Amiga
Tricks & Tips

A valuable collection of software
tools and programming hints

i

Amiga Tricks & Tips

Bleek Maelger Weltner

M Ferg

Abacus|iii

A Data Becker Book

First Printing, May 1988

Printed in U.S.A.
Copyright © 1987, 1988 Data Becker, GmbH
Merowingerstrafie 30
, 4000 Diisseldorf, West Germany
Copyright © 1988 Abacus
5370 52nd Street SE
Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of Abacus Software or Data
Becker, GmbH. '

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus Software can neither guarantee nor be
held legally responsible for any mistakes in printing or faulty instructions contained in this
book. The authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC and MS-DOS are trademarks or registered trademarks of Microsoft
Corporation. Amiga 500, Amiga 1000, Amiga 2000 Amiga, Graphicraft, Musicraft,
Sidecar and Textcraft are trademarks or registered trademarks of Commodore-Amiga Inc.

ISBN 0-916349-88-7

A N R

NobabrbhaabLbLbbbbbBE
S

[y
.
ot

Table of Contents

INELOAUCHION. ... oveiiiicereerieerreeeeeseeececsnreessaneiesssesesesssseesssssseesssssseesessnnne 1
TRE CLI.cuuiirieeeeerreeeeeeerannensssrssssesssssssssesssssssssassssseesssesssssssssesessssssns 5
CLI questions and answers... . 8
New CLI commands . 22
New Startup SEQUETICES......cceeururrerrerererseeerersereesesesesesssssssssssssssssesessssses 25
PIINET SPOOIETuueeeeeeerirreneeecisrenennesesssnnansssssssssesesssssennesneeseeessenss 26
CLI programming (batCh files)........ccueuvuuuerieireeisreeeereenneenreeescreesernennnes 28
ReESIAENt CLIuuvveneiiiiinisnnsnnneeiessnneneesersssesseessrsnssessesssssnsssnssessssessss 28
Resi (partial resident)c.cceeeeerrecrneneneneeeeeeeieceesescsssesssssssssssssssasennes 29
TODISK.uuiieiiiiiiiiiiiiniisieniiestirsrennnesesesesssseasssssnsesasesersrssssssssasesees 29
CLICOPDY ceretiernrnnessisssseessaeererarseersssssssssssssscssssssssessassssssasssnsensessassane 30
Data Management...........cuuverecessaiissecseeneerressessrerasnsssssescessssssssensssonsn 31
AMIGAaBASICcciiiiiiiiinieriiiinieereeersrrssseeesssssaeeeeesssssnssssssessesssonss 35
Kernel commands..............eeeeereeeeeerereeeneeresesssnneeraeeeesseeeceseseseesenanennes 38
AmigaBASIC graphiCs........ceeeeeeeeeereeereersesssssrnersnseseseessesesesssssessssenens 40
Changing drawing mMOdeS.........cccuveereereeenrereeereeereereerenssssssssssssssssseesesss 40
Changing typestylescceieieeuieeeeennnsrrereeseeeceeeeeeraruressessssssesssesnnns 43
MOVE — CUTSOT COMTOL....c.ecivieerevrnrusssencnneanaesereeasaneesesasassarsnnsassencessnnnns 45
Faster IFF TanSfer.....c.cciiiiiiuenmnnnnnnenniiieceserereeneeeneeesasasserssssssssesssssanes 46
IFF brushes as ObjJects.........cccccvutrreeenrerrrenneeenns . .56
Another flOOdfillcccieiiiinininenieenneneeieeeeeerenereeeeeeeananserssnssessssssnnnnns 62
Window manipulation............eeeeeeeeneieceeeeecerereeeasensssesenssessonsesssenesannnee 63
Borderless BASIC WINAOWS......c.cccetueumeenencssersecseeseeeennassnssassssssessssennnns 63
Gadgets on, gadgets off............. . 64
DrawBOordercivveiieiniinenmmeenerersesssssisisssinsssssssresnsessssssssssssssnsssnses 65
ChangeBorderColOr........ccveeeeecreeererenssseeeriesersssnsenesserssseesesssssnsnsnnnane 67
Monocolor WOTKDENCh........c.uueuriineieiieeciecieeeneeneenenenesesssnsssssesneseennnns 68
PlaneCreator and HAM-Halfbrite.........cccceeeririierininnnnnnncienrececnecnnnneneennes 68
The coordinate problemceeeeveeeeeeeresisionisieceanereeneanssssssssscessseesanes 71
Fade-in and fade-0utc.cceeeerrrcnnnnreeenerereneerereesaeeesecscssenenennnnnsanesens 72
Basic fading.........ccccceiiieeciirnneienisnsnneeiecisssneniiiieessssnnseesssssssscnnsasansanes 72
FadE-OVET.....cccveiiiiiiiiiiieinrnnnneesssesssssrsssssssorssesnosssasssesssssossesssnsassassns 74
Fading RGB COlOT SCAleS.......cccceeeeennrrreccnnnrecssssnnnseacsssensecsassnneesassssssns 76
Fast vector raphiCs...........ccuuuerennnsssiianisneiniereerernsansssssesssessssssssnsessns 79
MOEL BIIASo ceeeieeeiiernennneecesserseseseeseenanesessasanenssssssssssessnsessssssss 79
Moving grid moOdels........cccceeeererrnrreeeceeecsrsreneereesesssssnnnaseessssesssrssnnnens 84
Moving with operating SyStem FOULINES.........ccceeeresurrssescnsssnesssrnesneseses 84
3-D graphics for 3-D glasses......cccceriiirccneerirnnnicsscssasisssnnsssesnnesesosssssss 88
The Amiga fONtS......cceiiiiiiiiiiiiniiiiiiiiiemeneeerrenmeiestessnnssesersnnsssssssssssns
Fast and easy PRINTccccoervnniiiceninnnnnnes

Multitasking INPUT
User-Friendliness........ccccoviniinneiriiesininnnnnnsiessccssssssssssseenenssssssssssssnnne 111
Other INPULcuuiieeiiiineiereencerennenerenserenaresssessessnssssssssssssscsssssssesssass 114
SIS cciiiiiiiiiiiiiiiniiiiiiiiieineesrnrsnsnessesereeesssessssssssassssssasansnassnsssssesses 114

Table of Contents Amiga Tricks and Tips

wnN

R I N
W N =

NOOOAR MUULUUAAALL AARAAAS
WOIAWNDWN =

AR
) D) bk ek ek
[N

[, %=,
ww
[N

e
Qounrw

e
Nt

900000000000 NNNNNNNNN QAN
W N -

SIS
W N ==

Table selection teessessnrerntttttttttatteasesasssnsnnnnnnnane .121
Scrolling tables ceeesestrerteattasantenerresssssnsteesesesseannnnsnnsnnes 128
Rubberbanding.........cccceeeeeieiiienieirnnnnneecerecnssssssneeecessecsssnnsssseesesssses 133
Rectangles in rubberbanding..........cccceeeerrrenenenenneeeneeeieeereeresereresennnnns 133
Creating shapes . 135
Object positioning eesssesssenentnnnsisssssssssssssssssnane 136
Status lines & animation.........cccceeeeerererecrrrrsrssssenennneeeeeeeeeeeeeesscssssnes 139
DOS ROBLNES...ccucevererarerareieserersossrsrorsnnasesessraseesesessesssssssssssnsssssasans 147
Program comments..... ceesereresesssennnnns 150
CheckFile........cccovvmiiiiiiiiiininenioisinneniieinsnseniesessssseseesssssssaeesssssnnes 152
Protecting data...........cceieeeieriinieieinniosssssnnneeneseseesesessessesssssssssnnssensans 154
Renaming filescc.ceveeneerenen esessesstsesttrranensstettrnreesssststnnnsternannnne 157
DIFECIOTY BCCESS cevvvvrereriririinrererssnssssssssssssnnsasassesesenssessssssssnsanassasassnse 158
GELTICL o.ccevvieieiiriiiniensenerensissssssssssssssssssssnsanaranaesssssssssssassnsssasanansans 162
Reading DOS files............... . 168
CLI from AmigaBASIC.cccceeueereccercececenens esseseseessesesettararasnnnsnnnans 173
AmigaBASIC internals ; . 179
File analyzer.......ccccccceeieeinrcccnnnsnettenencineneeencacccsssssssnnnnsssesesssssessseses 180
AmigaBASIC file SLTUCHUTEcccvvveeeriiiioissosinnerarssssesmsesssessssssssnssenanans 184
Determining filletype.......cocoerieriiieierininnneiinisnnescessssssinssssensansssensseeesees 184
Checking for a BASIC file.......ccuuereeciiericeneinnnrannnanseinnsseceecseereenesennes 185
Checking the program header............cccceeivrnneereeriosisninninesssossesneecesnnns 187
ASCILfIIES ...cccovviiierernensrersissrensensstnnsssassssssosessssssssssssssssrsssennananansans 189
Binary filesccceeiiiiiiiiniiniennnncetsinieeninieisiossssssssssssssssssssssnnnnneasens 190
Utility PrOSIAMScoviiiiiiereriicnosirsrsacnsnensssssseesanaenenesssssssssssssssassnranane 201
DATA GENEIALOL......cccueeeeereereereecsecensscssesssssssssssssessessssassnnsssssnansassasas 201
CrosS-TEfeTence LiStccceeieiiiennmeeneerssensessaseneeneeeeserensasnnnsesasenesesnanns 205
Blank line Killer.......cc.ciiuieenineneniesisinnsiceiiecenecesecenenereasnnnsssesesenesessenns 212
REM KIllErccoiiiiermmnnniiniisnionioneieniensnnneceeeesessssssssesssssssssassssssesssnns 217
Listing variablesccueveueieiieieriaereeesssnsennaeeeeeseaesessesseesesseesesssssnes 222
Removing "extra” variables.............ccccecerereerrennncereeennecereenncesserneeennes 227
Self-modifying Programscceeeeeiereeceeeceeeeneeearnerennsssceeseerseneeseenes 228
The WOTKDENCK......ccccovvvriirrrnrirncneraersniersneessaeeecessessessasssesssseesseesennns 235
Using the WOIKDENCh.......ccvcceruiiiceninnecneecrnennsaneecsencsnensneresanecsseesanses 236
Keyboard triCkScccoeieiiiiieieiieiirisisscscnnnneeeererereneesesseesssesssssssnssnnans 236
The TrashCan........ccoeiiiernnniiiisiriniiiniieieieinnineenransssssssessscsessssseesesesnen 237
Extended SEIECtiONccceveierieereierereenersssnnseeneseseserereecssssssssasassnnsnsses 238
Reading and setting Preferences........covvueeeererrcenneeeeecrreenensessssnnnreeseses 239
11 (o SR U PO, 242
The INfO SCTEEMcoeveerrrirererriesssissrsscsnnnerererereeeeeesesesssessnssasasasnsenenane 242
A closer 100k at the INfO SCTEEN.....ccuveureririrereirereeernrnreenensnnsessseesseeseaees 243
TCOMS...ciiiiiiiiiiiiriiiiinierentnerrinirrenreresreniee s teessessanasesnssssnssesssssnssanens 247
ICOM LYPES ..c.coveurerrrneicianrirnnienenransnssesesisessssssisnssnerasrannssnsssssssssssessanne 248
Icon design teeeseseesssesesssssnnnrtnattatetettttitttesaeseesessesessssssssssritranann 249
DiSKODJECE SITUCKUTEc.ceuvvrrrerensssssossarsreronersrnsssssessessssssasesssssssaneassnes 249
DIawer SIUCHULL........cccveteeeierseessstensssssssccssssscssssecssnnssesnsssssssnsessananes 251
IMAGE SIIUCKUTEccueereeerrereceerseccrenensrrescensnscessssesssnssesansessnnssessanses 252

Abacus

10101010V VYO 9900000000 000000
NN === LLLwwbdNN
(S W N = DWW N - [- RV ¥ N

= 0w
e ww
B

=
(=]
[y

10.1.1

P
e
=
(S

—
[=]
—
w

.

10.1.4
10.1.5
10.1.6
10.1.7
10.2

11

11.1
11.2
11.3

12
12.1
12.1.1
12.1.2
12.1.3
12.2
12.2.1
12.2.2

Appendices

Table of Contents

DefaultTOOl eXt.....ccoeeurveererrrererrrurrerersseesesensessnssessesssesssssssssssasssses 253
TOOITYPES XLccureelereererernrrnaeerenneeteeteeseeeeeesesssessessesssssessesas 253
JCON ANALYZETcovmeeereereereireeece e eeseeeseeeeeessseee et se e 254
Making your own icons cersereressssstenanssnnnanenes . 259
TWO graphiCs, ONe QCONccevueeeerueeereriteerieeeeeeeseeeseeseesseseesesesoad 259
Text in GraphiCs.........ccceeeeverveiiuiienrenenrinsieseeeeeseeeeesesssesesesssesssnssens 259
The HCON ItOr.........ceeererreereerererereececee et sess s e 260
COLOT CRANGES.........cueerererenrereenireteereeeenersaessesessenesessesesesseesssnssens 265
EITOT trapPiNg.........coueeiirurrenreeiinrenneneeniseceeseseeeessessessessensessessones 269
EIOrs—and WhYcocirviinrienininneneeneieieeesseesseesnessessesssessnssesond 270
DiSK GCCESS €ITOMScuveeurerrenreerrenseesrenreeseesseneessessssssesssessssssssssssen 270
USET iNPUL EITOTSuouvineineecrenreeneneeseeseeeseesneeseeseessnessessesssesssesssoad 271
MENU EITOTS.......oiieiicircnnreninrerererenseaesesteasssseseesessesesessssesssnsnsas e, 271
TIaPPING €ITOTScocveerreerreeteciecreeeeeceeesteeeseeseseenseeeseeeeeeses s s 272
User-friendly Programming................eceeeeceveeeeeverseeneneesesonosssesosssssnss 272
Trapping USer iNPUL €ITOTS........cecveeveerreenrirrectieeeeeeeeesneessesaeesseessesseond 278
EIT0rS and COMTECHOMSceueertinreereenreereenreeieseeeeeneseesseesssessesssessnas 281
Blocking OUt MeNU GteMS........ccceveueuerereneeeereeecsreeesseresesneessnesssssnas 281
Effective Programming.............ccveevueeereeersreeesseeesseeesssesssssesssesssnnss 287
BenChmarks.........c.uceiivineineentiteneecnnicneceeeeeeseeecseesseseesneesnessssseas 288
Benchmark: variable types............cccoueveereeeeeneeeeueeeeeseressesesssessens 288
Benchmark peculiarities.c.ocuevvuveeiueeeeneeeeseeeeeseeeessseessseeessssessnssan 290
Benchmark: DEF for variable declaration.................ceevvevreevseruererannas 291
Benchmark: variable definition time..............cccceevveereeereeeneeesseesrenesnnnn. 293
Benchmark: Variable name 1engthsccoeevrrveeeeiereeesneesssneessnnenns 294
Benchmark: Single-line 100PS.......cceeveveueeeeceueeereeseneeseneeeesenesnsnessenes 295
Benchmark: subroutine poSitioning................ceceeveevereeveeereeeresserusessenns 297
SHOTt HIDIATIEs.....ccuerveeeeruerneerernrenreerereenniteseeseesseseensencssessessessessssnens 299
Machine language Calls.........ccccveeeruerereeeernnieseseesesesneeseresnssnessssessenes 307
Loading and running machine language..............c.cooevevevvevevevevevrseeneennes 308
LED SHOCKETccuvurieiiineeneiiissenninneeennrnneessnecesssseeessesssesessssesassnnnns 309
Passing VAlUES..........ceerveeereenisruennnneennneeeeineeessseesessessseeseessneeessnsnns 310
INPUt and OULPUL......cc.eeiiiererriieeeeretecrtereenestesetseeeesssseeenessnneneanns 317
DireCt diSk aCCESSeeereuureriesrsrsnnsrsrnrensraeeeesiueeessssressssssnesssssenssessnnns 317
The trackdisk.device commands.............cceerverererenrereruruereseeneas 324
Multiple disk driVe aCCESSeevverrerrererrirrueneerieereerssreeesssnecsssneecessnne 325
SECtOr AESIN.....ccceiernrrreneeeeeeeenrirnreeeereesissreeesseesssnssssssssssssssnsessesss 325
Memory handling.........c.cceeeerieeiiiiiiniiriiiniiiniennneeresnsseeeeienneeeeeeeseens 328
Reserving memory through variablescccceeeeieeereneeenieniecresesennnnn. 328
AlIOCAtING MEMOTY...cccueriireiennininiriranrsstesaseessansesenssssessesssseesssrsssssees 328
.. 231
AmigaBASIC tOKENS ...cccveveereeetrnrerninrensraesesssenssssarsseresssssasesnsesssnsennes 333
Other tOKENS......ccoveereirenmeeeresscrtesssarnenssssneesesseneersessesssssanessesssrnssessnn 338
.. 339

1
Introduction

ABACUS

1. INTRODUCTION

1.

Introduction

Think back to the first time you sat down at your Amiga. You
probably experienced the following reactions: excitement, astonish-
ment, surprise and confusion—probably in that order. Yes, the Amiga
really is a super personal computer. But there's so much you can do
with an Amiga that you often don't know where to begin. How should
you begin to apply the Amiga to your tastes? How do you make the
most of the Amiga's many capabilities?

If you are new to the Amiga, you probably have dozens of questions by
now. To start you off, Chapter Two of this book describes work with
the Command Line Interface (CLI).

Part of this book explains methods and programming techniques for
getting the most out of Microsoft's AmigaBASIC, with special empha-
sis on using existing system modules from the software supplied with
your Amiga. You'll find handy AmigaBASIC program routines in this
book that let you use the various fonts and type styles, use
rubberbanding, create borderless windows, and even a disk monitor for
exploring the machine language code of the disk drive.

Chapter Five describes the handling of AmigaDOS. It shows how to
use the commands in the CLI, and how these commands can be useful
to you.

Other subjects covered in Amiga Tricks and Tips include the handling
and changing of the Workbench. This includes manipulation and editing
of icons for your own purposes.

2
The CLI

ABACUS

2. THE CLI

The CLI

CLI stands for Command Line Interface. This user interface is con-
trolled from the keyboard. Neither the icons nor the mouse can be used
in the CLI. The CLI included in Workbench Version 1.2 recognizes
about 50 commands.

The CLI works closely with AmigaDOS, the disk operating system.
Many special CLI commands make working with diskettes faster and
more convenient than performing the same functions from the
Workbench screen. Some disk commands must be called from the CLI,
since they cannot be directly accessed by Intuition. Intuitionis
the part of the Amiga's operating system that acts as an interface
between the user and the window-and-mouse technique of handling
diskettes, programs and files.

You usually access CLI from Intuition. However, you can also
call CL.T commands from BASIC and C programs.

2. THE CLI

AMIGA TRICKS AND TIPS

2.1

Question 1:

Answer:

CLI questions and
answers

Many new Amiga users ask questions about the CLI. Below are 20 of
the most often asked CLI questions, and their answers.

How do I get into the CLI?

The CLI is contained on every Workbench diskette. Here's how you can
access it:

)

b)

Accessing CLI with Intuition (the usual method):

Boot your system with the Workbench diskette in the drive.
You'll see the deep blue Workbench screen displayed.

Click the Workbench disk icon. This opens a window named
Workbench, which contains a number of icons.

Click the System drawer. This opens a window called
System, again filled with a number of other icons. We are
interested in an icon named CLI, which either displays 1>
(Version 1.1), or an icon of a little window with 1> displayed in
it (Version 1.2).

If you don't see a CLI icon, then the CLI gadget in the
Preferences program is switched to Of£. Click on the
Preferences icon in the Workbench window. When the
Preferences screen appears, click the On gadget next to the
word CLI. Save the result by clicking Save. Now close and

reopen the System window. A CLI icon should appear this
time.

Click on the CLI icon. This opens a window named New
CLI. You can enlarge or reduce the size of this window, but
you can't close it, since there is no close gadget. You now have
your own CLI,

Accessing CLI through AmigaDOS:

AmigaDOS has a command called execute which executes
CLI commands in a batch file,

ABACUS

Question 2:

Answer:

Question 3:

Answer:

2.1 CLI QUESTIONS AND ANSWERS

. You can also access AmigaDOS through the system libraries,
which is how AmigaBASIC and the C programming language
communicate with the CLI. o

©) Interrupting the booting process (the easiest method of calling
the CLI): '

. Boot your system as usual. When the Kickstart diskette (Amiga
1000) or Kickstart in ROM (Amiga 500 and 2000) has success-
fully loaded, the icon of a hand holding a Workbench diskette
appears on the screen.

. Insert the Workbench diskette in the drive. The hand disappears
and the system boots up.

. As soon as the AmigaDOS window (the blue screen) appears,
hold down the <CTRL> key and press the <D> key. The follow-
ing message appears:

** BREAK - CLI
1>

. You are now in the CLI. Enter:
1> loadwb

. You can now access all functions of the CLI.

How do I get out of the CLI?

The CLI window doesn't have a close gadget. You exit the CLI by
typing in the following:

1> endcli
If you have started programs from CLI, the CLI window remains open
while the programs run.
I don't have a typewriter, but I have a printer connected
to my Amiga. Can I use my Amiga to type?
Yes. Type in the following CLI command:

1> copy * to prt:
The asterisk (*) represents the open CLI window. After this input the
CLI prompt 1> disappears, but the cursor stays on the screen. Now

everything you type goes to the printer when you press the
<RETURN> key, like a typewriter with one-line correction capability.

2. THE CLI

Question 4:

Answer:

10

AMIGA TRICKS AND TIPS

Hold down the <CTRL> key and press the <\> (backslash) key to exit
typewriter mode.

You can also copy text from the CLI window to another window.
Type this and press the <RETURN> key to display your text in another
window:

1> copy * to CON:10/10/300/100/copy_text

Re-activate the CLI window by clicking on it. Press and hold the
<CTRL> key and press the <\> key to stop this command.

I only have one disk drive. Every time I call a CL I
command, the Amiga wants the Workbench diskette. Can
the Workbench be stored in memory?

Each CLI command is a program stored in directory c: of the Work-
bench diskette. When you call a CLI command, the Amiga loads this
program from the Workbench diskette. This saves system memory
because the CLI commands aren't taking up any of that memory. On
the other hand, if you only have one disk drive, you spend a lot of your
time swapping diskettes.

Buying a second disk drive is one solution to the problem. Or, if you
have enough system memory, you can copy some or all of the CL I
commands into a RAM disk. Here's the sequence for copying these
commands:

1> makedir ram:c
1> copy sys:c to ram:c
1> assign c: ramic

The Amiga creates a subdirectory on the RAM disk named c:. Next,
the CLI command set is copied to this directory. The last command
assigns the command directory c : to the RAM disk.

If your Amiga doesn't have enough memory available, copy only the
CLI commands you need most. For example:

1>makedir ram:c

1> copy sys:c/copy to ram:c

1> copy sys:c/dir to ram:c

1> copy sys:c/list to ram:c

(.any other commands you want copied..)
1> assignc: ram:c

ABACUS

Question 5:

Answer:

Question 6:

Answer:

2.1 CLI QUESTIONS AND ANSWERS

Type in the following to make the CLI accessible from the Workbench
diskette:

1>df0:c/assignc: df0:c

Once you change to the Workbench-accessed CLI, you should delete the
RAM-based CLI to release the memory it occupies:

1> delete ram:c#?
1> delete ram:c
Are there wildcard characters on the Amiga like the * and

2 found on the older Commodore computers?

The Amiga uses the character combination #2 as a wildcard. The
asterisk * represents the current CLI window, so it isn't used as a
wildcard on the Amiga. You can delete the entire RAM disk by typing
in:

1) delete ram:#?
Try this command:

1) run amig#?
The Amiga can't execute this command because it doesn't know which
program to execute. There may be several programs with names which
start with the letters "amig”.

How can I print all the CLI commands on my printer?

Type in this command sequence to print the complete CLI command
list:

1> list quick sys:c toprt:
The quick option prints the command names only. The file creation
date, the time, the protection status and the file size aren't printed. The
CLI commands themselves are in the c : subdirectory, or in the system

directory sys :. The list prints out even faster if you use the multi-
tasking capabilities of the Amiga:

1> run list quick sys:c toprt:
This line opens another task for handling printer output. The Amiga

prints the command words in the background, leaving you free to work
on other things.

11

2. THE CLI

Question 7:

Answer:

Question 8:

Answer:

Question 9:

Answer:

12

AMIGA TRICKS AND TIPS

How can I determine the syntax of a certain CLI com-
mand while working in the CLI?

Almost all CLTI commands have some help messages. If you don't
remember the exact syntax of a command, enter the command name
followed by a space and a question mark. For example:

1>1ist ?
The Amiga displays:

DIR,P=PATH /K,KEYS/S,DATES/S,NODATES/ S,TO/K,S/K,
SINCE/K,UPTO/K,QUICK/S:

DIR stands for a directory. The current directory is listed if DIR is
omitted. All other options have a condition, or argument, added to the
name of the option:

/A: This requires a specific argument

/K: This argument requires a parameter

/S: This argument has no parameters

This command prints the programs in d£0 : with the various starting
memory blocks, but without dates:

1> 1ist df0: keys nodates

Type in this command sequence to print the programs in d£0: which
were written between October 4th, 1986 and today.

1> 1ist df0: since 04-Oct-86 upto today

How can I stop a CLTI command as it executes? v
Pressing <CTRL><C> stops any command. <CTRL><D> sends an
execute command to stop the program as soon as possible.

How can I copy a program using one disk drive?

There are two methods of copying programs with one disk drive.

a Using the RAM disk:

. Copy the program you want copied, as well as the copy pro-
gram, from the source diskette into the RAM disk:

1> copy programto ram:
1> copy c/copy to ram:

ABACUS

Note:

b)

2.1 CLI QUESTIONS AND ANSWERS

The copy program was copied by the second command se-
quence. This means that you won't have to insert the Workbench

diskette during the copying procedure.

Remove the source diskette and put the destination diskette in the
drive.

Type in the following to copy the program onto the destination
diskette:

1> ram:copy ram:programto df0:

Remove the destination diskette from the drive and insert the
Workbench diskette.

Enter this line to delete the RAM disk:

1> delete ram: #?

Using the Intuition icons:

Insert the source diskette and click the source diskette's icon.

As soon as the desired program's icon appears, remove the origi-
nal diskette and insert the destination diskette.

Open the destination diskette by clicking its icon. Now you can
drag the program icon from the source diskette to the destination
diskette's window.

Requesters tell you when to exchange diskettes (remember not to
remove a diskette from a drive until the disk light turns off).

There are programs on your Workbench diskette which aren't listed in
Intuition windows. This is because they have no icons assigned to
them. Here's how you can assign icons to these programs.

Insert the Workbench diskette. Type in the following lines:
1> copy df0:clock.info to ram:

1> rename ram:clock.info as ram:program.info
1> copy c/copy to ram:

Insert the diskette which contains the original program. Enter:
1> ram:copy ram:program.info to dfo0:

Now your program (here just called program) has an icon.

Insert the Workbench diskette and delete the RAM disk:

1> delete ram: #?

13

2. THE CLI

Question 10:
Answer:

Note:

Question 11:

Answer:

Note:

14

AMIGA TRICKS AND TIPS

How can I copy a program using two disk drives?
Enter this line in the CLI to copy the program:

1> copy df0:originalprogramto dfl:
originalprogram is the name of your program. It must be in
directory d£0 : of the diskette in drive O for this command to work
correctly.

You can also copy a program by moving the program icon from one
disk window to another (see b) in Question 9 above).

Workbench diskettes with version numbers of 1.2 and above automati-
cally copy info files when programs are copied. Info files contain the
icon design of the program and other information. If your Workbench is
earlier than Version 1.2, you must copy the info file and the program,
if you want the program to have an icon:

1> copy df0:originalprogram.info to df1l:

How can I copy an entire diskette?
Use the diskcopy command.
a) If you have one disk drive:
. Insert the Workbench diskette.
. Enter the following CL.I command:
1>diskcopy fromdf0: to df0: name "copy"”

. Requesters tell you to exchange the source and destination disk-
ettes as needed.

b) If you have two disk drives:
. Insert the Workbench diskette.
. Enter the following CLI command:
1> diskcopy fromdf0: to dfl: name "copy"

. Insert the source diskette in drive 0 and the target diskette in drive
1. No diskette swapping is required.

Always write-protect the source diskette before you begin copying, so
you won't accidentally overwrite the source diskette.

ABACUS

Question 12:
Answer:

Note:

2.1 CLI QUESTIONS AND ANSWERS

What is a startup sequence, and what can I do with it?

The startup sequence is a list of CLI commands executed when the
system is first booted up. You can also run the startup sequence while
in the CLI:

1> execute s/startup-sequence
Type this command to see what the startup sequence contains:
1> type s/startup—-sequence

You can write your own startup sequences with the CLI editor Ed.
Type this to access Ed, and the startup sequence:

1> ed s/startup—-sequence
The startup sequence for Workbench Version 1.2 looks like this:

echo "Workbench Diskette (Version1.2/33.43)"
echo" "
echo " (Date and time can be set with 'Preferences') "
if EXISTS sys:system
path sys:systemadd
endif
BindDrivers
Loadwb
endcli >nil:

Move the cursor to the line you want to change with the cursor keys.

Pressing the <ESC> key puts you into extended command mode. Pres-

sing <ESC> <D> <RETURN> deletes the current line. Delete the line:
endcli>nil:

Move the cursor to the line that says 1oadwb. Press <KRETURN> to
move that line down. Move the cursor to that blank line. Enter this:

echo"**** This is my startup sequence. **¥x¥

Press the <ESC> key, <X> key and <RETURN> key to save your
startup sequence.

Try out the new sequence:
1> execute s/startup-sequence

As the sequence executes, your message appears on the screen, and the
Amiga drops right into the CLI.

The loadwb command must be present at the end of the startup

sequence to enable Intuition. If you exit the startup sequence
without 1oadwb, you'll get a blank blue screen without icons.

15

2. THE CLI

Question 13

Answer:

Question 14:

Answer:

Question 15

Answer:

16

.
.

AMIGA TRICKS AND TIPS

Can the Amiga speak while in the CLI?

Yes. The CLI command for speech is say. say works similar to a
print command in BASIC, except that the text is read through the
Amiga's sound system, and no quotation marks are needed for say.
Type this in to hear say in action:

1> saytobiis a real nice guy!

The default speech parameters can be changed by including a modifier in
the text you want spoken. These modifiers are: —f (female), -m (male),
—r (robot), —n (natural), s # (speed; # is a number ranging from 40 to
400) and -p# (pitch; # is a number ranging from 65 to 320). say can
speak the contents of a file when you add the modifier -x filename
to the command. The following example recites the startup sequence in
a woman's voice with a pitch of 180 and a speed of 180;

1>say -f -pl80 -s180 -x s/startup-sequence

You can also use say within the startup sequence (see Question 12 for
editing instructions). Imagine having your Amiga say hello to you
every time you turn it on!

How can I send a C listing to a printer?

Use the CLI type command. Say you have a C listing called test.c
in drive d£1:. Enter the following:

1> runtypedfl:test.ctoprt: opt n

run uses the multitasking capabilities of the Amiga here—while the
printer runs, you can work with another program. The opt n option
inserts line numbers in the C listing. These are helpful when tracking
down errors.

How do I use the multitasking capabilities of the Amiga
in everyday work with the CLI?

Normally the CLI processes one command after the other; there is no
option for multitasking. Remember that the CLI itself can't perform
more than one task at a time. However, the multitasking operating
system of the Amiga allows you to run several single task CLIs at
once.

For example, if you want to print the directory of the system diskette,
edit a document, and have the Amiga speak a sentence, all at once, the
usual command sequence would look like this:

ABACUS

2.1 CLI QUESTIONS AND ANSWERS

1> 1list sys: toprt:
1>ed text
1> say hellouser

This sequence executes faster if you use multiple CLI commands:

1> run list sys: toprt:
1> run ed text
1> say hellouser

The run command passes the command sequence which follows it to a
new CLI. The original CLI then has nothing to do, and goes on to the
next task without waiting for the first one to finish.

There is a limitation: Two CLIs shouldn't access the same drive (or a
drive and the printer) at the same time. In the case of the disk drives, the
two CLIs share computing time, which takes the entire operation
longer than if the two CLIs were executed one after the other.

Another way to initiate several tasks at once is by opening mulitple
CLIs with the newcli command. This gives the user another com-
plete input interface. This method works best when you execute several
CL1I functions over a long period of time, instead of executing CLI
commands quickly. The following example makes this clear:

1> newcli
1> 1list df0: quick
2>type filesopt h

Here a new CLI opens, and all of the filenames in the df0: directory
appear in this window. Then the file contents of the second, new CLI
print out. This way you can read filenames in the first CLI window
and work in the second window without disturbing the list of names.

The newcli command also offers several options. The user can set the
dimensions of the new CLI window. The syntax looks like this:

1> newcli con:0/10/639/100/newcli

The word con : refers to the console (keyboard and monitor). The first
two numbers specify the x and y coordinates of the upper left corner of
the window, and the last two numbers set the width and height of the
window.

This lets you place new CLI windows so that they don't hide other
windows. If you work with multiple CLIs, just leave each window's
back and front gadgets visible. Clicking a front gadget allows you to
bring any of the windows to the foreground.

17

2. THE CLI

Question 16:
Answer:

Question 17:

Answer:

18

AMIGA TRICKS AND Tips

What options does the Amiga have for text output?
The copy command is the simplest method:

1> copy *toprt:
See Question 3 for more information about the copy command.
The built in CLI editor Ed can be used for writing letters:

1> runedletter
Immediately the Ed window appears, and you can write your letter.
Ed runs independently of your original CLI. You can enter as many
documents as you wish. When the letter is done, enter the key com-
bination <ESC><x><RETURN> to save it to diskette under the name
"letter". You can print your saved file from the CLT by typing:

1> type lettertoprt:

One advantage here over the simple typewriter mode from Question 3 is
that the text is on diskette. It can be printed at any time, or edited by

typing:
1> runedletter

If you don't want the letter any more, enter:
1> delete letter

The Notepad is a third option for editing text. You call it as follows:
1> runutilities/notepad

This is an expanded notepad which allows access to the Amiga disk
resident fonts. That is its only real advantage over Ed. We recommend
using Ed, or a true word processor like Abacus' TextPro or
BeckerText.

How can I make the invisible files on my Workbench
diskette visible?

A file doesn't appear in an Intuition window unless it has a
matching info file. This info file contains the icon data for the corres-
ponding file.

There are many files on the Workbench diskette without info files,
These files are invisible to windows. You can adapt these files to appear
as icons.

ABACUS

2.1 CLI QUESTIONS AND ANSWERS

Type in the following to load Ed:
1>ed S:show
Enter the following text in Ed:

key file/a
Jbra (
ket)

if exists sys:cli.info
echo "create info file"

if exists (file)

copy sys:system/cli.info to (file).info
else

echo "there is no such source file"
endif
else

echo "no .info original found"
endif

quit

Now press <ESC>,<X> and <RETURN> to save the text. This text is
saved under the name "show" in the s: directory.

Now you can assign an info file to any file, and make the unseen file
visible in a window. Just enter:

1> execute showNameOfTheFile

The execute command activates the command sequence show. The
.key command uses NameOfTheFile instead of the word £ile.
The /a option indicates that this argument must be entered.

The .bra and .ket commands define the characters which mark the
start and end of the argument placeholders in the command sequence.

The command sequence checks for the existence of the info file
"cli.info", since this info file is used as the source info file. If this
file is not found in your directory, you must switch the CLT gadget in
Preferences to On (see Question 1, part a)).

Sometimes new file icons are piled on top of each other, if they are

identical. Separate the icons with the mouse (drag them apart), and use
the Workbench option Snapshot to keep them in place.

19

2. THE CLI

Question 18:

Answer:

Question 19;
Answer:

20

AMIGA TRICKS AND TIPS

How can I combine various documents?
A common operation is combining various separate documents into
one. These can be parts of a C listing, or a letter heading, text and
closing. Ed cannot merge documents like some word processing pro-
grams can. However, AmigaDOS has the join command available
through the CLI.
Say you have three text files called header, text and closing.
You want to create a single document out of these three parts. This is
done with join:

1> join header text closing as letter
The three separate components combine in order and save to diskette
under the filename "letter".
How can I search for certain text passages in my files?
The search command locates a specific word or sentence in files. C
programmers can use this command to search for procedure and variable
names in source listings. Here's the syntax of search:

1> search name search search_text all
name = name of the file or disk directory being searched
search text =textto search for
all = all available directories are searched

This sequence searches all the files on the diskette in drive d£0: for the
word "tobi."

1> search df0: search "tobi™ all

This command sequence checks the file "letter" for the name
"Meier".

1> search letter search "Meier"

This command searches all of the files starting with the letters
"docum" in the current directory for the words "Grand Rapids".

1> search docum#? search "Grand Rapids™

ABACUS 2.1 CLI QUESTIONS AND ANSWERS

Question 20: Can a text file's contents be sorted?

Answer: Yes, the sort command allows text files of up to 200 lines to be
sorted alphabetically. This is especially useful for address lists. For
example, if the file "addresses" contains the unsorted addresses of
your friends, just enter:

1> sort addresses to sorted

This line alphabetically sorts the file, and saves the sorted list as a new
file named "sorted".

If you want to sort more than 200 lines of text, you must increase the
size of the stack with the st ack command.

21

2. THE CLI

AMIGA TRICKS AND TIPS

2.2

AddBuffers

BindDrivers

New CLI commands

The newest version of the Workbench is here! There are a number of
new CLI commands not documented in the Amiga manual. This
section defines these new commands in alphabetical order.

The AddBuf fers command supplies a connected disk drive with more
working memory. A disk drive can have a maximum of 24K, but only
a fraction of this memory is used. The result is slow diskette operation.
AddBuffers drive df0:buffers 10 assigns 10 buffer blocks of
about 512 bytes each to the internal disk drive. You must decide for
yourself which is more important—speed or memory.

You use this command in the Workbench 1.2 startup sequence (see
Question 12 in the preceding section). When you want to add a driver
program other than the one controlling the disk drive, you place the
program in the drawer marked Expansion. The BindDrivers
command tells the CLI to look in the Expansion drawer for the
necessary device driver,

ChangeTaskPri

DiskChange

22

When you test out the multitasking capabilities of the Amiga, you may
have found one disadvantage: Multitasking sets up equal priorities. This
is good for some tasks but not others: You don't want the disk drive
starting up while you draw in a graphic program. On the other hand,
you might like to sort a file or format 30 diskettes while something
else is going on. However, the draw function of the graphic program
is much slower because of the other task(s) happening at the same time.
The microprocessor gives all tasks the same time allotment. It doesn't
matter that the sorting or formatting takes longer. ChangeTaskPri
=5 sets the background diskette functions to minimal priority. These
diskette functions take longer to execute, but won't stop the other tasks
at crucial times. ChangeTaskPri can theoretically use values from -
128 to +127, but values below -5 or about +5 can result in a system
crash.

This command is for those of you who own a 5-1/4" disk drive for the
Amiga. The DiskChange command tells the Amiga that you have
changed diskettes in the 5-1/4" drive. If you don't use this command,
AmigaDOS will not handle the new disk correctly. The reason is that
unlike the 3-1/2" drive, the 5-1/4" disk drive doesn't check for diskette
exchanges. If you manually enter DiskChange dev df1:, the
system solves the above problem.

ABACUS

DiskDoctor

Mount

Path

SetDate

2.2 NEwW CLI COMMANDS

Once you're through paying for your Amiga, you don't have much
money left for diskettes. So like most users, you buy no-brand disk-
ettes, which may not be very good media. One day, the requester
appears that says, "Disk structure corrupted: Use DiskDoctor." This
command has no description in the AmigaDOS manual. The Disk~-
Doctor program looks at a diskette track by track, and attempts to
correct all the errors it finds. It displays a list of all files and tracks
which are defective or in need of repair, and instructs the user to copy
these programs to a new diskette. If you only have an internal disk
drive, you should enter the command as follows:

DiskDoctor DRIVE df0:

Let the disk drive stop running after you insert the diskette containing
the DiskDoctor, before you press the <TRETURN> key.

The Workbench is a passive program. The first thing it does is check
for the user-defined device drivers, and whether these peripheral devices
are connected. Mount tells the Amiga what to do with these drivers. If
this command is found, then the Amiga checks the MountList in the
devs directory for the drivers. If the appropriate entry is present in the
MountList, and you have a 5-1/4" drive, entering Mount df1:

instructs AmigaDOS to access the drive.

The Workbench diskette contains all the CLI commands. When only
one command should be executed, the Amiga first checks the current
directory (accessed by cd) for the command. If the command isn't in
that directory, the directory named c is searched. In Version 1.2 of the
Workbench, some of the commands are stored in the system directory.
The list of directories may be expanded using the path command so
that the user can add new commands. The syntax for adding to
directories:

path directory_name add

The word add tells AmigaDOS to add directory_name to the
search path. When you want to know which directories are searched,
enter path alone, or enter show. If the previously given directory is
no longer needed, then you can delete it with path reset.

This command is particularly important for Amiga 1000 owners. When
you turn on the Amiga and you want to edit a text or a program, the
new version is saved with the date last set in Preferences. If you
didn't set the date before editing the text/program, the date stamped on
the file will not be accurate. This command lets you change the date and
time stamped on any file. You can set your date and time by entering
the following syntax:

SetDate FILE "text" DATE Da-Month-YR TIME 23:59

23

2. THE CLI

SetMap

Version

24

AMIGA TRICKS AND TIPS

The Amiga sells worldwide. Many countries have different keyboard
settings and different alphabets. To get around some of these problems
of language, Commodore Amiga created different keyboard drivers. The
keyboard only comes in one configuration (American), but it can
simulate the keyboards of other nations. The SetMap command sets
the keyboard according to the codes in the table below:

Name Country

ch Switzerland
dk Denmark

d Germany

e Spain

£ France

gb Great Britain
i Italy

is Iceland

n Norway

s Sweden/Finland
usa () United States

This command returns the version number of the Workbench and
KickStart systems currently in use.

ABAcCUS

2.3 NEW STARTUP SEQUENCES

2.3

New startup sequences

The following startup-sequence allows you to enter the current date on
every system start. The startup-sequence file must be in the s :
directory on the Workbench diskette to execute.

Ecm "nw

Echo "Startup-Sequence:) 1987 by Stefan Maelger"
Ectlo " nw

if exists sys:system

Path sys:system add

Endif

BindDrivers

SetMap d

Date

Ect’o "nw

Echo "Please enter the new date in"
Echo "the displayed format:"

Date ?

Echo " "

Echo "Thenewdateis:"
Date

EChO " w

Info

loadwb

endcli >nil:

The sequence below sets the Amiga to tomorrow's date. If you remem-
ber to set the date in Preferences before you turn off the Amiga,
the date is correct, or close, the next time you turn on your Amiga.

Echo "non
Echo "Startup-Sequence by Stefan Maelger"

If Exists sys:system
Path sys:systemadd
endif

Binddrivers

Setmap d

Date tomorrow

Echo " "
Echo "Today's date is:"
Date

Echo "Sytem:"
Info

loadwb
endcli >nil:

25

2. THE CL1

AMIGA TRICKS AND TIPS

This is the ideal Workbench for CLI enthusiasts. It opens a second
CLI window and changes the prompt slightly (you'll see how when
you try it out).

ADDBUFFERS df0:C 20

Echo "This creates a new CLI window and prompt."
Echo "non

If Exists sys:system

Path sys:systemadd
endif

Binddrivers

PROMPT CLI#%n>
NEWCLI

Info

loadwb
endcli >nil:

This is the startup sequence for the beginner. It closes the big CLI
window, but opens a smaller CLI window. It also shows the RAM
disk icon.

Echo " "
Echo "Workbench Version 1.2 33.45"

Ec}lo " on
If Exists sys:system

Path sys:systemadd
endif

Binddrivers

Echo "Welcome everyone"

loadwb

DIR RAM:

NEWCLI "CON:0/150/400/50/Alternative"
endcli>nil:

2.3.1

26

Printer spooler

Using a printer spooler with a multitasking computer allows you to
work on something else while a file goes to the printer.

The CLI has a RUN command for executing a new task. You can treat
the spooler program as a batch file using this command. The procedure
is as follows:
Start the CLI and enter:

ED c:PRINT

Now enter the following program:

ABAcCuUS

2.3 NEW STARTUP SEQUENCES

key filename/a,typ/s ;take the parameters

; Printer-Spooler

?
;(c) 1987 by Stefan Maelger

if not exists <filename> scheck for file

echo "File not found" ;no?

quit ;-then end here
else or:

copy <filename> to ram:<filename>
;copy file to the RAM-Disk

if <typ> eq "DUMP" sHex-Dump output ?
run>nil: type ram:<filename>toprt: opth

;—HexDump-Spooling
else jor:

run >nil: type ram:<filename>toprt: optn

;-normal Spooling
endif
delete ram:<filename> ;free memory
endif
echo "printing" ;Output message
quit

Save the file with <ESC><X>. You can call the routine by entering
the following (the DUMP parameter is optional and can be omitted):

EXECUTE PRINT filename (DUMP)

Since the EXECUTE command takes a while to type—and can easily be
typed in incorrectly—enter the following:

run>nil: copy sys:c/EXECUTE to sys:c/DO quiet

This creates a command named DO which does the same thing as
EXECUTE. For example:

DO PRINT filename

The ability to put a number of commands into a two-character word is a
real time saver. Here's another example of DO:

RENAME sys : ¢/EXECUTE TO sys:c/DO

27

2. THE CLI

AMIGA TRICKS AND TIPS

2.3.2

CLI programming (batch files)

The CLI's flexibility in "programming” can make much of your work
easier. This section shows you a couple of examples for bypassing the
problem of accessing every AmigaDOS command from the Workbench
diskette. Also, ideas are presented here for performing data exchange
from the CLI.

The big hindrance to the CLI is that no loops can be constructed. The
AmigaDOS interpreter reads every command from the execute file in
order. Jumps cannot be executed. This goes for all CLI programming.

2.3.3

Program
description

28

Resident CLI

The fact that the CLI must always access the Workbench diskette can
be annoying. The program below makes the CLI resident in RAM:

yProgramto copy all the CLI-commands to RAM

’

’
FAILAT 30
MAKEDIR ram:c ;s RAM-Data create

?

IF FAIL
SKIP ende

ENDIF

’
ECHO "CLI-commands being copied..."

?

COPY df0:c TO ram:c QUIET ; copy all commands to ram
ASSIGN c: ram:c ; commands now £rom ram:
ECHO "Ready!"

LAB ende

Before you go on, you should know that this is just a revision of the
RAM-resident CLI command workings as listed in the AmigaDO
manual. :

First the program creates a directory in RAM for storing all C com-
mands. If no errors occur, the entire CLI directory moves from the
currently inserted diskette into RAM. When all are ready, the ASSIGN
command tells the operating system to look in RAM only for the CLI.

ABAcus

2.3 NEW STARTUP SEQUENCES

2.3.4 Resi (partial resident)
There is one small disadvantage to the RAM-resident CLI. A basic
512K Amiga can lose a lot of memory to the CLI. Selective copying
of CLI commands saves memory. Another advantage to Resi: Since
every command must be copied over one at a time, you can also change
the command names to abbreviations using the RENAME command. For
example, delete can become del, and execute can become ex.
This makes things much easier when you might otherwise have to enter
long strings of characters, and even frequently used commands like dir
orlist.
;Program copies the most important CLI commands to RAM
H
FAILAT 20
ECHO "The commands are being copied!"
MAKEDIR ram:c
COPY c/copy TO ram:c
ASSIGN c: ram:c
COPY c/cd TOram:c
COPY c/ed TO ram:c
COPY c/dir TO ram:c
COPY c/echo TO ram:c
COPY c/type TO ram:c
COPY c/list TO ram:c
COPY c/info TO ram:c
COPY c/date TO ram:c
COPY c/execute TO ram:c
COPY c/makedir TO ram:c
COPY c/delete TO ram:c
COPY c/assign TO ram:c
ECHO "Ready!"
;End of copy
2.3.5 ToDisk

Once you finish using the CLI in RAM, you'll want to free up the
memory used by the resident commands. ENDCLT disables the resident
CLI, but leaves the commands in RAM. The ToDisk program below
assigns the CLI system in RAM to the diskette currently in the drive,
then clears the c directory from RAM. Other programs in RAM remain

29

2. THE CLI

Program
description

AMIGA TRICKS AND TIPS

EXECUTE Resident ; CLI commands copied

’

ECHO "Please insert new formatted diskette ..."
WAIT 8 SECS

CD dfO0:

ynew diskette initialization

COPY ram:copy/CLI TO CLI ; CLI written
COPY ram:copy/CLI.info TO CLI.info
MAKEDIR DiskUtilities

COPY ram:copy/Resident TO DiskUtilities
;Help files written

COPY ram:copy/ToDisk TO DiskUtilities
COPY ram:copy/CLICopy TO DiskUtilities
COPY ram:copy/ReSi TO DiskUtilities
MAKEDIR c

COPY ram:c TO c QUIET

;CLI commands written

ECHO "Ready!"

The program copies the CLI icon in the main directory, the programs
in the DiskUtilities directory and the CLI commands in the c
directory from the current diskette (make sure that these programs and
directories are on the current diskette). To avoid overwriting the copy
routine for all CLI commands, the program uses the Resident
routine as a subroutine. After 8 seconds the Amiga asks you to ex-
change diskettes. The inserted diskette is viewed as the target diskette,
and the writing procedure begins. The CLI and its icon are copied and
then the directories with the utility programs. Finally, the commands
copy to the newly written c directory. Now you have a diskette that
you can call the CLI from without having to change diskettes. Typing
ASSIGN sys:c workdisk:c makes the diskette in drive O into the
work diskette.

2.3.7

Preparations

30

Data management

Why should you only want to delete, save and copy files. This section
shows how you can use the CLI to create an address file. This has all
the basic functions you need, such as data entry, search and deletion.
Also, you can look for keywords and view any entry you wish.

The address file cannot exist on the main directory of the diskette. The
best bet is to create a subdirectory with the name AdrBook:

makedir "df0:AdrBook"

ABACUS

Entry

23 NEW STARTUP SEQUENCES

When you wish to work with the address file, you must change this
directory to the current directory:

cd "df0:adrbook™

This subdirectory contains the program and the address directory. You
have one of two options for creating the address directory. You can use
the program DatDir . TXT below, or enter the CLI command MAKE-
DIR "df0:AdrBook/AdressData”.DatDir.TXT checks for an
existing directory of the same name. If one exists, the user gets the
option of cancelling the program, or deleting or recreating the directory.

;create directory in main directory

’

H
CD df0:AdrBook

2

IF EXISTS AdressData

ECHO "The existing data files will be erased!"
ECHO "You have three seconds to remove the disk"
WAIT 3 SECS

DELETE AdressData#?

DELETE AdressData

ENDIF

H

MAKEDIR AdressData

H

ECHO "Directory created in AdrBook!"

Now you can continue. The Ent ry.TXT program lets you write indivi-
dual address data into the AdressData subdirectory. You call this
with EXECUTE Entry.TXT "name”. "name" stands for the name
section under which you want the address data arranged. This is always
the main search criterion. Here you must decide whether the last name
or the entire name is more important. You can naturally also use this
program for keeping track of your record collection or library. The only
important thing to remember is that text must be placed in quotation
marks when it contains a blank space.

;Enter data in the address data file

’

H
;JKEY Name/A
CD df0:AdrBook/AdressData

?

IF EXISTS "<Name>"

ECHO "Existing data can only be edited!"
ENDIF

’

ED FROM "<Name>"

CD df0:AdrBook
ECHO "<Name> has been written!"

31

2. THE CLI

Program
description

Delete

Program
description

Search

32

AMIGA TRICKS AND T1PS

The EXECUTE command assigns a variable to the program through
KEY. It looks to see whether this name already exists. If so, the Amiga
displays a warning that existing data can be edited only. You cannot
manage multiple data under the same main search criteria.

The AmigaDOS screen editor executes so you can edit your data. When
the input is done, AdrBook is declared as the current directory, which
saves you the trouble of constantly stating the directory paths. You can
exit input mode by pressing <ESC><X> (save data and exit) as well as
<ESC><Q> (quit without saving).

When entering data, there are times that you either enter some data in-
correctly, or no longer need that data. The following batch file lets you
remove data entries without having to go directly into the directory.

;Delete name data from the address file

H
;JKEY Name/A
CD df0:AdrBook/AdressData

?

IF NOT EXISTS "<Name>"

ECHO "Data not found!"

SKIP Ende

ENDIF

?

DELETE "<Name>"

ECHO "<Name> has been deleted!"

1AB Ende
CD dfO0:AdrBook

After a short check for the existence of the file, the entry is removed
from the data directory, and the program exits.

If you have many friends and relations in your data file, there are times
when you may want specific data on one particular person from a file.
You can get an alphabetized list by typing DIR, but searching through
a large directory can take time. The EXECUTE Search.TXT
command searches through the directory for the name you want. If the
name exists, this data appears on the screen.

;Search for one name in the Address file

H

KEY Name/A

H

CD df0:AdrBook/AdressData

IF EXISTS "<Name>"
ECHO "Data found ..."
TYPE "<Name>"

SKIP Ende

ENDIF

ABACUS

Program
description

Delete

Program
description

Search

2.3 NEW STARTUP SEQUENCES

The EXECUTE command assigns a variable to the program through
KEY. It looks to see whether this name already exists. If so, the Amiga
displays a warning that existing data can be edited only. You cannot
manage multiple data under the same main search criteria.

The AmigaDOS screen editor executes so you can edit your data. When
the input is done, AdrBook is declared as the current directory, which
saves you the trouble of constantly stating the directory paths. You can
exit input mode by pressing <ESC><X> (save data and exit) as well as
<ESC><Q> (quit without saving).

When entering data, there are times that you either enter some data in-
correctly, or no longer need that data. The following batch file lets you
remove data entries without having to go directly into the directory.

;Delete name data from the address file

H
JKEY Name/A
CD df0:AdrBook/AdressData

?

IF NOT EXISTS "<Name>"

ECHO "Data not found!"

SKIP Ende

ENDIF

i)ELETE "<Name>"

ECHO "<Name> has been deleted!"
ILAB Ende

CD df0:AdrBook

After a short check for the existence of the file, the entry is removed
from the data directory, and the program exits.

If you have many friends and relations in your data file, there are times
when you may want specific data on one particular person from a file.
You can get an alphabetized list by typing DIR, but searching through
a large directory can take time. The EXECUTE Search.TXT
command searches through the directory for the name you want. If the
name exists, this data appears on the screen.

;Search for one name in the Address file

]

H

;KEY Name/A

H

CD df0:AdrBook/AdressData

IF EXISTS "<Name>"
ECHO "Data found ..."
TYPE "<Name>"

SKIP Ende

ENDIF

33

2. TuE CLI

Ke yword
search

34

AMIGA TRICKS AND TIPS

ECHO "Data record ?<Name>? not found!"
ILAB Ende
CD df0:AdrBook

A variation on searching is the keyword search. This gives you an over-
view of which data records contain the keyword. The CLI has its own
provision for this command—all it needs is the keyword. The program
below is a short batch file to perform the keyword search. Enter the
keyword text in quotes when you call the batch file.

;Key word search of the address data

;KEY Word/A

’

ECHO "The search begins..."

CD df0:AdrBook

SEARCH FROM AdressData SEARCH "<Word>"

’
ECHO "Search ended!"
CD df0:AdrBook

There you have a file manager for beginners. This can be a big help for
those who don't own a professional file management program like
DataRetrieve Amiga. You can send your data to screen or printer as
you wish. And when you do buy a real database program, you can
transfer the files over to and from this program using the ASCII import
function.

3
AmigaBASIC

ABACUS

3. AMIGABASIC

3.

Note:

AmigaBASIC

BASIC (Beginner's All-purpose Symbolic Instruction Code) was writ-
ten when computer programs were assembled by hand. Compilers were
not good systems for beginners because the programmer had to start
over if the programs had errors. Two people at Dartmouth thought
about this and developed a "beginner-friendly" language. This language
had a command set made of English words, and an interpreter instead of
a compiler. BASIC was born, and BASIC is probably the most used
programming language in the world today.

Over the years BASIC has expanded and improved. An advanced BASIC
like AmigaBASIC has the easily learned command words and the advan-
tages of structured programming once found only in compiled lan-
guages.

AmigaBASIC is a product of Microsoft Corporation. Actually, Amiga-
BASIC is more a version of Macintosh Microsoft BASIC adapted to the
Amiga than an interpreter written specifically for the Amiga.
AmigaBASIC supports the Amiga's windows and menu techniques, but
many Amiga-specific features cannot be executed directly from
AmigaBASIC. These features, like disk-resident fonts and disk
commands, are accessible from the AmigaBASIC LIBRARY command.
LIBRARY command demonstrations appear later on in this chapter.

The AmigaBASIC programs in this book show where you should press
the <RETURN> key at the end of a program line. The end of paragraph
character <{> means to press <KRETURN>. These characters were added
because some program lines extend over two lines of text in this book,
and many of these lines must not be separated.

All of the BASIC programs in this book are also available on the

optional diskette for this book, see the order information at the end of
the book for more information on how to order the optional diskette.

37

3. AMIGABASIC

AMIGA TRICKS AND TIPS

3.1

38

Kernel commands

AmigaBASIC allows extremely flexible programming. In addition to
the AmigaBASIC commands (such as PRINT, IF/THEN/ELSE, etc.),
the interpreter can use unfamiliar commands if they are organized as
machine language routines. This means that you can easily integrate
your own commands into the BASIC command set.

Instead of writing new routines, it's easier to access existing machine
language routines. The Amiga operating system contains a number of
general machine language routines, called the kernel. Just as a kernel of
corn is the basis for a plant, the Amiga kernel is the basis for the op-
erating system.

The operating system can be divided into about thirty libraries, arranged
according to subject. These additional routines require only five of these
libraries:

l.exec.library

Responsible for tasks, I/O, general system concerns, memory
management

2.graphics.library

Responsible for text and GELs (graphic elements)

3. intutition.library

Responsible for windows, screens, requesters and alerts

4.dos.library

Responsible for accessing the Disk Opefating System

S.diskfont.library

Responsible for Amiga fonts stored on diskette
Each of these libraries is filled with machine language routines for
accomplishing these tasks. To use these routines through Amiga-
BASIC, you need three pieces of information:

1) The interpreter must have a name for every single routine. You
can assign each machine language routine its own name.

2) The interpreter must convey in which library the corresponding
routine can be found. Each library has an offset table for this

ABACUS 3.1 KERNEL COMMANDS

assignment: It begins with offset 6, and jumps in increments of
6. Every machine language routine has its own offset.

3) AmigaBASIC must know which parameter register it needs for
the routine. AmigaBASIC uses a total of eight data registers and
five address registers:

1 =Data register do0
2=Data registerdl
3 =Data registerd2
4 =Data registerd3
5=Data register d4
6 =Data register d5
7=Data registerdé6
8 =Data register d7

9 = Address register a0
10 = Address registeral
11 = Address register a2
12 = Address register a3
13 = Address register a4

Every library has a .bmap file. This file contains the necessary infor-
mation for all commands organized in the library.

You can easily create the necessary .bmap files using the ConvertFd
program on the Extras diskette from Commodore Amiga.

Before you continue, you should have the following files available:

graphics.bmap
intuition.bmap
exec.bmap
dos.bmap
diskfont.bmap

Copy these files to the 1ibs : subdirectory of the Workbench diskette.
An alternative is to ensure that these files are in the same subdirectory
as the program using them. The copying procedure goes like this when
using the CLI:

1> copy graphics.bmap to libs:
1> copy intuition.bmap to libs:
1> copy exec.bmap to libs:

1> copy dos.bmap to libs:

1> copy diskfont.bmap to libs:

39

3. AMIGABASIC

AMIGA TRICKS AND Tips

3.2

AmigaBASIC graphics

The AmigaBASIC graphic commands are much too complex and ex-
haustive to describe in this brief section (see Amiga BASIC Inside and
Out from Abacus for a complete description). The next few pages
contain tricks and tips to help you in your graphic programming. We'll
spend this section describing the commands in detail.

3.2.1

JAM 1

JAM 2

INVERSEVID

COMPLEMENT

40

Changing drawing modes

The Amiga has four different drawing modes. When you create graphics
on the screen, they can be interpreted by the computer in one of four
basic ways:

When you draw a graphic (which also includes the execution of a sim-
ple PRINT command), only the drawing color is "jammed" (drawn) into
the target area. The color changes at the location of each point drawn,
and all other points remain untouched (only one color is "jammed" into
the target area).

Two colors are "jammed" (drawn) into the target area. A set point ap-
pears in the foreground color (AmigaBASIC color register 1), and an
unset point takes on the background color (AmigaBASIC color register
0). The graphic background changes from your actions.

AmigaBASIC color register 0 and color register 1 exchange roles. The
result is the familiar screen color inversion.

This mode works just like JAM 1 except that the set point inverts
(complements) instead of filling with AmigaBASIC color register 1. A
set point erases, and an unset point appears.

These four modes can be mixed with one another, so you can actually
have nine combinations.

AmigaBASIC currently has no command to voluntarily change the
drawing mode. A command must be borrowed from the internal graphic
library. It has the format:

SetDrMd (RastPort,Mode)

The address for RastPort is the pointer to the current window struc-
ture stored in WINDOW (8) . The AmigaBASIC format looks like this;

ABACUS

SetDrMd (WINDOW (8) ,Mode)

3.2 AMIGABASIC GRAPHICS

Here is a set of routines which demonstrate the SetDrMd () command:

:g###############H#H##H##g%
'$ Program: Character mode #

'# Author: TOB #9
'# Date: 8-3-87 #1
:# Version: 1.0 #1

#1
;IS###########################‘1[
Ig.I.IBRARY "graphics.library"{

Shadow "Hello everyone",111
LOCATE 4, 81

Outline "OUTLINE: used to emphasize text." ,101

1
I'I]ZI-IBRARY CLOSE{
ENDJ

1
SUB Shadow (text$,space%) STATICT

cX% = POS (0) *81
cY% = (CSRLIN - 1)*8{
IF cY% < 8 THEN cY% = 89

1
CALL SetDrMd (WINDOW(8),0) ' JAMLq

bl
FOR loopt = 1 TO LEN(text$)q
in$ = MIDS (text$, loop%, 1)1

bl
CALL Move (WINDOW (8) , cX%+1,cY%+1) 1

COLOR 2,01
PRINT in$1

1
CALL Move (WINDOW (8) ,cX%, cY%)1

COILOR 1,01
EIRIM in$; 1

cX% = cX% +space%]
NEXT loop%1

1
CALL SetDrMd(WINDOW(8),1) ' JAM2{

PRINT{
END SUB1

1
SUB Outline (text$, space$) STATICY

cX% = POS(0) *81
cY% = (CSRLIN -1) * 81
IF cY% < 8 THEN cY% = 81

FOR loopt = 1 TO LEN (text$){

in$ = MIDS (text$, loop%, 1)1

CALL SetDrMd (WINDOW(8),0) 'JAML{

FOR loopl% = -1 TO 11
FOR loop2% = -1 TO 1

1
CALL Move (WINDOW (8) , cX% +loop2%,cY%+loopls) q

PRINT in$;q
NEXT loogz%‘][
NEXT loopl%{

CALL SetDrMd (WINDOW(8),2) 'COMPLEMENT{
CALL Move (WINDOW(8), cX%, c¥%)1

PRINT in$; 1

ﬂ[.
cX% = cX% + spaces{
NﬂEXT loop%{ opa

41

3. AMIGABASIC

42

AMIGA TRICKS AND TIPS

CALL SetDrMd (WINDOW(8),1) 'JAM2
PRINTq
END SUBY

COMPLEMENT mode demonstrates another application: rubberbanding,
You work with rubberbanding every day. Every time you change the
size of a window, this orange rubberband appears, which helps you to
find a suitable window size.

Intuition normally manages this rubberband. This technique is
quite simple: To prevent the rubberband from changing the screen back-
ground, Intuition freezes all screen activities (this is the reason that
work stops when you enlarge or reduce a window in a drawing program,
for example). The COMPLEMENT drawing mode draws the rubberband
on the screen. This erases simply by overwriting, without changing the
screen background.

This can be easily programmed in BASIC. The following program
illustrates this and uses some interesting AmigaBASIC commands:

:g###############################‘H

'# Program: Rubberbanding #9
'# Author: TOB #1
'# Date: 8-3-87 #9
'# Version: 2.0 #1
' #9

#9

1'1###############################

%I-IBRARY "graphics.library"{

main: '* Rubber banding demo{
CLsq

'* rectangle{

PRINT "a) Draw a Rectangle"{
Rubberband{

%[.INE (m.x,m.y) - (m.s,m.t),,b{

'* lineq
LOCATE 1,11
PRINT "b) ...and now a Line!"{
Rubberband{

LINE (m.x,m.y) - (m.s,m.t)q

'* area{

LOCATE 1,19

PRINT "c) Finally Outline an Area"{
Rubberband{

x = ABS(m.x-m.s)q

y = ABS(m.y-m.t){

PRINT "width (x) =";x{

PRINT "Height (y) =";y1

PRINT "Area =";x*y; "Points."q

1
LIBRARY CLOSE{
ENDY
1
SUB Rubberband STATIC{
SHARED m.x,m.y,m.s,m.t{
CALL SetDRMD (WINDOW (8),2) 'COMPLEMENT‘}I

1
WHILE MOUSE (0) o1

ABACUS

3.2 AMIGABASIC GRAPHICS

maus = MOUSE (0) 1
WENDT

q

m.x= MOUSE (1)1
m.y = MOUSE (2)1
m.xq

88
da
[}

g
3]
5
p

(]

A
ey
=

EEER)
RE33E
gar
==

SE

°IHIII§

H
L
E
]
¢
3

END IF{

maus = MOUSE (0) 1
WENDT .
1
1
1

q

LINE (m.x,m.y)-(m.s,m.t),, bl

PSET (m.x,m.y)q

CALL SetDRMD (WINDOW(8), 1)1
END SUB{T

3.2.2

Changing typestyles

The Amiga has the ability to modify typestyles within a program.
Typestyles such as bold, underlined and italic type can be changed
through simple calculations. This is useful to adding class to your text
output. Unfortunately, BASIC doesn't support these programmable
styles. The SetSoftStyle system function from the graphic library
performs this task:

SetSoftStyle (WINDOW(8) ,style,enable)

style:

0 = normal

1 = underline

2 = bold

3 = underline and bold

4 = italic

5 = underline and italic

6 = bold and italic

7 = underline, bold, and italic

43

3. AMIGA BASIC AMIGA TRICKS AND TIPS

The following program demonstrates these options:
:3###############################g%

'# Program: Text style #9
'# Author: TOB #1
:# Date : 8-12-87 #9

#1
i#################################ﬂ

DECLARE FUNCTION AskSoftStyle$ LIBRARY{
DECLARE FUNCTION SetSoftStyle% LIBRARY{

1
%IBRARY "graphics.library"q{

§ar: 'the mode assignments{
normal% = 09
underline$% = 19
1d% = 29
%talic% = 49
demo: ' an example{
CLS1

Style underline% + italic%{
q PRINT TAB(20); "This is italic underlined
text"

1

LOCATE 5,19

Style normal%q

PRINT"This is the Amiga's normal text"{
PRINT"Here are some example styles:"{
PRINT"a) Normal text"q

Style underline%{

PRINT"b) Underlined text"q

Style bold%{

PRINT "c) Bold text"{

Style italic%q

PRINT "d) Italic text"q

PRINTY

Style normal%q

PRINT "Here are all forms available:"q

1
FOR loop% = 0 TO 79

Style loop%1

PRINT "Example style number";loop%{
NEXT loop%{

1

' and normal styleq
Style normalsq

LIBRARY CLOSE{
ENDY

1
SUB Style (nr%) STATICT
bits$ = AskSoftStyle$ (WINDOW(8)) 1
news% = SetSoftStyle% (WINDOW(8), nr%, bits%)q

1
IF (nr% AND 4) = 4 THEN{
CALL SetDrMd (WINDOW (8),0)q
ELSE
CALL SetDrMd (WINDOW(8),1)1
1

44

ABACUS

Variables

Program
description

3.2 AMIGABASIC GRAPHICS

bits% style bits enabling these character styles
news% newly set style bits
nr% given style bits

The program calls the Style SUB command immediately. The
AskSoftStyle& function returns the style bits of the current font.
These bits can later be changed algorithmically. The desired change is
made with Set Soft Style, which resets the previously obtained
style bits. This function sets the new style when the corresponding
mask bits in bit s% are set. Otherwise, these bits remain unset.

