

The Amiga User's Guide

to Graphics, Sound and

Telecommunications

To Dear Old Dad

—D.M.

For My Parents

— J.P.

The Amiga User's Guide

to Graphics, Sound and

Telecommunications

by David Myers

with programming by Joe Power

An International Publishing and Computer Services Book

BANTAM BOOKS

TORONTO • NEW YORK • LONDON • SYDNEY • AUCKLAND

The Amiga User's Guide to Graphics, Sound and Telecommunications

A Bantam Book I February 1987

All rights reserved.

Copyright © 1987 by International Publishing & Computer Services, Inc.

Cover design copyright © 7957 by Pdt Alexander.

Interior design by Mike Kelly, Slawson Communications, Inc., San Diego, CA.

Production by Slawson Communications, Inc., San Diego, CA.

Through the book, the trade names and trademarks ofsome

companies and products have been used, and no such uses

are intended to convey endorsement ofor other affiliations

with the book.

Grateful acknowledgment is made for pennission to reprint STAR WARS (Main
Theme) from the movies STAR WARS and THE EMPIRE STRIKES BACK.

Music by John Williams © 1977 WARNER-TAMERLANE PUBLISHING CORP.
& BANTHA MUSIC. All Rights Administered by WARNER-TAMERLANE

PUBLISHING CORP. All Rights Reserved. Used by Permission

Every effort has been made to locate the copyright owners of material

reproduced in this book. Omissions brought to our attention will be

corrected in subsequent editions.

This book may not be reproduced in whole or in part, by

mimeograph or any other means, without permission.

For information address: Bantam Books, Inc.

ISBN0-533-34283-5

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its trademark, consisting ofthe

words "Bantam Books" and the portrayal of a rooster, is registered in U.S. Patent

and Trademark Office and in other countries. Marca Registrada. Bantam Books,

Inc., 666 Fifth Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

B098765432

Contents

Part 1 — The Revolutionary Computer 1

Chapter 1 — Introduction 3

The Future of Computing 5

What Makes Amiga Unique 11

Chapter 2 — A Guided Tour 15

The Physical Layout 15

The Peripherals 17

Monitor 17

Disk Drives 19

Audio Speakers 19

Printers 19

Expansion Possibilities: Open Architecture 20

Inside the Amiga 22

More about Direct Memory Access 24

Memory Management 25

vi The Amiga User's Guide to Graphics, Sound and Telecommunications

Chapter 3 — Using the Amiga 27

A Quick Word About Programming 27

Amiga Intuition 28

The Mouse 29

Mouse or Keyboard? 29

Icons 30

Windows 32

Windows Are Virtual Terminals 33

Menus 34

Using AmigaDOS 34

Intuition or CLI 36

Using Amiga BASIC 39

' Advanced Features of Amiga BASIC 39

Multitasking 41

Part 2 — Graphics on the Amiga 45

Chapter 4 — Understanding Graphics 47

Some Necessary Terminology 48

Graphics 48

Pixel 48

Bit Map and Bit Plane 50

Colors, Color Register Table and Palette 52

Resolution and Mode 52

Contrast 53

Foreground and Background 54

Coordinates 54

Screen and Windows 56

Defining a Graphics Display 56

The SCREEN Statement 57

The WINDOW Statement 57

The PALETTE Statement 59

Some Additional Graphics Features 60

CONTENTS vii

Chapter 5 — Drawing with the Amiga 63

The Amiga BASIC Drawing Commands 64

Drawing a Point 64

Drawing Lines and Shapes 65

More on the STEP Option for LINE 67

Circles and Ellipses 68

The Whole Point of STEP is 70

Closed Shapes Filled With Colors 72

The PATTERN Statement 73

Amiga Turtle Graphics 75

The Turtle Graphics Program 76

Hints for Simplifying Amiga Graphics 84

Chapter 6 — Animation 87

Amiga Animation Objects 88

How to Create an Object for Animation 89

Simple or Sequential Animation? 91

Amiga BASIC Statements for Animation . . 92

The OBJECT Statements 92

HitMask and MeMask Simplified 97

Collisions 98

Animation With the GET and PUT Statements 99

The Structure of the Maze Programs 100

The Rat's-Eye View Maze Program 104

The Bird's-Eye View Maze Program 115

Intermixing Graphics and Text 125

Part 3 — Sound on the Amiga 129

Chapter 7 — Creating Sound 131

Understanding Amiga Sound 131

Programming Sound 134

Using the SOUND Command 135

viii The Amiga User's Guide to Graphics, Sound and Telecommunications

Programming the Tune "Happy Birthday"

Using the SOUND Statement 137

Programming Speech 140

Speaking Phonetically 142

Using Phonemes 143

Chapter 8 — Synthesized Music 147

The PLAY Program 148

Programming With The PLAY Statement 152

A Reminder 153

Programming The Melody For "Silent Night" . . 155

Harmony and Accompaniment 156

Programming a Harmonious "Happy Birthday" . . 158

Bach to BASIC 159

Some High-Tech Music: An Original Arrangement

for the "Theme from Star Wars" 165

A Final Word about Programming Music 169

Chapter 9 — Creating Sound Waveforms 171

Creating Waveforms with the WAVE Command 172

A Program to Draw Waveforms Automatically 173

Assigning Waveforms to Amiga Voices 177

A Program to Draw Combined Waves 178

Part 4 — Telecommunicating with Amiga 185

Chapter 10 —Reaching Out On-Line 187

How Computer Communications Came to Be 188

Putting the Amiga On-Line 189

The Modem 189

Modem Features 191

The Telephone 194

Communications Software 195

CONTENTS ix

A Free Communications Software Program 196

The Dumb Terminal Program 197

The Simple Terminal Emulator Program 201

The Amiga On-Line 207

Handshaking and Protocol 208

Troubleshooting Communications 208

A Final Word about Telecommunications 211

Chapter 11 — Connecting with the World Outside213

More about Electronic Bulletin Boards 213

Information Services 217

How to Use Information Services 218

Dow Jones News/Retrieval Service 218

CompuServe 219

The Source 219

Other Information Services 220

Electronic Mail 220

Glossary 221

Index 235

Parti

THE REVOLUTIONARY

COMPUTER

CHAPTER

1

Introduction

The Commodore Amiga looks pretty much like any other home computer.

It's a smallish box of white plastic, with a keyboard attached to the front, a

series of plug slots at its back, topped by the ubiquitous monitor screen. No

big deal. Right? Wrong. As soon as you see its color graphics, or hear its

music on stereo speakers, or work with the multitasking features, or see

how fast it does the jobs you want, you begin to realize that the Amiga is

something different, a machine that is more thanjust anotherhome computer.

The Amiga's capabilities are no accident. They are, instead, the result

of deliberate designs that combine the best of existing technology together

with innovative new concepts. Seeing where the Amiga sits in the histor

ical progression of computer technology underscores, and helps explain,

the whys and wherefores of its power and speed.

When electronic computers were first developed over forty years ago,

they were monstrous machines consisting of thousands of vacuum tubes

taking up whole floors of research laboratories and office buildings. The

first programming of these behemoths involved rewiring individual cir

cuits to make the proper connections for each program. Imagine having to

rearrange a few thousand wires each time you want to run a new program.

The Amiga User's Guide to Graphics, Sound and Telecommunications

Soon, however, a mathematician came up with the idea of installing

permanent circuits that represented the basic elements of a programming

language. Programming the machines then simply required turning on and

off the appropriate circuits, and thus were born the concepts of operating

systems and software that have evolved into today's programs.

This configuration of the computer made it vastly easier to program,

but at the same time had an unexpected effect. Software began to develop

quasi-independently of the hardware, leading computer designers to

ponder which computing functions were best handled strictly as hardware

and which were better served with software. The dilemma did not go away,

even as computers became smaller and entered people's homes.

The first home computers were for hobbyists handy with a soldering

iron. In other words, hardware was king. Producing software was a sepa

rate job undertaken once the hardware was in place. But as the hobby

machines gave way to mass-market computers, the emphasis shifted as

more functions became controlled by the growing number of software pro

grams. In time, software usurped hardware as the more important part of

the computer. Conventional wisdom at the time even suggested buying

software first and then finding the computer that could run it.

For a while this focus on software worked fine, as the home computers

did their jobs quickly, efficiently, and without much fuss. Then, slowly,

an entirely predictable trend appeared. People, no longer intimidated

by computers, saw the machines as simply better technology to get some

work done and consequently wanted more speed, flexibility, and operating

options from their computers. In response, software programs became

longer, more complicated, and required more memory. And in response

to those software characteristics, computers began to slow down. Instead

of being a selling point, a computer's speed (or lack of it) became a sore

point.

The stage was set for the Amiga. The Commodore Amiga swings the

pendulum back to a balance of hardware and software that takes maximum

advantage of both. It draws on the lessons learned with large computers —

certain jobs are better done by hardware alone, while others can be

accomplished best with software. By building a computer using the latest

technology and designed with back-to-basics knowledge, Commodore has

put development of home computers back on the main road. The Amiga's

place in history is secure. And it may signal the start of future develop

ments in computing.

INTRODUCTION

THE FUTURE OF COMPUTING

Predicting the future of anything is always risky business, but trying to

guess where an explosive technology like electronic computing will lead is

like trying to hit a target blindfolded — while jogging. Nevertheless, cer

tain trends in the development of computers seem to remain reasonably

constant and can form the basis for seeing where computers will take us in

the future. With a very deep breath, then, here are some predictions for

computing's future.

Memory technology will continue to improve and get less expensive.

RAM (random-access memory) technology is one of the brightest spots in

the development of small computers. Originally expensive and hard to

acquire, RAM chips are now so cheap and available that most computers

come standard with at least 128K. Amiga comes with 256K. And the price

per unit of memory will continue to decline as better production methods

and new chip designs develop to meet the growing demand for more

memory.

Of course, as the amounts of memory increase, so does the size ofpro

grams designed to take full advantage of the machine. Many business

programs today require at least 320K (512K preferred). The tendency of

software to push you to expand RAM to its limits will continue, but fortu

nately, the price of doing so won't be as expensive as before.

Mass storage — the disks and disk drives — will continue to

improve, but, more importantly, a new breakthrough in technology will

probably appear in the near future. The progression of mass-storage

technology for small computers started with tape recorders, moved to 8-

inch, then to 5V4-inch, and now stands at SV^-inch floppy disks. (Amiga's

disks aren't really "floppies" because of their protective hard plastic cas

ing. The actual disk inside the case, however, is the same material as the

earlier floppies.) Disk size does not equate directly with storage capacity.

Today, a single Amiga disk can hold 880K, which is as much as three times

the amount of the 8-inch disks on earlier small computers.

Concurrent with the improvement in floppy disks, hard disks suc

ceeded in capturing a large share of the market, to the point that now

virtually every computer has an option for adding a hard disk. Hard disks

typically have storage capacities in the megabyte (million byte) range.

Like the floppies, hard disk size has decreased while storage capabilities

have increased. That trend will continue.

6 The Amiga User's Guide to Graphics, Sound and Telecommunications

The new mass-storage technology soon to appear for small computers

is compact disks, or CDs. CDs, now used as video disks and audio compact

disks, are derived from technology developed in the sixties. The disks look

like shiny silver phonograph records that have a multihued sheen. Com

posed of aluminum coated with a plastic layer, CDs store information as a

series of ultratiny holes, or pits, created by a laser beam. The beam is so

precise that it separates the holes by only a few wavelengths of the laser

light. Compared to recording on a floppy disk, which is limited by the

width of the magnetic recording head, the density of data on a CD is orders

of magnitude greater.

Reading the data on a CD is done by another laser beam which focuses

on the plastic layer. The beam reflects back to a photosensor and is trans

lated into the type of data stored on the disk. For video disks the data is the

images of a movie; for audio disks the data is sound far surpassing the

quality of any tape recorder or conventional record. For computers the data

could be video, audio, text, or programs.

The promise of CDs is storage in the billions of bytes per disk (com

pared to millions of bytes on hard disks and "only" hundreds of thousands

of bytes on floppies). One billion bytes is equivalent to about 450,000

pages of text. Other benefits of CDs are their virtual indestructibility and,

once they become a commercial success, their low cost per byte of storage.

On the other hand, the main problem with some CDs is that they can

be written on once, and only once, because the pits in the plastic layer

cannot be erased. This, of course, is the complete opposite of the method

you use today with floppies. On current floppy disks you can create a file,

and later change, overwrite, or completely erase it. With the CDs a file

remains there forever. For this reason, CDs for mass storage are also called

"write-once" disks. (The disks themselves are called "WORM" for "write

once read many.")

The limitation of "write-once" is not as bad as it sounds. Because CDs

have the capability for so much storage, you simply "throw away" the

space on the disk used up by old files and "keep" the space that holds the

files you want to save. It sounds inefficient but in practice will be faster and

more cost effective than the conventional methods of storing and editing

files. An added benefit: thrown-away files are still available on the disk, so

you can't inadvertently erase a file.

As it turns out, this write-once feature is one reason why CDs are now

being touted more for ROM (read-only memory) than for mass storage. A

INTRODUCTION

single CD-ROM disk could hold all your programs, files, games, and other

data. The computer could read, but not alter, the data on the disk, but you

would still need some "writing" system, such as a standard disk drive for

entering data.

Another reason for the focus on ROM applications is the prices of the

two separate laser systems to read and write data. The laser mechanism for

writing data on a CD differs from the one to read it. CDs used for mass

storage require both a read laser and a write laser which substantially

increases the cost of a CD storage system. Having CDs only for ROM

means that individual computer owners would need only the read laser. (By

the way, although not yet available to the general public, CDs for both

reading and writing are in existence.)

Like the laser for CDs, other technologies will find applications in

computers. Video cameras, for instance, will be able to feed images

directly into memory where they can be digitized and displayed on the

screen. You will be able to then edit the image by changing its colors or

adding text to it. An innovative application of this feature currently in use

on large computers takes in images of old silent movies and transforms

them to color. If you've seen Fred Astaire and Ginger Rogers dancing in

full color, you've seen the results of this remarkable technique. You'll be

able to do similar things on your Amiga in the future.

Audio technology advances for small computers will not progress as

fast as video. Synthesizers can now be connected to computers through

MIDI (Musical Instrument Digital Interface), so you can play, record, edit,

and control output with the computer's circuitry. Although the interest in

MIDI is high, it isn't as pressing as is the demand for video technology.

Audio output — the actual speakers — will probably stay with stereo for

the near future. Quadriphonic sound was introduced a number of years ago

and flopped. Apparently, not enough ears are discriminating enough to

warrant the extra expense of better sound output.

Telecommunications will facilitate more networks and computer-to-

computer interconnections. Networks aren't new. Neither are computer-

to-computer connections. What the future does promise is more oppor

tunities for networking, better modems, and communications software that

is more flexible and easier to use.

Large networks, electronic bulletin boards, and electronic mail have

not lived up to their initial billings, at least not for many owners of small

computers. After an introductory rush of enthusiasm, the large national

8 The Amiga User's Guide to Graphics, Sound and Telecommunications

networks are growing at slower rates than expected and some are actually

shrinking. No one knows, for certain, why this is the case, but one sus

pected culprit is the individuality of small computer owners. They seem to

want more specialized information than the large networks are willing to

provide. Supporting this claim is the growth of small, specialized, regional

networks at the same time that the large ones are contracting. The trend to

the small network connecting people with similar interests will continue.

Connecting different types of computers has always been a telecom

munications bugaboo. To be sure, you could send files from a Commodore

to an Apple, but only in ASCII format; all other formatting features were

"disregarded." Technology, particularly software derived from large com

puter networks, is being developed that will make the differences between

communicating computers transparent. As the software improves, you will

have more flexibility in connecting with other types of computers, and the

software itself will be easier to use.

Modems too will be easier to use. In the future the modems will com

municate with each other automatically, set the necessary parameters for

establishing the communications, and take care of all the technical aspects.

Connecting with a network or other computer will then be no more difficult

than making a telephone call.

Voice communication will also be added to the repertoire of the

modems. In other words, you'll be able to send data to someone else and

talk at the same time. This capability now takes two separate telephone

lines or a single, expensive, high bandwidth line. In the future this capa

bility will be part of a home or business standard communications system.

Computers will be integrated with other home electronic systems.

With the exception ofTV and stereo, home electronics is just in its infancy.

Separate pieces of equipment have been developed independently of one

another, leading to the current mix of machines in many homes. Consider,

for example, that the data on a VCR tape is stored physically exactly as it

would be on a computer disk. Only the different storage formats and the

timing sequences used by each machine prevent a VCR tape from being

linked directly to the computer as its storage medium. Similarly, a TV

screen is essentially the same technology as a computer monitor, except

that the number of scan lines on the TV is usually less than on the monitor,

and the audio circuits are in the computer not the monitor. The electron gun

that creates screen images, and much of its controlling circuitry, is dupli

cated in the two pieces of equipment.

INTRODUCTION

The piece-by-piece approach to home electronics is similar to the days

of component stereo systems when, to get the best possible system, you

bought a separate tuner, tape recorder, turntable, speakers, and so on,

wired all the pieces together, crossed your fingers, and turned on the

power. But as designs improved, the quality of lower-cost, less-trouble

some single system stereos began to rival that of the component systems.

Nowadays most stereos are sold as complete systems in a single unit.

In the future, electronic components will be linked together to create a

single "home electronics station." In it will be your Amiga, telephone, TV,

stereo, VCR, satellite receiver module, laser disk reader, and jacks for

adding the next electronic piece of equipment to be accepted in the market

place. A single screen will be capable of simultaneously showing images

from multiple sources, such as your TV and computer. A single storage

source will save your VCR recordings and your computer data on the same

disk, and the telephone will be able to send and receive data and pass it on

to the other systems. Imagine receiving a film for your VCR through your

telephone instead of going to the nearest video store ... for a fee, of

course, from the business sending the movie to you over the telephone

lines.

The quality of computer graphics will continue to improve. Graphics

from microcomputers have traditionally been noticeably more angular and

chunky than most TV-quality images. The difference between them is due

to the fundamental difference between TV signals and computer proces

sing. The TV signal contains all the data an electron gun needs to create an

image on each sweep of the screen. A computer, on the other hand, has to

process data before it can control the gun, meaning that the processing has

to be fast enough to get data in and out of the beam for each sweep.

Until the Amiga, inexpensive microcomputers simply could not pro

cess data for high-quality graphics fast enough and still keep up with the

beam. Now that the Amiga has broken that "quality image" barrier,

graphics from microcomputers will begin to rival those from large com

puters. At the same time, the technology for graphics, especially new TV

screens such as high-definition TV, will be designed to take advantage of

the new era of graphics.

Computer prices will stay about the same, but what you get for the

price will increase. The computer business, like virtually any other retail

business, has "pricing points" for its products. A pricing point is the

amount people will pay for a certain type of purchase. Here, roughly, are

10 The Amiga User's Guide to Graphics, Sound and Telecommunications

the pricing points for the microcomputer market and how they are adver

tised to us consumers:

Under $100 — a game machine, but not suitable for any

"serious" computing.

$100 to $500 — lots of games, some home computing, but not

for business.

$500 to $1,000 — a good home computer, some work for small

businesses, but not yet a business machine.

$1,000 to $1,500 — this is where most computers live, good for small

business, homes, games, and even a few larger

businesses.

$1,500 to $3,000 — for power users and "serious" computing.

$3,000 and up — the big-business market (surprisingly many ofthe

machines in this price range are not much different

from lower-priced machines, but the perception is

that the higher price equates to more power).

Although these points fluctuate a bit as the market expands and con

tracts, they remain remarkably stable over the long run. What does change is

what you get for the money. For instance, in 1975 the first real home com

puter (named Altair 8800 and made in New Mexico, not the Apple as many

believe) cost about $500 in kit form, needed a separate monitor and floppy

disk drives, cables, and assorted other equipment, which when all was said

and done drove the price to about $1,500. What you got for that amount

was about 16K of RAM, a single-sided 8-inch disk drive, disks capable of

holding only about 160K, a black-and-white monitor, a small keyboard,

and no software. Compare what you can get with an Amiga for that price.

The pricing points will remain reasonably constant in the future, but

you'll get a lot more for your money. In other words, computer manufac

turers will build more capabilities into a machine and charge the same price

as its predecessors, instead of building a lesser machine and charging less.

Business users will continue to value reliability and consistency over

technological innovation. Building a better mousetrap is no longer a sure

fire guarantee of success in the microcomputer market, especially if the

computer is aimed at businesspeople. In fact, the opposite seems to be the

case more often than not. The business segment of the market wants to be

INTRODUCTION 11

sure that an investment in a computer will remain a sound expense for a

long time, and that the company selling the computer will be around in the

future. The IBM PC is the classic case in point.

The IBM PC is not a particularly fast, powerful, or technically advanced

machine. Its cost-to-performance figures are stunningly mediocre. Yet, even

though it entered the market well after other manufacturers, the PC is

without a doubt the best seller to businesspeople. The image of IBM, its

stolidness and consistency, was, and still is, more important to businesses

than technological marvels. For this reason, almost all microcomputers

today have the ability to "look like" IBM PCs, despite having to slow down

or degrade their other features in order to do so.

The trend of businesses to stay with IBM or other "established" com

panies will continue. In most cases this trend tends to stifle technological

innovations and research. However, such is not the case with the Amiga. It

fits all the necessary business categories: the Amiga comes from a

respected, reliable company; it is technologically advanced; and it can

emulate an IBM PC.

Gimmicks designed only to build sales will appear and disappear with

regularity. Do you remember the Hewlett-Packard "touchscreen"? Instead

of typing keys to select a command, you touched a portion of the screen

with your finger. Small invisible beams around the edges of the screen

determined the position of your fingertip and selected the command under

it. A nice concept, but totally impractical. The beams were none too pre

cise, so you were never completely sure that the command selected was the

one you wanted. And the screen kept getting smudged.

Similar gimmicks are all too common for microcomputers attempting to

distinguish themselves in the crowded marketplace. Although appearing

less frequently than before (simply because there are fewer companies

making computers these days), new gimmicks will nonetheless show their

faces briefly and then disappear, much to the chagrin of the company introduc

ing them. To people watching the microcomputer market, however, gimmicks

are amusing testaments that some of the exuberance of the industry survives.

WHAT MAKES AMIGA UNIQUE

Amiga's uniqueness comes from two sources: its design and its mix of fea

tures. The Amiga's design includes three new custom chips that control

12 The Amiga User's Guide to Graphics, Sound and Telecommunications

graphics, sound, and animation. The chips also serve double duty by con

trolling I/O (input/output), direct memory access, the disks, and interrupts

of the main CPU (central processing unit) chip. Relieving the CPU ofmany

routine "bookkeeping" tasks is one reason the Amiga is so fast; it is also the

key to the Amiga's multitasking capabilities.

The mix of features is unique because, for the first time, many of the

most sought after microcomputer features are integrated into one machine.

The philosophy guiding that integration is, "The best technology, with the

highest quality, for the most reasonable price," or more succinctly, "The

most bang for the buck."

The Amiga's features are what most people now want in a microcom

puter: high-resolution graphics, animation, high-quality stereo sound, and

an easy way to select options by using symbols (icons) on the screen.

Although each of these features may be found on other computers, having

all of them on one home computer is what makes the Amiga unique.

Here's an overview of the Amiga's main features:

The Amiga is the only microcomputer available today that comes

standard with multitasking. Multitasking is the ability of the computer to

run more than one program at a time — a feature traditionally found only

on specialty microcomputers or on mini- or mainframe computers.

A series of "designed-in" features make the Amiga's graphics the fastest

and sharpest available in today's microcomputers. The graphics features

include up to 4,096 colors, 5 separate planes for creating colors, and 5 dif

ferent screen resolutions. The screen has display options, including

stacking 2 images on top of one another (called the dual playfield).

Animation subroutines are part of the ROM. Rather than drawing each

individual picture as manual animation requires, programmers can animate

a scene quickly by using the subroutines. The animation is supplemented

by movable images known as sprites. The sprites are part of the hardware

design. Other movable images are in the animation software subroutines.

The Amiga has "four-voice" stereo sound that can be independent of

the main microprocessor. This means that you can create sound without

interfering with other jobs (such as running animation sequences).

Another sound feature is synthesized speech. You can program the

Amiga to speak in a variety of pitches, accents, and even (with a little

effort) in foreign languages.

The Amiga has two user interfaces: Intuition and the Command Line

Interpreter (CLI). Intuition is similar to the Apple Macintosh's method of

INTRODUCTION 13

selecting files and programs. You use icons on the screen to start an opera

tion such as "Load a file." CLI is similar to the way IBM's DOS (disk

operating system) works. Typed commands, such as DIR, instruct the

computer to perform a function. Either of the options runs the Amiga.

The Amiga has two direct connections for expanding the system. You

can add more memory or a series of other pieces of peripheral equipment.

The machine's design has the capability for a maximum of 8.5 megabytes

of memory.

CHAPTER

2

A Guided Tour

The Amiga is an advanced microcomputer, both inside and out. Chances

are you'll never need to see the inside because the numerous plug slots and

connectors on the outside provide complete access to the Amiga's interior.

Nevertheless, knowing about the computer's layout and design can help

you decide about adding peripherals and other equipment in the future.

THE PHYSICAL LAYOUT

The Amiga's facing panel contains two features (Figure 2.1): the internal

disk drive and the bus connection for the addition of256K ofRAM memory.

Removing the middle of the panel reveals the memory expansion bus.

A 256K memory expansion module plugs directly onto the bus and is then

re-covered by the panel. Although this module is a standard add-on for the

Amiga, it by no means exhausts the RAM expansion possibilities.

The panel on the right-hand side of the Amiga is where you plug in the

mouse and other hand control devices (mostly for games) such as joysticks,

light pen, paddles, and digitizer pad. You can attach two of these game

devices simultaneously.

15

16 The Amiga User's Guide to Graphics, Sound and Telecommunications

Bus connection

\

FRONT PANEL

Figure 2-1

Disk drive

\ I

1—*—\

1—'

>

Further back on the right-hand side panel is the expansion bus for

adding other peripherals. (More on this later.)

The back panel (Figure 2.2) contains nine ports for various peripherals.

Your port choices are:

RGB monitorport —

TVport

accepts both analog and digital RGB (red-green-

blue) monitor. The Amiga passes three signals,

one for each color, over the 23-pin connector

cable, thus maintaining excellent signal separa

tion. Digital TV also connects to this port.

sends signals to a TV set. Attach the TV set to

this port using a standard RF (radio frequency)

modulator cable. The Amiga's audio also passes

Kybd Disk drive Right Left TV mod Video

V \ /

Parallel port Serial port

BACK PANEL

Figure 2-2

A GUIDED TOUR 17

Videoport

Audioports (2)

Serialport

External driveport —

Parallelport

Keyboardport

over the cable, but not in stereo. Both Amiga

stereo channels are mixed to produce monoaural

sound.

connects an NTSC monitor. (NTSC stands for

National Television Standards Committee,

although after comparing various models you

may think it stands for Never The Same Color.)

Collectively these monitors are called composite,

because all of the signal is passed on a single

wire and then separated in the monitor. Some

have audio, but most do not.

these stereo outputjacks attach either to the

audio inputjack on your monitor (if it has one)

or to separate stereo speakers. The ports accept

standard RCAjacks.

connects some types of printers and most

modems. A separate Y-connector lets you

switch between them. Use the special Amiga

cable for the serial port.

for connecting additional disk drives to the Amiga.

You can connect up to three additional drives in

daisychain fashion, but ifyou do, the second and

third drives will need their own power supply.

— connects most printers to the Amiga. Use a DB-25

male connector on the cable.

— attaches the keyboard to the Amiga.

THE PERIPHERALS

Aside from the CPU and internal disk drive, everything else connected to the

Amiga can be considered a peripheral. You have a wide latitude of choices.

Monitor

Because of the Amiga's superior graphics capabilities, a good monitor is

necessary to get the full flavor of the images. An RGB monitor is by far the

18 The Amiga User's Guide to Graphics, Sound and Telecommunications

best for the Amiga. Its colors are sharp and clear, and its images distinct.

An RGB background has a deep black background which, compared to the

gray background ofTV screens, makes the colors that much richer. Essen

tially a scaled-down studio-quality monitor, the Amiga RGB monitor also

has a speaker for audio output.

Obviously, this type of monitor produces the best images for business

graphics and games. However, it also can clearly display 80 characters

across the screen for use in word processing and other business tasks.

A monitor is also necessary to see the Amiga's full range of 4,096

colors and 2 high-resolution modes. With a TV set, you're limited to the 2

lower resolutions of the Amiga.

If you decide to shop around for an RGB monitor, be sure to specify

that you want an ANALOG RGB monitor. The IBM PC and PC compati

bles use a DIGITAL RGB monitor for graphics. This is not compatible with

the Amiga and it only displays 16 colors. Recently, monitors like the NEC

Multisync have appeared. These are capabale of handling both analog and

digital RGB.

Similar to the RGB monitors are composite monitors. They can dis

play in full color or monochrome (one color); the Amiga only works with

the color versions. Depending on the monitor's quality, it can be either

like a TV set or a "low-end" RGB monitor. Usually you can display the

high-resolution modes and 80 readable characters for word-processing

applications.

Your third choice for video is a TV set, but it is disappointing in light

of the Amiga's capabilities. Not only are you limited to the lower-resolu

tion modes, but the maximum number of readable characters on the screen

is only 60 per line.

Another drawback of TV video has to do with the way a TV set shows

pictures on the screen. TV images are not as intense as those on monitors

because the phosphor backing on the TV tube has the tendency to hold an

image as an afterglow. The more intense the image, the longer the

afterglow. For normal TV viewing, an afterglow is irritating because it

makes scenes linger on the screen and blurs the image, but for viewing

characters on the screen, an intense image improves readability. Thus, TV

images make letters and numbers inherently less readable than those pro

duced by monitors with intense images.

A final TV disadvantage, although minor, is that you're limited to

"only" 3,616 of the full 4,096 available colors.

A GUIDED TOUR 19

Disk Drives

Amiga internal and external disk drives designed are for 3V2-inch floppy

disks enclosed in a hard plastic sleeve. The drives read double-sided disks,

each of which holds up to 88OK (about 580 pages of text). Each external

drive has a connector for an additional drive; you can connect up to a total

of three external drives.

You can also connect a SVi-inch drive which uses standard floppy

disks in flexible sleeves. Typically you would attach a 5V4-inch drive to

transfer files and use programs developed on another computer. Additional

software is required to run the drive. Hard disks are also available for the

Amiga.

Audio Speakers

As described more fully later, the Amiga produces four channels of sound.

Two channels are assigned to each of the two output jacks on the back

panel. Using a Y-connector, you can run all four channels through a single

speaker, such as the one in the Amiga RGB monitor, but more likely you'll

want to run them to individual stereo speakers.

Printers

A number of printers attach to your Amiga. The drivers for the following

list of printers are all standard in the Amiga:

Alphacom Alphapro 101

Apple LaserWriter

Brother HR-15XL

Commodore MPS 1000

Diablo Advantage D25

Diablo C-150

Diablo 630

Epson JX-80

Epson FX series

Epson RX series

20 The Amiga User's Guide to Graphics, Sound and Telecommunications

Hewlett-Packard LaserJet and LaserJet Plus

Okidata Okimate 20

Qume LetterPro 20

Other printers connected to the Amiga require their own individual

drivers.

EXPANSION POSSIBILITIES: OPEN ARCHITECTURE

The Amiga was designed with expansion in mind, a philosophy that harkens

back to the early days of microcomputers. The first microcomputers'

insides were mostly empty space, consisting of open slots for additional

printed circuit boards. A computer owner had direct access to the slots by

simply removing the top of the computer. Moreover, the slots encouraged

independent developers to design, produce, and sell boards that plugged

into the slots, thus expanding the capabilities of the basic computer. In that

way, computer owners could customize their machines to have the applica

tions they deemed most important. It also meant that the computer manu

facturers could keep down the price of the basic computer.

Typical add-on boards provided computers with additional memory,

graphics capabilities, clocks, internal modems, special video circuitry,

and a host of other features. Some of the earlier computers almost

demanded an extra board for any useful business work. The early Apple

computers, for instance, needed an extra board (called an 80-column card)

to produce 80 columns of text on the screen. Today, many of the features

relegated to the extra boards are now standard in microcomputers, which

leaves room for adding on more advanced features.

Physically connecting the boards was not too difficult for someone

handy with a screwdriver. Simply removing the computer's cover revealed

the slots; the boards slid into them easily and connected with wires and

cables to the rest of the computer. Occasionally, boards required a resetting

of the computer's DIP (dual in-line package) switches, an irritating but

relatively simple chore. The "electronic connections" — the signals and

bit streams within the computers — were also usually designed for adding

the extra boards. Developers could build the boards using standard conven

tions for the electronics. Similarly, the computer manufacturers made

A GUIDED TOUR 21

memory and register addresses, and other programming features, available

and accessible to the developers.

This easy access to a computer, both physically and electronically, is

known as open architecture and is a prime reason people, and especially

businesses, have embraced microcomputers so readily. One key factor in

evaluating which computer to buy, in fact, has traditionally been the

number of slots available for expansion. However, for reasons known only

to themselves, a number of computer manufacturers have abandoned this

time-tested philosophy. The Apple Macintosh and Atari ST computers

have closed architectures, with Apple going so far as to void a Mac's war

ranty if the computer cover is removed. And attempts to open up the Mac

and ST after the fact have been stopgap at best. The Amiga's design, on the

other hand, says expansion and open architecture at every turn.

The Amiga's memory has over 16 million addresses. About half of the

memory — 8.5 million bytes — is allocated to RAM, and most of the rest

is reserved for "future use," with specific addresses reserved solely for

expansion hardware. Furthermore, the part of the memory reserved for the

expansion hardware establishes a protocol for designers which, if fol

lowed, will make the Amiga automatically accept the hardware without the

slightest modification. Even the DIP switches will not need resetting.

Adding boards has been made simpler on the Amiga. Instead of

having to open up the computer and plug them in, additional boards (and

other hardware) attach directly to the expansion bus on the right panel. The

bus is a 60-pin connection that provides complete access to the inside of the

machine, including the main processing chip and the three Amiga custom

chips. Expansion boards or other hardware for the Amiga will simply slide

onto this bus. Like adding more external disk drives in a daisy chain, you

can keep adding as many hardware packages as possible, until the memory

limits are reached.

Keeping the expansion boards physically outside but electronically

inside solves two technical problems that plague many microcomputers.

First is heat. Computers generate heat, and the more boards, the more heat.

But heat is the kiss of death to sensitive electronic components. Microcom

puters packed with expansion boards have a higher than normal breakdown

rate simply because the cooling fan inside the computer cannot dissipate

the heat fast enough. Putting the expansion boards in a separate box outside

of the main computer keeps this problem from occurring.

The second technical problem solved by the external setup is failure of

22 The Amiga User's Guide to Graphics, Sound and Telecommunications

the power supply. Boards inside the computer draw their power from the

same source as the computer itself. Computer manufacturers take this into

account and design their power supplies to handle a reasonable demand for

power by both the computer and expansion cards. But the manufacturers

have no way of knowing what kind or how many power-hungry boards

computer owners will add. The result is persistent failure of power

supplies. The Amiga's expansion hardware will draw power on its own,

relieving the internal power supply of excessive demands.

The numerous ports on the Amiga also indicate expansion. They con

nect to different types of peripherals you can add to your computer.

What kind of expansion possibilities? Of course, the Amiga accepts

the usual add-ons of memory, modems, and math processors. But you'll

also be able to add advanced microcomputer hardware not available for

other machines. Some samples are:

• MIDI interface. MIDI, the Musical Instrument Digital Interface, is

the means to attach a musical synthesizer to a computer. You can

then program music on the computer and play it back through the

synthesizer.

• VCR or video camera interface. Using a genlock card, you can pass

signals from the VCR or video camera to the Amiga to produce digi

tized images on the screen. Once captured in the Amiga memory,

the images can be part of other pictures that you create with

graphics programs.

• CD (compact disks). The CDs can be additions to ROM or expan

sions of memory.

Expect other advanced add-ons in the future.

INSIDE THE AMIGA

Getting inside the Amiga is not too difficult. Remove the mounting screws

from the top of the case and lift it off. Unscrew the metal shielding but do

not try to lift it off yet. First, locate the four tabs around the bottom of the

shield and gently bend them with a pair of needlenose pliers so they fit

A GUIDED TOUR 23

through the small slits on the motherboard. Now lift the shield up and off

and place it aside.

The Amiga's central processing unit (CPU) chip is the Motorola

68000. It is classed as a 16/32 bit processor, meaning that it can process

instructions 32 bits long, but passes data on the data bus in 16-bit segments.

Perhaps the most innovative feature of the Amiga is the three custom chips

that enhance the operations of the 68000. The three chips control anima

tion, graphics, and sound, but they also handle other internal processing

functions.

The animation chip acts like an assistant to the 68000. It contains a

coprocessor, called the Copper, that controls the output of the other two

custom chips relative to the screen position of the video beam. In particu

lar, the Copper controls the output of graphics and sound, keeping the

audio and video synchronized on the screen. In other computers this func

tion is the responsibility of the main processing chip which slows down the

computer's overall processing speed considerably. Having the Copper

handle the work relieves the 68000 of the task, which translates into a

faster-acting computer.

A separate section of the animation chip contains the Blitter, which

controls line drawing, image movement on the screen, and coloring of

bounded, or closed, areas. The term Blitter is derived from the jargon term

"bit-mapped block transfer," which is another way of saying movement of

screen images.

An additional responsibility of the animation chip is to control direct

memory access (DMA). DMA is a process whereby different portions of

the computer, including peripherals, can directly access memory without

going through the 68000. This relieves the 68000 of many routine chores,

like finding the address of a specific piece of data requested by the other

portion of the computer. The Amiga has twenty-five DMA channels dedi

cated to features such as the video output, audio output, disk drive, and

color control.

The custom graphics chip controls the screen display and keeps track

of the relative position of the images on it. Output to the RGB, TV, and

video ports comes directly from this chip.

The audio chip controls all four channels of sound as well as the disk

controller and the interface for the serial port and the mouse/joystick port.

In addition, the audio chip directs the interrupts to the 68000 from fifteen

24 The Amiga User's Guide to Graphics, Sound and Telecommunications

sources, including all the peripherals and the sound channels. In other

words, a peripheral sending a signal to interrupt the 68000 sends the signal

to the sound chip. The sound chip first determines the priority of the inter

rupt and then transmits the interrupt request to the 68000. After processing

any interrupts of higher priority, the 68000 attends to the new request. The

ability to handle interrupts in this fashion is a primary reason why the

Amiga can do multitasking — the processing of more than one task at a

time.

MORE ABOUT DIRECT MEMORY ACCESS

Much of the Amiga's speed is due to the design and use of the DMA chan

nels relative to the computer's operating speed. The 68000 operates at a

frequency of 7.15 MHz (megahertz, or millions of cycles per second),

while the memory and internal bus operate at twice that speed, or 14.2

MHz. This means that roughly half of the cycles when the memory is avail

able are not required by the 68000. In the Amiga, those "unused" cycles are

allocated to DMA.

In its simplest form the DMA works like this: the 68000, Copper, and

Blitter can access memory on all the even cycles of the operating fre

quency; the DMA requests get to access memory on the odd cycles. Each

time the cycle is an even one, the 68000, Copper, or Blitter gets some data,

or puts it on the appropriate internal bus, or runs an instruction. Most ofthe

68000's time alternates between running internal calculations and putting

data on the bus. Thus, for instance (forgetting the Copper and Blitter for the

moment), at cycle 0 the 68000 would put data on the bus, at cycle 2 it would

perform a calculation, at cycle 4 it would put a result on the bus, and so

forth.

During the odd-numbered cycles, DMA requests from various

peripherals or other parts of the computer get the data they want from

memory and put it onto the bus. The DMA processing bypasses the 68000

completely and handles tasks such as outputing sound to the audio chan

nels, sending data to the disk drive, and moving a screen image to a new

screen position.

This sharing of the system is the secret to the Amiga's speed. Because

the memory speed is twice that of the 68000, and because the 68000 only

accesses memory on every other cycle, the 68000 operates at its full speed

A GUIDED TOUR 25

even though other processes are occurring simultaneously. The DMA is

essentially transparent to the 68000 and thus the computer is, for all intents

and purposes, doing two (or more) things at once. It is why the Amiga can

read a disk, play music, and display animation without visibly slowing

down.

Of course, there are times when the DMA and 68000 may need to

infringe on the other's cycles. This occurs, for example, when the video

screen is packed with images or is using a large number of colors. The

DMA channels "steal" cycles from the 68000 to process the video data.

The 68000 can also lose cycles to the Copper and Blitter as they draw

images or keep track of animation on the screen. However, the Copper and

Blitter are very efficient at doing their tasks. If the 68000 tried to draw each

image itself (as is done in other computers), it would take longer even if the

68000 was not interrupted at all. Consequently, the priorities among the

Copper, Blitter, and 68000 optimize the use ofthe computer and deliver the

extremely fast Amiga performance.

When competition among the DMA channels, Copper, Blitter, and

68000 does slow down the performance of the Amiga, extra memory orjudi

cious memory management can sometimes restore the better performance.

MEMORY MANAGEMENT

Memory management is a programming task to free as much internal

memory as possible when it isn't needed. The more free memory available

to a task, the faster the Amiga can process it. Three areas of memory can be

managed by programming, although different programming languages and

options employ different management methods. The three areas are: stack,

heap, and BASIC'S data segment.

The stack memory is for keeping track of local parameters and return

addresses. For example, if a program has a subroutine call to another

instruction, the memory address of that instruction is in the stack. The heap

memory contains space for such things as static variables. For example,

when defining the type of sound you want from one of Amiga's four audio

outputs, the definition is stored in the heap. Each output description takes

1024 bytes ofRAM in the heap. BASIC'S data segment portion of memory

contains the text of the program, numeric variables, strings, and room for

data buffers.

26 The Amiga User's Guide to Graphics, Sound and Telecommunications

In AmigaDOS, you can use the STACK command to set aside a certain

size of the stack, in bytes, for use with DOS commands. The STATUS

command tells you how much stack is in use.

One method of conserving space in BASIC is to keep the number of

levels in your programs to a minimum. For example, "nested" subprograms

each use stack space to keep track of their addresses, and the fewer the

number of levels for the nested subprograms, the fewer addresses in the

stack. Similarly, to conserve space in the BASIC data segment, link small

programs in a series instead of nesting them in a single large program.

Another data segment conservation method is to assign variables integer

values instead of single- or double-precision numbers.

Conserving space in the heap is an easy memory management proce

dure. Simply release the buffers allocated to the specific commands using

the heap. In BASIC the commands SOUND, WAVE, LIBRARY, WIN

DOW, and SCREEN all use the heap. To release a buffer for a WAVE com

mand enter a WAVE 0 line at the end of the program. The other commands

use similar procedures to release the buffers in the heap space.

The CLEAR statement in BASIC allocates a specific number of bytes

to all three memory locations. To find out how much memory is currently

allocated to the stack, heap, and data segment, use the FRE statement in

BASIC.

