opening mulitple
CLls with the neweli command. This gives the user another com

plete input interface. This method works best when you execute several
CLI functions over a long period of time, instead of executing CLI

commands quickly. The following example makes this clear:

1> newcli

l>listdfO: quick

2> type files opt h

Here a new CLI opens, and all of the filenames in the df 0: directory
appear in this window. Then the file contents of the second, new CLI

print out. This way you can read filenames in the first CLI window
and work in the second window without disturbing the list of names.

The newcli command also offers several options. The user can set the
dimensions of the new CLI window. The syntax looks like this:

1> newcli con: 0/10/639/100/newcli

The word con: refers to the console (keyboard and monitor). The first
two numbers specify the x and y coordinates of the upper left corner of
the window, and the last two numbers set the width and height of the

window.

This lets you place new CLI windows so that they don't hide other
windows. If you work with multiple CLls, just leave each window's
back and front gadgets visible. Clicking a front gadget allows you to

bring any of the windows to the foreground.

17

2. The CLI
Amiga Tricks and Tips

Question 16:

Answer

Question 17:

Answer

What options does the Amiga have for text output?

The copy command is the simplest method:

l>copy * toprt:

See Question 3 for more information about the copy command

The built in CLI editor Ed can be used for writing letters:

1> run ed letter

Immediately the Ed window appears, and you can write your letter.

Ed runs independently of your original CLI. You can enter as many
documents as you wish. When the letter is done, enter the key com
bination <ESCxx><RETURN> to save it to diskette under the name
"letter". You can print your saved file from the CLI by typing:

1> type letter to prt:

that the text is on diskette. It can be printed at any time, or edited by
typing:

1> run ed letter

If you don't want the letter any more, enter:

1> delete letter

The Notepad is a third option for editing text. You call it as follows:

1> run utilities/notepad

This is an expanded notepad which allows access to the Amiga disk
resident fonts. That is its only real advantage over Ed. We recommend
using Ed, or a true word processor like Abacus1 TextPro or
BeckerText.

How can I make the invisible files on my Workbench
diskette visible?

A file doesn't appear in an Intuition window unless it has a
matching info file. This info file contains the icon data for the corres
ponding file.

There are many files on the Workbench diskette without info files.
These files are invisible to windows. You can adapt these files to appear
as icons.

18

Abacus 2.1 CLI questions and answers

Type in the following to load Ed:

l>edS:show

Enter the following text in Ed:

.key file/a

.bra (

.ket)

if exists sys: cli.info

echo "create info file"

if exists (file)

copy sys: system/cli.info to (file) .info

else

echo "there is no such source file"

endif

else

echo "no .info original found"

endif

quit

Now press <ESC>,<X> and <RETURN> to save the text. This text is

saved under the name "show" in the s: directory.

Now you can assign an info file to any file, and make the unseen file

visible in a window. Just enter:

1> execute showNameOfTheFile

The execute command activates the command sequence show. The

.key command uses NameOfTheFile instead of the word file.

The /a option indicates that this argument must be entered.

The .bra and .ket commands define the characters which mark the

start and end of the argument placeholders in the command sequence.

The command sequence checks for the existence of the info file

"cli.info", since this info file is used as the source info file. If this

file is not found in your directory, you must switch the CLI gadget in

Preferences to On (see Question 1, part a)).

Sometimes new file icons are piled on top of each other, if they are

identical. Separate the icons with the mouse (drag them apart), and use

the Workbench option Snapshot to keep them in place.

19

2. The CLI
Amiga Tricks and Tips

Question 18:

Answer

How can I combine various documents?

A common operation is combining various separate documents into
one. These can be parts of a C listing, or a letter heading, text and
closing. Ed cannot merge documents like some word processing pro
grams can. However, AmigaDOS has the join command available
through the CLI.

Say you have three text files called header, text and closing.
You want to create a single document out of these three parts. This is
done with join:

1> join header text closing as letter

The three separate components combine in order and save to diskette
under the filename "letter".

Question 19:

Answer

How can I search for certain text passages in my files?

The search command locates a specific word or sentence in files. C
programmers can use this command to search for procedure and variable
names in source listings. Here's the syntax of search:

1> search name search search_text all

name = name of the file or disk directory being searched

search__text = text to search for

all = all available directories are searched

This sequence searches all the files on the diskette in drive df0: for the
word"tobi."

1> search df0 : search "tobi" all

This command sequence checks the file "letter" for the name
"Meier".

1> search letter search "Meier"

This command searches all of the files starting with the letters
"docum" in the current directory for the words "Grand Rapids".

1> search docum#? search "Grand Rapids"

20

Abacus 2.1 CLI QUESTIONS AND ANSWERS

Question 20: Can a text file's contents be sorted?

Answer Yes, the sort command allows text files of up to 200 lines to be

sorted alphabetically. This is especially useful for address lists. For

example, if the file "addresses" contains the unsorted addresses of

your friends, just enter:

1> sort addresses to sorted

This line alphabetically sorts the file, and saves the sorted list as a new

file named "sorted".

If you want to sort more than 200 lines of text, you must increase the

size of die stack with the stack command.

21

2. The CLI
Amiga Tricks and Tips

2.2 New CLI commands

AddBuffers

BindDrivers

The newest version of the Workbench is here! There are a number of
new CLI commands not documented in the Amiga manual. This
section defines these new commands in alphabetical order.

The AddBuffers command supplies a connected disk drive with more
working memory. A disk drive can have a maximum of 24K, but only
a fraction of this memory is used. The result is slow diskette operation.
AddBuffers drive df0 : buffers 10 assigns 10 buffer blocks of
about 512 bytes each to the internal disk drive. You must decide for
yourself which is more important—speed or memory.

You use this command in the Workbench 1.2 startup sequence (see
Question 12 in the preceding section). When you want to add a driver
program other than the one controlling the disk drive, you place the

program in the drawer marked Expansion. The BindDrivers
command tells the CLI to look in the Expansion drawer for the
necessary device driver.

ChangeTaskPri

When you test out the multitasking capabilities of the Amiga, you may
have found one disadvantage: Multitasking sets up equal priorities. This
is good for some tasks but not others: You don't want the disk drive
starting up while you draw in a graphic program. On the other hand,
you might like to sort a file or format 30 diskettes while something
else is going on. However, die draw function of the graphic program
is much slower because of the other task(s) happening at the same time.
The microprocessor gives all tasks the same time allotment. It doesn't
matter that the sorting or formatting takes longer. ChangeTaskPri

-5 sets the background diskette functions to minimal priority. These

diskette functions take longer to execute, but won't stop the other tasks
at crucial times. ChangeTaskPri can theoretically use values from -
128 to +127, but values below -5 or about +5 can result in a system
crash.

DiskChange
This command is for those of you who own a 5-1/4" disk drive for the
Amiga. The DiskChange command tells the Amiga that you have
changed diskettes in the 5-1/4" drive. If you don't use this command,
AmigaDOS will not handle the new disk correctly. The reason is that
unlike the 3-1/2" drive, the 5-1/4" disk drive doesn't check for diskette
exchanges. If you manually enter DiskChange dev df 1:, the
system solves the above problem.

22

Abacus 2.2 New CLI commands

DiskDoctor

Mount

Path

SetDate

Once you're through paying for your Amiga, you don't have much

money left for diskettes. So like most users, you buy no-brand disk

ettes, which may not be very good media. One day, the requester

appears that says, "Disk structure corrupted: Use DiskDoctor." This

command has no description in the AmigaDOS manual. The Disk-

Doctor program looks at a diskette track by track, and attempts to

correct all the errors it finds. It displays a list of all files and tracks

which are defective or in need of repair, and instructs the user to copy

these programs to a new diskette. If you only have an internal disk

drive, you should enter the command as follows:

DiskDoctor DRIVE df0 :

Let the disk drive stop running after you insert the diskette containing

the DiskDoctor, before you press the <RETURN> key.

The Workbench is a passive program. The first thing it does is check

for the user-defined device drivers, and whether these peripheral devices

are connected. Mount tells the Amiga what to do with these drivers. If

this command is found, then the Amiga checks the MountList in the

devs directory for the drivers. If the appropriate entry is present in the

MountList, and you have a 5-1/4" drive, entering Mount df1:

instructs AmigaDOS to access the drive.

The Workbench diskette contains all the CLI commands. When only

one command should be executed, the Amiga first checks the current

directory (accessed by cd) for the command. If the command isn't in

that directory, the directory named c is searched. In Version 1.2 of the

Workbench, some of the commands are stored in the system directory.

The list of directories may be expanded using the path command so

that the user can add new commands. The syntax for adding to

directories:

path directory_name add

The word add tells AmigaDOS to add directory_name to the

search path. When you want to know which directories are searched,

enter path alone, or enter show. If the previously given directory is

no longer needed, then you can delete it with path reset.

This command is particularly important for Amiga 1000 owners. When

you turn on the Amiga and you want to edit a text or a program, the

new version is saved with the date last set in Preferences. If you

didn't set the date before editing the text/program, the date stamped on

the file will not be accurate. This command lets you change the date and

time stamped on any file. You can set your date and time by entering

the following syntax:

SetDate FILE "text" DATE Da-Month-YR TIME 23 : 59

23

2. The CLI Amiga Tricks and Tips

SetMap
The Amiga sells worldwide. Many countries have different keyboard
settings and different alphabets. To get around some of these problems
of language, Commodore Amiga created different keyboard drivers. The
keyboard only comes in one configuration (American), but it can
simulate the keyboards of other nations. The SetMap command sets
the keyboard according to the codes in the table below:

Name

ch

dk

d

e

f

gb
i

is

n

s

usa()

Country

Switzerland

Denmaik

Germany

Spain

France

Great Britain

Italy

Iceland

Norway

Sweden/Finland

United States

Version
This command returns the version number of the Workbench and
KickStart systems currently in use.

24

Abacus 23 New startup sequences

2.3 New startup sequences

The following startup-sequence allows you to enter the current date on

every system start. The startup-sequence file must be in the s :

directory cm the Workbench diskette to execute.

Echo " "
Echo "Startup-Sequence:) 1987 by Stefan Maelger"

Echo " "

if exists sys: system

Path sys: system add

Endif

BindDrivers

SetMap d

Date

Echo " "
Echo "Please enter the new date in"
Echo "the displayed format:"

Date?

Echo " "

Echo "The new date is:"

Date

Echo " "

Info

loadwb

endcli>nil:

The sequence below sets the Amiga to tomorrow's date. If you remem

ber to set the date in Preferences before you turn off the Amiga,

the date is correct, or close, the next time you turn on your Amiga.

Echo " "

Echo "Startup-Sequence by Stefan Maelger"

If Exists sys: system

Path sys: system add

endif

Binddrivers

Setmap d

Date tomorrow

Echo " "

Echo "Today • s date is:"
Date

Echo"Sytem:"

Info

loadwb

endcli>nil:

25

2. The CLI Amiga Tricks and Tips

This is the ideal Workbench for CLI enthusiasts. It opens a second
CLI window and changes the prompt slightly (you'll see how when
you try it out).

ADDBUFFERS df0: C 20

Echo "This creates a new CLI window and prompt"
Echo " " *
If Exists sys: system

Path sys: system add

end if

Binddrivers

PROMPT CLI#%n>

NEWCLI

Info

loadwb

endcli >nil:

This is the startup sequence for the beginner. It closes the big CLI

window, but opens a smaller CLI window. It also shows the RAM
disk icon.

Echo " "

Echo "Workbench Version 1.2 33.45"

Echo " "

If Exists sys: system

Path sys: system add

end if

Binddrivers

Echo "Welcome everyone"

loadwb

DIRRAM:

NEWCLI "CON: 0/150/400/50/Altemative"

endcli >nil:

2.3.1 Printer spooler

Using a printer spooler with a multitasking computer allows you to

work on something else while a file goes to the printer.

The CLI has a RUN command for executing a new task. You can treat

the spooler program as a batch file using this command. The procedure

is as follows:

Start the CLI and enter:

ED c: PRINT

Now enter the following program:

26

Abacus 23 New startup sequences

.key £±lename/a,typ/s ;take the parameters

; Printer-Spooler

;(c) 1987 by Stefan Maelger

if not exists <filename> ;check for file

echo "File not found" ;no?

quit ;-then end here

else ;or:

copy <filename> to ram:<filename>

;copy file to the RAM-Disk

if <typ> eq "DUMP " ;Hex-Dump output?

run >nil: type ram: <filename> to prt: opt h

;-HexDump-Spooling

else ;or:

run >nil: type ram: <filename> to prt: opt n

;-normal Spooling

endif

delete ram:<filename> ;free memory

endif

echo "printing" ;Output message

quit

Save the file with <ESCxX>. You can call the routine by entering

the following (the DUMP parameter is optional and can be omitted):

EXECUTE PRINT filename (DUMP)

Since the EXECUTE command takes a while to type—and can easily be
typed in incorrectly—enter the following:

run>nil: copy sys : c/EXECUTE to sys: c/DO quiet

This creates a command named DO which does the same thing as

EXECUTE. For example:

DO PRINT filename

The ability to put a number of commands into a two-character word is a

real time saver. Here's another example of DO:

RENAME sys : c/EXECUTE TO sys : c/DO

27

2. The CLI Amiga Tricks and Tips

2.3.2 CLI programming (batch files)

The CLI's flexibility in "programming" can make much of your work

easier. This section shows you a couple of examples for bypassing the

problem of accessing every AmigaDOS command from the Workbench

diskette. Also, ideas are presented here for performing data exchange
from the CLI.

The big hindrance to the CLI is that no loops can be constructed. The

AmigaDOS interpreter reads every command from the execute file in

order. Jumps cannot be executed. This goes for all CLI programming.

2.3.3 Resident CLI

The fact that the CLI must always access the Workbench diskette can

be annoying. The program below makes the CLI resident in RAM:

; Programto copy all the CLI-commands to RAM

FAILAT 30

MAKEDIR ram: c ; RAM-Data create

IF FAIL

SKIP ende

ENDIF

»

ECHO "CLI-commands being copied..."

>

COPY df0: c TO ram: c QUIET ; copy all commands to ram

ASSIGN c: ram: c ; commands now from ram:

ECHO "Ready!"

LAB ende

Before you go on, you should know that this is just a revision of the

Program RAM-resident CLI command workings as listed in the AmigaDOS
description manual.

First the program creates a directory in RAM for storing all C com

mands. If no errors occur, the entire CLI directory moves from the

currently inserted diskette into RAM. When all are ready, the ASS IGN

command tells the operating system to look in RAM only for the CLI.

28

Abacus 23 New startup sequences

2.3.4 Resi (partial resident)

There is one small disadvantage to the RAM-resident CLI. A basic

512K Amiga can lose a lot of memory to the CLI. Selective copying

of CLI commands saves memory. Another advantage to Resi: Since

every command must be copied over one at a time, you can also change

the command names to abbreviations using the RENAME command. For

example, delete can become del, and execute can become ex.

This makes things much easier when you might otherwise have to enter

long strings of characters, and even frequently used commands like dir

or list.

; Program copies the most important CLI commands to RAM

FAILAT 20

ECHO "The commands are being copied!'

MAKEDIRram:c

COPY c/copy TO ram: c

ASSIGN c: ram:c

COPYc/cd TO ram: c

COPYc/ed TO ram: c

COPYc/dir T0ram:c

COPY c/echo TO ram: c

COPY c/type TO ram: c

COPYc/listTOram:c

COPY c/info TO ram: c

COPY c/date TO ram: c

COPY c/execute TO ram: c

COPY c/makedir TO ram: c

COPYc/delete TO ram: c

COPYc/assign TO ram: c

ECHO "Ready!"

>

; End of copy

2.3.5 ToDisk

Once you finish using the CLI in RAM, you'll want to free up the

memory used by the resident commands. ENDCLI disables the resident

CLI, but leaves the commands in RAM. The ToDisk program below

assigns the CLI system in RAM to the diskette currently in the drive,

then clears the c directory from RAM. Other programs in RAM remain

29

2. The CLI Amiga Tricks and Tips

EXECUTE Resident CLI commands copied

Program

description

ECHO "Please insert new formatted diskette ..."

WAIT 8 SECS

CD dfO:

;new diskette initialization

COPY ram:copy/CLI TO CLI ; CLI written

COPY ram: copy/CLI. info TO CLI. info

MAKEDIR DiskUtilities

COPY ram: copy/Resident TO DiskUtilities

;Help files written

COPY ram: copy/ToDisk TO DiskUtilities

COPY ram: copy/CLICopy TO DiskUtilities

COPY ram:copy/ReSi TO DiskUtilities

MAKEDIR c

COPY ram:c TO c QUIET

;CLI commands written

ECHO "Ready!"

The program copies the CLI icon in the main directory, the programs

in the DiskUtilities directory and the CLI commands in the c

directory from the current diskette (make sure that these programs and

directories are on the current diskette). To avoid overwriting the copy

routine for all CLI commands, the program uses the Resident

routine as a subroutine. After 8 seconds the Amiga asks you to ex

change diskettes. The inserted diskette is viewed as the target diskette,

and the writing procedure begins. The CLI and its icon are copied and

then the directories with the utility programs. Finally, the commands

copy to the newly written c directory. Now you have a diskette that

you can call the CLI from without having to change diskettes. Typing

ASSIGN sys: c workdisk: c makes the diskette in drive 0 into the

work diskette.

2.3.7 Data management

Why should you only want to delete, save and copy files. This section

shows how you can use the CLI to create an address file. This has all

the basic functions you need, such as data entry, search and deletion.

Also, you can look for keywords and view any entry you wish.

The address file cannot exist on the main directory of the diskette. The

Preparations best bet is to create a subdirectory with the name AdrBook:

makedir "df0 : AdrBook"

30

Abacus 23 New startup sequences

When you wish to work with the address file, you must change this
directory to the current directory:

cdlfdf0:adrbookff

This subdirectory contains the program and the address directory. You

have one of two options for creating the address directory. You can use

the program DatDir. TXT below, or enter the CLI command MAKE-

DIR lfdf 0 : AdrBook/AdressData". DatDir .TXT checks for an

existing directory of the same name. If one exists, the user gets the

option of cancelling the program, or deleting or recreating the directory.

;create directory in main directory

CD dfO:AdrBook

>

IF EXISTS AdressData

ECHO "The existing data files will be erased!"

ECHO "You have three seconds to remove the disk"

WAIT 3 SECS

DELETE AdressData*?

DELETE AdressData

ENDIF

j

MAKEDIR AdressData

»

ECHO "Directory created in AdrBook!"

Now you can continue. The Entry.TXT program lets you write indivi-

Entry dual address data into the AdressData subdirectory. You call this
with EXECUTE Entry.TXT "name", "name" stands for the name

section under which you want the address data arranged. This is always

the main search criterion. Here you must decide whether the last name

or the entire name is more important. You can naturally also use this

program for keeping track of your record collection or library. The only

important thing to remember is that text must be placed in quotation

marks when it contains a blank space.

; Enter data in the, address data file

JKEY Name/A

CD d£0:AdrBook/AdressData

*

IF EXISTS "<Name>"

ECHO "Existing data can only be edited!1

ENDIF

ED FROM "<Name>"

CD dfO:AdrBook

ECHO "<Name> has been written!"

31

2. The CLI Amiga Tricks and Tips

Program

description

Delete

The EXECUTE command assigns a variable to the program through
.KEY. It looks to see whether this name already exists. If so, the Amiga

displays a warning that existing data can be edited only. You cannot

manage multiple data under the same main search criteria.

The AmigaDOS screen editor executes so you can edit your data. When

the input is done, AdrBook is declared as the current directory, which

saves you the trouble of constantly stating the directory paths. You can

exit input mode by pressing <ESCxX> (save data and exit) as well as
<ESCxQ> (quit without saving).

When entering data, there are times that you either enter some data in

correctly, or no longer need that data. The following batch file lets you

remove data entries without having to go directly into the directory.

;Delete name data from the address file

Program

description

Search

JKEY Name/A

CD dfO:AdrBook/AdressData

IF NOT EXISTS "<Name>"

ECHO "Data not found!"

SKIP Ende

ENDIF

»

DELETE "<Name>"

ECHO "<Name> has been deleted!"

LAB Ende

CD dfO:AdrBook

After a short check for the existence of the file, the entry is removed

from the data directory, and the program exits.

If you have many friends and relations in your data file, there are times

when you may want specific data on one particular person from a file.

You can get an alphabetized list by typing DIR, but searching through

a large directory can take time. The EXECUTE Search.TXT

command searches through the directory for the name you want. If the

name exists, this data appears on the screen.

; Search for one name in the Address file

JKEY Name/A

CD dfO:AdrBook/AdressData

IF EXISTS "<Name>"

ECHO "Data found ..."

TYPE "<Name>"

SKIP Ende

ENDIF

32

Abacus 23 New startup sequences

Program

description

Delete

The EXECUTE command assigns a variable to the program through

.KEY. It looks to see whether this name already exists. If so, die Amiga

displays a warning that existing data can be edited only. You cannot

manage multiple data under die same main search criteria.

The AmigaDOS screen editor executes so you can edit your data. When

the input is done, AdrBook is declared as the current directory, which

saves you the trouble of constantly stating the directory paths. You can

exit input mode by pressing <ESCxX> (save data and exit) as well as
<ESCxQ> (quit without saving).

When entering data, there are times that you either enter some data in

correctly, or no longer need that data. The following batch file lets you

remove data entries without having to go directly into the directory.

; Delete name data from the address file

;KEY Name/A

CD dfO:AdrBook/AdressData

IF NOT EXISTS "<Name>"

ECHO "Data not found!"

SKIP Ende

ENDIF

Program

description

Search

DELETE "<Name>"

ECHO "<Name> has been deleted!"

LAB Ende

CD dfO:AdrBook

After a short check for the existence of the file, the entry is removed

from the data directory, and the program exits.

If you have many friends and relations in your data file, there are times

when you may want specific data on one particular person from a file.

You can get an alphabetized list by typing DIR, but searching through

a large directory can take time. The EXECUTE Search.TXT

command searches through the directory for the name you want. If the

name exists, this data appears on the screen.

; Search for one name in the Address file

;KEY Name/A

»

CD dfO:AdrBook/AdressData

IF EXISTS "<Name>"

ECHO "Data found ..."

TYPE "<Name>"

SKIP Ende

ENDIF

33

2. The CLI Amiga Tricks and Tips

ECHO "Data record ?<Name>? not found!"

LAB Ende

CD dfO:AdrBook

>

A variation on searching is the keyword search. This gives you an over-

Keyword view of which data records contain the keyword. The CLI has its own
search provision for this command—all it needs is the keyword. The program

below is a short batch file to perform the keyword search. Enter the

keyword text in quotes when you call the batch file.

;Key word search of the address data

JKEY Word/A

ECHO "The search begins..."

CD dfOrAdrBook

SEARCH FROM AdressData SEARCH "<Word>"

ECHO "Search ended!"

CD dfO:AdrBook

There you have a file manager for beginners. This can be a big help for

those who don't own a professional file management program like

DataRetrieve Amiga. You can send your data to screen or printer as

you wish. And when you do buy a real database program, you can

transfer the files over to and from this program using the ASCII import

function.

34

3

AmigaBASIC

Abacus 3* AmigaBASIC

3. AmigaBASIC

BASIC (Beginner's All-purpose Symbolic Instruction Code) was writ
ten when computer programs were assembled by hand. Compilers were
not good systems for beginners because the programmer had to start

over if the programs had errors. Two people at Dartmouth thought
about this and developed a "beginner-friendly" language. This language
had a command set made of English words, and an interpreter instead of

a compiler. BASIC was born, and BASIC is probably the most used
programming language in the world today.

Over the years BASIC has expanded and improved. An advanced BASIC
like AmigaBASIC has the easily learned command words and the advan
tages of structured programming once found only in compiled lan-

AmigaBASIC is a product of Microsoft Corporation. Actually, Amiga
BASIC is more a version ofMacintosh Microsoft BASIC adapted to the
Amiga than an interpreter written specifically for the Amiga.
AmigaBASIC supports the Amiga's windows and menu techniques, but
many Amiga-specific features cannot be executed directly from
AmigaBASIC. These features, like disk-resident fonts and disk
commands, are accessible from the AmigaBASIC LIBRARY command.
LIBRARY command demonstrations appear later on in this chapter.

The AmigaBASIC programs in this bode show where you should press
Note: the <RETURN> key at the end of a program line. The end of paragraph

character <H> means to press <RETURN>. These characters were added
because some program lines extend over two lines of text in this book,
and many of these lines must not be separated.

All of the BASIC programs in this book are also available on the
optional diskette for this book, see the order information at the end of
the book for more information on how to order the optional diskette.

37

3. AMIGABASIC AMIGA TwCKSANDTIPS

3.1 Kernel commands

AmigaBASIC allows extremely flexible programming. In addition to
the AmigaBASIC commands (such as PRINT, IF/THEN/ELSE, etc.),
the interpreter can use unfamiliar commands if they are organized as
machine language routines. This means that you can easily integrate
your own commands into the BASIC command set.

Instead of writing new routines, it's easier to access existing machine
language routines. The Amiga operating system contains a number of
general machine language routines, called the kernel. Just as a kernel of
corn is the basis for a plant, the Amiga kernel is the basis for the op
erating system.

The operating system can be divided into about thirty libraries, arranged
according to subject These additional routines require only five of these
libraries:

1. exec.library

Responsible for tasks, I/O, general system concerns, memory
management

2. graphics.library

Responsible for text and GELs (graphic elements)

3. intutition.library

Responsible for windows, screens, requesters and alerts

4. dos.library

Responsible for accessing the Disk Operating System

5. diskfont.library

Responsible for Amiga fonts stored on diskette

Each of these libraries is filled with machine language routines for
accomplishing these tasks. To use these routines through Amiga
BASIC, you need three pieces of information:

1) The interpreter must have a name for every single routine. You
can assign each machine language routine its own name.

2) The interpreter must convey in which library the corresponding
routine can be found. Each library has an offset table for this

38

Abacus 3.1 Kernel commands

assignment: It begins with offset 6, and jumps in increments of
6. Every machine language routine has its own offset.

3) AmigaBASIC must know which parameter register it needs for

the routine. AmigaBASIC uses a total of eight data registers and

1 = Data register dO

2 = Data register dl

3 = Data register d2

4 = Data register d3

5 = Data register d4

6 = Data register d5

7 = Data register d6

8 = Data register d7

9 = Address register aO

10 = Address register al

11 = Address register a2

12 = Address register a3

13 = Address register a4

Every library has a .bmap file. This file contains the necessary infor

mation for all commands organized in the library.

You can easily create the necessary .bmap files using the ConvertFd

program on the Extras diskette from Commodore Amiga.

Before you continue, you should have the following files available:

graphics.bmap

intuition.bmap

execbmap

dosixnap

diskfont.bmap

Copy these files to the libs: subdirectory of the Workbench diskette.
An alternative is to ensure that these files are in the same subdirectory

as the program using them. The copying procedure goes like this when

using die CLI:

1> copy graphics.bmap to libs:

1> copy intuition.bmap to libs :

1> copy execbmap to libs :

1> copy dos.bmap to libs :

1> copy diskfont.bmap to libs :

39

3. AmigaBASIC
Amiga Tricks and Tips

3.2 AmigaBASIC graphics

The AmigaBASIC graphic commands are much too complex and ex
haustive to describe in this brief section (see Amiga BASIC Inside and
Out from Abacus for a complete description). The next few pages
contain tricks and tips to help you in your graphic programming. Well
spend this section describing the commands in detail.

3.2.1 Changing drawing modes

JAM 1

JAM 2

INVERSEVID

COMPLEMENT

on the screen, they can be interpreted by the computer in one of four
basic ways:

When you draw a graphic (which also includes the execution of a sim
ple PRINT command), only the drawing color is "jammed" (drawn) into
the target area. The color changes at the location of each point drawn,
and all other points remain untouched (only one color is "jammed" into
the target area).

Two colors are "jammed" (drawn) into the target area. A set point ap
pears in the foreground color (AmigaBASIC color register 1), and an

unset point takes on the background color (AmigaBASIC color register
0). The graphic background changes from your actions.

AmigaBASIC color register 0 and color register 1 exchange roles. The
result is the familiar screen color inversion.

This mode works just like JAM 1 except that the set point inverts
(complements) instead of filling with AmigaBASIC color register 1. A
set point erases, and an unset point appears.

These four modes can be mixed with one another, so you can actually
have nine combinations.

AmigaBASIC currently has no command to voluntarily change the

drawing mode. A command must be borrowed from the internal graphic
library. It has the format:

SetDrMd (RastPort,Mode)

The address for RastPort is the pointer to the current window struc

ture stored in WINDOW (8). The AmigaBASIC format looks like this:

40

Abacus 3.2 AmigaBASIC graphics

SetDrMd (WINDOW (8) ,Mode)

Here is a set of routines which demonstrate the SetDrMd () command:

• ############################11
• # #5
f# Program: Character mode #1
f# Author: TOB #5
•# Date: 8-3-87 #11
f# Version: 1.0 #11
•# #H
'############################11
H
LIBRARY "graphics.library"fl

Shadow "Hello everyone",11H

LOCATE 4 811
Outline "OUTLINE: used to emphasize text." ,105

H
LIBRARY CLOSEH

H
END5

SUB Shadow (text$,space%) STATIC5

cX% = POS(0)*8H
cY% = (CSRLIN - 1)*8H
IF cY% < 8 THEN cY% - 85

H
CALL SetDrMd (WINDCW (8) ,0) f JAM1H

H
FOR loop% - 1 TO LEN(text$)5

in$ « MID$(text$, loop%,l)H

U
CALL Move (WINDOW(8), cX%+l, cY%+l) H
COLOR 2,011

PRINT in$H

CALL Move (WINDOW (8), cX%, cY%)H

COLOR 1,05
PRINT in$;H

cX% « cX% +space%5

NEXT loop%5

H
CALL SetDrMd (WINDOW (8), 1) • JAM25
PRINTS

END SUBH

H
SUB Outline (text$, space%) STATIC^

cX% = POS(0)*8fl
cY% * (CSRLIN -1) * 8H
IF cY% < 8 THEN cY% - 85

FOR loop% « 1 TO LEN(text$)5
in$ - MID$(text$, loop%, 1)11
CALL SetDrMd (WINDOW (8), 0) 'JAMIII

FOR loopl% - -1 TO 1H
FOR Ioop2% - -1 TO 1H

CALL Move (WINDOW (8), cX% +loop2%,cY%+loopl%)1l

PRINT in$;H
NEXT Ioop2%5

NEXT loopl%H
CALL SetDrMd (WINDOW (8), 2) fCOMPLEMENT5
CALL Move (WINDOW(8), cX%, cY%)5

PRINT in$;H

n
cX% - cX% + space%5

NEXT loop%H

n

41

3.AMIGABASIC AM,GA TRICKS AND T,PS

CAIXSetDrMd(WINDOW<8),1) •JAM25
irKXNT j[

END SUBfl

COMPLEMENT mode demonstrates another application: rubberbanding.
You work with rubberbanding eveiy day. Every time you change the
size of a window, this orange rubberband appears, which helps you to
find a suitable window size.

Intuition normally manages this rubberband. This technique is
quite simple: To prevent the rubberband from changing the screen back
ground, Intuition freezes all screen activities (this is the reason that
work stops when you enlarge or reduce a window in a drawing program,
for example). The COMPLEMENT drawing mode draws the rubbert>and
on the screen. This erases simply by overwriting, without changing the
screen background. * *

This can be easily programmed in BASIC. The following program
illustrates this and uses some interesting AmigaBASIC commands:

;################################5
|or

•# Program: Rubberbanding #fl
f# Author: TOB ##
f# Date: 8-3-87 #{
f# Version: 2.0 #|

J###############################ll

LIBRARY "graphics.library"fl

main: ■* Rubber banding demofl
CLSfl

I
f* rectangle^
PRINT "a) Draw a Rectangle"fl
Rubberband^
LINE (m.x,m.y) - (m.s,m.t),,bf

•* lineal
LOCATE l,m

PRINT "b) ...and now a Line!"5
Rubberband^
LINE (m.xfm.y) - (m.s,m.t)H

f* areaH
LOCATE 1,15

PRINT "c) Finally Outline an Area"^
Rubberbandfl
x - ABS(m.x-m.s)^
y - ABS(m.y-m.t)!
PRINT "width (x) =";xfl
PRINT "Height (y) =";yH
PRINT "Area «";x*y; "Points."5

LIBRARY CLOSER
END5

!I
SUB Rubberband STATIC^

SHARED m.xfm.y/m.s/m.t5
CALL SetDRMD(WIND0W(8),2) fCOMPLEMENTH

WHILE MOUSE(0) « Of

42

Abacus 3.2 AmigaBASIC graphics

maus «- MOUSE (0)11

WENDU

m.x- MOUSE (l)fl
m.y - MOUSE (2) fl
m.s - m.xfl

m.t - m.yll

II
WHILE maus < m

m.a - m.sfl
m.b « m.tfl

m.s - MOUSE(DH
m.t - MOUSE(2)5
IF m.a O m.s OR m.b O m.t THENfl
LINE (m.x,m.y) - (m.a,m.b), ,M
LINE (m.x,m.y) - (m.s,m.t), ,bfl

END IFU
maus - MOUSE (0)^1

LINE (m.x,m.y)-(m.s,m.t) ,,M

PSET (m.x,m.yH
CALL SetDRMD (WINDOW (8)

END

3.2.2 Changing typestyles

The Amiga has the ability to modify typestyles within a program.

Typestyles such as bold, underlined and italic type can be changed
through simple calculations. This is useful to adding class to your text

output. Unfortunately, BASIC doesn't support these programmable
styles. The SetSoftstyle system function from the graphic library

performs this task:

SetSoftstyle (WINDOW (8),style,enable)

style:

0

1

2

3

4

5

6

7

= normal

= underline

= bold

= underline and bold

= italic

= underline and italic

= bold and italic

= underline, bold, and italic

43

3. Amiga BASIC Amiga Tricks and Tips

•# #5
f# Program: Text style #5
f# Author: TOB #5
f# Date : 8-12-87 #!
1 # AflT

^#################################5

DECLARE FUNCTION AskSoftStyle% LIBRARY!
DECLARE FUNCTION SetSoftStyle% LIBRARY!

LIBRARY "graphics.library"!
!
var: 'the mode assignments!

normal% - 0!
underline% - 1!
bold% - 2!
italic% -4!
5

demo: f an example!
CLS!

Style underline% + italic%!

PRINT TAB(20); "This is italic underlined
text"!

5
LOCATE 5,15

Style normal%5
PRINT"This is the Amigafs normal text"5
PRINT"Here are some example styles:"!
PRINT"a) Normal text"5
Style underline%5
PRINT"b) Underlined text"5
Style bold%5
PRINT "c) Bold text"5
Style italic%5
PRINT "d) Italic text"5
PRINT5
Style normal%5
PRINT "Here are all forms available:"5

FOR loop% - 0 TO 75

Style loop%5
PRINT "Example style number";loop%5

NEXT loop%!

!
1 and normal style!
Style normal%!

5
LIBRARY CLOSE!

END5
5

SUB Style (nr%) STATIC5
bits% = AskSoftStyle%(WINDOW(8))!
news% = SetSoftStyle% (WINDOW(8), nr%f bits%)5

IF (nr% AND 4) - 4 THEN!

CALL SetDrMd (WINDOW (8), 0) 5
ELSE 5

CALL SetDrMd(WINDOW(8),1)5

END IF5
END SUB5

44

Abacus 3.2 AmigaBASIC graphics

Variables bits% style bits enabling these character styles

news% newly set style bits

nr% given style bits

The program calls the Style SUB command immediately. The
Program AskSoftstylefi function returns the style bits of the current font
description These bits can later be changed algorithmically. The desired change is

made with SetSoftstyle, which resets the previously obtained
style bits. This function sets the new style when the corresponding
mask bits in bits% are set Otherwise, these bits remain unset

If the italic style is selected in any combination (nr% and 4=4), charac
ter mode JAM 1 is switched on (see Section 3.2.1 above). Italic style
uses this mode because JAM 2 (normal mode) obstructs the characters

to the right of the italicized text If the italic style stays unused, then
SetDrMdO goes to normal mode (JAM 2).

3.2.3 Move - cursor control

Note:

In some of the previous examples we used the graphics.library

command MOVE. AmigaBASIC can only move the cursor by characters

(LOCATE), or by pixels in the X-direction (PTAB), but it is easy to

move the cursor by pixels in both X- and Y-directions with the help of

the MOVE command.

Call the command in BASIC as follows:

Moves (WINDOW (8) ,x%,y%)

To simplify things, we have written a command that can be extremely

useful:

xyPTAB x%,y%

graphics.bmap must be on the diskette.

DECLARE FUNCTION Move* LIBRARY^

II
LIBRARY "graphics.library"H

II
vanfl
text$="Here we go..."fl
text$=fl "+text$+" "1
enpty$*=SPACE$ (LEN (text$)) I
fontheight%=8fl

5

FOR y%=6 TO 1005
xyPTAB x%,y%4

PRINT text$fl
xyPTAB x%,y%-fontheight%fl

45

3. AmigaBASIC
Amiga Tricks and Tips

PRINT
x%-

NEXT

empty$I

5
LIBRARY CLOSER
ENDfl

SUB xyPTAB(x%,y%) STATICfl

e&=Move& (WINDOW (8) ,x%,y%) f

END SUBfl

Variables

Program
description

text$ demo text

empty$ empty string, provided for erasing when moving in
the y-direction

fontheight% font height

x%, y% screen coordinates

e& Move& command error message

The Moves command is declared as a function and the library opens
The demo text moves across the screen in the soft-scroll mode, the
library closes, and the program ends.

The actual subprogram is extremely simple, since all that happens is
that the necessary coordinates pass to the Move command

Although this routine looks simple, it is also very powerful. It can
move text in any direction, as in the example, either with the smear
effect (SetDrMdmode%=JAMl) or with soft-scrolling (SetDrMd
mode%=JAM2).

3.2.4 Faster IFF transfer

IFF/ILBM file format is quickly becoming a standard for file structure.
IFF format simply means that data can be exchanged between different
programs that use the IFF system. Data blocks of different forms can be
exchanged (e.g., text, pictures, music). These data blocks are called
chunks.

You have probably seen many loader programs for ILBM pictures in
magazines, or even typed in the IFF format video title program from
Abacus1 AmigaBASIC Inside and Out. The long loading time of IFF
files is the biggest disadvantage of that format. There are a number of
reasons for this delay. First, it takes time to identify the different
chunks and skip the chunks that are unimportant to the program.
Second, there are a number of different ways to store a picture in ILBM
format. For example, a graphic with five bitplanes must be saved as
line 1 of each bitplane (1-5), line 2 of each bitplane (1-5), and so on.

46

Abacus 3.2 AmigaBASIC graphics

Considering that a bitplane exists in memory as one piece, it takes time

to split it up into these elements. Third, programs such as
DeluxePaint II® present another problem: Each line of a bitplane is
compressed when a graphic is saved, and must be uncompressed when

reloading the graphic.

Many professional programs donft use IFF for the reasons stated above.
Some programmers don't want graphics compatible with other
programs (e.g., Defender of the Crown® graphics). Other
programmers prefer to sacrifice that compatibility for speed.

You can add a professional touch to your AmigaBASIC programs with
this routine. This program loads an DFF-ILBM graphic (you might not
want to try this with DPaint®) and saves this graphic in the

following format:

Bitplane 1 (in one piece)

Bitplane 2 ...

...last bitplane

Hardware-color register contents

An AmigaBASIC program is generated which loads and displays this
graphic after a mouse click. The AmigaBASIC program is an ASCII
file, which can be independently MERGED or CHAINed with other pro
grams, and can be started from the Workbench by double-clicking its

iicon.

The listing below is a fast loader for IFF-ILBM graphics. In-house tests

of this loader could call up a graphic in 320 x 200 x 5 format with a
loading speed of over 41000 bytes per second (IFF files take a hundred

times longer to load).

######################################5
load pictures like a prof with #fl

FAST-GFX Amiga #fl

(W) 1987 by Stefan Maelger #fl

######################################^1

DECLARE FUNCTION xOpenfi LIBRARY^

DECLARE FUNCTION xRead* LIBRARY^

DECLARE FUNCTION xWritefi LIBRARY^

DECLARE FUNCTION Seek* LIBRARY^

DECLARE FUNCTION AllocMem* LIBRARY^

DECLARE FUNCTION AllocRaster* LIBRARY^

HEM **** OPEN LIBRARIES ***********************$

LIBRARY "dos.library"5

LIBRARY "exec.library"H

LIBRARY "graphics.library"1

REM **** ERROR TRAPPING ***********$

47

3. AMIGABASIC

ON ERROR GOTO errorcheck5
5

REM **** INPUT THE FILENAME *****************cj
nameinput: 5

REM **** FREE MEMORY FROM THE BASIC-WINDOW *******fl
REM **** OPEN NEW WINDOW AND MINISCREEN *******%
WINDOW CLOSE WINDOW(0)5

SCREEN 1,320,31,1,15

WINDOW 1,"FAST-GFX-CONVERTER»,,0,15
PALETTE 0,0,0,05

PALETTE 1,1,0,05

FOR i«l TO 45

MENU i,0,0,""5

NEXT5

PRINT "IFF-ILBM-Picture:"5

LINE INPUT filename$5

PRINT "Fast-GFX-Picture:f•5

LINE INPUT target$5

PRINT "Name of the Loader:"5

LINE INPUT loader$5

CHDIR "dfO:"5

5

REM **** OPEN IFF-DATA FILE **********************fl

file$«filename$+CHR$(0)5

handleS-xppenS(SADD(file$),1005)5

IF handleS=0 THEN ERROR 2555

5

REM **** CREATE INPUT-BUFFER ****************fl

buffer&^AllocMem& (160,655374)5

IF buffer&=0 THEN ERROR 2545

colorbuffer&=buffer&+965

5

REM **** GET AND TEST CHUNKS-FORM *********5

r&«xRead& (handles,buffer&, 12) 5

IF PEEKL (buffers)O1179603533& THEN ERROR 2535

IF PEEKL(buffer&+8)<>1229734477& THEN ERROR 2525
birihdflag%=»05

flag%=05

5

REM **** GET CHUNK NAME + CHUNK LENGTH ***********<fl

WHILE flag%<>15

r&=xRead&(handles,buffers,8)5

IF r&<8 THEN flag%-l:GOTO whileend5

5

length&=PEEKL (buffer&+4) 5

5

REM **** BMHD-CHUNK? (CVL("BMHD")) **************c|[

IF PEEKL(buffers)"1112361028& THEN5
5

r&=xRead&(handles,buffers,lengths)5

5

pwidth%=PEEKW(buffers) :REM * PICTUREWIDTH5

pheight%=PEEKW(bufferS+2) :REM * PICTUREHEIGHT5

48

Abacus 3.2 AmigaBASIC graphics

pdepth%«PEEK(bufferS+8) :REM * PICTUREDEPTHfl

packed%-PEEK(bufferS+10) :REM * PACK-STATUSfl

swidth%=PEEKW(bufferS+16) :REM * SCREENWIDTOT

sheight%=PEEKW(bufferS+18) :REM * SCREENHEIGHTfl

bytes%«(pwidth%-l

sbytes%«(swidth%-l

colmax%=2Apdepth%5

IF colmax%>32 THEN colmax%=32fl

IF pwidth%<321 THEN mode%=l ELSE mode%«2fl

IF pheight%>256 THEN mode%=mode%+2H

IF pdepth%«6 THEN extraplane%=l ELSE extraplane%=05

REM **** NEW SCREEN PARAMETERS ****************$

WINDOW CLOSE 15

SCREEN CLOSE 111

SCREEN lfpwidth%fpheight%fpdepth%-

extraplane%, mode%^I

WINDOW 1,^0,15

REM **** DETERMINE SCREEN-DATA *****************5

picscreen&HPEEKL (WINDOW(7) +46) 5

viewport&«picscreen&+44f

rastport&»picscreen&+845

colormap&-PEEKL(viewport&+4)$

colors&»»PEEKL(colormap&+4) 5

bmap&«PEEKL (rastport&+4) 5

REM **** HALFBRIGHT OR HOLD-AND-MODIFY ? ******fl

IF extraplane%=l THENH

REM **** MAKE 6TH BITPLANE ******fl

plane6&-AllocRaster& (swidth%, sheight%) 5

IF plane6&«0 THEN ERROR 2515

REM **** AND ADD IT TO THE DATA STRUCTURE *****$

POKE bmap&+5,6fl

POKEL bmap&+28,plane6&5

END IF5

5
REM **** CMAP-CHUNK (SET EACH COLOR: R,G,B) ***5

ELSEIF PEEKL(buffers) =1129136464S THENfl

IF (lengths OR 1)=1 THEN lengthS«lengthS+15

rS=xReadS (handles, buffers, lengths) 5

FOR i%=0 TO colroax%-15

REM **** CONVERT TO THE FORM FOR THE ***5

**** THE HARDWARE-REGISTERS ***5

POKE colorbufferS+i%*2,PEEK(bufferS+i%*3)/165

greenblue%«PEEK (bufferS+i%*3+l) f

49

3. AmigaBASIC Amiga Tricks and Tips

greenblue%-greenblue%+PEEK (bufferS+i%*3+2) /161I

POKE colorbufferS+i%*2+l,greenblue%fl

II
NEXTfl

I

REM **** CAMG-CHUNK - VIEWMODE (ie. HAM or LACE) ***fl

ELSEIF PEEKL(buffers)«1128353095S THENfl

H

rS«xReadS (handles, buffers, lengths) t

H

viewmodeS-PEEKL (buffers) fl

REM **** BODY-CHUNK - BITMAPS, LINE FOR LINE ******$

ELSEIF PEEKL(buffers)-1112491097S THEN5

REM **** DOES THE SCREEN EXIST AT ALL? *******fl

IF bnihdflag%-0 THEN ERROR 2501I

REM **** IS THIS LINE PACKED? *******$

IF packed%»l THENfl

REM **** THEN UNPACK IT! ! ! *********fl

FOR y%«0 TO pheight%-lfl

FOR z%-0 TO pdepth%-lfl

adS«PEEKL (bmapS+8+4*z%) +y%*sbytes%5

count%=0fl

WHILE count%<bytes%51

rS-xReadS (handles, buffers, 1) \

code%=PEEK(buffers)\

IF code%>128 THEN5

rS-xReadS(handles,buffers,1)fl

value%-PEEK(buffers)\

endbyte%«count%+257-code%fl

FOR x%-count% TO endbyte%5

POKE ads+x%,value%fl

NEXTI

count%-endbyte%f

ELSEIF code%<128 THEN^I

rS-xReadS (handles,adS+count%, code%+l) fl

count%-count%+code%+l5

END IFfl

WEND5

NEXT z

5

REM **** OR PERHAPS NOT PACKED? *****%

ELSEIF packed%»0 THEN5

REM **** FILL IN THE BITMAPS WITH THE DOS-COMMAND READ
FOR y%-0 TO pheight%-lU

FOR z%=0 TO pdepth%-lH

adS«PEEKL(bmapS+8+4*z%) +y%*y
rS=xReadS (handles,ads,bytes%) 5

NEXT z%,y%11

REM **** CODING-METHOD UNKNOWN? ****$

ELSE5I

i

50

Abacus 3.2 AmigaBASIC graphics

ERROR 249H

H

END IFH

H

ELSEH

H
HEM **** WE DO NOT HAVE TO BE ABLE TO CHUNK. ******H

REM **** SHIFT DATA FILE POINTER ******H

IF (lengths OR 1)-1 THEN length&-length&+lH

nowS-Seek& (handles, lengths, 0) H

11

END IFH

H

REM **** END THE SUBROUTINE *******************H

whileend:1I

H

WENDU

REM *•** LOAD COLOR AND CLOSE FILE ****f

IF bmhdflag%-0 THEN ERROR 2485I

CALL LoadRGB4 (viewports, colorbuffer&, colroax%) 5

CALL xClose (handles) 51

11

REM **** VIEW MODE GOTTEN? THEN ALSO STORE *fl

IF viewmode&OO THENH

POKEW viewport&+32fviewroode&H

END

REM **** OPEN DESTINATION DATA FILE

file$«target$+CHR$(0)5

handle&=xOpen& (SADD (£ile$), 1005) 11

IF handle&=0 THENH

handle&-xOpen& (SADD (£ile$), 1006) 3

END IFfl

***$

REM **** SO YOU CAN REMOVE A GRAPHIC *****fl

REM **** FROM MEMORY VERY QUICKLY *****^[

H

bitmap&=sbytes%*pheight% :REM ONE LARGE BITPLANEH

FOR i%=0 TO pdepth%-lH

ad&«PEEKL (PEEKL (WINDOW (8) +4) +8+4*1%) H

w&«xWrite& (handles, ads, bitmaps) 1

NEXTH

H

wS=«Write& (handles, colorbufferS, 64) U

11

REM **** CLOSE DATA FILE, AND FREE BUFFER *****U

CALL xClose (handles)H

CALL FreeMem(buffers, 160)H

H
rem ***•]!

REM **** GENERATES BASIC-PROGRAM (ASCII-FORMAT) *U

OPEN loader$ FOR OUTPUT AS 1H

11

51

3. AmigaBASIC Amiga Tricks and Tips

PRINT#1,"f ###################";CHR$(10);fl

PRINT#l,Ift # Fast-Gfx Loader #";CHR$(10) ;*

PRINT#1,lf • # #"; CHR$ (10) ; t

PRINT#l,"f # ";CHR$(169);f"87 S. Maelger #";CHR$(10);

PRINT#1,"» ###################";CHR$(10);fl

PRINT#l,CHR$(10);fl

51

REM **** DECLARE THE ROM-ROUTINES ******<&

PRINT#1, "DECLARE FUNCTION xppenfi LIBRARY";CHR$ (10) ; 5

PRINT#1,"DECLARE FUNCTION xRead* LIBRARY";CHR$ (10) ; f

PRINT#1, "DECLARE FUNCTION AllocMem* LIBRARY" ;CHR$ (10)

f

REM **** FOR THE CASE OF H.A.M. OR HALFBRIGHT ****fl

IF pdepth%»6 THEN5

PRINT#1,"DECLARE FUNCTION AllocRasterfi LIBRARY";5

PRINT#l,CHR$(10);fl

END

**** OPEN NEEDED LIBRARIES *******************fl

PRINT#lfCHR$(10);5

PRINT#lf "LIBRARY ";CHR$ (34) ;"dos.library";CHR$ (34) ;fl

PRINT#lrCHR$(10);5

PRINT#lf "LIBRARY ";CHR$ (34) ; "exec,library";CHR$ (34);

PRINT#lfCHR$(10);5

PRINT#lf "LIBRARY

"; CHR$ (34); "graphics. library" ;CHR$ (34); f

PRINT#lfCHR$(10);5

PRINT#l,CHR$(10);fl

REM **** RESERVE MEMORY FOR PALETTE ******fl

PRINT#lf "b&«AllocMem& (64, 65537&) ";CHR$ (10) ; 5

PRINT#lf"IF b&=0 THEN ERROR 7";CHR$ (10) ;5

REM **** OPEN PICTURE-DATA FILE ******************fl

PRINT#1, "file$=";CHR$ (34) ;target$;CHR$ (34) ;

PRINT#l/CHR$(l0);1I

PRINT#lf "h&=xppen& (SADD (file$), 1005) ";CHR$ (10); \

REM **** CREATE SCREEN ***********************$

PRINT#1, "WINDOW CLOSE WINDOW (0) ";CHR$ (10) ; 5

PRINT#1, "SCRpN 1, ";MID$ (STR$ (swidth%),2) ; ", "; fl

PRINTtl,MID$ (STR$ (pheight%), 2) ; ", "; \

PRINT#lf MID$ (STR$ (pdepth%-extraplane%), 2) ; ", "; 5

PRINT#lf MID$ (STR$ (mode%), 2) ;CHR$ (10) ;fl

PRINT#lr "WINDOW 1, f f 0,1";CHR$ (10) ;I

PRINT#lf "viewport&«PEEKL(WINDOW(7) +46) +44";CHR$ (10) ;

REM **** SET ALL COLORS TO ZERO ************fl

lcm$="CALL LoadRGB4 (viewports,b&, "5

lcm$=lcm$+MID$ (STR$ (colmax%), 2) +") "+CHR$ (10) 51

PRINT#l,lcm$;5I

REM **** IS HAM OR HALFBRIGHT CM, 6 PLANES ********fl

52

Abacus 3.2 AmigaBASIC graphics

IF tiefe%-6 THENfl

II

PRINT#1, "n&-AllocRaster& (" ; fl

PRINT#1,MID$ (STR$ (swidth%),2);", ";fl

PRINT#1,MID$ (STR$ (pheight%), 2); ") ";CHR$ (10) ; t

PRINT#1,"IF n&-0 THEN ERROR 7";CHR$(10);fl

PRINT#1, "bxnapfi-PEEKL(PEEKL(WINDOW(7)+46)+88) ";CHR$ (10)

PRINT#1, "POKE bmap&+5,6M ;CHR$ (10) ; f

PRINT#1, "POKEL bmap&+28,n&";CHR$(10);H

PRINT#1, "POKEL viewport$+32, PEEKL (viewport&+32) OR

REM **** AND SET VIEWMODE

IF (viewmode* OR 2A7)-2A7 THENH

REM **** SET HAIFBRIGHT-BIT ******************fl

ELSE^I

REM **** SET HOID-AND-MODIFY - BIT ***********fl

END

PRINT#lfCHR$(10);^I

END IFfl

REM **** AND NOW THE MAIN ROUTINE ****************fl

PRINT#lf"FOR i%-0 TO";STR$ (pdepth%-l) ;CHR$ (10) ;fl

PRINT#1,"

ad&-PEEKL (PEEKL (WINDOW(8) +4) +8+4*i%) ";CHR$ (10) ; f

PRINT#1," r&=xRead& (h&, ad&, " ; f

PRINT#lf MID$ (STR$ (bitmap*),2); "&) ";CHR$ (10) ; 5

PRINT#1, "NEXT";CHR$ (10) ;H

REM **** GET PALETTE (ALREADY IN THE RIGHT FORM) 5

PRINT#lf "r&«xRead& (h&,b&f 64) ";CHR$ (10) ; I

**** CLOSE THE FILE AGAIN *****************fl

PRINT#1, "CALL xClose (h&) ";CHR$ (10) ; f

**** SET COLOR TABLE **************$

PRINT#l,lcm$;1I

REM **** FREE COLOR BUFFER AGAIN ****fl

PRINT#lr"CALL FreeMem(b&f64)";CHR$(10);fl

!I
REM **** CLOSE LIBRARIES AGAIN ************fl

PRINT#1, "LIBRARY CLOSE" ; CHR$ (10) ; \

\

REM **** WAIT FOR MOUSE-CLICK *****************fl

PRINT#1, "WHILE MOUSE(0)00:WEND";CHR$ (10) ;fl

PRINTtl, "WHILE MOUSE(0)=0:WEND";CHR$ (10) ;\

53

3. AmigaBASIC Amiga Tricks and Tips

REM **** CLOSE SCREEN AND BASIC-WINDOW *****fl

REM **** TURN WORKBENCH-SCREEN ON AGAIN *****fl

PRINT#1, "WINDOW CLOSE 1" ; CHR$ (10) ; 5

PRINT#1, "SCREEN CLOSE 1";CHR$ (10) ;5

PRINT#1, "WINDOW 1,"; CHR$ (34) ; "OK" ;CHR$ (34) ; f

PRINT#1,",(0,11)-(310,185),0,-1";5

PRINT#lfCHR$(10);CHR$(10);5

5

CLOSE 151

5

REM **** BACK TO THE WORKBENCH ******************^f

WINDOW CLOSE 15

SCREEN CLOSE 15

WINDOW 1,,,0,-lfl

PRINT "Creating Loader-Icon"5
5
REM **** DATA FOR SPECIAL-ICON IMAGE *******fl

RESTORE icondata5
5
file$»loader$+".info"4CHR$(0)5

5

FOR i%-l TO 4865

READ b$5
a$-a$+CHR$ (VAL ("&H"+b$)) 5

NEXT5
5
REM **** AND WRITE THE ICON DATA-FILE ****5

REM **** TO DISK (MODE-OLDFILE) ****5
h&»xOpen&(SADD(file$),1005)5
w&=xWrite&(h&,SADD(a$),498)5

5
CALL xClose(h&)f

5
REM **** PERHAPS STILL ANOTHER PICTURE ???

CLS5
PRINT "Another Picture (y/n)? >";5

pause:5
5
a$«INKEY$5
IF a$O"y" AND a$O"n" GOTO paused

5
PRINT UCASE$(a$)5
IF a$-"y" GOTO nameinput5

5
REM **** WERE DONE...

LIBRARY CLOSE5
MENU RESET5

END5
5

**** EIRROR-TRAPPING ************************^

errorcheck: 5

5

IF n%=255 THEN5
PRINT "Picture not found"5
GOTO rerunfl

ELSEIF n%=254 THEN5
PRINT "Not enough Memory! "5
GOTO rerun5

ELSEIF n%=253 OR n%«252 THEN5

PRINT "Not IFF-ILBM-Picture!"5
GOTO rerun5

54

Abacus 3.2 AmigaBASIC graphics

ELSEIF n%-251 THEN3I

PRINT "Can Not Open 6th Plane."5

GOTO remind
ELSEIF n%-250 THEN3I

PRINT "Not BMHD-Chunk form BODY! "5
GOTO reruns

ELSEIF n%<-249 THEN3I
PRINT "Unknown Crunch-Algorithm. "31
GOTO rerunfl

ELSEIF n%-248 THEN3I

PRINT "No more to view. "5
GOTO reruns

31
ELSE31

CLOSER

CALL xClose (handles) 31

CALL FreeMem (buffer*, 160) 31
LIBRARY CLOSER

MENU RESETS

ON ERROR GOTO 031

ERROR n%fl

STOP3I

31
END IF3I

31
STOP31

31
rerun:fl

H
IF n%O255 THEN^I

CALL xClose (handles) f

IF n%<>254 THEN CALL FreeMem (buffer*, 160) f

END in

BEEP31

LIBRARY CLOSER
RUNfl

icondata:^

DATA ES^CO^l^^O^.O^.O^O.O.O^E.O^lF, 0,5,0,3, 0,131
DATA 0,l,BD,A0, 0,0, 0,0,0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0,0, 031
DATA 0,0,0,4,0,0,0,F2,98,0,0,0,0,80,0,0,0,80,0,0,0,03I
DATA O,O,O,O,O,O,O,O,O,1O,O,O,O,O,O,O,2E,O,1F,O,2,O3I
DATA 2,Bl,E0,3,0,0,0,0,0,0,0,0,0,0,0,3,FF,FF,FF,FF,03I
DATA 3,0,0,0,3,0,2,0,0,0,1,0,2,0,0,0,1,0,2,7,80,0,131
DATA 0,2,l,F8,0,l,0,2,0,3F,C0,l,0,2,3,FC,0,l,0,2,03I
DATA lF,C0,l,0,2,0,l,FE,l,0,2,0,0,lF,Fl,0,2,0,0,FF,13I
DATA 0,3,0,lF,FE,3,0,3,FF,FF,FF,FF,0,0,0,6A,BF,F0,03I
DATA 0,0,0,7,FE,0,0,0,0,0,FF,80,7F,EF,FF,FD,FF,F8,7F3I
DATA EF,FF,FD,E0,38, 7F,EF,FF,FD,FF,F8, 0, 0,0,0, 0, 0, 031

DATA 0,0,0,0,0,0,0,0,0,0,0,0,3E,7C,F9,B0,0,0,20,403I
DATA 80,A0,0,0,3C,4C,F0,40,0,0,20,44,80,A0,0,0,20,7C3I

DATA 81,B0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,FF,FF,FF,FF,03I
DATA 4,0,0,0,0,80,4,FF,FF,FF,FC,80,5,FF,FF,FF,FE,803l
DATA 5,FF,FF,FF,FE,80,5,FF,FF,FF,FE,80,5,FF,FF,FF,FE3I

DATA 80,5,FF,FF,FF,FE, 80,5,FF,FF,FF,FE, 80,5,FF,FF,FF3I
DATA FE, 80,5,FF,FF,FF,FE, 80,5,FF,FF,FF,FE, 80,5,FF,FF3I
DATA FF,FE,80,4,FF,FF,FF,FC,80,4,0,3,FF,80,80,7,FF3I
DATA 95, 7F,FF, 80,1,FF,FF,FF,FE, 0, 7F,FF,FF,FF,FF,F83I

DATA 80,10,0,2,FF,84,80,10,0,2,7F,C4,B0,10,0,2,0,43I
DATA 7F,FF,FF,FF,FF,FC,38,0,0,0,0,38,30,0,0,0,0,18,03I
DATA 0,031
DATA 0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,C,3A, 4131
DATA 6D, 69, 67, 61,42,41,53,49,43,031

55

3. AmigaBASIC Amiga Tricks and Tips

3.2.5 IFF brushes as objects

If you own a high-quality paint program like DeluxePaint®, you can

actually use it as an object editor. You can create sprites and bobs with

this program.