If the italic style is selected in any combination (nr% and 4=4), charac-
ter mode JAM 1 is switched on (see Section 3.2.1 above). Italic style
uses this mode because JAM 2 (normal mode) obstructs the characters
to the right of the italicized text. If the italic style stays unused, then
SetDrMd () goes to normal mode (JAM 2).

3.2.3

Note:

Move - cursor control

In some of the previous examples we used the graphics.library
command MOVE. AmigaBASIC can only move the cursor by characters
(LOCATE), or by pixels in the X-direction (PTAB), but it is easy to
move the cursor by pixels in both X- and Y-directions with the help of
the MOVE command. '

Call the command in BASIC as follows:
Move& (WINDOW (8) ,x%,y%)

To simplify things, we have written a command that can be extremely
useful:

xyPTAB x%,y%
graphics.bmap must be on the diskette.

?IECLARE FUNCTION Move& LIBRARY]
%.IBRAR "graphics.library"{

var:q

text$="Here we go..."{
text$=" "+text$+" "{
empty$=SPACES (LEN (text$)) 1
‘If[ontheight%aS‘ﬂ

main:q

FOR y%=6 TO 1001

xyPTAB x%,y%1

PRINT text$1

xyPTAB x%,y%—fontheight${

45

3. AMIGABASIC

Variables

Program
description

AMIGA TRICKS AND TIPS

PRINT empty$1
XS=x%+19 o
}’?EXT v$1
LIBRARY CLOSE]
END1

=

1

SUB xyPTAB (x%,y%) STATICY
e&=Move& (WINDOW (8),x%,y%) 1

%ND SUBY

text$ demo text

empty$ empty string, provided for erasing when moving in
the y-direction

fontheight% font height

x%,v% screen coordinates

e& Move& command error message

The Move& command is declared as a function and the library opens.
The demo text moves across the screen in the soft-scroll mode, the
library closes, and the program ends.

The actual subprogram is extremely simple, since all that happens is
that the necessary coordinates pass to the Move command.

Although this routine looks simple, it is also very powerful. It can
move text in any direction, as in the example, either with the smear
effect (SetDrMd mode%=JAM1) or with soft-scrolling (SetDrMd
mode $=JAM2).

3.2.4

46

Faster IFF transfer

IFF/ILBM file format is quickly becoming a standard for file structure,
IFF format simply means that data can be exchanged between different
programs that use the IFF system. Data blocks of different forms can be
exchanged (e.g., text, pictures, music). These data blocks are called
chunks.

You have probably seen many loader programs for ILBM pictures in
magazines, or even typed in the IFF format video title program from
Abacus' AmigaBASIC Inside and Out. The long loading time of IFF
files is the biggest disadvantage of that format. There are a number of
reasons for this delay. First, it takes time to identify the different
chunks and skip the chunks that are unimportant to the program.
Second, there are a number of different ways to store a picture in ILBM
format. For example, a graphic with five bitplanes must be saved as
line 1 of each bitplane (1-5), line 2 of each bitplane (1-5), and so on.

ABACUS

3.2 AMIGABASIC GRAPHICS

Considering that a bitplane exists in memory as one piece, it takes time
to split it up into these elements. Third, programs such as
DeluxePaint II® present another problem: Each line of a bitplane is
compressed when a graphic is saved, and must be uncompressed when
reloading the graphic.

Many professional programs don't use IFF for the reasons stated above.
Some programmers don't want graphics compatible with other
programs (e.g., Defender of the Crown® graphics). Other
programmers prefer to sacrifice that compatibility for speed.

You can add a professional touch to your AmigaBASIC programs with
this routine. This program loads an IFF-ILBM graphic (you might not
want to try this with DPaint®) and saves this graphic in the
following format:

Bitplanel (in one piece)
Bitplane 2 ..

..last bitplane

Hardware-color register contents

An AmigaBASIC program is generated which loads and displays this
graphic after a mouse click. The AmigaBASIC program is an ASCII
file, which can be independently MERGED or CHAINed with other pro-
grams, and can be started from the Workbench by double-clicking its
icon.

The listing below is a fast loader for IFF-ILBM graphics. In-house tests
of this loader could call up a graphic in 320 x 200 x 5 format with a
loading speed of over 41000 bytes per second (IFF files take a hundred
times longer to load).

FEEBHRRERRRHRRRARARERRRHE R REHRHERRRT
load pictures like a prof with #1
#1

FAST-GFX Amiga #1
#1

(W) 1987 by Stefan Maelger #1
FREFEERHERRREEFHRRAHHERA R AR RHRRRART

e dp de de ok

'q
DECLARE FUNCTION xOpen& LIBRARY{
DECLARE FUNCTION xRead& LIBRARY{
DECLARE FUNCTION xWrite& LIBRARY{
DECLARE FUNCTION Seek& LIBRARY{
DECLARE FUNCTION AllocMem& LIBRARY{
DECLARE FUNCTION AllocRaster& LIBRARY{

1

REM **** OPEN LIBRARIES ***********************ﬂ
LIBRARY "dos.library"1
LIBRARY "exec.library"{
LIBRARY "graphics.library"1

1

REM **&% ERROR TRAPPING ***********ﬁ

47

3. AMIGABASIC

48

AMIGA TRICKS AND Tiprs

ON ERROR GOTO errorcheck{
1
REM **** INPUT THE FILENAME Fedkddede ek ook ke ok ok ook ok
nameinput: q

1

REM **** FREE MEMORY FROM THE BASIC-WINDOW *hkkkkkkq
REM #**** OPEN NEW WINDOW AND MINISCREEN *kkkkkkq
WINDOW CLOSE WINDOW (0) 1
SCREEN 1,320,31,1,19
WINDOW 1, "FAST-GFX~CONVERTER", , 0, 11
PALETTE 0,0,0,09
PALETTE 1,1,0,09
FOR i=1 TO 49
MENU 1i,0,0,""q
NEXTq
PRINT "IFF-ILBM-Picture:"q
LINE INPUT filename$q
PRINT "Fast-GFX-Picture:"{
LINE INPUT target$q
PRINT "Name of the Loader:"{
LINE INPUT loader${
CHDIR "dfOQ:"q
1
REM **** OPEN IFF-DATA FILE HhARK KRRk R I KKK KKk k]
file$=filename$+CHRS (0) 1
handle&=xOpené& (SADD (file$),1005)
IF handle&=0 THEN ERROR 2559
1
REM **%xx% CREATE INPUT_BUFFER ****************ﬂ
buffer&=AllocMems (160, 65537&) T
IF buffer&=0 THEN ERROR 2549
colorbuffer&=buffer&+969
q
REM **** GET AND TEST CHUNK~FORM *#k %k %%(
r&=xReads (handle&, buffers,12)
IF PEEKL (buffer&)<>1179603533& THEN ERROR 253
IF PEEKL(buffer&+8)<>1229734477& THEN ERROR 252
brhdflag%=0]
flag$=0q
1
REM **** GET CHUNK NAME + CHUNK LENGTH ****X %%k
WHILE flag%<>1q
r&=xRead& (handle&, buffers, 8) 1
IF r&<8 THEN flag%=1:GOTO whileend{
q
length&=PEEKL (buffers&+4) q
1
REM **** BMHD-CHUNK? (CVL ("BMHD")) Kkkkkkdkkkkkkokkq
IF PEEKL(buffer&)=1112361028& THEN{
q
r&=xRead& (handle&, buffers, length&) q
1
pwidth%=PEEKW (buffers) :REM * PICTUREWIDTH{
pheight $=PEEKW (buffers+2) tREM * PICTUREHEIGHT{

ABACUS

3.2 AMIGABASIC GRAPHICS

pdepth$=PEEK (buffer&+8) :REM * PICTUREDEPTH{

packed$=PEEK (buffer&+10) :REM * PACK-STATUS{

swidth%=PEEKW (buffers+16) :REM * SCREENWIDTH{

sheight%=PEEKW (buffer&+18) :REM * SCREENHEIGHT{
1

bytes$=(pwidth$-1) \8+19

sbytes$=(swidth%-1) \8+11

colmax$=2"pdepth%{

IF colmax%>32 THEN colmax$=329

IF pwidth%<321 THEN mode$%=1 ELSE mode$%=21

IF pheight$%>256 THEN mode$=mode$+21

IF pdepth%=6 THEN extraplane%=1 ELSE extraplane%=01
1

REM **** NEW SCREEN PARAMETERS ***%XkXkkkkxkkxkkq
WINDOW CLOSE 11
SCREEN CLOSE 11
SCREEN 1,pwidth%, pheight%, pdepth%-
extraplane%, mode%q

WINDOW 1,,,0,191

REM **+* DETERMINE SCREEN-DATA ****kkkkkkkkkkkkkq
picscreen&=PEEKL (WINDOW(7) +46) 1
viewport&=picscreen&+441
rastport&=picscreen&+849
colormap&=PEEKL (viewport &+4) 1
colors&=PEEKL (colormap&+4) 1
bmap&=PEEKL (rastporté&+4) 1

REM **** HATFBRIGHT OR HOLD-AND-MODIFY ? ****%*q
IF extraplane%$=1 THEN{

REM **** MAKE 6TH BITPLANE ****xx{
planeé&=AllocRaster& (swidth%, sheight%) 1
IF plane6&=0 THEN ERROR 2511

1
REM **** AND ADD IT TO THE DATA STRUCTURE *****{
POKE bmap&+5, 61
POKEL bmap&+28,planeé&d

q
END IF{
1
bmhdflag$=11
1
REM ***x* CMAP-CHUNK (SET EACH COLOR: R,G,B) ***q
ELSEIF PEEKL (buffer&)=1129136464& THENT
1
IF (length& OR 1)=1 THEN length&=length&+lq
r&=xRead& (handle&, buffers, length&) 1
1
FOR i%=0 TO colmax%-11
1
REM **** CONVERT TO THE FORM FOR THE ***{
REM **** THE HARDWARE-REGISTERS *kkq

POKE colorbuffer&+i%*2,PEEK (buffers+i%*3) /169
greenblue%=PEEK (buffer&+i%*3+1)

49

3. AMIGABASIC

50

AMIGA TRICKS AND TIPS

greenblue¥=greenblue$+PEEK (buffer&+i%*3+2) /161
POKE colorbuffer&+i%*2+1, greenblue%q
ﬂ .
NEXT{
1
REM **** CAMG-CHUNK = VIEWMODE (ie. HAM or LACE) ***q
ELSEIF PEEKL (buffer&)=1128353095& THEN{
1
r&=xRead& (handle&,buffers, length&) 14
1
viewmode&=PEEKL (buffers)
REM **** BODY-CHUNK = BITMAPS, LINE FOR LINE ****x&q
ELSEIF PEEKL (buffer&)=1112491097& THEN{
1
REM **** DOES THE SCREEN EXIST AT ALL? **%*kkkxq
IF bmhdflag$=0 THEN ERROR 2501
1
REM #**** TS THIS LINE PACKED? **kkkkxq
IF packed$=1 THENY
2EM *k%% THEN UNPACK IT!!! *********1’[
FOR y%=0 TO pheight%-19
FOR z%=0 TO pdepth%-11
ad&=PEEKL (bmap&+8+4*z%) +y$*sbytessq
count%=09
WHILE count%<bytes%{
r&=xReadé& (handle&,buffers,1) 1
code%=PEEK (buffer&) I
IF code%>128 THEN{
r&=xRead& (handle&,buffers, 1) |
value%=PEEK (buffer&) 1
endbyte$=count%+257-code%q
FOR x%=count$ TO endbyte%{
POKE ad&+x%,valuesq
NEXT{
count $=endbyte$ |
ELSEIF code%<128 THENY
r&=xRead& (handle&, ad&+count %, code%+1) |
count$=count$+code%+19
END IF
WENDY
NEXT z%,y%1
1
REM **** OR PERHAPS NOT PACKED? ****xq
ELSEIF packed%=0 THEN{
1

REM **** FILL IN THE BITMAPS WITH THE DOS-COMMAND READ *q
FOR y%=0 TO pheight%-19
FOR z%=0 TO pdepth%-19
ad&=PEEKL (bmap&+8+4*2%) +y%*sbytess|
r&=xReads& (handle&, adg, bytes%)

NEXT 2%,y%9
1
REM **** CODING-METHOD UNKNOWN? ***xq
ELSE{

1

ABAcCUS

3.2 AMIGABASIC GRAPHICS -

ERROR 2491
1
END IF{
1
ELSE{
1

REM **** WE DO NOT HAVE TO BE ABLE TO CHUNK. **X***(
REM **%% SHIFT DATA FILE POINTER ***%%*q
IF (length& OR 1)=1 THEN length&=length&+11
now&=Seek& (handle&, length&, 0) 1
1
END IF{
1
REM **%* END THE SUBRDUTINE *******************ﬂ
whileend:q
q
WENDY
1
REM **** TOAD COLOR AND CLOSE FILE ****q
IF bmhdflag$=0 THEN ERROR 2489
CALL LoadRGB4 (viewport&,colorbuffers, colmaxs) 9
CALL xClose (handle&) 1
1
REM **** VIEW MODE GOTTEN? THEN ALSO STORE *{
IF viewmode&<>0 THEN{
POKEW viewporté&+32,viewmode&]
END IFQ
1
REM **%* OPEN DESTINATION DATA FILE ***kkkkkkkkkk(
file$=target$+CHRS (0) 1
handle&=xOpené& (SADD (file$) ,1005) 1
IF handle&=0 THEN{
handleé&=xOpené& (SADD (file$) ,1006) 1

END IF{

1

REM ***ﬂ
REM **** SO YOU CAN REMOVE A GRAPHIC A |
REM **** FROM MEMORY VERY QUICKLY Rkkk k]
1

bitmap&=sbytes$*pheight% :REM ONE LARGE BITPLANE{
1
FOR i%=0 TO pdepth%-11
ad&=PEEKL (PEEKL (WINDOW (8) +4) +8+4*i%) 1
w&=xWrite& (handle&, ad&, bitmaps) 1
NEXTI
1
w&=xWrite& (handleg&, colorbuffers, 64) 1
q
REM #***x* CIOSE DATA FILE, AND FREE BUFFER *****q
CALL xClose (handle&)q
CALL FreeMem(buffer&,160)
q
REM ***ﬂ
REM **** GENERATES BASIC-PROGRAM (ASCII-FORMAT) *{
OPEN loader$ FOR OUTPUT AS 11
q)

51

3. AMIGABASIC AMIGA TRICKS AND TIPS

PRINT#1,"' #8#848888484848 8848 ; CHRS (10); 1
PRINT#1, "' # Fast-Gfx Loader #"-CI-IRS(IO),
PRINT#1,"' #"; CHRS (10) ;
PRINT#L, "' # ";CHR$(169);"'87 . Maelger #"-cn-ms(m),q[
PRINT#1,"' #$##54848 4888888458 ; CHRS (10) ; 1
PRINT#1, CHRS (10) ; 1
1
REM **** DECLARE THE ROM-ROUTINES ***%#*
PRINT#1, "DECLARE FUNCTION xOpen& LIBRARY";CHRS (10);]
PRINT#1, "DECLARE FUNCTION xRead& LIBRARY";CHRS (10);{
PRINT#1, "DECLARE FUNCTION AllocMems LIBRARY";CHRS (10);9
1
REM **** FOR THE CASE OF H.A.M. OR HALFBRIGHT ****{
IF pdepth%=6 THEN{

PRINT#1, "DECLARE FUNCTION AllocRaster& LIBRARY";q
PRINT#1,CHRS (10) ; 1
1
END IF{
q
REM **** OPEN NEEDED LIBRARIES *******************ﬂ
PRINT#1, CHRS (10) ; 1
PRINT#1, "LIBRARY ";CHRS (34);"dos.library";CHRS (34);
PRINT#1,CHRS (10) ; 1
PRINT#1, "LIBRARY ";CHRS$ (34);"exec.library";CHRS (34);1
PRINT#1,CHRS (10) ;1
PRINT#1, "LIBRARY
";CHRS$ (34) ; "graphics.library" ;CHRS (34) ; 1
PRINT#1,CHRS (10) ; 1
PRINT#1,CHRS (10) ; 1
1
REM **** RESERVE MEMORY FOR PALETTE **k*k%q
PRINT#1, "b&=AllocMems (64, 65537&) " ;CHRS (10) ; 1
PRINT#1,"IF b&=0 THEN ERROR 7";CHRS$ (10);91
gEM *%** OPEN PICTURE-DATA FILE '******************11
PRINT#1,"file$=";CHRS (34) ;target$;CHRS (34) ;
"+CHR$ (0) "; 1
PRINT#1,CHRS (10) ; 1
PRINT#1, "h&=xOpen& (SADD (file$) ,1005) " ;CHRS (10) ; |
2EM *kkk CREATE SCREEN ***********************ﬂ[
PRINT#1, "WINDOW CLOSE WINDOW (0)";CHRS$ (10);
PRINT#1, "SCREEN 1, ";MIDS (STRS (swidth%),2); ", ",
PRINT#1, MIDS (STRS (pheight$),2) ;", "; {
PRINT#1,MIDS (STRS (pdepth%—extraplane%) P2y,
PRINT#1, MIDS (STRS (mode%), 2) ; CHRS (10) ; 1
PRINT#1,"WINDOW 1,,,0,1";CHRS$ (10) ;1
PRINT#1, "viewport &=PEEKL (WINDOW (7) +46) +44" ; CHRS (10) ; 1
gEM *kk*x SET ALI, COLORS TO ZERO ************ﬂ
lem$="CALL LoadRGB4 (viewporté&,b&,"q
lcem$=1cm$+MIDS (STRS (colmax$) ,2) +") "+CHRS (10) 1
PRINT#1, 1cm$; 1
q
REM **** TS HAM OR HALFBRIGHT ON, 6 PLANES ***xxkx%x*x(

52

ABACUS

3.2 AMIGABASIC GRAPHICS

IF tiefe%=6 THEN{
1
PRINT#1, "n&=AllocRaster& ("; 1
PRINT#1,MIDS (STRS (swidth$),2);",";
PRINT#1,MID$ (STR$ (pheight%),2) ;") ";CHRS (10) ; 1
PRINT#1, "IF n&=0 THEN ERROR 7";CHRS$ (10) ;1

PRINT#1, "bmap&=PEEKL (PEEKL (WINDOW (7) +46) +88) " ; CHR$ (10) ; 1
PRINT#1, "POKE bmap&+5, 6" ;CHRS (10) ; 1
PRINT#1, "POKEL bmap&+28,n&";CHRS (10) ;1
PRINT#1, "POKEL viewport&+32,PEEKL (viewport&+32)OR
2’\";11
1
REM **** AND SET VIEWMODE **%kkkkkkkkkkkkkq
IF (viewmode& OR 277)=277 THEN{
1
REM **** SET HALFBRIGHT-BIT **kkkkkkkkkkkkkkkkq
PRINT#1,"7"; 1

1
ELSET
1
REM **** SET HOLD-AND-MODIFY — BIT ***#kkkkkiq
PRINT#1,"11";
1
END IFY
1
PRINT#1,CHRS (10); 1
q :
END IF{
1

REM *%%% AND NOW THE MAIN ROUTINE ****************‘]I
PRINT#1, "FOR i%=0 TO";STRS$ (pdepth%-1) ;CHRS (10) ; 1
PRINT#1,"

ad&=PEEKL (PEEKL (WINDOW (8) +4) +8+4*i%) " ;CHRS (10) ; 1
PRINT#1," ré&=xRead& (h&,ad&,";

PRINT#1,MIDS (STRS (bitmapé&) ,2) ;"&) ";CHRS (10) ; 1
PRINT#1, "NEXT" ; CHRS (10) ; 1

q

REM **** GET PALETTE (ALREADY IN THE RIGHT FORM)1
PRINT#1, "r&=xReadé& (h&, b&, 64) "; CHRS (10) ; q

1

REM **** CILOSE THE FILE AGAIN *****************ﬂ
PRINT#1, "CALL xClose (h&) ";CHRS (10) ; 1

1

REM **** SET COLOR TABLE ****kkkkkkkkkkq
PRINT#1, lcm$; 1

1

REM ***% FREE COLOR BUFFER AGAIN ****q
PRINT#1, "CALL FreeMem(b&, 64)";CHRS (10) ;1

q

REM **** CLOSE LIBRARIES AGAIN **kkkkkkkkkk(
PRINT#1, "LIBRARY CLOSE";CHRS (10) ;1

q

REM **%% WAIT Fm MOUSE-CLICK *****************ﬂ
PRINT#1, "WHILE MOUSE (0)<>0:WEND";CHRS$ (10) ; 1
PRINT#1, "WHILE MOUSE (0)=0:WEND";CHRS$ (10) ; 1

53

3. AMIGABASIC AMIGA TRICKS AND TIPS

1
REM **** CLOSE SCREEN AND BASIC-WINDOW *****q
REM **** TURN WORKBENCH-SCREEN ON AGAIN **x#*q
PRINT#1, "WINDOW CLOSE 1";CHRS (10) ;1
PRINT#1, "SCREEN CLOSE 1";CHRS$ (10) ;1
PRINT#1, "WINDOW 1,";CHRS (34) ;"OK";CHRS (34) ; {
PRINT#1,", (0,11)-(310,185),0,-1"; 1
PRINT#1, CHR$ (10) ;CHRS (10) ;
1
CILOSE 19
1
REM #*** BACK TO THE WORKBENCH *#* %k iiikkdkihkq
WINDOW CLOSE 11

SCREEN CLOSE 14
WINDOW 1,,,0,-19
PRINT "Creating Loader—-Icon"{

9
REM **** DATA FOR SPECIAL-ICON IMAGE ***%%**(
RESTORE icondata{ i

file$=loader$+".info"+CHRS$ (0) 1

as$=""q
FOR i%=1 TO 4861
READ

b$1
a$=a$+CHR$ (VAL ("&H"+b$)) 1
NEXT9

q
REM **** AND WRITE THE ICON DATA-FILE **x*q
REM **%* TO DISK (MODE=OLDFILE) kkkkq
h&=xOpen& (SADD (file$),1005) I
w&=xWrite& (h&, SADD (a$),498) 1

CALL xClose (h&)

1
REM **** PERHAPS STILL ANOTHER PICTURE ?2??
dkkkkkkkkkkkkkkkk]

CLST
q PRINT "Another Picture (y/n)? >":{
pause: |
T

a$=INKEYS${
IF a$<>"y" AND a$<"n" GOTO pause{

PRINT UCASES$ (a$) 1
IF a$="y" GOTO nameinputq

REM **%% WERE DONE... ***kkkkkkhkdkkrkhkdktkq
LIBRARY CLOSE{
MENU RESET{
ENDY

gEM *kk%k ERROR-TRAPPING ***hkkkkkkkhkkhkkkkkkkkk]
errorcheck: |

b
n%$=ERR{

IF n%=255 THEN{
PRINT "Picture not found"{
GOTO rerun{

ELSEIF n%=254 THEN{
PRINT "Not enough Memory!"q
GOTO rerun{

ELSEIF n%=253 OR n%=252 THEN]
PRINT "Not IFF-ILBM-Picture!"q
GOTO rerun{

54

3.2 AMIGABASIC GRAPHICS

PRINT "Can Not Open 6th Plane."{

GOTO rerun{
ELSEIF n$%=250 THEN{
PRINT "Not BMHD-Chunk form BODY!"{
GOTO rerun{
ELSEIF n$%=249 THEN{
PRINT "Unknown Crunch-Algorithm."{
GOTO rerunq
ELSEIF n%=248 THEN{
PRINT "No more to view."q
CALL FreeMem(buffer&,160) 1
LIBRARY CLOSE{
MENU RESET{

GOTO rerun{
ELSE{

CALL xClose (handle&) 1
ON ERROR GOTO 01
ERROR n%q

STOPY

END IF{

ELSEIF n$=251 THEN{
CLOSE(
STOPq
rerun:q

1
1
1
1
1

ABACUS

s & B A AR alal 2] R
=HOOEHOE dA8EhE Co OO
s s O HE IO-IOﬁ-I e o
OO0 lo ~ & O SRS 84.80 l
~ ~ s\ANlO 08040

MNMOO ~ 12 sy o 12 ~ lo 103

SO & sMed O & s00M wmw

SO &« OO0 \ORIRKRKION ~ o 13 OO0
Er001121::r:4:r sEOM oo
NO® OO0 -~ IWF Ioo O « OO0
~ 18 ~ s v s O O
OO0 OO0 & s v s o l20 QO™ OO0
womE ~ rc R I)
OO0 ON «~ ~ 300FI!I0 N OO0Ow
« o 8O & dON & & 6 8 8o O & o
000 000 ww oo0o

. s & & O ~O &« O &~ N

IS
OO0OmMOOO O lloco
IIIIIIOIIOBIA.IA.IIIIIS ~ «ON

r.AllrlsF lrlr'r'wmllnl
o l4000F117 oooowwss OO OV
=B S RIS S

HOMOO ~OHOO0OO0OMKMOOOO ~ OHKORMOON

IF n%<>254 THEN CALL FreeMem(buffer&,160) 1
0
0
0
0
1
F
FE
.
0
0
0
5
8

CALL xClose (handle&) 1

IF n%¥<>255 THEN{

LIBRARY CLOSE{

g mAmemmzmam sEASENREE Ak S SC
H & ST NS :011:0 no 1Y-)
m m m. 000230 00 © 0 0 TN O AO~OO0V0
€ o o o o G o G G G G o G i G e o o o o G

o mTTTTTTTTTTTTTTTTTTTTTTTTT

= e LR R R R E R EEEEEEEEEE

55

3. AMIGABASIC

AMIGA TRICKS AND TIPS

3.2.5

56

IFF brushes as objects

If you own a high-quality paint program like DeluxePaint®, you can
actually use it as an object editor. You can create sprites and bobs with
this program.

The program in this section lets you convert any IFF graphic into an
object file. The only requirement is that the graphic cannot be too large
for an object string.

This graphic object can be activated and moved. Since there are no spe-
cial techniques used for storing the background, too many bitplanes can
cause a flickering effect.

FHERFRRRERERER R AR AR IR R AR R ARG R

' # Use DPaint as Object-Editor with #{
' # #1
'# BRUSH- TRANSFORMER#1
' & #1
' # (W) 1987 by Stefan Maelger #1
' RERERRRA AR R AR AR R AR AR R AR RS R AR R EHT
'q

CLEAR, 30000&1

DIM r(31),g(31),b(31)1
1
nameinput :q

PRINT "Brush-File Name (and Path): ";{
LINE INPUT brush$q
PRINT{
PRINT "Object-Data File (and Path): ";{
LINE INPUT objectfile$q
PRINT
PRINT "Create Color-Data File? (Y/N) ";1
pause: |
a$=LEFT$ (UCASES$ (INKEY$+CHR$ (0)) ,1) 1
IF a$="N" THEN {
PRINT "NO!"q
ELSEIF a$="Y" THEN{
PRINT "OK."q
colorflag%$=1q
PRINT 1
PRINT "Color-Data File Name (and Path): ";{
LINE INPUT colorfile$q
ELSE{
GOTO pausef{
END IFq
PRINT q
1
OPEN brush$ FOR INPUT AS 11
a$=INPUTS (4,1) 1
IF a$<>"FORM" THEN CLOSE 1:RUN{

ABACUS

3.2 AMIGABASIC GRAPHICS

a$=INPUTS$ (4,1) 1
a$=INPUT$ (4,1) 1
IF a$<>"ILBM" THEN CLOSE 1:RUN{

getchunk:q
a$=INPUTS (4,1) 1

IF a$="BMHD" THEN{

PRINT "BMHD-Chunk found."q
PRINT q
a$=INPUTS (4,1) 1
bwidth$=ASC (INPUTS$ (1,1) +CHRS$ (0)) *2561
bwidth%=bwidth%+ASC (INPUTS (1, 1) +CHRS (0)) 1
PRINT "Image width :";bwidth%;" Pixels"q
IF bwidth%>320 THEN{

PRINT "It is too wide."{

END IF{
bheight%=ASC (INPUTS$ (1, 1) +CHR$ (0)) *2561
bheight%=bheight$+ASC (INPUTS (1, 1) +CHRS (0)) 1
PRINT "Image height:";bheight%;" Pixels"{
IF bheight$>200 THEN{

PRINT "It is too high."1

BEEP]

CLOSE 11

RUNT
END IF{
a$=INPUTS$ (4,1) 1
planes%=ASC (INPUTS (1,1))1
PRINT "Image Depth :";planes%;" Planes"{
IF planes%>5 THEN{

PRINT "Too many -Planes!"q

BEEP]

CLOSE 11

RUN{
ELSEIF planes$* ((bwidth%-1)\16+1) *2*bheight%>32000

THENT{

PRINT "Too many Bytes for the Object-String!"q
BEEP{
CLOSE 11
RUN{
END IF 1
a$=INPUTS$ (1,1) 1
packed$=ASC (INPUT$ (1,1)+CHRS$ (0)) 1
IF packed%=0 THEN{
PRINT "Pack status: NOT packed."{
ELSEIF packed%=1 THEN{
PRINT "Pack status: ByteRunl-Algorithm."q
ELSE{
PRINT "Pack status: Unknown method"q
BEEPY
CLOSE 11
RUNY
END IF{

57

3. AMIGABASIC AMIGA TRICKS AND TIPS

a$=INPUTS (9,1) 1
Status$=Status$+11
PRINTY
PRINT q
1
ELSEIF a$="CMAP" THEN{
PRINT "CMAP-Chunk found."q
a$=INPUT$ (3,1) 1
1%=ASC (INPUT$ (1,1)) 1
colors$=1%\39
PRINT colors$;"Colors found"{
FOR i%=0 TO colors%-19
r (1%) =ASC (INPUTS$ (1, 1) +CHRS$ (0)) /2551
g (i%) =ASC (INPUTS (1, 1) +CHRS (0)) /2551
b (i%) =ASC (INPUT$ (1, 1) +CHRS (0)) /2559
NEXT]
Status$=Status%+2]
PRINT
PRINT |
1
ELSEIF a$="BODY" THEN]
PRINT "BODY-Chunk found."{
PRINT
a$=INPUT$ (4,1) 1
bytes%= (bwidth%~-1) \8+19
bmap%=bytes%*bheight%{
obj$=STRINGS (bytes$*bheight%*planes$, 0) 1
FOR i%=0 TO bheight%-19
PRINT "Getting lines";i%+1q
FOR j%=0 TO planes%-19
IF packed$=0 THEN{
FOR k%=1 TO bytes%{
a$=LEFT$ (INPUTS$ (1, 1) +CHRS$ (0) , 1) 1
MID$ (obj$, j$*bmap%+i%*bytess+ks, 1) =a$q
NEXT{
ELSE{
pointer$=19
WHILE pointer$<bytes%+1q
a%$=ASC (INPUT$ (1, 1) +CHRS$ (0)) 1
IF a%<128 THEN{
FOR k%=pointer% TO pointer%+a%{
a$=LEFTS (INPUTS (1, 1) +CHR$ (0) , 1) 9
MIDS$ (obj$, j$*bmap%+i%*bytess+k$, 1) =a$q
1

pointer%=pointer%+a%+1q
ELSEIF a%>128 THEN{
a$=LEFT$ (INPUTS (1, 1) +CHR$ (0) ,1) 1
FOR k%=pointer% TO pointer%+257-a%{
MIDS$ (ob3j$, j%*bmaps+i%*bytess+ks, 1) =a$
1

pointer$=pointer%+256-a%q
END IF{
WENDY
END IFq
NEXT{
NEXT{

58

ABACUS

3.2 AMIGABASIC GRAPHICS

Status$=Status%+41
q
ELSE{
PRINT a$;" found."q
a=CVL (INPUTS (4,1)) /41
FOR i%=1 TO a{
a$=INPUTS (4,1) 1
NEXT9
GOTO getchunk{
1
END IF{
1
checkstatus:q
IF Status%<7 GOTO getchunk{
1
CLOSE 11
PRINT q
1
PRINT "OK, Creating Object."q
Obsl’" nq
FOR i%=0 TO 109
cb$=0b$+CHRS (0) 1
NEXTq
ob$=0b$+CHRS (planes%) +CHRS (0) +CHRS (0) 1
ob$=0b$+MKI$ (bwidth$) +CHRS (0) +CHRS (0)
ob$=0b$+MKI$ (bheight%)+CHRS (0) +CHRS (24) 1
ob$=cb$+CHRS$ (0) +CHRS (3) +CHRS (0) +CHRS (0) 1
ob$=ob$+obj$1
PRINT q
1
PRINT "Create Object-Data File as ";CHRS$(34);1
PRINT objectfile$;CHRS$ (34)1
PRINT
1
OPEN objectfile$ FOR OUTPUT AS 29
PRINT#2,0b$; 1
CLOSE 29
PRINT "Object stored."{
1
IF colorflag%=1 THENY
PRINT
PRINT "Creating Color-Data File:"q
OPEN colorfile$ FOR OUTPUT AS 31
PRINT#3,CHRS (planes%) ; 1
PRINT " Byte 1 = Number of Bitplanes"{
FOR i%=0 TO 2*planes%-19
PRINT "Byte";i%*3+2;"= red (";i%;")*255"q
PRINT#3, CHRS (r (1%) *255) ; 1
PRINT "Byte";i%*3+3;"= green(";i%;")*255"q
PRINT#3, CHRS (g (1%) *255) ; 1
PRINT "Byte";i%*3+4;"= blue (";i%;")*255"q
PRINT#3, CHRS (b (i%) *255) ; 1
NEXTq
CLOSE 31
END IFq

59

3. AMIGABASIC

Variables

Color file
data
(optional)

IFF
structure

60

AMIGA TRICKS AND TIPS
SCREEN 1,320,200, planes$, 11
WINDOW 2,,,0,1
FOR i%=0 TO 2"planes%-
PALETTE i%,xr(i%),g(i%),b(i%)1
q NEXT]
OBJECT.SHAPE 1,0b$1
q OBRJECT.PLANES 1, 2*planes$%-1, 09
FOR i=0 '1‘0 300 STEP .19
OBJECT.X
OBJECT. Y 1 (1\2) 1
OBJECT.ON{’
gmm[
WINDOW CLOSE 2
%camn CLOSE 11
RUNT
status status of chunks read
a help variable
b array, blue scales of a color
bmap size of BOB bitplane in bytes
bwidth width of BOB in pixels
brush name of IFF-ILBM file
bytes width of BOB in bytes
colorfile color file name
colors number of IFF file colors stored
g array, green scales of a color
packed pack statusO=not packed;1=byterun 1
bheight height of BOB in pixels
i loop variable
j loop variable
k loop variable
1 loop variable
ob object string
obj image string
objectfile filestored in ob$
planes bitplane depth of BOB
pointer counter variable for bytes read from a line
r array, red scale of a color
Byte 1= number of bitplanes in the object
Byte 2= red scale of background color * 255
Byte 3= green scale of background color * 255
Byte 4= blue scale of background color * 255
Byte 5= red scale of 1st color * 255
Byte 6= green scale of 1st color * 255
Byte 7= blue scale of 1st color * 255

Now a few words about IFF-ILBM-format. A file in this format has
several adjacently stored files called chunks. Every chunk has the fol-

lowing design:

ABACUS

BMHD
chunk

CMAP
chunk

CRNG
chunk
(DeLuxe
Paint)

CCRT
chunk
(Graphic-
raft)

1 Chunk name
2 Chunk length
3 Chunk data

3.2 AMIGABASIC GRAPHICS

4-byte-long string (e.g., "BODY")
4-byte integer (i.e., LONG format)
#chunk-long bytes

The header chunk which begins every IFF file has a similar design:

1 Filetype = "FORM" (IFF file header)
2 File length = Long value

3 Data type = "ILBM" (interleaved bitmaps)
The most important chunks:

1 long = "BMHD" (bitmap header chunk)

2 long = chunk length

3 word = graphic width in pixels

4 wod = graphic height in pixels

5 wod = X-position of graphic

6 word = Y-position of graphic

7 byte = number of bitplanes on screen

8 byte = masking

9 byte = crunch type

10 byt = n

11 wod = transparent color

12 byte = X-aspect

13 byte = Y-aspect

14 wod = screen width in pixels

15 wod = screen height in pixels

1 long = "CMAP" (ColorMap)

2 long = chunk length

3 byte = color 0 red value *255

4 byte = color 0 green value *255

5 byte = color 0 blue value *255

6 byte = color 1 red value *255

1 long = "CRNG" (ColorCycle chunk-4 times)
2 long = chunk length

3 wod = always O (at this time)

4 wod = speed

S wod = active/inactive

6 byte = lower color

7 byte = upper color

1 long = "CCRT" (ColorCycle chunk from Graphicraft)
2 long = chunk length

3 wod = direction

4 byte = starting color

5 byte = ending color

6 long = seconds

7 long = microseconds

61

3. AMIGABASIC

BODY
chunk

ByteRunl-
Crunch
Algorithm

AMIGA TRICKS AND TIPS

1 long = "BODY" (Bitmaps)
2 long = chunk length
3 = 1st line of 1st bitplane (for eventual packing -
see BMHD above)
1st line of 2nd bitplane
1st line of 3nd bitplane
2nd line of 1st bitplane...

There is never more than one line of a bitplane packed at a time. This
packing can occur in line order. The coding consists of one code byte. If
this byte has a value larger than 128, then the next byte repeats with a
value at least 3 times more (e.g., 129 results in the next byte at 258
more). Since FOR/NEXT loops require a starting value for loop
variables, this construct must begin with the value 1, listed as follows:

FOR i=startvalue TO startvalue+258-codebyte-1

Or as shown above, 257-codebyte. The second coding applies to
codebytes less then 128. Here the next codebyte+1 byte is not used.
In short, you could say that the first and second coding types use a
maximum of 128 bytes. Since the width of a 640*x screen only re-
quires 80 bytes, then one line of one bitplane only requires one coding.

3.2.6

62

Another floodfill

The Amiga has the ability to execute complicated area filling at a rate
of one million pixels per second in any color. The AmigaBASIC
PAINT command performs this task. This command has one dis-
advantage in its current form: It can only fill an area that is bordered by
only one predetermined color. This limits anyone who might want to
use this in their own applications (e.g., drawing programs). A solution
might be to set up parameters with the PAINT command that uses any
color for the floodfill border. A routine like this exists in the operating
system. Since the graphics library handles it as one of its own routines,
the program stays in memory and doesn't disappear when the Work-
bench reboots.

The routine is called Flood and can be called from AmigaBASIC as
follows:

CALL Flood& (Rastport,Mode,x,y)
Here is a SUB routine that uses Flood:

REM ####3 #4434 43 8434 2R HHRRHHRRHHE]
REM# FLOODFILL

Amiga #9
REM # #
REM # PAINT until to any #9
REM # other color if found #1

ABACUS

3.2 AMIGABASIC GRAPHICS

REM # #
REM # (W) 1987 Stefan Maelger #9
%EM #EdiiddaHE #i#ﬂ#ﬂ##&#gﬂﬂi
%:I.IBRARY "graphics.library"{

SCREEN 1, 640,255,2,21
;;INDW 2,"FLOODFILL",,0,191

IOCATE 2,29
%RINT "Floodfill-Demo"q

CIRCIE (200,80),150,29
%IRCIE (400, 80) ,150, 39

FLOODFILL 200, 80,19
FLOODFILL 300,80,19
lifI'LOODFILL 400,80,19
LIBRARY CLOSE{

1
LOCATE 4,29
PRINT "PRESS ANY KEY"{

1
WHILE INKEYS$=""q
WEND{

1

gTOP']I

SUB FLOODFILL (x%,y%, fcolor%) STATIC{
PSET (0,0),01
PAINT (0,0),09
COLOR fcolor%{
rastport &=WINDOW (8) 1
ToAnyColorMode%=19

CALL Flood& (rastporté&, ToAnyColorMode%, x%, y%) 4
END SUB{

Initializing this routine is as simple as calling PAINT.

3.2.7 Window manipulation
You already know that windows can do a lot. This section shows you a
few extra ideas for working with windows in AmigaBASIC.
3.2.7.1 Borderless BASIC windows

An Amiga expert published a long program listing in a recent maga-
zine. This listing looked up a bitmap address and erased the border bit
by bit—it took more than a minute to execute. Here's an easier way to
get the same result:

63

3. AMIGABASIC

AMIGA TRICKS AND TipPs

#EFFFRRRA R R ARRAFRFRHRF B R AR R FEFHR]
BORDERLESS for AmigaBASIC-Windows #%

(W) 1987 by Stefan Maelge #9
‘ll#*############## (a2 222222 #######‘i[

%SBRAR‘H Y "intuition.library"{

PRINTﬁI"Here is a Default Window with a Border-"q
PRINT
pause 21
PRINT "And Without a Border (Frame)-"9
PRINT{
PRINT "Press any Key to Restore Default Window"{

killborderq

waitkeyq

remake

LIBRARY CLOSE{
q END{

1
SUB remake STATICY
WINDOW CLOSE 19
WINDOW 19
I‘SIEND SUB{
SUB pause (seconds$%) STATIC{
t=TIMER+seconds%q
WHILE t>TIMERY
WENDY
END SUB{

1
SUB wal’c.key STATICY
WHILE I

NKEYS$=""q
WEND{
END SUB{

1
SUB killborder STATIC{
borderlessé& =2"119
gimmezerozero&=2-109
window.base&=WINDOW (7) 1
window.modi&=window.base&+24
Mode&=PEEKL (window.modi&) 4
Mode&=Mode& AND (2426-1-gimmezerozero&)
Mode&=Mode& OR borderlessé&q
POKEL window.modi&,Mode&q
CALL RefreshWindowFrame (window.base&)
END SUB{

3.2.7.2

64

Gadgets on, gadgets off

This program removes and adds gadgets to windows.

######################################'ﬂ
GADGETon/off in AmigaBASIC-Windows #‘1[

' # Stefan Maelge #11
' ############### SRR BEREFRERRE ########‘l[

ABACUS

3.2 AMIGABASIC GRAPHICS

Al

I&I.IBRARY "intuition.library"{

PRINT "Make all the Gadgets disappear!"q
SaveGadgetPointer GadgetStore&
pause 59
UnlinkGadgets{
pause 109
PRINT "And now bring them back again.”q
pause 59
SetGadgets GadgetStore&q
LIBRARY CILOSE{
WINDOW CLOSE 11
WINDOW 11
q END{
SUB pause (seconds%) STATICq
t=TIMER+seconds%]
WHILE t>TIMER({
WENDY
I;IE\ID SUB{

SUB SaveGadgetPointer (Pointer&) STATIC{
window.base& =WINDOW(7)1
gadget .pointer&=window.base&+62q
Pointer&=PEEKL (gadget .pointer&) 1

END SUB{

1
SUB UnlinkGadgets STATIC{

window.base& =WINDOW (7) 1

gadget .pointer&=window.base&+629

POKEL gadget.pointers, 09

CALL RefreshWindowFrame (window.base&)
]ﬂEI:ND SUB

SUB SetGadgets (Pointer&) STATICY
window.base& =WINDOW (7)1
gadget .pointer&=window.base&+62]
POKEL gadget.pointer&,Pointersq
CALL RefreshWindowFrame (window.base&) q
END SUB{

3.2.7.3

DrawBorder

Imagine that you want to draw a border from Intuition. You must
first know the structure of the border, and the address of a border
structure for the DrawBorder routine to execute. Here's the structure:

Istword horizontal spacing from X-coordinate called by the routine
(defines only one form and can be drawn in any spacing)

2nd word vertical spacing of Y-coordinate

3rdbyte Character color (from BASIC)

4th byte Background color

Sth byte Character mode (JAM1=0)

6th byte Number of X/Y coordinate pairs

7th long Coordinate table address

8th long Address of next structure or value of 0

65

3. AMIGABASIC

66

AMIGA TRICKS AND TIPS

The 7th part of the structure needs a coordinate table consisting of
words. These words contain the X-coordinate and the Y-coordinate of
one pixel. One pixel requires four bytes (two words) of memory.

When you call the routine with the Window Rastport instead of the
Border Rastport (WINDOW(8)), you can draw any complex structure
you wish in the BASIC window. There is one problem with this: The
window's character cursor appears after the last pixel of the last struc-
ture. A PRINT command starts output at this position. AmigaBASIC
uses the cursor position as the starting place for PRINT. Be careful
with your use of the PRINT statement after calling DrawBorder.

! ######################################‘Il
DRAWBORDER - The Border Drawer #9
! # (W) 1987 by Stefan Maelger #1

:1[######################################'i[
%I.IBRARY "intuition.library"{
FI’[RINT "Putting the Coordinate-String Together"q

bwidth%=PEEKW (WINDOW (7)+8) -1
bheight $=PEEKW (WINDOW (7)+10) -1
xlefg%g%‘ﬂ
ytopi=
xy$=-MKI$ (xleft%) +MKIS (ytop%) 1
Xy$=xy$+MKI$ (xleft$) +MKIS (bheight$)
xy$=xy.>+MKI$ (bwidth%) +MKI$ (bheight$%) 1
Xy $=xy$+MKIS$ (bwidth%) +MKIS$ (ytop%) 1
Palrs $=49
xOffset%=09
ffset%=09
olor$=09

9
PRINT "Draw the border"{

1
Setborder xy$,Pairs%,bcolor$,xOffset%,yOffset%q

1
FOR i%=3 TO 1 STEP -11
PRINT "Wait for a few seconds"q
t=TIMER+10:WHILE t>TIMER:WENDJ
PRINT "Drawing in Color";i%q
Setborder xy$,Pairs%, i%,x0ffset%,yOffset$q
NEXT]

1
LIBRARY CLOSEf{
END{

q

SUB Setborder (xy$,number%,bcolor%, x%,y%) STATICY
window.base&=WINDOW (7) 1
borderrastport &=PEEKL (window.base&+58) q
IF borderrastport&=0 THEN EXIT SUB

a$=MKI$ (0) 'Horizontal Distance{
a$=a$+MKIS (0) 'Vertical Distance{
a$=aS$+CHRS (bcolors) 'Drawing Color{
a$=a$+CHRS (0) 'Background (unused)q
a$=a$+CHRS (0) 'Mode: JAM1q

a$=a$+CHRS (number$) 'Number of x-y-Pairsf
a$=a$+MKL$ (SADD (xy$)) 'Pointer to Coordinate{
a$=aS$+MKL$ (0) 'Pointer to Next Structure{
CALL DrawBorder (borderrastporté&, SADD (a$), x% v%) 1
' ——- Last Parameters are relative X- an Y

dinat
gretpgtest

ABACUS

3.2 AMIGABASIC GRAPHICS

3.2.7.4

ChangeBorderColor

The next routine can change a window's border color, including the title
bar. The entire process occurs in the form of a SUB command.

U D
' # CHANGE BORDER COLOR #1
' #1

(W) 1987 by Stefan Maelger #1
"11####################”###*###########H

LIBRARY "intuition.library"q{

gRINT "Have you ever been disturbed that the"{
PRINT "drawing color in which borders are always"{
PRINT "drawn is in color register 0 and that the"{
PRINT "background is always register 1?2"{
PRINT{
PRINT "We can change the colors defined"{
PRINT "in the Window command itself!"{
1
LOCATE 10,1:PRINT "Foreground"q
LOCATE 13,1:PRINT "Background"{
t=TIMER+15:WHILE t>TIMER:WEND
FOR i=0 TO 3
LINE (i*30,136)-STEP (30,20),1i,b£f]
LINE (i*30,136)-STEP (30,20),1,b1
NEXT{
1
FOR b%=0 TO 31
FOR £%=0 TO 31
ChangeBorderColor f£%,b%1
LOCATE 10,14:PRINT £%{
LOCATE 13,14:PRINT b%{
t=TIMER+59
WHILE t>TIMER{
WENDY[
NEXT £%,b%1
q
ChangeBorderColor 1,01
1
LIBRARY CLOSE{
END{
1
SUB CHangeBorderColor (DetailPen%,BlockPen%) STATIC{
window.base&=WINDOW (7) 1
Detail.pen& =window.base&+98{
Block.pen& =window.base&+991
POKE Detail .Pen&,Detail .Pen%{
POKE BlockPen&,BlockPen%{
CALL RefreshWindowFrame (window.baseé&) 1
END SUB1

67

3. AMIGABASIC

AMIGA TRICKS AND TIPS

3.2.7.5

Monocolor Workbench

This program supplies you with an additional 16K of memory by set-
ting up a single bitplane for color on the Workbench. A monocolor
Workbench speeds up the screen editing of BASIC programs.

MR Attt iiiiissicsiatatadaataddis il
MONOCOLOR WORKBENCH #1

' # (W) 1987 Stefan Maelger #9

' B354 48080880804884858800880 8880888880
LA R R R R Rk AR R R bRk R R Ak ke kS
'1

LIBRARY "intuition. library"']l
LIBRARY "graphics.library"{

1
%etplanes 11

LIBRARY CLOSE{
SYSTEM{l

1
SUB Setplanes (planes$%) STATIC{
IF planes$<l OR planes$>6 THEN EXIT SUB{
rastporté& =WINDOW (8) 1
bitmaps& =PEEKL (rastporté&+4) 1
current .planes$=PEEK (bitmaps&+5) 1
window.base& =WINDOW(7){
screen.base& =PEEKL (window.base&+46)q
screen.width% =PEEKW (screen.base&+12)q
screen.height% =PEEKW (screen.base&+14)q
IF current.planes$>planes% THEN{
POKE bitmags&+5,p anes%q
FOR kill.plane%=current.planes% TO planes$+l STEP -1

plane.ad&=PEEKL (bitmaps&+4+4*kill.plane$)

FreeRaskif (Régﬁésggﬁig;ﬁen.width%, screen.height$) q

S?SL}I. RefreshWindowFrame (WINDOW (7)) 1
NEXT 9
END IF{
END SUB 1

3.2.7.6

68

PlaneCreator and HAM-Halfbrite

You've seen an example of how FreeRaster can free a bitplane from
memory. You can also insert other bitplanes, if you know the addresses
of these new bitplanes. The programmers of AmigaBASIC skipped over
support for the Hold-and-Modify (HAM) and Halfbrite modes. These
modes require six bitplanes, and must be accessed using the LIBRARY
command (they cannot be used through AmigaBASIC commands). Here

is a multi-purpose program, which lets you switch between modes and
insert additional bitplanes. -

ABACUS

3.2 AMIGABASIC GRAPHICS

This program displays all 4096 colors available to AmigaBASIC in the
AmigaBASIC window. Pressing a mouse key displays the 64 colors
contained in Halfbrite mode.
U RRRHERA RS SRR E AR R R ER AR A AR R R AR R A RRARRT
‘4 AM P LA NECREAT OR HALFBRIGHT #9
' # (W) 1987 by Stefan Maelger #1
' RRRRRRAR AR RRE AR SRR A AR AR AR A RS R AR RE R R R HR R R T
DECLARE FUNCTION AllocMem& LIBRARYY
LIBRARY "exec.library"{i
LIBRARY "intuition.library"{
SCREEN 1,320,200,1,1 :REM *** just ONE Plane{
WINDOW 1, "What a wonderful feeling",,,11
PALETTE 0,0,0,09
PALETTE 1,1,1,19
FOR i%=2 TO 61
CreateNewPlane{
LOCATE 1,19
PRINT "I have";i%;"Planes";{
FOR j%=1 TO i%{
PRINT "!";q
NEXT{
PRINT{
PRINT "Press left Mouse-Button"{
Wait.for.the.Click.of.the.Left .MouseButton{
NEXT
HAM{
FOR green=0 TO 151
blue=09
red=01
LINE (0, green*10) -STEP (0, 9) , 01
LINE (1, green*10) -STEP (0, 9) ,green+481
FOR x=0 TO 79
FOR red=1 TO 151
LINE (x*32+red+l, green*10) -STEP (0, 9) , red+321
NEXT red{
blue=blue+1q
LINE (x*32+17, green*10) -STEP (0, 9) , blue+161
FOR red=14 TO 0 STEP -1
LINE (x*32+17+15-red, green*10) -STEP (0, 9} , red+329
NEXT red{
blue=blue+1]
IF blue<16 THEN LINE (x*32+33,green*10)-

ST%%, ,9‘41, blue+169

NEXT %reen']l

Wait.for.the.Click.of .the.Left.MouseButton{

CLS1

HBY

FOR i%=0 TO 39

FOR j%=0 TO 151

LINE (j%*18,1%*45)-STEP (18,45) ,1%*16+3%,bfq
LINE (3%*18, i%*45)-STEP (18, 45) ,1,b1

NEXT{

NEXT{
Wait.for.the.Click.of.the.Left .MouseButton{
WINDOW 1,"What a wonderful feeling",,,-11

SCREEN CLOSE 11
LIBRARY CLOSE{

ENDT

SUB CreateNewPlane STATICY
bitmap&=PEEKL (WINDOW (7) +46) +1841
bitplane&=PEEKW (bitmapé&) *PEEKW (bitmap&+2) 1
wdepth%=PEEK (bitmapé&+5) 1
IF wdepth%>5 THEN EXIT SUB{
newplane&=AllocMems (bitplane&, 65538&) 1

69

3. AMIGABASIC

70

AMIGA TRICKS AND TIPS

IF newglane&-o THEN ERROR 71
POKEL bitmap&+8+wdepth%*4, newplane&q
POKE bitmap&+5,wdepth$+1q
IF wdepth<5 THEN CALL RemakeDisplay
END SUBY
SUB HAM STATICY

viewmode&=PEEKL (WINDOW (7) +46) +761
POKEW viewmodes&, 27119
CALL RemakeDisplay{

END SUB{

SUB HB STATICY

viewmode&~PEEKL (WINDOW (7) +46) +761
POKEW viewmode&, 2471
CALL RemakeDisplay
END SUB{
SUB Wait.for.the.Click.of.the.left .MouseButton STATICY

WHILE MOUSE (0) <>01
WEND{
WHILE MOUSE (0) =09
WEND{

END SUBY

You can now draw with colors from O to 63. The Amiga normally
doesn't support this mode or the setup of the screens. If you want to
work in these modes, there are some details you must know.

Let's begin with the Halfbrite mode. Here are a total of 32 colors ©Oto
31), spread over the course of 5 planes. The PALETTE command ini-
tializes these colors, as well as those for Hold-And-Modify mode. The
colors in Halfbrite mode (32 to 63) correspond directly to the colors 0
to 31. In other words, color number 33 is half as bright as color 1 (33-
32=1). This equation applies to the other colors as well. You should be
careful about the color selection with the PALETTE command. The
following calculation returns the RGB proportions of Halfbrite colors:

Proportion (x) =INT (Proportion (x-32) *15/2) /15

This equation uses INT with the slashes (x/y is the same as
INT (x/y) here). A PALETTE command for Halfbrite colors would
look like this:

PALETTE 1,15/15,12/15,11/15

The command above assigns color 33 the values 7/ 15, 6/15, 5/15. Now
try assigning the values 14/15, 13/15, 10/15 to another color—it should
be another color altogether, but the result is two equal halfbrite colors.
Just one reminder: PALETTE doesn't allow colors over 31.

HAM poses even more problems. Colors 0-15 are usable here, When
you set a pixel in one of these colors, a point always appears in this
color.

Colors 16-31 are another matter. First the RGB value of the pixel is set
to the left of the pixel to be drawn (Hold), and then the blue proportion
is changed (Modify). The equation for setting the new blue portion is:

new_blue_portion= (color-16) /15

ABACUS

3.2 AMIGABASIC GRAPHICS

Colors 32-47 change the red portion:
new_red_portion= (color-32) /15

Colors 48-63 modify the green portion of the color:
new_green_portion= (color-48) /15

You see, this way you can set up the desired color using not more than
3 pixels for one "color.”

3.2.7.7

The coordinate problem

The pixel with the coordinates 0,0 lies below the title bar and to the
right of the left border. Most programmers would expect 0,0 to be at
the upper left corner of the screen. This can pose problems if you want
to place an untitled window directly over the title bar of a standard
window (e.g., the BASIC window).

What you want is a window eight pixels higher than normal. You must
enter the WINDOW command as follows:

WINDOW 2” (0,0) - (311,-2) ,16,-1

The Y-coordinate moves from O to -2. This causes a system error,
though. The first coordinate set (0,0) interprets correctly; the second
coordinate pair views the Y-value as false at best, since the interpreter
reads the relative coordinates of the standard BASIC window. You
could also try making a window with the following:

WINDOW 2,,(0,0)-(311,8),16,-1
This gives you a window 18 pixels high. In this case, you need a win-
dow the height of the title bar (10 pixels), to re-establish the screen
coordinate system (8-10=-2).

If you only need to cover the title bar of the standard window, you'll
need the following coordinate sets:

y2=10 height of the new window]
y2=y2-10 subtract height of the title bar in proportion to the coordi-

nates
y2=y2-4 subtract the top and bottom borders of the new window

The result:

WINDOW 2,,(0,0) - (311,-4),16,~1

71

3. AMIGABASIC

AMIGA TRICKS AND TIPS

3.3

Fade-in and fade-out

Fading is the term used to describe gradual increases or decreases For
example, when a song on a record ends by decreasing in volume instead
of ending, this is a fade-out. A graphic fade-out occurs when a scene in
amovie gradually drops to blackness. A fade-in is the opposite action.

You can create some really interesting effects using fading. For ex-
ample, you can fade text in or out, or change graphic colors constantly
("cycle"). One program helps you do all this.

3.31

72

Basic fading

Like the other programs in this book, these fade programs are simply
an example. You can install these routines into your own programs,
and adapt them to your own uses.

This first program shows the basic idea. It shows you how to change
the screen from black to any color on the palette, and return this color
gradually to black:

:ﬂFading—In and Out of colored areasq

:'i[by Wgb in June '879

1
%ariables:‘]l

DEFINT a-zq

In=1q

Out=-19

Number=79
ﬂDIM SHARED Red! (Number) , Green! (Number) , Blue! (Number) q
M%inProgram:']I
ﬂGOSUB CreateColorScreeng
ﬂFading:‘]I

GOSUB SetColors{

CALL Fade (0,7,16,In)q
11CM.L Fade (0,7,16,0ut)q
ﬂGOTO Fading{

ENDY
1

q
SetColors:q

ABACUS 3.3 FADE-IN AND FADE-OUT

q
FOR i=1 TO Numberq
Red! (i) =RND{
Green! (i)=RNDY
Bll;;! (1) =RNDY

1
%ETURN‘][
CreateColorScreen:q

1
SCREEN 2, 640, 256, 3, 21
WINDOW 1,"Color Test", (0,0)-(623,200),0,21

1

FOR i=0 TO Numberq
PALETTE i,0,0,09

NEXT i

1
SWidth=640/Numberq
FOR §=0 TO 201
FOR i=1 TO Number{
x=RND*600 1
y=RND*1501
LII;;I‘. (x,y) - (x+SWidth, y+SWidth/2) , i, b£f{

gEXT 31
%ETURN‘]I
SUB Fade (Start,Number,NumSteps,Mode) STATIC{

StartState=0 : EndState=NumSteps{
IF Mode=-1 THEN{
StartState=NumSteps : EndState=01
END IF{
FOR j=StartState TO EndState STEP Modeq
Factor!=j/NumSteps{
FOR i=Start TO Start+Number{

PALETTE
i, Reﬁé*%) ;ﬂactor! ,Green! (i) *Factor!,Blue! (i) *Factor!{
t;EXT it
END SUBT
Arrays Blue blue scale array
Green green scale array
Red red scale array
Variables StartState starting state of colors
Number number of colors
(in SUB: number of faded colors)
SWidth width of sample area
EndState ending state of colors
Factor color scale at current time
In fadein pointer
Mode mode: fade in or fade out
Out fadeout pointer
NumSteps number of steps for process
Start first color number
i3 floating variables

73

3. AMIGABASIC

Program
description

AMIGA TRICKS AND TIPS

X,y coordinates for sample field

The program defines a function which allows the fading in or fading out
of any color on the palette. Combined color groups can be faded as
well. First, two variables are set up for the type of fading required. You
can only use the variable names once numbers are assigned to them.
Next, 7 colors are set as the resolution (e.g., the background). Every
color is defined by an array, which accesses the individual subroutine,
These arrays contain the color values used in the fading process.

The CreateColorScreen subroutine opens a new screen for
demonstration purposes. It uses the color depths set above. The output
window shows colored rectangles.

The main section of the program branches to a subroutine which fills
the color arrays with "random" numbers. The main subroutine is then
called twice. It gives the number of the first color and the increment
needed for fading. Then it indicates whether the fade should be into the
desired color or out to black. The ending point determines the individual
increments.

Now on to the routine itself, The starting value is set depending upon
the pointer setting-either 0 for black, or the value taken from
NumSteps for "full color” display. The loop used to move through the
increments is computed through Factor and sets the next color up
from black through the PALETTE command contained in an inner loop.
This loop repeats until either the full brightness or blackness is reached.

3.3.2

74

Fade-over

This is a variation on the above program. Instead of fading to and from
black, however, this program fades to and from the starting and ending
colors set by you.

:ﬂFade-From one Color to Another{
:ﬂby Wgb in June '87%

q

;{ariables :q
DEFINT a-zq
Number=79

DIM SHARED
ﬁed! (Number, 1), Green! (Number, 1) , Blue! (Number, 1) 1

Mﬁinprogram: 1
ﬂGOSUB CreateColorScreen{

ABACUS

3.3 FADE-IN AND FADE-OUT

Fading: 1
1

GOSUB SetColors{
CALL Fade (Or 7(8) 1[

q

gl;OTO Fading{
ENDY

1
q
SetColors:1

q

FOR i=1 TO Number{
Red! (i,0)=Red! (i,1) 1
Green! (i,0)=Green! (i,1)1
Blue! (i,0)=Blue! (1,1)1
Red! (i, 1)=RNDY
Green! (i,1)=RND1
Blue! (i,1)=RND{

NEXT i9

1
I;ETURN‘II
CreateColorScreen:q

1
SCREEN 2,640,256,3,21
WINDOW 1,"Color Test", (0,0)-(623,200),0,21

q

FOR i=0 TO Number{
PALETTE i,0,0,01

NEXT 194

1
SWidth=640/Numberq
FOR j=0 TO 201
FOR i=1l TO Number{
x=RND*600 q
y=RND*1501
LII:% (x,y) - (x+SWidth, y+SwWidth/2) ,1,b£9

'gEXT 39

%ETURN‘]I

SUB Fade (Start,Number,NumSteps) STATICH

FOR j=0 TO NumSteps{

FOR i=Start TO Start+Number{

RAiff!=(Red! (i,1)-Red! (i, 0))/NumSteps*ji
Gdiff!=(Green! (i,1)-Green! (i,0)) /NumSteps*ji
m (Blue! (i,1) -Blue! (i, 0)) /NumSteps* 1

i,Red! (i,0)+Rdiff!,Green! (i,0)+Gdiff!, Blue! (i,0)+Bdiff!q

NEXT i1
NEXT 3j1

1
END SUB1

75

3. AMIGABASIC

Program
description

AMIGA TRICKS AND TIPS

The basic structure of the earlier fade program remains, but some fine-
tuning has been done here. The variable definitions no longer require the
pointer In and pointer Out for fading to new colors. This is also why
the main program call to the fade routine is missing; the program goes
to the new color setting for the fade.

The color arrays have an identifier which shows whether the starting
color (0) or ending color (1) is set. Reaching the new color value copies
the last new value in the starting value register, and redefines the ending
value. The program can then tell the current status, even though no
reading function exists.

The fading subroutine now goes in any increment of color change. The
difference is divided by the step value and multiplied by the number in
the already set NumSteps. The result is added to the individual values
of the RGB colors. When the outermost loop executes, the new color is
on the screen,

3.3.3

76

Fading RGB color scales

This last fading option originates from the program in Section 3.3.1.
PALETTE commands let you fade RGB colors individually. This means
that you can start a screen in red, fade it to green, then end by fading to
blue.