Managing memory is not an absolute requirement on the Amiga. You

can program and run routines without giving memory a second thought.

Managing it just makes the Amiga more efficient and responsive to your

instructions.

CHAPTER

3

Using the Amiga

So there it sits. You've bought the Amiga, hooked together all the peripher

als, plugged it in, and are ready to go. Now what? The first step is to get

familiar with the fundamentals of operating the Amiga. Then you can

decide on the programs to do the things you want.

A QUICK WORD ABOUT PROGRAMMING

You don't have to program the Amiga yourself. Many commercial pro

grams available for the Amiga create amazing graphics, produce won

derful sound, play new and entertaining games, and accomplish a complete

range of business tasks. The choice is yours. On the other hand, program

ming the Amiga customizes it for the specific tasks you want it to do.

The rest of this chapter — and the rest of this book — is devoted to

explaining how to use and program the Amiga yourself. To be sure, the

book's programs are not as detailed as the commercial versions that caused

professional programmers hours of sleepless nights. Nevertheless, they do

show you some of the Amiga's capabilities, and at the same time open the

door for embarking on more exotic work if you find it stimulating.

27

28 The Amiga User's Guide to Graphics, Sound and Telecommunications

The programs in this book are in BASIC, specifically, Amiga BASIC.

Amiga BASIC has commands and procedures designed to take advantage

of the Amiga's unique graphics and sound capabilities, as well as its multi

tasking features. The process for programming in Amiga BASIC, how

ever, is much the same as programming in BASIC on any other computer.

Think of Amiga BASIC as an expanded "dialect" of BASIC.

Simply for efficiency's sake you should have at least a nodding

acquaintance with BASIC before attempting to follow this book's pro

grams, because explanations of each program assume you understand

BASIC'S concepts. For example, a description of a loop explains what the

loop is for, but not what a programming loop is or does. If you aren't

familiar with BASIC, a brief primer book or course would be helpful. The

first few chapters of the Amiga BASIC manual also describe some of the

necessary concepts.

Why BASIC and not the programming language C or the Amiga's

machine language? Because BASIC (for all its faults) is still the most

popular programming language for both amateur and neophyte program

mers. You could, of course, program the Amiga in C or machine language. C

is a powerful language, but difficult to learn and even more difficult to use

proficiently. Machine language gets the most out of the Amiga in the most

efficient way, but if you can program in machine language, you're probably

developing commercial programs for the Amiga anyway. There is one other

reason for Basic: It comes free with each machine. This means that everyone

has a standard language to work with.

AMIGA INTUITION

The icons and visual system that you use to interact with Amiga's operating

system is known as Intuition. Intuition controls the basic processes of

reading disks, displaying characters on the screen, and the other necessary

routine chores done by the computer. The Workbench disk and the Amiga

"user interface" are also part of Intuition. A user interface contains the

commands and images for interacting with the computer to make it start or

stop a job.

Amiga's user interface is similar to the one pioneered by Apple's Lisa

and Macintosh computers (which borrowed the basic concept from Xerox

in the first place), but the Amiga user system extends Xerox's and Apple's

USING THE AMIGA 29

versions to a new and unique interface that, as its name suggests, is intui

tive to use. No commands to remember or typing required. Unlike other

computers that put their operating systems in ROM, Intuition is stored on

the Kickstart disk. This enables you to make changes to it or get later

upgraded versions of Intuition in the future.

To start the Amiga, insert the Kickstart disk, let it load, and when an

image of the Workbench disk appears, insert that disk. The screen then dis

plays the Amiga user interface. Four basic items make up the interface: the

mouse, icons, windows, and menus.

The Mouse

The mouse has two functions: it moves a pointer on the screen and it initiates

commands to the computer. As you slide the mouse around, the pointer

moves in a corresponding manner on the screen. Depending on the programs

on the Amiga, the pointer can take on many shapes, such as an arrow, cross

hairs, simple bar, or human hand. It can also be reprogrammed to adopt

other descriptive shapes, such as a paintbrush for a graphics program.

Mouse or Keyboard?

Some people object to using a mouse. Whether it is because a

keyboard is more familiar, or that the name conjures a furry creature (and

who would want to hold that in a hand), the mouse is, for some, a real

psychological dread. For them, Amiga has developed keyboard

procedures that replicate mouse operations.

To position the pointer from the keyboard, press either the right or left

Amiga key (the hollow or filled A) and an arrow key. The mouse moves in

the direction of the arrow. To increase the speed of the pointer,

simultaneously press the three keys: Amiga key-Shift-arrow.

To duplicate pressing right mouse button, simultaneously press Right

Amiga-right Alt.

To duplicate pressing the left mouse button, simultaneously press Left

Amiga-left Alt.

To select screen items using the keyboard, hold down the appropriate

key combinations, such as Right Amiga-right Alt, and then press the arrow

keys until the pointer is on the screen item you want to select. Release the

keys to select the item.

30 The Amiga User's Guide to Graphics, Sound and Telecommunications

Two buttons on top of the mouse select commands for the computer.

Selecting a command tells Amiga to do the job that command controls. Put

ting the pointer on screen images selects commands represented by icons or

by menus. The right button on the mouse selects menu choices, the left

button selects icons and other functions. Pressing and releasing a button

while the pointer is on an icon or menu is known as "clicking" on the item.

The terms clicking and selecting are usually interchangeable.

Icons

Icons are small symbols on the screen that represent Amiga operations.

There are four types of icons (Figure 3.1):

Disks — look like small Amiga disks. Selecting a disk icon displays

other icon choices.

Figure 3-1

Tools —

USING THE AMIGA 31

can be any shape. Tool icons start the programs represented

by the icon. ("Tools" is another word for programs.)

Projects — can be any shape. Projects are files created by a program.

Drawers— look like small desk drawers. Drawers are directories

where you store projects, tools, and other drawers. A

trashcan symbol is a special drawer for deleting data from

a drawer.

When you load the Workbench disk, the only icon on the screen is a

disk in the upper right corner. Putting the mouse on the disk and clicking

the left button twice selects the disk. This opens the Workbench disk icon

(Figure 3.2) and displays a set of seven icons. You can then open any of

these icons by putting the pointer on it and clicking the button twice again.

When you open an icon, a window appears.

kleast l.i: weal nw

Figure 3-2

32 The Amiga User's Guide to Graphics, Sound and Telecommunications

Windows

Intuition's windows are where you see information or images that an icon

represents. For instance, selecting the icon labeled Preferences displays

images for customizing the Amiga according to your own preferences. The

images include selections for setting the time, date, screen colors, printer

type attached to the machine, graphics, and so on.

Each Amiga window has features to control it. These features are

known as gadgets, bars, requesters, and alerts.

Gadgets — symbols that control a specific window function. Select a gadget by

clicking on it.

The close gadget closes the window. The front or back gadgets move

the window in front of or behind other windows on the screen. The siz

ing gadget changes the size of the window. Changing a window's size

uses a mouse operation known as dragging. Put the pointer on the sizing

gadget, press the left button but do not release it. Still holding the but

ton down, move the pointer to another position on the screen. Release

the button. The window's size now extends to the new position of the

pointer.

Other screen items respond to dragging. Icons can be dragged to other

screen positions, and some graphics programs use dragging to draw lines.

A window's bars also require dragging.

Bars — horizontal and vertical symbols for moving the window or data in it.

The drag bar located at the top of a window is for moving the entire

window on the screen. Drag the drag bar around the screen and the window

follows it. In this manner, you can position windows wherever you want

them on the screen.

The two scroll bars move information within a window. The bars are

on the left and bottom edges of a window. Drag the horizontal bar to scroll

information horizontally in the window; drag the vertical bar to vertically

scroll information. Click on the arrows at either end of the scroll bars to see

a complete new window of information.

Requesters — boxes containing messages and choices asking for your

response.

USING THE AMIGA 33

Requesters appear when a program wants you to do something or con

firm some action. A typical requester is the message "Please Insert Disk

X." For confirming an action, many of the requesters have small boxes

labeled "OK" and "STOP." When the Amiga requires you to confirm a step

in a program, a requester "pops up" on the screen. If you want the step to

occur and the program to continue, click on the OK box; otherwise, click

on the STOP box. The program will not proceed until you click on one of

the two boxes. Requesters are also known as dialogue boxes.

Alerts — emergency messages indicating that you must attend to something

before doing anything else with the Amiga. Alerts preempt all other Amiga pro

grams and operations.

Due to Amiga's multitasking capability, the screen can show a large

number of windows simultaneously. Each task or program must have its

own window while it's running, but only one window at a time can be

Windows Are Virtual Terminals

When a standard computer — one that does not have multitasking — is

sending data to a printer or some other terminal, the entire computer is devoted

to that task. You get a coffee break until the printing or other work ends.

On the Amiga you can run many tasks at the same time. To accomplish

this feat, the Amiga sets aside specific areas in memory for each task and

automatically keeps track of which task corresponds to each memory area.

Then, input to the memory area and output from it apply only to the specific

task's window. In essence, the Amiga is treating each window as if it were

a separate terminal, which, in computer jargon, makes each window a

virtual terminal. In other words, the window isn't really a terminal but merely

appears to be to the Amiga.

Appropriately enough, the term virtual is adapted from the study of

mirrors. Mirror images, known as virtual images, are simply reflections in

glass but "trick" your eyes into appearing as real objects. Likewise, the

memory area "tricks" the Amiga into seeing it as a real and separate

terminal. With this capability, the Amiga can run multiple tasks

simultaneously, and each task thinks it has access to the entire computer.

Perhaps a better explanation is: "It's all done with mirrors."

34 The Amiga User's Guide to Graphics, Sound and Telecommunications

active. The active window is the only one that can receive inputs from the

mouse or keyboard. Programs in the other windows cannot receive input,

but they can still be processing data or performing other tasks.

To make a window active, simply click anywhere in it with the left

button. The active window appears darker than the inactive windows.

Closing a window with a close icon makes the last previously active win

dow, the new active one.

Menus

Intuition menus appear as words (or titles) across the top of a window.

Sometimes to keep a window uncluttered, menus are hidden; click the right

mouse button to see a window's menus.

Each menu usually contains a list ofchoices or selections. To see those

selections, put the pointer on the menu word or title and press the right mouse

button. The menu's selections "pull down," or "unroll," on the screen. Drag

the mouse to the selection you want and release the mouse button. This

selects that menu choice and starts it. Sometimes a selection has its own

choices (submenus) and you repeat the process selecting from them.

Menu selections control specific functions for its window. For exam

ple, if the window is a graphics program, one menu item may be Color.

Selecting Color then displays a series of options for changing the color of

an image drawn in that program. Similarly, for a sound program, a menu

item may be Volume; selecting it lets you vary the volume ofthe sound pro

duced by that program.

Each program and each window has its own menus. Selecting a menu

item in one program's window will not affect the processes in other windows.

In some programs, menu items can only be selected when certain conditions

are present. For example, a program with a menu option for modifying an

image on the screen may require that you save the image in a file first. The

menu option for the modification will be displayed in light tones and will not

respond when you select it. But as soon as the original image is safely

stored in a file, the menu option appears normal and can be selected.

USING AMIGADOS

The AmigaDOS (disk operating system) Command Line Interface, known

as CLI, is an alternative to Intuition. Whereas Intuition uses icons and

USING THE AMIGA 35

images to select commands, CLI uses typed commands similar to IBM's

operating systems known as MS-DOS or PC-DOS (see Figure 3-3).

CLI has forty-five commands for doing the routine tasks of disk copy

ing, listing files, seeing the file directory on a disk, and so forth. Some of

these commands are very similar to the ones used on the IBM PC. For

example, the command DIR shows the directory of files on the disk in the

current drive, and CD (for change directory) sets the current directory to a

new one. These commands are the same in CLI as in MS-DOS.

In addition to the routine commands, CLI includes those that control

some of the Amiga's unique capabilities. The CLI command SAY, for

instance, makes the Amiga speech synthesizer speak to you; the

AmigaDOS NEWCLI command starts a multitasking job.

CLI is stored on yourWorkbench disk. To use AmigaDOS, you must first

leave Intuition and then start the Command Line Interpreter. CLI changes the

screen from icon-oriented to command-oriented. You can then type in Amiga-

DOS commands. To start CLI, load the Workbench disk and select (double

click on) Preferences. The Preferences screen that appears has a box at its

bottom left labeled CLI, followed by two choices: On and Off. Select On.

If you want to use CLI all the time instead of Intuition, select the box at the

lower right of the screen labeled Save. This saves your selection on the Work

bench disk. Then, the next time you load Workbench, the CLI screen appears.

If you don't want to save yourOn selection, select the Use box. Now select the

System drawer from the Workbench ajnd select the cube labeled CLI.

Keyboard

CLI

User

Mouse

Intuition

Icons

AmigaDos Hardware

Figure 3-3

36 The Amiga User's Guide to Graphics, Sound and Telecommunications

The window that opens has a 1> for a prompt. Although it appears

similar to an A> or C> prompt on an IBM machine, the 1> tells you that this

is the first CLI window you've opened. (The A> and C> prompts on an IBM

refer to disk drives.) If you open a second CLI window, its prompt will be

2>. When the prompt appears, you're ready to control your Amiga with

AmigaDOS.

One operating difference between AmigaDOS and IBM's DOS is that

AmigaDOS is not stored in the memory; it remains on the disk until you

type one (or more) of the commands. The Amiga finds the command, loads

just that command into memory, and then runs processes you specified.

This means more of the memory is available for processing; it also means

that the Workbench disk must stay in the drive in order for the Amiga to

access the commands.

Intuition or CLI

With its descriptive icons and mouse-activated selections, Intuition is

easy to learn, easy to use and remember, and gets the job done quickly.

The selections on Intuition, however, are limited to the ones you use in

day-to-day computer operations. AmigaDOS takes more time to learn, you

have to remember a set of commands and their variables, and the

commands take longer to type than simply clicking on an icon. But

AmigaDOS gives you more options and greater control over the operations

of your computer.

Which to use? More often than not, you'll find that the particular job

you're doing dictates which one you use. That is, starting a program or

saving a file are fast, easy jobs with Intuition, while creating a multilevel set

of directories is better suited to AmigaDOS. Take your pick.

The following table lists AmigaDOS's commands and provides you

with a brief description of each. For complete instructions about

AmigaDOS, see the manual entitled AmigaDOS available from Bantam

Books.

USING THE AMIGA 37

Command Function

Alink Puts separate pieces of a program into one file that can then

be run as one program

Assem Assembles programming code for the 68000 chip

Assign Assigns an Amiga device name (such as a disk drive) to a

file directory

Break Interrupts a program

CD Changes the current directory or drive

Copy Copies files from one disk or directory to another

Date Displays or changes the setting for date and time

Delete Erases files or directories

Dir Lists files on a disk or in a directory

Diskcopy Copies an entire disk to another disk

Download Loads programs into the Amiga from other computers

Echo Adds messages or commands to an existing AmigaDOS

command

ED Starts a full-screen editing program

Edit Starts a line-by-line editing program

Endcli Ends working with CLI

Execute Runs a set of commands already programmed and saved in

a file

Failat Ends a program when certain conditions are met

Fault Interprets error messages

Filenote Adds a comment to a file

Format Prepares a disk for working with AmigaDOS

If Tests if a condition in a program is true or false

38 The Amiga User's Guide to Graphics, Sound and Telecommunications

Command Function

Info Displays status of disk drives

Install Puts programs on a disk so it will start automatically

Join Merges up to fifteen files into one file

Lab Adds a label in a program (used with the Skip command)

List Displays names and status of files and directories on a

disk

Makedir Creates a new directory

Newcli Starts a new CLI window

Prompt Changes the prompt messages that appear on the screen

Protect Assigns codes to a file that can keep it from being deleted,

replaced, run, or read

Quit Ends a program

Relabel Changes the volume name of a disk

Rename Changes the name of a file or directory

Run Runs a program

Say Translates typed text into synthetic speech

Search Looks for a word or phrase in files and directories

Skip Makes a programjump to a position in the program held by

a label

Sort Alphabetically sorts text in a file

Stack Displays or allocates the amount of stack memory

Status Displays status of all the tasks in progress

Type Displays the contents of a file on the screen

Wait Suspends a program for a period oftime

Why Explains why a command failed

USING THE AMIGA 39

USING AMIGA BASIC

Amiga BASIC is stored on your Amiga Extras disk. To start Amiga

BASIC, insert the Extras disk into the drive and when the Workbench

screen appears, select the Amiga BASIC icon. Unlike most versions of

BASIC, which use a single window for programs, Amiga BASIC uses two:

the Output window and the List window. When you first start Amiga

BASIC, the List window is active and is in front ofthe Output window. The

List window is where you write and edit programs; the Output window

shows the results of a program. For example, a line-by-line listing of a pro

gram to calculate a monthly budget appears in the List window, while the

budget itself — the results of the program — appears in the Output win

dow. You can write individual programming statements in the Output win

dow, but each one is run (executed) as soon as you type it.

Getting from one window to the other depends on what you're trying

to do. Running a program shown in the List window automatically puts the

results in the Output window. To get back to the List window, you can:

click (the left mouse button) in the List window to make that window

active; type List and press Enter; select Show List from the menu; or press

Amiga key-L.

If a program to be shown in the Output window calls for some cursor

movement or mouse actions, the pointer must be in the Output window

before the program starts. Put the pointer in the Output window and click

the left mouse button. Then start the program. Starting a program occurs in

one of three ways: with the pointer in the Output window, type Run and

press Enter; press Amiga key-R; or select Start from the Run menu.

ADVANCED FEATURES OF AMIGA BASIC

Line numbers. You can write Amiga BASIC programs with or without line

numbers or labels. Programs are run in the physical order of the statements,

that is, how they appear on the screen. If you do add line numbers or labels,

the program can reference individual lines and jump to them if need be. To

provide you the greatest programming flexibility, Amiga BASIC programs

can be mixtures of numbered lines, labeled lines, and lines with neither

numbers nor labels.

Variables. A BASIC variable holds a value, text or numeric, used by

40 The Amiga User's Guide to Graphics, Sound and Telecommunications

commands in a program. Giving each variable a name tells the program to

substitute the variable's value in place of the name each time it occurs.

Other programming statements can then substitute sequential values at the

name depending on what you want the program to do. For example, the

variable name could represent the addresses on a mailing list, and the pro

gram might be to print mailing labels for each address. Each time the pro

gram comes to the variable name, it would substitute an address for the

name and print the address.

Text variables, such as in the addresses, are also called string vari

ables. String variables can include numerals, as a ZIP code would, but they

are not "computation" numbers. Names of string variables in a program

must end in a dollar sign. For instance, the name of the address variable in

the earlier example could be something like ADDRESS$ or MAILDATA$.

Numeric variable names can end in different symbols to indicate the

type of variable. The symbols and their meanings are: % — short integer,

& — long integer, ! — single-precision number, and # — double-preci

sion number. Single-precision and double-precision refers to the amount

of memory allocated to the numbers and the accuracy of computations per

formed with the numbers. Single-precision numbers are stored in only 4

bytes of memory, while double-precision numbers are stored in 8 bytes.

Thus, naming a variable as single-precision saves memory space but at the

cost of less accuracy when the variable value is used in a computation.

Typical numeric variable names are BALANCE%, SUM!, and

TOTAL#. Variable names, both numeric and string, should generally be

descriptive so you know what they refer to in the program. Some program

mers, however, simply refer to variables with a single character such as

X%orY$.

Amiga BASIC also has a set of specific commands for naming vari

ables without using the special symbols at their end. You type the command

and then the name. The commands are DEFINT, for a short integer;

DEFLNG, for a long integer; DEFSNG, for a single-precision variable;

DEFDBL, for a double-precision variable; and DEFSTR, for a string

variable.

Arrays. An array is similar to a variable, except that an array is a group

of variables. Each variable in an array is known as an element. Like naming

a variable, you also name arrays with a single name. The benefit of arrays

is that you can reference multiple variables with that single name.

Arrays can have multiple dimensions. A one-dimensional array is a

USING THE AMIGA 41

list of values; a two-dimensional array is a table having both columns and

rows; a three-dimensional array would appear as a "cube" ofvalues; a four-

dimensional array is not easily visualized, but has the same fundamental

properties as the others. In Amiga BASIC, arrays can have up to 255

dimensions.

Two Amiga BASIC commands specifically for arrays are DIM and

SHARED. Use the DIM command for naming the array, setting its dimen

sion, and defining the number of elements in each dimension. If your

program consists of subprograms, the DIM command applies only to the

specific subprogram in which the command appears. To create arrays that

can be used by all the other subprograms and the main program, you use the

SHARED command.

A typical use of an array is to assign values to other Amiga BASIC

commands that require them. For example, the SAYcommand, which turns

the Amiga into a speech synthesizer, requires nine elements to fully

describe the sound. Individual elements control the speech volume, rate of

speaking, inflection, and pitch, as well as other features. By listing your

choices for the SAY's nine elements in an array, you determine how the

computer's voice sounds when it speaks. The SAY command is described

in more detail later.

Other Amiga BASIC commands for more advanced array processing

are LBOUND, UBOUND, and OPTION BASE. Refer to the Amiga BASIC

manual for their descriptions.

MULTITASKING

Multitasking is the process that, as its name states, lets your computer work

on more than one task or program at a time. The tasks can be such things as

reading a disk, moving a screen object, playing music, or printing a form.

The programs can be any programs running simultaneously in individual

screens. Even if a screen is completely obscured by other screens, its pro

gram can still be in progress.

The Amiga runs multiple tasks automatically, without any specific

instructions from you. Opening a window and loading a program into it is

all that it takes to have multitasking. The only significant noticeable limita

tions of multitasking are that some programs will run a bit slower when the

Amiga is juggling a large number of tasks, and eventually memory will fill.

42 The Amiga User's Guide to Graphics, Sound and Telecommunications

From your point of view the monitor may seem cluttered with a lot of

screens, making them hard to keep track of or distinguish, but the Amiga

has no trouble keeping them all in order. In fact, because of the way multi

tasking works, each task and program seems to have the entire machine to

itself. The secret to Amiga's multitasking resides in its custom chips and

ROM programs. Inside the Amiga, the 68000 chip works on the principle

of interrupts. That is, the 68000 continues working on a task or program

until it is interrupted by some other task or program. The interrupts are con

trolled by the custom chips, in particular the peripherals/sound chip that

contains the interrupt controller circuits. Then, programs in ROM take the

interrupt requests, assign them a priority, allocate memory space for each

one, and coordinate other essential functions. When the 68000 is finally

interrupted, it then begins to process the interrupt's job as if it were the only

one in the computer, while the custom chips take care of the rest of the

necessary work.

Instead of using interrupting, other computers operate by polling,

which makes the CPU chip periodically survey the rest of the computer to

see if any task other than the one in progress needs attention. Not only does

this tie up the CPU chip, it restricts the computer to dealing with one job at

a time. In other words, instead of carrying out a task until interrupted, the

CPU in that computer runs a few steps of a task, stops, polls the rest of the

computer, restarts where it stopped, and continues.

Multitasking and programming in Amiga BASIC can create a few

interesting situations. For instance, the ON statements, such as ON

MENU, ON MOUSE, and ON TIMER, automatically create interrupts for

their systems. As an example, ON MOUSE tells a program to run a

specified routine whenever the mouse's left button is pushed. An ON

TIMER command similarly tells the program to run a routine after a certain

period of time elapses. In both cases, the programming command is inter

rupting the 68000 to force it to run a routine, which, as some of the pro

grams later in this book demonstrate, is the way to get the mouse to draw on

the screen and select menu items.

Sometimes programming with interrupts requires that you understand

what takes place during the interrupt procedure. An interrupt service

routine might clear all registers and set memory locations to zero during

interrupt processing. Trying to maintain a value in a register would then

need some additional programming steps to save it. Also, an interrupt com

mand may require that you keep close track of shared system resources,

USING THE AMIGA 43

such as the printer or the ports. Imagine the problems if one program sent a

few characters to the printer, then the next program did, and a third, and so

on.

By and large, Amiga BASIC and multitasking get along very well.

The programs in the rest of this book illustrate how you can interrupt the

Amiga to get it to do what you want, when you want. And it happens very

fast.

Part II

GRAPHICS ON

THE AMIGA

CHAPTER

4

Understanding

Graphics

The Amiga's graphics capabilities offer perhaps the most choices and

options for programming creatively on your computer. If you've never

programmed graphics before, the necessary concepts and terminology take

some getting used to. If, on the other hand, you have already created some

computer graphics (even on another microcomputer), you'll find some new

tricks that make the job easier and more effective. Either way, with a little

effort you can give vent to the artist — both within you, and the Amiga.

Because of the Amiga's design, you have three options for producing

computer artwork: programming in machine language to access the

hardware directly; programming using the special graphics routines in the

Amiga's ROM libraries; and programming using a higher-level language

such as BASIC. The programs in this book are in BASIC.

You can, of course, also create graphics with commercially available

graphics programs that relieve you of the programming tasks. Those pro

grams are usually written in machine language to take full advantage of the

Amiga's speed and flexibility.

47

48 The Amiga User's Guide to Graphics, Sound and Telecommunications

SOME NECESSARY TERMINOLOGY

Some ofthe terminology of computer graphics is as familiar as the labels on

the controls of your TV set, while other terms require some understanding

of how computers operate.

Graphics

Computer graphics means pictures that are dots, lines, and colors electron

ically drawn on the screen. Unlike the video pictures that you get from TV

reception or a VCR, computer graphics must be drawn individually. A sta

tionary graphic image on the screen can be a single drawn picture; to achieve

motion or animation, you create multiple images and display them sequentially.

Currently, rudimentary equipment can digitize still images and input

them into the Amiga as graphics. For instance, pointing a specially

equipped camera at an object displays its image on the Amiga and stores it

in memory as a digital image. Using the Amiga's graphics capabilities, you

can then edit the image, manipulate its features, or add other graphics to it.

Depending on the amount of free memory in the Amiga, you can input a

number of digitized images, and by displaying them rapidly one after the

other, create brief sequences of animation. Getting the images in color may

require shooting the original object through three filters.

The term graphics also applies to printers that can produce pictures,

such as the dots of a dot-matrix printer replicating the dots on the monitor.

Most dot-matrix printers also have an "extended character set" which

includes block and line characters for creating printed graphics. Printer

graphics are similar in concept, but do not use the same BASIC commands

as the Amiga's graphics.

In many microcomputers, graphics are differentiated from "text," or

typed characters on the screen, but the Amiga does not have a special "text-

only" mode. Text is handled as if it were graphics, which is why you can

display different typefaces and character sizes on the screen.

Pixel

A screen consists of hundreds of dots which can be programmed to be on or

off, light or dark, and different colors. It is the patterns produced by the

dots that create an image on the screen. Each dot is a picture element, or

pixel (Figure 4.1).

UNDERSTANDING GRAPHICS 49

Figure 4-1

Pixels are arranged on closely spaced horizontal lines (scan lines) on

the screen. Inside a color TV or monitor three electron guns sweep, or scan,

together across the screen at each line (a black-and-white TV or mono

chrome monitor has only a single electron gun). As they scan, the three

color beams' intensities are modulated at each dot on the line, producing a

pattern of colored pixels. For example, at one pixel the red gun can be on

its highest intensity, but the green and blue guns at their lowest intensities

to produce a pure red pixel. At the next pixel a different mixture of gun

intensities produces a different color for that pixel.

A pixel remains "lit" on the screen after the beam leaves it because the

phosphor coatings (one for each color) on the inside of the tube retain

images for a short period of time. (It's this fact that causes an afterimage to

50 The Amiga User's Guide to Graphics, Sound and Telecommunications

remain briefly on your monitor after you've turned off the power.) But the

phosphors lose the image quickly, so the beam must rescan the screen to

"refresh" the image. Normally the refresh rate is 60 complete screen scans

per second. And if the beam is modulated at a pixel differently than it was

during the previous scan, the pixel takes on a different color and the screen

shows a different image.

The modulation of the beams in a TV set come from the TV signals

received by the antenna; for a computer picture, the modulations come

from the computer memory. Pixels get their color assignments from bit

values at specific locations in the Amiga memory. (See bit map later.) The

term pixel is also used as the measurement for describing the resolution of

the screen mode. For example, one Amiga graphics mode is 320 pixels per

line on the screen, while another mode is 640 pixels per line.

Pixels are sometimes referred to as being either horizontal or vertical.

This has nothing to do with their shape. A pixel is simply a dot. The number

of horizontal or vertical pixels is a way of indicating the screen size —

how many pixels across and down. For instance, these references to a

screen's pixels all mean the same thing:

* 320 horizontal pixels by 200 vertical pixels

* 320 horizontal pixels by 200 rows

* 320 pels by 200 rows

"Rows" does not refer to the rows of characters that you can type on

the screen, but instead are the number of screen scan lines. The abbrevia

tion pel (for picture element) is sometimes used in place of pixel.

Pixels also correspond directly to the x- and y-coordinates of a point

on the screen. That is, many screen graphics use the Cartesian coordinate

system to draw points, lines, and figures. The horizontal (x) value refers to

the number ofpixels in the horizontal direction, while the vertical (y) value

refers to the number of pixels up or down the screen.

Bit Map and Bit Plane

A bit map is an area of Amiga memory that determines the colors of

pixels on the screen. The bit map is divided into subareas known as bit

planes (Figure 4.2), and each bit plane assigns 1 bit to a pixel. Combining

UNDERSTANDING GRAPHICS 51

Figure 4-2

the bits from each of the bit planes produces the bit pattern that describes

the color of the pixel. The Amiga then matches the bit pattern with a color

register table and sends the appropriate signals to the monitor's electron

guns.

You can think of bit planes as separate "sheets of bits" that produce the

patterns for each pixel. When you create an image using multiple bit

planes, the image is called a raster.

Programming in BASIC does not require you to create individual bit

planes and bit maps for an image. The various graphics commands do it for

you automatically. But certain of the commands offer variable inputs that

assume you know the fundamental concept of bit planes.

52 The Amiga User's Guide to Graphics, Sound and Telecommunications

Colors, Color Register Table, and Palette

The bit patterns sent to the monitor's electron guns can modulate

intensities to 16 different levels. Because a color monitor or TV creates

colors using three electron guns, the Amiga can produce 163 (16 to the third

power), or 4,096 colors. In most of the Amiga's resolution modes (see

resolution and modes later), the screen can display up to 32 separate colors

at a time. This requires using 5 bit planes to describe the bit patterns for

each color. In other words, 5 bit planes translate into a bit pattern 5 bits

long. The 5 bits, in turn, can be ordered into 32 separate arrangements to

correspond to 32 colors available to the screen at any one time. The colors

correspond to color assignments in a color register table.

If you define a lesser number of bit planes for the colors, the screen is

limited to the maximum number of bit arrangements. For example, if you

define only 2 planes, the maximum number of colors is 4, i.e., 00, 01,10,

and 11. Those 4 bit arrangements then match 4 colors in a color register

table. Having the colors listed in a color register table means that the

Amiga's colors are a software function and thus are not "hardwired." You

can change colors by changing the reference to the color register table; the

actual bit pattern, however, can stay the same.

Because the color register table lists all the colors available for an image,

it constitutes the palette for that image. To an artist, a palette is a board on

which to mix paints and pigments. To a computer, a palette is a range of

colors that can be assigned to an image. The Amiga BASIC command

PALETTE is for defining a set of up to 32 colors. But you can define the full

32 colors for a scene only if you have first set the screen (with the SCREEN

command) to have 5 bit planes. That is, it takes 5 bits to achieve 32 separate

bit patterns; therefore, you need 5 bit planes to get the five bits per color.

The Amiga BASIC manual refers to each of the colors in a palette as a

"paint can," and has settings for red, green, and blue for each color. It is these

settings that modify the intensities ofthe three guns in the TV or monitor.

Resolution and Mode

Resolution is a measure of image clarity and sharpness on the monitor or

TV screen. RGB monitors have the capacity for high resolution. TV sets

are usually limited to low resolution. Using the BASIC SCREEN com

mand, you can set the resolution for graphics to correspond to the type of

UNDERSTANDING GRAPHICS 53

screen on your Amiga. These resolution settings are called the screen

modes. The high- and low-resolution settings for the screen modes refer to

the number of pixels per horizontal line; that number is also called the pixel

width of the screen. High resolution is 640 pixels per line; low resolution is

320 pixels per line. The pixels in low resolution are thus twice as wide as

those in high resolution.

The screen modes also include settings for interlacing, which deter

mines the number of lines on the screen. Normally, a TV screen has 200

lines "stacked" vertically on it. That is, the beam sweeps back and forth

across the screen 200 times to create a complete image. The 200 lines are

"noninterlaced," which means they are their normal distance apart. Inter

lacing stacks 400 lines on the screen. First, the beam writes all 200 odd

rows (1,3,5, . . . 399), then it goes all the way back up to the top (during

a period called "vertical retrace") and writes all 200 even rows (0, 2,4 ...

398). Essentially, at each sweep the beam moves down the screen only

one-half the normal distance to begin the next scan. The extra lines are "in

terspersed," or interlaced, between the normal scan lines.

Interlacing doubles the vertical resolution and is thus most appropriate

for RGB monitors. However, interlacing has its price. Because the beam

must scan twice as many lines on the screen, it refreshes the image only 30

times a second instead of 60 times. This creates a screen flicker which,

depending on the colors of the image, can seriously affect viewing. Flick

ering is most noticeable on high-contrast images.

Interlacing and resolution affects Amiga text as well as graphics

(which is not surprising since Amiga treats text characters as graphics). For

example, the default text characters (known as Topaz 8) fit 80 to the line

when the resolution is set to high, but only 40 to the line at low resolution.

Similarly, in a noninterlaced mode the screen shows 25 lines of Topaz 8

text, but 50 lines in interlaced mode.

The Amiga's resolution also affects how many colors you can assign

to a screen. Low-resolution screens can show up to 32 colors, but high-

resolution screens are limited to 16 colors at one time.

Contrast

Contrast is the degree of difference between an image's light and dark sec

tions. High-contrast images have very dark and very light sections —

blacks are truly black and colors are deep and rich. Low-contrast images

54 The Amiga User's Guide to Graphics, Sound and Telecommunications

appear to blend together, with blacks tending to be gray and colors less

intense. Generally, the higher the contrast, the more pleasing an image is

to the eye.

Contrast is controlled by a separate dial on your computer's monitor.

Monitors made strictly for computers usually have high-contrast screens;

TV sets normally do not.

Foreground and Background

When a character is written on the screen, the character itself constitutes

the foreground and the rest of the screen is the background. On a black-and-

white screen where the letters are white, the foreground color is white and

the background color is black. You can set the Amiga to numerous fore

ground and background color combinations using the BASIC statement

COLOR.

Coordinates

Coordinates are a set of two numbers that identify the location of a pixel (or

point, dot, or pel) on the screen. The two numbers of the set are referred to

as (x,y), where x is the horizontal position of a pixel and y is the vertical

position. On the Amiga screen, the upper left corner is considered position

(0,0); the position one pixel to the right is (1,0); and a position one pixel

directly below that is at (1,1). If you wanted the computer to draw a point

of light on the screen, you could identify where the point is to go by

specifying its coordinates.

Another way of thinking about coordinates is that the first number in

the set is for moving a point over to the right and the second number is for

moving the point down. Thus, instead of saying (x,y) or horizontal and ver

tical, the two numbers are "over and down."

Coordinate numbers are relative to the resolution mode ofthe Amiga's

screen. For example, if the screen is at low resolution and noninterlaced

(which sets the screen to have 320 pixels across and 200 pixels down), the

center of the screen is at coordinates (159,99) and its lower right corner is

at (319,199). A screen at high resolution (which is set for 640 pixels across

and 200 of them down) has its center at coordinates (319,99) and lower

right corner at (639,199). (See Figure 4.3.)

Coordinates are also influenced by the features you assign to a

UNDERSTANDING GRAPHICS 55

Figure 4-3

window (see the later description of windows). For example, if a window

on a high-resolution, noninterlaced screen includes a border and room for

a sizing gadget, the maximum x-coordinate is 617 instead of 639 and the

maximum y-coordinate is 186 instead of 199. The border automatically

takes 8 pixels from the display, and the sizing gadget takes 14 pixels. Thus,

for the example, the upper left corner of the display is still (0,0), but the

lower right corner is (617,186). In low-resolution mode, the number of

pixels assigned to the border and sizing gadget are the same as in high

resolution.

Why are coordinates important? You use them to designate positions

for objects on the screen as well as to draw points, lines, and figures. The

Amiga BASIC statement PSET (x,y), for example, draws a point of light

on the screen described by the numbers you substitute for the x and y. Also,

animated figures are moved relative to a set of coordinates.

56 The Amiga User's Guide to Graphics, Sound and Telecommunications

Screens and Windows

In normal, everyday usage the term screen refers to the monitor's visual

display, but when describing the operations of the Amiga, screen has a

somewhat different meaning. An Amiga screen defines the traits that the

visual display can have. You define those traits with the BASIC SCREEN

command. They include resolution and interlacing, display width and

height, and number of bit planes. Each screen also has an identifying

number. Screens must be as wide as the monitor display, but can be shorter

or taller than the display. Screens less than the display height must appear

only at the bottom of the display.

The Workbench screen that appears when you run the Workbench disk

is an example of an Amiga screen. Its settings are high-resolution, nonin

terlaced mode; full height and width of the display; and two bit planes.

Having defined the features of a screen with the SCREEN command,

you can then define windows that fit within the screen. Those windows will

have the features of the screen — i.e., a high-resolution screen can only

show high-resolution windows — but windows also have their own traits.

You define them with the BASIC statement WINDOW.

A window is where results (or output) from your programs will

appear. Just as the Workbench screen can show numerous windows, a

custom-defined screen can also hold many windows. You must define each

one with a separate WINDOW statement. As described in the Amiga

BASIC manual, the WINDOW statement assigns a number, title, size,

type, and screen to each window you define. Other forms of the WINDOW

command open and close a window, and report on its status.

Windows can have the drag bars, sizing gadgets, close gadgets, and

the other standard features seen on Amiga windows. Windows can also be

a different size from the full screen.

DEFINING A GRAPHICS DISPLAY

If the Workbench screen or the BASIC Output screen has the features suffi

cient for graphics, you can use either of them as the "artwork canvas." A

customized screen with its own unique features, on the other hand, requires

that it be defined first. You define a graphics display screen with three

Amiga BASIC statements: SCREEN, WINDOW, and PALETTE.

UNDERSTANDING GRAPHICS 57

The SCREEN Statement

The SCREEN statement has two forms. One form opens a screen and

defines five features for its display. The five features are screen number,

width, height, depth, and mode. The other form of the SCREEN statement

closes a screen.

The first item to be defined is screen number, a number from 1 to 4 that

is simply an identifier for that screen. You can have up to four screens

defined at one time. Width is the width in pixels for the screen on the dis

play. For a low-resolution screen, a width of 320 fills the display; a width

of 640 fills the high-resolution screen. Height is the vertical height in

pixels for the screen; a noninterlaced screen with a height of 200 fills the

display, while a height of 400 fills the display for an interlaced screen set

ting. Depth refers to the number of bit planes, and therefore the number of

colors, assigned to the screen. Depth is a number from 1 to 5. A depth of 1

yields two colors, 2 yields four colors, 3 yields eight, 4 yields sixteen, and

a depth of 5 yields thirty-two colors. Mode sets the resolution and interlac

ing . Mode can be a number from 1 to 4. Mode 1 is low resolution (low-res),

not interlaced; mode 2 is high resolution (high-res), not interlaced; mode 3

is low-res, interlaced; and mode 4 is high-res, interlaced.

An example SCREEN statement to set the screen at high-res, not

interlaced, full screen, with ability to show sixteen colors is:

SCREEN 1,640,200,4,2

The form of the SCREEN statement to close a screen is SCREEN

CLOSE followed by a screen number. The first number in the SCREEN

statement is the screen number. Thus, the statement SCREEN CLOSE 1

closes the screen defined in the previous example.

The WINDOW Statement

Like the SCREEN statement, one form of the WINDOW statement

describes the display features of a window and then opens it. The

WINDOW statement has three other forms as well.

The form of the WINDOW statement to describe features has five

inputs: window ID number, a title, rectangle, type, and screen number.

The window ID number is an identifier number for that window. Because

you can have numerous windows on one screen, the number can be from 2

58 The Amiga User's Guide to Graphics, Sound and Telecommunications

to n. (Window 1 is already defined as the BASIC Output window.) A

window title, which will appear at the top of the window, is optional.

Rectangle refers to the size and position of the window. You specify the

rectangle by listing the coordinates of the top left and bottom right corners

of the window. Leaving this item blank makes the window cover the entire

screen. Type describes the gadgets the window will have, and whether

graphics on the window are saved when it isn't the active window. The

numerical settings for type are:

Setting The Window will have:

1 Sizing gadget

2 Drag bar

4 Back gadget

8 Close gadget

16 Enough memory to remember its graphics when not active

For the window to have more than one of the gadgets, add the setting

numbers. For instance, for a window to have the Drag bar and Back gadget,

add 2 and 4 for a type value of 6.

The last item in describing a window is screen number. This refers to

the screen you described earlier that will hold this window. Screen number

can be from 1 to 4.

An example statement to give a window the title of "BALLGAME,"

fill the entire screen, have a Size gadget, Drag bar, Back gadget, Close

gadget, and enough memory, and be assigned to the screen defined earlier

is:

WINDOW 2,"BALLGAME",,31,1

Note that the rectangle input is null (,,) so the window will fill the

entire screen. The WINDOW statement automatically opens a window

with the defined features.

The form of the WINDOW statement, WINDOW CLOSE, closes a

window (makes the window invisible). The window number following the

statement closes that window. To close window number 2, the statement is

WINDOW CLOSE 2. A WINDOW statement followed by the window

UNDERSTANDING GRAPHICS 59

number (and no other inputs) reopens a closed window. WINDOW 2

reopens the closed window number 2.

WINDOW OUTPUT followed by the window number makes the

window active but does not put it in front of any other windows. In other

words, WINDOW OUTPUT sends graphics or text to a covered window

without affecting the visible window.

The fourth and final form of the WINDOW statement reports the

status of a window. As described in the Amiga BASIC manual, WIN

DOW^) , where n is a number from 0 to 8, reports different items of status.

The WIND0W(8) statement is particularly important for programs that

access the Amiga's library subroutines (see later for a description of these

routines). WINDOW(8) sends output from the library routines to the cur

rent Output window.

The PALETTE Statement

The PALETTE statement works in conjunction with the COLOR and

SCREEN statements to define the colors of up to thirty-two "pens" on a

window. PALETTE requires four inputs: pen number, and values for red,

green, and blue. The pen number is the numerical "name" of a particular

color in your palette. For instance, if in the SCREEN statement you defined

a depth of 4, you can define sixteen separate colors, or pens, with the

PALETTE statement.

The values for red, green, and blue range from 0 to 1 in decimal

hundredths and control the relative intensities for each electron gun of

the monitor. That is, the Amiga sends the values to the circuitry of the

monitor tube which then modulates the voltage levels of the individual

guns to produce brighter or dimmer intensities. For example, a color with

the setting of 0 for red, 0 for green, and 1 for blue produces a pure blue

color because the red and green guns are at minimum intensity. A setting of

1 for red, . 13 for green, and .93 for blue mixes the three colors and pro

duces a color of violet. Similarly, .9 for red, .7 for green, and 0 for blue

produces gold.