The program in this section lets you convert any IFF graphic into an

object file. The only requirement is that the graphic cannot be too large

for an object string.

This graphic object can be activated and moved Since there are no spe

cial techniques used for storing the background, too many bitplanes can

cause a flickering effect

######################################11

Use DPaint as Object-Editor with #H

~* —-——— —— — — — #^j

#BRUSH- TRANSFORMER #5

(W) 1987 by Stefan Maelger #H

######################################11

31

CLEAR,30000&H

DIM r(31),g(31),b(31)H

nameinput: H

PRINT "Brush-File Name (and Path): ";fl

LINE INPUT brush$H

PRINTH

PRINT "Object-Data File (and Path): M;fl

LINE INPUT objectfile$H

PRINT fl

PRINT "Create Color-Data File? (Y/N) M;fl

pause :fl

a$=LEFT$ (UCASE$ (INKEY$+CHR$ (0)), 1) f

IF a$-"N" THEN H

PRINT "NO!"U

ELSEIF a$="Y" THENH

PRINT "OK."H

colorflag%»lH

PRINT I

PRINT "Color-Data File Name (and Path) : H;fl

LINE INPUT colorfile$H

ELSEU

GOTO paused

END IFH

PRINT I

OPEN brush$ FOR INPUT AS lfl

a$«INPUT$(4fl)H

IF a$O"F0RM" THEN CLOSE 1:RUNH

56

Abacus 3.2 AmigaBASIC graphics

a$=INPUT$(4,l)H

a$«INPUT$(4,l)H

IF a$O"ILBM" THEN CLOSE 1:RUNH

H

getchunk:H

a$«INPUT$ (4,1)11

H

IF a$«"BMHD" THENH

PRINT "BMHD-Chunk found. "H

PRINT H

a$=INPUT$(4,l)H

bwidth%«ASC(INPUT$(1,1)+CHR$(0))*256U

bwidth%«bwidth%+ASC (INPOT$ (1,1) +CHR$ (0)) H

PRINT "Image width :";bwidth%;" Pixels"H

IF bwidth%>320 THENH

PRINT "It is too wide."U

BEEPH

CLOSE 1H

RUNH

END IF1

bheight%=ASC(INPUT$(1,1)+CHR$(0))*256H

bheight%«bheight%+ASC(INPDT$(1,1)+CHR$ (0))H

PRINT "Image height:";bheight%;" Pixels"H

IF bheight%>200 THENH

PRINT "It is too high."H

BEEPH

CLOSE 1H

RUNH

END IFH

a$«INPUT$(4,l)H

planes%-ASC(INPUT$(1,1))H

PRINT "Image Depth :";planes%;" Planes"H

IF planes%>5 THENH

PRINT "Too many Planes!"U

CLOSE 111

RUNH

ELSEIF planes%*((bwidth%-l)\16+1)*2*bheight%>32000

THENH

PRINT "Too many Bytes for the Object-String! "H

BEEPH

CLOSE 1H

RDNH

END IF H

a$=INPUT$ (1,1)11

packed%~ASC (INPUT$ (1,1) +CHR$ (0)) H

IF packed%=0 THENH

PRINT "Pack status: NOT packed."H

ELSEIF packed%"l THENH

PRINT "Pack status: ByteRunl-Algorithm."H

ELSEH

PRINT "Pack status: Unknown method"H

BEEPH

CLOSE 1H

RUNH

END IFH

57

3. AmigaBASIC Amiga Tricks and Tips

a$«INPUT$(9,l)fl

Status%-Status%+U

PRINTS

PRINT U

ELSEIF a$-"CMAP" THENfl

PRINT "CMAP-Chunk found. "5

a$=INPUT$(3,l)3I

1%-ASC (INPOT$ (1, 1)) f

colors%«l%\3fl

PRINT colors%; "Colors found" fl

FOR i%-0 TO colors%-lfl

r(i%)»ASC(INPUT$(1,1)+CHR$(0))/255H

g(i%)-ASC(INPUT$(1,1)+CHR$(0))/255fl

b(i%)=ASC(INPUT$(l,l)+CHR$(0))/255fl

NEXT5

Status%=Status%+25

PRINT U

PRINT 5

ELSEIF a$«"B0DY" THEN5

PRINT "BODY-Chunk found. "5

PRINT fl

a$«INPUT$(4fl)5
bytes%= (bwidth%-l

obj$=STRING$ (bytes%*bheight%*planes%f 0) f

FOR i%=0 TO bheight%-lfl

PRINT "Getting lines";i%+15

FOR j%=0 TO planes%~15

IF packed%«0 THENfl

FOR k%«l TO bytes%^I

a$=LEFT$ (INPUT$ (1,1) +CHR$ (0), 1) f

MID$ (obj$, j%*bmap%+i%*bytes%+k%/

NEXTfl

ELSE^I

WHILE pointer%<bytes%+15

a%«ASC(INPUT$(1,1)+CHR$ (0))fl

IF a%<128 THENH

FOR k%«^ointer% TO pointer%+a%5

a$=LEFT$ (INPUT$ (lf 1)+CHR$ (0),

MID$(obj$f j%*bmap%+i%*bytes%+k%,

NEXTf

pointer%«pointer%+a%+l%

ELSEIF a%>128 THEN^l

a$=LEFT$(INPUT$(1,1)+CHR$(0),1)fl

FOR k%=pointer% TO pointer%+257-a%5

MID$(obj$f j%*broap%+i%*bytes%+k%,

NEXT^I

pointer%==pointer%+256-a%^1

END IF^I

END IFfl

NEXT^I

NEXT^I

58

Abacus 3.2 AmigaBASIC graphics

Status%»Status%+45

5

ELSE5

PRINT a$;ff found. "5

a«CVL(INPUT$ (4,1)) /45

FOR ±%-l TO a5

a$-INPUT$(4,l)5

NEXT5

GOTO getchunk5

5

END IF5

checkstatus:5

IF Status%<7 GOTO getchunk5

5

CLOSE 15

PRINT ^

PRINT "OK, Creating Object."5

ob$«""5

FOR i%=0 TO 105

ob$=ob$+CHR$ (0) 5

NEXT5

ob$«ob$+CHR$ (planes%) +CHR$ (0) +CHR$ (0) f

ob$=ob$+MKI$ (bwidth%) +CHR$ (0) +CHR$ (0) f

ob$=ob$+MKI$ (bheight%) +CHR$ (0) +CHR$ (24) 5

ob$»ob$+CHR$ (0) +CHR$ (3) +CHR$ (0) +CHR$ (0) f

ob$=ob$+obj$5
PRINT f

PRINT "Create Object-Data File as ";CHR$(34);fl

PRINT objectfile$;CHR$(34)5

PRINT 5

OPEN objectfile$ FOR OUTPUT AS 25

PRINT#2,ob$;fl

CLOSE 25

PRINT "Object stored."5

5

IF colorflag%«l THEN5

PRINT 5

PRINT "Creating Color-Data File:"5

OPEN colorfile$ FOR OUTPUT AS 35

PRINT#3,CHR$ (planes%) ;5

PRINT " Byte 1 = Nuniber of Bitplanes"5

FOR i%=0 TO 2/splanes%-15

PRINT "Byte";i%*3+2;"- red (";i%;")*255"5

PRINT#3f CHR$(r(i%)*255);5

PRINT "Byte";i%*3+3;"« green(";i%;")*255"5

PRINT#3,CHR$(g(i%)*255);5

PRINT "Byte";i%*3+4;"= blue (";i%;")*255"5

PRINT#3,CHR$(b(i%)*255);5

NEXT5

CLOSE 35

END IF5

5

59

3. AmigaBASIC Amiga Tricks and Tips

SCREEN 1,320,200,planes%,15

WINDOW 2,,,0,15

FOR i%«0 TO 2Aplanes%-15
PALETTE i%,r(i%),g(i%),b(i%)5

NEXT5

OBJECT.SHAPE l,ob$5
OBJECT.PLANES 1,2Aplanes%-l,05

FOR i-0 TO 300 STEP .111
OBJECT.X l,ifl

CBJECT.Y 1, (i\2)H
OBJECT.ONH

NEXT5

WINDOW CLOSE 25

SCREEN CLOSE 15

5
RUN5

Variables status status of chunks read

a help variable

b array, blue scales of a color

bmap size of BOB bitplane in bytes

bwidth width ofBOB in pixels

brush name of IFF-ELBM file

bytes width of BOB in bytes

colorfile color file name

colors number of IFF file colors stored

g array, green scales of a color

packed pack statusO=not packed; l=byterun 1

bheight height of BOB in pixels

i loop variable

j loop variable

k loop variable

1 loop variable

ob object string

obj image string

objectfile file stored in ob$

planes bitplane depth ofBOB

pointer counter variable for bytes read from a line

r array, red scale of a color

Byte 1= number of bitplanes in the object

Color file Byte 2= red scale of background color* 255
data Byte 3= green scale of background color * 255

(optional) Byte 4= blue scale of background color * 255

Byte 5= red scale of 1st color * 255

Byte 6= green scale of 1st color * 255

Byte 7= blue scale of 1st color * 255

Now a few words about IFF-ILBM-format. A file in this format has

IFF several adjacently stored files called chunks. Every chunk has the fol-
structure lowing design:

60

Abacus 3.2 AmigaBASIC graphics

BMHD

chunk

CMAP

chunk

CRNG
chunk

(DeLuxe

Paint)

CCRT

chunk

(Graphic-

raft)

1

2

3

Chunk name

Chunk length

Chunk data

4-byte-long string (e.g., "BODY")

4-byte integer (i.e., LONG format)

#chunk-long bytes

The header chunk which begins every IFF file has a similar design:

1

2

3

Filetype

File length

Datatype

"FORM" (IFF file header)

Long value

"ELBM" (interleaved bitmaps)

The most important chunks:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

1

2

3

4

5

6

7

1

2

3

4

5

6

7

long

long

wad

wand

wok!

wad =

byte

byte

byte

byte

wad

byte

byte

wad

wad

long

long

byte

byte

byte

byte

long

long

wad

wand

wok!

byte

byte

long

long

wad =

byte

byte

long

long

"BMHD" (bitmap header chunk)

chunk length

graphic width in pixels

graphic height in pixels

X-position of graphic

Y-position of graphic

number of bitplanes on screen

masking

crunch type

V

transparent cola*

X-aspect

Y-aspect

screen width in pixels

screen height in pixels

"CMAP" (ColorMap)

chunk length

color 0 red value *255
color 0 green value *255

color 0 blue value *255

color 1 red value *255

"CRNG" (ColoiCycle chunk-4 times)

chunk length

always 0 (at this time)

speed

active/inactive

lower color

upper color

"CCRT (ColorCycle chunk from Graphicraft)

chunk length

direction

starting color

ending color

seconds

microseconds

61

3. AmigaBASIC Amiga Tricks and Tips

BODY

chunk

ByteRunl-

Crunch

Algorithm

1 long = "BODY" (Bitmaps)

2 long » chunk length

3 = 1st line of 1st bitplane (for eventual packing -
see BMHD above)

1st line of 2nd bitplane

1st line of 3nd bitplane

2nd line of 1st bitplane...

There is never more than one line of a bitplane packed at a time. This

packing can occur in line order. The coding consists of one code byte. If

this byte has a value larger than 128, then the next byte repeats with a

value at least 3 times more (e.g., 129 results in the next byte at 2S8

more). Since FOR/NEXT loops require a starting value for loop

variables, this construct must begin with the value 1, listed as follows:

FOR i=startvalue TO startvalue+258-codebyte-l

Or as shown above, 257-codebyte. The second coding applies to

codebytes less then 128. Here the next codebyte+1 byte is not used.

In short, you could say that the first and second coding types use a

maximum of 128 bytes. Since the width of a 640*x screen only re

quires 80 bytes, then one line of one bitplane only requires (me coding.

3.2.6 Another floodfill

The Amiga has the ability to execute complicated area filling at a rate

of one million pixels per second in any color. The AmigaBASIC

PAINT command performs this task. This command has one dis

advantage in its current form: It can only fill an area that is bordered by

only one predetermined color. This limits anyone who might want to

use this in their own applications (e.g., drawing programs). A solution

might be to set up parameters with the PAINT command that uses any

color for the floodfill border. A routine like this exists in the operating

system. Since the graphics library handles it as one of its own routines,

the program stays in memory and doesn't disappear when the Work
bench reboots.

The routine is called Flood and can be called from AmigaBASIC as

follows:

CALL Floods (Rastport,Mode,x,y)

Here is a SUB routine that uses Flood:

REM ##############################fl

REM # FLOODFILL Amiga #fl

REM # PAINT until to any
REM # other color if found

62

Abacus 3.2 AmigaBASIC graphics

BEM # H

REM # (W) 1987 by Stefan Maelger #5
REM #####***####»*#####«#####f####l

LIBRARY "graphics.library"5

SCREEN 1,640,255,2,25

WINDOW 2, "FLOODFILL",, 0,15
5
LOCATE 2,25

PRINT "Floodfill-Demo"5
5
CIRCLE (200,80),150,25
CIRCLE (400,80),150,35

FLOODFILL 200,80,15

FLOODFILL 300,80,15
FLOODFILL 400,80,15
5
LIBRARY CLOSE5

5
LOCATE 4,25
PRINT "PRESS ANY KEY"5
5
WHILE INKEY$=""5

WEND5
5
ST0P5
5
SUB FLOODFILL(x%,y%,fcolor%) STATIC5
PSET (0,0),05
PAINT (0,0),05
COLOR fcolor%5
rastport&«=WINDOW (8)5

ToAnyColorMode%-15
CALL Floods (rastport&,ToAnyColorMode%,x%,y%) 5

Initializing this routine is as simple as calling PAINT.

3.2.7 Window manipulation

You already know that windows can do a lot. This section shows you a
few extra ideas for working with windows in AmigaBASIC.

3.2.7.1 Borderless BASIC windows

An Amiga expert published a long program listing in a recent maga

zine. This listing looked up a bitmap address and erased the border bit

by bit—it took more than a minute to execute. Here's an easier way to
get the same result:

63

3. AmigaBASIC Amiga Tricks and Tips

#####################################5

BORDERLESS for AinigaBASIC-Windows #fl
JtflT

(W) 1987 by Stefan Maelger #fl

#####################################11

51
LIBRARY "intuition. library" fl
CLSfl
PRINT "Here is a Default Window with a Border-"3

PRINTS

pause 2$

PRINT "And Without a Border (Frame)-"5
PRINTS

PRINT "Press any Key to Restore Default Window"<1

killborderfl

waitkeyfl

remakefl
LIBRARY CLOSED

ENDfl

II
II
SUB remake STATIC^

WINDOW CLOSE 15

WINDOW lfl

END SUBfl

II
SUB pause(seconds%) STATIC^

t«TIMER+seconds%^I

WHILE t>TIMERH

WENDfl

END 5

SUB waitkey STATIC^

WHILE INKEY$=""5
WENDU

END SUBfl

SUB killborder STATIC^

borderless& «2A115
gimmezerozero&»2A10"5I

window.base&~WINDOW (7)5

window.modi&^window.base&+245
Mode&=PEEKL (window.modi&) f

Mode&*Mode& AND(2A26-l-gimmezerozero&)5
Mode&»Mode& OR borderless&H

POKEL window.modi&fMode&5
CALL RefreshWindowFrame (window.bases) 5

END SUB5

3.2.7.2 Gadgets on, gadgets off

This program removes and adds gadgets to windows.

######################################^1
GADGETon/off in AmigaBASIC-Windows #5
i iar

(W) 1987 by Stefan Maelger #1

######################################51

64

Abacus 3.2 AmigaBASIC graphics

'SI
LIBRARY "intuition. library11^

PRINT "Make all the Gadgets disappear! "SI
SaveGadgetPointer GadgetStores SI
pause 55
UnlinkGadgetsSI
pause 101

PRINT "And now bring them back again."1

pause 5SI

SetGadgets GadgetStoresSI
LIBRARY CLOSER

WINDOW CLOSE lfl

WINDOW IS!

ENDSI
SI
SUB pause (seconds%) STATICSI

t=TIMER+seconds% SI
WHILE t>TIMERSI

WENDSI
END SUBSI

SI
SUB SaveGadgetPointer (Pointers) STATICSI
window.bases =WINDCW (7) SI
gadget. pointers==window. baseS+62SI

PointerS=PEEKL (gadget .pointers) SI
END SUBSI

SI
SUB UnlinkGadgets STATICSI
window .bases ^WINDOW (7) SI
gadget. pointerS=*window. baseS+62 SI

POKEL gadget.pointers,0SI
CALL RefreshWindowFrame (window.bases) SI

END SUBSI

SI
SUB SetGadgets (Pointers) STATICSI
window.bases =WIND0W (7) SI

gadget. pointerS=*window. baseS+62 SI
POKEL gadget.pointers, Pointers SI
CALL RefreshWindowFrame (window. bases) SI

END SUBSI

3.2.7.3 DrawBorder

Imagine that you want to draw a border from Intuition. You must

first know the structure of the border, and the address of a border

structure for the DrawBorder routine to execute. Here's the structure:

1st word horizontal spacing from X-coordinate called by the routine

(defines only one form and can be drawn in any spacing)

2nd word vertical spacing of Y-coordinate

3rd byte Character color (from BASIC)

4th byte Background color

5th byte Character mode (JAM1=0)

6th byte Number of X/Y coordinate pairs

7th long Coordinate table address

8th long Address of next structure or value of 0

65

3. AmigaBASIC Amiga Tricks and Tips

The 7th part of the structure needs a coordinate table consisting of

words. These words contain the X-coordinate and the Y-coordinate of

one pixel. One pixel requires four bytes (two words) of memory.

When you call the routine with the Window Rastport instead of the

Border Rastport (WINDOW(8)), you can draw any complex structure

you wish in the BASIC window. There is one problem with this: The

window's character cursor appears after the last pixel of the last struc

ture. A PRINT command starts output at this position. AmigaBASIC

uses the cursor position as the starting place for PRINT. Be careful

with your use of the PRINT statement after calling DrawBorder.

######################################5
DRAWBORDER - The Border Drawer #51

(W) 1987 by Stefan Maelger #51

######################################51
51

LIBRARY "intuition.library"5I

51
PRINT "Putting the Coordinate-String Together"SI

51
bwidth%=PEEKW (WINDOW (7) +8) -151

bheight%=PEEKW (WINDOW (7) +10) -151

xleft%=05I
ytop%=051
xy$=»MKI$ (xleft%) +MKI$ (ytop%) 51

xy$*=xy$+MKI$ (xleft%)+MKI$ (bheight%) 51
xy$=xy$+MKI$(bwidth%)+MKI$(bheight%)51

xy$=xy$+MKI$ (bwidth%) +MKI$ (ytop%) 51

Pairs%=451
xOffset%=05I

yOffset%=05l
bcolor%=051
51
PRINT "Draw the border"f

51
Setborder xy$, Pairs%, bcolor%, xOffset%, yOffset%51

51
FOR i%=3 TO 1 STEP -151
PRINT "Wait for a few seconds "51

t=TIMER+10:WHILE t>TIMER:WEND5I

PRINT "Drawing in Color" ;i%51
Setborder xy$,Pairs%, i%,xOffset%, yOffset%51

NEXT5I

51
LIBRARY CLOSE5I

END5I

51
SUB Setborder(xy$,number%,bcolor%,x%fy%) STATIC5I
window.base&»wiNDOW (7) 51

borderrastport&=PEEKL (window. base&+58) 51

IF borderrastport&=0 THEN EXIT SUB5I

a$=MKI$(0) 'Horizontal Distance5I
a$=a$+MKI$ (0) 'Vertical Distance5I
a^^^i^+CHR^ (bcolor%) 'Drawing Color5I
a$=a$+CHR$ (0) 'Background (unused) 51

a$=a$+CHR$ (0) 'Mode: JAM15I
a$=a$+CHR$ (number%) 'Number of x-y-Pairs5I
a$=a$+MKL$ (SADD (xy$)) 'Pointer to Coordinate5I
a$=a$+MKL$ (0) 'Pointer to Next Structure5l
CALL DrawBorder (borderrastport&f SADD (a$), x%, y%) 51

1 Last Parameters are relative X- and Y-

66

Abacus 3.2 AmigaBASIC graphics

3.2.7.4 ChangeBorderColor

The next routine can change a window's border color, including the title

bar. The entire process occurs in the form of a SUB command.

######################################51
CHANGE BORDER COLOR #5

(W) 1987 by Stefan Maelger #5

######################################51
JI

LIBRARY "intuition.library"1

!
PRINT "Have you ever been disturbed that the" 51

PRINT "drawing color in which borders are always"!

PRINT "drawn is in color register 0 and that the"51

PRINT "background is always register 1?"!

PRINT!

PRINT "We can change the colors defined"!

PRINT "in the Window command itself!"!

!

LOCATE 10,1:PRINT "Foreground"!

LOCATE 13,1:PRINT "Background"!

t=TIMER+15:WHILE t>TIMER:WEND

FOR i=0 TO 3

LINE (i*30,136)-STEP(30,20),i,bf!

LINE (i*30,136)-STEP(30,20),l,b!

NEXT!

!

FOR b%=0 TO 3!

FOR f%-0 TO 3!

ChangeBorderColor f%,b%!

LOCATE 10,14:PRINT f%!

LOCATE 13,14:PRINT b%!

t=TIMER+5!

WHILE t>TIMER!

WEND!

NEXT f%,b%!

!
ChangeBorderColor 1,0!

!

LIBRARY CLOSE!

END!

!
SUB CHangeBorderColor(DetailPen%,BlockPen%) STATIC!

window.base&=WINDOW(7)!

Detail. pen& =*window.base&+98!

Block. pen& =swindow. base&+99!

POKE Detail.Pen&,Detail.Pen%!

POKE BlockPen&,BlockPen%!

CALL RefreshWindowFrame (window.base&)!

END SUB!

67

3. AmigaBASIC Amiga Tricks and Tips

3.2.7,5 Monocolor Workbench

This program supplies you with an additional 16K of memory by set

ting up a single bitplane for color on the Workbench. A monocolor

Workbench speeds up the screen editing ofBASIC programs.

######################################^1

MONOCOLOR WORKBENCH #fl

(W) 1987 by Stefan Maelger
#############################

I
LIBRARY "intuition.library"^
LIBRARY "graphics.library"fl

Setplanes 151

LIBRARY CLOSER
SYSTEMS

SUB Setplanes (planes%) STATIC^

IF planes%<l OR planes%>6 THEN EXIT SUBfl
rastport& WINDOW (8) fl

bitmaps& -PEEKL (rastport&+4) fl
current .planes%=PEEK (bitmaps&+5) fl
window.bases -WINDOW(7) fl
screen.base& =PEEKL(window.base&+46)f
screen.width% -PEEKW(screen.base&+l2)f
screen.height% =PEEKW(screen.base&+14)f
IF current.planes%>planes% THENfl
POKE bitinaps&+5/planes%5

FOR kill.plane%»current.planes% TO planes%+l STEP

plane.ad&-PEEBOi(bitmaps&+4+4*kill.plane%)5
CALL

CALL RefreshWindowFrame (WINDOW (7)) f
CLS5

NEXT f

END

END SUB

3.2.7.6 PlaneCreator and HAM-Halfbrite

YouVe seen an example of how FreeRaster can free a bitplane from
memory. You can also insert other bitplanes, if you know the addresses
of these new bitplanes. The programmers of AmigaBASIC skipped over
support for the Hold-and-Modify (HAM) and Halfbrite modes. These
modes require six bitplanes, and must be accessed using the library
command (they cannot be used through AmigaBASIC commands). Here
is a multi-purpose program, which lets you switch between modes and
insert additional bitplanes.

68

Abacus 3.2 AmigaBASIC graphics

This program displays all 4096 colors available to AmigaBASIC in the
AmigaBASIC window. Pressing a mouse key displays the 64 colors

contained in Halfbrite mode.

1 ###H
1 #HAM PLANECREATOR HALFBRIGHT #5
1 # (W) 1987 by Stefan Maelger #5

. ###^1

DECLARE FUNCTION AllocMemfi LIBRARY5

LIBRARY "exec.library"5
LIBRARY "intuition.library"^
SCREEN 1,320,200,1,1 :REM *** just ONE Plane5
WINDOW l,"What a wonderful feeling",,,15
PALETTE 0,0,0,011

PALETTE 1,1,1,15

FOR i%-2 TO 65

CreateNewPlane5
LOCATE 1,15
PRINT "I have";i%;"Planes";5
FOR j%«l TO i%5
PRINT "!";5

NEXT5
PRINT5
PRINT "Press left Mouse-Button"5
Wait.for.the.Click.of.the.Left.MouseButton5

NEXT 5

HAM5

FOR green=0 TO 155

blue»05
red»05
LINE(0,green*10)-STEP(0,9),05
LINE(l,green*10)-STEP(0,9),green+485

FOR x=0 TO 75
FOR red=l TO 155

LINE(x*32+red+l,green*10)-STEP(0,9),red+325

NEXT red5
blue=blue+15
LINE (x*32+17,green*10)-STEP (0,9),blue+165

FOR red-14 TO 0 STEP -15 J ooflr
LINE (x*32+17+15-red,green*10)-STEP(0,9),red+325

NEXT red5

blue=blue+15
IF blue<16 THEN LINE (x*32+33,green*10)-

NEXT green5
Wait.for.the.Click.of.the.Left.MouseButton5

CLS5
HB5

FOR i%«0 TO 35

FOR 1%=0 TO 155
LINE (j%*18,i%*45)-STEP(18,45),i%*16+j%,bf5
LINE (j%*18,i%*45)-STEP(18,45),l,b5

NEXT5
NEXT5
Wait. for. the. Click. of.the. Left.MouseButton5

WINDOW l,"What a wonderful feeling",,,-15

SCREEN CLOSE 15

LIBRARY CLOSE5
END5
SUB CreateNewPlane STATIC5

bitmap&=PEEKL (WINDOW (7) +46) +1845
bitplane&=PEEKW (bitmaps) *PEEKW (bitmap&+2) 5
wdepth%=PEEK (bitinap&+5) 5
IF wdepth%>5 THEN EXIT SUB5 ee^o
newplane&«AllocMem& (bitplanefi, 655384) 5

69

3. AmigaBASIC Amiga Tricks and Tips

IF newplanefi-0 THEN ERROR 71

POKEL bitmap&+8+wdepth%*4,newplane&fl
POKE bitmap&+5fwdepth%+lH
IF wdepth%<5 THEN CALL RemakeDisplayfl

END SOBfl

SUB HAM STATIC!!

viewroodefi-PEEKL (WINDOW(7) +46) +765
POKEW viewmDde&,2AHH
CALL RemakeDisplayfl

END SUBfl

SOB HB STATIC^

viewmode&-PEEKL (WINDOW(7) +46) +765
POKEW viewnode&,2A7fl
CALL RemakeDisplayfl

END SUB5

SUB Wait. for. the. Click, of .the. Left. MouseButton STATIC^
WHILE MOUSE (0)O0fl
WEND5

WHILE MOUSE (0)=0U
WENDfl

END SUBfl

You can now draw with colors from 0 to 63. The Amiga normally
doesn't support this mode or the setup of the screens. If you want to
work in these modes, there are some details you must know.

Lefs begin with the Halfbrite mode. Here are a total of 32 colors (0 to
31), spread over the course of 5 planes. The PALETTE command ini
tializes these colors, as well as those for Hold-And-Modify mode. The
colors in Halfbrite mode (32 to 63) correspond directly to the colors 0
to 31. In other words, color number 33 is half as bright as color 1 (33-
32=1). This equation applies to the other colors as well. You should be
careful about the color selection with the PALETTE command. The
following calculation returns the RGB proportions of Halfbrite colors:

Proportion(x)=INT(Proportion(x-32)*15/2)/15

This equation uses INT with the slashes (x/y is the same as
INT (x/y) here). A palette command for Halfbrite colors would
look like this:

PALETTE 1,15/15,12/15,11/15

The command above assigns color 33 the values 7/15, 6/15 5/15 Now
try assigning the values 14/15,13/15, 10/15 to another color-it should
be another color altogether, but the result is two equal halfbrite colors
Just one reminder: PALETTE doesn't allow colors over 31.

HAM poses even more problems. Colors 0-15 are usable here When
you set a pixel in one of these colors, a point always appears in this

Colors 16-31 are another matter. First the RGB value of the pixel is set
to the left of the pixel to be drawn (Hold), and then the blue proportion
is changed (Modify). The equation for setting the new blue portion is:

new_blue_portion= (color-16)/15

70

Abacus 3.2 AmigaBASIC graphics

Colors 32-47 change the red portion:

new_red_portion = (color-32) /15

Colors 48-63 modify the green portion of the colon

new_greenjportion = (color-48) /15

You see, this way you can set up die desired color using not more than

3 pixels for one "color."

3.2.7.7 The coordinate problem

The pixel with the coordinates 0,0 lies below the title bar and to the

right of the left border. Most programmers would expect 0,0 to be at

the upper left corner of the screen. This can pose problems if you want

to place an untitled window directly over the title bar of a standard

window (e.g., the BASIC window).

What you want is a window eight pixels higher than normal. You must

enter the WINDOW command as follows:

WINDOW 2,, (0,0) - (311,-2) ,16,-1

The Y-coordinate moves from 0 to -2. This causes a system error,

though. The first coordinate set (0,0) interprets correctly; the second
coordinate pair views the Y-value as false at best, since the inteipreter

reads the relative coordinates of the standard BASIC window. You
could also try making a window with the following:

WINDOW 2,, (0,0) - (311,8) ,16,-1

This gives you a window 18 pixels high. In this case, you need a win
dow the height of the title bar (10 pixels), to re-establish the screen

coordinate system (8-10=-2).

If you only need to cover the title bar of the standard window, youll
need the following coordinate sets:

y2=10 height of the new window
y2=y2-10 subtract height of the title bar in proportion to the coordi

nates

y2=y2-4 subtract the top and bottom borders of the new wmdow

The result

WINDOW 2,, (0,0) - (311,-4) ,16,-1

71

3. AmigaBASIC Amiga Tricks and Tips

3.3 Fade-in and fade-out

Fading is the term used to describe gradual increases or decreases For
example, when a song on a record ends by decreasing in volume instead

of ending, this is afade-out. A graphic fade-out occurs when a scene in
a movi'

You can create some really interesting effects using fading. For ex
ample, you can fade text in or out, or change graphic colors constantly
("cycle"). One program helps you do all this.

3.3.1 Basic fading

like the other programs in this book, these fade programs are simply
an example. You can install these routines into your own programs,
and adapt them to your own uses.

This first program shows the basic idea. It shows you how to change
the screen from black to any color on the palette, and return this color
gradually to black:

| Fading-In and Out of colored areas5

by Wgb in June f87fl

H

Variables:5
II
DEFINT a-zfl

1

Out

^ SHARED Red! (Number), Green! (Number) ,Blue! (Number) fl

MainProgram:fl

GOSUB CreateColorScreenfl

Fading:fl

GOSUB SetColorsfl
CALL Fade (0,7,16,In) fl
CALL Fade (0,7,16,Out)fl

GOTO Fading^

ENDfl

SetColors:

72

Abacus 33 Fade-in and fade-out

FOR i-1 TO Number!

Red! (i)»RND!

Green! (i)=RND!
Blue! (i)»RND!

NEXT i!

!
RETURN!

!
CreateColorScreen: !

!
SCREEN 2,640,256,3,21
WINDOW 1,"Color Test",(0,0)-(623,200),0,25

!
FOR i=0 TO Number!

PALETTE i,0,0,OH

NEXT i!

!
SWidth=640/Number!

FOR j=0 TO 205
FOR i-1 TO Number!

x=RND*600 !

yRND150fl
LINE (x,y) - (x+SWidth,y+SWidth/2),i,bf5

NEXT i5
NEXT jfl

RETURNS

SUB Fade (Start,Number,NumSteps,Mode) STATIC!

StartState=0 : EndState^NumStepsfl

IF Mode»-1 THEOT
StartState=NumSteps : EndState=0fl

END IF5
FOR j=StartState TO EndState STEP Mode!

Factor! «=j/NumSteps!
FOR i=Start TO Start+Number!

PALETTE

i,Red! (i)*Factor!,Green! (i)*Factor! ,Blue! (i)*Factor!!

NEXT j!

!
END SUB!

Arrays Blue blue scale array

Green green scale array

Red red scale array

Variables StartState starting state of colors

Number number of colors

(in SUB: number of faded colors)

SWidth width of sample area

EndState ending state of colors

Factor color scale at current time

In fadein pointer

Mode mode: fade in or fade out

Out fadeout pointer

NumSteps number of steps for process

Start first color number
i,j floating variables

73

3. AmigaBASIC

x,y coordinates for sample field

"H* FOgram defines a function which allows the fading in or fading out
/Jlllf^ 0{^y color on ** palette- Combined color groups can be faded as
description well. First, two variables are set up for the type of fading required. You

can only use the variable names once numbers are assigned to them.
Next, 7 colors are set as the resolution (e.g., the background). Every
color is defined by an array, which accesses the individual subroutine.
These arrays contain the color values used in the fading process.

The CreateColorScreen subroutine opens a new screen for
demonstration purposes. It uses the color depths set above. The output
window shows colored rectangles.

The main section of the program branches to a subroutine which fills
the color arrays with "random" numbers. The main subroutine is then
called twice. It gives the number of the first color and the increment
needed for fading. Then it indicates whether the fade should be into the
desired color or out to black. The ending point determines the individual
increments.

Now on to the routine itself. The starting value is set depending upon
the pointer setting-either 0 for black, or the value taken from
Numsteps for "full color" display. The loop used to move through the
increments is computed through Factor and sets the next color up
from black through the PALETTE command contained in an inner loop
This loop repeats until either the full brightness or blackness is reached.

3.3.2 Fade-over

This is a variation on the above program. Instead of fading to and from
black, however, this program fades to and from the starting and ending
colors set by you. 6

| Fade-From one Color to Another^

| by Wgb in June f87fl

Variables:fl

DEFINT a-zfl

Number«7fl
f
DIM SHARED

jjjed! (Number, 1),Green! (Number, 1),Blue! (Number, 1) f

MainProgram:fl

GOSUB CreateColorScreenfl

74

Abacus 33 Fade-in and fade-out

Fading:fl

GOSDB SetColorsH
CALL Fade (0,78

H
GOTO FadingH

H
ENDU

H
SetColors:1I

H
FOR i-1 TO Number^

Red! (i,0)-Red! (1,1)51
Green!(1,0)-Green!(1,1)fl
Blue!(1,0)-Blue!(1,1)H

Red!(i,l)-RNDH

Green!(i,l)-RNDH
Blue!(i,l)-RNDH

NEXT if

RETURNS

CreateColorScreen: f

SCREEN 2,640,256,3,211 odr
WINDOW 1,"Color Test", (0,0)-(623,200) ,0,211

FOR 1-0 TO Numbers
PALETTE 1,0,0,05

NEXT 111

I
SWidth-640/Number1I

FOR j-0 TO 20$
FOR i-1 TO Number^

x-RND*600 I
y-RND*150H
LINE (x, y) - (x+SWidth,y+SWidth/2), 1,bfH

NEXT ±fl
NEXT jH

RETURNS

SUB Fade (Start,Number,NumSteps) STATIC^

FOR j-0 TO NumStepsfl
FOR i-Start TO Start+Nuniber1I

Rdiff!-(Red! (1,1)-Red! (1,0)) /NumSteps* jH
Gdiff! - (Green! (i, 1) -Green! (i, 0)) /NumSteps*} 11
Bdiff !-(Blue! (i,l)-Blue! (1,0))/NumSteps* jH
PALETTE

i,Red! (i,0)+Rdiff!,Green! (i,0)+Gdiff !,Blue! (i,0)+Bdiff !H

NEXT ill
NEXT jH

U
END SUBH

75

3. AmigaBASIC AMIGA Tricks and Tips

p-/iAMM. The basic structure of *e earli«* fade program remains, but some fine-
rrogram tuning has been done here. The variable definitions no longer require the
description pointer In and pointer Out for fading to new colors. This is also why

the main program call to the fade routine is missing; the program goes
to the new color setting for the fade.

The color arrays have an identifier which shows whether the starting
color (0) or ending color (1) is set. Reaching the new color value copies
the last new value in the starting value register, and redefines the ending
value. The program can then tell the current status, even though no
reading function exists.

The fading subroutine now goes in any increment of color change. The
difference is divided by the step value and multiplied by the number in
the already set NumSteps. The result is added to the individual values
of the RGB colors. When the outermost loop executes, the new color is
on the screen.

3.3.3 Fading RGB color scales

This last fading option originates from the program in Section 3.3.1.
PALETTE commands let you fade RGB colors individually. This means
that you can start a screen in red, fade it to green, then end by fading to
blue.

| Fading-In and Out of Colored Areasfl

1 by Wgb in June '87fl

Variables:fl

DEFINT a-zfl

Inlfl

Out=-15

Nuniber-75

^ SHARED Red! (Number),Green! (Number) ,Blue! (Number) fl

MainProgram: 5
1

GOSUB CreateColorScreenfl

Fading:fl

GOSUB SetColorsfl
CALL Fade (0,7,16,In)fl
CALL Fade (0,7,16,Out)5

GOTO Fading!!

II
ENDfl

1
SetColorsrfl

76

Abacus 33 Fade-in and fade-out

5
FOR 1=1 TO Nuroberfl

Rer!(i)«RND5

Green!(i)«RND5

Blue!(i)»RND5

NEXT 15

5

RETURNS

5
CreateColorScreen:5

5
SCREEN 2,640,256,3f2fl

WINDOW 1,"Color Test",(0,0)-(623,200),0,25

5

FOR 1=0 TO Number^

PALETTE i,0,0,05

NEXT i5

5

SWidth=640/Nuiriber5

FOR j=0 TO 205

FOR i»l TO Nutriber5

x=RND*600 5

y»RND*1505
LINE (x,y) - (x+SWidth,y+SWidth/2), 1,bf5

NEXT i5

NEXT j5

5

RETDRN5

SUB Fade (Start,Nvuriber,NumSteps,Mode) STATIC5

5

NumSteps»NumSteps/25

StartState«0 : EndState«NumSteps5

IF Mode«-1 THEN5

StartState»NumSteps : EndState-05

END IF5

StartAt=StartState/NuinSteps5

EndAt»EndState/NumSteps5

FOR j=StartState TO EndState STEP Mode5

Factor! «■j/NumSteps5

FOR i«Start TO Start+Nuniber5

PALETTE i,Red! (i) *Factor!,Green! (i)*StartAt,

Blue! (i)*StartAt5

NEXT 15

NEXT j5

FOR j«StartState TO EndState STEP Mode5

Factor! -j/NumSteps5

FOR i=Start TO Start+Nuirber5
PALETTE i,Red!(i)*EndAt,Green!(i)*Factor!,

Blue!(i)*StartAt5

NEXT 15

NEXT j5

FOR j»StartState TO EndState STEP Mode5

Factor!»j/NumSteps5

FOR i«Start TO Start+Nuniber5

77

3. AmigaBASIC Amiga Tricks and Tips

PALETTE i,Red!(i)*EndAtrGreen!(i)*EndAt,
Blue!(i)*Factor!fl

NEXT if

NEXT jfl

I
END SUBf

The first section of this listing is identical to the first program up until
rrogram the subroutine. Use Copy and Paste from the Edit pulldown menu
description to copy the first section from the program in Section 3.3.1.

First the SUB routine divides the increment number in half. This sets
all the programs to about the same "speed setting.11 Then the same loop
executes three times (it executes three times longer). The program looks
for the starting value of the fade loop. Whether you start with black or
with the color, the mouse pointer is set by this value.

Since the PALETTE instruction uses all color values, you must set the
starting value of the red color scale in the first loop, and the other color
scales in the other two loops. The other loops bring the program to the
end value, as already handled by the red scale. This is computed by the
SUB routine at the start under two factors (StartAt and EndAt). All
other routines run similar to those in the first fade program.

78

Abacus 3.4 Fast vector graphics

3.4 Fast vector graphics

Vector graphics are the displayed outlines of objects on the screen,

rather than the complete objects. This speeds up display, since the com

putation time is minimized for complicated graphics, and the computer

is limited to the corner point and the resulting outline.

3.4.1 Model grids

Working with three-dimensional objects requires storing the corner

point as three-dimensional coordinates. First a compound specification
must be set up, after which die coordinate triplets are combined.

Once you have all this data, you must project the space on the screen

followed by an area. The following program selects a central spot on

the screen plane. All objects here are based upon a single vanishing

point perspective.

Since the plane of your screen is set by its Z-coordinate, this value is
uninteresting for all points. The grid network comes from this setup.

To find the X- and Y-coordinates on the screen, a space must be pro

vided for the 3-D object Furthermore, this space must have a point set
as the vanishing point. The Z-value lies between the object and the
vanishing point on the screen plane. Now draw a line to the vanishing
point from every corner of our object. When you intersect these lines
with the screen plane, you'll find the desired X- and Y-values for these
corner points, and their positions on the screen.

The illustration on the next page shows a cross section of the Y- and Z-

79

3. AmigaBASIC Amiga Tricks and Tips

Three-

dimensional
grid

i i Y

Object

Vanishing

point Screen

How should you design a program that reproduces the illustration
above? The most important factor is setting up the corner point data.
You can place this data in DATA statements without much trouble.
First, though, the corner point coordinates must be on hand in the
compound specification, which can also go into DATA statements.

When the program identifies all spatial coordinates, it can begin
calculating the screen coordinates. The following line formula is used in
three-dimensional space computation:

3D Line formula

X

Y

Z

px

py

pz

+1*

dx

dy

dz

You must remember the following when using the above formula: The
desired screen coordinates are called X and Y. You figured out the Z-
coordinate above. The P-coordinate belongs to the point used as part of
the multiplication. All that remains is the D-value. This is the
difference of individual point coordinate subtracted from the vanishing
point (px-vx, py-vy, pz-vz).

1 3D Vector-Graphics Ifl

't

1 © 8.5.1987 Wgbfl

1 1

II

Variables: fl

II

RESTORE CubeDatafl

DEFINT B,Cfl

MaxPoints=25 f Maximum Number of Object Points^

80

Abacus 3.4 Fast vector graphics

ZCoor6>-25 • Z-Coordinates of Screen^

NumPoints=0 f Nuirfoer of Object Points^

Connections=0 • Nuirber of Connections^

51

OPTION BASE 151

DIM P(MaxPoints,3) f Spatial Coordinates^

DIM B(MaxPoints,2) f Screen Coordinates^

DIM C(MaxPoints*1.8,2) f Connecting Instructions5I

DIM D(3) f Differenced

51
DIM F(3) • Vanishing Point (x,y,z)5I

51
F(l)=-70 f Vanishing Point xfl

F(2)=-50 • yU

F(3)=240 f z5

51

MainProgram: 51

51
PRINT "Vanishing Point (x.y^z): ";F(1) ", "F(2)"r "F(3)5I

51

GetPoint:5I

51

CBase«NuinPoints f Base for Connections5I

51

Loop: 51

51

READ px,py,pz5I

IF px<>255 THEN 51

NuiriPoints«NuniPoints+l 51

P (NuitiPoints, 1) =px5I

P (NumPoints, 2) -py*-15l

P (NuitiPoints, 3) »pz5l

GOTO Loop5I

END IF5I

51

GetConnection: 51

51

READ vl,v25I

IF vl<>255 THEN5I

Connections«Connections+151

C (Connections, 1) «CBase+vl5I

C (Connections, 2) =CBase+v25I

GOTO GetConnection5I

END IF5I

51

READ Last5[

IF LastOO THEN GOTO GetPoint5I

51

51
CalculatePicture: 51

51
FOR i-1 TO NumPoints5I

FOR j=l TO 351

NEXT j5I

lanibda= (ZCoord-P (i, 3)) /D (3) 51

81

3. AmigaBASIC
Amiga Tricks and Tips

B(i,2)«P(i,2)+lanibda*D<2)5
NEXT 15

5

CreatePicture:5

FOR i«l TO Connections^

x2«B(C(i,2),l)+505

yl«B(C(i,l),2)+1005
y2=B(C(i,2),2)+100 5

LINE <xl,yl)-(x2,y2)5
NEXT if

5

END5

CubeDatar^I

f
x,y,zfl

32, 20,
32 20

20fl

205
20
20

REM x

DATA __,

DATA -32, 20,

DATA -32,-20,
DATA 32,-20, _.
DATA 32, 20,-20
DATA -32, 20,-20

DATA -32,-20,-20
DATA 32,-20,-20
DATA 255,0,05

5
REM pl,p25
DATA l^'I
DATA 2,3'

DATA 3,4'
DATA 4,1'

DATA 1,5'
DATA 5,6'

DATA 6,7<

DATA 7,85

DATA 8,55
DATA 4,85
DATA 3,75
DATA 2,65
DATA 255,0,15
5

PyramidData: 5
5

DATA -32, 25,-205
32, — -
32,

DATA

DATA

DATA

25,205
25,-205

A 32, 25, 205
DATA -32, 25, 205
DATA 0, 65, 05
DATA 255,0,05

5
DATA 1,25

DATA 2,35
DATA 3,45

DATA 4,15
DATA 5,15
DATA 5,25
DATA 5,35

DATA 5,45

DATA 255,0,05

82

Abacus 3.4 Fast vector graphics

Arrays p () spatial coordinates

B () int, screen coordinates

D () differences from the illustration

F () vanishing point coordinates

C() int, connection specifications for all objects

Variables Last value read, equals 0 when program ends
CBase object connection identifier

NumPoints number of points to be drawn

MaxPoints maximum number of object points

Connections number of connections

ZCoord Z-coordinate of screen plane

i, j floating variables

lambda coordinate calculation factor

px,py,p z coordinates of one point in space

vl first point of a connection

v2 second point of a connection

xl,y1 screen coordinates for output (1st point)

x2,y2 screen coordinates for connection (2nd point)

First, the variable definition sets the DATA pointer to the beginning of

Program the pixel data. In this particular case, the coordinates are a cube. Then
description all variables starting with B or C are set up as integers. Youll see why

soon. Since the arrays for the points can be dimensioned later on, the

program sets the maximum number of points to be stored in the

MaxPoints variable. Also, the screen plane's position in space

appears through the Z-coordinate. Then the number of points and con

nections to be read are set to null.

Now follow the dimensioning of necessary variable arrays. These are

the P array, into which the point coordinates are stored (an index of 3),

then the B array which holds the later screen coordinates for every spa

tial point Also, the C array always contains two point numbers which

indicate which points should be connected with one another. The last

array, D, shows the differences between point computations.

The F array contains the vanishing point position, holding an index for

automatic computations (Fpx,Fpy,Fpz).

The next line displays the vanishing point coordinates. Then the point

reading routine follows. This routine first sets the CBase pointer to
the first number of the point to be read. It works with several objects,

so all you need is to enter a coordinate for the first point of the next

object later. The loop reads spatial coordinates and checks these

coordinates for a px value of 255. This marker reads all the points of an

object. The connection specification follows next. If not, new points

are entered into the table, and new coordinates are read.

The loop for reading connections works in much the same way. It reads

the number of points to be connected. Then the loop ends. Otherwise,

the two numbers are entered in the array. Finally, a number is read from

83

3. AmigaBASIC Amiga Tricks and Tips

the data that indicates whether another object follows. This occurs when
the value is unequal to zero.

When both loops end, the program computes the screen points of the
objects. This occurs in a loop which goes through the list point by
point and computes all screen values.

Once the difference between the vanishing point value and the current
point goes in the D array, the program computes the lambda factor.
Next, the program sets the equations up for the X- and Y-values.

The grid display follows. A loop executes for setting up all connec
tions, and sets up all the necessary point coordinates. A previously set
point cannot be used in this, since it cannot exchange connections.
Since the object next to the null point was defined, you must move the
screen center to make it visible. This redraws it line by line.

3.4.2 Moving grid models

Movement is just a shifting of a standing screen. You can program the

display and easily change the spatial coordinates of any graphic.
Unfortunately, the movement is far too slow for practical use.

For faster movement on the screen, all values must be computed before
the movement. Also, you have to rely on an operating system routine
for drawing lines, instead of the multiple LINE commands.

3.4.3 Moving with operating system routines

The developers of the Amiga operating system thought a lot about
applications that would later run on this super computer. Vector
graphics were probably part of the plan for future expansion. These
make real-time graphics possible under certain conditions. This next
routine places all points into a list. This routine is the best option for
us, although a faster method exists. It lets you draw a grid network.
Then you enter the corner point for your spatial coordinates to be pro
jected on the screen later on. The corner point moves within the space,
while retaining the original corner coordinates. The routine loses little
time, since the program computes all movements before the scenes and
places these computations into an array.

Now comes the first problem. The routine waits for a list of screen
coordinates connected in a given sequence. There is an advantage and a
disadvantage to this process. For one, not every coordinate pair is

84

Abacus 3.4
vector graphics

stored, and for another the figure must be designed in such a way that a

constant line can be drawn. Ifnot, those sections considered unnecessary

are skipped. However, flat objects can be drawn with just an endless
line.

To adapt this to the operating system, you must change the connection
specification. Enter the corners of the object and the number of corners
instead of the coordinate pairs.

When the program has this data, it can start its calculations. First the
object is moved in space by the screen coordinates. Then the new gra
phic transfer occurs. This section enters the available screen values in a
long list, for later use by the operating system.

If the list is complete, the program branches to the display loop. Here
all scenes execute, and a corresponding pointer points to the data list for
the current scene. Then these values transfer to the display routine. The
color changes to the background to clear the screen, and the program re

draws the object at its new location on the screen. When all graphics
have been displayed, the program branches to the beginning of display,

3D Vector Graphics Vfl

Faster by usingfl

The PolyDraw Routine^

by Wgb in June f 871

LIBRARY "graphics.library"51

RESTORER

OPTION BASE lfl

Variables:fl

I
DEFINT B,C,Gfl

H

READ MaxPoints ' Number of Object Points^

READ Connections • Number of Connections^

ZCoord-25 • Z-Coordinate in Screen Planed

Scenes«50 ' Number of ScenesII

DIM P(MaxPoints,3) • Spatial Coordinates1

DIM B(Scenes,MaxPoints,2) • Screen Coordinates^

DIM G(Connections*2*Scenes)fl

DIM C(Connections) f Connection Rulesfl

DIM D(3) f Differenced

DIM F(3) f Vanishing Point (x,y,z)fl

F(l)=-70 f Vanishing Point xfl

F(2)=-50 • y fl

F(3)=180 f z1I

85

3. AmigaBASIC Amiga Tricks and Tips

PRINT "Vanishing Point <x,y,z): M;F(1)","F(2)M,"F(3)1I

GetPoint:1I

RESTORE PyramidData • Object fl

II
FOR i-1 TO MaxPointsU

px,py,pz1I

P(i,2)-py*-l • Transfer to other Coordinate

System!!

P(i,3)-pz1I

NEXT ±fl

H

GetConnection: H

FOR i-1 TO Connections!!

READ C(i)H

NEXT if

H
PreCalculatePicture:t

FOR sz-1 TO Scenes^

FOR i-1 TO MaxPointsU

FOR j-1 TO 35

NEXT

P(if3

P(i,2)-P(i,2)-2H

Lambda- (ZCoord-P (i, 3)) /D (3) 5

B(sz,i,l)-P(i,l)+Iambda*D(l)+20011

B(szfif2)-P(i,2)+Lambda*D(2)+200H

NEXT iH

NEXT

GraphicTransfer:H

FOR j=0 TO Scenes-lH

FOR i-1 TO Connections*2 STEP 2H

G(i+j*Connections*2)-B(j+l/C(i/2+.5)fl)H

G(i+l+j*Connections*2)-B(j+lfC(i/2+.5)f2)H

NEXT ill

NEXT JH

ConstructScreen:H

H

FOR i»0 TO Scenes-H

Pointer=Connections*2*in

FOR j=l TO 0 STEP-1H

CALL Move (WINDOW (8), G (1+Pointer), G (2+Pointer)) H

CALL PolyDraw (WINDOW (8), Connections-

VARPTR (G (3+Pointer))) f

NEXT jfl

NEXT in

86

Abacus 3.4 Fast vector graphics

GOTO ConstructScreen'fl

*

1

GraphicData:^

H

DATA 5,1011

• MaxPoints,Connectionsfl

PyramidData:fl

DATA -32, 25,-20H

DATA 32, 25,-205

DATA 32, 25, 201

DATA -32, 25, 20U

DATA 0, 65, OH

II
PointConnections:fl

1

DATA 2,1,5,4,3,5,2,3,4,15

DATA 4,15

Arrays

Variables

Program

description

CO

screen coordinates

differences from the illustration

vanishing point coordinates

coordinates of all scenes

spatial coordinates

connection specifications

Lambda coordinate calculation factor

Pointer pointer to coordinate list of one scene

MaxPoints maximum number of object points

Scenes number of scenes to be computed

Connections number of connections

ZCoord Z-coordinate of screen plane

px,py,pz

sz

spatial coordinates of corner point

loop pointer for scenes

Before the variable definition, the program opens the graphics

library. This supplies the graphic routines needed for the grid network.

Then all variables beginning with B, C or G are declared as integers.

This allows the integer variable character to be left off these variables.

The grid network display uses the new G array, into which all coor

dinates are stored in their proper sequences. Each set consists of a 2-byte

integer for the X-coordinate and a 2-byte integer for the Y-coordinate.

The new features of this program are the point and.connection loops.

These work from established values placed at the beginning of the pro

gram in DATA statements. If you leave off the end marker, the program

87

3. AmigaBASIC Amiga Tricks and Tips

runs somewhat faster. The connection array is defined as one dimen

sional, instead of as a string of characters.

After the computation, the data must be converted to a form that the

operating system can handle. The PolyDraw routine places a table at

the X- and Y-values stated as integer values. In addition, the table must

list how many elements are used. The table can be fairly long. This

table doesn't need a pointer to the end of data. You place the graphic

data for all scenes into one array, and move the routine to the address of

the first element of the next scene. The next input is the number of cor

ner points required. The rest of the PolyDraw program should speak

for itself.

The display occurs in a new loop. It corresponds to the number of

scenes executed. This loop first computes the pointer to the first ele

ment to display on the grid network. The second loop executes twice. It

draws the network, sets the graphic cursor to the starting point and

executes your drawing in the PolyDraw routine. The second run of the

loop sets the floating variables from 1 to 0, and sets the drawing color

to die background color through the COLOR command. The Amiga

draws the grid network in the background color, erasing the net. This

process repeats as long as there are scenes available for plotting, then

the display loop exits.

3.4.4 3-D graphics for 3-D glasses

While experimenting with the multiple-point system and random 3-D

production, this idea came up for making a graphic you can view with

3-D glasses. You've seen these glasses; one lens is red and the other

lens is usually green (sometimes blue).

This program works under the same principle as 3-D movies. Since you

have two eyes, you're actually viewing two different graphics. These
two graphics appear to merge into one when you look at the screen

through 3-D glasses. The red lens blocks red light and shows you every
other color. The green lens blocks green light and allows other colors to
show through. The problem in most cases is that some colors are com

binations of red and green. This means that some objects cannot be
viewed the way you want them seen through the 3-D glasses. If you use
simple colors with 3-D glass viewing, the effect is dramatic.

This 3-D graphic is based on the grid network used in the previous pro
grams. The programming principle circles around having one vanishing

point for each eye. Since both eyes are set fairly close to one another,
the vanishing points must be set close together as well. In this case,
two graphics are drawn with horizontally shifted vanishing points. One
graphic is drawn in red, and the other in green. All overlapping areas

88

Abacus 3.4 p^j vector graphics

appear in brown (the color you get when you combine a red light and
green light).

To make use of this program comfortable, the slider from Chapter 4 has
been integrated into this program (see section 4.1.1). You can change
the degrees of red, green and blue to suit your 3-D glasses. You can
even change the locations of the vanishing points for an optimal 3-D

effect. When you are satisfied with your settings, press a key to see the
result. You can use these values in this program or in your own 3-D
programming.

• 3D Vector Graphics for Red-Green Glasses fl

1 © 24.5.1987 Wgbfl

1 f

LIBRARY "graphics.library"5

H

RESTORE CubeDatafl

DEFINT B,Cfl

OPTION BASE 15

Variables:31

MaxPoints=25 ? Maximum Number of Object Points1!