:ﬂFading—In and Out of Colored Areas{
:ﬂby Wgb in June '871

1
%ariables:*ll

DEFINT a-z{

In=19
Out=-19
ﬂNumberu?'lI
‘JIDIM SHARED Red! (Number) ,Green! (Number) ,Blue! (Number) q
M%inProgram:‘lI
‘]IGOSUB CreateColorScreen
ﬂFading:‘]I

GOSUB SetColors{

CALL Fade (0,7,16,In)q
‘HCALL Fade (0,7,16,0ut)q
gOTO Fading{

ENDY
q

bl
SetColors:q

ABACUS 3.3 FADE-IN AND FADE-OUT

1
FOR i=1 TO Number{
Rer! (1) =RND{
Green! (i) =RNDY
Blue! (i) =RND{
NEXT i
q
RETURN{
1
CreateColorScreen: i
1
SCREEN 2,640,256, 3,21
WINDOW 1,"Color Test", (0,0)-(623,200),0,21
1
FOR i=0 TO Number{
PALETTE i,0,0,09
NEXT ig
1
SWidth=640/Numberq
FOR §=0 TO 201
FOR i=1 TO Number{
x=RND*600 q
y=RND*1501
LINE (x,y)- (x+SWidth, y+SWidth/2),1,b£q
NEXT i
NEXT 31
q
RETURN{
1
SUB Fade (Start,Number,NumSteps,Mode) STATICT
1
NumSteps=NumSteps/21
StartState=0 : EndState=NumSteps{
IF Mode=-1 THEN{
StartState=NumSteps : EndState=0{
END IF{
StartAt=StartState/NumSteps
EndAt=EndState/NumSteps{
FOR j=StartState TO EndState STEP Modef
Factor!=j/NumStepsi
FOR i=Start TO Start+Numberi
PALETTE i,Red! (i) *Factor!,Green! (i)*StartAt,
Blue! (i) *StartAt{
NEXT i
NEXT jq
FOR j=StartState TO EndState STEP Mode{
Factor!=j/NumSteps{
FOR i=Start TO Start+Number{
PALETTE i,Red! (i) *EndAt,Green! (i) *Factor!,
Blue! (i) *StartAt{
NEXT iq
NEXT j1
FOR j=StartState TO EndState STEP Mode{
Factor!=j/NumSteps{
FOR i=Start TO Start+Number{

77

3. AMIGABASIC

Program
description

78

AMIGA TRICKS AND TIPS

PALETTE i,Red! (1) *EndAt,Green! (1) *EndAat,
Blue! (i) *Factor!q

The first section of this listing is identical to the first program up until
the subroutine. Use Copy and Paste from the Edit pulldown menu
to copy the first section from the program in Section 3.3.1.

First the SUB routine divides the increment number in half. This sets
all the programs to about the same "speed setting." Then the same loop
executes three times (it executes three times longer). The program looks
for the starting value of the fade loop. Whether you start with black or
with the color, the mouse pointer is set by this value.

Since the PALETTE instruction uses all color values, you must set the
starting value of the red color scale in the first loop, and the other color
scales in the other two loops. The other loops bring the program to the
end value, as already handled by the red scale. This is computed by the
SUB routine at the start under two factors (St artAt and EndAt). All
other routines run similar to those in the first fade program..

ABACUS

3.4 FAST VECTOR GRAPHICS

3.4

Fast vector graphics

Vector graphics are the displayed outlines of objects on the screen,
rather than the complete objects. This speeds up display, since the com-
putation time is minimized for complicated graphics, and the computer
is limited to the corner point and the resulting outline.

3.4.1

Model grids

Working with three-dimensional objects requires storing the corner
point as three-dimensional coordinates. First a compound specification
must be set up, after which the coordinate triplets are combined.

Once you have all this data, you must project the space on the screen
followed by an area. The following program selects a central spot on
the screen plane. All objects here are based upon a single vanishing
point perspective.

Since the plane of your screen is set by its Z-coordinate, this value is
uninteresting for all points. The grid network comes from this setup.

To find the X- and Y-coordinates on the screen, a space must be pro-
vided for the 3-D object. Furthermore, this space must have a point set
as the vanishing point. The Z-value lies between the object and the
vanishing point on the screen plane. Now draw a line to the vanishing
point from every corner of our object. When you intersect these lines
with the screen plane, you'll find the desired X- and Y-values for these
corner points, and their positions on the screen.

The illustration on the next page shows a cross section of the Y- and Z-
coordinates.

79

3. AMIGABASIC

AMIGA TRICKS AND TIPS

o

J—

Vanishing

point

Screen
Three-

r >
dimensional z
grid

o

How should you design a program that reproduces the illustration
above? The most important factor is setting up the corner point data.
You can place this data in DATA statements without much trouble.
First, though, the corner point coordinates must be on hand in the
compound specification, which can also go into DATA statements.

When the program identifies all spatial coordinates, it can begin

calculating the screen coordinates. The following line formula is used in
three-dimensional space computation:

3D Line formula

X PX dx
Y = Py +1* dy
Z Pz dz

You must remember the following when using the above formula: The
desired screen coordinates are called X and Y. You figured out the Z-
coordinate above. The P-coordinate belongs to the point used as part of
the multiplication. All that remains is the D-value. This is the

difference of individual point coordinate subtracted from the vanishing
point (px-vx, py-vy, pz-vz).

' 3D Vector-Graphics I

'q
' © 8.5.1987 Wgb{
‘1

b |

Variables:q{

1
RESTORE CubeData{
DEFINT B,C{

1

MaxPoints=25 ' Maximum Number of Object Pointsq

ABACUS 3.4 FAST VECTOR GRAPHICS.

2Coord=-25 ' Z-Coordinates of Screen{
NumPoints=0 ' Number of Object Points{
Connections=0 ' Number of Connections{
q

OPTION BASE 19

DIM P (MaxPoints, 3) ' Spatial Coordinates
DIM B(MaxPoints, 2) ' Screen Coordinatesq

DIM C(MaxPoints*1.8,2) ' Connecting Instructions{
DIM D(3) ' Difference{

1

DIM F(3) ' Vanishing Point (x,y,2z)1

1

F(1)=-70 ' Vanishing Point x{
F(2)=-50 ' yq

F(3)=240 ' 29

inProgram:q

)ﬁ%)ﬁ

PRINT "Vanishing Point (x,y,z): ";F(1)","F(2)","F 31

=

GetPoint:q

=8

CBase=NumPoints ' Base for Connections{

=]

Loop: 1

=

READ px, py,pzi
IF px<>255 THEN {
NumPoints=NumPoints+l
P (NumPoints, 1) =px{
P (NumPoints, 2) =py*-19
P (NumPoints, 3) =pz
GOTO Loop{
END IFq
1
GetConnection:q
1
READ vl,v29
IF v1<>255 THEN{
Connections=Connections+1
C (Connections, 1) =CBase+v1{
C(Connections, 2) =CBase+v2{
GOTO GetConnection{
END IF{
1
READ Last{
IF Last<>0 THEN GOTO GetPoint{
q
q
CalculatePicture:{

1
FOR i=1 TO NumPoints{
FOR j=1 TO 31
D (J)=F(3)-P(i,3) 1
NEXT 31
lambda= (ZCoord-P (i,3)) /D(3) 1

81

3. AMIGABASIC

82

B(i,1)=P(i,1)+lambda*D (1)
B(i,2)=P (i, 2)+lambda*D (2)

NEXT iq

1

CreatePicture:{

1

FOR i=1 TO Connections{
x1=B(C(i,1),1)+509
x2=B(C(i,2),1)+509
yl=B(C(i,1),2)+1007
y2=B(C(1i,2),2)+100
LINE (x1,yl)-(x2,y2)1

NEXT

DATA
1

REM
DATA
DATA

DATA 3

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA 2

DATA

ig

255,0,09

g2t
31

N
~
=0

/4
4,19
1,59
5,61
6,71
7,891
8,51
4,89
3,71

=8

.6
255,0,19

1
%yramidData:ﬂ

DATA
DATA
DATA
DATA
DATA
DATA

1
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

=32, 25,-209
32, 25,-209
32, 25, 209

=32, 25, 209

0, 65, 01
255,0,09

5,41
255,0,091

AMIGA TRICKS AND TIPS

ABACUS

Arrays

Variables

Program
description

3.4 FAST VECTOR GRAPHICS

P() spatial coordinates

B() int, screen coordinates

D() differences from the illustration

F() vanishing point coordinates

c(Q) int, connection specifications for all objects
Last value read, equals 0 when program ends
CBase object connection identifier

NumPoints number of points to be drawn
MaxPoints maximum number of object points
Connections number of connections

ZCoord Z-coordinate of screen plane

i,j floating variables

lambda coordinate calculation factor

PX,pY,P2Z coordinates of one point in space

vl first point of a connection

v2 second point of a connection

x1l,yl screen coordinates for output (1st point)
x2,y2 screen coordinates for connection (2nd point)

First, the variable definition sets the DATA pointer to the beginning of
the pixel data. In this particular case, the coordinates are a cube. Then
all variables starting with B or C are set up as integers. You'll see why
soon. Since the arrays for the points can be dimensioned later on, the
program sets the maximum number of points to be stored in the
MaxPoints variable. Also, the screen plane's position in space
appears through the Z-coordinate. Then the number of points and con-
nections to be read are set to null.

Now follow the dimensioning of necessary variable arrays. These are
the P array, into which the point coordinates are stored (an index of 3),
then the B array which holds the later screen coordinates for every spa-
tial point. Also, the C array always contains two point numbers which
indicate which points should be connected with one another. The last
array, D, shows the differences between point computations.

The F array contains the vanishing point position, holding an index for
automatic computations (Fpx,Fpy,Fpz).

The next line displays the vanishing point coordinates. Then the point
reading routine follows. This routine first sets the CBase pointer to
the first number of the point to be read. It works with several objects,
so all you need is to enter a coordinate for the first point of the next
object later. The loop reads spatial coordinates and checks these
coordinates for a px value of 255. This marker reads all the points of an
object. The connection specification follows next. If not, new points
are entered into the table, and new coordinates are read.

The loop for reading connections works in much the same way. It reads

the number of points to be connected. Then the loop ends. Otherwise,
the two numbers are entered in the array. Finally, a number is read from

83

3. AMIGABASIC

AMIGA TRICKS AND TIPS

the data that indicates whether another object follows. This occurs when
the value is unequal to zero.

When both loops end, the program computes the screen points of the
objects. This occurs in a loop which goes through the list point by
point and computes all screen values.

Once the difference between the vanishing point value and the current
point goes in the D array, the program computes the lambda factor.
Next, the program sets the equations up for the X- and Y-values.

The grid display follows. A loop executes for setting up all connec-
tions, and sets up all the necessary point coordinates. A previously set
point cannot be used in this, since it cannot exchange connections.
Since the object next to the null point was defined, you must move the
screen center to make it visible. This redraws it line by line.

3.4.2

Moving grid models

Movement is just a shifting of a standing screen. You can program the
display and easily change the spatial coordinates of any graphic.
Unfortunately, the movement is far too slow for practical use.

For faster movement on the screen, all values must be computed before
the movement. Also, you have to rely on an operating system routine
for drawing lines, instead of the multiple LINE commands.

3.4.3

84

Moving with operating system routines

The developers of the Amiga operating system thought a lot about
applications that would later run on this super computer. Vector
graphics were probably part of the plan for future expansion. These
make real-time graphics possible under certain conditions. This next
routine places all points into a list. This routine is the best option for
us, although a faster method exists. It lets you draw a grid network.
Then you enter the corner point for your spatial coordinates to be pro-
jected on the screen later on. The corner point moves within the space,
while retaining the original corner coordinates. The routine loses little
time, since the program computes all movements before the scenes and
places these computations into an array.

Now comes the first problem. The routine waits for a list of screen
coordinates connected in a given sequence. There is an advantage and a
disadvantage to this process. For one, not every coordinate pair is

ABAcCUS

3.4 FAST VECTOR GRAPHICS

stored, and for another the figure must be designed in such a way that a
constant line can be drawn. If not, those sections considered unnecessary
are skipped. However, flat objects can be drawn with just an endless
line.

To adapt this to the operating system, you must change the connection
specification. Enter the corners of the object and the number of corners
instead of the coordinate pairs.

When the program has this data, it can start its calculations. First the
object is moved in space by the screen coordinates. Then the new gra-
phic transfer occurs. This section enters the available screen values in a
long list, for later use by the operating system.

If the list is complete, the program branches to the display loop. Here
all scenes execute, and a corresponding pointer points to the data list for
the current scene. Then these values transfer to the display routine. The
color changes to the background to clear the screen, and the program re-
draws the object at its new location on the screen. When all graphics
have been displayed, the program branches to the beginning of display,
and starts the process again.

' 3D Vector Graphics V{
1
' Faster by using{
' The PolyDraw Routine{
‘1
' by Wgb in June '871
q :
1
LIBRARY "graphics.library"{
RESTORE{ '
OPTION BASE 11
1
Variables:q
1
DEFINT B,C,G1
1
READ MaxPoints ' Number of Object Points{
READ Connections ' Number of Connections{
L]

ZCoord=25 Z-Coordinate in Screen Planef
Scenes=50 Number of Scenes{

q

DIM P (MaxPoints, 3) ' Spatial Coordinates{

DIM B(Scenes,MaxPoints,2) ' Screen Coordinates{
DIM G(Connections*2*Scenes){

DIM C(Connections) ' Connection Rules{
DIM D(3) ' Difference{

1

DIM F(3) ' Vanishing Point (x,y,2)1

1

F(1)=-70 ' Vanishing Point x{

F (2)=-50 'y 1

F(3)=180 ' zq

85

3. AMIGABASIC

86

AMIGA TRICKS AND T1rs

1
PRINT "Vanishing Point (x,y,z): ";F(1)","F(2)","F(3)1
q
GetPoint:q
RESTORE PyramidData ' Object {
1
FOR i=1 TO MaxPoints{
READ px, pY, pzi
P(i,1)=px1
P (i, 2)=py*-1 ' Transfer to other Coordinate
System{
P(i,3)=pz1
NEXT iq
1
GetConnection:{
q
FOR i=1 TO Connections{
READ C(1) 1
NEXT i
q
PreCalculatePicture:{
1
FOR sz=1 TO Scenesi
FOR i=1 TO MaxPoints{
FOR j=1 TO 31
D(3)=F(-PH, T
NEXT 31
P(i,3)=P(i,3)+31
P(i,2)=P(1,2)-21
P(i,1)=P(i,1)+29
Lanbda= (ZCoord-P (i, 3)) /D(3) 1
B(sz,1i,1)=P (i,1)+Lambda*D (1)+2001
B(sz,1,2)=P (i,2)+Lambda*D (2)+2009
NEXT i
NEXT szq
bl
GraphicTransfer:q
1
FOR j=0 TO Scenes-11
FOR i=1 TO Connections*2 STEP 21
G(i+j*Connections*2)=B(j+1,C(i/2+.5),1)1
G(i+l+j*Connections*2)=B(j+1,C(1/2+.5),2)1
NEXT iq
NEXT j9
1
ConstructScreen:{
1
FOR i=0 TO Scenes-19
Pointer=Connections*2*iq
FOR j=1 TO 0 STEP-19
COLOR 31
CALL Move (WINDOW (8) ,G(1+Pointer) ,G(2+Pointer)) 1
CALL PolyDraw (WINDOW(8) ,Connections—-
VARPTR (G (3+Pointer))) 1
NEXT 31
NEXT iq

ABACUS

Arrays

Variables

Program
description

3.4 FAST VECTOR GRAPHICS

q
GOTO ConstructScreen{
1
1
GraphicData:{
1

DATA 5,109

' MaxPoints, Connections{
1
PyramidData:q
1

DATA -32, 25,-201
DATA 32, 25,-201
DATA 32, 25, 201
DATA -32, 25, 201
DATA O, 65, 01

1
PointConnections:{

1

DATA 2,1,5,4,3,5,2,3,4,11
1

DATA 4,11
B() screen coordinates
D() differences from the illustration
F() vanishing point coordinates
G() coordinates of all scenes
P() _spatial coordinates
cl() connection specifications
Lambda coordinate calculation factor
Pointer pointer to coordinate list of one scene
MaxPoints maximum number of object points
Scenes number of scenes to be computed
Connections number of connections
ZCoord Z-coordinate of screen plane
i,j floating variables
PX,pY,p2z spatial coordinates of comer point
sz loop pointer for scenes

Before the variable definition, the program opens the graphics
library. This supplies the graphic routines needed for the grid network.
Then all variables beginning with B, C or G are declared as integers.
This allows the integer variable character to be left off these variables.
The grid network display uses the new G array, into which all coor-
dinates are stored in their proper sequences. Each set consists of a 2-byte
integer for the X-coordinate and a 2-byte integer for the Y-coordinate.

The new features of this program are the point and.connection loops.

These work from established values placed at the beginning of the pro-
gram in DATA statements. If you leave off the end marker, the program

87

3. AMIGABASIC

AMIGA TRICKS AND T1pPs

runs somewhat faster. The connection array is defined as one dimen-
sional, instead of as a string of characters.

After the computation, the data must be converted to a form that the
operating system can handle. The PolyDraw routine places a table at
the X- and Y-values stated as integer values. In addition, the table must
list how many elements are used. The table can be fairly long. This
table doesn't need a pointer to the end of data. You place the graphic
data for all scenes into one array, and move the routine to the address of
the first element of the next scene. The next input is the number of cor-
ner points required. The rest of the PolyDraw program should speak
for itself.

The display occurs in a new loop. It corresponds to the number of
scenes executed. This loop first computes the pointer to the first ele-
ment to display on the grid network. The second loop executes twice. It
draws the network, sets the graphic cursor to the starting point and
executes your drawing in the PolyDraw routine. The second run of the
loop sets the floating variables from 1 to 0, and sets the drawing color
to the background color through the COLOR command. The Amiga
draws the grid network in the background color, erasing the net. This
process repeats as long as there are scenes available for plotting, then
the display loop exits.

3.4.4

88

3-D graphics for 3-D glasses

While experimenting with the multiple-point system and random 3-D
production, this idea came up for making a graphic you can view with
3-D glasses. You've seen these glasses; one lens is red and the other
lens is usually green (sometimes blue).

This program works under the same principle as 3-D movies. Since you
have two eyes, you're actually viewing two different graphics. These
two graphics appear to merge into one when you look at the screen
through 3-D glasses. The red lens blocks red light and shows you every
other color. The green lens blocks green light and allows other colors to
show through. The problem in most cases is that some colors are com-
binations of red and green. This means that some objects cannot be
viewed the way you want them seen through the 3-D glasses. If you use
simple colors with 3-D glass viewing, the effect is dramatic.

This 3-D graphic is based on the grid network used in the previous pro-
grams. The programming principle circles around having one vanishing
point for each eye. Since both eyes are set fairly close to one another,
the vanishing points must be set close together as well. In this case,
two graphics are drawn with horizontally shifted vanishing points. One
graphic is drawn in red, and the other in green. All overlapping areas

ABAcCUS

3.4 FAST VECTOR GRAPHICS

appear in brown (the color you get when you combine a red light and
green light).

To make use of this program comfortable, the slider from Chapter 4 has

been integrated into this program (see section 4.1.1). You can change

the degrees of red, green and blue to suit your 3-D glasses. You can

even change the locations of the vanishing points for an optimal 3-D

effect. When you are satisfied with your settings, press a key to see the

result. You can use these values in this program or in your own 3-D

programming.

' 3D Vector Graphics for Red-Green Glasses {

'q

' © 24.5.1987 Wgb1

'1

q

LIBRARY "graphics.library"q

1

RESTORE CubeData{

DEFINT B, C{

OPTION BASE 11

1

Variables:q

1

MaxPoints=25 ' Maximum Number of Object Points{

ZCoord=-25 ' Z2-coordinates of Screen Plane{

NumPoint s=0 ' Number of Object Points{

Connections=0 ' Number of Connections{

1

NumClicks=0]

MaxClicks=209

1

DIM SHARED ClickTable (MaxClicks,4)1

DIM SHARED ClickValue (MaxClicks)q

DIM SHARED ClickID (MaxClicks) T

1

DIM P (MaxPoints, 3) ' Spatial Coordinates{

DIM B(2,MaxPoints, 2) ' Screen Coordinates{

DIM C(MaxPoints*1.8,2) ' Connection Rules{
1)
L]

DIM D(3) Difference{

DIM F(2,3) Vanishing Point (x,y,z)1
1

F(1,1)=-40 ' 1st Vanishing Point x{
F(1,2)=-50 'yl

F(1, 3)=240 ' zq

1

F(2,1)=-80 ' 2nd Vanishing Point x{
F(2,2)=-50 'yl

F(2,3)=240 ' zq

1

DisplayText:{

1

CLs1T

LOCATE 1,401

PRINT "Vanishing Point 1 (x,y,z) "1

89

3. AMIGABASIC

90

AMIGA TRICKS AND TIPS

LOCATE 2,401

PRINT "Vanishing Point 2 (x,y,z) :"1
GOSUB DisplayCoordinates{

1

SetColors:q
PALETIE O,.6,.55,.4
PALETIE 1,.4,.35,0
PALETTE 2,.7,0,0
PALETTE 3,0,.65,0
1
SliderControl:{
1
Text $="Red" i
DefMove 40!,8!,100!,70!,2!9
Text$="Green"
DefMove 45!,8!,100!,65!,2!1
Text$="Brown"{
DefMove 50!,8!,100!,40!,2!9
q
Text$="VPoint1"q
DefMove 60!,8!,100!,40!,2!9
Text$="VPoint2"{
DefMove 65!,8!,100!,80!,2!q
bl
1
GetPoint:{
CBase=NumPoints ' Base for Connections{
bl
Loop: 1
READ px, py,pzi
IF px<>255 THEN {

NumPoint s=NumPoints+l

P (NumPoints, 1) =px{

P (NumPoints, 2) =py*-19

P (NumPoints, 3) =pz{

GOTO Loop{
END IFq

1

GetConnections:q
READ vl,v2q
IF v1<>255 THEN]

Connections= Connections+1q

C(Connections, 1) =CBase+v1{

C (Connections, 2) =CBase+v2q

GOTO GetConnections{

Background = bright-beige{
Neutral Color = Dark Brown
Red 70%1

Green 65%1

END IFq
1
READ Lastq
IF Last<>0 THEN GOTO GetPoint{
1
1
CalculateScreen:q
FOR k=1 TO 2 ' 2 Vanishing Points{
FOR i=1 TO NumPoints ' All Points{
FOR j=1 TO 3 ' Difference for x,y,z{

D(j)"F(krj)_P , T

ABACUS 3.4 FAST VECTOR GRAPHICS

NEXT 1
lambda= (ZCoord-P (1,3)) /D(3) 1
B(k,i,1)=P(i,1)+lambda*D (1) {
B(k,1i,2)=P (i,2)+lambda*D (2) |
NEXT iq
NEXT kq
1
b |
DrawScreen:q
LINE (0,0)-(300,200),0,bf ' Clear Area{
FOR j=1 TO 29
COLOR 1+31
IF j=2 THEN CALL SetDrMd& (WINDOW(8),7)1
FOR i=1 TO Connections{
x1=B(3j,C(i,1),1)+10090
x2=B(j,C(1,2),1)+1001
y1=B(j,C(i,1),2)+70%
y2=B(3,C(i,2),2)+70 |
LINE (x1,yl)-(x2,y2)1
NEXT iq
NEXT 39

CALL SetDrMdé& (WINDOW(8),1)q
COLOR 11
1
Interrupt:q
1
ON MOUSE GOSUB CheckTable]
ON TIMER (.5) GOSUB ColorSet{q
1
TIMER ON{
MOUSE ON9
1
Pause: |
IF ClickValue (4) *-1<>F(1,1) THEN{
F(1,1)=ClickValue (4)*-19
ReDraw:1
GOSUB DisplayCoordinatesq
GOTO CalculateScreen{
END IFq
IF ClickValue (5) *~1<>F (2,1) THEN{
F(2,1)=ClickValue(5)*-19
GOTO ReDraw{
END IF]
IF INKEYS$="" THEN GOTO Pausef{
1
OBJECT.OFF{
TIMER OFF{
MOUSE OFF
LOCATE 15,19
PRINT "Red Value :";ClickValue(l);"3"q
PRINT "Green Value:";ClickValue (2);"3%"1
PRINT "Brown Value from :"9q
PRINT ClickValue(3);"$%$ Red and "ClickValue(3)*.875;"%
Green"{
PRINT "Vanishing Point Value's X-Coordinate:"q

91

3. AMIGABASIC

92

AMIGA TRICKS AND TIPS

PRINT "V1 ";ClickValue(4)*-1;" and V2 ";ClickValue(5)*-11

END{

1

1
DisplayCoordinates:q

1
LOCATE 1, 631
PRINT F(1,1)","F(1,2)","F(1,3)1
LOCATE 2,631
PRINT F(2,1)","F(2,2)","F(2,3)1
RETURN{
1
CheckTable: q
1
IF NumClicks=0 THEN RETURNY
1
FOR i=1 TO NumClicks{

mstat=MOUSE (0) 1

mx=MOUSE (1) —69

my=MOUSE (2) 1

IF mx>=ClickTable(i,1) THENY

IF my>=ClickTable(i,2) THEN{
IF mx<=ClickTable(i,3) THEN{
IF my<=ClickTable (i,4) THEN{
q

ClickValue(i)=(my-ClickTable (i, 2))1
OBJECT.Y i,ClickTable(i,2)+ClickValue (i)+121

q
END IF{
END IF
END IFQ
END IF{

NEXT iq
IF MOUSE (0)=-1 THEN CheckTable{
RETURN{
1
ColorSet:q

Red=ClickValue (1) /1009

Green=ClickValue (2) /1009

DrawColor=ClickValue (3) /1009

PAIETTE 2,Red, 0,01

PAILETTE 3,0,Green, 09

PALETTE 1,DrawColor, (COLOR*.875),09
RETURN{
1
1
SUB DefMove (sx,sy,yd,po,mo) STATICY

SHARED NumClicksq
1

X=8X*8 'Coordinates for Line *10 at 60 Drawing Color{

1

y=sy*81

1

LINE (x,y)-(x+20,y+8+yd),,B]
1

'Extras desired?q

ABACUS

3.4 FAST VECTOR GRAPHICS

1
IF mo AND 1 THEN ' Scale{
q
FOR sk=y TO y+yd+8 STEP (yd+8)/16 '16 Unitsq
LINE (x,sk)-(x+2,sk)q
LINE (x+20,sk)-(x+18,sk)q
NEXT sk{
1
END IFq
1
IF mo AND 2 THEN ' Textq
q
SHARED Text${
sy=sy-LEN (Text$) T
FOR txt=1 TO LEN(Text$)q
LOCATE sy+txt, sx+2
PRINT MIDS$ (Text$,txt,1)q
NEXT txt{
q
END IFq
q
'Enter Click Value in Table {
b |
NumClicks=NumClicks+1q
ClickTable (NumClicks, 1) =xq
ClickTable (NumClicks, 2) =y
ClickTable (NumClicks, 3) =x+20q
ClickTable (NumClicks, 4) =y+yd{

ClickID (NumClicks) =1 'l set for Slider{
ClickValue (NumClicks)=po 'Beginning Value defined by
the User{

1

OPEN "df0:4. User-Friendliness/Slider2" FOR INPUT AS
NunClicksq

OBJECT.SHAPE NumClicks, INPUT$ (LOF (NumClicks) , NumClicks) {

CLOSE NumClicksq
OBJECT.X NumClicks,x-19
OBJECT.Y

umClicks,ClickTable (NumClicks, 2) +ClickValue (NumClicks) +12

b !

OBJECT.ON NumClicks{
1

END SUB{

1

CubeData:q

REM x,y, 21

DATA 32, 20, 201
DATA -32, 20, 201
DATA -32,-20, 209
DATA 32,-20, 201
DATA 32, 20,-209
DATA -32, 20,-209
DATA -32,-20,-209
DATA 32,-20,-201
DATA 255, 0,09

1

93

3. AMIGABASIC

Arrays

94

DATA
DATA
DATA
DATA
DATA
DATA
1

AMIGA TRICKS AND TIPS

pl,p21
1,291
2,31
3,41
4,19
1,59
5,61
6,71
7,81
8,51
4,81
3,71
2,691
255,0,11

PyramidData:

DATA
DATA
DATA
DATA
DATA
DATA
1

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

B

D
F

-32, 25,-201
32, 25,-201
32, 25, 201

-32, 25, 201

0, 65, 01

255,0,01

1,21
2,31
3,41
4,11
5,11
5,21
5,31
5,41
255,0,01

screen coordinates
differences from the coordinate computation
vanishing point coordinates (both graphics)

ClickID identifier for slider
ClickTable slider coordinates
ClickValue value of aslider

P
C

spatial coordinates
compound specification

ABACUS

Variables

Program
description

3.4 FAST VECTOR GRAPHICS

NumClickes number of defined click arrays

Last value read, equals 0 when program ends
Green value for green
CBase object connection identifier

NumPoints number of points to be drawn
MaxPoints maximum number of object points

Red value for red ,

Text text output for slider definition
Connections number of connections

2Coord Z-coordinates of screen plane
DrawColor drawing color for "Brown"

i, 3.k floating variables

lambda coordinate calculation factor

mo mode parameters for slider extras
mstat mouse status

mx,my mouse coordinates

po slider starting position

PX,pY,p2Z coordinates of one point in space

sk floating variable scaling

sx,3y text output coordinates

txt text output floating variable

vl,v2 combination points

XYy slider positions

x1l,yl screen coordinates for output (1st point)
x2,y2 screen coordinates for connection (2nd point)
yd slider status

First the graphics library opens, which contains the important gra-
phic routines. The DATA pointer then moves to the needed data, and all
arrays beginning with B or C are defined as integers. Base array indices
are set to 1. The variables here have similar functions to those in the
earlier programs. The slider arrays and variables are new, and most of
the variables used before have been changed slightly.

The array containing the vanishing point has an additional index on it.
This corresponds to the number of vanishing points, and makes later
development easier. This index lets you put up to 40 pixels as
vanishing points. This index is ideal for spacing between projection
surfaces and vanishing points.

A new method must be used for setting the vanishing points. This new
value is set in a subroutine.

The color setting is new as well. All four colors are available; the back-
ground can prevent the proper effect if you select the wrong color. The
other three colors need no explanation.

The slider definitions follow. The values of the first three sliders affect

the colors. The last two sliders make it possible for you to set the
vanishing points in horizontal directions.

95

3. AMIGABASIC

96

AMIGA TRICKS AND TIPS

The point and connection reader routines act as normal. Only the com-
putation of the graphic has a slight change to it. The loop counts from
one vanishing point to the next. This counter also depends on the
screen coordinates as an index.

Before screen display, the screen clears. Both vanishing points appear in
their respective colors. When the grid for the second point is drawn, the
program goes into a new character mode (see the table in Chapter 4 for
the modes). When you draw with the second color, any overlapping
between this color and red lines change to brown. At the end of the
loop, the character mode returns to normal status, and the drawing color
returns to 1.

A mouse and time interrupt activate. The first interrupt reads the sliders.
The second interrupt resets the colors when you change them. The wait
loop checks the program for one vanishing point or two vanishing
points. If there are two, the value transfers over, and the screen is recal-
culated.

The system waits for a keypress. When this occurs, the program turns
all objects, sliders, mouse and time readers off, and displays all
established values on the screen.

ABACUS

3.5 THE AMIGA FONTS

3.5

The Amiga fonts

There are two sources of fonts on the Amiga:
1) ROM font which resides in the Amiga

2 Disk-resident fonts contained in the fonts directory of the
Workbench diskette.

The following program lets you access character sets through the SUB
command FontSet which gives you access to both ROM and RAM
character sets. This is called as follows:

DiskFont "name",he ight%

To tell which character sets are on the Workbench diskette under which
names, enter a directory command, e.g.:

FILES "SYS:fonts"

Along with these character sets, you can also access the ROM character
set topaz in 8- and 9-point sizes. It is extremely important that you
enter the name topaz in lowercase characters, since the OpenFont ()
function is very picky. It will not read entries like Topaz or TOPAZ as
the ROM character set topaz. Instead, it loads the 11-point disk font
Topaz.

THEFRER R R AR R R RS AR R R AR RHERT
'#

#1
'# Program: Set TextFont #9
'# Author: tob #1
'# Date: 12/8/87 - ¥
'# Version: 1.0 #1
'# #1
'HERERRRRAE AR AR AR ARSI
b

DECLARE FUNCTION OpenDiskFont& LIBRARY{
DECLARE FUNCTION OpenFont& LIBRARY{

1

LIBRARY "diskfont.library"{

LIBRARY "graphics.library"{

1

demo: ' Demonstration of SetFont Command{
LOCATE 4,19
FontSet "Sapphire", 191
PRINT "This is Sapphire 19 Points"q
FontSet "Diamond", 209
PRINT "...another TextFont..."{
FontSet "Garnet", 169

97

3. AMIGABASIC

Variables

98

AMIGA TRICKS AND TIPS

PRINT "...and yet another! Amiga has still

more!"q

FontSet "ruby", 121
PRINT "However this should be enough to

demonstrate the point!"q

1

FontSet "topaz", 81
1

LIBRARY CLOSE{
ENDY

SUB FontSet (FontName$, FontHeight%) STATICY

f.olds = PEEKL (WINDOW (8) +52) 1
f.pref% = 0f
FontName0$ = FontName$ + ".font" + CHR$ (0)1
tAttrs (0) SADD (FontName0$) 1
tAttr& (1) = FontHeight%*2716 + f.pref%{
f.new& = OpenFonté& (VARPTR (tAttr&(0)))q1
f.check$ = PEEKW (WINDOW(8) + 60)1
q
IF f.new& = 0 THENY

f.new& = OpenDiskFonté& (VARPTR (tAttr& (0)))q
ELSEIF f.check% <> FontHeight% THEN{

CALL CloseFont (f.new&)

f.new& = OpenDiskFont& (VARPTR (tAttr& (0))) T
END IF{

IF f.new& <> 0 THENY
CALL CloseFont (f.old&) 1
CALL SetFont (WINDOW(8), f.new&)q
ELSEIF UCASES$ (FontName$) = "UNDO" THEN{
CALL CloseFont (f.0ld&) 1
CALL SetFont (originalé&) 1
ELSEq
BEEP]
END IFq

END SUB{

FontName$ character set name
FontName0$ like FontName$, except it ends with CHR$(0)
FontHeight$% height of the font in pixels

f.olds address of previously active character set

f.prefss preference bits

tAttr&() text attribute structure; variable array used as memory
f.news address of newly opened character set

f.check% current height of new character set

ABACUS

Program
description

3.5 THE AMIGA FONTS

In order to open a character set, a TextAtt r structure must be filled
out. This is stored in the tAttr& array. The address at the beginning
of this field (taken from VARPTR) calls the graphic routine
OpenFont (). This looks for a character set matching the parameters
stated in the TextAttr structure. The normal fonts are the ROM font
topaz in 8-point and 9-point, but when other fonts are still open,
these fonts can be accessed by OpenFont () . OpenFont () is so
flexible that if it can't find a font that matches the given parameters, it
loads the font most similar to the desired font. This means that the font
loaded may not be the one you want. The check% variable checks the
height of the found font, and compares it with the height found in
FontHeights$. If the two are unequal, the opened font closes and
OpenFont () looks for another font on diskette.

If, on the other hand, the program finds a font (f.01d&<>0),
CloseFont () closes the currently active font, and activates the new
font with SetFont () . Otherwise the Amiga emits a warning beep
and returns to the old font.

99

3. AMIGABASIC

AMIGA TRICKS AND TIPS

3.6

100

Fast and easy PRINT

The weakest command in AmigaBASIC is PRINT. This command has
three disadvantages to it: Slow execution, no word wrap and no editing
capabilities.

Let's take these one at a time. PRINT executes very slowly: An entire
page of text can take several seconds to display in a window. In addi-
tion, PRINT doesn't know when it reaches the end of a screen line:
Long strings of characters go past the right border of the window,
instead of "wrapping around” to the next screen line. Finally, PRINT
displays text and nothing more. PRINT cannot execute editor com-
mands that might exist, such as CLEAR SCREEN, CURSOR UP, IN-
SERT LINE, etc.

Since PRINT is one of the most frequently used commands in Amiga-
BASIC, here is a program that solves all of these problems. The
solution is a simple one: The program activates the internal system's
Console Device. This system component handles text input and
output. Once active, Console Device handles all the tasks that
PRINT can't handle: Fast text display, adaptation to window size, and a
number of editor commands.

Unfortunately, it's not that easy to adapt Console Device for your
Oown purposes, since it must be treated as an I/O device. A number of
Exec functions are necessary. However, once initialized, you have a
PRINT command of much larger dimensions. With this new com-
mand's help, your program runs faster, and editor commands make pro-
gramming easier.

The following program consists of the SUB programs CreatePort,
RemovePort, CreateStdIO, RemoveStdIO, OpenConsole,
CloseConsole, SystemOn, SystemOff and ConPrint:

"HESRREE AR RE R R ESR R RE AR R

'# . #9
'# Program: Console Device #9
'# Author: tob #9
'# Date: 04/08/87 #1
'# Version: 1.0 #1
'# #9
"HARRRFER AR AR AR R AR ERERARRT
bl

DECLARE FUNCTION OpenDevice$ LIBRARYY
DECLARE FUNCTION AllocMem& LIBRARY{
DECLARE FUNCTION AllocSignal% LIBRARY{
DECLARE FUNCTION FindTask& LIBRARY{
DECLARE FUNCTION DoIO& LIBRARYY

ABACUS

3.6 FasT AND FAsY PRINT

1
LIBRARY "exec.library"{
1
init: '* Control-Sequence definitions{
Cl$ = CHR$ (155) 'Control Sequence Introducer{
C2$ = CHRS$ (8) 'Backspaceq
C3$ = CHR$(10) 'Line Feed{
C4$ = CHR$ (11) 'VTab{
C5$ = CHR$(12) 'Form Feed{
C6$ = CHR$(13) 'CRI
C7$ = CHR$(14) 'SHIFT IN{
C8$ = CHR$(15) 'SHIFT OUTY
C9$ = CHR$ (155) + "1E" 'RETURN{
1
demo: '* Demonstration{
ConPrint C15+"20CA Good Day to You!"+C9${
ConPrint "It had been a normal day so far, but
while on the way to the barn we saw a very big bear!"{
1
SystemOf £
1
SUB ConPrint (text$) STATICY
SHARED c.io&1
IF c.io& = O THEN : SystemOnf{
POKEL c.io& + 36, LEN(text$)q
POKEL c.io& + 40, SADD(text$)q
e& = DoIO&(c.io&)1
END SUBY

SUB SystemOff STATIC{
SHARED c.io&{
CloseConsole c.io&{

END SUB9

SUB SystemOn STATICY
SHARED c.io&, c.c$1
OpenConsole c.io&]
POKEW c.io& + 28, 31

END SUB{

SUB OpenConsole (resulté&) STATICT
CreatePort "basic.con", 0, c.porté&{
IF c.porté& 0 THEN ERROR 2551
CreateStdIO c.port&, c.io&{
POKEL c.io& + 36, 1241
POKEL c.io& + 40, WINDOW(7)1
dev$ = "console.device" + CHR$(0)1
c.errors = OpenDevice$ (SADD(dev$), 0, c.io&, 0)1
IF c.error% <> 0 THEN ERROR 2551
result& = c.io&{

END SUB{

SUB CloseConsole (io&) STATICT
port& = PEEKL (io& + 14)1
CALL CloseDevice (io&) 1
RemovePort port&d

101

3. AMIGABASIC

102

SUB

SUB

END

RemoveStdIO io&q

SUBT

AMIGA TRICKS AND TIPS

CreateStdIO (port&, result&) STATICT

opt& = 24161

result& = AllocMems (48, opté&)q

IF result& = O THEN ERROR 79
POKE result& + 8, 59

POKEL result& + 14, port&{
POKEW result& + 18, 501

SUBYT

RemoveStdIO (io&) STATICT

IF io& <> 0 THEN{

CALL FreeMem(io&, 48)1

END IF{
SUBY

CreatePort (port$, pri%, result&) STATICY

opt& = 2°169

byte& = 38 + LEN(port$)q

port& = AllocMems (byte&, opté&)(

IF port& = 0 THEN ERROR 79
POKEW port&, byte&q
ports = port& + 29
sigBit% = AllocSignal% (-1)
IF sigBit% = -1 THENY

CALL FreeMem(porté&, bytes&)q

ERROR 79
END IF{

sigTask& = FindTask& (0) 1

1

POKE porté&
POKE port&
POKEL porté&
POKE . porté&
POKEL porté&
POKEL porté&
POKEL porté&
FOR loop% =

491

prisq
port& + 349
sigBit%{
sigTask&q
port& + 249

char% = ASC(MID$ (port$, loop%, 1))1

POKE port& + 33 + loop%, chars{

NEXT loop%1

CALL AddPort (porté&) {
result& = porté&{

SUB{

RemovePort (porté&) STATICY

bytes =

PEEKW (port& - 2) 1

sigBit% = PEEK (port& + 15)9
CALL RemPort (porté&) 1
CALL FreeSignal (sigBit$%)q

CALL FreeMem(port& - 2, byteg)q

SUB{

ABACUS

3.6 FAST AND EASY PRINT

As you can see, you can use the new ConPrint much the same as
you used the normal PRINT:

ConPrint "displayed text”

However, ConPrint works much faster than PRINT. Also, long
lines of text are tailored to fit the width of the window. If the text is
longer than the window is wide, the text wraps around to the next
window line. You also have the following editor sequences available:

C1$ CSI (Control Sequence Introducer)
C2$ Backspace (1 character to the left)
C3$ Linefeed (1 line down)

C4$ VTab (one line up)

C5% Formfeed (clear screen)

C6$ CR (start of next line)

C7$% SHIFT IN (caps)

C8$% SHIFT OUT (normal)

C9$% RETURN (end of line)

These are the simplest editor text sequences. You add them to text
strings using the plus sign character (<+>). For example:

ConPrint "Hello, Worker!"+C9$
Console Device can do alot more. The following editor sequences

begin immediately after the control sequence introducer (C1$). The
editor sequences are as follows:

103

3. AMIGABASIC AMIGA TRICKS AND TIPS

C1$ + Definition
"[n]@" Insert [n] characters in this line
"[n]A" Cursor [n] lines up
"[n)B" Cursor [n] lines down
"[n]C" Cursor [n] characters right
"[n]D" Cursor [n] characters left
"[n]E" Cursor [n] characters down + to start of line
"[n]F" Cursor [n] characters up + to start of line
"[n];m]H" Cursor to line [n], column [n]
"J" Clear screen from current cursor position
"K" Delete line at current cursor position
" Insert line
"M" Delete line
"[n]P" Delete character to right of cursor
"[n]S" Scroll [n] lines up
"[n]T" Scroll [n] lines down
"20h" Set mode
"201" Reset mode
"[n];[n];[n]m" | Graphic mode
Style:
O=normal
1=bold
3=italic
4=underline
T=reverse
Foreground color:
30-37
Background color:
40-47
"[n]t" Window height in raster lines
"[n]u" Line length in pixels
"[n)x" Indent [n] characters
"[n]y" [n] lines spacing from top border

104

ABACUS

3.7 MuLTITASKING INPUT

3.7

Multitasking INPUT

The INKEYS$, LINE INPUT and INPUT commands are Amiga-
BASIC's ways of accepting user input. These commands do their best,
but that isn't enough sometimes. For example, try using LINE INPUT
to ask for a street address. If the user makes a mistake, he can only
correct it by pressing the <Backspace> key until he erases the error, and
retyping the rest of the entry. LINE INPUT and INPUT support no
cursor movement, and have no editing facilities like Undo, Insert or
Delete. This is fine if you prefer to avoid user-friendliness, but pro-
grams should be made as friendly to the user as possible.

This input programming can create problems: Try to design a screen
mask around LINE INPUT. It can't be done: LINE INPUT doesn't
allow length limits to input, so it accepts any number of characters.
This could move the cursor past the mask, destroying the screen mask
and other input areas. Also, this input doesn't provide margin for error
in the next input. For example, an address file program asks you for the
city. You enter <Grand Rapids MI> and press the <RETURN> key.
The next input asks for the state-but you've already entered the state
name. Another major problem with LINE INPUT is that you cannot
freely choose data fields in a mask, so mistakes are unavoidable. The
only way to check for errors is to have the program ask, "IS ALL
DATA CORRECT (Y/N)?" If there are errors, the user has to enter the
data all over again.

Now that you have heard about the disadvantages, here is an alternative
program that solves these difficulties. Here's how it works. You create a
screen mask into which you place all the necessary data fields with the
MField command. You can start your fields at any point on the screen
using X- and Y-coordinates. You can also set your fields to any length
up to a maximum of your screen’s width. Finally, you can specify
whether the system should accept a normal (alphanumeric) input or just
numeric input. In this last case, the Amiga accepts numbers and ignores
all other input.

The MField command syntax:

MField nr$, x%, y%, wid%, max%, nam$, typ$

nr% field number (0-40)

x%,y% starting coordinates of field

wid$ field width in characters

max$ maximum input length

nam$ field name (e.g., STREET)

typ$ "S" = alphanumeric input
"VAR" = numbers only

105

3. AMIGABASIC

106

AMIGA TRICKS AND TIPS

This method lets you set up your screen mask freely. Every MField
command draws an orange border around the entry and displays the field
name on the screen.

Immediately after the screen mask appears, the user can begin text or
numeric input. Clicking on the desired field with the mouse calls an
orange cursor. The user's entry appears in that field. The Amiga
supports this new input control 100%.

The user has editor commands available in this input system. Like
LINE INPUT,MField uses the key and the
<BACKSPACE> key. These delete characters to the left or to the right
of the current cursor position. The cursor keys move the cursor to the
left or right. Text inserted at the current cursor position moves the
remaining text to the right. Pressing <SHIFT> and a cursor key moves
the cursor to the beginning or end of the text. The <Right Amiga><Q>
key combination acts as the <UNDO> function, restoring the previous
input. If the user enters more text than provided for in the field, the text
scrolls to the left and the right edge opens up space for the new letters,
That is, until you reach the maximum input length. You see, you can
even enter text longer than the field window.

The Check command lets you view data in the individual fields. You
can search for fields and remove the ones you don't want anymore;

Check nr%, text$, mode$%

nr$ field number
texts$ field contents
mode$% 1 = display
0 = display and remove field

The following program demonstrates the options offered by these pow-
erful and user-friendly commands:

"RERERER SRR SR ERERARRRRT
'# #1
'# Program: NewInput #9
'# Author: tob #1
'# Date: 11/08/87 #1
'# Version: 2.0 #9
'# #9
"HEREEER AR AR R REHBARHT
1

DECLARE FUNCTION AllocMem& LIBRARY]
DECLARE FUNCTION AddGadget% LIBRARY{
1
LIBRARY "exec.library"q
LIBRARY "intuition.library"q
LIBRARY "graphics.library"q
1
var: '* variables{
DIM SHARED regé&(40,1)q

ABACUS 3.7 MuLTITASKING INPUT

1
demo: '* Demonstration of NewInput by Building a Maski
CcLs1
PRINT TAB(20); "Personnel Screen"{
q
"% Build Field Masks{
MField 1, 5, 30, 35, 40, "First Name ", "S"{
MField 2, 5, 45, 35, 50, "Last Name ", "S"{
MField 3, 5, 60, 7, 17, "Street v, "VAR"{
MField 4, 165, 60, 26, 40, "", ngrq
MField 5, s, 15, 30, 30, "City, State", ngrq
MField 6, 340, 75, 6, 11, "Zip.", s q
1
LOCATE 15,201
PRINT "When finished, please press RETURN!"{
LINE INPUT pause$T
1
'* Evaluate Field{
Check 1, First$, oq
Check 2, Last$, o
Check 3, Number$, oq
Check 4, Street$, 09
Check 5, CityState$, 01
Check 6, Zip$, oq
q
CLs1
PRINT "...the following is the data you input"{
PRINT "which can now be used in other routines:"q
PRINTY
PRINT "Last and First Name: "; Last$;", ";
First$q

PRINT{
PRINT "Address:"q
PRINT " ";Number$;" ";Street${
PRINT " ";CityState$;" ";Zip$1
1
FOR t$ = 1 TO 100001
NEXT t%1
1
'* Simultaneous Evaluation{
CLs{
MField 1, 30, 40, 10, 40, "Test field. Enter
some text. ", "S"{
q
WHILE INKEYS = ""{
Check 1, test$, 11
LOCATE 1,19
PRINT "Current Contents: ";test$;" "1
WEND
1
Check 1, test$, 01
LOCATE 9,11
PRINT "Final results: ";test${
1
LIBRARY CLOSE{
ENDY

107

3. AMIGABASIC

108

AMIGA TRICKS AND TipPs

SUB MField (nr%, x%, y%, wid%, max$, nam$, typ$) STATIC]
SHARED Er${
colB% = 39
typ$ = UCASES$ (typ$){
1% = LEN (nam$)
IF reg&(nr%, 0) = O THEN{
mem& = 82 + 2*max$% + 20
opt& = 2”169
add& = AllocMems (mem&, opté)q
IF add& = 0 THEN]
Ers = 19
EXIT SUBY
ELSE]
Ex% = 09
END IFq
POKEL add&, mem&q
bl
IF typ$ = "VAR" THENY
typ$ = &H8029
ELSE{
typt = 29
END IFq
q
chx% = PEEKW (WINDOW(8) + 58) 1
chy% = PEEKW (WINDOW (8) + 60) 1
FWidth% = wid$ * chx%{
FHeight% = chy%{
1
CALL Move (WINDOW(8), x% - 1, ¥y¥ -1 + chy%)q
PRINT nam$;{
q
x% = x% + 1% * chxs%{
str& = adde + 49
inf& = str& + 449
bfls = str& + 829
bf2& = bflg + max$q

1

'* Initialization of Structure{
POKEW str& + 4 , x%9
POKEW str& + 6 , y3%T
POKEW str& + 8 , FWidth3{
POKEW str& + 10, FHeight%{
POKEW str& + 14, typ$q
POKEW str& + 16, 49

POKEL str& + 34, infs&{
POKEL inf& , bfl&(
POKEL inf& + 4 , bf2sq
POKEW inf& + 10, max${

1

'* Add Gadgets{

reg& (nr¥, 0) = add&q

p% = AddGadget$ (WINDOW(7), str&, 65535&)9

LINE (x%-2, y%-2) - (x% + FWidth%, y% + FHeight$% +
1), colB%, b

CALL OnGadget (str&, WINDOW(7), 0)1

ABAcCUS

Variables

END IF{
END SUB{
1

3.7 MuLTITASKING INPUT

SUB Check (nr%, NewText$, md$) STATICY

count$

= 0

NewText$ = "1

IF reg&(nr$, 0) <> O THENT

adds = reg&(nr%, 0)1
str& = adde + 41
bfls = str& + 821

x% = PEEKW (str& + 4)1
y% = PEEKW (str& + 6)1
w$s = PEEKW (str& + 8)1
h% = PEEKW (str& + 10)1
typ% = PEEKW (str& + 14)1

1

in$ = PEEK (bfl1&)1
WHILE in% < 01
NewText$ = NewText$ + CHRS (in%) 1

count$ = count% + 11

in% = PEEK (bfl& + count%){

WENDT

9
IF md% = 0 THEN{
CALL RemoveGadget (WINDOW(7), str&)d

size& = PEEKL (add&)1
CALL FreeMem(add&, size&){

LINE (x%-2, y%-2) - (x% + w%, y% + h% + 1), O,

& (nr%, 0) = 01
P

bfq

END IF{
END SUB{

reg& ()
nr%
x%,v%
wid$
max$
nam$
typ$
colB%

1%

mem&
opté&
add&

Exr%

typ%
chx%, chy%
FWidth%
FHeight%
stré&
infs&
bfls

gadget starting address storage

field number (0-40)
field coordinates

field lengths in characters
maximum input length
field name (prompt)

field type ("S"=string, "VAR"=numbers)

border color
prompt length

size of necessary memory block

memory options; 216 = CLEAR_MEMORY
starting address of memory block; O=error
=1; OUT_OF_MEMORY flag

$802 = "VAR", 2 ="S"

width and height of active character set

data field width

data field height

starting address of gadget block
starting address of StrInfo block
starting address of input buffer

109

3. AMIGABASIC

Program
description

110

AMIGA TRICKS AND Trps
bf2s starting address of Undo buffer
p% position at which new gadget should be inserted
w%, h$ like FWidth$ and FHeight %
in% ASCII code of character read by bf1&
NewText$ text from text buffer
count$g counter
md$% O=remove gadget; 1=read input only
sizes size of free memory

This program uses an element of the Intuition library known as a
gadget. Gadgets are elements accessible to the mouse pointer. They
perform such functions as allowing size changes and movment of
windows. One of these gadgets, the string gadget, allows text input.

The "MField" SUB initializes a gadget data structure with the corres-
ponding parameters, into which your values integrate. This data struc-
ture takes the active gadgets listed by AddGadget () and places them
in your output window.

The "Check" SUB reads the data structure field containing the current
input. "Check" transfers this input to the variable NewText$ and
returns the system to the main program. If mode=0, then Remove-
Gadget () takes the gadget from the system list.

These are the main components of the SUBs. After these actions,
"MField" displays a prompt at the data field's beginning. Move ()
allows cursor movement in either the X- or Y-directions, and text dis-
play through PRINT. "MField" also draws a border around the data
field. You can easily select data fields with the mouse pointer.

This sample program creates a mask of 6 fields. You can define up to
40 fields if you wish, or even increase the number of fields using the
DIM SHARED statement.

After defining the mask, the Amiga waits for the user to press the
<RETURNS> key at the end of an entry. The user has plenty of time to
enter data in the fields, or click gadgets. If you press <RETURN> for
an empty set of data fields, the program continues. "Check" places in-
put into the appropriate variables. If md$=0, the program removes the
gadgets (this happens before the program can exit). The Amiga displays
the data, and a second example begins.

This test should show field control during input. This is done by
Check with md%=1. This way, a menu can be displayed as soon as the
user writes data in a previously set data field. Check with md$=0
deletes the gadget at the end. The current output changes to a blank
space for input (" "). The BACKSPACE command redraws the screen
when input isn't appearing fast enough.

4

User-
friendliness

ABACUS

4. USER-FRIENDLINESS

User-friendliness

A few years ago, the term "user-friendly" didn't exist in computing. The
user had to type in exactly what he wanted the computer to do. If he
entered the data incorrectly, the computer returned an error message (if
the user was lucky). The manual was a necessity for the user to survive
computing.

As computers became more common in the home, software and
hardware designers helped shape the technology that brought about user-
friendly interfaces between the computer and user. Intuition is the
Amiga's user interface, using windows, icons and the mouse as user
input.

User-friendly program design is important to the developer, and even
more important to the user. Most users prefer a program that makes
operation simple and clear, without having to even pick up a manual.
In addition, user-friendly programs are more attractive to the consumer,
and may mean more profits for the developer.

This chapter shows you how you can make your programs as user-
friendly as possible. This sort of programming focuses on input,
selection and control. Often an icon or other self-expanatory graphic
helps the user to understand program operation better. In any case, most
programming for user response should be mouse-based, and not just for
starting and quitting the program. Here are some easily implemented
functions that you can include in your own programs.

113

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

4.1

Other input

Since not everything can be done by menus, there must be some alter-
native forms of access. To see a few of these other forms, put your
Workbench diskette in your disk drive and open the main directory.
Double-click the Preferences icon. Preferences contains user-
defined parameters. When you turn on the Amiga, the Workbench disk-
ette defines these parameters as it loads.

The Preferences screen contains sliders which let you set the
colors. The time and date gadgets in this screen have sliders which you
click on to change the hour, day, etc. There are also selectors that you
click for changing from 60 characters per line to 80 characters per line.
Also, this screen has many gadgets that you can click for saving or
cancelling your changes. The Change Printer screen uses many
table gadgets for selecting printer options.

4.1.1

114

Sliders

Sliders are just one kind of input element. You can have a slider repre-
sent any value within a range of numbers. You have already seen a
practical application of sliders in color assignment. The color sliders in
Preferences can handle any values between 0 and 15. You could
write three INPUT commands to read numbers for color input, but the
sliders are much easier to use: All you do is move a slider left to de-
crease the amount of that color, and right to increase the amount of that
color.

Before you look at the sample program below, there are a few facts you
should know about sliders:

Sliders must have their size and position in the window set. In addition,
you must establish the scaling or the text that must appear.

The organization of a slider is very important. When you are clear about
the coordinates and the orientation of the slider, then the slider can
appear on the screen. Simply drawing the slider isn't enough. The pro-
gram should be programmed so that the click of the left mouse key
changes the slider's setting. This data could be placed in an indexed
array, particularly when multiple sliders are used in one program.

The above items can all be accomplished with a SUB program which

places the data into corresponding variable arrays. The first slider is de-
fined from this data.

ABACUS

4.1 OTHER INPUT

The second point to consider is mouse reading. This occurs through an
interrupt routine which checks for a pressed left mouse button while the
pointer is within a specific range. If this is the case, the correspond-ing
slider knob (loaded as a bob) moves to the new position.

' Definition of a Horizontal Slider Controllerq
' with x Positioning{

=

1
Variables:q

DEFINT a-z{
FileName$="Slider2"q
ﬂText$="Blue Value"q

NumClicks=09
ﬂMaxClicks-ZOﬂl

DIM SHARED ClickTable (MaxClicks, 3)1
DIM SHARED ClickValue (MaxClicks)q
DIM SHARED ClickID(MaxClicks)

1
Main:{
1

ON MOUSE GOSUB CheckTableq
ON TIMER (.5) GOSUB ColorSetfq
TIMER ONY

1
DefMoveScale 13,6,100,16,0 'with Nothing{
DefMoveScale 13,8,100,16,1 'with Scaling{
DefMoveScale 13,10,100,60,2 'with Textq

1
LINE (157,100)-(477,120),2,b£f]
LOCATE 1,1

PRINT "Slider Controls: "q
PRINT "1lst Control => Red value, without Enhancements"q

PRINT "2nd Control => Green value, with Scaling (16

UB%E?J?[‘"$3rd Control => Blue value, with Text ahead of the
:ﬁ‘fﬁ%"ﬂmny Key = End)"{
WHILE INKEYS$=""{

SLEEPY

CheckTable:
IF NumClicks=0 THEN RETURN{

FOR i=1 TO NumClicks{

mstat=MOUSE (0) 1

mx=MOUSE (1) 1

my=MOUSE (2) 1

IF mx>=ClickTable(i,0) THEN

IF my>=ClickTable(i,1) THEN{
IF mx<=ClickTable (i, 2) THEN]
IF my<=ClickTable(i,3) THEN{
q

IF ClickID(i)=1 THEN{

ClickValue (i) = (mx-ClickTable (i, 0)) /41
SetSwitchScale iq

115

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

1
golorSet :

r!=ClickValue (1) /1009
g!=ClickValue (2) /1009
b!=ClickValue (3) /1009
PALETTE 2,r!,g!,b!1

1
RETURN(

Define Slider—counter2
i

£ - -=0:9

SUB DefMoveScale (sx,sy,xd,po,mo) STATICY
1
S%ARED NumClicks,FileName$q

x=8x*9 'Coordinate for Line{
ﬂy=sy*8‘11

LINE (x,y)-(x+xd*4+20,y+12),,b1
'Extras desired?q

IF mo AND 1 THEN{
FOR sk=x TO x+xd*4+12 STEP (xd*4+20)/16 '16 Units{
LINE (sk,y)-(sk,y+2)1
LINE‘]I (sk,y+12) - (sk,y+10) T

NEXT s
END IFq
IF mo AND 2 THENY

SHARED Text$q

LOCATE sy+1, sx-1EN (Text$)-19

PRINT Text${
END IF{

1
'ClickValue entry in Table {

NumClicks=NumClicks+1]

ClickTable (NumClicks, 0) =x+69

ClickTable (NumClicks, 1) =yq

ClickTable (NumClicks, 2) =x+xd*4+69

ClickTable (NumClicks, 3) =y+12q

ClickID(NumClicks)=1 'l as current setting for Sliderf

ClickValue (NumClicks)=po 'Beginning value redefined by

;%}Sugﬁe&n

OPEN FileName$ FOR INPUT AS 17
OBJECT.SHAPE NumClicks, INPUTS (LOF (1),1)q
ﬁCIDSE 11

116

ABACUS

Arrays

Variables

Program
description

4.1 OTHER INPUT

OBJECT.Y NumClicks,y1

SetSwitchScale NumClicksq
‘HOBJECT.ON NumClicksq
END SUB{

1
: Set Slider—ccunterg
iu

1

’]SIUB SetSwitchScale (Nr) STATICY

ﬂOBJECT .X Nr,ClickTable (Nr, 0) +4*ClickValue (Nr)-1-61
END SUB{

ClickID object identification
ClickTable coordinates of click range
ClickValue slider value

b blue slider value

NumClicks previously defined click object
MaxClick possible number of click objects
FileName filename of bob used for slider

Nr SUB variable; number of set slider
Text text display in slider

g green slider value

i floating variable

mo SUB variable; slider position
mstat mouse status during reading

mx, my mouse coordinates

po SUB variable; slider position

r red slider value

sk floating variable scaling

Sx, sy SUB variable; slider column coordinate
X,y coordinate scaling

xd SUB variable; slider width

First the bob's filename is assigned to a string variable so it can be
changed later. The counters for the clickable area and the maximum
number initialize, then the variable arrays initialize. Also, the text for
the description of the last slider knob goes into a variable. The name
corresponds to the subroutine which draws a slider.

The main section of the program reads the mouse through the
CheckTable subroutine, and the color display appears after a half-
second interrupt. Then the slider is set up according to the predefined
parameters on the screen after calling the SUB routine containing these
parameters. To observe the color changes, the program draws a colored
box in the center of the window. Several lines of text appear on the
screen explaining the individual sliders. This is done through PRINT
statements. The program jumps to a loop which exits when any key is
pressed which has a specific keycode. The slider bobs turn off and the
program ends.

117

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

Subroutines

118

The first subroutine in the program, the CheckTable routine, tests
for whether the mouse pointer lies within the slider area. This test
occurs when a mouse button is pressed. Only then can the program
continue. Here ClickValue computes the pointer coordinates, and
the slider moves in the direction of the mouse pointer.

One brief but very important subroutine handles the position reading.
This is the ColorSet routine, called every half second by the TIMER
function. This routine sets the values in the array ClickValue () to
the corresponding color values. Since the slider knobs are 100 pixels
wide, the color value is divided into 16 sections.

Define Slider-Counter:DefMoveScale is the most impor-
tant routine in this program. This routine is a SUB routine for easy
access from the main program. The parameters appear in the main
program after the command word, and must not be defined as variables
beforehand. The routine itself computes the pixel positions of the box
in which movement takes place. It indicates and tests for scaling within
a mode. If so, a loop draws 16 divisions of color in the slider box,
giving you 16 graduations of color. The second mode enables the slider
text descriptions. You can use both modes at the same time if you
wish. We suggest that you do not give the text as part of the parameters
since the text is optional. Instead, define the text in the main program
as a normal string variable, and declare it as a shared variable to the
SUB routine.

Next the graphic generation occurs. Now the comer values of the boxes
must be placed in a table. The program increments the number of pre-
viously defined sliders. Then the program stores the X- and Y-values,
orientation and identifier for the sliders (more on this below). The most
important data is the slider's position.

Next, you need an object to use as slider knobs. The following program
creates a simple bob and places it on diskette for slider knob data.

RESTORE SliderData{
?Iatastring$=" "q

FOR i=1 TO 1307
READ a$
a$="&H"+a${
datastring$=datastring$+CHRS (VAL (a$)) 1
;}E:XT‘]I
%PEN "Slider2" FOR OUTPUT AS 19
PRINT#1,datastring$; {
%LOSE 11

1
ﬁliderData: q

DATA 0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,19,0,0, 0, DT

DATA 0,38,0,3,0,0,0,0,0,0,1,F'E‘,0,0,F,FF,E0,0,1F,FF‘][
DATA FO, 0, 3F, FF, F8, 0, TF, FF, FC, 0, 7F ,FF, FC, O, F,FFq

DATA FC, 0, 3F, FFF8, 0, 1F, FF,F0, O, F, FF, EO, 0,1,FF,0,0,0,0,09

ABACUS 4.1 OTHER INPUT

Now the bob file can be opened and the program can set its Y-coor-
dinates. A SUB routine sets the X-coordinates of the shifter position.

The value itself comes from the box position, multiplying the value
contained in ClickValue by 4. This quadrupling is necessary since
the shifter knob has more than 16 positions. The main disadvantage to
this program is that you can't set a really precise color setting as you
could with Preferences. The central point of the slider marks the
value 7.

' Definition of a Vertical Slider Controller {
' with y Positioning{

=8

q
%ariables =1

DEFINT a-z{
FileName$="Slider2"q
Text$="Blue" T

1
NumClicks=01
MaxClicks=209

1
DIM SHARED ClickTable (MaxClicks, 3)
DIM SHARED ClickValue (MaxClicks)
ﬂDIM SHARED ClickID(MaxClicks)q
Main:q
q

ON MOUSE GOSUB CheckTable{
ON TIMER (.5) GOSUB ColorxSet{

ﬂTIMER ONT
DefMoveScale 12,6,100,16,0 'with Nothing{
DefMoveScale 16,6,100,0,1 'with Scaling{

ﬁDefMoveScale 20,6,100,100,2 'with Textq
‘]ILINE (250, 80)-(280,116) ,2,b£q

LOCATE 1,279

PRINT "Slider Controls:"q

LOCATE 3,271

PRINT "1st Control => Red value, "{

PRINT TAB(40) ;"without Enhancements"{

PRINT TAB(27);"2nd Control => Green value,"q
PRINT TAB(40);"with Scaling (16 Units)"{
PRINT TAB(27);"3rd Control => Blue value,"q
PRINT TAB(40);"with Text above it"{

1
WHILE INKEY$=""{

1
g:lheckTable:‘]I
IF NumClicks=0 THEN RETURNY

119

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

i
FOR i=1 TO NumClicksi

mstat=MOUSE (0) 1

mx=MOUSE (1) 1

my=MOUSE (2) 1

IF mx>=ClickTable(i,0) THEN{

IF my>=ClickTable(i,1) THEN{
IF mx<=ClickTable(i,2) THEN{
IF my<=ClickTable (i,3) THEN{

1
IF ClickID(i)=2 THEN

1
ClickValue (i)=(lickTable(i,1))q
SetSwitchScale i
END IF{

NEXT
IF MOUSE (0)=-1 THEN CheckTable{
RETURN{

Set new Oolor%

1
ColorSet: 1

1
r!=ClickValue (1) /1009
g!=ClickValue (2) /1001
b!=ClickValue (3) /1001
PALETTE 2,r!,g!,b!1

A
1

bl
RETURNY

~EQE

Define SIider—counterg
hS

SUB DefMoveScale (sx,sy,yd,po,mo) STATICY
SHARED NumClicks,FileName$

X=8Sx*8 'Coordinates for Line *Draw 10 by 601
y=sy*8{

1
LINE (x, Y) - (x+20, Y+12+Yd) . b1
'Extras desired?{

IF mo AND 1 THEN ' Scales{
FOR sk=y TO yd+8 STEP (yd+12) /16 '16 Unitsq
LINE (x,sk)-(x+2,sk)1
LINE (x+20,sk)-(x+18,sk)1
NEXT skq

IF mo AND 2 THEN ' Textq
SHARED Text$9
sy=sy-LEN (Text$) -11
FOR txt=1 TO LEN(Text$){
LOCATE sy+txt,sx+29
PRINT MID$ (Text$,txt,1)q
NEXT txt{
END IF{

q
ﬂ'ClickValue entry in Table {
NumClicks=NumClicks+11

120

ABAcCUS

Program
description

4.1 OTHER INPUT

ClickTable (NumClicks, 0) =xq
ClickTable (NumClicks, 1) =y+81
ClickTable (NumClicks, 2) =x+201
ClickTable (NumClicks, 3) =y+yd+89
ClickID (NumClicks) =2 'l as current setting for Slider{
ClickValue (NumClicks)=po{
1IMOUSE ON1

OPEN FileName$ FOR INPUT AS 19
OBJECT.SHAPE NumClicks, INPUTS (LOF(1),1) 1
CLOSE 11

1
OBJECT.X NumClicks,x-191
SetSwitchScale NumClicksq
gBJ‘ECT.ON NumClicksq
l;ITND SUBT
' Set Slider—counter2
a

1
%UB SetSwitchScale (Nr) STATIC{

ﬂOBJECI‘ .Y Nr,ClickTable (Nr,1)+ClickValue (Nr)-81
END SUBY

The second listing here is similar to the first. The major difference is
that this program draws a vertical slider instead of a horizontal slider.
The other sections of the program are identical to the earlier program:
The color initialization, the mouse position reading and the main
program are the same. If you wish, you can combine both programs
with one another. You could have one window containing two different
kinds of sliders. Copy the two SUB routines DefMove: and Set -
Switch: of one type into the program containing the sliders of the
other type. Finally, include the CheckTab loop from the other

program.

