

THE AMIGA

THE AMIGA

Images;

Sounds, and

Animation

on the

Commodore"

Amiga™

MICROSOFT-
PRESS

Michael Boom

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

16011 N.E. 36th Way, Box97017 Redmond, Washington 98073-9717

Copyright © 1986 by Michael Boom

All rights reserved. No part of the contents of this book

may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Boom, Michael.

The Amiga: Images, Sounds, and Animation on the Commodore Amiga.

Includes index.

1. Amiga (Computer) —Programming. 2. Computer graphics. 3. Computer sound

processing. I. Title.

QA76.8.A177B66 1986 006.6765 86-16388

ISBN 0-914845-62-4

Printed and bound in the United States of America.

2 3456789MLML8909876

Distributed to the book trade in the United States by Harper & Row.

Distributed to the book trade in Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 1S2-190 WairauRoad, Auckland 10, New Zealand

British Cataloging in Publication Data available

Apple:" is a trademark of Apple Computer, Incorporated, and Macintosh"1 is a trademark licensed to

Apple Computer, Incorporated.

LIVE!"1 is a trademark of A-Squared Systems.

Atari^ is a registered trademark of Atari, Incorporated.

Casio R is a registered trademark of Casio, Incorporated.

Amiga'11, Amiga Kickstart™, Amiga 1300 Genlock System11', Amiga Workbench'", AmigaDOS1'1,

Graphicraft"1, andTextcraft'" are trademarks of Commodore-Amiga, Incorporated.

Amiga BASIC'11 is a trademark of Commodore-Amiga Incorporated and Microsoft Corporation.

Commodore "is a registered trademark of Commodore Electronics Limited.

Centronics* is a registered trademark of Data Computer Corporation.

DeluxeMusic"", Deluxe Paint'-, DeluxeVideo--, Electronic Arts", and Instant Music" are registered

trademarks of Electronic Arts.

Epson* is a registered trademark and JX-801" is a trademark of Epson America, Incorporated.

IBM^ is a registered trademark of International Business Machines Corporation.

Microsofth- is a registered trademark of Microsoft Corporation.

Mimetics"' and SoundScape'" are trademarks of Mimetics Corporation.

Motorola11 is a registered trademark of Motorola, Incorporated.

Digi-View"1 and Neu'Tek"' are trademarks of NevvTek.

Okimate20™ is a trademark of Okidata, a division of Oki America, Incorporated.

Pioneer" is a registered trademark and LaserDisc11' is a trademark of Pioneer Electronic Corporation.

Suny^isa registered trademark ofSony Corporation ofAmerica.

Ministudio8 and Portastudio" are registered trademarks of Teac Corporation.

The Micro Forge51 is a registered trademark of The Micro Forge.

Aegis Animator"1 and Aegis Images'" are trademarks of The Next Frontier Corporation.

Space Archive'11 is a trademark of Video Vision Associates Limited.

Bugs Bunny" is a registered trademark of Warner Brothers, a division ofWarnerCommunications
Incorporated.

Diablos and Xerox B are registered trademarks of Xerox Corporation.

DEDICATION

This book is dedicated to ail the characters at Amiga, who

designed a great computer and kept me very entertained for a

year and a half.

TABLE OF CONTENTS

Foreword

Acknowledgments

Introduction

IX

xi

xiii

SECTION 1

Chapter One

THE MACHINE

A Close Look at the Amiga

SECTION 2

Chapter Two

Chapter Three

Chapter Four

Chapter Five

Chapter Six

IMAGES

A Video Graphics Primer 27

Amiga Graphics Tools 53

Amiga BASIC Graphics: Screens, Windows,

and Palettes 85

Amiga BASIC Graphics: Creating Images 113

Amiga BASIC Graphics: Odds and Ends 143

SECTION 3

Chapter Seven

Chapter Eight

Chapter Nine

SOUNDS

An Electronic Music Primer

Amiga Music Tools

Amiga BASIC Sound: Music and Speech

173

195

221

SECTION 4

Chapter Ten

Chapter Eleven

Chapter Twelve

Chapter Thirteen

ANIMATION

A Computer Animation Primer 251

Amiga Animation Tools 269

Amiga BASIC Animation: Creating Moving

Objects 295

Amiga BASIC Animation: Controlling Motion 327

Afterword

Appendix A

Appendix B

The Future: Amiga's Creative Possibilities

Amiga BASIC Statement Formats

Companies Mentioned in This Book

351

354

360

Index 363

FOREWORD TO THE AMIGA

Electronic media diversify our worid by giving us almost instan

taneous access to a multiplicity of experiences. In the course of a

few hours, we can listen to the Beatles, talk to a friend on another

continent, watch the Super Bowl, and be in Vienna with Salieri

and Mozart.

In nearly every case, the popularity and cultural impact of an

electronic medium have paralleled its degree of realism of sights

and sounds: The best electronic media put real life in a box.

Personal computers have rarely competed with other electronic

media in the realm of realistic sight and sound reproduction, but

the Amiga's video and sound are new dimensions in the typically

number-crunching world of computing. Marshall McLuhan said,

"The medium is the message." And the Amiga's message is

audiovisual.

The Amiga is the first personal computer that can begin to

approach the video quality of television and the sound quality of

hi-fi. But unlike television and hi-fi, the Amiga is an interactive

medium. With television, you watch another world through the

video window; with the Amiga you can step through that window

and be in the other world. With hi-fi, you listen to someone else's

music; with the Amiga you can change that music or create your

own. We're talking about more than just watching and listening;

the Amiga is a medium of doing.

The Medium of Doing has arrived just in time. In the past

twenty-five years, while generations have grown up in front of the

"boob tube," Dr. Marian Diamond has been doing brain research at

the University of California. The results have been tabulated, and

Dr. Diamond has proven that the single best way to increase your

intelligence is through interaction with your environment. In short,

"use it or lose it." A Chinese proverb puts it another way "I hear

and I forget, I see and I remember, I do and I understand."

Learning requires motivation. McLuhan must have had visions

of the Amiga when he said, "Those who draw a distinction

between education and entertainment don't know the first thing

about either." The beauty of the Amiga is that you can learn by

doing, while being entertained by realistic and dazzling sound and

video. Our natural urges to create, to experiment, and to explore

are given tremendous new power by the Amiga.

The video games of a few years ago displayed images, made

primitive sounds, and were interactive, but they proved to be a

passing fad because the medium lacked audiovisual realism and

the subject matter was not of enduring human interest. We now

know that great software needs to be simple to learn, audiovisually

"hot" to grab and keep our attention, and deep and relevant

enough that our minds are engaged. With its ease of operation and

IX

tremendous powers, the Amiga is an ideal tool for the software

artist who wants to establish new standards in all of these areas.

Software that brings the best out of the Amiga will boggle minds

and make people squeal with delight.

Can we even imagine the future possibilities for the Amiga?

Western Union could have owned the patent on the telephone, but

turned it down; the company couldn't see the potential. Teievision

was first thought to be suitable only for civil-defense communica

tions. Only time and creative minds will determine the true

potential of the Amiga.

Much has been made recently of "desktop publishing," which,

by improving the quality and control available to the individual,

may revolutionize the process of communicating on paper. Without

discounting the importance of paper, video and sound loom as the

media of choice when you have to get a message across. It stands

to reason, then, that a "desktop video" market may develop around

the Amiga that eventually surpasses desktop publishing.

As the first audiovisual personal computer, the Amiga may be

the innovative product that stimulates an inteUectual revolution,

akin to Gutenberg's printing press. The Amiga: Images, Sounds,

and Animation, thoughtfully written by Michael Boom, can help

you have your own part in that revolution. Viva Amiga!

Trip Hawkins

President. Electronic Arts

ACKNOWLEDGMENTS

A book that touches on as many different subjects as this one

does could not be written without research help from many people.

I'd like to thank (in no particular order) the many folks at Amiga

who taught me so much about the machine they made and love:

Sam Dicker, Carl Sassenrath, Bill Kolb. Dave Needle, Howard Stolz,

Rick Geiger, Mitchell Gass, Stan Shepard, Rick Rice, Caryn Havis,

Neil Katin, Jack Haeger, R. J. Mical, Barry Whitebook, Terry Ishida,

Bob Pariseau, and many others who answered questions in the

middle of incredibly busy production schedules. At Electronic Arts,

I'd like to thank David Grady for information about Deluxe Paint,

and Stewart Bonn for feeding me beta copies of Deluxe Video,

showing me Instant Music, and letting me badger him for some of

the wonderful Electronic Arts computer games.

Many companies lent me equipment to use while I wrote this

book, a great help for a writer on a limited budget. I'd like to thank

Jerry Kovarsky at Casio. Bill Mohrhoff at Teac, and especially Jeff

Stenehjem at Xerox for time and information above and beyond the

call of duty.

Of course, research is the fun part of a book. The truly arduous

task is writing it and getting it ready for publication. I'd like to

thank the talented staff of Microsoft Press for helping me with all

aspects of producing this book, especially Dave Rygmyr for

shepherding the manuscript from the first chapter to the final blues

with unfailing cheer, skill, and true interest in the contents of the

book, and Allan McDaniel and Tom Corbett from over in Microsoft

software for answering last-minute Amiga BASIC questions.

Finally, I'd like to thank Lynn Morton for support and understand

ing through obsession, exasperation, and exhaustion. Thanks,

honey, it's done now. We can relax.

INTRODUCTION

If you ask people what their favorite art medium is, chances are

excellent that they won't reply "personal computers." Most people

think personal computers are fine for managing a database,

running a spreadsheet, and processing a few words here and there,

but they usually don't think of them as an expressive medium. If

they do, they rank personal computers somewhere below crayons

and kazoos for creating quality images and sound.

Amiga users know this stereotype is false. With internal

hardware and system software designed specifically for graphics

and music, the Amiga juggles colors and sound as easily as it

calculates spreadsheets and shuffles words. By using the powerful

creative software available for the Amiga, users can draw pictures

with exquisite color and detail, and produce music and sound

effects on a par with professional synthesizers. Amiga users can

combine their artistic and musical masterpieces to create cartoon-

quality animation, an activity that was previously unavailable to all

but professional and student animators with access to expensive

equipment.

Like any other medium, using the Amiga creatively takes

knowledge and practice. This book is written to give you both,

teaching you the concepts you need to understand what you're

doing, and giving you examples so you can experiment with what

you learn. If you're a novice Amiga user, you'll find the fundamental

concepts of computer graphics and sound explained in primers

throughout the book. With these concepts m hand, you can easily

go through the following chapters that show you how to use

application programs like Deluxe Paint, Deluxe Music, and Deluxe

Video. Step-by-step examples give you practical experience using

these applications.

Experienced Amiga users will also find much of interest in this

book. The chapters on application programs explain advanced

features, and show you some tricks that you can use to get unique

results. They also review other software on the market, and explain

how additional hardware can turn your Amiga into an even more

advanced creative tool. If you're a BASIC programmer, you'll find

chapters explaining the intricate details of Amiga BASIC graphics,

sound, and animation commands, and showing you in example

programs how to combine them for useful results.

xui

HOW THIS BOOK IS ORGANIZED

This book is divided into four sections to make it easy for you to

find a specific area of interest. Section 1 introduces you to the

Amiga, taking you on a detailed tour of its hardware and system

software to see what makes it such a powerful computer. Section 2

covers graphics, showing you how to ceate still images on the

monitor screen. In Section 3, you'll find information about sound—

how to create music, speech, and sound effects using the Amiga's

internal sound synthesis. Section 4 teaches you about animation,

showing you how to give motion to figures on the screen.

Each of the last three sections is organized the same way: The

first chapter of each section is a primer that introduces you to

important concepts you'll work with in that section. For example,

you learn about how computer monitors create images in Sec

tion 2, how the ear hears sound in Section 3, and how the illusion

of motion is created by changing still pictures in Section 4. The

second chapter of each section shows you how to use a specific

application program—Deluxe Paint in Section 2, Deluxe Music

in Section 3, and Deluxe Video in Section 4—and discusses

additional software and hardware you can use with your Amiga.

The remaining chapters in each section deal with Amiga BASIC

statements and functions.

HOW TO USE THIS BOOK

The first section of this book was written to give you a full

understanding of the parts of the Amiga, so you won't be confused

by descriptions in the following three sections. If you know the

Amiga well already, you might want to skip Section 1 and jump

directly to whichever of the last three sections interests you most.

Within each special-interest section, you should read the first

chapter—it introduces you to concepts you'D need to know to

understand the other chapters in the section. Once you've read the

first chapter, you can read the second chapter and skip the BASIC

chapters that follow it if you're interested in application programs

and not BASIC programming, or you can skip the second chapter

and read just the BASIC chapters if you're interested only in BASIC

programming. If you haven't used Amiga BASIC before, you should

be sure to read Chapter Four (in Section 2); it tells you how to enter

and run programs.

You might want to try reading some of the BASIC chapters

even if you aren't a programmer. Much of the information there is

interesting to non-programmers, and if you read the beginning of

Chapter Four, you'll learn enough to enter and run the BASIC pro

gram examples without having to know how they work. In the

interest of easy typing and less chance for error, the program ex

amples (with a few exceptions) are short and simple. Just remem

ber to press the RETURN key at the end of each line as you type a

program to enter the line in the Amiga's memory.

xiv

There are two helpful appendices in the book. Appendix A is a

list of all the BASIC statements and functions used in this book,

with the format they use and a short explanation. As you write

your own BASIC programs, you can use this appendix as a

convenient reference if you forget the exact format of a statement,

or if you need to find the right statement to perform a BASIC task.

Appendix B is a list of all the software and hardware companies

mentioned in the book, with addresses you can write to for more

information about their products. Following these appendices is a

full index to help you quickly find any topic discussed in the book.

WHAT YOU NEED TO USE THE EXAMPLES IN THIS BOOK

To try the examples in this book, you need four different software

packages: Deluxe Paint for Chapter Three, Deluxe Music for

Chapter Eight, Deluxe Video for Chapter Eleven, and Amiga BASIC

for all the BASIC chapters. Amiga BASIC comes with every Amiga;

you can buy the other three programs at any Amiga dealer.

You can run the examples with a minimum of equipment.

Although some of the examples that show you how to record your

creations require a camera, a printer, a VCR, or a cassette recorder,

most require no more equipment than your Amiga, monitor, and

mouse. Since it's quite easy and inexpensive to add memory to

the Amiga, all the examples in this book assume that you're using

an Amiga with 512 kilobytes of RAM—they may not work on

a 256K Amiga.

One important note: If you're a rank beginner at using the

Amiga and don't know how to use the mouse, menus, keyboard,

and its other parts, you should read Introduction to Amiga, a

manual that comes with the Amiga, before you read this book. It

describes all the basics you need to know to use the Amiga. Once

you know them, you should have no trouble.

Time spent in using the Amiga's sound and graphics creatively

can be some of the most enjoyable time you'll ever pass in front of a

computer. The things you learn in this book should help you turn

your ideas into visible and audible results with a minimum of

trouble. Your friends may laugh when you sit down at the keyboard,

but when you start to roll the mouse...

xv

In this section, you

take a close look at the

Amiga to see what it is

and what it does. You'll

learn about the equip

ment the Amiga uses

to run, and to produce

graphics and sound.

I'll also learn about

levels of

with

every

mation and

presented in this sec

tion will take some of

the mystery out of the

Amiga's performance,

and give you the back

ground to tackle other

sections of this book

with ease.

The

Machine

CHAPTER ONE

A CLOSE LOOK AT

THE AMIGA

When you first encounter an Amiga, you see only half of

what makes it work. The half you can see and touch—the

keyboard, the console, the monitor, and the disk drive—is

the hardware. The invisible half of the Amiga is its

software.

Software is a set of instructions, stored in the computer

or on a floppy disk, that determines how various compo

nents and functions interact—how the keyboard sends

messages to the computer, for example, and how the

monitor screen displays pictures. The software makes the

computer perform tasks that are helpful to you. Without it,

a computer is an expensive and inactive desk ornament.

A complete Amiga computer system is a working

partnership of both hardware and software. To understand

the entire system, you must learn about both halves of the

computer.

Figure 1-1.

The four basic hardware

components of the

Amiga computer system

THE HARDWARE

In Figure 1-1, you see the four main components of a basic

Amiga computer system: the console, the monitor, the keyboard,

and the mouse. You can add other useful components (called

peripherals) to the Amiga, such as printers, modems, or additional

disk drives, until your system expands beyond your desk and starts

to take over the room. However, for the minimalist or the frugal,

these four essential components are the bare minimum you need to

make the system work.

Monitor

Console

Keyboard

Mouse

SECTION 1: THE MACHINE

4

THE MONITOR

Chances are you pay more attention to the monitor than to any

other part of the Amiga system. The monitor is the Amiga's

channel of communication with you; it gives you visual information

through its screen, and audio information through its speaker.

The Amiga can work with three different kinds of monitors: RGB

monitors, composite video monitors, and standard television sets.

RGB {short for Red, Green, Blue) monitors show the sharpest

picture with the most vivid colors, and can display 80 columns of

readable text. You should use an RGB monitor with the Amiga,

even if you have to save pennies for years, because it's the only

monitor that does full justice to the Amiga's graphic abilities.

A composite video monitor is midway in quality between an

RGB monitor and a TV set. If you have a component television

system, chances are the monitor that displays the picture is a

composite video monitor. Whiie it doesn't display as clear a picture

as the RGB monitor, a composite video monitor attached to the

Amiga still produces a good-looking picture, thanks to the Amiga's

superior composite video signal.

The standard home television set can range in quality from

pretty good to horrible. The advantage to a TV set, of course, is

that you can use your regular TV without having to buy a special

computer monitor. If you do use a color television set for a monitor,

the Amiga gives it an excellent TV signal for color display. On a

good-quality TV set, the Amiga can display 60 columns of readable

text on the screen.

The Amiga has three different connectors (called ports) for

connecting monitors, one port for each kind of monitor. Since the

three ports all send out the same display information (although in

different forms), you can connect all three different kinds of

monitors at the same time and show the Amiga's video display on

three screens at once.

THE KEYBOARD

You use the keyboard to send information to the Amiga, feeding

it words, numbers, or requests for special functions as needed. The

keys are laid out like a standard typewriter, so if you're a touch

typist, you'll feel at home.

You'll also notice some keys not found on a typewriter. On the

left and right sides of the Spacebar you'll find the two Amiga keys,

each marked with a red "A." By holding down an Amiga key and

pressing another key, you can perform special program functions,

such as choosing a menu item. Next to the Amiga keys are the ALT

keys, and above the left SHIFT key you'll find the CTRL key. The ALT

and CTRL keys are special keys that, like the Amiga keys, are used

in combination with other keys to execute various program

functions.

A Close Look at the Amiga

5

Figure 1-2.

The special keys of the

Amiga keyboard

To the right of the main keyboard are four cursor keys, marked

with arrows, that let you move the cursor around the monitor

screen in applications such as word-processing programs. Above

the cursor keys is the HELP key, which you can use in some

applications to get helpful information about using that program.

Along the top of the keyboard are ten function keys (F1-F10) that can

perform special program functions with a single keystroke, and on

the far right of the keyboard is a numeric keypad that's laid out like

a calculator to speed number entry. You can see these special keys

in Figure 1-2.

Function keys HELP key

'''''Ti'lrfrr
' ■' ' ' ■ '

u. EXJUU
1 ■ ' ' ' I' ' ' '

CTRL key •ALT keys Cursor keys Numeric keypad

The keyboard is connected to the Amiga with a coiled extension

cord so you can move it to the location most comfortable for you—

a considerable convenience if you like to type lying down or

scrunched over in weird positions. The keyboard has a set of small

legs in the back that you can fold up to slide the keyboard under

the console so that it will be out of the way when you're not using

the Amiga.

THE MOUSE

The mouse does away with a lot of typing and is the key to the

simplicity of using the Amiga. As you roll it on a flat surface, the

mouse moves an on-screen pointer. You can use the mouse to move

the cursor quickly in word-processing programs, for example, or to

select menu items or objects on the screen that start activities like

printing or displaying different sections of text. The mouse also

makes an excellent drawing instrument: You can use it with

graphics programs to draw images on the screen.

SECTION 1: THE MACHINE

6

THE CONSOLE

The console is the real workhorse of the system. It contains all

the microchips and other electronic components that actually do

the work of computing and storing information. The console also

contains the internal disk drive, which you use to access and store

data and programs on floppy disks. From the outside, the console

looks simple and innocent. You have to look inside to see what a

hotbed of activity the console really is.

The interior of the console is not the rat's nest of tangled wires

and glowing lights that you might expect if you've watched a lot of

low-budget science fiction movies. Instead, it's an orderly array of

microchips and other small electronic components, all laid out on

two green boards collectively called the motherboard. You can see

the motherboard and other components that are housed in the

console in Figure 1-3.

Power supply Motherboard Figure 1-3.

Inside the Amiga con

sole: the motherboard,

internal disk drive, and

power supply.

Disk drive

The power supply

The power supply simply converts the electricity from your wall

socket into the small voltages required to run the Amiga. A fan in

the power supply keeps the inside of the console cool; that's

necessary because when the computer is on, shuffling electrons

A Close Look at the Amiga

7

Figure 1-4.

The chips on the

motherboard: The

microprocessor chip, cus

tom chips, and RAM and

ROM chips are labeled.

through its circuits, it generates heat. Too much heat can keep the

chips from working correctly, and could possibly damage them. To

help keep the computer cool, there are vent slots on the bottom and

back of the console. You should take care not to block these slots

when you use the Amiga.

The motherboard

Most of the real work of the Amiga is done by just four chips on

the motherboard: the microprocessor and the three custom chips

(see Figure 1-4). The microprocessor is the master chip that does

most of the "brain work" of the Amiga such as adding, dividing,

and sending commands and information to other chips. The

custom chips, which are unique to the Amiga and contribute

significantly to its overall computing power, back up the micro

processor by taking care of details such as creating video displays

and generating sounds. This frees up the microprocessor chip and

allows it to run more efficiently

ROM chips

I

RAM chips The 68000 microprocessor

The three custom chips go by the names of Agnus, Denise, and

Paula. The microprocessor chip goes by the more imposing name

of the Motorola 68000.

SECTION 1: THE MACHINE

8

The Motorola 68000 microprocessor

The power of a microprocessor is measured by the amount of

data it can handle at a time and the speed at which it operates. As

microprocessors go, the 16/32-bit Motorola 68000 is fast. 16/32 indi

cates the 68000's data-handling capabilities: The 68000 processes

data in chunks of 16 bits and 32 bits. Inside the microprocessor, the

68000 works on 32 bits of data at a time, then sends data out to the

rest of the computer in 16-bit chunks. This makes the 68000 much

faster than a 16-bit microprocessor, such as that used by the

IBM PC, and makes the Amiga a very quick machine.

Other computers, such as the Apple Macintosh and the Atari ST

computers, also use the 68000 microprocessor. What sets the Amiga

apart from these computers is its set of custom chips that give it

even greater speed and enhanced abilities.

The custom chips

Each of the custom chips has its own set of duties. Demse is

the display chip; it controls the way images are created on the

monitor screen. Agnus is the animation chip; it draws and moves

figures on the monitor screen. Paula is the peripherals/sound chip;

it creates the Amiga's sounds, and also sends data back and forth

between the motherboard and the peripherals, such as the disk

drive, mouse, and keyboard.

The custom chips are perfect subordinates to the micro

processor. They can perform their duties without bothering the

68000, leaving it free to concentrate on weightier matters like

numerical calculations. This is one of the truly revolutionary

features of the Amiga hardware. Many other computers have no

custom chips, so the microprocessor must do all the display, sound,

and peripheral work, which slows it down considerably.

Another feature of the Amiga is the way in which its

microprocessor interacts with its custom chips. Most computers

that have custom chips usually require the microprocessor to

constantly supervise the custom chips, which again slows down

the microprocessor, although not nearly as much as a computer

without custom chips. In the Amiga, however, the microprocessor

is interrupt driven, which means that the system was designed so

that the custom chips send a signal to the microprocessor when

they need instructions, rather than the microprocessor having to

constantly check each chip (a process called polling).

The Amiga's interrupt-driven microprocessor contributes signifi

cantly to the speed of the system. Together with the custom chip

partnership, it gives the Amiga the necessary speed to animate

figures smoothly on the screen, transfer data quickly from a disk to

the internal computer, or to perform business calculations without

making you wait a long time. The chip partnership also means that

many of these tasks can be performed simultaneously.

A Close Look at the Amiga

9

The memory chips

Memory chips are another important set of chips on the

motherboard. There are two types of memory chips: RAM and ROM.

RAM is short for Random Access Memory, ROM is short for Read

Only Memory. Each type of memory stores data, but in

a completely different manner.

RAM, also called read/write memory, is erasable, so the

microprocessor and custom chips can store data there, retrieve it

later, and erase the data so new data can come in. You should note

that nothing can be kept in RAM permanently, because RAM has

the unfortunate characteristic of losing all of its stored data when

the power is turned off.

ROM isn't erasable; the data stored there (sometimes called

firmware) is always available to the Amiga. The microprocessor

and custom chips can read the data in ROM, but they can't erase it

or store new data there. The Amiga's ROM chips store important

system software (put into them at the factory) that the com

puter uses to run itself (a process called booting) when you first

turn it on.

Other chips and electronic components on the motherboard take

care of details needed to send data and audio-video information out

of the console. Although they're all necessary, the microprocessor,

custom chips, and memory chips are the most important chips on

the board-

The internal disk drive

The disk drive built into the console is called the internal disk

drive, to distinguish it from drives that can be attached to the

console by cable (conveniently called external disk drives). Disk

drives are necessary to read data stored on floppy disks, and to

store the data that would otherwise be erased from RAM when you

turn off the computer.

The Amiga's internal drive uses 3/2-inch floppy disks, a

convenient size to put in a shirt pocket and carry around. The

internal drive is a double-sided drive, which means that it records

data on both sides of the disk- This gives each disk twice the data

capacity that it would have on a single-sided drive. The Amiga

drive offers 876 kilobytes of storage on each disk, a tremendous

capacity for a disk that small.

The Amiga uses a special method called direct memory access

(DMA) to store and retrieve disk data. Simply put. DMA means that

data can go directly from the disk drive to the Amiga's memory or

from the Amiga's memory to the disk drive without passing

SECTION 1: THE MACHINE

10

through the microprocessor. This means that data transfer between

the drive and memory is very fast. It also means that the disk drive

can transfer data to and from RAM without stopping the other

workings of the Amiga. This is very handy when the Amiga is

busy animating a figure on the screen or creating music on the

speaker. It doesn't have to stop while it gets new information from

the disk drive for the next animation sequence or a new song.

PORTS AND CONNECTORS

Arranged around the outside of the console are sockets for

connecting peripherals. These are called ports and connectors, and

act as portals for passing information between the chips inside the

Amiga and equipment in the outside world. In Figure 1-5, you can

see the ports and connectors on the front and right side of the

Amiga console. In Figure 1-6 (on the next page), you can see the

ports and connectors on the back of the console.

Figure 1-5.

The ports and connectors

on the front and right

side of the console.

Internal RAM connector Controller ports Expansion connector

The internal RAM connector

On the front of the console is a central panel that hides the

internal RAM connector. If you grasp the panel firmly and pull it off,

you can see the connector. You can use the connector to expand

the Amiga's 256 kilobytes of internal RAM to 512 kilobytes to give it

more memory to store programs and data. No soldering or tricky

work is required: You simply buy a memory-expansion cartridge

that plugs into the internal RAM connector.

A Close Look at the Amiga

11

Figure 1-6.

The ports and connectors

on the back of the

console.

The controller ports

On the right side of the Amiga, you can see two controller ports.

The Amiga's mouse plugs into the first of these ports. The con

troller ports are not just for mice, though. You can plug in other

controllers as well, such as joysticks, light pens, or touch tablets.

The controller ports pass information from the controllers to the

Paula chip so the Amiga can read the controller's position or

actions. Two controller ports let you use two controllers at once.

The expansion connector

Just to the right of the controller ports is a hidden connector. You

can pry off the small plastic panel covering it by using a penknife, a

small screwdriver, or a long fingernail. Once you uncover it, you'll

see the edge of the motherboard sticking out with what look like

small copper teeth. This is the expansion connector. (Don't touch

the teeth—a spark of static electricity from your finger could

damage the Amiga.)

The expansion connector provides direct access to the chips

inside the console. This connector makes the Amiga an "open

machine" in the jargon of the computer market, because you can

add components that require direct contact with the inner chips.

The expansion connector lets you customize your Amiga.

Some examples of components you can add to the Amiga using

the expansion connector are a hard disk drive to add more external

data storage, extra RAM chips to add more memory (up to 8

megabytes, in addition to the maximum 512K internal memory),

and a video-signal converter to send video images directly into the

Amiga from sources such as video cameras. Most expansion

components have a built-in connector identical to the Amiga's, so

you can add more than one device to the Amiga without "using

up" the expansion connector. (If you took the plastic cover off to

look at the expansion connector, be sure to put it back on. It

protects the connector, and ensures that you don't accidentally

short out the inside of the Amiga.)

Disk-drive port Audio ports TV modulator port

SECTION 1: THE MACHINE

12

The keyboard port

If you turn the Amiga console around so you can see its back,

you'll see a row of ports, shown in Figure 1-6. The first port on the

left is the keyboard port, which passes information from the

keyboard to the inside of the console. The keyboard cord plugs in

here. If you run the keyboard cord under the console, you can slide

the keyboard under the console whenever you're not using

the machine.

The parallel port

Immediately to the right of the keyboard port is the parallel port.

It sends data out of the console to whatever is attached to the port

(usually a printer). Most parallel printers use a standard cable and

data-transmission method called "Centronics parallel" after a series

of printers sold by the Centronics Corporation. The Amiga's parallel

port uses a modified Centronics standard, so with a special Amiga

cable you can attach any printer that uses the Centronics standard.

The disk-drive port

To the right of the parallel port is the disk-drive port. You can

connect up to three external disk drives here to add to the storage

capacity of the system. To add more than one drive to this port,

you connect each new drive to the back of the last one to create a

chain. Every drive on the chain has direct memory access to the

Amiga's RAM for fast data transfer

The serial port

To the right of the disk-drive port is the serial port. The serial

port is used to connect devices that need serial data from the

computer, such as a modem (a device that transfers data over

telephone lines between the Amiga and another computer) or a

serial printer. There is a standard for serial-data transmission called

"RS232" that determines the way the wires in a connecting cable

are used and the way the bits are sent over the wires. The Amiga's

serial port uses a modified RS232 standard, so with a special

Amiga cable you can attach any serial peripheral that uses the

RS232 standard.

The audio ports

The two audio ports are to the right of the serial port. They send

out the audio signals that create the Amiga's sound. There is one

audio port for the left channel and one for the right channel.

For good sound production, you can use the audio ports to

connect the Amiga to a stereo system, just as you would connect a

cassette deck or a compact disc player. The audio ports have a

A Close Look at the Amiga

13

line-level output {the same kind that cassette decks produce),

which means the audio signals produced from these ports must be

amplified in order to be heard. Using standard audio cables, you

can connect these audio ports to a stereo amplifier, using the

inputs for a tape deck, compact disc player, or an auxiliary device.

If you want to record music you create with the Amiga, you can

connect the audio ports to the inputs of a tape recorder to put your

sounds on tape.

The RGB port

The port immediately to the right of the audio ports is the RGB

port. If you use an RGB monitor for your computer display, you plug

it into this port. The RGB port works with both analog and digital

RGB monitors, although you need a special adapter cable to

connect a digital RGB monitor.

The TV modulator port

To the right of the RGB port is the TV modulator port. This port

sends out a standard television broadcast signal over a cable

(included in the TV modulator package available from your Amiga

dealer) you attach to the antenna inputs of a TV set. If you decide

to use a TV set as your computer monitor, you connect it to the TV

modulator port.

The video port

The video port is the port farthest to the right of the back of the

console. It sends out an NTSC signal for a composite video monitor,

the same type of signal that comes from the VIDEO OUT jack on the

back of most video cassette recorders. (NTSC stands for the

National Television Systems Committee, which sets the standard

for video signals.)

If you use a composite video monitor for your computer display,

you plug it into the video port. If you use a monitor that plugs into

another port (a TV or RGB monitor), you can plug a video cassette

recorder into the video port and record the images you view on

the monitor.

COMMON PERIPHERALS

You can expand the minimum Amiga system with peripherals

that add power and make the Amiga more useful. These common

peripherals help save working time, and can transfer the results of

the Amiga's work onto paper or over the phone lines.

SECTION V THE MACHINE

14

One of the most useful additions to the Amiga system is a

printer. Printers come in all shapes, sizes, and capabilities, and the

Amiga will work with the majority of them. Most printers are used

just to print text, but many will also print pictures from the Amiga's

screen. These graphics printers are a very useful tool for artists.

Letter-quality printers

Businesses use letter-quality printers to create letters that look

like they were done on a typewriter. The letter-quality printer

puts characters on paper by striking an inked ribbon with fully

formed characters on the ends of spokes, much like a typewriter.

Although their printing is crisp and clear, letter-quality printers are

of little use for graphics, since they can only create characters and

not pictures.

Impact dot-matrix printers

The impact dot-matrix printer is the most common printer used

with computers. It uses a print head with a vertical row of tiny pins

that create characters by striking m different combinations against

an inked ribbon as the head moves across paper. If you look closely

at the characters, you can see they're made of dots imprinted by

the pins. The printer creates pictures using the same method of

building images with tmy dots. Most impact dot-matrix printers

are strictly black and white, but some use colored ink ribbons to

create color pictures.

Thermal-transfer printers

Thermal-transfer printers work much like dot-matrix printers, but

use points of heat to create dots directly on special paper, similar to

the dots created by a dot-matrix printer. Thermal printers also print

pictures that look much like an impact dot-matrix picture; some

even use a ribbon containing colored wax to create color pictures.

Thermal-transfer graphics aren't usually as good as dot-matrix

graphics—the placement of the dots on the paper isn't always as

accurate and the dots are sometimes smeared—-but thermal

printers are usually much less expensive than other types.

Ink-jet printers

Ink-jet printers spray small drops of ink on paper to form text

characters and graphics. Most models print only one color, but

more expensive models are available that can print multiple colors

using separate jets for each color. They're worth the cost if you

want high-quality printed graphics, because they print with vivid

and even coloration.

A Close Look at the Amiga

15

Figure 1-7.

An external 3V2-inch

Amiga disk drive.

Laser printers

The laser printer is a type of printer that's out of the price range

of most personal-computer users. It creates pictures and text using

a photosensitive drum and toner the way a photocopier does, but

creates the images on the drum with a laser instead of exposing

the drum to a printed document through a lens, like a photocopier.

Laser printers are very fast and quiet, and laser graphics are crisp

and clear. Most laser printers print only in one color. You can vary

the colors by using color-toner cartridges, but the text or graphics

on each page will still be printed in one color, unless each page is

sent through the printer again and reprinted using a different color

toner. As laser technology advances, look for laser printers that will

print multiple colors on the same page simultaneously. Prices

should drop as well, until laser printers are more affordable for

Amiga artists.

External disk drives

You can add up to three floppy-disk drives to the Amiga, using

the disk-drive port in the back of the console. You can use either

3/2-inch double-sided drives (shown below in Figure 1-7) or special

IBM-compatible 5Ki-inch drives designed for the Amiga (which

must be used with the Transformer IBM emulator, available from

your Amiga dealer), or combinations of both. The 5K?-inch drives

use larger disks that don't store as much data as the Amiga's

normal 3 Y?Anch disks, but they can read IBM PC disks so you can

use IBM software or read data created by an IBM PC.

Each 3Kz-inch external drive gives you 876 more kilobytes of

disk-storage capacity, enough by itself to store all the text in this

book. A good reason to add an additional disk drive is that it

makes it much easier to copy information from one disk to another.

SECTION V THE MACHINE

16

When you use just the internal disk drive to copy files from one disk

to another, you have to swap disks back and forth until the copy is

complete. A second disk drive eliminates disk swapping, saving

you time and aggravation.

Real gluttons for disk-storage space can use the expansion

connector to add a hard-disk drive, ,which is capable of storing

megabytes of information. Although this much extra storage space

is generally used to keep a large number of records for database

programs, it is also useful for animators and musicians who want

to store long animation sequences or scores.

A tremendous data-storage capacity isn't the only benefit of a

hard-disk drive: It also transfers information to the Amiga and back

much faster than a floppy-disk drive. This speed can be very useful

when you need to feed long sequences of animation images to the

Amiga quickly.

External RAM

The Amiga can have a maximum of 512 kilobytes of internal

RAM. If you really want to expand the Amiga's memory you can

add up to eight megabytes of external RAM by plugging external

RAM cards into the external connector on the right side of the

Amiga console. Since pictures and sounds require large amounts of

memory, you might want the extra RAM to accommodate involved

animation sequences or long musical scores.

Additional peripherals

There is a multitude of other peripherals designed to help you

with specific tasks. A modem will connect the Amiga to phone

lines so it can communicate with other computers and computer

networks. Touch tablets and light pens help draw figures on the

monitor screen without using the mouse. Synthesizers add to the

Amiga's already powerful musical abilities, and video cameras,

video recorders, and other various video accessories help bring

outside video images to the Amiga, and bring Amiga images to

the outside world. You can read more about additional periph

erals in later chapters.

SOFTWARE

Since software exists only as electrical states in the Amiga's

memory or magnetic charges on a disk, it's not as easy to examine

as hardware. If you want to analyze its structure, you can look at

printouts of the code the programmer used to create the software.

A Close Look at the Amiga

17

But that's a process not unlike reading through old federal income-

tax forms, and isn't really much fun. (My apologies to die-hard

hackers and accountants.) Practically speaking, software is what it

does, so you can use a more enjoyable method of examining

software by examining its results.

SYSTEM SOFTWARE

The software included with the Amiga, called the system

software, runs the Amiga. Some of this software is stored inside

the console on ROM chips. The rest is included on two floppy disks:

the Workbench disk and the Kickstart disk- The system software

has five main programs and many smaller routines that are

structured in layers so they can work with each other.

An analogy helps to see how the system software works. Think

of a factory set up to manufacture kazoos. The factory has

machines for stamping out metal shapes, bending metal, attaching

buzzing membranes, painting metal, and boxing up finished

kazoos. The machines are run by a factory work force, men and

women expert at making sure the machines turn out the finest

kazoo craftsmanship. The individual workers are guided by

supervisors who make sure things are running smoothly. Directing

the supervisors are managers with expertise in each area of kazoo

manufacturing-—one manager for metal cutting, another for

creative painting, and so forth- One step above the managers are

directors—one for each different area, like shipping and quality

control. A level above the directors are the vice presidents, who

carry out the orders of the president of the kazoo company.

Whenever the president decides to do something new, like

introduce a new line of Luciano Pavarotti-shaped kazoos, he tells

one of his vice presidents to start production. The VP gives orders

to the directors who need to be involved, who in turn issue their

orders to the managers. The managers tell the work force what

changes have to be made in running the machinery.

Although the Amiga doesn't manufacture kazoos, it runs like the

kazoo factory. The hardware (the factory work force) does the nitty-

gritty work, and the software (the management) runs the hardware.

At the lowest level of the software is a program called Exec (the

supervisors) that directly runs the hardware. Giving orders to Exec

are small subprograms called libraries and devices (the managers)

that specialize in areas like graphics, sound production, and math.

At the level above the libraries and devices are AmigaDOS and

Intuition (the directors), two programs that coordinate the work of

SECTION 1: THE MACHINE

18

the software below to perform such tasks as moving data back and

forth between the disk drive and the motherboard and presenting

data to you in a way that's easy to understand. At the top level of

the system software are two more programs, Workbench and CLI

(the vice presidents). They take orders directly from you (the

president) and pass them down to the rest of the system software.

Figure 1-8 shows you the different layers of the Amiga system

software.

The user

High level

O

O

Low level

Workbench CLI

Intuition AmigaDOS

libraries and Devices

Exec

Amiga hardware

Software layering makes it easy for programmers to write Amiga

programs. Programmers can use the lower-level programs built into

the system software to do much of the work for them. The low-level

programs like the devices and libraries include routines that

perform tasks commonly used by all programs, such as pulling in

data from the disk drive or reading what the user types on the

keyboard. The programmer can simply ask the device or library to

perform the task, instead of writing new code to do the same thing.

For example, a programmer writing a new program doesn't have to

write code to read the actions of the mouse. Instead, the new

program can ask a lower-level program to read the mouse actions

and return the information to the new program. This saves a lot of

time and trouble for the programmer.

Exec

Exec (short for system executive) is the lowest-level program of

the Amiga's system software. It's stored in the ROM chips inside

the console and on the Kickstart disk. When you turn on the com

puter, it's Exec that starts things rolling. It first clears the Amiga's

memory runs a short test of the hardware, and then asks you to

insert the Kickstart disk in the disk drive so it can bring the

Figure 1-8.

The layers of system soft

ware between you and

the hardware.

A Close Look at the Amiga

19

rest of Exec into the Amiga's memory. When the Kickstart disk is

finished loading, Exec asks for the Workbench disk so it can load

the other system software-

Exec takes care of the fundamental hardware activities. It

provides routines to pass data back and forth from chip to chip and

to transfer data through the ports and connectors. Exec also has

routines to check the keys on the keyboard, to monitor the actions

of the mouse, to create video and audio signals, and to perform

other tasks fundamental to the Amiga's operation.

Exec can run many different activities at once. For example, it

can send characters out to a printer at the same time as it moves

figures on the monitor screen. This ability is called multitasking,

and is one of the features that makes the Amiga a powerful

computer.

To juggle the separate activities of multitasking, Exec has to

make sure that each activity shares the Amiga's chips without

interfering with other activities. Exec is a little like a lawyer

working for clients with conflicting interests: It spends a little time

with each activity so that the activities don't think they're being

ignored, and keeps each activity ignorant of the others.

Libraries and devices

Libraries are small programs that run just above Exec. Each

library has its own specialty, and together the libraries cover a

wide range of useful functions such as graphics, animation,

mathematical operations, and putting text on the screen. Each of

these libraries is available to higher-level software. For example, a

program that creates video pictures can use the routines built into

the graphics library, and a program that makes music can use the

sound libraries, saving the programmer a lot of time and repetitious

programming.

On the Amiga, devices aren't hardware, although their name

would imply this. They're software, much like libraries, but they

usually specialize in controlling a particular part of the Amiga's

internal hardware, instead of providing more general functions like

the libraries do. Devices take care of translating the keys pressed

on the keyboard, tracking the movements and button clicks of the

mouse, sending out data through the serial and parallel ports, and

other hardware chores. Devices also generate the Amiga's sounds

and keep track of time.

Advanced programmers in most languages can use the Amiga's

libraries and devices directly to help them with their programs.

Microsoft BASIC for the Amiga, for example, offers special com

mands that call directly on the Amiga's libraries and devices to

perform tasks that BASIC itself might not be able to do.

SECTION V. THE MACHINE

20

AmigaDOS

On the level above the libraries and devices is AmigaDOS, short

for Amiga Disk Operating System. Like a traffic dispatcher who

keeps track of trucks on a highway, AmigaDOS keeps track of data

and programs in the Amiga's memory and on disks in the disk

drives. These programs and groups of related data are called files.

When AmigaDOS stores files on a disk, it keeps track of each file's

location on the disk, the size of the file, and when it was stored.

When it comes time to bring the file back into RAM, AmigaDOS

knows where to find the file and how to transfer it back to RAM.

AmigaDOS is also in charge of starting different programs. Since

Exec can handle many different tasks at once, AmigaDOS can take

advantage of Exec's multitasking ability to run different programs

at the same time if you ask it to. In case of any conflict between

programs, AmigaDOS knows which program is more important,

and makes sure it gets chip time or storage space from Exec before

the other programs do.

You use AmigaDOS whenever you load a program from disk and

start it running. You can give commands to AmigaDOS using one

of two higher-level programs: Workbench or CLI (discussed soon).

Intuition

Intuition is a program that works just above the libraries and

devices, at the same level as AmigaDOS. It provides user-interface

routines. The user interface, simply put, is the means you use to

control a program. Intuition's routines create the elements of the

Amiga user interface: screens, windows, menus, gadgets, and

requesters. Intuition also provides routines that use libraries and

devices to put text and graphics on the screen and read the mouse

and keyboard to see what the user wants.

Programmers can use Intuitions routines to create an Amiga

user interface for their programs. Instead of making their own

menus, windows, and other features from scratch, programmers

can ask Intuition to do it for them (for example, you'll learn how to

make a window in an Amiga BASIC program in Chapter 4).

Intuition's features encourage all programmers to use a consistent

user interface so users won't have to learn a new set of commands

and rules each time they learn a new program.

Workbench

Workbench is a graphics-based program that sits at the top level

of the Amiga's system software and takes commands directly from

you. It acts as an interpreter between you and AmigaDOS so you

can use AmigaDOS to manage files on disks and in RAM. The

display you see in Figure 1-9 (on the next page) is an example of

Workbench.

A Close Look at the Amiga

21

Figure 1-9.

The Workbench display.

Workbench uses Intuition's routines to interpret your actions.

When you double-click the mouse to open up a disk icon,

Workbench uses Intuition to open a window on the screen and

fill it with icons for the files on the disk. It asks AmigaDOS to look

on the disk to see what files are there. Typical Workbench activities

include copying disks, running programs, copying files, and erasing

files from a disk.

CLI

CLJ, short for Command Line Interpreter, is a text-based

alternative to the graphics-based Workbench. Unlike Workbench, it

doesn't make use of the Intuition user-interface routines to interpret

your commands to AmigaDOS- Instead, it uses an older user

interface that requires the user to type commands in a command

line. CLJ interprets each of these commands as an AmigaDOS

activity and starts the activity the user typed in. Figure 1-10 shows

an example of a session with AmigaDOS using CU.

Although CLJ is not always as easy to use as Workbench,

it's more powerful. It provides more AmigaDOS activities than

Workbench, and is particularly useful for advanced Amiga users.

Examples of CLI activities not found in Workbench are setting a

program to run immediately when you turn on the computer, and

searching through files to find a particular piece of data. In

addition, you can use CLJ to run a series of AmigaDOS commands

to create AmigaDOS programs to perform long and involved file-

handling tasks.

SECTION 1: THE MACHINE

22

Figure MO.

Using AmigaDOS with

CLJ commands.

You won't find directions for using CLJ in the "Introduction to

Amiga" manual. You'll find CLJ explained in the AmigaDOS User's

Manual, which is available through your Amiga dealer or a

computer book store.

SOFTWARE TOOLS

The system software is only the beginning of the software you'll

use on the Amiga. For really practical results, you'll use software

tools like Deluxe Paint, Deluxe Music, Deluxe Video, and Amiga

BASIC, featured in the other sections of this book. These programs

apply specifically to jobs you want to get done, and use the Amiga

system software to get the results you want.

You've now learned about the Amiga computer system

inside and out. The components you've read about in this

chapter, both hardware and software, work together to

make the Amiga the amazing computer that it is. But a

computer is only a tool—however powerful—and in the

long run it's you, practicing with the machine and explor

ing its potential, who does the work and creates the

images, sounds, and animation that show off the Amiga's

special talents.

A Close Look at the Amiga

23
^

SECTION

In this section, you'll

learn how to create

images with the Amiga

computer, hi Chapter 2,

you'll leam the funda

mentals of video

graphics and in Chap

ter 3 you'll work with

graphics program

You'll

at the

other

grams for the

survey additional

graphics equipment

you can add to your

Amiga, and in Chap

ters 4, 5, and 6 you'll

work with the Amiga

BASIC commands.

When you're finished,

you should be well on

the way to becoming

an accomplished

Amiga artist.

Images

CHAPTER TWO

A VIDEO GRAPHICS

PRIMER

Most of us see video graphics every day, in forms such as

television commercials or advertising displays in shopping

malls. But despite their omnipresence, few of us under

stand how they're created. Unlike simpler media such as

watercolors or pen and ink, video uses complex equipment

to create images. Still, like any other medium, the quality

of video images is determined by the quirks and foibles of

its constituent materials. Just as the texture of paper and

the transparency of watercolor paints give watercolor

pictures an unmistakable quality, the glowing phosphors of

a monitor screen give video images properties not found in

any other media.

To do your best work creating images on the monitor,

you should get to know the intricacies of video and learn

what the Amiga is capable of creating with the video-

handling graphics routines in its system software. In the

chapters following this one, you'll learn how to apply the

Amiga's graphic powers directly, by drawing and moving

objects on the screen. But first, you should learn about the

two crucial components that determine the way you see

video images: the monitor that displays the image, and the

eye that sees the image.

HOW YOU SEE BRIGHTNESS AND COLORS

Human eyes are complicated organs. They perceive shape,

distance, brightness, and color, all by sensing the light coming in

through the pupils at the front of the eye. Although seeing shapes

and judging distance are obviously very important to our everyday

lives, brightness and color are often more important to the artist.

For video images, brightness and color are even more important—

and the monitor you use with your Amiga has been designed to

create a video image that takes advantage of the way the human

eye sees colors and brightness.

PRIMARY COLORS

When you look at an image on a color monitor, you're actually

seeing an illusion of color. In fact, the monitor can display only

three primary colors: red, green, and blue. What the Amiga does is

mix and match these primary colors, and the resulting combina

tions create the rainbow of colors you seem to see. This effect is

directly related to the way your eye sees color.

At the back of the eyeball are two types of light receptors: rods

and cones. The rods see a colorless world in shades of gray, while

the cones see color. Although most people perceive a full range of

SECTION 2: IMAGES

28

colors—-red, yellow, green, cyan, blue, violet, and many colors in

between—the cones in the eye can actually see only the three

primary colors: red, green, and blue. The brain blends the varying

amounts of red, green, and blue light coming into the eye to create

additional colors.

The proportion of the primary colors blended together

determines the resultant color. For example, you see yellow as

a combination of equal parts of red and green light. If there is

more red light than green light, the yellow takes on an orangish

cast. If there's more green light than red light, the yellow becomes

more of a greenish yellow. By varying the amounts of red, green,

and blue light entering the eye, you can create a vast assortment

of other colors.

RGB COLOR CREATION

To create different colors using graphics programs on the

Amiga, you can adjust the program's color controls to vary the

amount of red, green, and blue blended together to create a

resultant color. This is called the RGB method of color creation. For

example, if you open the Preferences screen from the Workbench,

you're presented with three "slider" adjustments, one each for red,

green, and blue. You create new colors using the RGB method by

setting the three different sliders, which control the amount of each

primary color By setting the sliders shown in Figure 2-1 to different

amounts, you change the ratio of red, green, and blue, creating an

entirely new color.

Figure 2-1.

The RGB controls of the

Preferences program

Moving the sliders left

diminishes the primary

colors; moving them

right increases the pri

mary colors.

A Video Graphics Primer

29

HIS COLOR CREATION

Although it's easy to set red, green, and blue blends to create

new colors, it's not always easy to describe those colors as

individual amounts of red, green, and blue, or to come up with

exactly the color you wanted to create. People tend to describe

colors using terms like "light purple" or "dark red" rather than

descriptions like "eight parts red, eight parts blue, and three parts

green." There is another way to describe colors using three

attributes: hue, intensity, and saturation (HIS). These attributes

describe colors more like the way we see them.

Hue

Hue is the most apparent color attribute. You usually talk about

hues when you talk about color, using words like red, purple,

orange, and green. Hue is set by the mixture of primary colors in a

color, and is changed by the ratio of these primary colors. For

example, a mixture of blue and green light where the blue light is

twice as strong as the green light will create a hue described as

greenish blue. A mixture of blue and gjeen light where the green

light is twice as strong as the blue light creates a hue described as

bluish green. Since hues are often mixtures of other hues, many

of them have names like reddish orange, purplish pink, and

yellowish brown.

Intensity

The overall strength of light determines the intensity of a color.

Intensity can run the range from black (no light at all) to radiant

(maximum light strength). As an example of different color inten

sities, think of the difference between the colors at the beginning of

a sunrise and the colors when the sunrise is full. Many of the hues

are the same, but their intensity grows stronger as the sunrise

progresses, so the colors become much more radiant.

Hue and intensity are separate attributes—one can change

without altering the other. For example, a greenish-blue hue is

created with a mixture of two parts blue light and one part green,

so the ratio is two to one. If the strength of both the blue and green

light is doubled so the new mixture is four parts blue light and two

parts green, the ratio is still two to one, so the hue is still greenish

blue. The intensity changes, though—the second color mixture is

much more radiant.

SECTION 2: IMAGES

30

Saturation

The saturation of a color changes as more white is mixed in

with it. Fully saturated colors have no white mixed in, and so look

more vivid. Colors with little saturation are diluted by white and

look pale, like pastel colors.

Since radiant white is actually an equal mixture of red, green,

and blue, when you add white to a color you are actually adding

red, green, and blue in equal parts. Therefore, saturation is tied

together with hue: Both hue and saturation change as white is

added, since the equal parts of red, gieen, and blue used to create

white change the ratio of primary colors in the resultant color.

Whether a color changes hue or saturation is mostly a subjective

judgment—does the new color look paler, or does it actually look

like a new hue?

Some Amiga graphics programs use HIS to create new colors.

For example, Deluxe Paint, described in the next chapter, uses

three sliders to control the hue, intensity, and saturation of a color,

just as the Preferences program uses RGB sliders. Deluxe Paint

takes your HIS settings and translates them into RGB settings that

the Amiga needs to create the colors on the monitor screen.

HOW A MONITOR CREATES IMAGES

To many people, the inner workings of a computer monitor or

television set are every bit as mysterious as the biochemical

processes of the human eye. Monitors need not be quite so

mysterious: They use principles of electronics that have been

around for years.

To learn about monitors, it's easiest to first learn about

monochrome monitors, which display pictures using only one color.

Although you probably won't use a monochrome monitor with your

Amiga, understanding the principles of a simple monochrome

monitor makes it much easier to understand the color monitor you

most likely use with your Amiga.

MONOCHROME MONITORS

The heart of a monochrome monitor, or almost any monitor for

that matter, is the cathode-ray tube (CRT for short). The CRT is a

large vacuum tube with a rectangular faceplate for displaying

images, and an elongated stem containing an electron gun

protruding from the rear (see Figure 2-2 on the next page).

A Video Graphics Primer

31

Figure 2-2

Cutaway view of a

cathode-ray tube.

Figure 2-3.

Focusing and aiming

the beam of a CRT

electron gun.

Electron gun

Faceplate

When you turn on the monitor and let the CRT warm up, the

electron gun fires a stream of electrons at the front of the tube,

which is covered with a layer of phosphor particles. Each phosphor

particle glows briefly when it's hit by an electron, and remains dark

when it's not. A black-and-white television, which is the most

common monochrome monitor, uses phosphor that glows white.

Some monochrome computer monitors use green or amber

phosphor instead of white phosphor.

The electron gun

To create an image on the faceplate, the CRT focuses the stream

of electrons fired by the electron gun into a narrow beam and then

aims it at the phosphor particles. Figure 2-3 shows how the CRT

does this. First, it uses magnetic fields to accelerate the electrons

to the speed necessary to make the phosphors glow when they are

struck, and then it uses other magnetic fields to focus the electrons

into a narrow beam precise enough to hit just one small spot on the

phosphor layer at a time. Finally, magnetic fields in the deflection

area pull the electron beam up or down and right or left to aim it at

different spots on the faceplate.

Electron beam

Deflection area

Acceleration area

Electron gun Focusing area Phosphor layer

SECTION 2: IMAGES

32

Raster scanning

To create an image across the entire faceplate, most monitors

use a technique called raster scanning. The area of the screen that

will be struck by the electron beam is called a raster. The computer

or the television circuitry controlling the monitor divides the raster

into several hundred horizontal lines called raster lines. It then

sends signals to the monitor that move the beam of the electron

gun across the CRT's faceplate to draw each raster line.

To cover the entire faceplate, the electron beam starts in the

upper left corner of the screen and scans from left to right across

the top of the screen. The strength of the electron beam determines

how brightly each phosphor particle glows as the beam scans over

it. Where the phosphor should be dark, the electron gun fixes no

electrons. Where the phosphor should be fully lit, the electron gun

fires electrons at full force. For shades in between, the electron gun

fires at partial strength so the phosphor doesn't glow as brightly.

When it reaches the right end of the raster line, the electron

beam sweeps back to the left side of the screen in a motion called

the horizontal retrace. It then starts a new raster line just below the

last raster line. When it finishes this raster line, it sweeps back and

starts yet another raster line, continuing all the way to the bottom

of the screen, displaying raster line after raster line. When it reaches

the bottom it has finished its vertical sweep, and goes back to the

top left corner of the screen in a motion called the vertical retrace.

Figure 2-4 shows the motion of the electron beam in a typical

raster scan.

Figure 2-4.

The electron-beam

pattern used in raster

scanning.

The raster scan has to take place very quickly, because phosphor

particles stop glowing very soon after the electron beam moves

A Video Graphics Primer

33

Figure 2-5.

The phosphor dots on

the faceplate of a color

monitor.

away To keep all the phosphors glowing on the screen, the electron

beam sweeps over the entire faceplate sixty times a second. This

raster-scanning rate is called the refresh rate.

COLOR MONITORS

On the faceplate of a color monitor are three different colored

phosphors: red, green, and blue, in clusters of three. If you turn on a

color monitor and look at it under a magnifying glass, you can see

the three different colored phosphor dots glowing, as shown in

Figure 2-5.

At the back of the color CRT are three electron guns, one for red

phosphors, one for green, and one for blue. A color mask located

just behind the phosphor layer of the CRT has a grid of tiny holes,

one for each cluster of colored phosphors. Each hole restricts the

beams from the three electron guns as they sweep across the

screen, so that each beam can strike only the appropriate colored

phosphor in each cluster, as illustrated in Figure 2-6. You can see in

the figure that the blue electron gun can hit only the blue phosphor

in the phosphor cluster; the hole is too small to let the beam strike

the red and green phosphors in the cluster. Likewise, the red gun

can hit only the red phosphor, and the green gun can hit only the

green phosphor.

A color monitor uses a raster scan just as a monochrome

monitor does. The color picture is broken up into raster lines, and

the three electron beams sweep in unison across the screen,

working their way across and down sixty times a second. Instead

SECTION 2: IMAGES

34

Red electron gun

Green electron gun

Blue electron gun

Figure 2-6.

The color mask in a color

CRT restricts each of the

three electron beams to

its appropriately colored

phosphor in a phosphor

cluster.

Color mask
Phosphor particles

of creating monochrome shades, the three electron guns vary their

intensity to create different ratios of red, green, and blue in the

phosphor clusters to create a variety of colors on the screen.

To control a color CRT, a computer or television tuner must send

separate intensity signals for each electron gun and another signal

to control the sweep of the electron beams. In an RGB monitor,

these signals are sent through separate wires directly to the

electron guns and the deflection grids. In a composite monitor or a

color television set, the signals are mixed together, sent to the

monitor over a single wire, then separated once again into separate

signals to send to the electron guns and deflection areas.

Combining and separating the signals deteriorates the picture

quality. This is why RGB monitors offer a clearer picture than

composite monitors or television sets.

TRANSFERRING A VIDEO IMAGE TO OTHER MEDIA

When you look at an image on the monitor, only you and

whoever is able to peer over your shoulder can see the picture. At

times you will no doubt want a larger audience for your graphics,

and you will need to transfer them to other media that are both

portable and accessible to more people, such as videotape, photo

graphs, and printed copies.

A Video Graphics Primer

35

Transferring video images to other media is not always simple.

Resolution differs from medium to medium, the colors don't always

match the way they should, and the sense of proportion isn't always

the same. Basically, the quality of the image when translated to a

different medium depends on the quality of the software you use to

translate the image, the quality of the equipment you use to

reproduce it, and your skill and knowledge of the medium used.

VIDEOTAPE

Recording the Amiga's video images on videotape is an easy

way to store and reproduce Amiga graphics. The Amiga can send

out a video signal from its composite video port directly to a video

tape recorder instead of to a composite monitor. The Amiga has

the capability of driving more than one monitor at a time, so you

could display the graphics on an RGB monitor connected to the

RGB port, while recording the same image on a VCR connected to

the composite video port. The video recorder stores the images on

videotape, so you can send the tape to other people with the same

type of recorder, or broadcast the tape over a television transmitter

if you're lucky enough to have access to one.

Videotape is an excellent way to store Amiga graphics. It can

capture motion and accompanying sounds, and it plays everything

back on a familiar medium: a monitor. There are some minor

drawbacks. A computer-generated image on videotape usually

doesn't look as good as the original image. Also, if your original

image is a still image, the VCR can only display it until the tape

runs out—you can't keep the image on the monitor indefinitely.

PHOTOGRAPHING THE MONITOR SCREEN

Another relatively simple way to reproduce an Amiga video

image is to photograph the monitor screen. However, you can't just

point a camera at the screen and shoot and expect to get good

results. You must follow a few precautions to get effective photos of

your graphics.

To photograph the monitor screen, you should be in a completely

dark room so external lights won't reflect off the monitor screen and

fade the picture. Because the standard raster scan takes a full 1/60

of a second, you should also be sure the shutter speed of the

camera is slower than 1/30 of a second, which means that you'll

need a tripod to steady your camera as you shoot. Faster shutter

speeds will catch the raster scan of the monitor with its job only

SECTION 2: IMAGES

36

partly finished. For example, a shutter speed of 1/120 of a second

will catch the raster scan with only half the picture drawn on the

monitor screen.

Prints made from your video photographs have an obvious

advantage-—-they're portable. You can send them through the mail

or mount them on the wall. They're also easy to look at—you don't

need to take time to plug them in, turn them on, or load them. Like

any other kind of photographic print, you can use them in

thousands of different ways.

There are some disadvantages to color prints. They don't always

reproduce the colors on youi monitor with complete accuracy, and

they don't glow the way your monitor does. One way to improve

color reproduction is to shoot photographs using slides. Slides have

the added advantage of looking radiant, like the monitor screen,

when you project them on a projector screen.

Prints and slides have a common distortion problem, because a

monitor screen usually has a curve to it. When you look at it

directly, images don't seem curved because your brain adjusts for

the curvature. When you photograph a video image, you transfer it

to a flat medium, and the curvature becomes noticeable. The

picture bulges a bit in the center, like a picture T-shirt on a man

with a beer belly.

PRINTING VIDEO IMAGES

The most common way to reproduce an Amiga video image is

to print it out on a printer that's capable of printing graphics. It's

fast, simple, and inexpensive (once you've paid for the printer). You

don't have to wait days for the photo finishers to return your photos.

You can pick up the results in a matter of minutes, then slip them

in an envelope and mail them off or post them on a bulletin board.

Printed images also avoid the curvature problem you get in screen

photographs.

The quality of printed images varies a lot from printer to printer.

At its best, a printed color image looks very much like the video

original. At its worst, a printed image will provide you with a good

reason to give your printer away to the next used-computer-

equipment drive by the local Boy Scouts.

In transferring a video image to paper, the most critical compo

nent affecting the fidelity of the reproduction is probably the quality

of the printer itself. Another aspect of the problem, though, is con

verting the video image into data that the printer can understand

and subsequently reproduce. This is where the quality of the soft

ware driving your printer is very important, because it has to over

come many different obstacles.

A Video Graphics Primer

37

Figure 2-7.

"Jaggies" created by

printing out a video

image

Resolution

One of the first problems in translating video to print is that

most printers can print a picture with more detail, or higher

resolution, than the computer can display on the monitor. An

average dot-matrix printer can put over 900 dots of ink across the

width and 1200 dots down the length of an 8M>-by-ll-inch sheet of

paper. The Amiga's most finely detailed display on the monitor has

640 picture elements across the width of the screen and 400 picture

elements down the length, a display of lower resolution than the

900-by-1200 printed picture. To print a picture from the monitor on a

printer, the Amiga has to convert the image.

The simplest way to convert video resolution into print is to use

blocks of ink dots to represent each video picture element {pixel for

short). Each element in a video image that measures 320 by 200

pixels could be printed with a corresponding 3-by-3 block of ink

dots, stretching the 320-by-200 image into 960-by-600 ink "blocks."

The problem with converting video pixels into blocks of ink dots is

that it makes the printed image look jagged. In Figure 2-7, you can

see a diagonal line printed on a dot-matrix printer using blocks,

and the line as it appears on a video monitor. The printed line looks

pretty jagged.

Screen image Printed image

SECTION 2: IMAGES

38

High-quality printer software uses more than one printer dot to

represent a screen pixel, but instead of using blocks, it uses a more

intelligent translation scheme to smooth out the jaggies (computer

jargon for the stairstep effect in curved and diagonal lines) in the

printed translation of the screen image. This uses the printer's

higher resolution to its best advantage, as you can see in Figure

2-8. Smoothing out the jaggies this way is called anti-aliasing. It

can make images look a lot better, but the software has to second-

guess the artist's intentions. If the artist intentionally puts jaggies

in the picture, they might be smoothed out in a print made using

anti-aliasing software.

Screen image Printed image

Converting color images to black-and-white printouts

Most computer printers don't print in color; they're strictly black

and white. To translate the colors of an Amiga image into black-

and-white ink dots for those printers, the printer software has two

choices: It can print the image as strict black and white, like a

silhouette, or it can print the image in shades of gray, which is

known as a gray scale.

Printing the image in strict black and white is the easiest way to

translate the video colors. The software simply sets a brightness

reference point. Any pixels in the video image that are brighter

than the reference point are printed as solid white, and any colors

A Video Graphics Primer

39

Figure 2-8.

Anti-aliasing smooths the

jaggies in a printed diag

onal line.

Figure 2-9.

Shades of gray on a

dot-matrix printout

(enlarged).

that are darker are printed as solid black. The obvious disad

vantage to strict black-and-white printing is that it loses all the

subtlety of shade in the original image. It can be used to good

advantage, though, to translate a color picture with strong contrast

into a silhouette.

To turn colors into shades of gray, the printer software uses

black dot patterns on the printer to create different shades of gray.

Each shade of gray has a different dot pattern, Figure 2-9 shows

some enlargements of gray dot patterns. To turn the video colors

into gjay, the software interprets bright pixels as lighter shades of

gray and dark pixels as darker shades of gray then prints them

using the corresponding dot patterns.

Printing in color

Color printers don't have to interpret video colors as shades

of gray but they do have other tricky issues to resolve. Most

important is that color printing uses a set of primary colors that

aren't the same as video primary colors. Color printers use cyan,

yellow, and magenta in different mixtures to create other colors,

and often add black to give the picture more contrast.

Translating red, green, and blue directly into cyan, yellow, and

magenta wouldn't be difficult, except for one important factor; The

primary colors on a monitor screen can change in intensity but a

printer's primary colors can't. The primary colors on a color printer

have just one intensity because a dot of ink, unlike a phosphor,

can't glow at different strengths. When a color printer mixes two

SECTION 2: IMAGES

40

primary colors together, it gets just one resulting color Because

of this, most color printers have just six different solid colors

available to them: cyan, yellow, magenta, green (cyan and yellow

mixed), red (yellow and magenta mixed), and violet (cyan and

magenta mixed).

To approximate the thousands of different colors the video

screen can create, color printers use a process called dithering.

Dithering is an odd-sounding term that means the printer overlays

dots of one color on a solid field of another color. Viewed from a

slight distance, dithering creates a new color. One example is a

field of solid red with dots of black sprinkled throughout, resulting

in dark red.

Dithering gives a color printer a wide variety of colors, but its

color range is still limited compared to that of the monitor screen.

As a result, an Amiga image transferred to a printer won't show

subtle variations in color. The printed colors also have a textured

look as a result of dithering that makes them look different from

their video counterparts.

THE AMIGA'S UNIQUE GRAPHICS FEATURES

Now that you've seen how video images are created on the

Amiga's monitor, seen by the human eye, and transferred to other

media, you can look at the Amiga's specific graphics capabilities

with a better understanding of its accomplishments. The Amiga

was designed to be an exceptional graphics computer, and the

power of its hardware, combined with the graphics routines in

the system software, enable it to create video images of power

and subtlety.

The following pages describe the graphics features available in

any Amiga computer system running with its system software—

the software on the Kickstart and Workbench disks you use to start

the system. Although you may not be able to use all of these

features directly (unless you're an advanced programmer capable of

using the Exec libraries and devices), most of the features are

available through application programs like Deluxe Paint, and

through programming languages like Amiga BASIC, as we'll see in

later chapters. As more software comes out for the Amiga, you can

expect to see even more of these graphics features available in

application programs.

A Video Graphics Primer

41

Figure 2-10.

The four different sizes of

Amiga graphics pixels,

greatly enlarged.