Suppose you want colors 11 and 14 to be blue and gold, respectively.

The PALETTE statements would be:

PALETTE 11,0,0,1

PALETTE 14,.9,.7,0

60 The Amiga User's Guide to Graphics, Sound and Telecommunications

A PALETTE statement for each color describes it for a pen. Thus, if

you have defined a depth of 4 for a screen, you must define sixteen

PALETTE statements for the sixteen possible colors. The colors do not

have to be similar; they can be any ones that you want.

Changing the color of a pen instantly changes the color of every pixel

on the screen drawn with that pen. This is one way to do limited, but very

fast, animation.

After describing all the colors with the PALETTE statements, you

then use the COLOR statement to assign colors to the pens for the screen's

foreground and background colors. The foreground is the colors of letters

or drawn figures; the background is the color of the rest of the screen. For

instance, if color number 11 is blue and 14 is gold, to draw a blue line on a

gold background, the COLOR statement would read:

COLOR 11,14

To change the color of only the foreground pen, you simply leave the

number for the background pen blank.

Once the screen and its colors are completely defined, you're ready to

begin drawing. You can draw points, lines, and shapes and fill them with

color. And by linking successive images together with special Amiga

BASIC commands, you can animate your graphics. Chapter 5 describes the

fundamentals of drawing graphics, and chapter 6 explains the process of

computer animation.

SOME ADDITIONAL GRAPHICS FEATURES

Although Amiga BASIC provides a full set of commands and statements

for drawing and animating graphics, other commands are available to com

plement BASIC. These commands are in the Amiga library routines stored

in a file named "Graphics.bmap" which is already on the BASIC disk in the

BasicDemos directory. The library includes programming subroutines that

help draw polygons, identify the color of a particular point on the screen,

move the cursor without drawing a line, and create lines with patterns.

You can access these additional commands with the Amiga BASIC

commands LIBRARY, DECLARE FUNCTION, and CALL. The com

mand LIBRARY "graphics.library" tells the Amiga to access subroutines

UNDERSTANDING GRAPHICS 61

in the library named "graphics.library" which is in the "Graphics,bmap"

file. The DECLARE FUNCTION command then names the specific sub

routine in the library that you want to use. For example, the subroutine

named Move() moves the graphics pen, while the subroutine named

Text() draws text characters on a graphics screen.

The CALL command starts the subroutine. For example, CALL

Move&(RP&,x&,y&) is the format for calling the Move& subroutine. The

& symbol makes the variables long integers and RP& item refers to the

RastPort of the display — RP& =WINDOW (8) sends the output to the

current Output screen. The symbols x& and y& refer to the x- and y-coor-

dinates of the cursor. You can use this statement to position the cursor at a

precise pixel on the screen.

Other subroutines change the "drawing mode" of the pen colors. The

default mode (the one that normally works with the COLOR statement) is

known in the library as JAM2. Another mode is JAM1 in which only the

foreground pen draws in color. A mode known as COMPLEMENT

changes the colors of both pens to their complements as described in the

PALETTE table of colors. The fourth mode is called INVERSID and

reverses the functions of the two pens.

By accessing built-in subroutines, these advanced graphics proce

dures are at a "lower level" of programming than BASIC. However, many

of the subroutines are duplicated by BASIC commands, so the primary use

of the low-level Amiga library is to achieve faster results and to give you

more programming flexibility. For more information about the library of

Amiga graphics functions, see the Amiga ROM Kernal Manual,

CHAPTER

5

Drawing with the Amiga

Ifyou've seen any of the commercial graphics software programs in action,

or have run the demonstration programs, you know how crisp and clear

Amiga images are on the screen. Even without artistic training and talent,

your pictures can rival the quality of Saturday morning cartoons. And with

a little practice your Amiga graphics can be used for business presenta

tions, personalized greeting cards (if you have a good printer), announce

ments, games, puzzles, or just to tack on the refrigerator door.

Simple commands in Amiga BASIC draw images on the screen. Spe

cific commands draw points, lines, shapes, and patterns, as well as color-

in closed figures and draw with colored "pens." A special animation

creation system is for drawing objects that you want to animate with other

programming statements. Chapter 6 describes the process for creating

animation.

Drawing with the BASIC commands does not use the mouse to pro

duce images, but instead uses coordinate references to position images and

drawing pens. At the end of this chapter a program creates an Amiga

BASIC drawing language for producing images with coordinate refer

ences. The language is essentially a "stripped down" version of turtle

63

64 The Amiga User's Guide to Graphics, Sound and Telecommunications

graphics made popular with the Logo language. To understand the com

mands in the language, you first need to know about Amiga BASIC'S

drawing statements which are described first.

THE AMIGA BASIC DRAWING COMMANDS

Drawing a Point

The simplest "image" on the screen is a single point. Two commands draw

a point: PSET and PRESET. The PSET command draws a point with the

foreground pen, while PRESET draws the point with the background pen.

To draw a point on the Amiga BASIC Output window (which is on the

Workbench screen), just type one of the two commands followed by the

coordinates for the point's position. For example, the default colors of the

Workbench screen are foreground white and background blue. To draw a

white point on the blue background at screen position (64,40), you type:

PSET (64,40)

The command PRESET (64,40) also draws a point at the same loca

tion, but because the pen color is the same as the background color, you

don't see the point. So what's the use ofPRESET? Primarily to erase points

drawn in other colors. Thus, after drawing a white point with PSET

(64,40), the PRESET (64,40) erases it. Actually it doesn't erase it in the

sense of a rubber erasure, rather it erases the point by overwriting it in the

same color as the background. (Amiga BASIC does have an ERASE com

mand, but it has nothing to do with erasing graphics. The ERASE com

mand erases arrays.)

Both PSET and PRESET have options for positioning the point rela

tive to the last one that was drawn. In the preceding examples, the coordi

nates designate a position on the screen regardless of the previous position

of the cursor, but by adding the STEP option, you can move the point rela

tive to the previous point. For instance, continuing with the previous

example, the command PSET STEP (20, - 30) draws a new white point at

the absolute screen position of (84,10); the x-coordinate adds to the pre

vious x-coordinate — 64 + 20 = 84 — and the y-coordinates similarly are

combined — 40 — 30 = 10. Note that positive numbers move the position

DRAWING WITH THE AMIGA 65

to the right or down, while negative numbers move the position to the left

or up.

Typically, the STEP option is for drawing new images some specific

distance from the previous image. You don't have to figure out the exact

screen coordinates for the beginning of the image. The STEP option also

saves a lot of time when changing image locations. Changing the starting

point coordinates changes all the other images' positions relative to that

initial point.

Many other Amiga BASIC drawing commands use the STEP option to

make their respective functions relative to a previous screen position. One

trick in using the STEP option with PSET is to put points along vertical and

horizontal grid lines to provide an on-screen reference system. Then, as you

begin to draw images, they can be relative to a specific (x,y) reference point.

To draw points in different colors, change the pen colors with the

COLOR command before the PSET or PRESET commands. For example,

COLOR 3,4 changes the pens to colors 3 and 4 as defined by the PALETTE

statements. If you defined a customized screen and set of colors, you can

change the pens to any ofthem and draw different colored points on the screen.

As you're drawing images, it's easy to lose track of a particular point

or area's color, especially when the screen shows sixteen or more colors

and the image includes many shades of similar colors. To find the color of

a particular point on the screen, use the POINT command and the point's

(x,y) coordinates. The command POINT (64,40) will display a number on

the screen corresponding to the point's color number as designated by

PALETTE statements. For instance, on the Workbench screen, white is

color number 1. After drawing a white point with PSET (64,40), POINT

(64,40) returns the number 1.

The command for clearing all the points (and other images, too) from

the screen is CLS. Before typing CLS, make sure to save the image or it is

lost for good.

Single points are so small you may have to look hard to find one. In

fact, a single point as a "graphic" is not too visually inspiring. Lines and

shapes most likely will be of more use.

Drawing Lines and Shapes

Amiga BASIC draws lines by connecting the coordinates of the two

endpoints. The coordinates can be absolute or, using the STEP option, can

66 The Amiga User's Guide to Graphics, Sound and Telecommunications

be relative to the last point of the previous line. Shapes are drawn by simply

connecting lines. Specific commands draw a box and a circle; to draw poly

gons, you connect the lines with successive line-drawing commands.

The LINE command draws a line. To draw a line from the point

(20,30) to the point at (160, 100), type the statement:

LINE (20,30)-(160,100)

The line is the color of the foreground pen. To draw the line in another

color, put the pen number after the coordinates. For instance, if you had

defined a set ofPALETTE statements so pen number 6 is red, the statement

LINE (20,30)-(160,100),6

draws a red line.

Boxes

Drawing a box is not much more difficult. Adding the letter b after the pen

color number makes the Amiga draw a box. The coordinates of the two

points identified in the line statement are the box's opposite corners. Thus,

to draw a red box (assuming your PALETTE statement defines pen number

6 as red), you could type:

LINE (20,30)-(160,100),6,b

If you want the box to be in the default foreground pen color, do not

put the 6 in the statement. For instance,

LINE (20,30)-(160,100),,b

does the trick. The pen number place must be included but is null.

Change coordinates to draw other boxes on the screen. For instance,

this statement draws a box inside the first one:

LINE(30,40)-(140,80),,b

To fill the box with the screen's foreground color, add an/after the b9

as in this example:

LINE(20,30)-(160,100),,bf

DRAWING WITH THE AMIGA 67

The bf stands for box filled, not box foreground. To fill the box with

other colors, type a different pen number color between the two commas.

So, to fill the box with red, type:

LINE (20,30)-(160,100),6,bf

If you're following along with these statements, typing them on the

screen, you'll notice that previous images get in the way of your new

images. Remember to type CLS before starting another image. The "fill

with color" capability for a box is replicated by other Amiga BASIC com

mands. They are described later.

More on the STEP Option for LINE

The LINE command has the STEP option for drawing lines relative to the

last point referenced by a previous BASIC command. To connect lines,

start the new line at either endpoint of the previous line. The STEP state

ment can be in front of either set of coordinates. The statement LINE

(20,30)-STEP (140,70) draws the same line as LINE (20,30)-(160,100)

because the STEP option adds the coordinates to the previous ones in the

LINE statement. That is, STEP used in front of the second set of coordi

nates makes them relative to the first set.

Putting the STEP option in front of the first set of coordinates makes

them relative to the last point that was referenced by another LINE (or

other) statement. For example, the following two statements draw two con

nected lines (Figure 5.1):

LINE (20,30)-(160,100)

LINE STEP (0,0)-(180,120)

Continuing to draw lines in this fashion until they meet — the last one

would end at the starting point of (20,30) — results in a shape that is a

closed polygon. However, the AREA command (see later) is another way

of drawing a closed figure.

The STEP option used with the box option draws a square. For

instance, the statement

LINE (20,30)-STEP (60,60),,b

68 The Amiga User's Guide to Graphics, Sound and Telecommunications

Figure 5-1

draws a box 60 pixels to the side, with its upper left corner at (20,30). The

drawing starts at (20,30) and then "STEPs (60,60)" pixels for each side.

(Amiga BASIC has two other LINE commands: LINE INPUT and LINE

INPUT#, but they are not for drawing lines or other graphics. Those two

commands read a line of characters that you type on the keyboard.)

Circles and Ellipses

The BASIC statement CIRCLE draws both circles and ellipses. It works in

about the same way as the LINE statement except the inputs are the coordi

nates of the center of the circle and the length in pixels of its radius.

A typical CIRCLE statement is:

CIRCLE (80,100),50

DRAWING WITH THE AMIGA 69

The (80,100) identifies the circle's center point, and the 50 is the

length of the radius.

To color the circle, add a pen number after the radius number. So, for

example, to draw a red circle, the statement would be

CIRCLE (80,100),50,6

where the 6 identifies red from the Amiga's table of pen numbers.

Two other options on the CIRCLE command are starting and ending

points if you only want part of a circle. By specifying the starting and

ending points in radians, the circle can simply be an arc or a wedge such as

you might use for a business pie chart. Radians are measured in units of pi,

ranging from —2 pi to 2 pi. If the radians are positive, the circle is

unfinished and the image is an arc; if the radians are negative, a line drawn

from the endpoints turns the circle into a wedge (Figure 5.2).

Figure 5-2

70 The Amiga User's Guide to Graphics, Sound and Telecommunications

A statement to draw a circle with a 90-degree segment missing is:

Pl = 3.14159

circle (16o,ioo),6o,,-pi,-pi/2

The STEP option for the CIRCLE command pertains to the coordi

nates of the center point. CIRCLE STEP (40,50) draws a circle with its

center offset 40 pixels in the x direction and 50 in the y direction from the

last referenced point.

The Whole Point of STEP is...

...to keep you from going blind trying to count (x,y) coordinates for every

image. The STEP option is relative to the last referenced point in a

program, regardless of whether the reference was in a PSET, LINE, or

CIRCLE statement. Thus, if the program has a LINE statement that ends

with the point (40,50) and the next statement is CIRCLE STEP (20,30), the

circle's center is at (60,80). In other words, STEP refers to the point

referenced in the LINE statement. A STEP (0,0) keeps the cursor at the last

referenced point. Using that fact, you can draw concentric circles without

worrying about the center point of each one. Simply figure out the first

circle's center and make the rest of them STEP (0,0). Then if you want to

move all the circles later, changing only the point of the first one so it

moves, makes the rest move, too. As you get used to STEP, you'll see it's

the right step for programming easily.

Often a circle on a computer's screen looks more oblong than round.

This is an individual characteristic of each screen. To make circles look

completely round on your screen, the Amiga can draw the circle as a slight

ellipse to correct the distortion. Adding a number to the end of the CIRCLE

statement draws an ellipse.

A CIRCLE statement such as

CIRCLE (80,100),50,4,,,5/18

draws a horizontally elongated ellipse. The 5/18 is a number called the

aspect ratio of the circle. Aspect ratio is the numerical relationship of the

horizontal to vertical shape of the circle. If the aspect ratio is less than 1,

DRAWING WITH THE AMIGA 71

the ellipse is elongated sideways; if it is greater than 1, the ellipse is elon

gated horizontally (Figure 5.3). The standard Amiga monitor set to high

resolution has an aspect ratio of 0.44. Other monitors tend to be closer to 1.

How close depends on your computer's screen. If the manufacturer of your

monitor doesn't list the aspect ratio, you can only find out by trial and error.

The following brief program draws a target consisting of three con

centric ellipses:

CLS

CIRCLE (80,100),50,6,,,5/18

CIRCLE STEP (0,0),80,6,,,5/18

CIRCLE STEP (0,0),110,6,,,5/18

RUN

Each of the ellipses has the same center and aspect ratio; only the

Aspect ratio > 1

Aspect ratio < 1

Figure 5-3

72 The Amiga User's Guide to Graphics, Sound and Telecommunications

radius changes. Changing the aspect ratio can produce a set of circles with

some apparent perspective and depth.

Aspect ratio also affects squares and other polygons on the screen. For

the same reason that circles don't appear perfectly round, squares may

appear rectangular, e.g., longer horizontally than vertically. Changing a

square image's aspect ratio can make it look like a real square.

Drawing Closed Shapes Filled with Colors

Two Amiga BASIC statements — AREA and AREAFILL — are for

drawing closed shapes and filling them with colors. The PAINT statement

is similar and fills shapes drawn with the CIRCLE and LINE statements.

The AREA statement connects up to twenty successive points. The number

of AREA statements determines the number of sides on a polygon. Thus,

the three statements

AREA (20,30)

AREA (40,50)

AREA (60,10)

draw a triangle with its vertices at the three referenced points.

The STEP option works with AREA as you might expect. The fol

lowing statements draw the same triangle as in the previous example:

AREA (20,30)

AREA STEP (20,20)

AREA STEP (20,-40)

AREAFILL 0

The AREAFILL statement fills a closed polygon with patterns defined

by the PATTERN statement. AREAFILL is placed following the AREA

statements that draw the polygon. If you draw closed polygons with the

LINE or CIRCLE statements, the PAINT statement can fill them with

colors. Reference any point inside the polygon to tell the Amiga what to
paint. For example,

PAINT(130,130),1,6

colors the circle drawn by CIRCLE (100,100),50 because point (130,130)

DRAWING WITH THE AMIGA 73

is inside it. The numbers 1 and 6 refer to the colors for the polygon's

interior and border, respectively. If the colors defined by the PALETTE

statements define white as 1 and red as 6, the triangle has a white interior

and a red border.

The STEP option offsets the (x,y) coordinates as it does with the LINE

and CIRCLE statements.

Note that PAINT should only be used with figures you're certain are

fully closed. Any breaks in the edges of the image give PAINT a chance to

"leak" out. When this happens, the entire screen is painted with the pattern.

Also, make sure the pen number you specify for the border color corres

ponds to the line that constitutes the polygon. If the numbers differ, the

paint also leaks out.

The PATTERN Statement

The PATTERN statement creates lines and areas that have patterns of

colors instead of solid colors. The form of the PATTERN statement for

lines is PATTERN n, where n is a number representation of a bit pattern for

the line. It works like this: n is a 16-bit expression that identifies whether

the foreground or background pen will be drawing the line. When a bit is set

to 1, the foreground pen will draw, and when the bit is 0, the background pen

draws. Suppose you've set the colors for the foreground and background

pens to be blue and gold, respectively, and you want to create a pattern of

alternating blue and gold dots. The bit pattern would be 1010101010101010.

At each 1, the blue pens draws a point, and at each 0, the gold pen draws its

point. Or, suppose you want the pattern to be four blue then four gold dots

on the line. That pattern would be 1111000011110000.

Once you've decided on the dot pattern, you then have to translate it

into the number for the PATTERN statement. You've got two choices:

figuring out the equivalent number for the binary bit pattern or translating

it into hexadecimal. For example, the binary number 1010101010101010

translated into a normal number (base 10) is 43,690. If you want to use that

system of determining pattern numbers, then the PATTERN statement for

alternating dots would be PATTERN 43690. The hexadecimal system,

however, is easier to use.

The hexadecimal system of counting has 16 digits — 0 through 9 and

A,B,C,D,E,F — and can be represented by groups of 4 binary digits (be

cause 24 is 16). Thus, the 16 bits needed for the pattern line can be represented

74 The Amiga User's Guide to Graphics, Sound and Telecommunications

by 4 hexadecimal numbers. Using the following table, you can determine

easily the bit patterns and subsequent hexadecimal numbers for the PAT

TERN statement.

Hexadecimal

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Bit Pattern

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

mi

Pen Pattern

(B = background

F = foreground)

BBBB

BBBF

BBFB

BBFF

BFBB

BFBF

BFFB

BFFF

FBBB

FBBF

FBFB

FBFF

FFBB

FFBF

FFFB

FFFF

To draw a patterned line with alternating colors, starting with the

background pen, find the pattern 0101, which is hexadecimal 5. Now the

PATTERN statement becomes PATTERN &H5555. The &H tells the

Amiga that the number is a hexadecimal integer. The four 5's describe the

pattern. You always need four hexadecimal numbers because the pattern

description requires 16 bits (and each hexadecimal number is 4 bits). Another

example is a line of four foreground dots followed by four background dots. That

PATTERN statement would be PATTERN &HF0F0.

By changing the COLOR statement to give the pens different colors,

you can create a complete spectrum ofpatterned lines for your images. The

pattern fill option works in a similar manner except that you define the pat

tern for a two-dimensional area. The "definition size" is still 16 bits wide,

but is also N lines high. TheN number must be a power oftwo — that is, 2,

4,8, 16, 32, or 64.

DRAWING WITH THE AMIGA 75

The easiest way to define an area pattern is to put the hexadecimal

statements into an N-dimensional array. The number of dimensions corres

ponds to the number of lines, and the number of elements in the array cor

respond to each line's pattern.

AMIGA TURTLE GRAPHICS

The following program creates a turtle graphics drawing language for your

Amiga. To use this language, think of the cursor as a turtle having a pen in

its mouth. Your commands can move the turtle to any position on the

screen. If the pen is down, the turtle draws a line as it moves about the

screen. If the pen is up, the turtle can still move but doesn't draw a line until

you tell it to put the pen down.

The commands for this turtle graphics language are:

FD (n!) — moves turtle forward n pixels

BK(n!) — moves turtle backward n pixels

RT (nl) — rotates turtle n degrees to the right

LT (n!) — rotates turtle n degrees to the left

PU — picks pen up so it can move without drawing a line

PD — puts pen down so it draws as it moves

CS — erases all images on the screen and moves turtle to

center of screen

Clean — erases images on the screen but leaves turtle at its

position

SETPOS (x! ,y!) — moves turtle to (x,y) coordinates

Towards (x! ,y!) — points turtle to (x,y) coordinates

Home — repositions turtle at the center of the screen but

does not erase images

Note that each number requires an exclamation point (!) after it.

To write programs, put them at the beginning of the code for the lan

guage. For example, a demonstration program called SpinBox is currently

positioned at the appropriate place. After you've seen what SpinBox can do,

76 The Amiga User's Guide to Graphics, Sound and Telecommunications

erase it and put your own programs in the same place. You could also write

your program and merge the graphics language to it using the Amiga

BASIC MERGE command. MERGE adds a file to the end of another file so

the language code would be in the right place.

Notice that each of the drawing commands requires a CALL state

ment. The language essentially defines a set of drawing routines with

Amiga BASIC that you then call to get them to run. However, you can also

mix other BASIC commands with the drawing commands. For example,

the FOR...NEXT loop replicates a Logo function known as REPEAT,

which repeats a command a specified number of times. Also, you could

insert a COLOR statement to change the color of the pen and then draw

multicolored images.

THE TURTLE GRAPHICS PROGRAM

SCREEN 2, 320, 200, 2,1

WINDOW 2, "Turtle Graphics",,31,2

CALL CS

REM This is the start of the SplnBox

REM demonstration program. Your program would

REM replace it here.

GOSUB SpinBox

CALL PU

CALLSETPOS(-150!,0!)

CALL PD

CALL TOWARDS(-105!,45!)

CALL FD(20!)

FORM = 1!TO 1000!: NEXTi!

CALL PE

CALLBK(10!)

CALL LT(45!)

CALL PD

CALL FD(50!)

CALL CLEAN

CALL HOME

CALL RT(30!)

CALL FD(40!)

DRAWING WITH THE AMIGA 77

END

SpinBox:

FORi = 1TO12

GOSUB Box2

CALL RT(30!)

NEXTi

RETURN

Box2:

FOR j = 1 TO 4

CALL FD(70!)

CALL RT(90!)

NEXTj

RETURN

REM This is the end of the SpinBox program. You

REM would erase to this point and insert your

REM program. The remainder of the code is the

REM turtle graphics language. Each of the

REM subroutines is labeled for the command it

REM describes.

SUB CS STATIC

SHARED XCOR, YCOR, HEADING, heading2, ps

CLS

XCOR = 0

YCOR = 0

HEADING = 0

heading2 = 90

ps = 1

END SUB

SUB FD(amt) STATIC

SHARED XCOR, YCOR, heading2, ps

Ix = COS(heading2* 3.14159/180)

ly = SIN(heading2 * 3.14159/180)

NX = XCOR + Ix * amt

ny = YCOR + ly * amt

IF ps < 2 THEN LINE (XCOR +160,99 - YCOR) - (NX +160,99 - ny),ps

XCOR = NX

YCOR = ny

END SUB

78 The Amiga User's Guide to Graphics, Sound and Telecommunications

SUB BK(amt) STATIC

SHARED XCOR, YCOR, heading2, ps

Ix = COS(heading2 * 3.14159/180)

ly = SIN(heading2 * 3.14159/180)

NX = XCOR - Ix * amt

ny = YCOR - ly * amt

IF ps < 2 THEN LINE (XCOR +160,99 - YCOR) - (NX +160,99 - ny),ps

XCOR = NX

YCOR = ny

END SUB

SUB RT(amt) STATIC

SHARED HEADING, heading2

HEADING = (HEADING + amt) MOD 360

heading2 = (450 - HEADING) MOD 360

END SUB

SUB LT(amt) STATIC

SHARED HEADING, heading2

HEADING = (HEADING - amt) MOD 360

heading2 = (450 - HEADING) MOD 360

END SUB

SUB PD STATIC

SHARED ps

ps = 1

END SUB

SUB PU STATIC

SHARED ps

ps = 2

END SUB

SUB PE STATIC

SHARED ps

ps = 0

END SUB

SUB CLEAN STATIC

CLS

END SUB

SUB SETPOS(x.y) STATIC

SHARED XCOR, YCOR, PS

IF ps < 2 THEN LINE (XCOR + 160,99-YCOR) - (x + 160,99 -y),ps

DRAWING WITH THE AMIGA 79

XCOR = x

YCOR = y

END SUB

SUB TOWARDS(x,y) STATIC

SHARED XCOR, YCOR, HEADING, heading2

x1 = x - XCOR

y1 = y - YCOR

pi = 3.1415926535#

pi2 = pi / 2

IFABS(x1)<= .000001 THEN

a = pi2

IFy1 <0THENa = a + pi

IF ABS(y1) < .000001 THEN a = 0

ELSE

a = ATN(y1/x1)

IFx1 <0THENa = a + pi

END IF

heading2 = (a * 180/pi) MOD 360

HEADING = (450 - heading2) MOD 360

END SUB

SUB HOME STATIC

SHARED XCOR, YCOR, HEADING, headings ps

IF ps < 2 THEN LINE (XCOR +160,99 - YCOR) - (160,99),ps

HEADING = 0

heading2 = 90

XCOR = 0

YCOR =0

END SUB

Why does this book waste so much of your time talking about Logo's

turtle graphics when it's supposed to be a book about Amiga BASIC? The

answer is that turtle graphics presents an alternate to Basic's way of

looking at the world in Cartesian coordinates. Anything that can be done in

the one can be done in the other, but often a solution to a problem will be

much easier to solve in one ofthese systems than it will be in the other. This

is an important point in computer programming. Being able to look at a

problem in a variety of ways will make it easier for you to develop the best

solution. Having a wide array of useful tools gives you that ability.

There is, of course, another far less philosophical reason for giving

you a turtle graphics package. Many visually stunning programs have been

written in Logo. Until a version of Logo becomes widely available for the

80 The Amiga User's Guide to Graphics, Sound and Telecommunications

Amiga, knowing how (and having the tools) to convert a Logo program

into an Amiga BASIC program will give you access to these. In that spirit,

this book goes even further in showing how to convert from Logo to BASIC

with the equivalency chart below. This is hardly complete (that would take

a book all by itself) but if you know Logo and BASIC this should give you

an excellant start at converting one to the other.

Logo

IF <cond>[. . .]

(IF <cond> [. . .

IF <cond> [. . .]

(IF <cond> [. . .

BASIC equivalent

IF <cond>

THEN

ENDIF

IF <cond>

THEN

ELSE

REPEAT <count> [. . .]

(LOCAL . . .)

ENDIF

<cond> is a logical expression like

(3<X)or(z$ = "TRUE").

FORq= lTO<count>

NEXTq

The index variable should be any one

that wasn't otherwise used in the

program. It is strictly a dummy

variable.

<count> is a numeric expression like

34 or (x* 5).

This declares the listed variables to

be local to the procedure. BASIC will

do this automatically so any variables

in the Logo procedure that aren't

DRAWING WITH THE AMIGA 81

declared LOCAL (and which aren't

formal parameters) should be put in

a SHARED statement in the

equivalent BASIC subroutine.

MAKE "var value

MAKE"varl:var2

:Q

TO name :varl :var2 . .

END

TURTLE 60

. :varN

var = value

varl = var2

This is a reference to the variable Q

SUBname(varl,var2,. . .varN)

STATIC

END SUB

CALLTURTLEC60!)

This is how to convert calls to user-

defined procedures.

Here is an example of a complete Logo program converted to Amiga BASIC:

TOTURTLE :SZ

(LOCAL "TSZ"P"Q)

RT18PD

MAKE"TSZ:SZ/3

MAKE"P[

SUBTURTLE(SZS) STATIC

' The only global variables used are

' xcor and ycor from the turtle

' graphics routines. SZ! and TSZ! are

' needed by the subfunctions.

SHARED xcor, ycor, SZ!, TSZ!

CALL RT(18.0)

CALLPD

TSZ! = SZ!/3

' Looking at the Logo program, we see

' that "P is used to store the current

' position of the turtle. Since BASIC

' doesn't have lists, it uses

' two variables to store the current

' X and Y coordinates. The same will

' be true later on with "Q.

PX!= -9999

PY!= -<

82 The Amiga User's Guide to Graphics, Sound and Telecommunications

REPEAT 5 [TURTLE1]

REPEAT 6 [TURTLE2]

FD :TSZ LT 90 FD :SZ / 4 LT18 PD

REPEAT5[FD:SZ/12RT72]

PURT18BK:SZ/4RT90

FD :TSZ LT 90 FD :SZ / 4 RT18 PD

REPEAT5[FD:SZ/12LT72]

PULT18BK:SZ/4RT90

BK :TSZ * 2 LT 72 BK :SZ LT 18

END

TOTURTLE1

FD:TSZLT108

REPEAT5[FD:TSZRT72]

FORq = 1TO5

NEXTq

FORq = 1TO6

CALLTURTLE2

NEXTq

CALLFD(TSZI)

CALLLT(90.0)

CALLFD(SZ!/4)

CALL LT(18.0)

CALLPD

FORq=1TO5

CALLFD(SZ!/12)

CALLRT(72.0)

NEXTq

CALLPU

CALL RT(18.0)

CALLBK(SZ!/4)

CALLRT(90.0)

CALLFD(TSZI)

CALLLT(90.0)

CALLFD(SZ!/4)

CALL RT(18.0)

CALLPD

FORq=1TO5

CALLFD(SZ!/12)

CALLLT(72.0)

NEXTq

CALLPU

CALL LT(18.0)

CALLBK(SZ!/4)

CALLRT(90.0)

CALLBK(TSZ!*2)

CALLLT(72.0)

CALLBK(SZ!)

CALL LT (18.0)

ENDSUB

SUB TURTLE1 STATIC

SHARED xcor, ycor, SZ!, TSZ!

CALLFD(TSZI)

CALL LT(108.0)

FORq = 1TO5

CALLFD(TSZS)

CALLRT(72.0)

NEXTq

RT108FD:TSZ*2RT72

END

T0TURTLE2

FD:SZ/2RT90PD

FD:TSZMAKE"QPOS

IF:P =

[MAKE"PPOS]

[SETPOS: P SETPOS :Q MAKE "P :Q]

PU BK :TSZ LT 90 FD :SZ / 2 RT 72

END

DRAWING WITH THE AMIGA 83

CALL RT(108.0)

CALLFD(TSZ!*2)

CALLRT(72.0)

ENDSUB

SUB TURTLE2 STATIC

SHARED xcor, ycor, SZ!, TSZ!

CALLFD(SZ!/2)

CALLRT(90.0)

CALLPD

CALLFD(TSZJ)

' xcor and ycor are global variables

' used by the turtle graphics routines

' to store the turtle's current X and

'Y positions.

QX! = xcor

QY! = ycor

IFPX!= -9999

THEN

PX! = xcor

PY! = ycor

ELSE

CALL SETPOS (PX!,PY!)

CALL SETPOS (QX!,QY!)

PX! = QX!

PY! = QY!

ENDIF

CALLPU

CALLBK(TSZJ)

CALLLT(90.0)

CALLFD(SZ!/2)

CALLRT(72.0)

ENDSUB

To try this out, put the TURTLE subprogram and the turtle graphics

package into the following program and run it:

CLS

CALL INIT.TG

CALLTURTLE(60!)

END

«TURTLE, TURTLE1, and TURTLE2 subprograms

<<Turtle graphics package"

84 The Amiga User's Guide to Graphics, Sound and Telecommunications

HINTS FOR SIMPLIFYING AMIGA GRAPHICS

1. Make a sketch of what you plan to draw. Knowing what you want

to see on the screen makes writing the BASIC programs to do it

much easier. Also, drawing the image first reveals where the pro

gramming might get complex. You can even trace complicated

drawings onto clear plastic sheets and tape them to the screen to

guide you.

2. If you plan to use coordinates, draw a template of the screen's

position to help you figure out precise coordinates of each point.

Even a hand-drawn set of horizontal and vertical lines helps to

keep you oriented (Figure 5-4).

3. If you use the STEP option in your drawing statements, remember

where the cursor is at all times. Shapes drawn with the STEP

option are relative to the last cursor position.

Figure 5-4

DRAWING WITH THE AMIGA 85

4. Draw a rough "blocked-out" image first, so you can visualize

proper alignment and perspective for the scene. If you're new to

artwork, find a reference book that explains the fundamentals of

sketching.

5. To erase a portion of an image, draw over the portion with the

pen set to the same color as the background.

6. Don't be discouraged if images get unexpectedly colored in

shades you don't want. Different monitors display different shades

of color. Plan to have your graphics garishly colored (or not at

all) before you become proficient with the SCREEN and PALETTE

statements.

7. Keep a table of PALETTE settings (red, green, and blue) for the

color schemes that please you. Build a file of color tables that

you can reuse with other programs.

8. Draw only a portion of an image and then run the program to see

if it's right. If it is, go on to the next portion. If it isn't, correct it

first and then go on. Although it may seem to take more time in the

beginning, drawing incrementally like this makes writing the

program much faster, especially when you have to find errors.

9. Modify previously written programs to draw more images.

Changing a program you know to be correct can be far easier than

creating a new one from scratch. Also, many images have portions

that are useful as parts of other images. If you're serious about

computer graphics, create a "shapes table" of programs that draw

often-used forms (such as a star). Insert the programs creating the

standard shapes into programs for drawing other images (for

instance, a flag with a lot of stars on it).

10. If an image isn't quite right when it first appears on the screen,

don't scrap the whole program. Chances are you'll be able to

make a few minor editing corrections that will make your com

puter graphics turn out picture perfect.

CHAPTER

6

Animation

Animation has been around a long time. The first animated cartoon fea

ture drawn for film was in 1906; and the first one to draw national attention

appeared in 1909. It was a cartoon feature named Gertie the Trained

Dinosaur, which its creator, Winsor McCay, used in a stage show. He

projected the cartoon on a screen behind him and gave Gertie directions

which, of course, she always followed. Audiences especially loved the

last scene when Winsor threw Gertie an apple that she "caught" in her

mouth.

Many other cartoonists followed McCay and created their own

characters, but the next big breakthrough came in 1928 with Walt Disney's

full-sound cartoon, Steamboat Willie (who was the ancestor to Mickey

Mouse). By that time, animation had captured universal attention and

appeal, which, if anything, is more pronounced today. Now, animation is

ubiquitous, appearing in video games, TV ads, sports shows, and realistic

movies such as the Star Wars trilogy. In fact, animation is so captivating

that sometimes it's easy to forget how much work it takes to create good

animation in the first place.

Ironically, the movie camera is part of the reason why many people

87

88 The Amiga User's Guide to Graphics, Sound and Telecommunications

underestimate the difficulty of creating animation. A movie camera auto

mates the process that creates apparent movement of real objects. Each

frame of the movie film is a still shot of a real scene, and when the frames

are played in sequence at the proper speed, the result is apparent motion.

Nothing is required except the ability to "point and shoot."

Movie animation is also shot with a camera and originally required an

image drawn manually for each frame. With the advent of acetate overlays

and other technical advances, however, animation artists have reduced the

amount of actual drawing that goes into each animation series. The latest

advance has been computers, which are used extensively in movie anima

tion. From creating background scenes to mixing live action with animation,

the computer brings a new dimension to animation. The Amiga's anima

tion capabilities are like scaled-down versions of the movie computers, so

you can produce moving images with a minimum of effort.

AMIGA ANIMATION OBJECTS

The Amiga supports two types of objects you can draw and move: one is

known as a BOB and the other is a sprite. A sprite is a small image that can

be moved around the screen by changing the coordinates of its upper left

corner. You draw the image, give it a color, an initial position on the

screen, and a velocity or acceleration to define its rate of movement.

The Amiga has eight "hardware" sprites, which means they are drawn

and moved by special DMA circuitry in the animation chip. Hardware

sprites can have three colors and be any height on the screen. They are

limited to a maximum of 16 pixels wide and are only available in low reso

lution. Hardware sprites can also be transparent, which makes one object

appear to pass under another one.

The other type of animation object is a BOB. BOB is an acronym for

Blitter OBject. Like a sprite, you draw an image designated a BOB, give it

a color, coordinates for a position, and velocity or acceleration to move it

on the screen. Unlike a sprite, however, a BOB is controlled by a section of

the animation chip called the Blitter. The term Blitter is short for "bit-bit"

which itself is short for "bit-mapped block transfer," a formidable-

sounding term that means the Amiga can move complete blocks of pixels

on the screen from one position to another. Thus, a BOB is essentially a

ANIMATION 89

rectangular area of an image that you can "cut-and-paste" to another posi

tion on the screen.

A BOB acts like a sprite, but it has different capabilities. BOBs move

slower but can be any size and, depending on the SCREEN definition, can

be up to thirty-two colors at a time. Also, a scene can contain as many

BOBs as the Amiga's memory can handle.

When creating animation with Amiga BASIC, you have the option of

assigning the designation of BOB or sprite to each moving image. Then

you use the OBJECT and COLLISION commands to describe how you

want the action to occur on the screen. One note: sprites always appear in

front of BOBs. Thus, if you want to draw a background scene, make it a

BOB. You can designate which BOBs appear in front of others, but sprites

always appear to be in the foreground.

HOW TO CREATE AN OBJECT FOR ANIMATION

Amiga BASIC has a special routine, called OBJEDIT, for drawing and

coloring animation objects. OBJEDIT is stored both on the Workbench

disk and in a file on the Amiga BASIC disk. To load OBJEDIT from the

Workbench, select the DEMOS icon and then select the OBJEDIT icon.

Amiga BASIC automatically loads and starts the OBJEDIT routine. If

you've already loaded Amiga BASIC, load the routine by typing:

LOAD "Basicdemos/OBJEDIT"

You can also select OPEN from the Project menu and then type Basic

demos/OBJEDIT. The routine's code appears on the window. Type RUN

to start the OBJEDIT routine.

Immediately, you have a choice of making your drawing a sprite or a

BOB. Enter either 1 or 0 and the OBJEDIT screen appears (Figure 6-la and

b). This is the screen or "canvas" for drawing images of objects that you

want to animate. Press the right-hand mouse button to see the menu choices

at the top of the screen. Select NEW from the Files menu to draw a new

image; select OPEN to edit an existing image.

Select TOOLS and then select one of the six drawing options. You can

mix the use of the tools. For instance, select OVAL for the basic shape of a

90 The Amiga User's Guide to Graphics, Sound and Telecommunications

(b)

Figure 6-1

ANIMATION 91

face, move the pointer to the place where you want the oval to appear, click

the mouse button to draw it, then select PEN to sketch the face's features.

Move the pointer to the place where the features belong, press the mouse

button, and begin drawing.

You do the actual drawing by holding down the right mouse button.

For instance, after selecting the PEN option, the mouse draws a line

whenever the button is down. Similarly, selecting ERASE makes the

mouse erase any portion of a drawn image when the button is down.

Selecting the colors at the bottom of the canvas changes them on the drawn

lines.

For drawing fine detail, select ENLARGE from the menu and select

Simple or Sequential Animation?

Simple animation moves an image about the screen without changing

its orientation. The mouse pointer is an example of this concept. It moves

but is always pointing in the same direction.

Sequential-animation images change their orientation as they move.

An elementary example is a ball that appears to roll as it moves across the

screen. More complex sequential animation is a person who seems to walk

with arms swinging, legs alternately bending and straightening, and

perhaps the head bobbing up and down.

To create sequential animation, you have two choices: draw separate

images for each stage of the motion, or draw separate images for each part

of the object that moves. Consider the person walking across the screen.

In the first case you draw separate images for the entire person, with arms,

legs, and head at different positions at each instant of motion. The illusion

of motion is then created by displaying the images in their proper sequence

and moving them one at a time to a new screen position. (If they didn't

move, the person would "walk in place.")

In the second case you draw separate images for the right arm, left

arm, right leg, left leg, head, and torso. Then, using the Amiga BASIC

movement commands, you move each image separately, but staying in

their proper positions to create the appearance of motion.

In either case, learning to draw the images with the right amount of

movement between them comes with practice. Or you can refer to a book

on animation for some hints. The most valuable and instructive books for

learning the process are those that show original storyboards for old

cartoons. Plus they're a lot of fun.

92 The Amiga User's Guide to Graphics, Sound and Telecommunications

4x4 which enlarges the image by a factor of 4. Draw the details you want

and then select lxl from the Enlarge menu. The image returns to its normal

size with the fine details intact.

When the image is complete, select SAVE AS from the File menu to

save a new image on a disk or SAVE to resave an existing image; give the

image a filename to save it. Select QUIT from the File menu when you're

done drawing and saving an image. If you loaded OBJEDIT from Amiga

BASIC, the Output screen will reappear. If you loaded OBJEDIT from the

Workbench disk, you must reload Amiga BASIC. Type NEW to use the

animation commands.

The Amiga treats all of the drawing on one canvas as a single image.

To have a scene show multiple images moving at the same time, draw sepa

rate images and save them as separate files. You can then refer to them indi

vidually and give each movement commands.

AMIGA BASIC STATEMENTS FOR ANIMATION

The special Amiga BASIC statements for animation fall into two groups:

OBJECTS and COLLISIONS. The OBJECT statements move images; the

COLLISION statements detect when two or more images collide and deter

mine whether they are to pass through or bounce off each other.

You can also create animation with the Amiga BASIC GET and PUT

statements. The GET command is similar to a BOB in that it transfers a

rectangular area of the screen's graphics to a new location. The PUT com

mand determines where the area is to be located on the screen.

The OBJECT Statements

After drawing an image on the animation canvas, it is, to Amiga BASIC, an

object and can be manipulated with the OBJECT statements. The first step

in writing an animation program is to give each image an identifying

number. You do this with the OBJECT.SHAPE statement. But before you

can assign it a number, you must load the image from its file to the pro

gram. The following program loads the image:

OPEN <filename> FOR INPUT AS 1

OBJECT.SHAPE n,INPUT$(LOF(1),1)

CLOSE 1

ANIMATION 93

where the filename is the one you assigned the image after drawing it on the

canvas and n is the identification number you want to assign to the object.

Repeat this program for each image file (if your animation is to have

multiple objects), but change the filename and the number n each time. The

images are then available to be animated. A hint: if the animation is to have

many images moving together, keep a list of their identification numbers

handy. OBJECT statements require that you identify separate objects.

OBJECTSHAPE. This statement gives the object its identification

number when you load its file. OBJECT.SHAPE also can duplicate

existing objects. For example, if you've drawn a spaceship and assigned it

an identification number of 2, but you want two of them in a scene, the

statement OBJECT.SHAPE 3,2 copies object 2 as object 3. Object 3 is now

another spaceship.