The most practical method is to combine click areas with one another.
The main section of the program contains a testing loop, and you could
add more definitions for different fields and gadgets.

4.1.2

Table selection

The abovementioned sliders show how you can select one value in a
given range. This range was linear, or an array of possible elements.
There are many times when this form of selection doesn't work. Some-
times you need just a 10, not a 9.6. Or you may want a set of texts
from which the user can select one text.

Tables perform this task. Most of these tables contain a number of
values grouped under a certain category. Or tables may only contain two

121

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

122

or three selections. The Text gadget in the Preferences window
is a prime example of a table; it has only two options.

The first program should display all the elements of a table next to one
another. Another displays the values under each other, something like
the sliders.

To make the most of flexibility, the concrete elements of the table go
into memory as strings, so you can use text as well as numbers.

The table definition is similar to that SUB routine that stores the corner
pixel of the table in the ClickTable array (see Section 4.1.1). Again
you have the power to combine this function with other functions such
as the sliders. In this case, a few other values are stored: The elements
of the table which can be used later as a response in the main program;
and the program's storage of the maximum number of characters placed
in a table. The last one lets the program know how far the mouse
pointer should go near the upper left comner.

To display the prepared table, the subroutine must place all text into a
box and center the text in this box as much as possible (it looks better
this way). When the entire table appears, the main program can then
wait for a keypress. This stops the program and tells you which table
point was last looked for.

' Definition of a Click Table{
L] q
1

1

%ariables:‘][

DEFINT a-z9q

MaxNum=2 ' a maximum of 3 Tables{

MaxE1l=10 ' with a maximum of 11 Elements{

TabNum=09

CharWid=8 ' CharacterWidth - 80 Width=8 ; 60 Width=109

1
DIM SHARED Maxl.en (MaxNum)
DIM SHARED ChoseTable$ (MaxNum,MaxEl)
DIM SHARED ClickTable (MaxNum, 3){
DIM SHARED ClickID (MaxNum)
DIM SHARED ActEl (MaxNum)

=8

AR -

Functions:q

DECLARE FUNCTION Move& LIBRARY{
q[LIBRARY "graphics.library"{

%ain:'ﬂ
ﬁPRINT "End Program by Pressing any Key."{

RESTORE TableTest{
DefTabY "Table Test",10,5, 39

1
ON MOUSE GOSUB CheckTable{
MOUSE ONf{

1
WHILE INKEY$=""q

ABACUS

4.1 OTHER INPUT

SLEEP{
WENDY

1
LOCATE 12,19)
PRINT "Item";ActEl(l);"was selected with a value of: ";{

ﬁPRINI‘ ChoseTable$ (1,ActEl (1)) 1
MOUSE OFF{
%ND']I

=9

1
CheckTable:
IF TabNum=0 THEN RETURN{

FOR loop=1 TO TabNum{
mx=MOUSE (1) 1
my=MOUSE (2) 1
IF mx>=ClickTable (loop,0) THEN{
IF my>=ClickTable (loop,1l) THEN{
IF mx<=ClickTable (loop,2) THEN{
IEI‘ my<=ClickTable (loop,3) THEN{

IF ClickID (loop)=3 THEN{
NumAct=INT ((nx-ClickTable (loop, 0) +
MaxLen (TabNum)) /MaxLen (TabNum))
IF NumAct<>ActEl (loop) THEN MakeAct

NumAct , loopfl IFq
1

'][IF MOUSE (0) =-1 THEN CheckTable{

RETURN{
1
1

v qr
i1

1
SSIUB DefTabY (TableName$, x,y, NumAct) STATIC{
‘][SHARED TabNum, CharWid{

TabNum=TabNum+19
NumE1l=19

1
loopread:{

READ ChoseTable$ (TabNum, NumELl)

IF ChoseTable$ (TabNum, NumEl) <>"*" THEN{
1=LEN (ChoseTable$ (TabNum, NumELl)) *CharWid{
IF 1>MaxLen(TabNum) THEN MaxLen (TabNum) =19
NumEl=NumEl+1q
GOTO loopread{

END IFq

b |

ﬂNumElements (TabNum) =NumEl-19
XyPTAB x*CharWid, y*8q

PRINT TableName$q
ypos=y*8+101

FOR loop=1 TO NumElements (TabNum) {
xpos=x*CharWid+ (loop-1) * (MaxLen (TabNum) +2) {

123

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

xtab= (MaxLen (TabNum) /CharWid-

LEN (Chgéggagilsgg .'(_Tgla:gum' y?%gggll)) *CharWid/2q
PRINT ChoseTable$ (TabNum, loop) 1
LINE (xpos-1,ypos) - (xpos+MaxLen (TabNum)+
1,ypos+10),1, b1
NEXT loopf

' Put Value in Table{

ClickTable (TabNum, 0) =x*CharWid{l
ClickTable (TabNum, 1) =y*8+111
ClickTable (TabNum, 2) =x*CharWid+ (NumElements (TabNum) -

127 fHerLen TRERRmH4) Henigg{Tabhum 1
ClickID (TabNum)=3 'Click Tablefq
MaxTLen (TabNum) =MaxLen (TabNum) +2
IF NumAct>NumElements (TabNum) THEN ERROR{
MakeAct NumAct, TabNum

1
%ND SUBY

=

q

SUB xyPTAB(x,y) STATICY
e&=Moves (WINDOW(8) ,x,y) 1

l‘]EIND SUBT

1

q
p 3

1

SUB SetDrawMode (mode) STATIC
CALL SetDrMd& (WINDOW (8) ,mode) 1

'Ei.ND SUBT

qr
' 1

1 .
SUB MakeAct (NumAct,NumEl) STATICY

1
x=ClickTable (Numtl, 0) 1
yl=ClickTable (NumEl, 1) 1
y2=ClickTable (NumEl, 3) 1
z=ActEl (NumEl)
SetDrawMode 21

IF z<>0 THEN{
LINE (x+(z-1)*MaxLen (NumEl),yl)- (x+z*MaxLen (NumkEl) -

26g) 15471
1

ActEl (NumEl)=NumAct{
LINE (x+(NumAct-1)*MaxLen (NunEl),yl)-

*| -
g (Ve 2.v2)]

END SUBY
1

=

pil
TableTest :q

DATA "10"1
DATA "20"1
DATA "40"q
DATA "80"q
DATA "160"1
DATA "3200"1
DATA "64000"q
DATA "*"ﬂ

124

ABACUS

Arrays

Variables

Program
description

4.1 OTHER INPUT

ChoseTable table text

ClickID object identification

ClickTable coordinates of click range

ActEl active element of a table
NumElements number of elements of a table
MaxLen maximum length of table text
MaxNum maximum number of click fields
MaxEl maximum number of table elements
TableName SUB variable; table name

NumE1l SUB variable; number of elements in a table
Charwid width of a character in pixels

NumAct number of new active elements

1 text length

loop loop counter variable

mx, my mouse coordinates

Xy SUB variable; table position

Xpos SUB variable; positioning variable
xtab SUB variable; text tabulator

ypos SUB variable; Y-position for table text

After all variables receive integer definitions, the maximum number of
tables becomes 2 (this program only uses 1). Each table can contain up
to 10 elements. The program makes sure that no table was previously
defined. The character width goes into a variable to ensure correct gra-
phic output, then the arrays initialize.

Since the text output is no longer in 8x8 font size, the
graphics.library file must set the pixel orientation below the
PRINT position.

The DATA statements set the table definition through the READ
pointer. Then the DATA branches to the parameters Name, xpos,
ypos and the current elements.

The main program branches to the CheckTable routine when you
press the left mouse button, then waits for a keypress. If you press a
key, the last selected element on the table is displayed and the program
ends.

The table definition routine is an interesting one. After the character
width setup and the previously defined tables, a loop forces the program
to read DATA statements until the program finds an asterisk (this marks
the end of the DATA lines). Since this means that all DATA is in, the
title appears and the vertical position is moved down. Another loop
computes the X-position of every element, based on the maximum
width of a box and the current text width. All points are placed one
below the next. Last, the program enters the corner point in the known
field, and activates a preset element.

125

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

126

Three very important subroutines follow. The first simplifies the use of
the Move& function. The second routine changes the character mode.
The third routine returns the currently active table point to normal and
displays it in a new color. This display occurs through the character
mode. When this is already active, it must first be deactivated, then the
table points are reset and the corresponding element displayed. To avoid
problems with output in the main program, the character mode returns
to normal status.

The end of the listing contains the DATA statements with their num-
bers. These lines end with an asterisk (*).

Use the program below to create a vertical table:

: Definition of a Click Table2
4

q
Variables:q

1

DEFINT a-z{

MaxNum=2 ' a maximum of 3 Tables{

MaxE1l=10 ' with a maximum of 11 Elements{

TabNum=01

CharWid=8 ' CharacterWidth - 80 Width=8 ; 60 Width=109

1
DIM SHARED MaxLen (MaxNum) q
DIM SHARED ChoseTable$ (MaxNum,MaxEl)
DIM SHARED ClickTable (MaxNum, 3) 1
DIM SHARED ClickID (MaxNum)
DIM SHARED ActEl (MaxNum) 1

(=]

ctions:q

DECIARE FUNCTION Move& LIBRARY{
LIBRARY "graphics.library"{

;;Ihin:‘ll
PRINT "End Program by Pressing any Key."{

RESTORE TableTest{
'ﬂDef'I'abY "Table Test",20,5,31

ON MOUSE GOSUB CheckTable{
MOUSE ON{

1
WHILE INKEY$=""
SLEEP]
WEND{

1
LOCATE 18,19
PRINT "Item";ActEl(l);"was selected containing the text:

;ﬁﬂITE ChoseTable$ (1,ActEl (1)) 1
MOUSE OFF{
I;I!ND‘]I

ﬁglﬁ -0

=a

1
%eck'.l‘able: 1

ABACUS 4.1 OTHER INPUT

IF TabNum=0 THEN RETURN{

1
FOR loop=1 TO TabNumi
USE (2) 1
my=MOUS|
IF mx>=ClickTable (loop,0) THEN{
IF my>=ClickTable (loop,1l) THEN{
IF mx<=ClickTable(loop,2) THEN{
I%‘ my<=ClickTable (loop,3) THEN{

IF ClickID(loop)=4 THENY
NumAct=INT ((my—ClickTable (loop, 1)+10) /10) I

IF NumAct<>ActEl (loop) THEN MakeAct
Mnnmct,locp‘il%ND IFq
END IFY
END IF

END IF
ﬂNEXT loop1

’]IIF MOUSE (0) =-1 THEN CheckTable{
RETURNY
i

p

1
%UB DefTabY (TableName$,x,y,NumAct) STATICY
ﬂSHARED TabNum, Charwid{

TabNum=TabNum+1 9
ﬂanElﬂl q
loopread:{ '

READ ChoseTable$ (TabNum, NumEl) q

IF ChoseTable$ (TabNum, NumEl)<>"#*" THEN{

1=LEN (ChoseTable$ (TabNum, NumEl)) *CharWid{

IF 1>MaxTLen (TabNum) THEN MaxLen (TabNum)=1

NumEl=NumE1l+19

GOTO loopread{
END IFq

qINumElements (TabNum) =NumE1-19

xyPTAB x*CharWid, y*8]
PRINT TableName${

1
FOR loop=1 TO NumElements (TabNum) q

Yoosmy*8eieopt1 01

S +10o0]
SOToR 19 ¥
Se;g;‘gwldode o +89
Xpos 8

PRINT ChoseTabiet (TabNum, loop) 1

LINE (xpos-1,ypos)- (xpos+MaxLen (TabNum)+
1,ypos+10),1,bq
ﬁNEXT loopq

11' Put Value in Table{

ClickTable (TabNum, 0) =x*CharWidq

ClickTable (TabNum, 1) =y*8+119)

ClickTable (TabNum, 2) =x*CharWid+MaxLen (TabNum) {
ClickTable (TabNum, 3) =y*8+9+NumElement s (TabNum) *109
ClickID (TabNum)=4 'Click Tableq

127

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

IF NumAct>NumElements (TabNum) THEN ERROR{
MakeAct NumAct,TabNum q
SetDrawMode 11

1
%ND SUBT

=a

1

SUB xyPTAB(x,y) STATICY
e&=Move& (WINDOW (8) ,x,y) 1

IiIZND SUBY

Al

qr
i

1

SUB SetDrawMode (mode) STATICY
CALL SetDrMd& (WINDOW (8) ,mode) 1

%‘ID SUBT

qr
! 1

1
SUB MakeAct (NumAct,NumEl) STATIC{
1

x1=ClickTable (NumEl, 0) 1
y=ClickTable (Nunkl, 1) T
x2=ClickTable (Numkl, 2) 1
z=ActEl (Numkl)
SetDrawMode 29

1
IF z<>0 THEN{
LINE (x1,y+(2-1)*10)-(x2,y+8+(z-1)*10),,bfq
END IF{

1
ActEl (NumEl) =NumAct
LINE (x1,y+ (NumAct—l) *10) - (x2, y+8+ (NumAct-1) *10) , ,b£q
11SetD:':awMode 11
END SUB{
1

A

=

1
TableTest :]

DATA "I will test"q

DATA "I will not test"q

DATA "I am not done yet"{q

DATA "Nothing from Something"{

DATA "End"q

DATA "Longer Test for this Program"{
DATA "Still Another Line"q

DATA "*"q[

4.1.3

128

Scrolling tables

When a table contains more values than you can fit in a window, you
can adapt the table to scroll up or down. This saves space (X=36 and the
Y measurement depends on the maximum text length) and is very user-
friendly.

The basic idea of a scrolling table is that you display one section of the
table at a time. The other elements are either hidden above or below the

ABACUS 4.1 OTHER INPUT

currently displayed selection. You can see the rest of these selections by
clicking on one of two arrows. Click the arrow in the direction you
want the table to scroll.

The way this program is constructed, you can combine these routines
with very few changes. All you need is the subroutine in your own
programs. You should bear in mind, however, that the arrays used here
must be passed on to your own programs as well. This program ends
when you press a key.

' Definition of a Click Table{
i

9
‘iariables :q

DEFINT a-z{

MaxNume=2 ' a maximum of 3 Tables{

MaxEl=10 ' with a maximum of 11 Elements{

TabNum=0]

CharWid=8 ' CharacterWidth - 80 Width=8 ; 60 Width=109

1
DIM SHARED MaxLen (MaxNum) q
DIM SHARED ChoseTable$ (MaxNum,MaxEl) {
DIM SHARED ClickTable (MaxNum, 3)
DIM SHARED ClickID (MaxNum){
DIM SHARED ClickValue (MaxNum) {
DIM SHARED ActEl (MaxNum)
DIM SHARED NumElements (MaxNum) {
1

q
q
Functions:{

DECLARE FUNCTION Move& LIBRARY{
LIBRARY "graphics.library"{

1
?Iain:‘ll
PRINT "End Program by Pressing any Key."q

RESTORE TableTest{
DefTabScr "Scroll-Table",20,5,7,11

1
ON MOUSE GOSUB CheckTable{
MOUSE ON{

1
WHILE INKEY$="" q
SLEEP{
WEND{

1
LOCATE 18,11
PRINT "Item";ClickValue(l);"was selected containing the

tﬁﬁ'i‘E"é:goseTableS (1,ClickValue (1)) 1
1

MOUSE OFF{
11;:1ND']I

=8

1
CheckTable:

IF TabNum—=0 THEN RETURN{
FOR loop=1 TO TabNum{

129

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

mx=MOUSE (1) 1
my=MOUSE (2) 1
IF mx>=ClickTable (loop,0) THEN]
IF my>=ClickTable (loop,1) THEN{
IF mx<=ClickTable (loop,2) THEN{
IF my<=ClickTable (loop,3) THEN{

IF ClickID (loop)=5 THEN{
IF my—-ClickTable (loop,1)<18 THEN{
IF ClickValue (1oop§<NumElements (loop)

mgl%;]iValue (loop) =ClickValue (loop) +11
ELSEIF ClickValue(loop)>1 THEN{
ClickValue (loop)=ClickValue (loop) -11
END IF{
DataOut loop,ClickValue (loop),
ClickTable (loop, 0) +51,ClickTable (loop, 1) 1

END IF{

q
END IFq
END IF
END IFq
END IFq
NEXT loop{

1
IF MOUSE (0)=-1 THEN CheckTable{

RETURN{
1
1

) qr
3

THEN{

1
SUB DefTabScr (TableName$,Xx,y,MaxNum,NumAct) STATIC{

SHARED TabNum,CharWid{
TabNum=TabNumt+19

1
FOR i=1 TO MaxNumi
READ ChoseTable$ (TabNum, i) 1
1=LEN (ChoseTable$ (TabNum, 1))
IFii>MaxLen (TabNum) THEN MaxLen (TabNum)=19

1

NumElement s (TabNum) =MaxNum{

ClickValue (TabNum) =NumAct]

MaxTen (TabNum) =MaxIen (TabNum) *CharWid{

1
' Output tableq

1

xyPTAB x*CharWid, y*81

PRINT TableName${

x1=x*CharWid : yl=y*8+61

x2=x1+519

LINE (x1,yl)-(x2+MaxLen (TabNum)+1,yl+36),1,b{
LINE (x2,yl)-(x2,yl1+36),191

LINE (x1,y1+18)-(x2,yl1+18),19

LINE (x2,yl+12)-(x2+Maxlen (TabNum)+1l,yl1+12),1q
LINE (x2,yl+24)-(x2+Maxlen (TabNum)+1,y1+24),1q
PSET (x1+17,y1+16)1

LINE -(x1+34,y1+16)1

LINE -(x1+34,y1+10)1

LINE -(x1+40,y1+10)1

LINE -(x1+25,y1+42)9

LINE -(x14+10,y1+10)q

LINE -(x1+17,y1410)q

LINE -(x1+17,y1+16)1

§AINT (x1+18,y1+15),1,19

130

ABAcCUS

Arrays

4.1 OTHER INPUT

PSET (x1+17,y1+20)1

LINE - (x1+34,y1+20)9
LINE —(x1+34,y1+26)1
LINE -(x1+40,y1+26)1
LINE -(x1+25,y1+34)1
LINE -(x1+10,y1+26)1
LINE -(x1+17,y1+26)1
LINE -(x1+17,y1+20)1
PAINT (x1+18,y1+21),1,11

l%ataOut TabNum, ClickValue (TabNum) ,x1+51,ylq
' Put Value in Tablel

q
ClickTable (TabNum, 0) =x19
ClickTable (TabNum, 1) =y1q
ClickTable (TabNum, 2) =x21
ClickTable (TabNum, 3) =y1+369
ClickID (TabNum) =5 'Scroll-Tablef

b
%IND SUB1

SUB xyPTAB(x,y) STATICY
es=Moves (WINDOW (8) , x,y) 1
END SUBY

1

SUB SetDrawMode (mode) STATIC{
CALL SetDrMds& (WINDOW (8) , mode) 1

END SUB{

1
SUB DataOut (NumEl, start,x,y) STATICY
x=x+19

FOR loop=start-1 TO start+l{
yl=y+12* (loop-start+2) -29

y2=y1+12-1 : x2=x+MaxLen (NumkEl)-19
LINE (x,yl-9)-(x2,y2-10),0,b£fq
xyPTAB x,ylq

PRINT ChoseTable$ (NumEl, loop) 1
IF loop=start THEN
SetDrawMode 2
LINE (x,yl- 9) (x2,y2-10),1,bfq
SetDrawMode 11
END IF{
NEXT loopf

?[ND SUB1
'%ableTest :q

DATA "I will test"q

DATA "I will not test"{

DATA "I am not done yet"{

DATA "Nothing from Something"{

DATA "End"q

DATA "Longer Test for this Program"{
DATA "Stigl Another Line"{

ChoseTable table text

ClickID object identification
ClickTable coordinates of click range
ClickValue number of selected elements

ActEl active element of a table
NumElements number of elements of a table
MaxLen maximum length of table text

131

4. USER-FRIENDLINESS

Variables

Program

description

132

AMIGA TRICKS AND TiPs
MaxNum maximum number of click fields
MaxE1l maximum number of table elements
TableName SUB variable; table name
Numgl number of elements in a table
TabNum number of defined tables
Charwid pixel width of character
NumAct number of new active elements
i floating variable
1 text length
loop floating variable
mode mode set by SetDrawMode
mx, my mouse coordinates
Xy SUB variable; table position
x1,yl character coordinates
x1,yl character coordinates

All variables receive integer definitions. To properly display output, the
character width in pixels is placed in a variable. Change that value when
you want to use a different font. The program then dimensions all
necessary arrays.

The graphics.library opens before the main program executes.
This contains all the necessary graphic routines for display. Since one
function is needed from it, it must be defined first.

The main program itself displays just a short bit of text, executes the
routine that reads the data, and waits for a keypress. The selected value
appears at the end, and the mouse reading routine turns off.

The CheckTable subroutine is different from those in the preceding
programs. The coordinate checking is similar, but the kernel is
modified. When a scroll table exists, it checks for a click in the upper
or lower half of the range. If a click occurs in the upper end, and
scrolling up is possible, the table scrolls up. If a click occurs in the
lower end, and scrolling down is possible, the table scrolls down.

The tables number access and the character width is declared as
SHARED. Then the number of tables increment, in order to define the
new tables. The first loop of the subroutine reads all the elements of
this table, and sets up the maximum number of characters. The correct
width is computed from this, together with the element numbers in the
preset arrays. The current point also sets up from this routine.

Next comes the graphic display. After the title, the table name appears,
followed by the scroll arrows and three of the elements. LINE com-
mands draw both boxes (can't get any simpler than that). Finally the
coordinates of the clicking range are set into an array.

The subroutine demonstrates two new graphic functions: The Move
command and the Set DrawMode routine.

ABACUS

4.2 RUBBERBANDING

4.2

Rubberbanding

Earlier in this chapter you learned about the most important elements of
professional program design. You shouldn't be afraid of hunting for new
ways to do things. Every new problem has a new solution.

This section discusses a function that you've used any number of times.
The function is called rubberbanding. Rubberbanding occurs when you
change the size of a window. Intuition lets you change a window's
size by grabbing on to the sizing gadget at the lower right corner of
most windows. This section, however, shows how to program rubber-
banding in BASIC.

The trick lies in creating lines in complement mode instead of simply
drawing lines. Complement mode allows you to move a line or set of
lines around on the screen without redrawing the background.

You'd normally use rubberbanding for determining window size on the
screen. However, this process also makes it easier to draw rectangles in
graphic programs.

4.2.1

Rectangles in rubberbanding

This program serves no real purpose other than to show you how this
function can be used in a program. You can adapt the mouse control
techniques to your own applications.

When you start the program an empty window appears with a mouse
pointer in it. Press and hold the left mouse button from any position in
the window, and drag the pointer down and to the right. A rubberbanded
rectangle appears, and changes size as you move the pointer. When you
release the left mouse button, the rectangle stays on the screen and
changes to character color 1.

' Drawing Rectangles with Rubberbanding{
Al

"ﬁby Wgb in June '871

L

1
LIBRARY "graphics.library"{

1
ON MOUSE GOSUB SetPoint{
MOUSE ON{

1
WHILE INKEY$<>" "{

SLEEP{
WENDJ

133

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

Variables

Program
description

134

b

MOUSE OFF{
END{

q

q

?IetPoint <1

MStat=MOUSE (0) 1
%IF MStat<>-1 THEN RETURN{

xStart=MOUSE (3)
yStart=MOUSE (4) 1
CALL SetDrMd& (WINDOW (8),2) 1

1
gewPosition :q

mx=MOUSE (1) {
?IN=MOUSE 2)1

%.INE (xStart,yStart) - (mx, my) , , b

WHILE MOUSE (0)=—19
IF mx<>MOUSE (1) OR my<>MOUSE(2) THENT
LINE (xStart,XStart) - (mx, my) , , b1
GOTO NewPosition{
-END IFq
WEND

CALL SetDrMd& (WINDOW(8),1)1
LINE (xStart,yStart)-(mx,my),,b{
RETURNY

1
MStat mouse status
mx, my mouse coordinates
xStart starting X-coordinate of rectangle
yStart starting Y-coordinate of rectangle

The graphics.library opens. The program draws the guidelines in
complement mode, and this library file transfers the necessary graphic
routines to the program.

The SetPoint subroutine sets the mouse reading at the beginning of
the program. The program waits for a keypress. When this occurs, the
mouse reading routine turns off and ends.

The mouse reader is the central point of the program; take a good look
at those program lines. The mouse status goes into a variable. When it
notes that the user hasn't pressed the left mouse key, the subroutine
exits. Otherwise, the program marks the pointer position as the starting
value, and the drawing mode changes to complement mode. The routine
then draws the rectangle and waits for the user to move the mouse. Fol-

lowing this, the program deletes the rectangle and redraws the rectangle
to fit the new mouse position.

When the user releases the left mouse button, the program exits the

loop. The program then returns to normal character mode, and the final
rectangle is displayed.

ABACUS

4.2 RUBBERBANDING

4.2.2

Creating shapes

Rubberbanding can be used for much more than changing window sizes
and drawing rectangles. This program draws lines between two points
selected by the user. This routine also uses rubberbanding. When you
start the program and press the left mouse button, you'll see that two
pixels connected by a rubberband appear.

: Connections with Rubberbanding{
:ﬂby Wgb in June '871

1
Z'I]'.I.IBRARY "graphics.library"q
%aseGraphic: q

LINE (100,180)-(540,180)1

pil

FOR i=100 TO 540 {
x=(1-100) /2.4444449
y=-SIN(x*3 1415/130) *1009
LINE -(i,180-y) 1

NEXT 19

1
ON MOUSE GOSUB SetPointf{
%OUSE ONT1

WHILE INKEYS$<>" "q

%etpoint =1

MStat=MOUSE (0) 1
IF MStat<>-1 THEN RETURN{

q
ﬂCALL SetDrMds (WINDOW (8) ,2) 1
NewPosition:q

1
mx=MOUSE (1) 1
CALL Connect (mx) 1

q
WHILE MOUSE (0)=—-19
IF mx<>MOUSE (1) THEN{
CALL Connect (mx) 1
GOTO NewPosition{
END IF{
WEND

q

CALL SetDrMd& (WINDOW(8),1)1
CALL Connect (mx)]

ﬂRETURN‘lI

SUB Connect (x) STATICT

1
IF x<100 THEN x=1001
IF x>540 THEN x=5401

135

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

1
xw=(x-100) /2.4444449
IN (xw*3.1415/180) *1009

LINE (100,180)-(x,180-yw)1
LINE -(540,180)1
PSET (x,180-yw){

1
END SUBY
1
Variables Mstat mouse status
i floating variable
mx mouse position
X,y graphic coordinates
XW, YW coordinates in SUB
The basic design is similar to the first listing. There is an additional
Progrflm routine for the banding based on a short sine equation, followed by the
description same delay loop.
The major changes appear in the SUB programs. The mouse control
routine now checks the X-position of the pointer. This position con-
trols the call of a subroutine. The routine then draws the connecting
line, while reading the pointer's X-movement. Like the previous pro-
gram, the old lines are deleted and redrawn at the new position.
Try the program out. The X-value goes into a specific range, since not
every X-coordinate has a graphic equivalent. The program then com-
putes the coordinates and draws the line.
4.2.3 Object positioning

136

This last routine came from the idea of a drawing program for two-
dimensional grid graphics. When you draw multiple objects in such a
program, you may find that you run out of room on the screen. The
simplest way to move objects would be to select them with the mouse
pointer and drag the objects to new screen locations. The following pro-
gram performs a function similar to this. First it computes the corer
point of a circle. Circles have no corners, but to make the coding
simple, this program plots an imaginary corner point.

The circle is displayed as long as you press and hold the left mouse
button; it disappears when you release the left mouse button.

:ﬂObjects with Rubberbanding{
:ﬂby Wgb in June '879

1
LIBRARY "graphics.library"q

ABACUS 4.2 RUBBERBANDING

1
ObjectDefinition:{

DIM SHARED Ob%(10,1)1
51-3 .1415931
FOR i=0 TO 360 STEP 361
*x=COS (1*P1i/180) *301
ngIN i*pi/180) *159
b% (1/36, 0) =x1
Ob% (1/36,1) =y1
NEXT iq
‘1111
ON MOUSE GOSUB SetObjectd
!;OUSE ON{
WHILE INKEYS$<>" "q
SLEEPq
'HWENDSI
MOUSE OFF9{
END{
1
1
%etObject:‘]I

MStat=MOUSE (0) 1
IF MStat<>-1 THEN RETURN{

q
CALL SetDrMdé& (WINDOW(8),2)1
NewPosition:q
=
CALL‘][DrawObject (mx, my) 1
WHILE MOUSE(0)=-11
IF mx<>MOUSE (1) OR my<>MOUSE (2) THEN{
CALL DrawObject (mx,my) 1
GOTO NewPositionfi
END IFq
WEND q

1
CALL SetDrMd& (WINDOW(8),1)1
CALL DrawObject (mx,my) 1

1

%ETURN‘II

sga DrawObject (x,y) STATIC{

gSET (Ob% (0, 0) +x,0b% (0,1)+y) 1

FOR i=1 TO 101

LINE -(Ob% (i,0)+x,0b%(i,1)+y) 1

gmcr iq

LINE -(Ob%(10,0)+x,0b% (10,1)+y) 1

END SUB1

137

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

Arrays

Variables

Program
description

138

Ob circle point array
MStat mouse status

Pi 3.141593

i floating variable
mx, my mouse coordinates
X, Y circle coordinates

The graphics.library opens and the Ob% array reads the X- and
Y-coordinates. A loop computes the 11-pixel offset from the circle's
"corner” to the circle's border. The rest of the program should look
familiar to you.

The most important changes occur in the mouse reader routine. If the
left mouse button has not been depressed, the mouse reader branches
back to the main program. If the user presses that button, the program
sets the drawing mode and draws the object at the current position. Then
the program goes into a delay loop again, and exits when you release
the left mouse button. The program branches again to the point before
the loop at which you change the mouse position, since the grid must
be erased and the object drawn at its new position.

The subroutine for drawing the object takes the 11 coordinate pairs from
the Ob#% array. The first point is drawn, then the others, through LINE
commands. All points drawn join to form a circle.

ABACUS

4.3 STATUS LINES & ANIMATION

4.3

Status lines & animation

Invisible status lines are part of a new screen organization which offer
you many new special effects. For example, it allows you to create a
color bar that lets you move the entire screen up and down. This bar has
its own foreground and background colors, and it can also contain
movable text. With the same program, you can fill the screen back-
ground with a pattern or graphic, if you wish. This pattern stays intact,
even when you use PRINT commands, draw or scroll. There's more:
You can scroll your background independently of the foreground
drawing.

You need only two applications for doing all this. Before listing the
program, let's look at the individual SUB programs that perform these
miracles. The first is CreateStatus. This command turns on the
new screen organization. The next is Copy. This command copies the
current screen contents in the background, where only colors 0 and 1
appear (only one bitplane is available in background memory). Once the
screen contents are copied, a new background pattern appears. You can
clear the "normal" screen with the CLS command; the background
pattern stays on. The closing is the Move SUB program. This
command scrolls the background pattern up or down. The command
syntax needs two values:

Move dir%,speed$%
The dir$% variable gives the number of pixels the background graphic
should move. A positive value scrolls the graphic down; a negative

number scrolls it up. The speed$ variable sets the scrolling speed. 0
is the top speed; larger values slow the scrolling. Here's a sample call:

Move 100, 40
This call moves the background 100 pixels down at a delay rate of 40.

As you'll see when you test the following programs, the Move com-
mand does more than just move the background. When you move the
background graphic up or down, the opposite side of the page stays
visible. The routine acts as an endless scroll routine, which can produce
some very pretty effects. Try this version of the Move command:

Move 0,0

This call appears to do nothing (moving the backgound graph.ic 0
pixels), but it has a special function: It clears the background graphic.

The EndStatus SUB reactivates the normal screen display. This
command must be at the end of your programs to remove the

139

4. USER-FRIENDLINESS

140

AMIGA TRICKS AND TIPS

CreateStatus command's effects. Also, this command returns the
entire user memory range.

:g####3#################*#Hg%
#1

'# Program: Dougl BitMap

'# Author:

t
'# Date: bzhx 8, 1987

'# Version:

#1
;I###########################HI

DECLARE FUNCTION AllocMem& LIBRARY]
gECLARE FUNCTION BltBitMap% LIBRARY{

#1
#91
#1

LIBRAR ::graphics .library"q

LIBRARY

LIBRARY "exec.library"{

1
demo: '* Open
SCREEN

Sc!
1,

ntuition.library"q

reenq
640, 240, 3, 21

WINDOW 1, "DualBitmap", (0,0)-(610,217),1,19
WINDOW OUTPUT 19

q
'* Draw Circle{
CreateStatus{

LINE (0,0) - (620,10),,bfq

'* Colori
PALETTE 1,1,1,19
PALETTE 4,1,0,09

PALETTE 5,1, .5, .51

1
GOSUB textq

'* Move Scroll Circlef{

Move 166, 09

PRINT "Please Press any Key.":PRINT" "q
WENDY

WHILE INKEY$ = "":

?ove 0,09
'* 2nd Experimentq

CLS{
CIRCLE
CIRCLE
CIRCIE
CIRCLE
CIRCLE
PAINT
PAINT
PAINT

(140,100),
(140,100),
(140,100),
(140,100),
(140,100),
(250,100),
(210,100),
(140,100),

1
LOCATE 22,19

PRINT "Please Press any Key."q
WHILE INKEYS = ""q

Move -3, 09

WENDY

120,

100, 1

80,
50,
25,
1,
1,
1,

ABACUS 4.3 STATUS LINES & ANIMATION

1

'* 3rd imentq

Move 0,0

CLs{

WIDTH "scrn:", 859

text$ = "* Amiga Tricks and Tips"{
FOR loop% = 1 TO 561

IOCATE loop$%, 51

PRINT text$1
gEXT loop3{

coRy

'* Colori
PALETIE O,.1,.1,.81

%ALETI’E 5,1,1,190
$OSUB textq

'* Animationq

WHILE INKEYS$ = ""q
Move 1,09

WENDY{

1
%ove 0,09

EndStatusq
WINDOW 1, "Dual-Bitmap",,,-11
SCREEN CIOSE 11

1
LIBRARY CLOSE1
END

text: '* Print Text{
CLsq

LOCATE 5,11

PRINT "This is the new '‘Dual-Bitmap'."q
LOCATE 6,11

PRINT "You can control two bitplanes,"{
LOCATE 7,11

PRINT "one completely independent of"{
LOCATE 8,1

PRINT "the display."1

LOCATE 9,11

PRINT "The level helps"{

IOCATE 10,19

PRINT vdetermine the color"{

LOCATE 11,11

PRINT "regi%ters using the bitplanes:"q

PRINT "Level Color register"{

PRINT " "q
PRINT " 1 not fuctional"{

PRINT " 2 2, 3"1

PRINT " 3 4, 5"1

PRINT " 4 8, 9"1

PRINT " S 16, 171

1
SUB Copy STATIC{
SHARED bitmap&, bitma
1% = PEEK (WINDOW(7) + 54)31

141

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

r$ = PEEK (WINDOW(7) + 56)1

u$ = PEEK (WINDOW(7) + 57)1

o% = PEEK (WINDOW(7) + 55)

w$ = PEEKW (WINDOW(7) + 8) - r% - 1%9
h% = PEEKW (WINDOW(7) + 10) - u% - o%1
x% = PEEKW (WINDOW(7) + 4) + 1%9

%% = PEEKW (WINDOW(7) + 6) + o%{

plct = BltBitMap% (bitmap&, x%, y%, bitmap2s&, x%, v%,
55, 0
%ﬁb g’ﬁé 11200, 255, 0)1

SUB Move (dir%, speed$%) STATIC{
SHARED bitmap2&{
1 PEEK

$ = (WINDOW(7) + 54)1

r$ = PEEK (WINDOW(7) + 56)1

u% = PEEK (WINDOW(7) + 57)1

o% = PEEK (WINDOW(7) + 55)1

w% = PEEKW (WI (7) + 8) - r$ - 189
h% = PEEKW (WINDOW(7) + 10) - u% - o%1
x% = PEEKW (WINDOW(7) + 4) + 1%

y% = PEEKW (WINDOW(7) + 6) + o%1

% = 10*speed%|
'I?‘lgd = y% + ht - 29
IF dir%$ = O THEN{
bitplane& = PEEKL (bitmap2& + 8)1
m$ = PEEKW (bitmap2&)q
n%$ = PEEKW (bitmap2& + 2)1
8& = (m¥*n%) T
CALL BltClear (bitplane&, s&, 0)1
EXIT SUBJ
END IFQ
FOR z% = 1 TO ABS(dir%){
IF dir$ > 0 THEN{
plct = BltBitMap% (bitmap2&, x%, u%, bitmap2s,

X%, v gic':%lé ﬁ?@mﬁﬁiﬁ%"’(ﬂumpzs, x%, y%, bitmap2s,
x%, y%E:l".:Séﬂ w, h$ - 1, 200, 255, 0)1

plct = BltBitMap% (bitmap2&, x%, y%, bitmap2s,
X%, ub Wheels 8008: 2R304 Eiemap2s, 8, y% + 1,
bitmap2t, 2 Y8 W8, b% - 1, 200, 255, 0)q

FOR del% = 1 TO spd%: NEXT del${
NEXT z%9
END SUB{

b |
SUB EndStatus STATIC{
SHARED rasInfo&{
rasInfo2& = PEEKL (rasInfo&){
bitmap& = PEEKL (rasInfo& + 4){
bitmap2& = PEEKL (rasInfo2& + 4)9
level = PEEK (bitmaps + 5)q
POKEL bitmap& + 8 + level$*4, PEEKL (bitmap2& + 8) 1

POKE bitmap& + 5, level% + 19
POKEL rasInfo&, 01
CALL FreeMem(rasInfo2&, 10)9
CALL FreeMem(bitmap2&, 40)q
I;I!ND SUBT
SUB CreateStatus STATIC{
rasInfo&, bitmap&, bitmap2&q
'* Get System Addresses{
wind& = WINDOW(7)
rastport& = WINDOW(8)
bitma; = PEEKL (rastporté& + 4)q
level = PEEK (bitmaps + 5)q

142

ABACUS

Program
description

4.3 STATUS LINES & ANIMATION

scr& = PEEKL (wind& + 46)1
vp& = PEEKL (scr& + 44)1
qri'aaInfo& = PEEK (vp& + 36)1

IF level$ < 2 THENT
PRINT "AﬁScreen with 2 levels is needed!"q

1
'* Establish Structure{
opté& = 2”1 + 2~169
rasInfo2& = AllocMem& (10, opté&) 1
IF rasInfo2& = 0 THEN ERROR 79
bitmap2& = AllocMem& (40, opt&) 1
IF bitmap2& = 0 THEN{
CALL FreeMem(rasInfo2&, 10)q
ERROR 71
%ND IF]

CALL CopyMem(rasInfo&, rasInfo2&, 10)1
%I.L CopyMem (bitmap&, bitmap2&, 40)q

POKE bitmaps + S5, level% - 11
POKE bitmap2& + 5, 1
POKEL bitmap2& + 8, PEEKL (bitmap& + 4 + 4*level%)q

POKEL bitmap& + 4 + 4*level%, 01
POKEL rasInfo2& + 4, bitmap2&q

1
POKEL rasInfo& , rasInfo2&q
END SUB{

Once you enter this program, be sure to save it to diskette before you
try running it for the first time. The first experiment displays a red bar.
It moves around the text page, and apparently can pass behind text in
the window. The second experiment is similar. Transparent circles
move around on the screen. The third experiment fills the background
with a text pattern.

Now for the technical basics of what's going on here. The Amiga recog-
nizes a special mode called the Dual Playfield mode. This mode
can divide individual bitplanes in screen memory into two groups, and
make these two groups independent of each other. These two groups are
like independent screens; each one is visible through the other in the
background. This graphic mode isn't used in these examples. Only one
item is used which actually can be counted as Dual Playfield
mode. The RasInfo data structure, which assigns a pointer in the
viewport to the selected screen, lets you detach individual bitplanes
from each other. The RasInfo structure connects one of its own bit-
map structures contained in the disconnected bitmap.

The CreateStatus SUB reads the corresponding system addresses.
Then it tests for a screen with a depth of 2 or more. If the screen has
only one bitplane, the system can't use it. If two or more bitplanes are
available, then the two Bitmap and RasInfo structures are set up
(AllocMem() allocates the needed memory). The original bitplane
takes on the named bitplane (incremented in depth by 1). The second
bitmap receives a depth number of 1, and is inserted into the first bit-

143

4. USER-FRIENDLINESS AMIGA TRICKS AND TIPS

144

map. Finally, a pointer to the new bitmap must be inserted in the
RasInfo structure.

The Copy SUB copies the contents of the first bitplane (colors 0 and 1)
to the coupled bitplane (bitplane2&). Only window contents are
copied. It would be simpler to just copy the entire screen contents, but
then the window borders would be copied as well. Using the Move
routine under these conditions would scroll the window borders as well
as the background, and probably cause a system error. If you reduced the
size of your window after the copy process, the background would keep
its full size. You can avoid this by either not changing window size, or
clearing the background with Move 0,0.

The Move SUB scrolls the background up or down. This affects the
window contents only, nothing else. The system handles this as an
endless scroll routine, which can scroll one line of pixels up or down at
a time. Larger increments move through multiple looping.

Calling Move 0,0 activates the BitClear () function, which clears
the entire background (not just the window's contents). Any window
section hidden beyond the edges of the screen is also cleared.

EndStatus restores the original bitmap and clears the dual struc-
tures.

Now that you have some background information on the program, let's
take a closer look at the programming. When mixing bitplanes, the
user doesn't have eight colors with a screen that has a depth of 3 planes
(normally 23=8). Instead, since two of those planes are merged, only
four colors are available (22=8). However, you still get 8 colors in
combination with the background. A screen with a depth of 3 appears in
background memory with the color of color register 4. This command
sets the color of the background graphic:

PALETTE 4, 1, .6, .9

The combined color between background graphic and normal foreground
drawing color comes from color register 5. This command sets the color
shared by the background and normal foreground:

PALETTE 5,1, 1, .7

The color selections are up to you-you can get some nice effects. For
example, you can combine the normal background and color register 4
to set a combined shade of red:

PALETTE 0, 0,0, 0
PALETTE 4, 0,0, 0
PALETTES5,1,0,0

ABACUS

4.3 STATUS LINES & ANIMATION

The result: The background is invisible. When the foreground color
runs into the background (through PRINT, etc.), the text turns red.

Another is the transparent effect. Color register 4 must be assigned to
different colors, like red. The best combined color should be a mixture
of foreground color (register 1) and register 5:

PALETTE 1,1,1,1 'White foregroundcolor'
PALETTE 4,1, 0,0 'Red backgroundgraphic'
PALETTE 5, 1, .5, .5 'Combined pink color'

When you want to put a text or pattern in the background (see the third
program above), make sure that the window height allows enough room
for the entire graphic or text, without halving or splitting the material
in the window. If this happens, when the line scrolls it reappears after
scrolling as broken lines on the screen.

145

5
DOS routines

ABACUS

S. DOS ROUTINES

DOS routines

The DOS, or disk operating system, is part of the internal operating
system software of the Amiga. This DOS is essential to all commu-
nications between the Amiga and its disk drives.

Disk drives are important to the user and the Amiga, since diskettes are
the Amiga's mass storage media. That is, you use diskettes for storing
programs, files and other information. In fact, without diskettes, you
wouldn't get past the startup icons (the KickStart icon in the Amiga
1000 and the Workbench icon in the Amiga 500 and 2000).

The Amiga Workbench diskette contains an additional library. This
library, which has many machine language routines that perform com-
plex disk functions, is called dos.library.

This chapter lists a number of disk utilities that access the
dos.library program. You'll learn how to add program commen-
tary, view diskettes for existing files and protect files from overwriting.
In addition, you'll find out how you can rename diskettes, access a
directory and more, all from AmigaBASIC.

149

5. DOS ROUTINES

AMIGA TRICKS AND TIPS

5.1

150

Program comments

Any program or directory can have a comment of up to 80 characters
connected to it. Often the program name itself doesn't give the user
enough information about its purpose or use. Comments like "still
under development!" or "written by Fred" or "Version 3.4" contain
important information about the program in question. Subdirectories
can be made more readable with comments like "This directory contains
the .bmap files", "Business letters are stored here", or even "I wouldn't
open this file if I were you".

The following program assigns comments to any file or directory. The
comment appears on the screen if you access the file through the CLI's
list command.

The command format is:
SetComment "programname", "comment "

Here's an example of the command. This example puts a comment into
the ¢ directory of the Workbench diskette:

SetComment "SYS:c", "CLI commands are in here"

:z#########&############g%

'# Program:SetComment #9
'# Author: tob #1
'# Date: 4.8.87 #9
:ﬁ Version:1.0 #1

#9
"R FE AR AR AR AR AT

1
DECLARE FUNCTION SetComment$% LIBRARY]
%I.IBRARY "dos.library"q
demo: '*Demonstrates commentaryq
SetComment "programl", "SetDrMd()-Routines"q

1
LIBRARY CLOSE{
END{

q
SUB SetComment (file$, comment$) STATICY
file$ = file$ + CHRS$(0)1
comment$ = comment$ + CHRS$ (0) 1
suct = SetComment$ (SADD (file$), SADD (comment$))
IF suc% = 0 THEN{
PRINT"SetComment unsuccessful."q
END IFq
END SUB{
q

ABACUS

Variables

Program
description

Note:

$.1 PROGRAM COMMENTS

file$: name of the desired file or directory
comment$: comment
sucé&: error flag

The necessary Set Comment function is declared and the DOS library
opens. The filename (£ile$) and comment (comment $) are passed to
the SUB program. The two text strings terminate with zero bytes
(CHR$ (0)) and the SetComment () function is called. When you
want to delete a comment, enter a null string (""). If DOS cannot
execute this command (file doesn't exist or is protected), then sucs
changes to 0 and an error message appears.

If the desired file is in a different directory, you'll need to enter the entire

pathname in the command. For example, "Workbench:libs/gra-
phics.bmap”.

151

S. DOS ROUTINES

AMIGA TRICKS AND T1PS

5.2

152

CheckFile

Is a certain file on the diskette or isn't it? This question is important,
since you can only open an exlstmg file. Otherwise, an error message
appears.

The following program can help you. The command syntax is:
CheckFile "filename"”

This command checks to see if the given file exists. If the file exists, it

tells you the block number where the file lies. This allows you to

quickly find a file with a disk monitor.

:z##########H#####H###g%
'# Program:CheckFile g‘l[

'# Author: tob q
'# Date: 4.8.87 #4
'ﬁ Version:1.0 #‘]I

;I###########H###########‘]I

DECLARE FUNCTION Lock& LIBRARY{
:‘Il:I‘IBRARY "dos.library"{

demo: '*Demonstrates application{
LINE INPUT "File you want checked--->";file$q
CheckFile file$, block& 1
IF block& = 0 THEN{
PRINT "I can't find the file ";file$q

ELSE]
PRINT "Found the file ";file$q
PRINT "File header begins on the diskette]
PRINT "at block ";block&{l
END IFq

1
LIBRARY CLOSEf{
ENDY

1
SUB CheckFile (file$, result&) STATICY
file0$ = file$ + CHRS$(0) T
a.read% = -29
add& = Locké& (SADD (f11e0$), a.reads%) 1
IF addé« < O T
result& = PEEKL(result&*4 + 4)1
ELSEq
result& = 09
END IF{
CALL Unlock (add&) 1
EN]% SUBq

ABACUS

Variables

Program
description

Note:

5.2 CHECKFILE

file$ name of desired file

results result of search

file0$ like £ile$, but terminated by null
a.read$% ACCESS_READ, read only

adds file lock address

DOS uses the Lock function to "latch onto” a specific file or di-
rectory. A Lock data structure is set up which contains the special
parameters for this file or directory.

The program uses Lock () to determine if a given file exists. Lock ()
sets the program name from £ile0$. If the file doesn't exist, then no
Lock structure can be created and adds& contains 0. If the file does
exist, this variable contains the pointer from the data structure. This
pointer is a BPTR type. It contains the longword offset instead of the
starting address of the data block. Multiplying the BPTR value by four
returns the correct starting address. Finally, the lock must be freed by
Unlock () before you can view the file. i

You may have been wondering about the a.read$ variable. It contains
the value -2, which stands for ACCESS_READ. This mode allows you
to get the data structure of the file without blocking any other user
access. In a multitasking system, another task may also be viewing the
same file. There is no problem with this since all you are doing is
reading the file. EXCLUSIVE_WRITE mode is useful when you want
to write to a file, or change its contents in some way. Other tasks that
try to access the file are sent a "FILE ALREADY OPEN™ error
message. If another task succeeded in writing to a file at the same time
you were writing to it, the result could damage the file.

Here is the Lock data structure based on the BPTR:

+0 LONG BPTR to the next block, else 0

+4 LONG Block number of dir or file header
+8 LONG Shared (-2) or exclusive access (-1)
+12 IONG APTR to handler task ProcessID

+16 IONG BPTR to the disk entry

You could use this program to check to see if the appropriate .bmap
files are on a diskette before you use kernel command routines.

153

5. DOS ROUTINES

AMIGA TRICKS AND TIPS

5.3

154

Protecting data

Has this happened to you? You write a program and save it to diskette.
After you've saved it, you remember that yesterday you saved an even
better program under the same name on this diskette. Saving the new
program under the same name overwrote the old program.

Earlier versions of AmigaBASIC saved files without checking first to
see if a file with the same name existed on the diskette. There is a cure
for this problem, since you can easily "write-protect” programs on a
diskette. Every program header has four bits which have the following
meanings:

Bit1: DELETE
Bit2: EXECUTE
Bit3: WRITE
Bit4: READ

You can protect your program from accidental deletion or overwriting
(DELETE), accidental starting (EXECUTE), modification (WRITE), and
reading (READ). Earlier versions of DOS only checked the DELETE bit.

The following program creates the Protect command, which allows
you to set any one of these four bits. You don't have to enter any bits
or bytes; the command format is:

Protect "filename","read|write|execute|delete"
You can type <|> by holding <SHIFT> and pressing <\> (backslash).

You can specify the four file protection modes in any order. <|> charac-
ters must separate each mode word.

:3######################g%

'# Program:Protect #1
'# Author: tob #9
'# Date: 4.8.87 g‘]l

q

:g Version:1.0 |
‘]'I############*####&######1{

DECLARE FUNCTION SetProtection% LIBRARY]
LIBRARY "dos.library"{

1
demo: '*Demonstration{
%rotect "prgl"”, "read|write|delete"{

LIBRARY CLOSE{
%ND‘]I

ABACUS

Variables

Program
description

5.3 PROTECTING DATA

SUB Protect (file$, mask$) STATICT
file0$ = file$ + CHRS$(0)T

p!Ot$(3) = "READ"‘]I
prot$(2) = "WRITE"{
prot$ (1) = "EXECUTE"]
ﬁrotS(O) = "DELETE"{

FOR loop% = 1 TO LEN (mask$){
e$ = MIDS$ (mask$, loop% ng
byte$ <> "|" THEN
p$ (count%) = p$(count%) + byte$q
ELSE]

count$ = count% + 19

FOR loopl$ = 3 TO O STEP -19

FOR loop2% = 0 TO 39
IF UCASE$ (p$ (loopz%)) = grots (loopl%) THEN{
mask$ = mask% + 2*loopl%{

END IF{
NEXT loop2%1

gEXT loopl$q

suc% = SetProtection% (SADD (file0$) ,mask$%){

IF suc% = 0 THEN{

PRINT "No protection."q
END IF{
END SUB{
1
files name of program you want changed
file0$ program name, terminated with null
mask$ mode mask, consisting of the modes read, write,
execute and delete

prot$ () array containing names of protection modes
ps$() word memory for values read
byte$ one-byte character from mask
mask$ bit mask taken from the above mode mask
loopl% loop variable
loop2% another loop variable
sucék: error flag from DOS routine; O=error

First the program name in £ile$ must be converted (a nullbyte
(CHRS$ (0)) must be added to the end of the filename). The string then
transfers to the variable £ile0$. Finally the mode definition occurs at
the prot $ () array. These are later compared with the function call.

A loop goes through maskes$ character by character. A <|> character
signals the end of the word. The found words are stored in p$ () .

A second loop goes through the words. It actually involves two nested
loops which compare each word with the keywords in prot$ (). This
permits you to list the attributes in any order in the function call. The
protection bits described above are set and stored in mask$.

Protection then assigns the bits to the file. The protection bits in
mask$% are placed in the diskette's file header.

155

5. DOS ROUTINES

156

AMIGA TRICKS AND T1Ps

If problems occur (e.g., file not found, no diskette in drive, etc.), the
Protect routine returns a value of 0 and displays an error message.

The CLI command LIST displays the protection status of each file.
The normal file attributes are "rwed" (read, write, execute, delete).
This means that the file is unprotected. If you prevent it from being
deleted, for instance, the result would be "rwe-", and you could no
longer delete the file or overwrite it.

PROTECT "SYS:LIBS/graphics.bmap”,"delete"
The entry "rwe-" appears in the CLI LIST output.

If you want to unprotect a program again, just reprotect it while
omitting the undesired protection:

PROTECT "SYS:LIBS/graphics.bmap”,”

removes all protection from the program.

ABAcCUS

5.4 RENAMING FILES

S.4

Variables

Program
description

Renaming files

Here's a short but very practical program that changes the name of any
file or directory. AmigaBASIC doesn't have a command of this kind.
Your only alternative is to load the program and save it under another
name.

This program uses two pointers and requires a filename ended by a
nullbyte.

:ﬁ######################ﬁ%

'# Program:Rename #1
'# Author: tob #q
'# Date: 4.8.87 #1
'# Version:1.0 #9
Al

#1
;[########################11

DECLARE FUNCTION Rename% LIBRARY{
%IBRARY "dos.library"q

demo: '*Demonstration
Rename "prgl", "programl"{

1
LIBRARY CLOSEf{
ENDY

1
SUB Rename (file$, anew$) STATIC]
file0$ = file$ + CHRS$ (0)1
anew0$ = anew$ + CHRS (0)1
suc% = Rename$% (SADD (file0$) , SADD (anew0$)) q
IF suc% <> -1 THEN{
PRINT "Rename unsuccessful."]

END IF]
END SUB{
file$ name of existing file
anew$ new filename
file0$ like £ile$, but terminated by 0
anew(0$ like anew$, but terminated by 0
sucé& DOS function error flag; O=error

The function is similar in function to the DOS rename command.
Both the current and new program names must be terminated by zero
bytes. The addresses of the two names are passed to DOS for renaming.
If an error occurs, an error message appears on the screen and the
program sets the error flag.

157

5. DOS ROUTINES

AMIGA TRICKS AND TIPS

5.5

158

Directory access

Wouldn't it be nice if you could read the directory from within a BASIC
program? The FILES command helps very little, because it prints all
of the filenames on the screen and does nothing else. This GetDir
routine reads all of the important data from the current directory and
stores it in arrays.

:g######################g%

'# Program:GetDir #1
'# Author: tob #9
'# Date: 4.8.87 #q
'# Version:1.0 #1

#1
;I#############H#########ﬂl

DECLARE FUNCTION Examine% LIBRARY]
DECLARE FUNCTION ExNext% LIBRARY]
DECLARE FUNCTION Lock& LIBRARY{
DECLARE FUNCTION AllocMem& LIBRARY]
I%ECLARE FUNCTION IoErr% LIBRARY{

LIBRARY "dos.library"{

I’Ii‘.I.IBRARY "exec.library"q

var: '* Variable / array set-up{
x% = 1009
DIM SHARED dir.name$ (x%) 1
DIM SHARED dir.prot$ (x%)'iI
DIM SHARED dir.type$ (x%) 1
DIM SHARED dir.size& (x%) 1
DIM SHARED dir.blocks& (x%) 1

q DIM SHARED dir.comm$ (x%)

demo: '*Demonstration{
PRINT "Searching..."{
GetDir "dfO:",x%q
FOR loop% = 0 TO x%1

CLST

PRINT "Entry number:"; loop%+19

COIOR 0,11

PRINT dir name$ (loop%) 1

COIOR 1,09

PRINT "Protection: ";dir. prot$ (loop%) 1
PRINT " 'l.Xpe H "'dir t $ (Loop%) 1
PRINT "Size ":;dir.size& (loop%) 1

PRINT "Blocks : ";dir.blocks& (loop$) 1
PRINT "Commentary: "'dir comm$ (loop%) 1
PRINT STRINGS (60, "- ")T[
WHILE INKEYS$="":WEND{

NEXT loop%{

LIBRARY CLOSE{
ENDY

1
SUB GetDir (dir$, max$%) STATICY
a.readt = -29
= "delete-,"q
= "execute-,"q
mode$ (2) = "write—,"{
mode$ (3) = "read-,"q

ABACUS 5.5 DIRECTORY ACCESS

diro0$ = dir$ + CHRS$ (0) 1
buffers = 2529
adds& = Lock& (SADD(dirOS), a.read$) 1
IF add¢ = O THE|
PRINT"Directoxy doesn't exist."{
EXIT SUB{
EI:ND IF]

opté& = 2°169
info& = AllocMem& (buffer&, opt&) 1
‘]]I:F info& = 0 THEN ERROR 71

suck = Examine% (add&, info&) q
IF suc% = 0 THEN
PRINT "Can't find the subdirectories."q
EXIT SUBY
END IF{

WHILE e% <> 2329
dir.name& = info& + 89
FOR loo = 0 TO 299
check% = PEEK (dir.name+loop$) 1
IF check%¥<>0 THEN{
check$ = check$ + CHRS$ (check%){

dir.ngmes (counter%) = check$1

check = nn

roté& = PEEKL (info& + 116)9

IF prot&<>0 THEN{
OR loop% = 3 TO 0 STEP -1
IF (prot& AND 2”loop%) <>0 THENY
prot$ = prot$ + mode$ (loop%) 1
END IF{
NEXT loop%
adds LEFTS$ (prot$, LEN (prot$)-1) +"protected. "
rot$ (countert) = add$q
protg = llllq[
END IF{

1
type& = PEEKL(info& + 120)1
IF type& < 0 THEN{
dir.type$ (counter%) = "FILE"]
ELSEIF counter% = 0 THEN{
dir.type$ (counter$) = "CURR.DIR"{
Eq

dir.type$ (counter%) = "DIR"{
END IF'inpe

1
dir.size& (counter$) = PEEKL (info& + 24)
dir.blocks& (counter$) = PEEKL (info& + 128)q

1
FOR loo = 0 TO 791
check% = PEEK (info& + 144 + loop%)q
IF check%<>0 THEN{
check$ = check$ + CHR$ (check%)
ELSEQ

loop% = 791
END IF{

q
dir.comm$ (counter%) = check$q
checks = ll"ﬂI
suct = ExNext$% (add& info&) 1
IF suc% = 0 THEN

e% = IoErrsq

159

5. DOS ROUTINES

Variables

Program
description

160

END

dir.
dir.
dir.
dir.

AMIGA TRICKS AND TIPS

IF e%<>232 THEN{
PRINT"Error in directory."{
EXIT SUBT

END IF{

ELSE{

counter$ = counter$ + 19

IF counter% > max$% THEN{
e% = 2329

ELSE

CALL FreeMem(infoé&,buffers) 1
CALL Unlock (add&) |

max%$ = counter%q

SU%‘]I

name$ () file/directory name
prot$ () file protection status
type$ () type:DIR or FILE
size& () program size in bytes

dir.blocksé& () program size in diskette blocks

dir.comms$ () comment string

dirs$ name of directory to be read

max$ maximum number of desired entries

a.read% ACCESS_READ

mode$ () protection mode

dir0$ null-terminated dir$

buffers size of necessary buffer

adds& BPTR pointer to lock structure of directory being
read

opté& memory option, MEM CLEAR = clear memory

info& starting address of buf fer& byte sized buffer

sucé& DOS function error flag;0=error

e% I/0OErr () flag; 232 = NO

check$% ASCII code of character read

check$ string read

prot& protection bits

type& type bits

counteré& counter for found entries

GetDir reads the name, protection status, type, size and commentary
of every file on the directory. The maximum number of entries depends
on the size of x%. This example sets x% to 100, supplying room for
100 entries. If you have a directory containing more than 100 entries,
simply increase the number assigned to x%. Remember that this takes
up memory.

The

SUB program searches for the directory named in dirs$. If the

named directory doesn't exist, the program displays an error message and
exits the SUB program. The program allocates a 252-byte buffer when
it finds the directory. Examine () loads the information of the first

ABACUS

5.5 DIRECTORY ACCESS

directory entry into the buffer. The WHILE /WEND loop that follows
filters the information from this block of memory and places the values
into the corresponding arrays. ExNext () looks for the next entry and
performs the above processes. All entries are read until a
NO_MORE_ENTRIES error (code 232) occurs. This ends the
WHILE/WEND loop, closes the buffer and unlocks the Lock structure.

The last line of this SUB, max$=counter#, is extremely important.
This example lets GetDir store up to 100 entries, but there are few
directories that contain that many entries. Therefore, it's important for
the program to know when it reaches the last entry on the diskette. One
solution is to declare a variable as SHARED, give it the number of
entries found and pass this information on to the main program. This
program has a simpler and more elegant solution: All parameter vari-
ables in the SUB..STATIC lines are automatically declared as SHARED.
The number of entries automatically goes to max%. The main program
call can then look like this:

n(ax% = 100

G;tDir "SYS:", max$
FOR loop% = 1 to max$%

(-,

NE))(T loop%

After the GetDir call, max% receives the correct number of found
entries.

The info block in info& has the following format:

+000 LONG Disk lock
+004 LONG Buffer contents type (greater then 0: Dir)

+008 EntrI name (only 30 of the 118 bytes are
usable)

+116 LONG Protection bits (definitions of least
significant bytes) :
Bit Meaning

0 Delete
1 Execute
2 Write

3 Read

+120 LONG Entry type (greater than 0=Dir)
+124 LONG es in file

+128 LONG Blocks in file

+132 ILONG Days since January 1, 1978

+136 LONG Minutes since midnight
+140 LONG Ticks since the last minute
+144 CHAR Comment, previously only 80 bytes usable

161

5. DOS ROUTINES

AMIGA TRICKS AND TIPS

5.6

162

GetTree

AmigaDOS works with a variety of subdirectories. The main directory
on the Workbench diskette named Workbench contains subdirectories
like fonts, in which the system fonts are stored. There are other
subdirectories inside fonts like sapphire, which houses the
various sapphire fonts, ruby which contains the ruby fonts, etc.
This tree can have even more subdirectories inside subdirectories.

Subdirectories increase the readability of a directory. But have you ever
looked at such a directory with the FILES command? The files of the
current directory appear on the screen, but subdirectories are only listed
by name, not listed in detail. You can access each subdirectory by using
CHDIR to change directories, but this can be inconvenient.

The following program looks for all the files on a diskette, ignoring the
directories. This bypasses the whole tree structure. First the printout
displays the files in the main directory, then the files in all of the
subdirectories of the main directory, then all the subdirectories in these
subdirectories, and so on. The program sends the output directly to a
printer, since there is more information than can fit on the screen.

To keep the list readable, the program also prints the name of the
directory currently being printed. Also, the program size in bytes and
blocks, as well the entry type (FILE or DIRECTORY), list on the
printout. The entries are printed in alphabetical order.