ZCoord«-25 f Z-coordinates of Screen Planefl

NumPoints«0 • Number of Object Points^

Connections-0 • Number of Connections^

II

NumClicks=Ofl

MaxClicks-20fl

DIM SHARED ClickTable (MaxClicks, 4)fl

DIM SHARED ClickValue (MaxClicks) fl

DIM SHARED ClickID(MaxClicks)fl

1

DIM P(MaxPoints,3) f Spatial Coordinates^

DIM B(2,MaxPoints,2) f Screen Coordinates^

DIM C(MaxPoints*1.8f2) f Connection Rulesfl

DIM D(3) • Differenced

DIM F(2,3) ■ Vanishing Point (x,y,z)fl

F(l,l)«-40 f 1st Vanishing Point xfl

F (1,2)-—50 f yH

F (1,3)-240 f zil

F (2,1) =-80 f 2nd Vanishing Point xH

F(2,2)—50 f yH

F(2f3)=240 f zH

DisplayText:I

CLSfl

LOCATE lf405

PRINT "Vanishing Point 1 (x,y,z) :"5

89

3. AmigaBASIC Amiga Tricks and Tips

LOCATE 2,405

PRINT "Vanishing Point 2 (x,y, z) :"5

GOSUB DisplayCoordinates^I

SetColors:$

PALETTE 0, .6, .55, .4 ' Background - bright-beige"31

PALETTE 1,.4,.35,0 f Neutral Color - Dark Brown 5

PALETTE 2,.7,0,0 f Red 70%fl

PALETTE 3,0, .65,0 • Green 65%H

SliderControl:fl

Text$-"Redfl f

DefMove 40!,8!,100!,70!,2!fl

Text$="Green"H

DefMove 45!,8!,100!,65!,2!fl

Text$="Brown" f

DefMove 50!,8!,100!,40!,2!fl

Text$»"VPointl"H

DefMove 60!,8!,100!,40!,2!^

Text$="VPoint2"fl

DefMove 65!,8!,100!,80!,2!5

GetPoint:^

CBase^NuiriPoints • Base for Connections5

Loop:5

READ px,py,pzfl

IF px<>255 THEN 5

NumPoints=NunrPoints+l 5

P(NumPoints,l)=px5

P (NuiriPoints, 2) -py*-lH

P (NumPoints, 3) -pzl

GOTO Loopl

END IFfl

GetConnections:5

PEAD vl,v21

IF vlO255 THEOT

Connections* Connections+15

C(Connections,1)«CBase+vlfl

C(Connections,2) =CBase+v2fl

GOTO GetConnections^

END

PEAD LastH

IF LastOO THEN GOTO GetPointfl

5

CalculateScreen:f

FOR k=l TO 2 '2 Vanishing Points^

FC^ i»l TO NuiriPoints f All Points^

FOR j-1 TO 3 • Difference for x,y,z5
D(j)(kj

90

Abacus 3.4 Fast vector graphics

NEXT jfl

lambda-(ZCoord-P(i, 3))/D(3)t

B(k,i,l)-P<i,l)+laxnbda*D(l)fl

B(k,i,2)-P(i,2)+lambda*D(2)fl

NEXT it

NEXT kfl

11

DrawScreenr^I

LINE <0,0)-(300,200),0,b£ • Clear AreaH

FOR j»l TO 2fl

COLOR 1+jfl

IF j-2 THEN CALL SetDrMdfi (WINDOW(8), 7) 5

FOR i-1 TO Connections^!

x2-B(jfC(i/2),l)+100«

yl«B(j,C(i,l),2)+70H

y2-B(jfC(if2)/2)+70 5

LINE (xlfyl)-(x2,y2)5

NEXT ±fl

NEXT jl

CALL SetDrMd&(WINDOW(8),1)5

COLOR II

Interrupt:I

ON MOUSE GOSUB CheckTablefl

ON TIMER (.5) GOSUB ColorSetfl

TIMER ONfl

mouse om

Pause:1

IF ClickValue(4)*-lOF(l,l)

F (1, l)«ClickValue (4) *-lfl

ReDrawi^I

GOSUB DisplayCoordinatesI

GOTO CalculateScreenI

END JFt

IF ClickValue(5)*-lOF(2,l) THENI

F (2, l)«ClickValue (5)*-l^I

GOTO ReDrawI

END JFt

IF INKEY$=»"" THEN GOTO Paused

OBJECT.OFFI

TIMER OFF5

MOUSE OFFfl

LOCATE 15f15

PRINT "Red Value :";ClickValue(1);"%"t

PRINT "Green Value:";ClickValue (2);"%"SI

PRINT "Brown Value from :Mfl

PRINT ClickValue(3);"% Red and "ClickValue(3)*.875;"%

Green"t

PRINT "Vanishing Point Value's X-Coordinate:"SI

91

3. AmigaBASIC Amiga Tricks and Tips

PRINT "VI ";ClickValue(4)*-l;M and V2 ";ClickValue(5)*-15

END5I

5

I
DisplayCoordinates: 5

1

LOCATE 1,6311

PRINT F(l,l)","F<l,2)","F<l,3)fl

LOCATE 2,635

PRINT F (2,1) ","F(2f 2) ","F(2,3)5

RETURNS

5

CheckTable:5

IF NumClicks=O THEN RETURN5

5

FOR i=l TO NunClicks5

mstat*MOUSE(0) I

iik=M0USE(1)-61I

IF xnx>=ClickTable(irl) THEN5

IF ray>-a±ckTable(i,2) THEM

IF xnx<«ClickTable(if3) THEOT

IF my<=ClickTable(if4) THEOT

51

ClickValue (i) - (iry-ClickTable (i, 2)) I

OBJECT.Y i,ClickTable (i, 2) +ClickValue (i) +125

1

END IBH

END IFI

END

END

NEXT iH

IF MOUSE(0)=-l THEN CheckTablefl

RETURNS

ColorSet:^

Red=ClickValue(1)/lOOfl

Green=ClickValue(2)/1005

DrawColor=ClickValue(3)/100U

PALETTE 2,Redf0f0SI

PALETTE 3,0,Green, 05

PALETTE l,DrawColor,(COLOR*.875),05

RETURNS

SUB DefMove (sx, sy,yd,po,TM>) STATIC5

SHARED NuitClicks5

5

x=sx*8 'Coordinates for Line *10 at 60 Drawing Colorfl

5

LINE (x,y)-(x+20,y+8+yd),,Bfl

5

'Extras desired?^

92

Abacus 3.4 Fast vector graphics

IF mo AND 1 THEN • Scaled

5

FOR sk-y TO y4yd+8 STEP (yd+8)/16 f16 Unitsfl

LINE (x,sk)-(x+2,sk)5

LINE (x+20,sk)-(x+18,sk)5
NEXT sk5

5

END IF5

5

IF mo AND 2 THEN f Text5

5

SHARED Text$5

sy*»sy-LEN (Text$) 5

FOR txt-1 TO LEN(Text$)5

LOCATE sy+txt,sx+25

PRINT MID$(Text$,txt,l)5
NEXT tact!

5

END IF5

•Enter Click Value in Table %

NumClicks«NumClicks+15
ClickTable(NumClicks,

ClickTable(NumClicks,2)y^

ClickTable(NumClicks,3)=x+20fl

ClickTable(NumClicks,4) =y+ydfl

ClickID(NumClicks)«1 fl set for Slider^

ClickValue (NumClicks) =po 'Beginning Value defined by
the User5

OPEN lfdf0:4. User-Friendliness/Slider2" FOR INPUT AS
NumClicksfl

OBJECT.SHAPE NumClicks,INPUT$(LCF (NumClicks), NumClicks)5
CLOSE NumClicksfl

OBJECT.X NumClicks,x-lH

CBJECT.Y

umClicksf ClickTable (NumClicks, 2) +ClickValue (NumClicks) +12

OBJECT.ON NunClicksfl

END SUBH

CubeData:^

REM x,y,zfl

DATA 32, 20, 205

DATA -32, 20, 205

DATA -32,-20, 205

DATA 32,-20, 205

DATA 32, 20,-205

DATA -32, 20,-205

DATA -32,-20,-205

DATA 32,-20,-205

DATA 255,0,05

5

93

3. AmigaBASIC

REM

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

5

pl,p25

1,25

2,35

3,45

4,15

1,55

5,65

6,75

7,85

8,55

4,85

3,75

2,65

255,0,15

PyramidData: 5

DATA

DATA

DATA

DATA

DATA

DATA

5

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

-32, 25,-205

32, 25,-205

32, 25, 205

-32, 25, 205

0, 65, 05

255,0,05

1,25

2,35

3,45

4,15

5,15

5,25

5,35

5,45

255,0,05

Amiga Tricks and Tips

Arrays B screen coordinates

D differences from the coordinate computation

F vanishing point coordinates (both graphics)

ClickID identifier for slider

ClickTable slider coordinates

ClickValue value of a slider

P spatial coordinates

C compound specification

94

Abacus 3.4 Fast vector graphics

Variables NumClickes number of defined click arrays
Last value read, equals 0 when program etuis

Green value for green

CBase object connection identifier

NumPoints number of points to be drawn

MaxPoints maximum number of object points

Red value for red

Text text output for slider definition

Connections number of connections

ZCoord Z-coordinates of screen plane

DrawColor drawing cola* for "Brown"

i, j ,k floating variables

lambda coordinate calculation factor

mo mode parameters for slider extras

mstat mouse status

mx,my mouse coordinates

po slider starting position

PX>PY>P z coordinates of one point in space

sk floating variable scaling

sx,sy text output coordinates

txt text output floating variable

vl,v2 combination points

x,y slider positions

xl,y1 screen coordinates for output (1st point)

x2,y2 screen coordinates for connection (2nd point)

yd slider status

First the graphics library opens, which contains the important gra-

Program^ phic routines. The DATA pointer then moves to the needed data, and all
description arrays beginning with B or c are defined as integers. Base array indices

are set to 1. The variables here have similar functions to those in the

earlier programs. The slider arrays and variables are new, and most of

the variables used before have been changed slightly.

The array containing the vanishing point has an additional index on it

This corresponds to the number of vanishing points, and makes later

development easier. This index lets you put up to 40 pixels as

vanishing points. This index is ideal for spacing between projection

surfaces and vanishing points.

A new method must be used for setting the vanishing points. This new

value is set in a subroutine.

The color setting is new as well. All four colors are available; the back

ground can prevent the proper effect if you select the wrong color. The

other three colors need no explanation.

The slider definitions follow. The values of the first three sliders affect

the colors. The last two sliders make it possible for you to set the

vanishing points in horizontal directions.

95

3. AmigaBASIC Amiga Tricks and Tips

The point and connection reader routines act as normal. Only the com
putation of the graphic has a slight change to it The loop counts from

one vanishing point to the next This counter also depends on the
screen coordinates as an index.

Before screen display, die screen clears. Both vanishing points appear in

their respective colors. When the grid for the second point is drawn, the

program goes into a new character mode (see the table in Chapter 4 for

the modes). When you draw with the second color, any overlapping

between this color and red lines change to brown. At the end of the

loop, the character mode returns to normal status, and the drawing color

returns to 1.

A mouse and time interrupt activate. The first interrupt reads the sliders.

The second interrupt resets the colors when you change them. The wait

loop checks the program for one vanishing point or two vanishing

points. If there are two, the value transfers over, and the screen is recal

culated.

The system waits for a keypress. When this occurs, the program turns

all objects, sliders, mouse and time readers off, and displays all

established values on the screen.

96

Abacus 3.5 The Amiga fonts

3.5 The Amiga fonts

There are two sources of fonts on the Amiga:

1) ROM font which resides in the Amiga

2 Disk-resident fonts contained in the fonts directory of the

Workbench diskette.

The following program lets you access character sets through the SUB

command FontSet which gives you access to both ROM and RAM

character sets. This is called as follows:

DiskFont wnametf,height%

To tell which character sets are on the Workbench diskette under which

names, enter a directory command, e.g.:

FILES "SYS:fonts"

Along with these character sets, you can also access the ROM character

set topaz in 8- and 9-point sizes. It is extremely important that you

enter the name topaz in lowercase characters, since the OpenFont ()

function is very picky. It will not read entries like Topaz or TOPAZ as

the ROM character set topaz. Instead, it loads the 11-point disk font

Topaz.

############################31

Program:

Author:

Date:

Version:

n

Set TextFont #31

tob

12/8/87

1.0

n

#5

n

n
############################5

31

DECLARE FUNCTION OpenDiskFont* LIBRARY^

DECLARE FUNCTION OpenFont* LIBRARY^

31

LIBRARY "diskfont. library"31

LIBRARY "graphics.library"5

31

demo: f Demonstration of SetFont Command^

LOCATE 4,1^1

FontSet "Sapphire", 195

PRINT "This is Sapphire 19 Points"31

FontSet "Diamond", 2031

PRINT "...another TextFont... "31

FontSet "Garnet", 1631

97

3. AmigaBASIC Amiga Tricks and Tips

PRINT "...and yet another! Amiga has still

FontSet "ruby11

PRINT "However this should be enough to

demonstrate the point!"5

FontSet "topaz", 8fl

II
LIBRARY CLOSER

ENDfl

H

SUB FontSet (FontName$, FontHeight%) STATIC^

f.oldfi - PEEKL(WINDOW(8)+52)fl

f .pref% - 05

FontNameO$ - FontName$ + ".font" + CHR$(0)fl

tAttr&(0) - SADD(FontNameO$)fl

tAttr&(l) - FontHeight%*2A16 + f.pref%5

f.newfi - OpenFontfi (VARPTR (tAttr&(0)))fl

f.check% - PEEKW (WIND0W(8) + 60)5

5

IF f .new& - 0 THEN5

f.newfi - 0penDiskFont&(VARPTR(tAttr&(0)))5

ELSEIF f.check% <> FontHeight% THEN5

CALL CloseFont(f.new&)5

f.newfi - QpenDiskFont&(YARPTR(tAttr&(0)))5

END IF5

5

IF f .new& <> 0 THEN5

CALL CloseFont (f.oldfi) 5

CALL SetFont (WINDOW(8), f.new*) 5

ELSEIF UCASE$ (FontName$) - "UNDO" THEN5

CALL CloseFont (f.oldfi) 5

CALL SetFont(originals)5

ELSE5

END IF5

END SUB5

Variables FontName$ character set name

FontName0 $ like FontName $, except it ends with CHR$(0)

FontHeight% height of the font in pixels

f.old& address of previously active character set

f.pre£s% preference bits

tAttr& () text attribute structure; variable array used as memory

f.new& address ofnewly opened character set

£.check% current height of new character set

98

Abacus 3-5 The Amiga fonts

In order to open a character set, a TextAtt r structure must be filled

Program out. This is stored in the tAttr& array. The address at the beginning

description of this field (taken from varptr) calls the graphic routine
OpenFont (). This looks for a character set matching the parameters

stated in the TextAttr structure. The normal fonts are the ROM font

topaz in 8-point and 9-point, but when other fonts are still open,

these fonts can be accessed by OpenFont (). OpenFont () is so
flexible that if it can't find a font that matches the given parameters, it
loads the font most similar to the desired font. This means that the font

loaded may not be the one you want The check% variable checks the

height of the found font, and compares it with the height found in
FontHeight%. If the two are unequal, the opened font closes and

OpenFont () looks for another font on diskette.

If, on the other hand, the program finds a font (£.old&<>0),

CloseFont () closes the currently active font, and activates the new

font with SetFont (). Otherwise the Amiga emits a warning beep

and returns to the old font.

99

3. AmigaBASIC
Amiga Tricks and Tips

3.6 Fast and easy PRINT

The weakest command in AmigaBASIC is PRINT. This command has
three disadvantages to it: Slow execution, no word wrap and no editing
capabilities.

Let's take these one at a time. PRINT executes very slowly: An entire
page of text can take several seconds to display in a window. In addi
tion, print doesn't know when it reaches the end of a screen line:
Long strings of characters go past the right border of the window,
instead of "wrapping around" to the next screen line. Finally, print
displays text and nothing more, print cannot execute editor com
mands that might exist, such as CLEAR SCREEN, CURSOR UP, IN
SERT LINE, etc.

Since PRINT is one of die most frequently used commands in Amiga
BASIC, here is a program that solves all of these problems. The
solution is a simple one: The program activates the internal system's
Console Device. This system component handles text input and

output. Once active, Console Device handles all the tasks that
PRINT can't handle: Fast text display, adaptation to window size, and a
number of editor commands.

Unfortunately, it's not that easy to adapt Console Device for your
own purposes, since it must be treated as an I/O device. A number of

Exec functions are necessary. However, once initialized, you have a
PRINT command of much larger dimensions. With this new com

mand's help, your program runs faster, and editor commands make pro
gramming easier.

The following program consists of the SUB programs CreatePort,

RefmovePort, CreateStdIO, RemoveStdIO, OpenConsole,

CloseConsole, SystemOn, SystemOff andConPrint:

############################11

. n

n

n

n

n

n
############################<n

Program: Console Device

Author: tob

Date: 04/08/87

Version: 1.0

DECLARE FUNCTION QpenDevice% LIBRARY^

DECLARE FUNCTION AllocMem* LIBRARY^

DECLARE FUNCTION AllocSignal% LIBRARY^

DECLARE FUNCTION FindTask* LIBRARY^

DECLARE FUNCTION DoIO& LIBRARY^

100

Abacus 3.6 Fast and rasy PRINT

5

LIBRARY "exec. library"fl

5
init: f* Control-Sequence definitions^

Cl$ - CHR$(155) 'Control Sequence Introduced

C2$ - CHR$(8) 'Backspaced

C3$ - CHR$(10) 'Line Feed5

C4$ - CHR$(11) fVTab5

C5$ - CHR$(12) 'Form Feed5

C6$ - CHR$(13) fCR5

C7$ - CHR$(14) 'SHIFT IN5

C8$ - CHR$(15) 'SHIFT OUT5

C9$ - CHR$(155) + "IE" 'RETURNS

5

demo: '* Demonstration^

ConPrint Cl$+"20CA Good Day to You!"+C9$5

ConPrint "It had been a normal day so far, but

while on the way to the barn we saw a very big bear!"II

5

System0ff5

5

SOB ConPrint (text$) STATIC5

SHARED c.io&5

IF c.iofi - 0 THEN : System0n5

POKEL c.iofi + 36, LEN(text$)5

POKEL c.io& +40, SADD(text$)f

e& = DoI0&(c.io&)^I

END SUBH

^1

SUB SystemOff STATICS

SHARED c.io&5

CloseConsole cioSfl

END SUB^I

SUB SystemOn STATIC^

SHARED c.iofi, c.c$5

OpenConsole c.io&5

POKEW c.iofi + 28, 3H

END

SUB OpenConsole (result*) STATICS

CreatePort "basic.con", 0, c.port&fl

IF c.portfi - 0 THEN ERROR 2555

CreateStdIO c.ports, c.io&fl

POKEL c.io& + 36, 1245

POKEL c.io& + 40, WINDOW(7)fl

dev$ - "console.device" + CHR$(0)fl

c.error% - QpenDevice%(SADD(dev$), 0, c.iofi, 0)5

IF c.error% <> 0 THEN ERROR 2555

results - c.io&5

END SUB5

5
SUB CloseConsole (io&) STATIC5

port& - PEEKL (io& + 14)5

CALL CloseDevice(io&)5

RemovePort port&5

101

3. AmigaBASIC Amiga tricks and Tips

RemoveStdIO ioS5

END SUB5

5

SDB CreateStdIO (ports, results) STATIC5

opts - 2A165

results - AllocMemS (48, opts)5

IF results - 0 THEN ERROR 75

POKE results + 8, 55

POKEL results + 14, portSfl

POKEW results + 18r 505

END SUB5

5

SUB RemoveStdlO (ioS) STATIC5

IF ioS O 0 THEN5

CALL FreeMem(ioS, 48)5

END IF5

END SUB5

5

SUB CreatePort (port$, pri%, results) STATIC5

opts - 2A165

bytes - 38 + LEN(port$)5

ports « AllocMexnS (bytes, opts) 5

IF ports - 0 THEN ERROR 75

POKEW ports, byteS5

ports - ports + 25

sigBit% - AllocSignal%(-l)5

IF sigBit% - -1 THEN5

CALL FreeMem (ports, bytes) 5

ERROR 75

END IF5

sigTaskS - FindTaskS (0)5

5

POKE ports + 8 , 45

POKE ports + 9 , pri%5

POKEL ports + 10, ports + 345

POKE ports + 15, sigBit%5

POKEL ports + 16, sigTaskS5

POKEL ports + 20, ports + 245

POKEL ports + 28, ports + 205

FOR loop% =1 TO LEN(port$)5

char% - ASC(MID$(port$, loop%,

POKE ports + 33 + loop%, char%5

NEXT loop%5

CALL AddPort (ports) 5

results - portS5

END SUB5

5

SUB ReroovePort (ports) STATIC5

bytes - PEEKW(ports - 2)5

sigBit% * PEEK (ports + 15) 5

CALL ReiriPort (ports) 5

CALL FreeSignal(sigBit%)5
CALL FreeMem(portS - 2, bytes)5

END SUB5

102

Abacus 3.6 Fast and easy PRINT

As you can see, you can use the new ConPrint much the same as

you used the normal PRINT:

ConPrint "displayedtext"

However, ConPrint works much faster than PRINT. Also, long

lines of text are tailored to fit the width of the window. If the text is
longer than the window is wide, the text wraps around to the next
window line. You also have the following editor sequences available:

Cl$ CSI (Control Sequence Introducer)

C2$ Backspace (1 character to the left)

C3$ Linefeed (1 line down)

C4$ VTab (one line up)

C5$ Formfeed (clear screen)

C6$ CR (start of next line)

C7$ SHIFT IN (caps)

C8$ SHIFT OUT (normal)

C9$ RETURN (end of line)

These are the simplest editor text sequences. You add them to text
strings using the plus sign character (<+>). For example:

ConPrint "Hello, Worker! "+C9$

Console Device can do a lot more. The following editor sequences

begin immediately after the control sequence introducer (Cl$). The

editor sequences are as follows:

103

3. AmigaBASIC
Amiga Tricks and Tips

Cl$ +

lf[n]@"

"MA"
ft[n]BM

"[n]CM

tf[n]DM

M[n]EM

M[n]P

"M;MH"
T
MKM

"L"

"M"
"[n]P!t

ft[n]SM

"[nlT

lf20h"

"201"

w[n];[n];[n]m"

!t[n]t"
'W

"Mx"
"My"

Definition

Insert [n] characters in this line
Cursor [n] lines up

Cursor [n] lines down

Cursor [n] characters right

Cursor [n] characters left

Cursor [n] characters down + to start of line
Cursor [n] characters up + to start of line
Cursor to line [n], column [n]

Clear screen from current cursor position

Delete line at current cursor position

Insert line

Delete line

Delete character to right of cursor

Scroll [n] lines up

Scroll [n] lines down

Set mode

Reset mode

Graphic mode

Style:

O=normal

l=bold

3=italic

4=underiine

7=ieverse

Foreground colon

30-37

Background colon

40-47

Window height in raster lines

Line length in pixels

Indent [n] characters

[n] lines spacing from top border

104

Abacus 3.7 Multitasking INPUT

3.7 Multitasking INPUT

The INKEY$, LINE INPUT and INPUT commands are Amiga-

BASICs ways of accepting user input These commands do their best,

but that isn't enough sometimes. For example, try using LINE INPUT

to ask for a street address. If the user makes a mistake, he can only
correct it by pressing the <Backspace> key until he erases the error, and
retyping the rest of the entry. LINE INPUT and INPUT support no

cursor movement, and have no editing facilities like Undo, Insert or

Delete. This is fine if you prefer to avoid user-friendliness, but pro

grams should be made as friendly to the user as possible.

This input programming can create problems: Try to design a screen

mask around LINE INPUT. It can't be done: LINE INPUT doesn't
allow length limits to input, so it accepts any number of characters.

This could move the cursor past the mask, destroying the screen mask

and other input areas. Also, this input doesn't provide margin for error
in the next input. For example, an address file program asks you for the
city. You enter <Grand Rapids MI> and press the <RETURN> key.
The next input asks for the state-but you've already entered the state

name. Another major problem with LINE INPUT is that you cannot

freely choose data fields in a mask, so mistakes are unavoidable. The
only way to check for errors is to have the program ask, "IS ALL
DATA CORRECT (Y/N)?" If there are errors, the user has to enter the

data all over again.

Now that you have heard about the disadvantages, here is an alternative
program that solves these difficulties. Here's how it works. You create a

screen mask into which you place all the necessary data fields with the
MFieId command. You can start your fields at any point on the screen

using X- and Y-coordinates. You can also set your fields to any length
up to a maximum of your screen's width. Finally, you can specify
whether the system should accept a normal (alphanumeric) input orjust
numeric input. In this last case, the Amiga accepts numbers and ignores

all other input.

The MField command syntax:

MFieldnr%, x%,y%,wid%f max%, nam$, typ$

nr% field number (0-40)

x%, y% starting coordinates of field

wid% field width in characters

max% maximum input length

nam$ field name (e.g., STREET)

typ$ "S" = alphanumeric input

"VAR" = numbers only

105

3. AMIGABASIC AMIGA TRICKS and Tips

This method lets you set up your screen mask freely. Every MField
command draws an orange border around the entry and displays the field
name on the screen.

Immediately after the screen mask appears, the user can begin text or
numeric input. Clicking on the desired field with the mouse calls an
orange cursor. The user's entry appears in that field. The Amiga
supports this new input control 100%.

The user has editor commands available in this input system. Like
LINE INPUT, MField uses the key and the
<BACKSPACE> key. These delete characters to the left or to the right
of the current cursor position. The cursor keys move the cursor to the
left or right. Text inserted at the current cursor position moves the
remaining text to the right. Pressing <SHIFT> and a cursor key moves
the cursor to the beginning or end of the text. The <Right AmigaxQ>
key combination acts as the <UNDO> function, restoring the previous
input If the user enters more text than provided for in the field, the text
scrolls to the left and the right edge opens up space for the new letters.
That is, until you reach the maximum input length. You see, you can
even enter text longer than the field window.

The Check command lets you view data in the individual fields. You
can search for fields and remove the ones you don't want anymore:

Check nr%, text$, mode%

nr%

text$

xnode%

field number

field contents
1 = display

0 o display and remove field

The following program demonstrates the options offered by these pow
erful and user-friendly commands:

1######################5

'# n
f# Program: Newlnput #fl

■# Author: tob #fl

'# Date: 11/08/87 #fl

f# Version: 2.0 #fl

'# n
•######################5

DECLARE FUNCTION AllocMemfi LIBRARY^

DECLARE FUNCTION AddGadget% LIBRARY^

LIBRARY "exec.library"^

LIBRARY "intuition.library"^

LIBRARY "graphics.library"f

var: f* variables^

DIM SHARED reg& (40,1)^1

106

Abacus 3.7 Multitasking INPUT

demo: •* Demonstration of Newlnput by Building a Mask5

CLS5
PRINT TAB (20); "Personnel Screen"5

5

1 * Build Field Masks5

MField 1, 5, 30, 35, 40, "First Name ", "S"5
MField 2, 5, 45, 35, 50, "Last Name ", "S"5

MField 3, 5, 60, 7, 7, "Street ", "VAR"5

MField 4, 165, 60, 26, 40, "", MS"5
MField 5, 5, 75, 30, 30, "City, State", "S"5

MField 6, 340, 75, 6, 11, "Zip.", "S"5

5

LOCATE 15,205

PRINT "When finished, please press RETURN!"5

LINE INPUT pause$5

5
f* Evaluate Fields

Check 1, First$, 05

Check 2, Last$, 05

Check 3, Number$, 05

Check 4, Street$, 05

Check 5, CityState$, 05

Check 6, Zip$, 05

5

CLS^
PRINT "...the following is the data you input"5
PRINT "which can now be used in other routines:"5

PRINT5
PRINT "Last and First Name: "; Last$;", ";

First$5

PRINT5

PRINT "Address: "5

PRINT " ";Number$;" "/Street$5

PRINT " ";CityState$;ff ";Zip$5

5

FOR t% - 1 TO 100005

NEXT t%5

5
f* Simultaneous Evaluation5

CLS5
MField 1, 30, 40, 10, 40, "Test field. Enter

some text. ", "S"5

5

WHILE INKEY$ - ""5

Check 1, test$, 15

LOCATE 1,15

PRINT "Current Contents: ";test$;" "5

WEND5

5

Check 1, test$, 05

LOCATE 9,15

PRINT "Final results: ";test$5

LIBRARY CLOSE5

END5

107

3. AMIGABASIC

5

SOB MField (nr%, x%, y%, wid%, max%, nam$, typ$) STATIC5
SHARED Er%5

colB% - 35

typ$ - UCASE$ (typ$)5

1% « LEN(nam$)5

IF reg&(nr%, 0) - 0 THEN5

mem& « 82 + 2*max% + 205

opt* - 2A165

add& « AllocMem&(mem&, opt&)5

IF add* « 0 THEN5

Er% - 15

EXIT SUBfl

ELSE5

Er% » Of

END IF5

POKEL add&, mem&fl

IF typ$ - "VAR" THEN5

typ% - &H8025

ELSEfl

typ% - 25

END IF5

5

chx% - PEEKW (WINDOW (8) + 58)5

chy% - PEEKW (WINDOW(8) + 60)5

FWidth% - wid% * chx%5

FHeight% - chy%5

5

CALL Move (WINDOW(8), x% - 1, y% - 1 + chy%)5

PRINT nam$;5

5

x% - x% + 1% * chx%5

str& « add& + 45

inf& - str& + 445

bfU - str& + 825

bf2& « bfl& + max%5

5

•* Initialization of Structure5

POKEW str& + 4 , x%5

POKEW str& + 6 , y%5

POKEW str& + 8 , FWidth%5

POKEW str& + 10, FHeight%5

POKEW str& + 14, typ%5

POKEW str& + 16, 45

POKEL str& + 34, inf&5

POKEL inf& , bfl&5

POKEL inf& + 4 , b£2&5

POKEW inf& + 10, max%5

5

f* Add Gadgets5

reg&(nr%, 0) - add*5

p% « AddGadget%(WINDOW(7), str&, 65535&)5

LINE (x%-2, y%-2) - (x% + FWidth%, y% + FHeight% +

1), colB%, b5

CALL OnGadget(str&, WINDOW(7), 0)5

108

Abacus 3.7 Multitasking INPUT

END IF5

END SUB5

5
SUB Check <nr%, NewText$, md%) STATIC5

count% - 05

NewText$ - ""5

IF reg&(nr%, 0) O 0 THEN5

add& - reg&(nr%, 0)5

str& - add& + 45

bfU - str& + 825

x% - PEEKW (str& + 4)5

y% - PEEKW (str& + 6)5

w% - PEEKW (str& + 8) 5

h% - PEEKW (str& + 10)5

typ% - PEEKW (str& + 14)5

5

in% - PEEK (bfl&)5

WHILE in% O 05

NewText$ - NewText$ + CHR$ (in%) 5

count% - count% + 15

in% - PEEK (bfl& + count%)5

WEND5

5

IF md% - 0 THEN5

CALL RenoveGadget (WINDOW(7), str&)5

size& - PEEKL (add&)5

CALL FreeMem(add&, size&)5

LINE (x%-2f y%-2) - (x% + w%, y% + h% + 1), 0,

bf5 reg&(nr%f 0) - 05
END IF5

END IF5
END SUB5

Variables reg& () gadget starting address storage

nr% field number (0-40)

x%fy% field coordinates

wid% field lengths in characters

max% maximum input length

nam$ field name (prompt)

typ$ field type (MS"=string, "VAR^numbers)

colB% bOTdercobr

1% prompt length

mem& size of necessary memory block

opt& memory options; 216 = CLEAR^MEMORY
adds starting address of memory block; 0=eiror

Er% =1; OUT^OF^MEMORY flag

typ% $802 = ttVARtl,2 = tlStt

chx%, chy% width and height of active character set

FWidth% data field width

FHeight% data field height
str& starting address of gadget block

inf& starting address of Strlnfo block

bf1 & starting address of input buffer

109

3. AmigaBASIC a ^
Amiga Tricks and Tips

bf2& starting address ofUndo buffer

w%, h% like FWidth% and PHeight%

in% ASCII code ofcharacter read by bfl&
NewText$ text from text buffer
count% counter

md% 0=ren»ve gadget; l=read input only
sizes size office memory

?? ^TT ^ "" ?lement of *e Intuition Ubraiy known as a
g^eU Gadgete "* elemente accessible to the mouse pointer They
perform such functions as allowing size changes and movment of
windows. One of these gadgets, the string gadget, allows text input.

The "MField" SUB initializes a gadget data structure with the corres
ponding parameters, into which your values integrate. This data struc
ture takes the active gadgets listed by AddGadget () and places them
in your output window.

The "Check" SUB reads the data structure field containing the current
input Check" transfers this input to the variable NewText$ and
returns the system to the main program. If mode=0, then Remove-
Gadget () takes the gadget from the system list

These are the main components of the SUBs. After these actions,
MField displays a prompt at the data field's beginning. Move ()
aUows cursor movement in either the X- or Y-directions, and text dis
play through print. "MField" also draws a border around the data
field. You can easily select data fields with the mouse pointer.

This sample program creates a mask of 6 fields. You can define up to
40 fields if you wish, or even increase the number of fields using the
dim shared statement s

^S defWn* me mask» me Anuga *«»» for the user to press the
<RETURN> key at the end of an entry. The user has plenty of time to
enter data in the fields, or click gadgets. If you press <RETURN> for
an empty set of data fields, the program continues. "Check" places in
put into the appropriate variables. If md%=0, the program removes the
gadgets (this happens before the program can exit). The Amiga displays
the data, and a second example begins.

This test should show field control during input This is done by
Check with md%=l. This way, a menu can be displayed as soon as the
user writes data in a previously set data field. Check with md%=0
deletes the gadget at the end. The current output changes to a blank
space for input (" "). The backspace command redraws the screen
when input isn't appearing fast enough.

110

4

User-

friendliness

Abacus 4. User-friendliness

4. User-friendliness

A few years ago, the term Muser-friendlyft didn't exist in computing. The

user had to type in exactly what he wanted the computer to do. If he

entered the data incorrectly, the computer returned an error message (if

the user was lucky). The manual was a necessity for the user to survive

computing.

As computers became more common in the home, software and

hardware designers helped shape the technology that brought about user-

friendly interfaces between the computer and user. Intuition is the

Amiga's user interface, using windows, icons and the mouse as user

input.

User-friendly program design is important to the developer, and even

more important to the user. Most users prefer a program that makes

operation simple and clear, without having to even pick up a manual.

In addition, user-friendly programs are more attractive to the consumer,

and may mean more profits for the developer.

This chapter shows you how you can make your programs as user-

friendly as possible. This sort of programming focuses on input,

selection and control. Often an icon or other self-expanatory graphic

helps the user to understand program operation better. In any case, most

programming for user response should be mouse-based, and notjust for

starting and quitting the program. Here are some easily implemented

functions that you can include in your own programs.

113

4. User-friendliness Amiga Tricks and Tbs

4.1 Other input

Since not everything can be done by menus, there must be some alter
native forms of access. To see a few of these other forms, put your
Workbench diskette in your disk drive and open the main directory.
Double-click the Preferences icon. Preferences contains user-
defined parameters. When you turn on the Amiga, the Workbench disk-

The Preferences screen contains sliders which let you set the
colors. The time and date gadgets in this screen have sliders which you
click on to change the hour, day, etc. There are also selectors that you
click for changing from 60 characters per line to 80 characters per line.
Also, this screen has many gadgets that you can click for saving or
cancelling your changes. The Change Printer screen uses many
table gadgets for selecting printer options.

4.1.1 Sliders

Sliders are just one kind of input element You can have a slider repre
sent any value within a range of numbers. You have already seen a
practical application of sliders in color assignment The color sliders in
Preferences can handle any values between 0 and 15. You could
write three INPUT commands to read numbers for color input, but the
sliders are much easier to use: All you do is move a slider left to de
crease the amount of that color, and right to increase the amount of that
color.

Before you look at the sample program below, there are a few facts you
should know about sliders:

Sliders must have their size and position in the window set In addition,
you must establish the scaling or the text that must appear.

The organization of a slider is very important When you are clear about
the coordinates and the orientation of the slider, then the slider can
appear on the screen. Simply drawing the slider isn't enough. The pro
gram should be programmed so that the click of the left mouse key
changes the slider's setting. This data could be placed in an indexed
array, particularly when multiple sliders are used in one program.

The above items can all be accomplished with a SUB program which
places the data into corresponding variable arrays. The first slider is de
fined from this data.

114

Abacus 4.1 Other input

The second point to consider is mouse reading. This occurs through an

interrupt routine which checks for a pressed left mouse button while the

pointer is within a specific range. If this is the case, the correspond-ing

slider knob (loaded as a bob) moves to the new position.

1 Definition of a Horizontal Slider Controller^

1 with x Positioning^

Variables:f

II
DEFINT a-zfl

FileName$»"Slider2"J[
Text$="Blue Value"5

11
NunClicks«OH
MaxClicks-20^1

DIM SHARED ClickTable(MaxClicks,3)fl
DIM SHARED ClickValue(MaxClicks)fl

DIM SHARED ClickID(MaxClicks)fl

Main:H

H
ON MOUSE GOSUB CheckTablefl

ON TIMER (.5) GOSUB ColorSetfl
TIMER OOT

DefMoveScale 13,6,100,16,0 'with Nothing^
DefMoveScale 13,8,100,16,1 'with Scaling^

DefMoveScale 13,10,100,60,2 'with Textfl

LINE (157,100)-(477,120),2,bf5

LOCATE 1,H

PRINT "Slider Controls:"5
PRINT "1st Control -> Red value, without Enhancements"5

PRINT "2nd Control »> Green value, with Scaling (16

"3rd Control -> Blue value, with Text ahead of the

'♦(Any Key - End) "5
H
WHILE INKEY$-""fl
SLEEPS

OBJECT. OFF^I

CheckTable:^

IF NumClicks=0 THEN RETURN^

FOR i=l TO NumClicksH
mstat=MOUSE(0)H

mx«MOUSE(l)U

(2)^ly()^l
IF mx>=ClickTable(i,0) THEOT

IF my>=ClickTable(i,l) THEM

IF mx<=ClickTable(i,2) THEN5
IF my<-ClickTable(i,3) THEOT

51
IF ClickID(i)=l THENfl
ClickValue (i) - (mx-ClickTable (i, 0)) /«
SetSwitchScale H

115

4. User-friendliness Amiga Tricks and Tips

END IF!

!
END IF!

END IF!

END IF!

END IF!

NEXT i!

IF MOUSE (0)—1 THEN CheckTable!
!
RETURN!

!
1 Set new Color!
I _______.__ CT

31

ColorSet:!

11
r!-ClickValue(1)/100!
g!-ClickValue(2)/100!
b!«ClickValue(3)/100U
PALETTE 2rr!fg!b!5

RETURNS

1 Define Slider-counterU
I — <1T

SUB DefMoveScale (sxf sy,xdfpofroo) STATIC^

SHARED NumClicks/FileName$H

x=sx*9 'Coordinate for Linefl
y=sy*85

LINE (xfy)-(x+xd*4+20/y+12)f/b5

'Extras desired?!

I
IF mo AND 1 THENfl

FOR sk-x TO x+xd*4+12 STEP (xd*4+20)/16 f16
LINE <sk,y)-(sk,y+2)fl
LINE (skfy+12)-(sk,y+10)H

NEXT skfl

END IF!

IF mo AND 2 THEN!

SHARED Text$!

LOCATE sy+l,sx-LEN(Text$)-l!
PRIOT Text$!

END IF!

!
'ClickValue entry in Table !

!
NiimClicks-NumClicks+1!
ClickTable(NumClicks,0)«x+6!
ClickTable(NumClicks,1)-y!
ClickTable(NumClicks,2)-x+xd*4+6!
ClickTable(NumClicks,3) =y+12!
ClickID(NumClicks)=1 fl as current setting for Slider!

ClickValue(NumClicks)=po 'Beginning value redefined by

OPEN FileName$ FOR INPUT AS 1!
OBJECT. SHAPE NumClicks, INPUT$ (LOF (1), 1) !

CLOSE 1!

116

Abacus 4.1 Other input

OBJECT.Y NuirClicks,yfl

SetSwitchScale NumClicksfl
OBJECT.ON NunClicksfl

II
END SUBfl

II
1 Set Slider-counter^

SOB SetSwitchScale (Nr) STATIC^
SI
OBJECT.X Nr,ClickTable(Nrr0) +4*ClickValue(Nr)-1-65

II
END SUBfl

Arrays clickiD object identification
ClickTable coordinates of click range

ClickValue slider value

Variables b blue sUder value

NumClicks previously defined click object

MaxClick possible number of click objects

FileName filename of bob used for slider

Nr SUB variable; number of set slider

Text text display in slider

g green slider value

i floating variable

mo SUB variable; slider position

mstat mouse status during reading

mx, my mouse coordinates

po SUB variable; slider position

r red slider value

sk floating variable scaling

sx, s y SUB variable; slider column coordinate

x, y coordinate scaling

xd SUB variable; slider width

First the bob's filename is assigned to a string variable so it can be

Program changed later. The counters for the clickable area and the maximum
description number initialize, then the variable arrays initialize. Also, the text for

the description of the last slider knob goes into a variable. The name

corresponds to the subroutine which draws a slider.

The main section of the program reads the mouse through the

CheckTable subroutine, and the color display appears after a half-

second interrupt. Then the slider is set up according to the predefined

parameters on the screen after calling the SUB routine containing these

parameters. To observe the color changes, the program draws a colored

box in the center of the window. Several lines of text appear on the

screen explaining the individual sliders. This is done through PRINT

statements. The program jumps to a loop which exits when any key is

pressed which has a specific keycode. The slider bobs turn off and the

program ends.

117

4. User-friendliness Amiga Tricks and Tips

c . . The first subroutine in the program, the CheckTable routine, tests
subroutines for whether the mouse pointer lies within the slider area. This test

occurs when a mouse button is pressed. Only then can the program

continue. Here ClickValue computes the pointer coordinates, and
the slider moves in the direction of the mouse pointer.

One brief but very important subroutine handles the position reading.
This is the ColorSet routine, called every half second by the timer
function. This routine sets the values in the array ClickValue () to
the corresponding color values. Since the slider knobs are 100 pixels
wide, the color value is divided into 16 sections.

Define Slider-Counter :DefMoveScale is the most impor
tant routine in this program. This routine is a SUB routine for easy
access from the main program. The parameters appear in the main

program after the command word, and must not be defined as variables

beforehand. The routine itself computes the pixel positions of the box
in which movement takes place. It indicates and tests for scaling within
a mode. If so, a loop draws 16 divisions of color in the slider box,
giving you 16 graduations of color. The second mode enables the slider
text descriptions. You can use both modes at the same time if you
wish. We suggest that you do not give the text as part of the parameters
since the text is optional. Instead, define the text in the main program
as a normal string variable, and declare it as a shared variable to the
SUB routine.

Next the graphic generation occurs. Now the corner values of the boxes
must be placed in a table. The program increments the number of pre
viously defined sliders. Then the program stores the X- and Y-values,
orientation and identifier for the sliders (more on this below). The most
important data is the slider's position.

Next, you need an object to use as slider knobs. The following program
creates a simple bob and places it on diskette for slider knob data.

RESTORE SliderDatafl
datastring$=""3I

FOR i=l TO 13011
READ a$<n

a&H+a$H

datastring$«datastring$+CHR$ (VAL (a$)
TjI

OPEN "Slider2" FOR OUTPUT AS lfl

PRINT#1,datastring$;fl

CLOSE lfl

*
SliderDatarfl
II-

DATA 0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,19,0,0,0,Dfl
DATA 0,38,0,3,0,0,0,0,0,0,l,FF,0,0,F,FF,E0,6,lF,FFfl
DATAF0,0,3F,FF,F8,0,7F,FF,FC,0,7F,FF,FC,0;7F,FF"
DATA FC, 0,3F,FFF8,0,1F,FF,FO, 0,F,FF,E0, 0,1,FF, 0,0,0,0, 011

118

Abacus 4.1 Other input

DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,01

DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,05

DATA 0,0,0,0,0,0,0,0,0,0,0,0,05

Now the bob file can be opened and the program can set its Y-coor-

dinates. A SUB routine sets the X-coordinates of die shifter position.

The value itself comes from the box position, multiplying the value

contained in ClickValue by 4. This quadrupling is necessary since

the shifter knob has more than 16 positions. The main disadvantage to

this program is that you can't set a really precise color setting as you

could with Preferences. The central point of the slider marks the

value 7.

1 Definition of a Vertical Slider Controller !

1 with y Positioning!
t ______._

!
Variables:!

!
DEFINT a-z!

FileName$="Slider2"!
Text$«"Blue"!

!
NunClicks=0!
MaxClicks«20!

!
DIM SHARED ClickTable(MaxClicks,3)!

DIM SHARED ClickValue(MaxClicks)!
DIM SHARED ClickID(MaxClicks)!

Main:!

ON MOUSE GOSUB CheckTable^
ON TIMER (.5) GOSUB ColorSetfl
TIMER ONH

5
DefMoveScale 12f 6,100,16,0 fwith Nothing^
DefMoveScale 16,6,100,0,1 fwith Scaling^

DefMoveScale 20,6,100,100,2 'with Textfl

LINE (250,80)-(280,116),2,bf5

LOCATE 1,271

PRINT "Slider Controls:"5
LOCATE 3,271

PRINT "1st Control -> Red value, "1

PRINT TAB(40)/"without Enhancements"!
PRINT TAB(27);"2nd Control -> Green value,"!

PRINT TAB (40); "with Scaling (16 Units) "5
PRINT TAB(27);"3rd Control -> Blue value,"!

PRINT TAB(40);"with Text above it"!

!
WHILE INKEY$=""!

SLEEP!

WEND!

!
OBJECT.OFF!

END!

!
CheckTable:!

!
IF NumClicks»0 THEN RETURN!

119

4. User-friendliness Amiga Tricks and Tips

FOR i-1 TO NumClicksfl
mstat-MOUSE(O)fl

mx-MOUSE(l)fl

my-M0USE(2)fl
IF mx>-ClickTable<i,O) THENH

IF my^-ClickTablea.l) THEN5I
IF mx<-ClickTable(ir2) THEN5

IF my<-ClickTable(if3) THEOT

IF ClickID(i)-2 THENH
ClickValue (i) - (my-ClickTable (if 1)) 5
SetSwitchScale ±1

END IF5

END

END IFfl

END IFH

END IF5
NEXT ifl
IF MOUSE (0)»-l THEN CheckTablefl

PETDPN^I

1 Set new Colorfl

ColorSet:^

r!-ClickValue(1)/100H
g!«ClickValue(2)/100H
b!-ClickValue(3)/lOOfl
PALETTE 2fr!,g!,b!5

51
RETURNS

1
• Define Slider-counter5

SUB DefMoveScale (sx, syfydfpo,mo) STATIC^

SHARED NunClicks,FileName$fl

x«sx*8 'Coordinates for Line *Draw 10 by 60fl

*8H

LINE (xf y) - (x+20,y+12+yd), fM

•Extras desired?^

IF no AND 1 THEN f Scales^
FOR sk=y TO y+yd+8 STEP (yd+12)/16 f16 Units^I

LINE (x/sk)-(x+2rsk)5

LINE (x+20,sk)-(x+18,sk)fl

NEXT sM
END IFfl

IF mo AND 2 THEN f TextH
SHARED Text$H
syosy-LEN(Text$)-1H
FOR txt-1 TO LEN(Text$)5

LOCATE sy+txtfsx+2fl
PRINT MID$(Text$ftxtfl)5

NEXT txtH
END IFfl

'ClickValue entry in Table \

\
NumClicks-NumClicks+lH

120

Abacus 4.1 other input

ClickTable (NumClicks, 0) -xfl
ClickTable (NunClicks, 1) -y+8H
ClickTable(NumClicks,2)«x+20fl
ClickTable (NumClicks, 3)-y+yd+8fl

ClickID(NumClicks)-2 '1 as current setting for Slider^

ClickValue(NumClicks)-pofl
mouse om

OPEN FileName$ FOR INPUT AS lfl
OBJECT.SHAPE NumClicks, INPUT$ (LOF(1), 1) 5

CLOSE lfl

31
OBJECT.X NumClicksfx-lf
SetSwitchScale NumClicks^

OBJECT.ON NumClicksfl

II
END SUBfl

1 Set Slider-counter^

SUB SetSwitchScale (Nr) STATIC^

OBJECT.Y Nr, ClickTable (Nr, 1) +ClickValue (Nr) -8 _

END SUBfl

The second listing here is similar to the first. The major difference is

Program^ that this program draws a vertical slider instead of a horizontal slider.
description The other sections of the program are identical to the earlier program:

The color initialization, the mouse position reading and die main

program are the same. If you wish, you can combine both programs

with one another. You could have one window containing two different

kinds of sliders. Copy the two SUB routines DefMove: and Set-

Switch: of one type into the program containing the sliders of the

other type. Finally, include the CheckTab loop from the other

program.

The most practical method is to combine click areas with one another.

The main section of the program contains a testing loop, and you could

add more definitions for different fields and gadgets.

4.1.2 Table selection

The abovemendoned sliders show how you can select one value in a

given range. This range was linear, or an array of possible elements.

There are many times when this form of selection doesn't work. Some

times you need just a 10, not a 9.6. Or you may want a set of texts

from which the user can select one text.

Tables perform this task. Most of these tables contain a number of

values grouped under a certain category. Or tables may only contain two

121

4. User-friendliness Amiga Tricks and Tips

or three selections. The Text gadget in the Preferences window

is a prime example of a table; it has only two options.

The first program should display all the elements of a table next to one

another. Another displays the values under each other, something like

the sliders.

To make the most of flexibility, the concrete elements of the table go

into memory as strings, so you can use text as well as numbers.

The table definition is similar to that SUB routine that stores the corner

pixel of the table in the ClickTable array (see Section 4.1.1). Again

you have the power to combine this function with other functions such

as the sliders. In this case, a few other values are stored: The elements

of the table which can be used later as a response in the main program;

and the program's storage of the maximum number of characters placed

in a table. The last one lets the program know how far the mouse

pointer should go near the upper left corner.

To display the prepared table, the subroutine must place all text into a

box and center the text in this box as much as possible (it looks better

this way). When the entire table appears, the main program can then

wait for a keypress. This stops the program and tells you which table

point was last looked for.

| Definition of a Click Tabled

Variables:fl

II
DEFINT a-zfl

MaxNum=2 • a maximum of 3 Tables^
MaxEl«10 f with a maximum of 11 Elements^
TabNum-Ofl

CharWid«8 f CharacterWidth - 80 Width«8 ; 60 Width=10fl

II
DIM SHAPED MaxLen (MaxNum) 51
DIM SHARED ChoseTable$ (MaxNum, MaxEl) fl
DIM SHARED ClickTable (MaxNum, 3) fl
DIM SHARED ClickID (MaxNum) fl
DIM SHARED ActEl (MaxNum) fl

?

Functions:fl

11
DECLARE FUNCTION Move& LIBRARY^
LIBRARY "graphics.library"!!

Main:H

H
PRINT "End Program by Pressing any Key. "SI

RESTORE TableTestH
DefTabY "Table Test", 10,5,311

H
ON MOUSE GOSUB CheckTableU
MOUSE ONH

H
WHILE INKEY$=""H

122

Abacus 4.1 other input

SLEEPf

WEND!

LOCATE 12,15

PRINT "Item";ActEl(l);Mwas selected with a value of: ••;.

PRINT GhoseTable$(l,ActEl(l))U

MOUSE OFFU

ENDfl

OieckTableifl

IF TabNum»0 THEN RETURN^

_

FOR loop-1 TO TabNumfl
MOUSE(l)fl()

my»M0USE(2)fl

IF mx>«ClickTable (loop, 0) THENfl
IF iry>«ClickTable(loop,l) THENH

IF mx<«ClickTable(loopf2) THENH
IF my<»ClickTable(loop,3) THEM

IF ClickID(loop)«3 THEN5
NumAct«INT ((mx-ClickTable (loop, 0) +

MaxLen (TabNum)) /MaxLen (TabNum)) f

IF NuroActOActEl (loop) THEN MakeAct

END IFfl

END IPI

END IFfl

END IF5
NEXT loopU

IF MOUSE (0)»-l THEN CheckTableSI

RETURNS
5

SUB DefTabY(TableNamB$,x,y,NuroAct) STATIC^

Sffl-RED TabNum, CharWidfl

loopread:^

READ ChoseTable$ (TabNum,)^
IF ChoseTable$ (TabNum,NumEl)<>"*fl THENfl
1*LEN (ChoseTable$ (TabNum, NumEl)) *CharWid5
IF l>MaxLen (TabNum) THEN MaxLen (TabNum) =15
NumEl-NumEl+15
GOTO loopreadi

END IP_

NumElements(TabNum)«NumEl-lfl

xyPTAB x*CharWid,y*8^
PRINT TableName$fl
y

_

FOR loop=l TO NumElements (TabNum) 5

xpos=x*CharWid+ (loop-1) * (MaxLen (TabNum) +2) 5

123

4. User-friendliness Amiga Tricks and Tips

xtab- (MaxLen (TabNum) /CharWid-

IEN (ChgseTable$ (TabNum, loor>n) *CharWid/2fl
xyPTAB xpos+xtab,ypos+ol
PRINT ChoseTable$ (TabNum, loop) "B

LINE (xpos-1, ypos) - (xpos+MaxLen (TabNum) +

l,ypos+10),l,M

NEXT loopfl

1 Put Value in Tabled

II
ClickTable (TabNum, 0) -x*CharWidU

ClickTable (TabNum, 1) -y*8+llfl
ClickTable (TabNum, 2) -x*CharWid+ (NumElements (TabNum) -

1) * (MaxLen (TabNum) +2) +MaxLen ((TabNum) 5
6lfcM?a^etTabNum 3) -y^S+lSlI6lfcM?a^etTabNum, 3) ySlI
ClickID(TabNum)-3 'Click Tabled
MaxLen (TabNum) »MaxLen (TabNum) +29
IF NumAct>NumElements (TabNum) THEN ERRORS

MakeAct NumAct,TabNum 5

END SUB1I

9
SUB xyPTAB(x,y) STATIC^

e&HMove& (WINDOW (8), x, y) fl
END SUB^I

SUB SetDrawMode (mode) STATIC^
CALL SetDrMd&(WINDOW(8),mode)9

END SUBfl

? ^

SUB MakeAct (NumAct, NumEl) STATIC^

x»ClickTable (NumEl, 0) 5

yl«ClickTable(NumEl,1)9
y2«ClickTable(NumEl,3)H

z«ActEl(NumEl)5
SetDrawMode 29

IF zOO THEN9
LINE (x+ (z-1) *MaxLen (NumEl), yl) - (x+z*MaxLen (NumEl) -

ActEl (NumEl) -NumActfl
LINE (x+ (NumAct-1) *MaxLen (NumEl),yl)

*MaxLen (NumEl) -2,y2), ,bfI
Drav*4odeT1T

END SUB9

9
TableTest:9

DATA "10"fl

DATA "20"9
DATA "40M9

DATA "80"9
DATA "160"9
DATA "3200"H

DATA "64000"9
DATA "*"9

124

Abacus 4.1 Other input

Arrays ChoseTable table text
ClickID object identification

ClickTable coordinates of click range

ActEl active element of a table

NumElements number of elements of a table

MaxLen maximum length of table text

Variables MaxNum maximum number of click fields
MaxEl maximum number of table elements

TableName SUB variable; table name

NumEl SUB variable; number of elements in a table

CharWid width of a character in pixels

NumAct number ofnew active elements

1 text length

loop loop counter variable

mx, my mouse coordinates

x, y SUB variable; table position

xpos SUB variable; positioning variable

xtab SUB variable; text tabulator

ypos SUB variable; Y-position for table text

Program

description

After all variables receive integer definitions, the maximum number of

tables becomes 2 (this program only uses 1). Each table can contain up

to 10 elements. The program makes sure that no table was previously

defined. The character width goes into a variable to ensure correct gra
phic output, then the arrays initialize.

Since the text output is no longer in 8x8 font size, the

graphics.library file must set the pixel orientation below the

PRINT position.

The DATA statements set the table definition through the READ

pointer. Then the DATA branches to the parameters Name, xpos,

ypos and the current elements.

The main program branches to the CheckTable routine when you

press the left mouse button, then waits for a keypress. If you press a

key, the last selected element on the table is displayed and the program

aids.

The table definition routine is an interesting one. After the character

width setup and the previously defined tables, a loop forces the program

to read DATA statements until the program finds an asterisk (this marks

the end of the DATA lines). Since this means that all DATA is in, the

title appears and the vertical position is moved down. Another loop

computes the X-position of every element, based on the maximum

width of a box and the current text width. All points are placed one

below the next. Last, the program enters the corner point in the known

field, and activates a preset element

125

4. User-friendliness Amiga Tricks and Tips

Three very important subroutines follow. The first simplifies the use of

the Moves function. The second routine changes the character mode.

The third routine returns the currently active table point to normal and

displays it in a new color. This display occurs through the character

mode. When this is already active, it must first be deactivated, then the

table points are reset and the corresponding element displayed. To avoid

problems with output in the main program, the character mode returns

to normal status.

The end of the listing contains the DATA statements with their num

bers. These lines end with an asterisk (*).

Use the program below to create a vertical table:

1 Definition of a Click Tabled

H
Variables:5

II
DEFINT a-zfl

MaxNum»=2 • a maximum of 3 Tables5

MaxEl«10 ' with a maximum of 11 ElementsII
TabNum=»Ofl

CharWid-8 f CharacterWidth - 80 Width-8 ; 60 Width-10H

DIM SHARED MaxLen (MaxNum)fl

DIM SHAPED ChoseTable$(MaxNum,MaxEl)fl
DIM SHARED ClickTable (MaxNum, 3) fl

DIM SHARED ClickID (MaxNum) II
DIM SHARED ActEl (MaxNum) fl

11
. ^

Functions:fl

U
DECLARE FUNCTION Move* LIBRARY^

LIBRARY "graphics. library"^

1

PRINT "End Program by Pressing any Key."fl

RESTORE TableTesfH

DefTabY "Table Test",20,5f3f

ON MOUSE GOSUB CheckTable^
mouse om

WHILE INKEY$-"" H
SLEEPS

WEND^I

LOCATE 18, lfl

PRINT "Item";ActEl(l);"was selected containing the text:

ITE ChoseTable$(l,ActEl(l))5

MOUSE OFFfl

ChedcTable:?

126

ABACUS 4.1 Other input

IF TabNum-0 THEN RETURN^

FOR loop-1 TO TabNumf
*«>USE<l)fl<)fl

M0USE(2)H

F mx>-ClickTable (loop, 0) THENfl
IF my>-ClickTable(loop,l) THENfl

IF mx<«<:iickTable(loop,2) THENfl
IF my<-ClickTable(loop,3) THEN!

IF ClickID(loop)-4 THENfl
NumAct-INT ((my-ClickTable (loop, l)+10) /10) fl

IF NuroActOActEl (loop) THEN MakeAct

5
END

END

END IFfl
END IF5

NEXT loopf

IF MOUSE(0)—1 THEN CheckTablefl

RETURNS

5

5
SOB DefTabY (TableName$fxryfNumAct) STATIC^

SHARED TabNum,CharWid3I
5

5
loopreadifl

READ aioseTable$(TabNumrNuraEl)?I
IF ChoseTable$ (TabNum, NuiriEl)<>"*" THEN5
1=LEN (ChoseTable$ (TabNum, NumEl)) *CharWid5
IF l>MaxLen (TabNum) THEN MaxLen (TabNum) =15
NumEl»NumEl+lfl

GOTO loopread^I
END IFH

5
NumElements (TabNum) «NumEl-l^I

xyPTAB x*CharWid,y*8^I
PRINT TableName$^I

FOR loop»l TO NumElements (TabNum) $
xpos=x*CharWid3I

ypos=y*8+loop*105

SetDrawMode Of

xyPTAB xpos,ypos+8^

PRINT ChoseTable$ (TabNum, loop) 5

LINE (xpos-1, ypos) - (xpos+MaxLen (TabNum) +

I,ypos+I0),l,b1[

NEXT loopl

1 Put Value in TableU

ClickTable (TabNum, 0) »x*CharWid5
ClickTable (TabNum, 1) «y*8+ll<E

ClickTable (TabNum, 2) »x*CharWid+MaxLen (TabNum) $
ClickTable (TabNum, 3) =y*8+9+NumElements (TabNum) *10H
ClickID(TabNum)=4 'Click Tabled

127

4. User-friendliness Amiga Tricks and Tips

IF NumAct>NumElements (TabNum) THEN ERR0R5I

MakeAct NumAct, TabNum 51

SetDrawMode 151

51
END SUM

51
SUB xyPTAB(x,y) OTATIC5I
e&-Move& (WINDOW (8), x, y) 51

END

51
SUB SetDrawMode (mode) STATIC^

CALL SetDrMd&(WINDOW(8)rmode)5

END SUB5I

7 f
51
SUB MakeAct (NumAct,NumEl) STATIC^

51
xl»ClickTable (NuirEl, 0) I
y-ClickTable (NuirEl, 1) 51

x2=ClickTable (NumEl, 2) U

z«ActEl(NuiriEl)1I

SetDrawMode 251

51
IF zOO THEN5I
LINE (xl,y+(z-1)*10)-(x2fy+8+(z-1)*10),,bffl

END IF5I

ActEl (NuiriEl) «NuroAct5I
LINE (xlf yf (NumAct-1) *10) - (x2f y+8+ (NumAct-1) *10),,bf51

SetDrawMode 151

51
END SUB5I

? f
51
TableTest:5I
51
DATA "I will test"5I
DATA "I will not test"51
DATA "I am not done yet"51
DATA "Nothing from Something" 51
DATA "End" 51
DATA "Longer Test for this Program" 51
DATA "Still Another Line"51

DATA "*"5I

4.1.3 Scrolling tables

When a table contains more values than you can fit in a window, you

can adapt the table to scroll up or down. This saves space (X=36 and the

Y measurement depends on the maximum text length) and is very user-

friendly.

The basic idea of a scrolling table is that you display one section of the

table at a time. The other elements are either hidden above or below the

128

Abacus 4.1 Other input

currently displayed selection. You can see the rest of these selections by

clicking on one of two arrows. Click the arrow in the direction you

want the table to scroll.

The way this program is constructed, you can combine these routines

with very few changes. All you need is the subroutine in your own

programs. You should bear in mind, however, that the arrays used here

must be passed on to your own programs as well. This program ends

when you press a key.