OBJECT.X and OBJECT. Y. These two statements position the top left

corner of the image on the screen at an x- and y-coordinate. For obvious

reasons, the statements almost always appear in pairs. For instance,

OBJECT.X2.50

OBJECT.Y2.100

puts object 2 at the position (50,100).

OBJECT.ON and OBJECT.OFF. Objects aren't visible on the screen

until they're turned on. OBJECT.ON makes objects visible; OBJECT.OFF

makes objects disappear. Thus,

OBJECT.OFF 4

OBJECT.ON 5

makes object 4 disappear and object 5 appear. You can turn on all the

objects in a scene with a single OBJECT.ON not followed by any numbers.

One way to use the OBJECT.ON and OBJECT.OFF statements in

sequential animation is to "stack" sequential images by giving them all the

same set of starting coordinates, but turning on only the first image in the

sequence. Then, using the OBJECT.VX and OBJECT.VY movement

statements (described next), you move the entire stack to the next "frame"

position, turn off the current object, and turn on the next one.

OBJECT.VX and OBJECT.VY. These two statements give an object a

velocity in the x and y directions. Velocity is a constant speed and the x and

94 The Amiga User's Guide to Graphics, Sound and Telecommunications

y directions are horizontal and vertical. The velocity is measured in pixels

per second. The statements

OBJECT.VX 2,30

OBJECT.VY 2,20

move object 2 in the x direction at 30 pixels per second and in the y direc

tion at 20 pixels per second. With the screen set at low resolution (320

pixels in the x direction), it would take the object about 10 seconds to get

from one side of the screen to the other. Similarly, with the screen set at

noninterlaced (200 vertical lines), the object would also take about 10 sec

onds to traverse from the bottom to the top of the screen.

Positive numbers for the velocity move the object to the right or down;

negative numbers move the object to the left or up.

OBJECT.AX and OBJECT.AY. Like the previous statements, these

two also describe an object's motion, except the movement is an accelera

tion instead of a constant velocity. The acceleration is measured in terms of

pixels per second per second (or seconds squared). The statements

OBJECT.AX2.10

OBJECT.AY2.20

move object 2 at an acceleration of 10 pixels per second squared in the x

direction and 20 in the y direction. Note that the object will continue to

speed up until you slow it down with an acceleration in the opposite direc

tions (using negative numbers), or give it a constant velocity statement,

or stop the object altogether with an OBJECT.STOP statement (which

follows).

OBJECT.START, OBJECT.STOP, and OBJECT.CLOSE. Objects

don't move until given an OBJECT.START statement, and they stay in

motion until receiving an OBJECT.STOP or OBJECT.CLOSE statement,

or until they collide with another object. You can start each object moving

individually by typing OBJECT.START n, where n is the identifying

number of the object. Or you can start all objects in a scene at the same time

with a single OBJECT.START not followed by any numbers.

OBJECT.STOP n freezes an object (ID number n) at its current screen

position. The object remains visible but doesn't move. If you're com

pletely through with that object and no longer need it for the program,

ANIMATION 95

OBJECT.CLOSE n erases object n from the screen and clears it from

memory. If you forget to specify an identification number with

OBJECT.CLOSE, all defined objects are closed. Usually this erases

everything from the screen.

OBJECT.PLANES. This statement is for changing the colors of the

objects relative to the bit planes defined for their colors. It applies only to

objects drawn as BOBs. The first parameter of the statement describes the

sum of the bit values of the plane that you want to use for coloring the

object, where bit values are 2 raised to the nth power and n is the plane

number. For example, plane 0 has the bit value of 1, since 2 raised to the

Oth power is 1, and plane 1 has a bit value of 2, since 2 raised to the 1st

power is 2. To pick a new plane for determining pen colors, add the bit

values for the bit planes you want. For instance, to display the object with

the colors of bit planes 1 and 2, enter OBJECT.PLANES 1,6, where 1 is the

object identification number and 6 is the sum (2 + 4) of the bit values for bit

planes 1 (2) and 2 (4). The second parameter uses the same numbering

scheme and adds another plane to the first parameter.

OBJECT.CLIP. This statement is for defining rectangles of the

screen. No BOBs can then appear outside of the rectangle. The statement

requires the coordinates of the top left and bottom right corners of the

rectangle. For example, OBJECT.CLIP (10,10)-(100,100) creates a

rectangle with the upper left corner at (10,10) and the bottom right at

(100,100).

OBJECT.PRIORITY. When multiple BOBs are moving on the screen,

two or more will probably intersect at some time. This OBJECT statement

tells the Amiga which BOB is to pass in front of others. The statements

OBJECT.PRIORITY3,4

OBJECT.PRIORITY2,5

tell the Amiga that object 3's priority is 4 and object 2's priority is 5. Object

2 will always pass in front of object 3 because its priority is higher. Object

2 will also pass in front of all other objects with priorities from 0 to 4. This

statement only applies to BOBs because sprites always pass in front of

BOBs when they intersect.

OBJECT.HIT. When you have multiple objects in a scene, you may

want some to collide when they intersect and others to pass under or over

one another. You define the possible collisions with the OBJECT.HIT

96 The Amiga User's Guide to Graphics, Sound and Telecommunications

statement. To define collisions for an object, you give it three numbers.

The first number is the object's identification number, the second number

defines the object's MeMask, and the third number defines the object's

HitMask. Think of the MeMask as the object's shield and the HitMask as

its sword. If another object's sword penetrates the original object's shield,

a collision occurs, but if the shield repels the sword, no collision occurs.

The two masks are actually 16 bits that specify the collision pos

sibilities, and the way the Amiga determines "penetration and repulsion"

of the swords and shields is by logically ANDing the bits of the HitMask of

one object with the bits of the MeMask of another object. If the result of the

logical AND is 0, no collision occurs, but if the result is not 0, a collision

does occur. A logical AND states that the only time the combination oftwo

binary numbers is 1 is when both are 1. Thus:

0AND1 = 0

1 AND0 = 0

0AND0 = 0

1 AND 1 = 1

Putting this to work for a sample of two objects, suppose the HitMask

of object 5 is the number 10 and the MeMask of object 6 is 4. The bit rep

resentation of 10 is 1010 and the bit representation of 4 is 0100. Logically

ANDing the two bit patterns

1010

0100

0000

produces all 0's, so no collision occurs.

The statements for this situation are

OBJECT.HIT5,A7,10

OBJECT.HIT6.4,"

where the n for object 5 is its MeMask number and the n for object 6 is its

HitMask number. You would enter those n numbers depending on how you

wanted those objects to collide with others.

Although this process may seem a little awkward, it provides you with

a vast number of collision arrangements at little expense of the Amiga

ANIMATION 97

HitMask and MeMask Simplified

Because HitMask and MeMask are confusing here's a simplified

version that works if you have less than 16 objects on the screen.

Observe how the computer sees the two masks as binary numbers:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The MeMask for object 1 will be all zeros except at bit one, the MeMask

for object 4 will be all zeros except at bit four, etc. Each mask will then have

only one 1 bit in it. Now to select which objects an object will hit, simply put

ones in each associated bit in the HitMask. For instance, to hit objects 14,

9, 7, 3, and 2 you would use 0100001010001100 which is &H428C. If you

want an object to hit the border put a one in bit 0 of the HitMask.

As you gain more proficiency you will notice that it is possible to use

MeMasks with multiple bits. This allows you to specify up to 64K different

MeMasks. It also requires more complex HitMasks to determine what col

lides with what. Here is an example:

Given four objects A, B, C, and D which collide in the following ways:

A hits B or C

B hits A or D

C hits A or B

D hits A, B, or C

The MeMasks and HitMasks could be set up to use only three instead

of four bits. This could be extended to the point where five sets of four-

object relationships could be specified in the 15 bits available. The above

relationships could use these masks (remember the zero bit is used for hit

ting the border):

MeMask HitMask

A &H000A &H0004

B &H000C &H0002

C &H0004 &H000C

D &H0002 &H0006

memory. After you get used to it, especially when multiple objects are in a

scene, you'll see the advantages over trying to describe each possible col

lision. Initially it helps to draw the 0 and 1 bit patterns of the MeMasks and

98 The Amiga User's Guide to Graphics, Sound and Telecommunications

HitMasks of all the objects in a scene in order to figure out the collisions

and corresponding proper numbers for the OBJECT.HIT statement.

One exception to the logical ANDing is for collisions with the screen's

border. If the least significant bit of an object's HitMask is set to 1, a colli

sion always occurs with the border, regardless of the ANDing with another

object's MeMask. Thus, for example, if an object's HitMask is 5, repre

sented by the bit pattern 0101, the rightmost bit (which is the least signifi

cant bit) is 1, and the object will always collide with the screen's border.

(For the sharp-eyed, it's obvious that odd numbers for the HitMask always

have the least significant bit set to 1.)

Collisions

With the OBJECT.HIT and OBJECT.PRIORITY statements set, the

Amiga can determine when collisions occur. Whenever two objects col

lide, two things happen: they stop and information about the collision is

saved in stack memory. Information about subsequent collisions, up to

sixteen, are also put into the stack. Any more collisions after the sixteenth

are ignored. You can use the collision information in your programs to

then cause something else to happen. For example, if the collision is

between an asteroid and a spaceship, the program might jump to a scene of

an explosion and a point counter that subtracts twenty-five from the pre

vious total.

Various forms of the COLLISION statement reveal the collision infor

mation. The following three COLLISION statements are for detecting spe

cific collisions.

COLLISION (0) tells the identification number of the object that has

the information on the top ofthe stack. The information stays in the stack.

COLLISION (-1) lists the window number of the collision for the

collision information on the top of the stack.

COLLISION (n), where n is an object identification number, lists a

code that describes the type of collision that took place. A positive number

identifies the object that collided with the object n\ a 0 indicates no colli

sion or that the collision is not the top one on the stack; negative numbers

indicate collisions with screen borders — top border is -1, left -2,

bottom — 3, and collision with the right border - 4.

You can also use the ON COLLISION statement to detect any colli

sion and have the program branch when one occurs. Typically the form is

ANIMATION 99

ON COLLISION GOSUB label

where label is the label of a subroutine in the program. ON COLLISION

activates the collision detection and puts information in the stack, but for

the program to be able to get that information and branch to a subroutine,

the program must contain a COLLISION ON statement. After each colli

sion the program will then detect collisions and branch as you've specified.

A COLLISION STOP statement deactivates the COLLISION ON

statement but still puts information about subsequent collisions into the

stack. Another COLLISION ON statement can restart the branching pro

cess. To completely stop detecting collisions, enter a COLLISION OFF

statement in your program.

ANIMATION WITH THE GET AND PUT STATEMENTS

The Amiga BASIC GET and PUT statements can move objects around the

screen in much the same manner as the OBJECT and COLLISION state

ments. The Amiga supports both types of graphics programming. GET and

PUT are, of course, more familiar BASIC statements and have been around

for a long time. The two work as a pair. GET defines a rectangle of an

image by specifying the coordinates of its upper left and lower right cor

ners, and then puts the rectangle into an array. The PUT statement transfers

the image to its new position on the screen.

The following two programs show you how to use GET and PUT to

play two video games. The first one is a rat's-eye view of a maze. You're

the dismayed animal and must find your way through all the twists and

turns. The images on the screen are as a rat would see them. Select the

direction you want to go and the scene changes to show a new set of walls

and doorways.

Type the program into a file, save it, then load it and type RUN. By the

way, you can't learn the maze by playing the game. Each time it restarts, it

draws a new maze. Give this game to any friends who are psychological

research scientists.

The second program is a much easier game. It's a bird's-eye view of

the maze and you move the rat through it by clicking on compass directions

represented by the compass on the screen. (Try running the rat into a wall

to see what he says.)

100 The Amiga User's Guide to Graphics, Sound and Telecommunications

THE STRUCTURE OF THE MAZE PROGRAMS

Mazes are a staple of many video game programs. Dragons in castles,

treasures guarded by fantasy creatures, or even working through facetious

IRS crises, all have mazes as their underlying problem to solve. Some

times, programmers draw the individual rooms of a maze which then stay

the same throughout the game. In these two programs new mazes are drawn

each time you start the games. Both programs use a single process to draw,

and re-draw the rooms of the maze.

The main process for drawing the rooms is to treat them each as

branches on a tree and to connect them according to a set ofrules that deter

mines if the rooms have doors opening to any other rooms. Because you are

able to enter a room from one side, that leaves three other sides that can

have doors, thus the tree structure is equivalent to a branch having at most

three other branches emanating from it. Of course, in a maze rooms can

have less than three doors open, therefore the next level of branches can

number three, two, or one. (A tree with this structure is called a ternary

tree.) Graphically this situation appears as shown in Figure 6-2.

Figure 6-2

ANIMATION 101

Each node in the tree is equivalent to a room. In the jargon of program

ming, each node has no more than four branches — 1 parent and three sons

emanating from it — just as every room in the maze can have no more than

four other rooms to which it attaches.

Before building the maze, the programs define an array for all the

nodes of the tree, and initially define each node (room) in the array as being

unattached. In the programs this is done by storing zero in every array ele

ment. Then the programs assign numbers describing how rooms are

attached to other rooms, This is done with a numbering system where

north, east, south, and west correspond to 1, 2, 4, and 8 (Figure 6-3).

Each time a door is added to a room, the door's value is added to the

room's array value. Thus a room with a north, south, and west door would

have the value 13 (1 + 4 + 8). The reason for choosing this numbering

system is that it produces a unique bit code for each possible combination

of doors. That is, when each of the four numbers is converted to binary, it

has a single 1 bit distinct from the other three (0001, 0010, 0100, 1000)

therefore, since each door number affects a seperate bit, every combination

of doors is a unique value. Notice how similar this is to the simple method

for specifying MeMasks and HitMasks. The more you program in BASIC,

the more you will come to use these 'logical' operations or strings of bits.

It is a VERY useful technique.

With this numbering system in place, the programs then pick any

Figure 6-3

102 The Amiga User's Guide to Graphics, Sound and Telecommunications

room at random and make it the starting room. This is the only room that

must be handled in a special manner because no other rooms are attached to

it and thus it must be assigned a positive number in the array. When any

other room is added, it gets a positive value based on the direction in which

it is attached to the already selected rooms (N,S, E, or W). But, because the

first room isn't being attached to anything yet, it requires some arbitrary

positive value. The number 9999 in the programs is the arbitrary number

for the starting room. The number could be any positive value greater than

15. Why greater than 15? Because anything less describes one of the four

door combinations — 15 is all four doors, 14 is west, east, and south

doors, 13 is west, south and north doors, and so on.

The next step is to add a room to the tree and then look at that room's

neighboring rooms. Any that have the value 0 receive the new value - 1.

These are called frontier cells and the - 1 indicates they are still unattached

but are adjacent to one or more rooms which are part of the tree. After the

program selects the first room, only rooms adjacent to it may be chosen as

the next room to be attached. In the array this means that only elements next

to the selected element can be selected next. The program chooses one of

them at random, connects it randomly to one of the attached rooms to

which it is adjacent (which gives its array element a positive value), and

then checks its four neighbors to see if they become frontier cells.

For example, to attach a room to its neighbor to the east, the program

first puts a 2 in the room to indicate a door to the east, and then adds 8 to the

value already in the neighbor room to indicate a door added to the west.

Graphically, this would appear as shown in Figure 6-4.

BEFORE flFTEH:

-i 2 1 1

Figure 6-4

ANIMATION 103

The programs have to find all frontier cells and add rooms to them.

The programs pick any cell (element in the array) and determine if it's a

frontier (has a value of - 1). If it is, the rooms and doors are built around

it. If it isn't, the programs move vertically through the array's columns

until finding the next frontier cell. By keeping count of the number of

elements and continuing through the array only as long as the count is

non-zero, the programs find all the frontier cells, add rooms and doors

to them, and then stop. At this point the maze is essentially complete.

All that remains is to subtract the first room's special value (making it

just an ordinary room like any other), and to choose any room in the first

column of the array for an entrance and any room in the last column for an

exit.

You can choose any room in the appropriate columns for the entrance

and exit because going through the maze is exactly equivalent to traversing

the tree. As there is a unique path from any tree node to any other tree node,

so there is only one path from any room chosen as the entrance to any room

chosen as the exit.

So what do the programs have after this is all over? An array of rooms

with values indicating which walls in each room have doors. This allows

the programs to check if a door exists in the direction the player wants to

move. If so, the player moves in that direction and the next room's doors

are available. If no door exists in the direction, the program can honk,

beep, and complain.

The easiest way to test for the presence of a door is to combine with the

logical AND function, the value of the room against the value of a door

goiiig in that direction. If the room has a door in that direction, the value

will be returned. If it does not, a zero will be returned. Thus, for example,

(13 AND 4) returns 4 but (13 AND 2) returns 0.

The fact that both programs use this same structure for both the bird's-

eye and rat's-eye view mazes illustrates how graphics programs rely on

specific methods for drawing certain elements. This particular method is a

technique used in a number of commercial video maze games and, with

some slight modifications could map a maze from a doughnut shaped

image to a rectangle. Commercial game programmers take great delight in

making different levels of a maze increasingly complex both in program

ming and in solving. The Amiga's high resolution, multilevel graphics

system is ideal for maze games.

104 The Amiga User's Guide to Graphics, Sound and Telecommunications

THE RAT'S-EYE VIEW MAZE PROGRAM

Figure 6-5

1 Rat's-eye View Maze

maze:

SCREEN 2, 320, 200, 2,1

WINDOW 2, "Rat's-eye View Maze",,31,2

DEFINTa-z

DEFFNR(x) = INT(RND*x)

RANDOMIZE TIMER

xMax = 8

yMax = 8

true = (1=1)

ANIMATION 105

false = NOT true

GameWanted = true

DIM maze(xMax,yMax), offset1(15), offset2(15)

DIM Wall(15), xpos(8), ypos(8)

1 Initialize arrays

FORi% = 1TO15

READ offseti (i%), offset2(i%)

NEXT i%

DATA -1,2,0,2,1,2,0,2,0,2

DATA-1,1,0,1,1,1,0,1,0,1

DATA-1,0,0,0,1,0,0,0,0,0

FOR i% = 1 TO 8

READ xpos(i%), ypos(i%)

NEXT i%

DATA 2, 2, 62, 32,102, 52,122, 62

DATA 162,102,182,112, 222,132, 282,162

WHILE (GameWanted)

GOSUB GenerateMaze

GOSUB TraverseMaze

GOSUB AskForAnotherGame

WEND

WINDOW OUTPUT 1

WINDOW CLOSE 2

STOP

END

1 Maze Generation Subroutine

1 This algorithm converts the array into a randomly branching

1 binary tree. Going through the maze then becomes a matter of

1 simply traversing the tree.

GenerateMaze:

FrontierNum = 0

PRINT "Building the maze"

106 The Amiga User's Guide to Graphics, Sound and Telecommunications

' Clear all maze cells

FOR x = 0 TO xMax

FOR y = 0 TO yMax

maze(x,y) = 0

NEXTy

NEXTx

1 Choose an initial cell in the binary tree

xlnit = FNR(xMax + 1)

ylnit = FNR(yMax + 1)

maze(xlnit,ylnit) = 9999

CALL Frontiers(xlnit,ylnit)

' Add cells to the binary tree until all maze cells are joined
c

WHILE (FrontierNum > 0)

FindFrontier:

xFirst = FNR(xMax + 1)

yFirst = FNR(yMax + 1)

x = xFirst

y = yFirst

WHILE (maze(x,y) <> -1)

IFx = xMaxTHENx = 0ELSEx = x + 1

IFx = xFirst THEN

IF y = yMax THEN y = 0 ELSE y = y + 1

END IF

WEND

ConnectCell:

FrontierNum = FrontierNum - 1

side = FNR(4) + 1

q= -1

WHILE (q<1)

IF side = 4 THEN side = 1 ELSE side = side + 1

ON side GOTO CC1, CC2, CC3, CC4

CC1:

IF x > 0 THEN q = maze(x-1 ,y)

ANIMATION 107

GOTO CC5

CC2:

IF x < xMax THEN q = maze(x +1 ,y)

GOTO CC5

CC3:

IF y > 0 THEN q = maze(x,y-1)

GOTO CC5

CC4:

IF y < yMax THEN q = maze(x,y +1)

GOTOCC5

CC5:

WEND

ON side GOTO CC11, CC12, CC13, CC14

CC11:

maze(x-1,y) = maze(x-1,y) + 2

maze(x,y) = 8

GOTOCC15

CC12:

maze(x + 1,y) = maze(x+1,y) + 8

maze(x,y) = 2

GOTOCC15

CC13:

maze(x,y-1) = maze(x,y-1) + 4

maze(x,y) = 1

GOTOCC15

CC14:

maze(x,y + 1) = maze(x,y+1) + 1

maze(x,y) = 4

GOTOCC15

CC15:

CALL Frontiers(x,y)

WEND

1 Now readjust the initial cell in the binary tree
c

maze(xlnit,ylnit) = maze(xlnit,ylnit) - 9999

' Choose entrance and exit cells

xln = 0

yln = FNR(yMax)

108 The Amiga User's Guide to Graphics, Sound and Telecommunications

xOut = xMax

yOut = FNR(yMax)

maze(xOut,yOut) = maze(xOut,yOut) + 2

' End of GenerateMaze subroutine

RETURN

' This subprogram checks to see which adjacent cells become

1 frontier cells. It also adjusts the frontier cell counter.

SUB Frontiers(x,y) STATIC

SHARED xMax, yMax, FrontierNum, maze()

f = FrontierNum

IFx>0 THENIFmaze(x-1,y) = 0 THENmaze(x-1,y) = -1:f = f + 1

IFx<xMaxTHENIFmaze(x+1,y) = 0 THENmaze(x+1,y) = -1:f = f + 1

IFy>0 THENIFmaze(x,y-1) = 0 THENmaze(x,y-1) = -1:f = f + 1

IFy<yMax THEN IFmaze(x,y+1) = 0 THENmaze(x,y+1) = -1:f = f+1

FrontierNum = f

END SUB

' Player moves the mouse through the maze
»

TraverseMaze:

x = xln

y = yln

GameOver = false

direction = 2' east

CLS

' Draw the direction-compass

LOCATE 21,3: PRINT "F";

LOCATE 22,1: PRINT "LR";

LOCATE 23,3: PRINT "Q";

LINE(14,158)-(26,186),1,b

LINE (0,168M42,176),1,b

kolor = 1

GOSUB Map

ANIMATION 109

WHILE (NOT GameOver)

GOSUB GetMove

IF move = 1 THEN

kolor = 0

GOSUB Map

IF direction = OTHEN

IF (maze(x,y) AND 1) = 1 THEN y = y -1 ELSE GOSUB Complain

END IF

IF direction = 1 THEN

IF (maze(x,y) AND 4) = 4 THEN y = y + 1 ELSE GOSUB Complain

END IF

IF direction = 2 THEN

IF (maze(x.y) AND 2) = 2 THEN x = x + 1 ELSE GOSUB Complain

END IF

IF direction = 3 THEN

IF (maze(x,y) AND 8) = 8 THEN x = x -1 ELSE GOSUB Complain

END IF

kolor = 1

GOSUB Map

END IF

IF move = 2 THEN GameOver = true

IF move = 3 THEN

kolor = 0

GOSUB Map

direction = VAL(MID$("2310",direction + 1,1))

kolor = 1

GOSUB Map

END IF

IF move = 4 THEN

kolor = 0

GOSUB Map

direction = VAL(MID$("3201 ".direction+ 1,1))

kolor = 1

GOSUB Map

END IF

IF(x = xMax + 1)THEN

GameOver = true

SAYTRANSLATE$("Exit, stage right!")

END IF

110 The Amiga User's Guide to Graphics, Sound and Telecommunications

WEND

RETURN

' GetMove waits for the user to click on one of the directions

' in the compass

GetMove:

dx = -1

dy = -1

WHILE (MOUSE(O) < 0)

dx = MOUSE(1)

dy = MOUSE(2)

WEND

IFdx= -1 THEN GetMove

IF (dx>14) AND (dx<26) AND (dy>158) AND (dy<170) THEN

move = 1

RETURN

END IF

IF (dx>14) AND (dx<26) AND (dy>174) AND (dy<186) THEN

move = 2

RETURN

END IF

IF (dx>-1) AND (dx<11) AND (dy>166) AND (dy<177) THEN

move = 4

RETURN

END IF

IF (dx>29) AND (dx<41) AND (dy>166) AND (dy<177) THEN

move = 3

RETURN

END IF

GOTO GetMove

' See if the player wants to try again

AskForAnotherGame:

CLS

ANIMATION 111

PRINT

PRINT" Would you like to play again";

INPUT a$

a$ = LEFT$(a$,1)

GameWanted = ((a$ = "Y") OR (a$ = "y"))

RETURN

Complain:

SAY TRANSLATE$("Ouch!")

RETURN

' This subroutine determines the walls that are visible.

' It does this by finding which walls are present and then

' following a logic chain telling which walls block which other

' walls from sight.

Map:

GOSUB Walls

IFWall(12)THEN

CALLWallDraw(12,kolor)

ELSE

IF (x = xOut) AND (y = yOut) AND (direction = 2) THEN

LOCATE 12,15

PRINT "EXIT!";

END IF

IFWall(7)THEN

CALLWallDraw(7,kolor)

ELSE

IF Wall(2) THEN CALL WallDraw(2,kolor)

END IF

END IF

IFWall(14)THEN

CALLWallDraw(14,kolor)

ELSE

IF Wall(11) THEN CALL WallDraw(11 ,kolor)

END IF

IFWall(15)THEN

CALL WallDraw(15,kolor)

ELSE

IF Wall(13) THEN CALL WallDraw(13,kolor)

END IF

112 The Amiga User's Guide to Graphics, Sound and Telecommunications

IFNOTWall(12)THEN

IFWall(9)THEN

CALLWallDraw(9,kolor)

ELSE

IF Wall(6) THEN CALL WallDraw(6,kolor)

END IF

IFWall(10)THEN

CALLWallDraw(10,kolor)

ELSE

IF Wall(8) THEN CALL WallDraw(8,kolor)

END IF

END IF

IF NOT (Wall(12) OR Wall(7)) THEN

IFWall(4)THEN

CALLWallDraw(4,kolor)

ELSE

IF Wall(1) THEN CALL WallDraw(1 ,kolor)

END IF

IFWall(5)THEN

CALLWallDraw(5,kolor)

ELSE

IF Wall(3) THEN CALL WallDraw(3,kolor)

END IF

END IF

RETURN

Walls:

FORn = 1TO15

ON direction + 1 GOTO WO, W1, W2, W3

WO:

rx = x + offseti (n)

ry = y - offset2(n)

mask = 1

IF (n = 4) OR (n = 9) OR (n = 14) THEN mask = 8

IF(n = 5)OR(n = 10)OR(n = 15)THENmask = 2

GOTO W4

W1:

rx = x - offseti (n)

ry = y + offset2(n)

mask = 4

IF (n = 4) OR (n = 9) OR (n = 14) THEN mask = 2

IF(n = 5)OR(n = 10)OR(n = 15)THENmask = 8
GOTO W4

ANIMATION 113

W2:

rx = x + offset2(n)

ry = y + offseti (n)

mask = 2

IF (n = 4) OR (n = 9) OR (n = 14) THEN mask = 1

IF(n = 5)OR(n = 10)OR(n = 15)THENmask = 4

GOTO W4

W3:

rx = x - offset2(n)

ry = y - offseti (n)

mask = 8

IF (n = 4) OR (n = 9) OR (n = 14) THEN mask = 4

IF(n = 5)OR(n = 10)OR(n = 15)THENmask = 1

GOTO W4

W4:

IF (rx<0) OR (rx>xMax) OR (ry<0) OR (ry>yMax) THEN

Wall(n) = true

ELSE

Wall(n) = ((maze(rx,ry) AND mask) = 0)

END IF

NEXTn

RETURN

' This routine does the actual wall drawing

SUB WallDraw(n,c) STATIC

SHARED xpos(), ypos()

ON n GOTO

wd1 ,wd2,wd3>wd4,wd5,wd6,wd7,wd8,wd9,wd10,wd11 (wd12,wd13,wd14,wd15

wd1:

LINE(xpos(3),ypos(5))-(xpos(3),ypos(4)),c

LINE(xpos(3),ypos(4))-(xpos(4),ypos(4)),c

LINE(xpos(4),ypos(4))-(xpos(4),ypos(5)),c

LINE(xpos(4),ypos(5))-(xpos(3),ypos(5)),c

EXIT SUB

wd2:

LINE(xpos(4),ypos(5))-(xpos(4),ypos(4)),c

LINE(xpos(4),ypos(4))-(xpos(5),ypos(4)),c

LINE(xpos(5),ypos(4))-(xpos(5),ypos(5)),c

LINE(xpos(5),ypos(5))-(xpos(4),ypos(5)),c

EXIT SUB

wd3:

LINE(xpos(5),ypos(5))-(xpos(5),ypos(4)),c

114 The Amiga User's Guide to Graphics, Sound and Telecommunications

LINE(xpos(5),ypos(4))-(xpos(6),ypos(4))fc

LINE (xpos(6),ypos(4))-(xpos(6),ypos(5)),c

LINE(xpos(6),ypos(5))-(xpos(5),ypos(5)),c

EXIT SUB

wd4:

LINE(xpos(3),ypos(6))-(xpos(3),ypos(3)),c

LINE(xpos(3),ypos(3))-(xpos(4),ypos(4)),c

LINE(xpos(4),ypos(4))-(xpos(4),ypos(5)),c

LINE(xpos(4),ypos(5))-(xpos(3),ypos(6)),c

EXIT SUB

wd5:

LINE(xpos(5),ypos(5))-(xpos(5),ypos(4)),c

LINE(xpos(5),ypos(4))-(xpos(6),ypos(3)),c

LINE(xpos(6),ypos(3))-(xpos(6),ypos(6)),c

LINE(xpos(6),ypos(6))-(xpos(5),ypos(5)),c

EXIT SUB

wd6:

LINE(xpos(2),ypos(6))-(xpos(2),ypos(3)),c

LINE(xpos(2),ypos(3))-(xpos(3),ypos(3)),c

LINE (xpos(3) ,ypos(3))-(xpos(3) ,ypos(6)) ,c

LINE(xpos(3),ypos(6))-(xpos(2),ypos(6)),c

EXIT SUB

wd7:

LINE(xpos(3),ypos(6))-(xpos(3),ypos(3)),c

LINE(xpos(3),ypos(3))-(xpos(6),ypos(3)),c

LINE(xpos(6),ypos(3))-(xpos(6),ypos(6)),c

LINE(xpos(6),ypos(6))-(xpos(3),ypos(6)),c

EXIT SUB

wd8:

LINE(xpos(6),ypos(6))-(xpos(6),ypos(3)),c

LINE(xpos(6),ypos(3))-(xpos(7),ypos(3)),c

LINE(xpos(7),ypos(3))-(xpos(7),ypos(6)),c

LINE(xpos(7),ypos(6))-(xpos(6),ypos(6)),c

EXIT SUB

wd9:

LINE(xpos(2),ypos(7))-(xpos(2),ypos(2)),c

LINE(xpos(2),ypos(2))-(xpos(3),ypos(3)),c

LINE(xpos(3),ypos(3))-(xpos(3),ypos(6)),c

LINE(xpos(3),ypos(6))-(xpos(2),ypos(7)),c
EXIT SUB

wd10:

LINE(xpos(6),ypos(6))-(xpos(6),ypos(3)),c

LINE(xpos(6),ypos(3))-(xpos(7),ypos(2)),c
LINE(xpos(7),ypos(2))-(xpos(7),ypos(7)),c
LINE(xpos(7),ypos(7))-(xpos(6),ypos(6)),c

ANIMATION 115

EXIT SUB

wd11:

LINE (xpos(1),ypos(7))-(xpos(1),ypos(2)),c

LINE (xpos(1),ypos(2))-(xpos(2),ypos(2)),c

LINE(xpos(2),ypos(2))-(xpos(2),ypos(7)),c

LINE (xpos(2),ypos(7))-(xpos(1),ypos(7)),c

EXIT SUB

wd12:

LINE(xpos(2),ypos(7))-(xpos(2),ypos(2)),c

LINE(xpos(2),ypos(2))-(xpos(7),ypos(2)),c

LINE(xpos(7),ypos(2))-(xpos(7),ypos(7)),c

LINE(xpos(7)>ypos(7))-(xpos(2),ypos(7)),c

EXIT SUB

wd13:

LINE(xpos(7),ypos(7))-(xpos(7),ypos(2)),c

LINE(xpos(7),ypos(2))-(xpos(8),ypos(2)),c

LINE(xpos(8),ypos(2))-(xpos(8),ypos(7)),c

LINE(xpos(8),ypos(7))-(xpos(7),ypos(7)),c

EXIT SUB

wd14:

LINE (xpos(1),ypos(8))-(xpos(1),ypos(1)),c

LINE (xpos(1),ypos(1))-(xpos(2),ypos(2)),c

LINE(xpos(2)>ypos(2))-(xpos(2),ypos(7)),c

LINE (xpos(2),ypos(7))-(xpos(1),ypos(8)),c

EXIT SUB

wd15:

LINE(xpos(7),ypos(7))-(xpos(7),ypos(2)),c

LINE (xpos(7),ypos(2))-(xpos(8),ypos(1)),c

LINE (xpos(8),ypos(1))-(xpos(8),ypos(8)),c

LINE(xpos(8),ypos(8))-(xpos(7),ypos(7)),c

EXIT SUB

END SUB

THE BIRD'S-EYE VIEW MAZE PROGRAM

To see what the maze looks like, see Figure 6-6.

' Bird's-eye View Maze

maze:

SCREEN 2, 320, 200, 2,1

WINDOW2,"Rats!",,31,2

116 The Amiga User's Guide to Graphics, Sound and Telecommunications

Figure 6-6

DEFINT a-z

DEF FNR(x) = INT(RND * x)

RANDOMIZE TIMER

xMax = 8

yMax = 8

true = (1=1)

false = NOT true

GameWanted = true

DIM maze(xMax,yMax)

GOSUB InitMice

WHILE (GameWanted)

GOSUB GenerateMaze

GOSUB PrintMaze

ANIMATION 117

GOSUB TraverseMaze

GOSUB AskForAnotherGame

WEND

WINDOW OUTPUT 1

WINDOW CLOSE 2

STOP

END

' Maze Generation Subroutine

' This algorithm converts the array into a randomly branching

1 binary tree. Going through the maze then becomes a matter of

1 simply traversing the tree.

GenerateMaze:

FrontierNum = 0

PRINT "Building the maze"

' Clear all maze cells

FOR x = 0 TO xMax

FOR y = 0 TO yMax

maze(x,y) = 0

NEXTy

NEXTx

1 Choose an initial cell in the binary tree

xlnit = FNR(xMax+1)

ylnit = FNR(yMax+1)

maze(xlnit,ylnit) = 9999

CALL Frontiers(xlnit,ylnit)

' Add cells to the binary tree until all maze cells are joined

WHILE (FrontierNum > 0)

FindFrontier:

xFirst= FNR(xMax+1)

118 The Amiga User's Guide to Graphics, Sound and Telecommunications

yFirst = FNR(yMax + 1)

x = xFirst

y = yFirst

WHILE (maze(x,y) <> -1)

IFx = xMaxTHENx = OELSEx = x + 1

IFx = xFirstTHEN

IFy = yMaxTHENy = OELSEy = y + 1

END IF

WEND

ConnectCell:

FrontierNum = FrontierNum - 1

side = FNR(4) + 1

q= -1

WHILE (q<1)

IF side = 4 THEN side = 1 ELSE side = side + 1

ON side GOTO CC1, CC2, CC3, CC4

CC1:

IF x > 0 THEN q = maze(x-1 ,y)

GOTO CC5

CC2:

IF x < xMax THEN q = maze(x +1 ,y)

GOTOCC5

CC3:

IFy >0 THEN q = maze(x,y-1)

GOTO CC5

CC4:

IF y < yMax THEN q = maze(x,y +1)

GOTO CC5

CC5:

WEND

ON side GOTO CC11, CC12, CC13, CC14

CC11:

maze(x-1 ,y) = maze(x-1 ,y) + 2

maze(x,y) = 8

GOTOCC15

CC12:

maze(x + 1,y) = maze(x+1,y) + 8

maze(x,y) = 2

GOTOCC15

CC13:

maze(x,y-1) = maze(x,y-1) + 4

ANIMATION 119

maze(x,y) = 1

GOTOCC15

CC14:

maze(x,y + 1) = maze(x,y + 1) + 1

maze(x,y) = 4

GOTOCC15

CC15:

CALL Frontiers(x,y)

WEND

' Now readjust the initial cell in the binary tree

maze(xlnit,ylnit) = maze(xlnit,ylnit) - 9999

' Choose entrance and exit cells

xln = 0

yln = FNR(yMax)

maze(xln,yln) = maze(xln,yln) + 8

xOut = xMax

yOut = FNR(yMax)

maze(xOut,yOut) = maze(xOut.yOut) + 2

1 End of GenerateMaze subroutine

RETURN

' Maze Display Routine

' Draw the maze and the wedge of cheese which is the goal.

1 Also draw the direction-command compass.

PrintMaze:

CLS

Csize =

TC = 1

FORy =

yb = y *

ye = yb

FORx =

20

= 0 TO yMax

Csize

+ Csize - 1

= 0 TO xMax

120 The Amiga User's Guide to Graphics, Sound and Telecommunications

xb = x * Csize + 60

xe = xb + Csize - 1

IF (maze(x.y) AND 8) = 8 THEN

LINE (xb,yb + TC)-(xb + TC,yb + TC),1

LINE (xb,ye-TC)-(xb + TC,ye-TC),1

ELSE

LINE (xb + TC,yb + TC)-(xb + TC,ye-TC), 1

END IF

IF(maze(x,y) AND 4) = 4 THEN

LINE (xb + TC,ye-TC)-(xb + TC,ye),1

LINE (xe-TC,ye-TC)-(xe-TC,ye),1

ELSE

LINE(xb + TC,ye-TC)-(xe-TC,ye-TC),1

END IF

IF (maze(x,y) AND 2) = 2 THEN

LINE (xe-TC,ye-TC)-(xe,ye-TC),1

LINE (xe-TC,yb + TC)-(xe,yb + TC),1

ELSE

LINE(xe-TC,yb + TC)-(xe-TC,ye-TC),1

END IF

IF (maze(x,y) AND 1) = 1 THEN

LINE (xb + TC,yb + TC)-(xb+TC,yb),1

LINE (xe-TC,yb + TC)-(xe-TC,yb),1

ELSE

LINE (xb + TC,yb + TC)-(xe-TC,yb + TC), 1

END IF

NEXTx

NEXTy

1 Draw the wedge of cheese

x = (xOut+1)*Csize + 70

y = (yOut + 1)*Csize

LINE(x,y)-(x + 15,y-15),1

LINE(x + 15,y-15)-(x + 15,y)

LINE(x + 15>y)-(

' Draw the direction-compass

ANIMATION 121

LOCATE 20,3: PRINT "N";

LOCATE 21,1: PRINT "W E";

LOCATE 22,3: PRINT "S";

LINE(14,150)-(26,178),1,b

LINE (0,160)-(42,168),1,b

RETURN

' This subprogram checks to see which adjacent cells become

' frontier cells. It also adjusts the frontier cell counter.

SUB Frontiers(x,y) STATIC

SHARED xMax, yMax, FrontierNum, maze()

f = FrontierNum

IFx>0 THENIFmaze(x-1,y) = 0 THENmaze(x-1,y) = -1:f = f + 1

IFx<xMax THENIFmaze(x + 1,y) = 0 THENmaze(x+1,y) = -1:f = f + 1

IFy>0 THENIFmaze(x,y-1) = 0 THENmaze(x,y-1) = -1:f = f + 1

IFy<yMax THENIFmaze(x,y+1) = 0 THENmaze(x,y+1) = -1:f = f + 1

FrontierNum = f

END SUB

' Draw and store mouse in four directions

InitMice:

DIM mdata(15,15), mouseN(100), mouseS(100), mouseE(100),

mouseW(100)

FORy = 0TO15

FORx = 0TO15

READ mdata(x,y)

NEXTx

NEXTy

DATA 0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0

DATA 0,0,0,1,0,0,1,1,1,0,0,1,0,0,0,0

DATA 0,0,0,0,1,0,1,1,1,0,1,0,0,0,0,0

DATA 0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0

DATA 0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0

DATA 0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0

DATA 0,0,0,1,0,0,1,0,1,0,0,1,0,0,0,0

DATA 0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0

DATA 0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0

122 The Amiga User's Guide to Graphics, Sound and Telecommunications

DATA 0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0

DATA 0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0

DATA 0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0

DATA 0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0

DATA 0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0

DATA 0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0

DATA 0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0

CLS

FORy = 0TO15

FORx = 0TO15

PSET(x +10,y+30), mdata(x,y)

PSET(x + 26,y+30), mdata(x,15-y)

PSET(x + 42,y+30), mdata(y,15-x)

PSET(x + 58,y + 30), mdata(15-y,x)

NEXTx

NEXTy

GET (10,30)-(25,45), mouseN

GET (26,30)-(41,45), mouseS

GET (42,30)-(57,45), mouseE

GET (58,30)-(73,45), mouseW

RETURN

' Player moves the mouse through the maze

TraverseMaze:

x = xln

y = yln

GameOver = false

direction = 1 ' east

CALL MouseMove(0,0,mouseE())

WHILE (NOT GameOver)

GOSUB GetMove

IF (move = 4) THEN

IF (x = 0) OR ((maze(x,y) AND 8) = 0) THEN

GOSUB Complain

ELSE

CALL MouseMove(-1,0,mouseW())

END IF

END IF

ANIMATION 123

IF (move = 3) THEN

IF ((maze(x,y) AND 2) = 0) THEN

GOSUB Complain

ELSE

CALL MouseMove(1,0,mouseE())

END IF

END IF

IF (move = 2) THEN

IF (y = yMax) OR ((maze(x,y) AND 4) = 0) THEN

GOSUB Complain

ELSE

CALL MouseMove(0,1 ,mouseS())

END IF

END IF

IF (move = 1)THEN

IF (y = 0) OR ((maze(x.y) AND 1) = 0) THEN

GOSUB Complain

ELSE

CALL MouseMove(0, -1 ,mouseN())

END IF

END IF

IF(x = xMax + 1)THEN

GameOver = true

SAYTRANSLATE$("nibble, nibble")

SAY TRANSLATE$("Boy, was that tay stee!")