: g######################g%

'# Program:GetTree #1
'# Author: tob #q
'# Date: 4.8.87 #1
:# Version:1.0 #9

#9
‘]'I####################3###‘][

DECLARE FUNCTION Examine$ LIBRARYY
DECLARE FUNCTION ExNext$% LIBRARY{
DECLARE FUNCTION Lock& LIBRARY]
DECLARE FUNCTION AllocMem& LIBRARY]
DECLARE FUNCTION IcErr$ LIBRARY{

1
LIBRARY "dos.library"{
LIBRARY "exec.library"q

1

var: '* Variable / array set-up{
x% = 1009
y% = 1009

DIM SHARED dir.name$ (x%)q
DIM SHARED dir.prot$ (x%)q
DIM SHARED dir.type$ (x%)q
DIM SHARED dir.sizec (x%) 1
DIM SHARED dir.blockss (x$%)1
DIM SHARED dir.comms$ (x%) 9
DIM a$ (y%)1

ABACUS

5.6 GETTREE

DIM a&(y%)1
filler$ = "."q
count% = 19
fils = "—"ﬂ

1
demo: '* Application{
GOSUB PrintTree{

1
LIBRARY CLOSE{
ENDY

1
PrintTree: '* This uses GetDir...{
GOSUB Specifierd
GOSUB Header{
GOSUB Level{

1
Entry: FOR loop% = previous TO count$% -11

IF a&(loop%) = Level% THEN]
search§ = a$ (loop%)1
z% = x%9
GetDir search$, x%1
max$ = x%9
x% = 2%9
sortq
LOCATE 1,11
PRINT "Print ";a$(loop%):1
PRINT STRINGS (60, £i1$)1

1
IF 1 % = 0 THENT

a$(0) = dir.name$(0) + ":"q
END IF{

q
z$ = a$(loop%) 1
directory$ = LEFT$(2$, LEN(z2$) - 1)1

1
LPRINT{
IPRINT "Directory: 1";directory$i

1
FOR show% = 1 TO max%${
info$ = dir.name$ (show%) 1

T
diff$ = 32 — LEN(dir.name$ (show%)){

IF diff$>0 THENY
info$ = info$ + STRINGS (diff%,filler$)q
END IF{

1
IF dir.type$ (shows) <"DIR" THEN{
info$ = info$ + dir.type$ (show%){
info$ = info$ + "." + dir.prot$ (show%){

FOR £ill% = LEN(dir.prot$ (show%)) TO

il info$ = info$ + filler$q
NEXT £i11%9
IPRINT "- "; info$;1

IPRINT USING "#######";
dir.sizeé& (show%); 1
IPRINT "Bytes, ";q
LPRINT USING "###";
dir.blocks& (ShOW%)'.&RINT " blocks."q
ELSE{
£l = 19
LPRINT "- " + info$ + "DIRECTORY"{
a$ (count%) = a$(loop%) +

dir.name$ (show%) 4"' ;é'zgount%) = Level% + 11

count% = count% + 19

163

5. DOS ROUTINES AMIGA TRICKS AND Trps

END IFq
NEXT show${
END IFq
NEXT loop$%q
revious% = loop%q

IF f1 = 1 THEN{
£l = 0
Level$ = Level% + 19
GOSUB Levelq

GOSUB EndTreef
RETURNY

1
Specifier:q
LINE INPUT "Which disk drive (0-3)?"; dr${
dr% = VAL(RIGHTS (dx$,1))1
dr$ = RIGHTS$ (STRS (dr%),1)q
a$(0) = "df"+ dr$ +":"q
RETURN{

1
Header: '*Print header{
LPRINT "* DOS DIRECTORY *"q
LPRINT{
LPRINT " (C) 1988 by Abacus for Amiga Tricks

LPRINT]
LPRINT
RETURN{

1
Level: '* Current level of disk hierarchy{
LPRINT STRINGS (70,"_")1
LPRINT{
LPRINT "Level";Level%q
RETURN{

q
EndTree: '* End Ngrint;cmt:‘l[
LPRINT STRINGS (70," ")
LPRINTY
LOCATE 1,19
PRINT "OK." + STRINGS (60, £i1$)q
RETURNY
SUB sort STATIC{
SHARED max%, f£i1$9
LOCATE 1,19
PRINT "Sorting ";dir.name$ (0) ; STRINGS (60, £11$)
|

and Tips"{

1
FOR mode% = 0 TO 19
FOR sortl$ = 1 TO max%{
FOR sort2% = sortl% + 1 TO max$% - 19
IF mode% = 1 THENY
bb$§ = dir.type$ (sortl%)q
aa$ = dir.type$ (sort2%)q
ELSE]
aa$ = dir.name$ (sort1%)q
bb$ = dir.name$ (sort2%)q
END IFq

q
IF UCASES (aa$)>UCASES$ (bb$) THENT
SWAP dir.name$ (sortl%),
dir.name$ (sort2%)
SWAP dir.prot$ (sortl$),
dir.prot$ (sort2%) 1
SWAP dir.type$ (sortl%),
dir.type$ (sort2%) 1

164

ABACUS . 5.6 GETTREE

SWAP dir.size& (sortl%),
dir.size& (sort2%) 4
SWAP dir.blocksé& (sortl%),
dir.blocksé& (sort2%) 1
END IF{
NEXT sort2%q
NEXT sortl${
NEXT mode%q
LOCATE 1,19
PRINT "Ready ";STRINGS (70, £118) 1
END SUB{

1
SUB GetDir (dir$,max%) STATICY
a.reads = -21

mode$ (0) = "delete- nq
mode$ (1) = "execute-,"'il
mode$ (2) = "write- "q
mode$ (3) = "read-,"q
dir0$ = dir$ + CHR$(0)1
buffers = 252
add& = Locké& (SADD (dir0$), a.read%)q
counter% = 0
e = 09
IF adds¢ = 0 THEN{
PRINT"Directory doesn't exist."{
EXIT SUBT
q END IF{
opté& = 2~169

info& = AllocMem& (buffer&, opté&) 1
IF info& = 0 THEN ERROR 71

1

sucs = Examine$% (add&, info&) q

IF suc% = 0 THEN{
PRINT "Can't find the subdirectories."{
EXIT SUBY

END IF{

WHILE e% <> 2329
dir.name& = info& + 81
FOR loop% = 0 TO 291
check% = PEEK (d:.r name&+loop%)‘][
IF check%<>0 THEN
check$ = check$ + CHRS$ (check$) 1
ELSE{
loops = 291
END IF{
NEXT loop%1

q
dir.name$ (counter%) = checks‘ll
check$ g

roté& = PEEKL(mfo& + 116)1

IF prot&<>0 THEN{
FOR loop% = 3 TO O STEP -11
IF (prot& AND 2*loop%) <>0 THEN{
prot$ = prot$ + mode$ (loop%) 1
END IF‘]I
NEXT loop
add$ I.EF‘I‘$ (prot$, LEN (prot$) -1) +"protected."q
grot$ (counter%) = add$1
prot "
END IF 1

1
type& = PEEKL(info& + 120)9
IF type& < O THEN{

dir.type$ (counters) = "FILE"]
ELSEIF counter$% = 0 THEN{

dir.type$ (countert) = "CURR.DIR"{

165

5. DOS ROUTINES AMIGA TRICKS AND TIPS

ELSE{
dir.type$ (counter%) = "DIR"{
%ND IFq

dir.size& (counter%) = PEEKL (info& + 124) 9
dir.blocks& (counter%) = PEEKL (info& + 128)9q

bl
FOR loop% = 0 TO 799
check$% = PEEK (info& + 144 + loop%) 1
IF check%<>0 THEN{
check$ = check$ + CHRS (check%){
ELSEq
loop% = 791
END IFq
gEXT loop%q

dir.comm$ (counter%) = check$q
%hGCk$ = nn 1‘[

suc% = ExNext$% (addg, info&)
IF suc% = 0 THEN{
e% = IoErr%{

Variables

166

IF e%<>232 THEN{
PRINT"Error in directory."q
EXIT SUB{

END IFq

ELSE{

counter% = counter% + 19
IF counter% > max% THEN]

e% = 2321
ELSE{

e% = 0

CALL FreeMem(info&,buffers) |
CALL Unlock (addé&)
max% = counter$q

END SUB{
1

v%:
fillers
£ils
count$
dr$

dr$
previous$
level%
search$
directory$
show$
info$
mode$%
sortl%
sort2%

maximum number of subdirectories
fill character

second fill character

directory counter

disk drive number

count number

previous loop value

hierarchy level

name of directory under research
directory name

display loop variable

directory information
0=DIR/FILE, 1=alphabetical sort
bubble sort loop 1

bubble sort loop 2

ABACUS

Program
description

5.6 GETTREE

All new entries in a$ (x) are examined in the loop loop%. At first
this entry is just dfx:. The GetDir subprogram reads the corres-
ponding directory and initializes the appropriate DirXXX () arrays.
These are then sorted by Sort. If Loop% = O (first entry), then the
directory name is printed. a$ (loop%) contains the name of the
current directory with a zero byte added to the end of the name. This
zero byte is removed when the name is printed. The show$ loop then
displays all the entries in the current directory. previous#% is set to
the end of the previous data block in a$ () so that it points to new data
for the next pass.

If £1 = 1, meaning that there is at least one directory on the next level,
the next directory is printed.

Sort sorts the entire set of data contained in the current directory. This
occurs through a bubble sort procedure. The directory actually sorts
twice. The first sort criterion is in alphabetical order (modus%=0). Then
from the alphabetized list, the data records sort by type. The end result
is data sorted by filename, filetype and directory.

167

5. DOS ROUTINES

AMIGA TRICKS AND TIPS

5.7

168

Reading DOS files

Have you ever read a data record using the BASIC OPEN/ INPUT#1
/CLOSE commands? This works fine in most cases, but not always. If
a text contains zeros, AmigaBASIC treats zeros as CHRS (0) and
removes them from the text display.

You may not see this as a problem, but data records often contain Zeros.
For example, when a program stores number information in string
form. Or, when you want to look at the .bmap files mentioned in
Chapter 3.

DOS commands are an alternative to BASIC commands. The following
program offers the necessary SUB components. It has four commands:
OpenFile, CloseFile, ReadFile and SeekFile. OpenFile
is the equivalent of OPEN, and opens the file for DOS read access,
CloseFile closes a file like BASIC's CLOSE. ReadFile reads a
string of any length from the open data record (this string can contain
null bytes). SeekFile can move the internal "pointer" around the
data. This pointer signals the place within the open file where the next
ReadFile command should begin,

To help you adapt this routine to real-life applications, this program
includes the SUB routine ExBMAP. It only works in conjunction with
the DOS routines (SeekFile is unused in the sample program
below). This SUB helps you view the -bmap files from Chapter 3.
These files contain the names and parameters of several hundred
machine language routines kept in ROM by the Amiga. The SUB in
this program looks at the files in the 1ibs directory of the Workbench
diskette. If your .bmap files are in another directory or on another
diskette, then you must change the appropriate line in the SUB.

The program reads the .omap file dos.bmap. It displays the command
names, offsets and parameters in this file. You can easily make sure
that your .bmap files are complete, and identify the newest versions
and/or errors. A further application is reading unknown .bmap files, if
only to see when machine language routines are in the file.

:ﬁ######################g%
'# Program:bmap decoder #

'# Author: tob #9
'# Date: 4.8.87 #1
:# Version:1.0 #9

#1
1'[########################‘lI

DECLARE FUNCTION xRead& LIBRARY{
DECLARE FUNCTION xOpen& LIBRARY{
DECLARE FUNCTION Seek& LIBRARY{
'xClose () 1

ABACUS 5.7 DOS FILE READING FROM BASIC

1
gxmy "dos.library"{
ExBMAP "dos.bmap"{

9

SUB ExBMAP (1ib$) STATICT
SHARED anerror, handle&, store$, xEOF{
file$ = "LIBS"+1ib$q
t*Change LIBS to whatever directory you need{

' filel
ile fileS‘]I
anerror = 1

ErrorMessage
END IF{

1
'* Read file{
CLS

q

WIDTH "scrn:", 1501
COIOR O, 31
PRINT "Contents of library file ";file$q
PRINT{
ReadFile handle&, 1&1
IF anerror = 1 THENT

ErrorMessage{
END IF{
WHILE xEOF<>19

code$ = PEEK (SADD (store$)) 1

IF (flag = 3 AND code% = 0) THEN{

flag = 49

%ND IFq

IF flag = 0 THEN{

ode% > 0 THENY
conmndS = command$ + CHRS (code%) 1

END IF{

ELSEIF flag = 1 THENY
hi% = code%{
flag = 21

ELSEIF flag = 2 THEN{
lo% = code%q

value& = hi%*256 + lo%{
offset%S; 2”16 - value&{
g flag = 3 THEN{
IF codet$ < 9 THEN{
attr$ = attr$ + "d" + RIGHTS (STRS (code%-1) , 1)1

ELSE{
attr$ = attr$ + "a" + RIGHTS (STR$ (code$-9), 19

END IF{
attr$ = attr$ + ", "1
ELSEIF fla - THEN‘lI
fla
out ommandS + " ("1
IF attrs = "" THEN attr$ = SPACES$ (2
out$ = out$ + LEFTS (attr$, LEN(attrS) -2) + ")"q
q
COLOR 2,11
PRINT "Offset' v.q
PRINT USING "####";offset%; 1
PRINT ” cewn "'q[

PRINT " ne eﬁtS;STRINGS(\SO, (1] l')ﬂ

” llﬂ

command$ = ""q

169

5. DOS ROUTINES

Variables

170

AMIGA TRICKS AND TIPS

IF (command$ <> "" AND code% = 0) THENY
fl% = 19
END IF}

1

ReadFile handle&, 1&9

IF anerror = 1 THEN{
ErrorMessageq

END IF{

WENDY

CloseFile handle&{
COLOR 3,09

PRINT "A-OK."q
COLOR 19

END
1
SUB

SUBT

ErrorMessage STATIC{
SHARED handle&q
BEEPY

PRINT "Sorry, an error occurred."{
Ciljgierile handle&q
S

%ND
SUB OpenFile (dat$) STATICH
SHARED anerror, handle&{
handle& = xOpen& (SADD (dat$),1005)
IF handle& = 0 THENY
anerror = 19
EXIT SUBY
ELSE{
anerror = 09
END IFq
%ND SUBT
SUB CloseFile (handg) STATICY ‘
IF hand&<>0 THEN]
CALL xClose (hands)
ELSEq
BEEP]
END IF{
?I:ND SUBT
SUB ReadFile (hand&, num&) STATICY
SHARED anerror, store$, xEOF{
IF hand& <> 0 THENY
store$ = SPACES (num&+10)
reds = xRead& (hand&, SADD (store$) , nums) 1
IF xggl& < numé& THENY
F = 19
ELSEq
XEOF = 09
END IFq
an;rror = 09
anerror = 19
%!ND IF]
'Seekfile handg, 19
%!ND SUBY
SUB SeekFile (handg, offset%) STATICY
old¥ = Seeks& (hands, offset%, 0)q
END SUB{
q
1lib$ name of the desired . bmap file
handles& File handle of the xOpen command
store$ memory string for Read

ABACUS

Program
description

§.7 DOS FILE READING FROM BASIC

xEOF End-Of-File: 1=end of data block
file$ full name of file to be opened
anerror 1=DOS I/O error

code% read character

command$ machine command read

hi%, lo% high and lowbyte of offset

attr$ input parameter for current coramand
out$ output string

hands& local handleé& variable

redé& number of bytes actually read

The OpenFile SUB opens the desired file for input. You enter the
name of the file; the routine returns a file handle. This handle goes into
the variable handle& and must be used by later SUBS. The value in
handles corresponds to the file number used in the BASIC OPEN
command. This helps DOS to remember which file to handle.

The ReadFile SUB reads any number of characters from a file opened
by OpenFile. You enter the file handle returned from OpenFile, as
well as the number of bytes you want read. Both these entries go into a
& variable. For example:

OpenFile "Example"”
ReadFile handleé&, 100&

This example reads 100 bytes from the file named "Example." The
SUB stores the read bytes into store$. When the SUB reaches the end
of the file, xEOF=1. Otherwise, XEOF=0.

SeekFile moves the internal data pointer to any offset from the
current pointer position. You enter the file handle and the positive or
negative offset.

loop:
ReadFile handle&, 100&
SeekFile handlé&, =100

The above example reads the same 100 bytes again.

CloseFile closes a file opened by OpenFile (this is absolutely
necessary). The command requires the file handle as input.

Now for the sample program, the ExBMAP SUB. It waits for the name
of a .bmap file (any file with the .bmap suffix). The program searches
for the file in the Workbench directory 1ibs :. If the file doesn't exist,
an error message appears on the screen. Otherwise, the routine reads the
file. A character loads into memory from ReadFile and goes into
code#%. If flag is equal to 0, then the program reads the command
name. If code% is equal to 0, however, that means that the command
names are done. This increments £1ag by 1. Now the program reads
the high byte of the offset and increments f£1ag by 2. The low byte is
then read, the value computed and subtracted from 216 of the library

171

5. DOS ROUTINES

172

AMIGA TRICKS AND TIPS

offset of this routine. The result goes into offset$. flag becomes
equal to 3. The input parameters are set. If code$ > 9, then they
handle address registers a0 to a4. If code$ < 10, then they are at the
data registers d0 to d9. As soon as code$ is equal to 0, flag is
equal to 4. The entire set of information appears on the screen as a
string. Finally the variables clear for the next round. The program reads
another character. When it reaches the end of the file (XEOF = 1), the

- program exits the WHILE /WEND loop and closes the file,

ABACUS

5.8 CLI FrRoM AMIGABASIC

5.8

CLI from AmigaBASIC

The Command Line Interface (CLI) can also be used directly from
AmigaBASIC programs. The AmigaBASIC disk commands can be
enhanced by a complete set of disk-oriented commands. The following
program uses the DOS library and gives you a new BASIC command,
CLI, which can be used to execute any of the CLI commands. The

format is:

CLI "command string”

This example sends the fonts subdirectory of the disk in drive 0 to

the printer:

CLI "list df0:fonts keystoprt:"

Here's the program listing:

"RERRREBR AR EH AR AR AR EREER RS ARRET
'# Program: CLI from BASIC #9
'# Date: 7/26/87 #9
'# Author: tob #1
'# Version: 2.0 #9
'REB A AR AR AR AR AR AR R RR AT

PRINT "loading libraries..."{
DECLARE FUNCTION xOpen& LIBRARYJ

DECLARE FUNCTION Execute% LIBRARY{

LIBRARY "dos.library"{

1
main: '*CLI gets called heref
CLI "LIST SYS: QUICK"1

q

finish: '*End demo{
LIBRARY CLOSE{
END{

1
SUB CLI (command$) STATICT
SHARED error.code$%q
work$ = command$ + CHRS$ (0) 1
count$=09

q
'* gtart out

q
out.filename$ = "RAM:cli out"{
‘l?uts = out.filename$ + CHRS$ (0) 1

out.handle& = xOpen&thADD (out$),1006) 1

IF out.handle&=0 THEN{
error.code% = 11
BEEPq
EXIT SUBT

1-%110 IF]

173

5. DOS ROUTINES

Variables

Program
description

174

AMIGA TRICKS AND TIPS

'*CLI command execution{

follow$ = Execute$ (SADD (work$), 0, out .handle&)
IF follow% = false THEN{
error.code$ = 29

BEEP
EXIT SUBY
END IF{

'* End output and compute parametersq

CALL xClose (out.handles){

text.height% = PEEKW (WINDOW (8)+58)

window.height$% = PEEKW (WINDOW (7)+10)~117

lines$ = INT (window.height%/text.height%)-3]

1
'* Send result to the RAM disk{
OPEN out.filename$ FOR INPUT AS 1
WHILE (EOF (1)=0)9
INPUT#1, reader$q
PRINT reader$q
count$=count $+19
IF count$>lines% THEN{
count%=09
PRINT"<<<Press any key to continue>>>";{
WHILE INKEYS$="":WENDY
PRINTY
END IF

WENDY
PRINT "## End output ##"q
CLOSE 19
KILL out.filename$q
END SUB{

command$ CLI command sequence
error.code$% DOS error

work$ command string terminated by null
count$¥ counter

out.filename$ output device name

out$ output device name terminated by null
out.handles file handle for output device
follow% execute command result; O=false=error
text.height$% height in pixels of present font
window.height window height in pixels

lines% number of text lines in current window

The heart of this program is the DOS function Execute. This routine
calls the necessary CLI routines. Before that can happen, a proper out-
put device must be opened. This can be a window, the printer or a disk
file. Since this CLI display in the BASIC window is unable to access
DOS, you can specify the RAM disk as an output medium. As soon as
Execute stores its information, you can transfer the data from the
RAM disk to the main window and edit data from there.

Execute waits for three entries: A pointer to the command string
terminated by a null; an input device (0 in this case); and the above-
mentioned output device (the file handle of the xOpen call). If the com-
mand executes correctly, follow$ is greater than or less than 0. When
this is equal to 0, a DOS error occurs.

ABACUS

Note:

5.8 CLI FrRoM AMIGABASIC

After the Execute function runs, the result goes into the RAM disk.
The type of result depends upon the type of command used. For
example, if you start Preferences like this, no information goes to
the RAM disk:

CLI "SYS:Preferences”

This call waits until the user is ready to reconfigure the computer. The
next call activates the multitasking system:

CLI "run SYS:preferences"”

This continues with your BASIC program immediately after Prefer--
ences opens.

CLI "list df0:"
The above command stores data on the RAM disk.

The file in the RAM disk closes through the xClose command, then
loads its data character by character into memory with the help of the
BASIC commands OPEN and CLOSE. A certain number of lines appear
on the screen before it scrolls up. The SUB waits for a keypress from
the user before it continues with the output. At the end, the RAM disk
is erased with KILL.

You can use almost all CLI commands from the BASIC CLI com-
mand. There are just two things to remember: First, you can't change
the current directory with cd, since AmigaBASIC still has control over
directories with CHDIR. Second, you can't use the asterisk (*), since
this CL I doesn't use the CLI window.

175

6
AmigaBASIC
internals

ABACUS

6. AMIGABASIC INTERNALS

6.

AmigaBASIC internals

AmigaBASIC has a very powerful command set. The manual that
comes with it, however, contains many unclear descriptions of
commands. Those of you who may have owned another computer
before buying an Amiga probably had a number of utility programs.
Utilities help programmers to program better. Some utilities help users
change programs, create new program code or extract old program code.
Others allow you to load any program at another starting address.

Since memory manipulation is so complex on the Amiga, there are no
memory handling programs in this chapter. However, there are a num-
ber of other utilities here to let you change program code. The authors
have devised a diskette configuration so that you can load a program
into a utility, change the program and save the program back in its
edited form. This configuration uses internal drive df0 :, the RAM
disk ram:, and any external drives (optional). More on diskette
configuration later.

Before continuing with the utilities, you must know about the filetypes
supported by AmigaBASIC. Section 6.2 gives detailed information
about Amiga file structues. This information will help you later on
with adapting these utilities to your own uses.

179

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

6.1

180

File analyzer

This program lets you display the programs in the following chapters.
It acts as a simple file monitor, independent of the built-in CLI editor
and the AmigaBASIC editor. The program is menu controlled. The left
border of the screen displays the offset address from the beginning of the
file. The screen's center shows 16 bytes in hexadecimal notation. The
right border of the screen lists the same data in ASCII form. When you
want to expand the program, remember to adjust the menu activation
and de-activation as needed.

GOTO start{

'R R R R R AR R A SRR A H AR R R AR 4
FILE-ANALYZER AMIGA

LY -

' (W) 1987 b¥ Stefan Maelger #9
:ﬂl#““#“####““ FHEFRFREFRH R HRRRRERHT

' "dos.bmap" and "exec.bmap" must{
' exist on the Disk or in LIBS:{

'ﬁDeclare ROM functions and routinesq
1]

start:q
DECLARE FUNCTION xOpené& LIBRARY]
DECLARE FUNCTION xRead$ LIBRARYY
DECLARE FUNCTION AllocMem& LIBRARY]
DECLARE FUNCTION Examine& LIBRARY{

=8

DECLARE FUNCTION Seek% LIBRARY{
, DECLARE FUNCTION Locké& LIBRARYY -
:ﬂOpen Librariesq .

LIBRARY "exec.library"{
LIBRARY "dos.library"q

: Initialize screen and window{

SCREEN 2, 640,200,1, 21
‘nWINDOWZ," FILE-ANALYZER",,029

MENU 1,0,1,"File"q
MENU 1,1,1," "1
MENU 1,2,0,"Close"q
MENU 2,0, 0, "Block"1
MENU 2,1,1,"Next"q
MENU 2,2,0,"Back"q

=

1
1
'ﬂSetup InfoBlock and Buffer{
’

Infobytess = 2529
Bufferbytes&= 4009

PublicRAM& =65537&1
'i[. ChipRAM& =65538&]

=8

ABACUS 6.1 FILE ANALYZER

Info& =AllocMems& (Infobytes& ,ChipRAM&)1
Buffer&=AllocMem& (Bufferbytes& PublicRAM&)
IF Info&=0 OR Buffer&=0 THEN ERROR 71

ON MENU GOSUB menus{
MENU ONY

WHILE NOT finished{
WEND{

1
CALL FreeMem(Buffers&, Bufferbytes&)
CALL FreeMem(Info& ,Infobytes& 1
LIBRARY CLOSE 1

, ENDY

' Menu-Selection result{
L]
1

A

menus: I
number=MENU (1) +2*MENU (0) -29
1 ON number GOTO fopen, fclose,bnext,bback{
fopen: 1
MENU OFF{
CLS1
LINE INPUT "FILENAME: ";Filename${
File$=Filename$+CHRS (0

Y1
DosLock&=Locké& (SADD (File$) ,-2)1
IF DosLock&=0 THENY
PRINT :PRINT "File not found!"{
MENU ON{
RETURN{
END IF{

1
" Dummy &=Examine& (DosLock&, Info&) 1

IF PEEKL(Info&+4)>0 THENT{
PRINT :PRINT "Can't display Directories!"{
CALL UnLock (DosLocké&) 1
MENU ON:RETURNY
END IFQ
Length&=PEEKL (Info&+124) 1
CALL UnLock (DosLocké&) 1
Handle&=xOpené& (SADD (File$) ,1005) 1
IF Handle&=0 THEN{
PRINT :PRINT "Can't open file!"{
MENU ON{
RETURN{
END IF
inBuffer$=xRead% (Handle&,Buffer&, 400) 1
Block%=1
IF Length&>400 THEN MENU 2,0,19
MENU 1,1,09
MENU 1,2,19

CLS 1

PRINT "File: ";Filename$;TAB(38);" Length: ";Length&;q
PRINT " Byte"q

Display Buffers, inBuffer% Block%q

MENU ON{
RETURN{

181

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

bl
inBuffer%=xRead$ (Handle&, Buffers, 400) 1
Block$=Block$+1q
MENU 2,2,19
IF Length&<=Block$*400 THEN MENU 2,1,01
Display Buffer&, inBuffer%, Block$q
MENU ON{

RETURNY

1
bback: |
MENU OFF{
begin%=Seek$ (Handle&, ~400-inBuffers$, 0) |
inBuffer%=xRead$ (Handle&, Buffers, 400) g
Block%=Block%-1
MENU 2,1,19
IF Block%<2 THEN MENU 2, 2,01
Display Buffer&, inBuffers, Block$q
MENU ONY
RETURN]

: ‘HSUBroutine‘]I

=

bl
SUB Display (Buffer&,Bytes%,Block%) STATIC{
Counter%=09
Addressé&=(Block%-1) *3369
FOR y=0 TO 20 ¢
LOCATE y+3,1:COLOR 0,19
PRINT RIGHTS ("00000"+HEXS (Address&), 6);":"; q
Address&=Address&+169
FOR x=0 TO 151
LOCATE y+3,x*3+9q
COLOR 1,09
Counter$=Counter%+19q
w$=PEEK (Buffer&+x+y*16) q
hexa$=RIGHTS ("0"+HEXS$ (w%) ,2) 1
IF (w%>31 AND w$%<128)OR w%>159 THEN]
AgCII$=CHR$ (ws) 1
ELS!

9
ASCIIS$="."q

END IF
IF Counter%>Bytes% THEN hexa$=" ":ASCIIS$=" "{
PRINT hexa$; {
LOCATE y+3,x+571
COLOR 0, 11
PRINT ASCIIS;q

NEXT x,y{

COLOR 1,01

END SUB1

182

ABACUS

Variables

InfoBytes&
Bufferbytes&
PublicRAM&
ChipRAM&
Infoé&
Buffers&
finished
number
Filename$
File$
DosLock
Dummy &
Length&
Handle&
inBuffer$%
Block$%
begin%
Counter%
Addressé&
ws

hexa$
ASCIIS

6.1 FILE ANALYZER

size of file info structure
buffer size for file

range for allocate + clear

DMA range for allocate + range clear
address of file info block

file buffer address

dummy variable

number of menu item

filename

filename ended with CHRS (0)
internal file number

dummy variable

file length in bytes
internal file number

number of bytes presently read into buffer
number of 400-byte block read

old start-of-file offset
number of displayed bytes

read pointer

value PEEKed from buffer
two-character display string for middle
single-character string for ASCII array

183

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

6.2

ASCII files

Binary files

Protected

files

AmigaBASIC file
structure

AmigaBASIC's SAVE command lets users save programs in three dif-
ferent ways:

SAVE "Test",a stores the program Test as an ASCII file,
SAVE "Test",b stores the program in binary form.
SAVE "Test",p stores the program in protected form.

Before you save a program, you should know what you want done with
this file later on. That is, the purpose of a file, and the situations in
which it is used later.

ASCII files are necessary when you want to combine files using
MERGE or CHAIN. When you want to store a program as an ASCII
file, you can reload it later and save it out again as an ASCII, binary
(normal) or protected file.

The disadvantage of ASCII files is the amount of memory they
consume, especially when many variable names are used (more on this
later). This disadvantage also applies to the entire concept of modular
programming.

Binary files are shorter; the computer converts commands and variables
into tokens. A binary file can be saved out later in ASCII, binary or
protected form.

Protected files cannot be corrected or changed in any way. Once you
save a file in protected form, you can't change it. Unlike the other file
forms, you can't resave a protected file in ASCII or binary form. Before
saving a file as a protected program, make sure you have a backup copy
or two of the file in ASCII or binary form.

6.2.1

184

Determining filetype

Now you may want to manipulate AmigaBASIC programs, whether
they are on diskette or in buffer memory. As soon as you know t.he
structure of an AmigaBASIC file, there should be no problem with
this.

ABACUS

6.2 AMIGABASIC FILE STRUCTURE

There is one glitch: Say you wrote a program that generates a new
AmigaBASIC program from a program already on diskette. This pro-
gram waits for the user to tell it which program he wants modified (let's
assume that this program is on the diskette currently in the drive). The
programmer must know whether this file is an AmigaBASIC file.

6.2.1.1

Checking for a BASIC file

This program examines a file and tells the user whether or not the file
is an AmigaBASIC program.

GOTO startq

1

REM ######4485 48844480 844044 F 4B R HH 2438
REM# B A S I C - C HUE C K #1
REM # #1
REM # (W) 1987 by Stefan Maelger #1
REM ##### 8444448444032 5 AR R HH R 3448
1

REM SUB-Routine to check whether a File{
REM is a AmigaBASIC-Program{

1
start:q
1
DECLARE FUNCTION xOpen& LIBRARY]
DECLARE FUNCTION xRead% LIBRARY]
DECLARE FUNCTION Seek% LIBRARY{
1
LIBRARY "dos.library"{
1
main:q
1
CLSq
LOCATE 2,21
PRINT "Name of AmigaBASIC-Program:"9q
LOCATE 4,19
PRINT ">";:LINE INPUT Filename${
BASICcheck Filename$,Flag%{
LOCATE 6,21
IF Flag% THEN {
PRINT "It is an AmigaBASIC-Program!"{
ELSE{
PRINT "No, it's not an AmigaBASIC-Program..."{
END IF{
LIBRARY CLOSE{
END{
1
SUB BASICcheck (Filename$,ok%) STATIC{
1

File$ = Filename$+".info"+CHRS$ (0) 1
Default.Tool$ = SPACES (12)1

185

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

OpenOldFile% = 10059
OffsetEOF% = 19
Offset% = -129

1

OpenFile:q

1

File.handle& = xOpen& (SADD (File$),OpenOldFiles)
IF File.handle& = 0 THEN{

CLST

LOCATE 2,21

PRINT "I can't find ";Filename$;"!"q

OldPosition%=Seek$ (File.handle&, Offset%, OffsetEOF%)

GotThem¥=xRead$ (File.handle&, SADD (Default.Tool$),12) 4
IF GotThem$<12 THENY
CLS1
ILOCATE 2,21
PRINT "READ~-ERROR"{

IF INSTR(Default.Tool$, " :AmigaBASIC")>0 THEN{
ok%=-19
ELSET
ok%$=01
END IF{
END IF9
CALL xClose(File.handle&) 1
END IFq
END SUBT

Variables Filename$ name of the potential AmigaBASIC program

Flagt =-1: the file is an AmigaBASIC program
ok% SUB variable indicator from flag%
File$ name of the info file from Filename$+CHRS$ (0)

Default.Tool$ 12-byte string, taken from the last 12 bytes of file$

OpenOldFile% parameter used when file opens (1006=new file open)

Of£setEOFS sets cursor to end of file during file read routine (-1=
beginning, O=present position)

Filehandle& file handle address (O=file not open)

OldPosition% old file cursor offset

GotThem? number of bytes read so far

186

ABAcus

Program
description

Note:

6.2 AMIGABASIC FILE STRUCTURE

If you've tried out the Info item from the Workbench pulldown
menu, you've seen the Default Tool string gadget in the Info
window. Default Tool is the main program that loads when you
double-click a program's icon. For example, if you double-click an
AmigaBASIC program’s icon, AmigaBASIC loads first, then the pro-
gram loads and runs. So, the Default Tool gadget of an Amiga-
BASIC program contains the entry :AmigaBASIC. Every Amiga-
BASIC program (and most programs) have a companion file called an
info file. This file has the same name as the program with an added file
extension of .info. This info file holds the bitmap of the program's
icon, as well as the Default Tool designation.

To find out whether or not a file is an AmigaBASIC program, this pro-
gram opens the matching info file, moves the cursor to a location 12
bytes from the end of the file and reads the Default Tool gadget.
Why 12 bytes? The entry only has 11 bytes, but AmigaDOS only
accepts names ended by CHR$ (0).

Some programs that allow icon editing and creation may not work quite
right. These program errors can result in a misplaced Default Tool.
You can get around this error by raising the number of bytes you want
read.

6.2.1.2

Header
bytes

Checking the program header

Now you know how to identify a file as an AmigaBASIC program.
You still can't change the program yet; you have to determine the
program type before any changes can be made. The AmigaBASIC inter-
preter must know the program type.

The first byte of an AmigaBASIC program conveys the program type.
This byte is called the header byte. Programs stored in binary (normal)
form and protected form attach this header byte to the beginning of the
file. ASCII files contain no header bytes, since they don't need header
bytes (see Section 6.2.2 below for details on ASCII file structure).

The header byte assignments are as follows:

$F5 binary program
$F4 protected
noheaderbyte ASCII file

The program below performs this function. This program requires the

dos.library routines xRead and xWrite. Remember to have this
library file available on the diskette currently in the drive.

187

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

188

GOTO start{

SR AR E AR AR E R AR R AT
HE ADEUR-CHE CK

#1

(W) 1987 by Stefan Maelger #1

SREFFRFRFEFEFF AR R R RS RR R R R T
q

SUB-Routine to determine the File-Type{
of an AmigaBASIC-Program from thef
File-Headers.{

e @ = ° = = = = = =pf

=0

‘1
start:q
1
DECLARE FUNCTION xOpen& LIBRARYJ
DECLARE FUNCTION xRead% LIBRARY]
bl
LIBRARY "dos.library"q
1
main:q
1
ProgtamType$ (0)="n ASCII-File"{
ProgramType$ (1) =" Binary-File"{
ProgramType$ (2) =" Protected-Binary-File"{
q
LINE INPUT "Filename: >";Filename${
1
HeaderCheck Filename$,Result%{
1
LOCATE 10,19
q
PRINT "The Program ";CHRS (34);1
PRINT Filename$;CHRS (34) ;1
PRINT " is a";ProgramType$ (Result%) 4
1
LOCATE 15,19
q
LIBRARY CLOSE{
ENDT
1
SUB HeaderCheck (Filename$,Result$) STATIC
1
File$=Filename$+CHRS (0) 1
OpenOldFile%=10051
handle&=xOpen& (SADD (File$) ,OpenOldFile$) 1
IF handle&=0 THEN ERROR 539
ssgnluﬂ
Byte&=19
Count &=xRead$ (handle&, SADD (s$) ,Byte&) 1
CALL xClose (handle&) 1
Result$=01
d$=ASC (s$) 1
IF d%=&HF5 THEN{
Result%=19
ELSEIF d%=&HF4 THEN{

ABACUS

6.2 AMIGABASIC FILE STRUCTURE

Result%=29
END IF{
1
END SUB{
Variables Programlype$ program type
Filename$ name of the AmigaBASIC program
Result$ 0=ASCII; 1=binary; 2=protected
File$ Filename$+CHRS (0)
OpenOldrile% parameter used for open file
handle& file handle address
s$ string from which first byte is read
Byte& number of bytes to be read
Reads number of bytes read so far
a3 ASCII value from s $
6.2.2 ASCII files

ASCII file structure is really quite simple. Load AmigaBASIC and enter
the following program code:

a=1q

PRINT afl

Save this program using the following syntax:
SAVE "Test",A{

Now quit AmigaBASIC and load up the file analyzer program from Sec-

tion 6.1 (or use some other file monitor if you have one available).

When the file analyzer finishes loading, select the Open item from the

menu and enter the name of the program you just saved.

The program code appears on the right hand side of the screen:
a=1.PRINT a..

And the hex dump of the program appears on the left hand side of the
screen:

61 3D 31 0A 50 52 49 4E 54 20 61 OA OA

If you convert these hex numbers to decimal notation, they look like
this:

97 61 4910808273788432971010
Look in Appendix A of your AmigaBASIC manual for a list of ASCII

character codes. You'll see that these numbers match the text. Character
code 10 executes a linefeed (next line).

189

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

If you want to read a program saved as an ASCII file, use the following
program in AmigaBASIC:

LINE INPUT File$1
OPEN File$ FOR INPUT AS 11
WHILE NOT EOF (1)1
PRINT INPUT$(1,1);
WEND{
CLOSE 11

Insert your Workbench diskette.

. Make sure the CLI is onin Preferences and start up the
CLI.

. Enter the following:
ed Diskname:Test

Diskname is the name of the diskette on which you saved the Test
program. You can edit ASCII programs using Ed (the editor) from the
Workbench diskette. The main disadvantage to Ed is that you cannot
test programs using it.

If you thought of simply creating a new program using OPEN name
FOR OUTPUT, you had a good idea. The problem with that, though,
comes up when you try loading the new program into the directory. The
filename .info has no : AmigaBASIC listed as its Default Tool.
Just do the following to create a new info file:

SAVE "Dummy" :KILLFile$+".info"q
NAME "Durmmy.info" ASFile$+".info"q
KILL "Dummy"q

See Section 6.3 for practical applications using ASCII files.

6.2.3

190

Binary files

Binary file structure is extremely important since this is the usual file
format directly accessible from the AmigaBASIC interpreter. All other
filetypes must be converted to binary format before AmigaBASIC can
execute them.

Binary programs have a header byte containing $FS5.

The first program line begins at the second byte of the program. This
would be a good time to examine the structure of an AmigaBASIC line.

ABACUS

"Line header

Line offset

Line
numbers

6.2 AMIGABASIC FILE STRUCTURE

The first byte of a line is the line header. This byte can have one of two
values: 0 or 128 ($80 hexadecimal). If the line begins with 0, the line
is handled as if it has no line number. If the line begins with 128, then
it has a line number. Labels do not apply to this header (more on this
later).

The second byte of a line is the offset to the next line. It would be
pretty complicated to try figuring out pointers to the next line every
time an AmigaBASIC program loads and runs at different memory loca-
tions. Instead, AmigaBASIC counts the total length of the current line.
The interpreter then figures out the address at which the line begins, and
takes the number of occupied bytes from it. If the interpreter must jump
a number of lines forward (e.g., during a jump command), it just adds
the line length of the current line to the starting address.

Line length is represented in only one byte. This is why a program line
can be no longer than 255 bytes.

Indenting program lines can make your program code more easily
readable for debugging or when trying to read a program for its flow of
execution. A program might look something like this:

multiple.FOR.NEXT.loops:
FOR FirstLoop=1 TO 100
FOR secondlLoop=1 TO 10
FOR thirdLoop=1 TO 50
LPRINT FNstepon (x,y,2)
NEXT thirdlLoop, secondLoop, FirstLoop

NoOAOMBDNO

The numbers at the right of the lines above don't belong to the program
itself. These are the numbers taken up by the third byte of the matching
program line. Take a look at these with the file monitor. Only LIST
and editing commands make use of this byte. It gives the spacing of the
first command from the left margin. This answers the question as to
whether the program length or execution speed are affected by
indentation. You see, the single change is in the value of the third byte.

Now look at the difference between the structures of a line containing a
line number and a line without a line number. Up to now, you've seen
how a line without line numbers is handled. Here's a review:

Byte Value Definition

1 00 Line without line number follows

2 XX Line length in bytes (with head and end)

3 XX Spacing from left margin to first command (for
LISTing programs only)

Lines with line numbers have two additional bytes, making the line
header a total of five bytes long. Bytes four and five give the line num-
ber in high byte/low byte format. For example, if the line number is
10000, the fourth and fifth byte return $27 and $10 respectively (39 and
16 decimal: 39*256+16=line number). The structure looks like this:

191

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TipPs

Blank lines

The last line

192

Byte number | Value | Definition

1 128 Line with line number follows

2 XX Line length in bytes (with head and end)

3 XX Spacing from left margin to first command (for
LISTing programs only)

4 XX Line number (high byte)

b) XX Line number (low byte)

Both line structures are similar. The bytes following are the tokens
(commands coded into two-byte numbers).

BASIC lines end with the value O (an extra byte). To summarize, a pro-
gram line consists of

1) aprogram header with or without line numbers
2) tokens (commands, labels,.variables and values)
3) endbyteof0

Now that you know about line storage, you may already know how
blank spaces are stored. The blanks discussed here are those spaces
between one line and the next.

Here's the problem: The first byte must contain a zero, so no line num-
ber follows. The third byte (indentation) is also zero most of the time).
The fourth byte starts the token list. If this line is blank, the end-of-line
code (another zero) follows. The line ends and the total line length (four
bytes) goes to the second byte of the line.

A blank line looks something like this:
$00 - $04 - $xx - $00

It's obvious here that every blank line takes up four bytes of memory
and slows down the computer's execution time, since the interpreter
checks these blank lines for commands. You should remove blank lines
from your programs, especially programs that are time-critical. You
know the old saying-little things add up. See Section 6.3 for a program
that removes blank lines.

The last line of a program begins with a null byte. There is no line
number offset. The next byte is the line length byte, which is also set
to null, then the end-of-line code (again, a zero).

Other bytes could follow, say when a program has been edited. These
bytes can have some strange values.

ABACUS

Variable
tables

6.2 AMIGABASIC FILE STRUCTURE

Variable names can be up to 40 characters long in AmigaBASIC. The
problem comes up every time access occurs on a variable stored under
its full name. In order to use long-named variables without slowing the
computer down, the programmer must do the following in this BASIC
dialect:

When a variable occurs, the interpreter reads a special token. This token
always has the value $01. Following this token is a number in high
byte/low byte format. The interpreter simply numbers each variable and
continues program execution based upon variable numbers. These vari-
ables must be stored under their full names so that LIST lists these
variables under their full names. The end of the program contains a vari-
able table to accomplish this. An entry in this table appears in the
following format:

1st byte Length of the variable name in bytes
successive bytes Variable names in ASCII code.

For example, if you use the variables a%, String$ and Address&
in your program, the variable table would look something like this:

Hexadecimal ASCIl

01 61 .a

06 5A7472 69 6E 67 .String
07 41 64 64 72 6573 73 .Address

The last byte of your program would then be $65. It doesn't matter
what type the variable is to the table—these follow the variable number
set by the token $01. If you look at the above example, the a% variable
lies in the program as follows:

Byte number | Value | Definition

1 Variable number follows

0 High byte of variable number
0 Low byte of variable number
37 | ASCII code of % character

HWEN =

The above table shows you that the first variable is assigned the num-
ber zero.

Unfortunately, the variables in AmigaBASIC aren't as simple as all
that. The order of the variables in the variable table is the order in

which you first typed them in. To see this bug in action, do the fol-
lowing:

. Load AmigaBASIC.

. Enter the following:
The.big.error$=0
Blahblahblah%=The.error%

193

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

Label
handling

Label
branching

194

Hello%=0

. Change Blahblahblah$% to read:

Blahblahblah%=The.big.error%

. Save the program in binary form, and look at it with the file
monitor.

The program itself no longer contains the error$% variable. However,
the variable table still has this variable. If you write a long program and
mistype some variable names, or change a few names, you're still stuck
with the original errors/variable names in the variable table, whether
you use them or not. Your program could end up several kilobytes
longer than you need, and execution time suffers as well.

See Section 6.3.6 for a solution to this problem.

Another bug in AmigaBASIC is the fact that all SUB programs, their
calls and all operating system routines called by LIBRARY and/or
DECLARE FUNCTION are set up as variables—in the table and the pro-
gram text. AmigaBASIC can only recognize these names in complete
syntax checking as functions or SUB extensions. This makes no
difference to the BASIC interpreter, which goes through a complete
check of the program before starting it. This means that some delay can
occur between a program loading and eventually starting.

Labels are similar to variables. The developers of AmigaBASIC had
some problems dealing with long label names. The solution is as
follows: Labels are treated as special variables—different from other
variables in that they are used for program branching.

This means that labels are sorted out in the variable table like a normal
variable. Now the BASIC interpreter must be able to recognize a label,
since no memory is set aside for labels. A special token ($02) marks
labels in program code. When the interpreter encounters a $02, the
number immediately following is the high byte/low byte number of a
label. For example:

Byte number | Value | Definition

1 2 Label number follows

2 xx | High byte of label number
3 xx | Low byte of label number

If the interpreter finds $02 $00 $09 in the program, it knows that there
is a label here whose name is at the tenth place in the variable table
(this table begins its numbering at 0).

You can jump to any label you want, especially useless ones like
REMarks. This section talks about GOTO and labels, but the same
applies to GOSUB.

ABACUS

Line number
branching

Values in
Amiga-
BASIC

6.2 AMIGABASIC FILE STRUCTURE

Example: GOTO division

Let's assume that division stands at the third place in the variable
table. The interpreter finds the following in the program:

Byte number | Value | Definition
151 | Token for GOTO (see Appendices)

32 Space
3 Token=label that should be branched to
0 Always 0

0 High byte of number in variable table

AW b WN =

2 Low byte of number

You've just learned a new token—$03. The interpreter looks for a $02-
$00-$02 and continues program execution at that point.

Line number branches are very different from label branches. The reason
is that line numbers aren't stored in the variable table. A new token is
required:

Example: GOTO 10000

Byte number | Value | Definition

39 High byte of line number (39*256)

1 151 | Token for GOTO (see Appendices)

2 32 Space

3 14 Token=branch to following line number
4 0 Always 0

5

6

16 Low byte of line number (+16=10000)

The $OE token means that in all lines containing header bytes of $80,
bytes 4 and 5 must be compared with bytes 5 and 6 to find the branch
line.

AmigaBASIC has another big difference from other versions of BASIC:
AmigaBASIC uses its own methods of handling values in its program
codes. For example, take a simple variable assignment like the one
listed below:

Amiga=l

The item of interest here is the way the "1" is stored in the program.
Unlike the methods used in other BASIC dialects, in which numbers are
converted to their ASCII equivalents, which takes time during program
execution, AmigaBASIC stores numbers and values in the necessary
format. For every format (e.g., floating-point or octal), a new token
must exist. Let's go through this process step by step.

The process used to differentiate the format selection is a stupid one; it's

not dependent upon the needs of the variable. Look at the above ex-
ample. It goes without saying that the number 1 would be handled as an

195

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

196

integer. The next important fact is that the number is a single-digit
number. When it comes down to the leading character of the number
(positive or negative), the following occurs:

Positive integers from 0 to 9 go into the program without tokens. The
ASCII code is unused. Direct storage in memory is impossible, since
the numbers can be interpreted as other values (e.g., "0" means end-of-
line and "1" means "Variable number"). The values are coded as
follows:

Hex |Dec | Value (decimal)
$11 | 17 0
$12 | 18 1
$13 | 19 2
$19 | 25 8
$1A | 26 9

When the interpreter finds a byte between 17 and 26, it replaces the
value 17 with the proper value.

Now take a look at positive integer values between 10 and 255. One
byte is enough for storing these numbers. Again, a token is required so
that the interpreter cannot mistake the number for a command token or
other token. The format is:

Byte number | Value | Definition

1 15 A positive integer from 10 to 255 follows

2 XX Value between 10 and 255

Integer values can also be larger than 255, and positive or negative.
These numbers use this format:

Byte number | Value | Definition ‘

1 28 A 2-byte integer with leading character follows
2 XX High byte (bit 7=leading character bit)

3 XX Low byte

Integers larger than 32767 are represented in long-integer format:

Byte number | Value | Definition

1 30 A 4-byte integer with leading character follows

2-5 XX 4-byte integer (bit 7 in byte 2=leading char-
acter bit)

If the value should be handled as a floating-point number, use the fol-
lowing format:

Byte number | Value | Definition

1 29 A 4-byte floating-point number follows
2-5 XX 4-byte floating-point (7-place accuracy)

ABACUS

Notation

6.2 AMIGABASIC FILE STRUCTURE

Double-length floating-point numbers:

Byte number | Value | Definition

1 31 An 8-byte floating-point number follows
29 XX 8-byte floating-point (16-place accuracy)

The Amiga has ways to recognize and fix incorrect numerical notation.
Enter the following into a program from AmigaBASIC:

a=&hff
When you exit the line, the Amiga corrects the error:
a=&HFF

Tokens help the Amiga recognize the number system used:

Byte number | Value | Definition

1 12 Hexadecimal number follows
2 XX High byte

3 XX Low byte

Then there are the larger octal numbers like &0123456. These must be
converted into 2-byte format:

Byte number | Value | Definition

1 11 Octal number follows
2+3 XX Octal number (accuracy to 6 places)

Assigning values to strings has one major change from the other vari-
ables: Strings are stored in ASCII. To save memory, no new memory
is set aside for a direct value assignment. The pointer is set in the pro-
gram to the starting address of the string.

For example, type this in AmigaBASIC and run it:

a$=" "
b$="These lines I am a'changing."
FOR i=1 TO ILEN (b$)

POKE SADD (a$)+i-1,ASC(MIDS (b$,1,1))
NEXT
LIST

SADD may be an unfamiliar command to you. It returns the starting
address of the string contained in a variable (in this case a $).

After you run this program, compare the listing above with the pro-
gram you entered and ran. It looks like this:

a$="These lines I am a'changing."
b$="These lines I am a'changing."

197

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

Command
tokens

198

FOR i=1 TO LEN (b$)

POKE SADD (a$)+i~1,ASC (MID$ (b$,i,1))
NEXT
LIST

You can see from this little example lots of potential for self-modifying
programs. For example, you could put the name of a window in as$.
The user could enter a new name while the program runs. The program
then POKEs the name into the system and saves the altered program to
diskette.

Command tokens (characters having ASCII codes higher than 127) have
their own peculiarities that you should know about. These tokens are
stored by AmigaBASIC as single- or double-character codes. They repre-
sent direct commands, but require less memory than if the Amiga stored
commands by their full names.

$8E (ELSE) never happens in program code by itself. The interpreter
can only determine the end of a command when it either finds code $00
(end-of-line) or code $3A (colon). If the interpreter finds IF and THEN
without an ELSE, then IF/THEN are handled by the interpreter as one
command. If ELSE follows, you can see that the BASIC interpreter
adds a colon before the $8E (you can't see this colon when you call
LIST). If you put your own colons in preceding the ELSEs in your
programs, the file monitor shows two colons. The colon originally
added by the interpreter itself is invisible to LIST.

REMarks cause a similar problem—the interpreter adds a colon. This is

strange, since it happens even when REM is the only command in the
line. A line can look like this:

th]

Its structure can look like this:

00 OE 00] 3A|AF E§] 20 2A 20 31 2E 20 2a oo
Header | : ' * 1 . * |End

Another strange thing happens when you create a program and use the
token $BE for the WHILE command. Under certain circumstances, the
Amiga stops the program and returns ERROR 22 (Missing operand). If
you write a program in AmigaBASIC, once in a while the interpreter
places an $EC after the visible single-byte token $BE.

ABACUS

Important:

SUB
programs

6.2 AMIGABASIC FILE STRUCTURE

There is one token that you can't list and you almost never use. You
know that you can only call SUB routines directly through THEN or
ELSE with the CALL command. You can use BASIC commands as
well as SUB programs. The SUB program has one purpose alone: It
allows the programming of command extensions in BASIC. Those who
know this never use the CALL command, aside from calling operating
system routines. Instead they use this token. Unlike CALL, this token
goes after the pointers to the variable table. The token is the double
token $F8-$D1.

In closing, a few words about the DATA command. DATA statements
are placed in ASCII text, like the data following a REMark. This data
can be read into variables, and can be of any type:

DATA &hffe2,123,606666

Why were the SUB programs implemented in AmigaBASIC? The first
reason is that they allow modular programming. Also, SUB programs
allow the retention of variable names, even when programs are com-
bined through CHAIN and MERGE. Any of these variables can be shared
with other routines by stating the names with STATIC.

It's a good move to edit each and every SUB program separately, store
them as ASCII files, and combine the SUBs with the BASIC program
currently in memory using MERGE in direct mode or program mode (the
syntax check takes up a lot of time). The call convention (e.g., which
operating system routines must be declared as functions, etc.) should be
declared and archived with a file manager. The second point of interest
was that unlike earlier computers with incomplete command sets, SUB
programs allow extension of the command set:

PRINTAT 10,20,"Sample text"

SUB PRINTAT (x,y,Text$) STATIC
LOCATE y,x
PRINT Text$

END SUB

The third point is the pressure on the programmer to learn Pascal or
another language. Why learn more complex languages, when BASIC
can do it just as well and just as fast? Unlike Pascal, SUB programs
cannot call themselves. However, a command can be called multiple
times, with the help of a label at the beginning of a routine made up of
SUB programs.

Programs handle SUB routines like variables. Only in this way does the
Amiga recognize these routines.

199

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

Important
details

Other tokens

200

What would the make-believe manipulation program do when it en-
counters the code sequence $20-$F8~$8F-%$207 Turn to the token
list in the Appendix. The code stands for the $F8 double token END,
placed between two spaces. The program hasn't ended, though. What
about this $F8-$BE? That's the double code for SUB. You see, a token
by itself can cause trouble. First the connection in which the token is
compared to other tokens sets the type of execution. This also goes for
PRINT# and ?#—the token numbers are the same.

No time has been spent discussing tokens below 128. These tokens are
used, though. There are occasions when you try saving an edited pro-
gram in direct mode when the Amiga displays an error requester instead.
Apparently the Amiga gets stuck in the error checking routine, and
keeps registering an error. Clicking on the OK gadget eventually gets
you past the error, but you may have to click it a few times over.

A simple program check can change commands around. An occasional
gap in the token list can control the program. For example, $8, which
acts as the branch offset of the IF /THEN construction that may not be
in the same place in another program. In order to make life with mani-
pulation programs as simple as possible, try to follow these ground
rules:

1) Manipulation programs or programs for reading data from other
programs which require binary file format should:

. allow storage of the modified file as an ASCII file.

. allow you to save the file back in binary file format after
loading,

2) ASCI files require no special treatment, as long as the program
control codes aren't saved as well.

ABACUS

6.3 UTILITY PROGRAMS

6.3

Utility programs

The following section presents programs that let you change Amiga-
BASIC program code.

6.3.1

DATA generator

This program demonstrates how you can create a program from an
AmigaBASIC program saved in ASCII format.

A good program should allow you to type it in direct from a magazine.
But what if this program has sprites, bobs, machine language or some-
thing similar? Then a DATA generator is necessary. This program
makes DATA statements out of any program. The ASCII file created can
be appended to a program using MERGE.

To keep the DATA list short, the statements are displayed in hexa-
decimal notation. You may recognize the reader routine from the
AmigaBASIC manual program for converting hex to decimal numbers.
The reverse routine can be found anywhere, although it's not standard to
AmigaBASIC. Just type:

stuff: DATA ff,ec,0,1,f
RESTORE stuff:FOR i=1 TO 5:READ a$:x(i)=VAL("&H"+a$) :NEXT

Now for the listing:

GOTO Startq

FREFHASREREEREFRERER AR AR RHBHF R HBHEHHRT
#DATA-GENERATOR AMIGA #1
#1
(W) 1987 by Stefan Maelger #1
FHEFHRHEERERFHERFEH B R AR FH B R R RHHHHHT

Al

1

' "dos.bmap" and "exec.bmap" must be onf

' Disk or in LIBS: !{

Al qr

34

' Declare System Routines and Functions{

'q

Start: 1
DECLARE FUNCTION xOpen& LIBRARY{
DECLARE FUNCTION xRead$% LIBRARY]
DECLARE FUNCTION AllocMem& LIBRARY
DECLARE FUNCTION Examine& LIBRARY{
DECLARE FUNCTION Locké& LIBRARYT

201

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

' Open Libraries{
' q

LIBRARY "exec.library"{
LIBRARY "dos.library"{
L]
' Inputq
'q1
sourcefile: |
CLST
LINE INPUT "Name of Source-File: ";source${
PRINT{
PRINT "Insert Diskette and Press <RETURN>"{
WHILE A$<>CHRS$ (13)9
AS$=INKEYS$]
WEND{
LOCATE 3,1:PRINT "Checking File... "q
CHDIR "df0:"q{
CheckFile source$,Bytes&{
b
1
IF Bytes&=0 THENY
LOCATE 3,1:PRINT "File not found...":BEEP{
A=TIMER+3 :WHILE A>TIMER:WENDY
GOTO sourcefileq
ELSEIF Bytes&=-1 THEN{
LOCATE 3,1:PRINT "I can't find the Directory..."q
BEEP :A=TIMER+3:WHILE A>TIMER:WENDY
GOTO sourcefileq
END IF{
LOCATE 3,1:PRINT "File Found. Length=";Bytess;" Byte"q
.3

=]

' Setup Buffer{
'q1
PublicRAM&=65537&]
Bufferé&=AllocMems (Bytes&,PublicRAMs) 9
IF Buffer&=0 THEN{
LOCATE 5,1:PRINT "Not enough memory."q
LOCATE 7,11
PRINT "Program can re-started with RUN."q
BEEP :ENDY
END IFq

' Load File in Buffer{
'q
source$=source$+CHRS (0) I
Opened&=xOpené& (SADD (source$),1005)
IF Opened§=0 THEN{
LOCATE 5,1:PRINT "I can not open the File!"{
:A=TIMER+3:WHILE A>TIMER:WENDJ
GOTO sourcefileq
END IFY
sofar%=xRead$ (Opened&,Buffers,Bytess) g
CALL xClose (Opened&) 1

=

' Input Target-File{
'q1

=8

202

ABACUS

6.3 UTILITY PROGRAMS

targetfile: 1
LOCATE 9,1:PRINT "Name of BASIC-ASCII-File"{
1
1
FOR i=11 TO 17 STEP 21
LOCATE i,1:PRINT SPACES$ (80)1
NEXT]
LOCATE 11,1:LINE INPUT "to be produced: ";target${
LOCATE 13,1:PRINT "Insert Target-Disk and Press
<RETURN>"q
AS$="" :WHILE AS$<>CHRS$ (13) :A$=INKEYS :WEND{
CHDIR "df0:"q
LOCATE 15,1:PRINT "Checking Disk..."{
CheckFile target$,existé&q
IF exist&=-1 THEN{
LOCATE 15,1:PRINT "This is the Name of a Directory!"1
BEEP :A=TIMER+3:WHILE A>TIMER:WEND{
GOTO targetfile{
ELSEIF exist&<>0 THEN{
LOCATE 15,1:PRINT "A File with that name already"{
LOCATE 17,1:PRINT “"exists! Replace File? (Y/N)"{
pause: q
AS=INKEY$:IF AS<"" THEN A$=UCASES$ (A$)1
IF A$="Y" GOTO continue{
IF A$<"N" GOTO pausef{
GOTO targetfile(
END IF{
continue:q

=

' Produce DATA-ASCII-File{
1
LOCATE 19,1:PRINT "Producing ASCII-File."{
LOCATE 21,1:PRINT "Please be Patient..."q
OPEN targets3 FOR OUTPUT AS 11
Number&=01
PRINT#1,"RESTORE datas";CHR$ (10);1
PRINT#1,"datastring$=";CHRS$ (34) ;CHR$ (34) ;CHRS$ (10) ;1
PRINT#1,"FOR i=1 TO ";STR$ (Bytes&);CHR$ (10);1
PRINT#1,"READ a$";CHRS (10);1
PRINT#1,"a$=";CHRS (34) ;"&H";CHRS (34) ;"+a$"; CHRS (10) ;1
PRINT#1, "datastringS-datastring$+CPlR$ (VAL (a$)) "1
PRINT#1,CHRS (10) ; 1
pRINT#l,"Nm"ﬂm (10); 1
PRINT#1,"datas:";CHRS (10) ; 1

=1
PRINT#1,"DATA ";1
Bcount-no‘ll
Value:
PRINT#I,HEXS (PEEK (Buffers+Numbers)) ;1
BCount=BCount+1 :Number&=Number&+1
IF Number&<Bytes& THENT
IF BCount<20 THEN {
PRINT#1,",";
GOTO Value‘i[

-

203

6. AMIGABASIC INTERNALS AMIGA TRICKS AND Tips

Variables

204

ELSE1
PRINT#1, CHRS (10) ; 1
GOTO Loop1
END IFq
END IF{
PRINT#1, CHRS (10) ;CHRS (10) ;
CLOSE 11
' Alter .info-file{
T
SAVE "DATA-GENINFO"{
tmp$=target$+".info"q
KILL tmp${
NAME "DATA-GENINFO.info" AS target$+".info"{
KILL "DATA-GENINFO"{
CLs1
PRINT "finished."q \
CALL FreeMem(Buffer&,Bytesg)
ENDY

=8

' SUBROUTINE{

T

SUB CheckFile (Filename$,Length&) STATICY
ChipRAM&=65538&1
InfoBytes&=2529
Info&=AllocMems& (InfoBytes&, ChipRAMS)
IF Info&=0 THEN ERROR 79
File$=Filename$+CHRS (0) 1

1

=

DosLock&=Lock& (SADD (File$) ,-2) q
IF DosLock&=0 THENY
Length&=09
ELSE]
Dummy&=Examine& (DosLock&, Info&)
Length&=PEEKL (Info&+4) 4
IF Length&>0 THEN {
Length&=-19
ELSE{
Length&=PEEKL (Info&+124) q
END IF{
END IFq
CALL UnLock (DosLock&) 1
CALL FreeMem(Info&, InfoBytes&) I

END SUB{

A string, help variable
AllocMem EXEC routine; reserves memory
Buffer address of reserved me

Bytes length of file being edited

CheckFile SUB routine; tests for file availability: if yes, then it
checks for directory; if not, it checks for length

ChipRAM option for AllocMem; 2716 (65536)=clear range,
2"1(2)=chip RAM range
DosLock file handle for Check£i le routine

ABACUS

Durmmy
Examine
File
Filename
FreeMem
Info
InfoBytes
Length
Lock

Opened
PublicRAM

UnLock
Number&
sofars
i
source
target
existé&
Tmp
xClose
xOpen
XRead
BCount

6.3 UTILITY PROGRAMS

unused variable

DOS routine; looks for file

filename with concluding 0 for DOS
name of file being edited

EXEC routine; frees memory range
address of file info structure

length of file info structure

file length

DOS routine; blocks access from other programs and
provides handle

address of file handle for source file
option for AllocMem; 2”16 (65536)=clear range,
2/71(2)=public range

DOS routine; releases Lock

counter for DATA values written
number of bytes read so far

loop variable

source file

target file in ASCII format for DATA
flag:does file exist?

help variable - temporary file

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

byte counter for a line of DATA

6.3.2

Cross-reference list

This program demonstrates a method of reading values from Amiga-
BASIC programs stored in binary format. Before doing this, the
program you wish to read must have its onboard program control codes
removed, as well as any program "garbage" that can occur between the
program body and the variable table. Do the following to clean up the

program code:

. Load the file you want to check

. SAVE "Filename",A

« Quit AmigaBASIC

. Reload AmigaBASIC

. LOAD "Filename"

. SAVE "Filename",B

205

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

206

Once you do this, you can now send a cross-reference list of this pro-
gram to a printer using the program below. It displays labels as well as
line numbers in the output. Places where branches are set (e.g., GOTO
place) are marked by "<- -". If a branch goes to a section of a pro-
gram not set by a branch marker (e.g., the beginning of a program), a
pseudo label appears in parentheses (e.g., "(Program start)"). A "- ->"
marks the destination of the branch. Bear in mind that operating system
calls and SUB routines are viewed by the AmigaBASIC interpreter as
variables. Aside from that, this program is a great method of document-
ing your programs.