PICTURE DETAIL

Like most other microcomputers, the Amiga creates images on

your monitor screen using pixels, those tiny boxy dots that give

computer images a slightly jagged quality. Creating a picture with

pixels is like building a house with bricks: Everything has square

corners. The trick to rounding off the jaggies in the picture is to use

smaller pixels; at a distance, you can't see all those square corners.

The Amiga has a choice of four different-sized pixels for varying

degrees of detail and smoothness. You can see these in Figure 2-10.

The size of the pixels you use in a screen determines the

resolution of the screen. The smaller the pixels, the higher the

resolution and the finer the detail in the pictures on the screen. The

larger the pixels are, the lower the resolution is and the coarser the

pictures are on the screen.

320-by-200

(low-resolution)

pixel

320-by-4O0

pixel

640-by-200

pixel

640-by-

400 (high-

resolution)

pixel

The lowest Amiga screen resolution is 320 by 200—that is, you

can fit 320 pixels across the screen and 200 pixels from the top to

the bottom of the screen. The picture in Figure 2-11 is displayed

using the Amiga's low-resolution screen. If you look closely, you can

see that the pixels are roughly square in shape. From a distance

there is plenty of detail and the jaggies aren't apparent.

In two other Amiga screen resolutions, the low-resolution pixel is

cut in half to create a rectangular pixel. In 320-by-40O resolution, the

low-resolution pixel is cut in half horizontally to look like a brick

lying flat. In 640-by-200 resolution, the low-resolution pixel is cut in

half vertically to look like a brick standing on end. These skinny

vertical pixels are useful for displaying text; by using them, you can

fit more characters across the screen. In Figure 2-12, you can see

both text and graphics displayed on an Amiga 640-by-200 reso

lution screen.

SECTION 2: IMAGES

42

Figure 2-11.

A picture using the

Amiga's 320-by-200

resolution screen.

("Venus" courtesy

ol Avnl Harrison)

duel,
better to be Short thin Knott,
then Shott uas shot, not Knott,

as Shott shot Shott, not Knotd

Figure 2-12.

A 640-by-200 Amiga

screen: the Workbench

display,

A Video Graphics Primer

43

Figure 2-13.

A picture using the

Amiga's 640-by-400

resolution screen.

In the Amiga's highest-resolution screen, the pixel is a square

shape just one-fourth the size of a low-resolution pixel. The high-

resolution screen measures 640 pixels across by 400 pixels from top

to bottom. With pixels this small, the detail of the picture is very

fine, and it's hard to see jaggies. In Figure 2-13, you can see a high-

resolution Amiga picture. It has enough detail to show the indi

vidual hairs on the mandrill's face.

How resolution affects memory

Why are there different resolutions available on the Amiga?

Wouldn't it be best to use the high-resolution screen for all

purposes7 The answer lies in the memory required for each

resolution. The Amiga stores the information for a picture in its

memory, and the higher resolution the picture uses, the more RAM

is required to store it. For example, a low-resolution picture has

only 64,000 pixels to store (320 times 200). And a high-resolution

picture has 256,000 pixels to store (640 times 400), four times the

number of pixels in a low-resolution picture.

With four different resolutions available, you can choose the

resolution that best fits your needs without using up too much of

your Amiga's RAM. You can also use the different-size pixels as

SECTION 2: IMAGES

44

different graphic media to get fine or coarse effects, much like a

painter picking different grades of paper for a watercolor. You'll

learn how to specify the resolution you want in later chapters.

Mixing resolutions

If you would like to mix resolutions on the monitor, the Amiga

can accommodate you by allowing you to divide the monitor

display into horizontal areas called screens (not to be confused with

the monitor screen itself), each with its own resolution. Intuition,

the user interface, allows you to display different resolutions on the

monitor simultaneously by layering many screens. You can drag

screens down with the mouse pointer to reveal any screens

underneath, and you can drag screens up to cover any screens that

were underneath. Figure 2-14 shows layered screens of different

resolutions on the monitor screen.

Figure 2-14.

An Amiga display with

all four screen resolutions

displayed simultaneously.

Most Amiga programs, like Workbench for example, use only one

screen with a pre-set resolution. Some programs, like Deluxe Paint,

offer you a single screen in the resolution of your choice. A few

other programs, like Deluxe Video, use two or more screens with

different resolutions that you can move up and down on the

monitor. If you want to create your own screens, you have to use a

programming language like Amiga BASIC or C. (You will learn more

about screens and how to create them in Chapter 4.)

A Video Graphics Primer

45

THE AMIGA COLOR PALETTE

Resolution is just one aspect of an Amiga picture; the other one

is color. Resolution gives a picture height and breadth, color can

give it depth.

The Amiga can create up to 4096 different colors on the monitor

screen by combining red, green, and blue in varying amounts. It

doesn't usually display all of these colors at once, though. Like

increasing picture resolution, increasing the number of colors in a

picture requires more memory to store the picture. To keep picture

memory requirements down to a reasonable size, the Amiga

usually limits the maximum number of colors on one screen to 32

{except on 320-by-400 and 640-by-4O0 resolution screens, where it

sets a maximum of 16 colors). This provides a wide color range

without using up so much memory that the Amiga can't run any

programs.

The Amiga uses an ingenious system to allow a great deal of

flexibility for those 32 colors. It colors its pictures like a color-by-

number painting; each pixel in the picture is assigned a number

from 0 to 31. Then the Amiga colors in each pixel with the color its

number stands for.

The colors for each color number are stored in 32 separate color

registers, also numbered from 0 to 31. These color registers are

small, individual sections of memory that store color as mixtures of

red, green, and blue in different proportions. The Amiga sends

these mixtures to the monitor, where the monitor uses them to

create different colors on the screen by matching each pixel's color

number with the color in the corresponding color register. Each of

the color registers can store one of the 4096 possible combinations

of red, green, and blue that the Amiga is capable of producing, so

you can choose from an extremely large palette to create virtually

any combination of colors to display on the screen.

Although the principal advantage of color registers is that they

provide a wide variety of colors without eating up a lot of RAM,

they have another advantage. When you change the color in a

single color register, every pixel on the screen with the same color

number as that color register also changes color. You can use color

registers this way to test different color combinations easily.

For example, if you use Deluxe Paint to design a fabric pattern

on the Amiga that has little green worms on a purple background,

you might want to try little green worms on an orange background

instead. You don't have to go back to the pattern and take the time

to fill in the background with orange; instead, you display the color

palette on the screen, choose the background color, and change it

SECTION 2: IMAGES

46

from purple to orange using the color-creation sliders on the side of

the palette (you'll see how to do this in the next chapter). Every

purple pixel on the screen turns to orange, and you can see the

results immediately.

The Amiga can put all 4096 colors on the screen at one time

using a special mode called Hold and Modify (known as HAM for

short), which smears the colors horizontally to create very subtle

shading. For example, the Amiga can use HAM to shade a round

red vase to make it look three-dimensional. Where the vase curves

out and catches the light, it would use a bright red. It would then

subtly shade the red, turning it to darker shades where the vase

curves into the shadow. This gives it a smooth, glowing appear

ance. Figure 2-15 shows the full shades of a display using HAM.

Figure 2-15.

An Amiga picture using

the Hold and Modify

(HAM) mode for shading.

(Image courtesy

of NewTek and

Mitchell Lopes)

At the time of this writing, there are no graphics programs that

use HAM, although there will probably be some in the future. There

are some video digitizers for the Amiga that convert an image from

a video camera or other video source into a HAM picture that uses

subtle shading to reproduce the video image.

A Video Graphics Primer

47

DRAWING PICTURES

The Amiga has special routines in its graphics library that help

draw pictures on the screen. These graphics routines create the

different components of any video picture: They can draw lines, fill

in areas with a specific color or pattern, copy one section of a

picture to another section, change colors, and perform other

important graphics functions.

The graphics routines make use of a special section of the

Agnus chip (one of the three custom chips) called the blitter. Blitter

is short for "bit-mapped block transfer," a mouthful that means it

quickly shuffles around large blocks of data in memory When that

data happens to be in the graphics-display section of the Amiga's

memory, the blitter can draw figures very quickly so you don't have

to wait a long time for a picture to appear on the monitor screen.

The graphics routines are used frequently in Amiga software.

Any of the graphics commands in Amiga BASIC or the drawing

functions m programs like Deluxe Paint use the graphics routines to

accomplish their tasks. Workbench uses the routines to draw icons

and windows on the screen.

CREATING TEXT

Libraries in the Amiga's system software also create characters

so the Amiga can put text on the screen. They use a flexible

system that resembles color registers, but instead of storing a red-

green-blue color combination in each register, it stores the design

for a character. The full set of character designs stored in

memory-—including all the characters in the alphabet, numerals,

punctuation marks, mathematical symbols, and other special

characters—is called a font.

As you type characters in at the keyboard, the Amiga uses the

designs it has in memory for the font to create each character it

puts on the screen. If you change a font, the Amiga changes the

designs in all the registers, and any new characters appearing on

the screen use the style of the new font. One font might be blocky

and straight, another flowing and elegant. For example, in a word-

processing program, you can have the Amiga use one font to

display a headline, and use a second font to print a personal

message. Figure 2-16 shows some of the fonts the Amiga uses.

SECTION 2- IMAGES

48

This is topaz 8-peint text.
This is topaz 9-point text,

This is ruby 3-poini text.

This is ruby 12-point text.

This is diamond 12-point text.

This is opal H-point kx\.

this is emewiid 20-point

Tfvis is garnet 9-point text,

Tfcs is aorflet 16-poiftt text-,

tfo is stfffor 15-yuittt frxt

tfe is saqqAirr 19-ptt tat

Figure 2-16.

Different character fonts

on the Amiga.

Different fonts are stored on disk until the Amiga needs them,

when they're transferred to RAM to be used to create the text on

display. As software developers design new fonts, you'll be able to

buy them on a floppy disk, load them into the Amiga, and call them

in by name through the program you're using.

Advanced Amiga programmers programming in C or assembly

language can create their own fonts by drawing the pattern for

each character and storing the data on disk. This is very useful for

creating characters for Russian, Greek, Hebrew, or other languages

that use different alphabets. This ability is also handy for creating

special mathematical or logical symbols. Watch for future commer

cially available software that lets non-programmers create their own

fonts, too.

Once a font is loaded in memory, the Amiga can use its system

software to alter the characters for emphasis. It can, for example,

stretch them out twice as wide, italicize them, underline them,

make them thicker, or invert their colors. It can also color the

characters any one of its possible 4096 colors. You can use some of

these effects in word processors like Textcraft and in graphics

programs with text like Deluxe Paint.

A Video Graphics Primer

49

Figure 2-17.

Characters at the top of

this display are put over

the underlying picture

with their own con

trasting background.

Characters at the bottom

of the display use the

underlying picture for

their background.

The Amiga also controls the background of the characters. It can

use the existing picture on the screen as background, or it can

create a contrasting background. Characters with a contrasting

background look like strips of letters pasted on a telegram.

Characters using the existing background blend in with their

surroundings. In Figure 2-17, you can see the characters with both

types of backgrounds.

SCROLLING PICTURES

The Amiga has several other graphics features currently not

available to anyone but advanced programmers using C or

assembly language. These features let the Amiga store a picture in

memory that is too high and wide to display completely on the

monitor screen at one time. In such a case, the Amiga displays just

one section of the picture at a time, using the monitor screen as a

window on the picture. In Figure 2-18, you can see how this

feature works.

Although you can see only one section of the picture at a time

on the monitor, the Amiga can still bring any section of the picture

into view and so display the entire image in pieces. It can jump

quickly from section to section, or it can smoothly scroll the picture

into view in small increments. This makes the picture look like it's

sliding by under the monitor. The Amiga can scroD a picture at any

speed, fast or slow. It's not limited to up and down or left and right,

but can also scroll diagonally

SECTION 2: IMAGES

50

A good example of useful scrolling is writing a C program that

stores a map as a large picture m the Amiga's memory. The

monitor shows just a section of the map at one time, but you can

instruct the program to scroll the map north or south, east or west,

to see sections that are off the edge of the screen.

MIXING TWO PICTURES

The Amiga has another useful advanced feature: It can store two

pictures at once in its memory and place one picture on top

of another. When the Amiga overlaps two pictures, it makes one the

foreground picture and the other the background picture. Normally,

the foreground picture completely covers the background picture,

but the Amiga can use a "transparent" color on some of the pixels

in the foreground picture. Any transparent pixel in the foreground

picture lets the background picture show through. Figure 2-19

shows how this works.

Figure 2-18.

The Amiga's monitor

serves as a window on a

section of a large picture

stored in the Amiga's

mem ry

Background Foreground Background

and foreground

Figure 2-19.

The background and

foreground pictures are

stored as separate im

ages in the Amiga's

memory. When these im

ages are displayed, the

foreground picture is

superimposed over the

background picture.

A Video Graphics Primer

51

Superimposing one picture on top of another makes it easier to

change the images you see on the monitor screen. The background

picture can be used like the backdrop in a theater: It's drawn only

once, and doesn't change on the screen. Any elements of the

monitor display that will change or that move can be drawn in the

foreground picture. Since the Amiga doesn't have to keep changing

the background display as the foreground changes, it has a much

easier task of updating the monitor display, since it only has to re

create the foreground.

Although overlapping pictures is a feature usually available to

advanced programmers using C or assembly language, you can use

overlapping pictures whenever you make a video using the

animation program Deluxe Video (featured in Chapter 11).

PRINTING AN AMIGA PICTURE

As you read earlier, turning a picture on the monitor screen into

a picture printed on paper is no easy task. It requires color and

resolution translation that is different for each printer on the

market. The software that takes care of the translation is called a

printer driver.

The Preferences tool on the Workbench offers you a choice of

about a dozen printer drivers that the system software can use to

match different printers you might connect through the Amiga's

serial or parallel port. You can choose one to match whichever

printer you have connected to your Amiga. As new printers come

out, the manufacturers and Commodore can write new printer

drivers and make them available to you. You can then load the new

drivers through Preferences so that the Amiga can use the new

printers.

Having a printer driver active in the system software versus

having to have one built into each application is very convenient.

Some computer systems force software writers to write their own

printer drivers if they want their application to use a printer. This

forces users to be cautious when they buy new programs that use a

printer—will the program drive the printer they own? If you have

the proper printer driver set for your printer in Preferences, the

Amiga's own software takes care of driving the printer, so software

you buy will work automatically with your printer.

Now you know the basic techniques the Amiga uses to

create and display computer graphics. In the next four

chapters, you'll learn how to create pictures using an

application program, Deluxe Paint, and discover how to

add graphics to your own Amiga BASIC programs.

SECTION 2: IMAGES

52

CHAPTER THREE

AMIGA GRAPHICS

TOOLS

Creating images with a graphics application program is

one of the most enjoyable activities you can pursue with an

Amiga. Graphics applications are now available for users of

all skill levels. They allow you to produce colorful pictures

with ease and speed, and give you the power to create

images of surprising complexity and subtlety. This chapter

features a graphics application called Deluxe Paint, and

introduces you to two more: Graphicraft and Aegis Images.

Deluxe Paint, developed and sold by Electronic Arts, is

one of the most versatile graphics applications programs

available. In this chapter, you'll see how to use the

advanced features of Deluxe Paint. Since Deluxe Paint

includes a manual that describes its individual features,

this chapter doesn't duplicate what you can read there.

Instead, it shows you how to combine those features to

achieve practical results. It also gives you some hints that

will make working with Deluxe Paint as easy as possible.

Later sections in the chapter show you how to print and

photograph your Deluxe Paint images. At the end of the

chapter, you can read about two of the other graphics

programs created for the Amiga, and about hardware that

can make your Amiga images look clear and colorful.

MASTERING DELUXE PAINT

Deluxe Paint shares many features with other graphics pro

grams: You can choose different brush shapes from a menu of

brushes; you can draw circles, squares, lines, and ovals with

special tools; you can use a grid to keep your lines straight and the

objects in your pictures aligned; you can magnify sections of your

picture for detail work, and you can choose from a variety of fonts

to add text to your picture.

Deluxe Paint also has some very powerful features that take it

beyond other graphics programs. It can create pictures in three

different resolutions—320-by-200 pixels, 640-by-200 pixels, and 640-

by-400 pixels—and it allows you to design and alter your own

multicolored brushes. Anything you draw on the Deluxe Paint

screen can be selected with the brush-selection tool and used as a

custom brush. Once you have selected a custom brush, you can

create boxes, draw freehand lines, or do anything else with it that

you can do with simpler standard brushes. You can also alter the

brush by changing its size, shape, and color, or by flipping,

rotating, or bending it.

SECTION 2: IMAGES

54

Once you have the brush you want, you can use it in conjunc

tion with different brush modes to add texture or to affect the

colors on the screen in various subtle and unsubtle ways: shading,

blending, and smearing colors, painting with a single color, and

cycling through all the colors on your palette. Using custom brushes

effectively is very important if you want to get the most out of

Deluxe Paint.

Before you do anything with Deluxe Paint, the first thing you

should do is to create a work disk where you can store your Deluxe

Paint pictures.

CREATING A WORK DISK

You don't want to use your Deluxe Paint master disk to store

your own paintings. For one reason, it's already almost full. For

another reason, you should have the write-protect tab on the disk

set to the write-protect position so you don't accidentally erase

something important on the master disk and ruin your copy of

Deluxe Paint. Creating a work disk will give you lots of room for

your own pictures and keep your Deluxe Paint disk safe. It's simple

to do. Just follow these steps:

1. Turn on your Amiga and load Workbench with the Work

bench disk.

2. If you have one disk drive, remove the Workbench disk and

insert a blank disk (or one you don't mind having erased) in

the disk drive. If you have two drives, insert the blank disk

in the external drive.

3. When the icon for the blank disk appears on the Workbench

screen, select it and choose the Initialize command from the

Disk menu, then follow the directions that appear on the

screen to initialize it.

4. When the disk is initialized, double-click the second disk

icon to open it up and look at its contents. You should see a

trashcan there.

5. Open the Workbench disk icon to see its contents. When

it's opened, drag the drawer icon labeled Empty from the

Workbench disk window to the window for your new disk,

to make a copy of the empty drawer on your disk.

6. Once the empty drawer is copied to your new disk, close

the Workbench window, then select the empty drawer icon

on your disk window and choose the Duplicate command

Amiga Graphics Tools

55

from the Workbench menu to duplicate the empty drawer.

Do this twice more to make a total of three copies of the

empty drawer.

7. You should now have four drawer icons in your disk window.

The new icons may be stacked one on top of the other, so

you may have to drag them around to see them all. To name

each drawer, select the icon for the drawer, then choose the

Rename command from the Workbench menu. When the title

strip appears in the middle of the screen, click in the strip to

select it, press the DEL key several times to erase its

contents, then type in a new name and press RETURN when

you're finished- (Use the cursor and BACKSPACE keys to

correct mistakes if you need to.) Name one of the drawers lo

res, another med-res, another hi-res, and the last brush.

8. Select the icon for your disk, choose the Rename command,

and follow the instructions in step 7 to give your disk a

descriptive name.

You now have a Deluxe Paint work disk. When you save pictures

and brushes on this disk from Deluxe Paint, Deluxe Paint will

automatically use the four drawers you just created on the disk. It

stores all your low-resolution pictures in the lo-res drawer, your

medium-resolution pictures in the med-res drawer, and your high-

resolution pictures in the hi-res drawer. It stores your custom

brushes in the brush drawer.

To save you the trouble of having to create another work disk

this way, you can set this one aside as a master empty work disk.

Whenever you want to create a new empty work disk, just copy

your entire work disk master using the directions in the Introduc

tion to Amiga manual.

CHOOSING SCREEN RESOLUTION AND DEPTH

When you boot up your Amiga with Kickstart and then insert

your Deluxe Paint disk, you type the command dpaint at the 1>

prompt and press RETURN. The Amiga then loads Deluxe Paint. It

comes up with a 320-by-200 resolution screen with 32 colors. If you

want to create pictures using different screen resolutions, you can

load Deluxe Paint with a different command. Typing dpaint med

loads a version of Deluxe Paint that uses a 640-by-200 resolution

screen; typing dpaint hi loads a version that uses a 640-by-400

resolution screen. In both the high- and medium-resolution

versions of Deluxe Paint, you get a maximum of 16 colors.

SECTION 2: IMAGES

56

You can also choose the number of colors available to you in

Deluxe Paint when you load the program by choosing the number

of bit planes you want to use for your painting. You'll learn more

about bit planes in Chapter 4. For now, all you need to know is that

the number of bit planes you use determines the number of colors

available to you, and that the more bit planes you use, the more

RAM you use. Five bit planes give you 32 colors, four bit planes give

you 16 colors, three bit planes give you 8 colors, two bit planes give

you 4 colors, and one bit plane gives you 2 colors. To assign bit

planes, just type the number of bit planes you want after the

dpaint load command. For example, to get a version of Deluxe

Paint with a high-resolution screen three bit planes deep (8 colors),

you'd type the command dpaint hi 3. For a low-resolution screen

two bit planes deep (4 colors), you'd type dpaint lo 2.

Why would you want to be able to use different screen resolu

tions and bit-plane depths'? The most important reason is that

you can save the images you create in Deluxe Paint on disk and

then use them with other programs. Some of those other programs

require the images to use a specific resolution and bit-plane

depth. For example, Deluxe Video (an animation program dis

cussed in Chapter 11) uses low-resolution images that are three bit

planes deep.

Another reason for choosing between low- and high-resolution

screens is that there are distinct advantages to both resolutions. If

you paint low-resolution pictures, you get to work with 32 colors. A

wide range of colors in a low-resolution picture can sometimes

make a picture look much more detailed and realistic than a high-

resolution picture using fewer colors. If you paint high-resolution

pictures, the curves and diagonals in your picture will look much

smoother, and you can create finer textures with the thin lines and

greater resolution available. Although the screen flickers slightly in

high-resolution mode (you'D learn why in the next chapter), if you

print or photograph your picture, the flicker is of no consequence.

DESIGNING YOUR OWN PALETTE

After you've loaded Deluxe Paint and before you start painting,

you should take some time to decide on the colors you want to use.

Deluxe Paint has its own set of default colors you can use, but you

might want a different color palette for your particular pictures. For

example, if you're painting a forest scene, a wide range of greens

and browns would be more useful than some of the pinks and

purples in the default palette.

Amiga Graphics Tools

57

Figure 3-1.

The palette window.

To change the colors in the palette, open the palette window

by pressing p on the keyboard. The palette window, shown

in Figure 3-1, appears. You can alter any individual color on the

palette by selecting it with the pointer, and then setting the sliders

to the left of the colors. There are two sets of three sliders—you

can use either set to change a color. The first set, labeled RGB, sets

the red, green, and blue components of the selected color; the

second set, labeled HSV, sets the hue, saturation, and value of the

selected color. Value is Deluxe Paint's term for intensity—the value

slider sets the intensity of the selected color.

Color Palette

SPREAD [lExJCOFYl

RANGE|:iSHDilC2IC3

SPEED

CANCEL UNDO OK

When you change a color using either set of sliders, Deluxe Paint

automatically adjusts the other set of sliders to match the changes

you've made in the color. Which set you use is up to you: RGB is

easier to use if you like to think in terms of mixing primary colors;

HSV is easier to use if you like to choose a hue with the hue slider,

and then lighten and darken it with the saturation and value

sliders. If you aren't familiar with RGB and HSV (frequently called

HIS) color creation, be sure to read Chapter 2.

SECTION 2: IMAGES

58

The five boxes labeled RANGE, SH, C1, C2, and C3 control the four

ranges of colors Deluxe Paint uses when you paint using special

brush modes (more on that later in this chapter). The four different

ranges of colors are the shade range (SH), color-cycle range 1 (C1),

color-cycle range 2 (C2), and color-cycle range 3 (C3). Deluxe Paint

works with the SH range when you use the Blend and Shade brush

modes; it cycles through the colors in the the C1, C2, or C3 ranges

when you use the Cycle brush mode or the Cycle command in the

Picture menu. All these ranges have been preset—you can view any

of them by selecting SH, C1, C2, or C3. A white bracket appears on

the palette to show you what colors are included in the range and

where it begins and ends.

You can change the default range settings to suit your needs. To

change a range of colors, first select which of the four ranges you

want to reset. Next, select any of the colors in the palette as the

starting color in the range, then select RANGE. A TO pointer appears

on the screen. Use it to select any color in the palette as the last

color in the range. The TO pointer will then disappear, and the new

range is set.

The shade range works best when you set it to coincide with a

spread of colors that ranges from dark to light. A good example of

this is the range of grays that are the last 12 colors in Deluxe Paint's

default palette. When you use the Blend and Shade brush modes,

Deluxe Paint can move up and down in this range to darken or

lighten the colors you have on the screen.

When you ask Deluxe Paint to cycle colors, it cycles through the

colors in the selected cycle range, using the speed set for that

range in the SPEED slider located just below the range controls. You

can change the speed of a color cycle by first selecting it and then

setting the SPEED slider.

Since there are three different cycle ranges, you can set one

range inside another range for some very bizarre effects when you

cycle the colors on the screen. If you want to get rid of any range in

the palette, just select the range, select a color, select RANGE, then

use the TO pointer to select the same color again—effectively

creating a one-color range.

When you've set the palette to your taste, you can select the OK

command to apply it, or, if you have second thoughts, you can

select CANCEL to go back to the palette you were using before you

started changing colors or ranges. No matter what changes you've

made, don't worry about losing Deluxe Paint's default palette. You

can always get it back when you need to by choosing Default Palette

from the Picture menu.

Amiga Graphics Tools

59

CREATING PRECISE DRAWINGS

As you use the Deluxe Paint drawing tools, you may find yourself

trying to place line ends, rectangle corners, circle edges, and other

object boundaries in precise locations so they match up with other

objects on the screen. You can always use the magnifier tool to get

a closer look at what you're doing, or you can scrunch up close to

the screen and squint at the individual pixels, but there are easier

ways to click your figures into place.

Positioning the brush with the Coordinates command

One of the easiest ways to position your brush on the screen is

to choose the Coordinates command from the Prefs menu. When you

do, you'll see numbers appear in the right side of the title bar that

give you the location of the pointer that moves your brush. The

numbers measure the distance in pixels from the upper left corner

of the screen to your brush pointer—the left number is the number

of pixels over and the right number is the number of pixels down.

If you note the coordinates when you place the end of a line, the

center of a circle, or the corner of a rectangle on the screen, you

can use the coordinates to start the next figure at the same spot.

For example, say you want to create a series of lines radiating from

a central point. When you draw the first line using the straight-line

tool, you note the coordinates of the beginning of the line, and use

that as your central point. By beginning the other lines at the same

coordinates, you can be sure all your lines will radiate from the

same point.

The coordinates work differently whenever you hold a mouse

button down and drag the cursor across the screen. Instead of

giving the position of the cursor in distance from the upper left

corner of the screen, it gives the distance of the cursor from the

spot where you first pressed the mouse button. If you're creating an

object with a tool, this lets you measure just how large the object

is. For example, when you create a rectangle, if you want to make it

10 pixels wide and 16 pixels high, you can read the coordinates as

you set the opposite corner of the rectangle by moving the pointer

until you get the measurements you want.

Drawing straight lines with the SHIFT key

Another aid to cursor accuracy is the SHIFT key. If you hold

down the SHIFT key while you roll the mouse, Deluxe Paint will

move the brush in a horizontal or vertical direction only, depending

on whether you move the mouse horizontally or vertically while

holding down the SHIFT key If you want to move the brush in the

other direction, you have to release the SHIFT key.

SECTION 2: IMAGES

60

This method is very useful for drawing straight lines or for

moving a brush in a straight line across the screen. For example,

say you want to draw a straight line from one side of the screen to

the other without moving up or down. Select the line-drawing tool,

then move the mouse pointer to the place where you want the line

to begin. Before you press the left mouse button to begin drawing

the line, hold down the SHIFT key. Then hold down the left mouse

button and start rolling the mouse to the side. As you roll, the SHIFT

key keeps the line on a strict horizontal path, even if your hand

moves the mouse up and down as you roll it.

Aligning images with the grid

The grid is even more useful for quickly matching up line ends

and objects. When you select the grid tool on the control panel, it

sets up a grid of invisible lines on the screen, and restricts the

location of the pointer to the intersection of those lines while you

use many of the other tools on the control panel. The grid works

with the dotted freehand-drawing tool by restricting each image of

the brush it puts down to the intersections of the grid. It works

with the straight-line and curve tools by restricting both ends of

the line each creates—the lines must begin and end at grid

intersections. The grid similarly restricts to intersections the

corners of a rectangle that is created with the rectangle tool, and

the center and the borders of shapes that are created with the

circle and oval tools.

If you turn on the grid and begin to draw with these tools, you

can very easily line up the figures they create. For example, if you

want to create a box with a dome on the top, you can turn on the

grid and create the box with the rectangle tool. The grid will limit

its corners to the grid intersections, so the cursor will jump from

intersection to intersection as you move it around the screen. After

you create the box, you can select the curve tool. Since the grid

limits cursor movement to the grid intersections, it's easy to posi

tion the pointer on an upper corner of the box—simply position the

center of the crosshairs over one corner. Hold down the left mouse

button and drag across the top of the rectangle to the other upper

corner, then release the mouse button. The ends of the curve will

be directly on top of the corners. You can then move the mouse to

bend the curve as you want it.

If the default grid intersections (marking 8-by-8 pixel squares)

are too close together or too far away for your purposes, you can

change the size of the grid by selecting the grid tool with the right

mouse button. A small section of the grid, called the sizing grid,

appears on the screen. The coordinates will appear in the right side

of the menu bar and show you the location of the upper-left corner

of the sizing grid on the screen. By holding down the left button

Amiga Graphics Tools

61

and dragging the mouse, you can change the size of the grid. As

you move the mouse, the coordinates will change to show you how

many pixels wide and high each square of the grid is. Once you've

dragged the grid to the size you want, you can release the left

button. The grid will disappear, and the next time you turn on the

grid tool, the new size will determine where the grid intersections

are located.

By default, the grid is aligned with the top and left boundaries

of the screen, but you can reposition the grid intersections if you

want to. First, select the grid tool with the right mouse button

again. The sizing grid will appear on the screen again, but this

time you will be positioning it on the screen to determine where

the actual grid lines themselves will be—not the size of the indi

vidual squares. Place the intersections of the sizing grid where you

want the grid lines to be positioned, then click the left mouse but

ton, and the entire grid is realigned to match the position of the

sizing grid on the screen.

When you use the grid with the text tool, it restricts where you

can place the text cursor with the pointer. Once you start typing,

the letters aren't restricted by the grid, but if you move the text

cursor by clicking elsewhere on the screen, its new position is

restrained by the grid. By stretching the grid to the size you want,

you can use the grid intersections as tab stops and line spacing.

Just type what you want, then relocate the text cursor with the

pointer. The grid makes it easy to line up columns and lines of text.

One of the most useful applications of the grid is in creating

background patterns. You can try it out by first loading the picture

Patterns from the Deluxe Paint disk. In the upper right corner of the

picture are eight patterns in yellow boxes. You can select any one

of those patterns as a custom brush, and then duplicate it all over

the screen using the grid to line up the brushes.

Try it out. Use the brush-selection tool to select the brick pat

tern by selecting all of the pattern inside the yellow box without

including any of the yellow border. If you watch the coordinates as

you set the brush, you'll see that the box is exactly 19 pixels wide

by 11 pixels high. Press j on the keyboard to switch to the other

drawing screen, where you can paint in a blank screen without

covering the other patterns. Now resize the grid so it's one pixel

wider and higher than your brush: Set it to 20 pixels wide by 12

pixels high. Once the grid size is set, turn on the grid, make sure

the brush is set for dotted freehand drawing, and start painting.

Perfectly aligned blocks of the brick pattern will then start to fill

the screen.

SECTION 2: IMAGES

62

Once you fill the entire screen with bricks, try painting other

things on top of the bricks. If you paint something you don't like,

and if clicking UNDO doesn't erase all of it, you won't be able to

erase it using the background color, because the brick background

isn't one single color. Instead, turn on the grid if it isn't already

turned on, then grab any section of brick as a brush and start

painting over what you draw. If you haven't changed the grid since

you laid down the pattern, the brush will erase your figure by filling

it in with new bricks aligned with the old bricks.

THE BRUSH MODES

A lot of the fun in using Deluxe Paint comes from creating

custom brushes by cutting them from a picture already on the

screen, then using the commands in the Brush menu to flip, rotate,

reshape, and recolor the brush until you get exactly the shape and

color you want. Once you have a custom brush, or even a simple

brush selected from the control panel, the brush mode you choose

from the Mode menu determines the way that brush draws on the

screen. The Object, Color, and Replace modes give you some options

for painting with a custom brush. If you want to add texture to

your painting, you can use three other brush modes that affect the

colors already on the screen: Smear. Shade, and Blend. Another brush

mode, Cycle, can be used to create special effects. The following

sections describe each of the different brush modes in detail. You'll

get to try out all the brush modes in a later example section in

this chapter.

The Object mode

Whenever you use the brush-selection tool to create a rectangle

on the screen and copy the contents as a brush, Deluxe Paint

automatically uses the Object brush mode. In the Object mode,

Deluxe Paint looks to see what the current background color is.

Any pixels in the rectangle that are colored with the background

color become transparent in the brush. In other words, the custom

brush rectangle doesn't pick up any background pixels. When you

paint with the brush in Object mode, you paint with all the different

colors in the brush, using the shape of the object you picked up

without background colors.

The Color mode

Once you've created a custom brush—for example, if you draw

a rainbow on a screen with a white background, then use the

brush-selection tool to pick it up as a custom brush—Deluxe Paint

automatically uses the arc shape of the rainbow with all its colors

as a brush in the Object mode. Then, if you choose the Color brush

mode, Deluxe Paint will turn the brush you picked up into a

Amiga Graphics Tools

63

silhouette, coloring it with a single color: the current foreground

color. If, in our example, the foreground color is set to green, Deluxe

Paint will use the arc shape of the rainbow, but will fill it with only

one color: green.

The Replace mode

After you've selected a custom brush, another option you have is

the Replace brush mode. In this mode, Deluxe Paint will include all

the background color in the brush that was treated as a transparent

color before. In the custom brush of the last example, the rainbow

would be there with ail its colors, but so would be the background

white that was picked up in the brush-selection rectangle. When

you paint with a custom brush in the Replace mode, you paint with

a full rectangle; the background color is used as well as the other

colors in the brush.

The Smear mode

The Smear mode is the Deluxe Paint equivalent of using your

finger to smear different colors of oil paint together. When you paint

in Smear mode, the brush drags around the pixels already on the

screen, mixing them together. You can use a standard or a custom

brush—if you use a custom brush, Deluxe paint uses the same

silhouette shape of brush it would use in Color mode.

The Shade mode

In the Shade mode, the brush affects only pixels whose colors are

included in the shade range on the color palette. All colors outside

the shade range aren't affected by the brush. You can use either a

standard or a custom brush. The custom brush uses only the

silhouette shape of the object in the brush.

If you use the Shade mode, whenever you hold down the left

mouse button and pass the brush over pixels colored with shade*

range colors, the pixels under the brush change to the next color

down in the shade range. If you hold down the right mouse button,

the pixels change to the next color up in the shade range.

If you created a shade range of colors in the palette window that

progresses from dark to light, you can use the left button to lighten

the pixels under the brush and the right button to darken them.

The pixels won't change to any color beyond the ends of the shade

range, so you can't lighten or darken them any further than the

lightest and darkest colors in the shade range.

SECTION 2: IMAGES

64

The Blend mode

The Blend mode works something like the Smear mode: When you

drag the brush in Blend mode over two different colors that are both

in the shade range, the brush drags some of the first color into the

second color. The difference is that in Blend mode, the brush doesn't

just drag pixels of one color into an area of another color: The brush

compares the colors it's dragging to the colors it's passing over, and

lays down a color halfway between the two colors in the shade

range. (If the two colors are adjacent m the shade range, Deluxe

Paint will use the color you started blending from.) When you work

with a shade range that progresses from dark to Sight, this means

that you can use the Blend mode to blur the borders between two

different colors, using all the intermediate shades of color between

them to make a smooth transition from one to the other. This

sounds much more complicated than it really is. If you try the

example later in the chapter, you'll see just how it works.

The Cycle mode

The Cycle mode is great for splashy special effects. When you

paint in the Cycle mode, your brush cycles through all the colors you

set in one of the cycle ranges, and leaves a trail of different colors

on the screen. To choose any one of the three cycle ranges (C1, C2,

or C3), choose any one of the colors in the control panel that belongs

to the cycle range you want, then start painting. You can also set

the speed of the color cycle using the SPEED slider for that color

range in the palette window.

If you use the Cycle mode to create boxes, circles, lines, and other

shapes using the tools on the Deluxe Paint control panel, each

object you create is just one color, but each new object is a new

color in the cycle range.

Once you've painted using cycle-range colors, you can make all

the colors on the screen that are in the cycle range cycle through

the entire range by pressing the TAB key—try it!

EXAMPLES USING THE DIFFERENT BRUSH MODES

Now that you know what the different brush modes do, you can

try some examples that use the brush modes for various effects.

These examples are all fairly simple, but some produce sophisti

cated results that might give you ideas for pictures of your own.

These examples use the lo-res Deluxe Paint mode, so before you try

the examples, you should start the program by typing dpaint at the

1> prompt.

Amiga Graphics Tools

65

Using the Object and Color modes to outline a figure

When you create an object using colors that don't contrast well

with the background color on the screen, you might want to outline

your object with another color to make it stand out. For example, an

orange object on a white background will stand out better if you

outline the object in black. You can always outline your object by

carefully drawing around the edges, but that takes a lot of time if

the object is at all complicated. By selecting the object as a brush

and using the Object and Color brush modes, you can create an

outline for that object in seconds, no matter how complex its shape.

Follow these instructions to try it out:

1. Use the right mouse button to select white as the back

ground color, then select CLR in the control panel to clear the

screen and fill it with white.

2. Choose Load Fonts from the Font menu, then choose a large

font (sapphire-19 works well for this example).

3. Select the text tool, put the text cursor on the screen, and

click to position the text cursor.

4. Choose light blue from the palette, then type a message on

the screen. The message should appear in large light-blue

characters.

5. When you're finished with your message, select the entire set

of characters as a custom brush.

6. Choose Color from the Mode menu, then choose black from the

palette to turn your brush black.

7. Choose Coordinates from the Prefs menu so you can see the

coordinates in the title bar.

8. Select the hollow-rectangle tool (upper left corner of the

rectangle tool).

9. Move the brush to a blank area of the screen, then hold down

the left button and drag down and right until the coordinates

measure 2 by 2 pixels. The result will be a somewhat illegible

set of black blobs on the screen, similar to what you see in

the right half of Figure 3-2.

SECTION 2 IMAGES

66

10. Choose Object from the Mode menu to turn your brush back to

its original light blue color.

11. Position your brush in the middle of the "rectangle" you just

created so you can see the text with a black outline. Click

the left mouse button to copy the brush there. When you

move the brush away, voila! You have light-blue text outlined

in black, something like what you see in the lower part of

Figure 3-2.

Figure 3-2.

The "rectangle" to the

right of the screen was

created by a text brush.

The lower part of the

screen shows the original

text brush positioned in

the middle of the rect

angle to create outlined

text.

12. Select the outlined text as a new custom brush, then save it

to disk. You can use it in a later example.

In this example, when you used your custom brush in the Object

mode, Deluxe Paint always used the original colors (light blue in

this case) that the brush had when you first selected your custom

brush. Once you change your custom brush to Color mode, you can

choose any color you want. (In this example, in step 6 you could

choose any color you wanted to outline your message.) As soon as

you choose the Object mode again, your brush will return to its

original colors.

Amiga Graphics Tools

67

Creating a sandy background with the Smear mode

Most of the tools in the control panel create objects of a single

color If you want to create patterns that mix a lot of different colors

in a small area, you can spend a lot of time trying to do it with

standard tools. For example, consider trying to draw a picture of

beach balls on a sandy beach. Drawing each grain of sand on the

beach—alternating light, dark, and in-between—can be a very

tedious job. You can use a brush in the Smear mode to perform the

job with much more speed and ease.

In this example, make sure that you're using the default palette

with the default setting for the shade range, so it includes the last

12 colors on the palette, ranging from dark gray to light gray. While

these particular colors aren't necessary for this specific example,

you can use these results in a later example that will use this

shade range.

1. Clear the screen.

2. Choose a circular brush with the right mouse button and

size it to 10 by 10 pixels.

3. Pick each of the 12 colors in the shade range and put a dab

of it on the screen so the dabs touch to form a circle, as you

can see in the left side of Figure 3-3.

4. Choose a small circular brush.

5. Choose Smear from the Mode menu, then move the brush to

the center of the dabs, hold down the left mouse button, and

start smearing. Smear in a circular motion from inside the

cluster of dabs so you get a little bit of each color smeared

in the center. The result should look like the right side of

Figure 3-3.

6. Once you have a well-mixed smear in the center, start

smearing from the center toward the edges. This evens out

the texture and makes more of it as you push pixels away

from the center.

7. When you have a fairly large section of sand texture, select

the center of the section as a custom brush, then paint over

the entire screen to fill it with the sand texture. The result

should look like Figure 3-4.

8. Save your screen to your data disk as a picture by choosing

the Save As... command from the Picture menu. You'll use the

sand background for a later example.

SECTION 2: IMAGES

68

Figure 3-3.

The colors on the left

side of the screen are

dabs of color about to be

smeared. The right side

of the screen shows the

colors after smearing.

Figure 3-4.

A screen full of sand

texture.

Amiga Graphics Tools

69

Creating rainclouds with the Blend mode

If you've ever looked at rainclouds, you'll notice that they have a

wide range of grays—from light gray to very dark gray where rain

is pouring down from them. If you want to create closely shaded

clouds with Deluxe Paint, you can use a brush in Blend mode to

create a wide range of grays from just two original shades.

1. Clear the screen. (The background should still be white.)

2. Open the palette window, make sure the 12 shades of gray at

the end of the palette are the only 12 colors in the shade

range, then close the palette.

3. Create a filled box in the upper third of the screen using the

darkest gray in the shade range.

4. Create a second filled box in the lower two-thirds of the

screen using the lightest gray in the shade range. The result

should look like the left side of Figure 3-5.

5. Pick the largest circular brush in the control panel (the one to

the far right), then choose Blend from the Mode menu.

6. Move the brush to the dark area in the upper third of the

screen, hold the left mouse button down and slowly move the

brush down and slightly toward the right into the light area

of the screen. The dark area should smear and blend into the

light area. Repeat the stroke many times, working across the

border between the two shades of gray to create a rainy look.

7. To add a tornado coming from the clouds, continually streak

down from one spot in the clouds. Each stroke should extend

the dark clouds lower into the light area. Keep stroking down

in a curve to the bottom of the screen to create a funnel

cloud. The final result should look like the right half of the

screen in Figure 3-5.

SECTION 2: IMAGES

70

Figure 3-5.

The two gray shades

shown m the left half of

the screen are blended

with a brush in the Blend

mode to create the rain-

clouds and the tornado

shown in the right half of

the screen.

Using the Shade mode to create a shadow

The Deluxe Paint manual explains how to create a quick drop

shadow for an object: You simply pick the object up as a brush,

choose Color from the Mode menu, choose black as the color, and

put a copy of the black brush on the screen as a shadow for the

original object. Then choose Object from the Mode menu and place

the original object just above and to one side of its "shadow."

You can also use the Shade mode to create a more realistic

shadow on a complex background if you created the background

using colors graduated from light to dark in the shade range, as we

did with the sandy-beach background example. This creates

shadows that aren't just pitch black—they're the original back

ground, darkened so you see a shadow over the original design of

the background.

In the following example, you can create a shadow for the

outlined words created in a previous example, on a sand

background saved in another previous example.

1. Load the sand background you created earlier and saved as a

picture.

2. Load the outlined text you created and saved as a brush.

Amiga Graphics Tools

71

Figure 3-6.

Letters floating above a

shadow m the sand cre

ated with a brush in the

Shade mode

3. Put the brush on the screen wherever you want to place

the text.

4. Choose Shade from the Mode menu. The brush shows on the

screen as a lighter shade of sand in the shape of your letters.

5. To darken the sand underneath the brush, click the right

mouse button six times without moving the mouse. The sand

gets darker with each click. When you move the brush off the

darkened area, it looks even darker, since the brush in Shade

mode always makes the area under it look one shade lighter

so you can see where the brush is.

6. Choose Object from the Mode menu. The brush will appear as

the original outlined letters. Place them just above and to the

left of the shadow, then click the left mouse button to copy

the letters there. The results should look like Figure 3-6. If you

look closely at the shadow, you can still see the grains of

sand, although they're darkened.

You can use this shadow method on any background textured

using the Shade mode. You can use backgrounds of woodgrain,

metallic grids, fields of grass—anything that uses a range of colors

with the same hue.

SECTION 2: IMAGES

72

EASY TRICKS

As you use Deluxe Paint, you'll find many shortcuts and neat

tricks to heip you create pictures. To start you off right, here are

three tricks that you may find useful.

Use the keyboard shortcuts

At the back of the Deluxe Paint manual is a list of keyboard

shortcuts you can use in lieu of choosing tools from the control

manual and commands from the menus. Open the manual to that

page and lay it next to your workspace, and take the time to

memorize the key shortcuts as you work. It's well worth the trouble.

You'll find your work goes much faster when, for example, you can

press the x key on the keyboard to reverse a brush on the screen,

instead of opening the Brush menu, selecting Flip, and then

selecting Horiz.

An added benefit of using keyboard shortcuts is that you can

turn off the control panel and the title strip, so you can use the full

screen to paint your pictures. Then, since you need only the

keyboard to use the shortcuts, you won't have to continually turn

the panel and strip back on to change brushes or choose new tools

and colors.

Most of the keyboard shortcuts aren't difficult to remember;

they're letters that usually stand for something, like b for the brush

tool. The function keys at the top of the keyboard are another

matter. To help you use them, you can make a function-key strip.

Just above the function keys on the keyboard is a small indentation

in the plastic: this is designed to hold a function-key strip. Just cut

a piece of paper or cardboard to the right size to lay in the inden

tation, then write a label on the strip above each function key to

remind you what the key does.

Put the monitor on its side

Since the Deluxe Paint screen is wider than it is tall, it's easy to

fall into a rut and create pictures that are always wider than they

are tall. Change the proportions of your workspace by turning your

monitor on its side. Although it might take a little while to get used

to keeping your mouse turned sideways as you roll it, and to pulling

menus from the side of the screen instead of the top, you'll find that

working on a screen that's taller than it is wide gives you a fresh

perspective. If you print your Deluxe Pamt pictures vertically on a

sheet of paper (see the "Printing Deluxe Paint pictures" section

later in this chapter for details), you have the added advantage of

being able to see the full length of paper on the screen.

Amiga Graphics Tools

73

Copy pictures from magazines onto acetate

If you're not the greatest freehand sketch artist in the world, or if

you are but want to save yourself some work, you can use sheets of

.002 weight clear acetate (available in most art stores), a fine felt-tip

marker, and some magazines to good advantage. If you lay the ace

tate on a magazine picture, you can trace the image on the acetate

with the felt-tip marker. When you're finished, tape the acetate to

your monitor screen, and follow the traced lines with the Deluxe

Paint cursor to copy the image to the screen. As long as you work

alone behind closed doors, no one but you will know your secret.

PRINTING DELUXE PAINT PICTURES

If you have a printer attached to your Amiga that will print

graphics, you can print any picture created with Deluxe Paint by

choosing the Print command from the Picture menu. Deluxe Paint

then sends the data for your picture to the printer driver that was

loaded with the Amiga's system software when you first inserted

the Deluxe Paint disk. The printer driver translates the picture data

into a stream of data that prints out your picture.

Although you don't have any control from within Deluxe Paint

over the way your picture is printed, you can get quite a variety of

different printouts from the same picture by changing different

aspects of the printer driver from within the Preferences program.

USING THE PREFERENCES PROGRAM

To use the Preferences program, you need to type the command

preferences at the 1> prompt you see when you boot the Deluxe

Paint disk (called the CLI screen) instead of typing dpaint to load

Deluxe Paint. If you're already using Deluxe Paint and want to use

Preferences, you must save your current picture and then quit

Deluxe Paint to return to the CLI screen, where you can type

preferences to load the Preferences program.

The Change Printer screen

The first Preferences screen that appears doesn't affect the

printer driver at all. To switch to another screen where you can

change the printer driver, select the box labeled Change Printer. The

screen you see in Figure 3-7 appears on your monitor.

SECTION 2: IMAGES

74

Figure 3-7.

The Change Printer

screen.

The settings you see in this screen are described in the

Introduction to Amiga manual that comes with your Amiga—you

can read the manual to learn how they work. These settings are

designed to aid in printing text, but some of them affect the way

graphics are printed as well. The following explanations will help

you use them for your picture printouts.

The Margin box in the lower left corner of the screen lets you set

the margins of your printout. It measures the distance in characters

from the left edge of the paper to the left and right borders (called

margins in this box) of your printout. The spacing between the

characters is set in the Pitch box to the right of the Margin box. The

Pica setting chooses characters that measure 10 per inch, the Elite

setting chooses 12 characters per inch, and the Fine setting chooses

15 characters per inch.

You can use these left and right border settings to determine the

size of your picture. First, determine the width of your paper in

characters, then determine where you want each border of the

picture to appear. For example, if you use standard 8V2 inch paper

and you have the pitch set to 10 characters per inch, this means

your paper would measure 85 characters across with no margins. If

you want your picture to measure 7¥z inches across so it haste inch

of blank space on each side of it, then you would set the left

Amiga Graphics Tools

75

margin at 5 characters (Vz inch from the left side of the paper) and

the right margin at 80 characters (8 inches from the left side of the

paper and/2 inch from the right side of the paper).

When the printer driver sends your picture to the printer, it keeps

the height in proportion to the width you set. If you print a picture

using the above settings, it will look like the picture on the paper in

the left half of Figure 3-8. If you reset the margins to 5 and 40,

halving the width, when you print the picture the height is also

halved, as shown in the right half of Figure 3-8.

Figure 3-8.

The picture on the left

sheet was printed with

margin settings of 5 and

80. The picture on the

nght sheet was printed

with margin settings of 5

and 40—-effectively quar

tering the size of the

image.

The Graphic Select screen

The Change Printer screen lets you choose a printer driver and set

the size of your paper and your printout. If you want to control the

aspect and color of your printout, choose the box on the screen

labeled Graphic Select. The screen you see in Figure 3-9 will appear.

The Introduction to Amiga manual describes the settings in this

screen, but one setting can use a little further explanation to help

you control the size of your picture printout.

In the Aspect box in the center left of the screen, you can choose

between printing your picture horizontally or vertically. If you

choose Horizontal, the picture will print out on the paper as you see

in the left side of Figure 3-10. If you choose Vertical, the picture will

print out as you see in the right side of Figure 3-10.

SECTION 2: IMAGES

76

Figure 3-9.

The Graphic Select

screen.

Figure 3-10.

On the left is a horizontal

printout; on the right is a

vertical printout of the

same picture.

The two examples in Figure 3-10 use the same margin settings.

Notice that the margin settings control the width of whichever side

of the picture goes from left to right. This means that a vertical

picture will be larger than a horizontal picture printed with the

same margin settings, as you can see in Figure 3-10.

Amiga Graphics Tools

77

Once you've set the graphics settings as you like them, you can

select OK to return to the Printer Change screen, where you can select

OK to return to the first Preferences screen. Once there, if you want

to use your new printer settings without changing your default

printer settings, you can select Use, which will put them into effect

without saving them to disk. If you want to save your new settings

as the default printer settings, select Save, which will put them into

effect and also save them to disk so that the next time you boot

Deluxe Paint, these settings will automatically go into effect with

out your having to set them again using the Preferences program.

PHOTOGRAPHING AMIGA IMAGES

Photographing a painting on the Amiga monitor screen is quite

simple. All you need is a camera (preferably 35mm or larger), a

tripod, a cable shutter release, and a dark room (that is, a room that

is dark, not a room for developing pictures). If you have a low-power

telephoto lens (an 80mm lens for a 35mm camera, for example), it

will help your photo, although it's not necessary

Set your camera up on the tripod, and position it so the monitor

screen fills the entire frame when you look through the viewfinder.

Make sure the camera points directly at the monitor screen—if it's

aiming at an angle, that will distort the picture. If you have a low-

power telephoto lens, you can move further back from the screen

than you could with a normal lens, and still fill up the viewfinder

frame. By moving back, you reduce the amount of barrel-like

distortion you get from the curvature of the monitor screen.

Once you have the camera positioned and ready, load the Deluxe

Paint painting you want to photograph. Choose the one dot brush

from the control panel, then choose a color used in your picture.

Press the F8 key to make the crosshairs disappear, then move the

dot over a pixel of the same color so it disappears from view. Press

the F10 key to make the title strip and control panel disappear, and

you're ready to shoot.

Before you turn out all the lights in the room, give the glass over

the monitor screen a quick wipe with a cloth and some window

cleaner to make sure it's clean. Turn out all the lights. Set the

shutter speed of the camera to 1/15 of a second or slower, then

adjust the f-stop to get the proper exposure. Use the cable release

to click the shutter so you don't jiggle the camera and cause

blurring at the low shutter speed you're using. Voiia! You're

finished. All you need to do now is have the film developed.

SECTION 2: IMAGES

78

OTHER AVAILABLE GRAPHICS SOFTWARE

Deluxe Paint is not the only graphics application program

available for the Amiga. Several other programs also make use

of the Amiga's superb graphics to help you create and print out

pictures. If you are interested in a graphics program for the Amiga,

you should take a look at Graphicraft and Aegis Images as well as

Deluxe Paint, and choose the one that fits your style of creation.

GRAPHICRAFT

Graphicraft is a graphics program marketed by Commodore-

Amiga. Although you cannot create multicolored custom brushes

or work on a high-resolution screen with Graphicraft, you can still

use it to create excellent pictures. It just takes a little more time

to do it.

One good reason for buying Graphicraft, or at least looking

at it, are the sample pictures that come with it. They take full

advantage of Graphicraft's ability to cycle colors to create beating

hearts, storming weather maps, and flying hot dogs. If you take the

time to learn how these pictures work, you can then create some

very sophisticated animation using any graphics program that can

cycle colors.

AEGIS IMAGES

Aegis Images is a graphics program that is sold together with

Aegis Animator, a video-animation program. You can use the

pictures you create in Images as objects to animate m Animator.

Although Images does not offer custom multicolored brushes

and different screen resolutions, it has other special features. Where

the power of Deluxe Paint is in selecting multicolored custom

brushes and building pictures with them, Images concentrates on

the versatile use of monochrome brushes.

You can use the Images brushes to paint with single colors

or with multicolored patterns, and you can use them with a wide

variety of object-producing tools, such as parallelogram and tri

angle tools. You can alter the way any tool works to get some very

effective results. For example, you can set any of the tools so the

last point of one object will be the first point in the next object you

create; in this way, the objects you create will be chained together.

Images also has brush effects similar to Smear, Shade, and Blend

in Deluxe Paint. "Transparency" and "glow" are two of these.

Other features are "pantograph" and "under," which allow you to

copy an image with strokes of a brush or to paint one color under

other colors already on the screen.

Amiga Graphics Tools

79

THE IFF GRAPHICS STANDARD

One thing that Deluxe Paint, Graphicraft, and Aegis Images

have in common is that they all save their picture files to disk using

the IFF graphics standard. IFF stands for Interchange File Format.

It's a standard that was developed by Electronic Arts in collabora

tion with Commodore-Amiga, to make sure that files saved by one

program can be used by another program. There are IFF standards

for graphics, for music, for sound, for text, and for a wide range of

other types of data that can be saved to disk or transmitted. IFF

standards are designed to go beyond working with different

programs on the same computer—they're also designed to work

with different computers.

Software developers have to use the IFF standard, or their

programs won't be able to use files from other programs that were

saved using the IFF standard. Fortunately most software developers

for the Amiga are adhering to the standard at Commodore-Amiga's

urging. What this means for you is that you can take a picture

saved by Graphicraft, Deluxe Paint, or Aegis Images and toad it

into any Amiga graphics program that uses the IFF standard. For

example, if you like some features of Deluxe Paint and other fea

tures of Images, you can create a picture on Deluxe Paint, save it,

and then load it into Images for some touch-up work using images'

special features.

GRAPHICS HARDWARE FOR THE AMIGA

If you're using your Amiga extensively for graphics, then it's

worthwhile to make sure you're using hardware that brings out the

best in the Amiga's graphic capabilities. The following sections list

types of graphics hardware for your Amiga, along with some rec

ommendations to help you choose the equipment that's right for you.

MONITORS

The piece of graphics hardware you probably spend the most

time with is the monitor you use with your Amiga. If you're using a

monochrome monitor or a composite video monitor and want to

upgrade your picture by buying an RGB monitor, there are several

things to consider as you shop.

There are two types of RGB monitors: analog and digital. Digital

RGB monitors are the type most commonly used with the IBM PC,

so they're easy to find. Your Amiga can display pictures on a digital

RGB monitor, but a digital RGB monitor can only display 16 different

colors, severely limiting the colors you can use with your Amiga.

An analog RGB monitor can display a full range of colors—it's the

best RGB monitor for working with color graphics.

SECTION 2: IMAGES

80

Many different analog RGB monitors are available. To make sure

you find one that works well with your Amiga, be sure that the

monitor has at least 400 lines of vertical resolution to display the

Amiga's high-resolution pictures with accuracy. You should also

check the dot pitch of the monitor; the smaller the dot pitch, the

clearer the picture on the screen. An average RGB monitor might

have a dot pitch of around .4 mm. An exceptionally clear monitor

might have a dot pitch of around .28 mm.

If your budget precludes spending a good chunk of money on a

monitor just for your computer, you might consider getting a TV set

that will display analog RGB signals from your Amiga. That way

when you're finished with your computer work, you can watch your

favorite TV programs. One example of this type of TV/monitor is the

SonyKV1311.

Another alternative is to buy any of the many video monitors on

the market designed to work with a component video system that

also includes an input for an analog RGB signal. They usually don't

have a tuner built into them, but most will accept a signal from a

VCR, so you can use the tuner built into your VCR to receive

television programs. One advantage to a video monitor like this is

size: Some of them have a screen size as large as 25 or 26 inches, a

real advantage if you're displaying Amiga images in a storefront, or

even if you just like to sit back in a sofa and play larger-than-life

video games.

PRINTERS

A color printer is very important if you want to make copies of

your Amiga images on paper. The Amiga's system software has

printer drivers for three different color printers: the Okimate 20, the

Epson JX-80, and the Diablo C-150. You can use other color printers,

but you must have a printer driver for them before they will work

with the Amiga.

The Okimate 20 printer

The Okimate 20 printer, manufactured by Okidata, is a low-cost

color printer. It's a thermal dot-matrix printer: It uses a colored

waxed ribbon and a thermal print head to burn the color from the

ribbon onto the paper. As a result, the colors are well saturated

(that is, they look bold, not faint).

There are several drawbacks to the Okimate 20. It uses a ribbon

quickly, since it can only print the length of a ribbon once, and then

the ribbon must be replaced. The registration of the print head isn't

always exact; the pictures it creates sometimes have horizontal

bands of white separating each pass of the print head in the

picture. Nevertheless, for a printer as inexpensive as the Okimate

20, it's a good value for the money.

Amiga Graphics Tools

81

The Epson JX-80 printer

The Epson JX-80 is an impact dot-matrix printer that uses a

multicolored inked ribbon to strike against paper to print colors.

The JX-80 is probably the best text printer of the three color

printers, since it can produce near letter-quality text if you add a

special chip to it. It can use almost any kind of paper you can feed

into it, and it will use one ribbon over and over again until it runs

out of ink.

The main disadvantage of a JX-80, like most color impact dot-

matrix printers, is that the color saturation you get from an inked

ribbon on standard paper is poor; the printed images look washed

out, compared to what you see on the screen. The advantage is

that you can use the JX-80 for word processing as well as printing

graphics, and it's affordable.

The Diablo C-150 and Xerox 4020 printers

If you're serious about printing your color graphics on paper, you

should consider using a Diablo C-150 inkjet printer, manufactured

by Xerox, or the Xerox 4020 printer, an improved color inkjet printer

that uses the C-150 printer driver. You do have to be serious about

it, because these printers are relatively expensive. What do you get

for the money? Extremely vivid colors and detailed accuracy.

The inkjet printers spray colored ink on a special clay-coated

paper that doesn't absorb and spread ink. Since the ink dots are

tiny, you get very fine resolution. The inks are comparatively thick

and don't sink into the paper, so the printed colors are very well

saturated. You can also use clear acetate in these inkjet printers to

create colored transparencies, so you can use an Amiga graphics

program to create and print business graphics for a presentation on

an overhead projector.

These two inkjet printers aren't for everyone. They really aren't

practical for word processing, because even though they can

produce some beautiful-looking characters, you can print them only

on clay-coated paper or acetate, not great media for business

letters or other correspondence. The C-150 takes some maintenance

to keep it producing clean color pictures; you have to rinse out the

inkjet nozzles and occasionally clear trapped bubbles from the ink

lines. The 4020 is much easier to maintain, and also produces color

with greater saturation than the C-150. Despite the maintenance

and cost considerations, these inkjet printers are the best printers

to have if you plan to use your color printouts for more than

curiosities.

SECTION 2: IMAGES

82

THE AMIGA LIVE! FRAMEGRABBER

If you want to add some pictures from real life to your collection

of Amiga images, you can use the Amiga LIVE! framegrabber to

turn images from a video camera, TV, VCR, another computer, or

any other video source into a low-resolution Amiga image.

The Amiga LIVE! framegrabber plugs into the expansion bus on

the right side of the Amiga. On the side of the Amiga LIVE! box is

an NTSC jack where you can plug in a standard video cable to

carry a picture from another video source (like a video camera).

When you turn on the Amiga, you boot a disk containing the

Amiga LIVE! driver, the software that reads the images from the

framegrabber. When the driver is loaded, you see the images that

the framegrabber produces on your monitor screen.

Amiga LIVE! is a real-time framegrabber. That means that at

least 12 times a second it can take a video picture and convert it to

a 320-by-200 Amiga picture. If the source is a moving picture, you

see the result as a series of moving Amiga pictures on the screen.

You can at any point freeze the picture on the screen. Amiga LIVE!

can capture pictures from video in color using 32 colors, or in black

and white using 16 levels of gray You can then save those pictures

to disk, and since the software will save them using the IFF

standard, you can load your picture into an IFF graphics program

and alter them later.

Amiga LIVE! can act as more than just a still-picture digitizer.

Since it operates in real time, and since the Amiga simultaneously

puts its images out through the NTSC port on the back of the

Amiga console, you can feed the digitized images from Amiga

LIVE! into a VCR connected to the NTSC port to create your own

special-effects videos. Amiga LIVE! acts as an image processor to

freeze frames, alter colors, and create many of the special effects

you see in other video-based productions such as music videos.

You've now been able to try some of Deluxe Paint's

advanced features, and you've learned how to print and

photograph your creations. You've also had a look at some

of the other graphics programs on the market for the

Amiga. If you're a BASIC programmer, or if you're curious

about some of the more technical aspects of Amiga

graphics, read on through the next three chapters on

Amiga BASIC graphic statements.

Amiga Graphics Tools

83

CHAPTER FOUR

AMIGA BASIC

GRAPHICS:

SCREENS,

WINDOWS, AND

PALETTES

Microsoft's Amiga BASIC has a full set of graphics

commands that let you design effective pictures with your

BASIC programs. You can use the graphics commands to

create your own screens and windows, then fill those

windows with shapes, colors, and text. You can display

data with colors and shapes instead of numbers, ask for

input from the user in visually irresistible ways, and add

visual pizzazz just for fun.

In the next three chapters, you'll learn how to use the

Amiga BASIC graphics commands. This chapter concen

trates on the commands you need to create your own

windows, screens, and color palettes. Chapter 5 explains

how to draw lines and create shapes in different colors.

Chapter 6 shows you how to add text to your graphics,

make your graphics adapt to changing window sizes, and

cut and paste sections of graphics.

AN INTRODUCTION TO AMIGA BASIC

If you haven't used Amiga BASIC before, you might find that its

unique features take a little getting used to. Unlike most versions of

BASIC, Amiga BASIC doesn't need line numbers. Another difference

is that it uses two different windows for separate activities—one

window to enter the program, the other to display the results. To

help you use the program examples in the following chapters, this

short introduction shows you how to enter, run, and stop Amiga

BASIC programs. The tutorial is not intended to teach you BASIC

programming—that's a large job best left to a beginning BASIC

book or a teacher—but it will help start you out painlessly. If you

want more specific information about using Amiga BASIC, you can

find it in the user's manual that comes with the program.

THE LIST AND OUTPUT WINDOWS

To start Amiga BASIC, you open the Amiga BASIC icon just as

you would any othei icon: You point to it with the pointer and

double-click the Select button on the mouse. After a few seconds,

two windows appear on the screen: the List window and the

Output window, shown in Figure 4-1. The List window is titled

LIST, and the Output window is titled (for now at least) BASIC. The

Output window's title bar shows the title of the program currently

in memory. Since you have no program loaded now, it displays

BASIC. As soon as you load a program from a disk or save a new

program under any name, the Output window's title bar will show

the name of the program.

SECTION 2: IMAGES

86

Figure 4-1

odore Anigs
jfersiss^i.88 -
CreatelSct. 23,^385
Copyright Cc) 1985
by Hicposoft Corp.
224516 Bytes free in Systen

25881 Bytes freed; n BASICS

The Amiga BASIC List

and Output windows.

These two windows keep the lines of the BASIC program and the

results of the program separate. You enter and store the program

lines in the List window. When you run the program, any vrsible

results that occur, such as text printouts or graphics, usually

appear in the Output window.

ENTERING A PROGRAM IN THE LIST WINDOW

To enter a program in the List window, you must select the

window by moving the pointer inside it and clicking the Select

button. A vertical cursor line then appears at the upper left corner

of the window. Enter the program by typing it in line by line, and

pressing the RETURN key at the end of each line. Since you don't

need to use line numbers, it's important to keep the lines in the

correct order.

If you come to the right edge of the List window before you

finish entering a long line, the contents of the window will

automatically scroll left to let you continue entering the line. As

soon as you press RETURN, the contents will scroll back to the left

edge of the program lines. The contents of the window will likewise

scroll up when you reach the bottom of the window.

You can correct mistakes and make changes in the program by

moving the cursor back to the lines you've aiready entered. The four

cursor keys move the cursor over the program listing without

altering any characters underneath it. You can also use the mouse

pointer to move the cursor by simply pointing to the spot where

you'd like the cursor to appear and clicking the Select button. When

Amiga BASIC Graphics: Scieens, Windows, and Palettes

87

you get to the text you'd like to change, just start typing to insert

new text, or use the BACKSPACE key to erase characters before the

cursor. You can also delete text by dragging over it with the mouse

to highlight it, then pressing the BACKSPACE key.

SCROLLING THROUGH A PROGRAM LISTING

If your program has more lines than you can view in the List

window at one time, you can scroll through the listing a page at a

time by holding down one of the SHIFT keys and pressing the up or

down cursor key, or you can jump to the beginning or end of the

program by holding down one of the ALT keys and pressing the up

or down cursor key. If you can't see the entire length of the program

lines, you can make the List window wider by dragging it left, then

using the sizing gadget in the lower right corner to stretch it out to

the right. If you still can't see the full length of the lines, use SHIFT

with the left or right cursor key to scroll left or right a full window

at a time, or ALT with the left or right cursor key to scroll to the end

or beginning of a line.

RUNNING A PROGRAM

Once you've entered a program, you can run it by choosing Start

from the Run menu. The List window disappears, and the results

appear in the Output window (if they're text or graphics). When

the program is finished, the List window reappears. If the program

doesn't stop by itself, you can stop it by choosing Stop from the

Run menu, or by pressing the right Amiga key together with the

period {.} key, or by holding down CTRL and pressing C. If the List

window doesn't automatically appear after the program stops

running, you can choose Show List from the Windows menu, or use

the keyboard shortcut and press the right Amiga key together with

the L key to make it reappear.

ENTERING IMMEDIATE COMMANDS IN THE OUTPUT WINDOW

If you select the Output window by clicking in it, you can also

enter Amiga BASIC statements there. Instead of storing the

statements as it does in the List window, Amiga BASIC executes

each statement line that you enter in the Output window as soon

as you press the RETURN key. This makes each statement an

immediate statement, since you see its results immediately. You

can use the Output window to test the effects of individual

commands before putting them in a program.