1 Definition of a Click TableU
. ,

Variables: ^

II
DEFINT a-zfl
MaxNum=2 • a maximum of 3 TablesII

MaxEl»10 ' with a maximum of 11 Elements^
TabNum=05

CharWid=8 f CharacterWidth - 80 Width«8 ; 60 Width»10fl

11
DIM SHARED MaxLen (MaxNum) H

DIM SHARED ChoseTable$ (MaxNum, MaxEl) fl
DIM SHARED ClickTable(MaxNum, 3)H
DIM SHARED ClickID (MaxNum) fl

DIM SHARED ClickValue (MaxNum) 1
DIM SHARED ActEl (MaxNum) H

DIM SHARED NumElements (MaxNum) fl

Functions:

DECLARE FUNCTION Move& LIBRARY^

LIBRARY "graphics.library"^

5

5
PRINT "Elnd Program by Pressing any Key."H

11
RESTORE TableTestfl

DefTabScr NSczoll-Tablen,20,5,7,ll

ON MOUSE GOSUB CheckTableU

MOUSE OOT

WHILE IMKEY$-"N H
SLEEPS

WENDU

LOCATE 18 15
PRINT MItemM;ClickValue(l);Mwas selected containing the

tWRltEMfc5oseTable$ (1, ClickValue (1)) f
11
MOUSE OFFH

CheckTable:^I

IF TabNum=0 THEN RETURN^

H
FOR loop=l TO TabNumH

129

4. User-friendliness Amiga Tricks and Tips

mx»M0USE(l)5
my=M0USE(2)5
IF iraO-ClickTable (loop, 0) THEN5

IF my>=ClickTable(loop,l) THEN5
IF mx<=ClickTable(loop,2) THEM

IF my<=ClickTable(loop,3) THEN5

5
IF ClickID(loop)»5 THEN5

IF my-ClickTable(loop,l)<18 THEN5
IF ClickValue (loop) <NumElements (loop)

ClickValue (loop) -ClickValue (loop) +15

END IF5
ELSEIF ClickValue (loop) >1 THEN5

ClickValue (loop) -ClickValue (loop) -15

END IF5
DataOut loop,ClickValue(loop),

ClickTable(loop,0)+51,ClickTable(loop,1)5

END IF5

5
END IFf

END IF5
END IF5

END IF5
NEXT loopil

IF MOUSE (0)»-l THEN CheckTablefl

PETURN5

SUB DefTabScr (TableName$,xry,MaxNum,NumAct) STATIC^

SHAPED TabNum,CharWid5

bN15

5
FOR i=l TO MaxNumfl

READ ChoseTable$(TabNumfi)5
1«LEN(ChoseTable$(TabNum,i))5
IF l>MaxLen (TabNum) THEN MaxLen (TabNum) =15

NEXT ifl

5
NumElements (TabNum) «MaxNum5
ClickValue (TabNum) =NumAct5
MaxLen (TabNum) -MaxLen (TabNum) *CharWid5

5
1 Output tabled

5
xyPTAB x*CharWid,y*85
PRINT TableName$5
xl=x*CharWid : yl=y*8+65

x2=xl+515
LINE (xl, yl) - (x2+MaxLen (TabNum) +1, yl+36), 1, b5

LINE (x2,yl)-(x2,yl+36),15
LINE (xl,yl+18)-(x2,yl+18),15
LINE (x2,yl+12)-(x2+MaxLen(Talcum)+l,yl+12) ,15
LINE (x2,yl+24)-(x2+MaxLen(TabNum)+1,yl+24),15

PSET (xl+17,yl+16)5
LINE -(xl+34,yl+16)5
LINE -(xl+34,yl+10)5
LINE -(xl+40,yl+10)5
LINE -(xl+25,yl+2)5
LINE -(xl+10,yl+10)5
LINE -(xl+17,yl+10)5
LINE -(xl+17,yl+16)5
PAINT (xl+18,yl+15),1,15

5

130

Abacus 4.1 Other input

PSET (xl+17,yl+20)!

LINE -(xl+34,yl+20)!

LINE -(xl+34,yl+26)!

LINE -(xl+40,yl+26)!

LINE -(xl+25,yl+34)!

LINE -(xl+10,yl+26)!

LINE -(xl+17,yl+26)!

LINE -(xl+17,yl+20)!

PAINT (xl+18,yl+21),1,1!

!
DataOut TabNum,ClickValue (TabNum) ,xl+51,yl!

!
1 Put Value in Table!

!
ClickTable (TabNum, 0) «xl!

ClickTable (TabNum, 1) -yl!

ClickTable (TabNum, 2) -x2!

ClickTable (TabNum, 3) «yl+36!
ClickID(TabNum) -5 •Scroll-Tabled

!
END SUB!

!
SOB xyPTAB(x,y) STATIC!

e&HMove& (WINDOW (8), x, y) fl
END SUBfl

SUB SetDrawMode (mode) STATIC!

CALL SetDrMdfi (WINDOW (8), mode) fl

END SUB!

SUB DataOut (NumEl, start,x,y) STATIC!

!

FOR loop=start-l TO start+1!
yl=y+12*(loop-start+2)-2!
y2=yl+12-l : x2=x+MaxLen(NumEl)-1!

LINE (x,yl-9)-(x2,y2-10),0,bf!

xyPTAB x,yl!
PRINT ChoseTable$ (NumEl, loop) I
IF loop«start THEN!

SetDrawMode 2!

LINE (x,yl-9)-(x2,y2-10),l,bf!

SetDrawMode 1!

END IF!

NEXT loop!

END SUB!

!
TableTest:!

!
DATA "I will test"!
DATA "I will not test"!
DATA "I am not done yet"!
DATA "Nothing from Something"!
DATA "End"!

DATA "Longer Test for this Program"!
DATA "Still Another Line"!

Arrays ChoseTable table text
ClickID object identification

ClickTable coordinates of click range

ClickValue number of selected elements

ActE1 active element of a table

NumElenient s number of elements of a table

MaxLen maximum length of table text

131

4. User-friendliness Amiga Tricks and Tips

Variables MaxNum

MaxEl

TableName

NumEl

TabNum

CharWid

NumAct

i

1

loop

mode

mx, my

x,y

xl,yl

xl,yl

maximum number of click fields

maximum number of table elements

SUB variable; table name

number of elements in a table

number ofdefined tables

pixel width of character

number ofnew active elements

floating variable

text length

floating variable

mode set by SetDrawMode

mouse coordinates

SUB variable; table position

character coordinates

character coordinates

All variables receive integer definitions. To properly display output, the

Program character width in pixels is placed in a variable. Change that value when
description you want to use a different font. The program then dimensions all

necessary arrays.

The graphics.library opens before the main program executes.

This contains all the necessary graphic routines for display. Since one

function is needed from it, it must be defined first.

The main program itself displays just a short bit of text, executes the

routine that reads the data, and waits for a keypress. The selected value
appears at the end, and the mouse reading routine turns off.

The CheckTable subroutine is different from those in the preceding
programs. The coordinate checking is similar, but the kernel is

modified. When a scroll table exists, it checks for a click in the upper

or lower half of the range. If a click occurs in the upper end, and

scrolling up is possible, the table scrolls up. If a click occurs in the

lower end, and scrolling down is possible, the table scrolls down.

The tables number access and the character width is declared as

SHARED. Then the number of tables increment, in order to define the

new tables. The first loop of the subroutine reads all the elements of
this table, and sets up the maximum number of characters. The correct
width is computed from this, together with the element numbers in the
preset arrays. The current point also sets up from this routine.

Next comes the graphic display. After the title, the table name appears,
followed by the scroll arrows and three of the elements. LINE com
mands draw both boxes (can't get any simpler than that). Finally the
coordinates of the clicking range arc set into an array.

The subroutine demonstrates two new graphic functions: The Move
command and the SetDrawMode routine.

132

Abacus 4.2 Rubberbanding

4.2 Rubberbanding

Earlier in this chapter you learned about the most important elements of

professional program design. You shouldn't be afraid of hunting for new

ways to do things. Every new problem has a new solution.

This section discusses a function that you've used any number of times.

The function is called rubberbanding. Rubberbanding occurs when you

change the size of a window. Intuition lets you change a window's

size by grabbing on to the sizing gadget at the lower right corner of

most windows. This section, however, shows how to program rubber

banding in BASIC.

The trick lies in creating lines in complement mode instead of simply

drawing lines. Complement mode allows you to move a line or set of

lines around on the screen without redrawing the background.

You'd normally use rubberbanding for determining window size on the

screen. However, this process also makes it easier to draw rectangles in

graphic programs.

4.2.1 Rectangles in rubberbanding

This program serves no real purpose other than to show you how this

function can be used in a program. You can adapt the mouse control

techniques to your own applications.

When you start the program an empty window appears with a mouse

pointer in it. Press and hold the left mouse button from any position in

the window, and drag the pointer down and to the right A rubberbanded
rectangle appears, and changes size as you move the pointer. When you

release the left mouse button, the rectangle stays on the screen and

changes to character color 1.

1 Drawing Rectangles with Rubberbanding^

1 by Wgb in June f87fl

LIBRARY "graphics.library11f

$
ON MOUSE GOSUB SetPointfl

MOUSE CM

WHILE INKEY$<>" "fl
ST.EF.Pfl

WENDfl

133

4. User-friendliness Amiga Tricks and Tips

MOUSE OFFH
ENDfl

1

I
SetPoint:I

11
MStat=MOUSE(O)fl
IF MStatO-1 THEN RETURN^

xStart=*«OUSE (3) $
yStart«MOUSE(4)3I
CALL SetDrMd* (WINDOW(8), 2) f

NewPosition:^

II
mx-MOUSE(l)fl

ray«MOUSE(2)fl

LINE (xStart, yStart) - (mx, my),, bfl

WHILE MOUSE (0)—If

IF mxOMOUSE(l) OR myOM0USE(2) THENH
LINE (xStart, yStart)-(mx, my), ,bfl
GOTO NewPositlonfl

END IFfl

WEND f

CALL SetDrMd* (WINDOW (8), 1) U
LINE (xStart f yStart) - (mxf ray),, bfl
RETURNf

Variables MStat mouse status
mx, my mouse coordinates

xStart starting X-coordinate ofrectangle

yStart starting Y-cowdinate ofrectangle

The graphics.library opens. The program draws the guidelines in
program complement mode, and this library file transfers the necessary graphic
description routines to the program.

The SetPoint subroutine sets the mouse reading at the beginning of
the program. The program waits for a keypress. When this occurs, the
mouse reading routine turns off and ends.

The mouse reader is the central point of the program; take a good look
at those program lines. The mouse status goes into a variable. When it
notes that the user hasn't pressed the left mouse key, the subroutine
exits. Otherwise, the program marks the pointer position as the starting
value, and the drawing mode changes to complement mode. The routine
then draws the rectangle and waits for the user to move the mouse. Fol
lowing this, the program deletes the rectangle and redraws the rectangle
to fit the new mouse position.

When the user releases the left mouse button, the program exits the
loop. The program then returns to normal character mode, and the final
rectangle is displayed.

134

Abacus 4.2 Rubberbanding

4.2.2 Creating shapes

Rubberbanding can be used for much more than changing window sizes

and drawing rectangles. This program draws lines between two points

selected by the user. This routine also uses rubberbanding. When you

start the program and press the left mouse button, you'll see that two

pixels connected by a rubberband appear.

' Connections with Rubberbanding^

1 by Wgb in June f 8711

fU
II
LIBRARY "graphics.library"fl

II
BaseGraphic:fl

LINE (100,180) -(540,180)5

II
FOR i-100 TO 540 fl

x-(i-100)/2.444444H

SIN(x*3.1415/180)*100H
E -(i,180-y)fl

NEXT iH

1
ON MOUSE GOSUB SetPointfl

mouse oot

WHILE INKEY$O" "fl
SLEEPS

WENDfl

n
MOUSE OFFfl

ENDU

SetPoint:!

MStat-MOUSE(0)H
IF MStatO-1 THEN RETURN^

H
CALL SetDrMdfi (WINDOW(8), 2) f

n
NewPositioniH

mxM()H
CALL Connect (rnx) H

WHILE MOUSE (0)—lH
IF mxOMOUSE(l) THENH
CALL Connect (mx) H
GOTO NewPositionfl

END IFH

WEND H

CALL SetDrMdfi (WINDOW (8), 1) t
CALL Connect (mx) SI
RETURNS

qr

SUB Connect (x) STATIC^

IF x<100 THEN X-100H
IF x>540 THEN x-540fl

135

4. User-friendliness Amiga Tricks and Tips

xw(x-100)/2.444444H
yw-SIN (xw*3.1415/180) *100fl
I
LINE <100,180)-(x,180-yw)fl
LINE -(540,180)5
PSET (x,180-yw)H

J[
END SUBfl

5

Variables MStat mouse status

i floating variable

mx mouse position

x, y graphic coordinates

xw, yw coordinates in SUB

The basic design is similar to the first listing. There is an additional
Program routine for the banding based on a short sine equation, followed by the
description same delay loop.

The major changes appear in the SUB programs. The mouse control
routine now checks the X-position of the pointer. This position con

trols the call of a subroutine. The routine then draws the connecting
line, while reading the pointer's X-movement. Like the previous pro

gram, the old lines are deleted and redrawn at the new position.

Try the program out. The X-value goes into a specific range, since not
every X-coordinate has a graphic equivalent. The program then com
putes the coordinates and draws the line.

4.2.3 Object positioning

This last routine came from the idea of a drawing program for two-
dimensional grid graphics. When you draw multiple objects in such a
program, you may find that you run out of room on the screen. The

simplest way to move objects would be to select them with the mouse
pointer and drag the objects to new screen locations. The following pro
gram performs a function similar to this. First it computes the corner
point of a circle. Circles have no corners, but to make the coding
simple, this program plots an imaginary corner point

The circle is displayed as long as you press and hold the left mouse
button; it disappears when you release the left mouse button.

| Objects with Rubberbandingfl

1 by Wgb in June f87I

LIBRARY "graphics.library»f

136

Abacus 4.2 Rubberbanding

ObjectDefinition: fl

H
DIM SHARED Ob%(lO,l)n

Pi-3.141593H

FOR i-0 TO 360 STEP 365
x-COS(i*Pi/180)*30n

y»SIN(i*Pi/180)*15fl
Ob%(i/36,0)-xfl

Ob%(i/36,l)-yn
NEXT iH

H
ON MOOSE GOSUB SetObjectfl

MOUSE ONfl

WHILE INKEY$OM "5
SLEEP1

5
MOUSE OFFH

5
MStat=M0USE(0)H

IF MStatO-1 THEN RETURNS

CALL SetDrMd& (WINDOW (8), 2) fl

NewPosition:1I

mx-MOUSE (1) 5
my-idOUSE (2) f
CALL DrawObject(nKfmy)5

WHILE MOUSE (0)—H
IF mx<^4OUSE(l) OR iryOM0USE(2) THEOT
CALL DrawObject(mxrmy)5
GOTO NewPosItionfl

END IFH

WEND 5

CALL SetDrMdfi (WINDOW (8), 1) t
CALL DrawObject(irxfny)5

RETURNS

SUB DrawO>ject(xfy) STATIC^

PSET (Ob%(0,0)+x,Ct>%(0rl)+y)H

FOR i=l TO 10H
LINE -(Ob%(if0)+xfOb%(ifl)+y) 5

NEXT ill

n
LINE -(Ob%(10f0)+xfOb%(10fl)+y)n

END

137

4. User-friendliness Amiga Tricks and Tips

Arrays

Variables

Program

description

Ob circle point array

MStat mouse status

Pi 3.141593

i floating variable
mx, my mouse coordinates

x, y circle coordinates

The graphics.library opens and the 0b% array reads the X- and
Y-coordinates. A loop computes the 11-pixel offset from the circle's
"corner" to the circle's border. The rest of the program should look
familiar to you.

The most important changes occur in the mouse reader routine. If the
left mouse button has not been depressed, the mouse reader branches
back to the main program. If the user presses that button, the program
sets the drawing mode and draws the object at the current position. Then
the program goes into a delay loop again, and exits when you release
the left mouse button. The program branches again to the point before
the loop at which you change the mouse position, since the grid must
be erased and the object drawn at its new position.

The subroutine for drawing the object takes the 11 coordinate pairs from
the Ob% array. The first point is drawn, then the others, through LINE
commands. All points drawn join to form a circle.

138

Abacus 43 Status lines & animation

4.3 Status lines & animation

Invisible status lines are part of a new screen organization which offer

you many new special effects. For example, it allows you to create a

color bar that lets you move the entire screen up and down. This bar has

its own foreground and background colors, and it can also contain
movable text. With the same program, you can fill the screen back

ground with a pattern or graphic, if you wish. This pattern stays intact,

even when you use PRINT commands, draw or scroll. There's more:

You can scroll your background independently of the foreground

drawing.

You need only two applications for doing all this. Before listing the

program, let's look at the individual SUB programs that perform these

miracles. The first is CreateStatus. This command turns on the

new screen organization. The next is Copy. This command copies the

current screen contents in the background, where only colors 0 and 1
appear (only one bitplane is available in background memory). Once the

screen contents are copied, a new background pattern appears. You can

clear the "normal" screen with the CLS command; the background

pattern stays on. The closing is the Move SUB program. This

command scrolls the background pattern up or down. The command

syntax needs two values:

Move dir%,speed%

The dir% variable gives the number of pixels the background graphic
should move. A positive value scrolls the graphic down; a negative
number scrolls it up. The speed% variable sets the scrolling speed. 0
is the top speed; larger values slow the scrolling. Here's a sample call:

Move 100, 40

This call moves the background 100 pixels down at a delay rate of 40.

As you'll see when you test the following programs, the Move com

mand does more than just move the background. When you move the
background graphic up or down, the opposite side of the page stays

visible. The routine acts as an endless scroll routine, which can produce
some very pretty effects. Try this version of the Move command:

Move 0,0

This call appears to do nothing (moving the backgound graphic 0
pixels), but it has a special function: It clears the background graphic.

The EndStatus SUB reactivates the normal screen display. This
command must be at the end of your programs to remove the

139

4. User-friendliness Amiga Tricks and Tips

CreateStatus command's effects. Also, this command returns the
entire user memory range.

'############################5
f# n
'# Program: Dual BitMap #5
f# Author: tob #5
f# Date: May 8, 1987 #5
f# Version: 2.0 #5

f# #5
•############################5
5
DECLARE FUNCTION AllocMem* LIBRARY5
DECLARE FUNCTION BltBitMap% LIBRARY5
5
LIBRARY "graphics.library"^
LIBRARY "intuition. library"5

LIBRARY "exec.library"5

demo: f* Open Screen^
SCREEN 1, 640, 240, 3, 25

WINDOW l,MDualBitmap",(0,0)-(610,217),1,15
WINDOW OUTPUT 15

5
f* Draw Circled
CreateStatus^
LINE (0,0) - (620,10),,bf5

5
f* Color5
PALETTE 1,1,1,15
PALETTE 4,1,0,05

PALETTE 5,1,.5,.55
5
GOSUB text5

5
f* Move Scroll Circle5
Move 166, 05

PRINT "Please Press any Key.":PRINT" "5
WHILE INKEY$ - "": WEND5
Move 0,05
5

f* 2nd Experiment5
CLS5
CIRCLE (140,100), 120, 15
CIRCLE (140,100), 100, 15
CIRCLE (140,100), 80, 15
CIRCLE (140,100), 50, 15
CIRCLE (140,100), 25, 15
PAINT (250,100), 1, 15
PAINT (210,100), 1, 15
PAINT (140,100), 1, 15

5
f* Color5
PALETTE 0,0,0,15

PALETTE 1,1,0,05
PALETTE 4,0,1,15

PALETTE 5,0,1,05
5
GOSUB text5
5
LOCATE 22,15

PRINT "Please Press any Key."5
WHILE INKEY$ = ""5
Move -3, 05

WEND5

140

Abacus 43 Status lines & animation

•* 3rd Experiment5
Move 0,0l
CLS5
WIDTH "scrn:", 855
text$ = "* Amiga Tricks and Tips" 5
FOR loop% « 1 TO 565

LOCATE lcop%,55
PRINT text$5
NEXT loop%5

5
ft

f* Colors

PALETTE 0,.1,.1,.85
PALETTE 1,1,1,15

PALETTE 4,.3,.3,.35
PALETTE 5,1,1,111

GOSUB text5

5
•* Animation^
WHILE INKEY$ - ""5

Move 1,05

WEND5
5
Move 0,05

H
EndStatus^I
WINDOW 1, "Dual-Bitmap",,, -15
SCREEN CLOSE 15

LIBRARY CLOSE5

END5
text: f* Print Textfl

CLS5
LOCATE 5,15
PRINT "This is the new 'Dual-Bitmap1."5
LOCATE 6,15
PRINT "You can control two bitplanes,"5
LOCATE 7,15
PRINT "one completely independent of"5

LOCATE 8,15
PRINT "the display. "5
LOCATE 9,15
PRINT "The level helps"5
LOCATE 10,15
PRINT "determine the color"5

LOCATE 11,15
PRINT "registers using the bitplanes:"5
LOCATE 12,15
PRINT "Level Color register"5
LOCATE 13,15
PRINT "

LOCATE 14,15 J , m
PRINT " 1 not fuctional"5
LOCATE 15,15
PRINT " 2 2, 3"5
LOCATE 16,15
PRINT "3 4, 5"5
LOCATE 17,15
PRINT " 4 8, 9"5
LOCATE 18,15
PRINT " 5 16, 17"5
RETURN5
5

SUB Copy STATIC5 , OrflT
SHARED bitmap*, bitmap2&5
1% = PEEK (WINDOW (7) + 54)5

141

4. User-friendliness Amiga Tricks and Tips

r% - PEEK (WINDOW (7) + 56)5
u% - PEEK (WINDOW(7) + 57)5
o% - PEEK (WINDOW (7) +55)5

w% - PEEKW (WINDOW(7) +8) - r% - 1%5
h% - PEEKW (WINDOW(7) + 10) - u% - o%5
x% - PEEKW (WINDOW (7) + 4) + 1%5

' PEEKW (WINDOW (7) + 6) + o%5

plc% - BltBitMap% (bitmap*, x%f y%, bitmap2&, x%, y%,

200, 255, 0)5

5
SUB Move (dir%, speed%) STATIC5

SHARED bitmap2*5
1% - PEEK (WINDOW (7) + 54)5
r% - PEEK (WINDOW (7) + 56)1

u% - PEEK (WINDOW(7) + 57)5

o% - PEEK (WINDOW (7) + 55)5

w% - PEEKW (WINDOW(7) +8) - r% - 1%5
h% - PEEKW (WINDOW(7) + 10) - u% - o%5
x% - PEEKW (WINDOW (7) + 4) + 1%5

y% - PEEKW (WINDOW (7) + 6) + o%5

5
spd% - 10*speed%5
u% - y% + h% - 25
IF dir% - 0 THEN5
bitplane* - PEEKL (bitmap2& + 8)5
m% - PEEKW (bitmap2&)5
n% « PEEKW (bitmap2& + 2)5

s& - (m%*n%)5
CALL BitClear (bitplane&, s&, 0)5

EXIT SOB5
END IF5
FOR z% - 1 TO ABS(dir%)5

IF dir% > 0 THEN5
plc% - BltBitMap% (bitmap2&, x%, u%, bitmap2&,

g f(p, x%, y%, bitmP2&,
x%, y^j+gl* w%, h% - 1, 200, 255, 0)5

plc% - BltBitMap% (bitroap2&, x%, y%, bitmap2&,

p x%, y% + 1,

bitroapIS6 St y%f w%f h% " lr 200f 255f on
FOR del% - 1 TO spd%: NEXT del%5

NEXT z%5
END SUB5
5
SOB EndStatus STATIC5

SHARED rasln£o&5
raslnfo2& - PEEKL (raslnfo&)5
bitmap* - PEEKL (raslnfofi + 4)5
bitmap2& - PEEKL (raslnfo2& +4)5
level% « PEEK (bitmap* + 5) 5
POKEL bitmap* + 8 + level%*4, PEEKL (bitmap2& + 8)5

POKE bitmap* + 5, level% + 15
POKEL raslnfo*, 05
CALL FreeMem(rasInfo2&, 10)5
CALL FreeMem(bitmap2&, 40)5

END SUB5

5
SUB CreateStatus STATIC5

SHARED raslnfo*, bitmap*, bitmap2*5
1 * Get System Addresses5
wind* = WINDOW(7)5

rastport* - WINDOW(8)5
bitmap* = PEEKL (rastport* + 4)5
level% = PEEK (bitmap* + 5) 5

142

Abacus 43 Status lines & animation

scr& - PEEKL (winds + 46)5
vp& - PEEKL (scr& + 44)5

raslnfo* - PEEK (vp& + 36)5

5
IF level% < 2 THEN5
PRINT "A Screen with 2 levels is needed! "5
EXIT SUB5

END IF5

5
f* Establish Structure^
opt* - 2A1 + 2A165

rasln£o2& - AllocMemfi(10, opt&)5
IF raslnfo2& - 0 THEN ERROR 75

bitmap2& - AllocMem* (40, opt&)5
IF bitmap2& - 0 THEN5
CALL FreeMem (raslnfo2&, 10)5

ERROR 75

END IF5
5
CALL CopyMem (raslnfo&, rasln£o2&, 10)5
CALL CopyMem(bitmaps, bitmap2&, 40)5

5
POKE bitmap* + 5, level% - 15
POKE bitroap2& + 5, 15
POKEL bitmap2& + 8, PEEKL (bitmap* + 4 + 4*level%) 5

POKEL bitmap* + 4 + 4*level%, 05
POKEL raslnfo2& + 4, bitmap2&5
5
POKEL rasInfo& , rasln£o2&5

END SUB5

Once you enter this program, be sure to save it to diskette before you

Program^ try running it for the first time. The first experiment displays a red bar.
description It moves around the text page, and apparently can pass behind text in

the window. The second experiment is similar. Transparent circles

move around on the screen. The third experiment fills the background

with a text pattern.

Now for the technical basics of what's going on here. The Amiga recog

nizes a special mode called the Dual Playfield mode. This mode

can divide individual bitplanes in screen memory into two groups, and

make these two groups independent of each other. These two groups are

like independent screens; each one is visible through the other in the

background. This graphic mode isn't used in these examples. Only one

item is used which actually can be counted as Dual Playfield

mode. The Raslnfo data structure, which assigns a pointer in the

viewport to the selected screen, lets you detach individual bitplanes

from each other. The Raslnfo structure connects one of its own bit

map structures contained in the disconnected bitmap.

The CreateStatus SUB reads the corresponding system addresses.

Then it tests for a screen with a depth of 2 or more. If the screen has

only one bitplane, the system can't use it. If two or more bitplanes are

available, then the two Bitmap and Raslnfo structures are set up

(AllocMem () allocates the needed memory). The original bitplane

takes on the named bitplane (incremented in depth by 1). The second

bitmap receives a depth number of 1, and is inserted into the first bit-

143

4. User-friendliness Amiga Tricks and Tips

map. Finally, a pointer to the new bitmap must be inserted in the
Raslnfo structure.

The Copy SUB copies the contents of the first bitplane (colors 0 and 1)

to the coupled bitplane (bitplane2&). Only window contents are

copied. It would be simpler to just copy the entire screen contents, but

then the window borders would be copied as well. Using the Move

routine under these conditions would scroll the window borders as well

as the background, and probably cause a system error. If you reduced the

size of your window after the copy process, the background would keep

its full size. You can avoid this by either not changing window size, or

clearing the background with Move 0,0.

The Move SUB scrolls the background up or down. This affects the

window contents only, nothing else. The system handles this as an

endless scroll routine, which can scroll one line of pixels up or down at

a time. Larger increments move through multiple looping.

Calling Move 0,0 activates the BitClear () function, which clears

the entire background (not just the window's contents). Any window

section hidden beyond the edges of the screen is also cleared.

Endstatus restores the original bitmap and clears the dual struc

tures.

Now that you have some background information on the program, let's
take a closer look at the programming. When mixing bitplanes, the

user doesn't have eight colors with a screen that has a depth of 3 planes

(normally 23=8). Instead, since two of those planes are merged, only
four colors are available (22=8). However, you still get 8 colors in
combination with the background. A screen with a depth of 3 appears in

background memory with the color of color register 4. This command

sets the color of the background graphic:

PALETTE 4, 1, .6, .9

The combined color between background graphic and normal foreground
drawing color comes from color register 5. This command sets the color
shared by the background and normal foreground:

PALETTE 5, 1, 1, .7

The color selections are up to you-you can get some nice effects. For
example, you can combine the normal background and color register 4
to set a combined shade ofred:

PALETTE 0, 0, 0, 0

PALETTE 4, 0, 0, 0

PALETTE 5, 1, 0, 0

144

Abacus 43 Status lines & animation

The result: The background is invisible. When the foreground color

runs into the background (through PRINT, etc.), the text turns red.

Another is the transparent effect. Color register 4 must be assigned to

different colors, like red. The best combined color should be a mixture

of foreground cote (register 1) and register 5:

PALETTE 1,1,1,1 'White foreground color1

PALETTE 4,1, 0, 0 'Red background graphic1

PALETTE 5, 1, .5, .5 'Combined pink color'

When you want to put a text or pattern in the background (see the third

program above), make sure that the window height allows enough room

for the entire graphic or text, without halving or splitting the material

in the window. If this happens, when the line scrolls it reappears after

scrolling as broken lines on the screen.

145

5

DOS routines

Abacus 5. DOS routines

5. DOS routines

The DOS, or disk operating system, is part of the internal operating

system software of the Amiga. This DOS is essential to all commu

nications between the Amiga and its disk drives.

Disk drives are important to the user and the Amiga, since diskettes are

the Amiga's mass storage media. That is, you use diskettes for storing

programs, files and other information. In fact, without diskettes, you

wouldn't get past the startup icons (the KickStart icon in the Amiga

1000 and the Workbench icon in the Amiga 500 and 2000).

The Amiga Workbench diskette contains an additional library. This

library, which has many machine language routines that perform com
plex disk functions, is called dos.library.

This chapter lists a number of disk utilities that access the

dos.library program. You'll learn how to add program commen

tary, view diskettes for existing files and protect files from overwriting.

In addition, you'll find out how you can rename diskettes, access a

directory and more, all from AmigaBASIC.

149

5. DOS routines Amiga Tricks and Tips

5.1 Program comments

Any program or directory can have a comment of up to 80 characters

connected to it. Often the program name itself doesn't give the user

enough information about its purpose or use. Comments like "still

under development!" or "written by Fred" or "Version 3.4" contain

important information about the program in question. Subdirectories

can be made more readable with comments like "This directory contains

the .bmap files", "Business letters are stored here", or even "I wouldn't

open this file if I were you".

The following program assigns comments to any file or directory. The

comment appears on the screen if you access the file through the CLl's

list command.

The command format is:

SetComment "programname", "comment"

Here's an example of the command. This example puts a comment into

the c directory of the Workbench diskette:

SetComment "SYS:c", "CLI commands are in here"

•########################5
•# n
'# Program: SetComment #fl
f# Author: tob #fl

f# Date: 4.8.87 #fl

f# Version:!..0 #5

f# n
* ########################n

n
DECLARE FUNCTION SetComment% LIBRARY^

LIBRARY "dos.library"fl

demo: ^Demonstrates commentary^

SetComment "programl", "SetDrMdO -Routines"f

LIBRARY CLOSES!

ENDfl

II
SUB SetComment (file$, comment$) STATIC^

file$ « file$ + CHR$(0)fl
comment$ « comment$ + CHR$(0)fl

suc% - SetComment%(SADD(file$), SADD(comment$))fl
IF suc% » 0 THENfl

PRINT"SetComment unsuccessful."fl
END IFfl

END SUBf

150

Abacus 5.1 Program comments

Variables file$: name of the desired file or directory
comment $: comment

suc&: error flag

The necessary SetComment function is declared and the DOS library

Program opens. The filename (file$) and comment (comment $) are passed to
description the SUB program. The two text strings terminate with zero bytes

(CHR$ (0)) and the SetComment () function is called. When you

want to delete a comment, enter a null string (""). If DOS cannot

execute this command (file doesn't exist or is protected), then sues

If the desired file is in a different directory, youTl need to enter the entire
Note: pathname in the command. For example, "Workbench: libs/gra-

phics.bmapft.

151

5. DOS routines Amiga Tricks and Tips

5.2 CheckFile

Is a certain file on the diskette or isn't it? This question is important,

since you can only open an existing file. Otherwise, an error message

appears.

The following program can help you. The command syntax is:

CheckFile "filename"

This command checks to see if the given file exists. If the file exists, it

tells you the block number where the file lies. This allows you to

quickly find a file with a disk monitor.

' ########################<n

•# n
•# Program: CheckFile #5

#
#
#
#

Author:

Date:

Version:

tob

4.8.87

sl.O

n
n
n
n

f ########################51

DECLARE FUNCTION Lock* LIBRARY^

LIBRARY "dos. library"5

demo: '^Demonstrates application^

LINE INPUT "File you want checked >";file$fl
CheckFile £ile$, blocks f
IF block* - 0 THENfl
PRINT "I canft find the file ";file$fl

ELSEfl

PRINT "Found the file ";file$fl
PRINT "File header begins on the diskette^

PRINT "at block ";blocksfl
END IFfl

I
LIBRARY CLOSEU

ENDfl

1
SUB CheckFile (file$, results) STATIC^

fileO$ - file$ + CHR$(O)H
a.read% = -2f

add& - Locks(SADD(fileO$), a.read%)fl
IF adds O 0 THENfl

results - PEEEOi(results*4
ELSEH

results - 05

END IF5

CALL Unlock (adds)5
END SUB5

152

Abacus 5.2 CheckFile

Variables fiie$ name of desired file
results result of search

fileO$ like file$, but terminated by null
a.read% AOCESS_READ, read only

add& file lock address

DOS uses the Lock function to "latch onto" a specific file or di-
frogram rectory. A Lock data structure is set up which contains the special
description parameters for this file or directory.

The program uses Lock () to determine if a given file exists. Lock ()
sets the program name from fileO $. If the file doesn't exist, then no
Lock structure can be created and add& contains 0. If the file does

exist, this variable contains the pointer from the data structure. This
pointer is a BPTR type. It contains the longword offset instead of the
starting address of the data block. Multiplying the BPTR value by four
returns the correct starting address. Finally, the lock must be freed by
Unlock () before you can view the file.

You may have been wondering about the a.read% variable. It contains
the value -2, which stands for ACCESS_READ. This mode allows you
to get the data structure of the file without blocking any other user

access. In a multitasking system, another task may also be viewing the

same file. There is no problem with this since all you are doing is

reading the file. EXCLUSIVE_WRITE mode is useful when you want

to write to a file, or change its contents in some way. Other tasks that

try to access the file are sent a "FILE ALREADY OPEN" error

message. If another task succeeded in writing to a file at the same time

you were writing to it, the result could damage the file.

Here is the Lock data structure based on the BPTR:

+0 LONG BPTR to the next block, else 0

+4 LONG Block number of dir or file header
+8 LONG Shared (-2) or exclusive access (-1)
+12 LONG APTR to handler task ProcessID
+16 LONG BPTR to the disk entry

You could use this program to check to see if the appropriate .bmap

Note: files are on a diskette before you use kernel command routines.

153

5. DOS routines Amiga Tricks and Tips

5.3 Protecting data

Has this happened to you? You write a program and save it to diskette.

After you've saved it, you remember that yesterday you saved an even

better program under the same name on this diskette. Saving the new

program under the same name overwrote the old program.

Earlier versions of AmigaBASIC saved files without checking first to

see if a file with the same name existed on the diskette. There is a cure

for this problem, since you can easily "write-protect" programs on a

diskette. Every program header has four bits which have the following

meanings:

Bit 1: DELETE

Bit 2: EXECUTE

Bit 3: WRITE

Bit 4: READ

You can protect your program from accidental deletion or overwriting

(DELETE), accidental starting (EXECUTE), modification (WRITE), and

leading (READ). Earlier versions ofDOS only checked the DELETE bit.

The following program creates the Protect command, which allows

you to set any one of these four bits. You don't have to enter any bits

or bytes; the command format is:

Protect "filename11,11read| write | execute | delete"

You can type <|> by holding <SHIFT> and pressing <\> (backslash).

You can specify the four file protection modes in any order. <|> charac

ters must separate each mode word.

•########################1
f# n
f# Program:Protect #!
f# Author: tob #!

•# Date: 4.8.87 #!
f# Version:1.0 #!

•# n
* ########################11
!
DECLARE FUNCTION SetProtection% LIBRARY!
LIBRARY "dos.library"!

!
demo: • *Demonstration!

Protect "prgl", "read|write|delete"!

LIBRARY CLOSE!
END!

154

Abacus S3 Protecting data

SUB Protect (file$, mask$) STATIC^

fileO$ - file$ + CHR$(O)SI

prot$(3) - »READ"fl
prot$(2) - "WRITER
prot$(l) « "EXECUTE"fl
prot$(0) - "DELETER
1
FOR loop% = 1 TO LEN(mask$)fl

byte$ = MID$(mask$,loop%,l)fl
IF byte$ <> " |" THEN!
p$(count%) - p$(count%) + byte$fl

ELSEfl

count% « count% + lfl
END IFfl

NEXT loop%fl

FOR loopl% - 3 TO 0 STEP -II
FOR Ioop2% - 0 TO 35
IF UCASE$ (p$ (Ioop2%))
roask% - mask% + 2Al
END IF!

NEXT Ioop2%f

NEXT loopl%fl

suc% - SetProtection%(SADD(fileO$),mask%)f
IF suc% ■» 0 THENfl

PRINT "No protection."5
END IFfl

END SUBfl

prot$(loopl%) THEN!

Variables file$ name of program you want changed
file 0 $ program name, terminated with null

mask$ mode mask, consisting of the modes read, write,

execute and delete

prot $ () array containing names of protection modes

p$() word memory for values read

byte$ one-byte character from mask

mask% bit mask taken from the above mode mask

loopl% loop variable

Ioop2 % another loop variable

suc&: error flag from DOS routine; 0=error

First the program name in f ile$ must be converted (a nullbyte

Program (CHR$ (0)) must be added to the end of the filename). The string then
description transfers to the variable fileO $. Finally the mode definition occurs at

the prot $ () array. These are later compared with the function call.

A loop goes through maske$ character by character. A < I > character

signals the end of the word. The found words are stored in p$ ().

A second loop goes through the words. It actually involves two nested

loops which compare each word with the keywords in prot $ (). This

permits you to list the attributes in any order in the function call. The

protection bits described above are set and stored in mask%.

Protection then assigns the bits to the file. The protection bits in

mask% are placed in the diskette's file header.

155

5. DOS routines Amiga Tricks and Tips

If problems occur (e.g., file not found, no diskette in drive, etc.), the

Protect routine returns a value of 0 and displays an error message.

The CLI command LIST displays the protection status of each file.

The normal file attributes are "rwed" (read, write, execute, delete).

This means that the file is unprotected. If you prevent it from being

deleted, for instance, the result would be "rwe-", and you could no

longer delete the file or overwrite it

PROTECT "SYS :LIBS/graphics.bmap","delete"

The entry "rwe-" appears in the CLI LIST output

If you want to unprotect a program again, just reprotect it while

omitting the undesired protection:

PROTECT "SYS :LIBS/graphics.bmap","

removes all protection from the program.

156

Abacus 5.4 Renaming files

5.4 Renaming files

Here's a short but very practical program that changes the name of any

file or directory. AmigaBASIC doesn't have a command of this kind.

Your only alternative is to load the program and save it under another

name.

This program uses two pointers and requires a filename ended by a

nullbyte.

1########################5

f# n
'# Program:Rename #51
•# Author: tob #51
f# Date: 4.8.87 #51

•# Version:1.0 #5t
'# #51
1 ########################11
51
DECLARE FUNCTION Rename% LIBRARY^

LIBRARY "dos.library"5[
51
demo: ' *Demonstration5l

Rename "prgl", "programl"5I

51
LIBRARY CLOSER

END5I

51
SUB Rename (file$, anew$) STATIC5I

fileO$ = file$ + CHR$(0)5I
anewO$ = anew$ + CHR$ (0)> 51

suc% = Rename%(SADD(fileO$),SADD(anewO$)) 51
IF suc% <> -1 THEN5I

PRINT "Rename unsuccessful."51

END IF5I

END SUB51

Variables file$ name of existing file
anew$ new filename

fileO$ like f ile$, but terminated by 0

anewO $ like anew$, but terminated by 0

suc& DOS function error flag; 0=error

The function is similar in function to the DOS rename command.

Program Both the current and new program names must be terminated by zero
description bytes. The addresses of the two names are passed to DOS for renaming.

If an error occurs, an error message appears on the screen and the

program sets the error flag.

157

5. DOS routines Amiga Tricks and Tips

5.5 Directory access

Wouldn't it be nice if you could read the directory from within a BASIC

program? The FILES command helps very little, because it prints all

of the filenames on the screen and does nothing else. This GetDir

routine reads all of the important data from the current directory and

stores it in arrays.

' ########################11

•# n
f# Program: GetDir #11
f# Author: tob #5
'# Date: 4.8.87 #3
f# Version:1.0 #5

•# n
* ########################11

DECLARE FUNCTION Examine% LIBRARY^

DECLARE FUNCTION ExNext% LIBRARY!!
DECLARE FUNCTION Lock* LIBRARY^
DECLARE FUNCTION AllocMem* LIBRARY^
DECLARE FUNCTION IoErr% LIBRARY^

H
LIBRARY "dos.library"fl

LIBRARY "exec.library"H

H
var: '* Variable / array set-upfl

x% - 1005

DIM SHARED dir.name$ (x%) 5
DIM SHARED dir.prot$(x%)f
DIM SHARED dir.type$ (x%) II
DIM SHARED dir.size&(x%)5

DIM SHARED dir.blocks& (x%) H
DIM SHARED dir.comm$ (x%) 5

demo: '*Demonstration5

PRINT "Searching..."5

GetDir "dfO:",x%U
FOR loop% = 0 TO x%I

CLSfl

PRINT "Entry n\imber:";loop%+15

COLOR O,1H
PRINT dir.name$(loop%)5
COLOR lf01

PRINT "Protection: ";dir.prot$(loop%)fl
PRINT "Type : ";dir.type$ (loop%)5
PRINT "Size : ";dir.size*(loop%)f
PRINT "Blocks : ";dir.blocks&(loop%)5

PRINT "Commentary: ";dir.comm$(loop%)5
PRINT STRING$(60,"-")fl
WHILE INKEY$«="":WENDH

NEXT loop%![

LIBRARY CLOSER

SUB GetDir <dir$, max%) STATIC^
a.read% - -25
mode$(0) - "delete-,"H

mode$(l) = "execute-,"5
mode$(2) - "write-,"5
mode$(3) - "read-,"5

158

Abacus 5.5 Directory access

dirO$ - dir$ + CHR$ (0) 5
buffer* - 252^1

adds - Lockfi(SADD(dirO$), a.read%)5
IF add* - 0 THEN5
PRINTflDirectory doesnft exist."5
EXIT SUB5

END IF5

5
opts - 2A165
infos - AllocMemS (buffers, opts)5
IF infoS - 0 THEN ERROR 75
5
suc% - Examine%(addS,infoS) 5
IF suc% - 0 THEN5

PRINT "Can't find the subdirectories."5
EXIT SUB5

END IF5

WHILE e% O 2325

dir.nameS - info* + 85
FOR loop% - 0 TO 295

check% - PEEK(dir.name+loop%)5
IF check%O0 THEN5

check$ - check$ + CHR$(check%)5
ELSE51

loop% - 295

END IF5
NEXT loop%5

5
dir.name$(counter%) - check$5
check$ - ""5

protfi » PEEEO,(info& + 116)5

IF prot&<>0 THEN5

FOR loop% «3 TOO STEP -15
IF (protfi AND 2Aloop%) <>0 THEN5

prot$ = prot$ + mode$(loop%)5
END IF5

NEXT loop%5

add$ - LEFT$(prot$fLEN(prot$)-l)+"protected."5
dir.prot$(counter%) - add$5
prot$ - ""5

END IF5

5
type& - PEEKL(info& + 120)5
IF typefi < 0 THEN5

dir.type$(counter%) - »FILE"5
ELSEIF oounter% « 0 THEN5

dir.type$(counter%) - "CURR.DIR"5
ELSE5

dir.type$(counter%) - "DIR"5
END IF5

5
dir.sizes(counter%) - PEEKL (infos + 124)5
dir.blocksS(counter%) - PEEKL (infos + 128)5

5
FOR loop% - 0 TO 795

check! = PEEK(infos + 144 + loop%)5
IF check%O0 THEN5
check$ - check$ + CHR$(check%)5

ELSE5

loop% - 795

END IF5
NEXT loop%5

5
dir.coitnn$(counter%) = check$5
check$ - ""5
suc% - ExNext%(adds,infos)5
IF suc% - 0 THEN5

e% « IoErr%5

159

5. DOS ROUTINES Amiga Tricks and Tips

Variables

IF e%O232 THENfl

PRINT"Error in directory.1
EXIT SOBfl

END IF*

ELSEfl

counter% « counter% + 11

IF counter% > max% THENfl

e% - 2321
ELSE!

e% - 01

END IF!

END IF!

WEND!

!
CALL FreeMem(info&, buffers)fl
CALL Unlock(add*)!

max% = counter%H

END SUB!

dir.name$ ()

dir.prot$()

dir.type$()

dir.sizes ()

dir.blocks&

dir.comm$()

dir$

max%

a.read%

mode$ ()

dirO$

buffers

add&

opt&

infos

sues

e%

check%

check$

prots

type&

counters

file/directory name

file protection status

type:DIRorFXLE

program size in bytes

program size in diskette blocks

comment string

name of directory to be read

maximum number of desired entries

ACCESS_READ

protection mode

null-terminated dir$

size ofnecessary buffer

BPTR pointer to lock structure of directory being

memory option, MEM_CLEAR = clear memory

starting address ofbuffers byte sized buffer

DOS function error flag;0=error

I/OErr() flag; 232 = NO

ASCII code of character read

string read

protection bits

type bits

counter for found entries

GetDir reads the name, protection status, type, size and commentary

Program of every file on the directory. The maximum number of entries depends
description on the size of x%. This example sets x% to 100, supplying room for

100 entries. If you have a directory containing more than 100 entries,
simply increase the number assigned to x%. Remember that this takes
up memory.

The SUB program searches for the directory named in dir $. If the
named directory doesn't exist, the program displays an error message and
exits the SUB program. The program allocates a 252-byte buffer when
it finds the directory. Examine () loads the information of the first

160

Abacus 5.5 Directory access

directory entry into the buffer. The WHILE/WEND loop that follows

filters the information from this block of memory and places the values
into the corresponding arrays. ExNext () looks for the next entry and

performs the above processes. All entries are read until a

NO_MORE_ENTRIES error (code 232) occurs. This ends the

WHILE/WEND loop, closes the buffer and unlocks the Lock structure.

The last line of this SUB, max%=counter%, is extremely important
This example lets GetDir store up to 100 entries, but there are few

directories that contain that many entries. Therefore, it's important for
the program to know when it reaches the last entry on the diskette. One
solution is to declare a variable as SHARED, give it the number of
entries found and pass this information on to the main program. This
program has a simpler and more elegant solution: All parameter vari

ables in die SUB...STATIC lines are automatically declared as SHARED.

The number of entries automatically goes to max%. The main program
call can then look like this:

roax% - 100

(-)
GetDir MSYS:f\ mx%

FOR loop% - 1 to max%

W
NEXT loop%

After the GetDir call, max% receives the correct number of found

entries.

The info block in info* has the following format:

+000 LONG Disk lock

+004 LONG Buffer contents type (greater then 0: Dir)

+008 Entry name (only 30 of the 118 bytes are
usable)

+116 LONG Protection bits (definitions of least
significant bytes):
Bit Meaning
0 Delete

X Execute

2 Write
3 Read

+120 LONG Entry type (greater than 0=Dir)
+124 LONG Bytes in file

+128 LONG Blocks in file
+132 LONG Days since January 1, 1978

+136 LONG Minutes since midnight
+140 LONG Ticks since the last minute
+144 CHAR Comment, previously only 80 bytes usable

161

5. DOS routines Amiga Tricks and Tips

5.6

AmigaDOS works with a variety of subdirectories. The main directory

cxi the Workbench diskette named Workbench contains subdirectories

like fonts, in which the system fonts are stored. There are other

subdirectories inside fonts like sapphire, which houses the

various sapphire fonts, ruby which contains the ruby fonts, etc.

This tree can have even more subdirectories inside subdirectories.

Subdirectories increase the readability of a directory. But have you ever

looked at such a directory with the FILES command? The files of the

current directory appear on the screen, but subdirectories are only listed

by name, not listed in detail. You can access each subdirectory by using

CHDIR to change directories, but this can be inconvenient.

The following program looks for all the files on a diskette, ignoring the

directories. This bypasses the whole tree structure. First the printout

displays the files in the main directory, then the files in all of the

subdirectories of the main directory, then all the subdirectories in these

subdirectories, and so on. The program sends the output directly to a

printer, since there is more information than can fit on die screen.

To keep the list readable, the program also prints the name of the

directory currently being printed. Also, the program size in bytes and

blocks, as well the entry type (FILE or DIRECTORY), list on the

printout The entries are printed in alphabetical order.

' ########################11

•# n
•# Program:GetTree #5
»# Author: tob #5

f# Date: 4.8.87 #5

•# Version:1.0 #5

•# n
• ########################<n

!
DECLARE FUNCTION Examine% LIBRARY!

DECLARE FUNCTION ExNext% LIBRARY!

DECLARE FUNCTION Lock* LIBRARY!

DECLARE FUNCTION AllocMemfi LIBRARY!

DECLARE FUNCTION IoErr% LIBRARY!

!
LIBRARY "dos.library"!
LIBRARY "exec.library"!

!
var: •* Variable / array set-up!

x% - 100!

y% = 100!

DIM SHARED dir.name$ (x%)!
DIM SHARED dir.prot$ (x%)!
DIM SHARED dir.type$ (x%) !
DIM SHARED dir.size* <x%)!
DIM SHARED dir.blocks* (x%)!
DIM SHARED dir.comm$ (x%)!
DIM a$(y%)!

162

Abacus 5.6 GetTree

DIM (y)

filler$ -

count% - lfl
fil$ - " "fl

II
demo: f* Application^

GOSUB PrintTreefl

11
LIBRARY CLOSER

ENDfl

PrintTree: •* This uses GetDir...fl
GOSUB Specifier^
GOSUB Header^

GOSUB Levels

Entry: FOR loop% « previous TO count% -1
IF a&(loop%) - Level% THENfl

search$ » a$(loop%)fl

z% - x%fl

GetDir search$,
max% = %fl

x%

LOCATE l,lfl
PRINT "Print ";a$(loop%) ;
PRINT STRING$(60ffil$)H

IF loop% » 0 THEN5

a$(0) - dir.name$(0) +
END IFH

5
z$ - a$(p)5
directory$ - LEFT$(z$, LEN(z$) -

LPRINTfl

LPRINT "Directory: l";directory$H

FOR show% - 1 TO max%H
info$ - dir.name$(show%)5

diff% - 32 - LEN(dir.name$(show%))5
IF diff%>0 THENU

info$ - info$ + STRING$(diff%ffillorS)!

END IFfl

IF dir.type$(show%) O"DIR" THEN5
info$ - info$ + dir.type$(show%)5
info$ - info$ + "." + dir.t$(

FOR fill% - LEN(diroprot$(show%)) TO

3^ info$ - info$
NEXT fill%U
LPRINT "- "; info$;1I
LPRINT USING "#######";

dir.sizes(show%);5

LPRINT "Bytes, M;J[
LPRINT USING "###";

dir.blocks&(show%);JpRlNT tl blocks#n

ELSE5

fl « If
LPRINT "- " + info$ + "DIRECTORY"^

a$(count%) - a$(loop%) +

dir.name$(show%) + ^fount%) . ^^ + „

count% ■= count% + If

163

5. DOS routines Amiga Tricks and Tips

END IFfl

NEXT show%fl

END IFfl
NEXT loop%fl

previous% -

IF f1 - 1 THENfl
f1 - Ofl

Level% - Level% + lfl

GOSDB Levels
GOTO Entry!

END IFfl

GOSUB EndTreefl

RETURN^

Specifier:5

LINE INPUT "Which disk drive (0-3) ?"; dr$fl
dr% - VAL(RIGHT$ <dr$, 1)) fl
dr$ - RIGHT$ (STR$ (dr%), 1) fl
a$(0) - "df"+ dr$ +":"fl
RETURNS

Header: f*Print header!
LPRINT "* DOS DIRECTORY *"fl

LPRINTH

LPRINT " (C) 1988 by Abacus for Amiga Tricks

and Tips"5
P LPRINTfl

LPRINT f
RETURNS

Level: f* Current level of disk hierarchy!!
LPRINT STRING$(70f" ")^
LPRINT5 ""

LPRINT "Level";Level%fl
RETURNS

EndTree: f* End printout^

LPRINT STRING$(70f" ")fl
LPRINT5
LOCATE 1,11

PRINT "OK." + STRING$(60, fil$)5
RETURNS

SUB sort STATICS
SHARED max%, fil$fl
LOCATE lfl^

PRINT "Sorting ";dir.name$(0) ;STRING$ (60f

FOR mode% » 0 TO If

FOR sortl% - 1 TO max%5
FOR sort2% = sortl% + 1 TO max% - II

IF mode% = 1 THENI

bb$ - dir.type$(sortl%)I
aa$ - dir.type$(sort2%)5

ELSEI

aa$ - dir.name$(sortl%)I
bb$ - dir.name$(sort2%)I

END IFI

f
IF UCASE$(aa$)>UCASE$(bb$) THENI
SWAP dir.naroe$(sortl%),

dir.name$(sort2%)5

SWAP dir.prot$(sortl%)/
dir.prot$(sort2%)I

SWAP dir.type$(sortl%),
dir.type$(sort2%)5

164

Abacus 5.6 GetTree

SWAP dir.sizeS(sortl%),

dir.sizes(sort2%)5

SWAP dir.blocksS(sortl%),

dir.blocks*(sort2%)5

END IF5
NEXT sort2%5

NEXT sortl%5
NEXT mode%5
LOCATE 1,15
PRINT "Ready. ";STRING$(70,fil$)5

END SUB5
5
SDB GetDir (dir$,max%) STATIC5

a.read% «■ -25
roode$(0) - "delete-, "5
mode$(l) « "execute-,"5

mode$(2) - "write-,"5
mode$(3) » "read-, "5

dirO$ - dir$ + CHR$(0)5
buffer* - 2525
add& - Lock&(SADD(dirO$), a.read%)f

counter% » Of

e% = OH
IF add& - 0 THENH

PRINT"Directory doesn't exist."5

EXIT SUBfl

END IFH

opt& - H
info& « AllocMemfi (buffers,

IF info* - 0 THEN ERROR If

suc% = Examine%(add&,info&) f

IF suc% ■» 0 THENH
PRINT "Can't find the subdirectories."5

EXIT SUBH

END IFH

WHILE e% <> 2325

dir.names - info& + 85
FOR loop% »0 TO 295

check% » PEEK(dir.name&+loop%)5
IF check%O0 THEN5
check$ - check$ + CHR$(check%)5

ELSE5
loop% - 295

END IF5
NEXT loop%5

5
dir.name$(counter%) «■ check$5
check$ » ""5
prot& - PEEKL(info& + 116)5

IF pzot&OO THEN5
FOR loop% -3 TOO STEP -15

IF (prot& AND 2Aloop%) <>0 THEN5
prot$ « prot$ + mode$ (loop%) 5

END IF5
NEXT loop%5
add$ - LEFT$(prot$,LEN(prot$)-l)+"protected.
dir.prot$(counter%) - add$5
prot$ = ""5

END IF 5

type& - PEEKL(infos + 120)5

IF types < 0 THEN5
dir.type$(counter%) - "FILE"5

ELSEIF counter% - 0 THEN5
dir.type$(counter%) = "CURR.DIR"5

165

5. DOS ROUTINES
Amiga Tricks and Tips

ELSE5I

dir. type$(counter%) = "DIR"5I
END IF5I

51

dir.size&(counter%) = PEEKL (infos + 124)5
dir.blocks* (counter%) = PEEKL (infos + 128)51
51

+ 144 + loop%)51

CHR$ (check%)51

check$5I

51
FOR loop% - 0 TO 7951

check% = PEEK (info&
IF check%O0 THEN5I
check$ == check$ +

ELSE51
loop% =7951

END IF5I

NEXT loop%51

51
dir. comm$(counter%) =
check$ = MII5[

51

suc% = ExNext%(add&, info&) 51
IF suc% = 0 THEN5I

e% = IoErr%5I
IF e%<>232 THEN51

PRINT"Error in directory. "51
EXIT SUB5I

END IF5I

ELSE5I

counter% = counter% + 151

IF counter% > max% THEN5I
e% = 23251

ELSE5I
e% - 051

END IF5I
END IF5I

WEND5I

51

CALL FreeMem (info&, buffers) 51
GALL Unlock (add&) 51
max% » counter% 51

END SUB5I

Variables y%: maximum number of subdirectories
filler$ fill character

fi 1 $ second fill character
count % directory counter

dr$ disk drive number

dr% count number

previous % previous loop value

level% hierarchy level

search$ name of directory under research

directory$ directory name

show% display loop variable

info$ directory information

mode% 0=DIR/FILE, l=alphabetical sort
sor11 % bubble sort loop 1

s or12 % bubble sort loop 2

166

Abacus 5.6 GetTree

All new entries in a$ (x) are examined in the loop loop%. At first
Program this entry is just dfx:. The GetDir subprogram reads the corres-

description ponding directory and initializes the appropriate DirXXX () arrays.

These arc then sorted by Sort. If loop% = 0 (first entry), then the
directory name is printed. a$ (loop%) contains the name of the

current directory with a zero byte added to the end of the name. This

zero byte is removed when the name is printed. The show% loop then
displays all the entries in the current directory, previous % is set to
the end of the previous data block in a$ () so that it points to new data

for the next pass.

If f1 = 1, meaning that there is at least one directory on the next level,

the next directory is printed.

Sort sorts the entire set of data contained in the current directory. This
occurs through a bubble sort procedure. The directory actually sorts

twice. The first sort criterion is in alphabetical order (modus%=0). Then
from the alphabetized list, the data records sort by type. The end result
is data sorted by filename, filetype and directory.

167

5. DOS .OUTINK AMIGA TMCKS.NDTIB

5.7 Reading DOS files

Have you ever read a data record using the BASIC OPEN/ input#1
/CLOSE commands? This works fine in most cases, but not always. If
a text contains zeros, AmigaBASIC treats zeros as CHR$ (0) and
removes them from the text display.

You may not see this as a problem, but data records often contain zeros.
For example, when a program stores number information in string
form. Or, when you want to look at the .bmap files mentioned in
Chapter 3.

DOS commands are an alternative to BASIC commands. The following
program offers the necessary SUB components. It has four commands*
OpenFile, CloseFile, ReadFile and SeekFile. OpenFile
is the equivalent of OPEN, and opens the file for DOS read access
CloseFile closes a file like BASICs CLOSE. ReadFile reads a
string of any length from the open data record (this string can contain
null bytes). SeekFile can move the internal "pointer" around the
data. This pointer signals the place within the open file where the next
ReadFile command should begin.

To help you adapt this routine to real-life applications, this program
includes the SUB routine ExBMAP. It only works in conjunction with
the DOS routines (SeekFile is unused in the sample program
below). This SUB helps you view the .bmap files from Chapter 3.
These files contain the names and parameters of several hundred
machine language routines kept in ROM by the Amiga. The SUB in
this program looks at the files in the libs directory of the Workbench
diskette. If your .bmap files are in another directory or on another
diskette, then you must change the appropriate line in the SUB.

The program reads the .bmap file dos.bmap. It displays the command
names, offsets and parameters in this file. You can easily make sure
that your .bmap files are complete, and identify the newest versions
and/or errors. A further application is reading unknown .bmap files, if
only to see when machine language routines are in the file.

1########################5
;♦ n
f# Program:bmap decoder %f
•# Author: tob #fl
f# Date: 4.8.87 #fl
f# Version:1.0 #fl

^########################5

DECLARE FUNCTION xRead& LIBRARY^
DECLARE FUNCTION xppen& LIBRARY^
DECLARE FUNCTION Seek* LIBRARY^
fxClose()fl

168

Abacus 5.7 DOS file reading from BASIC

5
LIBRARY "dos.library"5

ExBMAP "dos.bmap"5
5
SUB ExBMAP (lib$) STATIC5

SHARED anerror, handle&r store$, xECF5
f±le$ - "LIBS"+lib$5
•*Change LIBS to whatever directory you need5

5
•* Open file5
OpenFile file$5
IF anerror - 1 THEN5

ErrorMessage5
END IF5

5
•* Read file5
CLS5
WIDTH "scrn:", 1505
COLOR 0,311
PRINT "Contents of library file ";file$5

PRINT5
ReadFile handle&, 1&5
IF anerror - 1 THEN5
ErrorMessage5

END IF1
WHIIE xEOFOlfl

code% - PEEK (SADD (store$)) f
IF (flag - 3 AND code% - 0) THENH
flag - 45

END IF!