'R AR AR R BE R AR AR E AR AR AR R AR AT
'#CrossReference BAmiga #]

i #1
' # (W) 1987 by Stefan Maelger #q
' RERR R R AR R R R R A RR R ER AR AR R R AR AR AT
'q1
This program creates a Cross-Reference{
of a program on your Printer.{
It allows every BINARY formatq
AmigaBASIC-Program to be documented.{

=

Al
Al
' How the AmigaBASIC programmer handledq
' SUB-Routines and System calls is still{
' not well known.{

Al

L]

q
—--—-Reserve Memory, load PrinterDriver, ———-{
—-—-Open Library and Variables---—-{
CLEAR, 45000&9
LPRINTq

DECLARE FUNCTION xOpen& LIBRARYY
DECLARE FUNCTION xRead% LIBRARY]
DECLARE FUNCTION Seek% LIBRARYY
LIBRARY "dos.library"q

DIM Cross$ (5000) , names$ (1000) q
1

LOCATE 2,21

PRINT CHR$(187);" Cross Reference Amiga ";CHR$(171)1
LOCATE 5,21

PRINT "Name of the binary AmigaBASIC-Program:"(
LOCATE 7,29

LINE INPUT Filename$q

CHDIR "dfO0:"q
1

BASICcheck Filename$,Result%q
1

LOCATE 10,29

IF Result%=-1 THENJ

PRINT "I can not find any Info-File."{
ELSEIF Result%=0 THENY

PRINT "Read-Error!"{

ELSEIF Result%=1 THEN{

PRINT "This is Not an AmigaBASIC-Program."q
END IFq

ABACUS 6.3 UTILITY PROGRAMS

IF Result%<>2 THEN{
BEEPq
WHILE INKEYS$=""q
WENDY
RUNY
END IFq
PRINT CHRS (34) ;Filename$;".info";CHRS (34) 1
PRINT 1)
PRINT " made with this Program as AmigaBASIC-File."{
1
OpenFile Filename$,handle&{

1
LOCATE 14,21
IF handle&=0 THENY
PRINT "ARARaargh! I can't find ";CHR$ (34);1
PRINT Filename$;CHRS (34);"!t!"q
BEEP{
WHILE INKEYS$="":WEND:RUN{
ELSET
PRINT "File opened."{
END IF{
LOCATE 16,29
1
HeaderCheck handle&, Header$1
1
IF ASC(Header$)<>&HFS THEN{
PRINT "Sorry, I can only Cross-Refeience binary-Files"{
BEEP{
WHILE INKEYS$="":WEND:RUNY
ELSE{
PRINT "File has binary Format"{
PRINT :PRINT "Please be patient. ";
PRINT "I'll report on my status..."{
END IFq
pointer$=-11
1
main:q
q
GetLine handleé&,Current$q
1
IF LEN (Current$)<4 THEN{
PRINT
PRINT " Reached the end of Binary-Codes"{
PRINT :PRINT " getting Variable Table."{
GOTO Vartab{
END IF{
IF ASC(Current$)=128 THENT
pointert=pointer%+11
Cross$ (pointer$)=CHR$ (128) +MID$ (Current$, 4,2) 1
Current$=MID$ (Current$, 6) 1
ELSE{
Current$=MIDS$ (Current$, 4) 1
END IF{
1
GetToken:q
1

207

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

Token%=ASC (Current$+CHRS (0)) 1

IF Token%=0 GOTO main{

1

'=———Command Token?---- ¢

IF Token%>127 THEN{
IF Token%=175 OR Token%=141 GOTO main{
IF Token%=190 OR Token%>247 THEN{

Current$=MID$ (Current$, 3) 1
ELSE{
Current$=MID$ (Current$, 2) 1

END IF{
GOTO GetToken{

END IF{

il

' String? 1

IF Token%=34 THEN{
Byte%=INSTR (2, Current$, CHRS (34)) 1
IF Byte%=0 GOTO main{
Current$=MID$ (Current$, Byte%+1) 1
GOTO GetToken{

END IF{

1

'———- 2-Byte-Value Sequence?---- |
IF Token%=1 OR Token%=11 OR Token%=12 OR Token%=28 THEN{
Current$=MIDS$ (Current$, 4) 1
GOTO GetTokenq

END IFq

1

!—=——- l-Byte-Value Sequence?----

IF Token%=15 THEN Current$=MID$ (Current$, 3) :GOTO
GetTokenq

1

'=——- 4-Byte-Value Sequence?---- {

IF Token$%=29 OR Token%=30 THENY
Current$=MID$ (Current$, 6) 1
GOTO GetToken]
END IFq
1
'———- 8-Byte-Value Sequence?---- ¢
IF Token%=31 THEN Current$=MIDS$ (Current$, 10) :GOTO
GetToken]
1
'-——— Is it a Label?--— 1
IF Token%=2 THEN]
pointer$=pointer%+1q
Cross$ (pointer%) =LEFT$ (Current$, 3)
Current$=MID$ (Current$, 4) 1
GOTO GetToken{
END IFY
q
'-——— Is it a Branch Statement?-—— ¢
IF Token%=3 OR Token%=14 THENY
pointer$=pointer$+1{
Cross$ (pointer%) =CHRS$ (Token%) +MID$ (Current$, 3, 2) 1
Current$=MID$ (Current$, 5) 1
GOTO GetToken{

208

ABACUS 6.3 UTILITY PROGRAMS

END IFq
Current$=MID$ (Current$, 2) 1
GOTO GetTokenq
1
Vartab:q
1
p2%=-19
q
notforever:{
1
GetLength handleé&,bytes$q

IF bytes$=0 GOTO GoOn{

=0 =A

GetName handle&,Current$,bytes$q

=a

P2%=p2%+19
names$ (p2%) =Current$1
GOTO notforevery
1
GoOn: 1
q
IF pointer$=—1 THEN{
PRINT
PRINT "I have no Label or Line Number"{
PRINT {
PRINT "that I can discover!"{
BEEP{
WHILE INKEYS$="":WEND:RUN{
ELSEIF p2%=-1 THEN{

PRINT 1
PRINT "Hmm — no Variable Table"{
BEEPY
WHILE INKEYS$="":WEND:RUN{
ELSE 1
PRINT :PRINT " Getting Data."
END IFq
1
LPRINT ">>> CrossReference Amiga <<<"{
LPRINT " "q
LPRINT "Program: ";Filename${
LPRINTY
FOR i=0 TO pointer%{
ascii%=ASC (Cross$(i)) 1

IF ascii%=2 THEN{
LPRINT names$ (CVI (MID$ (Cross$(i),2))):":"
FOR j=0 TO pointer%{
IF ASC(Cross$ (3j))=3 THENT
IF CVI (MID$ (Cross$ (j),2))=CVI (MID$ (Cross$ (i), 2))
THEN{
k=31
WHILE k>-11
k=k-19
IF k>-1 THEN1
IF ASC(Cross$ (k))=2 THEN{
IPRINT " <-— ";{

209

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

LPRINT names$ (CVI (MID$ (Cross$ (k),2)))1
k=29

ELSEIF ASC(CrossS$ (k))=128 THENY
LPRINT " <—— ";CVI (MID$ (Cross$ (k),2))1

k=—29
END IF{
END IF{
WEND ¢
IF k=-1 THEN LPRINT " <-—— (Program-Start) "q
END IFQ
END IFq |
NEXT 39 ‘
ELSEIF ascii%=3 THEN{
IPRINT " --> ";names$ (CVI (MID$ (Cross$ (i), 2)))1
ELSEIF ascii%=14 THENY
LPRINT " --> ":CVI (MIDS$ (Cross$ 1)y,2n1

ELSEIF ascii%=128 THEN{
LPRINT CVI(MID$ (Cross$(i),2)) 1
FOR j=0 TO pointers%q
IF ASC(Cross$(j))=14 THENQ
IF CVI(MID$ (Cross$ (3),2))=CVI (MIDS$ (Cross$ (1) ,2))
THEN{
k=39
WHILE k>-19
k=k-19
IF k>-1 THEN{
IF ASC(Cross$ (k))=2 THEN{
LPRINT " == ",’ﬂ
LPRINT names$ (CVI (MID$ (Crosss$ (k), 2)N) 1
k=29
ELSEIF ASC(Cross$ (k))=128 THEN{
LPRINT " <—— ";CVI (MID$ (Cross$ (k),2))1
k=-21
END IF{
END IF{
WEND q
IF k=-1 THEN LPRINT " <-- (Programm-Start) "q
END IF{
END IFq
NEXT 31
END IF{
NEXT i
PRINT :PRINT "Finished."q
BEEP{
WHILE INKEY$="":WEND:RUNY
1
SUB GetName (handle&,Current$,bytest) STATIC]
Current$=SPACES$ (bytes%)
Length%=xRead$ (handle&, SADD (Current$) , bytes$) 1
END SUB{
1
SUB GetLength (handle&,bytes$) STATICT
Current $=CHRS$ (0) 1
readit: q
Length%=xRead$ (handle&, SADD (Current$), 1) 1
IF Length%=0 THEN]

210

ABACUS

6.3 UTILITY PROGRAMS

CALL xClose (handle&) 1
bytes%=09
EXIT SUBY
END IFq
bytes$=ASC (Current$) 1
IF bytes%$=0 THEN readit{
IF bytes$>60 THEN readit{
1
END SUB{
1
SUB GetLine (handle&,Current$) STATICY
Current$=STRINGS (3, 0) 1
Length%=xRead% (handle&, SADD (Current$), 3) 1
OldPos%=Seek% (handle&, -3, 0) 1
LoL%=ASC (MID$ (Current$,2,1)) 1
IF LoL%=0 THENY
EXIT SUBT
ELSE{
Current $=STRINGS$ (LoL%, 0) 1
Length%=xReads (handle&, SADD (Current$) , LoL%) 1
END IFq
END SUB{
1
SUB HeaderCheck (handleé&, Header$) STATICY
Header$="1"9
OldPos%=Seek$ (handle&, 0,-1) 1
gotit%=xRead% (handle&, SADD (Header$),1) 1
END SUB{
1
SUB OpenFile (Filename$,handle&) STATICY
file$=Filename$+CHRS (0) 1
handle&=xOpen& (SADD (file$),1005) 1
END SUB{
1
SUB BASICcheck (Filename$,Result%) STATICY
file$=Filename$+".info"+CHRS (0) 1
Default.Tool$=SPACES$ (20) 1
handle&=xOpené& (SADD (file$) ,1005) 1
IF handle&=0 THEN{
Result%=-19
ELSEQ
OldPos%=Seek% (handle&,-20,1) 1
gotit%=xRead$ (handle&, SADD (Default.Tool$) ,20) 1
IF gotit%<20 THEN{
Result%=01
ELSE1
IF INSTR(Default.Tool$, "AmigaBASIC")>0 THENT
Result$=21
ELSE{
Result$=11
END IF{
END IF{
CALL xClose (handle&) 1
END IFq
END SUB1

211

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

Variables BASICcheck SUB routine; test for Default Tools
Byte pointer to byte in string
Bytes length of file being edited
Cross string array; buffer for branch markers and jumps
Current string; BASIC line read

Default.Tool string; reads Default Tool
Filename string; name of file to be edited
GetLength SUB routine; reads label length

GetLine SUB routine; reads line
GetName SUB routine; reads label name
Header string; file header byte
HeaderCheck SUB routine; checks for header type
Length file length
LoL line length
Oldpos old pointer position in file
OpenFile SUB routine; opens file
Result flag; result of search
Seek DOS routine; moves read/write pointer in file
Token address of file handle for source file
ascii code value in Cross$
File string; filename ended with 0 for DOS routines
gotit bytes read so far
handle file handle address
i loop variable
3 loop variable
k loop variable
names string array; branch marker names
p2 help variable:
pointer help variable
xClose DOS routine; closes file
xOpen DOS routine; opens file
XRead DOS routine; reads file

6.3.3 Blank line Kkiller

Now that you know how to make blank lines, you should know how to
get rid of them. The following program removes these lines for you.
Before using this program, any control codes and garbage must be re-
moved (see the preceding section for instructions on doing this).

212

ABACUS 6.3 UTILITY PROGRAMS

When you type in this program, you could create small errors that can

Note: ruin the programs being modified. Use copies of the program you want
to modify only, and test the main program with these copies to make
sure that it runs properly. This program alters the file and saves it out
again. The current window closes to save memory. If there are small
errors in the line killer program, such as an endless loop, you won't be
able to recover the program. If the program seems as if it's taking a
while at first, don't panic—the time factor depends on the file being
modified.

FHERRRRERHERRERFR TR ARRHAHH ARS8
Blank Line-Killer Amiga #1
#1
(W) 1987 by Stefan Maelger #1
FHEFHHHHER AR AR F R R AR AR RERH A FH B AR H 4T

L}
L]
1
v
L

'q
' "dos.bmap" and "exec.bmap" must be on{
' Disk or in LIBS:{
A
'q
DECLARE FUNCTION AllocMem& LIBRARY{
DECLARE FUNCTION Locké& LIBRARYY
DECLARE FUNCTION Examine& LIBRARY{
DECLARE FUNCTION xOpen& LIBRARY]
DECLARE FUNCTION xRead& LIBRARY]
DECLARE FUNCTION xWrite& LIBRARY]
LIBRARY "exec.library"{
LIBRARY "dos.library"q
WINDOW CLOSE WINDOW (0)
WINDOW 1,"Blank Line-Killer", (0,0)-(250,50),161
Allocation.l:q
COLOR 3,1:CLS{
info&=AllocMem& (252&, 65538&) 9
IF info&=0 THEN{
ALIOCERR
GOTO Allocation.1ld
END IF 1
Source: 1
REQUEST "SOURCE"{
SELECT box%
IF box% THEN CALL FreeMem(info&, 252) : SYSTEM{
CHDIR "df0:"q
GetFilename: 1
LINPUT Filename${
GETINFO Filename$, info&, Length&d
IF Length&<l THEN{
IF Length&=-1 THEN{
DIRERR{
ELSEIF Length&=0 THEN{
FILEERR{
END IF{
GOTO GetFilename{
END IF{
Allocation.2:q
COLOR 3,1:CLS 1
buffers=AllocMem& (Length&, 65537&) 1

q
p 3

213

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

IF buffer&=0 THEN]
ALTOCERR{

GOTO Allocation.21

END IFq

LOADFILE Filename$,buffers&,Length&q

IF Filename$="" THEN{

CALL FreeMem(buffer&, Lengthé&) 1
LOADERRY
GOTO GetFilename

END IF{

IF PEEK (buffer&)<>&HFS THEN{
CALL FreeMem(buffer&, Length&) 1
FORMERRY
GOTO GetFilenameq

END IF{

NEWFILE Filename$,handle&q

IF handle&=0 THEN{

CALL FreeMem(buffer&, Length&) 1
CALL FreeMem(info&,252&)1
OPENERR{

SYSTEM{

END IF{

Bytes&=11

DWRITE handle&,buffer&,Bytes&q

IF Bytes&=0 THEN{
CALL xClose (handle&) 1
CALL FreeMem(buffer&, Length&) 1
CALL FreeMem(info&,252&)1
WRITEERRY
SYSTEM{

END IFq

pointer&=buffer&+1q

GetLength:q

Bytes&=PEEK (pointer&+1) 1

IF Bytes&=4 THEN{
pointer&=pointer&+49
GOTO GetLength{

ELSEIF Bytess&>4 THENT
DWRITE handle&,pointer&,Bytes&(
IF Bytes&=0 THENY

CALL xClose (handle&) 1
CALL FreeMem(buffers, Lengthé&) 4
CALL FreeMem(infoé&, 252&) 1
WRITEERR]
SYSTEM{
END IF{
pointer&=pointer&+Bytess&]
GOTO GetLength{
ELSE{
Bytes&=Length&- (pointer&-buffers+l) |
DWRITE handle&, pointers,Bytes&q
IF Bytes&=0 THEN{
CALL xClose (handle&) |
CALL FreeMem(buffers, Length&) 1
CALL FreeMem(infoé&, 252&) 1
WRITEERR

214

ABACUS

6.3 UTILITY PROGRAMS

SYSTEM{

END IF
END IFq
CALL xClose(handle&) 1
CALL FreeMem(buffer&,Length&) 1
CALL FreeMem(info&,252&) 1
LIBRARY CLOSE{
COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."q
WHILE INKEYS$="":WEND{
SYSTEM{

SUB WRITEERR STATIC{

COLOR 1,3:CLS:LOCATE 2, 2:PRINT "ERROR: Write—error."{
ShowCont{

END SUB 1
SUB DWRITE (handleé&, adr&,Length&) STATICY

written&=xWrite& (handle&, adr&, Length&) 1
IF written&<>Length& THEN Length&=01

END SUB1
SUB OPENERR 'STATIC{

COLOR 1, 3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open

File."q

ShowCont{

END SUB 1
SUB NEWFILE (Filename$,handle&) STATICY

File$=Filename$+CHRS (0) 1
handle&=xOpen& (SADD (File$) ,1005) 1

END SUB 1
SUB FORMERR STATIC{

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary

File."q

ShowContq

END SUB 1
SUB LOADERR STATIC{

COLOR 1, 3:CLS:LOCATE 2,2:PRINT "ERROR: Load-error."{
ShowCont{

END SUB{
SUB LOADFILE (Filename$,buffer&,Length&) STATIC{

File$=Filename$+CHRS$ (0)

chandle&=xOpené& (SADD (File$) ,1005) 1

IF handle&=0 THEN{
FilenameSa" "11
ELSE 1
inBuffer&=xReads (handle&, buffers, Length&) 1
CALL xClose (handle&) 1
IF inBuffer&<>Length& THEN Filename$=""{
END IF{

END SUB{
SUB FILEERR STATIC{

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: File not

found."q

ShowCont{

END SUB 1
SUB DIRERR STATICT

COLOR 1, 3:CLS:LOCATE 2,21
PRINT "ERROR: File is a Directory."{
ShowCont{

215§

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

END SUBY
SUB GETINFO(Filename$, info&,Length&) STATIC{
File$=Filename$+CHRS (0) :DosLock&=ILocké& (SADD (File$), -
2)1
IF DosLocké&=0 THEN 1
Length&=09
ELSE]
Dummy&=Examine& (DosLock&, info&) 1
IF PEEKL(info&+4)>0 THEN{
Length&=—-19
ELSE{
Length&=PEEKL (info&+124) 1
END IF{
END IF{
CALL UnLock (DosLocké&) 1
END SUB{
SUB LINPUT (Filename$) STATICY
COLOR 3,1:CLS:WINDOW 2,"Filename:", (0,0)-(250,10),09
WINDOW OUTPUT 1:IOCATE 5,21
PRINT "Name of a binary saved File";{
LINE INPUT Filename$:WINDOW CLOSE 29
END SUB{
SUB SELECT (box%) STATICY
Check: 1
WHILE MOUSE (0)=0:WEND : x=MOUSE (1) : y=MOUSE (2) 1
IF y>27 AND y<43 THEN{
IF x>9 AND x<38 THEN box%=0:EXIT SUB{
IF x>177 AND x<238 THEN box%=-1:EXIT SUB{
END IFq
GOTO Check{
END SUB{
SUB ALIOCERR STATIC{
COILOR 1, 3:CLS:LOCATE 2,2:PRINT "ERROR: Allocation
denied."q
ShowCont{
END SUB{
SUB ShowCont STATICY »
LOCATE 4,2:PRINT "Press SPACE to continue, "
LOCATE 5,7:PRINT "ESCAPE to exit.";
WHILE a$<>CHRS$ (32) AND a$<>CHR$ (27)1
a$=INKEYS]
WENDY
IF a$=CHRS$ (27) THEN SYSTEM{
END SUB{
SUB REQUEST (disk$) STATICT
COLOR 3,1:CLST
LOCATE 2,2:PRINT "INSERT ";disk$;" DISK INTO DRIVE"{
LOCATE 3,14:PRINT "DFO:":LOCATE 5,3:PRINT "OK";{
LOCATE 5,24:PRINT "CANCEL"; :LINE(10,28)-(37,42),3,b1
LINE (178, 28)~-(237,42),3,b{

END SUB{
Variables ALLOCERR SUB routine; memory reservation error
AllocMem EXEC routine; reserves memory
Bytes length of file being edited
DIERR SUB routine; error—no file

216

ABACUS

DWRITE
DosLock
Durmmy
Examine
FILEERR
FORMERR
File
Filename
FreeMem
GETINFO
LINPUT
LOADERR
LOADFILE
Length
Lock

NEWFILE
OPENERR
REQUEST
SELECT
ShowCont
UnLock
WRITEERR
a

adr

b

box
buffer
disk
handle
inBuffer
info
pointer
written
x
xClose
xOpen
xRead
xWrite

y

6.3 UTILITY PROGRAMS

SUB routine; write to file

file handle of Lock

unused variable

DOS routine; looks for file

SUB routine; error

SUB routine; error

filename with concluding 0 for DOS
name of file being edited

EXEC routine; frees memory range
SUB routine; file check

SUB routine; input

SUB routine; error

SUB routine; load program

file length

DOS routine; blocks access from other programs and
provides handle

SUB routine; create new file

SUB routine; error

SUB routine; draw primitive requester
SUB routine; select through mouse click
SUB routine; show options

DOS routine; releases Lock

SUB routine; error

help variable

address

help variable

help variable

address of reserved memory

diskette

address of file handle

bytes read

address of file info structure

help variable

bytes written

help variable

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

DOS routine; writes to file

help variable

6.3.4

REM Killer

This program has a lot of the same code as the line killer in Section
6.3.3. Load that program, change the necessary text and save the new
program under a different name from the name you assigned in Section

6.3.3.

217

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

218

FRERRFHRR AR RFERFRFRRERHARHRE R R RHFRHHT
Kill-Remark Amiga #1
#

L]
' #9
' (W) 1987 by Stefan Maelger #1
UORRHEAR AR AR AR AR AR AR AR R R R E R RERET
'q
' "dos.bmap" and "exec.bmap" must be on{
' Disk or in LIB:{
L]
'q
DECLARE FUNCTION AllocMem& LIBRARY]
DECLARE FUNCTION Locké& LIBRARY]
DECLARE FUNCTION Examine& LIBRARY{
DECLARE FUNCTION xOpen& LIBRARYT
DECLARE FUNCTION xReadé& LIBRARY{
LIBRARY "exec.library"{
LIBRARY "dos.library"{1
WINDOW CLOSE WINDOW (0) 1
WINDOW 1,"Kill-Remark", (0,0)-(250,50),161
Allocation.1l:1
COLOR 3,1:CLSq
info&=AllocMems (252&,65538&) 1
IF info&=0 THENY
ALIOCERR q
GOTO Allocation.1l
END IF 1
Source: 1
REQUEST "SOURCE"{
SELECT box%1
IF box% THEN CALL FreeMem(infoé&, 252) : SYSTEM{
CHDIR "df0:"q
GetFilename: q
LINPUT filename${
GETINFO filename$, info&, Length&q
IF Length&<l THEN{
IF Length&=-1 THEN{
DIRERRY
ELSEIF Length&=0 THEN{
FILEERR{
END IFY
GOTO GetFilename{
END IFq
Allocation.2:q
COLOR 3,1:CLS 1
buffer&=AllocMems (Lengthé&, 65537&)
IF buffer&=0 THEN{
ALLOCERR{
GOTO Allocation.2q
END IF{
LOADFILE filename$,buffers&,Length&q
IF filename$="" THEN{
CALL FreeMem(buffer&, Length&) |
LOADERRY
GOTO GetFilename{
END IF{
IF PEEK (buffer&)<>&HF5 THEN{

q
a4

ABACUS 6.3 UTILITY PROGRAMS

CALL FreeMem(buffer&, Length&) 1
FORMERRY
GOTO GetFilename{
END IFq
NEWFILE filename${
Bytes&=1q
DWRITE buffer&,Bytes&q
pointer&=buffers+1q
GetLength:{
Bytes&=PEEK (pointers&+1) {
IF Bytes&=4 THENY
pointer&=pointer&+4q
GOTO GetLength{
ELSEIF Bytes&>4 THEN{
IF PEEK (pointer&)=128 THEN offs&=6 ELSE offs&=49
IF PEEK (pointer&+offs&)<>175 THENY
DWRITE pointer&,Bytes&]
END IF 1
pointeré&=pointer&+Bytes&q
GOTO GetLength{
ELSEq
IF ((pointer&-buffer&+l)MOD 2)=1 THENY
pointer&=pointers-19
END IFq
Bytes&=Length&- (pointer&-buffer&+1) +19
DWRITE pointer&,Bytes&l
END IFq
CLOSE 11
OPEN filename$+"-RL.info" FOR OUTPUT AS 19
OPEN filename$+".info" FOR INPUT AS 29
PRINT#1, INPUTS (IOF (2),2) ; 1
CLOSE 2,11
KILL filename$+"-RL.info.info"q
1
CALL FreeMem(buffer&,Length&) 4
CALL FreeMem(info&, 252&) 1
LIBRARY CLOSE{
COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."{
WHILE INKEY$="":WENDJ
SYSTEM{
SUB WRITEERR STATICH
COLOR 1, 3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error."q
ShowCont{
END SUB 1
SUB DWRITE (adr&,length&) STATICY
FOR i&=1 TO Lengthé&{
PRINT#1, CHRS (PEEK (adr&-1+i&)) ;1
NEXTq
END SUB{
SUB OPENERR STATIC{
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open
File."1
ShowCont
END SUB 1
SUB NEWFIIE (filename$) STATIC{
File$=filename$+"-RL"{

219

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

OPEN File$ FOR OUTPUT AS 1 ¢
END SUB 1
SUB FORMERR STATIC{
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary
File."q
ShowCont{
END SUB 1
SUB LOADERR STATICT
COLOR 1, 3:CLS:LOCATE 2,2:PRINT "ERROR: Load-error."{
ShowContq
END SUB{
SUB LOADFIIE (filename$,buffers,Length&) STATIC{
File$=filename$+CHRS (0)
:handle&=xOpené& (SADD (File$),1005) 1
IF handle&=0 THEN{
filename$=""9
ELSE 1
inBuffer&=xRead& (handle&, buffers, Length&) 1
CALL xClose (handle&) 1
IF inBuffer&<>Length& THEN filename$=""q
END IFq
END SUBT
SUB FILEERR STATICY
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: File not
found."q
ShowCont{
END SUB 9
SUB DIRERR STATICY
COIOR 1, 3:CLS:LOCATE 2,21
PRINT "ERROR: File is a Directory."1
ShowCont{
END SUB{
SUB GETINFO (filename$, info&,Length&) STATIC{
File$=filename$+CHRS (0) :DosLock&=Locké& (SADD (File$), -
21
IF DosLock&=0 THEN 1
Length&=01
ELSE]
Dummy &=Examine& (DosLock&, info&) 1
IF PEEKL (info&+4)>0 THEN
Length&=-1 {
ELSE q
Length&=PEEKL (info&+124) 1
END IF{
END IFq
CALL UnLock (DosLock&) 1
END SUB{
SUB LINPUT (filename$) STATICY
COLOR 3,1:CLS:WINDOW 2, "Filename:", (0,0)-(250,10),09
WINDOW OUTPUT 1:LOCATE 5,29
PRINT "Name of a binary saved File";{
LINE INPUT filename$:WINDOW CLOSE 29
END SUBq '
SUB SELECT (box%) STATIC{
Check: 1

WHILE MOUSE (0)=0:WEND :x=MOUSE (1) : y=MOUSE (2) 1

220

ABACUS 6.3 UTILITY PROGRAMS

IF y>27 AND y<43 THEN{
IF x>9 AND x<38 THEN box%=0:EXIT SUB{
IF x>177 AND x<238 THEN box$%=-1:EXIT SUBJ
END IFq
GOTO Check{
END SUB{
SUB ALLOCERR STATICY
COLOR 1, 3:CLS:LOCATE 2,2:PRINT "ERROR: Allocation
denied."q
ShowContq
END SUB{
SUB ShowCont STATICY
LOCATE 4,2:PRINT "Press SPACE to continue,"q
LOCATE S, 7:PRINT "ESCAPE to exit.";
WHILE a$<>CHRS$ (32) AND a$<>CHR$ (27)1
a$=INKEYS$T
WEND{
IF a$=CHRS$ (27) THEN SYSTEM{
END SUB{
SUB REQUEST (disk$) STATICY
COLOR 3,1:CLSq
LOCATE 2,2:PRINT "INSERT ";disk$;" DISK INTO DRIVE"]
LOCATE 3,14:PRINT "DFO:":LOCATE 5,3:PRINT "OK";{
LOCATE S5,24:PRINT "CANCEL";:LINE(10,28)~(37,42),3,b{
LINE (178,28)-(237,42),3,b1

END SUB{

Variables ALLOCERR SUB routine; memory reservation error
AllocMem EXEC routine; reserves memory
Bytes length of file being edited
DIERR SUB routine; error—no file
DWRITE SUB routine; write to file
DosLock file handle of Lock
Dummy unused variable
Examine DOS routine; looks for file
FILEERR SUB routine; error
FORMERR SUB routine; error
File filename with concluding 0 for DOS
FreeMem EXEC routine; frees memory range
GETINFO SUB routine; file check
LINPUT SUB routine; input
LOADERR SUB routine; error
LOAD LE SUB routine; load program
Length file length
Lock DOS routine; blocks access from other programs and

provides handle
NEWFILE SUB routine; create new file
OPENERR SUB routine; error
REQUEST SUB routine; draw primitive requester
SELECT SUB routine; select through mouse click
ShowCont SUB routine; show options
UnLock DOS routine; releases Lock
WRITEERR SUB routine; error
a help variable

221

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TipPs

adr address

b help variable

box help variable

buffer address of reserved memory
disk diskette

filename name of file

handle address of file handle

i help variable

inBuffer bytes read

info address of file info structure
offs offset

pointer help variable

written bytes written

x help variable

xClose DOS routine; closes file
xOpen DOS routine; opens file
xRead DOS routine; reads file

y help variable

6.3.5

Note:

222

Listing variables

You may look at a listing for an older BASIC program, and wonder
how you can solve any of its problems. Part of human nature lies in
doing no more work than necessary. You want to avoid detailed docu-
mentation, and at the same time, keep from being buried in a stack of

program printouts.

Thanks to modular programming, you can store a collection of short
routines on diskette, and merge them into programs as needed. Docu-
menting these short routines is indispensable. Also, many magazines
from which you get program listings usually supply detailed documen-
tation.

The program here gives variable lists and label names. These items are
vital to documenting program code. For example, you could check out
the variable lists of two files before MERGEing one to the other. This
avoids any major rewrites on both programs for changing variables to
match/conflict. Bear in mind that the variable list program can view
SUB programs and operating system routines as variables, even if the
variable types are different. This kind of thing can occur in other aspects
of BASIC with DEFINT xxx (e.g., DEFINT a-c). For example, if
you use a variable named Anton$, this variable appears in the list
under Anton. If you want the program to ignore uppercase and lower-
case during sorting, remove the four UCASES () statements after the
display label.

The loading and saving conventions used in the two preceding programs
apply to this section as well.

ABACUS 6.3 UTILITY PROGRAMS

AR R AR RHE R H R R AR R R R AT
Variable-List Amiga
#

Tl
(W) 1987 by Stefan Maelger #9
FREREER R REREEH R R AR BHFRH AR R BRI RRET

* @ @ = =

Al

1
' "dos.bmap" and "exec.bmap" must be on{
' Disk of in LIB:{

qr
i

1
CLEAR, 50000&1
DECLARE FUNCTION AllocMem& LIBRARYY
DECLARE FUNCTION Locké& LIBRARY{

DECLARE FUNCTION Examine& LIBRARY{
DECLARE FUNCTION xOpen& LIBRARY{
DECLARE FUNCTION xRead& LIBRARY{
LIBRARY "exec.library"{
LIBRARY "dos.library"{
WINDOW CLOSE WINDOW (0) 1
DIM varname$ (2000),var$ (2000) ,er$(5) 1
FOR i=0 TO 5:READ er$ (i) :NEXTY B
1
DATA "File contains no binary."{
DATA "Read-Error.","File open error."q
DATA "File is a directory.","File not found."q
DATA *"Allocation denied.”q
pil
nextTry:q
REQUEST "Place Disk into Drive df0.",1,"OK","", flag%{
WINPUT filename${
CHECKFILE filename$,buffers&q
IF buffers<0 THEN{
e%=6+buffersq
REQUEST er$ (e%), 2, "CANCEL", "QUIT", flag%{
IF flag%=2 THEN LIBRARY CLOSE:SYSTEM{
GOTO nextTry1
END IF]
pointer&=buffer&+1q
1
ReadLine:{
SETPOINTER pointer&, flag${
IF flag%=1 GOTO ReadNames{
1
ReadToken:{
CHECKTOKEN pointer&,number%q
IF number$%<0 GOTO ReadLinef{
var$ (number$)=1:GOTO ReadTokenq
1
ReadNames:q
current$=09
1
searching:q
IF PEEK (pointer&)=0 OR PEEK (pointer&)>&H60 THEN{
pointer&=pointer&+1:GOTO searchingi
END IFQ
1

223

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

224

getlength:q
length%=PEEK (pointer&) 1
IF length%=0 GOTO displayd
FOR i%=1 TO length%q
pointer&=pointer&+1

varname$ (current$) =varname$ (current%)+CHR$ (PEEK (pointer&)
1
NEXT{
current$=current$+11
pointer&=pointer&+l:GOTO getlengthi
1
display:1
flag$=1:first%=0:last¥=current$-21
WHILE flag%=1]
£flag$=01
FOR i%=first% TO last%q
IF UCASES$ (varname$ (1%)) >UCASES (varname$ (i%+1))
THEN{
SWAP varname$ (i%),varname$ (1%+1)q
SWAP var$ (i%),var% (1%+1)1
flag%=11
END IFQ
NEXT{
start$=start$+1:£flag$=09
FOR i%=last% TO first% STEP -19
IF UCASES$ (varname$ (i%)) <UCASES (varname$ (i%-1))
THEN{
SWAP varname$ (i%),varname$ (1%-1)q
SWAP var$ (i%),var$ (i%$-1)91
flagt=19
END IF]
NEXT]
last%$=last$-19
WEND{
1
Display2: 1
BEEP]
REQUEST "List to Screen?",2,"YES","NO",sflag%q
REQUEST "List to Printer?",2,"YES","NO",pflag%q
REQUEST "Save as ASCII-File?",2,"YES","NO", fflag%{
IF sflag%=2 AND pflag%=2 AND fflag%=2 GOTO ausgabe2q
IF sflag$=1 THEN WINDOW 2, "Variables:", (0,0)-
(240,180), 3194
IF fflag%=1 THEN{
OPEN filename$+".V" FOR OUTPUT AS 19
PRINT#1,CHRS (10) ; "Variable-List:";
PRINT#1, CHRS (10) ; " ——————— e ";CHR$ (10) ;CHRS (10) ; 1
END IFq
IF pflag%=1 THEN{
IPRINT "Variable-List from:"q
LPRINT filename$:LPRINT{
END IFq
FOR i%=0 TO current%-11
IF var% (i%)=1 THENY
IF sflag%=1 THEN PRINT varname$ (i%)q

ABACUS

6.3 UTILITY PROGRAMS

IF pflag%=1 THEN LPRINT varname$ (i%) 1
IF fflag%=l1 THEN PRINT#1,varname$ (i%);CHRS$ (10);9
END IF1
NEXTq
IF fflag%=1 THEN CLOSE 11
REQUEST "Ready.",1,"OK","", flag%1
LIBRARY CILOSE{
SYSTEM{
q
SUB CHECKTOKEN (a&,n%) STATIC{
PeekToken: 1
t%=PEEK (a&) :a&=a&+11
IF t%=0 THEN strflag%$=0:n%=-1:EXIT SUB{
IF strflag%=1 AND t$%<>34 GOTO PeekToken{
IF t%>127 THEN{
IF t%>247 THEN a&=a&+19
GOTO PeekToken{
ELSEIF t%=1 THEN{
n$=CV1I (CHR$ (PEEK (a&)) +CHRS (PEEK (a&+1))) :a&=a&+2:EXIT
SUBT
ELSEIF t$%=2 OR t%=11 OR t$=12 OR t%=28 THEN{
a&=a&+2:GOTO PeekToken{
ELSEIF t%=15 THEN{
a&=a&+1:GOTO PeekToken{
ELSEIF t%$=29 OR t%=30 THEN{
a&=a&+4:GOTO PeekToken
ELSEIF t%=31 THENY
a&=a&+8:GOTO PeekTokend
ELSEIF t%=3 OR t%=14 THEN{
a&=a&+3:GOTO PeekTokenq
ELSEIF t%=34 THEN{
IF strflag%=l1 THEN strflag%=0 ELSE strflag%=11
GOTO PeekTokenq
ELSE{
GOTO PeekToken{
END IF{
END SUB{
1
SUB SETPOINTER (a&, £%) STATICT
IF PEEK (a&+1)=0 THEN f%=1 ELSE £%=01
IF PEEK (a&)=0 THEN a&=a&+3 ELSE a&=a&+51
END SUB1
1
SUB CHECKFILE (a$,f&) STATICT
i&=AllocMems& (252&, 65538&) 1
IF i&=0 THEN 1
f&=-1:EXIT SUB{
ELSE{
b$=a$+CHRS (0) :1&=Lock& (SADD (b$) ,-2) 1
IF 1&=0 THENTY
f&=2:EXIT SUBY
ELSE(
s&=Examineé& (1&,1i&) 1
IF PEEKL(i&+4)>0 THEN{
f&=-3:CALL UnLock (1&) :EXIT SUBY
ELSE{

225

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

f&=PEEKL (1&+124) :CALL UnLock (1&) 1
CALL FreeMem(i&, 252&) :v&=£&+39
c&=AllocMems (v&, 65537&) 1
IF c&=0 THEN{
f&=-1:EXIT SUB{
ELSE{
h&=xOpen& (SADD (b$) ,1005) 1
IF h&=0 THENq
f&=~4:EXIT SUB{
ELSE{
r&=xRead& (h&, c&, £&) :CALL xClose (h&) 1
IF r&<f& THENQ
f&=-5:EXIT SUB{
ELSE{
fe=c&q
IF PEEK (f&)<&HFS5 THEN fis=-6:EXIT SUB{
END IF{
END IF 1
END IF
END IFq
END IFY
END IFq
END SUB{
1
SUB WINPUT (a$) STATIC{
WINDOW 1,"Input: Filename", (0,0)-(240,8),01
LINE INPUT a${
WINDOW CLOSE 19
END SUB{
1
SUB REQUEST (a$,m%,b$,c$,b%) STATICYT
WINDOW 1, "System Request", (0,0)-(240,40),229
COLOR 0,1:CLS:LOCATE 2, (30-LEN(a$))\2:PRINT a$; :COLOR
1,09
IF m%=1 THEN{
1%=LEN (b$) /2:LOCATE 4,15-1%:PRINT " ";b$;" ";q
ELSEIF m%=2 THEN{
LOCATE 4,2:PRINT " ";b$;" ";:LOCATE 4,27-LEN(c$)q
PRINT " ",’Cs,’" ",.11
END IFq
mousel: |
WHILE MOUSE (0)<>0:WEND
WHILE MOUSE (0)=0:WENDJ
x%=(MOUSE (1) +8) \8 : y%= (MOUSE (2) +8) \ 8 : b%=09
IF y%=4 THEN{
IF m%=1 THEN{
IF x%>14-1% AND x%<17+1% THEN b%=19
ELSEIF m%=2 THENY
IF x%>1 AND x%<LEN (b$)+4 THEN b$=1
IF x%>26-LEN(c$) AND x%<30 THEN b%=2
END IFq
END IFq
IF b%>0 THENY
WINDOW CLOSE 19
EXIT SUB{
END IF{

226

ABACUS

6.3 UTILITY PROGRAMS

GOTO mouselq
END SUB{

This program created many of the variable lists in this book.

6.3.6

Removing "extra" variables

Maybe you've wondered why a binary format BASIC program becomes
longer when you load, shorten and resave it, instead of shorter. Or
you've noticed when your BASIC program stops with an error, the
orange error box surrounds a couple of blank lines. You find that there's
garbage in the program that you can only see with the file monitor.
Why does the big program you've been working on run slower and
slower every time you edit it? And how can you manipulate internal
errors in a binary program?

There is a solution to these problems. As you repeatedly save programs
from the AmigaBASIC interpreter, the interpreter adds bits of extran-
eous data to the file (garbage). Like a garbage can, the program can only
hold so much of this garbage. This also goes for the entire memory
range assigned to the variable table. When you save a program, the
interpreter saves it without checking which variables still belong to the
program and which don't. The final problem is that important pointers
remain uninitialized—especially if these pointers stay unset before
saving or reloading a program.

There is, as always, a loophole. When you save a program in ASCII
format, what you get in the file is what you see on the screen: Plain
text separated by linefeeds (CHRS (10)).

. Save your program once with the extension ,A.

. Quit AmigaBASIC (if you just type new, the garbage still stays
on the screen, and the pointers stay unchanged).

. Restart AmigaBASIC's interpreter.
. Load the program.

. Save the program with the extension of ,B (binary format—very
important).

Remember the following rules when trying this resaving:

1) This process works best when you save incomplete programs as
ASCII files in the first place. Save the program out in binary
form when you wish to try running the program and/or debug-
ging it.

227

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

2) When a program runs into a problem you may not be able to
see, the logical solution is to save the file in ASCII format; you
might recover the program.

3) The worst thing you can do is save a program in binary format
afiter a test run that resulted in an error message. This causes the
most garbage sent from the interpreter.

4) If your program doesn't run after all, it may be due to program-
mer e1ror or memory error, or an error in AmigaBASIC itself,

6.3.7

228

Self-modifying programs

There are methods that allow changing program code as a program runs.
The two programs listed below can bring this about.

The first method of program modifying is direct access through POKE.
The prinicple is simple: You assign a set of characters to a string vari-
able at any point in the program. It is important that you make no
changes to the string itself, such as A$=A$+CHRS$ (0) . You can point
the variable pointer direct to the string in your program,

This first example lets you change strings within a program. This rou-
tine opens the window named in the string. Selecting the CHANGE item
from the menu lets you insert a new window title, after which the new
program loads and starts.

REM ************'k******'k************************1{
REM * Self Modifying I *q
REM * *q
REM * (W) 1987 by Stefan Maelger, Hamburg *q
REM *************************'k*'k*******'k********ﬂl
1

REM * The new Title String will be changed here:q
1

Title$="Self Modifying I"{

1

SCREEN 1,320,200,2,19

WINDOW 2,Title$,,16,19

MENU 1,0,1, "CHANGE"q

MENU 1,1,1, "TITLE"]

1

ON MENU GOSUB checkmenu{

MENU ONY

1

WHILE Maelger=09

SLEEP]

WENDY

1

MENU RESET{

ABACUS

How it
works

6.3 UTILITY PROGRAMS

WINDOW CLOSE 21

SCREEN CLOSE 11

ENDY

1

checkmenu:

IF MENU(1)=1 AND MENU(0)=1 GOTO newtitle{
RETURNT

1
newtitle:q
PRINT "Please enter new Title"{
PRINT LEN(Title$);"Characters Long."{
LINE INPUT newt$q
neu$=LEFTS$ (newt $+SPACES (LEN (Title$)),LEN (Title$)) 1
1
REM * Here is where the String is changed:{
1
FOR i=1 TO LEN (newt$){
POKE SADD (Title$)+i-1,ASC (MID$ (newt$,i,1))1
NEXTT
1
REM * Start Program again (with the new Title){
1
PRINT "Program with new title being saved."{
SAVE "Programname"{l
PRINT "New Program is saved."{
PRINT "Re-Load or start this"{
PRINT "program over again."{
t=TIMER+15:WHILE t>TIMER:WEND{
Maelger=11 :
RETURNT

You can see how simple it is. Replace "Programname" with your
own program name.

This method lets you change commands in a binary format program.
However, it also allows changes to files saved in protected format.

Now we come to the second method—the ASCII file method. Here,
t00, you can completely change a program. The clincher to this method
is the ease in changing entire program sections.

Using POKE to change parameters in a binary format program can have
serious consequences: It isn't that easy to change commands. The
ASCII file route makes this replacement much simpler.

Here's the principle behind it. First the program section must be found
for replacement. User input works with a syntax check to find the area
that needs changing. The running program deletes the program lines
you want changed (DELETE from-to). The program then saves to disk-
ette as an ASCII file. While the change waits under its own name, the
RAM disk supplies the most speed. Now the saved ASCII program
opens for appending (OPEN x$ FOR APPEND AS y), and the DATA
generator creates the new program segment. '

229

6. AMIGABASIC INTERNALS AMIGA TRICKS AND TIPS

230

Inordertogetthispmgramineomemry,allyouneedtomteris RUN
filenames$ or LOAD filename$. The program starts all over
again,sothatyoucmcreatethenewpmgramsecﬁonasanASClIﬁle
in the RAM disk, then join the programs with CHAIN MERGE. You
cmalsorestartthealteredprogramwithastartinglabel, and merge a
series of program segments (e.g., CHAIN stuff,lines,ALL).

REM *********i*******t******t****************ﬂ

REM * SelfModifying 1II *q

REM * *q

REM * (W) 1987 by Stefan Maelger, Hamburg *{

REM ***************************uu*****n*ug{

1

REM * Get the Screens Resolution{

q

GOSUB VariableLabel{

1

SCREEN 1, SWidth%, Height$, Depth$, Mode$q

WINDOW 2, "Hello!",,0,11

1

PRINT "Width in Pixels:";SWidth%q{

PRINT "Height in Pixels:";Height%${

PRINT "Depth in Planes:";Depth%{

1

PRINT{

PRINT "Please enter the"{

PRINT "New Width:";

INPUT NewWidth${

IF NewWidth%<20 OR NewWidth$>640 THEN{
NewWidth$=SWidth$]

END IF{

INPUT "New Height:";NewHeight%{

IF NewHeight%<10 OR NewHeight$>512 THEN{
NewHeight$=Height %]

END IFq

INPUT "New Depth:";NewDepth${

IF NewDepth%<l OR NewDepth%>5 THENT
NewDepth%=Depth%{

END IFq

PRINT{

Mode$=1q

IF NewWidth%>320 THEN Mode$=2{

IF NewHeight$>256 THEN Mode$=Mode$+2{

IF Mode%=4 AND NewDepth$>2 THEN{
NewDepth$=29

ELSEIF Mode$>1 AND NewDepth$>4 THEN{
NewDepth$=4]

END IFq

OPEN "Programname.t" FOR OUTPUT AS 19

PRINT#1, "VariableLabel:";CHRS$ (10) ; {

PRINT#1, "SWidth¥="; STR$ (NewWidth$) ; CHR$ (10) ; T

PRINT#1, "Height%="; STR$ (NewHeight%) ; CHR$ (10) ; |

PRINT#1, "Depth%="; STR$ (NewDeptht) ; CHRS (10) ; {

PRINT#1, "Mode$="; STR$ (Mode$) ; CHRS (10) ;

PRINT#1, "RETURN" ; CHRS (10) ; {

PRINT#1, "VariableLabelEnd: " ; CHR$ (10) ; {

ABACUS

6.3 UTILITY PROGRAMS

CLOSE 11

1

DELETE VariableLabel-VariableLabelEnd{
SAVE "Programname",A{

OPEN "Programname.t" FOR INPUT AS 11
OPEN "Programname" FOR APPEND AS 21
PRINT#2, INPUTS (LOF (1) ,1) ; 1

CLOSE 21

CLOSE 11

KILL "Programname.t"{

WINDOW CLOSE 21

SCREEN CLOSE 19

LOAD "Programmame",R{

ENDT

1

1

VariableLabel:q

SWidth%= 3201

Height%= 2001

Depth%= 21

Modet= 11

RETURN{

VariableLabelEnd: {

Amazing, isn't it? This procedure is particularly good for any kind of

graphic program. For example, you could enter user-defined functions in
a function plot, palette values in a drawing program, etc.

231

7
The Workbench

ABACUS

7. THE WORKBENCH

7.

The Workbench

The Amiga's user interface leaves nothing to the imagination. All
important operations are realized through icons. These icons make text
input almost unnecessary, thus removing the barriers so often caused by
language.

There are some Workbench functions that few users even know about.
These users can form easy solutions to tough problems. This chapter
shows how effectively these functions can be used, with a minimum of
time and effort.

235

7. THE WORKBENCH AMIGA TRICKS AND TIPS

7.1

Using the Workbench

The Workbench is the one part of the Amiga that the user sees most
often. With that in mind, here are some helpful hints for making your
Workbench maintenance and use easier and more efficient.

7.1.1

236

Keyboard tricks

Do you know what a string gadget is? Essentially, it's a miniature
input window. String gadgets are used by the Amiga whenever it needs
some form of keyboard input (e.g., for renaming a diskette). Instead of
pressing the key to delete the old name, press and hold the
<1right Amiga> key and press the <X> key. Presto, the string gadget
clears.

In most cases, <right Amiga><Q> acts as an Undo function, restoring
the last item changed.

When you want to move the cursor to the first character of the input
line, press <SHIFT><Cursor left>. Pressing <SHIFT><Cursor right>
to get to the end of the input line.

Now we come to the icons. Suppose you want to select more than one
icon. Hold down the <SHIFT> key and click on every icon you want
selected. Whatever you do to/with the last icon applies to all the icons
selected in this one pass. For example, if you want to throw the multi-
selected icons into the Trashcan, just drag the last icon to the Trashcan
(you can release the <SHIFT> key).

When CLI output flashes by on the screen (e.g., directory listings),
you can stop the listing by pressing the <RETURN> key. Continue

‘the listing by pressing the <Backspace> key.

If you want to go to the beginning of a screen, or just open a fresh win-
dow, press <CTRL><L> to clear the screen.

Now and again a prompt may not appear. <CTRL><O> and
<RETURNS returns the prompt to the screen.

<CRTL><D> interrupts the startup sequence, while <CRTL><C> in-
terrupts any currently executing command.

ABACUS

Easter eggs

7.1 USING THE WORKBENCH

Many programmers and hardware developers place "signatures” on their
creations. These signatures are sometimes called Easter eggs, because
they are hidden in the system for the user to find. This adds a personal
touch to the software or hardware design.

The Amiga has a few of these Easter eggs built-in. You can see them
on the screen if you have a little patience and very flexible hands.

. Boot the Workbench diskette.

. After the Workbench screen appears, press and hold both <ALT>
keys AND both <SHIFT> keys.

. With your free fingers, press function keys <F1> to <F10> and
watch the title bar.

Each function key lists the people responsible for different aspects of
Amiga design.

7.1.2

The Trashcan

Not everything you make when computing is worthwhile. The develo-
pers of the operating system created the Trashcan for disposing of
garbage. It's easy to use:

. Select the icon you want to get rid of.

. Drag it to the Trashcan.

. Click on the Trashcan icon.

. Select the Empty Trash item from the Disk pulldown menu.
There's an even simpler way to do it. The above process works well, on
the condition that you remember to empty the trash. However, if you
don't the diskette keeps the data placed in the Trashcan in disk memory.
Since diskettes only have a capacity of about 880K, this can take up a
great deal of disk memory.

Now for the simpler method:

. Click once on the file icon you want disposed of.

. Select the Discard item from the Workbench pulldown
menu.

. Click on the ok to discard gadget in the system requester.

237

7. THE WORKBENCH AMIGA TRICKS AND TIPS

7.1.3

238

Extended selection

Have you ever wondered about how to organize icons in every window.
If you put your Extras diskette in the drive and open the BASICdemos
drawer, you'll see 25 icons. Most of these icons have such long names
that the Clean Up item doesn't put most of them in neat order.

You could conceivably select and move each icon, then execute the
Snapshot item from the Special pulldown menu each time you
get an icon into position. This takes time, though.

There's a simpler way out. Every icon you click stays active while you
hold down one of the <SHIFT> keys. Most of the functions you can
perform on single icons work with multiple icons (assuming that these
functions match the icons). For example, you can't use Discardona
disk icon.

. Move each icon into the desired position.

. Press and hold the <SHIFT> key.

. Click on all the icons you want organized.

. Release the <SHIFT> key.

. Select the Snapshot item from the Special pulldown menu.
If you wish to copy several programs, this extended selection helps you
to do this copying quickly and easily. You can drag a set of icons across
the screen, and onto the windows in other diskettes, The only disadvan-
tage is that diskette exchanges must be made for every program.

If you wish to avoid this constant diskette switching, here's a quick
method of getting around this:

. Copy the Empty drawer of the Workbench diskette onto the for-
matted source diskette,

. Move all icons you want copied into this drawer using extended
selection.

. Drag the drawer to the target diskette icon.

ABACUS

7.1 USING THE WORKBENCH

7.1.4

Reading and setting Preferences

The name Preferences speaks for itself: This program lets you
adjust the Amiga to your individual needs. It allows selection of almost
any printer type, any number of screen colors and more. The Prefer-
ences icon normally appears in the Workbench window.

What can the intermediate programmer start to do with these Prefer-
ences? A lot! Preferences stores its data and parameters in a long
data block. This data block has the following structure:

+ Offset Type __ Definition
0 B Font height
1 B Printer port: O=parallel, 1=serial
2 w Baudrate: 0=110, 1=300, 2=1200, 3=2400,
4=4800, 5=9600, 6=19200, 7=MIDI
4 L keyboard repeat—seconds
8 L keyboard repeat—microseconds
12 L keyboard delay—seconds
16 L keyboard delay—microseconds
20 w Sprite pointer definition array, approx. 72
bytes
100 B X-offset of pointer hot spot
101 B Y -offset of pointer hot spot
102 w RGB information for color register 17
104 w RGB information for color register 18
106 w RGB information for color register 19
108 w Pointer ticks (sensitivity)
110 w RGB information for color register 0
112 w RGB information for color register 1
114 w RGB information for color register 2
116 w RGB information for color register 17
118 B X-offset of view
119 B Y-offset of view
120 w X-offset of view (initialization)
122 w Y -offset of view
124 w CLI on/off (0/1)
126 w Printer type (see following sample program
for definitions)
128 B Bytefield with printer filenames
158 w Typestyle: 0=Pica, $400=Elist, $800=Fine
160 w Print quality: O=draft, $100=NLQ
162 w Line spacing: 0=6 LPI, $200=8 LPI
164 w Left border
166 w Right border
168 w Print type: O=positive, 1=negative
170 w Print direction: O=horizontal, 1=vertical
172 w Gray scales: 0=B/W, 1=gray scales, 2=color

239

7. THE WORKBENCH AMIGA TRICKS AND TIPS

174 w Contrast

176 w Paper size: 0=US letter, $10=US legal, $20=
narrow carriage, $30=wide carriage, $40=
custom '

178 w Paper length

180 w Paper type: O=endless, $80=single sheet

The following program offers three SUB programs which load this data
record, send the modifications back to Preferences and exit.

'RERRRRREARRRARRRRERBRERF AT
'# Program: Preferences #9
'# Author: tob #9
'# Date: 8/12/87 #q
:# Version: 2.0 #9

#4
'R AR R BB H R R HR B E T
DECLARE FUNCTION AllocMem& LIBRARY{

1
LIBRARY "exec.library"q
%I.IBRARY "intuition.library"q

demo: '*Read and change preferences{
' *Change screen colors{
getp prefs&, 2209

POKEW prefs& + 110, 1*15 + 256*15q
POKEW prefsg + 112, 19
POKEW prefs& + 114, 16*159

%etP prefs&q

gl Samgle printer settings{

DIM gr (12) 1

= "Custom"q

"Alpha P 101"q
"Brother 15XL"{
"CBM MPS 1000"q
"DIAB 630"{

"DIAB ADV D25"q
"DIAB C 150"

"Epson"{

"Egson JX 80"q

"Okimate 20"q

Pr$(10) = "Qume IP 20"{

pr$(1l) = "HP Laserjet"{
r$(12) = "HP Lasertjet +"q

PRINT"Please select a printer t |
5RINT‘11 P vpe

“BRINT p3 (loogt) 5
x!
NEXT loog%‘][

g
&
e
n
g S ' N
NN ER

PRINTq
SII‘INE INPUT"Your selection...";in$q

FOR loop$ = 0 TO 129
IF UCASES$ (in$) = UCASES$ (pr$ (loop%)) THENY
r%p; log ‘ll‘ﬂ
QO] =
flagt = 19
END IFq
< NEXT loop%1

240

ABACUS

Program
description

7.1 USING THE WORKBENCH

q

IF flag% = 1 THEN{
flags = 01
cLsd

POKEW prefs& + 126, pr3d
SetP prefs&l
LINE UT "Would you like to run a printer

test? (y/n}n; ggﬂl_ nyn

LPRINT"testTESTtest TESTtest TESTtestTEST"{
LPRINT"TESTtest TESTtest TESTtestTESTtest"q
END IF T
ELSE 1

CLS 1
PRINT"Your printer type not listed."{
END IFq

bl
Finish pref&d

1
LIBRARY CLOSE
END{

1
SUB GetP (datum&, size%) STATICY

opté = 27161
mem& = gize$ + 491
adde = AllocMems& (mem&,opté&) 1
IF add& < 0 THENTY

POKEL add&, mem&q -

datum& = add& + 41

CALL GetPrefs (datum&, size%)1

SUB SetP (datum&) STATICY
IF datum&<>0 THEN{
size& = PEEKL(datum& - 4) - 41
CALL SetPrefs(datum&,size&, -1)1
END IFq
END SUB{

T S
SUB Finish (datum&) STATICY
IF datum& <>0 THEN{
mem& = PEEKL(datum& - 4) 1
addg = datum& - 491
CALL FreeMem(add&, mems) 1
END IF{
END SUB{

GetP makes a copy of the abovementioned Preferences data
block. Enter a variable into which the address of the copy is placed, as
well as the desired number of bytes. In normal cases, the entire data
record requires 180 bytes. However, if you're just interested in the first
entry, you can enter far fewer bytes.

Now you can change the copy as you want it to appear in the program.
If all changes are as you want them, then SetP puts the changed copy
into Preferences, thus activating the changes.

Finish returns the copy memory to the system.

241

7. THE WORKBENCH AMIGA TRICKS AND TiPs

7.1.4.1

Info

The Info item from the Workbench pulldown menu allows the user
to look at information in programs and data files. But which informa-
tion can you change? These are questions that the Amiga manual
doesn't discuss. Here are some answers.

7.1.4.2

Disk

Drawers

Tools

242

The Info screen

This screen appears after selecting any kind of icon and selecting the
Info item from the Workbench pulldown menu. The Info screen
lists all the vital information about the program. The Workbench disk-
ette should not be removed during the selection of Info.

The Info screen has several areas. The upper left corner lists common
data about the file and/or diskette—name, type and the size in two
different measurements. Beneath Stack the number of bytes the file
uses in memory is listed.

Type describes the type of icon for a file or diskette. The normal icon
types are Disk, Drawer, Tool, Project and Garbage:

Disks are the diskette icons which lie outside of directory windows.
Double-clicking on a disk opens the disk window (the diskette's main
directory).

The only item of interest about this icon type is that, like the other
icons, you can change its shape. Computer owners into nostalgia can
change the disk icons to look like 5-1/4" diskettes.

Drawers are the icons which represent subdirectories. Moving programs °
into a drawer easily lets you find programs on the same diskette. This
operation takes a lot of time, though. Here's a suggestion: Use the
RENAME command from AmigaDOS. Enter the first name with the full
path specification, then enter the new name with the path under which
you want the program placed (don't forget to copy the .info file to the
new path as well).

Any executable program is called a tool. Tools can lie in drawers,
windows and on the Workbench screen. They have their own icons
which execute programs when you double-click on them.

AmigaBASIC, Preferences and BeckerText Amiga from
Abacus are tools.

ABACUS

Projects

Trashcan

7.1 USING THE WORKBENCH

Amiga projects are any files that contain data saved from a tool
(program).

Notepad texts, word processing files, BASIC programs and .bmap
files are projects.

This last type is actually another form of drawer. Normally you can
place drawers inside of drawers. The Trashcan drawer can only lie in the
main directory. Plus, it can't be moved onto the Workbench screen.
Whenever you need a Trashcan icon, look in the main directory.

On the right side of the screen you'll see a box which lists the Status
of the file. This refers to the access options offered to the user (see the
AmigaDOS manual under LIST). When the write protect is set on the
diskette, you can't change the read, write or executable attributes. When
you get information from a diskette, this area lists whether the diskette
is write-protected or write-enabled. Clicking this Status changes noth-
ing; you must change the write-protect by hand.

The user's Comments appear in the line below Status. Amiga-
DOS's FILENOTE lets you write a text of up to 80 characters long.
This function is suppressed by diskettes, since a diskette cannot be
supplied with a comment.

The Info screen does more than give information about programs or
diskettes. They also supply details about projects (text and data files).
Default Tool tells the user which tool created the project, or which
diskette has the copy. The Workbench knows which project to load
when you double-click a tool's icon.

The last line displays Tool Types. This information is given by the
main program. The Notepad, for example, states which font is in
use, and the window size for input.

7.1.4.3

A closer lock at the Info screen

You can change the available information in the Info screen. Write
and save a text from the Notepad, and open its Info screen to look
at the information.

What you put under Comment has no effect on other parts of the
system—it's just commentary.

The Default Tool gadget is much more important. As mentioned
earlier, this gadget lists the name of the tool (program) which created
the project (file). There's a bug in this, though. For example: You set
up two Workbench diskettes named user and c1i. The first diskette,
user, is a nearly normal Workbench. The second diskette, c1i, has

243

7. THE WORKBENCH AMIGA TRICKS AND TIPS

244

been modified so that on startup it copies all the important CL I
commands to RAM, and stays in the DOS window. Both diskettes have
aNotepad tool. If you write a text on the user diskette, the De -
fault Tool gadget reads:

Workbench user:Utilities/Notepad

If you want to load a text, the user diskette must be in the drive. But
the c1i diskette also has a Notepad. All you need to do to read the
same text from the cli diskette's Notepad is change the Default
Tool text to read as follows:

sys:Utilities/Notepad:

The Tool Types gadget holds all the information needed by the pro-
gram. You can change this also. Here are the'types and meanings:

Name Example Definition
FILETYPE notepad Notepad text

FONT topaz.8 Global font
WINDOW 0,0,50,50 Window coordinates
FLAGS NOGLOBAL Flag listing

The FILETYPE line identifies the tool that created the project. FONT
gives the name of the global font; you can change this, provided the
font you change it to exists on the Workbench diskette. WINDOW lists
the X- and Y-coordinates of the input window. Other values can £0 here
as desired. The FLAGS gadget may be new to you, since it isn't used in
normal saving. This gadget lists some parameters that are normally
used in loading:

Parameter __ Definition

NOGLOBAL Disable global font function
GLOBAL Enable global font function
NOWRAP Disable word wrap

WRAP Enable word wrap

NOFONTS Skip font table generation
FORMFEED Add formfeed to printer driver
DRAFT Print in draft quality

Try these procedures out in other programs, such as programs that place
data into files. Read the section on icons for information on saving
these parameters to diskette and more.

Icons

ABACUS

8. IcONs

8.

Icons

The Amiga's Workbench user interface uses icons to help the user
easily identify programs, data file, directories and diskettes. These icons
appear as pictures that quickly indicate their purposes to the user. You
start programs by double-clicking on their icons, instead of typmg in
the program name as you would from the CLI.

Clicking icons saves the trouble of typing in disk paths to open
directories and subdirectories to the file you want. All you have to do is
click on a drawer; click on the drawer inside the drawer that opens; and
5o on, until you get to the file icon you need.

This chapter gives detailed information on icon design, drawer structure
and image structure. Programs are included that let you edit icons and
examine the structure of an icon from AmigaBASIC. You'll also find
information about icon structure and creating multiple graphics for one
icon (before double-clicking and after double-clicking) .

247

8. ICOoNs

AMIGA TRICKS AND TIPS

8.1

248

Icon types

There's a problem with this title: All icon symbols can stand for differ-
ent objects. You have to be able to differentiate between directories and
diskettes, and between programs. So, you wouldn't assign a drawer icon
to the Trashcan, any more than you should assign a program icon to a
directory. The program still runs, but using "other" icons can cause
some confusion later on.

For this reason, this section uses certain icon descriptions in certain
contexts. For example, the book consistently calls the icon for a disk-
ette a disk icon, etc.

As you've seen in Chapter 7, the following icon types exist:

Name Identifier Object Number
Diskette icon WBDISK standard diskette 1
Drawer icon WBDRAWER directory 2
Tool icon WBTOOL executable program 3
Project icon WBPROJECT program data file 4
Trashcanicon = WBGARBAGE Trashcan 5
Kickstarticon = WBKICK Kickstart diskette (Amiga 1000) 5

You can get additional information on the icon types from the Work-
bench. Check the following sources:

Disk icon information corresponds to drawer icons. The drawer icon
stores the pictures of all icons and data which can be opened by double-
clicking.

Projects (files) are of the same general design as the tools (programs)
used to create them. Double-clicking a project icon opens the tools used
to create that file, then the project itself.

The Trashcan is really just another form of drawer. The main difference
is that you can't move it from one directory to another, nor can you
move it to the Workbench.

ABAcCus

8.2 ICON DESIGN

8.2

Icon design

Now for the structure, so you can start thinking about designing your
own icons. Icon data goes into a directory. Every file that has an icon
has an extra file with the same name and a file extension of .info.
This info file contains the information that goes into the Workbench. -

8.2.1

DiskObject structure

Every icon file begins with a DiskObject structure, which contains
all sorts of information (see the table below):)

Identifier Parameter Bytes
do_Magic magic number 2
do_Version version number 2
do_Gadget click structure 4
gg_LeftEdge left click range 2
gg_TopEdge top click range 2
gg_Width width of click range 2
gg_Height height of click range 2
gg_Flags invert flag 2
gg_Activation $0003 2
gg_Type $0001 2
gg_GadgetRender pointer1 picture data 4
gg_SelectRender pointer2 picture data 4
gg_IntuiText "not used?" 4
gg_MutualExclude "not useable!" 4
gg_Speciallnfo "not useable!" 4
gg_GadgetID "for own use!" 2
gg_UserData "your Pointer!" 4
do_Type icon type 1
nothing fillbyte 1
do_DefaultTool text structure 4
do_ToolTypes text structure 4
do_CurrentX current X-position 4
do_CurrentY current Y-position 4
do_DrawerData window structure 4
do_ToolWindow program window 4
do_StackSize reserved memory 4

For starters, the magic number is equal to $E310. This tells the system
that this is where an icon is read. Next follows the version number,

249

8. IcoNs

Gadgets

Tool types

250

AMIGA TRICKS AND TIPS

which at the time of this writing is always $0001. The above table in-
dicates how many bytes each value occupies.

Four unused bytes follow the structure. These are normally reserved for
a gadget click structure. Now things get more complicated: The symbol
itself is actually divided into two separate areas—the graphic range and
the click range. The click range helps determine the range in which you
can click on the icon. The X- and Y-offsets of the click position follow,
setting the upper left corner of the click range. Next comes the width
and height of that range. It's important to remember that text is printed
beneath the click range (i.e., under the icon). Be sure that the click
range is high enough that the text can be counted as part of the graphic.

Now comes the gadget structure. The next value changes the picture
when you activate it. You have three options at your disposal:

1) The entire rectangular area in which the icon is displayed inverts.
Just place a 4 in the F1ags register. This is the simplest (but
not the most attractive) method.

2) Only the drawn-in area inverts. This looks and works somewhat
better than 1. This mode requires a 5 in the F1ags register.

3) Instead of an inverse version of the icon, another icon appears al-
together. Place a 6 in the F1ags register.

Next the value constants $0003 and $0001 follow in the DiskObject
structure, The first is the activation type, and the second marks a Book
gadget. The pointers to icon graphic data follow. If you're switching
between two graphics, the second pointer must be initialized.

The next 18 bytes are required by the system for normal gadgets. Its
actual purpose appears to make no sense. It works best when you fill
this area with zeros. These bytes are important to the next parameter: It
distinguishes which icon type is available to the user. You insert the
numbers which indicate the abovementioned table. Since this should be
given in one byte, and the processor can only address even addresses,
these are the same as fillbytes.

In order to select the type, the pointer to the Default Tool structure
then the pointer to the ToolTypes structure must be set (more on
these pointers later).

The system stores the positioning in the DiskObject structure as the
current X- and Y-coordinates. However, you also have the option of
Workbench coordinates of $80000000, $30000000. These values are
called NO_ICON_POSITION. As long as a user-created icon stays un-
changed, it is found at the same position. A pointer to the window data
follows if necessary, and a pointer to the Too1Window structure.

To conclude, the stack depth tells the Workbench how much memory to
allocate for this program or this data. The value of a data file has higher

ABAcus

8.2 ICON DESIGN

priority than a main program. This wa s
nmmenmryfordledatareooxdsofayywcommerveoonsnderab. ly

8.2.2

Drawer structure

Now that you have the information about the average Disk
S Ob
structure, you can continue on with the individualmtypgés. ° Ject

First comes the Drawer structure, which is almost i '

ome : ure, equal to a diskette.

& l;:g dlftl::rmen:ue tllsw ﬂ:i:tta theeededd:rec}ory and the Trashcan use this struc-
. It con n ‘or openin, direc i

The table reads as follows: pening anew tory window.