SAVING A PROGRAM

If you want to save a program that you've written, just choose

Save from the Project menu. Amiga BASIC will prompt you for a

name. Click in the box to get a cursor, then type the name in and

SECTION 2: IMAGES

88

press RETURN; your program will be saved on disk as a BASIC file.

You'll see the title of the program appear in the title bar of the

Output window. As you modify the program, you can continue to

use Save. Each time you choose it, Amiga BASIC will save the

program in its current state under the same name, overwriting the

oid version already on the disk. To save an existing program under

a different name, choose Save As from the Project menu and type in

another name. The name displayed in the Output windows title

bar will change to the new name, and the old file will remain

untouched on disk.

To load a program from disk, choose Open from the Project menu,

click in the box, then enter the name of the program and press

RETURN. If the program you're working on hasn't been saved in its

current state, you will be warned and given the opportunity to

either save or throw out the changes. After that, Amiga BASIC will

erase the program that is currently in the List window and replace

it with the program you chose. The same is true if you choose New

to begin entering a program from scratch.

LEAVING BASIC

When you want to leave BASIC to get back to the Workbench,

you can quit Amiga BASIC by choosing Quit from the Project menu,

or by closing both the List and Output windows by selecting their

close gadgets. If you just want to see the Workbench without

quitting BASIC (to see how full the disk is, for example}, you can

select the back gadgets on both the List and Output windows to

put them behind the other windows on the Workbench. Once

you've seen what you want to see, you can bring the List and

Output windows back to the foreground by selecting their front

gadgets, or by selecting the back gadgets on the other Workbench

windows. In some cases, you may have to choose Show List from the

Windows menu to see the List window again.

AN INTRODUCTION TO SCREENS, WINDOWS,

AND PALETTES

As you may recall from Chapter 2, the Amiga creates its

graphics using pixels, or tmy "picture elements." If you look closely

at any picture or text on the Amiga's monitor, you can see the

pixels: They're the small, squarish building blocks that make up the

images. To build an object on the monitor screen, the Amiga sets

the color of individual pixels in the shape of the object. When you

see those pixels from a distance of more than a few inches, they

combine to appear as one object.

Amiga BASIC Graphics: Screens, Windows, and Palettes

89

The size of the pixels the Amiga uses to build images deter

mines the resolution of the picture. In a high-resolution picture,

the pixels are small and not easily seen, so you can create curves

and diagonal lines that appear fairly smooth. In a low-resolution

picture, the pixels are larger and more evident; diagonals and

curves have a distinct jagged look, and you can see the indi

vidual pixels more easily.

SCREENS

The Amiga offers four different resolution modes for displaying

graphics and text on the monitor. You choose any of the resolutions

and work with it by creating a screen (explained in the SCREEN

statement section in this chapter). You can have up to five screens

on the monitor at one time, and each can have its own resolution

mode. Each Amiga screen extends across the full width of the

monitor screen and has a title bar at the top (you can create a

screen that is not displayed across the full width, but it will

"command" the entire width of the screen). You can gjab the title

bar with the pointer and drag the screen up and down on the

monitor by holding down the Select button of the mouse and rolling

the mouse forward and back. This reveals the screen immediately

behind the current screen (if any), and you can then grab that

screen's title bar and move it up and down.

The screen's title bar is also used to display menus. When you

press and hold down the Menu button of the mouse, the titles of

the menus appear in the title bar. You can make an individual menu

appear by pointing to the menu title with the pointer while the

Menu button is still depressed.

The title bar also includes back and front gadgets in the right

corner. If there is more than one screen on the monitor at one time,

those screens are layered, one covering another. Selecting the left

(back) gadget moves that screen behind any other screens, and

selecting the right (front) gadget moves that screen in front of any

screens on the monitor.

A good example of a screen is the Workbench screen. When you

first boot the Amiga, the Workbench screen appears with Workbench

release 1.1 (or something similar) in the title bar and the icons for any

disks you have in the drives. You can drag the screen up and down

SECTION 2: IMAGES

90

by pointing to the title bar with the pointer, holding down the

Select button, and rolling the mouse forward and back. If you try

the back and front gadgets, nothing happens because there aren't

any other screens on the monitor at this point. When you press the

Menu button on the mouse, you get the Workbench menus in the

title bar. You can see the Workbench screen, complete with

gadgets, in Figure 4-2 (on the next page).

WINDOWS

Screens provide areas of different resolution on the monitor.

Within each screen, windows provide clearly defined areas of

activity. If you want to create graphics or put text on a screen, you

must do it within a window—you can't put graphics or text on a

screen without a window. Windows share the same resolution and

colors as the screen they belong to, so you can't create windows

with different resolutions or colors on the same screen.

Unlike screens, windows don't have to extend across the full

width of the monitor. They can be almost any size, as long as

they fit within the screen they're on. Each window has its own

boundaries, and can include an optional title bar at the top. The

title bar can show the name of the window, and can also include

three optional gadgets: the close gadget, the back gadget, and the

front gadget. Selecting the close gadget will make the window

disappear from the screen. Selecting the back gadget will move the

window behind any other windows on the screen; selecting the

front gadget will move the window m front of any other windows

on the screen.

In the lower right corner of the window is an optional sizing

gadget. By pointing to the sizing gadget, holding down the Select

button on the mouse, and then rolling the mouse, you can change

the size of the window. Also, if the window has a title bar and is

smaller than the screen, you can move the entire window around

within the boundaries of the screen by pointing to the window's

title bar, holding down the Select button, and rolling the mouse.

If you open the Workbench disk icon on the Workbench screen

as shown in Figure 4-2. you can see a good example of a window

with all the gadgets, the title bar, and full mobility. You can drag it

around to any spot on the screen, resize it, and close it if you wish.

If you drag the Workbench screen up and down on the monitor, all

the windows it contains will move with it.

Amiga BASIC Giaphics: Screens, Windows, and Palettes

91

Figure 4-2

A window on the Work

bench screen showing

the contents of the Work

bench disk.

PALETTES

Each screen on the Amiga monitor also has its own set of colors,

called a palette. The palette for each screen can have up to 32

different colors. You can choose each of the colors in the palette

from a total of 4096 different colors, so it's possible to create a

unique palette for each screen. The procedures for changing the

colors in the palette from BASIC are explained later in this chapter.

The Amiga uses the colors in the palette to color all the pixels in

its screen and any windows on that screen that use those colors.

For example, the first color in the palette is used to color the

background of the screen and its windows, and the second color is

used to fill in the boundaries of the windows and the title bars. The

last two colors in the palette are used to create inverse colors that

appear when you select any menu item.

When you first boot the Workbench, you see a blue background

with white window borders and title bars (that is, if you haven't

changed the colors). When you select menu items, they turn to the

inverse colors of black and orange. If you use Preferences to change

your Workbench colors, you are choosing new colors for the palette

of the Workbench screen, which show up as new colors for the

background, window borders, and inverse menu lettering.

SECTION 2: IMAGES

92

THE SCREEN STATEMENT

When you start working with Amiga BASIC, you use the List and

Output windows that BASIC creates on the Workbench screen. Any

graphics you create or text you print will appear in the Output

window using the Workbench screen's resolution and four-color

limitation. You'll probably want to use more colors and a different

resolution. To do so, you need to create a new screen with the

SCREEN statement. It uses this format:

SCREEN screen ID number, width, height, depth, resolution mode

The five specifications following SCREEN have to appear in this

order, and must be separated by commas.

THE SCREEN ID NUMBER

You can create up to four screens in Amiga BASIC. These are in

addition to the Workbench screen, so you can have a total of up to

five screens on the monitor at once. To identify your screens, you

give each screen an ID number of 1, 2, 3, or 4. The Workbench

screen is always numbered -1 Later in this chapter, when you use

the WINDOW statement to create windows, you'll use the screen ID

number to tell BASIC which screen you want to put the window on.

THE SCREEN RESOLUTION MODE

Although the screen resolution mode is the last specification you

enter in the SCREEN statement, you need to know what resolution

you're going to use before you set the width, height, and depth of

the screen. You can choose any one of four different resolution

modes. Each mode uses a different size pixel.

There are two different pixel widths: fat, called low-resolution,

and skinny, called high-resolution. High-resolution pixels are skinny

enough to fit 640 of them across a full screen. Low-resolution pixels

are twice as wide as high-resolution pixels: 320 low-resolution

pixels fit across a full screen.

There are also two different pixel heights: tall, which is called

non-interlaced, and short, which is called interlaced. On a full

screen, 200 non-interlaced pixels fit from top to bottom. Interlaced

pixels are half as high as non-interlaced pixels; 400 interlaced

pixels fit from top to bottom on a full screen.

Amiga BASIC Graphics: Screens, Windows, and Palettes

93

By combining the two different widths and two different heights

of the pixels, you have four different resolutions available that you

can specify with the following resolution mode numbers:

• Mode 1: Low-resolution, non-interlaced pixels that measure a

maximum of 320 by 200 on a full screen.

• Mode 2: High-resolution, non-interlaced pixels that measure a

maximum of 640 by 200 on a full screen.

• Mode 3: Low-resolution, interlaced pixels that measure a

maximum of 320 by 400 on a full screen.

• Mode 4: High-resolution, interlaced pixels that measure a

maximum of 640 by 400 on a full screen.

For reference, the Workbench screen is a mode 2 screen.

Any screens that use mode 3 or 4 flicker slightly on the monitor

because they use interlaced pixels. To fit 400 lines of pixels on the

monitor, the Amiga uses a display method called interlacing that

first draws all the odd-numbered raster lines and then draws all the

even-numbered raster lines. It alternates back and forth between

the odd and even lines once every Vso of a second, which is slow

enough to create a slight flicker. Non-interlaced pixels don't flicker

because the Amiga draws all the lines in one pass everyYw of a

second, fast enough to avoid a flicker.

Anytime there are several screens on the monitor and any one of

them is an interlaced screen, the entire monitor will flicker slightly,

since the monitor must use the interlacing display method for its

entire screen. The interlacing won't affect the size of the pixels in

the non-interlaced screens. Apart from the flicker, they'll look just as

they normally do. Closing all interlaced screens will get rid of the

flicker on the monitor.

SCREEN WIDTH AND HEIGHT

Once you've decided on a resolution mode, you can set the size

of the screen by setting width and height in pixels. To set the

width and height, you need to consider the limits of your screen

resolution and keep within them. For example, you can't create a

mode 1 screen measuring 400 by 200 pixels because a mode 1

screen has a maximum width and height of 320 by 200 pixels.

If you create a screen that is smaller than the maximum dimen

sions of its resolution, BASIC positions the screen in the lower left

corner of the monitor display. For example, a mode 1 screen set to a

width and height of 160 by 100 would appear on the monitor as

SECTION 2: IMAGES

94

shown in Figure 4-3. You can't drag this screen above its current

position, but you can drag it down lower. Notice also that the area

to the right of the screen is blank, but it will drag up and down

with the screen, since the resolution of the screen covers the full

width of the monitor.

Figure 4-3.

A160-by-100model

screen.

SCREEN DEPTH

The depth of a screen is measured in bit planes. The number

of bit planes in a screen determines how many colors the screen

and all the windows in that screen can display. Each bit plane is

a section of the Amiga's RAM that uses one bit to store color

information for each pixel in the screen. By combining bit planes,

the Amiga can use multiple bits for color storage for each pixel

m the screen.

You can specify anywhere from one to five bit planes when you

create a screen. A screen with one bit plane supports just two

colors, because there's only one bit in memory for each pixel (the

bit can be either on or off, hence two colors). Each additional bit

plane you add to a screen assigns one additional bit m memory for

each pixel, allowing more colors to choose from for displaying each

pixel. For example, a 2-bit-plane screen assigns two bits to each

pixel, giving you four colors to choose from—since two bits allows

four combinations of zeros and ones. Each bit plane you add

doubles the color capacity of each pixel, since each bit doubles the

possible combinations of zeros and ones. The following chart

Amiga BASIC Graphics: Screens, Windows, and Palettes

95

shows how many colors are available for each pixel when you

assign the corresponding screen depth:

Number of bit planes Number of colors

1 2

2 4

3 8

4 16

5 32

Although you can specify up to five bit planes in resolution

modes 1 and 3, you are limited to four bit planes (16 colors)

in modes 2 and 4.

SCREEN MEMORY REQUIREMENTS

When you set a screen's dimensions, BASIC reserves enough

RAM to contain the bit planes for that screen. To get an estimate of

how much memory each screen takes, multiply the three screen

dimensions together to get the number of bits, then divide by eight

to get the number of bytes:

height x width x depth -r- 8 =

approximate screen RAM in bytes

For example, a 320-by-200-by-5 screen would use approximately

40,000 bytes of memory (320 times 200 times 5 divided by 8).

Amiga BASIC reserves RAM for the screens in the system

memory (not in the original 25,000 bytes set aside by BASIC to store

programs). When you create screens, you should keep in mind how

much system memory you have available, and be careful not to

overload it. The best way to conserve memory is to limit the depth

of your screen if you don't need many colors. A 320-by-200-by-5

screen can use 32 different colors, since it uses 5 bit planes. If you

cut it down to 4 colors, requiring just 2 bit planes, you'd need only

16,000 bytes of RAM for the screen instead of 40,000.

SCREEN STATEMENT EXAMPLES

Once you've decided on a screen-resolution mode, the dimen

sions of the screen, and the screen ID number, it's very easy to

create a screen. As a simple example, to create a mode 4 screen

with the screen ID number 1 that measures 640 by 400 with 2 bit

planes, you'd enter:

SCREEN 1 , 640, 100 ,2,4

SECTION 2: IMAGES

96

To see how to create several screens of different resolutions at

once on the monitor, enter and run this very short program:

SCREEN 1 , 320, 200 ,1,1

SCREEN 2, 640, 200 ,1,2

SCREEN 3, 320 , 400 ,1,3

SCREEN 4 , G40 , 400 ,1,4

This program creates four full-size screens, one in each

resolution, each with a depth of only one bit plane (to conserve

memory). You won't see the screens immediately, because they

disappear behind the Workbench screen as soon as the program

stops running (which is almost immediately). To see them, you

need to first resize both the BASIC Output and List windows and

drag them to the bottom of the Workbench screen so you can see

the Workbench title bar. Then, to see the screen behind the

Workbench screen, you need to drag the entire Workbench screen

down by its title bar. You should see the title bar of screen number

4. If you drag screen 4 down, you can see screen number 3.

Dragging screen 3 down reveals screen 2, and dragging screen 2

down reveals screen number 1, so you can see five different screens

on the monitor at once, as shown in Figure 4-4. You can use the

back and front gadgets on the screens to move them to the front or

hide them in the back if you want.

Figure 4-4.

Five different screens on

the monitor at one time.

Amiga BASIC Graphics: Screens, Windows, and Palettes

97

In Figure 4-4, you'll notice that the sizes of the title bars and

gadgets change from screen to screen, depending on the screen's

resolution. You can also see that the screens are layered in the order

you created them. Each new screen you create always appears in

front of any screens you previously created.

THE SCREEN CLOSE STATEMENT

When you're finished with a screen, you should close it to make

it disappear from the monitor and to release the RAM the Amiga

uses to store the screen. The SCREEN CLOSE statement will do

that. It uses this format;

SCREEN CLOSE screen ID number

The screen ID number specifies the screen you want to close.

For example, to close screen 3, you'd use:

SCREEN CLOSE 3

To return your monitor screen back to normal after running the

previous multiple-screen program, drag the title bar of the

Workbench screen back up to the top of the monitor, click in the

BASIC Output window to select it, and then enter these four

immediate commands:

SCREEN CLOSE 4

SCREEN CLOSE 3

SCREEN CLOSE 2

SCREEN CLOSE 1

You should notice that the interlacing flicker disappears as soon

as you close screens 3 and 4, the interlaced screens.

THE WINDOW STATEMENT

When you create a screen, you set the resolution and number of

colors you want to work with. To create an area on that screen to

put graphics and text into, you must create a window with the

WINDOW statement. You can create as many windows as the

SECTION 2: IMAGES

98

Amiga's memory will support, and you can make them in different

sizes, locations, and with different features. You can make windows

in the Workbench screen or any other screens you have already

created with the SCREEN statement.

The format for the WINDOW statement is:

WINDOW window ID number, title, opposing corner addresses,

window features number, screen ID number

Each of the specifications following WINDOW must come in the

order shown in the format, and all specifications must be separated

by commas. The window ID number must be included in every

WINDOW statement- Because the other specifications are not

necessarily relevant for every window, they are optional, as you'll

see shortly. However, if a specification is not set but specifications

after it are set, a comma must still be included at its position.

THE WINDOW ID NUMBER

To identify and keep track of more than one window, you need to

assign a window ID number to each window you create. It can be

any integer from 1 up to 255. Window ID number 1 is the BASIC

Output window, so if you want to create a new window without

altering the Output window, you should start with ID number 2 and

continue numbering from there with each new WINDOW statement.

THE WINDOW TITLE

The title specification of the WINDOW statement lets you include

a name that will appear in a window's title bar. You can use any

string you want as a title. For example, you can use a string in

quotes like "Aieeeee!" or you can use a string variable like TITLES

that's been assigned earlier in the program. It's a good rule of

thumb to always end the string with a space to make the title

appear cleaner and less cramped in the title bar. If you don't want a

title, and you want to include other specifications that are to the

right of the title in the WINDOW statement, you must include a

comma at the title specification's position. The window's title bar

will then be blank.

OPPOSING CORNER ADDRESSES

You set the size and location of the window by specifying the

location of two of its opposing corners on the screen. To specify the

two corners on the screen, you need to use pixel addressing. Pixels

are arranged on a screen in a grid, using numbered rows and

columns that start in the upper left corner of the screen. The top

Amiga BASIC Graphics: Screens, Windows, and Palettes

99

Figure 4-5.

row of pixels is row 0, the rows following below it are numbered 1,

2, 3, 4, and so on until you reach the bottom of the screen. The first

column of pixels on the left is numbered column 0, and the col

umns following it to the right are numbered 1, 2, 3, 4, and so on

until you reach the right side of the screen. Figure 4-5 shows you

how this numbering system works.

Columns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17—*

Amiga BASIC'S pixel-

addressing system.

R

o

W

s

0

1

2

3

4

5

6

7

8

I

\

* Pixel at location (5,7)

To locate any one pixel, you use a pixel address that is the pixel's

column number followed by its row number. For example, a pixel at

address 5,7 is 6 columns over and 8 rows down from the upper left

corner of the screen. Because the numbering starts with zero, the

actual row and column is always one count greater than the row

and coiumn number in the address.

In Amiga BASIC, pixel addresses are always enclosed in

parentheses with the column number first, followed by a comma

and the row number. The pixel address shown before would appear

as (5.7) in a BASIC program. When you use two addresses, as you

do to show the two opposing corners of a window, you separate

them with a dash. So a window occupying the upper left quarter of

a 320-by-200 screen would be shown as (0,0) - (159,99). These two

addresses are the upper left corner of the screen and the center of

the screen. The window they position looks like the one shown in

Figure 4-6.

SECTION 2: IMAGES

100

n Corner Window

Figure 4-6.

A window created in

the upper quarter of a

screen.

When you enter opposing corner addresses, make sure your

addresses are within the boundaries of the screen. The boundaries

are decided by the resolution and the size of the screen you set

in the SCREEN statement. If you have a 640 by 400 screen, then

(10,20) - (300,450) won't work because the second address goes off

the bottom of the screen.

If you decide not to include opposing corner addresses in the

WINDOW statement and simply include a comma at their position,

the window you create will fill the entire screen.

WINDOW FEATURES

Windows come in different sizes and varieties, as you've

probably found out by working with different Amiga programs.

Some windows can be dragged around the screen, while others are

stationary Some have all sorts of gadgets; others have none.

The WINDOW statement gives you the chance to customize your

window as you create it. You can pick features for the window

somewhat like choosing items from a catalog. Each feature has a

value associated with it. After you decide which features you want

in your window, you take the value for each feature and add all the

values together. The resulting number is the window features

Amiga BASIC Graphics: Screens. Windows, and Palettes

101

number, and it tells WINDOW which features you've chosen. The

following is a list of window features you can specify with their

corresponding feature values:

• Sizing gadget (l)—A sizing gadget appears in the lower

right corner of the window. You can drag the sizing gadget

with the pointer to change the size of the window. Without a

sizing gadget, a window can't be changed from its original

size by the user (sometimes a desirable feature in itself).

• Window dragging (2)—You can drag the window around

the screen by its title bar, using the pointer. Without window

dragging, a window remains fixed where it was created.

• Back and front gadgets (4)—Back and front gadgets appear

in the upper right corner of the window. You can select either

gadget to make the window move to the front or hide behind

other windows.

• Close gadget (8)—A close gadget appears in the upper left

corner of the window. By selecting the close gadget with the

pointer, you can close the window, making it disappear from

the screen. Without a close gadget, you can't remove a

window from the screen with the pointer.

• Window refreshing (16)—The contents of the window are

redrawn (refreshed) if they've been covered by another window

and then exposed again, or if the window has been resized

much smaller and then enlarged again. Without window

refreshing, any part of the inside of a window will be erased

for good if it's covered with another window or if it disappears

when the window is resized.

Figure 4-7 shows a window with all of the features that are

visible on a window. (It obviously can't show window dragging or

refreshing!)

As an example of specifying window features, if you want a

window with a sizing gadget, back and front gadgets, and a close

gadget, you sum their feature values—1, 4, and 8—to get 13.

Entering 13 as the window-features number after the WINDOW

statement specifies those features. If you don't enter any window-

features number and simply include a comma where it would be,

WINDOW assumes you want all the features.

Not all of these features are free. Some will cost you extra

memory, and you should avoid specifying them unless you really

need them. Window refreshing takes a good-sized chunk of RAM to

store the contents of the window. The amount depends on the size

of the window; a large window needs much more RAM for window

SECTION 2: IMAGES

102

Close gadget Tide Title bar Back and front gadgets

Sizing gadget

refreshing than a small window. Also, a window with a sizing

gadget needs the same amount of RAM as a full-screen window,

regardless of its initial size, since it can be resized to a very large

window at any time.

One feature that's not mentioned directly on the features list is

the title bar. If you choose back and front gadgets, window drag

ging, or a close gadget, or if you enter a title, your window will

automatically have a title bar. If you don't choose any of these

options, your window will have no title bar.

THE SCREEN ID NUMBER

The last specification you have to include in the WINDOW

statement is the screen ID number. You use this number to tell the

WINDOW command which screen you want to put your window on.

This is important, because the window will use the resolution and

color palette of the screen it's on. The screen ID number can be -1,

1, 2, 3, or 4, and should correspond to the screen ID number you set

when you created a screen with the SCREEN statement. You can't

specify the screen ID number of a non-existent screen; if you ask

WINDOW to create a window on screen number 2 and there is no

screen number 2, BASIC will notify you of an error.

If you want to create a window on the Workbench screen,

specify screen number -1, the Workbench screen's ID number. If

Figure 4-7.

An Amiga BASIC win

dow with all possible

features.

Amiga BASIC Graphics: Screens. Windows, and Palettes

103

you don't specify a screen number, BASIC assumes you mean

the Workbench screen, and will automatically create your

window there.

WINDOW STATEMENT EXAMPLES

To give you an idea of how windows are created, consider

creating a window titled "Dirty Window" on screen number 1,

which has two bit planes, and is a mode 1 screen with dimensions

of 320 by 200. This window will be window number 2, and will

appear in the middle of the screen. It has all the window features

except window refreshing- The WINDOW statement to create it

will be:

Figure 4-8

The window created by

the "Dirty Window"

program.

WINDOW 2,"Dlrty Window ", (79,49) - (239,149), 15, 1

If you want to try it out, enter and run this short program:

SCREEN 1, 320, 200, 2, 1

WINDOW 2, "Dirty Window ", (79,49) - (239,149), 15, 1

The screen created by this program should look like Figure 4-8.

You can move the window around with the pointer and use the

gadgets. To return to the Workbench screen, choose Show List from

the Windows menu. The List and Output windows will then

reappear.

El Dir ty Window

SECTION 2 IMAGES

104

As mentioned earlier, the only specification that has to be in the

WINDOW statement is the window ID number. The statement

WINDOW 2

will work just fine. It creates window number 2, which has all the

window features, no title, and fills the entire Workbench screen.

If you want to include a specification at the end of the statement

without filling in all the other specifications, you must insert

commas in place of the omitted specifications, or you'll get a

syntax error. To open a window number 2 in screen number 1 with

no other specifications, you'd use the command;

WINDDW 2, , , , 1

THE OUTPUT WINDOW

Even if there is more than one window open, Amiga BASIC will

create graphics and print text in only one window at a time. If that

weren't the case, BASIC wouldn't know which window to use to

display the results of any graphics or printing commands you issue.

The one window that is currently active for text and graphics is

called the output window.

When you create windows with the WINDOW statement, the last

window you create is automatically set to be the output window.

Ail output from graphics commands and text from print statements

that follow will show up in that window.

You can use the WINDOW statement to re-create a window,

bringing it up in front of other windows and making it the output

window. For example, the short program shown below will create

two windows, 2 and 3, and then re-create 2, bringing it out from

behind 3 in the same location and size, making it the output

window. The PRINT statement at the end of the program tests to

see which window becomes the output window.

WINDOW 2, "Window 2 ", (0,0) - (250,100)

WINDDW 3, "Window 3 ", (200,0) - (400,100)

WINDDW 2

PRINT "This is the output window."

Notice that the title bar of the output window is ghosted

(dimmed). Only the title bar of the input window (the window

where you put the pointer and click the Select button) will have an

Amiga BASIC Graphics: Screens, Windows, and Palettes

105

unghosted title bar. The input and output windows don't neces

sarily have anything to do with each other.

Notice also that the third program line recreates Window 2

without changing its original size and location. Whenever you use

a WINDOW statement without specifications for a window that

already exists, BASIC uses the first set of specifications you chose

for that window.

THE WINDOW OUTPUT STATEMENT

If you want to make an existing window the output window

without moving it in front of the oiher windows, you can use the

WINDOW OUTPUT statement, which uses this format;

WINDOW OUTPUT window ID number

You specify the ID number of the existing window you want to

turn into the output window. After BASIC executes the WINDOW

OUTPUT command, the window you specified will now display text

and graphics without moving in front of the other windows. If you

substitute the following two lines for the last line in the previous

program example, window 3 will become the output window while

it remains behind window 2. The PRINT command will print a

message in window 3 so you can see it print out text:

WINDOW OUTPUT 3

PRINT "Hello there, window peeker."

THE WINDOW CLOSE STATEMENT

As you create more windows on a screen, you'll notice that it

takes longer to move and resize the windows with the pointer,

because the Amiga is slowed down by the number of windows it

has to keep track of. It's important to close any windows you aren't

using to free up the RAM they use so that the Amiga can work at

top speed.

You can close a window in two ways: If it has a close gadget,

you can select the close gadget with the pointer and the window

will disappear. If you want to close the window from within a

SECTION 2: IMAGES

106

BASIC program, you can use the WINDOW CLOSE command, which

uses this format:

WINDOW CLD5E window ID number

The window ID number specifies which window you want to

close. For example, this command closes window number 2:

WINDOW CLOSE 2

PALETTES AND COLOR REGISTERS

As you recall, each screen on the monitor has its own palette

with its own array of colors that it uses to color in its background,

borders, menu items, and any graphics and text in any of its

windows. The Amiga uses 32 different locations in RAM, called

color registers, to store those colors. The color registers are num

bered from 0 to 31, and there is a separate set of 32 registers for

each screen.

When you first turn on the Amiga, the color registers are already

filled with default colors that you can use without changing if they

suit your needs. If you'd like to see them, run this program:

SCREEN 1 , 320, 200 ,5,1

WINDOW 2, "Color Registers ", , , 1

PSET(G,190]

FOR i - 0 TO 31

LINE STEP(0,-180) - STEP(9,18O), i, BF

NEXT i

This program draws an array of vertical color bars across the

screen. (Don't worry about the PSET and LINE statements yet—

you'll learn about them in the next chapter.) The color bars show

the contents of the color registers in order from 0 to 31, going from

left to right. (If you count only 31 colors, that's because the bar on

the far left is colored the same as the background color.)

The Amiga follows predetermined rules to use its color registers:

Color register 0 is always the background color, and color 1 is the

foreground color the Amiga uses to print its text, window frames,

and other standard Workbench features. Color registers 2 and 3 are

the colors used for inverse-video menu items on the Workbench.

Color registers 17 to 20 are the colors used for the pointer. (The

pointer is not considered part of the screen, so it can use these

color registers even though the screen can't.) If you use Preferences

Amiga BASIC Graphics. Screens, Windows, and Palettes

107

in the Workbench to change your Workbench and pointer colors,

you change the contents of color registers 0 to 3 and 17 to 20.

You can't always use all 32 color registers in each screen. The

number of color registers you can use in any screen is limited by

the screen's depth in bit planes. The foDowing chart shows which

color registers are used for screens of different depths:

Number of bit planes Color registers used

1 Oand 1

2 0 to 3

3 0to7

4 0tol5

5 0 to 31

THE COLOR STATEMENT

Most Amiga BASIC drawing statements create their figures with

the foreground color stored in color register 1. Text is also printed

in the foreground color. Some drawing statements also use the

background color stored in color register 0 to fill in figures. You can

change both the foreground and the background colors to different

available color registers with the COLOR statement. It uses this

format:

CQLDR foreground color register number, background color

register number

To set the foreground and background colors, you specify the

register number you want to use for each color, separated by a

comma. For example, the following command specifies the color in

register 2 as the foreground color and the color in register 3 as the

background color.

COLOR 2, 3

If you leave out the comma and the second number, COLOR sets

just the foreground color without altering the background color. If

you follow COLOR with a comma and then a number, it sets the

background color without changing the foreground color. If you

SECTION 2: IMAGES

108

don't use the COLOR statement in a program, BASIC assumes that

the color in color register 1 is the foreground color and the color in

register 0 is the background color. Once you set new foreground

and background colors with the COLOR statement, BASIC uses

them for any drawing commands that follow By changing the

background and foreground colors between drawing commands,

you can set new colors for new figures.

Changing the foreground color will have an obvious effect: Any

drawing or text statements that follow the COLOR statement will

use the new foreground color, since BASIC statements that create

graphics draw with the foreground color, as you'D see in the next

chapter. Changing the background color is not always so obvious.

Unless you use a statement that uses the background color when

it executes, you won't see any change to the current background

color. The important thing to remember about changing the

foreground and background colors is that they will affect drawing

statements that follow the COLOR statement—anything created up

to that point will remain on the screen in the color it was created

with (unless you re-create it after the subsequent COLOR

statement).

When you choose foreground and background colors with the

COLOR statement, you're restricted to the colors available in the

color registers that the screen contains. For example, if you're

drawing in a screen with two bit planes, that screen has four color

registers and your choice is limited to just those four colors. If the

default colors in the four color registers aren't to your liking, you'll

want to change them to colors that you like so the choice, although

limited, offers you desirable colors. The PALETTE statement lets

you change the contents of any color register to any one of 4096

different colors.

THE PALETTE STATEMENT

The PALETTE statement uses this format:

PALETTE color register number, red value, green value,

blue va1ue

The color-register number, an integer from 0 to 31, specifies the

color register you want to change. The red, green, and blue values

are fractional numbers from 0 to 1 that specify the relative strengths

of red, green, and blue you want to mix together to create a new

color. To understand how these strengths are set, you must know

how a color register stores a color.

Amiga BASIC Graphics: Screens, Windows, and Palettes

109

Figure 4-9.

The 16 primary-color

strengths and their corre

sponding PALETTE

values.

HOW COLOR REGISTERS STORE COLOR

Each color register stores one color as a combination of the

primary colors—red, green, and blue. When you tell BASIC what

color you want to store in the register you specify, you must tell it

the strength of each primary color that you want to use to make up

the new color. There are 16 levels of strength that can be specified

for each of the primary colors, making a total of 4096 colors to

choose from (16 times 16 times 16 equals 4096).

Instead of specifying whole numbers from 1 to 16 (for example, 5

parts red, 8 parts green, and 16 parts blue), Amiga BASIC requires

you to specify the strength of each color as a fractional number

from 0 to 1. A value of 0 means that the primary color isn't present,

while a value of 1 means the color is present in full strength. The

chart in Figure 4-9 will help you determine the fractional numbers

to use in the PALETTE statement to represent the strength of each

primary color. Using this chart, you can specify a color as shown

above (5 parts red, 8 parts green, and 16 parts blue), and then

translate these numbers into the fractional numbers that BASIC

expects in the PALETTE statement (.28, .47, and 1 in our example).

Primary color strength PALETTE value

1

2

3

A

5

6

7

S

9

10

11

12

13

14

L6

16

0.00

.09

.15

.22

.28

.34

.40

.47

.53

.59

.65

.72

.78

84

.90

1.00

To set a new color, you decide on the strengths of each of the

three primary colors, then enter the number of the color register

you want to change, followed by the corresponding values from the

SECTION 2- IMAGES

110

table above, after the PALETTE statement. For example, the

following statement will change the color in register 0 (the

background color register) to a shade of green by setting red to

strength .34, green to .84, and blue to 0 (no blue present):

PALETTE 0 , .34, .84, 0

CREATING DIFFERENT PALETTES FOR DIFFERENT SCREENS

Recall that each Amiga screen has its own set of color registers.

As you create new screens with the SCREEN statement, Amiga

BASIC simply copies the contents of the color registers in the

original Workbench screen to the color registers of the new screens.

To create an entirely new set of colors for a new screen, just use a

set of PALETTE statements immediately after you use the SCREEN

statement—PALETTE affects only the color registers of the last

screen you create.

As an example, this short program creates the color bars you

created a few pages ago on one screen, then creates an entirely

new color palette for a new (second) screen, then displays the

results of the new palette:

SCREEN 1 , 320, 200 ,5,1

WINDDW'2, "Color Registers " , , 15, 1

PSET(0 ,190)

FDR i - 0 TO 31

LINE 5TEP(0,-180) - STEP(9,180), I, BF

NEXT i

SCREEN 2, 320, 200 ,5,1

WINDOW 3, "Color Registers ", (0,10) - (297,185), 15, 2

FDR l = 0 TD 31

PALETTE i, RND(1), RND(1), RND(1)

NEXT i

PSET(0,190)

FOR l = 0 TO 31

LINE STEP(0,-180) - STEP(9,180], i, BF

NEXT l

The loop just after the WINDOW 3 statement uses the PALETTE

statement to create a random set of colors for the second screen's

color registers. When you run the program, you can see these

random colors. If you drag the randomly colored screen down by its

title bar, you can see your first screen with an entirely different set

of colors just behind it. By putting different screens on the monitor,

Amiga BASIC Graphics: Screens, Windows, and Palettes

111

each with its own unique set of colors, you can display more than

32 colors on the monitor at one time (shown below in Figure 4-10).

Figure 4-10.

Two different screens

with two unique screen

palettes.

You've learned how to create screens so you can set the

resolution you want to use; how to create windows to set

the size of the area in which you put your graphics; and

how to create new color palettes so you set precisely the

colors you want to work with—everything short of actu

ally creating a picture. These are preliminary activities.

Think of them as setting up your canvas and mixing your

paints. In the next chapter, you will learn to apply the paint

to the canvas and create a picture with the Amiga BASIC

drawing commands.

SECTION 2: IMAGES

112

CHAPTER FIVE

AMIGA BASIC

GRAPHICS:

CREATING IMAGES

Creating a new screen, setting an output window,

and deciding on the colors you want in a palette are only

the preliminary steps of creating BASIC graphics on the

Amiga. Once you've set up the area you're going to work in,

you can start being imaginative, filling windows with

figures of your own creation.

In this chapter, you'll learn about Amiga BASIC state

ments that allow you to draw simple shapes, change the

color of a single pixel or an entire window, and create

different patterns for drawing lines and filling in figures.

You'll also learn a new way to address pixels, and find out

how to set background and foreground colors. When you're

finished with this chapter, you should be well on your way

to becoming an Amiga BASIC artist.

THE GRAPHICS CURSOR AND PIXEL ADDRESSING

Each of the Amiga BASIC drawing statements that you'll use

m this chapter draws with an invisible graphics cursor. To tell each

drawing statement where to start and end its work, you must

understand how the graphics cursor works, and how to use pixel

addresses to specify a starting and ending pixel.

THE GRAPHICS CURSOR

When you use Amiga BASIC graphics statements that use pixel

addresses, you move an invisible graphics cursor the size of one

pixel around the window. This graphics cursor changes the color of

the pixels addressed by the drawing statement as it passes over

them. If you use a simple statement that alters just one pixel, the

graphics cursor moves to the pixel, changes its color, then stays in

the same location until you move it again with another graphics

statement. If you use a more complex command that uses two

addresses, like a command that draws a line or a box, the graphics

cursor starts at the first address and ends up at the second one.

There are two methods of positioning the graphics cursor

on a pixel in a window in Amiga BASIC: absolute addressing and

relative addressing.

ABSOLUTE ADDRESSING

Absolute addressing is the same addressing system you use to

specify the opposing corners of a window in a screen (described in

the WINDOW statement section m the previous chapter), except

that it specifies an address within the boundaries of a window

instead of a screen. In absolute addressing, the address you spec

ify is always in reference to the upper left corner of the window.

SECTION 2. IMAGES

114

The pixels are numbered by column and row, starting with (0,0) in

the upper left corner of the window. The addresses are enclosed

in parentheses and use a comma to separate the column number

from the row number. For example, (13,20) specifies an address

14 columns to the right and 21 rows down from the upper left

corner (0,0) of the window.

RELATIVE ADDRESSING

Relative addressing lets you describe a new pixel location as

the distance from a previous pixel address. Each relative address

starts with the keyword STEP, followed by a distance in columns

and a distance in rows, separated by a comma and enclosed in

parentheses. For example, STEP(5,8) specifies a new address five

columns to the right and eight rows down from the last pixel

address you used. If you want to use a relative address to move

to the left or up from the last pixel address, you use negative

numbers. For example, STEP(-7, -9) specifies a new address that

is 7 columns to the left and 9 rows above the old address.

Relative addressing saves you the time you'd take to calculate a

new absolute address. For example, if you use absolute addressing

and you start with a pixel at location (10,5), then want to specify a

pixel 10 columns to the right and 20 rows down, you have to add 10

to the column number and 20 to the row number to get a new

address of (20.25). If you use relative addressing, you can specify the

second address using STEP{10,20) to move 10 columns to the right

and 20 rows down. Figure 5-1 shows how this works.

Figure 5-1.

Using relative addressing

to specify a new puce!

address.

Amiga BASIC Graphics. Creating Images

115

Figure 5-2.

Points plotted using a

FOR... NEXT loop and

relative addressing.

Relative addressing works especially well in FOR... NEXT loops

where the address changes in each cycle of the loop. Instead of

calculating new absolute addresses for each cycle, a simple relative

address will change the address by the incremental value of the

loop for each iteration. For example, the program shown in Figure

5-2 uses the PSET statement (discussed shortly) to plot a point on

the screen 100 pixels over and 50 pixels down using an absolute

address, then uses another PSET statement in a FOR... NEXT loop to

plot 10 more points, each one plotted in relation to the previous

point specified.

Anytime you use a relative address, it uses the last position

of the graphics cursor as its point of reference. That position is

normally set by the last graphics command. Consider an example:

If you use a line-drawing command that ends up at address (55.90).

and then use a new graphics statement that uses the relative

address STEP(KUO), BASIC uses (55.90) as its point of reference to

compute a new address 10 columns to the right and 10 rows down.

The key to controlling the graphics cursor with relative addressing

is knowing its location before you use a relative address. If you

don't, you may get unpredictable results. When you're not sure, it's

a good idea to use absolute addressing.

SECTION 2 IMAGES

116

WINDOW BOUNDARIES

When using pixel addresses in the drawing statements, it's

important to make sure you remain inside the boundaries of the

output window Some statements simply won't work if you specify

an address outside the window, while others will stop the program

and return an error message.

When you first create a window with the WINDOW command,

you set the size of the window's interior with opposite corner

addresses. (See Chapter 4 for details on creating a window.) If you

create a window with opposite corners at (50,20) and (250,120), with

a title bar, no sizing gadget, and no front and back gadgets, you

have a window interior that measures 201 pixels across (the

distance from column 50 to column 250, inclusive) and 101 pixels

from top to bottom (the distance from row 20 to row 120, inclusive).

The window that appears on the screen is actually larger than 201

by 101 because it includes the border and the title, which are

outside the interior area. It also includes an interior border that

measures one pixel across the top and bottom, and two pixels wide

on either side, just inside the window border, as you can see in

Figure 5-3. Since the interior border is the same color as the

background color, you can't really see it there. It's impossible to fill

those pixels m, since this "invisible" interior border is always in

place—you can't turn it off or disable it.

Figure 5-3.

The graphics area inside

a window with opposing

corners at (50,20) and

(250,120).

Amiga BASIC Graphics: Creating Images

117

Figure 5-4.

The graphics area inside

a window with opposing

corners at {50,20} and

(250.120). no title bar, and

a sizing gadget.

If you add a sizing gadget to a window, the window becomes

15 pixels wider to accommodate the sizing gadget. You can't draw

in the 10 columns next to the right border, though, so you gain only

5 columns of usable space in the window's interior. If you create a

window without a title bar, the interior of the window moves up to

occupy the space where the title bar would be, and you gain 10

more rows of pixels at the bottom of the window. Figure 5-4 shows

a window with the same opposing corner addresses as the window

in Figure 5-3, but with a sizing gadget and no title bar. You can see

that it has an interior that measures 206 columns by 111 rows—5

pixels wider and 10 pixels higher than the same window with a

title bar and no sizing gadget.

When you use graphics statements in a window, you know

your addresses will remain within the window if you keep them

within the limits set by the opposing corner addresses and within

the invisible border. Another way to keep them within window

boundaries is to read the size of the window boundaries with the

WINDOW0 function, discussed in the next chapter.

SECTION 2 IMAGES

118

THE CLS STATEMENT

Before you start creating figures in the output window with

BASIC statements, or whenever you want to erase any existing

figures in the output window, you can completely clear it by using

the CLS command. Its format is simple:

CLS

CLS erases everything in the output window and fills it entirely

with the background color. The following program demonstrates its

effect. It uses the COLOR statement to change the background color

four different times, then uses the CLS statement to fill the screen

with each background color.

FDR i = 1 TO 3

COLOR , i

CLS

FOR t = 1 TO 2000: NEXT t

NEXT i

COLOR , 0

CLS

THE PSET STATEMENT

PSET is a very simple statement: It changes the color of a single

pixel in the output window to a color you specify. By combining

many PSET statements, you can create intricate images in a

window. The format is simple:

PSETfpjxei address}, col or -reglster number

The pixel address can be either an absolute or relative address.

The color-register number is optional. If you include it, it must be

separated from the address by a comma. If you don't specify a

color-register number, PSET colors the pixel with the foreground

color. For example, the statement

PSET{149,99)

fills in the pixel at column 150, row 100, using the current foreground

color. If you specify a color-register number, PSET uses the color

Amiga BASIC Graphics: Creating Images

119

in that register to color the pixel instead of using the foreground

color. For example,

PSET(199,149), 3

uses color register 3 to fill in the pixel at column 200, row 150

instead of using the foreground color.

You can't specify a color register not used by the screen you're

working with. For example, if you're using a 2-bit-plane screen,

such as the default Workbench screen, you can only specify regis

ters 0 through 3, since a 2-bit-plane screen allows only four color

registers. Also, specifying a color-register number affects that pixel

only—subsequent pixels set with the PSET statement will use the

default foreground color unless another register is specified.

THE PRESET STATEMENT

The PRESET statement works almost exactly like the PSET com

mand. The difference is that PRESET colors the pixel at the address

with the background color instead of the foreground color if you

don't specify a color register. It uses the same format as PSET:

PRESETfpixeJ address I , co 1 or-rggi5 ter number

The color-register number is optional. For example, the command

PRESET(14,74)

fills in pixel (15.75) with the current background color. PRESET is

very handy for erasing pixels previously created with PSET.

If you follow the pixel address with a comma and a color-register

number, PRESET colors the pixel with the color in the specified

color register (just like a PSET command that specifies a color

register). Like the PSET statement, the number of color registers

available to you depends on the number of bit planes defined for

the screen containing the output window.

USING PSET AND PRESET WITH FORMULAS

TO CREATE FIGURES

If you have the patience of a saint, the mathematical abilities of

an accountant, and the design methods of a carpet maker, you can

individually plot each pixel of an intricate image, using the PSET

SECTION 2: IMAGES

120

statement with a different address and color for each pixel. If you

want to do this, it helps to use graph paper to draw your figure and

work out the pixel addresses and colors.

An easier way to create figures is to let a FOR... NEXT loop

do some of the work for you. As a simple example, the following

program draws a diagonal line on the screen:

FOR i = 1 TD 100

PSET(1,1)

NEXT i

If you have some experience with trigonometry, you can use its

functions to plot some nice shapes in the output window. By using

the value of the counter variable in the FOR.. .NEXT loop as one of

the addresses (either the column or the row number), and a

trigonometric function to set the value for the other half of the

address, you can actually chart values in the output window. As an

example, the following program uses the SIN function to create a

sine wave on the screen, as shown in Figure 5-5.

FOR i = 0 TO GOO

PSET(i, 90 + 80

NEXT i

Loop: GOTO Loop

SIN(6.28318 / 600 ■ L

Figure 5-5.

The PSET command

used with a trig

onometric function

creates this sine wave.

Amiga BASIC Graphics: Creating Images

121

If you analyze the row address in the PSET statement, you can

see that it uses one full cycle of a sine wave (6.28318, which is two

times pi), that it multiplies the results by 80 so the wave goes to the

top and bottom of the window, then adds this value to 90 to center

the wave horizontally in the window. The last line in the program is

merely an "infinite loop" that keeps the program running and the

List window hidden; otherwise, it might appear and cover up the

right half of the wave. To end the program and show the List

window, use the Menu button on the mouse and choose Stop from

the Run menu.

Figuring out mathematical solutions to create figures may not be

your cup of tea, but if you know how to use them, they can create

some fascinating shapes, save you a lot of tedious single-pixel

plotting, and give you a practical application for all that trig you

slogged through in high school.

THE LINE STATEMENT

So far, you've read about Amiga BASIC statements that work

with single pixels. BASIC also provides several statements that let

you draw fully formed objects with just a single statement. One

such statement is LINE. Actually, variations of the LINE statement

let you draw three types of objects: straight lines, hollow boxes, or

boxes filled with the foreground color. The LINE statement uses

this format:

LINE(5 tartingaddress) - (ending address), color-register

number, box opt ions

LINE has to have both a starting and an ending address, separated

by a dash. The addresses can be either absolute or relative (relative

addresses must be preceded by the keyword STEP). The color-

register number and the box options are optional—you can leave

them out. However, if you do include them, they have to be sep

arated by commas.

CREATING LINES

All you need do to create a line is supply the beginning- and

ending-point addresses, like this:

L1NE(7O,54) - (10,5)

SECTION 2: IMAGES

122

As you can see in Figure 5-6, this statement draws a line from the

point at (70,54) to the point at (10,5), using the default foreground

color. To use any other color register for the line, just follow the

statement with a color-register number:

L!NE(70,54 10,5

This statement draws the same line as before, but colors it using

the color in color register 2 instead of the foreground color. You

should note that specifying a color-register number affects only

that line; subsequent lines drawn with no color-register number

specified will use the foreground color. Also, the number of color

registers available depends on the depth (number of bit planes) of

the screen containing the output window

Figure 5-6.

The LINE statement

creates a line.

CREATING BOXES

To create a box with the LINE statement, you specify the upper

left and lower right corners of the box, and add a box option after

the color-register number (if you want to use the current foreground

color, you must include the comma at its position). There are two

box options: B and BF. The B option will make LINE draw a hollow

box instead of a line, using the starting and ending addresses as

Amiga BASIC Graphics: Creating Images

123

opposing corners of the box. The BF option draws a box filled with

the current foreground color. For example,

L1NE(1OQ,25) - STEP(100,50), , B

draws a box with its upper left corner at address (100,25) and its

lower right corner 100 columns to the right and 50 rows down

(recall that STEP indicates a relative address). In this example, the

box is a hollow box, since we used the B option, and it's drawn

with the current foreground color since no color register was

specified. You can see the results in Figure 5-7, together with a

filled box created with this statement:

LINE(IOO.IOO) - STEP(100,50), , BF

Figure 5-7

The LINE statement with

the B option creates a

hollow box, and the BF

option creates a box filled

with the current fore

ground color.

THE CIRCLE STATEMENT

Just as variations of the LINE statement allow you to create

straight lines, angles, and boxes, the CIRCLE statement lets you

create circles, ovals, and arcs. CIRCLE uses this format:

CIRCLE I center address), radius, color-register number,

arc starting point, arc ending point, aspect

SECTION 2: IMAGES

124

You must specify the center address and radius values. The

center address can be absolute or relative. The color-register

number, the arc starting and ending points, and the aspect are all

optional. All the values have to be separated with commas if you

include them.

CREATING CIRCLES

To create a simple circle, you supply CIRCLE with an address for

the center of the circle and a value for the radius. The radius is

measured in pixels from the center of the circle to the edge of the

circle. For example, the statement to create a circle centered at

(150,100) with a radius of 50 pixels is:

CIRCLE(150,100), 50

You can see the result in Figure 5-8.

Figure 5-8.

The CIRCLE statement

creates a circle.

CIRCLE normally creates a circle using the current foreground

color. If you want to use a different color, follow the radius with a

comma and a color-register number. The statement

ClRCLE(150,100), 50, 3

creates the same circle as before, but draws it using the color in

color register 3.

Amiga BASIC Graphics: Creating Images

125

CREATING ARCS

To create an arc, add a starting and ending point on the circle

for each end of the arc. To specify these points, measure the circle

in radians and give CIRCLE the two ends of the arc as radian

measurements. Think of a radian as a unit of measurement that

describes the diameter of a circle. A full circle is 6.28318 radians; a

half circle is 3.14159 radians (mathematically referred to as pi).

Radian measurement for the CIRCLE statement begins at the

three o'clock position of the circle, where the measurement is zero.

You measure from that point counterclockwise around the circle—

twelve o'clock is 1.57079 radians (pi divided by two), nine o'clock is

3-14159 (pi), six o'clock is 4.71238 (pi times 1.5), and a full circle is

6.28318 radians (two times pi).

If the value specified for the starting point is smaller than the

value specified for the ending point, the arc will be drawn counter

clockwise. If the first value is larger than the second, the arc will be

drawn clockwise.

In addition to drawing the arc itself, you can add straight lines

from the starting and/or ending points of the arc to the center of the

circle by making either or both the arc starting- or ending-point

value a negative number. BASIC draws the arc as if the values were

positive, then draws a line from the point(s) specified as negative

numbers to the circle's center. This statement draws an arc with a

straight line from its ending point, as shown in Figure 5-9:

CIRCLE{150,100), 50, , .75, -5.6

Figure 5-9.

The CIRCLE statement

can create arcs and add

lines from the starting

and/or ending points to

the center of the circle.

SECTION 2: IMAGES

126

Many people are more familiar with measuring circles as

degrees of arc rather than radians. To convert degrees into radians,

you can use the following formula:

(3.14159 • {angle of degree)) / 180 = radians

where angle of degree is the value of the degree you wish to

convert. For example, an angle of 45 degrees would return the value

of .785 radians.

You can see a circle measured in radians in Figure 5-10.

1 Radian

1 Radian

3.14159 Radians

1 Radian

Figure 5-10.

A circle measured in

radians.

1 Radian

6.28318 Radians

1 Radian

1 Radian

CREATING OVALS

By changing the aspect of the CIRCLE statement, you can

change the height of the circle it creates and turn it into an oval.

The aspect follows the starting and ending points of an arc in the

CIRCLE statement.

The formula that CIRCLE uses to create a circle assumes that

pixels on the monitor screen are perfectly square. However, the

monitor doesn't create absolutely square pixels, even in resolution

modes 1 and 4—the pixels are slightly taller than they are wide. To

compensate for this difference, Amiga BASIC normally uses a

default aspect value that keeps circles looking perfectly round on

the Amiga monitor.

If you don't specify an aspect, CIRCLE uses a .44 aspect auto

matically, a value that creates perfect circles in the default mode 2

screen. If you want to increase or decrease the pixel aspect ratio,

just specify a new aspect value. If you aren't creating an arc, you

Amiga BASIC Graphics: Creating Images

127

Figure 5-11.

The CIRCLE statement

creates an oval.

don't have to specify starting and ending points, but you do have

to use commas to hold their places. As an example, increase the

aspect value to stretch up the circle you've been working with:

CIRCLE{150 ,100) , 50 , , , , 1

You can see the results in Figure 5-11.

When you increase the aspect value above the default value, the

circle is stretched out vertically; when you decrease the aspect

below the default value, the circle is stretched out horizontally.

Since each screen-resolution mode uses a different size of pixel,

you need to use different aspects to keep the circles perfect for

each mode. In a mode 2 screen, the default value that Amiga BASIC

uses will create round circles automatically—you don't have to

specify an aspect value. Mode 1, mode 3, and mode 4 screens,

however, require you to enter a value in order to get round circles.

The following table gives you the circular aspect for each mode:

Screen mode Aspect value

.88

.44

1.76

SECTION 2: IMAGES

128

If you set the aspect value to create ovals and also include

starting and ending points for an arc, CIRCLE will create arcs that

are curved just like the oval—just as the aspect normally would

create if it were a complete circle.

CREATING MULTI-SIDED FIGURES

AREA and AREAFILL are two Amiga BASIC statements you use

together to create multi-sided figures and fill them with solid colors

or intricate patterns. They work a little like a connect-the-dots

picture—first you set the invisible dots in the output window with

AREA, and then use AREAFILL to connect the dots, and to fill the

area with a color or pattern.

THE AREA STATEMENT

The AREA statement uses this format:

AREA(address)

The address can be either absolute or relative.

AREA is simple to use—just enter one AREA statement for each

point you want to set in the output window. As an example, the

statement

AREA(120,9B)

sets an invisible point at address (120,95).

To create complex shapes, you use a series of AREA statements

to set the points of the sides of the shapes. You can't set more than

20 points in a row without using an AREAFILL statement to

connect them all together. Once you connect those points with

AREAFILL, though, you can continue setting points for the same

shape, or set points for a new shape.

It's often easier to use relative addresses with the AREA com

mand after you set the first point with an absolute address. In the

example below, which sets the points for a diamond shape, the first

address is an absolute address and the next three addresses are

relative addresses:

AREA(1S0,50)

AREA STEP{100,50)

AREA STEP(-100,SO)

AREA STEP(-100,-50|

Amiga BASIC Graphics: Creating Images

129

THE AREAFILL STATEMENT

AREA statements by themselves have no effect on the appear

ance of the output window—they only set the points for the shape

you're drawing. AREAFILL connects the points with lines and fills in

the interior of the shape with either the foreground color by default,

or with a color or pattern you specify. (If you want to create a shape

that isn't filled in, you have to draw each line of the shape individu

ally, using graphics statements other than AREA/AREAFILL.)

AREAFILL uses this format:

AREAFILL mode number

The mode number is an option that specifies how to fill the area;

you can omit it if you just want to use the foreground color.

In order for AREAFILL to work, you have to precede it with at

least two AREA statements. AREAFILL first connects the points you

set with the AREA statements in the order that you set the points.

When it reaches the last point you set, it connects it to the first

point you set, so you don't have to end your series of AREA

statements with the address that you started with (although it

won't hurt if you do).

After the points are connected, AREAFILL fills the interior and

the boundaries of the shape with the foreground color if you haven't

specified a mode number. Since it fills in the boundaries as well as

the interior, the shape is one solid color; it doesn't have an outline

in a different color.

You can specify a mode number if you want to control the color

of the shape. A 0 will color the shape with a pattern you've created

with the PATTERN statement (discussed later) or, if you haven't

defined a pattern, with the foreground color. If you specify a mode

number of 1, AREAFILL changes the colors of all pixels within the

area defined by the AREA statements to their inverse colors. A

color's inverse color is found in the color register at the opposite end

of the palette. For example, the table below shows the inverse

colors of an eight-color (3-bit-plane) screen:

Color register

0

1

2

3

4

5

6

7

Inverse-color register

7

6

5

4

3

2

1

0

SECTION 2: IMAGES

130

If you omit the mode number, AREAFILL assumes a 0 and uses

the current pattern {or the foreground color, if no pattern has

been defined).

To see AREAFILL do its work, add it to the four AREA statements

you used before to set the points of a diamond shape and then run

the program;

AREA(1S0,50)

AREA STEP(100,50)

AREA STEP(-100,50)

AREA STEP(-100,-50)

AREAFILL

You can see the diamond shape appear on the screen, filled with

the foreground color, in Figure 5-12.

Figure 5-12.

The AREA and

AREAFILL statements

create a diamond shape.

If you change the last line of the program to

AREAFILL 1

and run the program again, you'll see the same diamond shape

repeated on the screen, but instead of filling it with the foreground

color, the diamond will appear in the inverse color of the back

ground pixels. Since there are no pixels of any other color within

the AREA boundaries, AREAFILL 1 inverts just the color of the

background pixels.

Amiga BASIC Graphics: Creating Images

131

As you create shapes with AREA commands followed by

AREAFILL, you don't have to keep the boundaries of the shapes

from crossing each other. For example, this short program creates

two filled triangles because the side boundaries cross each other,

as you can see in Figure 5-13:

AREA(GO,50}

AREA ST£P(200,0)

AREA STEP(-200,100)

AREA STEP(200,0)

AREAFILL

Figure 5-13.

You can cross boundary

lines with AREA

statements.

FILLING A SHAPE WITH A PATTERN

If you create a pattern with the PATTERN command (described

later in this chapter), AREAFILL will fill the shape with that pattern,

combining the background and foreground colors, instead of just

filling the shape in with the foreground color. If you set the

AREAFILL mode to 1, the background and foreground colors in the

pattern are displayed using color register 0 for the background color

and the last color register (the inverted color register) for the

foreground, with a one-pixel-wide border the color of the back

ground around the shape.

SECTION 2: IMAGES

132

THE PAINT STATEMENT

As you've seen, the LINE statement gives you the option to fill in

the boxes you create with color. Similarly, you can use AREAFILL to

fill in with a color or a pattern the shapes you create with AREA

statements. Amiga BASIC also allows you to fill in any other

enclosed shapes you've created (with the CIRCLE statement, or

with a series of PSET or LINE statements, for example). Your tool for

doing this is the PAINT statement. Its format is:

PA I NT(address), fill color-register number, border color-

register number

The address can be either absolute or relative. The register

numbers for the paint and border colors are optional: If you include

them, they must be separated by commas. If you omit the fill color-

register number, PAINT assumes that the color you want to fill with

is the foreground color. To fill with a different color, follow the

address with a comma and a color-register number. PAINT will fill

the shape with the color in that register.

An important point to keep in mind when using the PAINT

statement is that it must be used in a refreshing window; that is, a

window created using a window-features number of 16 or higher.

Before you use PAINT, you have to create the outline of a shape.

You can use any of the graphics statements such as CIRCLE, LINE,

or PSET to create the shape, but the outline has to be unbroken,

and it has to be all in one color. If it isn't, PAINT will fill the interior

of the shape and then escape through the break or second outline

color to fill the entire screen.

When you use PAINT, the address specifies the point in the

output window where you want to start filling with color. This

point can be inside or outside the outlined shape. PAINT will fill the

screen around the point with the foreground color until it meets the

outline of the shape or the boundary of the output window. If you

start at a point outside the shape, PAINT changes the color of the

screen ail around the shape, leaving the interior its original color. If

you start at a point inside the shape, PAINT fills in the shape,

leaving the area around the shape its original color.

The foDowing short program creates the circle displayed in

Figure 5-14 (on the next page), and fills it with the current

foreground color:

CIRCLE(140,9D), 100

PAINT(140,90)

Amiga BASIC Graphics: Creating Images

133

Figure 5-14.

The PAINT command Ms

in a circle.

To fill a shape with a color other than the current foreground

color, you just include the register number of the color you want.

This PAINT command fills with the color in register number 2:

PAINT(140,90), 2

If you try this PAINT statement with the last circle you created, it

will paint over the boundaries of the circle and fill the entire output

window. That's because PAINT only recognizes boundaries of the

same color as the color it uses to fill with. If you want to fill a shape

with a color other than its border color, you can follow the fill color-

register number with a comma and the color-register number of the

color you want to use as a border As an example, here's PAINT set

up to fill with the color in register 3, recognizing the color in

register 1 as a boundary:

PflINT(120,100), 3, 1

If you enter and run the following program, you'll see the circle in

Figure 5-15, with an outside boundary of foreground color, filled

inside with color 3:

CIRCLE(120,100), 100

PAiNT(120,100), 3, 1

SECTION 2: IMAGES

134

Figure 5-15.

A circle drawn in the

foreground color, filled

with the color in register

number 3.

If you use the PATTERN statement (described next) to set up a

pattern, PAINT will fill with that pattern instead of a solid color and

will use the foreground color for the pattern. If you specify a fill

color-register number, PAINT will still use the pattern to fill the

shape, but will use the color in that register instead of the fore

ground color for the pattern.

THE PATTERN STATEMENT

When you use Amiga BASIC to draw lines and fill in shapes and

areas, you usually draw and fill with solid lines and colors. If you

want to add some variety and texture to your graphics creations,

you can use the PATTERN statement to create patterns that you can

use to draw lines and fill in areas. Once you've created and set

these patterns, any drawing commands that follow a PATTERN

statement will use the line and area patterns instead of solid lines

and colors.

PATTERN uses this format;

PATTERN line mask, pat tern-mask array name

You can omit either the line mask or the pattern-mask array name

from the PATTERN command, but you can't omit both of them.

Amiga BASIC Graphics: Creating Images

135

CREATING A LINE PATTERN

To create a line pattern, you must first create a 16-bit mask—

that is, a binary (base 2) number that uses 16 ones and zeros. Each

one in the mask stands for the foreground color, each zero stands

for the background color. The binary number 1010101010101010, for

example, is a mask that alternates the foreground and background

colors every pixel. Once you set the line pattern, any lines you draw

with Amiga BASIC will use the pattern in the mask (from left to

right) over and over as many times as necessary—if a line is longer

than 16 pixels, Amiga BASIC repeats the mask until the line is

finished. If the line is shorter than 16 pixels, Amiga BASIC starts at

the beginning (left end) of the mask and uses as much of the

pattern as it can.

If you want to create a dashed-line pattern, try the line mask

1111000011110000, which alternates four pixels of foreground color

with four pixels of background color. If you want a mostly solid line

with small breaks of background, try 1111111111110000. You can exper

iment to find what suits you best when you use the PATTERN

statement to put your line mask into effect.

Converting a binary line mask into a hexadecimal number

The PATTERN statement doesn't accept line masks as a binary

number using ones and zeros, since it can't tell that the number is

a binary (base 2) number. Amiga BASIC would interpret a 16-bit

binary number as a very large number, in the quadrillions. You have

to convert the binary bit mask into either a decimal (base 10)

number or a hexadecimal (base 16) number, which is what the

PATTERN statement expects to find. It's much easier to convert

binary to hexadecimal, which PATTERN will recognize. To convert

the bit mask into its hexadecimal equivalent, just break the bit

mask into groups of four bits, and interpret each group using

this table:

Binary

0000

0001

0010

0011

0100

0101

0110

0111

Hexadecimal

0

1

2

3

4

5

6

7

Binary

1000

1001

1010

1011

1100

1101

1110

mi

Hexadecimal

8

9

A

B

C

D

E

F

SECTION 2: MAGES

136

For example, the mask 1110011111100111 would break into 1110 0111

1110 0111. Using the table, these four groups translate into E, 7, E,

and 7, so the entire hexadecimal number is E7E7. In Amiga BASIC,

hexadecimal numbers are always preceded by &H, so the mask

becomes &HE7E7 in hexadecimal. If the &H isn't specified,

PATTERN assumes you are using a decimal (base 10) number.

Although you can use a decimal number, you will probably find it

easier to work with hexadecimal values.

Applying a line pattern in the PATTERN statement

Once you've designed a line pattern, turned it into a binary mask

and then converted it into a hexadecimal number, you can put it

into effect by applying it in a PATTERN statement. To draw a box

using the line pattern you just created, try this short program:

PATTERN 4HE7E7

L1NE(65,4O) - STEP(150,100), , B

In Figure 5-16, you can see how Amiga BASIC draws the box

using the line pattern you set with the &HE7E7 line mask. If you

continue using the LINE statement, Amiga BASIC will use the same

pattern to draw any other lines and boxes you create. The line pat

tern won't affect any circles or arcs drawn with the CIRCLE state

ment, though.

Figure 5-16.

A box drawn with

dotted lines set by the

PATTERN command.

Amiga BASIC Graphics: Creating Images

137

To set the line pattern back to a solid line, use

PATTERN 4HFFFF

which sets the line mask as a solid line (all ones).

CREATING AN AREA PATTERN

A line pattern is one-dimensional—you can set it by creating

a single, 16-bit binary mask that is a string of ones and zeros. To

create an area pattern, you have to create a two-dimensional mask

using an array of ones and zeros. For an area, PATTERN uses an

array that's always 16 bits wide, and two or a power of two high. In

other words, a bit mask for an area is like a pile of 16-bit line

masks—either 2, 4, 8, 16, or another power of two high. To create

the mask, it's helpful to design it first on a piece of graph paper

marked 16 squares wide, and as high as you want to make the area

(as long as it's a power of two). Mark it in with ones where you

want the foreground color to appear, and zeros where you want the

background color. When you're finished, you should end up with a

column of 16-bit binary numbers. As an example, this 8-line-high

area mask creates a square polka-dot pattern:

0000111100001111

0000111100001111

0000000000000000

0000000000000000

1111000011110000

1111000011110000

0000000000000000

oooooooooooooooo

Putting the area pattern mask into an integer array

To store the area pattern mask for the PATTERN statement, you

have to put it into an integer array To do so, you first have to trans

late each line into a hexadecimal number, just as you did for the

line mask. The polka-dot area mask you just created translates as:

0F0F

OFOF

0000

0000

F0F0

FOFO

0000

0000

SECTION 2: IMAGES

138

After you translate each line of the mask, you count the number

of lines and create an integer array in your program using exactly

the same number of elements as you have lines. For the polka-dot

pattern in our example, you need to specify eight elements (one for

each line), so you dimension the array to 7 with a DIM statement.

(Since each array starts with element number 0, you actually have 8

elements in an array dimensioned to 7.) You then assign the lines of

the mask in top-to-bottom order to the elements of the array. The

program lines below assign the polka-dot mask to the integer array

POLKADOT% (the % signifies an integer array):

DIM POLKADOTX

POLKADOTX(0]

POLKADQTX|1)

POLKADOTXU)

POLKADOTX(3)

POLKADDTX(1)

POLXfiDDTXf5)

P0LKADDT%(6)

PDLKADDT7.(7)

(7}

= 4H0F0F

- &HOFOF

= AHOOOO

= iHOOOO

= iHFOFO

= J.HFOFO

=* 4HOOO0

= 4H0OO0

Applying an area pattern in the PATTERN statement

Once you've created an area pattern, you apply it by putting the

name of your integer array after the line-pattern mask in the

PATTERN command, separating it with a comma. If you don't want

to apply a line-pattern mask, you can leave its place empty, insert a

comma, and then include the integer array name. Any Amiga

BASIC graphics command you use afterward that fills in an area

will use the graphics pattern you set. The following command sets

the area pattern you just designed:

PATTERN, PDLKADDTX

Amiga BASIC Graphics: Creating Images

139

The following short program brings everything together to draw

the box filled with polka-dots shown in Figure 5-17:

DIM PQLKADDTX(7]

POLKADCTX(O)

POLKADOTXf1}

PQLKAD0TX{2)

P0LKADDTX(3)

P0LKADDTX(4)

PDLKADDTX(5)

POLKftDOTXlG)

P0LKAD0TX[7)

- 4HOF0F

= &HQF0F

= 4H000O

= 4H0000

= &HF0F0

= 4HFOF0

= 4HOO00

- 4H0O00

PATTERN, PQLKADDTX

LINE(70,10] - 5TEP(150,1GC , BF

Figure 5-17

A polka-dot box

created with the LINE

and PATTERN

statements.

DIM poIkadoUt?)
PolkadoMB) z SHFBF

polkadotm) : fiHFBF
polkadot^(2) = SH6

PolkadotzO) = SKB
PoII<adotzC4) = SHF8F
polkadotz(5) = 8HF8F

poikadoUC6) = SH0

polkadotz(7) = SH6

PATTERN, poikadotZ
LINE(7flilB) - STEPQ58,i663, , BF

If you type this program yourself, you may notice that BASIC

abbreviates the numbers you type in for each array element. For

example, after you type &H0000 and press RETURN, BASIC converts

the number to &H0, which has the same value.