IF flag - 0 THEOT
IF code% > 0 THEM

connnand$ - coxranand$ + CHR$ (code%) 31

END IF!
ELSEIF flag - 1 THEOT

hi% - code%fl
flag - 21

ELSEIF flag - 2 THENfl
d%Hlo% code%H

value& - hi%*256
offset% « 2A16 -

flag « 3fl
ELSEIF flag - 3 THEOT

IF code% < 9 THENfl
attr$ - attr$ + "d" + RIO!T$(STR$(code%-l),

ELSEf
attr$ - attr$ + "a" + RIGHT$ <STR$ (code%-9) f

END IF5
attr$ - attr$ + ", "5

ELSEIF flag - 4 THEN5
flag - 05
out$ - command$ + " ("5 m^+i0%x«
IF attr$ - llft THEN attr$ - SPACE$(2)5
out$ - out$ + LEFT$(attr$,LEN(attr$)-2) + ff)ft5

COLOR 2r15
PRINT "Offset: ";5
PRINT USING "####";offset%;5
PRINT "... ";5

PRINT "'"; out$;STRING$(60f " ")5
out$ - ""5
command$ - ""5

attrS - fft^
offset% « 05

END IF5

169

5. DOS ROUTINES

IF (comroand$ <> "" AND code% - 0) THEN!
flag - 15

END IF!

!
ReadFile handles, Is!
IF anerror - 1 THEN!
ErrorMessage!

END IF!
WEND!

CloseFile handles!
COLOR 3,05
PRINT "A-OK."!
COLOR If

END SUB!

SUB ErrorMessage STATIC!
SHARED handles!
BEEP5

PRINT "Sorry, an error occurred."5
CloseFile handles!

END SUB!

!

SUB QpenFile (dat$) STATIC^
SHARED anerror, handle&fl
handles - xppenS (SADD (dat$), 1005) H
IF handles «= 0 THEN!
anerror - If

EXIT SUBf
ELSE!

anerror - Of

END IF!
END SUB!

!
SUB CloseFile (hands) STATIC!

IF handSOO THEN!
CALL xClose(hands)!

ELSE!

BEEP!

END IF!
END SUB!

!

SUB ReadFile (hands, numS) STATIC!
SHARED anerror, store$, xEOF!
IF hands <> 0 THEN!

store$ - SPACE$ (numS+10)!

ELSE!

xEOF - 0!
END IF!

anerror « 0!

ELSE!

anerror -=1!
END IF!

!
•Seekfile hands,1!

END SUB!

!

SUB SeekFile (hands,offset%) STATIC!

END IiS " SeekMhand*' °ffSet%' °>

Variables iib$ name of the desired . bmap file
handles File handle of the xOpen command
store$ memory string for Read

170

Abacus
5.7 DOS FILE READING FROM BASIC

Program

description

xEOF

file$

anerror

code%

command$

End-Of-File: l=end of data block
foil name of file to be opened

1=DQS I/O error

read character

machine command read

attr$ input parameter for current command
out$ output string

hands local handle* variable
red& number of bytes actually read

Tlie OpenFile SUB opens the desired file for input. You enter the
name of the file; the routine returns a file handle. This handle goes into
the variable handle* and must be used by later SUBs The> value, m
handle* corresponds to the file number used in the BASIC OPEN
command. This helps DOS to remember which file to handle.

The ReadFile SUB reads any number of characters from a file opened
by OpenFile. You enter the file handle returned from OpenFile, as
well as the number of bytes you want read. Both these entries go into a

& variable. For example:

OpenFile "Example"

ReadFile handle*, 100*

This example reads 100 bytes from the file named "Example." The
SUB stores the read bytes into store$. When the SUB reaches the end

of the file, xEOF=l. Otherwise, xEOF=0.

SeekFile moves the internal data pointer to any offset from the
current pointer position. You enter the file handle and the positive or

negative offset

loop:

ReadFile handle*, 100*

SeekFile handl*, -100

The above example reads the same 100 bytes again.

CloseFile closes a file opened by OpenFile (this is absolutely

necessary). The command requires the file handle as input

Now for the sample program, the ExBMAP SUB. It waits for the name

of a .bmap file (any file with the .bmap suffix). The program searches
for the file in the Workbench directory libs:. If the file doesn't exist,
an error message appears on the screen. Otherwise, the routine reads the

file. A character loads into memory from ReadFile and goes into

code%. If flag is equal to 0, then the program reads the command

name. If code% is equal to 0, however, that means that the command

names are done. This increments flag by 1. Now the program reads

the high byte of the offset and increments flag by 2. The low byte is

then read, the value computed and subtracted from 216 of the library

171

5. DOS ROUTINES A. _,
Amiga Tricks and Tips

offset of this(routine. The result goes into offset%. flag becomes
equal to 3. The input parameters are set. If code% > 9, then they
handle address registers aO to a4. If code% < 10, then they are at the
data registers dO to d9. As soon as code% is equal to 0, flag is
equal to 4 The entire set of information appears on the screen as a
string. Finally the variables clear for the next round. The program reads
another character. When it reaches the end of the file (xEOF = 1) die
program exits the while/wend loop and closes the file

172

Abacus £•* CLI FROM AmigaBASIC

5.8 CLI from AmigaBASIC

The Command Line Interface (CLI) can also be used directly from
AmigaBASIC programs. The AmigaBASIC disk commands can be
enhanced by a complete set of disk-oriented commands. The following
program uses the DOS library and gives you a new BASIC command,
CLI, which can be used to execute any of the CLI commands. The

format is:

CLI "command string"

This example sends the fonts subdirectory of the disk in drive 0 to

the printer:

CLI "list df0 : fonts keys to prt: "

Here's the program listing:

•##############################^1
•# Program: CLI from BASIC #H
f# Date: 7/26/87 #5
f# Author: tob #fl
'# Version: 2.0 #11
•##############################11

PRINT "Loading libraries..." 11
DECLARE FUNCTION xOpenfc LIBRARY^
DECLARE FUNCTION Execute% LIBRARY^

LIBRARY "dos.library"H

main: »*CLI gets called hereH
CLI "LIST SYS: QUICK"f

H
finish: '*End demoU

LIBRARY CLOSER

ENDfl

H
SUB CLI (command$) STATIC^

SHARED error.code%5
work$ = command$

1
f* start outputs
out.filename$ - "RAM:cli
out$ » out.filename$ + C

11
out.handles ■ xppen&(SADD(out$),1006)5
IF out.handle&=0 THENH

error.code% =15

BEEPH
EXIT

END IFfl

173

5. DOS ROUTINES
Amiga Tricks and Tips

'*CLI command execution^

error.code% - 25
BEEPII

EXIT SUB5

END IF5

5

^t^** output and comPUte parameters^
CALL xClose(out.handle*) 5

text.height% - PEEKW(WINDOW(8)+58)11
window.height% - PEEKW(WINDOW(7)+10)-115
lines% - INT (window,height%/text .height%) -35

5
•* Send result to the RAM diskfl
OPEN out.filename$ FOR INPUT AS 15
WHILE (EOF (1)-0)5

INPUT#1, reader$5
PRINT reader$5
count%=count%+l5

IF count%>lines% THEN5
count%=05

SgTSS to
PRINT5

END IF*

WEND5
PRINT "## End output ##"5

CLOSE 15

KILL out.filename$5
END SOB5

Variables

Program

description

command$

error.code%

work$

count%

out.filename$

out$

out.handlefi

follow%

text.height%

window.height

lines%

CLI command sequence

DOS error

command string terminated by null
counter

output device name

output device name terminated by null
file handle for output device

execute command result; O=false=error

height in pixels of present font
window height in pixels

number of text lines in current window

The heart of this program is the DOS function Execute. This routine
calls the necessary CLI routines. Before that can happen, a proper out
put device must be opened. This can be a window, the printer or a disk
file. Since this CLI display in the BASIC window is unable to access
DOS, you can specify the RAM disk as an output medium. As soon as
Execute stores its information, you can transfer the data from the
RAM disk to the main window and edit data from there.

Execute waits for three entries: A pointer to the command string
terminated by a null; an input device (0 in this case); and the above-
mentioned output device (the file handle of the xOpen call). If the com
mand executes correctly, follow% is greater than or less than 0. When
this is equal to 0, a DOS error occurs.

174

Abacus 5-8 CLI FROM AmigaBASIC

After the Execute function runs, the result goes into the RAM disk.
The type of result depends upon the type of command used. For
example, if you start Preferences like this, no information goes to

the RAM disk:

CLI WSYSPreferences"

This call waits until the user is ready to reconfigure the computer. The

next call activates the multitasking system:

CLI "run SYS:preferences"

This continues with your BASIC program immediately after Prefer

ences opens.

CLI "list dfO:"

The above command stores data on the RAM disk.

The file in the RAM disk closes through the xClose command, then
loads its data character by character into memory with the help of the
BASIC commands OPEN and CLOSE. A certain number of lines appear

on the screen before it scrolls up. The SUB waits for a keypress from
the user before it continues with the output At the end, the RAM disk

is erased with KILL.

You can use almost all CLI commands from the BASIC CLI com-

Note: mand. There are just two things to remember: First, you can't change
the current directory with cd, since AmigaBASIC still has control over
directories with CHDIR. Second, you can't use the asterisk (*), since

this CLI doesn't use the CLI window.

175

6

AmigaBASIC

internals

Abacus 6. AmigaBASIC internals

6. AmigaBASIC internals

AmigaBASIC has a very powerful command set. The manual that

comes with it, however, contains many unclear descriptions of

commands. Those of you who may have owned another computer

before buying an Amiga probably had a number of utility programs.

Utilities help programmers to program better. Some utilities help users

change programs, create new program code or extract old program code.

Others allow you to load any program at another starting address.

Since memory manipulation is so complex on the Amiga, there are no

memory handling programs in this chapter. However, there are a num

ber of other utilities here to let you change program code. The authors

have devised a diskette configuration so that you can load a program

into a utility, change the program and save the program back in its

edited form. This configuration uses internal drive df 0 :, the RAM

disk ram:, and any external drives (optional). More on diskette

configuration later.

Before continuing with the utilities, you must know about the filetypes

supported by AmigaBASIC. Section 6.2 gives detailed information

about Amiga file structues. This information will help you later on

with adapting these utilities to your own uses.

179

6. AmigaBASIC internals Amiga Tricks and Tips

6.1 File analyzer

This program lets you display the programs in the following chapters.
It acts as a simple file monitor, independent of the built-in CLI editor

and the AmigaBASIC editor. The program is menu controlled. The left

file. The screen's center shows 16 bytes in hexadecimal notation. The
right border of the screen lists the same data in ASCII form. When you

want to expand the program, remember to adjust the menu activation
and de-activation as needed.

GOTO start!

######################################!
FILE-ANALYZER AMIGA #!

(W) 1987 by Stefan Maelger #!
######################################!

H
"dos.bmap" and "exec.bsnap" must!
exist on the Disk or in LIBS:!

Declare ROM functions and routines!

start:!

DECLARE FUNCTION xppen& LIBRARY!
DECLARE FUNCTION xRead% LIBRARY!
DECLARE FUNCTION AllocMemfi LIBRARY!
DECLARE FUNCTION Examines LIBRARY!
DECLARE FUNCTION Seek%
DECLARE FUNCTION Lock&

Open Libraries!

LIBRARY!

LIBRARY!

LIBRARY
LIBRARY

•exec, library"!
lfdos. library"!

Initialize screen and window!
!
SCREEN 2,640,200,1,2!

WINDOW 2," FILE-ANALYZE R",,0,2!

MENU 1,0,1,"File"!
MENU 1,1,1,"Open"!
MENU 1,2,0,"Close"!
MENU 2,0,0,"Block"!
MENU 2,1,1,"Next"!
MENU 2,2,0,"Back"!

Setup InfoBlock and Buffer!

!
Infobytesfi - 252!
Bufferbytes&= 400!
PublicRAMfi =655374!
ChipRAM* =65538&!

180

Abacus 6.1 File analyzer

Info* -AllocMemS (Infobytes& ,ChipRAM&)5
Buffer&«AllocMem& (Bufferbytes&,PublicRAM&) 5
IF Info&»0 OR Buffer&-0 THEN ERROR 75

5
ON MENU GOSUB menus5
menu oot

5
WHILE NOT finished^

WENDII

5
CALL FreeMem (Buffers, Bufferbytes*) 5
CALL FreeMem (Info& ,Infobytes&)!
LIBRARY CLOSE 5

1 Menu-Selection result^!

f5
menus:5
number-MENU(1)+2*MENU(0)-25
ON number GOTO fopen,fclose,bnext,bback5

5
fopen:5

ME3JU OFF5
CLS5
LINE INPUT "FILENAME: ";Filename$5
File$=Filename$+CHR$ (0) 5
DosLock&=Lock&(SADD(File$),-2)5

IF DosLock&-0 THEN5
PRINT :PRINT "File not found!"5

MENU ON5

RETURNS
END IF5

t
Dummy&«Examine&(DosLock*,Infofi)5

IF PEEKL(Info&+4)>0 THEN5
PRINT :PRINT "Can't display Directories!"5

CALL UnLock(DosLock&)5
MENU ON:RETURNS

END in
Length&»PEEKL (Infofi+124) 5

CALL UnLock(DosLock&)5
Handle&«xOpen&(SADD(File$),1005)5

IF Handle&=0 THEN5
PRINT :PRINT "Can't open file!"5
MENU ONfl

RETURN5
END IF5
inBuffer%=xRead% (Handles,Buffer&, 400) 5

Block%«l \
IF Length&>400 THEN MENU 2,0,If

MENU 1,1,05
MENU 1,2,15
CLS 5
PRINT "File: ";Filename$;TAB(38);" Length: ";Length&;5

PRINT " Byte"5
Display Buffers,inBuffer%,Block%5

MENU ON5 ;

RETURN5
5

181

6. AmigaBASIC internals Amiga Tricks and Tips

fclose:5
MENU 0FF5

CALL xClose(Handles)5
CXiS 5

MENU 1,1,15
MENU 1,2,05
MENU 2,0,05

MENU 2,1,15
MENU 2,2,05
MENU ON5
RETURN5

hnext:5
MENU OFF5

inBuffer%=xRead% (Handles, Buffers ,400)5
Block%»Block%+15
MENU 2,2,15

IF LengthS<=Block%*400 THEN MENU 2,1,05
Display Buffers, inBuffer%, Block%5
MENU ON5
RETURN5

5
bback:5
MENU OFF5

begin%«Seek%(Handles,-400-inBuffer%,0)5
inBuffer%=xRead% (Handles, Buffers, 400) 5
Block%»Block%-l 5
MENU 2,1,15
IF Block%<2 THEN MENU 2,2,05
Display Buffers,inBuffer%,Block%5

RETURN5
5

1 SUBroutine5
f5
5

SUB Display (BufferS,Bytes%,Block%) STATIC5
Counter%«05

AddressS=(Block%-1)*3365
FOR y=0 TO 20 5

LOCATE y+3,l:OOLOR 0,15
PRINT RIGHT$("00000"+HEX$(AddressS),6);":";5
AddressS«AddressS+165
FOR x=0 TO 155

LOCATE y+3,x*3+95
COLOR 1,05
Counter%=Counter%+l5

w%«PEEK (BufferS+x+y*16) 5

hexa$=RIGHT$ ("0"+HEX$ (w%), 2) 5
IF (w%>31 AND w%<128)OR w%>159 THEN5

ASCII$=CHR$(w%)5
ELSE5
ASCII$="."5

END IF5
IF Counter%>Bytes% THEN hexa$«lf ":ASCII$=" "5
PRINT hexa$; 5
LOCATE y+3,x+575
COLOR 0,15
PRINT ASCII$;5

NEXT x,y5

COLOR 1,05
END SUB5

182

Abacus 6.1 File analyzer

Variables InfoBytesS

Bufferbytess

PublicRAMS

ChipRAMS

Info&

Buffers

finished

number

Filename$

File$

DosLock

DummyS

Lengths

Handles

inBuffer%

Block%

begin%

Counter%

Address&

w%

hexa$

ASCII$

size of file info structure

buffer size for file

range for allocate + clear

DMA range for allocate + range clear

address of file info block

file buffer address

dummy variable

number of menu item

filename

filename ended with CHR$ (0)

internal file number

dummy variable

file length in bytes

internal file number

number of bytes presently read into buffer

number of400-byte block read

old start-of-file offset

number of displayed bytes

value PEEKed from buffer

two-character display string for middle

single-character string for ASCII array

183

6. AMIGABASIC INTERNALS

6.2 AmigaBASIC file
structure

AmigaBASICs SAVE command lets users save programs in three dif
ferent ways:

SAVE "Test-,a stores the program Test as an ASCII file.
SAVE "Test"f,b stores the program in binary form.

SAVE "Test w,p stores the program in protected form.

Before you save a program, you should know what you want done with
this file later on. That is, the purpose of a file, and the situations in
which it is used later.

m ASCI1 files are necessary when you want to combine files using
Jiies MERGE or CHAIN. When you want to store a program as an ASCII

file, you can reload it later and save it out again as an ASCII, binary
(normal) or protected file.

The disadvantage of ASCII files is the amount of memory they
consume, especially when many variable names are used (more on this
later). This disadvantage also applies to the entire concept of modular
programming.

«. ^. Binary files are shorter; the computer converts commands and variables
Binary Jiles into tokens. A binary file can be saved out later in ASCII, binary or

protected form.

p Protected files cannot be corrected or changed in any way. Once you
Protected save a file in protected form, you can't change it Unlike the other file
fi**S forms, you can't resave a protected file in ASCII or binary form. Before

saving a file as a protected program, make sure you have a backup copy
or two of the file in ASCII or binary form.

6.2.1 Determining filetype

Now you may want to manipulate AmigaBASIC programs, whether

they are on diskette or in buffer memory. As soon as you know the

structure of an AmigaBASIC file, there should be no problem with

this.

184

Abacus 6.2 AmigaBASIC file structure

There is one glitch: Say you wrote a program that generates a new

AmigaBASIC program from a program already on diskette. This pro

gram waits for the user to tell it which program he wants modified (let's

assume that this program is on the diskette currently in the drive). The

programmer must know whether this file is an AmigaBASIC file.

6.2.1.1 Checking for a BASIC file

This program examines a file and tells the user whether or not the file

is an AmigaBASIC program.

GOTO startH

H

REM ######################################11
REM #BASIC-CHECK #5

REM # (W) 1987 by Stefan Maelger #5

REM ######################################11

H

REM SUB-Routine to check whether a Filefl

REM is a AmigaBASIC-ProgramU

H

start:H

11

DECLARE FUNCTION xOpenfi LIBRARY^

DECLARE FUNCTION xRead% LIBRARY^

DECLARE FUNCTION Seek% LIBRARY^

11

LIBRARY "dos.library"H

H

min:H

11

CLSH

LOCATE 2,2H

PRINT "Name of AmigaBASIC-Program:"H

LOCATE 4,lfl

PRINT M>";:LINE INPUT Filename$U

BASICcheck Filename$,Flag%H

LOCATE 6,2H

IF Flag% THEN H

PRINT "It is an AmigaBASIC-Program!"H

ELSEH

PRINT "No, itfs not an AmigaBASIC-Program.. ."

END IFH

LIBRARY CLOSEH

ENDfl

H

SUB BASICcheck (Filename$f ok%) STATICH

H

File$ = Filenaroe$+".info"+CHR$(0)H

Default.Tool$ - SPACE$(12)U

185

6. AmigaBASIC internals Amiga Tricks and Tips

QpenOldFile% - 10055

OffsetEOF% - m

Offset% - -1

OpenFile:!

I

File.handles - xOpenS (SADD (File$),QpenOldFile%) fl

IF File.handles - 0 THENfl

CLSfl

LOCATE 2,2fl

PRINT "I can't find ";Filename$;"!"fl

EXIT SUBH

01dPosition%-Seek%(File.handles,Offset%,OffsetEOF%)fl

GotThem%=xRead% (File.handles, SADD (Default .Tool$), 12) I

IF GotThem%<12 THENfl

CLSfl

LOCATE 2,25

PRINT "HEM-ERROR" 1[

BEEPfl

EXIT SUBfl

ELSEH

IF INSTR(Default.Tool$,":AmigaBASIC11)>0 THEN5

o

ELSE5

END

END

CALL xClose (File.handles) 5

END IF5

END SDB5

Variables Filenane$ name of the potential AmigaBASIC program

Flag% =-1: the file is an AmigaBASIC program

ok% SUB variable indicator from flag%

File$ name of the info file from Filename$+CHR$ (0)

Default.Tool$ 12-byte string, taken from the last 12 bytes of file$

CpenOldFile% parameter used when file opens (1006=new file open)

OffsetBCF% sets cursor to end of file during file read routine (-1=

beginning, 0=present position)

FileJiandle& file handle address (0=file not open)

01dPosition% old file cursor offset

number of bytes read so far

186

Abacus 6.2 AmigaBASIC file structure

Program
description

Note:

If you've tried out the Info item from the Workbench pulldown

menu, you've seen the Default Tool string gadget in the Info
window. Default Tool is the main program that loads when you
double-click a program's icon. For example, if you double-click an
AmigaBASIC program's icon, AmigaBASIC loads first, then the pro
gram loads and runs. So, the Default Tool gadget of an Amiga

BASIC program contains the entry :AmigaBASIC. Every Amiga
BASIC program (and most programs) have a companion file called an

info file. This file has the same name as the program with an added file

extension of .info. This info file holds the bitmap of the program's
icon, as well as the Default Tool designation.

To find out whether or not a file is an AmigaBASIC program, this pro

gram opens the matching info file, moves the cursor to a location 12

bytes from die end of the file and reads the Default Tool gadget.

Why 12 bytes? The entry only has 11 bytes, but AmigaDOS only
accepts names ended by CHR$ (0).

Some programs that allow icon editing and creation may not work quite
right. These program errors can result in a misplaced Default Tool.
You can get around this error by raising the number of bytes you want
read

6.2.1.2 Checking the program header

Now you know how to identify a file as an AmigaBASIC program.

You still can't change the program yet; you have to determine the

program type before any changes can be made. The AmigaBASIC inter

preter must know the program type.

Header

bytes

The first byte of an AmigaBASIC program conveys the program type.

This byte is called the header byte. Programs stored in binary (normal)

form and protected form attach this header byte to the beginning of the

file. ASCII files contain no header bytes, since they don't need header

bytes (see Section 6.2.2 below for details on ASCII file structure).

The header byte assignments are as follows:

$F5

$F4

no header byte

binary program

protected program

ASCII file

The program below performs this function. This program requires the

dos.library routines xRead and xWrite. Remember to have this

library file available on the diskette currently in the drive.

187

6. AmigaBASIC internals Amiga Tricks and Tips

GOTO start!

##*#########*#*###*#*#**##*#####*#####!
♦ HEADER-CHECKS!

^f———————.——.————————.— ^^

♦ (W) 1987 by Stefan Maelger ♦!

######################################11

I
SUB-Routine to determine the File-Type!

of an AmigaBASIC-Program from the!

File-Headers.!
________.„_______«.«..___or

"HI - I ■ ' « ^

!

start:!

DECLARE FUNCTION xOpenfi LIBRARY!

DECLARE FUNCTION xRead% LIBRARY!

LIBRARY "dos.library"!

main:!

ProgramType$(0)-"n ASCII-File"!

ProgramTypeSU)0111 Binary-File"!

ProgramType$ (2) -" Protected-Binary-File"!

LINE INPUT "Filename: >";Filename$!

HeaderCheck Filename$,Result%!

LOCATE 10fl!

PRINT "The Program ";CHR$(34);!

PRINT Filename$;CHR$(34);!

PRINT " is a";ProgramType$(Result%)!

LOCATE 15,1!

LIBRARY CLOSE!

END!

SUB HeaderCheck (Filename$, Result%) STATIC!

File$-Filename$+CHR$(0)!

Qpen01dFile%-1005!

handle&=xOpen&(SADD(File$),0pen01dFile%)!

IF handle&«0 THEN ERROR 53!

s$="i"!

Byte$=l!

Count&-xRead%(handles,SADD(s$),Byte&)!

CALL xClose(handle&)!

Result%-0!

d%-ASC(s$)!

IF d%=&HF5 THEN!

Result%=l!

ELSEIF d%«&HF4 THEN!

188

Abacus 6.2 AmigaBASIC file structure

Result%«2U

END IFfl

11
END SOBfl

Variables PrograrrfType$ program type
Filenarre$ name of the AmigaBASIC program

Result% 0=ASQI; l=binary; 2=protected

File$ Filename$+CHR$(0)

Cpen01dFile% parameter used for open file

handles file handle address

s$ string from which first byte is read

Bytes number of bytes to be read

Reads number of bytes read so far

d% ASCII value from s $

6.2.2 ASCII files

ASCII file structure is really quite simple. Load AmigaBASIC and enter

the following program code:

PRINT all

Save this program using the following syntax:

SAVE "Test",Afl

Now quit AmigaBASIC and load up the file analyzer program from Sec

tion 6.1 (or use some other file monitor if you have one available).

When the file analyzer finishes loading, select the Open item from the

menu and enter the name of the program you just saved.

The program code appears on the right hand side of the screen:

a=l.PRINT a..

And the hex dump of the program appears on the left hand side of the

screen:

61 3D 31 OA 50 52 49 4E 54 20 61 0A 0A

If you convert these hex numbers to decimal notation, they look like

this:

97 61 49 10 80 82 73 78 84 32 97 10 10

Look in Appendix A of your AmigaBASIC manual for a list of ASCII

character codes. Youll see that these numbers match the text. Character

code 10 executes a linefeed (next line).

189

6. AmigaBASIC internals Amiga Tricks and Tips

If you want to read a program saved as an ASCII file, use the following
program in AmigaBASIC:

LINE INPUT File$fl

OPEN File$ FOR INPUT AS 15

WHILE NOT EOF(1)5

PRINT INPUT$(1,1);
WENDfl

CLOSE 15

Insert your Workbench diskette.

• Make sure the CLI is on in Preferences and start up the
CLI.

• Enter the following:

ed Diskname:Test

Diskname is the name of the diskette on which you saved the Test

program. You can edit ASCII programs using Ed (the editor) from the

Workbench diskette. The main disadvantage to Ed is that you cannot
test programs using it

If you thought of simply creating a new program using OPEN name

FOR OUTPUT, you had a good idea. The problem with that, though,

comes up when you try loading the new program into the directory. The

filename .info has no : AmigaBASIC listed as its Default Tool.

Just do the following to create a new info file:

SAVE "Dummyn :KILL File$+".infowSI

NAME "Dummy.info" AS File$+".info"I

KILL tfDummy"5

See Section 6.3 for practical applications using ASCII files.

6.2.3 Binary files

Binary file structure is extremely important since this is the usual file

format directly accessible from die AmigaBASIC interpreter. All other

filetypes must be converted to binary format before AmigaBASIC can

execute them.

Binary programs have a header byte containing $F5.

The first program line begins at the second byte of the program. This

would be a good time to examine the structure of an AmigaBASIC line.

190

Abacus 6.2 AmigaBASIC file structure

Line header

Line offset

Line

numbers

The first byte of a line is the line header. This byte can have one of two

values: 0 or 128 ($80 hexadecimal). If the line begins with 0, the line

is handled as if it has no line number. If the line begins with 128, then

it has a line number. Labels do not apply to this header (more on this

later).

The second byte of a line is the offset to the next line. It would be

pretty complicated to try figuring out pointers to the next line every

time an AmigaBASIC program loads and runs at different memory loca

tions. Instead, AmigaBASIC counts the total length of the current line.

The interpreter then figures out the address at which the line begins, and

takes the number of occupied bytes from it If the interpreter mustjump

a number of lines forward (e.g., during a jump command), it just adds

the line length of the current line to the starting address.

line length is represented in only one byte. This is why a program line

can be no longer than 2SS bytes.

Indenting program lines can make your program code more easily

readable for debugging or when trying to read a program for its flow of

execution. A program might look something like this:

multiple.FOR.NEXT.loops: 0

FOR FirstLoop-1 TO 100 2

FOR secondLoop-1 TO 10 4

FOR thirdLoop-1 TO 50 6

IPRINT FNstepon (x,y,z) 8

NEXT thirdLoop, secondloop, FirstLoop 2

The numbers at the right of the lines above don't belong to the program

itself. These are the numbers taken up by the third byte of the matching

program line. Take a look at these with the file monitor. Only LIST

and editing commands make use of this byte. It gives the spacing of the

first command from the left margin. This answers the question as to

whether the program length or execution speed are affected by

indentation. You see, the single change is in the value of the third byte.

Now look at the difference between the structures of a line containing a

line number and a line without a line number. Up to now, you've seen

how a line without line numbers is handled. Here's a review:

Byte

1

2

3

Value

00

XX

XX

Definition

Line without line number follows

line length in bytes (with head and end)

Spacing from left margin to first command (for

LlSTing programs only)

lines with line numbers have two additional bytes, making the line

header a total of five bytes long. Bytes four and five give the line num

ber in high byte/low byte format. For example, if the line number is

10000, the fourth and fifth byte return $27 and $10 respectively (39 and

16 decimal: 39*256+16=line number). The structure looks like this:

191

6. AmigaBASIC internals Amiga Tricks and Tips

Blank lines

The last line

Byte number

1

2

3

4

5

Value

128

XX

XX

XX

XX

Definition

Line with line number follows

line length in bytes (with head and end)

Spacing from left margin to first command (for

LISTing programs only)

line number (high byte)

Line number (low byte)

Both line structures are similar. The bytes following are the tokens
(commands coded into two-byte numbers).

BASIC lines end with the value 0 (an extra byte). To summarize, a pro

gram line consists of

1) a program header with or without line numbers

2) tokens (commands, labels,.variables and values)

3) end byte of 0

Now that you know about line storage, you may already know how

blank spaces are stored. The blanks discussed here are those spaces

between one line and the next

Here's the problem: The first byte must contain a zero, so no line num

ber follows. The third byte (indentation) is also zero most of the time).

The fourth byte starts the token list. If this line is blank, the end-of-line

code (another zero) follows. The line ends and the total line length (four

bytes) goes to the second byte of the line.

A blank line looks something like this:

$00 -$04- $xx-$00

It's obvious here that every blank line takes up four bytes of memory

and slows down the computer's execution time, since the interpreter

checks these blank lines for commands. You should remove blank lines

from your programs, especially programs that are time-critical. You

know the old saying-little things add up. See Section 6.3 for a program

that removes blank lines.

The last line of a program begins with a null byte. There is no line

number offset. The next byte is the line length byte, which is also set

to null, then the end-of-line code (again, a zero).

Other bytes could follow, say when a program has been edited. These

bytes can have some strange values.

192

Abacus 6.2 AmigaBASIC file structure

Variable names can be up to 40 characters long in AmigaBASIC. The

Variable problem comes up every time access occurs on a variable stored under
tables its full name. In order to use long-named variables without slowing the

computer down, the programmer must do the following in this BASIC

dialect:

When a variable occurs, the interpreter reads a special token. This token

always has the value $01. Following this token is a number in high

byte/low byte format The interpreter simply numbers each variable and

continues program execution based upon variable numbers. These vari

ables must be stored under their full names so that LIST lists these

variables under their full names. The end of the program contains a vari

able table to accomplish this. An entry in this table appears in the

following format:

1st byte

successive bytes

Length of the variable name in bytes

Variable names in ASCII code.

For example, if you use the variables a%, String$ and Address &

in your program, the variable table would look something like this:

Hexadecimal

01

06

07

61

5A74

41 64

ASCH

.a

72 69 6E 67 .String

64 72 65 73 73 .Address

The last byte of your program would then be $65. It doesn't matter

what type the variable is to the table—these follow the variable number

set by the token $01. If you look at the above example, the a% variable

lies in the program as follows:

Byte number

1

2

3

4

Value

1

0

0

37

Definition

Variable number follows

High byte of variable number

Low byte of variable number

ASCII code of % character

The above table shows you that the first variable is assigned the num

ber zero.

Unfortunately, the variables in AmigaBASIC aren't as simple as all

that. The order of the variables in the variable table is the order in

which you first typed them in. To see this bug in action, do the fol

lowing:

Load AmigaBASIC.

Enter the following:

The.big. error%=0

Blahblahblah%=The. error%

193

6. AmigaBASIC internals Amiga Tricks and Tips

Label

handling

Hello%«0

Change Blahblahblah% to read:

Blahblahblah%=The.big.error%

• Save the program in binary form, and look at it with the file

monitor.

The program itself no longer contains the error% variable. However,

the variable table still has this variable. If you write a long program and

mistype some variable names, or change a few names, you're still stuck

with the original errors/variable names in the variable table, whether

you use them or not. Your program could end up several kilobytes

longer than you need, and execution time suffers as well.

See Section 6.3.6 for a solution to this problem.

Another bug in AmigaBASIC is the fact that all SUB programs, their

calls and all operating system routines called by library and/or

DECLARE FUNCTION are set up as variables—in the table and the pro

gram text. AmigaBASIC can only recognize these names in complete

syntax checking as functions or SUB extensions. This makes no

difference to the BASIC interpreter, which goes through a complete

check of the program before starting it This means that some delay can

occur between a program loading and eventually starting.

Labels are similar to variables. The developers of AmigaBASIC had

some problems dealing with long label names. The solution is as

follows: Labels are treated as special variables—different from other

variables in that they are used for program branching.

This means that labels are sorted out in the variable table like a normal

variable. Now the BASIC interpreter must be able to recognize a label,

since no memory is set aside for labels. A special token ($02) marks

labels in program code. When the interpreter encounters a $02, the

number immediately following is the high byte/low byte number of a

label. For example:

Byte number

1

2

3

Value

2

XX

XX

Definition

Label number follows

High byte of label number

Low byte of label number

Label

branching

If the interpreter finds $02 $00 $09 in the program, it knows that there

is a label here whose name is at the tenth place in the variable table

(this table begins its numbering at 0).

You can jump to any label you want, especially useless ones like

REMarks. This section talks about GOTO and labels, but the same

applies to GOSUB.

194

Abacus 6.2 AmigaBASIC file structure

Example: GOTO division

Let's assume that division stands at the third place in the variable

table. The interpreter finds the following in the program:

Byte number

1

2

3

4

5

6

Value

151

32

3

0

0

2

Definition

Token for GOTO (see Appendices)

Space

Token=label that should be branched to

Always 0

High byte of number in variable table

Low bvte ofnumber

YouVe just learned a new token—$03. The interpreter looks for a $02-

$00-$02 and continues program execution at that point

Line number branches are very different from label branches. The reason

Line number is that line numbers aren't stored in the variable table. A new token is
branching requited:

Example: goto ioooo

Values in

Amiga

BASIC

Byte number

1

2

3

4

5

6

Value

151

32

14

0

39

16

Definition

Token for GOTO (see Appendices)

Space

Token=branch to following line number

Always 0

High byte of line number (39*256)

Low byte of line number (+16=10000)

The $0E token means that in all lines containing header bytes of $80,

bytes 4 and 5 must be compared with bytes 5 and 6 to find the branch

line.

AmigaBASIC has another big difference from other versions of BASIC:
AmigaBASIC uses its own methods of handling values in its program

codes. For example, take a simple variable assignment like the one

listed below:

Amiga-l

The item of interest here is the way the "1" is stored in the program.

Unlike the methods used in other BASIC dialects, in which numbers are
converted to their ASCII equivalents, which takes time during program

execution, AmigaBASIC stores numbers and values in the necessary

format. For every format (e.g., floating-point or octal), a new token

must exist. Let's go through this process step by step.

The process used to differentiate the format selection is a stupid one; it's
not dependent upon the needs of the variable. Look at the above ex
ample. It goes without saying that the number 1 would be handled as an

195

6. AmigaBASIC internals Amiga Tricks and Tips

integer. The next important fact is that the number is a single-digit
number. When it comes down to the leading character of the number
(positive or negative), the following occurs:

Positive integers from 0 to 9 go into the program without tokens. The
ASCII code is unused. Direct storage in memory is impossible, since
die numbers can be interpreted as other values (e.g., "0" means end-of-
line and "1" means "Variable number"). The values are coded as
follows:

Hex

$11

$12

$13

$19
$1A

Dec

17

18

19

*25
26

Value (decimal)

0

1

2

8

9

When the interpreter finds a byte between 17 and 26, it replaces the
value 17 with the proper value.

Now take a look at positive integer values between 10 and 255. One

byte is enough for storing these numbers. Again, a token is required so
that the interpreter cannot mistake the number for a command token or
other token. The format is:

Byte number

1

2

Value

15

XX

Definition

A positive integer from 10 to 255 follows

Value between 10 and 255

Integer values can also be larger than 255, and positive or negative.
These numbers use this format:

Byte number

1

2

3

Value

28

XX

XX

Definition

A 2-byte integer with leading character follows

High byte (bit 7=leading character bit)

Low byte

Integers larger than 32767 are represented in long-integer format:

Byte number

1

2-5

Value

30

XX

Definition

A 4-byte integer with leading character follows

4-byte integer (bit 7 in byte 2=leading char
acter bit)

If the value should be handled as a floating-point number, use the fol
lowing format:

Byte number

1

2-5

Value

29

XX

Definition

A 4-byte floating-point number follows

4-byte floating-point (7-place accuracy)

196

Abacus 6.2 AmigaBASIC file structure

Double-length floating-point numbers:

Byte number

1

2-9

Value

31

XX

Definition

An 8-byte floating-point number follows

8-bvte floating-point (16-place accuracy)

The Amiga has ways to recognize and fix incorrect numerical notation.

Notation Enter the following into a program from AmigaBASIC:

a«&hff

When you exit the line, die Amiga corrects the error

a«&HFF

Tokens help the Amiga recognize the number system used:

Byte number

1

2

3

Value

12

XX

XX

Definition

Hexadecimal number follows

High byte

Low byte

Then there are the larger octal numbers like &O123456. These must be

converted into 2-byte format:

Byte number

1

2 + 3

Value

11

XX

Definition

Octal number follows

Octal number (accuracy to 6 places)

Assigning values to strings has one major change from the other vari
ables: Strings are stored in ASCII. To save memory, no new memory

is set aside for a direct value assignment. The pointer is set in the pro

gram to the starting address of the string.

For example, type this in AmigaBASIC and run it:

b$="These lines I am a'changing."

FOR i»l TO LEN(b$)

POKE SADD(a$)+i-l^SC(MID$(b$,i,l))

NEXT

LIST

SADD may be an unfamiliar command to you. It returns the starting

address of the string contained in a variable (in this case a$).

After you run this program, compare the listing above with the pro

gram you entered and ran. It looks like this:

a$="These lines I am afchanging."

b$="These lines I am a'changing."

197

6. AMIGABASIC INTERNALS Amiga Tricks and j^

FOR i=l TO LEN(b$)

POKE SADD(a$)+i-l^SC(MID$(b$,i,l))
NEXT

LIST

You can see from this little example lots of potential for self-modifying
programs. For example, you could put the name of a window in a$.
The user could enter a new name while the program runs. The program
then pokes the name into the system and saves the altered program to
diskette.

r/>™*»„*.* Command tokens (characters having ASCII codes higher than 127) have
c ommana their own peculiarities that you should know about. These tokens are
toKens stored by AmigaBASIC as single- or double-character codes. They repre

sent direct commands, but require less memory than if the Amiga stored
commands by their foil names.

$8E (ELSE) never happens in program code by itself. The interpreter
can only determine the end of a command when it either finds code $ 0 0
(end-of-line) or code $3A (colon). If the interpreter finds IF and then
without an ELSE, then IF/THEN are handled by the inteipreter as one
command. If ELSE follows, you can see that the BASIC interpreter
adds a colon before the $8E (you can't see this colon when you call
LIST). If you put your own colons in preceding the ELSEs in your
programs, the file monitor shows two colons. The colon originally
added by the interpreter itself is invisible to LIST.

REMarks cause a similar problem—the interpreter adds a colon. This is
strange, since it happens even when REM is the only command in the
line. A line can look like this:

f*i.*

Its structure can look like this:

100 0E 00|3A|AF E8J

Header I :I ' I
AF E8| 20 2A 20 31 2E 20 2A lOO

1 . * tend

Another strange thing happens when you create a program and use the
token $BE for the WHILE command. Under certain circumstances, the
Amiga stops the program and returns ERROR 22 (Missing operand). If
you write a program in AmigaBASIC, once in a while the interpreter
places an $EC after the visible single-byte token $BE.

198

Abacus 6.2 AmigaBASIC file structure

There is one token that you can't list and you almost never use. You

Important: know that you can only call SUB routines directly through THEN or
ELSE with the CALL command You can use BASIC commands as

well as SUB programs. The SUB program has one purpose alone: It

allows the programming of command extensions in BASIC. Those who

know this never use the CALL command, aside from calling operating

system routines. Instead they use this token. Unlike CALL, this token

goes after the pointers to the variable table. The token is the double

token $F8-$D1.

In closing, a few words about the DATA command. DATA statements

are placed in ASCII text, like the data following a REMark. This data

can be read into variables, and can be of any type:

DATA &hffe2,123,&06666

Why were the SUB programs implemented in AmigaBASIC? The first

SUB reason is that they allow modular programming. Also, SUB programs

programs allow the retention of variable names, even when programs are com

bined through CHAIN and MERGE. Any of these variables can be shared

with other routines by stating the names with STATIC.

It's a good move to edit each and every SUB program separately, store

them as ASCII files, and combine the SUBs with the BASIC program

currently in memory using MERGE in direct mode or program mode (the

syntax check takes up a lot of time). The call convention (e.g., which

operating system routines must be declared as functions, etc.) should be

declared and archived with a file manager. The second point of interest

was that unlike earlier computers with incomplete command sets, SUB

programs allow extension of the command set:

PRINTAT 10,20,"Sample text"

SUB PRINTAT (x,y,Text$) STATIC

LOCATE y,x

PRINT Text$

END SUB

The third point is the pressure on the programmer to learn Pascal or

another language. Why learn more complex languages, when BASIC

can do it just as well and just as fast? Unlike Pascal, SUB programs

cannot call themselves. However, a command can be called multiple
times, with the help of a label at the beginning of a routine made up of

SUB programs.

Programs handle SUB routines like variables. Only in this way does the

Amiga recognize these routines.

199

6. AmigaBASIC internals
Amiga Tricks and Tips

Important
details

Other tokens

What would the make-believe manipulation program do when it en
counters the code sequence $20-$F8-$8F-$20? Turn to the token
list in the Appendix. The code stands for the $F8 double token END,
placed between two spaces. The program hasn't ended, though. What
about this $F8-$BE? That's the double code for SUB. You see, a token
by itself can cause trouble. First the connection in which the token is
compared to other tokens sets the type of execution. This also goes for
PRINT# and ?#—the token numbers are the same.

No time has been spent discussing tokens below 128. These tokens are
used, though. There are occasions when you try saving an edited pro
gram in direct mode when the Amiga displays an error requester instead.
Apparently the Amiga gets stuck in the error checking routine, and
keeps registering an error. Clicking on the OK gadget eventually gets
you past the error, but you may have to click it a few times over.

A simple program check can change commands around. An occasional
gap in the token list can control the program. For example, $8, which
acts as the branch offset of the IF/then construction that may not be
in the same place in another program. In order to make life with mani
pulation programs as simple as possible, try to follow these ground
rules:

1) Manipulation programs or programs for reading data from other
programs which require binary file format should:

allow storage of the modified file as an ASCII file.

allow you to save the file back in binary file format after
loading.

2) ASCn files require no special treatment, as long as the program
control codes aren't saved as well.

200

Abacus 63 Utility programs

6,3 Utility programs

The following section presents programs that let you change Amiga-

BASIC program code.

6.3.1 DATA generator

This program demonstrates how you can create a program from an

AmigaBASIC program saved in ASCII format.

A good program should allow you to type it in direct from a magazine.
But what if this program has sprites, bobs, machine language or some

thing similar? Then a DATA generator is necessary. This program

makes DATA statements out of any program. The ASCII file created can

be appended to a program using MERGE.

To keep the DATA list short, the statements are displayed in hexa

decimal notation. You may recognize the reader routine from the
AmigaBASIC manual program for converting hex to decimal numbers.

The reverse routine can be found anywhere, although it's not standard to

AmigaBASIC. Just type:

stuff: DATA fffec,O,l,f
RESTORE stuff :FOR i-1 TO 5:READ a$:x(i)»VAL("&H"+a$) :NEXT

Now for the listing:

GOTO Start!

######################################5
♦ DATA-GENERATOR AMIGA #!

(W) 1987 by Stefan Maelger #!

######################################^1

!
"dos.bmap" and "exec.bmap" mast be on!

Disk or in LIBS: !!

Declare System Routines and Functions!

Start: !

DECLARE FUNCTION xOpen& LIBRARY!

DECLARE FUNCTION xRead% LIBRARY!

DECLARE FUNCTION AllocMem* LIBRARY!

DECLARE FUNCTION Examine* LIBRARY!

DECLARE FUNCTION Lock* LIBRARY!

201

6. AMIGABASIC INTERNALS Amiga Tricks and Jm

1 Open Libraries!

1 !

LIBRARY "exec.library"5

LIBRARY "dos.library"5

1 Input!

f!

sourcefile:!

CLS!

LINE INPUT "Name of Source-File: ";source$!
PRINTS

PRINT "Insert Diskette and Press <RETURN>"!
WHILE A$<>CHR$(13)!

A$=»INKEY$!

WEND!

LOCATE 3,1:PRINT "Checking File...

CHDIR "dfO:"!

CheckFile source$,Bytes&!

!

IF Bytes&=0 THEN!

LOCATE 3,1:PRINT "File not found.. .":BEEP!

A»TIMER+3 :WHILE A>TIMER:WEND!

GOTO sourcefilefl

ELSEIF Bytes&=-1 THEN!

LOCATE 3,1:PRINT "I can't find the Directory..."!

BEEP :A=TIMER+3:WHILE A>TIMER:WEND!

GOTO sourcefile!

END IF!

LOCATE 3,1:PRINT "File Found. Length="3ytes&;" Byte"!
' ""■■-■■-——i.-... -i —— ... — — -.■._..._.i __ flf

1 Setup Buffer!

f!

PublicRAM&=65537&!

Buffer&=AllocMem& (Bytes&^>ublicR7VM&)!

IF Buffer&=0 THEN!

LOCATE 5,1:PRINT "Not enough memory."!

LOCATE 7,1!

PRINT "Program can re-started with RUN."!

BEEP :END!

END IF!

Load File in Buffer!

!

source$«source$+CHR$(0)!

Qpened&=xppen& (SADD (source$) ,1005)!

IF Opened&-0 THEN!

LOCATE 5,1:PRINT "I can not open the File!"!

BEEP :A«TIMER+3:WHILE A>TIMER:WEND!

GOTO sourcefile!

END IF!

sofar%=xRead% (ppened&rBuffer&^ytes&)!

CALL xClose(Opened&)!

Input Target-File!

202

Abacus 63 Utility programs

targetfile: *

LOCATE 9,1:PRINT "Name of BASIC-ASCII-Filelffl

H

FOR i=ll TO 17 STEP 21

LOCATE i,l:PRINT SPACE(80)

NEXTfl

LOCATE 11,1:LINE INPUT "to be produced: ";target$fl

LOCATE 13,1:PRINT "Insert Target-Disk and Press

A$="" :WHILE A$<>CHR$ (13) :A$»INKEY$:WENDH

CHDIR "dfO:"fl

LOCATE 15,1:PRINT "Checking Disk..."5

CheckFile target$,exist&H

IF exist&=-l THEM

LOCATE 15,1:PRINT "This is the Name of a Directory!

totop :A"<TIMER+3:WHILE A>TIMER:WENDfl

GOTO targetfilefl

ELSEIF exist&OO THENfl

LOCATE 15,1:PRINT "A File with that name already"

LOCATE 17,1:PRINT "exists! Replace File? /

pause: 31

A$=INKEY$:IF A$O"" THEN A$=UCASE$ (A$) 5

IF A$="Y" GOTO continued

IF A$O"N" GOTO paused

GOTO targetfileU

END IFH

continue:5

Produce DATA-ASCII-File5

LOCATE 19,1:PRINT "Producing ASCII-File."5

LOCATE 21,1-.PRINT "Please be Patient...Mfl

OPEN target^ FOR OUTPDT AS H

Numberfr=OH

PRINT*1,"RESTORE datas";CHR$ (10) ;fl

PRINT#l,"datastring$-";CHR$ (34) ;CHR$ (34) ;CHR$ (10) ;5

PRINT#1,"FOR i«l TO ";STR$ (Bytes&);CHR$ (10) ;fl

PRINT*1,"READ a$";CHR$ (10);%

PRINT#l,"a$=";CHR$ (34) ;"&H";CHR$ (34) ;"+a$";CHR$ (10) ;I
PRINT#l,"datastring$»datastring$+CHR$ (YAL(a$)) ";fl

PRINT#l,CHR$(10);i

PRINT#1,"NEXT";CHR$ (10) ;f

PRINT#l,"datas: ";CHR$ (10); H

pH

PRINT#1,"DATA Mfl

BCount«0^I

Value: %
PRINT#1,HEX$ (PEEK (Buffer&+Number&)) ;

BCount«BCount+l :Number&»Number&+l%

IF Number&<Bytes& THEN5

IF BCount<20 THEN t

PRINT*1,",";1I

GOTO Valued

203

6. AmigaBASIC internals Amiga Tricks and Tn>s

ELSEfl

PRINT#l,CHR$(10);fl

GOTO Loopfl

END IFfl

END IFfl

PRINT#1, CHR$ (10) ;CHR$ (10) ;I

CLOSE 1H

1 Alter -info-filefl

SAVE "DATA-GENINFO"H

tmp$«target$+" .info"H

KILL tmp$fl

NAME "DATA-GENINFO.info" AS target$+". info"fl
KILL "DATA-GENINFO"H

CLSfl

PRINT "finished."fl

CALL FreeMem(Buffers fBytes&) fl

EN5

1 SOBRODTINEH

f5

SUB CheckFile(Filename$,Lengths) STATIC^

ChipRAM&»65538&^[

InfoBytes&=252fl

Info&«=AllocMem& (InfoBytes&f ChipRAMfi) 1
IF Info&-0 THEN ERRCSl If

File$=Filename$+CHR$ (0) 5

5

DosLock&=Lock&(SADD(File$),-2)5

IF DosLock&«0 THEN?

ELSE5

Dummy&=Examine& (DosLock&f Info&) 5

Length&«PEEKL (Info&+4) fl

IF Length&>0 THEN 5

ELSE5

Length&=PEEKL(Info&+124) 5
END IFfl

END IF5

CALL UnLock(DosLock&)I

CALL FreeMem (Info&fInfoBytes&) 5
END SUB^I

Variables a string, help variable
AllocMem EXEC routine; reserves memory
Buffer -JJ *

Bytes _._B> _„«... ^.^^

CheckFile SUB routine; testefoTfile availability: if yes, then it
«.• »*» checks fordirectoryjifnot, it checks for length
ChipRAM option for AllocMem; 2^16 (65536)=clear range

2Al(2)=chip RAM range
DosLock file handle for Checkfile routine

204

Abacus 63 Utility programs

Dummy

Examine

File

Filename

FreeMem

Info

InfoBytes

Length

Lock

Opened

PublicRAM

UnLock

Number&

sofar&

i

source

target

exists

Tmp

xClose

xOpen

xRead

BCount

unused variable

DOS routine; looks for file

filename with concluding 0 for DOS

name of file being edited

EXEC routine; frees memory range

address of file info structure

length of file info structure

file length

DOS routine; blocks access from other programs and

provides handle

address of file handle for source file

option for AllocMem; 2A16 (65536)=clear range,

2Al(2)=public range

DOS routine; releases Lock

counter for DATA values written

number of bytes read so far

loop variable

source file

target file in ASCII format for DATA

flagrdoes file exist?

help variable - temporary file

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

byte counter for a line of DATA

6.3.2 Cross-reference list

This program demonstrates a method of reading values from Amiga-

BASIC programs stored in binary format. Before doing this, the
program you wish to read must have its onboard program control codes
removed, as well as any program "garbage" that can occur between the
program body and the variable table. Do the following to clean up the

program code:

Load the file you want to check

SAVE "Filename",A

Quit AmigaBASIC

Reload AmigaBASIC

• LOAD "Filename"

SAVE "Filename",B

205

6. AmigaBASIC internals Amiga Tricks and Tips

Once you do this, you can now send a cross-reference list of this pro
gram to a printer using the program below. It displays labels as well as

line numbers in the output. Places where branches are set (e.g., GOTO

place) are marked by "<- -". If a branch goes to a section of a pro

gram not set by a branch marker (e.g., the beginning of a program), a

pseudo label appears in parentheses (e.g., "(Program start)M). A"- ->"

marks the destination of the branch. Bear in mind that operating system

calls and SUB routines are viewed by the AmigaBASIC interpreter as

variables. Aside from that, this program is a great method of document
ing your programs.

######################################5
#Cros sReference Amiga #5

(W) 1987 by Stefan Maelger #5

######################################5
5

This program creates a Cross-Reference5

of a program on your Printer.5

It allows every BINARY format5

AmigaBASIC-Program to be documented. 5

How the AmigaBASIC programmer handled^

SUB-Routines and System calls is still5

not well known.5

5

Reserve Memory, load PrinterDriver, 5

-Open Library and Variables 5

CLEAR,45000&5

LPRINT5

DECLARE FUNCTION xppenfi LIBRARY5

DECLARE FUNCTION xRead% LIBRARY^

DECLARE FUNCTION Seek% LIBRARY^

LIBRARY "dos.library"5

DIM Cross$(5000),names$(1000) 5

5

LOCATE 2,25

PRINT CHR$(187);" Cross Reference Amiga ";CHR$(171)fl
LOCATE 5,25

PRINT "Name of the binary AmigaBASIC-Program: "5
LOCATE 7,25

LINE INPUT Filename$5

CHDIR "dfO:"5

5

BASICcheck Filename$,Result%5

5

LOCATE 10,25

IF Result%=-1 THEN5

PRINT "I can not find any Info-File."5
ELSEIF Result%=0 THEN5

PRINT "Read-Error!"5

ELSEIF Result%=l THEN5

PRINT "This is Not an AmigaBASIC-Program. "5
END IF5

206

Abacus 63 Utility programs

IF Result%O2 THENSI

BEEP5

WHILE INKEY$=""SI

WENDSI

RUNSI

END IFSI

PRINT CHR$ (34) ;Filename$;". info";CHR$ (34) SI

PRINT SI

PRINT " made with this Program as AmigaBASIC-File."SI

SI

OpenFile Filename$, handlesSI

SI

LOCATE 14,2SI

IF handle&=0 THENSI

PRINT "AAAaargh! I can't find ";CHR$(34) ;fl

PRINT Filename$;CHR$ (34) ; "!!! "SI

BEEPSI

WHILE INKEY$="":WEND:RUNSI

ELSESI

PRINT "File opened."5

END IF!

LOCATE 16r2SI

HeaderCheck handle*,Header$H

SI

IF ASC(Header$)O&HF5 THENSI

PRINT "Sorry, I can only Cross-Refeience binary-Files"SI

BEEPSI

WHILE INKEY$="":WEND:RUNSI

ELSESI

PRINT "File has binary Format"SI

PRINT :PRINT "Please be patient. ";SI

PRINT "1*11 report on my status.. ."SI

END IFSI

pointer%ss-lSI

SI

main:SI

SI
GetLine handle*, Current$SI

SI

IF LEN(Current$)<4 THENSI

PRINT SI

PRINT " Reached the end of Binary-Codes"SI

PRINT :PRINT " getting Variable Table."SI

GOTO VartabSI

END IFSI

IF ASC(Current$)=128 THENSI

pointer%=pointer%+lSI

Cross$ (pointer%)«=CHR$ (128) +MID$ (Current$, 4,2) SI

Current$»MID$ (Current$f 6) SI

ELSESI

Current$=MID$ (Current$f 4) SI

END IFSI

SI

GetToken:SI

SI

207

6. AmigaBASIC internals Amiga Tricks and Tips

Token%-ASC (Current$+CHR$ (0)) !

IF Token%=0 GOTO main!

!

1 -Command Token? !

IF Token%>127 THEN!

IF Token%«175 OR Token%«141 GOTO main!

IF Token%=190 OR Token%>247 THEN!

Current$«MID$ (Current$, 3) !

ELSE!

Current$«MID$ (Current$, 2) !

END IF!

GOTO GetToken!

END IF!

!

. string? !

IF Token%«34 THEN!

Byte%«INSTR(2,Current$f CHR$ (34))!

IF Byte%-0 GOTO main!

Current$«MID$(Current$fByte%+1)!

GOTO GetToken!

END IF!

!

1 2-Byte-Value Sequence? !

IF Token%=l OR Token%=ll OR Token%-12 OR Token%=28 THEN!

Current$=MID$(Current$f 4)!

GOTO GetToken!

END IF!

!

1 1-Byte-Value Sequence? !

IF Token%=15 THEN Current$»MID$(Current$f3):GOTO
GetToken!

!

1 4-Byte-Value Sequence? !

IF Token%»29 OR Token%«30 THEN!

Current$»MID$ (Current$, 6)!

GOTO GetToken!

END IF!

!

t 8-Byte-Value Sequence? !

IF Token%=31 THEN Current$-MID$ (Current$, 10) :GOTO

GetToken!

!

1 Is it a Label? !

IF Token%=2 THEN!

pointer%=pointer%+l!

Cross$ (pointer%) =IEFT$ (Current$f 3)!

Current$=WID$ (Current$, 4)!

GOTO GetToken!

END IF!

!

1 Is it a Branch Statement? !

IF Token%«3 OR Token%«14 THEN!

pointer%«pointer%+l!

Cross$ (pointer%) «CHR$ (Token%) +MID$ (Current$, 3,2)!

Current$=MID$(Current$f 5)!

GOTO GetToken!

208

Abacus 63 Utility programs

END IFU

Current$-MID$(Current$,2)fl

GOTO GetTokenfl

Vartab: 1

11

p2%—1H

notforever:^

GetLength handles,bytes%II

IF bytes%-0 GOTO GoOnf

GetName handles, Current$fbytes%H

names$ (p2%) -Current$fl

GOTO notforeverfl

IF pointer%«-l THEN5

PRINT 5

PRINT "I have no Label or Line Nurober"fl

PRINT $

PRINT "that I can discover! "tf

WHILE INKEY$="":WEND:RUNfl

ELSEIF p2%»-l THENn

PRINT f

PRINT "Hmm - no Variable Table"

EEEPH

WHILE INKEY$="":WEND:RUNfl

ELSE %

PRINT -.PRINT " Getting Data."^

END

LPRINT ">» CrossReference Amiga

LPRINT " "^
LPRINT "Program: ";Filename$fl

LPRINT^I

FOR i-0 TO pointer%5

ascii%«ASC(Cross$(i)) 5

IF ascii%=2 THEN5I

LPRINT names$(CVI(MID$(Cross$(i),2)));":"H

FOR j=0 TO pointer%1I

IF ASC(Cross$(j))=3 THEOT

IF CVI (MID$ (Cross$ (j), 2)) =CVI (MID$ (Cross$ (i), 2))

THENH

WHILE

k-k-m

IF k>-l THEN!