END IF

WEND

RETURN

' GetMove waits for the user to click on one of the directions

' in the compass

GetMove:

dx= -1

dy = -1

WHILE (MOUSE(O) < 0)

dx = MOUSE(1)

dy = MOUSE(2)

WEND

124 The Amiga User's Guide to Graphics, Sound and Telecommunications

IFdx= -1 THEN GetMove

IF (dx>14) AND (dx<26) AND (dy>150) AND (dy<162) THEN

move = 1

RETURN

END IF

IF (dx>14) AND (dx<26) AND (dy>166) AND (dy<178) THEN

move = 2

RETURN

END IF

IF (dx> -1) AND (dx<11) AND (dy>158) AND (dy<169) THEN

move = 4

RETURN

END IF

IF (dx>29) AND (dx<41) AND (dy>158) AND (dy<169) THEN

move = 3

RETURN

END IF

GOTO GetMove

' MouseMove erases the old mouse, adjusts x and y, and redraws the

' new mouse in the new direction

SUB MouseMove(rx,ry,m(1)) STATIC

SHARED x,y,Csize,TC

LINE (x'Csize+TC + 61 ,y*Csize+TC +1) - (x*Csize + TC + 76,

y*Csize+TC + 16),0,bf

x = x + rx

y = y + ry

PUT(x*Csize+TC + 61,y*Csize+TC + 1),m

END SUB

' See if the player wants to try again

AskForAnotherGame:

ANIMATION 125

CLS

PRINT

PRINT" Would you like to play again";

INPUT a$

a$ = LEFT$(a$,1)

GameWanted = ((a$ = "Y") OR (a$ = "y"))

RETURN

Complain:

SAY TRANSLATE$("RATS!")

RETURN

INTERMIXING GRAPHICS AND TEXT

There will be many instances when you want to have both text and

graphics on the screen at the same time. To do this requires some under

standing about the nature of Amiga text.

In both low and high resolutions, Amiga text characters are all 8 dots

high by 8 dots wide. This means that a character in the upper left-hand

corner of the screen covers all graphics coordinates from (0,0) to (7,7).

Having a fixed character size leads to simple formulas for determining

the upper left and lower right graphics coordinates for any character

position:

upper left coordinate = ((column - 1) * 8,

(row- 1)*8)

lower right coordinate = ((column - 1) * 8 + 7,

(row - 1)*8 + 7)

or

((column * 8) - 1,

(row*8) - 1)

where column and row refer to the x and y coordinates of the character's

screen position.

However, each Amiga text character is actually only 7 by 7 dots on an

8 by 8 dot field. The extra dot is a border to separate each character from

other characters. Furthermore, when a character is on the screen, it com

pletely overwrites everything in its 8 by 8 matrix. Thus, if you want to put

126 The Amiga User's Guide to Graphics, Sound and Telecommunications

graphics flush next to characters, plot the characters first and then draw the

graphics.

The following short program makes use of the way the Amiga creates

text. The program prints (on the screen) a string of text outlined with a bor

der. You can use the program to highlight certain text, such as a message,

or instructions to start a game.

DemoBoxPr:

SCREEN 2, 320, 200, 2, 2

WINDOW 2, "Demo BoxPr",,31,2

CLS

CALL BoxPr("This is box 1 ",1,1,1)

CALL BoxPr("Press Return ",10,10,2)

LOCATE 10,23

INPUT a$

STOP

SUB BoxPr(n$,c,r,kolor) STATIC

LOCATE c,r

PRINT n$;

d = (c - 1) * 8 - 2 ' the - 2 starts the box 2 dots left of the text

c2 = d + LEN(n$) * 8 + 11 ' the +11 ends the box 2 dots right of the text

r1 = (r - 1) * 8 - 2 ' the - 2 starts the box 2 dots above the text

r2 = M + 11 ' the + 11 ends the box 2 dots below the text

1 the + 11 fs above are actually + 2 + 7 + 2. The first 2 cancels the effect

' of the - 2 in the previous equation. The 7 moves to the right-most or

'bottom-most graphics coordinate in the character and the second + 2 moves

' two dots beyond that.

LINE (d ,r1)-(c2,r2),kolor,b ' draw a box around the text

END SUB

END

One other piece of information you may need for mixing graphics and

text is the screen position of a character. Again because of the standard

ANIMATION 127

character size, the equations for determining the positions are relatively

straightforward:

character column = INT(xCoordinate/8) + 1

character row = INT(yCoordinate/8) + 1

Finally, if you want to create your own text characters, you can draw

them as graphic objects, and even animate them. Then you treat the "text"

as any other object, moving and positioning it with the Amiga BASIC

OBJECT statements.

Part

SOUND ON THE AMIGA

CHAPTER

7

Creating Sound

Sound is the Amiga's forte. By programming its four-voice sound capabil

ities, you can produce electronic music approaching the quality of com

mercial synthesizers and realistic sounds for games. In addition, the Amiga

has a set of software routines built into ROM that create speech synthesis.

A complete range of Amiga BASIC commands are specifically designed to

take advantage of these sound features. Knowing which BASIC command

to use depends on the type of sound you want and how you want to create it.

That, in turn, means you need to know a little about how sound is produced

by the Amiga.

UNDERSTANDING AMIGA SOUND

Sound waves, as they reach your ears, are the vibrations of air. The faster

the air vibrates, the higher the pitch of the sound, and the harder it vibrates,

the louder the sound. In terms of the wave itself, the frequency of the wave

is what makes the air vibrate at a certain speed and thus determines the

pitch, while the amplitude, or height, determines the volume

(Figure 7-1).

131

132 The Amiga User's Guide to Graphics, Sound and Telecommunications

Frequency = 2 cycles

A A
X \J \J

^Amplitude
J

Figure 7-1

Simple sound waves, such as the sine wave, have clear, pure tones.

The Amiga has a special command to produce sine-wave sounds. Musical

instruments, on the other hand, produce far more complex waveshapes,

and it is this complexity that gives each instrument its typical sound and

explains why, for instance, a banjo playing middle C sounds different from

a trumpet playing exactly the same note.

Complex waveshapes have harmonics, which are mathematically

exact multiples of the main frequency of an instrument's note. The amount

of each harmonic present in a wave-shape determines the note's timbre. A

sawtooth wave with harmonics produces sound that is "brassy," while a

triangular wave sounds more like a clarinet. Thus, an instrument's notes

sound relatively the same regardless of the frequency of the note.

Audible frequencies are from about 20 to about 20,000 hertz (Hz), or

cycles per second. In musical instruments, different notes are produced

CREATING SOUND 133

when the musician physically "alters" the way the sound is made — by

sliding a button up or down on the trumpet, or by pressing on the banjo

string, effectively shortening how much of it vibrates. Volume depends on

how hard the trumpeter blows into the mouthpiece or how hard the banjo

picker plucks the string.

In the vocabulary of electronics, all of the processes that instruments

use to produce sound are known as analog processes. That is, they depend

on physical relationships, like length of string or vibrating frequency, to

produce sound. For computers to produce sound, they must somehow

duplicate these analog processes in a digital manner. Because computers

work on electricity, the analog process they use is voltage.

Computers use a digital-to-analog (or D-to-A) converter to produce

sound. It works like this: a D-to-A converter is an electrical device that

sends voltage to the stereo sound speakers attached to your Amiga. As the

voltage fluctuates, the sound emitted by the speakers changes. The com

puter controls the voltage output of the converter by sending it digital infor

mation in the form of byte values. Thus, as the byte values (the digital

information) change, the voltage (the analog information) changes, and

different sounds come from your speakers.

The Amiga can produce four separate voices simultaneously. The

output voices are numbered 0, 1, 2, 3. With stereo speakers connected to

the computer, voices 0 and 3 go to the left speaker, and 1 and 2 go to the

right speaker.

Inside the Amiga, each voice has its own DMA channel to the 68000.

The digital information on each channel includes volume, waveshape, and

how often the byte data must be sent to the D-to-A converter. This informa

tion creates a sound table, which software in the ROM then uses to create

an envelope for the waveshape. Sound envelopes for electronic instru

ments, including synthesizers as well as computers, describe the voltages

sent to the D-to-A converter. The shape of an envelope replicates the way a

sound actually occurs. Consider, for instance, a piano key. When you first

press a key, the sound is sharp and clear, but then fades slightly, followed

by a period when the sound is still clear but at a lower level. When you

release the key, the sound fades out. A sound envelope duplicates that

sequence of events with four features (Figure 7-2):

— time for sound to reach its peak level

Decay — time for sound to reach its sustaining level

134 The Amiga User's Guide to Graphics, Sound and Telecommunications

flai , . Decay time

AttQcktlme / Key is released
Sustain level /

Release time

Key is pressed Time"

Typical ADSR

Figure 7-2

Sustain — sound ofthe key as it is held down

Release — time after key is released until sound fades

In some computers you must define each element of the attack-

sustain-decay-release (ASDR) curve in order to produce sound. Such is not

the case with the Amiga. Amiga BASIC'S commands include those to pro

duce the notes for you as well as those that require an understanding of

ASDR.

PROGRAMMING SOUND

The easiest BASIC command for programming sound is BEEP. That com

mand creates a short beep sound from the Amiga's internal speaker and

simultaneously flashes the screen. You use this command to get the atten

tion of the person sitting in front of the computer. The SOUND and WAVE

commands in Amiga BASIC are the ones you use to create music or sound

effects. SOUND does not require any type of ASDR curve; WAVE re

quires an array of numbers that define a waveform. A BASIC program in

chapter 9 creates wave curves for you, which simplifies programming with

WAVE.

If you have programmed with other versions of BASIC, you may be

familiar with a command PLAY. PLAY is for writing music with many

of the traditional notations and conventions now used by professional

CREATING SOUND 135

composers and arrangers. The current version of Amiga BASIC does not

include a PLAY command, but a BASIC program in chapter 8 of this book

provides the PLAY command for you. You can add it to your Amiga BASIC

disk and treat it as a regular BASIC command.

Finally, two commands to create electronic speech are SAY and

TRANSLATES.

Using the SOUND Command

To program music using the SOUND statement, you tell the computer the

frequency of the note to be played, the note's duration, volume, and voice.

A typical SOUND statement is:

SOUND 440,10,100,1

The number 440 refers to the frequency of the note to be played. Frequency

is expressed in hertz. The frequency 440 is known as the "tuning A,"

because it is the frequency of the piano key that tuners use as a reference

tone for tuning the rest of the keys. Other frequencies on either side of

tuning A are:

Note

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

Frequency

130.8

146.8

164.8

174.6

196.0

220.0

246.9

261.6 (middle C)

293.6

329.6

349.2

392.0

440.0

493.8

523.2

587.3

136 The Amiga User's Guide to Graphics, Sound and Telecommunications

E

F

G

A

B

C

D

E

F

G

A

B

659.2

698.4

783.9

880.0

987.7

1046.5

1174.7

1318.5

1396.9

1568.0

1760.0

1975.5

To save yourself time, you can ignore the last number in each of the

frequencies. Most people can't tell the difference of a note within 3 to 5 Hz.

There is a discrepancy between the middle C listed in some books on

electronic music and the middle C frequency quoted by professional musi

cians. Middle C to musicians is 261.6, not the 523.25 in the Amiga BASIC

manual. This difference can sometimes create problems when transcribing

sheet music into electronic form.

Each group of eight notes in the table is an octave. Sharps and flats are

not shown, but finding their frequency values is easy. A sharp is a half step

up in frequency from a note, while a flat is down a half step from a note. To

find a sharp or flat, multiply the note by 1.06 (or if you're a purist, by

1.059463). For instance, to find C sharp (denoted as C#) above middle C,

multiply 261.6 by 1.06 to get 277.3 Hz.

To program the computer at frequencies either higher or lower than

shown on the table, double or halve the frequencies of the notes in the pre

ceding or following octave. For instance, the first C in the table is 130.8

and the next C is 261.6 (middle C), about double the frequency of the first

one. Similarly, the last A in the table is 1,760.0, so the next octave's A (not

shown on the table) would be about 3,520.0. The Amiga can play frequen
cies from 20 to 15,000 Hz.

The second number in the SOUND statement, 10, sets the duration of

the note. Duration is measured in clock "ticks" of the Amiga's internal

clock, which ticks 18.2 times per second, or 1,092 ticks per minute. Dura

tion in the SOUND statement can be any number from 0 to 77. A note pro

grammed for the full 77 would play for 4.25 seconds.

CREATING SOUND 137

The duration is for setting the tempo of a piece of electronic music.

Tempo is the speed at which the piece is played. The lower the number, the

shorter the duration of the notes and the faster the music. Very slow music,

larghetto, that plays at about 60 to 66 beats per minute, would have a dura

tion of 18.2 to 16.55 ticks per beat. Presto, or very fast music, played at

168 to 208 beats per minute would have durations of 6.5 to 5.25 ticks per

beat. Moderately fast music has a duration of about 100. The duration num

bers for a particular piece can be calculated by dividing the music's number

of beats per minute by 1,092, the number of clock ticks per minute.

The third number in the SOUND statement sets the volume of the

note. In the example, the number 100 produces a moderately soft note.

Volume can range from 0 to 255 which increases the sound into successive,

louder output. Volume does not have to be specified in the SOUND state

ment. If it isn't, the Amiga automatically plays the note at a volume of 127.

The last number in the SOUND statement assigns the music to one of

the four voices. The numbers 0 and 3 assign the output to the left speaker;

1 and 2 put the sound through the right speaker. If you don't specify the

voice, the Amiga automatically assigns it to 0, the left speaker.

Programming the Tune "Happy Birthday"

Using the SOUND Statement

Here's a BASIC program using the most elementary steps for creating

computer music. First, all the notes used in the melody need to be trans

lated into the necessary frequencies and durations required by the SOUND

statement. The different notes of "Happy Birthday" are G, A, O2C (where

the 02 signifies that the note is played in the next octave up), B, O2D,

O2G, O2E, and O2F. The three different kinds of notes in the piece are 1/8,

1/4, and 1/2 notes. Thus, the data you need for this program is:

Note

G

A

B

O2C

O2D

O2E

O2F

O2G

Frequency

392.0

440.0

493.8

523.2

587.3

659.2

698.4

783.9

138 The Amiga User's Guide to Graphics, Sound and Telecommunications

Kind ofNote

1/8

1/4

1/2

Duration in Amiga clock ticks

4.55

9.1

18.2

One of the problems of transcribing sheet music to computer program

format is keeping track of the notes in their proper positions. The following

"translation table" is a method of organizing the notes that makes transcrib

ing them to computer format fast and simple (Figure 7-3).

In musical terms, the notes that make the melody for "Happy Birth

day" are:

Note

G

G

A

G

O2C

B

G

G

A

G

O2D

O2C

G

G

O2G

O2E

O2C

O2C

B

A

O2F

O2F

O2E

O2C

O2D

O2C

Kind ofnote

1/8

1/8

1/4

1/4

1/4

1/2

1/8

1/8

1/4

1/4

1/4

1/2

1/8

1/8

1/4

1/4

1/8

1/8

1/4

1/4

1/8

1/8

1/4

1/4

1/4

1/2

CREATING SOUND 139

A SIMPLE TRANSLATION TABLE

FOR HAPPY BIRTHDAY

NOTE

LENGTHS

NOTE

OCTAVE

8 8 4 4 4 2 8 8 4 4 4 2 8 8|4 4 8 8 4 4 8 8 4 4 4 2

G G

1 1

A G C B G G

112 111

A G D C G G

112 2 11

G E C C

2 2 2 2

B A F F

112 2

E C D C

2 2 2 2

Figure 7-3

Using the two tables, you can now program the tune with the SOUND

statement. The first number in each of the following SOUND statements is

the frequency of the note and the second number is the duration. In the

interest of saving you some typing time, frequencies with only a zero after

their decimal points are typed as three-digit numbers. (You could also type

all of the frequencies as three-digit numbers and for all intents and purposes

the music would sound the same.) Observe that you do not have to specify

the volume or voice. Those default settings are 127 and 0.

SOUND 392, 4.55

SOUND 392, 4.55

SOUND 440, 9.1

SOUND 392, 9.1

SOUND 523.2, 9.1

SOUND 493.8,18.2

SOUND 392, 4.55

SOUND 392, 4.55

SOUND 440, 9.1

SOUND 392, 9.1

SOUND 587.3, 9.1

SOUND 523.2,18.2

SOUND 392, 4.55

SOUND 392, 4.55

SOUND 783.9, 9.1

SOUND 659.2, 9.1

SOUND 523.2, 4.55

SOUND 523.2, 4.55

SOUND 493.8, 9.1

SOUND 440, 9.1

SOUND 698.4, 4.55

SOUND 698.4, 4.55

140 The Amiga User's Guide to Graphics, Sound and Telecommunications

SOUND 659.2, 9.1

SOUND 523.2, 9.1

SOUND 587.3, 9.1

SOUND 523.2, 18.2

RUN

Different programming can reduce the list ofSOUND statements for a

song, but at some point you always have to list each note frequency with its

duration. Using the PLAY statement described in chapter 8 makes pro

gramming music much easier.

PROGRAMMING SPEECH

The Amiga is a machine of many words. The secret of its speech is found in

an Amiga program on the Workbench disk, called Narrator Device. That

program contains a set of rules and table of pronunciation for the English

language. When you enter a phrase for the Amiga to speak, the program

searches through its rules and table to find the appropriate sounds, and then

sends the result to the stereo speakers.

The two Amiga BASIC commands for speech synthesis are SAY and

TRANSLATES. The SAY command has two functions: first it tells the

computer that you want it to speak, and second it can describephonemes of

speech. Phonemes are to speech what atoms are to matter — they are the

smallest building blocks of speech. For example, in the words pat and/af,

the p and/are two different phonemes in English. You can use the SAY

command by itself to create speech, but it requires breaking down each syl

lable of sound into individual phonemes.

The TRANSLATES command does not require the phonemes. TRANS

LATES tells the Amiga what you want to say in English, or ifyou spell foreign

words in phonetic English, the TRANSLATES command can also make the

Amiga speak in a foreign language (although with an English accent!).

The easiest way to produce speech is with a one-line statement:

SAYTRANSLATE$("Good Morning.")

The first time you type a SAY statement, the Amiga must load the Nar

rator Device program from the Workbench disk, so be sure it's in the drive.

The TRANSLATES command translates into English the phrase enclosed in

CREATING SOUND 141

parentheses and quotes. Everyday words are no problem for the TRANS

LATES command; ambiguous symbols or phrases, however, get treated

specially. Numbers, for instance, are translated individually so that the

number 67 is spoken as "six seven," not "sixty-seven." As the following

table shows, other symbols have their own translations as well.

Symbol

>

<

=

+

#

$

%

"

&
i

...

/

What the Amiga Says

Greater than

Less than

Equals

Plus

Point (only if it precedes a number; otherwise

treated as a period)

Number

Dollar

Percent

Quote (first time it occurs), unquote (second

occurrence), quote (third occurrence, and so on)

And

Or

And so on

Slash

Caret

Tilde

Notice that the minus sign (-), multiplication sign (x), and the divi

sion sign (/) are not represented in the table. Amiga treats the minus as a

dash or hyphen for a pause in the speech. The multiplication sign is pro

nounced as the letter jc, and the division sign is slash. You must type out the

words "minus," "multiply by," and "divide by" for them to be spoken.

Punctuation marks are not pronounced, but can affect the spoken

inflection. A period or question mark at the end of a sentence causes a brief

pause and a drop in the pitch of the speech. No punctuation mark at the end

of a sentence raises the pitch to give it an interrogative inflection. The

comma, colon, and semicolon cause appropriate pauses.

A hint for intelligible speech: keep sentences short or use punctuation

marks to break them up with pauses. Because the Amiga never has to^catch

its breath, long or unbroken sentences sound unnatural.

142 The Amiga User's Guide to Graphics, Sound and Telecommunications

The Amiga's speaking voice (not to be confused with its four voices

for music or sound) can take on different qualities. You define the qualities

in a one-dimensional array consisting of nine elements for the SAY state

ment. If you define the array with the DIM statement as speech(9), the

format for the array in the SAY TRANSLATES statements is:

SAY TRANSLATES ("The text you want to say"), speech%

The nine elements of the array correspond to:

1

2

3

4

5

6

7

8

9

pitch of speech

inflection

rate of speech

gender of voice

tuning, which affects pitch and "quality of the

speech" such as nimbly or squeaky

volume

speaker output

delay for other programs

interrupts or cancels other speech

See the Amiga BASIC manual for the optional values for each ofthese

elements. For instance, element number 3, gender, has two options: 0 for

male and 1 for female. The best way to decide on the voice you want to give

to your Amiga is to try out different combinations of the array.

Speaking Phonetically

Because of English's quirks, pronunciation is a subtle and complex job.

Although people learn correct pronunciation around the age of five, the

computer occasionally still needs some help. One way to tell the Amiga the

correct pronunciation of a word is to write it out in phonemes (as described

later). A simpler way is to deliberately misspell a word, or to put it more

politely to spell phonetically. Longer words are especially receptive to

phonetic spelling. As with determining the best speaking voice for the

Amiga, determining the best spelling for words you want to use is a trial-

and-error process. When you find useful phonetic spellings, write them

down and develop your own "Amiga words dictionary."

CREATING SOUND 143

Phonetic spelling is also one way to program the Amiga to speak in a

foreign language. For instance, the German phrase for good morning,

guten morgen, becomes "goo ten more gen." Generally you can phoneti

cally spell foreign words that have English equivalent sounds, but not those

that use various clicking or hissing noises as a part of speech. Furthermore,

some languages having English-equivalent sounds also have peculiar

characteristics that require special treatment. French, with its heavy nasal

emphasis, is a prime example.

You can also phonetically spell words to give them regional accents.

Spelling the word "yawl" for you all, and "heeyah" for hear puts a dis

tinctly southern emphasis on the phrase, "Yawl kum bak an see me now,

heeyah?'^Similarly, the phrase Lawn Guyland is familiar to any Noo

Yawker living on Long Island.

To try different phonetic spellings of words, use the following short

program. While the program is running, you can type words on the Output

screen without writing the SAY or TRANSLATES statements. As soon as

you press the Return key at the end of each phonetically spelled phrase, the

Amiga speaks.

LOOPTOP:

LINE INPUT A$

PRINT TRANSLATE$(A$)

SAYTRANSLATE$(A$)

GOTO LOOPTOP

RUN

Using Phonemes

As discussed earlier, phonemes are the elemental sounds of a language. In

dictionaries, the symbols of pronunciation, such as an e with a bar over it

denoting a long e, are representations of phonemes. You can program

speech in phonemes using the SAY statement by itself. A typical SAY

statement programmed with phonemes looks like this:

SAY "DHIHS IHZ NAATQ TUW /HAORD TUW

AH1NDERSTAE4ND"

which says, "This is not too hard to understand."

The following table shows how Amiga BASIC phonemes correspond

to the pronunciation symbols in a Webster's New Collegiate Dictionary.

144 The Amiga User's Guide to Graphics, Sound and Telecommunications

You can program the phrases roughly using these symbols as a guide; how

ever, you'll probably find a few words that require some modification to

sound right.

Symbol

d

'd,,d

0)
dr

a

a

a

a

au

b

ch

d

e

'e,

f

g

h

i

i

j
k

k

1

m

n

■n

o

6

6i

P

r

s

sh

Example

abort, banana, collide

under, humdrum, abut

solid, sour, wire

further, bird, meager

bat, map, gag

made, date, drape

hat, bother, cart

talk, palm, tomato

power, loud, out

but, baby, rib

chin, check, nature

dog, did, adder

bet, bed, peck

beat, evenly, nosebleed

fed, fifty, cuff

go, guest, big

hole, hat, ahead

bit, tip, active

hide, buy, site

judgeJob, gem

kin, Commodore, ache

loch, (German ich, buch)

lily, yellow, pool

men, murmur, dim

no, own, men

sing, finger, ink

low, bone, oboe

border, saw, caught

boil, coin, destroy

put, pepper, lip

red, rarity, beard

sail, source, less

shy, rush, machine

AmigaBASIC

AX

AH

IX

ER

AE

EY

AA

AO

AW

B

CH

D

EH

IY

F

G

/H

IH

AY

J

K

/C

L

M

N

NX

ow

OH

OY

P

R

S

SH

CREATING SOUND 145

Symbol

t

th

th

ii

ii

v

w

y

z

zh

Example

toy, late, latter

thin, ether, thigh

then, either, this

crew, rule, youth

look, pull, wood

very, vivid, invite

we, away, wend

yellow, yard, young

zone, raise, has

pleasure, vision, azure

Amiga BASIC

T

TH

DH

UW

UH

V

w

Y

Z

ZH

Other symbols for the SAY statement include numbers that indicate

stress marks, and a series of letter combinations for special sounds. See

Appendix H of the Amiga BASIC manual for a complete description of the

phonemes.

The benefit of programming with phonemes is that it gives you the

most flexibility and control over the speech. You can control emphasis,

inflection, pronunciation, pacing, pauses, and other features of speech.

And foreign languages lose some of their English accent when prog

rammed in phonemes. The disadvantages are that it takes longer than using

the easy TRANSLATES statement, and it requires becoming intimately

familiar with phonemes and complex word constructions. Also, the SAY

command takes some getting used to. It only accepts uppercase letters and

treats some phoneme combinations as illegal.

A final note about speech synthesis: computer-generated speech is a

growing field. Synthesized speech is prevalent in elevators, telephone

answering systems, automobile warning systems, vending machines, and

so on. Knowing the principles of speech synthesis may stimulate you to

find a new application for this interesting use of computers.

CHAPTER

8

Synthesized Music

With its four-voice sound and ability to attach a MIDI (Musical Instrument

Digital Interface) adaptor for connecting synthesizers to it, the Amiga has

a promising future in music. You can also program the Amiga to compose

or arrange your own tunes. Composing music means making up the tunes

yourself starting from scratch. Arranging music means taking the songs of

other composers and making the music sound like you want it. For

instance, giving a Bach piece a rock-and-roll beat would be rearranging it.

The songs in this chapter are arrangements of existing music.

Transcribing a song to the Amiga may require special arranging to

take advantage of the computer's many musical talents, and to reconstruct

a tune with the four voices. Some songs sound best with all four voices,

while others only need two or three. And as you'll see in the next chapter,

the arrangements can be for different instruments for the different Amiga

voices.

To facilitate arranging and composing, the following program pro

duces a BASIC statement known as PLAY. Found in other versions of

BASIC, PLAY is more powerful and faster than the SOUND statement.

Copy this program onto a disk. To use it to create music, load Amiga

BASIC and load this program. You then type the music programs and insert

147

148 The Amiga User's Guide to Graphics, Sound and Telecommunications

them in the space in the program after the REM statement "PUT YOUR

CALL PLAY AND CALL MP STATEMENTS HERE." The programs for

"Happy Birthday" and "Silent Night" are there to illustrate how you use the

program. Erase those two tunes before you enter your new songs.

THE PLAY PROGRAM

REM Program to demonstrate the PLAY subprogram

REM Written by Joseph R Power

InitPlay = 1

REM This is where the programs for assigning

REM waveforms to the different voices will go

REM PUT YOUR CALL PLAY AND CALL MP STATEMENTS HERE

REM Remember to erase the example songs of

REM Happy Birthday and Silent Night before

REM adding your new song to the program

REM CALL mp("ABCD","AACC","DDDD","GFED")

REM This is Happy Birthday

CALL PLAY("G8 G8 A4 G4 > C4 < B2",1)

CALL PLAY("G8 G8 A4 G4 > D4 C2 <",1)

CALL PLAY("G8 G8 > G4 E4 C8 C8 <",1)

CALL PLAY("B4 A4 > F8 F8 E4 C4 D4 C2",1)

REM This is Silent Night

CALLPLAY("T60O2",1)

CALL PLAY("V2F8.G16F8D4.F8.G16F8D4.>C4C8<A4.B-4B-8F4.",1)

CALL PLAY("G4G8B-8.A16G8F8.G16F8D4P8G4G8B-8.A16G8",1)

CALL PLAY("V15F8.G16F8D4P8<C4C8E-8.C16<A8B-4.>D4.<B-8.",1)

CALL PLAY("F16D8F8.E-16C8<B-2P8>E-2D2",1)

END

SUB mp(vO$,v1 $,v2$,v3$) STATIC

SOUND WAIT

IF vO$ <>"" THEN CALL PLAY(vO$,O)

IF v1$ <> ""THEN CALL PLAY(v1$,1)

IF v2$ <>"" THEN CALL PLAY(v2$,2)

IF v3$ <>"" THEN CALL PLAY(v3$,3)

SYNTHESIZED MUSIC 149

SOUND RESUME

END SUB

SUB PLAY(P$,Voice%) STATIC

SHARED InitPlay

IF InitPlay = 0 THEN StartPlay

DIM NVals(27), N2Vals(12), PZ%(256)

FORi = 0 TO 256

PZ%(i) = 0

NEXTi

FOR i = 1 TO 27

READ NVals(i)

NEXT!

DATA 131,139, 0,147, 139, 0,156, 0

DATA 165,156, 0,175, 185, 0,196,185, 0, 208, 0

DATA 220, 208, 0, 233, 0, 247, 233, 0

FORi = 1 TO 12

READ N2Vals(i)

NEXTi

DATA

131,139,147,156,165,175,185,196,208,220,233,247

Tempo = 34.125

Volume = 128

Octave = 1

NLen = 1

InitPlay = 0

StartPlay:

i = 1

P = LEN(P$)

parse:

GOSUB NextNote

IF N$ = "" THEN PRINT: EXIT SUB

N = INSTR("ABCDEFGONLPT><V",N$)

IFN = 0 THEN GOTO parse

ON N GOSUB A, B, C, D, E, F, G, O, N, L, P, T,

GT, LT, V

GOTO parse

A:

150 The Amiga User's Guide to Graphics, Sound and Telecommunications

B:

C:

D:

E:

F:

G:

s$ = N$

REM

REM Check for sharps and flats

REM

GOSUB NextNote

|FN$ = "#"THENN$ = " + "

IF (N$ = " +") OR (N$ = "-") THEN s$ = s$ + N$

ELSE i = i- 1

REM

REM Check for a single note duration

REM

GOSUB GetNum

IF NumVal = 0 THEN duration = NLen ELSE duration

= NumVal

REM

REM Check for dotted notes

REM

GOSUB NextNote

IF N$ = "." THEN duration = duration * 1.5 ELSE i

= i - 1

REM

REM Get note's frequency from table

REM

Note =

NVals(INSTR("CC + DD - D + EE - FF + GG - G + AA - A + BB - ",s$))

SOUND

Note*(2AOctave),Tempo/duration,Volume,Voice%

FORz= 1TO5:x = SIN(10):NEXTz

RETURN

O:

GOSUB GetNum

IF NumVal > 6 THEN Octave = 6 ELSE Octave =

NumVal

Octave = Octave - 2

RETURN

N:

GOSUB GetNum

IF NumVal > 84 THEN Note = 0 ELSE Note = NumVal

SYNTHESIZED MUSIC 151

IF Note = 0 THEN WAVE Voice%,PZ%

IF Note = 0 THEN Vol = 0 ELSE Volume

0 = 1+ INT((Note-1)/12)

Note= Note MOD 12

IF Note = 0 THEN Note = 12

Note = N2Vals(Note)

SOUND Note * (2*0), Tempo/NLen, Vol, Voice%

WAVE Volce%,SIN

L:

GOSUB GetNum

IF (NumVal = 0) OR (NumVal > 64) THEN NumVal = 1

NLen = NumVal

RETURN

P:

GOSUB GetNum

IF (NumVal = 0) OR (NumVal > 64) THEN NumVal = 1

WAVEVoice%,PZ%

SOUND 20,Tempo/NumVal,0,Voice%

WAVE Volce%,SIN

RETURN

T:

GOSUB GetNum

IF (NumVal < 32) OR (NumVal > 255) THEN NumVal =

120

Tempo = 1092/NumVal * 4

IF Tempo > 77 THEN Tempo = 77

RETURN

GT:

GOSUB GetNum

IF NumVal = 0 THEN Octave = Octave + 1 ELSE

Octave = Octave + NumVal

IF Octave > 4 THEN Octave = 4

RETURN

LT:

GOSUB GetNum

IF NumVal = OTHEN Octave = Octave - 1 ELSE

Octave = Octave - NumVal

IF Octave < - 2 THEN Octave = - 2

RETURN

V:

GOSUB GetNum

Volume = NumVal* 16

RETURN

NextNote:

IF i > PTHEN N$ = "" ELSE N$ = MID$(P$,i,1)

152 The Amiga User's Guide to Graphics, Sound and Telecommunications

i = j + 1

RETURN

GetNum:

NumVal = 0

GN1:

q = INSTR("0123456789",MID$(P$,i,1))- 1

IFq = -1THENGN2

NumVal = NumVal* 10 + q

i = i + 1

IFi< = PTHENGN1

GN2:

RETURN

END SUB

This program is essentially a parser that looks at each PLAY statement

and breaks down notes into their discrete values. Then the program

matches the notes to their frequencies, octaves, and voices.

Although the remarks throughout the program explain what each sec

tion does, you have to know a bit about the Amiga to understand what the

different statements accomplish. For example, the statement for tempo is

tempo = 1092/NumVal * 4. Tempo to the PLAY statement is the number

of quarter notes in a minute. The Amiga's internal clock "ticks" 1,092

times per minute and the NumVal is the number you assign to the tempo.

Therefore, multiplying the ratio of 1,092 and NumVal by 4 determines the

quarter notes per minute for your tempo setting.

PROGRAMMING WITH THE PLAY STATEMENT

The PLAY statement recognizes notes using their standard names and mus

ical notations. A typical PLAY statement is

PLAY ("G8G8A4G4>C4<B2",1)

which is the first six notes of the "Happy Birthday" melody. The first two

G8's are the PLAY notation for playing two successive G 1/8 notes, A4 is

for an A 1/4 note, and G4 is for a G 1/4 note. The > makes the next note, a

C 1/4 note, play up one octave (equivalent to the O2C note in the SOUND

tables), and the < brings the octave back down for the next note, the B 1/2.

SYNTHESIZED MUSIC 153

The 1 at the end of the notes assigns the output for the music to the Amiga's

1 channel of its four voices. Continuing the programming, here is the entire

"Happy Birthday" melody that you programmed in chapter 7 done instead

in one simple PLAY statement:

PLAY("G8G8A4G4>C4<B2G8G8A4G4>D4C2<G8G8>G4E4

C8C8<B4A4>F8F8E4C4D4C2",1)

Note that all the notes must be enclosed in parentheses and quotes, and

that the voice designator must always be at the end of the notes.

A Reminder

Remember to precede the PLAY statement with a CALL command

when you type the music into the PLAY program (as illustrated by the

examples). In other words, when you enter the Happy Birthday PLAY

statement into the program it will be CALL PLAY ("G8G8A4G4>C4...and so

on). To avoid repetition, the rest of the music programs in this chapter do not

include the CALL statement, but remember to include them with your music in

the PLAY program.

The PLAY statement also prepares the computer for the type of music

it is to play. For example, before writing the PLAY statement with the notes

for the melody, you could write:

PLAY("T100O2",3)

This PLAY statement tells the Amiga to play the music at a tempo of

100 beats per minute (T100), to start the music in octave 2 (02), and to play

the music through voice channel 3. The O in the 02 for octaves is a capital

letter O and not the number 0. The > and < symbols in the first PLAY state

ment are relative to the octave in which the piece was started.

Some other notations for the PLAY statement are:

Names ofnotes — A,B,C,D,E,F,G.

154 The Amiga User's Guide to Graphics, Sound and Telecommunications

Sharps andflats — # or + after a note indicates it is a sharp; a -

(minus sign) after a note means it is a flat. Sharps

and flats can only indicate the black keys on a

piano. Invalid notes in computer music are B +,

C-,E+,andF-.

Kind ofnotes — 1,2,3,4,5,6,7,8,..., 64. A number 1 is a whole

note, 2 is a half note, 3 is one of a triplet ofthree

half notes (1 /3 of a 4-beat measure), 4 is a quarter

note, 5 is one note of a quintuplet (1/5 of a

measure), and so on.

Dotted notes — a dot or period after a note makes the Amiga

play the note as a dotted note. A dotted note is

played 1/2 again as long as it normally would.

Some versions of the PLAY command allow

double dotted notes (two periods following the

note), but this version only allows single dotted

notes. The dots must follow after the symbols

that name the note and its kind; e.g., F + 4. is

the right form, F + .4 is not. (If you're interested

in adding the double dotting feature to the PLAY

program, double dotted notes play a dotted note

plus 1/2 of the duration added by the first dot.

Mathematically this turns out to be 7/4 as long as

the original note.)

Octave an uppercase letter O followed by a number

selects the octave for a note or a melody; > and <

increase and decrease the octave by one for the

note following the symbols; > and < followed by a

number would increase or decrease the next note

in a tune by that number of octaves (for instance,

<3 would decrease the next note in a tune by 3

octaves). If you do not specify an octave for a

tune, the Amiga plays it at octave 01 which is the

octave containing middle C. The Amiga can play

seven octaves, numbered 0 to 6. Octave O's

SYNTHESIZED MUSIC 155

lowest note is C which corresponds to a frequency

of 131 Hz.

Pause — aP indicates a rest, i.e., no sound. The same

numbers used to indicate note lengths designate

lengths of rests.

Tempo — the letter T followed by a number between 32

and 255 sets the tempo ofthe music. Iftempo is

not specified, the Amiga plays the music at a

tempo of 120 which is equivalent to music played

Moderato (medium fast). The tempo number

itself defines the number of quarter notes that

would be played in one minute. The higher the

number, the faster the music is played.

Volume — a Vfollowed by a number between 0 and 15 sets

the volume ofthe note or notes after the V

number: 0 is softest, 15 is loudest.

Although some of these notations are written in separate PLAY state

ments, such as the tempo and the octave of a tune's first note, they can also

be written as part of the PLAY statement that contains the notes them

selves. Putting certain notations in separate PLAY statements merely

makes it easier to see what type of music is being played. That convention

is adhered to in the following music examples.

Programming the Melody for "Silent Night"

The popular Christmas carol, "Silent Night," is played slowly, as a hymn.

It was originally composed in German as a guitar accompaniment ("Stille

Nacht") to replace standard religious hymns when a church organ broke

down just before Christmas.

An Amiga program for the melody of "Silent Night" is:

PLAY("T60O2",1)

PLAY ("F8.G16F8D4.F8.G16F8D4.>C4C8<A4.B - 4B - 8

F4.G4G8B-8.A16G8F8.G16F8D4P8G4G8B - 8.A16G8

F8.G16F8D4P8>C4C8E - 8.C16<A8B - 4.>D4.<B - 8.

F16D8F8.E -16C8<B - 2P8>E - 2D2",1)

RUN

156 The Amiga User's Guide to Graphics, Sound and Telecommunications

The first line of the program defines the music's tempo (T60) at a slow

60 quarter notes per minute (about the right speed for a hymn) and starts the

music at octave 2 (02). The second line lists the actual notes of the melody

of "Silent Night." "Silent Night" begins withFdotted 1/8, G1/16, F1/8, D

dotted 1/4, and F dotted 1/8. Following an 1/8 pause (P8) near the end of

the line, the last two notes (E-2D2) in the program are a refrain for

"Amen."

The notes could also be written with a space between them, such as

PLAY ("F8. G16 F8 D4.... and so on). The spaces do not affect the way the

tune is played and make the notes easier to read.

Harmony and Accompaniment

The PLAY statement lets the Amiga take full advantage of any one of the

four voices of its sound generator. Another statement (which is part of the

PLAY program) is Multiple Play or MP for short. You use MP whenever

you want the music to be played with more than one Amiga voice.

As with virtually all BASIC programming, creating a music program

that plays harmony can be done a number of different ways. The method

about to be described represents one simple, effective way of getting the

Amiga to play a harmonized melody for "Silent Night." The arrangement

uses all four voices.

The first line describes the tempos and octaves of each of the four

voices. Each set of letters within the quote marks is for one of the voices.

The position of the descriptions in the line determine which voice it is. That

is, the first description is for voice 0, the second one is for voice 1, the third

for voice 2, and the last one for voice 3. The MP command always requires

descriptions for four voices even if the musical piece uses less than all four.

In that case the description for the unused voice is a blank enclosed by

quotes, i.e., "".

In this tune, voice 0 is to be played at a tempo of 60 (T60) and is to start

at octave 2 (02); voice 1 is to be played at the same tempo and octave as the

first voice. But voice 2 is to be played at a tempo ofT60 at one octave below

(01) the first and second voices. Voice 4 begins at the lowest octave (00).

The next lines of the program differ from earlier examples of the

PLAY statement. Rather than telling the Amiga to just play a list of notes,

the following lines define the music notes as variables. The Vl$, V2$, V3$,

and V4$ in the program indicate that the data (in this case, notes) that follows

SYNTHESIZED MUSIC 157

is a variable. Although not necessary, the four statements are called VI to

indicate voice 1, V2 for voice 2, and so on. The statements could just as

easily have been called A$, B$, C$, and D$, but naming them with the V's

helps you remember which line refers to which Amiga voice.

As you can see, the first voice's notes (after the Vl$) are merely a

repeat of the melody written earlier. The notes after the V2$, V3$, and V4$

are for the harmony.

MP ("T60O27T60O2YT60O1YT60O0")

V1$= ("F8.G16F8D4.F8.G16F8D4.>C4C8<A4.B-4B-8F4.

G4G8B - 8.A16G8F8.G16F8D4P8G4G8B - 8.A16G8

F8.G16F8D4P8>C4C8E - 8.C16<A8B - 4.>D4.P8<B - 8.

F16D8F8.E -16C8<B - 2P8>E - 2D2",0)

V2$= ("D8.E-16D8<B-4.>D8.E-16D8<B-4.>E-4E-8E-4.

D4D8D4.E-4E-8E-8.E-16E-8D8.E-16D8<B-4P8>

E-4E-8E-8.E-16E-8D8.E-16D8<B-4P8>E-4E-8

A8.E -16E - 8D4.F4.P8D8.D16<B - 8>D8.C16<B - 8F2

P8B-2B-2M)

V3$= ("B-8.B-16B-8F4.B-8.B-16B-8F4.A4A8>C4.<F4

F8B-4.B-4B-8B-8.>C16<B-8B-8.B-16B-8F4P8

B-4B-8B-8.>C16<B-8B-8.B-16B-8F4P8A4A8>C8.<

A16>C8<F4.B - 4.P8F8.B -16F8F8.F16F8D2

P8G2F2",2)

V4$= ("B-8.B-16B-8B-4.B-8.B-16B-8B-4.>F4F8F4.<

B-4B-8B-4.>E-4E-8G8.F16E-8<B-8.B-16B-8

B-4P8>E-4E- 8G8.F16E-8<B-8.B-16B-8B-4

P8>F4F8F8.F16F8<B-4.B-4.P8B-8.B-16B-8>

F8.F16E - 8<B - 2P8B - 2B - 2",3)

MP(V1$,V2$,V3$,V4$)

RUN

If you copy this program, be sure to type it exactly as shown,

including the quote marks and equal signs. Insert it at the proper place in

the PLAY program (as indicated by the REM statements). Once you've

heard it played, you can add minor improvements to the music by changing

some of the variables. For example, if a tempo of 60 is too slow for your

taste, you can change the T60 in the first line to a higher number, such as

158 The Amiga User's Guide to Graphics, Sound and Telecommunications

T80 or Tl 10. Be sure, however, to change the tempo for all four voices to

be the same; otherwise, the notes will play different lengths and will get out

of order. Instead of harmony, you'll get cacaphony.

The fundamental process for programming Amiga music using the

MP statements is:

1. Define the voice characteristics (tempo, octave, etc.).

2. Write the notes in four variable statements so the Amiga can play

the four variable statements simultaneously.