SECTION 2; IMAGES

140

To turn the area pattern back to a solid foreground color, you

create a simple two-element integer array, assign a solid pattern

mask, then apply it in a PATTERN command:

dim solidxi1)

sol1dx[0) = 4hffff

SQLIDXd) - &HFFFF

PATTERN, SQLIDX

CHANGING PATTERN COLORS

Keep m mind as you use line and area patterns that you're not

locked into any specific colors. The ones and zeros in the mask just

specify which bits will use the foreground and background colors.

You can use the COLOR statement to change the background and

foreground colors to different registers or use the PALETTE state

ment to change the colors in the background and foreground color

registers to create some vivid patterns.

In this chapter, you've learned Amiga BASIC statements

that color pixels, draw lines, and create shapes filled with

colors and patterns. You can use these statements together

to create images on the screen. In the next chapter, you'll

learn how to add text to your images, put the images in

windows that change size, and copy part of your image and

transfer it to another location in a window.

Amiga BASIC Graphics: Creating Images

141

CHAPTER SIX

AMIGA BASIC

GRAPHICS: ODDS

AND ENDS

Amiga BASIC has a number of miscellaneous graphics

statements and functions that don't create screens and

windows and fill them with graphics. Instead, these "odds

and ends" statements and functions allow you to label your

graphics, change their size with the size of a window, or

copy them from one area of the screen to another.

You can use several of these statements and functions to

work creatively with text; you can add text to your pictures

with the PRINT statement, and you can use the LOCATE and

COLOR statements to position your text in just the right

location with the colors you want. To keep track of the

text's location, you can use the CSRLIN and POS(O)

functions.

Other statements and functions help you adapt your

graphics to the changing dimensions of a resizable win

dow. You can use the window() function within the

program to read the window's width and height, and use

this information to change the graphics to fit the window's

new size when the program user changes it with the sizing

gadget. You can also use the WINDOWO function to check

the window's ID number, to see how many colors it will

support, and to examine other pertinent window informa

tion. To check the color of an individual pixel within the

window, you can use the POINT function.

The GET and PUT statements allow you to cut and paste

graphics in a window. With GET and PUT, you can also

present a series of pictures in rapid succession in the

output window.

CHARACTER ADDRESSING

When you print text characters in the output window to

accompany your graphics, it's important to be able to position the

characters accurately. In order to do so, you need to know how to

use character addressing.

You use an entirely different addressing system to specify a text-

character address than you use to specify a pixel address. Instead

of counting columns and rows of pixels, you count lines and

columns of text characters. Instead of moving an invisible graphics

cursor from pixel to pixel, you move an invisible text cursor from

character to character.

SECTION 2: IMAGES

144

Text-character addresses start with a different pair of numbers

than pixel addresses; instead of lines and columns starting at 0,

text lines and columns start at 1. For example, the character in the

upper left corner of the window is in address 1,1, not address (0,0).

Text-address numbering starts in the upper left corner of the

window, and the numbers increase as you move to the right or

move down the screen, just like the numbering system for pixel

addresses. Figure 6-1 shows how the lines and columns of text are

numbered.

COLUMNS

R

O

W

s

1

2

3

4

5

6

7

8

9

10

11

12

1

I

2

......

„.,...

3 4 5 6 7 a

A

z

9

.....

10

.......

....

......

.......

11

I

12

—

— -

—

......

,
......

......

"■"■

Figure 6-1.

Line and column num

bering for text addresses.

Instead of specifying first the column and then the row as a pixel

address does, a text-character address specifies first the line and

then the column. You separate the two numbers with a comma, but

you don't enclose them in parentheses as you do a pixel address.

For example, a character in the fourth line down the screen seven

columns to the right is at address 4.7-

USING DIFFERENT FONT SIZES

The size of the characters in the font you use with Amiga BASIC

determines the number of text lines and columns that fit on the

screen, so of course this affects the numbers you use in a text

address. When you first open Amiga BASIC, it uses the same font

Amiga BASIC Graphics: Odds and Ends

145

size you're working with in the Workbench. The Preferences

program on the Workbench disk allows you to change the font you

use on the Workbench screen.

There are two font-size options available: the default 60-column

font and the 80-column font. The 60-column font uses characters

that measure 10 pixels wide by 9 pixels high, wide enough to

show up clearly on TV sets and composite video monitors. The 80-

column font uses smaller characters to fit more text on the monitor

screen. These characters measure 8 pixels wide by 8 pixels high,

skinnier and shorter than 60-column characters. 80-column charac

ters aren't always legible on TV sets and composite video screens,

but they're very readable on RGB monitors.

The size of the characters in a window also depends on the

resolution of the screen the window belongs to. All characters in

the font have the same size as measured in pixels, but since the

size of the pixels changes with different screen resolutions, the

overall size of the characters changes also. For example, characters

are twice as wide in a screen that uses low-resolution pixels as

they are in a screen that uses high-resolution pixels. Characters are

twice as high in a screen that uses non-interlaced pixels as they

are in a screen that uses interlaced pixels.

The combination of font and resolution determines how many

characters will fit in a full-screen window. The following chart

shows how many rows and columns of text fit in a full-screen

window with a title bar and sizing gadget.

Mode 1 Mode 2 Mode 3 Mode 4

60-column

80-column

font:

font:

20

30

23

38

rows

cols

rows

cols

20

61

23

77

rows

cols

rows

cols

42

30

48

38

rows

cols

rows

cols

42

61

48

77

rows

cols

rows

cols

In Figure 6-2, you can see screens of four different resolutions on

the monitor at once. Each screen displays the same sentence using

the same font. Notice the difference in character size.

SECTION 2 IMAGES

146

Figure 6-2.

The size of text charac

ters depends on the

resolution of the screen

they're printed on.

THE PRINT STATEMENT

Every BASIC programmer is familiar with the PRINT statement—

you use it to print messages on the screen. PRINT uses this format:

PRINT expression list

The expression list can be any combination of strings, constants,

numeric variables, and string variables, separated with either a

comma or a semicolon.

It's important to know where each PRINT statement leaves the

text cursor when it's done printing. If the expression list ends in a

comma, the text cursor stays on the same line but moves to the

next comma stop, somewhat like a tab stop on a typewriter. If the

expression list ends in a semicolon, the text cursor stays on the

same line at the end of the material it just printed. If there is neither

a comma nor a semicolon at the end of the expression list, the text

cursor jumps to the beginning of the next line. You can get more

precise information about text-cursor placement in the description

of the PRINT statement in the Amiga BASIC manual.

Amiga BASIC Graphics: Odds and Ends

147

THE LOCATE STATEMENT

If you mix text with graphics in a window and want to print text

at an exact character address to fit with the graphics, trying to

position the text cursor with numerous PRINT statements using

commas and semicolons can be very tedious and sometimes

impossible. Not only do you have to use a separate PRINT statement

for each line you want to move down the screen, but if you go too

far down the screen, the text might scroll up and ruin the position

of everything else. For precisely positioning text, you're much

better off using the LOCATE statement.

The LOCATE statement specifies a location on the screen

where the next PRINT statement you use will start printing. It uses

this format:

LOCATE ling number, column number

The line and column numbers that specify the text-character

address are optional, but if you don't supply them, the LOCATE

statement won't relocate the text cursor. You can specify both the

line number and the column number, or you can omit one or the

other. If you leave out the line number, you need to put a comma

before the column number. If you include only the line number, you

don't need a comma at all.

The following LOCATE statements show examples of the three

possible types of addresses:

Statement Result

LOCATE 9, 24 Moves the text cursor to line 9,

column 24.

LOCATE 4 Moves the text cursor to line 4

and uses the column number of

the text cursor's current address.

LOCATE . 45 Moves the text cursor to column

45 and uses the row number of

the text cursor's current address.

LOCATE STATEMENT EXAMPLES

When you use the LOCATE statement with the PRINT statement,

you can position text accurately on the screen. In this short

program, a FOR.. .NEXT loop changes the address in the LOCATE

SECTION 2: IMAGES

148

statement in a series from 1,1 to 19,19 to print a diagonal line of

words across the screen:

for i - i to 19

LOCATE i, i

PRINT "Diagonal"

NEXT i

You can see the results in Figure 6-3.

[Diagonal

Diagonal

Diagonal

Diagonal

Diagonal

Diagonal

Diagonal ;

Diagonal
Diagonal

Diagonal

FOX i = 1 TO if

LOCATE I* I

PRINT "Mag

NEXT i

Figure 6-3.

LOCATE in a

FOR ... NEXT loop

creates a diagonal

line of words.

Another good use of LOCATE is to keep the text cursor m the

same location so that the PRINT statement following it prints new

text that covers the old text. The following program counts from 1

to 100, printing the numbers in the same spot on the screen:

LOCATE 11,5

PRINT "The count is now:";

FDR i = 1 TO 100

LOCATE 11 , 22

PRINT i

NEXT i

Amiga BASIC Graphics: Odds and Ends

149

LOCATING THE TEXT CURSOR WITH

THE CSRLIN AND POS(O) FUNCTIONS

Many times you'll want to align some new text with text already

on the screen. You can use the LOCATE statement, but it may be

difficult to find the exact location you need. For example, to figure

the address for the second LOCATE statement in the last program,

you have to add up the characters in the string The count is now:

and add the total to the location of the first LOCATE statement

along with an extra count to add a space after now:. You can use

two functions, CSRLIN and POS(O), to locate and record the address

of the text cursor at any time for use in a later LOCATE statement.

CSRLIN returns the Sine number of the text cursor's position.

You can assign the value it returns to a variable for storage. For

example,

x - CSRLIN

stores the line number of the text cursor's current position in the

variable x.

POS{0) returns the column number of the text cursors position.

Like the CSRLIN function, you can assign the value POS(O) returns to

a variable for storage. For example,

y - PDS(O)

stores the column number of the text cursor's current position

in the variable y.

By using both functions at once, you can record the current ad

dress of the text cursor at any time using two variables. For exam

ple, the following program is a revised version of the last counting

program. Its results are the same, but the second LOCATE state

ment doesn't use a specific address—it uses the text-cursor loca

tion taken at the end of the PRINT statement, stored in x and y, to

set a new address one column past the end of The count is now:.

locate 11, s

PRINT "The count 15 now:";

X - CSRLIN

y = PDS(O)

FDR 1 = 1 TD 100

LOCATE x, y

PRINT 1

NEXT 1

Notice the semicolon at the end of the first PRINT statements

keeps the text cursor at the end of the string it just printed, so

SECTION2: IMAGES

150

CSRLIN and POS(O) can read its address. Notice also that the second

LOCATE statement put the text cursor directly after the end of the

The count is now:, but the number is printed with a space before

it. That's because the PRINT statement always inserts a space

before a positive number. To position text effectively, it's important

that you know where the PRINT statement leaves the text cursor.

USING THE COLOR STATEMENT WITH PRINT

In the last chapter, you used the COLOR statement to set the

foreground and background colors for the drawing statements. You

can also use COLOR to set the foreground and background colors

for text. When PRINT puts characters on the screen, it uses the

foreground color to create the characters and the background color

to create the background for the characters.

If you try the following statements, you'll see text printed with

color 3 on a background strip of color 2:

COLOR 3, 2

PRINT "New colors!"

If you want to get back to the default text colors, use:

COLOR 1, 0

If you're putting text on top of graphics figures, you can set the

background color of the text to match the figure's colors and blend

the characters into the figure, or you can set the background color

to a different color to make the text stand out as a strip against the

figure. The following program draws three shapes in different colors

in the output window and then uses LOCATE to print labels on

each shape. The background and foreground colors of the text

are changed for each label—in two of the shapes, the text's back

ground matches the shape's color. In the third shape, the text's

background is set to a different color to make the text stand out.

The LOCATE statements in the program use addresses set for the

60-column text font. If you run it using the 80-column font, the

labels won't show up in the right places.

SCREEN 1, G40, 200, 3, 2

WINDOW 2, "Shapes ", , 15, 1

MakeCircle:

CIRCLE(1G0,50) , 100 , 5

PAINT(160,501. 5, 5

(continued)

Amiga BASIC Graphics: Odds and Ends

151

MakeTrlangle:

COLOR 6

AREA(480,5)

AREA STEP[120,90)

AREA 5TEP(-210,0)

AREAFILL

Mak eRec tang le:

LINE(20,110) - (500,180), 1, BF

AddLabels:

LOCATE 6, 11

COLOR 2, 5

PRINT "Circle"

LOCATE 8, 45

COLOR 2, 6

PRINT "Triangle"

LOCATE 17, 26

COLOR 2, 0

PRINT "Rectangle"

You can see the results in Figure 6-4.

Figure 6-4.

Text using different back

ground and foreground

colors is added to shapes

in the window.

SECTION 2: IMAGES

152

AN INTRODUCTION TO INTERACTIVE GRAPHICS

The graphics you have created in examples up to this point all

depend on a stable environment: The window stays the same size,

the number of bit planes remains the same, and the screen resolu

tion is set at one resolution. You can't always depend on stable

conditions for graphics, though. Intuition, the Amiga's user inter

face, allows the user to move windows around the screen, change

window size, and change the graphics environment in many ways.

When the environment changes, your program should be able to

create interactive graphics—graphics that change in response to

their environment.

Two Amiga BASIC functions—WINDOW{) and POINT—give you

the ability to read graphics conditions. You can use the results of

these functions to create a program with graphics that change to

fit the changing conditions; for example, the size of the figures

might change to fit the size of the window, or the program might

determine which of several windows has been selected with the

pointer, and start creating graphics in that window You can also

use the results to create a subroutine that will work with many

different resolutions and window sizes. Then you can store that

subroutine and use it in different programs to perform the same

task, confident that it will work with different resolutions and

window sizes.

You can also use these functions to simplify pixel-address cal

culations; by reading the current size of the window, you know

instantly where the borders are, so you won't specify a pixel ad

dress outside the border. Reading the current window size can

also save you time trying to figure out just how many pixels a

sizing gadget and title bar add or subtract from the window's

interior area.

THE WINDOWO FUNCTION

Don't confuse the WINDOWO function with the WINDOW state

ment. The WINDOW statement creates a window on a screen. The

WINDOW() function reads nine different window conditions and

returns them to the program. The function also has an entirely

different format:

WINDDN(condjfjor) number)

Amiga BASIC Graphics: Odds and Ends

153

The condition number can be any integer from 0 to 8, and

determines which condition WINDOW{) will read. The WINDOW()

function does no work m a program line by itself; it returns a value

that should be assigned to a variable or used in a statement.

The following list gives the nine condition numbers followed by

the condition that they read:

Condition Value

number returned

0 The window ID number of the window that's been

selected with the pointer. The selected window is the

window whose title bar is highlighted; all the other

windows have ghosted title bars.

1 The window ID number of the current output window

where PRINT and graphics statements do their work.

2 The width in pixels of the interior of the current output

window.

3 The height in pixels of the interior of the current output

window.

4 The column number of the pixel address in the output

window of the bottom left corner of the text cursor. You

can use this value along with the value for condition

number 5 to exactly locate text in the window.

5 The row number of the pixel address in the output

window of the bottom left corner of the text cursor.

6 The highest color-register number available in the

output window You can use this value to tell how many

colors are available in the window.

7 The pointer to the current Intuition window. This

pointer is a memory address used by advanced

programmers in assembly-language subroutines.

8 The pointer to the current Intuition Rastport. This

pointer is a memory address used by advanced

programmers in assembly-language subroutines.

WINDOW*) FUNCTION EXAMPLES

Since WINDOW{) is a function and doesn't do much by itself,

the best way to get a feel for its use is to try it in programs. The

following program creates three different windows, numbered 2, 3,

and 4, on the screen and sets window number 4 as the output win

dow, since it was the last window created- It then prints out the

number of the current output window and the currently selected

SECTION 2: IMAGES

154

window, using WINDOW(l) and WINDOW(O) to read those values. If

you move the pointer around the screen while the program is

running and select different windows, you'll see the number of the

selected window change.

(280 ,80] , 15

- (600 ,80) , 15

- (280,180), 15

WINDOW 2, "Window 2 ", (0,0)

WINDOW 3, "Window 3 ", (320,0

WINDOW 4, "Window 4 ", (0,100.

PRINT "Output window 15";

x1 = PDS(O): y1 = CSRLIN

PRINT

PRINT "Selected window 15";

x2 - POS(O) : y2 = CSRLIN

Loop :

LOCATE yi, x1

PRINT WINDOW)1)

LOCATE y2, x2

PRINT WINDOW(O)

GOTO Loop

You can see how this program looks in Figure 6-5.

Figure 6-5.

The WINDOW(O) and

WINDOW(l) functions

show the output and se

lected windows

The next program uses WINDOW(2) and WINDOW{3) to return the

size of the output window and WINDOW(6) to return the number of

colors the window supports. The first 12 lines of the program create

a screen and an output window, then create an area pattern to

Amiga BASIC Graphics: Odds and Ends

155

make the graphics that will follow interesting. The 13th line ties the

timer to the RND function to make it truly random. The fast 11 lines

are a continuous loop that fills the output window with 18-sided

AREAFILL figures.

In the first two lines of the loop, two WINDOW{6) functions return

the number of colors available, which are modified by the RND and

INT functions to return two random integers from 0 to the highest

color-register number available. The COLOR statement uses these

two integers to set random foreground and background colors.

The FOR... NEXT loop that follows sets 18 random points using

the AREA statement. The address of the random points is set using

the WIND0W{2) and WINDOW(3) functions so that the address will

never fall outside the window boundaries. The AREAFILL statement

that follows the FOR ... NEXT loop connects the points and fills in

the figure, and the GOTO statement after that starts the loop over

again to create another random 18-sided figure. In Figure 6-6, you

see an example of the random graphics this program generates.

When you run this program, try changing the size of the win

dow with the sizing gadget. When the window changes size, the

random figures created in it will adapt their size to reflect the new

size of the window.

SCREEN 1, 640,

WINDOW 2, "Sizi

200, 4, 2

ng Graphics ", , 15, 1

DIM area.patX(7)

area . patX(0) =

area.patX(1) =

area . patX(2) =

area.patX(3) =

area . patX(4) =

area . patX(5) n

area . patX(6) ■

area . patX(7) =

PATTERN , area.

RANDOMIZE TIMER

Loop :

forecolor =

backcolor =

COLOR forec

$H3F3F

SH9F9F

SHCFCF

SHE7E7

SHF3F3

SHF9F9

SHFCFC

SH7E7E

patX

INT((W1NDOU(6) + 1) • RND(1

INT((WINDDW(G) + 1> . RND(1

olor, backcolor

FOR l = 1 TO 18

x = INT(WIHDDW{2) - 1) ■ RND(1|

y - INT(WIND0W(3} - 1) • RND(1)

AREA(x,

NEXT i

AREAFILL

GOTO Loop

y)

SECTION 2: IMAGES

156

Figure 6-6.

The WINDOWO function

sees the size and colors of

these shapes to fit within

the window they're

drawn in.

This last WINDOWO function example is a subroutine that takes

any text string, along with the text row and column position where

you want it to be printed, and prints the text in a box. WIND0W{4)

and WIND0W(5) return the pixel addresses of the beginning and

ending locations of the text cursor. The LINE statement then draws

a box around the text using these addresses, plus or minus a few

pixels up, down, right, and left to adjust for extenders (like the tail

on the p) and to provide clearance over the top of the characters.

The first four lines of the program create the string, set the address

of the text cursor, and then call the subroutine, Boxlt You can see

the results of the program in Figure 6-7 (on the next page).

text$ - "Box it up!"

row = 4: column = 8

GOSUB Boxlt

END

Boxlt:

LOCATE row, column

x1 = WINDOW^) : y1 - WINDOWfS

PRINT text*;

x2 = NINDQW{4)

LINE(x1 - 2,y1

RETURN

y2 - UINDDU(S)

7) - (x2 + 1,y2 + 2 3, B

Amiga BASIC Graphics: Odds and Ends

157

Figure 6-7

WIND0W{4) and

WIND0W(5) locate the

start and end of a text

string to allow you to

draw a box around it

texts = "Box it uj*

row - 4: colunn = 3

GOSUB Boxlt
ENS

Boxlt:

sJL- HIHS0HC5): yl :

PRINT texts;

x2 = HIND0HC4): y2 = HIHHttf

LINE Cxi - 2,yi - 7) - Cx2 *

RETURN

THE POINT FUNCTION

The POINT function looks at any pixel in the output window and

returns the number of the color register used to color that pixel. Its

format is simple:

POINT(pixel address)

The pixel address can't be a relative address, it can only be an

absolute address.

The following short program creates three different colored areas

on the output window. In a FOR -.. NEXT loop, it then locates the

text cursor inside each of the areas and uses the POINT function to

read the color and set the foreground and background color of the

text so it will show up in the area when it's printed:

LINE(O.O) - (620,60), BF

LINE(0,B1) - (620,120), 2, BF

LINE(0 ,121) - (620,180) , 3, BF

FDR i = 0 TO 2

LDCATE(7 » i) + 3, 5

background = POINT(WINDOWf1) , NIND0N(5)

COLOR background - 1, background

PRINT "Popocatepetl"

NEXT i

SECTION 2: IMAGES

158

COPYING AND PASTING GRAPHICS

There are times when you will want to copy graphics from one

section of the output window to another section of the output

window without redrawing them. Amiga BASIC has two state

ments—GET and PUT—that allow you to copy a square section of

any window and move it to another window or to another location

in the same window.

THE GET STATEMENT

You use the GET statement to specify the square section of

the output window, called a graphics block, that you want to copy.

You also use GET to specify the name of the variable array you

want to use to store the block in. The format for GET is:

GET opposing corner addresses, array name(index number)

Like the box options of the LINE statement, GET needs two

opposing corner pixel addresses to define a graphics block. They

can only be absolute addresses, not relative addresses. They're

enclosed in parentheses and separated by a dash; for example,

(30,0} - (60.40) defines a block 31 pixels wide and 41 pixels high.

The array name is the name of a variable array that you use to

store the contents of the graphics block. It's followed by an optional

index number in parentheses; the index number is explained

later in this chapter.

Creating a variable array for graphics-block storage

Before you use a GET statement, you have to create a variable

array to store the graphics data from the graphics block. You create

the array by setting its size with a DIM statement. You can use any

kind of variable for the array except a string variable, but the best

array to use is a short integer array, specified by adding a % sign at

the end of the variable name.

The size of the graphics block determines the size of the array—

the larger the graphics block, the larger the array has to be to store

the block. A graphics block is measured in three dimensions:

width, height, and depth. The width and height are measured in

pixels. The depth is determined by the depth of the screen the

graphics block is on, and is measured in bit planes. As an example,

consider a graphics block stretching from pixel (25,3) to pixel

(240,76) on a screen three bit planes deep. The dimensions of the

graphics block are 216 pixels wide (column 25 to column 240.

inclusive) by 74pixels high (row 3 to row 76, inclusive) by 3 bit

planes deep (the depth of the screen),

Amiga BASIC Graphics Odds and Ends

159

A short review of arrays might help you understand how GET

uses an array to store the graphics block. When you first create an

array wth a DIM statement, you set the number of elements in

the array For example,

DIM graphiC5X(34)

creates an array named graphics% with 35 elements numbered 0 to

34. Each array element is a variable that can store data, and is

specified by the index number in the parentheses. For example,

graphics%(0) is the first element in the array, graphics%(l) is the

second element, graphics%(2) the third element, and so on.

How the array stores graphics data

The short integer array you use to store a graphics block uses

two bytes of RAM to store the contents of each element of the array

Each element can store a number as low as -32768 or as high as

32767, or it can store 16 bits of graphics data from the GET

statement. When GET uses the array to store a graphics block, it

uses the first three elements (0, 1, and 2) to store the dimensions of

the graphics block. The first element of the array stores the width

of the block, the second element stores the height of the block, and

the third element stores the depth of the block.

The rest of the array stores the graphics data of the graphics

block. It stores them by bit planes, starting with the first row of bits

in the first bit plane and working down to the last row of bits in the

first bit plane, and then does the same thing for each of the bit

planes that follow Figure 6-8 shows you how the bit planes are

stored in the array elements.

Notice that GET doesn't break up an element at the end of a bit-

plane row. If there aren't enough bits to fill up the last element of the

row, it just fills it partially and fills the rest of the element with

zeros. For example, it takes three elements to store a bit row of a

graphics block that's 35 pixels wide. The first two array elements

store 32 of the bits in the row, and the third element stores 3 bits—

its other 13 bits are tacked on the end as zeros.

SECTION 2: IMAGES

160

Graphics block

fag aa a q □ b □ ■ cjn;
f'gg a g a g a a a □ no;

qdamaam□■□■□a■■■■ddooo■■■=■□■■□■■■■
minnrn

LiCiL;Pw2~czi

Hani:

Row 2:

Elen

Elec

■ DID!

Elan

•nl 3

enl 6

■DICI

MOD 8

Bit plane

da

Ele

BDBBBDBDBB

El*

1

BM

B

nt 4

nt 7

OBBfl

nt 10

BGGB

Dan

Elen

GG |

Elen

■nt B

ant 8

ent 11

Row ia.

Bit pl.no 3

Row 3:

Haw 4:

etc.

Calculating the size of the array

To figure the size of the array you need to store a graphics block,

first figure out how many array elements you need to store one bit-

plane row of the block. To get that figure, just divide the width of

the block in pixels by 16, which gives you the number of pixels

each element of a short integer array will hold. If you have any

leftover pixels, add one element to the results. For example, if you

have a block that's 35 pixels wide, the array needs 3 elements: 35

divided by 16 yields 2 with a remainder of 3. The remaining three

pixels need an entire array element for storage, so the total number

of elements needed for one line is 3.

Next, multiply the number of elements for one bit-plane row

by the height and depth of the graphics block. This gives you the

number of elements you need to store the graphics data for the

entire block. Add three more elements to store the three dimen

sions of the block, and you have the total size of the array you need

to store the block.

Figure 6-8.

How an array stores the

graphics data of a graph

ics block.

Amiga BASIC Graphics: Odds and Ends

161

Try an example: If you're going to store a graphics block that

stretches from (36,5) to (105,72) in a 16-color (4-bit-plane) screen, you

have a block that's 70 pixels wide by 68 pixels high by 4 bit planes

deep. It takes 5 array elements to store one line (70 divided by 16

yields 4 with a remainder of 6, so it takes 5 elements). Multiply that

by the height (68) and the depth (4), and you get 1360. Add 3 to

store the dimensions of the block, and you get a total of 1363

dimensions. You use the statement

Dim blockX(1362)

to create an integer array named bhck% with exactly 1363 ele

ments. (Each array always starts with element number 0, so if you

dimension it up to element 1362, as you did in the statement before,

you actually get 1363 elements in the array)

Storing the graphics block in the array

Once you create the array, you can follow it with a GET state

ment to copy the graphics block into the array. Just follow the

opposing corner addresses with a comma and then the name of

the array:

GET(3G,5) - (105,72), block*

Copying several equal-sized graphics blocks in one array

If you want to copy several graphics blocks of the same size, you

can avoid the work of creating an array for each block by storing all

the blocks in one array. When you dimension the array, first figure

out the size you need for one block using the method described

before. Then dimension your array as a two-dimensional array,

using the size of one block as the first dimension and the number

of blocks you want to store as the second dimension.

For example, to copy five different blocks, each the size of the

block used m the last example, each block needs 1363 elements for

storage. You would create an integer array that measures 1363

elements by 5 blocks with this statement:

DIM blockX(1362,4)

Remember that since each index number starts at 0, block%

actually measures 1363 elements by 5 blocks even though the DIM

numbers are one smaller.

SECTION 2: IMAGES

162

When you save the five graphics blocks with five GET state

ments, the two index numbers change for each block. The first

block is stored starting at block%(0,0) and ending at block%(1362,0).

The second block starts at block%(0,l) and ends at block%(1362,1).

And so it goes until the fifth block is stored starting at block%(0,4)

and ending at block%(1362,4).

To point to the beginning of the data for each graphics block,

you just set the first index number of the array to 0, then set the

second index number to the number of the block (0 to 4). This

makes it very easy to use different GET statements to store different

blocks with the same variable. For example, these five GET state

ments store five different graphics blocks in five different parts of

the block% array:

GET(36,5) - (105,72), blockX(O.O)

GET(46,75) - (115,142), blockX(0,1)

GET(136,S) - (205,72), block*<0,2)

GET(23G,S) - (305,721, block2(0,3)

GET(36,10S) - (105,172), blockX(0,4)

Copying several unequal-sized graphics blocks in the same array

If you want to store several graphics blocks of unequal size in

the same array you use a one-dimensional array just as you would

to save a single graphics block. To dimension the array, you must

first figure out the number of elements each block needs for

storage, using the same method you use for a single block. Then

add all the values together to come up with the total number of

elements you need to store all the blocks together. When you store

the blocks, you store them in the array one after the other.

As an example, consider using GET to store three different

blocks, all on a 3-bit-plane screen. The first block stretches from

(0,0) to (158,40), the second from (26,75) to (310,146), and the third

from (50.150) to (74,174). When you figure the number of array ele

ments needed to store each block, you come up with 1233 elements

for the first block, 3891 elements for the second block, and 153

elements for the third block. Adding all the elements together, you

find you need an array with 5277 elements, so you use

DIM blockX(5276)

to create one.

When you copy the three graphics blocks to the array, you use

elements 0 to 1232 for the first block, which requires 1233 elements.

You use elements 1233 to 5123 for the second block, which requires

Amiga BASIC Graphics: Odds and Ends

163

3891 elements, and you use elements 5124 to 5276 for the third block,

which requires 153 elements. Note the starting-element index

number for each block so you can use it with three different GET

statements when you copy the three blocks. For example, these

statements save the three example blocks, starting at index number

0 for the first block, index number 1233 for the second block, and

index number 5124 for the third block:

GET(0,0) - (1S8.40), block:t(0)

GET(2G,75) - (310,146), blockX(1233)

GET(5Q,150) - (74,174), b1ockX(5124)

You can store as many different blocks in one array as you wish,

as long as you dimension the array large enough and you don't run

out of memory.

THE PUT STATEMENT

The PUT statement takes the image stored in an array by GET

and puts it in the output window at the location you specify. It uses

this format:

PUT address, array name(index number), mergechoice

The address can be an absolute or a relative pixel address. The

array name is the same one you used to store the graphics blocks

with the GET statement. The index number is optional, you use it

only if you saved more than one graphics block in the array. The

merge choice is also optional; it's one of five words that specify

how the graphics block merges with graphics that it may cover in

the window.

Setting the PUT address

The address you include in the PUT statement specifies where

the upper left corner of the graphics block will appear in the output

window. You can use any address in the window. If you specify an

address that runs some of the graphics block out of the window,

PUT trims off any part that goes beyond the window's boundaries.

The array name and index

When you specify an array name for PUT, use the same array

name you used to save the graphics block using GET. If you didn't

use an index number with GET, you won't need one in PUT. For

example, if you saved a graphics block in the array swath%, then

the statement

PUTf0,0),

SECTION 2: IMAGES

164

will put the graphics block stored in swath% in the window with

the upper left corner of the block located at pixel (0,0).

If you saved several blocks in one array and used different index

numbers to mark the beginning of each block, then use the same

array name and index number for each block that you used in the

GET statement. For example, to display the five equal-sized blocks

you saved earlier in the array named block%, use these five

PUT statements:

PUT(0,0), b)ock%(0,0)

PUT(80 ,0) , blockX(0,1}

PUT(160,0), blockXfO,2)

PUT(240,0), blockX(0,3)

PUT(0,100), blockX(0,4)

You can copy the same block to different locations in the win

dow as many times as you want. Just use the same array name

and index with different addresses. For instance, these four state

ments copy the graphics block stored in swath% to four different

locations in the output window:

PUT(0,0),

PUT(50,50), awathX

PUT(110,100), swathX

PUT(204,0}, swathX

The merge choice

There are five merge choices you can add to the PUT statement

to affect the way the graphics block merges with the graphics

underneath the block in the output window. They are:

• PSET

Puts the graphics block in the window, covering up any

graphics that lie beneath it.

• PRESET

Turns every color m the graphics block to its inverse color, and

then puts the graphics block in the window, covering up any

graphics that lie beneath it.

• AND

Performs the Boolean AND operation between each pixel in the

graphics block and the pixel in the output window that it

covers up and displays the result. It's easiest to understand if

you concentrate on the results, rather than the process.

Wherever there is background color (color-register 0) in the

output window, AND won't lay down any of the contents of the

Amiga BASIC Graphics: Odds and Ends

165

graphics block- Wherever there is the last possible color of the

window (the highest possible color-register number), AND puts

down the colors of the graphics-block just as they are. Any

other colors in the output window combine with the graphics

block colors to create new colors predictable only by using

Boolean AND algebra.

• OR

Performs the Boolean operation OR between each pixel of the

graphics block and the pixel in the output window that it

covers. OR lays down the graphics block in its original colors

wherever there is background color, and doesn't lay down

anything where the last possible color of the window (the

highest color-register number) is. Any other colors in the

graphics block combine with colors in the output window to

create new colors predictable only by using Boolean OR

algebra.

• XOR

Performs the Boolean operation XOR between each pixel of the

graphics block and the pixel in the output window that it

covers. XOR lays down the graphics block in its original colors

wherever a background-color pixel in the output window is

covered with a graphics-block pixel Wherever a background

color m the graphics block covers an output window pixel,

XOR lays down the output window pixel color. Wherever two

non-background colors are merged, a new color that is neither

of the two merging colors results.

If you don't specify a merge choice, PUT automatically assumes

that the merge choice is XOR.

XOR has a very useful property. If you PUT the same graphics

block in the same location twice using XOR, the first time you do

it the block appears in the colors determined by the XOR merge

choice- When you use XOR the second time, the block put there

by the first XOR statement will disappear completely, and the

graphics underneath it will appear exactly as they were before

the PUT statements, effectively erasing the first block,

Applications for PSET and PRESET are obvious: You can use

them to insert graphics blocks and inverse graphics blocks

wherever you want them. Applications for AND and OR are not

quite as obvious, but you can use them with a background mask,

which you use like a painter uses a stencil. The cutouts in a paper

SECTION 2: IMAGES

166

stencil define shapes, such as block letters, that you can paint in—

but you can't paint in the surrounding area because the stencil

paper covers it up; a background mask similarly defines a shape in

a window that the PUT statement using AND and OR must use

when it lays down a graphics block.

You can create a mask by creating a shape in the output win

dow using the highest possible color register and then surrounding

it by background color. When you lay a graphics block over the

mask using the AND merge option, the mask will be filled with the

colors in the graphics block, and the surrounding area won't be

affected by the graphics block. A mask works much the same way

with OR, but instead of filling the mask with the graphics block, OR

leaves it alone and fills the surrounding area with the block instead.

You can see an example of masking m the program that follows

later in this chapter.

You can see the results of ail five merge choices in Figure 6-91ater

in this chapter.

A PROGRAM EXAMPLE USING GET AND PUT

In the following program, you can see five different graphics

blocks saved in a two-dimensional array, then laid back down in

different locations in the same window using the five merge

options. The first eleven lines of the program create a window in a

screen that's four bit planes deep, then use two FOR... NEXT loops

to fill in the upper part of the window with words and background

in all the colors possible in the window. The next eight lines print

text and draw circles in the bottom half of the screen using the

highest color register (number 15, a light gray) against the

background color.

The DIM statement in the next line creates a two-dimensional

short integer array that measures 803 by 5 elements. This is to

store five blocks that each need 803 elements of array storage. The

FOR ... NEXT loop that follows cycles five times, and each time

uses the GET statement to store a block in the top section of the

screen. The following LINE statement outlines the area that the

GET statement saved so you can see where it copied graphics. A

FOR ... NEXT loop in the next line freezes the display for a short

time so you can see how it looks before the graphics blocks are

PUT back in the window.

The last five lines of the program are five different PUT state

ments that lay the five blocks down in a row on the bottom of the

screen. Each PUT statement uses a different merge choice.

Amiga BASIC Graphics: Odds and Ends

167

SCREEN 1 , 320, 200 ,4,1

WINDOW 2, , , 0, 1

WIDTH ■}:■

FDR l = 1 TD 3

FOR j = 0 TO 15

k = j + 1

IF k > 15 THEN k = 0

COLOR j , It

PRINT "Trinidad11;

NEXT j

NEXT i

LOCATE 16, 1

PRINT "and the big Mississippi and the";

PRINT "town Honolulu and the lake";

PRINT "Tlticaca."

FOR i = 35 TO 287 STEP 63

CIRCLE!i,170), 10

PAINTti ,170)

NEXT l

DIM blocfcS(802,4)

FOR i = 0 TO 4

GET(60 ■ i,0) - {(60 • i) + 59,49), blockX(O.i)

LINE(60 • 1,0) - ((60 • i) * 59,19) , 1 , B

NEXT l

FOR t = 1 TO 5000: NEXT t

PUT(5,130), blockX(O.O), PSET

PUT(68,130), blockX(Q ,0) , PRESET

PUT(131 , 130) , blockX(0 ,0) , AND

PUT(194,130) , block2(0 ,0) , OR

PUT(257,130), blockX{0,0>, XDR

You can see the results in Figure 6-9.

Notice how the different merge choices affect the five blocks laid

down across the bottom of the screen. The first block, using PSET,

is copied directly to the window, covering everything underneath

it. The second block, using PRESET, is converted to inverse colors

and laid down in the window covering everything beneath it- In

the third block, the letters and the circle act as a mask, since they

are colored with register number 15, the highest color register; the

colors m the block are copied within the characters and the circle,

but not outside them in the background color. In the fourth block,

the opposite happens. The block colors are copied in the back

ground color all around the characters and the circle, but the char

acters and circle themselves are unchanged and show through the

block. In the last block, the characters are changed to completely

new colors by XOR, depending on which color in the block

covers the character.

SECTION 2: IMAGES

168

aaUSOSEEtEJ *£

Figure 6-9.

GET and PUT

statements copy blocks

from one section of the

window to another sec

tion using the five merge

choices.

You've now tried some of the more exotic Amiga BASIC

graphics commands, and have added text to your graphics

using different fonts and character colors. You've also

created interactive window graphics that respond to

changing window conditions. With the GET and PUT

statements, you've copied and pasted blocks of graphics

from one section of a window to another, and learned how

to store multiple graphics blocks in one array. This knowl

edge will come in handy when you use PUT to create ani

mation sequences—but that's not until Section 4, Anima

tion. In the meantime, turn up your monitor speaker and

try some Amiga sounds in the section ahead.

Amiga BASIC Graphics: Odds and Ends

169

SECTION

In this section, you'll

learn how to create

music and speech with

the Amiga. In Chapter

7, you'll learn the

fundamentals of elec

tronic music. In

Chapter 8, you'll learn

advanced techniques

the Deluxe

l and

learn aJ^H iBLrnusic
applications

tional hardware that

will enhance the

Amiga's sound capabil

ities. Chapter 9 will

show you how to use

Amiga BASIC to create

music, sound effects,

and speech.

Sounds

CHAPTER SEVEN

AN ELECTRONIC

MUSIC PRIMER

Although most people hear electronic music all the time

on radio, television, and at the movies, if you ask them

what created the music, most of them aren't quite sure.

They see visions of giant consoles of knobs, switches, and

glowing lights, and rat's nests of patch cords that look like

the cover of Switched On Bach, or they see a rock band

with huge racks of keyboards and cables running every

where. These are visions of electronic music's sordid past.

Computers have changed electronic music for the better,

making it simpler and much more fun to create. There's no

longer any need for the massive banks of switches and

knobs—the computer can offer you the same control using

simple commands issued from the keyboard or mouse. The

cabling is much simpler because there aren't so many

components needed to create music. And if you use the

Amiga to create music, the process is very simple indeed,

because all the necessary hardware is included in the

machine—all you need is the software to control it.

Since the Amiga can perform so many different audio

functions, it's a good idea to get to know about them

individually—how they work, and what they're supposed

to do. The aim of all this audio-technical wizardry is to

please your ears, so it's also good to know just how your

ears are tickled into hearing sounds. The more you know,

the better sounds you can make with your Amiga.

HOW YOU HEAR SOUNDS

Most people know that sound comes to your ears through the air.

After all, if you cover your ears with your hands, you can cut out a

lot of sound. It's also obvious that sound usually comes from a

variety of sources around you. In a room full of people talking, you

can usually tell which person is speaking (at least if you're close

enough). What most people don't know is how it all works—why

some sounds are different than others, and how your ears interpret

each sound.

Sounds begin with a vibrating object like a gong, vocal cords,

or a plucked string. As the object vibrates forward, it pushes and

slightly compresses the air around it. As the object vibrates back, it

pulls back and rarefies (creates a slight vacuum in) the air. As it

continues vibrating, it creates more compressions and rarefactions

of the air. These pressure variations travel away from the object as

sound waves, as you can see in Figure 7-1. They spread through the

air much like ripples spread out from a rock thrown into a still pond,

and travel until they die out or hit another object (such as your ear).

SECTION 3: SOUNDS

174

Figure 7-1.

En the drawing at left, a

vibrating object vibrates

out and compresses the

air beside it. In the mid

dle drawing, the same

object vibrates back in,

rarefying the air beside

it. The drawing at right

shows these compres

sions and rarefactions

spreading out from the

object as sound waves.

INSIDE THE EAR

There are three parts to a human ear: the outer ear, which you

can see sticking out from the side of your head, the middle ear, and

the inner ear, tucked deep inside your skull. Figure 7-2 shows these

three parts. The flesh and folds of the outer ear gather and concen

trate sound waves and pass them on to the middle ear. Here, the

sound waves meet the eardrum, a small membrane that transmits

vibrations to three small bones (called the hammer, anvil, and stir

rup), which amplify the sound waves and pass them on to the co

chlea, a part of the inner ear.

Hammer.

Eardrum

Stirrup,

Anvilx \ /" "
\\ An

Basilar membrane

U J

Perilymph

..

Figure 7-2.

The three parts o:

the ear.

Cochlea

OUTER EAR MIDDLE EAR INNER EAR

An Electronic Music Primei

175

The cochlea is a cavity in the bony part of the skull that's coiled

like a snail shell. It's filled with a liquid called perilymph, and

divided along its coiled length with a very sensitive membrane

called the basilar membrane. The amplified vibrations of the ear

drum pass on to the perilymph, which makes the basilar mem

brane vibrate. Nerve endings on the basilar membrane send the

sensations of vibration on to the brain, which analyzes them so you

can hear sound.

CHARACTERISTICS OF SOUND

When your brain analyzes sound, it can discern four main

characteristics of vibration. They are frequency, amplitude, timbre,

and duration. Using these four characteristics, you can describe

any sound you hear, or use them to provide the specifications for

creating a new sound.

Frequency

Frequency is the speed of vibration. When an object vibrates

slowly, it creates a low-frequency sound; when it vibrates quickly,

it creates a high-frequency sound. The frequency of a sound

determines its pitch—the higher the sounds frequency, the higher

the pitch.

As an example of different frequencies, think of plucking the

strings on a guitar. Because the thicker strings are heavier than the

thin strings, they vibrate more slowly and therefore sound lower in

pitch than the thin strings.

Frequency is measured in hertz, abbreviated Hz, a unit that

stands for cycles (vibrations) per second. The average range of

human hearing stretches from 20 Hz to 20,000 Hz.

Amplitude

Amplitude is the strength of vibration. When an object vibrates

with strong vibrations {that is. it vibrates back and forth over a

relatively large distance), it creates a sound of strong amplitude.

When it vibrates with weaker vibrations (vibrating back and forth

over a relatively small distance), it creates a sound of weaker

amplitude. The amplitude of a sound determines its volume—the

higher the amplitude, the louder the sound. As an example of

amplitude, think of the guitar strings in the previous example. If

you pluck them hard, they vibrate violently, creating a sound of

great amplitude. If you pluck them gently, they vibrate so little you

can barely see them move, making sounds of little amplitude.

The amplitude of a sound is measured in decibels. A decibel is

the smallest change in loudness that a human ear can detect.

Increasing a sound's amplitude by ten decibels makes the sound

double in loudness to the human ear. Human hearing ranges from

one decibel (the threshold of hearing) to somewhere over 120

decibels (the threshold of pain).

SECTION 3: SOUNDS

176

Timbre

Timbre (pronounced tam'-burr) is a little more complicated than

frequency and amplitude. It is a mixture of frequencies within a

single sound. Most vibrating objects don't vibrate at just one fre

quency they vibrate at several frequencies simultaneously. The

lowest frequency is called the fundamental, and it's the fundamental

that you hear as the main frequency of the sound. The fundamen

tal sets the pitch of the sound- The higher frequencies are called

overtones, and they blend in with the fundamental frequency to

change the tonal quality of the sound.

The timbre of a sound determines its tone color. The more

overtones present in the sound, the richer its timbre; the fewer

the overtones, the thinner its timbre. Timbre isn't measured in any

unit of measurement, although it is possible to analyze the number

of overtones present in a sound (a process called Fourier analysis)

to see how many overtones are present. Instead, most people use

words like "rich," "thin," "fat," or "buzzy" to describe timbre.

A good example of timbre is the difference between a violin and

a flute playing exactly the same note. Each instrument produces

sounds with an entirely different overtone series, so each has its

own distinct timbre, and won't be mistaken for the other.

Although Fourier analysis can show the individual overtones of a

sound, the most common way to show the timbre of a sound

visually is to use a waveform. A waveform is a record of the air

pressure of a sound wave over time that shows the summation of

sound's overtones. By looking at the shape of the cycles in the

waveform, you can see differences in timbre. In Figure 7-3, you can

see three basic wave shapes: the sine wave, the square wave, and

the sawtooth wave. The sine wave sounds gentle and smooth. The

square wave is rich and full, and the sawtooth wave is quite

piercing and colorful.

Sine wave

Square wave

Sawtooth wave

An Electronic Music Primer

177

Figure 7-3.

Three waveforms: a sine

wave, a square wave, and

a sawtooth wave

Figure 7-4.

The amplitude envelope

of a harp note.

Duration

Duration is used to measure the first three sound attributes:

frequency amplitude, and timbre. In its simplest use, duration

measures all three together, and so measures the length of the

entire sound from its first hearing to its last fadeout. In other cases,

duration measures each attribute individually, recording how it

changes over time. For example, a singer can hold out a note on

one pitch, but get louder and then fade away. Duration can

measure how long the amplitude increased and how long the

amplitude decreased. A trumpet player might play a long note on

the same pitch, but stick a mute in halfway through the note.

Duration could be used in this case to measure the length of the

first timbre before it was replaced by the muted timbre. If a

saxophone player squeaked at the beginning of a note, duration

could measure the time it took the squeak frequency to drop back

down to the frequency of the final note.

The graph of any of these three attributes over time defines

the envelope of that attribute. Envelopes are very important in

describing the quality of a sound. For example, a plucked harp

string has a sharp twang at the beginning that dies away as the

note lingers. Looking at the amplitude envelope of that note in

Figure 7-4 shows that the note immediately jumps to large

amplitude (loud), then slowly decreases its amplitude over time

(gets softer and fades away).

Time

Envelopes are very important to the way we hear sounds. Any

sound is a result of the way its pitch, loudness, and timbre are

shaped over time. Changing the envelope of any one attribute

makes a distinct change in the character of the sound.

SECTION 3- SOUNDS

178

PRODUCING ELECTRONIC SOUNDS

To hear sounds from an electronic source, such as a tape deck,

synthesizer, or a computer, you need a sound system consisting of

at least two components: a speaker, and an audio amplifier to drive

the speaker. The amplifier takes a weak audio signal from an

electronic device, amplifies it, and sends the signal to the speaker,

where the speaker does the physical work of converting the

amplified audio signals into audible form. The speaker has the

difficult task of creating a huge variety of sounds—sounds with

many different timbres, sounds over a wide range of pitch and

loudness.

THE SPEAKER

If you look at Figure 7-5, you can see a cutaway drawing of a

speaker. The vibrating part of the speaker, the part that produces

sound waves, is the speaker cone. A speaker cone is a conical

piece of stiff paper or plastic mounted m a circular metal frame.

The outer edge of the cone is suspended in the frame by very

flexible folds of rubber or rubber-like material so the cone can move

in and out easily within the metal frame.

Figure 7-5.
Flexible fold

A cutaway view of a

speaker.

Speaker cone

To amplifier

Metal frame

Flexible fold

In a typical speaker, the center of the speaker cone is attached to

a coil of wire suspended in the magnetic field of a very power

ful magnet, which is attached to the rear of the metal frame. {This

magnet is powerful enough to erase floppy disks, so you should

always be careful not to put your disks too near the back of a

speaker.) Both ends of the coil of wire lead out of the speaker to

the amplifier.

An Electronic Music Primer

179

When the amplifier sends an audio signal through the coil, it

creates a magnetic field in the coil that either attracts or repels the

magnetic field created by the fixed magnet. This pushes the coil

forward or backward, moving the speaker cone with it. The direc

tion and amount of the speaker-cone movement depends on the

strength of the magnetic field created by the audio signal going

through the coil. The stronger the field, the more the cone moves.

The audio signal coming from the amplifier changes the strength

of the field very rapidly, so the speaker cone vibrates quickly

enough to create sounds. As the audio signal changes in frequency,

amplitude, and overtones, the sound produced by the speaker

changes with it. A good speaker cone will accurately interpret

every nuance of change in the audio signal as a nuance in the

sound it creates.

In a good high-fidelity speaker, there are usually at least three

speaker cones, one for each of three different frequency ranges.

One speaker cone, appropriately called the woofer, produces low

sounds. The mid-range speaker cone produces mid-range frequen

cies, and the tweeter is a speaker cone that produces high pitches.

A system of filters, called the crossover network, separates the

audio signal from the amplifier into three separate signals of the

three different frequency ranges, which are sent out over separate

wires to each speaker cone. The result, if the speaker components

are of good quality, is excellent reproduction of all the frequencies in

the human hearing range.

THE AMPLIFIER

An audio signal from sources like cassette decks, turntables,

radio tuners, or the Amiga is too weak to drive a speaker by itself,

it needs amplification in order to be heard. An amplifier's job is to

take an audio signal from a weak source and boost its strength so

that it's strong enough to move the speaker cone in and out. Almost

all amplifiers have a volume knob so you can control how much the

signal is amplified; some amplifiers also have tone controls that

change the timbre of the incoming signal before it's amplified and

sent out to the speaker.

STEREO

Most people have a stereo home-audio system with two

speakers, one for the right of the listening area, the other for the

left of the listening area. These speakers convert two separate

audio signals (called the left and right channels) into two sound

sources that create the illusion of many different sources of sound

located throughout a room (a process called imaging).

SECTION 3: SOUNDS

180

To see how stereo imaging works, consider an example. A re

cording engineer records a woodwind trio spread across a stage;

the oboe on the left, the clarinet in the middle, and the bassoon

on the right. He uses two microphones to record, one for each

channel. The left microphone is close to the oboe and further from

the other instruments, and so records the left channel with a strong

oboe sound, a medium clarinet sound, and a weak bassoon sound.

The right microphone, close to the bassoon, records the right

channel with a strong bassoon sound, a medium clarinet sound,

and a weak oboe sound.

When you listen to the recording (facing the speakers with the

left-channel speaker on your left and the right-channel speaker on

your right), you hear a lot of oboe sound coming from the left

speaker and not much oboe sound coming from the right speaker,

so you perceive the oboe to be to your left. The clarinet sound

comes equally from both speakers, so you perceive the clarinet

coming from the center area between the two speakers. The

bassoon sound comes mostly from the right speaker, so you

perceive the bassoon to be on your right. Your stereo system uses

this same imaging technique to create the illusion of an entire

orchestra of instruments spread across your living room.

The Amiga has stereo outputs so you can connect it to a stereo

system, but its left and right channels are discrete—that is, the left

signal goes entirely to the left speaker, and the right signal goes

entirely to the right speaker. These discrete signals don't allow

imaging, since there is no mixture of the sound coming from both

speakers. To blend the Amiga's sound signals through both left and

right channels to create imaging, you need an audio mixer,

described later in the chapter.

SYNTHESIZING MUSIC

To record music, you use microphones that turn sound waves

in the air into audio signals. When you listen to the recording, the

sound system turns audio signals back into sound waves. If you

create music by building an audio signal from scratch rather than

recording sound waves, you are synthesizing music.

Music synthesis requires more than just an amplifier and a

speaker. You need a synthesizer to build an audio signal, and a

controller like a keyboard or a sequencer, to play music on the

synthesizer. The Amiga has the hardware necessary to synthesize

sounds through its audio ports. You can attach a music keyboard

to a controller port or use the Amiga's own keyboard to play the

Amiga like a musical instrument. You can buy or write software

that creates a sequencer in RAM to play sequences of notes using

the Amiga's synthesizing capabilities.

An Electronic Music Primer

181

SYNTHESIZERS

In concept, a synthesizer is simple. It sets the frequency, ampli

tude, and waveshape of an audio signal, and sends it as an un-

amplified audio waveform to the amplifier. The amplified waveform

is then sent to the speaker, where it is translated directly into sound

waves, audibly duplicating the original synthesized waveform. In

practice, sound synthesis isn't quite so simple. It takes a lot of work

to create an audio signal that's interesting to the human ear. The

first synthesizers to succeed were analog synthesizers, instruments

that are still popular today.

Analog synthesizers

Analog synthesizers use a series of electronic components first

to create a simple audio signal, then to twist, tickle, and torture the

signal into a much more complex and interesting form. The heart of

the analog synthesizer is the voltage-controlled oscillator, or VCO for

short. The VCO creates an audio signal from scratch in one of

several waveforms that you can choose. These waveforms are

usually quite simple—sine waves, triangle waves, sawtooth waves,

square waves, and perhaps a few others.

The VCO changes pitch according to a control voltage, which

usually comes from a keyboard or a sequencer. For each different

note, the keyboard or sequencer sends a different control voltage to

change the pitch of the VCO. To make the sound more interesting,

the signal from the VCO can be passed through voltage-controlled

filters and voltage-controlled amplifiers that add attributes such as

overtones, duration, and amplitude to each note. The signal can be

enhanced even more by passing it through other synthesizer mod

ules; ring modulators, white noise generators, sample and hold

modules, high-pass filters, low-pass filters, band-pass filters, and

others. The effect of each module on the signal is different, but the

purpose of each is to change the original signal from a plain and

uninteresting sound to a rich and intriguing sound.

Digital synthesizers

The Amiga, like many other modern synthesizers, is a digital

synthesizer. Instead of producing a simple signal with an oscillator

and then enhancing it by passing it through other electronic equip

ment, a digital synthesizer creates a sound as a digital mathe

matical model, then turns the model into an audio signal that it

sends directly to the amplifier. With digital synthesizers, creating

new and unique sounds becomes as much a matter of mathematics

as it does electronics.

SECTION 3: SOUNDS

182

The Amiga makes its digital models fay creating the waveform of

a sound in its memory. To understand how it does this, think of

how a waveform depicts the quality of a sound. You read a wave

form like the one in Figure 7-6 from left to right. The waveform goes

up for higher air pressure, down for lower air pressure. This

corresponds directly with the motion of the speaker cone: Each

time the waveform goes above the horizontal center line, the

speaker cone moves out to create higher pressure. Each time the

waveform goes below the horizontal center line, the speaker cone

moves in to create lower pressure.

As you read the waveform, you can see the entire record of the

speaker cone's motion from the beginning to the end of the sound.

The more waves there are in the waveform, the faster the cone

moves in and out. The higher and lower the waveform goes, the

more motion the cone goes through. By sending the waveform of a

sound as an amplified audio signal to a speaker, you can create that

entire sound.

To store a waveform in the Amigas memory, it has to be chopped

up into a series of numbers. A good way to think of it is to imagine

describing a waveform over the phone to another person. You can

chop the waveform up horizontally into tiny equal segments, shown

in Figure 7-7 (on the next page). By measuring the height of each

segment, you can pass the measurements on to the person at the

other end of the phone line, who can reconstruct the waveform if

you tell him the width of the segments you used.

Figure 7-6.

A typical waveform.

An Electronic Music Primer

183

Figure 7-7

A waveform chopped

into measured segments.

The amplitude measure

ment of each segment

is read over the phone

line to another person

who reconstructs the

waveform.

A X

HHILJllltfllll

■Mdtruvr

s
\

\

The Amiga creates waveforms in the same way, storing them in

its memory as an ordered list of waveform measurements called a

waveform table. The measurements use a very small segment size

to keep the waveform accurate.

To create complex and interesting waveforms, the Amiga uses

mathematical formulas to create a waveform from scratch. These

formulas plot each point in the waveform table. Once the waveform

table is complete, it's sent to a digital-to-analog converter (usually

called a D-to-A converter) that converts the waveform's digital

measurements into an unamplified audio signal, which is then

amplified and sent to the speakers.

The Amiga has four internal audio channels, each with its own

waveform table and D-to-A converter. The outputs of these

channels are mixed in pairs and sent out through the left and right

audio ports in the back of the Amiga's console, two from the left

port and two from the right port. Each audio channel plays notes

by looping through its waveform table. You can change the pitch of

notes played by a channel by changing the rate the Amiga uses to

read through the channel's waveform table: The faster the rate, the

higher the pitch.

Although the Amiga has just four audio channels, it's not limited

to four voices of music; any single waveform table can store an in

finite number of pitches, so four waveform tables can create an

infinite number of musical voices. For example, think of the single

waveform produced by a microphone in front of a large symphony

SECTION 3: SOUNDS

184

orchestra. That waveform has sound information for over a hundred

instruments simultaneously playing different pitches. If you play the

waveform back over a speaker, you can hear all the different pitches

played in the orchestra. A waveform table containing that same

orchestra] waveform and stored in one of the Amiga's internal audio

channels would create the same number of pitches when you

played it back.

In practice, getting more than four independent musical voices

on the Amiga at once is a complicated process. Using mathe

matical synthesis to create a multi-pitch waveform table on one

audio channel isn't as easy as creating a single-pitch waveform

table. Once you create the mathematical model of a multi-pitch

waveform table, the pitches in the waveform table are locked

together. When the audio channel speeds up or slows down its

playback rate to raise or lower the pitch, all the pitches are raised

or lowered together, so they aren't actually independent musical

voices. To change pitches independently within a multi-pitch audio

channel, the Amiga has to calculate a new waveform table for each

individual pitch change. This requires some tricky programming,

but it's not impossible, so look for software that can play eight or

even sixteen independent voices of music on the Amiga.

When you use your Amiga as a synthesizer, you don't have to

mathematically calculate your own waveform tables (although you

can, if you're an advanced programmer). Instead, you can use a

variety of methods offered by different Amiga synthesizer pro

grams. For example, some music programs use on-screen controls

that look very much like the controls of an analog synthesizer. Other

programs may use menus to change various aspects of sound, or

they may let you draw waveforms directly on the screen. No matter

what controls the program provides, they all change the mathe

matical formulas that create the waveform table inside the Amiga.

Sampled sounds

The Amiga and some other digital synthesizers can create

sounds without synthesizing them. Instead, they record the sounds

from the outside world, storing them in a waveform table as a

series of waveform measurements. These recorded sounds are

called sampled sounds—the measurement of each segment of the

waveform is called a sample, and the process of making those

measurements and storing the waveform as a series of numbers is

called sampling.

To create a sampled sound, you need to add a microphone and a

sampler to the Amiga. When the microphone picks up a sound, it

An Electronic Music Primer

185

sends the waveform of the sound as an unamplified audio signal to

the sampler. The sampler chops the waveform up into approxi

mately 20.000 segments per second (the number of samples varies

with the sampling rate), takes a reading of the amplitude of each

segment, and sends each sample to the Amiga in the order it was

taken. This stream of samples is stored in the Amiga's memory as a

waveform table, and can be played back through an audio channel's

D-to-A converter just as a synthesized waveform is played back.

Sampled sounds are usually very rich, since they're recorded

directly from a very complex acoustic source. They do have a

drawback, though; they need a lot of RAM for storage, because

each individual sample is stored in memory, unlike a synthesized

waveform, which is stored as a formula. When you consider that

each sample of a sound needs one byte to store it in memory, and

that a sampler samples 20,000 segments per second, a sampled

sound of two seconds needs 40,000 bytes. This adds up quickly if

you use many sampled sounds at once in the Amiga. Synthesized

sounds, on the other hand, require a very small amount of memory.

Instead of storing the entire waveform table in memory as a series

of individual numbers, the Amiga stores only the mathematical

formula needed to create a synthesized sound. When you want to

play a synthesized sound, the Amiga recalls the formula and

creates the waveform from it.

Sampled sounds are inflexible if played back normally; the wave

form plays back at the same pitch, loudness, timbre, and length as

the original sound—it's just a digitized recording of the sound.

Fortunately, the Amiga can alter the playback of a sampled sound

to use it musically. By increasing and decreasing the values of the

samples, it can change the loudness of the sound. By sending the

samples to the D-to-A converter at a slower or faster rate, it can

change the frequency of the sound.

To change the duration of the sampled sound, the Amiga must

repeat part of it over and over. It's important that the repeated

section sound smooth, so somebody has to listen to the sound

produced by a sampled-sound waveform to find the best section to

repeat (called the sustain loop). If the sustain loop is too near the

beginning of the waveform, you might hear the attack of the sound

over and over again—the "pick" of a guitar string or the biurble of

a trumpet note—a very distracting effect. If the sustain loop is set

too near the end of the waveform, the sound may have died away to

nothing, so repeating it does no good.

Obviously, setting a sustain loop is a matter of judgment. The

sampled sounds you get with a program like Deluxe Music have

SECTION 3: SOUNDS

186

the sustain loop already picked out and recorded with the sound on

disk. To create your own sampled sounds, you'll need extra

software to go with the sampler and the microphone you use to

capture the sampled sounds. Once you have the sounds, you'll have

to use the software to look at their waveforms on the screen and

adjust the beginning and end of the sustain loop until you find the

best sound.

SEQUENCERS

A musical sequencer is a device that controls and plays a

musical instrument. For example, a player piano uses a roll of paper

containing holes to play the piano keys. Each hole on the roll cor

responds to one key pressed on the piano keyboard. An electronic

music sequencer works on similar principles; it stores notes elec

tronically and uses them to play music on a synthesizer. Early

sequencers were simple affairs—electromechanical devices that

stored a sequence of pitches and nothing more. They played

perhaps 20 to 50 pitches on the synthesizer, all the same duration,

and then repeated them over and over again until the sequencer

was stopped.

Today's sequencers are much different. They use computers, and

they're no longer restricted to a small set of pitches. They can store

hundreds of thousands of pitches. They can also control durations

of notes and regulate other musical factors such as volume,

instrumentation, and timbre.

Sequencer programs on the Amiga can be very sophisticated.

You can enter notes into them using a traditional music staff or

a notation system designed especially for the program. The se

quencer software stores the notes as a sequence of events with

precise timing. The events can be items like the start of a note, the

end of a note, an instrument change, a volume change, and other

musical factors. When the sequencer plays back its score, it sends

these events to the Amiga's built-in synthesizer as control signals.

These control signals act like a phantom musician, starting and

stopping notes, and twiddling synthesizer "dials" to change the

tonal quality of the sounds.

The advantage of using a sequencer over playing a keyboard is

that the sequencer can perform music that no one human musician

could create. It can control more voices, play faster and more

complex music, and transpose to any key or change to any tempo

with a single command. The disadvantage is that no sequencer is

spontaneous. It has to be programmed beforehand, and can't react

to the mood around it, changing its performance to respond to

the audience.

An Electronic Music Primer

187

SYNTHESIZING SPEECH

If you listen closely to yourself speaking, you can hear the small

elements of speech—changes in timbre when you change vowels

and consonants, and changes in pitch and volume as you speak

with inflection, accenting different syllables. By synthesizing a

waveform that includes all these quick and very subtle changes in

timbre, pitch, and volume, it's possible to make a synthesizer

speak.

The Amiga has a device in its system software that makes

speech synthesis easy. It takes text m strings of letters from

sources such as the keyboard or memory, and turns them into

waveforms that create speech instead of music when they're

converted into sound on an audio channel. The text to be

translated into speech is spelled out phonetically, using a special

computer phonetic spelling; that is, using a spelling like

"LAH5NCHWAE2GIN" for a word like "lunchwagon." (The Amiga's

phonetic spellings are discussed in Chapter 9, along with other

details of speech synthesis.)

Phonetic spelling gives you detailed control of word pronuncia

tion and syllable inflection, but it takes some time to translate

normal English words into the correct phonetic spelling. To make

things easier, the Amiga's system software also contains devices

that translate strings of English words into strings of phonetic

spellings to be turned into synthesized speech. When you consider

how many different pronunciations exist for some letters in English

(take the "o" in "women" for example), it's quite a feat to decide

which pronunciation should be used for a letter. The translation

devices in the Amiga's system software do it quite well.

The speech device can also alter the quality of the Amiga's

speaking voice. It can speak in a high or low voice to sound male

or female, and it can use different pitches to sing lyrics to a song. It

can speak with a lot of inflection or in a monotone. It can also

change the volume and the speed of the speech.

RECORDING ELECTRONIC MUSIC

Playing music on the Amiga is great fun, but most people won't

get a chance to hear your creations unless you drag your Amiga

out in the streets or you invite large numbers of people over to

stand in your computer room. The best solution is to record your

music on tape. Anyone with a sound system is likely to own a

cassette player, so if you gave them a tape they can play back your

SECTION 3: SOUNDS

188

music. You can copy the tape and send it off to faraway relatives

and recording executives, and you can play it back to yourself in

your car tape deck as you drive.

Recording on tape has additional advantages: You can mix in

sounds from sources outside your Amiga. For example, if you enter

the accompaniment to "Ode to the Wombat" on the Amiga, you

can play it back while singing the words into a microphone, and

record the whole performance for posterity. You can also blend the

left and right audio channels of the Amiga together to image their

sounds, and use some tricks to record your Amiga playing with

your Amiga. All you need is the right equipment.

TAPE RECORDERS

The most important piece of equipment you'll need is a tape

recorder. The most common type is the cassette recorder, but you

can also use a reel-to-reel recorder or a videocassette recorder (hi-fi

VCRs have impressive audio recording capabilities}. Use a cassette

recorder if you want a tape medium that's easy to use and easy for

most people to play back. Consider a reel-to-reel recorder if you

plan to edit your recordings—reel-to-ree! recordings are much

easier to edit than cassette or video tapes.

Most tape recorders are stereo recorders: They use two discrete

tracks on the tape. Each track stores a different audio signal that

plays back to create the two signals needed for stereo sound

reproduction. Some tape recorders (usually reel-to-reel recorders)

have more than two tracks, ranging from 4 to 32 discrete tracks.

Each individual track can record a separate signal. Multi-track

recorders (the type used in recording studios) are used to record

one musical line per track so the volume and tonal quality of each

line can be adjusted individually when you play it back. Recording

one track at a time allows a single musician to create a tape of

himself playing different instruments simultaneously, so he ends up

performing an entire song by himself.

MIXERS

To feed many different audio signals into a tape recorder, you

need a mixer. Mixers can adjust the strength of each individual

audio signal to give you a good balance between them. For ex

ample, if you plan to record using a microphone and your Amiga,

you may find the microphone signal to be weaker than the signal

from the Amiga. A mixer will adjust for the differences in signal

strengths and can also help to create imaging effects in a stereo

recording. A mixer can take the two discrete sounds coming from

the left and right audio jacks of the Amiga and blend them across

the left and right channels of the recorder. A small knob called a

pan pot lets you position the apparent location of the sounds from

the Amiga-

An Electronic Music Primer

189

SIMPLE RESULTS

If you just want to create a simple recording of your Amiga, you

don't need fancy equipment. One cassette recorder with two line-

level input jacks will work. (A line-ievel signal is an unamplified

audio signal.) The audio jacks on the back of the Amiga produce a

line-ievel output, which can be directly connected to the input

jacks of a cassette deck using two audio cables. All you need to do

is put a cassette in the recorder and start recording.

MIDI

Although the Amiga by itself is capable of impressive music, it

can be turned into a much more powerful system by connecting

it to outside synthesizers using MIDI. MIDI stands for Musical

Instrument Digital Interface. It's not a piece of equipment itself; it's

a standard that regulates the type of cables and the information

format that are used to send musical information back and forth

between synthesizers, or between synthesizers and a computer.

MIDI evolved a few years ago as a way to simplify synthesizer

connections. You probably have memories of a rock concert where

the keyboard player would jump back and forth between racks of

synthesizers to play a riff on the one synthesizer that had just the

sound he wanted. When synthesizers are connected together with

MIDI cables, a musician can use the keyboard of any connected

synthesizer to play the sounds of any other connected synthesizer.