IF ASC (Cross$ (k)) =2 THENfl

LPRINT " <— ";1I

209

6. AMIGABASIC INTERNALS Amiga Tricks and Tm

LPRINT names$ (CVI (MID$ (Cross$ (k), 2))) 5
k—25

ELSEIF ASC(Cross$(k))-128 THEN5

LPRINT " <— ";CVI(MID$(Cross$(k),2))5
k—25

END IF5

END IF5

WEND 5

IF k—1 THEN LPRINT " <— (Program-Start) "5
END IF5

END IF5

NEXT j5

ELSEIF ascii%=3 THEN5

LPRINT « —> ";names$(CVI(MID$(Cross$(i),2)))5
ELSEIF ascii%«14 THEN5

LPRINT " —> ";CVI(MID$(Cross$(i)f2))5
ELSEIF ascii%-128 THENfl

LPRINT CVI(MID$(Cross$(i),2))5

FOR j»0 TO pointer%5

IF ASC(Cross$(j))-14 THEN5

IF CVI (MID$ (Cross$ (j), 2)) -CVI (MID$ (Cross$ (i), 2))
THEN!

j

WHILE

k-k-15

IF k>-l THEN5

IF ASC (Cross$ (k)) -2 THEN5

LPRINT " <— «;5

LPRINT names$ (CVI (MID$ (Cross$ (k), 2))) 5
k=-2fl

ELSEIF ASC(Cross$(k))-128 THEN5

LPRINT » <— ";CVI(MID$(Cross$(k),2))fl
k=25

END

END IFI

WEND 5

IF k—1 THEN LPRINT " <—(Progranim-Start)
END IFfl

END IF5

NEXT jl

END IFfl

NEXT 15

PRINT :PRINT "Finished. "5
BEEP5

WHILE INKEY$="»:WEND:RUN5
5

SUB GetName (handles,Current$,bytes%) STATIC5
Current$=SPACE$ (bytes%) 5

Length%=xRead% (handles, SADD (Current$) ,bytes%) 5
END SUB5

5

SUB GetLength(handles,bytes%) STATIC5
Current$=CHR$ (0)5

readit: 5

Length%-xRead% (handles, SADD (Current$), 1) 5
IF Length%«0 THEN5

210

Abacus 63 Utility programs

CALL xClose (handles) fl

bytes%«Ofl

EXIT SUM

END IFfl

bytes%«ASC(Current$)fl

IF bytes%=0 THEN readitfl

IF bytes%>60 THEN readitfl

END

SUB GetLine (handle*, Current$) STATICU

Current$-STRING$ (3,0) II

Length%~xRead% (handles, SADD (Current$), 3) 5

01dPos%-Seek%(handles,-3,0)5

LoL%»ASC(MID$(Current$f 2 f1))1

IF LoL%™0 THEN5

EXIT SUB5

ELSE1

Current$=STRING$ (LoL%, 0) 5

Length%=xRead% (handles, SADD (Current$),LoL%) 1

END

END

SUB HeaderCheck(handles,Header$) STATIC^

Header$=ffi"SI

01dPos%«Seek% (handles, 0, -1) 5

gotit%«xRead% (handles, SADD (Header$), 1) <fl

END SUB^I

SUB OpenFile(Filename$,handles) STATIC^

file$-Filename$+CHR$(0)5

handlefi-xOpenS(SADD(file$),1005) fl

END SUB1

SUB EASICcheck(Filename$,Result%) STATIC^

file$*Filenaine$+lf .info"+CHR$ (0) 5

Default. Tool$-SPACE$ (20) 5

handle&=xppen& (SADD (file$), 1005) 5

IF handle$=0 THENU

ELSE51

01dPos%=Seek%(handles,-20r1)5

gotit%-xRead%(handles,SADD(Default.Tool$)r20)t

IF gotit%<20 THEOT

ELSE1

IF INSTR(Default.Tool$,"AmigaBASIC")>0 THEOT

ELSEH

END

END

CALL xClose(handles)I

END in

END SUB'S

211

6. AmigaBASIC internals Amiga Tricks and Tips

Variables basiccheck

Byte

Bytes

Cross

Current

Default.Tool

Filename

GetLength

GetLine

GetName

Header

HeaderCheck

Length

LoL

OldPos

OpenFile

Result

Seek

Token

ascii

File

gotit

handle

i

j
k

names

P2

pointer

xClose

xOpen

xRead

SUB routine; test for Default Tools

pointer to byte in string

length of file being edited

string array; buffer for branch markers andjumps

string; BASIC line read

string; reads Default Tool

string; name of file to be edited

SUB routine; reads label length

SUB routine; reads line

SUB routine; reads label name

string; file header byte

SUB routine; checks for header type

file length

line length

old pointer position in file

SUB routine; opens file

flag; result of search

DOS routine; moves read/write pointer in file

address of file handle for source file

code value in Cross $

string; filename ended with 0 for DOS routines

bytes read so far

file handle address

loop variable

loop variable

loop variable

string array; branch marker names

help variable

help variable

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

6.3.3 Blank line killer

Now that you know how to make blank lines, you should know how to
get rid of them. The following program removes these lines for you.
Before using this program, any control codes and garbage must be re
moved (see the preceding section for instructions on doing this).

212

Abacus 63 Utility programs

Note:
When you type in this program, you could create small errors that can

ruin the programs being modified. Use copies of the program you want

to modify only, and test the main program with these copies to make

sure that it runs properly. This program alters the file and saves it out

again. The current window closes to save memory. If there are small

errors in the line killer program, such as an endless loop, you won't be

able to recover the program. If the program seems as if it's taking a

while at first, don't panic—the time factor depends on the file being
modified.

#####################################M

Blank Line-Killer Amiga #fl
n

(W) 1987 by Stefan Maelger #fl
######################################^1

"dos.bmap" and "exec.bmap" must be onfl

Disk or in LIBS:fl

DECLARE FUNCTION AllocMem* LIBRARY^

DECLARE FUNCTION Lock* LIBRARY^

DECLARE FUNCTION Examines LIBRARY^

DECLARE FUNCTION xOpen* LIBRARY^

DECLARE FUNCTION xReadfi LIBRARY^

DECLARE FUNCTION xWritefi LIBRARY^

LIBRARY "exec.library"H

LIBRARY "dos.library"5

WINDOW CLOSE WINDOW (0)5

WINDOW 1,"Blank Line-Killer",(0,0)-(250,50),

Allocations: 5

COLOR 3,l:CLSfl

info&=AllocMem& (252&,65538&)5

IF info&=0 THENfl

ALLOCERR f

GOTO Allocation.If

END IF 5

Source: 5

REQUEST "SOURCE"5

SELECT box%5

IF box% THE^ CALL FreeMem(info&,252) :SYSTEMS

CHDIR "dfO:"5

GetFilename: 5

LINPUT Filename$5

GETINFO Filename$finfo&fLength&5

IF Length&<l THEN5

IF Lengths—1 THEM

DIRERR5

ELSEIF Length&=0 THEN5

FILEERR5

END IF5

GOTO GetFilenamefl

END IF5

Allocation.2:5

COLOR 3,1:CLS 5

buffer&=AllocMem&(Lengths,65537&)5

213

6. AmigaBASIC internals Amiga Tricks and Tips

IF bufferS-0 THENfl

ALLOCEPRH

GOTO Allocation.25

END IFfl

LOADFILE Filoname$fbuffers,LengthsH

IF Filename$«fl11 THEM

CALL FreeMem (buffers, Lengths) II

LOADERRfl

GOTO GetFilenamel

END IFfl

IF PEEK (buffers)OSHF5 THENfl

CALL FreeMem(buffers,Lengths) 5

FORMERRfl

GOTO GetFilenamefl

END IFfl

NEWFILE Filename$,handled

IF handleS«O THENfl

CALL FreeMem (buffers,Lengths)^

CALL FreeMem (infoS,252S)fl

OPENEBR^I

SYSTEMS

END IF5

BytesS»H

DWRITE handles,bufferS,BytesS5

IF BytesS=O THEN5

CALL xClose(handles)fl

CALL FreeMem (buffers, Lengths) 1

CALL FreeMem(info&,252SH

WRITEERR^I

SYSTEM

END IFI

pointerS=bufferS+lH

GetLength:^

BytesS=PEEK (pointerS+1)H

IF BytesS=4 THEM

pointerS=pointerS+45

GOTO GetLengtM

ELSEIF BytesS>4 THEM

DWRITE handles,pointers,BytesSfl

IF BytesS-0 THEM

CALL xClose(handles)5

CALL FreeMem (buffers ^Lengths)fl

CALL FreeMem (infoS, 252s) 5

WRITEERR5

SYSTEM^

END IFfl

pointerS«pointerS+BytesS5

GOTO GetLength^

BytesS=LengthS- (pointers-bufferS+1) f

DWRITE handles,pointers,BytesSfl

IF BytesS=O THENf

CALL xClose(handles)H

CALL FreeMem (buffers, Lengths) f

CALL FreeMem(infoS,252S)fl

WRITEERRfl

214

Abacus 63 Utility programs

SYSTEM^

END IF5

END IFfl

CALL xClose(handles)1

CALL FreeMem(buffers,Lengths) 51

CALL FreeMem(info&,252&)fl

LIBRARY CLOSER

COLOR 3,l:CLS:L0CATE 2,2:PRINT "Ready."fl

WHILE INKEY$»"":WENDH

SYSTEMS

SUB WRITEERR STATIC^

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error."H

ShowContfl

END SOB H

SUB DWRITE (handles, adr&, Lengths) STATIC^

writtenS-xWriteS (handles, adrS, Lengths) fl

IF writtenSOLengthS THEN LengthS-Ofl

END SUB^I

SUB OPENERR STATIC^

COLOR 1,3:CLS:LOCATE 2/2:PRINT "ERROR: Can't open

File."5

ShowContfl

END SUB 1

SUB NEWFILE(Filename$,handles) STATIC^

File$»Filename$+CHR$ (0) f

handlefi-xOpenfi(SADD(File$),1005)5

END SUB f

SUB FORMERR STATIC^

COLC» lf3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary

File."^

ShowContfl

END SUB H

SUB LOADERR STATIC^

COLOR lf3:CLS:LOCATE 2r2:PRINT "ERROR: Load-error."fl

ShowCpnt^I

END SUB1

SUB LQADFILE(Filename$,buffers,Lengths) STATIC^

File$-Filename$+CHR$ (0)

:handleS=xOpenS(SADD(File$),1005)f

IF handle&«0 THEM

Filename$=fMlfl

ELSE f

inBuffer&=xRead& (handles,buffer*,Lengths) f

CALL xClose (handles) 5

IF inBuffer&OLengthS THEN Filename$~""fl

END

END

SUB FILEERR STATIC^

COLC» lf3:CLS:L0CATE 2r2:PRINT "ERROR: File not

found. "H

ShowCont^I

END SUB f

SUB DIRERR STATIC^

COLOR lf3:CLS:LOCATE 2,25

PRINT "ERROR: File is a Directory. "H

ShowContfl

215

6. AmigaBASIC internals Amiga Tricks and Tips

END SUB!

SUB GETINFO(Filename$,in£o&,Length&) STATIC!

File$-Filename$+CHR$ (0) :DosLock&-Lock& (SADD (File$), -

2)11

IF DosLock&«0 THEN !

Length&»0!

ELSE!

Dummy&=Examine& (DosLock&,info&) !

IF PEEKL(info&+4)>0 THEN!

Lengths—1!

ELSE!

Length&-PEEKL(info&+124) !

END IF!

END IF!

CALL Unlock (DosLockfi) !

END SUB!

SUB LINPUT(Filename$) STATIC!

COLOR 3,1:CLS:WINDOW 2, "Filename:", (0f0)- (250,10), Of

WINDOW OUTPUT 1:LOCATE 5,21

PRINT "Name of a binary saved File"; f

LINE INPUT Filename$:WINDOW CLOSE 21

END SUB1

SUB SELECT(box%) STATIC1

Check: 1

WHILE MOUSE(0)-0:WEND:x«MOUSE(l) :y*-MOUSE(2) 1

IF y>27 AND y<43 THEN1

IF x>9 AND x<38 THEN box%=0:EXIT SUB!

IF x>177 AND x<238 THEN box%=-l:EXIT SUB!

END IF!

GOTO Check!

END SUB!

SUB ALLOCERR STATIC!

COLOR 1,3 :CLS: LOCATE 2,2:PRINT "ERROR: Allocation

denied."!

ShowCont!

END SUB!

SUB ShowCont STATIC!

LOCATE 4f2:PRINT "Press SPACE to continue,"!

LOCATE 5f7:PRINT "ESCAPE to exit.";!

WHILE a$<>CHR$(32) AND a$OCHR$(27)l

a$-INKEY$!

WEND!

IF a$«=CHR$(27) THEN SYSTEM!

END SUB!

SUB REQUEST (disk$) STATIC!

COLOR 3fl:CLS!

LOCATE 2,2:PRINT "INSERT ";disk$;" DISK INTO DRIVE"!

LOCATE 3,14:PRINT "DFO:":LOCATE 5f3:PRINT "OK";!

LOCATE 5,24:PRINT "CANCEL";:LINE(10f28)-(37f42),3,b!

LINE(178,28)-(237,42), 3,b!

END SUB!

Variables ALLOCERR SUB routine; memoiy reservation error

AllocMem EXEC routine; reserves memory

Bytes length of file being edited

DIERR SUB routine; error—no file

216

Abacus 63 Utility programs

DWRITE

DosLock

Dummy

Examine

FILEERR

FORMERR

File

Filename

FreeMem

GETINFO

LINPUT

LOADERR

LOADFILE

Length

Lock

NEWFILE

OPENERR

REQUEST

SELECT

ShowCont

UnLock

WRITEERR

a

adr

b

box

buffer

disk

handle

inBuffer

info

pointer

written

X

xClose

xOpen

xRead

xWrite

y

SUB routine; write to file

file handle ofLock

unused variable

DOS routine; looks for file

SUB routine; error

SUB routine; error

filename with concluding 0 for DOS

name of file being edited

EXEC routine; frees memory range

SUB routine; file check

SUB routine; input

SUB routine; error

SUB routine; load program

file length

DOS routine; blocks access from other programs and

provides nanaie

SUB routine; create new file

SUB routine; error

SUB routine; draw primitive requester

SUB routine; select through mouse click

SUB routine; show options

DOS routine; releases Lock

SUB routine; error

help variable

address

help variable

help variable

address ofreserved memory

diskette

address of file handle

bytes read

address of file info structure

help variable

bytes written

help variable

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

DOS routine; writes to file

help variable

6.3.4 REM killer

This program has a lot of the same code as the line killer in Section
6.3.3. Load that program, change the necessary text and save the new
program under a different name from the name you assigned in Section

6.3.3.

217

6. AmigaBASIC internals Amiga Tricks and Tips

######################################5

Kill-Remark Amiga #5

(W) 1987 by Stefan Maelger #5

########################*#############5

5

"dos.bmap" and "exec.bmap" must be on5

Disk or in LIB: 5

5

DECLARE FUNCTION AllocMemS LIBRARY5

DECLARE FUNCTION Lock& LIBRARY^

DECLARE FUNCTION Examines LIBRARY5

DECLARE FUNCTION xQpenS LIBRARY5

DECLARE FUNCTION xReadS LIBRARY5

LIBRARY "exec, library"I

LIBRARY "dos.library"fl
WINDOW CLOSE WINDOW(0)5

WINDOW 1,"Kill-Remark",(0,0)-(250,50),165

Allocation.1:5

COLOR 3,1:CLS5

info&=AllocMem& (252&,65538*)5

IF info&=0 THEN5

ALLOCERR 5

GOTO Allocation.15

END IF 5

Source: 5

REQUEST "SOURCE"5

SELECT box%5

IF box% THEN CALL FreeMem(info&,252) :SYSTEM5

CHDIR "dfO:"5

GetFilename: 5

LINPUT filename$5

GETINFO filename$, info&, Lengths5

IF Length&<l THEN5

IF Length&=-1 THEN5

DIRERR5

ELSEIF Length&-0 THEN5

FILEERR5

END IF5

GOTO GetFilename5

END IF5

Allocation.2:5

COLOR 3,1:CLS 5

buffer&=AllocMem& (Lengths,65537&) 5

IF buffer&«0 THEN5

ALL0CERR5

GOTO Allocation.25

END IF5

LOADFILE filename$,buffers,Length&5

IF filename$c="" THEN5

CALL FreeMem(buffers,Lengths) 5

LOADERR5

GOTO GetFilename5

END IF5

IF PEEK (buffers)OSHF5 THEN5

218

Abacus 63 Utility programs

CALL FreeMem(buffers,Lengths)5

FORMERR5

GOTO GetFilename5

END IF5

NEWFILE filename$5

BytesS=15

DWRITE buffers,BytesS5

pointers=bufferS+l5

GetLength:5

BytesS»PEEK(pointerS+1)5

IF BytesS»4 THEN5

pointerSBBpointerS+45

GOTO GetLength5

ELSEIF Bytes&>4 THEN5

IF PEEK (pointers)-128 THEN offsS«6 ELSE offsS=»45

IF PEEK(pointer&+offs&)0175

DWRITE pointers,Bytes&^

END IF 5

pointer&=pointer&+Bytes&5

GOTO GetLengthfl

IF ((pointer&-buffer&+l)MOD 2)-

pointer&=pointers-1^

END IFfl

Bytes&=Length&-(pointer&-buf£er&+l)+15

DWRITE pointers, Bytes&^

END IFfl

CLOSE 15

OPEN filename$+M-RL.info" FOR OUTPUT AS 15

OPEN filename$+".info" FOR INPUT AS 25

PRINT#lf INPUT$ (LOF (2) f 2) ;5

CLOSE 2,15

KILL filename$+fl-RL.info.info"5

5

CALL FreeMem(buffers,Lengths) 5

CALL FreeMem(infoS,252S)5

LIBRARY CL0SE5

COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."5

WHILE INKEY$-"":WEND5

SYSTEM5

SUB WRITEERR STATIC5

COLC^l 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error."5

ShowCont5

END SUB 5

SUB DWRITE(adrS,Lengths) STATIC5

FOR iS«l TO LengthS5

PRINT#1,CHR$(PEEK(adrS-1+iS));5

NEXT5

END SUB5

SUB OPENERR STATIC5

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open

File."5

ShowCont5

END SUB 5

SUB NEWFILE(filename$) STATIC5

File$=filename$+"-RL"5

219

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

OPEN File$ FOR OUTPUT AS 1 5

END SUB 5

SUB FORMERR STATIC5

COLOR l,3:CLS:L0CATE 2,2:PRINT "ERROR: Not a binary

File."5

ShowCont5

END SUB 5

SUB LOADERR STATIC5

COLOR lf3:CLS:LOCATE 2,2:PRINT "ERROR: Load-error."5

ShowCont5

END SUB5

SUB LQADFILE(filename$,buffers,Lengths) STATIC5

File$«filename$+CHR$ (0)

:handleS=xppenS (SADD (File$), 1005) 5

IF handleS»0 THEN5

filename$=""5

ELSE 5

inBufferS»xReadS (handles, buffers, Lengths) 5

CALL xClose (handles) 5

IF inBufferSOLengthS THEN filename$=""5

END IFfl

END SUB^l

SUB FILEERR STATIC^

COLOR lf3:CLS:LOCATE 2,2:PRINT "ERROR: File not

found."H

ShowCont^I

END SUB \

SUB DIRERR STATIC^

COLOR 1,3:CLS:LOCATE 2,25

PRINT "ERROR: File is a Directory."5

ShowContil

END SUBfl

SUB GETINFO(^161131116$,infos,Lengths) STATIC^

File$=filenaroe$+CHR$(0) :DosLockS«LockS(SADD(File$)t

IF DosLockS=0 THEN \

ELSEH

DummyS=ExamineS(DosLockS,infos)\

IF PEEKL(infoS+4)>0 THEN \

LengthS=-l \

ELSE \

LengthS»PEEKL (infoS+124) \

END IFH

END IF5

CALL UnLock(DosLockS)U

END SUB5

SUB LINPUT(filename$) STATIC^

COLOR 3,1:CLS:WINDCW 2f"Filename:",(0,0)-(250,10),

WINDOW OUTPUT l:L0CATE 5,25

PRINT "Name of a binary saved File";5

LINE INPUT filename$:WINDOW CLOSE 25

END SUB5

SUB SELECT(box%) STATIC5

Check: 5

WHILE MOUSE(0)=0:WEND:x=*10USE(l):y«MOUSE(2)5

220

Abacus 63 Utility programs

IF y>27 AND y<43 THENfl

IF x>9 AND x<38 THEN box%«0:EXIT

IF x>177 AND x<238 THEN box%—1:EXIT SUBfl

END IFfl

GOTO Checkfl

END SUBfl

SUB ALLOCERR STATIC^

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR:

denied."5

ShowContfl

END SUM

SOB ShowCont STATIC^

LOCATE 4,2:PRINT "Press SPACE to continue,"

LOCATE 5,7.-PRINT "ESCAPE to exit.";I

WHILE a$<>CHR$(32) AND a$<>CHR$ (27) fl

Allocation

WENDfl

IF a$=CHR$(27) THEN SYSTEMS!

END SUBfl

SUB REQUEST(disk$) STATIC^

COLOR 3,1:CLSH

LOCATE 2,2: PRINT "INSERT ";disk$;" DISK INTO DRIVE"^

LOCATE 3,14:PRINT "DFO:":LOCATE 5f3:PRINT "OK";1I

LOCATE 5,24:PRINT "CANCEL";:LINE(10f28)-(37f42),3,bH

LINE(178/28)-(237/42)f3/M

END

Variables allocerr

AllocMem

Bytes

DIERR

DWRITE

DosLock

Dummy

Examine

FILEERR

FORMERR

File

FreeMem

GETINFO

LINPUT

LOADERR

LOAD LE

Length

Lock

NEWFILE

OPENERR

REQUEST

SELECT

ShowCont

UnLock

WRITEERR

a

SUB routine; memory reservation error

EXEC routine; reserves memory

length of file being edited

SUB routine; error—no file

SUB routine; write to file

file handle ofLock

unused variable

DOS routine; looks for file

SUB routine; error

SUB routine; error

filename with concluding 0 for DOS

EXEC routine; frees memory range

SUB routine; file check

SUB routine; input

SUB routine; error

SUB routine; load program

file length

DOS routine; blocks access from other programs and

provides handle

SUB routine; create new file

SUB routine; error

SUB routine; draw primitive requester

SUB routine; select through mouse click

SUB routine; show options

DOS routine; releases Lock

SUB routine; error

help variable

221

6. AmigaBASIC internals Amiga Tricks and Tips

adr

b

box

buffer

disk

filename

handle

i

inBuffer

info

offs

pointer

written

X

xClose

xOpen

xRead

y

address

help variable

help variable

address ofreserved memory

diskette

name of file

address of file handle

help variable

bytes read

address of file info structure

offset

help variable

bytes written

help variable

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

help variable

6.3.5 Listing variables

You may look at a listing for an older BASIC program, and wonder

how you can solve any of its problems. Part of human nature lies in

doing no more work than necessary. You want to avoid detailed docu

mentation, and at the same time, keep from being buried in a stack of

program printouts.

Thanks to modular programming, you can store a collection of short

routines on diskette, and merge them into programs as needed. Docu

menting these short routines is indispensable. Also, many magazines

from which you get program listings usually supply detailed documen

tation.

The program here gives variable lists and label names. These items are

vital to documenting program code. For example, you could check out

the variable lists of two files before MERGEing one to the other. This

avoids any major rewrites on both programs for changing variables to

match/conflict. Bear in mind that the variable list program can view

SUB programs and operating system routines as variables, even if the

variable types are different. This kind of thing can occur in other aspects

of BASIC with DEFINT xxx (e.g., DEFINT a-c). For example, if

you use a variable named Anton$, this variable appears in the list

under Anton. If you want the program to ignore uppercase and lower

case during sorting, remove the four UCASE$ () statements after the
display label.

The loading and saving conventions used in the two preceding programs
Note: apply to this section as well.

222

Abacus 63 Utility programs

######################################!

Variable-List Amiga #!

(W) 1987 by Stefan Maelger #!

######################################!

I

"dos.bmap" and "exec.bmap" must be on!

Disk of in LIB:!

!

H

CLEAR, 50000&!

DECLARE FUNCTION AllocMem* LIBRARY!

DECLARE FUNCTION Lock* LIBRARY!

DECLARE FUNCTION Examine* LIBRARY!

DECLARE FUNCTION xOpen* LIBRARY!

DECLARE FUNCTION xRead* LIBRARY!

LIBRARY "exec.library"!

LIBRARY "dos.library"!

WINDOW CLOSE WINDOW (0)!

DIM varname$(2000),var%(2000),er$(5)!

FOR i-0 TO 5:READ er$(i) :NEXT!

DATA "File contains no binary."!

DATA "Read-Error.","File open error."!

DATA "File is a directory.", "File not found."!

DATA "Allocation denied."!

nextTry:!

REQUEST "Place Disk into Drive dfO.",l, "OK", ff",flag%!

WINPUT filename$!

CHECKFILE filename$,buffer*!

IF buffer*<0 THEN!

e%=6+buffer&!

REQUEST er$ (e%),2,"CANCEL","QUIT",flag%!

IF flag%«2 THEN LIBRARY CLOSE: SYSTEM!

GOTO nextTry!

END IF!

pointer*«buffer*+l!

ReadLine:!

SETPOINTER pointer*, flag%!

IF flag%=l GOTO ReadNames!

ReadToken:!

CHECKTOKEN pointer*,number%!

IF number%<0 GOTO ReadLine!

var% (number%) «1: GOTO ReadToken!

ReadNames:!

current%=0!

searching:!

IF PEEK (pointer*)»0 OR PEEK (pointer*)>&H60 THEN!

pointer&»pointer&+l:GOTO searching!

END IF!

223

6. AmigaBASIC internals Amiga Tricks and Tips

getlength:^

length%-PEEK (pointer*) 5

IF length%-0 GOTO display*

FOR i%-l TO length%5

pointer&«pointer&+lfl

varname$ (current%) -varname$ (current%) +CHR$ (PEEK (pointer&)

n
NEXTfl

current%-current%+lH

pointer&-pointer&+l:GOTO getlengthfl

11
display:t

fIag%-1:first%-0:last%«current%-2fl

WHILE flag%«lH

flag%-OU

FOR i%-first% TO last%5

IF UCASE$ (varname$ (i%)) >DCASE$ (varname$ (i%+l))

THEOT

SWAP vamanfe$(i%),varname$(i%+l)3

SWAP var%(i%)/var%(i%+l)H

END

NEXT^I

start%«start%+l:

FOR i%«last% TO first% STEP -It

IF UCASE$ (varname$ (i%))<TCASE$ (varnaroe$ (i%-l

THEOT

SWAP varname$(i%)fvarname$(i%-l)^[

SWAP var%(i%),var%(i%-l)fl

f

END

NEXTfl

WENDU

Display2:

REQUEST "List to Screen?",2,"YES","NO",

REQUEST "List to Printer?",2,"YES","NO",pflag%fl

REQUEST "Save as ASCII-File?",2,"YES","NO",fflag%5

IF sflag%«2 AND pflag%-2 AND fflag%-2 GOTO ausgabe25

IF sflag%«l THEN WINDOW 2, "Variables:", (0,0)-

(240,180),31H

IF fflag%=l THENH

OPEN filename$+".V" FOR OUTPUT AS 15

PRINT#1, CHR$ (10); "Variable-List: ••; fl

PRINT#l,CHR$(10) ;" ";CHR$(10) ;CHR$ (10)

END IF5

IF pflag%=l THEN5

LPRINT "Variable-List from:"fl

LPRINT filename$:LPRINT^I

END IFfl

FOR i%«0 TO current%-15

IF var%(i%)=l THEM

IF sflag%=l THEN PRINT varname$(i%)f

224

Abacus 63 Utility programs

IF pfIag%-1 THEN LPRINT varname$

IF fflag%-l THEN PRINT#l,varname$ (i%) ;CHR$ (10)

END IFfl

NEXTfl

IF fflag%-l THEN CLOSE H

REQUEST "Read/.", 1, "OK","lf, flag%H

LIBRARY CLOSER

SYSTEMS

f

SUB CHECKTOKEN(a&,n%) STATIC^

PeekToken:^

IF t%»0 THEN strflag%-0:n%—l:EXIT SUBfl

IF strflag%«l AND t%O34 GOTO PeekTokenfl

IF t%>127 THENfl

IF t%>247 THEN a&-<a&+111

GOTO PeekToken^I

ELSEIF t%»l THEN5

n%-CVI (CHR$ (PEEK (a&)) +CHR$ (PEEK (a&+l))) :a&»<a&+2 :EXIT

ELSEIF t%-2 OR t%-ll OR t%-12 OR t%-28 THEN5

a&-a&+2:G0T0 PeekTokeni

ELSEIF t%=15 THEN^I

a&«a&+l:GOTO PeekTokenH

ELSEIF t%-29 OR t%«30 THEM

a&«a&+4:G0T0 PeekToken^I

ELSEIF t%-31 THENfl

a&=a&+8:G0T0 PeekToken^I

ELSEIF t%=3 OR t%=14 THEN5

a&«a&+3:G0T0 PeekTokenH

ELSEIF t%»34 THEN5

IF strflag%=l THEN strflag%=0 ELSE strflag%»l^I

GOTO PeekTokentt

ELSE5

GOTO PeekToken^

END IFfl

END

SUB SETPOINTER(a&ff%) STATIC^

IF PEEK(a&+l)-0 THEN f%-l ELSE

IF PEEK(a&)-0 THEN a&«a&+3 ELSE a&«a&+55

END SUM

1

SUB CHECKFILE(a$/f&) STATIC^

±&-AllocMem& (252&f 65538&)5

IF i&=0 THEN H

ffi—1:EXIT SUB5

ELSE"3I

b$=a$+CHR$(0):l&«Lock&(SADD(b$),-2)5

IF 1&-0 THEOT

f&«=-2:EXIT

ELSEH

s&=Examine& (1&,

IF PEEKL(i&+4)>0 THEM

f&»-3:CALL UnLock(l&):EXIT SUBfl

ELSE5

225

6. AmigaBASIC internals Amiga Tricks and Tips

f&-PEEKL(i&+124):CALL Unlock(l&)fl

CALL FreeMem(i&,252&):v&«f&+3fl

c&"AllocMem& (v&, 65537&) fl

IF c&«0 THEN5

f&«—1:EXIT SUBfl

ELSEfl

h&«xppen&(SADD(b$),1005)fl

IF h&«0 THEM

f&=-4:EXIT SUBfl

ELSEfl

r&-xRead& (h&, c&, f&): CALL xClose (h&) f

IF riOfi

f&=-5:EXIT

ELSE^I

IF PEEK(f&)O&HF5 THEN fiS=-6:EXIT SUB5

END in

END IF 5

END IFU

END IF5

END IF5

END IFH

END SUBI

11

SUB WINPUT (a$) STATIC^

WINDOW 1,"Input: Filename", (0, 0)-(240,8), Ofl

LINE INPUT a$f

WINDOW CLOSE lfl

END SUBI

1

SUB REQUEST (a$,m%,b$,c$,b%) STATIC^

WINDOW 1,"System Request",(0,0)-(240,40) ,225

COLOR 0,1:CLS:LOCATE 2,(30-LEN(a$))\2:PRINT a$;:COLOR

l,0H

IF m%a=l THEN5

l%=LEN(b$)/2:LOCATE 4,15-1%:PRINT " ";b$;" ";fl

ELSEIF m%=2 THEN5

LOCATE 4,2:PRINT " ";b$;" ";:LOCATE 4,27-LEN(c$)5

PRINT " ";c$;" H;I

END IFfl

mousel:f

WHILE MOUSE (0)<>0:WENDfl

WHILE MOUSE (O)«O:WENDfl

x%= (MOUSE (1)+8) \8:y%« (MOUSE (2)+8) \8:

IF y%»4 THEN5

IF m%=l THENH

IF x%>14-1% AND x%<17+1% THEN b%

ELSEIF m%«2 THEN5

IF x%>1 AND x%<LEN(b$)+4 THEN b%

IF x%>26-LEN(c$) AND x%<30 THEN

END in

END IF«H

IF b%>0 THEN5

WINDOW CLOSE If

EXIT SUBfl

END

226

Abacus 63 Utility programs

GOTO mousel5I

END SUBfl

This program created many of the variable lists in this book.

6.3.6 Removing "extra" variables

Maybe youVe wondered why a binary format BASIC program becomes
longer when you load, shorten and resave it, instead of shorter. Or
youVe noticed when your BASIC program stops with an error, the

orange error box surrounds a couple of blank lines. You find that there's
garbage in the program that you can only see with the file monitor.

Why does the big program youVe been working on run slower and
slower every time you edit it? And how can you manipulate internal

errors in a binary program?

There is a solution to these problems. As you repeatedly save programs

from the AmigaBASIC interpreter, the interpreter adds bits of extran

eous data to the file (garbage). Like a garbage can, the program can only
hold so much of this garbage. This also goes for the entire memory
range assigned to the variable table. When you save a program, the

interpreter saves it without checking which variables still belong to the
program and which don't. The final problem is that important pointers
remain uninitialized—especially if these pointers stay unset before

saving or reloading a program.

There is, as always, a loophole. When you save a program in ASCII
format, what you get in the file is what you see on the screen: Plain

text separated by linefeeds (CHR$ (10)).

• Save your program once with the extension ,A.

Quit AmigaBASIC (if you just type new, the garbage still stays

on the screen, and the pointers stay unchanged).

Restart AmigaBASICs interpreter.

Load the program.

Save the program with the extension of ,B (binary format—very

important).

Remember the following rules when trying this resaving:

1) This process works best when you save incomplete programs as

ASCII files in the first place. Save the program out in binary
form when you wish to try running the program and/or debug

ging it

227

6. AMIGABASIC INTERNALS Amiga Tricks and Tm

2) When a program runs into a problem you may not be able to
see, the logical solution is to save the file in ASCII format; you
might recover the program.

3) The worst thing you can do is save a program in binary format
after a test run that resulted in an error message. This causes the
most garbage sent from the interpreter.

4) If your program doesn't run after all, it may be due to program
mer error or memory error, or an error in AmigaBASIC itself.

6.3.7 Self-modifying programs

There are methods that allow changing program code as a program runs.
The two programs listed below can bring this about

The first method of program modifying is direct access through POKE.
The prinicple is simple: You assign a set of characters to a string vari
able at any point in the program. It is important that you make no
changes to the string itself, such as A$=A$+CHR$ (0). You can point
the variable pointer direct to the string in your program.

This first example lets you change strings within a program. This rou
tine opens the window named in the string. Selecting the CHANGE item
from the menu lets you insert a new window title, after which the new
program loads and starts.

REM **%

REM * Self Modifying I *fl

REM * (W) 1987 by Stefan Maelger, Hamburg *fl

REM * The new Title String will be changed hererfl

Title$="Self Modifying I"fl

SCREEN 1,320,200,2,15
WINDOW 2,Title$,,16,lH

MENU 1,0,1, "CHANGE"^

MENU 1,1,1, "TITLE"51

I

ON MENU GOSUB checkmenufl

MENU ONfl

WHILE Maelger-Ofl

SLEEPS

WENDfl

II

MENU RESETS

228

Abacus
63 Utility programs

How it

works

WINDOW CLOSE 2fl

SCREEN CLOSE 111

ENDfl

I
checkmenu:1l

IF MENU(1)-1 AND MENU(O)-1 GOTO newtitlefl

RETORNfl

newtitle:1I

PRINT "Please enter new Title"5

PRINT LEN(Title$); "Characters Long."H

LINE INPUT newt$5
neu$«LEFT$(newt$+SPACE$(LEN(Title$)),LEN(Title$))fl

II
REM * Here is where the String is changed: fl

II
FOR i-1 TO LEN(newt$)fl

POKE SADD (Title$) +i-l, ASC (MID$ (newt$,i,1)) fl

NEXTfl

REM * Start Program again (with the new Title) fl

PRINT "Program with new title being saved. "f

SAVE "Programname"fl

PRINT "New Program is saved. "5

PRINT "Re-Load or start this" fl

PRINT "program over again."51

t=TIMER+15:WHILE t>TIMER:WENDfl

RETURNS

You can see how simple it is. Replace "Programname" with your

own program name.

This method lets you change commands in a binary format program.

However, it also allows changes to files saved in protected format.

Now we come to the second method—the ASCII file method. Here,
too, you can completely change a program. The clincher to this method

is the ease in changing entire program sections.

Using POKE to change parameters in a binary format program can have
serious consequences: It isn't that easy to change commands. The
ASCII file route makes this replacement much simpler.

Here's the principle behind it First the program section must be found
for replacement. User input works with a syntax check to find the area
that needs changing. The running program deletes the program lines
you want changed (DELETE from-to). The program then saves to disk
ette as an ASCII file. While the change waits under its own name, the
RAM disk supplies the most speed. Now the saved ASCII program
opens for appending (OPEN x$ FOR APPEND AS y), and the DATA

generator creates the new program segment

229

6. AMIGABASIC INTERNALS Amiga Tricks^^

falorder to get this program into memory, all you need to enter is run
filenames or LOAD filenames. The program starts all over

in the RAM disk, then join the programs with CHAIN MERGE You
can also restart the altered program with a starting label, and merge a
senes ofprogram segments (e.g., CHAIN stuff,lines,ALL).

REM **

REM * SelfModifying II *«
REM * *|

REM * (W) 1987 by Stefan Maelger, Hamburg *!
REM ***^

REM * Get the Screens Resolution!
!

GOSOB VariableLabel!

!

SCREEN 1, SWidth%,Height%,Depth%,Mode%!
WINDOW 2,-Hello!",,0,1!

!

PRINT "Width in Pixels :";SWidth%!
PRINT "Height in Pixels:11 /Height%!
PRINT "Depth in Planes:";Depth%!
!

PRINTS

PRINT "Please enter the"!

PRINT "New Width:";!

INPUT NewWidth%!

IF NewWidth%<20 OR NeWWidth%>640 THEN!
NewWidth%-SWidth%!

END IF!

INPUT "New Height :";NewHeight%!

IF NewHeight%<10 OR NewHeight%>512 THEN!
NewHeight%-4teight%!

END IF!

INPUT "New Depth: ";NewDepth%!

IF NewDepth%<l C» NewDepth%>5 THEN!
NewDepth%-Oepth%!

END IF!

PRINT!

Mode%-1!

IF NewWidth%>320 THEN Mode%-2H

IF NewHeight%>256 THEN Mode%-Mode%+2!
IF Mode%-4 AND NewDepth%>2 THEN!

NewDepth%-2!

ELSEIF Mode%>l AND NewDepth%>4 THEN!

NewDepth%-4!

END IF!

C3PEN "Programname.t" FOR OUTPUT AS 1!

PRINT#1, "VariableLabel:";CHR$ (10); !

PRINT#lf "SWidth%-";STR$ (NewWidth%) ;CHR$ (10) ; !
PRINT#lr "Height%-";STR$ (NewHeight%) ;CHR$ (10) ;!
PRINT#lf "Depth%-";STR$ (NewDepth%) ;CHR$ (10) ; !
PRINT#1, "Mode%-";STR$ (Mode%) ;CHR$ (10) ; !
PRINT#1, "RETURN" ;CHR$ (10) ;!

PRINT#lf "VariableLabelEnd: ";CHR$ (10); !

230

Abacus 63 Utility programs

CLOSE 15

5
DELETE VariableLabel-Var±ableLabelEnd5

SAVE "Programname",A5

OPEN "Programname.t" FOR INPUT AS 15

OPEN "Programname" FOR APPEND AS 25

PRINT#2,INPUT$(LOF(1),1);5

CLOSE 25

CLOSE 15

KILL "Programname.t"5

WINDOW CLOSE 25

SCREEN CLOSE 15

LOAD "Programname" ,R5

END5

5

5

VariableLabel:5

SWidth%» 3205

Height%« 2005

Depth%» 25

Mode%= 15

RETURN5
VariableLabelEnd: 5

Amazing, isn't it? This procedure is particularly good for any kind of
graphic program. For example, you could enter user-defined functions in

a function plot, palette values in a drawing program, etc.

231

7

The Workbench

ABACUS 7. THE WORKBENCH

The Workbench

The Amiga's user interface leaves nothing to the imagination. All
important operations are realized through icons. These icons make text
input almost unnecessary, thus removing the barriers so often caused by

language.

There are some Workbench functions that few users even know about
These users can form easy solutions to tough problems. This chapter
shows how effectively these functions can be used, with a minimum of
time and effort

235

7. The Workbench Am
Amiga Tricks and Tips

7.1 Using the Workbench

?^ 1S ** one part of *e A^ga ** the user sees most
With that in mind, here are some helpful hints for making your

Workbench maintenance and use easier and more efficient

7.1.1 Keyboard tricks

Do you know what a string gadget is? Essentially, it's a miniature
input window. String gadgets are used by the Amiga whenever it needs
some form of keyboard input (e.g., for renaming a diskette). Instead of
pressing the key to delete the old name, press and hold the
<right Amiga> key and press the <X> key. Presto, the string gadget
clears.

In most cases, <right Amiga><Q> acts as an Undo function, restoring
the last item changed.

When you want to move the cursor to the first character of the input
line, press <SHIFT><Cursor left>. Pressing <SHIFT><Cursor right>
to get to the end of the input line.

Now we come to the icons. Suppose you want to select more than one
icon. Hold down the <SHIFT> key and click on every icon you want
selected. Whatever you do to/with the last icon applies to all the icons
selected in this one pass. For example, if you want to throw the multi-
selected icons into the Trashcan, just drag the last icon to the Trashcan
(you can release the <SHIFT> key).

When CLI output flashes by on the screen (e.g., directory listings),
you can stop the listing by pressing the <RETURN> key. Continue
die listing by pressing the <Backspace> key.

If you want to go to the beginning of a screen, or just open a fresh win
dow, press <CTRL><L> to clear the screen.

Now and again a prompt may not appear. <CTRL><0> and
<RETURN> returns the prompt to the screen.

<CRTLxD> interrupts the startup sequence, while <CRTLxC> in
terrupts any currently executing command.

236

Abacus 7.1 Using the Workbench

Easter eggs

Many programmers and hardware developers place "signatures" on their
creations. These signatures are sometimes called Easter eggs, because
they are hidden in the system for the user to find. This adds a personal
touch to the software or hardware design.

The Amiga has a few of these Easter eggs built-in. You can see them
cm the screen if you have a little patience and very flexible hands.

Boot the Workbench diskette.

After the Workbench screen appears, press and hold both <ALT>

keys AND both <SHIFT> keys.

With your free fingers, press function keys <F1> to <F10> and

watch the title bar.

Each function key lists the people responsible for different aspects of

Amiga design.

7.1.2 The Trashcan

Not everything you make when computing is worthwhile. The develo
pers of the operating system created the Trashcan for disposing of

garbage. It's easy to use:

• Select the icon you want to get rid of.

Drag it to the Trashcan.

Click on the Trashcan icon.

Select the Empty Trash item from the Disk pulldown menu.

There's an even simpler way to do it. The above process works well, on
the condition that you remember to empty the trash. However, if you
don't the diskette keeps the data placed in the Trashcan in disk memory.

Since diskettes only have a capacity of about 880K, this can take up a

great deal of disk memory.

Now for the simpler method:

• Click once on the file icon you want disposed of.

Select the Discard item from the Workbench pulldown

menu.

Click on the ok to discard gadget in the system requester.

237

7. The Workbench a
Amiga Tricks and Tips

7.1.3 Extended selection

Have you ever wondered about how to organize icons in every window
If you put your Extras diskette in the drive and open the BAS ICdemos
drawer, you 11 see 25 icons. Most of these icons have such long names
that the Clean Up item doesn't put most of them in neat order.

You could conceivably select and move each icon, then execute the
Snapshot item from the Special pulldown menu each time you
get an icon into position. This takes time, though.

There's a simpler way out. Every icon you click stays active while you
hold down one of the <SHBFT> keys. Most of the functions you can
perform on single icons work with multiple icons (assuming that these
functions match the icons). For example, you can't use Discard on a
disk icon.

Move each icon into the desired position.

Press and hold the <SHIFT> key.

• Click on all the icons you want organized.

Release the <SHIFT> key.

Select the Snapshot item from the Special pulldown menu.

If you wish to copy several programs, this extended selection helps you
to do this copying quickly and easily. You can drag a set of icons across
the screen, and onto the windows in other diskettes. The only disadvan
tage is that diskette exchanges must be made for every program.

If you wish to avoid this constant diskette switching, here's a quick
method of getting around this:

Copy the Empty drawer of the Workbench diskette onto the for
matted source diskette.

Move all icons you want copied into this drawer using extended
selection.

Drag the drawer to the target diskette icon.

238

Abacus 7.1 Using the Workbench

7.1.4 Reading and setting Preferences

The name Preferences speaks for itself: This program lets you

adjust the Amiga to your individual needs. It allows selection of almost

any printer type, any number of screen colors and more. The Prefer

ences icon normally appears in the Workbench window.

What can the intermediate programmer start to do with these Prefer

ences? A lot! Preferences stores its data and parameters in a long

data block. This data block has the following structure:

+ Offset Type Definition

Font height

Printer port O=parallel, 1=serial

Baudrate: 0=110, 1=300, 2=1200, 3=2400,

4=4800,5=9600,6=19200,7=MIDI

keyboard repeat—seconds

keyboard repeat—microseconds

keyboard delay—seconds

keyboard delay—microseconds

Sprite pointer definition array, approx. 72

bytes

X-offset of pointer hot spot

Y-offset of pointer hot spot

RGB information for color register 17

RGB information for color register 18

RGB information for color register 19

Pointer ticks (sensitivity)

RGB information for color register 0

RGB information for color register 1

RGB information for color register 2

RGB information for color register 17

X-offset of view

Y-offsetofview

X-offset of view (initialization)

Y-offsetofview

CLI (Mi/off (0/1)

Printer type (see following sample program

for definitions)

Bytefield with printer filenames

Typestyle: 0=Pica, $400=Elist, $800=Fine

Print quality: O=draft, $100=NLQ

Line spacing: 0=6 LPI, $200=8 LPI

Left border

Right border

Print type: 0=positive, l=negative

Print direction: 0=horizontal, l=vertical

Gray scales: 0=B/W, l=gray scales, 2=color

239

0

1

2

4

8

12

16

20

100

101

102

104

106

108

110

112

114

116

118

119

120

122

124

126

128

158

160

162

164

166

168

170

172

B

B

W

L

L

L

L

W

B

B

W

W

W

W

W

W

W

W

B

B

W

W

W

W

B

W

W

W

W

W

W

W

W

7. THE WORKBENCH

174 W Contrast

176 W Paper size: 0=US letter, $10=US legal, $20=
narrow carriage, $30=wide carriage, $40=
custom

178 W Paper length

180 W Paper type: 0=endless, $80=single sheet

The following program offers three SUB programs which load this data
record, send the modifications back to Preferences and exit

1 ###########################11
f# Program: Preferences #5
•# Author: tob #5
f# Date: 8/12/87 #5
'# Version: 2.0 #5

'* #5
^###########################5

DECLARE FUNCTION AllocMemfi LIBRARY5
5
LIBRARY "exec.library"5
LIBRARY "intuition.library"5

demo: '*Read and change preferences^
f*Change screen colors^
GetP prefsfi, 2205
5
POKEW prefsfi + 110, 1*15 + 256*155
POKEW prefsfi + 112, If
POKEW prefsfi + 114, 16*155

SetP prefs&5

5 •
f* Sample printer settings^
DIMpr$(12)5
pr$(0) = "Custom"5
pr$(l) = "Alpha P 101"5
pr$(2) - "Brother 15XL"5
pr$(3) « "CBM MPS 1000"5
pr$(4) « "DIAB 630"5
pr$ (5) - "DIAB ADV D25"5
pr$(6) - "DIAB C 150"5
pr$(7) - "Epson"5
pr$(8) - "Etoson JX 80"5
pr$(9) - "Okimate 20"5
pr$(10) - "Qume LP 20"5
pr$(ll) a "HP Laserjet"5
pr$(12) = "HP Lasertjet +"5

PRINT5PleaSe Select a Printer type:"5

FOR loop% - 0 TO 125

PRINT pr$(loop%)5
NEXT loop%5
5
PRINT5

LINE INPUT"Your selection...";in$5
5
FOR loop% - 0 TO 125

IF UCASE$ (in$) - UCASE$ (pr$ (loop%)) THEN5
pr% = loop%5
loop% = 125
flag% = 15

END IF5
^ NEXT loop%5

240

Abacus 7.1 Using the Workbench

IF flag% - 1 THENH

flag? - Ofl
CLS?
POKEW prefsfi + 126, pr%fl
SetP prefs&H
LINE INPUT "Would you like to run a printer

teat? (y/n^jn|I_ TfflOT

LPRINTtftestTESTtestTESTtestTESTtestTESTlf5
LPRINT"TESTtestTESTtestTESTtestTESTtestlf fl

END IF I

ELSE fl

CLS fl
PRINTffYour printer type not listed, Mfl

END IFfl

Finish pref&fl

LIBRARY CLOSER

ENDfl

SUB GetP <datum&, size%) STATIC^
opt* - 2A16fl
mem& « size% + 45
add& = AllocMem& (mem&, opt&) 5
IF add& O 0 THEM
POKEL add&, mem&H

datumfi = add& + 41
CALL GetPrefs(datum&,

ELSE^I

d

END

END

1
SUB SetP (datumfi) STATIC^

IF datum&OO THEM
size* - PEEKL(datum& - 4) -41
CALL SetPrefs(datum&,sizes, -1

END IF^I

END

5
SUB Finish (datum*) STATIC^

IF datumfi 00 THENH
mem& « PEEKL(datum& -

add& - datum* - 4H
CALL FreeMem(add&,mem&)3

END IFfl

END SUB1I

GetP makes a copy of the abovementioned Preferences data
Program block. Enter a variable into which the address of the copy is placed, as
description well as the desired number of bytes. In normal cases, the entire data

record requires 180 bytes. However, if youfre just interested in the first

entry, you can enter far fewer bytes.

Now you can change the copy as you want it to appear in the program.

If all changes are as you want them, then SetP puts the changed copy

into Preferences, thus activating the changes.

Finish returns the copy memory to the system.

241

7. The Workbench
Amiga Tricks and Tips

7.1.4.1 Info

The Info item from the Workbench pulldown menu allows the user
to look at information in programs and data files. But which informa
tion can you change? These are questions that the Amiga manual
doesn t discuss. Here are some answers.

7.1.4.2 The Info screen

Disk

Drawers

Tools

This screen appears after selecting any kind of icon and selecting the
Info item from the Workbench pulldown menu. The Info screen
lists all the vital information about the program. The Workbench disk-
ette should not be removed during the selection of Info.

p Info screen has several areas. The upper left corner lists common
data about the file and/or diskette—name, type and the size in two
different measurements. Beneath stack the number of bytes the file
uses in memory is listed.

Type describes the type of icon for a file or diskette. The normal icon
types are Disk, Drawer, Tool, Project and Garbage:

Disks are the diskette icons which lie outside of directory windows
Double-clicking on a disk opens the disk window (the diskette's main
directory).

The only item of interest about this icon type is that, like the other
icons, you can change its shape. Computer owners into nostalgia can
change the disk icons to look like 5-1/4" diskettes.

Drawers are the icons which represent subdirectories. Moving programs
into a drawer easily lets you find programs on the same diskette This
operation takes a lot of time, though. Here's a suggestion: Use the
RENAME command from AmigaDOS. Enter the first name with the fuU
path specification, then enter the new name with the path under which
you want the program placed (don't forget to copy the .info file to the
new path as well).

Any executable program is called a tool. Tools can lie in drawers,
windows and on the Workbench screen. They have their own icons
which execute programs when you double-click on them.

AmigaBASIC, Preferences and BeckerText Amiga from
Abacus are tools.

242

Abacus 7.1 Using the Workbench

Amiga projects are any files that contain data saved from a tool

Projects (program).

Notepad texts, word processing files, BASIC programs and .bmap

files are projects.

This last type is actually another form of drawer. Normally you can

Trashcan place drawers inside of drawers. The Trashcan drawer can only lie in the
main directory. Plus, it can't be moved onto the Workbench screen.

Whenever you need a Trashcan icon, look in the main directory.

On the right side of the screen you'll see a box which lists the Status

of the file. This refers to the access options offered to the user (see the

AmigaDOS manual under LIST). When the write protect is set on the

diskette, you can't change the read, write or executable attributes. When

you get information from a diskette, this area lists whether the diskette

is write-protected or write-enabled. Clicking this Status changes noth

ing; you must change the write-protect by hand.

The user's Comments appear in the line below Status. Amiga-

DOS's FILENOTE lets you write a text of up to 80 characters long.

This function is suppressed by diskettes, since a diskette cannot be

supplied with a comment

The Info screen does more than give information about programs or

diskettes. They also supply details about projects (text and data files).

Default Tool tells the user which tool created the project, or which

diskette has the copy. The Workbench knows which project to load

when you double-click a tool's icon.

The last line displays Tool Types. This information is given by the

main program. The Notepad, for example, states which font is in

use, and the window size for input.

7.1.4.3 A closer look at the Info screen

You can change the available information in the Info screen. Write

and save a text from the Notepad, and open its Info screen to look

at the information.

What you put under Comment has no effect on other parts of the

system—it's just commentary.

The Default Tool gadget is much more important. As mentioned

earlier, this gadget lists the name of the tool (program) which created

the project (file). There's a bug in this, though. For example: You set

up two Workbench diskettes named user and cli. The first diskette,

user, is a nearly normal Workbench. The second diskette, cli, has

243

7. The Workbench Amiga Tricks and Tjps

been modified so that on startup it copies all the important CLI
commands to RAM, and stays in the DOS window. Both diskettes have
a Notepad tool. If you write a text on the user diskette, the De
fault Tool gadget reads:

Workbench user :Utilities/Notepad

If you want to load a text, the user diskette must be in the drive. But
the cli diskette also has a Notepad. All you need to do to read the
same text from the cli diskette's Notepad is change the Default
Tool text to read as follows:

sys:Utilities/Notepad

The Tool Types gadget holds all the information needed by the pro
gram. You can change this also. Here are the<types and meanings:

Name Example Definition

FILETYPE notepad Notepad text

FONT topaz.8 Global font

WINDOW 0,0,50,50 Window coordinates

FLAGS NOGLOBAL Flag listing

The filetype line identifies the tool that created the project FONT
gives the name of the global font; you can change this, provided the
font you change it to exists on the Workbench diskette. WINDOW lists
the X- and Y-coordinates of the input window. Other values can go here
as desired. The FLAGS gadget may be new to you, since it isn't used in
normal saving. This gadget lists some parameters that are normally
used in loading:

Parameter Definition

NOGLOBAL Disable global font function "

GLOBAL Enable global font function

nowrap Disable word wrap

WRAP Enable word wrap

nofonts Skip font table generation

FORMFEED Add formfeed to printer driver

DRAFT Print in draft quality

data into files. Read the section on icons for information on saving
these parameters to diskette and more.

244

Icons

Abacus 8. Icons

8. Icons

The Amiga's Workbench user interface uses icons to help the user

easily identify programs, data file, directories and diskettes. These icons

appear as pictures that quickly indicate their purposes to the user. You

start programs by double-clicking on their icons, instead of typing in

the program name as you would from the CLI.

Clicking icons saves the trouble of typing in disk paths to open

directories and subdirectories to the file you want All you have to do is

click on a drawer; click on the drawer inside the drawer that opens; and

so on, until you get to the file icon you need.

This chapter gives detailed information on icon design, drawer structure

and image structure. Programs are included that let you edit icons and

examine the structure of an icon from AmigaBASIC. Youll also find

information about icon structure and creating multiple graphics for one

icon (before double-clicking and after double-clicking).

247

8. Icons Amiga Tricks and Tips

8.1 Icon types

There's a problem with this title: All icon symbols can stand for differ

ent objects. You have to be able to differentiate between directories and
diskettes, and between programs. So, you wouldn't assign a drawer icon

to the Trashcan, any more than you should assign a program icon to a
directory. The program still runs, but using "other" icons can cause
some confusion later on.

For this reason, this section uses certain icon descriptions in certain

contexts. For example, the book consistently calls the icon for a disk

ette a disk icon, etc.

As you've seen in Chapter 7, the following icon types exist

Name Identifier Object Number

Diskette icon

Drawer icon

Tool icon

Project icon

Trashcan icon

Kickstart icon

WBDISK

WBDRAWER

WBTOOL

WBPROJECT

WBGARBAGE

WBKICK

standard diskette

directory

executable program

program data file

Trashcan

Kickstart diskette (Amiga 1000)

1

2

3

4

5

5

You can get additional information on the icon types from the Work
bench. Check the following sources:

Disk icon information corresponds to drawer icons. The drawer icon
stores the pictures of all icons and data which can be opened by double-
clicking.

Projects (files) are of the same general design as the tools (programs)
used to create them. Double-clicking a project icon opens the tools used
to create that file, then the project itself.

The Trashcan is really just another form of drawer. The main difference
is that you can't move it from one directory to another, nor can you
move it to the Workbench.

248

Abacus 8.2 Icon design

8.2 Icon design

Now for the structure, so you can start thinking about designing your

own icons. Icon data goes into a directory. Every file that has an icon

has an extra file with the same name and a file extension of .info.

This info file contains the information that goes into the Workbench.

8.2.1 DiskObject structure

Every icon file begins with a DiskObject structure, which contains

all sorts of information (see the table below):

Identifier Parameter Bytes

do_Magic

do_Version

do_Gadget

gg_LeftEdge
gg_TopEdge

gg_Width

gg__Height

gg_Flags

gg_Activation

gg_Type

gg_GadgetRender

gg_SelectRender

gg_IntuiText

gg_MutualExclude

gg_SpecialInfo

gg_GadgetID

gg_UserData

do__Type

nothing

do_DefaultTool

do__ToolTypes

do__CurrentX

do_CurrentY

do_DrawerData

do__ToolWindow

do__StackSize

For starters, the magic number is equal to $E310. This tells the system

that this is where an icon is read. Next follows the version number,

magic number

version number

click structure

left click range

top click range

width of click range

height of click range

invert flag

$0003

$0001

pointer1 picture data

pointer2 picture data

"not used?"

"notuseable!"

"notuseable!"

"for own use!"

"your Pointer!"

icon type

fillbyte

text structure

text structure

current X-position

current Y-position

window structure

program window

reserved memory

2

2

4

2

2

2

2

2

2

2

4

4

4

4

4

2

4

1

1

4

4

4

4

4

4

4

249

8# IcONS Amiga Tricks and Tips

which at the time of this writing is always $0001. The above table in-

Four unused bytes follow the structure. These arc normally reserved for
a gadget click structure. Now tilings get more complicated: The symbol
itself is actually divided into two separate areas—the graphic range and
the click range. The click range helps determine the range in which you
can click on the icon. The X- and Y-offsets of the click position follow,
setting the upper left corner of the click range. Next comes the width
and height of that range. It's important to remember that text is printed
beneath the click range (i.e., under the icon). Be sure that the click
range is high enough that the text can be counted as part of the graphic.

r a Now comes the gadget structure. The next value changes the picture
uaagets when you activate it You have three options at your disposal:

1) The entire rectangular area in which the icon is displayed inverts.
Just place a 4 in the Flags register. This is the simplest (but
not the most attractive) method.

2) Only the drawn-in area inverts. This looks and works somewhat
better than 1. This mode requires a 5 in the Flags register.

3) Instead of an inverse version of the icon, another icon appears al
together. Place a 6 in the Flags register.

Next the value constants $0003 and $0001 follow in the DiskObject
structure. The first is the activation type, and the second maiks a Book
gadget. The pointers to icon graphic data follow. If you're switching
between two graphics, the second pointer must be initialized.

The next 18 bytes are required by the system for normal gadgets. Its
actual purpose appears to make no sense. It works best when you fill
this area with zeros. These bytes are important to the next parameter: It
distinguishes which icon type is available to the user. You insert the
numbers which indicate the abovementioned table. Since this should be
given in one byte, and the processor can only address even addresses,
these are the same as fillbytes.

™ . # In order to select the type, the pointer to the Default Tool structure
l OOl types then the pointer to the ToolTypes structure must be set (more on

these pointers later).

The system stores the positioning in the DiskObject structure as the
current X- and Y-coordinates. However, you also have the option of
Workbench coordinates of $80000000, $80000000. These values are
called NO_ICONJPOSITION. As long as a user-created icon stays un
changed, it is found at the same position. A pointer to the window data
follows if necessary, and a pointer to the ToolWindow structure.