3. Insert the music into the PLAY program.

The following music programs use this structure and a few interesting

variations of it.

Programming a Harmonious "Happy Birthday"

Once again, you can use the program in chapter 7 for the following pro

gram. The notes from that program are the simple melody for "Happy

Birthday" played as the first voice in a four-voice piece. In addition to the

harmony of three more voices, a loop added at the program's end provides

an opportunity for a sing-along for two choruses of the song.

MP ("T120O2YT120O27T120O1", "T120O1")
V1$ = ("G8G8A4G4>C4<B2G8G8A4G4>D4C2<G8G8>G4E4

C8C8<B4A4>F8F8E4C4D4C2",0)

V2$ = ("F8F8E4E4E4F2F8F8F4F4B4G2E8E8>C4C4<G8

G8F4F4>C8C8C4<G4B4G2",1)

V3$ = ("B8B8>C4C4E4D2<B8B8B4B4>F4E2C8C8E4G4

E8E8C4C4A8A8G4E4F4E2",2)

V4$ = ("G8G8G4G4G4G2G8G8G4G4G4>C2<G8G8G4>C4C8C8<

F4F4F8F8G4G4G4>C2",3)

FORI = 1TO2

MP(V1$,V2$,V3$,V4$)

NEXT I

RUN

Each time you press the Return key when the cursor is on the RUN

line, the "Happy Birthday" tune will play through twice. To play the tune

SYNTHESIZED MUSIC 159

more than twice, change the number 2 in line FOR I = 1 TO 2, to however

many times you want "Happy Birthday" to play. Although straightforward

here, loops in other songs can be a little tricky. If you tried to add a similar

loop in the "Silent Night" program, for instance, the song would not sound

the same the second time it was played. It would sound different because

the second voice would be one octave lower than in the first chorus. Why

the difference? Because the settings at the music's end the first time it was

played are retained by the Amiga for the next time the music is played.

Thus, at the end of the first chorus the Amiga's four voices were set at

octaves 03, 02, 02, and 02, respectively, and that's how it starts the next

chorus.

Whenever a second pass through a piece of music doesn't sound right,

check the settings at the end of the piece and add the necessary statements

(e.g., a > to bring the octaves back up) at the end of the notes to return the

Amiga's voices to their original settings at the beginning of the tune. You

could also add a new tempo setting at the end of each line speeding up or

slowing down the next chorus. Children often find this very funny.

Bach to BASIC

Johann Sebastian Bach was one of the world's greatest musicians. He also

may have had a temperament similar to today's computer hackers. A

hacker is a person who tries to get a computer to do things for which it was

not designed but nevertheless does very well. A few ofBach's most famous

contributions to music fall easily into the same definition.

Before Bach's time, keyboard instruments were played with only four

fingers held flat on the keys. Bach taught his students to curve their fingers

and use their thumbs to play as well. His major technical achievement,

however, was to retune (called tempering at the time) harpsichords and

other keyboard instruments to play notes in a then unconventional manner.

Conventional tempering, known as natural tempering, called for an instru

ment to be tuned to a single key, such as the key of C or B flat or G. Music

played in the key of the tuning sounded wonderful, but played in any other

key sounded terrible. To play a tune in a key other than the tempered key of

the instrument meant having to retune it first. Consequently, all the good

musicians of the time carried a set of piano wrenches for retuning the

keyboard each time they were to play a piece in a new key. Bach had both

the musical genius and technical skill to figure out how to retemper

160 The Amiga User's Guide to Graphics, Sound and Telecommunications

keyboards so the constant tuning changes demanded by the natural temper

ing were unnecessary.

So striking was the new "out-of-tune" sound that soon all keyboards

were being retempered. To promote the new style, named "even" or

"equal" tempering, Bach wrote a series of preludes and fugues in two 24-

piece books entitled The Well-Tempered Clavier. Each of the pieces is

composed in a different key and only even-tempered keyboards can play

the correct notes in the pieces. Today, pianos and other keyboard instru

ments are tuned using the same tempering developed by Bach over two-

hundred years ago. If Johann Sebastian Bach was a hacker, he was one of

the most influential ever, computers notwithstanding. The following

Amiga program is the first of the forty-eight pieces of music Bach wrote to

"sell" his new style of tempering. It is appropriately titled "The First Pre

lude" and it is played in the key of C major (see Figures 8-la and b).

THE FIRST PRELUDE IN C MAJOR

byJ. S. Ba(si)ch

PLAY('T150O2L16",1)

PLAY("CEG>CE<G>CE<CEG>CE<G>CE<CDA>DF<A>D

F<CDA>DF<A>DFO1 B>DG>DF<G>DFO1 B>DG>D

F<G>DF<CEG>CE<G>CE<CEG>CE<G>CE<",1)

PLAY("CEA>EA<A>EA<CEA>EA<A>EA>CDF + A>D<

F + A>D<CDF + A>D<F + A>DO1B>DG>DG<G>D

GO1B>DG>DG<G>DG",1)

PLAY ("01 B>CEG>C<EG>CO1 B>CEG>C<EG>CO1 A>

CEG>C<EG>CO1A>CEG>C<EG>CO1D

A>DF + >C<DF+ >CO1 DA>DF + >C<DF +

>CO1 GB>DGBDGB<GB>DGBDGB",1)

PLAY("O1GB->EG>C + <EG>C + O1GB->EG>C+ <E

G>C + 01 DA>DA>D<DA>DO1 DA>DA>D<DA>

DO1 DA- >DFBDFB<DA - DFBDFB'M)

PLAY ("01 EG>CG>C<CG>C01 EG>CG>C<CG>C01

EFA>CF<A>CF01 EFA>CF<A>CF<DFA>C

F<A>CF<DFA>CF<A>CFO0G>DGB>

F<GB>FO0GDGA>F<GB>F",1)

PLAY ("01 CEG>CE<G>CEO1 CEG>CE<G>CE<C

GB - >CE<B - >CE01 CGB - >CE<B - >CEO0F>

SYNTIffiSIZED MUSIC 161

JOHANN SEBASTIAN BA(SI)CH

ALL NOTES ARE 16ths UNTIL THE FINAL CHORD

OCTAVE

NOTE

2

C

2

E

2

G

3

C

3

E

2

G

3

C

3 o

E /

/2

—X-

2

D

2

A

3

D

3

F

2

A

3

D

3

F

o .

/

/I

° B
-X-

2

D

2

G

3

D

3

F

(VJ
G

3

D

3 o,

F /

/2

-X-

2

E

2

G

3

C

3

E

2

G

3

C

3

E

OCTAVE

NOTE

o

/
/ 2
° C

2

E A

3

E

3

A

2

A

3

E

3

A

o

/
/
°

2

C

2 2 2

D F+A

3 2 2

DF+ A

3 o

D /

/ 1

° B

2

D

2

G

3

D

3

G

2

G

3

D

3

G

o

/

/

/
o

sy

OCTAVE

NOTE

1

B C

2

E

2

G

3

C

2

E

2

G

3 o

C /

—X-
/ 1

° A
-x-

2

C E

2

G

3

C

2

E
(V,
G

3

C /

,/
/ °

1

D

1

A

2 2 3

DF+C

2 2 3

DF+C

o

-X-
/ 1

° G

1

B

2

D

2

G

2

B

2

D

2

G

2

B

OCTAVE

NOTE

—x-

o /

/ G

1 2

B-E

2

G

3 2

C+E

2 3 o

GC+/

—X-

° D
—x-

1

A

2

D

2

A

3

D

2

D

2

A

3 o,

D /

-X

° DA-D
-X

2

F

2

B

(VJ
D

2

F

2 o

B /

/
o

-x J

OCTAVE

NOTE

1

E

1

G

2

C

2

G

3

C

2

C

2

G

3

C

1

E

1

F

1

A

2

C

2

F

1

A

2

C

2

F

•/
/°

1

D

(r-

1

F

1

A C

2

F

1

A

2

C

2

F /•g
-X-

i

D

1

G

1

B

2

F

1

G

1

B

2

F

OCTAVE

NOTE

o/l

/° c

1

E

1

G C E

1

G

2

C

2 o

E /

/l
° C
-X-

1 1

GB-

2

C

2

E

1

B- C

2 o

E /

-X-

° F

-X-

1

F

1

A

2

C E

1

A

2

C

2

E

—x 1

•/
/o
/

X '

OCTAVE

NOTE

0 1

F+C

1

A

2 2

CE-

1

A

2 2 o

«-/

-X—

°A-

1

F

1

B

2

C

2

D

1

B

2

C

2

D

o

/
/
o

<-

0

G

1

F

1

G

1

B

2

D

1

G

1

B D

7 °
Ac

i

E

1

G

2

C

2

E

1

G

2

C

2

E

y
7°

OCTAVE

NOTE

0 1

G D

1

G

2

C

2

F

1

G

2

C

2

F

o

/

-X-

° G
-X-

1

D

1

G

1

B

2

F

1

G

1

B F

o

/

-K

/ 0 1

° GE-
-X

1

A

2 2 1

CF+A

2 2o/0

C F+/° G
X-

1

E

1

G

2

C

2

G

1

G C

2

G

o/

A

OCTAVE

NOTE

0

G

1

D

1

G

2

C

2

F

1

G

2

C

2

F

°/0

X-

1

D

1

G

1

B

2

F

1

G

1

B

2

F

o

/

■#-

°c
■*-

1

c GB-E

1 1 2

GB-E

-X 1
/

7
°i

-x '

OCTAVE

NOTE

0

C

1

c

1

F

1

A C

2

F

2

C

1

A

2

C

1

A

1

F

1

A

1

F

1

D

1

F

1

D

0

C

0

B

2

G

2

B

3

D

3

F

3

D

2

B

3

D

2

B

2

B

2

D

2

F

2

E

2

D

rT8 1
t3

G2

—

Figure 8-1

162 The Amiga User's Guide to Graphics, Sound and Telecommunications

FA>CE<A>CEO0F>FA>CE<A>CE",1)

PLAY ("OOF + >CA>CE - <A>CE - OOF + >CA>CE - <

A>CE-O0A->FB>CDCDO0A- >FB>CDCDO0G

>FGB>D<GB>DO0G>FGB>D<GB>DO0G>EG>CE<

G>CEO0G>EG>CE<G>CE",1)

PLAY("O0G>DG>CF<G>CFO0G>DG>CF<G>CFO0G>D

GB>F<GB>FO0G>DGB>F<GB>FO0G>E-A>CF+<

A>CF + O0G>E-A>CF+<A>CF+ O0G>

EG>CG<G>CGO0G>EG>CG<G>CG",1)

PLAY("O0G>DG>CF<G>CFO0G>DG>CF<G>CFO0G>

DGB>F<GB>FO0G>DGB>F<GB>FO0C>CGB->

E<GB->EO0C>CGB->E<GB->E",1)

PLAY("O0C>CFA>CFC<A>C<AFAFDFD<CBO2GB>DFDD<

BGBDFED'M)

MP ("T150O2G1YO3C1 ","T150O2E1","")

RUN

Although this program looks formidable, it isn't. Except for the first

PLAY statement and the MP statement at the end, the rest of the statements

are simply the notes of the music which have nothing to do with the actual

programming. The piece, however, does illustrate some other program

ming features of the PLAY statement.

The first line defines the settings for only a single voice because the

prelude is played without harmony (until the last line of the program). The

first line defines the music to be played at a tempo of 150 (T150) and start

at octave 02. The LI6 at the end of the line is a new feature of the PLAY

statement. It means that all the notes following the L16 will be played as

sixteenth notes until a nonsixteenth note is written. But all the notes in the

prelude are sixteenth notes, so you can write the piece using just the note

names and not the kind of note. For example, in the "Silent Night" pro

gram, the notes are written F8 G4 A4, and so forth — a note name fol

lowed by a number to indicate the kind of note. But in the prelude, the notes

are written CEGDFA, note names not followed by a number. Without the

LI 6 feature, you would have had to write the notes asC16E16G16D16,

etc. To "turn off the statement that all notes will be sixteenth notes, you just

return to writing notes as before, e.g., C4 D8; as soon as the Amiga sees a

nonsixteenth note, the LI6 statement no longer applies.

SYNTHESIZED MUSIC 163

The L feature works with other note lengths as well. For instance, to

have a series of notes played as whole notes, you write an LI just before the

series; notes played as quarter notes can be preceded by an L4. Any of the

numbers that define the kind of a note can be used with this L feature.

Although the L feature is an obvious time saver in Bach's prelude, it

serves another purpose, too. Some notes can only be played correctly by

the Amiga when they are preceded by an L statement. For instance, a half

note played as a triplet of three half notes would have to be preceded by an

L3 in order to sound right. (Three half notes by themselves would not be

played at the proper beat.) The Amiga's L statements used most often are:

LI Whole note

L2 Half note

L3 One of a triplet of three half notes (1 /3 of a 4-beat measure)

L4 Quarter note

L5 One of a quintuplet (1 /5 of a measure)

L6 One of a quarter note triplet

L7 One of a seventh

L8 Eighth note

LI6 Sixteenth note

L32 Thirty-second note

L64 Sixty-fourth note

Intervening L statements, such as L9, LI0, LI8, and L30, can also pro

gram the Amiga, but are used infrequently in music and have rather abstruse

meanings. The L statement cannot be used with a pause (P) statement. Pauses

must be followed with a number such as P4 (pause for a quarter-note dura

tion).

One final word about the L statement. Like the rest of the notations

available with PLAY and MP, it can be written anywhere in the flow of the

music, not only in the first PLAY statement. For instance, if a piece of

music had a long passage in its middle consisting of notes all of the same

kind, you could write the appropriate L statement and then just the note

names. The Amiga would know that all the notes following the L statement

would be the same kind, until a note followed by a number was again

written.

164 The Amiga User's Guide to Graphics, Sound and Telecommunications

Although the L statement isn't used within the music lines of the pre

lude, another notation is. In the fourth PLAY statement, the first notation

is for an octave of Ol instead of for a note name. The octave notation is

there because the music calls for a G in octave 3 to be followed by a B in

octave 1 (the G is at the end of the previous line, the B follows the 01 at the

beginning of the fourth PLAY line). A < symbol to lower a note an octave

won't work for the B because it must be lowered two octaves and a < only

lowers the note one octave. Writing the B's octave in front of it does the

job. And, at the same time, illustrates how PLAY statement notations can

be added to the flow of the notes.

Another feature of the prelude program is that it does not use the VI $,

V2$, V3$, and V4$ format of the previous musical examples. Using the

straight PLAY statements for the program's lines works because the pre

lude is played with only one voice, i.e., no harmony. Those lines could

have been longer, up to 255 characters per line, but were written as shorter

statements so any typing errors could be found more easily. When writing

a long piece, breaking the notes up into a series of shorter statements can

help when you need to find typos. Also, if the music doesn't sound right,

it's easier to find the offending notes when the lines are both shorter and

coordinated in some way with the music. For instance, the lines of the pre

lude program contain the notes for either six or eight complete measures of

the composition.

The last line of the program plays a three-voice chord. Voice 1, which

has been playing the rest of the music, is programmed to play a whole note

C (Cl) at octave 3 (O3). Voices 0 and 2 have to be programmed to play at

the same tempo (T150); thus their definitions begin with T150. Voice 0 is

programmed to play a whole note G at octave 2 (02G1), and voice 2, a

whole note E also at octave 2 (02E1). Voice 3 is not used, so its definition

is the null value"".

As it's written, the notes for Bach's prelude are relatively straight

forward, although keeping the octaves at the right place is a bit tedious.

However, the piece presents another programming challenge. Each eight-

note measure is repeated once, which means that a looping program could

be written to repeat the measures and effectively cut the number of notes

you have to type by almost half. Many pieces of music are amenable to

similar programming shortcuts provided by the BASIC language.

SYNTHESIZED MUSIC 165

Some High-Tech Music: An Original Arrangement for the

Theme from Star Wars

The following arrangement of the Star Wars theme uses only three Amiga

voices. To remind you of the original movie, you could create "laser

sounds" or "R2D2 beeps" on the fourth voice and intersperse them with the

music. The music was composed by John Williams, the director of the

Boston Pops Orchestra. This "Star Wars" arrangement is not a series of

block chords as are "Happy Birthday" and "Silent Night." This selection

features "moving voices." For example, the melody moves quickly in

eighth notes (voice 1), while voices 2 and 3 are in quarter notes at several

points. Also, below a slow melody, voices 2 and 3 may move more

quickly. This adds variety and interest to the arrangement. Including

moving voices is to encourage you, especially if you're experienced with

music, to use the capability of the Amiga to produce two or more voices

simultaneously as independent musical lines. The arrangement uses all of

the programming steps described earlier. Remember to insert the music

into the PLAY program at the correct place (see Figures 8-2a, b,and c).

THE THEME FROM STAR WARS

Composed by J. Williams

Arranged by A.B. Myers

MP (" 7T120O2V9YT120O2V87T120O1V8")

V1 $ = ("L12DDDG2>D2L12C<BA>G2D4L12C<B

A>G2D4L12CC<A2L12DP12L12D

G2>D2L12C<BA>G2D4L12C<BA>G2D4

L12CC<A2L12DP12L12DE4.L8E>C<

BAGL12GABAP12L12EF + 4L12DP12

L12DE4.L8E>C<BAG",1)

V1.1 $ = ("O3D8.D16<A2L12DP12DE4.L8E>C<B

AGL12GABAP12L12EF + 4L12DP12L12D>L8

GFE - DC<B - AG>D2.L12<DDDG2>D2L12C<BA>G

D4L12C<BA>G2D4L12CC<A2L12DP12L12D",1)

V1.2$ = ("G2>D2L12C<BA>G2D4L12C<BA>G2D4

L12CC<A2>D4G4L12<GGG>G4<L12G

GG>G4<L12GGGG4",1)

166 The Amiga User's Guide to Graphics, Sound and Telecommunications

VI

STAR WARS-MAIN THEME

©
PAGE

V2 0

N

L

V3 0

N

L

2 / /

D D D

12 //

G D

2 2

3 2/3 /

C B A G D

12 / / 2 4

3 2/3 /

C B A G D

12 / / 2 4

3 2 3 2 2 2

C B C A D P D

12 / / 2 121212

2 3

G D

2 2

3 2/3 /

C B A G D

121212 2 4

2

D D D

12 //

1 2

B G

2 2

2 / /

E G G

4 2 4

2 / /

E G G

4 2 4

2 2 2 2

F D D P D

4 2 121212

1 2

B G

2 2

2 2 2

E G G

4 2 4

1 / /

D

12 //

1 / / /

G F+E D

4 / / /

2 12 1

C B D B

4 4 / /

2 12 1

C B D B

4 4 / /

1 1111

A F+ D D P D

4 4 4 121212

1 / / /

G F+E D

4 / / /

2 12 1

C B D B

4 4 4 4

VI

V2

V3

0

N

L

0

N

L

0

N

L

3 2 2 3 3 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2
C B A G D C B C A D P D E E C B A G GABAPEF+DPD E E C B A G
M212 121212 2 121212 4. 8 8 8 8 8 121212121212 4 121212 4, 8 8 8 8 8

2 2 1 1 2 1 2 1 1 2

D P D G G E A D P D G G E

121212 4. 8 4 4 121212 4.8 4

1 2 1 1 1 1 1 1 1 1 1 1

B D B F+D D P D C C G D D P D C C G

4 4 4 4 4 12 1212 ,8 4 4 121212 4. 8 4

Figure 8-2a

V2$ = ("L12DDD<B2>G2E4G2G4E4G2G4F4D2

L12DP12L12D<B2>G2E4G2G4E4G2G4F4D2

L12DP12L12D<G4.G8> E4C4<B4

>C4<A4>L12DP12L12D<G4.G8>E4C4",2)

V2.1$= ("F8.F16D2L12DP12L12D<G4.G8>E4

C4<B4>C4<A4>L12DP12L12D>C4<G4E4C + 4

F + 2.L12C<BAB2>G2E4G2G4E4G2G4F4D2L12

DP12L12D",2)

V2.2$ = ("<B2>G2E4G2G4E4G2G4F4D2F + 4G4L12

DDDB - 4L12E - E - E - G4L12DDD<B4",2)

V3$= ("L12DDDL4GF+ED>CDCD<B

SYNTHESIZED MUSIC 167

VI

V3

V2 0

N

L

STAR WARS-MAIN THEME

(5)

PAGE -ff 2

3 3 2 2 2

D D A D P D

8.16 2 121212

2 2 2 2 2

F F D D P D

8.16 2 121212

1111 1

B-B-F+ D P D

8.16 2 12 1212

2 2 3 2 2 2

E E C B A G

4. 8 8 8 8 8

112 2

G G E C

4. 8 4 4

111 1

C C G E

4. 8 4 4

2222 222 2

GABAPEF+DPD

121212121212 4 121212

1 2 12 2

B C A D P D

4 4 4121212

1 1 111

D E D D P D

4 4 4 121212

33333222

6 FE-DCB-A6

88888888

3 2 2 2

C G E C+

4 4 4 4

2 2 11

E- C G A

4 4 4 4

VI

V3

V2 0

N

L

3 2 2 2

D D D D

2. 121212

2 2 11

F+ C B A

2. 121212

2 1111111

DDDDDEFF+

4 121212 4 121212

2 3

G D

2 2

1 2

B G

2 2

1111

GF+E D

4 4 4 4

3 2 2 3 3

C B A G D

121212 2 4

2 2 2

E G G

4 2 4

2 12 1

C BOB

4 4 4 4

3 2 2 3 3

C B A G D

121212 2 4

2 2 2

E G G

4 2 4

2 12 1

C B D B

4 4 4 4

3 2 3 2 2 2

C B C A D P D

121212 2 121212

2 2 2 2

F D D P D

4 2 121212

1 1111

A F+ D D P D

4 4 4 121212

Figure 8-2b

AF + DL12DP12L12DL4GF + ED>CDC

D<BAF + DL12DP12L12DC4.C8

G4E4D4E4D4L12DP12L12DC4.C8G4E4",3)

V3.1 $ = ("B - 8.B -16F + 2L12DP12L12DC4.C8G4E4D4E4D4

L12DP12L12D>E - 4C4<G4A4>D4<L12DDDD4

L12EFF + L4GF + ED>CDCD<B

AF + L12DP12L12D",3)

V3.2$ = ("L4GF + ED>CDCD<BAF + 2>

C4<B4L12BBB>E - 4<L12AAAB4L12BBBG4",3)

MP("",V1$,V2$,V3$)

MP("",V1.1$,V2.1$,V3.1$)

MP("",V1.2$,V2.2$,V3.2$)

RUN

168 The Amiga User's Guide to Graphics, Sound and Telecommunications

STAR WARS-MAIN THEME

(24) (25)

PAGE JCT 3

VI 3 2 2 3 3 2 2 3 3 2 3 2 3 32223222 3 2 2 2 2

C B A G D C B A G C B C A D GGGGGGGG G G G G G

121212 2 121212 2 4 121212 2 4 4 1212 12 4 121212 4 121212 4

V2 0

N

L

V3 0

N

L

2 2 2 2 22222222 2 2 2 2 1

DF+ G D D DB-E-E-E- G D D D B

2 4 4 121212 4 121212 4 121212 4

1 1 1 1 2 1 2 1 1 2 11112 111 11111

GF+IE D BOB B D B F+C BBBBE-AAA B B B B G

4 4 4 4 4 4 4 4 4 2 4 4 1212 12 4 12 1212 4 12 1212 4

VI

V2 0

N

L

V3 0

N

L

Figure 8-2c

The program's first line first tells voice 0 not to play — the " " sig

nifies a null definition for voice 0. The rest of the line tells voice 1 (which

is for the melody) to play at a tempo of 120 and begin at octave 2. The V9

sets the volume for voice 1 at level 9, the loudest being 15. Voice 2 is set for

the same tempo, to begin at octave 2, and to be played at a slightly lower

volume (V8) than the melody. Voice 3 is the same as voice 2 except it

begins at octave 1 (Ol). The lines containing the Vx.x$ statements are the

notes of the music; the last three MP lines instruct the Amiga to play the

lines of notes in their proper order. Note that the first item in the MP state

ments is the " " for voice 0.

This program shows how to continue the music statements in case the

SYNTHESIZED MUSIC 169

number of notes gets too long for any one of the lines. VI. 1 and VI .2, for

instance, identify continuations of voice 1. The 1.1 just identifies voice 1,

continuation 1, and the 1.2 identifies voice 1, continuation 2. To the

Amiga, it doesn't matter what you name the continuations — they could

be X, Y, and Z. But you'll probably find that it helps to keep the names of

the continuations (VI. 1 and VI .2) similar to the first line (VI) of notes in

the set, so you know which lines belong together.

A Final Word about Programming Music

Music is becoming such a popular application of personal computers that

several magazines have sprung up devoted solely to the topic. Further

more, commercial programs designed to make writing music easier than it

is with BASIC programming are gaining widespread use. Generally, the

applications programs use screen graphics, such as a music staff, as well as

an on-screen list of notes to aid in the writing. One of the benefits of

knowing how to program music with the PLAY and SOUND statements is

that you will be able to better evaluate these commercial programs'

capabilities to see if they offer anything that you couldn't do in BASIC.

CHAPTER

9

Creating Sound

Waveforms

Ifyou connect an oscilloscope to a microphone and play a note on a musical

instrument, the waveform appearing on the oscilloscope screen represents

the sound produced by that particular instrument. The waveform may vary

a bit depending on the note, but its overall shape remains roughly the same

over the instrument's range. That waveform is known as the characteristic

waveform for that kind of instrument.

The characteristic waveform of a tuning fork is a simple sine wave.

Characteristic waveforms of musical instruments have more complex pat

terns, illustrating the sound's richness and "tone color." Irritating noises,

such as chalk grating on a blackboard, or random noise (white noise) pro

duce waveforms with no discernible pattern.

A few characteristic waveforms from different instruments are shown

in Figure 9-1.

The programs in this chapter are for creating waveforms easily. After

creating an instrument's waveform, you can assign it to an Amiga voice,

and that voice will play its sound as if it were that instrument. The music

171

172 The Amiga User's Guide to Graphics, Sound and Telecommunications

Figure 9-1

you programmed in chapter 8 can then be played as various instruments.

Voice 0, for example, could be a banjo, voice 1 a piano, voice 2 a drum,

and voice 3 a trumpet. Or perhaps use three voices for instruments and the

fourth one for singing. ("Daisy, Daisy" as sung by HAL the computer in

the movie 2007; A Space Odyssey?)

CREATING WAVEFORMS WITH THE WAVE COMMAND

The Amiga BASIC WAVE command creates waveforms. WAVE requires
an array of 256 numbers to create the waveform; the numbers plot a curve

along the x-axis of a graph to produce a tracing of a wave's shape. Each
number of the array represents the height of one point plotted on the curve.

The y-axis of the graph is from -128 to 127, which are the lowest and
highest numeric values the plotting points can have.

CREATING SOUND WAVEFORMS 173

Figuring out all 256 points and typing them in an array is a long job. To

shorten the process, the WAVE command has the capability for plotting

different sine curves. However, to get the complex plot of an instrument's

characteristic waveform, you still need to create the array.

A PROGRAM TO DRAW WAVEFORMS AUTOMATICALLY

The following wave-plotting program, called Wave Shaper, draws a

waveform as you drag the mouse across the screen. The program can also

produce the array of numbers that represents the drawn curve, and will put

the array in a file as a series of DATA statements. You can then use those

DATA statements to produce an instrument's characteristic waveform and

assign it to one of the Amiga's voices.

Type the program and save it in a file. To use it, load Amiga BASIC,

select the file, and run the program. Now drag the mouse and draw a curve

from one edge of the screen to the other. Release the button when the curve

is as you want it. To modify the curve, merely drag the mouse again to get

the curve you want.

Select Play from the menu to hear a brief scale of notes played

according to that waveform. Note that before the sound begins, the pro

gram calculates all 256 points in the curve; a counter on the screen tells you

how the program is progressing. If the notes sound as you want them to,

you can assign the waveform to an Amiga voice (as described later).

If you want to draw a new curve to change the sound completely,

select Clear from the menu and start again. This program is very sensitive

to waveshapes, so getting just the right sound can take a bit of trial and

error. But when you've got the one you want, save it in a file to build a

"waveform library." Then, as you program music, you can assign wave

forms to the voices without having to redraw the curves (see Figure 9-2).

WaveShape:

1 Declare the waveshape array

DEFINTw

DIM w(255), s(7)

' Define the functions that convert between

screen y-coordinates

174 The Amiga User's Guide to Graphics, Sound and Telecommunications

Figure 9-2

' (0..199) and the waveshape y-coordinates

(127..-128)

DEF FNSW(Y) = (63 - Y) * 2

DEF FNWS(Y) = 74 - INT(Y/2)

1 Set up menu options
i

MENU 1,0,1 ."Options"

MENU 1,1,1,"Play"

MENU 1,2,1,"Write"

MENU 1,3,1,"Clear"

MENU 1,4,1,"Quit"

SCREEN 2,320,200,3,1

WINDOW 2,"Wave Shaper",,12,2

CREATING SOUND WAVEFORMS 175

GOSUB ClearWave

FOR i = 1 TO 7

READ s(i)

NEXTi

DATA 523.25, 587.33, 659.26, 701.0, 783.99,

880.0, 993.0

' Finally, set up the interrupt handlers

ON MENU GOSUB MenuHandler

ON MOUSE GOSUB MouseHandler

MENU ON

MOUSE ON

' The infinite loop that follows is the "actual"

program

' All the real work is done by the two

"interrupt" handlers

WaitLoop:

GOTO WaitLoop

MouseHandler:

WHILE MOUSE(O) < 0

X = MOUSE(1)

Y = MOUSE(2)

IF (X<296) AND (X>39) AND (Y<139) AND (Y>10)

THEN

old = w(X-40)

IF old <> 0 THEN LINE (X,73) - (X,FNWS(old)),0

LINE(X,73)-(X,Y),1

w(X-40) = FNSW(Y-11)

END IF

WEND

RETURN

MenuHandler:

IF MENU (0) <> 1 THEN RETURN

Item = MENU(1)

IF Item = 4 THEN

WINDOW OUTPUT 1

WINDOW CLOSE 2

STOP

END IF

176 The Amiga User's Guide to Graphics, Sound and Telecommunications

ON Item GOSUB PlaySong, WriteSong, ClearWave

RETURN
>

ClearWave:

CLS

' Draw axis
i

LINE (39,11)-(39,138),1

LINE (40,11)-(40,138),1

LINE (40,73)-(295,73), 1

1 Title it

LOCATE2,1: PRINT" 127";

LOCATE 10,1: PRINT "0";

LOCATE 18,1: PRINT"-128";
»

' Zero out the waveshape table

FOR i = 0 TO 255

w(i) = 0

NEXTi

RETURN
>

PlaySong:

WAVE1,w

FOR i = 1 TO 7

SOUND s(i),10,,1

NEXTi

RETURN

WriteSong:

LOCATE 22,1: INPUT "File ";File$

IF File$ = ""THEN

LOCATE22,1: PRINT"

RETURN

END IF

OPEN File$ FOR OUTPUT AS #1

FORi = 0TO15

PRINT #1,"DATA";

FORj = 0TO15

PRINT #1,w(i*15+j);

IF j < 15 THEN PRINT #1,","; ELSE PRINT #1,""

NEXTj

NEXTi

CREATING SOUND WAVEFORMS 177

CLOSE #1

LOCATE 22,1: PRINT " *

RETURN

When you're finished drawing waveforms, select the Quit option from

the menu.

ASSIGNING WAVEFORMS TO AMIGA VOICES

Although it doesn't print them on the screen, the program can produce a

series of DATA statements containing the 256 numeric elements of the

array that you would have had to type using the WAVE command. These

numeric elements are what the Amiga needs to make one voice sound like

a different instrument.

Assigning waveforms to the Amiga's voices takes four steps:

1. Draw the waveform with the Wave Shaper program and save the

waveform's 256-element array in a file.

2. Load the PLAY program of the previous chapter.

3. Enter a short looping program in the PLAY program for each

voice that you want to assign a waveform.

4. Merge the files containing the DATA statements for that voice into

the PLAY program.

Step 1. As described, draw the waveform you want, then select Write

from the menu. A prompt asks for a filename. Type a device name and

filename such as dfl:wavelibl.dat and press the Return key. The DATA

statements are written to that file.

Step 2. Select Quit from the Wave Shaper menu and load the PLAY

program.

Step 3. In the PLAY program, find the two REM statements at the begin

ning that read "This is where the programs for assigning waveforms to the dif

ferent voices will go." At that position, enter the following looping program:

FOR i = 0 TO 255

READ W%(i)

NEXTi

WAVE n,W%

178 The Amiga User's Guide to Graphics, Sound and Telecommunications

Enter the voice number that you want to assign a waveform to at the n

in the line WAVE n,W%. For instance, to assign the waveform to voice 3,

type the program as WAVE 3,W%. If you want to assign waveforms to

more than one voice, enter a separate looping program for each voice. Use

a different variable name for each voice. That is, change W% in the second

looping program to another name such as T% or V%. Make sure to change

it in both the READ and WAVE statements. The values for n must be dif

ferent as well.

If the program doesn't have music in it yet, add the CALL PLAY and

CALL MP statements to the program. Those statements must be after the

looping programs.

Step 4. The last step to assigning the waveform to a voice is to merge

the DATA statements into the PLAY program. To merge one program into

another, you use the MERGE command as described in the Amiga BASIC

manual. At the end of the looping programs, but before the CALL PLAY

and CALL MP statements, type MERGE and the name of a file holding one

waveform's DATA statements. The filename is the one you typed after

selecting the Write option in Step 1. For example: MERGE

df1 rwavelibl .dat and press the Return key.

If you are assigning waveforms to multiple voices, add a MERGE

statement for each file. Make sure the order of the MERGE statements is

the same as the order of the looping programs in Step 3. For instance, if the

first looping program assigns a violin waveform to voice 3, the first

MERGE statement must name the file holding the DATA statements for the

violin waveform.

Once you have assigned all the waveforms to the voices, and entered

the music, run the PLAY program. If all four voices have their own

waveforms, you'll hear a four-instrument quartet.

A PROGRAM TO DRAW COMBINED WAVES

This program, called Plot Wave, is similar to the Wave Shaper in that it pro

duces waveforms for the Amiga. The main difference is that instead of

drawing the waveforms on the screen, you create them as the sum of two

mathematical equations. The equations can be trigonometric, such as sin

(x) and cos (2x-l), or simply arithmetic. The program then draws the

waveform for you.

CREATING SOUND WAVEFORMS 179

Type this program into a file and save it. To use the program, load

BASIC and load the file, and then run the program. The lines for changing

the mathematical equations are the last two in the program. Change the

equations and rerun the program.

Waveforms of summed mathematical equations that are pleasing to

the eye generally tend to be pleasant to the ear as well. "Rounded tones"

often have sweeping, round waveforms, while harsh sounds tend to have

jagged, angular waveforms. Try different equations to find pleasing tones.

PlotWave:

SCREEN 2,320,200,3,1
WINDOW 2,"Summed Wave Plot",,12,2

CLS

LOCATE 4,4

PRINT "Click mouse any time to quit"

ON MOUSE GOSUB MouseHandler

MOUSE ON

DIM s(256), wp%(256), n(8)

' Read in note values
>

FOR i = 1 TO 8

READ n(i)

NEXTi

DATA 220, 247, 262, 294, 330, 349, 392, 440
>

pi = 3.1415926535#

e = 2.7182818285#

tp = pi/128

x = 0

' Compute values for both waves and add them

together

1 Also find lowest and highest sum values
>

FORi = 0 TO 255

IF (i MOD 10) = 0THEN

LOCATE 6,4

PRINT i;

END IF

GOSUB Waves

sum = wavel + wave2

180 The Amiga User's Guide to Graphics, Sound and Telecommunications

IF i = OTHEN

max = sum

min = sum

ELSE

IF sum > max THEN max = sum

IF sum < min THEN min = sum

END IF

s(i) = sum

x = x + tp

NEXTi

' Compute values for scaling

max = CINT(max)

min = CINT(min)

delta = (max - min)/180

d2 = (max - min)/256

hw = (max + min)/2

' Indicate highest, middle, and lowest values
>

CLS

LOCATE 1,1: PRINT max;

LOCATE 13,1: PRINT hw;

LOCATE 23,1: PRINT min;

' Plot wave on screen

' Also initialize wp%() for note playing

FOR i = 0 TO 255

LINE (40 + i,97) - (40 + i,97 - (s(i)-hw)/delta)

wp%(i) = CINT((s(i) - hw)/d2)

IFwp%(i) > 127 THEN wp%(i) = 127

IF wp%(i) < -128 THEN wp%(i) = -128

NEXTi

' Now play ABCDEFGA with the computed wave

WAVE1,wp%

FORi = 1TO8

SOUND n(i),3,127,1

NEXTi

' Now just sit and wait for a mouse click

CREATING SOUND WAVEFORMS 181

WaitLoop:

GOTOWaitLoop

' Quit on mouse click

MouseHandler:

WINDOW OUTPUT 1

WINDOW CLOSE 2

STOP
»

' The two wave equations are placed here for ease

of modification
>

Waves:

wavel = SIN(x)

wave2 = SIN(100*x)

RETURN

Some examples of waveforms produced with this wave-summing-

program are shown in Figures 9-3a, b, and c.

182 The Amiga User's Guide to Graphics, Sound and Telecommunications

Figure 9-3a

CREATING SOUND WAVEFORMS 183

Figure 9-3b

184 The Amiga User's Guide to Graphics, Sound and Telecommunications

Figure 9-3c

Part IV

TELECOMMUNICATING

WITH AMIGA

CHAPTER

10

Reaching Out

On-Line

Telecommunications today is big business. Using one of the commercial

services, you can see stock market quotes almost as fast as a broker does,

news from the AP or UPI newswires, weather reports, sports scores,

abstracts of business reports, or any of hundreds of different types of infor

mation. These services usually cost an initial sign-up charge, charges for

each time you use the service and sometimes a monthly fee. There is also

the cost of the telephone call for the connection.

Private networks (known as bulletin boards), on the other hand, are

usually free, except for the phone call. Run by dedicated computer owners

called system operators, or "sysops" for short, the private networks spe

cialize in any number of topics. For Amiga owners, typical bulletin boards

carry dialogues concerning Amiga capabilities, announcements of new

programs, or questions about operating different Amiga features. Many of

the private bulletin boards also offer free Amiga software.

Although computer telecommunications is a relatively recent pheno

mena, the underlying concepts are over a hundred years old. It all began in

the 1800s with the telegraph.

187

188 The Amiga User's Guide to Graphics, Sound and Telecommunications

HOW COMPUTER COMMUNICATIONS CAME TO BE

In 1837 Samuel Morse (of Morse code fame) invented the first practical

telegraph. It converted long or short taps (the dots and dashes of the Morse

code) on a key to electrical pulses that were sent over wires to a receiving

key. As the electrical pulses passed through the receiving key, the same

pattern of long and short taps was duplicated enabling a telegraph operator

to decipher the message. Then in 1882 a Frenchman, Emil Baudot, bor

rowed the concept of the telegraph and invented the Teletype, considered

the true forerunner of today's data communications. Instead of a key that

tapped, he devised and built a rotating distributor much like the distributors

in today's automobiles.

Baudot's distributor rotated ten times per second and could send out

five pulses of electricity of equal length each second. He developed a code

by which letters and numbers could be represented by the five pulses, but

rather than having the code consist of long or short pulses, it was based on

whether an electrical current was turned on or off during the time when any

of the five pulses could be sent. It worked like this: one pulse of electricity

(called the start bit) was sent to the receiving distributor to start it rotating.

(An on/off pulse is nothing more than the familiar bit of a present-day com

puter byte.) Then, during each of the five equal time segments when pulses

could be sent, a current in the sending distributor would be either on or off

in a code pattern predefined to represent a keyboard character. Since the

receiving distributor could determine the same five-time intervals and

whether the current was on or off during each one, the receiving distributor

could duplicate the pattern of on and off currents and thus the code. The

sending receiver then stopped for a specific length of time (known as the

stop element) to allow the receiving distributor to get ready for the next

start bit. After the stop element, the next start bit was sent, followed by the

five-pulse code for the next character. The process would continue until all

the characters of a message were sent and received.

As they were received, the electrical pulse codes caused a character to

be printed on a paper tape, the familiar ticker tape (as in ticker tape parades

in New York City). Although still in use in some very old Teletype

machines, the Baudot code has been largely replaced by the ASCII code.

Computer communications concepts, however, are almost exactly the

same. In fact, the rate at which computers send data to one another is called

the baud rate in honor of Emil Baudot.

REACHING OUT ON-LINE 189

Baudot's communications method is known as asynchronous because

the distributors did not necessarily have to be synchronized to some

external clock. As long as the start bit and stop element were recognized,

time delays between the sender and receiver were ofno consequence. More

modern methods involve synchronous communications in which data is

sent based on the occurrence of ticks on the computers' internal clocks.

Data is transmitted more rapidly with a synchronous connection, but the

expense of such communications is currently high. Today, almost all com

munication between personal computers is asynchronous following the

principles established by Baudot.

When computers began to proliferate in the 1950s, and the necessity

of linking them together became apparent, engineers developed a method

using Baudot's concepts to send character codes over the telephone lines.

The problem was that telephone lines are designed to transmit electrical

signals which represent sounds, not simply on/off pulses of electricity. The

solution to the problem is the modem which translates on/off pulses into

high- and low-frequency tones that lie within the range of sounds the tele

phone system can transmit. The sending modem modulates the tones and

the receiving modem demodulates them. In fact the word modem is a con

traction of modulate-demodulate. Directing how the modem works with

the computer is the job of communications software.

Communications software establishes a series of rules which both the

sending and receiving computers must follow if data is to be correctly

transmitted. The rules, known as the communications protocol, consist of

such things as the baud rate of the transmission between the computers,

how to handle overload conditions, and how to check for errors.

PUTTING THE AMIGA ON-LINE

To connect an Amiga to a bulletin board or a commercial information ser

vice requires a modem, telephone, and communications software.

The Modem

Modems come in three standard forms: internal, acoustic couplers, and

direct-connect externals. An internal modem is a circuit board containing

all the electronic components necessary for modulating and demodulating

190 The Amiga User's Guide to Graphics, Sound and Telecommunications

A modem connects a computer to the telephone lines, but that's not

the only method of computer communications. You can also communicate

with other computers on networks known as local area nets, or LANs for

short. Often LANs connect a number of small computers to a large

mainframe through "hardwiring," meaning that they directly connect to

each other by a wire. Large businesses and the government use a lot of

LANs. Some LANs are also national and use the telephone lines too, but in

a different manner than modem communications. The idea behind them,

though, is the same. Your Amiga could be a "node" (participant) on a LAN,

but the necessary hardware and software to make all the connections cost

more than the Amiga itself.

a telephone's tones. The board also holds a plug outlet for connecting a

telephone cable directly to it. On other computers an internal modem is

mounted inside in a dedicated slot on the computer's main circuit board.