It's possible for a musician to set up one synthesizer as the master

synthesizer, using its keyboard to play the sounds of the other

synthesizers as well as its own sounds. The musician can choose

which synthesizer (or synthesizers) he wants to play with the

master keyboard, and so saves himself a lot of jumping around.

MIDI is flexible enough to allow many other possibilities. For

example, you can include a computer in the MIDI network. Since

MIDI carries information for all the keystrokes, pitch wheel bends,

instrument changes, and other actions that a performer might take

as he plays, the computer can create a record of all those activities,

recording not sounds, but performance events. It can re-create the

music later by sending the recorded MIDI events back out over the

SECTION 3; SOUNDS

190

MIDI connection to attached synthesizers. The computer used in

this type of arrangement is called a MIDI recorder, and is very

useful, since the MIDI events stored in memory are easy to modify.

THE MIDI PHYSICAL STANDARD

MIDI has become a music industry standard. Almost all syn

thesizer manufacturers include at least one MIDI port on their

synthesizers so you can connect them to other MIDI-equipped

machines. Standardization makes it simple to connect MIDI equip

ment together—you use a MIDI cable with 5-pin DIN plugs (a

standard type of audio plug) on each end, and plug one end of the

cable into the MIDI port on one machine and the other into the MIDI

port on a second machine.

There are three different kinds of MIDI ports used on MIDI equip

ment: MIDI In, MIDI Out, and MIDI Thru. The MIDI In port receives

signals from another MIDI device. The MIDI Out port sends out

signals from that device to another MIDI device. MIDI Out usually

just sends signals that originate from that device (like keystrokes,

etc.), but on some equipment it can also mix in the signals the

device receives through the MIDI In port, and pass both signals

through the MIDI Out port. The MIDI Thru port simply passes on

signals that come in through the MIDI In port without changing

them.

You can use the three types of MIDI ports to connect MIDI equip

ment in different configurations. For example, you can connect a

computer to a synthesizer by connecting the computer's MIDI Out

port to the synthesizer's MIDI In port, and by connecting the com

puter's MIDI In port to the synthesizer's MIDI Out port. Using this

configuration, the computer can read all the MIDI signals that the

synthesizer sends, and the synthesizer can read all the MIDI signals

that the computer sends.

If you have a computer and several synthesizers, you can set up

the computer as a controller for the synthesizers. To do this, you

connect the computer's MIDI Out port to the MIDI In port of the first

synthesizer. Next, connect the first synthesizer's MIDI Thru port to

the MIDI In port of the second synthesizer, then connect the second

synthesizers MIDI Thru port to the MIDI In port of the third

synthesizer. You can also connect additional synthesizers by con

necting each new synthesizer's MIDI In port with the MIDI Thru

port of the last connected synthesizer. With this configuration, each

synthesizer is only capable of receiving (via its MIDI In port) MIDI

messages sent out by the computer, or passing along MIDI mes

sages to the next synthesizer (via its MIDI Thru port). An example

of this configuration is shown in Figure 7-8 (on the next page).

An Electronic Music Primer

191

Figure 7-8.

Connecting a computer

to MIDI devices to use it

as a controller.

MTTJ MTrt Min

la TWv O*

1st synthesizer

UXDI MtDi UQ

In Tin Ou

2nd synthesizer

DDDDaDDCDDOn

nonaoaaaaoaa

n n a a □ n □ r; d n n a
oonaanacnoac

Figure 7-9.

Creating a MIDI ring to

allow MIDI message

interchange between

devices.

Another configuration that allows each MIDI device to exchange

information with any other MIDI device is a MIDI "ring," shown in

Figure 7-9. To create a ring, all the MIDI devices must be equipped

to mix the MIDI In signals they receive with the signals they create,

and pass both signals out through the MIDI Out port. This

configuration allows any device in the ring to exchange MIDI

messages with any other device m the ring.

To use the Amiga as a MIDI machine, you need to add a MIDI

adaptor to the serial port on the back of the Amiga's console. The

MIDI adaptor has the three different MIDI ports, and makes the

Amiga serial signal compatible with the MIDI standard signal.

SECTION 3: SOUNDS

192

MIDI MESSAGES

The signals that pass from machine to machine over the MIDI

cables are similar to the signals that pass from computer to com

puter when the computers are connected together with a modem.

Modem communication normally uses a type of code called ASCII

(American Standard Code for Information Interchange) that uses a

set of code numbers to represent letters of the alphabet, numerals,

punctuation marks, as well as computer information such as

carriage returns, line feeds, and other control characters.

MIDI also uses a set of code numbers, but instead of represent

ing letters and numbers, each one stands for different occurrences

on a synthesizer. These MIDI code numbers are strung together in

groups called messages. Typical MIDI messages communicate

events like note-on (that a keyboard key was pressed, what pitch it

was, and how hard the key was pressed), note-off (that a key was

released and what key it was), and that a pitch wheel was moved

(how far the pitch wheel, a device that bends pitch up or down,

was moved).

MIDI messages are sent over the cables in 16 different software-

controlled channels. Each channel carries messages for one MIDI

machine (you specify which machine uses which channel), so it's

possible to connect 16 different MIDI machines together on the

same MIDI network with each machine sending and receiving MIDI

messages on its own channel. Each MIDI channel can transmit all

the events happening on its synthesizer, so each channel can trans

mit a full performance—chords, fancy fingerwork, instrument

changes, and all. A central computer controlling external syn

thesizers can use the separate channels to send messages to and

record events from individual synthesizers.

Now you know how sound is created, how you hear it,

and how it can be electronically produced. You've learned

how sound synthesis works, and how the Amiga can syn

thesize its own sounds and speech and re-create sam

pled sounds. You've also been introduced to MIDI, and

learned how to attach external synthesizers to the Amiga.

With the information you gained in this chapter, you're now

well equipped to go on to the next two sound chapters and

start making your own sounds, music, and computer-

generated speech.

An Electronic Music Primer

193

CHAPTER EIGHT

AMIGA MUSIC

TOOLS

Today's equivalent of Johann Sebastian Bach ruining his

eyesight by poring over scores in candlelight is the modern

musician staring at his computer monitor in the wee hours

of the morning. Although the tools have changed, composi

tion is still a combination of inspiration, structuring,

recording, and struggling to bring the music to perfor

mance. The Amiga can't help you with the inspiration and

creative process, but it can relieve a lot of the drudgery

involved in writing your music and getting it played. In

this chapter, you'll learn some Amiga music techniques

that will enable you to spend more time listening to your

music and less time staring at your monitor.

A wide variety of music programs has been written for

the Amiga. Some programs record the notes of your music

in the Amiga's memory and play them back at your re

quest; others let you play on an attached keyboard or on

the Amiga's keyboard, using the Amiga as a musical instru

ment. There are also programs that let you create and mod

ify your own Amiga synthesized instruments. The program

featured in this chapter, Electronic Arts' Deluxe Music,

concentrates on storing notes and playing them back.

Deluxe Music lets you enter scores with traditional music

notation and play back your scores using the Amiga's

built-in synthesizer or an attached MIDI synthesizer.

This chapter teaches you advanced Deluxe Music tech

niques. You'll learn special methods for entering tempo

and instrument changes, using 64th notes, and working

with MIDI instruments. You'll also find some tips and hints

that make score entry easy. Later sections in the chapter

show you how to record your musical creations on tape,

and take you on a tour through other music software and

hardware available for the Amiga.

MASTERING DELUXE MUSIC

Deluxe Music is a sophisticated program that you can use to

enter, edit, play back, and print music. It uses traditional music

notation—staffs with notes—to display musical scores, but offers

a nontraditional note-entry method that makes it quite easy to

enter musical scores. You can either place notes of different

durations directly on the staff using the mouse, or, if you're more

familiar with a music keyboard, you can enter pitches by clicking

SECTION 3: SOUNDS

196

the mouse pointer on the keys of a music keyboard Deluxe Music

displays on the bottom of the screen. If you have a MIDI keyboard

connected to the Amiga, you can also enter pitches by pressing its

keyboard keys.

Deluxe Music's score-entry system is quite powerful- It provides

up to eight staffs of music on the screen at one time, and allows

you to choose treble, bass, alto, or tenor clefs for each of the staffs.

You can enter notes and rests that range from a whole note to a

32nd note, dot any note, and use the notes to create triplets or

quintuplets if you like. You can tie and slur groups of notes; put in

crescendos, diminuendos, and dynamic markings ranging from ppp

(very soft) to iff (very loud); and change time and key signatures

within the score-

Deluxe Music has powerful editing features that let you cut,

copy, and paste music much like a word processor works with text.

You can transpose groups of notes up and down in pitch. Deluxe

Music's features let you make the score more visually appealing,

both on the screen and on the printed copy. You can set the

direction of note stems and beam groups of 8th, 16th, and 32nd

notes together for clarity. (Beaming individual notes together, as

shown in Figure 8-1 on page 199, makes them easier for a musician

to read.) You can reposition the notes, rests, and staffs for maxi

mum clarity, and add text to the score for lyrics, tempo markings,

or directions to musicians. Deluxe Music has a special built-in

music font that contains music symbols like violin up and down

bow markings, trill markings, and other characters useful in a

music score. When the score looks just the way you want it, you

can print it out on an attached printer.

Deluxe Music plays back your scores using sampled sound

instruments that it loads from disk into the Amiga's memory. Once

the instruments are in memory, Deluxe Music plays them using the

Amiga's four internal audio channels. You can orchestrate your

score by making instrument changes at different locations in the

score. Using only the Amiga's four audio channels limits Deluxe

Music to a maximum of four notes played at once, but you can add

extra voices by attaching an external MIDI synthesizer. Deluxe

Music will use the external synthesizer's instruments in addition to

the Amiga's instruments (a very handy feature, considering that

Deluxe Music lets you enter a large number of simultaneous notes

on up to eight staffs).

Amiga Music Tools

197

STRETCHING DELUXE MUSIC'S CAPABILITIES

Many people use Deluxe Music to enter scores directly from

sheet music, copying the music note by note so they can hear the

Amiga play it back. It's a simple task to enter just the notes and

rests you see on the page. Unfortunately, music entered like this

often sounds mechanical or bland. Notes and rests are merely the

framework of music—the real soul and expression come from the

musician's flexibility and spontaneity while playing each of those

notes back.

Deluxe Music offers several features that help to give your scores

style in playback: You can use crescendo and diminuendo along

with dynamic markings to make your music rise and fall expres

sively in volume. You can slur groups of notes together so they play

smoothly from note to note, or you can make notes staccato so

each one jumps out at you as an individual note. These features

are available on a note-by-note basis: You can start the effect at

any note in the score and end it on any other note in the score.

Deluxe Music has other features to add pizzazz to your playing

styie. For example, you can start playing a voice in the score using

one instrument and then change to another instrument to give it a

different timbre—sudden timbre changes can really perk up a

listener's ears. You can also change the tempo of the score playback

in the middle of the score; suddenly speeding up or slowing down

playback can also have a dramatic impact on a listener. Although

these two playing-style features are very useful, Deluxe Music

doesn't let you apply them on a note-by-note basis. You can only

start them at the beginning or end of a measure; you can't change

tempo or instruments in the middle of a measure.

Most music uses measures only as a timing reference, so the bar

lines in a score don't always fall at the precise point where you

want to change an instrument or the tempo. In fact, if you want to

use accelerando (where the tempo steadily increases over a group

of notes) or ritardando (where the tempo steadily decreases over a

group of notes), Deluxe Music's ability to jump to a new tempo at

every bar line won't give you the effect you want if you use ordinary

measures.

SECTION 3: SOUNDS

198

Fortunately Deluxe Music lets you create measures of almost

any size, so you can get around the measure limitations of tempo

and instrument changes to stretch Deluxe Musics capabilities. By

using some of the Measures menu commands like Insert Measure, Split

Measure, and Join Measure, and then setting a different time signa

ture for each measure, you can rearrange the bar lines in a score to

fall exactly where you want them to fall for changes. The next

section shows you how to take advantage of this feature.

Changing Tempos: Accelerandos and Ritardandos

Figure 8-1.

An example of ntardando

in two measures of

music.

Figure 8-1 shows the last two measures of a piece of music. To

make the ending sound substantial, there is a ritardando (marked

by the "rit" sign and a dotted line) that slows down the last eight

16th notes going into the final whole note. To enter this short

phrase with the ritardando in Deluxe Music, follow these

instructions:

1. Use the New Score command from the File menu to create a

new score.

2. Use the Set Time Signature... command from the Measures

menu to make sure the time signature of the score is set to

4/4 time.

3. Enter the notes as you see them in Figure 8-1: sixteen 16th

notes in the first measure and a whole note in the second

(last) measure.

4. Choose Score Setup from the Window menu and make sure the

Beats per Min slider is set to 90.

5. Try playing the score. It should play back at 90 beats per

minute with no ritardando.

6. Use the editing arrow to put a note-entry cursor (a blinking

vertical line) between the eighth and ninth 16th notes of the

first measure.

Amiga Music Tools

199

7. Use the Split Measure command from the Measures menu to

insert a new bar line at the location of the note-entry cursor,

splitting the first measure into two new measures, each with

eight 16th notes.

8. Use the editing arrow and the Split Measure command to split

the second new measure into four measures, each measure

with two 16th notes.

You should now have six measures in the score: the first measure

with eight 16th notes, measures two through five with two 16th

notes, and measure six with a whole note. To see all six measures

at once, use the editing arrow to drag the right boundary of each

measure to the left until all measures are visible on the screen.

If you play the score now, you'll hear the 16th notes play back

with long pauses where you inserted the new bar lines. This

happens because the measures are all 4/4 measures, and aren't

filled up. To tighten the rhythmic slack, you must change the time

signatures of the new measures:

1. Change the first measure to 2/4 time by clicking in the

measure with the editing arrow, then using the Set Time

Signature... command in the Measures menu to change the

time signature to 2/4.

Deluxe Music automatically changes the measure you click

m and all the measures after it to the new time signature, so

when you changed the first measure, all the following mea

sures also changed to 2/4 time. However, you want to use 2/4

time for the first measure only, so you'll have to change the

time again for the following measures.

2. Change the second, third, fourth, and fifth measures to 1/8

time by clicking in the second measure with the editing

arrow and using the Set Time Signature... command again.

3. Use the same method to set the sixth measures time signa

ture back to 4/4. Now each measure's time signature is set so

the measure's contents fill it up completely.

If you play back the score now, it sounds just like it did when you

first entered it. If it seems like you just did a lot of work for nothing,

keep in mind that you now have a lot of handy bar lines sprinkled

through the notes, so you're ready to add a ritardando:

SECTION 3: SOUNDS

200

1. Play back the score at different tempos by moving the Beats

per Min slider in the Score Setup window to find a slow tempo

that you want the ritardando to reach by the last measure.

For this example, 90 beats per minute works well for the

initial tempo, slowing down to 56 beats per minute by the

final whole note.

2. Set the tempo in the first measure to 90 beats per minute by

selecting the first measure, making sure the Beats per Min

slider in the Score Setup window is set to 90, and then using

the Set Tempo command in the Measures menu. The tempo

marking will appear at the beginning of the measure.

3. Set the tempo in the last measure to 56 beats per minute by

selecting the last measure, setting the slider to 56 in the Score

Setup window, and then using the Set Tempo command.

4. To create a ritardando, change the tempos of the four middle

measures in increments that go from 90 to 56. Values of 82,

74, 67, and 61 work well. The measure tempos in the final

score should read: 90, 82, 74, 67, 61, and 56.

The final score should look like Figure 8-2. If you play back the

score now, you'll hear the ritardando as the tempo gets progres

sively slower toward the end of the score.

■ - fl9 • - U • - H • - £t •: 12 • = 74 • = 67 • : fit

Figure 8-2.

Split measuies and

changing tempos pro

duce a ritardando in

Deluxe Music.

fates it sees* •Siagle •Chords JAdvancell Insert Rest j

Amiga Music Tools

201

Figure 8-3.

A rhythmic pattern is di

vided between many

alternating instruments.

If you use this method with two or more staffs, you should note

that whenever you split a measure in one staff. Deluxe Music splits

the corresponding measures in any other staffs of your score. If you

split the third measure of the first staff, for example, the third

measure in the other staffs will be split as well. To compensate for

this, you'll have to break up the notes in the other staffs to match

the measures you create for your ritardando. As an example, if you

had a second staff accompanying the music in the last example,

and the second staff had a whole note in the first measure, you'd

have to break up the whole note into a single half note and four

eighth notes to fit in the new measures, then tie them together to

make them sound like one note.

Fast Instrument Changes

If you use Deluxe Music with just the Amiga's internal voices,

you're limited to four different instruments piaying at a time. While

you can get a lot of color with four instruments, there are times

when it would be nice to have even more instruments. You can

create the illusion of more than four voices playing at a time if you

set up more than four voices in the score and switch quickly back

and forth between them.

As an example, think of a rhythm section in a band that includes

a bass guitar, a snare drum, a high-hat cymbal, and a bass drum.

When they play music together, the bass guitar plays the down

beats while the percussion instruments alternate to fill in the back

beats. If you enter a score like this in Deluxe Music where none of

these instruments play together at the same time, then they will

use only one of the Amiga's internal voices. This effectively gives

you four instruments for the price of one voice. In Figure 8-3, you

can see a rhythmic pattern that has been divided between five

different instruments this way.

Snare Drum

i h.

Bass Drum

Cymbal

Clave

Tom Drum

SECTION 3: SOUNDS

202

To try the two measures in Figure 8-3 in a Deluxe Music score,

follow these instructions:

1. Create a new score. Open the Score Setup window and add

three staffs to the score. This will give you a total of five

staffs for the five different instruments in the music. Set the

score to C major in 4/4 time.

2. Load from disk the instruments for the score. You need five

instruments: a bass drum, a snare drum, a cymbal, a clave,

and a torn drum. {If you don't have these instruments, you

can approximate with five other instruments you think might

sound similar.) To load them, choose the Load Instrument...

command from the Sounds menu five times, selecting a dif

ferent instrument each time so the five instruments appear at

the top of the Sounds menu.

3. To assign the snare drum to the first staff, select the first

measure of the staff, choose the snare drum from the Sounds

menu, then choose Set Instrument from the Measures menu. The

name of the instrument should appear just above the begin

ning of the first measure.

4. Use the same method to assign the bass drum to the first

measure of the second staff, the cymbal to the first measure

of the third staff, the clave to the first measure of the fourth

staff, and the torn drum to the first measure of the fifth staff,

5. To enter the snare drum notes, select the first measure of the

snare drum staff, then enter all the snare drum notes, filling

in with rests where there are notes in the music that will be

played by other instruments.

6. Use the same technique to enter bass drum, cymbal, clave,

and torn drum notes in their respective staffs.

When you play back your score, you should hear a full rhythm

section that uses only one Amiga voice for each note. If you want

to add more voices to the score, you can add three more staffs and

enter a part using a different instrument in each of the staffs. For

example, you could have a lead guitar line in the sixth staff, a sax

line in the seventh staff, and a piano line in the eighth staff.

Amiga Music Tools

203

As you enter notes for these new voices (or for that matter any

score with four voices), be careful where you use chords. You can

use up the Amiga's voices quickly, and this may leave some notes

unplayed. For example, if you put a three-note chord in the piano

voice at the same moment that the other three voices are playing

notes, you have a total of six simultaneous notes- Since Deluxe

Music can play only four of those notes on the Amiga, two of the

notes won't be played.

To make sure important instruments are played in case of too

many simultaneous notes in a score, you can use a louder dynamic

marking for the staff you want to be heard. Deluxe Music will

always play the notes in a staff set with a higher dynamic before it

plays notes in a staff set to a lower dynamic. For example, if you

have five different staffs playing notes at the same time, and the

staffs are set at pp, mp, mf, f, and ff, then Deluxe Music will play

only the notes on the four loudest staffs; it won't play the notes in

the staff set at pp. By setting one staff slightly louder than the

others, at f, for instance, while all the others are set at mf, you can

ensure that staff will always be heard, even if it isn't significantly

louder than the other staffs.

Handling 64th notes

Deluxe Music gives you a wide range of note lengths: You have

six basic notes that you can combine with dots and triplet and

quintuplet markings to come up with a total of 36 different notes.

(Of course, some of these, like quintuplet dotted half notes, are just

a wee bit esoteric.) With all these available notes, it is still possible

to exceed Deluxe Music's note values: One of these days you'll be

copying a score into Deluxe Music, and 145 measures into the score

you'll come to a screeching halt at a quick run of 64th notes. Then

what will you do?

There is a simple solution. It centers around the fact that note

lengths are purely relative; they have no fixed duration. For

example, if you enter a score with quarter notes and eighth notes

and play the score back at a tempo of 60 beats per minute, the

quarter notes will each last exactly one second, and the eighth

notes will each last exactly one half second. If you change the

tempo to 120 beats per minute, though, each quarter note will last

exactly one half second, and each eighth note will last exactly one

SECTION 3: SOUNDS

204

fourth second. The note durations are entirely flexible, and depend

on the tempo at which you play the music. The relative lengths of

the notes are fixed, however: A quarter note is always twice as

long as an eight note, a half note is always twice as long as a

quarter note, and so on.

As you enter music using different note lengths, you aren't

actually entering a series of time durations, you're entering a series

of relative lengths—this note is twice as long as this one, this note

is a third as long as this one—-and so on throughout the whole

score. It doesn't actually matter what notes you use, the only thing

that matters is how long the notes are in relation to each other.

When you want to copy a run of 64th notes from printed music,

you won't be able to find notes in Deluxe Musics note palette that

are half as long as the 32nd notes in the score. You can make the

proportions work out, however, by making all the other notes in the

score twice as long and then entering the run as 32nd notes. Try

this example:

1. Create a new score and set it to 6/8 time in C major.

2. Enter the notes of the music in Figure 8-4 until you reach the

64th notes at the end of the second measure.

Figure 8-4.

Music with a run of

64th notes.

To accommodate the 64th notes, you must double the length

of all the other notes in the score. Choose Select All from the

Edit menu to select the entire score. Choose Double Time from

the Notes menu. This doubles the length of all the notes in

the score (eighth notes become quarter notes, and so forth),

but the notes in the last half of each measure are shaded, be

cause the Double Time command has no effect on the length of

the measures themselves. Deluxe Music shades these notes

to indicate that they no longer fit within the time signature in

effect for that measure.

Amiga Music Tools

205

4. To accommodate the new note lengths, you'll have to double

the time signature of the measures. Select the first measure

of the score, then reset the time signature to 6/4 time using

the Set Time Signature... command in the Measures menu.

5. Enter the 64th notes as 32nd notes at the end of the last

measure. If you play back the score now, all the notes will

have the same relative length to each other, but the note

values themselves have been doubled, so the playback tempo

is half as fast as it was previously.

6. Double the playback tempo of the score by choosing Score

Setup from the Window menu and using the Beats per Min slider

to double the beats per minute of the current tempo setting.

When you're finished, you can apply the new tempo to the

first measure of the score by selecting the measure and

choosing Set Tempo from the Measures menu.

Now when you play back the score, it sounds just like it would

if you had entered it the way it was wiitten and played it at the

original tempo. You have entered the score using 32nd notes to

produce the rhythm that was originally written in 64th notes.

If you go on to enter more notes in a score in which you've

doubled the tempo, be sure to double all the note and rest lengths

as you enter them from the printed score. As a shortcut, you can

enter the notes and rests as they are written, then select them and

double them with the Double Time command.

Whenever you use this method while entering scores, be sure to

double the time signature of all the measures in the score. If you

have time-signature changes within the score, doubling just the

first time signature won't affect the measures with the time-

signature changes, so you have to double each changed measure

individually. To double a time signature, it's easiest just to halve the

number at the bottom of the time signature. For example, 4/4 time

doubled is 4/2, 3/8 doubled is 3/4. If you can't halve the bottom

number, then you can double the top number. For example, 3/1

doubled is 6/1.

USING DELUXE MUSIC WITH MIDI

One handy feature of Deluxe Music is that you can use it with

an external MIDI synthesizer to expand the number of instruments

that can play at one time in your scores. To set up a score to play

using a MIDI synthesizer, you use the Set Instrument command in the

Measures menu very much like you would to set an Amiga

instrument.

SECTION 3: SOUNDS

206

To use one or several MIDI synthesizers with Deluxe Music,

you must first connect them to the Amiga with a MIDI adaptor.

Connect the first (or only) synthesizer by running a MIDI cable from

its MIDI Out port to the MIDI adaptor's MIDI In port, and running

another cable from the adaptor's MIDI Out port to the synthesizer's

MIDI In port. To connect additional synthesizers, run a cable from

the first synthesizer's MIDI Thru port to the second synthesizer's

MIDI In port, another cable from the second synthesizers MIDI Thru

port to the third synthesizer's MIDI In port, and so on until you have

all the synthesizers connected. Examples of these connections,

along with a more detailed explanation of MIDI, can be found at the

end of Chapter 7.

You must set up each synthesizer so it receives MIDI messages

on its own MIDI channel (unless you use just one synthesizer). You'll

have to do some reading through the synthesizers' users manuals

to see how to set the incoming MIDI channel. If you can't set a

synthesizer's incoming MIDI channel, chances are the synthesizer

receives messages on MIDI channel 1.

Once you have the connections made, you can turn on the

synthesizers and use them with Deluxe Music. If you want to play

part of the score through the synthesizer, first set up MIDI using

commands in the Sounds menu:

1. Choose the MIDI Active command to load the MIDI driver from

the Deluxe Music disk into the Amiga's memory.

2. Use the MIDI Channel,.. command to choose any one of the

16 MIDI channels that you want to use. Since you have the

connected synthesizers all set to different channels, you can

pick which synthesizer you want to play by choosing its

channel.

3. Choose the MIDI Setup... command to open a requester where

you can choose a preset number. Presets on a synthesizer are

the different built-in instrumental sounds the synthesizer can

play. You've probably played with an electric organ where you

could push buttons to get "Trumpet," "Flute," and other

sounds—these are examples of presets. MIDI synthesizers

usually number their presets so you can choose them by

remote control using a preset number. Again, you'll have to

delve into the contents of your synthesizer's users manual to

find out what these numbers are. Once you know them, you

can choose a preset number in this requester using the MIDI

Preset Number slider to get the sound you want from the

synthesizer. Choose OK to close the requester.

Amiga Music Tools

207

Now that the MIDI connection is set up for the specific sound

you want on a specific synthesizer, you put the setting in your

score the same way you choose an instrument:

1. Select the measure where you want the synthesizer to start

playing.

2. Choose the Set Instrument command from the Measures menu.

The MIDI setting that you last set up appears above the

measure.

You can change synthesizers and synthesizer presets at any

point in a score by first changing the MIDI setting in the Sounds

menu and then using the Set Instrument command just as you do to

change an instrument in a score.

SOME DELUXE MUSIC TIPS

Here are a few tips you can try to make entering scores in

Deluxe Music much easier.

Mark your printed scores

If you enter music from printed scores, invest in a set of colored

pencils. Before you start using Deluxe Music, go through the score

first and number each measure if they're not already numbered. Go

through again, and mark which notes you want to play with

different instruments. If you use a different colored pencil for each

instrument, it will be easier to see where each instrument is

playing, where notes get mixed together on the page, and where

each new instrument comes in.

As you enter the score in Deluxe Music, you can match the

measure numbers in the Deluxe Music score to the measure

numbers on the printed page to make sure you're entering music

from the right spot. Of course, if you split measures for ritardandos

and other effects, you may find your measure numbers off a bit. You

can avoid that by marking the measure splits on your printed score

before you number the measures. You can use the instrument

markings you made in the printed score to help you enter notes in

the correct Deluxe Music staff. Assign one color to each staff you

want to use, then enter only the notes you marked in that color to

the staff.

SECTION 3: SOUNDS

208

Use keyboard shortcuts

Since the note palette is displayed on the screen in plain sight,

it's easy to forget that you often don't need to use it. Deluxe Music

lets you use keyboard shortcuts instead to choose the length of

note you want to enter in a score. Read about the shortcuts in the

manual and use them! They make life much easier. As musical

inspiration is flowing through your head and you're getting into the

swing of entering a melody on a staff, it's much easier to quickly

press a function key with your non-mouse hand to choose a new

note value than it is to move the pointer all the way to the side of

the screen, select a new note, and then try to find your staff

location and inspiration a second time.

MAKING A CASSETTE RECORDING USING

DELUXE MUSIC

To make a cassette recording of your music, all you have to do is

connect your Amiga to the cassette recorder, start the recorder, and

then start the music playing. Here are the details you'll need to

make a recording using Deluxe Music.

The easiest cable to use for connecting the Amiga to the re

corder is a stereo patch cord, which has two phono plugs on each

end, and carries two separate signals from the Amiga to the cas

sette recorder. To connect the cable, plug the two plugs on one end

of the patch cable into the two audio jacks labeled with the speaker

icons on the back of the Amiga's console. Note which colored plug

goes into which audio jack; as you face the back of the Amiga, the

jack on your right is the left stereo channel, the jack on the left is

the right stereo channel. (If this seems topsy-turvy, consider that

when you face the Amiga console from the front, the left port is

then on the left, and the right port is on the right.)

On the back of the cassette recorder are two jacks probably

labeled either REC IN or LINE IN, each with either an R for right or

an L for left- Plug the appropriate colored plug into these two jacks

so you match the left and right Amiga channels to the left and

right channels of the recorder. That's all there is to it.

To record your music, follow these steps:

1. Load Deluxe Music and the score you want to record.

2. To set the recording levels on your cassette recorder, find the

spot in your musical score with the loudest music. Set this

section of music so you can use it with Repeat Play, then play

it over and over again. While the section plays, you can

Amiga Music Tools

209

adjust the volume to the maximum level your recorder can

handle without distorting. Stop the score playback when

you're finished.

3. When you're ready to record, make sure your cassette is

rewound to the tape location where you want to start

recording. If you're starting at the beginning of a cassette,

make sure you advance the tape far enough to get past the

leader of the cassette, so the beginning of your music isn't

chopped off.

4. To start recording, press the Record key (or keys) on your

cassette recorder, then use the Play Song command to start

the score. When the score is finished, stop the recording by

pressing the Stop key on the cassette recorder.

SPECIAL EFFECTS USING THE TASCAM MINISTUDIO

PORTA ONE

When you use a recorder connected directly to the Amiga, you

record just what the Amiga puts out through its audio ports: voices

A and D coming from the left channel and voices B and C coming

from the right channel with no imaging. If you want to keep the

voices from sounding so separate, and would like to be able to re

cord more than four voices playing at once, you can use a recorder

like the Tascam Ministudio Porta One recorder.

The Porta One is a portable cassette recorder that records on

cassettes using four tracks instead of the two you normally get

with a stereo cassette recorder. It has a built-in mixing panel you

can use to record the left and right signals of the Amiga on any

of the four channels, or combinations of the channels. The Porta

One mixing panel lets you control the volumes of each individual

recording channel, and also lets you pan the sound between chan

nels so you can blend the two distinct left and right channels

coming from the Amiga. You can also use the pan controls as you

record to make one of the channels coming from the Amiga seem

to move from left to right.

With four available channels on the Porta One, you can record

two Amiga scores on the same tape and play them back in stereo

simultaneously For example, if you want to record an eight-voice

composition using just the Amiga, (something like a Beethoven

symphony arrangement), you can enter four of the voices as one

Deluxe Music score named BeethovenA and the other four voices

as a second score named BeethovenB. You can then record

SECTION 3: SOUNDS

210

BeethovenA in stereo on tracks 1 and 2. When you're finished, you

can rewind the tape and start recording BeethovenB alongside

BeethovenA on tracks 3 and 4. When you play back the recording,

you can hear both scores playing together simultaneously in the full

eight-voice composition.

The Porta One also offers overdubbmg: This means that you

can mix the contents of any tape track already recorded with the

contents of another recorded track and record the mixture to a third

track, or you can mix one track with a new signal coming in, and

record the combination to a second track. In theory, this means

that you can keep overdubbmg to add an infinite number of voices

to the recording. For example, you can use overdubbmg with your

Amiga to create a recording of all of the 50 or so voices you'd need

to recreate Stravinsky's "Rite of Spring" accurately. In practice,

each overdub deteriorates the quality of the recording a little, so too

many levels of overdubs can make the recording sound hissy and

indistinct. The Porta One has an excellent noise-reduction system

that lets you perform several levels of dubs, though, enough to

record over 40 Amiga voices without too much distortion.

SYNCHRONIZING AMIGA SCORES

If you use a mixer or overdubbing to combine Deluxe Music

scores, or if you and another Amiga owner get your computers

together to perform, it's important to make sure the scores start

playing at exactly the same time, or you'll go crazy listening to

notes that don't start at quite the same time throughout the whole

score. The best way to accomplish this is to create a "lead-in" for

one of the scores—a set of beats before the score starts playing so

that you can get the tempo and know exactly where to start the

second score.

To create a lead-in for a score, insert one or two measures of an

instrument playing every beat at the beginning of the score. For

example, in a 4/4 score, you might add two measures of quarter

notes at the beginning of the score as a lead-in, with a percussive

instrument like a snare drum beating each note. Then, when you

play the score back, you'll hear eight snare-drum beats lead into

Amiga Music Tools

211

the beginning of the music in the score. You can synchronize a

second score to this by starting the second score at the exact spot

where you think the ninth snare drum beat would fall: The two

scores should start simultaneously. This takes some practice and

attentive Listening to get it just right, but if you're recording the

results, the tape recorder won't mind if you stop and start over

again when you miss the beat.

OTHER AVAILABLE MUSIC SOFTWARE

There are a variety of other music programs for the Amiga

besides Deluxe Music that provide entirely different features and

abilities. Some of these programs might have just the features you

need to make the kind of music you want.

INSTANT MUSIC

Instant Music is a simple but enjoyable music program from

Electronic Arts. It's perfect for music dabblers. You can enter scores

up to 64 measures long on Instant Music using sampled sound

instruments included on the disk, and can play them back at dif

ferent speeds. Instead of using traditional notation, the scores are

laid out as a graph of pitch and time, which can be a real advan

tage if you don't read music as you can simply draw in voices on

the graph using the mouse and the pointer.

Instant Music also lets you perform music with a feature called

"mousejam." Using mousejam, instant Music plays higher and

lower pitches as you move the mouse pointer up and down. You

can play a score and use mousejam as accompaniment. You can

also limit the notes and rhythms you play with mousejam so that

no matter where you move the pointer, the notes you play will

sound good with the accompanying score.

SOUNDSCAPE

SoundScape is a music program from Mimetics Corporation that

is actually a lot of programs in one package. It can perform a range

of music tasks that make it useful to many different kinds of users,

including neophyte musicians who want to play their Amiga as a

SECTION 3: SOUNDS

212

musical instrument, advanced musicians who want to tie banks

of synthesizers together to create sophisticated music, and ad

vanced programmers who want an easy way to add music to

their programs.

The heart of SoundScape is a music operating system that

specializes in handling music data and running music programs.

When you first load SoundScape, the music operating system

integrates itself with the Amiga operating system so they work

together simultaneously. The music operating system contains

many routines to create and play scores, handle waveform tables,

and create music much like the Amiga operating system's devices

and libraries take care of graphics, text, math operations, and other

functions. These routines make full use of the sound software in the

Amiga's operating system.

Advanced programmers can use SoundScape's music operating

system as an extended version of the Amiga's operating system to

create music without doing all the programming themselves. Since

SoundScape's music routines run simultaneously with other Amiga

programs, a programmer creating an education application, for ex

ample, can feed SoundScape some simple information about the

music that he wants in his program, and SoundScape will play

the music in the background while the education program runs.

For non-programmers, SoundScape comes with its own pro

grams that use the music operating system. When you first load

SoundScape, the music operating system is loaded, then several

windows open on the monitor screen. Each window contains its

own program. These programs all run simultaneously, and they

work together so you can create some impressive music with them.

One of the simplest SoundScape programs lets you play the

Amiga's keyboard like a musical instrument. Another simple pro

gram is a MIDI clock, a fancy sort of metronome that ticks out time

in different tempos and subdivisions so that MIDI instruments

and programs connected to it are synchronized by its signals.

Another very useful and enjoyable SoundScape program is the

sampled sound editor. It lets you alter sampled sound instruments

from the Mimetics SoundScape sound sampler (discussed later in

this chapter) or from other programs like Instant Music or Deluxe

Music. You can use the editor to select which portion of the sound

to use as the sustain loop, set the amplitude envelope of the

instrument, and transpose the sound to new octaves, among other

things. When you're finished, the editor saves the new or revised

sampled sound instruments to disk so you can use them with the

other SoundScape programs or other music application programs.

Amiga Music Tools

213

The most extensive of SoundScape's programs is the MIDI

recorder. It records notes and other performance events played on

synthesizers attached to the Amiga through a MIDI adaptor or on

the Amiga's own keyboard. The recorder has an unlimited number

of tracks in its memory. You can record music on each track, and

later mix the notes on individual tracks together on one track, or

play back any combination of tracks through the MIDI adaptor or

the Amiga's own audio channels. The MIDI recorder can receive or

transmit on 16 different MIDI channels, so you can use it to record

and control up to 16 MIDI devices at a time. The MIDI recorder also

includes an editor that lets you look at the information recorded on

any track, change it to correct any mistakes you made while

playing the music, or add new notes.

Another SoundScape program, the mixing panel, controls all

the other programs that run with it. It lets you connect any of the

other SoundScape programs and MIDI channels with any other

SoundScape program or MIDI channel. This gives you a wide range

of possibilities. For example, you can use the Amiga's keyboard to

record your performance on the MIDI recorder. Or you can connect

the MIDI In signals to the Amiga itself so you can play the sampled

sound instruments stored in the Amiga using the keyboard of an

attached synthesizer. The possibilities offered by the mixing panel

are numerous enough to keep you occupied for months at least, and

when you consider that the modular nature of SoundScape makes it

easy to add other programs to it, the possibilities become limitless.

THE IFF MUSIC STANDARD

You'll recall from Chapter 3 that Electronic Arts and Commodore-

Amiga created the IFF standard to make it easy to transfer data

from one program to another program. The IFF graphics standard

lets you transfer pictures between programs like Deluxe Paint and

Aegis Images. There are also IFF standards that apply to music:

one for musical scores, and another for sampled sound instruments.

If a program uses the IFF standard to save scores and instru

ments, then you can exchange scores and instruments between

programs that conform to the IFF standard. As an example,

SoundScape and the SoundScape sound sampler both save in

struments using the IFF standard, so any instruments you create

with these programs can also be used with Deluxe Music and

Instant Music.

SECTION 3: SOUNDS

214

ADDITIONAL SOUND HARDWARE FOR THE AMIGA

Just as you can add hardware to the Amiga to enhance its

graphics, you can also add sound hardware to make your Amiga

sound better and increase its music-making capabilities. The

following sections describe some of the hardware you can add,

ranging from external speakers to a network of external

synthesizers.

SPEAKERS

The speaker in most computer monitors is no better than the

tiny (and tinny) speaker in the average television set. If you've ever

listened to the garbled sound of music coming from an average TV

set, then you know why it pays to add some high-fidelity speakers

to your Amiga system if you plan to use it for any kind of music at

all and want to take advantage of its superior multi-voice sound

capabilities.

Using a stereo system

If you own a good stereo system, you can connect your Amiga

to the system's amplifier to hear the Amiga through the stereo

speakers. It's no more difficult than connecting a cassette deck to

the amplifier because the Amiga puts out a line-level audio

signal—the same signal strength used by most cassette decks.

To connect your Amiga to a stereo system, first turn off both the

Amiga and the stereo system. Use stereo patch cables to connect

the Amiga's audio ports to a pair of stereo inputs on the back of

your amplifier, just as you would connect the Amiga to a cassette

deck. The inputs you use on your amplifier could be any inputs

labeled for a tape deck, a compact disc player, a videotape player,

or other auxiliary device. The only input that you should avoid is an

input for a phonograph player; it expects a much weaker signal

than the Amiga puts out, will distort the sound of the Amiga, and

may even blow out your speakers if you turn up your amplifier's

volume too high.

Amiga Music Tools

215

After the connection is made, turn on the power to both

systems, load your music program, then play a score. Turn up the

volume of the stereo system slowly. If the speakers blare out when

you've barely cracked the volume, then you know the Amiga's

signal is too strong. Repeat the connection process and try another

pair of inputs.

Self-powered speakers

If you don't have a stereo system you want to use with your

Amiga, you might consider buying a pair of self-powered speakers

that contain their own amplifiers. Self-powered speakers don't have

to be part of a larger sound system—you just hook them up

directly to the Amiga's audio ports and turn them on. Most self-

powered speakers are also small, and can fit on your desk on each

side of the Amiga for good stereo separation.

The most common type of self-powered speakers are the small

speakers designed to work with very small, portable cassette

players. Unfortunately, most of these speakers won't work with the

Amiga because they're designed to use the signal from the head

phone jack of the cassette player, which has already been ampli

fied by the player so that it's stronger than a line-level signal.

Speakers designed to use just a headphone signal don't have

enough amplification power to work well with the Amiga.

Some self-powered speakers are designed to work with syn

thesizers. They use a line-level input, have plenty of amplification,

and usually have good sound. A good example of this kind of

speaker is the Casio AS-20 speaker. It has a built-in graphic

equalizer and chorus knobs that let you jazz up the sound, a

headphone jack, and two separate inputs.

Shopping for speakers

When you go shopping for a pair of speakers for your Amiga,

you'll want to check them out without dragging your Amiga from

store to store. Ask the sales clerk to demonstrate the speakers by

connecting them to a cassette deck or compact disc player. Make

sure he doesn't connect the speakers to the headphone jack of the

deck or player, but to the line-out jacks. Since cassette decks and

compact disc players put out the same strength signal as the

Amiga, the speakers that work with them should also work with

your Amiga.

SECTION 3: SOUNDS

216

Portable cassette players

Another way to get good sound from your Amiga is to use a

battery-powered portable cassette player with an amplifier and

stereo speakers built in. Many of these players have jacks for a line-

level input where you can plug in the Amiga. Portable cassette

players have an added advantage: You can also use them to record

your Amiga music.

SOUND SAMPLERS

Some of the best-sounding instruments in the music application

software mentioned here are sampled sound instruments. They

were created with a sound sampler (sometimes called an audio

digitizer), a device that converts analog signals from a microphone,

tape deck, or other sound source into a digital waveform table.

If you want to create your own sampled sound instruments, you

can buy a sound sampler and start collecting sounds. Several are

made to work with the Amiga. Some have their own built-in

microphones; some take stereo sound samples. One important

feature to look for is accompanying software that defines your

sound samples and saves them to disk as sampled sound

instruments.

One of the best (and most inexpensive) samplers available is the

SoundScape sound sampler from Mimetics Corporation. It's a small

stereo sampler that plugs into the second joystick port of the

Amiga, which is an advantage over sound samplers that plug into

the Amiga's expansion connector and block it so you can't add

other peripherals without removing the sampler. It doesn't have a

built-in microphone, but has a microphone jack and a set of stereo

line-level jacks so that you can use your own microphone or other

sound source.

The SoundScape sound sampler comes with software that lets

you create a waveform table with the sampler, edit it, and then save

it to disk. It uses the same sampled sound editor included with the

SoundScape program described in the software section of this

chapter. The software also lets you control the Amiga via a MIDI

adaptor so you can play the Amiga and its sampled sounds with an

attached external synthesizer.

Amiga Music Tools

217

THE MIDI ADAPTOR

As you recall from the last chapter, MIDI is a synthesizer industry

standard that lets synthesizers exchange music information. To

change the signals coming from the Amiga to a MIDI signal, you

need to attach a MIDI adaptor to the serial port. Several companies

market MIDI adaptors for the Amiga.

Any MIDI adaptor you get should plug directly into the Amiga

serial port and should have all three MIDI connections on it: MIDI In,

MIDI Out, and MIDI Thru. Watch for bargains: Some software

companies may include a MIDI adaptor with their MIDI programs,

others may have a great price on the MIDI adaptor alone.

EXTERNAL MIDI SYNTHESIZERS

Once you have a MIDI adaptor on your Amiga, you can add up to

16 different synthesizers and other musical devices that have MIDI

interfaces. If you plan to connect a synthesizer to the Amiga to use

with MIDI recorder software, the synthesizer should at least have

MIDI In and MIDI Out jacks to send information to and from the

MIDI recorder software on the Amiga. If you want to connect more

than one synthesizer to the Amiga, then you should make sure that

the synthesizers also have a MIDI Thru jack.

You can find a wide variety of MIDI synthesizers, ranging from

professional synthesizers that cost tens of thousands of dollars to

"toy" synthesizers that cost only a few hundred dollars. One of the

best synthesizers available in a low price range is the Casio CZ-101

synthesizer.

The CZ-101 is a full-featured digital synthesizer It has a set of 32

different instruments stored in its own memory, and it provides you

with the controls to design your own instruments that you can

store in small non-volatile RAM cartridges that plug into the back

of the CZ-101.

The CZ-101 has a four-octave keyboard that plays up to eight

notes at a time, and a pitch wheel that lets you bend the pitch of

any note up and down as you play it. Unfortunately, the keyboard is

smaller than a standard keyboard, and can be hard to play if you're

used to a standard keyboard. Another synthesizer to consider is the

Casio CZ-1000, which is identical in all respects to the CZ-101, but

has a full-size keyboard and a higher price.

The CZ-101 has MIDI In and MIDI Out ports, so you can use it

with Amiga MIDI recorder software. In addition, it has two MIDI

modes that make it valuable in use with a MIDI recorder: You can

use the CZ-101 as a single synthesizer playing up to eight notes

simultaneously on one MIDI channel, or you can use it in a special

mode to make the CZ-101 work like four separate synthesizers on

four individual MIDI channels.

SECTION 3: SOUNDS

218

In the special mode, the CZ-101 lets you choose four different

instruments from its memory, one for each of four MIDI channels.

Each instrument is monophonic—that is, it only plays back one

note at a time. It can't play back chords. To use the special mode,

an Amiga MIDI recorder can send signals through the four different

channels to play a four-part score using four individual instruments.

(Since all 16 MIDI channels come through a single cable, you only

need a single MIDI In connection-) Most synthesizers don't let you

use more than one instrument at a time, so you gain guite a bit of

versatility using the CZ-101.

You've had a chance now to use some tricks to enter

Deluxe Music scores. You've also seen some of the addi

tional software and hardware that can open up some new

musical worlds to you as an Amiga user. In the next chap

ter, you'll learn how to use Amiga BASIC sound state

ments to make music or to synthesize speech.

Amiga Music Tools

219

CHAPTER NINE

AMIGA BASIC

SOUND: MUSIC AND

SPEECH

Amiga BASIC doesn't have nearly as many statements

and functions that deal with sound as statements and

functions that deal with graphics: There are a total of six

sound statements if you count BEEP (which many people

don't), and one sound function. But don't let their numbers

fool you. Amiga BASIC sound statements are powerful, and

capable of a wide variety of effects.

This chapter deals with two kinds of sound statements:

statements that create music and sound effects, and state

ments (well, actually a statement and a function) that

create speech. In addition to explaining how these state

ments work, this chapter also shows you how to use the

statements in larger programs, and how to create musical

scales and play back musical scores.

THE BEEP STATEMENT

The BEEP statement is an easy introduction to sound on the

Amiga—it's very simple. It uses this format:

BEEP

When your program executes BEEP, it flashes the entire screen

briefly, using inverse colors, and makes a short beep using the

monitor speaker. The signal for the beep comes from the left audio

port in the back of the Amiga console. It's pitched at A880, two A's

above middle C on the piano. The beep uses whatever waveform is

in audio channel 0, so you can change its timbre with the WAVE

statement. (You can find out more about audio channels in the

description of SOUND, and more about changing timbres in

the description of WAVE later in this chapter.)

Since you can't change the length or pitch of BEEP's beep,

BEEP isn't often used for music or sound effects. It is more com

monly used as a prompt at the end of a long BASIC task to let the

user know the task is finished. BEEP can call you back in from

another room so you don't have to pace back and forth in front

of the Amiga.

SECTION 3: SOUNDS

222

THE SOUND STATEMENT

SOUND plays a note or a rest, and controls three sound attri

butes: pitch, duration, and volume. It also controls which audio

channel a note will play from. It uses this format:

SOUND frequency, duration, volume, audio channel

The frequency can be any number from 20 to 15000. It specifies the

number of cycles per second (cps), which sets the pitch of the

note. The duration is any number from 0 to 77; it sets the length

of the note from no length at all (0) to a note that lasts 4.23 seconds

(77). The volume is a number from 0 to 255. Using 0 provides no

volume at all (silence), and 255 is the loudest possible volume. The

audio channel is an integer from 0 to 3 that assigns the note to

the audio channel of the same number.

The values for volume and audio channel are optional. If you

leave them out of the SOUND statement, the note will have a default

volume of 127 (halfway between silence and full volume), and it will

play on audio channel 0, through the left audio port.

SETTING THE FREQUENCY

If you're familiar with pitches measured in cycles per second,

then setting the pitch of a note created by the SOUND statement is

very straightforward. You just enter the frequency of the pitch you

want. If, like most people, you are more familiar with pitch names

like A, B, C, D, E, F, and G, then a quick look at how frequency is

related to pitch will help you understand how to set the pitch for

the note you want.

To describe pitches in different octaves, pitch names tradi

tionally have a subscript numbered from 0 to 10 to show the octave

in which the pitch falls. Therefore, Eo is the E in octave number 0.

the lowest octave, and Bbin is the Br» in the 10th octave, the highest

octave. Don't confuse this Amiga BASIC system with systems used

to describe pitch names in music application programs, where the

octave numbers sometimes start at a higher octave and can't

describe pitches as high and as low as you are reading about in

this chapter.

The range of frequencies you can use with the SOUND statement

is 20 cps to 15000 cps. That is a range from Eo (the third E below the

bottom of the bass clef) to Bb9 (the fifth Bb above the treble clef), a

range of about eight and a half octaves. Compare that to the range

of a piano, which is six and a half octaves.

To get an idea of how the frequencies relate to specific pitches,

consider some familiar examples. The C in the middle of the piano

keyboard, usually called middle C, is C4 and has a frequency of

Amiga BASIC Sound: Music and Speech

223

Figure 9-1

A list of pitches and their

frequencies that can be

used with the SOUND

statement

26163 cps. The A above that is A4, the note that orchestras use to

tune. Musicians know it as A440, so it's not surprising that its

frequency is 440 cps.

Pitch Frequency

a

A,

cc.

G«a

AC,

C

Dtt.

FC2

G2

G»,

Pitch Frequency Pitch Frequency

20.602

21.827

23.125

24.500

25.957

27.500

29.13

32.703

34.648

36.708

38.891

41.203

43.654

46.249

48.999

51.913

55.000

58.270

61.735

65.406

69.296

73.416

77.782

82.407

87307

92.499

97.999

103.83

110.00

116.54

123.47

130.81

138.59

146.83

155.56

164.81

174.61

185.00

D

G4

A,

B

D«

6

DJJ

Gtt,

AK

196.00

20765

220.00

233.08

246.94

261.63

277.185

293.66

311.13

329.63

349.23

369.99

392.00

415.30

440.00

466.16

493.88

523.25

554.37

587.33

622.25

659.26

698.46

739.99

783.99

830.61

880.00

932.33

98777

1046.5

1108.7

1174.7

1244.5

1318.5

1396.9

1480.0

1568.0

1661.2

1760.0

A9

1864.7

1975.5

c7

c#7

D7

E7?
F7

G7?

A7?

B7?
c8

D8

E8

F8

Gg

GJIg

Ag

A#g

B8

2093.0

2217.5

2349.3

2489.0

2637.0

2793.8

2960.0

3136.0

3322.4

3520.0

3729.3

3951.1

4186.0

4434.9

4698.6

4978.0

5274.0

5587.7

5919.9

6271.9

6644.9

7040.0

7458.6

7902.1

8372.0

8869.8

9397.3

9956.1

10548.1

11175.3

11839.8

12543.9

13289.8

14080.0

149172

SECTION 3: SOUNDS

224

If you double the frequency of a pitch, you get a pitch one octave

higher. If you halve the frequency, you get a pitch one octave lower.

For example, if you double A4's frequency of 440 cps, you get 880

cps, which is A5, an A one octave higher. 220 cps, half of 440 cps, is

A3, an A one octave lower than An.

Figure 9-1 gives you a list of the pitches SOUND can create,

followed by their frequencies. This list of pitches is a tempered

scale, a standard used by most musicians, and is tuned so that A4

is at 440 cps.

To be able to hear all these pitches, you need to connect your

Amiga to a good audio system. If you use only the Amiga's monitor

speaker to produce sounds, you probably won't be able to hear any

pitches under 100 cps or over 8000 cps unless you change the

waveform of the pitch with the WAVE statement (discussed later in

this chapter).

SETTING THE DURATION

The duration value of the SOUND statement can be any number

from 0 to 77. The larger the number, the longer the note lasts. A

value of 0 means the note has no length. A value of 1 makes the

note last a little more than 1/20 of a second. A value of 18.2 makes

the note last exactly one second, and the maximum value of 77

makes the note last about 4.23 seconds. For example, this

statement plays an A440 for one second:

SOUND 440, 18.2

If you figure out the length in seconds of the note you want to

sound, you can multiply it by 18.2 to come up with the duration

value to use in the SOUND statement. For example, a^-second

sound would use 9.1 as its duration value. To make a sound last

longer than 4.23 seconds, you can use two or more SOUND state

ments with the same pitch, volume, and audio channel values,

one after the other. They will run together to create one long note.

For example, these two statements play one F4 that lasts for seven

seconds:

SOUND 349.23, 72.8

SOUND 349.23, 54.G

The first SOUND statement plays a 4-second note, the second

SOUND statement plays a 3-second note. (Since no volume or audio

channel is specified in the statements, the notes both have

a default volume of 127 and play on audio channel 0.)

Amiga BASIC Sound: Music and Speech

225

SETTING THE VOLUME

Choosing a SOUND volume is a simple matter of choosing a

number from 0 to 255. If you choose 0, you won't be able to hear the

note you set, so it doesn't matter what frequency you specified. The

silence will last as long as the duration you set, so you can use 0

volume to create a rest. For example, the middle SOUND statement

below puts a /?.-second rest in between two surrounding notes that

play at full volume:

SOUND 140, 18.2, 255

SOUND 440, 9.1, 0

SDUND 392, 18.2, 255

You can use volume values between 0 and 255 to play a note

at different volumes. Just remember that the volume you set is

affected by the volume control on your monitor or stereo system.

If you turn the volume control down to half of its previous volume,

all the notes created with the SOUND statement will be halved

in volume.

CHOOSING AN AUDIO CHANNEL

You can choose any one of the Amiga's four internal audio chan

nels to play a note created with a SOUND statement. By using four

different SOUND statements, one for each channel, you can sound

four notes simultaneously. For example, these four SOUND state

ments play a C major chord:

SOUND 261.63, 20, 255, 0

SOUND 329.63, 20, 255, 1

SOUND 392, 20, 255, 2

SDUND 523.25, 20, 255, 3

The outputs of the four internal audio channels are mixed

together before they are passed through the two audio ports on

the back of the console to an outside speaker. Channels 0 and 3

come out of the left audio port, and channels 1 and 2 come out of

the right audio port. If you have stereo speakers attached to your

Amiga, you can make a note sound in either the left or right

speaker by choosing the appropriate audio channel in the

SOUND statement.

Each internal audio channel has its own waveform that deter

mines the timbre of the notes created with the SOUND statement

SECTION 3: SOUNDS

226

on that channel. You can change the waveform with the WAVE

statement, discussed later in this chapter. If you set different

waveforms for each of the audio channels, then you can choose the

timbre of the note a SOUND statement plays by specifying the audio

channel with the waveform you want.

SYNCHRONIZING SOUNDS

As you've seen in the previous example, it's possible to produce

notes from the four internal audio channels simultaneously by using

four SOUND statements. It can be difficult to make all four notes

start at exactly the same time, however, if you have entered any

other BASIC statements m between the SOUND statements. Since

Amiga BASIC steps through the statements one at a time, there can

be a delay between SOUND statements, which can throw the

individual notes out of sync. Amiga BASIC has two statements that

help you synchronize notes: SOUND WAIT and SOUND RESUME.

THE SOUND WAIT AND SOUND RESUME STATEMENTS

SOUND WAIT is used along with SOUND RESUME to synchronize

the Amiga's audio channels so they start playing notes at exactly

the same time. This ensures that notes in multiple-voice music will

play together without the risk of one voice getting off from the beat.

SOUND WAIT prevents sounds generated by the SOUND statement

from going to the speaker—instead, the sounds are held in a

"queue," which can be thought of as a holding tank in the Amiga's

memory. Each audio channel has its own queue that it uses to

store up to twelve notes and rests. A single SOUND WAIT statement

starts all four queues working. If you attempt to store more than

twelve notes and rests in a channel's queue (twelve SOUND state

ments sent to one channel), you will get an out-of-memory error.

SOUND WAIT uses this simple format:

SOUND WAIT

When Amiga BASIC encounters this statement, any sounds

created by subsequent SOUND statements are held in the queues

until you release them with a SOUND RESUME statement. SOUND

RESUME sends the contents of the queues to the speakers at

exactly the same time, simultaneously sounding all the voices

Amiga BASIC Sound: Music and Speech

227

through the speakers. The queues are cleared as the stored notes

are played. The format of SOUND RESUME is simply:

SOUND RESUME

To see how SOUND WAIT and SOUND RESUME work, try the

following program. It creates five notes for each of three audio

channels: channel 0, channel 1, and channel 2. There is a loop just

after the SOUND statements for channel 1 that extends the length of

time the program takes to get to the channel 2 SOUND statements.

This makes it easy to hear a time lag between voices. There is also

an infinite loop at the end of the program to keep the List window

from appearing. If a window appears while notes are playing, it can

delay one of the audio channels and ruin the synchronization of the

four voices.

First enter and run this program without typing in the SOUND

WAIT and SOUND RESUME statements shown:

SOUND

SOUND

SOUND

SOUND

SOUND

SOUND

SOUND

SOUND

SOUND

SOUND

SOUND

FOR t

SOUND

SOUND

SOUND

SOUND

SOUND

SOUND

Loop :

WAIT

261.63,

196, 12,

261.63,

196, 12,

261.63,

261.63,

293.66,

329.63,

293.66,

261.63,

= 1 TO 1

329.63,

319.23,

392, 12,

349.23,

329.63,

RESUME

12,

255

12,

255

48,

12,

12,

12,

12,

48,

000:

12,

12,

255

12,

18,

GDTD Loop

255,

■ 0

255,

> o

255,

255,

255,

255,

255,

255,

NEXT

255,

255,

■ 2

255,

255,

0

0

0

1

1

1

1

1

t

2

2

2

2

You should be able to hear one voice (channel 2) starting and

ending much later than the other two voices. Now insert the

SOUND WAIT and SOUND RESUME statements in the program and

run it again. All three voices should start and end at the same time,

since SOUND WAIT queues up the notes, and then SOUND RESUME

starts them playing at the same time.

SECTION 3: SOUNDS

228

THE WAVE STATEMENT

You can use the WAVE statement to create a new waveform table

for each of the four audio channels. Changing a channel's waveform

table changes the timbre of any sound played through that channel.

WAVE uses this format:

WAVE audio channel, integer array name

The audio channel is an integer from 0 to 3 that specifies the audio

channel to which you want to assign a new waveform table. The

integer array name is the name of the integer array that contains

the data for the waveform table. You have to create the array before

you use the WAVE statement.

You can substitute the specification SIN in place of the integer

array name to make WAVE automatically create a sine waveform

table for the audio channel you specify. All the audio channels use a

sine waveform as a default waveform if you don't change their

waveform tables with a WAVE statement. Using SIN in the WAVE

statement returns the audio channel to its default waveform.

CREATING A WAVEFORM TABLE

To create a waveform table for the WAVE statement, your first

step is to dimension an array. WAVE uses an integer array; any

other type of array will generate a Type Mismatch error in your

program. The array must have at least 256 elements in it, but it can

be longer if you want to define a more detailed waveform within a

waveform table. As an example, the following statement dimen

sions an integer array named form% to include 256 elements (0 to

255). The % signifies that it is a short (2-byte) integer array:

DIM formX(255)

The next step is to fill the elements of the array with waveform

table data. Each of the 256 elements in the array must be an integer

between -128 to 127, inclusive. The array elements in order from

lowest to highest describe the shape of a waveform from left to

right in a waveform graph. To get an idea of how this works, look

at Figure 9-2 on the next page. It depicts a waveform on a graph,

and then shows the first section of the waveform magnified, with

the first 6 waveform table values plotted. These first 6 values go

into the first 6 elements of the integer array, followed by the next

250 elements needed to describe the full waveform.

Amiga BASIC Sound. Music and Speech

229

Figure 9-2.

The graph of a full sound

waveform, showing an

enlargement of the be

ginning of the waveform

and the first six wave

form table values

+ 127-r

-128-1-

To fill the elements of the array with waveform table values,

you can set up a FOR.. .NEXT loop to read a value for each ele

ment with READ and DATA statements, or you can create a

FOR.. .NEXT loop with a mathematical formula that creates the

waveform values as the loop progresses.

Reading waveform data into the waveform array

To read waveform data in the waveform array with READ and

DATA statements, you first have to have at least 256 waveform table

values. One way to get them is to first draw the waveform on graph

paper, then measure the amplitude of the waveform at 256 different

points along the horizontal axis of the graph, as you saw above in

Figure 9-2. Be sure to scale the vertical axis of the graph so that

the waveform goes no higher than 127 and no lower than —128.

Enter the values in DATA statements in the order you read them

from left to right.

SECTION 3: SOUNDS

230

The following statements show a FOR,. .NEXT loop that runs 256

times and reads a waveform value into the lorm.% array each time.

The DATA statements following the loop contain the waveform data,

but not all the DATA statements are shown here (you don't really

want to read 256 values, do you?):

DIM formX(2S5)

FOR i M TO 255

READ formX(1)

NEXT i

DATA -112, -112, -111, -110, -108, -105, -103, -94 , -83 etc .

Calculating simple waveforms

A much shorter way to create a waveform table is to calculate

the waveform with a simple formula inside a FOR. - .NEXT loop. This

works very well for simple waveforms such as square waves, saw

tooth waves, and notch waves. (You can see examples of all these

waves in Figure 9-4 on the next page.) These statements show

how to create a sawtooth waveform:

DIM formX(2SS)

FDR i = 0 TD 2S5

formX(i) =127-i

NEXT i

This short loop would create the waveform you see in Figure 9-3 if

form% is applied using a WAVE statement.

+ 127-r Figure 9-3.

A sawtooth waveform

can be created with a

simple formula.

Amiga BASIC Sound: Music and Speech

231

Here are some other simple formulas and program steps that will

create more simple waveforms with distinct timbres. Just put them

m the same loop shown above, replacing the sawtooth formula with

the formula you want- You can see the waves created by the

formulas in Figure 9-4, except for the random waveform, which

turns out a different waveform each time you use it.

A square waveform;

IF i < 128 THEN formX(i) = 127 ELSE formX(i) - -128

A triangle waveform:

IF l < 128 THEN formX(i) - (2*i) - 128 ELSE formX(i) - 383 -(2*i

A notch waveform:

IF i < 5 THEN formX(i) - 127 ELSE formX(i) = -128

A random waveform:

formX(I) -127 - INT(256• RND)

-127

Figure 9-4.

Waveforms created using

simple formulas.

128-

-127

128 J

127 -n

Square waveform Triangle waveform Notch waveform

You can no doubt come up with other formulas that create

waveforms with distinct timbres. Any formula is safe to use as long

as its results are always integers that are not lower than - 128 or

higher than 127. It's also important to make sure that at least some

of the values come close to the limits of the - 128 to 127 integer

range. If they don't, the volume of the sound won't be very high. For

example, if you create a waveform that goes no higher than 6 and

no lower than - 3, you're going to have trouble hearing it at all,

regardless of the volume setting of your monitor speaker.

ASSIGNING A WAVEFORM TABLE TO AN AUDIO CHANNEL

Once you've created a waveform table and assigned it to a

waveform array, it's a simple matter to assign the table to an audio

channel. Just specify the audio channel and the name of the array

SECTION 3: SOUNDS

232

in a WAVE statement. To hear the waveform, you can use a SOUND

statement to play a note using the same audio channel. The fol

lowing short program creates a notch waveform in channel 0, then

plays an A,, for one second at full volume in channel 0 so you can

hear the waveform:

DIM formX(255)

FDR i - 0 TD 255

IF i < 5 THEN formX(i) = 127 ELSE formX(l) = -128

NEXT i

WAVE 0, form*

SDLJND 440 , 18.2, 255 , 0

If you want to hear some other waveforms, try replacing the

notch waveform formula in the program with some of the other

waveform formulas.

CREATING A MUSICAL SCALE ARRAY

If you use individual SOUND statements to create a series of

notes, you'll find it can get tedious to look up a pitch and use the

correct frequency for each note. You can simplify your task a great

deal by creating an array that stores the frequency for each pitch of

the tempered scale; then all you have to do is specify the array

name and element number of each note you want to use in a

SOUND statement. The following program creates an array for each

pitch of the tempered scale, and then plays all the pitches in the

array from bottom to top:

DIM pitch(118)

halfstep* = 2#A(1#/12#)

f requency# = 13.75

FDR i = 1 TO 8

frequency* « halfstep* • frequency*

NEXT i

FDR i = 4 TO 116

frequency^ = halfstep^ ■ frequency

pitch(i) ■ frequency^

NEXT i

FDR i = 4 TO 116

SDLJND pitch(l) , 4, 2S5

NEXT i

Amiga BASIC Sound. Music and Speech

233

Chances are you won't hear all the pitches when you run the

program, since some of them are beyond the range of the monitor

speaker, and the default sine waveform that plays the notes is hard

to hear in the low range. If you assign a notch waveform to channel

0 with a WAVE statement at the beginning of this program, you

should be able to hear the low notes much better.

Crucial to this program is the fact that if you multiply a

frequency by the 12th root of 2 (which is 2 A (1/12) in Amiga BASIC),

the resulting frequency is one half step higher than the original

frequency The variable halfstep# is set to the 12th root of 2 in the

second line of the program, and is used in lines 5 and 8 as a

multiplier to create half step increases in frequency. The program

starts with a base frequency of 13.75, one octave below Ag, to tune

the entire scale at 440 cps for A4 (13.75 is 440 divided by 2 five

times, and is therefore five octaves below A440—recall that halving

a frequency lowers it by one octave). The variable frequency^

holds the current frequency values. These two variables are both

double-precision variables (specified by the "#") and use double-

precision constants in their calculations to ensure accuracy of

intonation over many different multiplications.

The first loop in the program multiplies frequency^ by halfstep#

to create eight half step pitches, but doesn't store them in the pitch

array, since they're all below 20 cps, and cannot be used in the

SOUND statement. The next loop, which steps from 4 to 116, con

tinues multiplying frequency^ by halfstep# to create new half-step

frequencies, starting where the last loop left off. It stores them in

the successive elements of the array pitch, starting at element 4,

the lowest pitch, and ending with element 116, the highest pitch.

The series starts at 4 because the lowest pitch in the array is Eo,

which is the lowest pitch possible in Amiga BASIC. By numbering

this pitch 4, all the following C's, which begin each octave of

pitches, are numbered as multiples of 12. This makes it easier to

remember the elements of the pitch array, as you'll see later.

The last loop at the end of the program plays the pitches stored

in the array, stepping through pitches from pitch(4) to pitch(W).

To determine which pitch in an array to use in a SOUND state

ment, multiply the octave number of the pitch you want by 12, then

add a number from this chart for each different pitch:

Figure 9-5.

Traditional music

notation showing the

positions of notes and

their names

c

Cfl or Db

D

DC or Eb

E

F

0

1

2

3

4

5

FC or Gb

G

GS or Ab
A

Atf or Bb

B

6

7

8

9

10

11

SECTION 3: SOUNDS

234

For example, A^ would be pitch element number 57 (4 times 12,

plus 9). To play an A4 for one second, you would use:

SOUND pitch(57) , 18.2

The real utility of a pitch array becomes apparent when you

want to play a piece of music using SOUND statements.

PLAYING A MUSICAL SCORE

Any piece of music you want to create on the Amiga is likely to

contain quite a few notes. If you create the notes with one SOUND

statement for each note, you're going to have a very long program

and a lot of typing to do. An easier solution is to use a SOUND

statement within a loop that reads values for pitch, duration,

volume, and voice number from DATA statements that contain data

for the score. The following program lines do just that. They play a

short four-voice flourish of music that starts softly and gets louder

at the end.