Identifier Parameter Bytes
wi_LeftEdge left corner 2
wi_TopEdge top edge 2
wi_Width width 2
wi_Height height 2
wi_DetailPen drawing color 1 1
wi_BlockPen drawing color 2 1
wi_IDCMPFlags gadget flags 4
wi_Flags window flags 4
wi_FirstGadget gadget structure 4
wi_CheckMark checkmark 4
wi_Title title text 4
wi_Screen screen pointer 4
wi_BitMap window bitmap 4
wi_MinWidth minimum width 2
wi_MinHeight minimum height 2
wi_MaxWidth maximum width 2
wi_MaxHeight maximum height 2
wi_Type $0001 2
actx-pos current X-position 2
acty-pos current Y-position 2

These are handled as an independent window structure, which extends
the coordinates for the current position. This may need some explana-
tion:

The upper left corner coordinates and the window size appear. When the
user moves and closes the window, the diskette doesn't leave the sys-
tem, so that the directory window isn't opened at the position given by
the current coordinates.

The parameters then follow for color control. The values set the colors
for the lines and blocks used in a window. Normally $FF stands for -1,

251

8. ICONS

Handling
window
changes

AMIGA TRICKS AND T1Ps

which takes the color from the screens in use. This makes color control
much simpler.

. . . als.

t byte contains a pointer and flag used by. the system intern
gr:tngmmyﬁe IDCMP flag, which sets the reaction to any changes.w
a window. The window flag determines the setup of the directory win-
dow. Then five pointers to structures or memory ranges follow, whose

changes require knowledge of the operating system.

This way all windows set up in any size within the mlmmum and max-
imum limits set by MinHeight, MaxWidth and MaxHeight.

8.2.3

252

Image structure

Every icon needs an Image structure. They contain the graphic data,
and are set into the respective file twice when necessary.

Identifier Parameter Bytes
im LeftEdge left corner 2
im TopEdge top edge 2
im Width width 2
im Height height 2
im Depth depth 2
im_ImageData bitplane pointer 4
im PlanePick graphic data 1
im PlaneOnOff use 1
im NextImage next graphic . 4

After information about the sizes and positions of several bitmaps, the
image setup contains the graphic itself. The number of bitmaps depend
upon the screen's depth. The Workbench has a normal depth of two
bitmaps on which the icon is also based.

The image parameters repeat after the icon position is given to the
DiskObject structure. The position is just an offset of this para-
meter. No values are left out concerning the width, height and number
of bitplanes, just as on the other bitplanes.

The next four bytes are a pointer to the current graphic data. This
pointer can change the next couple of parameters somewhat. For
example, PlanePick depends on the number of bitplanes for its
graphic display. And PlaneOf£¥ controls an unused icon's activity.

The last parameter is a pointer to another Image structure. This lets
you combine several objects into one unit,

i
|

ABACUS

8.2 ICON DESIGN

The bytes of the individual bitplanes follow the Image structure. First
comes bitplane 1, then bitplane 2, and so on (if more bitplanes are
used). The system computes the number of bytes needed for the width
by rounding off the number of pixels in to the next highest multiple of
16. The height is calculated by the number of pixels in height, rounded
off to the next highest multiple of 8. The Amiga needs these bytes to
create any bitplane.

8.2.4

DefaultTool text

Unlike the Image structure, used by every icon, you only need the
DefaultTool text for diskettes and data files. Dlskettes use the text
to state the diskette hierarchy needed to call system programs. For ex-
ample, every diskette contains the text SYS : System/DiskCopy,
used to access the disk copy program (if you remove this text the disk
cannot be copied in this manner). Data files use this text to indicate the
program used to create these files. If you remove these texts, the main
program becomes inaccessible. Here's the parameter setup:

Identifier Parameter Bytes

char_num number of characters 4

This list contains only the truly concrete data (the number of charac-
ters). Everything else is flexible. Every text must end with a nullbyte,
so that the end is identifiable.

8.2.5

ToolTypes text

The section on the Info function of the Workbench (Section) men-
tioned that the string gadget under Too1Types lets you give additional
information about the main program. For example, you could set up a
text file for handling as an IFF file. The program requires other infor-
mation that doesn't appear in this area. You can easily add this infor-
mation, and use the file in other programs as an interchange format file.

Identifier Parameter Bytes

string num text number 4

Like the DefaultTool text, the size of the ToolTypes gadget is
extremely difficult to change. Assuming that this string isn't blank, the
beginning of the text has the number of the string. You must increment
the number contained here by one, then multiply by four, to compute

253

8. ICONs

AMIGA TRICKs AND TipPs

the string number. You can also find this number when you read the
file. If you want the data expressed, you must reverse the procedure.

Next follows a string which begins with the length, and ends with a
nullbyte. The number of characters is computed by string_num
mentioned above.

8.2.6

254

Icon analyzer

The following program is a move toward the practical side of icon
structure. This BASIC program reads the parameters of the filename,
and displays these parameters and their corresponding values. This pro-
gram would be easier to use if you could print this list to a printer (you
may wish to modify it to do so).

DIM DiskObject$ (26 3) ,DiskObject (26) 1
DIM DrawerData$ (20, 3) ,DrawerData (20) 1
DIM Image$(2,9, 3) Image(z 9)1

I%IM Default’.l‘ools (2 3), DefaultTool (2) 1

1
DEF FNSize$ (Im)=Image (Im,4)*2*INT ((Image (Im,3)+15)/16) 1

%IDTH 751

%NPUT "Filename:";File$q

gPEN File$+".info" FOR INPUT AS 19
gumnary$=INPUT$ (LOF' (1), 1)1

crbse 11

gumry$=sumnazy$+STRING$ (40,0) 1

gOSUB LoadHeaderq

1
IF DiskObject (18) =1 THEN{
GOSUB LoadDrawerq
GOSUB LoadImage{
GOSUB LoadDefaultTool‘]I
GOSUB LoadToolTypes{
END IFq

IF DiskObject (18)=2 OR DiskObject (18)=5 THEN{
GOSUB LoadDrawer‘lI
GOSUB LoadImag
GOSUB LoadToolTypes{

END IFq

1
IF DiskObject (18)=3 THEN‘]I
GOSUB IoadImag
GOSUB LoadToo 'I‘ypes‘ﬂ
END IF{

1

IF DiskObject (18)=4 THEN{
GOSUB LoadImage
GOSUB LoadDefaultTool{

ABACUS

8.2 ICON DESIGN

GOSUB LoadToolTypesq
!JEI:ND IF1T

END{
1

1
LoadHeader: q
RESTORE DiskObjectq
po=1 : PRINT
PRINT "Disk Object Structure" : PRINT{
FOR i=1 TO 26 |
GetBytes DiskObject$ (i, 1),DiskObject$ (i,2),
DiskObject$ (i, 3) ,DiskObject (i) 1
NEXT i 1
I;IETURN']I
LoadDrawer: 9
RESTORE DrawerData{
PRINTq
PRINT "Drawer Data Structure" : PRINT{
FOR i=1 TO 209
GetBytes DrawerData$ (i,1) ,DrawerData$ (i, 2),
DrawerData$ (i, 3) ,DrawerData (1) 1
NEXT i
RETURNY

b
LoadImage:q
Im=19

GOSUB GetImage{l
IF DiskObject (12)<>0 THEN Im=2 : GOSUB GetImage{
RETURN{

1
GetImage:q
RESTORE Image{
PRINTY
PRINT "Image Structure" : PRINT{
FOR i=1 TO 99
GetBytes Image$ (Im,i,1),Image$ (Im,i,2),
Image$ (Im, i, 3), Image (Im, i)
NEXT iq
bytes=FNSize% (Im) 1
PRINT{
PRINT "BitPlanes" : PRINT{
WIDTH 601
FOR j=1 TO Image(Im,5)q
PRINT{

PRINT "Bitplane";3j1

FOR i=1 TO bytes{
a$=HEX$ (ASC (MID$ (summary$,§o, nN1
IF LEN(a$)<2 THEN a$="0"+aS${
PRINT a$;q

IF i/2=INT(i/2) THEN PRINT " ";{

Nmpongoi +19

PRINT]
NEXT 39
WIDTH 75 1
RETURg‘lI
LoadDefaultTool:q
RESTORE DefaultTool{l
PRINT{
PRINT "Default Tool" : PRINT{
GetBytes DefaulTool$(1,1),DefaultTool$(1,2),
DefaultTool$ (1, 3) ,DefaultTool (1)1
IF DefaultTool (1) >80 THEN

PegapdtTns (bledatencstidh /1ot

255

8. ICONS AMIGA TRICKS AND TIPS

RETURNY

1
LoadToolTypes: {
RESTORE ToolTypes‘][
PRINTq
PRINT "ToolTypes" : PRINT{
IF po>LEN (sunmaryS) THEN RETURN{
GetBytes ToolTypes$(1l,1),ToolTypes$(1,2),
ToolTypes$ (1, 3) , ToolTypes (1) 1
FOR i=1 TO Tool s (1) /4-11
RESTORE DefaultToolq ,
ToolTypes$ (2,3) =""{
GetBytes 'I‘oolTypesS (2,1) ,ToolTypes$ (2,2),
ToolTypes$ (2, 3) , ToolTypes (2) 1
IF ToolTypes (2) >80 THEN

s CE eI
RETURN‘JI

1

ﬁua GetString (length) STATIC{

%HARED po, summary$9
ts s a=11
ength=0 THEN EXIT SUB{

1

WHILE a<>01
a=ASC (MIDS$ (summary$, po, 1)) 1
a$=HEXS (a) 1
IF LEN(a$)<2 THEN a$="0"+a${
PRINT a$;" "; 1
po=po+19

WENDY{

PRINT{

gRINT MIDS (summary$,ts,po-ts-1)1

END SUBY
g "
SUB Decimal (he$,dec) STATICY

dec=09

FOR i=1 TO LEN (he$) 1
a=ASC (MID$ (he$, LEN (he$) +1-i,1)) -481
IF a>9 THEN a=a-71
dec=dec+16” (i-1) *aq

NEXT i9q

9
l‘]EIND SUBY
SUB GetBytes (identifier$,paramater$,value$,dec) STATICY

q
SHARED po, summar¥
identifier$, paramater$, bytesq
PRINT identifier$;TAB(20) ;paramater$;TAB(47) ;1
a$==MID$(summary$ pc.,byt:ee;)ga
=po+bytesq
IF bytes=1 THEN value=ASC(a$){
IF bytes=2 THEN value=CVI (a$)1
IF bytesml THEN]
OR j=1 TO 41
anASC(MIDS(aS 3,1))9
h$=HEXS (a) 1
IF LEN (h$)<2 THEN h$=h$+"0"q
val.%e$=value$+h$‘ll
J

256

ABACUS

8.2 ICON DESIGN

1
vaI%‘ues-ms (value) 1

END

PRINT "$";value$;TAB(57);1
Decimal value$,deci
PRINT dec 1

b

END SUB{

1

q

1
lq)liskObjectz 1

DATA do_Magic,Magic Number, 29

DATA do_Version,Version Number, 29

DATA do_Gadget,Click Structure, 49
DATA gg_LeftEdge,Left Click Range,21
DATA gg_TopEdge, Top Click Range, 24
DATA gg Width,Click Range Width, 29
DATA gg_Height,Click Range Height,2
DATA gg_Flags, Invert Flag, 29

DATA gg Activation, $0003, 29

DATA gg_Type, $0001, 21 .

DATA gg_GadgetRender,Pointerl Picture Data, 41
DATA gg_SelectRender,Pointer2 Picture Data, 49
DATA gg_IntuiText, "not used??",49
DATA gg_MutualExclude, "not usable!", 41
DATA gg_Speciallnfo, "not useable!", 41
DATA gg_GadgetID, "for own use!",6 29
DATA gg’UserData, "your Pointer!", 41
DATA ;ﬁpe,lcon type, 11

DATA nothing,Fil e,11

DATA do_DefaultTool,Text Structure, 41
DATA do_ToclTypes,Text Structure, 41
DATA do CurrentX,Current x-Position, 4
DATA do CurrentY,Current y-Position, 49
DATA do DrawerData,Window Structure, 49
DATA do_ToolWindow, Program Window, 41
DATA do_StackSize,Reserved Memory, 41

1
DrawerData:q

1

DATA wi_ LeftEdge,lLeft Edge, 29
DATA wi TopEdge, T

DATA wi Width,Width, 29
DATA wi Height,Height, 21
DATA wi DetailPen,Drawing Color 1,11
DATA wi_BlockPen,Drawing Color 2,19
DATA wi_IDCMPFlags,Gadget Flags, 41

DATA wi_Flags,Window Flags, 41

DATA wi_FirstGadget,Gadget Structure, 49
DATA wi_CheckMark, CheckMark, 41

DATA wi_Title,Title Text, 41

DATA wi Screen,Screen Pointer, 49

DATA wi BitMap,Window BitMap, 41

DATA wi MinWidth,Mininimum Width, 29
DATA wiﬂinHegight, Minimum Height, 29
DATA wi MaxWidht,Maximum Width, 29

DATA wi MaxHeight,Maximum Height, 29
DATA wi Type, $0001, 29

DATA actx-pos,Current x-Position, 49
gATA acty-pos,Current y-Position, 41

’

Image: 1

DATA im LeftEdge,Left Edge, 21
DATA im TopEdge, Top Edge, 21
DATA im Width,Width, 29

DATA im Height,Height, 21
DATA im Depth, Depth, 29

257

8. IcONs

Program
description

258

AMIGA TRICKS AND T1Ps

DATA im ImageData,BitPlane Pointer, 41
DATA im PlanePick,Graphic Data, 19
DATA im PlaneOnOff, Use, 1]

DATA im NextImage,Next Graphic, 41

gefaultTool =1

gATA char_num,Number of Characters, 41
'}I'oolTypes:']I

gATA string num, Text Number, 4

After creating arrays for all structures, the program prompts for the file-
name you want analyzed. Do not enter the .info file extension, since
the program provides that extension automatically. Next, all data con-
tained in the file goes into summary$, so that disk access won't be
needed later. If the text contains no closing nullbyte (Intuition nor-
mally does this), nullbytes are added. The main program jumps to the
DiskObject structure reading routine.

Once the routine closes, the program branches to examine the icon
type. The available structures are viewed, then the program branches to
the required routines for looking into each structure.

The most important subroutine of all, LoadHeader, analyzes the
DiskObject structure. This loads the name and the byte lengths of
individual parameters from the DATA statements. The DATA lines are
searched for the Get Bytes subroutine, used by almost every subrou-
tine.

After Get Bytes reads the text and data lengths, the text goes into the
window. From this text, the program computes the corresponding
number to be displayed from the bytes. Then a subroutine executes for
converting the hexadecimal values to decimal notation so the user can
read the text more easily.

The LoadDrawer subroutine works in the same way as Load-
Header. It reads the starting data, but computes the size of the graphic
array from Size%; this lets you incorporate this size with your own
display routines. Then the routine tests for a possible Double-
Image. If there is a Double-Image, both Image structures must
be read.

The LoadDefaultTool routine reads the text lenght from Get—~
Bytes. This number is multiplied by 16 for most test-icons, when
this is needed. Next follows the call for the Get St ring routine,
which reads the corresponding number of the string.

The same goes for LoadToolTypes, only the number of the text
must be read.

ABACUS

8.3 MAKING YOUR OWN ICONS

8.3

Making your own icons

Now that you have some information about the structure of icons, you
can now learn how to use and create your own icons. It's much easier to
take an established icon and change it to your own needs. You can use
the icon editor built into the Workbench diskette for this purpose.

8.3.1

Two graphics, one icon

This section tells how you can force the Amiga to display a new gra-
phic for an icon that has been clicked, instead of simply inverting the
original icon colors. This is a common method that can be applied to
any icon type. Later on, you'll learn other extras, such as changing
drawer icons only.

The change must set the pointer to the second Image structure, into
which the new data is inserted. This problem is easier to solve than you
might think, since the newest edition of the Extras diskette contains a
program to do this. You must create two icons with a program like the
Icon Editor. The only stipulation is that both icons must be the
same size. After you enter the name, both icons are combined into one
unit,

With this combined icon, you can create wonderful effects. For ex-
ample, you can make the Trashcan icon "1id" open up when you click
on the Trashcan icon (some versions of the Workbench aiready have
this feature). You can also make a drawer icon "open" when you click
on it (again, this already happens on some later Workbench diskettes).

8.3.2

Text in graphics

Another option for enhancing normal icons is placing text above the
icon graphic.

As you saw from the DiskObJject structure, the graphic range proper
is different from the click range. This click range is given in the
DiskObject structure at parameters 4-7. The icon's text appears
below this click range. If you lower the height of the click range, then
you can raise the text proportionately. This means that you can move
the text up, and have it somewhere other than undemeath the icon.

259

8. IcoNns

AMIGA TRICKS AND Tips

8.3.3

260

The icon editor

These changes require a program that allows you to access and change
certain bytes, then save these altered bytes to diskette.

The program below is an extension of the analyzer program listed
earlier. The entire program is listed below. Load your analyzer program,
compare the listing with this listing, and add the new lines. Save the
modified program under the name IconEditor.

DIM DiskObject$ (26, 3) ,DiskObject (26) {
DIM DrawerData$ (20, 3) , DrawerData (20)
DIM Image$(2,9,3),Image(2,9)1

DIM DefaultTool$ (2, 3),DefaultTool (2) 1
DIM Address (100,3)q

1
ON TIMER(.5) GOSUB KeyTest{
TIMER ON{

1
DEF FNSize% (Im)=Image (Im,4)*2*INT ((Image (Im, 3)+15) /16) 1

b |
gIDTH 75 : Adr=l : AdrNum=19

INPUT "Pathname:";Path${
INPUT "Filename:";File$q

gPEN Path$+File$+".info" FOR INPUT AS 19
T summary$=INPUT$ (LOF (1) ,1) 1

CLOSE 191

3umnary$=sunmry$+STRING$ (40,0) 1
%I.stBytes:ﬂI

number=0 : lst=0]
gOSUB LoadHeaderq

IF DiskObject (18)=1 THEN{
GOSUB LoadDrawer{
GOSUB LoadImage{

GOSUB LoadDefaultTool{
GOSUB LoadToolTypes{
END IF{

1
IF DiskObject (18)=2 OR DiskObject (18)=5 THEN]
GOSUB LoadDrawer{
GOSUB LoadImage{
GOSUB LoadToolTypesi
END IF{

1
IF DiskObject (18)=3 THEN{
GOSUB LoadImage 1
GOSUB LoadToolTypes{
" END IF{

q

IF DiskObject (18)=4 THEN{
GOSUB LoadImage{
GOSUB LoadDefaultTool{
GOSUB LoadToolTypes{

END IFQ

ABACUS

8.3 MAKING YOUR OWN ICONS

1
PRINT{
PRINT "End of File!"{

q
WHILE last=01

SLEEPT

IF lst=1 THEN GOTO LstBytes{
WEND{

1
ENDY
KeyTest : 1

"IF INKEY$<>" " THEN RETURN{
qIWINDOW 2,"Input", (0,0)-(631,53),61

Start:q
PRINT "Address:"Adr,Address (AdrNum, 3) 1
INPUT “Command: *,Command$q .
ConmKey$=LEFT$ (Command$, 1) 1
ComTxt $=MID$ (Command$, 2) 1
ConValue#=VAL (ComTxt$) 1
IF ComKey$="#" THEN{
FOR TestI=1 TO numbex{
IF Address (TestI,l)=ComValue# THEN Adr=ComValue# :

AdrNum=TestI{

NEXT TestI{

GOTO Starti
END IFq
IF ComKey$="e" THEN last=1
IF ComKey$="s" THEN{

IF LEN (ComTxt$)>0 THEN File$=ComIxt$q

OPEN ":mod. Icons/"+File$+".info" FOR OUTPUT AS 11

PRINT#1, summary$1

CLOSE 11 .

KILL ":mod. Icons/"+File$+".info.info"{

GOTO Start{

END IF{
IF ComKey$="a" THEN{

bytes$="" : value#=ComValue#{

FOR KeyI=Address (AdrNum,2)-1 TO 1 STEP -19
a=INT (value#/ 256"Ke¥1) q
value#=value#-a*256"KeyIl
bytes$=bytes$+CHRS (a) 1

NEXT KegI‘]I

bytes$=bytes$+CHRS (value#) 1

MIDS (summary$, Adr,Address (AdrNum, 2)) =bytes$1

Address (AdrNum, 3) =ComValue#

GOTO Start1i

END IF{
IF ComKey$="1" THEN lst=11

1
glmow CLOSE 21
I;IETURN‘]I

1
LoadHeader:

RESTORE DiskObject{
po=1 : PRINT{
PRINT "Disk Object Structure" : PRINT{

FOR I=1 TO 26

GetBytes DiskObject$(I,1), DiskObject$(I,2),

DiskObject$ (I, 3),DiskObject (I) 1

NEXT I
I;ETURN']I

261

8. IcCONs AMIGA TRICKS AND T1prs

LoadDrawer:

RESTORE DrawerData{

PRINT{

PRINT "DrawerData Structure" : PRINT{

FOR I=1 TO 207

GetBytes DrawerData$ (I,1),DrawerData$(I,2),

DrawerData$ (I, 3) ,DrawerData (I)q

NEXT I
RETURNY

1
IoadImage 1
m=1q

GOSUB Get Image{
IF Diskobject (12)<>0 THEN Im=2 : GOSUB GetImage{
RETURNSI

GetImag
TORE Imagef
PRINTY

PRINT "Image Structure" : PRINT{
FOR I=1 TO 99
GetBytes Image$(Im,I,1),Image$(Im,I,2),

Image$ (Im, I, 3), Image(Im, I)q

NEXT I

bytes=FNSize% (Im) {

PRINT{

PRINT "BitPlanes" : PRINT{

WIDTH 609

FOR j=%TTO Image (Im,5) 1

PRINT "Bitplane";3j1

FOR I=1 TO esq
a$=HEXS$ (ASC (MID$ (surm\azys go, nN1T
IF LEN(a$)<2 THEN a$="0"+.
PRINT a$;q
IF I/2='INT(I/2) THEN PRINT " ":;q
po=po+19

NEXT I
PRINT{
NEXT 39
WIDTH 75 1
RETURNY

1

LoadDefaultTool:{

RESTORE DefaultToolq

PRINTq

PRINT "DefaultTool" : PRINT{

GetBytes DefaulTool$(1,1),DefaultTool$(1,2),
DefaultTool$ (1, 3),DefaultTool (1) 1

IF DefaultTool (1) >80. THEN

%&té&zﬁl (LeRsferlstont stiqtet

IoadToolType =1
RESTORE Tool'Iypes‘]I
PRINT{

PRINT "ToolTypes" : PRINT{
IF po>LEN (summary$) THEN RETURNY
GetBytes ToolTypesS (1,1), ToolTypes$(1,2),
ToolTypes$ (1, 3) , ToolTypes (1) 1
FOR I=1 TO Tool s(1)/4-19
RESTORE DefaultTool{
ToolTypes$ (2,3)=""q
GetBytes ToolTypesS (2,1) , ToolTypes$ (2,2),
ToolTypes$ (2, 3) , ToolTypes (2) 1

262

ABACUS

8.3 MAKING YOUR OWN ICONS

IF ToolTypes (2) >80 THEN

Tool! ing 801{%9 (%5{ aIG‘]I
NEXT I
I;IETURNSI

1
?IUB GetString (length) STATICY

%HARED po, summary$1

ts : a=19
ength=0 THEN EXIT SUB{

‘lI
WHILE a<>01
a=ASC (MID$ (sumryS,pO: 1
a$=HEXS$ (a) 1
IF 1LEN(a$)<2 THEN as$="0"+a$q
PRIM §%o L "oﬁ
+

PRINTH
PRINT MIDS (summary$,ts,po-ts-1)1

b
%!IND SUBT

q
SUB Decimal (he$,dec) STATICY

q

dec=01

FOR I=1 TO 1EN (he$)
a=ASC (MID$ (he$, IEN(he$)+1-I 1))-481
IF a>9 THEN a=a-71
dec=dec+16”" (I-1) *af

NEXT I

9
%ND SUB{
SUB GetBytes (identifier$,paramater$,value$,dec) STATICY

1
SHARED po, summary$,Address () ,number{
READ identifier$,paramater$,bytesd
PRINT identifier$; TAB(ZO) ramater$;TAB (47) ; 1
a$=MID$ (summarys,po, bytes) %a
IF bytes=1 THEN value=ASC(a$)1
IF bytes=2 THEN value=CVI (a$)1
IF bytes=4 THEN{
value$=""q
FOR j=1 TO 4
a=ASC(MID$ (a$,3,1)) 1
h$=HEXS (a) 1
IF LEN(h$)<2 THEN h$=h$+"0"q
value$=value$+h$
NEXT 31

q
value$=HEXS (value) 1

END IFq

PRINT "$";value$;TAB(57) ;1

Decimal value$,decq

PRINT dec,TAB(?l),po‘][

number=number+1]

Address (number, 1)=po : Address (number, 2) =bytes :
Address (n r, 341=dec1[

po=potbytes

END SUB{
1

1
1

263

8. IcoNs

264

AMIGA TRICKS AND TIPS

giskObject :q

DATA do_Magic,Magic Number, 29

DATA do_Version,Version Number, 2]

DATA do_Gadget,Click Structure, 4]

DATA gg~LeftEdge, Left Click Range,2
DATA gg_TopEdge, Top Click Range, 2
DATA gg_Width,Click Range Width,2q
DATA gg_Height,Click Range Height, 29
DATA gngags, Invert Flag, 29

DATA gg_Activation, $0003, 29

DATA gg_Type, $0001, 29

DATA gg_GadgetRender,Pointerl Picture Data, 49
DATA gg_SelectRender,Pointer2 Picture Data, 49
DATA gg_IntuiText, "not used??", 49

DATA gg_MutualExclude, "not useable!",4q
DATA gg_SpecialInfo,"not useable!",4q
DATA gg_GadgetID, "for own use!", 2

DATA gg UserData, "your Pointer!", 4]
DATA do Icon type, 11

DATA nothing,Fillbyte, 19

DATA do_DefaultTool,Text Structure, 4|
DATA do_ToolTypes, Text Structure, 4]
DATA do_CurrentX,Current x-Position, 49
DATA do_CurrentY,Current y-Position, 4]
DATA do DrawerData,Window Structure, 49
DATA do_ToolWindow,Program Window, 41
DATA do_StackSize,Reserved Memory, 4]

1
l%rawerData =1

DATA wi_LeftEdge,Left Edge, 2

DATA wi_TopEdge, Tog Edge, 29

DATA wi_Width,Width, 29

DATA wi_Height, Height, 29

DATA wi DetailPen,Drawing Color 1,19
DATA wi BlockPen,Drawing Color 2,19
DATA wi_IDCMPFlags,Gadget Flags, 41
DATA wi_Flags,Window Flags, 41

DATA wi_FirstGadget,Gadget Structure, 4
DATA wi_CheckMark, CheckMark, 49
DATA wi Title,Title Text, 4]

DATA wi_Screen, Screen Pointer, 4
DATA wi_BitMap,Window BitMap, 49
DATA wi_MinWidth,Mininimum Width, 29
DATA wi MinHeight,Minimum Height, 29
DATA wi_ MaxWidht,Maximum Width, 29
DATA wi MaxHeight,Maximum Height, 29
DATA wi_Type,$0001, 29

DATA actx-pos,Current x-Position, 41
DATA acty-pos,Current y-Position, 49
1

Image:q
1

DATA im LeftEdge,left Edge, 21
DATA im TopEdge, Edge, 2

DATA im Width,Width, 29

DATA im Height,Height, 29

DATA im Depth, Depth, 29

DATA im ImageData,BitPlane Pointer, 49
DATA im PlanePick,Graphic Data,1l{
DATA im PlaneOnOff,Use, 11

DATA im NextImage,Next Graphic, 41

1

DefaultTool:q

&TA char_num, Number of Characters, 49
1

gool‘l‘ypes:‘l[

ABACUS

Program
description

num
a num

s name

8.3 MAKING YOUR OWN ICONS

DATA string_num, Text Number, 41

Most of this program matches the icon analyzer program in structure
and program flow. One change is the byte number following all change-
able parameters. In addition, pressing <SPACE> calls a window. This
window lets you enter the following simple file management com-
mands:

Enter the address for num at which you want the change made. From
there you can select the position where you want your bytes added.

The current address is assigned the value placed in num. The routine
converts the given number to byte format.

This saves the info file bytes in the directory :mod.Icons. You
should make this directory before running this program (use makedir
mod . Icons in the CLI to create this directory). If you give no name
after s, the name used for the previous loading procedure is assigned to
8.

Once you've made changes, this lets you list the program structure out.

This command ends the program. The e command must be given, since
the program's display structure is within a delay loop.

When you want to exit the editor, press the <RETURN> key at any
prompt without entering any other text.

The authors realize that this editor isn't the most comfortable one in the
world to work with. However, a more user-friendly editor would take up
much more memory, and the current version of the editor performs all
the necessary functions.

8.3.4

Color changes

Any window can open in its own color, including the Workbench
window. The default Workbench colors are effective enough, but they
aren't very interesting. To change these colors, you must change the
data and colors before opening the window. Changing window structure
is very similar to changing drawer structure.

You can see the Drawing color 1/2 using the icon editor in
Section 8.3.3. The Drawing color contains the value $FF or 255.
A few details about screen color changes were mentioned earlier. Using
the icon editor write a value between 0 and three in the corresponding
byte to change the color.

265

8. IcoNs

266

AMIGA TRICKS AND Tirs

The best thing to do is experiment with these options. Don't be sur-
prised, though, when you try to open one of the stored info files, the
Info screen opens for a moment then disappears again. This happens
because no subdirectory exists for the window, which is arently very
important to a drawer icon. Enter the CLT and create directory for
every info file using the makedir command.

From there, you can then see all the new window colors. Some color
combinations don't work very well. Others cancel out text. Work
toward what you can see best in terms of contrast and readability.

9
Error trapping

ABACUS

9. ERROR TRAPPING

Error trapping

Controlled error handling is an absolute necessity for large programs.
These can save the user a lot of trouble from incorrect input. Very few
programs are equipped with foolproof error checking. All the user has to
do is type in input that the computer can't accept, and the system may
crash. Error trapping is another facet of user-friendliness.

However, you must first know how errors are handled in the first place,
and where in the program the error occurs. You can't find the latter on
your own, but there are a few rules you can follow to help your pro-
grams run error-free.

This chapter shows you how you can foolproof your programs from
errors. You'll read about routines that check for files on diskette without
stopping from an error message, programs that generate requesters, and
even a demonstration of easy menu creation.

269

9. ERROR TRAPPING AMIGA TRICKS AND T1Ps

9.1

Errors—and why

Even when programs shouldn't have errors, they may have some—
whether you wrote them, or they were written commercially. These
errors can be divided into two generic groups. The first group consists
of errors that the programmer may have overlooked. These are the lines
that result from leaving out a parenthesis or formula (syntax). This
error type happens often when you or the user try modifying a program.
The only way to avoid syntax (or any) errors is to completely test a
program. But how?

First, write down a list of program sections that must be used. Note the
program lines that operate under certain conditions. A number of errors
may only occur under certain conditions. When you test the program,
you have to test every section by calling them.

There are more error sources to annoy the user and programmer alike, A
frequently encountered error is the Subscript Out of Range
error. This happens when you try to access an array element past the
default 10 elements of an array. Make a list of the arrays used, and make
sure that you define them all properly. To make control easier, use one
particular section for dimensioning arrays at the beginning of the

program.

Math errors are another source of problems. Almost any calculation can
lead to an error. Any slip of the hand can lead to an Overflow error,
oraDivision by Zero. Make sure your computations test for in-
correct input, particularly in division, exponentiation, etc.

9.1.1

270

Disk access errors

Imagine this: You write the perfect data and address base. The user types
in the name of the file that uses this program, and all he gets is a File
Not Found error. Unlike the Workbench, which displays a requester
when something is wrong, AmigaBASIC returns an error.

A file under that name may exist, but you may have accidentally created
it from another program, and it may have a different format from the
program currently in use. The best that can happen is that the data can
confuse the program. Most of the time the result is a Type Mis—
match or similar error.

ABACUS

9.1 ERRORS-AND WHY

A much more aggravating error occurs when the file is on the right
diskette, but the file you want is in another directory altogether. The
result is a File Not Found error.

9.1.2

User input errors

Any database program requires the entry of values. But even values have
their limitations! Numbers should be within a certain range, and/or have
a certain number of decimal places; texts can only be a certain length or
can only contain certain characters. All these conditions aren't con-
sidered by the normal INPUT statement. It accepts numeric input as
well as text, and the wrong kind of input results in a Redo from
Start error message, screen scrolling and repeated input.

The option of selecting only certain characters is unsupported. If the
user goes past the assigned text length, the program cuts off these extra
characters. This means that important information can be lost.

9.1.3

Menu errors

This is where errors get harder to pinpoint. User menus consist of entire
subroutines and functions. The user selects an item and the program re-
acts. But menus are not infallible.

Under certain circumstances, one or more menu items may be unusable.
Selecting a menu item that shouldn't be used could lead to no reaction
at all, or even a system failure.

One harmless example could be a Save item on the fictional database
program mentioned above. Selecting this item when no data has been
entered doesn't crash the computer, but the data diskette now has a blank
record that could be very difficult to remove later.

271

9. ERROR TRAPPING AMIGA TRICKS AND TIPS

9.2

Checking
JSor errors

Requester

Trapping errors

It's possible to trap errors, or even bypass them. The keyword in
solving these problems mentioned above is prevention.,

As already mentioned, you can prevent simple error messages like
Division by Zero by checking for these errors. This method is
much more user-friendly than the program just stopping with an error.
Program breaks give the user a new problem—he has to become a
programmer and find the bug himself. Either you can set the program
up to prompt for the correct data, or at least have the program jump to
the beginning. These are crude, but either route is better than a break.

There are other ways to handle errors in BASIC. ON ERROR GOTO
sends the system to a given line when an error occurs. The programmer
assigns the line or routine. From there, the program can mention the
nature of the error, or return to the area just after the incorrect line,

The system requester is a much friendlier solution to error handling. For
example: If the wrong diskette is in the disk drive, a window appears in
the upper left hand corner. This window displays the text, "Please
insert volume in any drive". From there, you can select the
Cancel gadget to exit, or the Ret ry gadget to go on. The requester is
the last chance you get to correct an error, without getting an error
message. However, the requester is the only way to get around certain
problems, such as exchanging diskettes when you only have one disk
drive.

You may not get a chance to test your program under every circum-
stance, so you may have to create your own errors using subroutines.
These errors can test your error checking thoroughly.

9.2.1

272

User-friendly programming

Now that you've read through the theory, you can go on to practical
programming. When an error occurs, nothing angers a user more than a
program break. This is because most users aren't professional program-
mers, and even if they do program, they may not understand most of the
material within a program written by someone else. You as a program-
mer must make things as simple for the user as possible. Programs
should offer the user a chance to correct errors with some flexibility.
You've already seen an example of user-friendly programming m the
system requester mentioned above; it gave you an opportunity to insert
the correct diskette.

ABACUS

Bypassing
errors

9.2 TRAPPING ERRORS

You can write this kind of flexible programming! You're probably
thinking of one way—open a window, write the text, and read for the
mouse click. That's one possible solution, but it's also too compli-
cated! Instead, you can let the operating system draw a requester for you.
You'll see how this is done, and how you can insert your own informa-
tion, below.

Before you can program a requester, you must clearly know what you
want the requester to do. It can serve the same occasions as those served
by the Workbench requesters.

For example, you can set up a requester for a file that the system can't
find on diskette. BASIC usually returns an error message. You must
first suppress the error message, then call the requester that matches a
File not Found error message.

Since the File not Found error message usually accompanies
opening a file that is neither on the diskette nor in the correct directory,
you can't just read status during OPEN. A sequential file gives you
another way out, though. You can open the file using the APPEND
option. Either the file exists as defined by a pointer, which allows
adding to the file, or the file doesn't exist, and a new file opens. The
LOF function lets you see if the file existed previously. A file exists if
the file is at least one character in length; otherwise, the length is equal
to zero. If the length is equal to zero, the program deletes the newly
opened file.

Here is a program that demonstrates the above procedures:

| St gptesies et
: by Wgb, August '871

‘ilﬂ
gileName$="AmigaBasic2"1[
ﬁMainprogram:‘]l

Again:{

PRINT "Searching for the file: "1
WRITE FileName$q

1
CALL CheckFile (FileName$)d
IF exist=-1 THEN{

PRINT "Okay, the file exists!"q
ELSE{

PRINT "File not found...sorry."{
%ND IFT

END{
1

=0

1
SUB CheckFile (File$) STATICY
SHARED exist{

273

9. ERROR TRAPPING AMIGA TRICKS AND Tips

274

1
OPEN File$ FOR APPEND AS 2559
existz:gs(’;lDF (255)>1) 1

é[IF exist=0 THEN KILL File$y
END SUBY

You can use a more elegant (and more complex) method to determine
whether a file exists on diskette (see the program below). This other
way uses a subroutine that returns a corresponding value: 1 (file exists)
or O (file not found).

The Lock function must be defined within a program as a function.
Then the memory location of the name is given, ending with a null-
byte. Next, the routine supplies information about how the file should
be accessed. Since the Amiga is a multitasking computer, you can
choose one access by itself (Access Mode = Exclusive Write (-1)) or
read access by multiple tasks (Access Mode = Shared Access (-2)). The
first option provides write and read access for a single user. The second
option allows more than one program and/or user to read one file at the
same time.

The new routine uses Shared Access, a returned value of -2,

The value returned by the function is equal to zero if no file exists on
diskette, The value must go into memory, since it can allow another try
at file access.

The access secured through this routine should cancel the list of para-
meters, since this list takes memory and time. You can use the Un-
Lock function for this cancellation. The routine returns the value
received by Lock.

' Test for existing file on diskette{
: using dos.library{

' ©® by Wgb, August '879
'1

1

gECLARE FUNCTION Lock& LIBRARY{
LIBRARY "dos.library"{
gileNames-"AmigaBasicZ"‘lI
%ainprogram:‘ll

Again: {1

1

PRINT "Searching for the file: ";q
gRITE FileName$q

CALL CheckFile (FileName$)q
IF exist=-1 THENY
PRINT "File exists!"{
PRINT "File Header begins at Block";blk&;"on this

Disk."q

ABACUS

9.2 TRAPPING ERRORS

ELSEq
PRINT "File not found!"{
END IFq

1
LIBRARY CLOSE 1
l%ND‘lI

=

1
?IUB CheckFile (File$) STATIC{
SHARED exist,blk&q

1
File$=File$+CHRS (0) 1
accessRead$=-29
DosLocké&=Locké& (SADD (File$),accessReads) 1
IF DosLock&=0 THEN9

exist=09
ELSE]

exist=-19 .

blk&=PEEKL (DosLock&*4+4) 1
END IF{
CALL Unlock (DosLock&) 1

1
END SUB{

Now that you have some understanding of hcw to check for a file on
diskette or in a subdirectory, you should learn how you can create a re-
quester in BASIC.

It's possible to write a requester completely in BASIC, as described
above. However, it's much easier to use the requester routine provided
by the Amiga's operating system. This operating system module is
called the Aut oRequest function. This function takes your text and
gadget requests, and does the rest. The program below contains a sub-
routine that does all this for you. This subroutine returns a value which
tells the main program where to branch from that point.

' Test for a file on 1
: disketteq

1

' © by Wgb, June'871

'q

1

DECLARE FUNCTION AllocRemember& LIBRARY{
DECLARE FUNCTION AutoRequest& LIBRARYJ
DECLARE FUNCTION Lock& LIBRARY{

1
LIBRARY "dfl:intuition.library"{
LIBRARY "dfl:dos.library"{

9
FileName$="dfl:9.Errors/AmigaBasic2"{
q

Mainprogram: 1

Again:q

1
PRINT "File: ";1
WRITE FileName$1

1

CheckFile FileName${

IF exist=-1 THEN{
PRINT "File exists!"{

2758

9. ERROR TRAPPING

276

AMIGA TRICKS AND TIPS

PRINT "File Header begins at Block";blk&;"on this

Disk.'"lI

Request FileName$§

IF res&=1 THEN GOTO Again{
PRINT "File not found!"{
END IFQ

1
LIBRARY CLOSE 1
%I:ND.H

=]

1
SUB CheckFile (File$) STATICT
SHARED exist,blké&{

TestFile$=File$+CHRS (0) 1
accessRead$=-29

DosLock&=Lock& (SADD (TestFile$),accessRead$) 1

IF DosLock&=0 THEN

exist=09
ELSE]

exist=-19

blk&=PEEKL (DosLock&*4+4) 1
END IFq

‘HCALL UnLock (Doslocké&) 1
%ND SUBY

q
%UB Request (FileName$) STATICT
ﬂSHARED addg, st$, res&, of £5%9

=

Quest$ (0) ="Please insert volume containing"{

Quest$ (1)="File "+FileName$q
Quest$ (2)-"Can't find the file!"q
yes$="Retry"{
no$="Cancel”q
bt$=29
wid$=8*389
hi%=8*9q
ﬁoffs%-O‘iI

opt&=220+2~169
reqé&=AllocRemembers& (0 400,opt&) 1
IF req&=0 THEN ERROR

1
ﬁadd&areq&'l[

tl&=addeq

FOR loop2=0 TO bt%-11
st$=Quest$ (loop2) 1
MakeHeader addg&,st$,1,5,0ffs%$+3q
offs$=o0ffs%+89

T[NEXT loop2q

st$=Quest$ (bt%) T
MakeHeader addg,st$,0,5,0ffs%+3]

1

st$=yes$|

t2&=add&q

MakeHeader addg,st$,0,5, 39

1
st$=no$q
t3&=add&q

ABACUS 9.2 TRAPPING ERRORS

MakeHeader adds,st$,0,5,31

ﬂres&-lmtokaquest& (WINDOW(7) ,t1&,t26&,t3&,0,0,wid%, hi%) 1
CALL FreeRemember (0,-1) 1

%ND SUBT

gUB MakeHeader (ptré&,Text$,md$,le%,te%) STATIC

SHARED adds&q
Text$=Text $+CHRS (0) 1

1
POKE ptré&,11
POKE ptr&+l, 09
POKE ptr&+2,21
POKEW ptr&+4,les|
POKEW ptr&+6,tes|
POKEL ptr&+8, 01
POKEL ptr&+12, SADD (Text$) 1
IF md%=0 THEN{
POKEL ptr&+16,09

ELSE{
POKEL ptr&+16,ptr&+209
END IF{

add&=ptr&+209
END SUB{

First the routine must "know" which text you want displayed. Three
Program texts lie in the routine; the main text, and additional texts from which it
description can select. The last two texts are displayed in one line, and are sur-
rounded by borders. These make up the gadgets which you click. After
establishing the text, you must set the window size. If the requester
window is too small, the text simply spills over or gets overwritten,
making it hard to read.

The text must be placed in memory in a certain structure, with a mem-
ory range reserved for this structure. The operating system function
AllocRemember sets this range aside. It allows selection of a mem-

ory range based on preset criteria.
PUBLIC 20
CHIP 21
FAST 22
CLEAR 216

Any type of memory can be used, just as long as it is cleared before-
hand. If no memory is available, then an error message appears.

Assume for the moment that enough memory is available. Then the
text goes into the reserved area. This text must still appear in a certain
format. BASIC programmers can use POKES for this formatting. This
command is useful for the use and design of your own programs only—
AmigaBASIC normally doesn't require any POKEing.

The first loop brings the information text into the reserved memory
range. Then the two gadgets transfer to RAM. If everything runs cor-

277

9. ERROR TRAPPING AMIGA TRICKS AND TipPs

rectly, then the AutoRequest function can begin its task. It first
takes the addresses of the first text, the two gadget texts and the reques-
ter's size. These return a value and then a result of 1, if the first gadget
is clicked by the user.

This value can then be followed by branches to the main program.
Either the system repeats the loading procedure, because of an incorrect
diskette or non-existent file, or the loading procedure stops and returns
the user to the main program.

9.2.2

278

Trapping user input errors

Now you have a requester that checks for existing files. An even more
important aspect of error trapping is keeping the user's input correct.
User entry has its own problems and errors.

The simplest and best solution is to write an input routine that reads
the input, retains the desired characters and ignores the rest, without re-
turning an error message. The routine must ascertain which characters
are "legal” and which ones aren't. This can be accomplished by calling a
string which contains valid characters, and a routine that lists the valid
number of characters. The subroutine handles the rest of the characters.
When the user presses the <RETURN> key, the subroutine ends.

Most input goes to a specific position of the window for display.
Coordinates set this position, saving the trouble of using the LOCATE
command. You can display any text through the INPUT command.

: Input Routine
"]I© by Wgb May '879

1
%ainprogram: q

RALphasenohodefahl k1 t q
=", e: mnopgrstuvwxyz"
GAlpha$="ABCDEE‘gHIJKIMNOPQRSTUVWXYZ"1I
NAlpha$="01234567890+-*/,,="q
ZAlpha$=" ,.2!1-/;:'"q
%ossl$=KAlpha$+GAlpha$+ZAlpha$‘iI

GetInput "Last name:",IName$,Possl$,10,10,20,091
GetInput "First name:",CName$,Possl$, 10,12, 20, 09
WRITE LName$,CName${

END{

1

1

SUBRoutines: |

1
SUB GetInput (Text$,In$,Possl$,x,y,Letter,Pointer)
ﬁTATICTI

Xold=POS (0) 1
Yold=CSRLIN{

ABACUS

Program
description

Length=0g
LOCATE y,x1
PRINT Text$,
x=x+LEN ('I‘ext:s) 91

1
ReadOut : 1

Cursor x+Length,y{

GetInkey i$1

IF i$=C!-l'R$ (13) THEN GOTO Doneq

IF i$=CHRS (8) THEN GOTO RubOutq

IF Letter=length THEN GOTO ReadOut{

1
£=INSTR (Possl$,i$) 1
IF £=0 THENY
BEEPq
GOTO ReadOut{
END IFq

1
PRINT i$;9
In$=-In$+i$ Length=Length+1q

q GOTO ReadOut{
q RubOut : 1

IF Length=0 THEN GOTO ReadOut{

In$=LEFT$ (In$ Length) 1
GOTO ReadOutq

Done: q

PRINT " n ;ﬂ[
LOCATE Yold, Xold{
IF Pointer AND 1 = 1 THENY

1=1EN (In$) 1
In$-=In$+SPACE$ (Letter-1) 1
%ND IFY
']IEND SUBY

1

ﬁSUB Cursor (x,y) STATICY
COLOR 31
LOCATE y,x1
PRINT "_" ;11
LOCATE Y, x1
gOLOR 1

END SUB{

SUB GetInkey (Key$) STATIC{
KeyRead: q

Key$=INKEYST .
IF Key$==" " THEN GOTO KeyRead

END SUB{

9.2 TRAPPING ERRORS

Before calling this new input routine, you should define a string or set
of strings containing groups of valid characters. For example, you can
set up a string of lowercase characters, one of uppercase characters,
another one made of numbers, and a string of other characters. These
strings let you easily set which characters you want accepted. The new
INPUT command accepts these strings as a constant.

279

9. ERROR TRAPPING AMIGA TRICKS AND TIPS

Cursor
placement

“Adaptation

280

GetInput itself gives the text contained in the variable as a string
with all valid characters, its position, the number of characters entered,
and a pointer. This pointer determines whether the input text should be
filled with spaces where invalid characters appear in the text. This poin-
ter sets to 1 if this is the case.

Unfortunately, editing numbers is impossible. You can do this, how-
ever, with the following combination:

GetInput "Number: ",Number$,NumChar$,10,10,8
Number=VAL (Number$)

When NumChars$ only contains numbers, you can make sure that no
nulls stand in Numbe if you don't want to. At any rate, you won't get
aRedo from Start error from numeric input.

The subroutine stores the current cursor position at the beginning.
Since this position stays the same when the program exits the routine,
then it doesn't affect output. The text appears in the specified position,
and the computer sets the starting position for input. The length of the
text entered is still set to zero.

The read loop displays the current input position of the cursor, and the
routine waits for a keypress. Any character received goes through the
control functions. If you press the <BACKSPACE> key, the character
most recently entered deletes whenever possible. Pressing the
<RETURN?> key branches immediately to the end of the routine.

Next the routine checks to see if the next character is "legal.” The rou-
tine examines the string constants you set for this character. If the
character is valid, it is added to the input string; if not, the Amiga
BEEPS and returns to the beginning of the read loop. The routine then
waits for the next character.

You can naturally adapt this routine to your own needs. For example,
this program doesn't provide for letting the user move the cursor around
within the text. It allows simple character deletion, but user input
would be a lot simpler if you could insert or delete characters in the
middle of the input line.

Another feature missing from this routine is the acceptance of no input
at all. This can be practical when one value is used repeatedly, and needs
little if any changing. You can add this to the beginning of the subrou-
tine by predetermining the length of the parameters that must appear on
the screen.

Up to now, the only way you could end a prompt or input was by
pressing the <RETURN> key. You could change the pointer so that
when, say, the second bit is set, input ends only when the entry con-
tains a minimum of one character.

ABACUS

9.3 ERRORS AND CORRECTIONS

9.3

Errors and corrections

This section deals with corrections. Up until now, this chapter has
assumed that correction is the last possible option for incorrect input.
Most of the time no one takes this route, since real-time error checking
in BASIC simply takes too much time. The self-generated input routine
showed that examining every character can take up to three seconds to
see if the character is good, bad or indifferent. This can't be helped.

For example, say you only want one word out of a hundred possible
words entered. The system checks every single character as it appears in
the combination. When you end the input, it checks all available words
against this input, and you can display an error message or branch to
the input as needed.

Most of the time, responses occur in which you have no say whether or
not all values are recognized. Here, checking is only possible as a last
resort. If the program establishes that a value is invalid, then it can
simply be corrected. The program doesn't go on immediately after this.
The user must again switch on correction to see if the value just entered
is valid or not.

You can see that this is a fairly complicated subject. The entire matter
of error-free user input is difficult, and unfortunately you can't hold a
patent on this kind of routine. Every program has its own features, and
its own error sources. As a programmer, you must be sympathetic to
the user, and consider every place in a program where an error can
happen. This means that testing should occur wherever an error can
occur—better that than a program break later on.

9.3.1

Blocking out menu items

One answer to bypassing errors is to force inaccessible menu items to
appear in ghost print. Programming with the MENU command leaves all
menu items open to selection. This makes designing menus fairly sim-
ple. But what if you want to deactivate menu items so that the entire
menu becomes inactive? You can save yourself a lot of work using
MENU number,item,0 to deactivate individual items. This gets to be
time-consuming when you call this command to create an entire menu
in ghost print.

That's where this program comes in. It uses a SUB routine named
Able, which lets you assign the desired status to multiple menu:

281

9. ERROR TRAPPING AMIGA TRICKS AND TIPS

items. You can deactivate an entire block if you wish, or assign check-
marks to an active block of menu items. The function is a practical
replacement for the MENU command.

: PullDownTest{
:‘][© by Wgb in June '871

1
I%EFINT a—-z1
gain?rogram: q

GOSUB MenuDefinition{
PRINT"All menus active."q
Pause 591

1

PRINT "Disk menu inactive."{
Able 1,0,0,09

Pause 51

1

PRINT "Drawing type set."{
Able 2,4,0,29

Pause 59

PRINI‘"Single—color drawing only."{
Able 3,1,5,0

Able 3,1,0,11

Pause 51

1
PRINT"GET from Brush menu available only."{
Able 4,1,

5

o

fary

~

o

N
Nno»
Rttty
PRO
=112

Able 1,0,0,09
Able 2,0,0,09
Able 3,0,0,01
Able 4,0,0,01
Able 5,1,2,01

q

%?enuDefinition:‘]I
RESTORE MenuDataq
READ Number{
FOR i=1 TO Number{

READ Items,Lengthi
FOR j=0 TO Items{

RIE:ADIF j>gtem$il
Ttem$=LEFTS$ (Item$+SPACE$ (Length) , Length) 1
IF i=2 OR i=3 THEN{
Item$=" "+Item$’]1
END IF{
END IF{

MENU i, 3j,1,Item$]

282

ABACUS

Program
description

9.3 ERRORS AND CORRECTIONS

NEXT 3j91

'DﬁEXT iq

%ETURN‘]I

%UB Able (MenuNr, Item, Number, Types) STATICY
FOR i=Item TO ItemiNumber{

MENU MenuNr, i, Types{

NEXT&[iq

END SUBY

%UB Pause (Seconds) STATIC{

Elapsed&=TIMER+Secondsq{
WHILE TIMER<Elapsedé&
WENDY

q

?IRINTSI

l;I!ND SUBT
%enuData <1

DATA 51

DATA 7,15,Disk{

DATA New, Load,Load as{
DATA Save, Save as{
gA’I‘A Disk Command, Quit{d

DATA 7,9,Draw{

DATA Freehand, Line, Lines{
DATA Circle,Rectangle,Polygon{
DATA Fill{

q

DATA 6,11,Color{

DATA One Color,Multicolor,Palette]
DATA Shadow,Wipe, Transparent{

q

DATA 6,9,Brush{

DATA Load, Load as, Save{
DATA Save as, Clear,Get{

1

DATA 4,11,Extras{

DATA Workbench,Coordinatesq
DATA Blend Out,Endf{

1
add&=ptr&+209

First all variables are defined as integers. You may wonder why this
program declares just these few variables. The reason is that when you
define these at the beginning, the speed increases greatly—all math op-
erations run as integer arithmetic. Besides, no problems crop up during
the subroutine calls. If whole-number constants appear there, then the
Type Mismatch error occurs (the subprograms want real number
variables). Then you must either add integer signs to the constants in
the command line, or adapt the variable types in the SUB program.

After variable definition, the main program branches to the SUB pro-

gram MenuDefinit ion, which reads the menu texts from the DATA
statements at the end of the listing.

283

9. ERROR TRAPPING AMIGA TRICKS AND TIPS

284

Now look at the SUB program itself. After the DATA statements gene-
rate the menu data, the corresponding number goes to the outermost
loop. This loop reads all the data concerning the number of menu items
per menu and the length for each text. The last value is very important,
since aﬁadeﬁmng a menu you can open the corresponding array. It has
a maximum X-length based upon the longest text. You can only
activate the individual menu items that actually contain characters.

Every line that contains less than the maximum number of characters
fills in with blankspaces You can also activate the spaces at the end of
every menu item.

With this, you can make a graphic, move the menu items to the start of
the current item, and place a REM character in front of the line, filling

‘the Item$ variable with SPACE$. When you select the menu item,
.make sure you realize that this was done.

Look at the inner loop of the SUB routine. This takes the abovemen-

~ tioned number of menu items from the DATA statements, and defines.
. them with the MENU function. Menus 2 and 3 can have checkmarks

before their items, when two spaces precede the texts of these menus.
The addition of spaces following the texts changes when the number of
menu items is greater than null. The menu title must not be corrected
in this case.

Now on the main program itself. It displays the text stating that all
menus are active. From this the user can determine the branch to a sub-
routine which waits for a given number of seconds then returns to the
main program.

The design of this routine is fairly simple. First the computer calculates
the time number which must be assigned to the given number of sec-
onds. Then this waits in a delay loop until the current time is reached.

The main program displays another text that says that the Disk menu
is inactive. After this, the most important subroutines execute. The
parameters state that the first menu's title, as well as the other menu
titles, should be set with zeros. This sets all the other menu items to
zero.

The SUB routine is easy to call, but designed with ease of use in mind.
For each parameter, a loop executes which assigns the specific item
types to all menu items.

10
Effective
programming

ABACUS

10. EFFECTIVE PROGRAMMING

10

Style in
programs

Effective programming

"How can I program more effectively?” Good question. The chances are
good that anyone reading this book has some knowledge of program-
ming. But since every programmer has his own style, the question of
effective programming can't be answered simply. This chapter tries to
point out some ideas that will help your programming style.

Before going on to the examples, here are a few things to bear in mind.
Three different people authored this book. Every one of these men has
his own style, but the ideas for style here come from only one of the
authors. The following personal "style sheet" was used on the program
examples in Chapter 4:

1) Indent commands in every loop by three spaces

2) Indent every main program command or every label by one
character

3) Place all subroutines at the end of a listing
4) Place all DATA statements after the subroutines
5) Indent any commands in an IF construct by two characters

These are personal opinions about style. These rules assume that you
only write one command to a program line.

When you use multiple commands on a program line, the readability of
the program suffers. Programming style is much more than the amount
of money you get for writing a program. To some degree, a program is
a work of art. The most important aspect of a program is that it works,
and not necessarily how it looks. However, when you write a program
that's several hundred lines long, or when you want to adapt this pro-
gram for commercial sale, you should write it so that anyone can under-
stand it if they look at it.

Style is but a small part of effective programming. As already men-
tioned, readability serves the user and the programmer, but it's
incidental. The program's function is the primary factor. An effective
program accomplishes in one line what could normally take ten lines of
program code. Or, an effective program executes a formula in seconds
that might take other programs a week. _

287

10. EFFECTIVE PROGRAMMING AMIGA TRICKS AND TIPS

10.1

Benchmarks

Tests for measuring program speed and efficiency are called benchmarks.
These benchmarks measure the time involved in a program run. You
can then edit the program and try the benchmark again.

10.1.1

288

Benchmark: variable types

Why are there different variable types? For one thing, you can't store
text in the same way you store numbers. To see some other reasons
why there are so many different types of variables, type in and run the
following program:

' Benchmark used for testing the differences{
' between different variable types{

11I .

' © by Wgb, June '871

1

PRINT "Benchmark 1 tests for the differences between
different"q
PRINT "variable types, using the following loop:{
PRINTY
PRINT " ~ FOR i=1 to 100009
PRINT " a=a+lq
PRINT " NEXT iq
PRINTY
1
tla=TIMER{
1
FOR i%=1 TO 100001
a=a+1q
NEXT i%q
1
t1b=TIMER{
PRINT "Short integer floating variable (%)
:";tlb-tlal
CLEAR{
1
t2a=TIMER]
1
FOR i&=1 TO 100001
a=a+lq
NEXT i&q
1
t2b=TIMER{
PRINT "Long integer floating variable (&) :";t2b-t2aq

ABACUS

Program
description

10.1 BENCHMARKS

CLEARY

1

t3a=TIMER]

1

FOR i=1 TO 100001
a=a+1q

NEXT iq

1

t3b=TIMER{ :)

PRINT "Single-precision floating-point variable :";t3b-

t3af

CLEARY

1

t4a=TIMERY

1

FOR i!=1 TO 100009
a=a+l9q

NEXT i!q

1

t4b=TIMER{

PRINT "Single-precision floating-point variable (!) :";tdb-

td4aq

CLEARY

1

t5a=TIMERY

1

FOR i#=1 TO 100009
a=a+1q

NEXT i#9

1

t5b=TIMER{

PRINT "Double-precision floating-point variable (#)

:";t5b-t5aq

All the other benchmarks in this chapter are based on this program.
First some text commentary appears, telling the user what the program
does. The text then disappears.

The time variable t 1a declares the starting time (t1a=TIMER), then the
program executes a loop. The time variable with the index b sets the
ending time. The computer figures out the execution time of the loop
from the difference between the starting and ending time. This appears
on the screen with a text. To avoid any outside influence, all variables
clear and the routine starts all over again.

This tests out the execution time of the same loop, using variables of
different types. The final result shows which variable types allow faster
execution, and which variable types slow execution time.

See the table below. These are the values we received when we ran this
benchmark, but try the program out yourself:

289

10. EFFECTIVE PROGRAMMING AMIGA TRICKS AND TIPS

Short and
long
integers

int long int simple float simple ! _double

1092188 11 13 13 13.80078
10.89844 11 13 13 13.9375
10.89844 10.96094 13.10156 16.59766 13.83984
11.05859 11 13 13 13.80078
10.89844 10.98047 13 13 13.80078
10.89844 10.98047 13 12.98047 13.80078
10.89844 10.98047 13 13 13.80078

As you can see from the table, the values aren't constant for every type.
The next section explains why this is so.

The loop executes 10,000 times. Decimal places must be born in mind
—multiply the entire set by 1000, and the values are more even.

The long integer values require more time than the short integers. This
is understandable since the bytes store twice their length in numbers.
The disadvantage to both these variable types is that they can handle
whole numbers.only.

Integer variables are faster than floating-point variables. So you can dis-
tinguish the types by those marked by decimal points. There are three
distinctions between two types. One is single accuracy, the other has
double accuracy. The simplest means that unless a variable is desig-
nated otherwise, it handles numbers with single accuracy. You can also
add an exclamation point to a variable name, which invokes double
accuracy. The amazing thing is that some test runs of variables that had
the exclamation points following them ran much faster than those vari-
ables without it. This speed change was inconsistent, however (see also
Section 10.1.2).

You'll see that most of the time double accuracy variables run con-
siderably slower than simple accuracy variables. If you don't need to use
double accuracy, don't use it.

10.1.2

290

Benchmark peculiarities

Before we continue on with the next benchmark, you should know
about a few of the peculiarities of benchmarks.

You may wonder why benchmarks run differently each time you run the
computer. This is due to the random numbers which change through the
TIMER variables every time a program starts.

ABACUS
Speed

changes

BASIC from
the CLI

10.1 BENCHMARKS

Some benchmark tests give values that can be incredibly different from
each other. Some changes are due to timing, but many returned values
can look totally illogical. Most of the time, these odd values can't be
figured out. In a few cases, the BASIC version and the time delay used
cause the changes.

Here are some hints for you. If you want your BASIC programs to run
faster, then don't start BASIC from the Workbench. This takes up extra
memory and another task—these things absorb execution time.

When you stop the Workbench and the CLI window appears, type in
any characters until the disk drive runs a moment. Put the diskette into
the drive and erase your random characters using the <BACKSPACE>
key.

To start BASIC, type a quotation mark, the diskette drive specifier, a
colon and the name amigabasic ending with a quotation (i.e.,
"df0:amigabasic™). Press the <KRETURN> key. BASIC loads.

This method saves you a lot of time. The only thing you may really
miss is the user-friendly nature of the Workbench. When you want to
load a program, then you must type in the program name instead of
clicking the icon. In the long run, though, the quotation marks are a lot
faster.

10.1.3

Benchmark: DEF for variable declaration

The Amiga has two ways that the user can assign variables. You can
either put a declaration character after each and every variable (e.g., %,
&, |, #), or you can define all the variables at the beginning of the pro-
gram with one character for a specific type.

The program following tests which of the two versions run faster. The
return of illogical values may occur as mentioned in the last section.

' Benchmark for testing the time differences between{
' variables declared using DEF to set the variable{

' typel

1

PRINT "This benchmark tests for the differences in
execution

PRINT "times between variables. The first loop uses the{
PRINT "variable definitions within the loop, while the
secondq

PRINT "loop uses the DEFinition statement.q

PRINT{

1

CLEAR(]

t1a=TIMER{

291

10. EFFECTIVE PROGRAMMING AMIGA TRICKS AND TIPS

292

1

FOR i%=1 TO 100009
a=a+19q

NEXT is%q

1

t1b~TIMER]

1

PRINT "Variable with character:";tlb-tla{

1

CLEAR{

q

DEFINT iq

t2a=TIMER]

1

FOR i=1 TO 100009
a=a+lq

NEXT iq

1

t2b~TIMER]

1

PRINT "Variables using DEF :";t2b-t2af

10.9375 10.94141
10.94141 1094141
1090234 10.94141
1091791 1091791
1092188 1091791
1090234 10.90234
1091797 10.90234
1091797 1091797
1094141 10.94141
1092188 1091797
1091797 1091797

This table shows you that a definition with DEF is considerably faster.
This especially applies to programs in which almost all variables are of
one type, and in which very few others are used.

The speed advantage lies in not using the character for the variable type.
For every variable, the interpreter has one less character to read. You see
how that works. The effect only works most naturally when these lines
execute within a loop, for example.

ApAcus

10.1 BENCHMARKS

10.1.4

Benchmark: variable definition time

This means a great deal, since BASIC must set up a list of variables
used. When a variable is defined at the beginning of a program, this
variable goes to the beginning of the list. When other variables follow,
and the program must search for them in this list.

Type in the following program, or just look at the table. The best thing
to do is make your own table.

' Benchmark for testing speed between variables{
' definitions both at the beginning and later onf
' in program loops{
Al
1
' ® by Wgb, June '871
'q1
1
PRINT "The variables used in the first loop are
predefined.
PRINT 1
PRINT "The second loop inserts other variables, even{
PRINT "though the loop doesn't use these variables.{
PRINT "The locp formula:{
PRINTY
PRINT "for i=1 to 100001
PRINT " a=a*1l.19
PRINT "next i
PRINT]
1
a=0q
tla=TIMER]
1
FOR i=1 TO 100001
a=a*1.19
NEXT i9

1
t1b=TIMERY]
11 '
PRINT "1st loop :";tlb-tlaq
q
CLEARY
b=0 : c=0 : hello=0 : me=0f
a=01
t2a=TIMER]
1
FOR i=1 TO 100009

a=a*1l.19
NEXT iq
q
t2b=TIMERY
q
PRINT "2nd loop :";t2b-t2aq

293

10. EFFECTIVE PROGRAMMING AMIGA TRICKS AND TIPS

10.45703 10.46094

10.45703 10.46094
10.46094 10.45703
10.46094 10.48047
10.48047 10.46094
10.46094 10.48047
10.46094 10.48047
10.48047 10.46094

As you can see, there is virtually no difference when a variable is de-
fined, even if the variable is unnecessary.

10.1.5

294

Benchmark: Variable name lengths

The earlier computers manufactured by Commodore only read two-
character variable names. AmigaBASIC allows you to use much longer
variable names, which means that you could write variable names that
meant something in your programs (e.g., you could assign a variable
named BorderColor to represent the screen border color number).

Longer variable namesare easier for the user to read. But do they affect
the program's execution time? The longer names take up more memory,
80 it stands to reason that a longer name takes more time to handle.

This benchmark tests out the nature of these variables. The first loop
executes a set of computations using long variable names. The second
loop performs the same computations with very short variable names.

' Benchmark for testing speeds of loops

' using shorter or longer variable names{

1

' © by Wgb, June '871

'q1

1

PRINT "The first loop uses very long{

PRINT "variable names. The second loop{

PRINT "uses variable names consisting ofq

PRINT "single characters."q

PRINT{

1

tla=TIMER{

1

FOR IndexCounter=1 TO 100009
PartialResult=IndexCounter”2-3*IndexCounterq
EndResult=PartialResult-1/3*PartialResultq

NEXT IndexCounter{

1

ABACUS

10.1 BENCHMARKS

t1b=TIMER{

1

PRINT "1st loop:";tlb-tlaf

1

CLEAR{

1

t2a=TIMER{

1

FOR i=1 TO 100009
t=1r2-3*i]
e=t-1/3*t{

NEXT i

1

t2b=TIMER]

1

PRINT "2nd loop:";t2b-t2afi

long name _short name
111.457 111.4609

Here again, there's very little difference between the two types. Most of
the time, the shorter variable names are only a little faster. It is recom-
mended that you use longer names for variables. This may take up a bit
more typing time on your part, but you get much more information
about the variables.