Because the Amiga has the connector for direct access to the CPU board, an

internal modem attaches there as if it were inside the computer itself.

The main advantage of an internal modem is that it doesn't comman

deer the serial port (called the RS-232), which is used for connecting some

printers and other peripherals. Having a printer and modem connected to a

single serial port is possible but requires a switchbox so you can switch

between operating one or the other piece of equipment. Normally you

won't be able to run them simultaneously, e.g., to print a message as it is

being received over the telephone lines.

An acoustic coupler modem looks like a small box with two soft

rubber cups, called a cradle, on its top. Tones sent from the Amiga activate

a tiny speaker in the modem's cradle cup that holds the telephone mouth

piece; received tones pass through the cradle cup for the earpiece. Acoustic

couplers attach to the Amiga's serial port.

These modems have formed the bulwark of models sold for home

computers. Their low price, availability, and general ease of operation

have long made them favorites. Also, for a number of years direct-connect

modems for personal computers were not allowed on the telephone lines by

the telephone company.

REACHING OUT ON-LINE 191

Although in widespread use, acoustic couplers do have their draw

backs. They need a separate power supply and electrical wall outlet. Also,

they fit only standard telephone handsets. For instance, decorator tele

phones or those with oddly shaped earpieces and mouthpieces do not fit

into the cradles. Another problem is their susceptibility to extraneous

sounds while in operation. The transmitted extra sounds can disrupt the

normal transmission of data. Few new acoustic couplers are being intro

duced on the market. Their former predominance is now the purview of

direct-connect external modems.

Direct-connect external modems look somewhat like the acoustic

couplers except they have no cradle for connecting the telephone handset.

A cable from the modem attaches directly to a telephone wall jack; another

cable attaches to the Amiga's serial port. The data passes directly over

these cables. Some direct-connect external modems have DIP (dual in-line

package) switches that you have to set before connecting the modem to the

Amiga. Occasionally, you also may have to reset the DIP switches when

communicating with different types of computers or changing the com

munications protocol. Resetting the DIP switches requires a screwdriver

and can take a fair amount of patience.

Direct-connect external modems are more reliable than the acoustic

couplers because no extraneous noises interfere with the tones. These

modems also tend to have more features, including the ability to transmit

data at higher speeds.

Modem Features

The main features to look for in a modem are baud rate, full/half du

plex, automatic answer, and automatic originate. Also important are

how it connects to the Amiga and which telephone standard the modem

uses.

Baud rate. Baud rate is the speed at which data can be sent through the

modem and over the telephone lines. Just as with Baudot's early Teletype,

not all of the signals sent through a modem are strictly for data. In today's

modems, a start bit is transmitted to signify that data is to follow, then a 7-

bit ASCII code representing a unique character is sent, followed by a parity

bit to check that the code was correctly received. A stop bit then signifies

that the communication is to stop until the next start bit is sent. Start bit,

parity bit, 7-bit code, and stop bit add up to 10 bits that have to be sent for

192 The Amiga User's Guide to Graphics, Sound and Telecommunications

each character that is transmitted. The rate at which the 10 bits are sent and

received is known as the baud rate.

Technically, baud rate is what engineers call "the number of electrical

events" that occur when data is being transmitted. This includes all the bits,

but also includes other electrical on/off pulses and timing intervals that

modems use when communicating. Practically speaking, baud rate is

synonymous with bits per second (bps) as long as the rate is under 1,200

baud. Although most people use baud rate and bps interchangeably —

i.e., 1 baud is 1 bit per second — the terms are not quite synonymous.

The Amiga can handle a maximum baud rate of 19,200; however,

rates above 4,800 are generally for synchronous communications. The

higher-speed modems usually cost more and may require high-quality tele

phone transmission lines, since any slight interruption in the transmission

of data will cause loss of lots of bits. Practically speaking, an Amiga

modem's maximum rate for most personal uses is 2,400. The three most

common baud rates available with modems for microcomputers are 300,

1200, and (recently) 2400. Many modems can transmit at different baud

rates and have a switch for selecting among them.

To communicate, modems must be set to the same baud rate. If a

modem is set at 300 baud but receives data sent at 1,200, no proper com

munication occurs. Having a modem with the capability of multiple baud

rates gives the Amiga the capability to communicate with a wider range of

other computers. In everyday terms, baud rate by itself has little meaning.

It needs to be related to the data that you want to send or receive. For

instance, suppose you have a modem that transmits at 300 baud; since 10

bits represent 1 character and 300 baud is about equivalent to 300 bits per

second, the modem can transmit 30 characters per second. A standard 8 1/2-

by-11-inch page of double-spaced typewritten paper contains about 1,500

characters; thus that one page of text would take about 50 seconds to trans

mit. A modem transmitting at 1200 baud would take about 13 seconds to do

the same job.

A trade-off calculation when purchasing a modem is how much more

telephone calls will cost you for the extra time spent transmitting with the

lower-speed, lower-cost modem. If you plan to have the computer tele

communicating often, the initial higher cost of the higher-speed modem

may quickly be offset by lower telephone bills. By calculating the time it

takes to transmit data and multiplying that by the cost of a telephone call,

you'll get some rough idea of how much it costs to telecommunicate.

REACHING OUT ON-LINE 193

Full/half duplex. Everyday telephone conversations are simultaneous

two-way communications; both parties can talk and hear at the same time.

This kind of communication is known as/w// duplex. Citizen's band radios

and some speaker telephones do not have this capability; you can either talk

or listen but not both simultaneously. On CB radios you signify that you're

done talking by saying "over" (or in today's trucker slang "c'mon"), letting

the other person know that it's his or her turn to talk. This "one way at a

time" communication is called halfduplex. Another kind of one-way com

munication is called simplex. This is how your radio or TV works — it can

receive but not transmit.

Modems are normally half or full duplex. Simplex modems are usu

ally for Teletypes and other electronic equipment. Full-duplex modems are

generally more expensive but have a feature, known as echoing, that helps

maintain accurate communications. Echoing is a way to check that the data

is being sent and received correctly. For instance, when data is sent from

one computer to another, the sending computer cannot be totally sure the

data was received correctly. Needed is a method to compare what was sent

with what was received. With full-duplex communications, computer A

transmits data to computer B, and then computer B retransmits the same

data back to computer A for comparison. Computer B is said to be echoing

the data that it received. Echoing is like having a conversation with another

person who listens to what you have to say and then says, "To make sure

I've got this right, let me repeat what you've just said." Full-duplex

modems can echo; half-duplex modems cannot.

Turning the echoing on (many modems have the capability to turn

echoing on and off), from your point of view, makes the modem behave as

if it were a half-duplex device. That is, by echoing the data that was ini

tially transmitted, the computers are carrying on a full-duplex conversa

tion, but you must wait until that conversation is done before transmitting

or receiving further data. In essence, the computers tell you "over" and

then you can type in more data to be transmitted. It comes down to a half-

duplex conversation as far as you're concerned.

Automatic answer. This feature of a modem, usually known as auto

answer, makes your Amiga act like a telephone answering machine. You

turn on the computer, prepare it for receiving data sent over the telephone

lines, switch on the auto answer button on the modem, and then leave it

alone. Messages sent to the computer are automatically received and stored

in the Amiga's memory. You do not have to attend the machine. Upon

194 The Amiga User's Guide to Graphics, Sound and Telecommunications

returning to the computer, you'll be able to tell if any data has been

received, usually by a message on the screen stating that data was sent to

your computer and stored in its memory. Auto answer can be switched off

so you can operate the modem manually.

The auto-answer feature of telecommunications is a prime example of

the value of multitasking. Your Amiga can receive messages while you're

working on something else, giving you the option of manually taking the

call or electing to have it routed to your machine. The communications

software, running at the same time as your other programs, will not inter

rupt your work.

Automatic originate. Like auto answer, this feature of a modem is for

its unattended operation. You can prepare data to be sent but have the com

puter send it when the telephone rates are lower. Auto originate will dial

the proper telephone numbers automatically, make the connections with

the other computer, and transmit the data by itself. Auto originate can be

switched on or off.

Telephone standards. Modems are sometimes grouped by their tele

phone standards. Known as Bell System standards, they define the tone

frequencies and signal characteristics the modem must produce to be com

patible with the telephone system. The most common standards are Bell

103 and 212A for, respectively, 300 and 1,200 baud, full-duplex modems.

Other standards are Bell 113 A and B and 202 for modems that operate at

300 and 1,200 baud, half duplex. The modem you acquire for the Amiga

must meet one of the standards in order to work on the Bell system.

The Telephone

Often overlooked when planning to connect an Amiga to the telephone

lines, the telephone itself needs to be considered as part of the system.

Some modems work with touch tone telephones, but not with rotary dial.

Most modems, however, have provisions to work with both types. The

jargon phrase for tone dialing is DTMF which stands for "dual-tone modu

lated frequency"; rotary telephones are indicated by the phrase "pulse

dialing."

In businesses, telephone service routed through a switchboard or

extension number may not be sufficient for computer communications.

Computer-to-computer communication usually requires a direct connec

tion. For example, auto originate and auto answer won't work with switch-

REACHING OUT ON-LINE 195

boards because the computers are expecting a conversation in electrical

signals and don't know what to do when a person answers.

The quality of the telephone line can also be important. A poor-quality

connection may ruin telecommunications, especially if static or other

noises constantly occur on the line. A few years ago the telephone company

suggested sending electronic data only over expensive, high-quality lines.

With the proliferation ofhome computers and their linkups with other com

puters, this suggestion has been quietly dropped.

Some of the newer features of telephones can also upset computer

communications. Call Waiting, for instance, interrupts calls with a

clicking noise to signify another incoming call. Computers try to interpret

the clicks as data, causing a loss of the real data. The auto-dialing feature

of a telephone (it automatically dials and redials a number until someone

answers) can also ruin computer communications.

Communications Software

If all computers were the same, there would be little need for the many

types of communications software available today. All of the instructions

for transmitting data would be in each computer's ROM. But because of

the differences among computers, more communications software pro

grams are currently available than brands of computer.

The first and most crucial trait of the software is the choices of settings

it provides for the Amiga and its modem. As described earlier, three main

modem features are baud rate, full or half duplex, and echoing. Other fea

tures are parity checking, number of data bits per character, and a feature

known as/Zow control.

Parity checking is a method of verifying that data is transmitted correctly.

The sending computer adds an extra bit to each byte so the total number of

bits per byte is always either odd or even. The receiving computer checks for

the odd or even condition — the byte's parity. If a bit was lost, the parity is

incorrect and the computer knows a transmission error occurred. Communica

tions software usually offers you the choice ofparity set at odd, even, or none.

The number of data bits per character describes the number of bits

used to describe each character. Normally the choice is 7 or 8. The Amiga

usually will use 7. In computer jargon this is sometimes called the "word

length" (a character being a complete word to a computer); at other times

the length is merely referred to as "data bits."

196 The Amiga User's Guide to Graphics, Sound and Telecommunications

Flow control assures that the amount of data sent to a computer does

not overwhelm its capabilities. When data is transmitted, the receiving

computer temporarily stores the data in a RAM buffer. A buffer is simply a

memory area for holding the received data until the computer can process

it. For slow transmission rates, the receiving computer can process data as

it arrives, the buffer never fills, and data can be transmitted continuously.

But if the transmission rate is high (usually 1,200 bps or over), data is

received faster than it can be processed, filling the buffer. The receiving

computer then has to tell the sending computer to stop transmitting until the

data in the buffer can be processed. Flow control is the method computers

use to stop transmitting when the buffer is full and to start again once the

buffer is empty.

The traditional commands of flow control are XON and XOFF. XON

stands for "transmission on" and XOFF means "transmission off." XOFF

is usually ASCII code for Ctrl-S; XON is usually ASCII code for Ctrl-Q.

With the flow control option turned on, the computers send the XON/

XOFF messages automatically. You do not have to type any of the keys

manually.

Other typical options of communications software are for setting the

screen to 40 or 80 characters, and for using AmigaDOS to find and retrieve

files during the communication connection.

A FREE COMMUNICATIONS SOFTWARE PROGRAM

Many Amiga bulletin boards offer a free communications software pro

gram known as AmigaTerm. It works with most modems and has many of

the features you will need for telecommunicating. There are two items

you'll need to resolve before using AmigaTerm: (1) you'll need some com

munications software to connect to the bulletin boards in order to get

AmigaTerm downloaded to your machine and (2) AmigaTerm needs to be

compiled with the Lattice C compiler program.

The following two programs can be used as communications software

for your Amiga. The first one makes the Amiga a "dumb terminal" and is

for connecting with a bulletin board. You'll be able to send and receive

messages, but you can't download files. The second program is a "terminal

emulation" program that provides the ability to upload files to the network

and download files to your Amiga. To run these programs, you only need a

REACHING OUT ON-LINE 197

modem already connected to your Amiga. After getting the AmigaTerm

program in one of the downloaded files, get it compiled by either pur

chasing the compiler program yourself or finding a friend (or bulletin board

acquaintance) who will compile the AmigaTerm program for you.

THE DUMB TERMINAL PROGRAM

flitk lew - trail! cw
It«s is O »■ 9* Mm

; 1st fl* BC iff Is staft

Kari Rate 3R * «»> ?

id ft rainsJ tenltM aliiitf

Figure 10-1

InitDumbTerm:

DEFINTa-z

SCREEN 2,640,200,1,2

WINDOW 2,"Dumb Terminal Emulator",,31,2

198 The Amiga User's Guide to Graphics, Sound and Telecommunications

1 Set up constants and flags

true = (1=1)

false = NOT true

ESC$ = CHR$(27)

1 Let user select communications parameters

CLS

PRINT

PRINT "Simple Term - terminal emulator with

minimal download ability"

PRINT" Items in () are the defaults."

PRINT" Use the ESC key to start over."

PRINT

GetBaudRate:

INPUT "Baud Rate 300 or (1200) ";baud$

IFbaud$ = ESC$THEN InitSimTerm

IFbaud$ = ""THENbaud$ = "1200"

IF (baud$ <> "300") AND (baud$ <> "1200") THEN

PRINT "**";

GOTO GetBaudRate

END IF

PRINT

GetParity:

INPUT "Parity: e, o, or (n) ";parity$

IF parity$ = ESC$THEN InitSimTerm

IF parity$ = "" THEN parity$ = "n"

IF (LEN(parity$) > 1) OR (INSTR("eonEON",parity$)

= 0) THEN

PRINT"**";

GOTO GetParity

END IF

PRINT

GetDataBits:

INPUT "Data bits: 7 or (8) ";dbit$

IFdbit$ = ESC$THEN InitSimTerm

IFdbit$ = ""THENdbit$ = "8"

F (dbit$ <> "7") AND (dbit$ <> "8") THEN

PRINT"**";

GOTO GetDataBits

END IF

REACHING OUT ON-LINE 199

PRINT

GetDuplex:

INPUT "Full or Half Duplex: (F) or H ";duplex$

IFduplex$ = ESC$THEN InitSimTerm

IFduplex$ = ""THENduplex$ = "F"

IF (LEN(duplex$) > 1) OR (INSTR("fhFH",duplex$)

0) THEN

PRINT"**";

GOTO GetDuplex

ELSE

HalfDuplex = (INSTR("hH",duplex$) > 0)

END IF

' Now that the selections have been made, open the

serial port

OPEN "com1:" + baud$ +"," + parity$ +"," + dbit$ + ",1" AS

1

CLS

PRINT "com1:" + baud$ +"," + parity$ + "," + dbit$ + ",1"

TerminalLoop:

WHILE LOC(1)<>0

i$ = INPUT$(1,1)

PRINT i$;

WEND

i$=INKEY$

IFi$ = ESC$THEN EndTerminal

IF i$<>"" THEN PRINT #1,1$;

IF HalfDuplex THEN PRINT i$;

GOTO TerminalLoop

EndTerminal:

WINDOW OUTPUT 1

WINDOW CLOSE 2

STOP

As described by the remark statements throughout the program, dif

ferent sections create settings for baud rate, parity, data bits, and duplex.

The actual communications section of the program is labeled "Terminal

Loop." It simply waits for a character to be received, and when one is, it's

printed to the screen. If the character is the Esc key, the program stops.

200 The Amiga User's Guide to Graphics, Sound and Telecommunications

To use this program on your Amiga, type it into a BASIC file. When

you're ready to communicate with a bulletin board:

1. Make sure the modem is connected and turned on.

2. Load the program from its file (double-click on its icon).

3. On the Output screen, type Run; the choices for the communica

tions parameters (baud rate, parity) appear one at a time.

4. Fill in the choices for each of the parameters; to select the default

parameters, press Return (for many bulletin boards, the default

values are the ones you want).

5. Press the CapsLock key (many modems only accept uppercase

characters (Hayes modems and Hayes-compatible modems have

this restriction).

6. Type ATDT if you have a Hayes or Hayes-compatible modem

(see your modem instructions for the characters you type for

other brands of modems). The ATDT is for automatic dialing by

the modem. If you have an acoustic coupler, you have to dial the

number yourself.

7. Type the telephone number of the bulletin board (or if you have

an acoustic coupler, modem dial it on the telephone) and press

Return.

8. A message tells you when the dialing is complete. The modem

makes various ringing and connection noises.

9. When a message appears saying Connect, press Return. Depend

ing on the bulletin board, a log-in message of some type appears,

and you type the log-in sequence of characters and press Return.

10. You then usually type in a name, and sometimes a password.

And you're connected.

11. Breaking the connection depends on the bulletin board. Some

require that you type Bye and press Return; others want you to

tyPe Q/fand press Return. The instructions you get when you

first join will explain the log-in and log-out procedures.

12. Once the connection is broken and you're back at the Amiga

screen, press Esc to end the DumbTerm program. You can now

progress with any other Amiga program.

REACHING OUT ON-LINE 201

THE SIMPLE TERMINAL EMULATOR PROGRAM

This type of program is also called a simple "ASCII capture" program. It

can send and receive ASCII characters, to or from files. Within the pro

gram, the word logging refers to the Amiga receiving characters from the

serial port — i.e., the characters are being logged into a file. Then the

characters are written from the file to the screen. Use this program to down

load a file holding the AmigaTerm program (Figure 10-2).

Figure 10-2

InitSimTerm:

DEFINTa-z

SCREEN 2,640,200,1,2

WINDOW 2,"Simple Terminal Emulator",,31,2

202 The Amiga User's Guide to Graphics, Sound and Telecommunications

' Set up constants and flags

true = (1=1)

false = NOT true

ESC$ = CHR$(27)

logging = false

' Set up menu and menu interrupt handler

MENU 1,0,1 ."Options"

MENU 1,1,1,"Open Log File"

MENU 1,2,0,"Close Log File"

MENU1,3,1,"UploadaFile"

MENU 1,4,1,"Exit Terminal"

ON MENU GOSUB MenuHandler

MENU ON

' Let user select communications parameters

CLS

PRINT

PRINT "Simple Term - terminal emulator with

minimal download ability"

PRINT" Items in () are the defaults."

PRINT" Use the ESC key to start over."

PRINT

GetBaudRate:

INPUT "Baud Rate 300 or (1200) ";baud$

IF baud$ = ESC$ THEN InitSimTerm

IFbaud$ = ""THENbaud$ = "1200"

IF (baud$ <> "300") AND (baud$ <> "1200") THEN

PRINT"**";

GOTO GetBaudRate

END IF

PRINT

GetParity:

INPUT "Parity: e, o, or (n) ";parity$

IF parity$ = ESC$THEN InitSimTerm

IF parity$ = ""THEN parity$ = "n"

IF (LEN(parity$) > 1) OR (INSTR("eonEON",parity$)

= 0) THEN

PRINT"**";

GOTO GetParity

REACHING OUT ON-LINE 203

END IF

PRINT

GetDataBits:

INPUT "Data bits: 7 or (8) ";dbit$

IF dbit$ = ESC$THEN InitSimTerm

IFdbit$ = ""THENdbit$ = "8"

IF (dbit$ <> "7") AND (dbit$ <> "8") THEN

PRINT"**";

GOTO GetDataBits

END IF

PRINT

GetDuplex:

INPUT "Full or Half Duplex: (F) or H ";duplex$

IFduplex$ = ESC$THEN InitSimTerm

IFduplex$ = ""THENduplex$ = "F"

IF (LEN(duplex$) > 1) OR (INSTR("fhFH",duplex$)

0) THEN

PRINT"**";

GOTO GetDuplex

ELSE

HalfDuplex = (INSTR("hH",duplex$) > 0)

END IF

1 Now that the selections have been made, open the

serial port

OPEN "com1:" + baud$ +"," + parity$+"," + dbit$ +", 1" AS

1

CLS

PRINT "com1:" + baud$+"," + parity$ +","+dbit$ + ",1"

PRINT

TerminalLoop:

WHILE LOC(1)<>0

i$ = INPUT$(1,1)

PRINT i$;

IF logging THEN PRINT #2,i$;

WEND

i$=INKEY$

IF i$<>"" THEN PRINT #1,i$;

IF HalfDuplex THEN PRINT i$;

GOTO TerminalLoop

204 The Amiga User's Guide to Graphics, Sound and Telecommunications

MenuHandler:

IF MENU(O) <> 1 THEN RETURN

ON MENU(1) GOSUB OpenFile, CloseFile, UploadFile,

EndTerminal

RETURN

OpenFile:

PRINT

PRINT "Name of file (Return to cancel)";

INPUT Filenames

IF Filename$ = ""THEN RETURN

' Turn off Open option and turn on Close option

MENU OFF

MENU RESET

MENU 1,0,1,"Options"

MENU 1,1,0,"Open Log File"

MENU 1,2,1,"Close Log File"

MENU1,3,1,"UploadaFile"

MENU 1,4,1,"Exit Terminal"

MENU ON

OPEN Filenames FOR OUTPUT AS #2

logging = true

RETURN

CloseFile:

1 Turn on Open option and turn off Close option

MENU OFF

MENU RESET

MENU 1,0,1,"Options"

MENU 1,1,1,"Open Log File"

MENU 1,2,0,"Close Log File"

MENU1,3,1,"UploadaFile"

MENU 1,4,1,"Exit Terminal"

MENU ON

CLOSE #2

logging = false

RETURN

UploadFile:

PRINT

PRINT "File to upload (Return to cancel)";

REACHING OUT ON-LINE 205

INPUT upload$

IF upload$ = ""THEN RETURN

OPEN upload$ FOR INPUT AS #3

WHILE NOT EOF(3)

WHILE LOC(1)<>0

i$ = INPUT$(1,1)

PRINT i$;

IF logging THEN PRINT #2,i$;

WEND

i$ = INPUT$(1,#3)

PRINT #1,i$;

IF HalfDuplex THEN PRINT j$;

WEND

CLOSE #3

RETURN

EndTerminal:

IF logging THEN CLOSE #2

WINDOW OUTPUT 1

WINDOW CLOSE 2

STOP

Unlike the previous program, this one uses the Amiga's menu

capabilities. The menus are: Options for setting the communications

parameters, Open and Close a log file, Upload a file for sending it to

another computer, and Exiting the program. The MENU statements each

have three numbers following them. These numbers describe the state of

the menus. For example, in the statement MENU 1,2,0, the 1 refers to the

first menu on the screen (there is only one for this program), the 2 refers to

the selection within the menu (Close log file for this program), and the 0

refers to the state of the menu item (whether it's active or not; a 0 means the

item is not active and you cannot select it, a 1 means it is active). Close log

file will be inactive, for example, if you haven't opened the file yet (so

choosing Close log file makes no sense). The MENU statements in the pro

gram are for changing the state of the menu items.

The numbers, #1, #2, and #3, in the program refer to the serial port

and files being opened and closed. This program reads characters from the

serial port and sends them to a file, or reads from a file and sends the

characters to the serial port.

If the Uploading seems to send files with no carriage returns, but with

line feeds instead (the text will be arranged haphazardly on the screen), you

206 The Amiga User's Guide to Graphics, Sound and Telecommunications

can add an extra statement to the program to solve the problem. In the

Upload section of the program, type in the line:

IF 1$ = CHR$(10) THEN PRINT#1 ,CHR$(13)

right after the line

i$ = INPUT$(1,#3)

The process for using this program on your Amiga is similar to the

process for using the DumbTerm program, except you have menus and

more options for sending and receiving data.

First, type the program into a BASIC file and save it. When you're

ready to communicate with the program:

1. Make sure the modem is connected and turned on.

2. Load the program from its file.

3. On the Output screen, type Run; the menu appears.

4. Select the Choices menu and enter the communications para

meters (baud rate, parity) that you want.

5. Fill in the choices for each of the parameters; to select the default

parameters, press Return. If you make a mistake selecting the

choices, a "**" appears and that section of the program starts

again; simply type in a correct choice.

6. Press the CapsLock key.

7. Type ATDT if you have a Hayes or Hayes-compatible modem.

8. Type the telephone number.

9. A message tells you when the dialing is complete.

10. When a message appears saying Connect, press Return.

Type the log-in sequence.

11. As before, breaking the connection depends on the bulletin board.

12. To leave the terminal program, select "Exit Terminal" from the

menu.

When you select the upload or download file options, a space appears

for you to type a name for the file. Type an Amiga device name and the file-

REACHING OUT ON-LINE 207

name, such as dfl.downfl.txt, where dfl is the Amiga BASIC term for an

external drive attached to the computer and downfl.txt is the filename. As

soon as you finish typing the filenames and press Return, the Amiga begins

sending or receiving information. If you're sending more than one file,

repeat the process for each one.

To upload or download a file, first make sure both you and the other

computer are ready to send and receive. If you are going to upload a file,

make sure the other computer has already named and opened a file so the

Amiga has someplace to send the data. If you're going to download a file,

select the download file option and name the file before telling the other

computer to send the data. Failing to open and name the files first doesn't

interrupt communications, it just means that the data disappears on the

wires. A hint for long files: set the baud rate at 300. It may cost you more in

terms of the telephone call, but there is less chance for a communications

malfunction at the lower speed. Use the 300 setting for getting the

AmigaTerm program. It is about 40K and will take about 45 minutes on the

telephone, but you'll be sure to get it all.

THE AMIGA ON-LINE

Once your modem, telephone, and Amiga are connected, and you have

some communications software, you're ready to put the Amiga on-line.

For communications to commence, one computer has to be designated a

"terminal" and the other designated the "host," because two hosts or two

terminals cannot communicate. The technical reason for this requirement

is that two hosts or terminals would try to send data using the same trans

mission frequencies on the telephone line, hopelessly mixing the data

being sent from one to the other. Fortunately, you do not have to be con

cerned with determining which is which; the communications software

does the job for you automatically.

The host/terminal concept is analogous to the connection of a printer

to your Amiga. The Amiga is the host having computing capabilities, the

printer simply receives data from the host. When two computers are con

nected, the signals pass over the serial port (the same one that attaches

some printers to the Amiga), "tricking" the computers into seeing the tele

communication as identical to the printer connection. "Terminal emulation"

is the term that describes designating one computer the terminal and the

208 The Amiga User's Guide to Graphics, Sound and Telecommunications

other the host. Knowledge of this concept is necessary when using software

that asks questions like "Host echoing required?" — meaning that the host

sends a copy of received data back to the Amiga's screen.

Many terminal-emulation programs require that the microcomputer

act strictly as a terminal — no computing, processing, or getting files —

while the communication is in progress. With the Amiga's multitasking

abilities, however, you can run the terminal-emulation program simulta

neously with other programs and computer functions.

Handshaking and Protocol

After you establish the proper host/terminal relationship, communications can

begin. The two computers send messages to each other that describe exactly

how the communications will occur, how data will be transmitted, which XON

and XOFF characters will be correct, and so forth. This setup process, known

as "handshaking," is strictly between the computers. The agreed upon com

munications process is called the protocol. The communications software

completes the handshaking and establishes the protocol automatically.

The baud rate, parity, and other settings define the major portion of

the protocol. If the computers have some incompatibilities, such as

unequal baud rates, the handshaking will not occur and communications

will not take place. Should that situation occur, changing the settings for

the Amiga or other computer often rectifies the problem.

Following a successful handshaking, the real communications can begin.

If you are sending data to someone else sitting in front of an Amiga computer,

the screen may at first be blank or show a few messages identifying the status of

communications (e.g., one message may be simply "communicating"). But,

as you type data on the screen, it passes over the telephone lines and appears

on the other computer's screen at almost the same time it appears on yours.

In addition to typed data, the Amiga can send data directly from files,

or if the communications software has the capability, from multiple files in

sequence. Furthermore, using the Amiga's multitasking capabilities,

transmitted data can be simultaneously displayed on the screen, stored on a

disk, and printed on a printer.

Troubleshooting Communications

Computer communications is still in its infancy and problems frequently

occur. In fact, telecommunications without problems is considered

REACHING OUT ON-LINE 209

unusual. Here are ten of the most common problems, but the list is by no

means complete.

Communications will not begin. Usually the handshaking require

ments are not being met — for instance, the baud rates are not the same or

perhaps a modem's DIP switches need resetting. Of course, both com

puters must be ready to transmit and receive data before communications

will begin. Something as ordinary as an unplugged modem has been known

to cause hours of frustration. A loose-fitting rubber cup on an acoustic

coupler modem may also prevent communications.

A connection will not occur if the telephone lines are busy or if the

serial port normally used for the modem is running a printer. Likewise, the

connection fails if the computers send signals that indicate they are both

hosts or both terminals. In cases that require a password or specific log-in

procedure, failure to type the proper password or to follow the log-in pro

cedure usually causes the communications connection to wait. Occasion

ally, typing a wrong password "hangs up" the telephone.

Received information is unintelligible. Usually the options in the

communications software are set incorrectly, but not bad enough to pre

clude handshaking or transmission. Stop the communications, change the

settings so they match for the two communicating computers, then transmit

the data again.

Some received information is readable, but other is unintelligible.

Every so often a computer will not send or receive a bit. This is known as

"dropping a bit" and is a technical shortcoming of computer communica

tions. Although infrequent, and the intended target of parity checks, it still

happens.

Sometimes a noisy telephone line is at fault. If that's the problem,

whole sentences and paragraphs are normally incorrect; rarely are just one

or two letters wrong.

Control characters or other extra characters can also cause the prob

lem. For instance, formatting characters for text in a word-processing file

may be interpreted by the receiving computer as other characters. The

received text then appears garbled. Some communications software

includes a special command just for this situation. Known as "Filter" or

"Translation Table," the command catches the extra characters and filters

them from the data. Another solution is to send writing as an ASCII (or

AmigaDOS) file. ASCII files do not contain formatting control characters.

The format of the transmitted and received data differs. Some com

munications programs can set the Amiga's screen format to match the other

210 The Amiga User's Guide to Graphics, Sound and Telecommunications

computer's screen. Usually the setting is 40 or 80 columns to be displayed

on the screen, although other settings are possible. Having both computers

set at the same screen width helps maintain format consistency, especially

for text.

Spreadsheets, charts, graphs, tables, and graphics, on the other hand,

are often out of kilter, regardless of the format settings. This occurs

because control characters used to create the data do not serve the same

function on the receiving computer. Seeing such data in its original form

usually takes some creative reconstruction and reformatting. These kinds

of formatting problems can be difficult to solve.

Not all the transmitted data is received. If transmission is at higher

baud rates and the flow control setting (XON/XOFF) is not operating,

data is lost when the receiving computer's buffer is full. To rectify this

problem, turn on the flow control. You may also run into peculiar problems

that lose data. For example, data transmitted from disks with 8 storage sec

tors (common on the IBM PC) to an Amiga disk with 11 sectors might

extend the left margin of the data beyond the screen, losing the beginning

of each line. To fix the problem, reformat the Amiga disk to receive only 8

sectors.

Data appears only on one screen line. When this situation occurs, one

line of data appears and is then overwritten by the next line of data. The rest

of the screen stays blank. Almost always, this problem is due to the absence

of a line-feed character at the end of each data line. Without a line feed, the

receiving computer does not move down the screen to the next line. Most

communications software has instructions for sending a line-feed

character.

Data is printed on every other line of the screen. This problem is the

opposite of the previous problem. If the sending computer is transmitting a

line feed at the end of each line and the receiving computer is automatically

inserting one too, the data is printed on every other screen line. The solu

tion, obviously, is to turn off one of the two (but not both) sources of the

line-feed character.

Typed data doesn't appear on the screen or each character appears

twice. This is usually a problem with the combination of software settings

for echoing and full/half duplex. Either the characters aren't being echoed

or they are being echoed twice. Characters being echoed twice llooookk

lliikkee tthhiiss. To rectify the problem, change the setting for either

echoing or full/half duplex. If that doesn't work, see ifthe communications

REACHING OUT ON-LINE 211

software differentiates between host echoing and local echoing and try

those options.

The communications link abruptly disconnects in the middle oftrans

mitting. This exasperating problem occurs all together too often and is usu

ally of mysterious origin. Simple causes are: someone at either end of the

communications picking up an extension telephone; Call Waiting clicking

noise; other spurious line noise such as pops and crackles from lightning or

other electrical disturbances.

Harder to diagnose are problems that have strictly electronic origins.

For example, if XON/XOFF is turned on and the data being transmitted

includes the characters the receiving computer recognizes as those that

start and stop transmission (e.g., the control key followed by a Q or 5), the

computer may sense those symbols as being for flow control and turn off

the transmission. Likewise, symbols in the data that the receiving com

puter treats as interrupts or pauses in the transmission may also cause the

communications to end. Quite often these kinds of problems defy any

reasonable attempt to solve them. Retransmission is normally the

attempted recourse.

The receiving computer "freezes up." Although many computer

manufacturers don't like to admit it, a number of machines just stop for no

apparent reason in the middle of communications. This event is known as

locking up or freezing the computer. Often the problem is that too much

data is being sent at one time. For instance, if you're trying to transmit a

book manuscript as one huge file, the receiving computer may not be able

to process that amount of data at one time and will simply stop. (One com

puter notorious for this problem is the Xerox 850. According to Xerox's

technical representatives the only solution is to "quickly turn the computer

off and then back on again." Naturally all data transmitted and in the 850's

RAM is lost.) The solution is to break the data being transmitted into

smaller segments and transmit each one separately. Though more expen

sive for the telephone charges, at least the communications will be

successful.

A FINAL WORD ABOUT TELECOMMUNICATIONS

Computer communications holds great promise for the future but currently

is undergoing some rather trying growing pains. Ironically, part of the

212 The Amiga User's Guide to Graphics, Sound and Telecommunications

problem with today's telecommunicating is that telephone calls are so easy

to make. The technical complexity and sophistication of telephone systems

are completely masked each time you make or receive a call. You don't

have to know that a call is being sent through a satellite 22,000 miles in

space or that hairlike optical fibers or even laser beams are carrying elec

trical signals that eventually will become your voice again at the end of the

line. Nor do you need to know that a call from New York City to

Washington, D.C., may go by way of Cincinnati. As far as callers and

receivers are concerned, a number is dialed and a conversation begins.

It wasn't always so. Making a call on a telephone network in the early

1900s required dialing the local switchboard and giving the operator the

number to be called. The operator then placed the call and made all the

necessary connections.

In terms of computers, communicating is about where the telephone

system was in those early years except with two major differences: the

existing, complicated telephone system is already a part of telecommuni

cations networks, and the level of technical expertise required to under

stand the concepts of communications goes well beyond the level required

by the early telephone pioneers. Nevertheless, pioneering is what com

municating with personal computers is all about. As more networks are

formed, the arcane jargon surrounding computer communications and the

technical complexity of telecommunicating itself will give way to

simplicity until computer-to-computer communications is as easy as an

everyday telephone call. But until that time, telecommunicating will

remain a new, evolving affair that, like the telephone, may profoundly

affect day-to-day life. Learning the hows and whys of telecommunicating

with the Amiga is one way to make the most of the communications

changes that inevitably will take place in the future.

CHAPTER

11

Connecting with the

World Outside

You have a lot of choices for making connections with your Amiga com

puter. You could simply make the connection with another single computer

— a friend's, neighbor's, or business client's. Their computers do not

have to be Amigas or even Commodore products. By following the instruc

tions of your communications software manual, you should be able to

make the linkup successfully, but be aware that getting this type of com

munication started can initially be full of frustrations (as the problems

described in chapter 10 attest).

More common than just two computers talking together is connecting with

a network. The whole idea behind computer communications is to give you

access to many different sources of information, and to many other com

puter owners. The following are descriptions of some common networks.

MORE ABOUT ELECTRONIC BULLETIN BOARDS

Much more common than telecommunication between just two owners of

personal computers is the electronic bulletin board. Electronic bulletin

213

214 The Amiga User's Guide to Graphics, Sound and Telecommunications

boards are computers on which anybody can leave messages, or read mes

sages left by others. The sysop ("system operator") is an experienced com

puter user who dedicates a personal computer to transmitting or receiving

messages over the telephone lines.

Connecting with a bulletin board is generally an easy process; many

boards do not even require a password. You just make the telephone call,

follow a few simple instructions to make the computer connection, and

begin typing or reading messages. However, the connection procedures

differ somewhat and some restrictions do apply. Some bulletin boards

require that you type the Return key three times before the connection is

complete; others, which use a ring-back procedure, require that you let the

telephone ring once, hang up, and then call back within one minute.

Because they run on a sysop's personal computer and home telephone line,

electronic bulletin boards rarely operate seven days a week or twenty-four

hours a day.

Another restriction is the type of information carried on a bulletin

board. Some emphasize political discussions, others are for literary

reviews and criticisms, Bible discussions, chess and other strategy games,

for physicians to exchange medical information, and for kids to communi

cate with a computer. A few bulletin boards are for psychological coun

seling or even X-rated topics. Larger bulletin boards handle a number of

separate subjects, called conferences, which are further broken down into

topics. For example, one bulletin board has a conference for Pascal prog

ramming, and one of the Pascal topics is "T\irbo" for the program Turbo

Pascal,

The number of topics covered by bulletin boards is growing, as are the

number now operating. Currently over 1,500 bulletin boards are active in

the United States, with more being added daily.

How do you find out what's available? Two bulletin boards are

devoted solely to keeping an up-to-date list of the bulletin boards. The two

are Novation Modem Information located in Tarzana, California, tele

phone 213-881-6880 (Novation is a modem manufacturer) and On-Line

Computer Telephone Directory in Kansas City, Kansas, telephone 913-

649-1207. A spate of magazines such as Link-Up, Computer Shopper, and

the Computer Phone Book are devoted to bulletin-board communications

as well.

Due to software limitations, some bulletin boards can only accept cer

tain types of computers; for example, many that use a variation of software

CONNECTING WITH THE WORLD OUTSIDE 215

known as the Remote Bulletin Board System, or RBBS for short, are for

IBM computers only. Also, some only operate at certain baud rates (almost

always 300 and 1,200, or both).

As the free AmigaTerm program demonstrates, one of the benefits of

electronic bulletin boards is the wealth of free programs and data available

on them. Typical free programs calculate income taxes, figure out invest

ment risks and stock brokerage commissions, draw block letters and create

color displays, play dice games, card games, chess, and bingo, write

music, analyze IRA accounts, and do word processing. All for the price of

a telephone call.

Another benefit is the expert answers you can receive to technical

computer questions. Especially attractive to new computer owners, ques

tions about operating a computer sent to the bulletin board will inevitably

be answered by someone who experienced the same problem and found a

solution for it. In this way, electronic bulletin boards are not only forums

for discussions, they are becoming instrumental in furthering peoples'

dexterity with operating computers.

A good bulletin board for getting Amiga questions answered is known

as Bix. Run by Byte magazine, the Bix bulletin board's subscribers include

professional programmers from Amiga and Commodore, and from many

software companies, such as Electronic Arts, Inc. Some of the program

mers are the authors of the software you use daily on your Amiga; others

are developing new programs for it. If you have a question about the

Amiga, or want some free advice, Bix is one good answer.

Bix carries two separate conferences, called Amiga and Amiga.user,

for Amiga owners. The Amiga conference is generally more technical than

the Amiga.user one. Bix costs a one-time registration fee of $39, or $25 if

you are &Byte magazine subscriber. Hourly rates are $12 from 7:00 A.M.

to 6:00 P.M. weekdays plus the telephone call. From 6:00 P.M. to 7:00

A.M. weekdays, and on weekends and holidays, the hourly fee is $9.

To connect with Bix, first get the local Bix number for your area. Bix

maintains local lines in some major urban areas. For instance, in the San

Francisco Bay area the number is 415-982-2151. Check the telephone

directory for the number in your area or call the toll-free Bix Customer Ser

vice Line at 800-227-2983. (From New Hampshire or overseas call 603-

924-7681, which is a toll call.) If you live in an area not served by a local

Bix line, you'll have to go through Tymnet, a computer/telephone service.

If you can't find a Tymnet local number, call Tymnet at 800-336-0149 or

216 The Amiga User's Guide to Graphics, Sound and Telecommunications

Bix Customer Service. Tymnet charges are $6 per hour for the daytime,

and $2 for nights, weekends, and holidays.

The second number to obtain is from your Visa or MasterCard. Bix

bills you on either of these cards, and the first time you join Bix you have to

give the card number. Thereafter, only your name is necessary to make the

connection.

With both numbers firmly in hand, you're ready to set the computer

for communications. You have two options for the communications

software:

• Full duplex, 8-bit words, no parity, 1 stop bit, and either 300 or

1,200 baud.

• Full duplex, 7-bit words, even parity, 1 stop bit, and either 300 or

1,200 baud.

Start up your communications software and enter in one of the two

options. Now call the local Bix or Tymnet number with your modem and

step through the following screen instructions. The first three instructions

are for Tymnet connections only. Skip them if you're calling a local Bix

number.

The first request either asks for a "terminal identifier" or is garbled.

Don't be alarmed at the garbled words — they occur when the baud setting

is 1,200. Type the letter a, A message asks you to log into Tymnet.

Type the word byteneti and press Enter. A message asks for a

password.

Type mgh and press Enter. A message asks for a log-in. (If the mes

sage fails to appear, press Enter again.)

Type bix. The Bix logo appears on the screen. If the logo fails to

appear, press Enter. A message asks you to enter your name. (Don't be

alarmed if the words or lines appear more than once on the screen. Extra

echoing happens frequently.)

For your first connection with Bix, type new and press Enter. A series

of prompts ask for your name, resume (whatever you want to say about

yourself), and other registration information. Upon completion of that

data, you'll be taken through a quick tutorial to learn and use the system. A

hint: be careful with your resume information — you never know who will

read it. Also, Byte magazine extracts some of the more informative

CONNECTING WITH THE WORLD OUTSIDE 217

messages and publishes them each month. You may (or may not) want your

name in lights.

Later, to connect with Bix, type the name you've assigned yourself

and press Enter. You can update or change your resume, too (use the "show

resume" command).

For all its benefits, Bix can be difficult to use for two reasons: first, its

commands are ponderous and require a lot of typing; second, it has become

so popular that the number of messages on it are getting too numerous to

read. A better option may be your local Amiga owner/user group.

Many Amiga user groups maintain networks to answer members'

questions, share information, and programs. Members may also meet reg

ularly in person, although some conduct all their meetings solely on a bul

letin board. Most are free, and because they are located in your immediate

area, don't even cost for the phone call. Try contacting your local Amiga

dealer for information about Amiga user groups. One particularly good

reason for joining such a group is to trade a copy of your free AmigaTerm

program (see the previous chapter) with someone who has the Lattice C

compiler. Give that person two copies of AmigaTerm and get one of them

back compiled for you.