The following program lines are not a complete program; they

need a pitch array like the one in the previous example to work

correctly. To hear the flourish, substitute the following program

lines for the last three lines of the pitch-array example shown on

page 233, then run the new program.

SDUND WAIT

FOR l = 0 TO 3

SDUND 30, 5, □, i

NEXT i

SDUND RESUME

Loop :

FDR i = 0 TO 3

READ pitch(i), octave(i), duration(i), volume(i)

IF pitch(i) = -1 GOTO KillTime

SDUND pitch!(12*octave(1))+pitch(i)), 32/durat1 on(1) , volume(i), 1

NEXT i

GOTO Loop

(continued)

Amiga BASIC Sound: Music and Speech

235

KlllTlmei

FDR t = 1 TO 4000: NEXT t: END

MusicDa ta:

DATA 7,4,1G,G3, 7,3,4,63, 4,3,4,63, 0,3,4,G3

DATA 0,5,16,87, 7,3,4,159, 2,3,4,159, 11,2,4,159

DATA 11,4,16,111, 7,3,4,255, 4,3,4,255, 0,3,4,255

DATA 9,4,16,135, 0,0,16,0, 0,0,16,0, 0,0,16,0

DATA 9,4,16,159, 0,0,16,0, 0,0,16,0, 0,0,16,0

DATA 9,4,16,183, 0,0,16,0, 0,0,16,0, 0,0,16,0

DATA 9,4,16,207, 0,0,16,0, 0,0,16,0, 0,0,16,0

DATA 9,4,16,231, 0,0,16,0, 0,0,16,0, 0,0,16,0

DATA 9,4,16,255, 0,0,16,0, 0,0,16,0, 0,0,16,0

DATA -1 ,-1,-1,-1

The first loop in these program lines, sandwiched between a

SOUND WAIT and a SOUND RESUME statement, causes each of the

four voices to play a rest of exactly the same duration. The SOUND

WAIT and SOUND RESUME statements synchronize the four rests

so they all begin at exactly the same time. While these rests are

playing, the program reads data into the pitch array and uses them

to create notes with the SOUND statement that follows. Because the

rests are still playing, these notes are held in readiness for each

audio channel until the rests end. Since the rests end at exactly the

same time, the notes from the later SOUND statements all start at

the same time, so the four voices of the flourish are synchronized.

This method of using a short rest loop at the beginning of a

score to synchronize the notes, instead of using multiple SOUND

WAIT and SOUND RESUME statements, is preferable for long

musical scores. This is because the note queue created for each

voice by SOUND WAIT only holds 12 notes at a time per voice, so

you would have to use many contiguous SOUND WAIT and SOUND

RESUME statements to synchronize a long score. If you run a

program containing a contiguous series of SOUND WAIT and

SOUND RESUME statements, the music will "hiccup" when one

queue ends and another begins. The rest-loop method used in this

program isn't really needed for a flourish this short, but it will come

in very handy if you want to replace the DATA statements shown

here with your own DATA statements for a longer piece of music.

After the synchronization loop is an infinite loop named Loop:. In

it is a FOR.. .NEXT loop that makes one pass for each audio channel

(from 0 to 3). Each time the FOR.. .NEXT loop makes a pass, it uses

a READ statement to read four specifications—pitch, octave, dura

tion, and volume—and stores them in four variables. In the next

line, it checks to see if the pitch is -1, a value that serves as a flag

at the end of the music data to show that the score is ended. If it

is -1, the program exits the loop and ends.

SECTION 3: SOUNDS

236

If it's not the end of the score, the next line of the FOR.. .NEXT

loop multiplies the octave value by 12 and adds the scale pitch

value to come up with the correct element of the pitch array which

it uses as the frequency in the SOUND statement. The notes dura

tion is set by dividing a set value, arbitrarily set here at 32, by the

duration value that is read from the DATA statement. The note's

volume is set by using the volume value that is read directly from

the DATA statement.

After four passes (once for each audio channel), the FOR.. .NEXT

loop ends, and the Loop: loop repeats, running the FOR., .NEXT loop

again and again until it encounters the - l's read from the DATA

statements. When it does, the program goes to KBTime:, and a

short FOR.. .NEXT loop there kills a little time before the program

ends so the List window doesn't appear too soon. If the list win

dow appears while the music is playing, it makes the notes falter

The note data in the DATA statements are organized so you have

four notes in each DATA line, one for each voice, in voice order 0,1,

2, and 3. Each note has four values—pitch, octave, duration, and

volume. The pitch is an integer from 0 to 11 that corresponds to a

pitch name; A, F, Eb, etc.. as discussed earlier in the section on

pitch arrays. The octave is an integer from 0 to 9 corresponding to

the octave subscript that usually foDows a pitch name.

The duration is a value corresponding to the length of note you

want played: 1 for a whole note, 2 for a half note, 4 for a quarter

note, 8 for an eighth note, 16 for a sixteenth note, etc. These values

don't set a specific length of time by themselves: They are used by

the SOUND statement to divide a number (in this example 32) that

sets the duration of a whole note. By changing this number, you

actually change the speed of the music, because all the duration

values in the DATA statements are divided into this number to

determine each note's length. For example, change the 32 in the

SOUND statement to 64 and run the program again, and you'll hear

the flourish played at half the previous speed. If you change it to

16, you'll hear it played twice as fast.

The last value for each note is volume, which sets the volume in

the SOUND statement.

Each DATA statement contains four notes, one for each voice.

Within each DATA statement, each note's data is separated from the

next note's data by a space, so you can easily distinguish the four

notes on each line. Voice 0 is the group immediately following the

word DATA on each line. Note that the duration value for voice 0's

data on each line is 16, which indicates sixteenth notes. Voices 1, 2,

and 3 all play quarter notes (as indicated by the 4 for their duration

values), and only require the first three DATA statements

Amiga BASIC Sound: Music and Speech

237

to hold their note data. Because voice 0 has more individual notes

than the other three voices, the values in the remaining DATA

statements for the other voices become 0, 0, 16, 0, effectively

making a rest that's a sixteenth note in length to hold a place for

those voices so voice 0 can continue to read its data. (If you specify

a duration of 0, the program will try to use the value to divide with,

and you'll get a division-by-zero error.)

At the end of the DATA axe four - l's to signify the end of the

score. You have to have four - l's because the program reads data

in chunks of four.

If you use this system of READ and DATA statements to store

notes, you can create new and longer scores just by using different

data in the DATA statements. If you precede the program with

WAVE statements to change the timbre of the different audio

channels, you can give each voice its own unique timbre to play

the notes. Experiment, and have fun!

GENERATING SPEECH

The Amiga's system software includes libraries and devices that

generate speech using the same hardware and much of the same

software routines that the Amiga uses to create music and sound

effects: It speaks words using waveforms created from waveform

tables, and plays the waveforms through the same four internal

audio channels. You don't have to define waveforms and use exotic

SOUND statements, because Amiga BASIC provides two powerful

tools, the TRANSLATES*) function and the SAY statement, that you

can use to take direct advantage of the Amiga's built-in speech-

generation capabilities. These provide you with a simple yet

powerful means of adding speech to a program.

SAY is the Amiga BASIC statement that instructs the Amiga to

speak and tells it what to say. SAY requires all the words you want

it to speak to be spelled out phonetically, using a special system of

phoneme codes described in Appendix H of the Amiga BASIC man

ual. If you don't want to spell out everything phonetically, you can

use the TRANSLATE$() function, which takes a string of English

text and translates it into the phoneme codes needed by the SAY

statement.

SECTION 3: SOUNDS

238

THE TRANSLATE$() FUNCTION

The TRANSLATES!) function translates English words into a

string of phoneme codes for use by the SAY statement. The

TRANSLATES*) function uses this format:

TRANSLATEt("text at ring")

The text string can be any string of characters that's legal to use

in Amiga BASIC, or a string variable representing the text to be

spoken. A text string must be specified using quotation marks

within parentheses; a string variable requires only parentheses.

Since TRANSLATES)) is a function, it doesn't do anything by

itself. The string of phoneme codes it returns should be assigned to

a string variable, used directly with the SAY statement or printed

out using a PRINT statement. Using TRANSLATES!) directly with

SAY is very convenient. For example,

SAY TRANSLATES I " I speak English very well, thank you.")

speaks the sentence shown in quotes.

To see the phoneme code that TRANSLATES!) returns, you can

use the function with PRINT. For example,

PRINT TRANSLATESf"I speak English very well, thank you.")

prints out the phoneme code that SAY used in the last example:

AY SPIY4K IY3NXGLIHSH VEH1RIY WEH4L, THAE4NXK YUW.

The string is returned in capital letters because the SAY state

ment requires phonetic spelling in capital letters. TRANSLATES*)

returns a capitalized string of phonetic spelling that SAY can use,

so don't worry about capitalization if you use TRANSLATES!)

within a SAY statement.

If you print out an English sentence as phonemes, you can go

in and alter it slightly to your satisfaction, and then use it directly

with SAY to fine-tune pronunciation and inflection. (See Appendix

H of the Amiga BASIC manual.) For example, you might want to de-

emphasize the word "thank" near the end of the sentence. To do

so, use a PRINT statement with the TRANSLATES!) function to print

out the phoneme string, then type the string into a SAY statement,

deleting the 4 in THAE4NXK. This will accent the word by removing

its inflection value. A word of caution: If the changes you make to

translated strings of text do not conform to the guidelines specified

in Appendix H of the Amiga BASIC manual, you might get an error

message, or the string may not be spoken.

Amiga BASIC Sound: Music and Speech

239

USING PUNCTUATION

When you use English strings with TRANSLATESQ, you can use

punctuation marks to alter the inflection of the spoken text. They

affect speech inflection as follows:

• Period: You should use a period at the end of every sentence.

It makes the voice pitch drop to indicate the end of the sentence.

For example, try:

SAY TRANSLATES("This is the end.")

• Question mark: A question mark at the end of a sentence

works just like a period—it makes the pitch drop. For example,

SAY TRANSLATE$("Thi5 is the end'")

sounds the same as the last statement.

• Comma: A comma between words raises the final pitch of

the word it follows and puts a pause between the two words. A

comma at the end of a sentence will make it rise in pitch like a

question, and should be used in place of a question mark for

a question. For example, try:

SAY TRANSLATE$("Well, should I stop now,")

• Parentheses: Putting parentheses around a phrase will

separate the phrase from the rest of the sentence with a lift in

pitch and a small wait at each end of the phrase. For example,

listen to:

SAY TRANSLATES("I think (I really do) that I should stop now.

• Dashes: Connecting words with dashes will cause those

words to be spoken with much less inflection than words

separated by spaces. For example, try:

SAY TRANSLATE$("I'm so tired I'm-losing-my-inf1ection" }

ALTERNATE SPELLINGS FOR CORRECT PRONUNCIATION

On occasion, the English language gets the better of

TRANSLATESf) and some strange pronunciations come out of the

SAY statement. This is particularly true of names and English

words that use foreign pronunciations. Of course, you can always

SECTION 3: SOUNDS

240

create the words with the phoneme codes, but you might find it

easier to try some creative misspelling with the TRANSLATE${)

function instead.

For example, TRANSLATE$() has trouble with the name Michael,

which it pronounces more like "Mitch ay ell." A simple misspelling

will correct the pronunciation. Try both of these SAY statements to

hear the difference:

SAY TRANSLATE$("Michael")

SAY TRANSLATEM'Tiykul")

A little experimentation will help you understand just how

TRANSLATES*) pronounces English so you can get around its

occasional limitations. All in all, though, you should be impressed

with what the function can do. Any function which correctly

pronounces the "o" in "women" is certainly worthy of respect.

THE SAY STATEMENT

You use the SAY statement to tell the Amiga what to say and

how to say it. SAY uses this format:

SAY phoneme code string, specification array name

The phoneme code string is a string of capital letters and numbers

which spells out words phonetically using the phoneme codes

described in Appendix H of the Amiga BASIC manual, which is the

same format the TRANSLATES*) function uses to return a phonetic

string. The specification array name is optional; it gives the name

of an integer array that stores nine different values to specify how

SAY will speak. If no specification array name is given, the SAY

statement will speak the phoneme code string using the default

male voice.

PHONEME CODES

English is a tricky language to spell and pronounce. The same

letter in two different words can be pronounced two different ways,

as you can hear by listening to the "c" in "cycle" and the "c" in

"call." To accurately tell SAY what you want it to pronounce, you

must break up the words into separate sounds, called phonemes,

and use the Amiga's phoneme codes to spell out each phoneme.

The easiest way to do this is to let the TRANSLATES*) function do

the work for you. However, since TRANSLATES!) doesn't always

interpret words correctly and its pronunciation rules are limited

Amiga BASIC Sound: Music and Speech

241

to the English language, you may want to use phonetic spellings in

place of the TRANSLATES*) function to make SAY speak with the

greatest possible accuracy.

Appendix H of the Amiga BASIC manual goes into great detail

about how to spell with phoneme codes. Although you can use the

TRANSLATES;) function to create the phoneme codes for you, taking

time to learn the codes yourself will be worth it if you want SAY to

speak with the greatest possible accuracy. You can use the pho

neme codes to specify precise accents, pauses, and emphasis you

want to put in a sentence, or to make SAY speak in a foreign lan

guage. For example, the following statement says "Wie gent es

Ihnen?", German for "How are you?":

SAY "VIY2 GEY7T IX2S IY3NIXN."

THE SPECIFICATION ARRAY

If you don't want to use the default voice that SAY speaks

with, you can change the quality of SAY's speech by setting nine

different speech aspects. Instead of including a long list of nine

specifications at the end of the SAY statement, you would store

the specifications in a short array that SAY reads when you give

it the array name. The array must be an integer array (indicated by

a % symbol at the end of the variable name), and it has to have 9

elements. The specification values are stored in elements 0 through

8, and control the pitch, inflection, speaking rate, volume, and other

aspects of speech. The elements are:

Element number

0

1

2

3

4

5

6

7

8

Speech aspect controlled

Base pitch of the voice

Inflection choice

Speaking rate

Voice-gender choice

Sampling frequency

Volume

Channel-assignment choice

Synchronous-speech choice

Multiple-SAY choice

Setting the base pitch

Element number 0 of the array is an integer from 65 to 320 that

gives the base frequency in cps of the voice's pitch. The default

value is 110, which is an A2. When SAY speaks, it usually adds in

flection to the words, so the base pitch is only a central pitch.

Inflection moves the pitch up and down around the central pitch.

SECTION 3: SOUNDS

242

Choosing inflection or monotone

Element number 1 of the array is either a 0 or a 1, and is used

to specify speech with inflection, or monotone speech without

inflection. The default is 0, speech with inflection. A 1 specifies

monotone speech.

You'll probably want to use inflection most of the time to add life

to the Amiga's utterances. If you want SAY to keep a steady base

pitch, then you can use monotone. Monotone also does a great old-

fashioned robot imitation.

Setting the speaking rate

Element number 2 of the array is an integer from 40 to 400 that

specifies the rate in words per minute that SAY uses to speak. The

default rate is 150 words per minute, a normal speaking speed. A

rate of 400 is great for reciting tongue twisters; pushing the rate

down below 100 will produce a torturous drawl.

Choosing the voice gender

Element number 3 of the array chooses the gender of SAY's

speech. It's either a 0 or a 1. The default, 0, chooses a male voice,

and 1 chooses a female voice. When you change the gender, you

change the way SAY forms its phonemes, and so change the

characteristic sound of its speech to sound more like the vocal

chambers of either a man or a woman- The male voice is designed

to work best with the default base pitch, 110 cps. If you choose a

female voice, you should also change the base pitch to 220 cps or

higher, an octave jump up, since most women speak about an

octave higher than men.

Setting the sampling frequency

Element number 4 specifies the sampling frequency of SAY's

voice in cycles per second. The frequency can be any integer in the

range 5000 to 28000. The default frequency is 22000. The sampling

frequency sets the rate at which the Amiga plays back the wave

form table used to create a speaking voice. You might think of it as

the audio equivalent of graphics resolution. In general, the higher

the frequency, the smoother the voice (although a setting too high

will produce a "squeaky" voice), and the lower the frequency, the

rougher and more gravelly the voice.

Sampling frequency and base pitch are interlinked. As you may

recall from Chapter 7, any time you speed up the rate you use to

play back a waveform table, you increase the pitch of the sound

coming from that table. Similarly as you increase the vocal

sampling frequency, the pitch goes up. As you decrease it, the

pitch goes down. Before you change the sampling frequency to

change the character of SAY's voice, you should first find the

Amiga BASIC Sound: Music and Speech

243

general voice quality you want by using the default pitch of 22000

and changing the other voice attributes. Once you have the voice

quality, reset the base pitch to find the new pitch you want.

Setting the volume

Element number 5 sets the volume of SAY. It can be any whole

integer from 0 to 64. 0 is no volume (silence). 64 is full volume, and

values between 0 and 64 set intermediate volumes. The default

volume is 64.

Choosing the channel assignment

Element number 6 of the array gives you 12 different choices for

the audio channel or channels on which youd like SAY to speak.

You specify the channels by using an integer from 0 to 11 to

designate one of the following channel assignments:

0

1

2

3

4

5

6

7

8

9

10

11

Channel 0

Channel 1

Channel 2

Channel 3

Channels 0 and 1

Channels 0 and 2

Channels 3 and 1

Channels 3 and 2

Any available channel that comes out of the left

audio port

Any available channel that comes out of the right

audio port

Any available pair of channels that come out of both

the right and left audio ports (the default)

Any available single channel

Choices 0 to 3 work just like the channel assignment in the

SOUND statement. Choices 4 to 7 are pairs of channels that use

both the left and right audio ports so you can hear the voice from

both ports. Choices 8 and 9 let you specify the left or right audio

port, but lets BASIC choose which channel to use. This is very

useful if you're using SAY while the BEEP or SOUND statements are

also producing sounds over the audio channels, because SAY can

use whatever channel is left over to speak.

Choice 10, the default channel-assignmerit choice, specifies

any pair of channels that are not being used by other sound state

ments, and that use both the left and right audio ports. In other

words, SAY will use any of the channel pairs listed in choices 4

through 7. Finally, choice 11 specifies any available channel not

being used by other sound statements. It's probably the safest

SECTION 3: SOUNDS

244

channel assignment choice to make, since it's always more likely

that a single audio channel will be available than it is that a left-

right pair of audio channels will be open for use. However, if you

use choice 11 and you have the Amiga hooked up to a stereo

system with two speakers, you won't be able to predict which

speaker the voice will come out of.

Choosing synchronous or asynchronous speech

Element number 7 of the array is either 0 or 1. The default, 0,

specifies synchronous speech. A 1 specifies asynchronous speech.

If you choose synchronous speech, BASIC will wait until each

SAY statement is finished speaking before it moves on to the next

statement. If you choose asynchronous speech, BASIC executes

a SAY statement and starts it speaking, then executes the next

statement immediately while SAY finishes speaking on its own.

Asynchronous speech speeds up a program because the

program can work on other statements at the same time as it

speaks. However, other sound-producing statements (like SOUND

and BEEP) that follow an asynchronous SAY statement can foul

up SAY's speech by starting before SAY is finished speaking.

Synchronous speech keeps conflicts like that from happening.

Choosing multiple SAY options

Element number 8, the last element of the array, specifies the

way Amiga BASIC will execute multiple SAY statements if they use

asynchronous speech. This element has no effect if the SAY state

ments use synchronous speech (that is, if element 7 is set to zero).

There are three choices:

Value Meaning

0 If BASIC encounters a second SAY statement before the

first is finished speaking, it will wait until the first SAY

statement is finished speaking before it starts the second

SAY statement. Zero is the default mode.

1 If BASIC encounters a second SAY statement before the

first is finished speaking, it stops all speech entirely so

the first statement is cut off in the middle of speech and

the second statement doesn't speak at all.

2 If BASIC encounters a second SAY statement before the

first is finished speaking, it stops the first statement in

the middie of its speech and starts the second statement's

speech immediately.

The purpose of these choices is to avoid garbling by preventing

more than one voice from speaking at the same time.

Amiga BASIC Sound: Music and Speech

245

SAY STATEMENT EXAMPLES

It's simple to use a specification array to change the quality

of SAY's speech- You don't need to dimension the array since it's

less than 11 elements long, and you can use a READ statement in

a FOR.. .NEXT loop to read the values from a DATA statement for

each element. For example, the following short program sets the

specifications for the SAY statement to speak in a rapid female

voice. It stores them in the array voice%, and uses it in a SAY

statement that speaks the tongue twister "Peter Piper picked a

peck of pickled peppers":

FOR i = 0 TD 8

READ voiceX(i)

NEXT l

xt - "Peter Piper picked a peck of pickled peppers."

SAY TRANSLATES(x*}, voice!

DATA 250, 0, 4 0 0, 1, 24000, G4, 10, 0, 0

When you run the program, you may notice that it pauses briefly

to load something from the BASIC disk. This is because BASIC

needs to open the speech device when it first encounters a SAY

statement in a program. Any SAY statements that follow will be

spoken immediately—BASIC needs to open the speech device only

once each time the program is run.

If you want to play around with different voice qualities, you can

change the values in the DATA statement, then run the program

once again.

The next program reads four different voice-specification arrays

and uses the values to create four different SAY voices. The first

voice is a female voice, created by raising the base pitch of the

default voice from 110 to 220 cps. The second voice is a laconic-

sounding robot voice created by lowering the base pitch to 70 cps,

choosing monotone, and setting the speech rate to a slow 80 words

per minute. The third voice has a nasal sound created by raising

the base pitch to 320 cps and lowering the sampling frequency

to 10000 cps. The last voice is very rich and deep, but fast; the

base pitch is dropped to 65, the speech rate is sped up to 350

words per minute, and the sampling frequency is raised to 28000.

SECTION 3; SOUNDS

246

FDR 1 = 0 TO 7

READ voice1X(i), voice2X(i), voice3X(i), voiceil(i)

NEXT i

DATA 220, 70, 320, G5

DATA 0, 1, 0, 0

DATA 150, 80, 110, 350

DATA 1, 0, 0, 1

DATA 22200, 22200, 10000, 28000

DATA 64, 64, 64, 64

DATA 10, 10, 10, 10

DATA 1 , 1 , 1 , 1

SAY TRANSLATES("This is voice 1 speaking to you now."), voiceiX

PRINT "This is voice 1 speaking to you now."

SAY TRANSLATES("This Is voice 2 speaking to you now."), voice2X

PRINT "Thi5 is voice 2 speaking to you now."

SAY TRANSLATES("Thi s is voice 3 speaking to you now."), voice3%

PRINT "This is voice 3 speaking to you now."

SAY TRANSLATES("This is voice 4 speaking to you now."), voice4%

PRINT "This is voice 4 speaking to you now."

FOR x = 1 TD 3000: NEXT x

When you run the program, you'll notice that even though the

PRINT statements follow the SAY statement they describe, they print

on the screen at the same time the SAY statement starts speaking.

That's because all four voices are in asynchronous speech and

BASIC proceeds immediately to the PRINT statement as soon as the

SAY statement starts speaking. The FOR.. .NEXT loop at the end of

the program is a timing loop to prevent the List window from

appearing before voice 4 is finished speaking.

If you change the second to the last DATA statement to a line

of four zeros, the PRINT statement will wait until each voice is

finished speaking, because the SAY statements now use synchro

nous speech. (If you switch to synchronous speech, the timing loop

at the end of the program is no longer necessary.)

Now that you've had a chance to try out the Amiga BASIC

sound statements, you can use them for your own crea

tions. BEEP and SOUND will create sound effects and notes,

WAVE will create timbres, and SAY and TRANSLATES!) will

control the Amiga's speech. You can synchronize your

SOUND creations with SOUND WAIT and SOUND RESUME. By

tying all of these statements together, you can create

music, distinctive voices, and other audio effects that will

really enhance your programs. And if you enjoy the

dynamic quality of your sonic creations, you'll also enjoy

reading about the next section's subject: animation.

Amiga BASIC Sound: Music and Speech

247

TION

This section introduces

you to animation on

the Amiga. Chapter 10

teaches you the funda

mental concepts of

computer animation.

Chapter 11 shows you

how to use Deluxe

Video to create your

video animation,

luces you to

othei hardv and

software prc

will help bring your"

animation ideas to life.

The two chapters that

end the section (Chap

ters 12 and 13) discuss

the Amiga BASIC ani

mation commands, and

show you how to com

bine them to animate

figures in your BASIC

programs.

Animation

CHAPTER TEN

A COMPUTER

ANIMATION PRIMER

Today's world abounds with animation, thanks to the

ubiquitous medium of television. From classic hand-drawn

cartoons like Bugs Bunny to computer-generated animation

hawking blue jeans, we see images that previously existed

only in the animator's imagination. Animation gives life to

scenes that are impossible to photograph in the real world.

Traditional animation has never been easy to create. It

takes a lot of skill and effort on the part of animators to

create the huge number of drawings necessary for even a

few minutes of animation, and careful work by technicians

to transfer those drawings to film. Animation has seldom

been the product of a single person—it's usually created

by teams of artists sharing arduous tasks to create a

finished product.

Computers are changing animation dramatically. With

their power to create images simply and quickly on a mon

itor screen, computers can take over much of the tedious

work animators usually do, drawing backgrounds and

moving objects with uncanny consistency and accuracy.

Since computers can store images in memory, the anima

tion need never be transferred to film—it can be stored on

disk for later playback. Most important, a computer can be

an animation tool powerful enough to allow an individual

to turn a personal vision into animated scenes of surpris

ing complexity. Using your Amiga, that individual

animation artist can be you.

FUNDAMENTALS OF ANIMATION

If you've never done any animation before, you should know

some of the fundamentals so that you can understand animation's

different elements and how to handle each of them. In the previous

primers of this book, you learned about light and color for graphics

and about the qualities of sound for music. Now, in this chapter,

you'll learn about motion and perspective, two very important

aspects of animation.

THE ILLUSION OF MOTION

Animated motion is an illusion. What you see as a continuous

movement of objects on a screen is in reality a rapid succession of

still images. Film animation presents 25 images per second to the

SECTION 4: ANIMATION

252

eye; video animation can present 60 images per second. Why don't

you see each of those images individually, iike a very speedy slide

show? There are two answers: continuity and presentation speed.

Your mind is more likely to accept a series of still images as

one single image moving over time if the images are all similar,

especially if there is little change in position between images. This

establishes continuity from image to image. Figure 10-1 shows six

images of a bird flapping its wings. If you see the six images in

rapid succession, centered in the same spot, your mind will prob

ably interpret them as one bird flapping its wings. This is true even

if the images are shown in slow succession. The human mind likes

to bind together separate elements into a meaningful whole.

A rapid presentation speed helps maintain the illusion of motion.

If you show the six images in Figure 10-1 at 6 images per second,

you'll see a single bird flapping its wings, but the motion will look

jerky. In the back of your mind, you'll know that the motion is

actually many individual images. If you show the same six images

at 12 images per second (so the bird flaps its wings twice as fast),

you won't notice nearly as much jerkiness. The motion looks

smoother and more continuous. Once you reach a speed of 25

images per second (the standard speed of movie film), your eyes

and mind are tricked into seeing smooth motion. Of course, if there

is no continuity from image to image, 25 images per second won't

sustain the illusion of motion. For example, if you showed the slides

of your summer vacation at 25 images per second, you would see a

meaningless jumble. Each slide would have a totally different

content, so there would be no continuity.

Figure 10-1.

Six successive images of

a bird flapping its wings.

A Computer Animation Pnmei

253

If it takes at least 25 different images (usually called frames) per

second of animated motion, you can see that even a one-mmute

animated commercial needs 1500 different frames. That's a lot of

work to do if you have to create each frame by hand. It's even a lot

of work if you create the frames using a computer. Fortunately,

there are shortcuts to use so that you won't have to draw 1500

individual frames.

One such shortcut is a common animation technique that

involves creating each new image in a sequence of images by

copying the preceding image and altering only the parts of the

image that are in motion. Because the stationary elements don't

change at all from frame to frame, you can separate the moving

elements from the stationary elements and concentrate on redraw

ing just the moving elements.

The simplest way to separate moving elements from stationary

elements is to separate them into two parts: the background and

the moving objects. The background can be something like a wall,

a mountain, or a forest that doesn't move, but provides a backdrop

for the action of moving objects. Moving objects can be people,

animals, airplanes, or anything else you want to animate.

The background

A good background sets the locale and mood for animation, like

the scenery in live theater does for a play. Since you might only

have to draw the background once for an animated sequence, you

can afford to spend a lot of time to make it rich in detail and a

useful backdrop for the animated objects that will move around in

front of it.

Although a background usually remains stationary during an

animated sequence, there are times when it too will move, usually

to indicate a change in viewpoint. For example, put your hand in

front of your face and look at your fingers. Notice the background

behind your hand. Now turn your head and hand slowly to the right

as you continue to watch your fingers. Notice that the background

seems to be moving to the left in relationship to your fingers. By

moving the background slowly to the left or right, up or down, or

diagonally, you can make it appear that the viewpoint is changing

in your animation. In traditional animation, this action is called

panning. In computer animation, it's called scrolling.

The background can also change if the viewpoint moves closer

or further from the background. The background gets larger as the

viewpoint moves toward it, smaller as the viewpoint moves away

from it. By steadily enlarging the background, you can make it

appear that the viewer is moving forward. Likewise, by steadily

shrinking the background, you can make it appear that the viewer

is moving backward.

SECTION 4: ANIMATION

254

Traditional animators create the background by painting it and

putting it on an animation stand, a flat surface similar to a drafting

table with an attached movie camera set up to photograph one

frame of movie film at a time. The animator can use the animation

stand to move the background by moving the painting slightly from

frame to frame (panning the background), or by moving the camera

closer or farther away from the background from frame to frame

(moving the viewpoint in or out). This is a time-consuming pro

cess, because each sequence of background movement requires

the animator to move either the background painting or the camera

just the right amount, expose one frame of film, move the painting

or camera again, and repeat the process again and again.

Moving the background is much easier for the computer anima

tor; he can create the background painting using the computer's

drawing software, and then store it in the computer's memory.

Once the drawing is in memory, the animator simply instructs the

computer to pan the background by scrolling the image in the

desired direction, or to move the viewpoint in and out by shrinking

or enlarging the image through manipulation of the picture data.

Moving objects

Once the background is in place, the animator creates objects to

move around in front of it. Each of these moving objects can have

two basic kinds of motion: external and internal. External motion is

the movement of the entire object in relation to the background.

Internal motion is the movement of the parts of an object. Consider

the example of a man walking across a street. His external motion

is his entire body crossing the street. His internal motion is his legs

striding back and forth, his arms swinging, his torso bobbing up

and down, and a grin passing over his face.

In traditional animation, the animator creates moving objects by

drawing or painting them on clear sheets of acetate (called gels).

These gels are placed on top of the background painting on the

animation stand for filming. Since the acetate allows the back

ground to show through wherever an object isn't painted, the movie

camera photographs the gels and the background together as a

frame that looks like a single completed drawing, even though there

may be several layers of gels on top of the background painting.

To create external motion alone, the traditional animator simply

moves a single gel small distances over the background as he

shoots successive frames. A computer animator uses a similar

process: He first draws the object, and then instructs the com

puter to display it in front of the background. He then gives the

computer instructions telling it where to move the object. Both tra

ditional and computerized methods for producing external motion

A Computer Animation Primer

255

are fairly simple. Unfortunately, external motion without internal

motion is usually very unconvincing, and looks frozen and cheap. If

you try to animate a man crossing the street without moving his

arms and legs, it looks like a lifeless paper doll being pushed across

the screen. External motion alone might work for something as

simple as a rock dropping from a cliff, but even a failing rock would

look much more realistic if it tumbled and turned as it fell.

Creating internal motion often takes more work than any other

part of animation, which is only fair when you consider that it adds

the most life to animation. To create internal motion, the animator

has to draw a series of successive images to show how the object

changes. The six drawings of a bird flapping its wings (used earlier

in the chapter) are an example of creating internal motion through

successive images. To show half a minute of this bird flying, you

would have to create hundreds of successive wing-flapping, head-

twisting, and body-turning images to capture all the variety of

motions that a real bird makes in flight-

To create internal motion, a traditional animator draws a

sequence of gels, each showing a slightly different position of a

moving object. By photographing the gels in succession on top of

the background painting, the animator creates animation with

internal motion. A computer animator can use a similar method; he

creates a series of images in computer memory that the computer

displays in sequence on the screen. Neither the traditional nor com

puterized method for creating internal motion is easy—each

requires a lot of time drawing images.

You can take advantage of the cyclic nature of movement to

make the task of creating internal motion much simpler. For exam

ple, birds flap their wings down, then up, then down, then up, and

so on as they fly. If you ignore some of the minor variations that oc

cur from wingflap to wingflap, you can draw a sequence of images

that animate just one wingflap, and then repeat that sequence

over and over for each flap of the bird's wings—a process called

cycling. Instead of creating hundreds of images for a half minute

of bird flight, you can create just a few images that you can repeat

over and over again as the bird flies. Cycling a sequence isn't as

convincing as drawing all the images individually (as you can see

in cheap Saturday morning cartoons, which use a lot of cycling),

but it does give you internal motion with a fraction of the work it

would normally take.

Once you create a series of images to internally animate an

object, it's important to make sure that internal motion matches

external motion. For example, if you create a man who walks

SECTION 4: ANIMATION

256

swinging both arms and legs and don't give him some external

motion (or at least move the background behind him), he'll look like

he's slipping on ice, not getting anywhere. Likewise, if the man has

too much external motion, he'll look like he's wearing seven-league

boots, taking giant strides with each small step.

ADDING PERSPECTIVE

Animation is ultimately displayed on a two-dimensional medium

such as a computer monitor or a movie screen. You can use

different animation and drawing techniques to transcend the two

dimensions of the screen and portray your animated images in any

of three different perspectives: two dimensions (2-D), three dimen

sions (3-D), and two and a half dimensions (2&-D). Each perspective

has its advantages and disadvantages.

2-D perspective

A two-dimensional perspective assumes there is no depth to

the picture, and that the objects in motion move horizontally and

vertically, but not toward and away from the viewer. 2-D perspective

usually works best for animation that is a symbolic representation

of reality (not attempting to look real).

A good example of 2-D animation is cars moving on a map of

city streets, as seen below in Figure 10-2. Since cars don't as a rule

fly away from the streets, the cars on the map won't move toward

or away from the viewer. Their motion is strictly horizontal, vertical,

or diagonal—-all two-dimensional motion.

Figure 10-2.

Simple 2-D animation:

cars on a map.

A Computer Animation Primer

257

One important property of 2-D animation is that a moving object

can't pass in front of or behind other moving objects (at least not if

you keep it realistic). Since the objects are confined to a two-

dimensional plane, they collide when they meet. For example, two

cars in the map example can't pass through each other One has to

go around the other, or they will crash.

2-D animation may not look realistic, but it has some advantages

over other perspectives. First, it's usually much simpler to create

than 2/2-D and 3-D animation because you don't have to keep track

of an object's depth, only of its location on a single two-dimensional

plane. Second, a simple symbolic representation can show the

important elements of the animated sequence with much more

clarity If the streets in the map example were drawn as they would

actually look from the air with hills and valleys and black pavement

roads, it would be a much more realistic animation, but it would

also be much harder to see what was happening as the cars moved

around the streets.

3-D perspective

A three-dimensional perspective adds depth and realism to the

image on the screen. Objects in 3-D animation can move toward

and away from the viewer as well as horizontally and vertically

Since the third dimension, depth, is portrayed on a two-

dimensional screen, it's strictly an illusion sustained by different

animation techniques.

The most familiar technique used to create a 3-D perspective is

the artificial horizon, an invisible horizontal line used by animators

as a point of reference. If you're not familiar with artificial horizons,

consider a real horizon. When you look far out over the ocean, the

line where the sea meets the sky is the horizon. Any boats floating

in the water close to you appear far below the horizon. As they sail

away from you, they seem to rise closer and closer to the horizon as

they get smaller and smaller and then finally disappear. Likewise,

any airplanes flying from directly above you to far out over the

ocean at first appear quite a distance above the horizon, then drop

closer and closer to the horizon and get smaller and smaller until

they disappear.

Figure 10-3 shows two ships sailing toward the horizon. Since

the one in the lower left corner is larger and further from the

horizon than the one in the middle, it appears closer to the viewer.

SECTION 4: ANIMATION

258

An artificial horizon works the same way. It usually runs across

the center of the screen, and may not be visible, since it might be

covered by buildings, trees, mountains, or other objects. Even if it's

invisible, you can use its location as a reference to make moving

objects appear to move toward or away from the viewer. To make

an object appear to move away from the viewer, you shrink it as

you move it from its original position to the artificial horizon. You

can shrink the object so much that it disappears, making it seem

like it has moved too far away to see. (The point at which it

disappears from sight is called the vanishing point.) To make an

object appear to move toward the viewer, you enlarge it and move

it out from the artificial horizon. The faster you shrink or enlarge the

object, the faster it seems to move away from or toward the viewer.

You can combine shrinking and enlarging with vertical and hori

zontal motion to make an object seem to move in any direction

consistent with the three-dimensional perspective of the animation.

To enhance the feeling of depth, you can also change the color of

an object as it moves toward and away from the viewer. Objects at

a distance are usually dimmer and paler than objects close up.

Dimming a moving object as it recedes will add to the feeling of

depth. Another aid to developing a 3-D perspective is to diminish

internal motion as an object moves away from the viewer. For

example, the arm motions of a waving woman standing close to

you are very noticeable. If the same waving woman was across a

football field from you, the motion of her arms wouldn't be nearly

as noticeable.

Figure 10-3.

Two ships sailing toward

the horizon.

A Computer Animation Primer

259

Figure 10-4.

Two overlapping figures.

The figure on top ap

pears closer than the

figure underneath.

One of the easiest ways to establish the depth location of a

moving object is to pass it in front of or behind another object on

screen. If the object passes in front of another object, as it does in

Figure 10-4, it's obviously closer to the viewer than the second

object. If it passes behind another object, it must be further away

from the viewer. If two objects collide and don't pass over or behind

each other, then both objects are the same distance away from

the viewer.

When you use 3-D perspective techniques, it's important to keep

them consistent with each other. If you make an object recede in

the distance by shrinking it and then you pass it in front of an

object that seems to be close to the viewer, it will look very con

fusing, and the illusion of three dimensions can be shattered. You

must keep track of the relative location of all moving objects to en

sure that they pass over or behind the other objects as they would

if you were viewing real objects in a three-dimensional space.

The advantages of a 3-D perspective are obvious—it's very

realistic, and it draws the viewer into the picture in a way other

perspectives can't. The disadvantage is also obvious—it takes a

lot more effort, even if the computer is doing the dirty work!

2Y2-D perspective

A two-and-a-half-dimensional perspective is a compromise

between the simple 2-D perspective and the complex but more

realistic 3-D perspective. Objects in 2J/2-D animation are restricted

to horizontal and vertical motion in a single plane as they are in 2-D

animation, but there are several planes in the picture to create an
illusion of depth.

SECTION 4: ANIMATION

260

To get a good idea of how 2/2-D perspective works, think of a

theater stage with an underwater mountain painted on a flat

backdrop. This is one plane of the image the audience sees from

the theater seats. In front of the backdrop is an aquarium, full of

fish, wide enough to stretch to both sides of the theater and tall

enough to extend to the top of the proscenium, but only four inches

from front to back. This is a second plane of images. In front of the

aquarium is a second aquarium just like the first one, also full of

fish, which creates the third plane of images. In front of both

aquariums and the backdrop is a facade of coral that rises halfway

up the height of the aquariums. This is the fourth plane of images.

Figure 10-5 shows you how these planes in the fictitious theater

are set up.

View

direction

Fish

tanks

Coral

Painted

backdrop

Figure 10-5.

2WD perspective demon

strated using theater

props and two absurdly

large fish tanks.

Front view Side view

When you look at everything on stage from the audience, you see

coral in front. Behind the coral, you see fish swimming back and

forth, some passing m front of other fish. Behind the fish you see an

underwater mountain. Even though there are only four planes of

depth, you can see it as a full-depth picture.

If you were the fish director, you would never have to worry

about the fish in the back tank upstaging the fish in the front tank,

because they can only move horizontally and vertically, and can't

swim out of their tank into the tank in front of them. Likewise, as a

2V2-D animator, you don't have to worry about objects moving

A Computer Animation Primer

261

toward or away from the viewer. They stay in their plane of motion,

passing behind objects in planes before them, passing m front of

objects in planes behind them, and colliding with objects in the

same plane.

2&-D animation is simpler than 3-D animation. You don't have as

much to worry about in terms of changing the size, color, and

amount of internal motion of an object, and keeping track of which

object passes in front of another object becomes much easier.

INTERACTIVE ANIMATION

In traditional animation, the animator draws the elements of

each image, assembles them on the animation stand, and records

each increment of movement on individual frames of film to be

played back later in sequence. When you play back the film, you

see just what was recorded; the animation doesn't change from

playback to playback unless the film wears out or breaks.

Computer animation has an advantage over traditional anima

tion: The computer draws each image and places it on the screen

according to your instructions. As a result, you can quickly change

the way the animation proceeds, using a controller like a mouse or

a joystick to tell the computer to change the way the objects move,

what part of the background you see, and other aspects of the ani

mation. This is called interactive animation, since it immediately

responds to your wishes, and you can respond to its moving

images on the screen.

The most common example of interactive animation is the

pointer on your Amiga screen. Every time you roll the mouse, the

Amiga moves the pointer to a new location on the screen. You can

respond to the new location by clicking a mouse button if the

pointer rests on an icon, or by rolling the mouse again to move the

pointer to the location you want.

Another common example of interactive animation is a video

game, which is often a showcase for a computers animation ability.

When you press the joystick button to blow up an invading egg

plant, the computer responds to the button push with an anima

ted sequence of the eggplant turning into an exploding fireball.

Game players often respond to the animation with increased

pulse, sweat on the forehead, and a tendency to push the joystick

to its breaking limit.

Interactive animation is one of the computer's greatest artistic

capabilities. It draws the viewer into the action more completely

than any form of passive animation.

SECTION 4: ANIMATION

262

ANIMATION ON THE AMIGA

The Amiga was designed specifically to have superior animation

powers. The custom chips can move and manipulate large blocks

of graphics data with great speed, a necessary requirement for

computer animation. The system software includes libraries and

devices that take full advantage of the hardware graphics abilities

and make them easily available to programmers. As you work with

different animation applications and develop your own Amiga

BASIC programs, you'll have a chance to use many of the special

features described here.

THE PLAYFIELD

You're probably already familiar with the concept of a playfield

on the Amiga, but not with its name. The playfield is the graphic

background for any animation. It's usuaUy motionless, and provides

a backdrop for the objects that move over it. When you create still

pictures with graphics applications like Graphicraft or Deluxe

Paint, you're actually drawing figures in a playfield. The cursor or

the paintbrush that you move around over the playfield is a moving

object, animated by the graphics program and the movements of

the mouse.

You'll recall from Chapter 2 that the Amiga can scroll the con

tents of a window (a playfield) horizontally and vertically. This is a

useful tool for advanced programmers to pan the background in

animation. For example, as a background for animation, a pro

grammer can create a panoramic view of a mountain scene that

is much wider than the window it appears in, as seen below in

Figure 10-6. To move the viewpoint to the left, he can scroD the

entire playfield to the right. To move the viewpoint right, he can

scroll the playfield left.

Figure 10-6.

A panoramic background

shows through an Amiga

window. Scrolling left

and right moves the

viewpoint.

Window viewing area

A Computer Animation Primer

263

You'll also recall from Chapter 2 that the Amiga can lay one

screen over another with transparent areas in the front screen so

the back screen shows through- This gives advanced programmers

two different playfields to work with, which is a very handy tool for

2'/2-D animation. Like the underwater mountain backdrop in the

2J6-D animation example, the back playfield provides a backdrop for

moving objects in front of it. The front playfield can act as a

foreground, much like the coral facade. A programmer can pass

moving objects behind the front playfield, but the objects wiH move

around in front of the back playfield. When a programmer scrolls

both playfields, he can scroll the front playfield faster than the back

playfield to make the background look further in the distance and

make the whole scene look more realistic.

GELS

The Amiga allows you to create moving objects in Amiga BASIC

or in application programs like Deluxe Video or Aegis Animator.

These objects, called geis, can be moved over the playfield. Gel is

an Amiga animation term that stands for Graphic ELement, and

shouldn't be confused with the gels used in traditional animation.

There are two kinds of Amiga gels: sprites and bobs. Sprites are

usually small, simple, and fast, and take very little computing work

to move around the playfield. Bobs can be much larger than sprites

and have more color and detail, but they take more memory to store

and much more computing work to move, so they are sometimes

slower than sprites. If you understand how the Amiga creates

sprites and bobs, you'll understand why they have different

characteristics.

Sprites

A sprite is a small object placed directly on the playfield by

the Denise chip. It's like a flashlight pointer used on a projected

picture: As the flashlight moves up, down, and around, the beam

of light moves around without changing the image underneath at

all. Like the flashlight beam, a sprite isn't part of the picture drawn

on the playfield; as it moves around the screen, the sprite passes

over the playfield without changing it.

Sprites are common animation devices on home computers such

as the Atari 800 and the Commodore 64. What sets the Amiga's

sprites apart are their number and their coloring. You can create up

to eight sprites on the Amiga, and each of those sprites can be

colored with up to four different colors. One of those colors is

"transparent"; you can see the background through transparent

parts of sprites. To create a sprite with more colors, advanced

SECTION 4: ANIMATION

264

programmers can program the Amiga to combine two sprites to

create a new sprite that is the same size as a single sprite, but can

use sixteen colors.

Sprites are easy to create, and they take very little memory to

store. They're quite useful as fast-flying objects in video games,

and also work well as pointers. The pointer in the Amiga

Workbench is a familiar example of a sprite.

Bobs

Unlike a sprite, which moves over the playfield without changing

it, a bob is a gel drawn directly into the playfield. To get an idea of

how a bob moves around the screen, think of a traditional animator

creating a sequence of frames by drawing on a single sheet of

paper. He draws a swamp pond with a duck floating on the right

side of the pond, then snaps a picture of it. To make the duck swim

to the left side of the pond, the animator erases the entire duck,

then redraws it a fraction of an inch to the left of its original

position. He fills in the swamp pond to the right where the duck

used to be. He repeats this for each frame of the animation until

the duck reaches the left side of the pond.

A bob on the playfield is like the duck in the swamp picture.

The blitter (the fast-drawing section of the Agnus custom chip) is

the animator. It draws, erases, and redraws the bob and the

background underneath the bob with lightning speed to make the

bob move smoothly across the playfield.

Bobs can use up to 32 colors at once, and can be drawn in any

size as long as they fit in the playfield. Since bobs are drawn and

redrawn to move around the playfield, they take more computing

time to move than sprites, and are a little more difficult to create.

Nevertheless, bobs, once created, can usually move as quickly and

smoothly as sprites if they're not too large.

Bobs are useful to create animated objects of complex shape and

color. A good use of a bob would be as a large object like a car that

travels across the playfield. A sprite wouldn't be able to create an

object as large or with as much detail. A familiar example of a bob

is a custom brush you pick up from the mam picture in Deluxe

Paint. When you select a section of your picture, make it a brush,

and paint with it, you're actually using a bob.

CREATING INTERNAL MOTION

It's very easy for a programmer to move a gel around a playfield

using only external motion. He just tells the Amiga what speed he

wants the gel to move, and in what direction it should move. To

give the gel internal motion to make it more lifelike, he has two

choices; sequenced drawing or component motion.

A Computer Animation Primer

265

Sequenced drawing

Sequenced drawing is a method of animation available to

advanced programmers using the animation routines in the

Amiga's system software, or to dedicated Deluxe Video users. It

uses the technique shown earlier in the chapter used to animate

the wings of a bird: The programmer draws a sequence of indi

vidual pictures of different stages of internal motion. He then plays

back the sequence to create motion on the screen.

To use sequenced drawing with a gel, the programmer creates a

sequence of shapes and colors, and then uses the Amiga's system

software to assign the sequence to a single gel. The Amiga then

cycles through the drawing sequence to create an internally

animated gel. The programmer can move the sequenced drawing

gel around the playfield while it's running through a sequence of

drawings just by specifying the distance, speed, and direction for

it to move.

As an example, to animate a flying bird, a programmer would

produce a cycle of bird shapes that make the bird flap its wings

once. He would then assign the cycle of shapes to a gel. The

Amiga cycles through those shapes to create a bird flapping its

wings. To make the bird fly forward over the playfield, the pro

grammer tells the Amiga how far, in what direction, and how fast

to move the gel so the external motion of the bird will match the

internal motion of the wing flaps.

Component motion

An advanced programmer can also use component motion, a

second method of creating internal motion in a figure. The

programmer creates a set of small gels and groups them together

using the animation routines in the Amiga's system software to

create a single animated figure. Each individual gel has its own

external motion (with no internal motion), yet moves correctly with

the other gels in the figure to make the set of gels look like one

figure with internal motion.

As an example, consider the animated sequence of a man

walking across the street. The man has a separate gel for each of

his legs, torso, head, and arms. Each of these gels has its own

motion: The arms and legs swing backward and forward, the head

bobs up and down, and so on. When all these actions combine, the

figure of the man goes through walking motions. This is the figure's

internal motion. Adding external motion to the figure is done by

moving all the gels together in a single direction while they are still

going through their walking motion to let the man actually make

some progress in walking.

SECTION 4: ANIMATION

266

The Amiga's system software takes care of the tricky process of

calculating the motion of each individual gel when the entire figure

moves in one direction or another. All the programmer has to do is

create the individual component gels, define a set of motions for

each gel, and then give the Amiga a direction and speed for the

external motion of the entire figure.

For short animated sequences, component motion might be

harder to create than sequenced drawing. However, it's very useful

for long and varied animated sequences, and for interactive ani

mation where the individual gels can change their motion accord

ing to the input of the viewer or changing instructions from a

program.

GEL PRIORITY AND COLLISIONS

When animating any type of gel on the Amiga, questions arise

when two gels collide. Does one gel pass over the other? Do they

bounce off each other? Or do they crash and bum? The Amiga

uses animation routines in its system software to keep track of

each gel's location m the playfield. If any gel touches another gel, or

touches the boundaries of the playfield, the system software sends

out a signal that identifies which gel collided with another gel or

with which boundary the gel collided. The programmer can pro

gram the gels to respond: to move away, bend, disappear, explode,

pass on as before, or whatever else he has in mind.

In 3-D animation, if one gel passes over another when two gels

meet, it's important to make sure the gel that appears closer to the

viewer passes over the gel that's further from the viewer. When the

programmer creates a gel, he assigns it a priority number. The

Amiga's system software keeps track of each gel's priority number.

A gel with a higher priority number always passes over a gel with

a lower priority number. When the programmer wants to change

the depth of a gel, he can change the gel's priority number so that

it will pass before and behind the right gels to maintain the illu

sion of depth.

INTERACTIVE ANIMATION IDEAS FOR THE AMIGA

Interactive animation is easy to create on the Amiga, primarily

because of all the different ports the Amiga has to read information

from the outside world. The most useful ports are the two controller

ports on the right side of the console. You can plug in mice, joy

sticks, music keyboards, touch tablets, and a variety of other con

trollers that the Amiga will read. The system software will pass on

the controUer readings to the animation program so it can change

its actions accordingly.

A Computer Animation Primer

267

Some intriguing possibilities for interactive animation use fancy

hardware. For example, if you add an audio sampler to the Amiga

(see Chapter 8 for information on audio samplers) that sends

information to an animation program about sounds in the room

around the Amiga, the animation program can change the actions

of the figures on the screen to match the sounds in the room

around them. Likewise, if you have a digital thermometer that

sends temperature information to the Amiga through the serial

port, an animation program might be able to create different

animation for cold weather, cool weather, warm weather, and

hot weather.

As you can see, animation on the Amiga is a creative

field with a lot of possibilities. To keep the myriad of

animation elements under control, you can use an applica

tion program like Deluxe Video or Aegis Animator, or you

can jump into Amiga BASIC to create your own animation

programs. In the next three chapters, you will learn how

to do both.

SECTION 4: ANIMATION

268

CHAPTER ELEVEN

AMIGA ANIMATION

TOOLS

Animation is rarely a spontaneous activity; the typical

animator doesn't have a brilliant idea one evening, work a

few hours to bring an inspiration to reality, and then

perform the work for an adoring public the next day. You,

however, can come closer to spontaneity using some of the

animation tools available for the Amiga. They make ani

mation a much simpler process.

In this chapter, you'll learn about the available Amiga

animation tools. In the first half of the chapter, you'll learn

how to use advanced techniques with Deluxe Video, an

animation program, to create animated videos with pol

ished results. You'll discover tricks to put more animation

on the screen, get smoother results, and spend less time

creating a video. You'll also learn how to record your

finished videos on videocassette.

In the second half of this chapter, you will read about

Aegis Animator, another animation program for the Amiga.

You'll also read about the variety of hardware you can add

to the Amiga to enhance its video-production capabilities.

MASTERING DELUXE VIDEO

Deluxe Video is an animation program from Electronic Arts that

lets you create and play back your own animation sequences

{called videos) with accompanying music and sounds. To make

animation smooth and uncomplicated, Deluxe Video uses two

overlapping playfields for its animation: a background playfield and

a foreground playfield. You use the background playfield to create

stationary background pictures and the foreground playfield as an

area to move objects around the screen. Since the foreground

playfield is transparent except where it contains moving objects,

the two playfields blend together on your screen so you see the

background and foreground together as a single picture, similar to

the 2K2-D animation example you read about in the last chapter.

Deluxe Video uses three different types of animation. The most

common is blitter animation, where bobs are moved around the

foreground playfield by the Amiga's blitter, which constantly draws,

erases, and redraws them. The second type is sequential anima

tion, where Deluxe Video cycles through a series of individual

images you created earlier with Deluxe Paint. The third type of

animation is color cycling, the same kind of animation that Deluxe

Paint achieves by cycling the color registers.

SECTION 4: ANIMATION

270

Deluxe Video is not a simple program; it has to coordinate

motion, size changes, file loading {from disk}, disappearances,

music, sound effects, and many other elements. To use Deluxe

Video effectively, you have to compose a video much like a music

composer composes music, carefully thinking through the appear

ance and sequence of each video effect, using the techniques you

learn as you gain experience creating scripts. The following sec

tions explain some advanced techniques and tips you can use to

create your own Deluxe Video scripts.

USING DELUXE PAINT TO CREATE BACKGROUNDS

AND MATCHING OBJECTS

Two of the basic elements you work with in Deluxe Video are

pictures that fill the background of your video, and objects that

move in the foreground. To create your own pictures and objects,

you need to use the graphics-application program Deluxe Paint,

because Deluxe Video doesn't actually create custom objects or

pictures from scratch; it just loads them from disk and then

manipulates them.

To create a background picture on disk for Deluxe Video to use,

you simply save a low-resolution Deluxe Paint picture to disk. To

create an object for Deluxe Video to use in the foreground, you

draw it on a low-resolution Deluxe Paint screen, select it as a cus

tom brush, and then save the brush to disk. Since Deluxe Paint's

custom brushes are bobs (as you may recall from Chapter 10),

and Deluxe Video uses bobs for its moving objects, Deluxe Video

has no trouble loading the brush from disk to use as an object.

When you create objects and backgrounds with Deluxe Paint for

a single video, you want them to match in size and style, and you

want to make sure that the colors work well together. If you create

each object and picture in different Deluxe Paint sessions, you

might be disappointed with their consistency when they all come

together in your video. You can use some special techniques with

Deluxe Paint that will ensure that your pictures and objects work

well together in Deluxe Video, and will also save you time.

Maintaining color consistency

The key to keeping colors consistent is to realize how many

colors you can use in each of the two playfields that Deluxe Video

uses. Pictures appear in the background playfield. They can use up

to eight colors, since the Deluxe Video background playfield is

three bit planes deep. Objects appear in the foreground playfield.

The foreground playfield also uses three bit planes fa different set of

three bit planes than the background playfield uses), so you might

Amiga Animation Tools

271

think that the objects it contains can also use up to eight colors.

Instead, they are limited to seven colors, because the eighth

color—the background color—is transparent so the background

playfield can show through. And, since the background and fore

ground playfields can each use different sets of colors, by com

bining playfields you have a total of 15 colors that you ci:\\ use

in a video.

When you create objects and pictures for a single video script,

you can set the Deluxe Paint colors so that you use only one set of

eight colors for the background and another set of seven colors for

the foreground. Since Deluxe Paint has a spare screen, you can

work on the background in one screen, and on the objects for the

foreground in the other. Follow the instructions below to create a

picture and several objects to use in Deluxe Video.

First, set up Deluxe Paint:

1. Load Deluxe Paint by typing the command dpaint lo 4. This

loads a version of Deluxe Paint that uses four bit planes and

gives you 16 colors to work with. When the Deluxe Paint

screen appears, you'll see two columns of eight colors at the

bottom of the control strip. You can use the colors in the left

column for the background picture and the colors in the

right column for the objects.

2. Open the palette so you can change the available colors to

your liking.

3. Set the eight colors in the left column to colors you want to

use in your background picture.

4. Set the first seven colors in the right column as the colors

you want to use in the objects. Since you'll use the eighth

object color as the background color, it will be transparent in

Deluxe Video, so it doesn't matter what color you choose for

the last color in the right column. As you choose the object

colors, try to make them different from, but complementary

to, the background colors you set in the left column. This will

make your video look much more colorful when you put your

objects and the picture together.

5. Close the palette by clicking the OK button.

SECTION 4: ANIMATION

272

Now that Deluxe Paint is set for work, you can create a

background picture:

1. Paint your background picture using the colors in the left

column of the palette.

2. Choose Save As ... from the Picture menu to save your

background picture to disk. You'll want to save the picture

directly on your Deluxe Video Parts disk, so:

3. Insert the Deluxe Video Parts disk in a disk drive.

4. When the Save requester appears, click in the Drawer box, and

use the DELETE key to delete the contents of the box. If the

Parts disk is in an external drive, first type the name of the

drive (such as dfl:), then type Pictures. To enter the

background picture name, click in the File box, and type the

name. Click the Save button to save your background picture

in the Pictures drawer on your Deluxe Video Parts disk.

Once you've created a background picture, you can create

objects to go with it:

1. Press j to jump to Deluxe Paints spare screen.

2. Use the right mouse button to select the bottom color in the

right column of the palette as the background color, then

select the CLR button to fill the screen with this color. Since

the background color will be transparent on the screen in

Deluxe Video, it doesn't really matter what color it is on the

palette in Deluxe Paint.

3. Draw your objects in this screen using the first seven colors

in the right column of the palette.

4. To check the size and color of any object against the

background picture, use the brush-selection tool to select the

object as a brush, then switch screens back to the back

ground picture. Use the mouse to move the object around

the background picture to see how it looks in motion. When

you're finished, switch back to the objects screen.

5. When you're satisfied with the object, use the brush-

selection tool to select it again as a brush.

Amiga Animation Tools

273

6. Choose the Save As ... command from the Brush menu to start

to save the object.

7. Repeat the steps you used to save the background picture,

except save the brush in the Objects drawer of your Deluxe

Video Parts disk.

If you have other background pictures and objects to create, you

can create a new set of colors in the palette, and can use the same

techniques to create new background pictures with their own sets

of objects. When you're finished creating and saving pictures and

objects, quit Deluxe Paint and run the Deluxe Video Maker

program. To insert your pictures and objects in Deluxe Video,

follow these instructions:

1. Open the scene where you want to insert your background

picture.

2. Add a Picture track in the scene for your background picture.

When a requester appears asking you which picture to load,

select the name of the background picture you created

earlier.

3. A Palette More Than 8 Colors requester will appear. (Although

you used only eight colors in your background picture,

there were a total of 16 colors in the palette, and Deluxe

Video knows it.) Select the Best palette option. Deluxe Video

will load your background picture, using your original colors.

4. Click the Select button in the requester to finish adding the

Picture track.

5. To load the objects that go with the background picture, add

an Object track for each object. When the requester appears

for each track, select the object you created earlier, select the

Best palette option to load them using your original colors,

then click Select.

By using the techniques presented here, you can keep your

pictures and objects consistent, and save yourself the trouble of

trying to set a color palette in Deluxe Video to match objects and

pictures that were created using entirely different palettes.

USING COLOR-CYCLE ANIMATION IN THE

BACKGROUND PICTURE

Most of Deluxe Video's animation takes place in the foreground

piayfieid, with moving objects set in motion by Move To effect boxes

in the script. This type of motion is blitter animation because it

moves the object bobs within the foreground piayfieid. Blitter

SECTION 4: ANIMATION

274

animation uses quite a bit of processor time and memory, and

makes the motion on screen jerkier as you add more objects. If you

want to use a different method of animation that requires very little

memory and processor time, and also lets you add animation to the

background playfield, you can use color-cycle animation.

You've probably played with color cycling using Deluxe Paint. By

choosing a range of colors as a cycle range, painting a succession

of those colors on the screen, and then cycling the colors, you can

create the illusion of motion. You can also use color cycling in

Deluxe Video by choosing which colors will cycle in either the

foreground or background piayfields. You can use Deluxe Paint to

create background pictures or objects to use with Deluxe Video's

color-cycling effect.

The following example uses color cycling. It creates a back

ground picture depicting a carnival shooting arcade, with a series

of target ducks moving on a conveyor belt at the back of the arcade

tent. To create this background picture, first load Deluxe Paint and

set the palette:

1. Type dpaint lo 4 to load Deluxe Paint with four bit planes so

you get 16 colors in the palette.

2. Press p to open the palette so you can set the colors.

3. The eight colors in the left column are for use in the

background picture. Leave the first three colors black, white,

and red, but change the fourth to brown. You'll use these four

colors to create the carnival tent and a wooden counter top.

4. You'll use the last four background-picture colors to create the

ducks. Set the first of the four colors to yellow Leave the next

three colors in their default colors for now—they'll be

changed later.

5. Set the last four background-picture colors (the one you just

changed to yellow, and the three below it} as color cycle

number one (Cl). (See Chapter 3 for more information if you

don't know how to set a color cycle.)

6. Close the palette by selecting OK.

Now you can create the carnival tent and ducks:

1. Use the first four colors in the left column to draw a carnival

tent with countertop and a runway strip for the target ducks

as you see in Figure 11-1 on the next page. The brown strip

in the middle of the picture is the duck runway.

Amiga Animation Tools

275

Figure 11-1.

A carnival tent with a

duck runway strip.

5 SHOTS

Mill

WIN A

WORTHLESS

PRIZEt

HIM
Duck runway ■

Countertop ■

2. Switch to the spare screen and draw a single duck in solid

yellow like the one you see in Figure 11-2.

Figure 11-2.

A duck to be selected

as a brush.

SECTION 4: ANIMATION

276

3. Use the brush-selection tool to select the duck as a brush,

and switch back to the carnival picture.

4. Choose Cycle from the Mode menu so the brush will cycle

through the colors in the cycle range you set earlier in

the palette.

5. Select the first of the four cycle colors in the control strip

(yellow) as the foreground color. This makes the brush-color

cycle start from this color.

6. Lay down a string of ducks nose to tail, left to right, across

the duck runway, clicking the mouse button once for each

duck. At each click, the duck should change colors because

the brush is color cycling. The end result should look like

Figure 11-3.

WIN A

WORTHLESS

PRIZE*

If you cycle the colors by pressing the TAB key at this point, the

ducks will look like they're standing still and changing colors. To

make them look like they're moving, you have to change the palette

once again:

1. Open the palette.

2. Copy the brown that you used to paint the duck runway to

the last three colors of the cycle range (colors six, seven,

and eight).

Figure 11-3.

A chain of ducks drawn

using colors in the cycle

range laid down on the

duck runway.

Amiga Animation Tools

277

3. Select OK to close the palette.

4. Press the TAB key to test the color cycling. You should see a

well-spaced chain of yellow ducks moving across the runway.

5. Save your painting to the Pictures drawer of your Deluxe Video

Parts disk.

At this point, if you want to create some foreground objects to go

with your carnival-tent background such as popcorn, cheap prizes,

and BB rifle barrels, you should switch to the spare screen to create

and save them as objects in the Objects drawer of the Deluxe Video

Parts disk. When you're finished, quit Deluxe Paint, run Deluxe

Video, and put your cycling picture in a script:

1. Use the techniques described previously to put your carnival

picture in a scene using a Picture track.

2. Make the picture appear by placing a Load effect in the

Picture track.

3. Add a Background track to the scene.

4. Add a CycleClr effect to the Background track.

5. When the Cycle Colors requester appears, make sure colors 4.

5, 6, and 7 are on and colors 0, 1, 2, and 3 are turned off

(a color is on if its number is highlighted).

6. Select the OK button to close the requester.

7. Drag the first arrow of the CycleClr effect to the time in the

script where you want the ducks to start moving, and drag

the second arrow of the effect to the time where you want

the ducks to stop moving. Figure 11-4 shows a scene script

with the carnival picture loaded and the color cycling set to

last for eighteen seconds.

8. Play the scene to check the speed of the ducks. If they're

moving too fast, you can double-click on the top of the

CycleClr effect to open it again and set the Speed slider to get

the speed you're looking for.

SECTION 4: ANIMATION

278

l:H

-carnival-

C hckirri-

CyelcClr
r

4:24 8:48 13:12 17:M

\

Figure 11-4.

A scene script set up for

color-cycle animation on

the background playfield.

Once your moving-duck background has been created, you can

go on to add moving objects on a Foreground track in front of it, and

sound effects on a Sound track, to create an interesting video.

You can use this color-cycling technique in many ways to make

your backgrounds more interesting. You might use it to create

flowing rivers, waving trees and grass, moving crowds of people,

or any other repetitive background movements. It all runs very

smoothly behind whatever action you create with moving objects

in the foreground playfield.

CREATING SEQUENCED DRAWINGS FOR ANIMATION

Sequential animation is the most sophisticated animation you

can create with Deluxe Video. It's also the most time-consuming

animation to produce. To create the set of sequenced drawings

Deluxe Video needs for sequential animation, you have to work

with three different programs: Deluxe Paint to draw your sequence,

the Deluxe Video Framer to combine the sequenced drawings into

an object, and the Deluxe Video Maker to make the object appear

in a video and to run it through its sequence of drawings. The

following set of instructions will help you create a sequentially-

animated object with a minimum of work.

Amiga Animation Tools

279

The first thing you need to do is draw your image sequence

using Deluxe Paint:

1. Run Deluxe Paint using the command dpaint lo 3 to get a

3-bit-plane version of Deluxe Paint that uses eight colors.

2. Set the last seven colors in the palette to the colors you want

to use for your images. You'll use the first color as the

background color. It doesn't matter what color you set it to,

because Deluxe Video recognizes it as the background color,

and makes it transparent in the video.

3. Draw your first image in the upper left corner of the screen,

leaving room for the other images in the sequence in the rest

of the screen. Be sure to draw your image a little below the

title bar If you draw it too high, you won't be able to frame it

later with the Deluxe Video Framer: It will be too high on the

screen for the frame to slide up to.

4. Draw a box around the image, as you see in the example in

Figure 11-5.

Figure 11-5.

A boxed image ready to

be duplicated to create a

sequence of images.

SECTION 4: ANIMATION

280

5. Use the brush-selection tool to select the box and its

contents as a brush.

6. Lay down copies of the box next to each other, as you see in

Figure 11-6. Make sure the borders of the boxes don't overlap:

Wherever they touch there should be a double-width line. If

you run out of room in one row, start a new row going from

left to right under the last row.

Figure 11-6.

A sequence of images

ready to be altered.

7. Alter the images in the boxes so you have a sequence of

images that progress just the way you read: from left to right,

top to bottom. Remember as you alter the images that the

box around the image represents the still frame you'll see the

sequenced images through. Use it as a frame of reference to

keep the image from moving too much from one frame to the

next. Figure 11-7 (on the next page) shows a sequence of

changing images.

8. When you're finished drawing, use the Save As... command

from the Picture menu to save the whole sequence as a

picture in the Pictures drawer of the Parts disk.

Amiga Animation Tools

281

Figure 11-7.

A sequence of changing

images.

Once you've saved the sequence as a picture, you can quit

Deluxe Paint and run the Deluxe Video Framer to turn your picture

into an animated sequence of images:

1. Run the Framer.

2. Load the picture you just created.

3. Choose Change Frame... from the Project menu.

4. When the Frame Sequence requester appears, set the number

in the left half of the requester to match the number of

frames across, and set the number in the right half of the

requester to match the number of rows of framing in your

picture. In this example, the numbers would be 4 and 2,

respectively. Select OK to exit the requester.