10.1.6

Benchmark: single-line loops

One question that has always been asked is whether a programmer
should run loops over the course of several lines, or just squeeze loops
into one line. Many programmers don't like compressed programs; but
try out this benchmark first, and see which is faster.

The following program performs an addition. It continues this addition
until the program reaches a specific value. This occurs within a struc-
tured loop containing several lines. The second route has the entire loop
within one line. Which is faster?

' Benchmark for testing speed differences between{
' line set-ups{

'1

' © by Wgb, June '871

'q

bl

PRINT "This program tests the same command sequence in
both single-linef{

PRINT "and multiple-line program format using the
formula:{

PRINT{

PRINT "1. WHILE a<100009

295

10. EFFECTIVE PROGRAMMING AMIGA TRICKS AND TIPS

296

PRINT " a=a+l19
PRINT * WENDY
PRINTY
PRINT "2. WHILE a<10000 : ama+l : WENDY
PRINTY
1
a=0q
tla=0 : tlb=0 : t2a=0 : t2b=0{
1
tla=TIMER{
1
WHILE a<100009
a=a+19q
WENDY
1
t1b=TIMERY
a=09
t2a=TIMER]
1
WHILE a<10000 : a=a+l : WEND{
1
t2b=TIMER]
1
PRINT "1. (multiple lines) :";tlb-tla{
PRINT "2. (single line) s";t2b-t2aq

3 lines 1 line

18.4375 18.96094
18.41797 18.96094
18.39844 18.96094
18.39844 18.96094
18.42188 18.96094
18.41797 18.96094
18.33984 18.87891
18.35938 18.90234

You may be surprised to learn that the tightly packed line is somewhat
slower than the separate ones. Why this is so, we don't know. But this
means that you can write neat, structured programs without sacrificing

ABACUS " 10,1 BENCHMARKS

10.1.7 Benchmark: subroutine vpositiox‘ling

Older Commodore computers ran faster when program jumps occurred
at the beginning of the program. This was because the BASIC
operating system looked for subroutines in a program starting at the
beginning of the program.
This program tests out execution times based on the positions of
subroutines. .
' Benchmark for testing speed differences based {
' on the positioning of subroutines within an 1
' AmigaBASIC program.{
1
GOTO Mainprogramil
1
Subroutinel:{
1
a=a+l19
1
RETURNQ
1
Mainprogram:
1
PRINT "This program tests for the speed difference (if
any) 1
PRINT "between programs using subroutines at the
beginningd
PRINT "and end of program code.{
PRINT{ '
1
tla=TIMER]
1
FOR i=1 TO 100009 -
a=a+1q
NEXT iq
q
t1b=TIMER]
PRINT "Normal loop time :";tlb-tla{
CLEAR{
t2a=TIMER]
1
FOR i=1 TO 100001
GOSUB Subroutinelf
NEXT i1
1
t2b=TIMER]
PRINT "Time with subroutine at beginning:";t2b-t2a{
CLEAR{
t3a=TIMERT

1
FOR i=1 TO 100001

297

10. EFFECTIVE PROGRAMMING

298

GOSUB Subroutine2{

NEXT iq

b

t3b=TIMER]

PRINT "Time with subroutine at end
END{

1

Subroutine2:q

1

a=a+1q

1
RETURNY
normal start end
13.05859 19.78105 19.75781
13.01953 19.71875 19.72266
13 19.71875 19.71875
13 19.69922 19.72266
13 19.71875 19.71875

AMIGA TRICKS AND TIPS

:";t3b-t3aq

To make this comparison, the first loop performs the innermost tasks.
Then the inner section goes to the subroutine at the beginning. Finally
the same subroutine is accessed at the end of the program.

The loop not contained within a subroutin
bunch. A program jump takes considerably
ence between the two subroutines is v
subroutines at the end of the

them at the beginning.

e is the fastest loop of the
longer, but the time differ-
ery interesting. Placing the
program seems to work better than placing

ABACUS

10.2 SHORT LIBRARIES

10.2

Memory and
libraries

Short libraries

Effective programming also means that the programmer uses as little
memory as he possibly can. This extra memory can be used for more
important assignments.

Library files can take up a great deal of memory. The most important
libraries are already in the system when you boot the Amiga. All other
libraries are called from the Workbench diskette as needed. BASIC calls
these libraries according to name, parameters and offset of every
function.

A library file must have memory reserved for it, which doesn't really
have another purpose. Every byte is important, though. You don't want
to waste memory, especially with only 512K available.

Many libraries are frequently unnecessary, but BASIC calls them
anyway. You can remove these unnecessary libraries from the list, and
have the Amiga load the .bmap files that it absolutely requires.

The following program uses this principle. After entering the function
names and their parameters in the DATA statements, you can start the
program and create your own personal program library. You should
know which libraries are required by which program. No two programs
can use the same library files. Insert a comment using the Info func-
tion of the Workbench that states to which program this library
belongs.

REM q

REM - Universal .bmap linker for -1

REM - creating abbreviated Libraries -1

REM 1

1

Header: 1

1

PRINT{

PRINT" .bmap creator for user-created abbreviated
libraries"{

PRINT" (See Amiga Tricks & Tips from Abacus for a
complete"{

PRINT" list of 1library command data for this
program) "1

1

FunctionValues: 1

1

DATA graphics{

1

DATA Move, 9,1,2,2401

DATA PolyDraw,10,1,9,3361

299

10. EFFECTIVE PROGRAMMING AMIGA TRICKS AND TIPS

300

DATA SetDrawMode, 10, 1,3549
1
DATA end{

REM - The above DATA statememts state the following: =1
REM - DATA graphics = name of the short library file -{
REM - Move, PolyDraw and SetDrawMode = the commands -q
REM - placed in the short library file -1

RESTORE FunctionValues{
T
READ LibName${
11 .
OPEN LibName$+".bmap" FOR OUTPUT AS 119
1
ReadLibFunc: {
READ Routine${
gencount=gencount+1q
IF Routine$="end" THEN ShutDown{
1
counter=0q
1
Readloop:q
READ value (counter) q
IF value (counter)<20 THEN{
counter=counter+1q
GOTO ReadLoop{
ELSE]
offset=value (counter) {
counter=counter-19
END IFY

offset=65536&-of fset

off1=]INT (offset/256) I

off2=offset-(256*off1) |
1

lib$=Routine$+CHRS$ (0) +CHRS (of£1) +CHRS (of£2) |
T

FOR loop=0 TO counter{

1lib$=1ib$+CHRS (value (loop)) 1
NEXT loop{

1
1ib$=1ib$+CHRS (0) 1
1
ges$=ges$+1ibsq{
q
GOTO ReadLibFunc{
1
ShutDown:{
1
LOCATE 7,61
PRINT gencount-2;" functions written to the short
library."{
PRINT#1,ges$q

ABACUS

Changing
the libraries

exec.library

10.2 SHORT LIBRARIES

CLOSE 11

LOCATE 9, 61

PRINT " "LibName$+" .bmap written to diskette."{
IOCATE 12,61
ENDT

The sample listing above shows a library which could be used with a
grid-based graphic program. It contains the most important graphic
functions needed: Move, SetDrawMode and PolyDraw. Think of
the memory and loading time saved by loading a short library, instead
of loading the entire library set.

You can make even more changes. If you don't want to call the func-
tions under their usual names, you can change the name in the DATA
list, and reboot the program. Only the offsets are necessary to call the
libraries.

Changing the names for the entire library set isn't so easy. First you
must copy the source library with the new names on the Workbench
diskette, giving you a copy of the same library (hopefully you'll have
enough memory). Change the .bmap filenames. Then the entire library
is no longer a problem.

Below are the complete DATA statements for the dos, exec,
graphics and intuition libraries. These let you create your own
individualized .bmap files.

DATA exec

DATA InitCode,72

DATA InitStruct,10,11,1,78
DATA Makelibrary,10,11,12,1,2,84
DATA MakeFunctions,90
DATA FindResident,96

DATA InitResident,102
DATA Alert,108

DATA Debug,114

DATA Disable,120

DATA Enable,126

DATA Forbid,132

DATA Permit,138

DATA SetSR,1,2,144

DATA SuperState,150

DATA UserState,1,156

DATA SetIntVector,1,10,162
DATA AddIntServer,1,10,168
DATA RemIntServer,1,10,174
DATA Cause,10,180

DATA Allocate,10,1,186
DATA Deallocate,10,11,1,192
DATA AllocMem,1,2,198

DATA AllocAbs,204

301

10. EFFECTIVE PROGRAMMING

DATA FreeMem,10,1,210
DATA AvailMem,2,216

DATA AllocEntry,9,222
DATA FreeEntry,9,228
DATA Insert,9,10,11,234
DATA AddHead,9,10,240
DATA AddTail,9,10,246
DATA Remove, 10,252

DATA RemHead,9,258

DATA RemTail,9,264

DATA Enqueue,9,10,270
DATA FindName,9,10,276
DATA AddTask,10,11,12,282
DATA RemTask,10,288

DATA FindTask,10,294
DATA SetTaskPri,10,1,300
DATA SetSignal,l,2,306
DATA SetExcept,1,2,312
DATA Wait,1,318

DATA Signal,1l0,1,324
DATA AllocSignal,l1,330
DATA FreeSignal,l,336
DATA AllocTrap,l,342
DATA FreeTrap,1,348

DATA AddPort,10,354

DATA RemPort,10,360

DATA PutMsgq,9,10,366
DATA GetMsgq,9,372

DATA ReplyMsgq,10,378
DATA WaitPort,9,384

DATA FindPort,10,390
DATA AddLibrary,10,396
DATA RemLibrary,10,402
DATA OpenLibrary,10,1,408
DATA Closelibrary,10,414
DATA SetFunction,10,9,1,420
DATA SumLibrary,10,426
DATA AddDevice,10,432
DATA RemDevice,10,438
DATA OpenDevice,9,1,10,2,444
DATA CloseDevice,10,450
DATA DoIO,10,456

DATA Send10,10,462

DATA CheckIO,10,468

DATA WaitIO,10,474

DATA AbortI0,480

DATA AddResource,10,486
DATA RemResource,10,492
DATA OpenResource,10,498
DATA GetCC,528

DATA end

302

AMIGA TRICKS AND TIPS

ABACUS 10.2 SHORT LIBRARIES

intuition.library
DATA intuition

DATA AddGadget,9,10,1,42

DATA AllocRemember,9,1,2,396
DATA AutoRequest,9,10,11,12,1,2,3,4,348
DATA BeginRefresh,9,354

DATA BuildSysRequest,9,10,11,12,1,2,3,360
DATA ClearDMRequest,9,48

DATA ClearMenuStrip,9,54

DATA ClearPointer,9,60

DATA CloseScreen,9,66

DATA CloseWindow,9,72

DATA CloseWorkBench,78

DATA CurrentTime,9,10,84

DATA DisplayAlert,l,9,2,90

DATA DisplayBeep,9,96

DATA DoubleClick,l,2,3,4,102
DATA DrawBorder,9,10,1,2,108
DATA DrawImage,9,10,1,2,114
DATA EndRefresh,9,1,366

DATA EndRequest,9,10,120

DATA FreeRemember,9,1,408

DATA FreeSysRequest,9,372

DATA GetDefPrefs,9,1,126

DATA GetPrefs,9,1,132

DATA InitRequester,9,138

DATA IntuiTextLength,9,330
DATA ItemAddress,9,1,144

DATA MakeScreen,9,378

DATA Modi fyIDCMP,9,1,150

DATA ModifyProp,9,10,11,1,2,3,4,5,156
DATA MoveScreen,9,1,2,162

DATA MoveWindow,9,1,2,168

DATA Of £Gadget,9,10,11,174

DATA Of fMenu,9,1,180

DATA OnGadget,9,10,11,186

DATA OnMenu,9,1,192

DATA OpenScreen,9,198

DATA OpenWindow,9,204

DATA OpenWorkBench,210

DATA Print IText,9,10,1,2,216
DATA RefreshGadgets,9,10,11,222
DATA RemakeDisplay,384

DATA RemoveGadget,9,10,228
DATA ReportMouse,9,1,234

DATA Request,9,10,240

DATA RethinkDisplay,390

DATA ScreenToBack,9,246

DATA ScreenToFront,9,252

DATA SetDMRequest,9,10,258
DATA SetMenuStrip,9,10,264
DATA SetPointer,9,10,1,2,3,4,270
DATA SetWindowTitles,9,10,11,276
DATA ShowTitle,9,1,282

303

10. EFFECTIVE PROGRAMMING AMIGA TRICKS AND TIPS

DATA SizeWindow,9,1,2,288

DATA ViewAddress,294

DATA ViewPortAddress,9,300
DATA WBenchToBack,336

DATA WBenchToFront,342
DATAWindowLimits,9,1,2,3,4,318
DATA WindowToBack,9,306

DATA WindowToFront,9,312

DATA SetPrefs,9,1,2,324

DATA AllohaWorkbench,9,402

DATA end

dos.library
DATA dos

DATA xClose,2,36

DATA CreateDir,2,120
DATA CurrentDir,2,128
DATA DeleteFile,2,72
DATA Duplock,2,96

DATA Examine,2,3,102
DATA ExNext,2,3,108

DATA GetPacket,2,162
DATA Info,2,3,114

DATA xInput,54

DATA IoErr,132

DATA IsInteractive,2,216
DATA Lock,2,3,84

DATA xOpen,2,3,30

DATA xOutput, 60

DATA QueuePacket,2,168
DATA ParentDir,2,210
DATA xRead,2,3,4,42

DATA Rename,2,3,78

DATA Seek,2,3,4,66

DATA SetComment,2,3,180
DATA SetProtection,2,3,186
DATA UnLock,2,90

DATA WaitForChar,2,3,204
DATA xWrite,2,3,4,48
DATA CreateProc,2,3,4,5,138
DATA DateStamp,2,192
DATA Delay,2,198

DATA DeviceProc,2,174
DATA xExit,2,144

DATA Execute,2,3,4,222
DATA ILoadSegq,2,150

DATA UnLoadSeg,2,168

DATA end

304

11
Machine
language calls

ABACUS

11. MACHINE LANGUAGE CALLS

11.

Machine language calls

AmigaBASIC is a wonderful programming language, but it runs too
slow for many applications. The clearest solution may be to write the
program that needs the most speed in machine language and call it from
AmigaBASIC. There are some problems with this idea, which this
chapter explains.

First on to the assembler itself. We use AssemPro Amiga from
Abacus.

The first important factor is the addressing type used to assemble your
own machine language programs. When you want to use machine lan-
guage calls from AmigaBASIC, you must use PC-relative addressing.
Normal code can be called from the Workbench or the CLI, but you can
count on a system error when calling normal machine code from

. AmigaBASIC. The term "PC" refers to the Program Counter, rather

than personal computer. Why PC-relative? Look at what happens when
the Amiga loads and runs machine language. The Amiga is
multitasking, which means it can run several programs at the same
time. These programs must all start at different memory locations. It
naturally follows that the addresses used by the program cannot be
loaded at the same locations, or else the entire system crashes. After
loading, the operating system converts all addresses used to the required
memory locations.

When you load a machine language routine from AmigaBASIC, and no
other task is in the system, no address changing occurs. The program
should run as it comes from the diskette, but AmigaBASIC cannot set
the address in which the routine should lie, since it only sets absolute
addressing for itself.

Be sure that your assembler only uses offsets for the current address.

307

11. MACHINE LANGUAGE CALLS AMIGA TRICKS AND TIPS

11.1

308

Loading and running
machine language

Here's the step by step process for controlling machine language from
AmigaBASIC. First the routine should be loaded into memory. You
can do this in one of two ways: Load direct from diskette, or execute the
routine from DATA statements from AmigaBASIC itself.

There are several ways to load programs from diskette:
1) Forlong maching language or BASIC programs:

DECLARE FUNCTION xOpen& LIBRARY 'don't
DECLARE FUNCTION xReads LIBRAY 'forget to
LIBRARY "dos.library" 'call libs

File$="Myroutine"+CHRS$ (0)
handle&=xOpen& (SADD (File$),1005)
reader&=xRead& (handle&,Addressé&,Lenghté)
CALL xClose (handle&)

2) The DOS library must be opened for loading. The following
works: S

OPEN "Myroutine"™ FOR INPUT AS 1
a$=INPUTS (LOF (1),1)
CLOSE 1

This routine must already be set up in a string.

3) Short routines let you read a file byte for byte into any variable,
or POKE it direct into memory.

If you prefer to use DATA statements from within AmigaBASIC, look
at the Data Generator program in Section 6.3.1.

If your program lies in a specific memory range (e.g. chip RAM), use
the A1l ocMem routine from the Exec library to reserve memory. The
simplest option is to read a routine into a string. You can use array
variables if you wish.

ABACUS

11.2 LED SHOCKER

11.2

LED shocker

Imagine this: You run a program. For a moment, nothing appears on
the screen. Suddenly the POWER LED on the Amiga blinks—a sys-
tem crash!

No, not a system crash; the machine language program below made the
LED flash:

start:) ;beginning of program
move.l dO,-(sp) ;Reserve data register from stack
move.l 8(sp),do0 ;Value from data register 0
cmp.l #1,d0 ;Value = 1°?

beq LEDON . ~ ;Branch to LEDON

LEDOFF: ;Otherwise do this

or.b #2,$bfe001 ;Set bit 1

bra DONE ;Jump to DONE

LEDON: ;Turn LED on

andi.b #253,$BFE00l;Clear bit 1

DONE:

move.l (sp)+,d0 ;Remove dO0 from stack

rts ;Return to AmigaBASIC

END ;end of program

If you don't want to type it in on your assembler, or you don't have an
assembler, see the program in the next section.

309

11. MACHINE LANGUAGE CALLS AMIGA TRICKS AND TIPS

11.3

310

Passing values

AmigaBASIC calls a machine language program with the variable name
which contains the starting address of the program. This is done by the
CALL command:

CALL address& (parameter_l,.,last_parameter)
The interpreter places the last parameter on the stack, then accesses the
first parameter and places the return address on the stack. You can access
the correct address from the stack. Here's a graphic layout of the stack:

Line number Stack setup

0 stack pointer = return address
stack pointer+4 = parameter_1 (just one)
1 stack pointer = data register 0
stack pointer+4 = return address
stack pointer+8 = parameter_1
11 stack pointer = return address
stack pointer+4 = parameter_1

Note that every register on the stack pointer increments by 4 when set
for parameters.

How does AmigaBASIC handle the results of this routine through a
function? The addresses of the variables which later contains the result
are given. This simplifies the entire program, since you must at least
use array variables.

Now on to the program itself. These DATA lines were created using the
Data Generator program in Section 6.3.1.

ABACUS

11.3 PASSING VALUES

REM #####43883 0808888808888 088449

REM # LED-Shocker

#4

REM #

REM # (W) 1987 by S. Maelger

#9
#9

REM ####348348 8888830888888 004449

9

RESTORE datas{
datastring$=""q
FOR i=1 TO 409¢
READ as${
a$="&H"+a$q4

datastring$=datastring$+CHRS (VAL(a$))q

NEXTY
9
datas:q1

DATA 2F,O0,20,2F,0,8,B0,3c,0,1,67,0,0,E,0,39,0,2,0,BF]

DATA EO,1,60,0,0,A,2,39,0,FD,0,BF,E0,1,20,1F, 4E, 75,0, 09

q

POWER&=SADD (datastring$)

q

FOR i=1 TO 20

1

Mode&=0

CALL POWERG& (Modes&)
t=TIMER+.5

WHILE t>TIMER
WEND

q

Mode&=1

CALL POWERE& (Modeé&) 4
t=TIMER+.5%
WHILE t>TIMERY
WENDT

NEXTH

STOPY

tREM Load string addressq

:REMY

tREM Turn off LED {
¢tREM Call routine 1
¢tREM but not tooq
tREM fastq

:REMI

tREM Turn on LED 1

311

12
Input and
output

ABACUS

12. INPUT AND OUTPUT

12,

Input and output

Users normally think of input and output (or 1/0) as the contact
between the Amiga and its peripherals. Peripherals are devices such as
printers, joysticks and disk drives. The Amiga treats the built-in disk
drive as an external device, since disk drives are considered external by
most computers.

The advanced user may wonder how to communicate with these devices
on a more-or-less direct basis. The Amiga has a basic I/O system.
Every device has a corresponding software module which converts the
basic control codes into device-specific codes. These software modules
have file extensions of .device. Some of these device files lie in
KickStart memory, while some are on the Workbench diskette.

You must create an I/O request block to handle I/O. This is placed in a
reserved area of memory. This section is defined as follows:

addé& = starting memory
address:B=byte:W=word:L=longword

adds+ type __definition
0 L pointer to previous node
4 L pointer to next node
8 L type
9 B priority
10 L pointer to name string
14 L pointer to message port
18 w message length in bytes
20 L pointer to device block
24 L pointer to unit block
28 w I/O command
30 B flags
31 B 1I/O error number
32 L actal array
36 L length array
40 L data array
44 L offset array

Along with this structure a message port must be created. This is a
segment of memory set aside for /O communication.

The /O request block can be thought of as a letter traveling through the
mail. When a multitasking system such as the Amiga's appears to be
handling several tasks at once, it's really handling one program at a
time for a moment. When one of these programs must communicate
with another "simultaneously running" program, this communication

315

12. INPUT AND OUTPUT AMIGA TRICKS AND TIPS

316

travels as a message. The 1/O request block is one messenger of this
type. The BASIC interpreter of AmigaBASIC runs the I/O device as a
program running parallel to the BASIC program. This hands the
message block to the address of the other task. In reality, the data block
stays in one place instead of moving around in memory. The foreign
task passes final control over this memory. As long as an I/O request
block shifts to another task, our own program doesn't access the
memory. When the other task processes the message, control over this
memory returns to Our Own program.

We won't bore you with the technical background involved, since that
goes far beyond the scope of this book. If, however, you wish to pursue
the details of this process, we recommend that you read any one of the
books about Amiga system programming.

The following pages list a number of examples with which you can
access disk drives and printers without a lot of programming know-

ledge.

ABACUS

12.1 DIRECT DISK ACCESS

12.1

Disk access

Direct disk access

Trackdisk.device handles up to four 3-1/2" disk drives. With a
little help, you can directly manipulate data stored on diskette.

Every Amiga floppy disk drive has two read/write heads, one head for
each side of a diskette. The diskette is divided into 80 cylinders per side.
Each cylinder consists of 11 sectors. Each sector contains 512 usable
data bytes, as well as 16 sector processing bytes. The total file capacity
is:

2 heads*
80 cylinders*
11 sectors*
312 bytes=
900120 bytes (880 K)

There are 28160 bytes unavailable to the user in addition to this 880K.

Now on to the programming: The following program has six high-level
SUBSs as well as four sublevel routines. All you'll need for now are the
first six SUBSs.

OpenDrive opens any disk drive. This SUB asks for the number of
the disk drive (O=internal drive, 1-3=external drives). CreateBuffer
reserves segments of memory. This routine asks for the variable con-
taining the starting address of the memory to be allocated, as well as the
desired buffer's size in bytes. DiscardBuffer releases the memory
reserved by CreateBuffer. The only argument required is the
starting address of the buffer. WorkDrive sends an /O command to
any open drive. CloseDrive closes a disk drive. Mot orOf £ turns
off the disk drive motor.

The following program lets you open any disk drive and view any one
of 1760 sectors. The program displays the data found in hexadecimal
notation.

‘HEHEHEH RS EHE S H SRR R R HE40T

'# #9
'# Program: Disk - Monitor #9
'# Author: tob #4
'$ Date: 8/8/817 #9
'# Version: 1.0 #4
'# #4

RASAsaE2 23222222 2 T titititn
1

317

12. INPUT AND OUTPUT

318

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
!
LIBRARY
LIBRARY
1

var:

q
main:

9

AMIGA TRICKS AND TIPS

FUNCTION OpenDevice% LIBRARYY
FUNCTION AllocMemé& LIBRARYY
FUNCTION AllocSignal% LIBRARYY
FUNCTION FindTask& LIBRARYY
FUNCTION DoIO% LIBRARYY

"exec.library"q
"graphics.library"q

'* Variable9
DIM SHARED reg&(3,1)9

'* Demonstration program{

PRINT TAB(20) ; "DISK MONITOR"4

PRINTY

LINE INPUT “"Which drive (0 - 3)?"; drs$q
dr$ = VAL(dr$)94

OpenDrive dr%94
CreateBuffer dO&, 512&9

LINE INPUT "Which sector (0 - 1759)?

veeo";sec$d

sec% = VAL(sec$)9d
WorkDrive dr%, 2, sec%, d0&%
MotorOff drsq

WHILE sec$ <> "end"q
CLSY
PRINT “"Sector ";sec%g
PRINTY
c% = 39
FOR loopl% = 0 TO 512 - 1 STEP 259
FOR loop2% = 0 TO 2494
check% = PEEK(dO& + loopl% + loop2%)1
h$ = HEXS$ (check%) 4
IF LEN(h$) = 1 THENY
h$ = Ilo" + hsq
END IFY
he$ = he$ + h$g
IF check% < 31 THENY
ds - ds + u?uq
ELSEY
d$ = d$ + CHRS (check%)9%
END IFY
IF loop2% + loopl% = 512 - 1 THENY
loop2% = 249
END IFY
NEXT loop2%9
LOCATE c%, 19
c% = c% + 194
out$ = he$ + " " + ds$q
CALL Text (WINDOW(8), SADD(out$),

LEN (out$)) 4

he$ = ""q
ds = “wwq

ABACUS 12.1 DIRECT DISK ACCESS

NEXT loopl%®

LOCATE 1,209

LINE INPUT "Which sector (0 - 1759, end)?
ceoo"isecsy

sec% = VAL(sec$)9d

WorkDrive dr%, 2, sec%, d0&g

MotorOff dr%9

WENDYI

DiscardBuffer d0&g
CloseDrive dr%9
CLSH

PRINT "All OK."9

LIBRARY CLOSE{(
ENDY
q
SUB OpenDrive (nr%) STATICY
IF reg&(nr%, 0) = 0 THENY
CreatePort "disk.io", 0, port&q
IF port& = 0 THEN ERROR 2551
CreateStdIO port&, io&d
dev$ = "trackdisk.device" + CHR$(0)94
er$ = OpenDevice% (SADD(dev$), nr%, io&, 0)9
IF er% <> 0 THENY
RemoveStdIO io&q
RemovePort ports&q

io& = 09

port& = 09

ERROR 2559
ELSEY

reg&(nr%, 0) = io0&9
reg&(nr¥, 1) = portsq
END IF9
ELSEQ
io&
porté&
END IF9Q
END SUBY
q
SUB CloseDrive (nr%) STATICY
IF regé&(nr%, 0) <> O THENY
io& = reg&(nr%, 0)9
port& = reg&(nrs, 1)1
CALL CloseDevice (i0&) 9
RemoveStdIO io&q
RemovePort porté&d
regé& (nrg, 0) = 09
regé& (nrs, 1) (o]
END IFY
END SUBY
q

reg& (nrs, 0)¢
reg& (nr%, 1)94

319

12. INPUT AND OUTPUT AMIGA TRICKS AND TIPS

SUB MotorOff (nr%) STATICY
io& = reg&(nrs, 0)4
IF io& <> 0 THEN9
POKEW io& + 28, 99
POKEL io& + 36, 09
e% = DoIO% (io&)94
ELSEYQ
BEEPY
END IFY
END SUBY

SUB CreateBuffer (add&, size&) STATICY
IF size& > O THENY
size& = size& + 491
opt& = 2~161
add& = AllocMemé& (size&, opté&)d
IF add& <> 0 THENY
add& = adds + 49
POKEL add& - 4, size&q
END IF94
ELSEY
BEEPY
END IF9
END SUBY

SUB DiscardBuffer (add&) STATICY
IF add& <> 0 THENY
sizeg& = PEEKL (adde¢ - 4)9
addé& = add& - 49
CALL FreeMem (add&, size&)d
END IF9Q
END SUB{

SUB WorkDrive (nr%, command$%, sector%, buffer&) STATICY
td.sectors = 5129
ios& reg& (nr%, 0)9
td.offseté& sector%*td.sectorsq
IF io& <> O THENY
POKEW io& + 28, command%g
POKEL io& + 36, td.sector%d
POKEL io& + 40, buffersg
POKEL io& + 44, td.offset&q
er% = DoIO% (io&)d

ELSEQ
BEEPY

END IFQ
END SUBT
1
'--- sub level routines for advanced use only ---9
1
SUB CreateStdIO (porté&, result&) STATICY

opté& = 2169

result& = AllocMem& (62, opté&)d
IF result& = 0 THEN ERROR 79
POKE result& + 8, 51

320

ABACUS 12.1 DIRECT DISK ACCESS

POKEL result& + 14, port&d
POKEW result& + 18, 429
END SUB®

SUB RemoveStdIO (io&) STATICY
IF io& <> 0 THENY
CALL FreeMem(io&, 62)9
ELSEY
ERROR 2559
END IF9
END SUBY

SUB CreatePort (port$, pri%, result&) STATICY
opts& = 2”169
byte& = 38 + LEN(port$)q
port& = AllocMemé& (byte&, opté&)d
IF port& = 0 THEN ERROR 79
POKEW port&, byte&d
port& = port& + 29
sigBit% = AllocSignal%(-1)9
IF sigBit% = -1 THENY
CALL FreeMem(porté&,byte&)d
ERROR 79
END IFY
sigTask& = FindTask&(0) 4

POKE porté&
POKE porté&
POKEL porté& 10, ports + 349
POKE porté& 15, sigBits%q

+ 8, 41
+
+
+
POKEL port& + 16, sigTask&d
+
+
1

9 , prisg

POKEL porté& 20, port& + 249

POKEL porté& 28, port& + 209

FOR loop% = 1 TO LEN(port$) %
char$ = ASC(MIDS (port$, loops, 1))1
POKE porté& + 33 + loop%, chars{

NEXT loop%1

CALL AddPort (porté&)9q

result& = porté&d

END SUBY

SUB RemovePort (porté&) STATICH
byte& = PEEKW(port& - 2)91
sigBit% = PEEK (port& + 15)9
CALL RemPort (port&)d
CALL FreeSignal (sigBit%)q
CALL FreeMem(port&-2, byte&)dq

END SUB1

Variables reg& () contains important internal I/O addresses (e.g., I/0-
request and I/Oport)
dr$ disk drive number (0-3)
dos& 512-byte buffer
sec% sector number (0-1759)
loopl% loop

321

12. INPUT AND OUTPUT AMIGA TRICKS AND TrpPs

322

loop2% loop

check$ character read (decimal)

h$ character read (hexadecimal)
he$ line read (hexadecimal)

ds line read (decimal)

c% current screen line
OpenDrive ()

nr$ number of open drive (0-3)
porté& message port address

ios& I/O block address

dev$ trackdisk.device ended with null
er% 1/O error; O=no error

Create-Buffer ()

sizes& buffer size in bytes

opté& options: 216 = CLEAR MEMORY
add& address of found memory

WorkDrive ()

td.sector% =512: bytes per sector

io& I/O block address

td.offset& byte offset from sector O: multiple of 512
er% /O error code

CreatePort ()

port$ name of new port

pris priority of new port (-128 to 127)
resulté& address of found port (output)

opté& memory option: 216 = CLEAR MEMORY
byte& size of needed memory

sigBit$% signal bit

sigTaské& address of AmigaBASIC task handler
char$ ASCII code of character read

ABACUS

Program
description

12.1 DIRECT DISK ACCESS

First the program establishes the number of the disk drive the user
wants accessed. OpenDrive opens this drive. Next the program in-
ternally checks for whether the drive is already open, and whether an
entry already lies in reg& () . If not, CreatePort turns to a message
port named disk . io. The starting address lies in port&. If no port
exists (port &=0), then an error occurs. Otherwise, CreateStdIO
opens a port, passing the address over to the already existing port. The
starting address of the I/O block goes to io&. The drive opens through
the Exec function OpenDevice% (). When this routine returns a
value greater than or less than 0, the drive cannot be opened. Possible
reasons; Another task has control of the drive; an Open was not
preceded by a Close; the drive doesn't exist; the drive is not connected.
In such a case the port and I/O block are released, the variables return to
null status and an error message appears on the screen. The address of
the new port and the new I/O block goes into regé& ().

The program opens a buffer large enough to hold the data of one
diskette sector (minimum size). This 512-byte buffer is created by
CreateBuffer; the buffer's starting address appears in d0&. The
user is asked for the sector he wants to view. The SUB WorkDrive
reads this sector and places it in the buffer d0& (CMD READ, the read
command, =2). This SUB fills the /O request blocks the necessary
values, and calls the Exec function DoIO% (), sent to the disk drive
through the command block.

After WorkDrive finishes its work, the diskette motor must be
switched off. WorkDrive turns the motor on, but not off. The reason:
Multiple disk access can be tiring when you have to turn the disk drive -
on and off every time you need to go to the diskette. The Mot orOf £
SUB turns the motor off. The Mot or command (=9) in the I/O block
writes the contents sent from DoI0% ().

Now comes the data in memory starting from d0 &. Two loops read the
values from the buffer and place these on the screen in decimal and
hexadecimal notation. The program then asks for additional sectors.
You either enter a number (0-1759) or the word "end” to quit. The first
response calls up a new sector, the second response releases the buffer
and closes the disk drive CloseDrive (the program tests for open
disk drives through reg& ()). If there is an open drive, the addresses of
the I/0 and portblock are read. RemoveStdIO and RemovePort re-
lease this structure, and the drive closes through CloseDevice ().
Finally the program deletes the entries from regé ().

323

12. INPUT AND OUTPUT AMIGA TRICKS AND TipPs

12.1.1

Read data

Write data

Note:

Motor

Format disk

324

The trackdisk.device commands

When you want to examine your own programs, you should use the
WorkDrive SUB to access these programs. This SUB gives you the
following commands:

Command number; 2
Command call: Workdrive numbers%, 2, sectors$,
buffersg

If your buffer is larger than 512 bytes, you can naturally load more than
one sector at a time. The entry within the I/O array 36 must be
changed: For example, 5*td.sector% instead of td.sectors when
your buffer can handle that much data.

Command number: 3
Command call: Workdrive number$, 3, sectors$,
buffers

Writes the buffer contents to the given sector on the diskette.

If you don't know what you're doing when writing to diskette, you
could destroy the disk data. If you want to change the data on a sector,
read the sector with command 2, edit the buffer and write the sector back
to diskette.

You can write more than one sector at a time (see Read data above).

Command number; 9
Command call: Workdrive number%, 9, 0, 0

Manipulates I/O array 36: O=motor off, 1=motor on. IO_Actual
returns the current status.

Command number: 11
Command call: Workdrive number%, 11, tracks$,
trackbufs

This command writes a completely new track to diskette. One track
consists of 11 sectors. t rack$ must therefore be a multiple of 11.
The track buffer must be large enough for 11 sectors. The command ig-
nores all data previously stored on this track and can even overwrite hard
€rrors.

ABACUS

12.1 DIRECT DISK ACCESS

12.1.2

Multiple disk drive access

The SUBs on the previous program are constructed in such a way that
you can access up to four disk drives at a time. You must open every
drive using the OpenDrive command and close each one individually
later. In addition, every drive must have its own buffer available for
copying data. You can naturally use a single buffer.

12.1.3

Sector design

A sector shows just a small part of a diskette's true contents. From this
we can see the design of sectors (numbers are given in longwords [four-

byte arrays]):

Root block (sector 880)

NHEWN=O

78
79-104

105
106
107
108-120

121
122
123

125
126
127

type (=2)
0

0

hashtable size (512-224)

0

checksum

hashtable: sector numbers in which main directory
files or subdirectories lie

= FFFFFFFF (-1) when bitmap is valid

number of sector containing the bitmap (normally
one sector). Every bit of the bitmap corresponds to
a diskette sector and indicates whether the sector is
free (bit set) or occupied (bit unset).

day of last date diskette was altered

minutes

ticks (1/50 second)

diskette name: BCPL string: first byte gives the
number of characters in a string (maximum 30)
day of date this diskette was initialized

minutes

ticks

0

0

0

root-ID = 1

325

12. INPUT AND OUTPUT

User directory block

AMIGA TRICKS AND T1Ps
type (=2)
header key (number of this sector)
0
0
0
checksum

hashtable: sector numbers in which main directory
files or subdirectories lie

reserved

protection bits (EXEC, DEL, READ, WRITE)

0

commentary string (BCPL string)
day of date diskette was created
minutes

ticks (1/50 second)

directory name: BCPL string
next entry with equal has value
sector number of root directory

0

user directory (=2)

File header block

326

type (=2)

number of this sector

total number of data sectors for this file
number of used data block slots

sector number of first data block

checksum

sector numbers of data blocks

unused

protection bits (EXEC, DEL, READ, WRITE)
total file size in bytes

commentary string (BCPL string)

day of date diskette was created

minutes

ticks (1/50 second)

filename: BCPL string

next entry with equal hash value

sector number of root directory

0 or sector number of first extended block (file list
block)

file type (=FFFFFFFD)

ABACUS

File list block

127

Data block

Bm&wNn-O

12.1 DIRECT DISK ACCESS

type (=1)

number of this sector

total number of data blocks in list
number of used data block slots
first data block

checksum

sector numbers of data blocks
unused

0

sector number of root directory
next extended block

file type (=FFFFFFFD)

type (=8)

number of this sector

sequence of data block

number of data in bytes

sector number of next data block
checksum

data

327

12. INPUT AND OUTPUT AMIGA TRICKS AND TIPS

12.2

Memory handling

The memory system of the Amiga is extremely flexible. This is be-
cause the memory locations can be changed to fit the situation, instead
of having fixed memory. Unlike its predecessors, the Amiga has no
specific memory set aside for machine language user applications. This
kind of memory layout makes no sense to a multitasking computer,
where several programs must share memory.

Here are the most popular methods of memory handling.

12.2.1

Reserving memory through variables

Every time you assign a value to a variable you take a piece of working
memory and reserve part of the stack for this value. The amount of
memory reserved depends on the variable type. For example, a long
integer variable like £& would reserve 4 bytes. Now you can use this
memory for other purposes as well. The starting address comes from the
BASIC VARPTR command:

VARPTR (f&)

You need more than four bytes to use variable arrays (DIM £& (100)
reserves 400 bytes) or strings (a$=SPACE$ (100) reserves 100
bytes). The starting address of the string comes from the call:

SADD (a$)

It should be mentioned here that the starting address of string memory
is variable. Every new string definition can move old strings around in
memory. Every memory access changes the starting address in memory.
This means that the memory is not well suited for set data structures.
The following method is a more practical route.

12.2.2

328

Allocating memory

The AllocMem () command gives you as much memory as you ask

for, as long as that much memory is free. You can choose between
three options:

ABACUS

12.2 MEMORY ' HANDLING

Public memory 20

Chip memory 2! (DMA and special purpose chips)
Fast memory 22 (all other applications)

Clear memory 216 (automatically clears memory)

The following SUBs reduce memory handling to a minimum.

"HEFEEH R R HEHE R RS HR R HHLHEHE RN H 4T

'$ #4
'# Programm: Memory Handler #4
'# Author: tob #4
'# Date: 8.12.87 #9
'# Version: 2.0 #1
'# #4
THEGEHH AR BBESHEEERRHHE SRR HEEH AT
bt

DECLARE FUNCTION AllocMem& LIBRARYY

q

LIBRARY "exec.library"1

q

demo: '* reserve 4500 bytes{

PRINT "Memory left after reserving 4500
bytes: ";9q
PRINT FRE(-1)4

1
GetMemory mem&, 4500&%
q
PRINT "Current memory status: “;
PRINT FRE(-1)9
q
FreeMemory memé&9d
T
PRINT "Ending memory status: ";9
PRINT FRE(-1) 1
q
LIBRARY CLOSE{Q
ENDY
q
1

SUB GetMemory (add&, size&) STATICY
IF size& > 0 THENY

opté = 27161
size& = size& + 41
add& = AllocMems (size&, opt&)®

IF add& <> 0 THENY
POKEL add&, size&d
adde = adde + 49
END IF9
END IFY
END SUBY
q

329

12. INPUT AND OUTPUT AMIGA TRICKS AND TIPS

Program
description

330

SUB FreeMemory (add&) STATICY
IF add& > 0 THENY
adds = add& - 49
size& = PEEKL (add&)q
CALL FreeMem(add&, sizes)9q
END IFq
END SUBY

The principle should be obvious from the example. It uses Get -
Memory to reserve a memory segment of any size for your use. Two
variables return the address variable in which you'll find the starting
address of the memory segment (or O if there isn't enough memory
available) and the size of the desired segment. Reserving 1000 bytes is
as simple as:

GetMemory myMem&, 1000&
You'll find the starting address of the segment in the variable myMem&:
PRINT myMem&

When you no longer need the memory, you can return it to the system
with the call:

FreeMemory myMem&
You cannot go past the memory size allocated for this segment, since

GetMemory actually has up to four bytes of memory reserved holding
the bytes beyond the segment size.

Appendices

ABACUS APPENDIX A

A. AmigaBASIC tokens

Token (hex.) _value (dec.) AmigaBASIC command
80 128 ABS
81 129 ASC
82 130 ATN
83 131 CALL
84 132 CDBL
85 133 CHR$
86 134 CINT
87 135 CLOSE
88 136 COMMON
89 137 cos
8A 138 CVD
8B 139 cvI
8C 140 cvs
8D 141 DATA
8E (3A) 142 (58) ELSE
8F 143 EOF
90 144 EXP

91 145 FIELD
9 146 FIX
93 147 FN

94 148 FOR
95 149 GET
96 150 GOSUB
97 151 GOTO
98 152 IF

99 153 INKEY$
9A 154 INPUT
9B 155 INT
9C 156 LEFT$
9D 157 LEN
9E 158 LET
OF 159 LINE
Al 161 LOC
A2 162 LOF
A3 163 LOG
A4 164 LSET
AS 165 MID$
A6 166 MKD$
A7 167 MKIS$
A8 168 MKS$
A9 169 NEXT
AA 170 ON

AB 171 OPEN

333

APPENDICES

334

AMIGA TRICKS AND TIPS

Token (hex.) value (dec. AmigaB ASIC command
AC 172 PRINT
AD 173 PUT

AE 174 READ
AF 175 REM
AFE8 (3A) 175232 (58) '

BO 176 RETURN
B1 177 RIGHTS
B2 178 RND

B3 179 RSET
B4 180 SGN

BS 181 SIN

B6 182 SPACES$
B7 183 SQR

B8 184 STRS
B9 185 STRINGS
BA 186 TAN
BC 188 VAL
BD 189 WEND
BEEC 190 236 WHILE
BF 191 WRITE
Co 192 ELSEIF
C1 193 CLNG
C2 194 CVL

C3 195 ‘MKL$
C4 196 AREA
E3 227 STATIC
E4 228 USING
ES 229 TO

E6 230 THEN
E7 231 NOT

E9 233 >

EA 234 =

EB 235 <

EC 236 +

ED 237 -

EE 238 *

EF 239 /

FO 240 A

F1 241 AND

F2 242 OR

F3 243 XOR

F4 244 EQV

F5 245 IMP

Fé6 246 MOD

F7 247 \

F8 81 248 129 CHAIN
F8 82 248 130 CLEAR
F8 83 248 131 CLS

F8 84 248 132 CONT
F8 85 248 133 CSNG

ABACUS

Token (hex.) _value (dec.)

APPENDIX A

AmigaBASIC command

F8 86 248 134 DATES
F8 87 248 135 DEFINT
F8 88 248 136 DEFSNG
F8 89 248 137 DEFDBL
F8 8A 248 138 DEFSTR
F8 8B 248 139 DEF FN
F8 8C 248 140 DELETE
F8 8D 248 141 DIM

F8 8E 248 142 EDIT
F8 8F 248 143 END

F8 90 248 144 ERASE
F8 91 248 145 ERL

F8 92 248 146 ERROR
F8 93 248 147 ERR

F8 94 248 148 FILES
F8 95 248 149 FRE

F8 96 248 150 HEXS$
F8 97 248 151 INSTR
F8 98 248 152 KILL
F8 99 248 153 LIST
F8 9A 248 154 LLIST
F8 9B 248 155 LOAD
F8 9C 248 156 LPOS
F8 9D 248 157 LPRINT
F8 9E 248 158 MERGE
F8 9F 248 159 NAME
F8 A0 248 160 NEW

F8 Al 248 161 OCTS$
F8 A2 248 162 OPTION
F8 A3 248 163 PEEK
F8 A4 248 164 POKE
F8 AS 248 165 POS

F8 A6 248 166 RANDOMIZE
F8 A8 248 168 RESTORE
F8 A9 248 169 RESUME
F8 AA 248 170 RUN

F8 AB 248 171 SAVE
F8 AD 248 173 STOP
F8 AE 248 174 SWAP
F8 AF 248 175 SYSTEM
F8 BO 248 176 TIMES
F8 B1 248 1717 TRON
F8 B2 248 178 TROFF
F8 B3 248 179 VARPTR
F8 B4 248 180 WIDTH
F8 BS 248 181 BEEP
F8 B6 248 182 CIRCLE
F8 B8 248 184 MOUSE

335

APPENDICES AMIGA TRICKS AND TIPS

Token (hex.) value (dec.) AmigaBASIC command

F8 B9 248 185 POINT

F8 BA 248 186 PRESET

F8 BB 248 187 PSET

F8 BC 248 188 RESET

F8 BD 248 189 TIMER

F8 BE 248 190 SUB

F8 BF 248 191 EXIT

F8 CO 248 192 SOUND

F8 C2 248 194 MENU

F8 C3 248 195 WINDOW

F8 C5 248 197 LOCATE

F8 C6 248 198 CSRLIN

F8 C7 248 199 LBOUND

F8 C8 248 200 UBOUND

F8 C9 248 201 SHARED

F8 CA 248 202 UCASES$

F8 CB 248 203 SCROLL

F8 CC 248 204 LIBRARY

(F8)(D1) (248)(209) placed after target of SUB program
call without CALL

F8 D2 248 210 PAINT

F8 D3 248 211 SCREEN

F8 D4 248 212 DECLARE

F8 DS 248 213 FUNCTION

F8 D6 248 214 DEFLNG

F8 D7 248 215 SADD

F8 D8 248 216 AREAFILL

F8 D9 248 217 COLOR

F8 DA 248 218 PATTERN

F8 DB 248 219 PALETTE

F8 DC 248 220 SLEEP

F8 DD 248 221 CHDIR

F8 DE 248 222 STRIG

F8 DF 248 223 STICK

F9 F4 249 244 OFF

F9 FS 249 245 BREAK

F9 F6 249 246 WAIT

F9 F7 249 247 USR

F9 F8 249 248 TAB

F9 F9 249 249 STEP

F9 FA 249 250 SPC

F9 FB 249 251 OUTPUT

F9 FC 249 252 BASE

F9 FD 249 253 AS

F9 FE 249 254 APPEND

F9 FF 249 255 ALL

FA 80 250 128 WAVE

FA 81 250129 POKEW

FA 82 250 130 POKEL

FA 83 250 131 PEEKW

336

ABACUS

Token (hex.) value (dec.

FA 84
FA 85
FA 86
FA 87
FA 88
FA 89
FA 8A
FA 8B
FA 8C
FA 8D
FA 8E
FA 8F
FA 90
FA 91
FA 92
FA 93
FA 94
FA 95
FA 96
FA 97
FB FF

250 132
250133
250 134
250 135
250 136
250 137
250 138
250 139
250 140
250 141
250 142
250 143
250 144
250 145
250 146
250 147
250 148
250 149
250 150
250 151
251255

APPENDIX A

AmigaBASIC command

PEEKL
SAY

TRANSLATES

OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT
OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT.
OBJECT.

SHAPE
PRIORITY
X

Y

VX

VY

AX

.AY

CLIP
PLANES
HIT
ON
OFF
START
STOP
CLOSE

COLLISION

PTAB

337

APPENDICES

AMIGA TRICKS AND TIPS

B.

338

Other tokens

Token Definition

$01 Variable number follows in hexadecimal notation (High/
Low = 2 Byte), e.g.: ($01) $00 $00 = Variable 0

$02 Label number follows in hex (H/L = 2 Byte), e.g.: ($02)
$01 $00 = label 256

$03 Jump to label with the following number (H/M/L = 3 B.),
e.g.: ($03) $00 $00 $0A = to label 10

$0B An octal number follows (hexadecimal in High/Low format
= 2 bytes). e.g.: ($0B) $00 $06 = &0 6

$0C A 2-byte hexadecimal number follows in H/L format, e.g.:
(30C) $F8 $EC = $ F8EC

$OE Jump to the line with the following line number (H/M/L),
e.g.: ($0E) $00 $27 $10 = after line 10000

$OF A positive integer with a value from 10 to 255 follows,
e.g.: ($0F) $FF = 255

$11- A positive integer with a value from 0 to 9 follows, e.g.:

$1A $11=0,$12=1..$19=8,$1A=9

$1C A 2-byte integer with leading character follows, e.g.: ($1C)
$80 $A0 = -160

$1D A 4-byte floating-point number follows, e.g.: ($1D) $3C
$23 $D7 $0A = 0.01

$1E A 4-byte integer follows, €.g.: ($1E) $00 $00 $80 $00 =
32768&

$1F An 8-byte floating-point number follows, e.g.: ($1F) $3E45

$798E $E230 $8C3A = 0.00000001

Index

3-D glasses 88
access 8
AddBuffers command 21
Amiga disk operating system 7
AmigaBASIC 37
AmigaDOS 8
appending files 19
ASCII 180
ASCII files 184
assembler : 307
AssemPro Amiga ' 307
assign command 10
BASIC 37
BASIC file checking program 185
batch files 27
benchmark 291
Binary files 184
BindDrivers command 21
Blank line killer program 212
.bmap files 39, 168, 301
bob 115
border color change 67
border structure 65
borderless 63
CALL command 310
CHAIN command 184
ChangeTaskPri command 21
CHDIR command 162
Checkfile program 152
Checking for errors 272
Chunks 60
circles 136
CLI 150, 156, 236
CLICopy program 29
CLOSE command 175
Command Line Interface (CLI) 7,173
COMPLEMENT 40,42
Console Device 100
ConvertFd program 39
coordinate setting 7
copy command

9, 10, 12, 13
Copying diskettes 14

copying 12, 13
copying to diskette 29
Cross-reference program 205
Cursor control 45
cursor 280
Cylinders 317
DATA generator program 201, 308
delete command 10
Direct disk access 317
Directory access 158
Directory access program 162
Discard 237
Disk access errors 270
Disk operating system (DOS) 149
DiskChange command 21
diskcopy command 14
DiskDoctor program 22
Diskette sector design 325
diskfont.library 38
DOS 149
DOS commands 174
DOS commands from BASIC 168
dos.bmap 168
dos.library 38, 149, 304
Drawing modes 40
dual-drive systems 13
DualBitMap program 140
Ed editor 15
editing 15
Empty Trash 237
error handling 269, 272
errors 270
exec library 38
execute command 12, 14, 19
Extended input 105
Extended selection 236
Extras diskette 39
fade-in 72
fade-out 72
Fade-over 74, 76
File analysis 180
File analyzer program 180

339

INDEX

File checking 152
File protection 154
file management 30
FILES command 162
Floodfill 62
Fonts 97
gadget disable/enable 64
GetDir program 158
GetTree program 162
Graphic commands 40
graphics.library 38, 132
Halfbrite mode 68
Hold-and-Modify mode (HAM) 68
I/O (input/output) 315
I/O message port 315
I/O request block 315
icon 13, 113, 235
IFF transfer 46
IFF-object conversion 56
INPUT command 114
Input 315
Input and output 315
Input, modified 105
Interchange File Format (IFF) 46
Interleaved Bitmap (ILBM) 46
Intuition 7, 42, 113
intuition.library 38, 303
INVERSEVID drawing mode 40
JAM 1 drawing mode 40
JAM 2 drawing mode 40
join command 19
kernel 38
Kickstart diskette 9
KILL command 175
Label handling 194
LED shocker program 309
libraries 299
LIBRARY command 37
Library files 149
list command 11, 150, 156

list program 150
loadwb command 15
LOCATE command 45
Lock 274
loops 295

340

AMIGA TRICKS AND TIPS
Machine language 307
makedir command 10
Memory allocation 328
Memory handling 328
Memory reservation 328
memory locations 307
memory-resident 27
Menu errors 271
MERGE command 184
Microsoft Corporation 37
monochrome Workbench 68
Mount command 22
mouse 7, 115
MOVE command 45
multiple windows 25
multitasking 16, 17, 21, 307
newcli command 17
Notepad 18
OPEN command 175
Output 315
PALETTE command 70, 145
part memory-resident 28
Path command 22
PC-relative addressing 307
Peripherals 315
Preferences 8, 114, 175, 239
Printer spooler 25
printing C lists 16
printing commands 11
Program comments 150
Program Counter (PC) 307
Program header checking program 187
Protect program 154
Protected files 184
quick parameter 11
quitting 9
RAM disk 10, 175
Reading directory 158
rename command 157
Renaming files 157
Requester 13, 278
Reserving memory 328
Rubberband demo 42
rubberband 42
rubberbanding 133
run command 11, 17

ABACUS

say command 15
Scrolling tables 128
scrolling 128
search command 20
Self-modifying programs 228
SetComment program 150
SetDate command 22
SetDrMd () command demo 41
SetMap command 23
SetTextFont program 97
shapes 135
shifting grids 84
single-drive systems 12
Sizing gadget 133
Sliders 114
Snapshot option 19
sort command 20
stack command 20
startup sequence 14,24
STATIC 161
Status lines 139
stopping programs 12
String gadget 236
SUB programs 45, 114, 161
Subdirectories 162
subroutines 297
SUB..STATIC 161
Tables 121
Text styles demo 44
text output 17
three-dimensional graphics 79
ToDisk program 28
Trackdisk.device 317
trap errors 272
Trashcan 237
type command 16
Typestyles 43
User input errors 271
user interface 235
User-friendliness 113
Utilities 179
Variable lister program 222
variable names 294
variables 293
VARPTR command 328
Vector graphics 79
Version command 23

INDEX

WHILE/WEND 161
wildcard characters 11
Window coordinates i
window 7
Windows in BASIC 63
Workbench 8, 235
‘Workbench diskette 149
Workbench diskette in the drive 9
xec library 301

341

Optional Diskette

AMIGA
Tricks and Tips

Optional diskette

For your convenience, the program listings contained in this book are
available on an Amiga formatted floppy disk. You should order the diskette
if you want to use the programs, but don't want to type them in from the
listings in the book.

All programs on the diskette have been fully tested. You can change the
programs for your particular needs. The diskette is available for $14.95 plus
$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a
check, money order or credit card information. Mail your order to:

Abacus Software
5370 52nd Street SE
Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.

AMIGA

Books

Great introductory book!

Amica for Beginners

A perfect introductory book if you’re a new or prospective AMiGa
owner. AmMIGA for Beginners introduces you to Intuition (the
Amian’s graphic interface), the mouse, the windows, the versatile
CLI—this first volume in our AMiGa series explains every
practical aspect of the Amiaa in plain English. Includes clear,
step-by-step instructions for common Amica tasks. Amica for
Beginners is all the info you need to get up and running with
your Amiaa 500, 1000 or 2000. Topics include: «Unpacking and
connecting the AMIoA’s components eStarting up your AMiGA
*Windows eFiles *Customizing the Workbench <Exploring the
Extras disk <Taking your first steps in the AMiaABASIC
programming language *BASIC graphics commands «BASIC
animation *AmieADOS functions *Using the CLI to perform
“housekeeping” chores First Aid appendix *Keyword appendix
*Technical appendix «Glossary. 200 pages. (Optional program
“diskette not available).

(630) $16.95

“How-to” BASIC tutorial

AmicaBASIC—
Inside & Out

Above and beyond any BASIC tutorial you've ever seen. This
definitive 550-page volume will turn you into an AMiGABASIC
expert. AmiGABASIC—Inside & Out teaches you Amioa-
BASIC with a “hands-on,” program-oriented approach, and
explains the language in a clear, easy to understand style. Topics
include: *Fundamental concepts of BASIC Completely details
all AMIcABASIC commands, with syntax and parameters
«Graphic objects and color control eInterchange file format (IFF)
Voice synthesis, sound & music *Sequential & random access
files «Complete Reference Section includes Glossary,
AmiABASIC Reference Guide, error message descriptions.
After you’ve learned BASIC with AMiGABASIC—Inside &
Out, you’ll have many useful, working programs: «Video titling
program for high-quality OBJECT animation on your VCR tapes
«IFF-compatible paint program (lets you load in graphics created
on other graphic programs) <Bar graph & pie chart program
«Simple music synthesizer «Speech synthesis utility program
Full-featured database.

550 pages.
(610) $24.95
(612) Optional program diskette $14.95

Insider’s secrets!

Amica Tricks & Tips

A superb collection of quick hitters for all Amiga owners.
Patterned after our best-selling Tricks & Tips books for the
Commodore 64 & Commodore 128, Amia Tricks & Tips
contains dozens of programming techniques and program listings
that anyone with an AMioa computer can use, whether you're a
beginner or a scasoned programmer. AmiGa Tricks & Tips is
easy to understand, and lists program examples in BASIC. It’s
packed with vital Amiaa info: sDetails on windows and gadgets
*Using disk-resident fonts «Tips for printing hardcopy +Creating
yourown requesters *Accessing Amioa libraries from BASIC
*Reserving important 68000 memory *CLI command overview
Getting the most out of the ED editor «Customizing your own
Workbench «Controlling Intuition «AMicaDOS functions <Hints

for effective programming

Available May 1988. 300 pages.

(615) $19.95
(617) Optional program diskette $14.95

Guide to Amiga 68000 language
Amica Machine Language

The practical guide for learning how to program your Amica in
ultrafast machine language. Used in conjunction with our
AssemPro Amica software package, Amica Machine
Language is a comprehensive introduction to 68000 assembler/
machine language programming. Topics include:
*» 68000 microprocessor architecture +68000 address modes and
instruction set *Accessing the AMica’s RAM memory, operating
system and multitasking capabilities eDetails the powerful Amioa
libraries for using AmicADOS (input, output, disk and printer
operations) sDetails Intuition (windows, screens, requesters,
pulldownr menus) Speech and sound facilities from machine
language *Many useful programs listed and explained.
Available June 1988. 225 pages.

$19.95

(660)
(662) Optional program diskette $14.95

EEENEEEENNENNENEEESENENEENEENEN
~~3Optional Program Diskettes
contain all of the programs found in these
books—complete, error-free and ready to run.
Save yourself the time and and trouble of typing

in the program listings. Each diskette: $14.95.
SENEESEEENESEENENUEEEEEEEENN

More Amica books
coming soon!

Selected Abacus Products for the Amiga computers

BeckerText

Powerful Word Processing
Package for the Amiga

BeckerText Amiga is more than just a word processor.

BeckerText Amiga gives you all of the easy-to-use
features found in our TextPro Amiga, plus it lets you
do a whole lot more. You can merge sophisticated IFF-
graphics anywhere in your document. You can hyphenate,
create indexes and generate a table of contents for your
documents, automatically. And what you see on the
BeckerText screen is what you get when you print the
document—real WYSIWYG formatting on your Amiga.

But BeckerText gives you still more: it lets you
perform calculations of numerical data within your
documents, using flexible templates to add, subtract,
multiply and divide up to five columns of numbers on a
page. BeckerText can also display and print multiple
columns of text, up to five columns per page, for
professional-looking newsletters, presentations, reports,
etc. Its expandable built-in spell checker eliminates those
distracting typographical errors.

BeckerText works with most popular dot-matrix and
letter-quality printers, and even the latest laser printers for
typeset-quality output. Includes comprehensive tutorial
and manual.

BeckerText gives you the power and flexibility that you
need to produce the professional-quality documents that
you demand.

When you need more from your word processor than just
word processing, you need BeckerText Amiga.

Discover the power of BeckerText. Available February
1988.

Suggested retail price: $150.00

Features

Select options from pulldown menus or handy shortcut
keys

Fast, true WYSIWYG formatting

Bold, italic, underline, superscript and subscript
characters

Automatic wordwrap and page numbering
Sophisticated tab and indent options, with centering and
margin justification

Move, Copy, Delete, Search and Replace

Automatic hyphenation, with automatic table of
contents and index generation

Write up to 999 characters per line with horizontal
scrolling feature

Check spelling as you write or interactively proof
document; add to dictionary

Performs calculations within your documents—
calculate in columns with flexible templates

Customize 30 function keys to store often-used text
and macro commands

Merge IFF graphics into documents

Includes BTSnap program for converting text blocks to
IFF graphics

C-source mode for quick and easy C language program
editing

Print up to 5 columns on a single page

Adapts to virtually any dot-matrix, letter-quality or laser
printer

Comprehensive tutorial and manual

Not copy protected

Selected Abacus Products for the Amiga corhputers

DataRetrieve

A Powerful Database Manager
for the Amiga

Imagine a powerful database for your Amiga: one that’s
fast, has a huge data capacity, yet is easy to work with.

Now think DataRetrieve Amiga. It works the same
way as your Amiga—graphic and intuitive, with no
obscure commands. You quickly set up your data files
using convenient on-screen templates called masks. Select
commands from the pulldown menus or time-saving
shortcut keys. Customize the masks with different text
fonts, styles, colors, sizes and graphics. If you have any
questions, Help screens are available at the touch of a
button. And DataRetrieve’s 128-page manual is clear
and comprehensive.

DataRetrieve is easy to use—but it also has
professional features for your most demanding database
applications. Password security for your data.
Sophisticated indexing with variable precision. Full
Search and Select functions. File sizes, data sets and data
fields limited only by your memory and disk storage
space. Customize up to 20 function keys to store macro
commands and often-used text. For optimum access speed,
DataRetrieve takes advantage of the Amiga’s multi-
tasking.

You can exchange data with TextPro Amiga,
BeckerText Amiga and other packages to easily
produce form letters, mailing labels, index cards,
bulletins, etc. DataRetrieve prints data reports to most
dot-matrix & letter-quality printers.

DataRetrieve is the perfect database for your Amiga.
Get this proven system today with the assurance of the
Abacus 30-day MoneyBack Guarantee.

Suggested retail price: $79.95

Features

Select commands and options from the pulldown menus
or shortcut keys

Enter data into convenient screenmasks

Enhance screen masks with. different text styles, fonts,
colors, graphics, etc.

Work with 8 databases concurrently

Define different field types: text, date, time, numeric &
selection

Customize 20 function keys to store macro commands
and text

Specify up to 80 index fields for superfast access to
your data

Perform simple or complex data searches

Create subsets of a larger database for even faster
operation

Exchange data with other packages: form letters,
mailing lists etc.

Produce custom printer forms: index cards, labels,
Rolodexecards, etc. Adapts to most dot-matrix & letter-
quality printers

Protect your data with passwords

Get Help from online screens

Not copy protected

Max. file size

Max. data record size
Max. data set

Max. no. of data fields
Max. field size

Limited only
by your memory

and disk space

Selected Abacus Products for the Amiga computers

AssemPro

Machine Language Development
System for the Amiga

Bridge the gap between slow higher-level languages and
ultra-fast machine language programming: AssemPro
Amiga unlocks the full power of the AMIGA’s 68000
processor. It’s a complete developer’s kit for rapidly
developing machine language/assembler programs on your
Amiga. AssemPro has everything you need to write
professional-quality programs “down to the bare metal”:
editor, debugger, disassembler & reassembler.

Yet AssemPro isn’t just for the 68000 experts.
AssemPro is easy to use. You select options from
dropdown menus or with shortcut keys, which makes your
program development a much simpler process. With the
optional Abacus book Amiga Machine Language
(see page 3), AssemPro is the perfect introduction to
Amiga machine language development and programming.

AssemPro also has the professional features that
advanced programmers look for. Lots of “extras” eliminate
the most tedious, repetitious and time-consuming m/1
programming tasks. Like syntax error search/replace
functions to speed program alterations and debugging. And
you can compile to memory for lightning speed. The
comprehensive tutorial and manual have the detailed
information you need for fast, effective programming.

AssemPro Amiga offers more professional features,
speed, sheer power, and ease of operation than any
assembler package we’ve seen for the money. Test drive
your AssemPro Amiga with the security of the
Abacus 30-day MoneyBack Guarantee. Available
January 1988.

Suggested retail price: $99.95

Features
Integrated Editor, Debugger, Disassembler and
Reassembler)
Large operating system library
Runs under CLI and Workbench
Produces either PC-relocatable or absolute code
Create custom macros for nearly any parameter (of
different types)
Error search and replace functions
Cross-reference list
Menu-controlled conditional and repeated assembly
Full 32-bit arithmetic
Advanced debugger with 68020 single-step emulation
Written completely in machine language for ultra-fast
operation
Runs on any Amiga with 512K or more and Kickstart
version 1.2
Not copy protected

Machine language programming requires a solid understanding
of the AMIGA’s hardware operating system. We do not
recommend this package to beginning Amiga programmers

Amiga

Tricks & Tips

L

The Amiga is an impressive computer but
some of its features are difficult to use.
Amiga Tricks & Tips is for all Amiga
owners who want to tap all of the Amiga’s
true power. It's a great collection of
Workbench, CLI and BASIC programming
hints and application programs.

Amiga Tricks & Tips explains how to
get the most from the Command Line

Interface (CLI). BASIC programmers will
learn all about gadgets, windows, graphic

fades, HAM mode, 3-D graphics and more.

Includes a complete list of BASIC tokens
and multitasking input and a fast and easy
print routine. If you're an advanced
programmer, you'll discover the hidden
powers of your Amiga. Learn how to
allocate memory, trap errors, use Amiga
fonts, mix machine language with BASIC
and much more.

Amiga Tricks & Tips topics include:
 drawing modes + changing typestyles

« kernal commands -« 3-D graphics - fading
graphics - rubberbanding ¢ IFF transfers

» BASIC benchmarks « disk drive
operations « disk commands * machine
language calls « Icons = Trapping errors

A valuable collection
of software tools
and programming hints

Many hints and application
programs presented and explained:

« Changing typestyles

» Text input and output

« BASIC benchmarks (speed tests)
+ Fast vector graphics

+ Multitasking INPUT

+ File analyzer

= Self-modifying programs

» Directory access

» Cross-reference list

» REM Killer

+ Reading and setting Preferences
Amiga Tricks & Tips is packed with

dozens of hints and applications for all
Amiga owners.

Optional Program Diskette available:

Contains every program listed in the book—
complete, error-free and ready to run! Saves
you hours of typing in program listings.

ISBN 0-91k439-88-7

Amiga is a registered trademark of Commodore-Amiga,