INFORMATION SERVICES

Also known as on-line services or databases, information services are an

outgrowth of business information networks previously available only to

companies owning a large computer. For a stiff subscription fee, business

subscribers can request data from the networks on any ofthe myriad ofsub

jects covered, and then pay additional charges for the amount and type of

information received. Up-to-the-minute stock quotes, news flashes, busi

ness transactions, and the latest scientific and medical information are sub

jects well covered by the information networks.

Although lucrative, the networks were not generating much income

during nonbusiness hours, and the computers managing the networks were

idle. But with the phenomenal growth in the numbers of people owning

personal computers, especially among many of the same people who were

using the networks through their companies, came the opportunity to open

up the networks to other subscribers. Information networks began actively

to solicit and offer their services to owners ofpersonal computers. Acceptance

218 The Amiga User's Guide to Graphics, Sound and Telecommunications

of the concept began as a trickle but has today become a flood. The late

1970s saw the emergence of three networks that now dominate the infor

mation services. The three are Dow Jones News/Retrieval, CompuServe,

and The Source.

How to Use Information Services

A hint to save you money: some of the information services charge you

more for a 1,200 baud hook-up than for 300 baud. If you're downloading

data from the service, the higher 1,200 charges may save you money if

they offset the charges for the connection fee.

But if you're carrying on an active real-time dialogue with someone

(called the CB mode on many services because it's like talking on a CB

radio), the 1,200 charges are money wasted. Why? Because you have to

type your conversation. No one can type at 1,200 baud (over 100

characters per second!), so there's no reason to pay for the higher rate.

When you're planning a CB session, always set the baud rate at 300 or less.

Dow Jones News/Retrieval Service

Started for business in 1974 and opened to personal computers owners in

1977, the Dow Jones Service has over 100,000 subscribers and is the most

popular information service. It offers stock market quotes, financial and

investment information, news, weather, sports, movie reviews, a variety

of business data, and encyclopedic information. Initial subscription costs

$50; charges per use depend on time of day and data requested. Prime-time

hours are business hours, 6:00 A.M. to 6:00 P.M. Monday through Friday.

Charges during those hours range from $54 to $72 per hour. During non-

business hours, and on weekends and holidays, charges range from $9 to

$54 per hour. You also pay for the telephone call to make the communication

connection. Getting a quick stock market quote during nonbusiness hours

usually runs around 25 to 50 cents. The service is closed daily from 4:00

A.M. to 6:00 A.M. (New York local time) to update the information bases.

Dow Jones and Company, Inc., P.O. Box 300, Princeton, NJ 08450;

telephone 609-452-2000.

CONNECTING WITH THE WORLD OUTSIDE 219

CompuServe

CompuServe began in 1970 as a data-processing company and is now a

major provider of electronic information. Over 50,000 people now sub

scribe to the CompuServe information services. The available data is

divided into four basic categories: Business and Finance, Home Services,

Personal Computing, and Services for Professionals. These four are

further subdivided into over 200 separate databases, such as shopping

advertisements, banking services, stock quotes, bibliographies of com

puter articles, and travel-arrangement services. The Personal Computing

section has an Amiga topic. A bulletin-board service and electronic mail

capabilities are also available. Subscription costs $20 to $40 which

includes five free hours of introduction to the service. Prime-time hours are

8:00 A.M. to 6:00 P.M. weekdays; the charge during prime time is $12.50

per hour. The charge at other times is $6 per hour. The costs of the tele

phone call are not included in the charges and must be paid separately.

Additional charges are made for using specialized databases. CompuServe

operates twenty-four hours a day, seven days a week.

CompuServe Inc., 5000 Arlington Centre Blvd., Columbus, OH

43220; telephone 614-457-8600.

The Source

The Source is an information service owned by the Reader's Digest Associ

ation. Originally oriented to the consumer with databases about home and

leisure, sports, travel, and home catalog shopping, The Source is now

courting business people. In addition to database services, The Source

offers electronic mail, bulletin boarding, and computer conferencing

between two or more subscribers. The subscription fee is $49.95 and the

prime-time charge is $20.75 per hour. Prime time is 7:00 A.M. to 6:00

P.M. weekdays. From 6:00 P.M. until midnight and all day weekends and

holidays, The Source costs $7.75 per hour. From midnight to 7:00 A.M.

the charges are reduced to $5.75 per hour. Subscribers also pay a monthly

minimum fee of $10. Currently over 40,000 people use The Source.

Source, Telecomputing Corp., 1616 Anderson Road, McLean, VA

22102; telephone 703-734-7500.

220 The Amiga User's Guide to Graphics, Sound and Telecommunications

Other Information Services

Smaller information services abound. Usually these services are more

specialized, such as academic bibliographic services, medical abstracting

databases, and literary compilation services. Some are also beginning to

offer the use of programs, such as word processing and spreadsheets for

subscribers. This may be an inexpensive way to try out and evaluate dif

ferent programs that you're considering for your own personal use.

Computer information services that serve localized audiences are also

beginning to take hold. Services that provide local dining reviews,

schedules of sports events, and other local news are available in some

areas. Generally cheaper both for the telephone call and the use fees than

the larger services, these local services are often an extension of a bulletin

board.

ELECTRONIC MAIL

As its name implies, electronic mail is for sending letters over the tele

phone lines. Unlike on the bulletin boards where everyone can read your

notes, electronic mail is sent only to the addressee's computer. Most of the

information services offer electronic mail options and assign you an

"address" or "electronic post box."

Although the telephone call necessary for electronic mail may be a bit

more costly than mailing a standard paper letter, service is instantaneous

and can be verified by the recipient. Also, if you're sending a lot of data, it

can be stored directly on the other computer's disks or tapes without any

retyping. By having a modem and software with auto-answer capabilities,

you can set up the Amiga to receive electronic mail overnight. In the morn

ing, mail sent to you will be noted on the screen and you can read the mail

at your leisure.

At present, electronic mail is usually sent by people who have some

thing to say to each other, but as computers become more ubiquitous, junk

mail can't be far behind.

Glossary

Acoustic Coupler — An inexpensive type of modem that translates audible

sounds from a telephone into a digital form that the Amiga can understand.

Acoustic couplers typically have two rubber cups in which you place the

telephone handset.

Active — The item or thing available for your instructions. The active win

dow, for instance, is the one on which you can program or work. The term

"current" is sometimes used as a synonym for active.

ADSR — An acronym for "Attack, Decay, Sustain, Release" that describes

the shape of a sound wave, typically for a musical note, that produces a

realistic sound.

Amiga BASIC — The "dialect" of BASIC available for the Amiga. Amiga

BASIC has the same structure and many of the same commands as other

versions ofBASIC, however, it also has a number of commands specific to

the Amiga. Many of the sound and graphics commands are for program

ming the Amiga's unique audio and visual capabilities.

Alert — A flashing warning message that appears at the top of the Amiga

screen. Errors caused by system failures, or simply by an "out of memory"

condition can produce an alert. If the problem is severe, the Amiga may

221

222 The Amiga User's Guide to Graphics, Sound and Telecommunications

reset itself causing a loss of all data in memory. However, the Amiga tries

to assure that all disk memory is safe by initiating procedures to save disk

files. Trying to respond to an alert before the disk procedures are complete

may override them, therefore wait until all disk activity is completed

before responding to an alert. See also Guru Meditation.

Animation Chip — A custom processing chip inside the Amiga. The anima

tion chip assists the M68000 microprocessor by controlling: direct memory

access requests, synchronization of video and sound, the output of other

custom chips relative to the video output, and the movement of screen

images. See also "Blitter" and "Copper."

Array — A group of variables, either numbers or characters. The individual

variables in the array, known as elements, can be inputs to a program or

process. For example, an array of numbers can be points on a waveshape

that defines a particular tone for the Amiga sound system.

Aspect Ratio — The length-to-width ratio of the image on the screen. If

screens were perfectly square, the ratio would be 1, but because screens are

rectangular, images must be wider than they are high to look correct. The

easiest image to illustrate aspect ratio is a circle. An incorrect aspect ratio

produces an ellipse instead of a circle. Some graphics programs change the

aspect ratio in order to create fantasy pictures. The Amiga BASIC CIRCLE

command changes aspect ratio.

Assembler Language — A programming language that uses "words and

phrases" that the Amiga can translate directly into byte values and binary

Os and Is. Assembler language programs are specific to a particular com

puter and cannot be used on other machines. Programs written in assembler

language are usually powerful and require a minimum of memory space,

but effective use of assembler language requires a professional program

ming background. Assembler language is also known as a "low-level" lan

guage because it is the first step above machine language which is all Os and

Is. Amiga BASIC, by contrast, is a "high-level" language.

Audio Chip — A custom processing chip that controls sound output as well

as interrupts to the M68000 microprocessor. Having the interrupts handled

in this fashion is one reason for the Amiga's multitasking capability.

Background — (1) The portion of the screen not devoted to text characters

or graphics. That is, wherever text or graphics appear, they are in the "fore

ground," while the rest of the screen is the "background." The background

GLOSSARY 223

color is usually different than the foreground. (If it isn't, you won't see

anything except a blank, but colorful, screen.) (2) A process that is being

run while you are doing something else. For instance, if a program is run

ning some calculations while you are playing a video game, the calcula

tions are being done in the background, or as a background process.

Bars — On the Amiga screen, bars are the horizontal or vertical symbols for

moving an item, such as a window, to a different screen position. The Drag

Bar on the top of a window moves (or drags) the entire window around the

screen.

Batch File — A file that contains a set of commands, usually AmigaDOS

commands, that are run as one batch when the file is executed. For exam

ple, you could set up a batch file that runs automatically every time you

turn on the Amiga. The file might have the Amiga say good morning to you

and play a little tune.

Baud Rate — The speed at which bits are transmitted from one computer to

another. At lower speeds, baud rate is about the same as the number of bits

transmitted per second. At higher speeds, several bits are added to the data

stream to keep track of the transmission process and therefore baud rate and

bits per second are not similar measures.

Bit Map — An area in the Amiga's memory that holds the data defining the

colors of individual pixels on the screen.

Bit Plane — A sub-division of a bit map. A bit plane holds a single bit per

pixel on the screen. By combining several bit planes for a single screen

image, the Amiga can effectively assign more than one bit per pixel to pro

duce a bit pattern. The bit patterns correspond to a color table and thus

determines the actual colors of each pixel.

BIX — A bulletin board run by Byte Magazine. BIX has separate confer

ences for the Amiga owners and experts.

Blitter — A nickname for "bit-mapped block transfer." The Blitter is a sec

tion of the animation chip that controls the movement and positioning of

images on the screen.

BOB — An acronym for Blitter Object. A BOB is a rectangular area of the

screen that you can move to another position on the screen. The rectangular

area might contain images of a missile or spaceship or some other figure

that you want to move without having to re-draw it. Moving BOBs, however,

usually requires programming in a lower level language than Amiga BASIC.

224 The Amiga User's Guide to Graphics, Sound and Telecommunications

Bulletin Board — An "electronic meeting place" that you access with your

Amiga on the telephone lines. Computers set up by individuals or

businesses act as the central point for leaving messages, reading data, or

carrying oh conversations using computers.

"C" Language — A programming language designed for professional prog

rammers, not for people just learning about computers (which is what

BASIC is for). C programs must be run through a compiler program that

translate them into machine language. C programs written for one com

puter may be usable on other computers.

Call — A BASIC command to access a program or subroutine. Used gener-

ically, call refers to the process of transferring the flow of a program from

one process to another. For instance, to get an Amiga subroutine from its

standard library of routines, you must call that subroutine into your program.

Characteristic Waveform — A waveshape that produces a sound typical of

a particular musical instrument. For example, if you attach an oscilloscope

to an instrument and play a note, the trace on the screen is a characteristic

waveform.

Collisions — When two (or more) screen images bump into one another on

the screen. You can program the Amiga to treat the collision as occurring,

in which case the images appear to bounce off one another; or as not occur

ring and the images appear to pass each other, unobstructed and on dif

ferent levels.

Color Register — A portion of the Amiga that stores the colors assigned to

each bit pattern for a particular screen. Changing the colors of the color

table will change the settings in the color register.

Color Table — A table that shows the colors that correspond to the bit pat

terns created by the bit planes. You can define the colors you want in the

table and can change them even after an image is drawn. If you do, the

image is re-colored to reflect the new values you assign to the table.

Command Line Interpreter (CLI) — An alternate mode for operating the

Amiga. Instead of selecting the Intuition icons or menu items to activate

Amiga processes, you type commands when in the CLI mode. CLI is

similar to operating DOS on an IBM type of computer.

Compact Disk (CD) — A disk that stores information using laser images

instead of magnetic recording heads. Compact disks may become a storage

media for Amiga data, images, and audio.

GLOSSARY 225

Coordinates — Two numbers that indicate a position on the screen. The

first number is the horizontal distance (the x-axis) from the left edge of the

screen; the second number is the vertical distance (the y-axis) down from

the top edge. Distances are measured in pixels on the screen.

Copper — A nickname for a co-processor on the Amiga animation chip. The

copper controls the output of the graphics and sound chips in order to keep

sound and graphics synchronized on the screen.

D to A Converter — A device that translates electronic signals from digital

to analog (D to A) form. D to A converters typically change digital (Os and

Is) signals from a microprocessor into voltages that drive a television tube.

Device — A generic name for any part of the Amiga that can send input or

receive output. The keyboard is a device, and so is the COM1: port that the

Amiga uses for communicating with other computers.

Device Name — The specific name the Amiga assigns to a device. For exam

ple, SCRN: is the device name for the screen, and KYBD: is the device

name for the keyboard. In programming, you use the device names to tell

the Amiga where to send ouput or receive input. The colon after the name

tells the Amiga it is a device name and not a disk name.

DFO: — The name Amiga assigns to its internal disk drive. Other drives

added externally are respectively, DF1:, DF2:, and DF3:. A hard disk drive

is named DHO:.

Dimension — A characteristic of an array that tells how many "sides" it has.

A one-dimensional array is a single line list of elements, a two-dimensional

array is a table of elements.

Directory — A grouping of files on a disk. By defining a directory you can

store all related files together and access them as a single group. Typically

you create a directory for a program, and store all files pertaining to that

program within the directory. Directories are also called Drawers.

Disk Name — The Amiga refers to disks by a name assigned to them instead

of by the drive holding a disk. For example, on an IBM type of computer

you must refer to a drive for the computer to read a disk but on the Amiga

you simply refer to the disk's name and the computer finds it regardless of

drive.

Dotted Note — A music symbol that indicates to play a note half again as

long as is normal. In the PLAY program in this book, dotted notes are

shown as the note with a period following it.

226 The Amiga User's Guide to Graphics, Sound and Telecommunications

Dragging — The process to move items on the Amiga screen. Put the pointer

on the item, press and hold down the left mouse button, and move the

mouse. The item follows the pointer on the screen. When you release the

button the item stays at its new position.

Drawers — A icon that is a small desk drawer and indicates a directory of

files. By selecting the drawer, you can see what files are in it.

Driver — A program that runs a peripheral device, usually a printer.

The Amiga contains a number of printer drivers as part of its standard

software.

Dual Playfield — Two separate screen images that appear to overlay one

another. A common use of the top playfield is to create a black overlay

except for a single round hole making it appear as ifyou're looking through

a telescope. The scene that you see "through the telescope" is on the other

playfield.

Duplex — Allowing telecommunications in two directions. With full duplex

you can send and receive simultaneously.With half duplex you can send or

receive, but not at the same time.

Echoing — Sending back characters to their point of origin. If you transmit

data from the Amiga to some other computer, and that computer sends the

same data back to your screen so you can see what was sent, that other com

puter is echoing the data.

Emulation — To imitate a computer or terminal. An emulator program

causes a computer to take on the characteristics of another piece of equip

ment. In telecommunications, emulating a terminal is often necessary

when connecting with another computer.

Envelope — The ADSR values that create a sound wave for a particular

tone.

Execute — To start, or run, usually a program. Thus, for example, to exe

cute a BASIC program, you type Run and press the Return key. The

AmigaDOS command EXECUTE followed by a filename runs the com

mands in the file.

Expansion Bus — A large plug-in slot on the Amiga's left panel that pro

vides complete access to the hardware inside the Amiga. Instead of

removing the Amiga case and installing new boards, you can simply

plug them into the expansion bus in daisy chain fashion. See "Open

Architecture."

GLOSSARY 227

File — A collection of data stored together. In the Amiga, files created by

programs are called Projects.

File Name — A name you assign to a file, and that you subsequently use to

tell the Amiga to access the data in the file. The Amiga will then either

show you the data on the screen, or run the commands within the file.

Flat — A musical tone one half step lower than a specified note. In the PLAY

program in this book you specify flats with the minus sign (-) following

the note, i.e., A — is A flat.

Foreground — (1) The portions of the screen that show characters and

images; the rest of the screen is the background. For instance, the text on a

screen is in the foreground and the rest of the screen is the background. The

foreground and background are usually different colors. (2) A process

occurring on the current, or active, window. Because the Amiga can run

different processes concurrently, there needs to be some way of indicating

the process running on the current window as opposed to the processes run

ning on other windows. The current window process is said to be running

in the foreground, and the other processes are said to be running in the

background.

Gadgets — Symbols on a window that let you change the window's size,

select which window is to be active, and close the window.

GEL — An acronym for Graphics Element. GELs are visual collections on

the screen made up of sprites and BOBs. By defining items as "compo

nents" of a GEL you can then treat them collectively as a single unit instead

of individually. This makes graphics programming more effective. GEL

programming is usually not done in BASIC. Assembler language or the C

language are more often used with GELs.

Gen-Lock Card — An add-on card that locks the Amiga's video signals in

phase with a video cassette recorder. Attaching a gen-lock card to the

Amiga and connecting it to a VCR will allow output from each machine to

be directed to the other. For instance, you could add Amiga animation to

films played on the VCR.

Graphics Chip — A custom processing chip that controls the Amiga's video

output to the screen.

Guru Meditation — A term followed by a series of numbers that appear when

a system error occurs on the Amiga. The numbers are for Amiga engineers,

technicians, and software programmers to determine the cause ofthe error.

228 The Amiga User's Guide to Graphics, Sound and Telecommunications

Handshaking — The automatic process by which two computers establish

that a telecommunications link will be successful. Handshaking checks

that baud rates are correct, flow control options are on or off, and so forth.

Once handshaking is complete, telecommunications can begin.

Harmonic — A musical tone that is an exact multiple of the main fre

quency of an instrument. Having harmonics gives an instrument's tone

richness.

Heap Memory — A portion of the Amiga memory that is for the values of

such things as static variables.

Host — The computer controlling communications in a network. When two

computers are connected, one usually has to emulate a terminal and the

other operates as the computer. That latter one is said to be the host. On

large networks involving "mainframe" computers, the host is always the

mainframe.

Icon — A small symbol on the Amiga's screen that represents an item or pro

cess that you can select. For example, the icon of a trashcan is the symbol

for discarding information. Icons let you operate the Amiga without having

to type words or phrases to get a job done.

Interlace — The way a TV screen's scan lines are arranged. If alternating

scan lines overlap they are interlaced. If they don't (which is normal on

standard TV images) the lines are non-interlaced. Interlacing produces a

higher resolution image, but may cause flickering.

Intuition — The visual means to operate the Amiga. Intuition is the "icon-

based" system by which you select the icons to read files, start programs,

and so on. The alternative way to operate the Amiga is with the Command

Line Interpreter (CLI).

Invoke — A somewhat ambiguous term meaning to start or call a program

ming function. For example, to invoke a subroutine is to call it into a pro

gram and start it running.

Kickstart Disk — The disk you insert into the Amiga to start the com

puter's operations. The Kickstart loads operating software and includes

routines to check the condition and operating status of the internal

hardware.

LAN — An acronym for local area network. LANs are a rapidly growing

feature of computers. Typically used in business settings, LANs connect

individual computers with wires or other direct attachments such as fiber

GLOSSARY 229

optics. LANs allow computers to share files, programs, printers, and other

computing resources.

Menu — A list of options presented on the Amiga screen. Selecting one of

the options may produce a list of other options in a "pulldown" menu (that

appears directly under the selected option).

MIDI — An acronym for Musical Instrument Digital Interface. A MIDI is a

piece of electronic equipment that you attach to the Amiga. Then you can

connect an electronic instrument, usually a synthesizer, to the Amiga and

program the instrument directly from the computer.

Modem — A term derived from the words Modulate/Demodulate. A modem

is a device that translates digital Os and Is into audible tones for a tele

phone. By connecting a modem to the Amiga, you can send data to other

computers over the telephone lines.

Multitasking — Working on more than one computing job simultaneously.

Because of its design with separate custom chips and a high speed micro

processor, the Amiga can process multiple jobs at the same time without

any appreciable slowing down of any of them.

Narrator Device — The program that contains the rules for the Amiga's

speech synthesis capability. The Narrator Device is stored on the Work

bench disk.

Object — Screen images that the Amiga uses specifically for animation.

Objects have size, shape, and color and are saved with individual names.

Two similar objects are possible with the Amiga: sprites and BOBs. You

must select one of these two types before defining an object further.

Octave — An interval of eight musical notes (as in do ra mefa so la ti do). In

programming Amiga music you specify the octave as one of the elements

ofthe tune.

Open Architecture — The concept of having the internal hardware of the

Amiga (or any other computer) accessible for adding other circuit boards or

supplementary pieces of equipment, such as a hard disk. Open architecture

used to mean being able to physically take the cover off a computer in order

to add boards. However, with the development of the Amiga's 60 pin

expansion port that allows complete access to the hardware without dis

mantling the machine, open architecture now means simply having com

plete electronic access.

Output Window — The window on the Amiga screen on which you see

230 The Amiga User's Guide to Graphics, Sound and Telecommunications

output from a program or job. You can direct output among different win

dows on the screen at the same time.

Paint — (1) A synonym for filling a screen object with a color. (2) A pro

gramming jargon term for refreshing the screen. That is, painting the

screen occurs each time the TV beam sweeps over the entire screen once.

Palette — A synonym for a color table. The palette is the colors available for

coloring images. The number of colors on the palette can vary depending

on the number of bit planes assigned to the screen.

Parity — A procedure to check the accurate transmission of data over the

telephone lines or on a network. By adding an extra bit to each byte, the

transmitting and receiving computers can add the number of bits sent and

received to ensure that the answer is always even or odd. If the answer

deviates, the computers know a transmission error has occurred and that

data has been lost or garbled. You specify the type of parity checking when

establishing communications.

Pause — A time interval in music when no sound is played. In the PLAY

program in this book, the P symbol indicates a pause. Music playing on

a particular voice is still, however, music playing on other voices can

continue.

Pathname — A description of the location of a file by specifying a disk drive

and directories. For example, if a file named TESTER.BAT is on the disk

in the Amiga's internal drive, within a directory named STARTUP, the

pathname would be DFO:STARTUP/TESTER.BAT.

Phonemes — A basic sound of a spoken language. Just as you can divide

words into syllables, you can divide syllables into phonemes. For instance,

the one syllable word "bat" consists of phonemes for the sounds of "b",

"ah", and "t".

Pixel — A nickname for "picture element." A pixel is a dot on the screen that

the computer can reference and color. Each pixel is actually one spot pro

duced by the sweep of the TV guns' beam. The more pixels on the screen,

the higher the image resolution.

PLAY Program — A program in this book that lets you program music

using the standard note symbols (A, B, C, D, E, F, G). The PLAY program

duplicates many ofthe functions of the PLAY statement found in Advanced

BASIC used on many other computers.

Preferences — An icon that appears on the Workbench window. Selecting

GLOSSARY 231

the Preferences icon lets you select customizing features for how you want

to operate the Amiga.

Projects — The generic name for Amiga files that you store in drawers

(directories) on disks.

Protocol — The agreed-upon communications parameters when two com

puters are sharing data. The protocols are such things as the baud rate, parity

checking, and flow control. In LANs, protocols are more complex and pro

duce a stream of characters added to the data so the host computer knows

how to interpret data from computers on the network emulating terminals.

Radian — A mathematical measure of an arc of a circle. Radians are

expressed as units of pi. You use radians when defining an arc with the

Amiga BASIC CIRCLE command.

Refresh Rate — The rate at which the TV beam sweeps over the screen one

complete time. Normal refresh rate is 60 complete scans of the entire

screen per second.

Requesters — A question message that appears on the Amiga screen. Some

requesters require that you identify disks necessary to answer the question.

A Yes/No choice with the requester answers it.

RGB — An acronym for Red-Green-Blue monitor. An RGB monitor is a

high quality TV set similar to studio monitors. By attaching an RGB to the

Amiga, you can see extremely sharp and clear graphics.

Sharp — A musical tone one half step higher than a specified note. In the

PLAY program in this book you specify sharps with the plus sign (+) fol

lowing the note, i.e., C + is C sharp.

Sine Wave — A smooth waveshape that translates into a clear tone from the

Amiga's sound system.

Sound Table — Information in the Amiga about the volume, voice, and

waveshape of sounds to be produced on the sound system.

Sprite — An animation object, or image, on the Amiga screen. Before draw

ing an animation image, the Amiga requires that you indicate whether the

image is to be a sprite or a BOB. Sprites can move faster than BOBs, but

generally allow fewer colors. There are other differences between them as

well.

Stack Memory — A portion of the Amiga's memory used to keep track of

parameters and addresses used in programs.

232 The Amiga User's Guide to Graphics, Sound and Telecommunications

Start Bit — A bit that signifies the next byte is to be sent when two com

puters are telecommunicating.

Stop Element — The period of time a computer waits during telecommuni

cations before receiving the next byte of data.

Strings — A sequence of letters or numbers that the Amiga treats as data, not

as commands. For example, if you define a field for a variable, such as a

zip code, the various zip codes represent the string variables that belong in

the field.

Subdirectory — A directory within a directory.

Sweep — The action of the TV beam as it scans across and down the screen.

Synthesized Speech — The Amiga's capability to duplicate spoken words

and phrases over its sound system.

SYSOP — A nickname for "system operator," the person who sets up and

maintains an electronic bulletin board. SYSOPs are dedicated individuals

who use their own computers as the network host.

Tempo — The speed at which musical notes are played. As part of the PLAY

program in this book, you can set the tempo for Amiga music.

Tools — A synonym for Amiga programs. Tools have their own icons

on the Amiga screen that you can select. Selecting a tool icon starts the

program.

Trashcan — An icon representing a procedure to discard or delete files. By

selecting the Trashcan and a file, the file is deleted from its disk. Under cer

tain conditions you can retrieve discarded files from the Trashcan.

Turtle Graphics — A generic name for a type of graphics program that uses

a small image to draw images on the screen. An outgrowth of the Logo

programming language, the image was originally a turtle, which itself was

adapted from a small plexiglass domed device that rolled on the floor

drawing pictures in response to computer commands. Turtle graphics

drawing programs are often used in elementary schools to introduce chil

dren to programming and using computers.

User Interface — The screen procedures you use to get the computer to do

something. The Intuition screen is one user interface on the Amiga, the

Command Line Interface (CLI) is another. In programs, the way you select

menus or options constitutes that program's user interface.

Variables — An element of data, either numeric or text, that can vary in a

GLOSSARY 233

program. By giving variables a name, you can refer to the name instead of

each individual element. Thus, for instance, having a table ofvalues as part

of some computation means you only have to reference the table name in

order to get the program to use the elements one at a time and run the

computations.

Virtual — A generic term for creating the appearance of more capabilities

than are physically present on the computer. For example, a virtual ter

minal uses a portion of memory that makes it appear as if one of the

Amiga's windows is actually a terminal sending data to the rest of the

machine. Other items can be "virtual," such as virtual disks, and virtual

storage.

Voice — One of the Amiga's four sound channels, numbered 0,1,2, and 3.

You can direct which voice is to receive sounds to play.

Waveshape — The graphic representation of a sound wave for a particular

tone. The waveshape replicates the actual sound wave as it travels through

the air to your ear.

Window — A division of the Amiga's screen which acts as a separate

entity. You can run one program in one window and another program in

another window at the same time. Many windows can be on the screen

simultaneously.

Workbench — A disk that reveals the Intuition system and includes the

Clock, Trashcan, and Preferences icons.

XON/XOFF — A flow control paramenter for computer communications.

The X stands for "transmission" and the XON/XOFF determines how the

computers will start and stop communications. XON/XOFF is usually used

in the case where the receiving computer cannot process the incoming data

fast enough and begins to overload. The receiving computer sends a

character to the other computer to stop the transmission (XOFF) until the

data already received can be processed. Once the data is processed and

enough memory is clear to receive more transmitted data, the receiving

computer sends a character to re-start communications (XON).

Index

active window, 34

acoustic coupler modem, 190-191

addresses, 21

Amiga

clock, 136, 152

speaking voice, 142

starting the, 29

text, 125

AmigaBASIC, 28, 39-43

Logo equivalents, 80-81

AmigaDOS, 34-38

commands, 37-38

vs IBM PC-DOS, 35-36

AmigaTerm program, 196-197, 217

analog processes, 133

animation, 12, 87-99

BASIC statements, 92-99

chip, 23

object, creating a, 89-92

sequential, 91

simple, 91

AREA statement, 72

AREAFILL statement, 72

arrays, 40

ASDR curve, 134

aspect ratio, 70-72

asynchronous communication, 189

attack, 133

audio, 19

port, 17

chip, 23

automatic answer modem, 193

automatic originate modem, 194

B

Bach, 159-160

BASIC (see AmigaBASIC)

BASIC'S data segment, 25

baud rate, 188, 191-192, 209-210

Baudot, Emile, 188-189

bit map, 50-51

bit patterns, 51-52, 74

bit plane, 50-51, 95

bit-bit, 88

BIX, 215-217

Blitter, 23-25, 88

Blitter object, 88-89, 95

BOB (see Blitter object)

box

drawing, 66-67

filling, 66-67

branches, 101

bulletin boards, 187, 213-218

CALL statement, 153

carriage returns, 205

CD (see compact disk)

cells, 103

changing window size, 32

channels, 19, 23-24, 133-134

character

creating text, 127

data bits per, 195

position, 127

characteristic waveform, 171, 173

chips, 42

animation, 23

audio, 23

graphics, 23

CIRCLE statement, 68-72

circles, drawing, 68-72

CLI (see Command Line Interpreter)

clock, 136, 152

closing a window, 32, 58

CLS statement, 65

COLLISION statement, 98-99

color, 18, 52-54, 59-60

changing, 65

of objects, 95

patterns, 73-74

COLOR statement, 65

235

236 The Amiga User's Guide to Graphics, Sound, & Telecommunications

coloring an object, 91

Command Line Interpreter, 12, 34-38

communications process, 207-208

communications software, 195-197

troubleshooting, 209-211

compact disk, 6, 22

CompuServe, 219

computer, opening the, 22

computing, future of, 5-11

contrast, 53-54

control devices, 15

coordinates, 54

animation, 88, 93

STEP option, 64-65, 67-68, 70

Copper, 23-25

CPU, 23-24, 42-43

D-to-A converter (see digital-to-analog

converter)

data bits per character, 195

decay, 133

design, hardware, 12, 23

dialog boxes, 33

digitized images, 22

digital to analog converter, 133

DIP switches, 191, 209

direct-connect modem, 191

direct memory access, 23-25, 133

disks, 5, 19

compact, 6, 22

external drive port, 17

floppy disk drives, 19

display screen, graphics, 56-60

division sign, 141

DMA (see direct memory access)

dot matrix, 48

double-precision variables, 39

DOS (see AmigaDOS)

Dow Jones News/Retrieval Service, 218

dragging a window, 32

drawing an object, 91

dual playfield, 12

duplicating an object, 93

duration, 136-137, 163

E

echo in telecommunications, 210-211

electronic

bulletin boards, 187, 213-218

mail, 220

elements, 40

in mazes, 101-103

ellipses, drawing, 68-72

envelope, sound, 133-134

erasing

graphics, 64, 85

objects, 91

even-tempered keyboard, 160

expansion bus, 15, 16, 21

fill a polygon, 72-73

flow control, 195-196, 210

floppy disks, 19

frequency, sound, 132-133, 135-136

frontier cells, 102-103

full duplex, 193

GET statement, 99

graphics, 47-61

and text, 125-127

chip, 23

display screen, 56-60

features, 12, 60-61

library, 60-61

simplifying, 84-85

terminology, 48-55

H

half duplex, 193

handshaking, 208-209

hardware design, 12, 23

harmony, 156-157

Hayes modem, 200

heap memory, 25

HitMask, 96-98

icons, 30-31

information services, 218-220

interlacing, 53

internal modem, 189-190

interrupts, 42-43

Intuition, 12, 28-36

keyboard

INDEX 237

port, 17

to position pointer, 29

L statement, 163-164

library routines, 60

line feeds, 205

line numbers, in BASIC, 39 .

LINE statement, 66-68

lines, drawing, 65-68

connecting, 67-68

patterned, 74

List window, 39

Logo, AmigaBASIC equivalents, 80-81

loops, in music 159, 164

M

mail, 220

mask, 96-98

mass storage, 5

maze, 100-103

MeMask, 96-98

memory, 21, 23

expansion module, 15

management, 25-26

menus, 34

MERGE statement, 178

messages, 33

MIDI, 22, 147

minus sign, 141

in music, 154

modem, 189-194

standards, 194

monitor, 17, 49-50, 52-54

port, 16

Motorola 68000 (see CPU)

mouse, 29-30

moving

a window, 32

voices, 165

MP statement, 156

Multiple Play (see MP statement)

multiplication sign, 141

multitasking, 12, 33, 41-43, 208

music, 131-140, 147-169

musical instruments, 132-133, 171, 173

N

naming variables, 40

Narrator Device, 140

nodes, tree, 101, 103

notes, 135-137, 163

in PLAY statement, 153-155, 162-163

organizing, 138-139

O

object

acceleration, 94

changing color of, 95

colliding with, 95, 98-99

creating an, 89-92

duplicating an, 93

erasing an, 95

freezing an, 94

HitMask, 96

identification of, 92-93

invisible, 93

MeMask, 96

moving an, 99

position of, 93

priority of, 95

velocity of, 93

visible, 93

OBJECT statements, 92-93

OBJECT.AX statement, 94

OBJECT.AY statement, 94

OBJECT.CLIP statement, 95

OBJECT.CLOSE statement, 94

OBJECT.HIT statement, 95

OBJECT.OFF statement, 93

OBJECT.ON statement, 93

OBJECT.PLANES, 95

OBJECT.PRIORITY, 95

OBJECT.SHAPE, 92-93

OBJECT.START, 94

OBJECT.STOP, 94

OBJECT.VX, 93

OBJECT.VY, 93

OBJECT.X, 93

OBJECT.Y, 93

OBJEDIT routine, 89-92

octave, 154-155, 136, 164

open architecture, 21

opening the Amiga, 22-23

Output window, 39

PAINT statement, 72-73

palette, 52, 59-60

PALETTE statement, 59-60, 65-66

parallel port, 17

238 The Amiga User's Guide to Graphics, Sound, & Telecommunications

parity

bit, 191

checking, 195

PATTERN statement, 73-75

patterns, 74

peripherals, 16-20

phonemes, 140, 143-145

pie chart, 69

pixel, 48-51,54

width, 53

PLAY statement, 147, 152-158, 162-164

point, drawing a, 64-65

erasing, 65

POINT statement, 65

pointer, 29

polygons, drawing, 72-73

ports, 16-17

PRESET statement, 64-65

printers, 19, 48

protocol, 208

programs

Bird's Eye View Maze, 115-125

Converting Logo to AmigaBASIC, 80-83

Demo Box, 126

First Prelude in C Major, 160-162

Happy Birthday (BASIC), 137-140

Happy Birthday Harmony, 158

Happy Birthday Melody, 153

PLAY Program, 148-152

Plot Wave, 179-181

Rat's Eye View Maze, 104-115

Silent Night Harmony, 157

Silent Night Melody, 155

Terminal Emulator, 201-205

Turtle Graphics, 76-79

Wave Shaper, 173-177

pronunciation, 142-145

PSET statement, 64-65

punctuation marks, 141

PUT statement, 99

RAM, 15, 21

raster, 51

release, 133

requesters, 32-33

resolution, 52-54

RGB (see monitor)

SAY statement, 140-145

screen

display features, 57

modes, 53

number, 58

SCREEN statement, 56-58

scrolling information, 32

sequential animation, 91, 93

serial port, 17, 190-191, 205

simple animation, 91

simplex communication, 193

single precision variables, 40

software, communications, 195-197

troubleshooting, 209-211

sound, 12, 131-137, 171

waves, 131-132

waveforms, 171-173, 179

SOUND statement, 134-140

Source, The, 219

speaking voice, 142

speech, 140-145

speed of Amiga, 4, 24

sprite, 88-89

square, drawing a, 67

stack memory, 25

standards for modems, 194

start bit, 188, 191

starting the Amiga, 29

STEP statement, 64-65, 67-68, 70

stop bit, 191

sustain, 133

synchronous communication, 192

synthesized

music, 22, 147-169

speech, 12, 140-145

telecommunications, 187-196

telephone, 194-195, 212

tempo, 137, 152, 155

terminal programs, 196-199, 201-206

text

characters, 125-127

and graphics, 125-127

TRANSLATES statement, 140-142, 145

tree structure, 100-103

troubleshooting communications

software, 209-211

turtle graphics, 75-83

TV, 18, 49-50, 52-54

port, 16

INDEX 239

U W

user interface, 28 WAVE statement, 172-173, 178

waveform

assigning voices to, 177-178

V characteristic, 171, 173

variables, in BASIC, 39 creating, 171-176

velocity of an object, 93-94 tones, 179

video port, 17 window, 31-34

virtual terminal, 33 close, 58

voices, 133, 156-158, 165 coordinates, 54-55

assigning waveforms to, 177-178 display, 57-59

speaking, 142 List window, 39

volume, sound, 137, 155 Output window, 39

voltage, in sound, 133-134 setting numbers, 58

WINDOW statement, 57

Bantam Computer Books

Ask your bookseller for the books you have missed

THE AMIGADOS MANUAL

by Commodore-Amiga, Inc.

THE APPLE IIGS BOOK

by Jeanne DuPrau and Molly Tyson

THE APPLE IIGS TOOLBOX REVEALED

by Danny Goodman

by Bill O'Brien

THE ART OF DESKTOP PUBLISHING

by Tony Bove, Cheryl Rhodes, and Wes Thomas

COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE

by Commodore Business Machines, Inc.

THE COMMODORE 128 SUBROUTINE LIBRARY

by David D. Busch

COMPUTER SENSE

by Paul Freiberger and Dan McNeill

FIRST STEPS IN ASSEMBLY LANGUAGE FOR THE 80286

by Robert Erskine

FIRST STEPS IN ASSEMBLY LANGUAGE FOR THE 68000

by Robert Erskine

DOUGLAS COBB'S 1-2-3 HANDBOOK

by Douglas Cobb, Steven S. Cobb, and Gena Cobb

HOW TO GET THE MOST OUT OF COMPUSERVE, 2d edition

by Charles Bowen and David Peyton

HOWTO GET THE MOST OUT OF DOW JONES NEWS/RETRIEVAL

by Charles Bowen and David Peyton

HOW TO GET THE MOST OUT OF THE SOURCE

by Charles Bowen and David Peyton

THE IDEA BOOK FOR YOUR APPLE II SERIES

by Danny Goodman

THE OFFICIAL GEOS PROGRAMMER'S REFERENCE GUIDE

by Berkeley Softworks

THE PARADOX COMPANION

by Douglas Cobb, Steven S. Cobb, and Ken E. Richardson

PC-DOS/MS-DOS

by Alan M. Boyd

Ask your bookseller for the books you have missed or

order direct from Bantam by calling 800-223-6834 ext. 479.

(In New York, please call 212-765-6500 ext. 479.)

wnmjfk THE BANTAM AMIGA LIBRARY
"bantam
COMPUTER
BOOKS

The
AmigaDOS

Manual
^Edition

THIS BOOK IS A MUST FOR ANYONE USING THE AMIGA!

The AmigoDOS Manual, 2nd edition, is the official documentation for

Amiga's DOS. It has three main sections.- the User's Manual which

details all the available DOS commands,- the Technical Reference

Manual which explains the Amiga's hierarchical filing system,- and

the Developer's Manual which gives guidelines for program

development in C and assembly language. The new second edition

covers all the new commands and extensions introduced in DOS 1.2

as well as 1.0 and 1.1.

Find out about:

•AmigaDOS—Explaining this multi-tasking operating system

•DOS Commands—Understanding all the available commands

•The Screen Editor—Altering and creating text files using ED

•The Line Editor—Processing the source file sequentially using EDjT

•The Filing System—Directing and "patching" stored information

•Programming—Using C or assembler under AmigaDOS

•Calling AmigaDOS—Utilizing the AmigaDOS resident library

•And much more!

Beginners and advanced users alike will appreciate this book's

comprehensive coverage of AmigaDOS, a multi-tasking operating

system capable of handling several programs simultaneously.

The AmigaDOS Manual 2nd edition is available at your local book

and computer stores or call Bantam direct at 1-800-223-6834, ext 479.

Amiga

THE ONLINE AMIGADOS MANUAL

• The Perfect Companion to The AmigaDOSManual

• Includes updated DOS 1.2 Commands!

This unique software program provides the

convenience of instant and comprehensive

on-line reference to the commands and

features of AmigaDOS, the sophisticated

operating system used by Commodores

state-of-the-art personal computer, the

Amiga. Because of the Amiga's multi-tasking

capability this program can remain in the

computers memory while you run other soft

ware! Need quick information on some

aspect of the operating systems features? Just

choose to see the appropriate portion of

AmigaDOS EXPRESS through a window on

the computer screen without interrupting the

program currently running!

AmigaDOS EXPRESS contains instantly

accessible descriptions and helpful informa

tion on devices, directories, DOS error mes

sages and many other items, plus multi-page

descriptions of each AmigaDOS command

including its format, typical usage, remarks,

examples and "see also" cross-references. All

the AmigaDOS commands are broken down

by function into submenus.

Put instant AmigaDOS information at your

fingertips:

—Covers all AmigaDOS 1.1 and 1.2

commands

—Uses Amiga's multi-tasking capability

—Completely menu driven

Please send me copy(ies) of AmigaDOS EXPRESS:

The Online AmigaDOS Manual
(50046-5) at $32.95 each ($29.95 + $3.00 UPS shipping and handling)

Name

Address _

City .State. .Zip.

or call 800-223-6834, extension 479 to order.

□ Please send me information on AmigaDOS Manual,

2nd Edition
Return to:

Bantam Books Inc.

Dept. DR-77

666 Fifth Avenue

New York, NY 10103
BANTAM]
SOFTWARE |

□ Enclosed is my check or money order for

$

□ Charge my VISA, MASTERCARD or

AMERICAN EXPRESS (circle one).

Card number:

ACCOUNT #
EXPIRES L_l_J

Signature

All Prices US Currency