5. Drag the upper left corner of the frame grid that appears until

it lines up with the upper left corner of your set of boxes.

6. Drag the lower right corner of the box labeled "a" down and

to the right to size the frame grid to exactly cover the borders

of your boxes.

SECTION 4: ANIMATION

282

7. The images will have letter names in the upper left corner of

each section of the frame grid like the images in Figure 11-8.

Note what happens in each frame—when you use the

Deluxe Video Maker later, it lets you change the sequence

order by typing in the frame letters in the desired order.

Figure 11-8.

A sequence of images

framed and lettered in

the Deluxe Video Framer.

8. Choose Make Object From Frame from the Project menu to

combine the images into an animation sequence.

9. Drag the single frame remaining on the screen to the spot on

the screen where you want to see it, then choose Animate

from the Project menu to see the framer run through your

sequence of images.

10. Choose the Save... command from the Object menu to save

your sequence as an object in the Objects drawer of your Parts

disk. Note that Framer will add a -1 extension to your old

filename for you—just click Save to save the sequence under

this name.

Amiga Animation Tools

283

Once you've set up your animation sequence with the Framer,

you can quit the Framer and use the Deluxe Video Maker program,

where you can put your animation sequence in a script:

1. Run the Deluxe Video Maker.

2. Add an Object track to a scene.

3. When the Object requester appears, choose the name of the

animated sequence you just created.

4. Add an Appear effect to the Object track.

5. When the Appear Where? requester appears, position the

square where you want the object to appear on the screen

and select OK to leave the requester.

6. Add an AnimSeqn effect to the Object track after the Appear

effect.

7. When the Animate Sequence requester appears, it shows the

letter names of each picture in your animation sequence.

Look at the notes you took when you used the Framer to

remember the order that you want the pictures to appear in,

then enter the order using letter names in the Sequence box,

first deleting what's already there if necessary. If you want

Deluxe Video to go through several cycles of the sequence

you just entered, move the Repetitions number up to the

number of cycles you want, then select OK to leave the

requester.

8. Drag the left arrow of the AnimSeqn event to the time in the

script where you want your animated sequence to start

running, and drag the right arrow to where you want the

sequence to stop running. Deluxe Video will run through the

number of images in the sequence you specified over the

time period set for the effect, so if you stretch the start and

stop points of the effect out over a long period of time, the

animated sequence will step through the images slowly. If

you limit the effect to a short period of time, the sequence

will cycle through the images quickly.

9. Play the scene to see your sequential animation. If you have

the AnimSeqn effect stretched out to the time you want and

the images are cycling too slow or too fast, then you can

open the AnimSeqn effect again and add or subtract from the

number of images in the sequence, or increase or decrease

the number of repetitions.

SECTION 4: ANIMATION

284

You can use sequential animation to very good effect. Keep in

mind that while the object is cycling through its sequence of

images, you can move it with a Move To effect. If you create a

walking or flying object, you can coordinate its external motion

(set with the Move To effect) with its internal motion (set with the

AnimSeqn effect) to make it look as if it's really walking or flying.

SYNCHRONIZING EFFECTS

As you use Deluxe Video, you'll find it very important to

synchronize effects in your script so sounds will accompany the

right actions, so motion can start at the same time as an object

appears, and so other effects that should happen together do

happen together One easy way to synchronize effects is to start

them together by lining up the left arrows of the effect boxes. You

can read the script time of the arrow at the top of the script as you

drag it along the track.

There are times when you may want to set the beginning of one

effect to occur at a specific point in the middle of another effect.

For example, you may want to add a "pop" sound in the middle of

an animated sequence that shows a pop bottle opening. How do

you find the correct point in the sequence without resorting to

tedious trial and error? You can use the remote control to locate the

exact time of the pop bottle opening.

Whenever you run a video or scene with the remote control

showing on the screen, the bottom of the remote control displays

the script time, running it forward or backward as you play

different parts of the script in different directions. To find the script

time of a specific effect in a scene, you can stop the scene from

playing and then read the time at the bottom of the remote control.

To make it easy to find, you can play the scene to approximately

where the effect occurs, and then play the scene using the single-

step mode.

To use single-step mode, select the button in the remote control

with the three dots in it, then use either the forward-play or

reverse-play button to go through the script one step at a time.

Whenever you find the exact point in the scene that you're looking

for, note the time at the bottom of the remote control When you go

back to the script, you can set a new effect at exactly the time you

noted by positioning its left arrow, using the time reading that

appears at the top of the script.

When you use this timing method, be sure that the Realtime

option isn't selected in the Options menu. If it's selected, the time

display at the bottom of the remote control will keep incrementing

during disk-loading operations as well as during video effects, so

the readout won't have anything to do with the time location of

effects in the script.

Amiga Animation Tools

285

MAKING YOUR SCRIPTS READABLE

As you create video scripts, the tracks and effects begin to add

up to an on-screen jumble, especially if you have many effects

running at the same time on one track. If you want to revise your

script, it can be very hard to see what you're doing—some effect

boxes may completely cover other effect boxes, effect-box arrows

may be crammed into one tiny space so you can't see where the

effects start and end, and some effect boxes might be placed so far

away from their arrows that you can't follow the connecting lines.

To avoid these problems, follow these rules of thumb to make

your script easy to read and revise:

1. Keep related tracks next to each other. This makes it easy

to synchronize effects between the tracks, and also makes

it easy to follow the related tracks through the script. For

example, if you want two birds to fly across the screen

accompanied by bird squawks, you use three tracks to

gether: two Object tracks (one for each bird} and a Sound

track. Keep these three tracks together in the script so you

can see and synchronize the effects between them.

2. If you have several effects occurring simultaneously in a

single track, layer the effects so each type of effect has its

own height above or below the central track line. This lets

you follow the course of each type of effect, and see how

they interact with the other types. For example, in an Object

track you might have several different AnimSeqn effects

occurring at the same time as Move To effects and Size effects.

To keep everything clear, you can put all the AnimSeqn effect

boxes very close to the track line. One level above the

AnimSeqn effect boxes, you can put the Move To effect boxes,

and one level above that you can put the Size effect boxes as

shown in Figure 11-9.

3. If effects are crowded close on each other's heels, making

them very hard to read, stretch out the time scale of your

script using the Time Scale... command in the Options menu.

This gives you much more space to fit your effects into so

you don't have to overlap boxes, and so you can see where

the effect arrows are located. For example, if you have a

scene script set to show 22 seconds at a time in the scene-

script window and the effects are crowding each other on

individual tracks, then you can set the script to show seven

seconds at a time, stretching out the effects in the track to

over three times as far apart as they were previously.

SECTION 4: ANIMATION

286

Figure 11-9.

A single Object track

with effects grouped by

type on separate levels to

keep them readable.

RECORDING DELUXE VIDEO ANIMATION ON VIDEOTAPE

Once you've finished creating a video on Deluxe Video, you can

record it on videotape. It's very easy. All you have to do is connect

the Amiga to a videocassette recorder, start the VCR recording, and

then start the animation running. The following sections give you

the details you need.

Connecting the Amiga to a VCR

To connect the video output of the Amiga to the video input of

the VCR, you need a simple audio cable with a phono plug on each

end. Plug one end of the cable into the video port on the back of

the Amiga's console. The video port is the port farthest to the right

as you look at the back of the Amiga. Plug the other end of the

cable into the jack labeled "Video In" (or something similar) located

on the back or side of your VCR.

If you have sound in your animation, you should connect the

audio ports of the Amiga to the "Audio In" jack (or jacks) of your

VCR. If you have a stereo VCR, you connect the Amiga to the left

and right "Audio In" jacks of the VCR the same way you connect

the Amiga to a stereo cassette recorder. (See Chapter 8 for more

details.) If you have a monaural VCR, you connect the Amiga to the

VCR the same way you connect the Amiga to your monitor. (See

Introduction to Amiga in your user manual for more details.)

Amiga Animation Tools

287

Making the recording

Once the connections are made, you can start recording. To

capture all the video on tape without recording the process of your

loading and running the script, follow these instructions:

1. Run the Deluxe Video Maker and load whatever video you

want to record. Choose Play Video from the Project menu.

2. When the remote-control unit appears, stop the video and

select the reset (:0) button to set the video back to its start.

3. Click the single-step button on the remote control, then click

the play-forward button once to play and freeze the script at

its very beginning so the title bar at the top of the screen

disappears.

4. Click the single-step button a second time to turn off the

single-step mode, then select the back gadget on the remote

control to make it disappear.

5. Move the pointer off the bottom right corner of the screen so

that no part of it shows on screen.

6. Set the recording speed of your VCR to the highest possible

speed for the best video quality, then press the key on the

VCR that starts it recording.

7. Wait for a few seconds until the VCR's tape heads are up to

speed, then press the Amiga keyboard's right cursor key to

start the video playing.

8. At the end of the video, stop the VCR- You've just recorded

your video onto tape.

VIDEO RECORDING QUALITY

When you watch your video recording, don't expect the same

quality you see when you watch the original video on an RGB

monitor. Recording the video downgrades its quality because of

two processes: First the video signal is converted to a composite

video signal instead of an RGB signal so it can be fed to the VCR;

then the composite signal is recorded on videotape, which further

deteriorates the quality There's nothing you can do about having

SECTION 4: ANIMATION

288

to use a composite video signal—most VCRs will only accept a

composite video signal. You can improve the quality of the tape

recording, though, by buying a high-quality home VCR and using a

good-quality recording tape. If you buy a Beta VCR, try to get a

SuperBeta recorder, which has substantially better video quality

than other types of Beta recorders. If you buy a VHS VCR, you

should consider an HQ VHS, which also has video quality much

improved over other VHS VCRs.

ADDITIONAL ANIMATION SOFTWARE

Deluxe Video is not the only animation software you can buy for

your Amiga. Electronic Arts plans some further additions to Deluxe

Video, and Aegis Development has an animation program called

Aegis Animator.

AEGIS ANIMATOR

Aegis Animator, sold by Aegis Development, is a simple but

effective animation program. It's inexpensive, easy to use, and can

create some great three-dimensional animation using simple

abstract objects. Aegis Development bundles Aegis Animator

together with the Aegis Images graphics program, so you can

use pictures created in Aegis Images as backgrounds and objects

in Aegis Animator videos.

Aegis Animator uses a type of animation called metamorphic

animation for most of its effects. In metamorphic animation, the

Amiga doesn't calculate the motion of every bit in an object that it's

moving around the screen. Instead, it uses simple geometric

objects such as lines and polygons that it can define by setting a

series of points and connecting them with lines. The Amiga has to

calculate only the endpoints of an object as it moves it around the

screen instead of calculating the motion of every bit in each object.

For example, to keep track of a square, the Amiga has only to keep

track of the location of the four corner points. As Animator moves

these simple objects around, it calculates new positions for the

endpoints and then draws the rest of the object by connecting the

points and filling it in if it's a solid object.

The advantage of metamorphic animation is that it takes very

little calculation to manipulate objects on screen. Aegis Animator

makes good use of this advantage, and offers a variety of special

effects you can use on an object, such as moving it from one

location to another, changing its size, rotating it around three

Amiga Animation Tools

289

different axes, and changing it from one shape to another. Another

advantage of metamorphic animation is that the motion of an

object is often much smoother than it is in blitter or sequenced

drawing animation, because of the reduced calculation time.

The disadvantage of metamorphic animation is that you have to

work with simple geometric shapes. This is no drawback if you're

working on abstract animation, but it's a distinct disadvantage if

you want to create objects like people, animals, and other

irregularly shaped items.

Animator offers you some alternatives to metamorphic anima

tion: You can use a 32-color picture created with Aegis Images,

Deluxe Paint, or another IFF standard graphics program as a

background to your animation. (Animator uses a single 5-bit-plane

playfield for animation instead of the two 3-bit-plane playfields

Deluxe Video uses, so it's possible to get 32 colors.) You can also

create individual objects with up to 32 different colors in a graphics

program, and Animator will use them in simple animation; it

moves them around the screen, but it won't rotate or size them or

change their shapes as it can with geometric objects.

Animator doesn't use a script the way Deluxe Video does.

Instead, it lets you create objects on the Animator screen, and then

move them around and control them with other effects. You record

each step of your motion and control effects, and Animator

remembers the whole sequence so it can play it back later. Once

you finish a sequence, you can create other sequences, and then tie

them all together in a special screen called the storyboard. This

makes it easier to create a short video than by using a script, but it

also makes it harder to edit a video and to synchronize many

effects at once.

Unlike Deluxe Video, Animator is strictly animation—there

is no sound, so you can't add sound effects or a musical score to

accompany your creations unless you run a music program simul

taneously. Also, Animator does not have commands for adding

text to your animation.

DELUXE VIDEO LIBRARY DISKS

Electronic Arts plans to follow Deluxe Video with Deluxe Video

library disks containing additional pictures, objects, sounds, and

scene generators that you can use with Deluxe Video. The contents

of the library disks will aD be related to give you the tools and parts

to easily create business presentations, for example, or to title

videotapes as another example. The scene generators will create

specialized scenes automatically for you. The library disks will

contain the work of professional artists and programmers to make

your work easier and better looking.

SECTION 4: ANIMATION

290

ANIMATION AND THE IFF STANDARD

Since animation has no set notation standard, and different

animation programs use entirely different techniques to create their

effects, there is no IFF standard for video scripts. This means that

you can't create a video on Deluxe Video and then play it using the

Aegis Animator or vice versa. The individual parts of the videos

use the IFF standard, though. Pictures, sounds, and music can be

transferred from one animation program to another that uses the

IFF standard and can make use of them.

ADDITIONAL ANIMATION HARDWARE

You can greatly increase the animation power of your Amiga

by adding extra hardware. Some of the hardware will make your

animation programs run faster and help store longer sequences

of animation than you can with the Amiga alone. Other hardware

will add external sources of animation and help you blend the

Amiga's animation with external animation.

EXTERNAL RAM CARDS

Animation is an activity that takes a lot of memory. When you

consider that a simple video background can take up to 8K of RAM

to store, and one sampled sound can take over 30K of RAM, it's no

surprise that an Amiga with 512K of RAM can quickly fill up when

you create a script with many different backgrounds, dozens of

objects, and sampled sounds to match. To get around memory

limitations, programs like Deluxe Video store all the animation

elements they can in RAM, and keep the rest on a disk in the disk

drive. As you play a video, Deluxe Video loads the new elements

from the disk when they're needed and erases the old elements

from RAM. This is why there are pauses in the video as it plays—

Deluxe Video has to take some time to load new animation

elements from disk.

You can add up to eight megabytes of additional RAM to the

Amiga, using the expansion connector on the side of the console to

help store your video elements. This additional memory is called

external memory to differentiate it from the 512K of RAM that the

Amiga can have internally. The Amiga must keep pictures, objects,

and sampled sounds that it works with in the internal memory,

since the custom chips that draw, animate, and play sounds have

direct access only to the internal memory. (The Amiga's internal

memory is sometimes called "chip memory" for this reason.)

Animation elements that the Amiga isn't using at the moment

can be stored in external RAM. Since the Amiga's 68000 processor

Amiga Animation Tools

291

can directly read both internal and external memory, it can quickly

bring the animation elements into the chip memory when they're

needed without the delay that would be caused by loading them

from a floppy disk.

Several companies make external RAM cards that plug into the

Amiga's expansion port. Most of these cards contain two mega

bytes of RAM, memory enough to store more than the contents

of two floppy disks. Some of the RAM cards allow you to add

additional 2-megabyte RAM cards up to a total of 8 megabytes.

The 2-megabyte memory board sold by The Micro Forge is a typ

ical example of external memory you can add to your Amiga.

THE AMIGA 1300 GENLOCK BOARD

The Amiga 1300 Genlock board, sold by Commodore, lets you

mix the graphics and sound from your Amiga with the images and

sound coming from an outside source like a television set, a VCR, or

a laser disc player. It plugs into the RGB ports and audio ports of

the Amiga console, where it receives the video signal coming from

the RGB port and the audio signals coming from the audio ports.

The Genlock board has its own jacks that accept input from an

external video source and an external stereo audio source. It also

provides an RGB output for you to plug into your RGB monitor, a

composite video output to plug into a VCR for recording the images

on the monitor, and left and right audio output jacks to connect to

your monitor speakers or to an audio or video recorder.

By using a switch on the Genlock board, you can choose which

signal will come from the board's output ports. If you choose the

external signal, you'll see and hear whatever video and audio

sources you've connected to the external signal jacks. If you choose

the Amiga's signal, you see and hear just the graphics and sound

generated by the Amiga. If you choose both signals, then you see

and hear the external signals and the Amiga's signals mixed

together.

When you choose to mix the external signals and the Amiga's

signals together, the Genlock board puts the Amiga's images on

top of the external images. Wherever there is background color in

the Amiga's picture, the external picture shows through. The audio

signals are mixed together so you can hear both simultaneously

Consider an example: If you connect the output of a television

receiver with the input of the Genlock board and choose to mix

the signals with the Amiga's signals, when you run the Workbench

you will see the windows, icons, and gadgets of Workbench all

SECTION 4: ANIMATION

292

displayed on a moving background of the 5 o'clock news, or

whatever the television receiver is receiving. The TV background

replaces the normal blue background you see in Workbench. You

would also hear the audio portion of the 5 o'clock news on your

monitor speakers. If the Amiga beeps at you as you work, you'll

hear the beep mixed in with the news.

The Genlock board is very useful for titling videotapes, among

other things. If you connect one VCR to Genlock's input and a

second to the Genlock's composite-video output, you can play a

videotape on the first VCR, add overlaid graphics on the Amiga,

and record the two mixed together on the second VCR- When you

consider that the effects created using Deluxe Video or Aegis

Animator will work with Genlock, all you have to do is lay down

background color in your Amiga videos wherever you want the

videotaped images to show through. You can then have titles

scrolling over your own family videos.

LASER DISC PLAYERS

A laser disc player is one useful source of an external video

signal to use with a Genlock board. The laser disc player uses a

laser to read video signals embedded in the laser disc much like a

compact disc player uses a laser to read audio signals on a com

pact disc. You can't record images on a laser disc player like you

can on a VCR, but using one does have several advantages: It puts

out sharp, clear pictures and stereo high-fidelity sound, and it

provides a wide variety of special effects such as slow motion,

reverse motion, and freeze-frame; and even more interesting, you

can control the way it plays with your Amiga.

Pioneer Video makes most of the laser disc players sold in the

United States. The Pioneer CLD-900, an advanced model, plays both

laser discs and compact discs, so you can use it for audio or video.

It has the special-effect capabilities available in most laser disc

players: adjustable slow motion, fast forward and reverse (at three

times normal playing speed), forward and reverse scan (a high

speed fast forward and reverse), freeze-frame, and individual frame

search. The individual frame search is very powerful. Laser discs

produced in the CAV format (the format that laser disc players need

to use special effects) can store up to 54,000 individual frames, each

frame a full video picture. You can ask the laser player to jump to

and display any one of those frames.

The CLD-900 has an I/O port in the back that you can use to

connect a Pioneer IU-04 computer interface. The IU-04 connects to

the serial port of the Amiga, and acts as a computerized remote

control. The Amiga can send simple commands through its serial

port to control the laser disc player in any way you can with the

laser disc's own controls.

Amiga Animation Tools

293

The Amiga can be used in combination with a laser disc player,

the IU-04 interface, and a Genlock board to create some interesting

educational programs. For example, you might start with an inter

esting laser disc like one of the Space Archive laser discs sold by

Video Vision Associates. Each Space Archive disc has filmed

sequences of moon landings, shuttle launches, and satellite mis

sions, as well as hundreds of still pictures, stored one per frame.

The Amiga can play the laser disc through the Genlock board on

the Amiga's monitor. While the disc plays, the Amiga can put up

captions on the screen, point out items of interest on the screen,

and even make comments in its synthesized voice. At any point in

the disc, the Amiga can use the IU-04 to freeze the action. It can

ask the viewer if he wants to jump to any other section of the disc,

or it might ask questions in a short quiz. It can then move on to

another disc section, depending on the user's input.

No existing software application works with a laser disc and

Genlock this way, but the hardware and the disc are available, and

you can use Amiga BASIC to create a program that can do just

what was described.

In this chapter, you've learned some techniques for using

Deluxe Video to create your own Amiga videos. You've also

taken a tour of some of the other animation hardware and

software available for the Amiga. If you're interested in

learning more about Amiga animation, read on—the next

two chapters describe the many Amiga BASIC animation

commands, and tell you quite a bit about how the Amiga

creates its animation.

SECTION 4: ANIMATION

294

CHAPTER TWELVE

AMIGA BASIC

ANIMATION:

CREATING MOVING

OBJECTS

Amiga BASIC contains a wide variety of statements

and functions that allow you to move objects around your

monitor screen in different directions at varying speeds. It

can pass one object over another object, and make objects

disappear and reappear at your command. It keeps track of

every object on the screen, and checks to see if they have

collided with each other or with the edges of the window

they're moving in. Amiga BASIC provides you with the tools

you need to create interesting animation.

The first step in creating animation is to draw the ob

jects you want to animate with the Object Editor, a BASIC

program included on your Amiga BASIC disk. The Object

Editor can save the objects to disk for later use in your

BASIC programs. When you write a BASIC program, you can

use BASIC animation statements to bring the objects back

into memory from disk, put objects in the output window,

set the speeds of the objects, start the objects moving, stop

the objects, and remove them from the screen. You can also

include other statements that read the speeds and locations

of objects on the screen, and keep track of their collisions.

In this chapter you'll use the Object Editor program to

create objects, and you'll also try out some of the BASIC

animation statements that put objects on the screen and

move them around. In Chapter 13, you'll learn how to

control the objects' motion, how to make one object pass

over another, and how to control collisions to create

convincing animation.

USING THE OBJECT EDITOR

Your first task in creating animation with BASIC is to draw

objects with the Object Editor. If you look at the contents of the

Amiga BASIC disk, you should see a drawer labeled BasicDemos. In

that drawer are a variety of BASIC programs that demonstrate the

powers of Amiga BASIC. One of those programs is labeled ObjEdit:

This is the Object Editor.

To use the Object Editor, start it just as you would any other

BASIC program: Point to the icon and double-click, or choose Open

from the Project menu from within BASIC. Chapter 7 of the Amiga

BASIC manual, "Creating Animated Images," gives directions on

how to use the Object Editor. You should read that chapter to find

out how to select colors, how to use the drawing tools, and how to

save and recall objects from disk.

SECTION 4. ANIMATION

296

MODIFYING THE OBJECT EDITOR

The Object Editor on your Amiga BASIC disk was written to

work on a 256K Amiga, and is limited to creating objects just two

bit planes deep (a four-color limit) in a screen that uses mode 2

resolution. Since Amiga BASIC can use objects of all different

depths and resolutions, you should modify the Object Editor

program if you have a 512K Amiga so the Object Editor will create

objects of all different depths and resolutions. Fortunately, the pro

gram is easy to change—all you have to do is make some minor

modifications.

First, open the Object Editor. If its running, stop it and then

open the List window. Widen the List window so you can see the

full length of the program lines. If you scroll through the program,

you'll see that it's quite long, but divided up into short sections,

most of them starting with a label and ending with a blank line.

As you modify the Object Editor, you'll replace a few subsections

and alter others. To view a particular subsection, just select the

Output window and type list, followed by a space and the name of

the program section. The Last window will list the program starting

at the first line of that program section. You can then alter the

subsection or replace it entirely.

To modify the Object Editor, follow these instructions exactly:

1. Count the lines m the program listing from the beginning of

the program. Replace lines 30 to 38 (they start with scrn - -I

and end with WINDOW 1,(0,0)-(WinX,WinY),31,scrn) with

this new subsection:

SetScreen:

INPUT "Resolution mode (1-4)?", res

INPUT "Depth (mode 1: 1-5, mode 2 & 3: 1-4, mode 4: 1-3)?", depth

IF depth < 1 THEN depth = 1

IF res = 4 THEN

wide = 640: high = 100

IF depth > 3 THEN depth - 3

THENELSEIF res = 3

wide = 320

IF depth >

ELSEIF res - 2

wide - 610

IF depth >

ELSE

high - 400

4 THEN depth

THEN

high - 200

4 THEN depth

(continued)

Amiga BASIC Animation: Creating Moving Objects

297

wide * 320: high = 200

IF depth > 5 THEN depth = 5

END IF

WmX = wide - 9: WinY - high - 15

5Crn ■ 1

SCREEN 5crn, wide, high, depth, res

WINDOW 2, "Object Editor", (0,0) - (WinX,WinY), 0, scrn

2. List the subsection StaitOver. At the end of the subsection,

insert this line between the lines MENU RESET and CLS:

SCREEN CLOSE scrn

3. List the subroutine InitConstant:. Change the seventh line of

the subroutine from StatusLine — 20 to:

StatusLine • 23

4. List the subroutine InitFile:. Change the third line of the

subroutine from JF Depth = 2 THEN to:

IF Depth = 2 AND res = 1 THEN

5. List the subroutine PrintColorBai:. Replace the entire sub

routine with this modified version:

PnntColorBar :

COLOR CurrentColor

LOCATE 19,1: PRINT "Color:";

ColorBar = WIND0W(5) - 10

COLOR 1

x - 70: newbar - 0: barcaunt ■ 0: barend = 640

FOR l = 0 TO maxColor

z = newbar + ColorBar

LINE (x,z) - (x + 20,z + 10) , l, bf

LINE (x,z) - (x + 20,z + 10), l, b

x = x + 20

IF x + 20 > WINDDW{2) THEN

newbar ■ newbar + 10

barcount = (x - 70) / 20

barend = x: x • 70

END IF

NEXT l

RETURN

SECTION 4: ANIMATION

298

6. List the subroutine CheckColor:. Replace the entire sub

routine with this modified version:

CheckColor :

IF CurrentY < Co lorBar THEN RETURN

IF CurrentY > Color Bar + newbar + 10 THEN RETURN

IF Current X < 70 THEN RETURN

IF CurrentX > barend THEN RETURN

l = INT((CurrentX - 70) / 20)

i = i + INT((CurrentY - ColorBar) / 10] ■ barcount

IF i > maxColor THEN RETURN

CurrentColor- i

GQSUB PrintColorBar

RETURN

7. Save this modified Object Editor under a new name like
NewEdit.

8. Be sure your default text font for BASIC is set to 80 columns.

The text in the new Object Editor won't fit on the screen if

you use the 60-column font. If it isn't set to 80, quit BASIC,

use Preferences in the Workbench to change the font, and

then restart BASIC.

DRAWING AN OBJECT

You can use the modified Object Editor to create both sprites

and bobs. (See Chapter 10 for more information about sprites and

bobs if you don't know what they are.) Run the modified Object

Editor program. When it starts, the program will ask you first for a

resolution mode and then for a depth. If you're going to draw a

sprite, enter mode 1 and depth 2. (You may have to click in the

window first to make the window active.)

If you're going to draw a bob, choose a resolution mode that

matches the resolution mode you want to use in your animation

program. Choose a screen depth that gives you the number of

colors you want to work with. (Recall that different bit-plane depths

give you a different number of colors to work with: 1 bit plane = 2

colors; 2 bit planes = 4 colors; 3 bit planes = 8 colors; 4 bit planes

= 16 colors; and 5 bit planes = 32 colors.)

Once you've chosen a resolution mode and depth, the editor

screen appears, unless you chose a resolution of mode 1 and a

depth of 2, in which case you're asked to choose between editing a

sprite and editing a bob. Once you've made your choice, the editor

screen (seen in Figure 12-1 on the next page) will appear and you

can begin to draw your object.

Amiga BASIC Animation: Creating Moving Objects

299

Figure 12-1.

The Object Editor's editor

screen, here set up for a

mode 1 resolution with

five bit planes.

Drawing a sprite

When you draw a sprite, the drawing area of the Object Editor

has a fixed width that limits the maximum width of the sprite.

That's because sprites are limited in width by the hardware that

draws them on the screen. The height of the drawing area is

adjustable, though, so you can change its size to fit the height of

the sprite you want to create.

Once you've set the height, you have a choice of four colors with

which to draw the sprite. Keep in mind that the first color in the

Object Editor's color bar, the background color, will be transparent

when the sprite appears in a window Any areas of the sprite you

colored using the background color (or didn't color at all, since by

default all the pixels are the background color) will let the playfield

and any other objects beneath the sprite show through.

When you finish drawing your sprite, you can save it to disk

using the Save command in the File menu. It will help jog your

memory later if you add .spr at the end of the name of each of the

sprites you create. For example, you might name a sprite shaped

like a pencil Pencil.spr. Later, when you look at all the names of the

different objects you created and stored on disk, you can identify

the sprites by reading the suffixes.

Take some time now to draw a sprite in the shape of a bee and

store it on disk. Name it Bee.spr. You can use it in the program

examples in Chapter 13.

SECTION 4: ANIMATION

300

Drawing a bob

You can draw a bob using any of four different resolutions and

anywhere from two to 32 different colors, depending on the depth

you set. The bob can be a variety of heights and widths. You can

change the size of the drawing area by stretching it horizontally

and vertically to the size you want. The Object Editor won't let you

stretch the drawing area to a size that will cteate a bob too large

for memory

The colors that appear in the color bar at the bottom of the

screen are the default colors contained in the color registers for that

screen. When you choose colors to draw your bob, remember that

the first color, the background color, is transparent when the bob

appears on the screen, just as it is when you use the background

color for a sprite.

When you save a bob to disk, you should add a suffix to its name

that identifies it as a bob and tells its resolution and how many bit

planes it uses. For example, if you create a mode 2 resolution 3-bit-

plane bob that is shaped like a car, you might name it Car.2bob3.

You might also name a mode 1 5-bit-plane bob shaped like a

bratwurst sandwich Bratsan.lbob5.

Before you finish creating objects with the Object Editor, use it

to draw several mode 1 bobs to use in the program examples later

in the chapter. Draw a l-bit-plane bob and save it as Bird.lbobl, a

3-bit-plane bob saved as Flower. Ibob3, and a 5-bit-plane bob

saved as Robot.Ibob5. Don't make them too large! You can use

these bobs later. When you've finished using the Object Editor,

choose Quit to stop running it.

CREATING A PLAYFIELD

Once you've drawn and saved some bobs and sprites, the first

step in creating a BASIC animation program that uses them is to

create the playfield, a background on which they can move. To do

this, you must first create a screen, and then create an output

window using the SCREEN and WINDOW statements you worked

with in Chapter 4. If you want to create a playfield that includes

more than just the background color, you can use some of the

BASIC drawing and printing statements to create figures or patterns

in the output window. Anything you put in the playfield with the

drawing and printing statements will be part of the background

when you put objects on the playfield with the BASIC animation

statements.

Amiga BASIC Animation: Creating Moving Objects

301

Figure 12-2

A mode 1 bob shown

from top to bottom in

mode 1, mode 2, mode 3,

and mode A screens.

SCREEN RESOLUTION

When you set the screen resolution with the SCREEN statement,

try to match it to the resolution of the bobs you plan to use. You

can put a bob created in one resolution in a screen of a different

resolution, but the proportions of the bob will change as a result of

the change in proportion of the pixels that build it. For example, a

bob created using mode 1 will look half as wide in a mode 2 screen

because all the pixels on the screen are half as wide as they are on

a mode 1 screen. Figure 12-2 shows a mode 1 bob as it appears in

mode 1, mode 2, mode 3, and mode 4 screens-

Sprites look the same no matter what the resolution of the screen

they're displayed in. That's because a sprite is not part of the

screen itself. It's displayed separately by the Amiga's hardware

using mode 1 pixels.

SCREEN DEPTH

To take full advantage of all the colors you selected for a bob, you

should create a screen that's as deep or deeper than the deepest

bob you want to use. For example, if you want to use two bobs, one

two bit planes deep and the other three bit planes deep, you should

create a screen at least three bit planes deep to fully accommodate

the two bobs.

SECTION 4: ANIMATION

302

You can place a bob on a screen with fewer bit planes than the

bob if you want, but you won't see all the colors in the bob because

the bob is limited to the number of bit planes in the screen. For

example, if you put a 5-bit-plane bob with 32 colors on a 2-bit-plane

screen that supports just four colors, the bob will be limited to two

bit planes, and will have only four colors- Any pixels using colors

that are above the range of that screen's depth will be displayed

using the background color—only pixels with colors within the

depth of the screen will be displayed.

Sprites use their own color registers, so the depth of the screen

they appear on won't affect the color of the sprite.

CHOOSING COLORS

When you put bobs and sprites on a screen, the screen uses the

colors stored in its color registers to color the bob. These colors can

differ from the colors you used to draw the bob, because the Object

Editor doesn't save the actual colors you used. Instead, it saves the

color-register number of each pixel you used to draw the bob,

starting with 0 for the background color, and counting to the right

in the Object Editor's color bar. If there is more than one color bar,

the count resumes at the left end of the next bar down, and con

tinues to the right. For example, a mode 1 Object Editor screen

with 32 colors in the color bar would be numbered as shown in

Figure 12-3.

0

12

24

1

13

25

2

14

26

3

15

27

4

16

28

5

17

29

6

18

30

7

19

31

8

20

9

21

10

22

11

23

To use the colors in the Object Editor that you'll use in your

screen, you can further modify the revised Object Editor program:

list the subsection of the program named SetScreen and insert the

same PALETTE statements at the beginning of the subsection that

you will use to set the new colors for your screen. (Amiga BASIC'S

Cut and Paste commands in the Edit menu work very well for this.)

When you run the Object Editor, it will use your new colors.

Sprites use a different color scheme than bobs do. When the

Object Editor saves a sprite to disk, it automatically saves the first

color in the sprite (the second Workbench color) as turquoise, the

Figure 12-3.

The color registers

used in the mode 1,

5-bit-plane Object

Editor screen.

Amiga BASIC Animation: Creating Moving Objects

303

second color (the third Workbench color) as black, and the third

color (the fourth Workbench color) as orange. Later, when you recall

the sprite back to the screen in an Amiga BASIC program, the

sprite appears with those colors.

The Amiga uses color registers 17 through 19 to store the colors

of the first two sprites on the screen, color registers 21 through 23 for

the next two sprites, color registers 25 to 27 for the next two sprites,

and color registers 29 to 31 for the last two sprites. When BASIC

loads a sprite from disk, it assigns the colors stored with the sprite

to the color registers that sprite will use, changing any colors that

might already be there. If you're using a screen with 16 colors or

less, this has no effect on the screen colors. If you're using a 32-

color screen, the colors on the screen that use the same color

registers as the sprite uses will change as soon as a sprite appears.

If you want to create sprites with colors other than turquoise,

black, and orange, you can list the section of the Object Editor

titled SaveFile: and change the 20th, 21st and 22nd lines of the

section. These lines assign three hexadecimal RGB values to the

sprite disk file, one for each color of the sprite. The value in

parentheses following MKIS on each line contains a three digit

hexadecimal number (preceded by an "&H") that specifies the

amount of red, green, and blue that sprite color will contain. The

first digit of each number (the one on the left) is the red value, the

second digit of each number is the green value, and the third digit

of each number is the blue value of that sprite color. Each digit

represents the proportion, or strength, of that color on a scale of

0 to 15 (which, in hexadecimal, is 0 to F), so a value of FFF would

produce a white color (all three colors at maximum strength),

and a value of 000 would produce a black color (all three colors

"turned off").

WINDOW SIZE

Any objects and playfield drawings you create have to appear in

a window You can use any type and size of window as your output

window, but to make the most of the animation, you should have

plenty of room for the objects to move around. A type 0 window—

a full-screen window with no title bar, gadgets, or window

refresh—gives you the most room to work with. It also keeps the

window from being resized or dragged, activities that interfere

temporarily with animation in the window.

SECTION 4: ANIMATION

304

As an example, the following statements create a playfield for

animation statements you'll use later in the chapter. The SCREEN

statement creates a mode 1 screen that is five bit planes deep. The

WINDOW statement creates a type 0 window without a title bar on

the screen to serve as the playfield. The following FOR.. .NEXT loop

creates 50 boxes of random colors and sizes to create an interesting

background in the playfield:

Na IcePlayf 1 e Ic

SCREEN 1,

NINDOW 2,

FDR 1 = 1

xl =

x2 -

yi =

y2 -

LINE

NEXT i

320, 200, S,

.,0,1

TD 50

INTfWiNDOW(2)

INT(WIND0W(2)

INT(WINDOW(3)

INT(W!ND0W(3)

(xl,yl) - (x2,

1

• RND)

■ RND)

• RND)

• RND)

y2) , INT(32 • RND) , B

This section of program lines, titled MakePlayfield, creates a

pjayfield for the mode 1 sprites and bobs you created earlier using

the Object Editor. Figure 12-4 shows the playfield. You can use this

program section in later program examples.

Figure 12-4.

A mode 1 playfield.

Amiga BASIC Animation: Creating Moving Objects

305

PUTTING OBJECTS ON THE PLAYFIELD

AND MOVING THEM

Once you've created a screen and opened a window to create a

playfield, you can put objects on the playfield and move them with

a set of Amiga BASIC animation statements. These BASIC

statements work together, and you should use them in the following

order to get good results:

1. Bring an object that you saved on disk using the Object

Editor into the Amiga's memory with the OBJECT.SHAPE

statement.

2. Specify where you want to place the object on the playfield

with the OBJECT.X and OBJECT.Y statements.

3. Use the OBJECT.ON statement to make the object appeal at

the location you specified.

4. Set the speed and direction of an object's motion with the

OBJECT.VX and OBJECT.VY statements.

5. Start objects moving with the OBJECT.START statement.

6. Speed up or slow down an object with the OBJECT.AX and

OBJECT.AY statements.

7. Stop an objects motion with the OBJECT.STOP statement.

8. Make an object disappear from the playfield with the

OBJECT.OFF statement.

9. Erase an object from the Amiga's memory with the

OBJECT.CLOSE statement.

This order isn't cast in concrete—for example, you can use

an OBJECT.STOP statement before you use OBJECT.AX and

OBJECT.AY statements—but for the most part the order is

important. For example, if you try to use any of the OBJECT

statements without first using the OBJECT.SHAPE statement, you

won't get any results. Likewise, it's important to set an object's

speed before you use OBJECT.START, and it's also important to start

an object moving before you try to stop it with the OBJECT.STOP

statement.

As you go through the animation statements in this section, the

program examples for each statement often don't do anything by

SECTION 4: ANIMATION

306

themselves, since the individual statements need to work with

other statements to create and move objects. To make the ex

amples work, you must add them to other program sections to

create a complete program, and then run the program. The

instructions preceding each program example will tell you how

to combine the sections together into a complete program that

you can run.

THE OBJECT.SHAPE STATEMENT

The OBJECT.SHAPE statement can perform two different tasks: It

can create an object in the Amiga's memory from the mformation

about an object stored on disk by the Object Editor, or it can dup

licate an object already in memory. Creating duplicate objects is

described in a later section. To put an object into the Amiga's

memory. OBJECT.SHAPE uses this format:

OBJECT.SHAPE object ID number, abject definition string

The object ID number can be any integer from 1 up to as many

objects as will fit in the Amiga's memory. The object definition

string is a string expression that contains the data necessary to

create an object.

When BASIC executes OBJECT.SHAPE, it creates an object from

the data in the object definition string and assigns it to the speci

fied object ID number. You can then use that object ID number with

other OBJECT statements to identify the object. If you use two

OBJECT SHAPE statements that both use the same ID number, the

second statement will remove from memory the object that was

created with the first statement, then create a new object using the

same ID number.

When you save an object to disk using the Object Editor, it saves

the object in the format needed by the object definition string for

defining the object. This makes it easy to bring an object into your

BASIC program—you don't have to worry about defining an object

because the Object Editor has already done it for you.

To get the object data stored on disk into the object definition

string, you must first open the disk file created by the Object Editor

with an OPEN statement, then assign the disk file contents to a

string with an INPUTS statement, and then close the disk file with a

CLOSE statement. The following example opens the disk file for a

bob named Cigai.lbob3, creates object number 1 using the cigar-

bob data, then closes the file:

OPEN "Cigar.1bob3" FOR INPUT AS 1

OBJECT.SHAPE 1, INPUT$(LDF(1),1)

CLOSE 1

Amiga BASIC Animation. Creating Moving Objects

307

In the first line, the OPEN statement opens a channel of com

munication numbered "1" between the disk file and the Amiga's

memory. In the second line, OBJECT.SHAPE creates an object

numbered 1 using the string created by the INPUTS statement.

The INPUTS statement creates the string by reading all the way to

the end of the file (found by LOF(l)) that's open on communication

channel 1. The third line closes communication channel 1. If you'd

like more information about OPEN, CLOSE, INPUTS, and LOFQ,

consult the Amiga BASIC manual.

OBJECT DATA STORED IN DRAWERS

When BASIC opens the object's disk file, it expects to find the

object file m the same Workbench drawer that the program it is

running is stored in. If you stored the object file in another drawer,

BASIC won't find it and will return a File not found error message.

For example, assume you created a Workbench drawer called

Animation. Inside the Animation drawer, you created two more

drawers: Programs and Objects. You store all your BASIC anima

tion programs in the Programs drawer, and all disk files you create

with the Object Editor in the Objects drawer. When you run a

program stored in the Programs drawer, the OPEN statement will

look for the object file to open in the Programs drawer, and won't

find it, since it's in the Objects drawer.

To make the program safe to use no matter where you store it,

you can specify drawers in the OPEN statement. In the previous

example, you could use the statement

DPEN ":Animallon/Objects/Cigar.1bob3" FOR INPUT AS 1

in place of the previous OPEN statement. The longer filename,

which is called a pathname, starts with a colon that asks OPEN to

begin searching on the same disk you're using to run BASIC. It then

asks OPEN to look inside the Animation drawer, where it should

find and look inside the Objects drawer, where it should find

"Cigar. Ibob3." By using a pathname, you can store the ob]ect files

in a completely different drawer from the program, run the pro

gram, and still have the OPEN statement find the object file that

you want.

To create your own object pathname, always start with a colon

or the name of the disk drive (such as dfl:), then foDow it with the

names of the drawers in which you store your objects, in order from

the first drawer you see on the Workbench to the final drawer that

contains your objects, ending with the name of your object file.

Separate the drawer names and the object filename with slashes.

SECTION 4. ANIMATION

308

You should also keep in mind that objects created by the Object

Editor will automatically be stored in the drawer containing the

Object Editor unless you specify otherwise using a pathname. To

avoid confusion, you should always copy your objects into the

drawer you intend to use them from immediately after you quit the

Object Editor.

To make some objects for your example program, add the follow

ing program section to the playfield example you typed in earlier.

(These object filenames assume your objects are in the same

drawer as your program.) This program section, which is named

MakeObjects, creates three objects numbered 1, 2, and 3 in the

Amiga's memory:

Mak eOb]ects:

OPEN "Flower.1bob3" FOR INPUT AS 1

OBJECT.SHAPE 1, INPUTt(LOF(1), I)

CLOSE 1

OPEN "Robot .1bob5" FOR INPUT AS 1

OBJECT.SHAPE 2, INPUT$(LDF(1), 1)

CLDSE 1

OPEN "Bee.spr" FOR INPUT AS 1

OBJECT.SHAPE 3, ! NPUTS (LCJF (1) , 1)

CLOSE 1

THE OBJECT.X AND OBJECT.Y STATEMENTS

Once you've used the OBJECT.SHAPE statement to create an

object in memory, you can set it in place on the playfield using the

OBJECT.X and OBJECT.Y statements. They use this format:

OBJECT.X object ID number, x coordinate

OBJECT.Y object ID number, y coordinate

The object ID number is any ID number you used earlier in the

program to create an object with OBJECT.SHAPE. The x and y

coordinates can be any integers from - 32768 to + 32767.

To understand how these statements position an object in the

playfield, you must know how they view the boundaries of an

object. When you create an object with the Object Editor, even if

it's a small object in the center of the drawing area, you are actually

creating an object with rectangular boundaries the size of the

Object Editors drawing area. Chances are the boundaries are

invisible; you probably left background space around the object you

drew that doesn't show up on the playfield. When OBJECT.X and

OBJECT.Y position an object, they use the upper left corner of the

object's rectangular boundaries, as you can see in Figure 12-5 (on

the next page).

Amiga BASIC Animation: Creating Moving Objects

309

Figure 12-5.

The upper left corner

pixel of an object is used

by OBJECT.X and

OBJECT.Y to position

the object in the

playfield.

Reference for OBJECT.X and OBJECT.Y

D-G

With this in mind, you should try to create objects in the Object

Editor as close to the upper left corner of the drawing area as

possible. This makes positioning the object easier and more

accurate, especially if the object is much smaller than the drawing

area. Don't worry about the invisible boundary interfering with the

way objects collide—-Amiga BASIC uses the boundary only to

position the object. It ignores the boundary when objects collide,

and pays attention only to the non-background pixels in the object.

To position an object using OBJECT.X and OBJECT.Y, find the

address of the pixel on the playfield where you want to position the

upper left corner of the object's boundary. Then follow OBJECT.X

with the ID number of the object and the x (horizontal) coordinate

of the pixel address, then foDow OBJECT.Y with the ID number of

the object and the y (vertical) coordinate of the pixel address. For

example, to position the upper left corner of object 1 on pixel (34.50),

use these two statements;

OBJECT.X 1, 34

OBJECT.Y 1, 50

If you don't specify x and y coordinates for an object with

OBJECT.X and OBJECT.Y statements, BASIC positions the object at

pixel (0,0).

SECTION 4: ANIMATION

310

It's also possible to position an object entirely outside the

boundaries of the window you're using as a playfield. If you use x

and y coordinates beyond the range of the window, the object will

be positioned beyond the window boundaries. For example,

OBJECT.X 1, 1028

OBJECT.Y 1, 50

would put the object far off the right side of the window, even if it

was a full-width mode 4 window with 640 pixels across.

To position the three objects you made earlier for the example

program, add this program section at the end of the program;

PlaceObj ects:

OBJECT.X 1 , 0: OBJECT.Y 1 , 0

OBJECT.X 2, 150: OBJECT.Y 2, 0

OBJECT.X 3, 0: OBJECT.Y 3, 150

These program lines position object 1 in the upper left corner of

the playfield, object 2 in the upper middle of the playfield, and

object 3 in the lower left corner of the playfield. You won't be able

to see them, however, until the objects are "turned on" with the

OBJECT.ON statement.

THE OBJECT.ON STATEMENT

Positioning an object with OBJECT.X and OBJECT.Y won't make

the object visible on the playfield. To do that, use the OBJECT.ON

statement to make objects visible wherever they have been posi

tioned on the playfield. It uses this format:

OBJECT.ON object ID number, object ID number, ...

The object ID numbers correspond to the object ID numbers of

objects created earlier in the program with OBJECT.SHAPE. You can

follow OBJECT.ON with as many object ID numbers as will fit in

one program line, as long as you separate them with commas. You

can also use just one object ID number, or use OBJECT.ON without

any ID numbers at all, in which case all the objects created with

OBJECT.SHAPE statements earlier in the program will become

visible on the screen in the positions you set with OBJECT.X and

OBJECT.Y. If you didn't specify an object's position, it will appear at

pixel (0,0) in the upper left corner of the playfield.

Amiga BASIC Animation: Creating Moving Objects

311

If you follow OBJECT.ON with one or more object ID numbers,

only the objects you specify will become visible on the playfield.

Unspecified objects will remain invisible. For example, the

statement

OBJECT.DN 3

will make objects 3 and 4 appear on the playfield.

To make all the objects in your example program appear on the

playfield, add this line to the end of the PlaceObjects: program

section:

OBJECT.DN

Figure 12-6.

Three objects positioned

on a playfield with

OBJECT.X. OBJECTY,

AND OBJECXON

statements.

To see the objects, try running the program. You should see the

objects appear where you positioned them, as shown below in

Figure 12-6.

THE OBJECT.VX AND OBJECT.VY STATEMENTS

To set an object on the playfield m motion, use the OBJECT.VX

and OBJECT.VY statements to set the horizontal and vertical

velocity of the object. They use these formats:

OBJECT.VX object ID number, x velocity

OBJECT.VY object ID number, y velocity

SECTION 4: ANIMATION

312

The object ID number is any of the ID numbers used by earlier

OBJECT.SHAPE statements in the program to create objects. The x

and y velocities can be any integers from -32768 to +32767.

The x and y velocities measure the speed of the object m pixels

per second. The x veiocity measures the horizontal speed, and the

y veiocity measures the vertical speed. A positive x veiocity value

moves the object right, and a negative x veiocity value moves the

object left. A positive y velocity value moves the object down, and

a negative y velocity value moves the object up. For example,

OBJECT.VX 1, 23

DBJECT.VY 1, 42

sets a veiocity that moves object number 1 23 pixels to the right

and 42 pixels down per second.

OBJECT.VX 1, -52

OBJECT.VY 1, -4

moves object number 1 52 pixels to the left and 4 pixels up per

second.

If you want to be precise, you can apply some basic ruies of

trigonometry to calculate the direction that the object will move,

given the x and y velocity values for the object. For example, con

sider the object mentioned before with an x velocity of 23 and a y

velocity of 42. By dividing the x value by the y value, then calc

ulating the arctangent of the result, you can determine that the

object will travel at a 28.70 degree angle to the right of a straight-

down direction. Figure 12-7 illustrates this.

y

Figure 12-7.

The direction of an object

traveling 23 pixels to the

right and 42 pixels down

per second

Amiga BASIC Animation: Creating Moving Objects

313

Figure 12-8.

The x and y velocity

values for a mode 1

screen will produce dif

ferent results on mode 2

and mode 3 screens

Direction of object

Keep in mind as you set an object's direction with x and y

velocity values that the proportions of the individual pixels in the

screen are an important factor in figuring the final direction of the

object. For example, an x velocity of 5 and an equal y velocity of 5

in a mode 1 screen will move the object at a 45-degree diagonal.

The same velocities in a mode 2 screen will move the object, at

approximately a 30-degree diagonal: The pixels are half as wide as

they are high, so 5 pixels down per second is twice the distance of

5 pixels to the right. On a mode 3 screen, x and y velocities of 5 will

move the object at approximately a 60-degree angle: The pixels are

half as high as they are wide, so 5 pixels to the right per second is

twice the distance of 5 pixels down. Figure 12-8 illustrates this.

x = 5

\
3

\

\

y = 5

\
\
\
\
\

V

= b

Mode 1 pixels Mode 2 pixels Mode 3 pixels

On a mode 4 screen, x and y velocities of 5 will move the object

in a 45-degree diagonal as they would in a mode 1 screen, but the

velocity would be halved compared to a mode 1 screen because

the pixels are only half as wide and half as high as they are in a

mode l screen.

Although you can in theory set an objects speed to 32767 pixels

per second, large numbers like these aren't practical. If you're using

a 320-by 200-pixel playfield, any speed much over 1000 pixels per

second moves the object so fast you can't even see it move.

To set the speeds of objects in your example program, add this

program section to the end of the program:

MoveObjecta:

OBJECT.VX 1, 10: OBJECT. vY 1, 10

OBJECT.VX 2, 0: OBJECT.VY 2, 10

OBJECT.VX 3, 60: OBJECT.VY 3, 0

SECTION 4: ANIMATION

314

These three program lines move object 1 diagonally down and to

the right at a 45-degree angle, object 2 straight down, and object 3

quickly from left to right across the playfield.

THE OBJECT.START STATEMENT

Setting the velocity of an object doesn't start the object moving.

You use the OBJECT.START statement to set the object in motion. It

uses this format:

OBJECT.START object ID number, object ID number, . . .

The object ID number is any of the ID numbers of objects

created earlier in the program with the OBJECT-SHAPE statement.

You can follow OBJECT.START with as many ID numbers as will fit

on a single program line, all separated by commas, or you can use

OBJECT.START with a single ID number, or without ID numbers at

all, in which case every object on the playfield is set in motion

using the velocities set with OBJECT.VX and OBJECT.VY state

ments. If you specify object ID numbers, only the objects specified

will start moving. If you don't assign an x or y velocity value to an

object, it won't move when you use the OBJECT.START statement

because objects have default x and y velocities of 0.

When you put an object in motion with OBJECT.START, it moves

until it collides with another object or with one of the borders of

the playfield window, or until it is stopped with an OBJECTSTOP

statement (discussed shortly). Once stopped, an object remains at

rest until another OBJECT.START statement starts it again. All

objects stop when the program ends, so unless you set up an

endless loop at the end of the program or otherwise prevent the

program from ending, you'll see all the moving objects suddenly

stop in their tracks as soon as BASIC has finished executing all

the program lines.

To set all the objects in your example program in motion, add

this line to the end of the MoveObjects: program section:

OBJECT.START

If you want to see how the program works now, add this one-line

program section at the end of the program and run it:

Loop: GOTO Loop

This line creates an endless loop so your objects will keep

moving until they collide with something.

Amiga BASIC Animation. Creating Moving Objects

315

THE OBJECT.AX AND OBJECT.AY STATEMENTS

After setting an object's velocity and moving it with

OBJECT.START, it moves in one direction at a steady speed. To

change an object's direction and speed, you can use the

OBJECT.AX and OBJECT.AY statements. They use these formats:

OBJECT.AX object ID number, x acceleration

OBJECT.AY object ID number, y acceleration

The object ID number is any of the ID numbers used by earlier

OBJECT.SHAPE statements in the program to create objects. The x

and y acceleration can be any integer from - 32768 to + 32767.

The x and y accelerations measure the change in velocity of the

object in pixels per second. The x acceleration value affects hori

zontal acceleration, the y acceleration value affects vertical accel

eration. A positive x acceleration value accelerates the object to the

right, a negative x acceleration value accelerates the object to the

left- A positive y acceleration value accelerates the object down,

and a negative y acceleration value accelerates the object up.

To see how these two acceleration statements affect the velocity

of an object, consider an object (ID number 2) that has an x velocity

of 25 pixels per second, and a y velocity of 25 pixels per second. It

moves on a 45-degree diagonal right and down toward the lower

right corner of the playfield. Use these two statements:

OBJECT.AX 2, -2

OBJECT.AY 2, -5

to slowly change the direction of the object up and to the left.

The following chart shows how the velocity of object 2 in the

preceding example would change over a period of 10 seconds:

Start speed:

1 second:

2 seconds:

3 seconds:

4 seconds:

5 seconds:

6 seconds:

7 seconds:

8 seconds:

9 seconds:

10 seconds:

x velocity

25

23

7A

19

17

1',

13

11

(i

7

5

y velocity

25

20

15

10

5

o

— 5

-10

-15

-20

- 25

SECTION 4: ANIMATION

316

After 10 seconds, the object has curved to change its direction

up and a little to the right.

By applying acceleration changes to the straight directions you

set with OBJECTVX and OBJECT.VY, you can move your object in

some very interesting curves. Experiment to see what you can do!

To add some interesting acceleration to your example program,

run the program after adding this short program section just before

the Loop; section at the end of the program:

ChangeMotion:

OBJECT.AV 3, -2

You should see object 3 curve up toward the top of the screen.

THE OBJECT.STOP STATEMENT

To stop a moving object, you use the OBJECT.STOP statement. It

uses this format:

□ BJECT.STDP obj set IDnumber, object IDnumber, . . .

You can specify any number of objects by listing their ID

numbers, separated by commas, after OBJECT.STOP. OBJECT.STOP

will stop only the objects you specify If you use OBJECT.STOP

without specifying an object ID number, it will stop all the objects

that are in motion.

Insert this program section into your example program just

before the Loop: section and run the program to see object 2 stop

in the middle of the playfield:

S t opObjec t:

FDR i = 1 TO 3000: NEXT i

OBJECT.STOP 2

The FOR.. NEXT loop makes the program wait so object 2 can

move partially down the screen before it's stopped by the

OBJECT.STOP statement.

THE OBJECT.OFF STATEMENT

To make an object invisible while it's located on the playfield,

use the OBJECT.OFF statement. It uses this format:

OBJECT.OFF object ID number, object ID number, . . .

Like OBJECT.STOP, you can specify any number of objects by

listing their ID numbers, in which case OBJECT.OFF makes invisible

only the objects you specify, or you can use OBJECT.OFF without

specifying any objects, in which case it makes all the objects in the

program disappear.

Amiga BASIC Animation: Creating Moving Objects

317

OBJECT.OFF automatically stops the motion of each object it

makes disappear. An object can't move while it's invisible, unless

you assign it a new location with the OBJEGT.X and OBJECT.Y

statements. If you don't change the object's location before you use

OBJECT.ON to make the object reappear, the object will reappear

and resume moving from exactly the same location where it

disappeared.

To see how OBJECT.OFF works, replace the StopObject: section

of your example program with the following section, and then run

the program;

Bl inkObj ects:

FDR 1 = 1 TD 3000: NEXT i

OBJECT.OFF

FDR l - 1 TD 3000: NEXT i

OBJECT.ON

The first FOR.. .NEXT loop lets the objects move normally for a

while. When the loop is finished, you should see all the objects in

motion disappear briefly while the second FOR.. .NEXT loop

executes, and then reappear in the same spot they disappeared,

resuming their previous motion.

THE OBJECT.CLOSE STATEMENT

Each time you create an object in memory with the

OBJECT.SHAPE statement, BASIC reserves several kilobytes of

memory to store the object. To regain that memory for other uses,

you can clear an object from memory when it's no longer in use by

using the OBJECT.CLOSE statement. It uses this format:

OBJECT.CLOSE object ID number, object ID number, . . .

You can specify individual objects by their ID numbers, in which

case OBJECT.CLOSE clears just the objects you specify from mem

ory, or you can use OBJECT.CLOSE without specifying any objects,

in which case it clears all objects from memory

If you close an object that's still moving on the playfield, it will

stop at once and disappear. Any subsequent OBJECT statements

that refer to that object ID number won't work until you create a

new object with the same ID number using OBJECT.SHAPE. If you

want to bring the object back into memory, you'll have to use the

OBJECT.SHAPE statement to recreate it again.

Objects remain in memory even after an animation program has

stopped running, so it's a good idea to clear all the objects at the

end of the program. Since many animation programs use an

SECTION 4: ANIMATION

318

endless loop to keep the animation moving, the user has to use the

Stop command in the Run menu to stop the program, so there's no

possibility of closing the objects within the program. After stop

ping the program, you can use OBJECT.CLOSE as an immediate

command in the Output window, but this doesn't provide the user

with an efficient means of clearing memory. It's even better to

create an alternative way for the user to quit the program, so the

program can finish up by closing screens and windows and

clearing objects from memory.

CREATING DUPLICATE OBJECTS

If you write animation programs that use many objects, you can

save memory and work by duplicating existing objects. You can use

the OBJECT.SHAPE statement to duplicate any object already in

memory, and then use the OBJECTPLANES statement to change the

colors of either the original or the duplicate objects.

USING OBJECT.SHAPE TO DUPLICATE OBJECTS

When you use OBJECT.SHAPE to create a new object in memory,

you assign the object's shape and color to an object ID number

with an object definition string that contains the object's data. If

you replace the object definition string with the object ID number

of an object that's already in memory, OBJECT.SHAPE will create a

new object that uses the same shape and colors as the original

object you specified. OBJECT.SHAPE uses this format to duplicate

an object:

OBJECT.SHAPE dup11 cate obj ec t IDnumber, orig1na1 obj ect ID number

The duplicate object ID number can be any integer from 1 to as

many objects as memory will hold. The original object ID number

must be the ID number of an object that has already been created

with the OBJECT.SHAPE statement.

When you create a duplicate object, it takes much less memory

to store the object than it takes to store an original object created

with the Object Editor- That's because both the original object and

its duplicate object use the same memory to store shape and color.

Each duplicate object you create requires only enough additional

memory to store information such as velocity and position-

Each duplicate object is still a separate entity when you move it

around the playfield. It has its own ID number, and you can assign

a unique position, velocity, and acceleration to each duplicate

object. You can turn each duplicate object on and off, start and

stop it, and close it without affecting the other duplicate objects or

Amiga BASIC Animation: Creating Mc/ing Objects

319

the original object. However, if you close the original object, the

duplicate objects will freeze in their tracks and refuse to respond to

any statement that asks them to move or change location, so avoid

closing an original object before you close its duplicates.

The following program creates a playfield and uses the

OBJECT.SHAPE statement to make three duplicates of an original

object. It places the four objects in the four corners of the playfield,

and moves them toward the center of the playfield:

PlayField:

SCREEN 1 , 320, 200 ,5,1

WINDOW 2, , , 0, 1

Mak eOrlginal:

DPEN "Flower.1bob3" FOR INPUT AS 1

OBJECT.SHAPE 1, 1NPUT$(LDF(1), 1)

CLOSE 1

Malt eDupl i ca t es :

FOR l = 2 TD 4

OBJECT.SHAPE i, 1

NEXT l

PlaceDbj ects:

OBJECT.X 1,0: OBJECT.Y 1, 0

OBJECT.X 2, 0: OBJECT.Y 2, 150

OBJECT.X 3, 250: OBJECT.Y 3, 150

OBJECT.X 4, 250: OBJECT.Y 4, 0

OBJECT.ON

MoveQb j ec t 5 :

OBJECT.VX 1, 20: OBJECT.VY 1, 10

OBJECT.VX 2, 20: OBJECT.VY 2, -10

OBJECT.VX 3, -20: OBJECT.VY 3, -10

OBJECT.VX 4, -20: OBJECT.VY 4, 10

OBJECT.STflRT

Loop: GOTO Loop

USING OBJECT.PLANES TO CHANGE COLORS

Duplicate objects are the same color and shape as the original

object. To visibly distinguish the original object from its duplicate,

you can change the colors of the original or duplicate object to

a new set of colors by using the OBJECT.PLANES statement.

OBJECT.PLANES works only on bobs; it won't work on sprites.

It uses this format:

OBJECT.PLANES object ID number, PlanePick value,

PlaneOnOff value

SECTION 4: ANIMATION

320

The object ID number can specify any object already created

with the OBJECT.SHAPE statement, whether it's an original or a

duplicate object. The PlanePick and PlaneOnOff values can be any

integers from 0 to 31 in a 5-bit-plane screen, 0 to 15 in a 4-bit-plane

screen, 0 to 7 in a 3-bit-plane screen, and 0 to 3 in a 2-bit-plane

screen. The OBJECTPLANES statement has no practical effect on a

1-bit-plane screen. You can omit either the PlanePick value or the

PlaneOnOff value, in which case they're set to 0, but you can't omit

both. If you omit the PlanePick value, be sure to hold its place with

a comma.

OBJECTPLANES makes direct use of the graphics-animation

libraries in the system software by setting two bit-masks named

PlanePick and PlaneOnOff using the values you specify. To under

stand exactly how these masks work, you need to know binary

arithmetic and precise details of how the Amiga stores its graph

ics data. Rather than tackle topics that go beyond the range of

this book, a general description of how the OBJECTPLANES

statement works and some rules of thumb may help you to use

the statement effectively without having to leam advanced topics.

If you want to get more information, you can find detailed ac

counts of PlanePick and PlaneOnOff in the Amiga ROM Kernal

Manual, available through your Amiga dealer.

To get a general understanding of OBJECTPLANES, consider

how the Amiga stores colors in a playfield. The color-register num

ber of each pixel is a binary number that's stored in memory with

one bit in each of the playfield's bit planes. For example, m a 5-bit-

plane playfield, each pixel has a 5-bit number, stored with one bit

in each bit plane. In a 3-bit-plane playfield, each pixel has a 3-bit

number, stored one bit per bit plane.

Now consider what happens when the Amiga moves a 2-bit-

plane bob through a 5-bit-plane playfield. To move the bob around

the playfield, the Amiga erases the pixels where the bob will be

located, and fills them with the color-register numbers of the bob's

pixels. When the bob moves away, the Amiga restores the original

pixel numbers in the playfield. Since the bob pixels are only two bit

planes deep, their color-register numbers use only the bottom two

bit planes of the playfield pixels they occupy. Since the top three bit

planes aren't used, the Amiga fills them with zeros.

When you set a PlanePick value using OBJECTPLANES, you tell

the Amiga to spread the bob's bit planes throughout the playfield

bit planes. For example, with a 2-bit-plane bob in a 5-bit-plane

playfield, you can specify that the bob pixels' color-register

numbers will be stored in playfield bit planes 2 and 4 instead of bit

planes 1 and 2 (the two bottom bit planes). The Amiga will fill in

Amiga BASIC Animation: Creating Moving Objects

321

the remaining planes (1. 3, and 5), with zeros. This results m a new

set of color-register numbers for each pixel in the bob and changes

the color of the bob.

You can further change the bob's colors by setting the

PlaneOnOff mask. PlaneOnOff fills the bit planes that are unused

by the bob's pixels with either ones or zeros, depending on the

PlaneOnOff value you used. This lets you insert ones or zeros in

the bob pixels' unused bit planes, and lets you further change the

bob colors to a new set of colors.

One way to get usable results from OBJECT.PLANES without

calculating original bob colors and resulting bob colors through

binary bit-plane conversions is to use the trial-and-error method:

Write a short program that puts an original and duplicate bob on

the playfieid and use OBJECT.PLANES with different values for

PlanePick and PlaneOnOff to change the color of either the original

or the duplicate bob. Run the program, and look at the results. You

can change the PlanePick and PlaneOnOff values until you get the

colors you want. Of course, if you're working with a 5-bit-plane

screen, there are over a thousand different combinations of values,

most of which won't give you the results you want. For example,

many of the PlanePick values you can use with OBJECT.PLANE will

actually decrease the number of colors you see in a bob. There are

several ways to limit the number of possible values to a set of

values that works well:

* To avoid losing colors, don't use OBJECTPLANE on a bob if the

bob has as many bit planes as the screen in which it appears.

It will only reduce the number of colors in the bob, or at best

leave the colors alone. For example, OBJECT.PLANE won't work

well for a 4-bit-plane bob in a 4-bit-plane screen.

* The PlaneOnOff value sets a mask that works with whatever

value is in the PlanePick mask. Many PlaneOnOff values have

no effect at all when they work with certain PlanePick values.

It's always best to try a PlanePick value by itself to see how the

bob's color changes, and then to add the PlaneOnOff value to

see how it changes the PlanePick colors.

* To set a bob back to its original colors, set the PlanePick and

PlaneOnOff values at 0.

SECTION 4: ANIMATION

322

Setting PlanePick and PlaneOnOff values

What follows are tables of PlanePick and PlaneOnOff values for

bobs of different bit-plane depths. These tables are designed to

reduce your trial and error time, as the values they contain have

been calculated to produce meaningful results. The PlanePick

values in the table won't decrease the number of colors in the bob,

and the table's PlaneOnOff values will change the colors set by the

PlanePick value.

1-bit-plane bobs

...in a

2-bit-plane

screen

...in a

3-bit-plane

screen

...in a

4-bit-plane

screen

...in a

5-bit-plane

screen

PlanePick

values

1

2

1

2

4

1

2

4

8

1

2

4

{!

16

PlaneOnOff values

that produce results

0, 2

0, 1

0,2,4

0, 1,4

0, 1,2

0,2,4

0, 1.4

0, 1,2

0, 1,2

0,2,4

20,

0, 1,4

21.