To conclude, the stack depth tells the Woikbench how much memory to
allocate for this program or this data. The value of a data file has higher

250

Abacus

8.2 Icon design

more memory fw the data records of a file.

8.2.2 Drawer structure

Now that you have the information about the average DiskObject
structure, you can continue on with the individual types.

First comes the Drawer structure, which is almost equal to a diskette.
The big difference is that the directory and the Trashcan use this struc
ture. It contains all the data needed for opening anew directory window.

The table reads as follows:

Identifier Parameter Bytes

wi_LeftEdge left comer 2

wi_TopEdge top edge 2

wi_Width width 2

wi_Height height 2

wi_DetailPen drawing cote 1 1

wiJBlockPen drawing cote 2 1

wi_IDCMPFlags gadget flags 4

wi_Flags window flags 4
wi_FirstGadget gadget structure 4
wi_CheckMark checkmaik 4
wi_Title title text 4
wi_Screen screen pointer 4
wi_BitMap window bitmap 4
wi_MinWidth minimum width 2
wi_MinHeight minimum height 2
wi_MaxWidth maximum width 2
wi_MaxHeight maximum height 2
wi_Type $0001 J
actx-pos current X-position 2
acty-pos current Y-position 2

These are handled as an independent window structure, which extends
the coordinates for the current position. This may need some explana

tion:

The upper left corner coordinates and the window size appear. When the
user moves and closes the window, the diskette doesn't leave the sys
tem, so that the directory window isn't opened at the position given by

the current coordinates.

The parameters then follow for color control. The values set the colors
for the lines and blocks used in a window. Normally $FF stands for -1,

251

8. Icons
Amiga Tricks and Tips

which takes the color from the screens in use. This makes color control
much simpler.

The next byte contains a pointer and flag used by the system internals.

Handling First comes the IDCMP flag, which sets the reaction to any changes to
window a window. The window flag determines the setup of the directory win-
changes dow. Then five pointers to structures or memory ranges follow, whose

changes require knowledge of die operating system.

This way all windows set up in any size within the minimum and max

imum limits set by MinHeight, MaxWidth and MaxHeight.

8.2.3 Image structure

Every icon needs an Image structure. They contain the graphic data,
and are set into the respective file twice when necessary.

Identifier Parameter Bytes
im_LeftEdge

im_TopEdge

im_Width

im_Height

imJDepth

im__ImageData

im_PlanePick

imJPlaneOnOff

im__Next Image

left corner

top edge

width

height

depth

bitplane pointer

use

next graphic

2

2

2

2

2

4

1

1

4

After information about the sizes and positions of several bitmaps, the
image setup contains the graphic itself. The number of bitmaps depend
upon the screen's depth. The Workbench has a noimal depth of two
bitmaps on which the icon is also based.

The image parameters repeat after the icon position is given to the
DiskObject structure. The position is just an offset of this para
meter. No values are left out concerning the width, height and number
of bitplanes, just as on the other bitplanes.

The next four bytes are a pointer to the current graphic data. This
pointer can change the next couple of parameters somewhat For
example, PlanePick depends on the number of bitplanes for its
graphic display. And PlaneOff controls an unused icon's activity.

The last parameter is a pointer to another Image structure. This lets
you combine several objects into one unit

252

Abacus 8.2 Icon design

The bytes of the individual bitplanes follow the Image structure. First

comes bitplane 1, then bitplane 2, and so on (if more bitplanes are

used). The system computes the number of bytes needed for the width

by rounding off the number of pixels in to the next highest multiple of

16. The height is calculated by the number of pixels in height, rounded

off to the next highest multiple of 8. The Amiga needs these bytes to

create any bitplane.

8.2.4 DefaultTool text

Unlike the Image structure, used by every icon^ you only need the

DefaultTool text for diskettes and data files. Diskettes use the text

to state the diskette hierarchy needed to call system programs. For ex

ample, every diskette contains the text SYS:System/DiskCopy,

used to access the disk copy program (if you remove this text the disk

cannot be copied in this manner). Data files use this text to indicate the

program used to create these files. If you remove these texts, the main

program becomes inaccessible. Here's the parameter setup:

Identifier Parameter Bytes

char_num number of characters 4

This list contains only the truly concrete data (the number of charac

ters). Everything else is flexible. Every text must end with a nullbyte,

so that the end is identifiable.

8.2.5 ToolTypes text

The section on the Info function of the Workbench (Section) men

tioned that the string gadget under ToolTypes lets you give additional

information about the main program. For example, you could set up a

text file for handling as an IFF file. The program requires other infor

mation that doesn't appear in this area. You can easily add this infor

mation, and use the file in other programs as an interchange format file.

Identifier Parameter Bytes

string__num text number 4

like the DefaultTool text, the size of the ToolTypes gadget is

extremely difficult to change. Assuming that this string isn't blank, the

beginning of the text has the number of the string. You must increment

die number contained here by one, then multiply by four, to compute

253

8. Icons Amiga Tricks and Tips

the string number. You can also find this number when you read the

file. If you want the data expressed, you must reverse the procedure.

Next follows a string which begins with the length, and ends with a

nullbyte. The number of characters is computed by string_num

mentioned above.

8.2.6 Icon analyzer

The following program is a move toward the practical side of icon

structure. This BASIC program reads the parameters of the filename,

and displays these parameters and their corresponding values. This pro

gram would be easier to use if you could print this list to a printer (you

may wish to modify it to do so).

DIM DiskObject$(26,3),DiskObject(26)fl

DIM DrawerData$(20,3),DrawerData(20)1
DIM Image$(2,9,3),Image(2,9)fl
DIM DefaultTool$(2,3),DefaultTool(2)fl

II
H
DEF FNSize% (Im) «Image (Im, 4) *2*INT ((Image (Im, 3) +15) /16) fl

H
WIDTH 755

5
INPUT "Filename: ";File$5

5
OPEN File$+".info" FOR INPUT AS If

5
summary$«INPUT$ (LOF (1), 1) 5

5
CLOSE 15

5
summary$«summary$+STRING$ (40,0) 5

5
GOSUB LoadHeader5

5
IF DiskObject (18) =1 THEN5
GOSUB LoadDrawerfl

GOSUB Loadlmagef
GOSUB LoadDefaultToolfl

GOSUB LoadToolTypesfl

END IF1I

IF DiskObject(18)=2 OR DiskObject (18) =5 THEN5

GOSUB LoadDrawerf
GOSUB Loadlmagef
GOSUB LoadToolTypeslI

END IFfl

IF DiskObject(18)=3 THEN5

GOSUB Loadlmage 5

GOSUB LoadToolTypesfl

END IFfl

IF DiskObject(18)=4 THEN5
GOSUB Loadlmagef

GOSUB LoadDefaultToolf

254

Abacus 8.2 Icon design

GOSUB LoadToolTypesU

END IFfl

1
ENDfl

1

LoadHeader:^

RESTORE DiskObjectfl
po-1 : PRINTS

PRINT "Disk Object Structure" : PRINTS
FOR i«l TO 26 fl

GetBytes DiskObject$(i,1),DiskObject$(i,2),

DiskObject$(i,3),DiskObject(i)fl

NEXT i fl

RETURNS

H
LoadDrawer:fl

RESTORE DrawerDatafl

PRINTS
PRINT "Drawer Data Structure" : PRINTS
FOR i-1 TO 20H

GetBytes DrawerData$(L,1)fDrawerData$ <i,2)f

DrawerData$(if 3),DrawerData(i)H

NEXT ifl

RETURNS

Loadlmage:^

Ilfl

GOSUB GetlmageH

IF DiskObject (12)00 THEN Im«2 : GOSUB GetImaged
RETURNS

Getlinage:^

RESTORE Imaged

PRINTS

PRINT "Image Structure" : PRINTS
FOR i=l TO 91

GetBytes Image$ (Im, i, 1), Image$ (Im, i, 2),

Image$ (Imf ir 3), Image (Im, i) 1

NEXT ifl
bytes=FNSize% (Im) 5

PRINTS

PRINT "BitPlanes" : PRINTS
WIDTH 605

FOR j=l TO Image(Imf5)5
PRINTS

PRINT "Bitplane";jfl
FOR i=l TO bytesfl

a$=HEX$ (ASC (MID$ (summary$f po, 1))) f
IF LEN(a$)<2 THEN a$="0"+a$5
PRINT a$;H
IF i/2=INT(i/2) THEN PRINT " ";5
po«po+15

NEXT i!l
PRINTS

NEXT jl
WIDTH 75 H

RETURNS

LoadDefaultTool:fl

RESTORE DefaultTool^I

PRINTS

PRINT "Default Tool" : PRINTS

GetBytes DefaulTool$(1,1),DefaultTool$ (lf 2)f

DefaultTool$(l,3)rDefaultTool(1)U

IF DefaultTool(l)>80 THEN

255

8. Icons Amiga Tricks and Tips

RETURNS

31
LoadToolTypes:31

RESTORE ToolTypes31

PRINTS
PRINT "ToolTypes" : PRINT3I
IF po>LEN(summary$) THEN RETURN^
GetBytes ToolTypes$(1,1),ToolTypes$(1,2),

ToolTyP®s$ dr3),ToolTypes(1)31

FOR i-1 TO ToolTypes(1)/4-13I
RESTORE DefaultTool3I
ToolTypes$ (2,3) -""31
GetBytes ToolTypes$(2,1),ToolTypes$(2,2),

ToolTypes$(2,3),ToolTypes(2)31

IF ToolTypes(2)>80 THEN

ToolTvpes(2)-ToolTyoes(2)/163I
Gitstrlng ToolTypes (2) 31

NEXT i f
RETURNS

5
SUB GetString (length) STATIC^

SHARED po, summary$U

IF length»0 THEN EXIT SUBfl

1
WHILE a05

a=ASC (MID$ (summary$,po, 1)) 5
a$=HEX$(a)f

IF LEN(a$)<2 THEN a$«"OM+a$^I
PRINT a$;ff M;I

PRINT3I
PRINT MID$ (summary$, ts, po-ts-1) 31

END SUB3I

i
SUB Decimal (he$,dec) STATIC3I

dec-031
FOR i-1 TO I£N(he$) 31

a=ASC (MID$ (he$, LEN (he$) +l-i, 1)) -4831
IF a>9 THEN a«a-73I
dec«dec+16A (i-i) *a3I

NEXT i3I

31
END SUB3I

SUB GetBytes (identifier$,paramater$,value$,dec) STATIC3I

SHARED po, summary$31
READ identified,paramater$,bytes3I
PRINT identifier$;TAB(20) ;paramater$;TAB(47) ;3I
a$»MID$ (summary$,po,bytes) 31
po=po+bytes3I
IF bytes«=l THEN value«ASC(a$)3I
IF bytes=2 THEN value=CVI (a$)3I
IF bytes«4 THEN3I

FOR j-1 TO 431

a=ASC(MID$(a$,j,l))3I
h$«HEX$ (a) 31

IF LEN(h$)<2 THEN h$=h$+"0"3I
value$a=value$+h$31

NEXT jfl

256

Abacus 8.2 icon design

ELSE5
value$-HEX$ (value) 5

END in
PRINT "$";value$;TAB(57);5
Decimal value$,dec5
PRINT dec 5

5
END SUB5

5
5
5
DiskObject:5

DATA do Magic,Magic Number, 25
DATA doTVersion,Version Number, 25
DATA do"~Gadget,Click Structure, 45
DATA gg""LeftEdge,Left Click Range, 25
DATA gg"7TopEdge,Top Click Range, 25
DATA gg^Width, Click Range Width, 25
DATA ggiieight,Click Range Height,25
DATA ggTlags, Invert Flag, 25
DATA gg"Activation,$0003,25
DATA gg3Type,$0001,25
DATA ggJ3adgetRender,Pointerl Picture Data,45
DATA gg SelectRender,Pointer2 Picture Data,45
DATA gg IntuiText,"not used??",45
DATA gg~MutualExclude,"not usable!",45
DATA ggjSpeciallnfo, "not useable!ff,45
DATA gg GadgetID, "for own use! ",25
DATA ggHUserData,"your Pointer!",45
DATA do"~Type, Icon type, 15
DATA nothing, Fillbyte, 15
DATA do DefaultTool,Text Structure, 45
DATA d^TtoolTypes,Text Structure, 45
DATA dojCurrentX, Current x-Position, 45
DATA do CurrentY,Current y-Position,45
DATA do~DrawerData,Window Structure,45
DATA do^ToolWindow, Program Window, 45
DATA do StackSize, Reserved Memory, 45

5
DrawerData:5
5
DATA wi LeftEdge,Left Edge, 25
DATA wiTopEdge,Top Edge, 25
DATA wi"^Width, Width, 25
DATA wi~Height,Height,25
DATA wiTDetailPen, Drawing Color 1,15
DATA wi~"BlockPen,Drawing Color 2,15
DATA wi~IDCMPFlags,Gadget Flags, 45
DATA wi~Flags,Window Flags, 45
DATA wiTirstGadget,Gadget Structure, 45
DATA wi~CheckMark,CheckMark,45
DATA wi^Title,Title Text, 45
DATA wi Screen,Screen Pointer,45
DATA wi"BitMap,Window BitMap,45
DATA wi~MinWidth,Mininimum Width, 25
DATA wi"MinHeight,Minimum Height,25
DATA wi""toaxWidht, Maximum Width, 25
DATA wi""MaxHeight,Maximum Height, 25
DATA wi"Type, $0001,25
DATA acEx-pos,Current x-Position,45
DATA acty-pos,Current y-Position, 45

Image: 5
5
DATA im LeftEdge,Le£t Edge, 25
DATA im~TopEdge,Top Edge, 25

DATA im"Width, Width, 25
DATA iitTTHeight,Height,25
DATA inTDepth, Depth, 25

257

8. Ic on s Amiga Tricks and Tips

DATA im ImageData,BitPlane Pointer, 4 SI

DATA iirTPlanePick, Graphic Data, 1 SI
DATA im""PlaneQnOff,Use,lSI
DATA inTNextImage, Next Graphic, 4SI

SI
DefaultTool:SI

SI
DATA char num,Number of Characters, 4SI

SI
ToolTypes: SI

SI
DATA string__num, Text Number, 4SI

After creating arrays for all structures, the program prompts for the file-

Program name you want analyzed. Do not enter the .info file extension, since
description the program provides that extension automatically. Next, all data con

tained in the file goes into summary$, so that disk access won't be

needed later. If the text contains no closing nullbyte (Intuition nor

mally does this), nullbytes are added. The main program jumps to the

DiskObject structure reading routine.

Once the routine closes, the program branches to examine the icon

type. The available structures are viewed, then the program branches to

the required routines for looking into each structure.

The most important subroutine of all, LoadHeader, analyzes the

DiskObject structure. This loads the name and the byte lengths of

individual parameters from the DATA statements. The DATA lines are

searched for the GetBytes subroutine, used by almost every subrou

tine.

After GetBytes reads the text and data lengths, the text goes into the

window. From this text, the program computes the corresponding

number to be displayed from the bytes. Then a subroutine executes for

converting the hexadecimal values to decimal notation so the user can

read the text more easily.

The LoadDrawer subroutine works in the same way as Load-

Header. It reads the starting data, but computes the size of the graphic

array from Size%; this lets you incorporate this size with your own

display routines. Then the routine tests for a possible Double-

Image. If there is a Double-Image, both Image structures must

be read.

The LoadDefaultTool routine reads the text lenght from Get

Bytes. This number is multiplied by 16 for most test-icons, when

this is needed. Next follows the call for the Get String routine,

which reads the corresponding number of the string.

The same goes for LoadToolTypes, only the number of the text

must be read.

258

Abacus 83 Making your own icons

8.3 Making your own icons

Now that you have some information about the structure of icons, you

can now learn how to use and create your own icons. It's much easier to

take an established icon and change it to your own needs. You can use

die icon editor built into the Workbench diskette for this purpose.

8.3.1 Two graphics, one icon

This section tells how you can force the Amiga to display a new gra

phic for an icon that has been clicked, instead of simply inverting the
original icon colors. This is a common method that can be applied to

any icon type. Later on, you'll learn other extras, such as changing

drawer icons only.

The change must set the pointer to the second Image structure, into
which the new data is inserted. This problem is easier to solve than you

might think, since the newest edition of the Extras diskette contains a

program to do this. You must create two icons with a program like the

Icon Editor. The only stipulation is that both icons must be the

same size. After you enter the name, both icons are combined into one

unit.

With this combined icon, you can create wonderful effects. For ex

ample, you can make the Trashcan icon "lid" open up when you click

on the Trashcan icon (some versions of the Workbench already have

this feature). You can also make a drawer icon "open" when you click

on it (again, this already happens on some later Workbench diskettes).

8.3.2 Text in graphics

Another option for enhancing normal icons is placing text above the

icon graphic.

As you saw from the DiskObject structure, the graphic range proper

is different from the click range. This click range is given in the

DiskOb ject structure at parameters 4-7. The icon's text appears

below this click range. If you lower the height of the click range, then

you can raise the text proportionately. This means that you can move

the text up, and have it somewhere other than underneath the icon.

259

8" IcONS Amiga Tricks and Tips

8.3.3 The icon editor

These changes require a program that allows you to access and change
certain bytes, then save these altered bytes to diskette.

The program below is an extension of the analyzer program listed
earlier. The entire program is listed below. Load your analyzer program,
compare the listing with this listing, and add the new lines. Save the
modified program under the name iconEditor.

DIM DiskObject$(26,3),DiskObject(26)fl
DIM DrawerData$(20,3),DrawerData(20)fl
DIM Image$(2,9,3),Image(2,9)U
DIM DefaultTool$(2,3),DefaultTool(2)fl
DIM Address(100,3)fl

ON TIMER(.5) GOSUB KeyTestfl
TIMER ONfl

DEF FNSize% (Im) -Image (Im, 4) *2*INT ((Image (Im, 3) +15) /16) fl

WIDTH 75 : Adr-1 : AdrNum-lfl

INPUT "Pathname: ";Path$H
INPUT "Filename:";File$fl

OPEN Path$+File$+".info" FOR INPUT AS 15

summary$-INPUT$ (LOF (1), 1) fl

CLOSE 15

summary$=summary$+STRING$ (40,0) fl

LstBytes:fl

number-0 : lst-Ofl
GOSUB LoadHeaderSI

IF DiskObject(18)-1 THENH
GOSUB LoadDrawerU
GOSUB LoadlmageH

GOSUB LoadDefaultTool^
GOSUB LoadToolTypes^

END IF5

IF DiskObject(18)-2 OR DiskObject(18)-5 THEN5
GOSUB LoadDrawer^
GOSUB Loadlmage^
GOSUB LoadToolTypes^

END IF5

IF DiskObject(18)-3 THEN5
GOSUB Loadlmage 5

GOSUB LoadToolTypesH

END

1
IF DiskObject(18)-4 THENfl
GOSUB LoadlmageH
GOSUB LoadDefaultToolf
GOSUB LoadToolTypeslI

END IF5

260

8" IcoNS Amiga Tricks and Tips

The best thing to do is experiment with these options. Don't be sur
prised, though, when you try to open one of the stored info files, the
Info screen opens for a moment then disappears again. This happens
because no subdirectory exists for the window, which is apparently very
important to a drawer icon. Enter the CLI and create a directory for
every info file using die makedir command.

From there, you can then see all the new window colors. Some color
combinations don't work very well. Others cancel out text. Work

266

9

Error trapping

ABACUS *• ER*OR TRAPPING

Error trapping

Controlled error handling is an absolute necessity for large programs.

These can save the user a lot of trouble from incorrect input. Very few
programs are equipped with foolproof error checking. All the user has to
do is type in input that the computer can't accept, and the system may

crash. Error trapping is another facet of user-friendliness.

However, you must first know how errors are handled in the first place,
and where in the program the error occurs. You can't find the latter on
your own, but there are a few rules you can follow to help your pro

grams run error-free.

This chapter shows you how you can foolproof your programs from
errors. Youfll read about routines that check for files on diskette without
stopping from an error message, programs that generate requesters, and
even a demonstration of easy menu creation.

269

9. Error trapping a
Amiga Tricks and Tips

9.1 Errors—and why

Even when programs should^ have errors, they may have some—
whether you wrote them, or they were written commercially. These
errors can be divided into two generic, groups. The first group consists
or errors that the programmer may have overlooked. These are the lines
tnat result from leaving out a parenthesis or formula (syntax) This
error type happens often when you or the user try modifying a program.
The only way to avoid syntax (or any) errors is to completely test a
program. But how?

First, write down a list of program sections that must be used. Note the
program lines that operate under certain conditions. A number of errors
may only occur under certain conditions. When you test the program,
you have to test ejjeiy. section by calling them. r & •*

frequently encountered error is the Subscript Out of Range
error This happens when you try to access an airay element past the
default 10 elements of an array. Make a list of the aiTays used, and make
sure that you define them all properly. To make control easier, use one
particular section for dimensioning arrays at the beginning of the
program.

Math errors are another source of problems. Almost any calculation can
lead to an error. Any slip of the hand can lead to an Overflow error,
or a Division by Zero. Make sure your computations test for in
correct input, particularly in division, exponentiation, etc.

9.1.1 Disk access errors

Imagine this: You write the perfect data and address base. The user types
in the name of the file that uses this program, and all he gets is a File
Not Found error. Unlike the Workbench, which displays a requester
when something is wrong, AmigaBASIC returns an error.

A file under that name may exist, but you may have accidentally created
it from another program, and it may have a different format from the
program currently in use. The best that can happen is that the data can

confuse the program. Most of the time the result is a Type Mis
match or similar error.

270

Abacus 9ml Errors-and why

A much more aggravating error occurs when the file is on the right
diskette, but the file you want is in another directory altogether. The

result is a File Not Found error.

9.1.2 User input errors

Any database program requires the entry of values. But even values have
their limitations! Numbers should be within a certain range, and/or have
a certain number of decimal places; texts can only be a certain length or
can only contain certain characters. All these conditions aren't con
sidered by the normal INPUT statement. It accepts numeric input as
well as text, and the wrong kind of input results in a Redo from
Start error message, screen scrolling and repeated input

The option of selecting only certain characters is unsupported. If the
user goes past the assigned text length, the program cuts off these extra
characters. This means that important information can be lost.

9.1.3 Menu errors

This is where errors get harder to pinpoint User menus consist of entire
subroutines and functions. The user selects an item and the program re

acts. But menus are not infallible.

Under certain circumstances, one or more menu items may be unusable.
Selecting a menu item that shouldn't be used could lead to no reaction

at all, or even a system failure.

One harmless example could be a Save item on the fictional database
program mentioned above. Selecting this item when no data has been

entered doesn't crash the computer, but the data diskette now has a blank

record that could be very difficult to remove later.

271

9. Error trapping
Amiga Tricks and Tips

9.2 Trapping errors

Checking
for errors

Requester

It's possible to trap errors, or even bypass them. The keyword in
solving these problems mentioned above is prevention.

As already mentioned, you can prevent simple error messages like
Division by Zero by checking for these errors. This method is
much more user-friendly than the program just stopping with an error.
Program breaks give the user a new problem—he has to become a
programmer and find the bug himself. Either you can set the program
up to prompt for the correct data, or at least have the program jump to
the beginning. These are crude, but either route is better than a break.

There are other ways to handle errors in BASIC. ON ERROR GOTO
sends the system to a given line when an error occurs. The programmer
assigns the line or routine. From there, the program can mention the
nature of the error, or return to the areajust after the incorrect line.

The system requester is a much friendlier solution to error handling. For
example: If the wrong diskette is in the disk drive, a window appears in
die upper left hand corner. This window displays the text, "Please
insert volume in any drive". From there, you can select the
Cancel gadget to exit, or the Retry gadget to go on. The requester is
the last chance you get to correct an error, without getting an error
message. However, the requester is the only way to get around certain
problems, such as exchanging diskettes when you only have one disk
drive.

You may not get a chance to test your program under every circum
stance, so you may have to create your own errors using subroutines.
These errors can test your error checking thoroughly.

9.2.1 User-friendly programming

Now that you've read through the theory, you can go on to practical

programming. When an error occurs, nothing angers a user more than a

program break. This is because most users aren't professional program

mers, and even if they do program, they may not understand most of the

material within a program written by someone else. You as a program

mer must make things as simple for the user as possible. Programs

should offer the user a chance to correct errors with some flexibility.

YouVe already seen an example of user-friendly programming in the

system requester mentioned above; it gave you an opportunity to insert

the correct diskette.

272

Abacus 9.2 Trapping errors

Bypassing

errors

You can write this kind of flexible programming! You're probably

thinking of one way—open a window, write the text, and read for the
mouse click. That's one possible solution, but it's also too compli
cated! Instead, you can let the operating system draw a requester for you.

You'll see how this is done, and how you can insert your own informa

tion, below.

Before you can program a requester, you must clearly know what you
want the requester to do. It can serve the same occasions as those served

by the Woikbench requesters.

For example, you can set up a requester for a file that the system can't
find on diskette. BASIC usually returns an error message. You must

first suppress the error message, then call the requester that matches a

File not Found error message.

Since the File not Found error message usually accompanies
opening a file that is neither on the diskette nor in the correct directory,
you can't just read status during OPEN. A sequential file gives you
another way out, though. You can open the file using the APPEND

option. Either the file exists as defined by a pointer, which allows
adding to the file, or the file doesn't exist, and a new file opens. The
LOF function lets you see if the file existed previously. A file exists if
die file is at least one character in length; otherwise, the length is equal
to zero. If the length is equal to zero, the program deletes the newly

opened file.

Here is a program that demonstrates the above procedures:

1 Check for existing filefl
• on diskette^

by Wgb, August

FileName$="AmigaBasic2"H

Mainprogram: fl

Again:fl

PRINT "Searching for the file: ";fl

WRITE FileName$fl

CALL CheckFile (FileName$) II
IF exist—I THENfl
PRINT "Okay, the file exists!"fl

ELSEfl
PRINT "File not found.. .sorry."11

END IFfl

II
ENDfl

SOB CheckFile (File$) STATIC^

SHARED exists

273

9. Error trapping Amiga Tricks and Jjps

II
OPEN File$ FOR APPEND AS 2555

exist-(LOF(255)>1)fl
CLOSE 255H

II
IF exist-0 THEN KILL File$fl

END SUBfl

You can use a more elegant (and more complex) method to determine
whether a file exists on diskette (see the program below). This other
way uses a subroutine that returns a corresponding value: 1 (file exists)
or 0 (file not found).

The Lock function must be defined within a program as a function.
Then the memory location of the name is given, ending with a null-
byte. Next, the routine supplies infonnation about how die file should
be accessed. Since the Amiga is a multitasking computer, you can
choose one access by itself (Access Mode - Exclusive Write (-1)) or
read access by multiple tasks (Access Mode - Shared Access (-2)). The
first option provides write and read access for a single user. The second
option allows more than one program and/or user to read one file at the
same time.

The new routine uses Shared Access, a returned value of -2.

The value returned by the function is equal to zero if no file exists on
diskette. The value must go into memory, since it can allow another try
at file access.

The access secured through this routine should cancel the list of para
meters, since this list takes memory and time. You can use the Un-
Lock function for this cancellation. The routine returns the value
received by Lock.

1 Test for existing file on diskette^
1 using dos.libraryfl

1 © by Wgb, August '87fl

fH
I
DECLARE FUNCTION Lock& LIBRARY^

LIBRARY "dos.library"fl
II
FileName$-"AmigaBasic2"H
H
MainProgram: fl

Again:f

PRINT "Searching for the file: ";fl

WRITE FileName$fl

CALL CheckFile (FileName$) <fl

IF exist—1 THENSI

PRINT "File exists!"5
PRINT "File Header begins at Block";blk&;"on this

Disk."5

274

Abacus 9.2 Trapping errors

ELSEfl

PRINT "File not found!

END in

II
LIBRARY CLOSE 5

ENDfl

H

SUB CheckFile (File$) STATIC^

H
SHARED exist,blk&U

File$-File$+CHR$ (0) f
accessRead%»-211

DosLock&-Lock& (SADD (File$) ,accessRead%) fl

IF DosLock&-0 THENfl

exist-OH
ELSEH

exist—11
blk&«PEEKL (DosLock&*4+4) 1

END 1

5
CALL Unlock (DosLock*)!

END SUB!

Now that you have some understanding of how to check for a file on

diskette or in a subdirectory, you should learn how you can create a re

quester in BASIC.

It's possible to write a requester completely in BASIC, as described

above. However, it's much easier to use the requester routine provided

by the Amiga's operating system. This operating system module is

called the AutoRequest function. This function takes your text and

gadget requests, and does the rest. The program below contains a sub

routine that does all this for you. This subroutine returns a value which

tells the main program where to branch from that point

• Test for a file on fl
1 diskette's

f © by Wgb, June'875

or

DECLARE FUNCTION AllocRemember& LIBRARY^
DECLARE FUNCTION AutoRequestfi LIBRARY^
DECLARE FUNCTION Lock* LIBRARY?!

LIBRARY lfdf1: intuition. library"5
LIBRARY Mdfl:dos.library"5

FileName$-"df1:9.Errors/AmigaBasic2"fl

Mainprogram: II

1
Again:I

PRINT "File: ";H

WRITE FileName$<J

CheckFile FileName$f
IF exist—I THENfl
PRINT "File exists!"H

275

9. Error trapping Amiga Tricks and Tips

PRINT "File Header begins at Block11jblk&;"on this

Disk.115
ELSEfl

Request FileNama$3
IF res&-l THEN GOTO AgainU
PRINT "File not found!Mfl
END

LIBRARY CLOSE

ENDfl

SUB CheckFile (File$) STATICfl

SHARED exist,blk&fl

TestFile$-File$+CHR$(0)fl
accessRead%—2$

DosLock&-Lock&(SADD(TestFile$),accessRead%)f

IF DosLock&«0 THEN5
i05

ELSEH

5

blk&=PEEKL (DosLock&*4+4) 5
END IF5

H
CALL Unlock (DosLock&)l

END SUB^I

5

SUB Request (FileName$) STATIC^

SHARED add&fst$,res&,o££s%H

Quest$(0) ="Please insert voliomB containing"^!
Quest$(l)-"File "+FileName$5
Quest$(2)-"Can't find the file!"5
yes$="Retry" H
no$="Cancel"f
b%2H

wid%«8*3851
hi%-8*9f
offs%-OH

1
opt&-2A0+2A165

req&«AllocRemeniber& (0,400,opt&) $
IF req&-0 THEN ERROR If

5

FOR Ioop2=0 TO bt%1
st$»Quest$(Ioop2)f
MakeHeader add&,st$,1,5,
offs%=offs%+8fl

NEXT Ioop2fl

H
st$=Quest$(bt%)5
MakeHeader add&,st$f0/5roffs%+35

51
MakeHeader add&,st$,0,

276

Abacus 9.2 Trapping errors

MakeHeader add&,st$,0,5,3$

res&-AutoRequest&(WIND0W(7) ,tl&,t2&,t3&,0,0,wid%,hi%)5

CALL FreeRemerriber(O,-l)fl

END SUBfl

SUB MakeHeader (ptr&,Text$,md%,le%,te%) STATIC^

SHARED add&fl

Text$»Text$+CHR$ (0) 5

POKE ptr&,lH
POKE ptr&+l,0fl

POKE ptr&+2,2H
POKEW ptr&+4,le%fl

POKEW ptr&+6,te%fl

POKEL ptr&+8,0fl

POKEL ptr&+12,SADD(Text$)fl
IF md%»0 THENH
POKEL ptr&+16,0$

ELSEfl
POKEL ptr&+16,ptr&+20fl

END IFfl

pH

END SUBfl

First the routine must "know11 which text you want displayed. Three

Program texts lie in the routine; the main text, and additional texts from which it
description can select. The last two texts are displayed in one line, and are sur

rounded by borders. These make up the gadgets which you click. After

establishing the text, you must set the window size. If the requester

window is too small, the text simply spills over or gets overwritten,

making it hard to read.

The text must be placed in memory in a certain structure, with a mem

ory range reserved for this structure. The operating system function

AllocRemember sets this range aside. It allows selection of a mem-

cay range based on preset criteria.

PUBLIC

CHIP

FAST

CLEAR

2°
2*
22
216

Any type of memory can be used, just as long as it is cleared before

hand. If no memory is available, then an error message appears.

Assume for the moment that enough memory is available. Then the

text goes into the reserved area. This text must still appear in a certain

format. BASIC programmers can use POKES for this formatting. This

command is useful for the use and design of your own programs only—

AmigaBASIC normally doesn't require any POKEing.

The first loop brings the information text into the reserved memory

range. Then the two gadgets transfer to RAM. If everything runs cor-

277

9. Error trapping Amiga Tricks and^

rectly, then the AutoRequest function can begin its task. It first

terfs size. These return a value and then a result of 1, if the first gadget
is clicked by the user.

This value can then be followed by branches to the main program.
Either the system repeats the loading procedure, because of an incorrect
diskette or non-existent file, or the loading procedure stops and returns
the user to the main program.

9.2.2 Trapping user input errors

Now you have a requester that checks for existing files. An even more
important aspect of error trapping is keeping the user's input correct.
User entry has its own problems and errors.

The simplest and best solution is to write an input routine that reads
the input, retains the desired characters and ignores the rest, without re
turning an error message. The routine must ascertain which characters
are "legal" and which ones arent This can be accomplished by calling a
string which contains valid characters, and a routine that lists the valid
number of characters. The subroutine handles the rest of the characters.
When the user presses the <RETURN> key, the subroutine ends.

Most input goes to a specific position of the window for display.
Coordinates set this position, saving the trouble of using the LOCATE
command. You can display any text through the INPUT command.

1 Input Routine fl

| © by Wgb May f87fl

1
Mainprogram: $

1
DEFINT a-zfl

KAlpha$="abcdefghijklmnopqrstuvwxyz" fl
GAlpha$="ABCDEFGHIJKIMNaPQRSTOVWXYZIfl
NAlpha$="01234567890+-*/. ,=ffH
ZAlpha$=" ,.?!-/; :fffH
Possl$»KAlpha$+GAlpha$+ZAlpha$fl

Getlnput "Last name:",LName$,Possl$, 10,10,20,05
Getlnput "First name:",CName$,Possl$,10,12,20,011
WRITE LName$,CName$H
ENDfl

H
SUBRoutines: 51

1
SUB Getlnput (Text$,In$,Possl$,x,y,Letter,Pointer)

STATICS

Xold=POS (0) f

Yold=CSRLINU

278

Abacus 9.2 Trapping errors

Length«»Of

LOCATE y,xf

PRINT Text$;f
x-x+LEN<Text$)f

51
Readout:f

Cursor x+Length, yf

Getlnkey i$f
IF i$=CHR$ (13) THEN GOTO Donef
IF i$«CHR$ (8) THEN GOTO RubOutf
IF Letter-Length THEN GOTO ReadOutf

f
f«INSTR(Possl$,d
IF f=0 THENf

GOTO ReadOutf

END IFf

f
PRINT ±$;f

In$-In$+i$: Length«Length+lf
GOTO ReadOutf

51
RubOut:f

51
IF Length-0 THEN GOTO ReadOutf

Length=Length-lf
PRINT " ";f

In$=LEFT$ (In$f Length) 5
GOTO ReadOutf

51
Done: SI

51
PRINT " M;f

LOCATE YoldfXoldf

IF Pointer AND 1-1 THENfl
l-LEN(In$)f
In$=In$+SPACE$ (Letter-1) f

END IFf

END

Program

description

SUB Cursor (x,y) STATIC^

f
COLOR 3H

LOCATE y,xfl

PRINT "_";fl
LCX^TE yfx5
COLOR If

END SUBf

SUB Getlnkey (Key$) STATICf

KeyRead:f

IF Key$=IMI THEN GOTO KeyReadf

END SUBf

Before calling this new input routine, you should define a string or set

of strings containing groups of valid characters. For example, you can

set up a string of lowercase characters, one of uppercase characters,

another one made of numbers, and a string of other characters. These

strings let you easily set which characters you want accepted. The new

INPUT command accepts these strings as a constant.

279

9. Error trapping
Amiga Tricks and Tips

Cursor

placement

Adaptation

Get Input itself gives the text contained in the variable as a string
with all valid characters, its position, the number of characters entered,
and a pointer. This pointer determines whether the input text should be
filled with spaces where invalid characters appear in the text. This poin
ter sets to 1 if this is the case.

Unfortunately, editing numbers is impossible. You can do this, how
ever, with the following combination:

Getlnput "Number: tf,Number$,NumChar$,10,10,8
Number=VAL (Number$)

When NumChar$ only contains numbers, you can make sure that no
nulls stand in Number if you don't want to. At any rate, you won't get
a Redo from Start error from numeric input.

The subroutine stores the current cursor position at the beginning.
Since this position stays the same when the program exits the routine,
then it doesn't affect output. The text appears in the specified position,
and the computer sets the starting position for input. The length of the
text entered is still set to zero.

The read loop displays the current input position of the cursor, and the
routine waits for a keypress. Any character received goes through the
control functions. If you press the <BACKSPACE> key, the character
most recently entered deletes whenever possible. Pressing the
<RETURN> key branches immediately to the end of the routine.

Next the routine checks to see if the next character is "legal." The rou
tine examines the string constants you set for this character. If the
character is valid, it is added to the input string; if not, the Amiga
beeps and returns to the beginning of the read loop. The routine then
waits for the next character.

You can naturally adapt this routine to your own needs. For example,
this program doesn't provide for letting the user move the cursor around
within the text. It allows simple character deletion, but user input
would be a lot simpler if you could insert or delete characters in the
middle of the input line.

Another feature missing from this routine is the acceptance of no input
at all. This can be practical when one value is used repeatedly, and needs
little if any changing. You can add this to the beginning of the subrou
tine by predetermining the length of the parameters that must appear on
the screen.

Up to now, the only way you could end a prompt or input was by
pressing the <RETURN> key. You could change the pointer so that
when, say, the second bit is set, input ends only when the entry con
tains a minimum of one character.

280

Abacus 93 Errors and corrections

9.3 Errors and corrections

This section deals with corrections. Up until now, this chapter has

assumed that correction is the last possible option for incorrect input.

Most of the time no one takes this route, since real-time error checking

in BASIC simply takes too much time. The self-generated input routine

showed that examining every character can take up to three seconds to

see if the character is good, bad or indifferent This can't be helped.

For example, say you only want one word out of a hundred possible

words entered The system checks every single character as it appears in

the combination. When you end the input, it checks all available words

against this input, and you can display an error message or branch to

the input as needed.

Most of the time, responses occur in which you have no say whether or

not all values are recognized. Here, checking is only possible as a last

resort. If the program establishes that a value is invalid, then it can

simply be corrected. The program doesn't go on immediately after this.

The user must again switch on correction to see if the value just entered

is valid or not.

You can see that this is a fairly complicated subject. The entire matter

of error-free user input is difficult, and unfortunately you can't hold a

patent on this kind of routine. Every program has its own features, and

its own error sources. As a programmer, you must be sympathetic to

the user, and consider every place in a program where an error can

happen. This means that testing should occur wherever an error can

occur—better that than a program break later on.

9.3.1 Blocking out menu items

One answer to bypassing errors is to force inaccessible menu items to

appear in ghost print. Programming with the MENU command leaves all

menu items open to selection. This makes designing menus fairly sim

ple. But what if you want to deactivate menu items so that the entire

menu becomes inactive? You can save yourself a lot of work using

MENU number,item,0 to deactivate individual items. This gets to be

time-consuming when you call this command to create an entire menu

in ghost print.

That's where this program comes in. It uses a SUB routine named

Able, which lets you assign the desired status to multiple menu:

281

9. Error trapping Amiga Tricks and Tips

items. You can deactivate an entire block if you wish, or assign check

marks to an active block of menu items. The function is a practical

replacement for the MENU command.

1 PullDownTestH

fH
1 © by Wgb in Juno f87H

fH
H
DEFINT a-zH

H
MainProgram: H

H
GOSUB MenuDefinitionH
PRINT"All menus active."H
Pause 5H

H
PRINT "Disk menu inactive."H
Able 1,0,0,OH

Pause 5H

H
PRINT "Drawing type set."H

Able 2,4,0,2H

Pause 5H

PRINT"Single-color drawing only, "5
Able 3,1,5,011

Able 3,1,0,111

Pause 5H

PRINT"GET from Brush menu available only. "5
Able 4,1,4,05

Able 1,0,0,111

Able 3,1,5,111

Pause 5H

H
PRINT"Press a key to end the program. "H

Able 1,0,0,011

Able 2,0,0,011

Able 3,0,0,011

Able 4,0,0,011

Able 5,1,2,011

H
WHILE INKEY$=""H
SLEEPH

WENDU

H
MENU RESETH

H
ENDU

H
H
MenuDefinition:1I

RESTORE MenuDataH

H
READ NumberU
FOR i=l TO NumberU

READ Items,LengthH
FOR j=0 TO ItemsH

READ Item$H
IF j>0 THENH

Item$-LEFT$ (Item$+SPACE$ (Length), Length) H

IF i=2 OR i-3 THENH
Item$=" "+Item$H

END IF1I

END IFH
MENU i,j,l,Item$U

282

Abacus 93 Errors and corrections

NEXT j*

NEXT i*

*
RETURN*

*
SUB Able (MenuNr, Item, Number, Types) STATIC*

*
FOR i»Item TO ItenH-Nuntoer*
MENU MenuNr, i,Types1I

NEXT iH

*
END SUB*

SUB Pause (Seconds) STATIC*

*
Elapsedfc-TIMER+Seconds*

WHILE TIMER<Elapsed&*

WEND*

*
PRINTS

END SUB*

MenuData:5

DATA 55

DATA 7,15,Disk*

DATA New, Load, Load as*

DATA Save,Save as5
DATA Disk Command, Quit*

*
DATA 7,9, Draw*

DATA Freehand, Line, Lines5
DATA Circle,Rectangle,Polygon*

DATA Film

*
DATA 6,11,Colors

DATA One Color,Multicolor,Palette*

DATA Shadow, Wipe, Transparent*

DATA 6,9, BrusM
DATA Load, Load as, Save^

DATA Save as, Clear,Get5

1
DATA 4,11,Extras*
DATA Workbench, Coordinates*
DATA Blend Out,End*

*
add&»ptr&+20*

First all variables are defined as integers. You may wonder why this

Program program declares just these few variables. The reason is that when you
description define these at die beginning, the speed increases greatly—all math op

erations run as integer arithmetic. Besides, no problems crop up during

the subroutine calls. If whole-number constants appear there, then the

Type Mismatch error occurs (the subprograms want real number

variables). Then you must either add integer signs to the constants in

the command line, or adapt the variable types in the SUB program.

After variable definition, the main program branches to the SUB pro

gram MenuDefinition, which reads the menu texts from the DATA

statements at the end of the listing.

283

9. Error trapping Amiga Tricks and Tips

Now look at the SUB program itself. After the DATA statements gene
rate the menu data, the corresponding number goes to the outermost

loop. This loop reads all die data concerning the number of menu items

per menu and die length for each text The last value is very important,

since after defining a menu you can open the corresponding array. It has

a maximum X-length based upon the longest text You can only

activate the individual menu items that actually contain characters.
Every line that contains less than the maximum number of characters

fills in with blank spaces. You can also activate the spaces at the end of
every menu item.

With this, you can make a graphic, move the menu items to the start of
the current item, and place a REM character in front of the line, filling

Ae Itexn$ variable with SPACE$. When you select the menu item,
make sure you realize that this was done.

Look at the inner loop of the SUB routine. This takes the abovemen-

tioned number of menu items from the DATA statements, and defines

them with the MENU function. Menus 2 and 3 can have checkmarks

before their items, when two spaces precede the texts of these menus.

The addition of spaces following the texts changes when the number of

menu items is greater than null. The menu title must not be corrected

in this case.

Now on the main program itself. It displays die text stating that all

menus are active. From this the user can determine the branch to a sub

routine which waits for a given number of seconds then returns to the

main program.

The design of this routine is fairly simple. First the computer calculates

the time number which must be assigned to the given number of sec

onds. Then this waits in a delay loop until the current time is reached.

The main program displays another text that says that the Disk menu

is inactive. After this, the most important subroutines execute. The

parameters state that the first menu's title, as well as the other menu

titles, should be set with zeros. This sets all the other menu items to

zero.

The SUB routine is easy to call, but designed with ease of use in mind.

For each parameter, a loop executes which assigns the specific item

types to all menu items.

284

10

Effective

programming

Abacus 10. Effective programming

10 Effective programming

"How can I program more effectively?" Good question. The chances are

good that anyone reading this book has some knowledge of program

ming. But since every programmer has his own style, the question of

effective programming can't be answered simply. This chapter tries to

point out some ideas that will help your programming style.

Before going on to the examples, here are a few things to bear in mind.

Style in Three different people authored this book. Every one of these men has
programs his own style, but the ideas for style here come from only one of the

authors. The following personal "style sheet" vtas used on the program

examples in Chapter 4:

1) Indent commands in every loop by three spaces

2) Indent every main program command or every label by one

character

3) Place all subroutines at the end of a listing

4) Place all DATA statements after the subroutines

5) Indent any commands in an IF construct by two characters

These are personal opinions about style. These rules assume that you

only write one command to a program line.

When you use multiple commands on a program line, the readability of

the program suffers. Programming style is much more than the amount

of money you get for writing a program. To some degree, a program is

a work of art. The most important aspect of a program is that it works,
and not necessarily how it looks. However, when you write a program

that's several hundred lines long, or when you want to adapt this pro

gram for commercial sale, you should write it so that anyone can under

stand it if they look at it.

Style is but a small part of effective programming. As already men

tioned, readability serves the user and the programmer, but it's

incidental. The program's function is the primary factor. An effective

program accomplishes in one line what could normally take ten lines of

program code. Or, an effective program executes a formula in seconds

that might take other programs a week.

287

10. Effective programming Amiga Tricks and Tips

10.1 Benchmarks

Tests for measuring program speed and efficiency are called benchmarks.

These benchmarks measure the time involved in a program run. You

can then edit the program and try the benchmark again.

10.1.1 Benchmark: variable types

Why are there different variable types? For one thing, you can't store

text in the same way you store numbers. To see some other reasons

why there are so many different types of variables, type in and run the

following program:

' Benchmark used for testing the differences^

1 between different variable typesfl

•II

1 © by Wgb, June f875

5

PRINT "Benchmark 1 tests for the differences between

different"^

PRINT "variable types, using the following loop:5

PRINTS

PRINT " FOR i-1 to 100005

PRINT " a=a+lH

PRINT " NEXT iH

PRINTS

5

tla-TIMERfl

5

FOR i%=l TO 100005

a=

NEXT

tlb=TIMER5

PRINT "Short integer floating variable (%)

:";tlb-tla5

CLEARS

n

t2a=TIMER5

FOR i&=l TO 100005

a«a+15

NEXT i&5

5

t2b»TIMER5

PRINT "Long integer floating variable (&) :H;t2b-t2a5

288

Abacus 10.1 Benchmarks

CLEAR!

t3a»TIMER!

FOR i-1 TO 10000!

NEXT i!

t3b-TIMER!

PRINT "Single-precision floating-point variable :";t3b-
t3a!

CLEAR!

t4a«TIMER!

FOR i!-l TO 10000!

NEXT i!!

t4b-TIMER!

PRINT "Single-precision floating-point variable (!) :";t4b-
t4a!

CLEAR!

t5a«TIMER!

FOR i#=l TO 10000!

NEXT i#!

t5b-TIMER!

PRINT "Double-precision floating-point variable (#)

:lf;t5b-t5a!

All the other benchmarks in this chapter are based on this program.
Program First some text commentary appears, telling the user what the program
description does. The text then disappears.

The time variable tla declares the starting time (tla=TlMER), then the
program executes a loop. Tlie time variable with the index b sets the

ending time. The computer figures out the execution time of the loop
from the difference between the starting and ending time. This appears
on the screen with a text. To avoid any outside influence, all variables

This tests out the execution time of the same loop, using variables of
different types. The final result shows which variable types allow faster
execution, and which variable types slow execution time.

See the table below. These are the values we received when we ran this
benchmark, but try the program out yourself:

289

10. Effective programming Amiga Tricks and Tips

int

Short and

long

integers

10.92188

10.89844

10.89844

11.05859

10.89844

10.89844

10.89844

long int

11

11

10.96094

11

10.98047

10.98047

10.98047

simple float simple ! double

13

13

13.10156

13

13

13

13

13

13

16.59766

13

13

12.98047

13

13.80078

13.9375

13.83984

13.80078

13.80078

13.80078

13.80078

As you can see from the table, the values aren't constant for every type.
The next section explains why this is so.

Tlie loop executes 10,000 times. Decimal places must be born in mind
—multiply the entire set by 1000, and the values are more even.

The long integer values require more time than the short integers. This
is understandable since the bytes store twice their length in numbers.
The disadvantage to both these variable types is that they can handle
whole numbers only.

Integer variables are faster than floating-point variables. So you can dis

tinguish the types by those marked by decimal points. There are three

distinctions between two types. One is single accuracy, the other has
double accuracy. The simplest means that unless a variable is desig

nated otherwise, it handles numbers with single accuracy. You can also

add an exclamation point to a variable name, which invokes double

accuracy. The amazing thing is that some test runs of variables that had

the exclamation points following them ran much faster than those vari

ables without it. This speed change was inconsistent, however (see also
Section 10.1.2).

You'll see that most of the time double accuracy variables run con

siderably slower than simple accuracy variables. If you don't need to use
double accuracy, don't use it

10.1.2 Benchmark peculiarities

Before we continue on with the next benchmark, you should know

about a few of the peculiarities of benchmarks.

You may wonder why benchmarks run differently each time you run the

computer. This is due to the random numbers which change through the

TIMER variables every time a program starts.

290

Abacus 10.1 Benchmarks

Speed

changes

BASIC from

the CLI

Some benchmark tests give values that can be incredibly different from

each other. Some changes are due to timing, but many returned values

can look totally illogical. Most of the time, these odd values can't be

figured out In a few cases, the BASIC version and the time delay used

cause die changes.

Here are some hints for you. If you want your BASIC programs to run

faster, then don't start BASIC fiom the Workbench. This takes up extra

memory and another task—these things absorb execution time.

When you stop the Workbench and the CLI window appears, type in

any characters until the disk drive runs a moment Put the diskette into

the drive and erase your random characters using the <BACKSPACE>

key.

To start BASIC, type a quotation mark, the diskette drive specifier, a
colon and the name amigabasic ending with a quotation (i.e.,

wdf0: amigabasic"). Press the <RETURN> key. BASIC loads.

This method saves you a lot of time. The only thing you may really

miss is the user-friendly nature of the Workbench. When you want to

load a program, then you must type in the program name instead of
clicking the icon. In the long run, though, the quotation marks are a lot

faster.

10.1.3 Benchmark: DEF for variable declaration

The Amiga has two ways that the user can assign variables. You can

either put a declaration character after each and every variable (e.g., %,

&,!, #), or you can define all the variables at the beginning of the pro

gram with one character for a specific type.

The program following tests which of the two versions run faster. The

return of illogical values may occur as mentioned in the last section.

1 Benchmark for testing the time differences between^

1 variables declared using DEF to set the variable^

• type*

PRINT "This benchmark tests for the differences in

execution?!

PRINT "times between variables. The first loop uses thefl

PRINT "variable definitions within the loop, while the

second^

PRINT "loop uses the DEFinition statement.U

PRINTS

CLEARS

291

10. Effective programming Amiga Tricks asd Tips

FOR i%«l TO 10000U

a-^a+lfl

NEXT ±%fl

H

tlb-TIMERlI

PRINT "Variable with character: ";tlb-tlafl
H

CLEARS

I
DEFINT ij

t2a-TIMERfl

FOR i-1 TO 100005

a-a+lfl

NEXT ifl

t2b-TIMERfl

PRINT "Variables using DEF :M;t2b-t2afl

characters

10.9375

10.94141

10.90234

10.91791

10.92188

10.90234

10.91797

10.91797

10.94141

10.92188

10.91797

DEF

10.94141

10.94141

10.94141

10.91791

10.91791

10.90234

10.90234

10.91797

10.94141

10.91797

10.91797

This table shows you that a definition with DEF is considerably faster.
This especially applies to programs in which almost all variables are of
one type, and in which very few others are used.

The speed advantage lies in not using the character for the variable type.
Fbr every variable, die interpreter has one less character to read. You see
how that works. The effect only worts most naturally when these lines
execute within a loop, for example.

292

Abacus 10.1 Benchmarks

10.1.4 Benchmark: variable definition time

This means a great deal, since BASIC must set up a list of variables

used. When a variable is defined at the beginning of a program, this
variable goes to the beginning of the list When other variables follow,

and the program must search for them in this list

Type in die following program, or just look at the table. The best thing

to do is make your own table.

Benchmark for testing speed between variables^

definitions both at the beginning and later on5

in program Ioops5

5

© by Wgb, June '875

5

5
PRINT "The variables used in the first loop are

predefined, 5

PRINT 5

PRINT "The second loop inserts other variables, even!

PRINT "though the loop doesn't use these variables.5

PRINT "The loop formula:5

PRINTS

PRINT "for i-1 to 100005

PRINT " a-a*1.15

PRINT "next i5

PRINTS

5

a-OH

tla-TIMER5

5

FOR i-1 TO 10000^1

a-an.19

NEXT 15

5

tlb-TIMER5

PRINT "1st loop :";tlb-tlaH

CLEARS

b-0 : c-0 : hello-0 : me-0H

a-Ofl

t2a-TIMERH

FOR i-1 TO 100005

a«a*l.15

NEXT 15

5

t2b-TIMER5

5

PRINT "2nd loop :M;t2b-t2a5

293

10. Effective programming Amiga Tricks and Tws

1st Yftriable si

10.45703

10.45703

10.46094

10.46094

10.48047

10.46094

10.46094

10.48047

liccessivfi variaMpc

10.46094

10.46094

10.45703

10.48047

10.46094

10.48047

10.48047

10.46094

As you can see, there is virtually no difference when a variable is de
fined, even if the variable is unnecessary.

10.1.5 Benchmark: Variable name lengths

The earlier computers manufactured by Commodore only read two-
character variable names. AmigaBASIC allows you to use much longer
variable names, which means that you could write variable names that
meant something in your programs (e.g., you could assign a variable

named BorderColor to represent the screen border color number).

Longer variable namesare easier for the user to read. But do they affect
the program's execution time? The longer names take up more memory,
so it stands to reason that a longer name takes more time to handle.

This benchmark tests out the nature of these variables. The first loop
executes a set of computations using long variable names. The second
loop performs the same computations with very short variable names.

1 Benchmark for testing speeds of loops f

f using shorter or longer variable namesfl

II

1 © by Wgb, June '87H

fH

1

PRINT "The first loop uses very longfl

PRINT "variable names. The second loopfl

PRINT "uses variable names consisting offl

PRINT "single characters.wfl

PRINTS

tla-TIMERfl

1

FOR IndexCounter-1 TO lOOOOfl

PartialResult-IndexCounterA2-3*IndexCounterfl

EndResult-PartialResult-l/3*PartialResult5
NEXT IndexCounterfl

1

294

Abacus 10.1 Benchmarks

tlb-TIMER!

!

PRINT "1st loop:";tlb-tla!

CLEAR!

!

t2a-TIMER!

!

FOR i-1 TO 10000!

t-iA2-3*i!

e-t-l/3*t!

NEXT i!

!

t2b-TIMER!

PRINT "2nd Ioop:";t2b-t2a!

long name short name

111.457 111.4609

Here again, there's very little difference between the two types. Most of

the time, the shorter variable names are only a little faster. It is recom

mended that you use longer names for variables. This may take up a bit

more typing time on your part, but you get much more information

about the variables.

10.1.6 Benchmark: single-line loops

One question that has always been asked is whether a programmer

should run loops over the course of several lines, or just squeeze loops

into one line. Many programmers don't like compressed programs; but

try out this benchmark first, and see which is faster.

The following program performs an addition. It continues this addition

until the program reaches a specific value. This occurs within a struc

tured loop containing several lines. The second route has the entire loop

within one line. Which is faster?

1 Benchmark for testing speed differences between!

1 line set-ups!

'!

1 © by Wgbr June *87!

PRINT "This program tests the same command sequence in

both single-line!

PRINT "and multiple-line program format using the

formula:!

PRINT!

PRINT "1. WHILE a<10000!

295

10. Effective programming
Amiga Tricks and Tips

PRINT

PRINT " WENDfl

PRINTS

PRINT "2. WHILE a<10000 : a-^a+1 : WENDfl
PRINT!

a-Ofl

tla-0 : tlb-0 : t2a-0 : t2b»0fl

tla«TIMERH

WHII£ a<10000H

WENDU

t2a-TIMER1I

WHILE a<10000 : a^a+1 : WEND5

PRINT "1.

PRIKT "2.

3 lines

18.4375

18.41797

18.39844

18.39844

18.42188

18.41797

18.33984

18.35938

(multiple 11

(single line

lline

18.96094

18.96094

18.96094

18.96094

18.96094

18.96094

18.87891

18.90234

:H;t2b-t2af

You may be surprised to learn that the tightly packed line is somewhat
slower than the separate ones. Why this is so, we donft know. But this
means that you can write neat, structured programs without sacrificing

296

Abacus 10.1 Benchmarks

10.1.7 Benchmark: subroutine positioning

Older Commodore computers ran faster when program jumps occurred

at the beginning of the program. This was because the BASIC

operating system looked for subroutines in a program starting at the

beginning of the program.

This program tests out execution times based on the positions of

subroutines.

• Benchmark for testing speed differences based fl

• on the positioning of subroutines within an 5

1 AmigaBASIC program.?!

GOTO Mainprogramfl

Subroutinel: 5

RETURNS

Mainprogram: fl

II
PRINT "This program tests for the speed difference (if

any) II

PRINT "between programs using subroutines at the

beginning^

PRINT "and end of program code.5

PRINTS

tla=TIMERfl

H
FOR i-1 TO 100005

NEXT ifl

11
tlbTIMERfl

PRINT "Normal loop time :";tlb-tlafl

CLEARS

t2a™TIMER!I

FOR i=l TO 100001

GOSUB Subroutine^

NEXT ifl

11
t2b«TIMERfl

PRINT "Time with subroutine at beginning: ";t2b-t2afl

CLEARS

t3a=TIMERfl

fl

FOR i-1 TO lOOOOfl

297

10. EFFECTIVE PROGRAMMING Amiga Tricks^JlK

GOSUB Subroutine2fl

NEXT 15
flT

Jl

t3b-TIMER1I

PRINT "Time

ENDU

Subroutine2:

RETURN^

normal

13.05859

13.01953

13

13

13

with subroutine at end

i

start

19.78105

19.71875

19.71875

19.69922

19.71875

end

19.75781

19.72266

19.71875

19.72266

19.71875

:";t3b-t3aH

To make this comparison, the first loop performs the innermost tasks.
Then the inner section goes to the subroutine at the beginning. Finally

The loop not contained within a subroutine is the fastest loop of the
bunch. A program jump takes considerably longer, but the time differ
ence between the two subroutines is very interesting. Placing the
subroutines at the end of the program seems to work better than placing
them at the beginning.

298

Abacus
10.2 SHORT LIBRARIES

10.2 Short libraries

Effective programming also means that the programmer uses as little
memory as he possibly can. This extra memory can be used for more

important assignments.

Library ffles can take up a great deal of memory. The most important
Memory and libraries are already in the system when you boot the Amiga^AH^r
libraries libraries are called ftom the Workbench diskette as needed BASIC calls

these libraries according to name, parameters and offset ot every

function.

A library file must have memory reserved for it, which doesn't really
have another purpose. Every byte is important, though. You don't want
to waste memory, especially with only 512K available.

Many Ubraries are frequently unnecessary, but BASIC calls them
anyway. You can remove these unnecessary Ubraries from the list, and
have the Amiga load the .bmap files that it absolutely requires.

The foUowing program uses this principle. After entering the function
names and their parameters in the DATA statements, you can start the
program and create your own personal program Ubrary. You should
know which Ubraries are required by which program. No two programs
can use the same library ffles. Insert a comment using the Info func
tion of the Workbench that states to which program this library

belongs.