0, 1,2

19,

0. 1,2

20,

0, 1,2

12,

,6

, 5

, 3

, 6, 8, 10, 12, 14

, 5, 8. 10, 12, 14

.3,8,9, 10, 11

, 3, 4. 5, 6, 7

, 6, 8. 10, 12, 14, 16, 18,

22, 24, 26, 28, 30

, 5, 8. 9, 12, 13, 16, 17, 20,

24, 25, 28, 29

,3. 8.9, 10, 11, 16, 17, 18,

24, 25, 26, 27

, 3, 4, 5, 6, 7, 16, 17, 18, 19,

21, 22, 23

,3,4,5, 6,7,8,9, 10, 11,

13, 14, 15

Amiga BASIC Animation: Creating Moving Objects

323

2-bit-plane bobs

...in a

3-bit-plane

screen

...in a

4-bit-plane

screen

...in a

5-bit-plane

screen

3-bit-plane bobs

...in a

4-bit-plane

screen

...in a

5-bit-plane

screen

PlanePick

values

3

5

6

3

5

6

9

10

12

3

5

6

9

10

12

17

18

20

24

PlanePick

values

7

11

13

14

7

n

13

14

19

21

22

25

26

28

PlaneOnOff values

that produce results

0, 4

0, 2

0, 1

0, 4, 8, 12

0, 2, 8, 10

0, 1,8, 9

0, 2, 4, 6

0, 1. 4, 5

0. 1,2, 3

0, 4, 8, 12, 16, 20, 24, 28

0. 2, 8, 10, 16, 18, 24, 26

0, 1, 8, 9, 16, 17,24, 25

0. 2, 4, 6, 18, 20, 22, 24

0. 1,4, 5, 16, 17,20, 21

0, 1,2,3, 16, 17, 18, 19

0. 2, 4, 6, 8, 10, 12, 14

0, 1,4,5,8,9, 12, 13

0, 1,2,3,8,9. 10. 11

0, 1,2,3,4, 5,6.7

PlaneOnOff values

that produce results

0, 8

0,4

0, 2

0, 1

0, 8. 16. 24

0, 4, 16, 20

0, 2, 16, 18

0, 1, 16, 17

0, 4, 8, 12

0, 2, 8, 10

0, 1, 8, 9

0, 2, 4, 6

0, 1,4, 5

0, 1, 2, 3

SECTION 4: ANIMATION

324

4-bit-plane bobs

...in a

5-bit-plane

screen

PlanePick

values

15

23

27

29

30

PlaneOnOff values

that produce results

0, 16

0, 8

0.4

0, 2

0, 1

An OBJECT.PLANES example

The best way to use these different values is to find the table of

values for the bob and screen you're working with. Plug the

different values into the OBJECT.PLANES statement and run the

program to see what colors you come up with. Trial and error will

eventually find the colors you want. For example, the following

program section uses three of the sets of values that change the

color of three 3-bit-plane bobs in a 5-bit-plane screen:

Co 1orBob5:

OBJECT.PLANES 2, 19, 8

OBJECT.PLANES 3, 19, 0

OBJECT.PLANES 1, 14, 1

If you insert this section just before the PlaceObjects: section in

the last example program, when you run the program you'll see that

each of the three duplicate bobs is colored differently.

You've now learned how to draw your own sprites and

bobs with the Object Editor. With the Amiga BASIC state

ments you've learned in this chapter, you can put those

bobs in the Amiga's memory, and then put them on the

screen, moving them in different direction at different

speeds. You can also duplicate and recolor bobs. In the next

chapter, you'll be able to make the bobs move where and

how you want them to, and be able to control how they

react when they hit other bobs.

Amiga BASIC Animation: Creating Moving Objects

325

CHAPTER THIRTEEN

AMIGA BASIC

ANIMATION:

CONTROLLING

MOTION

In the last chapter, you put objects on a playfield,

instructed them to move, and watched them move like

drifting boats until you stopped them or until they ran into

another object or the playfield border. Amiga BASIC can

control moving objects with much more finesse than that.

By constantly checking the position and speed of each

object, BASIC can tell when the object reaches a desired {or

undesired) location or speed, and can then take appropriate

actions. By checking to see if any of the objects collide with

another object or the playfield border, it can act on the

collision to let one object pass over another, make the

object change direction, remove it from the playfield, or

perform any number of other actions.

In this chapter, you'll learn how to use the Amiga BASIC

animation statements that check and control motion and

collisions, and you'll see how to put the statements

together to make objects move with rhyme and reason.

You'll also find out how to control which object passes over

another object to create 2Y2-D animation, and how to avoid

collisions between objects. The end of the chapter has

information about interesting miscellaneous animation

abilities of Amiga BASIC: how to scroll a section of the

playfield, and how to use the PUT and GET statements to

create true sequeneed-image animation.

CREATING A MOTION BOUNDARY WITH

THE OBJECT.CLIP STATEMENT

One of the simplest ways to control the motion of moving objects

in a playfield is to create a motion boundary. When you first create

an output window to use as the playfield, BASIC automatically sets

the motion boundaries as the borders of the window itself. You can

use the OBJECT.CLIP statement to reset the motion boundaries to

enclose a smaller area of the playfield within the output window so

the moving objects won't move out of the area and interfere with

text or graphics displayed in another part of the playfield. You can

SECTION 4: ANIMATION

328

also use OBJECT-CLIP to create motion boundaries that are beyond

the borders of the output window so objects can move beyond the

window borders, out of sight, before they hit a boundary.

THE OBJECT.CLIP STATEMENT

The OBJECT.CLIP statement uses this format:

OBJECT.CL IP(corner address) - (corner address)

The corner addresses are like the standard pixel addresses you

use with drawing statements, except that the x and y coordinates

can be any integer from -32768 to +32767, making addresses

located outside of the output window like (-1045,73) possible. Like

the two addresses used to create a box with the LINE statement,

these two corner addresses set the location of two opposing corners

of a rectangle.

Any objects moving within the OBJECT.CLIP rectangle will move

until they collide with one of its sides or another object. Any ob

jects located outside the rectangle won't move even if they're given

an OBJECTSTART command.

In the following program example, the OBJECT.CLIP statement

creates an invisible rectangle in the middle of the screen. When you

run the program, an object is positioned within the rectangle and

instructed to move until it is stopped by one of the boundaries.

Figure 13-1 fon the next page) shows you how it works.

MakePlayfleld:

SCREEN 1, 320, 200, 5, 1

WINDOW 2, , , 0, 1

MakeObject:

OPEN "Bird.ibobi" FOR INPUT AS 1

OBJECT.SHAPE 1, INPUT$(LDF(1), 1)

CLOSE 1

MoveDbj ec t:

OBJECT.X 1, 100: OBJECT.Y 1, 100

OBJECT.VX 1, 25

OBJECT.CLIP(50,50) - (250,150)

OBJECT.ON

OBJECT.START

Loop : GOTO Loop

Amiga BASIC Animation: Controlling Motion

329

Figure 13-1.

An object is stopped by

boundaries set by the

OBJECTCUP statement.

(50,50) Object stops here

Window boundary OBJECT.CLTP boundary

— (250,150)

READING AN OBJECT'S LOCATION AND VELOCITY

To get more control over moving objects than you can get with

OBJECT.CLIP, it's important for BASIC to be able to read the location

and velocity of each moving object at any moment. Amiga BASIC

has four functions that return the x and y coordinates and the x and

y velocities of any object on the playfield. You can write a BASIC

program to test the values the functions return, and then act

accordingly.

THE OBJECT.XQ AND OBJECT.Y() FUNCTIONS

OBJECT.XO and OBJECT.Y() are two functions that return the x

and y coordinates of an object's location in a playfield. They use

these formats:

DBJECT.X(object ID number)

OBJECT .Y(object ID number)

SECTION 4: ANIMATION

330

Don't confuse these two functions with the OBJECT.X and

OBJECT.Y statements you read about in the last chapter. The

functions here use parentheses around the object ID number and

don't include coordinate values—this is what distinguishes them

as functions, not statements. The object ID number is the ID

number of any object created previously in the program by an

OBJECT.SHAPE statement.

OBJECT. X() and OBJECT. Y() return the x and y coordinates of the

pixel address of the upper left corner of the object's rectangular

boundary. (See the description of the OBJECT.X and OBJECT.Y

statements in Chapter 12 for more information about how the upper

left corner of an object's boundary is determined.} OBJECT.XQ

returns the x (horizontal) coordinate, OBJECT.Y() returns the y

(vertical) coordinate.

Since OBJECT.XO and OBJECT.Yf) are functions that don't actually

perform any task when used alone in a program line, they must be

used as a value assigned to a variable or used within a statement

in a program line. For example, the following two program lines

assign the x and y coordinates of object 3 to the variables x3 and y3:

x3 - OBJECT.X(3)

y3 = OBJECT.Y(3]

If the upper left corner of object 3s boundary was located at pixel

(45,102) in the playfield when BASIC executed these two statements,

x3 would then be equal to 45, and y3 would be equal to 102.

THE OBJECT.VXO AND OBJECT.VYQ FUNCTIONS

To read the velocity and direction of motion of any moving

object in a program, you can use the OBJECT.VXO and OBJECTVYO

functions with these formats:

OBJECT.VX(object IDnumber)

OBJECT.VY(object ID number)

Again, don't confuse these two functions with the OBJECT.VX

and OBJECT.VY statements you read about in the last chapter. The

OBJECT.VXO and OBJECTVYO functions use parentheses around the

object ID number, and don't include a velocity value. The object ID

number is the ID number of an object created earlier in the

program by an OBJECTSHAPE statement. OBJECT.VXO returns the

horizontal (x) velocity in pixels per second of the object you specify;

OBJECTVYO returns the vertical (y) velocity in pixels per second.

Amiga BASIC Animation: Controlling Motion

331

Like OBJECT.XO and OBJECT.Y{), OBJECT.VXO and OBJECT.VY()

are functions, so they can't be used alone in a program line. They

must be assigned to a variable or used as a value with another

statement. For example, the following two program lines use the

OBJECT.VXO and OBJECT.VYO functions to read the x and y

velocities of object 2, and use the OBJECT.VX and OBJECT.VY

statements to assign them as the velocities for object number 3:

OBJECT.VX 3, OBJECT.VX(2)

OBJECT.VY 3, OBJECT.VY(2)

AN EXAMPLE USING LOCATION AND VELOCITY FUNCTIONS

If you create a series of statements within a program loop that

constantly reads the location and velocity of objects, you can use

an IE. .THEN statement within that loop to branch the program to

another action if the statements within the loop read a desired

location or velocity of an object. In the following program example,

two objects are moving on the playfield. Object 1 moves in a

diagonal from the upper left comer toward the lower right corner.

Object 3 moves from left to right across the lower part of the screen,

starting slowly and accelerating as it moves.

The section of the program labeled Test: is a loop that uses

OBJECT.Y{) to see how far object 1 has moved down the screen,

and OBJECT.VXO to see how fast object 3 is moving across the

screen. If object 1 moves to a position with a y coordinate higher

than 99, the program jumps to a subroutine that stops the object. If

object 3 accelerates to an x velocity faster than 50 pixels per sec

ond, then the program jumps to a subroutine that stops object 3

from accelerating any further. Figure 13-2 shows how this works.

MalcePlayf leld:

SCREEN 1, 320, 200, S, 1

WINDOW 2, , , 0 , 1

MafceObj ecta :

OPEN "Bee.spr" FDR INPUT fiS 1

OBJECT.SHAPE 1, INPUT$(LOF(1), 1}

CLOSE 1

OPEN "Flower.1bob3" FOR INPUT AS 1

OBJECT.SHAPE 3, INPUTS(LOF(1), 1)

CLOSE 1

PlaceObj ecta:

OBJECT.X 1, 0: OBJECT.Y 1, 0

OBJECT.X 3, 0: OBJECT.Y 3, 150

OBJECT.DN

(continued)

SECTION 4: ANIMATION

332

MoveObj ec 15 :

OBJECT.VX 1, 10: OBJECT.VY 1, 10

OBJECT.VX 3, 5: OBJECT.AX 3, 1

OBJECT.START

Tes t :

IF OBJECT.Y(1) > 99 THEN GOSUB Stopi

IF OBJECT.VX(3) > GO THEN GOSUB Steady3

GOTO Test

Stopi:

OBJECT.STOP 1

RETURN

Steady3:

DBJECT.AX 3, 0

RETURN

i— Object 1 I—Object stops moving Figure 13-2.

You can use BASIC'S

location and velocity

functions to check an ob

ject's speed and position,

then have BASIC react

accordingly.

Object 2 '-Object stops accelerating

HANDLING OBJECT COLLISIONS

Controlling object collisions is very important in Amiga BASIC

animation. As you saw in the last chapter, whenever an object

collides with another object or a boundary, it automatically stops its

motion unless you include statements that tell BASIC to perform

Amiga BASIC Animation: Controlling Motion

333

some other action in the event of a collision. With the OBJECT.HIT

statement, you can ask BASIC to ignore a collision, in which case

the objects will just pass each other. You use the OBJECT.PRIORITY

statement to tell BASIC which object should appear on top as they

pass. If you do allow objects to collide, you can use the COLLISION

ON and ON COLLISION GOSUB statements with the COLUSIONO

function to control how the objects react when they collide.

THE OBJECT.HIT STATEMENT

The OBJECT.HIT statement lets you define objects as different

types, and lets you decide which types of objects will collide and

which types won't collide. It uses this format:

OBJECT.HIT object ID number, type value, hit value

The object ID number is the ID number of any object created

earlier in the program with the OBJECT.SHAPE statement. Both

the type value and the hit value can be any integer from

-32768 to +32767.

You use the type value to define the specified object as none,

any, or all of 16 different types of objects. BASIC interprets type 1 as

a window or OBJECT-CLIP boundary. The other 15 types of objects

are abstract types—BASIC only knows them by numbers as types

2 through 16—so you can think of them as whatever you wish.

For example, in a video-game program you might decide to use

type 2 objects as spaceships, type 3 objects as laser beams, and

type 4 objects as planets. The following chart lists a value for each

of the 16 different object types:

Type

Type

Type

Type

1:

2:

3:

■\

1

2

4

8

Type

Type

Type

Type

5:

6:

7:

8:

16

32

64

128

Type

Type

Type

Type

9:

10:

11:

12:

256

512

1024

2048

Type

Type

Type

Type

13:

14:

15:

16:

4096

8192

16384

- 32768

To define an object as any of these types except type 1 (defining

an object as a boundary won't work—BASIC just ignores it), just

choose the types you want, then add their values together to come

up with the type value. For example, if you want an object to be

defined as both a type 7 and a type 12 object, you add the values

for types 7 and 12 together (64 and 2048) to get a result of 2112. That

is the type value for that object.

SECTION 4: ANIMATION

334

If you want an object to be defined as just one object type, use

the value for that one type as the type value. For example, to define

an object as just a type 16 object, you use a type value of -32768. If

you use a type value of 0, you tell BASIC that the specified object

isn't any of the 16 types. If you want to define an object as all 16

object types, you use the type value of -1, which is the sum of all

16 values in the table.

The hit value is a number that identifies all the types of objects

that an object can collide with. When an object touches a second

object in the playfield, BASIC checks the first object's type value to

see what type (or types) of object it is. It then checks the second

object's hit value to see what types of objects it's supposed to col

lide with. If the first object is on the second object's hit list, BASIC

registers a collision between the two objects. If the first object isn't

on the hit list, the two objects pass by without collision.

The hit value uses the same table of values that the type value

uses. To set the hit value, you choose the type or types of objects

you want to put on the hit list, find their values, then add them

together to get the hit value. If you don't want any types of objects

or the boundaries on the hit list, then use a hit value of 0. If you

want all types of objects on the hit list, then use a hit value of -1.

If you want only boundaries on the hit list, then use a hit value of 1.

When two objects touch on the playfield, it's important for BASIC

to determine which is the fust object and which is the second

object, since BASIC must match the hit value of the first object

against the type value of the second object. The rule of collision is

that the object that is the upper leftmost of the two objects is the

first object. If you want to define an object that won't collide with

any other object on the playfieid, you have to assign it a type value

of 0 and a hit value of 0 or 1, since you can never be sure if it wiil be

the first object that BASIC checks for type, or the second object that

BASIC checks for a hit list.

When an object hits a boundary BASIC always checks the hit list

of the object. The boundary has no hit list itself. It has only a type

value of 1.

As an example, think of a simple animation with three types of

moving objects: bees, flowers waving in the wind, and birds. Bees

shouldn't collide with other bees and birds, but should collide with

flowers so they can stop for nectar. Birds shouldn't collide with

any of the three types of objects., and flowers shouldn't collide with

other flowers or birds, but should collide with bees.

If you decide that bees are object type 2, birds are object type 3,

and flowers are object type 4, then you can assign type and hit

values for the objects. Bees should have a type value of 2 and a hit

Amiga BASIC Animation: Controlling Motion

335

value of 9. so they can hit both flowers (8) and boundaries (1). Birds

should have a type value of 4. and a hit value of 1, so they can col

lide with boundaries, but not anything else. Flowers should have a

type value of 8 and a hit value of 3. so they can collide with bees

(2) and boundaries (1).

The following simple example program puts one bee, one bird,

and one flower in motion on the playfield. using those type and hit

values. This example uses the sprites and bobs that you drew in

Chapter 12. When you run it, you should see the bee (object 1) move

diagonally across the screen, while the bird (object 2) and the

flower (object 3} move horizontally across the screen. The bee will

pass over the bird and stop when it collides with the flower. Figure

13-3 illustrates the objects' actions.

MakePlayfleld:

SCREEN 1 , 320, 200 ,5,1

WINDDN 2, , , 0, 1

MafceObjects:

DPEN "Bee.apr" FOR INPUT AS 1

OBJECT.SHAPE 1, I NPUTS(LDF(1) , 1)

CLOSE 1

OPEN "Bird.1bob1" FOR INPUT AS 1

OBJECT.SHAPE 2, INPUTi(LOF(1}, 1)

CLOSE 1

DPEN "Flower.1bob3" FOR INPUT AS 1

OBJECT.SHAPE 3, 1 NPUTtfLOF(1) , 1)

CLOSE 1

PlaceObj ects:

OBJECT.X 1, 0: OBJECT.Y 1, 0

OBJECT.X 2, 0: OBJECT.Y 2, 75

DBJECT.X 3, 0: OBJECT.Y 3, 150

OBJECT.ON

I dent ifyObjects:

OBJECT.HIT 1,2,9

OBJECT.HIT 2,4,1

OBJECT.HIT 3, 8, 3

MoveObj ectsNew:

OBJECT.VX 1, 20: OBJECT.VY 1, 20

OBJECT.VX 2, 20

OBJECT.VX 3, 20

OBJECT.START

Loop: GDTO Loop

SECTION 4: ANIMATION

336

Bee passes over bird Figure 13-3.

Using OBJECT.HIT to

define different types of

objects enables a bee to

pass over a bird and col

lide with a flower.

Bee and flower collide

THE OBJECT.PRIORITY STATEMENT

When two objects pass and touch, BASIC has to decide which

object will pass over the top of the other. To do so, it uses the same

rule it uses to determine which is the first of two colliding objects:

By default, the upper leftmost object wiU pass over the lower

rightmost object. If you want to change the passing priority, you

can use the OBJECT.PRIORITY statement. It uses this format:

OBJECT.PRIORITY object ID number, priority value

The object ID number is the ID number of an object created

earlier in the program with an OBJECTSHAPE statement. The

object must be a bob; OBJECT.PRIORITY won't work with sprites.

The priority value is any integer from -32768 to +32767.

When you use OBJECT.PRIORITY to assign a priority value to a

specified bob, BASIC remembers that value when two bobs pass

each other. The bob with the higher priority value will pass over

the top of the bob with the lower priority value. For example, if you

assign a priority value of 2 to one bob and 5 to a second bob, the

second bob will always pass over the first bob. If two bobs have the

same priority, BASIC falls back on the "upper leftmost" rule to

decide which bob appears on top.

Consider the previous program example. If you substitute the

robot bob for the bee sprite in the MakeObjects: program section,

Amiga BASIC Animation: Controlling Motion

337

then add this program section just before the MoveObjectsNew:

section of the last example, when you run the program the robot

will pass under the bird instead of over it, because the robot's

priority is lower than the bird's:

SetPr ion ty:

OBJECT.PRIORITY 1, 0

OBJECT.PRIORITY 2 , 10

THE COLLISION ON STATEMENT

Although its name implies that COLLISION ON will enable

collisions to occur on the playfield, that's not what it does. Instead,

it turns on the collision queue. The collision queue is a section of

memory that keeps a record of the collisions that occur on the

playfield, in the order they occur.

COLLISION ON also enables other statements and functions to

work, like ON COLLISION GOSUB and COLLISIONS a statement and

a function that use the collision queue. COLLISION ON uses a very

simple format:

COLLISION ON

Once BASIC executes COLLISION ON, the collision queue stays

on until BASIC executes a COLLISION OFF or COLLISION STOP

statement (both discussed later in this chapter).

THE ON COLLISION GOSUB STATEMENT

BASIC automatically stops an object when it collides with

another object or a border (unless, of course, you've instructed

BASIC not to do so). If you want something else to happen when a

collision occurs, you can write a subroutine that performs the

object action you want, and then use the ON COLLISION GOSUB

statement to jump to that subroutine as soon as a collision occurs.

ON COLLISION GOSUB uses this format:

ON COLLISION GOSUB line name/number

The line name/number is the subroutine name or the line

number where a subroutine starts.

When BASIC executes ON COLLISION GOSUB in a program, it

then moves on to execute the following program statements just as

if nothing happened—with one exception. After it executes each

SECTION 4: ANIMATION

338

statement, it looks at the collision queue to see if any collisions

have occurred. If there are no collisions, BASIC keeps executing

more program statements just as it would normally. If a collision

occurs, BASIC immediately jumps to the beginning of the sub

routine you specified in the ON COLLISION GOSUB statement,

executes it, and then returns to execute the statement that follows

the last statement it executed before it detected the collision.

If you want to turn off the ON COLLISION GOSUB statement so

that BASIC won't jump to a subroutine for every collision that

occurs, use:

DN COLLISION GDSUB 0

The line number 0 turns off the collision checking.

What happens in the subroutine that ON COLLISION GOSUB

points to is entirely up to you. Chances are that you will use the

COLLISIONO function in the subroutine to find out more about the

collision before you act on it.

THE COLLISION*) FUNCTION

The COLLISIONO function returns information from the collision

queue. It uses this format:

COLLISiaH(ID number)

The ID number can be the object ID number of any object

created earlier in the program by an OBJECT.SHAPE statement. It

can also be a -1 or a 0.

To best understand how the COLLISIONO function works, it's

important to know how the collision queue stores collisions. The

queue can store up to 16 coDisions at one time. If any collisions

occur after the queue is filled up, they aren't stored in the queue

and leave no record of their occurrence.

The collision queue stores three pieces of information for each

collision that it records:

1. The object ID number of the first (upper leftmost) object of

two colliding objects. If it's a collision between an object and

a boundary, it stores the object ID number of the object.

2. The object ID number of the second (lower rightmost) object

in a two-object collision. If it's a collision between an object

and a boundary it stores one of four negative numbers that

Amiga BASIC Animation: Controlling Motion

339

Figure 13-4

The collision queue.

indicates which of the four boundaries has been hit. Those

four boundary ID numbers are:

BOUNDARY ID NUMBER

Top:

Left:

Bottom:

Right:

-1

-2

-4

3. The window number of the window where the collision

occurred.

The collision queue stores collisions in the order they occur; that

is, the first collision in the queue is the collision that occurred

before all the other collisions; the last collision in the queue is the

most recent collision. Figure 13-4 shows how this works.

-Back of queue

d

Mm™

Front of queue-

CtMlUP

Most recent collision Oldest collision

If you use a 0 as the ID number for COLLISION(), COLLISION()

checks the first (oldest) collision in the queue and returns the

object ID number of the first object involved in the collision. If

you use a -1 as the ID number, COLLISIONf) returns the window

ID number of the window where the collision identified by

COLLISION(O) occurred. When COLLISION!) checks the queue

using -1 or 0 as the ID number, it reads information from the

queue without changing the contents of the queue.

If you use an object ID number as the ID number (a positive

integer), COLLISIONQ searches through the collisions in the queue

from the front to the back to see if that object was involved in any

collision as either the first or second object. If it finds a collision

involving that object, COLLISION^) returns the object ID number of

the other object or the boundary ID number of the boundary that

the object collided with. It also removes that collision from the

queue, so that all the collisions behind it move forward and leave

SECTION 4: ANIMATION

340

another space open for a collision at the end of the gueue. If

COLLISIONO finds no collision m the gueue involving the specified

object, it returns a 0 and doesn't alter the contents of the queue.

To give you an idea of how COLLISIONO works, consider this

example. Three successive collisions occur on a playfield while the

collision queue is turned on: Object 2 collides with object 1, object

4 collides with the left boundary, and object 3 collides with object 1.

If you use

PRINT CQLLISIDN(D)

to check the contents of the queue, it returns a 2, the object ID of

the first object involved in the first collision. If you then use

PRINT CDLLISIDN(2}

it returns a 1, the object ID number of the object that object 2 hit. It

also takes that collision off the collision queue. If you use

PRINT CDLLISIDNJ1)

COLLISIONO searches the queue for a collision involving object 1,

and finds one at the end of the gueue. It returns a 3, the object ID

number of the object that object l hit, and then removes the

collision from the queue. The only collision left in the gueue, now at

the front of the queue, is the collision between object 4 and the left

boundary. If you use

CDLL1SION(4)

it will return a -2, the boundary ID number, and removes that

collision from the collision queue.

AN EXAMPLE USING COLLISION ON, ON COLLISION GOSUB,

AND COLLISIONO

The following program example puts three objects on the screen

and moves them in different directions. The program section

labeled DetectCoUision: uses COLLISION ON to turn on the collision

queue, and ON COLLISION GOSUB to start the program checking for

collisions. It names CheckColIision: as the name of the line to jump

to when a collision occurs.

The subroutine CheckCollision: checks to see what kind of

collision occurs, and changes the motion of the objects so they

Amiga BASIC Animation: Controlling Motion

341

move away from what they hit. The second line of the subroutine

gets the object number of the first object in the first collision and

stores it in the variable objectid The third line checks it to see if

there actually has been a coUision—if there hasn't, it returns

program execution to the Loop: section, which is an endless loop

that loops until a collision occurs. The fourth line of CheckCollision:

reads the ID number of the object that was hit in the first collision

in the queue, and assigns it to the variable hitobject.

The next two lines of the subroutine check to see if the object

has hit the upper or lower boundary f -1 or - 3), and if it has,

reverses the vertical motion of the object. Lines 7 and 8 check to

see if the object has hit the left or right boundary (- 2 or - 4), and

reverses the horizontal motion of the object if it has. Lines 9, 10, and

11 assume that if the object hasn't hit any boundaries, it must have

hit another object. They reverse the vertical and horizontal motion

of both objects involved in the collision.

The OBJECT.START statement toward the end of the subroutine

starts the colliding object or objects in motion again, since BASIC

automatically stops them when they collide. The last line of the

subroutine returns program execution to the Loop: section of

the program.

MakePlayfield:

SCREEN 1, 320, 200, 5, 1

WINDOW 2, , , 0, 1

Malt eDbj ec 15 :

OPEN "Bee.spr" FDR INPUT AS 1

□ BJECT.SHAPE 1, I NPUT$ (LDF (1) , 1)

CLOSE 1

OPEN "Bird.ibobi" FOR INPUT AS 1

OBJECT.SHAPE 2, 1NPUT$(LQF(1) , 1)

CLOSE 1

OPEN "Flower.1bob3" FOR INPUT AS 1

OBJECT.SHAPE 3, 1NPUT$(LOF(1), 1)

CLOSE 1

PlaceObj ects :

OBJECT.X 1, 0: OBJECT. Y 1 , 0

OBJECT.X 2, 0: OBJECT.Y 2, 150

OBJECT.X 3, 250: OBJECT.Y 3, 0

OBJECT.DN

(continued)

SECTION 4: ANIMATION

342

MoveDbj ec t 5:

OBJECT.VX 1, 15; OBJECT.VY 1, 25

OBJECT.VX 2, 40: OBJECT.VY 2, -30

OBJECT.VX 3, -15: OBJECT.VY 3, 20

OBJECT.START

Detec tCo11i 5 ion :

COLLISION ON

ON COLLISION GOSUB CheckCollision

Loop : GOTO Loop

Chec k Col 11 sioti:

obj ect id = COLL j SION(O)

IF objectid - 0 THEN RETURN

hitobject - COLLISiaN(objectid)

IF hitobject = -1 OR hitobject = -3 THEN

OBJECT.VY objectid, - (OBJECT.VY(objec11d))

ELSE1F hitobject - -2 OR hitobject - -4 THEN

OBJECT.VX objectid, -(OBJECT.VX(ob]ectid))

ELSE

OBJECT.VY objectid, -{OBJECT.VY(objectid))

OBJECT.VX objectid, -<OBJECT.VX{objectid))

OBJECT.VY hitobject, -(OBJECT.VY(hitobject

OBJECT.VX hitobject, -(OBJECT.VX(hitobject

END IF

OBJECT.START

RETURN

THE COLLISION STOP STATEMENT

There are times in a program when you may want to keep ON

COLLISION GOSUB from jumping down to a subroutine on every

collision. You can temporarily suspend ON COLLISION GOSUB by

using the COLLISION STOP statement. It uses this format:

COLLISION STOP

When BASIC executes COLLISION STOP in a program after an ON

COLLISION GOSUB statement, it keeps the collision queue up to

date by adding collisions until the queue is full. It doesn't let ON

COLLISION GOSUB know that a collision has occurred so the

program execution won't jump to the collision subroutine.

To make ON COLLISION GOSUB work again, you use another

COLLISION ON statement. If any collisions have entered the collision

queue since the COLLISION STOP statement, they will trigger ON

COLLISION GOSUB, and the program execution will immediately

jump to the collision subroutine.

Amiga BASIC Animation; Controlling Motion

343

THE COLLISION OFF STATEMENT

The COLLISION OFF statement turns off the collision queue

entirely. It uses this format:

COLLISION OFF

When BASIC executes COLLISION OFF, any collisions that take

place afterward aren't stored at all, and are forgotten by BASIC. Any

collisions that are stored m the queue before COLLISION OFF will

remain there. To start storing collisions in the collision queue again,

use a COLLISION ON statement.

MORE AMIGA ANIMATION TRICKS

Most of the Amiga BASIC animation statements are OBJECT

statements that move sprites and bobs around the playfield. There

are two other tricks available through Amiga BASIC to put motion

on your screen. One moves the playfield itself, the other creates

motion using true sequential-image animation.

SCROLLING THE PLAYFIELD WITH THE SCROLL STATEMENT

You can use the SCROLL statement to define a rectangular area

of the playfield and then scroll its contents vertically, horizontally, or

diagonally. It uses this format:

SCROLL (corner address) - (corner address), x shift, y shift

The corner addresses are the same as the corner addresses you

use with the OBJECTCLIP statement. The x and y coordinates can

be any integer from - 32768 to + 32767, making addresses like

(-1045,78} possible. These two addresses set the location of two

opposing corners of a scrolling rectangle. The x shift and y shift are

each integers from - 32768 to + 32767. You can use just an x-shift,

or just a y-shift, but if you omit the x-shift value, be sure to hold its

place with a comma.

The two corner addresses set the opposing corners of a rect

angular area on the output window. You can use them to create a

scrolling rectangle within the output window that's smaller than

the window, or to create a scrolling rectangle that covers the full

window. Although you can set addresses far outside the borders of

the output window you're using, any addresses outside the window

will be treated as if they're on the border of the window. For

example, if you create a scrolling rectangle with the corner

addresses (- 256, - 45) - (600,450) in a mode 1 window, you won't

actually create a scrolling rectangle larger than the window, you'll

create a rectangle the size of the full window.

SECTION 4: ANIMATION

344

The x-shift value specifies in pixels how far you want to

horizontally move the contents of the scroll rectangle. A positive

number means you want to move the contents to the right, a

negative number specifies a shift to the left. The y-shift value

specifies in pixels how far you want to vertically move the contents

of the scroll rectangle. A positive number specifies a shift down, a

negative number specifies a shift up. By using the two values

together in a SCROLL statement, you can create a diagonal shift.

For example, this statement shifts the contents of a scroll rectangle

in the upper left corner of the output window, moving them 20

pixels to the right and 30 pixels down:

scroll io,o 160,100), 20 , 30

When BASIC executes this statement, the contents shift diago

nally toward the lower right corner of the window.

When SCROLL shifts the contents of the scroll rectangle outside

the boundaries of the rectangle, it erases them. If you scroll the

same rectangle back in the opposite direction, the parts of the

rectangle that passed the boundaries return as just background

color. For example,

SCROLL

SCROLL

(0

(0

.0)

.0)

- (1G0

- (160

,100;

,100!

, 20,

, -20

30

, -30

scrolls the contents of the rectangle past the rectangle boundaries,

then returns them to their original position. Figure 13-5 (below)

shows the results.

A single SCROLL statement does not actually scroll the contents

of the scroll rectangle. It shifts them in one instantaneous motion.

To achieve a smooth scrolling effect, you need to use several

SCROLL statements in a row with small x-shift and y-shift values.

Figure 13-5.

Three different stages of

a scroll The left picture

shows the window before

scroOing. the middle pic

ture shows the window

after the first SCROLL

statement, and the right

picture shows the win

dow after the last

SCROLL statement.

Amiga BASIC Animation. Controlling Motion

345

For example, the following program creates a background, then

scrolls a section of the background diagonally back and forth using

FOR. ..NEXT loops:

MakePiayfleld:

SCREEN 1,

WINDON 2,

FillText:

WIDTH "10

FOR i = 1

PRINT

NEXT i

Scr-ol IBlock :

FOR i = 1

FDR j

SCROLL

NEXT i

FOR i - 1

FOR j

SCROLL

NEXT i

320, 200, 5, 1

. . 0,

TO 100

1

"Kumquat ";

TO 15

- 1 TD

(100,

TD 1S

- 1 TO

(100,

GOTO ScrollBloct

20: NEXT j

25) - (200,110

20: NEXT j

25) - (200,110

1 , 1

-1,-1

The first FOR...NEXT loop in the program section ScroUBlock;

scrolls the contents of the scroll rectangle down and to the right.

The little FOR...NEXT loop nested inside it kills some time so

the scroll doesn't move too fast. To speed up the scroll, you can

substitute a lower value for 20; to slow it down, you can use a

higher value. The next FOR . .NEXT loop scrolls the contents

back to their original position. It also has a little timing loop

nested inside it.

You can use SCROLL to move the contents of a playneld while

there are objects on the playneld. SCROLL won't move the objects, it

will just move the playfield. However, you might get some strange

results if the objects on the playfield are bobs. Since they are ac

tually drawn into the playfield, they can leave a strange "graphics

residue" when the playfield scrolls underneath them. If the objects

on the playfield are sprites, they won't leave any graphics residue,

since sprites aren't part of the the playfield at all.

USING THE PUT STATEMENT FOR SEQUENTIAL ANIMATION

Sprites and bobs are good tools for external animation—Amiga

BASIC provides movement and control statements to make the task

of animating these objects fairly simple—but they don't have any

internal motion. You can position sprites and bobs side-by-side to

make a larger object with internal motion, but lining up and

SECTION 4: ANIMATION

346

moving individual sprites and bobs can be tricky; it requires

keeping track of the location and movement of many separate

objects on the playfield at once. Using sequential-animation

techniques provided by the PUT statement makes the job easier.

Chapter 6 explains how GET and PUT can save a block of

graphics in a variable array and paste it elsewhere in the output

window. It also tells how to use GET to store a series of graphics

blocks in a two-dimensional array. If you store a series of blocks

containing continuous images, you can use PUT to sequentially

place those blocks on the screen, creating a moving object with in

ternal and external motion using sequential-animation techniques.

The following program uses GET to store four simple frames of a

bird flying. It then uses PUT in two FOR.. .NEXT loops to cycle

through the frames to make the bird look as if it's flying. Figure 13-6

(on the next page) shows the bird's motion.

Na k eW i ndow :

SCREEN 1 , 320, 200 ,2,1

WINDOW 2, , , 0, 1

CreateArray:

DIM bird(11-10 ,3)

DrawFrames:

frame = 0

LINE (160,100) - STEP]-40,-40), 3

LINE (160,100) - STEP(40 ,-40) , 3

GOSUB GetFrame

CLS

f rame - 1

LINE (160,100) - STEP(-S0,-15), 3

LINE (160,100) - STEP(50 ,-15) , 3

GDSLJB GetFrame

CL5

frame - 2

LINE (160,1001 - STEP(-50,15] , 3

LINE (160,100] - 5TEP(50,15] , 3

GDSUB GetFrame

CLS

frame - 3

LINE { 160,100) - 5TEP(-40,40

LINE (160,100) - STEP(40,40]

GQSUB GetFrame

CLS

(continued)

Amiga BASIC Animation: Controlling Motion

347

Figure 13-6.

The program example

moves a flapping bird

across the playfield.

x = o: y = o

SequenceFnames:

FDR i = 0 TD 3

PUT (x,y) , bird(0, i)

FDR j = 1 TD 200: NEXT j

PUT (x,y) , bird{0 , i)

NEXT i

FDR i = 2 TD 1 STEP -1

PUT (x,y), bird(O.i)

FOR j = 1 TD 200: NEXT j

PUT (x,y) , bird(0,i)

NEXT l

x=x+5: y = y + 5

GOTO SequenceFrames

GetFrame:

GET (100,55

RETURN

220 , 145} , bird(0.frame

When you run the program, you'll see a brief flash in the center

of the window as it draws the four frames of a bird flying and saves

them with the GET statement. The stick bird (it is very simple) will

then appear in the upper left corner of the screen, flapping its

wings. As it flaps, it flies toward the lower right corner, and passes

beyond the output-window border.

To understand how the program works, take a look at its parts.

MakeWindow: creates a low-resolution, 2-bit-plane screen with a

full-sized window. CreateAnay: creates a two-dimensional array

named bird to hold the bird frames. The section that follows,

SECTION 4: ANIMATION

348

DrawFrames:, is divided into four parts, one for each frame of bird

flight. Each part sets a frame number, then draws the bird using

two simple LINE statements. It calls the subroutine GetFiame: that

saves the block containing the bird to the bird anay. It then clears

the screen for the next part.

The next section, SequenceFrames:, runs through the sequence

of frames to animate the bird. To initially position the bird, the line

before the SequenceFrames: section sets the x and y coordinates

for placing the PUT block equal to zero.

The two FOR.. .NEXT loops within the SequenceFrames: section

flap the bird's wings. The first loop flaps them down, the second

flaps them up. You'll notice that there are two identical PUT state

ments within each loop, separated by a small, nested FOR.. .NEXT

loop. The first PUT statement draws the bird's frame on Che screen.

The FOR.. NEXT loop pauses to keep the image on the screen. The

second PUT statement draws the same frame at the same location,

effectively erasing the bird's frame from the screen. (Recall that PUT

uses the XOR option by default to draw the frame. XORing the same

frame twice erases it completely. See Chapter 6 for the details.)

At the end of the two loops is a line that adds 5 to both the x and

y coordinates, which changes the PUT blocks location for each

loop, which makes the bird move down and to the right after

each wing-flap cycle. The next line loops the program back to

SequenceFrames:, which begins the wing-flap cycle over again.

There are advantages and disadvantages to this kind of animation.

It takes a lot of memory especially if you use a deep screen, a large

frame size, and many frames. It does flicker as you draw the

original frames, and it takes a lot of programming work to draw

frames that look more realistic than the stick bird you just saw.

Nevertheless, it does give you internal motion in an object that can

move around the screen. If you want to get rid of the initial drawing

flicker, you can draw the frames in one program and save them to

disk, then load them for the actual animation program. (You'll have

to spend some time getting familiar with the BASIC disk file

statements to do this.)

In this chapter you've learned how to limit an object's

motion, and how to read an object's location and speed.

You've also learned how to handle collisions between

objects, how to scroll the playfield, and how to use sequen

tial animation. You should experiment further with the

animation statements you learned here—they are the

building blocks of animation that, when assembled in new

and creative ways, can create some very impressive video

animation on your monitor screen.

Amiga BASIC Animation Controlling Motion

349

AFTERWORD

THE FUTURE: AMIGA'S CREATIVE POSSIBILITIES

After you master Deluxe Paint, Deluxe Music, Deluxe Video,

Amiga BASIC, and other Amiga graphics, music, and animation

tools, will you find yourself up against the wall of ennui with no

place left to go? Not likely. The programs that are available now for

the Amiga are just the beginning. As more programmers learn to

take advantage of the Amiga's unique abilities, you'll have more

and more software to play with.

The Amiga has many powers that have not yet been tapped.

For example, one of the Amiga's little-used features is the hold and

modify (HAM) mode of graphics display, which allows the Amiga

to put all of its 4096 colors on the screen at once (with a few limita

tions). Although some video digitizers can create HAM pictures

with incredible shading, there are no graphics programs out now

that let you create and print your own HAM pictures from scratch.

But as demand increases for added colors, surely programs will be

written to satisfy that demand.

Many of the Amiga's animation powers are also little used in

today's application programs. For example, the ability to finely scroll

a large playfield around the monitor screen isn't used in either

Deluxe Video or Aegis Animator. Also unused are the Amiga's

system-software routines, which allow a programmer to build an

animated character by tying together a series of moving objects to

create very realistic motion. Animation programs are new products

on the market, so as competition develops, you can expect to see

more powerful and refined animation applications for the Amiga.

Musicians are naturally drawn to the Amiga to take advantage

of its sound-sampling capabilities, and to use its multitasking

power to control and record activities on networks of MIDI instru

ments. Many of these musicians are also programmers, so in the

future you can expect to see programs that let you build very

sophisticated instruments using the Amiga's internal sound chan

nels, programs that easily turn your keyboard performances into

printed scores, and programs that teach you music notation.

Many of the Amiga's future programs aren't possible to foresee;

as users develop new needs and desires, programmers will rise to

meet the challenge. Programmers may exercise the internal hard

ware and Amiga's system software so thoroughly that they'll

discover capabilities the Amiga's creators didn't know were there.

No matter how much software and hardware you add to your

Amiga, though, the chief goal is to be able to ignore it all and work

on your own artistic creations. Any computer, no matter how

fascinating in its own right, is just a tool; and the purpose of any

tool is to transform its user's ideas into reality as easily and beau

tifully as possible.

351

APPENDIX A: AMIGA BASIC

STATEMENT FORMATS

This appendix lists Amiga BASIC graphics, sound, and

animation statements and functions along with their

formats. They are grouped by function, so you can find the

graphics statements together in one section, the sound

statements together in another section, and the animation

statements together in a third section. Each statement and

function has a short description to jog your memory if

you've forgotten what the statement or function does.

GRAPHICS

CREATING WINDOWS, SCREENS, AND PALETTES

SCREEN

screen ID number, width, height, depth, resolution mode

This statement creates a screen, setting its size, depth, and

resolution.

SCREEN CLOSE screen ID number

This statement closes the specified screen and removes it

from memory.

WINDOW window ID number, title, (corner address) - (corner

address), w1ndow-features number, screen ID number

This statement creates a window on the screen you specify, using

the size, position, and optional-features values you specify for

the window.

WINDOW OUTPUT window ID number

This statement makes the specified window the output window.

WINDOW CLOSE window ID number

This statement closes the specified window and removes it

from memory.

PALETTE color-register number, red strength, green strength,

blue strength

This statement sets the color in the specified color register.

CGLDR foreground-color number, bac k ground~coI or number

This statement sets the background and foreground colors for

subsequent graphics and text commands.

CLS

This statement clears the output window, filling it with the

background color.

354

DRAWING STATEMENTS

PSET (address), col or-register number

This statement colors the pixel at the specified address using the

color in the specified color register. If no color-register number is

specified, it uses the current foreground color.

PRESET (address), col or -reg i 5 Ier number

This statement colors the pixel at the specified address using the

color in the specified color register. If no color-register number is

specified, it uses the current background color.

LINE (starting address) - (ending address),

color-register number, box op lions

This statement draws a line from the starting address to the ending

address using the color in the specified color register. It can also

create filled or hollow boxes.

CIRCLE (center address), radius, color-register number,

arc starting point, arc ending point, aspect

This statement draws a circle around the center address using the

specified radius and the color in the specified color register. It can

also draw ovals and arcs.

AREA (address)

This statement sets a point m a polygon to be filled by the

AREAFILL statement.

AREAFILL mode number

This statement connects points set by preceding AREA statements

and fills in the area they define.

PAINT (address), paint color-register number, border

color-register number

This statement fills in an enclosed area with the color in the

specified color register, starting at a point specified by the address.

PAINT will recognize borders that use the specified border color-

register number.

PATTERN Jine mask, pattern-mask array name

This statement creates line and fill patterns that are used when

line-drawing and fill statements put graphics in the output window.

MISCELLANEOUS STATEMENTS AND FUNCTIONS

PRINT expression list

This statement prints the string(s) of characters in the expression

list in the output window.

355

LOCATE Jjne number, column number

This statement puts the text cursor at the specified line and

column positions.

:sri in

This function returns the line number of the text cursor's current

position.

POS(O)

This function returns the column number of the text cursor's

current position.

NINDDW (condi tion number)

Depending on the value of the condition number, this function

can return the window ID number of the current input or output

window, the height, width, and color capacity of the output win

dow, the pixel address of the text cursor in the output window, or

pointers to system-software addresses.

POINT {pixel address

This function returns the color-register number of the specified

pixel.

GET {corner address) - (corner address),

array name(index number)

This statement stores the pixels within the rectangle set by the

opposing corner addresses in the specified array.

PUT (address), array namefindex number/, merge choice

This statement puts the pixels stored in the specified array in the

output window at the address specified, merging them with the

pixels they cover using the specified merge choice.

SOUND

MUSIC

BEEP

This statement produces a short beep and flashes the screen.

SOUND frequency, duration, volume, audio channel

This statement plays a tone at the specified frequency and volume

for the specified duration, using the audio channel specified.

SOUND WAIT

This statement queues all subsequent SOUND statements without

playing them.

356

SOUND RESUME

This statement plays all the SOUND statements queued by the

SOUND WAIT statement.

UAVE audio channel, integer-array name

This statement creates a new waveform in the specified audio

channel using the information contained in the specified integer

array.

SPEECH

5AY phoneme-code string, speci ficat ion-array name

This statement converts the phoneme code string into speech

using the speech characteristics set in the specification array.

TRANSLATES ("text string'11

This function translates the text string and returns the phoneme

codes necessary for the SAY statement.

ANIMATION

CREATING AND MOVING OBJECTS

OBJECT.SHftPE object id number, object-definition siring

Using this syntax, this statement creates an object in memory from

data stored in the object-definition string.

OBJECT.X object id number, x coordinate

This statement sets the x coordinate of the specified object's

location.

OBJECT.Y object id number, y coordinate

This statement sets the y coordinate of the specified object's

location.

OBJECT.ON object id number, object id number, . . .

This statement makes the specified objects (or all objects, if no

object ID numbers are specified) visible in the output window.

OBJECT.VX object id number, x veloc1 ty

This statement sets the x velocity of the specified object.

OBJECT.VY object id number, y velocity

This statement sets the y velocity of the specified object.

357

OBJECT.START object id number, abject id number, . . .

This statement sets specified objects (or all objects, if no object

ID numbers are specified) in motion.

OBJECT.AX object id number, x acceleration

This statement sets the amount of acceleration along the x

(horizontal) axis for the specified object.

OBJECT.AY obj ec t id number, y acceleration

This statement sets the amount of acceleration along the y

(vertical) axis for the specified object.

OBJECT.STOP object id number, object id number, . . .

This statement freezes the motion of the specified objects (or all

objects, if no object ID numbers are specified).

OBJECT.DFF object id number, object id number, . . .

This statement makes the specified objects (or all objects, if no

object ID numbers are specified) invisible.

OBJECT.CLOSE object id number, object id number, . . .

This statement removes the specified objects (or all objects, if no

object ID numbers are specified) from memory.

CONTROLLING OBJECTS

OBJECT. SHAPE dupl i cate obj ect id number , or igmal

object id number

Using this syntax, this statement creates a duplicate object in

memory of an existing object.

OBJECT.PLANES object id number, PlanePick value,

PlaneOnO-ff value

This statement changes the colors of an existing object.

OBJECT.CLIP (corner address) - (corner address)

This statement sets an invisible rectangle in the output window

that serves as a motion boundary for objects within it.

OBJECT.X(object id number)

This function returns the x coordinate of the specified object's

current location.

OBJECT.Yfobject id number)

This function returns the y coordinate of the specified object's

current location.

OBJECT.VX(object id number)

This function returns the x velocity of the specified objects

current motion.

358

OBJECT.VYfobjec! id number)

This function returns the y velocity of the specified object's

current motion.

OBJECT.HIT object id number, type va1ue, hit va1 ue

This statement defines the object type of an object, and defines the

types of objects it can hit.

OBJECT.PRIORITY object id number, priority value

This statement sets the collision priority for an object, which

determines which of two colliding objects passes over the top of

the other.

COLLISION ON

This statement turns on the collision queue.

□N COLLISION GOSUB Jjne name/number

This statement causes Amiga BASIC to jump to the specified

program line whenever a collision occurs.

COLLISION/id number)

This function returns collision information from the collision queue.

COLLISION STOP

This statement suspends the operation of the collision queue.

COLLISION OFF

This statement turns off the collision queue and disables ON

COLLISION GOSUB.

SCROLL (corner address) - (corner address), x-shift, y-shift

This statement shifts the contents of the specified rectangle by the

amount specified.

359

APPENDIX B: COMPANIES MENTIONED

IN THIS BOOK

This appendix lists companies mentioned in this book,

followed by the company's address and a list of their

products discussed in this book.

Aegis Development

2210 WlJshire #277

Santa Monica, CA 90403

Products: Aegis Animator.

Aegis Images

A-Squared Systems

10 Skyway Lane

Oakland, CA 94619

Product: Amiga LIVE' Iramegrabber

Casio, Incorporated

15 Gardner Road

Fairfield, NJ 07006

Products: AS-20 speaker, CZ-101

synthesizer, CZ-1000 synthesizer

Commodore-Amiga. Incorporated

983 University Avenue #D

Los GatOS, CA 95030

Products: Amiga 1000 computer.

Amiga 1300 Genlock Board, Amiga

BASIC, AmigaDOS. Amiga

Kickstart, Amiga Workbench.

Graphiciaft, Textcraft

Electronic Arts

1820 Gateway Drive

San Mateo, CA 94404

Products: DeluxeMusic, DeluxePaint,

DeluxeVideo, Instant Music

Epson America. Incorporated

2780 Lomita Boulevard

Torrance, CA 90505

Product: JX-80 printer

The Micro Forge

398 Grant Street, 3 E

Atlanta, GA 30312-2227

Product: RAM cards

Mimetics Corporation

P.O. Box 60238 Station A

Paio Alto, CA 94306

Products: SoundScape,

SoundScape sound sampler

Okidata

532 Fellowship Road

ML Laurel, NJ 08054

Product: Okimate 20 printer

Pioneer Video, Incorporated

200 West Grand Avenue

MontvaJe, NJ 07645

Products: CLD-900 LaserDisc

player, IU-04 LaserDisc computer

interlace

Sony Corporation of America

Sony Drive

Park Ridge, NJ 07656

Product: KV-1311 video monitor

Teac Corporation of America

7733 Telegraph Road

MontebeUo, CA 90640

Product: TASCAM Ministudio

Porta One cassette recorder

Video Vision Associates Limited

7 Waveriy Place

Madison, NJ 07940

Product: Space Archive

LaserDiscs

Xerox Corporation

901 Page Avenue

Fremont, CA 94538

Products: Diablo C-150 inkjet

printer, Xerox 4020 inkjet printer

360

INDEX

Page numbers for illustrations are

in italics

Aegis Animator. 264, 289-

90, 351

Amiga BASIC, 23. 41, 45, 351

Amiga BASIC, animation, 296-325.

See also Object Editor

controlling motion, 328-49 (see

also Appendix A: specific

statements and functions)

creating a motion boundary, 328-

29 (see aiso OBJECT CLIP

statement)

drawers, storing files in,

308-9

gels, 264

handling object collisions, 333-44

(see also Appendix A; specific

statements and functions)

placing and moving objects. 306 —

19 (see a/so specific

sta temen ts)

playfields, 263-67, 301

reading an object's location and

velocity. 330-33, 333 (see also

specific object functions)

scrolling, 263

tricks, 344-49

Amiga BASIC, graphics, 86-169. See

also Appendix A; Area

pattern: Color palette.

Screen; Windows

color registers, 107-12

image creation, 114-41 (see also

Graphics cursor and pixel

addressing)

list and output windows. 86-89

miscellaneous graphics and

functions, 144-69 (see also

Appendix A; Character

addressing; Fonts; Graphics,

copying and pasting;

Graphics, interactive)

Workbench screen window, 92

Amiga BASIC, sound, 222-48. See

also Appendix A, specific

SOUND statements; Speech,

generation

musical scale array, 233-35

playing a musical score, 235-38

synchronization, 227-28

AmigaDOS (Disk Operating System).

21. 23

CLI commands, 23

Exec, 19-20

RAM. 21

Amplifier, 180

Amplitude (loudness), 176.

186.188

Animation. 252-325. See also

Deluxe Video

fundamentals, 252-62 (see also

Illusion of motion;

Perspective)

IFF standard, 291

interactive. 262. 267-68

internal motion, 265—67

Anti-aliasing, 39

Area pattern, 138-41

applying an area pattern. 139—41

putting the area pattern mask into

an integer array, 138-39

AREA statement, 129

AREAFILL statement, 130-32

filling a shape with a

pattern, 132

Array, musical scale. 233-35

traditional music notation. 234

Array, PUT and GET variable, 159-

64. See also PUT and GET

statements

calculating size. 161-62

copying several equal-sized

graphics blocks in one array,

162

copying several unequal-sized

graphics blocks in the same

array, 163

storing a graphics block, 162

storing graphics data, 160-

61, 261

Array, specification, 242-55. See

also SAY statement

choosing the channel assignment,

244-45

choosing inflection or monotone,

243

choosing multiple SAY options.

245

choosing synchronous or

asynchronous speech, 245

choosing voice gender, 243

setting base pitch. 242

setting sampling frequency. 243-

44

setting speaking rate. 243

setting volume. 244

Array, waveform. See Waveform

table

ASCII (American Standard Code for

Information Interchange), 193

Index

361

B
BEEP statement. 222

waveform of, 222

Binary line mask, 136-37

Bit planes, 57. 95-96

Blend mode, 65. 70

creation of rainctouds, 77

Blitter, 48

Bob, 301

Brush modes, Deluxe Paint, 63-72

blend, 65

blend to create rainclouds, 70

color, 63-64

cycle, 65

object. 63

object and color to outline figures,

66-67

replace, 64

shade,64

shade to create shadow, 71-72

smear. 64

smear to create sandy

background. 68

text brush to create outlined

text, 67

Casio CZ-101 synthesizer, 218

Casio CZ-1000 synthesizer, 218

Character addressing, 144-45

line and column number

ing, 145

CIRCLE statement, 124-29, 125

circle measured in radians, 127

creating arcs, 126, 126

creating circles, 125

creating ovals. 127-29

CLI (Command Line Interpreter), 22,

74

CLS Statement, 119

COLLISION!) function, 339-41

collision queue, 339. 340

COLLISION OFF statement, 344

COLLISION ON statement, 339-41

COLLISION STOP statement. 343

Color. 28-31

HIS (Hue, Intensity, Saturation)

creation, 30-31

primary, 28-29

RGB creation, 29

Color mode, 63-64. 66-67

Color palette, 46-47, 107-12

design, 57-59

HAM (Hold and Modify), 47

palette window, 58

picture using HAM mode for

shading, 47

range, 59

COLOR statement, 108-9

changing background color, 109

changing foreground color, 109

with PRINT statement. 151-52

storing color, 110

Commodore-Amiga, 79, 80

Component motion, 266-67

Console, 7, 7

custom chips, 9

internal disk drive, 10-11

memory chips, 10

motherboard, 8

Motorola 68000 microprocessor, 9

power supply. 7-8

Creating precise drawings. 60-63

coordinates command and brush

position. 60

grid alignment. 61-63

SHIFT key and drawing straight

lines. 60-61

Cycle mode, 65

D
Deluxe Music, 23, 196-213

capabilities, 198-206

recording, 209-12

special effects using Tascam

Ministudio Porta One

recorder, 210-11

synchronizing scores, 211-12

tips, 208-9

use with MIDI, 206

Deluxe Paint, 23. 41, 45, 48. 49, 54-

83. 263, 265. See also Brush

modes; Color palette

choosing screen resolution and

depth. 56-57

creating background and

matching objects for

animation. 271-74

creating precise drawings and

color-cycle animation, 274-79

creating sequenced drawings for

animation, 279-85

creating a work disk, 55-56

photographing, 78

printing Deluxe Paint pictures. 74-

78

tricks, 73-74

Deluxe Video. 23, 45, 264

and Deluxe Paint, 271-85 (see also

Deluxe Paint)

blitter. 270, 275

color cycle. 274-79, 276, 277, 279

library disks, 290

making scripts readable, 286, 287

recording onto videotape. 287-89

sequential drawing. 279-85, 280,

281, 282. 283

synchronizing effects with sound,

285

Deluxe Video Framer, 279, 280. 282

Deluxe Video Maker, 279, 283, 284

Denise (chip), 264

Direct Memory Access (DMA), 10-11

Drawing pictures, 48

and Agnus chip. 48

blitter, 48

Index

362

Duplicating objects. See

OBJECT.SHAPE statement

Duration, 186. 187. 235

and SOUND statement, 225

E
Electronic Arts. 212. 270. 290

Exec, 19-20

and Kickstart disk. 19-20

and ROM. 19

External disk drive, 16

F
Firmware. 10

Fonts, using different sizes, 145-46

Frequency (of sounds), 176

and SOUND statement, 223-25

Functions. See also Appendix A and

specific functions

G
Gels. 264-67

bobs, 265

sprites, 264-65. 300

GET statement, 159, 167-69

Graphicraft, 263

Graphics, copying and pasting, 159-

69 See also Array. PUT and

GET variable; GET

statement; PUT statement

examples using GET and PUT.

167-69

Graphics cursor and pixel

addressing, 114-41. See also

specific graphics statements.

Multi-sided figure creation

absolute addressing, 114—15

relative addressing, 115 — 16

window boundaries, 117—18. 117

Graphics, features, 41 — 52. See also

Color palette; Drawing

pictures; Mixing two

pictures; Picture detail;

Scrolling; Text, creation

Graphics, interactive. 153-58. See

also POINT function;

WINDOW0 function

H
Hardware, 4-17. 4. See also

Console; Keyboard; Monitors;

Mouse

manufacturers (mentioned in text).

360-61

Hardware, animation, 291 — 94

Amiga 1300 Genlock board, 292

external RAM cards, 291-92

laser disc players, 293-94

Hardware, graphics, 80-83 See also

Monitors; Printers

Amiga Live! framegrabber, 83

Hardware, sound

speakers, 215-16

stereo, 15

Hawkins, Trip, xi

Hexadecimal numbers. 136-37

I
Illusion of motion, 252-57, 253

background, 254-55

moving objects, 255-57

Infinite loop, 122

Interlacing. 94

Intuition, 21, 45

user-interface routines, 21

K
Keyboard, 5-6, 6

Libraries and devices, 20, 263

Line pattern, 136-38

applying a line pattern. 137

converting a binary line mask into

a hexadecimal number, 136-

37

LINE statement. 122-24

creating boxes, 123-24, 124

creating lines. 122-23, 123

LOCATE statement, 148-49

M
Memory Chips, 10. See also RAM;

ROM

MIDI (Musical Instrument Digital

Interface). 190-93. 192

adaptor, 218

creating a MIDI ring. 192

messages, 193

physical standard, 191-92

Mixers, 189

Mixing two pictures, 51 — 52, 53

Modem. 13, 17, 193

Monitors. 5. 31-41, 80-81

cathode-ray tube. 32

color, 34-35 35

composite, 5

CRT electron gun, 32

monochrome, 31 — 34

phosphor dots of a color monitor,

34

ports. 5

raster scanning, 33 — 34. 33

RGB, 5. 80

television, 5

transferring a video image to other

media, 35-41 (see also

Photographing the monitor

screen; Printing video

images; Videotape)

Mouse. 6

Index

363

Multi-sided figure creation, 129-32.

132. See also AREA

statement; AREAFILL

statement

Musical score, playing. See Amiga

BASIC, sound

N

NTSC (National Television Systems

Committee). 14

Object Editor, 296-301

drawing an object, 299-301, 300

modification of, 297-99

Object mode, 63, 66-67

OBJECT.AX statement, 316-17

OBJECT.AY statement. 316-17

OBJECT.CLIP statement, 329, 330

OBJECT.CLOSE statement. 318-19

OBJECT.HIT statement, 334-37,

337

OBJECT.OFF statement, 317-18

OBJECT.ON statement, 311-12. 312

OBJECT.PLANES statement

to change colors, 320

example, 325

setting PlanePick and PlaneOnOff

values, 323-25

OBJECT.PRIORITY statement, 337-

38

OBJECT.SHAPE statement, 307-8

to duplicate objects, 319-20

OBJECT.START statement. 315

OBJECT.STOP statement, 317

OBJECT.VX0 function, 331-33

OBJECT.VX statement, 312-15. 313.
314

OBJECT.VY0 function, 331-33

OBJECT-VY statement. 312-15. 373
314

OBJECT.X0 function. 330-31

OBJECT.X statement, 309-11, 310

OBJECT.Y0 function. 330-31

OBJECT.Y statement, 309-11, 310

ON COLLISION GOSUB statement,

338-39

Open machine, 12

Output window, 105-6

PAINT statement, 133-34

to fill in a circle. 134. 135

PALETTE statement, 109-112

creating different palettes for

different sceens, 111-12

16 primary color strengths and

corresponding PALETTE

values, 110

two different screens with two

unique screen palettes. 112

Palettes. See Color palette

PATTERN statement, 135-41, 140.

See also Area pattern, Lint*

pattern

applying a line pattern. 137. 137

changing pattern colors, 141

conversion of binary line mask into

a hexadecimal number, 136-

37

and creation of line pattern. 136

Peripherals. 11, 14-17

external disk drives, 16-17

external RAM. 17

impact dot-matrix printers. 15

ink-jet printers, 15

laser printers, 16

letter-quality printers, 15

thermal-transfer printers, 15

Perspective, 257-62

three-dimensional. 258-60, 259,

260

two-and-a-half-dimensional, 260-

62, 261

two-dimensional. 257-58, 257

Photographing the monitor screen,

36-37

disadvantages, 37

Picture detail. 42-45. See also

Resolution

pixels, 42

Pioneer CLD-900, 293

Pioneer IU-04 computer interface

293

Pitch, 186. 188, 235

Pixel addressing. See Graphics

cursor and pixe! addressing

Playfield. 271-75

Playfield, animation, 301-4, 305

choosing colors, 303-4

screen depth, 302-3

screen resolution, 302

POINT function, 158

Ports and connectors, 11-14. See
also Peripherals

audio, 13-14

on back of console, 12

controller, 12

disk-drive, 13

expansion connector, 12

internal RAM connector, 11

keyboard. 13

MIDI, 191

parallel. 13

RGB, 14

on right and front side of console

11

serial. 13. 192

TV modulator, 14

video, 14

Preferences, 52, 74-8

Change Printer screen, 74-76 78
75. 76

Graphic Select screen, 76-78, 77

PRESET statement, 120-22

Index

364

PRINT statement.147

with COLOR statement. 151-52.

152

Printers, 15, 16.81-82

Diablo C-150 and Xerox 4020, 82

Epson JX-80. 82

Okimate 20, 81

Printing

printer driver, 52, 74

Printing Deluxe Paint pictures, 74-

78. See also Preferences

Printing video images

converting color to black and

white. 39-40.40

fidelity, 37-38

printing in color, 40-41

PSET statement, 119-22

with trigonometric command, 121

PUT statement. 164-65

array name and index. 164-65

merge choices, 165 — 67

sequential animation, 346-49. 348

setting PUT address. 164

R
RAM {Random Access Memory), 10

and animation storage, 291-92

and bit planes, 57

and fonts, 49

and resolution. 44

and sequencers. 181

and window refreshing, 102-3

and Workbench, 21

Recording, animation. 287-89

quality. 288

Recording, Deluxe Music scores,

209-12

Recording, sound, 188-90

Replace mode, 64

Resolution

affect on memory, 44-45

animation, 302

anti-aliasing, 39, 39

depth. 56-57

font size, 146, 147

"jaggies." 39, 38

mixing. 45. 45

picture using high-resolution

pixel. 44

picture using low-resolution

pixel. 43

SCREEN statement, 93-94

Workbench display using 640-

by-200 resolution screen, 42

RGB monitor. 5. 80-81

analog. 80-81

controls of the Preferences

program, 29

digital, 80-81

ROM (Read Only Memory), 10, 19

SAY statement, 243-47. See also

Array, specification

examples. 246-47

phoneme codes, 241-42

Screen (horizontal areas), 45

SCREEN CLOSE statement, 98

SCREEN statement, 93-98

conserving memory, 96

depth, 95-96

examples, 96-97

five simultaneous screens, 97. 97

ID number, 93

memory requirements, 96

mode 1 screen. 95, 95

resolution mode, 93-94

width and height, 94-95

Screens. 90-91. 93-98- See also

SCREEN CLOSE statement;

SCREEN statement

title bar, 90. 91

SCROLL statement, 342

scrolling the playheld. 344. 345

Scrolling, 50

Sequenced drawings, 266

Sequencer, 187

Serial printer, 13

Shade mode, 64. 71-72

creation of shadow, 72

Sizing gadget, 118

Smear mode, 64, 68-69

creation of sandy background. 69

Software, 17-23. 29. See also

AmigaDOS; CL1 (Command

Line Interpreter); Exec;

Intuition; Libraries and

devices: Workbench

manufacturers (mentioned in text),

360-61

Software, animation. See Aegis

Animator; Amiga BASIC,

animation; Deluxe Video

Software, graphics, 79-80. See aJso

Amiga BASIC; Deluxe Paint

Aegis Images, 79

Graphicraft, 79

IFF (Interchange File Format)

Graphics Standard. 80

Software, sound. See Amiga BASIC.

sound; Deluxe Music

IFF music standard, 214

Instant Music, 212

Sound. See also MIDI; Recording;

Sounds, electronic;

Synthesized music;

Synthesized speech

characteristics of, 176-78

and hearing. 174-76

sampled, 185-87

samplers, 217

sine, square, and sawtooth

waves, 177

Index

365

Sound, synchronization. See Amiga

BASIC, sound; SOUND

RESUME statement; SOUND

WAIT statement

SOUND RESUME statement, 228

SOUND statement, 223-28

choosing audio channel, 226

setting duration, 225

setting frequency, 223-25, 224

setting volume, 226

SOUND WAIT statement, 227-28

Sounds, electronic, 179-81

Speakers, 179-80

Speech, generation, 238-47 {see

also SAY statement;

TRANSLATES!) function;

Statements. See Appendix A and

specific statements

Stereo, 180-81

Synthesized music, 181-87. See aJso

Sequencer; Synthesizers

Synthesized speech, 188

Synthesizers

analog, 182

digital, 182-87

digital-to-analog converter (D-to-A

converter), 184

Tape recorders, 189

Text, creation, 48-50, 49

and background, 50

font. 48-49

Text cursor

locating with CSRLIN and POS(O)

functions, 150-51

Textcraft, 49

Timbre. 177, 186. 187, 188, 222

Transformer IBM emulator, 16

TRANSLATES!) function. 239-41

alternate spellings for correct

punctuation, 240-41

using punctuation with, 240

Trigonometry. 121-22

V
Video-signal converter, 12

Video Vision Associates Space

Archive laser disc, 294

Videotape, 36

Voltage-controlled oscillator (VCO).

182

Volume, 235

and SOUND statement, 226

w
WAVE statement, 229-33. See also

Waveform table

Waveform. 177, 183-87, 222, 183,

230, 231, 232

Waveform table, 229-33. 238

assigning to audio channel, 232-

33

calculation, 231-32

creation of. 229-30

reading data of, into waveform

array, 230-31

WINDOW CLOSE statement, 106-7

WINDOW!) function, 153-57

examples. 154-57. 155, 157, 158

table, 154

WINDOW OUTPUT statement, 106

WINDOW statement, 98-105

examples, 104-5

features, 101-3

ID number. 99

opposing corner addresses, 99

pixel-addressing system. 100

screen ID number, 103 — 4

window in upper corner of screen.

101

window with all possible features.

103

Windows, 91-92, 98-107. See also

Output window: WINDOW

CLOSE statement; WINDOW

OUTPUT statement;

WINDOW statement

Workbench, 21-22, 48, 52, 22

and Intuition, 22

Index

366

About the Author

A classical oboist by training, Michael Boom became involved with

computers in 1980, when he purchased an Atari 800. He is the

author of Understanding Atari Graphics, How to Use Atari

Computers, and How to Use the Commodore 64, all published as

Alfred Handy Guides. He has also written for Compute! magazine.

For the past two years, Michael has worked as a consultant in the

microcomputer field, including a year as the music consultant for

Commodore-Amiga. Michael Boom currently lives in Oakland,

California.

The manuscript for this book was prepared and submitted to

Microsoft Press in electronic form. Text files were processed and

formatted using Microsoft Word.

Cover design by Ted Mader and Associates

Interior text design by Woodfin Design

Illustrations by Rick Bourgoin

Polyscope images courtesy of Dan Silva

Principal typographer; Russell Steele

Principal artist: Becky Johnson

The screen photographs were created on the Commodore Amiga

and photographed by Nick Gregoric.

Text composition by Microsoft Press in Serifa 45 with display

in Serifa 65, using the CCI-400 composition system and the

Mergenthaler Linotron 202 digital phototypesetter.