PEM J

REM - Universal .bmap linker for -l
REM - creating abbreviated Libraries -U

.bmap creator for user-created abbreviated

(See Amiga Tricks & Tips from Abacus for a

list of library command data for this

1
Header:

PRINT"

libraries"

PRINT11

completed

PRINT"

program) "fl

FunctionValues:H

DATA graphics^

DATA Move,9,1,2,2405

DATA PolyDraw,10,lf 9,336$

299

10. EFFECT PROGRAMME AMIGA TRICKS AND TlPS

DATA SetDrawMode,10,1,35451
51

DATA endfl

51

REM

REM - The above DATA statements state the following^ I*
REM - DATA graphics - name of the short library file -J
REM - Move, PolyDraw and SetDrawMode - the commands -I
REM - placed in the short library file I
REM _1 *

RESTORE FunctionValues5I

READ LibName$5[

51

OPEN LibName$+».bmap" FOR OUTPUT AS 151

ReadLibFunc:5I

READ Routine$5I

gencount«gencount+15I

IF Routine$«"end" THEN ShutDown5I

counter=05I

51

ReadLoop:5I

READ value (counter) 51

IF value (counter) <20 THEN5I

counter-counter+151
GOTO ReadLoop5I

ELSE'S

offset-value (counter) 51

counter=counter-l51

END IF5I

51

offset«65536$-offset5I
off1-INT (offset/256) 51

off2-offset- (256*off1) 51
51

lib$-Routine$+CHR$ (0) +CHR$ (off1) +CHR$ (off2) 51

FOR loqp=0 TO counter5I

lib$=lib$+CHR$ (value (loop)) 51
NEXT loop5I

51

lib$»lib$+CHR$ (0) 51

51

ges$»ges$+lib$5I
51

GOTO ReadLibFunc5I

51

ShutDown:5I
51

LOCATE 7,651

PRINT gencount-2;M functions written to the short
library.1151

PRINT#l,ges$5I

300

Abacus 10.2 Short libraries

CLOSE H

LOCATE 9,6H

PRINT tf

LOCATE 12,61

ENDU

ffLibName$+".bmap written to diskette.

Changing

the libraries

exec.library

The sample listing above shows a library which could be used with a

grid-based graphic program. It contains the most important graphic
functions needed: Move, SetDrawMode and PolyDraw. Think of

the memory and loading time saved by loading a short library, instead

of loading the entire library set

You can make even more changes. If you don't want to call the func

tions under their usual names, you can change the name in the DATA

list, and reboot the program. Only the offsets are necessary to call the

libraries.

Changing the names for the entire library set isn't so easy. First you

must copy the source library with the new names on the Workbench

diskette, giving you a copy of the same library (hopefully you'll have

enough memory). Change the ±>map filenames. Then the entire library

is no longer a problem.

Below are the complete DATA statements for the dos, exec,

graphics and intuition libraries. These let you create your own

individualized .bmap files.

DATA exec

DATA InitCode,72

DATA InitStruct,10,ll,l,78

DATA MakeLibrary,10,ll,12,1.2,84

DATA MakeFunctions,90

DATA FindResident,96

DATA InitResident,102

DATAAlert,108

DATADebug,114

DATADisable,120

DATAEnable,126

DATAForbid,132

DATAPermit.138

DATASetSR.1,2,144

DATA SuperState,150

DATA UserState,l,156

DATA SetIntVector,l,10,162

DATAAddIntServer,l,10,168

DATA RemIntServer,l,10,174
DATACause,10,180

DATAAllocate,10,l,186

DATA Deallocate,10,ll,l,192

DATA AllocMem,l,2,198
DATAAllocAbs,204

301

10. Effective programming Amiga Tricks and Tips

DATA FreeMem,10,l,210

DATAAvailMenv2,216

DATAAllocEntry,9,222

DATA FreeEntry,9,228

DATA Insert,9,10,ll,234

DATAAddHead,9,10,240

DATAAddTail,9,10,246

DATA Remove,10,252

DATA RemHead.9,258

DATARemTail,9,264

DATA Enqueue,9,10,270

DATA FindName,9,10,276

DATAAddTask,l0,11,12,282

DATA RemTask,10,288

DATAFindTask,10,294

DATA SetTaskPri,l0,1,300

DATA SetSignal,l,2,306

DATA SetExcept,l,2,312

DATAWait,l,318

DATA Signal,10,l,324

DATAAllocSignal,l,330

DATA FreeSignal,l,336

DATA AllocTrap,l,342

DATA FreeTrap,l,348

DATAAddPort,10,354

DATA RemPort,10,360

DATAPutMsg,9,10,366

DATAGetMsg,9,372

DATA ReplyMsg.10,378

DATA WaitPort.9,384

DATA FindPort.10,390

DATAAddLibrary,10,396

DATA RemLibrary,10,402

DATA QpenLibrary,10,l,408

DATA CloseLibrary,10l414

DATA SetFunction,10,9,l,420

DATA SumLibrary,10,426

DATAAddDevice,10,432

DATA RemDevice,10,438

DATA QpenDevice,9,l,10,2,444

DATA CloseDevice,10,450

DATADoIO,10,456

DATASendIO,10,462

DATACheckIO.10,468

DATA Wait10,10,474

DATAAbort10,480

DATAAddResource,10,486

DATA RemResource,10,492

DATA OpenResource,10,498

DATAGetCC,528

DATA end

302

Abacus 10.2 Short libraries

intuition .library

DATA intuition

DATA AddGadget,9,10,l»42

DATA AllocRernember,9,l,2,396

DATAAutoRequest,9,10,ll,12,l,2,3,4,348

DATA BeginRefresh,9,354

DATABuildSysRequest,9,10,ll,12,l,2,3,360

DATA ClearDMRequest,9,48

DATA ClearMenuStrip,9,54

DATA ClearPointer,9,60

DATA CloseScreen,9,66

DATA CloseWindow,9,72

DATA CloseWorkBench,78

DATA CurrentTime.9,10,84

DATA DisplayAlert,l,9,2,90

DATA DisplayBeep>9,96

DATA DoubleClick,l,2,3,4,102

DATA DrawBorder,9,10,l,2,108

DATA DrawImage,9,10,l,2,114

DATA EndRefresh,9,l,366

DATA EndRequest,9,10,120

DATA FreeRemeniber,9,l,408

DATA FreeSysRequest,9,372

DATA GetDefPref3,9,1,126

DATA GetPref8,9,1,132

DATA InitRequester,9,138

DATA IntuiTextLength,9,330

DATA ItemAddress,9,l,144

DATA MakeScreen,9,378

DATA ModifyIDCMP,9,l,150

DATAModifyProp,9,10,ll,l,2,3,4,5,156

DATAMoveScreen,9,l,2,162

DATA MoveWindow,9,l,2,168

DATA OffGadget.9,10,11,174

DATA OffMenu,9,l,180

DATAOnGadget.9,10,11,186

DATAOnMenu.9,1,192

DATA OpenScreen,9,198

DATA OpenWindow,9,204

DATA 0penWorkBench,210

DATAPrintIText.9,10,1,2,216

DATA RefreshGadget8,9,10,11,222

DATA RemakeDisplay,384

DATA RemoveGadget.9,10,228

DATA ReportMouse,9,l,234

DATA Request,9,10,240

DATA RethinkDisplay,390

DATA ScreenToBack,9,246

DATA ScreenToFront,9,252

DATA SetDMRequest.9,10,258

DATA SetMenuStrip,9,10,264

DATA SetPointer.9,10,1,2,3,4,270

DATA SetWindowTitles.9,10,11,276

DATA ShowTitle.9,1,282

303

10. Effective programming Amiga Tricks and Tips

DATA SizeWindow,9,l,2,288

DATAViewAddress,294

DATA ViewPortAddress,9,300

DATAWBenchToBack,336

DATAWBenchToFront,342

DATA WindowLimits,9,l,2,3,4,318

DATAWindowToBack.9,306

DATAWindowToFront.9,312

DATA SetPrefs,9,l,2,324

DATA AllohaWorkbench.9,402

DATA end

dos.library

DATAdos

DATAxClose,2,36

DATA CreateDir,2,120

DATA CurrentDir,2,128

DATA DeleteFile,2,72

DATADupLock,2,96

DATA Examine,2,3,102

DATAExNext,2,3,108

DATA GetPacket,2,l 62

DATA Info,2,3,H4

DATAxInput,54

DATA IoErr,132

DATA Islnteractive.2,216

DATALock,2,3,84

DATAxOpen,2,3,30

DATAxOutput,60

DATA QueuePacket,2,168

DATA ParentDir,2,210

DATAxRead.2,3,4,42

DATARename,2,3,78

DATASeek,2,3,4,66

DATA SetComment,2,3,180

DATA SetProtection.2,3,186
DATAUnLock,2,90

DATA WaitForChar,2,3,204

DATA xWrite,2,3,4,48

DATA CreateProc.2,3,4,5,138

DATA DateStarap,2,192

DATADelay,2,198

DATA DeviceProc,2,174

DATAxExit,2,144

DATA Execute,2,3,4,222

DATALoadSeg,2,150

DATA UnLoadSeg,2,168

DATA end

304

11

Machine

language calls

abacus 11. Machine language calls

11. Machine language calls

AmigaBASIC is a wonderful programming language, but it runs too
slow for many applications. The clearest solution may be to write the

program that needs the most speed in machine language and call it from

AmigaBASIC. There are some problems with this idea, which this
chapter explains.

First on to the assembler itself. We use AssemPro Amiga from
Abacus.

The first important factor is the addressing type used to assemble your
own machine language programs. When you want to use machine lan

guage calls from AmigaBASIC, you must use PC-relative addressing.

Normal code can be called from the Workbench or the CLI, but you can

count on a system error when calling normal machine code from

AmigaBASIC. The term MPCtt refers to the Program Counter, rather

than personal computer. Why PC-relative? Look at what happens when

the Amiga loads and runs machine language. The Amiga is

multitasking, which means it can run several programs at the same

time. These programs must all start at different memory locations. It

naturally follows that the addresses used by the program cannot be

loaded at the same locations, or else the entire system crashes. After

loading, the operating system converts all addresses used to the required

memory locations.

When you load a machine language routine from AmigaBASIC, and no

other task is in the system, no address changing occurs. The program

should run as it comes from the diskette, but AmigaBASIC cannot set

the address in which the routine should lie, since it only sets absolute

addressing for itself.

Be sure that your assembler only uses offsets for the current address.

307

11. Machine language calls Amiga Tricks and Tips

11.1 Loading and running

machine language

Here's the step by step process for controlling machine language from

AmigaBASIC. First the routine should be loaded into memory. You

can do this in one of two ways: Load direct from diskette, or execute the

routine from DATA statements from AmigaBASIC itself.

1) For long machine language or BASIC programs:

DECLARE FUNCTION xOpenfi LIBRARY ■ don ■ t

DECLARE FUNCTION xRead& LIBRAY ■ forget to

LIBRARY wdos.library" ' call libs

File$=ffMyroutineff+CHR$ (0)

handles=xOpen& (SADD (File$) ,1005)

reader&=xRead& (handle&,Address&,Lenght&)

CALL xClose (handles)

2) The DOS library must be opened for loading. The following
works:

OPEN "Myroutine" FOR INPUT AS 1

a$=INPUT$(LOF(l),l)
CLOSE 1

This routine must already be set up in a string.

3) Short routines let you read a file byte for byte into any variable,
or POKE it direct into memory.

If you prefer to use DATA statements from within AmigaBASIC, look
at the Data Generator program in Section 6.3.1.

If your program lies in a specific memory range (e.g. chip RAM), use
the AllocMem routine from the Exec library to reserve memory. The
simplest option is to read a routine into a string. You can use array
variables if you wish.

308

ABACUS 11.2 LED SHOCKER

11.2 LED shocker

Imagine this: You run a program. For a moment, nothing appears on

the screen. Suddenly the POWER LED on the Amiga blinks—a sys

tem crash!

No, not a system crash; the machine language program below made the

LED flash:

start: /beginning of program

move.l dOf-(sp) /Reserve data register from stack

move.l 8(sp),dO /Value from data register 0

cmp.l #l,dO /Value = 1?

beq LEDON /Branch to LEDON

LEDOFF: /Otherwise do this

or.b #2,$bfe001 /Set bit 1

bra DONE /Jump to DONE

LEDON: /Turn LED on

andi.b #253,$BFE001/Clear bit 1

DONE:

move.l (sp)+,dO /Remove dO from stack

rts /Return to AmigaBASIC

END /end of program

If you don't want to type it in on your assembler, or you don't have an

assembler, see the program in the next section.

309

11. Machine language calls Amiga Tricks and Tips

11.3 Passing values

AmigaBASIC calls a machine language program with the variable name
which contains the starting address of the program. This is done by die
CALL command:

CALL address* (parameterJL,...,last_parameter)

Hie interpreter places die last parameter on the stack, then accesses die

first parameter and places the return address on the stack. You can access

the correct address from the stack. Here's a graphic layout of the stack:

Line number Stack setup

0 stack pointer » return address

stack pointer+4 = parameterl (just one)

1 stack pointer = dataregisterO

stack pointer+4 = return address

stack pointer+8 = parameterl

11 stack pointer = return address

stack pointer+4 - parameterl

Note that every register on the stack pointer increments by 4 when set

for parameters.

How does AmigaBASIC handle the results of this routine through a

function? The addresses of the variables which later contains the result

are given. This simplifies the entire program, since you must at least

use array variables.

Now on to the program itself. These DATA lines were created using the

Data Generator program in Section 6.3.1.

310

ABACUS 113 Passing values

REM #############################?

REM # LED-Shocker #5

REM # #5

REM # (W) 1987 by S. Maelger #5

REM #############################*

S

RESTORE datasS

datastring$=""i

FOR i=l TO 405

READ a$S

datastring$=datastring$+CHR$(VAL(a$))5

NEXT5

5

datas:5

DATA 2F,0,20,2F,0,8,B0,3C,0,l,67,0,0,E,0,39,0,2,0,BF5

DATA E0,1,60,0,0,A,2,39f0,FD,0,BF,E0,1,20,IF,4Ef75,0,05

POWER&=SADD(datastring$)

5

FOR i=l TO 20

f

Mode&=0

CALL POWER&(Modes)

t=TIMER+.5

WHILE t>TIMER

WEND

5

Modes=1

CALL POWERS<Mode&)5

t=TIMER+.55 ,

WHILE t>TIMER5

WEND5

NEXT5

STOP5

:REM Load string address?

:REM5

:REM Turn off LED 5

:REM Call routine 5

:REM but not too5

:REM fast5

:REM5

:REM Turn on LED 5

311

12

Input and

output

abacus 12. Input and output

12. Input and output

Users normally think of input and output (or I/O) as the contact

between the Amiga and its peripherals. Peripherals are devices such as

printers, joysticks and disk drives. The Amiga treats the built-in disk

drive as an external device, since disk drives are considered external by

most computers.

The advanced user may wonder how to communicate with these devices

on a more-or-less direct basis. The Amiga has a basic I/O system.

Every device has a corresponding software module which converts the

basic control codes into device-specific codes. These software modules

have file extensions of . device. Some of these device files lie in

KickStart memory, while some are on the Workbench diskette.

You must create an I/O request block to handle I/O. This is placed in a

reserved area of memory. This section is defined as follows:

add& = starting memory

address:B=byte:W=word:L=longword

add&+ type definition

0

4

8

9

10

14

18

20

24

28

30

31

32

36

40

44

L

L

L

B

L

L

W

L

L

W

B

B

L

L

L

L

pointer to previous node

pointer to next node

type

priority

pointer to name string

pointer to message port

message length in bytes

pointer to device block

pointer to unit block

I/O command

flags

I/O error number

actual array

length array

data array

offset array

Along with this structure a message port must be created. This is a

segment of memory set aside for I/O communication.

The I/O request block can be thought of as a letter traveling through the

mail. When a multitasking system such as the Amiga's appears to be

handling several tasks at once, it's really handling one program at a

time for a moment. When one of these programs must communicate

with another "simultaneously running" program, this communication

315

12. Input and output Amiga Tricks and Tips

travels as a message. The I/O request block is one messenger of this

type. The BASIC interpreter of AmigaBASIC runs the I/O device as a

program running parallel to the BASIC program. This hands the

message block to the address of the other task. In reality, the data block

stays in one place instead of moving around in memory. The foreign

task passes final control over this memory. As long as an I/O request

block shifts to another task, our own program doesn't access the

memory. When the other task processes the message, control over this

memory returns to our own program.

We won't bore you with the technical background involved, since that

goes far beyond the scope of this book. If, however, you wish to pursue

the details of this process, we recommend that you read any one of the

books about Amiga system programming.

The following pages list a number of examples with which you can

access disk drives and printers without a lot of programming know-

316

abacus 12.1 Direct disk access

12.1 Direct disk access

Trackdislc.device handles up to four 3-1/2" disk drives. With a

little help, you can directly manipulate data stored on diskette.

Every Amiga floppy disk drive has two read/write heads, one head for

each side of a diskette. The diskette is divided into 80 cylinders per side.

Each cylinder consists of 11 sectors. Each sector contains 512 usable

data bytes, as well as 16 sector processing bytes. The total file capacity

is:

2 heads*

80 cylinders*

11 sectors*

512 bvtes=

900120 bytes (880 K)

There are 28160 bytes unavailable to the user in addition to this 880K.

Now on to the programming: The following program has six high-level

SUBs as well as four sublevel routines. All you'll need for now are the

first six SUBs.

OpenDrive opens any disk drive. This SUB asks for the number of

Disk access the disk drive (0=intemal drive, l-3=external drives). CreateBuffer
reserves segments of memory. This routine asks for the variable con

taining the starting address of the memory to be allocated, as well as the

desired buffer's size in bytes. DiscardBuffer releases the memory

reserved by CreateBuffer. The only argument required is the

starting address of the buffer. WorkDrive sends an I/O command to

any open drive. CloseDrive closes a disk drive. MotorOff turns

off the disk drive motor.

The following program lets you open any disk drive and view any one

of 1760 sectors. The program displays the data found in hexadecimal

notation.

•###############################si

■# n

•# Program: Disk - Monitor #1

•# Author: tob #5

'# Date: 8/8/87 #5

•# Version: 1.0 #5

'# #5

317

12. Input and output Amiga Tricks and Tips

DECLARE FUNCTION OpenDevice% LIBRARY?

DECLARE FUNCTION AllocMemfi LIBRARY?

DECLARE FUNCTION AllocSignal% LIBRARY?

DECLARE FUNCTION FindTaskfi LIBRARY?

DECLARE FUNCTION DoIO% LIBRARY?

?

LIBRARY "exec.library"?

LIBRARY "graphics.library"?

?

var: ■* Variable?

DIM SHARED reg&(3,l)?

?

main: ■* Demonstration program?

PRINT TAB(20);"DISK MONITOR"?

PRINT?

LINE INPUT "Which drive (0-3)? "; dr$?

dr% = VAL(dr$)?

?

OpenDrive dr%?

CreateBuffer d0«, 512&?

?

LINE INPUT "Which sector (0 - 1759)?

....";sec$?

sec% = VAL(sec$)?

WorkDrive dr%, 2, sec%, d0&?

MotorOff dr%?

?

WHILE sec$ <> "end"?

CLS?

PRINT "Sector ";sec%?

PRINT?

c% - 3?

FOR loopl% « 0 TO 512 - 1 STEP 25?

FOR Ioop2% = 0 TO 24?

check% = PEEK(d0& + loopl% + Ioop2%)?

h$ = HEX$(check%)?

IF LEN(h$) = 1 THEN?

h$ « "0" + h$?

END IF?

he$ = he$ + h$?

IF check% < 31 THEN?

d$ = d$ + "?"?

ELSE?

d$ = d$ + CHR$(check%)?

END IF?

IF Ioop2% + loopl% =512-1 THEN?

Ioop2% = 24?

END IF?

NEXT Ioop2%?

LOCATE c%, 1?

c% = c% + 1?

out$ = he$ + " " + d$?

CALL Text(WINDOW(8), SADD(out$),

LEN(out$))?

he$ = ""?

d$ - ""?

318

abacus 12.1 Direct disk access

NEXT loopl%!

LOCATE 1,20!

LINE INPUT "Which sector (0 - 1759, end)?

....";sec$!

sec% = VAL(sec$)!

WorkDrive dr%, 2, sec%, dOs!

MotorOff dr%!

WEND!

!

DiscardBuffer dOs!

CloseDrive dr%!

CLS!

PRINT fIAll OK."!

!

LIBRARY CLOSE!

END!

!

SUB OpenDrive (nr%) STATIC!

IF regs(nr%, 0) = 0 THEN!

CreatePort "disk.io", 0, ports!

IF port* = 0 THEN ERROR 255!

CreateStdIO ports, io&!

dev$ = "trackdisk.device" + CHR$(0)!

er% = OpenDevice% (SADD(dev$), nr%, io&, 0)!

IF er% <> 0 THEN!

RemoveStdIO io&!

RemovePort ports!

ios = 0!

ports = 0!

ERROR 255!

ELSE!

regs(nr%, 0) = ios!

regs(nr%, 1) = ports!

END IF!

ELSE!

ios = regs(nr%, 0)!

ports = regs(nr%r 1)!

END IF!

END SUB!

!

SUB CloseDrive (nr%) STATIC!

IF regs(nr%, 0) <> 0 THEN!

ios = regs<nr%, 0)!

ports = regs(nr%, 1)!

CALL CloseDevice(ioS)!

RemoveStdIO ios!

RemovePort ports!

regs(nr%, 0) = 0!

regs(nr%, 1) = 0!

END IF!

END SUB!

319

12. Input and output Amiga Tricks and Tips

SUB MotorOff (nr%) STATIC*

ioS = regs(nr%, 0)*

IF ioS <> 0 THEN*

POKEW ioS + 28, 9*

POKEL ioS + 36, 01

e% = DoIO% (ioS)*

ELSE*

BEEP*

END IFf

END SUB*

*

SUB CreateBuffer (adds, sizes) STATIC*

IF sizes > 0 THEN*

sizes = sizes + 4*

opts = 2A16*

adds = AllocMemS (sizes, opts)*

IF adds <> 0 THEN*

adds = adds + 4*

POKEL adds - 4f sizes*

END IF*

ELSE*

BEEP*

END IF*

END SUB*

*

SUB DiscardBuffer (adds) STATIC*

IF adds <> 0 THEN*

sizes = PEEKL (adds - 4)*

adds = adds - 4*

CALL FreeMem (adds, sizes)*

END IF*

END SUB*

*

SUB WorkDrive (nr%, command%, sector%, buffers) STATIC*

td.sector% = 512*

ios = regs(nr%, 0)*

td.offsets = sector%*td.sector%*

IF ioS <> 0 THEN*

POKEW ioS +28, command%*

POKEL ioS + 36, td.sector%*

POKEL ios + 40, buffers*

POKEL ioS + 44, td.offsets*

er% = DoIO% (ioS)*

ELSE*

BEEP*

END IF*

END SUB*

*

1 sub level routines for advanced use only *

*

SUB CreateStdIO (ports, results) STATIC*

opts = 2"16*

results = AllocMemS(62, opts)*

IF results = 0 THEN ERROR 7*

POKE results + 8, 5*

320

abacus 12.1 Direct disk access

POKEL results + 14, ports5

POKEW results + 18, 42?

END SUB?

5

SUB RemoveStdIO (ioS) STATIC5

IF io& <> 0 THEN*

CALL FreeMem(ioS, 62)5

ELSE5

ERROR 2555

END IF5

END SUBS

5

SUB CreatePort (port$, pri%, results) STATICf

opts = 2*165

bytes = 38 + LEN(port$)5

ports = AllocMemS(bytes, opts)5

IF ports = 0 THEN ERROR 75

POKEW ports, bytes?

ports = ports + 25

sigBit% = AllocSignal%(-l)5

IF sigBit% = -1 THEN5

CALL FreeMem(portS,byteS)5

ERROR 75

END IF5

sigTaskS = FindTaskS(0) 5

5

POKE ports + 8 , 45

POKE ports + 9 , pri%5

POKEL ports + 10, ports + 345

POKE ports +15, sigBit%5

POKEL ports + 16, sigTasks5

POKEL ports + 20, ports + 245

POKEL ports +28, ports +205

FOR loop% = 1 TO LEN(port$)5

char% = ASC(MID$(port$, loop%, 1))5

POKE ports + 33 + loop%, char%5

NEXT loop%5

CALL AddPort(portS)5

results = ports5

END SUB5

5

SUB RemovePort (ports) STATIC5

bytes = PEEKW(ports - 2)5

sigBit% = PEEK (ports + 15)5

CALL RemPort(portS)5

CALL FreeSignal(sigBit%)5

CALL FreeMem(portS-2, byteS)5

END SUB5

Variables reg&()

dr%

d0&

sec%

loopl%

contains important internal I/O addresses (e.g., I/O

request and I/Oport)

disk drive number (0-3)

512-byte buffer

sector number (0-1759)

loop

321

12. Input and output Amiga Tricks and Tips

Ioop2%

check%

h$

he$

d$

c%

OpenDriveO

nr%

port&

io&

dev$

er%

loop

character read (decimal)

character read (hexadecimal)

line read (hexadecimal)

line read (decimal)

current screen line

number ofopen drive (0-3)

message port address

I/O block address

trackdisLdevice ended with null

I/O error; 0=no error

Create-Buffer()

sizes

opts

add&

WorkDriveO

td.sector%

ioS

td.offsets

er%

buffer size in bytes

options: 216 = CLEAR MEMORY

address offound memory

=512: bytes per sector

I/O block address

byte offset from sector 0: multiple of S12

I/O error code

CreatePort()

port$

pri%

results

opts

bytes

sigBit%

sigTasks

char%

name of new port

priority of new port (-128 to 127)

address offound port (output)

memory option: 216 = CLEAR MEMORY

size ofneeded memory

signal bit

address of AmigaBASIC task handler

ASCII code of character read

322

abacus 12.1 Direct disk access

First the program establishes the number of the disk drive the user

Program wants accessed. OpenDrive opens this drive. Next the program in-
description ternally checks for whether the drive is already open, and whether an

entry already lies in reg& (). If not, CreatePort turns to a message

port named disk. io. The starting address lies in ports. If no port

exists (port&=0), then an error occurs. Otherwise, CreatestdIO

opens a port, passing the address over to the already existing port. The

starting address of the I/O block goes to io&. The drive opens through

the Exec function OpenDevice% (). When this routine returns a

value greater than or less than 0, the drive cannot be opened. Possible

reasons: Another task has control of the drive; an Open was not

preceded by a Close; the drive doesn't exist; the drive is not connected.

In such a case the port and I/O block are released, the variables return to

null status and an error message appears on the screen. The address of

the new port and the new I/O block goes into reg& ().

The program opens a buffer large enough to hold the data of one

diskette sector (minimum size). This 512-byte buffer is created by
CreateBuffer; the buffer's starting address appears in dO&. The

user is asked for the sector he wants to view. The SUB WorkDrive

reads this sector and places it in the buffer dO& (CMD read, the read

command, =2). This SUB fills the I/O request blocks the necessary

values, and calls the Exec function Do 10% (), sent to the disk drive

through the command block.

After WorkDrive finishes its work, the diskette motor must be

switched off. WorkDrive turns the motor on, but not off. The reason:

Multiple disk access can be tiring when you have to turn the disk drive

on and off every time you need to go to the diskette. The MotorOff

SUB turns the motor off. The Motor command (=9) in the I/O block

writes the contents sent from DoIO% ().

Now comes the data in memory starting from dO &. Two loops read the

values from the buffer and place these on the screen in decimal and

hexadecimal notation. The program then asks for additional sectors.

You either enter a number (0-1759) or the word "end" to quit. The first

response calls up a new sector, the second response releases the buffer

and closes the disk drive CloseDrive (the program tests for open

disk drives through reg& ()). If there is an open drive, the addresses of

the I/O and portblock are read. RemoveStdIO and RemovePort re

lease this structure, and the drive closes through CloseDevice ().

Finally the program deletes the entries from reg& ().

323

12. Input and output
Amiga Tricks and Tips

12.1.1 The trackdisk.device commands

Read data

Write data

Note:

Motor

When you want to examine your own programs, you should use the
WorkDrive SUB to access these programs. This SUB gives you the
following commands:

Command number:

Command call: Workdrive number%, 2, sector%,

buffers

If your buffer is larger than 512 bytes, you can naturally load more than
one sector at a time. The entry within the I/O array 36 must be

changed: For example, 5*td.sector% instead of td.sector% when
your buffer can handle that much data.

Command number:

Command call: Workdrive number%, 3, sector%,

buffers

Writes the buffer contents to the given sector on the diskette.

If you don't know what you're doing when writing to diskette, you
could destroy the disk data. If you want to change the data on a sector,
read the sector with command 2, edit the buffer and write the sector back
to diskette.

You can write more than one sector at a time (see Read data above).

Command number:

Command call: Workdrive number%, 9, 0, 0

Manipulates I/O array 36: 0=motor off, l=motor on. IO_Actual
returns the current status.

Format disk Command number:
Command call:

11

Workdrive number%, 11, track%,

trackbuf&

This command writes a completely new track to diskette. One track

consists of 11 sectors. track% must therefore be a multiple of 11.

The track buffer must be large enough for 11 sectors. The command ig

nores all data previously stored on this track and can even overwrite hard
errors.

324

ABACUS 12.1 Direct disk access

12.1.2 Multiple disk drive access

The SUBs on the previous program are constructed in such a way that

you can access up to four disk drives at a time. You must open every

drive using the OpenDrive command and close each one individually

later. In addition, every drive must have its own buffer available for

copying data. You can naturally use a single buffer.

12.1.3 Sector design

A sector shows just a small part of a diskette's true contents. From this
we can see the design of sectors (numbers are given in longwords [four-

byte arrays]):

Root block (sector 880)

0 type (=2)

1 0

2 0

3 hashtable size (512-224)

4 0

5 checksum

6-77 hashtable: sector numbers in which main directory

files or subdirectories lie

78 a FFFFFFFF (-1) when bitmap is valid

79-104 number of sector containing the bitmap (normally

one sector). Every bit of the bitmap corresponds to

a diskette sector and indicates whether the sector is

free (bit set) or occupied (bit unset).

105 day of last date diskette was altered

106 minutes

107 ticks (1/50 second)

108-120 diskette name: BCPL string: first byte gives the

number of characters in a string (maximum 30)

121 day of date this diskette was initialized

122 minutes

123 ticks

124 0

125 0

126 0

127 root-ID = 1

325

12. Input and output Amiga Tricks and Tm

User directory block

0 type(-2)

1 header key (number of this sector)
2 0

3 0

4 0

5 checksum

6-77 hashtable: sector numbers in which main directory
files or subdirectories lie

78 reserved

79 protection bits (EXEC, DEL, READ, WRITE)
80 0

81-104 commentary string (BCPL string)

105 day of date diskette was created
106 minutes

107 ticks (1/50 second)
108-123 directory name: BCPL string

124 next entry with equal has value
125 sector number ofroot directory
126 0

127 user directory (=2)

File header block

0 type (=2)

1 number of this sector

2 total number of data sectors for this file
3 number of used data block slots
4 sector number of first data block
5 checksum

6-77 sector numbers ofdata blocks
78 unused

79 protection bits (EXEC, DEL, READ, write)
80 total file size in bytes

81-104 commentary string (BCPL string)

105 day of date diskette was created
106 minutes

107 ticks (1/50 second)
108-123 filename: BCPL string

124 next entiy with equal hash value
125 sector number ofroot directory

126 0 or sector number of first extended block (file list

127 file type (=FFFFFFFD)

326

ABACUS

File list block

0

1

2

3

4

5

6-77

78-123

124

125

126

127

Data block

0

1

2

3

4

5

6-127

14.1. UL

type(»l)

number of this sector

total number of data blocks in list

number of used data block slots

first data block

checksum

sector numbers ofdata blocks

unused

0

sector number ofroot directory

next extended block

file type (-vxvtttvD)

type (=8)

number of this sector

sequence of data block

number of data in bytes

sector number of next data block

checksum

12.1 Direct disk access

327

12. INPUT AND OUTPUT Amiga Tricks and Tlps

12.2 Memory handling

The memory system of the Amiga is extremely flexible. This is be
cause the memory locations can be changed to fit the situation, instead
of having fixed memory. Unlike its predecessors, the Amiga has no
specific memory set aside for machine language user applications. This
kind of memory layout makes no sense to a multitasking computer,
where several programs must share memory.

Here are the most popular methods of memory handling.

12.2.1 Reserving memory through variables

Every time you assign a value to a variable you take a piece of working
memory and reserve part of the stack for this value. The amount of
memory reserved depends on the variable type. For example, a long
integer variable like f & would reserve 4 bytes. Now you can use this
memory for other purposes as well. The starting address comes from the
BASIC VARPTR command:

VARPTR (f&)

You need more than four bytes to use variable arrays (DIM f& (lo0)
reserves 400 bytes) or strings (a$=SPACE$(100) reserves 100
bytes). The starting address of the string comes from the call:

SADD (a$)

It should be mentioned here that the starting address of string memory
is variable. Every new string definition can move old strings around in
memory. Every memory access changes the starting address in memory.
Tliis means that the memory is not well suited for set data structures.
The following method is a more practical route.

12.2.2 Allocating memory

The AllocMem () command gives you as much memory as you ask
fo^as long as that much memoiy is free. You can chSse betwSn
uiree opuons:

328

abacus 12.2 Memory handling

Public memory 2°
Chip memory 21 (DMA and special purpose chips)
Fast memory 22 (all other applications)
Clear memory 216 (automatically clears memory)

The following SUBs reduce memory handling to a minimum.

■###################################!

'# #!

'# Programm: Memory Handler #!

•# Author: tob #5

•# Date: 8.12.87 #!

'# Version: 2.0 #!

f# #5

'###################################5

!

DECLARE FUNCTION AllocMemS LIBRARY!

!

LIBRARY "exec.library"!

!

demo: •* reserve 4500 bytes!

PRINT "Memory left after reserving 4500

bytes: ";!

PRINT FRE(-l)!

!

GetMemory memS, 4500&5

!

PRINT "Current memory status: ";!

PRINT FRE(-l)!

!

FreeMemory mem&!

PRINT "Ending memory status: ";!

PRINT FRE(-l)!

LIBRARY CLOSE!

END!

SUB GetMemory (add&r sizes) STATIC!

IF size& > 0 THEN!

opt& = 2^16!

sizes = sizes + 4!

adds = AllocMemS(sizes, opts)!

IF adds <> 0 THEN!

POKEL adds, sizes!

adds = adds +4!

END IF!

END IF!

END SUB!

329

12. Input and output Amiga Tricks and Tips

SUB FreeMemory (adds) STATIC?

IF add& > 0 THENfl

adds = adds -41

sizes = PEEKL (add&)$

CALL FreeMem(add&, sizes)5

END IF*

END SUBS

The principle should be obvious from the example. It uses Get-
Program Memory to reserve a memory segment of any size for your use. Two
description variables return the address variable in which youll find the starting

address of the memory segment (or 0 if there isn't enough memory
available) and the size of the desired segment. Reserving 1000 bytes is
as simple as:

GetMemorymyMemfi, 1000&

You'll find the starting address of the segment in the variable myMem&:

PRINT myMemfi

When you no longer need the memory, you can return it to the system
with the call:

FreeMemory myMemfi

You cannot go past the memory size allocated for this segment, since
GetMemory actually has up to four bytes of memory reserved holding
the bytes beyond the segment size.

330

Appendices

Abacus Appendix A

A. AmigaBASIC tokens

Token (hex.) value (dec.) AmigaBASIC command

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E(3A)

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142 (58)

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

163

164

165

166

167

168

169

170

171

ABS

ASC

ATN

CALL

CDBL

CHR$

CINT

CLOSE

COMMON

COS

CVD

CVI

CVS

DATA

ELSE

EOF

EXP

FIELD

FIX

FN

FOR

GET

GOSUB

GOTO

IF

INKEY$

INPUT

INT

LEFT$

LEN

LET

LINE

LOC

LOF

LOG

LSET

MID$

MKD$

MKI$

MKS$

NEXT

ON

OPEN

333

Appendices

Token (hex.)

AC

AD

AE

AF

AFE8(3A)

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BC

BD

BE EC

BF

CO

Cl

C2

C3

C4

E3

E4

E5

E6

E7

E9

EA

EB

EC

ED

EE

EF

FO

Fl

F2

F3

F4

F5

F6

F7

F8 81

F8 82

F8 83

F8 84

F8 85

value (dec.)

172

173

174

175

175 232 (58)

176

177

178

179

180

181

182

183

184

185

186

188

189

190236

191

192

193

194

195

196

227

228

229

230

231

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248 129

248 130

248 131

248 132

248 133

AmigaBAl

PRINT

PUT

READ

REM
•

RETURN

RIGHT$

RND

RSET

SGN

SIN

SPACE$

SQR

STR$

STRING$

TAN

VAL

WEND

WHILE

WRITE

ELSEIF

CLNG

CVL

MKL$

AREA

STATIC

USING

TO

THEN

NOT

>

<

+

/
A

AND

OR

XOR

EQV

IMP

MOD

\

CHAIN

CLEAR

CLS

CONT

CSNG

Amiga Tricks and Tips

334

Abacus Appendix A

Token (hex.)

F8 86

F8 87

F8 88

F8 89

F8 8A

F8 8B

F8 8C

F8 8D

F8 8E

F8 8F

F8 90

F8 91

F8 92

F8 93

F8 94

F8 95

F8 96

F8 97

F8 98

F8 99

F8 9A

F8 9B

F8 9C

F8 9D

F8 9E

F8 9F

F8A0

F8A1

F8A2

F8A3

F8A4

F8A5

F8A6

F8A8

F8A9

F8AA

F8AB

F8AD

F8AE

F8 AF

F8B0

F8B1

F8B2

F8B3

F8B4

F8B5

F8B6

F8B8

value (dec.)

248 134

248 135

248 136

248 137

248 138

248 139

248 140

248 141

248 142

248 143

248 144

248 145

248 146

248 147

248 148

248 149

248 150

248 151

248 152

248 153

248 154

248 155

248 156

248 157

248 158

248 159

248 160

248 161

248 162

248 163

248 164

248 165

248 166

248 168

248169

248 170

248 171

248 173

248174

248 175

248 176

248 177

248 178

248 179

248 180

248 181

248 182

248 184

AmieaBASIC

DATE$

DEFINT

DEFSNG

DEFDBL

DEFSTR

DEF FN

DELETE

DIM

EDIT

END

ERASE

ERL

ERROR

ERR

FILES

FRE

HEX$

INSTR

KILL

LIST

LLIST

LOAD

LPOS

LPRINT

MERGE

NAME

NEW

OCT$

OPTION

PEEK

POKE

POS

RANDOMIZE

RESTORE

RESUME

RUN

SAVE

STOP

SWAP

SYSTEM

TIME$

TRON

TROFF

VARPTR

WIDTH

BEEP

CIRCLE

MOUSE

335

Appendices

Token (hex.)

F8B9

F8BA

F8BB

F8BC

F8BD

F8BE

F8BF

F8C0

F8C2

F8C3

F8C5

F8C6

F8C7

F8C8

F8C9

F8CA

F8CB

F8CC

(F8)(D1)

F8D2

F8D3

F8D4

F8D5

F8D6

F8D7

F8D8

F8D9

F8DA

F8DB

F8DC

F8DD

F8DE

F8DF

F9F4

F9F5

F9F6

F9F7

F9F8

F9F9

F9FA

F9FB

F9FC

F9FD

F9FE

F9FF

FA 80

FA 81

FA 82

FA 83

value (dec.)

248 185

248 186

248 187

248 188

248 189

248 190

248 191

248 192

248 194

248 195

248 197

248 198

248 199

248 200

248 201

248 202

248 203

248 204

(248X209)

248 210

248 211

248 212

248 213

248 214

248 215

248 216

248 217

248 218

248 219

248 220

248 221

248 222

248 223

249 244

249 245

249 246

249 247

249 248

249 249

249 250

249 251

249 252

249 253

249 254

249 255

250 128

250 129

250 130

250 131

Amiga Tricks and Tips

AmieaBASIC command

POINT

PRESET

PSET

RESET

TIMER

SUB

EXIT

SOUND

MENU

WINDOW

LOCATE

CSRLIN

LBOUND

UBOUND

SHARED

UCASE$

SCROLL

LIBRARY

placed after target of SUB program

call without CALL

PAINT

SCREEN

DECLARE

FUNCTION

DEFLNG

SADD

AREAFILL

COLOR

PATTERN

PALETTE

SLEEP

CHDIR

STRIG

STICK

OFF

BREAK

WAIT

USR

TAB

STEP

SPC

OUTPUT

BASE

AS

APPEND

ALL

WAVE

POKEW

POKEL

PEEKW

336

Abacus Appendix A

Token (hex.)

FA 84

FA 85

FA 86

FA 87

FA 88

FA 89

FA8A

FA8B

FA8C

FA8D

FA8E

FA8F

FA 90

FA 91

FA 92

FA 93

FA 94

FA 95

FA 96

FA 97

FBFF

value (dec.)

250 132

250 133

250134

250 135

250 136

250 137

250 138

250 139

250 140

250 141

250 142

250143

250144

250 145

250 146

250 147

250 148

250 149

250 150

250 151

251 255

AmigaBASIC command

PEEKL

SAY

TRANSLATE$

OBJECT.SHAPE

OBJECT.PRIORITY

OBJECT.X

OBJECT.Y

OBJECT.VX

OBJECT.VY

OBJECT.AX

OBJECT.AY

OBJECT.CLIP

OBJECT.PLANES

OBJECT.HIT

OBJECT.ON

OBJECT.OFF

OBJECT.START

OBJECT.STOP

OBJECT.CLOSE

COLLISION

PTAB

337

Appendices Amiga Tricks and Tips

B . Other tokens

Token Definition

$01 Variable number follows in hexadecimal notation (High/
Low = 2 Byte), e.g.: ($01) $00 $00 = Variable 0

$02 Label number follows in hex (H/L = 2 Byte), e.g.: ($02)

$01 $00 - label 2S6

$03 Jump to label with the following number (H/M/L = 3 B.),
e.g.: ($03) $00 $00 $0A -to label 10

$0B An octal number follows (hexadecimal in High/Low format
= 2 bytes), e.g.: ($0B) $00 $06 = &O 6

$0C A 2-byte hexadecimal number follows in H/L format, e.g.:
($0C) $F8 $EC - $ F8EC

$0E Jump to the line with the following line number (H/M/L),
e.g.: ($0E) $00 $27 $10 - after line 10000

$0F A positive integer with a value from 10 to 2SS follows,
e.g.: ($0F) $FF = 255

$11- A positive integer with a value from 0 to 9 follows, e.g.:
$1A $11 =0,$12-1... $19 = 8, $1A = 9

$1C A 2-byte integer with leading character follows, e.g.: ($1C)
80A0 = -160

$1D A 4-byte floating-point number follows, e.g.: ($1D) $3C
$23 $D7 $0A = 0.01

$1E A 4-byte integer follows, e.g.: ($1E) $00 $00 $80 $00 =
32768&

$1F An 8-byte floating-point number follows, e.g.: ($1F) $3E45
$798E $E230 $8C3A = 0.00000001

338

Index

3-D glasses 88

access 8

AddBuffers command 21

Amiga disk operating system 7

AmigaBASIC 37

AmigaDOS 8

appending files 19

ASCn 180

ASCII files 184

assembler 307

AssemPro Amiga 307

assign command 10

BASIC 37

BASIC file checking program 18S

batch files 27

benchmark 291

Binary files 184

BindDrivers command 21

Blank line killer program 212

.bmap files 39, 168, 301

bob 115

border color change 67

border structure 65

borderless 63

CALL command 310

CHAIN command 184

ChangeTaskPri command 21

CHDIR command 162

Checkfile program 152

Checking for errors 272

Chunks 60

circles 136

CLI 150, 156, 236

CLlCopy program 29

CLOSE command 175

Command Line Interface (CLI) 7,173

COMPLEMENT 40,42

Console Device 100

ConvertFd program 39

coordinate setting 71

copy command 9, 10, 12, 13

Copying diskettes 14

copying

copying to diskette

Cross-reference program

Cursor control

cursor

Cylinders

DATA generator program

delete command

Direct disk access
Directory access

Directory access program

Discard

Disk access errors

Disk operating system (DOS)

DiskChange command

diskcopy command

DiskDoctor program

Diskette sector design

diskfontJibrary

DOS

DOS commands

DOS commands from BASIC

38,dos.library

Drawing modes

dual-drive systems

DualBitMap program

Ed editor

editing

Empty Trash

error handling

errors

exec.library

execute command

Extended input

Extended selection

Extras diskette

fade-in

fade-out

Fade-over

File analysis

File analyzer program

12,13

29

205

45

280

317

201, 308

10

317

158

162

237

270

149

21

14

22

325

38

149

174

168

168

149, 304

40

13

140

15

15

237

269, 272

270

38

12, 14, 19

105

236

39

72

72

74,76

180

180

339

Index Amiga Tricks and Tips

File checking

File protection

file management

FILES command

Floodfill

Fonts

gadget disable/enable

GetDir program

GetTree program

Graphic commands

graphicsJibrary 38,

Halfbrite mode

Hold-and-Modify mode (HAM)

I/O (input/output)

I/O message port

I/O request block

icon 13, 113,

IFF transfer

IFF-object conversion

INPUT command

Input

Input and output

Input, modified

Interchange File Format (IFF)

Interleaved Bitmap (HJBM)

Intuition 7,42,

intuition.library 38,

INVERSEVID drawing mode

JAM 1 drawing mode

JAM 2 drawing mode

join command

1j r.irM.,1
kernel

Kickstart diskette

KILL command

Label handling

LED shocker program

libraries

LIBRARY command

Library files

list command 11,150,156

list program

loadwb command

LOCATE command

Lock

loops

152

154

30

162

62

97

64

158

162

40

132

68

68

315

315

315

235

46

56

114

315

315

105

46

46

113

303

40

40

40

19

38

9

175

194

309

299

37

149

150

15

45

274

295

Machine language

makedir command

Memory allocation

Memory handling

Memory reservation

memory locations

memory-resident

Menu errors

MERGE command

Microsoft Corporation

monochrome Workbench

Mount command

mouse

MOVE command

multiple windows

307

10

328

328

328

307

27

271

184

37

68

22

7, 115

45

25

multitasking 16, 17, 21, 307

newcli command

Notepad

OPEN command

Output

PALETTE command

part memory-resident

Path command

PC-relative addressing

Peripherals

Preferences 8, 1

Printer spooler

printing C lists

printing commands

Program comments

Program Counter (PC)

17

18

175

315

70, 145

28

22

307

315

114, 175, 239

25

16

11

150

307

Program header checking program 187
Protect program

Protected files

quick parameter

quitting

RAM disk

Reading directory

rename command

Renaming files

Requester

Reserving memory

Rubberband demo

rubberband

rubberbanding

run command

154

184

11

9

10, 175

158

157

157

13, 278

328

42

42

133

11, 17

340

ABACUS

say command

Scrolling tables

scrolling

search command

Self-modifying programs

SetComment program

SetDate command

SetDrMdO command demo

SetMap command

SetTextFont program

shapes

shifting grids

single-drive systems

Sizing gadget

Sliders

Snapshot option

sort command

stack command

startup sequence

STATIC

Status lines

stopping programs

String gadget

SUB programs 45,

Subdirectories

subroutines

SUB...STATIC

Tables

Text styles demo

text output

three-dimensional graphics

ToDisk program

Trackdisk.device

trap errors

Trashcan

type command

Typestyles

User input errors

user interface

User-friendliness

Utilities

Variable lister program

variable names

variables

VARPTR command

Vector graphics

Version command

15

128

128

20

228

150

22

41

23

97

135

84

12

133

114

19

20

20

14,24

161

139

12

236

114,161

162

297

161

121

44

17

79

28

317

272

237

16

43

271

235

113

179

222

294

293

328

79

23

WHILE/WEND

wildcard characters

Window coordinates

window

Windows in BASIC

Workbench

Workbench diskette

Workbench diskette in the drive

xec.library

Index

161

11

71

7

63

8,235

149

9

301

341

Optional Diskette

Tricks and Tips

Optional diskette

For your convenience, the program listings contained in this book are

available on an Amiga formatted floppy disk. You should order the diskette

if you want to use the programs, but donft want to type them in from the

listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a

check, money order or credit card information. Mail your order to:

Abacus Software

5370 52nd Street SE

Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.

Amiga

Books
Great introductory book!

Amiga for Beginners
A perfect introductory book if you're a new or prospective Amiga

owner. Amiga for Beginners introduces you to Intuition (the

Amiga's graphic interface), the mouse, the windows, the versatile

CLI—this first volume in our Amiga series explains every

practical aspect of the Amiga in plain English. Includes clear,

step-by-step instructions for common Amiga tasks. Amiga for

Beginners is all the info you need to get up and running with

your Amiga 500,1000 or 2000. Topics include: -Unpacking and

connecting the Amiga's components •Starting up your Amiga

•Windows -Files •Customizing the Workbench •Exploring the

Extras disk •Taking your first steps in the AmigaBASIC

programming language -BASIC graphics commands -BASIC

animation -AmigaDOS functions •Using the CLI to perform

"housekeeping" chores •First Aid appendix •Keyword appendix

•Technical appendix -Glossary. 200 pages. (Optional program

diskette not available).

(630) $16.95

"How-to" BASIC tutorial

AmigaBASIC—

Inside & Out
Above and beyond any BASIC tutorial you've ever seen. This

definitive 550-page volume will turn you into an AmigaBASIC

expert. AmigaBASIC—Inside & Out teaches you Amiga

BASIC with a "hands-on," program-oriented approach, and

explains the language in a clear, easy to understand style. Topics

include: •Fundamental concepts of BASIC -Completely details

all AmigaBASIC commands, with syntax and parameters

•Graphic objects and color control •Interchange file format (IFF)

•Voice synthesis, sound & music -Sequential & random access

files -Complete Reference Section includes Glossary,

AmigaBASIC Reference Guide, error message descriptions.

After you've learned BASIC with AmigaBASIC—Inside &

Out, you'll have many useful, working programs: -Video titling

program for high-quality OBJECT animation on your VCR tapes

•IFF-compatible paint program (lets you load in graphics created

on other graphic programs) -Bar graph & pie chart program

•Simple music synthesizer •Speech synthesis utility program

•Full-featured database.

550 pages.

(610) $24.95

(612) Optional program diskette $14.95

Insider's secrets!

Amiga Tricks & Tips
A superb collection of quick hitters for all Amiga owners.

Patterned after our best-selling Tricks & Tips books for the

Commodore 64 & Commodore 128, Amiga Tricks & Tips

contains dozens of programming techniques and program listings

that anyone with an Amiga computer can use, whether you're a

beginner or a seasoned programmer. Amiga Tricks & Tips is

easy to understand, and lists program examples in BASIC. It's

packed with vital Amiga info: -Details on windows and gadgets

•Using disk-resident fonts •Tips for printing hardcopy •Creating

yourownrequesters •Accessing Amiga libraries fromBASIC

•Reserving important 68000 memory •CLI command overview

•Getting the most out of the ED editor •Customizing your own

Workbench •Controlling Intuition •AmigaDOS functions •Hints

for effective programming

Available May 1988.300 pages.

(615) $19.95

(617) Optional program diskette

Guide to Amiga 68000 language

$14.95

Amiga Machine Language
The practical guide for learning how to program your Amiga in

ultrafast machine language. Used in conjunction with our

AssemPro Amiga software package, Amiga Machine

Language is a comprehensive introduction to 68000 assembler/

machine language programming. Topics include:

• 68000 microprocessor architecture -68000 address modes and

instruction set -Accessing the Amiga's RAM memory, operating

system and multitasking capabilities -Details the powerful Amiga

libraries for using AmigaDOS (input, output, disk and printer

operations) -Details Intuition (windows, screens, requesters,

pulldowri menus) -Speech and sound facilities from machine

language -Many useful programs listed and explained.

Available June 1988.225 pages.

(660) $19.95

(662) Optional program diskette $14.95

j™|Opf/o/ia/ Program Diskettes

contain all ofthe programsfound in these

books—complete, error-free and ready to run.

Save yourselfthe time and and trouble oftyping

in the program listings. Each diskette: $14.95.

More Amiga books

coming soon!

Selected Abacus Products for the Amiga computers

BeckerText
Powerful Word Processing
Package for the Amiga

BeckerText Amiga is more than just a word processor.

BeckerText Amiga gives you all of the easy-to-use

features found in our TextPro Amiga, plus it lets you

do a whole lot more. You can merge sophisticated IFF-

graphics anywhere in your document You can hyphenate,

create indexes and generate a table of contents for your

documents, automatically. And what you see on the

BeckerText screen is what you get when you print the

document—real WYSIWYG formatting on your Amiga.

But BeckerText gives you still more: it lets you

perform calculations of numerical data within your

documents, using flexible templates to add, subtract,

multiply and divide up to five columns of numbers on a

page. BeckerText can also display and print multiple

columns of text, up to five columns per page, for

professional-looking newsletters, presentations, reports,

etc. Its expandable built-in spell checker eliminates those

distracting typographical errors.

BeckerText works with most popular dot-matrix and

letter-quality printers, and even the latest laser printers for

typeset-quality output. Includes comprehensive tutorial

and manual.

BeckerText gives you the power and flexibility that you

need to produce the professional-quality documents that

you demand.

When you need more from your word processor than just

word processing, you need BeckerText Amiga.

Discover the power of BeckerText. Available February

1988.

Suggested retail price: $150.00

Features

• Select options from pulldown menus or handy shortcut

keys

• Fast, true WYSIWYG formatting

• Bold, italic, underline, superscript and subscript

characters

• Automatic wordwrap and page numbering

• Sophisticated tab and indent options, with centering and

margin justification

• Move, Copy, Delete, Search and Replace

• Automatic hyphenation, with automatic table of

contents and index generation

• Write up to 999 characters per line with horizontal

scrolling feature

• Check spelling as you write or interactively proof

document; add to dictionary

• Performs calculations within your documents—

calculate in columns with flexible templates

• Customize 30 function keys to store often-used text

and macro commands

• Merge IFF graphics into documents

• Includes BTSnap program for converting text blocks to

IFF graphics

• C-source mode for quick and easy C language program

editing

• Print up to 5 columns on a single page

• Adapts to virtually any dot-matrix, letter-quality or laser

printer

• Comprehensive tutorial and manual

• Not copy protected

Selected Abacus Products for the Amiga computers

DataRetrieve

A Powerful Database Manager

for the Amiga

Imagine a powerful database for your Amiga: one that's

fast, has a huge data capacity, yet is easy to work with.

Now think DataRetrieve Amiga. It works the same

way as your Amiga—graphic and intuitive, with no

obscure commands. You quickly set up your data files

urinq convenient on-screen templates called masks. Select

commands from the pulldown menus or time-saving

shortcut keys. Customize the masks with different text

fonts, styles, colors, sizes and graphics. If you have any

questions, Help screens are available at the touch of a

button. And DataRetrieve's 128-page manual is clear

and comprehensive.

DataRetrieve is easy to use—but it also has

professional features for your most demanding database

applications. Password security for your data.

Sophisticated indexing with variable precision. Full

Search and Select functions. File sizes, data sets and data

fields limited only by your memory and disk storage

space. Customize up to 20 function keys to store macro

commands and often-used text. For optimum access speed,

DataRetrieve takes advantage of the Amiga's multi

tasking.

You can exchange data with TextPro Amiga,

BeckerText Amiga and other packages to easily

produce form letters, mailing labels, index cards,

bulletins, etc. DataRetrieve prints data reports to most

dot-matrix & letter-quality printers.

DataRetrieve is the perfect database for your Amiga.

Get this proven system today with the assurance of the

Abacus 30-day MoneyBack Guarantee.

Suggested retail price: $79.95

Features

• Select commands and options from the pulldown menus

or shortcut keys

• Enter data into convenient screenmasks

• Enhance screen masks with-different text styles, fonts,

colors, graphics, etc.

• Work with 8 databases concurrently

• Define different field types: text, date, time, numeric &

selection

• Customize 20 function keys to store macro commands

and text

• Specify up to 80 index fields for superfast access to

your data

• Perform simple or complex data searches

• Create subsets of a larger database for even faster

operation

• Exchange data with other packages: form letters,

mailing lists etc.

• Produce custom printer forms: index cards, labels,

Rolodex»cards, etc. Adapts to most dot-matrix & letter-

quality printers

• Protect your data with passwords

• Get Help from online screens

• Not copy protected

• Max. file size

• Max. data record size

• Max. data set

• Max. no. of data fields

• Max. field size

Limited only

by your memory

and disk space

Selected Abacus Products for the Amiga computers

AssemPro
Machine Language Development

System for the Amiga

Bridge the gap between slow higher-level languages and

ultra-fast machine language programming: AssemPro

Amiga unlocks the full power of the AMIGA'S 68000

processor. It's a complete developer's kit for rapidly

developing machine language/assembler programs on your

Amiga. AssemPro has everything you need to write

professional-quality programs "down to the bare metal":

editor, debugger, disassembler & reassembler.

Yet AssemPro isn't just for the 68000 experts.

AssemPro is easy to use. You select options from

dropdown menus or with shortcut keys, which makes your

program development a much simpler process. With the

optional Abacus book Amiga Machine Language

(see page 3), AssemPro is the perfect introduction to

Amiga machine language development and programming.

AssemPro also has the professional features that

advanced programmers look for. Lots of"extras" eliminate

the most tedious, repetitious and time-consuming m/1

programming tasks. Like syntax error search/replace

functions to speed program alterations and debugging. And

you can compile to memory for lightning speed. The

comprehensive tutorial and manual have the detailed

information you need for fast, effective programming.

AssemPro Amiga offers more professional features,

speed, sheer power, and ease of operation than any

assembler package we've seen for the money. Test drive

your AssemPro Amiga with the security of the

Abacus 30-day MoneyBack Guarantee. Available

January 1988.

Suggested retail price: $99.95

Features
Integrated Editor, Debugger, Disassembler and

Reassembler

Large operating system library

Runs under CLI and Workbench

Produces either PC-relocatable or absolute code

Create custom macros for nearly any parameter (of

different types)

Error search and replace functions

Cross-reference list

Menu-controlled conditional and repeated assembly

Full 32-bit arithmetic

Advanced debugger with 68020 single-step emulation

Written completely in machine language for ultra-fast

operation

Runs on any Amiga with 512K or more and Kickstart

version 1.2

Not copy protected

Machine languageprogramming requires a solid understanding
of the AMIGA'snardware ana operating system. We do not

recommend thispackage to beginning Amigaprogrammers

The Amiga is an impressive computer but

some of its features are difficult to use.

Amiga Tricks & Tips is for all Amiga

owners who want to tap all of the Amiga's

true power. It's a great collection of

Workbench, CLI and BASIC programming

hints and application programs.

Amiga Tricks & Tips explains how to

get the most from the Command Line

Interface {CLI). BASIC programmers will

learn all about gadgets, windows, graphic

fades, HAM mode, 3-D graphics and more.

Includes a complete list of BASIC tokens

and multitasking input and a fast and easy

print routine. If you're an advanced

programmer, you'll discover the hidden

powers of your Amiga. Learn how to

allocate memory, trap errors, use Amiga

fonts, mix machine language with BASIC

and much more.

Amiga Tricks & Tips topics include:

• drawing modes • changing typestyles

• kernal commands • 3-D graphics • fading

graphics • rubberbanding • IFF transfers

• BASIC benchmarks • disk drive

operations ■ disk commands • machine

language calls • Icons • Trapping errors

A valuable collection

of software tools
and programming hints

Many hints and application

programs presented and explained:

• Changing typestyles

• Text input and output

• BASIC benchmarks (speed tests)

• Fast vector graphics

• Multitasking INPUT

• File analyzer

• Self-modifying programs

• Directory access

• Cross-reference list

• REM Killer

• Reading and setting Preferences

Amiga Tricks & Tips is packed with

dozens of hints and applications for all

Amiga owners.

Optional Program Diskette available:

Contains every program listed in the book—

complete, error-free and ready to run! Saves

you hours of typing in program listings.

ISBN D-

Abacus 5370 52nd Street SE • Grand Rapids, Ml 49508

Amiga '* a (teiMirrJ irjJcmark of Commmlort Amiga.

